Identification and investigation of osmostress-induced genes

in Dictyostelium discoideum

INAUGURAL-DISSERTATION

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Jianbo Na

aus

Kunming, Yunnan, China

Köln, 2007

Referees/Berichterstatter

Prof. Dr. Angelika A. Noegel Prof. Dr. Diethard Tautz

Date of oral examination: July 2007 Tag der mündlichen Prüfung

The present research work was carried out under the supervision of Prof. Dr. Angelika A. Noegel and PD. Dr. Ludwig Eichinger in the Institute of Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany, from April 2004 to January 2007.

Diese Arbeit wurde von April 2004 bis Januar 2007 am Institut für Biochemie I der Medizinischen Fakultät der Universität zu Köln unter der Leitung von Prof. Dr. Angelika A. Noegel und PD. Dr. Ludwig Eichinger durchgeführt.

Acknowledgements

First of all, I would like to express my gratitude to Prof. Dr. Noegel for giving me an opportunity to work in the Institute of Biochemistry I. Her helpful suggestions and encouragement provided a perfect working environment for us.

I would like to specially acknowledge Dr. Ludwig Eichinger, our group leader and my mentor, for the excellent advice with my work, plentiful encouragement and motivation and friendly criticisms.

I would also like to thank Dr. Patrick Farbrother for helping me with my work at the very beginning when I just joined the lab and for the excellent software he wrote. Also thanks Dr. Budi Tunggal for his maintaining of the database and software.

A special thanks to Prof. Dr. Jeffrey G. Williams for providing the STATc knockout strain.

I would then like to convey my thanks to the lab mates: Marcel and Sachin for their programming and data analysis, Adrian for his involvement in my project, Frank and Rui for their help for some experiments, and Tanja for her very friendly support and helpful discussion.

I would like to thank Rosemarie Blau-Wasser and Dr. Franciso Rivero, who helped me for confocal Microscopy. Thanks to Maria for her technique support and to Berthold for providing antibodies.

I would also like to thank Dörte Püsche, our secretary who made our life in Köln easy with her excellent administrative skills. A very sincere thanks to Brigitte (secretary, graduate school) for being so kind and offer help patiently anytime I need.

My sincere thanks to Akis, Anne, Charles, Deen, Georgia, Hua, Jessica, Mary, Martina, Ria, Subhanjan, Soraya, Vivek, Wenshu and Yogi for the friendly environment they offer, especially to Eva-Maria for her nice translation and help.

I am indebted to my lifetime friends Eric, Arnd and Minh with whom the life in Köln is much easier.

A special thanks to my family in China. I deeply acknowledge their support, patience and sacrifices.

Finally I owe my sincere thanks to the Graduate School in Genetics and Functional Genomics, University of Köln for offering me the fellowship for my PhD studies.

Jianbo Na 27th April 2007 Cologne, Germany

Table of contents

1 Introduction

1.1	Dictyostelium discoideum as a model organism	1
1.2	DNA-Microarrays	2
1.3	Osmotic stress response	4
1.3.1	The osmotic stress response in Saccharomyces cerevisiae	5
1.3.2	The osmotic stress response in Escherichia coli	7
1.3.3	The osmotic stress response in <i>D. discoideum</i>	8
1.4	The aim of the work	12

2 Material and Methods

2.1	Material	13
2.1.1	Lab material	13
2.1.2	Chemicals	14
2.1.3	Kits	15
2.1.4	Radioactive chemicals	15
2.1.5	Enzymes, antibodies, substrates and antibiotics	15
2.1.6	Oligonucleotides	16
2.1.7	Media and Buffers	17
2.1.8	Biological materials	18
2.1.9	Computer program	18

Methods	18
Cell biological methods	18
Growth of <i>D. discoideum</i>	18
2 Hyperosmotic shock of <i>D. discoideum</i>	19
B Determination of cell survival	19
Determination of cell volume	19
5 Indirect immunofluorescence microscopy study of <i>Dictyostelium</i>	19
5 Transformation of <i>Dictyostelium</i> cells by electroporation	20
Biochemical methods	21
Preparation of total protein from Dictyostelium	21
2 SDS-polyacrylamide gel electrophoresis	21
3 Western blotting	21
Molecular biological methods	22
Isolation of genomic DNA from Dictyostelium cells	22
2 Isolation of total RNA from <i>Dictyostelium</i> cells	22
8 Northern blotting	22
	 Methods Cell biological methods Growth of <i>D. discoideum</i> Hyperosmotic shock of <i>D. discoideum</i> Determination of cell survival Determination of cell volume Indirect immunofluorescence microscopy study of <i>Dictyostelium</i> Transformation of <i>Dictyostelium</i> cells by electroporation Biochemical methods Preparation of total protein from <i>Dictyostelium</i> SDS-polyacrylamide gel electrophoresis Western blotting Molecular biological methods Isolation of genomic DNA from <i>Dictyostelium</i> cells Isolation of total RNA from <i>Dictyostelium</i> cells Northern blotting

2.2.3.4	Southern blotting	22
2.2.3.5	Generation of cDNA	22
2.2.3.6	Real time PCR	23
2.2.3.7	Construction of knockout vector	23
2.2.4 Mi	croarray methods	23
2.2.4.1	Target preparation	23
2.2.4.2	Microarray hybridization and scanning	24

3.1 3.1.1 3.1.2	High osmolarity triggers a variety of responses in <i>Dictyostelium</i> cells Tyrosine phosphorylation of actin Redistribution of the F-actin cytoskeleton in response to	26 26
0	hyperosmotic shock	26
3.1.3	Decrease of cell volume	27
3.1.4	Decrease of cell viability	28
3.2	Hyperosmotic shock of Dictyostelium cells results in dramatic	
	transcriptional changes	29
3.2.1	I reatment of <i>Dictyostelium</i> cells with 200 mM sorbitol for 1 hour	
<u> </u>	leads to dramatic transcriptional changes	29
3.2.2	Validation of microarray results with real time PCR and northern biot	31
3.2.3	denoise denois	22
324	Differentially regulated genes are enriched in distinct	33
5.2.7	functional categories	36
324	1 Annotation of genes in cluster 1	36
3.2.4.	2 Annotation of genes in cluster 2	38
3.2.4.	3 Annotation of genes in cluster 3	41
3.2.4.	4 Annotation of genes in cluster 4	46
3.2.5	Differential regulation of major metabolic pathway genes	51
3.2.5.	1 Carbohydrate metabolism	53
3.2.5.	2 Amino acid metabolism	54
3.2.5.	3 Purine and pyrimidine metabolism	55
3.3	Characterization of the early transcriptional response genes	56
3.3.1	SrfA is not involved in the transcriptional response to	
	hyperosmotic stress	57
3.3.2	STATc is a key regulator of the transcriptional response to	
	hyperosmotic stress	57
3.3.3	I wo clusters define SIAI c-regulated genes	61
3.4	Generation of knock-out mutants of putative STATc protein kinase	65
3.4.1	Possible Janus kinases of STATC in <i>Dictyostelium</i>	65
3.4.2	Domain architecture of JAK1, PkyA and DDB0231199	66

3.4.3	PkyA and DDB0231199 gene replacement by homologous recombination	67
3.4.4	Confirmation of homologous recombination by PCR and Southern blot analysis	68
4	Discussion	
4.1	Reliability of Dictyostelium cDNA microarray	71
4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.3 4.4	A variety of cellular responses in <i>Dictyostelium</i> cells indicates a complex defence mechanism to osmotic condition Cytoskeleton Metabolism 1 Do <i>Dictyostelium</i> cells synthesize a compatible osmolyte? Antioxidant system Contractile vacuole Development and osmostress response STATc is a key regulator of the transcriptional response to hyperosmotic stress Signaling pathways in response to hypertonicity	72 72 73 73 76 77 77 77 78 81
5	Bibliography	83
6	Supplement	93
7	Summary (in English/German)	
8	Erklärung	

9 Curriculum Vitae (in English/German)

1.1 Dictyostelium discoideum as a model organism

The social amoeba *D. discoideum* lives in deciduous forest soil and feeds on bacteria. During its life cycle, *D. discoideum* switches between unicellularity and multicellularity. During the unicellular phase, where cells are highly motile, *D. discoideum* is an excellent model for studying fundamental cellular processes, such as cytokinesis, phagocytosis, chemotaxis, and signal transduction (Noegel and Schleicher, 2000; Van Haastert and Devreotes, 2004). Upon depletion of the food source, *D. discoideum* cells signal to each other by cyclic AMP (cAMP) pulses. Signal sensing and signal response lead to streams of migrating cells, which then form an aggregate consisting of up to 100,000 cells. The aggregate further develops to a tipped mound, which either becomes a migrating slug or goes directly to culmination, the formation of a fruiting body (Chisholm and Firtel, 2004) (Figure 1). Therefore, *D. discoideum* is also a good model organism to study aspects of development such as cell sorting, pattern formation, and cell-type differentiation.

Figure 1. D. discoideum morphogenesis (Chisholm and Firtel, 2004).

The genome of *Dictyostelium* has a size of 34 Mb which are distributed over 6 chromosomes and encode approximately 12,500 genes. A proteome-based phylogenetic analysis placed *D. discoideum* prior to the split of metazoa and fungi but after the divergence of the plant kingdom (Eichinger et al., 2005) (Figure 2). It is therefore likely that research results obtained with *Dictyostelium* are also relevant to higher organisms, in particular metazoan. The *Dictyostelium* genome (Eichinger et al., 2005) and cDNA projects (Urushihara et al., 2004) paved the way for functional study of *Dictyostelium* at a genome wide scale.

1.2 DNA-Microarrays

The completion of the genomic sequences of many model organisms allows placing the emphasis on assigning functions to genes. One aspect of functional genomics is to determine the expression patterns of genes. Various methods are available for detecting and quantitating gene expression levels, including Northern blots (Alwine JC, 1977), S1 nuclease protection (Berk and Sharp, 1977), differential display (Liang and Pardee, 1992), sequencing of cDNA libraries (Adams et al., 1991; Okubo et

al., 1992), serial analysis of gene expression (SAGE) (Velculescu et al., 1995), and DNA microarrays (Schena et al., 1995). Most of these methods are either limited to a small scale, difficult to process or inefficient on a large scale. In contrast, DNA microarrays are meanwhile mature tools to investigate differential expression of thousands of genes in parallel (Schena et al., 1995; Schena et al., 1996).

DNA microarrays consist of an orderly arrangement of probes of cDNA, genomic DNA or synthesized oligonucleotides that represent individual genes of an organism (Schulze and Downward, 2001). DNA microarrays are widely used in large-scale DNA mapping (Poustka, 1986), sequencing (Cantor et al., 1992) and transcript-level analyses (Schena et al., 1995). Recently, this technology has spread into many areas by adapting the basic concept and combining it with other techniques (Hoheisel, 2006). Among them cDNA microarrays are the most commonly used, and were first described in 1995 (Schena et al., 1995). Partial ORFs or cDNAs are amplified by PCR, purified and spotted on a glass slide. mRNA from the test and the reference cells are reverse transcribed to cDNA, and labelled with different fluorescent dyes. The fluorescent targets are pooled and hybridized under stringent conditions to the probes on the microarray glass slide simultaneously. The laser excitation of the targets yields an emission of specific spectra, which is measured using a scanning confocal laser microscope. Monochrome images from the scanner are imported into software in which the images are pseudo-coloured and merged. The signal intensity of each spot from both channels is quantitated, thus allowing the determination of the relative amount of transcripts (Duggan et al.) (Figure 3).

Since cDNA microarrays represent most or even all genes of an organism, they can be used to identify differentially regulated genes in any given experimental condition and outline the complete transcriptome picture. A good example is the application of cDNA microarrays in the classification of predefined cancer subtypes at the molecular level (Alizadeh et al., 2000; Golub et al., 1999; Simon et al., 2003). Another example is the use of microarrays to better understand the host response upon infection with pathogens (Cohen et al., 2000; Dowd et al., 2004; Farbrother et al., 2006). Besides, microarrays are also ideally suited to study the stress response and are widely applied to different organisms (Baxter et al., 2007; Hohmann, 2002; Jamers et al., 2006; O'Rourke et al., 2002).

Figure 3. The principle of cDNA microarrays (Duggan et al., 1999).

1.3 Osmotic stress response

Virtually all cells, even individual cells in multi-cellular organisms, are subject to changes in the osmotic environment that are sometimes extremely rapid. In order to survive cells have to sense these changes and elicit an appropriate response that allows them to adapt. The response is complex and occurs in different phases. First, immediate cellular changes occur as a consequence of stress exposure, then defence processes are triggered and finally the cells adapt and resume proliferation.

Upon hyperosmotic shock, one of the major adaptive strategies of the cell is to synthesize and accumulate small organic solutes to maintain cell volume. These solutes are either amino acids and derivatives, polyols and sugars, methylamines, methylsulfonium compounds or urea. Except urea, they are often called 'compatible osmolytes', a term indicating lack of perturbing effects on cellular macromolecules and implying interchangeability. In contrast urea, the major organic osmolyte in marine elasmobranch fishes (ureosmotic animals), is a perturbing solute (Yancey, 2005). At the observed concentrations in these fishes and in mammalian kidneys (several hundred

millimolar) urea destabilizes many macromolecular structures and inhibits functions such as ligand binding. However, these animals have other osmolytes, mainly methylamines such as trimethylamine N-oxide (TMAO) and methylamines glycerophosphorylcholine (GPC), to counteract the deleterious effect of urea. Apparently, many organisms use mixtures of different osmolytes to counteract a hypertonic environment (Yancey, 2005).

1.3.1 The osmotic stress response in Saccharomyces cerevisiae

S. cerevisiae is the most commonly used system to study osmoadaptation mechanisms because of the industrial interest. Yeast cells respond to hyperosmotic conditions by a whole range of physiological changes. The cytoskeleton is reorganized, ion homeostasis is changed, metabolic processes are adapted, and the cell cycle is stopped (Hohmann, ; Posas et al., 2000; Rep et al., 2000).

A lot of work for the global gene expression analyses has been carried out in *S. cerevisiae*, which shed light on its comprehensive network of osmotic stress response. Some general conclusions can be drawn from these studies. i) The set of genes specific to hyperosmotic shock is rather small, but a large set of genes is differentially regulated under all environmental challenges, which is the general stress response. ii) Induction and repression of genes are important for *S. cerevisiae*, but the number of repressed genes is higher than that of induced genes. iii) The transcriptional response is transient and follows a distinct temporal pattern. iv) Cellular systems involved in the osmotic stress could be confirmed by the global gene expression analyses. However, expression changes may not necessarily reflect physiological changes. v) The number of functionally uncharacterized genes among those differentially regulated genes is remarkably high, about 50 to 60% (Hohmann, 2002).

An osmotic upshift causes a dramatic transcriptional response, affecting expression of about 10% of the yeast genes and the cells adapt to this adverse condition by synthesizing the compatible osmolyte glycerol (Causton et al., 2001; Gasch et al., 2000; Posas et al., 2000; Rep et al., 2000; Yale and Bohnert, 2001). In recent years it became clear that several parallel signaling pathways can get activated in response to changes in the environment and transmit the signal to the transcriptional machinery. One of the signaling pathways, the HOG (high osmolarity glycerol) signal transduction pathway, a MAPK (mitogen-activated protein kinase) pathway, plays a central role and

controls via different transcription factors the expression of more than 150 genes (Hohmann, 2002; O'Rourke et al., 2002) (Figure 4). It can be activated by either of two upstream pathways, the SHO1 and the SLN1 pathway, which converge on Pbs2, a MAPKK and scaffolding protein that brings together the other components of the MAPK cascade (de Nadal et al., 2002). SHO1 and SLN1 are putative yeast osmosensors and there is possibly a third one, Msb2 (Maeda et al., 1995; Maeda et al., 1994; O'Rourke and Herskowitz, 2002). Microarray analysis showed that Msb2 and SHO1 function in parallel and regulate identical gene sets in *hog*1 mutants (O'Rourke and Herskowitz, 2002). The downstream transcription factors Hot1 and Sko1 either induce or represse the expression of osmoresponse genes. Osmotic stress also leads to other cellular consequences, such as energy consumption, oxidative stress, amino acid starvation and cellular morphology changes. (Hohmann, 2002; Tsujimoto et al., 2000).

Figure 4. Osmoresponse HOG pathway in *S. cerevisiae*, adapted from (O'Rourke and Herskowitz, 2002) and modified.

1.3.2 The osmotic stress response in Escherichia coli

E. coli is another well-studied organism in the osmostress response realm. In an environment of elevated osmotic strength, *E. coli* accumulates K^+ and organic osmolytes, especially amino acids and their derivatives, from the environment (Epstein, 1986; Higgins et al., 1987; Strom et al., 1986). However, when growing in the absence of such organic osmolytes, it accumulates trehalose via endogenous biosynthesis and glutamate via suppression of glutamate catabolism (McLaggan et al., 1994). These organic or inorganic solutes have different importance for the osmoresponse. The accumulation of K⁺ is more rapid and quantitatively most important in the initial phase. Since a high intracellular concentration of K⁺ has negative effects on protein function and DNA-protein interactions, the accumulation of K⁺ is an inadequate strategy for coping with prolonged high osmolarity. Therefore other systems, e.g. trehalose synthesis and uptake of glycine betaine, are induced and contribute to the restoration of turgor at later times of hyperosmotic stress (Poolman and Glaasker, 1998; Wood, 1999; Wood, 2006) (Figure 5).

Figure 5. Osmoregulatory systems of E. coli (Wood, 2006). Initially Aquaporin (AqpZ) mediates transmembrane water flux, and K⁺ transporters (TrkA(G/H)/SapD and KdpFABC) mediate K^+ accumulation. A two-component regulatory system (KdpDE), composed of an integral membrane sensor kinase and a cytoplasmic response regulator, controls the transcription of the K⁺channel (KdpFABC) in response to K⁺ stress. supply and osmotic Suppression of glutamate catabolism leads to its accumulation as K⁺ counterion. Membrane transporters (ProP, ProU, BetT, and BetU) mediate the import of the organic solutes proline, ectoine, choline and betaines. The enzymes BetA and BetB then convert choline and betaines to glycine betaine. In addition, the compatible osmolyte trehalose is synthesized from UDP-glucose and glucose-6phosphate by the enzymes OtsA and OtsB.

1.3.3 The osmotic stress response in D. discoideum

In response to hypertonicity, *D. discoideum* cells shrink immediately, they round up and rearrange their cytoskeleton, which appears to play a key role in the initial protection of the organism from high osmolarity. Actin is tyrosine phosphorylated (Howard et al., 1993; Jungbluth et al., 1995) and myosin II is phosphorylated on three threonine residues in the tail region (Bosgraaf et al., 2002; Insall, 1996; Kuwayama et al., 1996; Roelofs and Van Haastert, 2002) (Figure 6).

Figure 6 Cytoskeletal reorganization of *D. discoideum* in response to hyperosmotic shock (Insall, 1996). (a) In a moving wild-type cell, actin is found in the cortex and pseudopodia, and myosin II is at the rear and in the front. (b) After osmotic shock, the cell shrinks to half its normal size; the actin is in the cortex and the myosin II in a layer beneath the cortex. (c) Immunofluorescence of an unshocked cell, and (d) a cell shocked with 300 mM glucose for 10 min; actin is visualized in red and myosin II in green.

Neither the signal transduction chain nor the responsible protein kinase for actin phosphorylation is known, however, there is evidence that the phosphotyrosine phosphatase PTP1 is somehow involved in the dephosphorylation reaction (Howard et al., 1993) and that the small GTPase Rap1 is also involved in the regulation of actin phosphorylation in response to hyperosmotic shock (Kang et al., 2002). Myosin II phosphorylation appears to be triggered by the induction of soluble guanylate cyclase

(sGC) which leads to a rise in cGMP levels and the activation of myosin II heavy chain kinase possibly via the cGMP binding protein GbpC (Bosgraaf et al., 2002; Kuwayama et al., 1996; Roelofs and Van Haastert, 2002). Recent evidence suggests that Rap1 is involved in the cGMP response presumably by activating sGC (Kang et al., 2002). Phosphorylated myosin II disassembles from myosin filaments followed by cellular relocalization and reassembly. This apparently strengthens the cell cortex and is crucial for cell survival, as myosin II knock-out mutants and cells expressing mutant forms of myosin II, wherein the three threenine residues in the tail region were substituted by alanine, showed a dramatically reduced survival rate in high osmolarity (Kuwayama et al., 1996). Changes in the subcellular distribution of cell cortex proteins in response to sorbitol were also seen in two-dimensional gel electrophoresis with cytoskeletal and membrane fractions (Zischka et al., 1999). Furthermore, an increased sensitivity to hypertonicity was observed in double mutants of α -actinin and filamin, in hisactophilin mutants and in LimC, LimD and LimC/D mutants, supporting the importance of the actin cytoskeleton for the cellular resistance to an adverse osmotic environment (Khurana et al., 2002; Pintsch et al., 2001; Rivero et al., 1996).

A parallel pathway appears to be mediated by the hybrid histidine kinase DokA via a rise in intracellular cAMP levels. DokA minus cells showed a reduced viability on exposure to high osmolarity and artificial elevation of the intracellular cAMP concentration by 8-bromo-cAMP rescued this defect (Ott et al., 2000; Schuster et al., 1996). It is believed that activation of DokA by serine phosphorylation negatively regulates the RdeA:RegA two-component system which controls intracellular cAMP levels (Oehme and Schuster, 2001; Ott et al., 2000; Thomason and Kay, 2000). *In vitro* evidence suggests that DokA acts as a phosphatase for RdeA (Ott et al., 2000).

Another very important pathway involved in the hyperosmotic shock appears to be under the control of STATc. STAT (signal transducer and activator of transcription) proteins act as latent transcription factors and contain three highly conserved domains: a DNA binding site, an SH2 domain and a tyrosine phosphorylation site (Bromberg and Chen, 2001). A canonical STAT signalling pathway encompasses three major components: the cytokine receptor which is activated by extracellular stimuli, the Janus kinase (JAK) associates with the receptor and is activated, the STAT protein which is tyrosine-phosphorylated by JAK. STAT then dimerises and translocates to the nucleus

where it binds to the promoter region of target genes (Aaronson and Horvath, 2003) (Figure 7).

Figure 7 The JAK-STAT Pathway (Aaronson and Horvath, 2003). The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is capable of transmitting information from extracellular polypeptide signals (cytokine) through transmembrane receptors, directly from the cytoplasm to target gene promoters in the nucleus (genes). SOCS genes are induced by cytokine signals and their protein products feedback to JAK kinases to suppress cytokine signaling. STATs are also regulated by serine phosphorylation in their C-terminal transcriptional activation domains, which maximizes the transcriptional capacity of the STATs. Protein tyrosine phosphatase (PTP) can dephosphorylate and inhibit JAK and STAT. Another inhibitor of STAT is Protein inhibitor of activated STATs (PIAS). This canonical pathway presents the major themes common to most systems that use JAK-STAT signalling.

In vertebrates the JAK/STAT signalling pathway is activated by a large number of cytokines and growth factors. These signals induce proliferation or cell fate determination and are crucial to the proper growth and development of mammalian tissues (Hou et al., 2002). Interestingly, in mammalian cells, Jak1, Jak2, and Tyk2 (also a member of Janus kinase family) are tyrosine-phosphorylated and activate STAT1 and/or STAT3 in response to osmotic shock (Gatsios et al., 1998).

Dictyostelium has four STAT members (STATa, b, c, d) in the genome, but only Dd-STATa and Dd-STATc have been studied in detail. Dd-STATa is activated by extracellular cAMP through the cAR1 (cAMP receptor 1) receptor during early development, binds to regulatory regions of target genes (for instance, the repressor element of ecmB), and thereby affects stalk cell differentiation (Kawata et al., 1997). Dd-STATc regulates the speed of early development and the timing of terminal differentiation. Developing *Dictyostelium* cells produce a chlorinated hexaphenone, DIF, which directs prestalk cell differentiation. In response to DIF STATc is activated by tyrosine phosphorylation, it dimerises, translocates to the nucleus and negatively regulates ecmA (a common marker used for prestalk cell differentiation) expression (Fukuzawa et al., 2001). Recent work showed that STATc, which is present in growing cells and throughout development, is also activated by osmotic stress (Araki et al., 2003). The link between STATc and the cAMP and cGMP signalling pathways is unclear. Although cGMP appears to be upstream of STATc, tyrosine phosphorylation of STATc was still observed in a Dictyostelium mutant wherein both known guanylate cyclases (GCA and sGC) were disrupted (Araki et al., 2003). In this mutant, guanylate cyclase activity falls below detectable levels. Furthermore, DokA and protein kinase A (PKA) do not act upstream of STATc and cGMP accumulates after hyperosmotic stress in the dokA mutant (Araki et al., 2003; Schuster et al., 1996).

As in other organisms, "omics" methods were also applied to study the osmostress response in *Dictyostelium*. However, the outcome is limited or even confusing. At the transcriptional level, only two genes (*rtoA* and *gapA*) were reported to be differentially regulated (Araki et al., 2003). However this result was based on a microarray that carried only 334 probes. At the translational level, hyperosmotic stress induced changes of the cytoskeleton and the crude membrane fraction but not of the whole-cell protein composition. It was also shown that the ubiquitination of cellular proteins was induced. In contrast to the general knowledge of hyperosmotic shock response in other organisms, it was claimed that *Dictyostelium* does not produce compatible osmolytes and does not undergo a regulatory volume increase (Zischka et al., 1999). To the contrary, Steck et al. demonstrated that the total intracellular amines increased with osmolarity, reaching values of 80 mM or more in media of >300 mOsM,

indicating the accumulation of intracellular free amino acids as compatible osmolytes (Steck et al., 1997).

1.4 The aim of the work

To date, the osmotic stress response has been intensively studied in many model organisms. The results yielded important information of the signaling pathways. However, only little information on the signal transduction pathways of *Dictyostelium* cells in response to this adverse condition was available. The comprehensive network of the regulators and the details of their actions, including the signals that activate them and the downstream targets they regulate, remained to be elucidated. Based on the evolutionary position of *Dictyostelium* we also reasoned that it could serve as a good model system to reveal additional signaling mechanisms that might be relevant to higher eukaryotes including human. It was therefore interesting to investigate the osmotic stress response in *D. discoideum* using the newly established DNA microarray platform in our lab. Using this tool, we attempted to address the following questions:

- What is the transcriptional response of *D. discoideum* cells to hypertonicity after a fixed time point and in a time course experiment?
- Which major biological processes are adapted by the cells?
- Can we infer metabolic changes based on the analysis of differentially regulated genes?
- Does the differential regulation of osmostress responsive genes give hints to the production of osmolytes?
- Which signalling pathways are involved in the osmostress response in *Dictyostelium*?

Details regarding the following procedures are not included in this section: Standard molecular biological techniques were carried out as described (Sambrook et al., 1989).

Instruments used were from the departmental facility.

2.1 Material

2.1.	1 Lab	material

Centrifuge tubes, 15 ml, 50 ml
Coverslip (glass)
Coverslip (glass), Ø12 mm
Gel drying frames
Hybridization tube
Microcentrifuge tube, 1.5 ml, 2.2 ml
Micropipette, 1-20 μl, 10-200 μl, 100-1,000 μl
Microcapillary, 100 μl
Micropipette tips
Nitrocellulose membrane, BA85
Parafilm
Pasteur pipette, 145 mm, 230 mm
PCR softtubes, 0.2 ml
Petri dish, 35 mm, 60 mm, 100 mm
Petri dish, 90mm
Plastic cuvette
Plastic pipettes (sterile)
Poly-L-Lysine slide
Microscope slide
Syringes (sterile), 1 ml
Sterile filter, 0.2 µm
UltraGAPS microarray slide

Greiner Roth Assistant Novex Hybaid Sarstedt Gilson BLAUBRAND[®] intraMARK Greiner Schleicher and Schuell American National Can™ Volac Biozym Falcon Greiner Eppendorf Greiner Sigma Menzel Amefa, Omnifix **Gelman Science** Corning

Whatman 3MM filter paper	Whatman
X-ray film, X-omat AR-5, 18 x 24 mm, 535 x 43 mm	Kodak
2.1.2 Chemicals	
1kb plus DNA ladder	Invitrogen
Agarose	Biozym
Boric acid	Merck
Bromophenol blue	Serva
BSA	Roth
Cyanin3 and Cyanin5	Amersham
DEPC	Sigma
DMSO	Merck
EDTA	Merck
Ethanol	Riedel-de Haen
Ethidium bromide	Sigma
Fish DNA	Roche
Formaldehyde	Sigma
Formaldehyde solution 37 %	Calbiochem
Formamide	Merck
Yeast extract	Oxoid
HEPES	Biomol
MOPS	Gerbu
Pepton	Oxoid
Phenol	Roth
Potassium dihydrogen phosphate	Merck
SDS	Serva
SeeBlue Pre-Stained Protein Standard	Invitrogen
Sodium acetate	Merck
Sodium azide	Merck
Sodium chloride	Fluka
Sodium bicarbonate	Merck
Sodium phosphate	Merck

Sodium hydroxide	Riedel-de Haen	
TEMED	Roth	
TRIS	Fluka, Riedel-de-Haen	
Tween 20	Roth	
2.1.3 Kits		
FairPlay Microarray Labeling Kit	Stratagene	
RNeasy Mini kit	Qiagen	
RNeasy Midi kit	Qiagen	
SpotReport-10 Array Validation System	Stratagene	
Quantitect [™] SYBR [®] green real time PCR kit	Qiagen	
QIAprep Spin Miniprep kit	Qiagen	
QIAGEN Plasmid Midi kit	Qiagen	
QIAquick Gel Extraction kit	Qiagen	
QIAquick PCR Purification kit	Qiagen	
2.1.4 Radioactive chemicals		
α - ³² P-deoxyadenosine triphosphate, (10 mCi/ml)	Amersham	
2.1.5 Enzymes, antibodies, substrates and antib	piotics	
2.1.5.1 Enzymes for molecular biology		
StrataScript [®] Reverse Transcriptase	Stratagene	
RNasin [®] Ribonuclease Inhibitor	Promega	
Taq polymerase	Roche	
Klenow fragment	Roche	
Restriction endonucleases	Amersham	
	New England Biolabs	
T4 DNA Ligase	Promega	
2.1.5.2 Antibodies		
Mouse monoclonal anti-actin mAB Act-1-7	(Simpson et al., 1984)	
Mouse monoclonal anti-Phosphotyrosine mAB,		

clone 4G10 [®]	Millipore
Goat anti-mouse IgG, peroxidase conjugated	Sigma
Goat anti-mouse IgG, Cy5 conjugated	Sigma
2.1.5.3 Antibiotics	
Ampicillin	Gruenenthal
Blasticidin S	ICN Biomedicals
Dihydrostreptomycinsulphate	Sigma

2.1.6 Oligonucleotides

Oligonucleotide primers used for PCR were designed on the basis of sequence and purchased from Metabion (Martinsried).

Table 2 Oligonucleotides

Name	Sequence
SLC675-F	5'- TACGATTGTGCCTACCAAATCG -3'
SLC675-R	5'- GTGTTGTATGAACCAGCTGGAG -3'
SSE751-F	5'- ATAATGTCAAATTGGGAACACG -3'
SSE751-R	5'- AGTTCATGAAAAGACCAGATGG -3'
VSA281-F	5'- CTCGTTGGTCTCTACAAGGAAG -3'
VSA281-R	5'- CACCTTGGACTAAGAAGGTAGC -3'
VSG596-F	5'- GGATCAGCTAAATCCATTTGGG -3'
VSG596-R	5'- AAATTGGACATGCATCTTTTGC -3'
SSL284-F	5'- ATGGTTCATCACAATCTGGATC -3'
SSL284-R	5'- ATTTAATGGTGACGAAGACCTC -3'
PkyA_5' forward	5'- GAAGGTATGGATCCGATATTGGC -3'
PkyA_5' reverse	5'- CGCCTGCAGGCAGGTGGTAAATTTGTAATTG-3'
PkyA_3' forward	5'- CGCAAGCTTCTTTAGGTATGGAACATCTTC-3'
PkyA_3' reverse (3' CTRL_RI)	5'- CGCGTCGACCTAACTATCAACCTCTTCATC-3'
PkyA_3' CTRL_RII	5'- GTATTTCCAATCAAGACAACACATAAAAG-3'
PkyA_3' CTRL_F	5'- GTCGCTACTTCTACTAATTCTAGATCTTGTTG-3'
DDB0231199_5' forward (5' CTRL_FI)	5'- CGCGGATCCCCAATAGGTTCTATCGCATC-3'
DDB0231199_5' reverse	5'- CGCCTGCAGCCAATCCTCCATCATATCTTTT-3'
DDB0231199_3' forward	5'- CGCATCGATGCTTGTATTGCACCTCGTTC-3'
DDB0231199_3' reverse	5'- CGCGTCGACGGACGTTTCTTTGGAGAATT-3'
DDB0231199_5' CTRL_FII	5'- CAGAAACAATAGCATCATCAGGG-3'
DDB0231199_5'_R	5'- CTCATTCCACTCAAATATACCCG-3'

2.1.7 Media and Buffers

All media and buffers were prepared with deionized water, filtered through an ionexchange unit (Membra Pure). The media and buffers were sterilized by autoclaving at 120°C and antibiotics were added to the media after cooling to approx. 50°C. For making agar plates, a semi-automatic plate-pouring machine (Technomat) was used.

