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Chapter 1

Introduction

The aim of quantum chemistry is to obtain a computational @hdaor the qualita-
tive and quantitative description of experimental obstoves on the basis of quantum
mechanics. In order to do this one has to approximate thetgoamechanical many-
body problem to a certain accuracy. A well established appration is the Hartree-
Fock (HF) approach, which is usually not sufficient to obtemical accuracy. The
reason for this is the approximate averaged treatment aéléeron repulsion in the
HF approach. The electrons of different spin move indepethglef each other in the
HF model. In reality all electrons avoid each other indiatly which means that their
movement is correlated. A way to include the correlatiorhef ¢lectrons is provided
by density functional theory (DFT). DFT based methods aedusday for a wide
range of chemical systems and provide reliable results arynmolecules. The major
drawback of DFT is that it is not systematically improvalsiece the Hohenberg-Kohn
functional is unknown.

A common way to improve the HF wavefunction is to set up a maogy expansion
on the basis of the HF orbitals. However, the applicationhese post HF methods
is limited, since these approaches depend heavily on tleeo$ithe one-particle ba-
sis. The HF energy is invariant with respect to an arbitramtauy transformation
within the occupied space or within the virtual space. Tfogeeit is an interesting
guestion to ask about a set of unitarily transformed orbitdiere a many-body expan-
sion based on configuration interaction (CI) or coupledtelug€CC) theory converges
faster to the desired accuracy than for the canonical dsita2]. An alternative to
the canonical orbitals provide localized orbitals, whicaynbe obtained efficiently by
a Foster-Boys [3] or Pipek-Mezey [4] localization. Today wan find a variety of
local correlation methods for the major quantum chemicalhos. Mgller-Plesset
perturbation theory to second order (MP2) based correlatthemes were introduced
by Pulay [5-8], Werner and Schiitz [9, 10], Maslen and Heatd@o[11-14], Ayala
and Scuseria [15], Federov and Kitaura [16]. Local Cl/mrdference Cl (MR-CI) ap-

1



2 CHAPTER 1 INTRODUCTION

proaches were developed by Walter et al. [17-19]. CC basadidorrelation methods
were developed by Werner and Hampel [20], Werner and ScBatz22f4], Flocke and
Bartlett [25], Subotnik and Head-Gordon [26, 27], Auer arabljen [28] and Chris-
tiansen et al. [29].

The extension of local correlation methods to solids is rettsplved completely. An
early approach is the so-called local ansatz of Fulde ankh8tb[30, 31]. MP2 be-
came recently available in the CRYSTAL quantum chemistrgkpge [32,33] and a
density fitting local MP2 was written by Usvyat and Schitz][34

For higher level correlation methods it is possible to setanpincremental expan-
sion of the correlation energy as introduced by H. Stoll 8- The drawback of
the incremental scheme is that up to now a lot of handworkdgsired to obtain the
correlation energy. It was applied in a series of case sufiepolymers [38—41],
for solids [42-52], for molecules [53], for band structuf®4-56] and for open-shell
clusters [57]. A theoretical foundation of the incremersighieme was given by Fulde
and Stoll [58,59]. Conceptually similar to the incremergetheme is the divide and
conquer approach [60] as well as other fragment based metil@the cluster in
molecules (CIM) approach [61, 62], the molecular fractiosrawith conjugated caps
(MFCC) [63], the generalized molecular fractionation wettimjugate caps/molecular
mechanics (GMFCC/MM) [64] or the systematic molecular fi@atation [65].

The current work was done to reduce the scaling of multiregfee configuration in-
teraction methods (MR-CI) and coupled cluster methods (@@)g the incremental
scheme of Stoll and Nesbet [1,35-37]. The main goals of thik\are:

* Implementation

- generate a fully automatized procedure to obtain the mergal coupled
cluster singles and doubles (CCSD) correlation energypfien-shell re-
stricted coupled cluster singles and doubles (RCCSD) letiva energy,
the multi-reference configuration interaction singles adibles (MR-
CISD) correlation energy, the multi-reference averagegptad pair func-
tional (MR-ACPF) correlation energy, the multi-referemaseraged quadra-
tic coupled cluster (MR-AQCC) correlation energy and thdtireference
coupled electron pair approximation of zeroth order (MRPRBID)) corre-
lation energy

- generate a fully automated procedure to treat perioditesys within the
framework of the incremental scheme

* Theory

- explore the potential accuracy of the approach using réiffecorrelation
methods



- analyze the convergence behavior of the incremental seli@nmolecules
- check the performance of the incremental scheme in cortibmeith an
approximate treatment of molecular symmetry

* Application

- molecules
- polymers
- excited states
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Chapter 2

General Theory

2.1 The Many-Particle Problem in Quantum
Mechanics

The quantum mechanical basis for many chemical problemddesativistic effects
is the time-independent Schrédinger equation:

HU = FU (2.1)

Here H is the Hamilton operatory is the wave function and is the energy eigen-
value. The non-relativistic electronic Hamiltonian for alecule in Born-Oppenheimer
approximation in atomic units is given as:

L1 - Z. 1 ZoZs
o= QZ:VZ? ;zima—riﬁ;lri—r]l Z|R "R, (2.2)

wherer; are the coordinates of the electroRs, are the coordinates of the nuclei and
Z, 1s the charge of the nucleus The first term describes the kinetic energy of the
electrons, the second term corresponds to the interactiovelen the electrons and the
nuclei, the third term is the electron-electron repulsiod ¢he last term corresponds
to the interaction between the nuclei. Unfortunately ita$ possible to find an ana-
lytic solution for eqn. 2.1, for more than one electron in pméential of some nuclei.
Therefore one relies on approximation schemes to obtaierieegy with the desired
accuracy.

The term causing the major complications in the electroraenitonian eqn. 2.2 is
the electron-electron repulsion. Unfortunately it is fao important to be neglected
completely [66].
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2.2 Hartree-Fock Theory

The Hartree-Fock approach is equivalent to the usage ofggesBlater determinant
® as approximation to the wavefunctidnin egn. 2.1 [67] and the application of the
variation principle in order to arrive at the optimal orihgat.

‘Il(xla T2y Tn-1, xn) = dg

X1 (1) xa(r1) 0 xa(T1)
1 X1 (72) Xa(w2) 0 Xn(T2)
Q)= — : : . : (2.3)
vl X1(Tn1) Xo(@no1) - Xn(Tn-1)
X1(7) Xo(Tn) o0 XulTn)

The spin-orbitaly(x) is a product of the spin functiosn(w) and the space function
¢(r):

Xi(z) = ¢i(r) - 03(w)
According to the variational principle we find the best ap@mation to the ground
state energy for a single determinant wavefunction by:

. (D] H| Do)
min|E({x.})| = min——————~ 2.4
()] = min g o 24)
using the orthonormality of the spin orbitals
(XalXb) = Gab
we have: )
(@o| H|Po) = D (Xalhlxa) + 3 > xaxslxaxs) (2.5)
a ab
with

o 1_, Lo
M= =3V LR

1

r) — 19

ummmoaﬁmwﬂmuw> (1 - Pr)va(L)xs(2)

P12Xa<1)Xb<2) = Xa(Q)Xb(l)

The spin orbitals, can be determined by the Fock equation:

]E‘Xa> = €a|Xa) (2.6)
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with the Fock operator of the first particfe{l) being'

f(1) =h1 +Z/dx2xb

Since the Fock operator depends on the orbitals, we havelte egn. 2.6 in an
iterative manner. The procedure to solve the HF equatiorslied self-consistent
field method (SCF), which is often but not entirely correat@yymously used for the
HF method. For a closed shell system we can use a restridteflgan orbitals:

X2i(7) = ¢ai(r) - a(w)
Xoit1(7) = ¢oi(r) - B(w)
inserting the ansatz into the Fock equations and integyatin the spin functions, we
get the Fock operator for a closed shell system:

n/2

=+ [ artic2 _r2|<2—7312>¢b<2> (2.7)

(1 —Pi2)xs(2)

1—I'2|

The closed shell HF equations read:

Flda) = alda) (2.8)

In a system ofn particles we use thg lowest eigenvalues of eqn. 2.8 to build the
Slater determinand,. This is equivalent to divide the set of the orbitéls, } into two
disjoint subset$) andV. The set of the occupied orbitalsis defined as:
n/2
0 =Joawithey, < ey, for Ay < A
A=1
The virtual space is defined as:

V={¢a}\O

The introduction of a basis @f atomic orbitals for the spatial part of the spin orbitals
according to egn. 2.9:

N
a(r) = cardi(r) (2.9)
A
enables us to transform the Hartree-Fock equations intRtwothaan-Hall equations:
FC =SCe (2.10)

HereS ist the overlap matrix of the atomic orbitalB, is the Fock-matrixC is the
coefficient matrix of the molecular orbitals aeds the matrix of the eigenvalues (in
the canonical case a diagonal matrix). Note that a unitamystormation/ to the
orbitals within the occupied space or within the virtualsgpaas no effect on the total
HF energy.
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2.3 Multi-Configuration Hartree-Fock Theory

It is not always possible to build a fairly accurate wavetiomtwith a single determi-
nant. Therefore in the multi-configuration self-consisfeid method (MCSCF) a set
of slater determinants is used in the energy functionalg8}.,

min[E({xa}, {ei})] = min( >~ @ A ci;) (2.11)
Where the se{®;} is usually a small set of determinants with significant intaoce.
A special case of the MCSCF is the complete active space S@oth@CASSCF). In
this case all possible determinants which can be consttdicien a certain number of
(active) electrons and (active) orbitals are included enftinctional egn. 2.11.

2.4 The Concept of Size-Extensivity/Size-Consistency

In quantum chemistry one has to compare energies of diffeyetems. Therefore itis
very important that a given quantum chemical method yietldaauracy, independent
of the size of the system under investigation. This is cavénethe concept of size-
extensivity [69—71] and the concept of size-consisten2y-4].

Consider a system of equal and possibly interacting subs)st:

A < [ = -~ [

N — o

A correlation method is called size-extensive, if the datren energy scales linearly
with the size of the system:

]\}1m Ecorr(N X A)

= const> 0

This property guarantees the accuracy of a correlationadethdependent of the total
size of the system.

The term size-consistency was introduced for non-intargctubsystemst. If we
consider a non interacting system of two parts A and B, we lshfmeiable to calculate
the energy of the compound system by adding the two fragrhenéagies:

Eng = Ea + Fg (2.12)

If we can write the compound Wavefunctiqth\vac) as a product of the separate
wavefunctionsyatg|vac), we find that eqn. 2.12 holds [68]. Note that the anti-
symmetry is build into the wave operatgk according to the anticommutation re-
lations of the second quantized operators.
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2.5 Configuration Interaction Theory

The HF and MCSCF wavefunctions can usually determine theggred a molecule
within an accuracy of 1%. Since this is not enough to treatsbal reactions, we have
to go beyond these methods. The correlation energy is dedisted

Ecorr = Fexact— Enr (2-13)

where Eeyact IS the non-relativistic energy in the limit of a complete geticle basis
and in the Born-Oppenheimer approximation. The optimatetation energy for a
given one-particle basis for all states can be obtained tv@Hull configuration inter-
action method (FCI) [67, 68, 75, 76]. In the limit of a complemne-particle basis the
FCI approach yields the exact correlation energy. In thedgproach a linear combi-
nation of all possible determinants of the orbital€imndV with |O| orbitals in every
determinant is used to construct the wavefunction:

[T6%) = col@o) + D D I + DY el + ..

ij ab (2.14)
,7,... €0, a,b,...eV

The coefficients for the determinants can be found by solthegigenvalue equation:
HC = CE (2.15)

where theH is the Hamilton matrixC is the matrix with the expansion coefficients for
all states andt is the diagonal matrix with the energies of the stafés.= (®,|H|®,)

is a matrix element between two arbitrary Slater determigaheqn. 2.14. Due to
the fast increase of the number of determinantgliff') it is already impossible to
use the FCI method for rather small molecules. The usual wayuncate the FCI
wavefunction is to use only the most important classes adrdghants. For instance
we write the CI singles and doubles (CISD) wavefunction as:

[E0) = colo) + 30 D erion) + 30 Y i)

ij ab (2.16)
1,7, ... € O, a,b,.. eV

There are three major problems associated with truncatech@ functions: the lack
of size-extensivity/consistency [68], the bad perforneamcthe multi-reference case
and the poor scaling behavior with respect to the one-patii@sis (CISDx N°). The
size-extensivity problem cannot be solved exactly withi& framework of truncated
Cl theory, whereas it is very easy to construct a Cl-wavefondor a multi-reference
case (vide infra).
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2.5.1 Multi-Reference Configuration Interaction Theory

In order to get a proper multi-reference wavefunction witthe framework of Cl
theory one uses a set of important determingdis.,} and does single and double
substitutions for every determinant b,.;} (MR-CISD) [77]. Since the excitation-
manifolds of the active determinants are not necessasjpidit, one can construct the
set of excited determinants by unification of excitationarfads for the active deter-
minants. Due to the linear parameterization it is easilysgae to obtain the required
number of equations to determine the coefficients in the M8BC The MR-CISD
method yields very accurate energies for small moleculésdie to the lack of size-
extensivity the results get poor for larger molecules.

2.6 Coupled Cluster Theory

Since the problem of size-consistency comes from the irhiyeo write a truncated
ClI wavefunction in direct product form, it is convenient toild the wavefunction in
a way that the direct product form is always possible. Thiddee in the Coupled
Cluster CC ansatz [68, 76]:

U5y = [H (1+tty)

I

1) (2.17)

wheret, is a general substitution operator. Thecommute, if they are restricted to
substitutions from the occupied HF-orbitals to the unocedipiF-orbitals. Since the
Eu are nilpotent [68], we can use the Taylor expansion of an e&ptal of an operator,
for commutingt,,, to rewrite eqn. 2.17:

o [

I

[WHF) = 2 tuli | gHIF) = TP HF) (2.18)

Analogous to the Cl wavefunction we can truncate the clusgerator’ according to
substitution classes:
T=Ti+To+T5+..+Ty (2.19)

with 7}, as:
. 1)’ et A
T, = (m) Z t%’,_,alal ce- Qi
) ij-ab---
wherea] are second quantized creation operators@rate second quantized annihi-

lation operators with, b, ... € V andi, j,... € O [78]. For theT,, operator we have
n summation indices for the occupied space arglimmation indices for the virtual
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space. Inserting the CC wavefunction of eqgn. 2.17 into thed@iinger equation and
projecting with the HF state from the left we get:

(UEF|H|UEC) = Eoc(UiT|UEC) = Ecc (2.20)
Hereby we assumed intermediate normalization of the CGefuanction.
(T6HT5°) =1

We get the equations for the CC amplitudes if we project withexcited determinants
®# from the left:
(@ H| W) = Ecc(®"¥5°) (2.:21)

It is usually more convenient [78] to use the similarity stormed CC equations,
where the Schrodinger equation is first multipliedsby before the projection is done:

U =T el | oHFy — |

<0| - | 0> cc (2.22)
(@H|e T HeT|WEF) =0

For CCSD it can be shown that the energy in egn. 2.20 is equhktenergy in eqgn.

2.22 [68].

2.7 Localization

Local orbitals can be obtained by a unitary transformatibthe canonical SCF or-
bitals. In order to keep the SCF energy invariant to thessiarts we allow only ro-

tations within the occupied space or the virtual space,aasgely. Therefore we use
in the closed shell case a unitary transformation of the fémthe full one-particle

space):

U1 -+ Uin

Up1  Upn

(2.23)

Up+1n+1 - Un+1,n4+m

Un+mmn+1 " Un+mn+m

n := number of occupied orbitals
m := number of virtual orbitals

N=m+n
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According to the general considerations on products ofanyiiatrices in eqn. 2.24
we can construct a unitary matrix by forming a product of amjitmatrices. This leads
to a product Ansatz for our unitary transformation of theitab, where the complete
transformation matrix is constructed as a produc ef 2 rotations.

UUN = (Uy- Uy ... - U) (Uy - Uy - ... - U,)'
= (U U+ Upr) Uy - Ub - (U - Us - oo - Uy
—(Uy U Uypy) -1 (Uy - Uy - - Uy )t (2.24)

=1

The corresponding unitary (orthogonal) x N matricesl/,’ are given as:

)
u;; = uj; = cos(7)

Uij = —Ujiy, Uiy = sin(7)
U? =S uge =1, a{i,j} (2.25)
uab:07 aub%{%]}

e.g.

cos(7) sin(7)

—sin(y) cos(7)

Ull —

Since the HF energy is invariant to any unitary transfororatif the type in eqn. 2.23 it
is not possible to construct a unique localization criteriSince the most localization



2.7 LOCALIZATION 13

procedures use a functional like egn. 2.26:
D(¢) = Z(¢i¢z’|©|¢i¢i>> (2.26)
we start from eqn. 2.26 to obtain a more general form. Now amestiorm the orbitals

a andb of egn. 2.26 by & x 2 rotation according to egn. 2.25 and obtain our functional
with respect to the angle and the orbital pait. andb:

D(U) = (¢2|0162) + (#710167) — 2(¢2]O|62) sin®(v)
+2(67]0|02) sin®(v) + 2(¢2|O|¢3) sin®(y) — 2(¢3|O| ;) sin®(7)
+2(¢2|01¢2) sin*(v) — 2(¢3|0¢7) sin () — 2(¢2|Ol¢}) sin’ (v)
+2(6710|¢7) sin () + (@achs| O] 62) sin(27)
+(0210¢ats) sin(27) — (63|10 daths) sin(27)
— (6a|O|67) sin(27) — 2(duy|O|42) sin®(v) sin(27)
— 2(62]0dathp) sin®(7) sin(2y) + 2(67|0|day) sin® (v) sin(27)
+2(¢a0|O|¢7) sin® () sin(2y) + 2(¢as| O daths) sin®(2)
+ Z(@@‘OW@Q
i#ab

(2.27)

In the next step we use the addition theorem of trigonoméirictions until we have
only linear terms ofos(4+y) andsin(4v). Now we factor outos(4+) andsin(4+) and
define:

. 1 .
Agy = (9aP|O|batds) — 1(6253 — ¢310|9% — ) (2.28)
Buy = (0u|0|07 — 7) (2.29)
Finally we obtain:
DUy = Aap — Aup cos(47y) + Bapsin(4y) + Z(gﬁi@m\@gﬁi) (2.30)

Egn. 2.30 can be simplified to an expression with a singletrgnetric function
where the maxima and minima are given analytically. In otdefo this we definer

by:

Bab
— _A,
tan(4«) ’
. Bab
sin(4da) = —————
(4a) VA2, + B
cos(4a) = — Aa

VA% + B2,
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Next we substitute the prefactor of the cositig in egn. 2.30 and multiply the term
: : : in(4a) .
with the sine function b)zm.

D(US) = Ay + Y (i Olihs)
' (2.31)

sin(jlba) [cos(47y) cos(4ar) + sin(4y) sin(4av)]

cos(a — 3) = cos(a) cos(3) + sin(a) sin(3) (2.32)

Using the identity 2.32 and the definition ©fi(4«)) we simplify our functional to:
D(U) = Agy + 1/ A2, + B2, cos(4y — 4a) + > (|0l i) (2.33)

The functional in egn. 2.33 has a maximum if the cosine is 1anunimum if the
cosine is—1:

Ymax = Q, oz+§7r, o+, oz—|—§7r

1 3
'Vmin:a—l—iﬂ', a+17r, a+17r, a+17r

Now we build the matrixD(U,gb)max in order to see where the change of the functional
due to a unitary rotation is maximal.

D(U")max = D(UR") = D(¢) = Au + \J A2, + B2, (2.34a)
D(U)min = D(UE) — D(¢) = Agp — 1/ A2, + B2, (2.34b)

We obtain the orbital pair for which the unitary transforioatleads to the maximal
change from the matri¥o (U nax After application of this rotation to the orbitals we
build D(U)max @again with the new orbitals. We iterate until all matrix eksmts in
D(U)max are lower than a given threshold.

The most popular criteria are Foster-Boys [3] and Pipek-@yg2], because of their
N3 scaling with respect to the one-particle basis set. TheeFd&tys criterion is
designed to minimize the distance of two electrons in theesarhital, which is equiv-
alent to maximize the distance of the orbital centroids.

D(¢) = Z<¢i¢i |(r1 — 12)?| ¢is) = Z<¢z’¢z’ |r? — 2015 + 13| dihs)

=2 Z(gbi 3| i) — 2 Z(@ r1] @) (di [ra| i) (2.35)
= 22(@ |r¥] i) — 2Z<¢z’ 1] ¢:)°
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Figure 2.1: Parallelepiped spanned by the fundamental lattice veators, das.

Since the first term is invariant to unitary transformatiafighe orbitals¢; we can
equivalently maximize the second term:

maz (Zwi | W) (2.36)

7

For the Foster-Boys criterion we find:

Aw = (dalrld)® — 7 [(@alrlga) — (dulren)])” (2.37a)
Bap = (dalr|ee) [(¢alr]da) — (do]r[ds)] (2.37D0)

We maximize the functional 2.33 by choosing the angieccording to the suggestion
of Edmiston and Ruedenberg [79] to be between 0 and 0.5

] =

2.8 Periodic Systems

2.8.1 Lattice Translation Vectors

A 3-dimensional periodic array of points is completely defirby the three funda-
mental basis vectoi®,, d,, s of the unit cell and the points within the reference cell
Co [80]. Further we define the cell, as parallelepiped spanned by the fundamental
lattice vectorsi,, @», @; at the origin0.

C() C R3
C(] = {’FG R3|7?: (1161 + Oégfig + 04363 with o1, 09, 03 € [O, 1]} (238)

All other points of the crystal can be reached by a linear doatibn of the basis
vectors:
T = 7o + Ui a1 + Ualy + Usds with U1, U, U3 € Z (239)

wherery is an arbitrary point in the reference céjlandr; is the translationally equiv-
alent point in the celC;. For reasons of convenience we introduce the set of lattice
translation vector¥ as:

T = {’(7 S R3|’(7: U a1 + Usds + u;;d}, with Uy, U, U3 € Z} (240)
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Since we have a unique translation operator for every t@énsl vector inl we intro-
duce the set of translational operat@;svhere the translation operators are defined by
their corresponding translational vector.

T = {i;|7 € T} (2.41)
A cell C, is obtained by shifting the origin af, with the translatiort,:
Cy = 1,Co (2.42)
With this definition and egn. 2.41 we can decomp@sénto a set of cells:

RS = JixGo (2.43)
A

According to the definition of the cells in eqn. 2.38 we sed¢ tigaghboring cells are
not disjoint. The intersection of the two sets is the boupdegion. In order to avoid
a multiple counting of the points on the borders, we intragdte weight factors o§
for a face centered poinﬁ, for an edge centered point arédfor a corner point in a
3-dimensional lattice.

