Synthese, Struktur und (supra-)molekulare Funktionalität konformations-chiraler Biphenyl- und Phenanthrenderivate

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Patric Bierganns

aus Bergisch Gladbach

Köln 2007

Berichterstatter:

Prof. Dr. H.-G. Schmalz

Prof. Dr. A. Berkessel

Tag der mündlichen Prüfung: 09.02.2007

Man verliert die meiste Zeit damit, daß man Zeit gewinnen will.

John Steinbeck

Meinen Eltern

Danksagung

Die vorliegende Arbeit wurde in der Zeit von Februar 2003 bis Januar 2007 am Institut für Organische Chemie der Universität zu Köln unter der Leitung von Herrn Prof. Dr. H.-G. Schmalz und der wissenschaftlichen Betreuung von Herrn Dr. D. Blunk angefertigt. Ihnen gilt mein besonderer Dank für die interessante Themenstellung, die Bereitstellung hervorragender Arbeitsbedingungen und zahllosen anregenden Diskussionen und Unterstützungen, die häufig auch über den Rahmen der Arbeit hinausgingen.

Mein Dank gilt vor allem meinen Eltern, die mir ein tolles Elternhaus und jede Unterstützung geboten haben, die man sich vorstellen kann. Insbesondere ohne meine Mutter wäre das Studium und diese Arbeit nicht möglich gewesen.

Auch Eveline bin ich sehr dankbar für ihren Beistand, ihr großes Verständnis und den anhaltenden Glauben an mich. Vor allem, weil sie sich in der nicht immer einfachen Endphase dieser Arbeit sicher war, auch in der Zukunft an meiner Seite bleiben zu wollen.

Außerdem danke ich all meinen Freunden, dass sie mich stets unterstützt, aber auch mal daran erinnert haben, nach rechts und links zu schauen.

Herrn Prof. Dr. A. Berkessel danke ich für die Übernahme der zweiten Begutachtung dieser Arbeit.

Ohne die Hilfe der analytischen Abteilungen wäre das Gelingen dieser Arbeit nicht möglich gewesen. Darum gilt mein Dank:

- Herrn Dr. H. Lex und Herrn Dr. J. Neudörfl für die zahllosen Röntgenstrukturanalysen und Anregungen.
- Frau K. König, Herrn W. Ten und Herrn Dr. N. Schlörer für die Aufnahme zahlreicher Kernresonanzspektren.
- Herrn Dr. M. Schäfer und Herrn M. Neiss für die massenspetroskopischen Aufnahmen..
- Herrn Dipl.-Ing. A. Adler für Hilfe bei allen chromatographischen Belangen.
- Und Herrn C. Schmitz für die Durchführung der Elementaranalysen.

Frau A. Bitners danke ich für zahlreichen Unterstützungen innerhalb und außerhalb des universitären Alltags.

Schließlich gilt mein ganz besonderer Dank den Kollegen in der Blunkgruppe und im Schmalzschen Arbeitskreis, allen voran meinem Laborkollegen Jan Porada, dessen "Nachbarschaft" mir sehr fehlen wird. Doch auch den Kollegen, der anderen Arbeitskreise der organischen, anorganischen und physikalischen Institute, die mich stets unterstützt haben, möchte ich hier für die angenehme Arbeitsatmosphäre danken. Besonders denen, die mit Korrekturlesen zum Gelingen dieser Arbeit beigetragen haben.

An dieser Stelle möchte ich erwähnen, dass ich das Studium ohne meine Semesterkollegen, die ich immerhin schon am ersten Tag, der Orientierungseinheit, kennen gelernt habe, nicht bzw. nicht mit so viel Spaß geschafft hätte.

Kurzzusammenfassung

Patric Bierganns

Synthese, Struktur und (supra-)molekulare Funktionalität konformationschiraler Biphenyl- und Phenanthrenderivate

Im Rahmen dieser Arbeit werden Synthesen von neuen konformations-chiralen Biphenyl- und Phenanthrenderivaten und Studien zu ihrer Struktur sowie zu ihren Fähigkeiten im Bereich (supra-)molekularer Funktionalität vorgestellt.

Mit den in dieser Arbeit etablierten Synthesestrategien wurden generell anwendbare und diversitätsorientierte Zugänge zu bisher nur in speziellen Einzelfällen und unter Schwierigkeiten erreichbaren, funktionalen, bay-substituierten Phenanthrenderivaten eröffnet. So konnten durch oxidative Spaltung von Pyren und anschließende Derivatisierung eine Reihe interessanter, chiraler Phenanthren-4.5-diester hergestellt werden. Mittels oxidativer Photocyclisierung von 3,3'-verbrückten Stilbenderivaten konnten enantiomerenreine und funktionale Phenanthrenderivate realisiert werden. Auf letztere Weise wurde auch ein flexibler (tropos) Phenanthrophosphoramidit-Ligand synthetisiert, welcher erfolgreich und mit hoher Enantioselektivität in der kupferkatalysierten 1,4-Addition von Diethylzink eingesetzt werden konnte. In Kombination mit Literaturdaten festigen die hier erzielten Ergebnisse wichtige Erkenntnisse zur Verwendung des Prinzips der induzierten Atropisomerie in katalytischen Prozessen.

Ein weiterer, im Verlauf dieser Arbeit entwickelter Syntheseweg eröffnet erstmals den Zugang zu hochsubstituierten, verdrillten Phenanthrenderivaten mit einem differenzierten Bay- und Peripheriebereich. Zudem konnten synthetische Methoden Darstellung einer ganzen Reihe von neuen Benzol-, Stilbenzur und Biphenylderivaten mit komplexen Substitutionsmustern aufgezeigt werden, welche in Bereichen wie der molekularen Sensorik. supramolekularen Ordnung. asymmetrischen Katalyse und Naturstoff (analoga)synthese Anwendung finden könnten.

Im zweiten Teil dieser Arbeit wurde eine neue, kupfervermittelte Reaktion zum Aufbau von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen, einer Klasse von Naturstoffderivaten, durch Kupplung von *ortho*-lodbenzylalkoholen untersucht und die notwendigen Reaktionsbedingungen und einsetzbaren Substrate ausgelotet. Hierbei zeigte sich, dass die Synthesemethode eine große Zahl von funktionellen Gruppen und Substitutionsmustern toleriert und somit einen einfachen Zugang zu einem neuen Strukturraum potentiell biologisch aktiver Verbindungen ermöglicht.

Abstract

Patric Bierganns

Synthesis, Structure and (Supra-)Molecular Functionality of Conformational Chiral Biphenyl and Phenanthrene Derivatives

In this work, syntheses of new conformational chiral biphenyl and phenanthrene derivatives and studies on their structures as well as on their abilities in the area of (supra-)molecular functionality are presented.

The synthetic strategies that have been established in this work institute a general and divers approach toward functional, bay-substituted phenanthrene derivatives, which until now could be accessed only in special cases and with difficulties. In this manner, a number of interesting, chiral phenanthrene-4,5-diesters have been achieved using oxidative cleavage of pyrene and further derivatization. The synthesis of enatiomeric pure and functional phenanthrene derivatives has been implemented *via* oxidative photocyclization of 3,3´-bridged stilbene derivatives. Using this method, a flexible (tropos) phosphoramidite ligand was synthesized, which was successfully and with high enantioselectivity applied in the copper-catalyzed 1,4-addition of diethylzinc. In combination with literature results, the achieved findings led to new perceptions into the principle of *induced atropisomerism* in catalytic processes.

A further synthetic approach that has been developed in the course of this work opens the access to highly substituted, twisted phenanthrene derivatives with a differentiated *bay*- and peripheral area. Furthermore, synthetic methods towards new benzene, stilbene and biphenyl derivatives with complex substitution patterns are presented, which could be applicable in the field of molecular sensors, supramolecular organization, asymmetric catalysis or natural product (analogue) synthesis.

The second part of this work describes studies on the synthesis of 2,5-dioxa-1,4(1,2)dibenzenacyclohexaphanes, a class of natural product derivatives, *via* a novel, copper-catalyzed coupling reaction of *ortho*-iodobenzyl alcohols. It could be demonstrated that a great number of functional groups and substitution patterns are tolerated by this reaction and, thus, a structural diversity of potential biologically active compounds was made accessible.

Synthese, Struktur und (supra-)molekulare Funktionalität konformations-chiraler Biphenyl- und Phenanthrenderivate

Inhaltsverzeichnis

1.	Ein	eitung	1
2.	Gru	ndlagen	2
2	2.1.	Bay-substituierte Phenanthrene	2
2	2.2.	Funktionale Moleküle	6
2	2.2.1.	Molekulare Schalter	7
2	2.2.2.	Sensoren	10
2	2.2.3.	Liganden in Metallkomplexen	12
2	2.3.	Biologisch aktive Naturstoffe und Naturstoffanaloga	20
2	2.4.	Einführung in die Phannomenklatur	22
3.	Auf	gabenstellung und Konzeption	24
3	3.1.	Mögliche Synthesenrouten zu Bay-substituierten Phenanthrenderivaten	25
3	3.2.	Derivatisierung eines vorhandenen polyaromatischen Gerüsts	25
3	3.3.	Allgemeine Retrosynthese substituierter Phenanthrene	27
3	3.4.	Synthesemöglichkeiten 4,5-disubstituierter Phenanthrenderivate	31
3	3.5.	Retrosynthese von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen	33
4.	Erg	ebnisse und Diskussion	35
2	4.1.	Synthese helikal verdrillter Phenanthrenderivate	35
2	4.1.1.	Direkte Dilithiierung von Phenanthren	35
2	4.1.2.	Synthese von Phenanthren-4,5-derivaten basierend auf	
		Spaltungsprodukten von Pyren	38
2	4.1.3.	Synthese und Derivatisierung von Halogen-substituierten Biphenyl- und	
		Dihydrophenanthrenderivaten	50
2	4.1.4.	Synthese und Untersuchung eines fluoreszierenden Chemosensors auf	
		Biphenyl-Basis	54
2	4.1.5.	Verwendung Phosphor-substituierter Vorläufer für die Synthese von 4,5-	P_
		Phenanthrenderivaten	60
2	4.1.6.	Photocyclisierung von Stilbenen	65
2	4.1.6.	1. Darstellung von Phenanthren-4,5-diol mittels verbrückter	
		Stilbenintermediate	65

4.1.6	.2. Synthese und Einsatz eines P-monodentaten Liganden auf Basis ein	nes
	verdrillten Phenanthrengerüsts in der asymmetrischen 1,4-Addition	67
4.1.6	.3. Alternative Synthesen verbrückter Stilben	72
4.1.6	.4. Enantioselektive Synthese helikal-chiraler Phenanthrenderivate	74
4.1.6	5. Synthese von Crownophanen auf Stilben- und Phenanthrenbasis	78
4.1.6	.6. Photocyclisierung hochsubstituierter Stilbenderivate	82
4.1.7	. Synthese helikal-chiraler Phenanthrenderivate mit einem differenzierte	n
	Bay- und Peripheriebereich	83
4.1.7	.1. Variable Einführung späterer Bay-Substituenten	90
4.2.	Dioxocinderivate	94
4.2.1	. Synthese von <i>ortho</i> -lodbenzylalkoholen	95
4.2.2	. Synthese von <i>ortho</i> -lodbenzylamin	100
4.2.3	. Kupfervermittelte Kupplung zu 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexa	l-
	phanen	101
4.2.4	. Untersuchungen zu alternativen Routen zum Aufbau von 2,5-Dioxa-	
	1,4(1,2)-dibenzenacyclohexaphanen	107
4.2.5	Zusammenfassung der Dioxocin-Studien	110
5. Zu	sammenfassung und Ausblick	112
5. Zu 6. Ex	sammenfassung und Ausblick perimentelles	112 117
 5. Zu 6. Ex 6.1. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen	112117117
 5. Zu 6. Ex 6.1. 6.2. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung	112117117122
 5. Zu 6. Ex 6.1. 6.2. 6.3. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes	 112 117 122 123
 5. Zu 6. Ex 6.1. 6.2. 6.3. 6.4. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers	 112 117 117 122 123 123
 5. Zu 6. Ex 6.1. 6.2. 6.3. 6.4. 6.5. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsproc	112 117 117 122 123 123 dukten
 5. Zu 6. Ex 6.1. 6.2. 6.3. 6.4. 6.5. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsproc von Pyren	112 117 117 122 123 123 Jukten 123
 Zu Ex Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsproc von Pyren Synthese von halogensubstituierten Biphenyl- und	112 117 117 122 123 123 dukten 123
 Zu Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten	112 117 117 122 123 123 dukten 123 140
 Zu Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten Synthese von Triarylphosphinderivaten	112 117 117 122 123 123 dukten 123 140 150
 Zu Ex Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten Synthese von Triarylphosphinderivaten Photocyclisierung von Stilbenen	112 117 117 122 123 123 123 123 123 140 150 155
 Zu Ex Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.10. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten Synthese von Triarylphosphinderivaten Photocyclisierung von Stilbenen Synthese octasubstituierter Phenanthrenderivate	112 117 117 122 123 123 123 123 123 123 123 123 123
 Zu Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.10. 6.11. 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten Synthese von Triarylphosphinderivaten Photocyclisierung von Stilbenen Synthese octasubstituierter Phenanthrenderivate Darstellung von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen	112 117 122 123 123 123 123 123 140 153 155 180 197
 5. Zu 6. Ex 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.10. 6.11. 7. Lit 	sammenfassung und Ausblick perimentelles Allgemeine experimentelle Bedingungen Nomenklatur und Nummerierung Darstellung des Chlorierungsreagenzes Aktivierung des Kupferpulvers Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprod von Pyren Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten Synthese von Triarylphosphinderivaten Photocyclisierung von Stilbenen Synthese octasubstituierter Phenanthrenderivate Darstellung von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen	112 117 117 122 123 123 123 123 123 123 123 123 123

1. Einleitung

"A smart structure is a system containing multifunctional parts that can perform sensing, control, and actuation; it is a primitive analogue of a biological body. Smart materials are used to construct these smart structures, which can perform both sensing and actuation functions."^{[1],a}

Auf diesem Gebiet der "smart materials"^[1, 2] haben organische Komponenten in den letzten Jahren stetig an Bedeutung gewonnen. Aufgrund ihrer zahlreichen Vorteile, wie die vielfältigen synthetischen Zugänge, variabel einstellbaren Eigenschaften und eine weite Anwendungsbreite, dienen Organika als Materialien für hochspezialisierte Applikationen. Zudem finden organische Verbindungen mit integrierten Fähigkeiten wie Schaltbarkeit,^[3] Selbstorganisation,^[4-7] molekularer Erkennung^[8] oder nicht-linear optische Eigenschaften^[9] Einsatz als synthetische Bausteine und funktionale Materialien in vielen Bereichen der supramolekularen Chemie^[10,11] und Nanotechnologie.^[12, 13]

Durch die fortschreitende Miniaturisierung (beispielsweise in der Elektronik), nehmen die Ansprüche an solche Spezialmaterialien stetig zu. Denn, um eine möglichst hohe Datendichte und Schaltrate erreichen zu können, liegt das ultimative Ziel der Miniaturisierung auf molekularer Ebene, bei so genannten molekularen Maschinen, einzelnen Molekülen oder kleinen Molekülverbänden, die die Fähigkeit besitzen bestimmte Aufgaben zu erfüllen.^[14] Die ultimative Verkleinerung im Bereich der Speichermedien würde bedeuten, dass einzelne Moleküle als kleinste Informationseinheit ("bits") nutzbar gemacht würden. Um dies zu erreichen, müssen diese Moleküle zwei stabile, unterscheidbare Zustände aufweisen, die extern schaltbar und detektierbar sind.^[12]

Unter diesen Aspekten liegt der Interessenschwerpunkt der vorliegenden Arbeit auf der Synthese und Charakterisierung von helikal-chiralen *Bay*-substituierten Phenanthrenderivaten I, die im Idealfall zusätzliche funktionelle Gruppen in ihrer Peripherie tragen, die sie zur Anbindung an Oberflächen befähigen oder ihre supramolekulare Selbstorganisation unterstützen. Darüber hinaus sind Verbindungen dieses Typs interessant, weil das (reduzierte) Phenanthrengerüst ein häufiges Strukturmotiv in biologisch aktiven Verbindungen darstellt.^[15-19]

^a Zusammenfassung einer Sitzung beim vierten jährlichen deutsch-amerikanischen "Grenzen der Wissenschaft"-Symposium der Akademie der Wissenschaft der USA 1999.

Im Verlauf der Untersuchungen der Synthesen von 4,5-Phenanthrenderivaten wurde die Thematik dieser Arbeit zusätzlich um die nähere Erforschung einer neuen kupfervermittelten Reaktion zum Aufbau von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen **XXXI** erweitert.

2. Grundlagen

2.1. Bay-substituierte Phenanthrene

Helikal-chirale Strukturen wie z.B. Helicene^[20] weisen aufgrund ihrer außergewöhnlichen optischen,^[21-25] komplexierenden^[26, 27] und selbstorganisierenden Fähigkeiten^[24, 28-30] ein großes Potential als "smart materials" in Bereichen wie der Farbstoff-^[30] und Flüssigkristallforschung,^[24, 28-30] der molekularen Erkennung^[27, 31] und der asymmetrischen Synthese^[32-35] auf.^[36]

Schema 1. Phenanthren (1) ist ein polycyclischer, aromatischer Kohlenwasserstoff (PAK), der aus einem angular und zwei linear kondensierten Benzolringen aufgebaut ist (Strukturformel inklusive IUPAC-Nummerierung und Definition des sogenannten *Bay*-Bereiches).

Phenanthren (1) dagegen besitzt eine symmetrische, planare und achirale Gestalt (siehe Schema 1) und deshalb nicht die angestrebten Eigenschaften für funktionale Materialien. Trägt das Phenanthrengerüst jedoch sterisch anspruchsvollere Substituenten als Wasserstoff an der 4- und 5-Position, wird es aus der planaren Konformation gezwungen und verdrillt sich. Somit werden zwei enantiomere Konformere erhalten, welche mit Hilfe der *P*- und *M*-Nomenklatur^[37] beschrieben werden können (Schema 2).

Auch wenn Hexahelicen^[21] (Phenanthro[3,4-c]phenanthren) als der kleinste Vertreter der Helicene angesehen wird, können *Bay*-substituierte Phenanthrene, infolge der helikalen Verdrillung und der damit verbundenen Eigenschaften, ebenfalls der Klasse der Helicene zugeordnet werden.^[38] Mit geeigneten funktionellen Gruppen im *Bay*-

Bereich können sterisch überladene Phenanthrene wie **Ia** der Gruppe der "smart materials" angehören, da ihre chiralen Eigenschaften im Hinblick auf molekulare Schaltbarkeit z.B. als Bausteine in der Informationstechnologie, chirale Liganden in der Katalyse oder molekulare Sensoren nutzbar sein könnten.

Schema 2. Die beiden enantiomeren Konformere von 4,5-disubstituierten Phenanthrenderivaten *M*und *P*-1a (oben) und die Bestimmung ihrer Helicitäten nach der M- und P-Nomenklatur.^[37]

Für eine Anwendung in diesen Bereichen müssen die zwei enantiomeren Formen stabil, isolierbar oder zumindest unterscheidbar und möglichst durch externe Impulse (wie Licht oder elektrische Felder) schaltbar sein. Um eine gewisse Stabilität bei Raumtemperatur zu gewährleisten, sollte die Racemisierungsbarriere im Bereich von mindestens 80-90 kJ mol⁻¹ liegen.

Die Stabilität der Enantiomere hängt von der Höhe der Energiebarriere für den Racemisierungsprozeß ab. Im Falle der Bay-substituierten Phenanthrenderivate beruht diese hauptsächlich auf der Art und Größe der Substituenten. Außer den sterischen Anspruch bzw. die repulsiven Wechselwirkungen der Bay-Gruppen zu erhöhen, besteht in der Einführung zusätzlicher Substituenten an der 1-, 2-, 3-, 6-, 7oder 8-Position des Phenanthrengerüsts eine weitere Möglichkeit, die Racemisierungsbarriere anzuheben. Diese Erhöhung beruht auf dem sogenannten effect"b "buttressing und kann anhand der experimentell ermittelten Racemisierungsenergien der Methylderivate 2-4 in Tabelle 1 verdeutlicht werden.

^b To buttress = stärken.

Die Wahl der *Bay*-Substituenten ist jedoch nicht nur für die Einstellung der Inversionsbarriere relevant, sondern auch, um dem Molekül die gewünschte Funktionalität zu verleihen. Zahlreiche explizite Beispiele neuer funktionaler *Bay*-substituierter Phenanthrenderivate werden in den folgenden Kapiteln dieser Arbeit vorgestellt und diskutiert.

Tabelle 1. Experimentell bestimmte Racemisierungsbarrieren von 4,5-Dimethyl- (2), 3,4,5,6-Tetramethyl- (3) und 1,3,4,5,6,8-Hexamethylphenanthren (4).^[39-41]

Doch gerade die erwünschte räumliche Nähe und sterische Hinderung der Bay-Substituenten und die große Anzahl an funktionellen Gruppen in der Peripherie stellen die größte Herausforderung für den synthetisch arbeitenden Chemiker dar. Zwar gibt es eine Vielzahl von Synthesemöglichkeiten für Phenanthrene.^[17, 42-44] doch sind nur weniae Beispiele für die Synthesen von 4.5-disubstituierten Phenanthrenderivaten bekannt. Ausgewählte Beispiele werden im Verlaufe dieser Arbeit diskutiert bzw. sind in den Referenzen angegeben.^[45-48] Insbesondere existieren kaum Bay-substituierte Phenanthrenderivate mit zusätzlichen funktionellen Gruppen in der Peripherie (I oder II mit $R^{1-4} \neq H$).^[15-17, 39, 41, 49-58] Außer einer im Rahmen dieser Arbeit etablierten Methode,^[59] existiert nach heutigem Wissensstand keine Synthese von octasubstituierten Phenanthrenen wie I oder II mit einem differenzierten *Bay*- und Peripheriebereich ($R^1 = R^2 = R^3 \neq R^4$).

Schema 3 Allgemeine Darstellung der Zielstrukturen dieser Arbeit: *Bay*-substituiertes Phenanthren allgemein (I, links) und mit differenziertem Peripheriebereich (II, rechts); aus Gründen der Übersichtlichkeit sind nur die symmetrischen Substitutionsmuster abgebildet.

Aus den vorab dargelegten Gründen stellen die allgemeinen Strukturen I und II in Schema 3 die Zielstrukturen dieser Arbeit dar. Zugunsten der Übersichtlichkeit sind ausschließlich die symmetrischen Substitutionsmuster abgebildet, obwohl auch unsymmetrisch *Bay*-substituierte Derivate, insbesondere für Schaltprozesse oder als Liganden von großem Interesse sind. Bei Verbindung I handelt es sich im Falle von $R^{1-3} = H$ um ein "einfaches" 4,5-disubstituiertes Phenanthren, das, wie bereits erwähnt, aufgrund der Substituenten in der *Bay* verdrillt und somit chiral ist. Die Wahl der funktionellen Gruppen (R^4) soll so erfolgen, dass sowohl eine genügend große Inversionsbarriere aufgebaut als auch die gewollte Funktionalisierung des Moleküls erreicht wird.

Mit funktionellen Gruppen in der Peripherie ($\mathbb{R}^{1-3} \neq H$) könnten zusätzliche intra-("buttressing-effect") oder intermolekulare Wechselwirkungen (supramolekulare Ordnung) induziert und somit interessante (Material-)Eigenschaften erzielt werden. An die Verbindungen des Typs **II** werden prinzipiell die gleichen Anforderungen gestellt. Ihre peripheriellen Substituenten sollten jedoch über Heteroatome (Etheroder Esterfunktionen im Speziellen) mit dem aromatischen Gerüst verbunden sein. Diese Chalkogenfunktionalitäten haben folgende Vorteile:

- sie sind von den Bay-Substituenten unterscheidbar,
- sie sind weiter funktionalisierbar (durch Hydrolyse und anschließende Veresterung oder Veretherung) und
- dienen zur elektronischen Abgrenzung des Kerns von den Resten (R = lange Alkylketten) beispielsweise zur Induzierung von Flüssigkristallinität.

Wenn die Peripheriesubstituenten R¹⁻³ zusätzlich über terminale funktionelle Gruppen verfügen, ergeben sich weitere Möglichkeiten, wie beispielsweise die Anbindung der Phenanthrenderivate an Oberflächen (z.B. mit Thiolgruppen) oder die Einbindung in eine Polymermatrix (z.B. mit Olefingruppen) der Phenanthrenderivate. Ein Modell, das alle genannten Funktionen vereint, ist in Abbildung 1 dargestellt.

Abbildung 1. Sketch der Oberflächenanbindung eines verdrillten, *Bay*-substituierten Phenanthrenderivats des Typs II ($R^4 = CI$, $R^{1-3} = O(CH_2)_4SH$).^[60] Die Anbindung erfolgt über terminale Thiolgruppen der sechs peripheren Alkoxy-Substituenten des Phenanthrenderivats an eine monomolekulare Goldschicht. Oben: Kalottenmodell (perspektivische Ansicht); unten: Kugel-Stab-Modell (Seitenansicht). Das Modell wurde mit dem Programm Spartan^[61] unter Verwendung des Kraftfeldes MMFF94X erzeugt.

2.2. Funktionale Moleküle

Wie in der Einleitung erwähnt, ist das Interesse an sogenannten "smart materials" sehr groß. "Smart materials" sollen in der Lage sein Signale zu empfangen und auf sie zu reagieren.^[1] Im Rahmen der fortwährenden Miniaturisierung sind funktionale Einzelmoleküle bzw. kleine Molekülverbände aus chemischer Sicht der in absehbarer Zukunft erreichbare Schlusspunkt.^[13] Dies führt die Naturwissenschaften zu der Herausforderung solche funktionalen Moleküle herzustellen, zu charakterisieren und ihre Anwendungsmöglichkeiten zu untersuchen. Von der Synthese und Nutzung "echter" molekularer Maschinen ist die heutige Wissenschaft noch weit entfernt, aber es existieren die ersten Beispiele "molekularer Bauteile", die in der Lage sind externe Stimuli zu detektieren und auf sie zu reagieren.^[10, 14, 62, 63] In den folgenden Abschnitten werden einige Beispiele, Fähigkeiten und Anwendungsmöglichkeiten in die potentielle Nutzung von *Bay*-Phenanthrenderivaten in diesem Bereich aufgeführt.

2.2.1. Molekulare Schalter

Da infolge der fortschreitenden Miniaturisierung in der Datenspeicher- und Informationstechnologie ein enormer Bedarf an hohen Datendichten, Schaltraten und komplett optisch schaltbaren Bauteilen besteht, existiert in der heutigen Forschung ein großes Interesse an molekularen Schaltern. Denn die Verwendung von Einzelmolekülschaltern als Datenspeichereinheiten stellt aus heutiger Sicht die ultimative Miniaturisierung in diesem Bereich dar. Unter Verwendung des Binärcodes würde so jeweils ein Molekül ausreichen, um ein "bit" zu speichern. Nach *Feynman* könnten so alle Bücher, die je geschrieben wurden in einem Würfel mit einer Kantenlänge von 0.5 mm gespeichert werden.^[64]

Schema 4. Voraussetzung für einen optischen, molekularen Schalter ist die Existenz zweier unterscheidbarer Zustände, die mit Licht verschiedener Wellenlängen ineinander überführbar sind (links);^[12] und ein spezielles Beispiel für die Inversion von Helicität (rechts); hier kann u. U. auch circular polarisiertes Licht (CPL) benutzt werden.^[3]

Um als molekularer Schalter dienen zu können, muss ein Molekül zwei stabile, unterscheidbare Zustände aufweisen, die extern schaltbar und detektierbar sind (Schema 4).^[3, 12] Prinzipiell sind viele Prozesse wie pH- oder redoxabhängige Isomerisierungen oder Wirt/Gast-Wechselwirkungen für Schaltvorgänge nutzbar. Anbetracht nach hohen Datendichten Aber in der Forderung und Schaltgeschwindigkeiten, sollte idealerweise sowohl das "Schreiben" (Schalten) als auch das Auslesen der beiden Molekülzustände mittels Licht unterschiedlicher Wellenlänge erfolgen. Zusätzlich zu der Bistabilität müssen optische molekulare Schalter noch weitere Eigenschaften aufweisen:

- sie dürfen innerhalb der üblichen Betriebstemperaturen von Datenspeichern (bis ca. 80 ℃) keiner thermisch angeregten Inversion unterliegen.
- sowohl der Lese- als auch der Schreibvorgang sollten zerstörungsarm durchführbar sein.
- der Lesevorgang darf nicht zur Löschung der Daten führen.
- der Schaltprozess muss schnell und mit hoher Effektivität (z.B. Quantenausbeute) vonstatten gehen und beide Zustände müssen detektierbar sein.^[12]

Wie in Schema 5 durch einige Beispiele verdeutlicht, kann grundsätzlich jede Art von Photoisomerisierung, wie cis/trans-Isomerisierung (a), Inversion von Helicität (c) oder

Cyclisierungsreaktionen (b) für einen optischen Schaltprozess nutzbar gemacht werden. Voraussetzung ist nur, dass sich die Absorptionsmaxima der beiden Zustände unterscheiden und die Absorptionswellenlänge bzw. -polarisation zur Umwandlung in die jeweils andere Form führt.^[3, 12]

Die bis jetzt meistgenutzten Systeme für optische, molekulare Schalter sind (Azo)Stilbene, Diarylethene und sterisch überladene Alkene (Schema 5).^[3, 12] Durch Kombination mit anderen Mechanismen können die Schalteigenschaften oft stark beeinflusst werden. Zum Beispiel ist es möglich, die Schaltfähigkeit eines Systems durch Veränderung des pH-Wertes auszulösen oder zu unterbinden ("dual-mode photoswitching").^[3] Andererseits kann auch durch den Schaltprozess die Funktionalität des Moleküls beeinflusst werden. Ein Beispiel dafür ist die Verbindung **5** in Schema 5 a). Hier wird die Gast-Bindungsfähigkeit des Kronenethers **5** mittels Licht verschiedener Wellenlänge ein- und ausgeschaltet, indem die Größe der Bindungstasche durch die Isomerisierung der Azostilbeneinheit verändert wird.^[12] Durch Einbindung in verschiedene Medien, wie flüssigkristalline Materialien oder Polymere, können Systeme teilweise so eingestellt werden, dass der molekulare Schaltprozess makroskopische Auswirkungen aufweist.^[4, 12, 65]

4,5-Disubstituierte Phenanthrene sind, dank ihrer verschiedenen Extinktionskoeffizienten für circular polarisiertes Licht (CPL) oder wenn die *Bay*-Substituenten verschiedene Polaritäten oder Ladungen aufweisen, ebenfalls als molekulare Schalter mit einstellbarer Helicität denkbar. Solche verdrillten Phenanthrenderivate, mit geeigneten Substituenten im Peripheriebereich, könnten auch als schaltbare Materialien von Interesse sein, wenn sie in der Lage sind Mesophasen auszubilden oder mit ihnen zu interagieren, (siehe Kap. 2.2.4).

Schema 5. Beispiele für optisch schaltbare Systeme: a) ein Azostilben-Kronenether **5**, b) ein überladenes Diarylethen **6** und c) ein sterisch überladenes, helicales Alken **7**; **7** stellt zusätzlich ein sogenanntes "dual-mode photoswitching"-System dar, das durch verschiedene Wellenlänge einstellbare (schaltbare) Fluoreszenz aufweist, die durch Veränderung des pH-Wertes ein- oder ausgeschaltet werden kann.^[3, 12]

2.2.2. Sensoren

Eine weitere hochinteressante Klasse von "smart materials" bzw. "smart molecules" sind molekulare Sensoren. Die molekulare Erkennung stellt einen Eckpfeiler der supramolekularen Chemie dar.^[10] Molekül- bzw. Ionen-spezifische Sensoren finden Anwendung in vielen Bereichen der Medizin, Biologie und der Umwelttechnologie. [66-^{69]} Das Hauptinteresse liegt dabei in molekularen Sensoren, die in der Lage sind, bestimmte Ionen oder chirale Verbindungen in sehr geringen Konzentrationen enantioselektiv zu detektieren. Idealerweise sollte die molekulare Erkennung einfach detektierbar sein, z.B. durch makroskopisch Fluoreszenz oder Lumineszenzänderung.^[67, 68, 70] Vor allem niedermolekulare Verbindungen mit integrierten sensorischen Fähigkeiten sind von großem Interesse, da sie im Gegensatz zu komplexen Systemen wie Enzymen, zurückzuführen auf ihre vollständig chemische und strukturelle Charakterisierbarkeit direkte Rückschlüsse Struktur-Funktionsbeziehungen zulassen und somit als biologische auf Modellsysteme sehr gut geeignet sind.^[8]

Eine Substanzklasse, die für diese Eigenschaften bekannt ist, ist die Klasse der die "Crownophane". Crownophane sind Verbindungen, sowohl eine Cyclophanstruktur^[71] als auch eine Kronenethersubstruktur^[72] aufweisen.^[73] Unter dem Begriff Cyclophane, ursprünglich angewandt für zwei para-Phenyleneinheiten, die über Alkylketten verbrückt sind, versteht man heute generell Makrocyclen, die maximal ungesättigte (mankude) Ringsysteme aufweisen, welche über Atome sind.^[71] und/oder gesättigte oder ungesättigte Ketten verbrückt Die Verbindungsklasse der Kronenether ist bekannt für ihre Fähigkeit, "Gäste", insbesondere Kationen, zu komplexieren und diese somit (selektiv) transportieren oder extrahieren zu können.^[8] Dies findet häufig Anwendung z.B. in der Wirkstofflieferung ("drug delivery") und Phasentransferkatalyse.^[8, 74] Crownophane weisen meistens ebenfalls die ionophoren Eigenschaften von Kronenethern auf, aber sie besitzen dank der Cyclophanelemente zusätzlich eine größere strukturelle Diversität.^[75] Angesichts der damit verbundenen Vielfalt an interessanten Eigenschaften finden Crownophane Verwendung in Bereichen wie Biomimetika.^[8, 76] Extraktionen,^[73] photoresponsives Gast-spezifische Bindungsverhalten,^[77] Membrantransport,^[78] (Fluoreszenz-) signalgebende Sensorsysteme^[68] oder im Aufbau von Rotaxanen und Catenanen.^[79, 80]

Häufig werden Crownophane verwendet, um biologische Prozesse, wie z.B. Enzymaktivitäten, zu imitieren bzw. besser aufklären und verstehen zu können.^{[8, 81-} ^{85]} Sie weisen durch die Vereinigung von Kronenether- und (poly-) aromatischen Gerüsteinheiten einerseits ein spezifisches Bindungsverhalten und eine damit verbundene Strukturänderung (allosterischer Effekt)^{c,[86]} auf. Andererseits besitzen die Oligoaryleinheiten der Crownophane oft chromophore Eigenschaften. Somit kann die Bindung eines Gastes kann die Emissionseigenschaften dieses Chromophors verändern.^[67, 69, 70] Die gastinduzierte Strukturänderung kann also die erwünschten Fähigkeiten, wie Membrantransport, Signalemission oder Bindungsverhalten, entweder verstärken (positiver) oder reduzieren (negativer allosterischer Effekt) und somit die funktionalen Eigenschaften beeinflussen.

Schema 6. Ein literaturbekannter Fluoreszenz-Chemo-Sensor^[69] **8** und ein strukturell rigideres System^[87] **10** (durchgezogene Struktur), jeweils mit dem Phenanthrenanalogon (**9** und **11**; gestrichelte Ergänzung), als auch ein chirales Crownophan **12** als potentielles enantioselektives Gastsystem.

Da das *Bay*-substituierte Phenanthrengerüst sowohl eine chirale als auch fluorophore Einheit darstellt, sind prinzipiell auch Crownophane mit einer oder mehreren Phenanthrensubstrukturen als potentielle Sensoren oder Mimetika für biologische Systeme von Interesse. In Schema 6 ist ein Beispiel für einen literaturbekannten^[69, 88] Floureszenz-Chemo-Sensor **8** und sein Phenanthrenanalogon **9** abgebildet.

In der Literatur wird ein Phenanthren-basiertes Crownophan beschrieben, das zur Erkennung von chiralen Carbonsäurederivaten in wässriger Lösung gedacht war.^[89] Dieses System erwies sich jedoch durch seine zu hohe Flexibilität als ungeeignet für den Einsatz als molekularer Sensor.^[89]

Um generell die Flexibilität von Crownophanen zu verringern und somit z.B. ihre Membrantransporteffizienz zu erhöhen, wird teilweise die Oligoethyleneinheit direkt mit der Sauerstofffunktionalität an das Arylgerüst gebunden (**10**).^[87]

Dies ist auch für Phenanthrenderivaten (wie z.B. bei **11**) denkbar und würde eventuell die in der Literatur beschriebenen Probleme^[89] umgehen. Doch auch 4,5disubstituierte Phenanthrencrownophane wie **12**, die die Kronenetherfunktionalität nicht in der *Bay* tragen, sind dank ihrer helikalen Chiralität sehr interessant. Sie

^c Obwohl der Begriff ursprünglich der Biochemie für Proteinfunktionen entstammt, wird er in der Literatur generell für Raumstrukturänderungen durch Wechselwirkungen mit Bindungszentren benutzt.^[86]

könnten potentiell mit chiralen, insbesondere aromatischen, Gastmolekülen wechselwirken und somit als enantioselektive Wirtsysteme fungieren.

2.2.3. Liganden in Metallkomplexen

Organische Moleküle als Liganden in Metallkomplexen sind in vielen Bereichen der Wissenschaft und Industrie von großer Bedeutung. Vom natürlichen Vorkommen solcher Komplexe in der Natur (z.B. Hämoglobin oder Chlorophyll), über die klassischen Anwendungen in der Farb-, Foto- und Papierindustrie (z.B. Fe(III)-EDTA), bis hin zur Verwendung von Übergangsmetallkomplexen als Katalysatoren in der modernen chemischen Synthese.

Die wohl bedeutendste Nutzung von (Übergangs-)Metallkomplexen mit organischen Liganden, stellt die asymmetrische Katalyse in der organischen Synthese dar. Hier werden Metallkomplexe genutzt, um den Aufbau oder die Transformation chiraler Zentren (Einheiten) regio- und stereoselektiv zu gestalten. Die enantioselektive Herstellung chiraler Substanzen zählt heutzutage immer noch zu den größten Herausforderungen der synthetischen organischen Chemie.^[90] Die Notwendigkeit für den Zugang zu enantiomerenreinen Verbindungen beruht hauptsächlich auf der engen Verknüpfung von absoluter Konfiguration und biologischer Wirkung chiraler, bioaktiver Verbindungen. Racemische Stoffgemische, wie sie normalerweise in der "klassischen" organischen Synthese entstehen, sind entweder nur zu 50 % wirksam und stellen somit einen ökonomischen, ökologischen und vor allem physiologischen Ballast dar, oder im "schlimmsten" Fall ist das nicht gewünschte Enantiomer sogar schädlich oder giftig.^d

Die strukturelle Verwandtschaft mit effektiven Liganden wie BINAP^[92] **16** und BIPHEMP^[93-95] **13** (Schema 7) macht *Bay*-substituierte Phenanthrenderivate zu vielversprechenden Verbindungen als potentielle Liganden in der asymmetrischen Katalyse. Retrosynthetisch betrachtet, könnte die Herstellung von entsprechenden Phenanthrenliganden vom Phenanthrendiol **18** oder -diamin **17** ausgehen. Sowohl das Diol **18** als auch das Diamin **17** sind literaturbekannt.^[45, 96, 97] Die hohe Anzahl der zum Aufbau benötigten Synthesestufen und die erforderlichen harschen Bedingungen für die Synthese des Amins **17** (625 ℃, 0.1-0.3 Pa),^[97] machen jedoch das Diol **18** zum vielversprechenderen Kandidaten zur Darstellung von *Bay*-Phenanthrenliganden. Da die bisher bekannten Synthesen von **18** eine relativ hohe

^d Das berühmteste Beispiel stellt das Schlafmittel Thalidomid (Contergan[®]) dar, dessen "racemisches" Gemisch teratogene Wirkung aufweist.^[91]

Stufenzahl mit niedrigen Gesamtausbeuten aufweisen,^[45, 96] besteht Bedarf an einer kürzeren, effektiveren Synthesestrategie.

Schema 7. Strukturen der bekannten axial-chiralen Liganden 13 (BIPHEMP) und 16 (BINAP) ihrer synthetischen Vorläufer 14 + 15^[92, 95] und deren (helikal-chiralen) Phenanthrenanaloga 17 + 18.^[45, 96, 97]

Doch nicht nur **18** auch peripheriesubstituierte Derivate des Typs **III** sind als Intermediate oder Liganden von großem Interesse. In Schema 8 ist eine Auswahl von möglichen helikal-chiralen Liganden für die asymmetrische Synthese dargestellt, die ausgehend von Diolen des Typs **III** (**18**, mit $R^{1-6} = H$) synthetisch zugänglich sein sollten. Im Folgenden wird jeweils kurz auf die verschiedenen Ligandenklassen und ihre bekannten Eigenschaften in der Katalyse eingegangen.

Am weitesten verbreitet in der enantioselektiven Katalyse sind bidentate Ligandensysteme,^[98] insbesondere Bisphosphinliganden,^[99-101] die eine axiale Chiralität aufweisen.^[98] Zu den bekanntesten Vertretern zählen z.B. BINAP **16**,^[92, 102] BIPHEMP **13**,^[93-95] MeO-BIPHEP,^[103] und TunaPhos.^[104] Diese Systeme erreichen in einer Vielzahl von Reaktionen, wie z.B. asymmetrischen Hydrierungen, Reduktionen und Additionen Kupplungsreaktionen, sehr gute Enantioselektivitäten.^[105] Doch ist jedes dieser Systeme nicht universell einsetzbar, sondern funktioniert oft nur für spezielle Substrate optimal.

Schema 8. Übersicht potentieller Ligandenstrukturen III-VIII, die ausgehend von 4,5-Phenanthrendiolen des Typs III zugänglich sein könnten.

Extensive Studien im Bereich der asymmetrischen Katalyse haben gezeigt, dass der Bisswinkel zwischen den Phosphingruppen zum Teil drastischen Einfluss auf die Reaktivität und Selektivität hat.^[106-111] Aus diesem Grund wurden in den letzten Jahren viele Anstrengungen in der Synthese und Untersuchung atropisomerer Liganden unternommen, die auf Binaphtyl-, Biphenyl- bzw. Biarylgrundgerüsten im Allgemeinen basieren.

Für Helicenphosphinderivate^[34] sind dagegen nur einige wenige Fälle bekannt, in denen sie als chirale Liganden in der asymmetrischen Synthese benutzt wurden, obwohl sie zum Teil ausgezeichnete Enantioselektivitäten (bis zu 99 %*ee*) erreichen.^[32, 33] *Bay*-substituierte Phenanthrenderivate wie **IV** und **V** könnten wegen ihrer strukturellen Sonderstellung zwischen den axial-chiralen Biphenylsystemen und den Helicenen als bidentate Liganden in der enantioselektiven Synthese geeignet sein und eventuell die Lücken schließen, für die die "klassischen" chiralen Ligandengerüste bis jetzt keine Lösung darstellen.

In der letzten Zeit hat sich gezeigt, dass auch monodentate Phosphorliganden für enantioselektive Katalyse benutzt werden können und den bidentaten Liganden in einigen Fällen sogar überlegen sind.^[112, 113] Monophosphine,^[114] -phosphonite,^[115] - phosphite^[116] und -phosphoramidite,^[117-120] wurden erfolgreich in der

enantioselektiven Hydrierung von Dehydroaminosäuren bzw. Itaconsäurederivaten^[118, 119, 121-124] und Enamiden^[125, 126] eingesetzt.

Ein wichtiger Durchbruch im Einsatz von monodentaten Phosphorliganden gelang *Feringa*^[127] und *Reetz*,^[128] unabhängig von einander, mit einem ganz neuen Konzept: der Verwendung von Ligandengemischen. Hierbei wurden hauptsächlich Gemische gleichartiger binaphtylbasierter Liganden genutzt.^[127, 128] Doch auch Gemische von chiralen und achiralen Phosphorliganden konnten erfolgreich eingesetzt werden.^[129] Monodentate Liganden, insbesondere Phosphoramidite und -phosphite, stellen eine sehr vielseitige Klasse von Liganden dar. Sie spielen nicht nur in der enantioselektiven Hydrierung eine wichtige Rolle, sondern konnten auch erfolgreich in anderen asymmetrischen Transformationen, wie z.B. in der konjugierten Addition^[130-134] oder allylischen Alkylierung^[135, 136] eingesetzt werden.

Schema 9. In der enantioselektiven Rh-katalysierten Hydrierung erfolgreich verwendete Phosphitbzw. Phosphoramidit-Liganden (**19** und **21**; durchgezogene Strukturen)^[137] und ihre strukturverwandten Phenanthrenäquivalente (**20** und **22**; gestrichelte Ergänzung).

Aufrund dieser Ergebnisse sind Phosphoramidite (X = NR₂) und Phosphite (X = OR) des Typs **VIII**, mit chiralen Resten R, potentiell interessante Systeme für die asymmetrische Katalyse. Bei nicht peripheriesubstituierten Systemen (R₁₋₆ = H) könnte man wiederum auf das bekannte Diol **18** als Ausgangmaterial zurückgreifen. Allerdings gibt es Hinweise die darauf hindeuten, dass das Diol **18** nicht inversionsstabil ist und somit seine Derivate vom Typ **VIII** mit R = H ebenfalls flexibel (tropos) wären. Doch dies macht die Systeme nicht weniger interessant. Denn infolge dieser Befunde passen sie in ein relativ neues Konzept zum Einsatz troper Liganden^[138] in der asymmetrischen Katalyse - die *induzierte Atropisomerie*.

Schema 10. Nach *Gennari et al.* bilden sich aus den infolge der flexiblen Biphenolsubstrukturen im Gleichgewicht vorliegenden Liganden (a*R*)-**23a** und (a*S*)-**23b** drei verschiedene chirale Komplexe mit dem Metall (M(**23a**)₂, M(**23a**,**23b**) und M(**23b**)₂, die aber aufgrund der chiralen Alkohole oder Amine (X*) nicht im stöchiometrischen Mittel liegen und somit eine asymmetrische Induktion in der Katalyse bewirken.^[137]

Erstmals von Mikami und Noyori angewandt in der asymmetrischen Hydrierung, unter Verwendung von 2,2'-Biphenol (BIPOL) mit einem chiralen Diamin^[139, 140] bzw. von Reetz und Neugebauer mit einem chiralen Diol,^{[121],e} haben Alexakis et al. das Prinzip aufgegriffen und eine einfache Synthese für P-Liganden entwickelt, die auf dem flexiblen Biphenol und einem chiralen sekundären Amin basieren.^[131-133, 135] Es zeigte sich, dass diese Ligandenklasse den chiralen Binaphtolliganden ebenbürtig und teilweise sogar überlegen ist.^[131, 132] Gennari adaptierte das Konzept der induzierten Atropisomerie, verband es mit dem oben genannten Einsatz von Ligandengemischen und erreichte SO erstaunlich gute Umsätze und Enantioselektivitäten.^[137, 141, 142]

Beruhend auf den gerade diskutierten Ergebnissen, ist die Synthese und Untersuchung sowohl von tropen als auch atropen Systemen auf Phenanthrenbasis (**VIII**; wie **20** und **21**) von großem Interesse im Hinblick auf ihren Einsatz als Liganden in der enantioselektiven Katalyse.

Bay-substituierte Phenanthrenderivate des VII Typs (A = OH)könnten möglicherweise in der Organokatalyse oder als Resolutionsreagenzien Anwendung finden. Hier gibt es einige Beispiele von axial-chiralen Brönsted-Säuren, wie Binaphtyl-2,2'-diylhydrogenphosphat (BNP-Säure), die sehr gute Ergebnisse in der enantioselektiven Reduktion von Iminen^[143, 144] oder in der Resolution von chiralen Aminen (z.B. der *Tröger* Base)^[145] erzielt haben. Die Synthese solcher BNP-Säuren BINOL (**15**).^[146] geht (retro-)synthetisch zurück auf Somit sollten 4.5-Phenanthrendiole des Typs III geeignete Vorstufen für die Synthese von Phenanthryl-4,5-diylhydrogenphosphaten (VII) darstellen.

^e In beiden Arbeiten wird die Chiralität mittels eines zusätzlichen chiralen, bidentaten Liganden induziert.

Dagegen könnten Phenanthrenderivate vom Typ **VI** (A = H) als Preliganden in der organischen Synthese, beispielsweise in übergangsmetallkatalysierten Reaktionen zur CC-Bindungsknüpfung, geeignet sein. Denn Binaphtyl-Phoshinoxide, die Substituenten auf Basis sterisch anspruchsvoller Diole tragen, sind als Preliganden in dieser Art von Reaktion bekannt.^[147, 148]

Die Anwendung von Verbindungen des Typs **III** oder **VII** ist auch denkbar als Liganden in der Verstärkung und Detektion von Chiralität und Enantiomerenüberschüssen, wie sie in Kapitel 2.2.4 näher beschrieben wird.

Eine ganz andere Art der Nutzung von Metallkomplexen mit organischen Liganden, ist ihre Anwendung als Emitterschicht in OLEDs (<u>Organic Light Emitting D</u>iodes). Schon in den 1950er Jahren wurden die Fluoreszenzeigenschaften von z.B. Al³⁺- Chelatkomplexen entdeckt.^[149] Doch erst 1987 veröffentlichten Tang und van Slyke eine effektive OLED, unter Verwendung von AlQ3 (**24**), einem Aluminium(III)komplex mit drei 8-Hydroxyquinolinliganden.^[150] AlQ3 (in Reinform oder Verbundmaterialien) ist heute das bekannteste und am weitesten verbreitete Emissionsmaterial in OLEDs. Besonders das Interesse an blauen OLEDs ist sehr groß, da sie als Leuchtmittel und in Vollfarbdisplays benötigt werden^[151] und bislang nur wenige Beispiele existieren. Der Grund dafür ist die relativ große Energielücke zwischen HOMO ("highest occupied molecular orbital") und LUMO ("lowest unoccupied molecular orbital"), die für blaue Lumineszenz benötigt wird.^[152]

Auch in diesem Bereich könnten *Bay*-substituierte Phenanthrenderivate eine Lösung darstellen. Ein Hinweis hierfür gibt z.B. eine kürzlich erschienene, theoretische Arbeit von *Choi et al.*, in der die mögliche Nutzung von Phenanthren-4,5-diol (**18**), als Ligand in einem Aluminium(III)komplex (**25**), für eine Anwendung als Emmisionsmaterial in blauen OLEDs postuliert wird (Schema 11).^[152]

Schema 11. Strukturen von **AIQ3** (24), dem am weitesten verbreiteten Emissionsmaterial in OLEDs, und 25, einem Trisphenanthrenanalogon, das nach *Choi* ein potentielles Emissionsmaterial für blaue OLEDs darstellen könnte.^[152]

2.2.4. Flüssigkristalle

Der flüssigkristalline Zustand stellt, neben den drei klassischen Aggregatzuständen (gasförmig, flüssig und fest), eine weitere Zustandsform der Materie dar. Dabei sind Flüssigkristalle, hinsichtlich ihres Ordnungsgrades, zwischen den hochgeordneten Kristallen, mit ihrer dreidimensionalen Fernordnung, und den isotropen Flüssigkeiten einzugliedern. Prinzipiell existieren zwei Arten von mesogenen Verbindungen: die thermotropen Flüssigkristalle, die beim Schmelzen bzw. Erstarren einen flüssigkristallinen Bereich aufweisen, und die lyotropen Verbindungen, die bei Zugabe eines Lösungsmittels flüssigkristalline Phasen (Mesophasen) ausbilden.^[153]

Beim klassischen Schmelzen eines kristallinen Feststoffes geht die gesamte Fernordnung der Moleküle verloren und es entsteht eine isotrope Flüssigkeit. Im Gegensatz dazu geht bei thermotrop flüssigkristallinen Substanzen beim Schmelzen die Orientierungsfernordnung nicht komplett verloren, sondern bleibt bis zu einem gewissen Grad erhalten. Je nach Phasentyp, kann diese Ordnung dreidimensional (z.B. beim kubischen Phasentyp), meist jedoch nur ein- (nematisch) oder zweidimensional (smektisch) sein. Bei optisch aktiven Substanzen können Phasen mit einer verdrillten nematischen Anordnung vorliegen, z.B. die cholesterische Phase. Hierbei bildet die mittlere Orientierung (Ausrichtung) der Moleküle, der sogenannte Direktor, eine helikale Anordnung aus.^[154] Die Ganghöhe *p* ("pitch") einer cholesterischen Phase entspricht dabei der Dicke einer Schicht in der der Direktor der Moleküle sich einmal um 360° dreht.^[4] Trotz des zum Teil hohen Ordnungsgrades^f weisen flüssigkristalline Verbindungen im mesogenen Zustand stets eine gewisse Fluidität auf. Diese Beweglichkeit, in Kombination mit den verschiedenen Ordnungszuständen, und die damit verbundenen Eigenschaften sind der Grund für die vielseitige Anwendbarkeit von flüssigkristallinen Materialien. Sie können in der elektrooptischen Technik, Sensorik, Katalyse, als Template und in biologischen Anwendungen eingesetzt werden.^[7]

Wichtige molekulare Kriterien für mesogenes Verhalten sind Formanisotopie, intermolekulare Wechselwirkungen (wie z.B. Wasserstoffbrückenbindungen) und Mikrophasenseparation. Bei letzterer handelt es sich um einen Entmischungseffekt von chemisch nicht-mischbaren, jedoch kovalent aneinander gebundenen Molekülteilen wie z.B. Alkylketten (unpolar) und Estergruppen (polar). Bei dem Versuch diese Substrukturen zu entmischen, bilden mehrere Moleküle mit den gleichartigen Molekülabschnitten regelrechte Domänen, was insgesamt zu einer

^f Mesophasen weisen z. T. typisch kristalline, anisotrope Eigenschaften wie z.B. Doppelbrechung auf.

Uberordnung und somit, unter geeigneten Bedingungen zu flüssigkristallinen Phasen führt.

Schema 12. Bekannte Strukturen mit einem polyaromatischen Grundgerüst auf Triphenylen- **IX** und Phenanthrenbasis **X**, die flüssigkristalline Phasen ausbilden können.^[5, 51, 153, 155-158]

Das relativ starre Gerüst macht Polyaromaten wie Triphenylen und Phenanthren **1** zu geeigneten Grundkörpern von flüssigkristallinen (diskotischen) Verbindungen vom Typ **IX** und **X**.^[5, 51, 153, 155-158] Die Trennung des aromatischen Kerns von den langen Alkylketten, durch einen polaren Bereich (z.B. Sauerstoffverbrückung), führt zu einer Mikrophasenseparation und somit zu flüssigkristallinem Verhalten. Zusätzlich können, um Chiralität und Schaltbarkeit zu induzieren, chirale Seitenketten gewählt^[5, 156-158] oder der aromatische Grundkörper verdrillt werden.^[153] *Bay*-substituierte Phenanthrenderivate vom Typ **II**, die zusätzlich über Ether- oder Esterfunktionen an den Aromaten gebundene, lange Alkylketten tragen, würden beide Prinzipien vereinen und somit sehr interessante Verbindungen im Bereich der schaltbaren, chiralen Mesogene darstellen.

Die zweite Möglichkeit Chiralität in Mesophasen zu induzieren, besteht im Zusatz einer chiralen Verbindung, dem sogenannten Dotierungsmittel. Eine achirale nematische Phase wird durch die Beimischung des chiralen Dotierungsmittels, das in den meisten Fällen selber keine flüssigkristallinen Eigenschaften aufweist, verdrillt und somit eine cholesterische Phase induziert.^[4] Der Anteil der chiralen Verbindung muß nur relativ klein sein und ist bei <10 mol% umgekehrt proportional zur Helix-Ganghöhe p.^[4] Die Effizienz einer Verbindung Helicität in eine Mesophase zu induzieren, nennt man *helical twisting power* (HTP). Sie wird durch Formel (a) beschrieben:

$$HTP = \left[\frac{dp^{-1}}{dx}\right]_{x=0} \cong \frac{p-1}{x} = \sum_{i} x_i (HTP)_i$$
(a)

Die am weitesten verbreiteten Dotierungsmittel, die Helicität induzieren können, weisen axial- oder helikal-chirale Biarylstrukturen auf.^[4] Auch trope axial-chirale Verbindungen finden Anwendung als Helicität-induziernde Dotierungsmittel, durch sogenannte Chiralitätsverstärkung. Hierbei wird die Chiralität eines Gastes auf einen flexiblen, axial-chiralen Liganden übertragen. Der nun chirale Komplex überträt seine Verdrillung auf die ihn umgebende nematische Phase und induziert so eine cholesterische Phase.^[159, 160] Deren Ganghöhe kann prinzipiell durch Betrachtung der Wellenlänge eines reflektierten Lichtstrahls bestimmt werden.^[161, 162] Bei geeigneten System ist auf diese Weise sogar die Bestimmung von Enantiomerenüberschüssen ("enatiomeric excess", *ee*) nur durch Betrachtung der Farbe der Mesophase möglich.^[162-164]

Für einen mesogenen Gast sind grundsätzlich gewisse strukturelle Anforderungen zu erfüllen, um eine signifikante HTP aufzuweisen.^[165] Einige ausgewählte Beispiele sind in Schema 13 dargestellt. Die strukturelle Ähnlichkeit der Phenanthrenderivate **III** und **VII** mit in der Literatur verwendeten Systemen,^[4, 159, 160, 166] lässt die in dieser Arbeit anvisierte Verbindungsklasse der *Bay*-substituierten Phenanthrenderivate **II** ebenfalls aussichtsreich erscheinen.

Schema 13. Einige ausgewählte Beispiele für Dotierungsmittel mit großen Verdrillungsstärken **26** und für (trope) Liganden **27** (R = 2-Naphtyl, 9-Phenanthryl) und **28** (R = 2-Naphtyl), die in der Chiralitätsverstärkung Anwendung finden.^[4, 159, 160]

2.3. Biologisch aktive Naturstoffe und Naturstoffanaloga

Auch im Hinblick auf biologische Aktivität sind Phenanthrenderivate vom Typ II und ihre synthetischen Vorläufer wie hochsubstituierte Benzol-, Biphenyl- und Stilbenderivate interessante Strukturen.

Viele biologisch aktive Naturstoffe weisen eine (Dehydro)Phenanthrengrundstruktur auf (einige Beispiele sind in Schema 14 dargestellt).^[16-19, 50, 54] Zum Beispiel die Klasse der Tylophora-Alkaloide (wie Cryptoleurin (**29**) und Tylophorin (**30**)), die entzündungshemmende, antihistaminische, antiasthmatische und immunregulierende Wirkungen besitzt.^[18]

Zusätzlich stellen Verbindungen des Typs **II** potentielle Pharmacophore, z.B. für die Inhibierung der Tubulin-Polymerisation und die damit verbundene Antikrebswirkung dar. Denn sie besitzen, wie viele der bisher bekannten Inhibitoren, die in die Colchicin^[167]-Bindungstasche des Tubulin passen, eine deutliche Verdrillung zwischen der Aryleinheiten.^[168]

Schema 14. Strukturen einiger bekannter biologisch aktiven Naturstoffe, die ein Biphenyl- (**31**), Stilben- (**32**) bzw. Phenanthrengrundgerüst (**29**, **30**, **33**) aufweisen.^[17, 18, 169, 170]

Die häufigsten synthetischen Vorstufen von Phenanthrenderivaten besitzen entweder eine Biphenyl- oder Stilbenstruktur.^[42] Im Falle von hochoxigenierten Verbindungen des Typs **II**, würden deren Synthesevorläufer große strukturelle Ähnlichkeiten zu bekannten hochwirksamen Antikrebsagentien wie Resveratrol,^[171] Combretastatin A-4 (**32**)^[170] oder Steganon (**31**)^[169] bzw. deren vielversprechenden Derivaten^[172-175] aufweisen und somit ebenfalls hochinteressante Verbindungen, im Hinblick auf ihre biologische Wirkung, darstellen.

2.4. Einführung in die Phannomenklatur

Für viele organische Verbindungen, die eine komplexe Struktur aufweisen, wie z.B. Makrocyclen mit integrierten (annelierten) Ringsubstrukturen, ist es sehr schwierig, eine einfache und eindeutige Benennung bzw. Nummerierung zu finden. Aus diesem Grund hat die Kommission für Nomenklatur in der organischen Chemie der IUPAC (International Union of Pure and Applied Chemistry), die Phannomenklatur eingeführt.^[176, 177] Sie beruht auf den gebräuchlichen Prinzipien und Regeln für die Benennung organischer Verbindungen, insbesondere auf der Austauschnomenklatur ('a'-Nomenklatur).^[178, 179] Bei der Austauschnomenklatur werden Heteroatome in Kohlenwasserstoffketten bzw. -ringen wie Kohlenstoffeinheiten behandelt und bekommen zur Kennzeichnung die Endung 'a', Sauerstoffatome z.B.'oxa'. Auf dem gleichen Prinzip beruht die Phannomenklatur. Nur werden hier nicht einzelne Atome, sondern ganze strukturelle Untereinheiten formal durch sogenannte "Superatome" ausgetauscht. Diese Einheiten werden dann wie in ihrer "freien", nicht eingebundenen Form benannt (z.B. Naphthalen, Phenanthren usw.) und erhalten ebenfalls die Endung 'a'. Die Vorgänge werden Vereinfachungen, nach dem englischen Begriff simplification, und Erweiterung, entsprechend amplification, genannt.

Im Folgenden soll, anhand einiger Beispiele, eine kurze Einführung in die Phannomenklatur gegeben werden. Nähere Einzelheiten können der einschlägigen Literatur entnommen werden.^[176, 177]

Schema 15. Grundprinzip der Phannomenklatur: Austausch der Benzoleinheiten in **A** (hellblau) durch "Superatome" (fette Punkte) führt zum "Cyclononan" **B**.

Schema 15 verdeutlicht das Grundprinzip der Phannomenklatur. Aus der komplexen Struktur **A** wird, durch den Austausch mit "Superatomen", ein einfaches Cyclononangerüst **B**. Nach der Phannomenklatur ist die Bezeichnung der Verbindung **A** 1,4(1,3)-Dibenzenacyclononaphan. Die Endung 'phan' weist darauf hin, dass ein Vereinfachungsschritt stattgefunden hat. Die Endung 'a' zeigt auf was ausgetauscht wurde, nämlich 2 Benzoleinheiten (di-benzen-a). Die Positionszahlen

der "Superatome" in der vereinfachten Ringstruktur stehen vor der Klammer und müssen kleinstmögliche Werte aufweisen. Zur Verdeutlichung sind die "Superatome" in den Schemata dieses Kapitels farblich (hellblau) hervorgehoben und ihre Positionsnummern als große, fettgedruckte Zahl jeweils mittig angegeben.

Die Zahlen in der Klammer zeigen die Konnektivität der Untereinheiten mit dem Ring oder der Kette. Zum Beispiel sind in **C** sowohl die Naphthalineinheit als auch die Benzoleinheit über ihre 1- und 3-Positionen eingebunden (Schema 16).

Schema 16. Benennung nach der Phannomenklatur: 1(1,3)-Naphthalena-4(1,3)-benzenacyclononaphan (**C**), 1^4 , 1^5 , 6-Tribrom-1, 4(1,3)-dibenzenacyclononaphan-2-en (**D**).

Sind Substituenten in der vereinfachten Ring- oder in den Substrukturen vorhanden (Schema 16), werden sie zusammen aufgeführt und erhalten die dazugehörenden Präfixe (di, tri etc.). Substituenten in den Untereinheiten werden mit der Zahl des "Superatoms" und ihrer Position in der Substruktur als Hochzahl aufgeführt (Bsp.: 1⁴,1⁵,6-Tribrom bei **D** bedeutet jeweils ein Bromatom an der 4- und 5-Position des Benzolringes, der das "Superatom" in der Position 1 des vereinfachten Cyclononans darstellt, und ein Bromatom an der 6-Position des simplifizierten 9-Ringsystems).

In der vorliegenden Arbeit wird die Phannomenklatur häufig Anwendung finden. Zur Verdeutlichung sind im experimentellen Teil die Untereinheiten ("Superatome") immer mit ihrer vereinfachten Position als große, fettgedruckte Zahl in der Mitte der Einheit versehen. Außerdem sind die Atomnummern der Phaneinheit immer größer abgebildet als die Atomnummern der Substrukturen, welche die Hochzahlen in der Namensgebung darstellen.

Die Aktualität dieser Thematik wird auch anhand der Tatsache deutlich, dass während der Endphase dieser Arbeit, in der *Angewandten Chemie* die deutschen Übersetzungen der IUPAC-Empfehlungen zur Phannomenklatur veröffentlicht wurden.^[180, 181]

3. Aufgabenstellung und Konzeption

Diese Arbeit beschäftigt sich primär mit der Synthese von funktionalen *Bay*substituierten Phenanthrenderivaten des Typs I und II, deren aromatisches Gerüst helikal verdrillt ist (Schema 3). Der Hauptgrund für die Verdrillung ist, wie in Kap. 2.1 erklärt, die räumliche Nähe der *Bay*-Substituenten. Die sterische Behinderung der Bay-Substituenten ist gleichzeitig auch die wissenschaftliche Herausforderung bei der Entwicklung einer effizienten Synthese helikal verdrillter Phenanthrenderivate, da die Reaktivität an den benachbarten Reaktionszentren stark herabgesetzt ist bzw. ungewollte Nebenreaktion (wie z.B. Cyclisierungen) zu befürchten sind.

Das Ziel dieser Arbeit ist die Entwicklung eines allgemein gangbaren Zugangs zu den gewünschten Systemen, der ein hohes Maß an Diversität erlaubt, um durch strukturelle Vielfalt der großen Zahl von potentiellen Anwendungsmöglichkeiten für helikal-chirale Phenanthrenderivate, die in Kap. 2 dargelegt wurden, gerecht zu werden.

Da sich im Verlauf der hier vorliegenden Arbeit die Entdeckung einer neuen kupfervermittelten Kupplung von *ortho*-lodbenzylalkoholen ergab, wurde die Aufgabenstellung und Thematik dieser Arbeit um die nähere Untersuchung dieser Reaktion erweitert. Diese Reaktion stellt einen bisher nicht bekannten Zugang zu der Stoffklasse der 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphane^g (kurz: Dioxocine) **XXXI** dar (Kap. 4.1.7.1). Das Interesse an der tiefer gehenden Erforschung dieser Reaktion liegt einerseits in ihrer Neuartigkeit. Andererseits ermöglicht diese Reaktion, Derivate von 6H-12H-Dibenzo[b,f][1,5]dioxocin (= 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphan)^g **132**, einem aus der Herbstzeitlosen *Colchicum decaisnei* gewonnenem Naturstoff,^[182] herzustellen, die über potentielle biologische Aktivität verfügen.

⁹ Nach der Phannomenklatur (siehe Kap. 2.3).
3.1. Mögliche Synthesenrouten zu *Bay*-substituierten Phenanthrenderivaten

Grundsätzlich gibt es drei denkbare Herangehensweisen, Phenanthrenderivate herzustellen. Erstens, das schon vorhandene Phenanthrengerüst zu derivatisieren, zweitens, ein größeres polyaromatisches Gerüst abzubauen oder drittens, nach Einführung der gewünschten Substituenten, das Phenanthrengerüst schrittweise aufzubauen. Alle drei Konzepte wurden in dieser Arbeit untersucht und werden im Folgenden eingehend diskutiert.

3.2. Derivatisierung eines vorhandenen polyaromatischen Gerüsts

Schema 17. Derivatisierung von Phenanthren durch Dilithiierung und Abfangen mit Elektrophilen (E = z.B. $D^{[183]}$, $S^{[183]}$, $I^{[184]}$).

Zur Strategie der Derivatisierung eines vorhandenen Phenanthrengerüsts gehört, als theoretisch einfachste Möglichkeit, die direkte Funktionalisierung von Phenanthren (**1**). Dies ist formal durch direkte Dilithiierung an den *Bay*-Positionen und Abfangen des erhaltenen Dilithiumorganyls **34** mit Elektrophilen (E⁺) zu Produkten des Typs **Ib** (Schema 17) möglich.^[183, 184]

Als zweite Option kann ein größeres, polyaromatisches System wie z.B. Pyren (35) in geeigneter Weise abgebaut werden. Die oxidative Spaltung der Pyren-4,5-Doppelbindung^[185-188] und anschießende Umwandlung der hochoxidierten, benzylischen Positionen in die gewünschten funktionellen Gruppen würde zu Phenanthrenderivaten des Typs Ic führen (Schema 18). Der erste Schritt, die oxidative Spaltung des Pyrens, kann entweder durch Ozonolyse,^[186, 187, 189] die zu einem Gemisch verschiedenster oxidierter Spaltungsprodukte führt, oder durch Reaktion mit Wolframsäure und Wasserstoffperoxid zur Phenanthren-4,5-(46) erfolgen.^[188] Weitere Derivatisierungen z.B. durch C1dicarbonsäure verkürzenden Carbonsäureabbau oder Reduktion zum Dialdehyd 37 bzw. Dialkohol

49 sind denkbar und könnten zu funktionalisierten Molekülstrukturen, wie z.B. zu Diamin-, (Bis-)Phosphit- oder Kronenether-Derivaten führen (siehe auch Kap. 2.2).

Schema 18. Mögliche Syntheseroute zu *Bay*-substituierten Phenanthrenderivaten durch oxidative Spaltung von Pyren (**35**) zu Dicarbonylphenanthrenderivaten **36** mit anschließender Tranformation in die anvisierten Produkte des Typs **Ic**.

Bei diesen synthetischen Zugängen stellt vor allem die räumliche Nähe der *Bay*-Substituenten zueinander die synthetische Herausforderung dar. Ferner könnten zusätzliche Substituenten in der Peripherie des Moleküls Probleme verursachen.^h

^h Zum Beispiel weist Tetrabrompyren unter normalen Bedingungen in allen gängigen Lösungsmitteln keine nachweisbare Löslichkeit auf. Auch die stark oxidativen Bedingungen sind für die meisten funktionellen Gruppen nicht geeignet.

3.3. Allgemeine Retrosynthese substituierter Phenanthrene

Schema 19. Allgemeine Retrosynthese von *Bay*-substituierten Phenanthrenderivaten durch sukzessiven Aufbau des annellierten, aromatischen Gerüsts; aus Gründen der Übersichtlichkeit ist nur die symmetrische Variante dargestellt.

Die dritte Strategie, der schrittweise Aufbau des Phenanthrengerüsts, ist auf mehreren Wegen möglich, von denen die zwei gebräuchlichsten in der retrosynthetischen Analyse in Schema 19 dargestellt sind.

Grundsätzlich existieren noch weitere Cyclisierungsvarianten, z.B. durch metallinduzierte Carbocyclisierung von alkinylierten Biarylderivaten^[44, 190] oder Photocyclisierung von Dialkinbenzolderivaten.^[52] Doch diese sollen nicht Inhalt dieser

retrosynthetischen Analyse sein,ⁱ auch wenn beide Zugänge, insbesondere die Carbocyclisierung aufgrund besserer Ausbeuten, auch für hochsubstituierte und sterische Systeme geeignet sind.^[44, 52, 191]

Retrosynthetisch sinnvolle Schnitte liegen zum einen in der Doppelbindung zwischen der 9,10-Doppelbindung des Phenanthrengerüsts (Schnitt 1) und zum anderen in der Bindung zwischen den beiden Arylringen (Schnitt 2). Der Aufbau dieser Verknüpfungen kann theoretisch in beliebiger Reihenfolge erfolgen. Die späteren *Bay*-Substituenten werden während des Aufbaus der jeweiligen Kupplungspartner eingeführt, ebenso wie zusätzliche Substituenten in der Peripherie ($R^{1-3} \neq H$). Je nach Wahl dieser Gruppen (z.B. $R^{1-3} = OMe$), sollten diese noch im Laufe der Synthese variierbar sein. Im Schema 19 werden, aus Gründen der Übersichtlichkeit, nur die symmetrischen Varianten berücksichtigt. Grundsätzlich sind jedoch sowohl der Aufbau des Biphenyls **XI** (linke Route) als auch des Stilbens **XII** (rechte Route) durch Kreuzkupplungen in unsymmetrischer Weise denkbar.

Für die Realisierung der Transformationen gibt es mehrere Optionen. Um direkt die Doppelbindung aufzubauen (Schnitt 1) könnten z.B. die *Wittig*-,^[192, 193] *McMurry*-^[194, 195] oder Metathese-Reaktion^[196] genutzt werden. Auch über eine Sulfidzwischenstufe^[97] oder ein Dicarben, generiert aus Bishydrazonderivaten,^[48, 51, 197, 198] ist die Bildung der Doppelbindung denkbar. Alternativ könnte diese Bindung mehrstufig aufgebaut werden, indem zuerst eine Einfachbindung geknüpft und anschließend das erhaltene Dihydrophenanthren^[45, 46, 199-201] zum Phenanthren I oxidiert wird.^[46, 47]

Im Falle, dass die Knüpfung dieser Bindung als letzter Schritt des (Dihydro-) Phenanthrengerüstaufbaus gewählt wird (Reaktionsgleichung (a) in Schema 20), sind Probleme bei der *Wittig*- und *McMurry*-Reaktion literaturbekannt,^[51] weshalb Olefinmetathese^[202] oder reaktive Dicarbenintermediate^[48, 51, 197, 198] dafür besser geeignet scheinen. Beim Aufbau der Doppelbindung zum Stilbenderivat **XIX** (Gleichung (b) in Schema 20), hängt die Wahl der Methode dagegen hauptsächlich von der Art und dem Substitutionsmuster der funktionellen Gruppen am Vorläufer **XVIII** ab.^[5, 51, 53, 56, 203] Mit Hilfe der Olefinmetathese^[204, 205] und der *Wittig*-Reaktion^[53, 58, 172, 173, 206] ist es prinzipiell sogar möglich unsymmetrische Stilbenderivate des Typs **XIX** zu erhalten.

ⁱ Hier ist anzumerken, dass die positiven Ergebnisse für sterisch anspruchsvolle Systeme von Fürstner *et al.*^[44]erst im Verlaufe dieser Arbeit erschienen sind und die Dialkindervate wegen ihrer schlechten Zugänglichkeit und unzureichenden Selektivitäten ausscheiden.^[52]

Schema 20. Aufbau der Bindung, die dem retrosynthetischen Schnitt 1 zugrunde liegt; (a) zum Phenanthren- und (b) zum Stilbengerüst.

Zum Aufbau der zentralen Aryl-Aryl-Bindung (Schnitt 2) sind zwei verschiedene Synthesestrategien denkbar. Um das Phenanthrengerüst aufzubauen (Gleichung (b) in Schema 21), kann man beispielsweise auf Photocyclisierung von 2-lodstilbenen oder von o,o'-unsubstituierten Stilbenderivaten (**XIX**, mit X = H) unter oxidativen Bedingungen zurückgreifen.^[207-210]

Eine erst kürzlich veröffentliche Alternative ist die Umsetzung von Iodstilbenen mit Tributylzinnhydrid unter radikalischen Bedingungen (VAZO, AIBN).^{j,[55]} Auch oxidative Kupplungsreaktionen mit MoCl₅, FeCl₃ oder PIFA^k sind zum Aufbau von Aryl-Aryl-Bindungen, insbesondere für verbrückte Systeme, bekannt.^[211]

Eine zweite Möglichkeit zum Aufbau der Schnitt 2 entsprechenden Bindung, verläuft über ein Biphenylintermediat des Typs **XVI** (Schema 21 (a)),das durch mannigfaltige Aryl-Aryl-Kupplungen hergestellt werden kann.^[212, 213] Etabliert ist beispielsweise die Synthese aus den jeweiligen Phenylhalogeniden (**XVIII**) durch Homokupplungen (**XX**, mit Y = X), wie z.B. der *Ullmann*-Kupplung,^[214-217] oder durch Kreuzkupplungen mit den jeweiligen Phenylmetallspezies (**XX**, mit Y = [M]), wie z.B. der *Suzuki-Miyaura*-Kupplung,^[218] die den Zugang zu unsymmetrisch substituierten Biphenylen des Typs **XVI** ermöglichen würden. Grundsätzlich ist es an dieser Stelle der Synthese auch möglich, die axial-chiralen Biphenyle atropselektiv herzustellen^[219] oder eine Trennung der Enantiomere durchzuführen.^[220-223]

^j VAZO = 1,1⁻Azobis-(cyclohexanecarbonitril); AIBN = Azoisobutyronitril.

^k PIFA = Phenyliod(III)-bis(trifluoroacetat)

Schema 21. Allgemeine Darstellung des Aufbaus der Bindung, die dem retrosynthetischen Schnitt 2 zugrunde liegt; (a) zum Biphenyl- und (b) zum Phenanthren-Gerüst.

Beide Syntheserouten gehen von Benzaldehyden des Typs **XIV** aus, wobei hier eine Reihe von Möglichkeiten für die Wahl der Reste R¹⁻⁴ existiert, je nachdem welche funktionellen Gruppen in der Zielverbindung benötigt bzw. gewünscht werden. Die Peripheriesubstituenten R¹⁻³ müssen nicht identisch sein, gleiches gilt für die *Bay*-Substituenten R⁴. Sie sind praktisch frei variierbar, doch müssen sie so gewählt werden, dass sie für die anschließenden Transformationsbedingungen geeignet sind. Gegebenenfalls ist hier eine spezielle Schutzgruppenstrategie notwendig.

Für die in dieser Arbeit anvisierten Zielverbindungen sind die Reste R^{1-3} jeweils gleich (im einfachsten Fall ist $R^{1-3} = H$). Für die hochsubstituierten Zielstrukturen mit $R^{1-3} = Alkoxy$ bietet sich zunächst $R^{1-3} = OMe$ an, da die Methoxygruppe unter den meisten Bedingungen sehr stabil ist, dennoch weiter derivatisiert werden kann und eine häufiges Strukturmotiv in Naturstoffen darstellt. Zusätzlich ist die Verbindung **38** ($R^{1-3} = OMe$) kommerziell erhältlich, preiswert und somit als Ausgangsmaterial gut geeignet.

Schema 22. Bromierung von Aldehyden des Typs **XV** würde zu geeigneten Zwischenprodukten des Typs **XXI** führen, die variabel zu Verbindungen des Typs **XIV** umsetzbar wären; die Bromierung ist bekannt für **38** \rightarrow **39**.^[224]

Die Einführung der später als *Bay*-Substituent dienenden funktionellen Gruppe R⁴ (Schnitt 3), soll durch eine flexible Methodik erfolgen, da das Ziel dieser Arbeit die Untersuchung einer Reihe von verschieden *Bay*-substituierten Phenanthrenderivaten darstellt.

Vielseitig nutzbare Verbindungen des Typs **XXI** könnten z.B. durch die Bromierung von Verbindungen des Typs **XV** an der 5-Position erhalten werden, da nach einem Brom/Lithium-Austausch verschiedene Reste R⁴ in Form von Elektrophilen eingeführt werden könnten. Auch andere Reaktionen zur Einführung des Restes R⁴ sind prinzipiell an Substraten des Typs **XXI** denkbar. Beispielhaft seien hier übergangsmetallvermittelte Kupplungen (wie die *Heck*, *Stille*, *Suzuki*, *Sonogashira* und *Negishi*-Reaktion)^[225] und die *Buchwald-Hartwig*-Aminierung^[226-228] genannt.

3.4. Synthesemöglichkeiten 4,5-disubstituierter Phenanthrenderivate

Schema 23. Retrosynthese von Phenanthren-4,5-diol (**18**) im Speziellen bzw 4,5-Phenanthrenderivaten (**Id**) im Allgemeinen.

Phenanthren-4,5-diol (**18**) stellt durch seine Ähnlichkeit mit BINOL (**15**) ein vielversprechendes Intermediat zur Synthese von Phenanthren-basierten BINAP-Analoga dar, die sich eventuell als Liganden in der asymmetrischen Katalyse verwenden ließen (siehe Kap. 2.2.3). Es ist daher erstrebenswert, einen effizienteren synthetischen Zugang zu Phenanthren-4,5-diol (**18**) zu finden, als die bisher bekannten Verfahren^[45, 96] (Schema 23). Bei den literaturbekannten Synthesen wird das Diol **18** durch Spaltung der Methoxygruppen von **40** (R = OMe) erhalten.^[96, 229] 4,5-Dimethoxyphenanthren (**40**)^I bzw. 4,5-substituierte Phenanthrene **Id** im Allgemeinen sind durch Dehydrierung der jeweiligen Dihydrophenanthrene **XXII** zugänglich.^[47] Diese können wiederum auf die Dibromide **XXIII** zurückgeführt werden, welche durch Reduktion der Biphensäuren **XXIV** und anschließende Substitution erhalten werden können. Die Dicarbonsäuren **XXIV** lassen sich z.B. durch Verknüpfung der Anthranilsäurederivate des Typs **XXV** aufbauen. Diese Reaktionssequenz ist für eine Reihe von Derivaten bekannt (R = OCH₃, CH₃, CF₃, F, Cl).^[46, 47, 199, 200]

Schema 24. Vereinfachter retrosynthetischer Zugang zu Phenanthren-4,5-diol (18).

Das 4,5-Dimethoxyphenanthren (**40**) stellt in der oben diskutierten Synthesestrategie den eigentlichen Vorläufer zum Phenanthren-4,5-diol (**18**) dar. Das in dieser Arbeit anvisierte Konzept geht von leichter zugänglichen cyclischen Äquivalenten **XXVI** aus. Diese könnten durch oxidative Photocyclisierung aus den Cyclophanen **XXVII** erhalten werden,^[203, 230, 231] welches z.B. durch *McMurry*-Reaktion der Dialdehyde **XXVIII** (Z = O)^[203] oder Metathese der Distyrole **XXIX** ($Z = CH_2$) synthetisierbar sein sollten. Beide Cyclisierunsvorläufer können aus 3-Hydroxybenzaldehyd (**41**), durch zweifache *Mitsunobu*-Reaktion mit einem entsprechenden Diol^[203] oder durch S_N2-Reaktion mit einem geeigneten Dihalogenid oder Ditosylat, hergestellt werden.^[75, 203] Zur Bereitstellung der Metathesevorläufer **XXIX** wäre noch eine zusätzliche Methylenierung von **XXVIII** nötig.

¹ Eine alternative Synthese von **40**, aus dem entsprechenden 6,6'-Dimethoxybiphenyl-2,2'dicarbaldehyd, wurde von *Jung* und *Hagiwara* publiziert.^[48]

Schema 25. Eine geschickte Wahl der verbrückenden Einheit im Cyclisierungsvorläufer XXVIIIa bzw. XXIXa könnte Zugang zu einer Vielzahl von interessanten Phenanthrenderivaten (wie XXXa und XXXb) gewähren.

Dieser Syntheseweg eröffnet, durch die Wahl einer funktionalen, verbrückenden Einheit, eine Vielzahl von synthetischen Perspektiven. Eine chirale Einheit würde vermutlich einen direkten Zugang zu enantiomerenreinen 4.5-Eine Dioxophenanthrenderivaten XXXa bieten. Oligoethyleneinheit als verbrückendes Element würde zu Phenanthrokronenethern wie 11 oder 42 führen, die z.B. als molekulare Sensoren von Interesse sind (siehe Kap. 2.2.2).

3.5. Retrosynthese von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen

Schema 26. Retrosynthese von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen XXXI.

Im Verlauf dieser Arbeit stellte sich heraus, dass 2-lod-3-methoxybenzylalkohol (**88**) mittels elementaren Kupfers zu 1⁶,4⁶-Dimethoxy-2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphan (**91**) gekuppelt werden kann. Das führte zu der Fragestellung, ob generell Dioxocine des Typs **XXXI** durch Kupplung von *ortho*-lodbenzylalkoholen **XXXII** zugänglich sind. Letztere wiederum können durch lodierung der jeweiligen Benzylalkohole **XXXIII** mittels *ortho*-Lithiierung^[232-235] bzw. Umsetzung mit Silbertrifluoracetat,^[236-238] oder die Reduktion von *ortho*-lodbenzoesäurederivaten **XXXIV** erhalten werden.^[239]

4. Ergebnisse und Diskussion

Im ersten Teil dieses Kapitels werden verschiedene, im Rahmen dieser Arbeit synthetische *Bay*-substituierten, untersuchte. Zugänge zu funktionalen Phenanthrenderivaten diskutiert. Diese können unterteilt werden in die Zugangsmöglichkeiten über Biphenylintermediate XI (Kap. 4.1.3, 4.1.4 und 4.1.7) und über die Cylisierung von Stilbenderivaten XII (Kap. 4.1.6). Außerdem werden nicht oder nur begrenzt erfogreiche Methoden diskutiert, wie die direkte Bay-Funktionalisierung von Phenanthren 1 (Kap. 4.1.1) oder die oxidative Spaltung von Pyren **35** (Kap. 4.1.2).

Im zweiten Teil (Kap. 4.2) werden Untersuchungen bezüglich einer neuen, kupfervermittelten Reaktion zur Synthese einer naturstoffbasierten Substanzklasse (**XXXI**) und deren biologischer Aktivität diskutiert. Außerdem werden zwei verschiedene Methoden zur Darstellung von Iodbenzylalkoholen **XXXII** gegenübergestellt (Kap. 4.2.1).

4.1. Synthese helikal verdrillter Phenanthrenderivate

4.1.1. Direkte Dilithiierung von Phenanthren

Als naheliegender und durch seine Kürze besonders attraktiver Zugang zu *Bay*substituierten Derivaten des Typs **Id**, erscheint die direkte Funktionalisierung der 4und 5-Position von Phenanthren **1**. Diese Synthesemöglichkeit wäre sogar bei nur mäßigen, isolierbaren Ausbeuten gegenüber langwierigen Synthesen vorteilhaft.

Eine dementsprechende synthetische Option ist die Dilithiierung von Phenanthren in Gegenwart von TMEDA und die anschließende Umsetzung mit Elektrophilen.^[183, 184, 240] Diese Methode ist auch bekannt für strukturell ähnliche Aromaten, wie Biphenyl^[240] und Triphenylen.^[183] Obwohl die in der Literatur^[183] beschriebene *Bay*-Selektivitäten der direkten Dilithiierung von Phenanthren (**1**), mit ungefähr 60 %, nicht so hoch ist wie bei anderen Polyaromaten^[183, 240] bzw. gar keine Ausbeuten angegeben werden,^[184] schien diese Methode aufgrund ihrer sehr geringen Stufenzahl^m vielversprechend.

^m Eine bzw. zwei Stufen, im Falle der Isolierung der Dilithiumspezies **34**.

Schema 27. TMEDA-vermittelte 4,5-Dilithiierung von Phenanthren (1) und Abfangen des Lithiumorganyls **34** mit geeigneten Elektrophilen, führt direkt zu *Bay*-substituierten Phenanthrenderivaten des Typs **Id** (R = D, Me, I)^[183, 184, 240] als Hauptprodukt (laut NMR- und GC-MS-Analytik); jedoch schlug die anschließende Isolierung unter allen Bedingungen fehl. Standardreaktionsbedingungen exemplarisch für **2** (R = Me, Elekrophil = MeI): 15% *n*-BuLi/Hexan (5 eq.), TMEDA (5 eq.), 3 h, 60 °C, dann MeI (5.2 eq.), -25 °C -> RT.

Bei der Dilithiierung von Phenanthren (**1**) und anschließender Umsetzung mit D₂O und Methyliodid als Elektrophilen unter Literaturbedingungen^[183, 240] wurden zwar die beschriebenen Selektivitäten gefunden (die Hauptprodukte (~ 40 %ⁿ) waren jeweils die 4,5-Phenanthrenderivate (**Id** mit R = D bzw. Me)) jedoch erwies sich die Abtrennung der unerwünschten Regioisomere letztendlich als nicht praktikabel.

Optimierungsversuche mit Methyliodid als Elektrophil wurden unter verschiedensten Reaktionsbedingungen durchgeführt, wobei das Lösemittel, die Art des Lithiumorganyls und das Temperaturprotokoll variiert wurden, ohne dass eine Verbesserung der Selektivität festgestellt werden konnte. Eine geringe Verschiebung der Produktverhältnisse, zugunsten des gewünschten 4,5-substituierten Isomers, konnte erst durch die Isolierung der Dilithiumspezies **34** und einen Lösungsmittelwechsel vor der Umsetzung mit dem Elektrophil, in Anlehnung an eine Literaturvorschrift,^[184] beobachtet werden. Dennoch war es nicht möglich, die verbleibenden Mengen unerwünschter Regioisomere abzutrennen.^o

Bei den in dieser Arbeit anvisierten Systemen **IV** (wie z.B. **43**) wurde infolge der größeren strukturellen Unterschiede zwischen den Regioisomeren, insbesondere der Verdrillung des aromatischen Gerüsts, eine bessere Isolierbarkeit der 4,5-disubstituierten Produkte **IV** erwartet. Deshalb wurden die Untersuchungen zur direkten *Bay*-Funktionalisierung von Phenanthren (**1**) mit Phosphorelektrophilen (CIPR₂, mit R = Phenyl oder Ethyl) fortgesetzt.

ⁿ Laut Integration charakteristischer Signale im 1H-NMR-Spektrum der Rohprodukte.

^o Hier ist anzumerken, dass die Isolation auch mit dem Literaturprodukt (**222** mit R = I) nicht möglich war. Dies ist evtl. auch der Grund, dass von *Bock et al.*^[184] keine Ausbeute angegeben wurde.

Schema 28. Umsetzung von Dilithiophenanthren 34 mit Diaryl- und Dialkylchlorphosphinen führt zum Phosphindolen 44 als Hauptprodukt, statt des erwarteten Bisphosphins 43.

Doch statt der gewünschten 4,5-Bisphosphinderivate 43, wurden als Hauptprodukt jeweils die Benzo[b]phosphindole 44 erhalten. Diese Beobachtungen stimmen mit den Resultaten von Miyamoto, am entsprechenden Biphenylsystem, überein.^[241] Desponds und Schlosser postulierten als Ursache für diesen Verlauf der Reaktion eine Phenyllithium-Eliminierung nach der ersten Substitution eines Lithiumatoms durch einen Diphenylphosphinrest, die bevorzugt bei einem Diederwinkel zwischen den *o-/o*[']-Postionen von ungefähr 30° abläuft.^[242] Dieser Wert liegt gerade im Bereich Diederwinkel (C4-C4a-C4b-C5) von Bay-substituierten typischer Phenanthrenderivaten,^[243-245] wie z.B. für 4,5-Dimethylphenanthrenen^[246] (2) mit 33.2° oder 1,2,3,6,7,8-Hexamethoxy-4,5-dimethylphenanthren (120) mit 31.4° (siehe Kap. 4.1.7). Demnach sind 4-Phosphinyl-5-lithiumphenanthrenderivate prädestiniert bzw. Alkyllithium-Eliminierungen für solche Arylunter Ausbildung von Phosphindolstrukturen 44, wie sie im Verlauf der im Rahmen dieser Arbeit durchgeführten Experimente hier beobachtet wurden. Infolge dessen wurden die Versuche zur Darstellung von Bisphoshinen des Typs 43 durch Dilithierung von Phenanthren (1) eingestellt.

Da jedoch Phosphindolstrukturen wie **44** als monodentate Liganden Anwendung finden könnten,^[247] wurde versucht, durch die Umsetzung des Dilithiophenanthrens mit Dichlorphenylphosphin, das Phosphindol **44a** (mit R = Ph) gezielt herzustellen. Doch auch hier konnte unter keiner der versuchten Bedingungen das gewünschte Produkt **44** von den Nebenprodukten abgetrennt werden. Aufgrund dieser Beobachtungen und der Isolierungsprobleme wurde der Syntheseweg über das Dilithiophenanthrenintermediat **34** schließlich nicht weiter verfolgt.

4.1.2. Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprodukten von Pyren

Eine andere Variante zur Synthese *Bay*-substituierter Phenanthrenderivate, ist die oxidative Ringöffnung von Pyren (**35**). Man erhält so direkt in einem Schritt das substituierte Phenanthrengerüst mit Carbonyl-Substituenten an der 4- und 5-Position (**36**; Schema 29).

Eine Möglichkeit für die Spaltung von Pyren (**35**) ist die Ozonolyse,^[185-187] die je nach Aufarbeitung des intermediär entstehenden Ozonids zu Substituenten verschiedener Oxidationsstufen führt. Diese Methode wies einige Probleme auf. So war es schwierig das Ozon zu dosieren und es traten sehr leicht Überozonierung und die Bildung komplexer Produktgemische auf. Um diese Schwierigkeiten zu umgehen, mußte mit großen Mengen gearbeitet werden, was auch zu einer größeren Gefährdung führte, da auf der Stufe des (oftmals explosiven und epigenetisch toxischen^[248]) Ozonids ein Lösemittelwechsel und somit eine Isolation erforderlich war.

Schema 29. Übersicht der literturbekannten und eigenen Synthesen zu 4,5-Di(hydroxymethyl)phenanthren (**49**) aus Pyren (**35**); (i) Ozonolyse; ^[185-187, 189] (ii) Veresterung zu **47** (mit R = Me^[249] bzw. Et^[186]); (iii) DIBALH-Red.; ^[250] (iv) LAH-Red.; ^[186, 249] (v) Oxid. mit WO₄, Aliquat 336, H₃PO₄, H₂O₂ (30%), 71 %, Lit^[188]: 91 %; (vi) Red. mit LAH^[251] oder BH₃·THF^[252]; (vii) Mel, NaHCO₃, 96 %, Lit.^[188]: 88 %; (viii) LAH-Red., 98 %.

Eine elegantere Möglichkeit die 4,5-Doppelbindung von Pyren (**35**) oxidativ zu spalten, ist die Nutzung eines Gemisches aus Wolframsäure, Phosphorsäure und Wasserstoffperoxid (Schema 29; v).^[188] Diese Reaktion führt in guten Ausbeuten (71 %, Lit^[188]: 91 %)^p zur Phenanthren-4,5-dicarbonsäure (**46**), als einziges Produkt. Versuche die Dicarbonsäure **46** zu reduzieren, führten jedoch weder mit LAH^[251] noch mit BH₃·THF^[252] zum gewünschten Diol **49**. Die Überführung in den Methylester **48** gelang in sehr guter Ausbeute (96 %, Lit.^[188]: 88 %).

Die anschließende Reduktion des Methylester **48** gestalltete sich jedoch als schwierig. Weder die Verwendung der Reduktionssysteme Natriumborhydrid/ Lithiumchlorid,^[253] Natriumborhydrid/Aluminiumtrichlorid,^[254] Kaliumborhydrid/Lithiumchlorid unter Mikrowellenbestrahlung,^[255] noch der Einsatz von Lithiumaluminiumhydrid^[256] führten zum Erfolg. Dabei wurden jeweils entweder nur das Edukt **48** oder Cyclisierungsprodukte, wie das Oxepin **50** und das *o*-Chinon **53**, isoliert. In den meisten Fällen entsprachen die isolierten Mengen an Produkten nicht annähernd den eingesetzten Mengen an Edukt. Auch der Einsatz eines Perforators zur kontinuierlichen Extraktion der wässrigen Phasen, führte zu keiner nennenswerten Verbesserung. Erst durch die Verwendung von Seignette-Salz (Kalium-Natrium-Tartrat), bei der Aufarbeitung der Lithiumaluminiumhydrid-Reduktion, konnte das gewünschte Diol **49** in sehr guten Ausbeuten von bis zu 98 % erhalten werden. Dies ist die erste bekannte Synthese von 4,5-Di(hydroxymethyl) phenanthrene (**49**) ausgehend von Pyren (**35**) ohne die riskante Ozonolyse, die zudem noch mit sehr guten Ausbeuten abläuft

Abbildung 2. Verdrillung des Phenanthrengerüsts von **49**, in der Röntgenstruktur (32.5°; links) und im DFT-kalkulierten Modell (31.6°; rechts).

 $^{^{\}rm p}$ Hier ist anzumerken, dass in der Literatur 50% ige H_2O_2-Lsg. verwendet wurde, aber nur 30% ige H_2O_2-Lsg. zur Verfügung stand.

Die Röntgenstrukturanalyse bestätigt die erwartete helikal-chiral verdrillte Konformation des Diols 49 (Abbildung 3) mit einem Diederwinkel (C4-C4a-C4b-C5) von 32.5°. DFT-Rechnungen^[257] (B3LYP/6-311G(d)) ergeben für das Diol **49** nur eine Verdrillung 31.6°, obwohl Rechnungen dieser Art oftmals eher größere Werte liefern, als die experimentell bestimmten. Die in der Kristallstruktur gefundene Verdrillung der Dihydroxyverbindung 49 ist sogar größer als die für das analoge Dibromid **51** gefundene (29.9°, siehe auch Abb. 5) welches aufgrund des größeren sterischen Anspruchs seiner Substituenten stärker verdrillt sein sollte. Ein Grund dafür könnten. die im Kristallverband vorliegenden intermolekularen Wasserstoffbrückenbindungen sein, die die Bay-Substituenten auseinanderziehen (Abbildung 3). Die berechneten Werte (in der Gasphase) für die Verdrillungen der beiden Verbindungen 49 und 51 sind mit 31.6° bzw. 31.5° nahezu gleich.

Abbildung 3. Röntgenstruktur von **49**; die intermolekularen Wasserstoffbrückenbindungen der *Bay*-Hydroxymethyl-Gruppen im Kristallverband könnten zu einer verstärkten Verdrillung des Phenanthrengerüsts führen.

Auch von zwei Nebenprodukten aus den Reduktionsversuchen des Diesters **48**, dem Oxepin **50** und dem Chinon **53**, konnten Röntgenstrukturen erhalten werden (Abb. 5). Die Gegenüberstellung der verschiedenen Röntgenstrukturen in Abbildung 5, verdeutlicht die unterschiedlichen Verdrillungen der jeweiligen polyaromatischen Gerüste. Erwartungsgemäß sind das Anhydrid **52** und das Oxepin **50** durch die zusätzliche Verbrückung wesentlicher weniger verdrillt als das Diol **49** oder das Dibromid **51**. Das *ortho*-Chinon **53** entspricht strukturell eher dem Pyren (**35**) und ist wie dieses auch nahezu planar.

Die in den entsprechenden Kristallstrukturen gemessenen Verdrillungen stimmen sehr gut mit den aus DFT-Rechnungen^[257] (B3LYP/6-311G(d)) erhaltenen Werten überein. Auch andere experimentelle Befunde zu diesen Verbindungen, wie beispielsweise spektroskopische Daten, harmonieren gut mit den berechneten Ergebnissen. Als Beispiel dafür sind in Abbildung 4 das gemessene und berechnete IR-Spektrum von **50** dargestellt.

Abbildung 4. Experimentelles (oben) und kalkuliertes (unten) IR-Spektrum der Verbindung 50.

Abbildung 5. Die Röntgenstrukturen zeigen die Abstufungen in den Torsionen verschiedener Phenanthren- bzw. Pyrenderivate: von den deutlichen helikalen Verdrillungen des Bromids **51** und des Diols **49** über die leichten Verdrillungen des Anhydrids **52** und Oxepins **50** zu der, dem Pyren entsprechenden, nahezu planaren *o*-Chinonsstruktur **53**.

Der erarbeitete, effiziente Zugang zu 4,5-Di(hydroxymethyl)phenanthren (49) ermöglichte die Synthese entsprechender neuer funktionaler Derivate. Die Einführung von simplen Esterfunktionalitäten (55 mit R = $Ac^{[249]}$ und $Bz^{[186]}$) als Testreaktionen verlief mit dem Diol 49 unproblematisch. Basierend auf diesen verschiedener konnten eine Reihe Ester Ergebnissen, 54a-h. unter Standardbedingungen^q mit dem jeweiligen Säurechlorid,^r erfolgreich synthetisiert werden (Schema 30 und Tabelle 2).

Die gewissermaßen inverse Route über das Phenanthren-4,5-dicarbonsäurechlorid erwies sich hingegen als nicht gangbar, da sich aus der Disäure **46**, unter den Chlorierungsbedingungen,^[258, 259] ausschließlich das Anhydrid^[260] **52** bildete (Röntgenstruktur siehe Abb. 5).

Schema 30. Allgemeine Synthese C1-verbrückter Diester des Typs 54 aus dem Diol 49.

Eintrag	Edukt	R =	Produkt	Ausbeute
1	49	à de la companya de la compa	54a	63 %
2	49	ja se	54b	68 %
3	49		54c	49 %
4	49		54d	63 %

Tabelle 2. Übersicht der nach Schema 30 synthetisierten Bay-Ester des Typs 54.

^q *N,N*-Dimethylaminopyridin (DMAP), DCM, RT, 12 h.

^r Die Säurechloride wurden größtenteils durch Chlorierung der Carbonsäuren hergestellt.^[258]

Eintrag	Edukt	R =	Produkt	Ausbeute
5	49		54e	50 %
6	49		54f	37 %
7	49	OMe OMe	54g	40 %
8	49	O ₂ N OMe	54h	_ a

Fortsetzung Tabelle 2. Übersicht der nach Schema 30 synthetisierten Bay-Ester des Typs 54

(a) Es konnten nur einige Kristalle für eine Röntgenstrukturanalyse gewonnen werden.

Die Synthese der Serie von *Bay*-Estern **54a-h** war durch ihre molekulare Gestalt angeregt: sie können als aussichtsreiche Kandidaten für potentiell mesogene, gebogene Calamiten angesehen werden und gegebenenfalls smektische, nematische oder sogenannte "banana"-Phasen^s formen:^[154] Infolge dessen wurden sie auf flüssigkristallines Verhalten untersucht, aber leider wies keiner der Ester 54ah thermotrop flüssigkristallines Verhalten auf. Für das Nichtzustandekommen einer supramolekularen Ordnung könnten verschiedene Effekte verantwortlich sein:

- Die Estersubstituenten sind durch die verbrückenden Methyleneinheiten eventuell zu flexibel an den aromatischen Kern gebunden, um die notwendige geknickte oder gebogene Form aufrechtzuhalten.
- Außer beim Bis(octyloxy-biphenyl)-Ester 54f besitzen die Alkylketten die typische Länge für Nematen und könnten deshalb für die erwarteten smektischen oder "banana"-Phasen zu kurz sein.

^s "Banana-shaped" Mesogene stellen deshalb ein so faszinierendes Thema dar, weil sie Mesophasen mit chiralen Superstrukturen mit ferroelektrischen Eigenschaften ausbilden können, obwohl die Moleküle selber nicht chiral sind.^[261]

• Die helikale Verdrillung des Phenanthrengerüsts kann die intermolekularen Wechselwirkungen (wie z.B. π -stacking) und somit die Selbstorganisationsfähigkeit beeinträchtigen.

Auch wenn die Verbindungen **54a-h** selber kein thermotrop flüssigkristallines Verhalten aufweisen, könnten sie in enantiomerenangereicherter Form als Dotierungsmittel in LC-Phasen dienen (siehe Kap. 2.2.4). Unter der Voraussetzung, dass ihre Racemisierungsbarriere hoch genug ist, könnten dann die HTPs dieser Verbindungen mit denen strukturell sehr ähnlicher Verbindungen verglichen werden, die bekanntermaßen dieses Induktionspotential besitzen.^[166] Untersuchungen diesen Punkt betreffend, sollen Inhalt zukünftiger Studien innerhalb des Arbeitskreises sein.

Von mehreren der in Schema 31 abgebildeten Ester (**54**) konnten Röntgenstrukturen erhalten werden. Alle diese Verbindungen weisen die erwartete helikale Verdrillung des Phenanthrengerüsts auf und sind somit chiral. Allerdings wurden aus der oben gezeigten Reaktionssequenz das Ausgangsmaterial **49** und damit auch die Ester **54a-h** als Racemate erhalten, was eine zusätzliche Resolution in die Enantiomere nötig macht. Erste Trennungsversuche mittels HPLC waren bisher nicht erfolgreich. Rechnungen^[257] (B3LYP/6-311G(d)) weisen daraufhin, dass dies bei Raumtemperatur an einer nicht ausreichend großen Racemisierungsbarriere liegen könnte.

Bemerkenswert ist die unterschiedliche Ausrichtung der *Bay*-Gruppen in den Kristallstrukturen, je nachdem ob es sich bei den Resten R der *Bay*-Substituenten um lange Alkylketten (**54a**) oder (bi-)cyclische Strukturen (**54c**, **54e**, **54f** und **54h**) handelt. Wie in Abb. 6 zu sehen ist, liegen die langen Alkylketten innerhalb der aromatischen Ebene und die Moleküle sind in einer Kopf-Schwanz-Folge schichtartig angeordnet. Bei den komplexeren Cylohexyl- und Benzoesäure-Derivaten (Abb. 7) hingegen, ragen die Estergruppen senkrecht zur Aromatenebene aus dem *Bay*-Bereich und sind mit den Estersubstrukturen der benachbarten Aromatenschichten verflochten ("interdigitated"). Diese Packungsunterschiede können auch die großen Schmelzpunktdifferenzen erklären (z.B.: Schmelzp. (**54a**): 57 °C; Schmelzp. (**54c**): 181 °C).

Abbildung 6. Röntgenstruktur des Bisnonansäuresters **54a**: (a) Einzelmolekülansicht und (b) Kopf-Schwanz-Anordnung der Moleküle im Kristall.

Abbildung 7. Röntgenstruktur des Bisbicyclohexanesters **54c**: Anordnung der Moleküle im Kristall, als (a) Kugel-Stab-Modell und (b) Kalottenmodell.

Abbildung 8. Röntgenstrukturen der Bisester **54c** (a), **54e** (b), **54f** (c) und **54h** (d); jeweils im Kugel-Stab-Modell (**54e** weist eine starke Fehlordnung der äußeren Phenylringe auf). Bei den abgebildeten Estern stehen die Estergruppen jeweils nahezu senkrecht zu der verdrillten, aromatischen Ebene des Phenanthrengerüsts.

Wie in Kapitel 2 erwähnt, könnte man die helikale Verdrillung des Phenanthrenrückgrates und die damit verbundenen optischen Eigenschaften auch für molekulare Sensoren nutzen. Deshalb wurde versucht, das Diol **49** zum Kronenether **9** umzusetzen. Die Synthese des benötigten Ditosylats erfolgte nach einer bekannten Methode.^[262] Doch die Bildung des Kronenethers **9** konnte unter den getesteten Bedingungen^[69, 88] nicht beobachtet werden.

Aus diesem Grund wurde versucht den Kronenether **9** invers herzustellen.^[69] Dafür musste zuerst das entsprechende 4,5-Bis(brommethyl)phenanthren (**51**) hergestellt werden, was in mäßigen Ausbeuten als Nebenprodukt nach einer Vorschrift von *Badger et al.* gelang.^[249] Die Struktur von **51** konnte per Röntgenstrukturanalyse bestätigt werden. Das Hauptprodukt dieser Reaktion stellte allerdings, wie auch schon von *Katz* und *Slusarek* beschrieben,^[250] das Oxepin **50** dar. Das gewünschte Bromid **51** konnte jedoch durch einfaches Auskochen mit *n*-Hexan von dem Oxepin **50** abgetrennt werden.

Doch auch aus dem Dibromid **51** und Tetraethylenglykol, in Anlehnung an ein Syntheseprotokoll von *McFarland*,^[69] gelang die Synthese des Kronenethers **9** nicht, sondern es entstand ausschließlich das Oxepins **50**.

Schema 31. Übersicht Methylen-verbrückter 4,5-Phenanthrenderivate, die aus dem Diol 49 zugänglich sind; das Diol 49 wird durch Spaltung von Pyren 35 und anschließender Reduktion erhalten.

Um zu 4,5-substituierten Phenanthrenderivaten mit größerer Konformationsstabilität zu gelangen, wurde auch versucht die funktionellen *Bay*-Gruppen direkt am aromatischen Kern anzubinden und nicht über eine dazwischen liegende Methylenoder Carboxylgruppe, wie bei den bisher in diesem Kapitel diskutierten Verbindungen. Hierfür wurde die Anwendung etablierter C1-verkürzender Transformationsreaktionen untersucht.

Der direkte Carbonsäureabbau zum Amin, mittels der *Schmidt*-Reaktion,^[263] gelang weder unter Standardbedingungen,^[264] noch unter der Verwendung von Hydroxylamin-*O*-sulfonsäure (HOSA).^[265] Auch Versuche zur Überführung der

Disäure **46** in ein Amid^[266, 267] für eine anschließende Hofmann-Umlagerung^[268] zum Amin waren leider nicht erfolgreich. Deshalb wurde alternativ die Oxidation des Diols **49** zum Phenanthren-4,5-dicarbaldehyd (**37**) mit Pyridiniumchlorochromat (PCC) bzw. unter Swern-Bedingungen^[269] versucht, um diesen Dialdehyd mittels *Baeyer-Villiger*-Umlagerung^[270] zum Phenanthren-4,5-diol **18** umzulagern. In keinem der Experimente konnte die Bildung des gewünschten Dialdehyds **37** beobachtet werden. Stattdessen wurde bei der PCC-Oxidation das Lakton **56** als Hauptprodukt identifiziert. Dieses stellt das Produkt einer intramolekularen *Cannizzaro*-Reaktion des Phenanthren-4,5-dicarbaldehyds (**37**) dar.^[271] Von dem Lakton **56** konnte eine Röntgenstruktur erhalten werden, in der das Phenanthrengerüsts ebenfalls eine Verdrillung aufweist (Abb. 9).

Abbildung 9. Röntgenstruktur des Laktons **56**, das durch eine intramolekulare Cannizzaro-Reaktion aus Phenanthren-4,5-dicarbaldehyd **37** entstanden ist; links: Aufsicht, rechts: Frontalansicht .

Insgesamt führte die räumliche Nähe der beiden C1-Substituenten in der *Bay* des Phenanthrens, oft zu unerwünschten Reaktionen. Vor allem Cyclisierungsreaktionen zwischen den beiden *Bay*-Gruppen zu einem vierten annellierten Ring traten, wie sie auch bei der Einführung der Phosphorfunktionalitäten (Kap. 4.1.1) beobachtet wurden, häufig auf. Zum Beispiel wurden das Dichinon **53**, das Anhydrid **52**, das Oxepin **50** und das Lakton **y48** (Abb. 5 und 9) als Produkte im Verlauf der verschiedenen Experimente identifiziert.

Zusammenfassend kann gesagt werden, dass trotz erheblicher Schwierigkeiten durch diese unerwünschten Ringschlussreaktionen ein guter Zugang zu interessanten, verdrillten Phenanthrenderivaten (siehe z.B. Tabelle 2 bzw. Abbildung 6, 7 und 8) eröffnet werden konnte. Leider sind die an der 4- und 5-Position C1funktionalisierten Phenanthrene, experimentellen Daten (wie z.B. NMR) und DFT-Rechnungen zu Folge, bei Raumtemperatur nicht inversionstabil. Um die Flexibilität der Systeme zu verringern, wurde der Schwerpunkt der Untersuchungen auf 4,5disubstituierte Phenanthrenderivate verlagerte, die die funktionellen Gruppen direkt am aromatischen Gerüst tragen (siehe folgende Kapitel).

4.1.3. Synthese und Derivatisierung von Halogen-substituierten Biphenylund Dihydrophenanthrenderivaten

Eine Reihe von 4,5-substituierten Phenanthrenen **Id** (R = OCH3, CH3, CF3, F, CI) sind erfolgreich über die entsprechenden 9,10-Dihydrophenanthrenderivate^[45, 46, 199-201] des Typs **XXII** und die anschließende Oxidation synthetisiert worden.^[45-47] Die Synthesestrategie verläuft dabei über 5,5´-disubstituierte Biphensäurederivate **XXIV** bzw. deren Methylester als Schlüsselintermediate.^[45, 46, 199-201, 272]

Diese etablierte Synthesestrategie sollte auch im Verlauf dieser Untersuchungen Anwendung finden, da die intermediär erhaltenen Dihydrophenanthrene **XXII**, infolge ihrer Verdrillung, ebenfalls sehr interessante Verbindungen, hinsichtlich der in dieser Arbeit angestrebten Eigenschaften, darstellen.

Schema 32. Reaktionssequenz zu 4,5-substituierten Phenanthrenderivaten (**Id**); Reagenzien und Reaktionsbedingungen für R = CI: (i) NaOH, NaNO₂ / HCI, 5 °C, 30 min, dann CuSO₄, NH₃, NH₂OH·HCI, NaOH, 90 °C, 1.5 h,^[272] danach FeCl₃, HCI, RT,^[199] 87 %, Lit.: 77 %^[199] bzw. 99 % (Rohausbeute)^[272]; (ii) LAH, Et₂O, 78 %, Lit.^[199]: 92 %; (iii) HBr (48%), Rückfluss, 2 h, 99 %, Lit.^[199]: 75 %; (iv) PhLi, Et₂O, 4.5 h, Rückfluss, 78 %, Lit.^[199]: 22 %; (v) siehe Ref.^[47]; alle Produkte **58a** – **61a** entsprechen den jeweiligen Literaturdaten.^[47, 199, 272]

Für eine weitere Funktionalisierung schienen dabei die Halogenderivate (Schema 32 mit R = X) am besten geeignet zu sein. Die Biphensäure **58a** wurde entsprechend Literaturbedingungen aus der kommerziell erhältlichen 3-Chloranthranilsäure **57a** hergestellt.^[272] Nur die Aufarbeitung wurde nach *Browne et al.* modifiziert.^[199] Auf diese Weise konnte das Produkt **58a** mit einer Ausbeute von 87 % (Lit.: 77%^[199] bzw. 99 % Rohausbeute^[272]) erhalten werden. Auch die weiteren Stufen der Reaktionsequenz zum 4,5-Dichlor-9,10-dihydrophenanthren (**61a**) konnte entsprechend Literaturvorschriften^[47, 199, 272] erfolgreich synthetisiert werden (Schema 32). Dabei konnten die Strukturen des Diols **59a** und des Dibromids **60a** jeweils durch eine Röntgenstrukturanalyse bestätigt werden (ohne Abbildung).

Insbesondere bei der abschließenden Cyclisierung des Dibromids **60a** zum Dihydrophenanthren **61a** mittels Phenyllithium gelang dabei gegenüber den publizierten Arbeiten eine erhebliche Ausbeuteverbesserung (78 %; Lit.^[199]: 22%). Die von *Cosmo* und *Sternhell*^[200] beschriebene alternative Verwendung von Magnesium, führte jedoch nur zu weniger als 20 % zum Dihydrophenanthren **61a** und lieferte als Hauptprodukt mit 65% Ausbeute das 2,2'-Dichlor-6,6'-dimethylbiphenyl (**63**). Dieses konnte radikalisch zurück zum Startmaterial **60a** bromiert werden (~75 % Ausbeute).

Schema 33. Unerwartetes Produkt aus der Umsetzung von **60a** mit Magnesium: Bitoluolderivat **63**; und Rückreaktion zu **60a** unter radikalischen Bedingungen; Reaktionsschema (links) und Röntgenstruktur von **63** (rechts); Reagenzien und Reaktionsbedingungen: (i) Mg, Et₂O,RT, 12 h, 65 %; (ii) NBS, BP, CCl_4 , ~ 75 %.

