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Abstract

We set up a framework in which controlled lower bounds to conductivities

of strongly correlated quantum systems may be calculated perturbatively in

situations where the conductivities are infinite in the unperturbed model.

This framework is then applied to study the transport properties of al-

most integrable systems, in general, and heat and spin conductivities in the

integrable XXZ Heisenberg spin chain perturbed by various integrability

breaking couplings, in particular. Furthermore, we systematically develop a

microscopic description of the contribution of spin chains to experimentally

measured heat conductivity in spin chain compounds, with an emphasis on

the effect of weak disorder.

Kurzzusammenfassung

Wir formulieren eine Störungstheorie mit deren Hilfe Leitfähigkeiten

stark korrelierter Quantensysteme, die im ungestörten Fall unendlich sind,

berechnet werden können. Wir wenden diese Theorie dann um, allgemein,

Transporteigenschaften fast-integrabler Systeme, und speziell, die Wärme-

und Spin-Leitfähigkeit in der integrablen XXZ Heisenberg Spinkette mit

verschiedenen Störungen, die die Integrabilität brechen, zu studieren an.

Zusätzlich entwickeln wir systematisch eine mikroskopische Beschreibung

des Spinketten-Beitrags zu in Spinketten-Verbundstoffen experimentell ge-

messenen Wärmeleitfähigkeit, unter Betonung des Einflusses schwacher Un-

ordnung.
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Introduction

One dimensional models play an increasingly important role in a world where

miniaturization spreads and structures are fabricated in which dynamics is

restricted to one spatial dimension.

At first sight, models with one spatial dimension may seem structurally

much simpler than their three dimensional counterparts. For instance, the

problem of a particle in an arbitrary 1D-potential is analytically solvable

both classically and quantum mechanically. One might be tempted to guess

that one dimensional physics is rather boring. However, many particle sys-

tems in 1D show a rich spectrum of unusual phenomena, with a complexity

often exceeding that of higher dimensional systems. For example, the Fermi

liquid picture, providing an almost ubiquitous description of higher dimen-

sional fermion gases, breaks down for a one dimensional gas of fermions.

Consider one dimensional structures from a practical point of view. A

major application that comes into mind is to channel certain degrees of

freedom from one end of the microscopic wire to the other, with a huge

wealth of possible uses in nanotechnology. Therefore, transport coefficients

of one dimensional systems are among the most interesting properties to be

studied. Unfortunately, they are also the most challenging to compute.

At this point of the discussion, a special property of many one dimen-

sional models pops up, which turns out to be quite relevant: integrability.

Notably, a number of strongly correlated many particle systems in one di-

mension turn out to be integrable, the XXZ-Heisenberg spin chain. This

finding is exceptional; integrability in higher dimensional many particle sys-

tems is generically absent as soon as they are interacting.

This observation is relevant in the present discussion for two reasons.

First, its integrability allows an analytic treatment of the 1D model and

provides exact expressions for physical quantities of interest. Second, inte-

grability comes in hand with an infinite number of conserved currents, which

may correlate with – or be identical to – physical currents, which in turn are

protected against decay, and thus give rise to singular transport coefficients.

Therefore, we are confronted with the following situation: Simple one

dimensional models, which by theoreticians are naturally favored over com-

plicated ones and therefore are studied extensively, allow for an exact eval-
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x Introduction

uation of thermodynamic quantities which often match extraordinarily well

with experimental data. But as soon as transport is considered – which, as

we have argued, is of more interest – the same models give singular answers,

in sharp contrast to the real measurements.

Since integrability is such an ubiquitous phenomenon in 1D, it appears

to be likely that a real system is not too far away from integrability, or in

other words, that it can be described by an integrable model plus a weak

perturbation which breaks integrability and which may be considered to be

small.

The above considerations serve as a motivation to study the question of

how transport properties behave under perturbations of systems in which

they are singular. Throughout this work, we will assume the deviations from

singular behavior to be small, which allows to treat them perturbatively.

The document is arranged as follows. In the first chapter we introduce

technical prerequisites for the rest of the work. It shall serve as a peda-

gogical introduction into two major concepts, the so called Drude weight, a

measure of singularness for transport coeficients, and the so called memory

matrix formalism, which is a suitable formalism to study the effect of con-

servation laws on transport. The second chapter is devoted to the derivation

of a framework in which lower bounds of conductivities can be calculated

perturbatively, and a discussion about the circumstances under which the

bounds may become exact. The bounds are expressed in terms of corre-

lation functions which are amenable to practical calculations. In fact, the

other part of the work is concerned with the application of that framework

to different situations. While the first two chapters are general and do not

include any reference to a specific model (in particular there is no dimen-

sional restriction), the following two chapters are devoted to the study of one

dimensional spin chains, in particular the XXZ-model, which is integrable.

However, integrability is broken by additional couplings, for example next-

nearest neighbor or interchain coupling (third chapter) and disorder and/or

coupling to phonons (fourth chapter). While the third chapter is of rather

theoretical interest, in which the analysis is guided by questions like ‘how

does integrability break down’ and ‘how do nonlocal conservation laws affect

transport’, the fourth and final chapter is motivated by experimental obser-

vations of anomalous contributions to the heat conductivity in spin chain

compounds and its aim is an understanding of the microscopic processes

leading to these observations.



Chapter 1

Theoretical Foundations

This chapter will introduce several basic notions which are used throughout

the following chapters. The material presented is not new and each piece

can be found in the literature separately. Here we prepare the material with

the following applications in mind and also reveal connections between those

pieces of information which would otherwise be time-consuming to extract

from the literature.

1.1 Current and Conductivity

Consider the density of an arbitrary physical quantity (e.g. charge, energy,

spin, or any other) ρ(x). If the density is locally conserved, the only way the

density can change over time is by shifting portions of the quantity from one

region to another, i.e. if there exists a finite current density j(x) associated

with the density ρ(x). The two are related by a continuity equation,

∂tρ(x) +∇j(x) = 0. (1.1)

In a diffusive system in equilibrium, no current can be present1. To in-

duce a finite current, it is necessary to drive the system out of equilibrium.

Both theoretically and experimentally this is achieved by switching on some

symmetry breaking external field E(x, t). The question posed by transport

theory is, how does the external field induce movement of the physical quan-

tity ρ(x). More specifically, what is the induced expectation value of the

current, 〈j(x, t)〉[E(x, t)]. In physicist’s slang, the system responds to an ex-

ternal field by a finite expectation value of some observable (or observables),

here the current. Thus the current is a response to the external field.

In all but the simplest cases the task to determine the full functional de-

pendence of the current expectation value on an external field with arbitrary

1For non-diffusive systems this may be different (c.f. persistent currents) and a great

part of our considerations is in fact concerned exactly with situations where transport is
non-diffusive, see below.

1



2 Theoretical Foundations

spatial and temporal dependence is far beyond human possibilities from a

technical point of view. Therefore, most commonly one restricts oneself to

be interested in the simplest of all cases, where the field is homogeneous in

space and time, i.e. it is constant, E(x, t) = E. Then the current expecta-

tion value 〈j(x, t)〉, (here averaged over a unit cell), is also independent on

space, and in most situations as well on time.

While, throughout this document, we will drop the spatial dependence of

field and current, the time dependence of the current is of special importance

here. Before discussing this subtle and important point, let us first assume

that the current does not change over time and introduce the central quan-

tity of this thesis, the dc conductivity. The current depends on the field,

〈j〉 = 〈j〉(E) and one ultimately wants to know how the system responds

to small values of the field. One assumes that 〈j〉 depends smoothly on E.

Then one can expand around E = 0 and in linear order in the field we can

write

〈j〉 = σdcE, (1.2)

where it is understood that the current density is averaged over the unit cell.

This relation defines the dc conductivity σdc, the transport coefficient which

is the main subject of our whole analysis. For small fields thus the response

of the current is linear and the theory devoted to the study of this situation

is not accidentally referred to as linear response theory. The Kubo formula

discussed in the forthcoming sections is the main result of linear response

theory applied to transport.

The most common example is where 〈j〉 is the electrical current and E

is the electric field, in which case Eq. (1.2) is a rephrasing of Ohm’s law.

An other example, which is the most studied case in this work, is where

j = jQ is the heat current, E = −∇T is a small temperature gradient.

Then σdc = κ is the heat conductivity. For this example, relation (1.2) is

referred to as Fourier’s law. Also considered is the situation where j = js is

the spin current, for which one can compute a spin conductivity σdc = σs.

Turning back our attention to the temporal dependence of the current we

next illustrate the different possibilities that may turn up. Picking the most

familiar example, consider electric conduction in two different scenarios,

in a normal metal and a perfect metal, both at finite temperatures. If one

switches on the electric field in a normal metal, as the charge carriers are free

to move in space, they are accelerated by the field during an initial period

of time and the current increases. But since there are obstacles (nuclei

and other electrons) in their way, they regularly will scatter off them, thus

effectively losing momentum. After such a collision the charge carriers are

again accelerated. As a result, the current can not increase indefinitely,

but will saturate at some finite value which is determined by a balance

between periods of acceleration and events of scattering. The impurities
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and phonons introduce a mechanism for diffusion. Most often one wants

to neglect the short initial period of increasing current and is interested in

the final, saturated value of the current, i.e. the long time behavior of the

response. The normal metal is characterized by a finite conductivity σdc

describing the long time behavior of the current. In the second scenario, the

perfect metal, there are no obstacles the charge carriers could scatter off.

Therefore the situation in a perfect metal corresponds to a free acceleration

of the electrons. Imposing a field on the perfect metal for a longer period,

the charge carriers would be accelerated indefinitely, resulting in a current

which would increase linearly in time2. The long time behavior in this case,

therefore, is characterized by an infinite dc conductivity, σdc =∞. This can

be quantified by the so-called Drude weight, which is to be discussed below.

When discussing the conductivity, it is useful to consider a relaxation

experiment, in which one prepares the system in a state that shows a pre-

defined value of the current expectation value, and lets the system evolve

to observe the dynamics of the current. For a normal metal, the following

formal procedure leads to a well defined description: At t = −∞ the system

is held at thermal equilibrium and no current is present in the system. One

then adiabatically switches on the external field which is supposed to reach

its final value at t = 0, when a finite current expectation value is induced,

and ’observes’ the system as it relaxes to thermal equilibrium as the field

is switched off. For a system in which the current is protected by conser-

vation laws, this procedure is not well defined, as the free acceleration of

the charge carriers would formally lead to an infinite current at t = 0. In

any case, preparing the system in a state carrying a finite amont of the cur-

rent, if some component of the current is conserved, then it will not relax,

i.e. the value of the current does not change over time after the field has

been switched off.

1.2 Drude Weight

A common way to calculate the dc conductivity is by restoring the time de-

pendence of the external field, i.e. assuming that it oscillates with frequency

ω. This leads to the definition of a frequency dependent conductivity, σ(ω).

The real (physical) part of the frequency dependent conductivity is expected

to be of the form

Re σ(ω) = πD(T )δ(ω) + σreg(ω), (1.3)

2In a real system, at a certain finite value of the current, the system can not maintain
the electric field any longer, resulting in a finite current. From the standpoint of an
experimentalist, it is the current that is ‘applied’ to the system, and this is possible
without voltage drop inside the perfect metal. The two points of view are essentially

equivalent. Formally, equation (1.2) is satisfied by means of a product ∞ · 0, yielding a
finite value on the left hand side.
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ω ω

Re σ(ω) Re σ(ω)

σdc =∞

σdc

Γ = 1/τ

Γ = 0
πDδ(ω)

σreg(ω)

Figure 1.1: Typical conductivities for unperturbed and perturbed cases. For

Γ = 0 a Drude peak shows up in the conductivity, resulting from exact con-

servation laws. For Γ 6= 0 the Drude peak broadens and the dc conductivity

becomes finite. For small Γ the central peak remains as a distinct feature

with a width of the order of Γ and height σdc. The total weight of the peak

is still bound to be equal to πD.

where σreg(ω) is the so-called regular part of the conductivity. This relation

defines the Drude weight D(T ), which is the weight of the singular part

of the conductivity at ω = 0 and depends on temperature. In terms of

our example from the last chapter, the Drude weight vanishes D = 0 for

the insulator σdc = σreg(0) = 0 and the normal metal σdc = σreg(0) > 0,

whereas it is finite D > 0 for the superconductor, giving rise to an infinite

dc conductivity, σdc =∞.

To gain a better feeling for the Drude weight, we remind the reader of

the Drude theory of metals, in which a simple expression for the frequency

dependent conductivity is obtained:

σ(ω) =
1

1/τ − iω
ne2

m
. (1.4)

Here the following situation arises. If the scattering rate Γ = 1/τ is finite,

there is no singularity present and the dc conductivity is simply σdc = ne2

m τ .

If, however, for some reason there is nothing the electrons could scatter

off, then the regular part of the conductivity would vanish, σreg(ω) = 0

and a finite Drude weight would show up, D = ne2

m . This is exactly what

one should expect from a free, non-interacting gas of electrons in which the

electrons are accelerated freely, J(t) = nev(t) = D ·Et.
Quite generally, the existence of a Drude weight is connected to the pres-

ence of a conservation law, here momentum conservation, which protects the

current from decaying. Taking into account interactions among the electrons

would lead to a finite lifetime of the electron states, causing a redistribu-
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tion of momentum between electrons. How complicated the nature of the

interactions be, in a translationally invariant model (e.g. a continuum field

theory) the conductivity is bound to be infinite and the Drude weight is

finite, in spite of the interaction. To obtain a finite value for the conductiv-

ity, one needs to introduce some source of scattering. This is the common

scenario we will analyze in this thesis: We start from some model in which

the current is protected by some conservation law, meaning that the Drude

weight is finite, and introduce a perturbation which provides a mechanism to

relax the current and thus renders the conductivity finite. As we will show,

typically the conductivity is considerably large for small perturbations, as

it is in the Drude theory if the scattering rate Γ = 1/τ is small. The general

situation is schematically depicted in Fig. 1.1. In the left figure, Γ = 0,

however, in general the current itself does not need to be conserved itself,

[H,J ] 6= 0. This then would lead to a finite regular part, σreg(ω). Thinking

of a relaxation experiment, some component of the current will relax within

microscopic times, while an other component is protected by conservation

laws and does not decay over time. The latter one is responsible for the

Drude weight. (The small frequency part of the conductivity σ(ω) reflects

the long time behavior of the current.) In the right figure some scattering

terms have been included in the Hamiltonian which lead to a finite scattering

rate Γ. If the perturbation is small, then the conservation laws are violated

only weakly and scattering is expected to be weak, meaning that the current

relaxes only slowly, leading to a high value of the dc conductivity. This is a

motivation to introduce the term almost conserved current.

1.3 Problem Setting

After having discussed the Drude weight and its dependence on the scatter-

ing rate, we are ready to formulate the general problem setting formally. All

further considerations in this chapter are motivated by this problem setting.

Model systems, due to their simplicity, often exhibit symmetries not

shared by real materials. For example, the heat conductivity of idealized

one-dimensional Heisenberg chains is infinite at arbitrary temperature as

the heat current is conserved. However, any additional coupling (e.g. next-

nearest neighbor, inter-chain, disorder, phonon, Umklapp, etc.) renders

the conductivity finite [1, 2, 3, 4, 5, 6, 7]. If the perturbation is weak,

the heat conductivity is, however, large as observed in experiment [8, 9].

For a more general example, consider an arbitrary translationally invariant

continuum field theory. Here momentum is conserved which usually implies

that the conductivity is infinite for this model. In real materials momentum

decays by Umklapp scattering or disorder rendering the conductivity finite.

Obviously it is desirable to have a reliable method to calculate transport in
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such situations.

We therefore consider systems with the general Hamiltonian

H = H0 + gH1, (1.5)

where for g = 0 the relevant heat-, charge- or spin-conductivity is infinite

and characterized by a finite Drude weight D(T ) > 0. As discussed above,

H0 might be an integrable one-dimensional model, a continuum field theory,

or just a non-interacting system. The term gH1 describes a (weak) pertur-

bation which renders the conductivity finite, e.g. due to Umklapp scattering

or disorder, see Fig. 1.1. The task is to determine the value of the dc con-

ductivity σdc as a function of the coupling parameter g in the asymptotic

limit g → 0. The analysis is not straightforward, since a direct perturbation

theory for σ(ω) is necessarily singular and thus ill-defined at ω = 0. The

natural approach is to aim at a perturbation theory for the inverse of the

dc conductivity.

On a microscopic level, a small perturbation g shifts the eigenvalues

only slightly. We thus may expect that the effect of the perturbation on

the Drude peak is to broaden it, while keeping its weight approximately

constant. The sharp feature of the right figure in Fig. 1.1 is this broadened

’Drude peak’, and its width is of the order of the scattering rate, as may

be read off from Eq. (1.4). This reveals a connection between the Drude

weight, the dc conductivity and the scattering rate: We can determine the

conductivity if we know the other two quantities,

σdc ≈
D

Γ
. (1.6)

This relation hints at the possibility to determine σdc by setting up a pertur-

bation theory for Γ. In one of the following sections we give an expression

for the so-called memory matrix, which is a replacement and a generaliza-

tion of the concept of a scattering rate applying also to situations where

a scattering rate Γ can not be defined. In that framework relation (1.6)

is replaced by a matrix equation, which, although being more complicated,

remains structurally similar to Eq. (1.6). A controlled perturbation theory

in g for the memory matrix will then be presented in the next chapter.

What can we expect as the typical behavior of the conductivity under

perturbations? According to Fermi’s golden rule, the scattering rate Γ is

proportional to squares of matrix elements of the perturbation gH1, and

therefore the general expectation is that the scattering rate Γ is ∝ g2. We

will find that this expectation is quite robust, and applies also to situations

where – for different reasons – one would not expect it to hold. However,

we also will find examples where the conductivity is much larger, as Γ ∝ g4.
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1.4 Kubo Formula

The most common method to determine conductivities is to calculate the

so-called Kubo formula. In terms of the Kubo formula, the conductivity is

given by a current-current correlation function,

σ(ω) = − 1

V β

∫ β

0
dτ

∫ ∞

0
dt e−i(ω−iε)t〈J(−t− iτ)J(0)〉, (1.7)

where the limit ε → 0 is implied. This is the original expression derived

by Kubo, for the derivation of which we refer to the original papers by

Kubo [10, 11]. While Kubo has derived this formula with the electrical

conductivity in mind, it has been shown a long time ago [12] that the formula

can be applied without modification to calculate any conductivity and, in

particular, the heat conductivity, just by replacing the electrical current by

the heat current in expression (1.7).

The dc conductivity is retained by setting ω = 0 in Eq. (1.7), σdc = σ(0).

In practice, the double integral can not be evaluated easily. One gains

a more manageable expression by using the fluctuation-dissipation theorem

and replacing the current-current correlation function by a retarded response

function.3 For a time reversal invariant Hamiltonian one obtains

σ(ω) =
i

ω

(
χT − χR(ω)

)
, (1.8)

χR(ω) =
i

V

∫ ∞

0
dt eiωt〈[J(t), J(0)]〉, (1.9)

χT =
i

V

∫ −iβ

0
dt 〈J(t)J(0)〉, (1.10)

where χR(ω) is the retarded current-current response function and χT is the

isothermal current-current susceptibility. The latter can be expressed as a

thermodynamic derivative,

χT =
∂〈J〉
∂E

∣∣∣∣
T=const.

. (1.11)

These expressions can be derived from the original expression given by Kubo,

Eq. (1.7), for example by using Ref. [13] and the calculation is sketched in

appendix A.2. In fact, the latter expression for the conductivity, Eq. (1.8), is

the one that is more commonly encountered in the literature and is directly

derived from linear response. Often these equations are derived for the

electric conductivity, and the term proportional to χT is referred to as the

3Calculation of the response function – which is defined via a commutator – can be

evaluated by means of Matsubara frequency techniques. This often simplifies the problem
to the extent that the calculations actually can be carried out.
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diamagnetic term4. In the literature one often encounters the statement

that the dc conductivity is obtained by taking the limit ω → 0 at the end

of the calculation, σdc = limω→0 Re σ(ω). This is, however, only true in the

absence of a Drude peak, since limω→0 σ(ω) = σ(0) only in the absence of

singularities at ω = 0. (In this respect, the analysis presented in Mahan’s

book [14] is misleading and should be enjoyed with a possible additional

singularity at ω = 0 in mind.) Before using the limit one thus should

check whether a Drude weight is present or not. The recipe to extract the

Drude weight from the conductivity may be formulated (see c.f. [15]) as

D = limω→0 ωIm σ(ω) and inserting Eq. (1.8), we find

D = χT − χR(0). (1.12)

This leaves us with the expression

σreg(ω) = Re
i

ω
(χR(0) − χR(ω)) (1.13)

for the regular part. Although there are situations where the regular part

diverges in the limit ω → 0, we are not interested in this kind of singular-

ities and we shall assume that σreg(ω) is smooth at ω = 0, e.g. that the

regular part is regular. Appendix A.3 is devoted to a closer look on what

circumstances can lead to a singular regular part of the conductivity.

1.5 Mazur Inequality

Mazur [16] and later Suzuki [17] considered situations where the presence

of conservation laws prohibits the decay of certain correlation functions in

the long-time limit. In the context of transport theory their result can

be applied to systems where the finite-temperature conductivity σ(ω, T ) is

characterized by a finite Drude weight D(T ) > 0 at ω = 0, implying non-

dissipative transport. As outlined above, a Drude weight can arise only in

the presence of conserved quantities which protect the current. Therefore it

4Those familiar with the derivation of the electric conductivity and the reasons behind
the appearance of the diamagnetic term in this derivation, may wonder, how such a term
comes about in the general case. In fact, the diamagnetic term can be traced back to a
contribution proportional to the square of the vector potential A2 to the Hamioltonian, and

such a term is present due to the charge conservation induced gauge invariance. Therefore,
it is not clear how one possibly could obtain a diamagnetic term without a contribution
that depends quadratically on the external field. We avoid giving a technical explanation
by noting, that in an electron gas the carriers of charge also carry a mass, and therefore it
is legitimate to calculate the conductivity associated with the particle (or mass) current
subject to a gravitational potential. Such a calculation has to lead to exactly the same
expression of the conductivity, including the diamagnetic term. The diamagnetic term is

present for any conductivity. Skeptics may find useful the discussion in Ref. [13] and the
remarks made in appendix A.2.
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is useful to formally take into account all of the conserved quantities present

in the system. For this purpose we introduce a basis of conserved quantities5,

{Ci}, with [H,Ci] = 0, in terms of which Suzuki’s expression is formulated.

To write a conserved operator in terms of the Ci we need a scalar product,

which we chose as the expectation value of the product of operators,

〈AB〉 =
1

Z
tr e−βHAB. (1.14)

where Z = tr e−βH is the partition sum. We choose the Ci such that they

are orthogonal, 〈CiCj〉 = δij〈C2
i 〉. Any conserved quantity A can now be

expanded in the Ci,

A =
∑

i

〈ACi〉
〈C2

i 〉
Ci. (1.15)

Suzuki [17] shows that the difference χT − χR(0) (which as we argue

above is identical to the Drude weight, see Eq. (1.12)) can be expressed as

a sum over all Cj:

D =
β

V

∞∑

j=0

〈CjJ〉2
〈C2

j 〉
≥ β

V

N∑

j=0

〈CjJ〉2
〈C2

j 〉
. (1.16)

More useful than the equality in Eq. (1.16) is often the inequality [16]

which is obtained when the sum is restricted to a finite subset of conser-

vation laws. Such a finite sum over simple expectation values can often be

calculated rather easily using either analytical or numerical methods. This

allows to obtain lower bounds to the Drude weight with less effort. The

Mazur inequality has recently been used heavily [2, 18, 19, 20, 21] to dis-

cuss the transport properties of one-dimensional systems. The goal of the

next chapter is to obtain lower bounds to the dc conductivity in the case

of small perturbations and finite dc conductivity, in the spirit of the Mazur

inequality.

1.6 Splitting the Current

From equation (1.16) it is clear that only the conserved part of the current

J contributes to the Drude weight. (This is what we expect, as the non-

conserved part has to decay in a finite time.) To make this observation

explicit, we split the current under consideration into a part parallel to the

Ci and one that is orthogonal,

J = J‖ + J⊥,

5Basis means that the Ci span the space of conserved operators. Represented in an

eigenbasis {|n〉} of the Hamiltonian, the matrix elements 〈n|Ci|m〉 of Ci vanish when
En 6= Em, i.e. the Ci are block-diagonal in energy.
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with

J‖ =
∑

i

〈CiJ〉
〈C2

i 〉
Ci, (1.17)

which results in a separation of the conductivity,

σ(z) = σ‖(z) + σ⊥(z). (1.18)

Since the conductivity σ(z) is given by a current-current correlation function

and the current J‖ (J⊥) is diagonal (off-diagonal) in energy, cross-correlation

functions 〈J‖;J⊥〉 vanish in Eq. (1.18).

According to Eq. (1.16), the Drude peak of the unperturbed system,

g = 0, arises solely from J‖ as can be checked by substitution of Eq. (1.17)

in Eq. (1.16),

Re σ‖(ω) = πDδ(ω), (1.19)

while σ⊥(z) appears in Eq. (1.3) as the regular part, Re σ⊥(ω) = σreg(ω).

In this work we focus on σ‖(ω), since the small perturbation is not going

to affect σ⊥(ω) much, while σ‖(ω = 0) diverges for g → 0, see Fig. 1.1.

As we are interested in the small g asymptotics only, we may neglect the

contribution σ⊥(0) to the dc conductivity. The separation into parallel and

perpendicular components of the current allow to rewrite Mazur’s relation

in a simple form:

D =
β

V
〈JJ‖〉 =

β

V
〈J2

‖ 〉. (1.20)

This relation is particularly useful when the current itself is conserved and

J⊥ = 0. This is for example the case for the heat current JQ in the XXZ

Heisenberg spin chain which will be discussed below, see section 3.5.

1.7 Memory Matrix Formalism

The conserved currents of the unperturbed model H0 are violated by the

small perturbation gH1. However, if the perturbation is small, some of them

will decay slowly, and typically those which decay with the slowest rate will

contribute most to the conductivity. Thus, to study them, a hydrodynamic

approach seems to be reasonable. The relation between hydrodynamic equa-

tions and correlation functions has been studied in Ref. [22]. To separate the

dynamics of the slow modes from the rest, one can use projection operator

techniques which project the dynamics onto the slow modes. In this section

we will therefore review the so-called memory matrix formalism [23], intro-

duced by Mori and Zwanzig[24, 25] for this purpose. In the next chapter we

will show that this approach can be used to obtain a lower bound for the dc

conductivity in terms of a perturbation theory for the small parameter g.
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We start by defining a scalar product6 in the space of quantum mechan-

ical operators,

(A|B) =
1

V

∫ β

0
dτ 〈A†(0)B(iτ)〉 − β〈A†〉〈B〉 (1.21)

Note that the second term can always be omitted by replacing A by A −
〈A〉. With this notation, the time evolution is given by the Liouville-

(super)operator L = [H, .] = L0 + gL1 with (LA|B) = (A|LB) = (A|L|B),

and the time evolution of an operator may be expressed as

|A(t)) = |eiHtAe−iHt) = eiLt|A).

This more complicated (as compared to Eq. (1.14)) choice of a scalar

product on the space of operators is necessary to account for the essentially

dynamical situation. The Drude weight is a thermodynamic quantity (re-

lation (1.11)) and thus can be calculated from static correlation functions

(relation (1.20)). This is no longer true for the dc conductivity for finite g

and equation (1.21) turns out to be the most convenient for our purpose.

Note that in terms of this scalar product the Kubo formula (1.7) may be

expressed as

σ(ω) =

∫ ∞

0
dt eiωt(J(t)|J). (1.22)

Moreover, (A|B) can be interpreted as a generalized thermodynamic sus-

ceptibility in analogy to Eqs. (1.10) and (1.11). In particular, χT = (J |J).

As the next step we choose a – for the moment – arbitrary set of operators

{Ci}, which represent the chosen set of slow modes. As the only restriction

we require that the current be included in the space spanned by the Ci.

|J) =
∑

i

(Ci|J)

(Ci|Ci)
|Ci). (1.23)

In most applications, the Ci include the relevant slow modes of the system.

For notational convenience, we assume that the {Ci} are orthogonal,

(Ci|Cj) = δij(Ci|Ci). (1.24)

In terms of these we may define the projector P onto (and Q away from)

the space spanned by these ‘slow’ modes

P =
∑

i

|Ci)(Ci|Ci)−1(Ci| = 1−Q. (1.25)

6Note that usually [23] this scalar product is defined with an additional factor of β−1,
to make it dimensionless. We use a different convention because it is more convenient:

One gets rid of factors of β one would otherwise have to include in all physical correlation
functions, e.g. χ = (J |J) vs. χ = β(J |J).
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Within this formalism, one obtains from Eq. (1.22) the following simple, yet

formal expression for the conductivity:

σ(ω) =

(
J

∣∣∣∣
i

ω − L

∣∣∣∣ J
)
. (1.26)

Using a number of simple manipulations, one can show [23, 24, 25] that the

conductivity can be expressed as a matrix product,

σ(ω) =
∑

ij

(J |Ci) (M(ω) + iK − iωC)−1
ij (Cj |J), (1.27)

where

Mij(ω) =

(
Ċi

∣∣∣Q i

ω − LQ
∣∣∣Ċj
)

(1.28)

is the so-called memory matrix,

Kij =
(
Ċi|Cj

)
(1.29)

is a frequency independent matrix and

C = (Ci|Cj) = δij(Ci|Ci) (1.30)

is the diagonal matrix of susceptibilities. The formal expression (1.27) for

the conductivity is exact, and completely general, i.e. valid for an arbitrary

choice of the modes Ci, provided only that the current can be written in

terms of the slow modes, Eq.(1.23). The Ci do not even have to be ‘slow’.