2.9 Finite-Cluster Approach

The total energy per celt®® of a polymer can be obtained by the difference of the
energies of a supercdlt, of n unit cells and a supercelf,,,; of n + 1 unit cells.

In the limit of an infiniten. one obtains the exact energy per cell [38-40, 49, 81]. In
order to avoid open-shell calculations, the dangling bardssaturated by hydrogen
atoms [38—-40, 49, 81].

E® = lim [E(RU, 1 R') — E(RU,R')] (2.44)

n—oo

In the difference the contributions from the saturatinggésand R’ cancel each other
for n — oo and one obtains the desired result, the energy per cell. Xjpenegion in
egn. 2.44 holds equally for the correlation energy of theymer:

Eggll,lr = nh_)n;.lo [Ecorr(Run+1R/) - Ecorr(RunR/)] (245)

Eqgn. 2.45 is very useful to obtain a benchmark correlaticrgynfor the incremental
correlation energy.
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x 11 31 4 0 0 0 O
1 = 0 0 0 3 10 3
31 0 =z 3 0 0 15 O
£ 4 0 3 5 0 0 O
o 0 0 5 2 9 0 O
o 3 0 09 2 0 13
0 10 15 0 0 0 =
0o 3 0 0 0 13 O

Figure 2.2: Example of a graph with 8 vertices and the representationxrét

2.10 Graph Theory

An undirected Graply is determined by a set of vertic&s and a set of edgeB.
The setk is defined as a set of pairs of vertices. In the case of an eegghted un-
ordered graph we may map every pair to an integer number agtveiiherefore we
can represenk by the adjacency matri&. The matrix element of;; is zero iff the
two corresponding verticesandj are not connected (see figure 2.2). The numerical
value of the element may represent the importance of the paid ;. If it is possible

to establish a path from any vertex to any other vertex of ptgrthe graph is said to
be connected; otherwise, the graph is disconnected [82].

2.10.1 METIS Graph-Partitioning [83]

A common problem in computer science is to partition the Qi@pV, E) into & dis-
joint subsets with the side condition that the sum of cut edgights is minimal. Since
the number of combinatorial possibilities grows very faghwhe number of edges it is
very convenient to transform the initial graph into a seaqesof smaller graphs (coars-
ening). In the next step a sequence of bisections is perbumegl the desired number
of parts is reached (initial partitioning). At the end thégarval graph is reconstructed
(uncoarsening) in a stepwise fashion where the partitioesefined at each step in
order to get a better result. Figure 2.3 demonstrates theugphases for a bisection
of a graph in the METIS graph partitioning scheme.
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Multilevel Graph Bisection
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Figure 2.3: The various phases of the multilevel graph bisection. Quthre coars-
ening phase, the size of the graph is successively decredsgdg the
initial partitioning phase, a bisection of the smaller grap computed,;
and during the uncoarsening phase, the bisection is sueelysefined
as it is projected to the larger graphs. During the uncoanggrhase the
light lines indicate projected partitions, and dark linedicate partitions
that were produced after refinement (figure and caption fi@sh) [



Chapter 3

The Incremental Scheme

3.1 The Incremental Expansion for a Molecule

Using localized molecular orbitats:©, we can calculate the correlation energy in
the following way:

1. Divide the system under investigation into spatial pard classify thes2© ac-
cording to these parts; e.g. in the case of four parts:

Figure 3.1: A system divided into four subsystems.

This yields a set of localized orbitals for every part. Instbase we have the set of
domainsD = {Dl, Dy, D3, D4}
2. Set up the correlation energy as:

1 1
Ecorr = Z Ac":‘i + 5 Z A&ij + 5 Z Agijk + ... (31)
i ij ijk

with i, j, k, ... € D, we require that, j, k, ... are pairwise disjoint and define the one-
site increments as:

19
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D1 D2 Dl DQ Dl D2 D1 D2
D3 D4 D3 D4 Dg D4 D3 D1

Figure 3.2: The four one-site increments in a system of 4 spatial parts.

and the two-site increments:

Aeij = Ac({i, j}) = €ij — Aei — Ag; (3.3)

D, | Do Di | Dy Di | Dy D; | Dy Di | Dy D; | Dy
D3 | Dy D3 | Dy D3 | Dy D3 | Dy D3 | Dy D3 | Dy

Figure 3.3: All possible two-site increments within a space of four ite-incre-
ments.

We can simplify eqn. 3.1 according to the index symmetry:

Ag;j =€ij — Ag; — Agj =i — Ag; — Ay = Agy; (3.4a)

€ij = Eji = Ag;j = Acj; (3.4b)

Eijk = Ejik = €kji = Ekij = €ikj = Ejki and eqn. 3.4b (3.40)
= Agijp = Acjip = ...

(3.4d)

Therefore we can restrict the sums in our expansion andrei®ithe prefactors:

Boor=Y Aei+> Acji+ > Aegjp+ ... (3.5)
7 1<J 1<j<k
This simplification saves a large amount of computer timeeigily for higher orders.
According to egn. 3.5 we identify the index set in-#4old summation in egn. 3.5 with
the power set oveld of the cardinalityn. This can be done because the restriction
of the n-tuples in the summation leaves only onduple for a given set of indices.
Therefore we can use instead of the the restricted indexhegbdwer of the set of
domainsP (D) as new index set. Using these considerations, we can wetgeheral
increment as:

Aﬁilz‘g...z‘t = Eiyig..iy — E Aflt,l - E A€It,2 -

It71 It72

- ZA&[z - ZAE}l
Ip) I

(3.6)
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where the indeX,_, is defined as the set of those elements of the power dgt af,

..., i; } which have the cardinality# — v) [v runs from1 to (¢ — 1)]. Eqn. 3.6 defines a
mappingP(D) — R. A close look at egn. 3.5 yields that we can use the definitfon o
the power set in order to simplify the notation.

Ecorr = Z Aex

X
XeP(D)A|X|<O

D : = set of domains (3.7)
P(D) : = power set of the set of domains
O : = order of the expansion

where the one-site domairis, are defined as disjoint sets of occupied orbitals:
D)\ = {¢a7¢b7¢cv'“} (38)

DynD,=10 (3.9)

Alternatively we can represent the one-site domains by afsedctorsD,:

DA: U ﬁa

$a€D)
 ((alel00) (3.10)
with 6, 1 B, = (<¢a y¢a>)
(9al] 60)

The definition of the general incremefity reads in the short hand notation:

Aex=ex— Y,  Aey (3.11)

YePX)AY|<|X]

For closed shell systems it was found that the convergentieeo$eries eqn. 3.7 is
reasonably fast [35, 44,49, 84-86]. Therefore we can ttertb@ series usually at low
order (O] < 4).

3.1.1 Exactness of the Incremental Expansion

The incremental expansion is set up in a way that the exaalt (e$ the given corre-
lation method) is obtained if all terms in the expansion amestdered.
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A Simple Example

As a simple example we consider a system with 3 spatial parsti@awvn in figure 3.4
and calculate the incremental sum of eqn. 3.1 for this system

[1]2]3]

Figure 3.4: A test system with 3 spatial parts2, 3.

We have to calculate 3 one-site incrememnts,, As,, Aes, 3 two-site increments,
Ae19, Aeq3, Aeoy and one three-site incremefit 3. Using egn. 3.1-3.3 we end up
with:

Eeonr = Ag + Ay + Aeg + Aco + Acis + Acos + Acqag =

Eitextezt+en—€ —Ex+E13— € —E3+En—E3— &

€193 — €12+ €1+ —€13+€1 +E3—€F+E3+Er—€1 —E2—€3

= £1923 (312)

From egn. 3.12 we recognize that at the end of the expanseohigfnest order term
cancels exactly the contributions from the lower orderseréfore we obtain the exact
result within the applied correlation method at the higloeder level.

The general case
We start with eqn. 3.7 and sum over all contributions up tdiiigeest order.

Eecor = Z Aex = Z Aex + Aep

XE%(D) XEP(D)XA\XMM (3.13)
D : = set of domains

P(D) : = power set of the set of domains
Now we substituté\ep, by the definition of the general increment egn. 3.11.
XeP(D)AX|<|D] XeP(D)AIX|< /D)

We can see immediately that the only remaining term is thete@relation energy
of the total system. This demonstrates that the incremerfansion is in principle
exact.
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3.1.2 Approximations to the Incremental Scheme

Due to large spatial distances of the included domains onyeemeounter nearly van-
ishing n-site increments. If the one-site domains of a given twe-ditmain are far
apart, we find that due to the local nature of electron caitelathe corresponding
incremental energy correction is small since the corm@fe¢inergy of the two-site do-
main is given as:

gij =€ +¢€; +e(Ryj) (3.15)

In the limit of an infinite distance?;; between the two domainsand;j the correction
¢(R;;) vanishes exactly and the incremeXxy;; in eqn. 3.16 becomes exactly zero:

AEU = Eij — A&i — Aéj
:5i+5j+5(Rij) —A&i—Aé’:‘j (316)
= g(Rij) =0 for Rij = 0

This can be generalized to higher order increments (vid@)nfObviously, for an
efficient implementation one should exploit this propertyieth goes beyond the orig-
inal definition of the incremental series. The implemeptatf such a truncation can
be achieved by a distance threshadig,,. Since the higher order terms are usually
smaller than the low-order terms, we can decrease the tices)),;,, with increasing
order (see chapter 6).
We can neglect the energy contribution ot-aite domain if we can form at least two
subsets of this domain with a minimum distance larger tRap,.
We prove this rule by induction. We start with the case 2 which is proven in egn.
3.16. Now we assume that the set of domainsan be divided into two disjoint sets
A andB with A, B # () and where all distances between the element& ahd the
elements of3 are larger tharr,,,;,,. With this requirement we find an expression for
the correlation energy fary according to egn. 3.16. This can be done because the
domainsiand jin eqn. 3.16 were chosen freely. Thereforeameabvays evaluateg
by:

ex = €a + € + £(Rap) (3.17)

We define the largest correctie(iR,5) which is obtained from\ey for the subsetX
of XwithANX = A #  andBNX = B # () ass(R,n:n). Using this we can estimate
the absolute value of an incremeht;:

|Acg| = |eg — e — eg| < e(Bmin)| ¥ X (3.18)

Before we start with the induction we give an example for tH®d8y incremenie,
with two sets of domaing\ = {i,j} andB = {k} with a certain distance®,,;,
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Figure 3.5: Pictorial view of the involved sets, if the set of domaiXiss partitioned
into two setsA andB with the minimal distance?,,,;,, between these sets.

between these domains. We can use eqgn. 3.18 and eqn. 3.Ipftxiapate the terms
with the mixed index combinations of egn. 3.6.

|Aei| < le(Romin)|
|Agjr] < [e(Ruin)| (3.19)

Eijk = €ij + € + €(Ryijy (1)) (3.20)

Inserting egn. 3.20 into egn. 3.6 and using the definitiorhef2-site increments we
obtain:

leijil = |eij +er + 2(Rpigp )
— (e5j — A — Agj + Aeyy, + Aegj + Ag; + Agj + Agy))| (3.21)
<2 |e(Ruin) | + |2y 0] <3+ [e(Ronin)|

where we used eqn. 3.18 in the last step to approximatg;;y (). We generalize
these considerations above by introducing the inductisaragtion:

|Aex| < ¢ |e(Rpin)| if

A:LJDa B:ij

DgeA DyeB
|éa_§b| > Rminvqba S Aa ¢b € B
AB#ADAUB=X
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and|X| < n. Now we write the(n + 1) case as:
Aey=ey— > Ag (3.22)
IePY)AII<[Y]

with |Y| = n + 1. Next we classify the setsin eqn. 3.22 according to the mixed
indicesX,,, and not mixed indiceX,,,,,:

X ={TlePY)| [I| <|YIAINAAOAINB # 0}

(3.23)
Xom = A{1 € P(Y) \ Xon | [T] < |Y]}
Then we split the summation ovemto two summations:
AEY =€y — Z AEH — Z A€]1 (324)

We use eqn. 3.17 to evaluate as:
ey = ex +ep + €(Rap)

Since the cardinalities of the sets ¥y, and X,,,,, are always smaller than the cardi-
nality of Y, we can use the induction assumption to evaluate the summager the
mixed indicesX,,. An upper bound for the introduced error is

| X

S 1As] <3 e (R
I i=1

HEX"L

where the prefactorg are determined by the cardinality of the elementXgf. The
summation over,,,,, can be split into two summations ordered by the detadB:

Z A&H: Z AEH—F Z A:‘EH
He)g—nm ]IGPH(A) He?g(IB%)

There are no restrictions to the power sets because:

|A] + [B] = [Y[ A [A],[B] >0
= A, [B] < [Y]

Since the summations over the power sets @indB are not restricted we can replace
the summations by the exact resulfsandey respectively.

Z Aeyp =¢ep + e

1
IeXnm
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Using the considerations above we get for the absolute wltiee incremeni\ey:

|Ac€y|: 5A+5]B+5 RAIB% ZAEH—?EA—?EB

]IEXm
‘X'm

RAB | + Z (& mzn (325)

| X

<D e+ 1| - [e(Roin)l
=1

| /\

where we used eqn. 3.18 to estimpt@?,)|. The factorc is given as

Xl

Zcﬁ—l

which completes the proof, since it is independent of theadieRR,,;,, -

For high-order contributions it might be a problem that thefactors are very large
and thereforeR,,;,, has to be very large. However, for a fourth-order incrembist t
is no serious problem, as we can see if we consider the wosst @gample. The
cardinality of a power set can be calculated |BY{1,2,...,n})| = 2". In order to
obtain the cardinality ofX,, we have to subtract the cardinalities®fA) andP(B)
from P(X). In the worst case this is given as:

second-ordertX,,| =22 — 2 —2' =0
third-order:| X,,| = 2° — 2! — 22 =2

Using this result we obtain for the second-order coefficiéfit= 1, for third-order
coefficientc(® = 3 and for the fourth-order coefficient we hay® = 4.3+4-1 = 16.

3.1.3 Energy Screening

Another way to reduce the total number of calculations isstoulate the energy incre-
ments with a lower level method and neglect all terms whiehsanaller than a given
threshold at the low-level method.

Ecorr — Z Agx (3. 26)

X
XeP(D)AX|<O
|A€X‘>Ethres

HereX runs over all members of the power set of the set of the donfaifig, up to a
certain cardinality as in eqn. 3.7.
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3.1.4 Formal Scaling

The formal scaling of the incremental expansion in eqn. 8.@ldatermined by the
number of individual calculationd/.,;. and the time for the individual calculations of
the subsystems. The number of calculations is given as:

@]
-/\/calc = Z (U:S)‘) (327)

i=1

with |D| = number of domains. The total computational tinfer incremental calcu-
lations can be evaluated as the sum over all single caloukti

D max ID) max D max
t:Zti§<|1|)-tl +<‘2‘)-t2 +...+<|O|)-to (3.28)

wheret"** is the time for the most time consuming calculationi-#t order. Using
CCSD theory we have :

6" o Ng(i) - Ny (i) Na(i) > Nol(i) (3.29)

whereNy(i) is the number of occupied orbitals in the domain correspumnth ¢7"**
and Ny (7) the number of virtual orbitals in this domain. For the mosteiconsuming
step we have:

the o< NG(O) - Ny (0) (3.30)

Using eqn. 3.27-3.30 we find an upper bounfibr the computational time according
to:

U X -/\[calc ' N(%(O) ' N{;(O) (331)

The dimensiongVp(O) and Ay (O) of the n-site domains will have an upper bound,
independent of the size of the total system, if the size obtieesite increments is fixed
and the incremental series is truncated at a given orderlargestNy (O) is fixed to

a constant by the set of the one-site domains and the ordéedxpansion. Since
Ny (0O) is determined bV (O), we fix this dimension, too (section 4.1.1). Therefore
we can rewrite eqn. 3.31 as:

u X Negie - t™ with ¢;** = const (3.32)

If we further neglect all energy increments which are sdpdray a certain distance,
according to egn. 3.16 the number of calculations incretsearly with the system
size.

Neate = N (3.33)
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Consequently, itis possible to set up the incremental seteea linear scaling method.
There are two important points to note here. Firstly we haviuncate the virtual
space for the domains in order to get a constant virtual spa¢€&) and secondly we
need a linear scaling MO-transformation for the incremlestheme. However, with
the current implementation using the CCSD code in MOLPRQ \&¥ are limited to
a formal \/° scaling if we use eqn. 3.16 to reduce the number of calculstio

N(O)(O) = Const -/\/’calc X N7 6 = N4

The virtual space dependence enters completely into olingcaecause of the im-
possibility to truncate the virtual space within the MOLPRQGSD code.

3.2 Derivation of the Correlation Energy for a Solid

The total correlation energg©? of a system ofi domains may be obtained by

corr
total 1 - 1 - 1 -

Ecor = 0 ZA51 + o ZA{fIJ + 5 ZA?EIJK + ..
I 1J IJK

1
L TK, LT

n 1 n
Z Aerj.r+ ...+ o Z Aerjk. TN (3.34)

1J.T "IJK..T..N

where the indiceg, J, K, ..., T run over all domains. In a periodic system the correla-
tion energy is infinite, therefore one refers to the coriefe¢énergy per celESS! which

is defined as: ol

£ = i Foor?) (3.35)

If we have a supercell of n cells, we can divide the systemnrgqual parts:
Eé%tré:l(n) = Z Eéorr(”) (3-36)
=1

Inserting egn. 3.36 into eqn. 3.35 we obtain:

no i _Ecell
ES& — 1220 M — ,}LIEO ”*orr(”) = JE{}O E&(n) (3.37)

Then dependence in eqn. 3.37 refers to the infinity of the systeow e rewrite
egn. 3.34:

n

1 1 JR—
Egr(n) =) | ler+ 5> Aers+47 > Aerr+ . (3.38)
! | £ !

I=1 JK=1
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If we compare the right hand side of eqn. 3.36 with egn. 3.3&8mkthe incremental
energy per cell as:

1
Eggi(n) = ﬁAfl + 5 7] Z Aery + Z Aerjg + - (3.39)

JKl

taking the limitn — oo we get:

Egon = _!AEI tg Z Acyy 3 Z Aeryi + .. (3.40)
JK 1
At this point we use the index symmetry in egn. 3.39 in ordeettuce the computa-
tional effort drastically:

cell
Ecorr Aer + = ZAé[J—l—g Z Acrjg + .. (3.41)
J>K,K=1
The prefactors of5 can also be dropped if we sum over translationally equitalen
increments only once, since we havé&ranslationally equivalent-site increments.

3.3 Incremental Correlation Energy for Small Domains

Sometimes it might be advantageous to divide the referegitato smaller domains.
If we treat the problem straightforward, the incrementadamsion reads:

l oo 00
DL TR D O P CTRE D 3 D) DF.CTT SR Ve
I=1 I=1 J=1 I=1 J=1 K=1
wherel! runs over all domains in the reference cdllX run over all domaing, is the
number of one-site domains in the reference cell and th® sebrdered in a way that
the first/ elements are located in the reference cell. We have to canisit cases for
a second-order increment:

1. both indices are in the reference cell
2. one index is in a different cell

for a third-order increment we have already 4 cases:

1. all indices are in the reference cell

2. two indices are the reference cell and the other one inrthiecement
3. one index is in the reference cell and the other two in tiheeseell of
the environment

4. one index is in the reference cell and the other two in difiecells of
the environment
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Since all these cases have different prefactors, it's qadeus to treat higher order
increments.

3.3.1 Expansion of the Fragmental Energies in a Further Expa-
sion
To derive a general expression for the incremental energgxpand the correlation

energies of the fragments; of eqn. 3.41 in a further expansion. The one-site incre-
mente; reads:

1 1 1
g = F ZAE(G)I + 5 Z AE(ab), + 5 Z Ag(abc), + ... (3.43)
(@)1 (

" (ab); abe) g

The index! restricts the index space afb, c... to the celll. In the short hand notation
we get:

(3.44)

Y
YGP(X[J)

whereX; is the subset of the domains located in the €elhdX;; is the subset of the
domains in the cell$ and.J. For the two-site increments we get in this case:

Agjj = Z Agy — Z AEY = Z Agy (345)

Y Y Y
YGP(X[J) YGP(X[)U'P(X]) YGP(X[])\
[P(X[)UP(X])]
Since the higher order increments have a similar structweantroduce a short hand
notation for the set of indices in the last term in order todify the notation:

P(X15) = P(Xps) \ [P(X;) UP(X)] (3.46)

The general index s@(Xy) is defined as:

PXk) =PXx)\ |J PEX)) (3.47)

A
AEP(K)
|AI<|K]

whereK denotes a set of cells. Note that the definition of B{&; ;) in egn. 3.46 is
equivalent to the general definition in egn. 3.47, sif¢&;) = P(X;). We note that
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the setsP(Xk) andP(Xy/) are disjoint for different set& andK’. Using eqn. 3.47
we can write the general form of egn. 3.45 as:

Aex = > Aey (3.48)
Y

YeP(Xk)

We prove eqn. 3.48 by induction. We assume that egn. 3.48addr all lower orders
(n — 1 condition). This is equivalent to that it is true for all sebsL with |L| < |K|.
Now we substitute this condition into the general definitddan increment eqn. 3.11
and obtain:

Aé’:‘K: Z Aé’:‘y— Z Aé’:‘Y: Z Ac":‘y— Z Z AEL
L

Y Y Y Y
YeP(Xk) YeP(K) YeP(Xk) YeP(K) LeP (Xy)
Y| <|K] Y| <|K] (3.49)
=Y an-Yan= Y Ao
Y Y Y
YeP(Xk) YeA YeP(Xk)\A

Due to the fact that the sets in the double summation in ed®. &e disjoint, we can
replace the double summation by a summation over a unifiekigetA,

A= |J PXy) (3.50)

Y
YeP(K)
[Y[<|K]

If we insert the definition of\ into the last sum in egn. 3.49 we see immediately that

we sum over the index sét(Xk) defined in egn. 3.47, which is the desired result. We
start the induction at second order which is proven in e#6.3.

