Ein Regulationsnetzwerk aus H-NS und den Antirepressoren BglJ und LeuO

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Andreas Paukner

aus Homberg / Efze

Köln, Mai 2007

Berichterstatter/in: Prof. Dr. Karin Schnetz Prof. Dr. Thomas Langer

Tag der letzten mündlichen Prüfung: 09.07.2007

Danksagungen

Ich möchte mich bei Prof. Dr. Schnetz für die Bereitstellung des Themas und die umfangreiche Betreuung während meiner Promotionszeit bedanken. Die Diskussionen mit ihr waren mir stets eine große Hilfe und haben es mir möglich gemacht, den Fokus zu finden und gleichzeitig neue Ansätze zu erkennen.

Ich bedanke mich bei allen aktuellen und ehemaligen Laborkollegen, insbesondere den technischen Assistenten Sandra Malcher, Doris Renz und Kathleen Plamper, sowie der indischen Fraktion am Institut, namentlich Madhu, Vel und Sabari, die mich einen Großteil der Zeit begleitet haben und mir gute Freunde innerhalb und außerhalb des Labors waren.

Prof. Dr. Langer danke ich für die freundliche Bereitschaft, trotz Zeitdruck das Koreferat für diese Arbeit zu übernehmen.

Mein Dank gilt insbesondere auch meinen Eltern, die mich immer unterstützt und nie an mir gezweifelt haben.

Abschließend möchte ich mich bei Kathrin, Vanessa und Denise bedanken, die mir ein großer Rückhalt waren und die wichtigsten Personen in meinem Leben sind. Ich weiß nicht, was ich ohne Euch wäre.

Abkürzungen

bp	Basenpaare
cAMP	3'-5'-cyclic adenosine monophosphate
CRP	catabolite regulator protein
DRE	downstream regulatory element
URE	upstream regulatory element
DTT	Dithiothreitol
EDTA	Ethylendiamintetraacetat
FIS	factor for inversion stimulation
H-NS	histone-like nucleoid structuring protein
IPTG	Isopropyl β-D-1-thiogalactopyranosid
kDa	kilo Dalton
OD	optische Dichte
ONPG	O-nitrophenyl-β,D-galactopyranosid
wt	Wildtyp
EMSA	electrophoretic mobility shift assay
BTB	Bromthymolblau
X-Gal	5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid

Inhaltsverzeichnis

Inhalts	verzeichnis	5
I	Zusammenfassung	7
I	Abstract	8
II	Einleitung	9
1.	Repression durch H-NS	9
2.	Antirepressoren als Antagonisten von H-NS	11
3.	Das bgl-Operon als Beispiel eines H-NS-reprimierten Systems	12
4.	Die Transkriptionsfaktoren LeuO und BglJ	13
5.	Das Rcs-Phosphorelaysystem ist an der Regulation von bgl beteiligt	14
6.	Zielsetzung	15
III.	Ergebnisse	16
1.	Aktivierung des bgl-Operons durch BglJ und LeuO	16
1.1	LeuO and BglJ aktivieren den <i>bgl</i> -Promotor	16
1.2	Die Proteine BglJ und LeuO sind keine Lon Substrate	20
2.	Aktivierung von <i>bgl</i> durch LeuO	22
2.1	LeuO-His ₆ und His ₆ -LeuO-Expressionsplasmide	22
2.2	Die Aktivität von LeuO-His ₆ entspricht der von LeuO <i>in vivo</i>	23
2.3	Aufreinigung von LeuO-His ₆	24
2.4	Bindet LeuO spezifisch an die <i>bgl</i> -Promotorregion?	25
2.5	Modifiziert H-NS die Bindung von LeuO an die bgl-Promotorregion ?	27
2.6	Die Aktivierung des bgl-Promotors durch LeuO ist in einer Irp- Mutan	nte
	reduziert	28
3.	Aktivierung von <i>bgl</i> durch BglJ	30
3.1	Die Aktivität von BglJ-His ₆ entspricht der von BglJ <i>in vivo</i>	30
3.2	Probleme bei der Aufreinigung von BglJ-His ₆	31
4.	Screen nach Suppression der Aktivierung von bgl durch LeuO und B	BglJ
		32
4.1	Transposonmutagenese-Screen nach Co-Faktoren von BglJ und Le	uO32
4.2	Die Aktivierung von <i>bgl</i> durch BglJ ist abhängig von RcsB	35
4.3	LeuO und BgIJ können den bgl-Promotor unabhängig von einander	
	aktivieren	37
5.	Interaktion von BglJ und RcsB	39

5.1	Plasmide für die Expression von BglJ-His und RcsB-HA	40
5.2	Plasmidische Expression von RcsB hemmt die Aktivierung von bgi	durch
	BglJ	42
5.3	BglJ-Stabilität in Abhängigkeit von Temperatur und RcsB	43
5.4	Expression von BgIJ-HA und verschiedener RcsB-HA-Mutanten	45
IV	Diskussion	47
V.	Material und Methoden	51
1.	Medien und Agarplatten	51
2.	Grundlegende molekularbiologische Methoden	52
3.	Plasmide und Stämme	52
4.	ß-Galaktosidasetests	57
5.	kompetente Zellen und Transformation	58
6.	Integration von Fragmenten in den attB-Locus von E.coli	58
7.	Deletion von <i>bglJ</i> und <i>yjjQ/bglJ</i> nach der Methode von (Datsenko a	and
	Wanner, 2000)	59
8.	Transduktion mit dem Phagen T4GT7 (Wilson et al., 1979)	59
9.	Transposonmutagenese	59
10	Analyse der Transposonmutanten	60
11.	DNA-Sequenzierung	60
12.	Pulse-Chase-Experiment	60
13.	Herstellung von <i>E.coli</i> Proteinextrakten	61
14.	Aufreinigung von LeuO-His ₆	61
15.	Electrophoretic Mobility Shift Assays (EMSAs)	61
16.	Western Blot	62
VI.	Literatur	63

I Zusammenfassung

Das Nukleoid-assoziierte Protein H-NS steuert als globaler Repressor 200 bis 300 der Gene von *Escherichia coli*. Die Repression eines dieser Loci, des *bgl*-Operons (aryl-β,D-Glukosid Operon) ist ungewöhnlich strikt und erfolgt durch Bindung von H-NS an zwei regulatorische Regionen oberhalb und unterhalb des Promotors. Die strikte Repression ist die Ursache dafür, dass das *bgl*-Operon kryptisch ist, d.h. es wird unter Labor-üblichen Wachstumsbedingungen nicht exprimiert. Allerdings führt die Überexpression der Transkriptionsfaktoren LeuO und BglJ zu einem Bgl⁺ Phänotyp.

In dieser Arbeit wurde gezeigt, dass LeuO und BgIJ als Anti-Repressoren von H-NS wirken. LeuO und BgIJ heben die Repression durch Bindung von H-NS oberhalb des Promotors auf. Bindestudien zeigen, dass LeuO direkt an die 5'-*bgl*-Promotorregion bindet und dadurch den H-NS-Repressionskomplex moduliert. Ein Screen nach Mutanten sowie Expressionsanalysen zeigten, dass die Aktivierung des *bgl*-Promotors durch BgIJ von RcsB abhängig ist. RcsB ist der Response-Regulator des Rcs-Phosphorelaysystems, eines der drei Membranstress-Sensing-Systeme von *E.coli*. BgIJ und RcsB gehören zur selben Familie der LuxRähnlichen Transkriptionsfaktoren und bilden im Two-Hybrid-System Heterodimere. Daher ist anzunehmen, dass ein BgIJ/RcsB-Heterodimer als Anti-Repressor im *bgl*-Promotorbereich bindet und den Promotor aktiviert. Beim Versuch BgIJ und RcsB für *in-vitro*-Interaktionsanalysen und DNA-Bindestudien zu exprimieren, zeigte sich, dass RcsB die Stabilität von BgIJ vermindert. RcsB ist also einerseits für die Aktivierung von *bgl* durch BgIJ notwendig und reguliert andererseits BgIJ negativ.

H-NS, LeuO und BglJ bilden ein komplexes Netzwerk. Die Antirepressoren LeuO und BglJ heben die Repression von *bgl* durch H-NS auf. Die *leuO* und *bglJ*-Gene werden aber selbst durch H-NS reprimiert, wobei LeuO wiederum Aktivator von *bglJ* ist. Dieses Regulationsnetzwerk wird ergänzt durch den Response-Regulator RcsB, der für die *bgl*-Aktivierung durch BglJ notwendig ist. Die Komplexität der Wechselwirkungen legt nahe, dass die Aktivierung von *bgl in vivo* an streng definierte Bedingungen geknüpft ist, wobei über RcsB eine mögliche Verbindung zu Membranstress hergestellt wird und LeuO auf Aminosäuremangel als Signal hinweist.

I Abstract

The nucleoide-associated protein H-NS acts as a global repressor for 200 to 300 genes of *Eschericia coli*. The repression of one of these loci, the *bgl*-operon (aryl- β ,D-glucoside operon) is exceptionally strong and is obtained by H-NS binding to two regulatory regions upstream and downstream of the promoter. This strict repression results in the *bgl*-operon being cryptic, i.e. it is not expressed under laboratory growth conditions. However, overexpression of the transcription factors LeuO and BglJ leads to *bgl* activation and a Bgl⁺ phenotype.

In this work it is shown, that LeuO and BgIJ act as anti-repressors of H-NS. LeuO and BgIJ abolish repression by H-NS binding upstream of the promoter. Binding studies indicate that LeuO binds directly to the 5'-*bgI*-promoter region, thereby modulating the H-NS repression complex. A screen for mutants and expression analyses show, that activation of the *bgI*-promoter by BgIJ depends on RcsB. RcsB is the response regulator of the Rcs phosphorelay system, one of the three membrane stress sensing systems of *E.coli*. Both BgIJ and RcsB belong to the family of LuxR-like transcription factors and form heterodimers in a two-hybrid system. It can therefore be assumed, that a BgIJ/RcsB heterodimer binds at the *bgI*-promoter region as an anti-repressor and activates the promoter. In an attempt to express BgIJ and RcsB for analysis of *in vitro* interaction and binding studies, it was found that RcsB reduces BgIJ stability. Hence RcsB on the one hand is necessary for activation of *bgI* by BgIJ, on the other hand regulates BgIJ negatively.

H-NS, LeuO and BgIJ form a complex network. The anti-repressors LeuO and BgIJ cancel repression of *bgl* by H-NS. The *leuO* and *bgIJ* genes themselves are subject to repression by H-NS, whereas LeuO in turn activates *bgIJ* expression. This regulatory network is complemented by the response regulator RcsB, which is essential for *bgl* activation by BgIJ. The complexity of interdependency suggests, that activation of *bgl in vivo* is coupled to strictly defined conditions. RcsB offers a possible link to mebrane stress, whereas *leuO* indicates towards amino acid starvation as a signal.

II Einleitung

Das Nukleoid-assoziierte Protein H-NS (histone-like nucleoide-structuring protein) ist in Proteobakterien hoch konserviert (Tendeng and Bertin, 2003). H-NS spielt eine wichtige Rolle in der Organisation des bakteriellen Chromosoms und in der Transkriptionsregulation (Dorman, 2004; Luijsterburg et al., 2006). In *E.coli* reguliert es direkt oder indirekt ~5% aller Gene, von denen viele an der Anpassung an Stress- und veränderte Umweltbedingungen beteiligt sind (Bertin et al., 2001; Hommais et al., 2001). Dabei wirkt es in fast allen Fällen als Repressor (Dorman, 2004). Die Repression durch H-NS erfolgt durch Bildung eines ausgedehnten Nukleoproteinkomplexes und wird Gen-spezifisch aufgehoben. Oft bindet ein spezifischer Transkriptionsfaktor und zerstört als Anti-Repressor den H-NS-DNA-Komplex (Forsman et al., 1992; Jordi et al., 1992; Murphree et al., 1997). Die Expression H-NS-reprimierter Gene kann durch Kontrolle der Anti-Repressoren einem komplexen vorgeschaltenen Signalweg unterliegen. In dieser Arbeit wurde als ein Beipiel dafür die Anti-Repression des *bgl*-(β -Glukosid)-Operons durch die Transkriptionsfaktoren LeuO und BglJ untersucht.

1. Repression durch H-NS

H-NS ist ein 15,6 kDa großes Protein, das in einer Konzentration von ca. 20000 Molekülen pro Zelle vorkommt (Falconi et al., 1988; Tendeng and Bertin, 2003; Azam et al., 1999). H-NS bindet bevorzugt an AT-reiche, gekrümmte DNA-Regionen (Dame et al., 2001; Rimsky et al., 2001; Ussery et al., 1994). Die aktive Form von H-NS ist vermutlich ein Dimer (Falconi et al., 1988; Smyth et al., 2000). Nach Bindung von H-NS-Dimeren an eine sogenannte Nucleation-Site in der DNA, kann sich durch Interaktionen zwischen Dimeren ein erweiterter H-NS-DNA-Komplex bilden. Dieser überzieht auch angrenzende DNA-Regionen, an welche ursprünglich keine H-NS-Bindung erfolgte (Rimsky et al., 2001). Diese Fähigkeit zur Oligomerisierung spielt eine wichtige Rolle bei der Funktion von H-NS als Repressor. Die Oligomerisierung von H-NS entlang der DNA ausgehend von einer promotornahen Binderegion kann zur Ausbildung eines Komplexes führen, der den Promotor für RNA-Polymerasen unzugänglich macht und somit die Transkriptionsinitiation verhindert. Ein alternatives Modell wurde am Beispiel des ribosomalen rrnB P1-Promotors entwickelt (Dorman, 2004) (Abb.1). Die Bindung von H-NS an die 5' Promotorregion inhibiert in diesem Fall nicht die Bindung der

9

RNA-Polymerase. Die Bildung des offenen Komplexes der RNA-Polymerase am Promotor resultiert in einer Biegung der DNA, die es dem H-NS-Komplex ermöglicht, eine Brücke von der Region oberhalb des Promotors zu der Region unterhalb des Promotors zu schlagen (Abb.1). In diesem Fall entsteht durch das Einfangen der beiden Doppelstränge durch H-NS eine Struktur, in welcher die RNA-Polymerase am Promotor gefangen ist, wodurch die Transkription inhibiert wird (Abb. 1).

Abb.1 Repression des rrnB-P1 Promotors durch H-NS

Die *rrnB-P1* Promotorregion und ihre flankierenden Regionen sind blau dargestellt. Die RNA-Polymerase (orange) bindet an den Promotor und führt zur Krümmung der DNA. Dadurch werden die Doppelstränge oberhalb und unterhalb des Promotors in unmittelbare Nähe gebracht und können durch einen DNA-H-NS-DNA-Brückenbildung miteinander verbunden werden. Die RNA-Polymerase wird am Promotor eingeschlossen. Das Protein Fis (violett) bindet als Antagonist der Repression an Regionen oberhalb des Promotors (gepunktete Kästchen) und aktiviert die Transkription vermutlich durch Auflösung des Repressionskomplexes. (Abbildung aus (Dorman, 2004)).

2. Antirepressoren als Antagonisten von H-NS

Die Repression der Transkriptionsinitiation durch H-NS wird Gen-spezifisch aufgehoben. In vielen Fällen bindet ein spezifischer Transkriptionsfaktor, wodurch der DNA-H-NS-DNA Komplex aufgebrochen wird. Im Falle des *rrnB*-P1 Promotors bindet das FIS Protein (Abb.1). Dieses verdrängt vermutlich H-NS und löst dadurch den Repressionskomplex auf (Abb.1)(Dorman, 2004).

Nach diesem Prinzip wirken vermutlich auch andere spezifische Antirepressoren, die als Antagonisten von H-NS fungieren. Mehrere Virulenzgene in Vibrio choleri werden durch H-NS reprimert und können durch Bindung des ToxT Proteins an ihre Promotorregion aktivert werden (Yu and Dirita, 2002). In Shigella flexneri wird der Transkriptionsfaktor VirB durch H-NS reprimiert und durch VirF aktiviert (Tobe et al., 1993). VirB seinerseits ist ein Aktivator der Invasionsgene, welche ebenfalls durch H-NS reprimiert werden (Beloin and Dorman, 2003). In enteropathogenen E.coli kann das H-NS ähnliche Ler Protein die Transkription der Gene der Pathogenitätsinsel LEE aktivieren, welche durch H-NS reprimiert werden (Haack et al., 2003). Der positive Regulator CfaD wirkt in enterotoxischen E.coli Stämmen als Antagonist von H-NS und führt zur Expression von CFA/I Fimbriae (Jordi et al., 1992). Überexpression von slyA in E.coli führt zur Bildung des Cytotoxins Cytolysin A (ClyA), die ansonsten durch H-NS inhibiert wird (Westermark et al., 2000). Nach Einführung von Lac und Lambda Operatoren in die 5' H-NS Binderegion des bgl-Operons von E.coli, das durch H-NS strikt reprimiert wird, konnte dieses durch Lac- und Lambda-Repressoren künstlich aktiviert werden (Caramel and Schnetz, 1998).

Die Repression durch H-NS kann aber auch durch DNA-Strukturänderungen aufgehoben werden. Sie beruhen auf der Veränderung der DNA-Topologie (Schnetz and Wang, 1996; Mukerji and Mahadevan, 1997), Wechsel der Osmolarität (Amit et al., 2003) oder der Temperatur-abhängigen DNA-Biegung (Bending) (Amit et al., 2003; Badaut et al., 2002).

11

3. Das *bgl*-Operon als Beispiel eines H-NS-reprimierten Systems

Das bal-Operon ist neben dem proU-Operon und dem hilA-Operon einer der wenigen Fälle, in denen neben einer H-NS Bindestelle oberhalb des Promotors (upstream regulatory element = URE) eine weitere definierte Binderegion unterhalb des Promotors (downstream regulatory element = DRE) für eine effektive Repression durch H-NS verantwortlich ist (Abb.2) (Dole et al., 2004b). Das *bgl*-Operon codiert für die Gene zur Fermentation Aryl-β,D-glukosidischer Zucker und ist unter Labor-üblichen Wachstumsbedingungen kryptisch, d.h. es wird nicht exprimiert. Die Ursache dafür ist die Bindung von H-NS an das URE und das DRE, die zu einer ~100fachen Repression führt (Higgins et al., 1988; Lopilato and Wright, 1990; Schnetz, 1995). Es sind allerdings Mutationen bekannt, die zu einer Aktivierung des bgl-Operons führen. Neben Insertionen im URE, welche eine effektive Bindung von H-NS verhindern (Reynolds et al., 1981; Schnetz and Rak, 1992) und Punktmutationen in der CRP-Bindestelle, die eine verbesserte Bindung des cAMP-Rezeptorproteins (CRP) bewirken (Mukerji and Mahadevan, 1997), wurde gezeigt, dass die Überexpression der Transkriptionsfaktoren LeuO und BglJ zur Aktivierung des bgl-Operons führt (Abb.2) (Ueguchi et al., 1998; Giel et al., 1996).

Abb.2 Das bgl-Operon wird durch H-NS reprimiert und durch LeuO und BglJ aktiviert

H-NS (rot) bindet am upstream regulatory element (URE) und am downstream regulatory element (DRE) und bewirkt eine ~100fache Repression des *bgl*-Promotors. Überexpression von LeuO (blau) und BglJ (grün) führt zur Aktivierung das *bgl*-Operons.

4. Die Transkriptionsfaktoren LeuO und BglJ

LeuO ist ein 314 Aminosäuren großes Protein aus der Familie der LysR-ähnlichen Transkriptionsfaktoren. Es wurde als Regulator des *leuLABCD*-Operons entdeckt, das es durch einen Promotor-Relay-Mechanismus aktiviert (Fang and Wu, 1998a; Chen et al., 2003). Überexpression von *leuO* führt neben der Aktivierung des *bgl*-Operons auch zur Aktivierung des H-NS reprimierten *cadA* Gens, das für eine säureinduzierte Lysin-Decarboxylase codiert (Shi and Bennett, 1995). LeuO reprimiert außerdem die Expression der small regulatory RNA *dsrA* und reduziert dadurch indirekt die Translation des Stress-Sigmafaktors RpoS (Klauck et al., 1997). Das *leuO*-Gen selbst wird durch H-NS reprimiert und unterliegt einer Autoregulation, d.h. LeuO aktiviert den *leuO* Promotor (Abb.3) (Chen et al., 2005a).