Der nächste Schritt für die Synthese eines Liganden des Typs 43, die Transformation der Halogenfunktion in eine Phosphingruppe, sollte aufgrund der größeren Entfernung zwischen den Bay-Substituenten am Dihydrophenanthren- 61a statt die Gefahr Phenanthrenderivat 62a erfolgen, um unerwünschter Ringschlussreaktionen (vergl. Kap. 4.1.1) zu minimieren. Aber weder im Falle des 4,5-Dichlor-9,10-dihydrophenanthrens (61a) noch bei dem "offenen" Vorläuferderivat, dem Dichlorbiphenyl **64**, konnten die Chlorsubstituenten durch

Phosphorsubstituenten ersetzt werden.^t Da bei **61a** praktisch kein Chlor/Lithium-Austausch festgestellt werden konnte, wurde diese Reaktionssequenz mit der im Lithiumaustausch sehr viel reaktiveren Bromfunktionalität wiederholt (Schema 32, R = Br).

Schema 34. Versuche zur Einführung der Phosphinfunktionalitäten in den späteren *Bay*-Positionen durch Chlor / Lithium-Austausch; am Dihydrophenanthrengerüst 61a und einem "offenen" Vorläufer 64.

Die dafür notwendige 3-Bromanthranilsäure^[273, 274] (**57b**) wurde aus 2-Bromanilin (**66**) synthetisiert, das nach einem Protokoll von *Rault et al.*^[275, 276] zum 7-Bromisatin^[95] (**67**) umgesetzt und anschließend basisch zur 3-Bromanthranilsäure (**57b**) geöffnet wurde (Schema 35).^[273] Eine Röntgenstruktur der Anthranilsäure **57b** ist in Abbildung 10 dargestellt. Eine alternative, literaturbekannte Synthese^[277] von **57b**, durch Bromierung von *N*-acetylierter Anthranilsäure **68** in einer Mischung aus Essigsäure und Tetrachlorkohlenstoff, konnte nicht nachvollzogen werden.

Die weitere Kupplung zur Biphensäure **58b** verlief unter analogen Bedingungen, wie für die Chlorverbindung **58a**. Nach Säure-Base-Neutralstofftrennung und Auskristallisieren aus wässriger Salzsäure wurde die Disäure **58a** in Ausbeuten von 22 % erhalten. Da die Biphensäure **58b** in den gängigen Lösemitteln sehr schwer löslich ist, konnte keine Standardanalytik zur Charakterisierung herangezogen werden. Jedoch konnten die Hydroxy- und Carbonylfunktion der Säuregruppe mittels

^t Bei **64** trat vollständige Zersetzung ein.

ATR-IR nachgewiesen und das Natrium-Addukt der Verbindung **58b** mittels ESI-MS identifiziert werden. Den abschließenden Beweis für die Struktur der Verbindung **58a** lieferte eine Röntgenstrukturanalyse der erhaltenen Kristalle. In Abbildung 10 (rechts) ist die deutliche (79.90 (6)°) Verdrillung der beiden aromatischen Ringe der Biphensäure zu erkennen. Zusätzlich ergab die Röngtenstruktur, dass **58b** in einem Netzwerk aus intermolekularen Wasserstoffbrückenbindungen vorliegt (ohne Abbildung).

Die erhaltene Disäure 58b wurde weiter zur Bishydroxymethylverbindung 59b reduziert, da diese ein besseres Löslichkeitsverhalten aufweisen sollte. Leider stellte sich dass sich Diol 59b den heraus. das unter Bedingungen der säulenchromatographischen Aufreinigung zersetzte. Demzufolge konnte die Identifizierung der Substanz 59b nur durch Interpretation der analytischen Daten des Rohproduktes durchgeführt werden (siehe Exp. Teil; Kap. 6.6.5).

Die beobachtete Instabilität und die mäßigen Ausbeuten im Kupplungsschritt zur Biphensäure **58b** gaben den Ausschlag, diesen Syntheseweg nicht weiter zu untersuchen.

Zwar ist bekannt,^[95] dass unter Verwendung von Natriummethanolat als Base 7-Bromisatin (67) auch zum entsprechenden Methylester geöffnet und über eine mehrstufige Sequenz zum gewünschten Dihydroxyintermediat **59b** umgesetzt werden kann (Schema 35), jedoch wurde diese alternative Route infolge aussichtsreicherer Synthesewege, die sich im Verlauf der Arbeit ergaben (siehe Kap. 4.1.6), nicht weiter verfolgt.

Der von *Gohier* und *Mortier*^[278] beschriebene kürzere und zudem preisgünstigere Zugang zum 3-Brom-2-iodbenzoesäuremethylester (**70**) aus 3-Brombenzoesäure (**69**) konnte nicht reproduziert werden.

Abbildung 10. Röntgenstrukturen von 3-Bromanthranilsäure (**57b**; links) und 2,2´-Dibrom-6,6´biphensäure (**58b**) in der Aufsicht (Mitte) und der Seitenansicht (rechts).

4.1.4. Synthese und Untersuchung eines fluoreszierenden Chemosensors auf Biphenyl-Basis

Auch wenn die in den letzten Abschnitten diskutierte Synthese von 4,5-Bisphosphinen des Typs **IV** nicht von Erfolg gekrönt war, schien das in diesem Zusammenhang hergestellte Dibrommethylderivat **60a**, als Ausgangsmaterial zur Synthese von halogensubstituierten Crownophanen, sehr vielversprechend. Einerseits sind diese sehr interessant, da sie durch ihren strukturellen Aufbau potentiell als Modellsysteme für allosterisches Verhalten dienen könnten. Das heißt, dass diese Crownophane Konformationsänderungen und damit verbundenes verändertes Koordinationsverhalten, bei der Komplexierung verschiedener Kationen bzw. Komplexierung der Ionen in verschiedener Reihenfolge aufweisen könnten.^[83, 84, 87, 88, 279]

Andererseits befähigt die axial-chirale Biphenyleinheit Crownophane, die auf **59** oder **60** basieren, möglicherweise zur Nutzung als enantioselektive oder fluoreszierende Chemosensoren.^[68-70] Letztere finden zunehmend Anwendung in der medizinischen Analyse und Umweltkontrolle.^[69]

Schema 36. Synthese des axial-chiralen Kronenethers **71**; Reagenzien und Reaktionsbedingungen: (i) NaH, Tetraethylenglykol, THF, RT, 24 h, 50 %.

Die Umsetzung von 60a mit Tetraethylenglykol verlief problemlos und lieferte den Kronenether 71 in einer isolierten Ausbeute von 50 %. Zur Bestimmung der Racemisierungsbarriere wurden temperaturabhängige NMR-Spektren in CDCl₃ aufgenommen, die in Abbildung 11 dargestellt sind. Deutlich erkennbar, ist die Koaleszenztemperatur von 71 bei 315 K nahezu erreicht ist. Eine weitere Temperaturerhöhung ist in CDCl₃ aus technischen Gründen jedoch nicht möglich. Die verbleibende kleine Aufspaltung des Resonanzsignals bei 4.24 ppm nach "longe range" H,H-COSY-Experimenten auf einer Kopplung mit den Protonen an der 3- und 3'-Position des Biphenylgerüsts. eine eindeutige Klärung erfordert jedoch aufwendigere Entkopplungsexperimente. Erste Messungen in (höhersiedendem) Toluol-D₈ zeigten eine starke Abhängigkeit der Racemisierungsbarriere vom Lösemittel. Obwohl die Meßtemperatur 315 K deutlich überstieg, war eine Koaleszenz der NMR-Signale nicht zu erkennen. Möglicherweise sind für diesen Gast/Wirt-Wechselwirkungen **Kronenethers** Effekt des 71 mit Lösungsmittelmolekülen verantwortlich.

Abbildung 11. Rechts: ¹H-NMR-Signale der Protonen an den benzylischen Positionen (Pfeile) des Kronenethers **71** (links) in Abhängigkeit von der Temperatur (in Chloroform-D).

Abbildung 12. Fluoreszenz-Verstärkungs-Faktoren (I/I_0) des Kronenethers **71** aufgetragen gegen das zugegebene Kation (als Perchlorat).

Die Eignung des Kronenethers **71** als selektive (fluoreszierende) lonensonde wurde titrimetrisch untersucht. Hierfür wurde nach einer Methode von *McFarland*^[69] eine verdünnte Lösung ($4\cdot10^{-4}$ M in CH₃CN) des Kronenethers **71** mit einer Reihe von konzentrierten Metallperchlorat-Lösungen (0,2 - 1M in CH₃CN) titriert und jeweils die Emission bei einer Anregungswellenlänge von 220 nm gemessen. Die entsprechenden Daten sind in Abb. 13 - 16 bzw. im Anhang (Kap. 8.2) aufgeführt.

Abbildung 13. Titration von 71 in Acetonitril mit NaClO₄ zeigt keinen Effekt auf die Emission.

Die Verbindung **71** weist ein Emissionsmaximum bei ca. 300 nm auf. Die Emissionsintensität bleibt bei der Zugabe von Lithium-, Natrium-, Kalium- und Magnesiumperchlorat-Lösung in allen Konzentrationen unverändert ($I/I_0 = 1$; Abb. 12). In Abbildung 13 ist exemplarisch das Fluoreszenzspektrum des Titrationsexperiments mit NaClO₄ dargestellt.

Auf Zugabe einer Calciumsalz-Lösung reagiert das System mit einer Erhöhung der Emissionsintensität um ungefähr den Faktor 2 (Abb. 12 bzw. 14). Diese Ergebnisse weisen daraufhin, dass der Kronenether selektiv Ca²⁺-Ionen komplexiert. Analoge Ergebnisse mit ähnlichen Verbindungen sind literaturbekannt.^[69] Demnach schränkt die Komplexierung die Beweglichkeit die beiden verdrillten, aromatischen Ringe um die Biphenylachse ein, was zu einer Verringerung der Inter-System-Crossing-Rate und somit zu einer Verstärkung der Fluoreszenz führt.^[280-282]

Abbildung 14. Titration von 71 in Acetonitril mit Ca(ClO₄)₂ führt zu einer Verdopplung der Emission.

Da Hg²⁺-Ionen mit 112 pm dem Ionenradius von Ca²⁺-Ionen (106 pm) sehr ähnlich sind, wurde **71** auch mit Hg(ClO₄)₂ titriert. Die Zugabe von Hg(ClO₄)₂ führte jedoch überraschenderweise nicht zu einer Erhöhung, sondern zur Auslöschung der Emission (Abb. 15). Dies gilt sogar in Anwesenheit von Calciumionen. Selbst bei einer Zugabe von 10 äquivalenten Ca(ClO₄)₂ reichen 2 Äquivalente Quecksilbersalz aus, um auf die Ausgangsfluoreszenz zurückzufallen (Abb. 16). In der Gegenwart kleiner Mengen Quecksilbersalz (2 eq.) kann die Fluoreszenz durch Zugabe von Ca(ClO₄)₂ wiederhergestellt, aber unabhängig von der Menge nicht mehr signifikant über das Ausgangsniveau der Verbindung **71** erhöht werden. Dagegen führen größere Mengen Quecksilbersalz (~ 10 eq.) zu einer kontinuierlichen Auslöschung der Fluoreszenz, die nicht mehr durch Zugabe von Calciumionen erhöht werden kann. Eine Komplexierung der Quecksilberionen an der Kronenetherfunktion und die damit verbundene Verdrängung der Calciumionen ist wahrscheinlich nicht der Grund, da die Auslöschung auch in Abwesenheit von Ca²⁺-Ionen auftritt und eine Einlagerung von Hg²⁺-Ionen ebenfalls zu einer planareren Geometrie des Biphenylgerüsts und der damit verbundenen Fluoreszenzerhöhung führen sollte. Es ist jedoch möglich, dass für die Quecksilberionen ein differenter Bindungsmodus mit der Oligoethyleneinheit existiert.

Abbildung 15 Titration von 71 in Acetonitril mit Hg(ClO₄)₂ führt zu einer Auslöschung der Emission.

Um diesen Sachverhalt zu klären, wurde 2,2´-Dichlorbiphenyl (**71a**) unter identischen Bedingungen wie **71** mit Calcium- und Quecksilberperchlorat-Lösung titriert. 2,2´-Dichlorbiphenyl stellt ein geeignetes Modellsystem dar, da es den gleichen Fluorophor wie **71** besitzt, aber die Kronenethereinheit entbehrt und somit nicht in der Lage ist dort eine Komplexierung einzugehen. Wie erwartet, zeigt 2,2´-Dichlorbiphenyl keine Fluoreszenzänderung bei der Zugabe von Ca(ClO₄)₂. Doch auf die Addition von Quecksilberperchlorat reagiert das System mit Rückgang der Fluoreszenzintensität, ähnlich wie sie bei **71** beobachtet werden konnte. Dies zeigt, dass nicht die Komplexierung durch die Kronenetherfunktion für diesen Effekt verantwortlich ist, sondern eine andere Ursache vorliegen muss.

Schema 37. Mögliche Bindungsmodi, die zur Auslöschung der Fluoreszenz führen könnten: Wechselwirkung der Quecksilberionen mit dem π -System (**72**) oder mit den Chloratomen (**73**; exemplarisch ist hier ein Komplex mit zusätzlichen Liganden (L) dargestellt) von 2,2´-Dichlorbiphenyl (R = H), bzw. **71** (R = -OC₂H₄OC₂H₄OC₂H₄OC₂H₄O-).

Bei näherer Betrachtung sind mehrere Bindungsmodi plausibel, die zur Auslöschung der Fluoreszenz führen könnten. Einer ist die Ausbildung eines Komplexes zwischen den Quecksilberionen und den Chloratomen des Biphenyls (**73**; Schema 37 rechts). Dies könnte zu einer stärkeren Verdrillung der aromatischen Ringe führen und die Fluoreszenz absenken. Eine andere Möglichkeit, die in Schema 37 auf der linken Seite abgebildet ist, ist das Zustandekommen einer Wechselwirkung der Hg²⁺-Ionen mit dem π -System des Biphenylsystems (**72**), welche zur Auslöschung der Fluoreszenz führt. Um genauere Aussagen treffen zu können, sind weitere Untersuchungen (wie z.B. Anregungs-Raman-Spektroskopie) nötig, die im Rahmen der vorliegenden Arbeit nicht mehr durchgeführt werden konnten, aber für die Zukunft geplant sind.

Abbildung 16. Titration von **71** in Acetonitril mit $Hg(CIO_4)_2$ führt zu einer Auslöschung der Emission, auch in Anwesenheit von Ca²⁺-Ionen.

4.1.5. Verwendung Phosphor-substituierter Vorläufer für die Synthese von 4,5-*P*-Phenanthrenderivaten

Da eine Einführung der Phosphorfunktion nach der in Kap. 4.1.1 beschriebenen Strategie nicht erfolgreich durchgeführt werden konnte, wurde eine andere Taktik verfolgt. Hierbei sollte die Phosphingruppe, als Phosphinoxid oder Boran-Addukt geschützt, an einem frühen Punkt der Synthesessequenz eingeführt werden.

Um Probleme wie unerwünschte Ringschlußreaktionen (vergl. Kap. 4.1.1) zu umgehen, wurde auf das literaturbekannte 6,6'-Dimethylbiphenyl-2,2'-diyl) bis(diphenylphosphin^[95] (**13**, BIPHEMP) zurückgegriffen, für welches prinzipiell mehrere etablierte Synthesemöglichkeiten für die anschließende Funktionalisierung der benzylischen Position existieren.^[283-288] Ein zusätzlicher Vorteil ist, dass die Trennung der Enantiomere auf Stufe des Bisphoshins bekannt ist.^[95]

Schema 38. Synthesesequenz mit dem racemischen, literaturbekannten BIPHEMP-Liganden *rac*-13 als Intermediat; Reagenzien und Reaktionsbedingungen: (i) – (v);^[95] (vi) H₂O₂, MeOH, RT, 3 h, 73%; (vii) NaCr₂O₇, H₂SO₄, AcOH, Rückfluss, 1 h; (viii) NBS, BP, CH₂Cl₂, Rückfluss, 5 h; (ix) Methylviologendichlorid (**79**) Hydrat, hv, CH₃CN, 4h.

BIPHEMP **13** wurde nach einem Protokoll von *Schmid et al.*^[95] in einer fünfstufigen Sequenz erhalten und durch Oxidation mit H_2O_2 in das Bisoxid **75** (BIPHEMPO) überführt (Schema 38). Von dem Bisphosphinoxid **75** konnten zwei unterschiedliche Kristallstrukturen erhalten werden, in denen jeweils Gastmoleküle (Wasser bzw. Dichlormethan) aus dem Kristallisationsprozeß an definierten Gitterplätzen
angeordnet sind und sehr interessante supramolekulare Kanäle ausbilden (Abbildung 17).

Abbildung 17. Röntgenstrukturen von BIPHEMPO 75 , mit CH_2Cl_2 (links) und Wasser (rechts) als Gast.

Obwohl in der Literatur keine Hinweise auf Probleme bei verwandten Systemen beschrieben sind,^[283-287] erwies sich die weitere Funktionalisierung der Methylgruppen von BIPHEMPO (**75**) als äußerst schwierig. Zwar konnten nach einigen Fehlschlägen die benzylischen Positionen sowohl radikalisch **77** bromiert^u als auch mit NaCr₂O₇^[284] zur Dicarbonsäure **76** oxidiert werden,^v aber in beiden Fällen wurden die Produkte nur in Spuren innerhalb eines komplexen Produktgemisches mittels HPLC-MS nachgewiesen und konnten nicht isoliert werden.

Schema 39. Methylviologen-dichlorid 79.

Einen direkten Zugang zum (Dihydro)Phenanthrengerüst aus der Dimethylkomponente **75** stellt eine C-C-Bindungsknüpfung zwischen dessen beiden Methylgruppen dar. Für eine solche Reaktion wurde Methylviologen **79**, ein relativ

 ^u NBS, BP, CH₂Cl₂, Rückfluss, 5 h; in CCl₄ und CHCl₃ konnte keine Umsetzung beobachtet werden.
 ^v Bei den Versuchen der Oxidation mit KMnO₄^[289] oder dem *N*-Hydroxyphtalimid /Co(OAc)₂-System^[287]

konnte kein Produkt 76 detektiert werden.

neues und in der aktuellen Literatur mit großem Interesse bedachtes Reagenz, eingesetzt. Unter UV-Bestrahlung sollten so in den benzylischen Positionen Radikalanionen generiert werden und unter oxidativen Bedingungen zum anvisierten Dihydrophenanthren **78** kuppeln. Doch auch hier konnte das gewünschte Produkt **78** nur in Spuren nachgewiesen werden. Im Hinblick auf diese Ergebnisse wurde die Synthesestrategie nicht weiter verfolgt.

Schema 40 Synthesesequenz zu Biphenylvorläufern des Typs **85** ausgehend von 3-Brombenzylalkohol (**80**); Reagenzien und Reaktionsbedingungen: (i) **81a**: MeI, NaH, THF/Hexan, 60 h, >99 %, Lit.^[290]: 80 %;^w **81b**: TBSCI, Imidazol, DMF, RT, 12 h, >99 %, Lit.^[291]: 95 %;^x (ii) *n*-BuLi, CIPPh₂, THF, -78 → 0 °C; (iii) H₂O₂, MeOH, RT, 2 h, **83a**: 93% über 2 Stufen, **83b**: 99% über 2 Stufer; (iv) Edukt: **83b**; TBAF, THF (H₂O),0 °C → RT, 2 h, 70 % **84**; (v) verschiedene Bedingungen,^[103, 292-294] 0 %.

Stattdessen wurde eine Synthesestrategie erarbeitet, bei der sowohl die Phosphorals auch die für den späteren Ringschluss benötigte benzylische Funktionalität schon zu Beginn vorhanden sind bzw. frühzeitig eingeführt werden. Ausgangssubstanz ist der kommerziell erhältliche 3-Brombenzylalkohol (**80**), der zunächst unter Standardbedingungen^[290] als Methylether **81a** geschützt wurde.^w Die folgenden Transformationen zum Phoshinoxid **81a** konnten in Anlehnung an eine Literaturvorschrift^[103] mit sehr guten Ausbeuten durchgeführt werden (93 % über 2 Stufen). Die Ausnutzung der *ortho*-metallierenden Effekte der Phosphinoxid-^[103, 292] und Methylbenzylethergruppen konnten leider nicht genutzt werden; die *ortho*lodierung führte unter keiner der getesteten Bedingungen^[103, 292-294] zum

^w In der Literatur wurde Me₂SO₄ an Stelle von Mel benutzt.^[290]

^x In der Literatur wurde DMAP an Stelle von Imidazol benutzt.^[291]

gewünschten Produkt **85a**. Deshalb sollte die Benzylalkoholfunktion zu **84** freigesetzt und deren stärkere ortho-dirigierende Wirkung^[234] ausgenutzt werden. Jedoch gelang die Entschützung weder unter der Verwendung von HCI in THF/H₂O^[295] oder TMSI^[296] noch mit BF₃-Etherat.^[297] Da Methylether manchmal schwer oder gar nicht hydrolysierbar sind,^[298] wurde, um zum Benzylalkohol **84**, zu gelangen die gesamte Sequenz mit der labileren Schutzgruppe TBS wiederholt (**81b** – **83b**). Die Einführung der TBS-Gruppe und die folgenden Transformationen zum Phosphinoxid **83b** verliefen jeweils mit exzellenten Ausbeuten (~99 %). Die Labilität der TBS-Schutzgruppe führte dazu, dass sie während der chromatografischen Aufreinigung teilweise abgespalten und somit **83b** nicht in Reinform erhalten werden konnte. Letztendlich konnte der freie Benzylalkohol **84** dennoch durch direkte weitere Umsetzung des Rohproduktes von **83b** in guten Ausbeuten (70 %) erhalten und sogar eine Röntgenstrukturanalyse angefertigt werden. Doch auch mit **84** gelang die *ortho*-lodierung unter keiner der getesteten Bedingungen.^[103, 292]

Abbildung 18. Röntgenstruktur des Phosphinoxids 84.

Auch wenn die vorher diskutierte Sequenz (Schema 40) mit Phosphorsubstituenten in der späteren *Bay*-Position nicht erfolgreich verlief, erschien die Strategie mit *ortho*lodierung, Knüpfung zum Biphenyl und anschließendem Ringschluss zum (Dihydro)Phenanthren trotzdem sehr vielversprechend. Deshalb wurde ein ähnlicher Reaktionsweg zur Herstellung des Dimethoxyderivats **40** entwickelt (Schema 41), das als Vorläufer für das äußerst interessante Phenanthren-4,5-diol (**18**) dient (siehe Kap. 2.2.3).

Der 2-lod-3-methoxybenzylalkohol^[235] (88) wurde durch *ortho*-Lithiierung des kommerziell erhältlichen Benzylalkohols 87 mit guter Ausbeute erhalten. Die anschließende *Ullmann*-Kupplung zum Biphenyl 90a bzw. 90b erfolgte weder mit dem freien (88) noch mit dem geschützten Alkohol (89). Während bei dem TBS-Ether

89 unter den Bedingungen der *Ullmann*-Kupplung hauptsächlich nur Edukt zurückgewonnen wurde, konnte bei dem freien Alkohol **88** ein unerwartetes Produkt charakterisiert werden, nämlich das Dibenzenacyclohexaphan **91**. Auf die Studien zu dieser Reaktion wird in Kap. 4.1.7.1 noch näher eingegangen.

Schema 41. Synthesestrategie zu 4,5-Dimethoxyphenanthren (**40**) und teilweise unerwarteten Ergebnisse der durchgeführten Versuche; Reagenzien und Reaktionsbedingungen: (i) *n*-BuLi, I₂, Benzol, 0 °C, 88 %; (ii) Imidazol, TBSCI, DMF, RT, 12 h, 99 %; (iii) Cu, DMF, Rückfluss, 18 h, 29 %.

4.1.6. Photocyclisierung von Stilbenen

4.1.6.1. Darstellung von Phenanthren-4,5-diol mittels verbrückter Stilbenintermediate

vorangegangenen Kapitel diskutierte, einfache Zugang Da der im zum Dimethoxyphenanthren **40** mittels *Ullmann*-Kupplung nicht zum Erfolg führte, musste eine alternative Syntheseroute für den Zugang zu Phenanthren-4,5-diol (18) entwickelt werden. Wie in der Konzeption erwähnt (Kap. 3.4), ist eine grundsätzliche Methode Phenanthrene aufzubauen die oxidative Photocyclisierung von Stilbenen.^[209, 210] Allerdings ist die Methode zum Aufbau von 4,5-disubstituierten Phenanthrengerüsten nicht geeignet, da laut *Dyker et al.*^[203] ein Gemisch aus Regioisomeren entsteht und die sterisch überladenen 4,5-Derivate nicht die favorisierten Produkte darstellen (Schema 42).^[203, 299] Dieser in der Literatur beschriebene Zugang zum 4,5-Dimethoxyphenanthren (40) als Synthesevorläufer für das Diol 18 ist also nicht praktikabel, insbesondere da neben den schlechten Ausbeuten des gewünschten 4,5-Isomers 40, nach den Ergebnissen aus Kap. 4.1.1, wahrscheinlich auch die Abtrennung der anderen Isomere (93, 94) ein Problem darstellt.

Schema 42. Oxidative Photocyclisierung von Dimethoxystilben **92** führt nach *Dyker et al.*zu einem Isomerengemisch der Produkte **40**, **93** und **94** im Verhältnis 16:55:29, im Gegensatz zum statistischen Verhältnis von 25:50:25.^[203]

Jedoch könnten eventuell andere 4,5-Dioxophenanthrenderivate als synthetische Vorstufen zur Darstellung des Phenanthrendiols **18** von Nutzen sein. In diesem Zusammenhang wird in der Literatur eine Strategie zum Aufbau von Phenanthren-4,5-diethern des Typs **XXVI** beschrieben (Schema 43). Eine kurze Brücke (n = 3 oder 6) zwischen den *meta*-Substituenten des Stilbencyclisierungsvorläufers **XXVII** führte bei der Photocyclisierung ausschließlich zur Formierung des 4,5-Phenanthrenderivats **XXVI**. Längere Brücken (n =12) führten zur verstärkten Bildung des 2,5-Derivates.

Schema 43. Synthese 4,5-verbrückter Phenanthrene nach *Dyker et al.*,^[203] durch eine Sequenz von (a) zweifacher *Mitsunobu* oder nukleophiler Substitution mit Diolen bzw. Ditosylaten, (b) *McMurry*-Reaktion und (c) oxidativer Photocyclisierung.

Folgend der einer publizierten Sythesesequenz^[203] wurde zuerst der Aldehyd **41** mit 1,3-Propandiol in einer zweifachen *Mitsunobu*-Reaktion zum Dialdehyd **95a** in einer Ausbeute von 68 % gekuppelt. Danach wurde durch eine *McMurry*-Olefinierung mit TiCl₄ und Zink der Makrocyclus **96a** aufgebaut. Hier konnte jedoch mit maximal 35 % die in der Literatur beschriebene Ausbeute (65 %) nicht erreicht werden.

Doch die anschließende Belichtung von **96a** mit Licht der Wellenlänge 300nm in Anwesenheit von Iod und Propylenoxid^[203, 300] ergab das gewünschte Produkt **97a** in sehr guter Ausbeute (bis zu 95 %, Lit.^[203]: 91 %). Auch unter der Verwendung des weniger flüchtigen und weniger gesundheitsgefährdenden Oktenoxids an Stelle von Propenoxid konnte das Produkt **97a** in vergleichbar guten Ausbeuten erhalten werden.

Schema 44. Freisetzung des Phenanthrendiols **18** durch Spaltung der Etherfunktionen von **97a** (links); Röntgenstruktur des *M*-Enantiomers von **18** (rechts), der enatiomerenreine Kristall stammt bemerkenswerterweise aus der racemischen Reaktion.

Die bisher nicht beschriebene zweifache Spaltung der Etherbrücke und damit einhergehende Freisetzung des Phenanthren-4,5-diols (18) gelang mit 1M BBr₃-

Lösung in Dichlormethan mit 53 % Ausbeute. Dieses Resultat konnte unter Verwendung von reinem BBr₃ bis auf 93 % verbessert werden.

Damit stellt dieser 4-stufige Weg mit einer Gesamtausbeute von 21 % den kürzesten und effektivsten bisher bekannten Zugang zu Phenanthren-4,5-diol (**18**) dar. Zum Vergleich *Newmann* und *Childers*^[96] erhielten das Diol **18** in einer 6-stufigen Synthese ausgehend von *m*-Cresol in einer Gesamtausbeute von 10 %. Auch *Jung* und *Hagiwara*^[48] erhielten ausgehend vom nicht kommerziell erhältlichen 2-lod-3-Methoxybenzaldehyd Cyclohexylimin das 4,5-Dimethoxyphenanthren **40** nur in 17 % Ausbeute, wobei der zusätzliche Entschützungsschritt zum Diol noch ausstünde.

Erstmalig konnte von dem Diol **18** eine Röntgenstruktur erhalten werden, die einige interessante Eigenschaften der Verbindung **18** aufzeigt. Das Diol **18** liegt in einer verdrillten Konformation vor und ist somit chiral. Allerdings bilden die Hydroxygruppen in der *Bay* eine intramolekulare Wasserstoffbrückenbindung aus, was zu einer Verringerung der Verdrillung führt. Vor allem bemerkenswert ist die Tatsache, dass die Verbindung **18** enantiomerenrein kristallisiert, obwohl der gemessene Kristall aus einem Racemat stammt. In Lösung ist das Diol **18** wahrscheinlich jedoch nicht inversionsstabil. Nach DFT-Berechnungen^[257] (B3LYP/6-311G(d)) ist das Diol **18**, mit einer Racemisierungsbarriere von nur 7.1 kJ mol⁻¹, außerhalb der kristallinen Phase jedoch sicherlich nicht inversionsstabil.

18

Abbildung 19. Die Röntgenstruktur von **18** zeigt eine intramolekulare Wasserstoffbrückenbindung zwischen den *Bay*-Hydroxygruppen, die wahrscheinlich zu einer Verringerung der helikalen Verdrillung des Phenanthrengerüsts führt. Besonders bemerkenswert ist die Tatsache, dass das Diol **18** in dem vermessenen Kristall enantiomerenrein vorliegt.

4.1.6.2. Synthese und Einsatz eines P-monodentaten Liganden auf Basis eines verdrillten Phenanthrengerüsts in der asymmetrischen 1,4-Addition

Nachdem nun ein effektiver Zugang zu Phenanthren-4,5-diol (**18**) existierte, war das nächste Ziel die Synthese von Liganden ausgehend von dieser Verbindung. Wie im Grundlagenkapitel dargelegt (Kap. 2.2.3), existieren prinzipiell eine Reihe von verschiedenen, interessanten Ligandenmodelle, die potentiell zum Einsatz z.B. in der

asymmetrischen Synthese geeignet scheinen und auf dem Diol **18** als Startmaterial basieren. Eine der Möglichkeiten wäre z.B. die Synthese eines Bisphosphins des Typs **B** ($R^{1-6} = H$) das ein Äquivalent zu BINAP **16** darstellt, dessen gängige (industrielle) Synthesen^[301] ebenfalls von einem Diol (BINOL, **15**) ausgehen. Doch aufgrund der Erfahrungen, die bei den Versuchen zur Einführung von Phosphinresten gemacht wurden (Kap. 4.1.1 und 4.1.3) und der Ergebnisse für die niedrigen Racemisierungsbarrieren der 4,5-Oxiphenanthrene (wie 18) schien ein andere Art von Ligandendesign erfolgversprechender, nämlich die Klasse der monodentaten Phosphite und Phosphoramidite mit flexiblem (tropos) Rückgrat. Diese recht neue Art von Liganden in der asymmetrischen Katalyse beruht auf dem Konzept der induzierten Atropisomerie (siehe auch Kap. 2.2.3) und konnte schon erfolgreich in verschiedenen asymmetrischen Transformationen eingesetzt werden. Wie in Kapitel Kap. 2.2.3 werden in diesem Zusammenhang 2,2'-substituierten Biphenyle, insbesondere des 2,2'-Biphenol (z.B. bei den Liganden 19, 21 und 23), oftmals erfolgreich eingesetzt, wobei letzteres eine große strukturelle Ähnlichkeit zum Bay-Phenanthrendiol 18 aufweist (Kap. 2.2.3, Schema 9). Aus diesem Grund wurden Versuche Synthese Phenanthren-basierter zur entsprechender Systeme unternommen.

Schema 45. Synthese des Phenanthren-4,5-diol-basierten, monodentaten Phosphoramiditliganden 99 und seines Palladiumkomplexes 100.

In Anlehnung an ein Protokoll von *Rimkus* und *Sewald*^[118] konnte der Phosphoramidite-Ligand 99 ausgehend vom Diol 18 in einer Eintopfsynthese in 67 % Ausbeute erfolgreich hergestellt (Schema 45) und eine Röntgenstrukturanalyse angefertigt werden, in der die nahezu planare Konformation der Phenanthrensubstruktur erkennbar ist. Dies entspricht dem erwartetet tropen Charakter des polyaromatischen Rückgrates und somit eine Eignung als Ligand entsprechend des Prinzips der induzierten Atropisomerie.

Abbildung 20. Röntgenstrukturen des freien Liganden **99** (oben) und des Palladium(II)-Komplexes **100** in der Seitenansicht (links unten) und in der Frontalansicht (rechts unten).

Zusätzlich gelang es einen Palladium(II)-Komplex des Liganden **99** herzustellen (**100**) und ebenfalls eine Röntgenstruktur des Komplexes **100** zu erhalten. In der Seitenansicht in Abbildung 20 (links unten) ist deutlich erkennbar, wie die beiden Liganden eine Seite des Palladiumatoms abschirmen. Durch die in der Frontalansicht

deutlich zu erkennende helikale Verdrillung der Phenanthreneinheiten und die beiden chiralen Zentren der Amineinheit bilden die Liganden eine chirale Tasche aus. Diese Befunde und die erfolgreiche Nutzung verwandter Systeme in der Literatur, deuten stark auf eine Eignung des Liganden **99** für die asymmetrische Katalyse hin.

Im Folgenden sollen nun die Ergebnisse der Untersuchungen des synthetisierten Liganden **99** in der enantioselektiven Katalyse diskutiert werden.

Das strukturell sehr ähnliche Biphenolphosphoramidit **103** wurde schon erfolgreich in der asymmetrischen Hydrierung,^[137] in der kupfer-katalysierten 1,4-Addition^[131-133] und in der Ir- bzw. Rh-katalysierten, allylischen Alkylierung^[136] eingesetzt. Da **103** in der asymmetrischen, konjugierten Addition die besten Ergebnisse erzielte, wurde der phenanthrenbasierten Phosphoramiditligand **99** ebenfalls in dieser Reaktion getestet. In der Literatur^[131, 132] wurde jedoch das *S,S*-System **103a** verwendet. Um einen direkten Vergleich ziehen zu können, wurde deshalb zuerst das *R,R*-Biphenolphosphoramidit **103b** entsprechend den Literaturbedingungen^[118, 137] in vergleichbarer Ausbeute (80 %, Lit.^[137]: 89 %) hergestellt.

Schema 46. Kupfer-katalysierte, konjugierte Addition von Diethylzink an Cyclohex-2-en-1-on (101) unter Verwendung troper Liganden wie 103 und 99.

Die beiden R,R-konfigurierten Liganden **99** und **103b** wurden entsprechend den Literaturbedingungen^[131, 132] unter Verwendung von Cu(OTf)₂ in der konjugierten Addition von Et₂Zn an Cyclohex-2-en-1-on (**101**) eingesetzt. Tatsächlich konnten

nicht nur die Literaturergebnisse reproduziert werden (92(S) % ee,^y Lit.^[132]: 90(R) %ee^z), sondern auch das eigene System mit dem phenanthrenbasierten Liganden **99** ähnlich erfolgreich eingesetzt werden (92 % Ausbeute an **102**, 84(S) %ee).^y Im Gegensatz zu dem in der Literatur beschriebenen Umsatz von > 99 %, wurde jedoch in beiden Fällen noch Edukt (~ 8 %) detektiert. Die Bildung des 1,2-Additionsproduktes wurde nicht beobachtet.

Wie erwartet, lieferte der Ligand **99** hervorragenden Umsatz und sehr guten Selektivität in der 1,4-Addition. Die etwas geringere Selektivität von **99** im Vergleich zu **103b** spricht dafür, dass tatsächlich die Flexibilität des Rückgrates für die hervorragenden Eigenschaften der Systeme mit induzierter Atropisomerie in der asymmetrischen Katalyse verantwortlich ist, da das 4,5-disubstituierte Phenanthrengerüst etwas regider ist als die 2,2'-Biphenolsubstruktur.

Der offensichtliche Vorteil flexibler Liganden, wie **103** und **99**, ist, dass sie universeller einsetzbar als konformationsfixierte Systeme, wie z.B. mit Binaphtylliganden,^[302]sind, da Erstere keine "missmatched" Fälle (wie z.B. die Liganden **104a** und **104b**; Schema 47) aufweisen.^[131] Zudem sind die tropen Systeme leichter zugänglich, da keine Trennung oder selektive Synthese der Enantiomere nötig ist.

Schema 47. Konformativ fixierte Binaphtylliganden **104a** und **104b**, die erfolgreich in der konjugierten Addition eingesetzt wurden; der *M*,*S*,*S*-Ligand **104a** liefert das Produkt **102** mit $98(R)^{[302]}$ bzw. $95(R)^{[131]}$ %ee ("matched"-Situation; links); der *P*,*S*,*S*-Ligand **104b** erreicht 75(S) %ee (mismatched"-Situation: rechts).^[131, 302, 303]

Erwähnenswert ist an dieser Stelle noch, dass die hohe S-Selektivität von **99** in der 1,4-Addition und die in der Röntgenstruktur von **100** zu erkennende *P*-Konformation des Phenanthrengerüst in Verbindung mit der Konfiguration der beiden chiralen Zentren (*R*,*R*), der im Falle der Binaphtylliganden **104** beobachteten, "matched"-Situation^[302] (*M*,*S*,*S*-**104a** => *R*-Produkt) entspricht. Es liegt also nahe zu vermuten,

^y Ausbeuten und Enantiomerenüberschüsse (für *S*-**102**) wurden mitels chiraler GC und Dodecan als internem Standard bestimmt. Edukt und Produkte wurden sowohl anhand von Vergleichsproben mit den Reinsubstanzen als auch mittels GC-MS identifiziert.

^z Mit dem *S*,*S*-konfigurierten Liganden **103a**.

dass die Röntgenstruktur des Palladiumkomplexes **100** der Struktur des katalytisch wirksamen Kupferkomplexes in der 1,4-Addition ähnelt. Eine von den Liganden ausgebildete chirale Tasche, wie sie in Abbildung 20 (rechts unten) für den Palladiumkomplex **100** zu erkennen ist, könnte also für die gute Enantioselektivität in der konjugierten Additionsreaktion verantwortlich sein. Die hier für die Phenanthrensubstruktur beobachtete, induzierte konformere Chiralität wurde auch im Palladiumkomplex des Biphenylderivats **103a** gefunden.^[136]

Die diskutierte Synthese und der getestete Einsatz des ersten monodentaten Phosphorliganden auf Phenanthrenbasis (**99**) demonstrieren erfolgreich eine Verwendungsmöglichkeit von 4,5-substituierten Phenanthrenderivaten als Liganden in der asymmetrischen Katalyse. Dieses positive Resultat ist die Motivation für die Herstellung und Untersuchungen weiterer Liganden mit einer Phenanthrensubstruktur, welche Inhalt zukünftiger Forschungen innerhalb des Arbeitskreises sein sollen.

4.1.6.3. Alternative Synthesen verbrückter Stilben

Die Ergebnisse des vorangehenden Abschnittes betonen die Bedeutung effizienter Synthesen von *Bay*-substituierten Phenanthrenderivaten auf. Insbesondere Phenanthren-4,5-diol (**18**) ist als Ausgangsmaterial zum Aufbau interessanter Ligandensysteme prädestiniert.

In Kapitel 4.1.6.1 dieser Arbeit ist eine effektive Synthesestrategie vorgestellt worden. Da die von Dyker et al.^[203] beschriebenen Ausbeuten für die Titanvermittelte Ringschlussreaktion zu 96a nicht reproduziert werden konnten, wurde eine alternative Synthesevariante zum Aufbau des Makrocyclus 96a mittels Ringschlussmetathese (RCM) getestet. Dafür wurde zuerst das Bisstyrol **108** in einer 4-stufigen Synthesesequenz, ausgehend vom 3-Hydroxybenzaldehyd (41), hergestellt. Die Schützung der Phenolfunktion als TBS-Ether verlief guantitativ. Wittig-Methylenierung, Freisetzen des Phenols 107 und anschließende zweifache Mitsunobu-Reaktion mit 1,3-Propandiol ergaben das gewünschte Produkt 108 in 19 % Gesamtausbeute über alle Stufen.^{aa} Doch der entscheidende Schritt, die Ringschlussmetathese ergab unter Standardbedingungen^[205] nicht das gewünschte Produkt 96a. Dieses Resultat deckt sich mit erst kürzlich veröffentlichen Ergebnissen für den Aufbau verwandter Systeme durch RCM.^[304, 305]

^{aa} Die Bedingungen wurden nicht optimiert, da es sich um eine erste Testreihe handelte.

Schema 48. Mögliche Synthesesequenz zum Stilbenmakrocyclus **96a**; Reagenzien und Reaktionsbedingungen: (i) Imidazol, TBSCI, DMF, RT, 12 h, > 99 %; (ii) MePh₂P⁺Br⁻, *t*-BuOK, Et₂O, $0^{\circ}C \rightarrow RT$, 30 min, 85 %; (iii) TBAF, THF, $0^{\circ}C \rightarrow RT$, 2 h, 75 %; (iv) 1,3-Propandiol, PPh₃, DEAD, THF, RT, 12 h, 29 %; (v) Grubbs II, DCM, Rückfluss, 2.5 h, 0 %.

Aufgrund der nur mittelmäßigen Ausbeuten bei den ersten Versuchen der Freisetzung des Phenanthrendiols **18** aus dem cyclischen Ether **97a**, wurde versucht eine Derivat wie z.B. **109** herzustellen, da bekannt ist, dass sekundäre Ether in der Regel leichter zu spalten sind. Wiederum ausgehend von 3-Hydroxybenzaldehyd (**41**), jedoch diesmal mit 2,4-Pentandiol als verbrückende Einheit, wurde die oben diskutierte Sequenz (Schema 43) wiederholt und lieferte den Tetracyclus **111** mit 13 % Gesamtausbeute (Schema 48). Aber die Spaltung zum Diol **111** erfolgte unter Verwendung von 1M BBr₃-Lösung nur mit vergleichbaren 41 %.

Schema 49 Reagenzien und Reaktionsbedingungen: (i) 2,4-Pentandiol, PPh₃, DEAD, THF, RT, 6 h, 46 %; (ii) Zn, TiCl₄, THF, Rückfluß, 6 h, 33 %; (iii) hv (300nm), I_2 , Propylenoxid, Toluol, 6h, 86%; (iv) 1M BBr₃ / DCM, DCM, RT, 18 h, 41 %.

Die Verwendung eines sekundären Diols führte also nicht zu einer Verbesserung der Ausbeute. Zudem erwies sich die Aufreingung und Analytik der Zwischenprodukte als komplizierter, da für die erste Versuchreihe aus Kostengründen eine Mischung aus *RR*-, *SS*- und *meso*-Pentan-2,4-diol benutzt wurde und somit alle Produkte als Diastereomerengemische anfielen. Dies ist in diesem Fall nebensächlich, da keine Auftrennung der Isomere erforderlich ist. Denn die Stereochemie der Brücke ist nach der Abspaltung für das Produkt **18** unerheblich, da **18** bei Raumtemperatur ohnehin unmittelbar einer Racemisierung unterliegt.

Auch wenn die Synthese des verbrückten Phenanthrenderivats **111** nicht zu einer Verbesserung der Ausbeute an **18** führte, erbrachte sie ein äußerst wichtiges Ergebnis. Aus der Röntgenstrukturanalyse von **111** (Abbildung 21 (a)) war zu sehen, dass das verbrückte Phenanthren verdrillt war und zwar in einer links- oder rechtsgängigen Helix abhängig von der Chiralität der Brücke. Dies führte zu der Schlussfolgerung, helikal-chirale Phenanthrenderivate auf diesem Weg unter Verwendung einer Brücke mit definierter Stereochemie direkt enantiomerenrein herzustellen und dabei das Prinzip der *induzierten Atropisomerie* zur Übertragung der chiralen Information zu nutzen. Die Resultate dieser Versuche werden im nächsten Kapitel ausführlich dargelegt.

4.1.6.4. Enantioselektive Synthese helikal-chiraler Phenanthrenderivate

Schema 50. Aufbau eines enatiomerenreinen helikal-verdrillten Phenanthrenderivats M,S,S-111 durch chirale Induktion unter Verwendung von (2R,4R)-(-)-Pentandiol (R,R-112).

Aus den im letzten Abschnitt genannten Gründen wurde die oben beschriebene Synthesesequenz exemplarisch mit einem stereochemisch definierten Diol, dem (2R,4R)-(-)-Pentandiol (R,R-112) wiederholt und führte auch enantioselektiv zu dem erwarteten helikalchiralen Phenanthrenderivat M,S,S-111. Die zweifache *Mitsunobu*-Reaktion erbrachte unter doppelter Inversion und in 54 % Ausbeute zum Dialdehyd S,S-109. Dieser konnte unter den Standard-*McMurry*-Bedingungen in mäßiger Ausbeute (20 %) zum chiralen Makrocyclus S,S-110 geschlossen werden. Die anschließende Photocyclisierung unter oxidativen Bedingungen ergab das chirale Produkt M,S,S-111 in 73 % isolierter Ausbeute und mit definierter Stereochemie und Helicität. Dies wurde mittels DFT-Rechnungen^[257] (B3LYP/6-311G(d)) untermauert und konnte abschließend mit einer Röntgenstrukturanalyse des Produktes belegt werden (Abbildung 21 (b)).

Abbildung 21. Röntgenstrukturen des chiral-verbrückten Phenanthrenderivats **111**: (a) die Struktur des *rac/meso*-Gemisches enthält sowohl *P*- als auch *M*-Konformere, je nach Stereochemie der Diolbrücke (R,R bzw. S,S); (b) die Struktur mit der enantiomerenreinen Diolbrücke (S,S) enthält, wie erwartet, nur ein Diastereomer (*M*).

In der Röntgenstruktur (Abbildung 21 (b)) ist deutlich induzierte Helicität des Phenanthrengerüsts zu erkennen. Die Chiralität der verbrückenden Diolsubstruktur bestimmt dabei den Drehsinn der Helix. Entsprechend der induzierten Verdrillung des Palladiumkomplexes **100** (*P*,*R*,*R*; siehe Kap. 4.1.6.2) führt eine *S*,*S*-konfigurierte Brücke zu einer *Minus*-Helicität im Phenanthren *M*,*S*,*S*-**111**. Die *M*-Konfiguration des Phenanthrengerüsts von **111** konnte durch den Vergleich des gemessenen Circular Dichroismus (CD) mit Literaturdaten zusätzlich bestätigt werden.^[244] Auch von den chiralen Intermediaten (*S*,*S*-**109** und *S*,*S*-**110**) wurden CD-Spektren aufgenommen. Alle drei Verbindungen weisen deutliche CD-Effekte auf. Besonders das Stilbenderivat *S*,*S*-**110** und das Phenanthrenderivat *M*,*S*,*S*-**111** erreichen, wie erwartet, bemerkenswert große Werte (bis zu > -200 mdeg; siehe Abb. 22 (b) und (c)). Dies ist auf die helikale Verdrillung ihrer konjugierten π -Systeme zurückzuführen. *S*,*S*-**109** dagegen weist nur (zweifache) Zentro-Chiralität und somit niedrigere CD-Effekte auf (max. -20 mdeg).

Abschließend ist anzumerken, dass die Darstellung von *M*,*S*,*S*-**111** das erste bekannte Beispiel für eine enantioselektive direkte Synthese eines konformationschiralen Phenanthrenderivates darstellt.

4.1.6.5. Synthese von Crownophanen auf Stilben- und Phenanthrenbasis

Die im vorigen Kapitel diskutierte Synthesestrategie eröffnet auch den Zugang zu einer Reihe unterschiedlich funktionaler Phenanthrenderivate des Typs **XXX**, je nach Typ der verbrückenden Einheit (Schema 25 in Kapitel 3.4) . Zum Beispiel sind so über oligoethylenglykolverbrückte Aldehyde Phenanthrenkronenether zugänglich, die z.B. als Enzymmimetika^[69, 306, 307] oder als molekulare Sensoren^[69] von Interesse sein können (vergleiche Kap. 2.2.2).

Um dieses Konzept auf eine Realisierbarkeit hin zu überprüfen, wurde zuerst 3-Hydroxybenzaldehyd (**41**) mit Triethylenglykol (**113a**) zum Dialdehyd **114a** in einer Ausbeute von 64 % verbunden. Der Dialdehyd **114a** fiel als hochviskoses Öl an, das innerhalb weniger Tage auskristallisierte und einer Einkristallröntgenstrukturanalyse unterzogen werden konnte (Abbildung 23).

Schema 51. Synthese der Stilbenkronenether 115a und 115b und weitere Umsetzung zum Bay-Phenanthrenkronenether 42 und regioisomeren Nebenprodukt 116.

Die anschließende *McMurry*-Kupplung des Aldehyds **114a** führte zu einem *E/Z*-Gemisch der cyclischen Stibenderivate **115** in einem Verhältnis von 3 : 1 (**115a** : **115b**), das mittels Flashsäulenchromatographie erfolgreich getrennt werden konnte. Von beiden Substanzen wurden Röntgenstrukturen erhalten (Abbildung 23). Bei ersten Versuchen zum Komplexierungsverhalten der Kronenether **115a** und **115b** mittels ⁶Li-NMR-Experimenten konnte keine Komplexierung beobachtet werden. Hierbei ist anzumerken, dass eine Komplexierung der Li⁺-Ionen durch eine nicht identifizierte Verunreinigung des deuterierten Lösemittels beobachtet wurde, was eventuell zu einer Verfälschungen der Ergebnisse geführt haben könnte. Dies ist

jedoch aufgrund der Konzentrationsverhältnisse unwahrscheinlich. Auch Fluoreszenz-Titrations-Expertimente, wie sie in Kap 4.1.4, beschrieben wurden, zeigten mit keinem der eingesetzten Kationen (Li⁺, Na⁺, Ka⁺ und Ca²⁺) Komplexierungseffekte.

Abbildung 23. Röntgenstrukturen des Phenanthrenkronenethers 42 und der isolierten Zwischenprodukte 114a, 115a und 115b der Synthesesequenz.

Es ist literaturbekannt, dass Stilbene unter Bestrahlung isomerisieren, und somit beide Isomere als Ausgangsmaterial für die Cyclisierung zu Phenanthrenen verwendet werden können.^[308] Um dies für das vorliegende System zu verifizieren, wurden mit beiden Stilbenderivaten (**115a** und **115b**) Isomerisierungsexperimente durchgeführt. Dafür wurden Lösungen des jeweiligen Isomers in deuteriertem Lösemittel mit Licht von 300nm Wellenlänge^{bb} bestrahlt und zu bestimmten Zeitpunkten mittels ¹H-NMR analysiert. Zur Bestimmung der Isomerenanteile in den Mischungen diente die Integration charakteristischer Referenzsignale. Hierfür wurde das jeweilige Singulett der Doppelbindung bei 7.15 ppm für das *E*-Isomer **115a** und bei 6.54 ppm für das *Z*-Isomer **115b** benutzt. Unabhängig vom Ausgangsisomer

^{bb} 300nm ist die Wellenlänge bei der, nach den etablierten Versuchsbedingungen, die Cyklisierungsexperimente durchgeführt werden. Im Vorfeld wurden UV-Absorptionsspektren der Stilbene **115** aufgenommen, die zeigen, dass beide Substanzen in dem Wellenlängenbereich absorbieren.

stellte sich nach ca. einer Stunde ein Verhältnis von 1 : 3.5 *E*- zu *Z*-Stilben ein (Abb. 24 bzw. Tabelle 3).^{cc} Bestrahlung mit Licht der Wellenlänge 254 nm führte zu einer teilweisen Rückisomerisierung zum E-Isomer **115a** und der Einstellung eines E/Z - Verhältnisses von 1 : 2 (Tabelle 3; Eintrag 5).

Tabelle 3. Die Ergebnisse der Isomerisierungsexperimente mit den E- und Z-Stilbenmakrocyclen115a und 115b.

Isomerenverhältnis Isomerenverhältnis

Eintrag

Zeit

Abbildung 24. Zeitliche Entwicklung der *E*/*Z*-Isomerisierung von **115** unter der Bestrahlung mit Licht der Wellenlänge 300 nm (bzw. 254 nm nach 90 min); ausgehend vom *E*-Isomer **115a** (oben) und vom *Z*-Isomer **115b** (unten).

^{cc} In gewissen Anteilen konnte auch Cyklisierung- und Zersetzungsprodukte beobachtet werden.

Anhand dieser Ergebnisse konnte davon ausgegangen werden, dass die Cyclisierung zum Phenanthrengerüst unter den Photocyclisierungsbedingungen unabhängig vom eingesetzten Regioisomer gelingen sollte. Tatsächlich gelang die Umsetzung der Stilbenkronenether **115a** und **115b** zum Phenanthren **42** mit beiden Isomeren in isolierten Ausbeuten von 51-57 %. Hierbei ist anzumerken, dass immer auch das äußerst schwierig abtrennbare Regioisomer **116** entstand und aus diesem Grund auch bei mehrfacher chromatographischer Aufreinigung ein gewisser Verlust an Produkt durch Mischfraktionbildung nicht vermieden werden konnte.

Von der Verbindung **42** konnte ebenfalls eine Röntgenstruktur erhalten werden (Abbildung 25), die verdeutlicht, dass in Anbetracht der van-der-Waals-Radien (nach *Bondi*^[309]) der Durchmesser der Kronenethereinheit von **42** für Einschlusskomplexe mit z.B. Lithiumionen wahrscheinlich nicht groß genug ist.

Abbildung 25. Röntgenstruktur des Phenanthrenkronenethers **42**; als Kugel-Stab-Modell (links) und der raumfüllenden Darstellung mit den van-der-Waals-Radien (rechts).

Deshalb wurden erste Versuche mit längeren Oligoethylenglykolketten unternommen. Bis zum Zeitpunkt des Abschlusses dieser Arbeit konnte der tetraethylenglykolverbrückte Dialdehyd **114b** synthetisiert und charakterisiert werden. Für längere Brücken ist bei dem Cyclisierungsschritt zum Phenanthren jedoch ein höherer Anteil der regioisomeren Verbindungen (wie **116**) zu erwarten. ^[203]

Auch Verbindungen wie **116** sind sehr interessant, da sie bemerkenswerte Eigenschaften aufweisen. Zum Beispiel weist das Proton an der 4-Position von **116**, eine ungewöhnlich große Tieffeldverschiebung von 9.5 ppm auf. Dies könnte auf eine H-O-C-Kopplung aufgrund einer Wasserstoffbrücke zwischen dem *Bay*-Proton und einer Ethylenoxieinheit des Kronenetherhenkels hinweisen. NMR-Experimente mittels spezieller Pulsfolgen zur Klärung dieses Sachverhalts werden zu diesem Zeitpunkt noch ausgearbeitet.

4.1.6.6. Photocyclisierung hochsubstituierter Stilbenderivate

Nach den vorliegenden durchweg positiven Ergebnissen und gestützt auf Anwendungen der oxidativen Photocyclisierung von Stilbenderivaten für die 56] Derivate^{[39,} hochsubstituierter, gehinderter Synthese sterisch und Naturstoffanaloga^[53] in der Literatur, schien die Methode auch für den Aufbau von Bay-substituierten Phenanthrenderivaten mit zusäztlichen Substituenten im Peripheriebereich vom Typ II geeignet zu sein. Insbesondere da Stilbenderivate wie 119, die als Synthesevorläufer dienen würden, nur eine "freie" Position für den Ringschluss aufweisen.

Hier ist anzumerken, dass bei Systemen, die einen *ortho*-Substituenten tragen, die Gefahr der ipso-Substitution besteht, d.h. die Cyclisierung kann nicht nur unter H₂-Abspaltung, sondern auch unter Methan-^[310] oder Methanoleleminierung^[311] erfolgen. Trotzdem schien aufgrund der Ergebnisse von *Fritsch*^[56] die Synthese des Stilbens **119** und die anschließende oxidative Photocyclisierung in Anwesenheit von Iod eine viel versprechende Taktik. Insbesondere, da der benötigte Aldehyd **117** aus einer anderen Syntheseroute (siehe Kap. 4.1.7) zur Verfügung stand und somit das Stilben **119** in einer Stufe zu erhalten sein sollte.

Schema 52. Synthese *Bay*-substituierter Phenanthrenderivate des Typs **IIa** durch oxidative Photocyclisierung von hochsubstituierten Stilbenderivaten **XIIa**; Reagenzien und Reaktionsbedingungen (für R = R'= Me): (i) Zn, TiCl₄, THF, Rückfluß, 2 h, dann RT, 12 h, 12 %; (ii) MePh₂P⁺Br⁻, *t*-BuOK, Et₂O, 0 $^{\circ}$ \rightarrow RT, 30 min, 19 %; (iii) Grubbs II, DCM, Rückfluss, 2,5 h, 0 % (iv) I₂, Propylenoxid, Toluol, hv (300 nm), RT, 6 d, ~ 35 % Produktanteil im Rohprodukt (GC/MS).

Das hochsubstituierte Stilbenderivat **119** konnte auch tatsächlich in 12 % Ausbeute durch *McMurry*-Olefinierung direkt aus dem Aldehyd **117** erhalten werden.

In Erwartung besserer Ausbeuten wurde eine alternative Route zum Stilben **119** untersucht. Doch die *Wittig*-Olefinierung zur Verbindung **118** lief nur mit geringer Ausbeute und die anschließende Metathese unter Literaturbedingungen^[205] ganz ohne Produktbildung ab.

Wie erwartet, gelang die abschließende Photocyclisierung unter den im Verlauf dieser Arbeit etablierten Bedingungen (Kap. 4.1.6). Doch das nach GC-MS zu ca. 35 % erhaltene Produkt **120** konnte unter keiner der getesteten Bedingungen vom, noch im Rohprodukt enthaltenen, Edukt **119** und dem, unter den Reaktionsbedingungen entstandenen, *Z*-**119** abgetrennt werden. Jedoch konnte das Produkt per ¹H-NMR in einer mittels HPLC an Produkt angereicherten Fraktion identifiziert werden. Auch der Versuch die Reaktion unter verbesserten Schutzgasbedingungen zu höherem Umsatz zu führen indem z.B. Argon kontinuierlich durch das Reaktionsgemisch geleitet wurde,^{dd} gelang nicht. Stattdessen setzte nach Erreichen eines gewissen Produktanteils (~ 40 %) immer vollständige Zersetzung ein. Auch wenn diese Synthesesequenz nicht so erfolgreich wie erhofft war, konnte doch die Existenz des Produktes **120** das erste Mal aufgezeigt werden. Zusätzlich war es im Verlauf dieser Arbeit möglich, gekrönt war, die Verbindung **120** auf einem anderen Wege herzustellen. Dies wird im folgenden Kapitel ausführlich diskutiert.

4.1.7. Synthese helikal-chiraler Phenanthrenderivate mit einem differenzierten *Bay*- und Peripheriebereich

Nach den Erfahrungen mit den hochsubstiuierten Systemen unter photochemischen Bedingungen und den damit verbundenen Problemen der Isolierung, schien es angebracht eine andere Synthesestrategie zu verfolgen. Dafür schien der Aufbau des Phenanthrengerüsts über Biphenylintermediate und anschließende Cyclisierung reaktiver Dicarbenzwischenstufen am vielversprechensten. Diese Methode hat bei der Synthese ähnlicher Systeme^[5, 51, 156] bereits Anwendung gefunden, die allerdings keinen differenzierten Peripherie- und *Bay*-Bereich aufwiesen, wie die in dieser Arbeit anvisierten Strukturen. Um einen Zugang zu solchen Systemen zu eröffnen, musste zuerst eine Synthesestrategie für hochsubstituierte Benzolderivate des Typs XIII (wie **120**; Schema 55) entwickelt werden. Hierbei war zu beachten, dass folgende Punkte von den Verbindungen **XIII** erfüllt werden:

^{dd} Da Propylenoxid im Argonstrom mitgerissen würde, wurde stattdessen Oktenoxid verwandt.

- Die f
 ür die Biphenylkupplung ben
 ötigte funktionelle Gruppe (X) muß vorhanden sein.
- Sie sollen den variabel einzuf
 ührenden, sp
 äteren Bay-Substituenten aufweisen.
- Die Periperhiesubstituenten R¹⁻³ müssen vorhanden und (am Ende der Sequenz) unkompliziert weiter derivatisierbar sein.

Folgend den in der eigenen Arbeitsgruppe erarbeiteten Ergebnissen^[312] zur Synthese von 2-lod-4,5,6-trimethoxy-3-methylbenzyaldehyd (**125**), wurde dieses in einer siebenstufigen Sequenz, aus dem kommerziell erhältlichen 2,3,4-Trimethoxybenzaldehyd (**38**), hergestellt (Schemata 53 - 55). Die bekannten Ausbeuten^[312] konnten reproduziert und teilweise noch verbessert werden.

Schema 53. Synthese des Acetals **121**, einem idealen Intermediat für die folgende Transformation der 5-Position in die gewünschten späteren *Bay*-Gruppen. Reagenzien und Reaktionsbedingungen: (i) Br₂, NaAc, AcOH, RT, 12 h, 79 % (Lit.: 67 %^[224] bzw. 81 %^[312]); (ii) Ethan-1,2-diol, *p*-TSOH, CHCl₃, Molsieb 4 Å, Rückfluß, 12 h, 93 % (Lit.^[312]: 92 %).

Die Synthesesequenz (Schema 53) beginnt mit der literaturbekannten Bromierung^[224] von 2,3,4-Trimethoxybenzaldehyd (**38**) in Essigsäure, wobei das Produkt **39** in einer Ausbeute von 79 % (Lit.: 67 %^[224] bzw. 81 %^[312]) erhalten wurde. Anschließende Schützung führte zum Acetal **121** in sehr guter Ausbeute von 93 %. Bei einer Wiederholung der Reaktionsfolge zeigte sich, dass eine Aufreinigung nach der ersten Stufe nicht nötig war. Eine Verwendung des Bromierungsrohproduktes für die Schützung und eine anschließende chromatoraphische Aufreinigung führte zu äquivalenten Ausbeuten (84 % über beide Stufen).

Das Acetal **121** bildet die ideale Zwischenstufe für die Einführung der zukünftigen *Bay*-Substituenten, da die Bromfunktionalität an der 5-Position, welche die spätere *Bay*-Position darstellt, durch Brom/Lithium-Austausch und Abfangen mit einem Elektrophil oder durch Übergangsmetall-katalysierte Substitutionsreaktionen nahezu beliebig variert werden kann. Dies entspricht dem diversitätsorientierten Konzept dieser Arbeit. Die Einführung einer Auswahl von diversen funktionellen Gruppen mittels einer Auswahl verschiedener Synthesemethoden wird Inhalt eines späteren Kapitels sein (siehe Kap. 4.1.7.1).^[313, 314]

Aus Gründen der einfachen Handhabung, Charakterisierung und relativ hohen Stabilität unter den geplanten Bedingungen, wurde die exemplarische Durchführung der Sequenz jedoch zuerst mit dem 5-Methylderivat **117** angestrebt.^{ee} Und, wie auch von *Raschczok* beschrieben,^[312] konnte das 5-Methylacetal **122** durch Umsetzen mit *n*-Butyllithium und Dimethylsulfat unter *in situ-quench*-Bedingungen^[315] in einer sehr guten Ausbeute von 93 % erhalten werden. Die Freisetzung des Benzaldehyds **117** gelang unter salzsauren Bedingungen mit einer Ausbeute von 86 %.

Schema 54. Einführung einer Methylgruppe als spätere *Bay*-Funktionalität unter *in situ-quench*-Bedingungen^[315] und anschließende Freisetzung des Aldehyds **117**. Reagenzien und Reaktionsbedingungen: (i) *in situ quench*: Me₂SO₄, *n*BuLi, THF, -78 °C, 45 min, 93 % (Lit.^[312]: 98 %); (ii) 2M HCl, CHCl₃, RT, 12h, 86 % (Lit.^[312]: 99 %);

Die nächste Stufe der Sequenz bestand in der Synthese des Biphenylvorläufers XIII. Für die Einführung der benötigten Halogenfunktion in der letzten "freien" Position des Benzaldehyds **117** wurde eine Sequenz aus Nitrierung, Reduktion und abschließende *Sandmeyer*-Reaktion angestrebt.

Die Nitrierung von **117** mit einer Mischung aus SnCl₄ und rauchender Salpetersäure ergab das gewünschte Produkt **123** in bis zu 72 %. Doch da diese Nitrierungsmethode nicht immer gleich bleibend gute Ausbeuten lieferte,^{ff} wurde eine einfachere und schnellere Alternative gesucht:

Durch Umsetzung des Benzaldehyds **117** in einer Suspension von Kieselgel in Dichlormethan mit konzentrierter Salpetersäure konnte nach nur 30 min Rühren bei Raumtemperatur und anschließender Filtration direkt das Rohprodukt erhalten werden. Aus diesem konnte dann mittels chromatographischer Aufreinigung das Produkt in einer Ausbeute von 52 % gewonnen werden. Diese Methode erreicht zwar nicht ganz die Ausbeuten der SnCl₄-vermittelten Nitrierung, weist aber dennoch einige Vorteile auf. Bei einem mäßigem Ausbeuteverlust (~ 20 %) konnte auf diese Weise Zeit gespart, die Nutzung der unangenehm zu handhabenden und instabilen

^{ee} Hier ist anzumerken, dass die Verbindung **117** bereits früher mit geringerer Ausbeute und mittels einer nicht variablen Sequenz, die jedoch nicht in das Konzept dieser Arbeit passt, hergestellt wurde.^[313,314]

^{ff} Sofort nachdem Mischen der beiden Komponenten (SnCl₄ und HNO₃) konnten Zersetzungserscheinungen beobachtet werden.

Mischung aus SnCl₄ und 100%iger Salpetersäure umgangen und auf kostengünstigere Reagenzien zurückgegriffen werden.

Die Reduktion der Nitroverbindung **123** zum Amin **124** konnte unter Verwendung von Eisenpulver in einem Gemisch aus Ethanol, Essigsäure und Wasser (2 : 2 : 1, v / v) mit einer isolierten Ausbeute von 84 % (Lit.^[312]: 52 %) durchgeführt werden. Auch die anschließende Diazotierung und Iodierung gelangen in Anlehnung an die im eigenen Arbeitskreis etablierten Bedingungen^[312] und ergaben das Produkt **125** in 68 % Ausbeute.

Schema 55. Reaktionssequenz zur Einführung der Halogenfunktionalität in der letzten "freien" Position des Benzolringes, die zur Ausbildung der späteren Biphenylbindung dienen soll. Reagenzien und Reaktionsbedingungen: (i) HNO₃ (100 %), SnCl₄, CH₂Cl₂, -70 °C \rightarrow RT, 1 h, 72 % (Lit.^[312]: 87 %); (ii) Fe, kat. HCl, EtOH / HOAc / H₂O (2 : 2.: 1, v / v), Rückfluß, 35 min, 84 % (Lit.^[312]: 52 %); (iii) NaNO₂, 6M HCl, 0 °C, dann Kl, H₂O, RT, 12 h, 68 % (Lit.^[312]: 63 %).

Die so erhaltene lodkomponente **125** eröffnete nun den Zugang zu den anvisierten Biphenylsystemen, wobei aus Gründen der Einfachheit zunächst eine Homokupplung zum symmetrischen Biphenyl **126** angestrebt wurde. Als Kupplungsreaktion wurde die *Ullmann*-Kupplung gewählt. Diese lieferte auch wie geplant den racemischen Dialdehyd *rac-***126** in einer sehr guter Ausbeute von 93 % (Schema 56).

Im Hinblick auf die Synthese unsymmetrisch substituierter Derivate wurde auch versucht, das Biphenyl **126** durch *Suzuki-Miyaura*-Kreuzkupplung des Iodids **125** mit der entsprechenden Borverbindung herzustellen. Doch dies konnte mit dem 2-(1,3-Dioxolan-2-yl)-3,4,5-trimethoxy-6-methylphenylboronsäureisopropylester weder unter Standardbedingungen^{gg,[312]} noch unter Glorius-Bedingungen^[316-318] mit

 $^{^{99} =} Pd(PPh_3)_4$, NaCO₃, Toluol, 80 °C.

(Pd(IBox7)Cl)₂ realisiert werden. Die entsprechende 2-(1,3-Dioxolan-2-yl)-3,4,5trimethoxy-6-methylphenyl- und 2-Formyl-3,4,5-trimethoxy-6-methylphenylboronsäuren waren aus dem lodid **125** nicht zugänglich.

Schema 56. Links: Synthese des symmetrischen Dialdehyds 126 aus dem Iodid 125 mittels *Ullmann*-Kupplung; rechts: Röntgenkristallstruktur von 126. Reagenzien und Reaktionsbedingungen: (i) Cu, DMF, Rückfluß, 16h, 93 %.

Die Struktur von **126** konnte durch eine Einkristallröntgenstrukturanalyse bestätigt werden. In dieser Röntgenstruktur^{hh} (Schema 56) ist die Verdrillung der beiden aromatischen Ringe sehr gut zu erkennen. Sie beträgt 79°. Infolge dessen ist die Verbindung **126** nicht nur als Intermediat zur Aufbau von hochsubstituierten Phenanthrenderivaten, sondern auch für die Synthese von axial-chiralen Liganden von großem Interesse. Auch die Resolution der beiden Enantiomere sollte auf dieser Stufe oder bei Derivaten der Verbindung **126** z.B. mittels chiraler HPLC möglich sein. Dies wäre wichtig im Hinblick auf Ligandendesign oder zur Synthese von enantiomerenreinen Phenanthrenderivaten des Typ **II**.

Um die Gangbarkeit der Synthese von octasubstituierten Phenanthrenderivaten des Typs **II** zu überprüfen, wurde zuerst das racemische Gemisch von **126** weiter eingesetzt. Dabei wurde, in Anlehnung an eine literaturbekannte Ringschluss-variante,^[51, 197] der Dialdehyd **126** in das Bishydrazon **127** überführt und das erhaltene Rohprodukt wurde anschließend ohne weitere Aufreinigung mit einer Mischung von Kupfer(I)chlorid in Pyridin in Anwesenheit von elementarem Sauerstoff cyclisiert. Auf diese Weise konnte das oktasubstituierte Phenanthren **120** in einer für ein sterisch so anspruchsvolles System sehr guten Ausbeute von 32 % über beide Stufen isoliert werden.

^{hh} Eines der Carbonylsauerstoffatome ist fehlgeordnet. Der Anteil der beiden abgebildeten Sauerstoffe (1B, 1C) beträgt jeweils 0.5.

Schema 57. Ringschlusssequenz zum Aufbau des Phenanthrengerüsts von *rac*-120; die Reaktionfolge geht aus von der Transformation des Dialdehyds 126 in das Bishydrazon 127 und direkt anschließende reduktive Cyclisierung zum Phenanthren 120. Reagenzien und Reaktionsbedingungen: (i) H_2NNH_2 , *Iso*propanol, RT, 1.5 h; (ii) CuCl / Pyridin / O_2 , RT, 2 h, 32 % über 2 Stufen.

Die Struktur von **120** konnte mittels einer Röntgenstrukturanalyse bestätigt werden (Abbildung 26). Wie erwartet, weist das Phenanthrengerüst in der vorliegenden Röntgenstruktur eine deutliche Verdrillung auf (31.4 (6)°, C5-C4a-C4b-C4) auf und die beiden äußeren aromatischen Ringebenen sind 26.3 (2)° gegeneinander gekippt. Die beiden Methylgruppen in der *Bay* besitzen einen Öffnungswinkel von 61.0 (1)° (zur Verdeutlichung siehe Abb. 26 unten links), einen (unechten) Diederwinkel (C15-C5-C4-C14) von 67.32 (27)° und ihr Abstand ist mit 3 Å 25% kleiner als die Summe ihrer van-der-Waals-Radien (nach *Bond*^[309]).^[319, 320] Zusätzlich ist im Kalottenmodell zu erkennen, dass die Entfernung der Kohlenstoffe der *Bay*-Methylgruppen zu den *ortho*-Sauerstoffen der Methoxygruppen kleiner ist als die Summe ihrer van-der-Waals-Radien (nach *Bond*^[309]) und somit eine sterische Interaktion vorliegt. Dies bekräftigt den Einfluß benachbarter Gruppen auf die Stärke der Verdrillung des polyaromatischen Rückrades, den "buttressing"-Effekt.

Besonders bemerkenswert ist, dass obwohl der untersuchte Kristall aus einer racemischen Synthese (Schema 57) stammt, er nur ein Enantiomer enthält.ⁱⁱ Aufgrund der Abwesenheit von Schweratomen konnte jedoch die absolute Konfiguration nicht bestimmt werden.

ⁱⁱ Dieses Phänomen wurde ebenfalls für das Phenanthren-4,5-diol (**18**) beobachtet (Kap. 4.1.6.1).

Abbildung 26. Röntgenstruktur des octasubstituierten Phenanthrenderivats **120**; Frontansicht mit thermischen Schwingungsellipsoiden (oben), Seitenansicht im Kugelstabmodell (unten links) und Kalottenmodell (unten rechts).

Die Dimethylverbindung **120** stellt das erste bekannte Beispiel eines Phenanthrenderivates des Typs **II** dar. Sie ist hochsubstituiert und verfügt über einen definierten *Bay*- (methylsubstituiert) und Peripheriebereich (methoxysubstituiert). Wie bereits erwähnt weist **120** die gewünschte Verdrillung des aromatischen Gerüsts auf und ist somit chiral. DFT Rechnungen^[257] (B3LYP/6-311G(d)) deuten darauf hin, dass die Verbindung, wie gewünscht, bei Raumtemperatur inversionsstabil ist.

Die letzte Problemstellung, die sich aus der erfolgreichen Synthese von **120** ergab, bestand in der weiteren Funktionalisierung der Peripheriesubstituenten. Um eventuell Selbstorganisation z.B. in Form von Flüssigkristallinität zu induzieren sollten lange Alkylketten eingeführt werden (siehe auch Kap. 2.2.4). Hierfür wurden zuerst die Methylether gespalten und das Hexaol 128 erhalten. Dieses wurde dann ohne weiter Aufreinigung in Anwesenheit von Dicyclohexylcarbodiimid (DCC) und N.N-Dimethylaminopyridin (DMAP) mit einer Ausbeute von 12 % in den Hexaundecansäurester 129 überführt. Erste polmikroskopische Untersuchungen zu flüssigkristallinen Verhalten ergaben eine Glastemperatur von -55°, zeigten aber keine Doppelbrechung oberhalb dieser Temperatur, die auf mesogenes Verhalten hindeuten würde.

Schema 58. Synthese des Hexaesters **129**; die Sequenz besteht aus Freisetzung des Hexaols **128** und anschließende sechsfache Veresterung mit Undecansäure. Reagenzien und Reaktionsbedingungen: (i) BBr₃, DCM, RT, 60 h; (ii) Undecansäure, DCC, DMAP, DCM, RT, 60 h, 12 % über 2 Stufen.

4.1.7.1. Variable Einführung späterer Bay-Substituenten

Nachdem die in Kap. 4.1.7 beschriebene Synthese der Verbindung 120 gezeigt hat, dass ein prinzipieller Zugang zu Bay-substituierten Phenanthrenderivaten mit zusätzlichen funktionellen Gruppen in der Peripherie existiert, sollte als nächstes demonstriert werden, dass die Bay-Substituenten variabel einführbar sind. Dafür schien, wie schon in Kap. 4.1.7 erwähnt, das Acetal 121 eine vielseitige Ausgangsverbindung zu sein. Grundsätzlich sollte es möglich sein. die Bromfunktionalität von 121, durch übergangsmetallkatalysierte Reaktionen wie z.B. die Suzuki-, die Stille-Reaktion und die Buchwald-Hartwig-Aminierung oder einen Brom/Lithium-Austausch und anschließender Umsetzung mit geeigneten Elektrophilen (siehe Kap. 4.1.7 oder Referenz^[312]), zu modifizieren.

Schema 59. Einführung des späteren *Bay*-Substituenten. Reagenzien und Reaktionsbedingungen: (i) **122**: *in situ-quench*: Me₂SO₄, *n*-BuLi, THF, -78°C, 45 min; **130a**: Me₂S₂, *n*BuLi, THF, -70°C \rightarrow RT, 18h; **130b**: Piperidin, NaOtBu, Pd(dba)₃, BINAP, Toluol, 130°C, 4h; **131c**: TMSCI, *n*-BuLi, THF, -50°C \rightarrow RT, 18h; **131d**: O₂, *n*-BuLi, Benzol, 0°C \rightarrow RT, 1h; (ii) **117,130a-b**: 2M HCI, CHCl₃, RT, 12h; (a) der zusätzliche Entschützungsschritt *ii* war nicht notwendig, da die Spaltung des Acetals unter den Reaktionsbedingungen erfolgte (b) zusätzlich konnten Spuren des Acetal **130c** in den GC-MS-Spektren des Rohproduktes detektiert werden.

Da in unserer Gruppe einige Erfahrung mit der Lithiierung des Acetals **121** und anschließende Abfangen mit Methylelektrophilen unter Standard- und in situ-quench-Bedingungen gesammelt werden konnte und für diese Art der Transformation eine Reihe von Elektrophilen genutzt werden können, was dem Diversitätsanspruch dieser Synthesesequenz entspricht, lag es Nahe, sich zuerst dieser Reaktion zu widmen.

Wie erwartet, war es möglich eine Reihe von Elektrophilen erfolgreich einzusetzen. Zwar konnten die exzellenten Ergebnisse, die mit Me₂SO₄^{jj} oder Mel^[312] erhalten wurden, nicht erreicht werden, aber mit Chlortrimethylsilan und Dimethyldisulfid wurden mäßige Ausbeuten erhalten. Sogar elementarer Sauerstoff konnte als Elektrophil zur Synthese des entsprechenden Phenolderivats **131d** verwendet werden, wenn auch mit geringer Ausbeute. Die anschließende Freisetzung der Aldehyde **117**, **131a-b** verlief in allen Fällen glatt und erfolgte im Falle des Trimethylsilyl- **130c** und Phenolderivats **130d** sogar schon unter den Reaktionsbedingungen der Einführung des Elektrophils.

Der Austausch der Bromfunktionalität durch direkte und übergansgmetallvermittelte Substituitionsreaktionen wurde ebenfalls untersucht. Hierbei wurde sich auf die aromatische Aminierung konzentriert, da die Einführung von Amingruppen als spätere *Bay*-Substituenten zu helikal-chiralen Diaminderivaten führen würde, die von Interesse im Bezug auf Nutzung als Liganden wären.

^{jj} Siehe Kap. 4.7.1.

Erste Versuche der direkten Einführung eines Piperidinrestes an der 5-Position von **121** unter Mikrowellen-Bedingungen^[321] führte zu komplexen Produktgemischen. Aufgrund der, anhand ihrer Massenspektren, identifizierten Produkte und der Röntgenstruktur eines der isolierten Produkte (*iso*-**130b**; Abb. 27) liegt der Schluß nahe, dass der Grund dafür Arinintermediate sind, die im Verlauf der Reaktion entstehen. Solche Intermediate wurden auch von *Tu et al.* postuliert.^[321] Diese können anscheinend nicht nur durch die Eliminierung von Bromwasserstoff, sondern auch durch Abspaltung von MeOBr gebildet werden und jeweils stereounspezifisch das Amin aufnehmen.

Abbildung 27. Röntgenstruktur des Acetals *iso*-**130b**, das aus der Reaktion von **121** mit Piperidin unter Mikrowellenbedingungen^[321] erhalten wurde; die Regiochemie des Produktes *iso*-**131b** deutet stark auf eine Arinzwischenstufe während der Reaktion hin.

Auch das von *Basu* für die *Buchwald-Hartwig*-Aminierung beschriebenen Kaliumfluorid/Aluminiumoxid-System,^[322] welches zuvor nach einer Methode von *Chhibber*^[323] hergestellt wurde, führte nur zu komplexen Produktgemischen. In beiden Fällen konnte das Produkt **130b** nur in geringen Anteilen im Rohprodukt anhand seines Fragmentierungsmusters nachgewiesen werden.

Erst unter der Verwendung eines Palladium/BINAP-Systems in Anwesenheit von Natrium-*tert.*-butylat bei erhöhter Temperatur und Druck führten zum gewünschten Produkt **130b** in guter Ausbeute (43 %). Die anschließende Spaltung des Acetals **130b** zum Aldehyd **131b** verlief sogar quantitativ.

Mit den in den letzten Abschnitten dargelegten Einführungen einer Reihe funktioneller Gruppen an der 5-Position von **121** konnte erfolgreich gezeigt werden, dass verschiedene Möglichkeiten spätere *Bay*-Substituenten an dieser Stelle der Synthese einzubringen erfolgreich angewendet werden können. Prinzipiell ist es so also möglich eine große Auswahl von hochsubstituierten *Bay*-Phenanthrenderivaten, mittels der in Kap. 4.7.1 für die Methylderivate **120** und **129** exemplarisch

aufgezeigten Synthese, aufzubauen. Jedoch ist zu beachten, dass die an dieser Stelle der Synthese eingeführten Gruppen unter den folgenden Bedingungen stabil sein müssen und ihr sterischer Anspruch nicht die spätere Biphenylkupplung bzw. den abschließenden Ringschluß zum Phenanthren beeinträchtigt.

Zusammenfassend konnte also die Flexibilität der Synthesestrategie durch die Einführung einer Reihe von Substituenten auf der Stufe des Acetals **121** aufgezeigt werden. Die Untersuchungen zur Vollendung der in dieser Arbeit entwickelten Sequenz zu hochsubstituierten Phenanthrenderivaten (wie **120** und **129**) mit den in diesem Kapitel diskutierten Verbindungen bleibt Inhalt zukünftiger Arbeiten.

Die in den letzten Abschnitten aufgeführten hochsubstituierten, aromatischen Verbindungen sind interessante Strukturen, z.B. für die Synthese von Naturstoff(derivat)en. Denn, wie bereits erwähnt, stellen vor allem hochoxigenierte Aromaten ein häufig vorkommendes Strukturmotiv in biologisch aktiven Substanzen dar. Ihr Wert ist um so größer, existieren doch, im Gegensatz zu den 3,4,5-Trimethoxyverbindungen, existieren für hoch substituierte 2,3,4-Trimethoxybenzolderivate nicht viele synthetische Zugänge, da sie oft unerwartete Reaktivität, Selektivität und Instabilität aufweisen.^[51, 312]

4.2. Dioxocinderivate

In diesem Teil der vorliegenden Arbeit lag das Hauptinteresse darin zu überprüfen, ob das neu entdeckte Prinzip zum Aufbau des Grundgerüstes von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen **XXXI** (auch: 6H-12H-Dibenzo[b,f][1,5] dioxocine), die kupfervermittelte Kupplung von *ortho*-lodbenzylalkoholen **XXXII**, allgemein anwendbar ist. Die Reaktion wurde, beim Versuch 2-lod-3-methoxy-benzylalkohol **88** mittels einer *Ullmann*-Kupplung zum Biphenyl **90a** zu verbinden, entdeckt. Statt des Biphenyls **90a** wurde 1⁶,4⁶-Dimethoxy-2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphan **91** als Hauptprodukt gefunden (Schema 60).

Die Ergebnisse der Untersuchungen der benötigten Reaktionsbedingungen und der allgemeinen Anwendbarkeit der Reaktion auf verschiedene substituierte *ortho*lodbenzylalkohole und *ortho*-lodbenzylamine werden in Kap. 4.2.3 diskutiert. Außerdem werden die Ergebnisse verschiedener Synthesemöglichkeiten der als Edukte für diese Reaktion dienenden *ortho*-lodbenzylalkohole **XXXII** dargelegt und gegenübergestellt (Kap. 4.2.1).

Schema 60. Unerwartetes Produkt 91 des Versuches der Ullmann-Kupplung von 88 statt des anvisierten Produktes 90a.

Für die nähere Untersuchung dieser Reaktion gibt es zwei Gründe. Erstens ist dies eine interessante und bisher unbekannte, chemische Transformation und die erste bekannte Methode 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphane ohne Substituenten an der 3- und 6-Position aufzubauen.^{kk} Der zweite Grund für das Interesse an 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanderivaten ist ihre potentielle biologische Aktivität. Die einzige bisher bekannte Verbindung mit einer 2,5-Dioxa-1,4(1,2)dibenzenacyclohexaphanstruktur ist das 6H-12H-Dibenzo[b,f][1,5]dioxocin (132) selbst.^{kk} Es wurde 1991 von T. H. Al-Tel aus den Knollen der Herbstzeitlosen Colchicum decaisnei isoliert und seine Struktur aufgeklärt.^[182] Zudem wurde für die blutdrucksenkende Verbindung 132 leicht Wirkung im Tierversuch eine

^{kk} Zur Vollständigkeit ist hier anzumerken, dass *Cram* und *Day* bei der Reaktion eines Arins in DMF eine höher molekulare Substanz in Spuren erhalten haben, für die sie eine polycyclische Struktur postulierten, die einen 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphankern aufweist.^[324]

beschrieben.^[182] Zufolge dieses Resultates, der strukturellen Gleichartigkeit und wahrscheinlich ähnlichen metabolischen Herkunft,^[182] verglichen mit anderen biologisch aktiven Substanzen (z.B. Coumarine^[325, 326]), sind z.B. methyl-, methoxy-oder hydroxysubstituierte 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanderivate vielversprechende Kandidaten für biologische Aktivität.

Schema 61. Strukturformel des Naturstoffes **132**, allgemeine Struktur der 2,5-Dioxa-1,4(1,2)dibenzenacyclohexaphanderivate des Typs **XXXI** und Struktur der Azaanaloga **XXXVI**.

Ein weiterer interessanter Aspekt dieser neuen Transformation wäre die Ausweitung auf die Synthese der Azaanaloga XXXVI, den Diazocinen. Diese Substanzklasse ist einerseits interessant in Bezug auf ihre pharmakologische Wirkung, die z.B. ein Dichlorderivat aufweist.^[327] Andererseits stellen Diazocine einen Zugang zu Analoga der Trögerschen Base^[328] dar, da sie unter sauren Bedingungen sofort mit Formaldehyd zu Methanodibenzo[b,f][1,5]diazocinen reagieren.^[329] Strukturanaloga zu Trögerschen Base besitzen interessante chirale Eigenschaften, die nur auf der Anwesenheit zweier stereogener Stickstoffatome beruhen. Diese chirale Natur der Trögerschen Base wurde zuerst entdeckt von Prelog und Wieland durch die Trennung der beiden Enantiomere.^[330] Basierend auf diesen chiralen Eigenschaften, Base Analoga Anwenduna die Tröger und ihre als chirale finden Lösungsvermittler,^[145] synthetische Rezeptoren^[331] und in der Katalyse.^[332, 333] Methanodibenzo[b,f][1,5]diazocin-Grundkörper, durch Zudem ist der seine strukturelle Ähnlichkeit mit Systemen wie Salen^[334] oder DIANAN^[335, 336] potentiell im Ligandendesign für die asymmetrische Katalyse nutzbar.

4.2.1. Synthese von ortho-lodbenzylalkoholen

Um die allgemeine Anwendbarkeit der neuen kupfervermittelten Kupplung zu beweisen, und um eine größere Anzahl an Dioxocinderivaten für biologische Tests zur Verfügung stellen zu können, sollte die Reaktion auf eine Serie von *ortho*lodbenzylalkoholen mit verschieden Substitutionsmustern am aromatischen Ring ausgeweitet werden. Zur Synthese der, teils neuen und teils literaturbekannten, 2lodbenzylalkohole wurde auf gängige Methoden zurückgegriffen. Außer beim 2-lod-3-methylbenzylalkohol **148**, der aus der Reduktion von 2-lod-3-methylbenzoesäure **146** stammt,^[239] wurde versucht die *ortho*-lodbenzylalkohole **XXXII** sowohl durch *ortho*-Lithiierung (Methode **A**) als auch silbertrifluoracetatvermittelte lodierung (Methode **B**) der jeweiligen Benzylalkohole herzustellen. Die entsprechenden Versuchsvorschriften und analytischen Daten sind im Experimentellen Teil aufgeführt (Kap. 6.11.2). Einige der verwendeten Benzylalkohole des Typs **XXXIII** mussten ebenfalls noch im Rahmen dieser Arbeit synthetisiert werden (siehe Exp. Teil; Kap. 6.11.1).

Bei Methode **A** wurden die Benzylalkohole **XXXIII** in Benzol unter Eiskühlung mit zwei Äquivalenten *n*-BuLi zur Dilithiumspezies umgesetzt und mit lod (in THF gelöst) als Elektrophil abgefangen.^{II} In den Fällen in denen diese Methode erfolgreich angewandt werden konnte, führte sie durch die *ortho*-dirigierende Funktion der Benzylalkoholgruppe ausschließlich zum *ortho*-lodbenzylalkohol **XXXII** (Schema 62).^[232]

Schema 62. Methode **A**: Ortholithiierung von Benzylalkoholen **XXXIII** und Abfangen mit lod; für das reaktive Intermediat dieser Reaktion wurde von Meyer und Seebach die Struktur **133** postuliert (mit R = H).^[232]

Bei Methode B wurde zu einer Suspension von Silbertrifluoracetat in trockenem Chloroform zuerst der Alkohol XXXIII und anschließend tropfenweise eine Iodlösung in CHCl₃ zugegeben, bis keine Entfärbung mehr zu beobachten war. Nach Entfernen ausgefallenen Silberiodids durch Filtration wurden des die jeweiligen lodierungsprodukte erhalten. Hierbei wurden nicht immer die gewünschten ortholodierungsprodukte XXXII erhalten, da es sich um eine klassische elektrophile aromatische Substitution handelt. Regioselektivität deren durch das Substitutionsmuster des Eduktes bestimmt wird.

Außer beim 2,3,4-Trimethoxybenzylalkohol (**139**), der nach Methode **A** kein Produkt und nach Methode **B** das *meta*-Produkt **141** ergab, war es durch mindestens eine der beiden Methoden möglich, eine Reihe von *ortho*-lodderivaten **XXXII** für die spätere Kupplung zu 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen **XXXI** zu erhalten. Die unterschiedlichen Regioselektivitäten erlaubten sogar im Fall des 3-

^{II} Eine bis jetzt unveröffentliche Methode aus unserer Arbeitsgruppe; entwickelt von Dr. J. Velder in Anlehnung an Literaturvorschriften.^[232, 234]
Methoxybenzylalkohols (87) zwei verschiedene Kupplungspartner (88 und 134) aus dem identischen Startmaterial zu synthetisieren. Die Ergebnisse der lodierungsreaktionen nach Methode A und B sind in Tabelle 4 gegenübergestellt.

Eintrag	Edukt	Methode	Produkt	Ausbeute
1	CH ₂ OH MeO 87	A	MeO 88	80 %
2	CH ₂ OH MeO 87	В	MeO L I 134	88 %
3	MeO MeO 135	Α	MeO MeO 136	19 %
4	MeO MeO 135	В	MeO MeO MeO 136	98 %
5	MeO MeO 137	Α	MeO MeO MeO 138	-
6	MeO MeO MeO 137	В	MeO MeO I38	98 %

Tabelle 4. Ergebnisse der Iodierung der Benzylalkohole 83, 130 - 139 nach Methode A und B.

Tabelle 4. Fortsetzung.

(a) Es wurde zusätzlich der 4-lod-3,5-dimethylbenzylakohol in einer Ausbeute von 21 % isoliert.

Wie in Tabelle 4 zu sehen, konnte der 2-lod-3-methoxybenzylalkohol^[235] (**88**) aus 3-Methoxybenzylalkohol (**87**) in guter Ausbeute (80 %, Lit.^[235]: 54 %) nach der Methode **A**^{mm} erhalten werden. Methode **B** führte dagegen zum Regioisomer **134**, dessen Struktur mittels einer Röntgenstrukturanalyse bestätigt werden konnte, mit einer

^{mm} Eine bis jetzt unveröffentliche Methode aus unserer Arbeitsgruppe; entwickelt von Dr. J. Velder in Anlehnung an Literaturvorschriften.^[232, 234]

Ausbeute von 88 % (Lit: 64%^[238] bzw. 66% durch Brom-Lithium-Austausch^[337]). Methode **B** lieferte auch aus den jeweiligen Benzylalkoholen (**135**, **137**) das 2-lod-3,5-dimethoxyderivat^[233, 237] **136** bzw. das 2-lod-3,4,5-trimethoxyderivat^[236, 338, 339] **138** in sehr guten Ausbeuten (**136**: 98 %, Lit^[237]: 94 %; **138**: 98 %, Lit^[236]: 98 %). Ebenso konnten die bisher unbekannten *ortho*-lodbenzylalkohole **143** und **145** wie auch das *meta*-lodprodukt **141** mittels silbertrifluoracetatvermittelter lodierung in mäßigen Ausbeuten erhalten werden.

Im Fall der Dimethylverbindung **143** wurde zusätzlich das regioisomere Beiprodukt 4lod-3,5-dimethylbenzylalkohol (**143a**) mit 22 % Ausbeute isoliert und durch NMR, GC-MS und eine Röntgenstrukturanalyse identifiziert (Abbildung 28). Der Benzylalkohol **143a** war bisher nur aus einer zweistufigen Synthese von *Carter et al.* mit einer Gesamtausbeute von 1.2 % bekannt.^[340]

Abbildung 28. Röntgenstrukturen einiger Iodbenzylalkohole, die im Verlauf dieser Arbeit hergestellt wurden (88, 134 und 143a).

Im Falle der 3-Methylverbindung **148** wurde, aufgrund der kommerziellen Verfügbarkeit, auf die 2-lod-3-methylbenzoesäure **146** als Edukt zurückgegriffen. Da die Versuche der direkten Reduktion der Säure **146** zum Alkohol **148** scheiterten, wurde das Protokoll von *Curran* und *Fairweather*^[239] benutzt, indem ein "Umweg" über die Reaktion mit Methylchlorformiat zum Benzoesäurekohlensäureanhydridester **147** und anschließende NaBH₄-Reduktion genommen wurde. Dies gelang mit guter Ausbeute (80 %, Lit^[239]: 81 % bzw. 74 %ⁿⁿ) und die Struktur konnte per Röntgenstrukturanalyse bestätigt werden (Abbildung 28).

Schema 63. Reduktion der Iodbenzoesäure **146** zum Benzylalkohol **148** nach einem Protokoll von Curran und Fairweather.^[239]

Abschließend kann festgestellt werden, dass die elektrophile lodierung (Methode **B**) eine breitere Anwendbarkeit besitzt, aber die Dilithiierung (Methode **A**), wenn anwendbar, aufgrund des *ortho*-dirigierenden Effekts der Benzylalkoholfunktion ausschließlich zu den gewünschten 2-lodbenzylalkoholen **XXXII** führt.

4.2.2. Synthese von ortho-lodbenzylamin

Schema 64. Synthese von *ortho*-lodbenzylamin (**151**) nach *Hiroya et al.*;^[341] Reaktionsbedingungen: (i) (PhO)₂PON₃, DBU, Toluol, RT, 1,5 h; (ii) PPh₃, THF, $0^{\circ}C \rightarrow RT$, 16 h, dann 3N NaOH, rt, 1 h.

Zusätzlich wurde untersucht, ob die kupfervermittelte Kupplung für die Synthese von Diazocinen **XXXVI** ebenfalls geeignet ist. Hierfür wurde *ortho*-Iodbenzylamin **151** nach einer literaturbekannten Vorschrift synthetisiert.^[341] Zuerst wurde *ortho*-Iodbenzylalkohol (**149**) in das Azid **150** überführt und anschließend mittels einer *Staudinger*-Reaktion zum Amin **151** reduziert. Dies gelang mit einer Ausbeute von 28

ⁿⁿ Ausbeuteangaben im Artikel und den Zusatzinformationen weichen voneinander ab.

% über beide Stufen, wobei die Aufreinigung des Amins mit erheblichen Ausbeuteverlusten einherging.⁰⁰ Um jegliche Störung durch Verunreinigungen im nächsten Schritt, der kupfervermittelten Kupplung, auf ein Minimum zu reduzieren, war dies aber unumgänglich.

4.2.3. Kupfervermittelte Kupplung zu 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen

Im folgenden Kapitel sind die Ergebnisse der Untersuchungen zu der neu kupfervermittelten Synthese von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen dargelegt. Es sollte überprüft werden, ob die Reaktion auch für andere *ortho*-lodbenzylalkohole **XXXII**, für *ortho*-lodbenzylamine und unter anderen Reaktionsbedingungen funktioniert.

Aus Gründen der Verfügbarkeit wurden die grundsätzlichen Untersuchungen zu geeigneten Reaktionsbedingen mit dem vorhandenen 2-lod-3-methoxybenzylalkohol (**88**) und dem kommerziell erhältlichen 2-lodbenzylalkohol (**149**) durchgeführt. Die generelle Anwendbarkeit der Reaktion auf verschieden substituierte *ortho*-lodbenzylalkohole wurde mit den in Kap. 4.2.1 diskutierten 2-lodderivaten **88**, **134** - **145** untersucht. Zusätzlich wurde versucht 2-lodbenzylalmin **151** zu kuppeln, um zu überprüfen, ob die Reaktion auch auf die Herstellung von Diazocinen **XXXVI**, einer interessanten Substanzklasse in Bezug auf pharmakologische Wirkung,^[327] als chirale Lösungsvermittler,^[145] synthetische Rezeptoren^[331] und in der Katalyse,^[332] anwendbar ist.

Der Schwerpunkt der ersten Versuche war Rolle von Temperatur, Schutzgasbedingungen und das Lösemittel bei der Reaktion. Der Verlauf der Reaktionen wurde per GC-MS verfolgt. Bei den in Tabelle 5 und 6 angegeben Ausbeuten handelt es sich um die relativen Peakflächen der Produkte aus den GC-MS-Spektren der Rohprodukte. Diese dienten zur Bestimmung der Edukt/Produktbzw. Produkt/Nebenprodukt-Verhältnisse.

^{oo} In der Literatur wurde das Amin ohne Aufreinigung weiter umgesetzt.

Eintrag	Edukt	Lösungs -mittel	Reagenz (eq)	Reaktions -zeit	Temperatur	Produkt	rel. Peakfläche (GC-MS)
1	88	DMF	-	18 h	RT	91	a,b -
2	88	DMF	Cu (5)	18 h	RT	91	_a,b
3	88	DMF	CuO (0,5)	18 h	RT	91	_a,b
4	88	DMF	K ₂ CO ₃ (1)	18 h	RT	91	_a,b
5	88	DMF	NaH (1)	18 h	RT	91	_a,b
6	88	DMF	-	18 h	153 ℃	91	_a,b
7	88	DMF	Cu (5)	18 h	153 ℃	91	39 %
8	88	DMF	CuO (0,5)	18 h	153 ℃	91	_a,b
9	88	DMF	Cul (0,05)	18 h	153 ℃	91	_a,b
10	88	DMF	Cul (0,5)	18 h	153 ℃	91	_a,b
11	88	DMF	Ag (5)	18 h	153 ℃	91	_ ^{a,b}
12	88	DMF	NaH (1)	18 h	153 ℃	91	_a,b
13	88	DMF	K ₂ CO ₃ (1)	18 h	153 ℃	91	_a,b
14	88	DMF	Cu / Cul (5 / 0,05)	18 h	153 ℃	91	_b
15	88	DMF	Cu / K ₂ CO ₃ (5 / 0,05)	18 h	153 ℃	91	_b
16	88	DMF	Cu / NEt ₃ (5 / 0,05)	18 h	153 ℃	91	_b
17	88	DMF^{c}	Cu (5)	18 h	153 ℃	91	19 %
18	88	DMSO	Cu (5)	18 h	175 ℃	91	_b
19	149	DMF	-	18 h	153 ℃	132	a
20	149	DMF	Cu (5)	18 h	153 ℃	132	27 %
21	149	DMF	CuO (0,5)	18 h	153 ℃	132	_a
22	149	DMF	K ₂ CO ₃ (1)	18 h	153 ℃	132	_a
23	149	DMF	NaH (1)	18 h	153 ℃	132	_a
24	149	DMF	KI (1)	18 h	153 ℃	132	_a
25	149	Xylol	Cu (5)	18 h	140 ℃	132	_b

Tabelle 5. Ergebnisse der Untersuchungen verschiedener Reaktionsbedingungen beim Aufbau von Dioxocinen XXXI durch Kupplung der 2-Iodbenzylalkohole XXXII.

(a) Nur Edukt nachgewiesen; (b) kein Produkt detektierbar; (c) ohne Schutzgasatmosphäre.

Es zeigte sich, dass bei Raumtemperatur (Tabelle 5; Einträge 1-5) auch nach 24 h kein Umsatz zu beobachten war. Erst Erhitzen auf die Siedetemperatur von DMF führte zum Einsetzen der Reaktion. Deshalb wurde als Alternative zu DMF, aus der Reihe der hochsiedenden, aprotischen Lösungsmittel, DMSO als polares und Xylol als unpolares Lösemittel ausgewählt. In beiden Fällen konnte jedoch keine Produktbildung beobachtet werden. Ohne Schutzgasbedingungen lief die Reaktion mit etwas schlechteren Ausbeuten und mehr Nebenproduktanteil ab.

Nun wurde untersucht, ob tatsächlich (nur) elementares Kupfer die Reaktion vermittelt (Tabelle 5). Weitere Möglichkeiten wären, dass Cul (aus der Aktivierung; siehe Kap. 6.4) oder CuO, das nicht vollständig entfernt wurde, die Reaktion vermitteln (Einträge 9, 10 und 14 bzw. 3, 8 und 21). Außerdem wurden einige Basen mit und ohne Kupfer und eine lodidquelle (Eintrag 24) eingesetzt, um zu testen, ob es sich eventuell um eine zweifache nukleophile Substitution handeln könnte.

Elementares Silberpulver, das aufgrund seiner Stellung im Periodensystem Kupfer elektronisch ähnelt, wurde ebenfalls unter den für Kupfer etablierten Bedingungen eingesetzt.

Nach den erhaltenen Ergebnissen (Tabelle 5) scheint nur elementares Kupfer in der Lage zu sein, die Reaktion zum Dioxocingerüst **XXXI** zu vermitteln.

Als Nächstes wurde die Frage des Einflusses der Kupfermenge auf die Reaktion (Tabelle 6). Es zeigte sich, dass die Reaktion untersucht zwar mit substöchiometrischen Mengen abläuft (Eintrag 2), aber nicht vollständig, da nach Beendigung der Reaktion noch Edukt vorhanden war. Das weist darauf hin, dass die Reaktion nicht katalytisch abläuft, sondern mindestens stöchiometrische Mengen benötigt werden. Außerdem zeigte sich bei der Erhöhung der Kupfermenge von ein auf fünf Aquivalente ein stetiger Anstieg der Produktausbeute (Einträge 3 - 5). Hierbei konnte jedoch nicht geklärt werden, ob Kupfer überstöchiometrisch benötigt wird oder die Reaktion bessere Ausbeuten ergibt, da eine größere Kupferoberfläche vorhanden ist, an der die Reaktion abläuft.

Eintrag	Edukt	Lösungs -mittel	Kupfer (eq)	Reaktions -zeit	Temperatur	Produkt	Ausbeute (GC-MS)
1	88	DMF	-	18 h	153 <i>°</i> C	91	_ ^{a,b}
2	88	DMF	0,5	18 h	153 <i>°</i> C	91	8 % ^a
3	88	DMF	1	18 h	153 <i>°</i> C	91	27 %
4	88	DMF	2	18 h	153 <i>°</i> C	91	17 %
5	88	DMF	5	18 h	153℃	91	39 %

(a) noch Edukt vorhanden; (b) kein Produkt detektierbar.

Nachdem nun zufriedenstellende Reaktionsbedingungen gefunden waren, wurde die Reaktion mit anderen lodbenzylakolholen und 2-lodbenzylamin **151** getestet. Die Darstellung der Edukte ist in Kap. 4.2.1 und 4.2.2 beschrieben.

Bis auf *meta*-lodbenzylalkohol **141** handelt es sich ausschließlich um *ortho*lodverbindungen, die zu dem gewünschten 2,5-Dioxa- bzw. 2,5-Diaza-1,4(1,2)dibenzenacyclohexaphangerüst gekuppelt werden sollten. Der *meta*-lodbenzylalkohol **141** diente als Modellsystem zur Überprüfung, ob mit Hilfe dieser Reaktion auch andere Ringgrößen aufgebaut werden können oder ob die beiden zu kuppelnden Gruppen direkt benachbart sein müssen.

In fast allen Versuchen mit *ortho*-lodbenzylalkoholen (Tabelle 7), außer mit **138** (Eintrag 5), konnte Produktbildung beobachtet werden. Die Aufreinigung der Rohprodukte, die teilweise aus komplexen Gemischen von bis zu zwölf Produkten bestanden, führte in einigen Fällen zu erheblichen Ausbeuteverlusten. Aus diesem Grund sind in Tabelle 7 auch die aus den GC-MS-Spektren anhand der relativen Peakflächen entnommen Produktanteile der Rohprodukte angegeben.

Eintrag	Edukt	Produkt	Relative Peakfläche (GC-MS)	Ausbeute (isoliert)
1	CH ₂ OH		27 %	19 %
	149	132		
2	CH ₂ OH MeO	OMe MeO	39 %	29 %
	88	91		
3	MeO CH ₂ OH	MeO	27 %	13 %
	134	152		
4	MeO HeO HeO	MeO MeO MeO	16 %	21 %
	136	153		

Tabelle 7. Ergebnisse der kupfervermittelten Kupplung der lodbenzylalkohole XXXII.

Tabelle 7. Fortsetzung.

Zusammenfassend ist zu sagen, dass die Synthese von 2,5-Dioxa-1,4(1,2)dibenzenacyclohexaphangerüsten XXXI aus ortho-lodbenzylalkoholen XXXII mit elementarem Kupfer auf eine Anzahl von Derivaten anwendbar ist (Tabelle 7). Der Aufbau hochsubstituierter Systeme scheint bessere Ausbeuten zu ergeben, als z.B. die Synthese des unsubstituierten Naturstoffes **132** (Eintrag 1). Nur sehr elektronenreiche Aromaten scheinen ungeeignet zu sein (Eintrag 5). Deshalb kann Bei dem Versuch der Kupplung von **141** zu **158** nicht unterschieden werden, ob die elektronische Situation des Aromaten oder die auszubildende Ringgröße (10- statt 8gliedrig) das Problem darstellt. Im Falle des Amins **151** konnte ebenfalls keine Bildung des Produktes **159** beobachtet werden, was dafür spricht, dass die Reaktion nicht für den Aufbau von Diazocinen XXXIV geeignet ist.

Von einem Großteil der erhaltenen Produkte (**91**, **132**, **152**, **153**, **156** und **157**) konnten zusätzlich Röntgenstrukturen erhalten werden (siehe Abbildung 29).

156

157

Abbildung 29. Röntgenstrukturen 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphan-Derivaten 91, 132, 152, 153, 156 und 157.

Anhand der Molekülmassen und Fragmentierungsmuster aus den GC-MS-Spektren konnte die Identität einer Substanzklasse aufgeklärt werden, die jeweils einen großen Anteil des Rohproduktes der kupfervermittelten Kupplung von *ortho*-lodbenzylalkoholen ausmacht. Es handelt sich jeweils um die Dibenzylether mit der allgemeinen Struktur **160**. Für das Tetramethoxyderivat **161** wurde die Struktur zusätzlich mittels ¹H-NMR-Analytik bestätigt. Trotz dieses und der in den vorigen Abschnitten diskutierten Ergebnisse kann bis jetzt keine fundierte Aussage über einen Mechanismus für die kupfervermittelte Kupplung von *ortho*-lodbenzylalkoholen **XXXII** zu Dioxocinen **XXXII** getroffen werden.

Schema 65. Allgemeine Struktur der als Beiprodukt anfallenden Dibenzylether XXXVII und des Tetramethoxyderivates 161 im Speziellen.

4.2.4. Untersuchungen zu alternativen Routen zum Aufbau von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen

Schema 66. Alternative Syntheserouten zum Aufbau des 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphangerüsts (**XXXI**) durch doppelte nukleophile Substitution (links) oder zweifache Kondensation (rechts).

Bei der retrosynthetischen Analyse der 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphane (**XXXI**) ergeben sich alternative Syntheseoptionen zur Kupplung von *ortho*lodbenzylalkoholen. Eine Möglichkeit wäre die Kupplung der inversen Systeme, der *ortho*-Hydroxybenzylhalogenide **162**. Diese sollten eventuell unter basischen Bedingungen als Phenolate eine nukleophile Substitution an der reaktiven benzylischen Position eingehen können (Schema 66.; links). In der Literatur existiert ein Beispiel für eine solche Transformation.^[342] Aber die dort verwandten Substrate besitzen zwei Arylsubstituenten (Phenyl, 4-Fluorphenyl oder 4-Methoxyphenyl) in der benzylischen Position. Damit entsprechen sie weder elektronisch noch sterisch den in dieser Arbeit behandelten Systemen vom Typ **XXXI**. Eine andere potentielle Möglichkeit stellt die doppelte Kondensation von *ortho*-Hydroxybenzylalkoholen **163** dar (Schema 66.; rechts). Eine solche Kondensation (durch Sublimation) ist für das *ortho*-Hydroxybenzylalkoholderivat **168** mit einem Adamantylrest an Stelle der beiden Wasserstoffatome in der benzylischen Position bekannt.^[343]

Beide Synthesestrategien wurden im Verlauf dieser Arbeit auf ihre Anwendbarkeit hin überprüft. Die Ergebnisse werden im Folgenden diskutiert.

Schema 67. Versuche der Synthese von *o*-Hydroxybenzylhalogeniden **162** und Umsetzung zu Dioxocinen des Typs **XXXI** unter basischen Bedingungen; (i) **162a**: Nal / Amberlyst 15;^[344] **162b**: PPH₃Br₂ oder PPh₃ / CCl₄;^[345, 346] (ii) Base: K₂CO₃ oder NaH oder LiHMDS.

Um die inverse Kupplungsstrategie (Schema 66.; links) zu überprüfen, musste zuerst ein *ortho*-Hydroxybenzylhalogenid **162** synthetisiert werden. Dafür wurde zuerst auf ein Protokoll von *Tajbakhsh* zurückgegriffen,^[344] in dem Benzylalkohole mit Nal und Amberlyst 15 in die entsprechenden lodide überführt werden. Leider konnten seine Ergebnisse nicht reproduziert und somit das benötigte *ortho*-Hydroxybenzyliodid (**162a**) nicht erhalten werden. Da es den Anschein hatte, dass das Produkt sich beim Entfernen des Lösemittels zersetzte,^{pp} wurde versucht das Halogenid **162a** in einem Eintopf-Verfahren durch Zugabe von Base in das Reaktionsgemisch direkt in das Dioxocin **132** zu überführen. Auch nach 24 h konnte kein Produkt **132** im Reaktionsgemisch nachgewiesen werden.

Deshalb wurde alternativ versucht das Benzylbromid **162b** aus *ortho*-Hydroxybenzylalkohol (Saligenin, **163a**) herzustellen. Doch weder mit PPh₃Br₂ noch unter Appel-Konditionen^[345] gelang die Synthese des Bromids **162b**, obwohl dieses als Zwischenprodukt (wenn auch nicht isoliert) unter diesen Bedingungen postuliert wurde.^[346]

Auch die Versuche das in der Literatur postulierte Bromid **162b** durch Zugabe verschiedener Basen (K₂CO₃, NaH oder LiHMDS) in das Reaktionsgemisch, in Anlehnung an Literaturbedingungen,^[346] in das Produkt **132** zu überführen waren nicht erfolgreich.

^{pp} Laut DC war kein Edukt mehr vorhanden, was auf Produktbildung hindeutete, aber das leicht beige Rohprodukt wurde beim Entfernen des Lösemittels schwarz.

Schema 68. Bildung des sehr reaktiven Kations^[346] **164** und Abfangreaktion mit einem Überschußnukleophil (z.B. Nuc⁻ = MeO⁻) aus der Reaktionsmischung führt zu Produkten des Typs **165**, wie den Methylether **165a**.

Problematisch bei der Synthese von Hydroxybenzylhalogeniden des Typs **162** scheint die sehr schnelle Bildung des Kations **164** zu sein, welches dann wiederum mit Nukleophilen, z.B. dem Lösemittel, reagiert.^[346] Für diese Theorie spricht die Bildung des Methylethers **165a** beim Versuch das Bromid **162b** über einen Umweg herzustellen (Schema 69). Hierbei wurde *o*-Hydroxytoluol (**166**) als Acetat **167** geschützt,^[347, 348] dann mit NBS in das Bromid **168** überführt.^[348, 349] Die Tatsache, dass das Bromid **168** instabil ist,^[348] stimmt mit den eigenen Beobachtungen überein. Beim Entschützen des Acetats **168** in Methanol wurde sogar unter nicht basischen Bedingungen als Hauptprodukt der Methylether **165a**^[350] gebildet (Schema 68). Der Fakt, dass keines der *o*-Hydroxybenzylhalogenide **162** isoliert oder direkt zum Dioxocin **132** umgesetzt werden konnte, beruht wahrscheinlich auf dieser hohen Reaktivität der *ortho*-Hydroxybenzylhalogenide **162**.

Schema 69. Synthese von **162b** über die Acetate **167** und **168**; (i) Ac₂O, NEt₃, DCM, RT, 12 h;^[347] (ii) NBS, BP, CCl₄, Rückfluß, 12 h;^[349] (iii) kat. H₂SO₄, MeOH, RT.

Wie bereits erwähnt, ist eine weitere denkbare Variante zum Aufbau von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen **XXXI** die Kondensation von *ortho*-Hydroxybenzylalkoholen **163** (Schema 66.; rechts).

Im Laufe dieser Arbeit wurde unter verschiedenen wasserentziehenden Bedingungen (Dean-Stark-Wasserabscheider/*para*-Toluolsulfonsäure oder konzentrierte Schwefelsäure) versucht die Dihydroxyverbindung **163a** zu kondensieren, aber in keinem der Fälle konnte die Bildung des gewünschten Produktes **132** beobachtet werden. Stattdessen wurde mittels GC-MS nur jeweils das Edukt **163a** und ein unbekanntes Produkt^{qq} im Rohprodukt detektiert. Zusätzlich fiel eine unlösliche, wahrscheinlich

^{qq} Die Masse der unbekannten Substanz weist auf ein DMF-Substitution-Produkt hin.

polymere, Substanz an, deren Identität nicht aufgeklärt werden konnte. Basierend auf den Ergebnissen von *Wan* und *Hennig*^[351] könnte es sich um eine Art Phenol-Formaldehyd-Harz handeln, dessen Bildung bei der Photolyse von Saligenin (**163a**) unter basischen Bedingungen beobachtet wurde.^[351] Auch beim Erhitzen von *ortho*-Hydroxybenzylalkohol (**163a**) in Gegenwart von Iodid (KI), verschiedenen Basen (K₂CO₃, NEt₃) oder Kupferverbindungen (Cu, CuO) in DMF konnte die Bildung von **132** nicht beobachtet werden.