3.3.2 Separate Treatment of the Translational Symmetry

The goal of using a second expansion for the inner cell cticel energies is to sep-
arate the translational symmetry from the index symmetrgseftially we avoid a
separate treatment of distinct cases. Since we can use etfto3simplify the ex-

pressions, we get the same terms as in the straightforwgaheion eqn. 3.42. The
only difference is that we regrouped the terms accordingedrianslational symmetry.
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Collecting this we end up with:

YeP(Xy) _YGP(X[]) (3 51)
! A
+ 5 Z ey | +
JK Y
| YeEP(XrK)

In order to get eqn. 3.51 equivalent to the straight forwagplaasion, we have to

restrict the index set¥ to a certain orde® (|Y| < O). The index symmetry of

the inner expansion is present in the index spB¢Ex) completely. For the outer
expansion we can remove this index symmetry by restriciegsimmation. We want
to point out that the prefactors do not cancel completelyis tase, since we restrict
the index/ to be in the reference cell.

1
Egg,l,lr = E Aey | + 5 E E Acey
Y J Y
YeP(Xr) YeP(Xry)

(3.52)

J>K

+% ZY: Acy| + ...

YeP(Xryk)
In the next step we use the translational symmetry to cahegitefactors completely.
Since the indiceg, J, ... run over cells, we have exactly two equal terms due to trans-
lation (e.g.Y in P(X;;) andY in P(X;,)). In general the prefactor of the sum over
I, J, ... is always equal to the inverse of the number of translatlgreajuivalent in-
crements. Therefore we leave this prefactors out and sugnawdr translationally
non-equivalent increments.

Egon = Z Acey +Z Z Acey
Y J Y

YeP(Xr) YeP(X1,)

+ > > Aey| ..
Y

J'>K'
YEP(X]JK)

Here the restriction to translational different terms isatled by the primes in the
summation.

(3.53)
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3.4 Incremental Expansion for non-Disjoint Cells

We derived eqgn. 3.52 with the assumption that the cells ajeidt. In order to explore
the full crystallographic symmetry of the crystal we haveallow face, edge, or corner
shared domains. For this purpose, we derive eqn. 3.53 fmimi€ells again with a
different ansatz. In the next step we extend the approacbrtedisjoint unit cells. We
write the correlation energy of a finite systemro€ells and the set of domaifisas:

1 1 3 1 3
| E
Eé(())trar :ﬁ Agi’ + 5 Agi’j + g Agi’jk + ...
i i’y

i'jk
1 1 3.54)
JANaT e +— Aejrs . 3.
PR R A Ak T g 2 Akt
i'j..t i'jk...t..z
i gkt .,z €D {i', j, ke, ..oty .., 2} = D)

In the next step we reorder the summation a¥eccording to the chosen cells. This
means we divide the index set dfinto disjoint subsets. Using the definition of the
one-site domains of eqn. 3.9 we define the set of the one-@itaithsC, within the
cellC, as:

Cy={D) €D|R, € C\V ¢ € Dy} (3.55)
where we used the definition of a cell and the mapping:
} (G 2] da) Ta

Go — Ry = <¢a |y| ¢a> =\ Ya (3.56)
(Pa|2] da) Za

We note that translational symmetry with respect to the dosiaas to be required, in
order to regroup the summations with respect to the cells.

n—1
2 MEDIER DI ICRT ) B
A=0 L7 iecy ieCy (i€Cx gk 3.57)
1 ! >
i PSP DECURESEL D D DECTRS

i€Cy jk...t i€Cy jk...t..z
We get the energy per cell as:

R SECRIES 35 BY.CINEES 3 SR.CTEN

i€Cy i€Cy J i€Cy Jk
(3.58)

1 1
+ m Z Z Agjjp.4+ .+ W Z Z Agjjk..t...z

1€Cy jk...t 1€Cy jk...t...z
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Note that eqn. 3.58 yields the exact energy per cell of eg#h2 8f an infinite ideal
solid if we take the limit: — oo. Since the limitn — oo is equivalent tdD| — oo
we get infinite summations overk, ... in this case.

3.4.1 The Prefactors for Disjoint Cells

As a first case we analyze the prefactors of disjoint celle géneralization to non-
disjoint cells can be based upon the general consideratiaihss section, as we will
see later on. In the first step we classify the indices of argiveite domaind,, by
translation vectors.

d, € P(D) with |d,| =t

In order to do this classification we define the translati@uplivalence clasB; of a
domaind,, with respect to the reference c€lj according to:

E+ := all translations where at least one index of thsite
domain is in the reference cell

Er = {t € T|tod, = d, withX; = d, N Cy # 0} (3.59)

where we leave the representationtof d,, unspecified. It will be defined in the
general section on symmetry (section 3.6). With the trdiosia of egn. 3.59 we
are able to define the sek§ as set of domains within the reference cell. Now we
are in the position to analyze the prefactors for an incremwéh respect to index and
translational symmetry. If we start with the first elementiud first sefX; we have

(t — 1) summation indiceg, &, ... in eqn. 3.58 (for the-th order summation) since we
fix 7 to the first domain in the cel,. For the other domains iK; we do the same
considerations and obtain a total factor|&f | - (¢t — 1)! for ¢, as translation. This
considerations hold for all other translationsir, too. Therefore we get the total
prefactorf; for at-site increment as:

fo=> X (¢ —1)! (3.60)

i€ET
Since we classified all indices of thesite domain by translation vectors, we have:
d Xl =t (3.61)

i€Ep

Inserting egn. 3.60 and egn. 3.61 into the incremental esipar8.58 we see that
the prefactor% cancel with the translational symmetry and the index symnéte
obtain the same result as in egn. 3.53.
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3.4.2 The Prefactors for non-Disjoint Cells

At this point we consider the case of symmetric cells like gufe 3.6:

Figure 3.6: A 3 x 3 supercell built from a unit cell with atoms/centers of cleagg the
corners.

In this case we start again from eqn. 3.54 and split the surasionto a number of
summations. But this time we order the terms according tglsiane-site domains:

1 1 1
peal — pAert 5 Y Aey+ 30 > Acijet .
j gk

j gk (3.62)

This means we split up the incremental expansion for the vepstem into a set of
expansions: one for every one-site increment (every poifigure 3.6). At this stage
we can easily introduce weight factors due to the symmetthefcell in figure 3.6.
We just multiply every expansion on these special pointshieyr tweight factor in the
cell (e.g. 4 - i for an edge domain). This is to insert a proper one accordirthe
definition of the cell. Clearly, this leaves our total expansunchanged. But now we
are able to get the contributions for shared domains to teeggmper cell. Collecting
all contributions for a single unit cell using the weighttias for face, edge or corner
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shared cells and taking the limit— oo we obtain:

1
Eggn = 3 >,

1€Cc

1 1 1
—!A& + 5 Z A&ij —+ 5 ZAgijk + ...
J Jk

1 1 1
+ 1 iA&‘Z + 5 E A&ij -+ 5 E Agijk + ...
- ! ! - (3.63)

1 1
—|—§ iA&‘Z—i—EZA&‘U—F?ZA{ka—l—

iE(Cf L 7 Ik _

1 1 1
ﬂAgi + 5 ZA&Z‘J' -+ 5 Z Agijk + ...
J Jk

Here we partitioned the index sgt of the reference cell into pairwise disjoint subsets:
Co=C.UC.UC;UC,,

with
C. one-site increments at the corners of the reference cell
C. one-site increments at the edges of the reference cell
C/ one-site increments at the faces of the reference cell
C;, all other one-site increments in the reference cell (thegoadts in figure 3.6)

Now we analyze the prefactor of every increment analogoulkd@revious consid-
erations according to eq 3.60. The summation over the axioshl classes does not
immediately yieldt, because we shared domains. For a face-shared domain we get 2
translations, for an edge-shared domain we get 4 and forreecshared domain we

get 8 translations in a 3-dimensional lattice. These factancel with the additional
prefactors in egn. 3.63 to one and we get the same resultlas aase of disjoint cells.

3.5 Incremental Expansion for a Multi-reference Case

The straightforward extension of the incremental schentaganulti-reference case
reads:

active 1 1
Eco” = Ecofr + Z AEZ‘ + 5 Z AEZ‘]' + g z]; Agijk + ... (364)
7 1) )
whereEtv¢ js the correlation energy of the active space using the wiidleal space

corr
V (for a truncation ofV consider 3.5.1). This means we have to build all excitations
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from our active space inty (up to the given excitation level of the method in use),
and keep all other electrons frozen. The one-site incresrastredefined as:

__ ~. _ 7ractive
A&i =& Ecorr

.
AEU = Eij — A&‘i — Aéj — Eggrrwe

Since active space is included in every calculation, weduced the additional terms

in the expansion to ensure that we count the active spacelmaidgn to the correlation

energy only once.

As a special case we discuss a single electron in a singl@brni this case we have

Eactwe — 0

corr

because there is no "self-correlation”. Thus the expansipn 3.64 reduces to the
standard incremental expansion eqn. 3.1. This can be usexjpand the RCCSD
correlation energy in open shell calculations. The diffiersto the conventional incre-
mental expansion is that we have the active electron in esadoplation.

3.5.1 Truncation of the Virtual Space

In order to speed up the calculation time, a truncation ofvineal space is desired.
This can be achieved by a small modification of the in eqn. 3.64.

I active
Ag; = € — Ecorr (V,)

Aej; = eij — Aej — Aely — Egi™ (Vi)
Etive(y,) := correlation energy of the active electrons with the sabsy; of V

This modification ensures that the calculation is speededwgn if the coupling of
the virtual space with the active electrons is large.

3.6 Treatment of Symmetry

The treatment of symmetry is very important, since it camoedhe number of calcu-
lations significantly. Within the framework of the increntainscheme we can do this
using the concept of equivalence classes. First we int@dwe representation of a
local orbital as a vector according to the center of charge 86 and define the set
of symmetry operator& of the point groups. A symmetry operato€ transforms a
vectory into its symmetry equivalent vectaot.

ov =1
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Now we define an equivalence cldgsof vectors:
Wy, = {7, € R}|O7, =, forall O € G} (3.65)

Since a domairD, usually contains a set of orbitals we need equivalence esdss
sets of vectors. In order to get an analogous definition of 8d§b for a set of vectors
D,, we define the action of a symmetry operator on a set of vebtpthe action of
the symmetry operator on all elements of the set:

ODy = D, = {O0,|t, € Dy} (3.66)

Going one step further we define the action of a symmetry opeoa a set of sets of
vectors as:

O{Dy,,...Dr,} = {D},,.... D\ } = {ODy,,...,OD, .} (3.67)

In order to have a clear notation we introdiiz@nalogous to the set of all domains as
set of allD,. Using the definition eqn. 3.66 we can define the equivalelassE for
the representation of an arbitrary dom#imas X € P(D)):

Ex = {X' € P(D)|OX = X'forall O € G} (3.68)

For exactly symmetric local orbitals we find that the enemggréments of domains
within the same equivalence class are equal. For approgiynaymmetric orbitals
they should be equal up to a given accuracy. We can reduceithber of calculations
by calculating only one increment per equivalence class.

3.6.1 Symmetric One-Site Domains

In the above discussion we implicitly assumed that the atged®mains are disjoint
and fulfill the symmetry requirements. This leads to som&ic®ns of the one-site
increments. Firstly the one-site domains must be symmdapted to fulfill egn. 3.66.
Therefore we define the set of all vect@bsvhich map to an occupied orbital .

O ={R, Ry, ... R}

The symmetry condition can be fulfilled by dividifijinto equivalence classes accord-
ing to egn. 3.65. In the second step we find the non-redundat®mf the system by
choosing one element of every equivalence clss. Since we want to have compact
domains we choose the element of i#flg. where the distance to an element(®fs
smallest. If we have the non-redundant part of the molecelean use the symmetry
operations of the group to construct the complete systermagherefore we get au-
tomatically symmetric domains if we divide the non-redumdzart and then apply the
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symmetry operations to get the equivalent ones. In ordesiersure that the domains
are disjoint, we have to introduce another restriction, axzan see from the following
example:

D = {t,, %}
0171 - ’(71
O, = o, (3.69)

DQD/ == {’(71,’(72} N {171,17;} #(Z)

To ensure that one-site domains are disjoint after gemgr#itie symmetry equivalent
one-site domains, we introduce the concept of site symmeéfeymap to every point
in O the set of symmetry operatdgswhich leave this point invariant.

Using eqgn. 3.70 we can divide into a set of disjoint subset®, with:
T, = {R: € 0|Sz, =Sp } (3.71)

Now we construct the domairi3 within the setdl,, and apply the symmetry operators
to generate symmetry adapted one-site domains.

3.7 Error Analysis in the Incremental Expansion

A closer look at eq. 3.1 reveals that the sum of the energgments at low order is
included for several times at higher orders. In a systeifidptiomains we hav¢?))

two-body increments. A special one-site increment is idetliin the summation over
the second-order faiD| — 1) times. In general the prefactpy,; for the sum over the
s-site increments included in thesite increments can be determined according to:

P = <(|D| - 8)) with ¢ > s (3.72)
(t—s)

The summation over a given order yields a constant erro€onsidering eq. 3.72
we end up in a large accumulation of the error for higher onderements, since the
prefactors increase quite fast and thus give a large weigthiet errors of the sums in
low orders.

We checked this propagation of errors in the incrementahesion by a numerical
study. The results are displayed in figure 3.7. They are bars@000 sets of uniformly
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Figure 3.7: Error distribution of the incremental series for 10, 15 af@di@mains. The
errors on the left are fixed to a constant value and are orgeesttient on
the right (see text). The standard deviation [mH]-&t order is given as

;.
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distributed random numbers in the interval[—0.5;0.5]. The left side of figure 3.7
was generated by multiplying the random numiieby a constant factor afo—¢ (we
useX - 1076 for ex instead of the CCSD correlation energies). This models&ine
troduced by CCSD energies which are converged to a threshold ® Hartree. It can
be seen that the errors increase with increasing numbemoéiths and broader distri-
butions around the exact results are obtained for incrgasipansion order. Clearly,
we can iterate the CCSD solutions of the fragments furthéitlams get more accurate
correlation energies and smaller errors in the incrementpénsion. However, one
should note that at high order such a strategy might become expensive. Since the
sums over the computationally cheap low-order incremeetsaltiplied by large fac-
tors we have to iterate the corresponding correlation éeetg a higher accuracy than
those more expensive ones for higher orders. This strategynulated on the right
hand side of figure 3. % = X -1071°-10°). The errors especially for larger numbers
of domaingD| can be decreased significantly, although the correlatiengées of the
subsystems resulting from the unification of the largest imemof domains (i.e. 20)
are converged to a lower accuracy (i16.° Hartree) than on the left hand side. Thus
order-dependent convergence thresholds are a efficientavalgtain accurate incre-
mental energies while reducing the cost of the most time woirsy calculations to
obtain high-order increments.

There are two different types of errors in the expansiongtéri orders. The first one
is the error caused by the multiplication of the low-ordeoes by large factors and the
second one is the error caused by the summation over alinmesres of higher order.
Note that in practical calculations both of these errorsadeiced by using the trunca-
tion thresholdR,,i,. The first error is reduced, because the weight factors areréx

if we use only a subset of the higher-order increments. Therskerror is reduced,
because we sum only over a smaller set of increments. Ndtéhéh&runcation thresh-
old Rnin introduces an error, too (chapter 6). Figure 3.8 shows thigilolition of the
incremental error for third and fourth order with 20 domaissg an order dependent
energy threshold for the fragmental CCSD energies. Bottniloligions are compact
and therefore do not cause a loss of accuracy.
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Figure 3.8: Error distribution of the incremental series with 20 donsaising artificial
order-dependent energies ef (= X - 1071% - 10°).



Chapter 4

Automatization of the Incremental
Scheme

In order to set up a fully automatized incremental scheme awe o construct the
one-site domains automatically. After this step evenghatse is determined by set
theory.

4.1 Obtaining Groups of Occupied Orbitals

The occupied orbitals are localized with a Foster-Boys @doce [3] using the algo-
rithm of Edmiston and Ruedenberg [79]. For these localizdtals we build the
centers of charge from the diagonal elements of the diptdgrals in MO-basis.

} (Ga 2] da) Ta
¢a = Ry = <¢a |y| ¢a> =\ Ya
<¢a |Z‘ ¢a> “a

Using the mapping of the Foster-Boys orbitals to their centé charge, we are able
to map our set of occupied orbitals onto a set of vectors. From this set of vectors
we build the distance matrix of all vector pairs. In the next step we construct the
connectivity matrixC' according to:

N
<L

108, if Dij <ten A 7= >10
yon if D, < teon N p < 10

0, if Dij > teon

8
Cij — 8 (41)

wheret.,, is a distance threshold andis a constant stretching factor ofL0rhe fac-
tor of 10% enters as an approximation of infinity in the regime of 32 hi¢gers. Since

43
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METIS graph partitioning [83] needs the number of parts iveamte, we introduce the
domain size parameter (dsp) to control this number. Dueedddhkt increase of the
calculation time it is more convenient to control the sizet@f domains than a given
number of domains. We calculate the number of parts parar(eee) for METIS
according to:

)
nop = L—s:o (4.2)

Furthermore, since the graph partitioning requires integedables we do a type cast
from double to integer. The graph partitioning is done wité tondition that the sum
of the cut edge weights is minimal. According to the defimtaf our connectivity
matrix C' this forces close-lying orbitals to be in one domain. At tinel &e obtain
local disjoint subsets of occupied orbitals. In the symmesse we do the partitioning
in the setdT, as discussed in the previous section.

4.1.1 Excitation Spaces for One-Site Domains

Our goal is to obtain a virtual spadg,, for every occupied orbitab,:
Ga {07} (4.3)

This is analogous to introducing excitation domains as ewkell established local

MPn methods of Pulay et al. [8] or Werner et al. [10]. Our \attgpace is spanned
by a set of projected atomic orbitals (PAC{S{){‘O }. The set of PAOs is constructed
according to [8, 20]:

occ

1619) = 1679) = ) (677117} |)") (4.4)

J

In local orbitals we recognize that an atomic orbital is imtpot if it's center is close to
the center of charge of the MO. Guided by the spatial decalgeofdcalized occupied
orbitals we can restrict the excitation space of an occupibdal according to eqn.
4.5.

[ (6110 = 30 ir < ta, (4.5)

We use the AO-representationdf © to find the mostimportant AO-functions if}’©.
¢NIO Z Csz

0a'C = Z ORAAGPY

%

(4.6)
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where) is the shift vector of the AO-function. Since we usually hawet of AO-basis
functions on the same center, we define thefiset

Es = {¢"°(7 N) |\ = 7} (4.7)

According to eqn. 4.7 we can divide the set of AO-functioris wiisjoint subsets. We
can find the important AO-functions in/© by successively using the séis where

7 is closest to the center of charge@f © until eqn. 4.5 is fulfilled. In order to get
the ordering of the set8; according to the distance to the center of charge of the a-th
local MO we define the ordering relation as:

‘ﬁa — 7, fors >t (4.8)

>ﬁ%—a

Now we find the smallest n where eqgn. 4.9 is fulfilled.

/ M0 =57 37 (410 6M0)p0 | dr < ten, (4.9)

i=1 heRy;
With this procedure we obtaing’°. From eqn. 4.4 we identify the mapping:
;10 910 (4.10)

The representation af¥© contains a set of AO-functions which can be mapped to
their corresponding PAOs according to eqn. 4.10. Thus weditatal excitation
spaceV,, for the orbitaly?/©.

In order to obtain a local excitation spa€efor our one-site domainhwe have to unify
the sets of PAOs which correspond to the occupied orbitalsdmomain.

Vi= |J V. (4.11)

(z’aEDi

4.1.2 Construction of then-Site Domains

The n-site domains are constructed using simple set theOry,, is defined as the
union of the occupied orbitals dd, (Op,) with the occupied orbitals oD, (Op,).
The same holds for the virtual orbitalsin, and D, (Vp, p,). In general occupied and
virtual spaces for the-site domains are constructed according to:

0x =0, (4.12)
AeX

Ve=JVa (4.13)
AeX

X ={D,,, D, D,,, ..., D;, } := subset oD with cardinalityn
XePD)A|X|=n
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4.1.3 Obtaining Correlation Energies

In order to calculate the energies with a standard quantamistry package we have
to account for the linear dependencies and the non-ortradigpin the PAO space.
For this purpose we use a linear transformation which iresutgymmetric orthogonal-
ization:

DUt CTS4°CcUD 2 = 1 (4.14)

with the MO coefficient matri>xC, the overlap matrix in AO basi§“?, the diagonal
matrix D = UTCTSA°CU and the MatrixU which diagonalizesS = C7S4°(C.
The matrixU is obtained by restricting/ to those eigenvectors which correspond
to an eigenvalue greater than='°. Now we build the new MO matrix within the
localized occupied orbitals and with the new orthogonadlireear independent PAOs.
All occupied orbitals which are not in the sBi are frozen, and all virtual orbitals
which are not inVi are deleted in the following CCSD calculation. Finally weaib
the total CCSD correlation energy according to eqn. 3.1.

4.2 Truncation by Distance

Up to now we constructed all possible combinations of ote-@gdmains for a given
order of the expansion. In order to get the correct scalirth vaspect to the number
of calculations we introduce a truncation threshold adogytb section 3.1.2. We can
reduce the question of the importance of a giwesite increment for the total energy
to a question of graph connectivity. LEtbe an-site domainVx be a set of vectors
with:

Vi = {Ral¢a € | Da} (4.15)

AeX

Further we define the gragh Vx, E), where the threshol®,,;,, defines the adjacency
of G(Vx, E):

We neglect allx-site domaingn > 1) for which G(Vx, E) is disconnected. We note
that eqn. 3.16 requires compact one-site domains, i.e. ihieals in the one-site
domains must be close in space.

Furthermore we implemented a dynamic distance thresholthéodifferent orderg);

of the expansion, in order to have more degrees of freedonhéotruncation. Since
high order increments are usually smaller than low ordereiments we use a distance
truncation according t%ﬁ In this casef is an adjustable parameter and we test the
performance of this dynamic screening for several values of



Chapter 5

Implementation

5.1 Interfaces

We built interfaces to DALTON 2.0, MOLPRO 2002.6 and MOLCAS! @jluantum
chemistry packages. For reasons of simplicity we modifiedstiurce code of the cor-
responding programs to obtain the overlap integrals in AS)h¢he dipole integrals in
AO basis and the MO coefficient matrix from a previous SCFuaton. We print the
necessary numbers in double precision into the standapdibamnd extract the data via
an extraction class (e.g. Molpro_extractor.H, Molcas_raye Dipole_Interface.H/
Molcas_6_4 INPORB_Interface.H and for DALTON Overlapp®@li Interface.H/
MOPUN _Interface.H). In MOLPRO calculations it is necegstr add some addi-
tional statements in order to get the desired informatiee @ppendix B.3 for an ex-
ample). Since MOLCAS uses the same format for the CASSCRabffile, we could
just rename the file and use the extraction module for the SQiEts in this case, too.
Furthermore we built interfaces to the correlation codd3I&SEL [77] for, MR-CISD
MR-ACPF, MR-AQCC and MR-CEPA(0), to the CCSD and the proparbdules of
DALTON [88] and to the CCSD and RCCSD codes in MOLPRO [89].

