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Kurzzusammenfassung

In dieser Arbeit wird die spielchromatische Zahl eines Digraphen als spiel-
theoretische Variante der dichromatischen Zahl eingeführt. Dieser Begriff
verallgemeinert die bekannte spielchromatische Zahl eines Graphen. Ein er-
weitertes Modell berücksichtigt ebenfalls relaxierte Färbungen sowie asym-
metrische Zugfolgen. Spielperfektheit wird als spieltheoretische Variante der
Perfektheit eines Graphen definiert und auf Digraphen verallgemeinert.

Obere und untere Schranken für die spielchromatische Zahl verschiedener
Klassen von Digraphen werden untersucht. Im letzten Teil der Arbeit wer-
den spielperfekte Digraphen mit kleiner Cliquenzahl charakterisiert, sowie all-
gemeine Resultate über Spielperfektheit gezeigt. Einige Resultate wurden
mit Hilfe eines Computerprogramms verifiziert, welches im Anhang diskutiert
wird.

Abstract

In this thesis the game chromatic number of a digraph is introduced as a
game-theoretic variant of the dichromatic number. This notion generalizes
the well-known game chromatic number of a graph. An extended model also
takes into account relaxed colorings and asymmetric move sequences. Game-
perfectness is defined as a game-theoretic variant of perfectness of a graph,
and is generalized to digraphs.

We examine upper and lower bounds for the game chromatic number of
several classes of digraphs. In the last part of the thesis, we characterize
game-perfect digraphs with small clique number, and prove general results
concerning game-perfectness. Some results are verified with the help of a
computer program that is discussed in the appendix.
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About this thesis

In this thesis the game chromatic number of a digraph is introduced and ex-
amined. This parameter is defined by the following non-cooperative 2-person
game g. We are given a finite digraph D = (V, E), a finite color set C and two
players, Alice and Bob. The players alternately color a vertex v of D with a
color c of C which is selected in such a way that no in-neighbor of v is already
colored with c. When no such move is possible any more, the game ends. If
every vertex is colored at the end of the game, Alice wins, otherwise Bob. The
game chromatic number of D is the smallest cardinality of a color set C for
which Alice has a winning strategy for the game played with D and C. In
this thesis graphs are always considered as digraphs with pairs of oppositely
directed arcs. Then the game chromatic number of a digraph generalizes the
well-known game chromatic number of a graph.

After an introduction into the notions, a motivation, and a historical re-
view in Chapter 1, we examine a generalization of the game on undirected and
directed forests in Chapter 2. This generalization takes into account defective
colorings as well as asymmetric moving rules. The maximal game chromatic
number of directed forests is exactly determined for all parameters of the gen-
eralized game, that of undirected forests up to an interval of the length 1.
Chapter 3 is devoted to the study of a new digraph parameter, the lightness.
With the aid of this parameter we determine upper bounds for the game chro-
matic number of graphs and simple digraphs with prescribed girth which are
embeddable into certain surfaces. In Chapter 4 the game chromatic number
of incidence graphs is narrowed down.

In Chapter 5 the notion of game perfectness is introduced. For these
examinations the exact definition of the game is of primary importance, i.e.
which player has the first move and whether a player is allowed to miss a
turn. A digraph is called g-perfect if, for every induced subdigraph H , the
game chromatic number of H equals the clique number of H . We characterize
g-perfect graphs with clique number 2 for several variants g of the game. Let
A be the variant where Alice is allowed to begin and to miss a turn, and B
be the variant where Bob has these rights. We even characterize B-perfect
graphs with clique number 3. In addition, it is proved that complements
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viii ABOUT THIS THESIS

of bipartite graphs are A-perfect. Furthermore (in the directed case) every
A-perfect semiorientations of paths and cycles are classified.

In Appendix A we reprove the fact that the digraph coloring problem
which underlies the digraph coloring games is NP-complete even for two col-
ors. Appendix B describes a computer program that, by complete game-tree
search, solves the problem considered in this thesis exactly.

Vorwort

Bei dieser Arbeit handelt es sich um eine von der Mathematisch-Naturwissen-
schaftlichen Fakultät der Universität zu Köln angenommene Dissertation. Die
Referenten waren Prof. Dr. Ulrich Faigle und Prof. Dr. Rainer Schrader. Die
Abschlussprüfung fand am 30.11.2007 statt.
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Chapter 1

Introduction

Graph coloring games have been considered in the literature of discrete mathe-
matics during the last two decades. Actually, the theory of these games seems
to be an arising subject in this branch of science. Most of the published works
in this field concerns coloring games of undirected graphs. The few proposed
coloring games on directed graphs do not really generalize the undirected
graph coloring game of Bodlaender [15] which forms the basis of all undi-
rected graph coloring games. However, in this thesis we will show that there
is a natural generalization of Bodlaender’s game to directed graphs (digraphs
for short). We will study this digraph coloring game and its extensions.

In order to explain what it means that a coloring game of digraphs is a
generalization of a coloring game of undirected graphs we have to fix some
notions. In Section 1.1 we will define digraphs in such a way that undirected
graphs (graphs for short) are special digraphs. Due to this definition we are
forced to use some notions from graph theory in a slightly different way than
the usual. These notions are explained in the Sections 1.1 and 1.2. Since
we will also consider digraphs with certain topological properties, Section 1.3
gives an introduction into the basics of topological graph theory.

A parameter defined by Bodlaender’s graph coloring game is a game-
theoretic version of the chromatic number of a graph. In the same sense,
the analogous parameter of the digraph coloring game we develop is a game-
theoretic version of the dichromatic number of a digraph which was introduced
by Neumann-Lara [69]. Therefore, in Section 1.4 the dichromatic number and
its basic coloring principle are discussed.

Our fundamental digraph coloring game is defined as follows. Two players,
Alice and Bob, alternately color vertices of a given digraph D with a color from
a given color set C. The choice of their colors is completely free, except for
one rule: a vertex may not receive the same color that one of its in-neighbors
has received before. The game ends if no move is possible any more. If
every vertex is colored at the end, Alice wins. Otherwise Bob wins. (If Bob
wins, then there is an uncolored vertex among the in-neighbors of which all
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2 CHAPTER 1. INTRODUCTION

colors of C occur.) The game chromatic number of a digraph is the minimum
cardinality of a color set C such that Alice has a winning strategy for the
game. In Chapter 4 and 5 we will study the game chromatic number defined
like this.

As Bodlaender’s game has been generalized to asymmetric and defective
graph coloring games we will also generalize our digraph coloring game de-
scribed above to asymmetric moving rules and the coloring with defect. The
resulting game that extends all the games mentioned in the last two para-
graphs is presented in Section 1.5. For Chapter 2 we need this generalized
definition of the game. In Chapter 3 we need only a part of this generaliza-
tion, namely asymmetric digraph coloring games. In this case, the parameters
we study are bounded by other parameters defined by a marking game. This
marking game is introduced in Section 1.6. Examples are given in Section 1.7
and an abstract of previous results concerning graph coloring games in Sec-
tion 1.8.

1.1 Digraphs

A digraph is a pair D = (V, E), where V is a finite set and E ⊆ V × V . The
elements of V are called vertices, the elements of E arcs. An arc (v, v) is called
a loop. A set of two arcs of the form {(v, w), (w, v)} with v 6= w is called an
edge and denoted by vw or wv. An arc that is not contained in any edge is
called single arc.

In this thesis we will primarily consider two special types of digraphs. The
first type are digraphs D = (V, E) without loops, and with the property that
whenever (v, w) ∈ E then (w, v) ∈ E. Such a digraph is called a graph as
usual. Hence a graph is uniquely determined by its vertex set and the set of
its edges. The second important type of digraphs are simple digraphs. These
are characterized by the property that whenever (v, w) is an arc then (w, v) is
not an arc. This implies that a simple digraph has no loops. In other words,
a graph is a digraph without single arcs (in particular without loops), and a
simple digraph is a digraph without loops and edges. Examples are given in
Fig. 1.1.

Sometimes a simple digraph D is also called orientation of a graph G. The
latter notion is motivated by the idea of depicting a digraph in such a way that
its vertices are distinct points and its arcs are arrows between corresponding
points. Whenever an edge is depicted in this way, an arrow and its anti-arrow
are often replaced by a single straight line. Thus reorienting a graph, i.e.
replacing all its straight lines by arrows, gives the picture of a simple digraph.
In Fig. 1.2 two ways of depicting a digraph are illustrated. Formally, D could
be obtained from G by deleting exactly one arc of each edge, whereas G is
obtained from D by adding the anti-arc (w, v) for each arc (v, w).
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(a) (b) (c)

Figure 1.1: (a) A graph. (b) A simple digraph. (c) A digraph which is neither
a graph nor a simple digraph.

Let D = (V, E) be a digraph. If e = (v, w) ∈ E, then v (resp. w) is
incident with e, and v and w are adjacent if e is not a loop. In the same way,
if e = vw is an edge, then v is incident with e. If e = (v, w) and f = (x, y) are
two different arcs with v = x or v = y or w = x or w = y, then e and f are
called adjacent. Likewise, an edge e = vw and an arc f = (x, y) are adjacent
if f /∈ e, and v = x or v = y or w = x or w = y. Two different edges e = vw
and f = xy are adjacent if v = x or v = y or w = x or w = y.

For a digraph D = (V, E) we define D0 = (V, E0) as the digraph with

E0 = E − {(v, v)|v ∈ V }

as arc set. D0 will be called loop deletion digraph of D. Let v ∈ V . An arc
of type (w, v) is called in-arc of v, an arc of type (v, w) out-arc of v. The
loop (v, v) is the only arc that is in-arc and as well out-arc of v. The in-
neighborhood N+

D (v) of v is the set of all w for which there is an arc (w, v)
in D0. Its elements are called in-neighbors of v. The out-neighborhood N−

D(v)
of v is the set of all w for which there is an arc (v, w) in D0. Its elements are
called out-neighbors of v. We further define the in-degree (or simply degree)
of v as dD(v) = d+

D(v) = #N+
D (v), and the out-degree of v as d−

D(v) = #N−
D (v).

