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Chapter 1

Introduction

The aim of quantum chemistry is to obtain a computational model for the qualita-
tive and quantitative description of experimental observations on the basis of quantum
mechanics. In order to do this one has to approximate the quantum mechanical many-
body problem to a certain accuracy. A well established approximation is the Hartree-
Fock (HF) approach, which is usually not sufficient to obtainchemical accuracy. The
reason for this is the approximate averaged treatment of theelectron repulsion in the
HF approach. The electrons of different spin move independently of each other in the
HF model. In reality all electrons avoid each other individually, which means that their
movement is correlated. A way to include the correlation of the electrons is provided
by density functional theory (DFT). DFT based methods are used today for a wide
range of chemical systems and provide reliable results for many molecules. The major
drawback of DFT is that it is not systematically improvable,since the Hohenberg-Kohn
functional is unknown.
A common way to improve the HF wavefunction is to set up a many-body expansion
on the basis of the HF orbitals. However, the application of these post HF methods
is limited, since these approaches depend heavily on the size of the one-particle ba-
sis. The HF energy is invariant with respect to an arbitrary unitary transformation
within the occupied space or within the virtual space. Therefore it is an interesting
question to ask about a set of unitarily transformed orbitals where a many-body expan-
sion based on configuration interaction (CI) or coupled cluster (CC) theory converges
faster to the desired accuracy than for the canonical orbitals [1, 2]. An alternative to
the canonical orbitals provide localized orbitals, which may be obtained efficiently by
a Foster-Boys [3] or Pipek-Mezey [4] localization. Today wecan find a variety of
local correlation methods for the major quantum chemical methods. Møller-Plesset
perturbation theory to second order (MP2) based correlation schemes were introduced
by Pulay [5–8], Werner and Schütz [9, 10], Maslen and Head-Gordon [11–14], Ayala
and Scuseria [15], Federov and Kitaura [16]. Local CI/multi-reference CI (MR-CI) ap-
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2 CHAPTER 1 INTRODUCTION

proaches were developed by Walter et al. [17–19]. CC based local correlation methods
were developed by Werner and Hampel [20], Werner and Schütz [21–24], Flocke and
Bartlett [25], Subotnik and Head-Gordon [26, 27], Auer and Nooijen [28] and Chris-
tiansen et al. [29].
The extension of local correlation methods to solids is not yet solved completely. An
early approach is the so-called local ansatz of Fulde and Stollhoff [30, 31]. MP2 be-
came recently available in the CRYSTAL quantum chemistry package [32, 33] and a
density fitting local MP2 was written by Usvyat and Schütz [34].
For higher level correlation methods it is possible to set upan incremental expan-
sion of the correlation energy as introduced by H. Stoll [35–37]. The drawback of
the incremental scheme is that up to now a lot of handwork is required to obtain the
correlation energy. It was applied in a series of case studies for polymers [38–41],
for solids [42–52], for molecules [53], for band structures[54–56] and for open-shell
clusters [57]. A theoretical foundation of the incrementalscheme was given by Fulde
and Stoll [58, 59]. Conceptually similar to the incrementalscheme is the divide and
conquer approach [60] as well as other fragment based methods like the cluster in
molecules (CIM) approach [61, 62], the molecular fractionation with conjugated caps
(MFCC) [63], the generalized molecular fractionation withconjugate caps/molecular
mechanics (GMFCC/MM) [64] or the systematic molecular fractionation [65].
The current work was done to reduce the scaling of multi-reference configuration in-
teraction methods (MR-CI) and coupled cluster methods (CC)using the incremental
scheme of Stoll and Nesbet [1,35–37]. The main goals of this work are:

* Implementation

- generate a fully automatized procedure to obtain the incremental coupled
cluster singles and doubles (CCSD) correlation energy, theopen-shell re-
stricted coupled cluster singles and doubles (RCCSD) correlation energy,
the multi-reference configuration interaction singles anddoubles (MR-
CISD) correlation energy, the multi-reference averaged coupled pair func-
tional (MR-ACPF) correlation energy, the multi-referenceaveraged quadra-
tic coupled cluster (MR-AQCC) correlation energy and the multi-reference
coupled electron pair approximation of zeroth order (MR-CEPA(0)) corre-
lation energy

- generate a fully automated procedure to treat periodic systems within the
framework of the incremental scheme

* Theory

- explore the potential accuracy of the approach using different correlation
methods
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- analyze the convergence behavior of the incremental scheme for molecules

- check the performance of the incremental scheme in combination with an
approximate treatment of molecular symmetry

* Application

- molecules

- polymers

- excited states
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Chapter 2

General Theory

2.1 The Many-Particle Problem in Quantum
Mechanics

The quantum mechanical basis for many chemical problems beside relativistic effects
is the time-independent Schrödinger equation:

ĤΨ = EΨ (2.1)

HereĤ is the Hamilton operator,Ψ is the wave function andE is the energy eigen-
value. The non-relativistic electronic Hamiltonian for a molecule in Born-Oppenheimer
approximation in atomic units is given as:

Ĥ = −1

2

∑

i

∇2
i −

∑

α

∑

i

Zα

|Rα − ri|
+
∑

i<j

1

|ri − rj|
+
∑

α<β

ZαZβ

|Rα − Rβ|
(2.2)

whereri are the coordinates of the electrons,Rα are the coordinates of the nuclei and
Zα is the charge of the nucleusα. The first term describes the kinetic energy of the
electrons, the second term corresponds to the interaction between the electrons and the
nuclei, the third term is the electron-electron repulsion and the last term corresponds
to the interaction between the nuclei. Unfortunately it is not possible to find an ana-
lytic solution for eqn. 2.1, for more than one electron in thepotential of some nuclei.
Therefore one relies on approximation schemes to obtain theenergy with the desired
accuracy.
The term causing the major complications in the electronic Hamiltonian eqn. 2.2 is
the electron-electron repulsion. Unfortunately it is far too important to be neglected
completely [66].
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6 CHAPTER 2 GENERAL THEORY

2.2 Hartree-Fock Theory

The Hartree-Fock approach is equivalent to the usage of a single Slater determinant
Φ as approximation to the wavefunctionΨ in eqn. 2.1 [67] and the application of the
variation principle in order to arrive at the optimal orbital set.

Ψ(x1, x2, ..., xn−1, xn) = Φ0

Φ0 =
1√
n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

χ1(x1) χ2(x1) · · · χn(x1)

χ1(x2) χ2(x2) · · · χn(x2)
...

...
. . .

...
χ1(xn−1) χ2(xn−1) · · · χn(xn−1)

χ1(xn) χ2(xn) · · · χn(xn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(2.3)

The spin-orbitalχ(x) is a product of the spin functionσ(ω) and the space function
φ(r):

χi(x) = φi(r) · σi(ω)

According to the variational principle we find the best approximation to the ground
state energy for a single determinant wavefunction by:

min[E({χa})] = min
〈Φ0|Ĥ|Φ0〉
〈Φ0|Φ0〉

(2.4)

using the orthonormality of the spin orbitals

〈χa|χb〉 = δab

we have:

〈Φ0|Ĥ|Φ0〉 =
∑

a

〈χa|ĥ|χa〉 +
1

2

∑

ab

〈χaχb||χaχb〉 (2.5)

with

ĥ(i) = −1

2
∇2

i −
∑

α

Zα

|Rα − ri|

〈χaχb||χaχb〉 =

∫

dx1dx2χ
∗
a(1)χ∗

b(2)
1

|r1 − r2|
(1 −P12)χa(1)χb(2)

P12χa(1)χb(2) = χa(2)χb(1)

The spin orbitalsχa can be determined by the Fock equation:

f̂ |χa〉 = εa|χa〉 (2.6)
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with the Fock operator of the first particlêf(1) being:

f̂(1) = ĥ(1) +
∑

b

∫

dx2χ
∗
b(2)

1

|r1 − r2|
(1 −P12)χb(2)

Since the Fock operator depends on the orbitals, we have to solve eqn. 2.6 in an
iterative manner. The procedure to solve the HF equations iscalled self-consistent
field method (SCF), which is often but not entirely correct synonymously used for the
HF method. For a closed shell system we can use a restricted set of spin orbitals:

χ2i(x) = φ2i(r) · α(ω)

χ2i+1(x) = φ2i(r) · β(ω)

inserting the ansatz into the Fock equations and integrating out the spin functions, we
get the Fock operator for a closed shell system:

f̂(1) = ĥ(1) +

n/2
∑

b

∫

dr2φ
∗
b(2)

1

|r1 − r2|
(2 − P12)φb(2) (2.7)

The closed shell HF equations read:

f̂ |φa〉 = εa|φa〉 (2.8)

In a system ofn particles we use then
2

lowest eigenvalues of eqn. 2.8 to build the
Slater determinantΦ0. This is equivalent to divide the set of the orbitals{φa} into two
disjoint subsetsO andV. The set of the occupied orbitalsO is defined as:

O =

n/2
⋃

λ=1

φλ with ελ1
< ελ2

for λ1 < λ2

The virtual space is defined as:

V = {φa} \ O

The introduction of a basis ofN atomic orbitals for the spatial part of the spin orbitals
according to eqn. 2.9:

φa(r) =
N∑

λ

caλφ
AO
λ (r) (2.9)

enables us to transform the Hartree-Fock equations into theRoothaan-Hall equations:

FC = SCε (2.10)

HereS ist the overlap matrix of the atomic orbitals,F is the Fock-matrix,C is the
coefficient matrix of the molecular orbitals andε is the matrix of the eigenvalues (in
the canonical case a diagonal matrix). Note that a unitary transformationU to the
orbitals within the occupied space or within the virtual space has no effect on the total
HF energy.
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2.3 Multi-Configuration Hartree-Fock Theory

It is not always possible to build a fairly accurate wavefunction with a single determi-
nant. Therefore in the multi-configuration self-consistent field method (MCSCF) a set
of slater determinants is used in the energy functional [67,68].

min[E({χa}, {ci})] = min
〈∑

i

ciΦi|Ĥ|
∑

i

ciΦi

〉

(2.11)

Where the set{Φi} is usually a small set of determinants with significant importance.
A special case of the MCSCF is the complete active space SCF method (CASSCF). In
this case all possible determinants which can be constructed from a certain number of
(active) electrons and (active) orbitals are included in the functional eqn. 2.11.

2.4 The Concept of Size-Extensivity/Size-Consistency

In quantum chemistry one has to compare energies of different systems. Therefore it is
very important that a given quantum chemical method yields an accuracy, independent
of the size of the system under investigation. This is covered by the concept of size-
extensivity [69–71] and the concept of size-consistency [72–74].
Consider a system of equal and possibly interacting subsystemsA:

A ↔ A ↔ ... ↔ A
︸ ︷︷ ︸

N → ∞
A correlation method is called size-extensive, if the correlation energy scales linearly
with the size of the system:

lim
N→∞

Ecorr(N × A)

N
= const> 0

This property guarantees the accuracy of a correlation method, independent of the total
size of the system.
The term size-consistency was introduced for non-interacting subsystemsA. If we
consider a non interacting system of two parts A and B, we should be able to calculate
the energy of the compound system by adding the two fragmental energies:

EAB = EA + EB (2.12)

If we can write the compound wavefunction̂ψAB |vac〉 as a product of the separate
wavefunctionsψ̂Aψ̂B|vac〉, we find that eqn. 2.12 holds [68]. Note that the anti-
symmetry is build into the wave operator̂ψX according to the anticommutation re-
lations of the second quantized operators.
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2.5 Configuration Interaction Theory

The HF and MCSCF wavefunctions can usually determine the energy of a molecule
within an accuracy of 1%. Since this is not enough to treat chemical reactions, we have
to go beyond these methods. The correlation energy is definedas:

Ecorr = Eexact−EHF (2.13)

whereEexact is the non-relativistic energy in the limit of a complete one-particle basis
and in the Born-Oppenheimer approximation. The optimal correlation energy for a
given one-particle basis for all states can be obtained withthe full configuration inter-
action method (FCI) [67, 68, 75, 76]. In the limit of a complete one-particle basis the
FCI approach yields the exact correlation energy. In the FCIapproach a linear combi-
nation of all possible determinants of the orbitals inO andV with |O| orbitals in every
determinant is used to construct the wavefunction:

|ΨFCI
0 〉 = c0|Φ0〉 +

∑

i

∑

a

cai |Φa
i 〉 +

∑

ij

∑

ab

cab
ij |Φab

ij 〉 + ...

i, j, ... ∈ O, a, b, ... ∈ V

(2.14)

The coefficients for the determinants can be found by solvingthe eigenvalue equation:

HC = CE (2.15)

where theH is the Hamilton matrix,C is the matrix with the expansion coefficients for
all states andE is the diagonal matrix with the energies of the states.Hst = 〈Φs|Ĥ|Φt〉
is a matrix element between two arbitrary Slater determinants of eqn. 2.14. Due to
the fast increase of the number of determinants in|ΨFCI

0 〉 it is already impossible to
use the FCI method for rather small molecules. The usual way to truncate the FCI
wavefunction is to use only the most important classes of determinants. For instance
we write the CI singles and doubles (CISD) wavefunction as:

|ΨCISD
0 〉 = c0|Φ0〉 +

∑

i

∑

a

cai |Φa
i 〉 +

∑

ij

∑

ab

cab
ij |Φab

ij 〉

i, j, ... ∈ O, a, b, ... ∈ V

(2.16)

There are three major problems associated with truncated CIwave functions: the lack
of size-extensivity/consistency [68], the bad performance in the multi-reference case
and the poor scaling behavior with respect to the one-particle basis (CISD∝ N 6). The
size-extensivity problem cannot be solved exactly within the framework of truncated
CI theory, whereas it is very easy to construct a CI-wavefunction for a multi-reference
case (vide infra).
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2.5.1 Multi-Reference Configuration Interaction Theory

In order to get a proper multi-reference wavefunction within the framework of CI
theory one uses a set of important determinants{Φact} and does single and double
substitutions for every determinant of{Φact} (MR-CISD) [77]. Since the excitation-
manifolds of the active determinants are not necessarily disjoint, one can construct the
set of excited determinants by unification of excitation-manifolds for the active deter-
minants. Due to the linear parameterization it is easily possible to obtain the required
number of equations to determine the coefficients in the MR-CISD. The MR-CISD
method yields very accurate energies for small molecules, but due to the lack of size-
extensivity the results get poor for larger molecules.

2.6 Coupled Cluster Theory

Since the problem of size-consistency comes from the incapability to write a truncated
CI wavefunction in direct product form, it is convenient to build the wavefunction in
a way that the direct product form is always possible. This isdone in the Coupled
Cluster CC ansatz [68,76]:

|ΨCC
0 〉 =

[
∏

µ

(
1 + tµt̂µ

)

]

|ΨHF
0 〉 (2.17)

wheret̂µ is a general substitution operator. Thet̂µ commute, if they are restricted to
substitutions from the occupied HF-orbitals to the unoccupied HF-orbitals. Since the
t̂µ are nilpotent [68], we can use the Taylor expansion of an exponential of an operator,
for commutinĝtµ, to rewrite eqn. 2.17:

|ΨCC
0 〉 =

[
∏

µ

etµ t̂µ

]

|ΨHF
0 〉 = e

P

µ tµ t̂µ |ΨHF
0 〉 = eT̂ |ΨHF

0 〉 (2.18)

Analogous to the CI wavefunction we can truncate the clusteroperatorT̂ according to
substitution classes:

T̂ = T̂1 + T̂2 + T̂3 + ... + T̂N (2.19)

with T̂n as:

T̂n =

(
1

n!

)2 ∑

ij···ab···

tab···
ij··· â

†
aâ

†
b · · · âjâi

whereâ†a are second quantized creation operators andâi are second quantized annihi-
lation operators witha, b, ... ∈ V andi, j, ... ∈ O [78]. For theT̂n operator we have
n summation indices for the occupied space andn summation indices for the virtual
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space. Inserting the CC wavefunction of eqn. 2.17 into the Schrödinger equation and
projecting with the HF state from the left we get:

〈ΨHF
0 |Ĥ|ΨCC

0 〉 = ECC〈ΨHF
0 |ΨCC

0 〉 = ECC (2.20)

Hereby we assumed intermediate normalization of the CC-wavefunction.

〈ΨHF
0 |ΨCC

0 〉 = 1

We get the equations for the CC amplitudes if we project with the excited determinants
Φµ from the left:

〈Φµ|Ĥ|ΨCC
0 〉 = ECC〈Φµ|ΨCC

0 〉 (2.21)

It is usually more convenient [78] to use the similarity transformed CC equations,
where the Schrödinger equation is first multiplied bye−T̂ before the projection is done:

〈ΨHF
0 |e−T̂ ĤeT̂ |ΨHF

0 〉 = ECC

〈Φµ|e−T̂ ĤeT̂ |ΨHF
0 〉 = 0

(2.22)

For CCSD it can be shown that the energy in eqn. 2.20 is equal tothe energy in eqn.
2.22 [68].

2.7 Localization

Local orbitals can be obtained by a unitary transformation of the canonical SCF or-
bitals. In order to keep the SCF energy invariant to these rotations we allow only ro-
tations within the occupied space or the virtual space, respectively. Therefore we use
in the closed shell case a unitary transformation of the form(in the full one-particle
space):

U =













u11 · · · u1,n

...
. . .

... 0

un,1 · · · un,n

un+1,n+1 · · · un+1,n+m

0
...

. . .
...

un+m,n+1 · · · un+m,n+m













(2.23)

n := number of occupied orbitals

m := number of virtual orbitals

N = m+ n
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According to the general considerations on products of unitary matrices in eqn. 2.24
we can construct a unitary matrix by forming a product of unitary matrices. This leads
to a product Ansatz for our unitary transformation of the orbitals, where the complete
transformation matrix is constructed as a product of2 × 2 rotations.

UU † = (U1 · U2 · ... · Uq) (U1 · U2 · ... · Uq)
†

= (U1 · U2 · ... · Uq−1) · Uq · U †
q · (U1 · U2 · ... · Uq−1)

†

= (U1 · U2 · ... · Uq−1) · 1 · (U1 · U2 · ... · Uq−1)
†

=
...

= 1 (2.24)

The corresponding unitary (orthogonal)N ×N matricesU ij
k are given as:

U ij
k :=







uii = ujj = cos(γ)

uij = −uji, uij = sin(γ)

uaa = 1, a 6= {i, j}
uab = 0, a, b 6= {i, j}

(2.25)

e.g.

U1l
k =































cos(γ) sin(γ)

1
. . .

1 0

− sin(γ) cos(γ)

1
. . .

0 1































Since the HF energy is invariant to any unitary transformation of the type in eqn. 2.23 it
is not possible to construct a unique localization criterion. Since the most localization
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procedures use a functional like eqn. 2.26:

D(φ) =
∑

i

〈φiφi|Ô|φiφi〉, (2.26)

we start from eqn. 2.26 to obtain a more general form. Now we transform the orbitals
a andb of eqn. 2.26 by a2×2 rotation according to eqn. 2.25 and obtain our functional
with respect to the angleγ and the orbital paira andb:

D(Uab
k ) = 〈φ2

a|Ô|φ2
a〉 + 〈φ2

b |Ô|φ2
b〉 − 2〈φ2

a|Ô|φ2
a〉 sin2(γ)

+ 2〈φ2
b |Ô|φ2

a〉 sin2(γ) + 2〈φ2
a|Ô|φ2

b〉 sin2(γ) − 2〈φ2
b |Ô|φ2

b〉 sin2(γ)

+ 2〈φ2
a|Ô|φ2

a〉 sin4(γ) − 2〈φ2
b |Ô|φ2

a〉 sin4(γ) − 2〈φ2
a|Ô|φ2

b〉 sin4(γ)

+ 2〈φ2
b |Ô|φ2

b〉 sin4(γ) + 〈φaφb|Ô|φ2
a〉 sin(2γ)

+ 〈φ2
a|Ô|φaφb〉 sin(2γ) − 〈φ2

b |Ô|φaφb〉 sin(2γ)

− 〈φaφb|Ô|φ2
b〉 sin(2γ) − 2〈φaφb|Ô|φ2

a〉 sin2(γ) sin(2γ)

− 2〈φ2
a|Ô|φaφb〉 sin2(γ) sin(2γ) + 2〈φ2

b |Ô|φaφb〉 sin2(γ) sin(2γ)

+ 2〈φaφb|Ô|φ2
b〉 sin2(γ) sin(2γ) + 2〈φaφb|Ô|φaφb〉 sin2(2γ)

+
∑

i

i6=a,b

〈φiφi|Ô|φiφi〉

(2.27)

In the next step we use the addition theorem of trigonometricfunctions until we have
only linear terms ofcos(4γ) andsin(4γ). Now we factor outcos(4γ) andsin(4γ) and
define:

Aab = 〈φaφb|Ô|φaφb〉 −
1

4
〈φ2

a − φ2
b |Ô|φ2

a − φ2
b〉 (2.28)

Bab = 〈φaφb|Ô|φ2
a − φ2

b〉 (2.29)

Finally we obtain:

D(Uab
k ) = Aab − Aab cos(4γ) +Bab sin(4γ) +

∑

i

〈φiφi|Ô|φiφi〉 (2.30)

Eqn. 2.30 can be simplified to an expression with a single trigonometric function
where the maxima and minima are given analytically. In orderto do this we defineα
by:

Bab

tan(4α)
= −Aab

sin(4α) =
Bab

√

A2
ab +B2

ab

cos(4α) = − Aab
√

A2
ab +B2

ab
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Next we substitute the prefactor of the cosineAab in eqn. 2.30 and multiply the term
with the sine function bysin(4α)

sin(4α)
:

D(Uab
k ) = Aab +

∑

i

〈φiφi|Ô|φiφi〉

+
Bab

sin(4α)
[cos(4γ) cos(4α) + sin(4γ) sin(4α)]

(2.31)

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (2.32)

Using the identity 2.32 and the definition ofsin(4α) we simplify our functional to:

D(Uab
k ) = Aab +

√

A2
ab +B2

ab cos(4γ − 4α) +
∑

i

〈φiφi|Ô|φiφi〉 (2.33)

The functional in eqn. 2.33 has a maximum if the cosine is 1 anda minimum if the
cosine is−1:

γmax = α, α+
1

2
π, α + π, α +

3

2
π

γmin = α +
1

4
π, α+

3

4
π, α +

5

4
π, α +

7

4
π

Now we build the matrixD(Uab
k )max in order to see where the change of the functional

due to a unitary rotation is maximal.

D(Uab
k )max = D(Uab

k ) −D(φ) = Aab +
√

A2
ab +B2

ab (2.34a)

D(Uab
k )min = D(Uab

k ) −D(φ) = Aab −
√

A2
ab +B2

ab (2.34b)

We obtain the orbital pair for which the unitary transformation leads to the maximal
change from the matrixD(Uab

k )max. After application of this rotation to the orbitals we
build D(Uab

k )max again with the new orbitals. We iterate until all matrix elements in
D(Uab

k )max are lower than a given threshold.
The most popular criteria are Foster-Boys [3] and Pipek-Mezey [4], because of their
N 3 scaling with respect to the one-particle basis set. The Foster-Boys criterion is
designed to minimize the distance of two electrons in the same orbital, which is equiv-
alent to maximize the distance of the orbital centroids.

D(φ) =
∑

i

〈φiφi

∣
∣(r1 − r2)

2
∣
∣φiφi〉 =

∑

i

〈φiφi

∣
∣r

2
1 − 2r1r2 + r

2
2

∣
∣φiφi〉

= 2
∑

i

〈φi

∣
∣r

2
1

∣
∣φi〉 − 2

∑

i

〈φi |r1|φi〉〈φi |r2|φi〉

= 2
∑

i

〈φi

∣
∣r

2
1

∣
∣φi〉 − 2

∑

i

〈φi |r1|φi〉2
(2.35)
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Figure 2.1: Parallelepiped spanned by the fundamental lattice vectors~a1, ~a2, ~a3.

Since the first term is invariant to unitary transformationsof the orbitalsφi we can
equivalently maximize the second term:

max

(
∑

i

〈φi |r1|φi〉2
)

(2.36)

For the Foster-Boys criterion we find:

Aab = 〈φa|r|φb〉2 −
1

4
[〈φa|r|φa〉 − 〈φb|r|φb〉]2 (2.37a)

Bab = 〈φa|r|φb〉 [〈φa|r|φa〉 − 〈φb|r|φb〉] (2.37b)

We maximize the functional 2.33 by choosing the angleγ according to the suggestion
of Edmiston and Ruedenberg [79] to be between 0 and 0.5π.