163a: R = R´ = H **169**: R, R´ = Adamantylen

132: R = R´ = H **170**: R, R´ = Adamantylen

Schema 70. Kondensation von *o*-Hydroxybenzylalkoholen (**163a** und **169**) zu 2,5-Dioxa-1,4(1,2)dibenzenacyclohexaphanen wie **132** oder substituiert an den benzylischen Positionen wie **170** unter wasserentziehenden Bedingungen; (i) **163a**: a) Wasserabscheider, kat. H⁺ oder b) konz. H₂SO₄; **169**: Δ (Sublimation).^[343]

4.2.5. Zusammenfassung der Dioxocin-Studien

Nach den vorliegenden Ergebnissen ist, die im Rahmen dieser Arbeit entdeckte, kupfervermittelte Kupplung von *ortho*-lodbenzylalkoholen **XXXII** die erste und einzige bekannte Methode^{kk} 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphane (kurz: Dioxocine) des Typs **XXXI** mit variablen Substitutionsmustern effektiv und zuverlässig aufzubauen (Schema 71).

Die bisher in Einzelfällen beschriebene Dimerisierung von *o*-Hydroxybenzyllhalogeniden **162** oder -alkoholen **163** scheint nur bei Substraten geeignet zu sein, die sterisch anspruchsvolle (nicht α -H-tragendene) Substituenten in der benzylischen Position besitzen.^[342, 343]

Schema 71. Übersicht der im Verlauf dieser Arbeit erhaltenen Dioxocinderivate XXXI.

Reaktionsbedingungen für die kupfervermittelte Kupplung Die von ortholodbenzylalkoholen XXXII und die Aufreinigungsmethode für die Dioxocine XXXI ergeben vielversprechende, wenn auch noch nicht optimale Ergebnisse, die durch weitere mögliche Variationen der Reaktionsbedingungen sicher noch optimierbar sind. Doch schon jetzt ermöglicht die Methode einen schnellen Zugang^{rr} mit akzeptablen und reproduzierbaren Ausbeuten zu einem biologisch aktiven Naturstoff und einer Anzahl von Derivaten dieser interessanten Stoffklasse. Insbesondere im Hinblick auf die Simplizität der Methode sind die erhaltenen Ausbeuten (~20 %), ausgehend von einfach zu erhaltenden Edukten (siehe Kap. 4.2.1), durchaus akzeptabel. Zudem toleriert die Prozedur eine Reihe von funktionellen Gruppen und Substitutionsmustern und ermöglicht somit den Zugang zu einem Strukturraum potentiell biologisch aktiver Verbindungen.

Die biologische Aktivität dieser Verbindungsklasse wird in nächster Zeit im Rahmen von Kooperationen untersucht.

[&]quot; Nur eine Stufe vom kommerziell erhältlichen 2-Jodbenzylalkohol 149 zum Naturstoff 132.

5. Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurden Synthesen von neuen konformations-chiralen Biphenyl- und Phenanthrenderivaten und die Untersuchungen ihrer Fähigkeiten im Bereich (supra-)molekularer Funktionalität vorgestellt. Im Folgenden werden diese Ergebnisse zusammenfassend dargelegt und ein kurzer Ausblick über weiterführende Untersuchung und potentielle zukünftige Anwendungen gegeben. Zusätzlich wurden Untersuchungen zu einer im Verlauf dieser Arbeit entdeckten kupfervermittelten Reaktion zum Aufbau von 2,5-Dioxa-1,4(1,2)-dibenzenacyclo-XXXI durchgeführt. Die Ergebnisse Kap. hexaphanen sind in 4.2.6 zusammengefasst.

Trotz der relativ großen Anzahl an bekannten Methoden zur Synthese von Phenanthrenderivaten, ^[17, 42-44] stellte sich die Synthese von 4,5-substituierten Phenanthrenen mit komplexeren funktionellen Gruppen in der *Bay* oder zusätzlichen Substituenten in der Peripherie als äußerst schwierig heraus. Die räumliche Nähe der Bay-Substituenten, die die gewünschte Chiralität des aromatischen Gerüsts verursacht, führte unter vielen Bedingungen zu unerwünschten (Cyclisierungs-)Reaktionen oder verhinderte die angestrebten Transformationen. Diese Probleme konnten im Verlauf der vorliegenden Arbeit durch die geschickte Wahl verschiedener Synthesestrategien für eine Anzahl von Derivaten gelöst werden und somit eine Reihe funktionaler, helikal-chiraler Phenanthrene erfolgreich hergestellt werden.

Durch die Verwendung von Oxidationsprodukten von Pyren **35** konnten, trotz zahlreicher Hindernisse, im Verlauf dieser Arbeit eine Serie von methylenverbrückten *Bay*-Estern hergestellt werden (Kap. 4.1.2; Tabelle 2). Diese zeigten zwar nicht das erhoffte thermotrop flüssigkristalline Verhalten, doch konnten, insbesondere durch Röntgenstrukturanalysen, eine Reihe sehr interessanter Erkenntnisse über diese Substanzklasse gewonnen werden. Außerdem ist aufgrund ihrer chemischen Ähnlichkeit mit bekannten Mesogenen^[166] der Einsatz dieser Verbindungen als chirale Dotierungsmittel in Flüssigkristallen vieversprechend und soll in der Zukunft in unserem Arbeitskreis untersucht werden.

In diesem Zusammenhang bemerkenswert ist, die im Verlauf dieser Arbeit entwickelte Synthese von Phenanthren-4,5-diyldimethanol (**49**), die mit bisher unerreicht hoher Ausbeute gelingt und ohne die riskante Ozonolyse auskommt. Dieses Diol stellt u. a. einen sehr interessanten Baustein zur Synthese von Liganden und Crownophanen dar. Die Verwendung von Biphensäure- und Dihydrophenanthrenintermediaten, ein Synthesekonzept zur Darstellung von 4,5-disubstituierten Phenanthrenderivaten des Typs **Id**, das auch in der Literatur weite Anwendung gefunden hat (z.B. für R = F, Cl, CH₃, CF₃ oder OCH₃),^[45, 46, 199-201] konnte zwar in den bekannten Fällen reproduziert (und teilsweise sogar verbessert), jedoch nicht auf anspruchsvollere Systeme (R = PR₂, NR₂) übertragen werden (Kap. 4.1.3). Im Verlauf dieser Untersuchungen konnte jedoch ein fluoreszierender Chemosensor (**71**), der selektiv auf Ca²⁺ und Hg²⁺ reagiert, hergestellt und seine Fähigkeiten untersucht werden (Kap. 4.1.4).

Schema 72. Übersicht der synthetischen Möglichkeiten zu Phenanthrenderivaten mit Hilfe der Photocyclisierung verbrückter Stilbenderivate, die im Verlauf dieser Arbeit erfolgreich angewendet wurden.

Einen sehr variablen Zugang zu funktionalen, *Bay*-substituierten Phenanthrenderivaten (Schema 72) erlaubt die Verwendung verbrückter Stilbene und anschließende oxidative Photocyclisierung (Kapitel 4.1.6).

Die Nutzung von enantiomerenreinen Brücken ermöglicht durch chirale Induktion die direkte Synthese verdrillter Stilben- und Phenanthrenderivate mit definierter Helicität (Kap. 4.1.6.4). Diese konnte sowohl für die Stilbenintermediate als auch für die Phenanthrenderivate mittels DFT-Kalkulationen^[257] (B3LYP/6-311G(d)) untermauert und durch CD-Spektroskopie und Röntgenstrukturanalysen bestätigt werden. Die in dieser Arbeit etablierte Nutzung von chiralen Brücken in der Photocyclisierung von Stilbenen, ist die erste bekannte Methode um helikal-chirale Phenanthrenderivate enantioselektiv herzustellen.

Eine weitere erfolgreiche Nutzung der Photocyclisierungstaktik stellt die Synthese von Crownophanen mit Stilben- und Phenanthrenrückgrat dar (Kap. 4.1.6.5). In diesem Fall dienten Oligoethylenglycole sowohl zur Verbrückung, als auch als funktionelle Einheit. Leider sind die im Verlauf dieser Arbeit synthetisierten Derivate aufgrund des zu geringen Durchmessers ihrer Kronenethereinheiten nicht für die Ausbildung von Einlagerungskomplexen (mit z.B. Alkaliionen) geeignet. Sie zeigen jedoch deutlich das Potential der erarbeiteten Methode zur Darstellung von Stilbenound Phenanthrocrownophanen auf.

Einen bemerkenswerten Fortschritt stellt die effiziente Synthese (4 Stufen) von Phenanthren-4,5-diol (**18**) unter Verwendung der Photocyclisierungsstrategie (Kap. 4.1.6.1) und die daraus resultierende Darstellung eines Phosphoramiditliganden *R*,*R*-**99**, sowie dessen erfolgreiche Nutzung in der enantioselektiven, konjugierten Addition dar (Kap. 4.1.6.2). Mit dem Liganden *R*,*R*-**99** wurden nicht nur sehr gute Ausbeuten und Enantioselektivitäten (92 %, 84 (*S*) %ee) erreicht, sondern mit den erhaltenen Ergebnissen konnte aufgrund der strukturellen Grenzstellung von *R*,*R*-**99**, zwischen den konformations-flexiblen Biphenyl- und konformations-stabilen Binaphtylsystemen, das Prinzip der *induzierten Atropisomerie*^[132] *in der Katalyse* untermauert werden.

Zudem existiert nun durch die effektive Synthese von **18** ein einfacher Zugang zu einer Reihe interessanter Liganden auf Basis Bay-substituierter Phenanthrenderivate, die zukünftig auf ihre Eignung in der asymmetrischen Synthese untersucht werden sollen.

Schema 73. Diversitätsorientierter Zugang zu octasubstituierten Phenanthrenderivaten mit einem definierten Bay- und Peripheriebereich am Beispiel der Methylderivate **120** und **129** (Kap. 4.1.7).

Der diversitätsorientierte Zugang zu hochsubstituierten Phenanthrenen mit unterschiedlichen Substituenten in der *Bay* und Peripherie unter Verwendung von decasubstituierten Biphenylderivaten konnte anhand der 4,5-Dimethylverbindungen **120** und **129** erfolgreich aufgezeigt werden (Schema 73). Diese beiden Substanzen sind die ersten bekannten Verbindungen dieser Art.

Schema 74. Übersicht der im Verlauf dieser Arbeit (Kap. 4.1.7.1) synthetisierten, 5-substituierten 2,3,4-Trimethoxybenzaldehyde.

Das große Potential dieser Synthesestrategie wurde zusätzlich durch die Darstellung einer Reihe von an der 5-Position (spätere *Bay*-Position) substituierter 2,3,4-Trimethoxybenzaldehyde demonstriert (Schema 74 bzw. Kap. 4.1.7.1).

Die meisten im Verlauf dieser Sequenzen erhaltenen Verbindungen (Kap. 4.1.7 und 4.1.7.1) sind zusätzlich infolge ihres Substitutionsmusters als Bausteine in der Naturstoff(analoga)synthese (z.B. **125** oder **119**) oder im Ligandendesign (z.B. **126**) von hohem Interesse.

Die direkte Lithiierung von Phenanthren **1** und weitere Funktionalisierung mit Elektrophilen dagegen war, entgegen in der Literatur beschriebener Ergebnisse, in keinem der Fälle erfolgreich (Kap. 4.1.1). Unter allen getesteten Bedingungen und mit allen verwendeten Elektrophilen waren die Selektivitäten zugunsten der Bay-Produkte maximal mittelmäßig und eine Abtrennung von den Regioisomeren bzw. Cyclisierungsprodukten konnte nicht erreicht werden. Auch Versuche die tetracyclischen Systeme (wie **44**) selektiv und in Reinform zu erhalten gelang nicht.

Bei vielen Substanzen, die im Rahmen dieser Arbeit sowohl synthetisiert als auch exzellente Übereinstimmungen berechnet wurden, konnten zwischen experimentellen und berechneten Observablen (Struktureigenschaften, spektroskopische Daten) gefunden werden. Dies zeigt, dass die heutigen guantenchemischen Berechnungsverfahren (DFT) weitgehend präzise Ergebnisse liefern, die insbesondere durch ihre direkte Verknüpfung mit experimentellen Resultaten Einblicke in komplexe molekulare Eigenschaften ermöglichen und auf diese Weise zu signifikanten Erkenntnisgewinnen beitragen. Zwar lässt sich das Experiment nicht vollständig ersetzen, jedoch bieten die computergestützten Techniken eine große Unterstützung in der täglichen Praxis durch Vorhersage von Eigenschaften und Simulation von spektroskopischen Daten.

Zusammenfassend kann gesagt werden, dass mit den in dieser Arbeit vorgestellten Synthesestrategien ein generell anwendbarer und diversitätsorientierter Zugang zu den bisher nur in speziellen Einzelfällen und schwierig erreichbaren, funktionalen, konformations-chiralen, Bay-substituierten Phenanthrenderivaten eröffnet werden hochsubstituierte mit differenzierten konnte. Auch Systeme Bayund Peripheriebereichen sind auf diesem Wege zugänglich. Zudem wurden auch synthetische Methoden zu neuen Benzol-, Stilben- und Biphenylderivaten mit komplexen Substitutionsmustern aufgezeigt. Aufbauend auf diesen Ergebnissen sind zukünftig eine ganze Reihe von hochinteressanten Molekülstrukturen erreichbar, die potentiell in Bereichen wie der Sensorik, supramolekularen Ordnung, asymmetrischen Katalyse und Naturstoff(analoga-)synthese anwendbar sind.

6. Experimentelles

6.1. Allgemeine experimentelle Bedingungen

Absolute Lösungsmittel

Alle Lösungsmittel, die als Reaktionsmedium oder für Extraktions- und Reinigungsvorgänge zum Einsatz kamen, wurden vor Gebrauch destilliert.

Absolute Lösungsmittel wurden vor Gebrauch wie folgt behandelt:

THF, Et₂O und **Toluol** wurden über Natrium/Benzophenon refluxiert und anschließend unter Argon destilliert.

CH₂Cl₂ wurde über CaH₂ refluxiert und anschließend unter Argon destilliert.

MeOH und **EtOH** wurden mit Natrium/Phthalsäurediethylester refluxiert und anschließend unter Argon destilliert und über Molsieb 3 Å gelagert.

Amin-Basen wie **NEt**₃ und **Pyridin** wurden unter Argon von CaH₂ destilliert und über KOH unter Lichtausschluss gelagert.

Benzol und DME wurden unter Argon über Alox filtriert und über Molsieb 3 Å gelagert.

Acetonitril, DMF und DMSO wurde in wasserfreier HPLC Qualität bezogen und vor der Benutzung mind. 2 Tage über Molsieb 3Å gelagert.

Circular-Dichroismus (CD)

CD-Spektren wurden mit einem *Jasco* J-810 Spektropolarimeter unter Verwendung von Suprasil-Küvetten mit der Länge 1 cm aufgenommen. Die Konzentration der Lösung, das Lösemittel und die Tempertur sind jeweils in Klammern angegeben.

Drehwert-Bestimmung

Die spezifischen Drehwerte [α] wurden mit einem *Perkin Elmer* Polarimeter 343plus (Serial No. 7618) bestimmt. Die Substanzen wurden thermostatisierten 100.00 mm-Küvetten bei verschiedenen Wellenlängen vermessen. Die Wellenlänge ist jeweils im Index aufgeführt, wobei D für die Natriumlinie mit 589 nm steht. Lösemittel, Konzentration und Temperatur sind in Klammern angeben.

Dünnschichtchromatographie (DC)

Es wurden mit Kieselgel $60F_{254}$ beschichtete Aluminiumfolien der Firma *Merck* benutzt. Die Auswertung der Chromatogramme geschah durch Betrachtung mit einer UV-Lampe ($\lambda = 254$ bzw. 366 nm) oder durch Entwicklung mit Iod, einem Cer(IV)- oder Vanillin- Reagenz. Bei der Entwicklung mit Iod wurde das Chromatogramm für wenige Minuten in eine Iodkammer, ein verschließbares Gefäß, das mit einigen Iodkristallen und Kieselgel gefüllt ist, getaucht. Wenn das Cer(IV)- bzw. Vanillin-Reagenz benutzt wurde, wurde das Chromatogramm in die jeweilige Lösung

getaucht, abgetupft und mit einem Heißluftfön erhitzt. Die Darstellung des Cer(IV)-Reagenzes erfolgte durch Lösen von 2g Phosphormolybdänsäure und 1g Cer(IV)sulfat in 10 ml konzentrierter Schwefelsäure und 90 ml Wasser. Die Darstellung des Vanillin-Reagenzes erfolgte durch Lösen von 3 g Vanillin in 0.5 ml konzentrierter Schwefelsäure und 100 ml Ethanol.

Rotierende Dünnschichtchromatographie (Chromatotron)

Rotierende Dünnschichtchromatographie wurde mit einem *Harrison Chromatotron* an gipshaltigem Kieselgel *Merck* 60 F_{254} durchgeführt. Die benötigten Chromatotronplatten wurden selber in Schichtdicken von 1 – 4 mm beschichtet und konnten mehrfach verwendet werden.

Elementaranalyse (EA)

Die Elementaranalysen wurden mit einem Vario EL Gerät der Firma *Elementar* gemessen.

Entfernen von Lösemitteln

Lösemittel wurden zuerst bei vermindertem Druck am Rotationsverdampfer der Firma *Büchi* (Wasserbadtemp.: 30-50 °C), restliche Lösemittelrückstande im Ölpumpenvakuum abgezogen.

Flash-Säulenchromatographie

Die Säule wurde mit Kieselgel 60 (230 - 400 mesh) von *Merck* oder mit Alumina N – Super I der Firma *ICN Biomedicals* und dem Laufmittelgemisch nass gepackt, d.h. das Kieselgel wurde im Laufmittel suspendiert, in die Säule gefüllt und verdichtet, indem das Laufmittel mit Druckluft durchgepresst wurde. Der verwendete Säulendurchmesser richtete sich dabei nach der Beladungsmenge, die Füllhöhe der Stationären Phase betrug jeweils ca. 20 cm:

Tabelle 8. Richtgrößen für die Beladung einer Säule zur Flash-Säulenchromatographie (bei ca. 20 cm Füllhöhe).^[352]

Ø Säule	Laufmittel	Beladung $\Delta R_f \ge 0.2$	Beladung $\Delta R_f \ge 0.1$	Fraktionsgröße
10 mm	100 ml	100 mg	40 mg	5 ml
20 mm	200 ml	400 mg	160 mg	10 ml
30 mm	400 ml	900 mg	360 mg	20 ml
40 mm	600 ml	1600 mg	600 mg	30 ml
50 mm	1000 ml	2500 mg	1000 mg	50 ml

Fourier-Transform-Infrarotspektroskopie (FT-IR)

IR-Spektren wurden mit einem Paragon 1000 FT-IR Spektrometer (ATR-Technik) der Firma *Perkin-Elmer* aufgenommen. Die zu messende Substanz wurde jeweils mit Aceton oder Dichlormethan aufgetragen. Die im Experimentellen Teil aufgeführten Daten sind in Wellenzahlen (cm⁻¹) angegeben und es wurden folgende Abkürzungen verwendet:

- · "s" steht für *starke*,
- · "m" für *mittelstarke,*
- "w" für wenig intensive und
- "b" für *breite* Banden.

Gaschromatographie (GC) mit chiraler Säule

Chirale GC wurde mit folgendem Gerät durchgeführt: *Agilent* GC System, *Agilent* 6890N mit

- · Kapillarsäule: *Astec,* Chiraldex γ-TA, 73032
- Trägergas: Stickstoff, Flow: 0,4 ml/min;
- · Inlettemperatur: 250 ℃;
- Temperaturprogramm:

die Ofentemperatur beträgt 15 min lang 65 °C, wird dann zuerts innerhalb von 7 min auf 100 °C, dann innerhalb von 4 min auf 160 °C erhöht und für 2 min gehalten;

• Detektor: FID mit einer Detektortemperatur von 250 °C.

Gaschromatographie mit gekoppelter Massenspektrometrie (GC-MS)

GC-MS wurde mit folgenden Geräten durchgeführt:

Agilent GC System, Agilent 6890 Series mit

- Kapillarsäule: S1) Macherey-Nagel, SN: 20723/12, Optima-1-MS
 S2) Hewlett-Packard, SN: US2178021H, HP-5;
- Trägergas: Wasserstoff, Flow: 1,7 ml/min;
- · Inlettemperatur: 230 ℃;
- Temperaturprogramme: bei den Methoden 50-300M und 50B300M beträgt die Ofentemperatur 2 min lang 50 ℃, wird dann innerhalb von 10 min auf 300 ℃ erhöht und für 5 min auf 300 ℃ gehalten;
- · Detektor: FID mit einer Detektortemperatur von 230 ℃;
- MS-Detektor, Agilent 5973 Network Mass Selective Detector Elektronenstoßionisation (EI).

Das verwendete Temperaturprogramm und die benutzte Kapilarsäule sind jeweils dem Datensatz vorangestellt.

Hochauflösende Massenspektrometrie (HR-MS)

Für die Massenfeinbestimmung wurde das MAT 900S Gerät der Firma *Finnigan* verwendet. Die benutzte Methode war das sogenannte "Peak-Matching" und als Quelle für geeignete Referenzionen diente Perfluorkerosin (PFK). Zur Ionisierung wurde die Elektronenstoßionisationsmethode (EI) bei einem Ionisationspotential von 70 eV benutzt.

Kernresonanzspektroskopie (NMR)

Für die NMR-Spektroskopie wurden das AC250 Spektrometer mit 250MHz, das DPX 300 Spekrometer mit 300MHz und das DRX 500 Spektrometer mit 500MHz der Firma Bruker verwendet. Als Lösungsmittel, das gleichzeitig auch als Locksubstanz diente, wurde CDCl₃ benutzt, dessen nichtdeuterierter Anteil als Standard dient(7.24 ppm ¹H bzw. 77.0 ppm ¹³C). Für ³¹P-NMR-Spektren wurde das Gerät mit Phosphorsäure als externem Standard kalibriert. Zu jedem Datensatz sind die Messfrequenz, das Lösungsmittel und die Messtemperatur angegeben. Das signalgebende Atom ist jeweils unterstrichen.

Bei ¹H-NMR-Daten werden die Multiplizitäten der Protonensignale mit folgenden Abkürzungen beschrieben: *s* für Singulett, *d* für Dublett, *t* für Triplett und *m* für Multiplett. Anführungzeichen signalisieren Pseudo-Multiplizitäten, d.h. Signale, die das Erscheinungsbild eines z.B. Triplett, aber nicht die richtigen Signalverhältnisse aufweisen Die Anzahl der Protonen, die ein Signal ergeben, wurde durch das Integral des Signals bestimmt und ist nach der Multiplizität aufgeführt (z.B. 3H für eine CH₃-Gruppe). Die Positionen der Protonen im Molekül sind durch die Kohlenstoffatome (IUPAC-Nummerierung) definiert, an denen sie (bzw. bei OH-Gruppen der Sauerstoff) gebunden sind. Die Beschreibung der Position erfolgt nach IUPAC-Nomenklatur der protonentragenden C-Atome, über die funktionelle Gruppe, die das Proton enthält (z.B. OCH₃) oder über Abkürzungen wie "arom." für aromatische Protonen oder "DoBi" für Protonen an einer Doppelbindung. Bei den angegebenen Kopplungen handelt es sich, wenn nicht in Klammern vermerkt (wie z.B. (C,P) für eine Kohlenstoff-Phosphor-Kopplung), immer um H,H-Kopplungen.

Bei ¹³C-NMR-Daten handelt es sich ausschließlich um Daten aus ¹H-Breitbandentkoppelten Spektren. Den Signalen wurden Abkürzungen wie "q" für CH₃-, "t" für CH₂-, "d" für CH- und "s" für quaternäre Kohlenstoffatome zugeordnet, welche sich auf die Zahl der direkt an den betreffenden Kohlenstoff gebundenen Protonen beziehen. Diese Multiplizitäten wurde mit APT-Experimenten oder über zweidimensionale C,H-COSY-Experimente ermittelt. Die Kohlenstoffatome der Aromaten wurden nach IUPAC "C1" bis "C6" oder allgemeiner mit "arom. C" (aromatischer Kohlenstoff) benannt. Nicht-triviale Signalzuordnungen erfolgten mit Hilfe von H,H-COSY, HMQC und HMBC-Experimenten. In einigen Fällen war es notwendig NOESY-Experimente (*Nuclear Overhauser Enhancement Spectroscopy*) durchzuführen, bei denen man die Wechselwirkung zweier Atome sehen kann, die sich in räumlicher Nähe (auch ohne direkte Bindung) zueinander befinden.

Massenspektrometrie (DIP-MS und MALDI-MS)

In einigen Fällen war eine Massenspektroskopie im direkten Anschluss an die Gaschromatographie (GC-MS) nicht möglich, da die Substanzen nicht verdampfbar waren oder außerhalb des Messbereiches des Massendetektors lagen. Dann konnte in einigen Fällen die Direct-Inlet-Prozedur (DIP-MS) mit dem MAT 900S Gerät der Firma Zur Finnigan verwendet werden. Ionisierung wurde die Elektronenstoßionisationsmethode (EI) bei einem Ionisationspotential von 70 eV benutzt. In anderen Fällen wurde auch MALDI-MS (Matrix Assisted Laser Desorption Ionisation Mass Spectroscopy) unter Verwendung eines N₂-Lasers (337 nm) und dem ...dried droplet"-Verfahren einer nach hergestellten Matrix aus Hydroxycyanozimtsäure (HCCA) benutzt. Das verwendete Gerät war ein Voyager STR der Firma Applied Biosystem (Darmstadt) und als Ionisationsmethode wurde EI bei einem Ionisationspotential von 70 eV benutzt.

Reagenzien

Die verwendeten Chemikalien wurden von gängigen Firmen wie Merck, Sigma-Aldrich, Fluka, Acros, Lancaste, Alfa Aesar und Strem kommerziell bezogen und, wenn nicht extra vermerkt, ohne weitere Reinigung eingesetzt.

Die Konzentration metallorganischer Reagenzien wurde nach einer Methode von *Watson* und *Eastham* durch Titration gegen Menthol mit Phenanthrolin als Indikator bestimmt.^[353]

Thionylchlorid wurde vor der Benutzung jeweils frisch destilliert.

Röntgenstrukturanalyse (X-ray)

Die Messungen für die Einkristallröntgenstrukturanalyse wurden auf einem Kappa CCD Vierkreisdiffraktometer der Firma *Nonius* aufgenommen. Die Rechnungen und Strukturverfeinerungen wurden mit dem Programm SHELXL-97 durchgeführt und die visuelle Darstellung erfolgte mit der Diamond-Software Version 2.1d der Firma *Crystal Impact*.

Schmelzpunktbestimmung

Die Schmelzpunkte wurden (unkorrigiert) entweder mit dem Schmelzpunktbestimmungsgerät Melting Point B-545 der Firma *Büchi* oder einem

THMS 600 Heiztisch der Firma *Linkam* bestimmt. Die für Calibriersubstanzen erhaltenen Werte wichen bei dem *Linkam* THMS 600 linear und reproduzierbar von den Literaturwerten ab. Deshalb wurden 8 Kalibrierpunkte im Temperaturbereich zwischen 50 und 300 °C mit Standardsubstanzen bekannter Schmelzpunkte gemessen und so der Korrekturfaktor ermittelt, um die gemessenen Werte zu korrigieren. Die Lösemittel(gemische), aus denen umkristallisiert wurde, sind jeweils in Klammern angegeben.

Schutzgasatmosphäre

Bei Arbeiten unter Schutzgasatmosphäre wurde eine sogenannte Schlenk-Linie mit Argon als Inertgas verwendet. Die Apparaturen wurden vor Beginn der Reaktion mehrmals evakuiert, mit einem Heißluftfön ausgeheizt und mit Inertgas belüftet. Die Reagenzien wurden mit Spritzen und Stahlkanülen durch ein Gummiseptum oder im Argongegenstrom in die Apparaturen eingebracht.

UV-Spektroskopie

Die UV-Spektren wurden mit einem DU 800 der Firma *Beckman Coultar* aufgenommen. Die Länge der Küvette betrug 1 cm. Die Konzentration der Lösung, das Lösungsmittel und die Temperatur sind jeweils in Klammern angegeben.

6.2. Nomenklatur und Nummerierung

Die Benennung der Verbindungen erfolgte grundsätzlich nach den Empfehlungen der IUPAC. Die meisten der komplexeren Strukturen erfolgte nach der Phane-Nomenklatur, einer relativ neuen Methode der IUPAC für die Benennung organischer Strukturen^[176, 177] (siehe auch Kap. 2.4), und mit Hilfe des Standardwerkes "Die systematische Nomenklatur der organischen Chemie".^[354] Abweichungen von der IUPAC-Nomenklatur ergeben sich durch Benutzung allgemein gebräuchlicher oder verständlicherer Trivialnamen, Anlehnung der Benennung an literaturbekannte Substrate oder die stärkere Berücksichtigung von funktionellen Gruppen als Einheit (z.B. Schutzgruppen) und daraus folgend veränderte Prioritäten. Die Bestimmung der Stereochemie (R / S bzw. P / M) erfolgte nach den Regeln von Cahn-Ingold-Prelog.^[37] Die Nummerierung der Atome für die Zuordnung von (z.B. NMR-) Signalen ist zur Verdeutlichung oder wenn sie von der üblichen IUPAC-Nomenklatur abweicht in der Strukturformel angegeben.

6.3. Darstellung des Chlorierungsreagenzes^[258]

Zur Darstellung des Chlorierungsreagenzes wurden 0.893 g (7.5 mmol) Benzotriazol in 5 ml abs. Dichlormethan gelöst und langsam 0.546 ml (7.5 mmol) Thionylchlorid zugegeben. Die klare, gelbe Lösung kann unter Feuchtigkeitsausschluss und Schutzgasatmosphäre gelagert werden und ist so lange verwendbar, bis eine Trübung durch Benzotriazolhydrochlorid auftritt.

6.4. Aktivierung des Kupferpulvers^[355]

In einer Lösung von 3 g lod in 200 ml Aceton wurden 20 g Kupferpulver 10 min. gerührt, abfiltriert und durch Rühren in 100 ml einer 1 : 1 (v : v) Mischung aus Aceton und konz. HCl gewaschen. Nach erneutem Abfiltrieren und Waschen mit reichlich Aceton wurde im Hochvakuum getrocknet und 18 g aktiviertes Kupferpulver erhalten Dieses wurde bis zur Verwendung (max. 7 Tage) unter Argon gelagert.

6.5. Synthese von Phenanthren-4,5-derivaten basierend auf Spaltungsprodukten von Pyren

6.5.1. Phenanthren-4,5-diyldimethanol (*rac-*49)

Unter Argon wurden 1.14 g (30 mmol) LAH in 150 ml absolutem THF suspendiert und unter Eiskühlung 5.89 g (20 mmol) **48** portionsweise zugegeben. Anschließend wurde 3 h im Rückfluss erhitzt. Nach Kühlen auf 0 °C wurde das überschüssige LAH durch vorsichtige Zugabe von Wasser zu der Reaktionsmischung deaktiviert. Danach wurden 40 ml 1M Kalium-Natrium-Tartrat-Lösung zugegeben und 1 h bei Raumtemperatur gerührt. Nach Zugabe von MTBE wurde die Organische Phase

abgetrennt und die wässrige Phase sechsmal mit MTBE extrahiert. Die vereinigten organischen Phasen mit ges. NaCI-Lösung gewaschen und über MgSO₄ getrocknet. Nach Entfernen des Lösungsmittels im Vakuum und Aufreinigung mittels Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 4.69 g (19.6 mmol, 98 %) des Produkts **49** in Form farbloser Kristalle erhalten werden.

Die analytischen Daten stimmen mit den Literaturwerten überein.^[89, 186, 249, 250]

Molmasse $(C_{16}H_{14}O_2)$: 238.2812;

Schmelzp. (EtOAc): 156.5-157.5 ℃ (Lit.^[249]: 152-159 ℃);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.08$;

FT-IR (ATR): $\tilde{\nu} = 3307$ (s, b), 3044 (w), 2941 (w), 2880 (w), 1726 (m, b), 1592 (w), 1427 (m, b), 1374 (m), 1243 (m, b), 1163 (m), 1106 (w), 1049 (s), 999 (s), 912 (w), 892 (w), 826 (s), 786 (w), 758 (m), 723 (s), 672 cm⁻¹ (w);

¹**H-NMR** (300 MHz, DMSO-D6, 25 °C): δ = 7.86 (dd, 2H, ³J = 7.4 Hz, ⁴J = 1.2 Hz; 1/8-H), 7.80 (dd, 2H, ³J = 7.4 Hz, ⁴J = 1.2 Hz; 3/6-H), 7.69 (s, 2H; 9/10-H), 7.68 (t, 2H, ³J = 7.4 Hz; 2/7-H), 5.02 ("t", 2H, ³J = 6 Hz; 1′/1′′-O<u>H</u>), 4.84-4.46 (m, 4H, AA′BB′, ³J = 6 Hz; 1′/1′′-H);

¹³**C-NMR** (75.5 MHz, DMSO-D6, 25 °C): δ = 140,77 (s; C-4/5/8a/10a), 132.58 (s; C-4a/4b), 127.04 (s; C-3/6), 126.41 (d; C-2/7), 126.18 (d; C-9/10), 125.81 (d; C-1/8), 61.00 (t; C-1[']/1^{''});

DIP-MS (EI, 70 eV); m/z (%): 238 (15) $[M^+]$, 220 (53) $[M^+-H_2O]$, 219 (57), 202 (53), 189 (100), 179 (70), 165 (11), 152 (19), 139 (8), 127 (22), 109 (16), 101 (37), 95 (47), 83 (29), 71 (31), 69 (33), 57 (56);

HR-MS (EI, 70 eV): ber. für [M⁺]: 238.0994, gef.: 238.099.

EA (%) ber.: C 80.65 H 5.92, gef.: C 80.63 H 5.81;

X-ray: Von der Verbindung **49** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2.). Die röntgenografischen Daten befinden sich im Anhang (A2).

6.5.2. 4,5-Bis(brommethyl)phenanthren^[249] (*rac-*51)

Unter Argon wurden 0.84 g (3.5 mmol) **49** in 20 ml trockenem Benzol suspendiert und mit 0.03 ml Pyridin versetzt. Nach Zugabe von 0.63 ml (6.6 mmol) PBr₃ wurde 2 h auf 50 °C erwärmt. Anschließend wurde das Reaktionsgemisch jeweils einmal mit Wasser und ges. NaHCO₃-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Der braune Rückstand wurde ca. 30 min in *n*-Hexan aufgekocht und nach Abkühlen auf RT kristallisierten 261 mg (0.7 mmol, 20 %) des Produkts **51** in Form leicht brauner Kristalle aus. Aus der Mutterlauge konnten zusätzlich 246 mg (1.1 mmol, 32 %) des Oxepins **50** erhalten werden (siehe Kap. 6.5.3).

Das Produkt 51 entspricht den analytischen Literaturdaten.^[249, 250]

Molmasse (C₁₆H₁₂Br₂): 364,0745;

Schmelzp. (Hexan): 190 °C (Zersetz.) (Lit. ^[249]: 194 °C);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.66$;

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.85 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.1 Hz; 3/6-H), 7.81 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.1 Hz; 1/8-H), 7.62 (t, 2H, ³J = 7.5 Hz; 2/7-H), 5.01 (m, 2H, AA´BB´; 1´/1´´-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 134.50 (s; C-4/5), 133.84 (s; C-8a/10a), 130.43 (s; C-3/6), 128.00 (d; C-1/8), 127.20 (d; C-2/7), 127.00 (s; C-4a/4b), 33.15 (t; C-1⁷/1⁷);

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50B300M, S2): } \tau_{R} = 10.41 \mbox{ min; (EI, 70 eV) m/z (\%): 204 (98) [M-2Br], 203 (100), 189 (5), 176 (3), 174 (3), 162 (3), 150 (5), 138 (2), 126 (2), 113 (2), 101 (23), 88 (5), 75 (3), 63 (3), 51 (2), 39 (2); \end{array}$

X-ray: Von der Verbindung **51** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2). Die röntgenografischen Daten befinden sich im Anhang (A3).

6.5.3. 4,6-Dihydrophenanthro[4,5-cde]oxepin^[249] (50)

Aus der Mutterlauge des Bisbrommethylphenanthrens (**51**) wurden 246 mg (1.1 mmol, 32 %) des Oxepins **50** erhalten (siehe auch Kap. 6.5.2).

Das Produkt **50** entspricht den analytischen Literaturdaten.^[249, 250]

Molmasse (C₁₆H₁₂O): 220.2659; **Schmelzp.** (EtOAc): 76-77 °C (Lit.^[249]: 77-78 °C);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.56$;

FT-IR (ATR): $\tilde{\nu} = 3045$ (m), 2948 (m), 2845 (m), 2360 (w), 1930 (w), 1601 (w), 1454 (m), 1440 (m), 1431 (m), 1377 (w), 1305 (w), 1251 (m), 1234 (w), 1168 (m), 1142 (w), 1115 (m), 1100 (m), 1087 (m), 1058 (w), 1018 (w), 956 (w), 890 (w), 830 (s), 775 (w), 758 (m), 720 (s), 648 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.91-7.88 (m, 2H; arom. H), 7.73 (s, 2H; 9/10-H), 7.61-7.58 (m, 4H; arom. H), 4.86 (s, 4H; 1[']/1^{''}-H);

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50-300M, S2): } \tau_{R} = 10.59 \mbox{ min; (EI, 70 eV) m/z (\%): 220 (98) [M^+], 205 (25), \\ 191 \mbox{(100), 189 (73), 176 (7), 165 (14), 152 (3), 139 (2), 126 (2), 109 (5), 95 (24), 82 \\ \mbox{(5), 71 (2), 63 (5), 51 (2), 39 (2); } \end{array}$

DIP-MS (EI, 70 eV); m/z (%): 220 (98) [M⁺], 205 (25), 191 (90), 189 (100), 176 (7), 165 (14), 152 (3), 139 (2), 126 (2), 109 (5), 94 (85), 82 (5), 71 (2), 63 (5), 51 (2); **HR-MS** (EI, 70 eV): ber. für [M⁺]: 220.0888, gef.: 220.088;

X-ray: Von der Verbindung **50** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2). Die röntgenografischen Daten befinden sich im Anhang (A5).

6.5.4. Phenanthro[4,5-cde]oxepin-4(6H)-on (56)

238 mg (1 mmol) **49** wurden zu einer Suspension von 2 Spateln Kieselgel und 867 mg (4 mmol) PCC in 7 ml DCM gegeben und 1.5 h bei RT gerührt. Anschließend wurde die Reaktionsmischung durch Kieselgel filtriert und mit einer Mischung aus EtOAc und *n*-Hexan (v/v, 1 : 1) nachgespült. Nach Entfernen des Lösungsmittels unter vermindertem Druck wurde im Rohprodukt die Verbindung **56** als Hauptprodukt (~85 %) identifiziert. Aus dem Gemisch konnten farblose Kristalle für die Analyse entnommen werden.

Die analytischen Daten stimmen mit den Literaturwerten überein.^[186, 271]

Molmasse (C₁₆H₁₀O₂): 234.2494;

Schmelzp. (EtOAc / Hex): 172 - 175 °C (Lit.^[186]: 177 - 178 °C);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.35$;

FT-IR (ATR): $\tilde{v} = 3048$ (w, b), 2818 (w), 1700 (s, C=O), 1621 (w), 1603 (w), 1576 (w), 1456 (m), 1431 (w), 1404 (m), 1382 (m), 1340 (w), 1284 (s), 1239 (m), 1229 (m), 1186 (m), 1171 (m), 1138 (m), 1096 (m), 1040 (s), 961 (w), 913 (w), 899 (w), 838 (s), 803 (m), 749 (s), 725 (s), 682 (w), 604 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 8.39 (dd, 1H, ³J = 7.8 Hz, ⁴J = 1.4 Hz; 3-H), 8.14 (dd, 1H, ³J = 7.8 Hz, ⁴J = 1.4 Hz; 1-H), 7.98 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.8 Hz; 8-H), 7.79 (s, 2H, 9/10-H) 7.77 (t, 2H, ³J = 7.8 Hz; 2-H), 7.68 (t, 2H, ³J = 7.5 Hz; 7-H), 7.62 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.8 Hz; 6-H), 5.36 (m, 2H, AA´BB´; 1′/1´´-H);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M},\ S2)\text{: } \tau_{\text{R}} = 11.58 \ \text{min;} \ (\text{EI},\ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 234 \ (44) \ [\text{M}^+],\ 218 \ (5), \\ 205 \ (100),\ 189 \ (44),\ 176 \ (37),\ 163 \ (5),\ 150 \ (8),\ 139 \ (2),\ 126 \ (2),\ 111 \ (2),\ 98 \ (3),\ 88 \\ (7),\ 74 \ (5),\ 63 \ (5),\ 50 \ (2),\ 39 \ (2); \end{array}$

X-ray: Von der Verbindung **56** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2). Die röntgenografischen Daten befinden sich im Anhang (A11).

6.5.5. Allgemeine Versuchsvorschrift zur Darstellung von Carbonsäurechloriden^[258]

In einem Schlenkkolben wird unter Argonatmosphäre bei RT zu einer Lösung der Carbonsäure in absolutem CH_2Cl_2 langsam das Chlorierungsreagenz (1.25 eq; Darstellung siehe Kap. 6.3) zugetropft und 30 min gerührt, woraufhin sich ein weißer Niederschlag von Benzotriazol-Hydrochlorid bildet. Der Niederschlag wird abfiltriert und die Reaktionsmischung 10 min mit MgSO₄ · 7 H₂O gerührt. Nach erneuter Filtration kann das Carbonsäurechlorid entweder direkt in Lösung oder nach Entfernen des Lösemittels weiter umgesetzt werden.

6.5.5.1. 4'-Propylbis(cyclohexan)-4-carbonsäurechlorid (171)

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 4'-Propylbis(cyclohexan)-4-carbonsäure (252 mg, 1 mmol) mit dem Chlorierungsreagenz (0.85 ml, 1.25 mmol) in absolutem CH₂Cl₂ (20 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde die Lösung des Säurechlorid **171** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.3) weiter umgesetzt.

Molmasse (C₁₆H₂₇ClO): 270.838.

6.5.5.2. 4-(4'-Propylcyclohexyl)benzoesäurechlorid (172)

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 4-(4´-Propylcyclohexyl)benzoesäure (542 mg, 2.2 mmol) mit dem Chlorierungsreagenz (1.87 ml, 2.75 mmol) in absolutem CH₂Cl₂ (20 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde die Lösung des Säurechlorid **172** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.4) weiter umgesetzt.

Molmasse (C₁₆H₂₁ClO): 264.7903.

6.5.5.3. 4'-Propylbiphenyl-4-carbonsäurechlorid (173)

173

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 4'-Propylbiphenyl-4-carbonsäure (240 mg, 1 mmol) mit dem Chlorierungsreagenz (0.85 ml, 1.25 mmol) in absolutem CH₂Cl₂ (5 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde das Lösungsmittel unter vermindertem Druck entfernt und das Säurechlorid **173** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.5) weiter umgesetzt.

Molmasse (C₁₆H₁₅ClO): 258.7427.

6.5.5.4. 4'-Octyloxybiphenyl-4-carbonsäurechlorid (174)

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 4'-Octyloxybiphenyl-4-carbonsäure (326 mg, 1 mmol) mit dem Chlorierungsreagenz (0.85 ml, 1.25 mmol) in absolutem CH₂Cl₂ (20 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde das Lösungsmittel unter vermindertem Druck entfernt und das Säurechlorid **174** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.6) weiter umgesetzt.

Molmasse (C₂₁H₂₅ClO₂): 344,875.

6.5.5.5. 3,4,5-Trimethoxybenzoesäurechlorid (175)

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 3,4,5-Trimethoxybenzoesäure (212 mg, 1 mmol) mit dem Chlorierungsreagenz (0.85 ml, 1.25 mmol) in absolutem CH₂Cl₂ (20 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde das Lösungsmittel unter vermindertem Druck entfernt und das Säurechlorid **175** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.7) weiter umgesetzt.

Molmasse $(C_{10}H_{11}CIO_4)$: 230.6449.

6.5.5.6. 3-Methoxy-2-nitrobenzoesäurechlorid (176)

Entsprechend der allgemeinen Versuchvorschrift zur Darstellung von Carbonsäurechloriden wurde 3-Methoxy-2-nitrobenzoesäure (212 mg, 1 mmol) mit dem Chlorierungsreagenz (0.85 ml, 1.25 mmol) in absolutem CH₂Cl₂ (20 ml) umgesetzt. Nach Aufarbeitung und Filtration wurde das Lösungsmittel unter vermindertem Druck entfernt und das Säurechlorid **176** direkt in der Veresterungsreaktion (siehe Kap. 6.5.6.8) weiter umgesetzt.

Molmasse (C₈H₆CINO₄): 215.5905.

6.5.6. Allgemeine Versuchsvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten

In einem Schlenkkolben werden bei 0 °C unter Argonatmosphäre die Substanzen in folgender Reihenfolge in absolutes CH₂Cl₂ gegeben: 1) 2.2 eg Säurechlorid^{ss}, 2) 1 eg Phenanthren-4,5-dividimethanol 49 und 3) 2.2 eg DMAP. Nach Rühren bei RT über Nacht wird ges. NH₄CI-Lösung zugegeben und die Phasen werden getrennt. Die wässrige Phase wird einmal mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen werden jeweils einmal mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen. Nach Trocknen über MgSO₄ und Entfernen des Lösemittels unter Druck Rohprodukt vermindertem wird das erhaltene mittels Flash-Säulenchromatographie aufgereinigt.

6.5.6.1. Phenanthren-4,5-diylbis(methylen)dinonanoat (54a)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden Nonansäurechlorid (0.20 ml, 1.1 mmol), **49** (119 mg, 0.5 mmol) und DMAP (122 mg, 1.1 mmol) in absolutem CH_2Cl_2 (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2.5) konnten 162 mg (0.32 mmol, 63 %) des Produktes **54a** als farblose Kristalle erhalten werden.

$$\label{eq:model} \begin{split} & \text{Molmasse} \; (C_{34}H_{46}O_4) \text{: } 518.7266 \text{;} \\ & \text{Schmelzp.} \; (\text{Hex / EtOAc}) \text{: } 55\text{-} 57 \; \, ^\circ \text{C} \text{;} \\ & \text{DC} \; (\text{EtOAc / Hex} = 1 : 2.5) \text{: } R_{\text{f}} = 0.55 \text{;} \\ & \text{FT-IR} \; (\text{ATR}) \text{: } \; \tilde{\nu} = 3048 \; (\text{w}), \; 2952 \; (\text{s}), \; 2923 \; (\text{s}), \; 2852 \; (\text{s}), \; 1736 \; (\text{s}, \; \text{COOR}) \; , \; 1731 \; (\text{s}, \; \text{COOR}), \; 1597 \; (\text{w}), \; 1462 \; (\text{m}, \; \text{b}), \; 1416 \; (\text{w}), \; 1377 \; (\text{m}), \; 1348 \; (\text{w}), \; 1284 \; (\text{w}), \; 1239 \; (\text{m}, \; \text{b}), \\ & 1158 \; (\text{s}, \; \text{b}), \; 1110 \; (\text{m}), \; 1056 \; (\text{w}), \; 985 \; (\text{w}, \; \text{b}), \; 825 \; (\text{s}), \; 792 \; (\text{w}), \; 757 \; (\text{w}), \; 723 \; \text{cm}^{\text{-1}} \; (\text{s}) \text{;} \end{split}$$

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.82 (m, 2H; 1/8-H), 7.68-7.60 (m, 4H; aus 2D: 7.65, 3/6-H; 7.62, 2/7-H), 7.58 (s, 2H; 9/10-H), 5.37 (dd, AA´BB´, 4H; 4a´/5a´-H), 2.19 (m, 4H; 2´/2´´-H), 1.51 (m, 4H; 3´/3´´-H), 1.21 (m, 20H; 4´-8´/4´´-8´´-H), 0.85 (m, 6H; 9´/9´´-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 173.54 (s; <u>C</u>OOR), 133.82 (s; C-4/5), 133.57 (s; C-8a/10a), 128.19 (s; C-4a/5a), 127.74 (d; C-2/7), 127.50 (d; C-1/8), 126.70 (d; C-3/6), 126.66 (d; C-9/10), 64.22 (t; C-4a[′]/5a[′]), 34.20 (t; C-2[′]/2^{′′}), 31.77-29.07 (4xt; C-3[′]-7[′]), 24.81 (t; C-2[′]/2^{′′}), 22.61 (t; C-8[′]/8^{′′}), 14.07 (q; C-9[′]/9^{′′});

DIP-MS (EI, 70 eV); m/z (%): 518 (2) [M⁺], 219 (22), 205 (14), 202 (100), 191 (15), 189 (14), 141 (20), 123 (1), 97 (3), 81 (6), 71 (28), 57 (36);

HR-MS (EI, 70 eV): ber. für [M⁺]: 518.3396, gef.: 518.339;

EA (%) ber.: C 78.72 H 8.94, gef.: C 78.60 H 8.91;

X-ray: Von der Verbindung **54a** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap.4.1.2.). Die röntgenografischen Daten befinden sich im Anhang (A7).

6.5.6.2. Phenanthren-4,5-diylbis(methylen)diundecanoat (54b)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden Undecansäurechlorid (225 mg, 1.1 mmol), **49** (119 mg, 0.5 mmol) und DMAP (122 mg, 1.1 mmol) in absolutem CH₂Cl₂ (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2.5) konnten 195 mg (0.34 mmol, 68 %) des Produktes **54a** als farblose Kristalle mit einem Schmelzpunkt von 66-69 °C erhalten werden.

Molmasse $(C_{38}H_{54}O_4)$: 574.833; Schmelzp. (Hex / EtOAc): 66-69 °C; DC (EtOAc / Hex = 1 : 2.5): $R_f = 0.69$;
FT-IR (ATR): $\tilde{\nu} = 3048$ (w), 2952 (s), 2923 (s), 2852 (s), 1736 (s, COOR), 1731 (s, COOR), 1597 (w), 1462 (m, b), 1416 (w), 1377 (m), 1348 (w), 1284 (w), 1239 (m, b), 1158 (s, b), 1110 (m), 1056 (w), 985 (w, b), 825 (s), 792 (w), 757 (w), 723 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.82 (m, 2H; 1/8-H), 7.68-7.61 (m, 4H; aus 2D-Exp.: 7.67, 3/6-H; 7.64, 2/7-H), 7.58 (s, 2H; 9/10-H), 5.36 (dd, AA´BB´, 4H; 4a´/5a´-H), 2.19 (m, 4H; 2´/2´´-H), 1.51 (m, 4H; 3´/3´´-H), 1.21 (m, 28H; 4´-10´/4´´-10´′-H), 0.85 (t, 6H; 11´/11´´-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 173.54 (s; <u>C</u>OOR), 133.81 (s; C-4/5), 133.57 (s; C-8a/10a), 128.14 (s; C-4a/5a), 127.74 (d; C-2/7), 127.49 (d; C-1/8), 126.69 (d; C-3/6), 126.65 (d; C-9/10), 64.22 (t; C-4a[′]/5a[′]), 34.19 (t; C-2[′]/2[′]), 31.87 (t; C-9[′]/9[′]), 29.52-29.06 (5xt; C-3[′]-8[′]/3[′]-8[′]), 24.81 (t; C-3[′]/3[′]), 22.66 (t; C-10[′]/10[′]), 14.07 (q; C-11[′]/11[′]);

DIP-MS (EI, 70 eV); m/z (%): 574 (1) [M⁺], 281 (1), 220 (9), 219 (9), 203 (25), 202 (100), 191 (8), 189 (7), 169 (6), 129 (1), 109 (2), 90 (4), 85 (6), 71 (6), 57 (14);

HR-MS (EI, 70 eV): ber. für [M⁺]: 574.4022, gef.: 574.402;

EA (%) ber.: C 79.40 H 9.47, gef.: C 79.00 H 9.46.

6.5.6.3. 1⁴,11⁴-Di-*n*-propyl-4,8-dioxa-6(4,5)-phenanthrena-1,2,10,11(1,4)tetracyclohexanaundecaphan-3,9-dion (54c)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden die Lösung des Säurechlorid **171** (1.0 mmol; siehe Kap. 6.5.5.1) mit dem Diol **49** (107 mg, 0.45 mmol) und DMAP (111 mg, 1.0 mmol) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 157 mg (0.22 mmol, 49 %) des Produktes **54a** als farblose Kristalle mit einem Schmelzpunkt von 175-181 °C erhalten werden.

Molmasse (C₄₈H₆₆O₄): 707.0352; **Schmelzp**. (Hex / EtOAc): 175-181 °C; **FT-IR** (ATR): $\tilde{\nu} = 3046$ (w), 2915 (s), 2849 (s), 1734 (s, COOR) , 1730 (s, COOR), 1596 (w), 1448 (m, b), 1376 (w), 1319 (w), 1255 (m), 1240 (m), 1225 (m), 1199 (w), 1170 (s, b), 1144 (s), 1114 (m), 1085 (m, b), 1055 (m), 1017 (m, b), 995 (m, b), 897 (w), 824 (s), 798 (m), 756 (w), 723 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.81 (m, 2H; 1/8-H), 7.67-7.57 (m, 6H; 2/3/6/7/9/10-H), 5.35 (dd, AA´BB´, 4H; 4a´/5a´-H), 2.09 (m, 2H; 2¹/10¹-H), 1.85 (m, 4H; aliphat. H), 1.76-1.58 (m, 12H; aliphat. H), 1.35-1.19 (m, 8H; aliphat. H), 1.16-1.03 (m, 6H; aliphat. H), 1.03-0.75 (m, 22H; aliphat. H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 175.81$ (s; C-3/9), 134.08 (s; C-6⁴/6⁵), 133.53 (s; C-6^{8a}/6^{10a}), 128.16 (s; C-6^{4a}/6^{5a}), 127.44 (d; C-6²/6⁷), 127.37 (d; C-6¹/6⁸), 126.69 (d; C-6³/6⁶), 126.62 (d; C-6⁹/6¹⁰), 63.99 (t; C-5/7), 43.45 (d, C-2¹/10¹), 43.18 (d, C-1¹/11¹), 42.42 (d, C-2⁴/10⁴), 39.75 (t, C-1⁷/1⁷), 37.54 (d; C-1⁴/11⁴), 33.49 (t; C-1³/1⁵/11³/11⁵), 29.93-29.07 (3xt; C-1²/1⁶/2^{2,3,5,6}/10^{2,3,5,6}), 24.81 (t; C-1⁷/1⁷), 20.06 (t; C-2⁷/2⁷), 14.39 (q; C-3⁷/3⁷);

DIP-MS (EI, 70 eV); m/z (%): 707 (1) [M⁺], 456 (2), 440 (2), 393 (1), 253 (1), 235 (3), 210 (13), 209 (16), 203 (12), 202 (100), 191 (7), 189 (6), 151 (3), 137 (4), 125 (8), 110 (12), 109 (12), 97 (10), 95 (12), 83 (28), 69 (34), 55 (21);

HR-MS (EI, 70 eV): ber. für [M⁺]: 706.4961, gef.: 706.495.

X-ray: Von der Verbindung **54c** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap.4.1.2.). Die röntgenografischen Daten befinden sich im Anhang (A8).

6.5.6.4. 1^4 , 11^4 -Di-n-propyl-4, 8-dioxa-6(4,5)-phenanthrena-2, 10(1,4)-dibenzena-1, 11(1,4)-dicyclohexanaundecaphan-3, 9-dion (54d)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden die Lösung des Säurechlorids **172** (2.1 mmol; siehe Kap. 6.5.5.2) mit dem Diol **49** (238 mg, 1 mmol) und DMAP (233 mg, 2.1 mmol) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 10) konnten 438 mg (0.63 mmol, 63 %) des Produktes **54d** als farblose Kristalle erhalten werden.

Molmasse (C₄₈H₅₄O₄): 694.940;

Schmelzp. (CHCl₃): 157-158.5 °C (Hochtemperaturmodifikation);

DC (EtOAc / Cx = 1 : 6): $R_f = 0.53$;

FT-IR (ATR): $\tilde{v} = 3040$ (w), 2946 (m), 2917 (s), 2843 (m), 1719 (s, COOR), 1714 (s, COOR), 1608 (m), 1460 (w), 1445 (m), 1416 (m), 1370 (m), 1310 (w), 1267 (s), 1179 (m), 1099 (s), 1017 (m), 965 (w, b), 850 (w), 825 (m), 768 (w, b), 724 (w), 705 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.86-7.78 (m, 4H; 6¹/6³/6⁶/6⁸-H), 7.80 (d, 4H, ³J = 8.3 Hz; 2²/2⁶/10²/10⁶-H), 7.64 (t, 2H, ³J = 7.6 Hz; 6²/6⁷-H), 7.61 (s, 2H; 6⁹/6¹⁰-H), 7.16 (d, 4H, ³J = 8.3 Hz; 2³/2⁵/10³/10⁵-H), 5.73 (dd, 4H, AA´BB´; 5/7-H), 2.46 (m, 2H; 1¹/11¹-H), 1.86-1.82 (m, 8H; aliphat. H), 1.47-1.15 (m, 14H; aliphat. H), 1.07-0.96 (m, 4H; aliphat. H), 0.89 (t, 6H; 3′/3′′-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 166.34 (s; C-3/9), 153.30 (s; C-2⁴/10⁴), 134.00 (s, 2C; arom. C), 133.64 (s, 2C; arom. C), 130.30 (d, 2C; arom. C), 129.73 (d, 4C; arom. C), 128.25 (s, 2C; arom. C), 127.77 (d, 2C; arom. C), 127.50 (d, 2C; arom. C), 127.45 (s, 2C; arom. C), 127.00 (d, 2C; arom. C), 126.72 (d, 4C; arom. C), 64.78 (t; C-5/7), 44.71 (d, C-1¹/11¹), 39.63 (t; C-1[′]/1[′]), 36.91 (d; C-1⁴/11⁴), 33.99 (t, C-1²/1⁶/11²/11⁶), 33.37 (t; C-1³/1⁵/11³/11⁵), 19.98 (t; C-2[′]/2[′]), 14.38 (q; C-3[′]/3[′]);

DIP-MS (EI, 70 eV); m/z (%): 695 (0.01) [M⁺], 430 (0.06), 246 (1), 230 (6), 229 (33), 203 (20), 202 (100), 191 (4), 189 (2), 148 (2), 131 (5), 105 (4), 91 (5), 69 (2), 55 (4).

6.5.6.5. 1⁴,11⁴-Di-n-propyl-4,8-dioxa-6(4,5)-phenanthrena-1,2,10,11(1,4)tetrabenzenaundecaphan-3,9-dion (54e)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden das Säurechlorids **173** (1.0 mmol; siehe Kap. 6.5.5.3) mit dem Diol **49** (107 mg, 0.45 mmol) und DMAP (111 mg, 1.0 mmol) in absolutem CH_2Cl_2 (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 130 mg (0.23 mmol, 50 %) des Produktes **54e** als farblose Kristalle mit einem Schmelzpunkt von 202.5 °C erhalten werden.

Molmasse $(C_{48}H_{42}O_4)$: 682.8447;

Schmelzp. (Hex / EtOAc): 202.5 ℃ (Hochtemperaturmodifikation);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.65$;

FT-IR (ATR): $\tilde{v} = 3040$ (w), 2955 (m), 2926 (m), 2860 (m), 1714 (s, COOR), 1710 (s, COOR), 1606 (m), 1486 (w), 1440 (w, b), 1416 (w), 1396 (W), 1373 (m, b), 1266 (s), 1186 (m), 1177 (m), 1097(s), 1020 (w), 1004 (w), 960 (w, b), 860 (w), 825 (m), 768 (m), 723 (w), 700 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.94 (d, 4H, ³J = 8.3 Hz; $2^{2}/2^{6}/10^{2}/10^{6}$ -H), 7.87 (dd, 2H, ³J = 7.6 Hz, ⁴J = 0.8 Hz; $6^{1}/6^{8}$ -H), 7.84 (dd, 2H, ³J = 7.6 Hz, ⁴J = 0.8 Hz; $6^{3}/6^{6}$ -H), 7.64 (s, 2H; $6^{9}/6^{10}$ -H), 7.68 (t, 2H, ³J = 7.6 Hz; $6^{2}/6^{7}$ -H), 7.55 (d, 4H, ³J = 8.3 Hz; $2^{3}/2^{5}/10^{3}/10^{5}$ -H), 7.49 (d, 4H, ³J = 8.0 Hz; $1^{2}/1^{6}/11^{2}/11^{6}$ -H), 7.24 (d, 4H, ³J = 8.0 Hz; $1^{3}/1^{5}/11^{3}/11^{5}$ -H), 5.78 (dd, 4H, AA´BB´; 5/7-H), 2.62 (t, 4H; $1^{7}/1^{7}$ -H), 1.66 (dt, 4H; $2^{7}/2^{7}$ -H), 0.96 (t, 6H; $3^{7}/3^{7}$);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 166.24$ (s; C-3/9), 145.58 (s; C-2⁴/10⁴), 142.85 (s; C-1⁴/11⁴), 137.29 (s; C-1¹/11¹), 133.85 (s; C-6^{4a}/6^{4b}), 133.71 (s; C-6^{8a}/6^{10a}), 130.13 (d; C-2²/2⁶/10²/10⁶), 129.00 (d; C-1³/1⁵/11³/11⁵), 128.26 (s; C-2¹/6⁴/6⁵/10¹), 127.86 (d; C-6³/6⁶), 127.64 (d; C-6⁹/6¹⁰), 127.61 (d; C-6¹/6⁸), 126.82 (d; C-1²/1⁶/11²/11⁶), 126.77 (d; C-6²/6⁷), 126.66 (d; C-2³/2⁵/10³/10⁵), 65.05 (t; C-5/7), 37.68 (t; C-1⁷/1⁷), 24.49 (t; C-2⁷/2⁷), 13.84 (q; C-3⁷/3⁷);

DIP-MS (EI, 70 eV); m/z (%): 682 (1) [M⁺], 653 (1), 463 (1), 462 (2), 428 (1), 240 (6), 224 (21), 223 (84), 220 (16), 211 (19), 203 (16), 202 (100), 191 (12), 189 (11), 167 (11), 166 (25), 165 (28), 152 (23), 115 (3), 97 (2), 82 (2) 55 (1);

MS (ESI, 70 eV; MeOH, CH₂Cl₂): 705.2 [M+Na];

X-ray: Von der Verbindung **54e** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap.4.1.2.). Aufgrund starker Fehlordnungen sind die röntgenografischen Daten nur eingeschränkt aussagekräftig.

6.5.6.6. 1⁴,11⁴-Dioctyloxy-4,8-dioxa-6(4,5)-phenanthrena-1,2,10,11(1,4)tetrabenzenaundecaphan-3,9-dion (54f)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden das Säurechlorids **174** (1.0 mmol; siehe Kap. 6.5.5.4) mit dem Diol **49** (107 mg, 0.45 mmol) und DMAP (111 mg, 1.0 mmol) in absolutem CH_2Cl_2 (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 142 mg (0.17 mmol, 37 %) des Produktes **54f** als farblose Kristalle mit einem Schmelzpunkt von 143.5-147 °C erhalten werden.

Molmasse (C₅₈H₆₂O₆): 855.1093;

Schmelzp. (Hex / EtOAc): 143.5-147 °C;

DC (EtOAc / Hex = 1 : 2): $R_f = 0.59$;

FT-IR (ATR): $\tilde{v} = 3042$ (w), 2922 (s), 2852 (s), 1722 (s, COOR), 1712 (s, COOR), 1603 (s), 1580 (w), 1561 (w), 1523 (m), 1496 (s), 1469 (m), 1400 (w), 1370 (m), 1309 (m), 1265 (s, b), 1250 (s, b), 1184 (s), 1097 (s), 1030 (m), 1015 (m), 999 (m), 861 (w), 825 (s), 810 (m, b), 770 (s), 722 (s), 699 cm⁻¹ (m);

¹**H-NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.91 (d, 4H, ³J = 8,3 Hz; $2^{3}/2^{5}/10^{3}/10^{5}$ -H), 7.87 (d, 2H, ³J = 7,5 Hz; $6^{1}/6^{8}$ -H), 7.82 (d, 2H, ³J = 7,5 Hz; $6^{3}/6^{6}$ -H), 7.67 (t, 2H, ³J = 7,5 Hz; $6^{2}/6^{7}$ -H), 7.63 (s, 2H; $6^{9}/6^{10}$ -H), 7.51 (d, 4H, ³J = 8,3 Hz; $2^{2}/2^{6}/10^{2}/10^{6}$ -H), 7.49 (d,

4H, 3J = 8,7 Hz; $1^{2}/1^{6}/11^{2}/11^{6}$ -H), 6.94 (d, 4H, $^{3}J = 8,7$ Hz; $1^{3}/1^{5}/11^{3}/11^{5}$ -H), 5.76 (AA´BB´, 4H; 5/7-H), 3.97 (t, 4H; $1^{7}/1^{-1}$ -H), 1.78 ("q", 4H; $2^{7}/2^{-1}$ -H), 1.44 ("q", 4H; $3^{7}/3^{-1}$ -H), 1.24-1.38 (m, 16H; $4^{7}/5^{7}/6^{7}/7^{-1}$ -H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 166.28$ (s; C-3/9), 159.37 (s; C-1⁴/11⁴), 145.26 (s; C-2¹/10¹), 133.88 (s; C-6⁴/6⁵), 133.69 (s; C-6^{8a}/6^{10a}), 130.16 (d; C-2³/2⁵/10³/10⁵), 128.26 (d; C-1²/1⁶/11²/11⁶), 128.26 (s; C-6^{4a}/6^{4b}), 127.85 (d; C-6³/6⁶), 127.60 (d; C-6¹/6⁸), 126.76 (d; C-6²/6⁷), 126.28 (d; C-2²/2⁶/10²/10⁶), 126.28 (s; C-1¹/11¹), 114.86 (d; C-1³/1⁵/11³/11⁵), 68.11 (t; C-1⁷/1[°]), 65.00 (t; C-5/7), 31.80 (t; C-6⁷/6[°]), 29.35 (t; C-2⁷/2[°]), 29.23 (t; C-4⁷/4[°]/5⁷/5[°]), 26.03 (t; C-3⁷/3[°]), 22.65 (t; C-7⁷/7[°]), 14.15 (t; C-8⁷/8[°]);

HR-MS (ESI, 70 eV): ber. für [M+Na]: 878.4444 , gef.: 878.44;

X-ray: Von der Verbindung **54f** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2). Die röntgenografischen Daten befinden sich im Anhang (A9).

6.5.6.7. 1³,1⁴,1⁵,9³,9⁴,9⁵-Hexamethoxy-3,7-dioxa-5(4,5)-phenanthrena-1,9(1)dibenzenanonaphan-3,9-dion (54g)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden das Säurechlorids **175** (1.0 mmol; siehe Kap. 6.5.5.5), das Diol **49** (107 mg, 0.45 mmol) und DMAP (111 mg, 1.0 mmol) in absolutem CH_2Cl_2 (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / DCM = 1 : 10) konnten 248 mg (0.40 mmol, 40 %) des Produktes **54g** als farblose Kristalle mit einem Schmelzpunkt von 206-209 °C erhalten werden.

Molmasse (C₃₆H₃₄O₁₀): 626.6492; **Schmelzp**. (DCM / EtOAc): 206-209 °C; **DC** (EtOAc / DCM= 1 : 10): $R_f = 0.60$;

FT-IR (ATR): $\tilde{v} = 3003$ (w), 2935 (m), 2832 (w), 1712 (s, COOR), 1587 (s), 1503 (s), 1462 (m), 1457 (m), 1414 (s), 1371 (m), 1332 (s), 1217 (s, b), 1174 (m), 1034 (w), 1003 (m), 966 (m), 861 (w), 827 (w), 759 (w), 724 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.86 (d, 2H, ³J = 7.3 Hz; 6¹/6⁸-H), 7.77 (d, 2H, ³J = 7.3 Hz; 6³/6⁶-H), 7.65 (t, 2H, ³J = 7.3 Hz; 6²/6⁷-H), 7.63 (s, 2H; 6⁹/6¹⁰-H), 7.14 (s, 4H; 1²/1⁶/9²/9⁶-H), 5.78 (dd, 4H, AA´BB´; 4/6-H), 3.85 (s, 6H; 1⁴/9⁴-OC<u>H</u>₃), 3.81 (s, 12H; 1³/1⁵/9³/9⁵-OC<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 166.04$ (s; C-2/8), 152.75 (s; C-1³/1⁵/9³/9⁵), 142.21 (s; C-1⁴/9⁴), 133.76 (s; C-5⁴/5⁵/5^{8a}/5^{10a}), 128.17 (s; C-5^{4a}/5^{4b}), 127.84 (d; C-5³/5⁶), 127.68 (d; C-5¹/5⁸), 126.76 (d; C-5²/5⁷), 124.74 (s; C-1¹/9¹), 106.86 (d; C-1²/1⁶/9²/9⁶), 65.32 (t; C-4/6), 60.83 (q; 1⁴/9⁴-O<u>C</u>H₃), 56.18 (q; 1³/1⁵/9³/9⁵-O<u>C</u>H₃);

DIP-MS (EI, 70 eV); m/z (%): 626 (2) [M⁺], 406 (1), 375 (1), 347 (1), 314 (1), 313 (2), 220 (3), 219 (8), 212 (9), 203 (25), 202 (100), 195 (85), 189 (6), 167 (4), 152 (10), 137 (8), 122 (6), 109 (6), 96 (3), 81 (7), 76 (7), 66 (4), 53 (3);

HR-MS (EI, 70 eV): ber. für [M⁺]: 626.2152, gef.: 626.215.

6.5.6.8. 1³,9³-Dimethoxy-1²,9²-dinitro-3,7-dioxa-5(4,5)-phenanthrena-1,9(1)dibenzenanonaphan-3,9-dion (54h)

54h

Entsprechend der allgemeinen Versuchvorschrift zur Synthese von Phenanthren-4,5diylbis(methylen)biscarboxylaten wurden das Säurechlorids **176** (1.0 mmol; siehe Kap. 6.5.5.6), das Diol **49** (107 mg, 0.45 mmol) und DMAP (111 mg, 1.0 mmol) in absolutem CH_2Cl_2 (5 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / DCM= 1 : 15) konnten aus den ersten Fraktionen nur einzelne Kristalle des Produktes **54h** für eine Einkristallröntgenstrukturanalyse erhalten werden.

Molmasse $(C_{32}H_{24}N_2O_{10})$: 596.5404;

DC (EtOAc / DCM= 1 : 15): $R_f = 0.74$;

X-ray: Von der Verbindung **54h** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.2). Die röntgenografischen Daten befinden sich im Anhang (A10).

6.6. Synthese von halogensubstituierten Biphenyl- und Dihydrophenanthrenderivaten

6.6.1. 3-Bromanthranilsäure^[273] (57b)

Zu einer Suspension von 418 mg (1.85 mmol) 7-Bromisatin **67** in 7 ml 5 %iger Natronlauge wurden 6 ml 35 %ige H_2O_2 tropfenweise unter Wasserkühlung zugegeben (Starke Gasentwicklung!). Nach Beendigung der Zugabe wurde 30 min auf 50 °C erwärmt und nach Abkühlen auf RT durch Glaswolle filtriert. Das Filtrat wurde mit 1N HCl auf pH = 3.5 - 4 gebracht und nach 2 h stehen der Niederschlag abfiltriert. Nach Trocknen im Hochvakuum wurde das Produkt **57b** als kristalliner Feststoff in einer Ausbeute von 330 mg (1.6 mmol, 83 %; Lit.^[273]: 98%) erhalten.

Molmasse (C₁₄H₈Br₂O₄): 400.0189;

Schmelzp. (EtOH): 166 ℃ (Lit.^[274]: 168 - 170 ℃);

FT-IR (ATR): $\tilde{\nu} = 3469$ (w), 3424 (w), 3355 (m), 3325 (w), 3100-2750 (m, b), 2655 (w), 1664 (s), 1605 (m), 1577 (m), 1541 (m), 1447 (m), 1415 (m), 1308 (m), 1262 (w), 1244 (s), 1157 (w), 1057 (w), 890 (w), 852 (w), 746 (s), 692 cm⁻¹ (m);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.92 ("d", 1H; arom. H), 7.62 ("d", 1H; arom. H), 6.55 (t, 1H; arom. H);

X-ray: Von der Verbindung **57b** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.3). Die röntgenografischen Daten befinden sich im Anhang (A12).

6.6.2. 2,2'-Dichlor-6,6'-biphensäure (rac-58a)

rac-58a

2.06 g (12 mmol) 3-Chloranthranilsäure **57a** wurden in Natronlauge (0.6 g NaOH in 32 ml Wasser) gelöst und mit 0.84 g (> 12 mmol) NaNO₂ versetzt. Nach Kühlen auf unter 10 °C wurde 15 ml einer 5 °C kalten HCI-Lösung (1 : 2 konz. HCI / Wasser; v / v) zugegeben, 30 min gerührt und erneut mit 160 mg NaNO₂ versetzt.

Nun wurde zu einer Lösung von 5 g CuSO₄·H₂O in 20 ml Wasser und 9 ml 32 %iger Ammoniaklösung eine frisch bereitete NH₂OH-Lösung (835 mg NH₂OH·HCl auf 10 ml Wasser und 4 ml 6M Natronlauge) zugegeben. Zu diesem Gemisch wurde die Diazoniumsalz-Lösung langsam zugetropft. Nachdem keine Gasentwicklung mehr statt fand, wurde 1 h auf 80-90 °C erhitzt. Bei Raumtemperatur wurde erst eine Lösung von 4.8 g FeCl₃ in 7 ml Wasser und danach 24 ml konz. HCl zugegeben. Nach Kühlen im Eisbad wurde der erhaltene Niederschlag abfiltriert, in 2M NaOH aufgenommen und mit EtOAc gewaschen. Beim Ansäuern auf pH = 1 mit konz. HCl fiel das Produkt **58a** als hellbeiger Feststoff aus und konnte in einer Ausbeute von 1.63 g (5.2 mmol, 87 %; Lit.: 77%^[199] bzw. 99 % Rohausbeute^[272]) isoliert.

Das Produkt 58a entspricht den analytischen Literaturdaten.^[199]

Molmasse (C₁₄H₈Cl₂O₄): 311.1169;

Schmelzp. (EtOAc): 288.5-292.0 °C (Lit.^[199]: 292 °C);

¹**H-NMR** (250 MHz, DMSO-D6, 25 °C): δ = 12.74 (s, 2H; 6/6⁻-COO<u>H</u>), 7.93 (dd, 2H; ³J = 7.9 Hz, ³J = 1.0 Hz; 5/5⁻-H), 7.74 (dd, 2H; ³J = 7.9 Hz, ³J = 1.0 Hz; 3/3⁻-H), 7.50 (t, 2H; ³J = 7.9 Hz; 4/4⁻-H).

6.6.3. 2,2'-Dibrom-6,6'-biphensäure (rac-58b)

rac-58b

108 mg (0.5 mmol) 3-Bromanthranilsäure 57b wurden in Natronlauge (25 mg NaOH in 1.3 ml Wasser) gelöst und mit 35 mg (>12 mmol) NaNO₂ versetzt. Nach Kühlen auf unter 10 °C wurden 0.75 ml einer 5 °C kalten HCI-Lösung (1 : 2 konz. HCI / Wasser; v / v) zugegeben, 30 min gerührt und erneut mit 40 mg NaNO₂ versetzt. Nun wurde zu einer Lösung von 250 mg CuSO₄·H₂O in 1 ml Wasser und 0.5 ml 32 %iger Ammoniaklösung eine frisch bereitete NH₂OH-Lösung (35 mg NH₂OH·HCl auf 0.5 ml Wasser und 0.2 ml 6M Natronlauge) zugegeben. Zu diesem Gemisch wurde die Diazoniumsalz-Lösung langsam zugetropft. Nach Beendigung der Gasentwicklung wurde 1 h auf 80-90 °C erhitzt. Bei Raumtemperatur wurde eine Lösung von 0.2 g FeCl₃ in 0.3 ml Wasser und danach 1 ml konz. HCl zugegeben. Nach Kühlen im Eisbad wurde der erhaltene Niederschlag abfiltriert, in 2M NaOH aufgenommen und mit EtOAc gewaschen. Nach Ansäuern auf pH = 1 mit konz. HCl wurde das Produkt 58b als hellbeiger Feststoff in einer Ausbeute von 44 mg (0.11 mmol, 22 %) erhalten werden. Aufgrund der schlechten Löslichkeit des Produktes in den gängigen Lösemitteln konnte keine Standardanalytik durchgeführt werden.

Molmasse (C₁₄H₈Br₂O₄): 400.0189;

FT-IR (ATR): $\tilde{\nu} = 3062$ (m, b), 1690 (s; C=O), 1605 (m), 1575 (m), 1542 (w), 1448 (m), 1400 (s), 1282 (s), 1242 (s, b), 1203 (m), 1106 (w), 920 (w, b), 815 (w), 754 (m), 693 cm-1 (m);

MS (ESI, MeOH, 70 eV) m/z (%): 423.01 [M+Na];

X-ray: Von der Verbindung **58b** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.3). Die röntgenografischen Daten befinden sich im Anhang (A13).

6.6.4. 2,2'-Dichlor-6,6'-bishydroxymethylbiphenyl^[199, 356] (*rac*-59a)

Das Produkt *rac*-59a konnte durch LAH-Reduktion der Dichlorbiphensäure *rac*- 58a unter Literaturbedingungen^[356] in einer Ausbeute von 78 % (Lit.^[199]: 92 %) erhalten werden.

Das Produkt **59a** entspricht den analytischen Literaturdaten.^[199, 356]

Molmasse (C₁₄H₁₂Cl₂O₂): 283.1499;

Schmelzp. (EtOH): 116 ℃ (Lit.^[356]: 119-120 ℃);

DC (Hex / EtOAc = 1 : 1): $R_f = 0.29$;

FT-IR (ATR): $\tilde{v} = 3304$ (s, b), 2945 (m), 2885 (m), 1941 (w), 1875 (w), 1590 (w), 1565 (m), 1444 (s), 1425 (s), 1370 (w), 1235 (w), 1206 (w), 1171 (s), 1141 (s), 1094 (w), 1077 (w), 1049 (m), 1013 (s), 982 (w), 870 (w), 849 (m), 790 (s), 778 (s), 749 (s), 692 (s), 644 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.48-7.35 (m, 6H; arom. H), 4.29 (m, 4H, AA´BB´; 1´´/1´´´-H), 2.53 (s, 2H; 1´´/1´´´-O<u>H</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 141.05 (s; C_{Ar}), 135.39 (s; C_{Ar}), 133.76 (s; C_{Ar}), 129.81 (d; C_{Ar}), 129.08 (d; C_{Ar}), 128.02 (d; C_{Ar}), 63.13 (t; C-1⁷/1⁷⁷);

X-ray: Von der Verbindung **59a** konnte eine Röntgenstrukturanalyse durchgeführt werden. Die röntgenografischen Daten befinden sich im Anhang (A14).

Das Produkt *rac*-51b^[95] wurde entsprechend der Chlorverbindung **59a** (Kap. 6.6.4) durch LAH-Reduktion der Dibrombiphensäure **58b** unter Literaturbedingungen^[356] in quantitativer Rohausbeute erhalten. Jedoch zersetzte sich das Produkt unter den Bedingungen der Säulenchromatographischen Aufreinigung vollständig.

Die analytischen Daten wurden aus dem Rohprodukt gewonnen.

Molmasse (C₁₄H₁₂Br₂O₂): 372.0519;

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.64 (d, 2H; arom. H), 7.56 (d, 2H; arom. H), 7.30 (t, 2H; arom. H), 4.29 (m, 4H, AA´BB´; 1´´/1´´´-H), 2.30 (s, 2H; 1´´/1´´´-O<u>H</u>).

6.6.6. (6,6'-Dichlorbiphenyl-2,2'-diyl)bis(methylen)bis(oxy)bis(*tert*-butyldimethylsilan) (*rac*-64)

Unter Argon wurden 283 mg (1 mmol) *rac*-**59a** in 3 ml trockenem DMF gelöst, mit 150 mg Imidazol (2.2 mmol) und 332 mg (2.2 mmol) TBSCI versetzt und 40 h bei RT gerührt. Die Reaktionsmischung wurde in 20 ml Wasser gegeben und fünfmal mit

MTBE extrahiert. Die vereinigten organischen Phase wurden mit ges. NaCI-Lösung gewaschen und über MgSO4 getrocknet. Nach Entfernen des Lösemittels wurden 490 mg (0.96 mmol; 96 %) Produkt *rac*-**64** erhalten. Das Rohprodukt wurde direkt weiter umgesetzt.

Molmasse (C₂₆H₄₀Cl₂O₂Si₂): 511.6719;

DC (EtOAc / Hex = 1 : 1): $R_f = 0.67$;

FT-IR (ATR): $\tilde{v} = 2950$ (s), 2928 (s), 2883 (m), 2855 (s), 1590 (w), 1566 (w), 1470 (m), 1461 (m), 1444 (m), 1426 (w), 1386 (w), 1360 (w), 1255 (s), 1170 (m), 1143 (s), 1102 (s), 1004 (w), 937 (w), 864 (s), 835 (s), 814 (w), 776 (s), 736 (w), 690 (w), 670 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.57-7.53 (m, 2H; arom. H), 7.40-7.36 (m, 4H; arom. H), 4.25 (m, 4H, AA'BB'; 1''/1'''-H), 0.86 (s, 18H; OSiC(C<u>H</u>₃)₃), 0.05 (d, 12H; OSi(C<u>H</u>₃)₂);

GC-MS (50-300M; S2): $\tau_R = 11.21$ min; (EI, 70 eV) m/z (%): 497 (1) [M⁺-CH₃], 495 (1), 455 (21), 453 (27) [M⁺-^{*t*}Bu], 419 (1), 379 (1), 323 (3), 277 (1), 249 (8), 227 (4), 213 (13), 199 (22), 178 (17), 167 (11), 147 (100), 132 (7), 119 (2), 95 (3), 73 (15), 57 (7), 41 (4).

6.6.7. 2,2'-Dichlor-6,6'-bis(brommethyl)biphenyl (*rac*-60b)

rac-60b

Methode **A**:^[199] 570 mg (2 mmol) **59b** wurden 2 h in 48 %iger HBr zum Rückfluß gekocht. Nach Abkühlen auf RT setzte sich ein dunkelbraunes Öl ab, von dem nach Kühlen im Eisbad die überstehende Lösung abdekantiert wurde. Der Rückstand wurde in DCM aufgenommen und die Lösung nach Neutralisieren mit NaHCO₃ zweimal mit DCM extrahiert. Die vereinigten organischen Phasen wurden mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet.

Nach Entfernen des Lösungsmittels unter vermindertem Druck wurden 810 mg (1.98 mmol, 99 %) des Produkts **60b** mit einem Schmelzpunkt von 98-99 °C erhalten.

Methode **B**: Unter Argon wurden erst 196 mg (1.1 mmol) NBS zu einer Lösung von 136 mg (0.54 mmol) **63** in CCl₄ gegeben. Die Mischung wurde zum Rückfluß und unter Bestrahlung mit einer Quecksilberdampflampe 3.5 h erhitzt und alle 60 min 0.1 ml einer Benzoylperoxid-Lösung (0.15 M, in CCl₄) zugegeben. Nach Abkühlen auf RT wurde filtriert und das Filtrat unter vermindertem Druck eingeengt. Im erhaltenen Rohprodukt waren laut GC/MS-Daten 75 % des Produktes **60b** enthalten.

Das Produkt 60b entspricht den analytischen Literaturdaten.^[199]

Molmasse (C₁₄H₁₀Br₂Cl₂): 408.9432;

Schmelzp. (DCM): 98-99 ℃ (Lit.^[199]: 99.5-100 ℃);

DC (EtOAc / Hex = 1 : 1): $R_f = 0.68$;

FT-IR (ATR): $\tilde{\nu} = 3058$ (w), 2971 (w), 1942 (w), 1875 (w), 1696 (w), 1587 (w), 1562 (m), 1444 (s), 1425 (s), 1261 (w), 1237 (w), 1212 (s), 1178 (s), 1151 (m), 1112 (m), 1091 (w), 1080 (w), 1006 (w), 973 (w), 894 (m), 859 (w), 791 (s), 743 (s), 688 (s), 631 cm⁻¹ (s);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.56-7.37 (m, 6H; arom. H), 4.18 (m, 4H, AA´BB´; 1´´/1´´´-H);

(250 MHz, DMSO-D6, 25 °C): δ = 7.54 (dd, 2H, ³J = 7.8 Hz, ⁴J = 1.5 Hz; arom. H), 7.48 (dd, 2H, ³J = 7.8 Hz, ⁴J = 1.5 Hz; arom. H), 7.40 (t, 2H, ³J = 7.8 Hz; 4/4⁻-H), 4.17 ("dd", 4H, AA´BB´; 1´'/1´''-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 138.19 (s; C_{Ar}), 134.94 (s; C_{Ar}), 134.18 (s; C_{Ar}), 130.20 (d; C_{Ar}), 129.65 (d; C_{Ar}), 129.31 (d; C_{Ar}), 30.)" (t; C-1^{-//}1^{-//});

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 10.99 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 408 \ (3) \ [\text{M}^+], \ 329 \ (58) \\ [\text{M-Br}], \ 249 \ (71) \ [\text{M-2Br}], \ 247 \ (100), \ 234 \ (3), \ 212 \ (53), \ 199 \ (34), \ 178 \ (66), \ 163 \ (8), \\ 151 \ (15), \ 139 \ (3), \ 126 \ (5), \ 116 \ (2), \ 106 \ (25), \ 88 \ (44), \ 75 \ (14), \ 63 \ (7), \ 51 \ (3), \ 39 \ (3); \end{array}$

X-ray: Von der Verbindung **60b** konnte eine Röntgenstrukturanalyse durchgeführt werden. Die röntgenografischen Daten befinden sich im Anhang (A15).

6.6.8. 4,5-Dichlordihydrophenanthren^[199, 200] (*rac*-61a)

Methode **A**:^[199] Unter Argon wurden zu einer Lösung von 0.54 ml 1.85M Phenyllithium in Bu₂O 205 mg (0.5 mmol) **60a** in 7 ml absolutem Et₂O zugegeben und 4.5 h zum Rückfluß erhitzt. Nach Abkühlen auf RT wurde der entstandene Niederschlag abfiltriert. Abweichend der Literaturvorschrift wurde der Niederschlag in EtOAc aufgenommen und durch Kieselgel filtriert. Nach Entfernen des Lösungsmittel unter vermindertem Druck und zweifacher chromatographischer Aufreinigung (1. EtOAc / Hex 1 : 3; 2. EtOAc / Hex 1 : 20) wurden 97 mg (0.39 mmol, 78 %) des Produktes **61a** erhalten.

Methode **B**:^[200] Unter Argon wurden zu einer Suspension von 0.55 g (20 mmol) Magnesium in absolutem Et₂O 409 mg (1 mmol) **60a** in 7 ml absolutem Et₂O zugegeben, so dass leichter Rückfluß erhalten blieb. Nach Rühren über Nacht bei RT wurde ges. NH₄Cl-Lösung zugegeben und die organische Phase abgetrennt. Anschließend wurde die Etherphase mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach Entfernen des Lösungsmittels unter vermindertem Druck und Flash-Säulenchromatographie (EtOAc / Hex = 1 : 3) konnte das Produkt **61a** nur in geringen Mengen erhalten werden. Stattdessen wurden 164 mg (0.65 mmol, 65 %) der Verbindung **63** isoliert (analytische Daten siehe 6.6.9).

Das Produkt **61a** entspricht den analytischen Literaturdaten.^[199, 200]

 $\label{eq:masse} \begin{array}{l} \text{Molmasse} \; (C_{14}H_{10}Cl_2) \colon 249.1352; \\ \text{Schmelzp.} \; (\text{Benzol}) \colon 105.5\text{-}106.5 \ ^{\circ}\text{C} \; (\text{Lit.}^{[199]} \colon 106.5\text{-}107.5 \ ^{\circ}\text{C}); \\ \text{DC} \; (\text{EtOAc} / \text{Hex} = 1 \colon 20) \colon \text{R}_{\text{f}} = 0.33; \\ ^{1}\text{H-NMR} \; (250 \; \text{MHz}, \; \text{CDCl}_3, \; 25 \ ^{\circ}\text{C}) \colon \delta = 7.36\text{-}7.33 \; (\text{m}, \; 2\text{H}; \; \text{arom. H}), \; 7.19\text{-}7.17 \; (\text{m}, \; 4\text{H}; \\ \text{arom. H}), \; 2.78\text{-}2.57 \; (\text{m}, \; 4\text{H}; \; 9/10\text{-}\text{H}); \\ \text{GC-MS} \; (50\text{-}300\text{M}; \; \text{S2}) \colon \tau_{\text{R}} = 9.84 \; \text{min}; \; (\text{EI}, \; 70 \; \text{eV}) \; \text{m/z} \; (\%) \colon 249 \; (58) \; [\text{M}^+], \; 248 \; (68), \\ 213 \; (32), \; 178 \; (100), \; 151 \; (15), \; 126 \; (5), \; 106 \; (6), \; 88 \; (20), \; 74 \; (11), \; 63 \; (9), \; 51 \; (8), \; 39 \; (8). \end{array}$

6.6.9. 2,2⁻ Dichlor-6,6'-dimethylbiphenyl (*rac*-63)

Beim der Synthese von **61a** mittels Methode **B** wurde die Verbindung **63**^[357] als Hauptprodukt erhalten (siehe 6.6.8).

Molmasse (C₁₄H₁₂Cl₂): 251.1511; **Schmelzp.** (EtOH): 117-118 ℃ (Lit.^[357]: 117-118 ℃);

DC (Hex / EtOAc = 3 : 1): $R_f = 0.59$;

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 8.38 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 252 \ (63) \ [\text{M}+\text{H}^+], \ 250 \ (97), \\ 235 \ (10), \ 215 \ (63), \ 199 \ (27), \ 180 \ (100), \ 165 \ (69), \ 152 \ (14), \ 139 \ (5), \ 126 \ (3), \ 115 \ (3), \\ 106 \ (5), \ 99 \ (3), \ 89 \ (20), \ 82 \ (3), \ 76 \ (14), \ 69 \ (2), \ 63 \ (7), \ 51 \ (3), \ 39 \ (3); \end{array}$

X-ray: Von der Verbindung **63** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.3). Die röntgenografischen Daten befinden sich im Anhang (A16).

Unter Argon wurden 85 μ l (0.5 mmol) Tetraethylenglykol zu einer Suspension von 44 mg (1.1 mmol) NaH (57 %) in 20 ml absolutem THF gegeben. Nach 20 min wurden 204 mg (0.5 mmol) **60a** zugegeben und 24 h bei RT gerührt. Danach wurde 1 ml 10 % ige HCl zugegeben und 10 min gerührt. Anschließend wurde das THF unter vermindertem Druck entfernt und der Rückstand in einem Gemisch aus MeOH / DCM (9 : 1) aufgenommen. Die organische Phase wurde mit ges. NaCl-Lösung. und über Na₂SO₄ getrocknet. Nach Entfernen der flüchtigen Bestandteile im Vakuum und Gradienten-Flash-Säulenchromatographie (DCM / MeOH = 99 : 1 - 19 : 1) konnten 110 mg (0.25 mmol, 50 %) des Produkts **71** als gelbliches Öl erhalten werden.

Molmasse (C₂₂H₂₆Cl₂O₅): 441.3448;

 $\label{eq:def_def_def} \mbox{DC} \ (\mbox{DCM} \ / \ \mbox{MeOH} = 19 \ ; \ 1 \) ; \ \mbox{R}_f = 0.16;$

FT-IR (ATR): $\tilde{\nu} = 2861$ (s), 1585 (w), 1564 (w), 1445 (m), 1426 (m), 1349 (m), 1293 (w, b), 1249 (w, b), 1172 (m), 1141 (s), 1108 (s, b), 1100 (s), 1070 (w), 940 (w), 867 (w), 783 (m), 750 (w), 695 (m), 651 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.51 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.2 Hz; 1³/2³-H), 7.41 (dd, 2H, ³J = 7.5 Hz, ⁴J = 1.2 Hz; 1⁵/2⁵-H), 7.35 (t, 2H, ³J = 7.5 Hz; 1⁴/2⁴-H), 4.19 (m, 4H, AA´BB´; 3/17-H), 4.16 ("t", 4H; 3/10-H), 3.69-3.49 (m, 14H; OCH₂), 3.36-3.29 (m, 2H; OC<u>H₂</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 139.83$ (s; C-1¹/2¹), 134.84 (s; C-1²/2²), 133.35 (s; C-1⁶/2⁶), 129.22 (d; C-1⁴/2⁴), 128.29 (d; C-1⁵/2⁵), 126.64 (d; C-1³/2³), 71.05 (t; C-3/17), 70.82 (t; O<u>C</u>H₂), 70.78 (t; O<u>C</u>H₂), 70.48 (t; O<u>C</u>H₂), 70.43 (t; C-5/15); **DIP-MS** (EI, 70 eV) m/z (%): 456 (1) [M+H₂O], 454 (2), 442 (1) [M+H], 440 (1) [M-H], 339 (1), 337 (1), 304 (2), 265 (7), 262 (10), 248 (51), 246 (71), 229 (12), 212 (20), 199 (17), 179 (20), 178 (63), 165 (31), 151 (12), 107 (34), 106 (24), 97 (40), 89 (100), 88 (67), 73 (20), 57 (24), 46 (5);

MS (ESI, 70 eV) m/z (%): 465.19 (58) [M+Na], 463.19 (100), 249.34 (7), 214.35 (10), 179.38 (7).

6.7. Synthese von Triarylphosphinderivaten

6.7.1. (3-(Methoxymethyl)phenyl)diphenylphosphin (82a)

Unter Argon wurden 1.0 g (5 mmol) (3-Bromphenyl)methyl-methylether^[290] (**81a**) in 30 ml absolutem THF gelöst und bei -78 °C innerhalb von 30min 3.3 ml (5 mmol) 1,5M *n*-BuLi/Hexan zugegeben. Es wurde 60 min bei dieser Temperatur gerührt und anschließend 1 ml (5.5 mmol) CIPPh₂ so zugetropft, dass die Temperatur -60 °C nicht überschritt. Das Reaktionsgemisch wurde innerhalb von 2.5 h auf 0 °C erwärmt und die Reaktion durch Zugabe von ges. NH₄Cl-Lösung gestoppt. Die organische Phase wurde über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt (1.53 g, ~5 mmol; ca. 95 % **82a** und 5 % **83a**^{tt}) wurde ohne weiter Aufreinigung weiter umgesetzt (siehe 6.7.2).

Die analytischen Daten wurden aus dem Rohprodukt von 82a gewonnen.

Molmasse (C₂₀H₁₉OP): 306.338; DC (Hex / EtOAc = 2 : 1): R_f = 0.53; ¹H-NMR (300 MHz, CDCl₃, 25 °C): δ = 7.73-7.27 (m, 14H; arom. H), 4.39 (s, 2H; 1′-H), 3.33 (s, 3H; 1′′-H); ¹³C-NMR (75.5 MHz, CDCl₃, 25 °C): δ = 138.4 (s; C-3), 133.9-128.3 (9 Signale; arom. C), 74.46 (t; C-1′), 58.16 (q; C-1′′); ³¹P-NMR (121.5 MHz, CDCl₃, 25 °C): δ = -4.18;

^{tt} Laut GC-MS Peakflächen-Integration.

GC-MS (50B300M; S1): $\tau_R = 11.75$ min; (EI, 70 eV) m/z (%): 306 (100) [M⁺], 276 (5), 259 (2), 229 (2), 215 (2), 197 (8), 183 (34), 165 (13), 152 (8), 139 (6), 128 (2), 120 (6), 107 (6), 89 (5), 77 (8), 63 (2), 51 (6), 39 (2).

6.7.2. (3-(Methoxymethyl)phenyl)diphenylphosphinoxid (83a)

Zu einer Lsg von 1.53 g (~5 mmol) des Rohproduktes von **82a** in 30 ml MeOH wurden 0.6 ml 35%ige H₂O₂-Lösung so zugetropft, dass 40 °C nicht überschritten wurden, und 2h bei RT gerührt. Nach Zugabe von 5 ml ges. Na₂SO₃-Lösung und 4 ml 1M HCl wurde 1 h weitergerührt und das Lösemittel unter vermindertem Druck entfernt. Die wässrige Phase wurde fünfmal mit DCM extrahiert und die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach dem Entfernen des Lösungsmittels unter vermindertem Druck konnten 1.5 g (4.65 mmol, 93 % über zwei Stufen) des Produkts **83a** als klares, farbloses Öl erhalten werden.

Molmasse (C₂₀H₁₉O₂P): 322.3374;

DC (EtOAc = 1): $R_f = 0.27$;

FT-IR (ATR): $\tilde{\nu} = 3438$ (w, b), 3053 (m), 2986 (w), 2920 (m), 2866 (m, b), 2819 (m), 1589 (w), 1482 (m), 1435 (s), 1413 (m), 1369 (w), 1306 (w), 1270 (w), 1216 (m), 1188 (s), 1116 (s), 1054 (m), 1027 (w), 996 (m), 963 (w, b), 931 (w, b), 900 (w), 873 (w), 792 (w), 751 (m), 722 (s), 694 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.69-7.60 (m, 5H; arom. H) davon 7.67 (1H, ³J(P,H) = 12 Hz; 2-H), 7.55-7.49 (m, 4H; arom. H) davon 7.52 (1H; 4-H), 7.47-7.40 (m, 5H; arom. H), 4.43 (s, 2H; 1´-H), 3.34 (s, 3H; 1´´-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 138.8 (s; C-3), 133.1 (s; arom. C), 132.7 (s; arom. C), 132.2-127.1 (7xd; arom. C), 74.05 (t; C-1[´]), 58.31 (q; C-1^{´´});

³¹**P-NMR** (121.5 MHz, CDCl₃, 25 °C): δ = 29.26;

GC-MS (50B300M; S1): $\tau_R = 11.75$ min; (EI, 70 eV) m/z (%): 322 (46) [M⁺], 321 (100), 307 (5), 292 (47), 277 (9), 262 (5), 245 (7), 229 (5), 213 (3), 201 (8), 183 (9), 165 (6), 152 (5), 141 (1), 131 (1), 121 (1), 107 (1), 89 (3), 77 (6), 65 (2), 51 (4), 39 (1);

DIP-MS (EI, 70 eV) m/z (%): 322 (49) [M⁺], 321 (100), 307 (5), 292 (57), 277 (16), 262 (6), 245 (11), 229 (10), 213 (6), 201 (20), 183 (37), 165 (29), 152 (20), 128 (5), 107 (6), 95 (5), 89 (18), 77 (51), 63 (6), 57 (5), 51 (22);

HR-MS (EI, 70 eV): ber. für [M⁺]: 322.1123, gef.: 322.111.

6.7.3. (3-((*tert*-Butyldimethylsilyloxy)methyl)phenyl)diphenylphosphin (82b)

Unter Argon wurden 1.5 g (5 mmol) (3-Brombenzyloxy)(*tert*-butyl)dimethylsilan^[291] (**81b**) in 20 ml absolutem THF gelöst und bei -78 °C innerhalb von 30 min 3.3 ml (5 mmol) 1,5M *n*-BuLi/Hexan zugegeben. Es wurde 60 min bei dieser Temperatur gerührt und anschließend 1 ml (5.5 mmol) CIPPh₂ so zugetropft, dass die Temperatur -60 °C nicht überschritt. Das Reaktionsgemisch wurde innerhalb von 2.5 h auf 0 °C erwärmt und die Reaktion durch Zugabe von ges. NH₄Cl-Lösung gestoppt. Die organische Phase wurde über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt (2.73 g, ~ 5 mmol; ca. 55 % **82b** und 45 % **83b**^{uu}) des Phoshins **82b** wurde ohne weiter Aufreinigung weiter umgesetzt (siehe 6.7.4).

Die analytischen Daten wurden aus dem Rohprodukt von 82b gewonnen.

 $\label{eq:masse} \begin{array}{l} \mbox{Molmasse} \ (C_{25}H_{31}OPSi): \ 406.5723; \\ \mbox{DC} \ (Hex \ / \ EtOAc = 3 \ : \ 1 \): \ R_f = \ 0.15; \\ \mbox{GC-MS} \ (50B300M; \ S1): \ \tau_R = \ 12.89 \ \mbox{min}; \ (El, \ 70 \ eV) \ \ m/z \ (\%): \ 407 \ (34), \ 406 \ (100) \\ \ [M^+], \ 391 \ (6), \ 368 \ (2), \ 349 \ (47), \ 334 \ (3), \ 319 \ (6), \ 299 \ (2), \ 290 \ (5), \ 275 \ (13), \ 265 \ (3), \end{array}$

^{uu} Laut GC-MS Peakflächen-Integration.

257 (2), 239 (5), 225 (2), 207 (6), 197 (20), 185 (66), 175 (3), 165 (20), 152 (6), 141 (3), 133 (6), 115 (6), 107 (6), 88 (11), 78 (8), 67 (2), 57 (8), 39 (8).

6.7.4. (3-((*tert*-Butyldimethylsilyloxy)methyl)phenyl)diphenylphosphinoxid (83b)

Zu einer Lsg von 2.72 g (~ 5 mmol) des Rohproduktes von **82b** in 30 ml MeOH wurden 0.6 ml 35%ige H₂O₂-Lösung so zugetropft, dass 40 °C nicht überschritten wurden, und 2h bei RT gerührt. Nach Zugabe von 5 ml ges. Na₂SO₃-Lösung und 4 ml 1M HCl wurde 1 h weitergerührt und das Lösemittel unter vermindertem Druck entfernt. Die wässrige Phase wurde fünfmal mit DCM extrahiert und die vereinigten organischen Phasen wurden mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach dem Entfernen des Lösungsmittels unter vermindertem Druck und Trocknen im Vakuum konnten 2.1 g (4.95 mmol, 99 % Rohausbeute über zwei Stufen) des Produkts **83b** erhalten werden.

Die analytischen Daten wurden aus dem Rohprodukt von **83b** gewonnen. Sowohl unter den Bedingungen der chromatographischen Aufreinigung (Säule und präparative DC) als auch der (NMR-)Analytik wurde teilweise Entschützung beobachtet.

Molmasse (C₂₅H₃₁O₂PSi): 422.5717;

DC (EtOAc = 1): $R_f = 0.47$;

FT-IR (ATR): $\tilde{\nu} = 3052$ (w), 2949 (w), 2857 (w), 2611 (w), 2480 (w), 1711 (s), 1592 (w), 1483 (w), 1436 (s), 1402 (w), 1256 (m), 1165 (s), 1138 (s), 1119 (s), 1074 (m), 997 (w), 842 (m), 786 (w), 749 (m), 723 (s), 693 cm⁻¹ (w);

³¹**P-NMR** (121.5 MHz, CDCl₃, 25 °C): δ = 28.48;

GC-MS (50B300M; S1): $\tau_{R} = 14.66$ min; (EI, 70 eV) m/z (%): 422 (3) [M⁺], 407 (2) [M⁺-CH₃], 366 (20), 365 (67) [M⁺-^{*t*}Bu], 349 (100), 333 (2), 305 (2), 290 (5), 271 (2),

241 (2), 213 (2), 201 (2), 183 (3), 165 (3), 152 (2), 135 (2), 91 (2), 75 (2), 57 (2), 41 (3).

6.7.5. (3-(Diphenylphosphoryl)phenyl)methanol (84)

Zu einer Lösung von 1.1 g (2.5 mmol) **83b** in 20 ml THF wurden 1 Tropfen Wasser und dann bei 0 °C 7.5 ml (7.5 mmol) 1M TBAF/THF-Lösung zugetropft. Nach Erwärmen auf RT wurde 2h bei RT gerührt und anschließend mit 20 ml ges. NH₄Cl-Lösung versetzt. Die wässrige Phase wurde viermal mit EtOAc extrahiert und die vereinigten organischen Phasen vom Lösemittel befreit. Der erhaltene Rückstand wurde in 25 ml EtOAc aufgenommen, zweimal mit je 5 ml 1M HCl und einmal mit ges. NaCl-Lösung gewaschen. Nach Trocknen über MgSO₄, Entfernen des Lösungsmittels unter vermindertem Druck und Flash-Säulenchromatographie (DCM / MeOH = 20 : 1) konnten 540 mg (1.75 mmol, 70 %) des Produkts **84** erhalten werden.

Molmasse (C₁₉H₁₇O₂P): 308.3108;

Schmelzp. (CHCl₃): 141 °C;

DC (DCM / MeOH = 20 : 1): $R_f = 0.17$;

FT-IR (ATR): $\tilde{\nu} = 3320$ (s, b), 3054 (m), 2855 (m, b), 1589 (w), 1482 (w), 1434 (s), 1413 (m), 1353 (w), 1310 (w), 1210 (m), 1172 (s), 1117 (s), 1054 (m, b), 1023 (m), 996 (m), 870 (w, b), 792 (w), 750 (m), 724 (s), 713 (s), 693 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.66-7.30 (m, 14H; arom. H) davon 7.63 (1H, ³J(P,H) = 10 Hz; 2-H) und 7.52 (1H; 4-H), 4.58 (s, 2H; 1[′]-H), 3.88 (s, 1H; 1[′]-O<u>H</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 142.3 (s; C-3), 132.8-128.3 (9 Signale; arom. C), 64.07 (t; C-1´);

³¹**P-NMR** (121.5 MHz, CDCl₃, 25 °C): δ = 30.16;

GC-MS (50B300M; S1): $\tau_R = 13.4 - 14.0 \text{ min}$; (EI, 70 eV) m/z (%): 308 (41) [M⁺], 307 (100), 290 (8), 281 (8), 273 (3), 260 (3), 251 (3), 242 (2), 231 (8), 215 (3), 207 (6),

199 (8), 193 (6), 183 (6), 165 (5), 152 (6), 141 (3), 133 (3), 126 (3), 115 (2), 105 (3), 97 (2), 89 (6), 78 (9), 70 (2), 62 (5), 54 (6), 47 (2), 39 (13);

X-ray: Von der Verbindung **84** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.5). Die röntgenografischen Daten befinden sich im Anhang (A19).

6.8. Photocyclisierung von Stilbenen

6.8.1. Allgemeine Versuchsvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen

In einem Schlenkkolben wird unter Argonatmosphäre 3-Hydroxybenzaldehyd (**41**) mit PPh₃ in absolutem THF vorgelegt. Dann wird das entsprechende Diol zugegeben, unter Wasserkühlung DEAD zugetropft und anschließend 6 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wird unter vermindertem Druck eingeengt und der hochviskose Rückstand in reichlich Et₂O aufgenommen. Die organische Phase wird dreimal mit 10%iger NaOH gewaschen. Es wird über Kieselgel filtriert und mit Et₂O gewaschen. Das Lösemittel wird unter vermindertem Druck entfernt und das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.8.1.1. 2,6-Dioxa-1,7(1)-dibenzenaheptaphan-1³,7³-dicarbaldehyd^[203] (95a)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (1.83 g, 15 mmol) mit 1,3-Propandiol (0.361 ml, 5 mmol), PPh₃ (3.93 g, 15 mmol) und DEAD (1.9 ml, 15 mmol) in absolutem THF (40 ml) umgesetzt. Nach Flash-Säulenchromatographie (Hex / Et₂O = 1 : 1) konnten 959 mg (3.8 mmol, 68 %) des Produktes **95a** als farblose Kristalle mit einem Schmelzpunkt von 57-59 °C (Lit.^[203]: 56-58 °C) erhalten werden.

Molmasse (C₁₇H₁₆O₄): 284.3065:

Schmelzp. (EtO₂ / Hex): 57-59 ℃ (Lit.^[203]: 56-58 ℃);

DC (Et₂O / Hex = 1 : 1): R_f = 0.31;

FT-IR (ATR): $\tilde{\nu} = 2814$ (w, b), 2728 (w), 1693 (s), 1594 (m), 1583 (m), 1484 (m), 1449 (m), 1385 (m), 1320 (m), 1285 (m), 1257 (s), 1167 (m), 1147 (m), 1056 (m), 865 (w, b), 785 (s), 760 (m), 681 (s), 646 cm⁻¹ (m);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 9.95 (s, 2H; 1³/7³-C<u>H</u>O), 7.44-7.39 (m, 6H; arom.), 7.20-714 (m, 2H; arom.), 4.22 (t, 4H; 3/5-H), 2.30 (q, 2H; 4-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 192.03 (d; <u>C</u>HO), 159.38 (s; <u>C</u>_{Ar}-CHO), 137.83 (s; <u>C</u>_{Ar}-OCH₂), 130.08 (d; <u>C</u>_{Ar}), 123.65 (d; <u>C</u>_{Ar}), 121.92 (d; <u>C</u>_{Ar}), 112.71 (d; <u>C</u>_{Ar}), 64.54 (t; C-3/5), 29.08 (t; C-4);

GC-MS (50-300M; S2): $\tau_R = 11.35$ min; (EI, 70 eV) m/z (%): 284 (100) [M⁺], 270 (2), 256 (4), 239 (1), 227 (1), 210 (1), 199 (2), 183 (2), 162 (30), 147 (6), 135 (80), 121 (30), 107 (81), 91 (13), 77 (47), 67 (21), 51 (15), 41 (16).

6.8.1.2. 2,9-Dioxa-1,10(1)-dibenzenadecaphan-1³,10³-dicarbaldehyd (95b)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (1.83 g, 15 mmol) mit 1,6-Hexandiol (591 mg, 5 mmol), PPh₃ (3.93 g, 15 mmol) und DEAD (1.9 ml, 15 mmol) in absolutem THF (40 ml) umgesetzt. Nach Flash-Säulenchromatographie (Et₂O / Hex = 1 : 1) konnten 855 mg (2.6 mmol, 52 %) des Produktes **95b** als farblose Kristalle erhalten werden.

Das Produkt entspricht den analytischen Literaturwerten.^[358, 359]

Molmasse (C₂₀H₂₂O₄): 326.3863;

Schmelzp. (EtO₂): 76.5-77.5 ℃ (Lit.^[358]: 78-80 ℃);

DC (Et₂O / Hex = 1 : 1): $R_f = 0.30$;

FT-IR (ATR): $\tilde{v} = 2941$ (m, b), 2895 (m, b), 2818 (w, b), 1696 (s), 1597 (m), 1583 (m), 1484 (m), 1449 (m), 1383 (m), 1321 (m), 1285 (m), 1260 (s), 1168 (m), 1147 (m), 1022 (m), 862 (w, b), 785 (m), 755 (m), 682 (m), 646 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 9.95 (s, 2H; 1³/10³-C<u>H</u>O), 7.43-7.40 (m, 4H; arom.), 7.37-7.35 (m, 2H; arom.), 7.17-7.12 (m, 2H; arom.), 4.02 (t, 4H; 3/8-H), 1.86-1.80 (m, 4H; C<u>H</u>₂), 1.58-1.54 (m, 4H; C<u>H</u>₂);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 192.15 (d; <u>C</u>HO), 159.62 (s; <u>C</u>_{Ar}-OCH₂), 137.76 (s; <u>C</u>_{Ar}-CHO), 129.99 (d; <u>C</u>_{Ar}), 123.38 (d; <u>C</u>_{Ar}), 121.92 (d; <u>C</u>_{Ar}), 112.66 (d; <u>C</u>_{Ar}), 68.06 (t; C-3/8), 29.04 (t; C-4/7), 25.78 (t; C-5/6);

GC-MS (50-300M; S2): $\tau_R = 12.32$ min; (EI, 70 eV) m/z (%): 326 (100) [M⁺], 308 (5), 298 (3), 281 (4), 270 (2), 251 (1), 237 (2), 226 (5), 215 (1), 203 (8), 187 (3), 177 (3), 163 (4), 147 (7), 135 (8), 121 (36), 107 (20), 94 (14), 86 (27), 77 (29), 67 (19), 55 (53), 41 (27);

HR-MS (EI, 70 eV): ber. für [M⁺]: 326.1518 , gef.: 326.152.

6.8.1.3. 3,5-Dimethyl-2,6-dioxa-1,7(1)-dibenzenaheptaphan-1³,7³-dicarbaldehyd (109)

109

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (1,832 g, 15 mmol) mit einem Gemisch aus *rac*- und *meso*-2,4-Pentandiol (545 ml, 5 mmol), PPh₃ (3.93 g, 15 mmol) und DEAD (1.9 ml, 12 mmol) in absolutem THF (40 ml) umgesetzt. Nach Flash-Säulenchromatographie (Et₂O / Hex = 1 : 1) konnten 736 mg (2.4 mmol, 46 %) des Produktes **109** als farbloses, hochviskoses Öl erhalten werden. Die analytischen Daten wurden dem *rac-/meso*-Produktgemisch entnommen. Die Analytik und

Zuordnungen der enantiomerenreinen Verbindung *S,S*-**109** sind in Kap. 6.8.1.4 aufgeführt.

Molmasse (C₁₉H₂₀O₄): 312.3597;

DC (Et₂O / Hex = 1 : 1): $R_f = 0.30$ (Gemisch);

FT-IR (ATR) (Gemisch): $\tilde{\nu} = 3073$ (w), 2973 (m), 2935 (m), 2853 (w), 2813 (w), 2720 (w), 1702 (s), 1697 (s), 1692 (s), 1681 (s), 1620 (w), 1590 (m), 1581 (m), 1505 (w), 1480 (m), 1459 (m), 1452 (m), 1445 (m), 1384 (m), 1316 (w), 1286 (m), 1250 (s, breit), 1166 (m), 1133 (m), 1105 (m), 1039 (m), 1012 (m), 980 (w), 966 (w), 886 (m), 833 (m), 785 (s, b), 746 (m), 681 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): $\delta = 9.97$ (s, 1H; *meso*-1³/7³-C<u>H</u>O), 9.79 (s, 2H; *rac*-1³/7³-C<u>H</u>O), 7.44-7.46 (m, 3H; *rac/meso*-C_{Ar}-<u>H</u>), 7.30-7.32 (m, 4H; *rac/meso*-C_{Ar}-<u>H</u>), 7.23 (m, 3H; *rac/meso*-C_{Ar}-<u>H</u>), 7.02-7.07 (m, 2H; *rac*-1⁶/7⁶-H), 4.61-4.73 (m, 3H; *rac/meso*-1⁶/7⁶-<u>H</u>), 2.01 (m, 3H; *rac/meso*-4-H), 1.32-1.37 (m, 9H; *rac/meso*-3/5-C<u>H</u>₃);

GC-MS (50-300M; S2); aus dem Gemisch:

rac: $\tau_{\rm R} = 10.86$ min; (EI, 70 eV) m/z (%): 312 (31) [M⁺], 280 (2), 191 (37), 175 (3), 163 (12), 149 (76), 135 (4), 121 (100), 105 (17), 93 (22), 79 (5), 77 (27), 69 (32), 51 (7), 41 (19), 39 (12);

 $\begin{array}{l} \textit{meso: } \tau_{R} = 11.15 \mbox{ min; (EI, 70 eV) m/z (\%): 312 (29) [M^+], 284 (2), 253 (2), 207 (2), \\ 190 (29), 176 (3), 163 (19), 149 (83), 133 (3), 121 (100), 105 (15), 93 (14), 91 (12), \\ 77 (32), 69 (32), 65 (20), 51 (14), 41 (20), 39 (20); \end{array}$

HR-MS (EI, 70 eV): ber. für [M⁺]: 312.1362 , gef.: 312.136.