The total degree of v is d±
D(v) = d+

D(v) + d−
D(v). Whenever it is clear from the

context which digraph we consider we omit the subscript D in the preceding

(a) (b)

Figure 1.2: Two ways of depicting a digraph: (a) indicating each arc (b) con-
sidering oppositely directed arcs as a unit
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notations. By

δ(D) = δ+(D) = min
v∈V

d+
D(v), δ−(D) = min

v∈V
d−

D(v), δ±(D) = min
v∈V

d±
D(v)

we denote the minimum in-degree (or simply minimum degree), minimum
out-degree, minimum total degree, respectively. By

∆(D) = ∆+(D) = max
v∈V

d+
D(v), ∆−(D) = max

v∈V
d−

D(v), ∆±(D) = max
v∈V

d±
D(v)

we denote the maximum in-degree (or simply maximum degree), maximum
out-degree, maximum total degree, respectively. A sink of D is a vertex v with
d−

D(v) = 0.
Let D1 = (V1, E1) and D2 = (V2, E2) be digraphs. D1 is a subdigraph of D2

if V1 ⊆ V2 and E1 ⊆ E2. D1 is an induced subdigraph of D2 if V1 ⊆ V2 and
E1 = E2 ∩ (V1 × V1). From now on let D2 be a graph. Then D1 is a subgraph
of D2 if D1 is a subdigraph of D2 and D1 is a graph. D1 is an induced subgraph
of D2 if D1 is an induced subdigraph of D2. Note that an induced subdigraph
of a graph is always a graph. D1 is the true complement of D2 if V1 = V2 and
E1 = (V1 × V1) − E2. The true complement of a digraph D is denoted by D.

The complement of a graph G is
(
G
)0

, which is a graph.
The graph (V, V × V )0 is called a clique (or complete graph), and the size

of the clique is defined to be #V . Let D be a digraph. The clique number
ω(D) of D is the largest size of a clique which is an induced subdigraph of D0.
For example, the clique number of a simple digraph is 1.

1.2 Classes of graphs

The complete graph of size n is denoted by Kn. K1 is also called isolated
vertex or trivial graph.

The graph G = (V, E) with two sets V1 and V2, V1 ∪ V2 = V , V1 ∩ V2 = ∅,
#V1 = m, #V2 = n, and E = (V1 × V2)∪ (V2 × V1) is called complete bipartite
graph Km,n. The graph which is formed by Km,n without a matching of
cardinality k, i.e. the union of k pairwise nonadjacent edges, is denoted by
Km,n − Mk. A subdigraph of a complete bipartite graph is called bipartite
digraph, a subgraph of a complete bipartite graph bipartite graph.

A path v1v2 . . . vn (of length n − 1), n ≥ 1, is a digraph on the vertex set
{v1, v2, . . . , vn}, with the properties that for every i = 1, 2, . . . , n−1 there is an
arc (vi, vi+1) or/and an arc (vi+1, vi), and there are no further arcs. A graph
is an undirected path Pn if it is a path of length n− 1. A path containing the
vertices v and w is a shortest path between v and w if it has minimal length
among all paths containing v and w. A digraph D = (V, E) is connected
if for every pair of vertices v1, v2 ∈ V there is a path Pv1,v2 = (W, F ) with
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Figure 1.3: A Halin graph

v1, v2 ∈ W . Every digraph D decomposes into connected components. These
are the maximal connected induced subdigraphs of D.

A digraph on the vertex set {v1, v2, . . . , vn}, n ≥ 3, is a cycle or an n-cycle
if for every i = 1, 2, . . . , n− 1 there is an arc (vi, vi+1) or/and an arc (vi+1, vi),
and there is an arc (v1, vn) or/and an arc (vn, v1), and there are no further
arcs. A graph is an undirected cycle Cn if it is an n-cycle. A digraph on the
vertex set {v1, v2, . . . , vn} is a directed cycle ~Cn if for every i = 1, 2, . . . , n − 1
there is an arc (vi, vi+1), and there is an arc (vn, v1), and there are no further
arcs. The girth g(D) of a digraph D is the length of its smallest induced n-
cycle, n ≥ 3, or infinity if there is no such cycle. Note that in our definitions
of path, cycle, and girth we do not distinguish between arcs and edges.

A digraph is acyclic if it has no directed cycle ~Cn, n ≥ 2, as an induced
subdigraph. Acyclic digraphs are always simple digraphs.

A forest is a digraph without n-cycles, for n ≥ 3, as (induced) subdigraphs.
Note that, by this definition, a forest needs not to be acyclic since any edge is
a ~C2. An undirected forest is a forest that is a graph, and a directed forest is
a forest that is a simple digraph. Directed forests are acyclic. We denote the
class of all directed forests by ~F and the class of all undirected forests by F .

Connected forests (resp. connected undirected/directed forests) are called
trees (resp. undirected/directed trees). We call an undirected tree with at most
one vertex v of degree d(v) > 1 a star. An in-star is a directed tree with at
most one vertex v of in-degree d+(v) > 0.

We denote the disjoint union of two sets A and B by A⊎B. Let C = (W, F )
be an undirected cycle drawn in the plane without edge crossings. Let T =
(V ⊎W, E) be an undirected tree drawn in the plane without edge crossings,
so that W are exactly the vertices of degree 1 in T . Then (V ∪ W, E ∪ F )
is called a Halin graph. Such a Halin graph is called a wheel Wn if T is a
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star with n + 1 vertices. An example of a Halin graph that is not a wheel is
depicted in Fig. 1.3.

Sometimes it is useful to consider graphs with certain decomposition prop-
erties. The most important classes of graphs with such properties are k-de-
generate graphs. A digraph D is k-degenerate if every induced subdigraph
has a vertex v of degree d+

D(v) ≤ k.

1.3 Surfaces

A surface is a 2-dimensional manifold. We, however, will always additionally
assume that a surface be closed and connected. Closed means that the surface
is compact and and has no boundary. Connected means that for every pair
(a, b) of points of the surface S there is a continuous map Φ from the unit
interval [0, 1] to S with Φ(0) = a and Φ(1) = b. The simplest surface in our
sense is the (2-dimensional) sphere S0.

S0 = {x ∈ R
3 | ||x||2 = 1}.

Here || · ||2 denotes the Euclidean norm. Whenever we talk about surfaces
we do not care about homeomorphic surfaces which are considered the same
although they are not identical. Two surfaces S and T are homeomorphic
if there is a bijective function f : S −→ T which is continuous and whose
inverse function f−1 is continuous, too.

There are two types of surfaces: orientable surfaces and nonorientable
surfaces. It is well known that these can be obtained from the sphere by the
following operations (see [45]). The orientable surface Sγ is obtained from
the sphere by attaching γ handles to it. Formally, a handle is attached in
the following way: first cut two circular holes in the sphere, and then stick
together the two boundaries of the holes with the two boundaries of a compact
cylinder. The nonorientable surface Nγ can be constructed by cutting γ holes
in the sphere and replacing them by Möbius bands, i.e. glueing together the
boundary of a hole and the boundary of a Möbius band.

Both numbers, either the number of handles or the number of inserted
Möbius bands, are characteristic of a surface and yield a complete classifica-
tion. γ is called the genus of the orientable surface Sγ, whereas γ is called
the crosscapnumber of the nonorientable surface Nγ . These notions can be
extended to digraphs as we will see.

An embedding of a digraph in a surface S is a drawing of the digraph
on S without arc crossings. By drawing a digraph on S, the surface is cut
into different regions or faces which are the connected components of S mi-
nus the drawing of the digraph. The embedding is cellular if every face is
homeomorphic to the plane R

2.
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Every digraph can be embedded in some surface Sγ and in some surface
Nγ . This is easy to see: if we start with a drawing of the graph on the sphere
with arc crossings, then an arc crossing can be avoided by attaching a handle.
In the same way an arc crossing can be avoided by inserting a Möbius band
in the open neighborhood of the crossing point. Iteration gives a surface in
which the digraph can be embedded. For a digraph D, the smallest γ such
that D can be embedded in Sγ is called the genus γ(D) of D. Likewise, the
smallest γ such that D can be embedded in Nγ is called the crosscapnumber
γ(D) of D.

Let D = (V, E) be a connected digraph and F be the set of faces in a
cellular embedding of D in a surface S. Then

χχ(S) = #V − #E + #F

is called the Euler characteristic of S. It turns out that this is indeed well-
defined, i.e. the Euler characteristic does not depend on the digraph or the
embedding. It is well-known that χχ(Sγ) = 2−2γ and χχ(Nγ) = 2−γ. Details
on these facts of topological graph theory can be found in [45].

The surfaces of nonnegative Euler characteristic are the sphere S0, the
torus S1, the projective plane N1, and the Klein bottle N2. From a structural
point of view the digraphs that can be embedded in the sphere are the most
simple. These digraphs are called planar digraphs and their embeddings in
the sphere are planar embeddings.

A graph without vertices of degree 2 is called an irreducible graph for the
surface S or an obstruction for the surface S if the graph itself cannot be
embedded in S but any of its subgraphs can be.

1.4 The dichromatic number of a digraph

Let D = (V, E) be a digraph and k ≥ 0 be an integer. A k-coloring of D is a
color assignment c : V −→ C with a color set of cardinality #C = k such that
c(V ) = C and, for every color i ∈ C, the subdigraph induced by the vertices
c−1(i) of color i is acyclic. Sometimes a k-coloring is also called coloring or
acyclic coloring. The dichromatic number χ(D) of D is the smallest number k
of colors, so that a k-coloring of D exists. In this way the dichromatic number
was introduced by Neumann-Lara [69] in 1982.

V́ıctor Neumann-Lara was a Mexican mathematician. He was born in 1933
and died in 2004 (see [81]). His remarkable results on the dichromatic number
[69, 74, 73, 70, 71, 42, 72] remained widely unstudied. This is a pity, since
the dichromatic number of a digraph is the most fascinating and most natural
generalization of the chromatic number of a graph. Indeed, for a graph G,
χ(G) is exactly the chromatic number of G [69].
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From a different point of view the dichromatic number could be defined
in an algorithmic way. Let C be a color set. A feasible coloring of D is
an ordering v1 < v2 < · · · < vn of the elements of V together with a color
assignment c : V −→ C with a property (Pc). The ordering means that v1

is colored first, then v2, and so on, and vn is the last vertex to be colored.
Property (Pc) says that a vertex vk may be colored with color i if it has no
in-neighbor colored with i in the current digraph induced by {v1, v2, . . . , vk},
and after vertex vk is colored every in-arc (w, vk) is deleted. So at the end,
if every vertex is colored, every arc will be deleted. The dichromatic number
is then the minimum cardinality of a color set C such that D has a feasible
coloring. Note that the color classes, i.e. the sets of vertices which have the
same color, can be colored only in this way if starting with a sink in an acyclic
digraph, deleting all in-arcs and iterating.

The main goal of this thesis is to examine a game-theoretic analogon of
the dichromatic number of a digraph. This game-theoretic analogon can be
seen as a generalization of the algorithmic point of view of the dichromatic
number.