Abb.3 Regulation von *leuO* und *yjjQ/bglJ*

Die Promotoren von leuO und yjjQ/bglJ werden durch H-NS (rot) reprimiert. LeuO (blau), das Genprodukt von *leuO*, aktiviert sowohl seine eigene Transkription als auch die Transkription des *yjjQ/bglJ*-Operons.

Über das 175 Aminosäuren große BglJ ist wenig bekannt. Es gehört zur Familie der LuxR-ähnlichen DNA-Bindeproteine und codiert in einem Operon mit dem hypothetischen Gen *yjjQ*, das ebenfalls eine C-terminale LuxR-ähnliche DNA-Bindedomäne aufweist. Das *yjjQ/bglJ*-Operon wird durch H-NS reprimiert, und es konnte gezeigt werden, dass LeuO die Expression des Operons aktiviert (Abb.3) (unpublizierte Daten der Arbeitsgruppe).

5. Das Rcs-Phosphorelaysystem ist an der Regulation von *bgl* beteiligt

In dieser Arbeit wurde darüber hinaus ein Zusammenhang von BglJ mit dem Rcs-Phosphorelaysystem gefunden. Das Rcs-System ist ein Zwei-Komponenten-System, das unter anderem durch Membranstress aktiviert wird (Hagiwara et al., 2003; Ruiz and Silhavy, 2005). Auf bisher unbekannte Weise führen Veränderungen in der Zusammensetzung der äußeren Membran über das Protein RcsF zur Autophosphorylierung der Sensor-Kinase RcsC (Abb.4) (Majdalani et al., 2005). Von dort wird die Phosphorylierung über RcsD an den "response regulator" RcsB übertragen, wodurch dieser aktiviert wird. Das phosphorylierte RcsB aktiviert

Abb.4 Das Rcs-System in E.coli

Das Rcs-Zweikomponentensystem in *E.coli* detektiert auf bisher unbekannte Weise Veränderungen in der äußeren Zellmembran. Durch ein unbekanntes Signal wird über das Membranprotein RcsF die Autophosphorylierung der Sensorkinase RcsC bewirkt. Das Signal wird in einer Phosphorylierungskette über RcsD an RcsB weitergeleitet, welches dadurch aktiviert wird. RcsB-P aktiviert als Homodimer weitere Regulatoren wie die small regulatory RNA RprA, das Zellteilungsprotein FtsA und das Salzschockprotein OsmC. Als Heterodimer mit RcsA inhibiert es die Expression der Flagellenproteine FlhDC und aktiviert die *cps*-Gene, die für die Kapselsynthese verantwortlich sind. Fragezeichen kennzeichnen Pfade, deren molekulare Funktion bisher unbekannt ist. (Abbildung aus (Majdalani et al., 2005))

oder reprimiert als Homodimer oder als Heterodimer mit RcsA eine Vielzahl von Genen, unter anderem der Kapselsynthese (*cps*) (Gottesman et al., 1985; Gottesman and Stout, 1991), Flagellensynthese (*flh*) (Francez-Charlot et al., 2003) und Zellteilung (*fts*) (Carballes et al., 1999) (Abb.4). RcsA ist ebenfalls ein Transkriptionsfaktor mit C-terminaler LuxR-DNA-Bindedomäne (Stout et al., 1991).

6. Zielsetzung

Ziel dieser Arbeit war, die Struktur des Regulationsnetzwerks aus H-NS, LeuO und BgIJ zu ergründen und die molekulare Wirkungsweise der Antirepressoren LeuO und BgIJ durch genetische und biochemische Methoden aufzuklären. Es galt zu klären, welche Ebene der Repression durch H-NS (oberhalb oder unterhalb des Promotors) durch LeuO und BgIJ aufgehoben wird und ob die Antirepression auf direkter Bindung der Transkriptionsfaktoren an die regulatorischen Regionen des *bgl*-Operons beruht. Außerdem sollte überprüft werden, ob weitere Faktoren an der *bgl*-Aktivierung durch LeuO und BgIJ beteiligt sind, woraus sich Rückschlüsse auf die physiologische Bedeutung von *bgl* für *E.coli* ergeben könnten.

III. Ergebnisse

1. Aktivierung des *bgl*-Operons durch BglJ und LeuO

Die Repression des *bgl*-Operons durch H-NS ist in *lon*-Mutanten verstärkt (Dole et al., 2004a). In einem Transposon-Mutagenese-Screen nach Suppressoren dieses *lon*-Phänotyps waren die Mutationen *leuO*-Y1, *yjjQ/bglJ*-Y5 und *yjjQ/bglJ*-Y6 gefunden worden (Madhusudan et al., 2005) (Abb.5). In diesen Mutanten kartieren die Transposoninsertionen oberhalb von *leuO* (Y1) bzw. oberhalb von *bglJ* (Y5 und Y6). Ähnliche *bglJ*- und *leuO*-Mutanten waren zuvor unabhängig von Lon in Wildtyp-Stämmen isoliert worden (Giel et al., 1996; Ueguchi et al., 1998). Um zu klären, ob in den *bglJ*- und *leuO*-Mutanten die Expression des *bgl*-Operons unabhängig von Lon aktiviert wird, wurden Expressionsanalysen mit *bgl-lacZ* Reporterkonstrukten durchgeführt, und es wurde untersucht, ob die Stabilität der LeuO, YjjQ und BglJ Proteine von der Protease Lon beeinflusst wird.

Abb.5 Die Transposoninsertionen *leuO*-Y1, *yjjQ/bgIJ*-Y5 und *yjjQ/bgIJ*-Y6

Die Transposoninsertion *leuO*-Y1, *yjjQ/bglJ*-Y5 und *yjjQ/bglJ*-Y6 führen zur Aktivierung von *bgl* in *E.coli*. Die Insertionsstellen der miniTn*10*-Cam^R Mutationen sind durch Pfeilspitzen angedeutet. *leuO*-Y1 kartiert 19bp 5' des *leuO*-Startcodons und führt zu konstitutiver Expression von *leuO*. *yjjQ/bglJ*-Y5 und *yjjQ/bglJ*-Y6 kartieren 167bp bzw. 36bp 5' des *bglJ* Translationsstarts innerhalb der codierenden Region von *yjjQ* und resultieren in konstitutiver Expression von *bglJ*. Die Sequenzpositionen der Mutationen können der Tabelle 4 des Materialienteils entnommen werden. Abbildung aus (Madhusudan et al., 2005).

1.1 LeuO and BglJ aktivieren den bgl-Promotor

Zur Analyse der Regulation des *bgl*-Operons durch LeuO, YjjQ und BglJ wurden zwei verschiedene chromosomale *bgl-lacZ* Fusionen verwendet (Dole et al., 2004b; Dole et al., 2002; Dole et al., 2004b; Dole et al., 2002). Ein Reporterkonstrukt trägt den *bgl*-Promoter an das *lacZ*-Gen fusioniert (Abb.6 A bis C) und wird durch H-NS nur über das 'upstream regulatory element' reprimiert. Das zweite Reporterkonstrukt enthält das 'downstream regulatory element' (DRE) zwischen dem konstitutiven *lacUV5* Promoter und dem *lacZ* Gen inseriert (Abb.6

ERGEBNISSE

D und E). Die Expression dieser Reporterkonstrukte wurde im Wildtyp, in der *leuO*-Mutante und in den *yjjQ/bglJ*-Mutanten getestet und mit der Expression in *lon*-Mutanten verglichen. Die Expressionsstärke des *bgl*-Promotor-*lacZ* Reporterkonstrukts erhöhte sich von 74 Miller-Units im Wildtyp auf 225 Units in der *yjjQ/bglJ*-Y5 Mutante und auf 675 Units in der *yjjQ/bglJ*-Y6 Mutante (Abb.6 A). Die Aktivierung durch das vijQ/balJ-Y6 Allel ist höher, vermutlich weil in dieser Mutante das Insertionselement mini-Tn10 näher an bglJ kartiert (nur 37 bp oberhalb des Translationsstarts von bglJ). In der leuO-Y1-Mutante stieg die bgl-Promotoraktivität auf 215 Units, was ebenfalls für eine Aktivierung des bgl-Promotors durch LeuO spricht. Vermutlich werden BglJ und LeuO in den Transposonmutanten konstitutiv exprimiert. Daher wurden zusätzlich die bglJ und leuO Gene unter der Kontrolle eines IPTG-induzierbaren tac Promotors in pACYCund pBR-Plasmide kloniert (siehe Materialien und Methoden). Die Induktion der Expression des plasmidischen bqlJ führte zur Aktivierung der bgl-Promotor-lacZ-Fusion; die ß-Galaktosidaseaktivität stieg auf 550 Units im Falle des high-copypBR-Plasmids bzw. 400 Units im Falle des low-copy pACYC-Plasmids (Abb. 6A). Ähnlich bewirkte die Induktion der leuO-Expression eine Erhöhung auf 735 respektive 505 Units (Abb.6 A). Dies bestätigte, dass BglJ und LeuO Aktivatoren des bgl-Promotors sind und die miniTn10-Insertionen eine konstitutive Expression dieser Gene verursachen. Zusätzlich wurde analysiert, ob auch YjjQ den bgl-Promotor aktiviert. Die Expression von plasmidisch kodiertem yjjQ führte zu keiner Veränderung der β-Galaktosidaseaktivität (85 Units) (Abb.6 A). Dies zeigt, dass YjjQ den bgl-Promotor nicht aktiviert.

Bei der Aktivierung H-NS reprimierter Promotoren wirken die Aktivatorproteine häufig als Anti-Repressoren (Dorman, 2004). Um die Zielsequenz von BglJ und LeuO einzugrenzen, wurde daher auch ein *bgl*-Promotor Allel (Δ P*bgl*) getestet, welchem das "upstream regulatory element", das für die Repression durch H-NS notwendig ist, fehlt. Die Aktivität dieses Promotors (Δ P*bgl*) ist ca. 4fach höher als die des Wildtyp-Promotors (Dole et al., 2004b) (Abb.6 B). Die *yjjQ/bglJ*-Y6-Mutation hatte keinen Effekt auf den Δ P*bgl*-Promotor (340 Units gegenüber 300 Units im Wildtyp), während die *leuO*-Y1-Mutation eine leichte 1,5fache Erhöhung auf 470 Units bewirkte (Abb.6 B). Diese Daten deuten darauf hin, dass BglJ und LeuO den *bgl*-Promotor aktivieren, indem sie die H-NS-bedingte Repression des

Promotors aufheben und dass diese Proteine vermutlich im Bereich des "upstream regulatory element" binden.

Um zu analysieren, ob BglJ und LeuO auch die Repression von *bgl* durch Binding von H-NS an das "downstream regulatory element" beeinflussen, wurde die Expression des *bgl*-DRE-*lacZ* Reporterkonstrukts, ebenfalls im Wildtyp, den *leuO*-Y1, und *yjjQ/bglJ*-Y6-Mutanten sowie in der *lon*-Mutante analysiert (Abb.6 D und E). Die β -Galaktosidaseaktivität, unterschied sich kaum zwischen dem Wildtyp (67 Units), der *leuO*-Y1 Mutante (69 Units) und der *yjjQ/bglJ*-Y6-Mutante (75 Units) (Abb.6 D). Dies zeigt, dass LeuO und BglJ keinen Einfluss auf die downstream Repression durch H-NS haben und unabhängig von der *lon*-Mutation funktionieren. In der *lon*-Mutante ist die Expression des downstream-Reporterkonstrukts ca. 2,4fach geringer als im Wildtyp (40 Units zu 95 Units). Die *lon*-Mutation hat jedoch keinen Einfluss auf die Promotorregulation (135 Units zu 140 Units) (Abb.6 C und E).

Abb.6 LeuO und BgIJ aktivieren den bgl-Promoter

Der Wildtyp *bgl*-Promotor (A und C) und ein *bgl*-Promotor (Δ P*bgl*), in dem das upstream regulatory element deletiert ist (B) wurden an *lacZ* fusioniert. Diese Reporterkonstrukte wurden in die chromosomale *attB*-Stelle integriert. Desweiteren wurde ein Reporter verwendet, der die codierende Region von *bglG* (*bglGorf*) fusioniert an *lacZ* unter Kontrolle des konstitutiven *lacUV5* Promotors enthält (Dole et al., 2004b). Die β -Galaktosidaseaktivität wurde von Kulturen bestimmt, die in Minimal M9 gly B1 casa Medium (A,B,D) oder NB Medium (C,E) bis zu einer OD₆₀₀=0,5 gewachsen waren. Die Expression von BglJ, LeuO und YjjQ erfolgte unter Kontrolle des induzierbaren *tac*-Promotors durch Zugabe von 1mM IPTG in die exponentiell wachsenden Kulturen. Verwendete Stämme und gemessene Aktivität (A) Wildtyp (S1213) 74 Units; *yjjQ/bglJ*-Mutanten *yjjQ/bglJ*-Y5 (S1787) 225 Units und *yjjQ/bglJ*-Y6 (S1799) 675 Units; *leuO*-Y1 Mutante (S1775) 215 Units; +low copy BglJ (S1213/pKEAP1), 400 Units und +high copy BglJ

(S1213/pKEAP4), 550 Units. S1213/pKEDR13 (+low copy LeuO), 505 Units und S1213/pKEAP10 (+high copy LeuO), 735 Units. S1213/pKEAP8 (+high copy YjjQ) 84 Units. (B) Die Aktivität des Δ Pbgl variierte nur geringfügig zwischen dem Wildtyp (S1211, 300 Units) und dem Mutanten *yjjQ/bglJ-Y6* (S1801, 340 Units). *leuO-Y1* bewirkte eine leichte Erhöhung der Aktivität (S1777, 470 Units). (C) In NB Medium zeigt der Wildtyp *bgl*-Promotor eine Aktivität von 140 Units (S1213), welche durch eine *lon* Mutation nicht beeinflusst wird (S1556, 135 Units). (D)(E) Die Aktivität des downstream Reporters (S1195, 67 Units) wird durch *yjjQ/bglJ-*Y6 (S1797, 69 units) und *leuO-*Y1 (S1773, 75 Units) nicht beeinflusst. In NB Medium führt die *lon* Mutation zu einer Halbierung der Reporteraktivität von 95 Units im Wildtyp (S1195) auf 40 Units (S1564).

1.2 Die Proteine BglJ und LeuO sind keine Lon Substrate

BglJ und LeuO aktivieren das bgl-Operon auf Promotorebene, wohingegen die Lon-Protease bgl über das DRE reguliert. Die Regulation von bgl durch BglJ und LeuO ist also unabhängig von Lon. Zusätzlich wurde analysiert, ob BglJ und LeuO Substrate der Protease Lon sind. Dazu wurde die BglJ und LeuO Stabilität durch Pulse-Chase-Experimente im Wildtyp und einer Ion-Mutante ermittelt (Abb.7). YjjQ hat keinen Einfluß auf den bgl-Promotor; seine Lon-abhängige Stabilität wurde dennoch überprüft. Transformanten der Stämme S541 (wt) und S1553 (lon) mit Expressionsplasmiden für LeuO (pKEAP10), BglJ (pKEAP4) und YjjQ (pKEAP8) wurden in Methionin-Mangelmedium angewachsen. Die Expression wurde durch Zugabe von 1mM IPTG induziert und die radioaktive Markierung wurde 2,5 Minuten nach Induktion durch die Zugabe von 10μ Ci ³⁵S-Methionin gestartet (Pulse). Eine Minute später wurde die Inkorporation von ³⁵S-Methionin durch die Zugabe von nicht-radioaktivem L-Methionin gestoppt (Chase) und nach weiteren 5, 10, 15 und 30min wurden Proben entnommen, die Proteine wurden per SDS-PAGE aufgetrennt und autoradiografisch untersucht (Abb.7). Das Autoradiogramm zeigt, dass BglJ und LeuO stabil sind und die Stabilität in Ion Mutanten nicht verändert ist (Abb.7 A und B). Die Expression von YjjQ war sehr schwach (Abb.7 C). Das YjjQ-Protein scheint im Wildtyp und in der lon-Mutante instabil, möglicherweise mit leicht erhöhter Halbwertszeit im Ion-Stamm.

ERGEBNISSE

Der Wildtyp S541 und die *lon*-Mutante S1553 wurden mit Expressionsplasmiden für LeuO (pKEAP10), BgIJ (pKEAP4) und YjjQ (pKEAP8) transformiert. Die Kulturen wurden in Methionin-Mangelmedium (M9glyB1 mit 0,2% Methionine Assay Medium) bis zu einer OD_{600} =0,5 angewachsen und die Expression von LeuO, BgIJ und YjjQ durch Zugabe von 1mM IPTG induziert. Nach 2,5min wurden 10µCi ³⁵S-Methionin hinzugefügt (Pulse). 1,5min später wurde die erste Probe entnommen (0 min) und die Inkorporation von ³⁵S-Methionin durch die Zugabe von L-Methionin (2µg/ml) gestoppt (Chase). Nach 5, 10, 15 und 30min wurden weitere Proben genommen, per SDS-PAGE aufgetrennt und autoradiographisch untersucht. (A)(B) LeuO und BgIJ zeigen sowohl im Wildtyp als auch in der *lon*-Mutante eine hohe Stabilität. (C) YjjQ wird nur schwach exprimiert und ist instabil. Die Halbwertszeit in der *lon*-Mutante ist eventuell leicht erhöht.

2. Aktivierung von *bgl* durch LeuO

Der Transkriptionsfaktor LeuO aktiviert den *bgl*-Promotor (s.o., Kap. III.1). Um zu überprüfen, ob LeuO direkt an die *bgl*-Promotorregion bindet, wurde das LeuO-Protein als His₆-markierte Variante in Expressionsvektoren kloniert, die Aktivität der His₆-markierten LeuO-Proteine wurde *in vivo* getestet. Dann wurde das C-terminal markierte LeuO-His₆ aufgereinigt und in Bindestudien verwendet.

2.1 LeuO-His₆ und His₆-LeuO-Expressionsplasmide

Für die Expression von His₆-markierten LeuO wurden drei Plasmide konstruiert. In allen drei Plasmiden wird LeuO vom tac-Promotor aus transkribiert und die Plasmide enthalten das lacl Gen. Die Plasmide pKEAP19 und pKEAP20 kodieren für N-terminal bzw. C-terminal His₆-markiertes LeuO. In diesen Plasmiden wurde der Translationsstart ATG an die Shine-Dalgarno-Sequenz des Gen 10 vom Phagen T7 fusioniert (Abb.8). Bei dieser Klonierung wurde der Translationsstart von leuO wie in der aktuellsten Version der E.coli Genomsequenz annotiert (NCBI entry U00096.2 und Swiss-Prot entry P10151) zu Grunde gelegt. Demnach ist LeuO ein Protein von 314 Aminosäuren. In älteren Versionen der Genomsequenz wurde allerdings ein weiter 5' gelegenes ATG als Translationsstart (an Position 84191bp anstelle Position 84368) annotiert. Um zu unterscheiden, welcher Translationsstart verwendet wird, wurde das Plasmid pKEAP21 konstruiert. pKEAP21 enthält C-terminal His6-markiertes leuO-Gen mit seiner natürlichen 5'-Region, welche sowohl die Expression der kurzen als auch der möglichen langen Variante unter Kontrolle des IPTG-induzierbaren tac-Promotors ermöglicht. Die Analyse der Expression im SDS-PAGE zeigte, dass nur die kürzere Variante experimiert wird (Abb.9 A).

Abb.8 LeuO-His₆ aktiviert den bgl-Promotor

(A) In den LeuO Expressionsplasmiden pKEAP19 und 20 wurde His_6 -leuO bzw. leuO- His_6 unter Kontrolle des tac-Promotors an die Phagen T7 Gen 10 Shine-Dalgarno-Sequenz fusioniert. pKEAP10 und pKEAP21 enthalten *leuO* bzw. *leuO*- His_6 mit ihrer natürlichen 5'-Region unter Kontrolle des *tac*-Promotors, so dass auch die Expression einer alternativen, größeren Variante möglich ist. (B) Im wt-Stamm S387 zeigt der P*bgl*+54*lacZ*-Reporter eine Aktivität von 313 Units. Die Mutation *leuO*-Y1 erhöht diese auf 1390 Units. Eine vergleichbare Aktivierung erfolgt durch His₆-LeuO und LeuO-His₆ von den Plasmiden pKEAP19 und pKEAP20 (1100 Units bzw. 1030 Units). Expression von *leuO* bzw. *leuO*-His₆ von den Plasmiden pKEAP10 bzw. pKEAP21 resultiert in einer Aktivitätserhöhung auf 2760 Units bzw. 2560 Units. Expressionen aus der natürlichen 5'-*leuO*-Region sind mit Sternchen gekennzeichnet.