5.2 Foster-Boys Localization

We generated three stand alone Foster-Boys programs, faxGAS, DALTON and
MOLPRO respectively (Molcas_6_4 FB, Dalton_FB, Molpr8)FThis was neces-
sary, since we have to use different extraction classehodifferent codes. These
modules produce an output with information of the convecgeand store a file for
the MO-coefficients which are read in by the correspondimgesen the incremental
calculation. The performance of the localization procedaroptimized by a reduced
matrix multiplication in the transformation of the MO-céiefent matrix and in the

a7
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AO-MO transformation of the one particle integrals analagyto egn. 5.2.

A B\ (E F\ _(AE+BG AF+BH 5.1)
¢ D) \G H) \CE+DG CF+DH '

for D = 1 andF, G a zero matrix we get:

A B E 0 AE B
(C D) ' (0 11) - (CE D) (-2)
Eqgn. 5.2 gives a sketch of the simplification which can be wsedduce the time for
the successive x 2 matrix multiplications drastically.

5.3 Parallelization

The parallelization is achieved by a server/client striectlt can be run with a script
on the GRIDENGINE queuing system [90]. Before the clientsstarted, a file called
Servers_ HOSTNAME has to be generated. This file is copied stexes. It contains
the name of the server which is necessary to establish theection to the server
via socket++. Using the GRIDENGINE framework has the adagetthat a resource
management by hand is not necessary, since the GRIDENGIN&sHor available
computers and starts the processes automatically if oneoog nodes are free. Fur-
thermore it is not necessary to start all slaves simultasigoand therefore the job can
start as soon as a node is available. Further slaves camastsobn as more nodes are
free.

5.3.1 The Server

The server reads all information from an input file via cing(eserver< infile >
outfile). Since we have many codes with different options eeidkd to write special
servers for the different codes/correlation modules. Tdéweasary input can be read
in the first few lines of the corresponding source code as iablardeclaration with
comments.

The server collects all data and builds the symmetry adamedsite domains. In
the next step it builds all possiblesite domains up to a given order and divides them
into equivalence classes. After the construction of this déructure the connection
protocol is started, which is the real server. If a clientroects, the server reads the
job identification, the error information and the corredatienergy of the last job. The
correlation energy is arranged in the order of the job idieation. If an error occurs
the job is terminated. The server builds the MO-matrix foieeg calculation on the
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server

,//\\‘

Servers HOSTNAME  sym_partitions.xyz centers.xyz STDOUT

Figure 5.1: A sketch of the essential input data files for the incrementdtu-
lation. The output files include the information of the ceste®f
charge (centers.xyz), the symmetry adapted redundansitmelomains
(sym_partitions.xyz) and the node of the server (ServeBSHNAME).
The output is written to standard output (STDOUT).

fly and sends it together with the job identification to thewti If no more jobs are
available, the server sends the end signal to the clienér Aft jobs have run properly
the server calculates the incremental correlation energyeads.

5.3.2 The Client

The client connects to the server, sends the energy/enagper to the server and asks
for work. If there are still jobs to do, the client gets the @&gary information as job
identification and the MO-coefficient matrix by a wrappesssland writes the input file
for the correlation code. In the next step it calls the catreh code by a system call.
After the correlation calculation it extracts the correlatenergy as well as the error
information with an extraction class from the output of tleerelation calculation. At
this point it connects to the server again and starts theepiioe again.

5.3.3 The Wrapper

The wrapper classes are data classes which can be writtestrisaan and constructed
from a stream. Furthermore they contain an initial constnurom a set of data

classes, which ensures the correct initialization. Thoeeeit is very convenient to use
wrapper classes for data transfer in a stream-based pdraiteework like socket++.
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server
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Figure 5.2: Data flow within the server/client structure.
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- generated file C++ module

molpro.out

e

Molpro_FB —# STDOUT

P\

mo_matrix INPORBD

v \

server

Servers HOSTNAME  sym_partitions.xyz centers.xyz STDOUT

Figure 5.3: Data flow for an incremental calculation within the MOLPRCOrieon-
ment.

object of the wrapper class

- structured data network

Figure 5.4: Visualization of the concept of a wrapper class as data cwartéor the
network transfer.
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Figure 5.5: Centers of charge for naphthalene colored by their memipetsthe one-
site domains.

5.4 Visualization of the Domains

The server writes a file called sym_partitions.xyz. It isfiatted as a usual xyz-file for
atoms and contains the centers of charge for the domainsgibping to different
domains is done by fictitious atom labels. This enables ubéalcthe performance of
the partitioning into one-site domains visually by stamdarograms like MOLDEN
[91] or MOLEKEL [92,93]. Figure 5.5 and 5.6 present the donsadf naphthalene,
where every sphere represents an occupied orbital by thercarcharge. The double
bonds can be seen clearly in figure 5.6 by the two spheres eetim® carbon atoms.
For sigma bonds we find one sphere between two carbons or éretavearbon and
a hydrogen respectively. Note that the location of the asraécharge matches very
well to the chemical intuition of the locations of the elects in the molecule. The
other resonance structure might be obtained by choosinfjematit threshold for the
localization procedure. The locality of the one-site damasan be seen by the color
of the centers of charge.
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Figure 5.6: Centers of charge for naphthalene colored by their memigetsthe one-
site domains.

5.5 Symmetry for Molecules

We use eqn. 3.68 to treat the symmetry of thgite domains. As representation of the
n-site domains we can use a set of vectors. This can be dong th&STL vector or
set classes. Both classes are optimized for performanceaandt contain all possible
access structures. The STL classes contain only thosehahacefficient for a certain
data structure. For reasons of convenience we swap betWeatifterent classes if
some special features are desired. The basic ingrediertteftreatment of symmetry
are sets of symmetry operators and sets of vectors. In avdesetthe efficient set<T>
of the STL we have to introduce a binagy relation. Since these are not defined
mathematically for a matrix or a vector we define them artflgi The set<T> of the
STL checks for the equality of two objecits b of a class by the< operation of the
class T according to:

(a<b)==false A (b<a)=="false
=a=5b
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This has to be done with respect to the numerical accuracyatrixxmultiplication or
matrix vector multiplication e.g. we have to introduce a#irold for the comparison.
The source code for a specialization of the matrix classvisrgas an example:

1 tenpl ate<>

2 bool Matrix<doubl e>::operator < (Matrix<doubl e> const &a) const
3 {

4 const doubl e threshol d=1E- 12;

5 for (unsigned int i=0; i< (*this).size(); 1I++)
6 {

7 for (unsigned int j=0; j<(*this)[i].size(); |++)
8 {

9 if ( («this)[i][j] < ali]l[j] &&

10 (abs((*this)[i][j]-a[i]l[j]l)>threshold) )
11 {

12 return true;

13 }

14 else if ( ((*xthis)[i]l[jl=alillj]l) &&

15 (abs((*this)[i][j]-a[i]l[j])>threshold) )
16 {

17 return false;

18 }

19 }

20 }

21 return fal se;

22 }

The implementation of the: operator for the class SortableVectorR3 is analogous to
the implementation of the matrix class.

5.5.1 Generating the Operators of the Point Group

According to eqn. 3.68 we need all operators of the point grolhis can be done

by storing all information in a convenient way, or by genienabf the operators from

some basic operators. We decided to combine both posgsiiit order to have no

limiting restrictions. A tabulated point group may be cdlley the name of the point
group. All other groups can be constructed by a list of open@mes. The generation
of the operators is implemented in the class All_Symmetper@tions_Generator.
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class All _Symretry_Operations_Cenerator :
publ i c set <Matri x<doubl e> >

11
Al'l _Symmetry_Operations_Generat or(Poi nt _G oup pg);

The class Point_Group contains a set of generators and the oithe point group in
Schoenflies notation.

©O© 0 NO Ol WDN P

cl ass Poi nt _G oup
I
Poi nt _Group(string point_group_synbol);
/1 Schoenflies nonencl ature
Poi nt _Group(string point_group_synbol,
vect or<string> generators);
/1

string _point_group_synbol;
vector<string> _generators;

In order to obtain a matrix representation of a symmetry aoerwe use the class
Symmetry_element. It contains all information for the gatien of the transformation
matrix from a string. Note that the vector<T> of the STL is a&ahmensional data
container without any mathematical property of a vector.

class Symmetrie_el enent : public Matrix<doubl e>
I

Symretrie_elenment(string symetrie_ El enent);

The generation of the complete set of the symmetry operadgperformed in two
steps. First we generate the matrix representations ofyalhgetry elements in the
class Point_Group and insert them into the inheritee Bttrix<double>> of an ob-
ject of the class All_Symmetry_Operations_Generatohénsiecond step we multiply
all members of this set with each other and insert all praguntd the set of the class.
The constructor terminates, if the number of products isEtpthe size of the object.

5.5.2 Symmetry Adapted One-Site Domains

The adaption of the one-site increments to symmetry can be ds follows: first we
reduce the set of vectors to a set of non-redundant vectors.
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1 class Non_Redundant : public set<Sortabl eVect or R3>
2 I/

3 Non_Redundant (

4 set <Sort abl eVect or R3> coor di nat es,

5 Al _Symetry_Operations_Generator asog);

The class Non_Redundant groups the vectors into classesdaug to eqn. 3.65 and

selects one vector of every group with the side conditiohtte selected vectors are
close in space. The selected vectors are inserted into theR&dundant object during
the construction. Next we classify the vectors by site sytmreecording to eqn. 3.71

and do the partitioning into the domains. These steps arapsntated in the class
Sym_Partitioning.

1 class SymPartitioning : public vector<set<Sortabl eVect or R3> > I

In order to get all partitions, we apply the symmetry opaataf the group onto ev-
ery domain and get the set of redundant one-site domains.sdthef the redundant
one-site domains is represented by the class Set_of Ranumtbmains. Note that
the data structure in the code is equivalent to the datatateiof the mathematical
representation:

D = {Dy,Ds, ..., D,}

—

Dy = {R,, Ry, ..., By}

1 class Set_ of Redundant domains :
2 public vector<vector<Sortabl eVect or R3> >

5.5.3 Symmetry Classified:-Site Domains

For reasons of convenience we do the permutation managam@hsymmetry. Since

every domain is associated with a large correlation calicriave did not observe a
performance loss for this step. The class Correlation_dyn€ontainer is used to con-
struct all combinations of one-site domains up to a giverorBurthermore it stores
a double precision number for every permutation. The claseemental Addresses
constructs all sets of vectors associated with the combimatof the one-site do-

mains.

1 class Increnental Addresses :
2 publ i c vector<vector<vect or<Sort abl eVect orR3> > >
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The first dimension refers to the order of the expansion, ¢élcersd to the number of
domains of a given order and the last one to the orbitals imaadto. Finally the sym-
metry classification is done by the class Incremental_Asklre equivalence_classes.
It uses the symmetry operators of the class to find the symyrequivalent domains
and stores them as Equivalence_Class.

1

class I ncrenental Addresses_equi val ence_cl asses

2 publ i c vect or<vect or<Equi val ence_Cl ass> >

Here the class Equivalence_Class contains all symmetriyagatn-site domains as
well as the energy and the truncation variable. We decidgémnerate several versions
of the classes Incremental_Addresses_equivalenceeslass Equivalence_Class in
order to keep the old versions of the code while generalittiegdata container (tem-
plating the class).

a b wWwN PP

cl ass Equi val ence_Class : public
map<Vect or _OF _Sort abl eVect or R3, unsi gned int>
Il
doubl e _energy;
bool _cal cul at e;

The truncation variable is a boolean which is set to trueefitfttrement screening via
the class Adjustable_Truncation yields the energy incrégroéthe domain as signif-
icant and false elsewise. The server loops over all signifieguivalence classes and
writes the energy to them. The mapping to the orbitals of aalons done according
to the centers of charge:

Ro = ¢a
At the end the energies of the equivalence classes are mtdfdrmed to C1 symme-
try and written to an object of the class Correlation_Enefggntainer. This enables
us to use the same expansion class for C1 symmetry in the syrogese, too. Again
this is no significant loss of performance since the numbeatdfulations dominates
the total cpu time.

5.6 Symmetry for Periodic Systems

In order to treat all possible 3-dimensional space grouplsuild an interface to extract
the matrix representation of the symmetry elements fronsthedard representation
string of the International Tables for Crystallography][94or a convenient usage
we downloaded all symmetry elements in the standard repiesen from the Bilbao
christallographic server [95]. This enables us to treatratislational groups, if the
Foster-Boys procedure yields local symmetric orbital$imithe desired accuracy.
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The treatment of symmetry in periodic systems is somewlffgrdnt, since we cannot
construct all symmetry operations of the group due to thaitefnumber of symmetry
operations. We decided to construct all symmetry operatiathin the reference cell
first, and then perform a predefined set of translations,derdo recover all symmetry
operations within a given supercell. All other steps of thkeglation are similar to the
treatment of molecular symmetry.

5.7 Algorithm to Obtain the Virtual Space

The virtual space truncation as discussed in section 4hidretically, was imple-
mented according to the algorithm below.

/ (610 = MOV dr < tgens (5.3)

Since we are using local orbitals, we can obtlff’ in egn. 5.3 in the following way:

a. Initialize all coefficients of/© to zero

b. Go to the center of charge, of thea-th MO

c. Find the AO-basis functions centered Brclosest tolz, which have
not been used so far

d. Set all coefficients of/© which have an AO-function ot to those
of p1©

e. End, if [ ()€ — ¢1©)* dr is belowt i,

f. Gotoc.

With this procedure we obtain &/© which contains a set of AO-functions. These
AO-functions can be mapped to their corresponding PAOsrdotgp to egn. 4.10.
Thus we find a local excitation spa¥e, for the orbitalg/©.

In order to obtain a local excitation spa®e for our one-site domaim we have to
unify the sets of PAOs which correspond to the occupied alih the domain. These
mapping steps are performed in the class Sym_Incrementig\pbint we note that
the virtual space is not symmetric in the current implemigmta But this can be
easily achieved by construction of the virtual space forrtbe-redundant part of the
molecule and using the symmetry operators to obtain the stngradapted virtual
space. Since the large applications were done with MOLPR@owméd not truncate
the virtual space anyhow and for the applications to smalemdes with DALTON
or MOLCAS we were not able to save a significant part of theuairspace.
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Applications

6.1 Molecules

The geometries were obtained by optimization with the Bée&edew86 [96, 97] gra-
dient-corrected exchange-correlation functional (BP&hg density fitting and the
SVP basis set of polarized douhjeguality in the TURBOMOLE 5.6 [98] quantum
chemistry package. Stationary points were characterigefdice constant calcula-
tions.

6.1.1 Hydrocarbon Compounds

Table 6.1 shows the convergence behavior of the incremergalnsion for the hy-
drocarbon compounds in figure 6.1. For molecules of this typecan truncate the
expansion of the correlation energy at third-order whitmxering the correlation en-
ergy almost exactly. An expansion up to second-order inergsis already a good
guess for the correlation energy whereas the first-ordenggrieas a large error (for
the chosen domain size). We emphasize that the error in thlectwrelation energy at
third order is lower than 1 kcal/mol for sigma-bonded chassvell as for aromatic
or conjugated compounds.

6.1.2 Transition Metal/Actinide Compounds

Transition metal complexes are a very important class ofpmumds in organic and
inorganic chemistry. A huge number of modern homogeneaadysss belong to this
type of molecules. Since these compounds usually assenmelarty spherical shape,
they challenge local correlation methods. In table 6.2 wetkat the convergence
of the incremental series for the molecules in figure 6.2 ddpen the type of the
ligands. For the molybdenum fluorine complex we obtain vast tonvergence. In

59
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Figure 6.1: RI-BP86/SVP optimized structures of some hydrocarbon ouidss.
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system ordet i-th order correction By (7) error % Eorr
[au] [au] [kcal/mol]
pentaneé 1
1 -0.661436 -0.661436 89.89 82.20
2 -0.145661 -0.807097 -1.52 100.30
3 0.002399 -0.804697 -0.01 100.00
4 0.000020 -0.804677 0.00 100.00
exact CCSD -0.804677
decané 2
1 -1.257413 -1.257413  204.12 79.45
2 -0.331197 -1.588610 -3.71 100.37
3 0.005823 -1.582787 -0.05 100.01
4 0.000084 -1.582704 0.00 100.00
exact CCSD -1.582702
alkené 3
1 -1.052959 -1.052959  229.75 74.20
2 -0.374002 -1.426960 -4.94 100.55
3 0.007689 -1.419271 -0.12 100.01
4 0.000203 -1.419069 0.01 100.00
exact CCSD -1.419088
naphthalene4
1 -0.906710 -0.906710 278.87 67.11
2 -0.461387 -1.368097  -10.65 101.26
3 0.016755 -1.351341 -0.14 100.02
4 0.000467 -1.350875 0.15 99.98
exact CCSD -1.351119
alkyné' 5
1 -1.399036 -1.399036  395.63 68.93
2 -0.650050 -2.049085  -12.28 100.96
3 0.018755 -2.030331 -0.52 100.04
4 0.000753 -2.029578 -0.04 100.00
exact CCSD -2.029509

Table 6.1: Comparison of the incremental energies with the full CCSIgudations

for the hydrocarbons in figure 6.1.

@ dsp=3. All calculations in the 6-31G** basis set of Pople andiorkers

[99,100].
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MOC|6 7

TiCp,Cl, 8 MoFs 9

e

Nb,Cl;o 10

Figure 6.2: TiCp,Cl, 8, MoFs9, MoCls 7 and NBCl;o 10 were optimized with the
RI-BP86/SVP in TURBOMOLE[Pu(H,0)s]** was taken from [101].
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the other cases we need fourth order increments in orderhie\ac convergence to
0.1 % of the correlation energy. We note that in these casesum of the fourth-
order contributions is still quite large. The source of thehavior is that individual
energy increments are still quite large at this order. Indase of NbCl,g, M0oClg
and TiCpCl, we find still large contributions of the adjacent fourth arderements
(~ 10* Hartree). In Mok for example the fourth order increments are in the order
of 10° Hartree (see appendix C.1). Therefore we think that theel@a@arizability
of the CI ligands is responsible for the slow convergence behavilis i supported
by the fact, that the centers of charge in the MloBmplex are closer on each &nd
closer to the neighboring fluorine atoms than the corresppgncenters of charge in
MoClg (figure 6.3 and 6.4). The larger distance of the centers afyehan a Cl atom
is the reason why it is easier to polarize @lan F. This effect can be seen in the
incremental energies of Mgand MoCj. Our incremental calculations on Tigpl,
account for 99.99% of the correlation energy at fourth-ordéis behavior does not
change significantly if different domains are chosen, asamesee from table 6.5. Fur-
thermore we can see from this table that the convergence afithemental expansion
is good also for small domain sizes. We want to point out thigtpossible to obtain
accurate correlation energies before the spanned spahe ofltitals in the domains
approaches the full space.

Again we find that the first-order approximation yields ancimaate correlation en-
ergy (for the chosen domain size), the second-order is a goess and the third-order
has a small error, whereas we obtain excellent agreementighforder level. The
convergence of the incremental correlation energy for[l’ereéI-izO)g]?’+ 6 complex is
quite fast. The second-order yields the correlation enenglyin an error of only -
0.82 kcal/mol. The third-order level of increments yields torrelation energy almost
exactly. This convergence behavior does not change significif we increase the
basis set from doublé-o triple<, as we can see from table 6.4. Note that the canon-
ical CCSD calculation cannot be done in the larger basis thithsame code on the
same machines. Therefore we conclude that the incrementitaihge provides a way
to reduce the hardware requirements of a large calculatithout significant loss of
accuracy.

For the gold halogenide in figure 6.3 we find a fast convergendtee incremental
series, too. The expansion up to third-order yields alnesekact correlation energy
in this case (table 6.3).
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MoFg 9

Figure 6.3: Centers of charge of M@F The white spheres represent the centers of
charge.

MOC'G 7

Figure 6.4: Centers of charge of Mog:l The white spheres represent the centers of
charge.
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system ordet i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]
MoFg!

1 -1.214064 -1.214064 24.62 96.87
2 -0.043326 -1.257390 -2.57 100.33
3 0.004799 -1.252591 0.44 99.94
4 -0.000805 -1.253396 -0.06 100.01

exact CCSD -1.253299

MoCIg!

1 -0.983501 -0.983501 46.86 92.94
2 -0.090874 -1.074375 -10.17 101.53
3 0.021664 -1.052711 3.43 99.48
4 -0.006767 -1.059478 -0.82 100.12

exact CCSD -1.058176

TiCp,Cl5*
1 -1.360373 -1.360373  305.25 73.66
2 -0.541651 -1.902023 -34.64 102.99
3 0.067304 -1.834719 7.60 99.34
4 -0.011983 -1.846702 0.08 99.99

exact CCSD -1.846825

Nb,CI%

1 -1.648100 -1.648100 78.78 92.92
2 -0.153063 -1.801164 -17.27 101.55
3 0.035460 -1.765703 4.98 99.55
4 -0.009367 -1.775070 -0.90 100.08

exact CCSD -1.773638

[Pu(H,0)g*" 6"

1 -1.887521 -1.887521 31.53 97.41
2 -0.051540 -1.939062 -0.82 100.07
3 0.001256 -1.937806 -0.03 100.00
4 0.000059 -1.937747 0.01 100.00

exact CCSD -1.937762

Table 6.2: Comparison of the incremental energies with the full CCSIgudations
for the molecules in figure 6.2.