1.5 A digraph coloring game

We consider the following 2-person game which is played by the players Alice
and Bob. We start with a digraph D that is uncolored, and a given color set C,
and nonnegative integers d, a, and b. The players alternately color uncolored
vertices of D with colors from C until one of the following conditions applies.
Although a color can be used for several vertices, a vertex can have only
one color. Alice colors a vertices in a turn, Bob b vertices, except if at the
beginning of Alice’s (resp. Bob’s) last move only x ≤ a (resp. x ≤ b) uncolored
vertices are left, Alice (resp. Bob) colors only x vertices. Whenever a player
colors a vertex v with color i, then every in-arc (w, v) is deleted in D except for
those in-arcs (w, v) for which w has been already colored with i. In particular,
this rule means that a loop (v, v) is always deleted when v is colored. This
is the so-called arc deletion rule. For any color i, the remaining arcs in the
subdigraph induced by the vertices of color i form the defect digraph Di of
color i. The main rule the players have to respect is that at any state of the
game for any color i the defect digraph Di must have maximum total degree
of at most d. If they cannot respect this rule the game is over. Alice wins if
every vertex is colored at the end of the game (or if a = b = 0), otherwise
Bob is the winner. In order to make the game well-defined we have to specify
which player has the first move and whether missing a turn is allowed for
a player. We will consider four variants g of the game. The first variant
g = gA is when Alice has the first move and passing is not allowed. The
second variant g = gB means that Bob starts and passing is not allowed. In
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the variant g = A Alice is allowed to move first and to miss one or several
turns. In the variant g = B Bob has these rights. Missing a turn includes the
right to color less vertices in a move than usually required. Whenever we do
not specify g the statements we prove for this game are true for all variants
of the game. This game is called (directed) (a, b)-coloring game with defect d
or d-relaxed (directed) (a, b)-coloring game. In the case d = 0 we may omit
the term 0-relaxed.

Definition 1.1. A strategy of a player X is a function that assigns a feasible
move of X to every possible (non-end) state of the game at the time when it is
the turn of X. (A state of the game is non-end if further moves are possible.)
A winning strategy of a player X is a strategy S0 of X, so that, for any strategy
the other player uses, X wins when playing according to strategy S0.

Since the game described above is a noncooperative finite two player zero-
sum game with perfect information in which no ties are possible, either Alice
or Bob has a winning strategy.

Definition 1.2. The smallest cardinality n = #C of a color set C for which
Alice has a winning strategy for the directed (a, b)-coloring game with defect d
played on the digraph D is called d-relaxed (a, b)-game chromatic number
(a,b)χd

g(D) of D. For a nonempty class C of digraphs we define

(a,b)χd
g(C) = sup

D∈C

(a,b)χd
g(D). (1.1)

Observation 1. Let D be a digraph and a, b, d ≥ 0. Then

(a,b)χd
A(D) ≤ (a,b)χd

gA
(D) ≤ (a,b)χd

B(D),

(a,b)χd
A(D) ≤ (a,b)χd

gB
(D) ≤ (a,b)χd

B(D).

Observation 2. Let D be a digraph and a, b, d ≥ 0. Then

(a,b)χd
g(D) = (a,b)χd

g(D
0).

Proof. This follows from the special case of the arc deletion rule concerning
loops. �

We further define:

(a,b)χg(D) = (a,b)χ0
g(D),

χd
g(D) = (1,1)χd

g(D),

χg(D) = χ0
g(D) = (1,1)χg(D).
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Definition 1.3. (a,b)χg(D) is called (a, b)-game chromatic number of D, χd
g(D)

is called d-relaxed game chromatic number of D, and χg(D) is called game
chromatic number or g-game chromatic number of D. These notations extend
to nonempty classes of digraphs as in (1.1).

The parameters defined above for arbitrary digraphs generalize some well-
known graph parameters. This is: let G be a graph, then χgA

(G) is the game
chromatic number of G as it was introduced by Bodlaender [15]. Note that,
if we assume d = 0 in our model, when the first vertex v of an edge vw is
colored, then the arc (v, w) is not deleted, forcing w to be colored with a
color different from v. The (a, b)-game chromatic number of G, which was
introduced by Kierstead [53], is the same as (a,b)χgA

(G). Finally, χd
gA

(G) is
the d-relaxed game chromatic number of G introduced by Chou et al. [27]. In
the game of Chou et al., which is defined on an undirected graph, the players
have to color the vertices in such a way that the subgraphs induced by the
color classes have maximum degree of at most d. Note that in our model
exactly one of the two arcs of an edge between two vertices of the same color
remains undeleted. Therefore the maximum total degree is the right measure
to obtain the maximum degree of the subgraph of vertices of the same color in
the original graph, which is considered in the model of Chou et al. For graphs,
the game chromatic number of several classes of graphs has been determined,
as well as the d-relaxed game chromatic number for several d, see Section 1.8.

We remark that even the noncompetitive parameters (where a = 0 or
b = 0) are interesting or well-known parameters. If only Alice is playing, she
tries to use as few colors as possible, and if only Bob is playing, he tries to use
as many colors as possible. The results are given in the following observations.

Observation 3. (0,b)χg(D) = ∆+(D) + 1 for b ≥ 1.

Proof. A winning strategy for Bob with k ≤ ∆+(D) colors is the following:
Bob chooses a vertex v with d+(v) = ∆+(D) and colors k in-neighbors of v
with k distinct colors. Since v cannot be colored any more, Bob wins. �

Observation 4. (a,0)χg(D) = χ(D), for a ≥ 1.

In Observation 4, χ(D) is the dichromatic number of D which was intro-
duced by Neumann-Lara [69]. In the case of graphs it is the chromatic number
of a graph D.

A trivial upper bound for the d-relaxed (a, b)-game chromatic number is
given in the next observation.

Observation 5. (a,b)χd
g(D) ≤ ∆+(D) + 1 for any a, b ≥ 0.

In most parts of this thesis we will only consider the simplified model of
game chromatic numbers. In this model, the defection digraphs during the
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game are unions of isolated vertices. Thus, a vertex can be colored with color i
only if it has no in-neighbors colored with i. In this way the color classes are
acyclic (in the original digraph) as in the definition of the dichromatic number.

1.6 A digraph marking game

In order to bound the (a, b)-game chromatic number another game-theoretic
model simplifies our considerations a lot. It is the idea of a marking game.
Two players, Alice and Bob, are given an initially uncolored digraph D and a
score n which is a nonnegative integer. The players alternately mark vertices
of D, Alice marks a vertices in a turn, Bob b vertices. However, the last move
may be incomplete if there are no vertices to mark any more. Again, we have
an arc deletion rule: whenever a player marks a vertex v all in-arcs of v are
deleted. The main rule of the game is that a vertex may be marked only if
it has at most n − 1 marked in-neighbors. Eventually the game ends when
no vertex may be marked any more by this rule. If every vertex is marked at
the end of the game, Alice wins. Otherwise Bob wins. This game is called
(a, b)-marking game. To be precise, we consider a variant g of the game in
which it is specified whether a player has the right to have the first move or
the right to miss a turn. In line with the coloring game we have the variants
A, B, gA, and gB.

Definition 1.4. The (a, b)-game coloring number (a,b)colg(D) of D is the
smallest score n for which Alice has a winning strategy for the marking game
played on D. We further define the game coloring number colg(D) of D as
the number (1,1)colg(D). The notations colg and (a,b)colg extend to nonempty
classes of digraphs as in (1.1).

If Bob wins the (a, b)-coloring game on a digraph D with n colors, then
he can win the (a, b)-marking game on D with score n by marking instead of
coloring vertices according to his winning strategy for the coloring game. In
this way, eventually a vertex will have n marked in-neighbors. Thus we have
the following very efficient tool to bound the game chromatic number.

Observation 6. Let D be a digraph and a, b ≥ 0. Then

χ(D) ≤ (a,b)χg(D) ≤ (a,b)colg(D) ≤ ∆+(D) + 1.

Proposition 7. Let G be a graph and ~G be an orientation of G. Let a, b ≥ 0.
Then

(a,b)colg( ~G) ≤ (a,b)colg(G).

Proof. Assume that Alice has a winning strategy with score n for the (a, b)-

marking game played on G. If she plays according to this strategy on ~G, she
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will also win. Note that G and ~G have the same vertices, and d+
~G
(v) ≤ d+

G(v)
for any vertex v. �

Remark. There is no analogon of Proposition 7 for the coloring game. Con-
sider the complete bipartite graph K2n,2n with partite sets V1 and V2, and an

orientation ~K2n,2n of K2n,2n with arc set V1 × V2. It is well-known that K2n,2n

has B-game chromatic number 3 for n ≥ 2 (see [52]). However, it is easy to

see that χA( ~K2n,2n) = n + 1. A winning strategy for Bob with n colors is the
following. In his first n moves he colors n vertices from V1 with n distinct
colors. Then there is an uncolored vertex in V2 which cannot be colored any
more. (Furthermore, a winning strategy for Alice with n + 1 colors can be
easily found.) So, for any variant g,

χg( ~K2n,2n) ≥ n + 1 > 3 ≥ χg(K2n,2n)

for n ≥ 3. This does not contradict Observation 6 and Proposition 7 since
colg( ~K2n,2n) = 2n and colg(K2n,2n) = 2n + 1.

1.7 Examples

In this section we will study some easy examples in order to get used to the
games defined in the previous sections.

Directed cycles. The first digraphs we consider are some of the most simple
ones: directed cycles. They are especially interesting in order to illustrate
some of the features of relaxed digraph coloring games.

Example 1.1. χg( ~Cn) = 2 for n ≥ 2.

This is obvious: 2 = χ( ~Cn) ≤ χg( ~Cn) ≤ ∆+( ~Cn) + 1 = 2 for n ≥ 2.

Example 1.2. χ1
gB

({ ~C1, ~C2, ~C3, ~C4}) = 1.

For ~C1, ~C2 and ~C3 the statement is easy to see. So consider a ~C4 with
vertices v0, v1, v2, and v3, and arcs (vi, vi+1) (index mod 4). Alice has the
following winning strategy with one color. W.l.o.g. Bob, in his first move,
colors v0. Alice answers by coloring v2. In the last moves the other two
vertices can be colored. Note that, in spite of the fact that the vertices of
color 1 induce the whole digraph, the defect digraph D1 only contains (v0, v1)
and (v2, v3) as arcs, since the other two arcs have been deleted during the
process of the game.