Due to the projection operators Q, the memory matrix (1.28) is in gen-

eral difficult to evaluate. To obtain correlation functions that can be eval-

uated easily one uses approximations to M , and it is in context with those

approximations that the choice of the projectors (or equivalently the choice

of slow modes {Ci}) becomes crucial. Different choices of slow modes can

deliver qualitatively different approximations to the conductivity. This will

be discussed in detail in the forthcoming chapter.

If we choose J = C1, the dc conductivity is given by the (1, 1)-component

of the matrix

(M(0) +K)−1. (1.31)

More generally, the (m,n)-component of Eq. (1.31) describes the response

of the ‘current’ Cm to a homogeneous external field coupling solely to Cn.

We note that, since a matrix of transport coefficients has to be positive

(semi)definite, this also holds for the matrix M(0) +K.

To avoid technical complications associated with the presence of K, we

restrict our analysis in the following to time reversal invariant systems and

choose the Ci such that they have either signature +1 or −1 under time
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reversal.7 In the dc limit, ω = 0, components of Eq. (1.31) connecting modes

of different signatures vanish. Thus, M(0)+K is block-diagonal with respect

to the time reversal signature, and consequently we can restrict our analysis

to the subspace of slow modes with the same signature as the current J .

However, if Cm and Cn have the same signature, then (Cm|Ċn) = 0, and

thusK vanishes on this restricted space. The dc conductivity therefore takes

the form

σdc =
∑

ij

(J |Ci)(M(0)−1)ij(Cj |J). (1.32)

Making the above choice, C1 = J , the expression is further simplified and

one gets

σdc = (χT )2(M(0)−1)11. (1.33)

Note again, that this is an exact expression when approximations to M(ω)

have not been used yet. Furthermore, we have derived an expression for the

memory matrix which is structurally similar to the expression (1.6). Thus

we arrive at the conclusion that M(0)/χT plays the role of a scattering rate.

This lays the foundations for a perturbative analysis aimed at in section 1.3

and carried out in the next chapter.

1.8 Conservation Laws and Slow Modes

To conclude this chapter, we make some general remarks on conservation

laws, slow modes and integrable systems. As conserved quantities dictate

the value of the Drude weight, it is worthwhile to halt for a moment’s sake

and to elaborate on the nature of conservation laws themselves.

We already have used the notion of the set of all conservation laws,

{Ci} in sections 1.5 and 1.6. As an example, the projector to some energy

eigenstate |n〉〈n| would be a candidate for such a conservation law, and is

trivially conserved. Such an operator, however, is typically a highly non-

local object and an explicit knowledge of it is neither practically achievable

nor is it desirable. To consider the abstract set {Ci} was useful to learn

about the nature of the Drude weight and also will be useful in the next

section when we derive lower bounds to the conductivity, expressed through

approximations to the memory matrix.

This set {Ci} of trivially conserved quantities has to be contrasted with

what one usually refers to as constants of the motion (or integrals of mo-

tion), which are conserved quantities Qi associated with symmetries of the

7As Θ2 = ±1 for states with integer or half-integer spin, the combinations A±ΘAΘ−1

have signatures ±1 provided the operator A does not change the total spin by half an

integer, which is the case for all operators with finite cross-correlation functions with the
physical currents.
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Hamiltonian and are the subject of Noether’s theorem. The latter, non-

trivial conservation laws are often explicitly known and are quite generally

well defined local quantities for which a density and a current can be de-

fined in the usual sense (see section 1.1). Thus, these are the quantities one

commonly wants to work with.

In the context of hydrodynamics and transport, more often than not,

these local conservation laws are those which protect the current from de-

caying. And even if they are not conserved (due to, say, impurities which

break translational invariance), they typically are the slowest modes in the

system and their decay rate determines the decay rate and dc conductivity

of the current. For example, momentum conservation is responsible for the

infinite electrical conductivity in a superconductor and the dissipation of

momentum in a normal metal gives the electrical conductivity a finite value.

However, there are exceptions to this rule. As we will see in chapter 3, the

spin current in the XXZ Heisenberg spin chain is not protected by any of

the known non-trivial local conservation laws, although there is an infinite

number of them (see below). Nevertheless, the spin conductivity is charac-

terized by a finite Drude weight, which means that actually it’s non-local

conservation laws that protect the local spin current.

Generally, whichever are the relevant slow modes, local or non-local con-

servation laws, constants of the motion or not, the philosophy of our treat-

ment is always the same: The relevant modes of the perturbed model have

to be among the set of exactly conserved quantities of the unperturbed

model, and one chooses some of them as the slow modes in the definition of

the memory matrix. Using approximations to the memory matrix delivers

lower bounds to the asymptotic (g → 0) value of the dc conductivity, and

the result can systematically be improved by including more and more slow

modes in the analysis.

The cautious reader may wonder why in the XXZ model there is an in-

finite number of constants of the motion. The reason is that this model is

integrable, which takes us to the next topic of this section. While no fool-

proof definition of integrability exists in mathematical terms, integrability is

used to express that one can gain complete knowledge of the solution of the

equation of motion, in terms of an explicit expression for the solution, which

in principle can be evaluated. For classical systems with a finite number

N of degrees of freedom, integrability is tantamount to the existence of ex-

actly N constants of the motion Qi which are in convolution, {Qi, Qj} = 0,

and the dynamics of the system is uniquely determined by the values of the

Qi. The existence of the Qi is related to the existence of invariant tori as

described by the Hamilton-Jacobi formalism.

One can straightforwardly transfer this whole concept to quantum sys-

tems. The Qi become conserved operators, [H,Qi] = 0, and according to

the correspondence principle the Poisson bracket is translated as a commu-
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tator, [Qi, Qj ] = 0. The requirement that the Qi determine the dynamics,

can be translated to the quantum situation as the requirement that the

eigenstates of the Hamiltonian be completely characterized by eigenvalues

of the Qi. This implies that the Qi constitute a set of good quantum num-

bers, i.e. that each eigenstate of the Hamiltonian can be uniquely labeled

by eigenvalues of the Qi. The concept just described is well known from

quantum mechanics text books and is refered to by saying that the Qi con-

stitute a complete set of commuting operators (CSCO). What is usually not

pointed out in these textbooks is the fact that the existence of a CSCO is

rather the exception than the rule among physical models.

However, a problem with the quantum definition of integrability becomes

apparent when it comes to the counting of degrees of freedom. One could

argue, for instance, that a single quantum-mechanical particle in one di-

mension has an infinite number of degrees of freedom, as the value of the

wave function can take infinitely many values at any of the infinitely many

points in space. This point of view, however, is not very helpful, and it is

customary to assign to the quantum system the same number of degrees

of freedom as the corresponding classial problem. However, such a treat-

ment brings with it additional subtleties. For example, it is not at all clear,

whether the quantum counterpart of an integrable classical system is itself

integrable, and even if it is, the constants of the motion of the quantum

system are not neccessarily straightforwardly obtained by a quantization of

the constants of the motion of the classical system. As an other example,

there are quantum systems which have no classical analogue at all, as for

example the XXZ Heisenberg spin-1/2 chain. In this particular model, how-

ever, the determination of the number of degrees of freedom seems to be

rather straightforward, and corresponds to the number of spins in the chain.

In going to an infinite number of degrees of freedom N → ∞, one has

to face the problem of an infinite number of constants of the motion. While

in many cases there is no recipe to gain knowledge of all of the constants

of the motion, in the case of the XXZ chain, integrability is guaranteed as

the model is solvable by Bethe ansatz, which provides explicit expressions

for all eigenstates of the Hamiltonian in terms of complicated (and often an

infinite number of) integrals. Even more conveniently, a recipe to construct

the hierarchy of the infinite number of constants of the motion, the existence

of which is implied by integrability, is known, and therefore one can easily

obtain explicit expressions for them.

While integrable systems, in general, are a seldom phenomenon, one

dimensional systems are a special case. Here integrability appears to be

rather common, which is often attributed to the reduced number of pos-

sibilities for the dynamics of the individual constituents. One example is

the XXZ model, but more generally, the effective low energy theory of an

arbitrary gapless spin chain (or any other massless 1D quantum model) is
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given by the Luttinger liquid Hamiltonian, which is integrable. Real one

dimensional quantum systems often can consequently be described as an

integrable model plus some perturbation which at low temperatures can

be considered to be small. Models like a one dimensional gas of bosons

with point interaction (also referred to, for some reasons, as the nonlinear

Schrödinger equation) or the aforementioned XXZ model, in contrast, are

integrable at any temperature.

In this work, we are not so much interested in the well studied properties

of the integrable systems themselves, but rather in the question of how are

transport properties of integrable systems affected by small perturbations

which destroy integrability. The whole chapter 3 is devoted to the study of

this question.



Chapter 2

Lower Bounds for

Conductivities of Correlated

Quantum Systems

In this chapter we show how one can calculate lower bounds for conductiv-

ities of correlated quantum systems for the scenario described in the last

chapter. As outlined above, the unperturbed model H0 can also be an

interacting Hamiltonian characterized by an infinite conductivity at finite

temperatures. The small perturbation gH1 renders the conductivity finite.

We derive lower bounds for the relevant conductivities in the asymptotic

limit g → 0 and show how they can be improved systematically using the

memory matrix formalism. We also investigate under what conditions our

lower bound may become exact. The subsequent chapters contain numerous

direct applications of the bounds derived here.

2.1 Motivation

Transport properties of complex materials are not only important for many

applications but are also of fundamental interest as their study can give

insight into the nature of the relevant quasi particles and their interactions.

Compared to thermodynamic quantities, the transport properties of in-

teracting quantum systems are notoriously difficult to calculate even in sit-

uations where interactions are weak. The reason is that conductivities of

non-interacting systems are usually infinite even at finite temperature, im-

plying that even to lowest order in perturbation theory an infinite resum-

mation of a perturbative series is mandatory. To lowest order this implies

that one usually has to solve an integral equation, often written in terms of

(quantum-) Boltzmann equations or – within the Kubo formalism – in terms

of vertex equations. The situation becomes even more difficult if the interac-

17
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tions are so strong that an expansion around a non-interacting system is not

possible. Also numerically, the calculation of zero-frequency conductivities

of strongly interacting clean systems is a serious challenge and even for one-

dimensional systems reliable calculations are available for high temperatures

only [1, 2, 3, 5, 26, 27].

Variational estimates, e.g. for the ground state energy, are powerful the-

oretical techniques to obtain rigorous bounds on physical quantities. They

can be used to guide approximation schemes to obtain simple analytic esti-

mates and are sometimes the basis of sophisticated numerical methods like

the density matrix renormalization group [28].

Taking into account both the importance of transport quantities and

the difficulties involved in their calculation it would be very useful to have

general variational bounds for transport coefficients.

2.2 Boltzmann Equation and Variational Bounds

A well known example where a bound for transport quantities has been

derived is the variational solution of the Boltzmann equation, discussed ex-

tensively by Ziman [29]. The linearized Boltzmann equation in the presence

of a static electric field can be written in the form

eEvk

df0

dǫk
=
∑

k′

Wk,k′Φk′ (2.1)

where Wk,k′ is the integral kernel describing the scattering of quasiparticles

and we have linearized the Boltzmann equation around the Fermi (or Bose)

distribution f0
k

= f0(ǫk) using fk = f0
k
− df0

dǫk
Φk. Therefore, the current is

given by I = −e∑
k
vk

df0

dǫk
Φk and the dc conductivity is determined from the

inverse of the scattering matrix W using σ = −e2∑
kk′

df0

dǫk
vi
k
W−1

k,k′vik′
df0

dǫ
k′

.

This result can be obtained by maximizing a functional F [Φ] (see [29, 30,

31, 32]) with

σ = e2 max
Φ

F [Φ] ≥ e2 max
ai

F

[
∑

i

aiφi

]
(2.2)

F [Φ] =
2
(∑

k
vi
k
Φk

df0

dǫk

)2

∑
k,k′(Φk − Φk′)2Wk,k′

where on the rhs. of the first line one maximizes over the scalar prefactors of

the trial functions φi. For the denominator in the second line we used that∑
k′ Wk,k′ = 0 reflecting the conservation of probability. The variational

formula (2.2) is actually closely related [29] to the famous H-theorem of

Boltzmann which states that entropy always increases upon scattering.
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A lower bound for the conductivity can be obtained by varying Φ only

in a subspace of all possible functions. This allows for example to obtain

analytically good estimates for conductivities without inverting an infinite di-

mensional matrix or, equivalently, solving an integral equation, see Ziman’s

book for a large number of examples [29].

The applicability of Eq. (2.2) is restricted to situations where the Boltz-

mann equation is valid, i.e. in the presence of quasi particles. Bounds for

the conductivity in more general setups are not known. As we have seen, for

non-dissipative systems with infinite conductivity (described by a Hamilto-

nian H0) it is possible to get a lower bound for the so-called Drude weight.

Our goal is to find a variational lower bound for conductivities in the

spirit of Eq. (2.2) for this very general situation, without any requirement

on the existence of quasi particles. For technical reasons (see below) we

restrict our analysis to situations where H is time reversal invariant.

In the following, we use the memory matrix formalism to formulate an

inequality for transport coefficients for weakly perturbed systems. We will

argue that the inequality is valid under the conditions which we specify.

Finally, we investigate under which conditions the lower bounds become

exact and briefly discuss applications of our formula. But first we insert

a short section in which we attempt a naive perturbative expansion of the

conductivity which helps to identify issues that have to be resolved by a

more thorough analysis.

2.3 Perturbation theory for 1/σ

Let us give an example of a naive perturbative derivation (see also Ref. [3])

to gain some insight about what problems can turn up in a perturbative

derivation as the one presented in this chapter. According to our assump-

tions, the conductivity is diverging for g → 0 and therefore it is useful to

consider the scattering rate Γ(ω)/χ (with the current susceptibility χ of

Eq. (1.10)) defined by

σ(ω) =
χ

Γ(ω)/χ− iω . (2.3)

If J is conserved for g = 0 (i.e. for J = J‖, see above), the scattering rate

vanishes, Γ(ω) ≡ 0, for g = 0, which results in a finite Drude weight. A

perturbation around this singular point results in a finite Γ(ω). In the limit

g → 0 we can expand (2.3) for any finite frequency ω in Γ to obtain

ω2Re σ(ω) = Re Γ(ω) +O(Γ2/ω). (2.4)

We can read this as an equation for the leading order contribution to Γ(ω),

which now is expressed through the Kubo formula for the conductivity. By
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partially integrating twice in time we can write Γ(ω) = Γ̃(ω) +O(g3) with

Re Γ̃(ω) = Re
1

z

1

V

∫ ∞

0
dteizt〈[J̇(t), J̇(0)]〉0

∣∣∣
z=ω+i0

, (2.5)

where J̇ = i[H,J ] = ig[H1, J ] is linear in g and therefore the expectation

value 〈...〉0 can be evaluated with respect to H0 (which may describe an

interacting system). Thus we have expressed the scattering rate via a simple

correlation function of the time derivative of the current.

To determine the dc conductivity one is interested in the limit ω → 0

and it is tempting to set ω = 0 in Eq. (2.5). We have, however, derived

Eq. (2.5) in the limit g → 0 at finite ω and not in the limit ω → 0 at finite

g. The series Eq. (2.4) is well defined for finite ω 6= 0 only and in the limit

ω → 0 the series shows singularities to arbitrarily high orders in 1/ω.

At first sight this makes Eq. (2.5) useless for calculating the dc conduc-

tivity. One of the main results of this chapter is that, nevertheless, Γ̃(ω = 0)

can be used to obtain a lower bound to the dc conductivity

σ(ω = 0) ≥ χ2

Γ̃(0)
for g → 0. (2.6)

2.4 Conjecture

To obtain a controlled approximation to the memory matrix in the limit of

small g, it is important to identify the relevant slow modes of the system.

For the Ci (appearing in 1.7) we choose quantities which are conserved by

H0, [H0, Ci] = 0, such that Ċi = ig[H1, Ci] is linear in the small coupling g.

As argued above, we require that the singularities of correlation functions of

the unperturbed system are exclusively due to exact conservation laws Ci,

i.e. that the Drude peak appearing in Eq. (1.3) is the only singular contribu-

tion, see the end of section 1.4 and appendix A.3 for details. Furthermore,

we choose J = J‖, as discussed in section 1.6, and consider only Ci with the

same time reversal signature as J (see the end of section 1.7). We also will

make the following simplifications which still will keep all essential features

of our proof. As can be seen from a comparison of Eqs. (1.32) and (1.33),

one may further simplify the situation by the particular choice C1 = J‖. Fi-

nally, without loss of generality, we choose the Ci to be not only orthogonal

but also normalized, (Ci|Cj) = δij .

To formulate our central conjecture we introduce the following notions.

We define Mn(ω) as the (exact) n × n memory matrix obtained by setting

up the memory matrix formalism for the first n slow modes {Ci, i = 1, .., n}.
Note that the definitions of the relevant projectors P and Q also depend on

this choice, and that for any choice of n one gets σ = (M−1
n )11. We now

introduce the approximate memory matrix M̃n motivated by the following
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arguments: Ċi is already linear in g and thus the leading contribution to

M(ω) is of order g2. We want to keep the leading order contribution only and

therefore in Eq. (1.28) we approximate L by L0 and replace (.|.) by (.|.)0 as

we evaluate the scalar product with H0 instead of H for the thermal average

as well as the time evolution appearing in Eq. (1.21). By definition, the Ci
are conserved, implying L0|Ci) = 0 and thus L0P = 0 (see Eq. (1.25)) or

equivalently L0Q = L0. Furthermore, as (Cj |Ċi) = 0 due to our choice that

all of the Ci have the same time reversal symmetry, one has Q|Ċi) = |Ċi).
Therefore, the projector Q does not contribute within this approximation.

We thus define the n× n matrix M̃n by

M̃n,ij = lim
ω→0

(
Ċi

∣∣∣ i

ω − L0

∣∣∣Ċj
)

0

. (2.7)

Note that M̃n is a sub-matrix of M̃m for m > n and therefore the approxi-

mate expression for the conductivity σ ≈ (M̃−1
n )11 does depend on n while

(M−1
n )11 is independent of n.

Note that M̃1 is identical to the naive perturbative for Γ̃ derived in the

previous section 2.3, where the validity of this formula is also discussed.

The central conjecture of this chapter is, that for small g (M̃−1
n )11 gives

a lower bound to the dc conductivity for any n, or, more precisely,

σ|1/g2 = (M̃−1
∞ )11 ≥ · · · ≥ (M̃−1

n )11 ≥ · · · ≥ M̃−1
1 . (2.8)

Here σ|1/g2 = (1/g2) limg→0 g
2σ denotes the leading term ∝ 1/g2 in the

small-g expansion of σ. Note that M̃n ∝ g2 by construction. M̃∞ is the ap-

proximate memory matrix where all1 conservation laws have been included.

In some special situations, discussed in Ref. [3], one has σ ∼ 1/g4 and there-

fore σ|1/g2 =∞.

Equation (2.6) in the previous section 2.3 is a special case of the inequal-

ity above, for the scattering rate Γ̃/χ may be expressed as Γ̃/χ2 = M̃1.

Two steps are necessary to prove Eq. (2.8). The simple part is actually

the inequalities in Eq. (2.8). They are a consequence of the fact that the

matrices M̃n are all positive definite and that M̃n is a sub-matrix of M̃m for

m ≥ n. More difficult to prove is that the first equality in (2.8) holds. To

show this we will need an additional assumption, namely, that the regular

part of all correlation functions (to be defined below) remains finite in the

limit g → 0, ω → 0. In this case, the perturbative expansion around M̃∞

in powers of g is free of singularities at finite temperature (which is not the

case for M̃n<∞). This in turn implies that limg→0M∞/g
2 = M̃∞/g

2 and

therefore σ|1/g2 = (M̃−1
∞ )11.

Next, we present the two parts of the proof.

1The Ci span the space of all conservation laws, including those which do not commute
with each other.
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2.4.1 Inequalities

We start by investigating the (1,1)-component of the inverse of the positive

definite symmetric matrix M̃∞. It is convenient to write the inverse as

(M̃−1
∞ )11 = max

ϕ

(ϕTe1)
2

ϕT M̃∞ϕ
(2.9)

where e1 is the first unit vector. The same method is used to derive Eq. (2.2)

in the context of the Boltzmann equation. The maximum is obtained for

ϕ = M̃−1
∞ e1. By restricting the variational space in (2.9) to the first n

components of ϕ we reproduce the sub-matrix M̃n of M̃∞ and obtain

(M̃−1
∞ )11 ≥ max

ϕ=
Pm

1 ϕiei

(ϕTe1)
2

ϕT M̃∞ϕ
= (M̃−1

m )11

≥ max
ϕ=

Pn<m
1 ϕiei

(ϕTe1)
2

ϕT M̃∞ϕ
= (M̃−1

n<m)11

By choosing different values for m and n < m, this proves all inequalities

appearing in (2.8).

2.4.2 Expansion of the Memory Matrix

We proceed by expanding the exact memory matrix Mn, where Pn = 1−Qn
is a projector on the first n conservation laws, in powers of g. Using that

LQn = L0 + gL1Qn, we obtain the geometric series

Mn,ij(ω) =

∞∑

k=0

gk

(
Ċi

∣∣∣∣∣Qn
i

ω − L0

(
L1Qn

1

ω − L0

)k∣∣∣∣∣ Ċj
)
. (2.10)

Note that this is not a full expansion in g, as the scalar product (1.21) is

defined with respect to the full Hamiltonian H = H0 + gH1. We will turn

to the discussion of the remaining g-dependence later.

In general, one can expand

L1 =
∑

m,n

λmn|Am)(An|

in terms of some basis Am in the space of operators. Therefore Eq. (2.10)

can be written as a sum over products of terms with the general structure

(
A

∣∣∣∣Qn
1

ω − L0

∣∣∣∣B
)
. (2.11)

In the following we would like to argue that such an expansion is regular

for n = ∞ if all conservation laws have been included in the definition of
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Q. As argued in Appendix 2.3, we have to investigate whether the series

coefficients in Eq. (2.10) diverge for ω → 0. The basis of our argument is the

following: as Q∞ projects the dynamics to the space perpendicular to all of

the conservation laws, the associated singularities are absent in Eq. (2.11)

and therefore the expansion of M∞ is regular.

To show this more formally, we split up B = B‖ + B⊥ in (2.11) into

a component parallel and one perpendicular to the space of all conserved

quantities, |B‖) = P∞|B). With this notation, the action of L0 becomes

more transparent:

1

ω − L0
|B) =

1

ω
|B‖) +

1

ω − L0
|B⊥). (2.12)

As we assume that all divergences can be traced back to the conservation

laws, we take the second term to be regular. It is only the first term which

leads in Eq. (2.11) to a divergence for ω → 0, provided that (A|Qn|B‖) is

finite. If we consider the perturbative expansion of Mn<∞, where Pn = 1−
Qn projects only to a subset of conserved quantities, then finite contributions

of the form (A|Qn|B‖) exist and the perturbative series in g will be singular

(see also Appendix 2.3). Considering M∞, however, Q∞ projects out all

conservation laws and therefore by construction Q∞|B‖) = Q∞P∞|B) = 0.

Thus the first term in (2.12) does not contribute in (2.11) for n = ∞ and

the expansion (2.10) of M∞ is therefore regular.

The only remaining part of our argument is to show that in the limit

g → 0 one can safely replace (.|.) by (.|.)0. Here it is useful to realize

that (A|B) can be interpreted as a (generalized) static susceptibility. In

the absence of a phase transition and at finite temperatures, susceptibilities

are smooth, non-singular functions of the coupling constants and therefore

we do not expect any further singularities from this step. If we define a

phase transition by a singularity in some generalized susceptibility, then the

statement that susceptibilities are regular in the absence of phase transitions

even becomes a mere tautology.

Combining all arguments, the expansion (2.10) of M∞(ω → 0) is regular,

and using (Ċi|Q∞ = (Ċi| (see discussion before Eq. (2.7)) its leading term,

k = 0 is given by M̃∞. We therefore have shown the missing first equality

of our central conjecture (2.8).

2.5 Discussion

In this chapter we have established that in the limit of small perturbations,

H = H0 + gH1, lower bounds to dc conductivities may be calculated for

situations where the conductivity is infinite for g = 0. In the opposite case,

when the conductivity is finite for g = 0, one can use naive perturbation

theory to calculate small corrections to σ without further complications.



24

Lower Bounds for Conductivities of Correlated Quantum

Systems

The relevant lower bounds are directly obtained from the memory matrix

formalism. Typically[33, 34, 35] one has to evaluate a small number of

correlation functions and to invert small matrices. The quality of the lower

bounds depends decisively on whether one has been able to identify the

‘slowest’ relevant modes in the system.

There are many possible applications for the results presented in this

chapter. The mostly considered situation is the case where H0 describes a

non-interacting system[33]. For situations where the Boltzmann equation

can be applied, it has been pointed out a long time ago by Belitz [36] that

there is a one-to-one relation of the memory matrix calculation to the varia-

tional Ansatz for the Boltzmann equation, see Eq. (2.2). In this chapter we

were able to generalize this result to cases where a Boltzmann description

is not possible. For example, if H0 is the Hamiltonian of a Luttinger liquid,

i.e. a non-interacting bosonic system, then typical perturbations are of the

form cosφ for which a simple transport theory in the spirit of a Boltzmann

or vertex equation does not exist to our knowledge.

Another class of applications are systems whereH0 describes an interact-

ing system, e.g. an integrable one-dimensional model[3] or some non-trivial

quantum-field theory[37]. In these cases it can become difficult to calcu-

late the memory matrix and one has to resort to use either numerical[3] or

field-theoretical methods[37] to obtain the relevant correlation functions.

An important special case are situations where H0 is characterized by a

single conserved current with the proper symmetries, i.e. with overlap to the

(heat-, spin- or charge-) current J . For example, in a non-trivial continuum

field theory H0, interactions lead to the decay of all modes with exception

of the momentum P . In this case the momentum relaxation and therefore

the conductivity at finite T is determined by small perturbations gH1 like

disorder or Umklapp scattering which are present in almost any realistic

system. As M̃∞ = M̃1 in this case, our results suggest that for small g

the conductivity is exactly determined by the momentum relaxation rate

M̃PP = limω→0 i(Ṗ |(ω − L0)
−1|Ṗ ),

σ =
χ2
PJ

M̃PP

for g → 0. (2.13)

Here we used that J‖ = P (P |J)/(P |P ) with χPJ = (P |J) and we have

restored all factors which arise if the normalization condition (1.24) is not

used. In the next section, 2.6, we check numerically that this statement is

valid for a realistic example within the Boltzmann equation approach.

A number of assumptions entered our arguments. The strongest one is

the restriction that all relevant singularities arise from exact conservation

laws of H0. We assumed that the regular parts of correlation functions are

finite for ω = 0. There are two distinct scenarios in which this assump-

tion does not hold. First, in the limit T → 0, often scattering rates vanish
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which can lead to divergences of the nominally regular parts of correlation

functions. Furthermore, at T = 0 even infinitesimally small perturbations

can induce phase transitions – again a situation where our arguments fail.

Therefore our results are not applicable at T = 0. Second, finite temper-

ature transport may be plagued by additional divergences for ω → 0 not

captured by the Drude weight. In some special models, for instance, trans-

port is singular even in the absence of exactly conserved quantities (e.g.

non-interacting phonons in a disordered crystal[29]). In all cases known to

us, these divergences can be traced back to the presence of some slow modes

in the system (e.g. phonons with very low momentum). While we have

not kept track of such divergences in our arguments, we nevertheless believe

that they do not invalidate our main inequality (2.8) as further slow modes

not captured by exact conservation laws will only increase the conductivity.

It is, however, likely that the equality (2.13) is not valid for such situations.

In section 2.6 we analyze in some detail within the Boltzmann equation

formalism under which conditions (2.13) holds.

As an aside, we note that the singular heat transport of non-interacting

disordered phonons, mentioned above, is well described within our formalism

if we model the clean system by H0 and the disorder by H1, see the exten-

sive discussion by Ziman[29] within the variational approach which can be

directly translated to the memory matrix language, see Ref. [36].

It would be interesting to generalize our results to cases where time

reversal symmetry is broken, e.g. by an external magnetic field. As time

reversal invariance entered non-trivially in our arguments, this seems not to

be simple. We nevertheless do not see any physical reason why the inequality

should not be valid in this case, too. One example where no problems arise

are spin chains in a uniform magnetic field[38] where one can map the field to

a chemical potential using a Jordan-Wigner transformation. Then one can

directly apply our results to the time reversal invariant system of Jordan-

Wigner fermions.

2.6 Single Slow Mode

In this section we check whether in the presence of a single conservation law

with finite cross correlations with the current the inequality (2.8) can be

replaced by the equality (2.13). This requires us to compare the true con-

ductivity, which in general is hard to determine, to the result given by M̃1.

Thus we restrict ourselves to the discussion of models for which a Boltzmann

equation can be formulated and the expression for the conductivity can be

calculated at least numerically. In the following we first show numerically

that the equality (2.13) holds for a realistic model. In a second step we

discuss the precise regularity requirement of the scattering matrix such that



26

Lower Bounds for Conductivities of Correlated Quantum

Systems

Eq. (2.13) holds.

To simplify numerics, we consider a simple one-dimensional Boltzmann

equation of interacting and weakly disordered Fermions. Clearly, the Boltz-

mann approach breaks down close to the Fermi surface due to singularities

associated with the formation of a Luttinger liquid, but in the present con-

text we are not interested in this physics as we only want to investigate

properties of the Boltzmann equation. To avoid the restrictions associated

with momentum and energy conservation in one dimension we consider a

dispersion with two minima and four Fermi points,

ǫk = −k
2

2
+
k4

4
+

1

10
. (2.14)

The Boltzmann equation reads

vk
df0
k

dǫk
E =

∑

k′qq′

Sqq
′

kk′

[
fkfk′(1− fq)(1− fq′)

− fqfq′(1− fk)(1 − fk′)
]

+ g2
∑

k′

δ(ǫk − ǫk′)
[
fk(1− fk′)− fk′(1− fk)

]

=
∑

k′

Wkk′Φk′ (2.15)

where the inelastic scattering term Sqq
′

kk′ = δ(ǫk+ǫk′−ǫq−ǫq′)δ(k+k′−q−q′)
conserves both energy and momentum. In the last line we have linearized

the right hand side using the definitions of the introductory chapter. The

velocity vk is given by vk = d
dk ǫk. The scattering matrix splits up into an in-

teraction component and a disorder component, Wkk′ = W 0
kk′ + g2W 1

kk′ .