AX2 medium, pH 6.7 (Claviez et al., 1982)

7.15 g yeast extract, 14.3 g peptone (proteose), 18.0 g maltose, 0.486 g KH₂PO₄, 0.616 g Na₂HPO₄·2H₂O, add H₂O to make 1 liter

Phosphate agar plates, pH 6.0

9 g agar, add Soerensen phosphate buffer, pH 6.0 to make 1 liter

Salt solution (John Tyler Bonner, 1947)

10 mM NaCl, 10 mM KCl, 2.7 mM CaCl₂

SM agar plates, pH 6.5 (M. Sussman, 1951)

9 g agar, 10 g peptone, 10 g glucose, 1 g yeast extract, 1 g MgSO₄·7H₂O, 2.2 g KH₂PO₄,

1 g K_2HPO_4 , add H_2O to make 1 liter

Soerensen phosphate buffer, pH 6.0 (Malchow et al., 1972)

2 mM Na₂HPO₄, 14.6 mM KH₂PO₄

10× MOPS, pH 7.0 / pH 8.0

41.9 g MOPS, 7 ml 3 M sodium acetate, 20 ml 0.5 M EDTA, add H_2O to make 1 liter

10× NCP buffer, pH 8.0

12.1 g Tris/HCl, pH 8.0, 87.0 g NaCl, 5.0 ml Tween 20, 2.0 g sodium azid, add H₂O to make 1 liter

NP-40 buffer

0.05M HEPES, 0.05 M MgAc, 10% sucrose, 2% Nonidet P40 (NP40)

1× PBS, pH 7.4

8.0 g NaCl, 0.2 g KH₂PO4, 1.15 g Na₂HPO4, 0.2 g KCl dissolved in 900 ml deionized H₂O, adjust to pH 7.4, add H₂O to make 1 liter, autoclave

20× SSC, pH 7.0

3 M NaCl, 0.3 M sodium citrate

TE buffer, pH 8.0

10 mM Tris/HCI, pH 8.0, 1 mM EDTA

PBG, pH 7.4

0.5% bovine serum albumin, 0.1% fish gelatin in $1 \times PBS$, pH 7.4

PBS Glycine

500 ml 1× PBS, 3.75 g glycine, filter sterilized and stored at –20°C

Electroporation buffer

10 mM K-PO₄, pH 6.1, 50 mM glucose, filter sterilized

Healing solution

100 mM CaCl₂, 100 mM MgCl₂

2.1.8 Biological materials

Klebsiella aerogenes (Williams and Newell, 1976) *E.coli* DH5α (Hanahan, 1983) pLPBLP plasmid (<u>http://dictybase.org/Vector_sequences_web/pLPBLP.txt</u>) *D. discoideum* strain AX2-214, an axenically-growing derivative of the NC-4 isolate (Raper, 1935) SrfA null mutant (Escalante and Sastre, 1998) STATc null mutant (Fukuzawa et al., 2001) STAT-RIC strain (J. Williams, personal communication)

2.1.9 Computer program

ScanArray Express 3.0 (PerkinElmer Life Sciences, Wellesley, USA) R 1.6.2 BioConductor, <u>http://www.bioconductor.org/</u> Significance Analysis of Microarrays (SAM) 1.21 (Tusher et al., 2001) GeneSpring 7.2 Agilent Technologies, <u>http://www.chem.agilent.com</u> Gene Ontology Analysis Tool (GOAT) (Xu and Shaulsky, 2005) Array tools (<u>http://www.uni-koeln.de/med-fak/biochemie/transcriptomics/tools.e.shtml</u>) Compare (<u>http://www.uni-koeln.de/med-fak/biochemie/transcriptomics/tools.e.shtml</u>)

2.2 Methods

- 2.2.1 Cell biological methods
- 2.2.1.1 Growth of *D. discoideum*

The procedure was adopted from Claviez et al. (Claviez et al., 1982). *D. discoideum* AX2 and the derived transformants were grown in liquid AX2 medium containing dihydrostreptomycinsulfate (40 μ g/ml) and other appropriate selective antibiotics (depending on the mutant) at 21°C either in a shaking suspension in Erlenmeyer flasks with shaking at 160 rpm or the cells were grown on petri dishes. For cell biological work, cultures were harvested at a density of 3-4 x 10⁶ cells/ml.

2.2.1.2 Hyperosmotic shock of *D. discoideum*

Dictyostelium cells were grown to a density of $3-4 \times 10^6$ cells/ml in Erlenmeyer flasks. 2 M sorbitol was added to the culture for a final concentration of 200 mM sorbitol. Samples were collected after treatment for 60 min or, for the time course experiments, samples were collected at 0, 15, 30, 45, 60, 90, and 120 min. As control, soerensen phosphate buffer was added to the culture.

2.2.1.3 Determination of cell survival

Dictyostelium cells were treated with 200 mM sorbitol as described above, serial dilutions were performed and approximately 100 *Dictyostelium* cells were plated onto SM agar plates overlaid with *K. aerogenes. Dictyostelium* plaques were counted after 2-3 days of incubation at 21°C.

2.2.1.4 Determination of cell volume

Dictyostelium cells were treated with 0, 50, 100, 200 or 400 mM sorbitol for 5 minutes. Then cells were transferred to a 100 μ l microcapillary tube (BLAUBRAND[®] intraMARK) and centrifuged at 500×g for 1 minute. The height of the cell pellet in the microcapillary was taken as a measure for cell volume.

2.2.1.5 Indirect immunofluorescence microscopy study of Dictyostelium

2.2.1.5.1 Preparation of *Dictyostelium*

Dictyostelium cells were harvested at a density of $3-4 \times 10^6$ cells/ml, washed twice with soerensen phosphate buffer and finally resuspended in the same buffer at 1×10^6 cells/ml. Cells were starved for 4 hours in soerensen phosphate buffer. 300 µl of the cell suspension were then pipetted onto Ø12 mm coverslips resting on a petri dish. Cells were allowed to attach to the coverslip for 30 minutes, treated with sorbitol (0, 50, 100, 200 and 400 mM) for 5 minutes and then fixed immediately as described below.

2.2.1.5.2 Methanol fixation

Dictyostelium cells on the coverslip were incubated with pre-chilled (-20°C) methanol in the petri dish for 10 minutes. The coverslip was then washed three times with 500 μ I PBS/glycine for 5 minutes to block free reactive groups, followed by two washings with 500 μ I PBG for 15 minutes. *Dictyostelium* cells were immunostained as described below.

2.2.1.5.3 Immunostaining

The coverslip was incubated with 300 μ l of the primary antibody (diluted in PBG) for 1-2 h in a humid-box at room temperature. After incubation, the excess antibody was removed by washing the coverslip five times with PBG for 5 minutes each. The coverslip was then incubated for 1 hour with 300 μ l of the appropriate secondary antibody (diluted in PBG) followed by two washes with PBG for 5 minutes and then three washes with PBS for 5 minutes.

2.2.1.5.4 Mounting

After immunostaining, the cover slip was swirled once in deionized water and the extra water was blotted off on a soft tissue paper and embedded carefully with gelvatol. The mounted slide was then stored in the dark at 4°C for overnight. Thereafter, the mounted slide was observed under a confocal laser scanning microscope (Leica DM/IRBE).

2.2.1.6 Transformation of *Dictyostelium* cells by electroporation

The electroporation method for transformation of *Dictyostelium* cells described by de Hostos et al. (de Hostos et al., 1993) was followed with little modifications. *Dictyostelium* cells were grown axenically in suspension culture to a density of 2-3 x 10^6 cells/ml. The cell suspension was incubated on ice for 15 min and centrifuged at 500 x g for 2 min at 4°C to collect the cells. The cells were then washed with an equal volume of ice-cold Soerensen phosphate buffer and afterwards with an equal volume of ice-cold electroporation buffer. After washing, the cells were resuspended in electroporation buffer at a density of 1 x 10^7 cells/ml.

For electroporation, 35 μ g of linearized plasmid DNA was added to 700 μ l of the cell suspension and the cell-DNA mixture was transferred to a pre-chilled electroporation cuvette (4 mm electrode gap, Bio-Rad). Electroporation was performed with an electroporation unit (Gene Pulser, Bio-Rad) with the following settings (square wave, V=1.0 kV, 10 μ F, 1.0 ms pulse length, 2 pulses, 5 sec pulse interval).

After electroporation, the cells were immediately spread onto a 100-mm petri dish and were allowed to sit for 15 min at 21°C. Thereafter, 15 μ l healing-solution was added dropwise onto the cells and the petri dish was incubated at 21°C on a shaking platform at 40 rpm for 15 min. 12 ml of AX2 medium was added into the petri dish and the cells were allowed to recover overnight. The next day, the medium was replaced by the selection medium containing 10 μ g/mL Blasticidin S. To select stable transformants, the selection medium was replaced every 24-48 hr until colonies of 1 mm diameter were clearly visible. At this time the control plate (containing cells electroporated without any DNA) was clear of live cells.

Viable colonies were serially diluted and plated onto SM agar plates overlaid with *K. aerogenes* to obtain single clones.

2.2.2 Biochemical methods

2.2.2.1 Preparation of total protein from *Dictyostelium*

 4×10^{6} *Dictyostelium* cells either treated or untreated with sorbitol were washed twice in Soerensen phosphate buffer. Total protein was prepared by lysing the pellet of cells in 200 µl 1 x SDS sample buffer and boiling 3 minutes at 95 °C. Equal amounts of protein (equivalent to 2 x 10^{5} cells/lane) were loaded onto discontinuous SDS-polyacrylamide gels.

2.2.2.2 SDS-polyacrylamide gel electrophoresis

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using the discontinuous buffer system (Laemmli et al., 1970).

2.2.2.3 Western blotting

The proteins resolved by SDS-PAGE were electrophoretically transferred from the gel to the nitrocellulose membrane at 15 V for 45 minutes (Kyhse-Andersen, 1984). The membrane was blocked with 1% milk in 1 x NCP and probed with different dilutions of the respective primary antibodies and POD-conjugated secondary antibodies. Antigens were detected by ECL (enhanced chemi-luminescence, Amersham).

2.2.3 Molecular biological methods

2.2.3.1 Isolation of genomic DNA from Dictyostelium cells

2.2.3.1.1 For PCR purpose

Genomic DNA was extracted with the High Pure PCR Template Preparation Kit (Roche, Mannheim, Germany) according to the manufacturers instruction.

2.2.3.1.2 For Southern blotting purpose

 10^8 *Dictyostelium* cells were harvested and wash twice with cold water. The cell pellet (~2-4 g) was resuspended in 10 ml ice-cold NP-40 buffer and vortexed vigorously for 30 seconds. Nuclei were sedimented by 10 minutes centrifugation at 8,000 x g. The nuclei were resuspended in 3.8 ml TE buffer, and lyse by 0.2 ml 10% SDS. Protein was digested by incubation with proteinase K to 200 µg/ml at 37 °C for overnight. DNA was purified by phenol/chloroform/isoamyl alcohol (25:24:1) extraction, then precipitated by the addition of ice-cold ethanol and dissolved in an appropriate volume of TE buffer.

2.2.3.2 Isolation of total RNA from *Dictyostelium* cells

Dictyostelium cells, treated with sorbitol or untreated, were harvested and washed twice with Soerensen buffer. Total RNA was extracted with the Qiagen RNeasy[®] Midi/Mini Kit according to the "Protocol for Isolation of Cytoplasmic RNA from Animal Cells". After isolation, the RNA concentration and RNA quality were determined by measuring the OD260 and OD280, and further confirmed by denaturing agarose gel electrophoresis essentially as described (Lehrach et al., 1977).

2.2.3.3 Northern blotting

Total RNA (10 μ g) was separated on a 1.2% denaturing agarose gel, transferred to nitrocellulose and hybridized as described (Noegel et al., 1985).

2.2.3.4 Southern blotting

Genomic DNA (12 μ g) was separated on a 0.8% agarose gel, transferred to nitrocellulose and hybridized as described in Sambrook et al (Sambrook et al., 1989).

2.2.3.5 Generation of cDNA

cDNA was prepared by reverse transcription of 5 μ g RNA with oligo dT (18) using StrataScript[®] reverse transcriptase (Stratagene) according to the protocol of the manufacturer.

2.2.3.6 Real time PCR

Real time PCR was carried out with the Opticon II instrument (MJ Research) using the Quantitect[™] SYBR[®] green PCR kit (Qiagen, Hilden, Germany). Gene-specific primers of 22–26 bases directed against the 3' region of the corresponding genes were selected with the program GeneFisher (<u>http://bibiserv.techfak.uni-bielefeld.de/genefisher/</u>) for product sizes of 200–400 bases. PCR was performed for 60 cycles at 94°C for 60 s (denaturation), 58°C for 45 s (annealing) and 72°C for 45 s (elongation). As a quantification standard defined concentrations of the annexin VII gene (Doring et al., 1995) cloned into the pT7-7 vector (Tabor, 1990) were used for amplification.

2.2.3.7 Construction of the knockout vector

The gene of interest was disrupted by targeted homologous recombination. Suitable 5' and 3' fragments of the gene were amplified with primers incorporated with appropriate restriction sites, and the products cloned into pLPBLP vector flanking the floxed Bsr cassette (Kimmel and Faix, 2006). The vector, composed of Bsr cassette, 5' and 3' sequences of the gene of interest, was linearized by digestion with appropriate restriction enzyme, purified and then used for electroporation.

2.2.4 Microarray methods

We employed cDNA microarrays that carry a non-redundant set of 5,423 EST clones that were selected as part of the Dictyostelium cDNA project (Urushihara et al., 2004). In addition, appropriate positive and negative controls as well as partial sequences of 450 selected genes were present on the array (Farbrother et al., 2006). All probes were spotted in duplicate. A complete description of the microarray dataset is available at the Gene Expression Omnibus (GEO; <u>http://www.ncbi.nlm.nih.gov/geo</u>; accession number GPL1972). Microarray production has been performed essentially as described (Farbrother et al., 2006).

2.2.4.1 Target preparation

Target preparation was performed by reverse transcribing 20 μ g of total RNA per reaction in the presence of aminoallyl dUTP with the FairPlayTM Microarray Labeling Kit (Stratagene, La Jolla, USA), and the cDNA was labeled with activated CyTM3 and CyTM5 fluorescent dyes (Amersham Biosciences, Uppsala, Sweden). Dye swaps were

performed for the labelling of the cDNA from each independent isolation. Cy^T3 and Cy^T5 labelled targets were mixed, ethanol precipitated and dissolved in 65 µl of hybridization buffer (Noegel et al., 1985) with 500 µg/ml Fish sperm DNA (Roche, Mannheim, Germany) and 2 µM oligo dA 18-mer.

2.2.4.2 Microarray hybridization and scanning

The hybridization mix was heated to 80 °C for 10 min, applied to the microarray under a cover-slip and incubated in a hybridization chamber (Corning, New York, USA) for 15 hours at 37 °C. Post-hybridization washes were performed twice with 2 x SSC, 0.1 %SDS and once with 0.1 x SSC, 0.1 %SDS for 5 min each, five times with 0.1 x SSC and once with 0.01 x SSC for 5 sec each and dried by centrifugation at 235 x g for 5 min. Signal detection was performed with the ScanArray[®] 4000XL confocal laser scanner (PerkinElmer Life Sciences, Wellesley, USA). Two image pairs were produced per microarray slide, one with high laser intensity so that signals for most probes and also some saturated signals were obtained and a second one with lower laser intensity so that none of the signals was saturated. This way the dynamic range of the measurement was expanded. Images for Cy[™]3 and Cy[™]5 were obtained, spots were detected and quantified with ScanArray[®] Express v3.0 (PerkinElmer Life Sciences), then manually inspected and if necessary corrected.

2.2.4.3 Data analysis

Array tools (http://www.uni-koeln.de/med-fak/biochemie/transcriptomics/toolsarray.e.shtml) was used to handle the import and export of microarray data to different analysis programs. Upon import of two data files of the same microarray scanned with different laser powers the saturated spots of the high laser power scan were replaced by non-saturated spots from the low laser power scan. In addition the import also performed data filtering by flagging SpotReport[®] controls, negative controls, empty spots, spots where only spotting solution was printed and spots whose intensities were below or equal to zero as 'Bad'.

Fluorescence ratios were normalized by LOWESS-normalization using R 1.6.2 (BioConductor, <u>http://www.bioconductor.org/</u>). Differentially expressed genes were identified with the program Significance Analysis of Microarrays (SAM) (Tusher et al., 2001). Differentially regulated genes that were common between the different experiments were detected with the program "compare" (<u>http://www.uni-koeln.de/med-</u>

<u>fak/biochemie/transcriptomics/tools.e.shtml</u>). Cluster analysis was performed with GeneSpring 7.2 (Agilent Technologies, <u>http://www.chem.agilent.com</u>).

GO term enrichment was analyzed with GOAT (Xu and Shaulsky, 2005). A complete list of all *Dictyostelium* proteins with GO annotations is available from the GO website (http://www.geneontology.org/GO.current.annotations.shtml). To identify enriched GO terms we selected those genes of the array (reference list) and of the identified clusters (gene lists), respectively, whose gene products have GO annotations. Given a gene and a reference list, the GOAT program calculates the enrichment and statistical significance of every GO term by comparing the observed number of genes in a specific category with the number of genes that might appear in the same category if a selection performed from the same reference list were completely random.

3.1 High osmolarity triggers a variety of responses in *Dictyostelium* cells

The cellular response of *Dictyostelium* cells to treatment with sorbitol was analyzed with different methods.

3.1.1 Tyrosine phosphorylation of actin

It has been shown previously that hyperosmotic shock triggers actin tyrosine phosphorylation (Howard et al., 1993). We confirmed this biochemical response in a 2-hour time course of sorbitol treatment. Strong signals were observed at 15 and 30 minutes of treatment and a stepwise decrease during the remaining 90 minutes (Figure 8).

Figure 8. Tyrosine phosphorylation of actin. AX2 cells were shaken at a density of $3-4 \times 10^6$ in AX2 medium in the absence or presence of 200 mM sorbitol. At the indicated times, 1 ml aliquots were harvested, centrifuged and the pellet lysed in 1 x SDS sample buffer. Cell lysates corresponding to 2 x 10^5 cells were separated by SDS-PAGE, blotted onto nitrocellulose and probed with either a phosphotyrosine-specific monoclonal antibody or an actin-specific monoclonal antibody.

3.1.2 Redistribution of the F-actin cytoskeleton in response to hyperosmotic shock

Immunofluorescence studies of starved *Dictyostelium* cells with a monoclonal antibody directed against actin revealed the redistribution of the F-actin cytoskeleton in response to hyperosmotic conditions (Insall, 1996; Kuwayama et al., 1996). Our experiments confirmed this result. While untreated cells showed a polarized actin distribution, F-actin was redistributed in treated cells and appeared to form a continuous cortex at 400 mM sorbitol. The cortex is thought to play a pivotal role in protecting the

cell against the hyperosmotic environment. The analysis also showed that upon treatment the cells changed their shape and also decreased in size (Figure 9).

Figure 9. Redistribution of the F-actin cytoskeleton in response to hyperosmotic shock. After starvation for 4 hours, untreated cells and cells treated for 5 min with 50, 100, 200 and 400 mM sorbitol were fixed with ice cold methanol, and then stained with a monoclonal antibody specific for actin, followed by the incubation with anti-mouse IgG antibody conjugated with Cy5. Size bar is 10 μ m.

3.1.3 Decrease of cell volume

We quantified the decrease in cell volume and found that it was strictly dependent on sorbitol concentration. At 50 mM sorbitol the cell volume decreased to 73 % and at 400 mM to 48 % of untreated cells. Extracellular concentrations of 100 and 200 mM sorbitol resulted in intermediate values (Figure 10). The decrease in cell size is due to loss of water resulting in a fast increase of the intracellular osmolarity of the treated cells until their osmolarity matches the surrounding medium (Kwon and Handler, 1995). In addition, we found that the *Dictyostelium* cells were able to adapt to 50 and 100 mM sorbitol and resumed the original cell size after about one hour of treatment (data not shown).

Figure 10. Decrease of cell volume in response to hyperosmotic condition. *Dictyostelium* cells were treated with indicated sorbitol concentrations for 5 minutes. Cell volume was measured with a microcapillary as described in material and methods [see 2.2.1.4]. Values represent the mean of three independent experiments \pm standard deviation (SD).

3.1.4 Decrease of cell viability

Next we checked cell survival by treatment of the cells with 200 mM sorbitol for different times. After 15 and 30 minutes about 10 % and after 45 minutes about 25 % of the cells had died and the latter value remained constant throughout the time course (Figure 11).

Figure 11. Cell survival in response to hyperosmotic shock. Cell survival was measured by plating out treated or untreated cells on *K. aerogenes* lawns and counting the plaques after 2 days of incubation at 21° C. Values represent the mean of three independent experiments ± SD.

These results exemplified the complex response of *Dictyostelium* cells to hyperosmotic conditions. To better understand this response we treated the cells with 200 mM sorbitol and analyzed their global transcriptional response by using DNA microarrays.

3.2 Hyperosmotic shock of *Dictyostelium* cells results in dramatic transcriptional changes

3.2.1 Treatment of *Dictyostelium* cells with 200 mM sorbitol for 1 hour leads to dramatic transcriptional changes

We employed cDNA microarrays to first analyze the transcriptional changes one hour after treatment with 200 mM sorbitol. In total 16 slides from 8 independent biological samples were hybridized and scanned. Figure 12 shows a section of one slide as an example.

Figure 12. Section of the *Dictyostelium* **cDNA microarray after hybridization and scanning.** cDNA from control cells was labelled with Cy3 and experiment cells with Cy5. All probes were printed in duplicate. The arrows indicate a down-regulated gene (SSH169) and the stars indicate an up-regulated gene (SSG865).

After quantitation of the spot signals, the raw data were normalized by LOWESSnormalization using R 1.6.2 (BioConductor, <u>http://www.bioconductor.org/</u>) as described in material and methods [see 2.2.4.3]. The intensity of the spots in the two channels depends on the fluorescent dye coupling efficiency, the laser power for scanning and
other variables during experiment processing, which could lead to colour bias. In order to exclude the colour bias, the data have to be normalized. We used the global normalization method, which is based on the hypothesis that most genes do not change their expression during treatment. In this process the median M value $[M=Log 2 \frac{Intensity(experiment)}{Intensity(control)}]$ is adjusted to 0, and the M value of every spot is then normalized to this adjustment. Figure 13 shows the colour bias before normalization and after normalization. Some slides display an obvious colour bias before normalization, e.g. slides 1, 3 and 8, and the normalization procedure could correct this bias (Figure 13).

Figure 13. Normalization of the microarray data. The value distribution of 16 microarrays before (A) and after normalization (B) is represented. The red box covers 50% of the data points of one microarray and the line in the box indicates the median value of the distribution. The two lines above and below the red box limit the distribution and points beyond these lines are outliers. During the normalization the distributions of the spots are shifted based on a M-value of zero and the height of the distributions is adapted.

The normalized data were imported to SAM, which not only identifies the differentially regulated genes, but also predicts the number of false positives [see 2.2.4.3 Data analysis]. Without additional threshold SAM reported 2007 genes as differentially expressed, of which 873 were up-regulated and 1134 down-regulated (Figure 14).

Figure 14. SAM diagram. The SAM t-statistic value of each gene (observed) is plotted versus the expected order statistics value (expected). A positive score shows up-regulated genes (red dots) and a negative score down-regulated genes (green dots). Delta is the threshold value for significant changes and is displayed as the intersection between the dashed lines. The number of significant genes and the percentage of false significant genes are both indicated (upper side, left).

Since many of those genes were only slightly up- or down-regulated and the biological significance of small changes in the expression pattern is not clear, we set in addition a threshold of 1.5 fold change. Under these conditions still 1188 genes were found to be differentially expressed, among which 441 were up-regulated and 747 were down-regulated. Significantly more genes were down-regulated than up-regulated which suggests that *Dictyostelium* down-regulates many cellular processes in order to survive hyperosmotic conditions. The threshold of 1.5 fold was used in the analysis of all further experiments.

3.2.2 Validation of microarray results with real time PCR and Northern blot

We randomly selected five of these genes to validate the microarray results by real time PCR. The differential expression was confirmed for all five genes (Figure 15).

Figure 15. Five ESTs were analyzed by real time PCR and compared with the microarray results. The data are expressed as means of fold change ± SD of three independent experiments. The corresponding DDB IDs from left to right as follows: DDB0188166, DDB0235172, DDB0188166, DDB0190245, DDB0185120.

Furthermore, the expression of gene *sigJ* (DDB0191111) was confirmed by northern blot (Figure 16).

Figure 16. Confirmation of the differential expression of *sigJ* **by Northern Blot.** Total RNA was extracted from either untreated AX2 cells or after treatment with 200 mM sorbitol for 1 hour. 10 µg RNA was separated under denaturing conditions and Northern blotting was performed as described in material and methods [see 2.2.3.3]. The blot was probed with *sigJ* full length cDNA. *cap* full length cDNA was used as control.

We noted that the absolute values for the fold change that were obtained with real time PCR were in all cases higher than those obtained with the microarray. The Northern blot result also pointed into the same direction. The phenomenon that microarrays often provide compressed measurements in comparison to Northern blots or real time PCR is well known, however, its exact cause is not clear.

3.2.3 Determination of the temporal expression pattern of osmoresponsive genes

Next we analyzed the transcriptional response in a time course experiment. Osmosensing and adaptation are controlled by different mechanisms, and occur at different time scales. For instance, in *E. coli* or Madin-Darby canine kidney cells, K^+ is accumulated within minutes but osmoresponsive genes are expressed within hours or longer after treatment (Kwon and Handler, 1995; Wood, 1999). In *S. cerevisiae*, the induction timing of osmoresponsive genes depends on the severity of the shock (Rep et al., 1999). Based on the research on other organisms and the microarray result described above, the time points 15, 30, 45, 60, 90 and 120 minutes post treatment were chosen for the time course.

For analysis we hybridized six microarrays and thus obtained up to twelve measurements for each probe. To assess the likelihood of falsely reported differentially regulated genes we also compared the transcriptional profile of untreated cells against one another at t₀. Under these conditions, only one gene was reported by SAM without additional threshold (data not shown) and no gene at a threshold of 1.5 (Table 1). This result confirmed the reliability of our analysis pipeline for the detection of differentially regulated genes. Differentially expressed genes were identified throughout the rest of the time course, but their number varied largely. 15 minutes after treatment and at a threshold of 1.5 only 38 genes were identified and, surprisingly, 35 of these were upregulated. At 30, 45, 60, 90 and 120 minutes 485, 588, 583, 323 and 211 genes were found, respectively, and for all of these time points significantly more genes were downregulated than up-regulated (Table 1). The largest number of genes was identified 45 and 60 minutes after treatment, when nearly 600 genes were differentially expressed. This corresponds to more than 10% of all spotted probes and indicates that the major

transcriptional changes in *D. discoideum* occur between 30 and 60 minutes after treatment with sorbitol.

Table 1. Number of differentially expressed *Dictyostelium* genes during the two hour time course of sorbitol treatment

Time [min]	Differentially expressed genes							
	Up-regulated	Down- regulated	Sum					
0	0	0	0					
15	35	3	38					
30	30 219		485					
45	244	344	588					
60	232	351	583					
90	120	203	323					
120	73	138	211					

The expression profiles of the differentially expressed genes were used for a cluster analysis to identify groups of similarly regulated genes. The analysis was performed with GeneSpring 7.2 with a non-redundant set of 809 genes that was created from the 908 regulated genes of the time course. Four major clusters of genes could be identified (Figure 17). The first cluster mainly contained genes that increased in expression throughout the time course with maximal expression at later timepoints, the second one was comprised of genes that were down-regulated between 15 and 60 minutes and then changed to a neutral level or were even slightly up-regulated, the third one was characterized by genes up-regulated mainly between 30 and 60 minutes and the fourth one by genes down-regulated throughout the time course.

Figure 17. Cluster analysis of differentially regulated genes. A non-redundant set of 809 genes that were up- or down-regulated more than 1.5 fold in the time course of sorbitol treatment were clustered with GeneSpring 7.2. Four major clusters (1-4) can be distinguished. The dendrogram is displayed on the left. The differentially regulated genes are depicted as coloured lines and the time of treatment in minutes is shown at the bottom. The colour represents the fold induction (red) or repression (blue) as shown in the colour scale below the figure. Non-regulated genes are displayed in yellow.

3.2.4 Differentially regulated genes are enriched in distinct functional categories

A common challenge faced by researchers is to translate lists of differentially regulated genes into a better understanding of the underlying biological phenomena. This can be accomplished by the generation of a functional profile that is able to provide insight into the cellular mechanisms relevant in the given condition. The gene ontology (GO; http://www.geneontology.org/) project is an effort to produce a system for annotating gene products that can be applied across all organisms. GO is divided into three categories describing biological processes, molecular functions and cellular components (Harris et al., 2004). GO term enrichment was analyzed with the program GOAT (Xu and Shaulsky, 2005). Only a selection of those biological process GO terms that had a p-value <0.05 are listed (Figure 18, 20, 22 and 24). The full list of all enriched biological process, molecular function and cellular component GO terms is available as supplementary information (Table SI 1).

During data processing we found that only a small fraction of the *Dictyostelium* genes have GO annotations. In addition, some genes were found to be incorrectly annotated, which limited the value of the GO analysis. Therefore we performed in addition manual annotation through database and literature mining, annotated the differentially regulated genes and, based on the yeast classification, classified them into the following 12 groups: 1) Metabolism, 2) Energy, 3) Transcription, 4) Translation, 5) Protein destination (Protein folding and stabilization / proteolysis / protein targeting, sorting and translocation), 6) Cellular biogenesis and organization, 7) Transport, 8) Cell proliferation, 9) Movement/Cytoskeleton, 10) Stress response, 11) Signal transduction, 12) Multicellular organization.

3.2.4.1 Annotation of genes in cluster 1

Analysis with the program GOAT showed on the biological process level an enrichment of genes involved in actin polymerization and/or depolymerization, macromolecule catabolism and proteolysis for cluster 1. Surprisingly, an enrichment of genes involved in culmination during fruiting body formation was also reported. On the cellular component level the proteasome complex was enriched (Figure 18).

Figure 18. Selection of the GO biological process terms enriched in cluster 1. GO tree levels are shown on the left. Bar lengths represent the fold enrichment (scale x-axis). The table indicates the number of genes with a particular annotation in the cluster (List), on the entire array (Total), the significance for enrichment (P-value) and the annotation.

The categorization of manually annotated genes is shown in table 2. The putative cellobiohydrolase I in the category "metabolism" is highly homologous to the cellobiohydrolase I from *Thermoascus aurantiacus*, which might play a role in the breakdown of carbon sources. Proteasome subunit genes are highly enriched in this cluster as well as other genes involved in proteolysis, for example, the cysteine proteinase 1. Surprisingly, cystatin A3, a putative cysteine protease inhibitor is also found in cluster 1, however it was only slightly up-regulated. We also found a number of genes involved in development and we will consider this interesting finding in more detail in the discussion.