“ dsp=3, dsp=4

f 6-31G* basis set of Pople and coworkers [99, 180¢c-pVDZ basis set

of Dunning [102]

Mo, Ti, Nb, ECP28MWB [103, 104] Pu,ECP83MWB [105]
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Figure 6.5: RI-BP86/SVP optimized structure of AGl, 11 (Dyy).

system ordef i-th order correction  Eq() error % Eorr
[au] [au] [kcal/mol]
Au,Cl, 1 -0.924218 -0.924218 84.98 87.22
2 -0.141936 -1.066154 -4.09 100.61
3 0.006637 -1.059517 0.08 99.99
4 -0.000065 -1.059582 0.04 99.99
exact CCSD -1.059642

Table 6.3: Comparison of the incremental energies with the full CCSIgudations
for Au,Cl, 11in figure 6.5.
(dsp=2, 9 domains, core=36, 6-31G** basis set of Pople anvdodo
ers [99, 100])

orderi i-th order correction FEgo[au]

1 -2.239121 -2.239121
2 -0.059162 -2.298283
3 0.001435 -2.296848

Table 6.4: The [Pu(l—EO)g]3+ complex of figure 6.2 in a triplé-basis (H,cc-pVTZ sp;
O,cc-pVTZ spd; Pu,ECP83MWB [105]). We note that the stacazal-
culation of this type is already infeasible with the sameecod the same
computer.
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order: i-th order correction  Er(7) error % Eorr
[au] [au] [kcal/mol]

dsp=3

teon=2.5

9 domains
1 -1.360373 -1.360373  305.25 73.66
2 -0.541651 -1.902023 -34.64 102.99
3 0.067304 -1.834719 7.60 99.34
4 -0.011983 -1.846702 0.08 99.99

dsp=4

teon=3.5

8 domains
1 -1.421872 -1.421872  266.66 76.99
2 -0.473666 -1.895537  -30.57 102.64
3 0.059733 -1.835805 6.92 99.40
4 -0.010099 -1.845904 0.58 99.95

dsp=6

teon=3.5

5 domains
1 -1.524918 -1.524918  202.00 82.57
2 -0.346342 -1.871260  -15.33 101.32
3 0.028312 -1.842948 2.43 99.79
4 -0.004008 -1.846956 -0.08 100.01

exact CCSD -1.846825

Table 6.5: Comparison of the convergence for different dsp and in the case of
TiCp,Cl,.
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6.2 Intermolecular Interactions

6.2.1 Water Clusters

For the correlation energy of systems with intermolecubéeractions such as water
clusters we find that the incremental scheme performs eviarliban for the hy-
drocarbon compounds or transition metal complexes discubsfore and in refer-
ence [85]. In the 6-31G** basis one obtains for,()g (figure 6.6) already 99.99%
of the correlation energy at second-order. The convergeekavior is similar for the
calculations in the larger cc-pVTZ basis where the full aidton is infeasible on less
than 1.35 GB machines (table 6.6). Comparing the two caiong in the 6-31G**
basis we find that the convergence is slightly slower for theldmains. But the error
is lower than 1 kcal/mol at second-order of the incremengphasion for this case too.
This shows that the result depends on the choice of the demain not as much as
may be expected. So we conclude that the incremental scheemete robust with
respect to the choice of the one-site domains.

In table 6.7 we compare for ¢@); the convergence behavior of the incremental
scheme with respect to the density paramgger of eqn. 4.5. Naturally the parameter
affects the convergence behavior of the series, if the &xait space is restricted too
rigorously. With proper values of this parameter we can shitain fast convergence
in the series as we can see for the last two examples in tahle 6.

Figure 6.6: RI-BP86/SVP optimized structure of a set of eight water rooles.
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Figure 6.7: (H,0),, cluster taken from Bulusu et al. [106].

basis ordef i-th order correction  Ep(7) error % Eorr
[au] [au] [kcal/mol]
6-31G** 1 -1.648410 -1.648410 35.61 96.67
2 -0.056524 -1.704934 0.14 99.99
3 -0.000207 -1.705142 0.01 100.00
4 -0.000007 -1.705149 0.00 100.00
exact CCSD -1.705151
6-31G**? 1 -1.441864 -1.441864  165.21 84.56
2 -0.264439 -1.706303 -0.72 100.07
3 0.001113 -1.705190 -0.02 100.00
4 0.000044 -1.705147 0.00 100.00
exact CCSD -1.705151
cc-pVTZ® 1 -2.244489 -2.244489
2 -0.077810 -2.322298
3 0.000111 -2.322188

Table 6.6: Comparison of the incremental energies for the@hd-cluster in figure 6.6
with the full CCSD calculations and comparison of the bastefect.
® 8 domains, core=0
> 11 domains, core=0

Table 6.8 and 6.9 show for ¢@),; (figure 6.7) in 6-31G** basis the performance
of an energy screening procedure using a dynamic distameshibld ,,,;,,(©O) and
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(H,O)g order; i-th order correction  E(i) error % Eorr
[au] [au] [kcal/mol]

density threshold 0.1

1 -1.573940 -1.573940 32.17 96.85

2 -0.053823 -1.627763 -1.60 100.16

3 -0.000571 -1.628335 -1.96 100.19
exact CCSD -1.625212

density threshold 0.01

1 -1.575988 -1.575988 30.89 96.97

2 -0.053820 -1.629808 -2.88 100.28

3 0.004666 -1.625142 0.04 100.00
exact CCSD -1.625212

density threshold 0.001

1 -1.578597 -1.578597 29.25 97.13

2 -0.046443 -1.625040 0.11 99.99

3 -0.000053 -1.625093 0.07 99.99
exact CCSD -1.625212

Table 6.7: Convergence behavior of the incremental scheme with réspelce den-
sity parametet,,,,, of egn. 4.5. (dsp=>5, 8 domains, core=0, calculation in
6-31G* basis set of Pople and coworkers [99] at the RI-BP8B/§eome-

try.)
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Neac/total Nege  f order: i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]

11/11 12 1 -2.235023 -2.235023 33.35 97.68

16/55 2 -0.049996 -2.285019 1.98 99.86
27/165 3 -0.003239 -2.288258 -0.05 100.00

0/330 4 0.000000 -2.288258 -0.05 100.00
54/561

11/11 16 1 -2.235023 -2.235023 33.35 97.68

41/55 2 -0.052651 -2.287674 0.32 99.98
31/165 3 -0.000246 -2.287920 0.16 99.99
53/330 4 -0.000443 -2.288363 -0.12 100.01
136/561

11/11 00 1 -2.235023 -2.235023 33.35 97.68

55/55 2 -0.052874 -2.287897 0.18 99.99
165/165 3 -0.000260 -2.288157 0.01 100.00
330/330 4 -0.000025 -2.288182 0.00 100.00
561/561

Table 6.8: Performance of the approximation of the incremental scheitierespect
to a dynamic distance threshoR},.;,(0;) = Oi for the CCSD/6-31G**
energy of (HO),;. (11 domains, core=11)

an energy threshold, respectively. The number of calariatcan be reduced signif-
icantly, if we use the above distance truncation, as we carfreen table 6.8. If we
compare the reduction of calculations according to an gnérgshold from table 6.9
with the performance of the truncation based on graph theagee that they behave
quite similar. Note that we used the exact energies to simtiee energy screening.
If approximate values are used it would be necessary to us&ex threshold in order
to avoid discarding too many relevant contributions dueht dpproximation error.
Table 6.10 presents the saving of the cpu time foyJ},. For this example we find
that we can reduce the calculation time for the incremeratilutation to 5-25 % of
the full incremental calculation. Furthermore the ratibween the number of calcu-
lations of the distance approximated incremental calmrand the full incremental
calculation gives an upper bound to the computational tiomepared to the time for
the full incremental calculation.

Ncalc(Rmina O)
Ncalc(o)

Cpu-time R, O)
cpu-timeO)

(6.1)
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This is in general true, becaude,,;,(O) removes more high-order contributions,
which are more time consuming to evaluate than the low-ardetributions.

Einres Ncal
108 513
1077 269
1076 130
10> 70
0% 37

EJOI'I'
-2.288182

-2.288179
-2.288167
-2.287968
-2.286425

error
0.00
0.00
0.01
0.13
1.10

% EOI’I’
100.00

100.00
100.00
99.99
99.92

Table 6.9: Performance of the approximation scheme eqn. 3.26 for th80Z&
31G** energy of the (HO),, cluster due to an energy selection. For sim-
plicity we used the exact incremental energies to estintegdrtdividual
contributions of the increments.

f
% Ncalc 100 24 10

%cpu 100 19 5

oco 16 12

Table 6.10: Performance of the dynamic distance thresh@ld,,(O;) = oi with re-
spect to the computational saving for,B);;.

6.2.2 m—r/CH—r—Interactions

m—r—interactions are very important, since they can also atfexstructure of DNA
and proteins. The benzene dimer chosen here as a modeteinteractions was stud-
ied by several groups [107-113]. Another important intdenolar interaction is the
CH—r—interaction [114-116]. For our purposes we have chosemtlie methane
complex as studied by Ringer et al. [116].
For the intermolecular interactions between two benzenkecutes (figure 6.8) we
obtain at third-order level almost the exact CCSD energyl¢té.11). For the CH=—
interaction in figure 6.9 we obtain a reasonable energy ad-thider level and almost
the exact CCSD energy at fourth-order level. We point out W& have fast con-
vergence for the compact 6-31G** basis as well as for theuddf6-31++G** basis

set.
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-
Figure 6.8: Sandwich structure of the benzene dimer at a benzene-bedstance of

3.75 A using the monomer C-H and C-C distances of Gauss amto8ta
[117].

Figure 6.9: Indole methane complex optimized by Ringer et al. [116].
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system ordet i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]

(CeHe)3
1 -1.100083 -1.100083  345.59 66.64
2 -0.573180 -1.673263  -14.09 101.36
3 0.022393 -1.650871 -0.04 100.00
4 0.000185 -1.650686 0.08 99.99

exact CCSD -1.650808

indole-methane compléx

1 -1.012639 -1.012639  274.42 69.84

2 -0.459677 -1.472315 -14.03 101.54

3 0.022988 -1.449327 0.39 99.96

4 -0.000546 -1.449874 0.05 99.99
exact CCSD -1.449955

Table 6.11: Comparison of the incremental energies with the full CCSBudations
for the molecules in figure 6.8 and 6.9.
* 6-31G** basis set of Pople and coworkers [99, 100] (10 domiain
core=12)
b 6-31++G** basis set of Pople and coworkers [99, 100] (8 domai
core=10)

6.2.3 The Aurophilic Attraction

In order to check the performance of the presented appraacthé aurophilic in-
termolecular interaction we chose the test moleculg(RH-G,H,-S), in figure 6.10
which was studied previously by Mendizabal and Pyykko [1#8}-d'°—interaction).
Compared to the other systems in this study we find a relgtslelv convergence. We
still have a considerably large error for both domain sindalble 6.12 at the third-order
level e.g. the introduced error is 2 and 1 kcal/mol for thelsaral the large domains
respectively. The convergence is somewhat faster fordalgeains. At fourth-order
level we are very close to the exact CCSD energy for both dosiaes. We note that
an analysis of the single energy contributions analogoualite 6.9 shows that we
could reduce the number of calculations significantly withoss of accuracy.
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Figure 6.10: MP2 optimized structure of AWPH-CGH,-S), using the 6-31G**
basis set of Pople and coworkers [99, 100] for P,C,H,S and
ECP60MDF/(8s6p5d)/[7s3p4d] [119] for Au. In order to patarthe
d-shell of the gold atoms we added two f-type polarizationctions
(ay = 0.20,1.19) [118].

AUz(PH-Csz-S)Z

order: i-th order correction  Er(7) error % Eorr
[au] [au] [kcal/mol]
dsp 3
1 -0.904022 -0.904022 317.17 64.14
2 -0.553462 -1.457485 -30.13 103.41
3 0.051170 -1.406315 1.98 99.78
4 -0.003270 -1.409585 -0.07 100.01
dsp 5
1 -1.111903 -1.111903 186.72 78.89
2 -0.318708 -1.430611 -13.27 101.50
3 0.022591 -1.408020 0.91 99.90
4 -0.001396 -1.409416 0.03 100.00
exact CCSD -1.409467

Table 6.12: Comparison of the incremental energies with the full CCSBudations
for Auy(PH-GH,-S), in figure 6.10 using the 6-31G** basis set of Pople
and coworkers [99, 100] for P,C,H,S and ECP60MDF/(8s6jpBsi3p4d]
[119] for Au. (dsp=3, 10 domains, core=32; dsp=>5, 6 domaiosg=32).
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Figure 6.11: RI-BP86/SVP optimized guanine-cytosine base pair.

6.2.4 DNA Base Pair

The accurate calculation of the guanine-cytosine baserpigure 6.11 is very impor-
tant to benchmark lower level methods like force fields or Dstiice highly accurate
wavefunction-based methods are not applicable to large Dikecules. From a the-
oretical point of view these systems are interesting bexafisheir great number of
m-electrons. Since a localization of conjugatedrbitals yields usually relatively ex-
tended localized orbitals, we checked the performance ofomal approach for this
case. The results of the incremental calculations are giveable 6.13. We find that a
truncation according t@% yields quite accurate results for this system. At thirdeord
level we obtain 100.11% of the correlation energy whereasbtain 100.03 % at
fourth-order level. This corresponds to an absolute erfanty -0.46 kcal/mol with
respect to the exact CCSD energy. Note that the full CCSDutation needs 2.5 GB
of RAM and 18.5 GB of disk space. The incremental calculaibowever took at
most 1.4 GB of RAM and 7.4 GB of disk space.

This example demonstrates again the power of the automatande truncation, be-
cause the ratig‘cecfmin0) i 0 17, j.e. 2095 CCSD calculations for f=16 at fourth-

i Ncalc(o)
order are avoided.

6.2.5 Reaction Pathways of the £xo/5-endo Cyclization

The convergence of the incremental RCCSD correlation eéeergas checked for a
chemical example taken from a collaboration with the experital group of Gan-
sauer at the University of Bonn. The geometries were obdainyeRI-BP86/TZVP
geometry optimizations with the TURBOMOLE 5.6 program pegpé [98]. The sta-
tionary points were characterized by a force constant argly

Figure 6.12 shows a schematic view of the competirexdand 5endocyclizations.
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guanine-cytosine base pair

order: i-th order correction  Er(7) error % Eorr
[au] [au] [kcal/mol]
1 -1.916622 -1.916622  592.65 66.99
2 -0.979382 -2.896004  -21.92 101.22
3 0.031816 -2.864189 -1.96 100.11
4 0.002382 -2.861807 -0.46 100.03
exact CCSD -2.861067

Table 6.13: Comparison of the incremental energies with the full CCSBudations
for the guanine-cytosine dimer in figure 6.11 using the 6-31§asis set
of Pople and coworkers [99, 100]. (dsp=3, 16 domains, cd@¥=1

Figure 6.13 shows the convergence of the incremental RC@&ielation energies of
egn. 3.64 for a set of intermediates in thexd5-endocyclization. The complete
data is given in the appendix C.3. The first-order incremeartaelation energy has
a large error whereas the second-order correlation eseageeall in between 4.4 -
6.4 kcal/mol. This corresponds to a non-linear error of c&c&/mol which is still
too large for chemical accuracy. At third-order level weawsr more than 99.9 % of
correlation energy which corresponds to a largest error.2k6al/mol. The fourth-
order corrections do not improve the third-order energignificantly, because the
third-order was already sufficient to obtain the desiredieaxy. This is demonstrated
by figure 6.13, since the spread of the errors decreases apigly with increasing
incremental order.

Comparing the relative incremental energies of the diffeirgermediates in table 6.14
with respect to the order we find a better accuracy of the egrigecause of a benefi-
cial error cancellation. The first order incremental CCSPrgies leads to inaccurate
results for all points in table 6.14. The resulting error lat 2 kcal/mol for the
second-order level and at third-order level we observerateuelative CCSD ener-
gies. This finding was expected because the absolute es@rgie already accurate at
third order level (cf. figure 6.13). The summed increment@aB8D/cc-pV(n)Z (n=D,T)
correlation energies are given in appendix C.3. Compahaghergy contributions for
a given order with respect to the basis set, we did not obselage sensibility.

A comparison of the performance of the different quanturmdbal methods in table
6.14 for the educts and the products yields similar enerigiesll applied post-HF
methods. DFT agrees for the educt and thexdproduct, whereas the &xdoprod-
uct is 3-4 kcal/mol higher in energy. Due to the fact that tieresults do not agree
with the other methods, we find that electron correlatioygkn important role in the
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Figure 6.12: Intermediates of the éxd5-endocyclization.

guantitative description of the dxd5endo cyclization. Comparing the incremental
results for the transition states, with those obtained byMP2 method, we find in this
case that the cheap second-order incremental expansioncis coser to the CCSD
results (cc-pVDZ, approximate cc-pVTZ) as well as to the DEJult. Comparing the
relative CCSD energies of the transition states with the D&sults we find a quite
large discrepancy. From theeXocyclization we would expect that the perturbative
triples correction is quite important and shifts the codpdtuster results somewhat
towards the DFT result [120]. Another aspect is the singiat@pproximation in the
CCSD calculations, which might also be in the order of a fewlkaol. Since the
CCSD/cc-pVDZ geometry optimizations were already too ttnasuming we were
not able to check how the relative CCSD energies are affdgtéide usage of the DFT
geometries for the CCSD calculations. Finally we conclind¢ the relative energies at
second-order level are fairly accurate and agree bettértivi relative CCSD results
than the MP2 results do.
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Figure 6.13: Convergence of the incremental correlation energies termmediates of
the 4exoand 5endocyclization of14. In the second chart the first order
was omitted in order to get a meaningful scale for the error.



method Incremental CCSD CCSD RI-CC2 RI-MP2 RI-BP86 HF
basis cc-pvDZz cc-pvVTZ cc-pvDzZz TzZVPP TZVPP TZVP  cc-pVTZ
molecule/order 1 2 3 4 1 2 3
16 a -79 -178 -174 -17.% -5.3 -17.0 -16.4f -17.5 -18.2 -18.1 -14.2 -11.1
16b 7.1 -171 -16.7 -16.§ 4.7 -16.4 -16.1] -16.8 -17.6 -17.5 -14.0 -10.9
16c¢c -6.9 -17.1 -16.7 -16.1 -46 -16.4 -16.1 -16.7 -17.6 -17.5 -14.0 -10.9
14 a 6.3 3.3 3.1 3.1|| 9.6 3.3 3.1 3.1 3.3 3.4 2.8 4.0
14 b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 c -0.3 04 0.3 03| -04 04 0.3 0.3 0.4 0.5 0.2 0.2
13 a -254 -0.3 0.1 0.2(-32.0 0.1 0.3 0.1 -04 0.9 -1.3 6.7
13b -256 -15 -10 -09|-314 -09 -04 -1.0 -1.7 -0.4 -1.1 6.7
13¢c -26.7 -18 -14 -13|-331 -14 -1.1 -1.3 -2.0 -0.6 -2.6 5.1
TS12a 228 19.1 194 193 255 184 18.8| 19.3 17.8 23.4 11.6 27.9
TS12b 23.7 196 199 19.8 269 19.3 19.7| 19.8 18.1 24.1 12.2 30.1
TS12c 172 174 176 17.5 169 169 17.1] 175 15.7 21.4 9.9 26.5
TS 15a 30.7 196 213 21.2 315 196 21.1] 21.2 20.1 26.1 17.1 33.5
TS 15b 30.7 19.2 212 210 31.8 194 21.2| 21.0 20.0 26.0 17.8 33.6

Table 6.14: Performance of different quantum chemical methods for tHexdb-endoreaction energies relative tod b. The
geometries were optimized at RI-BP86/TZVP level. The ZPE approximately included by the RI-BP86/TZVP
value.
a,b,care different conformers of the corresponding molecule
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6.3 Symmetric Systems

6.3.1 A Water Cluster

(\‘i (,Q(
Figure 6.14: RI-BP86/SVP optimized structure of {B); (C3).

As a first example we choose the water aggregate of figure 6.%tudied by Laaso-
nen et al. [121], Kozmutza et al. [122], Upadhyay et al. [128{ Kim et al. [124].
The structure was optimized iti; symmetry with TURBOMOLE [98] using the RI-
BP86/SVP method. We applied different truncation parametend different basis
sets for this example. The results are given in tables 6.18-6First we note that
the convergence of the incremental scheme is very fast fapalied basis sets (6-
31G** [99], aug-cc-pVDZ [102,125] and cc-pVTZ [102]). Themvergence behavior
is not affected by the usage of the approximate symmetriteF&oys orbitals. Fur-
thermore the convergence is not affected by the usage oifthsadaug-cc-pVDZ basis
set, if we compare the aug-cc-pVDZ results with the 6-31G%ults. The usage of
the cc-pVTZ basis does not change the convergence of thenmaertal series for this
water cluster either. The errors increase a little, if wethsedynamic distance trunca-
tion oi (see also section 4.2). We find that the errors are below IrkohWith respect
to the canonical CCSD results at second-order level, fockasen values of (14,
16, 18, 22, 26p0) in all applied basis sets (6-31G**, aug-cc-pVDZ, cc-pVTRlpte
that the approximation by the paramefednas an effect on the total convergence of the
incremental series. If we neglect incremental contrimdiof far distant domains, we
can only get a finite accuracy. This can be seen if we compartithincremental cal-
culations up to fourth-order with the approximated caltiatss. The errors decrease
up to a certain digit and are not improved further if the oraethe expansion is in-
creased. They improve, if the distance threshold is set &ovgef value (table 6.18).
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f ncalc e error
[%0] [kcal/mol]?
00 20 36 0.00
16 10 18 -0.10
14 8 14 -0.10

Table 6.15: Comparison of the error introduced by the incremental esjmsrand sav-
ing with respect to symmetry and the distance truncatiog%b)ﬂ' he total
number of calculations i, symmetry isy";_, (%) = 56.
athe error of the incremental CCSD/aug-cc-pVDZ results attfeorder
of table 6.17.

For the (HO); cluster this limitation is not serious, because the errstritution of
the CCSD method itself [68] is much larger than the erroitiiiced by the distance
truncation. On the other hand it is always possible to usegatd in order to include
more terms. The comparison of the introduced error due tappeoximate treatment
of symmetry and truncation due to the distance in table éhb%s that the introduced
error is much smaller than the intrinsic CCSD error. Tharefge conclude that it is
convenient and economic to use the symmetry for this clasgstéms. An interesting
result is found in table 6.16 for the entrigs= 14 and f = 16, since the sums up
to third-order are equal up to the last digit whereas the supn® second-order are
not. We find the same for the analogous entries in table 6.h@analysis of the single
contributions yields that fof = 14 two site increments were neglected which were
still included for thef = 16 case. This can be seen in the following example:

f=14
Aeg; = egr, Aoy = egg, Ac1a =0
01 01 02 02 12 6.2)
Acpi2 = €g12 — €g1 — €p2 — €9 — €1 — €2
f=16
Aegr = eg1, Dege = epe, Aep =€
01 01 02 02 12 12 (6.3)

A5012 = €012 — €01 —€p2 — €12 — € — €1 — €2

now we subtract the corresponding terms of the second-stateffor f =
14 from those of the second-order sum fo& 16:

€01 + €02 -+ 0— (601 + €02 + 612) = —€12 (64)
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6-31G**  order: i-th order correction By (7) error % Eorr
[au] [au] [kcal/mol]
f =00 1 -1.222751 -1.222751 22.77 97.12
2 -0.036096 -1.258847 0.12 99.99
3 -0.000168 -1.259015 0.01 100.00
4 -0.000015 -1.259030 0.00 100.00
exact CCSD -1.259031
f=16 1 -1.222751 -1.222751 22.77 97.12
2 -0.036016 -1.258767 0.17 99.98
3 -0.000149 -1.258916 0.07 99.99
4 -0.000189 -1.259105 -0.05 100.01
exact CCSD -1.259031
f=14 1 -1.222751 -1.222751 22.77 97.12
2 -0.035307 -1.258058 0.61 99.92
3 -0.000857 -1.258916 0.07 99.99
4 -0.000189 -1.259105 -0.05 100.01
exact CCSD -1.259031

Table 6.16: Convergence of the incremental CCSD/6-31G** energies fok &ym-
metric (H,O) aggregate. Different values for the truncation paramefters
were applied to check the convergence behavior of the inemégthseries
with respect to a dynamic distance truncation.