As we do not consider Umklapp scattering, W 0
kk′ conserves momentum,∑

k′ W
0
kk′k

′ = 0, and one expects that momentum relaxation will determine

the conductivity for small g.

For the numerical calculation we discretize momentum in the interval

[−π/2, π/2], kn = nδk = nπ/N with integer n. (At the boundaries the

energy is already too high to play any role in transport.) The delta function

arising from energy conservation is replaced by a Gaussian of width δ. The

proper thermodynamic limit can for example be obtained by choosing δ =

0.3/
√
N . The numerics shows small finite size effects.

In Fig. 2.1 we compare the numerical solution of the Boltzmann equation

to the single mode memory matrix calculation or, equivalently[36], to the

variational bound obtained by setting Φk = k in Eq. (2.2)

σ̃ =

(∑
k v

i
kk

df0

dǫk

)2

∑
k,k′ kWkk′k′

=

(∑
k v

i
kk

df0

dǫk

)2

g2
∑

k,k′ kW
1
kk′k

′
. (2.16)
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Figure 2.1: Comparison of the result of a single mode memory matrix calcu-

lation (solid line), Eq. (2.16), to the full numerical solution of the Boltzmann

equation (dotted line) for T = 0.05 and N = 500. The memory matrix is

always a lower bound to the Boltzmann result and converges towards it as

the disorder strength g is reduced, as shown in the inset (ratio of the single

mode approximation to the Boltzmann result).

As can be seen from the inset, in the limit of small g one obtains the exact

value for the conductivity, which is what we intended to demonstrate.

Next we turn to an analysis of regularity conditions which have to be met

in general by the scattering matrix Wkk′ such that convergence is guaranteed

in the limit g → 0. According to the assumptions of this section, for g = 0

the variational form of the Boltzmann equation (2.2) has a unique solution

Φ̄k (up to a multiplicative constant), with F (Φ̄k) = ∞,
∑

k′ W
0
kk′Φ̄k′ = 0

and
∑

k vkΦ̄kdf
0/dǫk > 0.

In the presence of a finite, but small g we write the solution of the

Boltzmann equation as Φ = Φ̄ + Φ⊥, where Φ⊥ has no component parallel

to Φ̄ (i.e.
∑

k Φ̄kΦ
⊥
k df

0/dǫk = 0 ). By combining the two inequalities

F [Φ̄] ≤ F [Φ] (2.17)

ΦWΦ = Φ̄g2W 1Φ̄ + Φ⊥WΦ⊥ ≥ Φ̄g2W 1Φ̄ (2.18)

one concludes that Eq. (2.13) is valid, i.e. that

lim
g→0

F [Φ̄]

F [Φ]
= 1

under the condition that

lim
g→0

∑

k

vkΦk
df0

dǫk
=
∑

k

vkΦ̄k
df0

dǫk
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or, equivalently,

lim
g→0

∑

k

vkΦ⊥,k
df0

dǫk
= 0. (2.19)

We therefore have to check whether Φ⊥ becomes small in the limit of small

g.

Expanding the saddle-point equation for (2.2) we obtain

∑

k′

W 0
kk′Φ

⊥
k′ = vk

df0

dǫk

∑
k′k′′ Φ̄k′g

2W 1
k′k′′Φ̄k′′∑

k′ vk′
df0

dǫk′
Φ̄k′

−
∑

k′

g2W 1
kk′Φ̄k′ +O(g2W1Φ⊥,Φ⊥W0Φ⊥)

As by definition Φ⊥ has no component parallel to Φ̄, we can insert the

projector Q which projects out the conservation law in front of Φ⊥
k on the

left hand side. We therefore conclude that if the inverse of W 0Q exists, then

Φ⊥ is of order g2, Eq. (2.19) is valid and therefore also Eq. (2.13). In our

numerical examples these conditions are all met.

Under what conditions can one expect that Eq. (2.19) is not valid?

Within the assumptions of this section we have excluded the presence of

other zero modes of W 0 (i.e. conservation laws) with finite overlap with the

current. But it may happen that W 0 has many eigenvalues which are arbi-

trarily small such that the sum in Eq. (2.19) diverges. In such a situation

the presence of slow modes which cannot be identified with conservation

laws of the unperturbed system invalidates Eq. (2.13).



Chapter 3

Transport in Almost

Integrable Spin Chains

The heat conductivity κ(T ) of the integrable one-dimensional spin-1/2 nearest-

neighbor Heisenberg model, is infinite even at finite temperatures as a con-

sequence of the conservation laws associated with integrability. Small per-

turbations lead to finite but large transport coefficients which we calculate

perturbatively using exact diagonalization and moment expansions. We

show that there are two different classes of perturbations. While an inter-

chain coupling of strength J⊥ leads to κ(T ) ∝ 1/J2
⊥ as expected from simple

golden-rule arguments, we obtain a much larger κ(T ) ∝ 1/J ′4 for a weak

next-nearest-neighbor interaction J ′. This can be explained by a new ap-

proximate conservation law of the J-J ′ Heisenberg chain.

Similarly, the spin conductivity σs(T ) in the gap-less regime (i.e. for

anisotropies −1 < ∆ < 1) of the XXZ model, too, is infinite at finite tem-

peratures T . Nevertheless there is a fundamental difference between the two

cases. While the heat current is one of the integrals of motion of the XXZ

model, the spin current can easily be shown to have no overlap with any of

the infinitely many integrals of motion, implying that the conserved currents

protecting the spin current have to be of non-local nature1. We construct

numerically a non-local conserved operator J‖ which is responsible for the

finite spin Drude weight of the integrable model and calculate its decay rate

for small J ′. This allows us to obtain a lower bound for the spin conductivity

σs ≥ c(T )/J ′2, where, despite the conceptual difference of the spin current

as opposed to the heat current, c(T ) is also finite for J ′ → 0. We discuss the

implication of our result for the general question how non-local conservation

laws affect transport properties.

The outline of the chapter is as follows. First we will give a motivation

for our analysis. Then several technical sections follow in which we develop

1For examples of non-local operators, see the section about the spin current, 3.6.
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the model and comment on the numerical methods we use. These sections

cope with material common to both pieces of work. The final two sections

in this chapter are devoted to a presentation of the results for the heat and

the spin conductivity, respectively. Both pieces of analysis use the result

from the last chapter and therefore they are devoted to the calculation of

the ‘scattering rate’ Γ̃(ω) for different situations. The results are discussed

at the end of each of these sections.

3.1 Motivation

The thermodynamic properties of many experimental systems (like, e.g.,

KCuF3, CuGeO3, MEM-[TCNQ]2, SrCuO2 or Sr2CuO3) are well described

by a one-dimensional (1D) nearest-neighbor spin-1/2 Heisenberg model [39].

In such systems, measurements of specific heat or susceptibilities are in

quantitative agreement with exact results derived from the Bethe ansatz.

The situation is different when transport is considered. The transport

properties of the XXZ Heisenberg chains, which is equivalent to a model

of spinless Fermions with nearest neighbor interactions, has been studied

extensively both theoretically [40, 41, 26, 42, 43, 44, 6, 19, 5, 3] and ex-

perimentally [45, 46, 47, 38, 9]. In theory, both the heat conductivity κ

and the spin conductivity σs (or, equivalently, the electric conductivity in

the Fermionic language) are infinite and have a finite Drude weight at any

temperature [44].

In real materials the unavoidable presence of (small) perturbations like

longer range spin-spin interactions, inter-chain couplings, disorder or spin-

phonon interactions, breaks the integrability and renders the conductivi-

ties finite. This has to be contrasted with the behavior of thermodynamic

quantities and most other correlation functions which—at least for finite

temperatures—vary smoothly as a function of small perturbations (assum-

ing that no phase transitions are induced). Obviously the general question

arises of how transport can be calculated in “almost integrable models”, i.e.,

how strongly is the transport affected by small couplings which break the

integrability.

When the perturbations are small, the heat conductivity is known to

remain very large[18, 35, 48, 4]. This is reflected in experiments which show

a huge contribution to the heat conductivity from the spin chain component

of the system. In contrast, no experimental data is available for the spin

conductivity and there are good reasons to expect that the situation might

be quite different in this case, see the section about non-local conservation

laws below.

The question, how transport is affected by small integrability breaking

perturbations, is not only important for systems well described by integrable
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Heisenberg or Hubbard models but is also of relevance for a much broader

class of quasi-1D materials. The reason is that effective low-energy theories

in 1D are notoriously integrable. For example, an arbitrarily complicated

two-leg spin-ladder is, at low energies, well described by an integrable Sine-

Gordon model as long as the energy gap ∆E is much smaller than micro-

scopic energy scales like J . The term “well-described” implies again that the

integrable model can be used for an accurate description of thermodynam-

ics. To understand transport, however, one has to study again the effects of

small perturbation (suppressed by powers of ∆E/J) on transport.

A further reason for our investigations is the general theoretical question

of how singular are integrable models and how are they affected by pertur-

bations. The analog question is well studied in classical systems with small

numbers of degrees of freedom, c.f. the famous Kol’mogorov-Arnol’d-Moser

theorem [49]. But already infinitesimal perturbations of classical systems

with an infinite number of degrees of freedom may drive the system into

chaotic behavior, and not much is known about many-particle quantum sys-

tems.

3.2 The XXZ Model and its Currents

Here we will introduce the Hamiltonian that will be worked with in this

section. The unperturbed model H0 is the XXZ Heisenberg spin chain with

nearest-neighbor coupling only.

H0 =
∑

i

hi, (3.1)

hi = J(Sxi S
x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1) (3.2)

Perturbations will include the next-nearest neighbor coupling

H1 =
∑

i

h′i, (3.3)

h′i = J ′(Sxi S
x
i+2 + Syi S

y
i+2 + ∆′Szi S

z
i+2) (3.4)

and the (isotropic) coupling between chains,

H̃1 =
∑

i

h⊥i , (3.5)

h⊥i = J⊥
∑

〈αβ〉

Sαi · Sβi (3.6)

where S = (Sx, Sy, Sz)T . To maintain consistency with our earlier notation

we will sometimes use a slightly different normalization for the perturbation:

Defining the coupling parameter g = J ′/J ≪ 1 or g = J⊥/J ≪ 1 we then
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maintain the form H = H0+gH1 and then it is understood that in Eqs. (3.3)

and (3.5) the coupling constants should be replaced by J . This should be

sufficient for confusion.

The reader not familiar with the used symbols may consult the peda-

gogical appendix on spin operators B.1 at this point.

Next, let us elaborate on relevant properties of the XXZ chain. The

XXZ Heisenberg chain is integrable as it is solvable by the Bethe Ansatz

method [50]. This means that analytic expressions for the wave functions

of the XXZ model are known in terms of integro-differential equations. A

consequence of integrability is the existence of an infinite set of integrals

of the motion, which have been given in explicit form by Grabowski and

Mathieu [40, 51]. These constants of the motion constitute a complete set

of commuting operators, Qn with [Qn, Qm] = 0 for all n,m. In principle,

their eigenvalues can be used to label all eigenstates of the system. Let us

consider the Qn more closely. The first of these conserved quantities is also

the simplest one, namely the z-component of the total spin, Q1 =
∑

i S
z
i .

All other Qn can be constructed by a simple recursive formula [40], Qn+1 =

[B,Qn] with the so-called boost operator B = 1/(2i)
∑

j jhj . For example, a

single application of the boost operator on Q0 yields the Hamiltonian itself,

H0 = Q2 =
∑

i

hi, (3.7)

hi = J(Sxi S
x
i+1 + Syi S

y
i+1 + ∆Szi S

z
i+1), (3.8)

and the next step in the hierarchy yields the energy current operator, which

for the isotropic case ∆ = 1 may simply be written as a triple product:

JQ = Q3 = J2
∑

i

Si · (Si+1 × Si+2). (3.9)

All these conservation laws have a property which will become important

for the discussion about non-local operators: the Qn are local operators in

the sense that each Qn can be written in terms of a local “density” qn,i at

site i,

Qn =
∑

i

qn,i, (3.10)

where qn,i is local as it contains only spin operators Sαj on maximally n

adjacent sites, i ≤ j < i+n. The current associated with a locally conserved

density (c.f. any of the Qn) can be obtained from the continuity equation

∂tρ(x) + ∇j(x) = 0, which in its discrete form (setting the lattice spacing

to unity, a = 1) reads

i[H0, qn,i] = jn,i − jn,i+1. (3.11)
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This equation can readily be solved for jn,i and yields for the spin current

Js =
i

2

∑

i

j2,i =
∑

i

(
S−
i S

+
i+1 − S+

i S
−
i+1

)
(3.12)

and for the heat (or energy) current JQ = Q3, i.e. Eq. (3.9), respectively.

(As there is no convective flow in the spin chain, heat and energy current

are the same.)

3.3 Exact Diagonalization

A common method to evaluate correlation functions numerically is referred

to as ‘exact diagonalization’ and will be described in the following. The

method uses the matrix elements of the appearing operators in an eigenbasis

of the Hamiltonian. Therefore one diagonalizes the Hamiltonian numerically

and transforms the operators to the eigenbasis. If the matrix elements are

known, one can use the spectral (or Lehmann) representation, in terms of

which correlation functions are given by a sum over the matrix elements.

E.g. for βω ≪ 1 (i.e. in the high temperature or the low frequency limit)

the conductivity may be written as follows:

Re σ(ω) =
πβ

V Z
∑

mn

e−βEm|〈m|J |n〉|2δ(ω − (En − Em)), (3.13)

where Z =
∑

m e−βEm is the partition sum. Of course, an exact diago-

nalization of the Hamiltonian can be achieved for finite system sizes only.

Therefore the correlation function is given as a set of delta functions of fre-

quency scattered over the real axis, each coming with a weight determined

by the matrix elements of J . It is only in the limit of infinite system size

(the thermodynamic limit) that the correlation function becomes a smooth

function of frequency. Under the assumption that the thermodynamic limit

is approached continuously as one increases system size, one can attempt to

draw a histogram for the finite size correlation function which shall be an

approximation to the real correlation function in the thermodynamic limit.

This can be achieved by means of a technique referred to as ‘binning’. It

consists of a subdivision of the real axis into a number of equal intervals

and summing the weights of the delta peaks lying within each interval. The

resulting histogram is the approximation to the real correlation function.

The intervals (or bins) should be large enough to contain a number of delta

peaks which can be considered as macroscopic, but should be small enough

to obtain a histogram which on a scale dictated by the coupling constants

can be considered as continuous. These two criteria2 are competing and can

2Here we have formulated the criteria in a rather qualitative fashion. Although possible
in several ways, a quantification of the methods is not necessary in the cases discussed
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be met to a higher degree when one increases the system size. Thus it is

desirable to calculate the correlation functions for large systems. However,

the calculational effort of the diagonalization grows exponentially with sys-

tem size as the number of states in a chain of length N is given by 2N . In

our case, this limits the number of spins in the chain that are amenable to

exact diagonalization to N = 20.

To make statements about the thermodynamic limit, it is necessary to as-

sure oneself of the fact that finite size effects are small and can be neglected.

Thus it is necessary to compare curves obtained for different system sizes.

If the difference between the histograms for systems of size N with adjacent

N decreases sufficiently to make possible an extrapolation to N =∞, then

one usually concludes that finite size effects are negligible.

The last consideration also affects our argument about the numerical

cost. While the effort grows exponentially with system size, the information

gain by increasing the system size by one or two often decreases quickly.

In fact, often systems with N = 16 already reproduce most features of the

correlation function quite reliably. A further increase of the parameter N

then often happens out of sportsmanship. There are, however, situations

where genuinely new information can be gained from considering, say, N =

18, because it clearly shows distinct features the identification of which is

not possible for N = 16 due to poor statistics.

As the exact diagonalization technique is quite common, we do not dis-

cuss it beyond the qualitative description above, and restrict ourselves to

briefly discuss implementation details which are specific to our situation of

the XXZ Heisenberg model, instead.

To avoid open boundaries we choose periodic boundary conditions. The

thermodynamic limit would be the same with both approaches, but peri-

odic boundary conditions have the additional advantage of higher symme-

try, which allows to reduce the dimension of the matrices which have to

be diagonalized. The drawback of periodic boundary conditions is that not

all temperature regimes are accessible. For T ≪ J correlations decay al-

gebraically with distance only [52] and thus large finite size effects can be

expected for this regime. One is thus restricted to the high temperature

regime T & J , where correlation functions decay exponentially. All our

calculations are performed in the high temperature limit, T → ∞, where

the correlation length vanishes. The results presented here are, however,

qualitatively the same for finite T & J . The advantage of the limit T →∞
is that the statistics provided by the calculated correlation functions is best:

All delta peaks are equally weighted.

The numerically most expensive step is actually the diagonalization of

here. In our simple implementation we keep the number of bins constant (equal to 1023)
across different system sizes, which proves to be sufficient for our purpose.
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huge matrices. What is achievable on modern computers available to us

(both from memory and time standpoint) are matrices up to a size of 10 000×
10 000. If we would attempt to diagonalize the full Hamiltonian directly,

this would limit the accessible system size to N = 13, as the size of the

Hamiltonian matrix is given by the number of states in the system, 213 =

8192 / 10 000. However, the Hamiltonian preserves the z-component of the

total spin, Sz =
∑

i S
z
i , and thus the Hamiltonian is block-diagonal with

respect to Sz. One thus can diagonalize in subspaces of the Hilbert space

with given spin-Sz eigenvalue. This already would allow us to diagonalize

system sizes up to N = 15 or N = 16, as the dimension of the largest

subspace (i.e. the one with the smallest |Sz|) is given by
(

N
⌊N/2⌋

)
and we

have
(
15
7

)
= 6435 and

(
16
8

)
= 12870. However, it is possible to reduce the

dimension of the matrices necessary to diagonalize further by taking into

account one more ‘good’ quantum number, and the most straightforward

one is provided by the translation operator T . The translation operator

‘rotates’ a state by one site to the right,

T | ↑↑↑↓↓↓〉 = | ↓↑↑↑↓↓〉. (3.14)

For a system with N sites one has the identity TN = 1. Furthermore,

T−1T = 1 and considering the action of T−1 to the left it is clear that

T is unitary, T−1 = T †. Given an arbitrary state |ψ〉, we can construct

eigenstates of the translation operator

|ψ〉 → |k〉ψ =

N∑

n=1

e−2πi k
N
nT n|ψ〉 (3.15)

with

T |k〉ψ = e2πi k
N |k〉ψ. (3.16)

Thus k is the (lattice) momentum of state |k〉ψ (as momentum generates

translations) and it can take N distinct values. If we go to a common

eigenbasis of Sz and T , the dimension of the largest matrix to be diagonalized

for given N is roughly3 equal to 1
N

(
N

⌊N/2⌋

)
which allows us to go to system

sizes up to N = 20, as 1
20

(
20
10

)
/ 10 000. System sizes above N = 16

show already a respectable statistics and comparison with systems up to size

N = 20 can give an accurate estimate of the appearing finite size effects.

The recipe for obtaining the desired correlation functions is then as fol-

lows. First, determine the Hamiltonian, and all terms appearing in the

correlation function, in a subspace of the Hilbert space with given Sz and T

3Not from every state can one construct eigenstates of T with given momentum k: For

example take the state |ψ〉 = | ↑↓↑↓〉 for N = 4, for which no states with k = 1 and k = 3
exist.
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eigenvalues. Each of the subspaces can be treated separately. This includes

calculation of each matrix element. To produce the numerical data pre-

sented below, this step has been implemented in the programming language

“c”. As a next step we have to diagonalize the Hamiltonian matrix. This

can be achieved most efficiently with existing diagonalization routines. We

have used the so-called LAPACK library. Diagonalization provides us with

the eigenvalues and the eigenvectors of the Hamiltonian. In the third step,

one transforms the other operators into the just obtained eigenbasis of the

Hamiltonian. The transformation matrix is given by the eigenvectors. The

correlation function now can be calculated from its spectral representation.

In this final step the binning is applied which was described above.

3.4 Frequency Moments Reconstruction

The reconstruction of a frequency dependent correlation function from its

moments is an alternative to exact diagonalization. It provides us with

an independent method for the approximate determination of a correlation

function, which allows to cross-check the results. We have used this method

solely in the context of heat conductivity in the isotropic Heisenberg spin

chain with next nearest neighbor perturbation, see section 3.5. In fact, we

have utilized this method prior to using the exact diagonalization technique

because we expected large finite size effects from exact diagonalization, based

on exact diagonalization studies [53] for the heat conductivity itself, which

close to the integrable point showed considerable finite size effects. However,

those effects are connected to the singular properties of the conductivity

and it turns out that these finite size effects are absent for the type of

correlation functions we are interested in, namely approximations to the

memory matrix. In the following we will describe the method of frequency

moments.

The basis of the method is the observation that the frequency moments

appear as coefficients in a high frequency expansion of the correlation func-

tion:

χR(z) = P
∫

dω

π

χC(ω)

ω − z (3.17)

= −
∞∑

p=1

1

zp

∫ ∞

−∞

dω

π
ωp
χC(ω)

ω
(3.18)

≡ −
∞∑

p=1

1

zp
µp (3.19)

where we introduced the pth frequency moment of the correlation function
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χ(ω) (defined as in appendix A.2) which reads

µp ≡
∫ ∞

−∞

dω

π
ωp
χC(ω)

ω
. (3.20)

By partial integration one directly obtains that

µp = 〈[(id/dt)p J(t), J(0)]〉|t=0 (3.21)

= 〈[ · · · [[J,H],H] · · ·︸ ︷︷ ︸
p×

, J ]〉. (3.22)

Thus the frequency moments can be obtained from equal-time commutators.

Therefore, the moments are often easier to calculate than the correlation

function itself. While we have determined the moments of χR(ω), we are

rather interested in the moments of the scattering rate Γ̃(ω). Fortunately,

it turns out that both quantities have the same moments to leading order

in g. This can be seen as follows. In the expression for the regular part of

the conductivity (1.13), the imaginary part of χR(0) vanishes and therefore

all (but the first, which would include the Drude weight) moments of the

real part of the conductivity are given by the imaginary part of moments

of χR(ω). Furthermore, in leading order in g we have equation (2.4), which

tells us that moments of the conductivity are also moments of the memory

matrix. We can write
∫

dw

π
ωpRe Γ̃(ω) = Im µp+1. (3.23)

The moments can be calculated rather straightforwardly in the high tem-

perature limit T →∞. In appendix B.3 we give implementation details on

the calculation of the moments. We have succeeded to calculate the first 14

non-vanishing moments for Γ̃(ω). Choosing periodic boundary conditions,

one would need a system of at least 30 sites to reproduce these moments

from exact diagonalization.

As soon as the moments are known, one can attempt to reconstruct the

scattering rate using different methods. This part of the task is less straight-

forward and may involve different subtleties, depending on the method used.

Since we are interested in the low frequency limit, it is useless to insert the

moments into the expansion (3.19) and one has to resort to methods which

attempt to reconstruct the behavior in the vicinity of ω = 0. We have tried

three different methods, namely a continued fraction expansion, the Nickel

method [54, 55], and the maximum entropy method [56]. Each of these algo-

rithms has its own advantages and disadvantages and each of them delivers

different reconstructions of Γ̃(ω). We have found the maximum entropy to

be the most useful in our case (see Fig. 3.5). This method finds the most

probable of all curves which have the given moments, assuming that nothing
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else is known about the curve. This is achieved by maximizing the entropy

functional −
∫
f(ω) ln f(ω)dω among the set of all curves with the given

moments. By using curves reconstructed from different numbers of mo-

ments, one can then extrapolate the number of moments to infinity. Doing

so for the point Γ̃(ω = 0) one obtains an estimate for the lower bound to

the conductivity.

We have used the frequency moments reconstruction method only in

the case of the heat conductivity in the isotropic Heisenberg chain with

weak next nearest neighbor coupling. As outlined below, we find that exact

diagonalization gives more reliable results and less finite size effects using

a more straightforward method. Thus for all other calculations only exact

diagonalization is used.

3.5 Heat Conductivity

In this section we present numerical results for the leading order contribution

to the scattering rate of heat current

g2Γ2(ω) = Γ̃(ω) =
β

V

1

ω

∫ ∞

0
dt eiωt〈[J̇Q(t), J̇Q(0)]〉0 (3.24)

(compare Eqs. (2.5,2.6) and the discussion at the end of 2.4) in the XXZ

model with next-nearest neighbor and inter-chain coupling (see section 3.2)

obtained via exact diagonalization and frequency moments reconstruction.

According to the last chapter this provides a rigorous lower bound to the

heat conductivity κ(ω = 0), see Eq. (2.8). In the case of the isotropic spin

chain and next nearest neighbor (nnn) perturbation we also evaluate higher

order contributions g3Γ3(ω) and g4Γ4(ω) to the scattering rate. Expressions

for the higher order contributions are derived in appendix B.4.

The real heat current in the perturbed system has a contribution ∝ J ′,

(i.e. JQ = J0 +gJ1) as the continuity equation has to be solved with the new

energy density, also containing a term ∝ J ′. Therefore, the operator J̇Q ap-

pearing in equation (3.24) contains two contributions which are linear in J ′,

J̇Q = ig[H0, J1] + ig[H1, J0]. However, the last chapter suggests to use only

the exact conservation laws of the unperturbed Hamiltonian as slow modes

in the memory matrix. In fact, it is easy to see that terms that are coming

with a commutator with the unperturbed Hamiltonian (here ig[H0, J1]) do

not contribute to the scattering rate at ω = 0: As the correlation function is

evaluated with respect to H0, any such term can be integrated by parts and

makes a contribution proportional to ω. The calculations presented in this

chapter, nevertheless, include that irrelevant additional term which alters

the results at ω 6= 0 only. The reason for this is the lack of awareness about
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Figure 3.1: Leading order contribution to the scattering rate Γ(ω) from exact

diagonalization of a 20-site Heisenberg chain (thin solid line) with weak nnn

coupling J ′ (at T = ∞). To this order the scattering rate vanishes at

ω = 0, implying anomalous transport. The same result is obtained if Γ2(ω)

is reconstructed from N moments (N = 10...26) using the maximum entropy

method. The inset shows that Γ2(ω = 0)→ 0 for N →∞.

the irrelevance of these contributions at the date of accomplishment4. For

completeness we give the form of the heat current we use in our calculations.

In the continuity equation we use a symmetrized version of the hi,

hi =
J

2

∑

α

(Sαi−1 · Sαi + Sαi · Sαi+1

+ 2g′Sαi−1 · Sαi+1 + 2g⊥
∑

〈αβ〉

Sαi · Sβi )

which, for the isotropic case ∆ = ∆′ = 1 leads to the following expression

for the heat current JQ =
∑

i ji:

ji =
J2

2

∑

α

[
2Sαi−1 · (Sαi × Sαi+1) + g′(3Sαi−2 − 4Sαi + 3Sαi+2)·

(Sαi−1 × Sαi+1) + g⊥
∑

〈αβ〉

(Sαi−1 − Sαi+1) · (Sαi × S
β
i )
]

+O(g′2).

Next we present the results.

4As an aside we note that J1 is not even uniquely defined and the results for Γ̃(ω) for
ω 6= 0 also depend on the choice of J1. The reason is that the definition of the Hamiltonian
density is not unique, H =

P

i
hi =

P

i
h̃i, and different choices of hi lead to different

results for J1. While dynamic correlation functions depend on this gauge freedom, static
susceptibilities at ω = 0 are independent.
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Figure 3.2: Third and fourth order contributions to the scattering rate for

various system sizes (see Fig. 3.1), the first non-vanishing contribution being

of order g4. Note that finite-size effects are small.

First, we consider the isotropic (∆ = 1) Heisenberg spin chain with a

weak and isotropic (∆′ = 1) nnn coupling. Figure 3.1 shows the leading order

contribution Γ2(ω) to the scattering rate determined from an evaluation of

Eq. (3.24) for large T using exact diagonalization. As similar physical quan-

tities (at large T ) have been reported [53] to show surprisingly large finite size

effects (not observed in our case) we have also reconstructed Γ2 from an an-

alytic calculation of its first 26 moments,
∫∞
−∞

dω
π ω

nΓ2(ω) = 〈[∂n−1
t JQ, JQ]〉,

using a high-temperature expansion for an infinite system. We have used

various methods to obtain Γ2(ω = 0) from these moments, as described in

section 3.4. Although the curves of the reconstructed Γ̃(0) over the number

of moments 1/N differ depending on which method is used for reconstruc-

tion, all methods consistently show that Γ2(ω → 0) vanishes. (For results

from maximum entropy reconstruction, see the inset in Fig. 3.1.) Our exact

diagonalization results also show that this is not an artifact of the T → ∞
limit as the limit is, contrary to our expectations, smooth (see, e.g., Fig. 3.2).

We would like to emphasize that the vanishing of the scattering rate Γ(0)

to lowest order is very surprising both formally and physically. Formally,

one would expect that any “generic” correlation function of type (3.24)

has a finite ω = 0 limit at any finite temperature. Physically, golden-rule

arguments suggest that the breaking of integrability leads to a decay rate of

the heat current of order J ′2. In the following, we will first investigate the

role of higher order corrections and then the influence of other terms which

break integrability.

Corrections to Γ up to order J ′4 are derived starting from Eq. (2.4),

where our lowest order result, Γ2, is used to determine the term of order Γ2.