Example 1.3. χ1
A( ~Cn) = 2 for n ≥ 5.
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1 2

34

Figure 1.4: The transitive tournament T4

We prove that Bob has a winning strategy with one color. Let v1, . . . , vn

be the vertex set of ~Cn, and arcs given by (vi, vi+1) (index mod n). If Alice
uses her right to color a vertex vk in the first move, Bob colors vk+1 and wins
since vk+2 cannot be colored any more. If Alice misses her first turn, then Bob
colors v0. If Alice colors v1 after that, Bob wins since v2 cannot be colored
any more. If Alice colors v2, Bob colors v3 and wins since v4 is uncolored and
cannot be colored any more (here we need n ≥ 5.) If Alice colors neither v1

nor v2, Bob colors v1, and v2 cannot be colored any more. So in every case
Bob wins.

The next examples are easy to see.

Example 1.4. χ1
B({ ~C1, ~C2}) = 1.

Example 1.5. χ1
gA

( ~Cn) = 2 for n ≥ 3.

From these results we can obtain the other values of 1-relaxed game chro-
matic numbers of directed cycles using Observation 1. We remark further

Example 1.6. χd
g(

~Cn) = 1 for d ≥ 2.

Transitive tournaments. A tournament is an orientation of a complete
graph. It is transitive if it is an acyclic digraph, i.e. if there is a linear order
> on its vertex set, so that there is an arc (v, w) if and only if v > w. Let Tn

be the transitive tournament with n vertices. See Fig. 1.4.

Example 1.7. χgA
(Tn) =

⌈
n
2

⌉
.

Note that χ(Tn) = 1. This is a remarkably easy example where the dif-
ference between the dichromatic and the game chromatic number may be
arbitrarily large.

In order to prove χgA
(Tn) ≤

⌈
n
2

⌉
= c, consider the following winning

strategy of Alice with c colors. Alice simply colors the smallest uncolored
vertex with the smallest feasible color. In order to stop Alice using a color,
Bob has to color another vertex with that color. So, in the first 2c− 2 moves,
Bob will have made at most c − 1 colors infeasible. The last color can be
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used for the remaining one or two vertices if the smaller one is colored first.
This can be achieved by Alice, hence she is going to win. The other direction
χgA

(Tn) ≥ c is easy to see. Bob has the following strategy. In his first c − 1
moves he colors the biggest c − 1 vertices with distinct colors, starting with
the biggest one. If there are at most c− 1 colors this is a winning strategy for
Bob.

Example 1.8. χgB
(Tn) =

⌊
n
2

⌋
+ 1.

This is the same argument as in the previous example. As Bob has the
first move an additional color has to be used if n is even.

1.8 Previous results

The game chromatic number of a graph was introduced in 1991 by Bodlaen-
der [15] who considered the complexity of different graph coloring games. A
special case of the coloring game considered in this thesis (with graphs as in-
stances and a = b = 1 and d = 0), which defines the game chromatic number,
was called “coloring construction game” by Bodlaender. He also considered a
variant, the “sequential coloring construction game”, where the order of the
vertices to be colored is prespecified. Bodlaender proved that the sequential
coloring construction game with three or more colors is PSPACE-complete,
and it is in P for two colors. However, the complexity of the coloring construc-
tion game with two or more colors is still an open problem. Another variant of
the coloring construction game Bodlaender considers is the “coloring game”.
Here the winning rule is changed: a player wins if his opponent is unable to
move. This game is PSPACE-complete for one color [78] or two colors [15].
For three or more colors the complexity status is open. In a second article
Bodlaender and Kratsch [16], amongst other results, consider the complexity
of the sequential coloring construction game for special types of perfect graphs.
Since then, complexity results for graph coloring games have not been pub-
lished any more. Instead, by defining the game chromatic number of a graph,
Bodlaender initiated a new field of mathematics, the determination of game
chromatic numbers of classes of graphs.

The first results in this direction were those of Faigle et al. [40] who proved
in 1993 that χg(F) = 4 for the class F of forests and determined an upper
bound for the game chromatic number of interval graphs. After that, a compe-
tition began in order to give an upper bound for the game chromatic number
of planar graphs, a bound which was reduced from 33 (Kierstead and Trot-
ter [55], in 1994), 30 (Dinski and Zhu [30], in 1999), 19 (Zhu [86], in 1999),
18 (Kierstead [52], in 2000), to 17 (Zhu [88], recently).1 Besides reducing the

1Wu [84] proved later that the game coloring number of the class of planar graphs is at
least 11.
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bound, this competition was very fruitful to obtain insights into the general
nature of the game chromatic number as a graph parameter. As an upper
bound of this graph parameter, Zhu [86] defined the game coloring number of
a graph, which is easier to handle and which in a lot of good cases equals or
nearly equals the game chromatic number of classes of graphs. By the meth-
ods of Kierstead [52], many upper bounds for the game coloring and thus for
the game chromatic numbers of classes of graphs that were already known
could be regained. One such class is, for example, the class of outerplanar
graphs which has game chromatic number of at most 7 by a result obtained
by Guan and Zhu [46] in 1999.

Not only planar graphs were considered, but also graphs embeddable in an
orientable surface and planar graphs with special properties. By examining
the game coloring number of the new class of pseudo partial k-trees, in 2000
Zhu [87] proved colg(G) ≤ ⌊(3√1 + 48γ + 23)/2⌋ for any graph embeddable
into Sγ with γ ≥ 1. Kierstead [52] improved this bound in the same year to the
value ⌊(3√73 + 96γ + 41)/4⌋. A paper of He et al. [48] of 2002 considers the
game coloring number of planar graphs without 4-cycles and with given girth.
A more detailed description of the results of He et al. is included in Chapter 3,
as well as the generalization of these results to graphs embeddable in other
surfaces. A generalization of the results of He et al. to surfaces of nonnegative
Euler characteristic was recently given by Wang [80]. Another special type of
planar graphs was analyzed by Wu [83] who, in 2001, showed that every Halin
graph (with two exceptions) has gA-game chromatic number 4. Here, finding
a lower bound is the most difficult part of the work, whereas all previous
authors concentrated on upper bounds.

Whenever a mathematical theory comes up, interesting variants of the
theory are considered soon. This also applied to the game chromatic number.
Chen et al. [26] introduced a “new game chromatic number”in 1997 where in
the underlying game Bob is only allowed to take colors that are already used
except if such a move is not possible any more. One of the results of Chen et
al. is: the new game chromatic number of a tree is at most 3. Compared with
the result of Faigle et al. [40], one little sharpening rule in the game gives a
gain of one color.

Another variant of the game chromatic number is the game chromatic index
of a graph G, which is the game chromatic number of the line graph L(G)
of G. In 2001 Cai and Zhu [24] introduced the game chromatic index and
gave an upper bound for this parameter of k-degenerate graphs (in terms of k
and the maximum degree ∆). In case of special types of trees with maximum
degree 3 they tightened this bound. Continuing their work Erdös et al. [37]
and the author [1, 3] proved that the game chromatic index of a forest of
maximum degree ∆ 6= 4 is at most ∆ + 1. In the case ∆ ≥ 5, these results
were generalized by Marte [63] to the list game chromatic index.

The list game chromatic number was recently introduced independently
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by Borowiecki et al. [22]. They characterize all graphs that have list gA-game
chromatic number 2. A similar characterization of all graphs with gA-game
chromatic number 2 was given in 2007 by Borowiecki and Sidorowicz [21]. The
latter result coincides with a result we develop in Chapter 5.

One should mention that there is a variant of the game chromatic number
of oriented graphs which is not related to the model described in this thesis.2

Some results on this “oriented game chromatic number” are given by Nešetřil
and Sopena [68], Kierstead and Trotter [56], and Kierstead and Tuza [57].
Another variant of the game coloring number is the complete game coloring
number. Yang [85] introduced this number and proved that the complete game
coloring number of the line graph of a forest of maximum degree ∆ is at most
∆ + 1. This number, as well, is not related to the model described in this
thesis.

When in 2003 Chou et al. published their paper [27] on the “relaxed game
chromatic number” of graphs, a new chapter in the theory of graph coloring
games was established. They proved χd

g(F ) ≤ 3 for d ≥ 1 and a forest F , and
χd

g(O) ≤ 6 for d ≥ 1 and an outerplanar graph O. He et al. [49] continued
their research in 2004 and proved that χd

g(F ) ≤ 2 for d ≥ 2, and χd
g(O) ≤ 5

for d ≥ 2, and that, for any d ≤ 4, there is an outerplanar graph Od with
χd

g(Od) ≥ 3. The bounds for forests are tight. Dunn and Kierstead [32, 34]
proved for every partial k-tree Pk that χd

g(Pk) ≤ k + 1 for d ≥ 4k − 1. They
also obtained a similar result for graphs with bounded k-admissibility. As a
corollary they deduced χd

g(P ) ≤ 6 for d ≥ 93 and a planar graph P . For an
(a, b)-pseudo partial k-tree G, Dunn and Kierstead [32, 35] obtained χd

g(G) ≤
k+1 if d ≥ 2k2+3k+2ak+2kb+2ab+3b+2. Furthermore, if G is a graph with a
partial (k, D)-decomposition, then χd

g(G) ≤ k+1 if d ≥ k2+3k+2kD+3D+1.
Combining this result with the results of He et al. [48], Dunn and Kierstead
obtained the upper bound 2 for the d-relaxed game chromatic number of
planar graphs with bounded girth and without 4-cycles, for sufficiently large d.
Dunn and Kierstead [32, 36] also considered outerplanar graphs O and proved
χd

g(O) ≤ 2 for d ≥ 8. Dunn [32] also showed a remarkable irregularity of
game chromatic numbers, namely that for every k ∈ N there exists a graph
with game chromatic number k and 1-relaxed game chromatic number greater
than k. In 2005 Wu [84] completed the examination of the d-relaxed game
chromatic numbers of outerplanar graphs O by proving χd

g(O) ≤ 7 − t for
t = 2, 3, 4 and d ≥ t, and χd

g(O) ≤ 2 for d ≥ 6.

Moreover, Wu [84] identified the game coloring number of the class of
partial k-trees as 3k + 2. Perhaps more importantly, Wu discovered that the
game coloring number of a graph is a monotone parameter, which is not the
case for the game chromatic number. Monotone means that the parameter is

2E.g., the oriented game chromatic number of the class of paths is 7, whereas the game
chromatic number of an oriented path is at most 3.
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at least as big for a graph as for any subgraph.
There are also a few results concerning the d-relaxed game chromatic num-

ber of line graphs of some graphs. Dunn [32, 33] examined line graphs L(T∆)
of trees of maximum degree ∆. He proved χd

g(L(T∆)) ≤ ∆ + 1 if d ≥ 1 and
χd

g(L(T∆)) ≤ ∆ if d ≥ 3. In addition, he obtained χd
g(L(Gk)) ≤ ∆ + k − 1 if

d ≥ 2k2 + 4k for line graphs L(Gk) of k-degenerate graphs. In 2006, Chang
and Zhu [25] proved, for any k-degenerate graph Gk with maximum degree ∆,

that χd
gA

(L(G)) ≤ 2k + (∆+k−1)(k+1)
d−2k2−4k+2

if d ≥ 2k2 + 5k − 1. Remarkably, in this
result we have d in the denominator of the upper bound, as we will have in
the Theorems 12 and 17.