2.8 Periodic Systems

2.8.1 Lattice Translation Vectors

A 3-dimensional periodic array of points is completely defined by the three funda-
mental basis vectors~a1,~a2,~a3 of the unit cell and the points within the reference cell
C0 [80]. Further we define the cellC0 as parallelepiped spanned by the fundamental
lattice vectors~a1,~a2,~a3 at the origin~0.

C0 ⊂ R
3

C0 := {~r ∈ R
3|~r = α1~a1 + α2~a2 + α3~a3 with α1, α2, α3 ∈ [0, 1]} (2.38)

All other points of the crystal can be reached by a linear combination of the basis
vectors:

~ri = ~r0 + u1~a1 + u2~a2 + u3~a3 with u1, u2, u3 ∈ Z (2.39)

where~r0 is an arbitrary point in the reference cellC0 and~ri is the translationally equiv-
alent point in the cellCi. For reasons of convenience we introduce the set of lattice
translation vectorsT as:

T = {~v ∈ R
3|~v = u1~a1 + u2~a2 + u3~a3 with u1, u2, u3 ∈ Z} (2.40)
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Since we have a unique translation operator for every translation vector inT we intro-
duce the set of translational operatorsT̂, where the translation operators are defined by
their corresponding translational vector.

T̂ = {t̂~v|~v ∈ T} (2.41)

A cell Cλ is obtained by shifting the origin ofC0 with the translation̂tλ:

Cλ = t̂λC0 (2.42)

With this definition and eqn. 2.41 we can decomposeR3 into a set of cells:

R
3 =

⋃

λ

t̂λC0 (2.43)

According to the definition of the cells in eqn. 2.38 we see that neighboring cells are
not disjoint. The intersection of the two sets is the boundary region. In order to avoid
a multiple counting of the points on the borders, we introduce the weight factors of1

2

for a face centered point,1
4

for an edge centered point and1
8

for a corner point in a
3-dimensional lattice.

2.9 Finite-Cluster Approach

The total energy per cellEcell of a polymer can be obtained by the difference of the
energies of a supercellUn of n unit cells and a supercellUn+1 of n + 1 unit cells.
In the limit of an infiniten one obtains the exact energy per cell [38–40, 49, 81]. In
order to avoid open-shell calculations, the dangling bondsare saturated by hydrogen
atoms [38–40,49,81].

Ecell = lim
n→∞

[E(RUn+1R
′) − E(RUnR

′)] (2.44)

In the difference the contributions from the saturating restsR andR′ cancel each other
for n → ∞ and one obtains the desired result, the energy per cell. The expansion in
eqn. 2.44 holds equally for the correlation energy of the polymer:

Ecell
corr = lim

n→∞
[Ecorr(RUn+1R

′) − Ecorr(RUnR
′)] (2.45)

Eqn. 2.45 is very useful to obtain a benchmark correlation energy for the incremental
correlation energy.
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Figure 2.2: Example of a graph with 8 vertices and the representation matrix E .

2.10 Graph Theory

An undirected GraphG is determined by a set of verticesV and a set of edgesE.
The setE is defined as a set of pairs of vertices. In the case of an edge-weighted un-
ordered graph we may map every pair to an integer number as weight. Therefore we
can representE by the adjacency matrixE . The matrix element ofEij is zero iff the
two corresponding verticesi andj are not connected (see figure 2.2). The numerical
value of the element may represent the importance of the pairi andj. If it is possible
to establish a path from any vertex to any other vertex of a graph, the graph is said to
be connected; otherwise, the graph is disconnected [82].

2.10.1 METIS Graph-Partitioning [83]

A common problem in computer science is to partition the graph G(V,E) into k dis-
joint subsets with the side condition that the sum of cut edgeweights is minimal. Since
the number of combinatorial possibilities grows very fast with the number of edges it is
very convenient to transform the initial graph into a sequence of smaller graphs (coars-
ening). In the next step a sequence of bisections is performed until the desired number
of parts is reached (initial partitioning). At the end the original graph is reconstructed
(uncoarsening) in a stepwise fashion where the partitions are refined at each step in
order to get a better result. Figure 2.3 demonstrates the various phases for a bisection
of a graph in the METIS graph partitioning scheme.
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Figure 2.3: The various phases of the multilevel graph bisection. During the coars-
ening phase, the size of the graph is successively decreased; during the
initial partitioning phase, a bisection of the smaller graph is computed;
and during the uncoarsening phase, the bisection is successively refined
as it is projected to the larger graphs. During the uncoarsening phase the
light lines indicate projected partitions, and dark lines indicate partitions
that were produced after refinement (figure and caption from [83]).



Chapter 3

The Incremental Scheme

3.1 The Incremental Expansion for a Molecule

Using localized molecular orbitalsφLMO
w , we can calculate the correlation energy in

the following way:
1. Divide the system under investigation into spatial partsand classify theφLMO

w ac-
cording to these parts; e.g. in the case of four parts:

D1 D2

D3 D4

D2

D3

φ6

φ4 φ2

φ3

D1

φ5

φ1

D4

D

Figure 3.1: A system divided into four subsystems.

This yields a set of localized orbitals for every part. In this case we have the set of
domainsD = {D1, D2, D3, D4}.
2. Set up the correlation energy as:

Ecorr =
∑

i

∆εi +
1

2!

∑

ij

∆εij +
1

3!

∑

ijk

∆εijk + ... (3.1)

with i, j, k, ... ∈ D, we require thati, j, k, ... are pairwise disjoint and define the one-
site increments as:

∆εi = ∆ε({i}) = εi = Ecorr(i) (3.2)

19
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D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

Figure 3.2: The four one-site increments in a system of 4 spatial parts.

and the two-site increments:

∆εij = ∆ε({i, j}) = εij − ∆εi − ∆εj (3.3)

D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

D1 D2

D3 D4

Figure 3.3: All possible two-site increments within a space of four one-site incre-
ments.

We can simplify eqn. 3.1 according to the index symmetry:

∆εij = εij − ∆εi − ∆εj = εji − ∆εj − ∆εi = ∆εji (3.4a)

εij = εji ⇒ ∆εij = ∆εji (3.4b)

εijk = εjik = εkji = εkij = εikj = εjki and eqn. 3.4b

⇒ ∆εijk = ∆εjik = ...
(3.4c)

... (3.4d)

Therefore we can restrict the sums in our expansion and eliminate the prefactors:

Ecorr =
∑

i

∆εi +
∑

i<j

∆εij +
∑

i<j<k

∆εijk + ... (3.5)

This simplification saves a large amount of computer time especially for higher orders.
According to eqn. 3.5 we identify the index set in an-fold summation in eqn. 3.5 with
the power set overD of the cardinalityn. This can be done because the restriction
of then-tuples in the summation leaves only onen-tuple for a given set of indices.
Therefore we can use instead of the the restricted index set the power of the set of
domainsP(D) as new index set. Using these considerations, we can write the general
increment as:

∆εi1i2...it = εi1i2...it −
∑

It−1

∆εIt−1
−
∑

It−2

∆εIt−2
− ...

−
∑

I2

∆εI2 −
∑

I1

∆εI1

(3.6)
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where the indexIt−v is defined as the set of those elements of the power set of{i1, i2,
..., it} which have the cardinality(t− v) [v runs from1 to (t− 1)]. Eqn. 3.6 defines a
mappingP(D) 7→ R. A close look at eqn. 3.5 yields that we can use the definition of
the power set in order to simplify the notation.

Ecorr =
∑

X

X∈P(D)∧|X|≤O

∆εX

D : = set of domains

P(D) : = power set of the set of domains

O : = order of the expansion

(3.7)

where the one-site domainsDλ are defined as disjoint sets of occupied orbitals:

Dλ = {φa, φb, φc, ...} (3.8)

Dλ ∩Dµ = ∅ (3.9)

Alternatively we can represent the one-site domains by a setof vectorsDλ:

Dλ =
⋃

φa∈Dλ

~Ra

with φa 7→ ~Ra =





〈φa |x|φa〉
〈φa |y|φa〉
〈φa |z|φa〉





(3.10)

The definition of the general increment∆εX reads in the short hand notation:

∆εX = εX −
∑

Y∈P(X)∧|Y|<|X|

∆εY (3.11)

For closed shell systems it was found that the convergence ofthe series eqn. 3.7 is
reasonably fast [35,44,49,84–86]. Therefore we can truncate the series usually at low
order (|O| ≤ 4).

3.1.1 Exactness of the Incremental Expansion

The incremental expansion is set up in a way that the exact result (of the given corre-
lation method) is obtained if all terms in the expansion are considered.
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A Simple Example

As a simple example we consider a system with 3 spatial parts as shown in figure 3.4
and calculate the incremental sum of eqn. 3.1 for this system.

1 2 3

Figure 3.4: A test system with 3 spatial parts1, 2, 3.

We have to calculate 3 one-site increments,∆ε1, ∆ε2, ∆ε3, 3 two-site increments,
∆ε12, ∆ε13, ∆ε23 and one three-site increment∆ε123. Using eqn. 3.1-3.3 we end up
with:

Ecorr = ∆ε1 + ∆ε2 + ∆ε3 + ∆ε12 + ∆ε13 + ∆ε23 + ∆ε123 =

ε1 + ε2 + ε3 + ε12 − ε1 − ε2 + ε13 − ε1 − ε3 + ε23 − ε3 − ε2

+ε123 − ε12 + ε1 + ε2 − ε13 + ε1 + ε3 − ε23 + ε3 + ε2 − ε1 − ε2 − ε3

= ε123 (3.12)

From eqn. 3.12 we recognize that at the end of the expansion the highest order term
cancels exactly the contributions from the lower orders. Therefore we obtain the exact
result within the applied correlation method at the highestorder level.

The general case

We start with eqn. 3.7 and sum over all contributions up to thehighest order.

Ecorr =
∑

X

X∈P(D)

∆εX =
∑

X

X∈P(D)∧|X|<|D|

∆εX + ∆εD

D : = set of domains

P(D) : = power set of the set of domains

(3.13)

Now we substitute∆εD by the definition of the general increment eqn. 3.11.

Ecorr =
∑

X

X∈P(D)∧|X|<|D|

∆εX + εD −
∑

X

X∈P(D)∧|X|<|D|

∆εX = εD (3.14)

We can see immediately that the only remaining term is the exact correlation energy
of the total system. This demonstrates that the incrementalexpansion is in principle
exact.
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3.1.2 Approximations to the Incremental Scheme

Due to large spatial distances of the included domains one may encounter nearly van-
ishingn-site increments. If the one-site domains of a given two-site domain are far
apart, we find that due to the local nature of electron correlation, the corresponding
incremental energy correction is small since the correlation energy of the two-site do-
main is given as:

εij = εi + εj + ε(Rij) (3.15)

In the limit of an infinite distanceRij between the two domainsi andj the correction
ε(Rij) vanishes exactly and the increment∆εij in eqn. 3.16 becomes exactly zero:

∆εij = εij − ∆εi − ∆εj

= εi + εj + ε(Rij) − ∆εi − ∆εj

= ε(Rij) = 0 for Rij = ∞
(3.16)

This can be generalized to higher order increments (vide infra). Obviously, for an
efficient implementation one should exploit this property which goes beyond the orig-
inal definition of the incremental series. The implementation of such a truncation can
be achieved by a distance thresholdRmin. Since the higher order terms are usually
smaller than the low-order terms, we can decrease the thresholdRmin with increasing
order (see chapter 6).
We can neglect the energy contribution of an-site domain if we can form at least two
subsets of this domain with a minimum distance larger thanRmin.
We prove this rule by induction. We start with the casen = 2 which is proven in eqn.
3.16. Now we assume that the set of domainsX can be divided into two disjoint sets
A andB with A,B 6= ∅ and where all distances between the elements ofA and the
elements ofB are larger thanRmin. With this requirement we find an expression for
the correlation energy forεX according to eqn. 3.16. This can be done because the
domains i and j in eqn. 3.16 were chosen freely. Therefore we can always evaluateεX

by:

εX = εA + εB + ε(RAB) (3.17)

We define the largest correctionε(RAB) which is obtained from∆ε
X̃

for the subsets̃X
of X with A∩ X̃ = Ã 6= ∅ andB∩ X̃ = B̃ 6= ∅ asε(Rmin). Using this we can estimate
the absolute value of an increment∆ε

X̃
:

|∆ε
X̃
| = |ε

X̃
− ε

Ã
− ε

B̃
| ≤ |ε(Rmin)| ∀ X̃ (3.18)

Before we start with the induction we give an example for the 3-body increment∆εijk

with two sets of domainsA = {i, j} and B = {k} with a certain distanceRmin
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A

Da

Dc

φc2

φa1
φa2

Rminφb2φb1

Db

φc2

φb3

X

B

Dd

De

φd1
φd2

φe1

Figure 3.5: Pictorial view of the involved sets, if the set of domainsX is partitioned
into two setsA andB with the minimal distanceRmin between these sets.

between these domains. We can use eqn. 3.18 and eqn. 3.17 to approximate the terms
with the mixed index combinations of eqn. 3.6.

|∆εik| ≤ |ε(Rmin)|
|∆εjk| ≤ |ε(Rmin)| (3.19)

εijk = εij + εk + ε(R{ij},{k}) (3.20)

Inserting eqn. 3.20 into eqn. 3.6 and using the definition of the 2-site increments we
obtain:

|εijk| =
∣
∣εij + εk + ε(R{ij},{k})

− (εij − ∆εi − ∆εj + ∆εik + ∆εkj + ∆εi + ∆εj + ∆εk)
∣
∣

≤ 2 ·
∣
∣ε(Rmin)

∣
∣+
∣
∣ε{ij},{k}

∣
∣ ≤ 3 ·

∣
∣ε(Rmin)

∣
∣

(3.21)

where we used eqn. 3.18 in the last step to approximateε(R{ij},{k}). We generalize
these considerations above by introducing the induction assumption:

|∆εX| ≤ c · |ε(Rmin)| if

A =
⋃

Da∈A

Da B =
⋃

Db∈B

Db

|~Ra − ~Rb| > Rmin ∀ φa ∈ A, φb ∈ B

A,B 6= ∅,A ∪ B = X
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and|X| ≤ n. Now we write the(n + 1) case as:

∆εY = εY −
∑

I

I∈P(Y)∧|I|<|Y|

∆εI (3.22)

with |Y| = n + 1. Next we classify the setsI in eqn. 3.22 according to the mixed
indicesXm and not mixed indicesXnm:

Xm := {I ∈ P(Y) | |I| < |Y| ∧ I ∩ A 6= ∅ ∧ I ∩ B 6= ∅}
Xnm := {I ∈ P(Y) \Xm | |I| < |Y|}

(3.23)

Then we split the summation overI into two summations:

∆εY = εY −
∑

I

I∈Xm

∆εI −
∑

I

I∈Xnm

∆εI (3.24)

We use eqn. 3.17 to evaluateεY as:

εY = εA + εB + ε(RAB)

Since the cardinalities of the sets inXm andXnm are always smaller than the cardi-
nality of Y, we can use the induction assumption to evaluate the summation over the
mixed indicesXm. An upper bound for the introduced error is

∑

I

I∈Xm

|∆εI| ≤
|Xm|
∑

i=1

ci · |ε(Rmin)|

where the prefactorsci are determined by the cardinality of the element ofXm. The
summation overXnm can be split into two summations ordered by the setsA andB:

∑

I

I∈Xnm

∆εI =
∑

I

I∈P(A)

∆εI +
∑

I

I∈P(B)

∆εI

There are no restrictions to the power sets because:

|A| + |B| = |Y| ∧ |A|, |B| > 0

⇒ |A|, |B| < |Y|

Since the summations over the power sets ofA andB are not restricted we can replace
the summations by the exact resultsεA andεB respectively.

∑

I

I∈Xnm

∆εI = εA + εB
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Using the considerations above we get for the absolute valueof the increment∆εY:

|∆εY| =

∣
∣
∣
∣
∣
∣
∣

εA + εB + ε(RAB) −
∑

I

I∈Xm

∆εI − εA − εB

∣
∣
∣
∣
∣
∣
∣

≤ |ε(RAB)| +
|Xm|
∑

i=1

ci · |ε(Rmin)|

≤





|Xm|
∑

i=1

ci + 1



 · |ε(Rmin)|

(3.25)

where we used eqn. 3.18 to estimate|ε(RAB)|. The factorc is given as

c =





|Xm|
∑

i=1

ci + 1





which completes the proof, since it is independent of the distanceRmin.
For high-order contributions it might be a problem that the prefactors are very large
and thereforeRmin has to be very large. However, for a fourth-order increment this
is no serious problem, as we can see if we consider the worst case example. The
cardinality of a power set can be calculated by|P({1, 2, ..., n})| = 2n. In order to
obtain the cardinality ofXm we have to subtract the cardinalities ofP(A) andP(B)

from P(X). In the worst case this is given as:

second-order:|Xm| = 22 − 21 − 21 = 0

third-order:|Xm| = 23 − 21 − 22 = 2

Using this result we obtain for the second-order coefficientc(2) = 1, for third-order
coefficientc(3) = 3 and for the fourth-order coefficient we havec(4) = 4 ·3+4 ·1 = 16.

3.1.3 Energy Screening

Another way to reduce the total number of calculations is to calculate the energy incre-
ments with a lower level method and neglect all terms which are smaller than a given
threshold at the low-level method.

Ecorr =
∑

X
X∈P(D)∧|X|≤O
|∆εX|>Ethres

∆εX (3.26)

HereX runs over all members of the power set of the set of the domainsP(D), up to a
certain cardinality as in eqn. 3.7.
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3.1.4 Formal Scaling

The formal scaling of the incremental expansion in eqn. 3.1 is determined by the
number of individual calculationsNcalc and the time for the individual calculations of
the subsystems. The number of calculations is given as:

Ncalc =
O∑

i=1

(|D|
i

)

(3.27)

with |D| ≡ number of domains. The total computational timet for incremental calcu-
lations can be evaluated as the sum over all single calculations:

t =
∑

i

ti ≤
(|D|

1

)

· tmax
1 +

(|D|
2

)

· tmax
2 + ... +

(|D|
O

)

· tmax
O (3.28)

wheretmax
i is the time for the most time consuming calculation ati-th order. Using

CCSD theory we have :

tmax
i ∝ N 2

O(i) · N 4
V(i) NV(i) ≫ NO(i) (3.29)

whereNO(i) is the number of occupied orbitals in the domain corresponding to tmax
i

andNV(i) the number of virtual orbitals in this domain. For the most time consuming
step we have:

tmax
O ∝ N 2

O
(O) · N 4

V
(O) (3.30)

Using eqn. 3.27-3.30 we find an upper boundu for the computational time according
to:

u ∝ Ncalc · N 2
O
(O) · N 4

V
(O) (3.31)

The dimensionsNO(O) andNV(O) of then-site domains will have an upper bound,
independent of the size of the total system, if the size of theone-site increments is fixed
and the incremental series is truncated at a given order. ThelargestNO(O) is fixed to
a constant by the set of the one-site domains and the order of the expansion. Since
NV(O) is determined byNO(O), we fix this dimension, too (section 4.1.1). Therefore
we can rewrite eqn. 3.31 as:

u ∝ Ncalc · tmax
O with tmax

O = const (3.32)

If we further neglect all energy increments which are separated by a certain distance,
according to eqn. 3.16 the number of calculations increaseslinearly with the system
size.

Ncalc ≈ N (3.33)
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Consequently, it is possible to set up the incremental scheme as a linear scaling method.
There are two important points to note here. Firstly we have to truncate the virtual
space for the domains in order to get a constant virtual spaceNV(O) and secondly we
need a linear scaling MO-transformation for the incremental scheme. However, with
the current implementation using the CCSD code in MOLPRO [87] we are limited to
a formalN 5 scaling if we use eqn. 3.16 to reduce the number of calculations.

NO(O) = const, Ncalc ∝ N , N 4
V ≡ N 4

The virtual space dependence enters completely into our scaling, because of the im-
possibility to truncate the virtual space within the MOLPROCCSD code.

3.2 Derivation of the Correlation Energy for a Solid

The total correlation energyE total
corr of a system ofn domains may be obtained by

E total
corr =

1

1!

n∑

I

∆εI +
1

2!

n∑

IJ

∆εIJ +
1

3!

n∑

IJK

∆εIJK + ...

+
1

|{I, J,K, ..., T}|!
n∑

IJ...T

∆εIJK...T + ...+
1

n!

n∑

IJK...T...N

∆εIJK...T...N (3.34)

where the indicesI, J,K, ..., T run over all domains. In a periodic system the correla-
tion energy is infinite, therefore one refers to the correlation energy per cellEcell

corr which
is defined as:

Ecell
corr = lim

n→∞

E total
corr (n)

n
(3.35)

If we have a supercell of n cells, we can divide the system inton equal parts:

E total
corr (n) =

n∑

i=1

Ei
corr(n) (3.36)

Inserting eqn. 3.36 into eqn. 3.35 we obtain:

Ecell
corr = lim

n→∞

∑n
i=1E

i
corr(n)

n
= lim

n→∞

n · Ecell
corr(n)

n
= lim

n→∞
Ecell

corr(n) (3.37)

Then dependence in eqn. 3.37 refers to the infinity of the system. Now we rewrite
eqn. 3.34:

E total
corr (n) =

n∑

I=1

[

1

1!
∆εI +

1

2!

n∑

J=1

∆εIJ +
1

3!

n∑

J,K=1

∆εIJK + ...

]

(3.38)
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If we compare the right hand side of eqn. 3.36 with eqn. 3.38 wefind the incremental
energy per cell as:

Ecell
corr(n) =

1

1!
∆εI +

1

2!

n∑

J=1

∆εIJ +
1

3!

n∑

J,K=1

∆εIJK + ... (3.39)

taking the limitn→ ∞ we get:

Ecell
corr =

1

1!
∆εI +

1

2!

∞∑

J=1

∆εIJ +
1

3!

∞∑

J,K=1

∆εIJK + ... (3.40)

At this point we use the index symmetry in eqn. 3.39 in order toreduce the computa-
tional effort drastically:

Ecell
corr = ∆εI +

1

2

∞∑

J=1

∆εIJ +
1

3

∞∑

J>K,K=1

∆εIJK + ... (3.41)

The prefactors of1
O

can also be dropped if we sum over translationally equivalent
increments only once, since we haven translationally equivalentn-site increments.

3.3 Incremental Correlation Energy for Small Domains

Sometimes it might be advantageous to divide the reference cell into smaller domains.
If we treat the problem straightforward, the incremental expansion reads:

Ecell
corr =

1

1!

l∑

I=1

∆εI +
1

2!

l∑

I=1

∞∑

J=1

∆εIJ +
1

3!

l∑

I=1

∞∑

J=1

∞∑

K=1

∆εIJK + ... (3.42)

whereI runs over all domains in the reference cell,J,K run over all domains,l is the
number of one-site domains in the reference cell and the setD is ordered in a way that
the firstl elements are located in the reference cell. We have to consider two cases for
a second-order increment:

1. both indices are in the reference cell
2. one index is in a different cell

for a third-order increment we have already 4 cases:

1. all indices are in the reference cell
2. two indices are the reference cell and the other one in the environment
3. one index is in the reference cell and the other two in the same cell of
the environment
4. one index is in the reference cell and the other two in different cells of
the environment
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Since all these cases have different prefactors, it’s quitetedious to treat higher order
increments.

3.3.1 Expansion of the Fragmental Energies in a Further Expan-
sion

To derive a general expression for the incremental energy weexpand the correlation
energies of the fragmentsεX of eqn. 3.41 in a further expansion. The one-site incre-
mentεI reads:

εI =
1

1!

∑

(a)I

∆ε(a)I
+

1

2!

∑

(ab)I

∆ε(ab)I
+

1

3!