6.8.1.4. (3*S*,5*S*)-3,5-Dimethyl-2,6-dioxa-1,7(1)-dibenzenaheptaphan-1³,7³dicarbaldehyd (*S*,*S*-109)

S,S-109

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (2.57 g, 21 mmol) mit (2*R*,4*R*)-(-)-Pentandiol (729 mg, 7 mmol), PPh₃ (5.5 g, 21 mmol) und DEAD (2.7 ml, 17 mmol) in absolutem THF (60 ml) umgesetzt. Nach Flash-Säulenchromatographie (Hex / $Et_2O = 1 : 1$) konnten 1.18 g (3.8 mmol, 54 %) des Produktes *S*,*S*-**109** als farbloses, hochviskoses Öl erhalten werden.

Molmasse (C₁₉H₂₀O₄): 312.3597;

DC (Et₂O / Hex = 1 : 1): $R_f = 0.26$;

FT-IR (ATR): $\tilde{v} = 2972$ (m), 2927 (w), 2818 (w, b), 2725 (w), 1697 (s), 1592 (s), 1581 (s), 1480 (s), 1445 (s), 1381 (m), 1316 (m), 1283 (m), 1258 (s), 1167 (m), 1152 (m), 1136 (m), 1107 (m), 1040 (m), 1014 (m), 978 (w), 966 (w), 882 (w), 871 (w), 833 (w), 786 (m), 682 (m), 647 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 9.79 (s, 2H; 1³/7³-C<u>H</u>O), 7.33 (m, 2H; 1⁵/7⁵-H), 7.31 (m, 2H; 1⁴/7⁴-H), 7.23 (m, 2H; 1²/7²-H), 7.03 (m, 2H; 1⁶/7⁶-H), 4.68 (m, 2H; 3/5-H), 1.99 (dd, 2H; 4-H), 1.32 (d, 6H; 3/5-C<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 191,93 (d; $1^3/7^3$ -<u>C</u>HO), 158.52 (s; C- $1^1/7^1$), 137.69 (s; C- $1^3/7^3$), 130.04 (d; C- $1^5/7^5$), 123.16 (d; C- $1^4/7^4$), 122.87 (d; C- $1^6/7^6$), 114.40 (d; C- $1^2/7^2$), 70.79 (d; C-3/5), 44.69 (t; C-4), 19.99 (q; 3/5-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 10.65$ min; (EI, 70 eV) m/z (%): 312 (19) [M⁺], 298 (2), 284 (4), 270 (2), 238 (2), 212 (2), 191 (34), 177 (4), 163 (14), 149 (94), 135 (17), 121 (100), 107 (19), 105 (22), 91 (24), 77 (46), 69 (54), 65 (27), 55 (9), 51 (15), 41 (34), 39 (22);

HR-MS (EI, 70 eV): ber. für [M⁺]: 312.1362 , gef.: 312.136.

 $[\alpha]_{D} = +79.2, \ [\alpha]_{546} = +95.4, \ [\alpha]_{405} = +242.3 \ (c = 0.51, \ CHCl_3, \ 20 \ ^{\circ}C).$

6.8.1.5. 2,5,8,11-Tetraoxa-1,12(1)-dibenzenadodecaphan-1³,12³-dicarbaldehyd (114a)

114a

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (3.67 g, 30 mmol) mit Triethylenglykol (1.35 ml, 10 mmol), PPh₃ (7.87 g, 30 mmol) und DEAD (3.8 ml, 24 mmol) in absolutem THF (100 ml) umgesetzt. Nach Gradienten-Flash-Säulenchromatographie (Et₂O / Hex = 1 : 1 - 5 : 1) konnten 2.28 g (6.4 mmol, 64 %) des Produktes **114a** als farbloser, kristalliner Feststoff erhalten werden.

Die analytischen Daten stimmen mit den Literaturwerten überein.^[75]

Molmasse (C₂₀H₂₂O₆): 358.3851;

Schmelzp. (Hex / EtO₂): 67-68 °C (Lit.^[75]: 65-66 °C);

 $\label{eq:def_def_def} \textbf{DC} \; (Et_2O \; / \; Hex = 1 \; : 1 \;) : \; R_f = 0.10;$

FT-IR (ATR): $\tilde{v} = 2913$ (w, b), 2871 (m), 2726 (w), 1697 (s), 1692 (s), 1593 (m), 1583 (m), 1483 (m), 1385 (w), 1353 (w), 1320 (m), 1286 (m), 1262 (s), 1168 (m), 1124 (m, b), 1058 (m), 996 (w), 963 (w, b), 871 (w), 786 (m), 756 (m), 747 (m), 682 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 9.94 (s, 2H, 1³/12³-C<u>H</u>O), 7.45-7.37 (m, 6H; arom.), 7.19-7.15 (m, 2H; arom.), 4.17 (m, 2H; 3/10-H), 3.86 (m, 2H; 4/9-H), 3.74 (m, 4H; 6/7-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 192.04$ (d; $1^3/12^3$ -<u>C</u>HO), 159.23 (s; C- $1^1/12^1$), 137.75 (s; C- $1^3/12^3$), 130.03 (s; arom.), 123.65 (s; arom.), 122.04 (s; arom.), 112.88 (s; arom.), 70.92 (t; C-6/7), 69.67 (t; C-4/9), 67.70 (t; C-3/10);

GC-MS (50-300M; S2): $\tau_R = 12.73$ min; (EI, 70 eV) m/z (%): 358 (22) [M⁺], 340 (5), 313 (7), 296 (2), 252 (7), 236 (20), 223 (3), 210 (17), 193 (10), 180 (12), 166 (7), 149 (34), 135 (8), 121 (100), 105 (34), 93 (29), 91 (25), 77 (51), 65 (26), 55 (3), 51 (8), 45 (28);

HR-MS (EI, 70 eV): ber. für [M⁺]: 358.1416, gef.: 358.141;

X-ray: Von der Verbindung **114a** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung 4.1.6.5). Die röntgenografischen Daten befinden sich im Anhang (A26).

6.8.1.6. 2,5,8,11,14-Pentaoxa-1,15(1)-dibenzenapentadecaphan-1³,15³dicarbaldehyd (114b)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Dialdehyde unter Mitsunobu-Bedingungen wurde **41** (3.67 g, 30 mmol) mit Tetraethylenglykol (1.75 ml, 10 mmol), PPh₃ (7.87 g, 30 mmol) und DEAD (3.8 ml, 24 mmol) in absolutem THF (100 ml) umgesetzt. Nach Flash-Säulenchromatographie (Et₂O / Hex = 5 : 1) konnten 1.25 g (3.1 mmol, 31 %) des Produktes **114b** als farbloses, hochviskoses Öl erhalten werden.

Die analytischen Daten stimmen mit den Literaturwerten überein.^[75]

Molmasse (C₂₂H₂₆O₇): 402.4376;

DC (Et₂O / Hex = 5 : 1): $R_f = 0.16$;

FT-IR (ATR): $\tilde{v} = 2926$ (w, b), 2866 (m), 2813 (w), 1698 (s), 1693 (s), 1593 (m), 1583 (m), 1483 (m), 1385 (w), 1350 (w), 1320 (m), 1283 (m), 1262 (s), 1169 (m), 1128 (m, b), 1110 (m), 1059 (m), 996 (w), 963 (w, b), 943 (w, b), 868 (w), 787 (m), 748 (w), 682 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 9.94 (s, 2H, 1³/15³-C<u>H</u>O), 7.46-7.35 (m, 6H; arom.), 7.19-7.15 (m, 2H; arom.), 4.16 (dd, 2H; 3/13-H), 3.86 (dd, 2H; 4/12-H), 3.74-3.63 (m, 4H; 6/7/9/10-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 192.03 (d; 1³/15³-<u>C</u>HO), 159.31 (s; C-1¹/15¹), 137.84 (s; C-1³/15³), 130.02 (s; arom.), 123.61 (s; arom.), 122.03 (s; arom.), 112.89 (s; arom.), 70.82 (t; O<u>C</u>H₂), 70.69 (t; O<u>C</u>H₂), 69.59 (t; C-4/12), 67.71 (t; C-3/13);

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50-300M; S2): } \tau_{R} = 13.66 \mbox{ min; (EI, 70 eV) } m/z \ (\%): \mbox{402 (7) [M^+], 384 (3), } \\ \mbox{370 (7), 356 (1), 314 (2), 296 (2), 280 (8), 254 (7), 236 (8), 210 (6), 193 (14), 178 (5), } \end{array}$

165 (12), 149 (42), 135 (12), 121 (100), 105 (39), 91 (38), 77 (63), 65 (25), 56 (14), 45 (37);

HR-MS (EI, 70 eV): ber. für [M⁺]: 402.1679, gef.: 402.167.

6.8.2. Allgemeine Versuchsvorschrift zur Synthese hochsubstituierter Stilbene mit niedervalentem Titan (McMurry-Reaktion)

Unter Argonatmosphäre wird zu einer Suspension von Zinkpulver in absolutem THF bei -10 °C TiCl₄ langsam zugetropft, wobei eine grüngelbe Mischung entsteht. Zunächst wird 1 h bei Raumtemperatur gerührt und anschließend 2 h zum Rückfluß erhitzt. Danach wird bei Raumtemperatur der Benzaldehyd in absolutem THF innerhalb von 45 min zugetropft und bei Raumtemperatur über Nacht gerührt. Das Reaktionsgemisch wird mit 10%iger NaHCO₃ hydrolisiert und dreimal mit Et₂O extrahiert. Es wird über Kieselgel filtriert, mit Et₂O gewaschen und das Lösungsmittel unter vermindertem Druck entfernt Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.8.2.1. (*E*)-1,2-Bis(2,3,4-trimethoxy-5-methylphenyl)ethen (119)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese hochsubstituierter Stilbene wurde eine Lösung von **117** (2,87 g, 13.6 mmol) in absolutem THF (85 ml) mit einer Mischung von Zinkpulver (6.24 g, 95 mmol) und TiCl₄ (4.20 ml, 38 mmol) in absolutem THF (140 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 373 mg (0.9 mmol, 14 %) des Produktes **119** als farbloser Feststoff erhalten werden.

Molmasse $(C_{22}H_{28}O_6)$: 388.4541; Schmelzp. (Hex / EtO₂): 80.5-81 °C; DC (EtOAc / Cx= 1: 4): R_f = 0.48 **FT-IR** (ATR): $\tilde{\nu} = 2934$ (s), 2860 (w), 2820 (w), 1618 (w), 1593 (w), 1573 (w), 1498 (w), 1480 (s), 1462 (s), 1420 (m), 1409 (s), 1313 (m), 1299 (m), 1253 (w), 1231 (m), 1191 (w), 1106 (s), 1079 (s), 1009 (s), 970 (w), 933 (w), 889 (m), 863 (w), 840 (w), 793 (w), 750 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.24 (s, 2H; 1/2-H), 7.16 (s, 2H; 6′/6′′-H), 3.91 (s, 6H; 3′/3′′-OC<u>H</u>₃), 3.86 (s, 6H; 2′/2′′-OC<u>H</u>₃), 3.85 (s, 6H; 4′/4′′-OC<u>H</u>₃), 2.24 (s, 6H; 5′/5′′-C<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 151.49$ (s; C-4′/4′′), 149.76 (s; C-2′/2′′), 146.36 (s; C-3′/3′′), 127.22 (s; C-5′/5′′), 127.04 (s; C-1′/1′′), 122.60 (d; C-1/2), 121.65 (d; C-6′/6′′), 61.43 (q; 2′/2′′-O<u>C</u>H₃), 60.85 (q; 3′/3′′-O<u>C</u>H₃), 60.57 (q; 4′/4′′-O<u>C</u>H₃), 15.85 (q; 5′/5′′-<u>C</u>H₃);

GC-MS (50-300M, S2): $\tau_R = 12.03$ min; (EI, 70 eV) m/z (%): 388 (100) [M+], 373 (14) [M-CH₃], 358 (19) [M-2xCH₃], 342 (31), 327 (19), 313 (17), 299 (15), 283 (10), 269 (7), 255 (5), 241 (7), 229 (5), 213 (5), 195 (51), 180 (22), 165 (47), 150 (12), 139 (5), 128 (7), 115 (8), 105 (7), 91 (8), 77 (5), 65 (3), 53 (2), 43 (3), 39 (2);

UV (CH₂Cl₂, 25 °C, $c = 5 \ 10^{-6}$): λ (ϵ): 235 (54900), 320 (66670);

HR-MS (EI, 70 eV): ber. für [M⁺]: 388.1886, gef.: 388.189.

6.8.3. Allgemeine Versuchsvorschrift zur Synthese verbrückter Stilbene des Typs XXVII mit niedervalentem Titan (McMurry-Reaktion)

Unter Argonatmosphäre wird zu einer Suspension von Zinkpulver in absolutem THF bei $-10 \,^{\circ}$ C TiCl₄ langsam zugetropft und eine grüngelbe Mischung entsteht. Anschließend wird für ca. 15 min zum Rückfluß erhitzt bis sich die Reaktionsmischung schwarz färbt. Dann wird unter Erhalt des Rückflusses der Bisbenzaldehyd (z.B. **114a**) in absolutem THF innerhalb von 6h zugetropft und bei Raumtemperatur über Nacht gerührt. Das Reaktionsgemisch wird mit 10% iger NaHCO₃ hydrolisiert und dreimal mit Et₂O extrahiert. Es wird über Kieselgel filtriert, mit Et₂O gewaschen und das Lösemittel unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.8.3.1. **Z-1,4(1,3)-Dibenzena-5,9-dioxacyclononaphan-2-en**^[203] (96a)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Stilbene wurde eine Lösung von **95a** (805 mg, 2.8 mmol) in absolutem THF (110 ml) mit einer Mischung von Zinkpulver (2.6 g, 40 mmol) und TiCl₄ (1.85 ml, 17 mmol) in absolutem THF (20 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 4) konnten 250 mg (1 mmol, 35 %) des Produktes **96a** in Form farbloser Kristalle mit einem Schmelzpunkt von 52.5 $^{\circ}$ C (Lit.^[203]: 52-54 $^{\circ}$ C) erhalten werden.

 $\label{eq:masse} \begin{array}{l} \mbox{Molmasse} \ (C_{17}H_{16}O_2): 252.3077; \\ \mbox{Schmelzp.} \ (Hex \ / \ EtO_2): 52.5 \ \ \ \ \ C \ (Lit.^{[203]}: 52-54 \ \ \ \ C). \end{array}$

6.8.3.2. Z-6,8-Dimethyl-1,4(1,3)-dibenzena-5,9-dioxacyclononaphan-2-en (110)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Stilbene wurde **109** (580 mg, 1.86 mmol) als Diastereomerengemisch mit Zinkpulver (1.76 g, 27 mmol) und TiCl₄ (1.2 ml, 11 mmol) in absolutem THF (75 ml) umgesetzt. Nach Flash-Säulenchromatographie (Hex / EtOAc = 10 : 1) konnten 170 mg (0.61 mmol,

33 %) des Produktes **110** als 2 : 1 Diastereomerengemisch^{vv} in Form eines farblosen, hochviskosen Öls erhalten werden. Die analytischen Daten wurden dem *rac-/meso*-Produktgemisch entnommen. Die Analytik und Zuordnungen der enantiomerenreinen Verbindung *S*,*S*-**110** sind in Kap. 6.8.3.3 aufgeführt.

Molmasse (C₁₉H₂₀O₂): 280.3609;

DC (EtOAc / Hex = 1 : 10): Gemisch: $R_f = 0.41 + 0.33$;

¹**H-NMR** (250 MHz, CDCl₃, 25 ℃):

Nebendiastereomer: δ = 7.19 (t, 2H; 6/16-H), 7.03 (m, 2H; 1²/4²), 6.81 (dt, 2H; 5/17-H), 6.72 (ddd, 2H; 7/15-H), 4.29 (m, 2H; 10/12-H), 1.81 (dd, 2H; 11-H), 1.20 (d, 6H; 10/12-CH₃);

Hauptdiastereomer: δ = 7.25 (t, 2H; 6/16-H), 7.03 (m, 2H; 1²/4²), 6.89 (dt, 2H; 5/17-H), 6.80 (m, 2H; 7/15-H), 3.88 (m, 2H; 10/12-H), 1.32 (m, 2H; 11-H), 1.30 (d, 6H; 10/12-CH₃);

GC-MS (50-300M; S2):

Nebendiastereomer: τ_R = 9.84 min; (EI, 70 eV) m/z (%): 280 (100) [M⁺], 265 (17), 251 (2), 238 (31), 223 (5), 212 (41), 195 (22), 177 (7), 165 (51), 152 (15), 139 (8), 128 (3), 115 (7), 107 (8), 91 (3), 79 (2), 69 (12), 55 (3), 41 (14);

Hauptdiastereomer: $\tau_R = 10.18$ min; (EI, 70 eV) m/z (%): 280 (100) [M⁺], 265 (24), 251 (2), 238 (44), 223 (3), 212 (27), 195 (19), 177 (8), 165 (51), 152 (14), 139 (10), 128 (3), 115 (8), 102 (3), 91 (5), 79 (2), 69 (14), 55 (5), 41 (17).

6.8.3.3. (6*S*,8*S*)-*Z*-6,8-Dimethyl-1,4(1,3)-dibenzena-5,9-dioxacyclononaphan-2en (*S*,*S*-110)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Stilbene wurde (S,S)-**109** (565 mg, 2 mmol) mit Zinkpulver (1.7 g, 26 mmol) und TiCl₄ (1.2 ml,

^{vv} Das Verhältnis der Diastereomere (rac/meso) anhand der ¹H-NMR-Daten bestimmt.

11 mmol) in absolutem THF (120 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 10) konnten 115 mg (0.4 mmol, 20 %) des Produktes (S,S)-**110** als farbloses, hochviskoses Öl erhalten werden.

Molmasse (C₁₉H₂₀O₂): 280.3609;

DC (EtOAc / Hex = 1 : 10): $R_f = 0.54$;

FT-IR (ATR): $\tilde{\nu} = 3047$ (w), 2968 (m), 2924 (m), 1600 (m), 1564 (m), 1514 (s), 1442 (s), 1375 (m), 1320 (s), 1250 (s), 1126 (m), 1107 (s), 1087 (s), 1023 (m), 1005 (s), 895 (w), 875 (w), 858 (w), 818 (s), 756 (m), 716 (s), 693 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.19 ("t", 2H; 1⁵/4⁵-H), 7.03 (m, 2H; 1²/4²), 6.81 (dd, 2H; 1⁴/4⁴-H), 6.72 (dd, 2H; 1⁶/4⁶-H), 4.29 (m, 2H; 6/8-H), 1.81 (dd, 2H; 7-H), 1.20 (d, 6H; 6/8-C<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 157.65 (d; C-1¹/4¹), 137.36 (s; C-1³/4³), 130.27 (d; C-2/3), 130.01 (d; C-1⁵/4⁵), 122.46 (d; C-1⁴/4⁴), 118.74 (d; C-1⁶/4⁶), 117.79 (d; C-1²/4²), 72.44(d; C-6/8), 47.63 (t; C-7), 22.93 (q; 6/8-<u>C</u>H₃);

GC-MS (50B300Mk; S1): $\tau_R = 10.07$ min; (EI, 70 eV) m/z (%): 280 (100) [M⁺], 265 (17), 251 (2), 238 (60), 224 (6), 212 (57), 195 (30), 177 (14), 165 (92), 152 (24), 139 (17), 127 (6), 115 (13), 102 (3), 89 (5), 77 (5), 41 (30);

HR-MS (EI, 70 eV): ber. für [M⁺]: 280.1463 , gef.: 280.146;

EA (%) ber.: C 81.99 H 6.52, gef.: C 81.50 H 6.83;

 $[\alpha]_{D} = +72.9, \ [\alpha]_{546} = +114.8, \ [\alpha]_{405} = +884.5 \ (c = 1.00, \ CHCl_3, \ 20 \ ^{\circ}C).$

6.8.3.4. 5,8,11,14-Tetraoxa-1,4(1,3)-dibenzenatetradecaphan-2-en (115)

Entsprechend der allgemeinen Versuchvorschrift zur Synthese verbrückter Stilbene wurde **114** (1.79 g, 5 mmol) mit Zinkpulver (4.25 g, 65 mmol) und TiCl₄ (3 ml, 27.5 mmol) in absolutem THF (215 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) wurden 602 mg (0.4 mmol, 37 %) *E*-**115a** und 190 mg (0.6 mmol, 12 %) *Z*-**115b** als farblose kristalline Feststoffe erhalten. Die analytischen

Daten für die *Z*-Verbindung sind in Kap. 6.8.3.5 und für die *E*-Verbindung in 6.8.3.6 aufgeführt.

6.8.3.5. *Z*-5,8,11,14-Tetraoxa-1,4(1,3)-dibenzenatetradecaphan-2-en (*Z*-115b)

Molmasse (C₂₀H₂₂O₄): 326.3863;

Schmelzp. (Et₂O): 45.4 °C;

DC (EtOAc / Hex = 1 : 2): $R_f = 0.22$;

FT-IR (ATR): $\tilde{v} = 3059$ (w), 2977 (w), 2924 (s), 2867 (s), 1717 (w), 1596 (s), 1573 (s), 1477 (s), 1444 (s), 1373 (w), 1351 (w), 1286 (m, b), 1257 (s), 1232 (s), 1129 (s, b), 1061 (m), 963 (w, b), 867 (w, b), 801 (m), 766 (w), 712 (w), 683 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.21 ("t", 2H; 1⁵/4⁵-H), 7.02 (m, 2H; 1²/4²-H), 6.82-6.79 (m, 2H; 1⁴/4⁴-H), 6.79-6.76 (m, 2H; 1⁶/4⁶-H), 6.54 (s, 2H; 2/3-H), 3.98-3.95 (m, 4H; 6/13-H), 3.73-3.70 (m, 4H; 7/12-H), 3.64 (s, 4H; 9/10-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 158.15 (s; C-1¹/4¹), 138.26 (s; C-1³/4³), 130.08 (d; C-2/3), 129.51 (d; C-1⁵/4⁵), 122.37 (d; C-1⁴/4⁴), 114.20 (d; C-1⁶/4⁶), 113.93 (d; C-1²/4²), 71.16(t; C-6/13), 69.60 (t; C-7/12), 67.35 (t; C-9/10);

GC-MS (50-300M; S2): $\tau_R = 11.58$ min; (EI, 70 eV) m/z (%): 326 (100) [M⁺], 267 (2), 238 (7), 224 (5), 210 (14), 194 (19), 179 (10), 165 (49), 152 (15), 139 (7), 115 (7), 89 (5), 73 (5), 59 (2), 45 (10);

UV (CH₂Cl₂, 25 °C, $c = 6 \ 10^{-6}$): λ (ϵ): 300 (22622);

X-ray: Von der Verbindung *Z*-**115b** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abildung siehe Durchführung Kap. 4.1.6.5). Die röntgenografischen Daten befinden sich im Anhang (A28).

6.8.3.6. *E*-5,8,11,14-Tetraoxa-1,4(1,3)-dibenzenatetradecaphan-2-en (*E*-115a)

E-115a

Molmasse $(C_{20}H_{22}O_4)$: 326.3863;

Schmelzp. (Hexan / Et₂O): 151-152 °C;

DC (EtOAc / Hex = 1 : 2): $R_f = 0.34$;

FT-IR (ATR): $\tilde{\nu} = 3068$ (w), 2892 (m), 1598 (s), 1583 (s), 1487 (s), 1454 (m), 1424 (m), 1346 (w), 1300 (m), 1243 (s), 1191 (w), 1171 (m), 1157 (m), 1095 (m), 1074 (m), 1050 (m), 978 (m), 960 (m), 884 (w), 849 (w), 787 (s), 720 (w), 697 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.65 (s, 2H; 1²/4²-H), 7.22 (t, 2H, ³J = 7.8 Hz; 1⁵/4⁵-H), 7.15 (s, 2H; 2/3-H), 7.08 (dd, 2H, ³J = 7.8 Hz, ⁴J = 1.9 Hz; 1⁴/4⁴-H), 6.78 (dd, 2H, ³J = 7.8 Hz, ⁴J = 1.9 Hz; 1⁶/4⁶-H), 4.43 (t, 2H; 6/13-H), 3.80 (t, 2H; 7/12-H), 3.70 (s, 2H; 9/10-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 158.52 (s; C-1¹/4¹), 139.01 (s; C-1³/4³), 129.75 (d; C-1⁵/4⁵), 129.56 (d; C-2/3), 118.08 (d; C-1⁴/4⁴), 116.40 (d; C-1⁶/4⁶), 113.26 (d; C-1²/4²), 71.36 (t; C-7/12), 71.17 (t; C-9/10), 68.65 (t; C-6/13);

GC-MS (50-300M; S2): τ_R = 12.50 min; (EI, 70 eV) m/z (%): 326 (100) [M⁺], 238 (7), 224 (5), 210 (14), 194 (19), 179 (10), 165 (49), 152 (15), 139 (7), 115 (7), 89 (5), 73 (5), 59 (2), 45 (10);

UV (CH₂Cl₂, 25 °C, $c = 6 \ 10^{-6}$): λ (ϵ): 315 (16065);

X-ray: Von der Verbindung *E*-**115a** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.5). Die röntgenografischen Daten befinden sich im Anhang (A27).
6.8.4. Allgemeine Versuchsvorschrift zur Photocyclisierung verbrückter Stilbene

Durch eine Lösung des Stilbens und 1.3 eq lod in absolutem Toluol wird mindestens 30 min Argon geleitet. Nach Zugabe von Propylenoxid bzw. Oktenoxid wird das Reaktionsgemisch in einem Rayonette mit 300nm belichtet. Bei Bedarf (Entfärbung der Lösung) werden jeweils 0.3 eq lod zugegeben. Der Verlauf der Reaktion wird mittels GC-MS-Analytik verfolgt. Wenn kein Edukt mehr detektierbar ist, wird das Reaktionsgemisch mit Essigester verdünnt und mit wenig gesättigter Na₂S₂O₃-Lösung bis zur vollständigen Entfärbung gewaschen. Dann wird das Reaktionsgemisch unter vermindertem Druck eingeengt und das erhaltene Rohprodukt mittels Flash-Säulenchromatographie aufgereinigt.

6.8.4.1. 2,6-Dioxa-1(4,5)-phenanthrenacyclohexaphan^[203] (97a)

Entsprechend der allgemeinen Versuchvorschrift zur oxidativen Photocyclisierung von Stilbenen wurde **96a** (600 mg, 2.4 mmol) mit lod (761 mg, 3.1 mmol) in Propylenoxid (26 ml) und absolutem Toluol (250 ml) umgesetzt. Nach 8h war kein Edukt mehr detektierbar und es wurde wie beschrieben aufgearbeitet. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 5) konnten 572 mg (2.3 mmol, 95 %) des Produktes **97a** als farblose Kristalle erhalten werden.

Das Produkt entspricht den analytischen Literaturdaten.^[203]

 $\label{eq:masse} \begin{array}{l} \mbox{Molmasse} \ (C_{17}H_{14}O_2): 250.2919; \\ \mbox{Schmelzp.} \ (EtOAc): 114.5 \ ^{\circ}C \ (Lit.^{[203]}: 112-114 \ ^{\circ}C); \\ \mbox{DC} \ (EtOAc \ / \ Hex = 1 \ : 5): \ R_f = 0.34; \\ ^{1}\mbox{H-NMR} \ (250 \ \mbox{MHz}, \ CDCl_3, \ 25 \ ^{\circ}C): \ \delta = 7.51 \ (s, \ 2H; \ 1^9 \ ^{10}\ ^{-}H), \ 7.46-7.44 \ (m, \ 4H; \ arom. \ H), \ 7.23-7.20 \ (m, \ 2H; \ arom. \ H), \ 4.68 \ (t, \ 4H, \ ^{3}\ J = 5.9 \ Hz; \ 3/5\ ^{-}H), \ 2.38 \ (q, \ 2H, \ ^{3}\ J = 5.9 \ Hz; \ 4\ ^{-}H); \end{array}$

GC-MS (50-300M; S2): $\tau_R = 11.26$ min; (EI, 70 eV) m/z (%): 250 (100) [M⁺], 235 (2), 222 (36), 209 (10), 192 (22), 181 (10), 163 (31), 152 (25), 139 (2), 126 (3), 111 (2), 98 (2), 87 (3), 75 (2), 63 (3), 51 (2), 41 (5).

6.8.4.2. 3,5-Dimethyl-2,6-dioxa-1(4,5)-phenanthrenacyclohexaphan (111)

Entsprechend der allgemeinen Versuchvorschrift zur oxidativen Photocyclisierung von Stilbenen wurde **110** (140 mg, 0.5 mmol) als Diastereomerengemisch mit Iod (165 mg, 0.65 mmol) in Propylenoxid (5 ml) und absolutem Toluol (45 ml) umgesetzt. Nach 6h war kein Edukt mehr detektierbar und es wurde wie beschrieben aufgearbeitet. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 5) konnten 119 mg (0.4 mmol, 86 %) des Produktes **111** als 4 : 1 (*rac/meso*) Diastereomerengemisch^{ww} in Form von farblosen Kristallen erhalten werden. Die analytischen Daten wurden dem *rac-/meso*-Produktgemisch entnommen. Die Analytik und Zuordnungen der enantiomerenreinen Verbindung *M*,*S*,*S*- **111** sind in Kap. 6.8.4.3 aufgeführt.

Molmasse (C₁₉H₁₈O₂): 278.345;

DC (EtOAc / Hex = 1 : 5): $R_f = 0.49$ (Gemisch);

FT-IR (ATR; Gemisch): $\tilde{v} = 3042m$ (w), 2967 (m), 2918 (w), 1600 (m), 1565 (m), 1518 (m), 1438 (s), 1376 (m), 1319 (s), 1252 (s), 1123 (w), 1106 (w), 1086 (s), 1021 (w), 1005 (m), 990 (w), 899 (w), 820 (s), 756 (w), 717 (s), 686 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 ℃):

rac: $\delta = 7.48$ (s, 2H; 1⁹/1¹⁰-H), 7.43 (m, 2H; 1¹/1⁸-H), 7.41 (m, 2H; 1²/1⁷-H), 7.22 (m, 2H; 1³/1⁶-H), 5.03 (m, 2H; 3/5-H), 2.22 (t, 2H; 4-H), 1.54 (d, 6H; 3/5-C<u>H₃</u>); *meso*: $\delta = 7.59$ (s, 2H; 1⁹/1¹⁰-H), 7.48 (m, 4H; 1¹/1²/1⁷/1⁸-H), 7.35 (m, 2H; 1³/1⁶-H), 4.79 (m, 2H; 3/5-H), 2.06 (m, 2H; 4-H), 1.38 (d, 6H; 3/5-CH₃);

^{ww} Das Verhältnis der Diastereomere (*rac/meso*) anhand der ¹H-NMR-Daten bestimmt.

¹³C-NMR (75.5 MHz, CDCl₃, 25 °C):

rac: $\delta = 158.07$ (s; C-1⁴/1⁵), 134.60 (s; C-1^{8a}/1^{10a}), 126.42 (d; C-1⁹/1¹⁰), 126.35 (d; C-1²/1⁷), 122.22 (s; C-1^{4a}/1^{4b}), 120.66 (d; C-1¹/1⁸), 113.71 (d; C-1³/1⁶), 74.08 (d; C-3/5), 43.41 (t; C-4), 23.18 (q; 3/5-<u>C</u>H₃);

meso: $\delta = 158.30$ (s; C-1⁴/1⁵), 135.34 (s; C-1^{8a}/1^{10a}), 127.71 (d; arom. C), 126.84 (d; arom. C), 122.92 (d; arom. C), 120.00 (d; arom. C), 119.93 (s; arom. C), 76.28 (d; C-3/5), 42.11 (t; C-4), 23.00 (q; 3/5-<u>C</u>H₃);

GC-MS (50-300M; S2):

rac: $\tau_R = 11.33$ min; (EI, 70 eV) m/z (%): 278 (67) [M⁺], 263 (2), 249 (2), 236 (14), 222 (6), 210 (100), 192 (22), 182 (18), 164 (31), 152 (33), 139 (3), 126 (5), 113 (2), 95 (2), 82 (3), 69 (19), 55 (3), 41 (22);

meso: $\tau_{R} = 10.96$ min; (EI, 70 eV) m/z (%): 278 (100) [M⁺], 263 (2), 249 (2), 236 (18), 222 (6), 210 (88), 192 (22), 182 (18), 164 (31), 152 (33), 139 (3), 126 (5), 113 (2), 95 (2), 82 (3), 69 (18), 55 (3), 41 (22);

X-ray: Von der Verbindung **111** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.4). Die röntgenografischen Daten befinden sich im Anhang (A24).

6.8.4.3. (3*S*,5*S*)-3,5-Dimethyl-2,6-dioxa-1(*M*)(4,5)-phenanthrenacyclohexaphan (*M*,*S*,*S*-111)

Entsprechend der allgemeinen Versuchvorschrift zur oxidativen Photocyclisierung von Stilbenen wurde (M,S,S)-**110** (70 mg, 0.25 mmol) mit lod (83 mg, 0.33 mmol) in Propylenoxid (3 ml) und absolutem Toluol (25 ml) umgesetzt. Nach 6h war kein Edukt mehr detektierbar und es wurde wie beschrieben aufgearbeitet. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 5) konnten 51 mg (0.18 mmol, 73 %) des Produktes (M,S,S)-**111** als farblose Kristalle mit einem Schmelzpunkt von 143 °C erhalten werden.

-172-

Molmasse (C₁₉H₁₈O₂): 278.345;

DC (EtOAc / Hex = 1 : 5): $R_f = 0.43$;

Schmp. (Hexan / EtOAc): 143 °C

FT-IR (ATR): $\tilde{\nu} = 3044$ m (w), 2967 (w), 2921 (m), 1599 (w), 1565 (m), 1516 (m), 1441 (s), 1374 (m), 1320 (s), 1251 (s), 1123 (w), 1106 (m), 1087 (s), 1021 (w), 1004 (m), 899 (w), 878 (w), 861 (w), 818 (s), 756 (m), 715 (s), 688 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.49 (s, 2H; 1⁹/1¹⁰-H), 7.43 (m, 2H; 1¹/1⁸-H), 7.42 (m, 2H; 1²/1⁷-H), 7.22 (m, 2H; 1³/1⁶-H), 5.03 (m, 2H; 3/5-H), 2.22 (t, 2H; 4-H), 1.54 (d, 6H; 3/5-C<u>H₃</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 158.07 (s; C-1⁴/1⁵), 134.60 (s; C-1^{8a}/1^{10a}), 126.42 (d; C-1⁹/1¹⁰), 126.35 (d; C-1²/1⁷), 122.22 (s; C-1^{4a}/1^{4b}), 120.66 (d; C-1¹/1⁸), 113.71 (d; C-1³/1⁶), 74.08 (d; C-3/5), 43.41 (t; C-4), 23.18 (q; 3/5-<u>C</u>H₃);

GC-MS (50B300Mk; S1): $\tau_R = 11.54$ min; (EI, 70 eV) m/z (%): 278 (67) [M⁺], 263 (2), 249 (2), 236 (14), 222 (6), 210 (100), 192 (22), 182 (18), 164 (31), 152 (33), 139 (3), 126 (5), 113 (2), 95 (2), 82 (3), 69 (19), 55 (3), 41 (22);

HR-MS (EI, 70 eV): ber. für [M⁺]: 278.1307 , gef.: 278.130;

EA (%) ber.: C 81.99 H 6.52, gef.: C 81.50 H 6.83;

 $[\alpha]_{D} = +54.6, \ [\alpha]_{546} = +69.5, \ [\alpha]_{405} = +230.9 \ (c = 0.87, \ CHCl_3, \ 20 \ ^{\circ}C);$

X-ray: Von der Verbindung *M*,*S*,*S*-**107** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.4). Die röntgenografischen Daten befinden sich im Anhang (A25).

6.8.4.4. 2,5,8,11-Tetraoxa-1(4,5)-phenanthrenacycloundecaphan (*rac*-42)

Entsprechend der allgemeinen Versuchvorschrift zur oxidativen Photocyclisierung von Stilbenen wurde **115b** (82 mg, 0.25 mmol) mit lod (85 mg, 0.33 mmol) in Propylenoxid (3 ml) und absolutem Toluol (25 ml) umgesetzt. Nach 20h war kein Edukt mehr detektierbar und es wurde wie beschrieben aufgearbeitet. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 45 mg (0.14 mmol, 55 %) des

Produktes *rac*-**42** in Form farbloser Kristalle erhalten werden. Zusätzlich wurde ein regioisomeres Produkt (**116**) als Nebenprodukt erhalten. Dieses konnte durch mehrfache chromatographische Aufreinigung in für eine Charakterisierung ausreichender Menge isoliert werden. Die analytischen Daten der Verbindung **116** sind in 6.8.4.5 aufgeführt.

Molmasse (C₂₀H₂₀O₄): 324.3704;

Schmelzp. (Hex / EtOAc): 134.5 °C;

 $\label{eq:def-DC} \textbf{DC} \; (\text{EtOAc} \; / \; \text{Hex} = 1 \; : 2 \;) : \; \textbf{R}_{f} = 0.15;$

FT-IR (ATR): $\tilde{v} = 3044$ (w), 2901 (m, b), 2862 (m), 1607 (w), 1599 (w), 1562 (m), 1521 (m), 1519 (s), 1438 (s), 1327 (s), 1296 (m), 1253 (s), 1130 (s, b), 1102 (m), 1070 (s), 1014 (w), 977 (w), 943 (w), 926 (w), 878 (w), 861 (m), 817 (s), 755 (m), 717 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.55 (s, 2H; 1⁹/1¹⁰-H), 7.48 ("t", 2H; 1²/1⁷-H), 7.39 (dd, 2H; 1¹/1⁸-H), 7.09 (dd, 2H; 1³/1⁶-H), 4.16 ("t", 4H; 3/10-H), 3.95 (dd, 4H; 4/9-H), 3.81 (s, 4H; 6/7-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 157.42 (s; C-1⁴/1⁵), 134.28 (s; C-1^{8a}/1^{10a}), 126.64 (d; C-1⁹/1¹⁰), 126.60 (d; C-1²/1⁷), 119.06 (d; C-1¹/1⁸), 114.68 (s; C-1^{4a}/1^{4b}), 108.74 (d; C-1³/1⁶), 70.50 (t; C-6/7), 70.20 (t; C-4/9), 68.05 (t; C-3/10);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 12.28 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 324 \ (100) \ [\text{M}^+], \ 280 \ (2), \\ 254 \ (1), \ 236 \ (29), \ 221 \ (8), \ 218 \ (12), \ 205 \ (36), \ 192 \ (37), \ 181 \ (8), \ 163 \ (37), \ 155 \ (32), \\ 140 \ (3), \ 126 \ (3), \ 109 \ (2), \ 95 \ (3), \ 73 \ (10), \ 43 \ (15); \end{array}$

HR-MS (EI, 70 eV): ber. für [M⁺]: 324.1362 , gef.: 324.136;

X-ray: Von der Verbindung **42** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.5). Die röntgenografischen Daten befinden sich im Anhang (A29).

6.8.4.5. 2,5,8,11-Tetraoxa-1(2,5)-phenanthrenacycloundecaphan (116)

116

Im Verlauf der oxidativen Photocyclisierung von **115b** wurde neben dem Hauptprodukt *rac*-**42** zusätzlich das regioisomere Produkt **116** in für eine Charakterisierung ausreichender Menge isoliert.

Molmasse $(C_{20}H_{20}O_4)$: 324.3704;

DC (EtOAc / Hex = 1 : 2): $R_f = 0.17$;

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 9.48 (d, 1H, ³J = 9.3 Hz; 1⁴-H), 7.62-7.54 (m, 4H; arom. H), 7.44 ("t", 1H, ³J = 7.7 Hz; 1⁷-H), 7.34 (d, 1H, ⁴J = 2.6 Hz; arom. H), 7.25 (dd, 1H, 3J = 7.7 Hz, ⁴J = 1.2 Hz; arom. H), 4.40 (m, breit, 4H; OC<u>H₂</u>), 3.67 (m, 2H; OC<u>H₂</u>), 3.16 (m, breit, 6H; OC<u>H₂</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 157.1 (s; C-1²), 156.8 (s; C-1⁵), 133.5 (s; C-1^{8a}), 133.4 (s; C-1^{10a}), 131.0 (d; C-1⁴), 127.0 (d; arom. C), 126.5 (d; arom. C), 125.8 (d; C-1⁷), 125.6 (s; C-1^{4a}), 123.9 (s; C-1^{4b}), 123.6 (d; arom. C), 118.7 (d; arom. C), 118.5 (d; arom. C), 114.7 (d; arom. C), 75.2 (t; O<u>C</u>H₂), 72.6 (t; O<u>C</u>H₂), 70.5 (t; O<u>C</u>H₂), 70.1 (t; O<u>C</u>H₂), 69.8 (t; O<u>C</u>H₂), 96.2 (t; O<u>C</u>H₂);

GC-MS (50-300M; S2): $\tau_R = 12.30$ min; (EI, 70 eV) m/z (%): 324 (100) [M⁺], 309 (1), 281 (2), 265 (2), 250 (1), 236 (12), 221 (8), 210 (27), 192 (17), 178 (7), 165 (14), 163 (19), 152 (24), 137 (2), 115 (3), 89 (3), 73 (7), 59 (2), 45 (8), 43 (7).

6.8.5. Phenanthren-4,5-diol (rac-18)

Unter Argon wurden 500 mg (2 mmol) *rac*-**97a** in 30 ml absolutem DCM gelöst und bei 0 °C langsam mit 2 ml (20 mmol) BBr₃ versetzt. Es wurde innerhalb von 45 min auf RT erwärmt und 30 min bei dieser Temperatur gerührt. Nach erneutem Kühlen auf 0 °C wurde das überschüssige BBr₃ vorsichtig durch Zugabe von Wasser deaktiviert und das Reaktionsgemisch mit 2M HCI angesäuert. Die wässrige Phase wurde zweimal mit DCM extrahiert. Anschließend wurden die vereinigten organischen Phasen wurde über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) konnten 388 mg (1.86 mmol, 92 %) des Produkts *rac*-**18** erhalten werden.

Molmasse (C₁₄H₁₀O₂): 210.2280;

Schmelzp. (EtOAc): 184 ℃ (Lit.^[96]: 182.5-183.5 ℃);

DC (EtOAc / Hex = 1 : 2): $R_f = 0.25$;

FT-IR (ATR): $\tilde{\nu} = 2922$ (s), 2849 (s), 1738 (w), 1700 (w), 1588 (w), 1558 (w), 1456 (m), 1436 (m), 1432 (m), 1374 (w), 1300 (w), 1266 (w), 1193 (w), 1123 (w), 1089 (w), 1004 (w), 946 (w), 848 (w), 824 (w), 810 (w), 777 (m), 749 (w), 723 (m), 678 cm⁻¹ (w); **¹H-NMR** (300 MHz, DMSO-D6, 25 °C): $\delta = 6.77$ (s, 2H; 1⁹/1¹⁰-H), 6.65 (m, 2H; 1²/1⁷-H), 6.62 (m, 2H; 1¹/1⁸-H), 6.35 (dd, 2H, ³J = 6.6 Hz, ⁴J = 2.5 Hz; 1³/1⁶-H), 4.16 ("t", 4H; 3/10-H), 3.95 (dd, 4H; 4/9-H), 3.81 (s, 4H; 6/7-H);

¹³**C-NMR** (75.5 MHz, DMSO-D6, 25 °C): $\delta = 144.41$ (s; C-1⁴/1⁵), 126.90 (s; C-1^{8a}/1^{10a}), 119.00 (d; C-1⁹/1¹⁰), 118.56 (d; C-1²/1⁷), 112.53 (d; C-1¹/1⁸), 110.40 (s; C-1^{4a}/1^{4b}), 106.24 (d; C-1³/1⁶);

DIP-MS (EI, 70 eV) m/z (%): 211 (14) [M+H], 210 (100) [M⁺], 192 (20), 182 (41), 165 (7), 164 (19), 163 (34), 155 (2), 154 (6), 153 (25), 152 (26), 151 (8), 150 (4), 137 (2), 126 (5), 113 (2), 105 (8), 96 (9), 87 (4), 82 (16), 76 (18), 69 (3), 63 (11), 58 (2), 51 (5);

HR-MS (EI, 70 eV): ber. für [M⁺]: 210.0681, gef.: 210.068;

X-ray: Von der Verbindung **18** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.1.). Die röntgenografischen Daten befinden sich im Anhang (A1).

6.9. Synthese und Anwendung monodentater Phosphoramidit-Liganden auf Phenanthrenbasis

6.9.1. *O,O*´-(Phenanthryl-4,5-diyl)-*N,N*´-bis[(*R,R*)-1-phenyl-ethyl]phosphoramidit (*R,R*-99)

R,R-99

Unter Argon wurde zu einer Lösung von 61 μ l (0.7 mmol) PCl₃ in 9 ml absolutem Toluol eine Lösung von 160 μ l (0.7 mmol) *R*,*R*-**98** und 113 μ l (0.8 mmol) NEt₃ in 0.6 ml absolutem Toluol zugegeben und für 6 h auf 70 °C erhitzt. Bei RT wurden erneut 225 μ l (1.6 mmol) NEt₃ zugegeben und anschließend auf -78 °C gekühlt. Bei dieser Temperatur wurde eine Lösung von 147 mg (0.7 mmol) **18** in einem 4 : 1 Gemisch aus abs. Toluol und abs. THF langsam zugegeben. Die Reaktionsmischung wurde langsam auf RT erwärmt und über Nacht gerührt. Dann wurde das Reaktionsgemisch über Celite filtriert und die flüchtigen Anteile im Vakuum entfernt. Der Rohprodukt wurde aus einem Gemisch von Hexan, Essigester und Dichlormethan (5 : 1 : 2) umkristallisiert und es wurden 217 mg (0.47 mmol, 67 %) des Produkts *R*,*R*-**99** erhalten.

 $\label{eq:model} \begin{array}{l} \mbox{Molmasse} \ (C_{30}H_{26}NO_2P): \ 463, 5067; \\ \mbox{Schmelzp.} \ (Hex/EtOAc/DCM): \ 171.5 \ ^{\circ}C; \\ \mbox{DC} \ (EtOAc \ / \ Hex = 1 \ : \ 3): \ R_f = 0.55; \end{array}$

FT-IR (ATR): $\tilde{\nu} = 3056$ (w), 3048 (w), 2968 (w), 2862 (w), 1602 (w), 1564 (w), 1521 (m, b), 1493 (m), 1436 (s), 1373 (w), 1308 (m), 1264 (s), 1245 (s), 1202 (m), 1136 (m), 1121 (m), 1078 (m), 1051 (m), 1020 (w), 969 (s), 930 (m), 828 (s), 767 (s), 752 (s), 717 (w), 696 (s), 642 cm⁻¹ (w, b);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.72 (s, 2H; 1⁹/1¹⁰-H), 7.67 (m, 2H; arom. H), 7.60 (m, 2H; arom. H), 7.51 (m, 1H; arom. H), 7.42 (m, 1H; arom. H), 7.32-7.17 (m, 10H; arom. H), 4.95-4.84 (m, ³J(H,H) = 7.1 Hz, ³J(H,P)= 11.5 Hz, 2H; 1′/1′′-H), 1.87 (d, ³J(H,H) = 7.1 Hz, 6H; 1′/1′′-C<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 151.74 (s; arom. <u>C</u>OP), 151.00 (s; arom. <u>C</u>OP), 143.12 (s; arom. C), 135.02 (s; arom. C), 134.84 (s; arom. C), 127.88 (d; arom. C), 127.80 (d; arom. C), 127.65 (d; arom. C), 127.51 (d; arom. C), 127.04 (d; arom. C), 126.97 (d; arom. C), 126.63 (d; arom. C), 123.69 (d; arom. C), 123.48 (d; arom. C), 120.33 (d; arom. C), 120.29 (d; arom. C), 120.08 (d; arom. C), 120.05 (d; arom. C), 52.84 (d; <u>C</u>HCH₃), 52.69 (d; <u>C</u>HCH₃), 22.41 (q; CH<u>C</u>H₃), 22.41 (q; CH<u>C</u>H₃);^{xx}

³¹**P-NMR** (121.5 MHz, CDCl₃, 25 °C): δ = 137.46;

DIP-MS (EI, 70 eV) m/z (%): 463 (1) [M⁺], 358 (100) [M+, -C₆H₅CHCH₃], 344 (1), 324 (1), 316 (3), 280 (1), 252 (4), 239 (19) [C₁₄H₈O₂P], 223 (1), 192 (34), 167 (8), 164 (8), 125 (3), 105 (59) [C₆H₅CHCH₃], 91 (2), 79 (19), 77 (18), 51 (3);

HR-MS (EI, 70 eV): ber. für [M⁺]: 463,1701, gef.: 463.169;

 $[\alpha]_{D} = +113.6, [\alpha]_{546} = +136.1, [\alpha]_{405} = +279.2 (c = 1.38, CHCl_3, 20 °C);$

X-ray: Von der Verbindung *R*,*R*-**99** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.2). Die röntgenografischen Daten befinden sich im Anhang (A22).

^{xx} Die ppm-Werte geben, wenn nicht anders angeführt, die Verschiebungen der Peaks und nicht die Zentraleverschiebung der Signale wieder, da das ¹³C-Spektrum P-gekoppelt gemessen wurde und nicht alle Signale mittels 2D-Experimenten zugeordnet werden konnten. Die Multiplizitäten (s,d, q) wurden mittels APT-Experimenten zugeordnet.

6.9.2. Bis[*O*,*O*[′]-(Phenanthryl-4,5-diyl)-*N*,*N*[′]-bis[(*R*,*R*)-1-phenyl-ethyl]phosphoramidit-P]-*cis*-palladiumdichlorid (*P*,*R*,*R*-100)

*P,R,R-*100

Unter Argon wurde bei RT zu einer Lösung von 15 mg (0.04 mmol) $Pd(PhCN)_2Cl_2$ in 2 ml absolutem DCM eine Lösung von 39 mg (0.08 mmol) R,R-**99** in 3 ml absolutem DCM innerhalb von 20 min zugegeben und 2h bei dieser Temperatur gerührt. Anschließend wurden die flüchtigen Bestandteile im Vakuum entfernt und das erhaltene Rohprodukt aus EtOAc umkristallisiert. Nach Waschen der schwach gelblichen Kristalle mit Hexan und Diethylether und Trocknen im Vakuum konnten 40 mg (0.036 mmol, 45 %) des Produkts P,R,R-**100** erhalten werden.

Molmasse (C₆₀H₅₂Cl₂N₂O₄P₂Pd): 1104,3394;

Schmelzp. (EtOAc): 224 °C;

DC (EtOAc / Hex = 1 : 4): $R_f = 0.12$;

FT-IR (ATR): $\tilde{\nu} = 3051$ (w), 2983 (w), 2928 (w), 1606 (w), 1561 (w), 1516 (m), 1494 (m), 1440 (s), 1381 (w), 1313 (m), 1281 (w), 1221 (s), 1198 (m), 1135 (m), 1116 (m), 1062 (m), 1051 (m), 1021 (m), 983 (s), 933 (m), 905 (w), 885 (w), 854 (m), 827 (s), 766 (s), 749 (s), 712 (w), 696 (m), 689 (s), 646 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 8.48 (m, 4H; arom. H), 7.67 (m, 4H; arom. H), 7.55 (m, 4H; arom. H), 7.49-7.34 (m, 12H; arom. H), 7.18-7.12 (m, 4H; arom. H), 6.64-6.57 (m, 8H; arom. H), 6.39-6.34 (m, 16H; arom. H), 6.30-6.23 (m, 20H; arom. H), 4.66 (m, ³J(H,H) = 7.2, 4H; 1′/1′′-H), 1.54 (d, ³J(H,H) = 7.2 Hz, 12H; 1′/1′′-C<u>H</u>₃);

¹³**C-NMR** (62.9 MHz, CDCl₃, 25 °C): δ = 187.11 (d; C), 151.40 (s; arom. C), 147.57 (s; arom. C), 140.27 (s; arom. C), 140.24 (s; arom. C), 140.21 (s; arom. C), 134.01 (s; arom. C), 133.73 (s; arom. C), 128.09 (d; arom. C), 127.95 (d; arom. C), 127.33 (d; arom. C), 126.99 (d; arom. C), 126.93 (d; arom. C), 126.61 (d; arom. C), 126.55 (d; arom. C), 124.92 (d; arom. C), 123.18 (d; arom. C), 121, 32 (s; arom. C), 120.77 (s;

arom. C), 117.48 (d; arom. C) , 117.46 (d; arom. C), 56.15 (d; <u>C</u>HCH₃), 56.05 (d; <u>C</u>HCH₃) , 55.95 (d; <u>C</u>HCH₃), 18.73 (q; CH<u>C</u>H₃);^{xx}

³¹**P-NMR** (121.5 MHz, CDCl₃, 25 °C): δ = 115.09;

MS (ESI, 70 eV; MeOH, CH₂Cl₂): 1172.9 [M+3Na];

X-ray: Von der Verbindung *P*,*R*,*R*-**100** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.6.2). Die röntgenografischen Daten befinden sich im Anhang (A23).

6.9.3. Allgemeine Versuchsvorschrift für die Kupfer-katalysierte, konjugierte Addition von Diethylzink an Michael-Systeme

Unter Argon wird bei RT zu einer Lösung von 3 mg (2 mol%) Cu(OTf)₂ in 3 ml absolutem Et₂O eine Lösung des Liganden (4 mol%) *R*,*R*-**99** bzw. *R*,*R*-**103b** in 0.8 ml absolutem Et₂O zugegeben und 30 min bei dieser Temperatur gerührt. Anschließend werden bei -40 $^{\circ}$ C 0.53 ml (0.58 mmol) 1.1 M Et₂Zn / Hexan-Lösung so zugegeben, dass die Temperatur -40 $^{\circ}$ C nicht über schreitet. Nach 5 min werden 40 µl (0.42 mmol) Cyclohex-2-en-1-on und 95 µl (0.42 mmol) Dodecan (als interner Standard) zugegeben und 3.5 h bei -40 $^{\circ}$ C gehalten. Die Reaktion wird durch Zugabe von 2 ml 1M HCl beendet und mit 8 ml Et₂O verdünnt. Die Ausbeuten und Enantiomerenüberschüsse werden anschließend mittels GC-MS und chiraler GC bestimmt.

6.10. Synthese octasubstituierter Phenanthrenderivate

6.10.1. Allgemeine Versuchsvorschrift zur Freisetzung von Benzylaldehyden aus Acetalen

Eine Lösung des Acetals in CHCl₃ wird mit 2M HCl versetzt und 16 h bei RT gerührt. Nach der Phasentrennung wird die wäßrige Phase dreimal mit CHCl₃ extrahiert und die organischen Phasen mit ges. NaHCO₃-Lösung gewaschen. Nach Trocknen über MgSO₄ oder NaSO₄ wird das Reaktionsgemisch unter vermindertem Druck eingeengt und falls notwendig das erhaltene Rohprodukt mittels Flash-Säulenchromatographie aufgereinigt.

6.10.2. 2-(5-Brom-2,3,4-trimethoxyphenyl)-1,3-dioxolan^[312] (121)

Eine Lösung von 10.85 g (39 mmol) 5-Brom-2,3,4-trimethoxybenzaldehyd^[224] (**39**), 8 ml (140 mmol) Ethan-1,2-diol und einer katalytischen Menge (150 mg) *p*-Toluolsulfonsäure in 150 ml CHCl₃ wurde in einer mit Molsieb (4 Å) bestückten Soxhlet-Apparatur über Nacht zum Rückfluß erhitzt. Nach Abkühlen auf RT wurde nacheinander mit ges. NaHCO₃ und Wasser gewaschen. Die vereinigten wäßrigen Phasen wurden zweimal mit CHCl₃ extrahiert und anschließend die vereinigten organischen Phasen über MgSO₄ getrocknet. Nach Entfernen des Lösemittels und Aufreinigung mittels Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 11.50 g (36 mmol, 93 %) des Produkts **121** als farbloses Öl erhalten werden.

Molmasse (C₁₂H₁₅BrO₅): 319.1485;

DC (EtOAc / Cx = 1 : 4): $R_f = 0.57$;

FT-IR (ATR): $\tilde{v} = 2976$ (m), 2938 (m), 2884 (m), 2832 (w), 1636 (b), 1588 (w), 1459 (s), 1403 (s), 1381 (s), 1296 (s), 1243 (w), 1211 (m), 1176 (w), 1119 (s), 1068 (s), 1035 (s), 1001 (s), 957 (m), 939 (m), 907 (w), 876 (m), 832 (m), 791 (w), 733 (w), 711 (w), 674 (w), 615 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.42 (s, 1H; 6-H), 5.99 (s, 1H; C<u>H</u>OPG), 4.10 (m, AA'BB', 2H; C<u>H</u>₂), 4.01 (m, AA'BB', 2H; C<u>H</u>₂), 3.90 (s, 3H; OC<u>H</u>₃), 3.89 (s, 3H; OC<u>H</u>₃);

¹³**C-NMR** (62.5 MHz, CDCl₃, 25 °C): δ = 152.08 (s; <u>C</u>-OCH₃), 151.94 (s; <u>C</u>-OCH₃), 147.33 (s; <u>C</u>-OCH₃), 128.17 (s; C-1), 124.81 (d; C-2), 111.67 (s; C-5), 98.89 (d; <u>C</u>HOPG), 65.35 (t; CH₂), 61.65 (q; OCH₃), 61.03 (q; OCH₃), 60.97 (q; OCH₃);

GC-MS (150300MF; S1): $\tau_R = 7.866$ min; (EI, 70 eV) m/z (%): 320 (65) [M⁺ für ⁸¹Br], 319 (72), 318 (69) [M⁺ für ⁷⁹Br], 317 (62), 305 (21), 303 (22), 289 (11), 287 (15), 275 (24), 273 (30), 259 (16), 248 (60) [M⁺ für ⁸¹Br, $-C_3H_5O_2$], 246 (69) [M⁺ für ⁷⁹Br, $-C_3H_5O_2$], 209 (29), 182 (23), 167 (13), 152 (11), 137 (14), 124 (22), 109 (15), 107 (12), 93 (11), 91 (10), 73 (100) [$C_3H_5O_2^+$], 65 (17), 53 (27), 45 (43);

HR-MS (EI, 70 eV): ber. für C₁₂H₁₅⁷⁹BrO₅ [M⁺]: 318.0103, gef.: 318.009.

6.10.3. 2-(2,3,4-Trimethoxy-5-methylphenyl)-1,3-dioxolan^[312] (122)

In situ-quench Bedingungen: Unter Argon wurden 47.67 g (0.15 mol) **121** in 300 ml absolutem THF gelöst und mit 18.75 ml (0.19 mol) Me₂SO₄ versetzt. Anschließend wurden bei -68 °C 116 ml (0.18 mol) n-BuLi/Hexan-Lösung (1.54 M) so zugetropft, dass eine Innentemperatur von -60 °C nicht überschritten wurde. Danach wurde langsam auf RT erwärmt und die Reaktionsmischung mit jeweils ca. 100 ml MTBE und 2M NaOH-Lösung versetzt. Die wäßrige Phase wurde dreimal mit MTBE extrahiert und die vereinigten organischen Phasen über MgSO₄ getrocknet. Nach Entfernen der flüchtigen Bestandteile im Vakuum und anschließender Aufreinigung mittels Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 35.17 g (0.14 mol, 93 %) des Produkts **122** als klares Öl erhalten werden.

Molmasse $(C_{13}H_{18}O_5)$: 254.279; **DC** (EtOAc / Cx= 1: 4): $R_f = 0.54$; **FT-IR** (ATR): $\tilde{\nu} = 2935$ (m), 2880 (m), 2826 (w), 1734 (m, b), 1603 (w), 1464 (s), 1411 (m), 1386 (m), 1326 (s), 1225 (m), 1191 (m), 1118 (s), 1092 (m), 1054 (s), 1001 (s), 941 (m), 917 (m), 875 (m), 796 (w), 742 (m), 668 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.04 (s, ⁴*J* (H,H) = 0.7 Hz, 1H; 6-H), 6.00 (s, 1H; CHOPG), 4.12 (m, AA'BB', 2H; CH₂), 4.01 (m, AA'BB', 2H; CH₂), 3.88 (s, 6H; OCH₃), 3.82 (s, 3H; OCH₃), 2.19 (s, ⁴*J* (H,H) = 0.7 Hz, 3H; CH₃);

¹³**C-NMR** (75 MHz, CDCl₃, 25 °C): δ = 152.85 (s; C-4), 150.61 (s; C-2), 146.04 (s; C-3), 127.15 (s; C-5), 125.88 (s; C-1), 122.37 (d; C-6), 99.46 (d; CHOPG), 65.31 (t; CH₂), 61.65 (q; OCH₃), 60.72 (q; OCH₃), 60.42 (q; 4-O<u>C</u>H₃), 15.74 (q; CH₃);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}, \ S2)\text{: } \tau_{\text{R}} = 6.199 \ \text{min}\text{; (EI, 70 eV)} \ \text{m/z} \ (\%)\text{: } 254 \ (99) \ [\text{M}^+]\text{, } 253 \ (94)\text{,} \\ 239 \ (21) \ [\text{M}^+ \ \text{-CH}_3]\text{, } 223 \ (13)\text{, } 209 \ (56)\text{, } 196 \ (21)\text{, } 195 \ (20)\text{, } 193 \ (26)\text{, } 182 \ (100)\text{, } 167 \\ (28)\text{, } 151 \ (13)\text{, } 138 \ (13)\text{, } 121 \ (13)\text{, } 109 \ (11)\text{, } 107 \ (11)\text{, } 105 \ (10)\text{, } 91 \ (20)\text{, } 79 \ (14)\text{, } 77 \\ (17)\text{, } 73 \ (34) \ [\text{C}_3\text{H}_5\text{O}_2^+]\text{, } 67 \ (10)\text{, } 65 \ (18)\text{, } 53 \ (18)\text{, } 45 \ (21)\text{;} \end{array}$

HR-MS (EI, 70 eV): ber. [M⁺]: 254.1154, gef.: 254.115.

6.10.4. 2,3,4-Trimethoxy-5-methylbenzaldehyd^[312] (117)

Entsprechend der allgemeinen Versuchvorschrift zur Freisetzung von Benzaldehyden wurde das Acetal **122** (2.2 g, 8.8 mmol) mit 2M HCI (45 ml) in CHCl₃ (100 ml) umgesetzt. Abweichend von der allgemeinen Versuchsvorschrift wurde nach Rühren über Nacht 2M NaOH (45 ml) zugegeben. Danach wurde wie beschrieben aufgearbeitet. Nach Entfernen des Lösemittels wurden 1.68 g (8 mmol, 91 %) des Produktes **122** als klares Öl erhalten.

Molmasse $(C_{11}H_{14}O_4)$: 210.2265; **DC** (EtOAc / Cx = 1 : 4): R_f = 0.34; **FT-IR** (ATR): $\tilde{\nu}$ = 2937 (m), 2847 (m), 2745 (w), 1994 (w, b), 1887 (w, b), 1683 (s, C=O), 1596 (s), 1467 (s), 1419 (s), 1385 (s), 1319 (s), 1281 (m), 1246 (m), 1216 (m), 1190 (m), 1102 (s), 1070 (s), 1004 (s), 927 (m), 888 (m), 791 (w), 744 (m), 674 cm⁻¹ (w); ¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 10.24 (s, 1H; CHO), 7.38 (s, ⁴*J* (H,H) = 0.7 Hz, 1H; 6-H), 3.97 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 2.19 (s, ⁴*J* (H,H) = 0.7 Hz, 3H; CH₃);

¹³**C-NMR** (62.5 MHz, CDCl₃, 25 °C): δ = 189.13 (d; CHO), 158.03 (s; <u>C</u>-OCH₃), 155.97 (s; <u>C</u>-OCH₃), 145.58 (s; <u>C</u>-OCH₃), 127.65 (s; arom. C), 124.81 (s; arom. C), 124.01 (d; C6), 62.48 (q; OCH₃), 60.87 (q; OCH₃), 60.53 (q; OCH₃), 15.80 (q; CH₃); **GC-MS** (50-300M, S2): τ_{R} = 7.62 min; (EI, 70 eV) m/z (%): 210 (100) [M⁺], 196 (56), 181 (36), 177 (37), 166 (13), 153 (17), 149 (21), 138 (28), 124 (16), 121 (17), 109 (15), 107 (13), 91 (17), 79 (19), 77 (18), 67 (12), 65 (13), 53 (19), 39 (11); **HR-MS** (EI, 70 eV): ber. für [M⁺]: 210.0892, gef.: 210.088.

6.10.5. 2,3,4-Trimethoxy-5-methyl-6-nitrobenzaldehyd (123)

123

Methode **A**:^[312] Unter Argon wurden 1.753 g (8.3 mmol) **117** in 25 ml abs. CH_2CI_2 gelöst und auf -70 °C gekühlt. Eine frisch bereitete Nitrierlösung aus 11.6 ml (11.6 mmol) 1M SnCl₄-Lösung in CH_2CI_2 und 0.66 ml (16 mmol) 100% iger HNO₃ wurde zügig zur Reaktionslösung getropft und 1.5 h ohne weitere Kühlung gerührt. Danach wurden 25 ml 2M HCl zugegeben und die org. Phase abgetrennt. Die wäßrige Phase wurde zweimal mit CH_2CI_2 extrahiert. Die vereinigten org. Phasen wurden jeweils einmal mit ges. NaHCO₃-Lösung und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Nach Aufreinigung mittels Gradienten-Flash-Säulenchromatographie (Cx / CHCl₃ = 1 : 2 - 1 : 4) wurde die Nitroverbindung **123** in einer Ausbeute von 1.52 g (6.0 mmol, 72 %. Lit.^[312]: 87 %) als blaßgelber kristalliner Feststoff erhalten.

Methode **B**: Zu einer Suspension von 0.8 g Kieselgel in 50 ml DCM wurden 50 ml konz. HNO₃ gegeben und 10 min kräftig bei RT gerührt. Dann wurden 1.61 g (7.7 mmol) **117** in 50 ml DCM eingetragen und 30 min bei RT gerührt. Nach Entfernen des Kieselgels durch Filtration wurde die wässrige Phase zweimal mit DCM extrahiert und die vereinigten org. Phasen dreimal mit Wasser und einmal mit ges. NaCl-Lösung gewaschen. Anschließend wurde über MgSO₄ getrocknet und das

Lösemittel unter vermindertem Druck entfernt. Nach Aufreinigung mittels Gradienten-Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4 - 1 : 2) wurde die Nitroverbindung **123** in einer Ausbeute von 1.02 g (4.0 mmol, 52 %) als blaßgelber kristalliner Feststoff erhalten.

Das Produkt **123** entspricht den analytischen Literaturdaten.^[312]

Molmasse (C₁₁H₁₃NO₆): 255.224;

Schmelzp. (DCM): 75.5-76.5 °C (Lit.^[312]: 77 °C);

FT-IR (ATR): $\tilde{v} = 2945$ (m), 2872 (m), 1691 (s, C=O), 1590 (m), 1538 (s), 1462 (s, CH₃), 1369 (m), 1324 (s), 1277 (m), 1195 (m), 1114 (s), 1079 (m), 1015 (s), 957 (s), 859 (w), 807 (m), 746 (w), 732 cm⁻¹ (m);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 10.18 (s, 1H; CHO), 4.01 (s, 3H; OCH₃), 3.99 (s, 3H; OCH₃), 3.90 (s, 3H; OCH₃), 2.08 (s, 3H; CH₃);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M})\text{: } \tau_{\text{R}} = 8.95 \ \text{min} \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 255 \ (2) \ [\text{M}^+], \ 238 \ (8), \ 225 \ (27), \\ 222 \ (20), \ 211 \ (60), \ 196 \ (100), \ 182 \ (29), \ 167 \ (22), \ 153 \ (39), \ 136 \ (15), \ 124 \ (17), \ 108 \\ (10), \ 95 \ (6), \ 94 \ (7), \ 91 \ (9), \ 82 \ (13), \ 80 \ (11), \ 79 \ (9), \ 77 \ (10), \ 67 \ (9), \ 65 \ (8), \ 53 \ (9), \ 52 \\ (9), \ 51 \ (6), \ 39 \ (12). \end{array}$

6.10.6. 2-Amino-4,5,6-trimethoxy-3-methylbenzaldehyd^[312] (124)

Es wurden 638 mg (2.5 mmol) **123** in 50 ml einer EtOH / HOAc / H₂O-Mischung (2 : 2 : 1; v / v) gelöst und mit 1.25 g (25 mmol) Eisenpulver und 0.13 ml konz. HCl versetzt. Die Mischung wurde 35 min unter Rückfluß erhitzt, filtriert und mit 50 ml Wasser gewaschen. Das Filtrat wurde zweimal mit DCM extrahiert. Die vereinigten org. Phasen wurden jeweils einmal mit ges. NaHCO₃-Lösung, Wasser und ges. NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohprodukt wurde durch Flash-Säulenchromatographie (DCM = 1) aufgereinigt. Das Amin **124** konnte in einer Ausbeute von 472 mg (2.1 mmol, 84 %; Lit.^[312]: 52 %) als hochviskoses, rotes Öl erhalten werden.

Molmasse $(C_{11}H_{15}NO_4)$: 225.2411;

 $DC (DCM = 1): R_f = 0.14;$

FT-IR (ATR): $\tilde{v} = 3454$ (m, NH₂), 3321 (m, NH₂), 2934 (m, aliph. CH₃), 2863 (m, OCH₃), 1645 (s, C=O), 1608 (s), 1585 (s), 1548 (s), 1459 (s), 1421 (m), 1406 (w), 1381 (s), 1352 (s), 1312 (w), 1259 (s), 1196 (m), 1148 (m), 1105 (s), 1054 (s), 1004 (m), 979 (s), 899 (w), 765 (s), 704 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 10.19 (s, 1H; 1-C<u>H</u>O), 6.30 (bs, 2H, 6-NH₂), 3.94 (s, 3H; OCH₃), 3.88 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 1.97 (s, 3H; 5-C<u>H₃</u>);

¹³**C-NMR** (62.5 MHz, CDCl₃, 25 °C): δ = 190.86 (d; 1-<u>C</u>HO), 158.77 (s; <u>C</u>-OCH₃), 155.69 (s; <u>C</u>-OCH₃), 146.71 (s; <u>C</u>-OCH₃), 135.55 (s; 6-C), 110.11 (s; 5-C), 108.60 (s; 1-C), 62.22 (q; O<u>C</u>H₃), 61.05 (q; O<u>C</u>H₃), 60.84 (q; O<u>C</u>H₃), 8.56 (q; 5-<u>C</u>H₃);

GC-MS (50-300M): $\tau_R = 8.38$ min; (EI, 70 eV) m/z (%): 225 (71) [M⁺], 210 (100), 196 (17), 182 (29), 167 (19), 153 (13), 152 (7), 138 (8), 124 (6), 110 (4), 96 (4), 82 (4), 67 (4), 53 (4), 39 (2);

HR-MS (EI, 70 eV): ber. für [M⁺]: 225.1001, gef.: 225.100;

EA (%) ber.: C 58.66 H 6.71 N 6.22, gef.: C 58.25 H 6.61 N 6.78.

6.10.7. 2-lod-4,5,6-trimethoxy-3-methylbenzaldehyd^[312] (125)

125

1.70 g (7.5 mmol) 124 wurden in 10 ml halbkonz. HCl gelöst und nach Kühlen auf 0 ℃ langsam mit 0.57 g (8.3 mmol) NaNO₂ versetzt. Zu der rotbraunen schlammigen Mischung wurde ohne weitere Kühlung langsam eine Lösung von 12.53 g (75 mmol) Kaliumiodid in 15 ml Wasser gegeben und 12 h bei RT gerührt. Nach Zugabe von etwas ges. Na₂S₂O₃-Lösung wurde dreimal mit CH₂Cl₂ extrahiert. Die vereinigten org. Phasen wurden je einmal mit ges. Na₂S₂O₃-Lösung, ges. NaHCO₃-Lösung und Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck Nach Aufreinigung entfernt. durch Flash-Säulenchromatographie (DCM = 1) wurden 1.71 g (5.1 mmol, 68%, Lit.^[312]: 63 %) des lodids 125 als gelbes, hochviskoses Öl erhalten werden.

Molmasse (C₁₁H₁₃IO₄): 336.123:

 $\label{eq:chi} \textbf{DC} \; (CHCl_3 \, / \, Cx = 2 \, : \, 1) : \, R_f = 0.18;$

FT-IR (ATR): $\tilde{v} = 2934$ (m), 2857 (m), 1695 (s, C=O), 1554 (m), 1458 (s), 1393 (m), 1379 (s), 1301 (s), 1255 (w), 1194 (m), 1106 (s), 1077 (m), 1001 (s), 938 (m), 893 (w), 772 (w), 709 cm⁻¹ (w);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 10.08 (s, 1H; 1-C<u>H</u>O), 3.90 (s, 3H; OC<u>H₃</u>), 3.89 (s, 3H; OC<u>H₃</u>), 3.88 (s, 3H; OC<u>H₃</u>), 2.39 (s, 3H; 5-C<u>H₃</u>);

¹³**C-NMR** (62.5 MHz, CDCl₃, 25 °C): δ = 192.94 (d; 1-<u>C</u>HO), 155.30 (s; <u>C</u>-OCH₃), 154.43 (s; <u>C</u>-OCH₃), 146.49 (s; <u>C</u>-OCH₃), 132.88 (s; arom. C), 127.11 (s; arom. C), 96.97 (s; C-2), 62.61 (q; O<u>C</u>H₃), 60.95 (q; O<u>C</u>H₃), 60.88 (q; O<u>C</u>H₃), 21.67 (q; 5-<u>C</u>H₃); **GC-MS** (50-300M; S1): τ_R = 9.09 min; (EI, 70 eV) m/z (%): 336 (100) [M⁺], 321 (27), 319 (20), 303 (19), 275 (13), 210 (17) [M⁺, -I], 196 (48), 179 (22), 165 (14), 163 (13), 151 (24), 138 (29), 123 (23), 107 (15), 91 (19), 79 (17), 77 (19), 67 (12), 65 (12), 63 (11), 53 (12), 52 (14), 51 (15), 39 (11);

HR-MS (EI, 70 eV): ber. [M⁺]: 335.9858, gef.: 335.986.

Unter Argon wurden 319 mg (1 mmol) 121 in 10 ml absolutem THF gelöst und bei -70 °C mit 0.8 ml (1.2 mmol) n-BuLi/Hexan-Lösung (1.5M) versetzt. Es wurde auf -20 °C erwärmt und 15 min bei dieser Temperatur gerührt. Dann wurde bei -70 ℃ eine Lösung von 0.11 ml (1.2 mmol) Me₂S₂ (frisch über AloxN filtriert) in 5 ml absolutem THF zugegeben und 18 h bei RT gerührt. Nach Zugabe von ges. NH₄CI-Lösung und Phasentrennung wurde die wäßrige Phase dreimal mit MTBE extrahiert. Die vereinigten organischen Phasen wurde über MgSO₄ getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 3.5) konnten 156 mg (0.54 mmol, 54 %) des Produkts 130a als klares Öl erhalten werden.

Molmasse $(C_{13}H_{18}O_5S)$: 286.344;

DC (EtOAc / Cx = 1 : 3.5): $R_f = 0.25$;

FT-IR (ATR): $\tilde{\nu} = 2938$ (m, b), 2880 (m, b), 1584 (w, b), 1462 (s, b), 1406 (s), 1390 (s), 1297 (s), 1264 (w), 1219 (w), 1117 (s), 1070 (s), 1039 (s), 1003 (s), 956 (m), 939 (m), 853 (w), 795 (w), 739 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.05 (s, 1H; 6-H), 6.00 (s, 1H; 1-C<u>H</u>PG) 4.15-3.99 (m, 4H; OC<u>H₂CH₂O), 3.88 (s, 9H, 3 x OCH₃), 2.40 (s, 3H; 5-SC<u>H₃)</u>;</u>

¹³**C-NMR** (62.5 MHz, CDCl₃, 25 °C): δ = 150.86 (s; C-4), 150.43 (s; C-2), 146.13 (s; C-3), 127.66 (s; C-5), 126.70 (s; C-1), 118.33 (d; C-6), 99.43 (d; 1-<u>C</u>HPG), 65.37 (t; O<u>C</u>H₂<u>C</u>H₂O), 61.76 (q; OCH₃), 60.88 (q; OCH₃), 60.58 (q; OCH₃), 15.18 (q; 5-SCH₃); **GC-MS** (50-300m, S2):τ_R = 9.47 min; (EI, 70 eV) m/z (%): 286 (100) [M⁺], 271 (8), 255 (3), 241 (8), 228 (7), 214 (25), 199 (10), 184 (8), 168 (8), 153 (7), 137 (5), 123 (5), 109 (5), 95 (3), 73 (17), 59 (2), 45 (14);

HR-MS (EI, 70 eV): ber. für [M⁺]: 286.0875, gef.: 286.087.

6.10.9. 2,3,4-Trimethoxy-5-methylthiobenzaldehyd (131a)

Entsprechend der allgemeinen Versuchvorschrift zur Freisetzung von Benzaldehyden wurde das Acetal **130a** (135 mg, 0.47 mmol) mit 2M HCI (2 ml) in CHCl₃ (2 ml) umgesetzt. Es wurde wie beschrieben aufgearbeitet. Nach Entfernen des Lösemittels und Flash-Säulenchromatographie (EtOAc / Cx = 1 : 3.5) konnten 83 mg (0.34 mmol, 73 %) des Produktes **131a** in Form farbloser Kristalle erhalten werden.

Molmasse (C₁₁H₁₄O₄S): 242.2915;

DC (EtOAc / Cx = 1 : 3.5): $R_f = 0.32$;

FT-IR (ATR): $\tilde{v} = 2920$ (m, b), 2853 (m), 1681 (s, C=O), 1573 (m), 1462 (s), 1411 (s), 1382 (m), 1298 (m), 1264 (s), 1214 (w), 1081 (s), 1042 (m), 1000 (s), 956 (w), 853 (w), 746 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 10.25 (s, 1H; 1-C<u>H</u>O), 7.30 (s, 1H; 6-H), 3.97 (s, 6H, 2 x OC<u>H₃</u>), 3.89 (s, 3H, 3-OC<u>H₃</u>), 2.40 (s, 3H; SC<u>H₃</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 188.50 (d; 1-<u>C</u>HO), 155.76 (s; C-4), 155.34 (s; C-2), 145.59 (s; C-3), 129.55 (s; C-5), 125.44 (s; C-1), 118.09 (d; C-6), 62.58 (q; O<u>C</u>H₃), 60.96 (q; 3-O<u>C</u>H₃), 60.67 (q; O<u>C</u>H₃), 14.42 (q; 5-S<u>C</u>H₃);

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50-300M, S2): } \tau_{R} = 8.62 \mbox{ min; (EI, 70 eV) m/z (\%): 242 (100) [M^+], 228 (36), \\ \mbox{213 (22), 198 (14), 184 (24), 170 (10), 152 (8), 138 (7), 124 (8), 109 (7), 95 (3), 77 \\ \mbox{(5), 53 (5), 39 (3);} \end{array}$

HR-MS (EI, 70 eV): ber. für [M⁺]: 242.0613, gef.: 242.061.

Unter Argon wurden bei -50 °C 0.8 ml (1.2 mmol) 1.56M *n*-BuLi/Hexan-Lösung langsam zu einer Lösung von 319 mg (1 mmol) **121** in 10 ml absolutem THF gegeben. Nach Erwärmen auf -10 °C und Rühren bei dieser Temperatur für 15 min wurden bei -65 °C 0.16 ml (1.2 mmol) TMSCI langsam zugetropft. Die Reaktionsmischung wurde über Nacht bei RT gerührt und danach mit ges. NH₄CI-Lösung versetzt. Anschließend wurde dreimal mit MTBE extrahiert und die vereinigten organischen Phasen über MgSO₄ getrocknet. Nach Entfernen des Lösungsmittels unter vermindertem Druck und Aufreinigung mittels Flash-Säulenchromatographie (EtOAc / Hex = 1 : 6) wurden 113 mg (0.42 mmol, 42 %) des Produkts **131c** als klares Öl erhalten.

Molmasse (C₁₃H₂₀O₄Si): 286.381;

DC (EtOAc / Hexan = 1: 3): $R_f = 0.50$;

FT-IR (ATR): $\tilde{\nu} = 2944$ (m), 2894 (m), 2856 (m), 1745 (w), 1680 (s, C=O), 1572 (s), 1569 (s), 1471 (s), 1462 (s), 1454 (s), 1416 (s), 1891 (s), 1381 (s), 1313 (m), 1281 (s), 1262 (s), 1245 (s), 1218 (m), 1189 (m), 1078 (s, b), 1044 (m), 1001 (s), 964 (m), 915 (m), 861 (s), 837 (s), 817 (s), 797 (m), 732 (w), 692 (w), 627 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 10.24 (s, 1H; 1-C<u>H</u>O), 7.58 (s, 1H; 6-H), 4.01 (s, 3H, 2-OC<u>H</u>₃), 3.97 (s, 3H, 4-OC<u>H</u>₃), 3.85 (s, 3H, 3-OC<u>H</u>₃), 0.25 (s, 9H; 5-OSi(C<u>H</u>₃)₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 189.13 (d; 1-<u>C</u>HO), 164.09 (s; C-4), 159.14 (s; C-2), 144.40 (s; C-3), 129.22 (d; C-6), 128.78 (s; C-5), 125.03 (s; C-1), 62.24 (q; 2-O<u>C</u>H₃), 60.59 (q; 4-O<u>C</u>H₃), 60.51 (q; 3-O<u>C</u>H₃), -0.80 (q; 5-OSi(<u>C</u>H₃)₃);

GC-MS (50B300M, S1): τ_R = 8.51 min; (EI, 70 eV) m/z (%): 268 (33) [M⁺], 253 (66) [M⁺, -CH₃], 237 (5), 223 (100) [M⁺, -(CH₃)₃], 209 (11), 195 (8) [M⁺, -TMS], 193 (13), 179 (34), 165 (8), 149 (5), 135 (4), 119 (3), 105 (3), 89 (17), 73 (8) [TMS], 59 (16), 45 (5);

HR-MS (EI, 70 eV): ber. für [M⁺]: 286.1131, gef.: 286.112.

Unter Argon wurden unter gelegentlicher Eiskühlung 0.8 ml (1.2 mmol) 1.56M *n*-BuLi/Hexan-Lösung langsam zu einer Lösung von 319 mg (1 mmol) **121** in 10 ml absolutem Benzol gegeben. Nach Erwärmen auf RT und Rühren bei dieser Temperatur für 60 min wurde erst unter Eiskühlung (ca. 10 min) und anschließend bei RT bis zur völligen Entfärbung (ca. 1.5 h) Sauerstoff durch das Reaktionsgemisch geleitet. Das Reaktionsgemisch wurde in 20 ml 10%ige H₂SO₄ geschüttet und 2 h bei RT gerührt. Anschließend wurde dreimal mit Diethylether extrahiert und die vereinigten organischen Phasen mit ges. NaCl-Lösung gewaschen. Nach Entfernen des Lösungsmittels unter vermindertem Druck und Aufreinigung mittels Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) wurden 28 mg (0.13 mmol, 13 %) des Produkts **131d** als klares Öl erhalten.

Molmasse (C₁₀H₁₂O₅): 212.1993;

DC (EtOAc / Cx = 1 : 4): $R_f = 0.11$;

FT-IR (ATR): $\tilde{\nu} = 3384$ (m, b, O-H), 2938 (m), 2853 (m), 1680 (s, C=O), 1587 (s), 1469 (s), 1452 (s), 1416 (s), 1391 (m), 1359 (m), 1288 (s, b), 1255 (m), 1198 (m, b), 1167 (m), 1121 (s), 1092 (s), 1065 (s), 999 (s), 940 (m), 895 (w), 871 (w), 803 (w), 780 (w, b), 758 (m), 698 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 10.23 (s, 1H; 1-C<u>H</u>O), 7.12 (s, 1H; 6-H), 5.72 (s, 1H; 5- O<u>H</u>), 4.04 (s, 3H, 4-OC<u>H₃</u>), 3.92 (s, 3H, 3-OC<u>H₃</u>), 3.91 (s, 3H, 2-OC<u>H₃</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 188.76 (d; 1-<u>C</u>HO), 151.26 (s; C-3), 146.53 (d; C-4), 145.46 (s; C-2), 145.25 (s; C-5), 124.60 (s; C-1), 107.29 (s; C-6), 62.84 (q; 3-O<u>C</u>H₃), 61.25 (q; 4-O<u>C</u>H₃), 61.04 (q; 2-O<u>C</u>H₃);

GC-MS (50B300M, S1): $\tau_R = 8.22 \text{ min}$; (EI, 70 eV) m/z (%): 212 (100) [M⁺], 197 (36) [M⁺, -CH₃], 184 (9), 179 (23), 169 (17), 164 (8), 151 (17), 141 (20), 126 (19), 123 (11), 111 (8), 95 (9), 83 (14), 77 (5), 69 (9), 59 (2), 53 (16), 45 (3), 39 (6); **HR-MS** (EI, 70 eV): ber. für C₂₂H₂₆O₆ [M⁺]: 212.0685, gef.: 212.067.

6.10.12.1-(5-(1,3-Dioxolan-2-yl)-2,3,4-trimethoxyphenyl)piperidin (130b)

In einem verschließbaren Druckgefäß wurde unter Argon eine Mischung aus 125 mg (20 mol%) BINAP (**16**) und 92 mg (10 mol%) Pd(dba)₃ in 5 ml absolutem Toulol 15 min bei 120 °C gerührt. Anschließend wurden bei RT 319 mg (1 mmol) **121**, 0.25 ml (2 mmol) Piperidin und 144 mg (1.5 mmol) NaO*t*-Bu zugegeben und 4 h auf 130 °C erhitzt. Nach Kühlen auf RT wurde durch Celite filtiert und gründlich mit Essigester nachgespült. Das Filtrat wurde jeweils einmal mit NH₄Cl-Lösung und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Gradienten-Flash-Säulenchromatographie (EtOAc / Hexan = 1 : 5 - 1 : 2) konnten 140 mg (0.43 mmol, 43 %) des Produkts **130b** in Form leicht gelblicher Kristalle erhalten werden.

$$\label{eq:model} \begin{split} & \text{Molmasse} \; (C_{17}H_{25}NO_5) \text{: } 323.3841 \text{;} \\ & \text{DC} \; (\text{EtOAc / Hexan= 1: 2) \text{: } R_f = 0.30 \text{;} \\ & \text{FT-IR} \; (\text{ATR}) \text{: } \; \tilde{\nu} = 2931 \; (\text{s}, \, \text{b}), \; 2880 \; (\text{m}, \, \text{b}), \; 1584 \; (\text{w}, \, \text{b}), \; 1479 \; (\text{s}), \; 1462 \; (\text{s}), \; 1410 \; (\text{s}), \\ & 1388 \; (\text{s}, \, \text{b}), \; 1354 \; (\text{w}, \, \text{b}), \; 1290 \; (\text{s}), \; 1228 \; (\text{m}), \; 1215 \; (\text{m}), \; 1157 \; (\text{m}), \; 1124 \; (\text{m}), \; 1076 \; (\text{s}), \\ & 1061 \; (\text{s}), \; 1041 \; (\text{s}), \; 1003 \; (\text{s}), \; 947 \; (\text{m}), \; 909 \; (\text{w}), \; 869 \; (\text{w}), \; 795 \; (\text{w}), \; 745 \; \text{cm}^{-1} \; (\text{w}) \text{;} \end{split}$$

¹**H-NMR** (500 MHz, CDCl₃, 25 °C): δ = 6.82 (s, 1H; 6-H), 5.99 (s, 1H; 1´-H), 4.13-4.01 (m, AA'BB', 4H; 5´/5´´-H), 3.90 (s, 3H; 2-O<u>C</u>H₃), 3.88 (s, 3H; 4-O<u>C</u>H₃), 3.85 (s, 3H; 3-O<u>C</u>H₃), 2.95 (t, 4H; 2´/2´´-H), 1.68 (m, 4H; 3´/3´´-H), 1.52 (m, 2H; 4`-H);

¹³**C-NMR** (125.8 MHz, CDCl₃, 25 °C): δ = 147.89 (d; C-2), 147.19 (s; C-3), 146.78 (s; C-4), 143.48 (s; C-5), 125.04 (s; C-1), 110.61 (d; C-6), 99.58 (d; C-1[′]), 65.29 (t; C-5[′]/5[′]), 61.73 (q; 3-O<u>C</u>H₃), 61.11 (q; 4-O<u>C</u>H₃), 59.78 (q; 2-O<u>C</u>H₃), 52.27 (t, C-2[′]/2[′]), 26.56 (t, C-3[′]/3[′]), 24.42 (t, C-4[′]/4[′]);

GC-MS (50-300M, S1): $\tau_R = 9.47$ min; (EI, 70 eV) m/z (%): 323 (100) [M⁺], 308 (85), 293 (3), 278 (7), 264 (10), 250 (8), 236 (27), 220 (7), 206 (7), 192 (5), 178 (5), 164 (3), 150 (3), 136 (3), 122 (5), 108 (2), 94 (2), 73 (8), 59 (2), 45 (5), 41 (3).

6.10.13.2,3,4-Trimethoxy-5-(piperidin-1-yl)benzaldehyd (131b)

Entsprechend der allgemeinen Versuchvorschrift zur Freisetzung von Benzaldehyden wurde das Acetal **130b** (100 mg, 0.31 mmol) mit 2M HCl (2 ml) in CHCl₃ (2 ml) umgesetzt. Es wurde wie beschrieben aufgearbeitet. Nach Entfernen des Lösemittels und Flash-Säulenchromatographie konnten 87 mg (0.31 mmol, 100 %) des Produktes **131b** in Form farbloser Kristalle erhalten werden.

Molmasse (C₁₅H₂₁NO₄): 279.3315;

DC (EtOAc / Cx= 1: 2): $R_f = 0.50$;

FT-IR (ATR): $\tilde{\nu} = 2936$ (s), 2846 (m), 1681 (s, C=O), 1587 (m), 1470 (s), 1421 (s), 1388 (m), 1347 (m), 1290 (m), 1272 (m), 1213 (m), 1191 (w), 1157 (m), 1121 (m), 1075 (s), 1042 (m), 997 (s), 944 (w), 875 (w), 804 (w), 752 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 10.25 (s, 1H; 1-CHO), 7.15 (s, 1H; 6-H), 4.05 (s, 3H, 4-OC<u>H₃</u>), 4.00 (s, 3H, 4-OC<u>H₃</u>), 3.95 (s, 3H, 2-OC<u>H₃</u>), 2.96 (m, 4H; 2[′]/2^{′′}-H), 1.71 (m, 4H; 3[′]/3^{′′}-H), 1.55 (m, 2H; 4[′]-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 192.33 (d; 1-CHO), 153.33 (s; C-3), 146.65 (s; C-2), 142.51 (s; C-4), 124.23 (s; C-1), 111.21 (d; C-6), 62.61 (q; 3-O<u>C</u>H₃), 61.20 (q; 2-O<u>C</u>H₃), 60.05 (q; 4-O<u>C</u>H₃), 51.92 (t, N<u>C</u>H₂CH₂CH₂), 26.14 (t, NCH₂CH₂CH₂), 23.77 (t, NCH₂CH₂CH₂);^{yy}

GC-MS (50B300M, S1): $\tau_R = 9.96$ min; (EI, 70 eV) m/z (%): 279 (100) [M⁺], 264 (86), 248 (5), 234 (5), 221 (13), 206 (9), 192 (3), 178 (8), 165 (3), 150 (5), 134 (2), 122 (8), 107 (2), 94 (5), 80 (3), 67 (3), 55 (6), 41 (9).

6.10.14.3,3',4,4',5,5'-Hexamethoxy-6,6'-dimethyl-biphenyl-2,2'-dicarbaldehyd (*rac*-126)

Unter Argon wurden 125 mg (0.37 mmol) **125** in 3 ml trockenem DMF gelöst und dreimal entgast. Anschließend wurden 160 mg (2.5 mmol) Kupferpulver zugegeben und 16 h im Rückfluss erhitzt. Nach Filtration wurde gründlich mit Essigester gewaschen und das Filtrat dreimal mit Wasser und einmal mit ges. NaCl-Lösung gewaschen. Die organische Phase wurde über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 67 mg (0.33 mmol, 87 %) des Produkts *rac*-**126** erhalten werden.

Molmasse $(C_{22}H_{26}O_8)$: 418.437; Schmelzp. (Cx / EtOAc): 146.5-147.5 °C; DC (EtOAc / Cx= 1: 4): $R_f = 0.18$ FT-IR (ATR): $\tilde{\nu} = 2936$ (s), 2857 (s), 2752 (m), 1692 (s), 1580 (s), 1556 (s), 1462 (s), 1384 (s), 1349 (m), 1305 (s), 1288 (m), 1243 (m), 1196 (s), 1125 (s), 1105 (s), 1069 (s), 999 (s), 969 (s), 935 (w), 903 (w), 801 (m), 767 (w), 698 cm⁻¹ (w); ¹H-NMR (300 MHz, CDCl₃, 25 °C): $\delta = 9.94$ (s, 2H; 2/2⁻C<u>H</u>O), 3.97 (s, 6H; 3/3⁻OCH₃), 3.94 (s, 6H; 5/5⁻OCH₃), 3.94 (s, 6H; 4/4⁻OCH₃), 1.68 (s, 6H; 6/6⁻-CH₃);

^{yy} Das ¹³C-Signal von C-5, das die Piperidineinheit trägt, konnte nicht detektiert werden.

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 189.65 (d; 2/2´-<u>C</u>HO), 157.14 (s; C-5/5´), 155.57 (s; C-3/3´), 144.72 (s; C-4/4´), 136.40 (s; C-1/1´), 126.20 (s; C-6/6´), 123.53 (s; C-1/1´), 62.42 (q; 3/3´-O<u>C</u>H₃), 61.03 (q; 4/4´-O<u>C</u>H₃), 60.75 (q; 5/5´-O<u>C</u>H₃), 12.23 (q; 6/6´-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 11.51$ min; (EI, 70 eV) m/z (%): 418 (77) [M+], 403 (40) [M-CH₃], 389 (100), 375 (50), 359 (33), 343 (27), 329 (17), 315 (20), 301 (13), 285 (15), 271 (7), 257 (10), 241 (7), 227 (8), 213 (7), 187 (15), 172 (7), 158 (7), 141 (7), 128 (12), 115 (13), 91 (7), 77 (7), 63 (3), 43 (3);

HR-MS (EI, 70 eV): ber. für [M⁺]: 418.1628, gef.: 418.163;

EA (%) ber.: C 63.15 H 6.26, gef.: C 63.06 H 6.50;

X-ray: Von der Verbindung **126** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.7). Die röntgenografischen Daten befinden sich im Anhang (A30).

6.10.15. (3,3',4,4',5,5'-Hexamethoxy-6,6'-dimethylbiphenyl-2,2'-diyl)bis(methan-1-yl-1-ylidene)bis(hydrazin) (*rac-*127)

Zu einer Lösung von 275 mg (0.66 mmol) *rac*-**126** in 8 ml Isopropanol wurden unter Wasserkühlung 0,15 ml (2 mmol) Hydrazinhydrat getropft und 1,5 h bei Raumtemperatur gerührt. Nach Entfernen der flüchtigen Bestandteile unter vermindertem Druck wurde der feste Rückstand für 5 h im Ölpumpenvakuum getrocknet. Es wurden 315 mg des Rohproduktes von *rac*-**127** erhalten und ohne weitere Aufreinigung weiterumgesetzt (siehe 6.10.16).

Molmasse $(C_{22}H_{30}N_4O_6)$: 446.4968.

6.10.16.4,5-Dimethyl-1,2,3,6,7,8-hexamethoxyphenanthren (208)

Unter Argon wurden 131 mg CuCl in 4 ml absolutem Pyridin suspendiert, woraufhin eine intensiv gelbe Lösung entstand. Durch diese Lösung wurde 30 min Sauerstoff durchgeleitet, wobei die Lösung dunkelgrün färbte. Zu dieser Lösung wurden 315 mg (max. 0.66 mmol) des Rohproduktes *rac*-**127** (siehe 6.10.15) in 4 ml absolutem Pyridin getropft und bei Raumtemperatur gerührt, bis keine weitere Gasentwicklung mehr festzustellen war (ca. 2 h). Die braune Reaktionsmischung wurde vorsichtig in 40 ml eisgekühlte 10%ige Salzsäure gegeben und nach Erwärmen auf Raumtemperatur dreimal mit DCM extrahiert. Die tiefrote, organische Phase wurde je einmal mit Wasser und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 82 mg (0.21 mmol, 32 % über zwei Stufen) des Produkts *rac*-**120** als gelbliches, hochviskoses Öl erhalten werden, das innerhalb weniger Wochen teilweise kristallisierte.

Molmasse $(C_{22}H_{26}O_6)$: 386.4382;

DC (EtOAc / Cx = 1 : 4): $R_f = 0.44$;

FT-IR (ATR): $\tilde{\nu} = 2960$ (m), 2933 (s), 2832 (m), 1573 (w), 1503 (m), 1462 (s), 1451 (s), 1401 (s), 1383 (s), 1370 (s), 1286 (s), 1237 (w), 1194 (m), 1104 (s), 1086 (s), 1048 (s), 1006 (s), 973 (m), 938 (w), 921 (w), 890 (w), 819 (m), 633 cm⁻¹ (w);

¹**H-NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.82 (s, 2H; DoBi), 4.05 (s, 6H; 2/7-OC<u>H₃</u>), 4.03 (s, 6H; 1/8-OC<u>H₃</u>), 3.96 (s, 6H; 3/6-OC<u>H₃</u>), 2.38 (s, 6H; 4/5-C<u>H₃</u>);

¹³**C-NMR** (125.8 MHz, CDCl₃, 25 °C): δ = 151.14 (s; C-3/6), 146.03 (s; C-1/8), 143.68 (s; C-2/7), 127.46 (s; C-4a/5a), 124.83 (s; C-4/5), 124.83 (s; C-9a/10a), 118.80 (d; DoBi), 61.80 (q; 1/8-O<u>C</u>H₃), 60.93 (q; 2/7-O<u>C</u>H₃), 60.39 (q; 3/6-O<u>C</u>H₃), 17.18 (q; 4/5-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 12.13$ min; (EI, 70 eV) m/z (%): 386 (100) [M+], 371 (13) [M-CH₃], 356 (5) [M-2CH₃], 343 (8), 328 (12), 312 (8), 298 (5), 285 (7), 270 (3), 257 (5), 227 (5), 193 (5), 139 (3);

HR-MS (EI, 70 eV): ber. für C₂₂H₂₆O₆ [M⁺]: 386.1729, gef.: 386.173;

X-ray: Von der Verbindung **120** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.1.7). Die röntgenografischen Daten befinden sich im Anhang (A31).

6.10.17.4,5-Dimethylphenanthren-1,2,3,6,7,8-hexol (rac-128)

Unter Schutzgasatmosphäre wurde zu einer Lösung von 39 mg (0.1 mmol) *rac-120* in 0,5 ml absolutem Dichlormethan 1 ml (1 mmol) 1M BBr₃ in Dichlormethan bei -70 °C zugegeben und nach Erwärmen auf Raumtemperatur 1 h gerührt. Die Reaktionsmischung wurde auf 10 ml Eiswasser gegeben und viermal mit Essigester extrahiert. Nach Trocknen über MgSO₄ und Entfernen der flüchtigen Bestandteile unter vermindertem Druck wurde der feste Rückstand im Ölpumpenvakuum getrocknet. Es wurden 29 mg (max. 0.96 mmol, 96 %) des Rohproduktes von *rac-***128** erhalten und ohne weitere Aufreinigung weiterumgesetzt (siehe 6.10.18).

Alle angegeben analytischen Daten wurden aus dem Rohprodukt gewonnen.

 $\label{eq:masse} \begin{array}{l} \mbox{Molmasse} \ (C_{16}H_{14}O_6): \ 302.2788; \\ \mbox{DC} \ (EtOAc \ / \ Hex = 1:1): \ R_f = 0.05 \\ \ ^1\mbox{H-NMR} \ (250 \ \ MHz, \ \ DMSO-d6, \ 25 \ \ ^C): \ \delta = \ 7.53 \ (s, \ 2H; \ \ DoBi), \ 2.25 \ (s \ (b), \ 6H; \\ \ 1/2/3/6/7/8-O\underline{H}), \ 2.18 \ (s, \ 6H; \ 4/5-C\underline{H}_3); \end{array}$

6.10.18.4,5-Dimethylphenanthren-1,2,3,6,7,8-hexayl-hexaundecanoat (*rac-*129)

Zu einer Suspension von 24 mg (0.08 mmol) *rac-128* in 15 ml absolutem Dichlormethan wurden bei Raumtemperatur in folgender Reihenfolge 147 mg (0.8 mmol) Undecansäure, 163 mg (0.8 mmol) DCC und 11 mg (0.08 mmol) DMAP zugegeben und 60 h gerührt. Die bräunliche, leicht trübe Reaktionsmischung wurde durch Celite filtriert und das Lösemittel unter vermindertem Druck entfernt. Nach Flash-Säulenchromatographie (MTBE / Hex = 1 : 5) konnten 11 mg (0.008 mmol, 11 % über zwei Stufen) des Produkts *rac-129* erhalten werden.

Molmasse (C₈₂H₁₃₄O₁₂): 1311.9342;

DC (MTBE / Hex = 1 : 4): $R_f = 0.30$;

FT-IR (ATR): $\tilde{v} = 2932$ (s), 2922 (s), 2920 (s), 2852 (s),1778 (s, COOAr),1777 (s, COOAr), 1770 (s, COOAr), 1720 (s), 1464 (s), 1462 (s), 1454 (s), 1416 (m), 1375 (m, b), 1291 (m), 1184 (m, b), 1133 (s), 1103 (s), 939 (w), 893 (w), 806 (w, b), 721 cm⁻¹ (w);

¹**H-NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.53 (s, 2H; DoBi), 2.66 (t, 4H; ArOC(O)C<u>H</u>₂CH₂), 2.57 (t, 4H; ArOC(O)C<u>H</u>₂CH₂), 2.54 (t, 4H; ArOC(O)C<u>H</u>₂CH₂), 2.31 (s, 6H; 4/5-C<u>H</u>₃), 1.83-1.70 (m, 12H; C<u>H</u>₂), 1.45-1.20 (m, 84H; C<u>H</u>₂), 0.85-0.88 (m, 18H; CH₂C<u>H</u>₃).

¹³**C-NMR** (125.8 MHz, CDCl₃, 25 °C): δ = 170.75 (s; <u>C</u>OOAr), 170.37 (s; <u>C</u>OOAr), 169.86 (s; <u>C</u>OOAr), 141.32 (s; C-4/5), 136.49 (s; C-1/8), 133.93 (s; C-2/7), 128.65 (s; C-4a/5a), 128.09 (s; C-3/6), 125.47 (s; C-9a/10a), 120.01 (d; DoBi), 34.04 (t; ArOC(O)<u>C</u>H₂CH₂), 33.96 (t; ArOC(O)<u>C</u>H₂CH₂), 33.87 (t; ArOC(O)<u>C</u>H₂CH₂), 31.89-22.69 (24 x t; <u>C</u>H₂), 17.77 (q; 4/5-<u>C</u>H₃), 7.53 (q; CH₂<u>C</u>H₃);

UV-MALDI-MS (MeOH; EI, 70 eV): 1334.8 [M+Na]⁺.

6.11. Darstellung von 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphanen

6.11.1. Synthese von Benzylalkoholen

6.11.1.1. Allgemeine Versuchsvorschrift zur Reduktion von Benzoesäuren zu Benzylalkoholen

Unter Argonatmosphäre wird bei 0 ℃ die jeweilige Benzoesäure **XXXIV** portionsweise zu einer Suspension von LAH in absolutem THF gegeben. Anschließend wird 3 h zum Rückfluß erhitzt. Nach Kühlen auf 0 ℃ wird erst vorsichtig Wasser und danach reichlich 2M Kalium-Natrium-Tartrat-Lösung zugegeben. Die Phasen werden getrennt und die wässrige Phase dreimal mit MTBE extrahiert. Die vereinigten organischen Phasen werden über MgSO₄ getrocknet und das Lösemittel unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.11.1.2. 3,5-Dimethylbenzylalkohol (142)

Entsprechend der allgemeinen Versuchvorschrift zur Reduktion von Benzoesäuren wurde 3,5-Dimethylbenzoesäure (5.0 g, 33.3 mmol) mit LAH (1.60 g, 42 mmol) in absolutem THF (210 ml) umgesetzt. Es wurden 4.53 g (33.0 mmol, 99 %; Lit.^[360]: 88 %) des Produktes **142** als farbloses Öl erhalten.

Das Produkt **142** entspricht den analytischen Literaturdaten.^[360, 361]

 $\label{eq:masse} \begin{array}{l} \mbox{Molmasse} \ (C_9H_{12}O): 136.191; \\ \mbox{DC} \ (EtOAc \ / \ Hex = 1 \ : \ 2): \ R_f = 0.31; \\ \ ^1\mbox{H-NMR} \ (300 \ \ MHz, \ CDCl_3, \ 25 \ \ ^C): \ \delta = 6.97 \ (s, \ 2H; \ 2/6-H), \ 6.93 \ (s, \ 1H; \ 4-H), \ 4.58 \ (s, \ 2H; \ 1-C\underline{H}_2OH), \ 2.32 \ (s, \ 6H; \ 3/5-C\underline{H}_3), \ 2.08 \ (s, \ 1H; \ 1-CH_2O\underline{H}); \\ \ ^1\mbox{'}\ C-MR \ (75.5 \ \ MHz, \ CDCl_3, \ 25 \ \ ^C): \ \delta = 140.76 \ (s; \ C-1), \ 138.05 \ (s; \ C-3/5), \ 129.13 \ (d; \ C-4), \ 124.76 \ (d; \ C-2/6), \ 65.22 \ (t; \ 1\underline{C}H_2OH), \ 21.18 \ (q; \ 3/5-\underline{C}H_3); \end{array}$

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50-300M; S2): } \tau_{R} = 5.75 \mbox{ min; (EI, 70 eV) m/z (\%): 136 (100) [M+], 121 (85) \\ \mbox{[M-CH}_{3}], 107 (51), 93 (71), 91 (86), 77 (41), 65 (14), 51 (10), 39 (10). \end{array}$

6.11.1.3. 4-Methoxy-3,5-dimethylbenzylalkohol (144)

Entsprechend der allgemeinen Versuchvorschrift zur Reduktion von Benzoesäuren wurde 4-Methoxy-3,5-dimethylbenzoesäure (5.0 g, 27.7 mmol) mit LAH (1.37 g, 36 mmol) in absolutem THF (180 ml) umgesetzt. Es wurden 4.52 g (27.2 mmol, 98 %) des Produktes **144** als farbloses Öl erhalten.

Das Produkt **144** entspricht den analytischen Literaturdaten.^{[362, 363],zz}

Molmasse (C₁₀H₁₄O₂): 166.217;

DC (EtOAc / Hex = 1 : 2): $R_f = 0.28$;

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 6.98 (s, 2H; 2/6-H), 4.53 (d, 2H, ³J = 4.8 Hz; 1-C<u>H</u>₂OH), 3.69 (s, 3H; 4-OC<u>H</u>₃) 2.26 (s, 6H; 3/5-C<u>H</u>₃), 1.88 (t, 1H, ³J = 4.8 Hz; 1-CH₂O<u>H</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 140.76 (s; C-1), 138.05 (s; C-3/5), 129.13 (d; C-4), 124.76 (d; C-2/6), 65.22 (t; 1<u>C</u>H₂OH), 21.18 (q; 3/5-<u>C</u>H₃);

 $\label{eq:GC-MS} \begin{array}{l} \mbox{(50-300M; S2): } \tau_{R} = 6.86 \mbox{ min; (EI, 70 eV) } m/z \ (\%): 166 \ (100) \ [M+], \ 151 \ (49) \\ \mbox{[M-CH}_{3}], \ 137 \ (41), \ 123 \ (47), \ 107 \ (32), \ 91 \ (53), \ 77 \ (29), \ 65 \ (12), \ 51 \ (7), \ 39 \ (10). \end{array}$

^{zz} Baddeley *et al.* erhielten den Alkohol durch Reduktion des Ethylesters von **144**, aber es wurden keine Ausbeute oder analytische Daten angegeben.

6.11.2. Synthese von lodbenzylalkoholen

6.11.2.1. Allgemeine Versuchsvorschrift zur Synthese von *ortho*-lodbenzylalkoholen (Methode A)

In einem Schlenkkolben wird unter Argonatmosphäre der jeweilige Benzylalkohol **XXXIII** in trockenem Benzol vorgelegt und *n*-BuLi in Hexan unter Eiskühlung innerhalb von 45 min zugegeben. Es wird 2 h bei Raumtemperatur gerührt und anschließend lod in THF langsam zugetropft bis keine sofortige Entfärbung mehr zu sehen ist. Die Reaktion wird durch Zugabe ges. NH₄Cl-Lösung gestoppt und die wässrige Phase dreimal mit EtOAc extrahiert. Die vereinigten organischen Phasen werden je einmal mit Na₂S₂O₃-Lösung und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösemittel unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.11.2.2. Allgemeine Versuchsvorschrift zur Synthese von *ortho*-lodbenzylalkoholen (Methode B)

In einem Schlenkkolben unter Argonatmosphäre wird zu einer Suspension von AgO₂CCF₃ und dem jeweiligen Benzylalkohol **XXXIII** in absolutem CHCl₃ eine Lösung von Iod in CHCl₃ innerhalb von 4 h zugegeben. Nach beendeter Zugabe wird 2 h bei Raumtempertatur gerührt. Anschließend wird über wenig Kieselgel filtriert und mit EtOAc nachgespült. Die vereinigten organischen Phasen werden mit ges. Na₂S₂O₃-Lösung gewaschen und das Lösemittel unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie aufgereinigt.

6.11.2.3. 2-lod-3-methoxybenzylalkohol (88)

Entsprechend der Methode **A** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lodbenzylalkoholen wurde 3-Methoxybenzylalkohol (**87**) (3.11 ml, 25 mmol) in trockenem Benzol (80 ml) zunächst mit 1.6M *n*-BuLi-Lösung in Hexan (34.4 ml, 55 mmol) und einer Lösung von lod (12.7 g, 50 mmol) in absolutem THF (40 ml)

umgesetzt. Nach Gradienten-Flash-Säulenchromatographie (EtOAc / Hex = 1 : 3 - 1 : 0) konnten 5.28 g (20 mmol, 80 %) des Produktes **88** als leicht gelbliche Kristalle erhalten werden.

Das Produkt 88 entspricht den analytischen Literaturdaten.^[235]

Molmasse (C₈H₉IO₂): 264.0603; **Schmelzp.** (EtOAc): 88.5 ℃ (Lit.^[235]: 88-89 ℃);

DC (Hex / EtOAc = 2: 1): $R_f = 0.30$;

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.30 (t, 1H, ³J = 8.0 Hz; 5-H), 7.07 (ddd, 1H, ³J = 8.0 Hz, ⁴J = 1.1 Hz, 0.6 Hz; 6-H), 6.75 (dd, 1H, ³J = 8.0 Hz, ⁴J = 1.1 Hz; 4-H), 4.70 (dd, 2H, ³J = 5.5 Hz, ⁴J = 0.6 Hz; 1-C<u>H</u>₂OH), 3.89 (s, 3H; OC<u>H</u>₃), 2.06 (t, 1H, ³J = 5.5 Hz; 1-CH₂O<u>H</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 157.75 (s; C-3), 144.42 (s; C-1), 129.43 (d; C-5), 120.95 (d; C-6), 110.15 (d; C-4), 89.42 (s; C-2), 69.75 (t; 1-C<u>H</u>₂OH), 56.60 (q; 3-O<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 8.15$ min; (EI, 70 eV) m/z (%): 264 (83) [M+], 248 (41), 233 (8) [M-OCH₃], 218 (2), 203 (3), 193 (2), 176 (2), 164 (2), 149 (2), 136 (20) [M-I],135 (29), 127 (44)[I], 122 (29), 107 (53), 91 (63), 77 (100), 65 (44), 51 (42), 39 (29); **X-ray**: Von der Verbindung **88** konnte eine Röntgenstrukturanalyse durchgeführt werden (siehe Durchführung Kap. 4.2.1). Die röntgenografischen Daten befinden sich im Anhang (A20).

6.11.2.4. 2-lod-5-methoxybenzylalkohol^[238] (134)

Entsprechend der Methode **B** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lodbenzylalkoholen wurde 3-Methoxybenzylalkohol (**87**) (1.45 g, 10.5 mmol) mit AgOOCCF₃ (2.32 g, 10.5 mmol) und lod (2.67 g, 10.5 mmol) in absolutem CHCl₃ (350 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / CHCl₃ = 1 : 7) konnten 2.45 g (9.2 mmol, 88 %) des Produktes **134** als leicht gelbliche Kristalle erhalten werden.

Das Produkt **134** entspricht den analytischen Literaturdaten.^[238, 337]

Molmasse (C₈H₉IO₂): 264.0603;

Schmelzp. (EtOAc): 62 °C (Lit.^[238]: 64-65 °C);

 $\label{eq:def} \textbf{DC} \; (EtOAc \; / \; Hex = 1 \; : 2): \; R_f = 0.34;$

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.65 (d, 1H, ³J = 8.6 Hz; 3-H), 7.05 (d, 1H, ⁴J = 3.1 Hz; 6-H), 6.58 (dd, 1H, ³J = 8.6 Hz, ⁴J = 3.1 Hz; 4-H), 4.70 (s, 2H; 1-C<u>H</u>₂OH), 3.79 (s, 3H; 5-OC<u>H</u>₃), 2.00 (s, 1H; 1-CH₂O<u>H</u>);

GC-MS (50-300M; S2): $\tau_R = 8.15$ min; (EI, 70 eV) m/z (%): 264 (100) [M+], 247 (8), 233 (9) [M-OCH₃], 231 (10), 218 (5), 203 (3), 191 (2), 165 (2), 135 (42), 127 (32) [I], 122 (17), 109 (71), 94 (53), 77 (56), 66 (25), 51 (14), 39 (12);

X-ray: Von der Verbindung **134** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.1). Die röntgenografischen Daten befinden sich im Anhang (A34).