Asymmetric graph coloring games were introduced in 2005 by Kierstead
[53] who solved these games completely for the class of forests. Kierstead and
Yang [58] proved that, if a graph G has an orientation with maximum out-
degree k, then (k,1)χg(G) ≤ 2k + 2. In a further paper of 2006, Kierstead [54]
examined the (2, 1)-coloring game on planar graphs.

A recent paper of Bohman et al. [17] considers the game chromatic number
of random graphs. Its results suggest that for a random graph G the game
chromatic number is high (at least 2χ(G)), whereas the trivial lower bound
for the game chromatic number of G is χ(G).
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Chapter 2

Forests

2.1 Coloring games on directed forests

Directed forests are a class of digraphs which is simple enough in order to
examine the d-relaxed (a, b)-game chromatic number in its whole generality
with the use of only one method. Before obtaining the general result, we will
work out two special cases. The first special case concerns the game chromatic
number of the class of directed forests. This number is already known from
the author’s diploma thesis [1]. Here we will obtain an upper bound for it as
a corollary of the more general upper bound for the game coloring number of
directed forests.

Let F be the orientation of a forest. We consider either the coloring game
of Section 1.5 or the marking game of Section 1.6. During the game played
on F we update F according to the arc deletion rule of the game. So, at
every state of the game F has a decomposition into more and more connected
components. Such a component will be called a trunk. Obviously, marking or
coloring in different trunks does not depend on each other.

In the next theorems, we will distinguish between global and local sinks.
A global sink or simply a sink in a digraph is a vertex with out-degree 0 and
arbitrary in-degree. In contrast to that, a sink in a path or local sink is a
vertex with out-degree 0 and in-degree 2 in the path, which may have higher
out- and in-degree in the digraph of which the path is a subdigraph.

Theorem 8. colg( ~F) ≤ 3.

Proof. Let F be a directed forest. Alice’s winning strategy with score 3
guarantees that after each of her moves every trunk has at most one marked
vertex. If after Bob’s move every trunk has still at most one marked vertex,
Alice simply marks a global sink, and her invariant is not destroyed. If Bob
marks a vertex w in a (not completely unmarked) trunk T , then let v be the
previously marked vertex of T . If the last arc on the path from v to w is

19
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directed towards w, then after Bob’s move v and w are in different trunks and
we are in the previous case. Otherwise, there is a (local) sink x in the path
from v to w. Alice marks x which is markable since it has at most 2 marked
in-neighbors (v and w). After her move v, w, and x are in three different
trunks, and her invariant is reinstalled. By induction, Alice wins. �

Corollary 9. [1] χg( ~F) = 3.

Proof. The upper bound 3 follows from Theorem 8 and Observation 6. The
lower bound 3 will be proven as a part of Proposition 14 (see page 27). �

Now we consider the second special case, i.e. the d-relaxed graph coloring
games on directed forests for d ≥ 1 and prove

Theorem 10. χd
g(

~F) ≤ 2 for d ≥ 1.

Proof. During the game we consider trunks. We recall that these are defined
as follows: whenever a player colors a vertex v with color i, then all arcs (w, v)
which point towards v are deleted, except in the case that w has been colored
with i before. By this dynamic process the forest is subdivided into more and
more trunks. The coloring of different trunks does not depend on each other.

Alice’s winning strategy with 2 colors guarantees that after all of her moves
every trunk has only colored vertices of at most one color and possibly several
uncolored vertices. It also guarantees that the subdigraph induced by the
colored vertices of a trunk is connected.

If Bob colors a vertex w in a (not completely uncolored) trunk T , then let
v be the colored vertex of T with the shortest distance to w. If the last arc
on the path from v to w is directed towards w, then, after Bob’s move, either
v and w are in different trunks or v and w are adjacent. In both cases Alice’s
invariant still holds. Otherwise, there is a local sink x in the path from v to w
with out-degree 0 (in the path). Then, in general, Alice colors x with a color
different from its colored neighbors. The only case when this is not possible is
if the path has length 2 and v and w have different colors. Then Alice colors
x with the same color as w. Note that the component of the defect digraph
containing x and w does not contain other vertices, so that the defect of x and
w is at most 1. The new trunk containing x and w does not contain colored
vertices of the color of v. So Alice’s invariant is reinstalled after her move.

In the cases where her invariant holds after Bob’s move she just colors a
global sink or a neighbor of a colored vertex v, with a color different from the
color of v, without destroying her invariant. By induction, Alice wins. �

The bound is tight as Lemma 13 states (see page 26). It is easy to see that
Corollary 9 and Theorem 10 even hold for games where passing is allowed
for Bob. In the same way, all results of this section are true for all variants
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g ∈ {A, B, gA, gB}. Theorem 11 generalizes Theorem 8 to asymmetric marking
games.

In Theorems 11 and 12 we distinguish between a move and a step of the
player. A move of Alice (resp. Bob) consists of marking or coloring a (resp. b)
vertices (or even less if the players miss a turn). On the other hand, the act
of marking or coloring exactly one vertex is called a step. So a move consists
of at most a (resp. b) steps.

Theorem 11. (a,b)colg( ~F) ≤ b + 2 if a ≥ b ≥ 1.

Proof. Let F be any directed forest. We will prove that Alice has the
following winning strategy for the (a, b)-marking game with score b+2: at the
end of each of her moves she guarantees that in every trunk there is at most
one marked vertex.

Then, after Bob’s next move, every trunk has at most b+1 marked vertices.
Assume that Bob has marked v1, v2, . . . , vb. Alice will use b steps to reinstall
her invariant. By induction, we may assume that, at the beginning of the
k-th step, every trunk contains at most one marked vertex different from the
vertices vk, vk+1, . . . , vb. This implies that every trunk has at most b+1−(k−1)
marked vertices. By Alice’s invariant this asssumption is true at the beginning
of the first step. We will show that it also holds at the beginning of the (k+1)-
th step. In the k-th step, we call a marked vertex that is none of the vertices
vk, vk+1, . . . , vb origin vertex. Consider the k-th step.

If there is no origin vertex in the trunk that contains vk, then this trunk
has at most b+1−k marked vertices (vk, vk+1, . . . , vb), and Alice’s strategy is
simply to mark a global sink (such a sink exists unless all vertices are marked.)
By this type of move no unmarked vertex receives a higher number of marked
in-neighbors. So every trunk will have at most b + 1− k marked vertices, and
in every trunk there is at most one origin vertex for the (k + 1)-th step, i.e. a
vertex different from vk+1, vk+2, . . . , vb.

On the other hand, if there is an origin vertex v in the trunk that con-
tains vk, then Alice considers the path from v to vk. As the first and the last
arc of the path are directed towards the interior of the path (by the arc dele-
tion rule for v and vk) this path must have an unmarked local sink w (which
is a sink in the path, not necessarily a global sink.) Alice marks w. Since
now v, vk, and w are in three distinct trunks, each of these three trunks has
at most b + 1 − k marked vertices, coming from a big trunk with formerly at
most b+2− k marked vertices. As a trunk, at the beginning of the k-th step,
may have b + 2 − k marked vertices only if it contains vk, at the end of the
k-th step every trunk has at most b+1−k marked vertices. vk and w are new
origin vertices, however, they are in different trunks, and in trunks different
from v and every other origin vertex. So, at the beginning of the (k + 1)-th
move, in every trunk there will be at most one origin vertex.
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After b steps every trunk has at most b + 1 − b = 1 marked vertex. In
the next a − b (≥ 0) steps Alice marks global sinks without destroying her
invariant. Thus at the end of her move every trunk has at most one marked
vertex. Since meanwhile no trunk had more than b + 1 marked vertices, the
score of b + 2 is sufficient. �

We are now ready to prove the main theorem of this chapter, a joint
generalization of Corollary 9 and Theorem 10.

Theorem 12. (a,b)χd
g(

~F) ≤
⌊

b
d+1

⌋
+ 2 if a ≥ b ≥ 1.

Proof. We show that Alice has a winning strategy with c =
⌊

b
d+1

⌋
+2 colors.

Because of Theorem 11 and Observation 6 this is true for d = 0. So we might
assume without loss of generality that d > 0. However, we do not need this
assumption.

During the game, the forest is split into trunks. As in Theorem 10, Al-
ice’s strategy guarantees that at the end of each of her moves in every trunk
there are only vertices colored in one color (and uncolored vertices), and the
colored vertices of a trunk induce a connected subdigraph. According to The-
orem 10 this is possible for (a, b) = (1, 1). Now consider the more general case
a ≥ b ≥ 1.

Alice’s new winning strategy works as follows. In a certain way, Alice
pretends to play the d-relaxed (1, 1)-coloring game with Bob. More precisely,
for each vertex Bob has colored, Alice, in reaction, colors exactly one vertex.
Then her strategy will be reinstalled. This is possible since a ≥ b. However,
Alice will not react on the vertices in the same order as Bob has colored them.

Let v1, v2, . . . , vb be the vertices Bob has colored during his last move.
Alice will construct an order on these vertices, say vi1 , vi2 , . . . , vib. After Alice
has colored the k-th vertex of her move we define any vertex Alice or Bob
have colored during the game to be an origin vertex, except the vertices from
the list vik+1

, vik+2
, . . . , vib which are non-origin vertices. During the game,

even more vertices will be deleted from the list of non-origin vertices and
be considered as origin vertices. Alice’s invariant will be that after each of
her steps the subdigraph of the origin vertices of a trunk is connected (and
therefore colored with only one color).

The proof will consist of two parts. First we will prove that Alice always
finds a suitable vertex to reinstall her invariant. Later we prove that there is
always a feasible color for such a vertex.

Consider the beginning of Alice’s first step (k = 0). If the trunk that
contains v1 does not contain origin vertices, Alice simply colors a global sink
in some trunk. (If there is no sink any more, the digraph is completely colored.)
By this type of move her invariant still holds after her first step since v1 will
be a new origin vertex (possibly connected to the vertex colored by Alice in
the same color as v1), and the vertex Alice has colored is either the only origin
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vertex in a new trunk or enlarges the set of origin vertices of a certain color in
some trunk. Note that if there is an uncolored vertex or a vertex of a different
color adjacent to the sink Alice colors, this vertex will be split off the sink by
the rules of the game when Alice colors the sink.