The ∂tJQ-∂tJQ correlation function is then evaluated to order J ′3 and J ′4
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using the wave functions and energies obtained from the exact diagonaliza-

tion of H0. The contributions to orders J ′3 and J ′4 are given in Appendix

B.4 and the results are shown in Fig. 3.2. Since Re Γ(ω) has to be positive

and Γ2(0) = 0, it is not surprising that Γ3(0) also vanishes. Γ4(0), however,

is clearly finite. We therefore conclude that the heat conductivity in the

limit J ′ → 0, ∆ = ∆′ = 1, has the form

κ ≈ J7

T 2J ′4f(T/J)
≈ 0.054(1)J7

T 2J ′4
for T →∞, (3.25)

where f is an (unknown) function of T/J only, with f(x → ∞) ≈ 18.5

estimated from our exact diagonalization results shown in Fig. 3.2. Together

with the analytical explanation given below this is the main result of this

section.

3.5.1 Readjusted Conservation Law

We start with the observation that the time derivative of the heat current

is linear in g as [H0 + gH1, JQ] = O(g). How can the naive golden-rule

argument which suggests a decay rate proportional to g2 fail? This can

happen if the presence of slow modes modifies the long-time behavior of the

∂tJQ correlation function as discussed, e.g. in [35, 4, 57]. We therefore try

to construct a new slow mode of the perturbed system H0 + gH1 starting

from the conserved heat current J0 of the integrable model H0. Hence, we

seek a solution J̃1 to the equation

[H0 + gH1, J0 + gJ̃1] = O(g2). (3.26)

As [H0, J0] = 0, we have to construct a J̃1 with

[H0, J̃1] = −[H1, J0]. (3.27)

While we will use this equation for the following analysis, it is desirable

to obtain a better understanding of what it actually tells us. We chosse a

common eigenbasis of H0 and J0 for the Hilbert space, i.e. a basis in which

H0 =
∑

nEn|n〉〈n| and J0 =
∑

n Jn|n〉〈n|. In this basis, Eq. (3.27) reads

(En −Em)〈n|J̃1|m〉 = (Jm − Jn)〈n|H1|m〉. (3.28)

This equation is trivial to solve for 〈n|J1|m〉 if En 6= Em. However, con-

sidering an energy-diagonal block, En = Em, a solution to 〈n|J̃1|m〉 can

only exist provided that either Jn = Jm or 〈n|H1|m〉 = 0. Therefore, the

existence of a solution to Eq. (3.27) can exist iff the perturbation H1 does

not have matrix elements connecting states |n〉 and |m〉 of the same energy

and of different values of the current J0. In fact, the dc-conductivity, as
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the ω → 0 limit of a current-current correlation function, only involves the

energy-diagonal blocks of the current operators, and, in leading order in g,

only the energy-diagonal blocks of the perturbation H1 can contribute to the

scattering rate at ω = 0. Only those matrix elements of H1 can lead to a

degradation of the current which connect states with different values of the

current, Jn 6= Jm, and other matrix elements contribute only to higher order

in g. The existence of J̃1 therefore implies a vanishing of the approximate

memory matrix, Eq. (3.24), at ω = 0. This also can be seen more formally:

With JQ = J0 + gJ1 we find

−iJ̇Q = [gH1, J0] + [H0, gJ1] +O(g2), (3.29)

= g[H0, J1 − J̃1] +O(g2). (3.30)

As a consequence, the leading order contribution Γ2(ω) to the scattering

rate—by partial integration—may be written as Γ2(ω) = ω2A(ω), where

A(ω) is the (J1− J̃1) self correlator in the unperturbed system. We therefore

conclude that κ(ω = 0) diverges at least as 1/g4 if J̃1 exists. This trick of

studying “readjusted” approximate conservation laws may well be useful for

many other systems with slow modes.

We turn our attention to relation (3.27). To find a solution J̃1 we make

the most general ansatz for it. J̃1 is a translationally invariant operator of

finite range consisting of a linear combination of products of spin operators.

By inserting the ansatz into Eq. (3.27) we obtain a system of linear equations

for the unknown coefficients. This overdetermined system of equations turns

out to have a solution in the case of an isotropic (∆′ = 1) nnn perturbation

of the Heisenberg model with

J̃1 = −g′J2
∑

i

(Si+1 + Si+2) · (Si × Si+3). (3.31)

The explicit construction of J̃1 proves the absence of a J ′2 contribution to the

scattering rate as discussed above. Note that it is not possible to construct

a J̃1 such that the commutator in Eq. (3.26) is of order g3 rather than g2.

Therefore the presented readjustment procedure cannot be generalized to

higher orders.

While (3.31) can easily be generalized to the case of an anisotropic XXZ

chain with ∆ 6= 1, no solution for J̃1 exists in the case of an anisotropic nnn

perturbation with ∆′ 6= 1. We therefore expect (and confirm numerically)

that in the limit of small J ′ and small but finite (∆′ − 1)

κ ≈ J5/T 2

J ′2(1−∆′)2h(T/J)
≈ 0.21(2)J5/T 2

J ′2(1−∆′)2
for T →∞, (3.32)

where h is an (unknown) function of T/J only, the value of which we can

determine from the results shown in Fig. 3.3 in the limit T → ∞. This
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Figure 3.3: Calculated heat conductivity of the anisotropic frustrated chain

as a function of temperature for various anisotropies ∆ = ∆′. Inset: leading

order contribution to the scattering rate for the isotropic case (thin solid

line) as well as with weak anisotropies for T →∞.

figure also shows the T dependence of κ for T & J where we use Eq. (2.6)

and χ is calculated to order g0 using exact diagonalization. Large finite size

corrections prohibit calculations for T ≪ J within exact diagonalization.

In many experimental systems we expect that the leading term which

breaks integrability arises from a weak coupling J⊥ between chains (or spin-

phonon interactions [4] or impurities) but not from nnn-coupling. For this

perturbation, Eq. (3.31) has no solution, and κ ∼ 1/J2
⊥ can be evaluated at

high temperatures from Eq. (3.24) using exact diagonalization, see Fig. 3.4.

Our value for the ladder in the limit J⊥ → 0, κ ≈ 0.18J5/(J2
⊥T

2), seems to

be consistent with results of Zotos [58] obtained for finite J⊥ using Lanczos

diagonalization.5

3.5.2 Conclusion

To summarize, we have analyzed the heat transport in spin chains near the

integrable point. In the presence of a small next-nearest neighbor coupling

J ′, which breaks integrability, one can construct a new approximate con-

servation law. As a result, the heat conductivity remains extremely high,

κ ∼ 1/J ′4. For other perturbations like a weak inter-chain coupling J⊥ this

construction is not possible and κ ∼ 1/J2
⊥. Thereby we have shown that

5There is a systematic deviation between our result and Zotos’ result of a few percent.
This can be traced back to the fact that Zotos uses the Sz = 0 block of the Hamiltonian
only while we calculate the grand canonical ensemble and sum over all values of Sz. As

the two ensembles are equivalent when N → ∞, we identify the deviation as a finite size
effect.
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Figure 3.4: Leading order (in J⊥/J) contribution to the scattering rate of

weakly coupled spin chains for T →∞. The finite value at ω = 0 leads to a

conductivity κ ≈ 0.091(3)J5/(ZJ2
⊥T

2) per chain where Z is the number of

nearest-neighbor chains.

transport in “almost integrable models” depends not only quantitatively,

but also qualitatively on the precise way how integrability is destroyed. It

would be interesting to study experimentally systems in which the strength

of J ′ and J⊥ can be varied systematically, e.g., by chemical substitutions or

by pressure.

3.6 Non-Local Conservation Laws and Spin Con-

ductivity

This section is devoted to the study of the spin conductivity in the per-

turbed XXZ Heisenberg model. As anticipated in the introduction to this

chapter, the situation is conceptually different from the heat conductivity.

The spin conductivity is infinite in the gap-less regime −1 < ∆ < 1 and

is characterized by a finite Drude weight D(T ) > 0 as is observed both

numerically (by exact diagonalization) and analytically (via Bethe Ansatz)

[42, 43, 59]. However, the spin current has no overlap with any of the con-

stants of the motion which are present due to integrability, 〈JsQn〉 = 0, as

can be shown by simple symmetry arguments6 (also see [43]) and therefore

do not contribute to the Drude weight. As outlined above, these constants

of the motion are local quantities (see the discussion at the end of section

3.2), and in fact they are the only known operators that are both conserved

and local (in the sense defined above). Thus, the current must be protected

6Js changes sign under spin reversal (Sz → −Sz,S+ → S− and S− → S+) while all
the Qn are invariant under this transformation.
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by conserved quantities which are not local, as only conserved quantities

contribute to the Mazur-Suzuki sum (1.16).

This is an important statement for the following reason. Only local

‘charges’ qk are associated with a continuity equation ∂tqk + jk+1 − jk = 0,

where jk is the corresponding current density. As a theoretical common-

place, therefore only for local slow modes a hydrodynamic description can

be formulated. (Note that while our formalism of the last chapter started

from a hydrodynamic approach, it does not rely on the continuity equation.

Therefore it can be used to study non-local modes as well.) A main moti-

vation to study the spin current in the XXZ model is the question, to what

extent non-local conservation laws are relevant in the sense that they lead

to experimentally observable consequences in real materials.

An example which shows that perturbation theory for local and non-local

quantities can be drastically different has been discussed in Ref. [60]. There,

it has been shown that an arbitrarily small inter-chain coupling can destroy

a non-local order parameter (e.g. the string order of a spin-1 Haldane chain)

in a gapped system. Formally, the perturbations turn out to be proportional

to the length of the system. In contrast, local order parameters are always

robust against small perturbations for all gapped systems.

In principle one can try to investigate the transport properties for small

J ′ directly by calculating the spin-conductivity from an exact diagonaliza-

tion of the XXZ chain in the presence of finite J ′. In such a calculation

Heidrich-Meisner et al. [48] were able to show that the spin Drude weight

vanishes in the thermodynamic limit, but a reliable determination of the

resulting finite spin-conductivity is rather difficult even for large J ′. Fur-

thermore, finite size effects grow rapidly[48] for small J ′.

In the following, we will use a different approach based on a perturbation

theory in J ′. We construct numerically a non-local operator J‖ which is

conserved for J ′ = 0 and responsible for the finite Drude weight of the

unperturbed XXZ Heisenberg chain. In a second step we derive a lower

bound for the spin conductivity of the perturbed system using the results

of the last chapter 2 and show that the spin conductivity is proportional

to 1/J ′2. Finally, we analyze to what extent J‖ is a non-local operator and

discuss how the result can be interpreted. Section 3.7 investigates the role

of special values of the anisotropies where the Heisenberg model possesses

extra symmetries.

3.6.1 Setup

As stated above, Eq. (1.16) implies that the finite Drude weight is associated

to constants of motion Ci of H0 with 〈CiJs〉 6= 0 which we need to identify

for our further analysis. More precisely, we split the current operator into
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two pieces,

Js = J‖ + J⊥, (3.33)

as described in section 1.6. One has

J‖ =
∑

i

〈JsCi〉
〈C2

i 〉
Ci. (3.34)

J‖ can be interpreted as the projection of the the spin current to the space of

conserved quantities, i.e. the conserved part of Js and, indeed, one obtains

directly from Eq. (1.16):

Ds =
β

N
〈J2

‖ 〉. (3.35)

As described above, the known local conservation laws Qn do not con-

tribute to Js, i.e. 〈J‖Qn〉 = 0. J‖ is a very complex non-local operator which

is difficult to construct and handle analytically. For finite size systems with

up to 20 sites, however, one can construct J‖ numerically using the exact

eigenstates of H0. As the Ci span the space of energy diagonal operators,

we just keep the energy diagonal part of Js, i.e.

〈n|J‖|m〉 = δEmEn〈n|Js|m〉. (3.36)

For a finite value of the perturbation J ′ the Drude weight (3.35) is absent,

as is known from numerical studies [53, 48] which were, however, not able

to investigate the regime of small J ′ due to large finite size effects in this

limit.

In the last chapter we have shown that a lower bound for the leading

order contribution to the conductivity σs can be obtained in the limit of

small J ′ by evaluating the correlation function Γ̃ with respect to H0:

Re Γ̃(ω) =
1

N

∫ ∞

0
dteiωt〈[J̇‖(t), J̇‖(0)]〉0. (3.37)

As [J‖,H0] = 0, Γ̃(ω) is proportional to J ′2. The inequality for the spin

conductivity reads

σs ≥
χ2

Γ̃(0)
(3.38)

where χ = β〈J‖Js〉/N = Ds is the generalized (spin current) susceptibil-

ity and Γ̃(ω)/χ can be interpreted as a scattering rate of J‖, see Ref. [61]

for details. Next we will present our analysis of the correlation function

Eq. (3.37).
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Figure 3.5: Leading order contribution to the spin current relaxation rate

for ∆ = 0.75 and system size L = 20 for T →∞. Finite size effects are small

and Γ̃(ω) is finite at ω = 0 as can be seen in more detail in the inset (thick

line L = 20, dotted line L = 18, thin line L = 16, dashed line L = 14).

3.6.2 Numerical results

We investigate Γ̃(ω) and the generalized susceptibility χ numerically in the

T → ∞ limit via exact diagonalization for system sizes up to L = 20 and

for various anisotropies ∆ using periodic boundary conditions. In this high

temperature limit, the spin-spin correlation length vanishes and therefore

finite size effects are smallest. Results for finite T ≫ J (not shown) are

essentially identical.

The results for an intermediate ∆ = 0.75 are shown in Fig. 3.5. Γ̃(ω)

drops rapidly for small frequencies but saturates at a finite value. This sat-

uration value limω→0 Γ̃(ω) is almost independent of system size (see inset).

This indicates that finite size effects are small despite the fact that J‖ is

expected to be a non-local operator. We therefore conclude that for small

J ′

σs ≥
c(T )

TJ ′2
. (3.39)

in the thermodynamic limit. This is the main result of this section: the

spin-conductivity of a slightly perturbed XXZ Heisenberg chain is very large,

despite the fact, that the spin current is not protected by any local conser-

vation law. For ∆ = 0.75 we obtain for example c(T → ∞) = 0.92J3. For

any finite temperature we expect that the same result holds: in the limit of

small J ′ the spin conductivity is proportional to 1/J ′2.

In Fig. 3.6 the behavior of the scattering rate Γ̃/χ as a function of ∆ is

shown. Interestingly, the scattering rate seems to vanish in the isotropic limit

∆→ 1, Γ̃ ∝ J ′2(1−∆)2. We have previously [3] observed the same effect for

the scattering rate of the heat current, which turns out to be proportional
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Figure 3.6: Scattering rate Γ̃(0)/χ as a function of the anisotropy parameter

∆ for L = 18, T = ∞. For the isotropic system, ∆ = 1, Γ̃(0) is zero, see

text. The errors are comparable to the size of the symbols and are discussed

in more detail in section 3.7.

to 1/J ′4 at the isotropic point. The reason for this unexpected result is that

for the isotropic case one can construct an operator Q′
3 = Q3 + J ′∆Q3 such

that the commutator [Q′
3,H0 +H1] is of order J ′2 rather than linear in J ′.

As a consequence, the decay rate of the heat current at the isotropic point is

proportional to J ′4. Very likely, the same mechanism applies to J‖, too. A

subtle and controversial issue [43, 48, 59] is the value of the Drude weight,

Ds = χ, for ∆ = 1. Both from numerics and from Bethe ansatz, there is

evidence pointing either to a finite[48, 59] or vanishing [43, 59] Drude weight

in the thermodynamic limit. If the Drude weight vanishes for ∆ = 1, our

results are only of relevance for ∆ < 17.

In section 3.7 we discuss a further effect: the Drude weight Ds appears

to be a discontinuous function of ∆ as for special values of the anisotropies

∆ = cos(π/n), n = 3, 4, 5..., one obtains different values for Ds compared

to anisotropies slightly away from these points. For the scattering rate Γ̃/χ

these effects are much smaller and possibly absent in the thermodynamic

limit.

3.6.3 Non-Locality of J‖

As stressed in the introduction, the spin current Js is orthogonal to all know

local conservation laws Qn of the XXZ Heisenberg chain. This suggests

that J‖, the conserved part of Js, is a non-local operator which cannot be

written in the form of Eq. (3.10). To quantify this statement, we expand the

7If D(T ) = 0, then the conductivity is finite anyway and there is no point in using the
memory matrix formalism.
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Figure 3.7: Relative weight
∑n

m=1 cm, see Eq. (3.41), of local operators with

range up to n (n = 2, 4, 6, 8) contributing to J‖ as a function of inverse

system size from N = 4 to N = 18.

numerically constructed J‖ in local operators Ani which contain products of

spin-operators on n adjacent sites,

J‖ =
∑

ni

ani
Ani

〈A2
ni〉1/2

, (3.40)

where the Ani define a complete orthogonal basis in the space of operators,

〈AniAmj〉 = 0 for n 6= m or i 6= j. The Ani are written as sums of products of

spin-operators, where each product contains spins on n adjacent sites. Here

we use – as above – the (T =∞) expectation value as the scalar product in

the space of operators. In Eq. (3.40) obviously only translationally invariant

hermitian operators contribute which also conserve Sz. For n = 1 there is

just one such operator, A11 =
∑

i S
z
i , for n = 2 one finds 3 such terms

A21 =
∑

i S
z
i S

z
i+1, A22 =

∑
i S

+
i S

−
i+1 +h.c., A23 = i

∑
i(S

+
i S

−
i+1−h.c.). The

10 operators of range 3, A3i, contain both products of two spin operators,

e.g.
∑

i S
z
i S

z
i+2 and products of three spin-operators, e.g.

∑
i S

z
i S

z
i+1S

z
i+2.

The ratio

cn =

∑
i |ani|2∑

i,m |ami|2
(3.41)

shown in Figs. 3.7 and 3.8 describes which fraction of the operator J‖ can be

expressed in terms of operators of range n. For example, if one determines

the cn for H one obtains c2 = J2/
(
J2 + J ′2

)
and c3 = J ′2/

(
J2 + J ′2

)
. By

construction one gets
∑N

n=0 cn = 1 for a system with N sites.

What types of behavior can be expected for cn? First, one has to investi-

gate whether cn is finite or zero in the thermodynamic limit N →∞. For ex-

ample, for the square of a translationally invariant local operator (e.g. H2
0 ),
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Figure 3.8: Relative weight cn of local operators of range n (n = 3, . . . 8)

contributing to J‖ for different system sizes. Note that in the thermody-

namic limit most of the weight is carried by operators involving more than

8 consecutive sites (see Fig. 3.7).

one finds that cn drops proportionally to 1/N , such that limN→∞ cn = 0 for

all n > 0. Even if limN→∞ cn is finite for each n, one can ask how rapidly

limN→∞ cn drops for n → ∞ and whether
∑∞

n=0 limN→∞ cn equals 1 or is

smaller.

As shown in Fig. 3.7, the cn converge to finite values for N → ∞. For

n = 2, this is a necessary consequence of the fact that the spin current is a

range 2 operator and that the Drude weight of the spin current is finite. As

the latter is proportional to 〈JsJ‖〉2 this implies that J‖ has a finite overlap

with a range 2 operator in the thermodynamic limit.

A qualitative result of Fig. 3.7 is, however, that even operators up to

range 8 have less than 40% of the total weight of J‖ (but c8 ≈ 0.02 is already

very small). As
∑∞

n=1 cn = 1, the cn have to drop faster than 1/n for large

n in the thermodynamic limit. Fig. 3.8 shows that the cn decay extremely

slowly with n. In this sense J‖ appears to be a rather nonlocal operator

but we cannot decide from our numerics whether
∑∞

n=0 limN→∞ cn = 1 or

smaller.

3.7 Spin Conductivity close to and at ∆ = cosπ/n

Next we discuss the behavior of the spin conductivity for anisotropies ∆ =

cos(π/ν). At these special points it is known that there are further symme-

tries which, for example, simplify the Bethe ansatz equations considerably[62,

63]. Interestingly, at these special points thermodynamic quantities show

unexpected logarithmic corrections [63].
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Figure 3.9: Drude weight D = χ (upper panel) and scattering rate Γ̃(0)/χ

(lower panel) for the anisotropy ∆ = cos(π/3) = 1/2 and a nearby value

∆ = 0.499 as a function of inverse system size 1/N . The error bars represent

the uncertainty inherent in the fitting procedure.

In Ref. [41], Naef and Zotos found numerically that the Drude weight

at these special points differs for finite systems significantly from the values

obtained for slightly different anisotropies. They concluded, however, that

these differences vanish in the thermodynamic limit. This effect has also

been observed by Heidrich-Meisner et al. in Ref. [48], where it was noted

that the effect is absent in systems with odd number of sites N , in which case

χ(∆) is smooth and reproduces the values at ∆ = cos(π/ν) for even N . In

that work the phenomenon is attributed to finite size effects, too. While we

have reproduced the numerical results of Naef and Zotos, we can not find

any signatures of a convergence. One would expect, that with increasing

system size either the Drude weight Ds converges, or that some weight of

the conductivity is shifted from around ω = 0 towards this point. From

the analysis in Ref. [41] one sees no indication of the latter. Concerning

the first possibility, in Fig. 3.9 we show the Drude weight of the integrable

model, Ds = χ, and the scattering rate, Γ̃(0)/χ , as a function of 1/N both

for ∆ = cos π/3 = 1/2 and ∆ = 0.499. Apparently, different values are

obtained for N → ∞ for χ while the effect for the scattering rate Γ̃(0)/χ

is much smaller (and possibly absent). We note, that subtle logarithmic

finite size effects can possibly invalidate this analysis. In other studies (see

c.f. [64]) it has been shown that similar logarithmic corrections may become

visible at extremely large N ≈ 1000 systems only.

3.7.1 Conclusion

In this section we have shown that the spin-conductivity of a one-dimensional

anisotropic spin-chain is strongly enhanced close to the integrable point. It
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diverges (at least) as 1/J ′2 for J ′ → 0. This is the expected behavior for a

situation where a local conservation law prohibits the decay of the current at

the integrable point. However, as emphasized by Zotos, Naef and Prelovsek

[18], the spin-current is orthogonal to all known local conservation laws of

the XXZ chain.

There are two possible interpretations of this result. First, the conserved

part J‖ of the spin current could nevertheless be ‘sufficiently’ local to define

a slow hydrodynamic mode. Second, the theoretical prejudice, that only

local conservation laws (i.e. those associated with a continuity equation)

lead to slow modes, may be wrong. In this respect, the results of section

3.6.3, where this question is investigated, are ambiguous. On the one hand,

we could prove that J‖ is a highly non-local operator involving products of

operators acting on widely separated sites. On the other hand, the relative

weight of range-n operators, cn, is finite in the thermodynamic limit.

In this section we have shown that the transport properties of simple

one-dimensional problems depend quantitatively and qualitatively on ‘ex-

otic’ and rather complex conserved quantities. For the future, it would be

interesting to gain a more analytic understanding of these conservation laws.



Chapter 4

Disorder Effects on the Spin

Chain

This chapter is devoted to the study of the heat conductivity in real spin

chain materials. The subject is motivated by several experiments of the last

decade which measured values of the heat conductivity [45, 46] which were

so high that they were, in the first place, quite unexpected. In fact, these

experiments were the main motivation for a range of theoretical work on

transport in one dimensional spin chains. It was suspected early on that

the integrability of the Heisenberg model might be responsible for the high

contribution to the heat conductivity. Therefore, the problem is to explain

the mechanisms which lead to a finite, but large value. Of particular interest

is the behavior of the heat conductivity as a function of temperature. The

experiments show a broad peak of the (spin chain component of the) heat

conductivity around room temperature and a characteristic decay for both

lower and higher temperatures. This suggests, that different mechanisms are

responsible for the decay at higher and at lower temperatures. Indeed, to-

wards higher temperatures the heat conductivity is known to be suppressed

by the coupling of the spin chain to lattice vibrations, which introduces a

source of scattering for the heat current. Towards lower temperatures, dis-

order is known to become relevant which, again, is a source of scattering.

While most of the theoretical work that has been kicked off by these experi-

ments concentrates on analytic properties of the integrable Heisenberg chain

approached via Bethe ansatz and numerical studies of small perturbations

‘inside’ the chain (e.g. next nearest neighbor, inter-chain couplings, magnetic

field) via exact diagonalization techniques, studies that try to fit the exper-

imental data are low in number. The most well-known of them is the paper

by Chernyshev and Rozhkov [65] in which they use semi-phenomenological

methods to reproduce the experimental data. While the fit to experiments

is reasonably good, they neglect the scattering between spinons which may

53
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lead to wrong results in certain regimes [66]. Here we attempt a more mi-

croscopic calculation of the heat conductivity. On the high temperature side

(the region above the maximum) such a microscopic calculation has been

carried out a few years ago by Shimshoni, Andrei and Rosch [4], where the

effect of the coupling of clean spin chains to the three dimensional phonon

bath has been elucidated by calculating the same correlation functions as in

the last chapter for a different model.

This chapter comprises three major parts. In the first, introductory

section we present the luttinger liquid formulation of spin chains. The second

section is devoted to the study of the effect of weak disorder in the spin

chain, and a discussion whether this can reproduce experimental data below

the conductivity maximum. In the final section we will try to actually

fit the experimental data using results from Ref. [4] (decay by coupling

to phonons) and the second section (decay by coupling to disorder). For

this, we will put all contributions into one memory matrix. In the end,

we will find that the fitting is not completely successful. While the basic

feature – the characteristic maximum of the spin chain contribution to the

heat conductivity – is retained, the qualitative features on both sides of the

maximum fail to reproduce the measurements. On the disorder side (lower

temperatures), we find that weak disorder is not sufficient to explain some

of the experiments. For these one would need to take into account strong

disorder, which cannot be treated as easily in our model setting. On the

phonon side, we find that, strictly, the results of Ref. [4] do not apply in

the temperature regime relevant for the experiment. The mismatch on each

side is discussed in detail.

We note, that as is always the case with the memory matrix formalism,

there is no guarantee that one has not accidentally omitted the most relevant

slow modes. In the present situation, yet an other ambiguity complicates

matters: A given perturbation may lead to several mechanisms for the decay

of the current, corresponding to a number of contributions to the Hamilto-

nian. Of these contributions, the most effective scattering terms have to

be identified. As the coupling constants of the various terms are often not

known, the only information one can access is the temperature dependence

of the various contributions, and one has to determine the effectiveness of a

contribution solely by means of this temperature dependence. Strictly, such

selection is possible in some asymptotics of the temperature only. In our

case, we will keep – from an infinite set of possible terms – the contributions

that would be most dominant in a certain limit which does not completely

overlap with the relevant experimental regime. The optimist theoretician’s

hope is that the result from this limit will sustain at the relevant tempera-

tures. In this sense, the expectation, that in the end one will be able to fit

the results to the experiments, should be taken with a grain of salt, anyway.
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Figure 4.1: Heat conductivity in the spin chain compound Sr2CuO3 mea-

sured parallel and perpendicular to the direction of the chains. The dif-

ference of parallel and perpendicular contributions is also plotted. Source:

[8].

4.1 Setup

In this section we review the relevant experimental situation and introduce

and motivate the theoretical framework that we use for its description. The

framework will be applied in the following sections.

4.1.1 Experiments

In [8] and [45] Sologubenko first reported his finding of an anomalous con-

tribution to the heat conductivity κs = κ− κp associated with the presence

of spin chains in certain spin chain compounds. The experimental data for

the compound Sr2CuO3 is shown in Fig. 4.1. The heat conductivity is mea-

sured perpendicular and parallel to the spin chain direction. One observes

the typical phonon peak at around T ∼ 10K in all directions, whereas an

excess contribution is observed along the spin chain direction. From the

experimental analysis it is clear that the additional peak must be attributed

to heat transport in the spin chain, and therefore we refer to this structure

as the spinon peak, which has its maximum around T ∼ 70K.

The special feature of the studied spin chain compound Sr2CuO3 is the

extremely high value of the exchange coupling in the spin chain, J ≫ Θ,

where Θ is the Debye temperature. In that system, Θ ≈ 430K and J ≈
2600K. This separation of energy scales is also responsible for the fact

that the spinon peak occurs at temperatures well above the phonon peak.

Also, the spinon velocity, which is proportional to the exchange coupling,

(v = π/2Ja in the isotropic Heinseberg chain, see [67]) is much larger than
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the phonon velocity, which may be determied1 from the Debye temperature,

(vp ≈ 0.5ΘDa), and the ratio is given by vp/v ∼ 1/20.

The excess contribution to the heat conductivity measured in the di-

rection of the spin chains amounts to about double the expected phonon

contribution at T = 200K (κs(T ) & κp(T )). It was noted very early [8] that

this huge contribution might be linked to the integrability of the spin-1/2

Heisenberg chain. Here we note that meanwhile other materials have been

found in which the excess contribution from the spin chain is much more

pronounced, c.f. [9].

The phonon heat conductivity smoothly changes from κp ∼ T−α with

α ≈ 1.3 above the low temperature maximum to α ≈ 1 at room temperature.

The amount of disorder in the system seems to legitimate the assumption

that above the phononic low temperature maximum at Tmax ∼ 20K the heat

conductivity is determined by the effect of disorder in the spin chain. The

spin chains are almost isotropic, i.e. it is well described by the XXZ-model

with ∆ = 1, which is the spin-1/2 Heisenberg chain.

4.1.2 Low energy dynamics

As in the whole range of the experiment we are in a regime where T ≪ J ,

it is advisable to consider an effective low energy theory for the spin chain.

The low energy dynamics of the spin chain is described by the Luttinger

liquid Hamiltonian. One can map the spin chain onto this model in two

steps. First, by performing a Jordan-Wigner transformation of the XXZ

spin chain one obtains as an intermediate stage a one dimensional gas of

spinless electrons. An effective low energy theory of the electron gas can be

obtained by linearizing the spectrum around the Fermi point. This allows

to apply the bosonization technique and the Luttinger liquid Hamiltonian

is obtained. While the XXZ model maps onto the Luttinger liquid which,

as it should, is characterized by a finite drude weight for the heat conduc-

tivity, perturbations to the spin chain (e.g. next-nearest neighbor coupling,

coupling to the phonons, disorder, etc.) will introduce scattering terms, ad-

ditionally to the Luttinger liquid Hamiltonian, which are responsible for the

decay of the current. In the low energy limit T → 0 these additional terms

are irrelevant and therefore can be treated perturbatively for T ≪ J (see

Fig. 4.2). We can therefore express the conductivity by accounting for the

1In reality, the phonon velocity depends both on the energy, the direction of the
phonons, and can be multiple-valued due to the presence of multiple bands, and the
Drude temperature is a well defined quantity only in the framework of the Debye approxi-
mation. By assuming that the Debye approximation (linear, isotropic spectrum, only one
band) well describes the physics of the phonons, the two quantities can be related. The
assumption of an isotropic phonon velocity would lead to vp = 0.3ΘDa, but the phonon

velocity is enhanced in the direction of the chains, which we account for by correcting the
prefactor to 0.5 [68].
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Figure 4.2: Schematic depiction of the RG-flow as temperature is decreased.