6.11.2.5. 2-lod-3,5-dimethylbenzylalkohol (143)

Entsprechend der Methode **B** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lodbenzylalkoholen wurde 3,5-Dimethylbenzylalkohol (**142**) (2.82 g, 20.7 mmol) mit AgOOCCF₃ (4.58 g, 20.7 mmol) und lod (5.26 g, 20.7 mmol) in absolutem CHCl₃ (340 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 3) konnten 3.11 g (11.8 mmol, 57 %) des Produktes **143** als leicht gelbliche Kristalle erhalten werden. Als Nebenprodukt wurde das Regioisomer **143a** in einer Ausbeute von 21 % isoliert (siehe 6.11.2.6).

Molmasse (C₉H₁₁IO): 262.0875;

Schmelzp. (EtOH): 82 °C;

DC (EtOAc / Hex = 1 : 3): $R_f = 0.32$;

FT-IR (ATR): $\tilde{v} = 3290$ (s, b), 3028 (w), 2912 (m), 2880 (w), 1453 (s), 1414 (s), 1375 (m), 1352 (m), 1296 (w), 1215 (w, b), 1166 (m), 1082 (s), 1061 (s), 1004 (s), 978 (m), 961 (w), 917 (w), 881 (w), 850 (s), 721 (w, b), 690 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.04 (s, 1H; 6-H), 6.99 (s, 1H; 4-H), 4.63 (d, 2H, ³J = 6.2 Hz; 1-CH₂OH), 2.41 (s, 3H; 3-CH₃), 2.27 (s, 3H; 5-CH₃), 2.13 (t, 1H, ³J = 6.2 Hz; 1-CH₂OH);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 142.81 (s; C-1), 141.75 (s; C-3), 137.95 (s; C-5), 129.90 (d; C-4), 126.64 (d; C-6), 100.53 (s; C-2), 70.11 (t; 1-CH₂OH), 28.79 (q; 3-<u>C</u>H₃), 20.72 (q; 5-<u>C</u>H₃);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 7.92 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 262 \ (100) \ [\text{M+]}, \ 246 \ (8), \\ 233 \ (2), \ 221 \ (2), \ 207 \ (2), \ 191 \ (1), \ 178 \ (1), \ 165 \ (1), \ 135 \ (18) \ [\text{M-I]}, \ 133 \ (29), \ 135 \ (29), \\ 127 \ (20) \ [\text{I]}, \ 117 \ (12), \ 107 \ (56), \ 91 \ (78), \ 77 \ (24), \ 63 \ (10), \ 51 \ (10), \ 39 \ (8); \\ \textbf{HR-MS} \ (\text{EI}, \ 70 \ \text{eV})\text{: ber. für } \ \textbf{M}^+\text{: } 261.9854, \ \text{gef.: } 212.985. \end{array}$

6.11.2.6. 4-lod-3,5-dimethylbenzylalkohol (143a)

Bei der Synthese von **143** entsprechend Methode **B** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lodbenzylalkoholen (6.11.2.5) wurde nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 2) zusätzlich das regioisomere Produkt **143a** zu 21 % als leicht gelbliche Kristalle erhalten.

Molmasse (C₉H₁₁IO): 262.0875; Schmelzp. (EtOAc / Hex): 84 - 85 °C (Lit.^[340]: 82 - 83 °C); DC (EtOAc / Hex = 1 : 2): $R_f = 0.33$;

FT-IR (ATR): $\tilde{\nu} = 3301$ (s, b), 2920 (m), 2848 (m), 1443 (m), 1413 (m), 1378 (m), 1341 (m), 1293 (w), 1272 (w), 1245 (w), 1164 (w), 1046 (s), 1004 (s), 950 (w), 929 (w), 875 (w), 852 (s), 732 (w, b), 699 cm⁻¹ (m);

¹**H-NMR** (250 MHz, CDCl₃, 25 °C): δ = 7.04 (s, 2H; 2/6-H), 4.58 (s, 2H; 1-C<u>H</u>₂OH), 2.46 (s, 6H; 3/5-C<u>H</u>₃);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 8.02 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 262 \ (100) \ [\text{M+]}, \ 246 \ (12), \\ 233 \ (3), \ 221 \ (2), \ 207 \ (2), \ 139 \ (10), \ 127 \ (22) \ [\text{I}], \ 119 \ (12), \ 117 \ (10), \ 115 \ (12), \ 107 \ (42), \\ 91 \ (58), \ 77 \ (19), \ 65 \ (7), \ 63 \ (7), \ 51 \ (8), \ 39 \ (7); \end{array}$

X-ray: Von der Verbindung **143a** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.1). Die röntgenografischen Daten befinden sich im Anhang (A35).

6.11.2.7. 2-lod-4-methoxy-3,5-dimethylbenzylalkohol (145)

Entsprechend der Methode **B** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lod-benzylalkoholen wurde 4-Methoxy-3,5-dimethylbenzylalkohol (**144**) (249 mg, 1.5 mmol) mit AgOOCCF₃ (330 mg, 1.5 mmol) und lod (375 mg, 1.5 mmol) in absolutem CHCl₃ (52 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 3.5) konnten 193 mg (0.66 mmol, 44 %) des Produktes **145** als leicht gelbliche Kristalle erhalten werden.

Molmasse (C₁₀H₁₃IO₂): 292.1135;

Schmelzp. (EtOH): 64-66 °C;

DC (EtOAc / Hex = 1 : 3): $R_f = 0.29$;

FT-IR (ATR): $\tilde{v} = 3380$ (s, b), 2982 (m), 2937 (s), 2849 (m), 1584 (w), 1565 (w), 1461 (s), 1454 (s), 1448 (s), 1406 (s), 1376 (m), 1344 (w), 1301 (s), 1226 (s), 1190 (m), 1152 (s), 1069 (s), 1005 (s), 935 (m), 874 (m), 768 (m), 732 (w), 695 (w), 674 (w), 650 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.12 (s, 1H; 6-H), 4.61 (s, 2H; 1-C<u>H</u>₂OH), 3.66 (s, 3H; 4-OC<u>H</u>₃), 2.41 (s, 3H; 3-C<u>H</u>₃), 2.24 (s, 3H; 5-C<u>H</u>₃), 2.26 (s, 1H; 1-CH₂O<u>H</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 155.89 (s; C-4), 138.62 (s; C-1), 135.10 (s; C-3), 130.92 (s; C-5), 128.65 (d; C-6), 102.34 (s; C-2), 69.98 (t; 1-CH₂OH), 60.05 (q; 4-O<u>C</u>H₃), 22.20 (q; 3-<u>C</u>H₃), 15.88 (q; 5-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 8.79$ min; (EI, 70 eV) m/z (%): 292 (100) [M+], 275 (12) [M-CH₂OH], 261 (5), 247 (2), 231 (2), 207 (1), 163 (15) [M-HI], 149 (19), 137 (51), 127 (21) [I], 122 (32), 105 (19), 91 (31), 77 (22), 65 (8), 51 (5), 39 (5); **HR-MS** (EI, 70 eV): ber. für M⁺: 291.9960, gef.: 212.995.

6.11.2.8. 5-lod-2,3,4-Trimethoxybenzylalkohol (141)

Entsprechend der Methode **B** der allgemeinen Versuchvorschrift zur Synthese von *ortho*-lodbenzylalkoholen wurde 2,3,4-Methoxybenzylalkohol (**139**) (1.68 g, 8.5 mmol) mit AgOOCCF₃ (1.88 g, 8.5 mmol) und lod (2.16 g, 8.5 mmol) in absolutem CHCl₃ (290 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / CHCl₃ = 1 : 20) wurden jedoch anstatt des erwarteten *ortho*-Produktes **y135** 1.35 g (4.2 mmol, 49 %) des *meta*-Produktes **141** als leicht gelbliches Öl erhalten werden.

Molmasse (C₁₀H₁₃IO₄): 324.1123;

DC (EtOAc / CHCl₃ = 1: 20): $R_f = 0.14$;

FT-IR (ATR): $\tilde{v} = 3400$ (s, b), 2981 (m), 2935 (s), 2866 (m), 2832 (w), 1581 (w), 1558 (w), 1468 (s), 1461 (s), 1454 (s), 1415 (s), 1396 (s), 1283 (m), 1219 (m), 1174 (m), 1088 (s), 1051 (m), 1001 (s), 947 (m), 908 (w), 871 (w), 784 (m), 715 (w), 673 cm⁻¹ (w);

¹**H-NMR** (500 MHz, CDCl₃, 25 °C): δ = 7.44 (s, 1H; 6-H), 4.55 (s, 2H; 1-C<u>H</u>₂OH), 3.89 (s, 3H; 2-OC<u>H</u>₃), 3.86 (s, 3H; 4-OC<u>H</u>₃), 3.83 (s, 3H; 3-OC<u>H</u>₃), 2.26 (s, 1H; 1-CH₂O<u>H</u>); ¹³**C-NMR** (125.8 MHz, CDCl₃, 25 °C): δ = 153.40 (s; C-3), 152.25 (s; C-2), 146.24 (s; C-4), 132.07 (d; C-6), 131.90 (s; C-1), 84.92 (s; C-5), 61.17 (q; 2-OC<u>H</u>₃), 60.87 (q; 4-O<u>C</u>H₃), 60.79 (q; 3-O<u>C</u>H₃), 60.55 (t; 1-<u>C</u>H₂OH);

GC-MS (50-300M; S2): $\tau_R = 8.91$ min; (EI, 70 eV) m/z (%): 324 (100) [M⁺], 309 (8) [M-CH₃], 292 (7), 280 (3), 266 (5), 248 (3), 232 (2), 221 (2), 207 (2), 195 (2), 182 (7), 167 (7), 154 (8), 139 (8), 128 (14), 127 (14) [I], 109 (3), 107 (3), 105 (3), 91 (10), 77 (5), 65 (5), 53 (7), 39 (3);

HR-MS (EI, 70 eV): ber. für M⁺: 323.9859, gef.: 323.986.
6.11.3. Synthese von Dioxocinen

6.11.3.1. Allgemeine Versuchsvorschrift zur Kupfer-vermittelten Kupplung von ortho-lodbenzylalkoholen

In einem Schlenkkolben wird unter Argonatmosphäre der jeweilige *ortho*-lodbenzylalkohol **XXXII** in trockenem DMF vorgelegt und die Lösung dreimal entgast. Nach Zugabe des aktivierten Kupfers wird 18h zum Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wird das Reaktionsgemisch über Glaswolle filtriert und der feste Rückstand mit reichlich Essigester gewaschen. Die vereinigten organischen Phasen werden dreimal mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösemittel unter vermindertem Druck entfernt. Das erhaltene Rohprodukt wird mittels Flash-Säulenchromatographie bzw. Umkristallisation aufgereinigt.

6.11.3.2. 2,5-Dioxa-1,4(1,2)-dibenzenacyclohexaphan (132)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lodbenzylalkohol (**149**) (468 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 7.5 mmol) in trockenem DMF (12 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 10) und Umkristallisation aus EtOAc konnten 40 mg (0.19 mmol, 19 %) des Produktes **132** als farblose Kristalle erhalten werden.

Die analytischen Daten entsprechen bis auf die NMR-Verschiebungen den Literaturwerten.^[182] Bei den NMR-Daten stimmen Anzahl, Multiplizitäten und Kopplungen der einzelnen Signale mit den Literaturangaben^[182] überein, jedoch sind die dort angegebenen Verschiebungen im hohen ppm-Bereich tieffeld- und im niedrigen hochfeld-verschoben.

Molmasse $(C_{14}H_{12}O_2)$: 212.2439; Schmelzp. (EtOAc): 113.5 °C; DC (EtOAc / Cx = 1 : 4): R_f = 0.55; **FT-IR** (ATR): $\tilde{\nu} = 3064$ (w), 3030 (w), 2935 (w), 2880 (w), 1600 (m), 1579 (m), 1489 (s), 1448 (m), 1367 (w), 1303 (w), 1276 (s), 1217 (s), 1186 (m), 1104 (m), 1031 (w), 990 (s), 966 (s), 946 (w), 881 (w), 846 (w), 773 (s), 764 (s), 731 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.29 (m, 2H, ⁴J = 1.7 Hz; 1⁵/4⁵), 7.24 (m, 2H, ⁴J = 1.7 Hz; 1³/4³), 7.10 (dd, 2H, ³J = 8.0 Hz, ⁴J = 1.1 Hz; 1⁶/4⁶), 7.05 (dt, 2H, ³J = 7.2 Hz, ⁴J = 1.1 Hz; 1³/4³), 5.12 (s, 4H; 3/6-H);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 159.90$ (s; C-1¹/4¹), 130.66 (d; C-1³/4³), 129.85 (d; C-1⁵/4⁵), 129.74 (s; C-1²/4²), 123.39 (d; C-1⁴/4⁴), 121.63 (d; C-1⁶/4⁶), 75.10 (t; C-3/6);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 8.43 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 212 \ (47) \ [\text{M+]}, \ 195 \ (15), \\ 184 \ (3), \ 170 \ (5), \ 155 \ (4), \ 135 \ (2), \ 119 \ (2), \ 106 \ (19) \ [\text{M/2]}, \ 89 \ (3), \ 78 \ (100), \ 63 \ (3), \ 51 \ (12), \ 39 \ (10); \end{array}$

HR-MS (EI, 70 eV): ber. für C₁₄H₁₂O₂ [M⁺]: 212.0837, gef.: 212.083;

X-ray: Von der Verbindung **132** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A33).

6.11.3.3. 1^{6} , 4^{6} -Dimethoxy-2, 5-dioxa-1, 4(1, 2)-dibenzenacyclohexaphan (91)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-3-methoxybenzylalkohol (**87**) (528 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 7.5 mmol) in trockenem DMF (12 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 5) und Umkristallisation aus EtOAc konnten 79 mg (0,29 mmol, 29 %) des Produktes **91** als farblose Kristalle erhalten werden.

Molmasse $(C_{16}H_{16}O_4)$: 272.2958; Schmelzp. (EtOAc): 169-172 °C; DC (EtOAc / Cx = 1 : 5): R_f = 0.23; **FT-IR** (ATR): $\tilde{\nu} = 3017$ (w), 2955 (w), 2931 (w), 2839 (w), 1582 (m), 1485 (s), 1435 (s), 1361 (w), 1305 (m), 1283 (s), 1261 (s), 1244 (m), 1201 (m), 1182 (m), 1079 (s), 992 (m), 963 (m), 930 (w), 827 (w), 776 (m), 764 (s), 738 (m), 694 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.00 ("t", 2H, ³J = 8.2 Hz, ³J = 7.4 Hz; 1⁴/4⁴-H), 6.89 (dd, 2H, ³J = 8.2 Hz, ⁴J = 1.6 Hz; 1⁵/4⁵-H), 6.81 (dd, 2H, ³J = 7.4 Hz, ⁴J = 3.0 Hz; 1³/4³-H), 5.08 (s, 4H; 3/6-H), 3.87 (s, 6H; 1⁶/4⁶-OC<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 152.58$ (s; C-1⁶/4⁶), 148.68 (s; C-1¹/4¹), 132.89 (s; C-1²/4²), 124.00 (d; C-1⁴/4⁴), 121.36 (d; C-1³/4³), 112.35 (d; C-1⁵/4⁵), 75.33 (t; C-3/6), 55.75 (q; 1⁶/4⁶-O<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 10.02$ min; (EI, 70 eV) m/z (%): 272 (49) [M+], 267 (2), 260 (2), 251 (4), 241 (7) [M-OCH₃], 225 (3), 209 (10), 196 (7), 189 (3), 181 (5), 168 (7), 152 (2), 136 (100) [M/2], 123 (8), 115 (5), 106 (44), 93 (14), 84 (3), 78 (14), 65 (66), 58 (5), 51 (10), 39 (15);

HR-MS (EI, 70 eV): ber. für C₁₆H₁₆O₄ [M⁺]: 272.1049, gef.: 272.105;

X-ray: Von der Verbindung **91** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A21).

6.11.3.4. 1^4 , 4^4 -Dimethoxy-2, 5-dioxa-1, 4(1,2)-dibenzenacyclohexaphan (152)

152

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-5-methoxybenzylalkohol (**134**) (565 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 10 mmol) in trockenem DMF (10 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 4) konnten 36 mg (0,13 mmol, 13 %) des Produktes **152** als farblose Kristalle erhalten werden.

 $\label{eq:masse} \begin{array}{l} \text{Molmasse} \ (C_{16}H_{16}O_4): 272.2958; \\ \text{Schmp.} \ (EtOAc): 152\text{-}153\,^\circ\text{C}; \\ \text{DC} \ (EtOAc \ / \ Cx = 1 \ : 4): \ R_f = 0.25; \\ \text{FT-IR} \ (ATR): \ \widetilde{\nu} = 2921 \ (s), 2850 \ (m), 1712 \ (m), 1586 \ (m, b), 1496 \ (s), 1487 \ (s), 1466 \ (m), 1453 \ (m), 1421 \ (m), 1364 \ (m, b), 1309 \ (w), 1266 \ (s), 1245 \ (m), 1196 \ (s), 1157 \end{array}$

(s), 1144 (s), 1036 (s), 983 (s), 909 (w), 856 (s), 828 (m), 817 (m), 777 (m), 751 (w), 729 (w), 705 (w), 688 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.05 (d, ³J = 8.6 Hz, 2H; 1⁶/4⁶-H), 6.78 (dd, ³J = 8.6 Hz, ⁴J = 3.0 Hz, 2H; 1⁵/4⁵-H), 6.74 (d, ⁴J = 3.0 Hz, 2H; 1³/4³-H), 4.97 (s, 4H; 3/6-H), 3.75 (s, 6H; 1⁴/4⁴-OC<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 155.73 (s; C-1⁴/4⁴), 154.21 (s; C-1¹/4¹), 132.22 (s; C-1²/4²), 122.93 (d; C-1⁶/4⁶), 115.50 (d; C-1³/4³), 114.30 (d; C-1⁵/4⁵), 76,44 (t; C-3/6), 55.58 (q; 1⁴/4⁴-O<u>C</u>H₃);

GC-MS (50-300M: S2): $\tau_R = 10.41$ min; (EI, 70 eV) m/z (%): 272 (86) [M+], 257 (3) [M-CH₃], 241 (47) [M-OCH₃], 226 (7), 218 (2), 211 (3), 196 (2), 189 (3), 181 (12), 174 (2), 165 (3), 152 (8), 142 (3), 136 (100) [M/2], 124 (10), 108 (59), 98 (5), 91 (5), 83 (5), 78 (17), 65 (31), 50 (8), 39 (19);

HR-MS (EI, 70 eV): ber. für C₁₆H₁₆O₄ [M⁺]: 272.1049, gef.: 272.105;

X-ray: Von der Verbindung **152** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A37).

6.11.3.5. 1⁴,1⁶,4⁴,4⁶-Tetramethoxy-2,5-dioxa-1,4(1,2)-dibenzenacyclohexaphan (153)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-3,5-dimethoxybenzylalkohol **136** (588 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 10 mmol) in trockenem DMF (12 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 3) und Umkristallisation aus EtOAc konnten 70 mg (0,21 mmol, 21 %) des Produktes **153** als farblose Kristalle erhalten werden.

Molmasse $(C_{18}H_{20}O_6)$: 332.3478; Schmp. (EtOAc): 147-150 °C; DC (EtOAc / Cx = 1: 3): R_f = 0.13 **FT-IR** (ATR): $\tilde{v} = 2996$ (w), 2935 (m, b), 2832 (m), 1598 (s), 1494 (s), 1461 (m), 1451 (m), 1439 (m), 1361 (m), 1337 (m), 1296 (w), 1265 (s), 1226 (m), 1196 (s), 1154 (s), 1096 (m), 1055 (s), 983 (s), 950 (w), 925 (m), 820 (m), 796 (m), 676 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 6.44 (d, ⁴J = 2.8 Hz, 2H; 1⁵/4⁵-H), 6.27 (d, ⁴J = 2.8 Hz, 2H; 1³/4³-H), 4.99 (s, 4H; 3/6-H), 3.83 (s, 6H; 1⁶/4⁶-OC<u>H</u>₃), 3.73 (s, 6H; 1⁴/4⁴-OC<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 156.09$ (s; C-1⁴/4⁴), 153.45 (s; C-1⁶/4⁶), 142.34 (s; C-1¹/4¹), 133.57 (s; C-1²/4²), 104.67 (d; C-1³/4³), 99.83 (d; C-1⁵/4⁵), 75,95 (t; C-3/6), 55.95 (q; 1⁶/4⁶-O<u>C</u>H₃), 55.50 (q; 1⁴/4⁴-O<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 11.40$ min; (EI, 70 eV) m/z (%): 332 (54) [M+], 315 (8), 301 (14) [M-OCH₃], 285 (10), 269 (7), 255 (5), 241 (2), 166 (100) [M/2], 151 (12), 137 (14), 123 (22), 109 (7), 95 (24), 80 (12), 65 (7), 39 (3);

HR-MS (EI, 70 eV): ber. für C₁₈H₂₀O₆ [M⁺]: 332.1260, gef.: 332.126;

X-ray: Von der Verbindung **153** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A38).

6.11.3.6. 1^{6} , 4^{6} -Dimethyl-2, 5-dioxa-1, 4(1,2)-dibenzenacyclohexaphan (155)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-3-methylbenzylalkohol (**148**) (496 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 10 mmol) in trockenem DMF (12 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 20) konnten 34 mg (0,14 mmol, 14 %) des Produktes **155** als farblose Kristalle erhalten werden.

Molmasse $(C_{16}H_{16}O_2)$: 240.2970; Schmp.: 178-179 °C (EtOAc); DC (EtOAc / Cx = 1: 20): $R_f = 0.50$ **FT-IR** (ATR): $\tilde{\nu} = 3017$ (w), 2918 (m, b), 2853 (w), 1588 (w), 1469 (s), 1425 (m), 1374 (w), 1361 (w), 1293 (w), 1264 (m), 1194 (s), 1157 (w), 1086 (m), 1028 (w), 987 (w), 966 (s), 834 (w), 777 cm⁻¹ (s);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.17 (dd, ³J = 7.5 Hz, ⁴J = 1.1 Hz, 2H; 1⁵/4⁵-H), 7.12 (dd, ³J = 7.3 Hz, ⁴J = 1.1 Hz, 2H; 1³/4³-H), 6.97 ("t", ³J = 7.5 Hz, 2H; 1⁴/4⁴-H), 5.00 (s, 4H; 3/6-H), 2.35 (s, 6H; 1⁶/4⁶-C<u>H₃</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 159.40$ (s; C-1¹/4¹), 131.41 (d; C-1⁵/4⁵), 131.27 (2x s; C-1²/4²/1⁶/4⁶), 127.94 (d; C-1³/4³), 123.60 (d; C-1⁴/4⁴), 75.27 (t; C-3/6), 16.23 (q; 1⁶/4⁶-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 8.93$ min; (EI, 70 eV) m/z (%): 240 (59) [M+], 225 (29) [M-CH₃], 209 (5) [M-OCH₃], 197 (7), 179 (2), 165 (3), 145 (3), 120 (64) [M/2], 105 (3), 91 (100), 77 (8), 65 (17), 51 (8), 39 (8);

HR-MS (EI, 70 eV): ber. für C₁₆H₁₆O₂ [M⁺]: 240.1150, gef.: 240.115.

6.11.3.7. 1⁴,1⁶,4⁴,4⁶-Tetramethyl-2,5-dioxa-1,4(1,2)-dibenzenacyclohexaphan (156)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-3,5-dimethylbenzylalkohol (**143**) (1.048 g, 4 mmol) mit aktiviertem Kupferpulver (1,28 g, 20 mmol) in trockenem DMF (14 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Hex = 1 : 10) konnten 143 mg (0,53 mmol, 27 %) des Produktes **156** als farblose Kristalle erhalten werden.

Molmasse (C₁₈H₂₀O₂): 268,3502;

Schmelzp. (EtOAc): 177.5 ℃;

DC (EtOAc / Hex= 1: 10): $R_f = 0.23$;

FT-IR (ATR): $\tilde{\nu} = 2996$ (w), 2917 (m), 2860 (w), 1481 (s), 1435 (m), 1372 (w), 1360 (w), 1304 (w), 1290 (w), 1261 (s), 1244 (s), 1200 (s), 1150 (s), 1033 (w), 980 (s), 929 (m), 853 (s), 795 (m), 735 (w), 632 cm⁻¹ (m);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 7.00 (s, 2H; 1⁵/4⁵-H), 6.93 (s, 2H; 1³/4³-H), 4.94 (s, 4H; 3/6-H), 2.33 (s, 6H; 1⁶/4⁶-C<u>H₃</u>), 2.29 (s, 6H; 1⁴/4⁴-C<u>H₃</u>);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): δ = 157.33 (s; C-1¹/4¹), 132.91 (s, C-1⁴/4⁴), 131.78 (d; C-1⁵/4⁵), 131.27 (s; C-1²/4²), 130.85 (s; C-1⁶/4⁶), 128.38 (d; C-1³/4³), 75.49 (t; C-3/6), 20.63 (q; 1⁴/4⁴-<u>C</u>H₃), 16.12 (q; 1⁶/4⁶-<u>C</u>H₃);

 $\begin{array}{l} \textbf{GC-MS} \ (50\text{-}300\text{M}; \ S2)\text{: } \tau_{\text{R}} = 9.62 \ \text{min}; \ (\text{EI}, \ 70 \ \text{eV}) \ \text{m/z} \ (\%)\text{: } 268 \ (59) \ [\text{M+]}, \ 253 \ (25) \\ [\text{M-CH}_3], \ 238 \ (5) \ [\text{M-2CH}_3], \ 225 \ (5), \ 209 \ (2), \ 195 \ (2), \ 179 \ (2), \ 159 \ (3), \ 134 \ (78), \ 120 \\ (3), \ 106 \ (41), \ 91 \ (100), \ 77 \ (19), \ 65 \ (15), \ 63 \ (5), \ 51 \ (5), \ 39 \ (10); \end{array}$

HR-MS (EI, 70 eV): ber. für [M⁺]: 268.1463, gef.: 268.146;

X-ray: Von der Verbindung **156** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A39).

6.11.3.8. 1⁵,4⁵-Dimethoxy-1⁴,1⁶,4⁴,4⁶-tetramethyl-2,5-dioxa-1,4(1,2)dibenzenacyclohexaphan (157)

Entsprechend der allgemeinen Versuchvorschrift zur Kupfer-vermittelten Kupplung von *ortho*-lodbenzylalkoholen wurde 2-lod-4-methoxy-3,5-dimethylbenzylalkohol (**145**) (584 mg, 2 mmol) mit aktiviertem Kupferpulver (640 mg, 10 mmol) in trockenem DMF (10 ml) umgesetzt. Nach Flash-Säulenchromatographie (EtOAc / Cx = 1 : 5) konnten 63 mg (0,2 mmol, 20 %) des Produktes **157** als farblose Kristalle erhalten werden.

Molmasse (C₂₀H₂₄O₄): 328.4022;

Schmp.: 183-185 ℃ (EtOAc);

DC (EtOAc / Cx = 1:5): $R_f = 0.34$;

FT-IR (ATR): $\tilde{v} = 2941$ (m), 2846 (w), 1597 (w), 1478 (m), 1454 (m), 1422 (w), 1372 (m), 1313 (w), 1289 (w), 1265 (m), 1234 (m), 1110 (s), 1012 (m), 998 (m), 964 (w), 935 (m), 880 (m), 827 (w), 789 (w), 729 (w), 680 cm⁻¹ (w);

¹**H-NMR** (300 MHz, CDCl₃, 25 °C): δ = 6.92 (s, 2H; 1³/4³-H), 4.89 (s, 4H; 3/6-H.), 3.70 (s, 6H; 1⁵/4⁵-OC<u>H</u>₃), 2.26 (s, 6H; 1⁶/4⁶-C<u>H</u>₃), 2.23 (s, 6H; 1⁴/4⁴-C<u>H</u>₃);

¹³**C-NMR** (75.5 MHz, CDCl₃, 25 °C): $\delta = 158.58$ (s; C-1¹/4¹), 157.71 (s; C-1⁵/4⁵), 129.19 (d; C-1³/4³), 127.02 (s; C-1²/4²), 125.86 (s; C-1⁴/4⁴), 124.56 (s; C-1⁶/4⁶), 75.46 (t; C-3/6), 59.86 (q; 1⁵/4⁵-O<u>C</u>H₃), 15.68 (q; 1⁴/4⁴-<u>C</u>H₃), 9.73 (q; 1⁶/4⁶-<u>C</u>H₃);

GC-MS (50-300M; S2): $\tau_R = 10.92$ min; (EI, 70 eV) m/z (%): 328 (100) [M+], 313 (29) [M-CH₃], 297 (8) [M-OCH₃], 282 (2), 267 (2), 253 (2), 189 (2), 164 (39) [M/2], 151 (19), 149 (12), 146 (22), 134 (41), 121 (20), 105 (10), 91 (29), 77 (19), 65 (5), 51 (3), 39 (4);

HR-MS (EI, 70 eV): ber. für C₂₀H₂₄O₄ [M⁺]: 328.1675, gef.: 328.168;

X-ray: Von der Verbindung **157** konnte eine Röntgenstrukturanalyse durchgeführt werden (Abbildung siehe Durchführung Kap. 4.2.3). Die röntgenografischen Daten befinden sich im Anhang (A40).

7. Literaturverzeichnis

- [1] W. Cao, H. H. Cudney, R. Waser, *PNAS* **1999**, *96*, 8330.
- [2] W. B. Spillman Jr, J. S. Sirkis, P. T. Gardiner, Smart Mater. Struct. 1996, 5, 247.
- [3] B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema, *Chem. Rev.* **2000**, *100*, 1789.
- [4] G. Solladie, R. G. Zimmermann, *Angew. Chem.* **1984**, *96*, 335; *Angew. Chem. Int. Edit. Engl.* **1984**, *23*, 348.
- [5] G. Scherowsky, X. H. Chen, *Liq. Cryst.* **1994**, *17*, 803.
- [6] P. S. Piispanen, M. Persson, P. Claesson, T. Norin, *Journal of Surfactants and Detergents* **2004**, *7*, 161.
- [7] T. Kato, N. Mizoshita, K. Kishimoto, *Angew. Chem.* **2005**, *118*, 44; *Angew. Chem. Int. Ed* **2005**, *45*, 38;.
- [8] G. W. Gokel, W. M. Leevy, M. E. Weber, Chem. Rev. 2004, 104, 2723.
- [9] J. J. Wolff, R. Wortmann, in *Advances In Physical Organic Chemistry, Vol 32, Vol. 32*, Academic Press Ltd, London, **1999**, pp. 121.
- [10] J.-M. Lehn, Angew. Chem. 1990, 102, 1347; Angew. Chem. Int. Ed. 1990, 29, 1304.
- [11] J.-M. Lehn, Angew. Chem. 1988, 100, 91; Angew. Chem. Int. Ed. 1988, 27, 89.
- [12] B. L. Feringa, W. F. Jager, B. de Lange, *Tetrahedron* **1993**, *49*, 8267.
- [13] A. C. Grimsdale, K. Mullen, *Angew. Chem.* **2005**, *117*, 5732; *Angew. Chem.-Int. Ed.* **2005**, *44*, 5592.
- [14] C. Joachim, J. K. Gimzewski, A. Aviram, *Nature* **2000**, *408*, 541.
- [15] I. Ben, L. Castedo, J. M. Saa, J. A. Seijas, R. Suau, G. Tojo, *J. Org. Chem.* **1985**, *50*, 2236.
- [16] S. B. Jones, L. He, S. L. Castle, Org. Lett. 2006, 8, 3757.
- [17] S. H. Koo, L. S. Liebeskind, J. Am. Chem. Soc. 1995, 117, 3389.
- [18] A. Fürstner, J. W. J. Kennedy, Chem. Eur. J. 2006, 12, 7398.
- [19] S. M. Kupchan, R. W. Doskotch, J. Med. Pharmaceut. Chem1962, 5, 657.
- [20] R. H. Martin, Angew. Chem. 1974, 86, 727; Angew. Chem.-Int. Edit. Engl. 1974, 13, 649.
- [21] M. S. Newman, D. Lednicer, J. Am. Chem. Soc. 1956, 78, 4765.
- [22] R. H. Martin, M. Flammang-Barbieux, J. P. Cosyn, M. Gelbcke, *Tetrahedron Lett.* **1968**, *9*, 3507.
- [23] C. Nuckolls, T. J. Katz, T. Verbiest, S. Van Elshocht, H.-G. Kuball, S. Kiesewalter, A. J. Lovinger, A. Persoons, *J. Am. Chem. Soc.* **1998**, *120*, 8656.
- [24] C. Nuckolls, T. J. Katz, G. Katz, P. J. Collings, L. Castellanos, *J. Am. Chem. Soc.* **1999**, *121*, 79.
- [25] D. J. Morrison, T. K. Trefz, W. E. Piers, R. McDonald, M. Parvez, J. Org. Chem. 2005, 70, 5309.
- [26] I. Sato, R. Yamashima, K. Kadowaki, J. Yamamoto, T. Shibata, K. Soai, *Angew. Chem. Int. Ed.* **2001**, *40*, 1096.
- [27] Y. Xu, Y. X. Zhang, H. Sugiyama, T. Umano, H. Osuga, K. Tanaka, *J. Am. Chem. Soc.* **2004**, *126*, 6566.
- [28] T. Verbiest, S. Sioncke, A. Persoons, L. Vyklicky, T. J. Katz, *Angew. Chem. Int. Ed.* **2002**, *41*, 3882.
- [29] A. J. Lovinger, C. Nuckolls, T. J. Katz, J. Am. Chem. Soc. 1998, 120, 264.
- [30] B. Laleu, P. Mobian, C. Herse, B. W. Laursen, G. Hopfgartener, G. Bernardinelli, J. Lacour, *Angew. Chem.* **2005**, *117*, 1913; *Angew. Chem. Int. Ed.* **2005**, *44*, 1879.
- [31] M. T. Reetz, S. Sostmann, *Tetrahedron* **2001**, *57*, 2515.
- [32] M. T. Reetz, E. W. Beuttenmüller, R. Goddard, *Tetrahedron Lett.* **1997**, *38*, 3211.
- [33] M. T. Reetz, S. Sostmann, J. Organomet. Chem. 2000, 603, 105.
- [34] A. Terfort, H. Görls, H. Brunner, Synthesis 1997, 79.
- [35] S. D. Dreher, T. J. Katz, K. C. Lam, A. L. Rheingold, J. Org. Chem. 2000, 65, 815.
- [36] T. J. Katz, Angew. Chem. 2000, 112, 1997; Angew. Chem. Int. Ed. 2000, 39, 1921.
- [37] R. S. Cahn, C. Ingold, V. Prelog, *Angew. Chem.* **1966**, *78*, 413; *Angew. Chem. Int. Ed.* **1966**, *5*, 385.
- [38] G. Schrumpf, P. G. Jones, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1988, C 44, 342.

- [39] H. Scherübl, U. Fritzsche, A. Mannschreck, Chem. Ber. 1984, 117, 336.
- [40] R. N. Armstrong, H. L. Ammon, J. N. Darnow, J. Am. Chem. Soc. 1987, 109, 2077.
- [41] A. Mannschreck, E. Hartmann, H. Buchner, D. Andert, *Tetrahedron Lett.* **1987**, *28*, 3479.
- [42] A. J. Floyd, S. F. Dyke, S. E. Ward, *Chem. Rev.* **1976**, *76*, 509.
- [43] C. B. de Koning, J. P. Michael, A. L. Rousseau, *J. Chem. Soc., Perkin Trans. I* **2000**, 787.
- [44] V. Mamane, P. Hannen, A. Furstner, *Chem. Eur. J.* 2004, *10*, 4556.
- [45] D. M. Hall, E. E. Turner, J. Chem. Soc. **1951**, 3072.
- [46] G. Wittig, H. Zimmermann, *Chem. Ber.* **1953**, *86*, 629.
- [47] R. Cosmo, S. Sternhell, *Aust. J. Chem.* **1987**, *40*, 2137.
- [48] M. E. Jung, A. Hagiwara, *Tetrahedron Lett.* **1991**, *32*, 3025.
- [49] E. Ghera, Y. Bendavid, D. Becker, *Tetrahedron Lett.* **1977**, 463.
- [50] T. T. Lee, G. L. Rock, A. Stoessl, *Phytochemistry* **1978**, *17*, 1721.
- [51] M. Z. Cherkaoui, G. Scherowsky, *New J. Chem.* **1997**, *21*, 1203.
- [52] D. C. Swenson, M. Yamamoto, D. J. Burton, *Acta Crystallogr. Sect. C-Cryst. Struct. Commun.* **1998**, *54*, 846.
- [53] N. J. Lawrence, F. A. Ghani, L. A. Hepworth, J. A. Hadfield, A. T. McGown, R. G. Pritchard, *Synthesis-Stuttgart* **1999**, 1656.
- [54] Y. C. Wang, C. H. Lin, C. M. Chen, J. P. Liou, *Tetrahedron Lett.* 2005, 46, 8103.
- [55] D. C. Harrowven, I. L. Guy, L. Nanson, *Angew. Chem.* **2006**, *118*, 2300; *Angew. Chem. Int. Ed.* **2006**, *45*, 2242.
- [56] R. Fritsch, E. Hartmann, D. Andert, A. Mannschreck, *Chem. Ber.* **1992**, *125*, 849.
- [57] Povolots.Nn, T. I. Limasova, Voroshto.In, V. A. Barkhash, *Journal of General Chemistry USSR* **1968**, *38*, 1603.
- [58] M. Mervic, E. Ghera, *J. Org. Chem.* **1980**, *45*, 4720.
- [59] P. Bierganns, D. Blunk, *in Vorbereitung* **2006**.
- [60] D. Blunk, *Helicale Phenanthrene Derivatives as New Materials, Vortrag im Symposium S4 "MaTech Highlights", Materials Week 2001, München* **2001**.
- [61] Spartan SGI Version 5.1.3. X11, Wavefunction Inc.,18401 Von Karman Suite 370, Irvine, CA 92612, USA.
- [62] V. Balzani, M. Gomez-Lopez, J. F. Stoddart, Accounts Chem. Res. 1998, 31, 405.
- [63] T. R. Kelly, R. A. Silva, H. De Silva, S. Jasmin, Y. Zhao, *J. Am. Chem. Soc.* **2000**, *122*, 6935.
- [64] R. P. Feynman, Eng. Sci. 1960, 23, 22.
- [65] A. Urbas, V. Tondiglia, L. Natarajan, R. Sutherland, H. Yu, J.-H. Li, T. Bunning, *J. Am. Chem. Soc.* **2004**, *126*, 13580.
- [66] <u>http://www.scs.uiuc.edu/chem/gradprogram/chem435/Abstract%20Boyke1.pdf</u>
- [67] L. Fabbrizzi, A. Poggi, *Chem. Soc. Rev.* **1995**, *24*, 197.
- [68] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.* **1997**, *97*, 1515.
- [69] S. A. McFarland, A. S. Finney, J. Am. Chem. Soc. 2001, 123, 1260.
- [70] L. Fabbrizzi, M. Licchelli, P. Pallavicini, D. Sacchi, A. Taglietti, *Analyst* **1996**, *121*, 1763.
- [71] G. P. Moss, P. A. S. Smith, D. Tavernier, *Pure & Appl. Chem.* **1995**, *67*, 1307.
- [72] G. P. Moss, P. A. S. Smith, D. Tavernier, *Pure & Appl. Chem.* **1994**, *66*, 1077.
- [73] S. Inokuma, S. Sakai, J. Nishimura, *Top. Curr. Chem.* **1994**, *172*, 87.
- [74] M. J. Lawrence, *Chem. Soc. Rev.* **1994**, *23*, 417.
- [75] F. C. Pigge, F. Ghasedi, A. V. Schmitt, M. K. Dighe, N. P. Rath, *Tetrahedron* **2005**, *61*, 5363.
- [76] K. Hiratani, N. Sakamoto, N. Kameta, M. Karikomia, Y. E. Nagawa, *Chem. Commun.* **2004**, 1474.
- [77] A. Fürstner, G. Seidel, C. Kopiske, C. Kruger, R. Mynott, *Liebigs Ann.* 1996, 655.
- [78] S. Inokuma, S. Sakai, T. Yamamoto, J. Nishimura, J. Membr. Sci. 1994, 97, 175.
- [79] N. Kameta, A. Hiratani, Y. Nagawa, *Chem. Commun.* **2004**, 466.
- [80] A. C. Benniston, *Chem. Soc. Rev.* **1996**, *25*, 427.
- [81] J. Tirado-Rives, R. D. Gandour, F. R. Fronczek, *Tetrahedron Lett.* **1982**, *23*, 1639.
- [82] J. Tirado-Rives, M. A. Oliver, F. R. Fronczek, R. D. Gandour, *J. Org. Chem.* **1984**, *49*, 1627.

- [83] A. M. Costero, M. Pitarch, J. Org. Chem. 1994, 59, 2939.
- [84] F. Gavina, S. V. Luis, A. M. Costero, M. I. Burguete, J. Rebek, J. Am. Chem. Soc. 1988, 110, 7140.
- [85] J. Rebek, T. Costello, L. Marshall, R. Wattley, R. C. Gadwood, K. Onan, *J. Am. Chem. Soc.* **1985**, *107*, 7481.
- [86] <u>http://de.wikipedia.org/wiki/Allosterie</u>.
- [87] A. M. Costero, C. Andreu, E. Monrabal, A. Tortajada, L. E. Ochando, J. M. Amigo, *Tetrahedron* **1996**, *52*, 12499.
- [88] J. Rebek, J. E. Trend, R. V. Wattley, S. Chakravorti, *J. Am. Chem. Soc.* **1979**, *101*, 4333.
- [89] Y. Rubin, K. Dick, F. Diederich, T. M. Georgiadis, J. Org. Chem. 1986, 51, 3270.
- [90] M. Nogradi, Stereoselective Synthesis: A Practical Approach, VCH: Weinheim 1995.
- [91] K. Roth, *Chem. Unserer Zeit* **2005**, *39*, 212.
- [92] A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, *J. Am. Chem. Soc.* **1980**, *102*, 7932.
- [93] T. Frejd, T. Klingstedt, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. **1986**, C42, 1324.
- [94] T. Frejd, T. Klingstedt, Acta Chem. Scand. 1989, 43, 670.
- [95] R. Schmid, M. Cereghetti, B. Heiser, P. Schonholzer, H. J. Hansen, *Helv. Chim. Acta* **1988**, *71*, 897.
- [96] M. S. Newman, R. L. Childers, *J. Org. Chem.* **1967**, *32*, 62.
- [97] T. Saupe, C. Krieger, H. A. Staab, Angew. Chem. 1986, 98, 460; Angew. Chem. Int. Ed. Engl. 1986, 25, 451.
- [98] M. McCarthy, P. J. Guiry, *Tetrahedron* **2001**, *57*, 3809.
- [99] R. Noyori, Asymmetric Catalysis in Organic Synthesis; Wiley New York **1994**.
- [100] T. Ohkuma, M. Kitamura, R. Noyori, *Catalytic Asymmetric Synthesis; Ojima, I., Ed.;* VCH: New York **2000**.
- [101] X. Zhang, (Penn State Research Foundation, USA). Application: WO 2001, p. 52 pp.
- [102] R. Noyori, H. Takaya, Accounts Chem. Res. 1990, 23, 345.
- [103] R. Schmid, J. Foricher, M. Cereghetti, P. Schonholzer, *Helv. Chim. Acta* **1991**, *74*, 370.
- [104] Z. Zhang, H. Qian, J. Longmire, X. Zhang, J. Org. Chem. 2000, 65, 6223.
- [105] E. N. Jacobsen, A. Pfaltz, H. Yamamoto, *Comprehensive Asymmetric Catalysis,* Springer Verlag: Heidelberg **1999**.
- [106] I. W. Davies, R. J. Deeth, R. D. Larsen, P. J. Reider, *Tetrahedron Lett.* **1990**, *40*, 1233.
- [107] C. P. Casey, G. T. Whiteker, V. Melville, L. M. Petrovich, J. A. Gavney, D. R. Powell, *J. Am. Chem. Soc.* **1992**, *114*, 5535.
- [108] M. Kranenburg, Y. E. M. van der Burgt, P. C. Kamer, P. W. van Leeuwen, K. Goubitz, J. Fraanje, *Organometallics* **1995**, *14*, 3081.
- [109] I. W. Davies, L. Gerenda, L. Castonguay, C. H. Senanayake, R. D. Larsen, T. R. Verhoeven, P. J. Reider, *Chem. Commun.* **1996**, 1753.
- [110] P. Meessen, D. Vogt, W. Keim, J. Organomet. Chem. 1998, 551, 165.
- [111] L. A. van der Veen, M. D. Boele, F. R. Bregman, P. C. Kamer, P. W. van Leeuwen, K. Goubitz, J. Fraanje, H. Schenk, C. J. Bo, *J. Am. Chem. Soc.* **1998**, *120*, 11616.
- [112] D. Peña, A. J. Minnaard, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, *Org. Lett.* **2003**, *5*, 475.
- [113] T. Jerphagnon, R. J.-L., C. Bruneau, Tetrahedron: Asymmetry 2004, 15, 2101.
- [114] F. Guillen, J. C. Fiaud, Tetrahedron Lett. 1999, 40, 2939.
- [115] C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett, A. Martorell, A. G. Orpen, P. G. Pringle, *Chem. Commun.* **2000**, 961.
- [116] M. T. Reetz, G. Mehler, Angew. Chem. 2000, 112, 4047; Angew. Chem. Int. Ed. 2000, 39, 3889.
- [117] M. van den Berg, A. J. Minnaard, E. P. Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, *J. Am. Chem. Soc.* **2000**, *122*, 11539.
- [118] A. Rimkus, N. Sewald, Org. Lett. 2003, 5, 79.
- [119] H. Bernsmann, M. van den Berg, R. Hoen, A. J. Minnaard, G. Mehler, M. T. Reetz, J. G. De Vries, B. L. Feringa, *J. Org. Chem.* 2005, *70*, 943.

Literaturverzeichnis

- [122] M. T. Reetz, T. Sell, Tetrahedron Lett. 2000, 41, 6333.
- [123] M. van den Berg, A. J. Minnaard, E. P. Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries, B. L. Feringa, *J. Am. Chem. Soc.* **2000**, *122*, 11539.
- [124] W. P. Chen, J. L. Xiao, *Tetrahedron Lett.* 2001, 42, 2897.
- [125] X. Jia, R. W. Guo, X. S. Li, X. S. Yao, A. S. C. Chan, *Tetrahedron Lett.* **2002**, *43*, 5541.
- [126] K. Junge, G. Oehme, A. Monsees, T. Riermeier, U. Dingerdissen, M. Beller, *J. Organomet. Chem.* **2003**, *675*, 91.
- [127] D. Pena, A. J. Minnaard, J. A. F. Boogers, A. H. M. De Vries, J. G. De Vries, B. L. Feringa, *Org. Biomol. Chem.* **2003**, *1*, 1087.
- [128] M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem. 2003, 115, 814; Angew. Chem. Int. Ed. 2003, 42, 790.
- [129] M. T. Reetz, G. Mehler, *Tetrahedron Lett.* **2003**, *44*, 4593.
- [130] B. L. Feringa, Accounts Chem. Res. 2000, 33, 346.
- [131] A. Alexakis, S. Rosset, J. Allamand, S. March, F. Guillen, C. Benhaim, *Synlett* **2001**, 1375.
- [132] A. Alexakis, C. Benhaim, S. Rosse, M. Humam, J. Am. Chem. Soc. 2002, 124, 5262.
- [133] A. Alexakis, D. Polet, S. Rosset, S. March, J. Org. Chem. 2004, 69, 5660.
- [134] A. Alexakis, V. Albrow, K. Biswas, M. d´Augustin, O. Prieto, S. Woodward, Chem. Commun. 2005, 2843.
- [135] A. Alexakis, D. Polet, Org. Lett. 2004, 6, 3529.
- [136] I. S. Mikhel, G. Bernardinelli, A. Alexakis, Inorg. Chim. Acta 2006, 359, 1826.
- [137] C. Monti, C. Gennari, U. Piarulli, J. G. de Vries, A. H. M. de Vries, L. Lefort, *Chem. Eur. J.* **2005**, *11*, 6701.
- [138] K. Mikami, K. Aikawa, Y. Yusa, J. J. Jodry, M. Yamanaka, Synlett 2002, 1561.
- [139] K. Mikami, T. Korenaga, M. Terada, T. Ohkuma, T. Pham, R. Noyori, *Angew. Chem.* **1999**, *111*, 517; *Angew. Chem. Int. Ed.* **1999**, *38*, 495.
- [140] K. Mikami, K. Aikawa, T. Korenaga, *Org. Lett.* **2001**, *3*, 243.
- [141] C. Monti, C. Gennari, U. Piarulli, *Tetrahedron Lett.* **2004**, *45*, 6859.
- [142] C. Gennari, C. Monti, U. Piarulli, Pure & Appl. Chem. 2006, 78, 303.
- [143] S. Hoffmann, A. M. Seayad, B. List, Angew. Chem. 2005, 117, 7590; Angew. Chem. Int. Ed. 2005, 44, 7424.
- [144] M. Rueping, E. Sugiono, C. Azap, T. Theissmann, M. Bolte, Org. Lett. 2005, 7, 3781.
- [145] S. H. Wilen, J. Z. Qi, P. G. Williard, J. Org. Chem. 1991, 56, 485.
- [146] J. Jacques, C. Fouquey, Org. Synth 1989, 67, 1.
- [147] L. Ackermann, Org. Lett. 2005, 7, 3123.
- [148] L. Ackermann, Org. Lett. 2006, 8, 3457.
- [149] D. C. Freeman, C. E. White, J. Am. Chem. Soc. 1956, 78, 2678.
- [150] C. W. Tang, S. A. Van Slyke, *Appl. Phys. Lett* **1987**, *51*, 913.
- [151] <u>http://www.lti.uni-karlsruhe.de/1141.php</u>.
- [152] G. C. Choi, Y. H. Park, Y. H. Lee, N. G. Park, Y. S. Kim, *Mol. Crys. Liq. Cryst.* **2006**, 444.
- [153] D. Blunk, Beiträge zur Flüssigkristallchemie; Dirk Blunk Verlag: Berlin 1999.
- [154] J. W. Goodby, Symmetry and Chirality in Liquid Crystals; Handbook of Liquid Crystals, Vol. 1: Fundamentals, Wiley-VCH: Weinheim **1998**, pp. 215.
- [155] L. Y. Chiang, C. R. Safinya, N. A. Clark, K. S. Liang, A. N. Bloch, *J. Chem. Soc. Chem. Commun.* **1985**, 695.
- [156] G. Scherowsky, X. H. Chen, J. Mater. Chem. 1995, 5, 417.
- [157] G. Scherowsky, X. H. Chen, A.-M. Levelut, Liq. Cryst. 1998, 24, 157.
- [158] G. Scherowsky, H. Bock, W. Helfrich, X.-H. Chen, (Hoechst A.-G., Germany). Application: DE, **1994**, p. 15 pp.
- [159] R. Eelkema, B. L. Feringa, J. Am. Chem. Soc. 2005, 127, 13480.
- [160] R. Eelkema, B. L. Feringa, Org. Lett. 2006, 8, 1331.
- [161] D. Dunmar, K. Toniyama, *Handbook of Liquid Crystals, Vol. 1: Fundamentals, Wiley-VCH: Weinheim* **1998**, pp. 215.

[120]

[121]

- [162] R. A. van Delden, B. L. Feringa, *Angew. Chem.* 2001, *113*, 3298; *Angew. Chem. Int. Ed.* 2001, *40*, 3198.
 [162] D. E. B. L. Feringa, *Angew. Chem.* 2001, *113*, 5298; *Angew. Chem. Int. Ed.* 2001, *40*, 3198.
- [163] R. Eelkema, R. A. van Delden, B. L. Feringa, *Angew. Chem.* **2004**, *116*, 5123; *Angew. Chem. Int. Ed.* **2004**, *43*, 5013.
- [164] R. A. van Delden, B. L. Feringa, Chem. Commun. 2002, 174.
- [165] S. Superchi, M. I. Donnoli, G. Proni, G. P. Spada, C. Rosini, *J. Org. Chem.* **1999**, *64*, 4762.
- [166] R. Holzwarth, R. Bartsch, Z. Cherkaoui, G. Solladie, Chem. Eur. J. 2004, 10, 3931.
- [167] T. Graening, H. G. Schmalz, *Angew. Chem.* **2004**, *116*, 3292; *Angew. Chem.Int. Ed.* **2004**, *43*, 3230.
- [168] T. L. Nguyen, C. McGrath, A. R. Hermone, J. C. Burnett, D. W. Zaharevitz, B. W. Day, P. Wipf, E. Hamel, R. Gussio, *J. Med. Chem* **2005**, *48*, 7917.
- [169] S. M. Kupchan, R. W. Britton, M. F. Ziegler, C. J. Gilmore, R. J. Restivo, R. F. Bryan, *J. Am. Chem. Soc.* **1973**, *95*, 1335.
- [170] C. M. Lin, S. B. Singh, P. S. Chu, R. O. Dempcy, J. M. Schmidt, G. R. Pettit, E. Hamel, *Mol. Pharmacol.* **1988**, *34*, 200.
- [171] G. J. Soleas, E. P. Diamandis, D. M. Goldberg, *Clin. Biochem.* **1997**, *30*, 91.
- [172] M. Cushman, D. Nagarathnam, D. Gopal, A. K. Chakraborti, C. M. Lin, E. Hamel, J. Med. Chem 1991, 34, 2579.
- [173] P. de Medina, R. Casper, J. F. Savouret, M. Poirot, *J. Med. Chem* **2005**, *48*, 287.
- [174] Y. Schneider, P. Chabert, J. Stutzmann, D. Coelho, A. Fougerousse, F. Gosse, J. F. Launay, R. Brouillard, F. Raul, *Int. J. Cancer* **2003**, *107*, 189.
- [175] J. J. Heynekamp, W. M. Weber, L. A. Hunsaker, A. M. Gonzales, R. A. Orlando, L. M. Deck, D. L. V. Jagt, *J. Med. Chem* **2006**, *49*, 7182.
- [176] W. H. Powell, Pure & Appl. Chem. 1998, 70, 1513.
- [177] H. A. Favre, D. Hellwinkel, W. H. Powell, H. A. Smith Jr., S. S.-C. Tsay, *Pure & Appl. Chem.* **2002**, *74*, 809.
- [178] H. A. Favre, K.-H. Hellwich, G. P. Moss, W. H. Powell, J. G. Traynham, *Pure & Appl. Chem.* **1999**, *71*, 1327.
- [179] R. Panico, W. H. Powell, J.-C. Richer, *Blackwell Science Verlag* 1993.
- [180] K.-H. Hellwich, Angew. Chem. 2006, 118, 3967.
- [181] K.-H. Hellwich, Angew. Chem. 2006, 118, 6023.
- [182] T. H. Altel, M. H. Abuzarga, S. S. Sabri, M. Feroz, N. Fatima, Z. Shah, A. U. Rahman, *Phytochemistry* **1991**, *30*, 3081.
- [183] A. J. Ashe, J. W. Kampf, P. M. Savla, J. Org. Chem. 1990, 55, 5558.
- [184] H. Bock, M. Sievert, Z. Havlas, Chem. Eur. J. 1998, 4, 677.
- [185] H. Vollmann, H. Becker, M. Corell, H. Streeck, *Justus Liebigs Ann. Chem.* **1937**, *531*, 1.
- [186] M. S. Newman, H. S. Whitehouse, J. Am. Chem. Soc. 1949, 71, 3664.
- [187] M. G. Sturrock, R. A. Duncan, J. Org. Chem. 1968, 33, 2149.
- [188] E. R. R. Young, R. L. Funk, *J. Org. Chem.* **1998**, *63*, 9995.
- [189] Vanduure.Bl, G. Witz, S. C. Agarwal, J. Org. Chem. 1974, 39, 1032.
- [190] A. Fürstner, V. Mamane, J. Org. Chem. 2002, 67, 6264.
- [191] F. Teply, I. G. Stara, I. Stary, A. Kollarovic, D. Saman, L. Rulisek, P. Fiedler, J. Am. Chem. Soc. 2002, 124, 9175.
- [192] G. Wittig, G. Geissler, Justus Liebigs Ann. Chem. 1953, 580, 44.
- [193] B. E. Maryanoff, A. B. Reitz, *Chem. Rev.* **1989**, *89*, 863.
- [194] J. E. McMurry, Chem. Rev. 1989, 89, 1513.
- [195] A. Fürstner, B. Bogdanovic, Angew. Chem. 1996, 108, 2582; Angew. Chem. Int. Ed. 1996, 35, 2442.
- [196] S. J. Connon, S. Blechert, Angew. Chem. 2003, 115, 1944; Angew. Chem. Int. Ed. 2003, 42, 1900.
- [198] R. G. R. Bacon, W. S. Lindsay, J. Chem. Soc. 1958, 1382.
- [199] P. A. Browne, D. M. Hall, J. Chem. Soc.-Perkin Trans. 1 1972, 2717.
- [200] R. Cosmo, S. Sternhell, Aust. J. Chem. **1987**, 40, 35.
- [201] D. M. Hall, M. S. Lesslie, E. E. Turner, Journal of the Chemical Society 1950, 711.
- [202] A. Iuliano, P. Piccioli, D. Fabbri, Org. Lett. 2004, 6, 3711.
- [203] G. Dyker, J. Korning, W. Stirner, *Eur. J. Org. Chem.* **1998**, 149.

- [204] K. Ferre-Filmon, L. Delaude, A. Demonceau, A. F. Noels, *Eur. J. Org. Chem.* 2005, 3319.
- [205] J. Velder, S. Ritter, J. Lex, H. G. Schmalz, Synthesis 2006, 273.
- [206] E. C. Dunne, E. J. Coyne, P. B. Crowley, D. G. Gilheany, *Tetrahedron Lett.* **2002**, *43*, 2449.
- [207] C. S. Wood, F. B. Mallory, *J. Org. Chem.* **1964**, *29*, 3373.
- [208] S. M. Kupchan, H. C. Wormser, Tetrahedron Lett. 1965, 359.
- [209] F. B. Mallory, C. W. Mallory, Organic Reactions (New York) 1984, 30, 1.
- [210] A. Gilbert, CRC Handbook of Organic Photochemistry and Photobiology; ed. W. M. Horspool and F. Lenci,
- CRC Press, Boca Raton, FL, 2nd Edition 2004, 33/1.
- [211] S. R. Waldvogel, D. Mirk, Oxidative Arylation Reactions; VCH- Handbook of CH Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim **2005**.
- [212] G. Bringmann, R. Walter, R. Weirich, Angew. Chem. 1990, 102, 1006; Angew. Chem. Int. Ed. 1990, 29, 977.
- [213] J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, *Chem. Rev.* 2002, 102, 1359.
- [214] F. Ullmann, Justus Liebigs Annalen der Chemie 1904, 332, 38.
- [215] P. E. Fanta, Chem. Rev. 1946, 38, 139.
- [216] P. E. Fanta, *Chem. Rev.* **1964**, *64*, 613.
- [217] P. E. Fanta, *Synthesis* **1974**, 9.
- [218] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [219] G. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. 2005, 117,5518; Angew. Chem. Int. Ed. 2005, 44, 5384.
- [220] D. Fabbri, G. Delogu, O. Delucchi, J. Org. Chem. 1993, 58, 1748.
- [221] G. Delogu, D. Fabbri, Tetrahedron-Asymmetry 1997, 8, 759.
- [222] G. Delogu, D. Fabbri, M. A. Dettori, Tetrahedron-Asymmetry 1998, 9, 2819.
- [223] G. Delogu, D. Fabbri, M. A. Dettori, A. Forni, G. Casalone, *Tetrahedron-Asymmetry* 2001, 12, 1451.
- [224] B. P. Zhao, V. Snieckus, Tetrahedron Lett. 1991, 32, 5277.
- [225] K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. 2005, 117, 4516; Angew. Chem. Int. Ed. 2005, 44, 4442.
- [226] A. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. 1995, 107, 1456; Angew. Chem. Int. Ed. 1995, 34, 1348.
- [227] J. Louie, J. F. Hartwig, *Tetrahedron Lett.* **1995**, *36*, 3609.
- [228] J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy, L. M. Alcazar-Roman, J. Org. Chem. 1999, 64, 5575.
- [229] M. H. Fisch, B. H. Flick, J. Arditti, *Phytochemistry* **1973**, *12*, 437.
- [230] T. Yamato, K. Fujita, K. Futatsuki, H. Tsuzuki, Can. J. Chem.-Rev. Can. Chim. 2000, 78, 1089.
- [231] T. Yamato, S. Miyamoto, T. Hironaka, Y. Miura, Org. Lett. 2005, 7, 3.
- [232] N. Meyer, D. Seebach, *Chemische Berichte-Recueil* **1980**, *113*, 1304.
- [233] T. Takahashi, T. Nagashima, J. Tsuji, *Chem. Lett.* **1980**, 369.
- [234] V. Snieckus, *Chem. Rev.* **1990**, *90*, 879.
- [235] E. Piers, C. L. Harrison, C. Zetina-Rocha, Org. Lett. 2001, 3, 3245.
- [236] E. R. Larson, R. A. Raphael, J. Chem. Soc.-Perkin Trans. 1 1982, 521.
- [237] M. V. Sargent, J. Chem. Soc.-Perkin Trans. 1 1987, 231.
- [238] J. Ruiz, A. Ardeo, R. Ignacio, N. Sotomayor, E. Lete, Tetrahedron 2005, 61, 3311.
- [239] D. P. Curran, N. Fairweather, J. Org. Chem. 2003, 68, 2972.
- [240] W. Neugebauer, A. J. Kos, P. v. Rague Schleyer, J. Organomet. Chem. 1982, 228, 107.
- [241] T. K. Miyamoto, Y. Matsuura, K. Okude, H. Ichida, Y. Sasaki, J. Organomet. Chem. 1989, 373, C8.
- [242] O. Desponds, M. Schlosser, J. Organomet. Chem. 1996, 507, 257.
- [243] R. Cosmo, T. W. Hambley, S. Sternhell, J. Org. Chem. 1987, 52, 3119.
- [244] S. Grimme, J. Harren, A. Sobanski, F. Vögtle, *Eur. J. Org. Chem.* **1998**, 1491.
- [245] S. Grimme, I. Pischel, M. Nieger, F. Vögtle, J. Chem. Soc. Perkin Trans. 2 1996, 2771.
- [246] K. Takegoshi, F. Imashiro, T. Terao, A. Saika, J. Chem. Phys. 1984, 80, 1089.

- [247] B. L. Shaw, S. D. Perera, E. A. Staley, Chem. Commun. 1998, 1361.
- [248] H. A. Herner, J. E. Trosko, S. J. Masten, Environ. Sci. Technol. 2001, 35, 3576.
- [249] G. M. Badger, J. E. Campbell, J. W. Cook, R. A. Raphael, A. I. Scott, *Journal Of The Chemical Society* **1950**, 2326.
- [250] T. J. Katz, W. Slusarek, J. Am. Chem. Soc. 1979, 101, 4259.
- [251] P. e. a. Madsen, J. Med. Chem 2002, 45, 5755.
- [252] N. M. Yoon, C. S. Pak, H. C. Brown, S. Krishnamurthy, T. P. Stocky, J. Org. Chem. 1973, 38, 2786.
- [253] J. Zaminer, *Dissertation; Universität zu Köln* **2006**.
- [254] H. C. Brown, B. C. Subba Rao, J. Am. Chem. Soc. **1956**, 78, 2582.
- [255] J.-C. Feng, B. Liu, L. Dai, X.-L. Yang, S.-J. Tu, Synth. Commun. 2001, 31, 1875.
- [256] C. Bilger, R. Royer, P. Demerseman, Synthesis 1988, 902.
- [257] Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.
- [258] S. S. Chaudhari, K. G. Akamanchi, Synlett 1999, 11, 1763.
- [259] L. F. Tietze, T. Eicher, Reaktionen und Synthesen, Thieme Verlag 1991, S. 137.
- [260] H. Medenwald, Chem. Ber./Recueil 1953, 86, 287.
- [261] W. Weissflog, G. Naumann, B. Kosata, M. W. Schröder, A. Eremin, S. Diele, Z. Vakhovskaya, H. Kresse, R. Friedemann, S. A. R. Krishnan, G. Pelzl, *J. Mater. Chem.* 2005, 15, 4328.
- [262] D. Parker, Editor, *Macrocycle Synthesis: A Practical Approach*, **1996**.
- [263] G. I. Koldobskii, V. A. Ostrovskii, B. V. Gidaspov, Russ. Chem. Rev. 1978, 47, 1084.
- [264] E. A. Vogler, J. M. Hayes, *J. Org. Chem.* **1979**, *44*, 3682.
- [265] R. G. Wallace, J. M. Barker, M. L. Wood, Synthesis 1990, 1143.
- [266] P. Tang, Organic Syntheses, Vol. 81, p.262 (2005). 2005, 81, p. 262.
- [267] J.-L. Giner, R. R. Rando, *Biochemistry* 1994, 33, 15116.
- [268] E. C. Franklin, Chem. Rev. 1934, 14, 219.
- [269] A. J. Mancuso, D. Swern, Synthesis 1981, 165.
- [270] C. H. Hasall, Organic Reactions (New York) 1957, 9, 73.
- [271] F. Anvia, K. Bowden, J. Chem. Soc.-Perkin Trans. 2 1990, 2093.
- [272] S. Saeki, T. Oka, T. Hayakawa, K. Sakai, *Chem. Pharm. Bull.* 1989, 37, 2207.
- [273] S. J. Holt, P. W. Sadler, Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1958, 148, 481.
- [274] V. K. Shalaev, L. A. Knyazeva, V. R. Skvarchenko, Zhur.Org.Khim. 1972, 8, 1067.
- [275] V. Lisowski, M. Robba, S. Rault, J. Org. Chem. 2000, 65, 4193.
- [276] V. Lisowski, S. Leonce, L. Kraus-Berthier, J. Sopkova-de Oliveira Santos, A. Pierre, G. Atassi, D.-H. Caignard, P. Renard, S. Rault, *J. Med. Chem* **2004**, *47*, 1448.
- [277] S. Malhotra, S. K. Koul, S. Singh, G. B. Singh, K. L. Dhar, *Ind. J. Chem., Sect. B* **1989**, *28*, 100.
- [278] F. Gohier, J. Mortier, J. Org. Chem. 2003, 68, 2030.
- [279] J. Rebek, R. V. Wattley, J. Am. Chem. Soc. 1980, 102, 4853.
- [280] T. Fujii, S. Suzuki, S. Komatsu, Chem. Phys. Lett. 1978, 57, 175.
- [281] T. Fujii, S. Komatsu, S. Suzuki, Bull. Chem. Soc. Jpn. 1982, 55, 2516.
- [282] N. I. Nijegorodov, W. S. Downey, J. Phys. Chem. 1994, 98, 5639.
- [283] C. Bolm, K. B. Sharpless, *Tetrahedron Lett.* **1988**, *29*, 5101.
- [284] J. M. Insole, J. Chem. Res. 1988, 0701.
- [285] P. Newman, P. Rutkin, K. Mislow, J. Am. Chem. Soc. 1958, 80, 465.

- [286] W. Wenner, J. Org. Chem. 1952, 17, 523.
- [287] Y. Yoshino, Y. Hayashi, T. Iwahama, S. Sakaguchi, Y. Ishii, J. Org. Chem. 1997, 62, 6810.
- [288] D. Dembkowski, Dissertation; Universität zu Köln 2006.
- [289] Organikum Organisch-chemisches Grundpraktikum (20. Aufl.); Wiley-VCH, Weinheim **1996**, S. 434.
- [290] D. J. Cram, H. E. Katz, I. B. Dicker, J. Am. Chem. Soc. 1984, 106, 4987.
- [291] D. Bonifazi, G. Accorsi, N. Armaroli, F. Song, A. Palkar, L. Echegoyen, M. Scholl, B. Jaun, F. Diederich, *Helv. Chim. Acta* 2005, *88*, 1839.
- [292] J. M. Brown, S. Woodward, J. Org. Chem. 1991, 56, 6803.
- [293] L. Qiu, J. Qi, C.-C. Pai, S. Chan, Z. Zhou, M. C. K. Choi, A. S. C. Chan, Org. Lett. 2002, 4, 4599.
- [294] W. Tang, Y. Chi, X. Zhang, Org. Lett. 2002, 4, 1695.
- [295] J. M. Saa, J. Morey, A. Costa, *Tetrahedron Lett.* **1986**, *27*, 5125.
- [296] M. E. Jung, M. A. Lyster, J. Org. Chem. 1977, 42, 3761.
- [297] M. Node, H. Hori, E. Fujita, J. Chem. Soc., Perkin Trans. / 1976, 2237.
- [298] J. M. Saa, A. Llobera, A. Garcia-Raso, A. Costa, P. M. Deya, J. Org. Chem. 1988, 53, 4263.
- [299] F. B. Mallory, C. W. Mallory, J. Am. Chem. Soc. 1972, 94, 6041.
- [300] L. B. Liu, B. W. Yang, T. J. Katz, M. K. Poindexter, J. Org. Chem. 1991, 56, 3769.
- [301] M. Berthod, G. Mignani, G. Woodward, M. Lemaire, *Chem. Rev.* **2005**, *105*, 1801.
- [302] B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M. De Vries, Angew. Chem. 1997, 109, 2733; Angew. Chem. Int. Ed. 1997, 36, 2620.
- [303] L. A. Arnold, R. Imbos, A. Mandoli, A. H. M. De Vries, R. Naasz, B. L. Feringa, *Tetrahedron* **2000**, *56*, 2865.
- [304] C. Mateo, C. Perez-Melero, R. Pelaez, M. Medarde, *Tetrahedron Lett.* **2005**, *46*, 7055.
- [305] C. Mateo, C. Perez-Melero, R. Pelaez, M. Medarde, J. Org. Chem. 2005, 70, 6544.
- [306] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.*, *97*, 1515.
- [307] L. Fabbrizzi, M. Licchelli, P. Pallavicini, S. D., A. Taglietti, Analyst 1996, 121, 1763.
- [308] A. Momotake, M. Uda, T. Arai, J. Photochem. Photobiol. A-Chem. 2003, 158, 7.
- [309] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [310] M. S. Newman, H. M. Chung, J. Org. Chem. 1974, 39, 1036.
- [311] F. B. Mallory, M. J. Rudolph, S. M. Oh, *J. Org. Chem.* **1989**, *54*, 4619.
- [312] D. Raschczok, Diplomarbeit, Universität zu Köln 2002.
- [313] L. Horner, K. Dolling, W. Durckheimer, K. H. Weber, *Chem. Ber./Recueil* **1964**, *97*, 312.
- [314] L. Horner, K. Dolling, E. Geyer, Mon. Chem. 1967, 98, 852.
- [315] S. El Sheikh, H. G. Schmalz, Curr. Opin. Drug Discov. Dev. 2004, 7, 882.
- [316] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. 2003, 115, 3818; Angew. Chem. Int. Ed. 2003, 42, 3690.
- [317] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195.
- [318] F. Glorius, Persönliche Kommunikation.
- [319] <u>http://www.uniterra.de/rutherford/</u>.
- [320] U. Dürr, Disseration, Universität Erlangen **1997**; http://www2.chemie.unierlangen.de/services/dissonline/data/ dissertation/Uwe_Duerr/html.
- [321] L. Shi, M. Wang, C.-A. Fan, F.-M. Zhang, Y.-Q. Tu, Org. Lett. 2003, 5, 3515.
- [322] B. Basu, P. Das, A. K. Nanda, S. Das, S. Sarkar, *Synlett* 2005, 1275.
- [323] M. Chhibber, *Synlett* **2004**, 197.
- [324] D. J. Cram, A. C. Day, J. Org. Chem. 1966, 31, 1227.
- [325] A. Singh, R. Kumar, V. S. Parmar, W. Errington, Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1997, 53, 1966.
- [326] F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, *Current Medicinal Chemistry* **2005**, *12*, 887.
- [327] W. Metlesic, R. Tavares, Sternbac.Lh, J. Org. Chem. 1966, 31, 3356.
- [328] J. Tröger, J. Prakt. Chem. 1877, 36, 225.
- [329] F. C. Cooper, M. W. Partridge, J. Am. Chem. Soc. 1955, 991.

- [330] V. Prelog, P. Wieland, Helv. Chim. Acta 1944, 27, 1127.
- [331] M. J. Crossley, T. W. Hambley, L. G. Mackay, T. A. C., R. Walton, J. Chem. Soc. Chem. Commun. 1995, 10, 1077.
- [332] Y. Goldberg, H. Alper, *Tetrahedron Lett.* **1995**, *36*, 369.
- [333] D. Mandal, A.-Q. Wu, G.-C. Guo, D. Ray, Inorg. Chem. 2006, 45, 8826.
- [334] W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen, J. Am. Chem. Soc. 1990, 112, 2801.
- [335] A. Berkessel, D. Menche, C. A. Sklorz, M. Schroder, I. Paterson, *Angew. Chem.* **2003**, *115*, 1062; *Angew. Chem. Int. Ed.* **2003**, *42*, 1032.
- [336] A. Berkessel, M. Schroder, C. A. Sklorz, S. Tabanella, N. Vogl, J. Lex, J. M. Neudorfl, J. Org. Chem. 2004, 69, 3050.
- [337] I. G. Stara, I. Stary, A. Kollarovic, F. Teply, D. Saman, P. Fiedler, *Tetrahedron* 1998, 54, 11209.
- [338] J. Ruiz, N. Sotomayor, E. Lete, Org. Lett. 2003, 5, 1115.
- [339] F. E. Ziegler, J. A. Schwartz, J. Org. Chem. 1978, 43, 985.
- [340] D. V. Carter, P. T. Charlton, A. H. Fenton, J. R. Housley, B. Lessel, *J. Pharm. Pharmacol.* **1958**, *10*, T149.
- [341] K. Hiroya, R. Jouka, M. Kameda, A. Yasuhara, T. Sakamoto, *Tetrahedron* **2001**, *57*, 9697.
- [342] M. Pisova, M. Soucek, Collect. Czech. Chem. Comm. 1982, 47, 838.
- [343] M. F. Garbauskas, I. A. Evans, J. J. Talley, *Acta Crystallogr. Sect.C-Cryst. Struct. Commun.* **1985**, *41*, 140.
- [344] M. Tajbakhsh, R. Hosseinzadeh, Z. Lasemi, *Synlett* **2004**, 635.
- [345] R. Appel, Angew. Chem.-Int. Edit. Engl. 1975, 14, 801.
- [346] Y. Chiang, A. J. Kresge, Y. Zhu, J. Am. Chem. Soc. 2001, 123, 8089.
- [347] B. A. Bakke, M. C. McIntosh, K. D. Turnbull, J. Org. Chem. 2005, 70, 4338.
- [348] S. Loukiala, J. Ratilainen, J. Valkonen, K. Rissanen, *Acta Chem. Scand.* **1997**, *51*, 1162.
- [349] A. Arnoldi, A. Bassoli, L. Merlini, E. Ragg, J. Chem. Soc.-Perkin Trans. 1 1993, 1359.
- [350] A. Kawada, K. Yasuda, H. Abe, T. Harayama, Chem. Pharm. Bull. 2002, 50, 380.
- [351] P. Wan, D. Hennig, J. Chem. Soc.-Chem. Commun. 1987, 939.
- [352] W. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [353] S. C. Watson, J. F. Eastham, J. Organomet. Chem. 1967, 9, 165.
- [354] D. Hellwinkel, *Die systematische Nomenklatur der organischen Chemie;Springer-Verlag: Berlin* **1998**, *4. Auflage*.
- [355] E. C. Kleiderer, R. Adams, J. Am. Chem. Soc. 1933, 55, 4219.
- [356] M. Siegel, K. Mislow, J. Am. Chem. Soc. 1958, 80, 473.
- [357] F. A. McGinn, A. K. Lazarus, M. Siegel, J. E. Ricci, K. Mislow, J. Am. Chem. Soc. 1958, 80, 476.
- [358] R. Jaunin, A. Stoll, *Helv. Chim. Acta* **1960**, *43*, 1864.
- [359] R. W. Wagner, T. E. Johnson, J. S. Lindsey, *Tetrahedron* **1997**, *53*, 6755.
- [360] W. Q. Beard, C. R. Hauser, D. N. Vaneenam, J. Org. Chem. 1961, 26, 2310.
- [361] H. K. Neudeck, *Mon. Chem.* **1996**, *127*, 185.
- [362] G. Baddeley, N. H. P. Smith, M. A. Vickars, J. Chem. Soc. 1956, 2455.
- [363] J. B. Bogardus, T. Higuchi, *J. Pharm. Sci.* **1982**, *71*, 729.

Literaturverzeichnis

8. Anhang

8.1. Abkürzungen

Abb.	Abbildung
abs.	absolut(iert)
Ac ₂ O	Acetanhydrid
AFS	Atomic Force Spectroscopy
AIBN	Azoisobutyronitril.
Alox	Aluminiumoxid
arom.	aromatisch(e)
ATR	Attenuated Total Reflection
Ausb.	Ausbeute
Bed.	(Reaktions)-Bedingungen
benzyl.	in benzylischer Position
ber.	Berechnet
BP	Benzoylperoxid
Bu	Butyl
BuLi	Butyllithium
CPL	circular polarisiertes Licht
Cx	Cyclohexan
DC	Dünnschichtchromatographie
DCC	Dicyclohexylcarbodiimid
DCM	Dichlormethan
DMAP	<i>N,N</i> -Dimethylaminopyridin
DME	Dimethoxyethan
DMF	N,N-Dimethylformamid
8	molarer Absorbtionskoeffizient (auch: Extinktionskoeffizient)
EA	Elementaranalyse
ee	Enantiomerenüberschuss (engl.: enantiomeric excess); ee = % R - % S
El	Elektronenstoßionisation
eq	Äquivalent(e) (<i>engl</i> .: equivalent(s))
Et ₂ O	Diethylether
EtOAc	Essigsäureethylester
EtOH	Ethanol
FT-IR	Fourier-Transform-Infrarotspektroskopie
GC/MS	gekoppelte Gaschromatographie und Massenspektrometrie
gef.	gefunden

ges.	gesättigt(e)
h	Stunde (<i>engl</i> .: hour)
Hex	Hexan
HOAc	Essigsäure
HOSA	Hydroxylamin- <i>O</i> -sulfonsäure
HP	Hauptprodukt
HR-MS	hochauflösende Massenspektrometrie (engl.: high resolution)
Кар.	Kapitel
kat.	katalytische Menge
konz.	konzentriert(e)
LAH	Lithiumaluminiumhydrid
Lsg.	Lösung
Μ	molare
[M]	Metall(komplex)
Me	Methyl
Mel	Methyliodid
MeOH	Methanol
Me_2SO_4	Dimethylsulfat
min	Minute (<i>engl</i> .: minute)
MTBE	Methyl- <i>tert</i> -butylether
NaOMe	Natriummethanolat
NP	Nebenprodukt
NS	Niederschlag
OMe	Methoxy
org.	organisch
PCC	Pyridiniumchlorochromat
PG	Schutzgruppe (<i>engl</i> .: protecting group)
PFK	Perfluorkerosin
ppm	parts per million
Reakt.	Reaktion
Red.	Reduktion
R _f	ratio of fronts
RT	Raumtemperatur
Rückfl.	im Rückfluss erhitzt
Tab.	Tabelle
Temp.	Temperatur
tert, t	tertiär
THF	Tetrahydrofuran
TMEDA	N,N,N',N'-Tetramethylethylendiamin

TMP	2,2,6,6- <i>N,N,N,N</i> -Tetramethylpiperidin
Sec, s	sekundär
τ _R	Retentionszeit
Umkrist.	Umkristallisation
UV	Ultraviolett
VAZO	1,1'-Azobis-(cyclohexanecarbonitril)

8.2. Fluoreszenzspektren

Abbildung A2. Titration von 71 in Acetonitril mit Mg(ClO₄)₂ führt zu einer Verdopplung der Emission.

Abbildung A3. Titration von 2,2´-Dichlorbiphenyl in Acetonitril mit Ca(ClO₄)₂ führt zu einer Verdopplung der Emission.

Abbildung A4. Titration von 2,2'-Dichlorbiphenyl in Acetonitril mit Hg(ClO₄)₂ führt zu einer Verdopplung der Emission.

Table A1_1. Crystal data and structure refinement for 18.

Identification code pbd365 Empirical formula C14 H10 O2 210.22 Formula weight Temperature 100(2) K Wavelength 0.71073 Å Crystal system orthorhombic P212121 Space group Unit cell dimensions a = 4.6422(3) Åb = 13.2355(12) Åc = 15.7020(15) Å964.76(14) Å³ Volume Ζ 4 1.447 Mg/m³ Density (calculated) 0.096 mm⁻¹ Absorption coefficient 440 F(000) .1 x .1 x .01 mm³ Crystal size Theta range for data collection 2.01 to 27.00°. -5<=h<=5, -11<=k<=16, -20<=l<=20 Index ranges Reflections collected 4723 Independent reflections 1249 [R(int) = 0.0630]Completeness to theta = 27.00° 99.9 % Absorption correction None Full-matrix least-squares on F^2 Refinement method 1249/0/185 Data / restraints / parameters Goodness-of-fit on F² 1.006 Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.0614R indices (all data) R1 = 0.0775, wR2 = 0.0694Absolute structure parameter 0(2)0.167 and -0.182 e.Å⁻³ Largest diff. peak and hole

 $\alpha = 90^{\circ}$

 $\beta = 90^{\circ}$

 $\gamma = 90^{\circ}$

	Х	У	Z	U(eq
O(1)	709(4)	2820(1)	803(1)	30(1
O(2)	-676(4)	3727(1)	-518(1)	30(1
C(3)	902(5)	4570(2)	1272(2)	23(1
C(4)	708(6)	6200(2)	2048(2)	28(1
C(5)	1911(5)	5208(2)	1940(2)	26(1
C(6)	-4056(6)	4997(2)	-663(2)	28(1
C(7)	-1147(5)	4984(2)	642(2)	24(1
C(8)	3992(5)	4879(2)	2526(2)	27(1
C(9)	-2346(5)	5966(2)	814(2)	24(1
C(10)	-4444(5)	6395(2)	278(2)	28(1
C(11)	1939(5)	3560(2)	1322(2)	25(1
C(12)	5101(5)	3920(2)	2486(2)	29(1
C(13)	-1974(5)	4565(2)	-158(2)	24(1
C(14)	-5344(6)	5912(2)	-442(2)	31(1
C(15)	-1380(5)	6538(2)	1531(2)	28(1
C(16)	4016(5)	3253(2)	1888(2)	28(1

Table A1_2. Atomic coordinates ($x \, 10^4$) and equivalent isotropic displacement parameters

A1 Röntgenstrukturdaten für 18

Röntgenstrukturdaten

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	35(1)	27(1)	28(1)	-4(1)	-3(1)	1(1)
O(2)	35(1)	28(1)	26(1)	-5(1)	-1(1)	1(1)
C(3)	21(1)	28(1)	21(1)	-1(1)	3(1)	-3(1)
C(4)	31(1)	30(2)	22(2)	-6(1)	5(1)	-6(1)
C(5)	25(1)	30(2)	22(2)	1(1)	5(1)	-4(1)
C(6)	31(2)	33(2)	20(2)	1(1)	0(1)	-4(1)
C(7)	23(1)	26(1)	22(2)	3(1)	2(1)	-2(1)
C(8)	28(1)	33(2)	19(1)	-2(1)	2(1)	-6(1)
C(9)	25(1)	23(1)	24(2)	4(1)	5(1)	-1(1)
C(10)	31(1)	26(2)	28(2)	6(1)	4(1)	1(1)
C(11)	26(1)	27(1)	21(1)	-2(1)	4(1)	-1(1)
C(12)	26(1)	39(2)	21(1)	5(2)	-1(1)	-1(1)
C(13)	26(2)	23(1)	24(2)	2(1)	3(1)	-1(1)
C(14)	26(2)	38(2)	28(2)	9(1)	-3(1)	0(1)
C(15)	33(2)	25(2)	27(2)	-2(1)	5(1)	-3(1)
C(16)	29(1)	28(2)	28(2)	1(1)	1(1)	3(1)

Table A1_3. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for **18**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\ \text{\AA}^2 a^{*2} U^{11} + ... + 2 \ \text{h} \ \text{k} \ a^* \ b^* \ U^{12}]$

Table A1_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	- 18.

	х	У	Z	U(eq)
H(1)	4580(40)	5360(15)	2961(14)	19(6)
H(2)	-5240(40)	7073(17)	435(13)	26(7)
H(3)	4700(40)	2538(14)	1878(14)	18(6)
H(4)	1420(40)	6586(15)	2527(14)	21(6)
H(5)	-6790(40)	6179(16)	-789(14)	21(6)
H(6)	-2360(50)	7214(16)	1607(14)	32(7)
H(7)	-4530(50)	4662(18)	-1218(16)	38(7)
H(8)	6610(50)	3724(16)	2903(15)	40(8)
H(9)	180(70)	3320(20)	-30(20)	89(12)
H(11)	2030(80)	2180(30)	770(20)	104(13

Table A2_1. Crystal data and structure refinement for 49.

Table A2_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

pbd116 Identification code $(Å^2 x \ 10^3)$ for 49. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. Empirical formula C16 H14 O2 238.27 Formula weight х у z U(eq) Temperature 100(2) K 0.71073 Å Wavelength O(1) 5710(1) 9797(1) 672(1)19(1) Crystal system Rhobohedral O(2) 4303(1) 10589(1) 3704(1) 20(1)Space group R3c C(3) 4753(1) 10559(1)2910(1)18(1)Unit cell dimensions a = 22.6221(4) Å $\alpha = 90^{\circ}$ C(4) 4838(1) 10124(1)514(1)15(1)b = 22.6221(4) Å $\beta = 90^{\circ}$ C(5) 4788(1) 10723(1)401(1)16(1) c = 12.2332(2) Å $\gamma = 120^{\circ}$ C(6) 5077(1) 11297(1) 1164(1)16(1)5421.71(16) Å³ Volume C(7) 5139(1) 11230(1) 2307(1)17(1)Ζ C(8) 10780(1)18 4461(1) -560(1)18(1)C(9) 5361(1) 10085(1)1237(1)17(1) 1.314 Mg/m^3 Density (calculated) C(10) 4584(1) 11444(1)-886(1)24(1)0.086 mm⁻¹ Absorption coefficient C(11) 4450(1) 9565(1) -162(1)18(1)F(000) 2268 C(12) 4034(1)9593(1) -983(1)22(1) .1 x .1 x .1 mm³ Crystal size C(13) 4994(1) 12002(1)-303(1)26(1)Theta range for data collection 1.80 to 29.99°. C(14) 5240(1) 11952(1) 757(1) 20(1)Index ranges -31<=h<=31, -31<=k<=31, -16<=l<=16 C(15) 5581(1) 12531(1)1432(1)26(1)Reflections collected 18235 C(16) 4066(1) 10203(1)-1207(1)21(1)3482 [R(int) = 0.0599]Independent reflections C(17) 5474(1) 11816(1) 2946(1) 23(1)99.8 % Completeness to theta = 29.99° C(18) 5716(1) 2503(1) 12463(1) 26(1) Absorption correction None Full-matrix least-squares on F² Refinement method Data / restraints / parameters 3482 / 1 / 219 Goodness-of-fit on F² 0.952 Final R indices [I>2sigma(I)] R1 = 0.0358, wR2 = 0.0734R indices (all data) R1 = 0.0495, wR2 = 0.0780Absolute structure parameter 0.4(8)0.219 and -0.217 e.Å⁻³ Largest diff. peak and hole

A2 Röntgenstrukturdaten für 49

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	22(1)	22(1)	18(1)	2(1)	3(1)	15(1)
O(2)	23(1)	28(1)	14(1)	1(1)	3(1)	17(1)
C(3)	20(1)	22(1)	16(1)	0(1)	1(1)	14(1)
C(4)	15(1)	19(1)	11(1)	2(1)	3(1)	9(1)
C(5)	13(1)	20(1)	14(1)	3(1)	4(1)	9(1)
C(6)	12(1)	18(1)	20(1)	0(1)	2(1)	8(1)
C(7)	12(1)	20(1)	20(1)	-1(1)	2(1)	10(1)
C(8)	16(1)	29(1)	15(1)	3(1)	3(1)	14(1)
C(9)	20(1)	22(1)	15(1)	-1(1)	-1(1)	14(1)
C(10)	28(1)	36(1)	19(1)	9(1)	5(1)	23(1)
C(11)	18(1)	19(1)	16(1)	-1(1)	3(1)	8(1)
C(12)	16(1)	30(1)	15(1)	-5(1)	0(1)	9(1)
C(13)	28(1)	26(1)	30(1)	13(1)	11(1)	18(1)
C(14)	17(1)	19(1)	27(1)	5(1)	8(1)	10(1)
C(15)	19(1)	17(1)	40(1)	2(1)	10(1)	8(1)
C(16)	17(1)	35(1)	15(1)	0(1)	0(1)	14(1)
C(17)	19(1)	26(1)	24(1)	-6(1)	0(1)	12(1)
C(18)	18(1)	21(1)	35(1)	-9(1)	3(1)	7(1)

Table A2_3. Anisotropic displacement parameters (Å²x 10³)for **49**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

Table A2_4.	Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	49.

	Х	У	Z	U(eq)
H(1)	5955(8)	12853(8)	3010(13)	22(4)
H(2)	5120(9)	12483(10)	-555(14)	37(5)
H(3)	5689(8)	10548(9)	1522(12)	22(4)
H(4)	5126(8)	9747(8)	1864(13)	21(4)
H(5)	3760(9)	9192(9)	-1415(14)	26(4)
H(6)	5515(8)	11754(8)	3759(14)	24(4)
H(7)	4391(9)	11474(9)	-1564(14)	31(4)
H(8)	5696(9)	12973(9)	1127(13)	30(4)
H(9)	4500(7)	10177(7)	2390(11)	10(3)
H(10)	4504(8)	9170(8)	-74(10)	18(4)
H(11)	5050(8)	10443(8)	3321(12)	19(4)
H(12)	4013(10)	10670(10)	3322(16)	44(6)
H(13)	5866(10)	10008(9)	108(16)	29(5)
H(14)	3809(9)	10265(8)	-1840(14)	28(4)

Table A3_1. Crystal data and structure refinement for 51.

Table A3_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	z1 C16 H12 Br2	$(Å^2 x \ 10^3)$ for :	51 . U(eq) is defined	as one third of the	e trace of the ortho	ogonalized U ^{ij} tensor.
Formula weight Temperature	364.08 100(2) K		Х	У	Z	U(eq)
Wavelength Crystal system Space group Unit cell dimensions	0.71073 A monoclinic P21/c $a = 8.7450(3) \text{ Å}$ $\alpha = 90.000(2)^{\circ}$	Br(1) Br(2) C(1) C(2)	112(1) -5483(1) -1124(4) -4439(3)	863(1) 3135(1) 1099(2) 1531(2)	3226(1) 5979(1) 8360(3) 5605(3)	24(1) 24(1) 17(1) 17(1)
	b = 16.7000(6) Å β = 92.860(2)° c = 8.9340(3) Å γ = 90.000(2)°	C(3) C(5)	-5544(4) -4107(4)	204(2) 2351(2)	7142(3) 5039(3)	19(1) 19(1)
Volume Z	1303.11(8) Å ³ 4	C(6) C(9)	-1826(3) -1270(4)	1313(2) 1626(2)	6938(3) 4209(3)	16(1) 18(1)
Density (calculated)	1.856 Mg/m^3	C(10) C(12)	1183(4) -3431(3)	1807(2) 1116(2)	7775(3) 6658(3)	20(1) 15(1)
F(000)	6.198 mm ² 712	C(14) C(15)	365(3) -3242(4)	1374(2) 225(2)	8766(3) 8847(3)	18(1) 18(1)
Crystal size Theta range for data collection	.2 x .1 x .1 mm ⁵ 2.33 to 27.00°.	C(16) C(17)	-4068(3) -5872(4)	501(2) 1203(2)	7522(3) 5249(3)	17(1) 18(1)
Index ranges Reflections collected	-7 <=h <= 11, -16 <=k <= 21, -11 <=l <= 11 7134 2846 (Pk(int) = 0.0225)	C(18) C(19)	-6414(4) -1895(4) 500(4)	532(2) 557(2)	5968(3) 9306(3) 6216(2)	21(1) 17(1) 18(1)
Completeness to theta = 27.00° Absorption correction	100.0 % None	C(20) C(21)	-861(3)	1653(2)	5865(3)	16(1)
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	Full-matrix least-squares on F^2 2846 / 0 / 211 0.992 R1 = 0.0294, wR2 = 0.0728 R1 = 0.0429, wR2 = 0.0780 0.656 and -0.642 e.Å ⁻³					

	T111	1122	1133	1123	13	12
	U	U	U	U	U	0
Br(1)	25(1)	30(1)	18(1)	-5(1)	0(1)	5(1)
Br(2)	26(1)	17(1)	29(1)	-1(1)	2(1)	4(1)
C(1)	19(2)	15(2)	16(1)	-7(1)	-1(1)	2(1)
C(2)	16(2)	19(2)	15(1)	-2(1)	2(1)	2(1)
C(3)	24(2)	14(2)	20(1)	-1(1)	8(1)	-4(1)
C(5)	17(2)	18(2)	20(1)	0(1)	0(1)	1(1)
C(6)	20(2)	10(1)	16(1)	-2(1)	0(1)	2(1)
C(9)	18(2)	20(2)	15(1)	1(1)	4(1)	1(1)
C(10)	15(2)	21(2)	22(2)	-5(1)	-5(1)	1(1)
C(12)	18(2)	13(1)	13(1)	-4(1)	3(1)	3(1)
C(14)	22(2)	18(2)	14(1)	-2(1)	-2(1)	4(1)
C(15)	21(2)	17(2)	16(1)	2(1)	6(1)	3(1)
C(16)	19(2)	15(2)	17(1)	-2(1)	3(1)	3(1)
C(17)	17(2)	19(2)	18(1)	-1(1)	-3(1)	6(1)
C(18)	17(2)	18(2)	27(2)	-7(1)	3(1)	-3(1)
C(19)	24(2)	14(2)	13(1)	2(1)	1(1)	4(1)
C(20)	17(2)	18(2)	19(1)	-1(1)	3(1)	1(1)
C(21)	18(2)	15(1)	16(1)	-2(1)	1(1)	3(1)

Table A3_3. Anisotropic displacement parameters ($Å^2 x \ 10^3$) for **51**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

Table A3_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	r 51.

	Х	У	Z	U(eq)
H(1)	-1100(30)	2086(18)	3700(30)	13(7)
H(2)	820(30)	1252(18)	9690(40)	16(8)
H(3)	-3050(30)	2585(16)	5270(30)	5(7)
H(4)	-1390(30)	410(17)	10230(30)	11(7)
H(5)	-2300(40)	1385(19)	3960(30)	24(9)
H(6)	2190(40)	1970(18)	8000(30)	16(8)
H(7)	-6450(30)	1444(16)	4610(30)	5(7)
H(8)	-5920(30)	-175(18)	7610(30)	12(8)
H(9)	1190(40)	2120(20)	5560(40)	26(9)
H(10)	-3640(30)	-140(18)	9370(30)	13(8)
H(12)	-7410(40)	330(20)	5690(40)	31(9)
H(14)	-4210(40)	2500(20)	3950(40)	39(10)

Table A4_1. Crystal data and structure refinement for 52.

Table A4_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

 $(\text{\AA}^2 x \ 10^3)$ for **52**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	pbd162 C16 H8 O3 248.22 100(2) K 0.71073 Å Orthorhombic Pbcn a = 3.7682(6) Å b = 17.152(3) Å c = 16 371(3) Å	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
Volume Z	$1058.1(3) \text{ Å}^3$	1 10
Density (calculated)	1.558 Mg/m ³	
Absorption coefficient F(000)	0.108 mm ⁻¹ 512	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.00° Absorption correction	.1 x .05 x .05 mm ³ 2.37 to 27.00°. -4<=h<=4, -21<=k<=21, 6871 1121 [R(int) = 0.1285] 96.9 % None	-20<=l<=20
Refinement method Data / restraints / parameters	Full-matrix least-squares 1121 / 0 / 103	on F ²
Goodness-of-fit on F [∠] Final R indices [I>2sigma(I)] R indices (all data)	0.954 R1 = 0.0477, wR2 = 0.08 R1 = 0.1095, wR2 = 0.10	77 73
Largest diff. peak and hole	0.187 and -0.250 e.Å ⁻³	

	X	У	Z	U(eq)
O(1)	6759(4)	-538(1)	1237(1)	37(1)
C(7)	3342(6)	2064(1)	1727(1)	27(1)
C(8)	4308(5)	1335(1)	2086(1)	24(1)
C(9)	1784(6)	2094(1)	946(1)	31(1)
O(18)	5000	-451(1)	2500	46(1)
C(19)	1407(6)	1439(1)	476(2)	32(1)
C(21)	4018(5)	669(1)	1563(1)	25(1)
C(26)	4132(6)	2782(1)	2142(1)	32(1)
C(31)	5440(6)	-118(1)	1744(1)	30(1)
C(35)	2667(6)	731(1)	777(1)	30(1)
				· · ·

A4 Röntgenstrukturdaten für 52

Table A4_3. Anisotropic displacement parameters (Å²x 10³) for **52**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	48(1)	29(1)	35(1)	-3(1)	4(1)	5(1)
C(7)	27(1)	24(1)	30(1)	3(1)	6(1)	2(1)
C(8)	24(1)	24(1)	25(1)	1(1)	3(1)	0(1)
C(9)	31(1)	30(1)	34(1)	11(1)	5(1)	4(1)
O(18)	94(2)	22(1)	22(1)	0	3(1)	0
C(19)	30(1)	43(2)	24(1)	6(1)	1(1)	4(1)
C(21)	26(1)	25(1)	24(1)	0(1)	2(1)	-1(1)
C(26)	32(1)	23(1)	39(1)	4(1)	8(1)	3(1)
C(31)	35(1)	29(1)	26(1)	-1(1)	-2(1)	-5(1)
C(35)	30(1)	33(1)	26(1)	-3(1)	2(1)	-1(1)

Table A4_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **52**.