∑

(abc)I

∆ε(abc)I
+ ... (3.43)

The indexI restricts the index space ofa, b, c... to the cellI. In the short hand notation
we get:

εI =
∑

Y

Y∈P(XI)

∆εY

εIJ =
∑

Y

Y∈P(XIJ )

∆εY

(3.44)

whereXI is the subset of the domains located in the cellI andXIJ is the subset of the
domains in the cellsI andJ . For the two-site increments we get in this case:

∆εIJ =
∑

Y
Y∈P(XIJ )

∆εY −
∑

Y
Y∈P(XI )∪P(XJ )

∆εY =
∑

Y
Y∈P(XIJ )\

[P(XI)∪P(XJ )]

∆εY (3.45)

Since the higher order increments have a similar structure,we introduce a short hand
notation for the set of indices in the last term in order to simplify the notation:

P(XIJ) = P(XIJ) \ [P(XI) ∪ P(XJ)] (3.46)

The general index setP(XK) is defined as:

P(XK) = P(XK) \
⋃

λ
λ∈P(K)
|λ|<|K|

P(Xλ) (3.47)

whereK denotes a set of cells. Note that the definition of theP(XIJ) in eqn. 3.46 is
equivalent to the general definition in eqn. 3.47, sinceP(XI) = P(XI). We note that



3.3 INCREMENTAL CORRELATION ENERGY FORSMALL DOMAINS 31

the setsP(XK) andP(XK′) are disjoint for different setsK andK
′. Using eqn. 3.47

we can write the general form of eqn. 3.45 as:

∆εK =
∑

Y

Y∈P(XK)

∆εY (3.48)

We prove eqn. 3.48 by induction. We assume that eqn. 3.48 is true for all lower orders
(n − 1 condition). This is equivalent to that it is true for all subsetsL with |L| < |K|.
Now we substitute this condition into the general definitionof an increment eqn. 3.11
and obtain:

∆εK =
∑

Y
Y∈P(XK)

∆εY −
∑

Y
Y∈P(K)
|Y|<|K|

∆εY =
∑

Y
Y∈P(XK)

∆εY −
∑

Y
Y∈P(K)
|Y|<|K|

∑

L

L∈P(XY)

∆εL

=
∑

Y
Y∈P(XK)

∆εY −
∑

Y
Y∈A

∆εY =
∑

Y
Y∈P(XK)\A

∆εY

(3.49)

Due to the fact that the sets in the double summation in eqn. 3.49 are disjoint, we can
replace the double summation by a summation over a unified index setA,

A =
⋃

Y
Y∈P(K)
|Y|<|K|

P(XY) (3.50)

If we insert the definition ofA into the last sum in eqn. 3.49 we see immediately that
we sum over the index setP(XK) defined in eqn. 3.47, which is the desired result. We
start the induction at second order which is proven in eqn. 3.46.

3.3.2 Separate Treatment of the Translational Symmetry

The goal of using a second expansion for the inner cell correlation energies is to sep-
arate the translational symmetry from the index symmetry. Essentially we avoid a
separate treatment of distinct cases. Since we can use eqn. 3.48 to simplify the ex-
pressions, we get the same terms as in the straightforward expansion eqn. 3.42. The
only difference is that we regrouped the terms according to the translational symmetry.
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Collecting this we end up with:

Ecell
corr =

1

1!







∑

Y

Y∈P(XI)

∆εY







+
1

2!

∑

J







∑

Y

Y∈P(XIJ )

∆εY







+
1

3!

∑

JK







∑

Y

Y∈P(XIJK)

∆εY







+ . . .

(3.51)

In order to get eqn. 3.51 equivalent to the straight forward expansion, we have to
restrict the index setsY to a certain orderO (|Y| ≤ O). The index symmetry of
the inner expansion is present in the index spaceP(XK) completely. For the outer
expansion we can remove this index symmetry by restricting the summation. We want
to point out that the prefactors do not cancel completely in this case, since we restrict
the indexI to be in the reference cell.

Ecell
corr =







∑

Y

Y∈P(XI )

∆εY







+
1

2

∑

J







∑

Y

Y∈P(XIJ )

∆εY







+
1

3

∑

J>K







∑

Y

Y∈P(XIJK)

∆εY







+ . . .

(3.52)

In the next step we use the translational symmetry to cancel the prefactors completely.
Since the indicesI, J, ... run over cells, we have exactly two equal terms due to trans-
lation (e.g.Y in P(XIJ) andY in P(XIJ ′)). In general the prefactor of the sum over
I, J, ... is always equal to the inverse of the number of translationally equivalent in-
crements. Therefore we leave this prefactors out and sum only over translationally
non-equivalent increments.

Ecell
corr =







∑

Y

Y∈P(XI)

∆εY







+
∑

J ′







∑

Y

Y∈P(XIJ )

∆εY







+
∑

J ′>K ′







∑

Y

Y∈P(XIJK)

∆εY







+ . . .

(3.53)

Here the restriction to translational different terms is denoted by the primes in the
summation.
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3.4 Incremental Expansion for non-Disjoint Cells

We derived eqn. 3.52 with the assumption that the cells are disjoint. In order to explore
the full crystallographic symmetry of the crystal we have toallow face, edge, or corner
shared domains. For this purpose, we derive eqn. 3.53 for disjoint cells again with a
different ansatz. In the next step we extend the approach to non-disjoint unit cells. We
write the correlation energy of a finite system ofn cells and the set of domainsD as:

E total
corr =

1

1!

∑

i′

∆εi′ +
1

2!

∑

i′j

∆εi′j +
1

3!

∑

i′jk

∆εi′jk + ...

+
1

|{i′, j, k, ..., t}|!
∑

i′j...t

∆εi′jk...t + ... +
1

|D|!
∑

i′jk...t...z

∆εi′jk...t...z

i′, j, k, ..., t, ..., z ∈ D |{i′, j, k, ..., t, ..., z}| = |D|

(3.54)

In the next step we reorder the summation overi′ according to the chosen cells. This
means we divide the index set ofi′ into disjoint subsets. Using the definition of the
one-site domains of eqn. 3.9 we define the set of the one-site domainsCλ within the
cell Cλ as:

Cλ = {Dλ ∈ D|~Ra ∈ Cλ ∀ φa ∈ Dλ} (3.55)

where we used the definition of a cell and the mapping:

φa 7→ ~Ra :=





〈φa |x|φa〉
〈φa |y|φa〉
〈φa |z|φa〉



 =





xa

ya

za



 (3.56)

We note that translational symmetry with respect to the domains has to be required, in
order to regroup the summations with respect to the cells.

E total
corr =

n−1∑

λ=0

[

1

1!

∑

i∈Cλ

∆εi +
1

2!

∑

i∈Cλ

∑

j

∆εij +
1

3!

∑

i∈Cλ

∑

jk

∆εijk + ...

+
1

|{j, k, ..., t}|!
∑

i∈Cλ

∑

jk...t

∆εijk...t + ...+
1

|D|!
∑

i∈Cλ

∑

jk...t...z

∆εijk...t...z

] (3.57)

We get the energy per cell as:

Ecell
corr =

1

1!

∑

i∈Cλ

∆εi +
1

2!

∑

i∈Cλ

∑

j

∆εij +
1

3!

∑

i∈Cλ

∑

jk

∆εijk + ...

+
1

|{j, k, ..., t}|!
∑

i∈Cλ

∑

jk...t

∆εijk...t + ...+
1

|D|!
∑

i∈Cλ

∑

jk...t...z

∆εijk...t...z

(3.58)
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Note that eqn. 3.58 yields the exact energy per cell of eqn. 3.42 of an infinite ideal
solid if we take the limitn → ∞. Since the limitn → ∞ is equivalent to|D| → ∞
we get infinite summations overj, k, ... in this case.

3.4.1 The Prefactors for Disjoint Cells

As a first case we analyze the prefactors of disjoint cells. The generalization to non-
disjoint cells can be based upon the general considerationsin this section, as we will
see later on. In the first step we classify the indices of a given t-site domaindµ by
translation vectors.

dµ ∈ P(D) with |dµ| = t

In order to do this classification we define the translationalequivalence classET of a
domaindµ with respect to the reference cellC0 according to:

ET := all translations where at least one index of then-site

domain is in the reference cell

ET = {t̂ ∈ T̂| t̂ ◦ dµ = d′µ with Xt̂ = d′µ ∩ C0 6= ∅} (3.59)

where we leave the representation oft̂ ◦ dn unspecified. It will be defined in the
general section on symmetry (section 3.6). With the translations of eqn. 3.59 we
are able to define the setsXt̂λ

as set of domains within the reference cell. Now we
are in the position to analyze the prefactors for an increment with respect to index and
translational symmetry. If we start with the first element ofthe first setXt̂1 we have
(t− 1) summation indicesj, k, ... in eqn. 3.58 (for thet-th order summation) since we
fix i to the first domain in the cellC0. For the other domains inXt̂1 we do the same
considerations and obtain a total factor of

∣
∣Xt̂1

∣
∣ · (t − 1)! for t̂1 as translation. This

considerations hold for all other translations inET , too. Therefore we get the total
prefactorft for a t-site increment as:

ft =
∑

i∈ET

|Xi| · (t− 1)! (3.60)

Since we classified all indices of thet-site domain by translation vectors, we have:

∑

i∈ET

|Xi| = t (3.61)

Inserting eqn. 3.60 and eqn. 3.61 into the incremental expansion 3.58 we see that
the prefactors1

t!
cancel with the translational symmetry and the index symmetry. We

obtain the same result as in eqn. 3.53.
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3.4.2 The Prefactors for non-Disjoint Cells

At this point we consider the case of symmetric cells like in figure 3.6:

A B C

D E F

G H I

Figure 3.6: A 3× 3 supercell built from a unit cell with atoms/centers of charge at the
corners.

In this case we start again from eqn. 3.54 and split the sums over i′ into a number of
summations. But this time we order the terms according to single one-site domains:

E total
corr =

1

1!
∆ε1 +

1

2!

∑

j

∆ε1j +
1

3!

∑

jk

∆ε1jk + ...

+
1

1!
∆ε2 +

1

2!

∑

j

∆ε2j +
1

3!

∑

jk

∆ε2jk + ...

+
1

1!
∆ε3 +

1

2!

∑

j

∆ε3j +
1

3!

∑

jk

∆ε3jk + ...

...

(3.62)

This means we split up the incremental expansion for the whole system into a set of
expansions: one for every one-site increment (every point in figure 3.6). At this stage
we can easily introduce weight factors due to the symmetry ofthe cell in figure 3.6.
We just multiply every expansion on these special points by their weight factor in the
cell (e.g. 4 · 1

4
for an edge domain). This is to insert a proper one according to the

definition of the cell. Clearly, this leaves our total expansion unchanged. But now we
are able to get the contributions for shared domains to the energy per cell. Collecting
all contributions for a single unit cell using the weight factors for face, edge or corner
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shared cells and taking the limitn→ ∞ we obtain:

Ecell
corr =

1

8

∑

i∈Cc

[

1

1!
∆εi +

1

2!

∑

j

∆εij +
1

3!

∑

jk

∆εijk + ...

]

+
1

4

∑

i∈Ce

[

1

1!
∆εi +

1

2!

∑

j

∆εij +
1

3!

∑

jk

∆εijk + ...

]

+
1

2

∑

i∈Cf

[

1

1!
∆εi +

1

2!

∑

j

∆εij +
1

3!

∑

jk

∆εijk + ...

]

+
∑

i∈Cin

[

1

1!
∆εi +

1

2!

∑

j

∆εij +
1

3!

∑

jk

∆εijk + ...

]

(3.63)

Here we partitioned the index setC0 of the reference cell into pairwise disjoint subsets:

C0 = Cc ∪ Ce ∪ Cf ∪ Cin

with

Cc one-site increments at the corners of the reference cell

Ce one-site increments at the edges of the reference cell

Cf one-site increments at the faces of the reference cell

Cin all other one-site increments in the reference cell (the redpoints in figure 3.6)

Now we analyze the prefactor of every increment analogous tothe previous consid-
erations according to eq 3.60. The summation over the translational classes does not
immediately yieldt, because we shared domains. For a face-shared domain we get 2
translations, for an edge-shared domain we get 4 and for a corner-shared domain we
get 8 translations in a 3-dimensional lattice. These factors cancel with the additional
prefactors in eqn. 3.63 to one and we get the same result as in the case of disjoint cells.

3.5 Incremental Expansion for a Multi-reference Case

The straightforward extension of the incremental scheme tothe multi-reference case
reads:

Ecorr = Eactive
corr +

∑

i

∆εi +
1

2!

∑

ij

∆εij +
1

3!

∑

ijk

∆εijk + ... (3.64)

whereEactive
corr is the correlation energy of the active space using the wholevirtual space

V (for a truncation ofV consider 3.5.1). This means we have to build all excitations
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from our active space intoV (up to the given excitation level of the method in use),
and keep all other electrons frozen. The one-site increments are redefined as:

∆εi = εi −Eactive
corr

∆εij = εij − ∆εi − ∆εj − Eactive
corr

Since active space is included in every calculation, we introduced the additional terms
in the expansion to ensure that we count the active space contribution to the correlation
energy only once.
As a special case we discuss a single electron in a single orbital. In this case we have

Eactive
corr = 0

because there is no "self-correlation". Thus the expansioneqn. 3.64 reduces to the
standard incremental expansion eqn. 3.1. This can be used toexpand the RCCSD
correlation energy in open shell calculations. The difference to the conventional incre-
mental expansion is that we have the active electron in everycalculation.

3.5.1 Truncation of the Virtual Space

In order to speed up the calculation time, a truncation of thevirtual space is desired.
This can be achieved by a small modification of the∆εi in eqn. 3.64.

∆ε′i = εi −Eactive
corr (Vi)

∆ε′ij = εij − ∆ε′i − ∆ε′j − Eactive
corr (Vij)

Eactive
corr (Vi) := correlation energy of the active electrons with the subspaceVi of V

This modification ensures that the calculation is speeded up, even if the coupling of
the virtual space with the active electrons is large.

3.6 Treatment of Symmetry

The treatment of symmetry is very important, since it can reduce the number of calcu-
lations significantly. Within the framework of the incremental scheme we can do this
using the concept of equivalence classes. First we introduce the representation of a
local orbital as a vector according to the center of charge eqn. 3.56 and define the set
of symmetry operatorsG of the point groupG. A symmetry operator̂O transforms a
vector~v into its symmetry equivalent vector~v′.

Ô~v = ~v′
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Now we define an equivalence classW of vectors:

W~va = {~v′a ∈ R
3|Ô~va = ~v′a for all Ô ∈ G} (3.65)

Since a domainDλ usually contains a set of orbitals we need equivalence classes for
sets of vectors. In order to get an analogous definition of eqn. 3.65 for a set of vectors
Dλ, we define the action of a symmetry operator on a set of vectorsby the action of
the symmetry operator on all elements of the set:

ÔDλ = D′
λ = {Ô~va|~va ∈ Dλ} (3.66)

Going one step further we define the action of a symmetry operator on a set of sets of
vectors as:

Ô{Dλ1
, ...,Dλn} = {D′

λ1
, ...,D′

λn
} = {ÔDλ1

, ..., ÔDλn} (3.67)

In order to have a clear notation we introduceD̃ analogous to the set of all domains as
set of allDλ. Using the definition eqn. 3.66 we can define the equivalence classE for
the representation of an arbitrary domainX as (X ∈ P(D̃)):

EX = {X
′ ∈ P(D̃)|ÔX = X

′ for all Ô ∈ G} (3.68)

For exactly symmetric local orbitals we find that the energy increments of domains
within the same equivalence class are equal. For approximately symmetric orbitals
they should be equal up to a given accuracy. We can reduce the number of calculations
by calculating only one increment per equivalence class.

3.6.1 Symmetric One-Site Domains

In the above discussion we implicitly assumed that the one-site domains are disjoint
and fulfill the symmetry requirements. This leads to some restrictions of the one-site
increments. Firstly the one-site domains must be symmetry adapted to fulfill eqn. 3.66.
Therefore we define the set of all vectorsÕ which map to an occupied orbital inO.

Õ = {~R1, ~R2, ..., ~Rn}

The symmetry condition can be fulfilled by dividing̃O into equivalence classes accord-
ing to eqn. 3.65. In the second step we find the non-redundant part Ō of the system by
choosing one element of every equivalence classW~va . Since we want to have compact
domains we choose the element of theW~va where the distance to an element ofŌ is
smallest. If we have the non-redundant part of the molecule we can use the symmetry
operations of the group to construct the complete system again. Therefore we get au-
tomatically symmetric domains if we divide the non-redundant part and then apply the
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symmetry operations to get the equivalent ones. In order to make sure that the domains
are disjoint, we have to introduce another restriction, as we can see from the following
example:

D = {~v1, ~v2}
Ô~v1 = ~v1

Ô~v2 = ~v′2

ÔD = {~v1, ~v
′
2}

D ∩ D′ = {~v1, ~v2} ∩ {~v1, ~v
′
2} 6= ∅

(3.69)

To ensure that one-site domains are disjoint after generating the symmetry equivalent
one-site domains, we introduce the concept of site symmetry. We map to every point
in Ō the set of symmetry operatorsS which leave this point invariant.

S~Ri
= {Ôj ∈ G|Ôj

~Ri = ~Ri} (3.70)

Using eqn. 3.70 we can dividēO into a set of disjoint subsetsTk with:

Tk = {~Ri ∈ Ō|S~Rk
= S~Ri

} (3.71)

Now we construct the domainsD within the setsTk and apply the symmetry operators
to generate symmetry adapted one-site domains.

3.7 Error Analysis in the Incremental Expansion

A closer look at eq. 3.1 reveals that the sum of the energy increments at low order is
included for several times at higher orders. In a system of|D| domains we have

(
|D|
2

)

two-body increments. A special one-site increment is included in the summation over
the second-order for(|D| − 1) times. In general the prefactorpst for the sum over the
s-site increments included in thet-site increments can be determined according to:

pst =

(
(|D| − s)

(t− s)

)

with t > s (3.72)

The summation over a given order yields a constant errore. Considering eq. 3.72
we end up in a large accumulation of the error for higher orderincrements, since the
prefactors increase quite fast and thus give a large weight to the errors of the sums in
low orders.
We checked this propagation of errors in the incremental expansion by a numerical
study. The results are displayed in figure 3.7. They are basedon 2000 sets of uniformly



40 CHAPTER 3 THE INCREMENTAL SCHEME

|D| εX = X · 10−6 εX = X · 10−10 · 10O
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Figure 3.7: Error distribution of the incremental series for 10, 15 and 20 domains. The
errors on the left are fixed to a constant value and are order-dependent on
the right (see text). The standard deviation [mH] ati-th order is given as
σi.
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distributed random numbersX in the interval[−0.5; 0.5]. The left side of figure 3.7
was generated by multiplying the random numberX by a constant factor of10−6 (we
useX · 10−6 for εX instead of the CCSD correlation energies). This models errors in-
troduced by CCSD energies which are converged to a thresholdof 10−6 Hartree. It can
be seen that the errors increase with increasing number of domains and broader distri-
butions around the exact results are obtained for increasing expansion order. Clearly,
we can iterate the CCSD solutions of the fragments further and thus get more accurate
correlation energies and smaller errors in the incrementalexpansion. However, one
should note that at high order such a strategy might become quite expensive. Since the
sums over the computationally cheap low-order increments are multiplied by large fac-
tors we have to iterate the corresponding correlation energies to a higher accuracy than
those more expensive ones for higher orders. This strategy is simulated on the right
hand side of figure 3.7 (εX = X ·10−10 ·10O). The errors especially for larger numbers
of domains|D| can be decreased significantly, although the correlation energies of the
subsystems resulting from the unification of the largest number of domains (i.e. 20)
are converged to a lower accuracy (i.e.10−5 Hartree) than on the left hand side. Thus
order-dependent convergence thresholds are a efficient wayto obtain accurate incre-
mental energies while reducing the cost of the most time consuming calculations to
obtain high-order increments.
There are two different types of errors in the expansion at higher orders. The first one
is the error caused by the multiplication of the low-order errors by large factors and the
second one is the error caused by the summation over all increments of higher order.
Note that in practical calculations both of these errors arereduced by using the trunca-
tion thresholdRmin. The first error is reduced, because the weight factors are lowered
if we use only a subset of the higher-order increments. The second error is reduced,
because we sum only over a smaller set of increments. Note that the truncation thresh-
old Rmin introduces an error, too (chapter 6). Figure 3.8 shows the distribution of the
incremental error for third and fourth order with 20 domainsusing an order dependent
energy threshold for the fragmental CCSD energies. Both distributions are compact
and therefore do not cause a loss of accuracy.
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Figure 3.8: Error distribution of the incremental series with 20 domains using artificial
order-dependent energies of (εX = X · 10−10 · 10O).



Chapter 4

Automatization of the Incremental
Scheme

In order to set up a fully automatized incremental scheme we have to construct the
one-site domains automatically. After this step everything else is determined by set
theory.

4.1 Obtaining Groups of Occupied Orbitals

The occupied orbitals are localized with a Foster-Boys procedure [3] using the algo-
rithm of Edmiston and Ruedenberg [79]. For these localized orbitals we build the
centers of charge from the diagonal elements of the dipole integrals in MO-basis.

φa 7→ ~Ra :=





〈φa |x|φa〉
〈φa |y|φa〉
〈φa |z|φa〉



 =





xa

ya

za





Using the mapping of the Foster-Boys orbitals to their centers of charge, we are able
to map our set of occupied orbitalsO onto a set of vectors. From this set of vectors
we build the distance matrixD of all vector pairs. In the next step we construct the
connectivity matrixC according to:

Cij =







108, if Dij ≤ tcon ∧ w
Dij

≥ 108

w
Dij
, if Dij ≤ tcon ∧ w

Dij
< 108

0, if Dij > tcon

(4.1)

wheretcon is a distance threshold andw is a constant stretching factor of 104. The fac-
tor of 108 enters as an approximation of infinity in the regime of 32 bit integers. Since

43
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METIS graph partitioning [83] needs the number of parts in advance, we introduce the
domain size parameter (dsp) to control this number. Due to the fast increase of the
calculation time it is more convenient to control the size ofthe domains than a given
number of domains. We calculate the number of parts parameter (nop) for METIS
according to:

nop=
|O|
dsp

(4.2)

Furthermore, since the graph partitioning requires integer variables we do a type cast
from double to integer. The graph partitioning is done with the condition that the sum
of the cut edge weights is minimal. According to the definition of our connectivity
matrix C this forces close-lying orbitals to be in one domain. At the end we obtain
local disjoint subsets of occupied orbitals. In the symmetric case we do the partitioning
in the setsTk as discussed in the previous section.

4.1.1 Excitation Spaces for One-Site Domains

Our goal is to obtain a virtual spaceVφa for every occupied orbitalφa:

φa 7→ {φ̃AO
i } (4.3)

This is analogous to introducing excitation domains as in the well established local
MPn methods of Pulay et al. [8] or Werner et al. [10]. Our virtual space is spanned
by a set of projected atomic orbitals (PAOs){φ̃AO

i }. The set of PAOs is constructed
according to [8,20]:

|φ̃AO
i 〉 = |φAO

i 〉 −
occ∑

j

〈φMO
j |φAO

i 〉|φMO
j 〉 (4.4)

In local orbitals we recognize that an atomic orbital is important if it’s center is close to
the center of charge of the MO. Guided by the spatial decay of the localized occupied
orbitals we can restrict the excitation space of an occupiedorbital according to eqn.
4.5. ∫

(
φMO

a − φ̄MO
a

)2
dτ ≤ tdens (4.5)

We use the AO-representation ofφ̄MO
a to find the most important AO-functions inφMO

a .

φMO
a =

∑

i

ciφ
AO
ai (~r, ~λ)

φ̄MO
a =

∑

i

chi
φAO

ahi
(~r, ~λ)

(4.6)
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where~λ is the shift vector of the AO-function. Since we usually havea set of AO-basis
functions on the same center, we define the setE~v:

E~v = {φAO(~r, ~λ)|~λ = ~v} (4.7)

According to eqn. 4.7 we can divide the set of AO-functions into disjoint subsets. We
can find the important AO-functions inφMO

a by successively using the setsE~v where
~v is closest to the center of charge ofφMO

a until eqn. 4.5 is fulfilled. In order to get
the ordering of the setsE~v according to the distance to the center of charge of the a-th
local MO we define the ordering relation as:

∣
∣
∣~Ra − ~vs

∣
∣
∣ >

∣
∣
∣~Ra − ~vt

∣
∣
∣ for s > t (4.8)

Now we find the smallest n where eqn. 4.9 is fulfilled.

∫


φMO
a −

n∑

i=1

∑

h∈E~vi

〈φAO
h |φMO

a 〉φAO
h



 dτ ≤ tdens (4.9)

With this procedure we obtain āφMO
a . From eqn. 4.4 we identify the mapping:

φAO
i 7→ φ̃AO

i (4.10)

The representation of̄φMO
a contains a set of AO-functions which can be mapped to

their corresponding PAOs according to eqn. 4.10. Thus we finda local excitation
spaceVφa for the orbitalφMO

a .
In order to obtain a local excitation spaceVi for our one-site domaini we have to unify
the sets of PAOs which correspond to the occupied orbitals inthe domain.