A generic system with perturbations has a T = 0 fixed point which is inte-

grable. At finite but low enough temperatures the perturbations are small

and therefore can be treated perturbatively.

irrelevant terms in terms of a memory matrix formalism.

The mapping of the XXZ chain to the Luttinger liquid is standard and

can be found in textbooks (see c.f. [52]). Here we restrict ourselves to give

the effective Hamiltonian and the associated irrelevant terms and to define

the fields. We shall adopt the conventions in Giamarchi’s book [52].

4.1.3 Luttinger liquid Hamiltonian

The low energy fixed point of many gapless one dimensional systems is given

by the Luttinger liquid Hamiltonian,

HLL = v

∫
dx

2π

(
K(πΠ(x))2 +

1

K
(∂xφ(x))2

)
(4.1)

with the bosonic conjugate fields φ(x) and Π(x) satisfying

[φ(x),Π(x′)] = iδ(x − x′). (4.2)

The Hamiltonian (4.1) is obtained by bosonization of a fermionic model.

The fermionic fields are expressed in terms of the bosonic fields:

ψR/L =
1√
2πa

ei(±φ−θ) (4.3)

where θ is defined by ∂xθ(x) = πΠ(x). The right and left moving fields

ψR(x) and ψL(x) describe the low energy excitations of the fermions, i.e. they

originate from a linearization of the spectrum around the Fermi points ±kF
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with kF = π
2a

2,

ψ(x) = eikF xψR(x) + e−ikF xψL(x). (4.4)

The fermionic field ψ(x) is connected to the spin operators of the spin chain

in terms of the Jordan-Wigner transformation:

Szi = c†i ci −
1

2
(4.5)

S+
i = c†ie

iπ
Pi−1

j=−∞ c†jcj (4.6)

S−
i = e−iπ

Pi−1
j=−∞ c†jcjci (4.7)

where the creation and annihilation operators at site i are connected to

the corresponding continuous field via c
(†)
i =

√
aψ(†)(ri) where a is the lat-

tice spacing. Talking about the spin chain in terms of the Jordan-Wigner

fermions, one refers to the effective low energy excitation – described by the

fields ψL and ψR – as spinons.

The coupling constants v and K which completely determine the low

energy fixed point (4.1) are in general hard to determine. In the case of the

XXZ model they can be calculated from Bethe ansatz [67] yielding

K =
1

1− 1
π cos−1(Jz

J )
. (4.8)

In describing the experimental situation sketched above we may set Jz = J

which gives K = 1/2 for the isotropic Heisenberg model. The speed of light,

or spinon velocity v takes the value v = π/2Ja for ∆ = 1.

In the following section(s) the Luttinger liquid plays the role of the un-

perturbed Hamiltonian. Elements of the memory matrix are – calculated

in leading order in the perturbation – given by correlation functions evalu-

ated with respect to the unperturbed model. For the Luttinger liquid, the

correlation functions are known. Using the definitions

〈φ(x, t)φ(0, 0)〉LL ≡ Gφ(x, t) = KG(x, t) (4.9)

〈θ(x, t)θ(0, 0)〉LL ≡ Gθ(x, t) =
1

K
G(x, t) (4.10)

〈φ(x, t)θ(0, 0)〉LL ≡ G̃(x, t) (4.11)

the basic propagators are given by

G(x, t) = −1

4
ln

sinh(τ(x− vt+ ia)) sinh(τ(x+ vt− ia))
(τa)2

(4.12)

G̃(x, t) = − i
2

Arg [u cosh(τx) + iw sinh(τx)] (4.13)

2An additional magnetic field would shift the Fermi level by an amount proportional

to the magnetization. Here we restrict ourselves to time reversal invariant situations and
assume that no external magnetic field is applied
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where we have defined the reduced temperature

τ =
πT

v
(4.14)

which for the isotropic case takes the value τ = 2
a(T/J). Correlators of

arbitrary functions of the fields φ(x) and θ(x) can be evaluated by using

Wick’s theorem3. However, one is interested in correlation functions of

operators given in terms of the spin-operators of the original spin chain

model. The recipe to calculate such correlation functions is therefore as

follows. First one expresses the spin operators through the bosonic fields φ

and θ. Then one performs the neccessary Wick contractions. This step leaves

us with integrals over functions of G(x, t) and G̃(x, t) and their derivatives.

These integrals in turn can either be evaluated numerically or – by using

further approximations – be treated analytically.

4.1.4 Memory Matrix

While the low energy fixed point of our model is described by the Luttinger

liquid which obeys an infinite number of conserved charges assuring its in-

tegrability, at finite temperatures T > 0 additional terms (as those arising

from perturbations) break integrability and thus determine the decay of

currents and hence the transport properties. To determine the transport

properties, we calculate matrix elements of the memory matrix, which are

given by correlation functions of time derivatives of the slow modes (which

are chosen as conserved currents C of the Luttinger liquid), ∂tC = i[H,C].

Among the terms which arise from different perturbations there also will be

those which commute with the currents. For the full Hamiltonian we write

H = H0 + gH1 +Hirr (4.15)

where H0 is the unperturbed model (in our case it is the Luttinger liquid

Hamiltonian, or, when phonons are also taken into account, the Hamilto-

nian of the pure phonon bath) and Hirr arises from corrections which also

commute with the slow modes (see below), [H0 +Hirr, C] = 0. We therefore

need to select the contributions to gH1 arising from perturbations that are

relevant for the decay of the currents, ∂tC = ig[H1, C].

In the memory matrix formalism, one choses a set of slow modes, denoted

by Ci, which are not specified yet. The leading order contribution to the

heat conductivity is given by

κ ≥ 1

T
χT M̃χ (4.16)

3Wick’s theorem is applicable as the Luttinger liquid theory is Gaussian.
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where χ is a vector of generalized susceptibilities

χi = (JQ|Ci) (4.17)

and M̃ is the leading contribution to the memory matrix,

M̃i,j = lim
ω→0

(
Fi

∣∣∣∣
i

ω − L0

∣∣∣∣Fj
)
, (4.18)

where we have introduced the generalized forces Fi = −∂tCi = i[Ci, gH1].

The memory matrix can be evaluated in terms of the retarded response

function calculated with respect to the unperturbed model (compare with

Eq. (1.9)),

〈A;B〉0ω =
i

V

∫ ∞

0
dt eiωt〈[A(t), B(0)]〉0, (4.19)

in terms of which we find

M̃i,j = lim
ω→0

〈Fi;Fj〉0ω − 〈Fi;Fj〉0ω=0

iω
, (4.20)

compare with Eq. (1.8). In the limit ω → 0 we can interpret this as a

derivative with respect to ω:

M̃i,j = −i ∂

∂ω
〈Fi;Fj〉0ω

∣∣∣∣
ω=0

(4.21)

which, using Eq. (4.19), can be written as

M̃i,j =
i

V

∫ ∞

0
dt t〈[Fi(t), Fj(0)]〉0. (4.22)

Using the fact that 〈A(t)B(0)〉∗ = 〈A(−t)B(0)〉, we arrive at our final work-

ing expression

M̃i,j =
i

V

∫ ∞

−∞
dt t〈Fi(t)Fj(0)〉0. (4.23)

This expression is useful in our context because in terms of the effective low

energy theory it is the time correlation functions that are known and are

most comfortable to work with.

After we have determined gH1, the task is thus to calculate the gener-

alized forces, the calculation of the correlation functions 〈Fi(t)Fj〉0 and the

time integral. Let us assume that we have determined all relevant scattering

contributions to the Hamiltonian. We write

gH1 =
∑

n

HS
n . (4.24)

Then we can write the generalized forces as

Fi = i
∑

n

[Ci,H
S
n ] ≡

∑

n

Fin (4.25)
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leading to a large number of contributions to each matrix element of the

memory matrix. Of all these contributions we need to select the most rel-

evant ones. Next we will identify a class of irrelevant (in the RG sense)

perturbations that is always present in the system. Although these will

turn out not to be responsible for the decay of the current, it is instructive

to consider them, as the relevant contributions arising from disorder and

from the coupling to phonons (to be discussed in the following sections) are

related to this class of perturbations.

4.1.5 Intrinsic Perturbations

In this subsection we discuss the various ways in which such terms do arise.

Let us look at a generic, anti-ferromagnetic, translationally invariant spin-

1/2 chain with finite range interactions,

H =
1

2

∑

ij

Jij(S
+
i S

−
j + S−

i S
+
j ) +

∑

ij

JzijS
z
i S

z
j (4.26)

where Jij = Ji−j > 0 and Ji−j = 0 for |i − j| > n with some finite n.

The motivation for such a choice is evident: While an XXZ model may be

a good approximation to the spin chains in the CuO2 compounds, small

values of additional couplings inside the real chain will be present, such as

a coupling of next nearest neighbors. Although small in magnitude, these

couplings break the integrability of the XXZ chain and it is crucial to take

into account their effect on transport properties. An exact derivation of

the effective low energy theory would involve repeated RG transformations,

leading to the luttinger liquid plus (provided the chain is gap-less) irrelevant

terms. However, since the microscopic values of the couplings are not known,

anyway, one can instead write up all terms that are allowed by symmetry

and assume generic values for their couplings. This task has been performed

by Shimshoni et al. in [4] and in the following we present their results. The

symmetries of the spin chain are the spin rotation invariance around the

z-axis, discrete translation by a lattice spacing, inversion and time reversal.

It is convenient to think about the spin chain in terms of the Jordan-Wigner

fermions and thus to know how these symmetries translate to the fermionic

language. The spin rotation invariance leads to charge conservation and

translation invariance leads to momentum conservation up to multiples of

the reciprocal lattice vector, G = 2π/a. The right and left moving fields

transform according to

ψL → ψR, ψR → ψL (4.27)

under parity and

ψL → ψ†
R, ψR → ψ†

L, i→ −i (4.28)
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under time reversal. Of all terms preserved under these symmetry trans-

formations, we keep only those which have the ability to degrade currents.

Terms conserving the number of spinons around each Fermi point, i.e. com-

muting with the operator

J0 = NR −NL, (4.29)

the number of right movers minus the number of left movers, do not af-

fect the conductivity directly. Also, any translationally invariant term (in-

cluding terms arising from band curvature or normal scattering) conserve

momentum and therefore are invariant under continuous translations of the

fermions. Therefore, these terms commute with the generator of continuous

translations,

PT = −i
∫

dx (ψ†
R∂xψR + ψ†

L∂xψL). (4.30)

According to the philosophy of chapter 2, to calculate the leading order

contribution to the heat conductivity, it is sufficient to consider the heat

current operator of the fixed point. Now, as can be shown [4], the heat

current in the Luttinger liquid is proportional to the translation operator

(4.30), implying that the leading order contribution to the memory matrix

does not depend on contributions to the Hamiltonian which are translation-

ally invariant. Therefore, these terms are irrelevant to our analysis and we

have to take into account terms which relax momentum. Typically, such

terms involve the annihilation of a left mover and the creation of a right

mover. Additionally, lattice momentum can be transferred to the lattice in

multiples of the reciprocal lattice vector. This class of operators we shall re-

fer to as Umklapp processes4. The leading Umklapp terms compatible with

the above symmetries are different for even and odd number of processes

n which scatter from one Fermi point to the other, due to time reversal

symmetry. With the momentum transfer

∆knm = n2kF −mG (4.31)

the Umklapp terms are given by

HU
nm = gUnm

∫
dx

n−1∏

j=0

(ψ†
R(x+ ja)ψL(x+ ja) + h.c.) (4.32)

for even n and by

HU
nm = gUnm

∫
dx (ψ†

R(x)ψR(x)+ψ†
L(x)ψL(x))

n∏

j=1

(ψ†
R(x+ja)ψL(x+ja)+h.c.)

(4.33)

4Strictly speaking, only processes which transfer momentum to the lattice should be
termed ‘Umklapp’. Here we adopt the conventions in Ref. [4]
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for odd n. It is these processes that dominate the decay of the heat current in

the generic spin chain. The most relevant slow modes of the full Hamiltonian

are the operators PT and J0 of Eqs. (4.30) and (4.29)5.

For later reference, we also note that the translation operator (4.30)

commutes with all translationally invariant terms (∆knm = 0) and there-

fore with all possible low energy processes. On the other hand, processes

with momentum transfer ∆k 6= 0 are exponentially suppressed by a factor

exp(−v|∆k|/T ) [4]. Therefore, intrinsic perturbations can not relax the heat

current sufficiently for T ≪ J . One needs to take into account impurities

and/or phonons to relax the current. Also, the Umklapp terms identified

above are relevant in connection to the discussion that follows.

4.2 Impurity Scattering

This section discusses the role of disorder in the material on the heat conduc-

tivity. The goal is a description of the experimental results of Refs. [8, 45]

(see Fig. 4.1) in the temperature regime below the spinon peak, i.e. below

T ≈ 100K.

4.2.1 Relevant Operators

Disorder in the system can have various sources, including point defects and

different sorts of dislocations, which are spatially extended misalignments

of the lattice. Here we focus on the effect of point defects. The differ-

ent kinds of point defects can roughly be classified into vacancies, extra

impurities, impurity substitution and isotope substitution. A vacancy is a

single missing atom and an extra impurity is an extra atom, not fitting into

the crystal structure. Such defects introduce considerable mechanical strain

into the lattice and therefore cost a big amout of energy. It is less costly not

to disrupt the geometric structure of the lattice, and therefore impurities,

i.e. foreign types of atoms, will try to take positions otherwise occupied by

native atoms. Nevertheless, impurity atoms typically will have a different

radius and valence structure, and therefore, too, lead to a less severe local

distortion of the crystal. The least severe effect is caused by isotopes of the

native atoms, which are always present, even if the crystal would be perfect

(i.e. no dislocations or vacancies) and no foreign atoms would be present.

The main effect of isotopes is a mass difference of single atoms, affecting the

lattice vibrations of the crystal. However, isotopes have identical valence

structure and magnetic properties as the host, and therefore do not affect

the spin chain, only the phonons are affected. As we are interested in the

5In fact, in Ref. [4] it is shown that not only do both PT and J0 commute with H0 and

all other irrelevant terms, but that also for any particular combination H0 + HU
nm there

exists a linear combination of PT and J0 which is conserved.
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effect of disorder on the spin chains, we do not consider isotope scattering.

Furthermore, we want to apply our well developed perturbative techniques

and require the perturbations not to be too severe.

We therefore consider impurities and defects wich have one of two effects.

First, those which introduce mechanical strain into the lattice and locally

distort the crystal. These distortions lead among other things to a local

displacement in the position and shape of the orbitals carrying the spins.

As the exchange coupling between spins sensitively depends on the over-

lap between orbitals, impurities and off-chain defects thus introduce local

perturbations in the exchange coupling constants. Second, impurities may

have a different electronic structure, carrying a number of electrons differing

from the atoms they substitute, therefore showing different magnetic prop-

erties as the spin of the atom may be changed. Again, if such impurities

are located in the spin chain, substituting one of the spins, they effectively

may cut the chain. If the magnetic impurity is located outside of the chain,

the interaction with the chain may be weak enough to describe the effect

through a random magnetic field mediated by the impurity atoms which the

spin chain is exposed to.

It is known, that in 1D systems, even the ‘weak’ impurities discussed

above have a dramatic effect on the low energy excitations. The impurity

Hamiltonian is a relevant perturbation in the RG sense, and this is true

whether one considers single impurities in a 1D electron gas [69] or in a spin

chain [70], or quenched (dilute) disorder in one of these cases [71, 72]. There-

fore, in the limit T → 0, one can not treat the disorder perturbatively. One

can see that perturbation theory has to break down by attempting a per-

turbative expansion at finite temperatures. The leading order contribution

from a perturbation (say, to the free energy) then has the form [52]

F = F0

[
1 +

(
T

ǫF

)−α

+O(δJ2)

]
(4.34)

where α is the scaling dimension of the impurity HamiltonianHimp. Relevant

perturbations are characterized by a positive scaling dimension, implying

that the perturbation diverges as T → 0. However, what is also seen from

this relation is that relevant terms, too, can be treated perturbatively above

a certain temperature. Namely, if

T ≫ Tc ≡
(
δJimp

J

)1/α

ǫF (4.35)

then the leading order contribution from perturbation theory is much smaller

than the unperturbed contribution, which is the criterion for the validity of

the expansion. Therefore, we can treat disorder perturbatively for weak

enough disorder and not too low temperatures, T ≫ Tc. We note that in

our case the Fermi energy is given by the exchange coupling, ǫF = J .
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Clearly, if there is a defect directly in the chain, say, one takes out a

spin, then this can be considered to be a rather severe perturbation, and

δJimp would be comparable to J . On the other hand, if an impurity is

located several atomic distances apart from the chain, then the effect on

the chain may be considered to be small and we can go for a perturbative

treatment. Little is known about the position of the impurities in the real

materials we are considering, whether they interrupt the chain or whether

they are apart from it [68]. Since non-perturbative calculations are more

difficult, if possible at all, therefore we restrict ourselves to situations where

a perturbative treatment is amenable and will apply our memory matrix

machinery to them6.

Next, take a closer look at the possible kinds of disorder we are able

to treat. There are two kinds of impurities we wish to discuss. First, we

assume non-magnetic impurities that apply local mechanical stress to the

lattice. This kind of impurities introduce a spatial dependence in the ex-

change coupling J , assuming that the variation is small. To account for this

kind of impurities we make the replacement

J → J + δJ(x), δJ(x) = 0, δJ(x)δJ(x′) = DJδ(x− x′).

Such a variation in the coupling constants will in general lead to a variation

in all coupling constants of the generic spin chain, in the spinon velocity v,

the interaction parameter K and all coupling constants gUnm associated with

the processes we previously termed Umklapp processes. We will present a

detailed calculation of the contribution of these terms to the memory matrix

below.

In addition to these terms, disorder breaks parity and therefore disor-

der couples to backscattering terms which break parity and therefore were

omitted in the list of Umklapp operators in the clean situation above. The

leading contribution has already been determined elsewhere[72]. It reads in

terms of the fermionic and the bosonic fields respectively

Himp = i

∫
dx δJ(x)(ψ†

L(x)ψR(x)− ψ†
R(x)ψL(x))

=

∫
dx δJ(x) sin(2φ(x)). (4.36)

This contribution is the simplest one that involves scattering between left

and right movers and changes sign under parity.

The second kind of impurity we are able to treat are magnetic impurities

which are far enough from the chain, such that their effect can be considered

to be that of an effective weak random magnetic field which the chain is

6If you’ve lost your keys at night, the first place you’ll search for them is under the
street-lamp. (L. D. Landau)
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exposed to. Such a contribution breaks time reversal and effectively leads

to a random magnetic field. For simplicity we assume that the coupling is

only along the z-axis7. Thus we introduce a weak random magnetic field8

along the z-direction, δh(x), with

δh(x) = 0, δh(x)δh(x′) = Dhδ(x− x′). (4.37)

The contribution to the Hamiltonian, likewise, has been determined in [72]

and reads

Himp =

∫
dx δh(x)(ψ†

L(x)ψR(x) + ψ†
R(x)ψL(x))

=

∫
dx δh(x) cos(2φ(x)). (4.38)

Note that this backscattering term corresponds to the leading contribution

for odd n (n = 1) from the ‘Umklapp’ terms Eq. (4.33) but with the ad-

ditional density term ∂xφ removed. The additional ∂xφ was neccessary to

preserve time reversal, which here is explicitly broken.

Both contributions, magnetic and non-magnetic dilute disorder, are known

to have scaling dimension α = 2− 2K. In the isotropic case, K = 1/2, this

implies for the temperature the requirement T ≫
√
DJ and T ≫

√
Dh re-

spectively, the perturbative treatment to be allowed. These terms will turn

out to give the dominant contributions to the memory matrix and a de-

tailed calculation is given further below. We note that these two terms lead

to the same temperature dependence for the memory matrix, therefore we

will consider only one of them.

4.2.2 Choice of Slow Modes

So far we have identified the potentially relevant contributions to the Hamil-

tonian, which are responsible for the decay of the currents, but we have not

specified yet which slow modes Ci we chose. There are two obvious con-

servation laws of the Luttinger liquid (and also of the terms irrelevant for

relaxation, Hirr). Namely, the translation operator of Eq. (4.30) and the

particle current,

J0 = NR −NL (4.39)

which is simply the difference of right movers and left movers. It turns

out that both of these operators have a physical significance in the spin

chain, too. The translation operator is proportional to the heat current,

7The leading order contribution involves only contributions that arise from the same

component of the magnetic field due to 〈SαSβ〉 ∝ δαβ with α, β = x, y, z.
8In fact, the source of the random magnetic field is not relevant: An additional term

P

i δhiS
z
i in the Hamiltonian would lead to the same expression in terms of Jordan-Wigner

fermions or Luttinger bosons.
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JQ = −v2PT and the particle current can be interpreted as the spin current

operator, Js = vKJ0, see Ref. [4]. In terms of the bosonic fields, these

operators take the form

JQ = −v2

∫
dx Π(x)∂xφ(x), (4.40)

Js = vK

∫
dx Π(x), (4.41)

and we shall chose these two operators as the slow modes. While clearly we

could have chosen additional slow modes as well (there is an infinite number

of conserved charges in the Luttinger liquid) these two slow modes will give

us a rigorous lower bound to the heat conductivity, and chances are, that

we will obtain a good approximation to the true conductivity.

4.2.3 Preparations for the Calculation

Now we have developed all pieces that are neccessary to carry out the calcu-

lation of the memory matrix. We have expressed a lower bound to the heat

conductivity in terms of the approximate memory matrix, Eq. (4.16), and

have worked out a simple expression for the memory matrix (4.23) which

we will be able to calculate straightforwardly. Furthermore, we have chosen

the slow modes and also have collected the relevant scattering terms. We

are therefore in the position to determine the generalized forces. Then we

can express the correlation function 〈Fi(t)Fj〉0 in terms of boson propaga-

tors Eqs. (4.12) and (4.13) by using Wick contractions. Technical details

on how the contractions are carried out are given in appendix C.2. This

step will leave us with functions of the boson propagators and derivatives

thereof. Simple derivation of the correlation functions (defined in Eqs.(4.12)

and (4.13)) gives

G(2)(0, t) =
τ2

2 sinh2(τ(vt− ia))
(4.42)

G(4)(0, t) =
τ4(3 + 2 sinh2(τ(vt − ia)))

sinh4(τ(vt− ia))
(4.43)

G̃(3)(0, t) = τ3
(
coth(τ(vt− ia))− coth3(τ(vt− ia))

)
(4.44)

only these derivatives will appear. The single time integral that will be left

in all cases of perturbations can be reduced to one single integral relation,

∫ ∞

−∞
dξ ξ (i sinh(ξ − iα))−γ = −i cos

(πγ
2

)
B

(
γ

2
,
1

2
− γ

2

)
(π/2−α), (4.45)

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) is the so-called beta function. We will

encounter this integral repeatedly, therefore it is advisable to define the
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shorthand

I(γ) = cos
(πγ

2

)
B

(
γ

2
,
1

2
− γ

2

)
. (4.46)

I(γ) is a smooth and positive function of γ. Particular values that will be

encountered are I(γ = 1) = π and I(γ = 3) = π/2. Finally we turn our

attention to the calculations.

4.2.4 Calculation of the Subleading Contributions

Next we will calculate the contributions to the memory matrix which will

turn out to be subleading in retrospect. The leading contributions are

treated subsequently.

Effect of disorder

As outlined above, to leading order in the perturbation, the disorder con-

tributes through the additional contribution Hdis to the Hamiltonian only,

which in turn determines the ‘generalized forces’ F dis
p = i[Hdis, Jp] through

which the memory matrix is defined. The density hdis(x) of this contribution

to the Hamiltonian reads

hdis(x) =
1

2π

[
vK

(
δv(x)

v
+
δK(x)

K

)
(πΠ(x))2+

+
v

K

(
δv(x)

v
− δK(x)

K

)
(∂xφ(x))2

]

+
∑

nm

δgUnm(x)

(2πa)n

(
ei∆knmxei2nφ(∂xφ)δn odd + h.c.

)
.

The generalized forces Fq are evaluated as follows:

F dis
Q = i[JQ,H]

= FQ + i

∫
dx′[JQ, h

dis(x′)]

= FQ +

∫
dxδJ(x)fdis

Q (x)

Here FQ = i[JQ,H −Hdis] denotes the contribution not associated with dis-

order, and captures the effect of the spinon-‘Umklapp’ terms to the Hamioto-

nian. These contributions and the associated contributions to the memory

matrix have already been evaluated in [4]. In the last line we have introduced

the reduced density fdis
Q , i.e. the density of F dis

Q with the fluctuations in the

exchange coupling δJ(x) extracted, as we assume the fluctuations in the

coupling parameters v, K and gnm all to be induced by these fluctuations.
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For convenience, we introduce constants relating the fluctuations:

δv(x) = AvδJ(x)

δK(x) = AKδJ(x)

δgnm(x) = AnmδJ(x)

With these definitions, the reduced density becomes

fdis
Q (x) = −iv2

∫
dx′[Π(x)∂xφ(x), hdis(x′)]

= −iv3K(Av +AK)

∫
dx′[Π(x)∂xφ(x), (πΠ(x′))2]

−iv3/K(Av −AK)

∫
dx′[Π(x)∂xφ(x), (∂xφ(x′))2]

−iv2
∑

mn

Anm
(2πa)n

∫
dx′

[
Π(x)∂xφ(x),

(
ei∆kx

′
ei2nφ(∂xφ)δn odd + h.c.

)]

= v3K(Av +AK)∂x(πΠ(x))2 + v3/K(Av −AK)∂x(∂xφ(x))2

−v2
∑

mn

Anm
(2πa)n

[
ei∆kx∂x

(
ei2nφ(x)(∂xφ(x))δn odd

)
+ h.c.

]

The commutators have been evaluated following the rules given in appendix

C.1. Similarly, the force associated with the spin current becomes

F dis
s = i[Js,H] = i[Js,H

U ] + i[Js,H
dis]

= Fs + ivK

∫
dxdx′δR(x′)[Π(x), hdis(x′)]

= Fs +

∫
dxδR(x)fdis

s (x)

fdis
s (x) = i(Av −AK)v2

∫
dx′[Π(x), (∂x′φ(x′))2]

+ivK
∑

nm

Anm
gUnm

(2πa)n

[
Π(x),

(
ei∆kx

′
ei2nφ(x′)(∂x′φ(x′))δn odd + h.c.

)]

= −2(Av −AK)v2∂2
xφ(x)

+vK
∑

nm

i2nAnm
(2πa)n

(
ei∆kxei2nφ(x)(∂xφ(x))δnodd − h.c.

)

Disorder averaging

It is the right moment to take a look at disorder averaging. The disorder

average over the correlation function that appears in the definition of the
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memory matrix Eq. (4.23) can be evaluated as follows:

〈F dis
p (t)F dis

q 〉
0

= 〈Fp(t)Fq〉0 +

∫
dx dx′ δR(x)δR(x′)〈fdis

p (x, t)fdis
q (x′, 0)〉0

= 〈Fp(t)Fq〉0 +D

∫
dx dx′ δ(x − x′)〈fdis

p (x, t)fdis
q (x′, 0)〉0

= 〈Fp(t)Fq〉0 +D

∫
dx 〈fdis

p (x, t)fdis
q (x, 0)〉0

= 〈Fp(t)Fq〉0 +DV 〈fdis
p (0, t)fdis

q (0, 0)〉0.

The mixed terms do not contribute due to δJ(x) = 0. In the last step we

have used the translational invariance of the correlation function. Therefore

we see that no integration in space is neccessary and we are left with only the

time integral appearing in Eq. (4.23). The first (unperturbed) contribution

has been calculated by Shimshoni et al. [4] and is exponentially suppressed

in the limit T ≪ J . Inserting the second contribution into Eq. (4.23), the

volume factor V cancels. Also, the memory matrix is proportional to the

disorder strength D. We now are ready to carry out the contractions.

Identification of the correlators

We have to evaluate the following correlators for 〈fQ; fQ〉0:

〈∂x(πΠ(0, t))2∂x(πΠ(0, 0))2〉0
2〈∂x(πΠ(0, t))2∂x(∂xφ(0, 0))2〉0
〈∂x(∂xφ(0, t))2∂x(∂xφ(0, 0))2〉0

2
〈
∂x
(
ei2nφ(0,t)(∂xφ(0, t))δn odd

)
∂x
(
e−i2nφ(0,0)(∂xφ(0, 0))δn odd

)〉
0

for 〈fQ; fs〉:

〈∂x(πΠ(0, t))2∂2
xφ(0, 0)〉0

〈∂x(∂xφ(0, t))2∂2
xφ(0, 0)〉0〈

∂x
(
ei2nφ(0,t)(∂xφ(0, t))δn odd

)
e−i2nφ(0,0)

〉
0

and for 〈fs; fs〉:

〈∂2
xφ(0, t)∂2

xφ(0, 0)〉0〈
e−i2nφ(0,t)e−i2nφ(0,0)

〉
0

The mixed contributions (Umklapp-f with non-Umklapp-f) vanish because

the sum of the prefactors does not add to zero (see c.f. [52]). We treat the

terms with and without exponentials separately.
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Terms without exponentials

Using appendix C.2, we obtain the following expressions for the terms with-

out exponentials: for 〈fQ; fQ〉0:

〈∂x(πΠ(0, t))2∂x(πΠ(0, 0))2〉0 = −4K−2G(4)(0, t)G(2)(0, t)

2〈∂x(πΠ(0, t))2∂x(∂xφ(0, 0))2〉0 = 2
(
−4G̃(3)(0, t)2

)

〈∂x(∂xφ(0, t))2∂x(∂xφ(0, 0))2〉0 = −4K2G(4)(0, t)G(2)(0, t)

for 〈fQ; fs〉:

〈∂x(πΠ(0, t))2∂2
xφ(0, 0)〉0 = 0

〈∂x(∂xφ(0, t))2∂2
xφ(0, 0)〉0 = 0

and for 〈fs; fs〉:
〈∂2
xφ(0, t)∂2

xφ(0, 0)〉0 = KG(4)(0, t).