Cotogony			Annotation	Differential regulation									
	Calegory	טו פטט	Annotation	Т0	T15	T30	T45	T60	T90	T120			
		DDB0231462	<i>argC</i> , acetylglutamate kinase, N-acetyl-gamma-glutamyl- phosphate reductase, Ornithine biosynthesis	0.98	1.01	1.04	1.35	1.40	1.67	1.42			
1	metabolism	DDB0202169	<i>dcd2B</i> , neutral/alkaline nonlysosomal ceramidase family protein. Ceramide metabolism	1.03	1.02	1.00	1.18	1.06	1.25	1.54			
		DDB0202233	Cellobiohydrolase I	0.97	1.04	1.40	2.64	3.73	3.49	3.42			
	Protein	DDB0191199	psmB6, 20S proteasome subunit beta-6	1.02	0.88	0.96	1.05	1.17	1.54	1.32			
	destination:	destination: DDB0218287 psmD11, 26S proteasome non-ATPase regulatory subunit 11								1.30			
	Protein folding	1.03	0.98	1.18	1.25	1.45	1.51	1.45					
	and stabilization	DDB0191435	psmC4, 26S proteasome subunit ATPase 4	1.05	0.85	0.92	1.17	1.30	1.55	1.34			
5	/ proteolysis /	DDB0201647	cprA, cysteine proteinase 1	0.95	1.06	1.09	1.12	1.42	2.01	2.31			
	protein	DDB0202676	cpiC, cystatin A3, putative cysteine protease inhibitor	0.95	1.10	1.23	1.66	1.57	1.67	1.56			
	targeting, sorting and translocation	DDB0191154	<i>cdcD</i> , cell division cycle protein 48; implicated among other functions in protein degradation	0.89	0.85	0.86	0.95	1.16	1.37	1.56			
6	Cellular biogenesis and organization	DDB0169422	<i>expl3</i> , expansin-like protein, modify the cell wall to allow expansion during cell growth; expressed in prespore cells	0.99	1.11	1.61	2.42	2.41	2.81	3.28			
7	Transport	DDB0219979	pitB, phosphatidylinositol transfer protein 2	0.99	0.95	0.88	1.16	1.22	1.74	1.99			
0	Movement /	DDB0214916	wdpA, WD40 repeat protein 2	1.01	0.88	0.93	1.45	1.50	1.65	1.23			
9	Cytoskeleton	DDB0191444	mhcA, myosin II heavy chain	1.00	0.88	0.86	0.92	1.14	1.48	1.64			
		DDB0185120	<i>rtoA</i> , unknown	0.99	1.10	2.20	4.84	5.02	6.09	5.03			
12	Multicellular	DDB0215341	<i>tipD</i> , homolog of mouse apg16L	1.00	1.22	1.66	1.94	2.02	2.04	2.31			
12	organization	DDB0185034	csbA, contact sites B protein, Cell adhesion	1.02	1.08	1.10	1.43	1.75	2.19	2.36			
		DDB0185093	csbB, contact sites B protein, Cell adhesion	1.00	1.13	1.16	1.44	1.82	2.03	2.16			

Table 2. Alliviation of denes in cluster
--

Genes that are up-regulated more than 2.0 fold during the time course are labelled in red.

Figure 19 depicts the expression profiles of six genes related to protein degradation. These were first up-regulated 30 to 45 minutes after treatment and for most of them the expression further increased at later time points.

Figure 19. Expression profiles of selected genes from cluster 1.

3.2.4.2 Annotation of genes in cluster 2

Cluster 2 comprises transiently down-regulated genes and shows on the biological process level an enrichment of gene products involved in the response to an external stimulus, in translation and in cellular functions that require cytoskeletal proteins like endocytosis, chemotaxis and cytokinesis (Figure 20). The cellular component category revealed an enrichment of the cortical actin cytoskeleton and this was also reflected in the GO molecular functions where, among others, structural constituents of the cytoskeleton were reported (Table SI 1).

Figure 20. Selection of the GO biological process terms enriched in clusters 2. See figure 18 for figure legend.

The expression profiles of some genes encoding cytoskeletal proteins are shown in Figure 21.

Manual annotation revealed that most genes reported by GO analysis as "response to external stimulus" are genes encoding cytoskeletal proteins. Manual annotation also showed that several genes grouped into metabolism encode components of the tricarboxylic acid cycle, e.g. *pdhA* (pyruvate dehydrogenase E1 alpha subunit), *pdhX* (pyruvate dehydrogenase complex, component X), *acnB* (aconitate hydratase) and *sdhC* (succinate dehydrogenase), indicating a down-regulation of respiration. In support of this, four genes in the "energy" category (*qinA*, DDB0189294, DDB0216983 and DDB0189366) are NADH-ubiquinone oxidoreductase subunits that act as electron transporter in aerobic respiration. Also the synthesis of new proteins appears down-regulated as we found six translation initiation factors (*elF3s2*, *elF1a*, *elF5b*, *elF3s6ip*, *moe1* and *elF4g*) in this cluster. In accordance with the downregulation of cytoskeleton genes, five subunits (*cct2*, *cct8*, *cct3*, *cct7* and *cct5*) of the chaperonin CCT ring complex involved in the folding of actin and tubulin are down-regulated as well. It is noteworthy that a component of the counting factor (CF) complex *cf45-1* and a putative countin receptor *cnr1* are down-regulated [see also 4.2.5].

	0.1			Differential regulation									
	Category		Annotation	Т0	T15	T30	T45	T60	T90	T120			
		DDB0230185	bkdB , branched-chain alpha-keto acid dehydrogenase E1 beta chain, degradation of branched chain amino acids	0.99	0.93	0.65	0.70	0.86	0.96	0.98			
		DDB0230168	acnB, aconitate hydratase	1.05	0.86	0.50	0.59	0.55	0.87	0.95			
		DDB0231385	sdhC, succinate dehydrogenase (ubiquinone)	0.95	0.65	0.54	0.55	0.66	0.95	1.10			
		DDB0190669	atp5b, ATP synthase beta chain, mitochondrial	1.02	0.77	0.57	0.62	0.62	0.79	0.93			
		DDB0167552	might be involved in peptidoglycan catabolic process	1.00	1.44	1.07	0.84	0.61	1.29	2.19			
		DDB0219864	might be involved in peptidoglycan catabolic process	1.05	1.08	0.81	0.85	0.79	1.22	2.10			
		DDB0214943	<i>glgB</i> , 1,4-alpha-glucan branching enzyme	0.97	0.92	0.59	0.60	0.58	0.94	1.05			
		DDB0187592	Phosphoenolpyruvate carboxylase	1.04	0.90	0.69	0.62	0.76	0.98	1.00			
		DDB0214924	amyA, putative alpha-amylase	1.00	1.18	0.82	0.81	0.67	1.13	1.59			
1	Metabolism	DDB0230193	pdhA, pyruvate dehydrogenase E1 alpha subunit	1.03	0.91	0.65	0.68	0.71	0.91	0.90			
	metabolism	DDB0230192	pdhX, pyruvate dehydrogenase complex	1.09	0.78	0.63	0.64	0.72	0.93	0.95			
		DDB0216178	sgmA, sphingomyelinase, ceramide biosynthesis	1.03	0.86	0.76	0.62	0.72	1.02	1.21			
		DDB0235198	<i>mecr</i> , trans-2-enoyl-CoA reductase, fatty acid biosynthetic process	0.90	0.83	0.69	0.61	0.84	0.96	1.18			
		DDB0167445	fahd1, Fumarylacetoacetate (FAA) hydrolase domain-containing protein	0.99	0.92	0.70	0.65	0.75	0.85	0.94			
		DDB0169464	acyl-CoA oxidase	0.98	0.82	0.63	0.62	0.64	0.86	1.14			
		DDB0187716	Formimidoyltransferase-cyclodeaminase (FTCD), Includes Glutamate formyltransferase	0.95	0.82	0.77	0.61	0.73	0.97	1.14			
		DDB0231397	fumH, fumarate hydratase	1.02	0.90	0.69	0.65	0.79	1.03	1.04			
		DDB0188841	Short-chain oxidoreductase.	0.95	1.01	0.85	0.73	0.73	1.18	1.67			
		DDB0214894	alaS , alanyl-tRNA synthetase	0.99	0.93	0.84	0.66	0.81	1.19	1.28			
		DDB0231305	serS, seryl-tRNA synthetase	0.96	0.77	0.54	0.54	0.65	1.00	1.20			
		DDB0231245	<i>trpS</i> , tryptophanyl-tRNA synthetase	0.95	0.79	0.61	0.59	0.62	1.00	1.05			
		DDB0189294	NADH dehydrogenase (ubiquinone)	0.99	0.78	0.61	0.70	0.73	0.94	0.97			
		DDB0216983	NADH dehydrogenase (ubiquinone)	0.98	0.73	0.59	0.76	0.74	0.90	1.01			
2	Energy	DDB0191420	<i>qinA</i> , ubiquinone oxidoreductase	0.98	0.82	0.65	0.68	0.70	0.99	1.04			
		DDB0189366	putative NADH dehydrogenase (ubiquinone)	0.97	0.80	0.63	0.67	0.72	1.00	1.11			
		DDB0167789	vatH, vacuolar ATP synthase subunit H	0.99	0.88	0.55	0.57	0.56	0.77	1.10			
		DDB0201593	<i>cytB</i> , cytochrome b	1.12	0.89	0.67	0.69	0.65	0.85	0.92			
3	Transcription	DDB0215406	<i>snd1</i> , (SNase-like) domain-containing protein, regulation of transcription from RNA polymerase II	0.97	0.85	0.59	0.69	0.75	1.00	1.11			
		DDB0186657	promoter eIF3s2, eIF-3 beta	1.04	0.87	0.65	0.68	0.61	1.10	1.15			
1		DDB0204504	eIF1a, eukaryotic translation initiation factor 1A	1.00	0.77	0.58	0.80	0.93	1.17	1.27			
1		DDB0206214	eIF5b, eukaryotic translation initiation factor 5B	1.01	0.91	0.64	0.63	0.68	0.94	1.00			
4	Translation	DDB0168640	elF3s6ip, eukaryotic translation initiation factor 3 (eIF3) subunit 6 interacting protein	0.95	0.81	0.61	0.62	0.75	1.01	1.07			
		DDB0219927	moe1, eIF-3 zeta	1.01	0.78	0.56	0.54	0.64	0.90	0.96			
		DDB0217646	gamma	1.05	0.79	0.53	0.59	0.72	0.89	0.96			
L		DDB0231065	rps27, 40S ribosomal protein S27	0.99	0.85	0.66	0.65	0.79	1.03	1.07			
		DDB0218815	pfdn3 , prefoldin alpha-like domain containing protein	1.05	0.80	0.65	0.84	0.81	1.04	1.07			
	Protein	DDB0188902	FKBP-type peptidylprolyl cis-trans isomerase domain-containing protein	1.03	0.95	0.59	0.53	0.62	0.75	1.00			
1	destination:	DDB0183841	cct2, chaperonin containing TCP1 beta subunit	1.08	0.84	0.57	0.67	0.70	0.90	0.94			
1	and stabilization	DDB0217758	cct8, cnaperonin containing TCP1 theta subunit	0.98	0.79	0.61	0.63	0.66	0.94	1.06			
5	/ proteolysis /	DDB0204641	cct3, chaperonin containing TCP1 gamma subunit	1.03	0.77	0.54	0.58	0.74	0.93	1.01			
ľ	protein	DDB0191096	cct7, chaperonin containing TCP1 eta subunit	0.93	0.88	0.65	0.58	0.71	0.93	1.06			
1	targeting,	DDB0204244	cct5, chaperonin containing TCP1 epsilon subunit	0.98	0.77	0.60	0.65	0.74	1.14	1.20			
1	sorting and	DDB0191107	fpaA, cytosolic glycoprotein FP21	0.97	0.69	0.60	0.58	0.69	0.93	1.05			
	translocation	DDB0185043	fpaB, cytosolic glycoprotein FP21	0.98	0.59	0.49	0.48	0.66	0.98	1.18			
		DDB0191291	IkhA, leukotriene A4 hydrolase	1.04	0.79	0.61	0.62	0.72	0.99	1.13			
		DDB0169154	putative ubiguitin-conjugating enzyme E2	1.03	0.83	0.65	0.80	0.76	1.01	0.99			

			Annatation	Differential regulation							
	Category	טו פטט	Annotation	T0	T15	T30	T45	T60	T90	T120	
		DDB0191831	ost1, dolichyl-diphosphooligosaccharide-protein glycotransferase	0.97	0.74	0.55	0.61	0.68	0.99	1.07	
6	Cellular	DDB0219627	ost2, dolichyl-diphosphooligosaccharide-protein glycotransferase	1.01	0.83	0.60	0.65	0.71	0.90	1.01	
Ū	organization	DDB0191760	telomerase-associated protein 1-like protein, involved in replication of chromosome termini	1.09	0.92	0.70	0.56	0.60	1.19	1.53	
		DDB0215348	<i>cnxA</i> , calnexin, Ca2+-binding protein with chaperone activity in the endoplasmic reticulum	1.01	0.73	0.59	0.64	0.73	0.91	0.96	
		DDB0201663	nutf2, nuclear transport factor 2	1.07	0.79	0.64	0.63	0.63	0.85	1.05	
		DDB0191505	<i>vacA</i> , vacuolin A	0.95	0.73	0.64	0.65	0.62	0.80	1.14	
7	Transport	DDB0205708	CAX1 , transports Ca2+ or other cations using the gradient of H+ or Na+ generated by energy-coupled primary transporters	0.94	1.03	0.79	0.83	0.80	0.96	1.69	
		DDB0187628	sec61g , protein transport protein SEC61 gamma subunit	1.01	0.67	0.52	0.58	0.62	0.80	0.91	
		DDB0191102	apm1 , clathrin-adaptor medium chain apm1, hypotonic response	1.00	0.85	0.65	0.89	0.89	1.09	1.05	
8	Cell proliferation	DDB0191488	<i>zipA</i> , zipper-like domain-containing protein	1.00	0.72	0.63	0.64	0.79	0.94	0.94	
		DDB0191115	corA, actin binding protein	0.95	0.80	0.67	0.61	0.66	0.91	1.15	
		DDB0220444	act1, actin	0.83	0.71	0.57	0.60	0.67	1.22	1.13	
		DDB0185015	<i>act15</i> , actin	0.84	0.73	0.57	0.58	0.62	1.27	1.13	
		DDB0216213	<i>act8</i> , actin	0.99	0.66	0.61	0.68	0.74	1.09	1.24	
		DDB0191249	proB , profilin II	1.01	0.79	0.51	0.54	0.57	1.06	1.15	
9	Movement /	DDB0185179	arpB, actin related protein 2	1.03	0.76	0.53	0.58	0.67	0.95	1.07	
	oytoshereton	DDB0231423	napA, component of SCAR regulatory complex	0.89	0.75	0.64	0.64	0.77	0.93	1.06	
		DDB0201554	abpC, gelation factor	0.99	0.75	0.51	0.54	0.72	1.21	1.37	
		DDB0214810	abpB, actin binding protein	0.97	0.57	0.51	0.49	0.68	1.16	1.31	
		DDB0214939	limE, LIM domain-containing protein	0.98	0.69	0.49	0.44	0.47	0.90	1.12	
		DDB0203397	putative actin binding protein	1.03	0.71	0.67	0.96	1.22	1.66	1.30	
		DDB0191337	тvpB , major vault protein	0.99	0.81	0.52	0.46	0.57	0.82	1.07	
		DDB0201663	RasG, protein kinase B related	1.07	0.79	0.64	0.63	0.63	0.85	1.05	
11	Signal	DDB0191476	<i>rab1A</i> , Rab GTPase	1.02	0.71	0.58	0.74	0.77	1.03	1.03	
	transduction	DDB0191161	<i>cf45-1</i> , component of the counting factor (CF) complex	1.08	1.11	0.84	0.71	0.57	0.81	1.34	
		DDB0229864	cnrl, putative countin receptor Cnr9	1.02	0.90	0.57	0.66	0.63	0.85	0.98	
12	Multicellular organization	DDB0186637	ТірА	1.00	0.64	0.65	0.73	0.80	0.92	0.99	

Genes that are down-regulated more than 2.0 fold during the time course are labelled in blue.

3.2.4.3 Annotation of genes in cluster 3

The GO analysis for the up-regulation genes of cluster 3 revealed on the biological process level an enrichment of genes involved in the response to oxidative stress, in late endosome to vacuole transport, in the G1/S transition of the mitotic cycle and in development, in particular culmination during fruiting body formation and sporulation. In addition, the GO molecular function terms showed for this cluster an enrichment of genes encoding transporters, transcriptional repressors, Ras GTPase activators and inhibitors, Ser/Thr protein kinases, Rho GTPase binding proteins and cytoskeletal proteins (Figure 22 and Table SI 1 for details).

GO- level	Fold enrichment	List	Total	P-value	Annotation
7		2	4	0.004	Late endosome to vacuole transport
2]	22	420	0.001	Development
6		3	12	0.003	Culmination during fruiting body formation
6		4	20	0.001	Response to oxidative stress
7		2	2	0.001	G1/S transition of mitotic cell cycle
3		10	123	0.001	Cell differentiation
4		6	29	0	Sporulation
0	5 10 15 20 25 30 35 4	D			

Figure 22. Selection of the GO biological process terms enriched in clusters 3. See figure 16 for figure legend.

The expression profiles of genes assigned to the biological process category "response to oxidative stress", STATc (*dst*C), RasGAP (*gap*A), severin kinase (*svk*A) and an ABC transporter (*abc*G21) are depicted in Figure 23. We will consider *Dictyostelium* STATc in more detail below.

Figure 23. Expression profiles of selected genes from cluster 3.

Manual annotation revealed a cluster of genes involved in the degradation of AMP and urate, e.g. *amdA* (AMP deaminase), *DDB0231470* (uricase) and *allC* (allantoicase). This process results in the generation of urea and glyoxylate. Some genes are involved in the breakdown of carbon sources, e.g. *celA* (cellulase), *celB* (cellulose binding protein) and *DDB0204945* (alpha amylase family protein), others in the biosynthesis of trehalose, e.g. *tpsA* (treholase 6-phosphate synthase), and in the biosynthesis of proline, e.g. *DDB0190241* (pyrroline-5-carboxylate reductase). Similar to results in cluster 1 we found a large number of genes, around 20, involved in proteolysis,

e.g. *culA* (cullin), *ubqA* (ubiquitin), and *ubqD* (ubiquitin). The up-regulation of these genes might lead to the accumulation of organic solutes, which could be utilized by *Dictyostelium* as osmolytes [see 3.2.5 and 4.2.2]. Transcription factors are especially interesting because they could be responsible for the differential regulation of target genes. Beside STATc (*dstC*), we find five other genes encoding transcription factors, e.g. *stkA* (STalKy mutant), *srfA* (serum response factor A), *dstA*, *dstB* and *repB* (involved in DNA repair) in this cluster. Transporter genes are also prominent members of this cluster, e.g. *abcB1* (ABC transporter), *abcG21* (ABC transporter), *DDB0189650* (a sodium/potassium-transporting ATPase), and three mitochondrial substrate carriers. Impressively in total 11 cytoskeletal genes are up-regulated, which could play roles in reorganization of the cytoskeleton. In the signal transduction category, genes encoding small GTPases and PH domain containing proteins as well as a number of protein kinases are found.

	Category		Annotation	Differential regulation									
	Category			Т0	T15	T30	T45	T60	T90	T120			
		DDB0191089	amdA, AMP deaminase, purine degradation	0.94	1.87	3.91	3.39	2.43	0.78	0.75			
		DDB0185186	gnt2, GlcNAc transferase, mycothiol biosynthesis	0.94	1.07	1.37	1.45	1.60	1.22	0.98			
		DDB0231436	glutathione S-transferase domain-containing protein	1.04	1.29	1.40	1.53	1.29	1.03	1.02			
		DDB0231471	allC, allantoicase, urate degradation	0.98	1.52	3.10	4.89	4.74	3.47	1.99			
		DDB0231470	uricase, urate degradation	1.01	0.92	1.27	1.94	2.08	1.83	1.11			
		DDB0231393	acyl-CoA oxidase	0.98	1.16	1.53	1.55	1.50	1.08	1.02			
		DDB0167310	putative oxidoreductase, oxygen dependent, fad- dependent protein	0.99	1.34	1.52	1.39	1.37	1.13	1.11			
		DDB0188682	grxA, glutaredoxin	1.03	1.25	1.40	1.52	1.53	1.28	1.05			
		DDB0230093	aatB , aspartate aminotransferase, aspartate degradation	1.00	1.15	1.46	1.64	1.68	1.60	1.29			
		DDB0190241	pyrroline-5-carboxylate reductase, proline biosynthesis	0.94	1.72	2.15	2.56	2.59	2.42	2.02			
		DDB0219248	<i>tpsA</i> , glycosyltransferase, Treholose biosynthesis	1.01	0.90	1.28	2.24	2.89	3.00	2.06			
		DDB0218638	<i>aass</i> , aminoadipic semialdehyde synthase, NAD+, L- glutamate-forming	1.00	1.35	1.68	1.47	1.30	0.87	0.78			
1	Metabolism	DDB0185328	sodB, superoxide dismutase	0.99	1.54	2.32	2.08	2.30	2.23	1.96			
-		DDB0203727	antioxidant enzyme	0.88	2.29	3.80	5.52	6.09	5.85	3.36			
		DDB0191537	ugt52, sterol glucosyltransferase	0.97	1.16	1.71	2.29	1.86	1.03	0.86			
		DDB0214890	SRE1, steroid isomerase	0.97	1.37	1.70	2.15	2.35	2.05	1.26			
		DDB0217424	CABP1-related protein	0.96	0.94	1.01	1.36	1.72	1.30	1.20			
		DDB0188646	Serine:pyruvate/alanine:glyoxylate aminotransferase	0.98	1.23	1.54	1.72	1.58	1.35	1.03			
		DDB0229908	acnA, putative iron regulatory protein	1.01	0.91	1.10	1.23	1.52	1.36	1.16			
		DDB0204945	Alpha amylase family protein, oligosaccharide degradation	0.92	1.55	2.90	4.04	3.92	2.52	1.40			
		DDB0205008	Acetylornitine deacetylase, lysine biosynthesis	0.96	1.18	1.49	1.76	1.61	1.55	1.37			
		DDB0215351	celA, cellulose binding protein, cellulase	0.86	1.18	1.78	1.64	1.42	1.19	1.07			
		DDB0191122	celB, cellulose binding protein	0.93	1.96	3.83	5.59	4.08	2.11	1.39			
		DDB0187034	glutamine-fructose-6-phosphate transaminase	0.93	1.14	1.47	1.52	1.54	1.19	0.93			
		DDB0168688	3-hydroxyacyl-CoA dehydrogenase type II	0.99	1.00	1.27	1.75	1.81	1.58	1.44			
		DDB0186041	fut5, glycosyltransferase, mycothiol biosynthesis	1.00	1.24	1.56	1.75	1.56	0.96	0.90			
		DDB0187554	mpgA, mannose-1-phosphate guanylyltransferase	1.03	1.09	1.37	1.54	1.33	1.04	1.04			

Table 4	Annotation	of	aenes	in	cluster	3
1 abie 4.	Annotation	UI.	yenes		Clusiel	ູ

					Dif	foron	anıla	tion		
	Category	DDB ID	Annotation	то	T15	T30	T45	TEO	TQD	T120
			stkA GATA Zn finger containing protein	1 17	1 10	1 50	1 70	1 40	0.00	0.00
		DDB0103107	strA, GATA 211 Illiger-containing protein	1.17	1.10	1.53	1.73	1.48	0.98	0.98
		DDB0214892	dsta STAT family protein	0.04	1.00	1.50	1.14	1.30	1.05	0.96
3	Transcription	DDB0215378	dstC STATfamily protein	0.98	1.10	3.05	3.18	3 4 1	2 13	1 11
		DDB0191116	dstB STATfamily protein	1 00	1.01	2.04	1 03	1 74	0.00	0.80
			range XDB transprintion factor III subunit	1.00	1.20	4.00	1.55	1.74	4 4 9	0.03
		DDB0214630	reps, APB, transcription ractor in Suburit	1.04	1.01	1.20	1.58	1.50	1.13	1.00
		DDB0201021	mrpsZ, ribosomal protein SZ	0.93	1.10	1.50	1.27	1.10	0.91	0.02
Λ	Translation	DDB0201004	DidioMn26 ribosomal protein S3 N-terminal domain	1.07	1.44	2.01	1.05	0.00	0.04	0.61
-	Translation	DDB0201608	DidioMp27 , ribosomal protein S3, C-terminal domain	0.83	1.00	1.96	1.15	1.06	0.67	0.02
		DDB0187131	elF5. eukarvotic translation initiation factor 5	0.99	1.45	2.07	2.04	1.77	1.23	1.14
		DDB0216177	dvmA dvnamin like protein	0.98	1 07	1 60	1 73	1 71	1 14	1 07
		DDB0185191	<i>culA</i> , cullin	0.97	1.05	1.33	1.71	1.55	1.23	1.08
		DDB0186248	Putative cullin 3.	1.00	1.13	1.52	1.25	1.44	1.00	1.01
		DDB0191171	cpIA, calpain-like cysteine protease	1.00	1.06	1.57	1.94	2.00	1.23	0.72
		DDB0219849	Putative FtsH protease	1.03	0.97	1.27	1.51	1.53	1.04	0.98
		DDB0187705	psmD1, 26S proteasome regulatory subunit S1	0.92	1.13	1.22	1.24	1.61	1.35	1.24
		DDB0191298	psmD14, 26S proteasome non-ATPase regulatory							
			subunit 14	0.95	0.95	1.22	1.46	1.55	1.33	1.12
	Protein	DDB0205381	SppA, signal peptidase activity	0.93	1.02	1.30	1.55	1.50	1.24	0.90
	destination:	DDB0220657	CPIA , cystatin A1, proteolysis inhibitor	1.01	1.22	1.53	1.67	1.55	1.61	1.50
	Protein folding	DDB0191056	ubiquitin-protein ligase activity	1.02	1.30	1.81	1.41	1.25	1.24	0.89
5	and stabilization	DDB0214921	ubqA, ubiquitin	0.80	1.21	1./1	1.99	2.40	1.24	0.03
5	/ proteolysis / protein targeting,	DDB0201031	ubac, ubiquitin precursor	0.94	1.14	1.30	2.24	2.24	1 11	0.71
		DDB0214929	ubaD ubiquitin	0.00	1.40	1.69	2.05	1.90	1.08	0.86
	sorting and	0000211020	usp14 peptidase C19 family protein contain ubiquitin	0.00	1.21	1.00	2.00	1.00	1.00	0.00
	translocation	DDB0202821	domain	1.00	0.96	1.24	1.67	1.97	1.95	1.50
		DDB0183881	ubpA, deubiquitinating enzyme	0.90	1.19	1.81	2.18	1.99	1.49	1.00
		DDB0215686	CSN1 , COP9 signalosome complex subunit 1	1.02	1.04	1.24	1.56	1.50	1.33	1.11
			ZZ-type Zn finger-containing protein, ubiguitin-							
		DDB0190801	associated (UBA) domain-containing protein	0.99	0.99	1.53	1.86	1.92	1.27	0.83
		DDB0191418	rbrA, ariadne-like ubiquitin ligase	1.01	1.23	1.74	1.94	2.03	1.36	0.98
		DDB0188049	ARIADNE-like protein ARI2, protein ubiquitination	0.98	1.38	1.79	1.36	1.25	1.07	0.97
			prIA, proliferation associated protein, highly							
		DDB0204783	conserved metalloexopeptidase, proteolysis	1.01	1.30	1.46	1.65	1.77	1.56	1.17
		DDB0191317	vps46, SNF7 family protein	0.96	1.23	1.72	1.88	1.93	1.31	0.94
		000004504	<i>vps32</i> , SNF7 family protein, involved in vesicle							
		DDB0231531	trafficking in yeast and mammals; expressed in	1 04	0 00	1 06	1 60	1 55	1 00	0.05
		DDB0206451	vos55 vacuolar protein sorting 55 family protein	1.04	0.00	1.00	1.00	1.55	1.09	0.95
		DDB0200431	tinC vacuolar protein sorting-associated protein	0.98	1 18	1.10	1.75	1.00	1.20	1 19
	Cellular	DDB0203662	vacuolar sorting protein 9 domain-containing protein	1 00	1 10	1.60	1.38	1.07	0.88	0.84
6	biogenesis and	DDB0185960	vps4, AAA ATPase domain-containing protein	0.95	0.94	1.29	1.64	1.78	1.49	1.17
1	organization	DDB0169544	sf3b1, splicing factor 3B subunit 1	1 05	1 33	2.02	2 19	2.08	1 34	1 21
	_	DDB0189279	RNA-binding region-containing protein (RNP-1)	1.05	1.15	1.57	1.35	1.52	1.27	1.06
			SAP DNA-binding domain-containing protein, RNA-							
		DDB0220666	binding region-containing protein (RNP-1), RNA							
			recognition motif-containing protein (RRM)	0.87	1.19	1.54	1.27	1.38	0.96	0.97
		DDB0169252	Mitochondrial genome maintenance protein MGM101	4	4	4 50			4 = 0	4.05
			precursor.	1.00	1.23	1.59	2.09	1.94	1.72	1.25
		DDB0185907	sic25a11, mitochondrial 2-oxogiutarate/malate carrier	0.98	1.28	1.85	2.41	2.16	1.11	1.01
		DDB0217773	mitochondrial substrate carrier family protein	0.95	1.46	2.32	2.43	2.00	1.39	1.11
		DDB0191266	<i>mftA</i> , mitochondrial substrate carrier family protein	0.99	1.21	1.47	1.54	1.38	0.89	0.87
		DDB0189650	sodium/potassium-transporting ATPase alpha chain 2	1.03	1./1	3.24	3.09	3.15	1.36	0.87
1		DDB0191239	abcB1 ABC transporter B family protein	0.93	1.43	1.04	1.35	1.10	1.83	0.95
7	Transport	DDB0201000	Zinc transporter	0.06	1.90	1.00	1.52	2.00 1.40	1.03	0.05
1			Dutative impotin alpha 1h	0.90	1.40	1.00	1.00	1.49	1.09	0.90
1				0.96	1.12	1.44	1.57	1.82	1.38	1.07
1		DDB0214946	раю, г-цуре Атраse	1.03	1.07	1.02	1.97	1.24	1.04	1.24
1		DDB0100430	cica chloride channel protein chloride transport	1.07	1.07	1.23	1.01	1.30	1.27	0.00
		DDB0215368	cond phospholipid-binding protein	1 00	0.89	1.00	1.52	1 40	1.08	0.99

						Differential regulation									
	Category	ddb id	Annotation	Т0	T15	T30	T45	T60	T90	T120					
		DDB0191103	ctxA, actin binding protein	0.98	1.14	1.68	2.01	2.30	1.78	1.20					
		DDB0185031	<i>ctxB</i> , cortexillin II	1.01	1.10	1.57	1.71	1.82	1.35	0.87					
		DDB0232318	<i>slaA</i> , putative actin binding protein	0.98	1.25	1.82	2.20	2.10	1.34	0.85					
		DDB0214996	forA, actin binding protein	1.06	1.12	1.56	1.96	1.77	1.39	1.12					
		DDB0231185	forF, actin binding protein	1.05	0.93	1.22	1.52	1.45	0.99	0.91					
9	Movement /	DDB0185086	<i>myoK</i> , myosin IK	0.94	1.47	2.09	1.95	2.05	1.36	0.98					
Ŭ	cytoskeleton	DDB0215392	myoA, myosin IA heavy chain	1.07	1.06	1.14	1.39	1.77	1.68	1.15					
		DDB0191252	<i>dct</i> , dynacortin	0.94	1.47	2.04	2.15	2.26	1.69	1.29					
		DDB0216663	<i>abnA</i> , actobindin	1.00	1.35	1.76	1.95	1.72	1.66	1.63					
		DDB0190330	<i>abnB</i> , actobindin	0.97	1.29	1.73	1.91	1.71	1.57	1.32					
		DDB0206583	<i>ksnG</i> , K7 kinesin-like protein, microtubule motor activity	0.96	1.16	1.90	2.26	2.14	1.26	0.98					
10	Stress response	DDB0185022	<i>capA</i> , cAMP-binding protein	1.00	1.03	1.23	1.48	1.96	1.52	1.31					
10	Stress response	DDB0185023	capB, CABP1-related protein	0.99	1.02	1.30	1.32	1.51	1.16	1.07					
		DDB0191437	rgaA, RasGTPase-activating protein	0.98	1.14	1.53	1.70	2.00	1.51	1.19					
		DDB0229433	<i>rasX</i> , Ras GTPase	1.13	1.23	1.55	1.48	1.40	0.79	0.82					
		DDB0229402	<i>rab2B</i> , Rab GTPase	0.99	1.40	1.80	2.07	1.59	1.13	1.03					
		DDB0203974	gxcEE, RhoGEF domain-containing protein	0.95	1.23	1.51	1.48	1.62	1.56	1.40					
		DDB0214826	<i>racl</i> , Rho GTPase	1.02	1.29	1.62	1.78	1.85	1.35	1.01					
		DDB0191293	gapA, RasGTPase-activating protein	0.91	1.58	2.31	1.74	1.44	0.76	0.65					
		DDB0215004	<i>gefC</i> , regulator of chromosome condensation (RCC1) domain-containing protein	1.04	1.32	1.67	1.57	1.29	1.05	1.08					
		DDB0202154	gxcGG , pleckstrin homology (PH) domain-containing protein	1.00	1.09	1.60	1.53	1.25	0.96	0.88					
		DDB0188911	gxcHH, pleckstrin homology (PH) domain-containing protein	0.95	1.03	1.28	1.50	1.30	1.04	1.05					
	Signal	DDB0169060	gxcBB, pleckstrin homology (PH) domain-containing protein	1.04	1.46	1.99	1.84	1.63	1.03	0.86					
		DDB0191767	DOCK family protein, gef activity	0.97	1.13	1.58	1.66	1.81	1.18	0.92					
		DDB0233081	receptor, also similar to yeast SYG1, a G-protein associated signal transduction protein	1.07	1.53	2,60	3.24	2.85	1.39	1.04					
		DDB0217181	Cyclic AMP receptor 1	0.95	1.70	1.80	1.08	0.90	0.78	0.84					
11		DDB0231199	MORN repeat-containing protein kinase	1.07	1.46	1.96	1.89	1.44	0.94	0.87					
••	transduction	DDB0229845	<i>phg2</i> , protein serine/threonine kinase	0.90	1.36	1.75	1.23	1.31	1.05	0.96					
		DDB0229344	putative protein serine/threonine kinase	0.97	1.00	2.04	1.91	1.75	0.87	0.61					
		DDB0219947	ndrB, putative protein serine/threonine kinase	1.00	1.36	2.00	1.88	1.46	1.10	1.05					
		DDB0216387	putative protein serine/threonine kinase	1.04	1.22	1.61	1.42	1.31	0.99	0.97					
		DDB0216346	putative casein kinase II regulatory subunit	1.03	1.37	1.77	1.40	1.16	0.95	0.95					
		DDB0191218	pkyA , protein tyrosine kinase	0.96	0.97	1.36	2.00	1.78	1.52	1.16					
		DDB0191176	<i>svkA</i> , severin kinase	1.05	1.10	1.59	1.69	1.68	1.04	0.90					
		DDB0191155	cdk5, protein serine/threonine kinase	1.03	1.11	1.34	1.70	1.63	1.37	1.08					
		DDB0216190	ppkA, polyphosphate kinase	1.00	1.05	1.44	1.86	1.88	1.43	1.18					
		DDB0215670	spIA, non-receptor tyrosine kinase	1.05	1.07	1.49	1.64	1.43	1.10	0.95					
		DDB0230051	Zn finger-containing protein, putative protein serine/threonine kinase	1.00	1.22	1.65	1.53	1.37	1.10	1.14					
		DDB0214986	<i>ptpC</i> , protein tyrosine phosphatase	0.95	1.39	2.06	2.21	1.78	1.06	0.85					
		DDB0185021	<i>canA</i> , calcineurin A, protein serine/threonine	1 00	1 10	1 35	1 58	1 61	1 30	1 22					
		DDB0229894	fcpA, putative CTD phosphatase	1.00	1.85	2.98	3.17	3.28	2.31	1.45					
		DDB0191353	<i>sigl</i> , CBS (cystathionine-beta-synthase) domain- containing protein, may play a regulatory role for other	0 07	1 0.9	1 90	2.00	3 20	2.09	1 33					
\vdash	Multicellular	DDB0220027	culD culmination specific protein 45D	0.97	1.00	1.02	2.00	2.50	2.00	1.00					
12	organization	DDB0185953	putative glycoside hydrolase	0.94	1.22	1.63	1.57	2.55 1.47	1.08	1.00					

See table 2 for figure legend.