2.2 Die Aktivität von LeuO-His₆ entspricht der von LeuO *in vivo*

Zur Überprüfung der Aktivität von His₆-markiertem LeuO wurden die Expressionsplasmide in einen Reporterstamm eingebracht, welcher die *bgl*-Promotorregion an *lacZ* fusioniert enthält (Abb.8 B). Zum Vergleich mit der Aktivierung des *bgl*-Promotors durch wt-LeuO wurde der Stamm außerdem mit der Mutation *leuO*-Y1 sowie dem Expressionsplasmid pKEAP10, welches für wt-*leuO* codiert, transduziert bzw. transformiert (Abb.8 B). Beta-Galaktosidasetests zeigten, dass in der *leuO*-Y1-Mutante die Aktivität des *bgl*-Promotors ~4,5-fach von 313 Units im Wildtyp auf 1390 Units steigt (Abb.8 B). Die plasmidische Expression des wt-LeuO (pKEAP10) führte ebenfalls zur Aktivierung des Promotors auf 2760 Units (8,8fach) (Abb.8 B). Die N-terminal und C-terminal His₆-markierten Varianten, die von den Plasmiden pKEAP19 und pKEAP20 kodiert werden, erhöhten die Transkription vom *bgl*-Promotor ca. 3,5fach (1100 Units bzw.

1030 Units) (Abb.8 B). Das C-terminal His₆-markierten LeuO mit nativer Translationsstartsequenz (Plasmid pKEAP21), aktivierte den *bgl*-Promotor 8,2fach (2560 Units) (Abb.8 B). Die Aktivierung des *bgl*-Promotors durch die Plasmide, welche eine Expression von *leuO* durch seine natürliche Shine-Dalgarno Sequenz ermöglichen (pKEAP10, pKEAP21) ist ca. 2fach höher als die der Plasmide, welche die Phage T7 Shine-Dalgarno Sequenz benutzen (pKEAP19, pKEAP20) (Abb.8 B). Dies deutet darauf hin, dass *leuO* von seiner natürlichen Shine-Dalgarno Sequenz stärker exprimiert wird. Zur Aufreinigung von LeuO-His₆ wurde deshalb das Plasmid pKEAP21 verwendet.

2.3 Aufreinigung von LeuO-His₆

Die Expression und Aufreinigung von LeuO-His₆ erfolgte mit dem Plasmid pKEAP21. Die Expression wurde im Wildtyp (S541) induziert und das Lysat wurde über eine HisTrap-HP-Säule von Amersham-Pharmacia aufgereinigt (siehe Methoden). Die Elution von LeuO-His₆ erfolgte mit Elutionspuffer 20mM Natriumphosphat pH7,4, 0,5M NaCl, 200mM Imidazol. Die Konzentration des gereinigten Proteins wurde mit dem Quick Start Bradford Protein Assay von Bio-Rad bestimmt und betrug 250 μ g/ml. Das gereinigte LeuO-His₆ hatte im SDS-PAGE eine apparante Größe von ca. 36kDa, was der Größe des aktuell annotierten LeuO entspricht (Abb.9 B).

Abb.9 Aufreinigung von LeuO-His₆

(A) Induktion der Expression von *leuO*-His₆ von den Plasmiden pKEAP19 (Gen 10 Shine-Dalgarno) und pKEAP21 (natürliche 5'-Region) resultiert in uniformen Proteinen von der Größe ~36kDa. (B) LeuO-His₆ wurde nach Expression von pKEAP21 über eine HisTrap-HP-Säule aufgereinigt. Die Elution erfolgte bei 200mM Imidazol, die Ausbeute betrug 250μ g/ml.

2.4 Bindet LeuO spezifisch an die bgl-Promotorregion?

Zur Untersuchung der Bindung von LeuO an die *bgl*-Promotorregion wurde "electrophoretic mobility shift assays" (EMSA) mit ³²P-endmarkierten DNA-Fragmenten durchgeführt (Abb.10). Zwei unterschiedliche DNA-Fragmente wurden mit steigender Konzentrationen von LeuO-His₆ (300nM, 750nM, 1500nM 3000nM) inkubiert und auf einem 5%igen nicht denaturierenden Polyacrylamidgel aufgetrennt (siehe Methoden). Das erste Fragment umfasst den *bgl*-Promotor- und das upstream regulatory element (URE) von Position -191 bis +27 relativ zum Transkriptionsstart. Das zweite Fragment beinhaltet die Sequenz von +669 bis +965 innerhalb der kodierenden Region von *bglG* und dient als negative Kontrolle (Abb.10 A). Der EMSA zeigte, dass LeuO an das URE-Promotor-Fragment ab einer Konzentration von 750nM bindet. Es konnte keine Bindung an das Kontrollfragment beobachtet werden (Abb.10 B). Die beobachtete Bindung von LeuO-His₆ an das URE-Promotor-Fragment tritt erst ab einer hohen LeuO Konzentration von 750nM auf. Dieses Bindeverhalten konnte auch mit alternativen Puffern und Bindebedingungen nicht verbessert werden (nicht gezeigt). Möglicherweise unterstützt unter physiologischen Bedingungen ein unbekannter Co-Faktor die Bindung von LeuO.

Abb.10 Bindung von LeuO an die bgl-Promotorregion

(A): Zwei *bgl*-DNA-Fragmente wurden für Bindestudien amplifiziert und radioaktiv markiert. Fragment 1 umfasst die Region -191 bis +27, Fragment 2 die Region +669 bis +965 relativ zum *bgl*-Transkriptionsstart (218bp bzw. 491bp).

(B,C,D): EMSAs mit dem Fragment 1 (C,D) bzw. Fragmenten 1 und 2 (A). Die 10µl Bindeansätze enthielten 3fmol markierte DNA und 500ng Hering-Sperma-DNA als Kompetitor. Bindung erfolgte für 30min bei 15°C in 20mM Tris-HCl pH7,5, 100mM KCl, 1mM DTT, 10% Glycerin.

(B): Gereinigtes LeuO wurde für EMSAs mit Fragment 1 (Spuren 1-5) und Fragment 2 (Spuren 6-10) eingesetzt. Ab einer Konzentration von 750nM retardiert gereinigtes LeuO das Fragment 1, Fragment 2 wird nicht retardiert.

(C): Proteinextrakte aus wt (Spuren 2-5), *hns* (Spuren 6-9), wt+LeuO (Spuren10-13) und *hns*+LeuO (Spuren14-17) wurden für EMSAs mit Fragment 1 eingesetzt. Der eingesetzte Proteinextrakt entsprach jedesmal von links nach rechts dem Equivalent von 0,02 OD_{600} , 0,06 OD_{600} , 0,2 OD_{600} , 0,6 OD_{600} der induzierten Kulturen. Der wt-Extrakt bewirkte eine Retardation des Fragments (Spuren 2-5), die mit dem *hns*-Extrakt nicht beobachtet werden konnte (Spuren 6-9) und vermutlich auf der Bindung von H-NS an das URE beruht. Expression von *leuO* im wt führte in höheren Konzentrationen zu einem veränderten Retardationsbild (vergl. Spuren 4+5 und 12+13), das bei Expression von *leuO* im *hns*-Stamm nicht auftrat (Spuren 14-17).

(D): EMSAs mit Fragment 1 und gereinigtem LeuO und H-NS. H-NS wurde in den Konzentrationen 0nM (Spuren 1-4), 100nM (Spuren 5-8), 200nM (Spuren 9-12) und 400nM (Spuren 13-16) mit jeweils steigenden Konzentrationen von LeuO (0nM, 75nM, 150nM und 300nM) eingesetzt. Während bei Abwesenheit von H-NS selbst 300nM LeuO noch keine Retardation des Fragment bewirken (Spur 4), genügen in der Gegenwart von 400nM H-NS bereits 75nM LeuO um eine deutliche Retardation hervorzurufen (Spur 14).

2.5 Modifiziert H-NS die Bindung von LeuO an die *bgl*-Promotorregion ?

Um zu überprüfen, ob die Bindung von LeuO einen Co-Faktor benötigt, wurden Proteinextrakte von Kulturen hergestellt, in denen LeuO-His₆ überexprimiert worden war. Eventuelle Co-Faktoren sollten in solchen Extrakten noch vorhanden sein. Die Proteinextrakte wurden für EMSAs mit dem *bgl* Promotorfragment (-191 bis +27), an dem die Bindung von gereinigtem LeuO-His₆ gezeigt worden war, eingesetzt (Abb.10 C). Als Bindepuffer diente 20mM Tris-HCl pH7,5, 100mM KCl, 1mM DTT, 10% Glycerin mit 50ng/µl Hering Sperm DNA als Kompetitor. 5fmol DNA-Fragment wurden mit steigenden Mengen Proteinextrakt für 30min bei 15°C inkubiert und anschließend auf einem 5%igen nativen Polyacrylamidgel bei 150V für 2h aufgetrennt (Abb.10 C).

Der Proteinextrakt des Wildtyp-Stamms S541 ohne LeuO-His₆ verursacht eine Retardation des Promotorfragments (Abb.10 C, Spuren 2-5). Dies lässt sich durch die natürlich hohe Konzentration von H-NS in *E.coli* erklären: H-NS bindet an die 5'-Region des *bgl*-Promotors. Die Retardation wurde mit einem Proteinextrakt eines *hns*-Stamms S2304 nicht beobachtet (Abb.10 C, Spuren 6-9). Die Banden, welche mit diesem Extrakt auftreten, entsprechen der charakteristischen Staffelung der Fis-Bindung an die 5'-Region des *bgl*-Promotors (Caramel and

ERGEBNISSE

Schnetz, 2000). Das Retardationsverhalten des Fragments bei Zugabe des Proteinextrakts, in dem LeuO-His₆ im Wildtyp exprimiert wurde, unterscheidet sich von dem des Wildtyp-Extrakt ohne LeuO-His₆. Mit steigender Extraktkonzentration weicht die H-NS-Bande einer neuen Bande, die durch Bindung von LeuO-His₆ erklärt werden kann (Abb.10 C, Spuren 10-13). Das Bandenmuster des EMSA mit einem Zellextrakt des *hns*-Stamms und überexprimierten LeuO-His₆ ist davon deutlich verschieden (Abb.10 C, Spuren 14-17). Eine mögliche Erklärung dafür ist, dass H-NS das Bindeverhalten von LeuO an die *bgl*-Promotorregion beeinflusst. Es kann jedoch nicht ausgeschlossen werden, dass eine höhere LeuO-Konzentration im *hns*-Extrakt gegenüber dem wt-Extrakt für den veränderten Shift verantwortlich ist, da das chromosomale *leuO* durch H-NS reprimiert wird.

Um zu analysieren, ob H-NS direkt das Bindeverhalten von LeuO beeinflusst, wurden EMSAs mit gereinigtem LeuO-His₆ in der Gegenwart von gereinigtem H-NS durchgeführt (Abb.10 D). Während LeuO-His₆ alleine auch in einer Konzentration von 300nM keine Bindung an das *bgl*-Promotorfragment zeigt (Abb.10 D, Spuren 1-4), erzeugt die Gegenwart von H-NS ein deutlich verändertes Bindeverhalten. Bereits 100nM H-NS bewirkt einen Supershift durch 300nM LeuO-His₆ (Abb.10 D, Spur 8). Bei 400nM H-NS reichten bereits 75nM LeuO aus, um eine deutlich veränderte Bandenretardation hervorzurufen (Abb.10 D, Spur 14). Dies lässt die Vermutung zu, dass das Bindeverhalten von LeuO an das *bgl*-Promotorfragment von H-NS abhängig ist. Die Gegenwart von H-NS begünstigt die Bindung von LeuO.

2.6 Die Aktivierung des *bgl*-Promotors durch LeuO ist in einer *Irp*-Mutante reduziert

Die Regulation des *leuO*-Gens ist komplex. Das Gen *leuO* wird durch H-NS reprimiert wird und beim Eintritt der Zellen in die stationäre Phase in Abhängigkeit vom Alarmon Guanosin 5'-diphosphat 3'-diphosphat (ppGpp) induziert (Fang et al., 2000; Majumder et al., 2001). Zusätzlich aktiviert die Transkription vom 1,4 kb downstream liegenden *ilvIH*-Promotor über einen "promotor-relay-mechanism" den *leuO*-Promotors (Fang and Wu, 1998b; Fang and Wu, 1998a). Der *ilvIH*-Promotor wird seinerseits durch den globalen Transkriptionsfaktor Lrp aktiviert (Wang and Calvo, 1993).

ERGEBNISSE

Lrp ist an der Regulation von mehreren H-NS-reprimierten Genen beteiligt. In vielen Fällen wirkt dabei Leucin entweder als Co-Faktor oder Antagonist von Lrp (Newman and Lin, 1995; Chen et al., 2005b; Pul et al., 2005). Unter dem Gesichtspunkt, dass LeuO die Leucin-Synthese aktiviert und das bgl-Operon durch H-NS reprimiert wird, schien es lohnenswert, die Auswirkungen einer Irp Mutation auf die bal-Regulation zu überprüfen (Abb.11). Dazu wurde die Expression des bg/-Promotor-lacZ-Reporterkonstrukts (Pbg/+25-lacZ-Reporters) in *Irp*-Mutanten getestet (Abb.11). Die Aktivität des Promotors ist in einer *Irp*-Mutante S2574 nicht verändert. Die ß-Galaktosidaseaktivität beträgt 88 Units und entspricht damit der Aktivität im Wildtyps S1213 (74 Units). Konstitutive Expression von LeuO (durch das Einführen der *leuO*-Y1-Mutation) aktiviert den bgl-Promotor ~3fach (215 Units, S1775) im Wildtyp (Abb.11). In der Irp-Mutante S2578 wird der bgl-Promotor jedoch nur ~1,6fach aktiviert (145 Units, Abb.11). Die Ursache dieses Effekts ist unklar; da die Expression von LeuO in leuO-Y1 von der natürlichen Regulation entkoppelt ist, lässt sich der Effekt von *Irp* auf *bgl* jedoch nicht durch den Einfluss Lrps auf den leuO-Promotor erklären.

Abb.11 Die Aktivierung von bgl durch LeuO ist ein einer Irp-Mutante reduziert

Während leuO-Y1 im Stamm S1775 eine Erhöhung des bgl-Promotor-Aktivität um den Faktor 3 auf 214 Units im Vergleich zu 74 Units im Wildtyp S1213 bewirkt, erhöht sich die Reporteraktivität von Irp (S2574, 88 Units) durch Einführung von leuO-Y1 (S2578, 144 Units) nur um den Faktor 1,6.

3. Aktivierung von *bgl* durch BglJ

BglJ aktiviert den *bgl*-Promotor, indem es vermutlich die Repression durch H-NS verhindert (s.o. Kap. III.1). Daher wurde analog zu LeuO versucht, BglJ für DNA-Bindestudien aufzureinigen.

3.1 Die Aktivität von BglJ-His₆ entspricht der von BglJ in vivo

Für die Expression und Reinigung von BglJ wurden Expressionsplasmide konstruiert, welche His₆-markierte Varianten von BglJ kodieren. Die Aktivität der His₆-markierte BglJ-Varianten wurde *in vivo* getestet (Abb.12). Als Reporter wurde die Fusion des *bgl*-Promotors an *lacZ* verwendet. Wildtyp Zellen mit diesem P*bgl*+25-*lacZ*-Reporter exprimieren 74 Units β -Galaktosidaseaktivität, und die Aktivität wird durch die *yjjQ/bglJ*-Y6-Mutation auf 675 Units erhöht (siehe Abb.6 und 12). Im Vergleich dazu führt die Expression von BglJ vom pBR-Plasmid pKEAP4 zu einer Aktivitätserhöhung auf 570 Units (Abb.12). N-terminal und C-terminal His₆-markiertes BglJ bewirkten eine Erhöhung der Aktivität auf 450 bzw. 930 Units (Abb.12). Die His₆ markierten Proteine sind also funktionell, wobei das C-terminal markierte Protein den *bgl*-Promotor stärker aktiviert.

Abb.12 His6-markiertes BgIJ aktiviert den bgl-Promotor

Der P*bgl*+25*lacZ*-Reporter zeigt im wt S1213 eine Aktivität von 74 Units, die sich durch die Mutation *yjjQ/bglJ*-Y6 auf 674 Units erhöht (S1799). Expression von *bglJ* vom Plasmid pKEAP4 im Wildtyp führt ebenfalls zu einer Aktivitätserhöhung auf 569 Units. Sowohl N-terminal His₆-markiertes BglJ vom Plasmid pKEAP15 (447 Units) als auch C-terminal markiertes BglJ vom Plasmid pKEAP16 (932 Units) aktivieren den *bgl*-Promotor.

3.2 Probleme bei der Aufreinigung von BglJ-His₆

Die Expression von BgIJ-His₆ war zwar ausreichend, um den *bgI*-Promotor zu aktivieren, allerdings ließ sich das Protein im Coomassie-gefärbtem SDS-PAGE so gut wie nicht nachweisen. Auch in Western-Blots war das Protein kaum nachweisbar. Versuche, BgIJ-His₆ trotz geringer Expression mit Hilfe einer HisTrap-Säule anzureichern und aufzureinigen, schlugen fehl. Dieses Problem wird weiter in Ergebnisse Kapitel 5.3 geschildert.

4. Screen nach Suppression der Aktivierung von *bgl* durch LeuO und BglJ

Da die Bindung von gereinigtem LeuO an die *bgl*-Promotorregion nur in sehr hoher Konzentration gezeigt werden konnte und die Aufreinigung von BglJ fehlschlug, wurde untersucht, ob die Funktion beider Transkriptionsaktivatoren von weiteren Faktoren abhängig ist. Zu diesem Zweck wurden ein Transposonmutagenese-Screen nach Mutanten durchgeführt, in denen die konstitutive Expression von BglJ beziehungsweise von LeuO nicht die Aktivierung des *bgl*-Promotors bewirkt.

4.1 Transposonmutagenese-Screen nach Co-Faktoren von BglJ und LeuO

Für die Transposonmutagenese wurden zwei Stämme konstruiert, die als Reporter jeweils das Pbgl+25-lacZ Konstrukt sowie das Wildtyp bgl-Operon enthalten (Abb. 13). Die Mutationen leuO-Y1 bzw. yjjQ/bglJ-Y6 aktivieren die Expression dieser Reporter und die Stämme sind Bgl⁺ und Lac⁺ (Abb.13). Nach Mutagenese mit λ NK1323 (mTn10tet) (Methoden) wurde nach Mutanten gesucht, welche einen Lac⁻ und Bgl⁻ Phänotyp zeigten. Im Screen nach Supressoren der Aktivierung durch BglJ (BglJ-Screen) wurden 19 Lac- und Bgl-negative Mutanten gefunden (Tabelle 1). Der LeuO-Screen resultierte in 13 Mutanten. Die Ergebnisse der Screens sind in Tabelle 1 zusammengefasst. Die Mutanten lassen sich grob in 5 Gruppen unterteilen. Gruppe 1 beinhaltet Proteine, die an der Nukleotidsynthese beteiligt sind. Sie enthält die Mutanten für purA, purB, cyaA, pyrD und carB. Da für die Expression vom bgl-Promotor cAMP benötigt wird, könnte dessen gestörte Synthese in den cyaA-Mutanten eine Erklärung für den Bgl⁻ Lac⁻ Phänotyp sein (Reynolds et al., 1981; Reynolds et al., 1986). Gruppe 2 setzt sich aus Mutanten für Gene des Zucker-Metabolismus von E.coli zusammen (pgi, ptsl), die ausschließlich im BglJ-Screen gefunden wurden. Eine Mutation von pgi kann zur intrazellulären Anreicherung von toxischem Glucose-6-Phosphat führen (Fraenkel and Levisohn, 1967). Es konnte gezeigt werden, dass unter diesen Bedingungen das rcs-Phosphorelaysystem aktiviert wird (El Kazzaz et al., 2004). Auf den Zusammenhang zwischen BglJ und dem rcs-System wird später ausführlicher eingegangen. Gruppe 3 der Mutanten beinhaltet Knockouts für die Gene cysJ und

ERGEBNISSE

tusE, welche eine Rolle im Sulfit/Cystein Metabolismus spielen. Diese Mutanten wurden ausschließlich im LeuO-Screen gefunden. Die 4. Gruppe enthält Mutanten für Komponenten des "stress sensing"-Apperats von E.coli. CpxA ist der Membransensor des *cpx*-Zwei-Komponenten-Systems (Weber and Silverman, 1988), RcsB ist der Antwortregulator des *rcs*-Zwei-Komponenten-Phosphorelay-Systems (Gottesman et al., 1985). Es war bereits bekannt, dass Mutationen in den Genen *rfaG* und *rfaP* zur Aktivierung des *rcs*-Phosphorelay-Systems führen, vermutlich hervorgerufen durch Membranstress aufgrund von Störungen in der Zusammensetzung der Zellmembran (Parker et al., 1992). *cpxA* wurde dabei mehrfach sowohl im BgIJ als auch im LeuO-Screen gefunden, *rcsB* ausschließlich im BgIJ-Screen und *rfaP* und *rfaG* ausschließlich im LeuO-Screen. In Gruppe 5 finden sich die Transkriptionsfaktoren *leuO* und *bgIJ*, wobei *bgIJ* in beiden Screens (BgIJ- und LeuO-Screen) entdeckt werden konnte.