Vi =
⋃

φa∈Di

Vφa (4.11)

4.1.2 Construction of then-Site Domains

Then-site domains are constructed using simple set theory.OD1D2
is defined as the

union of the occupied orbitals ofD1 (OD1
) with the occupied orbitals ofD2 (OD2

).
The same holds for the virtual orbitals inD1 andD2 (VD1D2

). In general occupied and
virtual spaces for then-site domains are constructed according to:

OX =
⋃

λ∈X

Oλ (4.12)

VX =
⋃

λ∈X

Vλ (4.13)

X = {Di1 , Di2, Di3 , ..., Din} := subset ofD with cardinalityn

X ∈ P(D) ∧ |X| = n
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4.1.3 Obtaining Correlation Energies

In order to calculate the energies with a standard quantum chemistry package we have
to account for the linear dependencies and the non-orthogonality in the PAO space.
For this purpose we use a linear transformation which includes symmetric orthogonal-
ization:

D− 1

2U †CTSAOCUD− 1

2 = 1 (4.14)

with the MO coefficient matrixC, the overlap matrix in AO basisSAO, the diagonal
matrix D = U †CTSAOCU and the MatrixŨ which diagonalizes̃S = CTSAOC.
The matrixU is obtained by restricting̃U to those eigenvectors which correspond
to an eigenvalue greater than10−10. Now we build the new MO matrix within the
localized occupied orbitals and with the new orthogonalized linear independent PAOs.
All occupied orbitals which are not in the setOK are frozen, and all virtual orbitals
which are not inVK are deleted in the following CCSD calculation. Finally we obtain
the total CCSD correlation energy according to eqn. 3.1.

4.2 Truncation by Distance

Up to now we constructed all possible combinations of one-site domains for a given
order of the expansion. In order to get the correct scaling with respect to the number
of calculations we introduce a truncation threshold according to section 3.1.2. We can
reduce the question of the importance of a givenn-site increment for the total energy
to a question of graph connectivity. LetX be an-site domain,VX be a set of vectors
with:

VX = {~Ra|φa ∈
⋃

λ∈X

Dλ} (4.15)

Further we define the graphG(VX,E), where the thresholdRmin defines the adjacency
of G(VX,E):

E = {{~x, ~y} | ~x, ~y ∈ VX ∧ 0 < |~x− ~y| < Rmin} (4.16)

We neglect alln-site domains(n > 1) for whichG(VX,E) is disconnected. We note
that eqn. 3.16 requires compact one-site domains, i.e. the orbitals in the one-site
domains must be close in space.
Furthermore we implemented a dynamic distance threshold for the different ordersOi

of the expansion, in order to have more degrees of freedom forthe truncation. Since
high order increments are usually smaller than low order increments we use a distance
truncation according tof

Oi
. In this casef is an adjustable parameter and we test the

performance of this dynamic screening for several values off .



Chapter 5

Implementation

5.1 Interfaces

We built interfaces to DALTON 2.0, MOLPRO 2002.6 and MOLCAS 6.4 quantum
chemistry packages. For reasons of simplicity we modified the source code of the cor-
responding programs to obtain the overlap integrals in AO basis, the dipole integrals in
AO basis and the MO coefficient matrix from a previous SCF calculation. We print the
necessary numbers in double precision into the standard output and extract the data via
an extraction class (e.g. Molpro_extractor.H, Molcas_Overlap_Dipole_Interface.H/
Molcas_6_4_INPORB_Interface.H and for DALTON Overlap_Dipol_Interface.H/
MOPUN_Interface.H). In MOLPRO calculations it is necessary to add some addi-
tional statements in order to get the desired information (see appendix B.3 for an ex-
ample). Since MOLCAS uses the same format for the CASSCF orbital file, we could
just rename the file and use the extraction module for the SCF orbitals in this case, too.
Furthermore we built interfaces to the correlation codes ofDIESEL [77] for, MR-CISD
MR-ACPF, MR-AQCC and MR-CEPA(0), to the CCSD and the property modules of
DALTON [88] and to the CCSD and RCCSD codes in MOLPRO [89].

5.2 Foster-Boys Localization

We generated three stand alone Foster-Boys programs, for MOLCAS, DALTON and
MOLPRO respectively (Molcas_6_4_FB, Dalton_FB, Molpro_FB). This was neces-
sary, since we have to use different extraction classes for the different codes. These
modules produce an output with information of the convergence and store a file for
the MO-coefficients which are read in by the corresponding server in the incremental
calculation. The performance of the localization procedure is optimized by a reduced
matrix multiplication in the transformation of the MO-coefficient matrix and in the
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AO-MO transformation of the one particle integrals analogous to eqn. 5.2.

(
A B

C D

)

·
(
E F

G H

)

=

(
AE +BG AF +BH

CE +DG CF +DH

)

(5.1)

for D = 1 andF,G a zero matrix we get:

(
A B

C D

)

·
(
E 0

0 1) =

(
AE B

CE D

)

(5.2)

Eqn. 5.2 gives a sketch of the simplification which can be usedto reduce the time for
the successive2 × 2 matrix multiplications drastically.

5.3 Parallelization

The parallelization is achieved by a server/client structure. It can be run with a script
on the GRIDENGINE queuing system [90]. Before the clients are started, a file called
Servers_HOSTNAME has to be generated. This file is copied to all slaves. It contains
the name of the server which is necessary to establish the connection to the server
via socket++. Using the GRIDENGINE framework has the advantage that a resource
management by hand is not necessary, since the GRIDENGINE checks for available
computers and starts the processes automatically if one or more nodes are free. Fur-
thermore it is not necessary to start all slaves simultaneously, and therefore the job can
start as soon as a node is available. Further slaves can startas soon as more nodes are
free.

5.3.1 The Server

The server reads all information from an input file via cin (e.g. server< infile >

outfile). Since we have many codes with different options we decided to write special
servers for the different codes/correlation modules. The necessary input can be read
in the first few lines of the corresponding source code as a variable declaration with
comments.

The server collects all data and builds the symmetry adaptedone-site domains. In
the next step it builds all possiblen-site domains up to a given order and divides them
into equivalence classes. After the construction of this data structure the connection
protocol is started, which is the real server. If a client connects, the server reads the
job identification, the error information and the correlation energy of the last job. The
correlation energy is arranged in the order of the job identification. If an error occurs
the job is terminated. The server builds the MO-matrix for a given calculation on the
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local MO
 coefficient matrix

server

Servers_HOSTNAME sym_partitions.xyz centers.xyz STDOUT

overlap integrals
 in AO basis

dipole integrals
 in AO basis

input file
basis set

 information

Figure 5.1: A sketch of the essential input data files for the incrementalcalcu-
lation. The output files include the information of the centers of
charge (centers.xyz), the symmetry adapted redundant one-site domains
(sym_partitions.xyz) and the node of the server (Servers_HOSTNAME).
The output is written to standard output (STDOUT).

fly and sends it together with the job identification to the client. If no more jobs are
available, the server sends the end signal to the client. After all jobs have run properly
the server calculates the incremental correlation energy and ends.

5.3.2 The Client

The client connects to the server, sends the energy/error-wrapper to the server and asks
for work. If there are still jobs to do, the client gets the necessary information as job
identification and the MO-coefficient matrix by a wrapper class and writes the input file
for the correlation code. In the next step it calls the correlation code by a system call.
After the correlation calculation it extracts the correlation energy as well as the error
information with an extraction class from the output of the correlation calculation. At
this point it connects to the server again and starts the procedure again.

5.3.3 The Wrapper

The wrapper classes are data classes which can be written to astream and constructed
from a stream. Furthermore they contain an initial constructor from a set of data
classes, which ensures the correct initialization. Therefore it is very convenient to use
wrapper classes for data transfer in a stream-based parallel framework like socket++.



50 CHAPTER 5 IMPLEMENTATION

server

wrapper 1

network

wrapper 1

wrapper 2

client

input

wrapper 2

correlation code

output

Figure 5.2: Data flow within the server/client structure.
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necessary inputfile generated file C++ module

molpro.in
molpro SCF

- using several print options
- using a modified source code

client

molpro.out

Molpro_FB

server

mo_matrix INPORBD

STDOUT

fb.in

Servers_HOSTNAME sym_partitions.xyz centers.xyz STDOUT

server.in

molpro CCSD

Figure 5.3: Data flow for an incremental calculation within the MOLPRO environ-
ment.

istream

object of the wrapper class
- structured data

ostream

data

network

Figure 5.4: Visualization of the concept of a wrapper class as data container for the
network transfer.
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Figure 5.5: Centers of charge for naphthalene colored by their membership to the one-
site domains.

5.4 Visualization of the Domains

The server writes a file called sym_partitions.xyz. It is formatted as a usual xyz-file for
atoms and contains the centers of charge for the domains. Thegrouping to different
domains is done by fictitious atom labels. This enables us to check the performance of
the partitioning into one-site domains visually by standard programs like MOLDEN
[91] or MOLEKEL [92, 93]. Figure 5.5 and 5.6 present the domains of naphthalene,
where every sphere represents an occupied orbital by the center of charge. The double
bonds can be seen clearly in figure 5.6 by the two spheres between two carbon atoms.
For sigma bonds we find one sphere between two carbons or between a carbon and
a hydrogen respectively. Note that the location of the centers of charge matches very
well to the chemical intuition of the locations of the electrons in the molecule. The
other resonance structure might be obtained by choosing a different threshold for the
localization procedure. The locality of the one-site domains can be seen by the color
of the centers of charge.
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Figure 5.6: Centers of charge for naphthalene colored by their membership to the one-
site domains.

5.5 Symmetry for Molecules

We use eqn. 3.68 to treat the symmetry of then-site domains. As representation of the
n-site domains we can use a set of vectors. This can be done using the STL vector or
set classes. Both classes are optimized for performance anddo not contain all possible
access structures. The STL classes contain only those, which are efficient for a certain
data structure. For reasons of convenience we swap between the different classes if
some special features are desired. The basic ingredients for the treatment of symmetry
are sets of symmetry operators and sets of vectors. In order to use the efficient set<T>
of the STL we have to introduce a binary< relation. Since these are not defined
mathematically for a matrix or a vector we define them artificially. The set<T> of the
STL checks for the equality of two objectsa, b of a class by the< operation of the
class T according to:

(a < b) == false ∧ (b < a) == false

⇒ a = b



54 CHAPTER 5 IMPLEMENTATION

This has to be done with respect to the numerical accuracy of matrix multiplication or
matrix vector multiplication e.g. we have to introduce a threshold for the comparison.
The source code for a specialization of the matrix class is given as an example:

1 template<>

2 bool Matrix<double>::operator < (Matrix<double> const &a) const

3 {

4 const double threshold=1E-12;

5 for (unsigned int i=0; i< (*this).size(); i++)

6 {

7 for (unsigned int j=0; j<(*this)[i].size(); j++)

8 {

9 if ( (*this)[i][j] < a[i][j] &&

10 (abs((*this)[i][j]-a[i][j])>threshold) )

11 {

12 return true;

13 }

14 else if ( ((*this)[i][j]>a[i][j]) &&

15 (abs((*this)[i][j]-a[i][j])>threshold) )

16 {

17 return false;

18 }

19 }

20 }

21 return false;

22 }

The implementation of the< operator for the class SortableVectorR3 is analogous to
the implementation of the matrix class.

5.5.1 Generating the Operators of the Point Group

According to eqn. 3.68 we need all operators of the point group. This can be done
by storing all information in a convenient way, or by generation of the operators from
some basic operators. We decided to combine both possibilities in order to have no
limiting restrictions. A tabulated point group may be called by the name of the point
group. All other groups can be constructed by a list of operator names. The generation
of the operators is implemented in the class All_Symmetry_Operations_Generator.
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1 class All_Symmetry_Operations_Generator :

2 public set<Matrix<double> >

3 //

4 All_Symmetry_Operations_Generator(Point_Group pg);

The class Point_Group contains a set of generators and the name of the point group in
Schoenflies notation.

1 class Point_Group

2 //

3 Point_Group(string point_group_symbol);

4 // Schoenflies nomenclature

5 Point_Group(string point_group_symbol,

6 vector<string> generators);

7 //

8 string _point_group_symbol;

9 vector<string> _generators;

In order to obtain a matrix representation of a symmetry operator we use the class
Symmetry_element. It contains all information for the generation of the transformation
matrix from a string. Note that the vector<T> of the STL is a one-dimensional data
container without any mathematical property of a vector.

1 class Symmetrie_element : public Matrix<double>

2 //

3 Symmetrie_element(string symmetrie_Element);

The generation of the complete set of the symmetry operatorsis performed in two
steps. First we generate the matrix representations of all symmetry elements in the
class Point_Group and insert them into the inherited set<Matrix<double>> of an ob-
ject of the class All_Symmetry_Operations_Generator. In the second step we multiply
all members of this set with each other and insert all products into the set of the class.
The constructor terminates, if the number of products is equal to the size of the object.

5.5.2 Symmetry Adapted One-Site Domains

The adaption of the one-site increments to symmetry can be done as follows: first we
reduce the set of vectors to a set of non-redundant vectors.
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1 class Non_Redundant : public set<SortableVectorR3>

2 //

3 Non_Redundant(

4 set<SortableVectorR3> coordinates,

5 All_Symmetry_Operations_Generator asog);

The class Non_Redundant groups the vectors into classes according to eqn. 3.65 and
selects one vector of every group with the side condition that the selected vectors are
close in space. The selected vectors are inserted into the Non_Redundant object during
the construction. Next we classify the vectors by site symmetry according to eqn. 3.71
and do the partitioning into the domains. These steps are encapsulated in the class
Sym_Partitioning.

1 class Sym_Partitioning : public vector<set<SortableVectorR3> >

In order to get all partitions, we apply the symmetry operators of the group onto ev-
ery domain and get the set of redundant one-site domains. Theset of the redundant
one-site domains is represented by the class Set_of_Redundant_domains. Note that
the data structure in the code is equivalent to the data structure of the mathematical
representation:

D̃ = {D1,D2, ...,Dn}

D1 = {~Ra, ~Rb, ..., ~Rq}

1 class Set_of_Redundant_domains :

2 public vector<vector<SortableVectorR3> >

5.5.3 Symmetry Classifiedn-Site Domains

For reasons of convenience we do the permutation managementin C1 symmetry. Since
every domain is associated with a large correlation calculation we did not observe a
performance loss for this step. The class Correlation_Energy_Container is used to con-
struct all combinations of one-site domains up to a given order. Furthermore it stores
a double precision number for every permutation. The class Incremental_Addresses
constructs all sets of vectors associated with the combinations of the one-site do-
mains.

1 class Incremental_Addresses :

2 public vector<vector<vector<SortableVectorR3> > >
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The first dimension refers to the order of the expansion, the second to the number of
domains of a given order and the last one to the orbitals in a domain. Finally the sym-
metry classification is done by the class Incremental_Addresses_equivalence_classes.
It uses the symmetry operators of the class to find the symmetry equivalent domains
and stores them as Equivalence_Class.

1 class Incremental_Addresses_equivalence_classes :

2 public vector<vector<Equivalence_Class> >

Here the class Equivalence_Class contains all symmetry equivalentn-site domains as
well as the energy and the truncation variable. We decided togenerate several versions
of the classes Incremental_Addresses_equivalence_classes and Equivalence_Class in
order to keep the old versions of the code while generalizingthe data container (tem-
plating the class).

1 class Equivalence_Class : public

2 map<Vector_Of_SortableVectorR3, unsigned int>

3 //

4 double _energy;

5 bool _calculate;

The truncation variable is a boolean which is set to true if the increment screening via
the class Adjustable_Truncation yields the energy increment of the domain as signif-
icant and false elsewise. The server loops over all significant equivalence classes and
writes the energy to them. The mapping to the orbitals of a domain is done according
to the centers of charge:

~Ra 7→ φa

At the end the energies of the equivalence classes are back-transformed to C1 symme-
try and written to an object of the class Correlation_Energy_Container. This enables
us to use the same expansion class for C1 symmetry in the symmetric case, too. Again
this is no significant loss of performance since the number ofcalculations dominates
the total cpu time.

5.6 Symmetry for Periodic Systems

In order to treat all possible 3-dimensional space groups webuild an interface to extract
the matrix representation of the symmetry elements from thestandard representation
string of the International Tables for Crystallography [94]. For a convenient usage
we downloaded all symmetry elements in the standard representation from the Bilbao
christallographic server [95]. This enables us to treat alltranslational groups, if the
Foster-Boys procedure yields local symmetric orbitals within the desired accuracy.
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The treatment of symmetry in periodic systems is somewhat different, since we cannot
construct all symmetry operations of the group due to the infinite number of symmetry
operations. We decided to construct all symmetry operations within the reference cell
first, and then perform a predefined set of translations, in order to recover all symmetry
operations within a given supercell. All other steps of the calculation are similar to the
treatment of molecular symmetry.

5.7 Algorithm to Obtain the Virtual Space

The virtual space truncation as discussed in section 4.1.1 theoretically, was imple-
mented according to the algorithm below.

∫
(
φMO

a − φ̄MO
a

)2
dτ ≤ tdens (5.3)

Since we are using local orbitals, we can obtainφ̄MO
i in eqn. 5.3 in the following way:

a. Initialize all coefficients of̄φMO
a to zero

b. Go to the center of charge~Ra of thea-th MO
c. Find the AO-basis functions centered on~P closest to~Ra which have
not been used so far
d. Set all coefficients of̄φMO

a which have an AO-function on~P to those
of φMO

a

e. End, if
∫ (

φMO
a − φ̄MO

a

)2
dτ is belowtdens

f. Go to c.

With this procedure we obtain āφMO
a which contains a set of AO-functions. These

AO-functions can be mapped to their corresponding PAOs according to eqn. 4.10.
Thus we find a local excitation spaceVφa for the orbitalφMO

a .
In order to obtain a local excitation spaceVi for our one-site domaini we have to
unify the sets of PAOs which correspond to the occupied orbitals in the domain. These
mapping steps are performed in the class Sym_Increment. At this point we note that
the virtual space is not symmetric in the current implementation. But this can be
easily achieved by construction of the virtual space for thenon-redundant part of the
molecule and using the symmetry operators to obtain the symmetry-adapted virtual
space. Since the large applications were done with MOLPRO wecould not truncate
the virtual space anyhow and for the applications to small molecules with DALTON
or MOLCAS we were not able to save a significant part of the virtual space.
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Applications

6.1 Molecules

The geometries were obtained by optimization with the Becke-Perdew86 [96,97] gra-
dient-corrected exchange-correlation functional (BP86)using density fitting and the
SVP basis set of polarized double-ζ quality in the TURBOMOLE 5.6 [98] quantum
chemistry package. Stationary points were characterized by force constant calcula-
tions.

6.1.1 Hydrocarbon Compounds

Table 6.1 shows the convergence behavior of the incrementalexpansion for the hy-
drocarbon compounds in figure 6.1. For molecules of this typewe can truncate the
expansion of the correlation energy at third-order while recovering the correlation en-
ergy almost exactly. An expansion up to second-order increments is already a good
guess for the correlation energy whereas the first-order energy has a large error (for
the chosen domain size). We emphasize that the error in the total correlation energy at
third order is lower than 1 kcal/mol for sigma-bonded chainsas well as for aromatic
or conjugated compounds.

6.1.2 Transition Metal/Actinide Compounds

Transition metal complexes are a very important class of compounds in organic and
inorganic chemistry. A huge number of modern homogeneous catalysts belong to this
type of molecules. Since these compounds usually assemble anearly spherical shape,
they challenge local correlation methods. In table 6.2 we see that the convergence
of the incremental series for the molecules in figure 6.2 depends on the type of the
ligands. For the molybdenum fluorine complex we obtain very fast convergence. In

59
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pentane1

decane2

(3E,5E,7E)deca-1,3,5,7,9-pentaene3 naphthalene4

hexadeca-1,3,5,7,9,11,13,15-octayne5

Figure 6.1: RI-BP86/SVP optimized structures of some hydrocarbon molecules.
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system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
pentanea 1

1 -0.661436 -0.661436 89.89 82.20
2 -0.145661 -0.807097 -1.52 100.30
3 0.002399 -0.804697 -0.01 100.00
4 0.000020 -0.804677 0.00 100.00

exact CCSD -0.804677

decanea 2
1 -1.257413 -1.257413 204.12 79.45
2 -0.331197 -1.588610 -3.71 100.37
3 0.005823 -1.582787 -0.05 100.01
4 0.000084 -1.582704 0.00 100.00

exact CCSD -1.582702

alkenea 3
1 -1.052959 -1.052959 229.75 74.20
2 -0.374002 -1.426960 -4.94 100.55
3 0.007689 -1.419271 -0.12 100.01
4 0.000203 -1.419069 0.01 100.00

exact CCSD -1.419088

naphthalenea 4
1 -0.906710 -0.906710 278.87 67.11
2 -0.461387 -1.368097 -10.65 101.26
3 0.016755 -1.351341 -0.14 100.02
4 0.000467 -1.350875 0.15 99.98

exact CCSD -1.351119

alkynea 5
1 -1.399036 -1.399036 395.63 68.93
2 -0.650050 -2.049085 -12.28 100.96
3 0.018755 -2.030331 -0.52 100.04
4 0.000753 -2.029578 -0.04 100.00

exact CCSD -2.029509

Table 6.1: Comparison of the incremental energies with the full CCSD calculations
for the hydrocarbons in figure 6.1.
a dsp=3. All calculations in the 6-31G** basis set of Pople andcoworkers
[99,100].
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[Pu(H2O)8]
3+ 6 MoCl6 7

TiCp2Cl2 8 MoF6 9

Nb2Cl10 10

Figure 6.2: TiCp2Cl2 8, MoF69, MoCl6 7 and Nb2Cl10 10 were optimized with the
RI-BP86/SVP in TURBOMOLE.[Pu(H2O)8]

3+ was taken from [101].
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the other cases we need fourth order increments in order to achieve convergence to
0.1 % of the correlation energy. We note that in these cases the sum of the fourth-
order contributions is still quite large. The source of thisbehavior is that individual
energy increments are still quite large at this order. In thecase of Nb2Cl10, MoCl6
and TiCp2Cl2 we find still large contributions of the adjacent fourth order increments
(≈ 10-4 Hartree). In MoF6 for example the fourth order increments are in the order
of 10-5 Hartree (see appendix C.1). Therefore we think that the large polarizability
of the Cl- ligands is responsible for the slow convergence behavior. This is supported
by the fact, that the centers of charge in the MoF6 complex are closer on each F- and
closer to the neighboring fluorine atoms than the corresponding centers of charge in
MoCl6 (figure 6.3 and 6.4). The larger distance of the centers of charge on a Cl atom
is the reason why it is easier to polarize Cl- than F-. This effect can be seen in the
incremental energies of MoF6 and MoCl6. Our incremental calculations on TiCp2Cl2
account for 99.99% of the correlation energy at fourth-order. This behavior does not
change significantly if different domains are chosen, as we can see from table 6.5. Fur-
thermore we can see from this table that the convergence of the incremental expansion
is good also for small domain sizes. We want to point out that it is possible to obtain
accurate correlation energies before the spanned space of the orbitals in the domains
approaches the full space.
Again we find that the first-order approximation yields an inaccurate correlation en-

ergy (for the chosen domain size), the second-order is a goodguess and the third-order
has a small error, whereas we obtain excellent agreement at fourth-order level. The
convergence of the incremental correlation energy for the[Pu(H2O)8]

3+ 6 complex is
quite fast. The second-order yields the correlation energywithin an error of only -
0.82 kcal/mol. The third-order level of increments yields the correlation energy almost
exactly. This convergence behavior does not change significantly if we increase the
basis set from double-ζ to triple-ζ , as we can see from table 6.4. Note that the canon-
ical CCSD calculation cannot be done in the larger basis withthe same code on the
same machines. Therefore we conclude that the incremental scheme provides a way
to reduce the hardware requirements of a large calculation,without significant loss of
accuracy.

For the gold halogenide in figure 6.3 we find a fast convergenceof the incremental
series, too. The expansion up to third-order yields almost the exact correlation energy
in this case (table 6.3).
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MoF6 9

Figure 6.3: Centers of charge of MoF6. The white spheres represent the centers of
charge.