3.2.4.4 Annotation of genes in cluster 4

As expected, the lists of enriched GO terms for the mainly down-regulated genes in cluster 4 differed considerably from cluster 1 and 3. Cluster 4 is characterized by down-regulated genes, which either remained repressed throughout the time course or returned to normal levels at the end of the two hours treatment. On the biological process level genes whose products are involved in all aspects of metabolism were enriched indicating that the cells reduced their metabolic activities upon exposure to high osmolarity (Figure 24).

GO- leve	Fold enrichment	List	Total	P-value	Annotation
5		3	9	0.022	Response to temperature stimulus
4		18	178	0.002	Nitrogen compound metabolism
6		15	113	0	Cellular carbohydrate metabolism
7		3	8	0.022	Microtubule-based movement
4		149	2376	0	Cellular metabolism
5		4	25	0.03	Vitamin metabolism
6		24	254	0.002	Carboxylic acid metabolism
6		24	94	0	Nucleotide metabolism
5		35	265	0	Generation of precursor metabolites and energy
6		10	34	0	Oxidative phosphorylation
7		9	21	0	ATP synthesis coupled proton transport
6		19	102	0	Coenzyme metabolism
6		10	22	0	ATP metabolism
7		9	21	0	ATP biosynthesis
5		22	175	0	Cellular lipid metabolism
6		19	66	0	Nucleotide biosynthesis
7		29	303	0	Protein biosynthesis
5		19	163	0	Amino acid and derivative metabolism
Ċ	2 4 6 8 1	0			

Figure 24. Selection of the GO biological process terms enriched in clusters 4. See figure 18 for figure legend.

Interestingly, Manual annotation showed that all genes encoding the different subunits of the vacuolar ATPase were regulated in a very similar manner (Figure 25).

Figure 25. Expression profiles of selected genes from cluster 4. The question mark refers to vatF and vatG being putative vatF and vatG

Many genes involved in amino acid, purine and pyrimidine metabolism are present in this cluster. In the "energy" category not as many NADH dehydrogenases were found as in cluster 2, but more cytochrome genes were present, e.g. *cytC* (cytochrome c), *cxdA* (cytochrome c oxidase subunit IV), *cxeA* (cytochrome c oxidase subunit IV). In the "transcription" category, the gene encoding RNA polymerase I subunit is repressed throughout the 2 hour time course, while the RNA polymerase II subunit in cluster 2 returned to normal levels at later time points. Concomitantly 22 genes encoding ribosomal proteins or ribosomal RNA as well as translation elongation factors are present in this cluster. We also find a number of genes encoding cytoskeletal proteins in this cluster, e.g. *comA* (comitin), *forB* (formin homology domain-containing protein), *hatB* (hisactophilin II), *ponA* (ponticulin). In the "signal transduction" category, two genes, *ctnA* (countin) and *smIA* (smallA), which regulating the size of the aggregate are present [see also 4.2.5].

	Catagory	םו פסס	Annotation		Diff	erent	tial re	egula	tion	
	Category		Annotation	Т0	T15	T30	T45	T60	T90	T120
		DDB0230052	serA, 3-phosphoglycerate dehydrogenase	0.92	0.68	0.54	0.41	0.47	0.48	0.58
		DDB0230072	serine hydroxymethyltransferase	0.96	0.74	0.61	0.45	0.47	0.47	0.49
		DDB0191165	argE, acetylornithine deacetylase, ornithine biosynthesis	1.00	0.89	0.66	0.63	0.56	0.75	0.97
1	Metabolism	DDB0231448	gabT , 4-aminobutyrate transaminase, glutamate degradation	0.92	0.92	0.91	0.63	0.67	0.76	0.85
		DDB0231438	glutamate dehydrogenase [NAD(P)+]	0.97	0.89	0.70	0.59	0.55	0.52	0.58
		DDB0218170	gInB , glutamate-ammonia ligase	0.95	0.91	0.79	0.64	0.60	0.68	0.80

	a .				Diff	erent	ial re	qula	tion	
	Category	DDB ID	Annotation	Т0	T15	T30	T45	T60	T90	T120
		DDB0206512	NAD+ dependent glutamate dehydrogenase	0.95	0.75	0.50	0.35	0.38	0.40	0.49
		DDB0231138	kynurenine-oxoglutarate transaminase, glutamate related	0.97	0.88	0.70	0.58	0.57	0.74	0.89
		DDB0230092	aatA, aspartate aminotransferase	0.95	0.76	0.61	0.59	0.54	0.68	0.75
		DDB0230190	bkdA , branched-chain alpha-keto acid dehydrogenase E1 alpha chain	0.98	0.79	0.60	0.59	0.63	0.84	0.92
		DDB0187236	Proline iminopeptidase.	0.99	0.96	0.74	0.57	0.67	0.69	0.79
		DDB0204020	Ornithine decarboxylase	1 00	0.92	0 76	0.63	0 74	0.82	0.85
		DDB0186679	Probable deoxyhypusine synthase	0.95	0.98	0.86	0.63	0.69	0.88	0.98
		DDB0230070	S-adenosylmethionine synthetase	1.01	0.87	0.58	0.46	0.35	0.37	0.45
		DDB0230137	methylenetetrahydrofolate reductase	0.92	0.87	0.74	0.57	0.55	0.81	0.87
		DDB0188183	pantoate-beta-alanine ligase, pantothenate biosynthesis, alanine related	0.96	0.67	0.84	0.53	0.54	0.42	0.41
		DDB0191167	spsA, spermidine synthase from arginine	0.97	1.16	0.92	0.84	0.78	0.72	0.65
		DDB0201565		1 00	0.87	0.73	0.64	0 70	0.76	0.84
		DDB02010005	purH, additionate synthetase	0.00	0.07	0.75	0.04	0.70	0.70	0.04
		DDB0230093	purc/E phosphoribosylaminoimidazole carboxylase	0.99	0.04	0.05	0.52	0.44	0.40	0.50
		DDB0230080	purc/L, phosphoribosylamino divide ligase	1 01	0.00	0.54	0.44	0.41	0.50	0.70
		DDB0230083	<i>purF</i> phosphoribosylamine-gryonic ilyase	0.96	0.00	0.09	0.40	0.56	0.30	0.03
		DDB0214005	<i>thv</i> thymidulate synthese ($F\Delta D$)	1 01	1 01	0.82	0.70	0.60	0.53	0.63
		DDB0214900	thus thumidine kinase	1.01	0.85	0.02	0.70	0.00	0.55	0.00
		DDD0191430	ny 56 bifunctional LIMP synthetase	1.00	1.01	0./1	0.04	0.32	0.00	0.03
		DDDUZ 14958	pyroo, priunctional ONP-synthetase	1.02	1.01	U.07	U.12	0.47	0.30	0.40
		DDB0201646	hydrolysing)	1.02	1.10	0.85	0.53	0.50	0.40	0.51
		DDB0230162		1.00	0.98	0.88	0.59	0.57	0.57	0.58
		DDB0215554	guaa, GMP Synthetase	0.93	1.06	0.62	0.60	0.55	0.52	0.72
		DDB0230098	dehydrogenase	0.93	0.87	0.65	0.38	0.39	0.49	0.86
		DDB0185217	<i>pyr4</i> , dihydroorotate oxidase	1.00	0.91	0.76	0.67	0.53	0.53	0.72
		DDB0191172	pyd2, dihydropyrimidinase	0.96	0.90	0.81	0.64	0.60	0.68	0.85
		DDB0231475	aldehyde dehydrogenase	0.99	1.12	1.05	0.98	1.03	0.81	0.66
1	Metabolism	DDB0231480	aldehyde dehydrogenase	1.02	0.81	0.64	0.70	0.71	0.83	0.74
		DDB0215363	alrA, aldehyde reductase	1.02	0.81	0.55	0.51	0.59	0.42	0.39
		DDB0231286	<i>alrE</i> , aldo-keto reductase	0.99	0.69	0.56	0.51	0.52	0.46	0.41
		DDB0204808	AhpC/TSA family protein, phospholipid catabolic process	0.97	0.89	0.74	0.65	0.60	0.67	0.83
		DDB0169506	gtr2, alpha amylase domain-containing protein, starch synthase-like protein, might be involved in glycogen biosynthesis, GlycosylTRansferase	1.01	1.01	0.86	0.55	0.57	0.58	0.72
		DDB0231456	gnt3, alpha-1,3-mannosyl-glycoprotein beta-1,2-N-	1.06	1.03	0.76	0.79	0.62	0.71	0.77
		DDB0210355	maoA amine oxidase (flavin-containing)	0 96	0 73	0 53	0.46	0 40	0 60	0.86
		0000219000		0.07	0.73	0.00	0.60	0.62	0.03	0.00
		DDB0100339	putative amino unuase	1.02	1.02	0.00	0.00	0.03	0.00	0.73
		DDB0231333	asnaf asnaranine-tRNA linase	0.94	1.03	0.70	0.59	0.00	0.73	0.99
		DDB0231311	masnS aspartyLtRNA synthetase	0.05	0.05	0 77	0.63	0.67	0.60	0.70
		DDB0191481	san4 sanosin A sphingolinid metabolic process	1 01	1 01	0.73	0.47	0.43	0 71	1.06
		DDB0187073	sanosin B domain-containing protein	0 00	1.07	0.80	0.63	0.50	0.60	0.84
			appoin D domain-containing protein	1.00	0.00	0.00	0.00	0.00	0.00	0.04
		000000000000000000000000000000000000000		1.00	0.90	0.87	0.70	0.02	0.08	0.00
			putative giutatnione transferase	0.94	U.67	0.54	0.51	0.56	0.45	0.40
		DDB0231434	putative glutathione transferase Similar to Xenopus laevis (African clawed frog), glutathione	1.01	1.02	1.01	0.83	0.84	0.64	0.64
			s-transferase	0.96	0.78	0.55	0.48	0.62	0.44	0.39
		DDB0230008	acultransferase activity	0.94	1.97	0.94	0.00	0.40	0.33	0.41
		DDB0191456	fadA, delta 5 fatty acid desaturase	0.97	0.85	0.66	0.60	0.57	0.77	0.88
		DDB0217332	Similar to Mortierella alpina. stearoyl-CoA desaturase	0.93	0.67	0.48	0.37	0.36	0.42	0.52
		DDB0191146	eapA, alkyl-dihydroxyacetonephosphate synthase	0.93	0.74	0.61	0.46	0.52	0.61	0.64
		DDB0215017	fps , farnesyl diphosphate synthase	0.98	0.86	0.65	0.58	0.60	0.64	0.74
		DDB0204468	pssA, phosphatidylserine synthase	1.05	1.06	1.01	0.96	0.85	0.60	0.59
		DDB0231376	tdtT, tarnesyl-diphosphate farnesyltransferase	0.99	0.80	0.66	0.51	0.67	0.74	0.83
			Endosperm C-24 sterol methyltransferase.	0.92	0.66	0.31	0.16	<u>0.18</u>	0.23	0.47
		DDR0180883	ergosterol biosynthesis	0.98	U.88	0.74	U.65	U.61	JU.60	0.66

	Catagory		Apportation		Diff	erent	ial re	gula	tion	
	Category	טו פטט		T0	T15	T30	T45	T60	T90	T120
		DDB0215357	hmgB, hydroxymethylglutaryl CoA reductase	0.96	0.72	0.63	0.57	0.59	0.55	0.66
		DDB0189754	esterase/lipase/thioesterase domain	0.98	0.81	0.77	0.60	0.66	0.62	0.56
		DDB0231380	<i>plbE</i> , phospholipase B-like protein	1.05	0.95	0.80	0.68	0.62	0.65	0.74
		DDB0202574	Sterol 24-C-methyltransferase	0.99	0.77	0.55	0.36	0.36	0.30	0.40
		DDB0188084	putative acyl-CoA oxidase	0.98	0.82	0.85	0.66	0.72	0.87	0.93
		DDB0231414	hemF, coproporphyrinogen III oxidase	1.07	0.64	0.63	0.88	0.91	0.79	0.73
		DDB0185491	gcdh, glutaryl-CoA dehydrogenase	0.94	0.80	0.67	0.63	0.65	0.76	0.84
		DDB0217316	Nucleoside diphosphate kinase	0.93	0.99	1.00	0.78	0.61	0.73	0.84
		DDB0188870	pantothenate kinase	0.96	0.80	0.71	0.71	0.66	0.58	0.58
		DDB0219237	agl , glycogen debranching enzyme	0.95	0.92	0.75	0.65	0.71	0.87	1.00
		DDB0218661	enoyl-CoA hydratase	0.94	0.87	0.64	0.61	0.66	0.77	0.88
		DDB0185740	esterase/lipase/thioesterase domain-containing protein	1.01	0.90	0.85	0.59	0.57	0.44	0.38
		DDB0231108	pckA, phosphoenolpyruvate carboxykinase	1.00	0.67	0.54	0.56	0.61	0.66	0.65
		DDB0185087	gpdA, glyceraldehyde-3-phosphate dehydrogenase	0.93	0.86	0.68	0.69	0.65	0.77	0.75
		DDB0231355	enoA, phosphopyruvate hydratase	0.94	0.81	0.74	0.67	0.61	0.84	0.88
		DDB0231387	fba, fructose-bisphosphate aldolase, glycolysis	1.03	0.79	0.61	0.54	0.57	0.72	0.86
1	Metabolism	DDB0216232	Ipd, dihydrolipoamide:NAD oxidoreductase	0.94	0.85	0.65	0.58	0.75	0.76	0.91
		DDB0217233	Similar to Oryza sativa glucose-6-phosphate	1 07	0 70	0 60	0 56	0 47	0 52	0 57
			dehydrogenase (G6PD)	0.00	0.70	0.00	0.04	0.75	0.70	0.00
		DDB0217422	Similar to Listeria monocytogenes. Tkt protein.	0.98	0.79	0.69	0.61	0.75	0.76	0.80
		DDB0215011	gna, 6-phosphogluconate denydrogenase	0.92	0.90	0.89	0.73	0.72	0.58	0.68
		DDB0205389	acly ATP citrate synthase	0.92	0.83	0 71	0 64	0 66	0.56	0.48
		DDB0231288	<i>idhA</i> , isocitrate dehvdrogenase (NAD+)	0.96	0.90	0.66	0.65	0.64	0.74	0.69
		DDB0205386	putative ATP citrate lyase	1.04	0.78	0.51	0.41	0.40	0.38	0.31
		DDB0220638	citrate synthase, mitochondrial	0.94	0.75	0.56	0.51	0.55	0.80	0.75
		DDB0185935	ppa1, inorganic pyrophosphatase	0.94	0.90	0.72	0.68	0.66	0.69	0.73
		DDB0187875	1,4-beta-D-xylan xylohydrolase	0.97	0.94	0.71	0.63	0.58	0.64	0.79
		DDB0232952	ptsA, 6-pyruvoyltetrahydropterin synthase	0.98	0.73	0.61	0.60	0.58	0.51	0.53
		DDB0191399	gchA, GTP cyclohydrolase I	0.97	0.87	0.83	0.56	0.57	0.52	0.47
		DDB0230118	thfA, methylenetetrahydrofolate dehydrogenase	0.98	0.99	0.84	0.71	0.55	0.48	0.55
		DDB0169112	NAD-dependent epimerase/dehydratase family protein	0.97	0.85	0.77	0.68	0.61	0.50	0.57
		DDB0188270	Similar to Lactococcus lactis oxidoreductase	1.00	0.89	0.69	0.58	0.59	0.62	0.76
		DDB0191419	vatC, H(+)-transporting ATPase	1.02	0.93	0.67	0.65	0.58	0.73	1.00
		DDB0167892	vacuolar ATP synthase subunit D	0.97	0.92	0.62	0.56	0.48	0.78	1.07
		DDB0185207	vatB , vacuolar H+ ATPase B subunit	0.96	1.01	0.67	0.56	0.52	0.73	1.11
		DDB0201563	vatA , vacuolar H+-ATPase A subunit	0.99	0.87	0.63	0.60	0.51	0.62	0.88
		DDB0185070	vatE, vacuolar H+-ATPase E subunit	0.94	0.90	0.64	0.52	0.50	0.63	0.91
		DDB0216933	Similar to H+-transporting ATPase.	0.99	0.88	0.61	0.61	0.54	0.67	1.02
		DDB0217242	Similar to V-ATPase d subunit	0.99	0.92	0.74	0.68	0.65	0.00	1.04
		DDB01834316	ato 5 C1 ATP synthese E1 subunit aloba	0.90	0.79	0.05	0.57	0.03	0.00	0.03
2	Energy	DDB0217763	atp5e. ATP synthase epsilon chain mitochondrial	1 03	0 79	0.57	0.61	0.67	0.78	0.81
		DDB0216257	<i>cytC</i> , cytochrome c	0.91	0.96	0.91	0.68	0.64	0.72	0.71
		DDB0214995	cxdA, cytochrome c oxidase subunit IV	1.02	0.77	0.62	0.67	0.59	0.75	0.83
		DDB0191104	cxeA, cytochrome c oxidase subunit V	0.93	0.86	0.77	0.62	0.69	0.76	0.87
		DDB0218167	CYP51, cytochrome P450 family protein	0.95	0.71	0.51	0.36	0.36	0.36	0.51
		DDB0202357	CYP524A1, cytochrome P450 family protein	0.95	0.84	0.71	0.70	0.60	0.42	0.53
		DDB0201618	<i>nad11</i> , NADH dehydrogenase subunit 11	1.01	1.29	1.21	1.08	0.79	0.73	0.55
		DDB0218707	NADH-cytochrome B5 reductase	0.96	0.91	0.70	0.61	0.64	0.85	0.95
		DDB0184465	Similar to cytochrome c-1	0.94	0.83	0.66	0.54	0.52	0.69	0.76
		DDB0216420	<i>hmg2</i> , HMG1/2 (high mobility group) box-containing protein, regulation of transcription	0.93	0.75	0.54	0.51	0.53	0.63	0.72
		DDB0216404	myb domain-containing protein	0.96	0.97	0.62	0.61	0.67	0.66	0.78
		DDB0216409	paired amphipathic helix (PAH) containing protein	1.03	0.68	0.49	0.53	0.55	0.61	0.68
3	Transcription	DDB0233426	putative GATA-binding transcription factor, GATA Zn	1 01	0 90	0 69	0 74	0.63	0 68	0 74
Ē			tinger-containing protein			0.00	0.70	0.55	0.55	0.55
		DDB0216292	rpa1 , KINA polymerase I, largest subunit	1.04	1.19	0.93	0.73	0.70	0.52	0.52
		DDB0204655	polymerase III	1.00	1.06	0.85	0.62	0.59	0.72	0.77
		DDB0191270	trfA, homologous to yeast Ssn6, a transcription factor	1.07	0.94	0.70	0.71	0.61	0.74	0.76

	-				Diff	erent	ial re	aula	tion	
	Category	DDB ID	Annotation	T0	T15	T30	T45	T60	T90	T120
		DDB0231059	rps19. 40S ribosomal protein S19	0.87	1.06	0.94	0.76	0.61	0.72	0.78
		DDB0231066	rps29, 40S ribosomal protein S29	1.05	1.13	0.93	0.79	0.64	0.81	0.78
		DDB0230022	rps5, 40S ribosomal protein S5	0.95	1.16	0.84	0.74	0.64	1.02	0.82
		DDB0230023	rps6 , 40S ribosomal protein S6	0.92	0.96	0.70	0.70	0.59	0.70	0.79
		DDB0230024	rps7, 40S ribosomal protein S7	0.95	1.06	0.76	0.84	0.57	0.61	0.71
		DDB0231192	<i>rpl13a</i> , S60 ribosomal protein L13a	0.79	1.13	0.85	0.90	0.65	0.68	0.84
		DDB0229959	<i>rpl17</i> , S60 ribosomal protein L17	0.91	1.00	0.79	0.73	0.58	0.65	0.70
		DDB0229960	rp118, S60 ribosomal protein L18	0.90	0.82	0.82	0.72	0.60	0.67	0.72
		DDB0229962	rpl21, S60 ribosomal protein L21	0.92	0.97	0.84	0.77	0.63	0.67	0.78
		DDB0230149	rpi23a, S60 ribosomal protein L23a	0.81	1.01	0.70	0.60	0.65	0.60	0.69
		DDB0230153	rpiz7, S60 hoosomal protein L27	0.97	0.69	0.65	0.72	0.60	0.72	0.72
		DDB0201638	rpi27a , S60 ribosomai protein L27a	0.86	0.99	0.81	0.63	0.65	0.62	0.68
		DDB0230155	rp/3560 ribosomal protein L30	0.99	1.00	0.81	0.70	0.65	0.71	0.74
		DDB0231150	rpi32, 500 fibosomal protein L32	0.93	0.04	0.00	0.70	0.01	0.00	0.72
		DDB0231131	rp/34, S60 ribosomal protein L34	0.91	0.94	0.04	0.09	0.04	0.72	0.74
4	Translation	DDB0231241	rp/4, 60S ribosomal protein L4	0.05	0.98	0.01	0.86	0.59	0.74	0.77
		DDB0231338	rp/6 , 60S ribosomal protein L6	0.97	0.95	0.80	0.72	0.61	0.63	0.69
		DDB0191528	rps9, ribosomal protein 1024, 40S ribosomal protein S9	0.91	1.06	0.80	0.76	0.60	0.76	0.87
		DDB0168982	rlp24, ribosomal protein L24-like protein	0.95	0.97	0.76	0.79	0.76	0.70	0.66
		DDB0205581	Ribsomal protein-like (At5g09770).	0.89	0.77	0.64	0.61	0.70	0.87	0.82
		DDB0237471	17S rRNA-2, 17S ribosomal RNA	0.90	1.15	0.98	0.89	0.94	0.82	0.60
		DDB0231374	translation initiation factor eIF-2B alpha subunit	0.99	1.00	1.04	0.97	0.93	0.72	0.65
		DDB0214990	eRF3, eukaryotic release factor 3	0.93	0.89	0.71	0.63	0.68	0.85	1.01
		DDB0204044	elF3s3, eukaryotic translation initiation factor 3 (elF3)	0.94	0.86	0.68	0.66	0.67	0.79	0.80
		DDB0216584	elF4e eukaryotic translation initiation factor 4F	1 00	0 66	0 4 1	0 49	0 58	0 74	0.80
		DDB0191174	efa1B elongation factor 1b	1.08	0.92	0.68	0 70	0.60	0.77	0.85
		DDB0191363	efbA elongation factor 2	0.93	0.94	0.00	0.65	0.64	0.68	0.00
		DDB0219464	<i>tufM</i> , elongation factor Tu domain-containing protein	0.98	0.83	0.53	0.51	0.46	0.43	0.47
		DDB0205289	<i>nhp2l1</i> , non-histone chromosome protein 2-like 1	0.91	0.99	0.65	0.48	0.45	0.44	0.45
		DDB0185614	ppiD , cyclophilin-type peptidylprolyl cis-trans isomerase	1.01	0.87	0.70	0.63	0.70	0.85	0.88
		DDB0191163	hspD, heat shock cognate protein	0.97	0.85	0.69	0.60	0.60	0.67	0.88
	D. ()	DDB0219929	hspA, chaperonin 60	0.99	0.77	0.55	0.63	0.63	0.80	0.85
	Protein destination:		putative nascent polypeptide-associated complex alpha	0.00	4.04	0.00	0.07	0.00	0.00	0.04
	Protein folding	DDB0205559	subunit	0.99	1.01	0.93	0.87	0.80	0.60	0.64
-	and stabilization	DDB0215016	ddj1, heat shock protein	0.93	0.60	0.44	0.38	0.49	0.69	0.78
5	/ proteolysis /	DDB0215005	Custoine proteinase	0.87	1.16	0.75	0.54	0.55	0.80	1.09
	targeting.	DDB0219634	Cysteine proteinase i precursor	1.04	0.90	0.07	0.01	0.55	0.67	0.90
1	sorting and			1.01	0.99	0.71	0.05	0.40	0.59	0.70
	translocation	DDB0206429	peptidase C1A tamily protein	0.94	1.00	0.75	U.64	0.67	U.81	0.96
1		DDB0189005	Putative ubiquitin-conjugating enzyme	0.96	0.92	0.82	0.76	0.66	0.73	0.73
		DDB0186598	Similar to cell division cycle 20 homolog (S. cerevisiae)	0.98	0.86	0.65	0.63	0.58	0.60	0.70
		DDB0188097	<i>mppB</i> , mitochondrial processing peptidase beta subunit	1.02	0.82	0.66	0.70	0.72	0.74	0.83
		DDB0191229	abcG2, ABC transporter G family protein	0.99	1.11	1.70	1.16	0.64	0.47	0.54
		DDB0185017	amtA, ammonium transporter	1.00	0.93	0.65	0.49	0.49	0.71	1.19
		DDB0185213	porA, porin	0.90	0.75	0.59	0.43	0.46	0.54	0.65
		DDB0202615	<i>nramp1</i> , solute carrier family 11 member 1, ion transport	1.00	0.80	0.66	0.57	0.63	0.86	0.98
		DDB0201558	anca, ADP/ATP translocase	0.95	0.86	0.64	0.45	0.45	0.47	0.55
7	Transport	DDB0192069	substrate carrier family protein	1.01	0.85	0.65	0.52	0.46	0.48	0.57
		DDB0229992	<i>mcfZ</i> , mitochondrial substrate carrier family protein, succinate:fumarate antiporter activity	0.94	0.78	0.69	0.54	0.51	0.47	0.47
1		DDB0217211	Similar to Mus musculus (Mouse) importin alpha-1 subunit	0.93	1.06	0.82	0.70	0.61	0.51	0.64
1		DDB0191099	fhbA, flavohemoglobin	0.98	0.59	0.80	0.52	0.81	0.52	0.41
		DDB0168979	NAPC PROTEIN, Member of the Major Facilitator Superfamily (MFS)	0.96	0.43	0.31	0.27	0.41	0.26	0.28
8	Cell proliferation	DDB0187545	PCNA, proliferating cell nuclear antigen, DNA elongation	0.99	1.06	0.79	0.70	0.63	0.69	0.69

	Cotogony		Annotation		Diff	erent	ial re	gula	tion	
	Category		Annotation	Т0	T15	T30	T45	T60	T90	T120
		DDB0215369	coaA, actin binding protein	0.96	0.75	0.58	0.53	0.53	0.90	0.92
		DDB0219923	comA, actin binding protein	0.99	0.84	0.75	0.71	0.59	0.67	0.77
		DDB0215000	forB, actin binding protein	1.08	0.87	0.70	0.68	0.64	0.65	0.66
		DDB0187112	putative actin binding protein	1.00	0.99	0.89	0.87	0.71	0.65	0.62
	Movement /	DDB0215336	hatB, hisactophilin II	0.95	0.72	0.46	0.40	0.41	0.70	0.95
9	cvtoskeletal	DDB0191178	proA, profilin I	1.00	0.79	0.59	0.59	0.60	0.78	0.87
	Cyloskelelai	DDB0191380	<i>tubA</i> , alpha tubulin	1.02	0.87	0.63	0.59	0.58	0.63	0.79
		DDB0191169	<i>tubB</i> , beta tubulin	0.95	0.80	0.62	0.59	0.65	0.81	1.00
		DDB0204271	Tubulin alpha-1B chain	0.92	0.87	0.70	0.66	0.66	0.83	0.93
		DDB0215380	<i>ponA</i> , ponticulin	1.03	0.91	0.82	0.82	0.67	0.60	0.67
		DDB0201555	<i>kif12</i> , kinesin family member 12	1.00	1.02	0.87	0.76	0.66	0.75	0.85
		DDB0185047	<i>hspE</i> , heat shock protein	1.00	0.91	0.88	0.78	0.75	0.64	0.65
		DDB0217225	Heat shock protein 70	0.98	0.85	0.78	0.73	0.70	0.70	0.64
		DDB0185048	hspC, heat shock protein	1.07	0.72	0.54	0.64	0.73	0.71	0.71
10	Stress response	DDB0167206	hspK, heat shock protein Hsp20 domain-containing protein	1.00	0.81	0.86	0.70	0.70	0.55	0.52
		DDB0167089	heat shock protein Hsp70 family protein	1.01	0.81	0.68	0.63	0.57	0.73	0.69
		DDB0191276	hspH, heat shock protein Hsp70 family protein	1.01	0.55	0.49	0.50	0.55	0.62	0.65
		DDB0215366	<i>mhsp7</i> , mitochondrial Hsp70 precursor	1.03	0.72	0.46	0.54	0.52	0.45	0.40
		DDB0191384	<i>crtA</i> , calreticulin	0.93	0.71	0.57	0.52	0.58	0.83	0.91
		DDB0191507	<i>rab7A</i> , Rab GTPase	1.06	0.91	0.81	0.76	0.60	0.74	0.80
		DDB0230034	<i>rabR</i> , Rab GTPase	1.01	0.50	0.64	0.50	0.58	0.48	0.49
		DDB0187464	Ran-specific GTPase-activating protein (Ran binding protein 1)	0.97	0.70	0.51	0.52	0.56	0.68	0.87
		DDB0183840	grIE, G-protein-coupled receptor (GPCR) family protein	1.02	0.96	0.80	0.65	0.74	0.61	0.64
	Signal	DDB0219974	pdsA, cAMP phosphodiesterase	1.03	0.76	0.65	0.45	0.46	0.57	0.73
11	transduction	DDB0185036	trap1, TNF receptor-associated protein	0.94	0.76	0.64	0.61	0.61	0.60	0.63
		DDB0185089	ctnA, component of the counting factor (CF) complex	0.99	0.96	0.83	0.64	0.60	0.63	0.87
		DDB0191525	smIA, regulate conting factor, glucose homeostasis	0.96	0.92	0.54	0.52	0.45	0.56	0.80
		DDB0191095	cmfB, putative CMF receptor CMFR1	0.94	0.84	0.55	0.43	0.38	0.34	0.43
		DDB0229453	ndrD, putative protein serine/threonine kinase	0.85	0.89	0.68	0.54	0.56	0.61	0.82
		DDB0185028	cdk1, p34-cdc2 protein, cyclin-dependent kinase	0.92	0.80	0.55	0.40	0.51	0.65	0.82

See table 3 for legend.

3.2.5 Differential regulation of major metabolic pathway genes

Since the accumulation of osmolytes is a general and important strategy for the adaptation of all organisms to hypertonicity, we checked the differential expression of genes encoding proteins in major metabolic pathways, including carbohydrate, amino acid and nucleotide metabolism. Data were collected from tables 2-5.