Now, once more, consider the trunk that contains v1 at the beginning of
Alice’s first step. If this trunk contains origin vertices, then there is a unique
path Q between an origin vertex θ0 and v1. If every vertex of Q is colored,
then Alice considers all vertices of Q (including v1) as new origin vertices.
Note that these vertices are colored in the same color, otherwise the path
would be broken. So Alice’s invariant still holds, and Alice colors a global
sink. Consider the interesting case that not every vertex of Q is colored. Let
Q = θ0θ1θ2 . . . θmv1 and let θj0 be the uncolored vertex with the smallest index
in the path. Then Alice defines

o = θj0−1,

and considers the (colored) vertices θ1, θ2, . . . , θj0−1 as new origin vertices. (In
case j0−1 = 0 the set of these vertices is empty and o = θ0.) Now let P be the
subpath of Q between the (new) origin vertex o and v1. Since the first and the
last arc of this path are directed towards the interior of the path, P contains
at least one local sink. (Here a local sink is not necessarily a global sink,
only a vertex with two in-arcs in the path.) If every local sink of the path is
colored, then necessarily every vertex of the path (including v1) is colored in
the same color. In this case Alice colors a global sink and her invariant holds
after her step (when k = 1). Vertices on the path are considered as origin
vertices from now on. Note that v1 simply enlarges the set of origin vertices
of the trunk to which v1 belongs, and this set is connected.

The remaining case is that P contains at least one uncolored local sink.
Let a source be a vertex with two out-arcs in the path, and a transitive vertex
be a vertex with one in- and one out-arc in the path. P is of the form

oT+
1 s1T

−
1 w1T

+
2 s2T

−
2 w2T

+
3 s3T

−
3 . . . wj−1T

+
j sjT

−
j . . . wn−1T

+
n snT

−
n v1, (2.1)

where si are local sinks, wi are sources and T+
j , T−

j are sets of transitive
vertices. In the worst case all sources and transitive vertices are colored by
Bob, so that Alice, by coloring a local sink sj, possibly does not split the trunk
to which o, sj, and v1 belong. Therefore reordering Bob’s vertices v1, . . . , vb

is necessary. Let wj1, wj2, . . . , wjh−1
, v1 be the sources (together with v1) that

Bob has colored, in the order of the path from left to right. Then Alice
reorders Bob’s vertices in the way that we have

wj1, wj2, . . . , wjh−1
, v1, vih+1

, . . . , vib,

where only the order of the first h vertices is important. Now Alice performs
h steps. In the k-th step she considers the path from origin vertices to wjk

,
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where wjh
= v1, and colors the left-most local sink in this path. (If every sink

is colored she colors a global sink.) By such a move either the origin vertices
are unified with the next source or Alice performs a split. Colored transitive
vertices which connect sources and local sink in a trunk are considered as
origin vertices from the time at which the respective local sink is colored.
Therefore Alice’s invariant holds after the k-th step for any k ≤ h.

Now this procedure is iterated. Alice’s invariant holds after step k0, where
k0 = 1 or k0 = h, depending on which case has been examined. We can
forget the vertices vi1 , . . . , vik0

. Then Alice’s strategy works in the same way
on the remaining vertices vik0

+1, . . . , vib Bob has colored. The next vertex to
be considered is vik0

+1. After b steps every colored vertex is origin vertex, and
Alice’s invariant holds, therefore every trunk has only vertices of one color,
which induce a connected subdigraph. During the remaing a − b steps, Alice
colors global sinks without affecting her strategy.

We have seen that Alice can always choose a vertex in order to reinstall
her strategy, but the question arises whether she can always find a feasible
color. Therefore we consider the color weight of a vertex. A colored vertex v
has color weight g(v) = n if exactly n − 1 neighbors of v (in the trunk) are
colored with the same color as v. The weight of an uncolored vertex w is then
defined as

G(w) =
∑

v∈Ncol(w)

g(v),

where Ncol(w) is the set of colored neighbors of w in the trunk. So G(w) is the
number of colored neighbors and colored neighbors of colored neighbors of w
in the trunk. Obviously (by the pigeon-hole principle) an uncolored vertex w
can be colored feasibly if

G(w) ≤ (d + 1)c − 1,

see Fig. 2.1. This holds after Bob’s move (before Alice’s move) for every
uncolored vertex w, as we shall see. Let i be chosen in such a way that

i(d + 1) ≤ b ≤ (i + 1)(d + 1) − 1. (2.2)

Thus c = i + 2. After Bob’s move, an uncolored vertex w in a trunk may
be neighbored with a colored vertex which was already colored before Bob’s
move and therefore has color weight at most d + 1. In addition, the weight of
w can increase by at most b when Bob colors b vertices. So, by the right-hand
side of (2.2),

G(w) ≤ d + 1 + b ≤ (i + 2)(d + 1) − 1 = (d + 1)c − 1

after Bob’s move.
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d

d+1

v

Figure 2.1: The pigeon-hole principle: Assume d = 3 and c = 3. Then the
uncolored vertex v cannot be colored with dark grey and black, since the
vertices colored with these colors contribute with d + 1 to the color weight.
However, v can be colored with the third color light grey, which contributes
to the weight of v only with d.

By this estimation, we see that we reserve one color completely for the
origin vertices after Bob’s move. Therefore w can be colored in a color different
from the color of the origin.

Now we have to prove that G(w) ≤ (d + 1)c − 1 holds during the whole
of Alice’s move. Assume that, in step k, Alice has colored a vertex v with
color 1 in a trunk T . Then there might be other vertices ui in T which are in-
neighbors of v that are colored with color 1. By Alice’s strategy, at most one
of these, say u1, is an origin vertex after Bob’s move. However, if Alice always
chooses a color different from the origin for the vertex v, then u1 will be split
off. As remarked above, she can choose a color in such a way. There might be
uncolored out-neighbors of v. These out-neighbors (and the out-neighbors of
colored in-neighbors of v) are the only vertices whose weight increases when
Alice colors v. Let w be such an out-neighbor of v. (The argumentation for
the out-neighbors of colored in-neighbors of v is symmetrical.) Let X be the
set of colored in-neighbors of w without v. For x ∈ X let Y +

x resp. Y −
x be the

set of in- resp. out-neighbors of x colored in the same color as x.

We observe that, by Alice’s strategy, the vertices in X, Y +
x , and Y −

x (for
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u u u u u

u u
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u1 v w x y B

u2 B

Figure 2.2: Possible configuration for w

Figure 2.3: The digraph of Lemma 13 in case (a, b, d) = (2, 1, 1)

x ∈ X) are non-origin vertices, thus they have been colored by Bob in his last
move. (For vertices from X and Y +

x it is clear that they are not origin vertices,
since Alice would not color them as they are not sinks in a path starting at u1.
For vertices from Y −

x we are in a case as shown in Fig. 2.2. Note that in this
configuration the vertex y cannot be colored by Alice, since Alice would have
to color w before y by her strategy of coloring the sinks of paths as the path
in (2.1).)

Assume that G(w) ≥ (d + 1)c. That means

#

(

X ∪
⋃

x∈X

(Y +
x ∪ Y −

x ) ∪ {ui} ∪ {v}
)

≥ (d + 1)c.

We have b ≥ (d + 1)c − 1 since at most one vertex of the trunk at distance
one or two from w, namely v, has not been colored by Bob in his last move.
But as c = i + 2 and d ≥ 0 we obtain

b ≥ (d + 1)c − 1 = (d + 1)(i + 2) − 1 > (d + 1)(i + 1) − 1 ≥ b,

using (2.2), which is a contradiction. Thus our assumption is wrong, and the
theorem is established. �

The bound of the previous theorem is tight as the next lemma and the
succeeding proposition show.

Lemma 13. (a,b)χd
g(

~F) ≥ 2 for b ≥ 1.

Proof. Consider the following digraph D with vertex set

V = {u, vi, wi,j|i = 1, . . . , 2a + 1; j = 1, . . . , d}
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Figure 2.4: The digraph of Proposition 14 in case (a, b, d) = (2, 2, 1)

and arc set

E = {(u, vi), (vi, wi,j)|i = 1, . . . , 2a + 1; j = 1, . . . , d}.

Fig. 2.3 depicts this tree in a special case. We have to prove that Bob has
a winning strategy for the d-relaxed (a, b)-coloring game played on D with 1
color. We may assume that Alice, in her first two moves, colors vertices in
the subtrees of vertices with index i = 2, . . . , 2a + 1. If she does not color u,
Bob colors u (and then possibly some other vertices, preferably v1) in his first
move. In case d = 0, v1 cannot be colored any more. Otherwise, in his second
move Bob colors v1 (if it is not already colored). Now only d−1 of the vertices
w1,j can be colored, not the last vertex of w1,j, so Bob will win. �

Proposition 14. (a,b)χd
g(

~F) ≥
⌊

b
d+1

⌋
+ 2 for b ≥ 1

Proof. For b < d + 1 the assertion is true by the Lemma 13. Thus consider
the case b ≥ d + 1. A digraph D (see Fig. 2.4 for an example) is defined by
the vertex set

V = {xi,n, ui, vi,j, wi,j,k}i,j,k,n

and the arc set

E = {(xi,n, ui), (ui, vi,j), (wi,j,k, vi,j)}i,j,k,n

where i = 1, . . . , a+b, j = 1, . . . , a+1, k = 1, . . . , b, and n = 1, . . . , d. We have
to prove that Bob has a winning strategy for the d-relaxed (a, b)-coloring game
played on D with

⌊
b

d+1

⌋
+ 1 colors. We may assume that Alice, in her first

move, colors vertices in subtrees with index i = 2, . . . , a + 1. Then Bob colors
all vertices x1,n with the first color. After that Bob colors u1 with the first
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color. In this way, u1 receives defect d. If Bob has to color further vertices,
he chooses them with index i ≥ a + 2. Alice now colors w.l.o.g. vertices with
index i ≥ 2 or j ≥ 2. Finally Bob colors

⌊
b

d+1

⌋
(d + 1) vertices w1,1,k in the

colors 2, . . . ,
⌊

b
d+1

⌋
+1, always d+1 vertices in the same color. Bob wins since

v1,1 cannot be colored any more. �

Combining Theorem 12 and Proposition 14 we obtain

Corollary 15. (a,b)χd
g(

~F) =
⌊

b
d+1

⌋
+ 2 for a ≥ b ≥ 1

The formulation of Theorem 12 is also best-possible in the sense that it
cannot be extended from the case a ≥ b ≥ 1 to other values of (a, b). If b = 0
(and a 6= 0), the dichromatic number of a non-empty directed forest is 1, so

also (a,0)χd
g(

~F) = 1 for any d. In the case b > a we remark

Proposition 16. (a,b)χd
g(

~F) = ∞ for any b > a.