Abb.13 Screen nach Suppressoren der bgl-Aktivierung durch LeuO und BglJ

Die Stämme S2820 (*yjjQ/bglJ*-Y6) und S2822 (*leuO*-Y1) besitzen eine chromosomal *bgl*-Promotor*lacZ*-Fusion (P*bgl*+25-*lacZ*) sowie das natürliche *bgl*-Operon. Aufgrund der konstitutiven Expression von *bglJ* (S2820) bzw *leuO* (S2822) zeigen beide Stämme einen Lac⁺ Bgl⁺ Phänotyp. Nach Mutagenese durch das miniTn*10tet*-Transposon vom Phagen λ NK1323 wurde nach tetracyclinresistenten Mutanten gesucht, deren Phänotyp zu Lac⁻ Bgl⁻ gewechselt hatte. Die Ergebnisse des Screens sind in Tabelle 1 zusammengefasst.

Tabelle 1: Mutanten aus den Screens nach Co-Faktoren von LeuO und BglJ				
Stamm	Gen	Funktion	Insertion ^a	Screen
Nukleotids	synthese			
S2831	purA	adenylosuccinat synthetase	+1023-1031	BglJ
S2834	cyaA	adenylate cyclase	+1890-1898	BglJ
S2835	purB	adenylosuccinate lyase	+51-59	BglJ
S2837	purB	adenylosuccinate lyase	+17-25	BglJ
S2856	cyaA	adenylate cyclase	+1505-1513	LeuO
S2858	cyaA	adenylate cyclase	+1505-1513	LeuO
S2860	pyrD	dihydroorotate dehydrogenase	+889-897	LeuO
S2920	pyrD	dihydroorotate dehydrogenase	+889-897	LeuO
S2921	carB	carboamyl-phosphatase synthase	+78-+86	LeuO
Zucker Me	etabolismu	S		
S2829	pgi	phosphoglucose isomerase	+30-38	BglJ
S2830	pgi	phosphoglucose isomerase	+313-321	BglJ
S2832	ptsl	phosphotransferase system enzymel	+1249-1257	BglJ
S2840	pgi	phosphoglucose isomerase	+1366-1374	BglJ
S2841	pgi	phosphoglucose isomerase	+30-38	BglJ
S2842	pgi	phosphoglucose isomerase	+1262-1270	BglJ
Sulfit/Cystein Metabolismus				
S2859	cysJ	sulfite reductase [NADPH] flavoprotein	+1683-1691	LeuO
S2857	tusE	sulfurtransferase	+89-97	LeuO
S2922	tusE	sulfurtransferase	+38-44	LeuO
"stress se	nsing"			
S2828	rcsB	rcs response regulator	+216-224	BglJ
S2833	срхА	membrane sensor protein	+943-951	BglJ
S2836	срхА	membrane sensor protein	+1281-1289	BglJ
S2838	срхА	membrane sensor protein	+1281-1289	BglJ
S2923	rfaP	lipopolysaccharide core biosynthesis	+571-579	LeuO
S2924	срхА	membrane sensor protein	+1281-1289	LeuO
S2926	rfaG	lipopolysaccharide core biosynthesis	+164-172	LeuO
Transkriptionsfaktoren				
S2839	bglJ	luxR-type transcription factor	+436-444	BglJ
S2925	leuO	lysR-type transcription factor	+310-318	LeuO
S2927	bglJ	luxR-type transcription factor	+437-445	LeuO

^a Die Position der Insertion und target site duplication (TSD) in bp relativ zum Translationsstart

4.2 Die Aktivierung von *bgl* durch BglJ ist abhängig von RcsB

Der Einfluss einiger Suppresor-Mutanten auf die Expression des *bgl*-Promotors und dessen Aktivierung durch BglJ bzw. LeuO wurde genauer untersucht. Von besonderem Interesse waren die "stress-sensing-Mutanten" *cpxA*, *rcsB*, *rfaP* und *rfaG*, da sie eine Verbindung von notwendingen Umgebungsreizen zur Aktivierung von *bgl* darstellen könnten. Außerdem sollten die Mutationen der Sulfit/Cystein-Gruppe untersucht werden, wobei sich allerdings nur die *tusE*-Mutante transduzieren ließ. Hierzu wurden die Mutationen in den Wildtyp S1213 mit der *bgl*-Promotor-*lacZ* Fusion (P*bgl*+25-*lacZ*) transduziert, und es wurde überprüft, ob die Mutationen die Aktivität des *bgl* Promotors und dessen Aktivierung durch LeuO bzw. BglJ beeinflussen. Der Wildtyp *bgl*-Promotor Reporterstamm weist eine β-Galaktosidaseaktivität von 74 Units auf (Abb.14, siehe auch Abb.6). In der *rcsB*-Mutante stieg die Aktivität auf 130 Units (Abb.14 A). Die *tusE*-Mutation hat keinen Einfluss auf den *bgl*-Promotor, die Aktivität entspricht der des Wildtyps (69 Units) (Abb.14 A). Eine knapp 2-fache Verringerung der Aktivität konnte in den Mutanten *cpxA* (40 Units), *rfaP* (46 Units) und *rfaG* (38 Units) festgestellt werden (Abb.14 A).

Durch Expression von BglJ erhöht sich die *bgl*-Promotoraktivität auf 400 Units (Abb.14 B). Die Mutationen *tusE* (300 Units), *rfaP* (250 Units) und *rfaG* (250 Units) verringern die Aktivierung durch BglJ leicht. In der *cpxA*-Mutante ist die Aktivierung durch BglJ auf das 1.7-fache reduziert (170 Units) (Abb.14 B). In der *rcsB*-Mutante ist die Aktivierung durch BglJ fast vollständig aufgehoben (100 Units) (Abb.14 B). Dies zeigt, das RcsB für die Aktivierung des *bgl*-Promotors durch BglJ notwendig ist,

Plasmidische Expression von LeuO führt zur Aktivierung des Promotors auf 505 Units. Die *tusE*-Mutation beeinflusst diese Aktivierung nicht (570 Units), in den Mutanten *rcsB* (405 Units), *cpxA* (390 Units), *rfaP* (390 Units) und *rfaG* (360 Units) verringert sie sich allenfalls nur leicht (Abb.14 C). Obwohl *tusE*, *cpxA*, *rfaP* und *rfaG* im LeuO-Screen gefunden worden waren, konnten sie die Aktivierung des *bgl*-Promotors durch LeuO nicht inhibieren.

Abb.14 bgl-Aktivierung durch BglJ benötigt RcsB

(A) Im Wildtyp (S1213) beträgt die Aktivität des Pbgl+25lacZ-Reporters 74 Units. Die *rcsB*-2828 Mutation in S2908 bewirkt eine leichte Erhöhung der Aktivität auf 128 Units. Während die *tusE*-2857 Mutation keinen Einfluss auf die Promotoraktivität hat (S2696, 69 Units), verringern die Mutationen *cpxA*-2833 (S2912, 40 Units), *rfaP*-2923 (S2961, 46 Units) und *rfaG*-2926 (S2965, 38 Units) die Aktivität des *bgl*-Promotors geringfügig. (B) Die Expression von *bglJ* vom Plasmid pKEAP1 führt im Wildtyp S1213 zu einer Promotoraktivität von 402 Units. Die Mutationen *tusE*-2857 (296 Units), *rfaP*-2923 (247 Units), *rfaG*-2926 (249 Units) und *cpxA*-2833 (170 Units) verringern die Aktivierung durch BglJ leicht bis moderat. In der *rcsB*-2828 Mutante findet keine Aktivierung des *bgl*-Promotors durch BglJ statt (98 Units). (C) Die Expression von *leuO* vom Plasmid pKEDR13 führt im Wildtyp S1213 zu einer Promotoraktivität von 506 Units. *tusE*-2857 beeinflusst die Promotoraktivierung durch LeuO nicht (569 Units). *rcsB*-2828 (407 Units), *cpxA*-2833 (389 Units), *rfaP*-2923 (390 Units) und *rfaG*-2926 (358 Units) führen allenfalls zu einer leichten Reduzierung der Aktivität.

4.3 LeuO und BgIJ können den *bgI*-Promotor unabhängig von einander aktivieren

Im Screen nach Suppressoren von LeuO war auch eine *bglJ*-Mutante gefunden worden. Dies wirft die Frage auf, ob die Aktivierung des *bgl*-Promotors durch einen der beiden Transkriptionsfaktoren vom jeweils anderen abhängig ist. Um dies zu überprüfen, wurden P*bgl*+25-*lacZ*-Reporterstämme konstruiert, in denen *leuO* bzw. *yjjQ/bglJ* deletiert sind und die Aktivierung des Promotors durch den jeweils anderen Transkriptionsfaktor untersucht. Es zeigte sich, dass die Deletion von *leuO* (73 Units) und *yjjQ/bglJ* (72 Units) keine Veränderung der Promotoraktivität gegenüber dem wt (74 Units) verursachte (Abb.15). BglJ aktiviert den *bgl*-Promotor im Wildtyp (400 Units) und in der *leuO*-Deletionsmutante vergleichbar gut (360 Units). Ähnlich verhält es sich bei der Aktivierung des *bgl*-Promotors durch LeuO. Im Wildtyp wurde eine ß-Galaktosidaseaktivität von 505 Units gemessen und im $\Delta(yjjQ-bglJ)$ -Deletionsmutante 470 Units (Abb.15). Demnach können die Transkriptionsfaktoren BglJ und LeuO den *bgl*-Promotor unabhängig von einander aktivieren.

Weshalb wurde dennoch eine *bglJ*-Mutante im Screen nach LeuO-Suppressoren gefunden? Es ist davon auszugehen, dass in der leuO-Y1 Mutante die LeuO Expression geringer ist, als bei Expression von plasmidisch kodierten LeuO. Die Aktivität des Pbgl+25-lacZ-Reporters ist in der leuO-Y1-Mutante (215 Units) nur etwa halb so hoch wie bei Expression von LeuO durch das Plasmid pKEDR13 (505 Units) (vergl. Abb.6). Der Screen erfolgte im Stamm S2822, in dem der bgl-Promotor durch die leuO-Y1-Mutation aktiviert wird. Der Vergleich der bgl-Promotor-Aktivität in der leuO-Y1-Mutante (215 Units) mit der in der leuO-Y1 $\Delta(y_{ij}Q-b_{gl}J)$ Doppelmutante (180 Units) zeigt nur einen geringen Unterschied. Dieser geringe Unterschied kann aber für einen phänotypischen Unterschied auf Indikatorplatten ausreichen, da diese Aktivität am Schwellenwert des Farbumschlags liegt. Desweiteren ist zu beachten, dass unterschiedliche Wachstumsbedingungen auf M9glyB1 X-Gal - Platten (Screen) und in M9-Medium (ß-Galaktosidasetests) zu unterschiedlichen Effekten von LeuO auf den bgl-Promotor führen können. So konnte bereits zuvor festgestellt werden, dass die bgl-Aktivierung durch LeuO in NB-Medium wesentlich geringer ausfällt als in M9-Medium (nicht gezeigt). Untersuchungen haben inzwischen bewiesen, dass LeuO den *yjjQ/bglJ*-Promotor aktiviert (nicht publizierte Daten der Arbeitsgruppe) und somit zusätzlich zur direkten auch eine indirekte Aktivierung des *bgl*-Promotors hervorruft.

Abb.15 LeuO und BglJ können den bgl-Promotor unabhängig von einander aktivieren

Deletionen von *leuO* (S2726, 73 Units) und *yjjQ/bglJ* (S3195, 68 Units) haben keinen Einfluss auf den *bgl*-Promotor im Wildtyp (S1213, 74 Units). *leuO*-Expression vom Plasmid pKEDR13 führt zu einer Aktivierung des Promotors sowohl im Wildtyp (505 Units) als auch im $\Delta yjjQ/bglJ$ -Stamm (470 Units). Analog verhält es sich bei *bglJ*-Expression von pKEAP1, die zur Promotoraktivierung auf 400 Units (wt) bzw 360 Units ($\Delta leuO$) führt. Die *leuO*-Y1 Mutation in S1775 aktiviert den *bgl*-Promotor ebenfalls, jedoch nur auf moderate 214 Units. In einem $\Delta yjjQ/bglJ$ -Hintergrund beträgt die Aktivierung durch *leuO*-Y1 noch 180 Units (S3239). Unter Umständen kann diese sehr geringe Reduktion der moderaten Promotoraktivität zur Unterschreitung des Schwellenwertes führen, der notwendig ist, um auf BTB Sal Platten einen Bgl+ und auf M9glyB1 X-Gal Platten einen Lac+Phänotyp hervorzurufen.

5. Interaktion von BglJ und RcsB

Expressionsanalysen hatten gezeigt, dass die Aktivierung des bgl-Operons durch BgIJ abhängig von RcsB ist. Beide Proteine sind Transkriptionsfaktoren mit einer C-terminalen DNA-Bindedomäne vom LuxR-Typ. Es ist bekannt, dass RcsB sowohl Homodimere als auch Heterodimere mit einem weiteren Transkriptionsfaktor vom LuxR-Typ, RcsA, bildet und Gene reguliert (Majdalani et al., 2005). Für den RcsAB Heterodimer ist eine Konsensus-Bindesequenzen bekannt, die aus zwölf RcsAB-regulierten Genen ermittelt wurde (Abb.16) (Sturny et al., 2003; Wehland and Bernhard, 2000). RcsAB Boxen sind für gewöhnlich ~100bp 5' des Transkriptionsstarts lokalisiert (Wehland and Bernhard, 2000). Die palindromische Konsensus-Sequenz aus 12 bekannten RcsAB regulierten Genen (Groß lautet TaAGaat:atTCctA geschrieben Basen entsprechen einer Konservierung in ≥70% der Sequenzen, klein geschriebene Basen entsprechen einer Konservierung in ≥50% der Sequenzen, palindromische Nukleotide sind unterstrichen) (Wehland and Bernhard, 2000). Interessanterweise findet sich an der Position -96 bis -90bp vom Transkriptionsstart des bgl-Operons die Seguenz ATTCCTA, welche exakt der Halbsequenz der RcsAB Box entspricht (Abb.16). Über die Relevanz dieses Motivs ist jedoch nichts bekannt. Um zu überprüfen, ob eine Interaktion zwischen BglJ und RcsB stattfindet und ob diese vermutlichen **BgIJ/RcsB** Heterodimere an die *bgl*-Promotorregion binden, wurden Expressionsplasmide für beide Proteine konstruiert.

Abb.16 Ein Halbmotiv der RcsAB-Box befindet sich 91bp oberhalb des Transkriptionsstarts von *bgl*

Eine palindromische Konsensussequenz für die RcsAB-Box wurde aus 12 RcsAB regulierten Genen gebildet. Großbuchstaben stehen für \geq 70% Konservierung in den Ausgangssequenzen, Kleinbuchstaben stehen für \geq 50% Konservierung in den Ausgangssequenzen. Palindromische Basen sind unterstrichen. -91bp vom *bgl*-Transkriptionsstart existiert das Motiv ATTCCTA (rot), welches der Halbsequenz der RcsAB-Box entspricht.

5.1 Plasmide für die Expression von BglJ-His und RcsB-HA

Zur Analyse der vermuteten Wechselwirkung von BglJ und RcsB wurden Expressionsplasmide konstruiert, die für C-terminal His₆ bzw. His₁₀ markiertes BglJ bzw. für C-terminal HA-markiertes RcsB kodieren. In Vorversuchen (Kapitel 3.2) war gefunden worden, dass BglJ-His₆ vom Plasmid pKEAP16 nur schwach exprimiert wird. Daher wurde für die Expression von BglJ eine Serie von Plasmide konstruiert, die verschiede Translationsstartssequenzen für *bglJ* enthalten (Abb.17 A). Eine Vorhersage der RNA-Struktur der verwendeten Expressionsplasmide zeigte eine mögliche mRNA-Sekundärstruktur im Bereich der Shine-Dalgarno-Sequenz, welche die Ribosomenbindung behindern könnte (Abb.17 A, durch invertierte Pfeile gekennzeichnet). Im Plasmid pKEAP37 wurden *bglJ* und *rcsB* als Operon für eine Ko-Expression kloniert. Zur Analyse der Funktionalität dieser Plasmide, wurde die Aktivierung des *bgl* Promotors als Testsystem verwendet (Abb.17 A).

Abb.17 Überexpression von rcsB führt zu Inhibition der bgl-Aktivierung durch BglJ

(A) BgIJ-Expression von den Plasmiden pKEAP1 (low copy *bgIJ*), pKEAP4 (high copy *bgIJ*), pKEAP15 (high copy His6-*bgIJ*) und pKEAP16 (high copy *bgIJ*-His6) führt zur Aktivierung des *bgI*-Promotors im Wildtyp S1213 (402 Units, 550 Units, 447 Units und 932 Units), jedoch erlaubt die 5'-*bgIJ*-Region laut RNA-Sequenzanalyse die Bildung einer Sekundärstruktur, welche die Ribosomenbindung stören könnte (invertierte Pfeile). Dies wird in den Plasmiden pKEAP34 und pKEAP35 durch Einbindung von längeren chromosomalen 5'-*bgIJ* Sequenzen verhindert (schraffierte Flächen). Die Promotoraktivierung durch Expression von pKEAP34 und pKEAP35 beträgt 1093 Units und 1065 Units. pKEAP37 ermöglicht die Expression von *bgIJ*-His6 und *rcsB*-HA in einem Operon. Dies führt jedoch nicht zur Aktivierung des *bgI*-Promotors (47 Units), gleiches gilt für pKEAP38, das für *rcsB*-HA codiert (76 Units).(B) Im *yjjQ/bgIJ*-Y6 Stamm S1799 erfolgt die Aktivierung des *bgI*-Promotors auf 700 Units unabhängig von der Expression von Plasmiden. Diese Aktivierung wird sowohl bei gemeinsamer Expression von *bgIJ*-His6 und *rcsB*-HA als auch bei alleiniger Expression von *rcsB*-HA reduziert (300 Units bzw. 287 Units).