MoCl6 7

Figure 6.4: Centers of charge of MoCl6. The white spheres represent the centers of
charge.
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system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
MoFa†

6

1 -1.214064 -1.214064 24.62 96.87
2 -0.043326 -1.257390 -2.57 100.33
3 0.004799 -1.252591 0.44 99.94
4 -0.000805 -1.253396 -0.06 100.01

exact CCSD -1.253299

MoCla†6

1 -0.983501 -0.983501 46.86 92.94
2 -0.090874 -1.074375 -10.17 101.53
3 0.021664 -1.052711 3.43 99.48
4 -0.006767 -1.059478 -0.82 100.12

exact CCSD -1.058176

TiCp2Cla#
2

1 -1.360373 -1.360373 305.25 73.66
2 -0.541651 -1.902023 -34.64 102.99
3 0.067304 -1.834719 7.60 99.34
4 -0.011983 -1.846702 0.08 99.99

exact CCSD -1.846825

Nb2Clb#10

1 -1.648100 -1.648100 78.78 92.92
2 -0.153063 -1.801164 -17.27 101.55
3 0.035460 -1.765703 4.98 99.55
4 -0.009367 -1.775070 -0.90 100.08

exact CCSD -1.773638

[Pu(H2O)8]
3+ 6a#

1 -1.887521 -1.887521 31.53 97.41
2 -0.051540 -1.939062 -0.82 100.07
3 0.001256 -1.937806 -0.03 100.00
4 0.000059 -1.937747 0.01 100.00

exact CCSD -1.937762

Table 6.2: Comparison of the incremental energies with the full CCSD calculations
for the molecules in figure 6.2.
a dsp=3,b dsp=4
† 6-31G* basis set of Pople and coworkers [99, 100],# cc-pVDZ basis set
of Dunning [102]
Mo, Ti, Nb, ECP28MWB [103,104] Pu,ECP83MWB [105]
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Figure 6.5: RI-BP86/SVP optimized structure of Au4Cl4 11 (D2d).

system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
Au4Cl4 1 -0.924218 -0.924218 84.98 87.22

2 -0.141936 -1.066154 -4.09 100.61
3 0.006637 -1.059517 0.08 99.99
4 -0.000065 -1.059582 0.04 99.99

exact CCSD -1.059642

Table 6.3: Comparison of the incremental energies with the full CCSD calculations
for Au4Cl4 11 in figure 6.5.
(dsp=2, 9 domains, core=36, 6-31G** basis set of Pople and cowork-
ers [99,100])

orderi i-th order correction Ecorr[au]
1 -2.239121 -2.239121
2 -0.059162 -2.298283
3 0.001435 -2.296848

Table 6.4: The [Pu(H2O)8]
3+ complex of figure 6.2 in a triple-ζ basis (H,cc-pVTZ sp;

O,cc-pVTZ spd; Pu,ECP83MWB [105]). We note that the standard cal-
culation of this type is already infeasible with the same code on the same
computer.
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orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
dsp=3
tcon=2.5
9 domains

1 -1.360373 -1.360373 305.25 73.66
2 -0.541651 -1.902023 -34.64 102.99
3 0.067304 -1.834719 7.60 99.34
4 -0.011983 -1.846702 0.08 99.99

dsp=4
tcon=3.5
8 domains

1 -1.421872 -1.421872 266.66 76.99
2 -0.473666 -1.895537 -30.57 102.64
3 0.059733 -1.835805 6.92 99.40
4 -0.010099 -1.845904 0.58 99.95

dsp=6
tcon=3.5
5 domains

1 -1.524918 -1.524918 202.00 82.57
2 -0.346342 -1.871260 -15.33 101.32
3 0.028312 -1.842948 2.43 99.79
4 -0.004008 -1.846956 -0.08 100.01

exact CCSD -1.846825

Table 6.5: Comparison of the convergence for different dsp andtcon in the case of
TiCp2Cl2.
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6.2 Intermolecular Interactions

6.2.1 Water Clusters

For the correlation energy of systems with intermolecular interactions such as water
clusters we find that the incremental scheme performs even better than for the hy-
drocarbon compounds or transition metal complexes discussed before and in refer-
ence [85]. In the 6-31G** basis one obtains for (H2O)8 (figure 6.6) already 99.99%
of the correlation energy at second-order. The convergencebehavior is similar for the
calculations in the larger cc-pVTZ basis where the full calculation is infeasible on less
than 1.35 GB machines (table 6.6). Comparing the two calculations in the 6-31G**
basis we find that the convergence is slightly slower for the 11 domains. But the error
is lower than 1 kcal/mol at second-order of the incremental expansion for this case too.
This shows that the result depends on the choice of the domains, but not as much as
may be expected. So we conclude that the incremental scheme is quite robust with
respect to the choice of the one-site domains.
In table 6.7 we compare for (H2O)8 the convergence behavior of the incremental
scheme with respect to the density parametertdens of eqn. 4.5. Naturally the parameter
affects the convergence behavior of the series, if the excitation space is restricted too
rigorously. With proper values of this parameter we can still obtain fast convergence
in the series as we can see for the last two examples in table 6.7.

Figure 6.6: RI-BP86/SVP optimized structure of a set of eight water molecules.
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Figure 6.7: (H2O)11 cluster taken from Bulusu et al. [106].

basis orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
6-31G**a 1 -1.648410 -1.648410 35.61 96.67

2 -0.056524 -1.704934 0.14 99.99
3 -0.000207 -1.705142 0.01 100.00
4 -0.000007 -1.705149 0.00 100.00

exact CCSD -1.705151

6-31G**b 1 -1.441864 -1.441864 165.21 84.56
2 -0.264439 -1.706303 -0.72 100.07
3 0.001113 -1.705190 -0.02 100.00
4 0.000044 -1.705147 0.00 100.00

exact CCSD -1.705151

cc-pVTZa 1 -2.244489 -2.244489
2 -0.077810 -2.322298
3 0.000111 -2.322188

Table 6.6: Comparison of the incremental energies for the (H2O)8-cluster in figure 6.6
with the full CCSD calculations and comparison of the basis set effect.
a 8 domains, core=0
b 11 domains, core=0

Table 6.8 and 6.9 show for (H2O)11 (figure 6.7) in 6-31G** basis the performance
of an energy screening procedure using a dynamic distance thresholdRmin(O) and
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(H2O)8 orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]

density threshold 0.1
1 -1.573940 -1.573940 32.17 96.85
2 -0.053823 -1.627763 -1.60 100.16
3 -0.000571 -1.628335 -1.96 100.19

exact CCSD -1.625212

density threshold 0.01
1 -1.575988 -1.575988 30.89 96.97
2 -0.053820 -1.629808 -2.88 100.28
3 0.004666 -1.625142 0.04 100.00

exact CCSD -1.625212

density threshold 0.001
1 -1.578597 -1.578597 29.25 97.13
2 -0.046443 -1.625040 0.11 99.99
3 -0.000053 -1.625093 0.07 99.99

exact CCSD -1.625212

Table 6.7: Convergence behavior of the incremental scheme with respect to the den-
sity parametertdens of eqn. 4.5. (dsp=5, 8 domains, core=0, calculation in
6-31G* basis set of Pople and coworkers [99] at the RI-BP86/SVP geome-
try.)
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Ncalc/totalNcalc f orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
11/11 12 1 -2.235023 -2.235023 33.35 97.68
16/55 2 -0.049996 -2.285019 1.98 99.86
27/165 3 -0.003239 -2.288258 -0.05 100.00
0/330 4 0.000000 -2.288258 -0.05 100.00
54/561

11/11 16 1 -2.235023 -2.235023 33.35 97.68
41/55 2 -0.052651 -2.287674 0.32 99.98
31/165 3 -0.000246 -2.287920 0.16 99.99
53/330 4 -0.000443 -2.288363 -0.12 100.01
136/561

11/11 ∞ 1 -2.235023 -2.235023 33.35 97.68
55/55 2 -0.052874 -2.287897 0.18 99.99

165/165 3 -0.000260 -2.288157 0.01 100.00
330/330 4 -0.000025 -2.288182 0.00 100.00
561/561

Table 6.8: Performance of the approximation of the incremental schemewith respect
to a dynamic distance thresholdRmin(Oi) = f

Oi
for the CCSD/6-31G**

energy of (H2O)11. (11 domains, core=11)

an energy threshold, respectively. The number of calculations can be reduced signif-
icantly, if we use the above distance truncation, as we can see from table 6.8. If we
compare the reduction of calculations according to an energy threshold from table 6.9
with the performance of the truncation based on graph theory, we see that they behave
quite similar. Note that we used the exact energies to simulate the energy screening.
If approximate values are used it would be necessary to use a lower threshold in order
to avoid discarding too many relevant contributions due to the approximation error.
Table 6.10 presents the saving of the cpu time for (H2O)11. For this example we find
that we can reduce the calculation time for the incremental calculation to 5-25 % of
the full incremental calculation. Furthermore the ratio between the number of calcu-
lations of the distance approximated incremental calculation and the full incremental
calculation gives an upper bound to the computational time compared to the time for
the full incremental calculation.

Ncalc(Rmin,O)

Ncalc(O)
>

cpu-time(Rmin,O)

cpu-time(O)
(6.1)
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This is in general true, becauseRmin(O) removes more high-order contributions,
which are more time consuming to evaluate than the low-ordercontributions.

Ethres ncal Ecorr error % Ecorr

10−8 513 -2.288182 0.00 100.00
10−7 269 -2.288179 0.00 100.00
10−6 130 -2.288167 0.01 100.00
10−5 70 -2.287968 0.13 99.99
10−4 37 -2.286425 1.10 99.92

Table 6.9: Performance of the approximation scheme eqn. 3.26 for the CCSD/6-
31G** energy of the (H2O)11 cluster due to an energy selection. For sim-
plicity we used the exact incremental energies to estimate the individual
contributions of the increments.

f ∞ 16 12
% Ncalc 100 24 10
% cpu 100 19 5

Table 6.10:Performance of the dynamic distance thresholdRmin(Oi) = f
Oi

with re-
spect to the computational saving for (H2O)11.

6.2.2 π–π/CH–π–Interactions

π–π–interactions are very important, since they can also affect the structure of DNA
and proteins. The benzene dimer chosen here as a model ofπ–π–interactions was stud-
ied by several groups [107–113]. Another important intermolecular interaction is the
CH–π–interaction [114–116]. For our purposes we have chosen theindole methane
complex as studied by Ringer et al. [116].
For the intermolecular interactions between two benzene molecules (figure 6.8) we
obtain at third-order level almost the exact CCSD energy (table 6.11). For the CH–π–
interaction in figure 6.9 we obtain a reasonable energy at third-order level and almost
the exact CCSD energy at fourth-order level. We point out that we have fast con-
vergence for the compact 6-31G** basis as well as for the diffuse 6-31++G** basis
set.
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Figure 6.8: Sandwich structure of the benzene dimer at a benzene-benzene distance of
3.75 Å using the monomer C-H and C-C distances of Gauss and Stanton
[117].

Figure 6.9: Indole methane complex optimized by Ringer et al. [116].
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system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
(C6H6)

a
2

1 -1.100083 -1.100083 345.59 66.64
2 -0.573180 -1.673263 -14.09 101.36
3 0.022393 -1.650871 -0.04 100.00
4 0.000185 -1.650686 0.08 99.99

exact CCSD -1.650808

indole-methane complexb

1 -1.012639 -1.012639 274.42 69.84
2 -0.459677 -1.472315 -14.03 101.54
3 0.022988 -1.449327 0.39 99.96
4 -0.000546 -1.449874 0.05 99.99

exact CCSD -1.449955

Table 6.11:Comparison of the incremental energies with the full CCSD calculations
for the molecules in figure 6.8 and 6.9.
a 6-31G** basis set of Pople and coworkers [99, 100] (10 domains,
core=12)
b 6-31++G** basis set of Pople and coworkers [99, 100] (8 domains,
core=10)

6.2.3 The Aurophilic Attraction

In order to check the performance of the presented approach for the aurophilic in-
termolecular interaction we chose the test molecule Au2(PH-C2H2-S)2 in figure 6.10
which was studied previously by Mendizabal and Pyykkö [118](d10–d10–interaction).
Compared to the other systems in this study we find a relatively slow convergence. We
still have a considerably large error for both domain sizes in table 6.12 at the third-order
level e.g. the introduced error is 2 and 1 kcal/mol for the small and the large domains
respectively. The convergence is somewhat faster for larger domains. At fourth-order
level we are very close to the exact CCSD energy for both domain sizes. We note that
an analysis of the single energy contributions analogous totable 6.9 shows that we
could reduce the number of calculations significantly without loss of accuracy.
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Figure 6.10: MP2 optimized structure of Au2(PH-C2H2-S)2 using the 6-31G**
basis set of Pople and coworkers [99, 100] for P,C,H,S and
ECP60MDF/(8s6p5d)/[7s3p4d] [119] for Au. In order to polarize the
d-shell of the gold atoms we added two f-type polarization functions
(αf = 0.20, 1.19) [118].

Au2(PH-C2H2-S)2
orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
dsp 3

1 -0.904022 -0.904022 317.17 64.14
2 -0.553462 -1.457485 -30.13 103.41
3 0.051170 -1.406315 1.98 99.78
4 -0.003270 -1.409585 -0.07 100.01

dsp 5
1 -1.111903 -1.111903 186.72 78.89
2 -0.318708 -1.430611 -13.27 101.50
3 0.022591 -1.408020 0.91 99.90
4 -0.001396 -1.409416 0.03 100.00

exact CCSD -1.409467

Table 6.12:Comparison of the incremental energies with the full CCSD calculations
for Au2(PH-C2H2-S)2 in figure 6.10 using the 6-31G** basis set of Pople
and coworkers [99, 100] for P,C,H,S and ECP60MDF/(8s6p5d)/[7s3p4d]
[119] for Au. (dsp=3, 10 domains, core=32; dsp=5, 6 domains,core=32).
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Figure 6.11: RI-BP86/SVP optimized guanine-cytosine base pair.

6.2.4 DNA Base Pair

The accurate calculation of the guanine-cytosine base pairin figure 6.11 is very impor-
tant to benchmark lower level methods like force fields or DFT, since highly accurate
wavefunction-based methods are not applicable to large DNAmolecules. From a the-
oretical point of view these systems are interesting because of their great number of
π-electrons. Since a localization of conjugatedπ-orbitals yields usually relatively ex-
tended localized orbitals, we checked the performance of our local approach for this
case. The results of the incremental calculations are givenin table 6.13. We find that a
truncation according to16Oi

yields quite accurate results for this system. At third-order
level we obtain 100.11% of the correlation energy whereas weobtain 100.03 % at
fourth-order level. This corresponds to an absolute error of only -0.46 kcal/mol with
respect to the exact CCSD energy. Note that the full CCSD calculation needs 2.5 GB
of RAM and 18.5 GB of disk space. The incremental calculations however took at
most 1.4 GB of RAM and 7.4 GB of disk space.
This example demonstrates again the power of the automatic distance truncation, be-
cause the ratioNcalc(Rmin,O)

Ncalc(O)
is 0.17, i.e. 2095 CCSD calculations for f=16 at fourth-

order are avoided.

6.2.5 Reaction Pathways of the 4-exo/5-endo Cyclization

The convergence of the incremental RCCSD correlation energies was checked for a
chemical example taken from a collaboration with the experimental group of Gan-
säuer at the University of Bonn. The geometries were obtained by RI-BP86/TZVP
geometry optimizations with the TURBOMOLE 5.6 program package [98]. The sta-
tionary points were characterized by a force constant analysis.
Figure 6.12 shows a schematic view of the competing 4-exoand 5-endocyclizations.
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guanine-cytosine base pair
orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
1 -1.916622 -1.916622 592.65 66.99
2 -0.979382 -2.896004 -21.92 101.22
3 0.031816 -2.864189 -1.96 100.11
4 0.002382 -2.861807 -0.46 100.03

exact CCSD -2.861067

Table 6.13:Comparison of the incremental energies with the full CCSD calculations
for the guanine-cytosine dimer in figure 6.11 using the 6-31G** basis set
of Pople and coworkers [99,100]. (dsp=3, 16 domains, core=19)

Figure 6.13 shows the convergence of the incremental RCCSD correlation energies of
eqn. 3.64 for a set of intermediates in the 4-exo/5-endocyclization. The complete
data is given in the appendix C.3. The first-order incremental correlation energy has
a large error whereas the second-order correlation energies are all in between 4.4 -
6.4 kcal/mol. This corresponds to a non-linear error of ca. 2kcal/mol which is still
too large for chemical accuracy. At third-order level we recover more than 99.9 % of
correlation energy which corresponds to a largest error of 0.2 kcal/mol. The fourth-
order corrections do not improve the third-order energies significantly, because the
third-order was already sufficient to obtain the desired accuracy. This is demonstrated
by figure 6.13, since the spread of the errors decreases very rapidly with increasing
incremental order.
Comparing the relative incremental energies of the different intermediates in table 6.14
with respect to the order we find a better accuracy of the energies, because of a benefi-
cial error cancellation. The first order incremental CCSD energies leads to inaccurate
results for all points in table 6.14. The resulting error is about 2 kcal/mol for the
second-order level and at third-order level we observe accurate relative CCSD ener-
gies. This finding was expected because the absolute energies were already accurate at
third order level (cf. figure 6.13). The summed incremental CCSD/cc-pV(n)Z (n=D,T)
correlation energies are given in appendix C.3. Comparing the energy contributions for
a given order with respect to the basis set, we did not observea large sensibility.
A comparison of the performance of the different quantum chemical methods in table
6.14 for the educts and the products yields similar energiesfor all applied post-HF
methods. DFT agrees for the educt and the 4-exoproduct, whereas the 5-endoprod-
uct is 3-4 kcal/mol higher in energy. Due to the fact that the HF results do not agree
with the other methods, we find that electron correlation plays an important role in the
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Figure 6.12: Intermediates of the 4-exo/5-endocyclization.

quantitative description of the 4-exo/5endo cyclization. Comparing the incremental
results for the transition states, with those obtained by the MP2 method, we find in this
case that the cheap second-order incremental expansion is much closer to the CCSD
results (cc-pVDZ, approximate cc-pVTZ) as well as to the DFTresult. Comparing the
relative CCSD energies of the transition states with the DFTresults we find a quite
large discrepancy. From the 3-exocyclization we would expect that the perturbative
triples correction is quite important and shifts the coupled cluster results somewhat
towards the DFT result [120]. Another aspect is the single point approximation in the
CCSD calculations, which might also be in the order of a few kcal/mol. Since the
CCSD/cc-pVDZ geometry optimizations were already too timeconsuming we were
not able to check how the relative CCSD energies are affectedby the usage of the DFT
geometries for the CCSD calculations. Finally we conclude that the relative energies at
second-order level are fairly accurate and agree better with the relative CCSD results
than the MP2 results do.
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Figure 6.13: Convergence of the incremental correlation energies for intermediates of
the 4-exoand 5-endocyclization of14. In the second chart the first order
was omitted in order to get a meaningful scale for the error.
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method Incremental CCSD CCSD RI-CC2 RI-MP2 RI-BP86 HF
basis cc-pVDZ cc-pVTZ cc-pVDZ TZVPP TZVPP TZVP cc-pVTZ

molecule/order 1 2 3 4 1 2 3
16 a -7.9 -17.8 -17.4 -17.5 -5.3 -17.0 -16.6 -17.5 -18.2 -18.1 -14.2 -11.1
16 b -7.1 -17.1 -16.7 -16.8 -4.7 -16.4 -16.1 -16.8 -17.6 -17.5 -14.0 -10.9
16 c -6.9 -17.1 -16.7 -16.7 -4.6 -16.4 -16.1 -16.7 -17.6 -17.5 -14.0 -10.9
14 a 6.3 3.3 3.1 3.1 9.6 3.3 3.1 3.1 3.3 3.4 2.8 4.0
14 b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 c -0.3 0.4 0.3 0.3 -0.4 0.4 0.3 0.3 0.4 0.5 0.2 0.2
13 a -25.4 -0.3 0.1 0.2 -32.0 0.1 0.3 0.1 -0.4 0.9 -1.3 6.7
13 b -25.6 -1.5 -1.0 -0.9 -31.4 -0.9 -0.4 -1.0 -1.7 -0.4 -1.1 6.7
13 c -26.7 -1.8 -1.4 -1.3 -33.1 -1.4 -1.1 -1.3 -2.0 -0.6 -2.6 5.1

TS 12 a 22.8 19.1 19.4 19.3 25.5 18.4 18.8 19.3 17.8 23.4 11.6 27.9
TS 12 b 23.7 19.6 19.9 19.8 26.9 19.3 19.7 19.8 18.1 24.1 12.2 30.1
TS 12 c 17.2 17.4 17.6 17.5 16.9 16.9 17.1 17.5 15.7 21.4 9.9 26.5
TS 15 a 30.7 19.6 21.3 21.2 31.5 19.6 21.1 21.2 20.1 26.1 17.1 33.5
TS 15 b 30.7 19.2 21.2 21.0 31.8 19.4 21.2 21.0 20.0 26.0 17.8 33.6

Table 6.14:Performance of different quantum chemical methods for the 4-exo/5-endoreaction energies relative to14 b. The
geometries were optimized at RI-BP86/TZVP level. The ZPE was approximately included by the RI-BP86/TZVP
value.
a,b,care different conformers of the corresponding molecule
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6.3 Symmetric Systems

6.3.1 A Water Cluster

Figure 6.14: RI-BP86/SVP optimized structure of (H2O)6 (C3).

As a first example we choose the water aggregate of figure 6.14 as studied by Laaso-
nen et al. [121], Kozmutza et al. [122], Upadhyay et al. [123]and Kim et al. [124].
The structure was optimized inC3 symmetry with TURBOMOLE [98] using the RI-
BP86/SVP method. We applied different truncation parameters f and different basis
sets for this example. The results are given in tables 6.16-6.18. First we note that
the convergence of the incremental scheme is very fast for all applied basis sets (6-
31G** [99], aug-cc-pVDZ [102,125] and cc-pVTZ [102]). The convergence behavior
is not affected by the usage of the approximate symmetric Foster-Boys orbitals. Fur-
thermore the convergence is not affected by the usage of the diffuse aug-cc-pVDZ basis
set, if we compare the aug-cc-pVDZ results with the 6-31G** results. The usage of
the cc-pVTZ basis does not change the convergence of the incremental series for this
water cluster either. The errors increase a little, if we usethe dynamic distance trunca-
tion f

Oi
(see also section 4.2). We find that the errors are below 1 kcal/mol with respect

to the canonical CCSD results at second-order level, for allchosen values off (14,
16, 18, 22, 26,∞) in all applied basis sets (6-31G**, aug-cc-pVDZ, cc-pVTZ). Note
that the approximation by the parameterf has an effect on the total convergence of the
incremental series. If we neglect incremental contributions of far distant domains, we
can only get a finite accuracy. This can be seen if we compare the full incremental cal-
culations up to fourth-order with the approximated calculations. The errors decrease
up to a certain digit and are not improved further if the orderof the expansion is in-
creased. They improve, if the distance threshold is set to a larger value (table 6.18).
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f n calc n calc
total n calc error

[%] [kcal/mol]a

∞ 20 36 0.00
16 10 18 -0.10
14 8 14 -0.10

Table 6.15:Comparison of the error introduced by the incremental expansion and sav-
ing with respect to symmetry and the distance truncation byf

Oi
. The total

number of calculations inC1 symmetry is
∑4

i=1

(
6
i

)
= 56.

a the error of the incremental CCSD/aug-cc-pVDZ results at fourth-order
of table 6.17.

For the (H2O)6 cluster this limitation is not serious, because the error distribution of
the CCSD method itself [68] is much larger than the error introduced by the distance
truncation. On the other hand it is always possible to use a largerf in order to include
more terms. The comparison of the introduced error due to theapproximate treatment
of symmetry and truncation due to the distance in table 6.15 shows that the introduced
error is much smaller than the intrinsic CCSD error. Therefore we conclude that it is
convenient and economic to use the symmetry for this class ofsystems. An interesting
result is found in table 6.16 for the entriesf = 14 andf = 16, since the sums up
to third-order are equal up to the last digit whereas the sumsup to second-order are
not. We find the same for the analogous entries in table 6.17. An analysis of the single
contributions yields that forf = 14 two site increments were neglected which were
still included for thef = 16 case. This can be seen in the following example:

f = 14

∆ε01 = e01, ∆ε02 = e02, ∆ε12 = 0

∆ε012 = e012 − e01 − e02 − e0 − e1 − e2
(6.2)

f = 16

∆ε01 = e01, ∆ε02 = e02, ∆ε12 = e12

∆ε012 = e012 − e01 − e02 − e12 − e0 − e1 − e2
(6.3)

now we subtract the corresponding terms of the second-ordersum forf =

14 from those of the second-order sum forf = 16:

e01 + e02 + 0 − (e01 + e02 + e12) = −e12 (6.4)
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6-31G** orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
f = ∞ 1 -1.222751 -1.222751 22.77 97.12

2 -0.036096 -1.258847 0.12 99.99
3 -0.000168 -1.259015 0.01 100.00
4 -0.000015 -1.259030 0.00 100.00

exact CCSD -1.259031

f = 16 1 -1.222751 -1.222751 22.77 97.12
2 -0.036016 -1.258767 0.17 99.98
3 -0.000149 -1.258916 0.07 99.99
4 -0.000189 -1.259105 -0.05 100.01

exact CCSD -1.259031

f = 14 1 -1.222751 -1.222751 22.77 97.12
2 -0.035307 -1.258058 0.61 99.92
3 -0.000857 -1.258916 0.07 99.99
4 -0.000189 -1.259105 -0.05 100.01

exact CCSD -1.259031

Table 6.16:Convergence of the incremental CCSD/6-31G** energies for aC3 sym-
metric (H2O)6 aggregate. Different values for the truncation parametersf

were applied to check the convergence behavior of the incremental series
with respect to a dynamic distance truncation.