3.2.5.1 Carbohydrate metabolism

In liquid culture of vegetative *Dictyostelium* cell, glucose is the main carbon source and glycogen concentration is relatively low, but during development glycogen is synthesized and accumulated (Rutherford, 1976). We checked the genes involved in the breakdown of glycogen, in glycolysis, in the TCA cycle and the synthesis of intermediate components (Figure 26). Obviously glycolysis and the TCA cycle are down-regulated. Glucose seems to be generated from glycogen as well as from other carbon sources, and is probably then used for the synthesis of the compatible osmolyte trehalose.

Figure 26. Genes involved in the carbohydrate metabolism pathway. Differentially regulated genes encoding the corresponding enzymes for the catalytic reactions are indicated. Blue indicates down-regulated and red or orange indicates up-regulated genes. Genes from cluster 1 are orange labelled, cluster 2 light blue, cluster 3 red and cluster 4 blue.

Correspondingly many genes encoding components of the aerobic respiration chain were down-regulated (Figure 27).

3.2.5.2 Amino acid metabolism

Amino acids are widely used as osmolytes in cell volume regulation by prokaryotes, microbial eukaryotes and metazoans alike (Cronkite et al., 1993; D. L. Cronkite, 1989; Leon Goldstein, 1994). The accumulation of amino acids is specific and selective: in *E.coli*, the main accumulated amino acids are glutamate, glycine and proline (Wood, 2006); in *Dictyostelium*, glycine, alanine and proline are the major amino acids accumulated in response to osmotic stress (Steck et al., 1997). It also has been shown that hyperosmotic stress induces ubiquitination of cellular proteins, which indicates protein degradation (Zischka et al., 1999). It is reasonable to assume that protein degradation leads to free amino acids in the cytoplasm and that through conversion between different amino acids some of them get enriched. Thus we focused on the

genes involved in the metabolism of these amino acids (Figure 28). It is apparent that the metabolism of glutamate is down-regulated. This strategy is similar to that of *E.coli*, which accumulates glutamate though suppression of glutamate catabolism (Wood, 2006). The gene encoding the key enzyme (pyrroline-5-carboxylate reductase) for the synthesis of proline is highly upregulated. Genes encoding aminotransferases were also found to be differentially regulated. For example, *DDB0188646* is upregulated, which encodes alanine-glyoxylate aminotransferase and serine-pyruvate transaminase, was up-regulated and thus could affect the conversion to alanine, glycine and serine. The down-regulated *DDB0230072* encodes the serine hydroxymethyltransferase, which could convert serine to glycine or vice versa. Since the metabolic machinery for the synthesis or breakdown of glutamate, proline, alanine, glycine and serine is changed, we assume that *Dictyostelium* accumulates a mixture of amino acids to achieve sufficient intracellular osmolarity to counteract the extracellular osmolarity. This is in agreement with the results of Steck et al., however, further biochemical evidence needs to be obtained to prove this hypothesis (Steck et al., 1997).

Figure 28. Genes involved in amino acids metabolism. See figure 26 for figure legend.

3.2.5.3 Purine and pyrimidine metabolism

Most genes involved in the purine and pyrimidine metabolic pathways were significantly down-regulated, except those in the pathway from AMP to glyoxylate and urea, which could act as osmolyte (Figure 29).

A. Purine

Figure 29. Genes involved in purine and pyrimidine metabolism. See figure 26 for figure legend.

3.3 Characterization of the early transcriptional response genes

The early transcriptional response of the cells to hyperosmotic stress is particularly interesting because these genes are apparently primary targets of the signaling cascade(s) that redirect(s) the transcriptional program of the cells. Furthermore, individual components of the signaling cascade(s) might be differentially regulated and it is also feasible that the responsible transcription factor(s) autoregulate(s) its/their own expression via a positive or negative feed back loop. Therefore, we focused on the early differentially regulated genes of the time course experiment (Table 6). The analysis revealed several interesting up-regulated genes encoding SrfA induced genes (see below), STATc (see below), FcpA (a putative C-terminal phosphatase that could play a regulatory role in the response to hyperosmolarity) and RasGapA (an IQGAP-related protein involved in the completion of cytokinesis). In addition, genes for several transporters, two Cyclin_N domain containing proteins, RabR and the eukaryotic translation initiation factor 4E, which has a significant function in the initiation of eukaryotic protein synthesis, were reported. Besides, two genes encoding transmembrane proteins are reported, one of which is cAMP receptor 1.

םו פחם	Annotation		Dif	feren	tial re	egulat	tion	
	Amotation	т0	T15	T30	T45	T60	Т90	T120
DDB0191392	sigG: srfA induced gene G	1.05	2.40	4.87	6.68	5.58	1.91	0.91
DDB0191111	sigJ: srfA induced gene J	0.99	2.29	5.64	6.47	6.36	5.63	5.24
DDB0218006	Homologue of human cyclin fold protein 1	1.00	2.04	3.40	2.57	1.99	0.93	0.82
DDB0201666	AbcB1: ABC transporter B family protein	1.10	1.98	2.92	3.32	2.80	1.63	1.05
DDB0229894	FcpA: putative CTD (C-terminal domain) phosphatase	1.00	1.85	2.98	3.17	3.28	2.31	1.45
DDB0189650	Na ⁺ /K ⁺ ATPase; Na ⁺ /K ⁺ -transporting ATPase alpha chain 2	1.03	1.71	3.24	3.09	3.15	1.36	0.87
DDB0206314	Putative transmembrane protein; 6-TM domains	1.00	1.67	2.55	2.63	2.71	1.92	1.19
DDB0169197	Protein contains Cyclin_N domain	1.03	1.65	2.17	1.37	1.25	0.98	1.01
DDB0191293	GapA: RasGTPase-activating protein	0.91	1.58	2.31	1.74	1.44	0.76	0.65
DDB0215378	STATc: STAT family protein	0.98	1.57	3.05	3.18	3.41	2.13	1.11
DDB0191122	ceIB, cellulose binding protein	0.93	1.96	3.83	5.59	4.08	2.11	1.39
DDB0190241	pyrroline-5-carboxylate reductase	0.94	1.72	2.15	2.56	2.59	2.42	2.02
DDB0203727	antioxidant enzyme	0.88	2.29	3.80	5.52	6.09	5.85	3.36
DDB0217181	Cyclic AMP receptor 1	0.95	1.70	1.80	1.08	0.90	0.78	0.84
DDB0216584	Eucaryotic translation initiation factor 4E	1.00	0.66	0.41	0.49	0.58	0.74	0.80
DDB0230034	rabR: rab GTPase R	1.02	0.50	0.64	0.50	0.58	0.48	0.49
DDB0168979	Member of the Major Facilitator Superfamily (MFS)	0.96	0.43	0.31	0.27	0.41	0.26	0.28

Table 6. Selection of ear	ly differentially	expressed genes with	n unambiguous annotation
---------------------------	-------------------	----------------------	--------------------------

SrfA: <u>Serum Response Factor A</u>; ABC transporter: <u>ATP-B</u>inding <u>Cassette</u> transporter; FcpA: Transcription factor II<u>F</u> (TFIIF)-associating <u>CTD</u> phosphatase; red: up-regulated; blue: down-regulated.

3.3.1 SrfA is not involved in the transcriptional response to hyperosmotic stress

We found a number of genes 15 minutes after treatment and at later time points that had been shown to be regulated by the MADS box transcription factor SrfA (Escalante et al., 2004a). In addition, *srfA* itself was slightly up-regulated at the time point t_{30} (Table 4), indicating a possible involvement of SrfA in the differential regulation of target genes. Therefore, we tested the role of SrfA in the *Dictyostelium* response to hyperosmotic conditions by comparing the transcriptional profiles of AX2 wild type and *srfA*⁻ cells. The results showed that, out of 46 genes reported by SAM, only 10 genes were differentially regulated more than 1.5 fold and the fold change values were very low (Table 7). We conclude that the transcription factor SrfA is probably not involved in the transcriptional response to hyperosmotic stress.

Table 7. Osmotic stress experiments with wt and srfA ko cells.

Gene ID	Annotation	Differential regulation
DDB0216989	similar to histidine kinase DhkL	1,632
DDB0231570	alp, alkaline phosphatase	1,580
DDB0167826	unknown	1,539
DDB0215343	<i>ImcB</i> , vegetative-specific gene repressed at the onset of development	1,527
DDB0219750	unknown	1,524
DDB0167628	unknown	1,515
DDB0167628	unknown	1,508
DDB0219496	unknown	1,507
DDB0191484	RPLP2, ribosomal acidic phosphoprotein P2	0,628

RNA was isolated from 3 independent cultures and 6 microarrays were analyzed. Experiment: AX2 wild type cell; control: srfA ko cell.

3.3.2 STATc is a key regulator of the transcriptional response to hyperosmotic stress

A very interesting member of the early differentially regulated genes was STATc (Table 6 and Figure 23). It had already been shown that STATc is activated in cells subjected to different types of stress (Araki et al., 2003) and we reasoned that STATc might be a transcriptional regulator in the *Dictyostelium* response to hyperosmotic conditions. To test this hypothesis we performed microarray experiments with either treated or untreated AX2 wt cells (wt; experiment I), the STATc knock-out mutant (STATc⁻, experiment III) and a mutant with an isogenic background where the STATc knock-out construct was randomly integrated into the genome (RIC, experiment II) (Table 8).

Comparison	Experiment	Control	Independent cultures	Microarrays
	wt +	wt -	8	16
II	RIC +	STATc ko +	3	6
	STATc ko +	STATc ko -	3	6

Table 8. Osmotic stress experiments with wt, STATc ko and RIC cells.

wt: AX2 wild type cells; ko: knock-out; RIC: random integrant cells; +: treated; -: untreated.

Cells were treated for one hour with 200 mM sorbitol and the lists of differentially regulated genes were compared between the different experiments. There are several possible outcomes: i) If STATc is not involved in the osmostress response we would have expected a complete overlap of the differentially regulated genes in experiments I and III (Fig. 30A). ii) If STATc is the only transcriptional regulator that directly gets activated in sorbitol-treated *Dictyostelium* cells we would have expected no differential regulation in experiment III and a complete overlap of the gene lists in experiments I and II (Fig. 30B). iii) If STATc is only partially responsible for the transcriptional response a more complicated output was expected and this was the case. A set of 117 genes was identified, that was common to all three comparisons and sets of 388, 149 and 87 genes, respectively, that were common to two comparisons (Fig. 30C).

Figure 30. STATc is an important regulator of the transcriptional response to hyperosmotic stress. (A) Expected overlap of differentially regulated genes in experiments I and III if STATc is not involved in the transcriptional regulation. (B) Expected overlap in experiments I and II if STATc is the only transcriptional regulator in response to hypertonicity. (C) Venn diagram of the observed differentially regulated genes from the three comparisons: wt cells treated versus untreated (I), RIC cells treated versus STATc- treated (II) and STATc- treated versus untreated (III). Up-regulated genes are printed in red and down-regulated genes in green. Genes shared between 2 or 3 comparisons (shaded region) were applied to further analysis.

The 149 differentially regulated genes that were common between experiments I and II appear to be solely regulated by activated STATc. In contrast STATc is only partially responsible for the regulation of the 117 and 87 differentially regulated genes, respectively. Interestingly, 82 of the 87 genes common between experiments II and III were oppositely regulated in these experiments resulting in a balanced output in experiment I (data not shown). We conclude that STATc is a major but not the only transcriptional regulator in the *Dictyostelium* response to hyperosmotic conditions.

If we assume two parallel signaling pathways that are activated upon hyperosmotic stress and in addition a STATc pathway independent of osmostress we need to consider three factors that influence the transcriptional output of every gene in our comparisons: i) regulation by the osmostress pathway 1 (OP1), ii) regulation by the osmostress-induced STATc pathway (OSP) and iii) regulation by the STATc pathway (SP) irrespective of osmostress. The transcription of a given gene is either independent of these factors (majority of genes) or activated or repressed. Since we are dealing in the analysis with three different factors and three possible regulations there are 27 cases that need to be considered, some of which result in identical outputs for the three comparisons (Table 9). Table 9. Possible regulations of target genes by different signaling pathways, pathways involved in the comparisons and expected regulatory output of target genes.

	Possible	regulatory cor	nbinations		Comparison		Expe	ected regulator	y output
Casa				WT +/WT -	RIC +/STATc ko +	STATc ko +/STATc ko -		RIC +/	STATc ko +/
Case	OP1	OSP	SP		Pathways involved	•	VVI +/VVI -	STATc ko +	STATc ko -
				OP1*OSP*SP/SP	OP1*OSP*SP/OP1	OP1		Expression	
1	↓	+	↓	OP1*OSP	OSP*SP	OP1	+	↓	→
2	↑	+	↓	OP1*OSP	OSP*SP	OP1	^/↓/0	↓	↑
3	0	→	↓	OP1*OSP	OSP*SP	OP1	→	↓	0
4	↓	→	1	OP1*OSP	OSP*SP	OP1	→	^/↓/0	↓
5	↑	→	↑	OP1*OSP	OSP*SP	OP1	1/↓/0	^/↓/0	↑
6	0	↓	↑	OP1*OSP	OSP*SP	OP1	↓ ↓	<u>↑/↓/0</u>	0
7	↓	↓	0	OP1*OSP	OSP*SP	OP1	↓	↓	↓
8	1	Ļ	0	OP1*OSP	OSP*SP	OP1	^/↓/0	↓	1
9	0	↓	0	OP1*OSP	OSP*SP	OP1	↓	↓	0
10	↓	1	↓	OP1*OSP	OSP*SP	OP1	1/↓/0	^/↓/0	↓
11	↑	↑	↓	OP1*OSP	OSP*SP	OP1	↑	^/↓/0	↑
12	0	↑	↓	OP1*OSP	OSP*SP	OP1	1	^/↓/0	0
13	↓	1	↑	OP1*OSP	OSP*SP	OP1	1/↓/0	1	→
14	↑	1	↑	OP1*OSP	OSP*SP	OP1	1	1	↑
15	0	1	↑	OP1*OSP	OSP*SP	OP1	1	1	0
16	↓	1	0	OP1*OSP	OSP*SP	OP1	1/↓/0	1	↓
17	↑	1	0	OP1*OSP	OSP*SP	OP1	↑	1	↑
18	0	1	0	OP1*OSP	OSP*SP	OP1	1	1	0
19	↓	0	↓	OP1*OSP	OSP* <mark>SP</mark>	OP1	↓	↓	↓
20	↑	0	↓	OP1*OSP	OSP* <mark>SP</mark>	OP1	1	↓	↑
21	0	0	↓	OP1*OSP	OSP* <mark>SP</mark>	OP1	0	↓	0
22	↓	0	1	OP1*OSP	OSP* <mark>SP</mark>	OP1	↓	1	↓
23	1	0	1	OP1*OSP	OSP* <mark>SP</mark>	OP1	1	1	↑
24	0	0	1	OP1*OSP	OSP* <mark>SP</mark>	OP1	0	1	0
25	↓	0	0	OP1*OSP	OSP*SP	OP1	↓	0	↓
26	1	0	0	OP1*OSP	OSP*SP	OP1	1	0	1
27	0	0	0	OP1*OSP	OSP*SP	OP1	0	0	0

OP1: Osmostress induced pathway 1; OSP: Osmostress induced STATc pathway; SP: STATc pathway irrespective of osmostress; wt: AX2 wild type cells; ko: knock-out; RIC: random integrant cells; ↑ and/or red: up-regulated; ↓ and/or blue: down-regulated; 0 and/or black: non-regulated; +: treated; -: untreated

3.3.3 Two clusters define STATc-regulated genes

Of the 741 differentially regulated genes that were common between two or three of the above comparisons three genes were removed because of missing values in one of the experiments and the remaining 738 genes were subjected to cluster analysis. This way we could reduce the 27 possible cases from table 8 to eight major outputs or clusters (Figure 31). Cluster 1 houses those genes that were down-regulated by OP1 (Fig 31, III) but up-regulated by OSP and/or SP (Figure 31, II). The regulatory outcome of treated versus untreated wt cells (Figure 31, I) depended on the balance between OP1 and the regulation by STATc. Cluster 2 is comprised of genes that were down-regulated by OP1 and their regulation was found to be largely independent of STATc (Figure 31, I to III). Cluster 3 genes were upregulated by OP1 (Figure 31, III) and down-regulated by STATc through OSP and/or SP (Figure 31, II); the OP1 response dominated the regulatory output in the experiment with treated versus untreated wt cells (Figure 31, I). Interestingly, the upregulation for genes in this cluster was weaker with wt cells than with STATc knockout cells (compare Figure 31, I and III). This suggests that OP1 and STATc act oppositely on these genes. Cluster 4 is characterized by genes that are downregulated by STATc and either up-regulated or non-affected by OP1 (Figure 31, II and III). STATc dominates the regulatory output because the differential expression in the experiment with treated versus untreated wt cells is similar to the experiment with treated RIC versus treated STATc knock-out cells (Figure 31, I and II). Cluster 5 is a very small cluster with genes that are slightly down-regulated by OP1 and OSP (Figure 31, I to III). The last three clusters comprise genes that were up-regulated in treated versus untreated wt cells. Cluster 6 genes were up-regulated by OP1 and either unaffected or slightly up-regulated by STATc, while cluster 7 genes were upregulated by STATc and either unaffected or slightly up-regulated by OP1 (Figure 31, I to III). Finally, cluster 8 genes were up-regulated by OP1 and OSP (Figure 31, I to III). Particularly interesting were the cluster 4 and 7 genes, which were regulated by STATc and this regulation also dominated the transciptional output of wt cells (experiment I). They constitute approximately 20% of the genes that were common between two or three experiments.

Figure 31. Cluster analysis reveals clusters of STATc-regulated genes. Shared genes of figure 28 were clustered with GeneSpring 7.2. Eight major clusters (1-8) can be distinguished of which clusters 4 and 7 contain those genes that are solely regulated by STATc. The dendrogram is displayed on the left. The differentially regulated genes are depicted as coloured lines. The colour represents the fold of induction (red) or repression (blue) (colour scale see figure 15). Non-regulated genes are displayed in yellow. OP1: Osmostress induced pathway 1; OSP: Osmostress induced STATc pathway; SP: STATc pathway irrespective of osmostress.

To learn more about these STATc-regulated genes we subjected them to GO analysis. For the down-regulated genes in cluster 4 we found an enrichment of the biological process terms biosynthesis, proton transport and coenzyme metabolism, in particular ATP metabolism. The up-regulated genes in cluster 7 are characterized by an enrichment of the biological process terms response to osmotic stress, nitrogen compound metabolism, endosome organization and biogenesis and actin filament based process. The full lists of enriched biological process, molecular function and cellular component terms are available as supplementary information (Table SI 2). The results of the comparisons clearly show that STATc is the responsible regulator

for a subset of the differentially regulated genes in the *Dictyostelium* osmostress response. Apparently most of the up-regulated genes in the osmotic response, which encode cytoskeletal proteins are subject to regulation by STATc. This holds also true for a subset of those genes that are involved in metabolism or the response to stress or are responsible for ion homeostasis (Figure 32). These results also imply that at least two signaling pathways get activated in *Dictyostelium* cells in response to hyperosmotic stress.

Figure 32. GO biological process terms enriched in cluster 4 and 7. See figure 16 for figure legend.

Manual annotation revealed that the down-regulation of many vacuolar H⁺-ATPase subunits is dependent on STATc, including *vatA*, *vatC*, *vatE*, *vatM* and putative *vatF* (Table 10). The up-regulation of many cytoskeletal genes is also dependent on STATc, including *abnB* (actobindin), *sevA* (severin), *ctxA* (cortexillin I), *ctxB* (cortexillin II), *dct* (dynacortin), *limD* (LIM domain-containing protein), *forA* (formin homology domain-containing protein), *myoA* (myosin IA heavy chain) and *myoK* (myosin IK heavy chain). It is apparent that many genes involved in metabolism are induced by STATc, which suggests that STATc significantly regulates part of the metabolic machinery of *Dictyostelium* in response to hyperosmotic shock. The up-regulation of some of these genes (e.g. *allC*, *tpsA*, *tpsB*, *celB*, and genes encoding Cellobiohydrolase I, pyrroline-5-carboxylate reductase, Alpha amylase, uricase) could be required for the synthesis of osmolytes. The dependence of three SrfA-induced genes (*sigG*, *sigI*, *sigJ*) on STATc further rules out a role of SrfA in the osmostress response. Interestingly the induction of ptpC encoding the STATc tyrosine phosphatase (J. Williams, personal communication) is also dependent on STATc (Table 11).

Table To. Annotation of OTATO down regulated genes in oldster

DDB ID	Annotation	Differential		
				on III
	bsnK heat shock protein Hsn20 domain-containing protein	0.250	0.561	1 010
DDB0160046	HspG7, heat shock protein Hsp20 domain containing protein	0.230	0.366	5 205
DDB0109040	HspG12 heat shock protein Hsp20 domain-containing protein	0.400	0.500	2.617
DDB0105207	corF cysteine proteinase 5 precursor	0.607	0.047	0 900
DDB0169112	NAD-dependent enimerase/dehydratase family protein	0.007	0.370	2 887
DDB0168979	Member of the Major Eacilitator Superfamily (MES)	0.283	0.367	4 768
DDB0169506	<i>gtr2</i> , alpha amylase domain-containing protein, starch synthase-like protein, might be involved in glycogen biosynthesis, GlycosylTRansferase	0.620	0.592	0.819
DDB0183840	grIE, G-protein-coupled receptor (GPCR) family protein	0.649	0.765	1.659
DDB0201563	vatA, vacuolar H+-ATPase A subunit	0.473	0.630	0.779
DDB0191419	vatC, H(+)-transporting ATPase	0.368	0.599	0.871
DDB0185070	vatE, vacuolar H+-ATPase E subunit	0.442	0.656	1.072
DDB0216215	vatM, vacuolar proton ATPase 100-kDa subunit	0.566	0.552	1.052
DDB0216933	Similar to H+-transporting ATPase	0.445	0.616	0.805
DDB0191505	<i>vacA</i> , vacuolin A	0.482	0.644	1.294
DDB0188183	pantoate-beta-alanine ligase, pantothenate biosynthesis, alanine related	0.755	0.408	2.048
DDB0188843	Physaropepsin.	0.540	0.556	0.717
DDB0191201	<i>cahA</i> , carbonic anhydrase	0.627	0.537	0.952
DDB0191230	AbcG3, ABC transporter G family protein	0.425	0.807	1.869
DDB0191399	GchA, GTP cyclohydrolase I	0.427	0.433	0.598
DDB0192069	slc25a3, phosphate carrier protein, mitochondrial substrate carrier family protein	0.462	0.508	0.968
DDB0206429	Peptidase C1A family protein	0.545	0.604	1.108
DDB0215000	forB, actin binding protein	0.565	0.605	0.692
DDB0215380	<i>ponA</i> , ponticulin	0.588	0.658	1.619
DDB0215363	alrA, aldehyde reductase	0.640	0.666	3.127
DDB0215391	<i>rps2</i> , ribosomal protein S2	0.731	0.599	1.164
DDB0230025	rps8 , 40S ribosomal protein S8	0.586	0.613	0.900
DDB0230068	beta-ketoacyl synthase family protein, Lipid biosynthesis	0.467	0.492	0.895
DDB0231286	alrE, aldo-keto reductase	0.461	0.637	3.608
DDB0231294	<i>idhB</i> , isocitrate dehydrogenase (NAD+), isocitrate dehydrogenase (NAD+) beta subunit	0.587	0.436	0.896
DDB0231311	maspS, aspartyl-tRNA synthetase	0.611	0.636	1.798
DDB0231429	putative glutathione transferase	0.553	0.691	2.981

Table 11. Annotation of STATc up-regulated genes in cluster 7

	Annotation	Differential		
DDB ID		Expression		
		I	П	Ш
DDB0183957	<i>gnrB</i> , gelsolin-related protein	1.756	2.108	0.919
DDB0185034	csbA, contact sites B protein, Cell adhesion	1.903	5.306	0.973
DDB0185093	csbB, contact sites B protein, Cell adhesion	1.880	4.249	1.109
DDB0190330	AbnB, actobindin	1.923	9.515	1.645
DDB0188380	sevA, severin	1.968	1.635	1.287
DDB0191103	ctxA, actin binding protein	2.396	5.184	0.952
DDB0185031	<i>ctxB</i> , cortexillin II	1.932	3.971	0.589
DDB0191252	<i>dct</i> , dynacortin	3.523	4.033	0.915
DDB0201567	limD, LIM domain-containing protein	1.580	2.135	1.063
DDB0214996	forA, actin binding protein	2.105	2.037	1.082
DDB0215392	<i>myoA</i> , myosin IA heavy chain	1.746	2.102	0.946
DDB0185086	myoK, myosin IK, unconventional myosin heavy chain	1.772	2.070	1.012
DDB0185106	ionA, Sodium/potassium-transporting ATPase alpha-4 chain	1.592	2.123	0.982
DDB0185120	<i>rtoA</i> , unknown	15.271	10.184	0.996
DDB0185328	sodB, superoxide dismutase	2.736	3.203	0.707
DDB0185565	<i>cbpB</i> , calcium-binding protein	1.891	1.879	1.058
DDB0185907	slc25a11, mitochondrial 2-oxoglutarate/malate carrier protein	2.723	2.293	1.094

DDB ID	Annotation	Differential Expression		
		I	. 11	III
DDB0219248	<i>tpsA</i> , glycosyltransferase, treholose biosynthesis	4.913	2.541	0.989
DDB0186292	tpsB, glycosyltransferase, treholose biosynthesis	2.706	1.706	1.011
DDB0187157	IPT/TIG domain-containing protein	2.116	1.501	0.902
DDB0187698	DENN domain-containing protein	1.730	2.019	0.869
DDB0188438	P-type ATPase, Ca2+-ATPase	2.035	1.569	1.188
DDB0188646	Serine:pyruvate/alanine:glyoxylate aminotransferase	1.628	2.567	0.695
DDB0190241	Pyrroline-5-carboxylate reductase, PCA reductase	7.508	4.943	2.004
DDB0191109	<i>pmpA</i> , putative membrane protein	2.663	3.698	1.747
DDB0191112	tipC, vacuolar protein sorting-associated protein	3.753	1.794	1.037
DDB0202233	Cellobiohydrolase I	9.796	3.112	1.064
DDB0191122	<i>celB</i> , cellulose binding protein	15.335	2.736	1.297
DDB0191171	<i>cpIA</i> , calpain-like cysteine protease	1.968	3.102	0.931
DDB0191266	mftA, mitochondrial substrate carrier family protein	2.166	1.720	1.218
DDB0191348	pgmA, phosphoglucomutase A	1.535	1.804	0.944
DDB0191392	SigG	6.503	11.017	1.210
DDB0191353	sigl, CBS (cystathionine-beta-synthase) domain-containing protein	6.958	3.480	1.232
DDB0191111	SigJ	27.650	5.931	2.049
DDB0191437	rgaA, RasGTPase-activating protein	1.789	4.964	0.796
DDB0191769	<i>rtnlc</i> , reticulon family protein	2.446	2.219	1.192
DDB0203727	antioxidant enzyme	10.862	8.855	1.024
DDB0204016	<i>gpt10</i> , putative glycophosphotransferase	1.667	1.881	1.077
DDB0204785	prIA, proliferation associated protein, highly conserved metalloexopeptidase, proteolysis	2.047	2.928	0.962
DDB0204945	Alpha amylase family protein, oligosaccharide degradation	4.324	3.823	0.982
DDB0205008	Acetylornitine deacetylase, lysine biosynthesis	2.861	1.971	1.287
DDB0206314	putative transmembrane protein	3.618	2.799	1.276
DDB0214826	<i>racl</i> , Rho GTPase	2.427	2.799	0.955
DDB0214986	<i>ptpC</i> , protein tyrosine phosphatase	1.928	2.157	1.055
DDB0191116	dstB, STATfamily protein	1.751	1.936	1.047
DDB0215378	dstC, STATfamily protein	4.741	8.841	0.509
DDB0217489	WD40-like domain-containing protein	1.951	1.588	0.762
DDB0217773	mitochondrial substrate carrier family protein	3.754	2.618	1.033
DDB0217917	doublecortin domain-containing protein	1.673	2.133	1.029
DDB0218131	CBS (cystathionine-beta-synthase) domain-containing protein	3.723	1.629	1.011
DDB0218638	aass, aminoadipic semialdehyde synthase, NAD+, L-glutamate-forming	2.376	2.428	1.117
DDB0230093	aatB, aspartate aminotransferase, aspartate degradation	2.406	2.834	1.366
DDB0231199	MORN repeat-containing protein kinase	2.007	1.739	1.021
DDB0231436	glutathione S-transferase domain-containing protein	3.107	3.169	1.119
DDB0231470	uricase, urate oxidase	2.305	5.841	1.226
DDB0231471	allC, allantoicase, urate degradation	8.597	7.372	1.537

3.4 Generation of knock-out mutants of putative STATc protein kinase

3.4.1 Possible Janus kinases of STATc in Dictyostelium

In vertebrate, STAT is tyrosine phosphorylated and activated by an upstream Janus kinase (JAK) upon extracellular stimuli (Darnell et al., 1994). So far JAK has not been reported in *Dictyostelium*. However, the activity is present since STATc is tyrosine-phosphorylated during sorbitol treatment for 15 minutes followed by nuclear translocation (Araki et al., 2003). We used two strategies to identify the possible tyrosine kinase of STATc, BLAST search and microarray analysis. The latter
approach assumed that STATc tyrosine kinase is up-regulated in our experimental time scale, and the induction might be dependent on STATc.

For the BLAST search, we used mouse JAK1 (NCBI accession <u>P52332</u>) to blast against all *Dictyostelium* proteins. The best hits are listed in Table 12. In support of the BLAST result, the expression values show that the induction of DDB0231199 is completely dependent on STATc and that of pkyA is partially dependent on STATc (Table 11). Therefore *pkyA* and DDB0231199 were chosen for further investigation.

			Differential Expression						
DDB ID	Annotation	E-value	WT treated vs WT untreated	RIC treated vs STATc- treated	STATc- treated vs STATc- untreated				
DDB0191218	pkyA , tyrosine kinase-like protein	1E-34	1.60	1.11	1.15				
DDB0214883	<i>drkD</i> , tyrosine kinase-like protein	4E-27	1.18	0.63	1.10				
DDB0229963	tyrosine kinase-like protein	3E-24	N/A	N/A	N/A				
DDB0231199	tyrosine kinase-like protein	2E-23	2.01	1.74	1.02				
DDB0230060	drkA, tyrosine kinase-like protein	1E-22	0.76	1.02	0.95				

Table 12. Possible JAK1 homologues in the Dictyostelium genome

Differentially regulated genes are highlighted in red.

3.4.2 Domain architecture of JAK1, PkyA and DDB0231199

Mouse JAK1 is a protein of 1153 amino acids, containing a plasma membrane-binding domain B41, an Src homology 2 (SH2) domain, a possible dual-specificity Ser/Thr/Tyr kinase domain (STYKc) and a tyrosine kinase domain (TyrKc). The first kinase domain is probably non-functional and the second tyrosine kinase domain is the active catalytic domain. *PkyA* and DDB0231199 encode tyrosine kinase-like proteins of 1338 and 1634 amino acids, respectively. The latter contains three MORN (Membrane Occupation and Recognition Nexus) repeats at the N-terminal, which are responsible for the recruitment of the protein to the plasma membrane (Figure 33).

Results

Figure 33. Schematic representation of mouse JAK1, and PkyA and DDB0231199 from *Dictyostelium.* Domain structure was predicted using SMART (<u>http://smart.embl-heidelberg.de/</u>). B41 stands for band 4.1 homologues, a plasma membrane-binding domain, SH2 for Src homology 2 domain, STYKc for possible dual-specificity Ser/Thr/Tyr kinase domain, TyrKc and Pkinase_Tyr for tyrosine kinase domain and MORN for membrane occupation and recognition nexus domain.

3.4.3 PkyA and DDB0231199 gene replacement by homologous recombination

A targeting vector was constructed [see 2.2.3.7] that allowed replacement of a 2.37 kb fragment of the *pkyA* gene (Figure 34). The strategy was such that most part of exon 1 was replaced with the blasticidin resistance cassette (1.35 kb), thus disrupting a part of the Pkinase_Tyr domain. The targeting fragment was transfected into wild type AX2 cells by electroporation.

Figure 34. Strategy for the replacement of the *pkyA* **gene.** Part of the targeting vector is shown on top, the genomic sequence before recombination in the middle and after the recombination event at the bottom. Shown in red colour are the stop codons, six upstream of the Actin-6 promoter and one upstream the Actin-6 terminator. Displayed in orange are the Cre-*loxP* recombination sites. Primers for PCR screening are displayed as arrows. The 3' fragment (656 bp) shown in black was used as probe for the Southern blot. A6P: Actin 6 promoter. A6T: Actin 6 terminator. Bsr: blasticidin resistance cassette. The illustration does not reflect the true scale of actual parts of the disruption vector.