Proof. Let k ≥ 0, b > a, and let F be the directed forest consisting of
bk(d+1) components each of which is an in-star Sin

k(d+1). Such an in-star has

k(d+1)+1 vertices one of which has in-degree k(d+1) and out-degree 0, and
the other vertices have out-degree 1 and in-degree 0. We prove that Bob wins
the d-relaxed (a, b)-coloring game on F with at most k colors. We consider
the weakest variant A of the game.

The game is divided into k(d + 1) rounds. In the i-th round, there are
bk(d+1)−i moves for each player, so Alice colors at most bk(d+1)−ia vertices, and
Bob bk(d+1)−i+1. In round i, Bob chooses a color ci and bk(d+1)−i+1 in-stars
to which not any colors have been assigned by Alice in previous rounds, but
which have been colored by Bob in all previous rounds, and Bob colors exactly
one leaf vertex of these (in-stars) with color ci. Obviously, in the first round,
this is possible. If we assume it is possible in the i-th round, then there are
at least

bk(d+1)−i(b − a) ≥ bk(d+1)−(i+1)+1

in-stars left which have not been touched by Alice, so Bob can proceed as
desired in round i+1. In particular, after the round k(d+1), there is at least
one in-star left that has not been colored by Alice. If Bob has chosen

(c1, . . . , ck(d+1)) = (1, . . . , 1
︸ ︷︷ ︸

d+1

, 2, . . . , 2
︸ ︷︷ ︸

d+1

, . . . , k, . . . , k
︸ ︷︷ ︸

d+1

),

then this in-star cannot be colored any more. Thus, Bob wins. Since k is
arbitrarily chosen, (a,b)χd

A( ~F) = ∞ for b > a. By Observation 1, the assertion
follows for any g. �
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2.2 Undirected forests

In this section we give an upper and a lower bound for (a,b)χd
g(F). After that

we determine the exact values for this parameter for special triples (a, b, d).
Recall the definition of (undirected) graphs: Every edge is considered as a

pair of oppositely directed arcs.
In order to obtain upper bounds for the d-relaxed (a, b)-game chromatic

number of undirected forests we need the notion of uncolored components.
An uncolored component of a partially colored forest is a maximal connected
component of uncolored vertices. Note that a trunk in such a forest may
contain several colored vertices and several uncolored components (which are
separated by colored vertices). An uncolored component C is adjacent to a
vertex v if a vertex of C is adjacent to v.

Using the idea of uncolored components one can prove the results of Faigle
et al. [40] and Chou et al. [27] which are χd

g(F) ≤ 3 + δ0,d where δm,n is the
Kronecker Delta. Here, Alice’s winning strategy guarantees that after each
move of Alice every uncolored component is adjacent to at most two colored
vertices. If Bob creates an uncolored component adjacent to 3 colored vertices
it is immediately broken in Alice’s next move. We will adapt this strategy in
order to prove the following

Theorem 17. (a,b)χd
g(F) ≤

⌊
b

d+1

⌋
+ 3 for a ≥ b ≥ 1.

Proof. We describe a winning strategy for Alice with c =
⌊

b
d+1

⌋
+ 3 colors.

The invariant Alice maintains after each of her moves is that every uncolored
component is adjacent to at most two colored vertices. At the beginning of
the game this invariant obviously holds.

When it is Bob’s turn, he colors at most b vertices and possibly destroys
Alice’s invariant. Alice lists the vertices v1, v2, . . . , vb Bob has colored. Now
Alice performs at most b steps. She keeps in mind an increasing set of origin
vertices. At the beginning every colored vertex is an origin vertex, except the
vertices v1, v2, . . . , vb. An extended component is a connected component of
a trunk in which all origin vertices are deleted. So a trunk possibly contains
several extended components and origin vertices, and an extended component
possibly contains several uncolored components which are separated by colored
non-origin vertices. An extended component is adjacent to an origin vertex x if
one of its uncolored components is adjacent to x. Alice’s winning strategy will
guarantee that after each step every extended component will be adjacent to at
most two origin vertices. In the k-th step, first, for any extended component C
adjacent to two origin vertices, Alice considers the path between the two origin
vertices and adds all members of {v1, v2, . . . , vb} which are on this path to
the set of origin vertices. This does not destroy her invariant, but has the
consequence that all non-origin vertices on the path are uncolored. Then she
considers the vertex vik with the lowest index ik among all non-origin vertices
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(a)

vik

(b)

Figure 2.5: Vertex vik is added to the set of origin vertices: (a) extended
component before adding vik . (b) extended components after adding vik .

of the list v1, . . . , vb. Alice adds vik to the set of origin vertices. By Alice’s
strategy, all extended components which are adjacent to vik are adjacent to
at most two origin vertices except at most one extended component C0 which
is adjacent to three origin vertices, see Fig. 2.5.

If there is no such component C0, Alice does not choose a vertex for coloring
and goes to the (k +1)-th step. In this case every extended component is still
adjacent to at most two origin vertices.

Otherwise, C0 is adjacent to three origin vertices w1, w2, and vik . The
paths w1w2, w1vik , and w2vik intersect at a single vertex w3 (since a forest does
not contain cycles with more than 2 vertices). The vertex w3 is uncolored,
as remarked above, because w3 is a non-origin vertex on the path between
w1 and w2. Alice chooses w3 for coloring and adds w3 to the set of origin
vertices. She furthermore adds all members of {v1, v2, . . . , vb} which are on
the path from vik to w3 to the set of origin vertices. Then she continues
with step (k + 1). By this type of move, C0 is split into several (at least 3,
possibly empty) extended components separated by w3. Obviously, each of
these extended components is adjacent to at most two origin vertices.

After at most b steps all vertices of the list v1, . . . , vb will be origin ver-
tices, therefore Alice’s local invariant implies the global invariant that every
uncolored component is adjacent to at most two colored vertices. After having
reinstalled her strategy, Alice may simply color neighbors of colored vertices
without affecting her invariant.

Now we have to prove that Alice finds a feasible color for each of her chosen
vertices. For a colored vertex v, the color weight G(v) is one plus the number
of all neighbors of v which are colored with the same color as v. The weight
G(w) of an uncolored vertex w is

G(w) =
∑

v∈Ncol(w)

G(v),
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where Ncol(w) is the set of colored neighbors of w. The weight G(C) of an
uncolored component C is defined as

G(C) =
∑

w∈U(C)

G(w),

where U(C) is the set of (uncolored) vertices of C. Obviously, by the pigeon-
hole principle, a chosen vertex w in the uncolored component C can be colored
if G(C) ≤ (d + 1)c − 1. Let j be such that

(d + 1)j ≤ b ≤ (d + 1)(j + 1) − 1,

i.e. c = j + 3. Then after Bob’s move

G(C) ≤ b + 2(d + 1) ≤ (d + 1)(j + 3) − 1 = (d + 1)c − 1.

In particular, this implies that, after Bob’s move, we find a feasible color for
any uncolored vertex which is different from the colors of the origin vertices
(each of which contributes at most d + 1 to the estimation of G(C)).

Whenever Alice colors a vertex, in her model, she splits the actual uncol-
ored component into several parts, so that the augmentation of the weight
by one (because of her new colored vertex) is compensated by the splitting,
except in one case. The exceptional case in which there is no splitting is if
Alice colors a vertex w3 adjacent to two or three vertices of the same color α
in the k-th step, two of them are origin vertices before the k-th step and the
third is vik , and Alice has to color w3 with α. But this case does not occur
since, as argued above, Alice may always color w3 different from the origin
vertices. Thus, for every new uncolored component C ′, G(C ′) ≤ (d + 1)c− 1,
so, by induction, Alice always finds a feasible color.

Since during Bob’s move the weight of every uncolored component is always
bounded by b + 2(d + 1), he can also always find a feasible color. �

We find that Theorem 17 is nearly tight.

Proposition 18. (a,b)χd
g(F) ≥

⌊
b

d+1

⌋
+ 2 for b ≥ 1.

Proof. This is very similar to the construction in the proof of Proposition 14,
thus the details are omitted. �

Again, the precondition a ≥ b ≥ 1 of Theorem 17 is necessary because of

Proposition 19. (a,b)χd
g(

~F) = ∞ for b > a.

Proof. This is the same proof as in Proposition 16 if we consider (undirected)
stars instead of in-stars. �
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Before formulating the next theorem, we start with the definition of an
extended star. Imagine that during the game several vertices of a tree have
been colored, others are uncolored. The tree is broken between two adjacent,
differently colored vertices. Now consider one of the remaining subtrees, which
are called trunks again. We construct the structure tree of a trunk as follows.
Every connected component C of equally colored vertices is replaced by a
single colored vertex connected with all former neighbors of C. A trunk is
called extended star if in its structure tree all paths between colored vertices
only intersect in a special colored vertex, the center. The union of these
paths and the original connected components of colored vertices is then called
induced subtree of the extended star. A connected component with possibly
several colored vertices is called big block, while a connected component that
contains a single vertex is called small block.

In [49] He et al. proved that (1,1)χ2
g(F) = 2. With a simpler construction

we show the weaker general result

Theorem 20. (a,1)χd
g(F) = 2 for a ≥ 2, d ≥ 2.

Proof. We prove a winning strategy for Alice with 2 colors. Again we
consider trunks. The induced subtree of a trunk is the union of all paths
between colored vertices of a trunk. Alice maintains the invariant that after
each of her moves the induced subtree of every trunk is an extended star
with one big block of colored vertices in the center and small blocks as leaves
which consist of one colored vertex only. Assume that Alice’s invariant holds
after her move. Then after Bob’s move there are the 5 possibilities depicted
in Fig. 2.6: First, Alice’s invariant holds for every trunk. Second, there is
one trunk with two big blocks, where one block only consists of two colored
vertices. Third, there is a trunk in the induced subtree of which there is an
uncolored vertex of degree 3 at distance one from the big block. Fourth, there
is a trunk in the induced subtree of which there is an uncolored vertex of
degree 3 at distance at least two from the big block. Fifth, there is a trunk
with a path between the big block and a colored vertex on which another
colored vertex lies. Now we describe Alice’s reaction in these cases.

In the first case Alice colors the first uncolored vertex on the path from
the big block to a small block in a color different from the color of the big
block.