If we do the same for the third-order summations we obtain:

e012 − e01 − e02 − e0 − e1 − e2

− (e012 − e01 − e02 − e12 − e0 − e1 − e2) = e12 (6.5)

Since the two terms in eqn. 6.4 and eqn. 6.5 cancel each other exactly in
the summation, we get the same result at third-order level for both values
of f . The sums for the fourth-order expansions are equal in both cases, be-
cause the same terms were dropped at fourth-order level and some special
terms such as∆ε123 were dropped at third-order level.

∆ε14
0123 − ∆ε16

0123 = ∆ε14
012 − ∆ε14

123 − ∆ε14
12

−
(
∆ε16

012 − ∆ε16
123 − ∆ε16

12

)
= ∆ε16

123 − ∆ε14
123

(6.6)
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aug-cc-pVDZ orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
f = ∞ 1 -1.360122 -1.360122 29.27 96.68

2 -0.046486 -1.406608 0.10 99.99
3 -0.000126 -1.406733 0.02 100.00
4 -0.000025 -1.406759 0.00 100.00

exact CCSD -1.406760

f = 16 1 -1.360122 -1.360122 29.27 96.68
2 -0.046323 -1.406445 0.20 99.98
3 -0.000127 -1.406572 0.12 99.99
4 -0.000343 -1.406914 -0.10 100.01

exact CCSD -1.406760

f = 14 1 -1.360122 -1.360122 29.27 96.68
2 -0.045199 -1.405320 0.90 99.90
3 -0.001252 -1.406572 0.12 99.99
4 -0.000343 -1.406914 -0.10 100.01

exact CCSD -1.406760

Table 6.17:Convergence of the incremental CCSD/aug-cc-pVDZ energiesfor a C3

symmetric (H2O)6 aggregate. Different values for the truncation parame-
tersf were applied to check the convergence behavior of the incremental
series with respect to a dynamic distance truncation.

We discuss this special case in detail, because it is very unlikely to get exactly the same
numbers without numerical noise at first glance.
Kozmutza et al. [122] analyze the main contributions in their water cluster based on
MP2 data. An analogous analysis can be done within the framework of the incremental
scheme at CCSD-level forn-body interactions, if the domains are chosen physically
(every water molecule as a one-site domain). We point out that the incremental scheme
is not limited to calculate the correlation energy, it can also provide a way to analyze
the system byn-body interactions.
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cc-pVTZ orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
f = ∞ 1 -1.599444 -1.599444 30.13 97.09

2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000021 -1.647458 0.00 100.00

exact CCSD -1.647460

f = 26 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000015 -1.647452 0.01 100.00

exact CCSD -1.647460

f = 22 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000147 -1.647437 0.01 100.00
4 -0.000015 -1.647452 0.01 100.00

exact CCSD -1.647460

f = 18 1 -1.599444 -1.599444 30.13 97.09
2 -0.047846 -1.647290 0.11 99.99
3 -0.000138 -1.647428 0.02 100.00
4 -0.000024 -1.647451 0.01 100.00

exact CCSD -1.647460

f = 16 1 -1.599444 -1.599444 30.13 97.09
2 -0.047716 -1.647161 0.19 99.98
3 -0.000138 -1.647299 0.10 99.99
4 -0.000282 -1.647581 -0.08 100.01

exact CCSD -1.647460

Table 6.18:Convergence of the incremental CCSD/cc-pVTZ energies for aC3 sym-
metric (H2O)6 aggregate. Different values for the truncation parametersf

were applied to check the convergence behavior of the incremental series
with respect to a dynamic distance truncation.
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Figure 6.15: RI-BP86/SVP optimized structure of (N3H3)5 (C5).

6.3.2 Circular Cis, Trans-Cyclotriazine Cluster

The molecular structure of N3H3 in figure 6.15 was evaluated by several groups [126–
129]. Since we want to check the performance of the incremental scheme with re-
spect to symmetry, we choose the circularcis-, trans-cyclotriazine pentamer (C5) as
studied by Song et al. [130]. The geometry was optimized inC5 symmetry using the
RI-BP86/SVP method in TURBOMOLE 5.6 [98]. The stationary point was charac-
terized as a minimum, by analyzing the Hessian matrix. Sincethe single molecules
are rather large with 18 electrons per molecule to be correlated, if the 1s orbitals of
N are considered as frozen core, we choose a dsp value which divides every molecule
into two parts. The symmetry adaption for these parts was done according to the pro-
cedure in section 3.6.1. The focus of our partitioning was onthe potential accuracy
of the incremental scheme and on the efficiency, not on a physical basis. In order to
analyze then-body interactions of the molecules on the basis ofn-body increments
it might be more convenient to use complete N3H3 molecules as one-site increments.
Note that such an analysis is similar to the analysis ofn-body contributions by means
of the supermolecular Møller-Plesset perturbation theorydiscussed by G. Chalasinski
et al. [131,132].
The convergence for the chosen partitioning is somewhat slower than for the symmet-
ric water cluster before, but we still get accurate correlation energies at third-order
level (table 6.19). Since we divided the N3H3 molecules into two parts, it is clear that
the convergence is slower, because we have to account for theintramolecular corre-
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6-31G** orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
f = ∞ 1 -2.118245 -2.118245 356.90 78.83

2 -0.571134 -2.689380 -1.50 100.09
3 0.002430 -2.686950 0.03 100.00
4 -0.000055 -2.687005 0.00 100.00

exact CCSD -2.686998

f = 16 1 -2.118245 -2.118245 356.90 78.83
2 -0.569853 -2.688098 -0.69 100.04
3 -0.000308 -2.688406 -0.88 100.05
4 0.000000 -2.688406 -0.88 100.05

exact CCSD -2.686998

f = 14 1 -2.118245 -2.118245 356.90 78.83
2 -0.569853 -2.688098 -0.69 100.04
3 0.001430 -2.686668 0.21 99.99
4 0.000000 -2.686668 0.21 99.99

exact CCSD -2.686998

Table 6.19:Convergence of the incremental CCSD/6-31G** energies for aC5 sym-
metric (N3H3)5 aggregate. Different values for the truncation parameters
f were applied to check the convergence behavior of the incremental se-
ries with respect to a dynamic distance truncation. (dsp=4,10 domains,
core=15)
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lation corrections at second-order level. Due to the distance truncation the systematic
convergence of the incremental series is slightly affected, as in the case of the water
clusters. If we compare the obtained accuracy with respect to the approximate treat-
ment of symmetry, we conclude that we have fast convergence for this system, too.

6.4 Cluster Compounds

B5H11 17

Hg13 18 Hg20 19

Figure 6.16: RI-BP86/SVP optimized structures of B5H11 17 (C1), Hg13 18 (Ih), and
Hg20 19 (Td).

6.4.1 Boron Hydrides

For borate-anions like BnH2-
n it was previously shown that the efficiency of local cor-

relation methods is limited due to the delocalization of theelectrons in the boron
cage [53]. Therefore we choose the neutral borane cluster B5H11 (17 in figure 6.16) in
order to check the performance of the proposed approach for this kind of systems. Tab.
6.20 shows the convergence of the incremental CCSD calculations for B5H11 for two
different partitionings into domains (i.e. 4 and 6 domains)with respect to the order
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of the expansion. The convergence is a bit slower for smallerdomains (dsp=2) com-
pared to larger ones (dsp=3). If we compare the accuracy for the different orders in
the incremental expansion, we find again that the first-orderis not sufficient whereas
the second-order is already a good guess with an accuracy of∼1-3 %. For the third-
order level we get almost the exact correlation energy with errors less than 0.1 % or
0.4 kcal/mol. Whereas the fourth-order result for dsp=3 merely demonstrates that nu-
merical errors are below 10-6 Hartree and the result of the standard CCSD calculation
is recovered, the dsp=2 case shows that the series can indeedbe truncated at low order,
e.g. at third-order compared to the highest possible order of 6.

domains orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
dsp=2, 1 -0.412949 -0.412949 123.04 67.81

(6 domains)a 2 -0.210519 -0.623468 -9.06 102.37
3 0.015055 -0.608413 0.38 99.90
4 -0.000591 -0.609004 0.01 100.00

dsp=3, 1 -0.459470 -0.459470 93.85 75.44
(4 domains)a 2 -0.155728 -0.615198 -3.88 101.01

3 0.006282 -0.608916 0.07 99.98
4 -0.000107 -0.609022 0.00 100.00

exact CCSD -0.609022

Table 6.20:Comparison of the incremental correlation energies with the full CCSD
results for the B5H11-cluster (17 in figure 6.16).
a6-31G** basis sets of Pople and coworkers [99,100]

6.4.2 Mercury Clusters

As a second example we choose two different mercury clusters, the icosahedral mer-
cury cluster Hg13 (18 in figure 6.16) and the tetrahedral mercury cluster Hg20 (19 in
figure 6.16). The convergence of the incremental expansion is fast for both systems as
well as for both domain sizes, cf. tab. 6.21. Again we find a slightly faster conver-
gence of the incremental series with the larger dsp value. The fourth-order result for
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dsp=3 and Hg13 again corresponds to the value obtained from standard CCSD calcu-
lations and indicates that the errors due to the incrementalexpansion are below 10-6

Hartree. Since a larger dsp leads to more occupied orbitals in a single domain, the time
for the single CCSD calculations will increase as well as thecorresponding memory
and disk-space requirements. However, the number of calculations needed to reach a
certain order and thus accuracy is reduced.

system, orderi i-th order correction Ecorr(i) error % Ecorr

domains [au] [au] [kcal/mol]
Hg13 18a

dsp=2, 1 -0.330521 -0.330521 49.27 80.80
(5 domains) 2 -0.083257 -0.413777 -2.97 101.16
tcon=8.0 3 0.004910 -0.408868 0.11 99.96

4 -0.000174 -0.409042 0.00 100.00
dsp=3, 1 -0.341241 -0.341241 42.55 83.42

(4 domains) 2 -0.070848 -0.412088 -1.91 100.74
tcon=8.0 3 0.003080 -0.409009 0.02 99.99

4 -0.000034 -0.409043 0.00 100.00
exact CCSD -0.409043

Hg20 19a

dsp=2, 1 -0.497706 -0.497706 88.00 78.02
(10 domains) 2 -0.149857 -0.647564 -6.03 101.51
tcon=6.9 3 0.010127 -0.637437 0.32 99.92

4 -0.000556 -0.637992 -0.03 100.01
dsp=3, 1 -0.516375 -0.516375 76.29 80.94

(6 domains) 2 -0.127074 -0.643449 -3.45 100.86
tcon=8.0 3 0.005649 -0.637800 0.09 99.98

4 -0.000144 -0.637944 0.00 100.00
exact CCSD -0.637947

Table 6.21:Comparison of the incremental correlation energies with the full CCSD
results for the Hg clusters in figure 6.16.
a relativistic large-core pseudopotential ECP78MWB and corresponding
polarized double-ζ basis set of Küchle et al. [133].

At second-order we find an error less than 1.6 % or 6.1 kcal/mol, whereas we obtain
excellent agreement at third-order with errors below 0.08 %or 0.4 kcal/mol. Note
that the second-order result would determine the cohesive energy per atom of Hg13
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with an accuracy of 0.2 kcal/mol compared to estimated cohesive energies per atom of
4.0 and 6.6 kcal/mol from CCSD and pure diffusion quantum Monte Carlo (PDQMC)
studies [134]. The cheap second-order level would thus allow to determine CCSD co-
hesive energies per atom for a given basis set with an accuracy of 5 %. This accuracy
is already attractive, since larger basis sets than those feasible in standard CCSD cal-
culations could be applied and it was demonstrated for Hg4 that the basis set yielding
a cohesive energy per atom of 4.0 kcal/mol for Hg13 recovers at most 62 % of the co-
hesive energy per atom of Hg4. Thus an approximate CCSD cohesive energy per atom
with an estimated error of 5 % obtained with a large basis set is most likely closer to
the complete basis-set limit than an exact result derived with a small basis set.

6.5 Potential Energy Surfaces

6.5.1 Octane

Figure 6.17: RI-BP86/SVP optimized structure of n-octane with a fixed C4-C5 dis-
tance of 2.05 Å.

We choose n-octane (figure 6.17) as a test system in order to obtain a significant result
with respect to higher order terms. A too small system would yield the exact result
already at low order. The geometries used for the potential curve were obtained by a
relaxed scan of the C4-C5 distance using the RI-BP86/SVP method. With the chosen
parameters we have 162 CCSD calculations for the full incremental calculation (f =

∞) at every point of the potential curve. The 6-31G** basis setof Pople and coworkers
[99,100] was used for the CCSD calculations.
First we note that we cannot recognize a difference between the incremental potential

energy surface (PES) and the exact CCSD PES at the scale of figure 6.18. Comparing
the approximate CCSD energy with the exact CCSD energy in figure 6.19 we get very
accurate energies, iff is set to 14 or higher and the expansion is truncated at third-
order. Furthermore we can see in figure 6.19 that the approximations with respect to
the order and with respect toRmin behave very systematically. One can obtain relatively
smooth potential energy surfaces, iff is set to 16.
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Figure 6.18: Potential energy scan along the C4-C5 distance [Å] of n-octane (figure
6.17) for the exact CCSD energies, the full (f = ∞) and the distance
truncated (f = 14, 16) fourth-order incremental expansions.
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Figure 6.19: Errors of the incremental expansion of the CCSD correlationenergy of
n-octane (figure 6.17) for a variation of the C4-C5 distance R[Å] with re-
spect to the expansion order and the truncation parameterf . The legends
for all four graphs are given in the plot for the first-order.



6.5 POTENTIAL ENERGY SURFACES 93

The PES is already smooth at second-order level over a quite long distance interval.
The non-linearity error, however, is still quite large in this case. At third-order level
the results are already very accurate. The largest errors are 0.09 mH forf = ∞, 0.41
mH for f=16 and 0.70 mH forf=14. Comparing these results with those of Mata and
Werner [135] with a largest error of 2.8-4.2 mH, we find that with the given parameters
the proposed approach is more accurate.
Figure 6.19 shows that the accuracy of the incremental expansion critically depends
on the distance parameterf . If f is set to 14 or higher, we get a smooth and accurate
PES. Further we find that the PES depends on the connectivity parametertcon. It leads
to poor domains, if the bonding orbital of the C4-C5 bond is not connected with the
rest of the molecule anymore (R>2.5 Å). We can fix this problem by increasing the
connectivity thresholdtcon to a larger value (4.0).

6.5.2 Hexayne

1.55

Figure 6.20: RI-BP86/SVP optimized structure of dodeca-hexayne with a fixed C5-
C6 distance of 1.55 Å.

The geometries were obtained by a relaxed scan of the C5-C6 distance using the RI-
BP86/SVP method. We used the 6-31G** basis set of Pople and coworkers [99, 100]
for the CCSD calculations. Since the breaking of a single C-Cbond is not very dif-
ficult, we decided to check the performance of the incremental scheme in breaking a
C-C triple bond (figure 6.20). Although the CCSD method is notsuitable for such a
case, one can check for the convergence of the incremental expansion. In this case we
find a small deviation of the exact PES and the approximate PESalready at the scale
of figure 6.21. From figure 6.22 we find again that the first-order expansion is not
sufficient. The second-order is not smoothly varying and hasa large error in contrast
to the breaking of the C-C single bond. The expansion up to third-order yields a fairly
smooth potential for all chosen distance parametersf , whereas the non-linearity error
is still large forf ≤16. At fourth-order we get a fairly smooth potential forf ≥12.
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The non-linearity error is about 1.2 mH for 12≤ f ≤14. If we choosef to be 16 we
find an error below 0.5 mH. The maximum errors are 0.35 mH forf=∞, 0.38 mH
for f=16 and 1.86 mH forf=14. If we compare our results with those of Mata and
Werner [135] and Subotnik and Head-Gordon [27] we find a better total accuracy if
we truncate at fourth-order and choosef=16. However, the efficiency with respect to
the computational time of our current test implementation is certainly worse than the
efficiency of the approaches of Werner et al. [135] or Head-Gordon et al. [27].
A general strategy to obtain suitable values forf is to do a series of test calculations
with different f in a small basis set and use the best value forf in the calculation
with the larger basis set. This can be done because the convergence behavior of the
incremental series is not very sensitive with respect to theone particle basis set [86].
An alternative to this is to transfer the factorf from a similar class of compounds (see
section 6.3).
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Figure 6.21: Potential energy scan along the C5-C6 distance [Å] of dodeca-hexayne
(figure 6.20) for the exact CCSD energies, the full (f=∞) and the dis-
tance truncated (f=14,16) fourth-order incremental expansions.
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Figure 6.22: Errors of the incremental expansion of the CCSD correlationenergy of
hexayne (figure 6.20) for a variation of the C5-C6 distance R [Å] with re-
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6.6 Polymers

Figure 6.23: Structure of the used hydrocarbon chain and the symmetric cell of
(C2H2)n. The geometry parameters were extracted from the PhD-thesis
of Kalvoda [136].

Table 6.22 shows the convergence of the CCSD/6-31G** incremental correlation en-
ergies forall-transpolyacetylene. The infinite summations for second and third-order
increments were truncated at next neighbour cells. In this case we did not use the
frozen-core approximation. A comparison to the data of Kalvoda [136] is not imme-
diately possible, since we used a different basis set and Kalvoda used the frozen-core
approximation. We note that the orders of magnitude for the contribution of a given
order in the incremental expansion are equal. The CCSD energies were iterated to an
accuracy of 10-6 Hartree.

OrderOi Oi-Correction Ecorr[au]
1 -0.166227 -0.166227
2 -0.123505 -0.289733
3 0.006539 -0.283193

Table 6.22:6-31G** incremental CCSD correlation energies per cell forall-trans
polyacetylene.
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The benchmark results of table 6.23 were obtained by the finite-cluster approach with
the unit cell and the molecule of figure 6.23 (n=7). According to the third column
in table 6.23 we see that the benchmark energy is already converged to about 10-4-
10-5 Hartree which is quite accurate. A comparison with the third-order incremental
expansion yields an error of about 1.4 kcal/mol (100.8 %). This is somewhat less
accurate than we expected from the convergence of the molecular calculations. There
are three possible sources for this error: firstly the accuracy of the CCSD calculations
within the domains was not strict enough, secondly the approximate symmetric orbitals
introduce an error and thirdly the restriction of the infinite sums was too strict, since
only increments within the next neighbour cells were taken into account.

Size of the Supercell Ecorr(Un) Ecell
corr(Un − Un−1)

n [au] [au]
5 -1.714325
6 -1.995280 -0.280954
7 -2.276236 -0.280957

Table 6.23:6-31G** finite-cluster CCSD correlation energies per cell for all-trans
polyacetylene.

6.7 Excited States

Within the framework of the incremental scheme it is possible to calculate excited
states using a local ansatz. If the CAS-wavefunction represents a reasonable approxi-
mation of the lowest states, we can account for dynamical correlation using the incre-
mental scheme. Necessary conditions for the application ofthe incremental scheme
are size-extensivity and size-consistency of the correlation method. Size-extensivity
is important, because the size of the system is successivelyincreased with increasing
order of the incremental expansion. This can be demonstrated by a numerical study of
the test system in figure 6.24. Since the domains were chosen to be H2-pairs, we have
6 non-interacting parts of our system. The electrons of the H4 square in the middle are
set to be active and are included in every calculation. We canexpect that a first-order
expansion yields the correct incremental energy for the system from a physical point
of view. Due to the lack of size-consistency of MR-CISD, MR-ACPF and MR-AQCC
we find rather large corrections even at fourth-order level as we can see in table 6.24.
The sums of the fourth-order corrections for these methods are of comparable magni-
tude. Note that the MR-AQCC seems to perform quite well up to third-order, whereas
it collapses at fourth-order level. If we compare the results of MR-CISD, MR-ACPF
and MR-AQCC with the results obtained by MR-CEPA(0), we see that MR-CEPA(0)
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is superior to the other methods from the perspective of convergence. MR-CEPA(0)
yields the correct correlation energy at first-order level as expected, because it is size-
consistent and size-extensive. Furthermore we can see fromthe MR-CEPA(0) results
that we can obtain reasonable correlation energies for local excited states within the
framework of the incremental scheme.
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Method MR-CISD MR-ACPF MR-AQCC MR-CEPA(0)
Multiplicity=1

OrderOi Oi-Correction Ecorr[au] Oi-Correction Ecorr[au] Oi-Correction Ecorr[au] Oi-Correction Ecorr[au]
1 -0.391946 -0.391946 -0.399291 -0.399291 -0.396420 -0.396420 -0.401879 -0.401879
2 0.044513 -0.347433 0.004203 -0.395088 0.039031 -0.357389 0.000003 -0.401876
3 -0.008475 -0.355908 -0.004279 -0.399367 0.000316 -0.357072 -0.000002 -0.401879
4 0.001389 -0.354519 0.002581 -0.396786 -0.004384 -0.361457 0.000000 -0.401878

Eactive
corr -0.007517 -0.007527 -0.007534 -0.007538

Multiplicity=3
OrderOi Oi-Correction Ecorr[au] Oi-Correction Ecorr[au] Oi-Correction Ecorr[au] Oi-Correction Ecorr[au]

1 -0.391582 -0.391582 -0.399199 -0.399199 -0.396208 -0.396208 -0.401880 -0.401880
2 0.045728 -0.345853 0.004307 -0.394892 0.040210 -0.355998 0.000019 -0.401861
3 -0.009449 -0.355302 -0.004469 -0.399362 -0.000372 -0.356370 -0.000011 -0.401873
4 0.001587 -0.353715 0.002692 -0.396670 -0.004424 -0.360794 0.000001 -0.401872

Eactive
corr -0.013941 -0.013986 -0.014016 -0.014031

Table 6.24:Convergence behavior of incremental correlation energiesof the H28 aggregate for MR-CISD, MR-ACPF, MR-AQCC
and MR-CEPA(0) correlation energies.



Chapter 7

Symmetric Localization

In the framework of the incremental scheme it is beneficial touse symmetric local or-
bitals, since this leads to large savings of computer time. The standard Foster-Boys
procedure [3,79] does not keep the symmetry of the whole system in all cases. In spe-
cial cases it leads to good numerical results, despite the symmetry breaking due to the
2× 2 rotations. But in general it may happen that the localization criterion contradicts
with the symmetry of the system.

Example:CrCl6
The total symmetry of the system is Oh but the core orbitals of the chromium
will have a lower symmetry, since the Foster-Boys procedureyields local
orbitals with a maximum distance of their centers of charge.This is for a
sp-core shell a tetrahedron, which is not in agreement with the total sym-
metry of the octahedron.

We try to solve this problem by a unitary transformation of the orbitals which yields
the correct symmetry in the centers of charge. This is done byminimizing the distance
of the centers of charge to a set of template vectorsr̃i.