If we do the same for the third-order summations we obtain:
€012 — €01 —€p2 — €0 — €1 — €2

- (6012 — €01 —€p2 — €12 — € — €1 — 62) = €12 (6-5)

Since the two terms in egn. 6.4 and eqgn. 6.5 cancel each otaetlyein
the summation, we get the same result at third-order leveddith values
of f. The sums for the fourth-order expansions are equal in astls; be-
cause the same terms were dropped at fourth-order levelane special
terms such ag\s,5 were dropped at third-order level.

14 16 _ A _14 14 14
Aggo3 — Acplaz = Acgy — Agypy — Acyy

(6.6)
— (Acply — Aetds — Aery) = Aty — Aeyy
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aug-cc-pVDZ ordef i-th order correction  Eq(7) error % Eorr
[au] [au] [kcal/mol]
f=o00 1 -1.360122 -1.360122 29.27 96.68
2 -0.046486 -1.406608 0.10 99.99
3 -0.000126 -1.406733 0.02 100.00
4 -0.000025 -1.406759 0.00 100.00
exact CCSD -1.406760
f=16 1 -1.360122 -1.360122 29.27 96.68
2 -0.046323 -1.406445 0.20 99.98
3 -0.000127 -1.406572 0.12 99.99
4 -0.000343 -1.406914 -0.10 100.01
exact CCSD -1.406760
f=14 1 -1.360122 -1.360122 29.27 96.68
2 -0.045199 -1.405320 0.90 99.90
3 -0.001252 -1.406572 0.12 99.99
4 -0.000343 -1.406914 -0.10 100.01
exact CCSD -1.406760

Table 6.17: Convergence of the incremental CCSD/aug-cc-pVDZ enelfgies Cs

symmetric (HO), aggregate. Different values for the truncation parame-

ters f were applied to check the convergence behavior of the inengah
series with respect to a dynamic distance truncation.

We discuss this special case in detail, because it is veilyainto get exactly the same
numbers without numerical noise at first glance.
Kozmutza et al. [122] analyze the main contributions inrtiveter cluster based on
MP2 data. An analogous analysis can be done within the framewsf the incremental

scheme at CCSD-level for-body interactions, if the domains are chosen physically
(every water molecule as a one-site domain). We point otitileancremental scheme
is not limited to calculate the correlation energy, it casogbrovide a way to analyze

the system by:-body interactions.
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cc-pVTZ  orderi i-th order correction  Er(2) error % Eorr
[au] [au] [kcal/mol]
f =00 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000021 -1.647458 0.00 100.00
exact CCSD -1.647460
f=26 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000015 -1.647452 0.01 100.00
exact CCSD -1.647460
=22 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000015 -1.647452 0.01 100.00
exact CCSD -1.647460
f=18 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000138 -1.647428 0.02 100.00
4 -0.000024 -1.647451 0.01 100.00
exact CCSD -1.647460
f=16 1 -1.599444 -1.599444 30.13 97.09
2 -0.047716 -1.647161 0.19 99.98
3 -0.000138 -1.647299 0.10 99.99
4 -0.000282 -1.647581 -0.08 100.01
exact CCSD -1.647460

Table 6.18: Convergence of the incremental CCSD/cc-pVTZ energies 105 aym-
metric (H,0) aggregate. Different values for the truncation paramefters
were applied to check the convergence behavior of the inemégthseries
with respect to a dynamic distance truncation.
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.

Figure 6.15: RI-BP86/SVP optimized structure of {N3)s (C5).

6.3.2 Circular Cis, Trans-Cyclotriazine Cluster

The molecular structure of i3 in figure 6.15 was evaluated by several groups [126—
129]. Since we want to check the performance of the increahescheme with re-
spect to symmetry, we choose the circuta, trans-cyclotriazine pentamer(f;) as
studied by Song et al. [130]. The geometry was optimized5jrsymmetry using the
RI-BP86/SVP method in TURBOMOLE 5.6 [98]. The stationarymavas charac-
terized as a minimum, by analyzing the Hessian matrix. Siheesingle molecules
are rather large with 18 electrons per molecule to be cde®af the 1s orbitals of
N are considered as frozen core, we choose a dsp value wiideslevery molecule
into two parts. The symmetry adaption for these parts wag donording to the pro-
cedure in section 3.6.1. The focus of our partitioning waghenpotential accuracy
of the incremental scheme and on the efficiency, not on a palysasis. In order to
analyze then-body interactions of the molecules on the basisidfody increments
it might be more convenient to use completgHy molecules as one-site increments.
Note that such an analysis is similar to the analysig-bbdy contributions by means
of the supermolecular Mgller-Plesset perturbation thelisgussed by G. Chalasinski
etal. [131,132].

The convergence for the chosen partitioning is somewheteslthan for the symmet-
ric water cluster before, but we still get accurate correfaenergies at third-order
level (table 6.19). Since we divided theM molecules into two parts, it is clear that
the convergence is slower, because we have to account famttaenolecular corre-
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6-31G**  order: i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]
f = 1 -2.118245 -2.118245  356.90 78.83
2 -0.571134 -2.689380 -1.50 100.09
3 0.002430 -2.686950 0.03 100.00
4 -0.000055 -2.687005 0.00 100.00
exact CCSD -2.686998
f=16 1 -2.118245 -2.118245  356.90 78.83
2 -0.569853 -2.688098 -0.69 100.04
3 -0.000308 -2.688406 -0.88 100.05
4 0.000000 -2.688406 -0.88 100.05
exact CCSD -2.686998
f=14 1 -2.118245 -2.118245 356.90 78.83
2 -0.569853 -2.688098 -0.69 100.04
3 0.001430 -2.686668 0.21 99.99
4 0.000000 -2.686668 0.21 99.99
exact CCSD -2.686998

Table 6.19: Convergence of the incremental CCSD/6-31G** energies fOk &ym-
metric (N;Hz)s aggregate. Different values for the truncation parameters
f were applied to check the convergence behavior of the ineméahse-
ries with respect to a dynamic distance truncation. (dspgf4domains,

core=15)
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lation corrections at second-order level. Due to the ditdruncation the systematic
convergence of the incremental series is slightly affecésdn the case of the water
clusters. If we compare the obtained accuracy with respettte approximate treat-
ment of symmetry, we conclude that we have fast convergendait system, too.

6.4 Cluster Compounds

Hg,; 18 Hg,, 19

Figure 6.16: RI-BP86/SVP optimized structures ofB,; 17 (C), Hg,; 18 (!;,), and
Hg,, 19 (T2).

6.4.1 Boron Hydrides

For borate-anions like 812" it was previously shown that the efficiency of local cor-
relation methods is limited due to the delocalization of #iectrons in the boron
cage [53]. Therefore we choose the neutral borane clustéy;B17 in figure 6.16) in
order to check the performance of the proposed approachifkind of systems. Tab.
6.20 shows the convergence of the incremental CCSD callenator BsH14 for two
different partitionings into domains (i.e. 4 and 6 domaiw&h respect to the order
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of the expansion. The convergence is a bit slower for smdtenains (dsp=2) com-
pared to larger ones (dsp=3). If we compare the accuracyhéodifferent orders in
the incremental expansion, we find again that the first-oglaot sufficient whereas
the second-order is already a good guess with an accurasy-& %. For the third-
order level we get almost the exact correlation energy witbrs less than 0.1 % or
0.4 kcal/mol. Whereas the fourth-order result for dsp=3atyedlemonstrates that nu-
merical errors are below 10Hartree and the result of the standard CCSD calculation
is recovered, the dsp=2 case shows that the series can indéeohcated at low order,
e.g. at third-order compared to the highest possible oridér o

domains ordei i-th order correction  Eq(7) error % Eorr
[au] [au] [kcal/mol]
dsp=2, 1 -0.412949 -0.412949 123.04 67.81
(6 domains) 2 -0.210519 -0.623468 -9.06 102.37
3 0.015055 -0.608413 0.38 99.90
4 -0.000591 -0.609004 0.01 100.00
dsp=3, 1 -0.459470 -0.459470 93.85 75.44
(4 domains) 2 -0.155728 -0.615198 -3.88 101.01
3 0.006282 -0.608916 0.07 99.98
4 -0.000107 -0.609022 0.00 100.00
exact CCSD -0.609022

Table 6.20: Comparison of the incremental correlation energies withfthl CCSD
results for the BHq;-cluster (L7 in figure 6.16).
*6-31G** basis sets of Pople and coworkers [99, 100]

6.4.2 Mercury Clusters

As a second example we choose two different mercury clydtezscosahedral mer-
cury cluster Hg, (18 in figure 6.16) and the tetrahedral mercury clustegHd9 in
figure 6.16). The convergence of the incremental expansitast for both systems as
well as for both domain sizes, cf. tab. 6.21. Again we find ghdly faster conver-
gence of the incremental series with the larger dsp value. fdtarth-order result for
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dsp=3 and Hg again corresponds to the value obtained from standard C@R&ID-c
lations and indicates that the errors due to the incrementzénsion are below 10
Hartree. Since a larger dsp leads to more occupied orhitalsingle domain, the time
for the single CCSD calculations will increase as well asabeesponding memory
and disk-space requirements. However, the number of edionk needed to reach a
certain order and thus accuracy is reduced.

system, ordei i-th order correction  Fy(7) error % Eorr
domains [au] [au] [kcal/mol]
Hg,; 18°
dsp=2, 1 -0.330521 -0.330521 49.27 80.80
(5 domains) 2 -0.083257 -0.413777 -2.97 101.16
teon=8.0 3 0.004910 -0.408868 0.11 99.96
4 -0.000174 -0.409042 0.00 100.00
dsp=3, 1 -0.341241 -0.341241 42.55 83.42
(4 domains) 2 -0.070848 -0.412088 -1.91 100.74
teon=8.0 3 0.003080 -0.409009 0.02 99.99
4 -0.000034 -0.409043 0.00 100.00
exact CCSD -0.409043
Hg,, 19"
dsp=2, 1 -0.497706 -0.497706 88.00 78.02
(10 domains) 2 -0.149857 -0.647564 -6.03 101.51
teon=6.9 3 0.010127 -0.637437 0.32 99.92
4 -0.000556 -0.637992 -0.03 100.01
dsp=3, 1 -0.516375 -0.516375 76.29 80.94
(6 domains) 2 -0.127074 -0.643449 -3.45 100.86
teon=8.0 3 0.005649 -0.637800 0.09 99.98
4 -0.000144 -0.637944 0.00 100.00
exact CCSD -0.637947

Table 6.21: Comparison of the incremental correlation energies withfthl CCSD
results for the Hg clusters in figure 6.16.
@ relativistic large-core pseudopotential ECP78MWB andesponding
polarized double: basis set of Kiichle et al. [133].

At second-order we find an error less than 1.6 % or 6.1 kcal/mlokreas we obtain
excellent agreement at third-order with errors below 0.08r90.4 kcal/mol. Note
that the second-order result would determine the cohesieegg per atom of Hg
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with an accuracy of 0.2 kcal/mol compared to estimated debesergies per atom of
4.0 and 6.6 kcal/mol from CCSD and pure diffusion quantum tdd@@arlo (PDQMC)
studies [134]. The cheap second-order level would thusvdtbodetermine CCSD co-
hesive energies per atom for a given basis set with an agcafd&c%. This accuracy

is already attractive, since larger basis sets than thesgbie in standard CCSD cal-
culations could be applied and it was demonstrated fortHat the basis set yielding

a cohesive energy per atom of 4.0 kcal/mol for;Hgecovers at most 62 % of the co-
hesive energy per atom of kigThus an approximate CCSD cohesive energy per atom
with an estimated error of 5 % obtained with a large basisssetdst likely closer to
the complete basis-set limit than an exact result deriveld svsmall basis set.

6.5 Potential Energy Surfaces

6.5.1 Octane

L

Figure 6.17: RI-BP86/SVP optimized structure of n-octane with a fixed C=ldis-
tance of 2.05 A,

We choose n-octane (figure 6.17) as a test system in ordetamabsignificant result
with respect to higher order terms. A too small system woudddythe exact result
already at low order. The geometries used for the potentialecwere obtained by a
relaxed scan of the C4-C5 distance using the RI-BP86/SVRadeiWith the chosen
parameters we have 162 CCSD calculations for the full inergal calculation [ =
o0) at every point of the potential curve. The 6-31G** basisgéople and coworkers
[99, 100] was used for the CCSD calculations.

First we note that we cannot recognize a difference betweeimtremental potential
energy surface (PES) and the exact CCSD PES at the scale i&f @igi8. Comparing
the approximate CCSD energy with the exact CCSD energy indi§1l9 we get very
accurate energies, jf is set to 14 or higher and the expansion is truncated at third-
order. Furthermore we can see in figure 6.19 that the appedians with respect to
the order and with respect f&,;, behave very systematically. One can obtain relatively
smooth potential energy surfacesfifs set to 16.



92

CHAPTER G  APPLICATIONS

3145
31452 |
-314.54 |
-314.56 |
-314.58 | &
3146
-314.62 |
-314.64 |
-314.66 |
-314.68 |
3147
31472 |

energy [H]

f=14 —+—

f=16 —>X— A

f=inf
exact CCSD

*
0 i

31474 L——————

111213141516 171819 2 2122232425

R
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The PES is already smooth at second-order level over a auritedistance interval.
The non-linearity error, however, is still quite large instlsase. At third-order level
the results are already very accurate. The largest errer8.89 mH forf = oo, 0.41
mH for f=16 and 0.70 mH foy=14. Comparing these results with those of Mata and
Werner [135] with a largest error of 2.8-4.2 mH, we find thathwhe given parameters
the proposed approach is more accurate.

Figure 6.19 shows that the accuracy of the incremental estparcritically depends
on the distance parametgr If f is set to 14 or higher, we get a smooth and accurate
PES. Further we find that the PES depends on the connectangyneter,.,,. It leads

to poor domains, if the bonding orbital of the C4-C5 bond is cannected with the
rest of the molecule anymore 2.5 A). We can fix this problem by increasing the
connectivity threshold.,,, to a larger value (4.0).

6.5.2 Hexayne

1.55

Figure 6.20: RI-BP86/SVP optimized structure of dodeca-hexayne withxedfiC5-
C6 distance of 1.55 A.

The geometries were obtained by a relaxed scan of the C5«t&nde using the RI-
BP86/SVP method. We used the 6-31G** basis set of Pople awdr&ers [99, 100]
for the CCSD calculations. Since the breaking of a single Bs@d is not very dif-
ficult, we decided to check the performance of the increniecteeme in breaking a
C-C triple bond (figure 6.20). Although the CCSD method is suatable for such a
case, one can check for the convergence of the incrememahston. In this case we
find a small deviation of the exact PES and the approximatedhe8dy at the scale
of figure 6.21. From figure 6.22 we find again that the first-omgansion is not
sufficient. The second-order is not smoothly varying andahkasge error in contrast
to the breaking of the C-C single bond. The expansion up td-ider yields a fairly
smooth potential for all chosen distance parameterhereas the non-linearity error
is still large for f <16. At fourth-order we get a fairly smooth potential f6r>12.
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The non-linearity error is about 1.2 mH for £2f <14. If we choosef to be 16 we
find an error below 0.5 mH. The maximum errors are 0.35 mHjffesc, 0.38 mH
for f=16 and 1.86 mH forf=14. If we compare our results with those of Mata and
Werner [135] and Subotnik and Head-Gordon [27] we find a beéttal accuracy if
we truncate at fourth-order and chog&el6. However, the efficiency with respect to
the computational time of our current test implementatgaodrtainly worse than the
efficiency of the approaches of Werner et al. [135] or Headd@w et al. [27].

A general strategy to obtain suitable values fas to do a series of test calculations
with different f in a small basis set and use the best valueffan the calculation
with the larger basis set. This can be done because the gemesr behavior of the
incremental series is not very sensitive with respect taotiee particle basis set [86].
An alternative to this is to transfer the factpfrom a similar class of compounds (see
section 6.3).
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Figure 6.21: Potential energy scan along the C5-C6 distance [A] of dotkesayne
(figure 6.20) for the exact CCSD energies, the fyilk¢c) and the dis-
tance truncatedf14,16) fourth-order incremental expansions.
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6.6 Polymers

o -

Figure 6.23: Structure of the used hydrocarbon chain and the symmetticote
(CoH,)n. The geometry parameters were extracted from the PhDsthesi
of Kalvoda [136].

Table 6.22 shows the convergence of the CCSD/6-31G** inerdgal correlation en-
ergies forall-trans polyacetylene. The infinite summations for second and 4bicer
increments were truncated at next neighbour cells. In thse ave did not use the
frozen-core approximation. A comparison to the data of Kdév[136] is not imme-
diately possible, since we used a different basis set angbdalused the frozen-core
approximation. We note that the orders of magnitude for trerdoution of a given
order in the incremental expansion are equal. The CCSD iesengere iterated to an
accuracy of 1§ Hartree.

OrderQ; ©O;-Correction FEgpn[au]

1 -0.166227  -0.166227
2 -0.123505  -0.289733
3 0.006539 -0.283193

Table 6.22:6-31G** incremental CCSD correlation energies per cell &rtrans
polyacetylene.
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The benchmark results of table 6.23 were obtained by the{fatitster approach with
the unit cell and the molecule of figure 6.23=7). According to the third column
in table 6.23 we see that the benchmark energy is alreadyeages to about It
10° Hartree which is quite accurate. A comparison with the toirder incremental
expansion yields an error of about 1.4 kcal/mol (100.8 %).isT& somewhat less
accurate than we expected from the convergence of the materalculations. There
are three possible sources for this error: firstly the aayuohthe CCSD calculations
within the domains was not strict enough, secondly the apprate symmetric orbitals
introduce an error and thirdly the restriction of the inn#ums was too strict, since
only increments within the next neighbour cells were tak#a account.

Size of the Supercell Eeon(U,) ESENU, —U,_1)

n [au] [au]

5 -1.714325

6 -1.995280 -0.280954
7 -2.276236 -0.280957

Table 6.23:6-31G** finite-cluster CCSD correlation energies per celt all-trans
polyacetylene.

6.7 Excited States

Within the framework of the incremental scheme it is possiiol calculate excited
states using a local ansatz. If the CAS-wavefunction repssa reasonable approxi-
mation of the lowest states, we can account for dynamicaétairon using the incre-
mental scheme. Necessary conditions for the applicatidcheofncremental scheme
are size-extensivity and size-consistency of the cormlanethod. Size-extensivity
is important, because the size of the system is successnelased with increasing
order of the incremental expansion. This can be demondtbgta numerical study of
the test system in figure 6.24. Since the domains were chodenlth-pairs, we have
6 non-interacting parts of our system. The electrons of theddare in the middle are
set to be active and are included in every calculation. Weezgeect that a first-order
expansion yields the correct incremental energy for théeegysrom a physical point
of view. Due to the lack of size-consistency of MR-CISD, MIGRF and MR-AQCC
we find rather large corrections even at fourth-order lesela can see in table 6.24.
The sums of the fourth-order corrections for these methoelsfacomparable magni-
tude. Note that the MR-AQCC seems to perform quite well upni@torder, whereas
it collapses at fourth-order level. If we compare the resaftMR-CISD, MR-ACPF
and MR-AQCC with the results obtained by MR-CEPA(0), we $e¢ MR-CEPA(0)
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is superior to the other methods from the perspective of egance. MR-CEPA(0)
yields the correct correlation energy at first-order leweégpected, because it is size-
consistent and size-extensive. Furthermore we can seetfreR-CEPA(0) results
that we can obtain reasonable correlation energies fof eaated states within the
framework of the incremental scheme.
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Method MR-CISD MR-ACPF MR-AQCC MR-CEPA(0)
Multiplicity=1
OrderO®; ©O;-Correction FE[au] O;-Correction EJau] O;-Correction FEg{au] O;-Correction Ec[au]
1 -0.391946 -0.391946  -0.399291  -0.399291 -0.396420 6329 -0.401879 -0.401879
2 0.044513 -0.347433 0.004203 -0.395088 0.039031 -0.357380.000003 -0.401876
3 -0.008475 -0.355908  -0.004279  -0.399367 0.000316 -0B57 -0.000002 -0.401879
4 0.001389 -0.354519 0.002581 -0.396786 -0.004384  -03614 0.000000 -0.401878
Factive -0.007517 -0.007527 -0.007534 -0.007538
Multiplicity=3
OrderO®; ©O;-Correction FE[au] O;-Correction EJau] O;-Correction FEg{au] O;-Correction Ec[au]
1 -0.391582 -0.391582 -0.399199  -0.399199 -0.396208 623% -0.401880 -0.401880
2 0.045728 -0.345853 0.004307 -0.394892 0.040210 -0.355990.000019 -0.401861
3 -0.009449 -0.355302 -0.004469  -0.399362 -0.000372 333 -0.000011 -0.401873
4 0.001587 -0.353715 0.002692 -0.396670 -0.004424  -0®8607 0.000001 -0.401872
Eactive -0.013941 -0.013986 -0.014016 -0.014031

corr

Table 6.24: Convergence behavior of incremental correlation eneafid®e H,g aggregate for MR-CISD, MR-ACPF, MR-AQCC
and MR-CEPA(O) correlation energies.
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Chapter 7

Symmetric Localization

In the framework of the incremental scheme it is beneficialge symmetric local or-
bitals, since this leads to large savings of computer timee Jtandard Foster-Boys
procedure [3,79] does not keep the symmetry of the wholesyst all cases. In spe-
cial cases it leads to good numerical results, despite timerstry breaking due to the
2 x 2 rotations. But in general it may happen that the localizatigterion contradicts
with the symmetry of the system.