Similarly, a targeting vector was constructed that allowed replacement of a 3.73 kb fragment of the gene DDB0231199 (Figure 35). The targeting fragment consisted of the blasticidin resistance cassette and part of exon 2 and exon 3, thus disrupting the Pkinase_Tyr domain. The targeting fragment was transfected into wild type AX2 cells by electroporation.

Figure 35. Strategy for the replacement of the DDB0231199 gene. The illustration depicts the strategy for DDB0231199 gene replacement. Part of the targeting vector is shown on top, the genomic sequence before recombination in the middle and after the recombination event at the bottom. Shown in red colour are the stop codons, six upstream of the Actin-6 promoter and one upstream the Actin-6 terminator. Displayed in orange are the Cre-*loxP* recombination sites. Primers for PCR screening are displayed as arrows. The 5' fragment (625 bp) shown in black was used as probe for the Southern blot. The illustration does not reflect the true scale of actual parts of the disruption vector.

3.4.4 Confirmation of homologous recombination by PCR and Southern blot analysis

To investigate blasticidin-resistant clones, PCR and Southern blot analysis were carried out.

Genomic DNA isolated from wild type AX2 cells and transformants was used as template for PCR. For screening possible *pkyA* mutants, the forward primer (3' CTRL_F) located at the 5' end region of the bsr gene and two reverse primers (3' CTRL_RI and 3' CTRL_RII) located at the 3' end of the gene were used. In case of a correct recombination event, this should lead to PCR products with a size of 1.1 kb and 1.4 kb, respectively. No PCR product was obtained from AX2 wild type genomic DNA (Figure 36A).

Figure 36. PCR screening and Southern blot analysis of the *pkyA* **knock-out mutant.** A) PCR screening with primers 3' CTRL_F and 3' CTRL_RI (lane 1) and 3' CTRL_F + 3' CTRL_RII (lane 2), yielded the expected products of 1.1 and 1.4 kb, respectively, in the case of the mutant. No product was obtained in the case of wild type AX2 cell (lane 3). B) Southern blot analysis: As expected a band of 3.0 kb in the case of AX2 wild type (lane 1) and of 9.3 kb in the case of the mutant (lane 2) were obtained.

Positive transformants were further confirmed by Southern blot. Genomic DNA was digested with *Eco*RI and probed with the 3' probe [see Figure 34]. The *Eco*RI restriction site was replaced by the targeting fragment in the case of homologous recombination thus leading to a fragment of 9.3 kb. In the wild type situation a fragment of 3.0 kb was obtained as expected (Figure 36B).

Similarly in the case of gene DDB0231199, two forward primers (5' CTRL_FI and 5' CTRL_FII) located at the 5' end of the gene DDB0231199 and the reverse primer (5' CTRL_R) located at the 3' end of bsr gene were used for screening. In the case of homologous recombination event, this should lead to PCR products of 1.4 and 1.5 kb, respectively. No PCR product was obtained from AX2 wild type genomic DNA (Figure 37).

Results

Figure 37. PCR screening and southern blot analysis of the DDB0231199 knock-out mutant. A) PCR screening with primers 5' CTRL_FI and 5' CTRL_R (lane 2) and 5' CTRL_FII and 5' CTRL_R (lane 3) yielded the expected the expected products of 1.4 and 1.5 kb, respectively, in the case of the mutant. No product was obtained in the case of wild type AX2 cell (lane 1). B) Southern blot analysis: a band of 10.8 kb in the case of AX2 wild type (lane 1) and of 8.8 kb in the case of the mutant (lane 2) were obtained.

Positive transformants were further confirmed by southern blot. Genomic DNA was digested with *Hind*III and probed with the 5' probe [see Figure 35]. The endogenous *Hind*III restriction site was replaced by the targeting fragment and a new *Hind*III restriction site was introduced in the case of homologous recombination. This resulted in a fragment of 8.8 kb in the mutant and of 10.8 kb in wild type AX2 cells (Figure 37).

Further characterization of *pkyA* and DDB0231199 knock-out mutants is currently underway.

Dictyostelium is a powerful model system for large-scale studies of the transcriptional and translational adaptations to a changing osmotic environment. The organism is amenable to genetic manipulation, the complete genome has recently been sequenced and cDNA microarrays for global transcriptional analyses are available (Eichinger, 2003; Eichinger et al., 2005; Kaul and Eichinger, 2006; Shaulsky and Loomis, 2002). We have used these advantages of *Dictyostelium* to study its response to hyperosmotic conditions after one hour of exposure to sorbitol, in a time course experiment and by comparing the transcriptional profiles of treated or untreated wild type with SrfA and with STATc knock-out cells, respectively. We have also generated knock-out mutants of two candidate STATc protein kinases that await further characterization.

4.1 Reliability of the microarray results

As a powerful tool to investigate gene expression, cDNA microarrays have had a profound impact on biological research over the last decade. Microarray results need to be reliable as they are used for the generation of hypotheses that constitute the basis for future work. Therefore, the quality control of the used microarrays and the applied analyses are crucially important.

The *Dictyostelium* cDNA microarray is produced in house, and the quality of the microarray results is guaranteed by different means. Firstly, the SpotReport[®]-10 Array Validation System as well as appropriate positive and negative controls are present on the DNA microarray (GEO; <u>http://www.ncbi.nlm.nih.gov/geo</u>; accession number GPL1972), thus allowing to test for sensitivity and linearity of the results. Secondly, LOWESS-normalization is used to correct a possible colour bias that might be generated during the experiment (Figure 13). Thirdly, differentially regulated genes are detected by Significance Analysis of Microarrays (SAM) (Figure 14). SAM calculates a score for every gene with a t-statistic, modified for the use on microarray data. The higher the score the more reliable is the differential expression of the reported gene. This statistic is superior to a fold change cut-off or a t-test, as was shown with Northern blots (Jones and Arvin, 2003) and a simulation (Smyth et al., 2003). As very low folds of change cannot be confirmed with alternative methods and

the biological impact of such small changes is unclear, an additional threshold for the fold change of 1.5 was used for the analysis of all experiments.

Consistent with recent research (Shi, 2006), our microarray data showed much lower standard deviation than real time PCR data (Figure 15). However, the fold change of the microarray data was compressed as compared to real time PCR and Northern blot data for the genes tested (Figure 15 and 16). The phenomenon is well known, its exact cause is, however, not clear.

We performed a stringent test of our experimental settings by comparing untreated cells with untreated cells at t_0 of the time course. The results showed no differentially regulated gene at the threshold of 1.5 (Table 1 and Figure 17), and thus confirmed the reliability of our experimental settings.

4.2 A variety of cellular responses in *Dictyostelium* cells indicates a complex defence mechanism to hyperosmotic conditions

Treatment of *Dictyostelium* cells with 200 mM sorbitol resulted in dramatic transcriptional changes. In the time course experiment more than 800 unique genes were differentially regulated. A cluster analysis revealed four major clusters. Clusters 1 and 3 were characterized by up-regulated and clusters 2 and 4 by down-regulated genes (Figure 17). Several cellular systems seem to be important for the stress response.

4.2.1 Cytoskeleton

Upon sorbitol treatment, *Dictyostelium* cells shrank immediately (Figure 10), actin was tyrosine-phosphorylated (Figure 8) and the actin cytoskeleton was reorganized thus leading to the formation of a stringent cortex (Figure 9). In agreement with the cellular changes many cytoskeletal genes were differentially regulated and found to be enriched in clusters 2, 3 and 4 (Table 3-5).

Actin tyrosine phosphorylation has been reported to inhibit filament nucleation and elongation and to destabilize actin filaments (Liu et al., 2006). The possible mechanism is that tyrosine phosphorylation locks the DNase I-binding loop in a conformation that inhibits ATP hydrolysis accompanying polymerization and also weakens actin-actin interactions, particularly at the pointed end. The latter could inhibit nucleation, increase the critical concentration at the pointed end, inhibit interaction between actin and Arp2/3-VCA (verpolin, cofilin, and acidic domains of

human wASP) or other proteins, and destabilize filaments. The differential regulation of genes involved in actin nucleation, including *arpB* (actin related protein 2), *forA* (formin A), *forB* (formin B), *forF* (formin F), *ponA* (ponticulin), *proA* (profilin I) and *proB* (profilin II), indicates a long term reorganization of the actin cytoskeleton. We also found that *mhcA* (myosin II heavy chain) is upregulated. During osmotic shock, myosin II becomes phosphorylated on both heavy and light chains. The heavy chain phosphorylation is associated with destabilization of existing filaments, and could therefore allow myosin II to mobilize and relocalize (Insall, 1996).

Thus, on the level of the actin cytoskeleton two effects are observed, short term effects i.e. phosphorylation of actin and myosin II and long term effects i.e. differential regulation of a number of cytoskeletal genes.

4.2.2 Metabolism

The enrichment of GO terms in clusters 2 and 4 showed a down-regulation of metabolic processes (Figure 20 and 24). The overall down-regulation of the metabolic machinery seems to be a negative strategy of *Dictyostelium* to overcome this unfavourable condition. In particular the metabolism of carbohydrates, amino acids and nucleotides appear to be affected (Figure 26-29). In addition, we also found a number of up-regulated genes involved in metabolism in cluster 3 (Table 4), which were not reported by GOAT. Some of these could be involved in the production of osmolytes. Further annotation of the genes involved in metabolic pathways suggests a reprogramming of the metabolic machinery, leading to organic osmolytes accumulation, including trehalose, urea and amino acids (Figure 38).

4.2.2.1 Do Dictyostelium cells synthesize a compatible osmolyte?

Schuster et al. analyzed *Dictyostelium* cells exposed to 400 mM sorbitol and found that no accumulation of naturally occurring amino acids and glycerol (Schuster et al., 1996). Zischka et al. measured the osmolarity of cell lysates after 400 mM sorbitol treatment and found that the increase of intracellular osmolarity is not sufficient to counteract the external forces. Therefore, they claimed that *Dictyostelium* does not produce compatible osmolytes upon hyperosmotic shock (Zischka et al., 1999). However, we found that *Dictyostelium* cells were able to adapt to 100 mM sorbitol after about 1 hour, indicating the production of osmolytes to counterbalance

the extracellular osmolarity. Based on our expression data, there are three obvious candidates for organic osmolyte: trehalose, amino acids and urea.

Trehalose is a disaccharide of glucose that is predominantly used in bacteria, fungi (including yeasts), plants, and invertebrates. It is a general stress protectant and assists chaperones in controlling protein denaturation and renaturation (Francois and Parrou, 2001; Singer and Lindguist, 1998a; Singer and Lindguist, 1998b). Vegetative *Dictyostelium* cells store 0.2 mmol glycogen per kg dry weight and other polysaccharides (Rutherford, 1976; Yamada et al., 1974), whose degradation could provide a significant amount of glucose. A role of trehalose as compatible osmolyte in Dictyostelium cells is supported by the up-regulation of the enzyme tpsA that is responsible for the conversion of glucose to trehalose (Figure 26). In addition, we found the down-regulation of four genes related to counting factor CF (cf45-1, cnrl, *ctnA*, and *smlA*). CF regulates group size during development and is important for glucose homeostasis: cells lacking bioactive CF have high glucose levels, whereas transformants oversecreting CF have low glucose levels (Jang et al., 2002). The down-regulation of counting factor related genes might therefore contribute to a rise in glucose, which can be converted to trehalose. Their differential regulation also constitutes an example for genes involved in development and osmostress response (see 4.2.5).

Steck et al. showed that *Dictyostelium* cells have a large cytoplasmic pool (50 mM) of a few small, neutral amino acids, predominantly glycine, alanine and proline. Their excretion was decreased in response to hyperosmotic shock, and the abundance of several additional amino acids, including tyrosine, methionine, valine, leucine, isoleucine and phenylalanine, rose several-fold (Steck et al., 1997). In addition, Zischka et al. showed that hyperosmotic stress induced ubiquitnation of cellular proteins (Zischka et al., 1999). We found an up-regulation of genes involved in protein degradation, and differential regulation of genes involved in amino acids metabolism (Figure 28). This cellular response could explain the accumulation of amino acids.

Another candidate for the organic osmolyte is urea. Urea is a small organic compound, often considered a metabolic waste product, which at high concentrations is known to have deleterious effects on protein structure and function. However, there are several examples of vertebrate tissues and cells that accumulate urea to high concentrations (Yancey, 1994). One of them, marine elasmobranch fishes,

accumulate urea to concentrations as high as 300–500 mmol/l (Ballantyne, 1997; Yancey et al., 1982; Yancey, 1994). We found that three genes encoding the key enzymes for purine degradation were highly up-regulated, including AMP deaminase, uricase and allantoicase. They might contribute to a rise in urea. So far there is no direct biochemical evidence for the accumulation of urea in *Dictyostelium* upon hyperosmotic stress. However, it was reported that urea is accumulated to 2% of the dry weight of cells during development (Payne, 2005) (see also 4.2.5). It is also notworthy that *Dictyostelium* does not have a functioning urea cycle, which plays an important role on the synthesis of urea in human (Payne, 2005).

In support of these metabolic changes we also found differential regulation of several transporter genes. For example, the member of Major Facilitator Superfamily (MFS) gene was significantly down-regulated so that the efflux of small solutes might be decreased. In contrast, the sodium/potassium-transporting ATPase was upregulated which could lead to an increase in intracellular K⁺ (Figure 38).

Figure 38 Possible strategies of *Dictyostelium* to accumulate organic and inorganic solutes. Urea might be accumulated through AMP degradation, trehalose might be synthesized from glucose and protein degradation could lead to an increase of free amino acids. Differential regulation of genes involved in amino acid metabolism could further increase the concentration of amino acids, in particular glutamate, proline, glycine, alanine. An up-regulation of the Na⁺/K⁺ ATPase could lead to an increase in intracellular K⁺ concentration, that could act as counterion for glutamate. The Major Facilitator Superfamily (MFS) gene was significantly down-regulated so that the efflux of small solutes might be decreased. Future biochemical experiments should reveal the contributions of these candidate osmolytes *Dictyostelium* osmoprotection.

In summary, the strategies of *Dictyostelium* to accumulate organic and inorganic solutes might be very similar to the ones from *E. coli* (Figure 5 and 38). We assume that *Dictyostelium* uses a mixture of different osmolytes and protective mechanisms in response to hypertonicity. The supposed metabolic changes appear more similar to *E. coli* than to *S. cerevisiae* (Hohmann, 2002; Wood, 2006).

4.2.3 Antioxidant system

Osmotic stress demands metabolic adjustments and in general requires the cell to invest energy to cope with the consequences of cell damage and to produce protective proteins or metabolites. This in turn leads to the production of reactive oxygen species (ROS) and the change of the redox state in the cell. Hence, the redox metabolism needs to be adjusted (Hohmann, 2002). Koziol et al. demonstrated that hypertonicity increased the generation of superoxide and other reactive species in yeast cells. In addition, yeast mutants lacking superoxide dismutase were more sensitive than wild-type cells to osmotic stress (Koziol et al., 2005).

We found that the expression of a remarkable number of genes encoding enzymes involved in the defense from oxidative damage and in redox metabolism was stimulated in hyperosmotic conditions. Examples of such genes include grxA (glutaredoxin), DDB0203727 (antioxidant enzyme), sodB (superoxide dismutase) and DDB0231436 (glutathione S-transferase domain-containing protein). However, the level of up-regulation of these genes was different: the up-regulation of the antioxidant enzyme and sodB was much higher than that of grxA (glutaredoxin) and of DDB0231436 (glutathione S-transferase domain-containing protein). The antioxidant enzyme might control the peroxide levels while SodB should be responsible for the removal of superoxide (O₂⁻) radicals (Bloomfield and Pears, 2003; Claiborne et al., 1999). However, we also found three genes (DDB0231429, DDB0231434 and DDB0217453) encoding putative glutathione transferases, which were down-regulated significantly. Glutathione transferase catalyses the conjugation of reduced glutathione to ROS, thereby mediating detoxification (Kenneth T. Douglas, 2006). A possible explanation for the different expression pattern of genes encoding components of the antioxidant system is that Dictyostelium might mediate detoxification of ROS independent of glutathione during osmostress. Another possibility is that the up-regulation of glutathione S-transferase domain containing

76

protein is the important enzyme in this process while the other three putative glutathione transferase are not involved.

4.2.4 Contractile vacuole

The v-ATPase is a rotary molecular motor that uses hydrolysis of ATP to pump protons across membranes (Nelson and Harvey, 1999). Specific inhibition of v-ATPase by Concanamycin A increases the pH of endo-lysosomal vesicles and leads to formation of large intracellular vacuoles containing fluid phase. Therefore, it was suggested that v-ATPase functions to regulate membrane fusion (Temesvari et al., 1996). In *Dictyostelium*, the v-ATPase is primarily localized in membranes of the contractile vacuole, an osmoregulatory organelle. Mutant *Dictyostelium* cells with reduced v-ATPase levels showed defects in endocytic function and cytosolic pH regulation but did not manifest osmoregulatory defects (Liu et al., 2002). We found that all subunits of the vacuolar ATPase (v-ATPase) were down-regulated in a similar way (Figure 25). These results suggest that down-regulation of the v-ATPase is part of the cellular response to hyperosmolarity that actually might protect *Dictyostelium* cells from these adverse environmental conditions.

4.2.5 Development and osmostress response

Interestingly, we also found an enrichment of genes involved in developmental processes and fruiting body formation in all four clusters of figure 17 (Figure 17 and Table SI 1). There is a long and parallel history of the effects of osmotic pressure on vegetative cells and developing spores. The formation of dormant spores requires a high osmotic pressure exerted by the matrix between the spores, which consists largely of ammonium phosphate at a 100-200 mM concentration (Cotter et al., 1999). This leads to a raise in cAMP levels in the spore through the activation of adenylyl cyclase G (ACG) which functions as an intramolecular osmosensor (Alvarez-Curto et al., 2007; Virdy et al., 1999). The increase in intracellular cAMP in turn activates PKA which inhibits spore germination (Cotter et al., 2000; van Es et al., 1996).

Another intriguing parallel between hyperosmotically stressed vegetative cells and developing spores is the tyrosine phosphorylation of actin (Howard et al., 1993; Jungbluth et al., 1995; Kishi et al., 1998). The phosphorylation of actin during development is reduced in the *srfA*⁻ mutant (Escalante et al., 2004b). *SrfA* encodes a MADS-box (**M**CM1, **A**RG80 from yeast, **D**eficient from Arabidopsis and **S**RF from

humans) transcription factor. It plays an important role in the development of *Dictyostelium*, as it is required for full maturation of spores (Escalante and Sastre, 1998). *SrfA* itself was slightly up-regulated upon sorbitol treatment (Table 4). In addition, several *srfA*-induced genes were highly up-regulated (Table 6). Therefore we reasoned that SrfA might be involved in the transcriptional response to hypertonicity. However, comparison of the *srfA*⁻ mutant with wild type cells resulted in no significant transcriptional differences (Table 7). We therefore conclude that *srfA* is not involved in the transcriptional regulation to hypertonicity.

The enrichment of developmental genes in response to hyperosmotic stress is best explained if one assumes that the mechanisms which evolved to protect vegetative *Dictyostelium* cells from high osmolarity have been adapted for developmental processes.

4.3 STATc is a key regulator of the transcriptional response to

hyperosmotic stress

We were interested in components of signal transduction pathway(s) that could get activated in response to sorbitol. We reasoned that signaling components might be among the early differentially regulated genes.

At 15 minutes post treatment only 38 genes were differentially regulated and 35 of these were up-regulated. Manual annotation revealed several interesting genes in this group (Table 6), among them STATc. STAT proteins are latent transcription factors that dimerise upon activation through tyrosine phosphorylation followed by translocation to the nucleus where they regulate the expression of target genes (Bromberg and Chen, 2001; Horvath, 2000). There are four different STAT proteins encoded in the *Dictyostelium* genome, however, no STATs are present in yeast (Williams et al., 2005). In the time course experiment with sorbitol-treated AX2 wild type cells we found STATa, b and c up-regulated, however, induction of STATc was most pronounced. Interestingly, when mammalian cells are subjected to osmotic or oxidative stress they activate JAK-STAT signaling pathways in addition to MAPK cascades (Bode et al., 1999; Carballo et al., 1999; Gatsios et al., 1998).

To learn more about the role of STATc in signal transduction upon hyperosmotic shock in *Dictyostelium* we made use of a STATc null mutant (Fukuzawa et al., 2001) and compared the expression profiles of AX2 wt treated

versus untreated with STATc knock-out treated versus untreated and RIC (random integrant cells) treated versus STATc knock-out treated cells. Our results show that STATc regulates the expression of approximately 20% of the more than 700 genes that were common between two or three of the above comparisons. In particular, we found that STATc dominated the osmostress-dependent expression of genes in clusters 4 and 7 (Figure 31). For most of these genes, including STATc itself, we observed the first transcriptional changes already 15 or 30 minutes post treatment. This period of time appears not to be sufficient for de novo expression of a STATc-dependent transcription factor that would then differentially regulate the observed target genes. Therefore, we assume that STATc directly regulates the expression of these genes.

Another intriguing result was that STATc was responsible for the up- as well as down-regulation of target genes. This result can be explained if we assume that STATc acts together with a transcriptional activator for the up-regulation and/or a transcriptional repressor for the down-regulation of target genes (Figure 39). The nature of the putative transcriptional cofactor(s) is currently unknown.

GO annotation of cluster 4 and 7 genes showed that STATc is responsible for the coordinated regulation of genes in distinct functional categories. Among the STATc-dependent genes we found an enrichment of genes involved in proton transport (due to v-ATPase subunits), actin-filament based processes, in the response to osmotic stress and culmination during fruiting body formation (Figure 32). During development STATc is activated by DIF, which induces the differentiation of prestalk O cells (Fukuzawa et al., 2001; Thompson and Kay, 2000). Previous work suggested a clear separation of the STATc target genes in development and stress (Araki et al., 2003). In contrast, our GO results (Figure 30) show the enrichment of genes in the categories "development" and "culmination during fruiting body formation".

STATc was also responsible for the differential regulation of a number of metabolic enzymes and transporter genes, indicating that STATc could regulate the accumulation of some organic solutes. Araki et al. found a small difference in cell viability of wild type cells and the STATc mutant ($84\pm17\%$ and $59\pm21\%$, respectively) upon treatment with sorbitol. However, they claimed that the STATc mutant is not abnormally sensitive to hyperosmotic stress and attributed the

difference to experimental variance (Araki et al., 2003). Further experiments should clarify this issue.

In order to further investigate the STATc signaling pathway, we knocked out two possible candidates of STATc kinases, PkyA and DDB0231199. If either of them is the STATc tyrosine kinase, we would expect that STATc signaling upon osmostress is abolished. Experiments in this direction are underway.

Figure 39 The model depicts known and putative signal transduction pathways that might get activated in *Dictyostelium* cells in response to hypertonicity. In contrast to yeast no osmosensors are so far known in *Dictyostelium*. The OP1 (osmostress-dependent pathway 1) pathway is under control of the hybrid histidine kinase DokA and leads to elevated cAMP levels thereby activating protein kinase A (PKA) (Schuster et al., 1996). The cGMP pathway, which we named OSP (osmostress-dependent STATc pathway), leads to the activation and nuclear translocation of STATc (Araki et al., 2003). Other components of this pathway are probably the small GTPase Rap1, a guanylate cyclase (GC), a cGMP binding protein (GbpC), PkyA or DDB0231199 and the tyrosine phosphatase PTP3. Based on differential regulation of putative MAPK components we propose a third signaling branch, which might be under the control of a MAPK cascade, similar to yeast and mammals. Genes that were up-regulated in the experiments are labelled in red. PM: plasma membrane; NM: nuclear membrane.

4.4 Signaling pathways in response to hypertonicity

In yeast the HOG signaling pathway is responsible for the adaptation of the cells to high osmolarity. It can be activated by either of two upstream pathways, the SHO1 and the SLN1 pathway, which converge on Pbs2, a MAPKK and scaffolding protein that brings together the other components of the MAPK cascade (de Nadal et al., 2002). SHO1 and SLN1 are putative yeast osmosensors and there is possibly a third one, Msb2 (Maeda et al., 1995; Maeda et al., 1994; O'Rourke and Herskowitz, 2002). Microarray analysis showed that Msb2 and SHO1 function in parallel and regulate identical gene sets in hog1 mutants (O'Rourke and Herskowitz, 2002). Investigation of the yeast transcriptional response at different osmolarities showed that different response pathways are triggered. The environmental stress response pathway is preferentially used during extreme osmotic stress, the SLN1 branch but not the Sho1 branch of the HOG pathway is used during modest osmotic stress while all three pathways contribute significantly to differential gene expression at intermediate osmolarities (Causton et al., 2001; O'Rourke and Herskowitz, 2004). Our results of the osmostress-dependent transcriptional regulation of STATc knockout and wt cells are best explained if one assumes two or even three signaling pathways that get activated upon subjecting Dictyostelium cells to hyperosmotic conditions. This conclusion is also supported by previous findings, which pointed to the activation of two independent signaling branches in the *Dictyostelium* osmostress response. The hybrid histidine kinase DokA branch and downstream effectors and the cGMP branch, that might be under the control of Rap1 (Kang et al., 2002; Kuwayama et al., 1996; Ott et al., 2000; Schuster et al., 1996). STATc is either part of the cGMP branch or could define a third independent signaling branch. The activation and nuclear translocation of STATc upon addition of 8Br-cGMP argues for STATc being a component of the cGMP branch, however, osmotic stress induced STATc phosphorylation was still observed in a double mutant which lacked both known Dictyostelium guanylate cyclases (Araki et al., 2003). Putative regulators of STATc are protein tyrosine phophatase 3 (PTP3) and PkyA or DDB0231199, tyrosine kinase-like protein kinases with homology to the mammalian JAK kinase (Gamper et al., 1999; Kimmel, 2005). While none of the known components of the DokA pathway were differentially regulated in response to hypertonicity, we found that PTP3, PkyA and DDB0231199, like STATc, were up-regulated. Furthermore, we found in our list of differentially regulated genes several up-regulated protein kinases that could be

part of a MAPK cascade, thus raising the possibility that *Dictyostelium*, like yeast and mammals, also uses a MAPK cascade in response to osmotic stress. Figure 39 depicts known and putative components of the *Dictyostelium* osmotic response under the assumption of three parallel signaling pathways.

A comprehensive view on the osmotic stress response requires a detailed understanding of various cellular aspects such as signal sensing and transduction, control of transport processes and metabolism and differential regulation of transcription and translation. Future work should clarify the exact role of STATc and unravel further critical components of the signal chains that get activated in *Dictyostelium* under adverse osmotic conditions. Aaronson, D. S. and Horvath, C. M. (2003). The JAK-STAT Pathway 10.1126/stke.2003.197.cm11. *Sci. STKE* **2003**, cm11-.

Adams, M., Kelley, J., Gocayne, J., Dubnick, M., Polymeropoulos, M., Xiao, H., Merril, C., Wu, A., Olde, B., Moreno, R. et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project 10.1126/science.2047873. *Science* **252**, 1651-1656.

Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran, T., Yu, X. et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. **403**, 503-511.

Alvarez-Curto, E., Saran, S., Meima, M., Zobel, J., Scott, C. and Schaap, P. (2007). cAMP production by adenylyl cyclase G induces prespore differentiation in *Dictyostelium* slugs. *Development.* **134**, 959-66. Epub 2007 Jan 31.

Alwine JC, K. D., Stark GR. (1977). Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. *Proc Natl Acad Sci U S A.* **74**, 5350-4.

Araki, T., Tsujioka, M., Abe, T., Fukuzawa, M., Meima, M., Schaap, P., Morio, T., Urushihara, H., Katoh, M., Maeda, M. et al. (2003). A STAT-regulated, stressinduced signalling pathway in Dictyostelium 10.1242/jcs.00501. *J Cell Sci* **116**, 2907-2915.

Ballantyne, J. S. (1997). Jaws: The Inside Story. The Metabolism of Elasmobranch Fishes. *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology* **118**, 703-742.

Baxter, C. J., Redestig, H., Schauer, N., Repsilber, D., Patil, K. R., Nielsen, J., Selbig, J., Liu, J., Fernie, A. R. and Sweetlove, L. J. (2007). The Metabolic Response of Heterotrophic Arabidopsis Cells to Oxidative Stress 10.1104/pp.106.090431. *Plant Physiol.* **143**, 312-325.

Berk, A. J. and Sharp, P. A. (1977). Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. *Cell* **12**, 721-732.

Bloomfield, G. and Pears, C. (2003). Superoxide signalling required for multicellular development of Dictyostelium 10.1242/jcs.00649. *J Cell Sci* **116**, 3387-3397.

Bode, J. G., Gatsios, P., Ludwig, S., Rapp, U. R., Haussinger, D., Heinrich, P. C. and Graeve, L. (1999). The Mitogen-activated Protein (MAP) Kinase p38 and Its Upstream Activator MAP Kinase Kinase 6 Are Involved in the Activation of Signal Transducer and Activator of Transcription by Hyperosmolarity 10.1074/jbc.274.42.30222. *J. Biol. Chem.* **274**, 30222-30227.

Bosgraaf, L., Russcher, H., Smith, J. L., Wessels, D., Soll, D. R. and van Haastert, P. J. M. (2002). A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium. *EMBO J.* **21**, 4560-4570.

Bromberg, J. and Chen, X. (2001). STAT proteins: Signal tranducers and activators of transcription

Methods in Enzymology. In *Part G: Regulators and Effectors of Small GTPases*, (ed. C. J. D. a. A. H. W.E. Balch), pp. 138-151: Academic Press.

Cantor, C. R., Mirzabekov, A. and Southern, E. (1992). Report on the sequencing by hybridisation workshop. **13**, 1378-1383.

Carballo, M., Conde, M., El Bekay, R., Martin-Nieto, J., Camacho, M. J., Monteseirin, J., Conde, J., Bedoya, F. J. and Sobrino, F. (1999). Oxidative Stress Triggers STAT3 Tyrosine Phosphorylation and Nuclear Translocation in Human Lymphocytes 10.1074/jbc.274.25.17580. *J. Biol. Chem.* **274**, 17580-17586.

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S. and Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. *Mol. Biol. Cell* **12**, 323-337.

Chisholm, R. L. and Firtel, R. A. (2004). Insights into morphogenesis from a simple developmental system. *Nature Reviews Molecular Cell Biology* **5**, 531-541.

Claiborne, A., Yeh, J. I., Mallett, T. C., Luba, J., Crane, E. J., Charrier, V. and Parsonage, D. (1999). Protein-Sulfenic Acids: Diverse Roles for an Unlikely Player in Enzyme Catalysis and Redox Regulation. *Biochemistry* **38**, 15407-15416.

Claviez, M., Pagh, K., Maruta, H., Baltes, W., Fisher, P. and Gerisch, G. (1982). Electron microscopic mapping of monoclonal antibodies on the tail region of Dictyostelium myosin. *EMBO J.* **1**, 1017-1022.

Cohen, P., Bouaboula, M., Bellis, M., Baron, V., Jbilo, O., Poinot-Chazel, C., Galiegue, S., Hadibi, E.-H. and Casellas, P. (2000). Monitoring Cellular Responses to Listeria monocytogenes with Oligonucleotide Arrays 10.1074/jbc.275.15.11181. *J. Biol. Chem.* **275**, 11181-11190.

Cotter, D. A., Dunbar, A. J., Buconjic, S. D. and Wheldrake, J. F. (1999). Ammonium phosphate in sori of *Dictyostelium discoideum* promotes spore dormancy through stimulation of the osmosensor ACG. *Microbiology.* **145**, 1891-901.

Cotter, D. A., Mahadeo, D. C., Cervi, D. N., Kishi, Y., Gale, K., Sands, T. and Sameshima, M. (2000). Environmental regulation of pathways controlling sporulation, dormancy and germination utilizes bacterial-like signaling complexes in *Dictyostelium discoideum*. *Protist.* **151**, 111-26.

Cronkite, D., Diekman, A., Lewallen, B. and Phillips, L. (1993). Aminotransferase and the production of alanine during hyperosmotic stress in Paramecium calkinsi. *J Eukaryot Microbiol.* **40**, 796-800.

D. L. Cronkite, S. K. P. (1989). Free amino acids and cell volume regulation in the euryhaline ciliate <I>Paramecium calkinsi</I>. *Journal of Experimental Zoology* **251**, 275-284.

Darnell, J., Jr, Kerr, I. and Stark, G. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins 10.1126/science.8197455. *Science* **264**, 1415-1421.

de Hostos, E., Rehfuess, C., Bradtke, B., Waddell, D., Albrecht, R., Murphy, J. and Gerisch, G. (1993). Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility 10.1083/jcb.120.1.163. *J. Cell Biol.* **120**, 163-173.

de Nadal, E., Alepuz, P. M. and Posas, F. (2002). Dealing with osmostress through MAP kinase activation. *EMBO Rep.* **3**, 735-40.