5.2 Plasmidische Expression von RcsB hemmt die Aktivierung von bgl durch BglJ

Mit den Expressionsplasmiden für BglJ und RcsB wurde der Stamm S1213 transformiert, der das Pbgl+25-lacZ-Reporterkonstrukt enthält. Die Induktion der Expression von BglJ-His₆ von pKEAP34 und pKEAP35 führte zu einer ~15fachen Aktivierung des bgl-Promotors (von 74 Units auf 1095 Units bzw. 1065 Units) (Abb.17 A). Die Expression vom vergleichbaren Plasmid pKEAP4, welches die mögliche RNA-Sekundärstruktur beinhaltet, hatte die bgl-Promotoraktivität ~7fach erhöht (vergl. Abb.6). Die gleichzeitige Überexpression von BglJ-His₆ und unerwartet in RcsB-HA (pKEAP37) resultierte einer Reduzierung der Promotoraktivität auf 47 Units (Abb.17 A). Eine alleinige Expression von RcsB-HA (pKEAP37) hatte keinen Einfluss auf den bgl-Promotor (76 Units). Eine Erklärung für die Nichtaktivierung des bgl-Promotors bei gemeinsamer Expression von BglJ und RcsB könnte sein, dass bei Überexpression von RcsB-HA BglJ inhibiert wird. Um dies zu überprüfen, wurden die Plasmide pKEAP37 (BglJ-His₆ + RcsB-HA) und pPEAK38 (RcsB-HA) in den Pbgl+25-lacZ-Reporterstamm S1799 transformiert, der die vijQ/bglJ-Y6-Mutation enthält und somit BglJ in trans exprimiert (Abb.17 B). Während die β-Galaktosidaseaktivität ohne RcsB-HA-Expression 675 Units beträgt, reduziert sich die Promotoraktivierung durch BglJ bei Induktion der Expression von den Plasmiden pKEAP37 und pKEAP38 um mehr als den Faktor 2 auf 300 Units bzw. 290 Units. Diese Ergebnisse führen zu dem Paradoxon, dass BglJ einerseits RcsB zur Aktivierung des bgl-Operons benötigt (vergleiche Abb.14), andererseits eine Überexpression von RcsB die Aktivierung des bgl-Operons durch BglJ inhibiert (vergleiche Abb.17). In diesem Zusammenhang sind die pgi-Mutationen von Interesse, die im Screen nach Suppression der bgl-Aktivierung durch BglJ gefunden worden waren (Kapitel 4.1). Die Aktivierung des rcs-Systems durch pgi-Mutationen (El Kazzaz et al., 2004) und der daraus resultierende Anstieg an phosphoryliertem RcsB könnte eine Erklärung für die Inhibition der *bgl*-Aktivierung durch BglJ sein. Ein weiteres Indiz dafür ist, dass die relativ hohe Anzahl von fünf pgi-Mutanten ausschließlich im BglJ-Screen gefunden wurden (Tabelle I).

5.3 BglJ-Stabilität in Abhängigkeit von Temperatur und RcsB

Um der Frage nachzugehen, weshalb BglJ bei Überexpression von RcsB den *bgl*-Promotor nicht mehr aktivieren kann, wurden Western-Blot Experimente durchgeführt, mit denen die Stabilität von BglJ unter verschiedenen Wachstumsbedingungen und in Abhängigkeit von RcsB untersucht wurde (Abb.18).

Zur Überprüfung des Einflusses der Wachstumsbedingungen auf die Stabilität von BglJ wurde der Wildtyp-Stamm S1213 mit dem Expressionsplasmid pKEAP34 transformiert. Zellen wurden in LB Vollmedium und M9 Minimalmedium angeimpft und bei 37°C und 28°C inkubiert. Die Induktion der bglJ-Expression erfolgte durch 1mM IPTG jeweils für 2 beziehungsweise 4 Stunden. Anschließend wurden 0,025 OD₆₀₀ der Kulturen auf einem 12%igen SDS-PAGE aufgetrennt. BglJ-His₆ wurde durch Western-Blot mit anti-His₆ (mouse) detektiert. In Abb.17 A ist zu erkennen, dass BgIJ-His₆ nur schwach exprimiert wird und dass die größte Menge an BgIJ-His₆ bei Wachstum bei 28°C und 2stündiger Induktion detektierbar ist (Spuren 4 und 5). Längere Induktion für 4 Stunden führte nicht zu höheren sondern zu verminderten BglJ-Konzentrationen (Spuren 8 und 9). Wachstum bei 37 °C resultierte in einer geringeren Menge an BglJ (Spuren 2,3,6 und 7). LB Medium begünstigte die Expression von BglJ gegenüber M9 Medium (vergl. Spuren 2+3, 4+5, 8+9). Die Kontrollspur 10 enthält 0,025 OD₆₀₀ einer Kultur, in der H-NS-His₆ vom Plasmid pKETW13 im Stamm S1213 exprimiert wurde. Die Kontrollspur 11 enthält 50ng LeuO-His₆. Die erhöhte Stabilität von BglJ bei niedrigeren Temperaturen und die verminderte BglJ-Konzentration bei längerer Inkubation deuten auf einen proteolytischen Abbau von BglJ hin.

Da die Expression von RcsB die Aktivierung des *bgl*-Promotors durch BglJ inhibierte, sollte untersucht werden, ob die Stabilität von BglJ durch RcsB beeinträchtigt wird. Zu diesem Zweck wurden der Wildtyp-Stamm S541 und eine $\Delta rcsB$ -Mutante (S3278) mit dem Expressionsplasmid pKEAP34 (BglJ-His₆) transformiert und bei 37°C für 2h induziert. In Abb.13 B kann man erkennen, dass die Konzentration von BglJ im $\Delta rcsB$ Stamm (Spur 2) deutlich höher als im Wildtyp ist (Spur 1). RcsB führt vermutlich zu einer Destabilisierung von BglJ.

ERGEBNISSE

Abb.18 Die Stabilität von BglJ ist abhängig von der Temperatur und RcsB

(A) Die Expression von *bglJ*-His₆ vom Plasmid pKEAP34 nach zweistündiger (Spuren 2-5) bzw. vierstündiger (Spuren 6-9) Induktion durch IPTG wurde quantitativ durch Western-Blot untersucht. Jeweils 0,025 OD₆₀₀ der induzierten Kulturen wurden durch SDS-PAGE aufgetrennt und geblottet. Detektion erfolgte durch anti-His₆ (mouse) Antikörper. Bei Kulturen mit zweistündiger Induktion konnte dabei eine größere Menge BglJ-His₆ detektiert werden als bei Kulturen mit vierstündiger Induktion (vergl. Spuren 2-5 + 6-9). Wachstum in LB-Medium führte dabei zu einer leicht höheren Ausbeute als Wachstum in M9glyB1casa Medium (vergl. Spuren 2+3, 4+5, 8+9). Außerdem begünstigte eine Temperatur von 28°C die Ausbeute an BglJ-His₆ im Vergleich zu 37°C (vergl. Spuren 2+4, 2+5). Die Spuren 10 (0,025 OD₆₀₀ von S541+pKETW13 (H-NS-His₆)) und 11 (50ng LeuO-His₆) dienen als Kontrollen. (B) Im Wildtyp S541 ist die Konzentration von BglJ-His₆ nach zweistündiger Induktion bei 37°C wesentlich geringer als im $\Delta rcsB$ -Stamm S3278.

5.4 Expression von BgIJ-HA und verschiedener RcsB-HA-Mutanten

Auch unter optimierten Bedingungen konnte nur eine relative schwache Überexpression von BgIJ-His₆ erzielt werden (vergl. Abb.18). Die Ausbeute konnte auch mit einer C-terminal His₁₀-markierten Variante von BgIJ nicht verbessert werden (nicht gezeigt). Alternativ wurden die Plasmide pKEAP41 (low copy) und pKEAP42 (high copy) konstruiert, die für HA-markierte Varianten von BgIJ kodieren. Beide Plasmide beinhalten C-terminal HA-markiertes *bgIJ* unter der Kontrolle des IPTG-induzierbaren *tac*-Promotors und der verbesserten Shine-Dalgarno Sequenz gene10 ε des Phagen T7.

Zusätzlich wurden weitere RcsB-HA Plasmide konstruiert. Der Response Regulator RcsB ist Teil des *rcs* Phosphorelay systems, das für die Antwort auf Zellmembranstress verantwortlich ist (Ruiz and Silhavy, 2005). Die Aktivierung von RcsB erfolgt dabei durch Phosphorylierung an Position D56 (Majdalani and Gottesman, 2005; Takeda et al., 2001). Es existieren zwei Phosphorylierungs-Mutanten von *rcsB*. Die Mutante D56E enthält an Position 56 einen Aminosäureaustausch von D nach E, wodurch ein permanent phoshorylierter Status immitiert wird (Gupte et al., 1997). In der Mutante D56N wurde D an Position 56 zu N mutiert, welches nicht phosphoryliert werden kann (Gupte et al., 1997). Um zu erfahren, ob der Phosphorylierungszustand von RcsB einen Einfluss auf die Wechselwirkung mit BglJ hat, wurden die Plasmide pKEAP43 und pKEAP44 konstruiert, die für C-terminal HA-markiertes *rcsB*(D56E) respektive *rcsB*(D56N) unter Kontrolle des IPTG-induzierbaren *tac*-Promotors kodieren.

Die Expression und Löslichkeit der HA-markierten BglJ- bzw. RcsB-Proteine wurde mit Western-Blot überprüft (Abb.19). Der Stamm S3377 ($\Delta rcsB$, $\Delta (yjjP-yjjQ-bglJ)$) wurde mit den Plasmiden pKEAP38 (rcsB-HA), pKEAP41 (low copy *bglJ*-HA), pKEAP42 (high copy *bglJ*-HA), pKEAP43 (rcsB(D56E)-HA) und pKEAP44 (rcsB(D56N)-HA) transformiert und für 2h mit 1mM IPTG induziert. Die Zellen aus 100ml Kultur wurden per Ultraschall aufgeschlossen und durch Zentrifugation der Zellextrakt gewonnen (siehe Materialien und Methoden). Der Zellextrakt aus 0,025 OD₆₀₀ Kultur wurde auf einem 12%igen SDS-PAGE aufgetrennt und per Western Blot mit anti-HA (rat) untersucht (Abb.19). Alle HA-markierten Proteine konnten gut nachgewiesen werden. Somit stellen die Expressionsplasmide geeignete

45

Werkzeuge dar, mit deren Hilfe in weiteren Experimenten Aufreinigung und Bindestudien der Proteine BglJ und RcsB durchgeführt werden können.

Warum His-markiertes BgIJ in Western-Analysen kaum nachweisbar war, ist nicht klar. Interessanterweise kann auch His-markiertes RcsB nicht nachgewiesen werden (nicht gezeigt), obwohl HA-markiertes RcsB sehr gut detektiert wird. Ähnliches gilt für einen weiteren Transkriptionsfaktor des LuxR-Typs, das YjjQ Protein (Daten der Arbeitsgruppe). In zukünftigen Experimenten mit den LuxR-Typ Regulatoren sollte daher auf His-Markierung verzichtet werden.

Abb. 19 Expression von HA-markiertem rcsB und bglJ

Expression von den Plasmiden pKEAP38 (*rcsB*-HA, Spur1), pKEAP41 (low copy *bglJ*-HA, Spur 2), pKEAP42 (high copy *bglJ*-HA, Spur 3), pKEAP43 (*rcsB*(*D56E*)-HA, Spur 4) und pKEAP44 (*rcsB*(*D56N*)-HA), Spur 5) wurde in S3377 ($\Delta rcsB$, $\Delta yjjP-yjjQ-bglJ$) für 2 Stunden mit 1mM IPTG induziert. Die Zellen wurden anschließend mit Ultraschall aufgeschlossen und Proteinextrakte gewonnen. Von den Extrakten wurde das Äquivalent von 0,025 OD₆₀₀ der Kulturen per SDS-PAGE aufgetrennt und geblottet. Die Detektion erfolgte mit anti-HA (rat) Antikörpern. Im Gegensatz zu His₆-markiertem BglJ (vergl. Abb.18) konnte eine deutlich größere Menge an BglJ-HA detektiert werden.

IV Diskussion

In der vorliegenden Arbeit wurde ein komplexes Regulationsnetzwerk analysiert, das aus dem globalen Regulator H-NS, den Transkriptionsfaktoren LeuO und BglJ und dem stressinduzierten Rcs-Signaltransduktionssystem besteht (Abb.19). Die Transkriptionsfaktoren LeuO und BglJ aktivieren den *bgl*-Promotor, indem sie dessen Repression durch H-NS aufheben. Die Expression der *leuO* und *bglJ*-Gene ist jedoch ebenfalls durch H-NS reprimiert. Wobei die Repression des *yjjQ/bglJ*-Operons durch LeuO, als Anti-Repressor von H-NS, aufgehoben werden kann. Für die Aktivierung durch BglJ ist der Two-Component-Response-Regulator RcsB notwendig. Vermutlich erfolgt die Aktivierung des *bgl*-Promotors durch BglJ/RcsB Heterodimere. Diese Ergebnisse zeigen, dass die Expression des *bgl* Operons von der Aktivierung des *leuO* bzw. des *bglJ*-Gens abhängt und mit dem Rcs-System zur Signalisierung von Membranstress verknüpft ist.

Abb.19 Ein komplexes Netzwerk aus H-NS und Antirepressoren kontrolliert das bgl-Operon H-NS reprimiert sowohl das *bgl*-Operon als auch die Antirepressoren *leuO* und *bglJ*. Überexpression von LeuO führt bei allen drei Promotoren (*PleuO*, *PyjjQ/bglJ*, *Pbgl*) zu einer Aufhebung der Repression durch H-NS. Durch die Aktivierung von *bglJ*, dessen Genprodukt in Abhängigkeit von RcsB ebenfalls *Pbgl* aktivieren kann, übt LeuO einen direkten und indirekten Einfluss auf *Pbgl* aus. Die schwache Bindung von gereinigtem LeuO an die *bgl*-Promotorregion legt die Vermutung nahe, dass ein weiterer, unbekannter Faktor an der Bindung beteiligt ist. Es ist nicht bekannt, ob der Phosphorylierungsstatus von RcsB Einfluss auf dessen Interaktion mit BglJ hat.

Aktivierung durch LeuO

H-NS reprimierte Gene werden oft durch Gen-spezifische Transkriptionsfaktoren aktiviert (siehe Einleitung). Dies ermöglicht es dem Organismus, einzelne Komponenten des weitläufigen H-NS Regulons gezielt und in Abhängigkeit von unterschiedlichen Stimuli zu aktivieren. LeuO aktiviert den *bgl*-Promotor, indem es die Repression durch Bindung von H-NS an die upstream regulatory region (URE) aufhebt (Kap III.1). Im Falle der Autoregulation des *leuO*-Gens durch LeuO, kartiert eine LeuO-Bindestelle zwischen der Nukleationsstelle der H-NS-Binderegion und dem Promotor. Die Bindung von LeuO blockiert die Bildung des reprimierenden durch H-NS gebildeten Nukleoprotein-Filamentes in cis (Chen und Wu, 2005). Dadurch kann H-NS die Transkription von *leuO* nicht hemmen. Die Regulation des *dsrA*-Gens ist nicht näher untersucht (Repoila and Gottesman, 2003). Bei der Regulation des *bgl*-Promotors durch LeuO deuten Bindestudien darauf hin, dass LeuO die Bindung von H-NS moduliert und dass beide Proteine, H-NS und LeuO, gleichzeitig binden (Kap III.2).

LeuO kann das *bgl*-Operon direkt und indirekt aktivieren. Zum einen aktivert LeuO direkt den *bgl*-Promotor (Kap III 1 und 4.3), zum anderen aktiviert LeuO die Expression von *bglJ*, das seinerseits Aktivator von *bgl* ist (unpublizierte Daten der Arbeitsgruppe). Das *yjjQ/bglJ*-Operon wird ebenfalls durch H-NS reprimiert (Daten der Arbeitsgruppe). Zusätzlich induziert LeuO als Autoregulator seine eigene Expression (Chen und Wu, 2005). Dieses komplexe Regulationsnetzwerk könnte eine Möglichkeit darstellen, eine geringfügige Expression des strikt H-NS reprimierten *leuO* mit Hilfe einer Aktivierungskaskade zu einer Signalstärke zu amplifizieren, die unter gegebenen Umständen (siehe unten) zur Expression des *bgl*-Operons führen könnte.

Die physiologischen Umstände für eine solche Aktivierung von *bgl* sind weiterhin unbekannt. Beim Eintritt von Zellen in die stationäre Wachstumsphase kommt es zu einer kurzfristigen ppGpp-abhängigen Expression von *leuO* (Fang et al., 2000). Ähnlich verhält es sich mit Zellen, die unter Mangel an verzweigtkettigen Aminosäuren (Leucin, Isoleucin, Valin) einen vorrübergehenden Wachstumsstop erleiden (Majumder et al., 2001). Der Wiedereintritt in die exponentielle Wachstumsphase erfolgt in Abhängigkeit des "stringent response" Alarmons ppGpp. Hierbei wird zur Überwindung des Wachstumsstops *leuO* exprimiert (Majumder et al., 2001). Es sollte in zukünftigen Experimenten überprüft werden, ob der vorrübergehende Anstieg der zellulären LeuO-Konzentration unter diesen Bedingungen einen Einfluss auf den *bgl*-Promotor hat.

Aktivierung durch BglJ

Die Aktivierung des bgl-Operons durch BglJ ist abhängig von RcsB. RcsB gehört wie BglJ zur Familie der Transkriptionsfaktoren mit C-terminaler DNA-Bindedomäne vom LuxR-Typ. Die N-terminale Domäne von RcsB ist homolog zu Two-Component Response-Regulatoren und weist RcsB als Response regulator des Rcs-Phosphorelaysystems aus. Dieses Rcs-System spielt eine wichtige Rolle in der Pathogenität von E.coli. Es wird als Antwort auf Membranstress aktiviert und reguliert mehrere Gene, die für die Zellmotilität in Form von Curli und Flagella verantwortlich sind (Vianney et al., 2005). Desweiteren induziert das Rcs-System die Colanic-Acid-Kapsel-Synthese (Gottesman and Stout, 1991; Gupte et al., 1997) und ist essentiell für die Bildung von Biofilmen (Francez-Charlot et al., 2005). Dabei funktioniert RcsB entweder phosphoryliert als Homodimer oder unphosphoryliert als Heterodimer mit RcsA, das ebenfalls zur LuxR-Familie gehört (Majdalani and Gottesman, 2005). Im Labor wurde mit einem Two-Hybrid-System gezeigt, dass RcsB und BglJ direkt interagieren (Kembou, Diplomarbeit 2007). Im Two-Hybrid-System wurde die Wechelwirkung nicht durch Mutation der Aspartat-Gruppe an Position 56 von RcsB zu Glutamat bzw. Arginin beeinflusst. Eine RcsB-D56E Mutante ist in vivo konstitutiv aktiv, während eine RcsB-D56N Mutante inaktiv ist. In diesem Zusammenhang muss noch geklärt werden, in wie weit die Phosphorylierung von RcsB (und damit dessen Aktivierungsstatus) einen Einfluss auf die Aktivierung von bgl durch BglJ hat. Ein Auslöser des Rcs-Systems sind Mutationen in rfa-Genen, die eine Veränderung der Lipopolysaccharid-Komposition in der äußeren Membran verursachen (Parker et al., 1992; Ferrieres and Clarke, 2003). Der Screen nach Suppressoren der bgl-Aktivierung durch LeuO resultierte unter anderem in Insertionsmutanten von rfaP und rfaG. Diese Mutanten wurden jedoch nicht im Screen nach Suppression der Aktivierung durch BglJ gefunden. In diesen rfaP und rfaG Mutanten ist die Aktivierung des bgl-Promotors durch BglJ auf ca 70% reduziert (Kap III 4.2, Abb. 14).

BglJ benötigt RcsB zur Aktivierung des *bgl*-Operons. Möglicherweise binden BglJ/RcsB Heterodimere in der *bgl*-Promotorregion. Gleichzeitig beeinträchtigt RcsB jedoch die Stabilität von BglJ. Dieses Paradox könnte einen möglichen Mechanismus darstellen, eine kurzfristige Aktivierung von BglJ zu erreichen, die schnell wieder gestoppt werden kann.

Fazit

Die Frage nach der molekularen Funktionsweise der Transkriptionsfaktoren LeuO und BgIJ als H-NS Anti-Repressoren am *bgI*-Promotor konnte in dieser Arbeit nicht geklärt werden. Jedoch ergab sich ein Einblick in das Netzwerk von Regulatoren, die sich gegenseitig in ihrer Expression beeinflussen und auf eine komplexe Regulation des *bgl*-Operons verweisen. Die Vielzahl der beteiligten Transkriptionsregulatoren lässt vermuten, dass eine mögliche Aktivierung von bgl unter physiologischen Bedingungen an sehr spezifische Bedingungen geknüpft ist. Weiterhin ist zu vermuten, dass dieses komplexe Regulationsnetzwerk, mit Verknüpfung von LeuO und BglJ zum Rcs-System in der Zelle eine globale Rolle spielt.