Where the number in parentheses (superscripts to the propagators) denote

derivation with respect to the spatial variable. The cross terms appearing

in 〈fQ; fs〉 vanish since they include an odd number of operators. Inserting

the expressions of Eqs. (4.44) (and using elementary algebra) we can readily

reduce the integrals to the form of Eq. (4.45) with γ = 2, 4, 6. As a reminder,

the occurring constants are defined as τ = πT/v and v = π/2Ja at the

isotopic point.

Collecting prefactors, we obtain the following contributions from the

terms induced by the variation of the couplings δK(x) and δv(x) to the

memory matrix:

MQQ[∂xΠ
2∂xΠ

2] =
8π5

15
D(Av +AK)2

(
1− T

J

)
T 4 (4.47)

MQQ[∂xΠ
2∂x(∂xφ)2] = −16π5

15
D(A2

v −A2
K)

(
1− T

J

)
T 4 (4.48)

MQQ[∂x(∂xφ)2∂x(∂xφ)2] =
8π5

15
D(Av −AK)2

(
1− T

J

)
T 4 (4.49)

Mss[∂
2
xφ∂

2
xφ] = 0. (4.50)

The last contribution vanishes because the integral
∫

dt tG(4) vanishes. Us-

ing the limit T ≪ J we finally arrive at

MQQ[δv, δK] =
2π5v4DA2

K

15a4

(
T

J

)4

for the terms without gnm-contributions together. As one could have ex-

pected, the result does not depend on Av : This term is induced by a vari-

ation of the spinon velocity v which is a global prefactor for the kinetic
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term. One could get rid of this variation by a redefinition of the length

scale, dx → dx (1 + δv(x)/v).

The result carries a power of T/J which we will use as the only measure

by which we judge which contributions to the memory matrix dominate and

which are subleading, as we have no information about the strength of the

disorder. As T ≪ J , higher powers of T/J are suppressed as compared to

lower powers. It will turn out that the other scattering terms (associated

with the gnm come with lower powers of temperature and therefore they

dominate the relaxation of heat current in the spin chain.

Terms with exponentials

We next turn to the correlators including exponentials of the fields. As these

contributions involve the scattering of left movers to right movers induced

by disorder, we refer to them as backscattering terms. To start with, we

note that the periodic fluctuation ei∆kx appearing in those terms does not

contribute if the disorder acts locally, as we have assumed. In appendix

C.4 we consider the effect of a finite range disorder potential and show that

its effect consists of an additional multiplicative factor exp(−|∆k|2χ2/2),

where χ is the width of the disorder potential, which exponentially supresses

contributions from terms with ∆k 6= 0. For n even, the contribution with

exponentials to the s, s component can be found in the literature (c.f. [52])

and delivers 〈
ei2nφ(x)e−i2nφ(x′)

〉
0

= e4n
2Gφ(x−x′).

For the Q,Q component, the appearing derivatives can be pulled outside of

the correlator. We thus have for even n

〈
∂xe

i2nφ(0,t)∂xe
−i2nφ(0,0)

〉
0

= −∂2
x

〈
ei2nφ(0,t)e−i2nφ(0,0)

〉
0

= −∂2
xe

4n2Gφ(0,t)

= −
(
16n4G′

φ(0, t)
2 + 4n2G

(2)
φ (0, t)

)
e4n

2Gφ(0,t)

and since G′(0, t) = 0, we are left with

〈
∂xe

i2nφ(0,t)∂xe
−i2nφ(0,0)

〉
0

= −4n2G
(2)
φ (0, t)e4n

2Gφ(0,t)

The exponential reads

e4n
2Gφ(0,t) = (τa)2Kn

2

(i sinh(τ(vt− ia)))−2Kn2

and therefore we can use the same integrals of Eq. (4.45) as before, but with

a modified, non-integer γ = 2 + 2Kn2. After collecting prefactors (α = ka
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and k = πT/v and v = 2Ja as in the foregoing integration) obtains

Mneven
QQ [δgnm] = 2πDK

n2v2A2
n

(2πa)2n
22Kn2

I(2 + 2Kn2)

(
T

J

)2Kn2

, (4.51)

Mneven
ss [δgnm] = 2DK

(2n)2A2
n

a2(2πa)2n
22Kn2−2I(2Kn2)

(
T

J

)2Kn2−2

,(4.52)

where we have defined An =
∑

mAnm. We note that due to the symmetry

properties of the propagator, the 〈fQfs〉-term vanishes for even n.

Clearly, smaller values of n (the number of spinons scattered in-elastically)

are more relevant, as they lead to a contribution to the memory matrix which

come with a lower power of the small parameter T/J . Inserting the value

that is closest to experiment, K = 1/2 (corresponding to an isotropic chain),

and choosing the smallest even n = 2, we obtain the result that the discussed

two-spinon processes are – with a contribution ∼ (T/J)4 – as relevant for

the decay of the heat current as are the contributions discussed in the previ-

ous section, while, with a power (T/J)2 the contribution to Mss is the only

one so far to the decay of spin current.

For odd n one has additional derivatives. One can evaluate them by

writing the product of exponential and ∂xφ terms as a derivative of the

exponential, which brings us back to the above situation, but with more

derivatives. We obtain
〈
∂x

(
ei2nφ(x,t)∂xφ(x, t)

)
∂x

(
e−i2nφ(0,0)∂xφ(0, 0)

)〉
0

= −∂2
x

〈
ei2nφ(x,t)∂xφ(x, t)e−i2nφ(0,0)∂xφ(0, 0)

〉
0

= −∂2
x

[
−
(
G

′′

φ(x, t) + 4n2G′
φ(x, t)

2
)
e4n

2Gφ(x,t)
]

and at x = 0 one gets

[
12n2G

(2)
φ (0, t)2 +G

(4)
φ (0, t)

]
e4n

2Gφ(0,t)

The calculation proceeds in full analogy to the above one (but slightly more

complicated) and one obtains and collecting all the factors we get as a final

result

Mnodd
QQ [δg] = RQ

(
T

J

)2Kn2+2

(4.53)

Mnodd
ss [δg] = Rs

(
T

J

)2Kn2

(4.54)

with

RQ = D
π3v2

4a2
K
Kn2(4 + 3Kn2)

Kn2 + 3/2
22Kn2

I(2Kn2)
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and a similar expression for Rs, which we omit. Again, as with even n, the

cross terms 〈fsfQ〉0 vanish.

Therefore, the most dominant contribution identified so far are the one

spinon processes n = 1 which lead in the isotropic chain K = 1/2 to a power

∼ (T/J)3 to MQQ and ∼ T/J to Mss. However, as we show below, there

are still more relevant contributions.

4.2.5 The Leading Contribution

From the above calculations, a certain scheme in the occurrence of the power

is apparent. One can trace back the origin of each contribution to the

exponent to the presence of a corresponding term in the operator in fq.

Each spatial derivative acting on some function of φ contributes another

factor of (T/J), and if exponentials are present, this contributes a factor

according to the prefactor in the exponential, here 2Kn2. Furthermore, the

time integration
∫

dt t removes two powers of (T/J). In this way, it is easy

to find the expected exponent.

We make then the following observation. The formula for the contribu-

tion for odd and even n differ by a factor of (T/J)2, which stems from the

additional factors of (∂xφ) for odd n which had to be included in the Umk-

lapp terms to preserve parity and time reversal. Then it is clear, that the

presence of impurities which break these symmetries, lead to odd n contribu-

tions lacking the additional factor ∂xφ and therefore lead to a corresponding

contribution to the memory matrix which comes with a reduced exponent,

leading to the same formula in powers of (T/J) as for even n. Note that

the resulting terms are for n = 1 precisely those given in Eqs. (4.36) and

(4.38). Therefore, the leading contributions from impurity scattering to the

memory matrix elements comprise

MQQ[δh] = RQ

(
T

J

)2Kn2

(4.55)

Mss[δh] = Rs

(
T

J

)2Kn2−2

. (4.56)

For the prefactors we obtain the expressions

RQ =
π

2
v222Kn2 (2nB)2

(2πa)2n
I(Kn2)D, (4.57)

Rs =
K2

π
v222Kn2 B2

(2πa)2n
cos
(
πKn2

)
B

(
Kn2,

1

2
−Kn2

)
D,(4.58)

where either B = 1 in the case of terms arising from parity breaking, or

B =
√
Dh/D in the case of the term arising from time reversal breaking,

associated with a random magnetic field with disorder strength Dh. We
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emphasize once more, that this result holds for both cases, operators which

break time reversal, ψ†
LψR+h.c. and those which break parity, i(ψ†

LψR−h.c.),
Eqs. (4.36) and (4.38), respectively. The calculation leading to the above

results is performed along the same lines as in the previous section and is

omitted here for brevity.

The dominant contribution comes from n = 1 and we note for later

reference that in the isotropic case K = 1/2 the relevant contribution to the

heat current component of the memory matrix becomes

MQQ = RQT = 2π2 δh2

(2πa)2n
v2

J
· T. (4.59)

4.2.6 Memory Matrix Off-Diagonals

So far, we did not consider cross-terms MQs. Such contributions could

be shown to vanish identically in the case of the less relevant contributions.

However, in the case of the new terms odd under either time-reversal or par-

ity, non-vanishing contributions to the off diagonals of the memory matrix

appear, as some contributions now have matching numbers of derivatives.

(In the case of the time-reversal breaking terms these components are only

present, if the fluctuations in the lattice spacing and those in the induced

magnetic field are correlated.) The two possible contributions to MQs stem

from
〈
∂xe

i2φ(0,t)e−i2φ(0,0)∂xφ(0, 0)
〉

0
= −2iG

(2)
φ (0, t)e4Gφ(0,t) (4.60)

〈
∂x

(
ei2φ(0,t)∂xφ(0, t)

)
e−i2φ(0,0)

〉
0

= −2iG
(2)
φ (0, t)e4Gφ(0,t) (4.61)

thus there is only one integration we have to consider, which has been carried

out already, namely

i

∫ ∞

−∞
dttG

(2)
φ (0, t)e4Gφ(0,t) =

π

4

(τa)2Kn
2

v2
I(Kn2)

As the only occurrence of temperature is through the reduced temperature

τ = πT/v, this component of the memory matrix behaves as

MQs ∼
(
T

J

)2Kn2

, (4.62)

i.e. MQs carries the same power of temperature as MQQ. The heat conduc-

tivity is given by the QQ component of the inverse of the memory matrix.

It has the structure
((

T 2K T 2K

T 2K T 2K−2

)−1
)

QQ

∼ T 2K−2

T 4K + T 4K−2
(4.63)
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and the T 4K contribution from the off-diagonals in the denominator is sub-

leading. Therefore, the dominant contribution to the heat conductivity

comes from the MQQ term, (M−1)QQ ≈ M−1
QQ. As a consequence, the con-

tribution of the spin current is irrelevant in the sense that we would have

obtained the same result for the heat conductivity if we would have omit-

ted it as a slow mode in the first place. The physical reason behind this is

that the spin current has a much higher decay rate than the heat current

(indicated by the appearance of a lower power in T/J) and therefore can be

neglected as a slow mode. The spin current is not a mode sufficiently slow

to protect the decay of the heat current.

4.2.7 Discussion

To summarize, we have calculated various contributions to the memory ma-

trix arising from dilute disorder in the system. The most relevant contribu-

tions stem from the absence of parity or time reversal symmetry, broken by

the presence of the impurities. The associated contributions to the Hamil-

tonian are relevant in the RG sense, but can be treated perturbatively for

weak perturbations and not too low temperatures.

We have found that non-vanishing contributions to the off-diagonals of

the memory matrix exist, but these contributions do not affect the conduc-

tivity. In fact, one could have omitted the choice of the spin current as a

slow mode in the first place, which would lead to exactly the same T ≪ J

result.

Using the main result of this section, Eq. (4.55), we get for the heat

current (κ ≤ 1/Tχ2/MQQ with χ ∼ T 2) in the isotropic case K = 1/2 the

prediction

κ ∼ T 2 (4.64)

in our approximation. Therefore, we expect a quadratic increase in tem-

perature for the spin chain contribution to heat conductivity at not too

low temperatures. Towards even lower temperatures, the effect of the rele-

vant perturbations on the low energy degrees are so strongly affected by the

disorder, that the Luttinger liquid picture will not be adequate any more.

Also at low temperatures, localization effects will set in that will lead to an

exponential suppression of the conductivity. At T = 0 and K < 1, the tini-

est amount of disorder is sufficient to localize the Jordan-Wigner fermions

completely, leading to a vanishing conductivity κ = 0 in this case.

While we have discussed the effect of weak impurities, one can not ex-

clude that there are strong impurities present in the real system, having a

more drastic effect on transport properties. For example, one could imagine

foreign atoms with a different spin or vacancies, substituting spins across the

chains randomly. Such perturbations could lead to a much stronger effect,

as they effectively cut the chains. Our perturbative treatment is not capable
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of accounting for this kind of impurities, and different methods should be

applied to describe that situation.

4.3 Full Memory Matrix: Coupling to Phonons

In this section we set up a complete microscopic description of the spinon

contribution to the heat conductivity in spin chain compounds similar to

SrCuO2 and Sr2CuO3 described in Refs. [8, 45]. As above, we restrict our-

selves to situations in which a perturbative treatment in terms of the memory

matrix formalism is possible. While the contribution from impurity scatter-

ing of spinons – which describes the behavior of the heat conductivity below

T ≈ 60K – has been discussed in the last chapter, in this chapter we will

enlarge our theory by taking into account the coupling of the phonons to the

spinons, which determine the decay of the spinon heat conductivity above

T ≈ 100K. Besides the scattering of the spinons by phonons we take care of

a modeling of the phonon contribution to the heat conductivity. In particu-

lar, we discuss under what circumstances a simple separation of the observed

heat conductivity into a phononic and a spinonic contribution κ = κp + κs
can be assumed and whether such a separation is appropriate for the exper-

imental situation under consideration. We also perform an analysis of the

occurring limits and will find that many features of the experimental system

are reproduced correctly, while some are decisively not. We will discuss how

the result can be improved.

The outline of the section is as follows. First, we will describe the

phononic component of the heat conductivity. Then we will shortly re-

view a work by Shimshoni et al. [4] where the heat conductivity in a clean

spin chain coupled to phonons has been analyzed in detail. As the methods

utilized there are the same memory matrix techniques used here, we can

straightforwardly incorporate their results in a memory matrix formalism

which takes into account both phonons and spinons and their mutual in-

teraction. After formulating the full memory matrix, we will identify all

contributions. A discussion of different regimes follows. In the end we will

give a summary and outlook with suggestions for future work.

4.3.1 Contributions to the Memory Matrix

We recall that a lower bound to the heat conductivity can be obtained by

calculating the approximate memory matrix, M̃ , in terms of which

κ ≥ 1

T
χT M̃−1χ. (4.65)

Next we chose an appropriate set of slow modes, consisting of the normalized

translation operators Js = −v2Ps for the spin chain and Jp = −v2Pp for the
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phonon bath. Note that the normalization of the phonon translator is chosen

with respect to the spinon velocity, for convenience. In terms of these slow

modes, the vector of susceptibilities χ is given by

χ =

(
(JQ|Js)
(JQ|Jp)

)
. (4.66)

The heat current is given by JQ = −v2Ps − v2
pPp. As we evaluate the sus-

ceptibilities with respect to the unperturbed system (where the coupling

between the spin chain and the phonon bath is considered as a small per-

turbation), the susceptibility vector reduces to

χ =

(
(Js|Js)
γ(Jp|Jp)

)
, (4.67)

where we have introduced the small parameter γ = (vp/v)
2.

The memory matrix M̃ has various contributions. Assuming that the

coupling between spinons and phonons vanishes, the memory matrix (in the

basis {Js, Jp}) is diagonal,

M̃ =

(
Ms 0

0 Mp

)
(4.68)

and in this case the heat conductivity reduces to the sum of the contributions

from the spin chain and phonons, respectively:

κ =
1

T
χ2
s/Ms +

1

T
χ2
p/Mp. (4.69)

Here Ms includes the contributions from weak impurities, discussed in the

last chapter,as well as intrinsic Umklapp scattering terms9 discussed in 4.1.5.

The phonon memory matrixMp is not known a priori. Since the phonon heat

conductivity is dictated by various phenomena (to be discussed below) and a

complete modeling of the phonon bath is both complicated and beyond our

scope10, we will, concerning the pure phonon contribution to the memory

matrix, take a phenomenological point of view, and chose it just in the

right fashion to match the experimental results perpendicular to the chain

direction (i.e. the pure phonon part).

The coupling to phonons generates an additional contribution to the

memory matrix which has non-vanishing off-diagonal contributions in the

above discussed basis. In particular, the coupling to phonons will invalidate

the simple splitting of the total heat current into the respective contributions

from the two subsystems, Eq. (4.69). In the following, we will identify each

contribution in turn, to finally put all pieces together.

9While impurity scattering dominates the decay at low temperatures, T ≪ J , towards
intermediate temperatures T . J intrinsic scattering limits the value of the conductivity.

10The phonon heat conductivity is not the subject of this thesis.
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4.3.2 The Susceptibilities

According to Equation (4.67) we have to calculate the generalized suscepti-

bilities given by the correlation function (Js|Js), which is a property of the

spin chain alone and the correlation function (Jp|Jp), which is a property

of the phonon bath alone, respectively. As all perturbations are consid-

ered to be weak enough to consider them perturbatively, Their contribution

to the conductivity is through the memory matrix, whereas perturbative

corrections to the susceptibilities are subleading. The susceptibility of the

spin-translation operator Ps has been calculated in [4] and is given by

χs = (JQ|Js) =
π

3
vT 2.

The calculation of this expression assumes the low energy limit T ≪ J and

can therefore be assumed to be valid in the whole experimental range.

The susceptibility χp of the phonon translation operator Pp is calculated

in appendix C.3. While we give the result for two limiting cases, T ≪ ΘD

and T ≫ ΘD, no analytic expression existst for the general result. In

the appendix we argue that the T ≪ ΘD result is a good approximation

for T below about 0.15ΘD , while the T ≫ ΘD result gives a reasonalbe

approximation at around ΘD, too. The part of the experimental curve which

is of interest to us is 60K < T < 300K (and ΘD ≈ 430K), which at first sight

would suggest the low temperature result. However, the deviations from the

real curve for χp in this regime are much smaller using the high-temperature

approximation11, in relative terms, than using the low temperature result.

Therefore, to reproduce the experimental results, we chose the high energy

limit, given by

(JQ|Jp) = v2
pv

2(Pp|Pp) =
Θ3
Dv

2

6π2v3
p

T. (4.70)

We note that the expressions for the susceptibilites for spinons and phonons

carry different dimensionality, as the spin chain susceptibility is measured

in units of length, whereas the phonon susceptibility in units of volume.

One has two possibilities to deal with this mismatch. Either one includes

a summation over the whole (two dimensional) array of spin chains, or one

determines the per spin chain contribution of the phononic susceptibility.

Here we chose the latter route. The area of the cross section associated

with one wire is about ∼ 3a2 in the compounds SrCuO2 and Sr2CuO3 of

interest to us [68]. Therefore we use, instead of Eq. (4.70), the phonon

susceptibility ‘per spin chain’, χp = 3a2(JQ|Jp). This is quietly assumed in

all what follows.

11What concerns the phonon susceptibility, its exact dependence on temperature is not

crucial. For our purposes it is sufficient to work with the correct order of magnitude, as
will become clear later.
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4.3.3 Phonon Heat Conductivity

We recall the structure of the lattice heat conductivity κp measured perpen-

dicular to the chain direction in the spin chain compounds. The tempera-

ture dependence is typical of an insulating crystal whose heat conduction is

dominated by phonons and lacking phase transitions in the whole range of

temperature.

The high temperature asymptotic behavior of the phononic heat trans-

port is characterized by a decay of the heat conductivity κp ∼ T−α with

a power of α typically varying between 1 and 2. The precise theory of the

power law is complicated and has to do with the competition of cubic and

quartic terms. The reason for the decay is the following. In this high tem-

perature regime T > Θ, the number of phonons in the system becomes ∝ T
and it becomes more likely for a phonon to get scattered by other phonons.

As temperature is decreased below the debye temperature ΘD, the prob-

ability of Umklapp scattering events becomes exponentially suppressed as

the Umklapp processes freeze out. The heat conductivity rises accordingly.

However, the heat conductivity can not increase indefinitely. Any real

physical system has finite dimensions and the phonons will scatter off the

boundaries of the sample. This effect starts to dominate where the mean

free path of the phonons is of the order of the system size, in our case at

about T = 6K. This leads to the characteristic low temperature behavior

κp ∼ T 3 at the lowest temperatures.

The combination of these effects leads to the characteristic low temper-

ature maximum of the phononic heat conductivity around T ≈ 10K. How-

ever, there is an additional mechanism of scattering for phonons, namely

scattering off impurities. This mechanism mainly dominates around the low

temperature maximum of the phononic heat conductivity and leads to a low-

ering of the maximal value. If there are many impurities, the suppression

can be strong enough to be relevant up to around the Debye temperature,

in which case the effect of exponential suppression of U processes can be

completely be shaded by disorder effects. This is the case for example in the

copper-oxide compounds considered here, as the exponential behavior of the

heat conductivity for 20K . T . ΘD = 400K can hardly be observed. The

heat conductivity in this case can be fitted to κp ∼ T−α with an exponent

varying between 1 and 1.3 right down to the boundary scattering region. In

fact, isotope scattering is of comparable magnitude to Umklapp scattering

in many substances, even at room temperature.

For our purpose, the precise source of phonon scattering is irrelevant, as

we are interested in the excess spinon contribution. What may happen to

be important is the power law dictating the scattering rate and therefore

the conductivity. As throughout the relevant temperature range (where the

excess spinon contribution is significant) the experimental observation is
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consistent with a power law like behavior with an exponent close to 1, we

therefore make the assumption that in the relevant temperature range the

phonon heat conductivity behaves as κp ∼ 1/T .

In modeling the phonons, we will do without the behavior of the con-

ductivity at and below the phonon peak, and we use the high temperature

expression for the susceptibility, as discussed above. We adjust the powers

in temperature for the memory matrix by requiring the resulting conductiv-

ity to behave as κp = χ2
p/(TMp) ∼ 1/T . With the susceptibility given by

χp = γ(Jp|Jp) ∼ T , we obtain

Mp = mpT
2, (4.71)

where the constant mp is chosen to best fit the experimental result for the

phononic heat conductivity.

4.3.4 Spinon Heat Conductivity

The main result of the last section was that the disorder induced memory

matrix has the leading order contribution Ms ∼ T , leading to the low tem-

perature behavior κ ∼ T 2 for the heat conductivity. Going towards higher

temperatures, however, Umklapp scattering of spinons becomes relevant, in

the same fashion as for the phonons. But in this case, the temperature scale

at which Umklapp events start to dominate, is T ∼ J . Therefore such a

term will lead to a cutoff in the spinon contribution to heat conductivity

(predicted by only impurities as κ ∼ T 2) at temperatures close to T . J .

We will see, that coupling to phonons provides a much more efficient source

of scattering at a temperature regime well below J . Therefore, in this ap-

proximation we neglect contributions from intrinsic Umklapp scattering, and

set

Ms = ms
T

J
(4.72)

where the constant ms is proportional to the disorder strength D.

4.3.5 Coupling between Spinons and Phonons

The coupling of the phonons to a clean spin chain and its effect on the heat

conductivity has been discussed in detail by Shimshoni et al. in Ref. [4],

where the same methods used here found application. We shortly describe

the setup and main results that concern us.

We write the joint Hamiltonian of the spin chain and the phonons as

H = Hs +H3D
p +Hsp (4.73)

where Hs describes the spin array (a simple sum over Hamiltonians of the

form Eq. (4.15)), H3D
p is the phonon Hamiltonian, and Hsp the interaction
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between spins and phonons. One can model the 3D phonon bath (optical

phonons are omitted) by a harmonic Hamiltonian similar to the Luttinger

liquid,

H3D
p =

∫
d3 x

2π

[
(πP )2 +

∑

µ

v2
µ(∂µq)

2

]
(4.74)

where µ denote the x, y and z directions, P and q are (appropriately normal-

ized) canonical phonon momentum and coordinate operators and vµ are the

sound velocities with vx = vp. As the coupling between chains is neglected,

one can integrate out the perpendicular directions and consider only the

phonon dynamics along a single chain. Neglecting spin-orbit coupling, the

dominant coupling arises from the dependence of the exchange couplings on

the distance of the atoms, Jij = J0(Ri − Rj) ≈ J0 + a(∂xq)Jsp. This cou-

pling introduces contributions to Hsp which can, likewise, be classified into

Umklapp and non-Umklapp terms, depending on whether (∂xq) couples to

an Umklapp or non-Umklapp term in Hs.

To emphasize the main effect of phononic coupling on the spin chain,

it is illustrative to remind ourself of the situation in the pure spin chain

without coupling to phonons. The memory matrix for the heat current in

that case has the form

Mpure
QQ ∼ (∆k)2

(
T

J

)2Kn2

e−
v|∆k|
2T (4.75)

for n even, and an additional factor (T/J)2 has to be included for n odd.

As mentioned above (see end of section 4.1.5) we observe that this expres-

sion vanishes when ∆k = 0 because the heat current commutes with the

translationally invariant terms, and for finite ∆k the contribution is expo-

nentially suppressed. More precisely, for |∆k| = π/(2a) and with v ∼ Ja

the exponent becomes ∼ J/T ≫ 1.

The major effect of the coupling to phonons is, that in the exponent the

fast spinon velocity is replaced by the much slower phonon velocity, leading

to e−vp|∆k|/(2T ) and therefore the exponential suppression of the memory ma-

trix is much weaker, in particular close to the Debye temperature. As in the

Debye approximation the spinon velocity and the debye temperature may be

related (see below), the exponent can be translated to ∼ exp(−0.5ΘD/T ).

Therefore, the phonons introduce a much more efficient mechanism of scat-

tering. The physical reason behind this effect is that the minimal energy cost

of a process which involves a momentum transfer of ∆k is associated with

the energies v∆k/2 of the elementary excitations involved in the process

(see Ref. [4]). Because in our case vp ∼ v/20, the phonons make momentum

transfer less costly and therefore they dominate the relaxation above the

spinon peak. The most dominant process has been identified to be a two
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phonon process with both phonons carrying a momentum of the order of

∼ ∆k/2.

Let us see, how this output is generated by the memory matrix formal-

ism. Choosing the slow modes heat current JQ and the normalized transla-

tion operator JT = v(Ps + Pp), one obtains the diagonal memory matrix12

Msp =

(
MQQ 0

0 MTT

)
(4.76)

where the dominant contribution to MQQ stems from n = 2,m = 1 and

∆k = 0, giving rise to a power T 3 for this contribution [4]. The transla-

tion operator component MTT , however, lacks contributions with ∆k = 0.

This reflects the fact that the translation operator JT conserves momentum.

As argued above, Umklapp terms involving transfer of momentum between

the spinons and the phonons are suppressed by an exponential on the en-

ergy scale ΘD instead of J , and therefore they comprise the more dominant

scattering mechanism. The leading contribution has been identified in [4]:

MTT ∼ T 4 exp

(
−vp|∆k|

2T

)
, (4.77)

with a two phonon process implying ∆k = G/2, which is much smaller

than MQQ at temperatures below vpG/4 ∼ 170K. As the memory matrix

is diagonal, the two components contribute separately, κ ∼ M−1
QQ + M−1

TT ,

and for small temperatures thus MTT dominates, leading as a result to

an exponentially diverging conductivity for the clean spin chain coupled to

phonons13. Therefore, it is necessary to include the effect of disorder and

also the scattering of phonons in our considerations.

4.3.6 Result and Discussion

We are in the position to calculate the full memory matrix. We have identi-

fied all important contributions. As a lower bound for the heat conductivity

we get

κ ≥ 1

T
(χs, χp) ·

[(
Ms 0

0 Mp

)
+A

(
MTT 0

0 MQQ

)
AT
]−1

·
(
χs
χp

)

(4.78)

12In Ref. [4] a 3 × 3 memory matrix is considered with the spin current operator as the
third slow mode. However, the scattering rate of the spin current is much higher than that

of the other two slow modes and consequently does not contribute to the heat current.
The same applies to the scattering due to disorder, as shown in the previous section. Using
this information, we omit the spin current as a slow mode right from the start.

13Here the scattering of phonons has been neglected.
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where the transformation matrix

A =

(
1 1

1 γ

)−1

, (4.79)

with γ = (vp/v)
2, transforms between the bases of slow modes {Js, Jp} and

{JQ, JT }.
Using γ ≪ 1, we arrive at the expression

κ ≥ 1

T

χ2
p(Ms +MQQ + γ2MTT ) + χ2

s(Mp +MQQ +MTT )

MpMs +Mp(MQQ + γ2MTT ) +Ms(MQQ +MTT ) +MQQMTT
(4.80)

+
1

T

2χpχs(MQQ + γMTT )

MpMs +Mp(MQQ + γ2MTT ) +Ms(MQQ +MTT ) +MQQMTT
.(4.81)

This is the general expression in the presence of disorder and spin-phonon

coupling. The second term is refered to as the drag-term. Several limits

may be identified.

First, we discuss the simplest case, namely the limit where phonons do

not scatter, Mp = 0, and the system is clean and we can set Ms = 0, too.