	Х	У	Z	U(eq)
H(1)	2580(50)	272(13)	442(12)	31(6)
H(2)	1030(50)	2603(14)	722(12)	37(6)
H(3)	3430(50)	3243(12)	1848(11)	28(6)
H(4)	580(60)	1450(11)	-104(14)	37(6)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table A5_1. C	rystal data and struc	cture refinement for	50.		C(28)	-1359(9)	2613(8)	6686(7)	31(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Identification of	ada	nhd206			C(48)	2254(10)	4221(8)	4079(6)	30(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Empirical form		C16 H12 O			C(50)	2535(9)	4881(8)	5371(7)	30(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Empirical form	ula	220.26			C(53)	513(9)	3653(8)	6427(6)	23(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tommonotumo		220.20 100(2) V			C(59)	3249(9)	4886(8)	3663(7)	33(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Wassalawath		100(2) K			C(78)	1772(9)	3553(9)	3493(7)	37(3)
Crystal system Inclume C(2) 2272(9) 4831(8) 6282(7) 29(3) Unit cell dimensions a = 11.617(2) Å cc = 84.216(9)° C(10x) 630(9) 2024(8) 1452(6) 25(2) b = 11.6389(9) $L(13x)$ $\beta = 74.787(4)^{\circ}$ C(10E) -788(10) 3605(9) 1515(7) 40(3) Volume 2141.3(5) Å $\gamma = 89.215(8)^{\circ}$ C(11E) 142(11) 1442(10) 1945(8) 50(3) Z 8 C(12B) 678(9) 3605(8) 657(7) 35(3) Density (calculated) 1.366 Mg/m ³ C(13B) -110(9) 2840(8) 1887(7) 35(3) F(000) 928 O(17) 201(7) 244(3) 50(3) 74(3) 31(3) Referent marge for data collection 1.29 to 25.00°. C(45) 857(9) 2080(8) -117(7) 28(3) Index range for data collection 1.29 to 25.00°. C(46) 2209(9) -83(3) -47(7) 31(3) Crystal size -31.46 +c=1319<<	wavelength		0./10/3 A			C(86)	714(8)	3658(7)	5530(6)	22(2)
Space group P-1 C(07) 3540(10) 5503(8) 4913(7) 37(3) Unit cell dimensions a = 11.617(2) Å d= 84.216(9)° C(1X) 630(9) 224(8) 1452(6) 25(2) b = 11.6389(9) Å $\beta = 74.787(4)°$ C(10E) -788(10) 3605(9) 11515(7) 40(3) Volume 2141.3(5) Å $\gamma = 89.215(8)°$ C(11B) 1390(11) -324(8) 1386(7) 39(3) Volume 2141.3(5) Å T C(12B) -678(9) 3605(8) 657(7) 35(3) Density (calculated) 1.366 Mg/m ³ C(12E) 1629(9) -58(8) 442(7) 30(3) Absorptio coefficient 0.084 mm ⁻¹ C(13B) -110(9) 2840(8) 1887(7) 35(3) F(000) 928 O(7) 201(7) 201(7) 444(6) 1742(5) 50(2) Crystal size 2.x. 2.x.03 mm ³ C(26) 21(9) 278(8) 199(7) 28(3) Index ranges -11 -1<29 to 25.00°.	Crystal system		triclinic D 1			C(92)	2272(9)	4831(8)	6282(7)	29(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Space group		P-1	a) °		C(97)	3540(10)	5503(8)	4913(7)	37(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Unit cell dimen	sions	a = 11.617(2) A	$\alpha = 84.216(9)^{\circ}$	C(1X)	630(9)	2024(8)	1452(6)	25(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			b = 11.6389	9(9) A	$\beta = 74.787(4)^{\circ}$	C(10E)	-788(10)	3605(9)	1515(7)	40(3)
Volume $2141.3(5)$ Å ³ C(11C) $142(11)$ $142(10)$ $1945(8)$ $50(3)$ Z8C(12B)-678(9)3605(8)657(7)35(3)Density (calculated)1.366 Mg/m ³ C(12B)-1629(9)-58(8)442(7)30(3)Absorption coefficient0.084 mm ⁻¹ C(13B)-110(9)2840(8)1887(7)35(3)F(000)9280.17)2011(7)444(6)1742(5)50(2)Crystal size2 x. 2 x. 03 mm ³ C(26)21(9)2783(8)199(7)28(3)Index ranges-11-12 to 25.00°.C(45)857(9)2080(8)-117(7)28(3)Index ranges-11-11<			c = 16.497(3) Á	$\gamma = 89.215(8)^{\circ}$	C(11B)	1390(11)	-324(8)	1386(7)	39(3)
Z 8 C(12B) -678(9) 3605(8) 657(7) 35(3) Density (calculated) 1.366 Mg/m ³ C(13E) 1629(9) -58(8) 442(7) 30(3) Absorption coefficient 0.084 mm ⁻¹ C(13A) 1380(9) 114(7) -791(6) 24(2) (7000) 928 O(17) 2011(7) 444(6) 1742(5) 50(2) Crystal size .2 x. 2 x. 03 mm ³ C(26) 21(9) 2783(8) 199(7) 28(3) Index range for data collection 1.29 to 25.00°. C(45) 857(9) 2080(8) -1171(7) 28(3) Reflections collected 9149 C(47) 637(8) 1920(8) 590(6) 252(2) Independent reflections 7140 [R(int) = 0.0740] C(64) 1986(9) 288(8) -1285(6) 30(3) Data / restraints / parameters 7140 (O 1614 C(2X) 746(10) -121(8) 6112(7) 33(3) Goodness-of-fit on F ² 1.073 C(10) 7661(9) 72(8 5206(7) 36(3) <td>Volume</td> <td></td> <td>2141.3(5) Å</td> <td>3</td> <td></td> <td>C(11C)</td> <td>1421(11)</td> <td>1442(10)</td> <td>1945(8)</td> <td>50(3)</td>	Volume		2141.3(5) Å	3		C(11C)	1421(11)	1442(10)	1945(8)	50(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Z		8			C(12B)	-678(9)	3605(8)	657(7)	35(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Danaitas (aalas)		1 2(C M-/-	.3		C(12E)	1629(9)	-58(8)	442(7)	30(3)
Absorption coefficient0.084 mm^{-1}C(13B)-110(9)2840(8)1887(7)35(3)F(000)92801(7)2011(7)444(6)1742(5)50(2)Crystal size2 x. 2 x. 0.3 mm^3C(26)21(9)2783(8)199(7)28(3)Theta range for data collection1.29 to 25.00°.C(45)857(9)2080(8)-1171(7)28(3)Index ranges-11-11-10<	Density (calcula	ated)	1.300 Mg/n	n- 1		C(13A)	1380(9)	1140(7)	-791(6)	24(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Absorption coef	fficient	0.084 mm ⁻¹	1		C(13B)	-110(9)	2840(8)	1887(7)	35(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(000)		928			O(17)	2011(7)	444(6)	1742(5)	50(2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystal size		.2 x .2 x .03	3 mm^3		C(26)	21(9)	2783(8)	199(7)	28(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Theta range for	data collection	1.29 to 25.0	00°.		C(45)	857(9)	2080(8)	-1171(7)	28(3)
Reflections collected9149C(47)637(8)1920(8)590(6)25(2)Independent reflections7140 [R(int) = 0.0740]C(64)1986(9)288(8)-1285(6)30(3)Completeness to theta = 25.00°94.9 %C(87)2378(10)-682(9)-943(7)35(3)Absorption correctionNoneC(89)1236(8)1006(8)103(6)25(2)Refinement methodFull-matrix least-squares on F^2 C(90)180(9)2842(8)-705(7)34(3)Data / restraints / parameters7140 / 0 / 614C(2X)7476(10)-121(8)6112(7)33(3)Goodness-of-fit on F^2 1.073C(10)7661(9)72(8)5206(7)28(3)Final R indices [I>2sigma(I)]R1 = 0.1493, wR2 = 0.3262C(111)4624(10)1368(9)6915(7)39(3)Largest diff. peak and hole0.453 and -0.408 e.Å^{-3}C(16)5665(9)989(7)6348(6)27(3)C(3)xyzU(eq)C(52)7241(8)1065(8)3962(6)24(2)Zurgest diff. peak and hole0.453 and -0.408 e.Å^{-3}C(16)5665(9)989(7)6348(6)27(3)C(42)xyzU(eq)C(65)4781(9)1979(8)4281(6)29(3)C(52)7241(8)1065(8)3962(6)24(2)20(3)20(3)20(3)20(3)20(3)20(3)Largest diff. peak and hole0.453 and -0.408 e.Å^{-3}C(16)5665(9)989(7)6348(6)27(3)	Index ranges		-11<=h<=1	3, -10<=k<=	13, -19<=l<=15	C(46)	2209(9)	-863(9)	-74(7)	31(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reflections coll	ected	9149	,	,	C(47)	637(8)	1920(8)	590(6)	25(2)
Completeness to theta = 25.00° 94.9% C(87) $2378(10)$ $-682(9)$ $-943(7)$ $35(3)$ Absorption correctionNoneC(89)1236(8)1006(8)103(6)25(2)Refinement methodFull-matrix least-squares on F ² C(90)180(9)2842(8) $-705(7)$ 34(3)Data / restraints / parameters7140 / 0 / 614C(3)4823(9)1755(7)5193(6)25(2)Goodness-of-fit on F ² 1.073C(10)7661(9)72(8)5206(7)28(3)Final R indices (12>sigma(1)]R1 = 0.1493, wR2 = 0.3262C(111)4624(10)1368(9)6915(7)39(3)R indices (all data)R1 = 0.3096, wR2 = 0.4045O(12)5797(6)2619(5)3793(4)32(2)Largest diff. peak and hole0.453 and -0.408 e.Å ⁻³ C(16)5665(9)989(7)6348(6)27(3)C(36)5792(9)1207(7)5442(6)22(2)Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parametersC(52)7241(8)1065(8)3962(6)24(2)(Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{1j} tensor.C(65)4781(9)1979(8)4281(6)29(3)(Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{1j} tensor.C(65)4781(9)353(8)6642(7)34(3)(O(1)907(6)2697(5)3857(4)31(2)C(98)8860(9)-202(9)3356(7)36(3)(C8)-184(9)3170(7) <t< td=""><td>Independent ref</td><td>lections</td><td>7140 [R(int</td><td>) = 0.07401</td><td></td><td>C(64)</td><td>1986(9)</td><td>288(8)</td><td>-1285(6)</td><td>30(3)</td></t<>	Independent ref	lections	7140 [R(int) = 0.07401		C(64)	1986(9)	288(8)	-1285(6)	30(3)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Completeness to	theta = 25.00°	94.9 %	, .		C(87)	2378(10)	-682(9)	-943(7)	35(3)
Refinement method Full-matrix least-squares on F^2 C(90) 180(9) 2842(8) -705(7) 34(3) Data / restraints / parameters 7140 / 0 / 614 C(2X) 7476(10) -121(8) 6112(7) 33(3) Goodness-of-fit on F^2 1.073 C(3) 4823(9) 1755(7) 5193(6) 25(2) Final R indices [I>2sigma(I)] R1 = 0.1493, wR2 = 0.3262 C(10) 7661(9) 72(8) 5206(7) 28(3) R indices (all data) R1 = 0.3096, wR2 = 0.4045 O(12) 5797(6) 2619(5) 3793(4) 32(2) Extinction coefficient 0.008(2) C(14) 3726(10) 1890(8) 6656(7) 35(3) Largest diff. peak and hole 0.453 and -0.408 e.Å ²⁻³ C(16) 5665(9) 989(7) 6348(6) 27(3) C(36) 5792(9) 1207(7) 5442(6) 22(2) C(33) 3336(9) 2080(8) 5793(7) 32(3) (Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{1j} tensor. C(65) 4781(9) 1979(8) 4281(6) 29(3) (Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{1j}	Absorption corr	rection	None			C(89)	1236(8)	1006(8)	103(6)	25(2)
Remement neurodPuti-finality restarsquares on PC(2x)7476(10)-121(8)6112(7)33(3)Data / restraints / parameters7140 / 0 / 614C(3)4823(9)1755(7)5193(6)25(2)Goodness-of-fit on F^2 1.073C(10)7661(9)72(8)5206(7)28(3)Final R indices [J>2sigma(I)]R1 = 0.1493, wR2 = 0.3262C(111)4624(10)1368(9)6915(7)39(3)R indices (al data)R1 = 0.3096, wR2 = 0.4045O(12)5797(6)2619(5)3793(4)32(2)Extinction coefficient0.008(2)C(14)3726(10)1890(8)6656(7)35(3)Largest diff. peak and hole0.453 and -0.408 e.Å ⁻³ C(16)5665(9)989(7)6348(6)27(3)C(36)5792(9)1207(7)5442(6)22(2)C(36)5792(9)1207(7)5442(6)22(3)(Å ² x 10 ³) for 50 . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)(Å ² x 10 ³) for 50 . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3)(Å ² x 10 ³) for 50 . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(69)6546(10)353(8)6642(7)34(3)(C11)907(6)2697(5)3857(4)31(2)C(94)6694(10)1889(9)3399(7)41(3)(C13)-184(9)3170(7)5733(6)23(2)C(98)8960(9) <t< td=""><td>Pofinament met</td><td>thad</td><td>Full motrix</td><td>loost couero</td><td>$r = r^2$</td><td>C(90)</td><td>180(9)</td><td>2842(8)</td><td>-705(7)</td><td>34(3)</td></t<>	Pofinament met	thad	Full motrix	loost couero	$r = r^2$	C(90)	180(9)	2842(8)	-705(7)	34(3)
Data/restraints/parameters 7140707014 C(3) $4823(9)$ $1755(7)$ $5193(6)$ $25(2)$ Goodness-of-fit on F^2 1.073 C(10) $7661(9)$ $72(8)$ $5206(7)$ $28(3)$ Final R indices [I>2sigma(I)] R1 = 0.1493, wR2 = 0.3262 C(111) $4624(10)$ $1368(9)$ $6915(7)$ $39(3)$ R indices (all data) R1 = 0.3096, wR2 = 0.4045 O(12) $5797(6)$ $2619(5)$ $3793(4)$ $32(2)$ Extinction coefficient 0.008(2) C(14) $3726(10)$ $1890(8)$ $6656(7)$ $35(3)$ Largest diff. peak and hole 0.453 and -0.408 e.Å ⁻³ C(16) $5665(9)$ $987(7)$ $6348(6)$ $27(3)$ C(36) 5792(9) 1207(7) $5442(6)$ $22(2)$ Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters C(52) $7241(8)$ $1065(8)$ $3962(6)$ $24(2)$ (Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. C(65) $4781(9)$ $1979(8)$ $4281(6)$ $29(3)$ x y z U(eq) C(69) $6546(10)$	Data / mastrainta		7140/0/6	14		C(2X)	7476(10)	-121(8)	6112(7)	33(3)
Goodness-of-fit on F^2 1.073 C(10) 7661(9) 72(8) 5206(7) 28(3) Final R indices [I>2sigma(I)] R1 = 0.1493, wR2 = 0.3262 C(11I) 4624(10) 1368(9) 6915(7) 39(3) R indices (all data) R1 = 0.3096, wR2 = 0.4045 O(12) 5797(6) 2619(5) 3793(4) 32(2) Extinction coefficient 0.008(2) C(14) 3726(10) 1890(8) 6656(7) 35(3) Largest diff. peak and hole 0.453 and -0.408 e.Å ⁻³ C(16) 5665(9) 989(7) 6348(6) 27(3) C(36) 5792(9) 1207(7) 5442(6) 22(2) Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters C(52) 7241(8) 1065(8) 3962(6) 24(2) (Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. C(65) 4781(9) 1979(8) 4281(6) 29(3) X Y Z U(eq) C(69) 6546(10) 353(8) 6642(7) 34(3) C(79) 6884(9) 801(8) 4857(7) 27(2) C(94) 6694(10) 1889(9) 3399	Data / Testraints		/140/0/0	14		C(3)	4823(9)	1755(7)	5193(6)	25(2)
Final R indices [I>2sigma(I)]R1 = 0.1493, wR2 = 0.3262C(111)4624(10)1368(9)6915(7)39(3)R indices (all data)R1 = 0.3096, wR2 = 0.4045O(12)5797(6)2619(5)3793(4)32(2)Extinction coefficient0.008(2)C(14)3726(10)1890(8)6656(7)35(3)Largest diff. peak and hole0.453 and -0.408 e.Å ⁻³ C(16)5665(9)989(7)6348(6)27(3)C(36)5792(9)1207(7)5442(6)22(2)Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parametersC(52)7241(8)1065(8)3962(6)24(2)C(63)3836(9)2080(8)5793(7)32(3)(Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3)(Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(69)6546(10)353(8)6642(7)34(3)(Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(69)6546(10)353(8)6642(7)34(3)(C11)907(6)2697(5)3857(4)31(2)C(94)6694(10)1889(9)3399(7)41(3)(C13)907(6)2697(5)3857(4)31(2)C(98)8960(9)-202(9)3856(7)36(3)(C14)907(6)2697(5)3857(4)31(2)C(98)8960(9)-202(9)3856(7)36(3)	Goodness-of-fit	$c \text{ on } \mathbb{F}^2$	1.073			C(10)	7661(9)	72(8)	5206(7)	28(3)
R indices (all data)R1 = 0.3096, wR2 = 0.4045 $O(12)$ 5797(6)2619(5)3793(4)32(2)Extinction coefficient0.008(2) $C(14)$ 3726(10)1890(8)6656(7)35(3)Largest diff. peak and hole0.453 and -0.408 e.Å ⁻³ $C(16)$ 5665(9)989(7)6348(6)27(3)C(36)5792(9)1207(7)5442(6)22(2)Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters $C(52)$ 7241(8)1065(8)3962(6)24(2) $(Å^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. $C(65)$ 4781(9)1979(8)4281(6)29(3) $(A^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. $C(66)$ 6546(10)353(8)6642(7)34(3) $(A^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. $C(69)$ 6546(10)353(8)6642(7)34(3) $(A^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. $C(69)$ 6546(10)353(8)6642(7)34(3) $(C11)$ 907(6)2697(5)3857(4)31(2) $C(94)$ 6694(10)1889(9)3399(7)41(3) $(C8)$ -184(9)3170(7)5233(6)-23(2) $C(98)$ 8960(9)-202(9)3856(7)36(3)	Final R indices	[I>2sigma(I)]	R1 = 0.149	3, wR2 = 0.3	262	C(11I)	4624(10)	1368(9)	6915(7)	39(3)
Extinction coefficient $0.008(2)$ $C(14)$ $3726(10)$ $1890(8)$ $6656(7)$ $35(3)$ Largest diff. peak and hole 0.453 and -0.408 e.Å ⁻³ $C(16)$ $5665(9)$ $989(7)$ $6348(6)$ $27(3)$ Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters $C(52)$ $7241(8)$ $1065(8)$ $3962(6)$ $24(2)$ $C(63)$ $3836(9)$ $2080(8)$ $5793(7)$ $32(3)$ $(Å^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. $C(65)$ $4781(9)$ $1979(8)$ $4281(6)$ $29(3)$ $C(68)$ $8674(9)$ $-414(8)$ $4717(7)$ $33(3)$ $C(11)$ $907(6)$ $2697(5)$ $3857(4)$ $31(2)$ $C(94)$ $6694(10)$ $1889(9)$ $3399(7)$ $41(3)$ $C(8)$ $-184(9)$ $3170(7)$ $5233(6)$ $232(2)$ $C(98)$ $8960(9)$ $-202(9)$ $3856(7)$ $36(3)$	R indices (all da	ata)	R1 = 0.3090	6, wR2 = 0.4	045	O(12)	5797(6)	2619(5)	3793(4)	32(2)
Largest diff. peak and hole $0.453 \text{ and } -0.408 \text{ e.Å}^{-3}$ C(16) $5665(9)$ $989(7)$ $6348(6)$ $27(3)$ Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parametersC(36) $5792(9)$ $1207(7)$ $5442(6)$ $22(2)$ C(36) $5793(7)$ $32(3)$ $3336(9)$ $2080(8)$ $5793(7)$ $32(3)$ $(\mathring{A}^2x 10^3)$ for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65) $4781(9)$ $1979(8)$ $4281(6)$ $29(3)$ X y z $U(eq)$ C(69) $6546(10)$ $353(8)$ $6642(7)$ $34(3)$ $C(10)$ $907(6)$ $2697(5)$ $3857(4)$ $31(2)$ C(94) $6694(10)$ $1889(9)$ $3399(7)$ $41(3)$ $C(8)$ $z^{-184(9)}$ $3170(7)$ $5233(6)$ $23(2)$ C(98) $8960(9)$ $-202(9)$ $3856(7)$ $36(3)$	Extinction coeff	ficient	0.008(2)			C(14)	3726(10)	1890(8)	6656(7)	35(3)
$\frac{C(36)}{C(52)} = \frac{5792(9)}{7241(8)} = \frac{1207(7)}{1207(7)} = \frac{5442(6)}{5442(6)} = \frac{22(2)}{24(2)}$ Table A5_2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (Å ² x 10 ³) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor. (Å2x 103) for 50. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) C(65) 4781(9) 1979(8) 4281(6) 29(3) C(68) 8674(9) -414(8) 4717(7) 33(3) C(69) 6546(10) 353(8) 6642(7) 34(3) C(79) 6884(9) 801(8) 4857(7) 27(2) C(1) 907(6) 2697(5) 3857(4) 31(2) C(94) 6694(10) 1889(9) 3399(7) 41(3) C(8) -184(9) 3170(7) 5233(6) 23(2) C(98) 8960(9) -202(9) 3856(7) 36(3) C(7) C(9) C(9) C(9) C(9) C(9) C(9) C(9) C(9	Largest diff. pea	ak and hole	0.453 and -	0.408 e.Å ⁻³		C(16)	5665(9)	989(7)	6348(6)	27(3)
Table A5_2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parametersC(52) C(63)7241(8)1065(8) 3962(6)3962(6) 24(2)24(2) 22(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(52) C(63)7241(8)1065(8) 3836(9)3962(6) 2080(8)24(2) 20(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3) 29(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3) 29(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3) 29(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3) 29(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(65)4781(9)1979(8)4281(6)29(3) 29(3)(Å ² x 10^3) for 50. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.C(69)6546(10)353(8)6642(7)34(3) 27(2)(Å ¹ x 10^3) $907(6)$ 2697(5)3857(4)31(2)C(94)6694(10)1889(9)3399(7)41(3)(Å ¹ x 10^3) 10^3 3170(7)5233(6)23(2)C(98)8960(9)-202(9)3856(7)36(3)						C(36)	5792(9)	1207(7)	5442(6)	22(2)
$\frac{(\text{\AA}^{2} \text{x } 10^{3}) \text{ for 50. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.}{X y z U(eq)} \underbrace{\begin{array}{c} C(63) \\ C(65) \\ C(65) \\ C(68) \\ C(68) \\ C(69) \\ C(79) \\ C(8) \\ C(8)$	Table A5 2 A	tamia agandinatas ($x = 10^{4}$) and aminate	nt isotronio d	ical a company a compatent	C(52)	7241(8)	1065(8)	3962(6)	24(2)
$\frac{(\mathring{A}^{2}x\ 10^{3}) \text{ for } 50. \ U(eq) \text{ is defined as one third of the trace of the orthogonalized } U^{ij} \text{ tensor.}}{X} \underbrace{\begin{array}{c} C(65) \\ C(68) \\ C(68) \\ C(69) \\ C(79) \\ C(79) \\ C(8) \\ C(9) \\ C$	Table A5_2. A	tomic coordinates (x 10) and equivale.	in isotropic c	isplacement parameters	C(63)	3836(9)	2080(8)	5793(7)	32(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$(Å^2 x \ 10^3)$ for 5	0 U(eq) is defined	as one third of the tr	ace of the or	thogonalized U ^{ij} tensor	C(65)	4781(9)	1979(8)	4281(6)	29(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(A X 10) 101 5	0. O(eq) is defined	as one unit of the t	ace of the of	ulogonalized 0 • telisor.	C(68)	8674(9)	-414(8)	4717(7)	33(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 X	V	7	LI(eq)	C(69)	6546(10)	353(8)	6642(7)	34(3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		л	y	L	0(04)	C(79)	6884(9)	801(8)	4857(7)	27(2)
C(8) -184(9) 3170(7) 5233(6) 23(2) $C(98)$ 8960(9) -202(9) 3856(7) 36(3)	$\overline{\mathbf{O}(1)}$	907(6)	2697(5)	3857(4)	31(2)	C(94)	6694(10)	1889(9)	3399(7)	41(3)
	C(8)	-184(9)	3170(7)	5233(6)	23(2)	C(98)	8960(9)	-202(9)	3856(7)	36(3)
C(10R) 3885(9) 5547(9) 4046(7) 35(3) $C(99)$ 8258(9) 547(8) 3499(7) 34(3)	C(10B)	-10+(2)	5547(9)	4046(7)	25(2) 35(3)	C(99)	8258(9)	547(8)	3499(7)	34(3)
C(11E) $1315(9)$ $4237(8)$ $6787(7)$ $33(3)$ $O(4)$ $7757(6)$ $4607(6)$ $-1173(5)$ $36(2)$	C(10D)	1315(9)	4232(8)	6782(7)	33(3)	O(4)	7757(6)	4607(6)	-1173(5)	36(2)

C(12D)

C(13E)

C(22)

C(27)

-521(9)

-183(8)

1817(9)

-1193(9)

3125(8)

3182(8)

4229(8)

2668(8)

6982(7)

4317(6)

4983(7)

5806(7)

33(3)

27(2)

28(3)

31(3)

C(4X)

C(6) C(10F)

C(11G)

4663(9)

6046(9)

4566(10)

5026(9)

2125(9)

3239(8)

1464(9)

2876(9)

1461(7)

-800(7)

133(7)

1902(7)

34(3)

28(3)

41(3)

33(3)

A5 Röntgenstrukturdaten für 50

C(13C)	4862(10)	1513(9)	-723(8)	44(3)	
C(15)	5746(8)	3225(8)	112(6)	25(2)	
C(18)	6118(9)	4079(8)	588(7)	29(3)	
C(21)	6013(9)	4656(9)	2017(7)	34(3)	
C(30)	6605(9)	5657(9)	1687(7)	35(3)	
C(33)	6778(9)	5112(8)	280(7)	31(3)	
C(38)	6976(9)	5872(8)	810(7)	32(3)	
C(41)	5623(10)	2393(9)	-1182(7)	38(3)	
C(55)	5717(8)	3873(8)	1500(7)	28(3)	
C(56)	7375(11)	5499(9)	-654(7)	42(3)	
C(71)	4996(9)	2277(8)	537(7)	33(3)	
C(96)	6796(10)	4142(9)	-1410(7)	38(3)	

Table A5_3.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for 50 . The anisotrop	ic
displacement	actor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + + 2hka^{*}b^{*}U^{12}$	1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	40(5)	22(4)	32(4)	-4(3)	-12(4)	-3(3)
C(8)	25(6)	6(5)	42(7)	-4(4)	-14(5)	-1(4)
C(10B)	23(6)	34(7)	48(8)	2(5)	-13(5)	-4(5)
C(11E)	32(7)	25(6)	49(8)	-9(5)	-23(6)	1(5)
C(12D)	39(7)	22(6)	34(7)	4(5)	-5(5)	-2(5)
C(13E)	16(6)	28(6)	42(7)	-7(5)	-17(5)	2(4)
C(22)	32(6)	16(6)	47(7)	-7(5)	-25(6)	1(5)
C(27)	43(7)	19(6)	38(7)	6(5)	-27(6)	-8(5)
C(28)	24(6)	19(6)	47(8)	4(5)	-10(5)	-6(4)
C(48)	55(8)	14(6)	23(6)	-2(4)	-14(5)	2(5)
C(50)	39(7)	11(6)	41(7)	0(5)	-15(6)	0(5)
C(53)	26(6)	21(6)	22(6)	1(4)	-7(5)	-1(4)
C(59)	41(7)	26(6)	37(7)	6(5)	-20(6)	-2(5)
C(78)	36(7)	40(7)	46(8)	-19(6)	-22(6)	-2(5)
C(86)	19(6)	15(6)	39(7)	-5(4)	-21(5)	6(4)
C(92)	26(6)	17(6)	45(7)	4(5)	-14(5)	0(5)
C(97)	40(7)	19(6)	56(9)	9(5)	-24(6)	-8(5)
C(1X)	26(6)	15(6)	38(7)	0(5)	-16(5)	-5(4)
C(10E)	35(7)	30(7)	55(9)	-24(6)	-7(6)	-2(5)
C(11B)	57(8)	20(6)	46(8)	-3(5)	-24(6)	-4(5)
C(11C)	59(9)	40(8)	65(9)	-24(6)	-33(7)	19(6)
C(12B)	32(7)	22(7)	58(9)	-7(5)	-22(6)	3(5)
C(12E)	35(7)	19(6)	35(7)	15(5)	-12(5)	-13(5)
C(13A)	34(6)	12(6)	27(6)	-8(4)	-8(5)	-6(4)
C(13B)	35(7)	24(7)	44(7)	0(5)	-8(6)	-10(5)
O(17)	61(6)	39(5)	65(6)	-17(4)	-39(5)	8(4)
C(26)	32(7)	14(6)	44(7)	0(5)	-20(5)	-5(5)

C(45)	32(6)	16(6)	36(7)	7(5)	-10(5)	-5(5)
C(46)	26(6)	23(6)	47(8)	-6(5)	-16(5)	6(5)
C(47)	25(6)	22(6)	35(7)	-2(5)	-20(5)	-5(4)
C(64)	40(7)	26(7)	26(6)	6(5)	-12(5)	-11(5)
C(87)	49(8)	29(7)	29(7)	-8(5)	-12(6)	2(5)
C(89)	28(6)	19(6)	28(6)	2(4)	-11(5)	-4(4)
C(90)	39(7)	21(6)	49(8)	3(5)	-25(6)	1(5)
C(2X)	53(8)	8(6)	47(8)	7(5)	-31(6)	-4(5)
C(3)	29(6)	10(6)	39(7)	-6(4)	-15(5)	2(4)
C(10)	22(6)	18(6)	49(8)	1(5)	-20(5)	-2(4)
C(11I)	39(8)	31(7)	44(8)	-10(5)	-4(6)	-10(5)
O(12)	38(5)	26(4)	33(4)	8(3)	-18(4)	-4(3)
C(14)	36(7)	27(6)	41(8)	-8(5)	-6(6)	-1(5)
C(16)	38(7)	9(5)	38(7)	2(4)	-16(5)	-7(5)
C(36)	36(6)	1(5)	31(6)	0(4)	-14(5)	-6(4)
C(52)	18(6)	20(6)	41(7)	0(5)	-20(5)	3(4)
C(63)	35(7)	19(6)	44(8)	-1(5)	-13(6)	-2(5)
C(65)	30(6)	28(6)	35(7)	3(5)	-21(5)	-3(5)
C(68)	22(6)	26(6)	60(9)	-9(5)	-24(6)	8(5)
C(69)	46(8)	24(6)	34(7)	3(5)	-17(6)	-9(5)
C(79)	24(6)	14(6)	44(7)	0(5)	-14(5)	2(4)
C(94)	38(7)	34(7)	53(8)	-1(6)	-13(6)	4(5)
C(98)	31(7)	35(7)	47(8)	-17(6)	-15(6)	9(5)
C(99)	37(7)	27(6)	41(7)	-7(5)	-14(6)	1(5)
O(4)	28(4)	31(5)	50(5)	3(4)	-13(4)	-2(3)
C(4X)	30(7)	24(7)	48(8)	12(5)	-13(6)	-4(5)
C(6)	29(6)	17(6)	41(7)	-2(5)	-12(5)	11(5)
C(10F)	44(8)	28(7)	50(8)	-7(6)	-8(6)	-13(5)
C(11G)	34(7)	28(7)	41(7)	12(5)	-22(6)	8(5)
C(13C)	46(8)	42(8)	50(9)	-6(6)	-23(7)	-7(6)
C(15)	25(6)	19(6)	30(6)	0(4)	-7(5)	7(4)
C(18)	29(6)	18(6)	43(7)	-3(5)	-16(5)	5(5)
C(21)	30(7)	28(7)	47(8)	-3(5)	-16(6)	5(5)
C(30)	32(7)	30(7)	46(8)	0(5)	-16(6)	2(5)
C(33)	30(6)	23(6)	44(7)	-11(5)	-12(5)	3(5)
C(38)	36(7)	14(6)	49(8)	-4(5)	-14(6)	5(5)
C(41)	40(7)	36(7)	42(7)	-8(6)	-13(6)	8(5)
C(55)	18(6)	20(6)	50(8)	-3(5)	-15(5)	11(4)
C(56)	64(9)	26(7)	36(7)	-3(5)	-14(6)	-14(6)
C(71)	34(7)	22(6)	45(8)	0(5)	-15(6)	-5(5)
C(96)	47(8)	35(7)	34(7)	-4(5)	-14(6)	-3(6)

Table A5_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **50**.

	¥			U(ag)
	х	у	<i>L</i>	U(eq)
H(10B)	4541	6017	3724	42
H(11E)	1173	4194	7378	30
H(12D)	-638	3125	7574	39
H(13A)	-872	2726	4270	32
H(13R)	-257	3984	4075	32
H(27)	-1792	2350	5595	37
H(28)	-2036	2230	7064	37
H(59)	3514	4889	3066	40
$H(78\Delta)$	1/33	4116	3131	40
H(78R)	2455	3186	3118	45
H(92)	2780	5226	6532	35
H(97)	3995	5904	5199	44
H(10F)	-1316	4118	1840	48
H(11A)	523	-273	1648	47
H(11R)	1635	-1125	1514	47
H(11C)	2036	2019	1952	60
H(11D)	929	1288	2534	60
H(12B)	-1080	4169	380	42
H(13C)	-149	2873	2466	42
H(45)	989	2173	-1767	34
H(46)	2496	-1548	166	37
H(64)	2120	406	-1881	36
H(87)	2772	-1245	-1293	42
H(90)	-204	3434	-973	41
H(2X)	8017	-590	6337	40
H(11I)	4558	1248	7504	47
H(14)	3034	2124	7052	42
H(63)	3203	2450	5608	38
H(65A)	4747	1233	4047	35
H(65B)	4051	2411	4252	35
H(68)	9168	-893	4980	40
H(69)	6482	257	7231	41
H(94A)	7344	2378	3018	50
H(94B)	6360	1425	3041	50
H(98)	9625	-562	3513	43
H(99)	8480	720	2903	41
H(4X)	4181	1481	1750	41

H(10F)	4056	861	459	49	
H(11G)	4817	2743	2501	40	
H(13D)	4554	959	-1000	53	
H(21)	5789	4474	2612	40	
H(30)	6763	6197	2041	42	
H(38)	7384	6578	571	38	
H(41)	5862	2415	-1780	46	
H(56A)	6805	5981	-886	50	
H(56B)	8074	5994	-683	50	
H(96A)	7119	3807	-1952	45	
H(96B)	6271	4785	-1517	45	

A5 Röntgenstrukturdaten für 50

Table A6_1. Crystal data and structure refinement for 53.

Table A6_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd110 C16 H8 O2	$(Å^2 x \ 10^3)$ for 5	53. U(eq) is defined	as one third of the	trace of the ortho	gonalized U ^{ij} tensor.
Formula weight Temperature	232.22 100(2) K		Х	у	Z	U(eq)
Wavelength Crystal system Space group Unit cell dimensions	0.71073 Å monoclinic P21/c $a = 7.3034(8)$ Å $\alpha = 90^{\circ}$ $b = 9.0810(8)$ Å $\beta = 109.240(5)^{\circ}$ $c = 16.3580(16)$ Å $\gamma = 90^{\circ}$	C(1) C(2) C(4) C(5) C(8) C(0)	2191(10) 3036(11) 2784(10) 1909(10) 1289(10) 2112(10)	9312(8) 11872(8) 10733(8) 9100(8) 6748(9)	-262(4) -401(4) 130(4) -1149(4) -172(5)	33(2) 33(2) 29(2) 34(2) 36(2) 20(2)
Volume Z	$1024.30(18) \text{ Å}^3$	C(9) C(10) C(12)	1927(10) 1292(11)	8090(8) 7714(9)	231(4)	32(2) 32(2) 39(2)
Density (calculated) Absorption coefficient F(000) Crystal size	1.506 Mg/m ³ 0.099 mm ⁻¹ 480 .1 x .1 x .02 mm ³ 2.60 to 25.00°	C(16) C(18) C(27) C(31) C(35) C(26)	3942(11) 2746(11) 3703(11) 2202(11) 3624(11)	13507(9) 11641(10) 12370(9) 10318(9) 13261(9) 6570(0)	860(5) -1295(5) 1369(5) -1655(5) -11(5)	39(2) 36(2) 38(2) 43(2) 40(2)
Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Absorption correction	-8<=h<=8, -10<=k<=10, -19<=l<=19 3357 1755 [R(int) = 0.1248] 97.2 % None	C(30) O(25) C(28) O(29) C(34)	3045(8) 2306(10) 2182(9) 2859(10)	9942(6) 8243(8) 7211(6) 9779(8)	2339(3) 1165(5) 1620(3) 1570(5)	41(2) 46(2) 36(2) 55(2) 34(2)
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	Full-matrix least-squares on F^2 1755 / 0 / 195 1.174 R1 = 0.1243, wR2 = 0.2006 R1 = 0.2280, wR2 = 0.2407 0.254 and -0.298 e.Å ⁻³					

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	26(4)	33(4)	39(4)	6(4)	12(4)	9(4)
C(2)	44(5)	25(4)	32(4)	-1(4)	14(4)	-3(4)
C(4)	32(4)	32(4)	25(4)	0(3)	10(3)	3(4)
C(5)	23(4)	42(5)	35(4)	1(4)	8(3)	4(4)
C(8)	24(5)	38(5)	43(5)	8(4)	8(4)	1(4)
C(9)	24(4)	23(4)	36(4)	4(3)	6(3)	1(3)
C(10)	20(4)	36(5)	38(4)	-3(4)	7(3)	-1(4)
C(12)	40(5)	48(6)	24(4)	-2(4)	3(4)	-4(4)
C(16)	38(5)	31(5)	51(5)	3(4)	17(4)	-11(4)
C(18)	39(5)	43(5)	34(4)	7(4)	23(4)	-1(4)
C(27)	37(5)	41(5)	32(4)	0(4)	8(4)	2(4)
C(31)	50(6)	55(6)	23(4)	5(4)	12(4)	2(5)
C(35)	42(5)	41(5)	35(5)	18(4)	12(4)	5(4)
C(36)	47(6)	34(5)	44(5)	-11(4)	19(4)	6(4)
O(25)	68(4)	43(3)	29(3)	-1(3)	20(3)	0(3)
C(28)	34(5)	35(5)	40(5)	6(4)	11(4)	0(4)
O(29)	93(4)	37(3)	44(3)	9(3)	36(3)	3(3)
C(34)	39(5)	25(4)	43(5)	7(4)	20(4)	7(4)

Table A6_3. Anisotropic displacement parameters (Å²x 10³) for **53**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table A6_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	- 53.

	Х	У	Z	U(eq)
H(1)	4090(70)	12430(60)	2000(40)	18(16)
H(2)	2100(80)	10190(60)	-2220(40)	16(16)
H(3)	2900(100)	12430(70)	-1600(40)	40(20)
H(4)	1090(90)	7650(80)	-2180(40)	50(20)
H(6)	3700(80)	14000(60)	-360(40)	14(17)
H(7)	890(80)	5700(60)	-1300(30)	13(16)
H(8)	1270(100)	6060(80)	240(40)	40(20)
H(9)	4470(100)	14480(80)	1090(40)	50(20)
Table A7_1. Crystal data and structure refinement for 54a.

Identification code

Empirical formula

Formula weight

Temperature

pbd254

100(2) K 0.71073 Å

P2221

8

C17 H23 O2 259.35

c = 14.3281(10) Å

2893.5(4) Å³

1.191 Mg/m³

0.076 mm⁻¹

.4 x .2 x .05 mm³

3118 [R(int) = 0.0475]

Full-matrix least-squares on F^2

R1 = 0.0415, wR2 = 0.0847

R1 = 0.0714, wR2 = 0.1120

0.226 and -0.261 e.Å⁻³

-6<=h<=6, -50<=k<=42, -15<=l<=18

1.02 to 26.99°.

3118/0/264

1128

6428

99.2 %

None

0.999

1.0(14)

 $\gamma = 90^{\circ}$

Table A7 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

-1095(1)

688(1)

391(1)

1013(1)

2278(1)

1643(1)

1321(1)

-1390(1)

-1085(1)

-192(1)

2593(1)

2910(1)

-517(1)

-810(1)

6196(2)

6483(2)

6283(1)

6140(2)

6064(2)

6059(2)

6405(2)

7215(2)

6849(2)

6457(2)

6431(2)

6068(2)

5896(2)

5758(2)

 $(Å^2 x \ 10^3)$ for 54a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. х у z U(eq) O(1) 1426(3)106(1)6590(1) 21(1)orthorhombic O(51) -1804(3)401(1)5891(1) 24(1)C(2) 2458(5) 1958(1) 6412(2)23(1)a = 5.0353(3) Å $\alpha = 90^{\circ}$ C(3) 1555(4)-496(1)6537(1) 18(1)b = 40.106(4) Å $\beta = 90^{\circ}$ C(4) 941(4) -776(1)7108(1)

4197(4)

2045(4)

322(4)

799(4)

1187(5)

1102(5)

2387(5)

1060(4)

2115(4)

-194(4)

2491(5)

1195(6)

3626(4)

5048(4)

C(6)

C(7)

C(8)

C(9)

C(11)

C(12)

C(18)

C(19)

C(20)

C(22)

C(25)

C(31)

C(32)

C(36)

Wavelength Crystal system Space group Unit cell dimensions Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.99° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Largest diff. peak and hole

A7 Röntgenstrukturdaten für 54a

16(1)

21(1)

19(1)

18(1)

20(1)

23(1)

24(1)

21(1)

21(1)

19(1)

18(1)

24(1)

31(1)

20(1)

22(1)

-241-

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	19(1)	18(1)	26(1)	4(1)	-3(1)	-2(1)
O(51)	20(1)	22(1)	29(1)	1(1)	-6(1)	2(1)
C(2)	22(1)	21(1)	26(1)	0(1)	-1(1)	-1(1)
C(3)	16(1)	21(1)	17(1)	-1(1)	-5(1)	-1(1)
C(4)	14(1)	19(1)	15(1)	1(1)	-3(1)	0(1)
C(6)	20(1)	22(1)	21(1)	-3(1)	-1(1)	4(1)
C(7)	17(1)	20(1)	19(1)	-1(1)	-1(1)	2(1)
C(8)	18(1)	21(1)	15(1)	2(1)	4(1)	2(1)
C(9)	19(1)	20(1)	22(1)	1(1)	1(1)	1(1)
C(11)	24(1)	19(1)	24(1)	0(1)	-3(1)	2(1)
C(12)	24(1)	19(1)	28(1)	0(1)	-3(1)	2(1)
C(18)	22(1)	18(1)	23(1)	-1(1)	-2(1)	-1(1)
C(19)	27(1)	14(1)	23(1)	-1(1)	0(1)	4(1)
C(20)	19(1)	21(1)	18(1)	2(1)	-4(1)	1(1)
C(22)	17(1)	18(1)	18(1)	0(1)	-3(1)	-3(1)
C(25)	27(1)	21(1)	25(1)	-1(1)	-2(1)	0(1)
C(31)	33(2)	19(1)	40(2)	-1(1)	-5(1)	-2(1)
C(32)	19(1)	22(1)	18(1)	3(1)	-3(1)	-3(1)
C(36)	17(1)	28(1)	20(1)	-3(1)	1(1)	0(1)

Table A7_3. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **54a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

Table A7_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	54a.

	Х	У	Z	U(eq)
H(1)	1170(50)	2276(6)	5382(17)	26(7)
H(2)	-770(50)	2285(5)	6238(15)	21(6)
H(3)	4300(50)	1306(6)	6159(17)	31(7)
H(4)	4380(50)	2587(6)	6265(15)	25(6)
H(5)	-780(50)	1654(5)	6284(15)	23(6)
H(6)	2410(40)	2596(6)	7112(16)	25(6)
H(7)	4300(50)	1952(6)	6234(15)	26(6)
H(8)	2610(40)	1331(5)	7082(16)	20(6)
H(9)	-780(50)	2918(6)	6239(17)	35(7)
H(10)	3810(40)	648(6)	6187(16)	22(6)
H(11)	4990(40)	-1307(6)	6038(16)	26(6)
H(12)	1360(50)	2923(6)	5367(19)	36(7)
H(13)	1110(50)	1640(6)	5341(18)	42(8)
H(14)	2520(50)	1965(6)	7094(16)	35(7)
H(15)	-980(50)	1041(6)	6400(15)	23(6)
H(16)	2120(50)	3109(6)	6303(16)	33(7)
H(17)	-1690(40)	-194(5)	6918(14)	14(5)
H(18)	560(50)	998(6)	5456(17)	33(7)
H(19)	2380(50)	696(6)	7174(16)	28(6)
H(20)	4030(40)	-327(5)	5537(14)	16(5)
H(21)	-940(40)	-191(5)	5824(15)	11(5)
H(22)	1900(40)	-1587(6)	7005(15)	27(6)
H(24)	6460(50)	-817(5)	5295(16)	25(6)

A7 Röntgenstrukturdaten für 54a

Table A8_1. Crystal data and structure refinement for 54c.					C(19)	-11(4)	8204(4)	6209(4)	44(2)
Identification co	ode	pbd265			C(20)	5262(3)	7240(4)	-206(3)	34(2)
Empirical form	ila	C48 H65	50 04		C(23)	1082(4)	8105(4)	4/38(3)	37(2)
Formula weight		706.50			C(24)	6/45(4)	8397(4)	-3749(3)	46(2)
Temperature		100(2) K			C(26)	5852(3)	7257(4)	354(3)	31(2)
Wavelength		0.71073	Å		C(27)	5018(4)	8535(4)	/53(3)	37(2)
Crystal system		triclinic			C(29)	2438(4)	8031(4)	2516(3)	41(2)
Space group		P-1			C(31)	6/8/(4)	9335(4)	-4310(3)	37(2)
Unit cell dimens	sions	$a = 14.6^{\circ}$	314(13) Å	$\alpha = 68.337(4)^{\circ}$	C(32)	6660(4)	8063(4)	958(3)	31(2)
enn een annen	sions	h = 16.35	39(16) Å	$\beta = 84.216(6)^{\circ}$	C(34)	4660(4)	8059(4)	-705(3)	42(2)
		c = 18.25	557(10) A	$y = 81.896(6)^{\circ}$	C(35)	2/46(4)	8184(4)	1003(4)	44(2)
		c = 16.25	0(2) A	γ = 81.890(0)	C(36)	/418(4)	/358(4)	1111(3)	35(2)
Volume		4021.0(7) A ³		C(37)	5551(4)	8770(4)	-1892(4)	33(2)
Z		4			C(40)	1008(4)	8901(4)	4990(3)	49(2)
Density (calcula	ated)	1.167 Mg	g/m ³		C(41)	6/19(4)	8/8/(4)	11/1(3)	39(2)
Absorption coef	fficient	0.072 mm	m-1		C(42)	4052(3)	8326(4)	/51(3)	42(2)
F(000)		1542	11		C(43)	6867(4)	9403(4)	-51/6(3)	38(2)
1(000)		1342	3		C(44)	6565(4)	8288(4)	-28/2(3)	45(2)
Crystal size		.2 x .1 x	.03 mm ³		C(46)	5905(4)	5/53(4)	-81(4)	43(2)
Theta range for	data collection	1.35 to 2	5.00°.		C(48)	6821(4)	10392(4)	-6621(4)	50(2)
Index ranges		-16<=h<	=17, -19<=k<=	-19, -21<=l<=20	C(50)	//51(4)	9984(4)	-6828(4)	40(2)
Reflections colle	ected	21525			C(51)	/8//(4)	10049(4)	-/686(3)	45(2)
Independent ref	lections	13891 [R	R(int) = 0.1123		C(58)	/336(4)	6611(4)	993(3)	36(2)
Completeness to	$p \text{ theta} = 25.00^{\circ}$	98.0 %			C(60)	5267(4)	6498(4)	-399(3)	40(2)
Absorption corr	rection	None			C(61)	1205(4)	/5/4(4)	3586(4)	60(2)
Refinement met	thod	Full-mat	rix least-square	s on F ²	C(62)	6/24(4)	10355(4)	-5//6(4)	46(2)
Data / restraints	/ parameters	13891/0)/941		C(63)	8013(4)	11034(4)	-9139(3)	55(2)
Goodness-of-fit	on F^2	0.892			C(65)	2514(4)	8828(4)	2/19(4)	52(2)
Final R indices	[]>2sigma(])]	$R_1 = 0.02$	$800 \text{ wR}^2 = 0.1$	731	C(66)	6557(4)	5800(4)	389(3)	35(2)
R indices (all da	(1>23igina(1)]	$R_1 = 0.00$ $R_1 = 0.30$	000, wR2 = 0.1 007 wR2 = 0.2	463	C(70)	5828(4)	9824(4)	-3268(4)	46(2)
R malees (an aa		RI = 0.54	3007, WR2 = 0.2	-105	C(73)	1456(4)	7785(4)	2/08(4)	62(2)
Largest diff. pea	ak and hole	0.757 and	$d - 0.412 \text{ e.A}^{-3}$		C(74)	835(4)	86/5(4)	58/6(4)	56(2)
					C(75)	2235(4)	8652(4)	3585(4)	52(2)
					C(78)	/801(4)	8979(4)	-5387(4)	49(2)
Table A8_2. A	tomic coordinates ($x 10^4$) and equiva	alent isotropic o	lisplacement parameters	C(79)	5958(4)	9382(4)	1152(3)	42(2)
• 7 • 3					C(80)	5111(4) 221(4)	9237(4)	982(3) 5068(4)	40(2)
$(A^2 x \ 10^3)$ for 54	4c . U(eq) is defined	d as one third of th	ne trace of the o	orthogonalized U ¹ tensor.	C(82)	221(4)	/034(4)	5068(4)	59(2) 46(2)
					C(85)	7736(4) 5061(4)	10978(4)	-6296(4)	40(2)
	Х	У	Z	U(eq)	C(85)	5901(4) 7012(4)	9942(4)	-4135(4)	40(2)
					C(87)	/912(4)	9035(4)	-0240(4)	54(2)
O(3)	3657(2)	8196(3)	1552(2)	47(1)	C(88)	42(3)	7425(4)	3933(4) 7097(4)	09(2) 86(2)
O(4)	4885(2)	8227(2)	-1542(2)	41(1)	C(100)	-108(0)	/910(5)	7087(4)	80(3) 162(6)
U(6)	5936(3)	9111(3)	-1555(2)	45(1)	C(101) C(102)	-40(3)	0202(5)	1323(3)	103(0)
O(9)	2267(3)	8277(4)	1138(3)	87(2)	O(103)	-182(1)	9203(5)	1208(5)	140(4)
C(10)	6580(4)	6536(4)	607(3)	32(2)	O(1)	8420(2) 0655(2)	3294(2) 2502(2)	1319(2)	43(1)
C(13)	5705(4)	8873(4)	-2744(3)	36(2)	O(2)	(3) 2029	5505(2) 2407(2)	-1808(2)	42(1)
C(17)	5833(4)	7974(3)	652(3)	31(2)	0(5)	/038(2)	5407(3)	833(2)	44(1)

O(7)

8322(4)

3854(4)

40(2)

1281(4)

C(18)

47(1)

4315(3)

-1756(2)

10734(3)

A 8	
Rö	
ntge	
ensti	
rukt	
urda	
aten	
für	
540	

-244-

Table A8_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **54c**. The anisotropic

C(8) 5792(4) 3078(4) 4498(4) 40(2) Table A8_3. Anisotropic displacement parameters (Å C(11) 6024(4) 3394(4) 3597(3) 36(2) Table A8_3. Anisotropic displacement parameters (Å	$A^2 x 10^3$) for 54c . The	anisotropic
C(12) 7488(4) 3287(4) 1385(4) 34(2) displacement factor exponent takes the form: $-2\pi^2 \left[h^2 a \right]$	$a^{*2}U^{11} + + 2 h k a^{*}$	b* U12]
C(14) 10608(4) 2939(4) 480(3) 32(2)		
C(15) 10565(4) 2300(4) 99(3) 31(2) $U^{11} U^{22} U^{33} U$	U^{23} U^{13}	U^{12}
C(16) 7147(3) 3104(4) 2227(3) 32(2)		
C(21) 10539(4) 4153(4) -2986(3) 37(2) O(3) 28(2) 74(3) 41(3) -25(3)	5(2) 0(2)	-2(2)
C(22) 11442(4) 2939(4) 813(3) 35(2) O(4) 43(2) 55(3) 27(3) -16	6(2) 0(2)	-17(2)
C(25) 11158(4) 848(4) 43(4) 44(2) $O(6)$ 45(3) 53(3) 50(3) -30(4)	0(2) -8(2)	-11(2)
C(28) 9978(4) 2415(4) -508(4) 35(2) O(9) 34(3) 183(6) 52(4) -50(6	0(4) 5(3)	-21(3)
C(30) 11221(4) 1526(4) 325(3) 36(2) C(10) 40(4) 28(4) 32(4) -12	2(3) 2(3)	-13(3)
C(33) 5805(4) 3810(4) 4827(3) 46(2) C(13) 33(3) 40(4) 32(4) -9	9(3) -7(3)	-8(3)
C(38) 5809(4) 2775(4) 3219(4) 46(2) $C(17)$ 37(4) 36(4) 22(4) -14	4(3) 6(3)	-16(3)
C(39) 9438(4) 3281(4) -964(3) 41(2) $C(18)$ 36(4) 51(4) 40(5) -25(6)	5(4) 1(3)	-10(3)
C(45) 4757(4) 3082(4) 6004(4) 43(2) $C(19)$ 55(4) 55(4) 27(4) -1	7(4) 14(3)	-25(3)
C(47) 11991(4) 1492(4) 758(3) 42(2) $C(20)$ 25(3) 53(4) 30(4) -19(2)	9(4) 5(3)	-14(3)
C(49) 11576(4) 3591(4) 1099(3) 40(2) $C(23)$ 31(3) 41(4) 35(4) -10(2)	0(3) 0(3)	-7(3)
C(52) 11737(4) 4269(4) -4431(4) 45(2) $C(24)$ 58(4) 44(4) 35(4) -15(2)	5(4) 4(3)	-2(3)
C(53) 8853(3) 3420(4) 541(3) 39(2) $C(26)$ 31(3) 36(4) 28(4) -1.	3(3) 1(3)	-13(3)
C(54) 7359(4) 3806(4) 2538(4) 43(2) $C(27)$ 38(4) 47(4) 31(4) -19(27)	9(3) -5(3)	1(3)
C(55) 9945(4) 1725(4) -769(4) 42(2) $C(29)$ 28(3) 66(5) 32(4) -2.	2(4) 4(3)	-11(3)
C(56) 12142(4) 2184(4) 925(3) 41(2) $C(31)$ 33(3) 41(4) 37(4) -11	1(3) -3(3)	-12(3)
C(57) 6123(4) 3031(4) 2341(3) 42(2) $C(32)$ 30(3) 43(4) 19(4) -1(0(3) 5(3)	-11(3)
C(59) 9852(4) 3538(4) 599(3) 35(2) $C(34)$ 33(3) 55(4) 37(5) -14	4(4) 0(3)	-9(3)
C(64) 5637(4) 3489(4) 5719(4) 49(2) $C(35)$ 40(4) 59(4) 39(5) -2:	2(4) -1(4)	-12(4)
C(67) 10339(4) 4017(4) -2125(4) 36(2) $C(36)$ 32(4) 47(4) 23(4) -8	3(3) -1(3)	-9(3)
C(68) 10521(4) 926(4) -473(4) 48(2) $C(37)$ 25(4) 34(4) 40(5) -16	6(3) -1(3)	-1(3)
C(69) 11004(4) 3329(4) -3115(4) 47(2) $C(40)$ 58(4) 63(5) 39(5) -25(6)	9(4) 19(3)	-33(3)
C(71) 12697(4) 4710(4) -6952(4) 44(2) $C(41)$ 44(4) 48(4) 37(4) -25(4)	5(4) 3(3)	-21(3)
C(72) 7036(4) 3555(4) 3410(4) 48(2) $C(42)$ 32(4) 67(5) 29(4) -2:	2(4) 4(3)	-3(3)
C(76) 10856(4) 4215(4) 1129(3) 45(2) $C(43)$ 37(4) 42(4) 36(4) -15(4)	5(3) 3(3)	-6(3)
C(77) 11968(4) 4092(4) -6531(4) 51(2) $C(44)$ 49(4) 47(4) 39(5) -19(4)	9(3) 1(3)	-1(3)
C(81) 11848(6) 4489(5) -5331(5) 86(3) $C(46)$ 50(4) 49(4) 42(5) -26	6(4) 9(3)	-24(4)
C(84) 10000(4) 4167(4) 894(3) 40(2) $C(48)$ 56(4) 60(5) 38(5) -2 ²	4(4) -5(3)	3(3)
C(86) 4728(6) 2378(5) 5659(4) 88(3) $C(50)$ 37(4) 46(4) 38(4) -14	4(4) -2(3)	-13(3)
C(89) 11162(5) 3503(4) -3995(4) 61(2) $C(51)$ 49(4) 52(4) 42(5) -24	4(4) -7(3)	-1(3)
C(90) 11301(4) 5073(4) -4249(4) 48(2) C(58) 33(4) 38(4) 35(4) -6	6(3) -8(3)	-8(3)
C(91) 4902(5) 2694(5) 4767(4) 78(2) $C(60)$ 32(4) 51(4) 42(5) -2.5	3(4) -2(3)	-9(3)
C(92) 4611(5) 2710(4) 6893(4) 61(2) C(61) 68(5) 82(5) 50(5) -40	0(4) 24(4)	-43(4)
C(93) 12633(5) 5080(5) -5711(4) 84(3) $C(62)$ 50(4) 41(4) 45(5) -15(62)	5(4) 2(3)	-1(3)
C(94) 12595(5) 5423(5) -6632(5) 97(3) C(63) 72(5) 56(4) 37(5) -19	9(4) 9(4)	-7(4)
C(95) 11118(4) 4909(4) -3390(4) 50(2) C(65) 72(5) 59(5) 45(5) -38	8(4) 27(4)	-38(4)
C(96) 4641(4) 3355(4) 7310(4) 54(2) $C(66)$ 34(4) 33(4) 33(4) -6	5(3) 5(3)	-7(3)
C(97) 3886(5) 4077(4) 7105(4) 75(2) $C(70)$ 50(4) 44(4) 46(5) -2:	3(4) 2(3)	2(3)
C(98) 12704(5) 4944(5) -7820(4) 91(3) C(73) 62(5) 91(6) 52(5) -4:	3(4) 21(4)	-41(4)
C(99) 11891(5) 3825(5) -5635(4) 89(3) C(74) 64(4) 73(5) 48(5) -38	8(4) 10(4)	-30(4)
C(102) 13360(5) 5706(5) -8375(4) 86(3) C(75) 44(4) 69(5) 56(5) -3"	7(4) 6(4)	-16(3)
<u>C(104) 14248(5) 5208(5) -8221(4) 99(3)</u> C(78) 55(4) 48(4) 36(5) -11	1(4) 2(3)	2(3)

C(79)	55(4)	41(4)	33(4)	-16(3)	4(3)	-7(4)
C(80)	33(4)	51(4)	35(4)	-17(4)	-5(3)	0(3)
C(82)	70(5)	72(5)	55(5)	-44(4)	26(4)	-34(4)
C(83)	48(4)	47(4)	44(5)	-14(4)	-12(3)	-4(3)
C(85)	55(4)	41(4)	40(5)	-15(3)	4(3)	-4(3)
C(87)	58(4)	53(5)	51(5)	-26(4)	5(4)	2(3)
C(88)	88(5)	77(6)	52(6)	-29(5)	11(4)	-37(4)
C(100)	126(7)	102(7)	47(6)	-37(5)	16(5)	-56(5)
C(101)	57(6)	295(16)	63(7)	35(9)	-1(5)	-64(8)
C(103)	182(10)	103(7)	72(7)	6(6)	27(7)	62(7)
O(1)	36(3)	65(3)	36(3)	-29(2)	1(2)	-5(2)
O(2)	42(2)	49(3)	39(3)	-18(2)	-7(2)	-7(2)
O(5)	39(2)	67(3)	33(3)	-24(2)	-9(2)	-2(2)
O(7)	37(2)	65(3)	53(3)	-34(3)	-2(2)	-12(2)
C(8)	46(4)	40(4)	39(5)	-21(4)	9(3)	-8(3)
C(11)	34(3)	40(4)	39(4)	-17(3)	-2(3)	-11(3)
C(12)	35(4)	33(4)	39(5)	-20(3)	2(3)	-9(3)
C(14)	30(4)	40(4)	24(4)	-10(3)	4(3)	-12(3)
C(15)	28(3)	35(4)	30(4)	-15(3)	8(3)	-3(3)
C(16)	35(4)	35(4)	34(4)	-20(3)	1(3)	-5(3)
C(21)	29(3)	48(4)	31(4)	-9(3)	-5(3)	-12(3)
C(22)	37(4)	43(4)	25(4)	-12(3)	6(3)	-10(3)
C(25)	43(4)	47(4)	44(5)	-18(4)	5(4)	-12(3)
C(28)	26(3)	44(4)	42(4)	-25(4)	8(3)	-11(3)
C(30)	40(4)	46(4)	20(4)	-9(3)	8(3)	-18(3)
C(33)	45(4)	67(5)	36(5)	-27(4)	13(3)	-29(3)
C(38)	44(4)	61(4)	46(5)	-31(4)	14(3)	-28(3)
C(39)	39(4)	66(5)	27(4)	-30(4)	6(3)	-9(3)
C(45)	45(4)	47(4)	44(5)	-24(4)	9(3)	-16(3)
C(47)	49(4)	44(4)	30(4)	-14(4)	2(3)	3(3)
C(49)	39(4)	54(4)	32(4)	-16(4)	-9(3)	-14(3)
C(52)	56(4)	54(4)	37(5)	-28(4)	14(3)	-28(3)
C(53)	37(4)	54(4)	29(4)	-19(3)	-7(3)	1(3)
C(54)	37(4)	55(4)	44(5)	-24(4)	0(3)	-13(3)
C(55)	43(4)	60(5)	36(4)	-27(4)	7(3)	-24(3)
C(56)	32(4)	67(5)	31(4)	-24(4)	2(3)	-9(4)
C(57)	44(4)	54(4)	45(5)	-32(4)	5(3)	-22(3)
C(59)	41(4)	40(4)	25(4)	-11(3)	1(3)	-13(3)
C(64)	44(4)	67(5)	47(5)	-30(4)	3(4)	-13(3)
C(67)	26(4)	43(4)	50(5)	-29(4)	-4(4)	-4(3)
C(68)	53(4)	40(4)	53(5)	-21(4)	19(4)	-13(4)
C(69)	65(4)	35(4)	48(5)	-21(4)	8(4)	-19(3)
C(71)	55(4)	39(4)	42(5)	-17(4)	5(4)	-10(3)
C(72)	42(4)	64(5)	49(5)	-31(4)	5(3)	-15(3)
C(76)	45(4)	51(4)	45(5)	-23(4)	0(3)	-12(4)
C(77)	56(4)	57(4)	46(5)	-22(4)	10(4)	-29(4)
C(81)	143(7)	79(6)	67(6)	-47(5)	48(5)	-87(5)
C(84)	39(4)	47(4)	36(4)	-18(4)	4(3)	-7(3)

C(86)	141(7)	96(6)	58(6)	-53(5)	58(5)	-79(5)
C(89)	100(6)	55(5)	37(5)	-23(4)	16(4)	-37(4)
C(90)	41(4)	43(4)	53(5)	-6(4)	0(3)	-11(3)
C(91)	83(5)	109(6)	78(6)	-68(5)	42(5)	-71(5)
C(92)	83(5)	48(5)	55(6)	-23(4)	14(4)	-13(4)
C(93)	134(7)	112(7)	27(5)	-29(5)	21(5)	-94(6)
C(94)	92(6)	96(7)	114(9)	-45(6)	19(6)	-41(5)
C(95)	47(4)	40(4)	59(5)	-20(4)	2(4)	3(3)
C(96)	52(4)	66(5)	29(4)	-3(4)	-1(3)	-3(4)
C(97)	110(6)	54(5)	48(5)	-11(4)	13(4)	2(4)
C(98)	107(6)	130(7)	56(6)	-41(5)	36(5)	-84(6)
C(99)	104(6)	123(7)	66(6)	-50(6)	38(5)	-81(5)
C(102)	69(5)	121(7)	68(6)	-44(6)	-4(5)	25(5)
C(104)	118(7)	115(7)	56(6)	-30(5)	4(5)	6(6)

Table A 8 4	Hydrogen coordinates ($x = 10^4$) and isotropic displacement parameters
Table Ao_4.	Hydrogen coordinates (x 10 ⁻) and isotropic displacement parameters

 $(Å^2 x \ 10^3)$ for **54c**.

	Х	У	Z	U(eq)
H(13)	5157	8695	-2911	43
H(18)	810	8818	3577	48
H(19)	-560	8621	5968	53
H(23)	1619	7691	5007	44
H(24A)	7337	8044	-3807	55
H(24B)	6249	8149	-3904	55
H(29)	2857	7527	2856	49
H(31)	7361	9534	-4208	45
H(34A)	3999	7966	-581	51
H(34B)	4766	8576	-580	51
H(36)	7977	7426	1296	42
H(40A)	497	9337	4716	59
H(40B)	1587	9183	4819	59
H(41)	7289	8867	1330	47
H(42A)	3692	8821	356	50
H(42B)	4059	7784	630	50
H(43)	6379	9073	-5248	46
H(44A)	6488	7662	-2555	54
H(44B)	7107	8442	-2687	54
H(46)	5888	5230	-187	51
H(48A)	6333	10080	-6706	60
H(48B)	6725	11017	-6980	60
H(50)	8227	10317	-6743	48
H(51A)	8508	9781	-7774	55
H(51B)	7436	9692	-7774	55

H(58)	7796	6122	1173	44	H(38A)	5134	2747	3273	55	
H(60)	4833	6494	-751	48	H(38B)	6110	2176	3511	55	
H(61A)	563	7417	3700	73	H(39A)	8767	3235	-849	49	
H(61B)	1617	7052	3894	73	H(39B)	9596	3755	-800	49	
H(62A)	6101	10630	-5676	56	H(45)	4235	3552	5793	52	
H(62B)	7183	10703	-5700	56	H(47)	12405	964	931	50	
H(63A)	8680	10869	-9188	83	H(49)	12163	3604	1273	48	
H(63B)	7853	11639	-9504	83	H(52)	12367	4100	-4219	54	
H(63C)	7681	10628	-9268	83	H(53A)	8544	3951	140	47	
H(65)	2710	9367	2357	63	H(53B)	8818	2900	397	47	
H(66)	7016	5311	576	42	H(54A)	8032	3851	2477	52	
H(70A)	5277	10216	-3191	55	H(54B)	7038	4388	2228	52	
H(70B)	6371	10002	-3107	55	H(55)	9523	1794	-1156	51	
H(73A)	1402	7264	2570	74	H(56)	12719	2186	1122	50	
H(73B)	1022	8282	2392	74	H(57A)	5978	2580	2143	51	
H(74A)	1381	8297	6146	67	H(57B)	5782	3605	2033	51	
H(74B)	767	9227	5989	67	H(64A)	6159	3049	5965	59	
H(75A)	2240	9204	3687	62	H(64B)	5626	3995	5894	59	
H(75B)	2706	8206	3910	62	H(68)	10464	447	-633	58	
H(78A)	7882	8350	-5037	59	H(69A)	10612	2842	-2870	57	
H(78B)	8296	9273	-5287	59	H(69B)	11604	3146	-2862	57	
H(79)	6012	9899	1256	51	H(71)	13308	4361	-6784	53	
H(80)	4579	9626	1022	48	H(72A)	7423	3013	3720	58	
H(82A)	292	7077	4963	71	H(72B)	7145	4034	3588	58	
H(82B)	-321	8011	4790	71	H(76)	10943	4673	1308	54	
H(83A)	7079	11213	-8271	56	H(77A)	12110	3550	-6661	61	
H(83B)	8106	11361	-8163	56	H(77B)	11360	4383	-6741	61	
H(85A)	6056	10565	-4447	55	H(81)	11271	4880	-5537	104	
H(85B)	5391	9819	-4306	55	H(84)	9497	4584	938	48	
H(87A)	8543	8777	-6349	64	H(86A)	4115	2155	5797	106	
H(87B)	7467	8680	-6332	64	H(86B)	5199	1877	5905	106	
H(88A)	-547	7157	6120	83	H(89A)	10555	3635	-4234	73	
H(88B)	541	6975	6232	83	H(89B)	11480	2961	-4067	73	
H(10A)	257	7373	7325	103	H(0)D	11715	5544	-4475	58	
H(10R)	-805	7750	7323	103	H(90B)	10711	5292	-4515	58	
H(10C)	-69	8316	8107	105	H(91A)	4903	2189	4515	93	
H(10C) H(10D)	546	8875	7347	195	H(91B)	4390	3144	4515	93	
H(10E)	-769	9421	6691	210	H(92A)	5090	2205	7105	73	
H(10E)	-769	0608	7444	210	H(92R)	4003	2205	7026	73	
H(10G)	-13/19	8023	7484	210	H(02D)	13230	4736	-5550	101	
H(8)	6292	2602	4753	48	H(93R)	12558	5587	-5531	101	
H(11)	5641	3072	33/10	43	H(93D)	11008	5789	-6786	117	
H(16)	7471	2523	2557	30	H(94R)	13094	5806	-6872	117	
H(21)	003/	1315	_3244	44	$H(05\Delta)$	10703	5452	_3325	50	
H(25)	11573	322	-5244	53	H(95R)	11714	1773	-3134	59	
$H(23\Delta)$	6412	4046	4684	55	$H(06\Delta)$	4607	3031	7888	6/	
H(33R)	5323	4200	4581	55	H(96B)	5239	3607	7168	64	
11(000)	2220	74//	-1001	55	11(70D)	5451	5007	/ 100	UT	

H(97A)	3943	4428	6540	112
H(97B)	3917	4455	7409	112
H(97C)	3292	3831	7230	112
H(98A)	12060	5145	-7984	109
H(98B)	12903	4399	-7935	109
H(99A)	11331	3517	-5436	107
H(99B)	12429	3390	-5418	107
H(10H)	13227	5910	-8940	104
H(10I)	13294	6219	-8204	104
H(10J)	14394	5097	-7678	149
H(10K)	14716	5541	-8589	149
H(10L)	14242	4643	-8290	149

 Table A9_1. Crystal data and structure refinement for 54f.

T1 (.C. (.)	1 129.4	C(11B)
		C(12B)
Empirical formula	055 00	O(13B)
Formula weight	855.08	C(14B)
Temperature	100(2) K	C(15B)
Wavelength	0./10/3 A	C(16B)
Crystal system	Triclinic	C(17B)
Space group	P-1	C(18B)
Unit cell dimensions	$a = 9.1156(2) A$ $\alpha = 76.303(1)^{\circ}$	C(19B)
	$b = 20.4056(4) \text{ Å} \qquad \beta = 81.941(1)^{\circ}$	C(20B)
	$c = 25.7301(6) \text{ Å}$ $\gamma = 80.470(1)^{\circ}$	C(21B)
Volume	$4560.21(17) Å^3$	C(22B)
Z	4	C(23B)
	1.245.24 / 3	C(24B)
Density (calculated)	1.245 Mg/m ²	C(25B)
Absorption coefficient	0.079 mm^{-1}	C(26B)
F(000)	1832	C(27B)
Crystal size	$0.25 \ge 0.15 \ge 0.10 \text{ mm}^3$	C(28B)
Theta range for data collection	1.04 to 27.00°.	C(29B)
Index ranges	-11<=h<=11, -26<=k<=24, -32<=l<=32	C(30B)
Reflections collected	34139	C(31B)
Independent reflections	19855 [R(int) = 0.1140]	C(32B)
Completeness to theta = 27.00°	99.7 %	C(33B)
Absorption correction	None	C(34B)
Pafinament method	Full matrix least squares on F^2	C(35B)
Data / restraints / parameters	10855 / 0 / 514	C(36B)
Data / restraints / parameters -2	19855707514	O(37B)
Goodness-of-fit on F ²	1.837	C(38B)
Final R indices [I>2sigma(I)]	R1 = 0.1588, wR2 = 0.3441	C(39B)
R indices (all data)	R1 = 0.3535, $wR2 = 0.4640$	C(40B)
Largest diff. peak and hole	3.065 and -1.541 e.Å ⁻³	C(41B)
		C(42B)

	х	У	Z	U(eq
O(1B)	3009(7)	3853(3)	3588(2)	11(2
O(2B)	-517(7)	3882(3)	5624(3)	15(2
O(3B)	-7145(7)	4159(3)	9289(3)	19(2
O(4B)	794(7)	4628(3)	5800(3)	19(2
C(5B)	3487(11)	4147(5)	4385(4)	14(3
C(6B)	-1034(12)	4622(5)	6790(4)	17(3
C(7B)	-1936(11)	4611(5)	7263(4)	11(3
C(8B)	-1146(11)	4191(5)	6453(4)	13(3
C(9B)	1113(11)	2613(5)	5598(4)	12(3
C(10B)	-4060(11)	4156(5)	7927(4)	15(3
C(11B)	5399(12)	3881(5)	5005(4)	11(3
C(12B)	-3032(11)	3693(5)	7090(4)	14(3
O(13B)	1051(7)	3391(3)	3486(2)	28(2
C(14B)	3972(12)	3761(5)	4896(4)	9(3)
C(15B)	-2127(11)	3720(5)	6624(4)	15(3
C(16B)	-198(11)	4259(5)	5930(4)	14(3
C(17B)	3230(11)	3228(5)	5252(4)	9(3)
C(18B)	2329(11)	3920(5)	4124(4)	11(3
C(19B)	6118(11)	4432(5)	4688(4)	11(3
C(20B)	3525(11)	2121(5)	5887(4)	13(3
C(21B)	4108(11)	2710(5)	5598(4)	7(3)
C(22B)	6139(11)	3388(5)	5420(4)	15(3
C(23B)	5567(11)	2811(5)	5675(4)	13(3
C(24B)	1650(11)	3197(5)	5309(4)	10(3
C(25B)	509(11)	3811(5)	5150(4)	13(3
C(26B)	2051(11)	2049(5)	5880(4)	18(3
C(27B)	4235(11)	4658(5)	4088(4)	16(3
C(28B)	-6051(11)	4169(5)	8859(4)	16(3
C(29B)	2224(11)	3591(5)	3306(4)	14(3
C(30B)	3037(12)	3531(5)	2766(4)	15(3
C(31B)	4331(11)	3810(5)	2569(4)	14(3
C(32B)	-2991(11)	4151(5)	7427(4)	15(3
C(33B)	5068(11)	3733(5)	2074(4)	15(3
C(34B)	5514(12)	4823(5)	4245(4)	14(3
C(35B)	-11095(11)	4670(5)	12490(4)	17(3
C(36B)	-4651(11)	4349(5)	8842(4)	17(3
O(37B)	8042(7)	2918(3)	-217(2)	42(2
C(38B)	-8206(11)	4506(5)	10675(4)	18(3
C(39B)	-6507(12)	3981(5)	8410(4)	18(3
C(40B)	-3628(11)	4332(5)	8376(4)	19(3
C(41B)	-5498(12)	3974(5)	7962(4)	18(3

4359(5)

19(3)

11071(4)

-9581(11)

Table A9_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

32 13 -ii isor. A8 / A9 Röntgenstrukturdaten für 54c und 54f

C(43B)	-6799(11)	4327(5)	9766(4)	19(3)	C(27A)	4305(12)	8799(5)	2585(4)	22(3)
C(44B)	-12447(11)	4484(5)	12894(4)	23(3)	C(28A)	2061(11)	7054(5)	5863(4)	15(3)
C(45B)	-8187(11)	4233(5)	10162(4)	24(3)	C(29A)	2949(11)	8540(5)	2785(4)	13(3)
C(46B)	4553(11)	3381(5)	1753(4)	12(3)	C(30A)	5590(12)	7800(5)	5672(4)	18(3)
C(47B)	-11049(11)	4447(5)	11968(4)	19(3)	C(31A)	-6090(11)	9174(5)	8859(4)	13(3)
C(48B)	-9713(11)	4640(5)	11572(4)	20(3)	C(32A)	-2977(12)	9153(5)	7440(4)	8(3)
C(49B)	6383(11)	3726(5)	944(4)	30(3)	C(33A)	-8223(11)	9207(5)	10147(4)	16(3)
C(50B)	7129(12)	3099(5)	263(4)	39(3)	C(34A)	-11135(11)	9675(5)	12471(4)	16(3)
C(51B)	5435(11)	3298(5)	1222(4)	22(3)	C(35A)	-5432(11)	8955(5)	7970(4)	18(2)
C(52B)	2454(11)	3179(5)	2453(4)	20(3)	C(36A)	-4696(11)	9386(5)	8826(4)	21(3)
C(53B)	6203(11)	2648(5)	503(4)	33(2)	C(37A)	-6427(11)	8962(5)	8427(4)	16(3)
C(54B)	3262(12)	3118(5)	1943(4)	29(3)	C(38A)	2203(11)	8590(5)	3322(4)	23(3)
C(55B)	5202(12) 5234(11)	2720(5)	1014(4)	32(3)	C(39A)	-9659(11)	9361(5)	11038(4)	17(3)
C(56B)	7304(12)	3631(5)	477(4)	40(3)	C(40A)	5011(11)	8714(5)	2095(4)	21(3)
C(57B)	131/0(11)	3567(5)	-3278(4)	20(3)	O(41A)	7033(7)	7831(3)	-20/3(4)	42(2)
C(58B)	0802(11)	3070(5)	-3278(4) 1370(4)	$\frac{29(3)}{14(3)}$	C(42A)	2303(11)	8100(5)	-20+(2) 2482(4)	$\frac{42(2)}{23(3)}$
C(50P)	11784(11)	3079(3)	-1370(4) 2716(4)	14(3) 20(3)	C(42A)	2303(11)	0199(3) 0514(5)	10647(4)	23(3)
C(59B)	11704(11) 12250(11)	2023(3)	-2710(4)	29(3) 27(3)	C(43A)	-6202(11) 11122(12)	9514(5)	10047(4) 11047(4)	22(3) 21(2)
C(00B)	13230(11) 10001(11)	2633(3)	-2921(4)	27(3)	C(44A)	-11132(12)	9440(3)	11947(4)	21(3) 19(2)
C(01B)	10901(11)	2725(5)	-1/34(4)	29(2)	C(43A)	-0901(11)	9300(3)	9746(4)	10(3)
C(02B)	10011(11) 0254(11)	2972(5)	-2307(4)	38(3)	C(40A)	-3720(11)	9382(5)	8303(4)	19(3)
C(63B)	9354(11)	3258(5)	-3/2(4)	37(3)	C(4/A)	-9770(11)	9644(5)	11536(4)	19(3)
C(64B)	10390(11)	2876(5)	-815(4)	43(3)	C(48A)	5542(11)	9813(5)	4259(4)	18(3)
O(1A)	3017(7)	8858(3)	3601(3)	11(2)	C(49A)	4280(11)	8377(5)	1/82(4)	22(3)
O(2A)	-518(7)	8890(3)	5628(2)	12(2)	C(50A)	2962(11)	8132(5)	1995(4)	22(3)
O(3A)	825(7)	9635(3)	5805(2)	19(2)	C(51A)	-12532(11)	9498(5)	12873(4)	22(3)
O(4A)	-7150(7)	9145(3)	9283(3)	16(2)	C(52A)	5103(11)	8250(5)	1252(4)	27(3)
C(5A)	3986(12)	8768(5)	4891(4)	10(3)	C(53A)	13390(11)	7823(5)	-2963(4)	30(3)
C(6A)	5381(11)	8868(5)	5021(4)	9(3)	C(54A)	6057(12)	8679(5)	956(4)	30(3)
O(7A)	977(7)	8428(3)	3502(2)	29(2)	C(55A)	8247(11)	8155(5)	-452(4)	38(2)
C(8A)	3225(12)	8230(5)	5257(4)	10(3)	C(56A)	4784(12)	7708(5)	1064(4)	35(3)
C(9A)	2318(11)	8928(5)	4128(4)	14(3)	C(57A)	6426(11)	7988(5)	301(4)	31(3)
C(10A)	1672(12)	8194(5)	5319(4)	10(3)	C(58A)	6860(11)	8576(5)	442(4)	35(2)
C(11A)	-1067(11)	9191(5)	6473(4)	12(3)	C(59A)	11894(11)	7614(5)	-2701(4)	30(3)
C(12A)	1097(11)	7610(5)	5599(4)	17(3)	C(60A)	11468(11)	7958(5)	-2209(4)	41(3)
C(13A)	-2992(11)	8692(5)	7121(4)	12(3)	C(61A)	10335(11)	7756(5)	-1859(4)	30(3)
C(14A)	-1917(11)	9608(5)	7280(4)	14(3)	C(62A)	8626(11)	7854(5)	-1021(4)	41(3)
C(15A)	-124(11)	9271(5)	5941(4)	10(3)	C(63A)	5465(11)	7582(5)	581(4)	31(3)
C(16A)	-984(12)	9632(5)	6798(4)	11(3)	C(64A)	13299(11)	8553(5)	-3298(4)	28(3)
C(17A)	4118(11)	7700(5)	5601(4)	12(3)					
C(18A)	3515(11)	9140(5)	4399(4)	9(3)					
C(19A)	3480(11)	7112(5)	5889(4)	14(3)					
C(20A)	6113(11)	9397(5)	4712(4)	14(3)					
C(21A)	4256(11)	9669(5)	4088(4)	12(3)					
C(22A)	492(11)	8815(5)	5150(4)	12(3)					
C(23A)	6165(11)	8372(5)	5434(4)	15(3)					
C(24A)	-2086(11)	8713(5)	6636(4)	16(3)					
C(25A)	-3997(12)	9151(5)	7937(4)	11(3)					
C(26A)	9958(11)	8088(5)	-1350(4)	18(3)					
	/	(- /		- \- /					

Table A10_1. Crystal data and structure refinement for 54h.

-240(7)

1923(8)

-1040(8)

2572(8)

2508(7)

435(8)

5400(6)

4460(30)

9769(5)

10875(5)

6219(5)

7137(5)

8180(5)

7027(6)

4545(4)

4759(16)

-3484(4)

-10868(4)

-3593(4)

-3607(4)

-5557(4)

-10445(4)

4090(2)

4439(19)

32(2)

44(2)

39(2)

33(2)

33(2) 38(2)

33(2)

155(16)

C(40)

C(41)

C(42)

C(43)

C(44)

C(45)

O(1)

C(1C)

Identification code Empirical formula	pbd269 C32.50 H24 N2 O11		$(Å^2 x \ 10^3)$ for 5	4h . U(eq) is defined as	one third of the trace	e of the orthogonalize	d U ^{ij} tensor.
Formula weight	618.54			х	у	Z	U(eq)
Temperature	100(2) K		$\overline{O(2)}$	3454(4)	8783(3)	-1656(2)	36(1)
Wavelength	0./10/3 A		O(2)	2375(5)	10601(3)	-9806(3)	37(1)
Crystal system	triclinic		O(4)	2266(5)	6490(3)	-7306(3)	41(1)
Space group	P-1		O(5)	2178(5)	8409(3)	-6651(2)	30(1)
Unit cell dimensions	a = 11.082(4) Å	$\alpha = 96.906(13)^{\circ}$	O(6)	4301(6)	10080(4)	-7325(3)	47(2)
	b = 11.145(2) Å	$\beta = 105.356(12)^{\circ}$	O(7)	2903(5)	4192(4)	-2000(3)	48(2)
	c = 13.036(4) Å	$\gamma = 110.21(2)^{\circ}$	O(8)	1144(6)	4554(4)	-1857(3)	42(2)
	c = 15.050(4) A	$\gamma = 110.21(2)$	O(9)	2973(5)	6731(3)	-2580(2)	31(1)
Volume	1416.6(7) Å ³		O(10)	3044(5)	4187(3)	339(3)	41(1)
Z	2		N(11)	2365(7)	4800(4)	-1557(4)	31(2)
Density (aslaulated)	1 450 Ma/m3		O(12)	2964(5)	11136(3)	-7562(3)	48(2)
Density (calculated)	1.430 Mg/III		C(13)	3704(7)	7183(5)	-650(4)	24(2)
Absorption coefficient	0.111 mm ⁻¹		C(14)	4514(7)	8130(5)	314(4)	30(2)
F(000)	642		N(15)	3230(7)	10184(4)	-7798(3)	32(2)
Crevetal size	$2 \times 2 \times 1 \text{ mm}^3$		C(16)	2854(8)	11917(5)	-3933(4)	33(2)
Crystal size	.5 X .2 X .1 mm ⁻		C(17)	1914(7)	9527(5)	-4153(4)	28(2)
Theta range for data collection	1.6 / to 2 / .00°.		C(18)	3369(7)	7672(5)	-1663(4)	27(2)
Index ranges	-12<=h<=8, -12<=k<	<=11, -9<=l<=16	C(19)	3274(7)	5884(4)	-592(4)	22(2)
Reflections collected	4107		C(20)	1202(8)	7216(5)	-3780(4)	33(2)
Independent reflections	3488 [R(int) = 0.042]	4]	C(21)	981(7)	8410(5)	-3892(4)	31(2)
Completeness to theta = 27.00°	56.4 %	-	C(22)	868(8)	6797(5)	-9421(4)	35(2)
Absorption correction	None		C(23)	905(7)	8290(5)	-10591(4)	34(2)
		_2	C(24)	-166(7)	8516(5)	-3674(4)	30(2)
Refinement method	Full-matrix least-squ	ares on F ²	C(25)	3608(7)	5507(5)	392(4)	30(2)
Data / restraints / parameters	3488 / 0 / 461		C(26)	-1190(8)	7395(6)	-3558(4)	39(2)
Goodness-of-fit on E^2	0.968		C(27)	1808(7)	9344(5)	-9727(4)	30(2)
Einel D indiana [IN 2sigma(I)]	$P_1 = 0.0700 \text{ m}P_2 =$	0 1220	C(28)	776(8)	10854(6)	-3480(4)	35(2)
Final K indices $[1>2 \text{sigma}(1)]$	R1 = 0.0700, WR2 =	0.1550	C(29)	3757(8)	11797(6)	-4432(4)	37(2)
R indices (all data)	R1 = 0.1/31, WR2 =	0.1650	C(30)	4431(7)	6489(5)	1337(4)	29(2)
Largest diff. peak and hole	0.249 and -0.215 e.Å	-3	C(31)	1763(7)	7826(5)	-8531(4)	27(2)
5 I			C(32)	2202(7)	9076(5)	-8700(4)	26(2)
			C(33)	1868(7)	10775(5)	-3822(4)	28(2)
			C(34)	3669(7)	10568(5)	-4909(4)	29(2)
			C(35)	3329(8)	3795(5)	1366(4)	47(2)
			C(36)	2753(7)	9446(5)	-4789(4)	31(2)
			C(37)	169(8)	6151(5)	-3664(4)	38(2)
			C(38)	4879(7)	7783(5)	1303(4)	30(2)
			C(39)	2108(7)	7489(5)	-7442(4)	34(2)

A10 Röntgenstrukturdaten für 54h

Table A10_2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(2)	58(4)	24(2)	29(2)	12(2)	13(2)	18(2)
O(3)	54(4)	34(2)	25(2)	16(2)	13(2)	17(2)
O(4)	76(4)	25(2)	33(2)	14(2)	29(2)	22(2)
O(5)	51(4)	26(2)	17(2)	10(2)	14(2)	17(2)
O(6)	51(5)	52(3)	26(2)	4(2)	7(2)	12(3)
O(7)	72(5)	43(3)	38(3)	6(2)	18(2)	36(3)
O(8)	36(5)	45(3)	36(3)	12(2)	9(2)	6(3)
O(9)	54(4)	28(2)	19(2)	10(2)	12(2)	22(2)
O(10)	70(4)	26(2)	30(2)	15(2)	16(2)	20(2)
N(11)	47(6)	25(3)	28(3)	15(2)	17(3)	16(3)
O(12)	86(5)	27(2)	33(2)	10(2)	20(2)	23(3)
C(13)	34(5)	25(3)	20(3)	10(2)	13(3)	18(3)
C(14)	41(6)	21(3)	31(3)	9(3)	16(3)	11(3)
N(15)	52(5)	28(3)	16(3)	9(2)	15(3)	9(3)
C(16)	55(7)	31(4)	15(3)	3(2)	8(3)	23(4)
C(17)	38(6)	34(3)	18(3)	10(2)	6(3)	20(3)
C(18)	38(6)	26(3)	22(3)	4(2)	13(3)	16(3)
C(19)	29(5)	26(3)	15(3)	5(2)	8(3)	15(3)
C(20)	45(6)	38(4)	20(3)	10(2)	14(3)	20(4)
C(20)	47(6)	36(3)	14(3)	9(2)	11(3)	20(3)
C(22)	53(7)	23(4)	29(3)	6(3)	21(3)	9(3)
C(22)	46(6)	36(4)	17(3)	9(3)	11(3)	12(3)
C(23)	35(6)	34(4)	25(3)	11(2)	13(3)	13(3)
C(25)	42(6)	28(3)	30(3)	12(3)	16(3)	22(3)
C(26)	53(7)	51(4)	31(4)	22(3)	22(3)	31(4)
C(27)	45(6)	31(4)	24(3)	13(3)	14(3)	21(3)
C(28)	62(7)	37(4)	18(3)	10(2)	14(3)	33(4)
C(20)	55(7)	35(4)	20(3)	10(2)	9(3)	19(4)
C(30)	35(6)	35(4)	17(3)	11(3)	9(3)	13(3)
C(31)	35(6)	31(3)	15(3)	6(2)	16(3)	8(3)
C(32)	24(6)	32(3)	23(3)	8(2)	13(3)	8(3)
C(33)	45(6)	29(3)	15(3)	4(2)	5(3)	22(3)
C(34)	43(6)	27(4)	21(3)	8(2)	7(3)	22(3)
C(35)	76(7)	37(4)	32(3)	25(3)	16(3)	22(3) 22(4)
C(36)	56(6)	24(3)	17(3)	6(2)	13(3)	20(3)
C(37)	56(7)	32(4)	30(3)	12(3)	16(3)	17(4)
C(38)	34(6)	32(4) 31(3)	27(3)	7(3)	10(3)	13(3)
C(30)	52(6)	25(3)	27(3) 23(3)	3(2)	16(3)	10(3)
C(39)	40(6)	25(3)	25(3)	15(2)	15(3)	26(4)
C(40)	72(7)	+3(4) 53(4)	20(3) 21(3)	22(3)	17(3)	20(4)
C(41)	$\frac{72(7)}{40(7)}$	41(4)	$\frac{21(3)}{32(4)}$	15(3)	10(3)	9(4)
C(42) C(43)	51(7)	41(4)	15(3)	13(3)	10(3)	25(4)
C(43)	53(6)	$\frac{42(3)}{36(3)}$	20(3)	15(2) 16(2)	12(3)	25(3)
C(44)	50(7)	33(4)	23(3)	-4(3)	12(3) 10(3)	$\frac{23(3)}{10(3)}$
O(1)	88(5)	41(2)	3(2)	9(1)	18(2)	61(3)
C(1C)	110(30)	54(13)	190(30)	75(15)	-78(19)	-21(12)

Table A10_3. Anisotropic displacement parameters ($Å^2 x \ 10^3$) for 54h . The anisotropic	
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$	

Table A10_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	54h.

	Х	У	Z	U(eq)
H(35A)	4312	4045	1687	70
H(35B)	2857	2840	1237	70
H(35C)	3012	4236	1870	70
H(37)	292	5352	-3633	46
H(40)	-1023	9835	-3358	39
H(41A)	2130	10354	-11406	66
H(41B)	2393	11812	-10824	66
H(41C)	938	10642	-11093	66
H(42)	-1754	5458	-3569	47
H(43A)	2519	6492	-4227	40
H(43B)	3260	8005	-3571	40
H(44A)	3333	7981	-5381	40
H(44B)	1745	7432	-5496	40
H(2)	590(50)	5970(40)	-9300(30)	3(11)
H(5)	-190(50)	6300(40)	-11080(30)	9(12)
H(8)	600(50)	8450(40)	-11270(30)	17(13)
H(9)	4830(50)	9010(40)	310(30)	24(14)
H(10)	5530(50)	8560(40)	2000(30)	23(13)
H(12)	4760(60)	6270(40)	1980(30)	22(14)
H(14)	2810(50)	12810(40)	-3690(30)	22(13)
H(16)	4350(50)	10450(40)	-5380(30)	13(12)
H(18)	4450(60)	12550(50)	-4450(40)	28(16)
H(20)	-2080(80)	7540(60)	-3430(40)	70(20)
H(22)	760(60)	11710(50)	-3270(30)	36(16

Table A11_1. Crystal data and structure refinement for 56.

Table A11_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd273 C16 H10 O2		$(Å^2 x \ 10^3)$ for	56 . U(eq) is defined	as one third of the	e trace of the ortho	gonalized U ^{ij} tensor.
Formula weight Temperature	234.24 100(2) K			X	у	Z	U(eq)
Wavelength	0.71073 Å		O(1)	2545(1)	2513(1)	4092(1)	21(1)
Crystal System	MONOCIINIC D21/m		O(2)	4812(1)	2138(1)	5268(1)	25(1)
Space group	P21/II	~ 00%	C(3)	1270(1)	3758(1)	6112(1)	17(1)
Unit cell dimensions	a = 9.7883(4) A	$\alpha = 90^{-1}$	C(4)	-1008(1)	3437(1)	6546(2)	21(1)
	b = 11.2129(5) A	$p=109.456(2)^{\circ}$	C(5)	429(1)	3873(1)	6983(1)	17(1)
	c = 10.3693(5) A	$\gamma = 90^{\circ}$	C(6)	1377(1)	3382(1)	3760(1)	20(1)
Volume	1073.10(8) Å ³		C(7)	-1639(2)	2997(1)	5250(1)	22(1)
Z	4		C(8)	2284(1)	5066(1)	8577(1)	19(1)
Density (calculated)	1.450 Mg/m ³		C(9)	3854(1)	3833(1)	6017(1)	18(1)
Absorption coefficient	0.005 mm ⁻¹		C(10)	4589(2)	5448(1)	8198(1)	22(1)
E(000)	0.095 mm 488		C(11)	2771(1)	4167(1)	6593(1)	16(1)
T(000)	400	3	C(12)	3776(1)	2786(1)	5101(1)	18(1)
Crystal size	0.62 x 0.52 x 0.48 mm	5	C(13)	995(1)	4514(1)	8248(1)	20(1)
Theta range for data collection	$2.48 \text{ to } 27.00^{\circ}.$	14 12 1 12	C(14)	3212(1)	4908(1)	7774(1)	17(1)
Index ranges	-12<=h<=12, -13<=k<	=14, -13<=1<=12	C(15)	-848(1)	2977(1)	4349(2)	21(1)
Reflections collected	5716		C(16)	580(1)	3340(1)	4757(1)	17(1)
Independent reflections	2336 [R(int) = 0.04/8]		C(17)	5572(1)	5200(1)	7548(1)	23(1)
Absorption correction 27.00°	None		C(18)	5224(1)	4357(1)	6506(1)	20(1)
Refinement method Data / restraints / parameters	Full-matrix least-squar 2336 / 0 / 204	res on F ²					
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.062 R1 = 0.0400, wR2 = 0 R1 = 0.0626, wR2 = 0 0.028(4)	.0875 .0949					
Largest diff. peak and hole	0.264 and -0.188 e.Å ⁻³)					

A11 Röntgenstrukturdaten für 56

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	22(1)	20(1)	19(1)	-3(1)	5(1)	4(1)
O(2)	25(1)	25(1)	26(1)	1(1)	11(1)	7(1)
C(3)	19(1)	11(1)	18(1)	3(1)	4(1)	2(1)
C(4)	21(1)	16(1)	28(1)	4(1)	12(1)	3(1)
C(5)	19(1)	12(1)	20(1)	3(1)	6(1)	2(1)
C(6)	21(1)	19(1)	17(1)	0(1)	2(1)	3(1)
C(7)	17(1)	16(1)	31(1)	1(1)	5(1)	1(1)
C(8)	25(1)	16(1)	14(1)	0(1)	4(1)	4(1)
C(9)	19(1)	17(1)	15(1)	4(1)	4(1)	2(1)
C(10)	24(1)	18(1)	19(1)	-2(1)	2(1)	-1(1)
C(11)	19(1)	13(1)	15(1)	4(1)	4(1)	2(1)
C(12)	21(1)	20(1)	15(1)	3(1)	7(1)	1(1)
C(13)	23(1)	19(1)	19(1)	4(1)	9(1)	6(1)
C(14)	21(1)	12(1)	16(1)	3(1)	4(1)	2(1)
C(15)	22(1)	14(1)	22(1)	0(1)	2(1)	3(1)
C(16)	20(1)	11(1)	18(1)	1(1)	4(1)	3(1)
C(17)	18(1)	22(1)	25(1)	1(1)	3(1)	-4(1)
C(18)	18(1)	22(1)	21(1)	5(1)	6(1)	2(1)

Table A11_3. Anisotropic displacement parameters (Å²x 10³) for **56**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

Table A11_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for $\frac{1}{2}$	56.

	х	У	Z	U(eq)
H(1)	1786(13)	4207(14)	3721(13)	20(4)
H(2)	-1299(14)	2744(12)	3359(14)	15(3)
H(3)	744(13)	3163(12)	2835(14)	16(3)
H(4)	386(14)	4585(13)	8819(13)	20(4)
H(5)	2631(14)	5519(13)	9393(14)	19(4)
H(6)	-1535(15)	3488(13)	7173(14)	23(4)
H(7)	-2627(16)	2725(13)	4968(14)	25(4)
H(8)	5956(14)	4083(13)	6129(14)	24(4)
H(9)	6544(14)	5584(13)	7842(14)	24(4)
H(10)	4842(14)	5981(13)	8976(15)	26(4)

Table A12_1. Crystal data and structure refinement for 57b.

Table A12_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

Identification code	pbd226	
Empirical formula	C7 H6 Br N2 O	
Formula weight	214.05	
Temperature	101(2) K	
Wavelength	0.71073 Å	
Crystal system	monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 12.0567(10) Å	$\alpha = 90^{\circ}$
	b = 3.8873(5) Å	$\beta = 90.979(6)^{\circ}$
	c = 15.9875(10) Å	$\gamma = 90^{\circ}$
Volume	749.19(12) Å ³	
Z	4	
Density (calculated)	1.898 Mg/m ³	
Absorption coefficient	5.422 mm ⁻¹	
F(000)	420	
Crystal size	? x ? x ? mm ³	
Theta range for data collection	2.10 to 27.00°.	
Index ranges	-12<=h<=15, -4<=k<=4,	-20<=l<=16
Reflections collected	3594	
Independent reflections	1598 [R(int) = 0.0353]	
Completeness to theta = 27.00°	98.5 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	1598 / 0 / 104	
Goodness-of-fit on F ²	1.088	
Final R indices [I>2sigma(I)]	R1 = 0.0412, $wR2 = 0.10$	90
R indices (all data)	R1 = 0.0595, $wR2 = 0.11$	59
Largest diff. peak and hole	1.024 and -0.637 e.Å ⁻³	

				••	
	0.1			11	
	A /	101			
	A 4 x	1112	tor b'lb	I l(ag) is defined as one third of the troop of the orthogonalized I H tens	10.**
	д ү	111	1 1/11 3 / 11	-1 (real) is defined as one futra of the trace of the orthogonalized 1 \pm) reas	2111
· • •	(1 – A	10	1101 210.	-0.007 is defined as one time of the trace of the ofthozonalized 0^{-1} tens	JOI.
· · ·					

	Х	У	Z	U(eq)
r(1)	3440(1)	1031(1)	4159(1)	19(1)
(1)	4427(4)	2702(14)	2595(3)	15(1)
(2)	3458(3)	1404(11)	2249(3)	36(1)
(3)	5996(3)	6011(11)	825(2)	14(1)
(4)	5156(4)	4408(14)	1194(3)	21(1)
6)	6378(4)	5431(14)	3370(3)	20(1)
7)	4371(3)	3233(10)	795(2)	9(1)
9)	5278(4)	4193(13)	2115(3)	16(1)
(10)	6232(4)	5531(13)	2505(3)	18(1)
(11)	4589(4)	2762(14)	3471(3)	16(1)
12)	5536(4)	4006(13)	3854(3)	18(1)

U³³ U²³ U¹¹ U²² U¹³ U¹² -3(1) 6(2) -1(2) -9(2) Br(1)22(1) 21(1) 14(3) 15(1) 18(2) 1(1) -3(2) 1(2) 2(1) -3(2) C(1) 13(2) N(2) 35(2) 37(3) 35(2) 0(2) O(3) 3(2) 29(3) 8(2) 4(2) 2(1) C(4) C(6) 25(3) 18(3) 5(2) -2(2) 4(2)-2(2) 19(3) 18(3) 4(2) 22(3) -2(2) 19(3) O(7) 3(2) 7(2) -3(1) -4(2) 20(2) 3(2) C(9) 15(2) 15(2) -3(2) 2(2) 16(3) 1(2) 3(2) 3(2) 1(2) C(10) 14(2) 19(3) 23(3) 4(2) 3(2) 3(2) -2(2) 4(2) -3(2) C(11) 16(3) 14(3) 18(2) 22(3) 16(3) C(12) 16(2)

Table A12_3.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for 57b . The anisotropic
displacement fa	ctor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A12_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **57b**.

	Х	У	Z	U(eq)
H(2B)	3597	730	1679	170(50)
H(2A)	3233	-1500(300)	2561	150(40)
H(6)	7036	6311	3627	24
H(7)	4135	4628	500	13
H(10)	6792	6529	2171	22
H(12)	5620	3901	4446	22

Table A13_1. Crystal data and structure refinement for 58b.

Table A13_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd227 C14 H8 Br2 O4		$(Å^2 x \ 10^3)$ for	58b. U(eq) is define	d as one third of t	he trace of the orth	ogonalized U ^{ij} tensor.
Formula weight Temperature	400.02 100(2) K			Х	У	Z	U(eq)
Wavelength	0.71073 Å		$\overline{\mathrm{Br}(1)}$	4110(2)	6332(2)	4917(2)	48(1)
Crystal system	monoclinic D21/-		Br(4)	4366(2)	5135(2)	1443(2)	43(1)
Space group	P21/C	000	O(2)	163(11)	6451(14)	681(15)	55(4)
Unit cell dimensions	a = 13.033(10) A	$\alpha = 90^{\circ}$	C(3)	2402(14)	2677(19)	3970(20)	34(5)
	b = 10.472(10) A	$\beta = 95.51(4)^{\circ}$	C(5)	3535(15)	4120(20)	2461(19)	38(6)
	c = 10.310(10) A	$\gamma = 90^{\circ}$	C(7)	2139(14)	3929(17)	3813(19)	29(5)
Volume	1401(2) Å ³		O(8)	1215(10)	4748(13)	795(13)	43(4)
Z	4		C(12)	2917(17)	8293(18)	3560(20)	43(6)
Density (calculated)	1.897Mg/m^3		C(13)	1755(16)	6659(19)	1964(17)	34(5)
A h	5 7061		O(19)	1065(10)	3880(13)	5457(13)	43(4)
Absorption coefficient	5.790 mm -		C(20)	2680(15)	4701(19)	2992(19)	36(5)
F(000)	776		C(23)	2205(18)	8750(20)	2650(20)	57(7)
Crystal size	.1 x .05 x .03 mm ³		C(24)	3084(14)	6979(19)	3674(19)	36(5)
Theta range for data collection	1.57 to 25.00°.		O(26)	638(11)	5225(14)	3805(13)	48(4)
Index ranges	-13<=h<=15, -10<=k<	=11, -12<=l<=7	C(27)	1615(16)	7960(20)	1870(20)	50(7)
Reflections collected	4975		C(28)	3780(15)	2846(17)	2647(19)	34(5)
Independent reflections	2331 [R(int) = 0.1786]		C(29)	1235(17)	4440(20)	4330(20)	45(6)
Completeness to theta = 25.00°	93.9 %		C(33)	3235(15)	2133(19)	3455(18)	35(5)
Absorption correction	None		C(38)	2527(15)	6108(19)	2858(17)	32(5)
Refinement method Data / restraints / parameters	Full-matrix least-squar 2331 / 0 / 182	res on F^2	C(53)	1048(17)	5880(20)	1087(19)	46(6)
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	1.126 R1 = 0.1202, wR2 = 0. R1 = 0.2539, wR2 = 0.	.1819 2300					
Largest diff. peak and hole	0.835 and -1.207 e.Å ⁻³)					

-255-

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	46(2)	45(1)	50(2)	-4(1)	-13(1)	5(1)
Br(4)	39(1)	46(1)	45(1)	5(1)	7(1)	0(1)
O(2)	39(10)	48(10)	73(12)	-19(9)	-23(8)	3(9)
C(3)	4(11)	32(13)	64(15)	-20(11)	-12(10)	-10(9)
C(5)	23(13)	54(15)	38(13)	-5(11)	5(10)	0(11)
C(7)	17(11)	21(12)	50(13)	0(10)	10(10)	-16(9)
O(8)	42(9)	33(9)	50(10)	-19(8)	-11(7)	-5(7)
C(12)	59(17)	15(12)	53(15)	-20(11)	1(12)	-8(11)
C(13)	49(15)	39(14)	17(11)	-5(10)	15(10)	-3(11)
O(19)	31(9)	50(10)	48(10)	4(8)	7(7)	-9(7)
C(20)	23(13)	40(13)	40(13)	-2(11)	-22(10)	-26(11)
C(23)	55(17)	33(14)	79(19)	22(14)	-11(14)	15(13)
C(24)	12(12)	48(14)	44(14)	-12(11)	-14(9)	-13(10)
O(26)	39(9)	55(10)	51(10)	5(8)	11(8)	15(9)
C(27)	22(14)	50(16)	74(18)	-34(13)	-18(11)	-2(12)
C(28)	30(14)	19(12)	50(14)	-13(10)	-17(11)	11(10)
C(29)	31(15)	40(15)	65(18)	-12(13)	8(13)	-2(12)
C(33)	32(14)	33(13)	42(14)	24(10)	11(11)	2(11)
C(38)	32(13)	43(14)	23(11)	20(10)	3(9)	7(11)
C(53)	40(16)	68(18)	26(13)	-23(12)	-14(10)	-16(14)

Table A13_3. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **58b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

Table A13_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **58b**.

	Х	У	Z	U(eq)
H(2)	-224	5930	251	82
H(3)	1990	2151	4465	41
H(12)	3310	8866	4118	51
H(19)	536	4197	5736	64
H(23)	2115	9645	2559	68
H(27)	1100	8299	1252	60
H(28)	4320	2470	2221	41
H(33)	3427	1276	3657	42

Table A14_1. Crystal data and structure refinement for 59a.

Table A14_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbg171 C28 H19 Cl4 O4	$(Å^2 x \ 10^3)$ for	r 59a. U(eq) is define	d as one third of th	ne trace of the orth	nogonalized U ^{ij} tensor.
Formula weight Temperature	561.23 100(2) K		X	у	Z	U(eq)
Wavelength	0.71073 Å	$\overline{Cl(1)}$	1880(2)	7227(2)	2222(1)	27(1)
Crystal system	orthorhombic	CI(1)	1366(3)	7237(3)	5232(1) 5123(1)	27(1) 26(1)
Space group	Pca21	Cl(2) Cl(3)	3805(4)	713(4)	5125(1) 5006(1)	20(1) 35(1)
Unit cell dimensions	$a = 7.6785(10) \text{ Å} \qquad \alpha = 90^{\circ}$	CI(3)	-3211(4)	5600(4)	3364(1)	36(1)
	$b = 11.4627(10) \text{ Å} \qquad \beta = 90^{\circ}$	O(1)	-1680(10)	10006(10)	2519(4)	28(3)
	$c = 28.6775(10) \text{ Å}$ $\gamma = 90^{\circ}$	O(1)	21/3(0)	5045(8)	5828(3)	10(2)
Volume	$25241(4) Å^3$	C(3)	-1180(15)	7317(14)	2744(5)	$\frac{19(2)}{21(4)}$
Z.	4	C(4)	-2480(14)	2860(11)	5187(4)	15(3)
	1.177.14.13	C(5)	-2679(15)	2069(10)	6016(5)	16(3)
Density (calculated)	1.4// Mg/m ³	O(6)	-4621(9)	3654(8)	6227(3)	24(2)
Absorption coefficient	0.503 mm ⁻¹	C(7)	-1669(16)	2281(14)	5613(5)	21(2) 21(4)
F(000)	1148	O(8)	-4131(10)	8645(8)	2118(3)	24(2)
Crystal size	$.2 \text{ x} .1 \text{ x} .05 \text{ mm}^3$	C(9)	-3990(20)	7488(17)	2311(6)	27(5)
Theta range for data collection	1.42 to 27.00°.	C(10)	-2112(14)	7041(11)	2342(4)	20(3)
Index ranges	-9<=h<=7, -14<=k<=13, -36<=l<=19	C(11)	-3472(15)	2199(12)	4863(5)	24(4)
Reflections collected	7044	C(12)	-2467(14)	9536(11)	3663(5)	18(3)
Independent reflections	3041 [R(int) = 0.1261]	C(13)	-2254(13)	4033(11)	5080(4)	18(3)
Completeness to theta = 27.00°	84.8 %	C(14)	-1965(14)	1455(12)	6396(5)	24(4)
Absorption correction	None	C(15)	565(14)	6958(11)	2733(4)	15(3)
Refinement method	Full-matrix least-squares on F^2	C(16)	-2957(12)	7173(10)	3449(5)	13(3)
Data / restraints / parameters	3041 / 1 / 401	C(17)	308(17)	6137(14)	1995(6)	23(4)
$C_{\rm cl} = \frac{1}{2} C_{\rm cl} + \frac{1}{2} C_{\rm cl}$	0.000	C(18)	-170(17)	1064(13)	6365(5)	29(4)
Goodness-of-fit on F ²	0.906 D1 0.0507 D2 0.1025	C(19)	782(18)	1308(12)	5970(5)	25(4)
Final R indices [I>2sigma(I)]	R1 = 0.0597, WR2 = 0.1035	C(20)	1300(20)	6353(14)	2383(6)	32(5)
A harders (all data)	R1 = 0.16/5, WR2 = 0.1550	C(21)	-1354(16)	6465(13)	1971(5)	18(4)
Absolute structure parameter	-0.04(10)	C(22)	-1965(14)	7826(11)	3164(5)	18(3)
Largest diff. peak and hole	$0.486 \text{ and } -0.472 \text{ e.A}^{-5}$	C(23)	-4509(16)	2464(14)	6066(5)	25(4)
		C(24)	-3860(20)	3786(15)	4380(5)	25(4)
		C(25)	32(16)	1914(12)	5594(5)	17(3)
		C(26)	-1758(13)	9042(12)	3254(5)	22(4)
		C(27)	-1196(17)	4840(12)	5404(5)	25(4)
		C(28)	-3737(16)	7619(12)	3870(4)	22(3)
		C(29)	-2990(15)	4500(12)	4673(4)	20(3)
		C(30)	-4308(14)	2597(13)	4470(5)	28(4)
		C(31)	-725(16)	9806(12)	2939(5)	14(3)
		C(32)	-3495(16)	8808(16)	3933(7)	42(5)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\mathbf{Cl}(1)}$	27(2)	28(2)	26(2)	-3(2)	-6(2)	1(2)
Cl(2)	27(2)	23(2)	28(2)	-2(2)	9(1)	4(1)
Cl(2)	60(2)	20(2)	25(2)	3(2)	-7(2)	-8(2)
C1(4)	48(2)	20(2)	41(3)	-1(2)	10(2)	-7(2)
O(1)	16(5)	30(7)	37(7)	3(6)	0(5)	-16(4)
O(2)	31(5)	18(6)	8(5)	-6(5)	10(4)	6(4)
C(3)	23(8)	14(10)	26(10)	11(8)	-10(6)	3(7)
C(4)	19(6)	24(9)	3(6)	3(6)	0(5)	-5(6)
C(5)	21(8)	3(8)	24(9)	-3(6)	-13(6)	-5(6)
0(6)	27(6)	20(6)	24(6)	4(5)	2(4)	2(4)
C(7)	36(9)	16(9)	11(8)	-5(8)	-8(6)	-1(7)
O(8)	24(5)	28(7)	19(6)	6(5)	0(4)	7(4)
C(9)	25(11)	25(13)	32(11)	2(9)	-8(8)	-7(8)
C(10)	14(8)	26(10)	22(8)	11(7)	-7(6)	-2(6)
C(11)	30(8)	22(10)	20(8)	-1(7)	11(6)	-5(6)
C(12)	6(7)	17(10)	32(9)	-1(7)	3(6)	2(6)
C(13)	31(7)	15(9)	7(7)	-1(7)	-2(6)	1(6)
C(14)	25(8)	19(11)	26(10)	7(8)	-6(6)	4(6)
C(15)	30(8)	8(8)	7(7)	-1(6)	14(5)	-10(6)
C(16)	0(6)	2(8)	37(9)	-1(7)	0(5)	-2(5)
C(17)	17(9)	23(10)	29(11)	-10(8)	13(7)	-4(6)
C(18)	65(11)	16(11)	7(8)	-2(7)	-5(7)	-2(7)
C(19)	27(9)	18(9)	30(10)	0(8)	5(7)	18(7)
C(20)	22(11)	27(11)	48(12)	-4(9)	4(9)	0(8)
C(21)	22(9)	10(10)	23(10)	-1(7)	5(6)	-14(6)
C(22)	18(7)	6(7)	29(8)	-8(7)	-5(6)	-3(6)
C(23)	33(9)	35(12)	8(7)	2(7)	-9(6)	-14(7)
C(24)	35(10)	39(13)	0(8)	-2(7)	-12(7)	6(8)
C(25)	31(9)	6(9)	15(8)	-7(6)	5(6)	-7(6)
C(26)	11(6)	24(10)	30(9)	-1(8)	-9(6)	8(6)
C(27)	43(10)	15(9)	17(10)	0(7)	-3(6)	-3(7)
C(28)	33(8)	22(10)	12(7)	4(6)	4(6)	-3(7)
C(29)	32(8)	14(10)	15(8)	-5(6)	-6(6)	-1(7)
C(30)	31(8)	25(10)	28(9)	17(7)	7(7)	7(7)
C(31)	7(8)	11(9)	25(10)	-12(7)	-6(6)	-1(6)
C(32)	18(9)	58(15)	49(13)	-34(11)	-2(8)	28(8)

Table A14_3. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **59a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table A14_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for $\frac{1}{2}$	59a.

	X	у	Z	U(eq)
I (1)	1140(120)	10420/00	2200/20)	0(20)
H(1)	-1140(120)	10430(80)	2390(30)	0(30)
H(2)	-5040(110)	2410(90)	5/80(40)	0(30)
H(3)	-420(100)	10480(90)	3090(30)	0(30)
H(4)	-4430(130)	3960(110)	4240(40)	0(40)
H(5)	320(110)	9470(90)	2820(30)	0(30)
H(6)	-4450(150)	7060(100)	2220(40)	0(40)
H(7)	-760(90)	5700(90)	5220(30)	0(20)
H(9)	-5220(90)	1960(70)	6340(30)	0(20)
H(10)	320(100)	660(90)	6660(30)	20(30)
H(11)	-2920(110)	8950(80)	2180(30)	0(30)
H(12)	-4700(130)	7480(120)	2640(50)	40(40)
H(13)	-3990(100)	9040(80)	4240(30)	0(30)
H(14)	750(110)	5830(100)	1780(30)	0(30)
H(16)	1990(110)	1070(80)	6020(40)	0(30)
H(17)	-2040(90)	6340(70)	1670(30)	0(20)
H(20)	2280(130)	6310(110)	2400(40)	20(50)
H(21)	600(200)	4440(160)	5410(60)	170(70)
H(22)	-3840(100)	4240(80)	6010(30)	0(20)
I(23)	-2590(100)	5350(70)	4630(30)	0(20)
. /		× /	× /	. /

Anhang

A14 Röntgenstrukturdaten für 59a

Table A15_1. Crystal data and structure refinement for 60a.

Table A15_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd179 C14 H10 Br2 Cl2	$(Å^2 x \ 10^3)$ for 60	a . U(eq) is defined	l as one third of th	he trace of the orth	ogonalized U ^{ij} tensor.
Formula weight Temperature	408.94 100(2) K		X	у	Z	U(eq)
Wavelength Crystal system Space group Unit cell dimensions	0.71073 A monoclinic P21/c $a = 8.4118(3) \text{ Å}$ $\alpha = 90^{\circ}$ $b = 14.9066(8) \text{ Å}$ $\beta = 100.620(3)^{\circ}$	Br(1) Br(2) Cl(3) Cl(4) C(1)	2499(1) 6237(1) 334(1) 5129(2) 5342(6)	401(1) 584(1) -2179(1) -1956(1) 2434(3)	9554(1) 13809(1) 12026(1) 13737(1) 10368(4)	19(1) 28(1) 23(1) 34(1) 21(1)
Volume	c = 11.5146(6) Å $\gamma = 90^{\circ}$ 1419.10(12) Å ³	C(1) C(2) C(3)	4523(6) 3021(5)	444(3) 46(3)	12404(4) 12697(4)	21(1) 21(1) 16(1)
Z Density (calculated)	4 1.914 Mg/m ³	C(4) C(5)	3152(5) 4080(5)	-1401(3) -1933(3)	10372(4) 9764(4)	14(1) 17(1)
Absorption coefficient F(000)	6.067 mm ⁻¹ 792	C(6) C(7) C(9)	1802(7) 3476(5) 128(6)	-835(4) -1380(3) -629(3)	9656(5) 11615(4) 13207(4)	20(1) 15(1) 18(1)
Crystal size Theta range for data collection	.3 x .3 x .3 mm ³ 2.26 to 26.99°.	C(10) C(12)	2506(5) 4751(5)	-812(3) -1916(3)	12305(4) 12199(4)	15(1) 17(1)
Index ranges Reflections collected Independent reflections	-10<=h<=10, -18<=k<=17, -14<=l<=14 5108 3070 [R(int) = 0.0392]	C(13) C(15) C(17)	5680(6) 2084(6) 665(6)	-2438(3) 549(3) 221(3)	11590(5) 13339(4) 13593(4)	21(1) 20(1) 19(1)
Completeness to theta = 26.99° Absorption correction	99.3 % None	C(18) Br(1A)	1056(5) 3914(9)	-1129(3) -2683(5)	12554(4) 14106(6)	16(1) 24(2)
Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	Full-matrix least-squares on F^2 3070 / 0 / 208 1.045 R1 = 0.0438, wR2 = 0.0988 R1 = 0.0652, wR2 = 0.1052 1.076 and -1.228 e.Å ⁻³					

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{\text{Br}(1)}$	19(1)	17(1)	22(1)	4(1)	5(1)	3(1)
Br(2)	17(1)	32(1)	37(1)	-5(1)	5(1)	-3(1)
Cl(3)	24(1)	14(1)	32(1)	0(1)	13(1)	-5(1)
Cl(4)	43(1)	34(1)	24(1)	0(1)	1(1)	18(1)
C(1)	23(3)	13(2)	29(3)	-6(2)	13(2)	-2(2)
C(2)	20(3)	19(3)	26(2)	-8(2)	10(2)	-3(2)
C(3)	14(2)	14(2)	21(2)	-1(2)	6(2)	0(2)
C(4)	13(2)	10(2)	20(2)	-1(2)	4(2)	-4(2)
C(5)	22(3)	17(2)	16(3)	-5(2)	9(2)	-8(2)
C(6)	14(3)	28(3)	25(3)	-11(2)	20(2)	-9(2)
C(7)	17(2)	10(2)	19(2)	-1(2)	7(2)	-1(2)
C(9)	16(2)	18(2)	21(2)	5(2)	10(2)	4(2)
C(10)	15(2)	14(2)	16(2)	0(2)	7(2)	3(2)
C(12)	18(2)	17(2)	18(2)	-1(2)	4(2)	1(2)
C(13)	17(2)	15(2)	30(3)	0(2)	5(2)	3(2)
C(15)	24(3)	14(2)	25(2)	-6(2)	9(2)	-1(2)
C(17)	20(3)	17(2)	21(2)	-2(2)	11(2)	7(2)
C(18)	15(2)	11(2)	22(2)	3(2)	3(2)	0(2)

Table A15_3. Anisotropic displacement parameters $(Å^{2x} 10^{3})$ for **60a**. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table A15_4.	Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for	50a.

	х	У	Z	U(eq)
H(3)	20(50)	570(30)	13910(40)	12(12)
H(5)	4890(50)	110(30)	11850(40)	16(12)
H(8)	3880(50)	-1960(30)	9110(40)	3(11)
H(9)	5960(50)	-2690(30)	9970(40)	11(12)
H(11)	4300(50)	1070(30)	12140(40)	21(13)
H(12)	6370(60)	-2660(40)	11980(50)	38(18)
H(13)	-830(50)	-830(30)	13290(40)	13(12)
H(14)	1580(60)	-950(40)	9000(50)	28(16)
H(18)	2450(60)	1050(40)	13540(50)	36(16)
H(4)	1270(50)	-820(30)	9910(40)	0(14)

Table A16_1. Crystal data and structure refinement for 63.

Table A16_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

(³ 2-10 ³) for (2)	$\mathbf{U}(-)$: defined as an efficient of the transformed state $\mathbf{U}(\mathbf{U})$
$(A^{-}X 10^{-})$ for 63 .	U(eq) is defined as one third of the trace of the orthogonalized U-s tensor.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	pbd192 C14 H12 Cl2 251.14 100(2) K 0.71073 Å orthorhombic Pcan a = 9.503(3) Å α = 90° b = 10.4394(18) Å β = 90° c = 12.189(3) Å γ = 90°
Volume	1209.2(5) Å ³
Z	4
Density (calculated)	1.379 Mg/m ³
Absorption coefficient	0.504 mm ⁻¹
F(000)	520
Crystal size	.2 x .1 x .1 mm ³
Theta range for data collection	2.90 to 26.99°.
Index ranges	-12<=h<=12, -11<=k<=11, -15<=l<=6
Reflections collected	4557
Independent reflections	1260 [R(int) = 0.2409]
Completeness to theta = 26.99°	95.4 %
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1260 / 0 / 74
Goodness-of-fit on F ²	1.079
Final R indices [I>2sigma(I)]	R1 = 0.1140, wR2 = 0.2482
R indices (all data)	R1 = 0.2588, wR2 = 0.3199
Largest diff. peak and hole	0.527 and -0.928 e.A

	х	У	Z	U(eq)
 Cl(1)	1653(2)	5058(2)	4262(2)	38(1)
C(1)	3412(9)	8291(8)	3222(9)	33(2)
C(2)	3497(9)	5693(8)	2668(7)	26(2)
C(3)	2671(9)	6168(8)	3505(7)	24(2)
C(4)	5362(8)	6155(7)	1168(7)	18(2)
C(5)	2580(9)	7432(8)	3816(8)	27(2)
C(6)	4363(9)	6591(9)	2106(8)	28(2)
C(7)	4282(9)	7864(9)	2402(8)	32(2)

Table A16_3. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **63**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	39(1)	32(1)	42(2)	2(1)	8(1)	-8(1)
C(1)	30(5)	15(4)	56(7)	-9(5)	2(5)	0(4)
C(2)	26(4)	19(4)	32(6)	-1(4)	-9(5)	-3(4)
C(3)	15(4)	23(5)	33(6)	10(4)	7(4)	-6(4)
C(4)	13(4)	14(4)	26(5)	6(4)	6(4)	-17(3)
C(5)	29(5)	16(5)	36(5)	1(4)	-5(5)	-5(4)
C(6)	25(5)	31(5)	28(5)	3(4)	2(4)	-3(4)
C(7)	30(5)	26(5)	39(6)	0(5)	-3(5)	-13(4)

Table A16_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **63**.

	Х	У	Z	U(eq)
H(1)	3375	9179	3387	40
H(3)	2116	5569	3902	28
H(4A)	6112	6789	1073	26
H(4B)	4826	6076	484	26
H(4C)	5777	5324	1356	26
H(7)	4850	8468	2023	38

Table A17_1. Crystal data and structure refinement for 75 (CH₂Cl₂).

Table A17_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å ² x 10 ²	")
for 75 (CH ₂ Cl ₂). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.	

Identification code	pbd233	for 75 (CH ₂ Cl ₂). U(eq) is defined as one third of the trace of the orthogon				
Empirical formula	C38.50 H33 C1 O2 P2					
Formula weight	625.04	P(7)	3219(1)	2442(1)	1960(1)	
Temperature	100(2) K	P(8)	3615(1)	4688(1)	3357(1)	
Wavelength	0.71073 Å	O(6)	3680(1)	3149(3)	1924(1)	
Crystal system	monoclinic	O(7)	3064(1)	4456(3)	3071(2)	
Space group	C2/c	C(15)	3363(2)	2335(4)	3364(2)	
Unit cell dimensions	$a = 24.941(3) \text{ Å}$ $\alpha = 90^{\circ}$	C(16)	1951(2)	2843(5)	565(3)	
	$h = 13.1028(15) \text{ Å}$ $\beta = 04.647(8)^{\circ}$	C(17)	2641(2)	1861(4)	4034(3)	
	b = 13.1326(15) A $p = 94.047(6)$	C(19)	2379(2)	2418(5)	929(3)	
	$c = 20.2138(16) \text{ A}$ $\gamma = 90^{\circ}$	C(23)	3012(2)	2209(4)	2785(2)	
Volume	6629.3(12) Å ³	C(24)	3939(3)	238(6)	965(3)	
Z	8	C(38)	3261(3)	-594(6)	1534(3)	
Demoite (antendated)	1 252 Martin 3	C(39)	2424(2)	3830(4)	1670(3)	
Density (calculated)	1.252 Mg/m ²	C(46)	3934(2)	2640(5)	3335(2)	
Absorption coefficient	0.245 mm^{-1}	C(55)	48/0(2) 2102(2)	2146(5)	3313(2)	
F(000)	2616	C(50)	3103(3) 2482(2)	525(5) 1006(4)	2842(2)	
Crevetal size	$1 \times 1 \times 02 \text{ mm}^3$	C(58)	2462(2)	3658(4)	2043(3) 3341(2)	
Thete range for data collection	$1.1 \times 1.1 \times 102$ mm $1.64 \text{ to } 25.009$	C(64)	3370(2)	1217(4)	1631(2)	
	1.041023.00.	C(69)	2296(2)	1724(4)	3467(3)	
Index ranges	-29 <= n <= 29, -15 <= k <= 14, -18 <= l <= 24	C(72)	3913(2)	5739(5)	2938(2)	
Reflections collected	15723	C(79)	5032(3)	3153(5)	3330(2)	
Independent reflections	5798 [R(int) = 0.2037]	C(86)	2622(2)	2901(4)	1485(2)	
Completeness to theta = 25.00°	99.2 %	C(90)	4331(2)	1870(5)	3317(2)	
Absorption correction	None	C(103)	3172(2)	2165(4)	3988(2)	
Refinement method	Full-matrix least-squares on F^2	C(106)	3136(3)	4991(4)	4518(3)	
Data / restraints / parameters	5708 / 0 / 534	C(108)	3535(3)	2280(6)	4614(3)	
Data / Testraints / parameters	57787 07 554	C(113)	4098(2)	5564(5)	2313(3)	
Goodness-of-fit on F^2	0.982	C(115)	4089(3)	5285(5)	4608(3)	
Final R indices [I>2sigma(I)]	R1 = 0.0783, wR2 = 0.1371	C(126)	4648(2)	3896(5)	3338(2)	
R indices (all data)	R1 = 0.2114, $wR2 = 0.1773$	C(129)	3618(3)	5031(4)	4222(2)	
I argest diff neak and hole	0.465 and -0.481 e Å ⁻³	C(131) C(124)	3/83(3)	1161(5)	1211(3)	
Largest unit. peak and note	0.405 and -0.481 C.A	C(134) C(127)	1/55(5)	5770(5)	/50(5) 5180(3)	
		C(137) C(130)	3680(3)	5255(5) 627(6)	1132(3)	
		C(139) C(147)	1991(2)	4270(5)	1306(3)	
		C(147) C(150)	4299(3)	7313(7)	2204(4)	
		C(153)	3913(2)	6723(5)	3179(3)	
		C(153)	4296(3)	6361(6)	1950(3)	
		C(155)	3577(3)	5494(5)	5566(3)	
		C(157)	4062(3)	5504(6)	5280(3)	
		C(167)	4100(3)	7506(6)	2811(4)	
		C(180)	4180(3)	769(5)	3301(4)	

Cl(1A)

Cl(2A)

C(3A)

5206(1)

5164(2)

4716(4)

6812(3)

-1123(3)

7704(9)

4720(2)

420(2)

4849(5)

32(1)

34(1)

32(1)

37(1)

31(1)

39(2)

37(2)

36(2)

29(1)

50(2)

53(2)

33(2)

33(1)

34(2)

41(2)

35(2)

32(1)

31(1)

37(2)

36(2)

34(2)

29(1)

36(2)

33(1)

40(2)

42(2)

40(2)

52(2)

33(2)

38(2)

40(2)

41(2)

47(2)

54(2)

40(2)

55(2)

43(2)

50(2)

54(2)

65(2)

52(2) 42(2)

58(1)

100(2)

51(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(7)	28(1)	34(1)	33(1)	-1(1)	4(1)	-1(1)
P(8)	33(1)	37(1)	32(1)	-3(1)	4(1)	0(1)
O(6)	26(2)	37(2)	34(2)	4(2)	3(2)	-7(2)
O(7)	34(3)	39(3)	38(2)	-6(2)	2(2)	-1(2)
C(15)	27(3)	32(4)	34(3)	1(3)	4(3)	-2(3)
C(16)	43(4)	38(4)	35(3)	1(3)	1(3)	1(3)
C(17)	39(4)	33(4)	40(3)	4(3)	13(3)	1(3)
C(19)	37(4)	25(4)	47(4)	-1(3)	3(3)	12(4)
C(23)	23(3)	23(3)	42(3)	0(3)	10(3)	-5(3)
C(24)	49(5)	52(5)	48(4)	-8(4)	-3(3)	8(4)
C(38)	62(6)	37(5)	61(5)	-3(4)	0(4)	-2(4)
C(39)	32(4)	32(4)	34(3)	1(3)	3(3)	-8(3)
C(46)	37(4)	36(4)	25(3)	2(3)	0(2)	-1(3)
C(55)	35(4)	33(4)	34(3)	1(3)	1(3)	6(3)
C(56)	37(4)	45(5)	41(4)	-8(3)	5(3)	0(4)
C(58)	35(4)	32(4)	39(3)	4(3)	5(3)	1(3)
C(60)	31(4)	38(4)	27(3)	1(3)	1(2)	0(3)
C(64)	28(4)	35(4)	30(3)	0(3)	0(3)	1(3)
C(69)	29(4)	34(4)	51(4)	-1(3)	16(3)	-7(3)
C(72)	27(4)	46(4)	35(3)	1(3)	3(3)	2(3)
C(79)	24(4)	47(5)	32(3)	-3(3)	0(3)	2(4)
C(86)	22(3)	29(4)	36(3)	1(3)	7(2)	-3(3)
C(90)	34(4)	35(4)	39(3)	2(3)	1(3)	-1(3)
C(103)	35(4)	36(4)	28(3)	4(3)	5(3)	4(3)
C(106)	54(5)	30(4)	34(3)	-1(3)	4(3)	8(3)
C(108)	36(5)	55(6)	35(4)	3(4)	5(3)	0(4)
C(113)	40(4)	39(5)	42(4)	7(3)	0(3)	-2(3)
C(115)	53(5)	64(5)	39(4)	-12(3)	9(3)	8(4)
C(126)	36(4)	32(4)	31(3)	-4(3)	1(3)	-7(4)
C(129)	43(4)	35(4)	35(3)	-6(3)	4(3)	5(3)
C(131)	38(4)	40(5)	43(4)	-9(3)	-2(3)	6(4)
C(134)	39(4)	40(5)	43(4)	7(3)	7(3)	3(4)
C(137)	62(5)	44(4)	38(4)	6(3)	15(4)	15(4)
C(139)	64(6)	45(6)	49(4)	-18(4)	-18(4)	21(5)
C(147)	37(4)	35(4)	48(4)	-4(3)	14(3)	2(4)
C(150)	38(5)	63(7)	64(5)	11(5)	10(4)	0(4)
C(153)	40(4)	44(5)	45(4)	-6(3)	5(3)	7(4)
C(154)	48(5)	57(5)	47(4)	10(4)	6(3)	8(4)
C(155)	70(6)	56(5)	34(4)	-3(3)	1(4)	26(4)
C(157)	69(6)	79(6)	44(4)	-19(4)	-15(4)	27(5)
C(167)	44(5)	33(5)	77(5)	4(5)	3(4)	-5(4)
C(180)	27(4)	33(4)	66(5)	1(4)	-1(4)	3(4)
CI(1A)	28(2)	73(3)	74(2)	-22(2)	9(2)	-1(2)
CI(2A)	52(3)	70(3)	183(4)	-37(3)	35(3)	9(2)
C(3A)	34(8)	61(10)	57(7)	-8(7)	-2(6)	0(7)

Tabl	le A17_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 75 (CH ₂ Cl ₂). The anisotropic displacement parameters ($A^2x \ 10^3$) for 75 (CH ₂ Cl ₂).	otropic
displa	acement factor exponent takes the form: $-2\pi^2 \left[h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12} \right]$	

Table A17_4. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters

 $(Å^2 x \ 10^3)$ for **75** (CH₂Cl₂).