D(φ) = min

[
∑

i

(

~Ri − r̃i

)2
]

= min

[
∑

i

3∑

j=1

(〈φi |rj |φi〉 − r̃ij)
2

]

(7.1)

The template vectors are obtained as symmetrisized centersof charge from a Foster-
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Boys guess. If they are core orbitals we set them to zero1 , otherwise we perform
a symmetrization. LetO be a set of centers of charge of the occupied Foster-Boys
orbitals,Ō the set of centers of charge of occupied Foster-Boys orbitals without the
centers of charge of core orbitals andM the set of all symmetry operators of the point
group. We define an equivalence classE according to eqn. 7.2:

Ek := {~Ri ∈ Ō : m̂ik
~Rk ≈ ~Ri} (7.2)

We can obtain all equivalence classes by:

1. start with an arbitrary orbitalox from Ō and build the equivalence class
Ex according to eqn. 7.2
2. build the complement of̄O andEx: Õ = Ō \ Ex

3. end ifÕ = ∅ else goto 1 and usẽO asŌ

In the next step we apply all symmetry operators to every point of the equivalence
classEx. Now we add all vectors within an arbitrary non-redundant part and divide
by the number of vectors in this part. After applying all symmetry operators to the
symmetrisized vector we obtain the set of template vectorsr̃xi

for the equivalence
classEx.
Now we apply the orthogonal2×2 rotation of eqn. 7.3 to the occupied orbitals in eqn.
7.1.

ui = cos(γ)φi − sin(γ)φj

uj = cos(γ)φj + sin(γ)φi

(7.3)

This leads to:

D(u) =
∑

i

i6=a,b

(
~~Ri − r̃i

)2

+

3∑

j=1

[
〈(cos(γ)φa − sin(γ)φb) |rj| (cos(γ)φa − sin(γ)φb)〉2

− 2〈(cos(γ)φa − sin(γ)φb) |rj| (cos(γ)φa − sin(γ)φb)〉r̃aj
+ r̃2

aj

〈(cos(γ)φb + sin(γ)φa) |rj| (cos(γ)φb + sin(γ)φa)〉2

−2〈(cos(γ)φb + sin(γ)φa) |rj | (cos(γ)φb + sin(γ)φa)〉r̃bj
+ r̃2

bj

]

(7.4)

1This is a special case. The generalization would be an analogous treatment of all points with higher
symmetry to the treatment of the central point.
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Expanding the terms and using the addition theorem of cosineand sine we get:

F (γ)ab = D(u)ab −D(φ)ab = A+B cos(2γ) + C sin(2γ) +D cos(4γ) + E sin(4γ)

A =
3

4
〈φa |rj|φa〉2 + 〈φa |rj|φb〉2 +

1

2
〈φa |rj|φa〉〈φb |rj|φb〉

+
3

4
〈φb |rj |φb〉2 − 〈φa |rj|φa〉r̃aj

− 〈φb |rj |φb〉r̃aj
+ r̃2

aj

− 〈φa |rj|φa〉r̃bj
− 〈φb |rj |φb〉r̃bj

+ r̃2
bj

B = −〈φa |rj|φa〉r̃aj

+ 〈φb |rj|φb〉r̃aj
+ 〈φa |rj|φa〉r̃bj

− 〈φb |rj |φb〉r̃bj

C = 2〈φa |rj|φb〉r̃aj
− 2〈φa |rj |φb〉r̃bj

D =
1

4
〈φa |rj|φa〉2 − 〈φa |rj |φb〉2

− 1

2
〈φa |rj |φa〉〈φb |rj |φb〉 +

1

4
〈φb |rj|φb〉2

E = −〈φa |rj|φa〉〈φa |rj|φb〉 + 〈φa |rj|φb〉〈φb |rj|φb〉

(7.5)

The functional in eqn. 7.5 is minimal if the derivative is zero. Since the function has
several maxima and minima in the interval[0, 2π] we choose the angleγ whereF (γ)ab

is lowest anddF (γ)ab

dγ
= 0. We choose the transformationu according to the largest

value ofF (γ)ab. After the transformation of the orbitals we build the matrix F (γ)

again and iterate until all values inF (γ) are below some threshold (10−12).
The procedure works quite well to obtain symmetry adapted centers of charge, but it
fails in producing symmetric orbitals, i.e. further work along these lines is required.
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Chapter 8

Summary and Outlook

8.1 Summary

In this thesis the first fully automatized implementation ofthe incremental scheme was
presented. It was applied to molecules, open-shell systems, the 4-exo/5-endocycliza-
tion, potential energy surfaces and a polymer. Furthermorethe error propagation was
analyzed theoretically and by a numerical study with uniformly distributed random
numbers. A cheap and systematic screening procedure to select only the most impor-
tant increments was introduced. The convergence of the proposed incremental method
is fast for almost all systems considered in this work. The convergence behavior did
not change significantly by increasing the basis set from double-ζ to triple-ζ basis sets
as well as for the usage of a diffuse basis set (6-31++G** and aug-cc-pVDZ). The
proposed method was demonstrated to be quite robust with respect to the choice of
the domains. It was shown that the errors can be below one kcal/mol, if the series is
truncated at a proper order (usuallyO can be kept below4). Furthermore it was shown
that this small error was still obtained if the important increments were selected by the
distance of two groups of one-site domains.
The approximate treatment of symmetry in combination with Foster-Boys orbitals was
explored for two intermolecular systems as well as a polymer. For the symmetric wa-
ter cluster and the symmetric cyclotriazine cluster we obtained fast convergence for
the incremental expansion. We got almost the exact result atsecond- and third-order,
respectively. The convergence of the incremental series isfaster for the water clus-
ter, because the one-site domains were fixed to a whole water molecule, whereas the
cyclotriazine molecules were divided into two one-site domains (according to the cho-
sen dsp values). The incremental calculation on polyacetylene yielded an error of 1.4
kcal/mol compared to the finite-cluster result.
The performance of CI-based correlation methods as MR-CISD, MR-ACPF, MR-
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AQCC and MR-CEPA(0) was tested for a non-interacting system. We found that the
size-extensivity/size-consistency errors prohibit the convergence of the incremental se-
ries for MR-CISD, MR-ACPF and MR-AQCC. According to this error the increments
do not decay with respect to the distance of the localized orbitals and it is therefore
not possible to truncate the incremental series with respect to the distance of the do-
mains. This is a necessary condition for the treatment of periodic systems, since the
infinite summations have to be truncated. The MR-CEPA(0) results however yield the
expected result for a non-interacting system: the sum of thefirst-order correlation en-
ergies corresponds to the exact result.
The incremental scheme performed quite well in the calculation of potential energy
surfaces. The error due to the incremental expansion was kept below one kcal/mol
and we obtained smooth potential energy surfaces, if the expansion was truncated
at third or fourth-order. Furthermore we still obtained smooth potential energy sur-
faces if we selected the important increments by an order-dependent distance threshold
(tdist =

f
Oi

).
For molecules the incremental series converged to an accuracy better than one kcal/-
mol for all molecules in this work. We found that the convergence was slower for
sphere-shaped molecules like TiCp2Cl2 compared toσ-bonded chains like n-decane.
A screening procedure for negligibly small increments was implemented and applied
to a set of test molecules. The errors introduced by the distance screening were shown
to be below one kcal/mol, if the truncation parameterf is chosen properly. The energy
dependence of this parameter was checked for a set of real life molecules as large as
the cytosine-guanine base pair.

8.2 Outlook

In a future work it is possible to test the incremental schemewith respect to molec-
ular properties. Since the server and client structure is already adapted for hyper-
polarizabilities within the DALTON framework, it is straightforward to go in this di-
rection. Another interesting question is to adapt a gradient to the proposed incremental
method. A strategy could be the expansion of the analytical gradient in an incremental
series. This has the major advantage that the gradient is well defined, even if the incre-
mental PES is not smooth. A further advantage is that the precision of the energy is not
necessarily required to be better than 10-6 Hartree. For test purposes one could extract
the analytical CCSD gradient from DALTON [88] quantum chemistry package.
Since the CCSD(T) method is one of today’s most reliable quantum chemical methods,
it would be useful to include this method into the incremental program. The simplest
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way to adapt the CCSD(T) method into the framework of the incremental scheme is
to diagonalize the Fock matrix within the space of the fragments and perform a stan-
dard CCSD(T) calculation afterwards. This modification is necessary to converge to
the exact CCSD(T) result, since the perturbative triples correction is not invariant with
respect to the unitary transformations of the MO basis. If the Fock matrix is partially
diagonalized for everyn-site domain, the differences with respect to the choice of the
one particle basis set are integrated into the incremental series. A different way to
combine the CCSD(T) approach with the incremental scheme isto solve the triples
correction in an iterative fashion as discussed by Schütz [21].
Another point is the implementation of a linear scaling incremental method, which can
be based on the results of the current work. The first step to dothis is the implemen-
tation of a fast linear scaling AO-MO-transformation with the possibility to freeze and
delete orbitals. Next one has to write an efficient correlation code to get the incremen-
tal energies in a reasonable time.
In combination with an efficient implementation of the correlation modules it is possi-
ble to perform automatic incremental calculations for periodic systems. In order to get
symmetry adapted MOs one could extract the required data from WANNIER [44,137]
or CRYSTAL [138–140] quantum chemistry packages.
One could explore the usage of a configuration selection based on perturbation theory
for incremental CEPA(0) energies using the DIESEL quantum chemistry package [77].
This should be straightforward, since the current implementation can handle the corre-
sponding threshold already. Furthermore it would be desirable to extend the treatment
of multi-reference cases to MRCC approaches (e.g. MR-expT of Hanrath [141]). For
this purpose one can use the experience of the MR-CEPA(0) calculations from this
work.
Finally it is an interesting point to adapt the symmetry of the system to the localization
procedure in order to use the full point group symmetry for the incremental expansion,
in cases where the localization criterion does not agree with the symmetry of the sys-
tem.
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Appendix A

List of Abbreviations

ACPF averaged coupled pair functional
AO atomic orbital
AQCC averaged quadratic coupled cluster
a.u. atomic units
aug-cc-pVDZ augmented correlation consistent polarized valence double-ζ

basis set of Dunning
BP86 Becke-Perdew gradient corrected exchange and

correlation density functional
CASSCF complete active space self-consistent field method
cc-pVDZ correlation-consistent polarized valence double-ζ basis set

of Dunning
cc-pVTZ correlation-consistent polarized valence triple-ζ basis set

of Dunning
CC coupled cluster
CCSD coupled cluster with singles and doubles substitutions method
CCSD(T) coupled cluster with singles and doubles and perturbative

triples substitutions method
CEPA(0) coupled electron-pair approximation of zeroth order
CI configuration interaction
CISD configuration interaction with singles and doubles substitutions method
DFT density functional theory
dsp domain size parameter
ECP effective core potential
FCI full configuration interaction method
kcal/mol kilocalories per mol
MCSCF multi-configuration self-consistent field method
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MDF ECP generated on the basis of all-electron Dirac-Fock calculations
MWB ECP generated on the basis of all-electron calculationsusing a

Wood-Boring Hamiltonian
HF Hartree-Fock approach
LMO localized molecular orbital
MO molecular orbital
MP2 Møller-Plesset perturbation theory of second-order
MPn Møller-Plesset perturbation theory ofn-th order
MR multi-reference
MR-CI multi-reference configuration interaction method
MR-CISD multi-reference configuration interaction

with singles and doubles substitutions method
nop number of parts parameter
occ occupied orbitals
PAO projected atomic orbital
PES potential energy surface
RCCSD restricted open-shell coupled cluster with singles and doubles

substitutions method
RI resolution of identity (density fitting)
SCF self-consistent field method
STL standard template library of C++
SVP standard basis in TURBOMOLE 5.6 of polarized double-ζ

quality
TS transition state
ZPE zero-point energy correction
6-31G** basis of polarized double-ζ quality
6-31G* double-ζ basis with polarization functions on all atoms

of the second period or higher
6-31G double-ζ basis set



Appendix B

The Incremental Code

B.1 Required Libraries

The incremental code is completely written in C++. It was tested on a cluster of Pen-
tium IV PC’s. In order to have a fast matrix multiplication and diagonalization it
uses the Lapack and Blas Libraries. For a convenient integration in C++ the CPPLa-
pack interface was used. Since FORTRAN numbers are not necessarily written in the
C-standard format we check the read numbers by a conversion class (MOLCAS). In
order to avoid an excessive case differentiation we used theregular expressions form
regexx library for this purpose. For the server/client communication the socket++ li-
brary is used. The Graph partitioning is done with METIS-graph partitioning using the
METIS library. All together we need the following librariesinstalled:

- liblapack.a
- libblas.a
- cpplapack.h
- libregexx.a
- socket++
- libmetis.a
- libf2c.a

The libraries are included in the Makefile.conf.local files in the SolidMRCC/Library/-
module_name/test directory. The actual path of a given library can be adapted in this
file, too.

119



120 CHAPTER B THE INCREMENTAL CODE

B.2 Quantum Chemistry Packages

For all three quantum chemistry packages (MOLPRO, MOLCAS, DALTON) we mod-
ified the source code in order to obtain the required data in the desired precision. These
modifications have to be adapted in a new installation or in anupdate of the version.

B.3 Molpro Input Example

The usage of ECP’s is allowed. The most convenient way to use an ECP in our frame-
work is to extract the ECP and basis set data from Gaussian basis set order form [142]
and paste it to the input file.

B.4 MOLCAS 6.4 Dependencies

In order to use the 6.4 version of MOLCAS to calculate the MO’sand the transformed
one- and two-particle integrals we installed the DIESEL patch into MOLCAS 6.4.
A picture of the data flow for incremental MR-CISD, ACPF, AQCCand CEPA(0)
calculations within the MOLCAS/DIESEL environment is given in figure B.1.

B.5 Dalton Dependencies

Figure B.2 gives an overview of the data flow for incremental CCSD calculations
within the DALTON framework. For property calculations thedata structure is simi-
lar. The main difference is that the server, the clients and the wrapper classes for the
network transfer are different. The data container in the server and the wrapper classes
have to include the property and the client has to do different I/O with DALTON.
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∗∗∗ ,

MEMORY,170 ,M;

geomtyp=xyz

geometry={
nosymm

16

B5H11

B −0.1890489 0.7287746 −1.5817852

B −0.1353763 −0.8908484 −0.9001497

B −0.0752367 −0.9533659 0.9031186

H −1.0068527 −1.4188981 0.0452508

B −0.2285015 0.7612458 1.5383154

B 0.7575139 0.3037702 0.0050513

H 0.4672242 0.9182539 2.5248233

H −1.0886271 −0.3515950 −1.6382591

H 0.1889543 1.4138737 0.3095822

H 0.4153058 −1.8148292 −1.4596877

H 0.4753712 −1.8912681 1.4370111

H −1.2484971 1.4395625 1.4641646

H −0.9673691 −0.4327263 1.6981598

H −1.0017159 1.6177074 −1.3855590

H 0.4094919 0.7257819 −2.6436917

H 1.9693627 0.3349574 0.0284204}

PUNCH t e s t ;

b a s i s=6−31G∗∗ ;

GTHRESH,ENERGY=1.d−10;

hf

o rbpr int , 5 6 ;

matrop ;

LOAD,ORBITAL,ORB;

PRINT,ORBITAL;

LOAD,OVERLAP, S ;

PRINT,OVERLAP;

LOAD, opx ,OPER,DMX;

PRINT, opx ;

LOAD, opy ,OPER,DMY;

PRINT, opy ;

LOAD, opz ,OPER,DMZ;

PRINT, opz ;

wr ite ,ORBITAL, t e s t ;
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C++ module necessary inputfile generated file molcas.in

MOLCAS CASSCF/MCSCF
- using a modified source code

Diesel_MRCI_Client 

molcas.out

***ORB

Molcas_6_4_FB

Diesel_MRCI_server

fb.in

mo_matrixINPORB

STDOUT

INPUTORB

copy

Servers_HOSTNAMEsym_partitions.xyz centers.xyz STDOUT

server.in

MOTRA
 MOLCAS 6.4

FORM31
 MOLCAS 6.4 (patch)

DIESEL 
AQCC, ACPF, MRCI, CEPA(0)

diag.out

Figure B.1: File dependencies for CI-based calculations within the MOLCAS 6.4 and
DIESEL framework.
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O
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E
P
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N

D
E

N
C

IE
S

1
2

3
input files

DALTON SCF
- using a modified source code

integrals
(dalton output)

DALTON.MOPUN

Dalton_FB

dalton_sym_server

fb.in

INPORBDSTDOUT

dalton_sym_client

Servers_HOSTNAMEsym_partitions.xyzcenters.xyz STDOUT
DALTON CCSD

- using a modified source code

C++ module necessary inputfile generated file

extract
 DALTON.MOPUN

 data

server.in

Figure B.2: File dependencies for the incremental CCSD calculations within the DALTON framework.
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Appendix C

Molecular Data

C.1 Exemplary Lists of Increments

1st Order 2nd Order
Combination E [a.u] Combination E [a.u]
0 -2.023440305500e-01 0 1 -3.064693590000e-03
1 -2.023439138770e-01 0 2 -3.064542781000e-03
2 -2.023440006240e-01 0 3 -3.064692038000e-03
3 -2.023439422190e-01 0 4 -3.064541640000e-03
4 -2.023440289280e-01 0 5 -2.183536504000e-03
5 -2.023439166520e-01 1 2 -3.064697970000e-03

3rd Order 1 3 -3.064566762000e-03
Combination E [a.u] 1 4 -2.183537037000e-03
0 1 2 3.318627070000e-04 1 5 -3.064561147000e-03
0 1 3 3.318624680000e-04 2 3 -2.183536117000e-03
0 1 4 1.786724220000e-04 2 4 -3.064549303000e-03
0 1 5 1.786743770001e-04 2 5 -3.064698248000e-03
0 2 3 1.786709700000e-04 3 4 -3.064689295000e-03
0 2 4 3.318595760000e-04 3 5 -3.064563025000e-03
0 2 5 1.786723570000e-04 4 5 -3.064693862000e-03
0 3 4 3.318617370000e-04 4th Order
0 3 5 1.786740760000e-04 Combination E [a.u]
0 4 5 1.786721120001e-04 0 1 2 3 -6.277379600000e-05
1 2 3 1.786757150000e-04 0 1 2 4 -6.277439499991e-05
1 2 4 1.786724040000e-04 0 1 2 5 -6.277393499998e-05
1 2 5 3.318633770000e-04 0 1 3 4 -6.277367500004e-05
1 3 4 1.786739860001e-04 0 1 3 5 -6.277498800009e-05
1 3 5 3.318622680001e-04 0 1 4 5 -1.727596000003e-05
1 4 5 1.786746860001e-04 0 2 3 4 -6.277410099986e-05
2 3 4 1.786716889999e-04 0 2 3 5 -1.727589299994e-05
2 3 5 1.786749639999e-04 0 2 4 5 -6.277433500007e-05
2 4 5 3.318619460000e-04 0 3 4 5 -6.277378200001e-05
3 4 5 3.318632139999e-04 1 2 3 4 -1.727602200011e-05

1 2 3 5 -6.277526400003e-05
1 2 4 5 -6.277382899997e-05
1 3 4 5 -6.277503300012e-05
2 3 4 5 -6.277379399985e-05

Table C.1: List of the incremental energies of MoF6.
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1st Order 2nd Order
Combination E [a.u] Combination E [a.u]
0 -1.639168251110e-01 0 1 -6.377502534000e-03
1 -1.639168124940e-01 0 2 -6.377028175000e-03
2 -1.639168217730e-01 0 3 -6.377502445000e-03
3 -1.639168144960e-01 0 4 -6.377033329000e-03
4 -1.639168201900e-01 0 5 -4.782358658000e-03
5 -1.639168201860e-01 1 2 -6.377505556000e-03

3rd Order 1 3 -6.377038392000e-03
Combination E [a.u] 1 4 -4.782359830000e-03
0 1 2 1.366408537000e-03 1 5 -6.377035920000e-03
0 1 3 1.366408990000e-03 2 3 -4.782360032000e-03
0 1 4 8.943944420000e-04 2 4 -6.377035465000e-03
0 1 5 8.943940140000e-04 2 5 -6.377502152000e-03
0 2 3 8.943933640000e-04 3 4 -6.377506054000e-03
0 2 4 1.366399406000e-03 3 5 -6.377030975000e-03
0 2 5 8.943943280000e-04 4 5 -6.377502701000e-03
0 3 4 1.366408179000e-03 4th Order
0 3 5 8.943948620000e-04 Combination E [a.u]
0 4 5 8.943934290000e-04 0 1 2 3 -4.869852500000e-04
1 2 3 8.943952350001e-04 0 1 2 4 -4.869942750000e-04
1 2 4 8.943936700000e-04 0 1 2 5 -4.869850940001e-04
1 2 5 1.366408321000e-03 0 1 3 4 -4.869850780000e-04
1 3 4 8.943942740001e-04 0 1 3 5 -4.869946160000e-04
1 3 5 1.366400359000e-03 0 1 4 5 -3.076106720001e-04
1 4 5 8.943949630000e-04 0 2 3 4 -4.869942010000e-04
2 3 4 8.943948780000e-04 0 2 3 5 -3.076105610000e-04
2 3 5 8.943936880000e-04 0 2 4 5 -4.869943040001e-04
2 4 5 1.366408594000e-03 0 3 4 5 -4.869850950000e-04
3 4 5 1.366408896000e-03 1 2 3 4 -3.076108310002e-04

1 2 3 5 -4.869944380001e-04
1 2 4 5 -4.869850150001e-04
1 3 4 5 -4.869945750000e-04
2 3 4 5 -4.869852239999e-04

Table C.2: List of the incremental energies of MoCl6.
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C.2 Lists of Increments for CI-based Methods

Multiplicity 1 Multiplicity 3
Combination E [a.u] Combination E [a.u]

1st Order 1st Order
0 -6.535316300000e-02 0 -6.535316400000e-02
1 -6.535319500000e-02 1 -6.535319900000e-02
2 -6.526644400000e-02 2 -6.508440500000e-02
3 -6.526644400000e-02 3 -6.508440500000e-02
4 -6.535319600000e-02 4 -6.535319900000e-02
5 -6.535316300000e-02 5 -6.535316300000e-02

2nd Order 2nd Order
0 1 2.926792000000e-03 0 1 2.926792000000e-03
0 2 3.004811000000e-03 0 2 3.160259000000e-03
0 3 3.004814000000e-03 0 3 3.160262000000e-03
0 4 2.926808000000e-03 0 4 2.926808000000e-03
0 5 2.926800000000e-03 0 5 2.926800000000e-03
1 2 3.004670000000e-03 1 2 3.160118000000e-03
1 3 3.004814000000e-03 1 3 3.160261000000e-03
1 4 2.926807000000e-03 1 4 2.926817000000e-03
1 5 2.926807000000e-03 1 5 2.926807000000e-03
2 3 2.913654000000e-03 2 3 2.885662000000e-03
2 4 3.004816000000e-03 2 4 3.160262000000e-03
2 5 3.004815000000e-03 2 5 3.160261000000e-03
3 4 3.004671000000e-03 3 4 3.160118000000e-03
3 5 3.004811000000e-03 3 5 3.160258000000e-03
4 5 2.926793000000e-03 4 5 2.926792000000e-03

3rd Order 3rd Order
0 1 2 -4.103410000000e-04 0 1 2 -4.323960000000e-04
0 1 3 -4.103470000000e-04 0 1 3 -4.324020000000e-04
0 1 4 -3.996910000000e-04 0 1 4 -3.997000000000e-04
0 1 5 -3.996880000000e-04 0 1 5 -3.996870000000e-04
0 2 3 -4.880470000000e-04 0 2 3 -6.652760000000e-04
0 2 4 -4.103380000000e-04 0 2 4 -4.324030000000e-04
0 2 5 -4.103400000000e-04 0 2 5 -4.324040000000e-04
0 3 4 -4.103410000000e-04 0 3 4 -4.324070000000e-04
0 3 5 -4.103350000000e-04 0 3 5 -4.324030000000e-04
0 4 5 -3.996910000000e-04 0 4 5 -3.996900000000e-04
1 2 3 -4.880400000000e-04 1 2 3 -6.652680000000e-04
1 2 4 -4.103420000000e-04 1 2 4 -4.324070000000e-04
1 2 5 -4.103430000000e-04 1 2 5 -4.324070000000e-04
1 3 4 -4.103410000000e-04 1 3 4 -4.324060000000e-04
1 3 5 -4.103380000000e-04 1 3 5 -4.324030000000e-04
1 4 5 -3.996860000000e-04 1 4 5 -3.996950000000e-04
2 3 4 -4.880410000000e-04 2 3 4 -6.652680000000e-04
2 3 5 -4.880470000000e-04 2 3 5 -6.652740000000e-04
2 4 5 -4.103500000000e-04 2 4 5 -4.324030000000e-04
3 4 5 -4.103410000000e-04 3 4 5 -4.323960000000e-04

4th Order 4th Order
0 1 2 3 9.910099999999e-05 0 1 2 3 1.258210000000e-04
0 1 2 4 8.848500000003e-05 0 1 2 4 9.318100000001e-05
0 1 2 5 8.848599999998e-05 0 1 2 5 9.318899999999e-05
0 1 3 4 8.849000000002e-05 0 1 3 4 9.318700000004e-05
0 1 3 5 8.847200000002e-05 0 1 3 5 9.318000000000e-05
0 1 4 5 8.624699999997e-05 0 1 4 5 8.625300000002e-05
0 2 3 4 9.908900000000e-05 0 2 3 4 1.258290000000e-04
0 2 3 5 9.909300000001e-05 0 2 3 5 1.258330000000e-04
0 2 4 5 8.847900000002e-05 0 2 4 5 9.318300000000e-05
0 3 4 5 8.848600000001e-05 0 3 4 5 9.319599999999e-05
1 2 3 4 9.909900000005e-05 1 2 3 4 1.258190000000e-04
1 2 3 5 9.909300000001e-05 1 2 3 5 1.258310000000e-04
1 2 4 5 8.849100000004e-05 1 2 4 5 9.318500000002e-05
1 3 4 5 8.847900000002e-05 1 3 4 5 9.317600000003e-05
2 3 4 5 9.910000000000e-05 2 3 4 5 1.258190000000e-04