Dowd, C., Wilson, L. W. and McFadden, H. (2004). Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp vasinfectum. *Molecular Plant-Microbe Interactions* **17**, 654-667.

Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P. and Trent, J. M. (1999). Expression profiling using cDNA microarrays. *Nature Genetics* **21**, 10-14.

Eichinger, L. (2003). Revamp a model - status and prospects of the Dictyostelium genome project. *Curr. Genet.* **44**, 59-72.

Eichinger, L., Pachebat, J. A., Glockner, G., Rajandream, M.-A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q. et al. (2005). The genome of the social amoeba Dictyostelium discoideum. *Nature* **435**, 43-57.

Epstein, W. (1986). Osmoregulation by potassium transport in Escherichia coli. *FEMS Microbiology Letters* **39**, 73-78.

Escalante, R., Iranfar, N., Sastre, L. and Loomis, W. F. (2004a). Identification of genes dependent on the MADS box transcription factor SrfA in Dictyostelium discoideum development. *Eukaryot Cell.* **3**, 564-6.

Escalante, R. and Sastre, L. (1998). A Serum Response Factor homolog is required for spore differentiation in Dictyostelium. *Development* **125**, 3801-3808.

Escalante, R., Yamada, Y., Cotter, D., Sastre, L. and Sameshima, M. (2004b). The MADS-box transcription factor SrfA is required for actin cytoskeleton organization and spore coat stability during Dictyostelium sporulation. *Mechanisms of Development* **121**, 51-56.

Farbrother, P., Wagner, C., Na, J., Tunggal, B., Morio, T., Urushihara, H., Tanaka, Y., Schleicher, M., Steinert, M. and Eichinger, L. (2006). Dictyostelium transcriptional host cell response upon infection with Legionella doi:10.1111/j.1462-5822.2005.00633.x. *Cellular Microbiology* **8**, 438-456.

Francois, J. and Parrou, J. L. (2001). Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. *FEMS Microbiology Reviews* **25**, 125-145.

Fukuzawa, M., Araki, T., Adrian, I. and Williams, J. G. (2001). Tyrosine phosphorylation-independent nuclear translocation of a Dictyostelium STAT in response to DIF signaling. *Mol. Cell* **7**, 779-788.

Gamper, M., Kim, E., Howard, P. K., Ma, H., Hunter, T. and Firtel, R. A. (1999). Regulation of *Dictyostelium* protein-tyrosine phosphatase-3 (PTP3) through osmotic shock and stress stimulation and identification of pp130 as a PTP3 substrate. *J Biol Chem.* **274**, 12129-38. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D. and Brown, P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to Environmental Changes. *Mol. Biol. Cell* **11**, 4241-4257.

Gatsios, P., Terstegen, L., Schliess, F., Haussinger, D., Kerr, I. M., Heinrich, P. C. and Graeve, L. (1998). Activation of the Janus Kinase/Signal Transducer and Activator of Transcription Pathway by Osmotic Shock 10.1074/jbc.273.36.22962. *J. Biol. Chem.* **273**, 22962-22968.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A. et al. (1999). Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring

10.1126/science.286.5439.531. Science 286, 531-537.

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. *Journal of Molecular Biology* **166**, 557-580.

Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K., Lewis, S., Marshall, B., Mungall, C. et al. (2004). The Gene Ontology (GO) database and informatics resource. *Nucleic Acids Res* **32**, D258-61.

Higgins, C. F., Cairney, J., Stirling, D. A., Sutherland, L. and Booth, I. R. (1987). Osmotic regulation of gene expression: ionic strength as an intracellular signal? *Trends in Biochemical Sciences* **12**, 339-344.

Hoheisel, J. D. (2006). Microarray technology: beyond transcript profiling and genotype analysis. **7**, 200-210.

Hohmann, S. (2002). Osmotic Stress Signaling and Osmoadaptation in Yeasts 10.1128/MMBR.66.2.300-372.2002. *Microbiol. Mol. Biol. Rev.* 66, 300-372.

Horvath, C. M. (2000). STAT proteins and transcriptional responses to extracellular signals. *Trends in Biochemical Sciences* **25**, 496-502.

Hou, S. X., Zheng, Z., Chen, X. and Perrimon, N. (2002). The JAK/STAT Pathway in Model Organisms: Emerging Roles in Cell Movement. *Developmental Cell* **3**, 765-778.

Howard, P. K., Sefton, B. M. and Firtel, R. A. (1993). Tyrosine phosphorylation of actin in Dictyostelium associated with cell-shape changes. *Science* **259**, 241-244.

Insall, R. H. (1996). Osmoregulation: Cyclic GMP and the big squeeze. *Curr. Biol.* **6**, 516-518.

Jamers, A., Van der Ven, K., Moens, L., Robbens, J., Potters, G., Guisez, Y., Blust, R. and De Coen, W. (2006). Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. *Aquatic Toxicology* **80**, 249-260.

Jang, W., Chiem, B. and Gomer, R. H. (2002). A Secreted Cell Number Counting Factor Represses Intracellular Glucose Levels to Regulate Group Size in Dictyostelium 10.1074/jbc.M205635200. J. Biol. Chem. 277, 39202-39208.

John Tyler Bonner, L. J. S. (1947). Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. *Journal of Experimental Zoology* **106**, 1-26.

Jones, J. O. and Arvin, A. M. (2003). Microarray Analysis of Host Cell Gene Transcription in Response to Varicella-Zoster Virus Infection of Human T Cells and Fibroblasts In Vitro and SCIDhu Skin Xenografts In Vivo. *J. Virol.* **77**, 1268-1280.

Jungbluth, A., Eckerskorn, C., Gerisch, G., Lottspeich, F., Stocker, S. and Schweiger, A. (1995). Stress-induced tyrosine phosphorylation of actin in Dictyostelium cells and localization of the phosphorylation site to tyrosine-53 adjacent to the DNase I binding loop. *FEBS Lett.* **375**, 87-90.

Kang, R. J., Kae, H., Ip, H., Spiegelman, G. B. and Weeks, G. (2002). Evidence for a role for the Dictyostelium Rap1 in cell viability and the response to osmotic stress. *J. Cell Sci.* **115**, 3675-3682.

Kaul, M. and Eichinger, L. (2006). Analysis of gene expression using cDNA microarrays. In *Methods in Molecular Biology, Dictyostelium discoideum*, (ed. F. Rivero), pp. 75-93. Totowa: Humana Press.

Kawata, T., Shevchenko, A., Fukuzawa, M., Jermyn, K. A., Totty, N. F., Zhukovskaya, N. V., Sterling, A. E., Mann, M. and Williams, J. G. (1997). SH2 Signaling in a Lower Eukaryote: A STAT Protein That Regulates Stalk Cell Differentiation in Dictyostelium. *Cell* **89**, 909-916.

Kenneth T. Douglas. (2006). Mechanism of Action of Glutathione-Dependent Enzymes. In *Advances in Enzymology and Related Areas of Molecular Biology*, (ed. A. Meister), pp. 103-167.

Khurana, B., Khurana, T., Khaire, N. and Noegel, A. A. (2002). Functions of LIM proteins in cell polarity and chemotactic motility. *EMBO J.* **21**, 5331-5342.

Kimmel, A. R. (2005). The *Dictyostelium* Kinome: Protein Kinase Signaling Pathways that Regulate Growth and Development. In *Dictyostelium Genomics*, (ed. A. Kuspa), pp. 211-234. Norfolk, UK: Horizon Bioscience.

Kimmel, A. R. and Faix, J. (2006). Generation of multiple knockout mutants using the Cre-loxP system. *Methods Mol Biol.* **346**, 187-199.

Kishi, Y., Clements, C., Mahadeo, D. C., Cotter, D. A., Sameshima, M., van Es, S., Virdy, K. J., Pitt, G. S., Meima, M., Sands, T. W. et al. (1998). High levels of actin tyrosine phosphorylation: correlation with the dormant state of *Dictyostelium* spores. *J Cell Sci.* **111**, 2923-32.

Koziol, S., Zagulski, M., Bilinski, T. and Bartosz, G. (2005). Antioxidants protect the yeast <i>Saccharomyces cerevisiae</i> against hypertonic stress. *Free Radical Research* **39**, 365-371.

Kuwayama, H., Ecke, M., Gerisch, G. and van Haastert, P. J. M. (1996). Protection against osmotic stress by cGMP-mediated myosin phosphorylation. *Science* **271**, 207-209.

Kwon, H. M. and Handler, J. S. (1995). Cell volume regulated transporters of compatible osmolytes. *Curr Opin Cell Biol.* **7**, 465-71.

Kyhse-Andersen, J. (1984). Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polycrylamide to nitrocellulose. *Journal of Biochemical and Biophysical Methods* **10**, 203-209.

Laemmli, U. K., Beguin, F. and Gujer-Kellenberger, G. (1970). A factor preventing the major head protein of bacteriophage T4 from random aggregation. *Journal of Molecular Biology* **47**, 69-74.

Lehrach, H., Diamond, D., Wozney, J. M. and Boedtker, H. (1977). RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. *Biochemistry* **16**, 4743-4751.

Leon Goldstein, M. W. M. (1994). Volume-activated amino acid transport and cell signaling in skate erythrocytes. *Journal of Experimental Zoology* **268**, 133-138.

Liang, P. and Pardee, A. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction 10.1126/science.1354393. *Science* **257**, 967-971.

Liu, T. Y., Mirschberger, C., Chooback, L., Arana, Q., Dal Sacco, Z., MacWilliams, H. and Clarke, M. (2002). Altered expression of the 100 kDa subunit of the Dictyostelium vacuolar proton pump impairs enzyme assembly, endocytic function and cytosolic pH regulation. *J. Cell Sci.* **115**, 1907-1918.

Liu, X., Shu, S., Hong, M.-S. S., Levine, R. L. and Korn, E. D. (2006). Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments 10.1073/pnas.0606321103. *PNAS* **103**, 13694-13699.

M. Sussman. (1951). The origin of cellular heterogeneity in the slime molds, dictyosteliaceae. *Journal of Experimental Zoology* **118**, 407-417.

Maeda, T., Takekawa, M. and Saito, H. (1995). Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor 10.1126/science.7624781. *Science* **269**, 554-558.

Maeda, T., Wurgler-Murphy, S. M. and Saito, H. (1994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. **369**, 242-245.

Malchow, D., Nagele, B., Schwartz, H. and Gerisch, G. (1972). Membrane-bound cyclic AMP phosphodiesterase in chemotactically responding cells of Dictyostelium discoideum. *Eur. J. Biochem.* **28**, 136-142.

McLaggan, D., Naprstek, J., Buurman, E. and Epstein, W. (1994).

Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. *J. Biol. Chem.* **269**, 1911-1917.

Nelson, N. and Harvey, W. R. (1999). Vacuolar and Plasma Membrane Proton-Adenosinetriphosphatases. *Physiol. Rev.* **79**, 361-385.

Noegel, A. and Schleicher, M. (2000). The actin cytoskeleton of Dictyostelium: a story told by mutants. *J Cell Sci* **113**, 759-766.

Noegel, A., Welker, D. L., Metz, B. A. and Williams, K. L. (1985). Presence of Nuclear Associated Plasmids in the Lower Eukaryote Dictyostelium-Discoideum. *Journal of Molecular Biology* **185**, 447-450.

O'Rourke, S. M. and Herskowitz, I. (2002). A Third Osmosensing Branch in Saccharomyces cerevisiae Requires the Msb2 Protein and Functions in Parallel with the Sho1 Branch. *Mol. Cell. Biol.* **22**, 4739-4749.

O'Rourke, S. M. and Herskowitz, I. (2004). Unique and Redundant Roles for HOG MAPK Pathway Components as Revealed by Whole-Genome Expression Analysis. *Mol. Biol. Cell* **15**, 532-542.

O'Rourke, S. M., Herskowitz, I. and O'Shea, E. K. (2002). Yeast go the whole HOG for the hyperosmotic response. *Trends in Genetics* **18**, 405-412.

Oehme, F. and Schuster, S. (2001). Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA. *BMC Biochemistry* **2**, 2.

Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima, Y. and Matsubara, K. (1992). Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. **2**, 173-179.

Ott, A., Oehme, F., Keller, H. and Schuster, S. C. (2000). Osmotic stress response in Dictyostelium is mediated by cAMP. *EMBO J.* **19**, 5782-5792.

Payne, S. H. (2005). Metabolic Pathways. Dictyostelium Genomics.

Pintsch, T., Satre, M., Klein, G., Martin, J. B. and Schuster, S. C. (2001). Cytosolic acidification as a signal mediating hyperosmotic stress responses in Dictyostelium discoideum. *BMC Cell Biol.* **2:9**, 15 pages.

Poolman, B. and Glaasker, E. (1998). Regulation of compatible solute accumulation in bacteria doi:10.1046/j.1365-2958.1998.00875.x. *Molecular Microbiology* **29**, 397-407.

Posas, F., Chambers, J. R., Heyman, J. A., Hoeffler, J. P., de Nadal, E. and Arino, J. (2000). The Transcriptional Response of Yeast to Saline Stress 10.1074/jbc.M910016199. *J. Biol. Chem.* **275**, 17249-17255.

Poustka, A. (1986). Molecular approaches to mammalian genetics. 51, 131-139.

Raper, K. (1935). Dictyostelium discoideum, a new species of slime mold from decaying forest leaves. *J Agric Res.* **58**, 135–147.

Rep, M., Albertyn, J., Thevelein, J., Prior, B. and Hohmann, S. (1999). Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae [In Process Citation]. *Microbiology* **145**, 715-727.

Rep, M., Krantz, M., Thevelein, J. M. and Hohmann, S. (2000). The Transcriptional Response of Saccharomyces cerevisiae to Osmotic Shock. Hot1p AND Msn2p/Msn4p ARE REQUIRED FOR THE INDUCTION OF SUBSETS OF HIGH OSMOLARITY GLYCEROL PATHWAY-DEPENDENT GENES 10.1074/jbc.275.12.8290. *J. Biol. Chem.* **275**, 8290-8300.

Rivero, F., Koppel, B., Peracino, B., Bozzaro, S., Siegert, F., Weijer, C. J., Schleicher, M., Albrecht, R. and Noegel, A. A. (1996). The role of the cortical cytoskeleton: F-actin crosslinking proteins protect against osmotic stress, ensure cell size, cell shape and motility, and contribute to phagocytosis and development. *J. Cell Sci.* **109**, 2679-2691.

Roelofs, J. and Van Haastert, P. J. M. (2002). Characterization of two unusual guanylyl cyclases from Dictyostelium. 10.1074/jbc.M111437200. *J. Biol. Chem.*, M111437200.

Rutherford, C. L. (1976). Glycogen degradation during migration of presumptive cells types in Dictyostelium discoideum. *Biochimica et Biophysica Acta (BBA) - General Subjects* **451**, 212-222.

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Ed. *Cold Spring Harbor Laboratory, Cold Spring Harbor, New York*.

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray 10.1126/science.270.5235.467. *Science* **270**, 467-470.

Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P. O. and Davis, R. W. (1996). Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes 10.1073/pnas.93.20.10614. *PNAS* **93**, 10614-10619.

Schulze, A. and Downward, J. (2001). Navigating gene expression using microarrays [mdash] a technology review. **3**, E190-E195.

Schuster, S. C., Noegel, A. A., Oehme, F., Gerisch, G. and Simon, M. I. (1996). The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium. *EMBO J.* **15**, 3880-3889.

Shaulsky, G. and Loomis, W. F. (2002). Gene expression patterns in Dictyostelium using microarrays. *Protist* **153**, 93-98.

Shi, L. (2006). The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. **24**, 1151-1161.

Simon, R., Radmacher, M. D., Dobbin, K. and McShane, L. M. (2003). Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification 10.1093/jnci/95.1.14. *J. Natl. Cancer Inst.* **95**, 14-18.

Simpson, P., Spudich, J. and Parham, P. (1984). Monoclonal antibodies prepared against Dictyostelium actin: characterization and interactions with actin 10.1083/jcb.99.1.287. *J. Cell Biol.* **99**, 287-295.

Singer, M. A. and Lindquist, S. (1998a). Multiple Effects of Trehalose on Protein Folding In Vitro and In Vivo. *Molecular Cell* **1**, 639-648.

Singer, M. A. and Lindquist, S. (1998b). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. *Trends in Biotechnology* **16**, 460-468.

Smyth, G. K., Yang, Y. H. and Speed, T. (2003). Statistical issues in cDNA microarray data analysis. *Functional Genomics* **224**, 111-136.

Steck, T., Chiaraviglio, L. and Meredith, S. (1997). Osmotic homeostasis in Dictyostelium discoideum: excretion of amino acids and ingested solutes. *J Eukaryot Microbiol.* **44**, 503-510.

Strom, A. R., Falkenberg, P. and Landfald, B. (1986). Genetics of osmoregulation in Escherichia coli: Uptake and biosynthesis of organic osmolytes. *FEMS Microbiology Letters* **39**, 79-86.

Temesvari, L., Rodriguez-Paris, J., Bush, J., Zhang, L. and Cardelli, J. (1996). Involvement of the vacuolar proton-translocating ATPase in multiple steps of the endo-lysosomal system and in the contractile vacuole system of Dictyostelium discoideum. *J Cell Sci* **109**, 1479-1495.

Thomason, P. and Kay, R. (2000). Eukaryotic signal transduction via histidineaspartate phosphorelay. *J. Cell Sci.* **113**, 3141-3150.

Thompson, C. R. L. and Kay, R. R. (2000). The role of DIF-1 signaling in Dictyostelium development. *Mol. Cell* **6**, 1509-1514.

Tsujimoto, Y., Izawa, S. and Inoue, Y. (2000). Cooperative Regulation of DOG2, Encoding 2-Deoxyglucose-6-Phosphate Phosphatase, by Snf1 Kinase and the High-Osmolarity Glycerol-Mitogen-Activated Protein Kinase Cascade in Stress Responses of Saccharomyces cerevisiae. *J. Bacteriol.* **182**, 5121-5126.

Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response 10.1073/pnas.091062498. *PNAS* **98**, 5116-5121.

Urushihara, H., Morio, T., Saito, T., Kohara, Y., Koriki, E., Ochiai, H., Maeda, M., Williams, J. G., Takeuchi, I. and Tanaka, Y. (2004). Analyses of cDNAs from growth and slug stages of Dictyostelium discoideum. *Nucl. Acids Res.* **32**, 1647-1653.

van Es, S., Virdy, K. J., Pitt, G. S., Meima, M., Sands, T. W., Devreotes, P. N., Cotter, D. A. and Schaap, P. (1996). Adenylyl cyclase G, an osmosensor controlling germination of *Dictyostelium* spores. *J Biol Chem.* **271**, 23623-5.

Van Haastert, P. J. M. and Devreotes, P. N. (2004). Chemotaxis: Signalling the way forward. *Nature Reviews Molecular Cell Biology* **5**, 626-634.

Velculescu, V. E., Zhang, L., Vogelstein, B. and Kinzler, K. W. (1995). Serial Analysis of Gene Expression 10.1126/science.270.5235.484. *Science* **270**, 484-487.

Virdy, K. J., Sands, T. W., Kopko, S. H., van Es, S., Meima, M., Schaap, P. and Cotter, D. A. (1999). High cAMP in spores of *Dictyostelium discoideum*: association with spore dormancy and inhibition of germination. *Microbiology*. **145**, 1883-90.

Williams, J. G., Noegel, A. A. and Eichinger, L. (2005). Manifestations of multicellularity: *Dictyostelium* reports in. *Trends Genet.* **21**, 392-8.

Williams, K. L. and Newell, P. C. (1976). A GENETIC STUDY OF AGGREGATION IN THE CELLULAR SLIME MOULD DICTYOSTELIUM DISCOIDEUM USING COMPLEMENTATION ANALYSIS. *Genetics* **82**, 287-307.

Wood, J. M. (1999). Osmosensing by Bacteria: Signals and Membrane-Based Sensors. *Microbiol. Mol. Biol. Rev.* **63**, 230-262.

Wood, J. M. (2006). Osmosensing by Bacteria 10.1126/stke.3572006pe43. *Sci. STKE* **2006**, pe43-.

Xu, Q. and Shaulsky, G. (2005). GOAT: An R Tool for Analysing Gene Ontologytrade mark Term Enrichment. *Appl Bioinformatics*. **4**, 281-3.

Yale, J. and Bohnert, H. J. (2001). Transcript Expression in Saccharomyces cerevisiae at High Salinity 10.1074/jbc.M008209200. *J. Biol. Chem.* **276**, 15996-16007.

Yamada, H., Yadomae, T. and Miyazaki, T. (1974). Polysaccharides of the cellular slime mold II. Change of intra- and extracellular polysaccharides during growth phase of Dictyostelium discoideum NC-4. *Biochimica et Biophysica Acta (BBA) - General Subjects* **362**, 167-174.

Yancey, P., Clark, M., Hand, S., Bowlus, R. and Somero, G. (1982). Living with water stress: evolution of osmolyte systems 10.1126/science.7112124. *Science* **217**, 1214-1222.

Yancey, **P. H.** (1994). Compatible and counteracting solutes. *Cellular and Molecular Physiology of Cell Volume Regulation*, pp.81 -109.

Yancey, P. H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses 10.1242/jeb.01730. *J Exp Biol* **208**, 2819-2830.

Zischka, H., Oehme, F., Pintsch, T., Ott, A., Keller, H., Kellermann, J. and Schuster, S. C. (1999). Rearrangement of cortex proteins constitutes an osmoprotective mechanism in Dictyostelium. *EMBO J.* **18**, 4241-4249.

Table SI 1. List of enriched biological process, molecular function and cellular component GO terms of the clusters of the 2 hours time course of treatment with 200 mM sorbitol.

Cluster 1	GO_ID	List	Total	Enrichment	P_value	GO_level	GO_Annotation
	GO:0050789	6	481	2,63	0,032	2	regulation of biological process
	GO:0009057	3	120	5,28	0,019	5	macromolecule catabolism
	GO:0043285	3	71	8,92	0,005	5	biopolymer catabolism
Biological process	GO:0030163	3	66	9,59	0,005	6	protein catabolism
	GO:0031154	2	12	35,18	0,002	6	culmination during fruiting body formation
	GO:0006508	5	188	5,61	0,002	7	proteolysis
	GO:0008154	2	35	12,06	0,012	6	actin polymerization and/or depolymerization
.	GO:0000502	2	28	15,95	0,015	4	proteasome complex (sensu Eukaryota)
Cellular component	GO:0000267	3	70	9,57	0,015	3	cell fraction
	GO:0005625	2	33	13,54	0,015	4	soluble fraction
	1			[[
Cluster 2							
	GO:000003	9	180	2,94	0,003	2	reproduction
	GO:0019953	4	59	3,99	0,034	3	sexual reproduction
	GO:0048232	3	34	5,19	0,034	5	male gamete generation
	GO:0007283	3	34	5,19	0,034	6	spermatogenesis
	GO:0009605	9	160	3,31	0,002	4	response to external stimulus
	GO:0042330	2	23 10	0,00	0,002	5	laxis
	GO:0009455	5	103	3,23	0,017	5	response to starvation
	CO:00042394	3	21	5.60	0,034	5	
	GO:0009314	5	04	3,09	0,017	5	
	GO:0009416	3	24	7,35	0,017	0	response to light stimulus
	GO:0042331	3	19	9,29	0,017	7	phototaxis
	GO:0042221	5	114	2,58	0,049	5	response to chemical stimulus
	GO:0006935	5	53	5,55	0,002	6	chemotaxis
	GO:0043170	36	1645	1,29	0,034	4	macromolecule metabolism
	GO:0019538	20	10/5	1,42	0,034	5	
	GO:0043037	/	115	3,58	0,003	1	translation
	GO:0003973	9	113	3,04 4 16	0,003	5	
	GO:00044202	3	13	13 57	0,001	7	pentidoglycan metabolism
	GO:0009056	10	214	2 75	0.003	4	catabolism
	GO:0016052	3	41	4.30	0.034	6	carbohvdrate catabolism
	GO:0051674	9	76	6,97	0	4	localization of cell
	GO:0015986	2	21	5,60	0,049	7	ATP synthesis coupled proton transport
	GO:0006754	2	21	5,60	0,049	7	ATP biosynthesis
Biological process	GO:0007275	13	420	1,82	0,034	2	development
Diological process	GO:0048608	5	96	3,06	0,034	3	reproductive structure development
	GO:0030582	5	96	3,06	0,034	4	fruiting body formation
	GO:0030587	5	96	3,06	0,034	5	fruiting body formation (sensu Dictyostellida)
	GO:0016192	6	126	2,80	0,034	5	vesicle-mediated transport
	GO:0006897	5	81	3,63	0,017	6	endocytosis
	GO:0015985	2	21	5,60	0,049	7	electrochemical gradient
		-	10			_	ATP synthesis coupled electron transport (sensu
	GO:0042775	2	12	9,80	0,017	7	Eukaryota)
	GO:0006082	11	254	2,55	0,017	5	organic acid metabolism
	GO:0019752	11	254	2,55	0,017	6	carboxylic acid metabolism
	GO:0006090	2	15	7,84	0,034	7	pyruvate metabolism
	GO:0006091	11	265	2,44	0,017	5	generation of precursor metabolites and energy
	GO:0006119	4	34	6,92	0,003	6	oxidative phosphorylation
	GO:0015980	5	81	3,63	0,017	6	energy derivation by oxidation of organic
	GO:0006092	4	58	4,06	0,017	7	main pathways of carbohydrate metabolism
	GO:0045333	3	22	8,02	0,017	7	cellular respiration
	GO:0042773	2	12	9,80	0,017	7	ATP synthesis coupled electron transport
	GO:0051186	7	<u>11</u> 6	3,55	0,017	5	cofactor metabolism
	GO:0006732	7	102	4,04	0,002	6	coenzyme metabolism
	GO:0006084	5	30	9,80	0	7	acetyl-CoA metabolism
	GO:0044260	27	1064	1,49	0.017	5	cellular macromolecule metabolism
	GO:0044267	25	1052	1,40	0.034	6	cellular protein metabolism
	GO:0006457	6	62	5,69	0.001	7	protein folding

Cluster 2	go id	List	Total	Enrichment	P value	GO level	GO Annotation
	GO:0008154	3	35	5,04	0,034	6	actin polymerization and/or depolymerization
	GO:0044248	9	197	2,69	0,017	5	cellular catabolism
	GO:0051187	3	19	9,29	0,017	6	cofactor catabolism
	GO:0009109	3	19	9,29	0,017	7	coenzyme catabolism
	GO:0044275	3	41	4,30	0,034	7	cellular carbohydrate catabolism
	GO:0016998	3	10	17,65	0,001	6	cell wall catabolism
	GO:0009059	11	3021	1,90	0,034	0	nacioniolecule biosynthesis
	GO:0000412 GO:0043038	3	42	4 20	0.034	7	amino acid activation
	GO:0042127	2	14	8.40	0.034	5	regulation of cell proliferation
	GO:0051128	3	27	6,54	0,017	5	regulation of cell organization and biogenesis
Biological process	GO:0008064	2	19	6,19	0,049	6	regulation of actin polymerization and/or depolymerization
	GO:0030029	5	90	3,27	0,034	7	actin filament-based process
	GO:0051301	6	63	5,60	0,001	4	cell division
	GO:0000910	6	56	6,30	0.017	5	Cytokinesis
	GO:0046515	ა ი	20 17	0,79	0,017	4	
	GO:0048408	3	26	6 79	0,049	5	spermatid development
	GO:0007291	3	24	7.35	0.017	6	sperm individualization
	GO:0007610	9	100	5,29	0	2	behavior
	GO:0007626	9	92	5,75	0	3	locomotory behavior
	GO:0040011	9	83	6,38	0	4	locomotion
	GO:0006928	9	76	6,97	0	5	cell motility
	00.000565	<u> </u>	4-	4.40	0.044	~	
		3	45	4,10	0,041	3	protein transporter activity
	GO:0015077	ა ი	40	4,29	0,030	5	hydrogen ion transporter activity
	GO:0046933	2	20	6,14	0,034	7	hydrogen-transporting ATP synthase activity
	GO:0005489	4	76	3,23	0,04	3	electron transporter activity
	GO:0005386	6	130	2,84	0,025	3	carrier activity
	GO:0015399	5	70	4,39	0,008	4	primary active transporter activity
	GO:0015405	4	57	4,31	0,02	5	P-P-bond-hydrolysis-driven transporter activity
	GO:0015450	2	10	12,29	0,017	6	protein translocase activity
	GO:0046961	2	19	6,47	0,041	7	mechanism
	GO:0008553	2	7	17,55	0,008	7	hydrogen-exporting A i Pase activity phosphorylative mechanism
Molecular function	GO:0005200	4	47	5,23	0,011	3	structural constituent of cytoskeleton
	GO:0016624	2	6	20,48	0,007	5	oxidoreductase activity acting on the aldehyde or oxo group of donors disulfide as acceptor
	GO:0016651	3	22	8,38	0,008	4	oxidoreductase activity acting on NADH or NADPH
	GO:0016886	3	48	3,84	0,046	4	ligase activity forming phosphoric ester bonds
	GO:0008452	3	43	4,29	0,038	5	RNA ligase activity
	GO:0016875	3	43	4,29	0,038	4	ligase activity, forming carbon-oxygen bonds
	GO:0016876	3	43	4,29	0,038	5	compounds
	GO:0004812	3	43	4,29	0,038	6	tRNA ligase activity
	GO:0003796	2	11	11,17	0,02	6	lysozyme activity
	GO:0005515	17	397	2,63	0	3	protein binding
	GO:0051082	4	14	17,55	0	4	unfolded protein binding
	GO:0003779	4	79	3,11	0,043	5	actin binding
	GO:0051015	2	13	9,45	0,025	6	actin filament binding
	CO.0042222	40	1400	1 20	0.000	0	organollo
	GO.0043226	4U 1	1409	1,29	0,022	2	
	GO:0031252	4 50	44 1844	1 23	0,022	3	intracellular
	GO:0031461	2	6	15 17	0.022	5	cullin-RING ubiquitin ligase complex
	GO:0019005	2	6	15,17	0,022	6	SCF ubiquitin ligase complex
	GO:0043229	40	1409	1,29	0,022	4	intracellular organelle
Cellular component	GO:0005856	10	179	2,54	0,022	4	cytoskeleton
	GO:0015629	8	106	3,43	0,022	5	actin cytoskeleton
	GO:0005885	2	9	10,11	0,022	6	Arp2/3 protein complex
	GO:0005737	41	1043	1,79	0	4	cytoplasm
	GU:0045254	2	5	18,20	0,022	5	pyruvate denydrogenase complex
	GO.0005/39	13	201 20	2,21	0,022	5	eukaryotic 43S preinitiation complex
	30.0010202	-	53	- 1 ,07	0,022	5	