V. Material und Methoden

1. Medien und Agarplatten

LB Medium (1I)	10g 5g 5g	Bacto Tryptone (Difco) Yeast-Extract (Difco) NaCl (für Platten 15g Bacto Agar, Difco)
NB Medium (1I)	8g	Bacto NB Broth, dehydrated (Difco) (3g Bacto Beef Extract, 5g Bacto Peptone)
M9 gly B1 casa Medium (1I)	50ml 1ml 0,5ml 12,5ml 1ml 66ml	20 x M9 ($0,1 \text{ M CaCl}_2$ 1 M MgSO ₄ 1mM FeCl ₃ 80% Glycerin Vitamin B1 1mg/ml 10% Casamino Acids (Difco)
20 x M9 (1I)	140g 60g 20g	Na ₂ HPO ₄ x 2H ₂ O KH ₂ PO ₄ NH ₄ CI
SOB Medium (1I)	20g 5g 0,5g 1,25ml	Bacto Tryptone (Difco) Yeast-Extract (Difco) NaCl 2M KCl pH7,0 mit NaOH einstellen nach dem Autoklavieren 10ml 1M MgCl ₂ zugeben
SOC Medium (1I)	980ml 20ml	SOB Medium 20% Glukose
MacConkey Lac Platten (1I)	50g	MacConkey Lac Agar
BTB Sal Platten (1I)	15g 1g 5g 1ml 1ml 0,5ml 20ml 50ml 10ml	Bacto Agar Yeast-Extract Bacto Tryptone NaCl nach dem Autoklavieren 1M MgSO ₄ 0,1M CaCl ₂ Vitamin B1 1mg/ml 1mM FeCl ₃ 10% (w/v) Casaminoacids 10 % Salicin Bromthymolblau Stammlösung (2% Bromthymolblau in 50%EtOH, 0,1N NaOH)
M9 Gly X-Gal Platten (1I)	wie M9 0,5ml	gly B1 casa Platten 5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid (X- Gal) Stammlsg. (20mg/ml in NN-Dimethylformamid)

Antibiotika

Antibiotikum	Konzentration
Ampicillin	50µg /ml
Chloramphenicol	15µg /ml
Kanamycin	25µg /ml
Spectinomycin	50µg /ml
Tetracyclin	12µg /ml

2. Grundlegende molekularbiologische Methoden

Molekularbiologische Methoden wie Restriktionsverdau, Ligation, PCR und Plasmidaufreinigung wurden nach Standardprotokollen (Miller, 1972; Sambrook et al., 1989; Coligan et al., 2005; Ausubel et al., 2005) oder Anleitungen der Hersteller durchgeführt.

3. Plasmide und Stämme

Die verwendeten und konstruierten Plasmide und *E.coli* Stämme sind in den Tabelle 2, 3 und 4 angegeben.

Tabelle 2: Verwendete Plasmide			
Name	relevante Struktur	Referenz	
pKETW13	<i>lacl^alacO3-Ptac-lacO hns-His6 in pACYC</i>	(Wolf et al., 2006)	
pKESK22	Laclq-lacO3-tac-lacO1- MCS in pACYC-neo	Laborsammlung	
pFDY157	<i>lacI-q lambda-to tacOP lacZ</i> in pBR	Laborsammlung	
pFDY127	<i>lacI-q tacOP gene10 SD no epsilon bglG</i> in pACYC	Laborsammlung	
pKES168	tac enhanced-SDgene10 C-term. His10tag in pACYC KanR	Laborsammlung	
pKES169	tac enhanced-SDgene10 C-term. HAtag in pACYC KanR	Laborsammlung	
pKES170	tac enhanced-SDgene10 C-term. His10tag in pKK amp	Laborsammlung	
pKES171	tac enhanced-SDgene10 C-term. HAtag in pKK amp	Laborsammlung	
pKES150	lexA-408-rcsB-D56E fusion	Laborsammlung (Kembou 2006, unveröffentlicht)	
pKES151	lexA-408-rcsB-D56N fusion	Laborsammlung (Kembou 2006, unveröffentlicht)	
pKD3	template plasmid for generating $\Delta y j j Q / b g l J$::KD3 fragment, cm ^R	(Datsenko and Wanner, 2000)	
pKD46	rep-ts araC bla ^R λ Red recombinase under control of ParaB	(Datsenko and Wanner, 2000)	
pLDR8	lambda repressor, temperature sensitive allele <i>cl</i> - 857; <i>int</i> under control of λ P _R , pSC101 rep-ts, kan	(Diederich et al., 1992)	
pKEKB30	attP wt-P _{bgl} +25 lacZ	Laborsammlung (Boros 2000, unveröffentlicht)	
pKEDR13	lacl ^q P-tac leuO(long) in pACYC-neo	Laborsammlung	

Tabelle 3: Konstruierte Plasmide			
Name	Struktur ^a	Konstruktion ^b	
pKEAP1	Iacl ⁴ P-tac bglJ in pACYC-neo	fragment1:pKESK22 EcoRI, Xbal, CIP, ca. 3900bp fragment2:PCR from wt (S527), Oligos: S319/S321 EcoRI Nibel ca. 700bp	
pKEAP2	lacl ^q P-tac bglJ in pBR-bla	fragment1: pFDY157 BamHI, NheI, CIP, ca. 4300 bp fragment2: PCR from wt (S527), Oligos:	
		S319/321, BamHI, Nhel, ca. 700bp	
рКЕАР4	lacl ^e P-tac SD-10 bglJ in pKK-bla	fragment1: pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S320/321, Ndel, Pstl, ca. 700bp	
pKEAP6	lacl ^q P-tac yjjQ in pBR-bla	fragment1: pFDY157 BamHI, NheI, CIP, ca. 4300 bp fragment2: PCR from wt (S527), Oligos: S322/324, BamHI, NheI, ca. 750bp	
pKEAP7	lacl ^q P-tac SD-10 yjjQ in pBR-bla	fragment1: pFDY157 Nhel, Scal, CIP, ca. 1950 bp fragment2: pFDY766 Ndel, Scal, ca. 2350bp fragment3: PCR from wt (S527), Oligos: S323/324, Ndel, Nhel, ca. 750bp	
pKEAP8	lacl ^q P-tac SD-10 yjjQ in pKK-bla	fragment1: pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S323/324, Ndel, Pstl, ca. 750bp	
pKEAP9	lacl ^q P-tac leuO(long) in pACYC-neo	fragment1: pKESK22 EcoRI, Xbal, CIP, ca. 3900bp fragment2: PCR from wt (S527), Oligos: S325/328, EcoRI, Nhel, ca. 1150bp	
pKEAP10	lacl ^q P-tac leuO(long) in pBR-bla	fragment1: pFDY157 BamHI, Nhel, CIP, ca. 4300 bp fragment2: PCR from wt (S527), Oligos: S325/328 BamHI, Nhel, ca. 1200bp	
pKEAP11	lacl ^q P-tac leuO(short) in pACYC-neo	fragment1: pKESK22 EcoRI, Xbal, CIP, ca. 3900bp fragment2: PCR from wt (S527), Oligos: S326/328, EcoRI, Nhel, ca. 1000bp	
pKEAP15	lacl ^q P-tac SD-10 His ₆ -bglJ in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S321/395, Ndel, Pstl, ca. 700 bp	
pKEAP16	lacl ^q P-tac SD-10 bglJ-His ₆ in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S320/396, Ndel, Pstl, ca, 700 bp	
pKEAP17	lacl ^q P-tac SD-10 His₀-yjjQ in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S324/397, Ndel, Pstl, ca. 750 bp	
pKEAP18	lacl ^q P-tac SD-10 yjjQ-His ₆ in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S323/398, Ndel, Pstl, ca. 750 bp	
pKEAP19	lacl ^q P-tac SD-10 His ₆ -leuO(short) in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: PCR from wt (S527), Oligos: S328/399, Ndel, Pstl, ca. 1000 bp	

Tabelle 3: Konstruierte Plasmide			
Name	Struktur ^a	Konstruktion ^b	
pKEAP20	lacl ^q P-tac SD-10 leuO(short)-His ₆ in pKK-bla	fragment1 : pFDY127 Ndel, Pstl, CIP, ca. 4500 bp fragment2: DCB from ut (S527) Oligoe:	
		S327/400 Ndel Pstl ca 1000 bp	
pKEAP21	lacl ^q P-tac leuO(long)-His ₆ in pBR-bla	fragment1: pFDY157 BamHI, Nhel, CIP, ca. 4300 bp	
		fragment2: PCR from wt (S527), Oligos: S325/400, BamHI, NheI, ca. 1200bp	
pKEAP22	lacl ^q P-tac MCS (HindIII, EcoRI, Ncol, BgIII, Pstl,	fragment1 : pFDY127 HindIII,	
	Xbal, Xhol) in pKK-bla	CIP, ca. 4500 bp	
		35 bp	
pKEAP23	lacl ^q P-tac MCS (Xhol, Xbal, Bglll, Pstl, Ncol,	fragment1 : pFDY127 HindIII,	
	EcoRI, HindIII) in pKK-bla	CIP, ca. 4500 bp	
		35 bp	
рКЕАР24	lacl ^a P-tac bglJ-His ₆ in pKK-bla	fragment1 : pKEAP22 EcoRI, PstI, CIP, ca.	
		fragment2 : PCR from wt (S527), Oligos: S319/S396, EcoRI, PstI, ca. 720 bp	
pKEAP25	lacl ^q P-tac bglJ-His ₆ rcsB-HA in pKK-bla	fragment1 : pKEAP24 BgIII, XhoI, CIP, ca. 5200bp	
		fragment2 : PCR from wt (S527) Oligos: S682/S683, BgIII, XhoI, ca. 720 bp	
pKEAP26	lacl ^q P-tac bglJ-His ₆ in pBR-bla	fragment1 : pFDY157 BamHI, Nhel, CIP ca. 4300 bp	
		fragment2 : PCR from wt (S527) Oligos: S319/S396 BamHI, Nhel ca. 720 bp	
pKEAP33	lacl ^q P-tac bglJ-His₀ in pBR-bla	vector: pKEAP22 HindIII, BgIII, CIP	
	(mid-size native 5'bglJ)	insert: PCR from pKES116 Oligos:	
pKEAP34	lacl ^q P-tac bαlJ-His₀ in pBR-bla	vector: pKEAP22 HindIII. Balli. CIP	
	(short native 5'bglJ)	insert: PCR from pKES116 Oligos: S817/S818 Hindlil, Balli ca. 700bp	
pKEAP35	lacl ^q P-tac bqlJ-His ₆ in pBR-bla	vector: pKEAP23 Xhol, BgIII, CIP	
	(long native 5'bglJ)	insert: PCR from pKES116 Oligos: S531/S818 Xhol, BgIII ca. 790bp	
pKEAP36	lacl ^q P-tac bglJ-His ₆ rcsB-HA in pBR-bla	vector: pKEAP33, BgIII, Xhol, CIP, ca. 4500bp	
		insert: PCR von wt S541 Oligos:	
		S682/S683 BgIII, Xhol	
pKEAP37	lacl ^q P-tac bglJ-His ₆ rcsB-HA in pBR-bla	vector: pKEAP34, BgIII, XhoI, CIP, ca.	
		insert: PCR von wt S541 Oligos:	
		ca. 700bp	
pKEAP38	lacl ^q P-tac rcsB-HA in pBR-bla	vector: pKEAP22, BgIII, XhoI, CIP, ca. 4500bp	
		insert: pKEAP36, BgIII, XhoI, ca. 700bp	
preap39	Iaci - P-lac SD-TUE-DGIJ-HIS10 IN PACY C-KAN	insert:PCR from pKEAP1 Oligos S320, S887 Ndel, Xbal	
pKEAP40	lacl ^q P-tac SD-10ɛ-bglJ-His ₁₀ in pKK-amp	vector:pKES170, Ndel, Xbal, CIP	
		insert:PCR from pKEAP1 Oligos S320, S887 NdeL Xbal	
pKEAP41	lacl ^q P-tac SD-10ɛ-bglJ-HA in pACYC-kan	vector:pKES169, Ndel, Xbal, CIP	
		insert:PCR from pKEAP1 Oligos S320, S887 Ndel, Xbal	

Tabelle 3: Konstruierte Plasmide		
Name	Struktur ^a	Konstruktion ^b
pKEAP42	lacl ^q P-tac SD-10ɛ-bglJ-HA in pKK-amp	vector:pKES171, Ndel, Xbal, CIP
		insert: PCR from pKEAP1 Oligos S320,
		S887 Ndel, Xbal
pKEAP43	lacl ^q P-tac rcsB(D56E)-HA in pKK-amp	vector:pKEAP38, BsaBI, NheI, CIP
		insert:PCR from pKES150
		Oligos:S689,S683 BsaBI, Nhel
pKEAP44	lacl ^q P-tac rcsB(D56N)-HA in pKK-amp	vector:pKEAP38, BsaBI, NheI, CIP
		insert:PCR from pKES151
		Oligos:S689,S683 BsaBI, Nhel
pKEAP45	lacl ^q P-tac rcsB-His ₁₀ in pKK-amp	vector 1:pKES170 Xbal, Mlul
		vector 2:pKEAP38 BsaBI, Mlul
		insert:PCR from pKEAP38
		Oligos:S689,S889 BsaBI, Xbal
pKEAP46	lacl ^q P-tac rcsB(D56E)-His ₁₀ in pKK-amp	vector 1:pKES170 Xbal, Mlul
		vector 2:pKEAP38 BsaBI, Mlul
		insert:PCR from pKES150
		Oligos:S689,S889 BsaBI, Xbal
pKEAP47	lacl ^q P-tac rcsB(D56N)-His ₁₀ in pKK-amp	vector 1:pKES170 Xbal, Mlul
		vector 2:pKEAP38 BsaBI, Mlul
		insert:PCR from pKES151
		Oligos:S689,S889 BsaBI, Xbal

^a lacl^q P-tac is a lacl^q *tac* promoter (P-tac) cassette. In this cassette the *tac* promoter is flanked by operators *lacO1* and *lacO3*. SD-10 denotes a fusion to the translation start of phage T7 gene 10 lacking the translation enhancer sequence ε , while SD-10 denotes a fusion to the translation start including ε .

including ε. ^b All cloned plasmids are documented in the laboratory VectorNTI database, and all fragments that were generated by PCR were sequenced.

Tabelle 4: <i>E.coli</i> Stämme			
Stamm	Relevanter Genotyp oder Struktur	Konstruktion/Referenz	
S103	DH5 α F- araD139 Δ (argF-lac)U169 deoC1	Laborsammlung	
	flb5301 relA1 rpsL150 ptsF25 rbsR		
S160	M182 hns::kanR	(Zhang et al., 1996)	
S387	CSH50 ∆bgl-AC11 attB::(SpecR Pbgl(+54) lacZ)	Laborsammlung	
S524	CSH50 AlacZ-Y217 (gpt-pro)+	(Dole et al., 2002)	
S541	CSH50 Abgl-AC11 AlacZ-Y217	(Dole et al., 2004b)	
S1195	S541 attB. (SpecR PUV5 (+95)bglG-orf lacZ) ¹	(Dole et al. $2004b$)	
S1211	S541 attB::(SpecR Pbgl(-76 to +25) lacZ) ¹	(Dole et al., $2004b$)	
S1213	S541 attB::(SpecR Pbgl+25 lacZ) ¹	(Dole et al., $2004b$)	
S1556	S541 sulA3 Λ lon attB. (SpecB Phol(+25) lac7) ¹	(Dole et al., $2004a$)	
S1564	S5/1 sulA3 Alon attB::(SpecR lack 1)/5	(Dole et al. 2004a)	
01004	(+95)balG-orf lacZ) ¹	(1000 00 01.), 20040)	
\$1729	hal CPP^+ C234 AlacOP··(spec ^R CPP ⁺ C234	(Madhusudan et al. 2005)	
01725	$D_{a} = 0.01 - 0.204 \Delta a = 0.0187 (Spec Civil - 0.204)$	(Madridsudari et al., 2000)	
S1733	$hal CPP^{+}C234 Alac OP'(cance^{R}CPP^{+}C234)$	(Madhusudan et al. 2005)	
01700	$Dy_{1} = CRF - CZ_{3}4 \ \Delta a COF (Spec CRF - CZ_{3}4)$	(Madridsudari et al., 2003)	
S1724	FUGI=54 UgiG=011) IOTTO7 yjjQ/UgiJ=15	(Madhuaudan at al. 2005)	
51754	Dbrill E4 halo arth land 97 viiO/hall VG	(Maulusuuali et al., 2005)	
01770	Pbgi+54 bgiG-01) i01187 yjjQ/bgiJ-16	× T40T7 017002	
51775	S1195 leuO-Y1m1n10cm	X 14G1/ S1/29 ⁻	
51775	S1213 IeuO-Y1::m1n10cm	X 14G17 S1729 ²	
51///	S1211 IEUO-Y L.IIITITITUCIII	X 14G1/ S1/29 ⁻	
51/8/	S1213 yjjQ/bgiJ-15::minitocm	X 14G1/ S1/33 ⁻	
51797	S1195 yjjQ/bglJ-Y6::mTn10cm	X 14G17 S1734 ²	
51799	S1213 yjjQ/bgiJ-Y6minitocm	X 14G1/ S1/34 ⁻	
51801	S1211 yjjQ/bgiJ-Y6::m1n10cm	X 14G17 S1734 ²	
51919	S387 IeuU-Y1::m1n10cm	X 14G17 S1729 ²	
52304	S541 MS::KanR	x 14G17 S160 ²	
52517	MC4100 lrp-201::1n10tet	(Lange et al., 1993)	
S2574	S1213 Irp-201::1n10tet	X 14G17 S2517 ²	
52578		X 14G1/ S251/- (Klowski st.sl., 1997)	
52706		(KIAUCK et al., 1997)	
52720	51213 IEUO.:Cal	X 14G1/ S2/00-	
52817	S524 bgl [*] Δ IacZ-Y217 attB::(SpecR PbgI(+25)	x prerb30-	
00000			
S2820	S2817 IEUO-Y1::m1n10cm	X 14G17 S1729 ²	
S2822	S2817 yjjQ/bgiJ-Y6::mTn10cm	X 14G17 S1734 ²	
S2828	S2822 rcsB::m1n10tet-2828	x λNK1323	
S2829	S2822 pgi::m1n10tet-2829	x λNK1323 ⁴	
S2830	S2822 pgi::m1n10tet-2830	x λNK1323 ⁴	
S2831	S2822 purA::mTn10tet-2831	x λNK1323⁴	
S2832	S2822 ptsl::mTn10tet-2832	x λNK1323 ⁴	
S2833	S2822 cpxA::mTn10tet-2833	x λNK1323 ⁴	
S2834	S2822 cyaA::mTn10tet-2834	x λΝΚ1323 ⁴	
S2835	S2822 purB::mTn10tet-2835	x λNK1323 ⁴	
S2836	S2822 cpxA::mTn10tet-2836	x λNK1323 ⁴	
S2837	S2822 purB::mTn10tet-2837	x λNK1323 ⁴	
S2838	S2822 cpxA::mTn10tet-2838	$\times \lambda NK1323^4$	
S2839	S2822 bal.l::mTn10tet-2839	x) NK1323 ⁴	
S2840	S2822 pgi::mTn10tet_2840	$\times \lambda NK1323^4$	
S2040 S2941	S2822 pgi::mTn10tet 2841	$X \land NK 1323$	
3204 I	S_2O_22 pyl. 11111101010-2041	X AINA 1323	
52842	52022 pg::::::::::::::::::::::::::::::::::::	X ANK1323	
52856		X ANK1323	
S2857	S2820 tusE::m1n10tet-2857	x λNK1323 [*]	
S2858	S2820 cyaA::mTn10tet-2858	x λNK1323 ^⁴	
S2859	S2820 cysJ::mTn10tet-2859	x λNK1323⁴	
S2860	S2820 pyrD::mTn10tet-2860	x λNK1323 ⁴	

Tabelle 4:	Tabelle 4: <i>E.coli</i> Stämme		
Stamm	Relevanter Genotyp oder Struktur	Konstruktion/Referenz	
S2920	S2820 pyrD::mTn10tet-2920	x λΝΚ1323 ⁴	
S2921	S2820 carB::mTn10tet-2921	x λΝΚ1323 ⁴	
S2922	S2820 tusE::mTn10tet-2922	x λΝΚ1323 ⁴	
S2923	S2820 rfaP::mTn10tet-2923	x λΝΚ1323 ⁴	
S2924	S2820 cpxA::mTn10tet-2924	x λΝΚ1323 ⁴	
S2925	S2820 leuO::mTn10tet-2925	x λΝΚ1323 ⁴	
S2926	S2820 rfaG::mTn10tet-2926	x λΝΚ1323 ⁴	
S2927	S2820 bglJ::mTn10tet-2927	x λΝΚ1323 ⁴	
S2908	S1213 rcsB::mTn10tet	x T4GT7 S2828 ²	
S2912	S1213 cpxA::mTn10tet	x T4GT7 S2833 ²	
S2961	S1213 rfaP::mTn10tet	x T4GT7 S2923 ²	
S2965	S1213 rfaG::mTn10tet-2926	x T4GT7 S2926 ²	
S2969	S1213 tusE::mTn10tet-2857	x T4GT7 S2857²	
S3195	S541 attB::(SpecR Pbgl(+25) lacZ)	x S673/S676, pKD3³	
	ΔyjjQ/bglJ::KD3		
S3239	S3195 leuO-Y1::m1n10cm	x 14G17 S1729 ²	
S3278	S541 ArcsB::SpecR	x S774/775, pKESD8³	

¹P*bgl* and P*lacUV5* describe the *bgl* and *lacUV5* promoters, respectively, and *bglGorf* is a *bglG* mutant in which the translation-initiation codon and, in addition, ATG codons 3 and 27 were mutated to GCG (Dole et al., 2004b). For *bgl–lacZ* constructs integrated into *attB*, the relevant structure and the parent plasmid from which these fusions were derived are given. The *bgl* operon allele *bgl-CRP*⁺-C234 carries a C to T exchange in the CRP-binding site at position –66 (relative to the transcription start) that causes activation of the *bgl* promoter and, thus, this allele confers a Bgl-positive phenotype

²Transductions (e.g. x T4*GT7* S2142) and integrations of *bgl–lacZ* reporter constructs (x pKESD49) were performed as described previously (Wilson et al., 1979; Diederich et al., 1992; Dole et al., 2002)

³Chromosomal deletions (e.g. xS673/S676, pKD3) were performed as described previously (Datsenko and Wanner, 2000). The primers and template plasmid used are given.