Example:CrClg

The total symmetry of the system ig, Gut the core orbitals of the chromium
will have a lower symmetry, since the Foster-Boys procegiglels local
orbitals with a maximum distance of their centers of chafggs is for a
sp-core shell a tetrahedron, which is not in agreement \wihtatal sym-
metry of the octahedron.

We try to solve this problem by a unitary transformation & trbitals which yields
the correct symmetry in the centers of charge. This is dormaibymizing the distance
of the centers of charge to a set of template veatprs

D(¢) = min

Z ( - fi)zl = min [Z Z ({1 |rj| &) — Fij)? (7.1)

% i J=

The template vectors are obtained as symmetrisized cenftetsarge from a Foster-

101
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Boys guess. If they are core orbitals we set them to’zemtherwise we perform

a symmetrization. Le© be a set of centers of charge of the occupied Foster-Boys
orbitals, O the set of centers of charge of occupied Foster-Boys osbitithout the
centers of charge of core orbitals althe set of all symmetry operators of the point
group. We define an equivalence cl&saccording to eqn. 7.2:

We can obtain all equivalence classes by:

1. start with an arbitrary orbital, from O and build the equivalence class
[E, according to eqn. 7.2

2. build the complement @ andE,: 0 = O\ E,

3. end ifO = () else goto 1 and us® asO

In the next step we apply all symmetry operators to every tpoirthe equivalence
classkE,. Now we add all vectors within an arbitrary non-redundant pad divide
by the number of vectors in this part. After applying all syetry operators to the
symmetrisized vector we obtain the set of template veatprdor the equivalence
classE,.

Now we apply the orthogonalx 2 rotation of eqn. 7.3 to the occupied orbitals in egn.
7.1.

Uy = COS(V)@ - sin(7)¢j

. (7.3)
uj = cos(7y)p; + sin(y)e;

This leads to:

D)=y (B~ fi)z + 37 [{(cos(1)da — sin(7)d) Ir;] (cos(3)da — sin(7)y))

i;éiz,b

— 2((cos(y)ba — sin(7)d) Ir;] (cos(7) b — sin(7) )7, + 72,
((cos(y) s + sin(7)a) Ir;] (cos(7)dp + sin(y)da))?

a)
—2((cos(7) @ + sin(7)¢a) || (cos(y) @y + sin(y)¢a)) 7o, + 7,
(7.4)

1This is a special case. The generalization would be an anatogeatment of all points with higher
symmetry to the treatment of the central point.
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Expanding the terms and using the addition theorem of c@sidesine we get:
F(Y)ab = D(w)ap — D(P)apy = A + Bcos(27) + C'sin(2y) + D cos(4v) + E sin(47)
3 1
A= 2(8alrl 6a)” + (Do |rs] )" + 5 (0 [rs] da) (o |1l )

20001l )2 = (Bu 13l 0, — (60113l udi, + 72
— (@ |15 Ga)To; — (@b |rj| Do) T, + 74,

B = —(¢a |1j| da)Ta;
+ (Do |1j| Bu)Ta; + (Pa|ril Ga)To; — (D0 |ri] Po)T,

C = 2(¢a |rs| d6)Ta; — 2(¢a |175] D6) T,

1
D= Z<¢a |Tj| ¢a>2 - <¢a |Tj| ¢b>2

— 5 (6alril b6 lrsl ) + (sl n)?
E = —(¢a |1j| $a)(Pa|rj| d6) + (D |rs] D) (Db |Ti] Pb)

(7.5)

The functional in egn. 7.5 is minimal if the derivative is @aefSince the function has
several maxima and minima in the interf@l2x] we choose the angtewhereF' ()

is lowest and% = 0. We choose the transformatienaccording to the largest
value of F'(v).. After the transformation of the orbitals we build the matfi(~)
again and iterate until all values iri(~) are below some threshold(('?).

The procedure works quite well to obtain symmetry adaptedecs of charge, but it
fails in producing symmetric orbitals, i.e. further worloay these lines is required.
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Chapter 8

Summary and Outlook

8.1 Summary

In this thesis the first fully automatized implementatiohe incremental scheme was
presented. It was applied to molecules, open-shell systitmg-exd5-endocycliza-
tion, potential energy surfaces and a polymer. Furtherrticrerror propagation was
analyzed theoretically and by a numerical study with umifiyr distributed random
numbers. A cheap and systematic screening procedure t selg the most impor-
tant increments was introduced. The convergence of theopeapincremental method
is fast for almost all systems considered in this work. Theveogence behavior did
not change significantly by increasing the basis set fronbt#a(ito triple< basis sets
as well as for the usage of a diffuse basis set (6-31++G** argita-pVDZ). The
proposed method was demonstrated to be quite robust wipeceso the choice of
the domains. It was shown that the errors can be below onénkaklif the series is
truncated at a proper order (usuallycan be kept below). Furthermore it was shown
that this small error was still obtained if the importantrgrments were selected by the
distance of two groups of one-site domains.

The approximate treatment of symmetry in combination wiktEr-Boys orbitals was
explored for two intermolecular systems as well as a polyfaer the symmetric wa-
ter cluster and the symmetric cyclotriazine cluster we ioleth fast convergence for
the incremental expansion. We got almost the exact resaééaind- and third-order,
respectively. The convergence of the incremental seriéassier for the water clus-
ter, because the one-site domains were fixed to a whole watiecale, whereas the
cyclotriazine molecules were divided into two one-site @ams (according to the cho-
sen dsp values). The incremental calculation on polyaeeéyielded an error of 1.4
kcal/mol compared to the finite-cluster result.

The performance of Cl-based correlation methods as MR-CI8R-ACPF, MR-
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AQCC and MR-CEPA(0) was tested for a non-interacting systéfa found that the
size-extensivity/size-consistency errors prohibit thevergence of the incremental se-
ries for MR-CISD, MR-ACPF and MR-AQCC. According to thiserthe increments
do not decay with respect to the distance of the localizedadsband it is therefore
not possible to truncate the incremental series with rédpdtie distance of the do-
mains. This is a necessary condition for the treatment abgeer systems, since the
infinite summations have to be truncated. The MR-CEPA(Q)Itefiowever yield the
expected result for a non-interacting system: the sum dfitsteorder correlation en-
ergies corresponds to the exact result.

The incremental scheme performed quite well in the calmniabf potential energy
surfaces. The error due to the incremental expansion washied@y one kcal/mol
and we obtained smooth potential energy surfaces, if tharestpn was truncated
at third or fourth-order. Furthermore we still obtained sitiopotential energy sur-
faces if we selected the important increments by an ordeetident distance threshold
(tdist = @iz)

For molecules the incremental series converged to an agcbedter than one kcal/-
mol for all molecules in this work. We found that the converge was slower for
sphere-shaped molecules like TiQb, compared tar-bonded chains like n-decane.
A screening procedure for negligibly small increments waplemented and applied
to a set of test molecules. The errors introduced by therdistacreening were shown
to be below one kcal/mol, if the truncation parametés chosen properly. The energy
dependence of this parameter was checked for a set of reahbtfecules as large as
the cytosine-guanine base pair.

8.2 Outlook

In a future work it is possible to test the incremental schevite respect to molec-
ular properties. Since the server and client structurersadly adapted for hyper-
polarizabilities within the DALTON framework, it is straigforward to go in this di-
rection. Another interesting question is to adapt a gradetine proposed incremental
method. A strategy could be the expansion of the analyti@alignt in an incremental
series. This has the major advantage that the gradient isiefeled, even if the incre-
mental PES is not smooth. A further advantage is that thegpoecof the energy is not
necessarily required to be better tharf Hartree. For test purposes one could extract
the analytical CCSD gradient from DALTON [88] quantum chsiry package.

Since the CCSD(T) method is one of today’s most reliable tprarchemical methods,
it would be useful to include this method into the increméptagram. The simplest
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way to adapt the CCSD(T) method into the framework of theanmntal scheme is
to diagonalize the Fock matrix within the space of the fragte@nd perform a stan-
dard CCSD(T) calculation afterwards. This modification éeessary to converge to
the exact CCSD(T) result, since the perturbative triplesambion is not invariant with
respect to the unitary transformations of the MO basis. dffbbck matrix is partially
diagonalized for every-site domain, the differences with respect to the choicéef t
one particle basis set are integrated into the incremeptass A different way to
combine the CCSD(T) approach with the incremental schene $®lve the triples
correction in an iterative fashion as discussed by Schiitk [2

Another point is the implementation of a linear scaling @mental method, which can
be based on the results of the current work. The first step thidas the implemen-
tation of a fast linear scaling AO-MO-transformation wittetpossibility to freeze and
delete orbitals. Next one has to write an efficient correfatiode to get the incremen-
tal energies in a reasonable time.

In combination with an efficient implementation of the ctateon modules it is possi-
ble to perform automatic incremental calculations for peic systems. In order to get
symmetry adapted MOs one could extract the required data WBNNIER [44,137]
or CRYSTAL [138-140] quantum chemistry packages.

One could explore the usage of a configuration selectiondbasgerturbation theory
for incremental CEPA(0) energies using the DIESEL quanthemdstry package [77].
This should be straightforward, since the current impletetgmn can handle the corre-
sponding threshold already. Furthermore it would be dekr extend the treatment
of multi-reference cases to MRCC approaches (e.g. MR-exfplaarath [141]). For
this purpose one can use the experience of the MR-CEPA(B)lesibns from this
work.

Finally it is an interesting point to adapt the symmetry & flystem to the localization
procedure in order to use the full point group symmetry ferittcremental expansion,
in cases where the localization criterion does not agrele v symmetry of the sys-
tem.
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Appendix A

List of Abbreviations

ACPF
AO
AQCC
a.u.

aug-cc-pvDZ

BP86

CASSCF
cc-pVDZ

cc-pvTZ

cC
CCSD
CCSD(T)

CEPA(0)
Cl

CISD
DFT

dsp

ECP

FCI
kcal/mol
MCSCF

averaged coupled pair functional

atomic orbital

averaged quadratic coupled cluster

atomic units

augmented correlation consistent polarizéence double-
basis set of Dunning

Becke-Perdew gradient corrected exchange and
correlation density functional

complete active space self-consistent field method
correlation-consistent polarized valence douplasis set
of Dunning

correlation-consistent polarized valence trgleasis set

of Dunning

coupled cluster

coupled cluster with singles and doubles substitatmethod
coupled cluster with singles and doubles and peative
triples substitutions method

coupled electron-pair approximation of zerotheord
configuration interaction

configuration interaction with singles and doublesssititions method
density functional theory

domain size parameter

effective core potential

full configuration interaction method

kilocalories per mol

multi-configuration self-consistent field method
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MDF
MWB

HF

LMO

MO

MP2
MPn

MR
MR-CI
MR-CISD

nop
occ
PAO
PES
RCCSD

RI

SCF
STL
SVP

TS

ZPE
6-31G**
6-31G*

6-31G

ECP generated on the basis of all-electron Dirac-Fo&tutations
ECP generated on the basis of all-electron calculatizisg a
Wood-Boring Hamiltonian

Hartree-Fock approach
localized molecular orbital

molecular orbital

Mgller-Plesset perturbation theory of second-order
Mgller-Plesset perturbation theoryreth order
multi-reference

multi-reference configuration interaction method
multi-reference configuration interaction
with singles and doubles substitutions method

number of parts parameter

occupied orbitals

projected atomic orbital

potential energy surface

restricted open-shell coupled cluster with singteksdoubles
substitutions method

resolution of identity (density fitting)

self-consistent field method

standard template library of C++

standard basis in TURBOMOLE 5.6 of polarized douple-
quality

transition state

zero-point energy correction

basis of polarized doublé-quality

double¢ basis with polarization functions on all atoms

of the second period or higher

doubles basis set



Appendix B

The Incremental Code

B.1 Required Libraries

The incremental code is completely written in C++. It wasddsn a cluster of Pen-
tium IV PC’s. In order to have a fast matrix multiplicationcadiagonalization it
uses the Lapack and Blas Libraries. For a convenient infiegran C++ the CPPLa-
pack interface was used. Since FORTRAN numbers are not sexdgsvritten in the
C-standard format we check the read numbers by a converiisa (MOLCAS). In
order to avoid an excessive case differentiation we usedetiidar expressions form
regexx library for this purpose. For the server/client caimination the socket++ li-
brary is used. The Graph partitioning is done with METISpraartitioning using the
METIS library. All together we need the following librarigsstalled:

- liblapack.a
- libblas.a

- cpplapack.h
- libregexx.a
- socket++

- libmetis.a

- libf2c.a

The libraries are included in the Makefile.conf.local fileghe SolidMRCC/Library/-
module_namel/test directory. The actual path of a giveratibcan be adapted in this
file, too.
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B.2 Quantum Chemistry Packages

For all three quantum chemistry packages (MOLPRO, MOLCAS, BDN) we mod-
ified the source code in order to obtain the required dataeinlésired precision. These
modifications have to be adapted in a new installation or in@date of the version.

B.3 Molpro Input Example

The usage of ECP’s is allowed. The most convenient way to m&C® in our frame-
work is to extract the ECP and basis set data from Gaussiamd®torder form [142]
and paste it to the input file.

B.4 MOLCAS 6.4 Dependencies

In order to use the 6.4 version of MOLCAS to calculate the M&@id the transformed
one- and two-patrticle integrals we installed the DIESELcpanhto MOLCAS 6.4.
A picture of the data flow for incremental MR-CISD, ACPF, AQ@ad CEPA(0)
calculations within the MOLCAS/DIESEL environment is givia figure B.1.

B.5 Dalton Dependencies

Figure B.2 gives an overview of the data flow for increment@SD calculations
within the DALTON framework. For property calculations tata structure is simi-
lar. The main difference is that the server, the clients &iedarapper classes for the
network transfer are different. The data container in tleeseand the wrapper classes
have to include the property and the client has to do diffev@with DALTON.
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* ok ok

)

MEMORY, 170 ,M;
geomtyp=xyz

geometry={
nosymm
16
B5H11
B —0.1890489 0.7287746
B —0.1353763 —0.8908484
B —0.0752367 —0.9533659
H —1.0068527 —1.4188981
B —0.2285015 0.7612458
B 0.7575139 0.3037702
H 0.4672242 0.9182539
H —1.0886271 —0.3515950
H 0.1889543 1.4138737
H 0.4153058 —1.8148292
H 0.4753712 —1.8912681
H —1.2484971 1.4395625
H —0.9673691 —0.4327263
H —1.0017159 1.6177074
H 0.4094919 0.7257819
H 1.9693627 0.3349574

PUNCH test ;
basis=6—31Gx*x;
GTHRESH,ENERGY=1.d—10;
hf

orbprint ,56;
matrop;

LOAD, ORBITAL,ORB;
PRINT, ORBITAL;
LOAD,OVERLAP, S ;
PRINT,OVERLAP;
LOAD, opx ,OPER,DMX;
PRINT, opx ;

LOAD, opy ,OPER,DMY;
PRINT, opy ;

LOAD, opz ,OPER,DMZ;
PRINT, opz ;

write ,ORBITAL, test ;

—~1.5817852
~0.9001497
0.9031186
0.0452508
1.5383154
0.0050513
2.5248233
—1.6382591
0.3095822
—1.4596877
1.4370111
1.4641646
1.6981598
~1.3855590
—2.6436917
0.0284204}
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C++ module - generated file

molcas.out

Molcas_6_4 FB—» STDOUT

/ O\

INPORB mo_matrix

ERNY

Diesel_MRCI_server Diesel_MRCI_Client

8 AN

sym_partitions.xyz  centers.xyz STDOUT Servers HOSTNAME

Figure B.1: File dependencies for Cl-based calculations within the A5 6.4 and
DIESEL framework.



C++ module - generated file

integrals
(dalton output) DALTON.MOPUN

S

Dalton_FB

/

STDOUT INPORBD

extract
DALTON.MOPUN
data

dalton_sym_server dalton_sym_client
P

N

centers.xyz STDOUT sym_partitions.xyz Servers_ HOSTNAME

Figure B.2: File dependencies for the incremental CCSD calculatiotisivthe DALTON framework.

Gg'd

S3IONIAN3Id3g NOLIvV(

XA
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Appendix C

Molecular Data

C.1 Exemplary Lists of Increments

1st Order 2nd Order
Combination E [a.u] Combination E [a.u]
0 -2.023440305500e-01 01 -3.064693590000e-03
1 -2.023439138770e-01 02 -3.064542781000e-03
2 -2.023440006240e-01 03 -3.064692038000e-03
3 -2.023439422190e-01 04 -3.064541640000e-03
4 -2.023440289280e-01 05 -2.183536504000e-03
5 -2.023439166520e-01 12 -3.064697970000e-03
3rd Order 13 -3.064566762000e-03
Combination E [a.u] 14 -2.183537037000e-03
012 3.318627070000e-04 15 -3.064561147000e-03
013 3.318624680000e-04 23 -2.183536117000e-03
014 1.786724220000e-04 24 -3.064549303000e-03
015 1.786743770001e-04 25 -3.064698248000e-03
023 1.786709700000e-04 34 -3.064689295000e-03
024 3.318595760000e-04 35 -3.064563025000e-03
025 1.786723570000e-04 45 -3.064693862000e-03
034 3.318617370000e-04 4th Order
035 1.786740760000e-04 Combination E [a.u]
045 1.786721120001e-04 0123 -6.277379600000e-05
123 1.786757150000e-04 0124 -6.277439499991e-05
124 1.786724040000e-04 0125 -6.277393499998e-05
125 3.318633770000e-04 0134 -6.277367500004e-05
134 1.786739860001e-04 0135 -6.277498800009e-05
135 3.318622680001e-04 0145 -1.727596000003e-05
145 1.786746860001e-04 0234 -6.277410099986e-05
234 1.786716889999¢e-04 0235 -1.727589299994e-05
235 1.786749639999¢e-04 0245 -6.277433500007e-05
245 3.318619460000e-04 0345 -6.277378200001e-05
345 3.318632139999¢e-04 1234 -1.727602200011e-05
1235 -6.277526400003e-05
1245 -6.277382899997e-05
1345 -6.277503300012e-05
2345 -6.277379399985e-05

Table C.1: List of the incremental energies of MgF
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1st Order 2nd Order
Combination E [a.u] Combination E [a.u]
0 -1.639168251110e-01 01 -6.377502534000e-03
1 -1.639168124940e-01 02 -6.377028175000e-03
2 -1.639168217730e-01 03 -6.377502445000e-03
3 -1.639168144960e-01 04 -6.377033329000e-03
4 -1.639168201900e-01 05 -4.782358658000e-03
5 -1.639168201860e-01 12 -6.377505556000e-03
3rd Order 13 -6.377038392000e-03
Combination E [a.u] 14 -4.782359830000e-03
012 1.366408537000e-03 15 -6.377035920000e-03
013 1.366408990000e-03 23 -4.782360032000e-03
014 8.943944420000e-04 24 -6.377035465000e-03
015 8.943940140000e-04 25 -6.377502152000e-03
023 8.943933640000e-04 34 -6.377506054000e-03
024 1.366399406000e-03 35 -6.377030975000e-03
025 8.943943280000e-04 45 -6.377502701000e-03
034 1.366408179000e-03 4th Order
035 8.943948620000e-04 Combination E [a.u]
045 8.943934290000e-04 0123 -4.869852500000e-04
123 8.943952350001e-04 0124 -4.869942750000e-04
124 8.943936700000e-04 0125 -4.869850940001e-04
125 1.366408321000e-03 0134 -4.869850780000e-04
134 8.943942740001e-04 0135 -4.869946160000e-04
135 1.366400359000e-03 0145 -3.076106720001e-04
145 8.943949630000e-04 0234 -4.869942010000e-04
234 8.943948780000e-04 0235 -3.076105610000e-04
235 8.943936880000e-04 0245 -4.869943040001e-04
245 1.366408594000e-03 0345 -4.869850950000e-04
345 1.366408896000e-03 1234 -3.076108310002e-04
1235 -4.869944380001e-04
1245 -4.869850150001e-04
1345 -4.869945750000e-04
2345 -4.869852239999¢e-04

Table C.2: List of the incremental energies of MagCl
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C.2 Lists of Increments for Cl-based Methods

Multiplicity 1
Combination E [a.u]
1st Order
0 -6.535316300000e-02
1 -6.535319500000e-02
2 -6.526644400000e-02
3 -6.526644400000e-02
4 -6.535319600000e-02
5 -6.535316300000e-02
2nd Order
01 2.926792000000e-03
02 3.004811000000e-03
03 3.004814000000e-03
04 2.926808000000e-03
05 2.926800000000e-03
12 3.004670000000e-03
13 3.004814000000e-03
14 2.926807000000e-03
15 2.926807000000e-03
23 2.913654000000e-03
24 3.004816000000e-03
25 3.004815000000e-03
34 3.004671000000e-03
35 3.004811000000e-03
45 2.926793000000e-03
3rd Order
012 -4.103410000000e-04
013 -4.103470000000e-04
014 -3.996910000000e-04
015 -3.996880000000e-04
023 -4.880470000000e-04
024 -4.103380000000e-04
025 -4.103400000000e-04
034 -4.103410000000e-04
035 -4.103350000000e-04
045 -3.996910000000e-04
123 -4.880400000000e-04
124 -4.103420000000e-04
125 -4.103430000000e-04
134 -4.103410000000e-04
135 -4.103380000000e-04
145 -3.996860000000e-04
234 -4.880410000000e-04
235 -4.880470000000e-04
245 -4.103500000000e-04
345 -4.103410000000e-04
4th Order
0123 9.910099999999e-05
0124 8.848500000003e-05
0125 8.848599999998e-05
0134 8.849000000002e-05
0135 8.847200000002e-05
0145 8.624699999997e-05
0234 9.908900000000e-05
0235 9.909300000001e-05
0245 8.847900000002e-05
0345 8.848600000001e-05
1234 9.909900000005e-05
1235 9.909300000001e-05
1245 8.849100000004e-05
1345 8.847900000002e-05
2345 9.910000000000e-05