Olympian O		1.1.4	T - 4 - 1	F	D		1	00 Annatation
Cluster 2	GO_ID	List	l otal	Enrichment	P_value	GO_level		GO_Annotation
	GO:0005852	2	6	15,17	0,022		6	eukaryotic translation initiation factor 3 complex
	GO:0005783	5	74	3,07	0,022		5	endoplasmic reticulum
	GO·0005938	5	41	5 55	0.022		5	cell cortex
Cellular component		2	10	0,00	0,022		6	
ochular component	GO.0030663	2	10	9,10	0,022		0	
	GO:0030864	2	8	11,38	0,022		1	cortical actin cytoskeleton
	GO:0042995	4	44	4,14	0,022		3	cell projection
	GO:0031143	3	20	6,83	0,022		4	pseudopodium
Olympian 2								
Cluster 3								
	GO:0045324	2	4	19,93	0,004		7	late endosome to vacuole transport
	GO:0007275	22	420	2,09	0,001		2	development
	GO:0031154	3	12	9,97	0,003		6	culmination during fruiting body formation
Biological process	GO [.] 0006979	4	20	7.97	0,001		6	response to oxidative stress
g p	GO:0000082	2	2	39.87	0.001		7	G1/S transition of mitotic cell cycle
	CO:0000002	10	100	2.24	0,001		2	
	GO.0030154	10	123	3,24	0,001		3	
	GO:0030435	6	29	8,25	0		4	sporulation
	GO:0005215	17	408	1 74	0.023		2	transporter activity
	00.0000210		-00	1,74	0,020		~	
	GO:0015267	3	27	4,65	0,032		3	channel or pore class transporter activity
	GO:0015268	3	27	4,65	0,032		4	alpha-type channel activity
	GO:0005216	3	27	4,65	0,032		5	ion channel activity
	00.004 5000	•		4.05	0.040		~	ATPase activity), coupled to transmembrane
	GO:0015662	3	31	4,05	0,043		6	movement of ions phosphorvlative mechanism
	GO:0016564	3	14	8 96	0.006		3	transcriptional repressor activity
	CO:0003774	3	20	4 33	0,000		2	meter activity
	GO.0003774	3	29	4,33	0,030		2	
	GO:0000146	2	1	11,95	0,017		3	micromament motor activity
	GO:0030234	6	101	2,48	0,039		2	enzyme regulator activity
	GO:0004857	3	13	9,65	0,005		3	enzyme inhibitor activity
	GO:0005095	2	4	20.91	0.005		4	GTPase inhibitor activity
	CO:0005006	2	10	6.07	0,020		4	CTRass activator activity
	GO.0005096	2	12	6,97	0,039		4	
	GO:0005099	2	3	27,89	0,003		5	Ras GTPase activator activity
	GO:0004674	11	242	1,90	0,035		7	protein serine/threonine kinase activity
Molecular function	GO:0016769	3	15	8 37	0,008		4	transferase activity) transferring nitrogenous groups
	CO:0000403	2	15	0,37	0,000		-	transperious activity, transpering hit ogenous groups
	GO.0006463	3	15	0,37	0,008		с Г	
	GO:0004175	6	98	2,56	0,035		5	endopeptidase activity
	GO:0005515	19	397	2,00	0,004		3	protein binding
	GO:0042802	5	10	20,91	0		4	protein self binding
	GO:0046983	5	25	8.37	0		4	protein dimerization activity
	GO [.] 0042803	5	8	26 14	0		5	protein homodimerization activity
	CO:0005522	2	Q Q	9.30	0.027		1	
	CO:0051210	2	0	12.04	0,027		1	phoenhonrotoin hinding
	GO.0031219	3	9	13,94	0,002		4	
	GO:0019899	3	30	4,18	0,04		4	enzyme binding
	GO:0051020	3	22	5,70	0,022		5	GTPase binding
	GO:0031267	3	22	5,70	0,022		6	small GTPase binding
	GO:0017048	3	15	8,37	0,008		7	Rho GTPase binding
	GO [.] 0008092	6	87	2 88	0.025		4	cytoskeletal protein binding
	GO:0003779	6	79	3 18	0.017		5	actin binding
	CO.0003705	2	12	6 1 /	0.042		6	actin monomer hinding
	00.0003785	4	13	0,44	0,043		J	
	1	1					,	
Cluster 4	GO_ID	List	Total	Enrichment	P_value	GO_level		GO_Annotation
	GO ^{.0007582}	171	3393	1.05	0.003		2	physiological process
	GO.0000266	3	a	6 01	0 022		5	response to temperature stimulus
	GO.0009200	3	9	0,91	0,022		0	
	GO:0009408	3	8	7,78	0,022		6	response to neat
	GO:0008152	154	2631	1,21	0		3	metabolism
	GO:0044238	135	2231	1,25	0		4	primary metabolism
	GO:0006629	23	205	2,33	0	:	5	lipid metabolism
	GO:0006807	18	178	2.10	0.002		4	nitrogen compound metabolism
	GO.0002022	17	174	2 03	0.004		5	carbohydrate metabolism
	CO-0044060	11	119	2,00	0,004	-	6	collular carbohydrate metoboliem
Biological process	GU.0044262	10	113	2,10	0 000		0	
- in group process	GO:0009056	21	214	2,04	0,002		4	catapolism
	GO:0016052	8	41	4,05	0,001		6	carbohydrate catabolism
	GO:0000272	2	5	8,30	0,027		6	polysaccharide catabolism
	GO:0009058	72	598	2,50	0		4	biosynthesis
	GO.0042502	6	24	5 18	0 002		3	homeostasis
	00.0050004	-	44	0,10	0,002		~	ion homopotopio
	GU:0050801	3	14	4,44	0,03	· · · · · ·	4	ION NOMEOSTASIS
	GO:0006885	2	6	6,91	0,048		5	regulation of pH
	GO:0051453	2	5	8,30	0,027		6	regulation of cellular pH
	GO ^{.0045851}	2	4	10.37	0 027		6	pH reduction
	22.00-0001	<u> </u>	- T	10,07	0,021		-	p1110000000

Cluster 4	GO ID	List	Total	Enrichment	P value	GO level		GO Annotation
		2	4	10,37	0,027	_	7	cellular pH reduction
	GO:0042593	3	5	12,44	0,002		4	glucose homeostasis
	GO:0031155	3	9	6,91	0,022		4	regulation of fruiting body formation
	GO:0031156	3	9	6,91	0,022		5	regulation of fruiting body formation (sensu Dictyosteliida)
	GO:0031157	3	8	7,78	0,022		6	regulation of aggregate size
	GO:0031158	2	3	13,83	0,022		7	negative regulation of aggregate size
	GO:0002119	3	17	3,66	0,048		5	larval development (sensu Nematoda)
	GO:0009987	165	3240	1,06	0,027		2	cellular process
	GO:0050875	162	3072	1,09	0,002		3	cellular physiological process
	GO:0006811	13	118	2,28	0,004		5	ion transport
	GO:0006812	12	102	2,44	0,003		6	
	GO:0015672	9	51	3,66	0,001		1	monovalent inorganic cation transport
	GO:0030705	3	9	6,91	0,022		6	cytoskeleton-dependent intracellular transport
	GO:0007018	3	8	7,78	0,022		1	microtubule-based movement
	GO:0006818	9	31	6,02	0		5	hydrogen transport
	GO:0015992	9	31	6,02	0		6	proton transport
	GO:0015985	9	21	8,89	0		7	energy coupled proton transport down electrochemical gradient
	GO:0044237	149	2376	1,30	0		4	cellular metabolism
	GO:0006766	4	25	3,32	0,03		5	vitamin metabolism
	GO:0006767	4	25	3,32	0,03		6	water-soluble vitamin metabolism
	GO:0006082	24	254	1,96	0,002		5	organic acid metabolism
	GO:0019752	24	254	1,96	0,002		6	carboxylic acid metabolism
	GO:0006730	3	7	8,89	0,003		5	one-carbon compound metabolism
	GO:0009117	24	94	5,30	0		6	nucleotide metabolism
	GO:0009259	16	45	7,37	0		7	ribonucleotide metabolism
	GO:0006220	4	11	7,54	0,002		7	pyrimidine nucleotide metabolism
	GO:0019362	3	17	3,66	0,048		7	pyridine nucleotide metabolism
	GO:0006163	16	43	7,72	0		7	purine nucleotide metabolism
	GO:0009141	12	32	7.78	0		7	nucleoside triphosphate metabolism
	GO:0009123	5	16	6.48	0.002		7	nucleoside monophosphate metabolism
	GO:0046483	9	51	3.66	0.001		5	heterocycle metabolism
Biological process	GO:0006091	35	265	2.74	0		5	generation of precursor metabolites and energy
	GO:0006119	10	34	6,10	0		6	oxidative phosphorylation
	GO:0015986	9	21	8,89	0		7	ATP synthesis coupled proton transport
	GO:0015980	14	81	3,58	0		6	energy derivation by oxidation of organic
	GO:0006092	12	58	4 29	0		7	main pathways of carbohydrate metabolism
	GO:0000002	20	116	3.58	0		5	cofactor metabolism
	GO:0006732	19	102	3.86	0		6	coenzyme metabolism
	GO:0006752	11	37	6.17	0		7	group transfer coenzyme metabolism
	GO:0000732	10	22	9.43	0		6	
	GO:0006754	9	21	8.89	0		7	ATP biosynthesis
	GO:0051258	5	32	3 24	0.027		7	protein polymerization
	GO:0006457	7	62	2 34	0.03		7	protein folding
	GO:0044247	2	5	8.30	0.027		7	cellular polysaccharide catabolism
	GO:0044255	22	175	2.61	0		5	cellular lipid metabolism
	GO:0008202	6	24	5.18	0.002		6	steroid metabolism
	GO:0006643	8	65	2.55	0.027		6	membrane lipid metabolism
	GO:0006665	4	26	3.19	0.048		7	sphingolipid metabolism
	GO:0008610	11	108	2.11	0.027		6	lipid biosynthesis
	GO:0006694	4	14	5.93	0.004		7	steroid biosynthesis
	CO:0006636	2	6	6.01	0,004		7	fatty acid dosaturation
	CO:00000000	2	107	0,91	0,03		' 5	
	GO:0044248	21	197	2,21	0.040		о С	
	GU.0044270	0 10	41	2,00	0,048		0	
	GO.0044205	0	105	1,90	0,03		7	
	GO.0044275	0	41 536	4,00	0,001		1	
	GO:0044249	10	66	5 97	0		6	nucleotide biosynthesis
	GO:0009260	15	43	7.23	0		7	ribonucleotide biosynthesis
	GO:0006221	4	10	8,30	0,002		7	pyrimidine nucleotide biosynthesis
	GO:0006164	15	41	7,59	0		7	purine nucleotide biosynthesis
	GO:0009142	11	30	7,60	0		7	nucleoside triphosphate biosynthesis
	GO:0009124	5	14	7,41	0		7	nucleoside monophosphate biosynthesis
	GO:0019856	4	5	16,59	0		7	pyrimidine base biosynthesis

Cluster 4	GO_ID	List	Total	Enrichment	P_value	GO_level	GO_Annotation
	GO:0009113	2	3	13,83	0,022	7	purine base biosynthesis
	GO:0009059	30	327	1,90	0	6	macromolecule biosynthesis
	GO:0006412	29	303	1,99	0	7	protein biosynthesis
	GO:0051188	12	62	4,01	0	6	cofactor biosynthesis
	GO:0009108	11	49	4,66	0	7	coenzyme biosynthesis
	GO:0006725	11	61	3,74	0	5	aromatic compound metabolism
	GO:0042558	2	4	10,37	0,027	6	pteridine and derivative metabolism
	GO:0009112	7	22	6,60	0	6	nucleobase metabolism
	GO:0006206	4	9	9,22	0,001	7	pyrimidine base metabolism
	GO:0006144	3	13	4,79	0,027	7	purine base metabolism
	GO:0046112	6	8	15,55	0	7	nucleobase biosynthesis
	GO:0019438	2	5	8,30	0,027	6	aromatic compound biosynthesis
	GO:0042559	2	4	10,37	0,027	7	pteridine and derivative biosynthesis
	GO:0006519	19	163	2,42	0	5	amino acid and derivative metabolism
	GO:0006575	5	30	3,46	0,027	6	amino acid derivative metabolism
Biological process	GO:0042398	2	5	8,30	0,027	/	amino acid derivative biosynthesis
	GO:0009308	17	168	2,10	0,003	5	amine metabolism
	GO:0006520	14	138	2,10	0,022	6	amino acid metabolism
	GO:0009310	5 15	41	2,53	0,048	6	
	GO.0000000 CO:0016125	5	10	5,00	0 002	5	
	GO:0016125	5	10	5,70	0,002	7	
	GO:0010120	7 3	8	7 78	0,002	7	eraosterol metabolism
	GO:0005996	8	45	3.69	0,022	6	monosaccharide metabolism
	GO:00000000	8	44	3 77	0,002	7	hexose metabolism
	GO:0046164	6	23	5 41	0.001	6	alcohol catabolism
	GO:0046365	6	22	5.66	0	7	monosaccharide catabolism
	GO:0019725	3	16	3,89	0,048	4	cell homeostasis
	GO:0006873	3	13	4,79	0,027	5	cell ion homeostasis
	GO:0030003	3	13	4,79	0,027	6	cation homeostasis
	GO:0030004	2	6	6,91	0,048	7	monovalent inorganic cation homeostasis
	GO:0005215	29	408	1,59	0,008	2	transporter activity
	GO:0015075	15	147	2,28	0,002	3	ion transporter activity
	GO:0008324	13	121	2,40	0,003	4	cation transporter activity
	GO:0015077	11	43	5,72	0	5	monovalent inorganic cation transporter activity
	GO:0015078	11	39	6,30	0	6	hydrogen ion transporter activity
	GO·0046933	9	20	10.05	0	7	hydrogen-transporting ATP synthase activity
	00.000.0000				•		rotational mechanism
	GO:0005386	17	130	2,92	0	3	carrier activity
	GO:0015399	11	70	3,51	0	4	primary active transporter activity
	60.0015405	10	57	3,92	0	5	ATRace activity, coupled to movement of
	GO:0043492	11	117	2,10	0,016	3	substances
	GO [.] 0019829	8	27	6 62	0	6	cation-transporting ATPase activity
	00.0040004	-		0,11			hydrogen-transporting ATPase activity\. rotational
	GO:0046961	8	19	9,41	0	1	mechanism
	GO-0008553	ر د	7	9.57	0.003	7	hydrogen-exporting ATPase activity
	00.0000000	Ŭ	'	0,01	0,000	'	phosphorylative mechanism
	GO:0045182	7	55	2,84	0,012	2	translation regulator activity
Molecular function	GO:0005198	20	1//	2,52	0	2	structural molecule activity
	GO:0003735	17	95	4,00	0	3	structural constituent of ribosome
	GO:0003824	117	2325	1,12	0,026	2	catalytic activity
	GO:0004372	2	6	7,45	0,028	6	glycine hydroxymethyltransferase activity
	GO:0016769	3	15	4,47	0,028	4	transferase activity transferring nitrogenous groups
	GO:0008483	3	15	4,47	0,028	5	transaminase activity
	GO:0016765	6	34	3,94	0,004	4	transferase activity, transferring alkyl or aryl (other
							transferase activity/ transferring acyl groups/ acyl
	GO:0046912	3	10	6,70	0,009	5	groups converted into alkyl on transfer
	GO:0004108	2	5	8.94	0.019	6	citrate (Si)-synthase activity
	GO:0003878	2	2	22.34	0.002	6	ATP citrate synthase activity
	GO:0016491	37	377	2,19	0	3	oxidoreductase activity
	00.001000	~	_	00.01		_	oxidoreductase activity). acting on the CH-NH2
	GO:0016639	2	2	22,34	0,002	5	group of donors NAD or NADP as acceptor
	GO:0016645	3	11	6 00	0.012	Л	oxidoreductase activity acting on the CH-NH group
	33.0010040			5,05	0,012	4	of donors
	GO:0016646	3	10	6,70	0,009	5	oxidoreductase activity, acting on the CH-NH group
		1		i .	· · ·	1	IOI UOHOISI, INAD OF NADP as acceptor

Cluster 4	GO_ID	List	Total	Enrichment	P_value	GO_level	GO_Annotation
	GO:0016627	4	22	4,06	0,016	4	oxidoreductase activity acting on the CH-CH group of donors
	GO:0016903	5	22	5,08	0,003	4	oxidoreductase activity acting on the aldehyde or oxo group of donors
	GO:0016620	4	16	5,59	0,005	5	oxidoreductase activity acting on the aldehyde or oxo group of donors NAD or NADP as acceptor
	GO:0016667	2	6	7,45	0,028	4	oxidoreductase activity acting on sulfur group of donors
	GO:0016668	2	4	11,17	0,012	5	oxidoreductase activity acting on sulfur group of donors NAD or NADP as acceptor
	GO:0016616	7	73	2,14	0,045	5	oxidoreductase activity acting on the CH-OH group of donors NAD or NADP as acceptor
	GO:0016829	11	82	3,00	0,001	3	lyase activity
	GO:0016835	4	26	3,44	0,028	4	carbon-oxygen lyase activity
	GO:0016830	7	29	5,39	0	4	carbon-carbon lyase activity
Melecular function	GO:0016831	5	22	5,08	0,003	5	carboxy-lyase activity
wolecular function	GO:0004611	2	4	11,17	0,012	6	phosphoenolpyruvate carboxykinase activity
	GO:0004612	2	2	22,34	0,002	7	phosphoenolpyruvate carboxykinase (ATP) activity
	GO:0016863	2	3	14,89	0,007	5	intramolecular oxidoreductase activity transposing C=C bonds
	GO:0008234	6	57	2,35	0,042	5	cysteine-type peptidase activity
	GO:0019238	2	4	11,17	0,012	6	cyclohydrolase activity
	GO:0016812	2	5	8,94	0,019	5	hydrolase activity acting on carbon-nitrogen (but not peptide) bonds in cyclic amides
	GO:0016820	11	119	2,07	0,018	5	hydrolase activity acting on acid anhydrides catalyzing transmembrane movement of substances
	GO:0042626	11	117	2,10	0,016	6	ATPase activity coupled to transmembrane movement of substances
	GO:0042625	10	49	4,56	0	7	ATPase activity coupled to transmembrane movement of ions
	GO:0008135	7	55	2,84	0,012	4	translation factor activity nucleic acid binding
	_		_				
	GO:0000221	2	3	12,04	0,018	7	hydrogen-transporting ATPase V1 domain
	GO:0016469	10	23	7,85	0	6	proton-transporting two-sector ATPase complex
	GO:0005622	112	1844	1,10	0,044	3	intracellular
	GO:0030529	21	168	2,26	0,001	4	ribonucleoprotein complex
	GO:0005737	92	1043	1,59	0	4	cytoplasm
Cellular component	GO:0005773	8	52	2,78	0,018	5	vacuole
	GO:0005774	3	8	6,77	0,018	6	vacuolar membrane
	GO:0016471	3	5	10,84	0,004	7	hydrogen-translocating V-type ATPase complex
	GO:0005840	18	113	2,88	0	5	ribosome
	GO:0015934	4	20	3,61	0.04	6	large ribosomal subunit
	GO:0005739	28	261	1.94	0.001	5	mitochondrion
	GO:0005820	17	141	2 18	0.004	5	cvtosol
	55.0000023	/	171	2,10	0,004	J	

Table SI 2. List of enriched biological process, molecular function and cellularcomponent GO terms of clusters 4 and 7 of STATc-dependent genes.

Cluster 4	GO_ID	List	Total	Enrichment	P_value	GO_level	GO_Annotation
	GO:0009058	9	598	2,84	0,007	4	biosynthesis
	GO:0006811	5	118	8,00	0	5	ion transport
	GO:0006812	4	102	7,41	0,007	6	cation transport
	GO:0015672	4	51	14,81	0	7	monovalent inorganic cation transport
	GO:0006818	4	31	24,37	0	5	hydrogen transport
	GO:0015992	4	31	24,37	0	6	proton transport
	GO:0015985	3	21	26,98	0	7	energy coupled proton transport down
	CO:0000117	2	04	6.02	0.022	6	
	GO:0009117	2	94 45	12.50	0,023	7	ribenueleetide metabolism
	GO:0009259	2	40	12,39	0,000	7	
	GO:0009150	3	41	13,02	0,001	7	
	GO:0009141	3	32	17,70	0,001	1	
Biological process	GO:0006119	3	34	16,66	0,001	6	
	GO:0015986	3	21	26,98	0	/	A IP synthesis coupled proton transport
	GO:0051186	5	116	8,14	0	5	cotactor metabolism
	GO:0006732	5	102	9,26	0	6	coenzyme metabolism
	GO:0006752	3	37	15,31	0,001	7	group transfer coenzyme metabolism
	GO:0046034	3	22	25,75	0	6	ATP metabolism
	GO:0006754	3	21	26,98	0	7	ATP biosynthesis
	GO:0044249	9	536	3,17	0,001	5	cellular biosynthesis
	GO:0009165	3	66	8,58	0,014	6	nucleotide biosynthesis
	GO:0009260	3	43	13,18	0,006	7	ribonucleotide biosynthesis
	GO:0006164	3	41	13,82	0,001	7	purine nucleotide biosynthesis
	GO:0009142	3	30	18,88	0,001	7	nucleoside triphosphate biosynthesis
	GO:0051188	4	62	12,18	0	6	cofactor biosynthesis
	GO:0009108	4	49	15,42	0	7	coenzyme biosynthesis
				r	1	1	
	GO:0015075	8	147	5,57	0,002	3	ion transporter activity
	GO:0008324	5	121	5,42	0,006	4	cation transporter activity
	GO:0015077	4	43	15,24	0	5	monovalent inorganic cation transporter activity
	GO:0015078	4	39	16,80	0	6	hydrogen ion transporter activity
	GO [.] 0046933	3	20	24 57	0	7	hydrogen-transporting ATP synthase activity rotational mechanism
	GO [.] 0005386	7	130	7 56	0	3	carrier activity
	GO:0015399	4	70	9.36	0.001	4	primary active transporter activity
Mala sular forestion	GO:0015405	4	57	11.50	0,001	5	P-P-bond-hydrolysis-driven transporter activity
Molecular function	GO:0043492	5	117	7,00	0,001	3	ATPase activity coupled to movement of substances
	GO:0019829	3	27	18,20	0,001	6	cation-transporting ATPase activity
	00:0046064	2	10	25.97	0	7	hydrogen-transporting ATPase activity rotational
	GO.0046961	3	19	20,07	0	/	hydrolase activity acting on acid anhydrides
	GO:0016820	5	119	6,88	0,001	5	catalyzing transmembrane movement of substances
	00.0040000	_	447	7.00	0.004	0	ATPase activity coupled to transmembrane
	GO:0042626	5	117	7,00	0,001	6	Movement of substances
	GO:0042625	4	49	13,37	0	7	movement of ions
	GO:0016282	2	39	7,00	0,032	3	eukaryotic 43S preinitiation complex
	GO:0005615	3	42	9,75	0.01	3	extracellular space
	00.0010100			00.74	.,		
Cellular component	GO:0016469	4	23	23,74	0	6	proton-transporting two-sector A I Pase complex
	GO:0015935	2	31	8,81	0,021	6	
	GO:0016283	2	30	9,10	0,021	5	eukaryotic 485 initiation complex
	GO:0005843	2	30	9,10	0,021	7	cytosolic small ribosomal subunit (sensu Eukaryota)

Cluster 7	GO_ID	List	Total	Enrichment	P_value	GO_level	GO_Annotation
	GO:0006970	2	29	6,87	0,044	5	response to osmotic stress
	GO:0006807	5	178	2,80	0,044	4	nitrogen compound metabolism
	GO:0030048	2	6	33,22	0,002	5	actin filament-based movement
	GO:0042592	2	24	8,31	0,024	3	homeostasis
	GO:0050801	2	14	14,24	0,011	4	ion homeostasis
	GO:0031154	3	12	24,92	0	6	culmination during fruiting body formation
	GO:0006818	2	31	6,43	0,044	5	hydrogen transport
	GO:0015992	2	31	6,43	0,044	6	proton transport
	GO:0006800	2	28	7,12	0,044	5	oxygen and reactive oxygen species metabolism
	GO:0006979	2	20	9,97	0,018	6	response to oxidative stress
	GO:0009308	5	168	2,97	0,044	5	amine metabolism
Biological process	GO:0006520	4	138	2,89	0,049	6	amino acid metabolism
	GO:0016043	10	517	1,93	0,044	4	cell organization and biogenesis
	GO:0006996	7	315	2,21	0,044	5	organelle organization and biogenesis
	GO:0007032	2	14	14,24	0,011	6	endosome organization and biogenesis
	GO:0007010	5	154	3,24	0,018	6	cytoskeleton organization and biogenesis
	GO:0030029	5	90	5,54	0,003	7	actin filament-based process
	GO:0019725	2	16	12,46	0,012	4	cell homeostasis
	GO:0006873	2	13	15,33	0,011	5	cell ion homeostasis
	GO:0030003	2	13	15,33	0,011	6	cation homeostasis
	GO:0030004	2	6	33,22	0,002	7	monovalent inorganic cation homeostasis
	GO:0051301	3	63	4,75	0,044	4	cell division
	GO:0000910	3	56	5,34	0,018	5	cytokinesis
	GO:0016564	2	14	15,18	0,01	3	transcriptional repressor activity
	GO:0000146	2	7	30,36	0,003	3	microfilament motor activity
	GO:0016769	2	15	14,17	0,01	4	transferase activity transferring nitrogenous groups
	GO:0008483	2	15	14,17	0,01	5	transaminase activity
	GO:0008233	5	174	3,05	0,024	4	peptidase activity
	GO:0008237	4	36	11,81	0	5	metallopeptidase activity
	GO:0008238	3	31	10,28	0,004	5	exopeptidase activity
	GO:0008235	3	14	22,77	0	6	metalloexopeptidase activity
Molecular function	GO:0016160	2	3	70,85	0	6	amylase activity
	GO:0004556	2	3	70,85	0	7	alpha-amylase activity
	GO:0042802	4	10	42,51	0	4	protein self binding
	GO:0046983	4	25	17,00	0	4	protein dimerization activity
	GO:0042803	4	8	53,14	0	5	protein homodimerization activity
	GO:0051219	2	9	23,62	0,004	4	phosphoprotein binding
	GO:0008092	5	87	6,11	0,002	4	cytoskeletal protein binding
	GO:0003779	5	79	6,73	0,001	5	actin binding
	GO:0051015	2	13	16,35	0,009	6	actin filament binding
Cellular component	GO:0015629	5	106	5,52	0,002	5	actin cytoskeleton

Summary

Dictyostelium discoideum is frequently subjected to environmental changes in its natural habitat, the forest soil. In order to survive, the organism had to develop effective mechanisms to sense and respond to such changes. When cells are faced with a hypertonic environment a complex response is triggered. It starts with signal sensing and transduction and leads to changes in cell shape, the cytoskeleton, transport processes, metabolism and gene expression. Certain aspects of the *Dictyostelium* osmotic stress response have been elucidated, however, no comprehensive picture was available up to now.

To better understand the *D. discoideum* response to hyperosmotic conditions, we applied different methods. We first confirmed that actin is tyrosine phosphorylated, the F-actin cytoskeleton is redistributed, the cell volume is decreased considerably and cell viability is slightly diminished upon sorbitol treatment. Next, gene expression profiling using DNA microarrays was performed. Treatment of *Dictyostelium* cells with 200 mM sorbitol for 1 hour led to dramatic transcriptional changes, of which some were validated by real time PCR or Northern Blot. The transcriptional profile of cells treated during a 2-hour time course revealed a time-dependent induction or repression of 809 genes, more than 15% of the genes on the array, which peaked 45 to 60 minutes after the hyperosmotic shock. The differentially regulated genes were applied to cluster analysis and functional annotation using gene ontology (GO) terms. Two main responses appear to be the down-regulation of the metabolic machinery and the up-regulation of the stress response system, among them STATc (signal transducer and activator of transcription). Manual annotation revealed that many genes of the major metabolic pathways, including carbohydrate, amino acid and nucleotide metabolism were differentially regulated and could be responsible for the generation of osmolytes. We hypothesize that Dictyostelium uses a mixture of osmolytes to counteract the hyperosmotic stress. Interestingly we also found a number of differentially regulated genes that are involved in development. This is consistent with the notion that the cellular processes that protect amoebae from a hypertonic environment have been adapted for regulatory developmental process.

Gene expression profiling with the STATc mutant and appropriate controls showed that STATc is a key regulator of the transcriptional response to hyperosmotic shock. Approximately 20% of the differentially regulated genes that were common
between two or three experiments were dependent on the presence of STATc. Our results suggest that at least two signalling pathways are activated in *Dictyostelium* cells subjected to hypertonicity. STATc is responsible for the transcriptional changes of one of them.

Zusammenfassung

Dictyostelium discoideum ist in seiner natürlichen Umgebung, dem Waldboden, häufig von ökologischen Veränderungen betroffen. Zum Überleben mußte der Organismus daher effektive Mechanismen entwickeln, um solche Veränderungen wahrnehmen und darauf reagieren zu können. Wenn Zellen einer hypertonen Umgebung ausgesetzt werden, wird eine komplexe Antwort ausgelöst. Sie beginnt mit der Wahrnehmung und der Weitergabe des Signals und führt zu Veränderungen der Zellform, dem Zytoskelett, von Transportprozessen, dem Metabolismus und in der Genexpression. Bestimmte Aspekte der osmotischen Stressantwort von Dictyostelium wurden bereits aufgeklärt, aber bisher war keine umfassende Darstellung möglich.

Um die Antwort von D. discoideum auf hyperosmotische Bedingungen besser verstehen zu können, haben wir verschiedene Methoden angewandt. Wir konnten bestätigen, dass nach Sorbitolbehandlung Aktin am Tyrosin phosphoryliert, das F-Aktin Zytoskelett umverteilt, das Zellvolumen deutlich reduziert und die Lebensfähigkeit der Zellen etwas vermindert wird. Im nächsten Schritt wurde mittels DNA Microarrays ein Muster der Genexpression erstellt. Eine Behandlung der Dictyostelium Zellen mit 200 mM Sorbitol für eine Stunde bewirkte umfassende transkriptionelle Veränderungen, von denen einige durch "real time PCR" oder "Northern Blot" bestätigt wurden. Das transkriptionelle Profil von Zellen, die für zwei Stunden behandelt wurden, zeigte eine zeitabhängige Induktion oder Repression von 809 Genen, mehr als 15% der Gene auf dem "Array". Am meisten Gene waren 45 bis 60 Minuten nach dem hyperosmotischen Schock differentiell reguliert. Die 809 Gene wurden zur Clusteranalyse und funktionellen Analyse mittels "Gene Ontology" (GO) herangezogen. Zwei wesentliche Antworten scheinen die Abregulierung der metabolischen Maschinerie und die Aufregulierung des Stressantwortsystems, darunter STATc (signal transducer and activator of transcription), zu sein. Die manuelle Annotation zeigte, dass viele Gene der wichtigsten Stoffwechselwege, einschließlich des Kohlenhydrat-, Aminosäuren- und Nukleotidmetabolismus differentiell reguliert werden und für die Synthese von Osmolyten verantwortlich sein könnten. Wir nehmen an, dass Dictyostelium mehrere Osmolyte verwendet um dem hyperosmotischen Stress entgegenzuwirken. Interessanterweise haben wir außerdem eine Anzahl differentiell regulierte Gene gefunden, die in die

Entwicklung involviert sind. Dies unterstützt die Hypothese, dass zelluläre Prozesse, die die Amöbe vor einer hypertonen Umgebung schützen, für regulatorische Entwicklungsprozesse angepasst worden sind.

Genexpressionsanalysen mit einer STATc Mutante und geeigneten Kontrollen zeigten, dass STATc ein Schlüsselregulator für die transkriptionelle Antwort auf hyperosmotischen Schock ist. Die differentielle Regulation von etwa 20% der Gene, die zwei oder drei der vergleichenden Experimente gemeinsam waren, war abhängig von der Anwesenheit von STATc. Unsere Ergebnisse lassen den Schluss zu, dass in *Dictyostelium* Zellen, die hypertonischen Bedingungen ausgesetzt werden, mindestens zwei Signalwege aktiviert werden. STATc ist verantwortlich für die transkriptionellen Änderungen in einem dieser Wege.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeiteinschließlich Tabellen und Abbildungen -, die anderen Werke im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht ist, sowie, dass ich eine Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Frau Prof. Dr. Angelika A. Noegel betreut worden.

Köln den

Jianbo Na

Teilpublicationen:

<u>Na J</u>, Tunggal B and Eichinger L. STATc is a key regulator of the transcriptional response to hyperosmotic shock (BMC Genomics in revision).

Farbrother P, Wagner C, <u>Na J</u>, Tunggal B, Morio T, Urushihara H, Tanaka Y, Schleicher M, Steinert M, Eichinger L. Cell Microbiol. 2006 Mar; 8(3): 438-56. *Dictyostelium* transcriptional host cell response upon infection with *Legionella*.

Kuhlmann M, Borisova BE, Kaller M, Larsson P, Stach D, <u>Na J</u>, Eichinger L, Lyko F, Ambros V, Soderbom F, Hammann C, Nellen W. Nucleic Acids Res. 2005 Nov 10; 33(19): 6405-17. Silencing of retrotransposons in *Dictyostelium* by DNA methylation and RNAi.

Curriculum Vitae

Name:	Jianbo Na
Address:	Nikolausstr. 86
	D-50937, Cologne, Germany
Date of birth:	26.12.1976
Nationality:	P. R. China
School studies:	
1992-1995	The No. 1 High School of Kunming,
	Yunnan, China
University studies:	
1995-1999	Bachelor of Science in Biochemistry,
	Shandong University, China
1999-2002	Master of Science in Human Genetics,
	Chinese Academy of Medical Sciences
	& Peking Union Medical College, China
Doctoral studies:	
09/2003-11/2006	PhD fellowship sponsored by
	"International Graduate School in
	Genetics and Functional Genomics",
	University of Cologne
04/2004-06/2007	Supervisor: Prof. Dr. Angelika A. Noegel
	& PD. Dr. Ludwig Eichinger, Institute for
	Biochemistry I, Medical Faculty,
	Germany

Lebenslauf

Name, Vorname:	Na, Jianbo
Addresse:	Nikolausstr. 86 D-50937 Köln, Deutschland
Geburtsdatum:	26.12.1976
Nationalität:	V. R. China
Schulausbildung: 1992-1996	The No. 1 High School of Kunming, Yunnan, China
Universität Studium:	
1995-1999	Bachelor of Science in Biochemistry, Shandong University, China
1999-2002	Master of Science in Human Genetics, Chinese Academy of Medical Sciences & Peking Union Medical College, China
Promotionsstudium:	
09/2003-11/2006	Stipendiat bei der "International Graduate School in Genetics and Functional Genomics", Universität zu Köln
04/2004-06/2007	Betreuer(in): Prof. Dr. Angelika A. Noegel & PD. Dr. Ludwig Eichinger, Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, D-50931 Köln, Deutschland