 4 x λNK1323 indicates mutations obtained by miniTn*10* transposition from phage λNK1323 (Miller, 1972)

4. ß-Galaktosidasetests

 $\begin{array}{ccc} \text{Z-Puffer} & 60\text{mM} & \text{Na}_2\text{HPO}_4 \\ & 40\text{mM} & \text{NaH}_2\text{PO}_4 \\ & 10\text{mM} & \text{KCI} \\ & 1\text{mM} & \text{MgSO}_4 \\ & 100 \ \mu\text{g/mI} & \text{Chloramphenicol} \\ & \text{pH 7.0} \end{array}$

ß-Galaktosidasetests wurden nach der von (Miller, 1972) beschriebenen Methode mit geringen Modifikationen durchgeführt. Stämme wurden über Nacht in 3 ml NB oder M9glyB1casa Medium schüttelnd inkubiert. Subkulturen wurden in frischem NB oder M9glyB1casa Medium (+1mM IPTG bei Induktion von Plasmiden) zu einer OD_{600} =0,15-0,2 angeimpft und schüttelnd bis zu einer OD_{600} =0,5 inkubiert. In doppelter Ausführung wurden 3 verschiedene Verdünnungen der Kulturen mit Z-Puffer in 1ml hergestellt. Die Zellen wurden durch die Zugabe von 10µl 0,1% SDS und 20µl Chloroform und Mischen auf dem "Vortex" permeabilisiert. Die Verdünnungen wurden für 10 Minuten bei 28°C präinkubiert und dann mit 200µl ONPG (4mg/ml in 0,1M Phosphatpuffer pH7,0) versetzt. Die Ansätze wurden nach 30 Minuten durch Zugabe von 0,5ml 1M Na₂CO₃ abgestoppt. Die OD_{420} wurde gemessen und die ß-Galaktosidaseaktivität nach der unten beschriebenen Formel berechnet. Die Messungen wurden mindestens 3mal mit unabhängigen Stämmen oder Transformanten durchgeführt, die Standardabweichungen lagen dabei unter 10%.

Miller Units =

OD₄₂₀ x Verdünnungsfaktor x 1000 OD₆₀₀ x Zeit (min)

5. kompetente Zellen und Transformation

Chemokompetente Zellen

TEN-Puffer 20mM Tris-HCl pH7,5 1mM EDTA 50mM NaCl

Kulturen wurden in 25ml LB bis zu einer $OD_{600}=0,3$ inkubiert und die Bakterien wurden mit 3000U/min für 10 Minuten bei 4°C abzentrifugiert. Die Zellen wurden in 12,5ml eiskaltem 0,1M CaCl₂ resuspendiert und für 10 Minuten bei 3000U/min zentrifugiert. Es folgte eine Resuspension in 1ml eiskaltem 0,1M CaCl₂. Für die Transformation wurden 1-100 ng Plasmid bzw. 10µl Ligationsansatz in 50µl TEN-Puffer mit 100µl kompetenten Zellen für 20 Minuten auf Eis inkubiert. Es folgte ein Hitzeschock bei 42°C für 2 Minuten. Nach weiteren 10 Minuten Inkubation auf Eis wurde der Transformationsansatz in 1ml LB überführt und für 1h bei 37°C inkubiert. 100µl des Ansatzes wurden auf geeigneten Selektionsplatten ausplattiert.

Elektrokompetente Zellen

Zellen wurden über Nacht in 3ml SOB Medium inkubiert. Mit 200µl dieser Kultur wurden 50ml SOB Medium angeimpft und bis zu einer OD_{600} =0,7 inkubiert. Die Kultur wurde in gekühlte Zentrifugenbecher überführt und bei 4°C mit 3000U/min für 15 Minuten zentrifugert. Die Zellen wurden in 50ml eiskaltem H₂O resuspendiert und für 15 Minuten bei 4°C mit 3000U/min zentrifugiert. Anschließend wurden die Zellen abermals in 25ml kaltem H₂O gewaschen und für 15 Minuten bei 4°C mit 3000U/min zentrifugiert. Die Zellen wurden in 2ml eiskaltem 10% Glycerin resuspendiert und durch Zentrifugation bei 4°C mit 3000U/min für 15 Minuten pelletiert. Abschließend wurden die Zellen in 200µl eiskaltem 10% Glycerin aufgenommen. Für die Transformation wurden 40µl der kompetenten Zellen mit 0.01 ng Plasmid-DNA oder 100 ng DNA-Fragmenten für 10min auf Eis inkubiert. Der Ansatz wurde in gekühlte Elektroporationsküvetten (Biorad) überführt und im Elektroporator für 3s mit 1,8kV geschockt. Sofort danach wurde 1ml SOC hinzugefügt. Die Zellen wurden in Glasröhrchen überführt und für 1h bei 37°C inkubiert. 100µl der Kultur wurden auf geeigneten Selektionsplatten ausplattiert.

6. Integration von Fragmenten in den *attB*-Locus von *E.coli*

Die Integrationen von Promotor-lacZ-Reportergen-Fragmenten in das Chromosom von E.coli wurden wie beschrieben durchgeführt (Diederich et al., 1992). Diese Technik erlaubt die Integration von DNA-Fragmenten in den λ attB-Locus von E.coli. In dieser Arbeit wurde der Stamm S541 oder ein Derivat dieses Stammes mit dem temperatursensitiven Plasmid pLDR8 transformiert, das für eine Integrase codiert, und bei 28°C auf LBkan Platten selektioniert. Plasmide mit der λ attP-Sequenz, der Reporter-lacZ-Fusion von Interesse und einer Spectinomycin-Resistenz-Kassette wurden mit BamHI verdaut. Das Fragment ohne Replikationsursprung wurde aufgereinigt (Qiagen Kit) und 10ng davon wurden religiert und in den Zielstamm mit pLDR8 transformiert. Für das Herstellen von kompetenten Zellen wurde dieser Stamm bei 37°C inkubiert. Bei 37°C wird das Integrasegen exprimiert. Die Integrase veranlasst eine Rekombination zwischen den attB und was in der Integration des Reporterkonstrukts und der Spectinomycin *λattP*-Loci, Resistenzkassette in das Chromosom resultiert. Die Transformanten wurden bei 42°C auf LBspec Platten selektioniert. Bei 42°C wird die Replikation des temperatursensitiven Helferplasmids pLDR8 inhibiert. Die Kolonien wurden auf den Verlust von pLDR8 überprüft (Kanamycin sensitiv) und die Integration wurde durch PCRs, wie unten beschrieben, analysiert. Jeweils zwei unabhängige Klone wurden in der Stammsammlung gesichert und für die folgenden Experimente benutzt.

Test-PCRs:S93/S164: Überprüfung des attB/attP'-Locus
S95/S96: Überprüfung des attP/attB'-Locus
S95/S164: Ausschluss von Dimer-Integration
geeignete Primer für die Kontrolle der intergrierten Promotor-*lacZ* Fusion

7. Deletion von *bglJ* und *yjjQ/bglJ* nach der Methode von (Datsenko and Wanner, 2000)

Die Deletion von yjjQ/bglJ erfolgte nach der Methode von (Datsenko and Wanner, 2000). Das System basiert auf der λ Red abhängigen Rekombination zwischen einem linearen DNA-Fragment und dem chromosomalen Gen. Das Prinzip besteht darin, die chromosomale Seguenz mit einer selektionierbaren Antibiotikaresistenz zu ersetzen, die durch PCR generiert wurde, bei der Primer mit 30 bis 50 bp Homologie zur Zielsequenz verwendet wurden. Dazu wurden Zellen mit dem temperatursensitiven Plasmid pKD46 transformiert, das das λ Red System unter Kontrolle des induzierbaren Arabinose Promotors enthält. Das PCR-Fragment für die Deletion von yjjQ/bglJ wurde mit den Primern S673/S676 vom Plasmid pKD3 amplifiziert. Diese PCR generiert ein Fragment, das eine Kanamycin Resistenzkassette trägt, die von kurzen homologen Seguenzen upstream und downstream zum yjjQ/bglJ-Locus flankiert wird. Zusätzlich ist die Kanamycin Resistenz von FRT-Sequenzen umschlossen, die die Deletion der Resistenz durch die Flp-Rekombinase nach der Integration ermöglicht. 100ng über ein Agarosegel gereinigtes PCR-Produkt (Qiagen-Gel-Extraction-Kit) wurden in Zellen elektrotransformiert, die das Helferplasmid pKD46 mit der λ Red Rekombinase enthalten. Die Rekombinanten wurden bei 37°C auf LBkan Platten selektionert. Der Verlust des Helferplasmids wurde durch Ampicillinsensitivität überprüft und die Deletion von vijQ/bglJ durch PCR mit den Primern S392/S540 bestätigt. Zwei unabhängige Klone wurden in der Stammsammlung weggefroren und für weitere Experimente verwendet. Die Deletion von bqlJ erfolgte nach der gleichen Methode unter Verwendung der Primer S675/S676.

8. Transduktion mit dem Phagen T4GT7 (Wilson et al., 1979)

Für die Transduktion wurde der Phage T4*GT7* verwendet. 100µl einer zu transduzierenden Übernachtkultur wurden mit je 10µl, 5µl und 2µl eines T4*GT7* Lysats inkubiert, welches vom Donorstamm hergestellt wurde, der die zu transduzierende DNA enthält. Die Inkubation erfolgte für 20min bei Raumtemperatur, dann wurden 100µl auf geeignete Selektionsplatten ausplattiert. Die Transduktanten wurden mindestens drei- bis viermal auf neuen Platten vereinzelt um kontaminierende Phagen zu entfernen. Der DNA-Transfer wurde durch PCR mit geeigneten Primern überprüft. Zwei unabhängige Kolonien wurden in der Stammsammlung weggefroren und in den Experimenten verwendet.

9. Transposonmutagenese

Die Transposonmutagenese wurde mit dem Phagen λ NK1323 wie beschrieben (Miller, 1992) durchgeführt. Dazu wurden 10ml LB mit einer Übernachtkultur des zu mutierenden Stammes angeimpft und bis zu einer Dichte von ~3x10⁸ Zellen/ml wachsen gelassen. Die Kultur wurde anschließend abzentrifugiert und in 1ml LB + 0,01M MgSO₄ aufgenommen. Es wurden 0,1ml λ NK1323 Lysat mit einem Titer von 1-3x10¹⁰ pfu/ml hinzugegeben und 15min bei 37°C ohne Schütteln inkubiert. Anschließend erfolgte die Zugabe von 1ml LB und 90min schüttelnde Inkubation bei 37°C. Je 0,5ml vom Ansatz und von 10⁻¹ und 10⁻² Verdünnungen des Ansatzes wurden auf Indikatorplatten mit Antibiotika zur Selektion der Mutanten ausplattiert und über Nacht bei 39°C inkubiert. Kolonien, die einen Lac⁻ Bgl⁻ Phänotyp zeigten, wurden erneut auf Indikatorplatten ausgestrichen und über Nacht bei 37°C inkubiert. Lac⁻ Bgl⁻ Mutanten wurden per ST-PCR analysiert.

10 Analyse der Transposonmutanten

Von Mutanten, die einen doppelten Phänotypwechsel zeigten, wurde die Insertionsstelle der miniTn10 Transposons durch eine semi-random, two-step PCR (ST-PCR) wie beschrieben bestimmt (Chun et al., 1997). In einer ersten, semi-spezifischen PCR wurden ein "random Primer" (S360,5'-GGCCACGCGTCGACTAGTACNNNNNNNNNNGATC-3') und ein mTn10tet-spezifischer (S357. 5'-GGCAGGGTCGTTAAATAGCCGCTTATGT-3', Primer oder S358. 5'-CGGTATCAACAGGGACACCAGGATTTATTTATTCT-3') benutzt. Die Amplifikationsprodukte dieser ersten PCR wurden in einer zweiten PCR reamplifiziert, wobei der eine Primer (S361, 5'-GCTCTAGAGGCCACGCGTC GACTAGTAC-3') Sequenzhomologie zum "random Primer" S360 aufwies und der andere Primer der eingebettete miniTn 10-spezifische Primer (S359, 5'-GCTCTAGAGATCATATGACAAGATGTGTATC CACCTTAACT-3') war. Die PCR-Produkte wurden Gel-gereinigt und mit dem Primer S359 sequenziert.

11. DNA-Sequenzierung

DNA-Sequenzierungen wurden mit dem Big Dye Terminator Cycle Sequencing Kit V3.1 (ABI Prism) nach Anleitung des Herstellers und den automatischen Sequencern des Cologne Center for Genomics durchgeführt. Die Sequenzierreaktionen fanden in 10μ I Gesamtvolumen statt, das 1μ I Big Dye Sequenziermix enthielt. Nukleotidsequenzen wurden mit dem Programm Vector NTI (Invitrogen) überprüft.

12. Pulse-Chase-Experiment

Medium	M9glyB1 + 1% 2x Methionine Assay Medium (2x Met.Assay Medium = 21% (w/v), Endkonzentration 0.2%)
Preincubation Mix	60µl M9glyB1 Medium mit 3mM IPTG 20µl 2x Met.Assay Medium
Labeling mix	20µl M9glyB1 Medium mit 20µCi ³⁵ S-Methionin (>1000Ci/mmol)
Chase mix	20µg/ml Methionin

Übernachtkulturen wurden in 3ml M9glyB1 Medium + 1% 2x Met.Assay Medium angesetzt. Mit diesen Kulturen wurden 10ml M9glyB1 Medium + 1% 2x Met.Assay Medium zu einer $OD_{600}=0,1$ angeimpft und bis zu einer $OD_{600}=0,5$ inkubiert. 250µl der Kulturen wurden in Eppendorf-Reaktionsgefäße überführt. Zum Start der Markierung wurden 200µl vorgewärmter Preincubation Mix mit IPTG hinzugefügt und für 2,5min bei 37°C inkubiert. Kontrollmarkierungen enthielten kein IPTG. Es folgte die Zugabe von 50µl Labeling Mix (Pulse) und nach 1,5min die Zugabe von 50µl Chase Mix (Chase). Unmittelbar vor der Zugabe des Chase Mix wurde die erste Probe (100µl, t=0) entnommen und auf Eis gekühlt. Weitere Probenentnahmen erfolgten nach 5, 10, 15 und 30 Minuten. Die Proben wurden abzentrifugiert und die Zell-Sedimente bei -20°C aufbewahrt. Zur Analyse wurden die Zellen in 50µl Lämmli-Puffer aufgenommen und 10µl wurden auf einem 12%igen SDS-Polyacrylamidgel aufgetrennt. Das Gel wurde getrocknet und für ~12h einem Röntgenfilm zur Detektion ausgesetzt.

13. Herstellung von *E.coli* Proteinextrakten

Lysis-Puffer:

20mM Tris-HCl pH7,5 100mM KCl 1mM DTT 10% Glycerin 1mM PMSF

Die Zellextrakte für DNA-Bindeversuche wurden wie folgt herhestellt. Die Kulturen wurden in 200ml LB Medium bis zu einer OD₆₀₀=0,4 angewachsen und dann bei Bedarf für 1h mit 1mM IPTG induziert. Die Kulturen wurden auf Eis geerntet und 15min bei 4°C mit 5000U/min abzentrifugiert. Die Zellen wurden mit 50ml eiskalter Mg-Saline (20mM MgSO₄, 0,85% NaCl) gewaschen und anschließend in 2ml Lysis-Puffer augenommen. Der Zellaufschluss erfolgte mit Ultraschall (10 Impulse mit 30%, Energielevel 5, 3-6 Wiederholungen). Zur Abtrennung von Zelltrümmern wurde das Lysat für 30min bei 4°C und 20000U/min in einer Ultrazentrifuge zentrifugiert. Der Überstand wurde aliquotiert und bei -80°C bis zur weiteren Verwendung aufbewahrt.

14. Aufreinigung von LeuO-His₆

Elutionspuffer: 20mM Natriumphosphat pH7,4 0,5M NaCl 0-500mM Imidazol

11 LB Medium wurde mit S541 / pKEAP21 angeimpft. Bei einer OD₆₀₀ von 0,3 wurde mit 1mM IPTG induziert. Nach 2h wurde aus der Kultur 2ml Zellextrakt hergestellt (siehe Herstellung von E.coli Zellextrakten). Der Zellextrakt wurde mit 0,5ml/min auf eine HisTrap HP 1ml Säule von GE Healthcare geladen und durch einem Stufengradienten mit 1ml/min eluiert. Dazu wurden die Konzentrationen 0mM, 50mM, 100mM, 200mM und 500mM Imidazol verwendet. Das Elutionsvolumen für jede Imidazolkonzentration betrug 10ml, welche in Fraktionen von je 1ml gesammelt wurden. Die Fraktionen 2-4 der Elutionsstufe 200mM Imidazol enthielten LeuO-His₆ und wurden vereint. Elution von LeuO-His₆ erfolgte mit Elutionspuffer 20mM Natriumphosphat pH7,4, 0,5M NaCl, 200mM Imidazol. Die Konzentration des gereinigten Proteins wurde mit dem Quick Start Bradford Protein Assay von Bio-Rad bestimmt und betrug 250 μ g/ml. Glycerin wurde zu einer Konzentration von 15% hinzugefügt und das gereinigte Protein bei -80°C aufbewahrt. Der Lagerpuffer betrug 20mM Natriumphosphat pH7,4, 0,5M MaCl, 200mM Imidazol, 15%Glycerin.

15. Electrophoretic Mobility Shift Assays (EMSAs)

2X Bindepuffer:	40mM Tris-HCl pH7,5
	200mM KCI
	2mM DTT
	20% Glycerin

0,5xTBE (11): 5,4g Tris Base 2,75g Borsäure 2ml 0,5M EDTA pH8,0

Für Gel-Shift-Experimente wurden DNA-Fragmente durch PCR amplifiziert und gelgereinigt (Qiagen-Kit). Etwa 5pmol Fragment wurden mit T4 Polynukleotidkinase (Fermentas) in der Gegenwart von Adenosin 5'[γ32P]-triphosphat (5000Ci/mmol) 5' endmarkiert. Ungebundene Nukleotide wurden mit einer NICK-Sephadex G50-Säule (GE Healthcare) entfernt. Für die Bindestudien wurden verschiedene Mengen Zellextrakt bzw. gereinigte Proteine mit 3fmol markierter DNA, 500ng Hering-Sperma DNA als Kompetitor in 1x Bindepuffer für 30min bei 15°C inkubiert. Das Reaktionsvolumen betrug 10μl. Der gesamte Ansatz wurde auf ein 5%iges natives Polyacrylamidgel (Acrylamid:Bisacrylamid, 29,2:0,8, 0,5 x TBE) aufgetragen und für 2h mit 150V

bei 4°C in 0,5x TBE aufgetrennt. Die Gele wurden anschließend für 1h getrocknet und mit Röntgenfilmen autoradiographisch untersucht.