This is the limit discussed in Ref. [4]. In this limit, Eq. (4.81) reduces to

κ ≥ 1

T
(χs + γχp)

2(M−1
QQ +M−1

TT ).

This reproduces the result of [4]: In the asymtotic limit T ≪ ΘD, M−1
TT

is much larger, and the conductivity diverges exponentially. Physically, as

momentum is conserved by the N processes, the only mechanism to lose mo-

mentum is through Umklapp scattering, which is exponentially suppressed

at low temperature.

Second, we would like to identify the limits relevant to the experiment.

To deal with this, we first make an obvious observation: The total heat

current measured in the experiment is larger or equal to the phononic con-

tribution (i.e. the curve one would expect for the heat conductivity with-

out the presence of a spin chain) for all temperatures. Formally, we have

κ − κp > 0, with κp = T−1χp/Mp. While it is not a priori clear that any

useful information can be gained from this criterion, we shall see that its

analysis leads to a better understanding of the physics behind the involved

processes.

We consider two different limits. Let us take the trivial limit of no cou-

pling, MQQ = MTT = 0, first. Then, the spin chain and the phonon susbsys-

tem carry momentum independently, and we have κ = κs + κp. Therefore,

κ− κp > 0 is automatically fulfilled in the weak coupling limit.

Turning to the strong coupling limit, MQQ ≫ Mp,Ms, by calculating

κ− κp using Eq. (4.81), we arrive at the criterion

χs(χs + 2χp)

Ms
>

χ2
p

Mp
. (4.82)
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As all appearing quantities are positive, this provides us with two separate

criteria: The full conductivity to be larger than the pure phonon part, it

is sufficient, that the pure spinon conductivity be larger than the phonon

conductivity,

κs > κp (4.83)

or that the scattering-rate of the phonons be larger than the scattering-rate

of the spinons,

Mp

χp
>

1

2

Ms

χs
. (4.84)

Let us discuss the first criterion. One of the conductivities is always larger,

and by symmetry of the argument, if κp > κs, this means that κ− κs > 0,

and therefore the first criterion tells us that the smaller of the conductivities

of the subsystems establishes a lower bound to the full heat conductivity,

κ ≥ min(κs, κp). (4.85)

This relation tells us, that, no matter how strong the coupling, the con-

ductivity is bound from below by the smaller of the conductivities. This is

obvious for mechanisms which conserve momentum, e.g. MQQ, as the strong

coupling the coupling then simply provides a mechanism to pass momentum

quickly between the systems and momentum is then relaxed according to

the stronger decay mechanism, forcing the total conductivity to the smaller

one of the individual subsystems. However, relation (4.85) also holds for

couplings that do not conserve momentum, e.g. MTT , which is less obvious.

More insight can be gained by considering the second criterion, (4.84),

which relates the physical scattering rates to each other. Equation (4.84)

tells us, that (no matter how small the heat conduction provided by the spin

chain is) if the phonon scatter faster, then the spinons can not provide a

more efficient mechanism of scattering, therefore the total heat conductivity

is larger than the pure phononic one. We note that Eq. (4.84) was de-

rived with the assumption that the momentum conserving mechanism MQQ

dominates. Considering MTT , (e.g. in the regime where MTT ≫ MQQ) the

criterion (4.84) gets modified and becomes γMp/χp >
γ
2Ms/χs. However,

the exact prefactor shall not be of concern. We content ourselves with the

identification of the regime Mp/χp ≫ Ms/χs as a sufficient condition for

κ > κp.

Having identified these limits, which shall lead the following analysis, we

turn our attention to the experimental result. The following table summa-

rizes the contributions appearing in Eq. (4.81) that we have identified in the
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Figure 4.3: Right: Phonon heat conductivity κp, heat conductivity of

phonons and spinons without coupling, κp + κs, full heat conductivity with

coupling κ and full heat conductivity with the phononic contribution sub-

tracted, κ−κp. The curves are to be compared with the experimental curves

Fig. 4.1, redisplayed for direct comparison to the left. The area of interest

is highlighted. The curves were obtained as described in the main text.

last sections.

χp ∼ T (4.86)

χs ∼ T 2 (4.87)

Mp ∼ T 2 (4.88)

Ms ∼ T (4.89)

MQQ ∼ T 3 + T 4e−T
∗/T (4.90)

MTT ∼ T 4e−T
∗/T (4.91)

The prefactors of the susceptibilities χp and χs have been determined

in section 4.3.2 and all appearing constants are determined by the ex-

periment. The prefactor of Mp is not known a priori, but can be deter-

mined by fitting κp to the experiment at high temperatures. We choose

κp(T = 100K) ≈ 30Wm−1K−1. In Fig. 4.3, we have plotted (among other)

the resulting phonon heat conductivity in the region of interest. We note

that we omit the low temperature region, as the interesting part of the ex-

perimental curve (where the spinon contribution is significant) resides in a

temperature range where the high temperature limit to the phonon suscepti-

bility χp is well suited. We remind the reader that the power of Mp has been

chosen such as to account for the ∼ 1/T decay of the transversal (phonon)

heat conductivity.

The prefactor of disorder scattering of spinons, the only contribution to

Ms which we take into account, has been determined in section 4.2.5. All
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apearing constants are known from experiment besides the coupling con-

stant g/
√

2πa appearing in front of the relevant operator, and the disorder

strength. As our best guess, we chose g/
√

2πa ≈ J and let the disorder

strength vary in some sensible region, |δJ(x)|/J = 1/1000 · · · 1/10, as a free

parameter. Fig. 4.3 shows the conductivity with a disorder of 5% in the

exchange coupling J . We observe that there is an onset of the spinon heat

contribution turning to a ∼ T 2 behavior of the conductivity, dictated by the

disorder scattering of spionons. Note, that the approximation for g is crude

and its exact value is not known from first principles for a generic spin chain.

Therefore, this method can not be used to make a precise prediction about

the strength of disorder in the spin-system. However, the order of magni-

tude for all constants should be correct, and the resulting curve (i.e. the

distinct feature, the temperature at which the spinon contribution sets in)

suggests that the analysis is consistent. Before turning on the coupling be-

tween spin chain and phonons, we note, that in a real measurement on a

system without that coupling one would observe the phonon heat conductiv-

ity only. Namely, heat can be passed through the links to the specimen only

via phonons, while spinons exist in the specimen only and can not be ac-

cessed from the outside. Therefore, coupling between spinons and phonons

is crucial for the participation of the spinons in heat transport.

We turn our attention to the terms associated with the coupling of

the spin chain to the phonons. The single coupling term without momen-

tum transfer ∆k = 0 appearing in MQQ alone is not capable of produc-

ing a peak in the spinon contribution, as its limiting behavior is given by

1/T (T 2)2/T 3 ∼ const.. Therefore, a term with momentum transfer ∆k 6= 0

is required. Of these terms those are the most relevant for which the expo-

nential sets in at the lowest temperature and therefore cuts off the conduc-

tivity first. In Ref. [4] the leading term has been identified and is associated

with the one spinon two phonon process n = 1 l = 2 which appears (and has

been included) in both MQQ and MTT . By tuning the (unknown) prefactor,

we obtain the other two curves depicted in Fig. 4.3, one for the full heat con-

ductivity, the other with the phonon part subtracted, as in the experimental

curves measured by Sologubenko et al., Fig. 4.1. As expected, the presence

of the n = 1 l = 2 process leads to a suppression of the conductivity towards

higher temperatures and generates a spinon peak, as observed in the exper-

iment. The position of the peak depends sensitively on the prefactor of that

term, and it has been chosen such that the position of the spinon peak is ap-

proximately where observed in the experiment. By choosing different values

for the prefactor of the ∆k = 0 term in MQQ, one can tune the width of the

spinon peak structure. A finite value always leads to a broadening of the

peak, therefore the depicted curve (where the prefactor of that term has been

set to zero) represents the minimal width of the spinon peak. The apparent

saturation of the spinon contribution towards the highest measured temper-
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atures observed in the experiment (see angain Fig. 4.1) is not reproduced by

our choice of the memory matrix. This may be attributed to one of several

possible issues. First, the expression we used for MTT T 4 exp(−T ∗/T ) is

valid in the asymptotic limit T ≪ ΘD only. There is no reason why the

power T 4 should remain the same close to or above T ∗ = vp∆k/2. (The

low temperature asymptotics of the Debye-approximation, which was used

to determine these expressions for the memory matrix, is good only below

about T < 0.15ΘD . Above this value, considerable deviations should be

expected.) In fact, the high temperature limit of this contribution (n = 1,

l = 2) can be determined from Ref. [4] to be ∼ T 2. One could argue, that in

the crossover region, T ≈ ΘD, one can legitimately set the power in front of

the exponential to T∼3, which then would be consistent with a saturation

of the heat current. The second possible issue is that the process attributed

to the chosen MTT is quite unusual, involving the scattering of one spinon

from one fermi point to the other and the creation of two phonons with

equally distributed energies. While these processes have been identified to

be the dominant ones in the low temperature limit, such a process can be

assumed to be rare and therefore it might come with a very small prefactor.

Therefore, it can be expected that, at intermediate temperatures T ≈ ΘD,

other Umklapp processes are more relevant, for exampe those with n = 1

and l = 1. As should be clear from our analysis, it is most probably possible

to reconstruct every single feature of the experimental curve by accounting

for other processes, providing us with additional fit parameters.

As a final step, let us identify the relevant regimes of the heat con-

ductivity, to determine which contributions from Eq. (4.81) are the most

significant. This will allow us to write down an approximation to the heat

conductivity. By using the values of the fit parameters which define the

curves shown in Fig. 4.3, we observe that throughout the interesting region,

the scattering rate of the phonons is much larger than that of the spinons:

Mp/χp ≫ Ms/χs. Therefore, as argued above, the total heat conductiv-

ity is bounded from below by the phonon contribution. Furthermore, from

above T ∼ 100K the two-phonon process contributing to MQQ and14 MTT

starts to dominate over Ms, but remaining much smaller than Mp in the

entire region. These observations are sufficient to considerably simplify the

expression for the conductivity. One obtains in this limit the expression

κ =
1

T

(
χ2
p

Mp
+

χ2
s

Ms +MQQ

)
= κp +

1

1/κs + 1/κsp
, (4.92)

14In fact, the contribution of the two-phonon Umklapp to MTT may be neglected as it

is supressed by a factor ∼ γ in the conductivity, due to the structure of the transformation
matrix A of Eq. (4.79).
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where we have defined

κsp =
1

T

χ2
s

MQQ
. (4.93)

The so-called drag-term (the mixed term in the conductivity ∼ χsχp) does

not contribute in this limit.

To conclude, the scattering introduced by the spin-phonon coupling is

not strong enough to affect the phonon component of the heat conductivity.

The scattering of the spinons by impurities and by phonons is of equal

strength at the spinon peak. This result holds despite the limitations of our

modeling.

The limitation concerning the spin-phonon coupling is the fact that the

∆k 6= 0 terms derived in [4] are strictly valid only in the T ≪ ΘD asymp-

totics, as the low temperature limit of the Debye approximation has been

used. As we have seen for the phonon susceptibility, this limit does probably

not describe the behavior correctly at temperatures closer to ΘD. Therefore

one might question our Ansatz altogether. An analytic treatment without

that approximation is cumbersome. A better account for the behavior of

the conductivity above the spinon peak could be given by a numerical de-

termination of the contributions to MQQ. However, the lack of knowledge

of the various coupling constants of the backscattering terms would remain

a principal conceptual weakness of the presented approach, at least when

it comes to fitting to the experiment and a variety of different processes

contribute in an intermediary regime where it is not easy to apply selection

rules based on the limiting behavior of the different contributions.

A further limitation concerns the disorder scattering. While our result

predicts a quadratic increase of the spinon contribution to heat conductivity,

it is hard to judge, whether the experiments show this behavior. In fact,

more recent experiments on spin chain compounds have been performed by

Hess et al. [9] in which the spinon contribution is much more pronounced.

In these experiments, the spinon part shows a linear increase with temper-

ature in the wide range of ∼ 100K − 300K, rather than a quadratic one

as indicated by our analysis. Such a behavior implies that the scattering

length is independent of temperature. It is not possible to reproduce such

a behavior with a dilute disorder calculation presented here. Therefore, at

least with respect to some experiments, our description is not adequate and

one probably needs to consider stronger disorder effects not accessible by

the perturbative treatment presented here. It is desirable to consider the

case of strong disorder to account for this effect. However, it is hard to

judge whether and how such an analysis would fit into our memory matrix

approach.
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Appendix A

Appendices related to

Chapter 1

A.1 Naive Linear Response

In this appendix we give a quick linear response derivation of the conduc-

tivity which is comprehensive, illustrative, sloppy and, above all, wrong.

Nevertheless it is useful to consider it for several reasons. It gives a feeling

for where different terms in the Kubo formula come from. It successfully

reproduces the regular part of the conductivity while it fails to reproduce

the Drude peak. Most importantly, the derivation gives us an opportunity

to discuss the heat current and when it is legitimate to treat it via linear

response. This shall be discussed in the second part of this appendix.

The aim of linear response theory is to evaluate the expectation value

of an operator J (which in our case is some current) as a response to some

(time dependent but homogeneous) external field E(t). The presence of the

external field leads to a perturbation in the Hamiltonian, H ′(t). We will not

specify the dependence of the Hamiltonian on the field yet. We assume that

E is switched on slowly at t = −∞ and acquires its final value at t = 0.

So we are interested in the expectation value of the current at time t = 0,

〈J(0)〉. However, it would be much easier to evaluate the expectation value

with respect to the unperturbed Hamiltonian, i.e. at t = −∞, as we know

that there we can use the original thermal equilibrium Boltzmann factor

of the unperturbed model. To achieve this, we have to ‘evolve back’ the

current:

〈J(0)〉 = tr e−βHU(−∞, 0)J(0)U †(0,−∞) (A.1)

with the time evolution operator

U(t1, t2) = T exp(i

∫ t2

t1

dt (H +H ′(t)) (A.2)
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where T denotes the time ordered product. In linear order in H ′(t′) we may

use the expansion

U(−∞, 0) = 1 + i

∫ 0

−∞
dt H(t) (A.3)

and we obtain

〈J(0)〉 = −i
∫ 0

−∞
dt 〈[J(0),H ′(t)]〉 (A.4)

for the expectation value.

Let us now assume that we are interested in the electrical current as a

response to a frequency dependent external field,

E(t) = e−iωteεtE0 (A.5)

where the factor eεt with ε≪ 1 represents the slow switching on of the field

and E0 is the final value of the field at t = 0. The charge density ρ(x, t) in

the system feels the electric potential U(x, t) induced by the external field

and leads to an according term in the Hamiltonian,

H ′(t) =

∫
dx ρ(x, t)U(x, t) =

∫
dx eiωte−εtU(x)ρ(x, t) (A.6)

With E0 = −∇U(x). Our goal is to obtain a current current correlation

function and therefore it is tempting to use the continuity equation to replace

the density by the current. This is exactly what we will do next, but we

will do so by neglecting a boundary term, the main effect of which is that

we lose the Drude weight. So let us use the continuity equation in relation

(A.6) in the following manner

ρ(x, t) =

∫ t

−∞
dt′ ∂t′ρ(x, t

′) = −
∫ t

−∞
dt′ ∂x · j(t′) (A.7)

and partial integration in space (the boundary term from this step vanishes)

delivers the current-current response function times the external field:

H ′(t) = −
∫

dx eiωte−εt
∫ t

−∞
dt′ j(t′) ·E0 (A.8)

which, inserted back in Eq. (A.4), gives

〈J(0)〉 = i

∫ 0

−∞
dt eiωte−εt〈[J,

∫ t

−∞
dt′ j(t′)]〉 (A.9)

and partially integrating with respect to t (this time we keep the boundary

term which gives the zero frequency offset χR(0)) we finally arrive at

〈J〉 =
i

ω
(χR(0)− χR(ω)) ·E0 (A.10)
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with χR(ω) defined as in appendix A.2. We readily identify the expression

for the (regular part of the) conductivity, see Eq. (1.8). The reason why we

do not capture the Drude weight in this calculation is the wrong replacement

of the density by an integral over its time derivative, the first equality in

Eq. (A.7). The correct replacement involves an additional term ρ(x,−∞)

on the rhs., which leads to an additional correlation function of operators at

different times, 〈J(t = 0); ρ(t = −∞)〉. This correlation function vanishes

when the relaxation times are finite and contributes the Drude weight oth-

erwise. As such correlation functions are hard to evaluate, other methods

are more useful to derive expressions for the Drude weight.

As noted above, the derivation, albeit wrong, is useful to extract the

expression for the heat conductivity. We only have to determine the per-

turbation H ′ induced by the presence of a small temperature gradient. The

presence of a temperature gradient means that different parts of the system

are at different temperatures. Heat transport is induced by the imbalance

in thermal occupations of states in nearby parts of the system. The thermal

balance of states is described by the Boltzmann factor. But of course the

Boltzmann factor is meant to describe the full system at equilibrium. We

thus should generalize the Boltzmann factor to accommodate for temper-

ature changes across the system. More precisely, we choose β = β(x) as

a function of spatial position and a spatially dependent Boltzmann factor

thus becomes

βH →
∫

dx β(x)h(x) (A.11)

where h(x) is the Hamiltonian density, H =
∫
h(x). We have to assume

that the temperature variation is small enough so that parts of the system

can be considered to be in local thermal equilibrium, meaning that they are

large enough that the notion of temperature makes sense. If thus thermal

variations are small, we may locally expand, β(x) = β+∇β ·x. Thus, effec-

tively, we may consider the temperature variations as an effective external

field coupling to the energy density,

H → H +H ′ (A.12)

H ′ = −
∫

dx h(x)

(
x
∇T
T

)
. (A.13)

with the external potential −x∇T
T , in analogy to equation (A.6). The cal-

culation of the heat conductivity can thus be carried out in full analogy to

the calculation presented above. As the heat conductivity is defined via the

relation

〈jQ〉 = −κ∇T, (A.14)

there is an additional factor 1/T in the expression for the heat conductivity

in terms of the current current correlation function. (For a metal, for exam-

ple, heat is transported essentially by transport of the same electrons which
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carry the current. This explains the Wiedemann-Franz law, which states

that the ratio of electrical conductivity to heat conductivity of a metal is

proportional to temperature, which is valid whenever the Kubo formula can

be applied.) The connection between heat conductivity and the formalism

set up in chapter 1 can be made by simply using κ(ω) = 1
T σ(ω), where

σ(ω) =
∫∞
0 eiωt(JQ(t)|JQ), according to the notation of section 1.7.

A.2 Drude Weight and the Kubo Formula

In this appendix we sketch the derivation of expression 1.12 for the Drude

weight from the original Kubo formula 1.7. This relation makes it possible

to identify the Drude weight with Suzuki’s expression [17] and allows to use

Mazur’s inequality to calculate lower bounds for the Drude weight. The

connection between the Drude weight and the Mazur inequality was first

pointed out by Zotos in Ref. [18] and since then has been heavily applied

to calculate lower bounds for the Drude weight in one-dimensional systems

[18, 19, 2, 20, 21]. Despite its success, Zotos’ derivation of this relation is

quite restricted in that it is applicable to one dimensional systems only and

requires additional assumptions. Zotos’ derivation involves the introduction

of a fictitious flux through the ring created by the periodic boundary con-

ditions in the chain, and in analogy to Laughlin’s argument this introduces

a gauge field in the chain.

However, the connection between the Drude weight and the Mazur in-

equality holds in general (for any dimensions and, in the form presented

here, with the only assumption of a time reversal invariant system) and

can be derived via elementary manipulations from the Kubo formula 1.7.

The key in the derivation is the correct use of the fluctuation-dissipation

theorem. For this sake we introduce the correlation functions

χ<(t) = i〈J(0)J(t)〉 (A.15)

χC(t) =
1

2
〈[J(t), J(0)]〉 (A.16)

χR(t) = iΘ(t)〈[J(t), J(0)]〉 (A.17)

and their Fourier transforms χ<(ω), χC(ω) and χR(ω). In terms of these,

the fluctuation dissipation theorem states that

χ<(ω)(eβω − 1) = 2iχC(ω). (A.18)

To bring the Kubo formula 1.7 to the more useful form Eqs. 1.10, one has

to solve for χ<(ω). Usually one simply divides by the factor (eβω−1) which

reproduces the regular part of the conductivity. To account for the Drude

weight, however, it is necessary to include the possibility that χ<(ω) has

a singularity at ω = 0, or equivalently that the current does not decay,
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limt→±∞〈J(0)J(t)〉 6= 0. This contribution would be canceled by the factor

(eβω − 1). Thus we make the Ansatz

χ<(ω) = 2πiCδ(ω) + 2iP χC(ω)

eβω − 1
, (A.19)

where C is a constant that has to be determined independently and, as has

been shown in Ref. [13], is given by

βC = χT − χR(ω = 0) (A.20)

for a time-reversal invariant system. Inserting this into Eq. 1.7 one arrives

at 1.8 by means of elementary transformations, using the Kramers-Kronig

relations and the Fourier-space representation of the step function Θ(t).

This connection and its derivation, although quite straightforward, is

hard to find in the literature, which simply means that I personally was not

able to find it.

A.3 Singularities of σreg(ω)

Throughout our analysis we assume that the regular part of the conductivity

σreg(ω) is smooth and finite at ω = 0. However, in certain situations the

regular part may show a divergence, which limits the range of validity of the

result of chapter 2. In this appendix we discuss possible scenarios in which

such a divergence may occur.

First of all, such a divergence can not be attributed to exact conservation

laws. If present, it has to stem from slow modes which need a decreasing

amount of energy to be excited as ω → 0. A typical candidate for such a

slow mode are phonons in a clean crystal: As the frequency of the exciting

external field is reduced, phonons with lower momenta are excited for which

Umklapp scattering – the only source of momentum relaxation – becomes

impossible.[29] (In real systems, this effect is limited by impurities and the

finite spatial extension of the lattice.) The presence of Goldstone modes

generically leads to a divergence of the conductivity as ω → 0, provided

that they have finite overlap with the current. Slow modes which lead to

have been observed for classical systems, see c.f. [73].

As a relevant example, classical analogues of the systems we consider in

this thesis (for example masses connected with anharmonic springs) show as

a generic behavior anomalous long time tails and a corresponding divergence

in σreg(ω) with a simultaneous absence of a drude peak, see Ref. [73].

One important implication on our studies is the conclusion that the

methods developed are essentially useless for zero temperature calculations.

However, besides the fact that T = 0 is impossible to realize in experiment,

conductivities at T = 0 tend to be either infinite or zero [66]. If it is
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infinite, this is often the consequence of an accumulation of low frequency

slow modes.



Appendix B

Appendices related to

Chapter 3

B.1 Spin Operators

In this appendix we shall review the relevant definitions of spin operators.

The material can easily found in many textbooks and we include it here for

reference purposes only.

In the basis of local Sz-eigenstates, the spin operators are given by the

Pauli matrices

Sα =
~

2
σασ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
.

We set ~ = 1. The Pauli matrices obey the relation

σασβ = δαβ + iεαβγσγ

from which follow the commutation relations

[σα, σβ ] = 2iεαβγσγ [Sα, Sβ] = iεαβγSγ

It is sometimes convenient to introduce spin raising and lowering operators

S± via
S+ = Sx + iSy

S− = Sx − iSy
←→ Sx = S++S−

2

Sy = S+−S−

2i

The effect of S+ in acting on a spin state is to flip it up if it is down Then

the often occurring combination Sxi S
x
j + Syi S

y
j becomes

Sxi S
x
j + Syi S

y
j =

1

2

(
S+
i S

−
j + S−

i S
+
j

)

and hence describes the exchange of the spins at sites i and j.

97
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B.2 Current operators for the XXZ model

The spin-1/2 XXZ -chain is described by the Hamiltonian

H =
∑

n

hnhn = J(SxnS
x
n+1 + SynS

y
n+1 + ∆SznS

z
n+1)

where hn is the energy density, the Sαn being spin operators, J the spin-spin

coupling constant and ∆ is the anisotropy, a dimensionless parameter. The

Heisenberg Model is given by ∆ = 1. When the range of the energy density

does not exceed one lattice spacing, the heat (or thermal) current density

can be defined as

jn = i[hn−1, hn].

The local current density jn then fulfills the continuity equation:

ḣn = i[H,hn] = i[hn−1, hn] + i[hn+1, hn] = −(jn+1 − jn).

(If the range of hn would exceed one, this construction would not be possible

in such a direct way. In the next section we introduce a more general con-

struction scheme for the current.) The total heat current can be expressed

as

Jth =
∑

n

jn

where jn evaluates to

jn = iJ2
[
δsn,n+1, δ

s
n−1,n]

= J2
(
Szn
(
Sxn+1S

y
n−1 − S

y
n−1S

x
n+1

)

+∆Szn−1

(
SxnS

y
n+1 − SynSxn+1

)
+ ∆Szn+1

(
Sxn−1S

y
n − Syn−1S

x
n

))
.

In the Heisenberg limit, ∆ = 1, jn simply becomes jn = J2Sn−1·(Sn × Sn+1).

The heat current is conserved in the XXZ -chain:

J̇th = i [H,Jth] = 0.

B.3 Implementation Notes: Frequency moments

In this appendix we outline the steps that lead to a simple and straight-

forward implementation of an algorithm for the calculation of frequency

moments

µp = 〈[ · · · [[J,H],H] · · ·︸ ︷︷ ︸
p×

, J ]〉. (B.1)

As the memory function Re Γ(ω) is even in ω, its moments are nonvanishing

for odd p only, see Eq. (3.23). By redistributing the derivatives appearing
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in Eq. (B.1), we may write

µ2n+1 = (−1)n〈[ · · · [[J,H],H] · · ·︸ ︷︷ ︸
n+1×

, · · · [[J,H],H] · · ·︸ ︷︷ ︸
n×

]〉. (B.2)

Noting that tr[A,B] = 0, we have to expand the Boltzmann weight in β.

The high temperature limit of the moments is therefore given by

µ2n+1 = (−1)n+1 1

T
tr


[ · · · [[J,H],H] · · ·︸ ︷︷ ︸

n+1×

, · · · [[J,H],H] · · ·︸ ︷︷ ︸
n×

]H


 . (B.3)

The Hamiltonian H = H0 + gH1, and as we are interested in the leading

order ∼ g2 contribution to the moments only. J is the unperturbed current,

and therefore [J,H0] = 0, implying that the two H1 that appear in the

leading order expansion of Eq. (B.3) have to appear in the form g[J,H1].

Therefore we can write

µ2n+1 = (−1)n+1 g
2

T
tr


[ · · · [[J,H1],H0] · · ·︸ ︷︷ ︸

n×

, · · · [[J,H1],H0] · · ·︸ ︷︷ ︸
n−1×

]H0


 .

in leading order in g. To the trace only terms contribute which are free

of spin operators, as the trace over any combination of spin operators van-

ishes, e.g. trSα = 0 for any α = x, y, z. Therefore we know, that from the

commutator

[ · · · [[J,H1],H0] · · ·︸ ︷︷ ︸
n×

, · · · [[J,H1],H0] · · ·︸ ︷︷ ︸
n−1×

]

only terms contribute which have the structure Sαi S
α
i+1 for some i, as only

such terms can give a constant when multiplied by H0 and thus have non-

vanishing trace. This reduces the task of determining the moments to cal-

culating recursively the commutators

Ln = · · · [[J,H1],H0] · · ·︸ ︷︷ ︸
n×

(B.4)

and to filter all terms of [Ln, Ln−1] which have the structure Sαi S
α
i+1. By us-

ing translational and rotational1 invariance, the number of terms that have

to be calculated is strongly reduced. By implementing arbitrary products

of spin-operators as integers, and commutators by elementary logical oper-

ations on them, it is possible to write a very fast code. The limitation is the

available memory, as the consumed memory is proportional to the number

of terms appearing in Ln, which grows exponentially with n. In this way, we

can calculate all moments up to µ27 on a contemporary desktop computer

with 1GB of available memory in minutes. The resulting numerical values

for the obtained moments are shown in table B.1.
1We consider only the isotropic Heisenberg chain.
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n Im µ2n+1/(βg
2)

1 0.058594

2 0.262207

3 1.695923

4 14.115601

5 141.554512

6 1643.360378

7 21520.654747

8 312206.883681

9 4950353.427655

10 84877646.266656

11 1559847391.212904

12 30499675948.850533

13 630631274585.113403

Figure B.1: Numerical values for the high temperature expansion of the

moments of the leading order memory function.

B.4 Higher Orders

In this appendix we present the calculation of the contributions to the mem-

ory function to orders J ′3 and J ′4 in the next-nearest neighbor coupling in

the isotropic Heisenberg spin chain. As we find that the memory function

vanishes to leading order in the coupling, the quenstion arises, if it is only

the second order that vanishes or if we have met a non-analytic singularity,

which gives a vanishing answer to arbitrary orders in perturbation theory.

The expressions derived below have been implemeted numerically, and the

result is shown in Fig. 3.2, which shows that the contribution of order J ′4 is

finite, thus excluding the latter scenario.

We have argued in the main text that for the leading order contribution

it is sufficient to use the unperturbed current when calulating J̇ . For higher

order contributions this is not obvious, and here we take into account the

full heat current. The full heat current in the perturbed system obtains an

additional contribution ∝ J ′, (which is determined by solving the continuity

equation with the density of the perturbed Hamiltonian) and therefore J̇

also has a contribution ∝ J ′2, which has to be taken into account for the

higher orders.

To calculate higher order contributions to the memory function, we make

use of the relation

M(z) = ϕ(z) +
i

z
ϕ(z)χ−1M(z) (B.5)

where M(z) is the 1 × 1 memory matrix with the full heat current as the
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only slow mode,

M(z) =

(
J̇Q

∣∣∣∣Q
i

z − LQ

∣∣∣∣ J̇Q
)

(B.6)

and φ(z) is the same expression but without the projectors,

ϕ(z) =

(
J̇Q

∣∣∣∣
i

z − L

∣∣∣∣ J̇Q
)
. (B.7)

and χ = (JQ|JQ) is the generalized susceptibility. We emphasize that ϕ(z)

should not be confused with the approximate memory matrix M̃(z) of chap-

ter 2, as Eq. (B.7) does not use any approximations. Eq. (B.5) is a rigorous

algebraic identity and holds provided only that (J̇Q|JQ) = 0, which is the

case as JQ has a definite time signature.