Table C.3: List of the MR-CISD-incremental energies ofd

Multiplicity 3
Combination E [a.u]
1st Order
0 -6.535316400000e-02
1 -6.535319900000e-02
2 -6.508440500000e-02
3 -6.508440500000e-02
4 -6.535319900000e-02
5 -6.535316300000e-02
2nd Order
01 2.926792000000e-03
02 3.160259000000e-03
03 3.160262000000e-03
04 2.926808000000e-03
05 2.926800000000e-03
12 3.160118000000e-03
13 3.160261000000e-03
14 2.926817000000e-03
15 2.926807000000e-03
23 2.885662000000e-03
24 3.160262000000e-03
25 3.160261000000e-03
34 3.160118000000e-03
35 3.160258000000e-03
45 2.926792000000e-03
3rd Order
012 -4.323960000000e-04
013 -4.324020000000e-04
014 -3.997000000000e-04
015 -3.996870000000e-04
023 -6.652760000000e-04
024 -4.324030000000e-04
025 -4.324040000000e-04
034 -4.324070000000e-04
035 -4.324030000000e-04
045 -3.996900000000e-04
123 -6.652680000000e-04
124 -4.324070000000e-04
125 -4.324070000000e-04
134 -4.324060000000e-04
135 -4.324030000000e-04
145 -3.996950000000e-04
234 -6.652680000000e-04
235 -6.652740000000e-04
245 -4.324030000000e-04
345 -4.323960000000e-04
4th Order
0123 1.258210000000e-04
0124 9.318100000001e-05
0125 9.318899999999e-05
0134 9.318700000004e-05
0135 9.318000000000e-05
0145 8.625300000002e-05
0234 1.258290000000e-04
0235 1.258330000000e-04
0245 9.318300000000e-05
0345 9.319599999999e-05
1234 1.258190000000e-04
1235 1.258310000000e-04
1245 9.318500000002e-05
1345 9.317600000003e-05
2345 1.258190000000e-04



128

CHAPTERC MOLECULAR DATA

Multiplicity 1
Combination E [a.u]
1st Order
0 -6.655497500000e-02
1 -6.655501000000e-02
2 -6.653556500000e-02
3 -6.653556500000e-02
4 -6.655501000000e-02
5 -6.655497500000e-02
2nd Order
01 2.769260000000e-04
02 2.851700000000e-04
03 2.851730000000e-04
04 2.769430000000e-04
05 2.769380000000e-04
12 2.850130000000e-04
13 2.851710000000e-04
14 2.769400000000e-04
15 2.769430000000e-04
23 2.606640000000e-04
24 2.851720000000e-04
25 2.851730000000e-04
34 2.850130000000e-04
35 2.851700000000e-04
45 2.769270000000e-04
3rd Order
012 -2.131250000000e-04
013 -2.131240000000e-04
014 -2.091570000000e-04
015 -2.091550000000e-04
023 -2.213320000000e-04
024 -2.131150000000e-04
025 -2.131160000000e-04
034 -2.131240000000e-04
035 -2.131120000000e-04
045 -2.091580000000e-04
123 -2.213320000000e-04
124 -2.131250000000e-04
125 -2.131250000000e-04
134 -2.131240000000e-04
135 -2.131160000000e-04
145 -2.091520000000e-04
234 -2.213320000000e-04
235 -2.213310000000e-04
245 -2.131260000000e-04
345 -2.131250000000e-04
4th Order
0123 1.746130000000e-04
0124 1.706560000000e-04
0125 1.706550000001e-04
0134 1.706590000000e-04
0135 1.706420000000e-04
0145 1.682570000001e-04
0234 1.746010000001e-04
0235 1.746020000001e-04
0245 1.706470000000e-04
0345 1.706580000001e-04
1234 1.746110000000e-04
1235 1.746040000000e-04
1245 1.706580000000e-04
1345 1.706500000000e-04
2345 1.746100000000e-04

Multiplicity 3
Combination E [a.u]
1st Order
0 -6.655497600000e-02
1 -6.655501400000e-02
2 -6.648943600000e-02
3 -6.648943600000e-02
4 -6.655501400000e-02
5 -6.655497600000e-02
2nd Order
01 2.769260000000e-04
02 3.019970000000e-04
03 3.020000000000e-04
04 2.769440000000e-04
05 2.769390000000e-04
12 3.018390000000e-04
13 3.019960000000e-04
14 2.769500000000e-04
15 2.769430000000e-04
23 2.293250000000e-04
24 3.019970000000e-04
25 3.020000000000e-04
34 3.018390000000e-04
35 3.019970000000e-04
45 2.769270000000e-04
3rd Order
012 -2.207940000000e-04
013 -2.207930000000e-04
014 -2.091680000000e-04
015 -2.091550000000e-04
023 -2.458180000000e-04
024 -2.207950000000e-04
025 -2.207960000000e-04
034 -2.208049999999e-04
035 -2.207920000000e-04
045 -2.091600000000e-04
123 -2.458160000000e-04
124 -2.208040000000e-04
125 -2.208050000000e-04
134 -2.208040000000e-04
135 -2.207950000000e-04
145 -2.091630000000e-04
234 -2.458170000000e-04
235 -2.458170000000e-04
245 -2.207950000000e-04
345 -2.207950000000e-04
4th Order
0123 1.868800000000e-04
0124 1.752450000000e-04
0125 1.752540000000e-04
0134 1.752509999999e-04
0135 1.752409999999e-04
0145 1.682700000000e-04
0234 1.868909999999e-04
0235 1.868910000000e-04
0245 1.752479999999e-04
0345 1.752599999999e-04
1234 1.868809999999e-04
1235 1.868930000000e-04
1245 1.752489999999e-04
1345 1.752409999999e-04
2345 1.868800000000e-04

Table C.4: List of the MR-ACPF-incremental energies ofd
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Multiplicity 1
Combination E [a.u]
1st Order
0 -6.608552200000e-02
1 -6.608555600000e-02
2 -6.603870200000e-02
3 -6.603870200000e-02
4 -6.608555600000e-02
5 -6.608552200000e-02
2nd Order
01 2.563067000000e-03
02 2.633805000000e-03
03 2.633808000000e-03
04 2.563083000000e-03
05 2.563076000000e-03
12 2.633659000000e-03
13 2.633808000000e-03
14 2.563082000000e-03
15 2.563083000000e-03
23 2.582320000000e-03
24 2.633809000000e-03
25 2.633808000000e-03
34 2.633659000000e-03
35 2.633805000000e-03
45 2.563068000000e-03
3rd Order
012 2.931700000000e-05
013 2.931100000000e-05
014 3.221700000001e-05
015 3.221899999999e-05
023 -4.110200000000e-05
024 2.932000000000e-05
025 2.931800000000e-05
034 2.931700000000e-05
035 2.932200000000e-05
045 3.221599999999e-05
123 -4.109399999998e-05
124 2.931700000003e-05
125 2.931600000000e-05
134 2.931800000003e-05
135 2.931900000000e-05
145 3.222200000001e-05
234 -4.109399999998e-05
235 -4.110100000000e-05
245 2.930900000001e-05
345 2.931600000000e-05
4th Order
0123 -2.907690000000e-04
0124 -2.936450000000e-04
0125 -2.936440000000e-04
0134 -2.936420000000e-04
0135 -2.936590000000e-04
0145 -2.903450000000e-04
0234 -2.907810000000e-04
0235 -2.907770000000e-04
0245 -2.936540000000e-04
0345 -2.936430000000e-04
1234 -2.907730000001e-04
1235 -2.907770000000e-04
1245 -2.936410000000e-04
1345 -2.936520000000e-04
2345 -2.907700000000e-04

Table C.5: List of the MR-AQCC-incremental energies o

Multiplicity 3
Combination E [a.u]
1st Order
0 -6.608552300000e-02
1 -6.608556000000e-02
2 -6.593272400000e-02
3 -6.593272400000e-02
4 -6.608556000000e-02
5 -6.608552300000e-02
2nd Order
01 2.563069000000e-03
02 2.776714000000e-03
03 2.776717000000e-03
04 2.563086000000e-03
05 2.563078000000e-03
12 2.776568000000e-03
13 2.776717000000e-03
14 2.563094000000e-03
15 2.563085000000e-03
23 2.617646000000e-03
24 2.776717000000e-03
25 2.776717000000e-03
34 2.776568000000e-03
35 2.776714000000e-03
45 2.563070000000e-03
3rd Order
012 2.196600000001e-05
013 2.195999999999e-05
014 3.220200000000e-05
015 3.221499999999e-05
023 -1.910660000000e-04
024 2.195900000002e-05
025 2.195799999999e-05
034 2.195500000002e-05
035 2.196099999999e-05
045 3.221099999999e-05
123 -1.910590000000e-04
124 2.195699999999e-05
125 2.195500000002e-05
134 2.195599999999¢e-05
135 2.195800000002e-05
145 3.220699999999¢e-05
234 -1.910580000000e-04
235 -1.910650000000e-04
245 2.195899999999¢e-05
345 2.196600000001e-05
4th Order
0123 -2.894600000000e-04
0124 -2.996500000000e-04
0125 -2.996410000000e-04
0134 -2.996430000000e-04
0135 -2.996520000000e-04
0145 -2.903260000000e-04
0234 -2.894520000000e-04
0235 -2.894500000000e-04
0245 -2.996480000000e-04
0345 -2.996360000000e-04
1234 -2.894629999999e-04
1235 -2.894490000000e-04
1245 -2.996460000000e-04
1345 -2.996540000000e-04
2345 -2.894630000000e-04
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Multiplicity 1 Multiplicity 3
Combination E [a.u] Combination E [a.u]
1st Order 1st Order
0 -6.697835200000e-02 0 -6.697835100000e-02
1 -6.697838800000e-02 1 -6.697839100000e-02
2 -6.698298200000e-02 2 -6.698317000000e-02
3 -6.698298200000e-02 3 -6.698317000000e-02
4 -6.697838800000e-02 4 -6.697839100000e-02
5 -6.697835200000e-02 5 -6.697835100000e-02
2nd Order 2nd Order
01 -1.600000000546e-08 01 -1.900000000388e-08
02 4.679999999896e-07 02 2.401000000013e-06
03 4.709999999880e-07 03 2.404000000011e-06
04 2.000000012825e-09 04 -9.999999855959¢e-10
05 -3.999999997895e-09 05 -6.999999996316e-09
12 3.080000000044e-07 12 2.240000000001e-06
13 4.690000000029e-07 13 2.400999999999¢-06
14 -1.999999998947e-09 14 4.999999997368e-09
15 1.000000013351e-09 15 -1.999999985070e-09
23 -1.599999999990e-07 23 -2.200000000230e-07
24 4.700000000024e-07 24 2.400999999999e-06
25 4.719999999875e-07 25 2.404000000011e-06
34 3.080000000044e-07 34 2.240000000001e-06
35 4.679999999896e-07 35 2.400000000014e-06
45 -1.500000000598e-08 45 -1.800000000440e-08
3rd Order 3rd Order
012 -3.299999998263e-08 012 -1.069999999853e-07
013 -3.199999998316e-08 013 -1.059999999858e-07
014 -3.000000026177e-09 014 -8.999999995263e-09
015 9.999999855959e-10 015 5.000000011246e-09
023 -4.979999999877e-07 023 -2.513000000010e-06
024 -2.299999998789e-08 024 -1.060000000414e-07
025 -2.399999994573e-08 025 -1.069999999992e-07
034 -3.299999998263e-08 034 -1.170000000356e-07
035 -1.799999997665e-08 035 -1.040000000008e-07
045 -3.000000012299e-09 045 -1.387778780781e-17
123 -4.990000000149e-07 123 -2.511999999982e-06
124 -3.300000001039e-08 124 -1.160000000083e-07
125 -3.399999999598e-08 125 -1.170000000217e-07
134 -3.200000001091e-08 134 -1.160000000083e-07
135 -2.300000000177e-08 135 -1.060000000275e-07
145 2.999999984543e-09 145 -3.000000012299e-09
234 -4.990000000149e-07 234 -2.510999999997e-06
235 -4.979999999738e-07 235 -2.510999999983e-06
245 -3.499999999546e-08 245 -1.069999999853e-07
345 -3.299999999651e-08 345 -1.060000000136e-07
4th Order 4th Order
0123 4.700000001689¢e-08 0123 1.239999999486e-07
0124 1.500000000598e-08 0124 9.999999994736e-10
0125 1.299999996540e-08 0125 8.999999925874e-09
0134 1.900000000388e-08 0134 5.999999996842e-09
0135 -1.999999998947e-09 0135 -3.000000067810e-09
0145 -9.999999162069e-10 0145 6.999999968560e-09
0234 3.599999996717e-08 0234 1.310000000282e-07
0235 3.599999995330e-08 0235 1.339999999295e-07
0245 6.999999968560e-09 0245 2.999999956788e-09
0345 1.600000001933e-08 0345 1.600000000546e-08
1234 4.500000003183e-08 1234 1.210000000196e-07
1235 3.899999999335e-08 1235 1.339999999989e-07
1245 1.800000000440e-08 1245 3.000000026177e-09
1345 8.000000037423e-09 1345 -5.999999969086e-09
2345 4.599999998967e-08 2345 1.199999999230e-07

Table C.6: List of the MR-CEPA(0)-incremental energies ofgH
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C.3 4-exo/5-endo Cyclization

system ordet i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]
l6a
1 -0.908354 -0.908354  204.50 73.60
2 -0.333906 -1.242260 -5.03 100.65
3 0.008175 -1.234085 0.10 99.99
4 -0.000174 -1.234259 -0.01 100.00
exact CCSD -1.234249
16b
1 -0.907860 -0.907860 204.55 73.58
2 -0.333982 -1.241842 -5.02 100.65
3 0.008126 -1.233716 0.08 99.99
4 -0.000120 -1.233836 0.00 100.00
exact CCSD -1.233836
16c
1 -0.907649 -0.907649 204.71 73.56
2 -0.334255 -1.241904 -5.04 100.65
3 0.008151 -1.233753 0.07 99.99
4 -0.000116 -1.233869 0.00 100.00
exact CCSD -1.233869
14 a
1 -0.911709 -0.911709  198.12 74.28
2 -0.322797 -1.234506 -4.44 100.58
3 0.007072 -1.227435 0.00 100.00
4 -0.000002 -1.227437 0.00 100.00
exact CCSD -1.227435

Table C.7: Convergence behavior for the incremental RCCSD/6-31G*ratation
energy of the intermediates of the cyclizationldf (dsp=3, core=8)
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system ordet i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]
14 b
1 -0.915735 -0.915735  194.87 74.68
2 -0.318038 -1.233773 -4.70 100.61
3 0.007503 -1.226270 0.01 100.00
4 -0.000026 -1.226296 -0.01 100.00
exact CCSD -1.226281
14 c
1 -0.916631 -0.916631  194.25 74.75
2 -0.316954 -1.233586 -4.64 100.60
3 0.007401 -1.226184 0.00 100.00
4 -0.000013 -1.226197 -0.01 100.00
exact CCSD -1.226187
13a
1 -0.965772 -0.965772  169.30 78.16
2 -0.277944 -1.243716 -5.11 100.66
3 0.008119 -1.235597 -0.02 100.00
4 0.000063 -1.235534 0.02 100.00
exact CCSD -1.235571
13b
1 -0.965237 -0.965237 170.26 78.06
2 -0.279755 -1.244992 -5.29 100.68
3 0.008430 -1.236562 0.00 100.00
4 0.000024 -1.236537 0.02 100.00
exact CCSD -1.236569
13c
1 -0.965306 -0.965306  169.54 78.13
2 -0.278399 -1.243705 -5.16 100.67
3 0.008187 -1.235518 -0.02 100.00
4 0.000069 -1.235449 0.02 100.00
exact CCSD -1.235483

Table C.8: Convergence behavior for the incremental RCCSD/6-31G*redation
energy of the intermediates of the cyclizationldf (dsp=3, core=8)
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system ordet i-th order correction  Ey(7) error % Eorr
[au] [au] [kcal/mol]
TS 12a
1 -0.924125 -0.924125  198.34 74.51
2 -0.323896 -1.248021 -4.91 100.63
3 0.007964 -1.240057 0.09 99.99
4 -0.000167 -1.240224 -0.02 100.00
exact CCSD -1.240199
TS 12b
1 -0.925685 -0.925685  198.76 74.51
2 -0.324541 -1.250226 -4.89 100.63
3 0.007952 -1.242274 0.10 99.99
4 -0.000181 -1.242455 -0.01 100.00
exact CCSD -1.242433
TS12c
1 -0.930893 -0.930893  194.57 -75.01
2 -0.317796 -1.248688 -4.85 -100.62
3 0.007865 -1.240824 0.09 -99.99
4 -0.000182 -1.241006 -0.03 -100.00
exact CCSD -1.240961
TS15a
1 -0.920398 -0.920398 204.39 73.86
2 -0.335680 -1.256078 -6.25 100.80
3 0.010135 -1.245943 0.11 99.99
4 -0.000167 -1.246110 0.00 100.00
exact CCSD -1.246115
1 -0.919738 -0.919738  204.65 73.82
2 -0.336376 -1.256114 -6.43 100.82
3 0.010573 -1.245540 0.21 99.97
4 -0.000332 -1.245872 0.00 100.00
exact CCSD -1.245870

Table C.9: Convergence behavior for the incremental RCCSD/6-31G*ratation
energy of the intermediates of the cyclizationldf (dsp=3, core=8)
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order: i-th order Eorr(7) order: i-th order Borr(7)
correction correction
16a 14 a
1 -1.092849 -1.092849 1 -1.093156 -1.093156
2 -0.405839 -1.498688 2 -0.397282 -1.490438
3 0.008991 -1.48969f 3 0.008124 -1.482315
16 b 14 b
1 -1.092181 -1.092181 1 -1.102117 -1.102117
2 -0.405937 -1.498118 2 -0.387245 -1.489362
3 0.008894 -1.48922% 3 0.008373 -1.480989
16 ¢ 14 c
1 -1.092154 -1.092154 1 -1.103006 -1.103006
2 -0.406000 -1.498153 2 -0.385985 -1.488991
3 0.008913 -1.489241 3 0.008250 -1.480741
13 a TS 12a
1 -1.163704 -1.163704 1 -1.105809 -1.105809
2 -0.336198 -1.499903 2 -0.398601 -1.504410
3 0.008745 -1.491158 3 0.009017 -1.495393
13b TS 12b
1 -1.162791 -1.162791 1 -1.107251 -1.107251
2 -0.338636 -1.50142) 2 -0.399377 -1.506628
3 0.009173 -1.49225% 3 0.009052 -1.497576
13¢c TS12c
1 -1.163037 -1.16303f 1 -1.117433 -1.117433
2 -0.336725 -1.499761 2 -0.387324 -1.504757
3 0.008807 -1.490954 3 0.008762 -1.495995
TS 15a
1 -1.105403 -1.105403
2 -0.406089 -1.511493
3 0.010671 -1.500822
TS 15b
1 -1.104931 -1.10493]
2 -0.407062 -1.511993
3 0.011275 -1.500718

Table C.10: Incremental RCCSD/cc-pVTZ correlation energies for défg conform-
ers on the PES of the dxd5-endocyclization of14. (dsp=3, core=8)
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Abstract

A general fully automated implementation of the incremestieme for molecules
and embedded clusters in the framework of the Coupled Clssigles and doubles
theory is presented. The code can be applied to arbitrasr afithe incremental ex-
pansion and is parallelized in a master/slave structurefoded that the error in the
total correlation energy is lower than 1 kcal/mol with resp® the canonical CCSD
calculation if the incremental series is truncated in a prapay. The potential accu-
racy of the incremental scheme is demonstrated expliathtransition metal com-
plexes, intermolecular systems, the aurophilic attractibe 4exd5-endocyclization
and cluster compounds. The symmetry is exploited 105 aymmetric water cluster, a
Cs symmetric triazine pentamer aatl-transpolyacetylene. For open-shell molecules
the MR-CEPA(0)-method was adapted into the framework ofrtbeemental scheme.
Furthermore a systematic screening procedure for smaifibations in the incremen-
tal expansion of the correlation energy is presented. Thiemeance of the proposed
scheme is checked for the calculation of intermoleculagrattions in realistic test
systems as large as a guanine-cytosine base pair. It wag tbahthe computational
cost for the incremental expansion can be considerablycestiwithout significant
loss of accuracy. Typically the errors of the systems ingastd here amount to less
than 5 %, 1 % and 0.1 % for second, third and fourth order expassrespectively.
Additionally an analysis of the propagation of errors in theremental expansion of
the correlation energy is presented. Finally the perfoceani the incremental scheme
in calculating potential energy surfaces is demonstrated.



Kurzzusammenfassung

In der vorliegenden Arbeit wird eine voll automatische lempkentierung des Inkre-
mentenverfahrens fir CCSD und MR-CEPA(O) Korrelationsgiea vorgestellt. Mit
der vorgestellten Implementation konnen Inkremente biejer Ordnung berechnet
werden. Des weiteren wurde die Rechenzeit durch die Pisadleing in einer Master/
Slave-Struktur deutlich verkirzt. Mit dem vorgestellterkdementenverfahren kann
die CCSD Energie mit einem Fehler von weniger als einer kuallermittelt wer-
den. Dies wird durch Testrechungen an gesattigten Kohlesevatoffen, an ungesat-
tigten Kohlenwasserstoffen mit konjugierterSystemen, an aromatischen Verbindun-
gen, an Ubergangsmetallverbindungen, an Actinoidkongpigan intermolekularen
Verbindungen, an den Intermediaten deex®/5-endoCyclisierung und an Clustern
bestétigt. Des weiteren wird der Einfluss von ndherungeagisnmetrischen Foster-
Boys Orbitalen auf die Konvergenz der Inkrementenreiheabdblt. Explizite Rech-
nungen wurden in diesem Rahmen an eiépsymmetrischen Wassercluster, an dem
Cs symmetrischen Triazin-Pentamer und an Polyacetylen defchrt. Fir offen-
schalige Molekule wurden die MR-CEPA(0)-Methode, die MESDB-Methode, die
MR-ACPF-Methode, die MR-AQCC-Methode und die RCCSD-Mekham Rahmen
des Inkrementenverfahrens getestet.

Zur Beschleunigung der Inkrementen Rechnungen wurde estafids basiertes Se-
lektionskriterium implementiert. Mit diesem systemalien screening Verfahren kann
die Rechenzeit bei gleicher Genauigkeit enorm verkirztheser Die Leisungsfahigkeit
dieses screening Verfahrens wurde an realistischen Btsisgn wie z.B. dem Guanin-
Cytosin-Basenpaar getestet. Die Fehler die im Rahmen #egritenten Rechnungen
eingefuhrt wurden, sind typischerweise kleiner als 5 %, 1r8d 0.1 % der Korre-
lationsenergie fir zweite, dritte und vierte Ordnung. Desteven wurde die Inkre-
mentenmethode auf die Potenialhyperflachen von Octan udddshexain angewen-
det. Schlie3lich wurde auch die Fehlerfortpflanzung in derdmentenmethode analy-
siert.
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