Table C.3: List of the MR-CISD-incremental energies of H28.
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Multiplicity 1 Multiplicity 3
Combination E [a.u] Combination E [a.u]

1st Order 1st Order
0 -6.655497500000e-02 0 -6.655497600000e-02
1 -6.655501000000e-02 1 -6.655501400000e-02
2 -6.653556500000e-02 2 -6.648943600000e-02
3 -6.653556500000e-02 3 -6.648943600000e-02
4 -6.655501000000e-02 4 -6.655501400000e-02
5 -6.655497500000e-02 5 -6.655497600000e-02

2nd Order 2nd Order
0 1 2.769260000000e-04 0 1 2.769260000000e-04
0 2 2.851700000000e-04 0 2 3.019970000000e-04
0 3 2.851730000000e-04 0 3 3.020000000000e-04
0 4 2.769430000000e-04 0 4 2.769440000000e-04
0 5 2.769380000000e-04 0 5 2.769390000000e-04
1 2 2.850130000000e-04 1 2 3.018390000000e-04
1 3 2.851710000000e-04 1 3 3.019960000000e-04
1 4 2.769400000000e-04 1 4 2.769500000000e-04
1 5 2.769430000000e-04 1 5 2.769430000000e-04
2 3 2.606640000000e-04 2 3 2.293250000000e-04
2 4 2.851720000000e-04 2 4 3.019970000000e-04
2 5 2.851730000000e-04 2 5 3.020000000000e-04
3 4 2.850130000000e-04 3 4 3.018390000000e-04
3 5 2.851700000000e-04 3 5 3.019970000000e-04
4 5 2.769270000000e-04 4 5 2.769270000000e-04

3rd Order 3rd Order
0 1 2 -2.131250000000e-04 0 1 2 -2.207940000000e-04
0 1 3 -2.131240000000e-04 0 1 3 -2.207930000000e-04
0 1 4 -2.091570000000e-04 0 1 4 -2.091680000000e-04
0 1 5 -2.091550000000e-04 0 1 5 -2.091550000000e-04
0 2 3 -2.213320000000e-04 0 2 3 -2.458180000000e-04
0 2 4 -2.131150000000e-04 0 2 4 -2.207950000000e-04
0 2 5 -2.131160000000e-04 0 2 5 -2.207960000000e-04
0 3 4 -2.131240000000e-04 0 3 4 -2.208049999999e-04
0 3 5 -2.131120000000e-04 0 3 5 -2.207920000000e-04
0 4 5 -2.091580000000e-04 0 4 5 -2.091600000000e-04
1 2 3 -2.213320000000e-04 1 2 3 -2.458160000000e-04
1 2 4 -2.131250000000e-04 1 2 4 -2.208040000000e-04
1 2 5 -2.131250000000e-04 1 2 5 -2.208050000000e-04
1 3 4 -2.131240000000e-04 1 3 4 -2.208040000000e-04
1 3 5 -2.131160000000e-04 1 3 5 -2.207950000000e-04
1 4 5 -2.091520000000e-04 1 4 5 -2.091630000000e-04
2 3 4 -2.213320000000e-04 2 3 4 -2.458170000000e-04
2 3 5 -2.213310000000e-04 2 3 5 -2.458170000000e-04
2 4 5 -2.131260000000e-04 2 4 5 -2.207950000000e-04
3 4 5 -2.131250000000e-04 3 4 5 -2.207950000000e-04

4th Order 4th Order
0 1 2 3 1.746130000000e-04 0 1 2 3 1.868800000000e-04
0 1 2 4 1.706560000000e-04 0 1 2 4 1.752450000000e-04
0 1 2 5 1.706550000001e-04 0 1 2 5 1.752540000000e-04
0 1 3 4 1.706590000000e-04 0 1 3 4 1.752509999999e-04
0 1 3 5 1.706420000000e-04 0 1 3 5 1.752409999999e-04
0 1 4 5 1.682570000001e-04 0 1 4 5 1.682700000000e-04
0 2 3 4 1.746010000001e-04 0 2 3 4 1.868909999999e-04
0 2 3 5 1.746020000001e-04 0 2 3 5 1.868910000000e-04
0 2 4 5 1.706470000000e-04 0 2 4 5 1.752479999999e-04
0 3 4 5 1.706580000001e-04 0 3 4 5 1.752599999999e-04
1 2 3 4 1.746110000000e-04 1 2 3 4 1.868809999999e-04
1 2 3 5 1.746040000000e-04 1 2 3 5 1.868930000000e-04
1 2 4 5 1.706580000000e-04 1 2 4 5 1.752489999999e-04
1 3 4 5 1.706500000000e-04 1 3 4 5 1.752409999999e-04
2 3 4 5 1.746100000000e-04 2 3 4 5 1.868800000000e-04

Table C.4: List of the MR-ACPF-incremental energies of H28.
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Multiplicity 1 Multiplicity 3
Combination E [a.u] Combination E [a.u]

1st Order 1st Order
0 -6.608552200000e-02 0 -6.608552300000e-02
1 -6.608555600000e-02 1 -6.608556000000e-02
2 -6.603870200000e-02 2 -6.593272400000e-02
3 -6.603870200000e-02 3 -6.593272400000e-02
4 -6.608555600000e-02 4 -6.608556000000e-02
5 -6.608552200000e-02 5 -6.608552300000e-02

2nd Order 2nd Order
0 1 2.563067000000e-03 0 1 2.563069000000e-03
0 2 2.633805000000e-03 0 2 2.776714000000e-03
0 3 2.633808000000e-03 0 3 2.776717000000e-03
0 4 2.563083000000e-03 0 4 2.563086000000e-03
0 5 2.563076000000e-03 0 5 2.563078000000e-03
1 2 2.633659000000e-03 1 2 2.776568000000e-03
1 3 2.633808000000e-03 1 3 2.776717000000e-03
1 4 2.563082000000e-03 1 4 2.563094000000e-03
1 5 2.563083000000e-03 1 5 2.563085000000e-03
2 3 2.582320000000e-03 2 3 2.617646000000e-03
2 4 2.633809000000e-03 2 4 2.776717000000e-03
2 5 2.633808000000e-03 2 5 2.776717000000e-03
3 4 2.633659000000e-03 3 4 2.776568000000e-03
3 5 2.633805000000e-03 3 5 2.776714000000e-03
4 5 2.563068000000e-03 4 5 2.563070000000e-03

3rd Order 3rd Order
0 1 2 2.931700000000e-05 0 1 2 2.196600000001e-05
0 1 3 2.931100000000e-05 0 1 3 2.195999999999e-05
0 1 4 3.221700000001e-05 0 1 4 3.220200000000e-05
0 1 5 3.221899999999e-05 0 1 5 3.221499999999e-05
0 2 3 -4.110200000000e-05 0 2 3 -1.910660000000e-04
0 2 4 2.932000000000e-05 0 2 4 2.195900000002e-05
0 2 5 2.931800000000e-05 0 2 5 2.195799999999e-05
0 3 4 2.931700000000e-05 0 3 4 2.195500000002e-05
0 3 5 2.932200000000e-05 0 3 5 2.196099999999e-05
0 4 5 3.221599999999e-05 0 4 5 3.221099999999e-05
1 2 3 -4.109399999998e-05 1 2 3 -1.910590000000e-04
1 2 4 2.931700000003e-05 1 2 4 2.195699999999e-05
1 2 5 2.931600000000e-05 1 2 5 2.195500000002e-05
1 3 4 2.931800000003e-05 1 3 4 2.195599999999e-05
1 3 5 2.931900000000e-05 1 3 5 2.195800000002e-05
1 4 5 3.222200000001e-05 1 4 5 3.220699999999e-05
2 3 4 -4.109399999998e-05 2 3 4 -1.910580000000e-04
2 3 5 -4.110100000000e-05 2 3 5 -1.910650000000e-04
2 4 5 2.930900000001e-05 2 4 5 2.195899999999e-05
3 4 5 2.931600000000e-05 3 4 5 2.196600000001e-05

4th Order 4th Order
0 1 2 3 -2.907690000000e-04 0 1 2 3 -2.894600000000e-04
0 1 2 4 -2.936450000000e-04 0 1 2 4 -2.996500000000e-04
0 1 2 5 -2.936440000000e-04 0 1 2 5 -2.996410000000e-04
0 1 3 4 -2.936420000000e-04 0 1 3 4 -2.996430000000e-04
0 1 3 5 -2.936590000000e-04 0 1 3 5 -2.996520000000e-04
0 1 4 5 -2.903450000000e-04 0 1 4 5 -2.903260000000e-04
0 2 3 4 -2.907810000000e-04 0 2 3 4 -2.894520000000e-04
0 2 3 5 -2.907770000000e-04 0 2 3 5 -2.894500000000e-04
0 2 4 5 -2.936540000000e-04 0 2 4 5 -2.996480000000e-04
0 3 4 5 -2.936430000000e-04 0 3 4 5 -2.996360000000e-04
1 2 3 4 -2.907730000001e-04 1 2 3 4 -2.894629999999e-04
1 2 3 5 -2.907770000000e-04 1 2 3 5 -2.894490000000e-04
1 2 4 5 -2.936410000000e-04 1 2 4 5 -2.996460000000e-04
1 3 4 5 -2.936520000000e-04 1 3 4 5 -2.996540000000e-04
2 3 4 5 -2.907700000000e-04 2 3 4 5 -2.894630000000e-04

Table C.5: List of the MR-AQCC-incremental energies of H28.
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Multiplicity 1 Multiplicity 3
Combination E [a.u] Combination E [a.u]

1st Order 1st Order
0 -6.697835200000e-02 0 -6.697835100000e-02
1 -6.697838800000e-02 1 -6.697839100000e-02
2 -6.698298200000e-02 2 -6.698317000000e-02
3 -6.698298200000e-02 3 -6.698317000000e-02
4 -6.697838800000e-02 4 -6.697839100000e-02
5 -6.697835200000e-02 5 -6.697835100000e-02

2nd Order 2nd Order
0 1 -1.600000000546e-08 0 1 -1.900000000388e-08
0 2 4.679999999896e-07 0 2 2.401000000013e-06
0 3 4.709999999880e-07 0 3 2.404000000011e-06
0 4 2.000000012825e-09 0 4 -9.999999855959e-10
0 5 -3.999999997895e-09 0 5 -6.999999996316e-09
1 2 3.080000000044e-07 1 2 2.240000000001e-06
1 3 4.690000000029e-07 1 3 2.400999999999e-06
1 4 -1.999999998947e-09 1 4 4.999999997368e-09
1 5 1.000000013351e-09 1 5 -1.999999985070e-09
2 3 -1.599999999990e-07 2 3 -2.200000000230e-07
2 4 4.700000000024e-07 2 4 2.400999999999e-06
2 5 4.719999999875e-07 2 5 2.404000000011e-06
3 4 3.080000000044e-07 3 4 2.240000000001e-06
3 5 4.679999999896e-07 3 5 2.400000000014e-06
4 5 -1.500000000598e-08 4 5 -1.800000000440e-08

3rd Order 3rd Order
0 1 2 -3.299999998263e-08 0 1 2 -1.069999999853e-07
0 1 3 -3.199999998316e-08 0 1 3 -1.059999999858e-07
0 1 4 -3.000000026177e-09 0 1 4 -8.999999995263e-09
0 1 5 9.999999855959e-10 0 1 5 5.000000011246e-09
0 2 3 -4.979999999877e-07 0 2 3 -2.513000000010e-06
0 2 4 -2.299999998789e-08 0 2 4 -1.060000000414e-07
0 2 5 -2.399999994573e-08 0 2 5 -1.069999999992e-07
0 3 4 -3.299999998263e-08 0 3 4 -1.170000000356e-07
0 3 5 -1.799999997665e-08 0 3 5 -1.040000000008e-07
0 4 5 -3.000000012299e-09 0 4 5 -1.387778780781e-17
1 2 3 -4.990000000149e-07 1 2 3 -2.511999999982e-06
1 2 4 -3.300000001039e-08 1 2 4 -1.160000000083e-07
1 2 5 -3.399999999598e-08 1 2 5 -1.170000000217e-07
1 3 4 -3.200000001091e-08 1 3 4 -1.160000000083e-07
1 3 5 -2.300000000177e-08 1 3 5 -1.060000000275e-07
1 4 5 2.999999984543e-09 1 4 5 -3.000000012299e-09
2 3 4 -4.990000000149e-07 2 3 4 -2.510999999997e-06
2 3 5 -4.979999999738e-07 2 3 5 -2.510999999983e-06
2 4 5 -3.499999999546e-08 2 4 5 -1.069999999853e-07
3 4 5 -3.299999999651e-08 3 4 5 -1.060000000136e-07

4th Order 4th Order
0 1 2 3 4.700000001689e-08 0 1 2 3 1.239999999486e-07
0 1 2 4 1.500000000598e-08 0 1 2 4 9.999999994736e-10
0 1 2 5 1.299999996540e-08 0 1 2 5 8.999999925874e-09
0 1 3 4 1.900000000388e-08 0 1 3 4 5.999999996842e-09
0 1 3 5 -1.999999998947e-09 0 1 3 5 -3.000000067810e-09
0 1 4 5 -9.999999162069e-10 0 1 4 5 6.999999968560e-09
0 2 3 4 3.599999996717e-08 0 2 3 4 1.310000000282e-07
0 2 3 5 3.599999995330e-08 0 2 3 5 1.339999999295e-07
0 2 4 5 6.999999968560e-09 0 2 4 5 2.999999956788e-09
0 3 4 5 1.600000001933e-08 0 3 4 5 1.600000000546e-08
1 2 3 4 4.500000003183e-08 1 2 3 4 1.210000000196e-07
1 2 3 5 3.899999999335e-08 1 2 3 5 1.339999999989e-07
1 2 4 5 1.800000000440e-08 1 2 4 5 3.000000026177e-09
1 3 4 5 8.000000037423e-09 1 3 4 5 -5.999999969086e-09
2 3 4 5 4.599999998967e-08 2 3 4 5 1.199999999230e-07

Table C.6: List of the MR-CEPA(0)-incremental energies of H28.
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C.3 4-exo/5-endo Cyclization

system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
16 a

1 -0.908354 -0.908354 204.50 73.60
2 -0.333906 -1.242260 -5.03 100.65
3 0.008175 -1.234085 0.10 99.99
4 -0.000174 -1.234259 -0.01 100.00

exact CCSD -1.234249

16 b
1 -0.907860 -0.907860 204.55 73.58
2 -0.333982 -1.241842 -5.02 100.65
3 0.008126 -1.233716 0.08 99.99
4 -0.000120 -1.233836 0.00 100.00

exact CCSD -1.233836

16 c
1 -0.907649 -0.907649 204.71 73.56
2 -0.334255 -1.241904 -5.04 100.65
3 0.008151 -1.233753 0.07 99.99
4 -0.000116 -1.233869 0.00 100.00

exact CCSD -1.233869

14 a
1 -0.911709 -0.911709 198.12 74.28
2 -0.322797 -1.234506 -4.44 100.58
3 0.007072 -1.227435 0.00 100.00
4 -0.000002 -1.227437 0.00 100.00

exact CCSD -1.227435

Table C.7: Convergence behavior for the incremental RCCSD/6-31G** correlation
energy of the intermediates of the cyclization of14. (dsp=3, core=8)
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system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
14 b

1 -0.915735 -0.915735 194.87 74.68
2 -0.318038 -1.233773 -4.70 100.61
3 0.007503 -1.226270 0.01 100.00
4 -0.000026 -1.226296 -0.01 100.00

exact CCSD -1.226281

14 c
1 -0.916631 -0.916631 194.25 74.75
2 -0.316954 -1.233586 -4.64 100.60
3 0.007401 -1.226184 0.00 100.00
4 -0.000013 -1.226197 -0.01 100.00

exact CCSD -1.226187

13 a
1 -0.965772 -0.965772 169.30 78.16
2 -0.277944 -1.243716 -5.11 100.66
3 0.008119 -1.235597 -0.02 100.00
4 0.000063 -1.235534 0.02 100.00

exact CCSD -1.235571

13 b
1 -0.965237 -0.965237 170.26 78.06
2 -0.279755 -1.244992 -5.29 100.68
3 0.008430 -1.236562 0.00 100.00
4 0.000024 -1.236537 0.02 100.00

exact CCSD -1.236569

13 c
1 -0.965306 -0.965306 169.54 78.13
2 -0.278399 -1.243705 -5.16 100.67
3 0.008187 -1.235518 -0.02 100.00
4 0.000069 -1.235449 0.02 100.00

exact CCSD -1.235483

Table C.8: Convergence behavior for the incremental RCCSD/6-31G** correlation
energy of the intermediates of the cyclization of14. (dsp=3, core=8)



C.3 4-exo/5-endoCyclization 133

system orderi i-th order correction Ecorr(i) error % Ecorr

[au] [au] [kcal/mol]
TS 12 a

1 -0.924125 -0.924125 198.34 74.51
2 -0.323896 -1.248021 -4.91 100.63
3 0.007964 -1.240057 0.09 99.99
4 -0.000167 -1.240224 -0.02 100.00

exact CCSD -1.240199

TS 12 b
1 -0.925685 -0.925685 198.76 74.51
2 -0.324541 -1.250226 -4.89 100.63
3 0.007952 -1.242274 0.10 99.99
4 -0.000181 -1.242455 -0.01 100.00

exact CCSD -1.242433

TS 12 c
1 -0.930893 -0.930893 194.57 -75.01
2 -0.317796 -1.248688 -4.85 -100.62
3 0.007865 -1.240824 0.09 -99.99
4 -0.000182 -1.241006 -0.03 -100.00

exact CCSD -1.240961

TS 15 a
1 -0.920398 -0.920398 204.39 73.86
2 -0.335680 -1.256078 -6.25 100.80
3 0.010135 -1.245943 0.11 99.99
4 -0.000167 -1.246110 0.00 100.00

exact CCSD -1.246115

1 -0.919738 -0.919738 204.65 73.82
2 -0.336376 -1.256114 -6.43 100.82
3 0.010573 -1.245540 0.21 99.97
4 -0.000332 -1.245872 0.00 100.00

exact CCSD -1.245870

Table C.9: Convergence behavior for the incremental RCCSD/6-31G** correlation
energy of the intermediates of the cyclization of14. (dsp=3, core=8)
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orderi i-th order Ecorr(i) orderi i-th order Ecorr(i)

correction correction
16 a 14 a

1 -1.092849 -1.092849 1 -1.093156 -1.093156
2 -0.405839 -1.498688 2 -0.397282 -1.490438
3 0.008991 -1.489697 3 0.008124 -1.482315

16 b 14 b
1 -1.092181 -1.092181 1 -1.102117 -1.102117
2 -0.405937 -1.498118 2 -0.387245 -1.489362
3 0.008894 -1.489225 3 0.008373 -1.480989

16 c 14 c
1 -1.092154 -1.092154 1 -1.103006 -1.103006
2 -0.406000 -1.498153 2 -0.385985 -1.488991
3 0.008913 -1.489241 3 0.008250 -1.480741

13 a TS 12 a
1 -1.163704 -1.163704 1 -1.105809 -1.105809
2 -0.336198 -1.499903 2 -0.398601 -1.504410
3 0.008745 -1.491158 3 0.009017 -1.495393

13 b TS 12 b
1 -1.162791 -1.162791 1 -1.107251 -1.107251
2 -0.338636 -1.501427 2 -0.399377 -1.506628
3 0.009173 -1.492255 3 0.009052 -1.497576

13 c TS 12 c
1 -1.163037 -1.163037 1 -1.117433 -1.117433
2 -0.336725 -1.499761 2 -0.387324 -1.504757
3 0.008807 -1.490954 3 0.008762 -1.495995

TS 15 a
1 -1.105403 -1.105403
2 -0.406089 -1.511493
3 0.010671 -1.500822

TS 15 b
1 -1.104931 -1.104931
2 -0.407062 -1.511993
3 0.011275 -1.500718

Table C.10: Incremental RCCSD/cc-pVTZ correlation energies for different conform-
ers on the PES of the 4-exo/5-endocyclization of14. (dsp=3, core=8)
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Abstract
A general fully automated implementation of the incremental scheme for molecules
and embedded clusters in the framework of the Coupled Cluster singles and doubles
theory is presented. The code can be applied to arbitrary order of the incremental ex-
pansion and is parallelized in a master/slave structure. Wefound that the error in the
total correlation energy is lower than 1 kcal/mol with respect to the canonical CCSD
calculation if the incremental series is truncated in a proper way. The potential accu-
racy of the incremental scheme is demonstrated explicitly for transition metal com-
plexes, intermolecular systems, the aurophilic attraction, the 4-exo/5-endocyclization
and cluster compounds. The symmetry is exploited for aC3 symmetric water cluster, a
C5 symmetric triazine pentamer andall-transpolyacetylene. For open-shell molecules
the MR-CEPA(0)-method was adapted into the framework of theincremental scheme.
Furthermore a systematic screening procedure for small contributions in the incremen-
tal expansion of the correlation energy is presented. The performance of the proposed
scheme is checked for the calculation of intermolecular interactions in realistic test
systems as large as a guanine-cytosine base pair. It was found that the computational
cost for the incremental expansion can be considerably reduced without significant
loss of accuracy. Typically the errors of the systems investigated here amount to less
than 5 %, 1 % and 0.1 % for second, third and fourth order expansions, respectively.
Additionally an analysis of the propagation of errors in theincremental expansion of
the correlation energy is presented. Finally the performance of the incremental scheme
in calculating potential energy surfaces is demonstrated.



Kurzzusammenfassung
In der vorliegenden Arbeit wird eine voll automatische Implementierung des Inkre-
mentenverfahrens für CCSD und MR-CEPA(0) Korrelationsenergien vorgestellt. Mit
der vorgestellten Implementation können Inkremente beliebiger Ordnung berechnet
werden. Des weiteren wurde die Rechenzeit durch die Parallelisierung in einer Master/
Slave-Struktur deutlich verkürzt. Mit dem vorgestellten Inkrementenverfahren kann
die CCSD Energie mit einem Fehler von weniger als einer kcal/mol ermittelt wer-
den. Dies wird durch Testrechungen an gesättigten Kohlenwasserstoffen, an ungesät-
tigten Kohlenwasserstoffen mit konjugiertenπ-Systemen, an aromatischen Verbindun-
gen, an Übergangsmetallverbindungen, an Actinoidkomplexen, an intermolekularen
Verbindungen, an den Intermediaten der 4-exo/5-endoCyclisierung und an Clustern
bestätigt. Des weiteren wird der Einfluss von näherungsweise symmetrischen Foster-
Boys Orbitalen auf die Konvergenz der Inkrementenreihe behandelt. Explizite Rech-
nungen wurden in diesem Rahmen an einemC3 symmetrischen Wassercluster, an dem
C5 symmetrischen Triazin-Pentamer und an Polyacetylen durchgeführt. Für offen-
schalige Moleküle wurden die MR-CEPA(0)-Methode, die MR-CISD-Methode, die
MR-ACPF-Methode, die MR-AQCC-Methode und die RCCSD-Methode im Rahmen
des Inkrementenverfahrens getestet.
Zur Beschleunigung der Inkrementen Rechnungen wurde ein Abstands basiertes Se-
lektionskriterium implementiert. Mit diesem systematischen screening Verfahren kann
die Rechenzeit bei gleicher Genauigkeit enorm verkürzt werden. Die Leisungsfähigkeit
dieses screening Verfahrens wurde an realistischen Testsystemen wie z.B. dem Guanin-
Cytosin-Basenpaar getestet. Die Fehler die im Rahmen der Inkrementen Rechnungen
eingeführt wurden, sind typischerweise kleiner als 5 %, 1 % und 0.1 % der Korre-
lationsenergie für zweite, dritte und vierte Ordnung. Des weiteren wurde die Inkre-
mentenmethode auf die Potenialhyperflächen von Octan und Dodeca-hexain angewen-
det. Schließlich wurde auch die Fehlerfortpflanzung in der Inkrementenmethode analy-
siert.
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