16. Western Blot

Towbin-Puffer:	25mM 192mM 0,1% 15%	Tris Glycin SDS Methanol pH8,3
TBS:	10mM 150mM	Tris pH7,6 NaCl

Proteingele wurden mit einer Semi-dry Transfer Unit TE70 (Amersham Biosciences) auf PVDF-Membran (Amersham Biosciences) übertragen. Auf 3 in Towbin-Puffer getränkte Blotpapiere (Amersham Biosciences) in Membrangröße wurde die durch Methanol aktivierte und in Towbin-Buffer equilibrierte PVDF-Membran positioniert. Auf diese wurde das ebenfalls in Towbin-Puffer inkubierte Polyacryalmidgel platziert, gefolgt von 3 weiteren Lagen Towbin-getränktes Blotpapier. Der Transfer erfolgte für eine Stunde bei 50V und einer Stromstärke von 0,8mA/cm² Gelgröße.

Detektion von HA-markierten Proteinen

Nach abgeschlossenem Transfer wurde wurde die Membran 1h in 30ml TBS + 3% Blotting Grade Blocker (Bio-Rad) geblockt. Anschließend erfolgte die Inkubation mit 1µg primärem anti-HA-Antikörper aus Ratte (Roche) in 10ml TBS + 3% Blotting Grade Blocker. Nach 3x 20min Waschen mit TBS + 0,1% Tween20 folgte die Inkubation mit dem zweiten Antikörper Alexa Fluor 680 goat anti-rat (Invitrogen), 5µl in 10ml TBS + 3% Blotting Grade Blocker. Die Detektion erfolgte nach weiteren 3 Waschschritten in TBS + 0,1% Tween20 mit dem Odyssey-Infrared-Imaging-System (LI-COR Biosciences).

Detektion von His₆-markierten Proteinen

Nach abgeschlossenem Transfer wurde wurde die Membran 15min in 30ml TBS + 3% Blotting Grade Blocker (Bio-Rad) geblockt. Anschließend erfolgte die Inkubation mit 4µg primärem anti-His₆-Antikörper aus Maus (Roche) in 10ml TBS + 0,3% Blotting Grade Blocker. Nach 3x 20min Waschen mit TBS folgte die Inkubation mit dem zweiten Antikörper Alexa Fluor 680 rabbit anti-mouse (Invitrogen), 5µl in 10ml TBS + 0,3% Blotting Grade Blocker. Die Detektion erfolgte nach weiteren 3 Waschschritten in TBS mit dem Odyssey-System.

VI. Literatur

Reference List

Amit,R., Oppenheim,A.B., and Stavans,J. (2003). Increased Bending Rigidity of Single DNA Molecules by H-NS, a Temperature and Osmolarity Sensor. Biophys. J. *84*, 2467-2473.

Ausubel, Frederick M., Brent, Roger, Kingston, Robert E., Moore, David D., Seidman, J. G., Smith, John A., and Struhl, Kevin. Current Protocols in Molecular Biology. 2005. John Wiley & Sons, Inc. Ref Type: Serial (Book,Monograph)

Azam, T.A., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999). Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid. J. Bacteriol. *181*, 6361-6370.

Badaut, C., Williams, R., Arluison, V., Bouffartigues, E., Robert, B., Buc, H., and Rimsky, S. (2002). The Degree of Oligomerization of the H-NS Nucleoid Structuring Protein Is Related to Specific Binding to DNA. Journal of Biological Chemistry *277*, 41657-41666.

Beloin,C. and Dorman,C.J. (2003). An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol *47*, 825-838.

Bertin, P., Hommais, F., Krin, E., Soutourina, O., Tendeng, C., Derzelle, S., and Danchin, A. (2001). H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. Biochimie *83*, 235-241.

Caramel,A. and Schnetz,K. (1998). Lac and Lambda repressor relieve silencing of the *Escherichia coli bgl* promoter. Activation by alteration of a repressing nucleoprotein complex. J. Mol. Biol. *284*, 875-883.

Caramel, A. and Schnetz, K. (2000). Antagonistic control of the *E. coli bgl* promoter by FIS and CAP *in vitro*. Mol. Microbiol. *36*, 85-92.

Carballes, F., Bertrand, C., Bouche, J.P., and Cam, K. (1999). Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC-rcsB. Mol. Microbiol. *34*, 442-450.

Chen,C.C., Chou,M.Y., Huang,C.H., Majumder,A., and Wu,H.Y. (2005a). A cis-spreading nucleoprotein filament is responsible for the gene silencing activity found in the promoter relay mechanism. J. Biol. Chem. *280*, 5101-5112.

Chen,C.C., Ghole,M., Majumder,A., Wang,Z., Chandana,S., and Wu,H.Y. (2003). LeuO-mediated Transcriptional Derepression. Journal of Biological Chemistry *278*, 38094-38103.

Chen,S., Iannolo,M., and Calvo,J.M. (2005b). Cooperative Binding of the Leucine-Responsive Regulatory Protein (Lrp) to DNA. J. Mol. Biol. *345*, 251-264.

Chun,K.T., Edenberg,H.J., Kelley,M.R., and Goebl,M.G. (1997). Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast *13*, 233-240.

Coligan, John E., Dunn, Ben M., Hidde L.Ploegh, Speicher, David W., and Wingfield, Paul T. Current Protocols in Protein Science. 10.1002/0471140864.psprefs24. 2005. John Wiley & Sons, Inc.

Ref Type: Serial (Book, Monograph)

Dame, R.T., Wyman, C., and Goosen, N. (2001). Structural basis for preferential binding of H-NS to curved DNA. Biochimie *83*, 231-234.

Datsenko,K.A. and Wanner,B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A *97*, 6640-6645.

Diederich, L., Rasmussen, L.J., and Messer, W. (1992). New cloning vectors for integration into the lambda attachment site *attB* of the *Escherichia coli* chromosome. Plasmid *28*, 14-24.

Dole, S., Klingen, Y., Nagarajavel, V., and Schnetz, K. (2004a). The protease Lon and the RNAbinding protein Hfq reduce silencing of the *E.coli bgl* operon by H-NS. J. Bacteriol. *186*, 2708-2716.

Dole,S., Kühn,S., and Schnetz,K. (2002). Post-transcriptional enhancement of *Escherichia coli bgl* operon silencing by limitation of BgIG-mediated antitermination at low transcription rates. Molecular Microbiol. *43*, 217-226.

Dole,S., Nagarajavel,V., and Schnetz,K. (2004b). The histone-like nucleoid structuring protein H-NS represses the *Escherichia coli bgl* operon downstream of the promoter. Mol Microbiol *52*, 589-600.

Dorman, C.J. (2004). H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol 2, 391-400.

El Kazzaz,W., Morita,T., Tagami,H., Inada,T., and Aiba,H. (2004). Metabolic block at early stages of the glycolytic pathway activates the Rcs phosphorelay system via increased synthesis of dTDP-glucose in *Escherichia coli*. Mol. Microbiol. *51*, 1117-1128.

Falconi,M., Gualtieri,M.T., La,T.A., Losso,M.A., and Pon,C.L. (1988). Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15-kD Escherichia coli DNA binding protein H-NS. Mol. Microbiol. *2*, 323-329.

Fang,M., Majumder,A., Tsai,K.J., and Wu,H.Y. (2000). ppGpp-dependent leuO expression in bacteria under stress. Biochem. Biophys. Res. Commun. *276*, 64-70.

Fang,M. and Wu,H.Y. (1998a). Suppression of leu-500 mutation in topA+ Salmonella typhimurium strains. The promoter relay at work. J. Biol. Chem. *273*, 29929-29934.

Fang,M. and Wu,H.-Y. (1998b). A promoter relay mechanism for sequential gene activation. J. Bacteriol. *180*, 626-633.

Ferrieres,L. and Clarke,D.J. (2003). The RcsC sensor kinase is required for normal biofilm formation in <i>Escherichia coli</i>K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. *50*, 1665-1682.

Forsman,K., Sondén,B., Göransson,M., and Uhlin,B.E. (1992). Antirepression function in Escherichia coli for the cAMP-cAMP receptor protein transcriptional activator. Proc. Natl. Acad. Sci. U. S. A. *89*, 9880-9884.

Fraenkel,D.G. and Levisohn,S.R. (1967). Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J. Bacteriol. *93*, 1571-1578.

Francez-Charlot, A., Laugel, B., Van, G.A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M.P., Gutierrez, C., and Cam, K. (2003). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol. Microbiol. *49*, 823-832.

Francez-Charlot, A., Castanie-Cornet, M.P., Gutierrez, C., and Cam, K. (2005). Osmotic Regulation of the Escherichia coli bdm (Biofilm-Dependent Modulation) Gene by the RcsCDB His-Asp Phosphorelay. The Journal of Bacteriology *187*, 3873-3877.

Giel,M., Desnoyer,M., and Lopilato,J. (1996). A mutation in a new gene, *bglJ*, activates the *bgl* operon in *Escherichia coli* K-12. Genetics *143*, 627-635.

Gottesman, S. and Stout, V. (1991). Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol. Microbiol. *5*, 1599-1606.

Gottesman, S., Trisler, P., and Torres-Cabassa, A. (1985). Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: characterization of three regulatory genes. J. Bacteriol. *162*, 1111-1119.

Gupte,G., Woodward,C., and Stout,V. (1997). Isolation and characterization of rcsB mutations that affect colanic acid capsule synthesis in Escherichia coli K-12. J. Bacteriol. *179*, 4328-4335.

Haack,K.R., Robinson,C.L., Miller,K.J., Fowlkes,J.W., and Mellies,J.L. (2003). Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect. Immun. *71*, 384-392.

Hagiwara,D., Sugiura,M., Oshima,T., Mori,H., Aiba,H., Yamashino,T., and Mizuno,T. (2003). Genome-wide analyses revealing a signaling network of the RcsC-YojN-RcsB phosphorelay system in Escherichia coli. J Bacteriol. *185*, 5735-5746.

Higgins,C.F., Dorman,C.J., Stirling,D.A., Waddell,L., Booth,I.R., May,G., and Bremer,E. (1988). A physiological role for DNA supercoiling in the osmotic regulation of gene expression in *S.typhimurium* and *E.coli*. Cell *52*, 569-584.

Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le Caer, J.P., Danchin, A., and Bertin, P. (2001). Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol. Microbiol. *40*, 20-36.

Jordi,B.J.A.M., Dagberg,B., de Haan,L.A.M., Hamers,A.M., van der Zeijst,B.A.M., Gaastra,W., and Uhlin,B.E. (1992). The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (H1) in the CFA/I fimbrial operon of *Escherichia coli*. EMBO J. *11*, 2627-2632.

Klauck, E., Bohringer, J., and Hengge-Aronis, R. (1997). The LysR-like regulator LeuO in Escherichia coli is involved in the translational regulation of rpoS by affecting the expression of the small regulatory DsrA-RNA. Molecular Microbiol. *25*, 559-569.

Lange,R., Barth,M., and Hengge-Aronis,R. (1993). Complex transcriptional control of the sigma sdependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J. Bacteriol. *175*, 7910-7917.

Lopilato, J. and Wright, A. (1990). Mechanisms of activation of the cryptic *bgl* operon of *Escherichia coli* K-12. In The bacterial chromosome, K.Drlica and M.Riley, eds. (Washington, D.C.: American Society for Microbiology), pp. 435-444.

Luijsterburg,M.S., Noom,M.C., Wuite,G.J., and Dame,R.T. (2006). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J. Struct. Biol. *156*, 262-272.

Madhusudan,S., Paukner,A., Klingen,Y., and Schnetz,K. (2005). Independent regulation of HNS mediated silencing of the *bgl* operon at two levels: upstream by BgIJ and LeuO and downstream by DnaKJ. Microbiology *151*, 3349-3359.

Majdalani,N. and Gottesman,S. (2005). The Rcs Phosphorelay: A Complex Signal Transduction System. Annu. Rev. Microbiol.

Majdalani,N., Heck,M., Stout,V., and Gottesman,S. (2005). Role of RcsF in Signaling to the Rcs Phosphorelay Pathway in Escherichia coli. The Journal of Bacteriology *187*, 6770-6778.

Majumder, A., Fang, M., Tsai, K.J., Ueguchi, C., Mizuno, T., and Wu, H.Y. (2001). LeuO expression in response to starvation for branched-chain amino acids. J. Biol. Chem. 276, 19046-19051.

Miller, J.H. (1972). Experiments in Molecular Genetics. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).

Miller, J.H. (1992). A short course in bacterial genetics. A laboratory manual and handbook for *Escherichia coli* and related bacteria. Cold Spring Harbor Laboratory Press).

Mukerji,M. and Mahadevan,S. (1997). Characterization of the negative elements involved in silencing the *bgl* operon of *Escherichia coli*: possible roles for DNA gyrase, H-NS, and CRP-cAMP in regulation. Molecular Microbiol. *24*, 617-627.

Murphree, D., Froehlich, B., and Scott, J.R. (1997). Transcriptional control of genes encoding CS1 pili: negative regulation by a silencer and positive regulation by Rns. J. Bacteriol. *179*, 5736-5743.

Newman, E.B. and Lin, R. (1995). Leucine-responsive regulatory protein: a global regulator of gene expression in *E.coli*. Annu. Rev. Microbiol. *49*, 747-775.

Parker, C.T., Kloser, A.W., Schnaitman, C.A., Stein, M.A., Gottesman, S., and Gibson, B.W. (1992). Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J. Bacteriol. *174*, 2525-2538.

Pul,U., Wurm,R., Lux,B., Meltzer,M., Menzel,A., and Wagner,R. (2005). LRP and H-NS - cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol. Microbiol. *58*, 864-876.

Repoila, F. and Gottesman, S. (2003). Temperature Sensing by the dsrA Promoter. The Journal of Bacteriology *185*, 6609-6614.

Reynolds, A.E., Felton, J., and Wright, A. (1981). Insertion of DNA activates the cryptic *bgl* operon of *E. coli* K12. Nature 293, 625-629.

Reynolds,A.E., Mahadevan,S., LeGrice,S.F.J., and Wright,A. (1986). Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site. J. Mol. Biol. *191*, 85-95.

Rimsky,S., Zuber,F., Buckle,M., and Buc,H. (2001). A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol *42*, 1311-1323.

Ruiz, N. and Silhavy, T.J. (2005). Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr. Opin. Microbiol. *8*, 122-126.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).

Schnetz,K. (1995). Silencing of *Escherichia coli bgl* promoter by flanking sequence elements. EMBO J. *14*, 2545-2550.

Schnetz,K. and Rak,B. (1992). IS5: a mobile enhancer of transcription in *Escherichia coli*. Proc. Natl. Acad. Sci. U. S. A. *89*, 1244-1248.

Schnetz,K. and Wang,J.C. (1996). Silencing of *Escherichia coli bgl* promoter: Effects of template supercoiling and cell extracts on promoter activity *in vitro*. Nucleic. Acids. Res. *24*, 2422-2429.

Shi,X. and Bennett,G.N. (1995). Effects of multicopy LeuO in the expression of the Acid-inducible lysine dacarboxylase gene in *Escherichia coli*. J. Bacteriol. *177*, 810-814.

Smyth,C.P., Lundback,T., Renzoni,D., Siligardi,G., Beavil,R., Layton,M., Sidebotham,J.M., Hinton,J.C., Driscoll,P.C., Higgins,C.F., and Ladbury,J.E. (2000). Oligomerization of the chromatin-structuring protein H-NS. Mol. Microbiol. *36*, 962-972.

Stout, V., Torres-Cabassa, A., Maurizi, M.R., Gutnick, D., and Gottesman, S. (1991). RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J. Bacteriol. *173*, 1738-1747.

Sturny, R., Cam, K., Gutierrez, C., and Conter, A. (2003). NhaR and RcsB Independently Regulate the osmCp1 Promoter of Escherichia coli at Overlapping Regulatory Sites. The Journal of Bacteriology *185*, 4298-4304.

Takeda,S., Fujisawa,Y., Matsubara,M., Aiba,H., and Mizuno,T. (2001). A novel feature of the multistep phosphorelay in *Escherichia coli*: a revised model of the RcsC \rightarrow YojN \rightarrow RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol. *40*, 440-450.

Tendeng, C. and Bertin, P.N. (2003). H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends. Microbiol. *11*, 511-518.

Tobe,T., Yoshikawa,M., Mizuno,T., and Sasakawa,C. (1993). Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J. Bacteriol. *175*, 6142-6149.

Ueguchi, C., Ohta, T., Seto, C., Suzuki, T., and Mizuno, T. (1998). The *leuO* gene-product has a latent ability to relieve the *bgl* silencing in *Escherichia coli*. J. Bacteriol. *180*, 190-193.

Ussery, D.W., Hinton, J.C.D., Jordi, B.J.A.M., Granum, P.E., Seirafi, A., Stephen, R.J., Tupper, A.E., Berridge, G., Sidebotham, J.M., and Higgins, C.F. (1994). The chromatin-associated protein H-NS. Biochimie *76*, 968-980.

Vianney, A., Jubelin, G., Renault, S., Dorel, C., Lejeune, P., and Lazzaroni, J.C. (2005). Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology *151*, 2487-2497.

Wang,Q. and Calvo,J.M. (1993). Lrp, a global regulatory protein of *Escherichia coli*, binds cooperatively to multiple sites and activates transcription of *ilvIH*. J. Mol. Biol. 229, 306-318.

Weber, R.F. and Silverman, P.M. (1988). The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J. Mol. Biol. *203*, 467-478.

Wehland,M. and Bernhard,F. (2000). The RcsAB box. Characterization of a new operator essential for the regulation of exopolysaccharide biosynthesis in enteric bacteria. J. Biol. Chem. 275, 7013-7020.

Westermark, M., Oscarsson, J., Mizunoe, Y., Urbonaviciene, J., and Uhlin, B.E. (2000). Silencing and activation of ClyA cytotoxin expression in Escherichia coli. J. Bacteriol. *182*, 6347-6357.

Wilson, G.G., Young, K.Y.K., Edlin, G.J., and Konigsberg, W. (1979). High-frequency generalised transduction by bacteriophage T4. Nature *280*, 80-82.

Wolf, T., Janzen, W., Blum, C., and Schnetz, K. (2006). Differential dependence of StpA on H-NS in auto-regulation of *stpA* and in regulation of *bgl*. J Bacteriol. *188*, 6728-6738.

Yu,R.R. and Dirita,V.J. (2002). Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol. Microbiol. *43*, 119-134.

Zhang,A., Rimsky,S., Reaban,M.E., Buc,H., and Belfort,M. (1996). *Escherichia coli* protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acids dynamics. EMBO J. *15*, 1340-1349.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch an einer anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Karin Schnetz betreut worden.

Teilpublikation:

Madhusudan,S., Paukner,A., Klingen,Y., and Schnetz,K. (2005). Independent regulation of HNS mediated silencing of the *bgl* operon at two levels: upstream by BglJ and LeuO and downstream by DnaKJ. Microbiology *151*, 3349-3359.

Köln, Mai 2007

Andreas Paukner

Lebenslauf

Name	Andreas Paukner
Adresse	Max-Pechstein-Str. 4, 51375 Leverkusen
Telefon	0221 / 4702550
Email	paukner@web.de
Geburtsdatum, -ort	10.10.1976, Homberg (Efze)
Familienstand	ledig
08/1989 – 06/1996	Theodor-Heuss-Gymnasium, Homberg,
	Abschluss: Abitur
09/1996 - 06/1997	Grundwehrdienst, Fernmelderegiment 320,
	Frankenberg, Eder
10/1997 – 09/2002	Studium der Biologie, Philipps-Universität Marburg
	Abschluss: Diplom
	Titel der Diplomarbeit: "Untersuchungen an
	Regulationselementen der selenfreiern [NiFe]-
	Hydrogenasen aus Methanococcus voltae"
seit 10/2002	Wissenschaftlicher Angestellter, AG Schnetz,
	Institut für Genetik, Universität zu Köln
	angestrebter Abschluss: Promotion
	Titel der Dissertation: "Ein Regulationsnetzwerk aus
	H-NS und den Antirepressoren BglJ und LeuO"

Köln, 14.05.2007