	х	у	Z	U(eq)
H(3A1)	4371	7467	4625	61
H(3A2)	4671	7737	5331	61
H(1)	1919(18)	1460(30)	3513(19)	27(13)
H(2)	3840(20)	1820(40)	4630(20)	60(20)
H(3)	3920(20)	580(50)	2920(30)	80(20)
H(4)	4422(18)	6210(30)	1460(20)	42(15)
H(5)	2604(18)	4150(40)	2070(20)	42(15)
H(6)	4773(17)	4550(30)	3363(18)	15(13)
H(7)	2822(18)	350(30)	2080(20)	28(14)
H(8)	4480(20)	390(40)	3290(20)	48(19)
H(9)	2510(16)	1830(30)	849(17)	3(12)
H(10)	2217(19)	1880(40)	2430(20)	46(15)
H(11)	4020(20)	670(40)	3770(30)	80(20)
H(12)	5157(18)	1490(30)	3333(19)	35(14)
H(14)	2501(17)	1690(30)	4580(20)	38(13)
H(15)	3340(20)	2190(50)	4940(30)	70(20)
H(16)	1760(20)	2420(40)	160(30)	70(19)
H(17)	3980(20)	1780(40)	1140(20)	52(19)
H(18)	1846(18)	4930(40)	1430(20)	26(14)
H(19)	4450(20)	5310(40)	4420(20)	38(16)
H(20)	4380(20)	5740(40)	5520(20)	48(18)
H(21)	2810(20)	4860(40)	4210(20)	43(16)
H(22)	4040(20)	4880(40)	2160(20)	55(19)
H(23)	3080(20)	-1140(40)	1660(20)	50(20)
H(24)	5410(20)	3310(40)	3350(20)	35(16)
H(25)	3759(16)	6890(30)	3582(18)	9(12)
H(26)	1450(20)	4060(40)	500(20)	60(19)
H(28)	4400(30)	7830(50)	2040(30)	70(30)
H(29)	3710(20)	2910(50)	4630(30)	70(20)
H(31)	4270(20)	220(40)	640(20)	58(18)
H(32)	2780(20)	5280(40)	5410(30)	70(20)
H(33)	3567(19)	5670(40)	6060(30)	59(17
H(35)	3770(20)	-1170(40)	1000(20)	25(17
H(40)	4090(20)	8080(40)	2930(30)	50(20

-264-

Table A18_1. Crystal data and structure	refinement for 75 (H ₂ O).	C(29)	2617(1)	10737(2)	3163(1)
		C(30)	2684(2)	11838(2)	3332(1)
Identification code	pbd283	C(31)	4250(1)	10283(2)	4050(1)
Empirical formula	C38 H33 O2.50 P2	C(35)	1468(1)	12277(2)	4387(1)
Formula weight	591.58	C(38)	1129(1)	8831(2)	5696(1)
Temperature	100(2) K	C(39)	1570(1)	8326(2)	5447(1)
Wavelength	0.71073 Å	C(41)	1717(1)	8771(2)	5002(1)
Crystal system	monoclinic	C(42)	3799(1)	6903(2)	3339(1)
Space group	P21/a	C(45)	1255(1)	11441(2)	4042(1)
Unit cell dimensions	$a = 20.0650(8) \text{ Å} \qquad \alpha = 90^{\circ}$	C(48)	4946(1)	7194(2)	4267(1)
	$b = 13.1247(7) \text{ Å} \qquad \beta = 107.704(2)^{\circ}$	C(49)	2231(1)	6879(2)	3506(1)
	$c = 25.4800(10) \text{ Å} \qquad \gamma = 90^{\circ}$	C(50)	842(1)	9767(2)	5499(1)
Volume	6392 3(5) Å ³	C(52)	1162(2)	13226(2)	4230(1)
Z	8	C(55)	991(1)	10208(2)	5050(1)
		C(57)	2421(1)	10491(2)	2605(1)
Density (calculated)	1.229 Mg/m ³	C(59)	5032(1)	6759(2)	3802(1)
Absorption coefficient	0.170 mm ⁻¹	C(62)	1539(1)	7162(2)	3240(1)
F(000)	2488	C(63)	4468(1)	6602(2)	3340(1)
Crystal size	$3 \times 3 \times 3 \text{ mm}^3$	C(67)	1047(2)	6421(2)	3008(1)
Theta range for data collection	1.88 to 27.00°	C(70)	4016(1)	10736(2)	4930(1)
Index ranges	$-23 \le b \le 25 = -16 \le b \le -15 = -22 \le -12 \le -32$	C(71)	2404(1)	5852(2)	3549(1)
Reflections collected	25714	C(72)	1226(2)	5413(2)	3039(1)
Independent reflections	13237 [R(int) = 0.0464]	C(76)	441(2)	12519(3)	3392(1)
Completeness to theta = 27.00°	94.8 %	C(77)	739(2)	11563(2)	3543(1)
Absorption correction	None	C(78)	653(2)	13340(2)	3733(1)
	$r_{\rm res} = 1$	C(79)	1903(2)	5119(2)	3316(1)
Refinement method	Full-matrix least-squares on F	P(3)	3650(1)	7738(1)	1151(1)
Data / restraints / parameters	132377071017	P(4)	2170(1)	10041(1)	716(1)
Goodness-of-fit on F ²	0.920	O(1)	2241(1)	9318(1)	1176(1)
Final R indices [I>2sigma(I)]	R1 = 0.0479, wR2 = 0.0936	O(2)	3178(1)	7968(1)	591(1)
R indices (all data)	R1 = 0.1021, $wR2 = 0.1048$	C(7)	1527(1)	9608(2)	96(1)
Largest diff neak and hole	$0.659 \text{ and } -0.633 \text{ e} \text{ Å}^{-3}$	C(11)	3989(1)	8508(2)	2210(1)
Eurgest unit. peux unu noie	0.057 and 0.055 0.11	C(13)	2965(1)	10263(2)	530(1)
	4	C(14)	2899(1)	10585(2)	-5(1)
Table A18_2. Atomic coordinates (x 10)) and equivalent isotropic displacement parameters ($A^2x \ 10^3$)	C(17)	4517(1)	7420(2)	1129(1)
for 75 (H_2O) U(eq) is defined as one this	rd of the trace of the orthogonalized U ¹ tensor.	C(21)	3801(1)	8763(2)	1653(1)

C(22) C(23)

C(24)

C(26)

C(27)

C(28) C(32)

C(33)

C(34)

C(36)

C(37)

C(40)

C(43)

C(44)

C(46)

C(47)

C(51)

C(53)

C(54)

for 75 (H₂O). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
P(1)	2871(1)	7838(1)	3836(1)	21(1)
P(2)	1647(1)	10196(1)	4209(1)	22(1)
O(3)	1422(1)	9498(1)	3730(1)	24(1)
O(4)	2892(1)	8062(1)	4411(1)	25(1)
C(5)	4282(1)	7495(2)	4271(1)	26(1)
C(6)	2358(1)	9491(2)	2423(1)	24(1)
C(8)	3033(1)	10236(2)	4153(1)	21(1)
C(9)	3576(1)	10892(2)	5248(1)	25(1)
C(10)	3705(1)	7358(2)	3807(1)	21(1)
C(12)	1429(1)	9714(2)	4799(1)	21(1)
C(15)	2587(1)	10399(2)	4476(1)	20(1)
C(16)	2767(1)	9943(2)	3554(1)	21(1)
C(18)	3754(1)	10413(2)	4386(1)	22(1)
C(19)	2693(1)	8922(2)	3374(1)	20(1)
C(20)	2492(1)	8722(2)	2809(1)	23(1)
C(25)	2864(1)	10719(2)	5020(1)	23(1)

÷·=(-)	2.0.(=)		==(-)
1162(2)	13226(2)	4230(1)	35(1)
991(1)	10208(2)	5050(1)	25(1)
2421(1)	10491(2)	2605(1)	26(1)
5032(1)	6759(2)	3802(1)	36(1)
1539(1)	7162(2)	3240(1)	31(1)
4468(1)	6602(2)	3340(1)	35(1)
1047(2)	6421(2)	3008(1)	39(1)
4016(1)	10736(2)	4930(1)	24(1)
2404(1)	5852(2)	3549(1)	31(1)
1226(2)	5413(2)	3039(1)	42(1)
441(2)	12519(3)	3392(1)	56(1)
739(2)	11563(2)	3543(1)	45(1)
653(2)	13340(2)	3733(1)	41(1)
1903(2)	5119(2)	3316(1)	42(1)
3650(1)	7738(1)	1151(1)	22(1)
2170(1)	10041(1)	716(1)	21(1)
2241(1)	9318(1)	1176(1)	23(1)
3178(1)	7968(1)	591(1)	24(1)
1527(1)	9608(2)	96(1)	19(1)
3989(1)	8508(2)	2210(1)	23(1)
2965(1)	10263(2)	530(1)	21(1)
2899(1)	10585(2)	-5(1)	24(1)
4517(1)	7420(2)	1129(1)	24(1)
3801(1)	8763(2)	1653(1)	21(1)
3635(1)	10117(2)	909(1)	20(1)
4139(1)	9248(2)	2614(1)	26(1)
3488(1)	10758(2)	-170(1)	27(1)
3755(1)	9798(2)	1501(1)	22(1)
4082(1)	10260(2)	2463(1)	26(1)
2030(1)	12181(2)	632(1)	31(1)
1639(1)	8661(2)	-113(1)	26(1)
1888(1)	11285(2)	871(1)	22(1)
3889(1)	10557(2)	1912(1)	24(1)
4644(1)	7519(2)	624(1)	27(1)
5066(1)	7142(2)	1589(1)	33(1)
4144(1)	10595(2)	197(1)	26(1)
3327(1)	6705(2)	1475(1)	24(1)
2725(1)	6881(2)	1630(1)	30(1)
1143(1)	8246(2)	-565(1)	30(1)
905(1)	10117(2)	-150(1)	27(1)
404(1)	9702(2)	-602(1)	30(1)
2433(1)	6111(2)	1856(1)	37(1)
1536(1)	11344(2)	1265(1)	29(1)

A18 Röntgenstrukturdaten für 75 (H_2O)

24(1)

33(1) 29(1) 30(1) 29(1) 27(1) 25(1)28(1)24(1) 34(1) 23(1) 28(1)

C(56)	5307(1)	7329(2)	580(1)	34(1)
C(58)	525(1)	8770(2)	-807(1)	31(1)
C(60)	4227(1)	10280(2)	737(1)	24(1)
C(61)	4958(1)	10129(2)	1125(1)	32(1)
C(64)	1343(1)	12289(2)	1417(1)	37(1)
C(65)	1835(1)	13117(2)	787(1)	38(1)
C(66)	5842(1)	7057(2)	1037(1)	38(1)
C(68)	3834(2)	11671(2)	1768(1)	36(1)
C(69)	1497(1)	13166(2)	1182(1)	40(1)
C(73)	3613(2)	5736(2)	1544(1)	46(1)
C(74)	5731(1)	6963(2)	1541(1)	43(1)
C(80)	2729(2)	5163(2)	1931(1)	47(1)
C(81)	3311(2)	4965(2)	1768(1)	62(1)
O(1A)	625(1)	9492(2)	2641(1)	94(1)

Table A18_3.	Anisotropic displacement parar	meters (Å ² x 10 ³) for	75 (H ₂ O).	The anisotropic
displacement fa	ctor exponent takes the form: -2	$2\pi^2 [h^2 a^{*2} U^{11} + +$	+ 2 h k a* b	* U ¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	20(1)	22(1)	21(1)	-1(1)	7(1)	1(1)
P(2)	21(1)	23(1)	21(1)	-2(1)	6(1)	0(1)
O(3)	22(1)	27(1)	23(1)	-7(1)	7(1)	-3(1)
O(4)	27(1)	29(1)	20(1)	0(1)	9(1)	4(1)
C(5)	25(2)	22(1)	31(2)	-2(1)	7(1)	-2(1)
C(6)	22(1)	34(2)	16(1)	0(1)	5(1)	-1(1)
C(8)	24(1)	16(1)	21(1)	-1(1)	6(1)	-2(1)
C(9)	28(2)	22(2)	21(1)	-2(1)	2(1)	-2(1)
C(10)	20(1)	20(1)	25(1)	1(1)	8(1)	0(1)
C(12)	17(1)	23(1)	22(1)	-5(1)	4(1)	-4(1)
C(15)	22(1)	16(1)	20(1)	-2(1)	5(1)	-1(1)
C(16)	17(1)	26(1)	22(1)	-1(1)	9(1)	-1(1)
C(18)	24(1)	19(1)	24(1)	1(1)	7(1)	-1(1)
C(19)	15(1)	24(1)	21(1)	0(1)	6(1)	2(1)
C(20)	21(1)	24(2)	24(1)	-6(1)	8(1)	-1(1)
C(25)	29(2)	21(1)	22(1)	-1(1)	11(1)	0(1)
C(29)	22(1)	24(1)	24(1)	1(1)	7(1)	0(1)
C(30)	48(2)	25(2)	25(2)	4(1)	9(2)	-1(1)
C(31)	26(2)	32(2)	31(2)	0(1)	10(1)	-3(1)
C(35)	34(2)	27(2)	29(2)	1(1)	11(1)	1(1)
C(38)	30(2)	33(2)	24(1)	1(1)	11(1)	-5(1)
C(39)	30(2)	25(2)	26(1)	2(1)	6(1)	3(1)
C(41)	24(1)	27(2)	26(1)	-3(1)	10(1)	2(1)
C(42)	28(2)	30(2)	27(2)	6(1)	8(1)	6(1)
C(45)	23(1)	27(1)	23(1)	1(1)	10(1)	0(1)
C(48)	22(2)	29(2)	46(2)	4(1)	4(1)	0(1)
C(49)	23(1)	25(1)	22(1)	0(1)	9(1)	-1(1)
C(50)	26(1)	31(2)	31(2)	-3(1)	13(1)	1(1)
C(52)	42(2)	24(2)	44(2)	-2(1)	22(2)	2(1)
C(55)	24(1)	21(1)	30(1)	1(1)	8(1)	2(1)
C(57)	26(1)	30(2)	22(1)	6(1)	6(1)	0(1)
C(59)	26(2)	35(2)	54(2)	17(2)	22(2)	8(1)
C(62)	27(2)	31(2)	35(2)	3(1)	8(1)	-1(1)

C(63)	40(2)	35(2)	39(2)	14(1)	25(2)	16(1)
C(67)	25(2)	42(2)	42(2)	5(1)	-1(1)	-9(1)
C(70)	22(1)	22(1)	26(1)	1(1)	4(1)	-1(1)
C(71)	28(2)	26(2)	37(2)	2(1)	8(1)	-1(1)
C(72)	38(2)	41(2)	43(2)	-5(2)	7(2)	-21(2)
C(76)	58(2)	53(2)	42(2)	4(2)	-6(2)	29(2)
C(77)	45(2)	39(2)	40(2)	-5(2)	-2(2)	12(2)
C(78)	50(2)	34(2)	47(2)	11(2)	23(2)	17(2)
C(79)	46(2)	26(2)	51(2)	0(2)	13(2)	-9(2)
P(3)	20(1)	23(1)	23(1)	0(1)	6(1)	2(1)
P(4)	20(1)	22(1)	20(1)	1(1)	5(1)	0(1)
0(1)	21(1)	25(1)	21(1)	4(1)	6(1)	1(1)
O(2)	21(1)	28(1)	21(1)	0(1)	4(1)	3(1)
C(7)	20(1)	22(1)	18(1)	3(1)	8(1)	-1(1)
C(11)	21(1)	24(2)	24(1)	3(1)	6(1)	1(1)
C(13)	23(1)	18(1)	22(1)	0(1)	7(1)	-2(1)
C(14)	24(1)	25(1)	23(1)	2(1)	6(1)	-1(1)
C(17)	20(1)	19(1)	30(2)	-2(1)	5(1)	1(1)
C(21)	13(1)	24(1)	23(1)	0(1)	4(1)	-1(1)
C(22)	22(1)	17(1)	22(1)	0(1)	7(1)	-2(1)
C(23)	23(1)	35(2)	18(1)	3(1)	5(1)	-1(1)
C(24)	36(2)	24(2)	25(2)	5(1)	13(1)	-1(1)
C(26)	15(1)	26(1)	23(2) 24(1)	1(1)	5(1)	-1(1)
C(27)	23(1)	33(2)	27(1)	-7(1)	4(1)	-6(1)
C(28)	32(2)	30(2)	22(1) 29(2)	1(1)	9(1)	2(1)
C(32)	$\frac{32(2)}{24(1)}$	28(2)	27(2)	3(1)	9(1)	$\frac{2(1)}{4(1)}$
C(32)	20(1)	23(2) 24(1)	20(1)	-1(1)	2(1)	-1(1)
C(34)	220(1) 22(1)	25(1)	26(1)	-2(1)	7(1)	-4(1)
C(36)	22(1) 24(2)	23(1) 24(2)	33(2)	-3(1)	9(1)	-1(1)
C(37)	30(2)	40(2)	28(2)	2(1)	7(1)	8(1)
C(40)	27(2)	22(1)	33(2)	1(1)	14(1)	-4(1)
C(43)	26(1)	24(1)	22(1)	0(1)	5(1)	-2(1)
C(44)	26(2)	31(2)	32(2)	2(1)	6(1)	-3(1)
C(46)	28(2)	31(2)	28(2)	-6(1)	7(1)	1(1)
C(47)	25(1)	26(2)	29(2)	-2(1)	6(1)	3(1)
C(51)	24(1)	34(2)	30(2)	3(1)	3(1)	5(1)
C(53)	32(2)	40(2)	39(2)	-3(1)	12(2)	-9(1)
C(54)	24(1)	32(2)	27(2)	-3(1)	3(1)	1(1)
C(56)	33(2)	26(2)	47(2)	-7(1)	20(2)	-3(1)
C(58)	29(2)	33(2)	28(2)	-4(1)	3(1)	-6(1)
C(60)	22(1)	19(1)	30(1)	-2(1)	7(1)	-4(1)
C(61)	23(2)	39(2)	35(2)	1(2)	10(1)	-5(1)
C(64)	28(2)	44(2)	38(2)	-10(2)	9(1)	5(1)
C(65)	39(2)	25(2)	47(2)	1(1)	8(2)	1(1)
C(66)	26(2)	40(2)	51(2)	-15(2)	15(2)	0(1)
C(68)	44(2)	27(2)	33(2)	-2(1)	7(2)	-4(1)
C(69)	32(2)	29(2)	54(2)	-12(2)	5(2)	8(1)
C(73)	54(2)	30(2)	64(2)	6(2)	35(2)	5(2)
C(74)	24(2)	47(2)	48(2)	-6(2)	-4(2)	10(1)
C(80)	59(2)	36(2)	52(2)	6(2)	28(2)	-16(2)
C(81)	82(3)	28(2)	91(3)	16(2)	48(2)	7(2)
- ()	(-)	- (=)	. (-)	. (=)	- (=)	=/

	Х	У	Z	U(eq)	
H(2)	4573(11)	10893(15)	5082(8)	25(6)	
H(3)	2317(10)	11077(15)	2335(8)	22(6)	
H(4)	806(10)	10758(16)	-17(8)	21(6)	
H(5)	2434(10)	8065(15)	2674(8)	14(6)	
H(6)	2270(11)	12135(16)	370(9)	27(7)	
H(7)	1434(10)	10669(16)	1414(8)	19(6)	
H(8)	1016(11)	8514(16)	6014(9)	35(7)	
H(9)	3903(14)	12120(20)	2130(12)	77(10)	
H(10)	3407(11)	10965(15)	-562(9)	27(6)	
H(11)	1936(11)	13768(18)	606(9)	40(7)	
H(12)	4733(14)	10500(18)	4264(10)	51(8)	
H(13)	1396(11)	13851(17)	1303(9)	31(7)	
H(14)	4177(11)	10858(16)	2739(9)	32(7)	
H(15)	5073(12)	10653(19)	1418(10)	46(8)	
H(16)	5336(11)	7295(16)	4606(9)	25(6)	
H(17)	4608(11)	10777(15)	76(8)	25(6)	
H(18)	177(12)	8458(17)	-1127(9)	40(7)	
H(19)	2419(11)	10713(15)	-280(8)	23(6)	
H(20)	3188(13)	12013(18)	3563(10)	48(8)	
H(21)	4035(10)	7808(16)	2323(8)	25(6)	
H(22)	4973(9)	6995(14)	1913(8)	10(5)	
H(23)	1324(13)	13770(19)	4482(10)	48(8)	
H(24)	2248(11)	9331(16)	2026(9)	35(7)	
H(25)	5477(12)	6571(16)	3796(9)	32(7)	
H(26)	805(10)	10900(16)	4932(8)	21(6)	
H(27)	6286(12)	6912(17)	996(9)	39(7)	
H(28)	4230(10)	7800(15)	4593(8)	18(6)	
H(29)	4278(12)	9604(19)	3977(9)	37(8)	
H(30)	2011(10)	8427(15)	4819(8)	25(6)	
H(31)	4269(12)	7696(17)	336(9)	34(7)	
H(32)	2063(11)	8296(16)	67(9)	28(7)	
H(34)	-28(13)	10103(18)	-776(10)	48(8)	
H(35)	3395(12)	11860(17)	1507(10)	38(7)	

Table A18_4.	 Hydrogen coordinates (x 10⁴) and isotropic displa 	cement parameters ($Å^2x \ 10^3$)	
for 75 (H ₂ O).			

H(36)	552(12)	10137(17)	5694(9)	45(7)	
H(38)	3401(11)	6766(15)	3006(9)	24(6)	
H(39)	3750(11)	11130(15)	5618(9)	25(6)	
H(41)	895(13)	4909(19)	2865(10)	51(8)	
H(42)	2535(11)	7526(16)	1579(9)	25(7)	
H(43)	2019(12)	6268(18)	1975(9)	48(8)	
H(44)	2542(12)	12284(18)	3001(10)	46(8)	
H(45)	2374(12)	12004(17)	3561(10)	43(7)	
H(46)	4263(10)	9076(15)	2995(9)	22(6)	
H(47)	1807(11)	7647(17)	5602(8)	32(7)	
H(48)	2557(10)	10806(14)	5250(8)	19(6)	
H(49)	1111(11)	12269(16)	1696(9)	34(7)	
H(50)	1233(12)	7571(18)	-714(9)	41(7)	
H(51)	2042(13)	4400(20)	3362(10)	56(9)	
H(53)	4507(11)	6271(16)	3006(9)	34(7)	
H(54)	611(13)	10960(20)	3279(10)	59(9)	
H(55)	5032(14)	9510(20)	1349(11)	74(10)	
H(56)	1838(12)	12214(18)	4740(10)	42(8)	
H(57)	613(13)	6605(19)	2806(10)	51(9)	
H(58)	3565(14)	4330(20)	1828(11)	60(9)	
H(59)	6081(13)	6707(19)	1853(10)	54(9)	
H(60)	2867(11)	5654(16)	3743(8)	24(6)	
H(61)	4220(13)	11899(18)	1635(9)	48(8)	
H(64)	5394(12)	7391(18)	224(10)	45(8)	
H(65)	454(12)	13996(18)	3656(9)	40(7)	
H(66)	5312(14)	10202(19)	942(10)	59(9)	
H(69)	2550(13)	4670(20)	2101(10)	56(9)	
H(70)	90(14)	12600(20)	3026(11)	70(10)	
H(76)	4019(14)	5580(20)	1442(11)	66(9)	
H(1A)	4123(12)	10676(17)	3736(10)	34(7)	
H(2A)	1426(12)	7872(18)	3209(9)	44(8)	

H(36) H(38)

A18 Röntgenstrukturdaten für 75 (H_2O)

Table A19_1. Crystal data and structure refinement for 84

Table A19_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd144 C19 H17 O2 P 208 20		$(Å^2 x \ 10^3)$ for	84 . U(eq) is defined	as one third of th	e trace of the ortho	ogonalized U ^{ij} tensor.
Temperature	100(2) K			х	У	Z	U(eq)
Wavelength Crystal system Space group Unit cell dimensions	0.71073 Å monoclinic P21/c a = 10.3423(6) Å	a– 80°	P(1) O(1) C(2)	2008(1) 1874(1) 3397(2)	1118(1) 544(1) -353(2)	2071(1) 877(1) 3451(2)	20(1) 23(1) 23(1)
	b = 14.2183(10) Å c = 10.6989(4) Å	$\beta = 105.595(3)^{\circ}$ $\gamma = 90^{\circ}$	O(3) C(4) C(5)	-3074(2) 3151(2) -735(2)	-159(1) 2088(1) 1083(2)	985(1) 2158(2) 1534(2)	34(1) 21(1) 22(1)
Volume Z	1515.36(15) Å ³ 4		C(6) C(7)	2610(2) 3892(2)	422(1) -924(2)	3524(2) 4527(2)	20(1) 24(1)
Density (calculated)	1.351 Mg/m ³		C(8) C(9)	3431(2) 2314(2)	2373(2) 632(2)	1008(2) 4687(2)	24(1) 24(1)
Absorption coefficient F(000)	0.186 mm ⁻¹ 648		C(10) C(11)	4273(2) 404(2)	3130(2) 1602(2)	1000(2) 2120(2)	26(1) 22(1)
Crystal size Theta range for data collection	.3 x .3 x .3 mm ³ 2.43 to 27.00°.		C(12) C(13)	276(2) 4849(2)	2456(2) 3608(2)	2718(2) 2141(2)	25(1) 26(1)
Index ranges Reflections collected	-13<=h<=13, -13<=k<= 4495	18, -13<=l<=13	C(14) C(15)	-2010(2) 3749(2)	1399(2) 2573(2)	1532(2) 3304(2)	25(1) 25(1)
Independent reflections Completeness to theta = 27.00°	2926 [R(int) = 0.0329] 88.3 %		C(16) C(17)	3598(2) 2812(2)	-708(2) 63(2)	5676(2) 5771(2)	26(1) 27(1)
Absorption correction Refinement method	None Full-matrix least-squares	s on F ²	C(18) C(19) C(20)	-990(2) 4591(2) -2114(2)	2778(2) 3330(2) 2251(2)	2715(2) 3290(2) 2136(2)	29(1) 27(1) 29(1)
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	0.981 R1 = 0.0415, wR2 = 0.0 R1 = 0.0689, wR2 = 0.1	932 000	C(21)	-3260(2)	830(2)	869(2)	32(1)
Largest diff. peak and hole	0.240 and -0.315 e.Å ⁻³						

A19 Röntgenstrukturdaten für 84

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
P(1)	23(1)	17(1)	20(1)	-1(1)	6(1)	1(1)	
O(1)	26(1)	22(1)	22(1)	-4(1)	8(1)	0(1)	
C(2)	25(1)	20(1)	24(1)	-2(1)	9(1)	-1(1)	
O(3)	42(1)	29(1)	35(1)	-2(1)	18(1)	-4(1)	
C(4)	20(1)	19(1)	23(1)	2(1)	5(1)	3(1)	
C(5)	27(1)	18(1)	21(1)	2(1)	9(1)	4(1)	
C(6)	20(1)	18(1)	21(1)	-1(1)	4(1)	-2(1)	
C(7)	24(1)	17(1)	31(1)	0(1)	5(1)	2(1)	
C(8)	24(1)	24(1)	23(1)	-3(1)	7(1)	2(1)	
C(9)	28(1)	19(1)	27(1)	-1(1)	10(1)	2(1)	
C(10)	28(1)	24(1)	28(1)	3(1)	13(1)	4(1)	
C(11)	28(1)	20(1)	18(1)	4(1)	9(1)	4(1)	
C(12)	31(1)	20(1)	27(1)	1(1)	11(1)	0(1)	
C(13)	20(1)	21(1)	38(1)	-1(1)	9(1)	-1(1)	
C(14)	26(1)	28(1)	21(1)	5(1)	9(1)	5(1)	
C(15)	29(1)	22(1)	22(1)	3(1)	6(1)	4(1)	
C(16)	26(1)	23(1)	26(1)	5(1)	1(1)	-3(1)	
C(17)	33(1)	28(1)	20(1)	2(1)	8(1)	-2(1)	
C(18)	43(2)	20(1)	28(1)	4(1)	16(1)	8(1)	
C(19)	28(1)	22(1)	27(1)	-5(1)	2(1)	0(1)	
C(20)	28(1)	32(2)	30(1)	8(1)	14(1)	10(1)	
C(21)	29(1)	36(2)	32(1)	-2(1)	11(1)	4(1)	

Table A19_3.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for 84 . The anisotropic
displacement fa	ctor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A19_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters							
(A ² x 10 ²) fo	x	у	Z	U(eq)			
H(1)	3576(18)	2379(14)	4141(18)	18(5)			

		5		-(
11(1)	257((19)	2270(14)	41.41.(1.0)	19(5)
H(1)	3370(18)	23/9(14)	4141(18)	18(5)
H(2)	-2960(20)	2482(15)	2147(17)	22(5)
H(3)	5420(20)	4123(16)	2119(18)	28(6)
H(4)	3624(18)	-500(14)	2675(18)	16(5)
H(5)	-1060(20)	3369(17)	3106(19)	35(6)
H(6)	1750(20)	1139(16)	4774(18)	29(6)
H(7)	2660(20)	204(15)	6620(20)	28(6)
H(8)	-659(19)	522(16)	1130(18)	24(6)
H(9)	3920(20)	-1114(15)	6423(19)	26(6)
H(10)	4996(19)	3676(14)	4044(19)	24(6)
H(11)	4440(20)	3322(15)	204(19)	27(6)
H(12)	4450(20)	-1462(17)	4436(19)	34(6)
H(13)	-3523(18)	1026(13)	-147(19)	20(5)
H(14)	1024(19)	2810(14)	3113(18)	17(5)
H(15)	-4020(20)	982(16)	1270(20)	40(7)
H(16)	3067(18)	2042(13)	250(18)	15(5)
H(17)	-2660(30)	-400(20)	240(30)	110(12)

N
ດ
യ
- L

Table A20_1. Crystal data and structure refinement for 87.

Table A20_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

 $(\text{\AA}^2 x \ 10^3)$ for **87**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

у

5288(1)

1479(12)

5919(18)

3477(16)

1783(17)

2796(19)

6130(12)

551(18)

4047(16)

1060(20)

-502(17)

х

2299(1)

6003(10)

2981(16)

4623(14)

6144(14)

6221(15)

3140(11)

7706(16)

4638(15)

7724(17)

7393(16)

I(1)

O(2)

C(3)

C(4)

C(5)

C(6)

O(7)

C(8)

C(9)

C(12)

C(13)

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	pbd342 C8 H9 I O2 264.05 100(2) K 0.71073 Å Monoclinic P21/n a = 6.3914(4) Å b = 4.6009(3) Å c = 30.077(2) Å	$\alpha = 90^{\circ}$ $\beta = 94.465(4)^{\circ}$ $\gamma = 90^{\circ}$
Volume Z	881.77(10) Å ³ 4	
Density (calculated)	1.989 Mg/m ³	
Absorption coefficient F(000)	3.580 mm ⁻¹ 504	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.99° Absorption correction	0.28 x 0.12 x 0.12 mm ³ 2.72 to 26.99°. -8<=h<=3, -5<=k<=4, -3 1916 1292 [R(int) = 0.0502] 67.5 % None	8<=l<=32
Refinement method Data / restraints / parameters	Full-matrix least-squares 1292 / 0 / 103	on F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	0.936 R1 = 0.0418, wR2 = 0.07 R1 = 0.0884, wR2 = 0.09 0.0022(7)	92 46
Largest diff. peak and hole	$0.552 \text{ and } -0.514 \text{ e.}\text{Å}^{-3}$	

-				
_				

U(eq)

52(1)

51(2)

53(3)

36(2)

38(2)

50(2)

59(2)

54(3)

37(2)

62(3)

56(3)

z

760(1)

581(2)

1845(2)

1208(2)

1034(2)

1935(2)

2317(2)

1315(3)

1666(2)

1767(3)

392(3)

A20 Röntgenstrukturdaten für 87

Table A20_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **87**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
I(1)	51(1)	61(1)	42(1)	1(1)	-1(1)	17(1)
O(2)	55(5)	66(4)	33(3)	-8(3)	6(3)	21(3)
C(3)	73(8)	44(6)	44(5)	-6(4)	20(5)	-6(5)
C(4)	40(6)	29(5)	38(4)	-1(4)	-1(4)	1(4)
C(5)	37(6)	46(5)	29(4)	-1(4)	-1(4)	-5(4)
C(6)	51(7)	68(7)	29(4)	2(4)	-10(4)	-11(6)
O(7)	95(6)	44(4)	40(3)	-6(3)	27(3)	-3(4)
C(8)	55(7)	74(7)	34(4)	12(4)	5(4)	17(5)
C(9)	49(6)	35(5)	28(4)	-1(4)	4(4)	-5(4)
C(12)	65(9)	72(7)	48(5)	12(5)	-9(5)	10(6)
C(13)	49(7)	74(7)	46(5)	4(5)	11(4)	13(5)

Table A20_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **87**.

	х	У	Z	U(eq)
H(3A)	3077	7894	1717	55(9)
H(3B)	1585	5120	1744	55(9)
H(6)	6281	3139	2247	55(9)
H(7)	3039	4465	2428	55(9)
H(8)	8754	-630	1198	55(9)
H(12)	8784	203	1964	55(9)
H(13A)	8843	155	457	55(9)
H(13B)	7069	-591	69	55(9)
H(13C)	7225	-2437	521	55(9)

 Table A21_1. Crystal data and structure refinement for 91.

Table A21_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula Formula weight	pbd313 C64 H64 O16 1089.15		$(Å^2 x \ 10^3)$ for	91 . U(eq) is defined	as one third of the	e trace of the ortho	by b
Temperature	100(2) K			Х	У	Z	O(eq)
Wavelength Crystal system	0.71073 Å monoclinic		$\overline{O(1)}$	4413(1)	8945(2)	3164(1)	26(1)
Space group	P21/c $h = 14.7601(16)$ Å	$\alpha = 00^{\circ}$	C(7)	3825(1)	8500(3)	4251(1) 3534(1)	23(1) 22(1)
Unit cell dimensions	a = 14.7691(10) A b = 4.8455(3) Å c = 19.7630(17) Å	$\alpha = 90^{\circ}$ $\beta = 115.790(6)^{\circ}$ $\alpha = 90^{\circ}$	C(13) C(15)	3630(1) 4179(1)	5872(3) 6530(3)	4505(1) 4106(1)	21(1) 21(1)
Volume	$1273.44(19) \text{ Å}^3$	1-50	C(20) C(22) C(25)	5959(2) 4135(2) 2260(2)	6238(4) 11238(4) 0162(4)	4873(1) 2652(1) 2761(1)	24(1) 25(1) 25(1)
Z Density (calculated)	1.420 Mg/m^3		C(23) C(28) C(34)	2309(2) 2920(1) 2719(1)	9103(4) 9826(4) 7189(4)	3761(1) 3366(1) 4327(1)	23(1) 24(1) 23(1)
Absorption coefficient F(000)	0.102 mm ⁻¹ 576		O(3) O(5)	2719(1) 2454(1) 1098(1)	4127(2)	843(1) 171(1)	26(1) 26(1) 23(1)
Crystal size Theta range for data collection	.3 x .3 x .1 mm ³ 2.13 to 27.00°.		C(10) C(14)	1767(1) 324(1)	3687(3) 965(3)	1121(1) 997(1)	22(1) 22(1) 22(1)
Index ranges	-18<=h<=18, -6<=k<=	4, -25<=l<=24	C(16)	1747(1)	5052(4)	1735(1)	24(1)
Independent reflections Completeness to theta = 27.00°	2715 [R(int) = 0.0459]		C(24) C(27) C(30)	1031(1) 1031(2) 325(2)	4353(4) 2335(4)	1982(1) 1620(1)	26(1) 24(1)
Absorption correction	None	2	C(30) C(31)	445(2)	1196(4)	-577(1)	24(1) 24(1) 26(1)
Refinement method Data / restraints / parameters	Full-matrix least-squar 2715 / 0 / 245	res on F^2		5175(2)	0295(4)	1164(1)	20(1)
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	0.877 R1 = 0.0411, wR2 = 0. R1 = 0.0971, wR2 = 0.	0780 0907					
Largest diff. peak and hole	0.179 and -0.217 e.Å ⁻³	3					

A21 Röntgenstrukturdaten für 91

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	26(1)	32(1)	20(1)	6(1)	10(1)	4(1)
O(8)	19(1)	28(1)	17(1)	-1(1)	4(1)	3(1)
C(7)	23(1)	26(1)	16(1)	-2(1)	7(1)	-1(1)
C(13)	21(1)	24(1)	14(1)	-3(1)	4(1)	-4(1)
C(15)	18(1)	24(1)	16(1)	-4(1)	4(1)	1(1)
C(20)	22(1)	27(1)	20(1)	-2(1)	7(1)	-3(1)
C(22)	28(1)	28(1)	18(1)	6(1)	8(1)	2(1)
C(25)	18(1)	30(1)	22(1)	-2(1)	5(1)	3(1)
C(28)	23(1)	27(1)	17(1)	1(1)	4(1)	2(1)
C(34)	21(1)	30(1)	18(1)	-4(1)	8(1)	-3(1)
O(3)	22(1)	33(1)	24(1)	-5(1)	10(1)	-6(1)
O(5)	20(1)	30(1)	16(1)	0(1)	5(1)	3(1)
C(10)	19(1)	25(1)	19(1)	4(1)	5(1)	4(1)
C(14)	21(1)	24(1)	16(1)	4(1)	4(1)	4(1)
C(16)	21(1)	27(1)	18(1)	-2(1)	2(1)	0(1)
C(24)	21(1)	24(1)	15(1)	1(1)	4(1)	5(1)
C(27)	24(1)	33(1)	15(1)	0(1)	5(1)	3(1)
C(30)	22(1)	31(1)	19(1)	5(1)	8(1)	5(1)
C(31)	24(1)	31(1)	15(1)	5(1)	6(1)	2(1)
C(37)	22(1)	31(1)	22(1)	0(1)	5(1)	-4(1)

Table A21_3.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for 91 . The anisotropic
displacement fa	ctor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A21_4.	Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters
$(Å^2 x \ 10^3)$ for 9	1.

	х	У	Z	U(eq)
H(1)	5772(11)	8050(30)	5056(8)	13(4)
H(2)	130(12)	2990(30)	-530(8)	17(4)
H(3)	905(11)	1610(30)	-833(9)	13(4)
H(4)	3666(13)	6320(30)	956(10)	30(5)
H(5)	4180(11)	13090(30)	2931(9)	26(5)
H(6)	4621(13)	11270(30)	2419(10)	27(5)
H(7)	2826(13)	8180(30)	1083(9)	32(5)
H(8)	1766(13)	10180(30)	3650(9)	19(5)
H(9)	6446(12)	6690(30)	4663(9)	21(5)
H(10)	2228(13)	6530(30)	2003(9)	26(5)
H(11)	3586(13)	6070(30)	1756(11)	35(5)
H(12)	3424(14)	11010(30)	2251(10)	33(5)
H(13)	-216(13)	1860(30)	1779(9)	28(5)
H(14)	1017(13)	5320(30)	2417(10)	31(5)
H(15)	2661(11)	11200(30)	2989(9)	14(4)
H(16)	2319(12)	6790(30)	4598(9)	16(4)

Table A22_1. Crystal data and structure refinement for *R*,*R*-99.

Table A22_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd485 C30 H26 N O2 P		$(Å^2 x \ 10^3)$ for	<i>R</i> , <i>R</i> - 99 . U(eq) is def	ined as one third	of the trace of the	orthogonalized U ^{ij}	j _{tensor.}
Formula weight	463.49 100(2) K			X	у	Z	U(eq)	
Wayalangth	100(2) K 0.71073 Å							
Crystal system	Monoclinic		P(1)	3735(1)	4778(1)	2438(1)	19(1)	
Space group	P21		O(1)	2998(2)	6106(1)	2698(1)	24(1)	
Unit cell dimensions	121 a = 8.7870(4) Å	$\alpha = 00^{\circ}$	O(2)	5637(1)	5227(1)	2914(1)	20(1)	
Unit cell dimensions	a = 0.7070(4) A b = 10.6884(4) Å	$\alpha = 90$	N(1)	3540(2)	3975(1)	3434(1)	19(1)	
	D = 10.0884(4) A	$p = 108.713(2)^{3}$	C(1)	3000(2)	7204(2)	2159(1)	18(1)	
	c = 13.4428(8) A	$\gamma = 90^{\circ}$	C(2)	4154(2)	7561(2)	1659(1)	16(1)	
Volume	1195.79(10) Å ³		C(3)	5621(2)	6882(2)	1645(1)	17(1)	
Z	2		C(4)	6292(2)	5796(2)	2220(1)	17(1)	
Density (calculated)	1 287 Mg/m ³		C(5)	7680(2)	5230(2)	2160(1)	21(1)	
	0.1.42 -1		C(6)	8536(2)	5748(2)	1556(2)	22(1)	
Absorption coefficient	0.143 mm ¹		C(7)	7968(2)	6818(2)	1009(1)	22(1)	
F(000)	488		C(8)	6547(2)	7398(2)	1034(1)	19(1)	
Crystal size	$.2 \text{ x} .2 \text{ x} ? \text{ mm}^3$		C(9)	6071(2)	8539(2)	469(2)	22(1)	
Theta range for data collection	2.45 to 26.99°.		C(10)	4788(2)	9188(2)	518(2)	24(1)	
Index ranges	-7<=h<=11, -13<=k<	=12, -17<=l<=14	C(11)	3806(2)	8735(2)	1116(1)	19(1)	
Reflections collected	5699		C(12)	2506(2)	9488(2)	1128(2)	23(1)	
Independent reflections	4436 [R(int) = 0.0200)]	C(13)	1485(2)	9120(2)	1664(2)	22(1)	
Completeness to theta = 26.99°	99.4 %		C(14)	1739(2)	7978(2)	2163(1)	20(1)	
Absorption correction	None		C(15)	3176(2)	2605(2)	3294(2)	20(1)	
Refinement method	Full-matrix least-squa	tres on F^2	C(16)	1443(2)	2353(2)	2625(1)	20(1)	
Data / restraints / parameters	4436 / 1 / 389		C(17)	342(2)	1942(2)	3106(2)	27(1)	
C = 1	1.001		C(18)	-1235(2)	1670(2)	2506(2)	34(1)	
Goodness-of-fit on F ⁻	1.001 D1 0.020(D2 (0692	C(19)	-1738(2)	1816(2)	1430(2)	32(1)	
Final R indices [I>2sigma(I)]	R1 = 0.0306, WR2 = 0).0683	C(20)	-658(2)	2217(2)	946(2)	29(1)	
R indices (all data)	RI = 0.0367, WR2 = 0.01(7)	0.0704	C(21)	917(2)	2486(2)	1539(2)	24(1)	
Absolute structure parameter	0.01(7)	2	C(22)	4412(2)	1915(2)	2916(2)	26(1)	
Largest diff. peak and hole	0.162 and -0.284 e.Å ⁻	-3	C(23)	4042(2)	4458(2)	4530(1)	20(1)	
			C(24)	2680(2)	4287(2)	4988(1)	20(1)	
			C(25)	2772(2)	3494(2)	5820(2)	24(1)	
			C(26)	1454(2)	3340(2)	6177(2)	29(1)	
			C(27)	52(2)	3984(2)	5711(2)	31(1)	
			C(28)	-55(2)	4792(2)	4880(1)	28(1)	
			C(29)	1247(2)	4938(2)	4521(1)	24(1)	

C(30)

5654(2)

3903(2)

5189(2)

28(1)

A22 Röntgenstrukturdaten für R, R-99

A22 Röntgenstrukturdaten für R, R-99	
	_

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	19(1)	20(1)	18(1)	2(1)	6(1)	-2(1)
O(1)	24(1)	22(1)	30(1)	9(1)	15(1)	5(1)
O(2)	18(1)	22(1)	19(1)	6(1)	6(1)	-1(1)
N(1)	21(1)	19(1)	18(1)	2(1)	7(1)	-3(1)
C(1)	19(1)	17(1)	16(1)	-1(1)	3(1)	-3(1)
C(2)	18(1)	15(1)	13(1)	-2(1)	3(1)	-3(1)
C(3)	16(1)	20(1)	15(1)	-4(1)	3(1)	-3(1)
C(4)	17(1)	17(1)	17(1)	-2(1)	6(1)	-5(1)
C(5)	19(1)	21(1)	20(1)	-1(1)	5(1)	1(1)
C(6)	17(1)	28(1)	22(1)	-5(1)	7(1)	0(1)
C(7)	20(1)	31(1)	18(1)	0(1)	9(1)	-6(1)
C(8)	20(1)	20(1)	16(1)	-3(1)	5(1)	-4(1)
C(9)	23(1)	26(1)	19(1)	3(1)	8(1)	-6(1)
C(10)	26(1)	21(1)	21(1)	5(1)	4(1)	-4(1)
C(11)	19(1)	19(1)	17(1)	-3(1)	3(1)	-5(1)
C(12)	29(1)	15(1)	23(1)	1(1)	6(1)	-1(1)
C(13)	22(1)	20(1)	23(1)	-4(1)	6(1)	2(1)
C(14)	19(1)	22(1)	19(1)	-3(1)	7(1)	-2(1)
C(15)	22(1)	18(1)	19(1)	3(1)	7(1)	0(1)
C(16)	20(1)	14(1)	27(1)	0(1)	9(1)	2(1)
C(17)	29(1)	26(1)	32(1)	-1(1)	16(1)	-3(1)
C(18)	27(1)	31(1)	52(2)	-7(1)	22(1)	-5(1)
C(19)	19(1)	24(1)	48(1)	-3(1)	3(1)	2(1)
C(20)	28(1)	21(1)	31(1)	4(1)	-1(1)	1(1)
C(21)	26(1)	18(1)	28(1)	4(1)	9(1)	1(1)
C(22)	20(1)	25(1)	33(1)	-1(1)	7(1)	2(1)
C(23)	20(1)	20(1)	19(1)	0(1)	4(1)	-2(1)
C(24)	20(1)	21(1)	17(1)	-2(1)	5(1)	-1(1)
C(25)	22(1)	30(1)	20(1)	5(1)	8(1)	6(1)
C(26)	29(1)	40(1)	22(1)	12(1)	11(1)	6(1)
C(27)	24(1)	50(1)	23(1)	7(1)	12(1)	6(1)
C(28)	24(1)	37(1)	22(1)	6(1)	7(1)	11(1)
C(29)	28(1)	25(1)	18(1)	6(1)	8(1)	7(1)
C(30)	19(1)	39(1)	24(1)	4(1)	6(1)	-2(1)

Table A22_3.	Anisotropic displacement	parameters (Å ² x 10 ³) for <i>R</i> , <i>R</i> - 99 .	The anisotropic
displacement fa	actor exponent takes the fo	orm: $-2\pi^2$ [h ² a* ² U ¹¹	+ + 2 h k a	ı* b* U ¹²]

Table A22_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters $(Å^2 x \ 10^3)$ for *R*,*R*-**99**.

	Х	У	Z	U(eq)
H(22A)	4306	2192	2100	20
H(22R) H(22P)	4300	2165	2199	20
H(22D)	4220	2100	2922	20
H(22C)	5547	2109	5362	12
H(30A)	5082	2993	5242	42
$\Pi(30D)$	5962	4275	1052	42
$\Pi(30C)$	580(20)	4067	4633	42
$\Pi(1)$ $\Pi(2)$	360(20) 2010(20)	$\frac{9722(19)}{1240(20)}$	1079(15) 2822(16)	25(5)
$\Pi(2)$	-2010(30)	1340(20) 2000(18)	2023(10)	20(0)
$\Pi(5)$ $\Pi(4)$	5790(20) 880(20)	2990(18)	5006(16)	22(3)
H(4)	-000(30)	3700(20)	3900(10)	15(5)
$\Pi(3)$	2550(20)	102/1(10) 2261(17)	/3/(14)	13(3)
H(0)	5510(20)	2301(17)	4030(15)	17(5
H(7)	0050(20)	8830(20)	33(10) 101(17)	28(5
H(8)	-1010(20)	2310(20)	191(17)	31(0
H(9)	4490(20)	9976(19)	14/(14)	16(4
H(10)	1030(20)	7583(19)	2578(14)	22(5
H(11)	8550(20)	/25/(18)	608(15)	21(5)
H(12)	1540(20)	2770(20)	6/21(16)	31(6
H(13)	8010(20)	44/9(19)	2519(14)	18(5
H(14)	1150(20)	5462(19)	3940(16)	26(5)
H(15)	1690(20)	2804(19)	1190(15)	32(6)
H(16)	9470(20)	5386(16)	1508(14)	16(5
H(17)	-1070(20)	5194(19)	4516(15)	30(5)
H(18)	-2880(20)	1631(19)	995(15)	26(5)
H(19)	700(20)	1804(18)	3908(16)	23(5)
H(20)	4151(19)	5348(17)	4458(13)	11(4)

-275-

Table A23_1.	Table A23_1. Crystal data and structure refinement for P,R,R-100.					-46(4)	4767(2)	-443(2)	16(1)
					C(4)	948(3)	4569(2)	-360(2)	16(1)
Identification c	ode	pbg486			C(5)	1282(4)	3854(2)	-478(2)	19(1)
Empirical form	ula	C60 H52	Cl2 N2 O4 P2 Pd		C(6)	612(4)	3306(3)	-677(3)	22(1)
Formula weigh	t	1104.28			C(7)	-378(4)	3450(3)	-699(2)	21(1)
Temperature		100(2) K			C(8)	-729(4)	4176(3)	-559(2)	20(1)
Wavelength		0.71073 Å	1		C(9)	-1761(4)	4317(3)	-508(3)	24(1)
Crystal system		Monoclin	ic		C(10)	-2082(4)	4999(3)	-366(3)	23(1)
Space group		P21			C(11)	-1444(4)	5645(3)	-330(3)	19(1)
Unit cell dimen	sions	a = 13.64	55(3) Å	$\alpha = 90^{\circ}$	C(12)	-1812(4)	6381(3)	-312(3)	24(2)
		b = 17.75	23(3) Å	$\beta = 92.7570(10)^{\circ}$	C(13)	-1230(4)	6999(3)	-377(3)	24(2)
		c = 21.37	64(6) Å	$\gamma = 90^{\circ}$	C(14)	-241(4)	6899(3)	-492(3)	21(1)
X7 1		5170.0(0)	:3	1	C(16)	2791(4)	5701(2)	-1472(2)	17(1)
volume		51/2.2(2)	A		C(10)	2282(4)	4977(3)	-1710(2)	18(1)
Z		4			C(17)	1200(4)	4945(3)	-1887(3)	25(1)
Density (calculated) 1.418 Mg/m ³				C(10)	870(4)	4278(3)	2103(3)	$\frac{23(1)}{34(2)}$	
Absorption and	fficient	0.574 mm	-1		C(20)	1427(4)	4270(3)	-2105(3)	34(2) 31(1)
F(000)	melent	0.374 IIII	-		C(20)	1437(4) 2427(4)	3653(3)	-2134(3) 1084(2)	26(1)
F(000)		2212	2		C(21)	2427(4)	4226(2)	-1964(2) 1764(2)	20(1)
Crystal size		.1 x .1 x	3 mm ³		C(22)	2844(4)	4550(5)	-1704(2)	22(1)
Theta range for	data collection	1.49 to 27	∕.00°.		C(23)	2379(4)	6415(2)	-1/80(3)	22(1)
Index ranges		-17<=h<=	-13, -22<=k<=22,	-27<=1<=23	C(24)	3887(3)	5762(2)	-4/8(3)	17(1)
Reflections coll	lected	28968			C(25)	4385(3)	5001(2)	-563(2)	15(1)
Independent ref	flections	22161 [R	(int) = 0.0381		C(26)	4008(3)	4372(3)	-259(3)	21(1)
Completeness t	o theta = 27.00°	99.9 %			C(27)	4436(4)	3667(3)	-299(3)	25(1)
Absorption con	Absorption correction None				C(28)	5269(4)	3585(3)	-635(3)	25(1)
D.C	41	E-11		- F ²	C(29)	5642(4)	4188(3)	-946(3)	24(1)
Refinement me	thod	Full-matri	ix least-squares of	n F	C(30)	5221(4)	4902(3)	-902(3)	22(1)
Data / restraints	s / parameters	22101/1	/ 128/		C(31)	4477(3)	6443(2)	-698(3)	23(1)
Goodness-of-fit	t on F ²	0.912			C(32)	4462(3)	5855(3)	1385(2)	18(1)
Final R indices	[I>2sigma(I)]	R1 = 0.04	75, wR2 = 0.072	1	C(33)	4865(3)	5153(2)	1237(2)	16(1)
R indices (all d	ata)	R1 = 0.08	98, wR2 = 0.091	4	C(34)	4343(4)	4436(3)	1290(2)	17(1)
Absolute struct	ure parameter	-0.018(16)		C(35)	3318(4)	4364(2)	1247(2)	16(1)
Lorgast diff no	ak and hala	0.420 and	$0.641 \circ \lambda^{-3}$		C(36)	2853(4)	3686(2)	1315(2)	20(1)
Largest uni. pe	ak and note	0.450 and	-0.041 C.A		C(37)	3419(4)	3038(3)	1412(3)	27(2)
					C(38)	4418(4)	3078(3)	1401(3)	26(1)
T 11 402 0		4 1 . 1			C(39)	4893(4)	3765(3)	1317(3)	22(1)
Table A23_2.	Atomic coordinates (x 1	0°) and equivalent i	sotropic displacei	nent parameters	C(40)	5910(4)	3795(3)	1184(3)	28(2)
$(^{1}2_{11}, 10^{3})$ for 1	D D D 100 IV(ac) is define	ad as an a third of th	a tuana of the outl	acconclized Till tensor	C(41)	6352(4)	4446(3)	1038(3)	32(2)
(A X 10) 101 I	$-,\kappa,\kappa-100$. $O(eq)$ is define	ied as one unite of un	le trace of the off	logonalized U ^s tensor.	C(42)	5855(4)	5152(3)	1071(3)	22(1)
					C(43)	6342(4)	5831(3)	987(3)	32(2)
	Х	У	Z	U(eq)	C(44)	5892(4)	6511(3)	1083(3)	30(2)
D 1(1)	22(2/1)	((27/1)	514(1)	12(1)	C(45)	4942(3)	6528(3)	1304(2)	23(1)
Pd(1)	2362(1)	6637(1)	514(1)	13(1)	C(46)	726(3)	6025(3)	1578(3)	23(1)
CI(1)	2293(1)	7574(1)	-260(1)	19(1)	C(47)	34(4)	5347(3)	1578(3)	19(1)
Cl(2)	2681(1)	7527(1)	1310(1)	18(1)	C(48)	-792(4)	5305(3)	1937(3)	28(2)
P(1)	1996(1)	5860(1)	-285(1)	13(1)	C(40)	1380(4)	4668(3)	1006(3)	$\frac{20(2)}{34(2)}$
P(2)	2566(1)	5795(1)	1292(1)	14(1)	C(42)	1176(4)	4072(3)	1527(3)	34(2)
O(1)	1088(2)	6111(2)	-735(2)	14(1)	C(50)	-11/0(4)	4072(3)	1327(3) 1160(3)	$\frac{34(2)}{28(1)}$
O(2)	1597(2)	5062(2)	-42(2)	15(1)	C(51)	-307(4)	4109(3)	1109(3)	20(1)
O(3)	3570(2)	5892(2)	1699(2)	14(1)	C(52)	252(2)	4/32(3)	1192(3)	23(1)
O(4)	2726(2)	4961(2)	1022(2)	16(1)	C(55)	555(5) 1850(4)	0/24(3) 5620(2)	1920(3)	25(1)
N(1)	2862(3)	5756(2)	-771(2)	15(1)	C(54)	1830(4)	3020(2)	2497(2)	1/(1)
N(2)	1733(3)	5807(2)	1812(2)	14(1)	C(55)	2255(4)	4831(2)	2637(2)	16(1)
C(1)	142(3)	6184(3)	-502(2)	17(1)	C(56)	1607(4)	4225(3)	2632(3)	23(1)
C(2)	-427(4)	5535(2)	-401(2)	15(1)	C(57)	1922(4)	3507(3)	2789(3)	29(1)
A23									

Röntge									
nstruktu									
rdaten .									
ür ,									
, R, o									
R-10									
0									

Table A23_3. Anisotropic displacement parameters ($Å^2 x \ 10^3$) for <i>P</i> , <i>R</i> , <i>R</i> -100. The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

936(3)

1562(3)

1547(3)

2218(3)

2195(3)

1514(2)

-392(2)

383(3)

1008(3)

1717(3)

1830(3)

1207(3)

499(3)

-1029(3)

-808(2)

-115(3)

393(3)

1043(3)

1219(3)

715(3)

52(3)

-1491(3)

3599(3)

3829(3)

4267(2)

4469(3)

4830(3)

4965(3)

6376(3)

6308(2)

6525(3)

6510(3)

6283(3)

6066(3)

6092(3)

6491(3)

6069(3)

6326(3)

5898(3)

6096(3)

6727(3)

7158(3)

6958(3)

6505(2)

25(1)

24(1)

19(1)

25(1)

26(2)

20(1)

19(1)

18(1)

24(1)

32(1)

30(2)

29(2)

24(1)

25(1)

19(1)

20(1)

28(1)

35(2)

31(2) 33(2)

23(1)

28(1)

C(100)

C(101)

C(102)

C(103)

C(104)

C(105)

C(106)

C(107)

C(108)

C(109)

C(110)

C(111)

C(112)

C(113)

C(114)

C(115)

C(116)

C(117)

C(118)

C(119)

C(120)

C(121)

-1120(4)

-707(4)

124(3)

576(4)

1435(4)

1900(3)

1536(4)

1053(4)

1601(4)

1185(4)

227(4)

-313(4)

92(4)

802(4)

3230(3)

3780(3)

4152(4)

4613(4)

4697(4)

4331(4)

3895(4)

3255(4)

	U^{11}	U^{22}	U ³³	U^{23}	U ¹³	U ¹²
	14(1)	11(1)	14(1)	0(1)	0(1)	0(1)
Fu(1)	14(1)	11(1)	14(1)	0(1)	0(1)	0(1)
	20(1)	13(1)	19(1)	3(1)	1(1)	-1(1)
Cl(2)	22(1)	14(1)	18(1)	-4(1)	-1(1)	0(1)
P(1)	15(1)	12(1)	13(1)	-1(1)	-1(1)	-1(1)
P(2)	15(1)	12(1)	14(1)	0(1)	0(1)	2(1)
O(1)	14(2)	14(2)	16(2)	3(2)	1(2)	-4(1)
O(2)	16(2)	14(2)	16(2)	-2(2)	-4(2)	-5(1)
O(3)	16(2)	15(2)	10(2)	-2(2)	-2(2)	0(1)
O(4)	21(2)	10(2)	15(2)	-3(2)	0(2)	4(1)
N(1)	14(2)	16(2)	13(3)	-5(2)	-1(2)	1(2)
N(2)	17(2)	10(2)	16(3)	0(2)	2(2)	2(2)
C(1)	14(3)	26(3)	10(3)	1(2)	-3(2)	1(2)
C(2)	19(3)	16(3)	8(3)	-1(2)	-2(2)	-2(2)
C(3)	21(3)	20(3)	9(3)	3(2)	-2(2)	-1(2)
C(4)	21(3)	13(3)	13(3)	3(2)	-6(2)	-4(2)
C(5)	24(3)	19(3)	15(3)	3(2)	6(3)	1(2)
C(6)	29(3)	13(3)	24(4)	2(2)	-3(3)	0(2)
C(7)	24(3)	19(3)	19(3)	-2(3)	-8(2)	-3(2)
C(8)	25(3)	20(3)	13(3)	5(2)	-4(3)	-5(2)
C(9)	18(3)	30(3)	22(4)	4(3)	-5(3)	-9(2)
C(10)	14(3)	30(3)	25(4)	5(3)	2(3)	-4(2)
C(11)	18(3)	22(3)	16(4)	1(2)	-4(3)	-3(2)

C(58)	2897(4)	3369(3)	2951(3)	31(2)
C(59)	3559(4)	3969(3)	2950(3)	28(2)
C(60)	3236(4)	4684(3)	2803(2)	22(1)
C(61)	2410(4)	6242(2)	2865(3)	24(1)
Pd(2)	2669(1)	-1481(1)	4569(1)	15(1)
Cl(3)	1689(1)	-2293(1)	5123(1)	24(1)
Cl(4)	3328(1)	-2485(1)	4026(1)	22(1)
P(3)	3646(1)	-778(1)	3993(1)	15(1)
P(4)	1915(1)	-590(1)	5112(1)	16(1)
0(5)	4757(2)	-1053(2)	3958(2)	17(1)
0(6)	3823(2)	40(2)	4295(2)	16(1)
0(7)	2058(2)	217(2)	4791(2)	17(1)
0(8)	750(2)	-633(2)	5118(2)	17(1)
N(3)	3285(3)	-751(2)	3261(2)	15(1)
N(4)	2191(3)	-580(2)	5860(2)	17(1)
C(62)	5387(3)	-1072(3)	4501(2)	15(1)
C(63)	5841(3)	-403(2)	4725(3)	18(1)
C(64)	5551(3)	358(2)	4515(2)	17(1)
C(65)	4616(4)	544(3)	4255(2)	16(1)
C(65)	4010(4)	1263(2)	4255(2)	20(1)
C(00)	4378(4) 5075(4)	1203(2)	4034(3)	20(1)
C(07)	5073(4)	1629(2) 1604(2)	4116(3)	22(1) 21(1)
C(08)	5975(5) 6214(2)	1094(3)	4408(2)	21(1) 20(1)
C(69)	0214(5)	900(3)	4030(3)	20(1)
C(70)	7080(4)	851(5)	5014(3)	28(1)
C(/1)	1212(4)	153(3)	5280(3)	28(2)
C(72)	6664(4)	-48/(3)	5144(3)	21(1)
C(73)	6900(4)	-1198(3)	5390(3)	28(2)
C(74)	6369(4)	-1813(3)	5217(3)	27(2)
C(75)	5622(4)	-1/60(3)	4/4/(3)	20(1)
C(76)	2189(3)	-/5/(2)	3123(3)	18(1)
C(77)	1852(4)	-12(3)	2833(3)	20(1)
C(78)	1906(3)	636(3)	3214(3)	19(1)
C(79)	1647(4)	1334(3)	2981(3)	26(1)
C(80)	1345(4)	1413(3)	2361(3)	30(2)
C(81)	1298(4)	797(3)	1980(3)	35(2)
C(82)	1555(4)	90(3)	2206(3)	26(1)
C(83)	1879(3)	-1467(3)	2751(3)	30(1)
C(84)	3891(4)	-702(3)	2693(3)	21(1)
C(85)	4518(4)	8(3)	2690(3)	21(1)
C(86)	4090(4)	681(3)	2452(3)	26(1)
C(87)	4618(4)	1338(3)	2461(3)	30(2)
C(88)	5573(4)	1355(3)	2691(3)	33(2)
C(89)	6007(4)	709(3)	2919(3)	32(2)
C(90)	5490(4)	28(3)	2912(3)	27(2)
C(91)	4463(4)	-1450(3)	2591(3)	29(1)
C(92)	1450(3)	859(2)	4778(3)	16(1)
C(93)	522(3)	840(3)	4463(3)	17(1)
C(94)	-19(4)	154(3)	4289(3)	20(1)
C(95)	148(3)	-560(3)	4571(3)	18(1)
C(96)	-360(4)	-1189(3)	4376(3)	24(1)
C(97)	-1093(4)	-1126(3)	3913(3)	33(2)
C(98)	-1331(4)	-438(3)	3650(3)	34(2)
C(99)	-811(4)	212(3)	3834(3)	23(1)

C(12)	20(3)	27(3)	24(4)	-7(3)	-1(3)	10(3)	O(5)	14(2)	16(2)	20(2)	0(2)	3(2)	2(1)
C(13)	20(3)	17(3)	34(4)	-7(3)	-3(3)	3(2)	O(6)	16(2)	8(2)	24(2)	-3(2)	4(2)	-4(1)
C(14)	20(3)	17(3)	27(4)	-1(2)	0(3)	2(2)	O(7)	14(2)	11(2)	26(2)	1(2)	6(2)	0(1)
C(16)	16(3)	24(3)	10(3)	-3(2)	3(2)	0(2)	O(8)	13(2)	14(2)	23(2)	1(2)	1(2)	0(1)
C(17)	21(3)	20(3)	13(3)	-2(2)	1(2)	1(2)	N(3)	14(2)	20(2)	10(3)	-4(2)	4(2)	0(2)
C(18)	21(3)	32(3)	23(4)	-3(3)	3(3)	1(3)	N(4)	13(2)	21(2)	17(3)	1(2)	3(2)	1(2)
C(19)	23(3)	45(4)	33(4)	-10(3)	-4(3)	-10(3)	C(62)	8(3)	21(3)	15(3)	1(2)	2(2)	2(2)
C(20)	41(4)	31(3)	20(4)	-4(3)	0(3)	-13(3)	C(63)	17(3)	17(3)	20(4)	-2(2)	6(3)	-1(2)
C(21)	34(3)	24(3)	20(4)	0(2)	1(3)	4(3)	C(64)	17(3)	17(3)	17(3)	1(2)	2(2)	0(2)
C(22)	24(3)	22(3)	20(4)	-4(2)	4(3)	-1(2)	C(65)	18(3)	23(3)	8(3)	-5(2)	4(2)	-6(2)
C(23)	25(3)	25(3)	17(4)	3(2)	-2(3)	1(2)	C(66)	18(3)	15(3)	27(4)	2(2)	0(3)	3(2)
C(24)	15(3)	23(3)	14(3)	-5(2)	3(2)	0(2)	C(67)	30(3)	12(3)	25(4)	-1(2)	6(3)	3(2)
C(25)	13(3)	23(3)	0(3)	-3(2) 3(2)	$\frac{3(2)}{7(2)}$	0(2)	C(68)	18(3)	12(3)	29(4)	-1(2) 1(3)	2(2)	$\frac{3(2)}{11(2)}$
C(25)	18(3)	22(3) 26(3)	$\frac{9(3)}{18(4)}$	-3(2)	-7(2) 6(3)	$\frac{0(2)}{4(2)}$	C(60)	15(3)	15(3)	29(4)	-1(3)	2(2) 2(3)	-11(2) 2(2)
C(20)	20(2)	20(3)	18(4)	-4(2)	1(3)	+(2)	C(70)	13(3) 27(2)	20(3)	25(4)	-1(2)	-2(3)	-2(2)
C(27)	25(2)	20(3)	10(4)	-3(2)	7(3)	P(2)	C(70)	27(3) 26(3)	20(3) 22(4)	25(4)	-4(3)	-4(3)	-3(2)
C(28)	23(3)	24(5)	23(4)	-11(3) 14(2)	-7(3)	0(5) 1(2)	C(71)	20(5)	55(4) 25(2)	25(4)	-1(5)	-4(3)	1(3)
C(29)	13(3)	41(4) 27(2)	10(4)	-14(3)	0(3)	1(5)	C(72)	19(3)	23(3)	26(4)	-4(3)	-3(3)	-3(2)
C(30)	21(5)	27(3)	19(4)	-3(3)	-1(3)	-8(2)	C(73)	18(5)	29(4)	30(4)	8(5) 10(2)	-0(3)	(3)
C(31)	23(3)	17(3)	29(4)	0(2)	-1(3)	-4(2)	C(74)	22(3)	20(3)	38(5)	10(3)	0(3)	0(3)
C(32)	13(3)	35(3)	6(3)	3(2)	-1(2)	-2(2)	C(75)	16(3)	13(3)	31(4)	-1(2)	0(3)	1(2)
C(33)	22(3)	18(3)	9(3)	1(2)	-6(2)	7(2)	C(76)	13(3)	26(3)	17(3)	0(2)	-2(2)	-1(2)
C(34)	22(3)	18(3)	11(3)	2(2)	1(2)	4(2)	C(77)	14(3)	24(3)	21(4)	-1(3)	5(3)	0(2)
C(35)	26(3)	10(3)	10(3)	1(2)	-2(2)	9(2)	C(78)	16(3)	26(3)	16(4)	2(2)	-5(2)	0(2)
C(36)	23(3)	15(3)	23(4)	-6(2)	2(3)	2(2)	C(79)	31(3)	22(3)	25(4)	-1(2)	7(3)	3(2)
C(37)	40(4)	10(3)	32(4)	0(2)	2(3)	1(2)	C(80)	39(4)	22(3)	30(4)	2(3)	2(3)	6(3)
C(38)	35(4)	21(3)	22(4)	0(3)	-2(3)	15(3)	C(81)	34(4)	44(4)	25(4)	9(3)	-9(3)	6(3)
C(39)	29(3)	21(3)	17(4)	-2(2)	-3(3)	9(2)	C(82)	25(3)	33(3)	20(4)	-3(3)	-7(3)	-3(3)
C(40)	24(3)	34(4)	25(4)	-8(3)	-2(3)	15(3)	C(83)	23(3)	21(3)	45(4)	-5(3)	-10(3)	2(3)
C(41)	23(3)	42(4)	30(4)	1(3)	3(3)	8(3)	C(84)	23(3)	31(3)	9(3)	-5(2)	2(3)	2(2)
C(42)	16(3)	34(3)	17(4)	3(3)	3(3)	2(3)	C(85)	23(3)	24(3)	16(3)	-1(2)	14(3)	-2(2)
C(43)	20(3)	49(4)	29(4)	1(3)	4(3)	1(3)	C(86)	26(3)	30(3)	21(4)	4(3)	7(3)	8(3)
C(44)	24(3)	32(3)	34(4)	8(3)	1(3)	-9(3)	C(87)	38(4)	23(3)	31(4)	4(3)	15(3)	-1(3)
C(45)	24(3)	18(3)	25(4)	3(3)	-8(3)	-4(2)	C(88)	35(4)	32(3)	34(4)	2(3)	18(3)	-8(3)
C(46)	19(3)	28(3)	23(4)	6(3)	4(3)	7(2)	C(89)	23(3)	41(4)	34(4)	4(3)	13(3)	-3(3)
C(47)	15(3)	31(3)	11(3)	6(2)	-2(2)	0(2)	C(90)	29(3)	31(3)	23(4)	3(3)	12(3)	5(3)
C(48)	18(3)	45(4)	20(4)	-6(3)	4(3)	0(3)	C(91)	31(3)	29(3)	27(4)	-3(3)	5(3)	8(3)
C(49)	18(3)	59(4)	24(4)	7(3)	5(3)	-15(3)	C(92)	16(3)	12(3)	22(4)	0(2)	6(2)	4(2)
C(50)	20(3)	51(4)	31(4)	8(3)	-8(3)	-16(3)	C(93)	17(3)	19(3)	15(3)	-6(2)	7(2)	0(2)
C(51)	29(3)	32(3)	24(4)	-5(3)	0(3)	-8(3)	C(94)	19(3)	25(3)	16(4)	-2(2)	5(3)	4(2)
C(52)	22(3)	30(3)	25(4)	1(3)	8(3)	-2(2)	C(95)	16(3)	19(3)	19(4)	3(2)	3(3)	3(2)
C(53)	24(3)	24(3)	28(4)	0(3)	2(3)	6(2)	C(96)	26(3)	17(3)	28(4)	-5(2)	-1(3)	-3(2)
C(54)	17(3)	21(3)	14(3)	0(2)	3(2)	-3(2)	C(97)	30(4)	26(3)	42(5)	-7(3)	-7(3)	-11(3)
C(55)	25(3)	16(3)	7(3)	4(2)	-3(2)	1(2)	C(98)	30(3)	36(4)	34(5)	-6(3)	-15(3)	8(3)
C(56)	24(3)	26(3)	18(4)	4(2)	3(3)	-5(2)	C(99)	22(3)	25(3)	22(4)	-1(3)	-1(3)	-1(2)
C(57)	37(3)	16(3)	33(4)	-3(3)	0(3)	-7(3)	C(100)	20(3)	29(3)	25(4)	1(3)	-7(3)	6(3)
C(58)	49(4)	19(3)	24(4)	3(2)	5(3)	6(3)	C(101)	25(3)	22(3)	26(4)	8(3)	5(3)	7(3)
C(59)	32(4)	34(3)	19(4)	8(3)	-1(3)	10(3)	C(102)	21(3)	19(3)	16(3)	1(3)	6(2)	3(2)
C(60)	24(3)	29(3)	12(3)	0(2)	0(3)	-3(2)	C(103)	21(3)	13(3)	41(4)	0(3)	10(3)	4(2)
C(61)	30(3)	26(3)	17(4)	3(2)	0(3)	3(2)	C(104)	22(3)	13(3)	44(5)	-13(3)	12(3)	-4(2)
Pd(2)	15(1)	11(1)	20(1)	-1(1)	2(1)	0(1)	C(105)	19(3)	12(3)	29(4)	-2(2)	5(2)	0(2)
Cl(3)	21(1)	15(1)	35(1)	5(1)	6(1)	-2(1)	C(106)	21(3)	18(3)	18(4)	2(2)	3(3)	1(2)
Cl(4)	25(1)	15(1)	27(1)	-6(1)	2(1)	2(1)	0(100)	21(5)	10(5)	10(1)	2(2)	5(5)	1(2)
P(3)	15(1)	14(1)	15(1)	0(1)	1(1)	-1(1)							
P(4)	14(1)	13(1)	20(1)	1(1)	1(1)	0(1)							
· (¬)	17(1)	13(1)	20(1)	1(1)	1(1)	0(1)							

A23 Röntgenstrukturdaten für P,R,R-100

Anhang

C(107)	23(3)	21(3)	10(3)	-1(2)	3(2)	5(2)
C(108)	20(3)	26(3)	27(4)	0(3)	3(3)	2(2)
C(109)	39(4)	33(3)	25(4)	-2(3)	5(3)	-4(3)
C(110)	37(4)	24(3)	29(4)	3(3)	12(3)	8(3)
C(111)	20(3)	41(4)	26(4)	0(3)	4(3)	11(3)
C(112)	21(3)	25(3)	25(4)	-5(3)	3(3)	3(2)
C(113)	29(3)	25(3)	22(4)	-4(3)	5(3)	-3(2)
C(114)	15(3)	27(3)	17(4)	-2(2)	3(2)	2(2)
C(115)	17(3)	26(3)	17(4)	2(2)	3(3)	3(2)
C(116)	27(3)	29(3)	27(4)	-10(3)	-2(3)	-1(3)
C(117)	36(4)	36(4)	32(5)	7(3)	0(3)	1(3)
C(118)	21(3)	27(3)	44(5)	-13(3)	-7(3)	1(3)
C(119)	25(3)	50(4)	22(4)	-3(3)	-8(3)	1(3)
C(120)	18(3)	34(3)	16(4)	-3(3)	-3(3)	-7(2)
C(121)	30(3)	18(3)	35(4)	-1(3)	0(3)	6(3)

Table A23_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters

 $(\text{\AA}^2 x \ 10^3)$ for *P*,*R*,*R*-100.

	х	У	Z	U(eq)
11(5)	1060	7777	424	22
H(5)	841	2825	-424	23
H(0) H(7)	820	2023	-800	27
$\Pi(7)$	-630	2019	-609	23
H(9)	-2217	5918	-377	28
$\Pi(10)$	-2750	5002	-264	27
$\Pi(12)$ $\Pi(12)$	-2491	0435	-232	29
H(13) H(14)	-1490	7492	-344	29
П(14) Ц(16)	105	1522	-302	20
H(10)	3463	5285	-1005	20
H(10)	908	4262	-1600	30
H(19) H(20)	109	4203	-2210	41
H(20)	1140	2226	-2303	21
$\Pi(21)$	2625	5220	-2017	26
$\Pi(22)$ $\Pi(22A)$	5525	4554	-1030	20
H(23A)	2422	6277	-1076	22
H(23D)	2422	6852	-2230	22
$\Pi(23C)$	2739	5828	-1020	21
H(24)	3620	J626 4421	-18	21
H(20) H(27)	3443 4160	2245	-20	20
H(27) H(28)	4100	2108	-96	29
H(20)	6104	4120	-050	30
H(20)	5504	5220	-1193	29
H(30)	3504	5520	-1104	21
H(31A) H(21D)	4340	6420	-1135	25
H(31D) H(21C)	4126	6000	-400	33
1(310)	4150	0909	-393	

2157	3658	1296	24
3110	2569	1486	33
4797	2631	1452	31
6284	3344	1199	33
7009	4435	910	38
6999	5824	860	39
6225	6968	1001	36
4636	6993	1396	27
779	6175	1130	28
-947	5712	2203	33
-1951	4646	2151	40
-1584	3638	1512	41
-221	3700	903	34
791	4747	942	30
311	6611	2367	38
-299	6862	1743	38
808	7144	1868	38
1178	5623	2654	21
934	4307	2517	27
1463	3105	2785	34
3114	2876	3060	37
4235	3884	3052	34
3693	5087	2814	26
3088	6265	2733	37
2410	6130	3314	37
2086	6727	2782	37
3743	1369	3875	24
4927	2317	3957	27
6435	2091	4462	26
7533	1232	5084	33
7824	102	5565	34
7442	-1249	5682	33
6503	-2283	5416	32
5283	-2199	4602	24
1879	-794	3536	22
2127	590	3641	23
1676	1762	3248	31
1169	1896	2199	36
1086	854	1552	42
1528	-331	1931	32
2139	-1443	2333	45
1161	-1496	2715	45
2139	-1914	2971	45
3412	-655	2326	25
3432	677	2285	31
4318	1788	2306	36
5933	1813	2692	40
6666	723	3083	39
5804	-420	3060	33
4949	-1523	2938	43
4797	-1421	2196	43
4002	-1873	2575	43

H(36) H(37) H(38)

H(40)

H(41)

H(41) H(43) H(44) H(45) H(46)

H(48)

H(49) H(50) H(51) H(52) H(53A)

H(53A) H(53B) H(53C) H(54) H(56) H(57)

H(58)

H(59) H(60) H(61A) H(61B) H(61C)

H(66) H(67) H(68) H(70) H(71) H(73) H(74) H(75) H(76) H(76) H(78) H(79) H(80) H(81) H(82) H(83A)

H(83A) H(83B) H(83C) H(84) H(86)

H(87) H(88) H(89) H(90) H(91A) H(91B) H(91C)

H(96)	-208	-1665	4558	28
H(97)	-1439	-1564	3773	39
H(98)	-1854	-403	3342	41
H(100)	-1622	967	3276	30
H(101)	-970	2036	3699	29
H(103)	289	2689	4356	30
H(104)	1715	2650	4990	31
H(105)	2523	1504	5183	24
H(106)	1973	-364	6764	23
H(108)	2258	943	6682	29
H(109)	1562	2136	6657	39
H(110)	-55	2319	6276	35
H(111)	-965	1274	5899	35
H(112)	-296	79	5960	28
H(11A)	297	-1039	6149	38
H(11B)	492	-941	6889	38
H(11C)	1148	-1513	6509	38
H(114)	3563	-964	5683	23
H(116)	4084	287	5463	33
H(117)	4877	1374	5799	41
H(118)	4998	1676	6865	37
H(119)	4382	829	7593	39
H(120)	3670	-295	7257	27
H(12A)	2928	-1365	6890	42
H(12B)	3937	-1632	6609	42
H(12C)	2914	-1914	6295	42

Table A24_1. Crystal data and structure refinement for 111.					
Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group	pbd372 C19 H18 O2 278.33 100(2) K 0.71073 Å orthorhombic P21ca				
Unit cell dimensions	a = 10.0223(17) A b = 11.639(3) Å c = 12.557(4) Å 1464.8(7) $^{33}_{33}$	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$			
Z	4				
Density (calculated)	1.262 Mg/m ³				
Absorption coefficient F(000)	0.080 mm ⁻¹ 592				
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.00° Absorption correction	.3 x .3 x .1 mm ³ 2.39 to 27.00°. -10<=h<=9, -14<=k<=7, 5344 2746 [R(int) = 0.1473] 91.4 % None	-14<=1<=16			
Refinement method Data / restraints / parameters	Full-matrix least-squares 2746 / 1 / 262	on F ²			
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	0.938 R1 = 0.0584, wR2 = 0.12 R1 = 0.0936, wR2 = 0.13 2(2) 0.255 and 0.247 a h^{-3}	224 862			
Largest unit. peak and note	0.233 and -0.247 C.A				

A23 / A24 Röntgenstrukturdaten für P,R,R-100 und 111

U¹²

2(1)

0(1)

-9(2)

3(1)

1(2)

3(1)

-12(2)

-8(2)

3(1)

9(2)

6(2)

4(2) 9(2)

1(2)

8(2)

2(2)

-3(2)

-2(1)

-24(2)

-4(2)

-16(2)

3(1)

0(1)

0(2)

-9(2)

0(2)

-5(2)

5(2)

4(2)

-11(2)

-1(2)

2(2)

-12(2)

-5(2)

-8(2)

-7(2)

-17(2) 14(2)

7(2)

16(2)

8(2)

9(2)

Table A24	_3. Anisotro	pic displacemer	nt parameters (A	Å ² x 10 ³) for 11	1. The anisotrop	pic
displaceme	ent factor expo	nent takes the f	form: $-2\pi^2$ [h ² a	$*^{2}U^{11} + + 2$	h k a* b* U ¹²]	
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	1

28(1)

22(1)

24(2)

29(2)

22(2)

27(2)

30(2)

25(2)

37(2)

27(2)

27(2)

52(3)

45(3)

31(2)

29(3)

48(3)

40(3)

27(2)

33(2)

37(2)

32(3)

-2(1)

-1(1)

2(2)

-6(2)

-3(2)

-7(2)

-18(2)

-10(2)

-16(2)

-2(2)

-6(2)

-12(2)

-23(3)

0(2)

1(3)

2(2)

-23(3)

3(2)

-10(3)

-5(2)

0(2)

24(1)

26(1)

34(2)

24(2)

29(2)

26(2)

48(2)

35(2)

30(2)

41(2)

29(2)

28(2)

48(2)

28(2)

44(2)

25(2)

61(3)

26(2)

61(3)

33(2)

44(2)

U¹¹

18(1)

23(1)

39(3)

14(2)

22(2)

23(2)

23(2)

20(2)

24(2)

25(2)

34(2)

26(2)

24(2)

26(2)

39(3)

37(2)

17(2)

20(2)

35(3)

22(2)

51(3)

 $\overline{O(1)}$

O(2)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

C(11)

C(12)

C(13)

C(14)

C(15)

C(16)

C(17)

C(18)

C(19)

C(20)

C(21)

Table A24_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameter	s
$(Å^2 x \ 10^3)$ for 111 . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tenso	r.

	х	у	Z	U(eq)
O(1)	2650(2)	2462(2)	1810(2)	23(1)
O(2)	1771(2)	2473(2)	-111(2)	24(1)
C(3)	3082(4)	3814(3)	-1116(3)	32(1)
C(4)	3275(3)	1433(3)	1616(3)	23(1)
C(5)	2976(3)	2897(3)	-424(3)	24(1)
C(6)	4111(3)	1395(3)	704(3)	25(1)
C(7)	5300(3)	2419(3)	-730(3)	34(1)
C(8)	4112(3)	2259(3)	-116(3)	27(1)
C(9)	5100(3)	509(3)	680(3)	30(1)
C(10)	1252(4)	3497(3)	2986(3)	31(1)
C(11)	800(4)	3233(3)	390(3)	30(1)
C(12)	5053(4)	-395(3)	1417(4)	35(1)
C(13)	6189(4)	633(4)	-47(4)	39(1)
C(14)	3261(3)	546(3)	2343(3)	28(1)
C(15)	-310(4)	3522(4)	-391(4)	37(1)
C(16)	4130(4)	-406(3)	2208(4)	36(1)
C(17)	6333(4)	1570(4)	-651(4)	39(1)
C(18)	1306(3)	2485(3)	2235(3)	24(1)
C(19)	5369(4)	3354(4)	-1443(4)	43(1)
C(20)	312(3)	2555(3)	1337(3)	30(1)
C(21)	4286(4)	4067(4)	-1601(4)	42(1)

Table A24_4.	Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters (Å $^2x\;10^3)$ for 111.
--------------	--

	Х	У	Z	U(eq)
H(1)	1120(30)	1730(20)	2640(30)	15(8)
H(2)	1910(40)	3420(30)	3530(30)	24(10)
H(3)	270(30)	3610(20)	3260(30)	17(9)
H(4)	5680(30)	-960(30)	1450(30)	25(10)
H(5)	4080(40)	-1080(30)	2790(30)	51(12)
H(6)	6140(40)	3470(30)	-1810(30)	34(11)
H(7)	1440(40)	4240(30)	2580(40)	48(12)
H(8)	-730(40)	2670(30)	-640(30)	41(11)
H(9)	4380(40)	4750(30)	-2050(30)	39(11)
H(10)	1290(30)	3950(30)	610(30)	28(10)
H(11)	-620(40)	2940(30)	1590(30)	42(11)
H(13)	-40(40)	3880(30)	-1010(30)	30(11)
H(14)	2300(40)	4240(30)	-1320(30)	23(9)
H(15)	-960(40)	4120(30)	30(30)	61(14)
H(16)	6770(40)	30(40)	-20(30)	42(11)
H(1A)	7070(40)	1680(30)	-1080(30)	31(10)
H(2A)	30(30)	1680(30)	1060(30)	35(10)
H(3A)	2640(40)	530(30)	2970(30)	47(11)

-281-

 Table A25_1. Crystal data and structure refinement for *M*,*S*,*S*-107.

Table A25_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula Formula weight	pbd475r C19 H18 O2 278.33		$(Å^2 x \ 10^3)$ for tensor.	<i>M</i> , <i>S</i> , <i>S</i> - 107 . U(eq) is	defined as one th	ird of the trace of t	he orthogonalized	U ^{ij}
Temperature Wavelength	100(2) K 0.71073 Å			x	у	Z	U(eq)	
Crystal system	Monoclinic							
Space group	P21		O(1)	4970(2)	6589(2)	9809(2)	29(1)	
Unit cell dimensions	a = 9.2747(4) Å	$\alpha = 90^{\circ}$	O(2)	3694(2)	5654(2)	11605(2)	30(1)	
	h = 9.2357(5) Å	$\beta = 113.033(2)^{\circ}$	C(3)	2231(3)	6538(2)	8459(3)	28(1)	
	c = 9.5272(6) Å	$\gamma = 90^{\circ}$	C(4)	652(3)	8169(3)	9351(3)	33(1)	
X 7 1	$c = y_{32} + z_{10} + z_{10}$	1 = 30	C(5)	3/34(3)	6057(3)	8589(3)	28(1)	
volume	751.03(7) A ^o		C(6)	2801(3)	6895(3)	1126/(3)	27(1)	
L	2		C(7)	1003(3) 2010(4)	6491(3) 5200(2)	0991(3)	33(1)	
Density (calculated)	1.231 Mg/m ³		$C(\delta)$	3910(4) 1042(2)	3300(3)	7418(3)	30(1)	
Absorption coefficient	0.078 mm ⁻¹		C(9)	1942(3) 382(3)	7213(2) 7342(3)	9707(3) 6713(4)	$\frac{27(1)}{41(1)}$	
F(000)	296		C(10)	-582(3)	7606(3)	12383(4)	41(1) 37(1)	
Crystal size	0.55 x 0.25 x 0.08 m	m ³	C(12)	1212(3)	5723(3)	5811(3)	42(1)	
Theta range for data collection	$2.39 \text{ to } 27.00^{\circ}$		C(12)	1212(3) 1448(4)	8776(3)	12004(4)	43(1)	
Index ranges	-11<=h<=1111<=k	<=1012<=1<=12	C(14)	5333(3)	5719(3)	12643(3)	35(1)	
Reflections collected	5599		C(15)	-496(3)	8211(3)	7805(4)	40(1)	
Independent reflections	1742 [R(int) = 0.081]	31	C(16)	2625(4)	5088(3)	6048(3)	43(1)	
Completeness to theta = 27.00°	99.9 %		C(17)	7711(3)	6844(4)	11071(3)	42(1)	
Absorption correction	None		C(18)	462(3)	8975(3)	10512(4)	38(1)	
Refinement method	Full-matrix least-sour	ares on F^2	C(19)	6222(3)	4909(3)	11844(4)	38(1)	
Data / restraints / narameters	1742 / 1 / 242		C(20)	6384(3)	5761(3)	10549(3)	33(1)	
$C = 1 + C = E^2$	1,427,17,242		C(21)	5530(4)	5019(5)	14137(4)	61(1)	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	$\begin{array}{l} 1.005 \\ R1 = 0.0421, \ wR2 = \\ R1 = 0.0655, \ wR2 = \\ 0.4(16) \\ 0.048(8) \end{array}$	0.0885 0.0975						
Largest diff. peak and hole	0.177 and -0.164 e.Å	-3						

A25 Röntgenstrukturdaten für M,S,S-111

A25 Röntgenstrukturdaten für M, S, S-111

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	25(1)	24(1)	34(1)	-3(1)	10(1)	1(1)
O(2)	28(1)	25(1)	33(1)	1(1)	8(1)	-2(1)
C(3)	31(2)	21(1)	30(1)	2(1)	11(1)	-6(1)
C(4)	28(2)	21(1)	50(2)	3(1)	16(2)	-2(1)
C(5)	31(2)	21(1)	29(1)	1(1)	9(1)	-6(1)
C(6)	25(1)	22(1)	32(2)	0(1)	10(1)	-4(1)
C(7)	33(2)	30(1)	31(2)	3(1)	8(1)	-9(1)
C(8)	39(2)	32(2)	41(2)	-5(1)	19(2)	-5(1)
C(9)	26(1)	18(1)	36(2)	0(1)	11(1)	-4(1)
C(10)	30(2)	40(2)	38(2)	8(1)	-1(2)	-5(1)
C(11)	36(2)	38(2)	34(2)	-8(1)	9(2)	-5(1)
C(12)	42(2)	49(2)	28(2)	0(2)	8(2)	-12(2)
C(13)	42(2)	38(2)	56(2)	-18(2)	26(2)	-5(1)
C(14)	30(1)	35(2)	32(2)	4(1)	5(1)	-2(1)
C(15)	25(2)	31(2)	54(2)	9(1)	6(2)	0(1)
C(16)	51(2)	45(2)	34(2)	-10(1)	18(2)	-13(2)
C(17)	28(2)	48(2)	48(2)	-4(2)	14(1)	-2(1)
C(18)	27(2)	28(1)	60(2)	-5(1)	19(2)	3(1)
C(19)	29(2)	28(2)	48(2)	2(1)	7(2)	3(1)
C(20)	27(1)	31(2)	41(2)	-8(1)	12(1)	5(1)
C(21)	44(2)	84(2)	46(2)	22(2)	8(2)	3(2)

Table A25_3. Anisotropic displacement parameters (Å²x 10³) for *M*,*S*,*S*-107. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table A25_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement p	arameters
$(Å^2 x \ 10^3)$ for <i>M</i> , <i>S</i> , <i>S</i> -107.	

	Х	У	Z	U(eq)
H(8)	4950(40)	4950(30)	7500(30)	40(8)
H(10)	-1200(30)	7330(30)	5660(40)	44(8)
H(11)	3170(30)	7500(30)	13420(30)	35(8)
H(12)	310(40)	5660(40)	4770(40)	53(9)
H(13)	1290(30)	9370(40)	12810(40)	48(9)
H(14)	5620(30)	6700(30)	12740(30)	34(7)
H(15)	-1400(30)	8860(30)	7650(30)	38(8)
H(16)	2790(30)	4510(30)	5180(30)	43(8)
H(17A)	7595	7486	11839	61(4)
H(17B)	7685	7419	10197	61(4)
H(17C)	8712	6329	11515	61(4)
H(18)	-420(30)	9660(30)	10180(30)	40(8)
H(19A)	5610(30)	3990(40)	11440(30)	38(8)
H(19B)	7250(30)	4650(30)	12610(40)	41(8)
H(20)	6490(30)	5080(30)	9810(30)	36(8)
H(21A)	5146	4020	13953	61(4)
H(21B)	4931	5563	14611	61(4)
H(21C)	6641	5019	14819	61(4)

Anhang

Table A26_1. Crystal data and structure refinement for 114a.

R1 = 0.0488, wR2 = 0.0890

0.274 and -0.230 e.A^-3

R1 = 0.0985, wR2 = 0.1027

Final R indices [I>2sigma(I)]

Largest diff. peak and hole

R indices (all data)

Table A26_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A² $x \ 10^3$) for **114a**. U(eq) is defined as one third of the trace of the orthogonalized

Identification code	pbd349	Uij tenso	r.			
Empirical formula	C40 H44 O12					
Formula weight	716.75		х	У	Z	U(eq)
Temperature	100(2) K					
Wavelength	0.71073 A					
Crystal system, space group	monoclinic, P21/c	0(1)	295(2)	9302(1)	3918(1)	19(1)
Unit cell dimensions	a = 7.4486(3) A alpha = 90 deg.	0(3)	1899(2)	7393(1)	2656(1)	19(1)
	b = 7.8408(3) A beta = 101.703(2) deg.	0(8)	1863(2)	9911(2)	-496(1)	29(1)
	c = 15.3246(8) A gamma = 90 deg.	C(5)	2455(2)	8193(2)	1195(1)	17(1)
Volume	876.40(7) A^3	C(7)	163(2)	8253(3)	2446(1)	18(1)
Z, Calculated density	1, 1.358 Mg/m^3	C(10)	-538(2)	9375(2)	4678(1)	17(1)
Absorption coefficient	0.100 mm^-1	C(13)	3571(2)	7999(2)	567(1)	19(1)
F(000)	380	C(15)	4461(2)	6283(2)	2177(1)	20(1)
Crystal size	.3 x .2 x .1 mm	C(17)	-688(2)	8203(2)	3251(1)	18(1)
Theta range for data collection	2.71 to 26.99 deg.	C(19)	2902(2)	7330(2)	1996(1)	17(1)
Limiting indices	-9<=h<=9, -9<=k<=8, -19<=1<=19	C(21)	5551(2)	6098(2)	1552(1)	22(1)
Reflections collected / unique	3491 / 1823 [R(int) = 0.0557]	C(22)	5106(2)	6942(2)	745(1)	21(1)
Reflection observed [I>2sigma(I)]	1192	C(25)	3087(3)	8871(2)	-298(1)	23(1)
Completeness to theta = 26.99	95.6 %					
Absorption correction	None					
Refinement method	Full-matrix least-squares on F^2					
Data / restraints / parameters	1823 / 0 / 162					
Goodness-of-fit on F^2	1.024					

Anhang

A26 Röntgenstrukturdaten für 114a

Table A26_3.Anisotropic displacement parameters ($A^2 \times 10^3$) for 114a.The anisotropic displacement factor exponent takes the form:-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
0(1)	19(1)	22(1)	16(1)	-5(1)	6(1)	-3(1)
0(3)	18(1)	22(1)	17(1)	1(1)	6(1)	5(1)
0(8)	29(1)	31(1)	26(1)	6(1)	4(1)	1(1)
C(5)	17(1)	16(1)	18(1)	-3(1)	3(1)	-1(1)
C(7)	19(1)	17(1)	18(1)	-2(1)	3(1)	2(1)
C(10)	16(1)	22(1)	16(1)	0(1)	7(1)	2(1)
C(13)	18(1)	17(1)	20(1)	-3(1)	4(1)	-5(1)
C(15)	19(1)	20(1)	19(1)	1(1)	1(1)	0(1)
C(17)	17(1)	17(1)	19(1)	-4(1)	2(1)	-1(1)
C(19)	17(1)	17(1)	16(1)	-5(1)	4(1)	-3(1)
C(21)	15(1)	23(1)	29(1)	-2(1)	4(1)	1(1)
C(22)	18(1)	25(1)	23(1)	-5(1)	9(1)	-4(1)
C(25)	21(1)	26(1)	23(1)	-2(1)	7(1)	-6(1)

Table A26_4. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 114a.

		х	У	Z	U(eq)
H(1)	-2010(20)	8610(20)	3075(11)	16(4)	
H(2)	1410(20)	8900(20)	1033(11)	19(5)	
H(3)	-490(20)	8210(20)	4984(11)	18(5)	
H(4)	-1840(20)	9727(18)	4504(11)	10(4)	
H(5)	5810(20)	6840(20)	308(12)	23(5)	
H(6)	-600(20)	7680(20)	1956(12)	15(5)	
H(7)	360(20)	9420(20)	2300(11)	16(5)	
H(8)	4720(20)	5720(20)	2730(13)	24(5)	
H(9)	3860(30)	8510(20)	-735(13)	31(5)	
H(10)	-710(20)	7000(20)	3482(12)	21(5)	
H(11)	6610(30)	5350(20)	1684(12)	30(5)	

A26 Röntgenstrukturdaten für 114a

Table A27_1. Crystal data and structure refinement for 115a.

Table A27_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd462a C20 H22 O4		$(Å^2 x \ 10^3)$ for 1	15a. U(eq) is defined as	s one third of the trac	e of the orthogonaliz	ed U ^{ij} tensor.
Formula weight Temperature	326.38 100(2) K			Х	у	Z	U(eq)
Wavelength	0.71072 Å		$\overline{\mathbf{O}(1)}$	2654(1)	4104(1)	2/35(1)	25(1)
Crystal system	MONOCLINIC		O(1)	2004(1) 2200(1)	4194(1) 6100(1)	2433(1) 3738(1)	23(1) 28(1)
Space group	P21/c		O(2)	3439(1)	5088(1)	1446(1)	23(1) 24(1)
Unit cell dimensions	a = 18.4384(10) Å	$\alpha = 90^{\circ}$	O(7)	4775(1)	6285(1)	537(1)	24(1) 26(1)
	b = 8.2605(2) Å	$\beta = 97.5041(10)^{\circ}$	C(9)	4882(1)	7654(2)	897(1)	21(1)
	c = 21.9817(12) Å	$\gamma = 90^{\circ}$	C(10)	3853(1)	8704(2)	2496(1)	21(1) 21(1)
Volume	3319 4(3) Å ³		C(10)	4625(1)	7857(2)	1451(1)	20(1)
Z	8		C(12)	3598(1)	5215(3)	828(1)	25(1)
	1 2012 1 3		C(14)	2706(1)	7278(2)	3657(1)	24(1)
Density (calculated)	1.306 Mg/m ⁵		C(15)	5138(1)	10544(2)	1529(1)	25(1)
Absorption coefficient	0.090 mm ⁻¹		C(18)	3519(1)	8704(2)	3063(1)	20(1)
F(000)	1392		C(19)	4412(1)	9573(2)	2342(1)	22(1)
Crystal size	$3 \times 2 \times 1 \text{ mm}^3$		C(20)	2995(1)	7503(2)	3115(1)	22(1)
Theta range for data collection	1.87 to 27.00°.		C(21)	5277(1)	8890(2)	651(1)	25(1)
Index ranges	-23<=h<=1810<=k<=	720<=1<=28	C(23)	3311(1)	3440(2)	1612(1)	28(1)
Reflections collected	15433	.,	C(27)	3717(1)	9728(2)	3560(1)	24(1)
Independent reflections	7177 [R(int) = 0.0589]		C(31)	5406(1)	10317(2)	978(1)	27(1)
Completeness to the $= 27.00^{\circ}$	99.0 %		C(32)	4733(1)	9329(2)	1773(1)	20(1)
Absorption correction	None		C(33)	2927(1)	8259(2)	4160(1)	28(1)
Definement method	Evil motiv loost sevene	$r = E^2$	C(34)	3267(1)	3317(2)	2282(1)	27(1)
Dete (metrointe (merometero		011 F	C(35)	3429(1)	9486(2)	4102(1)	28(1)
Data / restraints / parameters	/1///0/809		C(40)	1945(1)	5096(2)	3218(1)	28(1)
Goodness-of-fit on F^2	0.826		C(41)	2518(1)	3902(2)	3049(1)	29(1)
Final R indices [I>2sigma(I)]	R1 = 0.0434, wR2 = 0.00	588	C(42)	4412(1)	4923(2)	778(1)	26(1)
R indices (all data)	R1 = 0.1314, $wR2 = 0.03$	826	O(3)	1003(1)	7072(1)	448(1)	28(1)
Largest diff. peak and hole	0.182 and -0.215 e.Å ⁻³		O(5)	-138(1)	8089(1)	-702(1)	36(1)
			O(6)	-1754(1)	9821(1)	-1401(1)	30(1)
			O(8)	1055(1)	5129(1)	1853(1)	28(1)
			C(13)	-101(1)	6184(2)	1366(1)	23(1)

C(16)

C(17)

C(22)

C(24)

C(25)

C(26)

C(28)

C(29)

C(30)

C(36)

C(37)

C(38)

C(39)

C(43)

C(44)

C(45)

C(46)

C(47)

C(48)

-1828(1)

-1946(1)

-865(1)

-2236(1)

1439(1)

-1237(1)

306(1)

-801(1)

-2102(1)

926(1)

-1139(1)

-40(1)

-1213(1)

-2785(1)

-3192(1)

-2932(1)

1338(1)

631(1)

-428(1)

8576(2)

7312(2)

6150(2)

8292(2)

6179(2)

7124(2)

5200(2)

4172(2)

9551(2)

6746(3)

8810(3)

4186(2)

5146(2)

10291(2)

9978(2)

8980(2)

5759(2)

8192(3)

9331(3)

-409(1)

607(1)

1294(1)

75(1)

1476(1)

786(1)

1787(1)

2104(1)

-895(1)

-187(1)

-1484(1)

2166(1)

1674(1)

-904(1)

-436(1)

46(1)

802(1)

-552(1)

-1119(1)

23(1)

26(1)

24(1)

23(1)

27(1)

25(1)

23(1)

28(1)

24(1) 33(1)

34(1)

26(1)

28(1)

28(1)

32(1)

30(1)

30(1)

37(1)

40(1)

A27 Röntgenstrukturdaten für 115a

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	22(1)	28(1)	26(1)	3(1)	7(1)	2(1)
O(2)	26(1)	36(1)	24(1)	1(1)	7(1)	-2(1)
O(4)	26(1)	23(1)	24(1)	-3(1)	8(1)	-4(1)
O(7)	28(1)	25(1)	25(1)	-1(1)	10(1)	-1(1)
C(9)	17(1)	22(1)	25(1)	1(1)	2(1)	3(1)
C(10)	21(1)	16(1)	25(1)	-2(1)	-1(1)	2(1)
C(11)	18(1)	21(1)	22(1)	5(1)	4(1)	1(1)
C(12)	25(1)	30(1)	21(1)	-2(1)	4(1)	-1(1)
C(14)	19(1)	28(1)	24(1)	4(1)	4(1)	4(1)
C(15)	20(1)	22(1)	32(2)	-1(1)	-1(1)	-3(1)
C(18)	20(1)	20(1)	18(1)	1(1)	0(1)	6(1)
C(19)	24(1)	19(1)	23(1)	-2(1)	-1(1)	-1(1)
C(20)	23(1)	24(1)	18(1)	-2(1)	0(1)	2(1)
C(21)	20(1)	32(1)	24(2)	5(1)	5(1)	3(1)
C(23)	28(1)	18(1)	38(2)	-3(1)	7(1)	-3(1)
C(27)	20(1)	27(1)	24(1)	-1(1)	1(1)	3(1)
C(31)	20(1)	28(1)	31(2)	5(1)	3(1)	-4(1)
C(32)	16(1)	22(1)	22(1)	0(1)	-2(1)	1(1)
C(33)	27(1)	40(1)	18(2)	-1(1)	6(1)	7(1)
C(34)	27(1)	22(1)	34(2)	2(1)	7(1)	3(1)
C(35)	25(1)	36(1)	22(2)	-9(1)	0(1)	7(1)
C(40)	26(1)	31(1)	28(2)	1(1)	7(1)	-6(1)
C(41)	36(2)	27(1)	26(2)	6(1)	7(1)	-1(1)
C(42)	28(1)	24(1)	29(2)	-4(1)	9(1)	-1(1)
O(3)	40(1)	21(1)	23(1)	2(1)	3(1)	3(1)
O(5)	27(1)	28(1)	54(1)	15(1)	11(1)	6(1)
O(6)	35(1)	21(1)	34(1)	6(1)	3(1)	5(1)
O(8)	25(1)	27(1)	31(1)	5(1)	1(1)	2(1)
C(13)	26(1)	20(1)	24(1)	-1(1)	1(1)	2(1)
C(16)	20(1)	17(1)	29(2)	-3(1)	-4(1)	0(1)
C(17)	27(1)	26(1)	26(1)	-4(1)	4(1)	1(1)
C(22)	29(1)	20(1)	21(1)	-1(1)	4(1)	2(1)
C(24)	24(1)	20(1)	23(1)	-2(1)	-2(1)	-2(1)
C(25)	27(1)	24(1)	30(2)	6(1)	2(1)	-2(1)
C(26)	25(1)	22(1)	28(2)	-3(1)	4(1)	-2(1)
C(28)	24(1)	20(1)	25(1)	-4(1)	0(1)	2(1)
C(29)	36(2)	27(1)	23(1)	0(1)	5(1)	-4(1)
C(30)	27(1)	18(1)	27(1)	-2(1)	1(1)	-4(1)
C(36)	29(2)	45(2)	26(2)	-3(1)	5(1)	7(1)
C(37)	43(2)	26(1)	34(2)	4(1)	14(1)	7(1)
C(38)	29(1)	24(1)	25(1)	0(1)	1(1)	2(1)
C(39)	22(1)	31(1)	31(2)	-5(1)	1(1)	2(1)
C(43)	27(1)	23(1)	32(2)	-2(1)	-8(1)	4(1)
C(44)	25(1)	30(1)	40(2)	-3(1)	-4(1)	6(1)
C(45)	26(1)	31(1)	33(2)	-3(1)	4(1)	1(1)
C(46)	30(2)	24(1)	34(2)	2(1)	4(1)	6(1)
C(47)	30(2)	48(2)	34(2)	10(1)	3(1)	-9(1)
C(48)	32(2)	28(1)	60(2)	19(1)	12(2)	8(1)
						. /

Table A27_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 115a . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A27_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **115a**.

	х	У	Z	U(eq)
H(1)	3564(9)	10118(18)	4463(8)	24(5)
H(2)	1774(9)	5816(18)	2842(8)	32(6)
H(3)	4372(9)	6997(17)	1627(7)	20(5)
H(4)	5430(9)	8714(17)	259(8)	22(5)
H(5)	4082(9)	10608(17)	3539(7)	21(5)
H(6)	3287(10)	4458(18)	553(8)	30(5)
H(7)	1273(9)	7353(19)	1522(7)	25(5)
H(8)	3651(8)	7889(17)	2202(7)	16(5)
H(9)	4629(9)	10396(19)	2607(8)	28(5)
H(10)	4482(9)	4085(17)	472(8)	23(5)
H(11)	-2954(9)	10990(18)	-1270(8)	33(6)
H(12)	5688(9)	11186(17)	785(8)	25(5)
H(13)	2854(8)	6827(16)	2770(7)	9(5)
H(14)	852(12)	8300(20)	-963(11)	71(8)
H(15)	2740(9)	8109(17)	4563(8)	26(5)
H(16)	3744(10)	2667(19)	1497(8)	37(5)
H(17)	1532(10)	4516(17)	3371(8)	27(5)
H(18)	1051(9)	4794(19)	725(8)	29(6)
H(19)	3735(10)	3743(19)	2558(8)	35(6)
H(20)	-1029(9)	3434(18)	2397(8)	27(5)
H(21)	2352(9)	2755(19)	3090(8)	33(5)
H(22)	-1719(10)	5095(17)	1628(8)	27(6)
H(23)	-1268(10)	7690(20)	-1410(8)	41(6)
H(24)	4667(10)	4598(18)	1201(9)	34(6)
H(25)	3004(11)	4029(19)	3343(9)	40(6)
H(26)	3204(9)	2160(20)	2394(8)	32(5)
H(27)	3451(9)	6340(20)	678(8)	36(6)
H(28)	-907(9)	7651(17)	541(8)	24(5)
H(29)	-3670(10)	10458(19)	-446(8)	41(6)
H(30)	130(9)	6895(17)	1062(8)	26(5)
H(31)	-3188(10)	8799(18)	402(9)	35(6)
H(32)	-1087(10)	8919(19)	-1951(9)	46(6)
H(33)	5211(8)	11538(18)	1750(8)	20(5)
H(34)	249(10)	3458(19)	2473(8)	33(6)
H(35)	1972(11)	6074(19)	1657(9)	44(6)
H(36)	-2289(10)	6740(20)	878(9)	51(6)
H(37)	-1354(9)	8111(17)	-399(8)	24(5)
H(38)	1386(12)	6450(20)	-312(10)	63(8)
H(39)	1808(10)	5538(18)	646(8)	35(6)
H(40)	2860(10)	3052(19)	1371(9)	36(6)
H(41)	-480(10)	10320(20)	-867(9)	47(7)
H(43)	-52(11)	9590(20)	-1416(10)	54(7)
H(44)	584(12)	5780(20)	-270(10)	67(7)
H(48)	727(11)	9200(20)	-320(10)	65(8)

Table A28_1. Crystal data and structure refinement for 115b.

Table A28_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

$(Å^2 x \ 10^3)$ for 115b .	. U(eq) is defined as one third of the trace of the orthogonalized U ¹ tenso	or.