Using the notation ϕ(z) =
∑

n J
′nϕn(z) for the perturbative expansion

of ϕ(z) in the coupling J ′ (in leading order we have J ′2φ2(ω) = M̃(ω)

with M̃ (ω) given by Eq. (2.7), or equivalently Eq. (2.5)), we begin with an

expansion of the relation (B.5) in J ′:

M(z) = J ′2ϕ2(z) + J ′3ϕ3(z) + J ′4

(
ϕ4(z) +

i

z
ϕ2(z)χ

−1ϕ2(z)

)
+O(ϕ3)

(B.8)

The fourth order (in J ′) contribution to M(z) includes ϕ4(z), as well as

the counter-term ∝ ϕ2
2(z). We remind the reader, that the true perturba-

tive series of the full memory matrix (including all constants of the motion)

lacks any singularities ∝ δ(ω), and that a perturbative expansion of M(z)

of Eq. (B.6) is, for z 6= 0, identical to the perturbative expansion of the

particular JQ-JQ component of the full memory matrix. Therefore, we can

evaluate Re M(0) (which gives a rigorous lower bound to the heat conduc-

tivity) by taking the limit ω → 0 of the expansion (B.8). The expansion

may contain singularities at z = 0, but these can simply be dropped.

As a next step, we show that the contribution of the counter-term van-

ishes in our case. For this purpose, we make use of the properties of the

second order contribution, Re ϕ2(ω), which have been determined in the

numeric analysis. First, Re ϕ(ω) behaves at least as ∝ ω2 for ω ≪ J , and

(as is clear from the numerical analysis) lacks any singular contributions at

ω = 0. Furthermore, Re φ2(ω) is an even function of frequency. We have to

calculate limω→0 Re M(ω) where M(ω) = M(z = ω+i0) from the expansion

(B.8). With the Dirac identity, i/z = Pi/ω+ πδ(ω), only the principal part

is relevant. the real part of the counterterm thus becomes

−2

ω
χ−1Re ϕ2(ω)Im ϕ2(ω)

Due to the properties of Re ϕ2(ω) discussed above, it is easy to show that

Im ϕ2(ω) ∝ ω at low frequencies, in particular, it has no contribution ∝ 1/ω.
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This is most easily seen by using Kramers-Kronig relations. Therefore, the

couterterm has to vanish as ω → 0. Therefore we have shown that, in our

case, the expansion of the memory matrix to fourth order is identical to an

expansion of ϕ(ω).

We next have to determine ϕ3(ω) and ϕ4(ω). We have to carry out the

perturbation series explicitly. For this purpose, we go to imaginary time,

where the expansion can be carried out most easily. We will obtain corre-

lation functions in terms of Matsubara frequencies and the retarded corre-

lation functions of interest are obtained by finally perfoming the analytic

continuation to the real axis.

The real part of M(ω) of equation (B.8) can be expressed as

Re M(ω) =
1

ωβ
Im

∫ β

0
dτeiωnτ

〈
Tτ J̇(τ)J̇(0)

〉∣∣∣∣
iωn→ω+i0

.

We have to sort wrt. the various orders in J ′: J̇ = J̇1+ J̇2 and H = H0+H1.

Define

M = M2 +M3.1 +M3.2 +M4.1 +M4.2 +M4.3 +O(J ′5)

where

Mα = Mα(ω) =
1

ωβ

∫ β

0
dτeiωnτMα(τ)

∣∣∣∣
iωn→ω+i0

and we obtain

M2(τ) =
〈
Tτ J̇1(τ)J̇1(0)

〉
0

M3.1(τ) =
〈
Tτ J̇1(τ)J̇2(0)

〉
0
+
〈
Tτ J̇2(τ)J̇1(0)

〉
0

M3.2(τ) = −
∫ β

0
dτ ′
〈
TτH1(τ

′)J̇1(τ)J̇1(0)
〉

0

M4.1(τ) =
〈
Tτ J̇2(τ)J̇2(0)

〉
0

M4.2(τ) = −
∫ β

0
dτ ′
〈
TτH1(τ

′)J̇1(τ)J̇2(0)
〉

0
−
∫ β

0
dτ ′
〈
TτH1(τ

′)J̇2(τ)J̇1(0)
〉

0

M4.3(τ) =

∫ β

0
dτ ′
∫ β

0
dτ ′′

〈
TτH1(τ

′)H1(τ
′′)J̇1(τ)J̇2(0)

〉
0

The expressions follow from an expansion of the expectation value, which

depends on the perturbation J ′. Using the imaginary time formalism, we
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can write the expectation value as a field integral:

〈TA(τ)B〉 =
1

Z

∫
D(ψ̄, ψ)Te−

R β

0
H(τ ′)dτ ′A(τ)B

=
1

Z

∫
D(ψ̄, ψ)Te−

R

H0dτ

(
1−

∫ β

0
dτ ′H1(τ

′) + · · ·
)
A(τ)B

= 〈TA(τ)B〉0 −
∫ β

0
dτ ′
〈
TH1(τ

′)A(τ)B
〉
0
+ · · ·

= 〈TA(τ)B〉0 −
∫ τ

0
dτ ′
〈
A(τ)H1(τ

′)B
〉
0
−
∫ β

τ
dτ ′
〈
H1(τ

′)A(τ)B
〉
0

where the last two terms contribute to M3.2 and M4.2. They evaluate as

∫ τ

0
dτ ′
〈
A(τ)H1(τ

′)B
〉
0
+

∫ β

τ
dτ ′
〈
H1(τ

′)A(τ)B
〉
0

=
∑

lmn

AlmH1mnBnl
e−βEleΞlmτ (eΞmnτ − 1)

Ξmn

+
∑

lmn

H1lmAmnBnl
e−βEleΞmnτ (eΞlmβ − eΞlmτ )

Ξlm
.

=
∑

lmn

AlmH1mnBnl
e−βEl(eΞlnτ − eΞlmτ )

Ξmn

+
∑

lmn

H1lmAmnBnl
(e−βEmeΞmnτ − e−βEleΞlnτ )

Ξlm
.

where we use the shorthand Ξmn = Em − En. We are interested in the

Fourier transform:
∫ β

0
dτeiωnτ 〈TA(τ)B〉

∣∣∣∣
J ′3

=

=
∑

lmn

AlmH1mnBnl
e−βEl

Ξmn

∫ β

0
dτeiωnτ

(
eΞlnτ − eΞlmτ

)

+
∑

lmn

H1lmAmnBnl
1

Ξlm

∫ β

0
dτeiωnτ

(
e−βEmeΞmnτ − e−βEleΞlnτ

)

=
∑

lmn

AlmH1mnBnl

(
e−βEn − e−βEl

Ξmn (iωn + Ξln)
− e−βEm − e−βEl

Ξmn (iωn + Ξlm)

)

+
∑

lmn

H1lmAmnBnl

(
e−βEn − e−βEm

Ξlm (iωn + Ξmn)
− e−βEn − e−βEl

Ξlm (iωn + Ξln)

)

since we are interested in the infinite temperature limit (T → ∞) we can

expand the exponentials. Furthermore, we are interested in the delta func-

tion part only, which comes from first analytically continuing (iωn → ω+i0)



104 Appendices related to Chapter 3

and then applying the Dirac identity. We are left with

Re ϕ3.2(ω) =
1

ωβ
Im

∑

lmn

Alm
H1mn

Ξmn
Bnl

(
βΞln

ω + i0 + Ξln
− βΞlm
ω + i0 + Ξlm

)

+
1

ωβ
Im

∑

lmn

H1lm

Ξlm
AmnBnl

(
βΞmn

ω + i0 + Ξmn
− βΞln
ω + i0 + Ξln

)

=
π

ω

∑

lmn

Alm
H1mn

Ξmn
Bnl (δ(ω − Ξnl)Ξnl − δ(ω − Ξml)Ξml)

+
π

ω

∑

lmn

H1lm

Ξlm
AmnBnl (δ(ω − Ξnm)Ξnm − δ(ω − Ξnl)Ξnl)

= π
∑

lmn

Alm
H1mn

Ξmn
Bnl (δ(ω − Ξnl)− δ(ω − Ξml))

+π
∑

lmn

H1lm

Ξlm
AmnBnl (δ(ω − Ξnm)− δ(ω − Ξnl))

= π
∑

lmn

(
Alm

H1mn

Ξmn
− H1lm

Ξlm
Amn

)
Bnlδ(ω − Ξnl)

+π
∑

lmn

Alm

(
Bmn

H1nl

Ξnl
− H1mn

Ξmn
Bnl

)
δ(ω − Ξml)

= π
∑

lmn

Alm

(
Bmn

H1nl

Ξnl
− H1mn

Ξmn
Bnl

)
δ(ω − Ξml)

+π
∑

lmn

Blm

(
Amn

H1nl

Ξnl
− H1mn

Ξmn
Anl

)
δ(ω − Ξlm)

and thus, taking A = B = J̇T and to third order in J ′:

Re ϕ3.2(ω) = π
∑

lmn

J̇lm

(
J̇mn

H1nl

Ξnl
− H1mn

Ξmn
J̇nl

)
(δ(ω − Ξlm) + δ(ω − Ξml)) .
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∑

lmn

H1lmJ̇mnJ̇nl

(
e−βEm − e−βEn

Ξlm (iωn + Ξnm)
+

e−βEn − e−βEl

Ξlm (iωn + Ξnl)
+

− e−βEn − e−βEl

Ξlm (iωn + Ξln)
− e−βEm − e−βEn

Ξlm (iωn + Ξmn)

)

=
∑

lmn

H1lm

Ξlm
J̇mnJ̇nl

[(
e−βEn − e−βEl

)( 1

iωn + Ξnl
− 1

iωn + Ξln

)

−
(
e−βEm − e−βEn

)( 1

iωn + Ξmn
− 1

iωn + Ξnm

)]

=
∑

lmn

H1lm

Ξlm

(
J̇mnKnl −KmnJ̇nl

)

=
∑

lmn

Klm

(
H1mn

Ξmn
J̇nl − J̇mn

H1nl

Ξnl

)

where

Klm = J̇lm

(
e−βEl − e−βEm

)( 1

iωn + Ξlm
− 1

iωn + Ξml

)

is a matrix. The contribution to M4.3 is evaluated in a similar fashion. We

have six terms:

∫ β

0
dτ ′
∫ β

0
dτ ′′

〈
T J̇(τ)H(τ ′)H(τ ′′)J̇(0)

〉

=

∫ τ

0
dτ ′
∫ τ ′

0
dτ ′′

〈
J̇(τ)H(τ ′)H(τ ′′)J̇

〉
+

∫ τ

0
dτ ′
∫ τ

τ ′
dτ ′′

〈
J̇(τ)H(τ ′′)H(τ ′)J̇

〉

+

∫ β

τ
dτ ′
∫ τ

0
dτ ′′

〈
H(τ ′)J̇(τ)H(τ ′′)J̇

〉
+

∫ τ

0
dτ ′
∫ β

τ
dτ ′′

〈
H(τ ′′)J̇(τ)H(τ ′)J̇

〉

+

∫ β

τ
dτ ′
∫ τ ′

τ
dτ ′′

〈
H(τ ′)H(τ ′′)J̇(τ)J̇

〉
+

∫ β

τ
dτ ′
∫ β

τ ′
dτ ′′

〈
H(τ ′′)H(τ ′)J̇(τ)J̇

〉

=
∑

klmn

J̇klHlmHmnJ̇nk

∫ τ

0
dτ ′

(
eΞmnτ ′ − 1

Ξmn
eΞlmτ

′
+
eΞlmτ − eΞlmτ

′

Ξlm
eΞmnτ ′

)
eΞklτ

+
∑

klmn

HklJ̇lmHmnJ̇nk

(∫ β

τ

eΞmnτ − 1

Ξmn
eΞklτ

′
+

∫ τ

0

eβΞkl − eΞklτ

Ξkl
eΞmnτ ′

)
eΞlmτdτ ′

+
∑

klmn

HklHlmJ̇mnJ̇nk

∫ β

τ
dτ ′

(
eΞlmτ

′ − eΞlmτ

Ξlm
eΞklτ

′
+
eβΞkl − eΞklτ

′

Ξkl
eΞlmτ

′

)
eΞmnτ

We want to write the terms separately. We do not want to keep the matrix

elements in each step, thus we omit them. They can be reinserted after the
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Fourier transformation. The Fourier-transform of the J̇HHJ̇-term reads

e−βEk

∫ β

0
dτeiωnτ

∫ τ

0
dτ ′

(
eΞmnτ ′ − 1

Ξmn
eΞlmτ

′
+
eΞlmτ − eΞlmτ

′

Ξlm
eΞmnτ ′

)
eΞklτ

= e−βEk

∫ β

0
dτeiωnτ

(
eΞlnτ − 1

ΞlnΞmn
− eΞlmτ − 1

ΞlmΞmn
+
eΞlmτ

(
eΞmnτ − 1

)

ΞlmΞmn
− eΞlnτ − 1

ΞlnΞlm

)
eΞklτ

= e−βEk

∫ β

0
dτeiωnτ

(
eΞknτ − eΞklτ

ΞlnΞmn
− eΞkmτ − eΞklτ

ΞlmΞmn
+
eΞknτ − eΞkmτ

ΞlmΞmn
− eΞknτ − eΞklτ

ΞlnΞlm

)

=
e−βEn − e−βEk

(iωn − Ξnk) ΞlnΞmn
− e−βEl − e−βEk

(iωn − Ξlk) ΞlnΞmn
− e−βEm − e−βEk

(iωn − Ξmk) ΞlmΞmn

+
e−βEl − e−βEk

(iωn − Ξlk) ΞlmΞmn
+

e−βEn − e−βEk

(iωn − Ξnk) ΞlmΞmn
− e−βEm − e−βEk

(iωn − Ξmk) ΞlmΞmn

− e−βEn − e−βEk

(iωn − Ξnk) ΞlnΞlm
+

e−βEl − e−βEk

(iωn − Ξlk) ΞlnΞlm

That of the second term (HJ̇HJ̇)

e−βEk

∫ β

0
dτeiωnτ

(∫ β

τ
dτ ′

eΞmnτ − 1

Ξmn
eΞklτ

′
+

∫ τ

0
dτ ′

eβΞkl − eΞklτ

Ξkl
eΞmnτ ′

)
eΞlmτ

= 2e−βEk

∫ β

0
dτeiωnτ

(
eβΞkl − eΞklτ

) (
eΞmnτ − 1

)

ΞklΞmn
eΞlmτ

=
2

ΞklΞmn

∫ β

0
dτeiωnτ

(
e−βEl

(
eΞlnτ − eΞlmτ

)
− e−βEk

(
eΞknτ − eΞkmτ

))

=
2

ΞklΞmn

(
e−βEn − e−βEl

iωn − Ξnl
− e−βEm − e−βEl

iωn − Ξml
− e−βEn − e−βEk

iωn − Ξnk
+
e−βEm − e−βEk

iωn − Ξmk

)

and finally the third term. After a right-rotation of the third term it becomes

completely symmetric to the first one. Each term occurs once again but with

the negative energy-difference of the frequency and a global minus sign. To

cope with the rest of the calculation, we introduce some notation. Writing

Ãkl =
Akl
Ξkl

(1− δΞkl
) =

Akl
Ek − El

(1− δEk ,El
)

and

∆kl =
(
e−βEl − e−βEk

)( 1

iωn − Ξlk
− 1

iωn − Ξkl

)
(B.9)

and (
Ā
)
kl

= ∆klAkl

we can omit the indices. For example, the very first contribution to the

J̇HHJ̇ term together with the corresponding contribution to the HHJ̇J̇
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term may be written as

∑

klmn

J̇klHlmHmnJ̇nk

(
e−βEn − e−βEk

(iωn − Ξnk) ΞlnΞmn
+

e−βEk − e−βEn

(iωn − Ξkn) ΞlnΞmn

)
= tr J̇H̃H̃J̇ .

Proceeding this way, we also can write the rest of the terms. We find

tr
(
J̇H̃H̃J̇ − J̇ H̃H̃J̇ − J̇H̃H̃J̇ + J̇H̃H̃J̇ + J̇ H̃H̃J̇ − J̇H̃H̃J̇ − J̇ ˜̃HHJ̇ + J̇ ˜̃HHJ̇

)

for the J̇HHJ̇- together with the HHJ̇J̇-term, whereas, after some re-

grouping of the terms, the J̇HJ̇H-term becomes

tr
(
J̇H̃J̇H̃ − 2J̇ H̃J̇H̃ + J̇H̃J̇H̃

)
.

After some further regrouping we arrive at the simple expression

tr

(
J̇

[
J̇ ,

˜[
H, H̃

]]
+ J̇

[
H̃,
[
H̃, J̇

]]
+
[
H̃, J̇

] [
H̃, J̇

])
. (B.10)

Now we can perform the high temperature limit and the analytic continua-

tion iωn → ω + i0. Both of these procedures concern only the factor ∆kl of

equation (B.9). For high temperatures e−βEl − e−βEk = β(Ek −El) = βΞkl.

Furthermore, since we are interested in the imaginary part only, we can use

the Dirac identity and express the terms by means of Dirac delta functions:

Im
1

ω + i0− Ξkl
= −πδ(ω − Ξkl).

Hence the prefactors from the temperature expansion can be transformed

into ±βω. We arrive at the replacement rule

∆kl → πβω (δ(ω − Ξkl) + δ(ω − Ξlk)) .

Since what we want to calculate has the structure

Re M4.3(ω) =
1

βω
Im

∫ β

0
dτeiωnτ

∫ β

0
dτ ′
∫ β

0
dτ ′′

〈
TτH(τ ′)H(τ ′′)J̇(τ)J̇(0)

〉∣∣∣∣
iωn→ω+i0

,

the replacement rule

∆kl → πδ(ω − Ξkl) + πδ(ω − Ξlk)

applied to equation (B.10) leads to the correct result for Re M4.3(ω).

This completes the derivation of the third and fourt order contributions

to the memory matrix. The results can straightforwardly be implemented

to numerically evaluate these contributions. As a result, the third ordercon-

tribution vanishes at zero frequency for the Heisenberg case (as it must, if

the second order vanishes), but the fourth order is finite, see Fig. 3.2. This

excludes the possibility that the heat conductivity in the isotropic Heisen-

berg spin chain has an essential singularity of the nnn-perturbation J ′, and

shows that the heat conductivity behaves as ∝ 1/J ′4.



108 Appendices related to Chapter 3



Appendix C

Appendices related to

Chapter 4

C.1 Commutators

In this appendix we demonstrate how contractions can be carried out for

arbitrary functions of the bosonic fields. For simple polynomials of the fields,

all we need is the canonicity identity

[φ(x),Π(x′)] = iδ(x − x′)

and the relation

[AB,C] = A[B,C] + [A,C]B.

For other functions we can use that commutators act as derivations,

[A, f(B)] = [A,B]f ′(B)

which is valid whenever [[A,B], B] = 0. This in our case is generally true

since [A,B] will be a c-number. This gives us all tools that we need to

calculate the commutators. As an example, we calculate the following two

109
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commutators:
∫

dx′[Π(x)∂xφ(x), (∂x′φ)2(x′)]

=

∫
dx′[Π(x), (∂x′φ)2(x′)]∂xφ(x)

= 2

∫
dx′[Π(x), ∂x′φ(x′)]∂x′φ(x′)∂xφ(x)

= 2

∫
dx′∂x′ [Π(x), φ(x′)]∂x′φ(x′)∂xφ(x)

= −2i

∫
dx′(∂x′δ(x − x′))∂x′φ(x′)∂xφ(x)

= 2i∂2
xφ(x)∂xφ(x)

= i∂x(∂xφ(x))2

and
∫

dx′[Π(x)∂xφ(x),
(
Π(x′)

)2
]

=

∫
dx′Π(x)[∂xφ(x),

(
Π(x′)

)2
]

= 2

∫
dx′Π(x)∂x[φ(x),Π(x′)]Π(x′)

= 2i

∫
dx′Π(x)∂xδ(x− x′)Π(x′)

= 2iΠ(x)∂xΠ(x)

= i∂x (Π(x))2

Other commutators are calculated in full analogy.

C.2 Contractions

In this appendix we demonstrate how one can perform contractions of vari-

ous functions of the fields. The correlation functions

〈φ(x, t)φ(0, 0)〉0 = Gφ(x, t)

and

〈θ(x, t)θ(0, 0)〉0 = Gθ(x, t)

where ∂xθ(x) = πΠ(x) are known. Using Wicks theorem (we are dealing

with a Gaussian theory) we are able to calculate the contractions, e.g.

〈φ2(ξ)φ2(0)〉0 = 〈φ2(ξ)〉0〈φ2(0)〉0 + 2 (〈φ(ξ)φ(0)〉0)2 = G2
φ(0) + 2G2

φ(ξ)
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To deal with the derivatives, we note that

〈∂kxφ(x, t)φ(0, 0)〉0 = ∂kxGφ(x, t)

and furthermore

〈φ(x, t)∂kxφ(0, 0)〉0 = 〈φ(0, 0)∂kxφ(−x,−t)〉0 = (−∂x)kGφ(x, t).

More generally

〈∂kxφ(x, t)∂lxφ(0, 0)〉0 = (−1)l∂k+lx Gφ(x, t)

All correlation functions that are simple products of the fields and derivatives

thereof can be treated in this manner. The correlation functions in which

the bosonic fields appear in the exponent are slightly more complicated to

evaluate. The recipe is described and used in Ref. [4]. The only combination

that appears in our context can be readily given:

〈
ei2nφ(x) × e−i2nφ(x′)

〉
0

= e4n
2Gφ(x−x′).

We furthermore note that due to the symmetry properties of the propa-

gators one has G(2n+1)(0, t) = 0 and G̃(2n)(0, t) = 0 where the number in

parentheses in the superscript denotes derivation with respect to the spatial

variable.

C.3 Momentum Susceptibility of Phonons

The generalized susceptibility of the phonon translation operator appear-

ing in the memory matrix expression of heat conductivity is given by the

correlation function

χp =
1

V
〈〈Pph;Pph〉〉ω=0

where the momentum operator is

Pph =
∑

k

ka†kak.

The evaluation happens via the associated correlation function

χp(ω) = i

∫ t

−∞
dt′eiω(t−t′)〈[Pph(t), Pph(t′)]〉,

or, in Matsubara-language:

χp(iωn) =

∫ β

0
dτeiωnτ 〈TτPph(τ), Pph(0)〉.



112 Appendices related to Chapter 4

We are interested in the value of this correlation function at ω = 0. In

leading order, we may take the unperturbed Hamiltonian to average over,

which is given by

H =
∑

k

εka
†
kak.

In imaginary time we have the simple expressions a†k(τ) = eτεka†k and

ak(τ) = e−τεkak for the time dependence of the operators, such that

Pph(τ) =
∑

k

ka†k(τ)ak(τ) =
∑

k

ka†kak

is independent of τ . Thus the integral over τ simply gives β:

χp =
β

V
〈PphPph〉

i.e. the square of the expectation value of the square of the translation

operator. We thus can average directly. With Wick’s theorem we get

V χp = β
∑

k,k′

kk′〈a†kaka
†
k′ak′〉

= β
∑

k,k′

kk′
(
〈a†kak〉〈a

†
k′ak′〉+ 〈a

†
kak′〉〈a

†
k′ak〉 − 〈a

†
kak〉+ 〈a

†
kak′〉δkk′

)

= β
∑

k,k′

kk′
(
nB(εk)nB(εk′) + δkk′nB(εk)

2 − nB(εk) + nB(εk)δkk′
)

= β

(
∑

k

knB(εk)

)2

+ β
∑

k

k2nB(εk)
2 − β

(
∑

k

knB(εk)

)
∑

k′

k′

︸ ︷︷ ︸
=0

+β
∑

k

k2nB(εk)

where we have used 〈a†kak′〉 = δk,k′nB(εk) and nB(εk) = (eβεk − 1)−1 is the

usual Bose distribution function. The first term vanishes since the integrand

in the sum is odd in k. Thus we are left with

χp =
β

V

∑

k

k2nB(εk)(nB(εk) + 1) = − 1

V

∑

k

k2∂nB(εk)

∂εk

Now we replace the summation by an integration,

∑

k

→ V

∫
ddk

(2π)d
.

Using the Debye-approximation, εk = c|k| for c|k| < ΘD, we have

χp =
βΩd

(2π)d

∫ ΘD/c

0
dkkd−1 eβckk2

(eβck − 1)2
=

Ωd

(2π)dc2+d

(∫ ΘD/T

0
dy

eyy1+d

(ey − 1)2

)
T 1+d
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Figure C.1: The shown curves are proportional to χp/T and the low and

high temperature approximations to it, respectively.

Here Ωd is the volume of the d-dimensional unit sphere. The limiting behav-

ior of the susceptibility therefore is 4π4/15 for T ≪ ΘD and 1/3(ΘD/T )3

for T ≫ ΘD. Therefore, we get

χp =

{
2π2

15c5
T 4 forT ≪ ΘD

Θ3
D

6π2c5
T forT ≫ θD

(C.1)

The curve associated with the integral

I(T ) =

∫ ΘD/T

0
dy

eyy4

(ey − 1)2
(T/ΘD)3 (C.2)

appearing in the expression for χp and the corresponding approximations

to it are depicted in Fig. C.1. We observe that the low temperature ap-

proximation is only good up to about 0.15ΘD , deviating from the Debye

approximation already at 0.2ΘD by 50%. On the other hand, the high

temperature approximation has the same deviation at about 0.25ΘD and

captures the right order of magnitude for all temperatures above.

C.4 Finite Range Disorder

The objective of this appendix is to analyze how disorder scattering is

affected by chosing a finite range disorder potential instead of the delta-

correlated disorder used so far. I.e., we want to repeat the calculations of

the memory matrix with the disorder being correlated according to:

h(x) = 0 h(x)h(x′) =
D√
2πlD

exp

(
−(x− x′)2

2l2D

)



114 Appendices related to Chapter 4

with lD denoting the disorder range. Such a correlation may be expected

if the impurity potential acts not at the single point it is located at, but

rather affects its surrounding environment which is within a distance lD.

The assumption of a smeared out effect of a single impurity is probably more

physical than the singular expression we have worked with so far, which has

been chosen such only because it reduces calculational effort. Obviously,

the limit lD → 0 reproduces the delta-correlated disorder, while a finite lD
introduces a new length-scale to the problem. The physically probably most

relevant values are where lD is a few lattice spacings, lD & a.

The major effect of the finite-width disorder is, that the two integrations

over the space coordinates now do not reduce to the value of the correlators

at zero distance. Instead of

1

L

∫
dx

∫
dx′δ(x− x′)f(x− x′) = f(0)

we now have

1√
2πlDL

∫
dx

∫
dx′ exp

(
−(x1 − x2)

2

2l2D

)
f(x1 − x2)

=
1√

2πlD

∫
d∆x exp

(
− x2

2l2D

)
f(x).

Therefore, we will need to consider the contribution ∆knm which so far could

simply be neglected in connection with disorder. Tt will turn out, that

contributions to the memory matrix coming from the ‘Umklapp’ terms with

finite ∆k are exponentially supressed, as the smeared out disorder potential

in combination with the spatial oscillation tends to average out the effect of

the impurities. The results for ∆k = 0 are, however, unchanged.

For ∆k 6= 0, it is hard to carry out the space integration after the disorder

averging for general values of the disorder length lD analytically. However,

it is possible use a saddle point approximation in the limit lD ≫ a. As an

example, we calculate the QQ memory matrix element associated with the

disorder induced fluctuation in the Umklapp coupling constant gUnm for odd

n. By carrying out the disorder average, we are left with the integral (here

we avoid constant prefactros which are inessential for our argument)

I =
−i√
2πlD

∫
dt

∫
dx t e−x

2/(2l2
D

)ei∆kxG
(2)
φ (x, t)e4n

2Gφ(x,t)

with the kernel

G
(2)
φ (x, t)e4n

2Gφ(x,t) =

Kτ2

2
(τa)2n

2K sh−2−n2K τ(x− vt+ ia) sh−n2K τ(x+ vt− ia).
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Upon changing the variables to s = τ(x + vt) and s′ = τ(x − vt) we get

dtdx = 1
τ2v

dsds′ and defining f(s, s′) = −(s+s′)2/(8τ2l2D)+i∆k(s+s′)/(2τ)

we have

I =
−i√

2πlDτv2
(τa)2n

2K

∫
dsds′(s− s′)ef(s,s′) sh−2−n2K(s′ + iτa) sh−n2K(s− iτa).

We perform the s′-integration first. The single saddle-point of f(s, s′) is

given by s′0 = −s + i2∆kτl2 and f ′′(s, s′0) = −1/(4k2l2D) is always real.

Saddle-point integration leads to

I =
−i
v2

(τa)2n
2Ke−

∆k2l2
D

2

∫
ds(s− 2iτ∆kl2D)×

× sh−2−n2K(−s+ iτ(a+ 2∆kτl2D)) sh−n2K(s− iτa)

Using the limit τa ≪ 1, or, equivalently, T ≪ J , we can approximate this

as

I =
−in2K

v2
(τa)2n

2Ke−
∆k2l2

D
2

∫
dss (i sh(s− iτa))−2−2n2K

which leads us back to the memory matrix result already derived in the main

text. As a final result, the memory matrix averaged over a disorder potential

of width lD is related to the earlier result, the memory matrixc averaged over

a local, delta-correlated disorder is given by the simple relation

M lD = exp

(
−∆k2l2D

2

)
M lD=0.

Therefore, the contributions with finite ∆k 6= 0 are exponentially supressed,

with an exponential factor of the order ∼ −(lD/a)
2, which is what we in-

tended to show. Clearly, the limit lD → 0 is reproduced correctly.
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1993–1997 Städtisches Gymnasium Kreuzgasse in Köln
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