Empirical formula $(A^2x \ 10^2)$ for 115b . U(eq) is defined as one third of the trace of the order of the order of the trace of the order of the	orthogonalized U ¹ tensor.
Formula weight 326.38 X y	z U(eq)
Vavelenth 071073 Å	
Crystal system Monoclinic O(1) 2270(4) 736(2) 49	24(2) 36(1)
Share group C_c $O(2)$ $4159(5)$ $-239(2)$ 42	31(2) 39(1)
Unit cell dimensions $a = 8.3474(10)$ Å $\alpha = 90^{\circ}$ O(3) 5944(5) 612(2) 34	33(2) 38(1)
$\begin{array}{c} a = 0.01 (10) 11 & a = 0.00 \\ b = 1.01 (10) 11 & a = 0.00 \\ b = 0.01 (10) 11 & a = 0.00 \\ c = 0.00 (10) 11 & a = 0.00 \\$	21(2) 39(1)
$c = 14.10(7)^{10}$ $p = 22.30(9)$ $C(1)$ $2939(7)$ $127(3)$ 51	98(3) 39(2)
C = 21.410(7) R = 700 $C(2) = 3059(8) = -435(3) = 470$	00(3) 39(2)
Volume $3436.6(13) \text{ A}^3$ C(3) $3460(7)$ 140(3) 37	02(3) 38(2)
Z 8 C(4) 4345(7) 813(3) 35	98(3) 33(2)
Density (calculated) 1.262 Mg/m^3 C(5) 7066(7) 1162(3) 33	89(3) 36(2)
$C(6) \qquad 6623(7) \qquad 1837(3) \qquad 33$	24(3) 32(2)
$\frac{1}{2} \sum_{k=1}^{2} \frac{1}{k} \sum_{k=1}^{2} \frac{1}$	01(3) 35(2)
(000) 1592 $C(8)$ 9409(8) 2135(3) 33	15(3) 39(2)
Crystal size $.3 \times .2 \times .05 \text{ mm}^3$ C(9) $9821(7)$ $1455(4)$ 33	79(3) 42(2)
Theta range for data collection 1.90 to 27.50° . $C(10)$ $8666(7)$ $962(3)$ 34	24(3) 36(2)
Index ranges -10<=h<=7, -24<=k<=24, -25<=l<=27 C(11) 7486(7) 3078(3) 32	21(3) 40(2)
Reflections collected 7988 C(12) 6265(8) 3474(3) 333	63(3) 41(2)
Independent reflections $5528 [R(int) = 0.0636]$ $C(13)$ $4765(8)$ $3335(3)$ 36	96(3) 41(2)
Completeness to theta = 27.50° 96.6 % C(14) 4635(7) 2819(3) 41	43(3) 32(2)
Absorption correction None C(15) 3191(8) 2715(3) 44	21(3) 34(2)
Refinement method Full-matrix least-squares on F^2 C(16) 1692(7) 1934(3) 50	44(3) 36(2)
Data / restraints / parameters $5528/2/433$ $C(17)$ 1983(7) 1274(3) 53	84(3) 34(2)
$C(18) = \frac{1822(8)}{1822(8)} = \frac{3127(3)}{2127(3)} = \frac{42}{22}$	81(3) 42(2)
Coordination C(19) $2007(8)$ $3658(3)$ 38 Final D index (b 2) imm(b) D1 = 0.0575 mB2 = 0.1156 C(19) $2007(8)$ $3658(3)$ 38	64(3) 45(2)
Pinal R indices [1>2signa(1)] $R_1 = 0.057$, $WR = 0.1130$ $C(20)$ $3453(8)$ $3/64(3)$ 350 Diadiase (01 data) $R_1 = 0.157$ $C(20)$ $3453(8)$ $3/64(3)$ 350	64(3) 43(2)
R indices (an data) $R_1 = 0.1359$, $WR2 = 0.1397$ $O(5)$ $(817(5) -7/44(2) 44$	14(2) 39(1)
Absolute structure parameter $0.6(10)$ $0.6(1$	84(2) 45(1)
Largest diff. peak and hole 0.224 and -0.235 e.Å ⁻⁵ $O(7)$ 4146(5) -857(2) 19	66(2) 36(1)
O(8) $6854(5)$ $68/(2)$ 45	35 (2) 36 (1)
C(21) (120(8) -1388(3) 20 C(22) (20) (120(8) -1388(3) 20) (120(8)) (12	15(3) 45(2)
C(22) /046(8) -1884(5) /3	30(3) 45(2) 22(2)
C(23) $ODD = C(23)$ $C(23)$	23(3) 39(2) 42(2)
C(24) $5/69(7)$ $-601(3)$ 18	43(3) 36(2)
C(25) = -302(3) = 100	68(3) 36(2)
C(25) $3460(7)$ $402(3)$ 20 C(27) $2029(7)$ $004(7)$ 001	21(3) $34(2)10(2)$ $22(2)$
C(21) $Z208(1)$ $Z208(1)$ $Z24(3)$ $Z0$	19(3) 32(2) 70(2) 42(2)
$C(20) = \frac{2}{2}C(20) = \frac{2}{2}C(20) = \frac{1}{2}C(20) = \frac{1}{2}C(20$	79(3) $42(2)$
C(29) = 200(8) -1(4) -19	21(3) $40(2)$
C(30) = 1452(7) = -508(3) = 19	14(3) $38(2)$
C(31) $C(32)$ $2050(8)$ $1083(3)$ 211	41(2) 45(2) 27(2)
C(32) = 525(9) = 1027(2)	37(2)
$C_{(32)} = -522(8) = 1927(3) = 10$ $C_{(34)} = -5440(7) = -120(72) = 11$	13(3) 34(2) 77(2) 35(2)
C(34) = -3439(7) = 1390(3) = 11 C(25) = -664(0) = 1267(2) = 00	(1(3)) = 33(2)
C(32) $0804(8)$ $1203(3)$ $080C(26)$ $0247(7)$ $421(2)$ 26	52(3) $52(2)$
$C_{(30)} = \frac{C_{(30)}}{C_{(27)}} = \frac{C_{(30)}}{C_{(2$	50(2) 50(2) 50(2)
$C_{(3)} = 000(6) -240(3) -33$ $C_{(3)} = 0190(7) -1711(2) = 00$	42(2)
$C_{(30)} = 0.00(7) - 171(3) - 25$ $C_{(30)} = 0.023(8) - 2557(3) - 14$	10(3) $42(2)$
C(3) $6033(6)$ $221(3)$ $1+C(40)$ $6658(8)$ $235(3)$ 17	12(3) $40(2)$

A28 Röntgenstrukturdaten für 115b

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	44(3)	32(2)	32(3)	1(2)	0(2)	3(2)
O(2)	36(3)	43(3)	39(3)	8(2)	4(2)	7(2)
O(3)	34(3)	37(3)	45(3)	-1(2)	7(2)	5(2)
O(4)	36(3)	40(3)	41(3)	2(2)	4(2)	4(2)
C(1)	39(4)	37(4)	41(4)	1(3)	10(3)	-2(3)
C(2)	39(4)	34(4)	43(5)	-3(3)	11(3)	-6(3)
C(3)	37(4)	45(4)	34(4)	-6(3)	1(3)	-1(3)
C(4)	28(4)	31(4)	39(4)	0(3)	0(3)	-2(3)
C(5)	39(4)	36(4)	33(4)	2(3)	0(3)	-13(3)
C(6)	27(4)	34(4)	37(4)	4(3)	4(3)	1(3)
C(7)	43(4)	35(4)	28(4)	-3(3)	4(3)	1(4)
C(8)	49(5)	34(4)	35(4)	-4(3)	9(3)	-4(3)
C(9)	29(4)	62(5)	36(4)	-4(4)	8(3)	-10(4)
C(10)	34(4)	43(4)	33(4)	-1(3)	9(3)	11(3)
C(11)	36(4)	43(4)	42(4)	-4(3)	5(3)	-5(3)
C(12)	48(4)	35(4)	40(4)	-4(3)	0(4)	-11(4)
C(13)	46(4)	32(4)	44(5)	-9(3)	-4(4)	7(4)
C(14)	32(4)	33(3)	30(4)	3(3)	3(3)	2(3)
C(15)	41(4)	30(3)	30(4)	-4(3)	-4(3)	4(3)
C(16)	35(4)	41(4)	33(4)	3(3)	-2(3)	4(3)
C(17)	33(4)	40(4)	28(4)	-4(3)	5(3)	3(3)
C(18)	45(4)	40(4)	41(4)	-2(3)	1(3)	2(3)
C(19)	38(4)	42(4)	53(5)	-11(4)	-10(4)	13(3)
C(20)	59(5)	31(4)	39(4)	2(3)	-7(4)	6(4)
0(5)	42(3)	43(2)	31(3)	2(2)	1(2)	0(2)
0(6)	40(3)	48(3)	47(3)	-10(2)	4(2)	-6(2)
0(7)	36(3)	29(2)	44(3)	5(2)	6(2)	4(2)
0(8)	34(3)	38(2)	37(3)	-5(2)	4(2)	-3(2)
C(21)	46(4)	40(4)	49(5)	-13(3)	-3(3)	-7(3)
C(22)	46(4)	39(4)	52(5)	-10(4)	15(4)	4(3)
C(23)	34(4)	36(4)	47(5)	4(3)	1(3)	-2(3)
C(24)	25(4)	34(3)	49(4)	6(3)	7(3)	-6(3)
C(25)	33(4)	44(4)	30(4)	4(3)	1(3)	0(3)
C(26)	37(4)	39(4)	28(4)	8(3)	3(3)	-3(3)
(27)	28(4)	48(4)	22(4)	-1(3)	6(3)	9(3)
7(28)	34(4)	61(4)	29(4)	-6(3)	2(3)	12(4)
7(20)	31(4)	45(4)	$\frac{2}{44(4)}$	-5(3)	$\frac{2(3)}{1(3)}$	-10(4)
C(20)	31(4)	44(4)	38(4)	-3(3)	4(3)	2(3)
C(30)	58(5)	29(4)	36(4)	-5(3)	+(3)	$\frac{2(3)}{12(3)}$
7(32)	54(5)	17(3)	40(5)	-5(3)	0(4)	0(4)
C(32)	42(4)	17(3)	40(3)	-0(3)	0(4) 4(2)	6(4)
C(33) C(34)	42(4)	$\frac{27(3)}{33(4)}$	40(4)	8(3)	4(3)	4(2)
C(34) C(35)	37(4)	25(4)	34(4)	0(3)	-4(3)	-4(3)
C(33)	37(4) 25(4)	23(4)	34(4) 42(4)	4(3)	-2(3)	1(2)
C(30)	23(4)	47(4)	42(4)	4(3)	9(3)	1(3)
C(37)	42(4)	44(4)	40(4)	2(5)	9(3)	(3)
$C(3\delta)$	52(4) 57(5)	41(4)	40(4)	14(5)	0(3)	-0(3)
C(39)	57(5)	22(3)	47(4)	7(3)	-14(4)	-8(3)
U(40)	50(4)	33(4)	54(4)	2(3)	4(4)	6(4)

Table A28_3. Anisotropic displacement parameters ($Å^2 x 10^3$) for 115b . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

for 115b .				
	Х	у	Z	U(eq)
H(1A)	2256	-39	5534	47
H(1R)	4019	229	5385	47
$H(2\Delta)$	3426	-874	4901	46
H(2R)	1985	-518	4499	46
$H(3\Delta)$	2322	243	3776	46
H(3R)	3495	-152	3322	46
$H(4\Delta)$	3807	1084	3256	30
H(4R)	4387	1004	3083	30
H(6)	5523	1966	3296	30
H(8)	10225	2475	3281	47
H(0)	10225	1323	3302	51
H(10)	8949	487	3478	44
H(10) H(11)	8313	3325	3027	48
H(12)	6360	3941	3226	40
H(12) H(14)	5535	2537	4258	38
H(14)	908	1863	4238	
H(16R)	1250	2288	5327	44
H(10D) H(17A)	2027	1320	5678	44
H(17R)	1040	1152	5626	40
H(18)	807	3044	4474	40 51
H(10)	1118	3056	3776	54
H(19)	3534	4132	3271	52
H(20) H(21A)	7785	4152	124	54
H(21R)	6020	-1301	-124	54
$H(22\Delta)$	6693	-1301	568	54
H(22R)	8129	-1030	932	54
H(22D) H(23A)	7778	1238	1660	47
H(23R)	6537	-1238	2085	47
$H(24\Delta)$	6278	-418	2005	43
H(24R)	5704	353	1474	43
H(24D)	4559	531	2059	43
H(28)	-157	1055	1992	50
H(20)	-831	-133	1885	48
H(30)	1150	-985	1874	45
H(31)	1823	1035	2306	40
H(32)	3708	2537	2078	49
H(32) H(24)	4541	1106	1080	44
H(3+)	4341	126	610	42
H(36R)	8728	796	_48	45
H(30D)	0720	225	-40	4J 50
H(37R)	, 11 / 0000	-223	-550	50
H(38)	9009	-577	-270	45
H(30)	8008	2566	1/85	45
H(39)	6601	2500	2000	18
H(40)	0001	2129	2000	40

Table A28_4.Hydrogen coordinates ($x\;10^4)$ and isotropic displacement parameters (Å $^2x\;10^3)$ fo

A28 Röntgenstrukturdaten für 115b

Table A29_1. Crystal data and structure refinement for 42.

Table A29_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **42**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Identification code	pbd470 C20 H20 O4		for 42 . U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.				
$ \begin{array}{ $	Formula weight	324.36			x	у	Z	U(eq)
n nonsing and marker of the second	I emperature Wouslangth	100(2) K		0(1)	622(2)	9674(2)	5250(2)	20(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Crystal system	0.71075 A Monoclinic		O(1)	678(2)	8074(3) 10004(3)	5559(2) 4540(3)	29(1)
Init call dimensions = 18.8729(8) $\mathbf{u} = 90$ $\mathbf{v} = 90^{\circ}$ CO 46(3) 77.81(4) 592.2(4) 30(1) b = 1.017(4) $\gamma = 90^{\circ}$ C(1) 196(3) 17.87(5) 596(4) 3(1) Value $23.02(2)$ λ^3 C(13) 127(3) 1051(4) 5020(4) 3(1) Z C(13) 127(3) 1051(4) 5020(4) 57.9(4) 3(1) Z S C(15) 984(3) 956(4) 57.9(4) 3(1) Z S S 1.810 Mpin ³ C(13) 56(3) 484(4) 482(1) Absorption conflictent 002 m ⁻¹ C(13) 56(3) 484(4) 482(1) R000 176 07.0 11(3) 56(3) 424(3) 53(1)	Space group	C2		C(8)	146(3)	6874(4)	5482(4)	33(1) 32(1)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Unit cell dimensions	a = 18.8729(8) Å	a- 00°	C(0)	466(3)	7783(4)	5922(4)	32(1) 30(1)
bit	Unit cen unicisions	a = 10.8729(8) A b = 12.1171(4) Å	β= 00 545(2)°	C(1)	168(3)	5838(5)	5982(4)	38(1)
1290 1290 103 $127(3)$ $1031(4)$ $1005(4)$ $320(1)$ Z8 101 101 101 101 101 Density (calculated)1.30 Mgm ³ 101 101 101 101 Density (calculated) 130 Mgm ³ 101 101 101 101 Absorption coefficient 1002 mm ⁻¹ 101 101 101 101 1000 102 mm ⁻¹ 101 101 101 101 101 1000 102 mm ⁻¹ 101 101 101 101 101 1000 102 mm ⁻¹ 101 101 101 101 101 1000 $23 \times 23 \times 05 \text{ mm}^3$ 07 $71(1)$ $616(3)$ $234(4)$ 4101 1010 materians or 102 100 $123(3)$ $103(3)$ $123(3)$ 101 101 1000 materians 100 1000 1000 $123(3)$ $101/3$ $101/3$ $101/3$ 1000 materians 1000 1000 1000 $103(3)$ $101/3$ $101/3$ $101/3$ 1000 materians 1000 1		0 = 12.11/1(4) A	$\mu = 90.343(2)$	C(12)	398(3)	11787(5)	5069(5)	42(1)
Volume 3240.2(2) A ³ Ci (5) 694(3) 696(4) 577(4) 31(1) Z 8 Ci (7) 66(3) 739(4) 577(4) 51(1) Density (calculuted) 1.330 Mg/m ³ Ci (8) 56(3) 674(5) 784(4) 482(1) Nasoption coefficient 002 618(2) 455(3) 422(2) 451(3) F000 1376 Ci (3) 371(3) 5828(5) 6926(5) 452(1) F000 1376 2.0.6 m ³ Ci (2) 436(3) 327(1) 94(4) 401(1) Index ranges 200 to 27.07°. Ci (3) 156(3) 2328(6) 1924(5) 532 Reflections collected 13307 Ci (3) 156(3) 235(4) 45(4) 442(2) Completeness to face action collected 13307 Ci (3) 143(3) 536(5) 175(4) 40(1) Masoption correction None Ci (3) 143(3) 536(5) 175(4) 40(1) Dari Arstinint (Finity Finity Fini) Mol		c = 14.1090(0) A	$\gamma = 90$	C(12)	1237(3)	10351(4)	5020(4)	32(1)
Z 8 C(17) 640(3) 7730(5) 6850(4) 56(1) Dondy (aclutab) 1.30 Mgm ³ C(18) 56(3) 4844(4) 544(5) 48(2) Absorption cefficient 0.092 mu ⁻¹ C(24) 598(3) 6746(5) 738(4) 42(1) (7000) 1376 C(31) 371(3) 582(6) 62(2) 55(1) (701) G(30) 136(3) 422(2) 35(1) 53(2) 73(1) 63(4) 42(2) 35(1) Theia range for data collection 2.00 to 27.00". C(2) 436(3) 323(4) 445(4) 40(1) Index ranges 2.46-abc-24, 15-abc-8(=18, -18-abc-818) C(30) 536(3) 238(4) 435(3) 323(4) 445(4) 442(4) Completenses to theta = 27.00" 100.0 % C(30) 136(3) 232(4) 139(4) 31(3) Reficients on theta = 5100" 100.0 % C(44) 323(4) 124(7) 124(8) 43(1) Dafa restatish symmetres 3701 (14) 3400 971(7) </td <td>Volume</td> <td>3240.2(2) Å³</td> <td></td> <td>C(15)</td> <td>984(3)</td> <td>9569(4)</td> <td>5779(4)</td> <td>31(1)</td>	Volume	3240.2(2) Å ³		C(15)	984(3)	9569(4)	5779(4)	31(1)
Density calculated)1.330 Mg/m³C1(3)56(3)4848(4)5484(5)48(2)Absorption coefficient0.092 nm²C1(3)77(3)5828(5)6926(5)45(1)CP000176C1(3)77(1)5828(5)6926(5)45(1)Crystal size2 x 2 x 0.5 nm³O(7)71(1)6569(3)-364(3)52(1)Theta mage for data collection20 to 27.00°.C1(2)436(3)371(5)964(4)40(1)Index mages-24 c=hc=24, -15 c=hc=18C1(3)583(5)3284(6)1924(5)43(2)Independent reflections3708 [Rún = 0.0547]C1(3)136(3)2344(1)485(4)44(2)Completenses to that = 27.00°000 %C1(3)963(3)5047(5)889(4)34(1)Absorption correctionNoneC1(3)234(4)124(3)583(5)175(4)48(1)Absorption correctionNoneC1(4)323(4)1247(5)121(7)83(3)Data / traitink / parameter3708 / 1/433C1(4)35(1)375(5)487(7)96(2)Finder (Index)Na (Pa = 0.1650)C1(4)130(6)973(7)96(2)Finder (Index)Na (Pa = 0.1650)C1(4)130(6)777(6)93(4)Finder (Index)Na (Pa = 0.1733)O(1)163(2)810(3)1774(3)93(1)Absorption correctionPaC1(1)203(2)233(2)330(1)234(4)31(1)Absorption correctionR1 = 0.063, M2 = 0.1733O(1)	Z	8		C(17)	660(3)	7749(5)	6859(4)	36(1)
Absoption coefficient 0.092 mm ⁻¹ C(24) 598(3) 6746(5) 7386(4) 42(1) F000) 1376 C(3) 71(3) 528(5) 692(5) 45(2) F000 2x 2.x 0.5 mm ³ O(2) 618(2) 415(3) 422(2) 58(1) Thet arage for data collection 200 to 27.00°. C(22) 43(6) 328(6) 192(5) 53(2) Reflections collected 13307 C(3) 136(3) 254(4) 485(4) 44(2) Independent reflections 100.0 % C(3) 163(3) 504(7) 89(4) 41(1) Complements to theta = 27.00° 100.0 % C(4) 33(4) 1294(7) 192(8) 8(3) Data / extraints/ parameters Full-matrix leas-squares on F ² C(4) 33(4) 725(5) 121(7) 83(3) Data / extraints/ parameters 1090 C(4) 54(5) 337(5) 47(1) 30(1) 30(1) 22(2) 31(1) Data / straints/ parameters 1090 C(4) 176(2) 612(3)	Density (calculated)	1.330 Mg/m ³		C(18)	56(3)	4848(4)	5484(5)	48(2)
$p(00)$ 1376 $C(31)$ 371(3) $528(5)$ $622(5)$ $45(2)$ $Crystal siz$ $2, x, 2, x, 08 mm^3$ $0(7)$ $711(3)$ $639(3)$ $-36(4)$ $52(1)$ $Their range for data collection200 v 27.00^{\circ}C(30)85(3)323(6)1924(5)52(1)Index ranges-24 < mb < 24, 155 < mb < < 15, 18 < le < le < 18C(30)85(3)323(6)1924(5)53(2)Index ranges24 < mb < 24, 155 < mb < < 16, 18 < mb < < 16, 33136(3)2354(4)485(4)44(2)Independent reflections3708 [R(ini = 0.0547]C(34)1243(3)535(5)175(4)40(1)Completeness to note a 27.00^{\circ}100.\%C(34)1243(3)535(5)175(4)40(1)Absorption correctionNoneC(34)1245(3)535(5)17(7)83(3)Data / ratsrins / parameters3708 / 1/433C(46)53(3)2224(8)239(6)73(3)Data / ratsrins / parameters1090C(48)54(5)337(5)487(7)93(4)Final Final Finders (Ip-2-signaf)R = 0.0613, RP = 0.173O(4)156(2)173(3)63(2)37(1)36(3)Absolute structure parameter-1.1(9)O(5)321(2)87(6)37(1)38(1)Largest diff. peak and hole0225 and -0.229 e Å^{-3}(16)209(3)318(6)122(4)40(4)C(10)2203(2)833(3)$	Absorption coefficient	0.092 mm^{-1}		C(24)	598(3)	6746(5)	7386(4)	42(1)
Construct 2.x. 2x. 0.5 ma ³ O(2) 618C2 415(3) 42(2) 35(1) Theta range for data collection 2.00 to 27.00°. C(2) 436(3) 3271(5) 06(4) 40(1) Index range for data collection 2.40 herb-24, 155-ekc=15, 18C=168 C(3) 585(3) 3238(6) 1924(5) 53(2) Reflections collected 13007 C(3) 136(3) 2354(4) 485(4) 44(2) Completeness to thefa = 27.00° 100.0 % C(3) 93(3) 5047(5) 889(4) 34(1) Completeness to thefa = 27.00° 100.0 % C(4) 33(4) 1294(7) 1924(8) 81(3) Refinement method Fult-matrix least-squares on P ² C(4) 35(4) 725(5) 121(7) 83(3) Goodness-of-fit on P ² 1.090 C(4) 54(5) 337(6) 497(7) 93(4) Refinement method R1 = 0.061, wR 2 = 0.1500 C(4) 176(2) 65(2) 37(1) 69(2) 37(1) 49(2) 37(1) Aboic (at dat) R1 = 0.061, wR 2 =	F(000)	1376		C(31)	371(3)	5828(5)	6926(5)	45(2)
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$		2 2 05 3		O(2)	618(2)	4155(3)	422(2)	35(1)
Inter rate of data Concentro CODE (AMD) CODE (AMD) Optimization O	Crystal size	.2 x .2 x .05 mm ²		O(7)	711(3)	6369(3)	-364(3)	52(1)
Index finitions 2-4-contence, 1-streacter,	I heta range for data collection	$2.00 \text{ to } 27.00^{\circ}$.	15 10 - 1 - 10	C(22)	436(3)	3271(5)	964(4)	40(1)
Reflections collected 1350/ C(3) 136(3) 2354(4) 48(5(4) 44(2) Completeness to theta = 27.00° 100.0 % C(3) C(3) 963(3) 5047(5) 889(4) 34(1) Absorption correction None C(4) 233(4) 1294(7) 1924(8) 81(3) Refinement method Full-matrix least-squares on F ² C(45) 385(4) 7255(5) 121(7) 83(3) Data / restraints / parameters 3708 / 1/433 C(46) 53(3) 224(8) 94(3) 91(3) Indices (11 data) R l = 0.0661, wR2 = 0.1650 C(48) 54(5) 337(5) 487(7) 93(4) Absolute structure parameter -1.1(19) C(5) 3021(2) 871(63) 265(2) 37(1) Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ C(14) 340(6) 1705(4) 173(3) 38(1) C(21) 2203(2) 4819(4) 310(4) 240(4) 240(4) 240(4) 240(4) 240(4) 240(4) 240(4) 240(4) 240(4)	Index ranges	-24<=n<=24, -15<=K<	=15, -18<=1<=18	C(30)	585(3)	3238(6)	1924(5)	53(2)
Independent reflections 5/08 [R(m) = 0.094] C(34) [243(3) 5835(5) 175(4) 40(1) Absorption correction None C(38) 963(3) 5047(5) 889(4) 33(3) Refinement method Full-matrix least-squares on F ² C(45) 358(4) 725(5) 121(7) 83(3) Data / restraints / parameters 3708 / 1 / 453 C(46) 503(3) 2224(8) 2429(6) 73(3) Goodness-of-fit on F ² 1.090 C(48) 54(5) 337(5) 487(7) 93(4) Rindices (all data) R = 0.0613, wR2 = 0.1650 C(49) 102(4) 130(6) 973(7) 69(2) Absolute structure parameter -1.1(19) O(5) 302(1) 871(6) 265(2) 37(1) Absolute structure parameter -1.1(19) O(6) 3025(2) 652(3) 2306(2) 31(1) C(16) 269(3) 3189(6) 1252(4) 46(2) C(19) 213(3) 335(4) 43(1) C(21) 223(3) 235(5) 1006(4) 34	Reflections collected	13307		C(33)	136(3)	2354(4)	485(4)	44(2)
Completes to ited = 27.00 ⁻¹ 100.0 % C(38) 963(3) 5047(5) 889(4) 34(1) Absorption correction None C(44) 323(4) 1294(7) 1924(8) 81(3) Refinement method Full-matrix least-squares on F ² C(45) 385(4) 725(5) 121(7) 83(3) Data / restraints / parameters 3708 / 1 / 433 C(46) 503(3) 2224(8) 2429(6) 73(3) Goodness-of-fit on F ² 1090 C(48) 54(5) 337(5) 487(7) 93(4) Final R indices (Ip-2signa(I)) R I = 0.0613, wk2 = 0.1753 C(49) 162(4) 1330(6) 973(7) 69(2) Absolut structure parameter -1.1(19) C(5) 3021(2) 8716(3) 236(2) 37(1) Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ O(10) 1638(2) 8610(3) 1773(3) 38(1) C(14) 3406(3) 135(4) 173(4) 35(1) C(21) 2203(3) 2345(4) 374(4) 34(1) C(22) 2779(3	Independent reflections	3/08 [R(int) = 0.054/]		C(34)	1243(3)	5835(5)	175(4)	40(1)
Assontion connection Nome C(44) 323(4) 1294(7) 1924(8) 81(3) Refinement method Full-matrix least-squares on F ² C(45) 335(4) 7255(5) 121(7) 83(3) Goodness-of-fit on F ² 1900 C(46) 503(3) 2224(8) 973(7) 98(4) Goodness-of-fit on F ² 1900 C(48) 54(5) 337(5) 973(7) 69(2) R indices (all data) R I = 0.0613, wR 2 = 0.1733 O(4) 1776(2) 6612(3) 203(2) 37(1) Absolute structure parameter -1.1(19) O(5) 3021(2) 871(3) 38(1) C(14) 3406(3) 7105(4) 1749(4) 35(1) 743(4) 36(1) Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ O(10) 1638(2) 8610(3) 179(4) 36(1) C(14) 3406(3) 7105(4) 1749(4) 35(1) 26(2) 279(3) 3895(4) 471(4) 36(1) C(14) 2406(3) 5395(5) 1005(4) 36(1) 2	Completeness to theta = 27.00°	100.0 %		C(38)	963(3)	5047(5)	889(4)	34(1)
Refinemt method Full-matrix least-squares on F ² C(45) 385(4) 7255(5) 121(7) 83(3) Dotat / estrinisti 3708 / 1/433 C(46) 503(3) 224(8) 2429(6) 73(3) Goodness-of-fir on F ² 1.090 C(48) 54(5) 337(5) 487(7) 93(4) Final R indices [I5-2signa(I)] R I = 0.0613, wR2 = 0.1650 C(49) 162(4) 1330(6) 973(4) 30(1) Absolute structure parameter -1.1(19) O(5) 3021(2) 631(3) 204(2) 31(1) Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ O(10) 1638(2) 8610(3) 1773(3) 38(1) C(16) 2699(3) 3189(6) 1252(4) 46(2) C(19) 213(3) 3935(4) 407(64) 34(1) C(20) 2200(2) 4819(4) 30(1) 203(1) 283(5) 3748(5) 33(1) C(21) 2203(3) 283(5) 3748(5) 43(1) 20(1) 20(2) 4819(4) 30(1) C(23) <td>Absorption correction</td> <td>INORE</td> <td>2</td> <td>C(44)</td> <td>323(4)</td> <td>1294(7)</td> <td>1924(8)</td> <td>81(3)</td>	Absorption correction	INORE	2	C(44)	323(4)	1294(7)	1924(8)	81(3)
Data / restraints / parameters 3708 / 1 / 433 C(46) 503(3) 2224(8) 2429(6) 73(3) Goodness-of-fit on P ² 1.090 C(48) 54(5) 337(6) 937(7) 69(2) R indices [I5-2sigma(I)] R I = 0.0662, wR2 = 0.1733 O(4) 177(2) 6612(3) 3014(2) 30(1) Absolute structure parameter -1.1(19) O(5) 3021(2) 8716(3) 635(2) 3(1) Largest diff. peak and hole 0.235 and -0.229 c.Å ⁻³ O(10) 1638(2) 80(0) 173(3) 38(1) C(14) 3406(3) 7105(4) 1749(4) 35(1) C(16) 269(3) 318(6) 1222(4) 46(2) C(20) 2200(2) 4819(4) 3410(4) 28(1) C(21) 2203(3) 235(5) 3748(5) 43(1) C(25) 2779(3) 9452(5) 1926(4) 40(1) C(26) 2843(3) 354(4) 37(1) 20(1) C(26) 2843(3) 5055(5) 1005(4) 30(1)	Refinement method	Full-matrix least-squar	es on F^2	C(45)	385(4)	7255(5)	121(7)	83(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Data / restraints / parameters	3708 / 1 / 433		C(46)	503(3)	2224(8)	2429(6)	73(3)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Goodness-of-fit on F^2	1.090		C(48)	54(5)	337(5)	487(7)	93(4)
R indices (all data)R1 = 0.0862, wR2 = 0.1733O(4)1776(2)6612(3)3014(2)30(1)Absolute structure parameter-1.1(19)O(5)3021(2)8716(3)2635(2)37(1)Largest diff. peak and hole0.235 and -0.229 e.Å ⁻³ O(10)1638(2)8610(3)1773(3)38(1)C(14)3406(3)7105(4)1749(4)35(1)C(16)2699(3)3189(6)1252(4)46(2)C(19)2131(3)3935(4)4076(4)34(1)C(20)2200(2)4819(4)3410(4)28(1)C(21)2203(3)2833(5)3748(5)43(1)C(25)2779(3)9452(5)1926(4)40(1)C(26)2843(3)5338(4)1885(4)33(1)C(27)2482(2)4569(5)2491(4)30(1)C(28)1943(2)5884(4)3714(3)29(1)C(29)1495(3)7659(4)3305(4)30(1)C(32)2000(3)8068(5)2340(4)39(1)C(33)160(3)8068(5)2340(4)39(1)C(34)1821(3)6079(5)4658(4)35(1)C(39)1979(3)4169(5)5032(4)35(1)C(40)1154(3)8208(5)2487(4)34(1)C(41)2953(3)365(6)669(4)49(2)C(42)2317(3)2613(5)2835(5)41(1)	Final R indices [I>2sigma(I)]	R1 = 0.0613, $wR2 = 0$.	1650	C(49)	162(4)	1330(6)	973(7)	69(2)
Absolute structure parameter -1.1(19) 0(5) 3021(2) 8716(3) 2635(2) 37(1) Largest diff. peak and hole 0.235 and -0.229 e.Å- ³ 0(6) 3025(2) 63(2) 8610(3) 1773(3) 38(1) C (14) 3406(3) 7105(4) 1749(4) 35(1) C (16) 2699(3) 3189(6) 1252(4) 46(2) C (19) 2131(3) 3935(4) 4076(4) 34(1) C (20) 2200(2) 48193(5) 3748(5) 43(1) C (21) 2203(3) 2835(5) 1005(4) 39(1) C (22) 2779(3) 9452(5) 1926(4) 40(1) C (23) 3045(3) 5338(4) 1885(4) 33(1) C (26) 2843(3) 5338(4) 1885(4) 33(1) C (27) 2482(2) 4569(5) 2491(4) 30(1) C (28) 1943(2) 588(4) 371(4) 30(1) C (29) 1495(3) 7659(4) 3305(4) 30(1) C (36) 1821(3) 607(5) 4638(4) 35(1) C (37)	R indices (all data)	R1 = 0.0862, wR2 = 0.	1733	O(4)	1776(2)	6612(3)	3014(2)	30(1)
Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ 0(6) 3025(2) 6322(3) 2306(2) 31(1) Largest diff. peak and hole 0.235 and -0.229 e.Å ⁻³ 0(10) 1638(2) 8610(3) 1773(3) 38(1) C(14) 3406(3) 7105(4) 1749(4) 35(1) C(16) 2699(3) 3189(6) 1252(4) 46(2) C(19) 2131(3) 3935(4) 4476(4) 34(1) C(20) 2200(2) 4819(4) 3410(4) 28(1) C(21) 2203(3) 2833(5) 3748(5) 43(1) C(22) 2779(3) 9452(5) 1926(4) 40(1) C(25) 2779(3) 9452(5) 1926(4) 40(1) C(26) 2843(3) 5538(4) 1885(4) 33(1) C(27) 2482(2) 4569(5) 2491(4) 30(1) C(27) 2482(2) 4569(5) 2491(4) 30(1) C(28) 1943(2) 5884(4) 3714(3) 29(1) C(29) 1495(3) 7659(4) 3305(4) 30(1) C(29) 1495(3) 7659(4) 3305(4) 30(1) C(35) 3600(3) 8068(5) 2340(4) 39(1) C(35) 3600(3) 8068(5) 2340(4) 39(1) C(37) 2483(3) 345(5) 2181(4) 40(1) C(37) 2483(3) 345(5) 2181(4) 40(1) C(40) 1154(3) 8208(5) 2487(4) 34(1) C(41) 2953(3) 395(6) 669(4) 49(2) C(42) 2317(3) 2613(5) 2835(5) 41(1) C(41) 2953(3) 395(6) 669(4) 49(2) C(42) 2317(3) 2613(5) 2835(5) 41(1) C(42) 2835(5) 2835(5) 2835(5) 41(1) C(42) 2835(5) 2835(5) 2835(5) 41(1) C(42) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 2835(5) 28	Absolute structure parameter	-1.1(19)		O(5)	3021(2)	8716(3)	2635(2)	37(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Largest diff neak and hale	$0.235 \text{ and } 0.220 \text{ a } h^{-3}$	1	O(6)	3025(2)	6322(3)	2306(2)	31(1)
$\begin{array}{cccccc} C(14) & 3406(3) & 7105(4) & 1749(4) & 35(1) \\ C(16) & 2699(3) & 3189(6) & 1252(4) & 46(2) \\ C(19) & 2131(3) & 3935(4) & 4076(4) & 34(1) \\ C(20) & 2200(2) & 4819(4) & 3410(4) & 28(1) \\ C(21) & 2203(3) & 2833(5) & 3748(5) & 43(1) \\ C(23) & 3045(3) & 5055(5) & 1005(4) & 39(1) \\ C(25) & 2779(3) & 9452(5) & 1926(4) & 40(1) \\ C(26) & 2843(3) & 5338(4) & 1885(4) & 33(1) \\ C(27) & 2482(2) & 456(5) & 2491(4) & 30(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(29) & 1495(3) & 7659(4) & 303(4) & 30(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 3208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2332(5) & 41(1) \\ C(42) & 2317(3) & 2613(5) & 2332(5) & 41(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(44) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2335(5) & 41(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(44) & 2853(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4) & 34(1) \\ C(43) & 185(3) & 5720(6) & 5332(4)$	Largest unit. peak and note	0.235 and -0.229 e.A		O(10)	1638(2)	8610(3)	1773(3)	38(1)
$\begin{array}{c cccc} C(16) & 269(3) & 3189(6) & 122(4) & 46(2) \\ C(19) & 2131(3) & 3935(4) & 476(4) & 34(1) \\ C(20) & 2200(2) & 4819(4) & 3410(4) & 28(1) \\ C(21) & 2203(3) & 2833(5) & 3748(5) & 43(1) \\ C(23) & 3045(3) & 5055(5) & 1005(4) & 39(1) \\ C(25) & 2779(3) & 9452(5) & 1926(4) & 40(1) \\ C(26) & 2843(3) & 5338(4) & 1885(4) & 33(1) \\ C(27) & 2482(2) & 4569(5) & 2491(4) & 30(1) \\ C(28) & 1945(3) & 7659(4) & 3305(4) & 30(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(35) & 3600(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(39) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ \end{array}$				C(14)	3406(3)	7105(4)	1749(4)	35(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				C(16)	2699(3)	3189(6)	1252(4)	46(2)
$\begin{array}{c cccc} C(20) & 2200(2) & 4819(4) & 3410(4) & 28(1) \\ C(21) & 2203(3) & 2833(5) & 3748(5) & 43(1) \\ C(23) & 3045(3) & 5055(5) & 1005(4) & 39(1) \\ C(25) & 2779(3) & 9452(5) & 1926(4) & 40(1) \\ C(26) & 2843(2) & 4569(5) & 2491(4) & 30(1) \\ C(27) & 24843(2) & 5884(4) & 3714(3) & 29(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 9600(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 34(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 217(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 187(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(19)	2131(3)	3935(4)	4076(4)	34(1)
$\begin{array}{c cccc} C(21) & 2203(3) & 2835(3) & 3748(5) & 43(1) \\ C(23) & 3045(3) & 5055(5) & 1005(4) & 39(1) \\ C(25) & 2779(3) & 9452(5) & 1926(4) & 40(1) \\ C(26) & 2843(3) & 5338(4) & 1885(4) & 33(1) \\ C(27) & 2482(2) & 4569(5) & 2491(4) & 30(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(20)	2200(2)	4819(4)	3410(4)	28(1)
$\begin{array}{c ccccc} C(23) & 3043(3) & 5053(5) & 1005(4) & 39(1) \\ C(25) & 2779(3) & 9452(5) & 1926(4) & 40(1) \\ C(26) & 2843(3) & 5338(4) & 1885(4) & 33(1) \\ C(27) & 2482(2) & 4569(5) & 2491(4) & 30(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 411(1) \\ C(43) & 1865(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(21)	2203(3)	2833(5)	3/48(5)	43(1)
$\begin{array}{c cccc} C(25) & 277(5) & 942(5) & 1920(4) & 40(1) \\ C(26) & 2843(3) & 5338(4) & 1885(4) & 33(1) \\ C(27) & 2482(2) & 456(5) & 2491(4) & 30(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 400(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 410(1) \\ C(42) & 1865(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(23)	3043(3) 2770(2)	5055(5) 0452(5)	1005(4)	39(1) 40(1)
$\begin{array}{c ccccc} C(26) & 2843(3) & 5358(4) & 1885(4) & 53(1) \\ C(27) & 2482(2) & 4569(5) & 2491(4) & 30(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(23)	2779(3)	9432(3) 5228(4)	1920(4)	40(1)
$\begin{array}{c cccc} C(27) & 2430(3) & 2431(4) & 50(1) \\ C(28) & 1943(2) & 5884(4) & 3714(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(26)	2843(3)	5558(4) 4560(5)	1885(4)	33(1) 20(1)
$\begin{array}{c ccccc} C(25) & 1943(2) & 514(3) & 29(1) \\ C(29) & 1495(3) & 7659(4) & 3305(4) & 30(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(0) \\ C(43) & 1865(3) & 5230(6) & 5312(4) & 39(1) \\ \end{array}$				C(27)	2462(2) 1042(2)	4309(3)	2491(4)	30(1)
$\begin{array}{c ccccc} C(29) & 1495(3) & 7609(4) & 5301(4) & 50(1) \\ C(32) & 2000(3) & 9600(5) & 2031(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5209(6) & 5312(4) & 39(1) \\ \end{array}$				C(28)	1945(2) 1405(2)	3664(4) 7650(4)	3714(3) 3205(4)	29(1)
$\begin{array}{cccccc} C(32) & 2000(3) & 5000(3) & 2051(4) & 39(1) \\ C(35) & 3600(3) & 8068(5) & 2340(4) & 39(1) \\ C(36) & 1821(3) & 6079(5) & 2658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(29)	2000(3)	9600(5)	2031(4)	30(1)
$\begin{array}{cccccc} C(35) & 1500(5) & 2500(5) & 2540(4) & 35(1) \\ C(36) & 1821(3) & 6079(5) & 4658(4) & 35(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(32)	2000(3)	8068(5)	2031(4) 2340(4)	39(1)
$\begin{array}{cccccc} C(30) & 101(5) & 007(5) & 405(4) & 53(1) \\ C(37) & 2483(3) & 3451(5) & 2181(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(36)	1821(3)	6079(5)	4658(4)	35(1)
$\begin{array}{cccc} C(37) & 2405(3) & 2101(4) & 40(1) \\ C(39) & 1979(3) & 4169(5) & 5032(4) & 35(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(37)	2483(3)	3451(5)	2181(4)	40(1)
$\begin{array}{cccc} C(5) & 177(5) & 110(5) & 5052(4) & 50(1) \\ C(40) & 1154(3) & 8208(5) & 2487(4) & 34(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5209(6) & 5312(4) & 39(1) \\ \end{array}$				C(39)	1979(3)	4169(5)	5032(4)	35(1)
$\begin{array}{cccc} C(40) & 1104(5) & 6206(5) & 2407(4) & 54(1) \\ C(41) & 2953(3) & 3965(6) & 669(4) & 49(2) \\ C(42) & 2317(3) & 2613(5) & 2835(5) & 41(1) \\ C(43) & 1865(3) & 5209(6) & 5312(4) & 39(1) \\ \end{array}$				C(3)	1154(3)	8208(5)	2487(4)	34(1)
$\begin{array}{cccc} C(42) & 2317(3) & 2613(5) & 2335(5) & 41(1) \\ C(43) & 1865(3) & 5220(6) & 5312(4) & 39(1) \\ \end{array}$				C(41)	2953(3)	3965(6)	669(4)	49(2)
C(12) $2615(3)$ $2015(3)$ $2015(3)$ $41(1)C(13)$ $1865(3)$ $5207(6)$ $5317(4)$ $30(1)$				C(42)	2317(3)	2613(5)	2835(5)	41(1)
174517 LOU.D.11 JZZARDI 1117451 1911				C(43)	1865(3)	5220(6)	5312(4)	39(1)

A29 Röntgenstrukturdaten für 42

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	31(2)	26(2)	30(2)	4(2)	-1(1)	-2(2)
O(3)	39(2)	30(2)	44(2)	0(2)	-4(2)	1(2)
C(8)	24(2)	32(3)	39(3)	0(2)	11(2)	4(2)
C(9)	24(2)	35(3)	31(3)	1(2)	7(2)	2(2)
C(11)	33(3)	38(3)	43(3)	11(3)	13(2)	-1(3)
C(12)	38(3)	28(3)	60(4)	-5(3)	-4(3)	1(2)
C(13)	31(3)	24(3)	41(3)	1(2)	1(2)	3(2)
C(15)	25(2)	29(3)	38(3)	2(2)	-5(2)	-3(2)
C(17)	34(3)	38(3)	37(3)	8(3)	5(2)	5(2)
C(18)	38(3)	21(3)	84(4)	10(3)	16(3)	2(2)
C(24)	42(3)	44(3)	41(3)	14(3)	9(2)	17(3)
C(31)	37(3)	41(4)	57(4)	21(3)	13(3)	9(3)
O(2)	39(2)	31(2)	35(2)	5(2)	3(2)	-1(2)
O(7)	89(3)	28(2)	39(2)	4(2)	-25(2)	0(2)
C(22)	33(3)	40(3)	48(4)	18(3)	10(2)	7(2)
C(30)	32(3)	63(4)	64(4)	30(4)	4(3)	5(3)
C(33)	38(3)	27(3)	68(4)	8(3)	25(3)	0(3)
C(34)	35(3)	39(3)	46(3)	-5(3)	9(2)	1(3)
C(38)	32(3)	39(3)	32(3)	1(2)	-6(2)	1(2)
C(44)	49(4)	59(5)	137(9)	60(6)	38(5)	20(4)
C(45)	72(5)	29(4)	148(8)	-27(4)	-60(5)	9(3)
C(46)	38(4)	91(6)	90(6)	65(6)	18(4)	24(4)
C(48)	57(5)	23(3)	201(12)	25(4)	59(8)	12(3)
C(49)	51(4)	38(4)	118(7)	32(4)	41(4)	13(3)
O(4)	34(2)	28(2)	28(2)	2(2)	1(1)	5(2)
O(5)	42(2)	34(2)	35(2)	-1(2)	1(2)	-7(2)
O(6)	34(2)	31(2)	30(2)	0(2)	5(1)	-6(2)
O(10)	48(2)	31(2)	36(2)	4(2)	2(2)	-7(2)
C(14)	32(3)	34(3)	41(3)	6(2)	11(2)	4(2)
C(16)	45(3)	43(4)	49(4)	-12(3)	-9(3)	8(3)
C(19)	22(2)	33(3)	47(3)	6(3)	-6(2)	-1(2)
C(20)	23(2)	32(3)	30(3)	5(2)	-5(2)	-4(2)
C(21)	40(3)	36(3)	53(4)	8(3)	-4(3)	-2(3)
C(23)	37(3)	48(3)	31(3)	-2(3)	2(2)	5(3)
C(25)	52(3)	33(3)	36(3)	3(3)	6(3)	-8(3)
C(26)	30(3)	34(3)	35(3)	-4(2)	-5(2)	6(2)
C(27)	27(3)	27(3)	37(3)	-4(2)	-8(2)	3(2)
C(28)	24(2)	35(3)	29(3)	5(2)	0(2)	-5(2)
C(29)	32(3)	24(3)	35(3)	1(2)	8(2)	3(2)
C(32)	47(3)	32(3)	38(3)	-1(3)	6(2)	-1(3)
C(35)	27(3)	43(3)	47(3)	5(3)	-1(2)	-6(2)
C(36)	26(2)	41(3)	38(3)	4(3)	0(2)	-1(2)
C(37)	32(3)	43(4)	46(3)	-8(3)	-8(2)	11(3)
C(39)	26(3)	42(3)	37(3)	13(3)	-1(2)	-5(2)
C(40)	27(2)	33(3)	43(3)	6(2)	4(2)	2(2)
C(41)	46(3)	61(4)	40(3)	-12(3)	-5(3)	28(3)
C(42)	36(3)	19(3)	67(4)	2(3)	-7(3)	3(2)
C(43)	28(3)	64(4)	26(3)	9(3)	3(2)	-3(3)

Table A29_3. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 42 . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A29_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($\mathring{A}^2 x \ 10^3$)	
for 42 .	

	х	у	Z	U(eq)
H(12A)	600	12495	4851	50
H(12R)	519	11693	5746	50
H(12D) H(13A)	1555	1095	5312	30
H(13R)	1517	0020	4555	30
H(15A)	1394	9300	6155	37
H(15R)	659	9961	6208	37
H(17)	835	8396	7159	44
H(18)	58	4167	5817	57
H(24)	713	6724	8040	51
H(31)	350	5152	7263	54
H(30)	741	3884	2244	64
H(34A)	1532	6402	504	48
H(34R)	1559	5430	-258	48
H(38A)	1357	4763	1286	41
H(38B)	623	5431	1304	41
H(44)	310	603	2240	98
$H(45\Delta)$	602	7964	-70	100
H(45R)	453	7165	810	100
H(46)	433 570	2194	3093	88
H(40)	53	2194	824	112
H(140)	3100	7347	1208	112
H(14R)	3840	6757	1407	42
H(14D)	2662	2448	1037	+2
H(21)	2160	2440	4185	52
H(21)	3252	5505	4185	16
$H(25\Delta)$	2884	9149	1294	40
H(25R)	3022	10172	1002	48
$H(29\Delta)$	1882	8129	3558	36
H(20R)	1143	7547	3810	36
$H(32\Delta)$	1801	9791	2693	47
H(32R)	1835	10214	1622	47
H(35A)	3859	7801	2907	47
H(35B)	3928	8543	1980	47
H(36)	1707	6802	4865	42
H(30)	1957	3585	5478	42
$H(40\Delta)$	821	7681	2186	41
H(40R)	872	8830	2100	41
H(41)	3070	3783	37	50
H(42)	2284	1871	2622	49
11(72)	1015	10/1	2022	+7

Anhang

A29 Röntgenstrukturdaten für 42

Table A30_1. Crystal data and structure refinement for 126.

Table A30_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

Identification code Empirical formula	pbd465b C22 H26 O8	$(\text{\AA}^2 x \ 10^3)$ for 126 . U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.					
Formula weight Temperature	418.43 100(2) K		Х	У	Z	U(eq)	
Wavelength	0.71073 A	$\overline{O(1)}$	2185(2)	306(2)	6600(2)	48(1)	
Crystal system	orthorhombic	O(2)	7151(2)	-2734(2)	7171(2)	43(1)	
Space group		O(3)	8541(2)	-1505(2)	6677(2)	53(1)	
Unit cell dimensions	$a = 13.3012(13) A$ $\alpha = 90^{\circ}.$	O(4)	7898(2)	-138(2)	5867(2)	49(1)	
	$b = 14.3067(9)$ A $\beta = 90^{\circ}$.	O(5)	1279(2)	-1103(2)	5886(2)	53(1)	
	$c = 21.788(2) \text{ Å} \qquad \gamma = 90^{\circ}.$	O(6)	2479(2)	-2299(2)	5223(1)	52(1)	
Volume	4146.2(6) Å ³	C(7)	4375(3)	-1088(3)	6154(2)	38(1)	
Z	8	C(8)	2304(3)	-1046(3)	5948(2)	40(1)	
Density (calculated)	$1.341 \mathrm{Mg/m^3}$	C(9)	2903(4)	-1701(3)	5654(2)	44(1)	
Delisity (calculated)	1.541 Mg/III	C(10)	3786(3)	-414(3)	6436(2)	39(1)	
Absorption coefficient	0.102 mm ⁻¹	C(11)	7214(3)	-699(3)	6159(2)	40(1)	
F(000)	1776	C(12)	6821(3)	-2004(3)	6806(2)	38(1)	
Crystal size	$.3 \text{ x} .3 \text{ x} .3 \text{ mm}^3$	C(13)	5801(3)	-1900(3)	6682(2)	41(1)	
Theta range for data collection	1.87 to 27.00°.	C(14)	2750(3)	-393(3)	6334(2)	40(1)	
Index ranges	-10<=h<=16, -18<=k<=15, -27<=l<=23	C(15)	7532(3)	-1410(3)	6542(2)	41(1)	
Reflections collected	15329	C(16)	6196(4)	-569(3)	6042(2)	39(1)	
Independent reflections	4441 [R(int) = 0.0978]	C(17)	5481(3)	-1174(3)	6302(2)	40(1)	
Completeness to theta = 27.00°	98.2 %	C(18)	3942(3)	-1738(3)	5748(2)	39(1)	
Absorption correction	None	C(19)	5902(4)	221(3)	5639(3)	56(2)	
Refinement method	Full-matrix least-squares on F^2	C(20)	1541(4)	33(3)	7087(3)	60(2)	
Data / restraints / parameters	4441/0/288	C(21)	4574(4)	-2504(3)	5418(2)	62(2)	
C_{rest} , restantis, parameters	0.992	C(22)	7277(3)	-2470(3)	7808(2)	48(1)	
Goodness-of-fit on F ⁻	0.883	C(23)	849(4)	-420(4)	5502(2)	66(2)	
Pindiaga (all data)	RI = 0.0762, WR2 = 0.2000 RI = 0.2262, WR2 = 0.2522	C(24)	1975(4)	-3097(3)	5481(2)	60(2)	
R mulces (an data)	R1 = 0.2202, WR2 = 0.2352	C(25)	9043(4)	-2225(4)	6350(2)	73(2)	
Largest diff. peak and hole	0.625 and -0.427 e.Å ⁻⁵	C(26)	4233(4)	283(3)	6861(3)	61(2)	
		C(27)	5052(3)	-2582(3)	6984(2)	61(2)	
		C(28)	8310(4)	574(4)	6255(3)	80(2)	
		O(1A)	5180(5)	666(4)	5683(4)	206(4)	
		O(1B)	4500(50)	510(30)	7161(14)	800(60)	
		O(1C)	4982(7)	659(9)	6787(9)	200(10)	

A30 Röntgenstrukturdaten für 126

A30 Röntgenstrukturdaten für 126

O(1)	40(2)	39(2)	65(3)	5(2)	5(2)	6(2)	
O(2)	44(2)	40(2)	44(2)	-5(2)	-7(2)	6(1)	
O(3)	30(2)	59(2)	69(3)	-7(2)	-1(2)	3(2)	
O(4)	47(2)	52(2)	49(2)	-3(2)	9(2)	-16(2)	
O(5)	32(2)	59(2)	68(3)	19(2)	-12(2)	2(2)	
O(6)	58(2)	58(2)	40(2)	2(2)	-14(2)	-10(2)	
C(7)	35(3)	42(3)	36(3)	13(2)	-4(2)	0(2)	
C(8)	30(3)	39(3)	50(3)	8(2)	-6(2)	2(2)	
C(9)	48(3)	46(3)	38(3)	7(2)	-8(2)	-5(2)	
C(10)	37(3)	34(2)	46(3)	9(2)	-7(2)	0(2)	
2(11)	42(3)	37(3)	44(3)	-6(2)	4(2)	-3(2)	
C(12)	36(3)	37(2)	43(3)	-5(2)	-2(2)	3(2)	
C(13)	31(3)	45(3)	48(3)	-3(2)	-5(2)	2(2)	
C(14)	36(3)	34(2)	51(3)	5(2)	-2(2)	4(2)	
C(15)	30(3)	44(3)	49(3)	-14(2)	2(2)	-1(2)	
C(16)	45(3)	37(2)	34(3)	-3(2)	-7(2)	0(2)	
C(17)	38(3)	38(2)	45(3)	-4(2)	-2(2)	6(2)	
C(18)	35(3)	46(3)	37(3)	7(2)	-7(2)	0(2)	
C(19)	43(3)	58(3)	69(4)	-6(3)	-4(3)	7(3)	
2(20)	56(4)	54(3)	69(4)	1(3)	6(3)	10(3)	
C(21)	58(3)	94(4)	33(3)	11(3)	1(3)	-1(3)	
C(22)	50(3)	45(3)	48(4)	0(2)	-2(3)	3(2)	
C(23)	51(3)	91(4)	58(4)	23(3)	-15(3)	9(3)	
C(24)	59(4)	59(3)	63(4)	0(3)	-8(3)	-18(3)	
C(25)	42(3)	104(4)	73(4)	-19(4)	9(3)	20(3)	
C(26)	48(4)	41(3)	94(6)	10(3)	-7(3)	1(3)	
C(27)	36(3)	73(3)	73(4)	5(3)	-13(3)	5(3)	
C(28)	90(5)	66(3)	82(5)	-16(3)	17(4)	-34(3)	
D(1A)	119(5)	125(4)	375(12)	101(6)	26(6)	7(4)	
O(1B)	1700(160)	540(60)	150(20)	-110(30)	-320(50)	230(80)	
O(1C)	32(5)	172(10)	400(30)	-210(14)	20(9)	-17(6)	

Table A30_3. Anisotropic displacement paran	neters ($Å^2 x \ 10^3$) for 126 .	The anisotropic
displacement factor exponent takes the form: -2	$2\pi^2$ [h ² a ^{*2} U ¹¹ + + 2 h	k a* b* U ¹²]

U²³

U¹³

U¹²

U³³

U¹¹

U²²

Table A30_4. Hydrogen coordinates $(x \ 10^4)$ and isotropic displacement parameters $(Å^2 x \ 10^3)$ for **126**.

	х	У	Z	U(eq)
H(19)	6348	376	5314	68
H(20A)	1050	-423	6935	90
H(20B)	1188	583	7246	90
H(20C)	1941	-251	7416	90
H(21A)	4126	-2999	5270	93
H(21B)	5060	-2770	5707	93
H(21C)	4932	-2226	5071	93
H(22A)	7775	-1966	7838	72
H(22B)	7510	-3011	8044	72
H(22C)	6633	-2253	7973	72
H(23A)	991	203	5669	100
H(23B)	120	-514	5482	100
H(23C)	1137	-472	5090	100
H(24A)	2424	-3413	5771	91
H(24B)	1790	-3531	5152	91
H(24C)	1367	-2892	5696	91
H(25A)	8817	-2835	6501	110
H(25B)	9770	-2166	6411	110
H(25C)	8887	-2171	5912	110
H(26)	4141	834	6625	73
H(27A)	4574	-2230	7236	91
H(27B)	5420	-3026	7243	91
H(27C)	4687	-2924	6664	91
H(28A)	7764	899	6469	119
H(28B)	8687	1023	6005	119
H(28C)	8762	288	6557	119

 Table A31_1. Crystal data and structure refinement for 120.

Table A31_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	tification codepbd465a $(Å^2x \ 10^3)$ for 120 . U(eq) is defined as one third of the trace of the orthogonalizedpirical formulaC22 H26 O6					ogonalized U ^{ij} ter	i U ^{ij} tensor.	
Formula weight Temperature	386.43 100(2) K			Х	у	Z	U(eq)	
Wavelength Crystal system	0.71073 Å Monoclinic		C(1)	5637(4)	3041(4)	-333(3)	26(1)	
Space group	P21		C(2)	4672(4)	3105(4)	392(3)	26(1)	
Unit cell dimensions	a = 8.7104(5) Å	$\alpha = 90^{\circ}$	C(3)	3074(4)	3355(3)	13(3)	24(1)	
offit cell differisions	a = 0.7194(5) A b = 0.2101(5) Å	$R = 101 \ 116(2)^{\circ}$	C(4)	2433(4)	3391(3)	-1082(3)	24(1)	
	0 = 9.5101(3) A	p = 101.110(2)	C(4A)	3409(4)	3092(4)	-1832(3)	22(1)	
	c = 12.0701(11) A	$\gamma = 90^{\circ}$	C(4B)	2847(4)	2952(4)	-3003(3)	22(1)	
Volume	1009.72(12) Å ³		C(5)	1340(5)	2419(4)	-3484(3)	26(1)	
Z	2		C(6)	889(4)	2493(4)	-4595(3)	28(1)	
Density (calculated)	1.271 Mg/m ³		C(7)	1891(4)	2973(4)	-5257(3)	26(1)	
Absorption coefficient	0.002 mm ⁻¹		C(8)	3404(4)	3327(4)	-4810(3)	24(1)	
E(000)	0.092 IIIII		C(8A)	3906(4)	3280(3)	-3689(3)	23(1)	
F(000)	412	2	C(9)	5548(4)	3430(4)	-3235(3)	28(1)	
Crystal size	0.35 x 0.25 x 0.12 mm	13	C(10)	6093(4)	3224(4)	-2181(3)	29(1)	
Theta range for data collection	1.64 to 27.00°.		C(10A)	5058(4)	3062(4)	-1447(3)	23(1)	
Index ranges	-11<=h<=7, -11<=k<=	=9, -16<=l<=13	C(11)	7969(5)	4161(5)	573(4)	52(1)	
Reflections collected	4732		C(12)	5683(9)	1715(5)	1892(4)	111(3)	
Independent reflections	2280 [R(int) = 0.0600]]	C(13)	2360(5)	4823(4)	1372(3)	37(1)	
Completeness to theta = 27.00°	97.3 %		C(14)	794(4)	4006(4)	-1381(3)	34(1)	
Absorption correction	None		C(15)	288(4)	1576(4)	-2894(3)	32(1)	
Refinement method	Full-matrix least-soua	res on F^2	C(16)	-1681(5)	3048(6)	-5482(4)	63(1)	
Data / restraints / parameters	2280 / 1 / 262		C(17)	1558(7)	1748(5)	-6905(3)	79(2)	
$C_{\text{rest}} = \frac{1}{2} \int f(f(x)) dx = \frac{1}{2$	0.070		C(18)	4519(5)	5081(4)	-5758(3)	41(1)	
Goodness-of-fit on F ²	0.979	0022	O(19)	7253(3)	2934(3)	8(2)	34(1)	
Final R indices [I>2sigma(I)]	R1 = 0.0489, WR2 = 0	1.0933	O(20)	5215(3)	3049(3)	1492(2)	33(1)	
R indices (all data)	R1 = 0.0992, WR2 = 0	0.1075	O(21)	2084(3)	3539(2)	729(2)	29(1)	
Absolute structure parameter	0.4(16)	2	O(22)	-568(3)	1955(3)	-5057(2)	45(1)	
Largest diff. peak and hole	0.198 and -0.260 e.Å ⁻	3	O(23)	1370(3)	3063(3)	-6363(2)	35(1)	
			O(24)	4456(3)	3600(2)	-5464(2)	30(1)	

A31 Röntgenstrukturdaten für 120

-		-				
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	24(2)	25(2)	28(2)	-5(2)	4(2)	2(2)
C(2)	31(2)	25(2)	21(2)	-4(2)	4(2)	-4(2)
C(3)	27(2)	23(2)	23(2)	-1(2)	10(2)	-2(2)
C(4)	23(2)	19(2)	32(2)	0(2)	9(2)	-2(2)
C(4A)	25(2)	18(2)	23(2)	1(2)	7(2)	2(2)
C(4B)	26(2)	14(2)	27(2)	1(2)	4(2)	0(2)
C(5)	27(2)	25(2)	28(2)	0(2)	10(2)	-1(2)
C(6)	23(2)	34(2)	28(2)	0(2)	4(2)	-9(2)
C(7)	35(2)	26(2)	20(2)	0(2)	6(2)	-5(2)
C(8)	28(2)	23(2)	24(2)	3(2)	9(2)	-3(2)
C(8A)	28(2)	16(2)	27(2)	-2(2)	11(2)	3(2)
C(9)	26(2)	29(2)	31(2)	0(2)	13(2)	-2(2)
C(10)	28(2)	27(2)	34(2)	-8(2)	7(2)	0(2)
C(10A)	25(2)	19(2)	26(2)	-3(2)	6(2)	-1(2)
C(11)	36(3)	62(3)	57(3)	-25(2)	8(2)	-14(2)
C(12)	220(8)	39(3)	48(3)	9(3)	-39(4)	-5(4)
C(13)	50(3)	30(2)	32(2)	-10(2)	12(2)	-1(2)
C(14)	29(3)	45(3)	31(2)	-3(2)	8(2)	3(2)
C(15)	37(3)	33(2)	27(2)	2(2)	10(2)	-9(2)
C(16)	27(3)	102(4)	54(3)	4(3)	-3(2)	-9(3)
C(17)	163(6)	44(3)	27(3)	-9(2)	11(3)	-13(3)
C(18)	49(3)	36(3)	38(3)	8(2)	12(2)	-9(2)
O(19)	23(2)	41(2)	33(2)	-12(1)	-2(1)	2(1)
O(20)	40(2)	34(2)	24(1)	-1(1)	3(1)	2(1)
O(21)	34(2)	30(1)	25(1)	-7(1)	10(1)	-2(1)
O(22)	35(2)	63(2)	33(2)	5(1)	-1(1)	-19(2)
O(23)	42(2)	40(2)	22(1)	2(1)	6(1)	-3(1)
O(24)	36(2)	27(2)	29(2)	4(1)	15(1)	-4(1)

Table A31_3. Anisotropic displacement parameters ($^{A2}x 10^3$) for **120**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

Table A31_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement paramet	ers
$Å^2 x \ 10^3$) for 120 .	

	х	У	Z	U(eq)
H(9)	6255	3678	-3690	33
H(10)	7190	3187	-1921	35
H(11A)	7774	5008	108	62
H(11B)	9098	4001	781	62
H(11C)	7528	4316	1219	62
H(12A)	4763	1148	1967	133
H(12B)	6371	1819	2596	133
H(12C)	6247	1228	1397	133
H(13A)	3481	4919	1662	44
H(13B)	1790	4764	1966	44
H(13C)	1996	5661	925	44
H(14A)	551	4207	-2154	41
H(14B)	732	4898	-980	41
H(14C)	41	3310	-1201	41
H(15A)	817	1428	-2147	38
H(15B)	47	643	-3245	38
H(15C)	-684	2111	-2908	38
H(16A)	-1610	3842	-4968	75
H(16B)	-2738	2642	-5605	75
H(16C)	-1454	3404	-6164	75
H(17A)	2674	1535	-6834	95
H(17B)	1081	1840	-7668	95
H(17C)	1048	968	-6585	95
H(18A)	3473	5404	-6105	49
H(18B)	5239	5194	-6258	49
H(18C)	4887	5658	-5113	49

Table A32_1. Crystal data and structure refinement for 130b.

Table A32_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

a a		
12 10 D C 100		
$(A^{-}x \mid 0^{\circ})$ for 130b	U(eq) is defined as one third of the trace of the orthogonalized U ² tensor	
(11 / 10 / 101 10 00.	o (og) is defined as one and of the brance of the brance of the born	

Identification code Empirical formula	pbd437c C17 H24 N O5		$(Å^2 x \ 10^3)$ for 1	130b. U(eq) is defined as	one third of the trac	e of the orthogonaliz	ed U ^{ij} tensor.
Formula weight Temperature	322.37 100(2) K			x	У	Z	U(eq)
Wavelength	0.71073 Å		N(1)	8449(12)	8136(8)	1678(5)	38(3)
Crystal system	triclinic		O(4)	10788(10)	7490(6)	4620(4)	46(2)
Space group	P-1		C(7)	11105(15)	6571(9)	2058(6)	30(3)
Unit cell dimensions	$a = 8.127(3) A_{\circ}$	$\alpha = 77.360(10)^{\circ}$	C(9)	8343(15)	8661(10)	2932(7)	45(4)
	b = 11.564(3) A	$\beta = 87.744(10)^{\circ}$	C(10)	10901(15)	7044(10)	3402(7)	40(3)
	c = 18.060(7) Å	$\gamma = 88.400(10)^{\circ}$	O(12)	8297(10)	9060(7)	4207(4)	51(3)
Volume	1654.5(10) Å ³		C(14)	10350(16)	7203(9)	2637(6)	40(4)
Z	4		O(18)	12113(11)	6199(7)	3619(4)	46(2)
Density (calculated)	1.294Mg/m^3		C(21)	8915(15)	8494(10)	3662(7)	40(3)
Density (calculated)	1.294 Wig/iii		O(25)	12886(11)	6624(6)	2051(4)	47(2)
Absorption coefficient	0.095 mm ⁻¹		C(28)	11639(16)	8467(10)	4797(6)	54(4)
F(000)	692		C(30)	10245(16)	7705(9)	3891(6)	40(4)
Crystal size	.3 x .3 x .03 mm ³		O(33)	10748(10)	5319(7)	2275(4)	48(2)
Theta range for data collection	1.81 to 26.98°.		C(40)	6380(19)	8479(11)	380(7)	69(5)
Index ranges	-10<=h<=9, -14<=k<=	=11, -15<=l<=22	C(43)	6818(14)	9717(10)	4044(7)	53(4)
Reflections collected	5741		C(47)	7288(17)	7238(11)	1622(6)	55(4)
Independent reflections	4459 [R(int) = 0.0995]]	C(50)	7787(18)	9365(10)	1337(7)	62(5)
Completeness to theta = 26.98°	61.7 %		C(57)	12154(19)	4763(12)	2060(8)	68(4)
Absorption correction	None		C(58)	7544(18)	9428(11)	508(7)	65(4)
Refinement method	Full-matrix least-squar	res on F^2	C(63)	7025(18)	7249(10)	786(7)	65(5)
Data / restraints / parameters	4459 / 0 / 421		C(64)	13633(15)	6610(10)	3796(7)	43(3)
z = 1	0.015		C(65)	9039(17)	8000(11)	2443(6)	47(4)
Goodness-of-fit on F ²	0.817	2//1	C(75)	13504(19)	5470(10)	2131(7)	59(4)
Final R indices [I>2sigma(I)]	R1 = 0.1123, WR2 = 0	0.2661	O(2)	6749(11)	3989(7)	4103(4)	48(2)
R indices (all data)	R1 = 0.3166, WR2 = 0	0.3424	C(2A)	8248(17)	4619(11)	3929(7)	56(4)
Largest diff. peak and hole	0.410 and -0.457 e.Å	3	N(6)	7073(13)	2901(8)	1626(5)	37(3)
			C(17)	6991(15)	3477(10)	2867(8)	47(4)
			O(20)	4221(10)	2497(6)	4537(4)	47(2)
			0(24)	4474(11)	98(7)	2455(4)	47(2)
			0(27)	2/8/(12)	1604(7)	1893(4)	52(3)
			C(31)	48/6(1/)	2687(11)	3799(7)	39(3)
			C(37)	0/34(1/)	3429(10)	235(6)	47(4)
			C(38)	4482(16)	1353(11)	2046(7)	49(4)
			C(39)	0110(10)	3014(10)	1011(7)	52(4)
			C(52)	3032(11) 8572(17)	2608(11)	127(7)	43(2) 58(4)
			C(52)	3373(17) 2082(10)	296(11)	127(7)	30(4) 92(5)
			C(55)	2962(19)	-380(12)	2525(9)	$\frac{62(3)}{26(2)}$
			C(60)	0234(10) 5045(15)	3402(11) 2082(10)	2505(7)	30(3)
			C(62)	3043(15)	2083(10)	2393(7)	22(2)
			C(68)	4274(13)	1680(10)	3725(7)	54(4)
			C(68)	6370(16)	2707(11)	3723(7) 2387(7)	38(3)
			C(07)	2025(10)	574(12)	1845(8)	73(5)
			C(78)	3321(15)	3528(10)	4732(6)	54(4)
			C(79)	8807(15)	3234(11)	1533(6)	46(4)
			C(84)	9570(17)	2989(11)	777(7)	62(4)
			2(01)	22/0(1/)			54(1)

A32 Röntgenstrukturdaten für iso-130b

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	46(7)	50(7)	20(6)	-11(5)	-9(5)	-2(6)
O(4)	81(7)	28(5)	29(5)	-2(4)	-4(5)	7(5)
C(7)	42(9)	13(7)	38(8)	-14(6)	5(7)	-5(6)
C(9)	66(10)	35(8)	32(9)	-6(7)	-13(8)	10(7)
C(10)	54(9)	28(7)	34(9)	2(7)	3(7)	6(7)
O(12)	71(7)	51(6)	29(5)	-6(4)	-6(5)	27(5)
C(14)	77(10)	22(7)	19(8)	-1(6)	3(7)	13(7)
O(18)	64(7)	46(5)	25(5)	1(4)	-8(5)	7(5)
C(21)	56(10)	40(8)	29(9)	-17(7)	8(8)	11(7)
O(25)	72(7)	32(5)	34(5)	-2(4)	2(5)	10(5)
C(28)	83(11)	47(9)	29(8)	-3(7)	-2(8)	5(8)
C(30)	82(10)	21(7)	15(8)	-3(6)	3(7)	19(8)
O(33)	56(6)	51(6)	40(6)	-21(4)	1(5)	4(5)
C(40)	118(14)	54(9)	41(9)	-18(8)	-27(9)	-8(10)
C(43)	68(10)	53(9)	44(9)	-23(7)	-3(8)	31(8)
C(47)	81(11)	53(9)	29(9)	-5(7)	-11(8)	-5(9)
C(50)	117(13)	36(8)	30(9)	-2(6)	-23(9)	31(8)
C(57)	74(12)	57(10)	77(12)	-20(9)	-14(10)	0(10)
C(58)	94(12)	37(8)	57(11)	-20(9)	-14(10)	14(9)
C(53)	126(13)	36(8)	30(0)	14(7)	-22(9)	13(0)
C(63)	37(0)	43(8)	45(9)	-14(7)	-30(9)	13(9)
C(04) C(65)	83(11)	43(8)	18(8)	-2(7)	-19(7)	-1(7)
C(05) C(75)	100(13)	31(8)	50(10)	-13(7)	-9(8)	20(9)
O(2)	56(7)	56(6)	38(6)	-23(7)	-1(9)	20(9)
$C(2\Lambda)$	50(7) 65(11)	74(10)	33(0)	-20(3)	-11(5)	-9(3)
$\mathbf{V}(2\mathbf{A})$ $\mathbf{N}(6)$	54(8)	27(6)	18(6)	-13(7)	3(6)	-18(9)
$\Gamma(0)$ $\Gamma(17)$	J4(8) 47(0)	37(0)	60(11)	-1(3)	-3(0)	-2(0)
O(20)	47(9)	31(6) 32(5)	26(5)	-0(7)	-3(6)	10(5)
O(20)	63(7)	32(3)	20(3)	-12(4)	-4(3)	10(3)
0(24)	01(7)	40(3)	57(0)	4(4) 8(4)	-10(3)	-4(3)
C(21)	60(6) 55(11)	20(3)	43(0)	-0(4)	-11(3)	-4(3)
C(31)	33(11)	45(9)	17(6)	-3(7)	-3(7)	3(8)
C(37)	04(12) 27(0)	55(8)	22(8)	-10(0)	-3(8)	4(8)
C(38)	57(9)	44(9)	02(10)	0(8)	-57(8)	-9(7)
C(39)	09(10)	50(8)	44(9)	9(7)	-11(6)	13(7)
0(41)	45(6)	45(6)	40(6)	-10(5)	-5(5)	4(5)
C(52)	71(12)	53(9)	50(10)	-9(8)	-6(9)	0(8)
C(55)	73(13)	52(10)	113(15)	12(10)	-35(11)	-17(9)
C(60)	38(9)	46(9)	26(9)	-8(7)	-10(7)	-4(7)
C(62)	27(8)	42(8)	37(9)	-15(7)	-3(7)	-3(7)
C(66)	32(9)	30(8)	38(9)	-12(7)	11(7)	-8(7)
C(68)	61(11)	41(8)	54(10)	5(7)	-6(8)	11(8)
C(69)	42(10)	47(9)	24(8)	-5(7)	-11(7)	4(8)
C(77)	94(13)	65(11)	55(11)	1(9)	-22(9)	-18(10)
C(78)	82(11)	42(8)	35(8)	-5(7)	8(8)	7(8)
C(79)	44(10)	72(10)	25(8)	-14(7)	-7(7)	-4(8)
C(84)	89(12)	54(9)	38(9)	-1(7)	3(9)	14(8)

Table A32_3. Anisotropic displacement parameters $(\mathring{A}^2 x \ 10^3)$ for **130b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\ h^2 a^{*2} U^{11} + ... + 2 h k \ a^* \ b^* \ U^{12}]$

Table <i>A</i> for 130	332_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å ² x 10^3) b.
--------------------------------------	---

	x	У	Z	U(eq)
H(9)	7483	9221	2770	54
H(28A)	12499	8734	4406	81
H(28B)	12143	8211	5292	81
H(28C)	10855	9121	4814	81
H(40A)	6316	8513	-171	83
H(40R)	5261	8625	581	83
H(43A)	6996	10358	3595	80
H(43R)	6467	10055	4478	80
H(43C)	5963	9195	3944	80
H(47A)	6226	7392	1874	65
H(47R)	7714	6449	1882	65
H(50A)	6727	9513	1594	74
H(50B)	8576	9971	1400	74
H(57A)	12088	4678	1529	82
H(57B)	12284	3963	2391	82
H(58A)	8625	9328	255	78
H(58B)	7090	10221	273	78
H(63A)	6221	6639	747	78
H(63B)	8078	7060	539	78
H(64A)	13960	7298	3402	64
H(64B)	14473	5979	3822	64
H(64C)	13523	6839	4287	64
H(75A)	13996	5194	2633	70
H(75B)	14360	5429	1732	70
H(2A1)	9135	4074	3832	85
H(2A2)	8525	4959	4359	85
H(2A3)	8115	5256	3477	85
H(17)	7902	3978	2705	56
H(37A)	6115	3960	-170	56
H(37B)	6554	2600	200	56
H(39A)	6192	4463	1023	63
H(39B)	4943	3395	1092	63
H(52A)	8990	3510	-356	70
H(52B)	8727	4555	92	70
H(55A)	2376	-692	2811	99
H(55B)	3185	-1048	2063	99
H(68A)	1513	1871	4229	82
H(68B)	668	1092	3724	82
H(68C)	1232	2411	3348	82
H(77A)	2044	478	1313	87
H(77B)	866	579	2035	87
H(78A)	2713	3950	4293	81
H(78B)	4108	4064	4872	81
H(78C)	2547	3253	5160	81
H(79A)	9427	2774	1966	55
H(79B)	8897	4086	1533	55
H(84A)	10734	3233	713	75
(04D)	0522	2122	701	, 5

A32 Röntgenstrukturdaten für iso-130b

Table A33_1. Crystal data and structure refinement for 132.

pbd327

298(2) K 0.71073 Å

monoclinic P21/c

a = 10.5674(18) Å

b = 7.7383(14) Å

c = 6.8423(8) Å

550.02(15) Å³

1.281 Mg/m³

0.085 mm⁻¹

.2 x .2 x .05 mm³

1049 [R(int) = 0.0449]

-13<=h<=13, -9<=k<=5, -6<=l<=7

Full-matrix least-squares on F²

R1 = 0.0425, wR2 = 0.0997

R1 = 0.0900, wR2 = 0.1217 0.114 and -0.173 e.Å⁻³

1.96 to 27.00°.

2

224

1840

87.6 %

1049/0/97

None

0.970

 $\alpha = 90^{\circ}$

 $\gamma = 90^{\circ}$

 $\beta = 100.571(9)^{\circ}$

C14 H12 O2 212.24

Identification code

Empirical formula

Formula weight Temperature

Wavelength Crystal system

Space group Unit cell dimensions

Volume Z

F(000)

Crystal size

Index ranges

Density (calculated)

Absorption coefficient

Reflections collected

Independent reflections

Absorption correction

Goodness-of-fit on F²

R indices (all data)

Final R indices [I>2sigma(I)]

Largest diff. peak and hole

Refinement method Data / restraints / parameters

Theta range for data collection

Completeness to theta = 27.00°

Table A33_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

$(Å^2 x \ 10^3)$ for 132 .	U(eq) is defined as one the	hird of the trace of the orthogonalized U ^{1J} tenso
-----------------------------------	-----------------------------	---

	Х	У	Z	U(eq)
O(1)	4267(1)	6555(1)	5676(2)	53(1)
C(5)	3322(2)	5707(2)	4335(2)	49(1)
C(6)	4929(2)	5496(3)	7291(3)	52(1)
C(9)	3676(2)	4699(2)	2841(2)	49(1)
C(13)	2042(2)	5941(3)	4455(3)	63(1)
C(14)	1434(2)	4134(3)	1609(3)	72(1)
C(16)	2711(2)	3918(3)	1482(3)	60(1)
C(28)	1102(2)	5154(3)	3080(3)	74(1)

Table A33_3. Anisotropic displacement parameters (Å²x 10³) for **132**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
0(1)	73(1)	38(1)	49(1)	-1(1)	11(1)	4(1)	
C(5)	61(1)	39(1)	46(1)	1(1)	9(1)	2(1)	
C(6)	74(1)	44(1)	39(1)	-1(1)	14(1)	4(1)	
C(9)	64(1)	39(1)	44(1)	2(1)	9(1)	2(1)	
C(13)	68(1)	66(1)	58(1)	1(1)	16(1)	8(1)	
C(14)	74(2)	69(1)	68(1)	5(1)	-6(1)	-5(1)	
C(16)	77(2)	51(1)	50(1)	-1(1)	2(1)	2(1)	
C(28)	62(2)	85(2)	74(2)	7(1)	10(1)	5(1)	

Table A33_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **132**.

	Х	У	Z	U(eq)
H(1)	4869(14)	6160(20)	8520(20)	55(5)
H(2)	4451(16)	4380(30)	7240(20)	61(5)
H(3)	2979(17)	3220(30)	420(30)	75(6)
H(4)	780(20)	3590(20)	640(30)	79(6)
H(5)	200(20)	5320(30)	3170(30)	83(7)
H(6)	1878(17)	6670(20)	5510(30)	67(6)

A33 Röntgenstrukturdaten für 132

-298-

 Table A34_1. Crystal data and structure refinement for 134.

Table A34_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

Identification code Empirical formula	pbdmime013 C8 H9 I O2	$(Å^2 x \ 10^3)$ for 134 . U(eq) is defined as one third of the trace of the orthogonalized U ^{jj} tensor.					
Formula weight Temperature	264.05 100(2) K		X	У	Z	U(eq)	_
Wavelength	0.71073 Å	I(1)	13248(3)	2121(1)	5388(1)	20(1)	
Crystal system	orthorhombic	I(2)	8239(2)	1491(1)	9467(1)	19(1)	
Space group	P21cn	O(3)	9617(13)	-1157(4)	6606(2)	29(2)	
Unit cell dimensions	$a = 4.3458(3) A$ $\alpha = 90^{\circ}$	C(4)	7650(30)	376(6)	8484(3)	13(3)	
	$b = 15.818(2) \text{ Å} \qquad \beta = 90^{\circ}$	O(5)	10270(12)	889(4)	7680(2)	22(2)	
	$c = 25.342(3) \text{ Å} \qquad \gamma = 90^{\circ}$	O (7)	15335(12)	1373(4)	7153(2)	20(2)	
Volume	1742.0(4) Å ³	O(8)	3950(14)	-1673(4)	8192(2)	23(2)	
Z	8	C (10)	6769(18)	451(5)	9005(3)	14(2)	
Density (coloulated)	2014 Matm ³	C(11)	11922(17)	1029(5)	5808(3)	12(2)	
Density (calculated)	2.014 Mg/III	C(12)	12980(40)	906(5)	6324(3)	17(2)	
Absorption coefficient	3.625 mm ⁻¹	C(13)	3980(20)	-859(6)	8965(3)	26(4)	
F(000)	1008	C(18)	14703(19)	1575(6)	6611(3)	19(2)	
Crystal size	$.3 \text{ x} .1 \text{ x} .1 \text{ mm}^3$	C(21)	12105(15)	143(6)	6573(3)	13(2)	
Theta range for data collection	1.61 to 26.99°.	C(22)	7790(30)	-1784(6)	6355(4)	37(3)	
Index ranges	-3<=h<=3, -19<=k<=8, -32<=l<=13	C(23)	4930(20)	-946(6)	8440(3)	18(2)	
Reflections collected	4022	C(24)	4885(19)	-130(6)	9253(3)	22(2)	
Independent reflections	2778 [R(int) = 0.0380]	C(32)	6721(17)	-343(6)	8196(3)	18(2)	
Completeness to theta = 26.99°	75.7 %	C(33)	9622(18)	1061(6)	8218(3)	16(2)	
Absorption correction	None	C(35)	4839(18)	-1785(5)	7656(3)	21(2)	
Refinement method	Full-matrix least-squares on F^2	C(37)	10304(19)	-456(6)	6307(4)	21(2)	
Data / restraints / parameters	2778 / 1 / 203	C(38)	9342(17)	-304(6)	5797(3)	21(3)	
z = 1	2770717203	C(44)	10179(19)	428(6)	5553(3)	18(2)	
Goodness-of-fit on F ²	0.798						
Final R indices [I>2sigma(I)]	R1 = 0.0346, $WR2 = 0.0569$						
R indices (all data)	R1 = 0.0606, WR2 = 0.0622						
Absolute structure parameter	0.00(4)						
Largest diff. peak and hole	0.559 and -0.705 e.Å $^{-3}$						

-		•		-		-	
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
I(1)	23(1)	21(1)	18(1)	4(1)	-2(1)	-2(1)	
I(2)	23(1)	20(1)	15(1)	-2(1)	-1(1)	-1(1)	
O(3)	34(4)	30(5)	23(3)	-1(3)	8(3)	-15(3)	
C(4)	0(9)	23(5)	17(4)	-4(4)	3(3)	0(4)	
O(5)	22(3)	29(5)	14(3)	3(3)	1(3)	-2(3)	
O(7)	17(3)	33(5)	11(3)	0(3)	-1(2)	-4(3)	
O(8)	23(7)	23(4)	22(3)	-3(3)	6(2)	-13(3)	
C(10)	13(5)	11(6)	17(5)	8(4)	2(3)	5(4)	
C(11)	19(6)	3(5)	14(4)	4(4)	8(3)	3(4)	
C(12)	19(6)	16(5)	16(3)	5(3)	-6(7)	4(8)	
C(13)	25(11)	28(6)	23(5)	6(4)	7(4)	-3(5)	
C(18)	19(5)	26(7)	12(4)	-1(4)	2(3)	-3(5)	
C(21)	13(7)	18(6)	9(4)	-3(4)	2(3)	4(4)	
C(22)	39(9)	30(6)	42(5)	-4(5)	10(6)	-32(7)	
C(23)	20(5)	12(7)	23(5)	1(4)	0(4)	0(5)	
C(24)	17(4)	28(7)	21(5)	5(5)	2(4)	6(5)	
C(32)	13(5)	20(6)	20(5)	3(4)	2(4)	-2(4)	
C(33)	11(5)	23(6)	15(4)	5(4)	0(3)	-2(4)	
C(35)	26(5)	14(6)	24(5)	0(4)	1(4)	-5(5)	
C(37)	15(5)	20(7)	29(5)	-3(5)	8(4)	-4(5)	
C(38)	21(8)	16(6)	26(5)	-2(4)	-7(3)	0(4)	
C(44)	28(5)	14(6)	13(4)	0(4)	-2(4)	4(5)	

Table A34_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 134 . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

Table A34_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameter	rs
$(Å^2 x \ 10^3)$ for 134 .	

	Х	У	Z	U(eq)
H(5)	8707	995	7497	33
H(7)	13670	1321	7318	31
H(13)	2744	-1282	9126	31
H(18A)	16677	1677	6427	22
H(18B)	13499	2106	6598	22
H(21)	12745	35	6925	16
H(22A)	5761	-1548	6272	56
H(22B)	7549	-2269	6592	56
H(22C)	8799	-1966	6029	56
H(24)	4214	-44	9606	26
H(32)	7321	-411	7838	22
H(33A)	8533	1609	8243	20
H(33B)	11587	1116	8413	20
H(35A)	4056	-1313	7444	32
H(35B)	3984	-2317	7522	32
H(35C)	7089	-1802	7632	32
H(38)	8107	-707	5617	25
H(44)	9545	527	5200	22

A34 Röntgenstrukturdaten für 134

Table A35_1. Crystal data and structure refinement for 143a.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system	pbd357b C9 H11 I O 262.08 100(2) K 0.71073 Å monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 13.9449(12) Å b = 4.5843(2) Å c = 15.1538(13) Å	$\alpha = 90^{\circ}$ $\beta = 109.425(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume Z	913.60(12) Å ³ 4	
Density (calculated)	1.905 Mg/m ³	
Absorption coefficient F(000)	3.447 mm ⁻¹ 504	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.00° Absorption correction	.2 x .1 x .02 mm ³ 1.55 to 27.00°. -17<=h<=17, -5<=k<=4, -19 5993 1975 [R(int) = 0.0548] 99.1 % None	<=l<=19
Refinement method Data / restraints / parameters	Full-matrix least-squares on 1975 / 0 / 144	F^2
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	1.092 R1 = 0.0290, wR2 = 0.0718 R1 = 0.0434, wR2 = 0.0962	
Largest diff. peak and hole	0.916 and -0.885 e.Å ⁻³	

Table A35_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

 $(\text{\AA}^2 x \ 10^3)$ for **143a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)
I(2)	4074(1)	4598(1)	1564(1)	25(1)
C(4)	1425(3)	-1672(10)	-503(3)	18(1)
C(5)	1412(4)	-865(11)	376(3)	23(1)
C(7)	2215(4)	-593(10)	-797(3)	20(1)
C(10)	2915(4)	1963(10)	647(3)	20(1)
C(14)	2153(4)	935(11)	971(3)	21(1)
O(15)	407(3)	-3028(9)	-2062(3)	25(1)
C(18)	2966(4)	1265(10)	-225(3)	18(1)
C(19)	2100(5)	1636(15)	1925(4)	32(1)
C(21)	649(4)	-3732(11)	-1098(3)	22(1)
C(24)	3790(4)	2368(13)	-574(4)	26(1)

Table A35_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 143a . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
I(2)	25(1)	25(1)	22(1)	1(1)	5(1)	-2(1)
C(4)	20(2)	14(2)	20(2)	4(2)	5(2)	3(2)
C(5)	23(3)	22(3)	24(2)	6(2)	9(2)	3(2)
C(7)	22(3)	19(3)	19(2)	4(2)	6(2)	4(2)
C(10)	22(3)	19(3)	18(2)	1(2)	5(2)	1(2)
C(14)	24(3)	23(3)	19(2)	1(2)	9(2)	3(2)
O(15)	34(2)	22(2)	17(2)	-1(2)	5(2)	-3(2)
C(18)	21(2)	15(2)	20(2)	6(2)	9(2)	2(2)
C(19)	34(3)	44(4)	19(3)	-4(2)	9(2)	-1(3)
C(21)	26(3)	18(3)	22(2)	6(2)	8(2)	1(2)
C(24)	24(3)	34(3)	21(3)	3(2)	10(2)	-1(2)

Table A35_4. Hydrogen coordinates (x 10 ⁴) and isotropic displacement parameters ($Å^2x \ 10^3$)
for 143a.	

	х	У	Z	U(eq)
H (1)	850(40)	1580/110)	560(20)	22(12)
H(2)	880(40)	-5510(90)	-1000(30)	11(12)
H(3)	60(40)	-3430(110)	-890(30)	24(13)
H(4)	2210(40)	-1170(110)	-1450(30)	21(13)
H(5)	2540(50)	840(130)	2290(40)	33(18)
H(6)	1430(50)	550(120)	2060(50)	45(19)
H(7)	190(50)	-3880(160)	-2270(50)	20(20)
H(8)	2010(50)	3760(160)	1980(40)	47(18)
H(10)	3710(40)	1480(140)	-1140(40)	41(16)
H(13)	3650(60)	4440(150)	-690(50)	50(20)
H(15)	4390(50)	2130(120)	-250(40)	32(16)

Table A36_1. Crystal data and structure refinement for yy143.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	pbd359 C8 H8.50 I O 247.55 298(2) K 0.71073 Å monoclinic P21/c a = 12.720(5) Å b = 4.6112(12) Å c = 15.050(7) Å	$ \begin{aligned} &\alpha = 90^{\circ} \\ &\beta = 107.79(2)^{\circ} \\ &\gamma = 90^{\circ} \end{aligned} $
Volume Z	840.5(6) Å ³ 4	
Density (calculated)	1.956 Mg/m ³	
Absorption coefficient F(000)	3.740 mm ⁻¹ 470	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.00° Absorption correction	.3 x .1 x .01 mm ³ 2.83 to 27.00°. -15<=h<=16, -4<=k<=4, -1 2728 1621 [R(int) = 0.0651] 88.8 % None	9<=l<=18
Refinement method Data / restraints / parameters	Full-matrix least-squares or 1621 / 0 / 93	n F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole	1.017 R1 = 0.0564, wR2 = 0.1502 R1 = 0.1255, wR2 = 0.1830 0.658 and -0.634 e.Å ⁻³	2

Table A36_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters

 $(Å^2 x \ 10^3)$ for **yy143**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Z	U(ag)
	U(eq)
3585(1)	60(1)
3890(8)	65(4)
1335(8)	53(3)
2587(7)	35(3)
339(5)	53(2)
993(7)	52(3)
1633(7)	38(3)
182(10)	55(3)
2870(8)	43(3)
1274(8)	49(3)
	2 3585(1) 3890(8) 1335(8) 2587(7) 339(5) 993(7) 1633(7) 2182(10) 2870(8) 1274(8)

Table A36_3. Anisotropic displacement parameters (Å²x 10³) for **yy143**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
I(1)	76(1)	64(1)	46(1)	10(1)	29(1)	5(1)
C(21)	66(10)	79(8)	42(7)	-12(6)	6(7)	11(8)
C(22)	60(9)	47(7)	51(7)	-10(5)	14(7)	-2(6)
C(7)	41(7)	32(6)	37(5)	4(4)	19(5)	2(5)
O(8)	60(6)	48(4)	40(4)	-7(3)	-3(4)	-1(4)
C(9)	72(9)	59(7)	30(5)	-6(5)	21(6)	-5(7)
C(12)	47(7)	33(6)	36(5)	-6(5)	15(5)	12(5)
C(14)	41(8)	46(8)	76(9)	-6(6)	13(7)	-13(6)
C(17)	38(7)	47(7)	43(6)	-4(5)	12(5)	-2(6)
C(18)	49(8)	61(8)	45(7)	5(5)	25(6)	-12(6)

Table A36_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **yy143**.

	х	У	Z	U(eq)
H(21A)	3532	3057	4235	97
H(21B)	4523	4255	3930	97
H(21C)	4462	946	4148	97
H(22A)	1162	-4100	1613	63
H(22B)	366	-1461	1559	63
H(9)	2054	711	360	63
H(14)	4413	4539	2361	66
H(18)	3553	3715	828	59
H(9)	0	0	0	110(70)

A36 Röntgenstrukturdaten für yy143

Table A38_1. Crystal data and structure refinement for 153.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	pbd391 C18 H20 O6 332.34 100(2) K 0.71073 Å triclinic P-1 a = 4.1423(3) Å b = 8.6905(9) Å c = 11.2057(10) Å	
Volume Z	382.45(6) Å ³ 1	
Density (calculated)	1.443 Mg/m ³	
Absorption coefficient F(000)	0.108 mm ⁻¹ 176	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.00° Absorption correction	.4 x .1 x .1 mm ³ 1.90 to 27.00°. -5<=h<=3, -11<=k<=11, -14- 2983 1578 [R(int) = 0.0260] 94.0 % None	<=l<=14
Refinement method Data / restraints / parameters	Full-matrix least-squares on 1 1578 / 0 / 127	F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	1.011 R1 = 0.0368, wR2 = 0.0948 R1 = 0.0464, wR2 = 0.0981	
Largest diff. peak and hole	0.184 and -0.233 e.Å ⁻³	

	4	
Table A38_2.	Atomic coordinates (x 104) and equivalent isotropic displacement	it parameters

 $(\text{\AA}^2 x \ 10^3)$ for **153**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	z	U(eq)
O(4)	11249(2)	6404(1)	1180(1)	18(1)
O(6)	8888(2)	7193(1)	3347(1)	21(1)
O(9)	5573(2)	1662(1)	3142(1)	22(1)
C(1)	9804(3)	5184(1)	1635(1)	17(1)
C(2)	7247(3)	4369(1)	3253(1)	19(1)
C(3)	8604(3)	5587(1)	2778(1)	18(1)
C(5)	8247(3)	2353(2)	1471(1)	18(1)
C(7)	7039(3)	2759(1)	2595(1)	18(1)
C(8)	9642(3)	3581(1)	994(1)	17(1)
C(13)	9090(3)	6821(2)	234(1)	18(1)
C(14)	7494(3)	7621(2)	4474(1)	23(1)
C(18)	5096(3)	4(1)	2472(1)	25(1)

Table A38_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 153 . The anisotropic	
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$	

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(4)	21(1)	18(1)	17(1)	6(1)	3(1)	0(1)
O(6)	28(1)	16(1)	18(1)	3(1)	8(1)	1(1)
O(9)	31(1)	16(1)	20(1)	6(1)	9(1)	1(1)
C(1)	15(1)	18(1)	17(1)	6(1)	2(1)	0(1)
C(2)	21(1)	21(1)	16(1)	6(1)	4(1)	3(1)
C(3)	17(1)	17(1)	18(1)	4(1)	1(1)	2(1)
C(5)	20(1)	16(1)	18(1)	4(1)	3(1)	3(1)
C(7)	18(1)	19(1)	18(1)	9(1)	2(1)	1(1)
C(8)	14(1)	19(1)	17(1)	6(1)	2(1)	2(1)
C(13)	19(1)	17(1)	19(1)	7(1)	4(1)	3(1)
C(14)	28(1)	21(1)	19(1)	2(1)	8(1)	4(1)
C(18)	33(1)	18(1)	25(1)	8(1)	8(1)	1(1)

Table A38_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **153**.

	х	У	Z	U(eq)
H(14A)	5137	7178	4303	34
H(14B)	7790	8797	4786	34
H(14C)	8601	7179	5103	34
H(18A)	4007	-137	1618	37
H(18B)	3717	-632	2888	37
H(18C)	7236	-361	2448	37
H(1)	8210(30)	1233(17)	1004(12)	23(3)
H(2)	6810(30)	6243(16)	173(12)	23(3)
H(3)	9150(30)	8044(15)	527(10)	13(3)
H(4)	6320(30)	4605(16)	4051(14)	33(4)

Table A39_1. Crystal data and structure refinement for 156.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system	pbd484 C18 H20 O2 268.34 100(2) K 0.71073 Å Monoclinic	
Space group Unit cell dimensions	$C_{2/c}$ a = 16 598(7) Å	a- 90°
	a = 10.596(7) Å b = 4.159(2) Å c = 20.898(9) Å	$\beta = 105.91(2)^{\circ}$ $\gamma = 90^{\circ}$
Volume Z	1387.3(11) Å ³ 4	
Density (calculated)	1.285 Mg/m ³	
Absorption coefficient F(000)	0.082 mm ⁻¹ 576	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 27.54° Absorption correction	0.12 x 0.15 x ? mm ³ 2.03 to 27.54°. -20<=h<=20, -5<=k<=3, -26 3377 1441 [R(int) = 0.1436] 89.4 % None	i<=l<=27
Refinement method Data / restraints / parameters	Full-matrix least-squares on 1441 / 0 / 94	F ²
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	0.992 R1 = 0.0909, wR2 = 0.2173 R1 = 0.2148, wR2 = 0.2728	
Largest diff. peak and hole	0.489 and -0.453 e.Å ⁻³	

Table A39_2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters

 $(Å^2 x \ 10^3)$ for **156**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	z	U(eq)
O(1)	3171(2)	7851(7)	658(1)	26(1)
C(2)	3321(3)	7491(11)	-461(2)	23(1)
C(3)	3897(3)	10074(12)	-1281(2)	25(1)
C(4)	2614(3)	5081(11)	1444(2)	24(1)
C(5)	3437(3)	5783(12)	187(2)	26(1)
C(6)	2483(3)	6751(11)	855(2)	23(1)
C(7)	3994(3)	8452(11)	-690(2)	24(1)
C(8)	1919(3)	4174(12)	1656(2)	27(1)
C(9)	3480(3)	4117(12)	1846(2)	30(1)
C(10)	4633(3)	11092(13)	-1520(2)	32(1)

Table A39_3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for 156 . The anisotropic
displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + + 2 h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	14(2)	37(2)	27(2)	-3(2)	7(1)	-3(2)
C(2)	21(3)	25(3)	22(2)	-4(2)	5(2)	-3(2)
C(3)	14(3)	39(3)	23(2)	-5(2)	6(2)	-3(2)
C(4)	12(3)	31(3)	29(3)	-2(2)	3(2)	1(2)
C(5)	18(3)	30(3)	28(2)	-1(2)	4(2)	2(2)
C(6)	14(3)	28(3)	28(2)	-4(2)	7(2)	0(2)
C(7)	11(2)	30(3)	33(3)	-6(2)	6(2)	-2(2)
C(8)	22(3)	35(3)	25(2)	2(2)	6(2)	3(2)
C(9)	19(3)	39(3)	30(3)	5(2)	3(2)	5(2)
C(10)	22(3)	41(3)	33(3)	-1(2)	10(2)	-2(2)

Table A39_4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for **156**.

	х	У	Z	U(eq)
H(5A)	3103	3778	115	30(4)
H(5B)	4034	5198	371	30(4)
H(7)	4545	7968	-428	30(4)
H(8)	2001	3028	2062	30(4)
H(9A)	3696	2439	1608	30(4)
H(9B)	3455	3293	2279	30(4)
H(9C)	3851	5992	1911	30(4)
H(10A)	5154	10408	-1198	30(4)
H(10B)	4633	13438	-1566	30(4)
H(10C)	4594	10095	-1952	30(4)

A39 Röntgenstrukturdaten für 156

Table A40_1. Crystal data and structure refinement for 157.

Table A40_2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for **157**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Identification code	pbd395		for 157. U(eq)	is defined as one third of	the trace of the orth	nogonalized U ^{ij} tenso	r.
Formula weight	220 H24 04 328.39			X	У	Z	U(eq)
Temperature Wassalan ath	100(2) K		0(1)	(507/1)	4(12(1)	2170(1)	24(1)
Crustal system	0.71075 A Manaalinia		0(1)	0507(1)	4015(1)	21/9(1) 2748(1)	24(1) 22(1)
Space group	P21/a		O(2)	0552(1) 0678(1)	4/34(1) 1610(1)	2/40(1) 2/25(1)	23(1)
Space group	P21/C	er 000	0(3)	9078(1) 5284(1)	1010(1) 7705(1)	2423(1) 2472(1)	31(1) 24(1)
Unit cell dimensions	a = 14.1959(3) A	$\alpha = 90^{-1}$	0(4) C(5)	5264(1)	7703(1) 5567(1)	2475(1) 2216(1)	34(1) 22(1)
	b = 14.3433(4) A	$\beta = 90.280(2)^{\circ}$	C(3)	0049(1)	550/(1) 279((1)	2210(1)	22(1)
	c = 16.8165(4) A	$\gamma = 90^{\circ}$	C(6)	8370(1)	3/86(1)	2691(1)	21(1)
Volume	3424.07(14) Å ³		C(7)	5882(1)	6151(2)	2343(1)	26(1)
Z	8		C(8)	9118(1)	5181(2)	2550(1)	24(1)
Density (calculated)	1.274Mg/m^3		C(9)	0933(1) 7211(1)	7495(2)	2213(1) 2822(1)	26(1) 24(1)
Density (calculated)	1.274 Mg/m		C(10)	7311(1) 7458(1)	2490(2) 3450(1)	2823(1) 2828(1)	24(1) 21(1)
Absorption coefficient	0.088 mm ¹		C(12)	7438(1)	6872(2)	2020(1) 2094(1)	24(1)
F(000)	1408		C(12)	8032(1)	1858(1)	2679(1)	24(1)
Crystal size	0.48 x 0.45 x 0.45 mm	3	C(14)	8930(1)	2221(2)	2537(1)	24(1)
Theta range for data collection	1.43 to 27.00°.		C(15)	6045(1)	7110(2)	2349(1)	27(1)
Index ranges	-18<=h<=18, -18<=k<	=16, -20<=l<=21	C(16)	7560(1)	5916(1)	2106(1)	22(1)
Reflections collected	18431		C(17)	6665(1)	4124(2)	2928(1)	22(1) 23(1)
Independent reflections	7461 [R(int) = 0.0476]		C(18)	8381(1)	5264(2)	2016(1)	23(1)
Completeness to theta = 27.00°	99.8 %		C(10)	7837(2)	832(2)	2654(1)	23(1) 33(1)
Absorption correction	None		C(20)	7102(2)	8527(2)	2034(1) 2227(2)	37(1)
Refinement method	Full-matrix least-square	es on \mathbb{F}^2	C(20)	10088(1)	3551(2)	2227(2) 2368(1)	33(1)
Data / restraints / parameters	7461 / 0 / 593		C(22)	4919(1)	5741(2)	2300(1) 2481(1)	37(1)
z = 1	1401707505		C(22)	9786(2)	1333(2)	1614(1)	41(1)
Goodness-of-fit on F ²	1.075		C(24)	5136(2)	7897(2)	3300(1)	48(1)
Final R indices [I>2sigma(I)]	R1 = 0.0526, WR2 = 0.	1265	0(25)	8962(1)	10087(1)	5174(1)	25(1)
R indices (all data)	R1 = 0.1019, WR2 = 0.	1428	0(26)	7699(1)	6995(1)	5003(1)	30(1)
Largest diff. peak and hole	0.262 and -0.241 e.A		C(27)	9226(1)	10570(2)	4447(1)	24(1)
			C(28)	8318(1)	8550(2)	5048(1)	26(1)
			C(29)	9092(1)	9128(1)	5187(1)	22(1)
			C(30)	8462(1)	7590(2)	5124(1)	25(1)
			C(31)	9927(1)	12181(2)	4521(1)	24(1)
			C(32)	10028(1)	11224(1)	4600(1)	23(1)
			C(33)	7370(1)	8963(2)	4859(1)	33(1)
			C(34)	9442(2)	6167(2)	5448(1)	33(1)
			C(35)	9328(1)	7202(2)	5350(1)	26(1)
			C(36)	7584(2)	6735(2)	4183(1)	39(1)
			O(37)	4003(1)	104(1)	284(1)	25(1)
			O(38)	2616(1)	-2927(1)	91(1)	32(1)
			C(39)	3295(1)	-1403(2)	138(1)	25(1)
			C(40)	4100(1)	-857(2)	236(1)	24(1)
			C(41)	4990(1)	-1247(2)	352(1)	24(1)
			C(42)	4292(1)	-2793(2)	289(1)	28(1)
			C(43)	4170(1)	623(2)	-447(1)	26(1)
			C(44)	5068(1)	-2208(2)	377(1)	27(1)
			C(45)	3412(1)	-2371(2)	163(1)	27(1)
			C(46)	2344(2)	-952(2)	37(2)	35(1)
			C(47)	4387(2)	-3839(2)	313(2)	40(1)
			C(48)	2403(2)	-3150(2)	-725(1)	38(1)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
							H(10
O(1)	22(1)	24(1)	25(1)	1(1)	-1(1)	-2(1)	H(12
O(2)	24(1)	20(1)	26(1)	0(1)	-1(1)	-3(1)	H(17
O(3)	29(1)	32(1)	31(1)	0(1)	-2(1)	10(1)	H(17
O(4)	34(1)	38(1)	29(1)	1(1)	-2(1)	17(1)	H(18
C(5)	26(1)	20(1)	20(1)	0(1)	-1(1)	-2(1)	H(18
C(6)	22(1)	20(1)	20(1)	1(1)	-1(1)	0(1)	H(19
C(7)	24(1)	31(2)	22(1)	4(1)	-1(1)	3(1)	H(19
C(8)	20(1)	28(1)	23(1)	2(1)	-2(1)	0(1)	H(19
C(9)	33(1)	23(1)	21(1)	1(1)	-3(1)	5(1)	H(2)
C(10)	20(1)	30(1)	24(1)	1(1)	0(1)	-4(1)	H(20
C(11)	23(1)	22(1)	18(1)	0(1)	0(1)	-1(1)	H(20
C(12)	26(1)	25(1)	23(1)	2(1)	-2(1)	-3(1)	H(21
C(13)	31(1)	21(1)	21(1)	3(1)	-4(1)	0(1)	H(21
C(14)	24(1)	27(1)	22(1)	2(1)	-2(1)	7(1)	LI(21
C(15)	29(1)	30(1)	21(1)	2(1)	-2(1)	8(1)	H(21
C(16)	23(1)	25(1)	19(1)	-1(1)	1(1)	0(1)	H(22
C(17)	22(1)	22(1)	26(1)	0(1)	4(1)	-3(1)	H(22
C(18)	22(1)	24(1)	24(1)	0(1)	3(1)	-3(1)	H(22
C(19)	34(1)	26(2)	40(1)	2(1)	-4(1)	0(1)	H(23
C(20)	48(2)	22(2)	41(1)	2(1)	-5(1)	2(1)	H(23
C(21)	21(1)	30(2)	49(1)	2(1)	0(1)	4(1)	H(23
C(21)	24(1)	45(2)	41(1)	$\frac{2(1)}{3(1)}$	3(1)		H(24
C(22)	42(1)	44(2)	36(1)	-1(1)	4(1)	17(1)	H(24
C(23)	50(2)	63(2)	31(1)	-1(1)	$\frac{4(1)}{2(1)}$	20(2)	H(24
O(25)	24(1)	22(1)	20(1)	-4(1)	$\frac{2(1)}{4(1)}$	$\frac{29(2)}{2(1)}$	H(27
O(25)	$\frac{24(1)}{31(1)}$	32(1)	29(1) 28(1)	-1(1)	-4(1)	$\frac{2(1)}{11(1)}$	H(27
C(27)	23(1)	32(1) 25(1)	23(1)	1(1)	1(1)	-11(1)	H(31
C(27)	23(1)	23(1) 21(1)	23(1)	1(1)	-1(1)	1(1)	H(33
C(20)	25(1)	20(1)	23(1) 20(1)	-1(1)	2(1) 2(1)	-1(1)	H(33
C(29)	25(1)	20(1)	20(1) 21(1)	-1(1)	3(1) 4(1)	7(1)	H(33
C(30)	20(1)	26(1)	21(1) 22(1)	-1(1)	4(1)	-7(1)	H(34
C(31)	23(1) 24(1)	20(1)	22(1)	2(1)	0(1)	2(1)	H(34
C(32)	24(1) 22(1)	20(1) 27(2)	10(1)	-2(1)	2(1)	$\frac{0(1)}{2(1)}$	H(34
C(33)	25(1)	37(2)	40(1)	1(1)	-1(1)	-3(1)	H(36
C(34)	37(1)	27(2)	30(1)	2(1)	0(1)	-1(1)	H(36
C(35)	31(1)	27(1)	21(1)	0(1)	5(1)	-2(1)	H(36
C(36)	42(1)	44(2)	30(1)	-4(1)	-2(1)	-1/(1)	H(43
0(37)	24(1)	25(1)	27(1)	-4(1)	3(1)	1(1)	H(43
O(38)	36(1)	35(1)	24(1)	-4(1)	2(1)	-13(1)	H(44
C(39)	26(1)	30(1)	20(1)	-4(1)	0(1)	-3(1)	H(46
C(40)	26(1)	24(1)	21(1)	-4(1)	1(1)	-2(1)	H(46
C(41)	23(1)	28(1)	20(1)	-4(1)	2(1)	1(1)	H(46
C(42)	36(1)	26(1)	21(1)	1(1)	5(1)	-1(1)	H(47
C(43)	23(1)	28(1)	26(1)	0(1)	-2(1)	3(1)	H(47
C(44)	27(1)	31(2)	23(1)	-1(1)	2(1)	5(1)	H(47
C(45)	30(1)	32(2)	18(1)	-2(1)	4(1)	-7(1)	H(48
C(46)	22(1)	43(2)	38(1)	-5(1)	-4(1)	-3(1)	H(48
C(47)	49(2)	26(2)	44(2)	6(1)	4(1)	-2(1)	H(48
C(48)	45(2)	43(2)	27(1)	-7(1)	-1(1)	-20(1)	(

 Table A40_3. Anisotropic displacement parameters (Å²x 10³) for 157. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	Х	У	Z	U(eq)
H(10)	6685(12)	2284(14)	2895(10)	27(5)
H(12)	8296(12)	7127(14)	2043(10)	24(5)
H(17A)	6078(12)	3792(13)	3054(10)	23(5)
H(17B)	6797(11)	4607(13)	3333(9)	17(5)
H(18A)	8269(11)	4817(14)	1587(10)	22(5)
H(18B)	8975(13)	5623(14)	1924(10)	30(5)
H(19A)	7537(15)	622(17)	2162(13)	57(7)
H(19B)	7388(16)	663(17)	3063(13)	60(7)
H(19C)	8400(14)	446(15)	2744(10)	33(6)
H(20A)	6506(17)	8913(18)	2153(13)	66(8)
I(20B)	7513(17)	8695(19)	1835(15)	77(9)
H(20C)	7364(15)	8737(17)	2714(14)	55(7)
I(21A)	10199	3547	1793	40
I(21B)	10558	3158	2634	40
H(21C)	10140	4191	2568	40
I(22A)	4846	5174	2162	44
I(22B)	4436	6195	2325	44
I(22C)	4848	5589	3046	44
I(23A)	9180(15)	1002(17)	1419(12)	53(7)
I(23B)	10300(14)	891(16)	1616(11)	43(6)
(23C)	9938(14)	1876(17)	1299(12)	48(7)
(24A)	5045(16)	7308(19)	3578(14)	63(8)
(24B)	4601(15)	8288(18)	3302(12)	55(7)
(24C)	5727(16)	8258(18)	3506(13)	61(8)
(27A)	8663(12)	10930(13)	4259(9)	21(5)
(27B)	9405(12)	10048(14)	4017(10)	26(5)
(31)	9333(13)	12426(14)	4356(11)	37(6)
(33A)	7204	9419	5269	40
((33B)	6896	8467	4846	40
(33C)	7392	9273	4340	40
(34A)	9370(15)	5824(17)	4969(14)	62(8)
I(34B)	8947(16)	5911(17)	5828(13)	62(7)
I(34C)	10046(17)	6013(18)	5686(13)	67(8)
I(36A)	7549(15)	7299(19)	3849(14)	63(8)
(36B)	6990(15)	6392(16)	4104(12)	50(7)
(36C)	8125(16)	6325(18)	4005(13)	61(7)
I(43A)	3605(12)	1012(13)	-549(9)	25(5)
I(43B)	4260(11)	157(13)	-919(10)	21(5)
[(44)	5681(12)	-2482(13)	476(10)	27(5)
[(46A)	2174(16)	-613(19)	470(15)	75(9)
(46B)	1929(19)	-1360(20)	-91(15)	79(10)
I(46C)	2340(20)	-560(20)	-405(18)	106(12)
I(47A)	3897(16)	-4140(17)	620(13)	60(7)
I(47B)	5004(17)	-4038(18)	557(13)	66(8)
I(47C)	4320(17)	-4129(19)	-201(16)	84(9)
I(48A)	2378(14)	-2562(17)	-1071(13)	54(7)
I(48B)	1799(15)	-3425(16)	-766(11)	46(6)
(48C)	2924(16)	-3619(17)	-940(13)	61(7)

A40 Röntgenstrukturdaten für 157

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. H.-G. Schmalz betreut worden.

.....

(Patric Bierganns)

Köln, Januar 2007

Teilpublikationen dieser Dissertation

Teilergebnisse dieser Arbeit gingen in folgende Tagungsbeiträge ein:

- 1) ORCHEM 2004, Bad Nauheim 09. 11. September **2004**, P. Bierganns, D. Blunk, Poster P135, "Helically Twisted, Functional Phenanthrene Derivatives: A Synthetic and Theoretical Study".
- 2) The 14th European Symposium on Organic Chemistry (ESOC 14), Helsinki (Finland), 4. 8. Juli **2005**, P. Bierganns, D. Blunk, Poster P260, "Twisted, Polyaromatic Crown Ethers: New Promising Molecular Sensors".
- 3) GDCh-Jahrestagung 2005, Düsseldorf, 11. 14. September 2005, P. Bierganns, D. Blunk, Poster OC_071, "New Promising Chiral Polyaromatic Crown Ethers".
- 4) ORCHEM 2006, Bad Nauheim 7. 9. September **2006**, P. Bierganns, D. Blunk, Poster, "Overcrowded Phenanthrene Derivatives as Functional Supramolecular Materials".

Publikationen zu anderen Themen:

- "New Surfactants Made of Natural Compounds", P. Bierganns, D. Blunk, N. Bongartz, R. Tessendorf, C. Stubenrauch, *Conference Proceedings - 52.* SEPAWA Kongress 2005 mit European Detergents Conference 2005, 25-36, ISBN 3-9810074-1-7.
- *2)* "New Specialty Surfactants with Natural Structural Motifs", D. Blunk, P. Bierganns, N. Bongartz, R. Tessendorf, C. Stubenrauch, *New J. Chem.* **2006**, *30*, 1705-1717.

Tagungsbeiträge zu anderen Themen:

 52. SEPAWA Kongress 2005 mit European Detergents Conference, Würzburg
 12. - 14. Oktober 2005, P. Bierganns, N. Bongartz, D. Blunk, C. Stubenrauch,
 R. Tessendorf, Vortrag 2 (12.10.05), "Neue Tenside auf Naturstoffbasis - New Surfactants Made of Natural Compounds".

Curriculum Vitae

Patric Bierganns

21/08/1976	Geburt in Bergisch Gladbach		
09/1987-06/1996	Nikolaus-Cusanus-Gymnasium		
11/06/1996	Abitur		
08/1996-08/1997	Zivildienst		
10/1997	Aufnahme des Chemiestudiums an der Universität zu Köln		
05/05/2000	Vordiplom (Note: sehr gut)		
08/2002-01/2003	Diplomarbeit unter der Betreuung von Prof. Dr. HG.		
	Schmalz und wissenschaftlicher Anleitung von Dr. D. Blunk,		
	Universität zu Köln: "Synthese und Reaktionsverhalten		
	substituierter Stilbene als Intermediate zu funktionalisierten		
	Phenanthrenderivaten"		
21/01/2003	Diplom in Chemie (Note: sehr gut)		
02/2003-02/2007	Doktorarbeit unter der Betreuung von Prof. Dr. HG. Schmalz und wissenschaftlicher Anleitung von Dr. D. Blunk, Universität zu Köln: "Synthese, Struktur und (supra-) molekulare Funktionalität konformations-chiraler Biphenyl-		
	und Phenanthrenderivate" (Note: 1,0)		
09/02/2007	Disputation (Note: 1,0)		