In the second case Alice colors the first uncolored vertex on the path from
the old big block to the new big block in a color different from the color of the
old big block. This is possible since d ≥ 2 and by this move a vertex receives
a defect of at most 2.

In the third case Alice colors the vertex of degree 3 in the induced subtree
different from the color of the big block. This is possible as in the previous
case.
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BB

Case 1

BB

Case 2

BB

Case 3

BB

Case 4

BB

Case 5

Figure 2.6: The five cases
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In the fourth case assume that the big block is colored with color 1, and
v is the vertex of degree 3 in the induced subtree. Then Alice colors v with
color 1 and the first uncolored vertex on the path from v to the big block with
color 2. This is the only case where Alice must use the fact that she can color
at least 2 vertices in one move. Note that the coloring of v is feasible since
its two neighbors colored with color 1, if there are any, are the new colored
vertex and the single vertex of a small block.

In the fifth case assume that the big block is colored with 1 and v is the
colored vertex on the path between the big block and a colored vertex w. If v
and w are adjacent, Alice colors the first uncolored vertex on the path between
the big block and v with color 2. (If there is no uncolored vertex on the path,
nothing is to do.) If v and w are not adjacent, Alice colors the first uncolored
vertex on the path between v and w different from the color of v, so that the
trunk is split into two parts.

In most cases, Alice has to color additional vertices, since a > b = 1. But
this is easy, since now every trunk is as described in the first case, and Alice
can play as in the first case. Bob also has a legal move as long as there are
uncolored vertices since he can imitate Alice’s strategy for the first case. Thus
Alice wins. �

2.3 Forest-like structures

Consider the following type of oriented graphs. It may contain directed 3-
cycles and oriented tree structures which may be glued together at one of the
vertices of a 3-cycle. However, two 3-cycles may share only one vertex, not
two vertices. If every 3-cycle is replaced by its 3 vertices and an additional
center vertex to which the 3 vertices are connected by arcs, then the resulting
digraph must be a directed forest. We call this type of digraphs directed 3-
cycled forest. An example of such a structure is depicted in Fig. 2.7. Let ~FC3

be the class of all directed 3-cycled forests.

Theorem 21. χg( ~FC3) ≤ 4

Proof. We play the 0-relaxed directed (1, 1)-coloring game on a directed
3-cycled forest with 4 colors and show that Alice has a winning strategy.
Whenever a player colors a vertex v we multiply this vertex and break the
directed 3-cycled tree (i.e. the connected component of the directed 3-cycled
forest) at vertex v into pieces, so that v belongs to all these pieces which we
call independent 3-cycled subtrees. The induced subtree of an independent 3-
cycled subtree consists of the union of all shortest paths between its colored
vertices. (Here a path needs not to be directed, it is only a sequence of adjacent
arcs.) The splitting operation is useful since we consider a game with defect 0,
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Figure 2.7: A directed 3-cycled forest

therefore the colored neighbors of colored neighbors of an uncolored vertex v
do not affect the coloring of v.

A special class of independent 3-cycled subtrees are those with two colored
vertices at most which are called long lines. An independent 3-cycled subtree
with 3 colored vertices v1, v2 and v3 whose induced subtree is depicted in
Fig. 2.8 is called T -component. It consists of arcs (vC , v0) and (v2, vC), a
(shortest) path of arcs between v1 and vC , and a (shortest) path of arcs be-
tween v3 and v0. The arcs on the latter paths may have arbitrary direction.
Note that arcs on these paths may be part of a triangle. Alice’s winning
strategy consists in guaranteeing that after all her moves every independent
3-cycled subtree is either a long line or a T -component. At the beginning this
is true since then every connected component is a long line with 0 colored
vertices.

v

v vv vC1

2

30

Figure 2.8: Structure of the induced subtree of a T -component with colored
vertices v1, v2, and v3. Note that there are other arcs and uncolored vertices
which are not depicted.
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v

v vv vC1

2

30v4

Figure 2.9: First case of splitting a T -component

v

v vv vC1

2

30

v4

v5

Figure 2.10: Second case of splitting a T -component

If Bob colors a third vertex v3 in a long line with colored vertices v1 and v2,
then there are three cases. First the induced subtree containing v1, v2 and v3

is a path. Then Alice’s invariant is not destroyed and she can easily find a
feasible move (e.g. by coloring a neighbor of a colored vertex). Second the
shortest paths between the colored vertices meet in exactly one vertex v0.
Then Alice colors v0 (possibly in the fourth color) and breaks the independent
3-cycled subtree into at least three new long lines. Third there is a meeting
triangle instead of a meeting point. Then Alice colors a vertex of the triangle
and obtains a T -component (and several long lines).

If Bob colors a fourth vertex v4 in a T -component, there are again three
cases. First, if v4 lies in the induced subtree of the former T -component, then
Alice colors vC or v0 in order to break the independent 3-cycled subtree into
long lines. See Fig. 2.9. Second, if there is only one shortest path from v4 to
the induced subtree of the former T -component which ends in v5, then Alice
colors v5 and breaks the independent 3-cycled subtree into at most one T -
component and several long lines. See Fig. 2.10. Note that, by the definition
of a T -component, v5 is adjacent to at most 3 colored vertices, thus there is
a fourth color for Alice. Third, if there are two shortest paths from v4 to the
induced subtree of the former T -component, then these paths end in a meeting
triangle. A special vertex vx of the vertices of this triangle belongs to at least
four of the six shortest paths between the colored vertices v1, v2, v3, and v4.
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v

v vv vC1

2

30

vx

v4

Figure 2.11: Third case of splitting a T -component

See Fig. 2.11. Alice colors vx and breaks the T -component into at most two
T -components and possibly several long lines. Note that the meeting triangle
cannot contain vC and v0, since the old T -component must have been created
by coloring v2 and thus by deleting the arc (v0, v2) of a triangle (v2, vC , v0).
By the definition of directed 3-cycled forest this triangle may not be adjacent
to the meeting triangle, thus the meeting triangle does neither contain the
arc (vC , v0) nor the arc (v2, vC). Further note that v0 6= v3 (otherwise the
arc (vC , v0) would have been deleted when v0 = v3 was colored), i.e. v0 is
uncolored as long as it belongs to the old T -component. Therefore the vertex
Alice colors is adjacent to at most 3 colored vertices, thus Alice can color it
with the fourth color.

Bob can always move, since he can imitate Alice’s strategy. Thus Alice
will win. �

The bound is tight as the next theorem states.

u u u

v v v

x x

w w

1 2 5

1 2 4

3,1 3,6

3,1 4,1

Figure 2.12: The main parts of the left half of D1



38 CHAPTER 2. FORESTS

Theorem 22. χg( ~FC3) ≥ 4

Proof. Consider the following digraph D which consists of two identical
components D1 and D2. D1 = (V, E) is defined by

V = {ui|i = 1, . . . , 9} ∪ {vi|i = 1, . . . , 8}
∪{wi,j, xi,j|i = 1, . . . , 9; j = 1, . . . , 6}

and

E = {(u1, u2), (u2, u3), (u4, u3), (u5, u4)}
∪{(u5, u6), (u6, u7), (u8, u7), (u9, u8)}
∪{(v1, u1), (u2, v1), (v2, u2), (u3, v2)}
∪{(u3, v3), (v3, u4), (u4, v4), (v4, u5)}
∪{(v5, u5), (u6, v5), (v6, u6), (u7, v6)}
∪{(u7, v7), (v7, u8), (u8, v8), (v8, u9)}
∪{(wi,j, ui), (xi,j, vi)|i = 1, . . . , 8; j = 1, . . . , 6}
∪{(w9,j, u9)|j = 1, . . . , 6}.

Some important structures of the left half of D1 are depicted in Fig. 2.12.
This half and an identical right half are glued together in vertex u5 and
form D1. An important feature of such a half is that the triangles (u1, u2, v1)
and (u2, u3, v2) are directed in a way opposite to the triangles (u4, u3, v3) and
(u5, u4, v4).

We present a winning strategy for Bob with 3 colors for the game played
on D. W.l.o.g. Alice, in her first move, colors a vertex of D2. Then Bob colors
u5 with color 1. W.l.o.g. Alice answers by coloring a vertex of D2 or with
index i ≥ 5. After that Bob colors u2 with color 1. Now Alice’s third move
will bring the decision.

Case 1: If Alice colors u4 (with color 2), then Bob colors w3,1 with color
3, and u3 cannot be colored any more.

Case 2: Alice colors v3 with color c. If c = 2 (c = 3), then Bob colors
w4,1 with color 3 (2) and u4 cannot be colored any more. On the other hand,
if c = 1, then Bob colors w4,1 with color 3. In order to prevent Bob from
coloring w4,2 or w4,3 with color 2 and leaving u4 uncolored, Alice has to color
u4 with color 2. But then we are in the same situation as in Case 1 and Bob
has a winning strategy.

Case 3: Alice colors u3 with color 2. Then Bob colors x3,1 with color 1. In
order to prevent Bob from coloring x3,2 or x3,3 with color 3 and leaving vertex
v3 uncolored, Alice has to color v3 with color 3. Now Bob only has to color
w4,1 with color 2 in order to win since u4 cannot be colored any more.

Case 4: Alice colors a vertex different from u3, v3 and u4 in her third move.
Then Bob colors one of the vertices x3,j with color 1. Alice is stuck now. If
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she colors u3 (resp. v3, resp. u4) with color 2, then Bob colors a vertex x3,j

(resp. w4,j , resp. w3,j) with color 3 and wins. Otherwise Bob colors another
vertex x3,j with color 2. Again, Alice may not color u3, v3 or u4. No matter
what she does, Bob colors another vertex x3,j with color 3 and wins. �

2.4 Graph coloring games on orientations of

planar graphs

While the game chromatic number of directed forests has been solved, the
next interesting class of digraphs, i.e. orientations of planar graphs, until now
resist a determination of its game chromatic number. We are not even able to
give a reasonable upper bound for the game chromatic number of orientations
of planar graphs. For an undirected planar graph P , Zhu [88] has proven that

colgA
(P ) ≤ 17. So, by Proposition 7 we conclude for any orientation ~P of P

that
χgA

(~P ) ≤ colgA
(~P ) ≤ colgA

(P ) ≤ 17.

However, this bound seems to be too large. Let ~P be the class of orientations of
planar graphs and ~Ptrans be the class of orientations of planar graphs without
directed cycles. In this section we will at least give a lower bound for χg( ~P).
The case of outerplanar graphs is studied in Section 3.7.

Theorem 23. χg( ~P) ≥ χg( ~Ptrans) ≥ 5

Proof. Again, the first inequality is obvious, so we will only prove the
second. Consider the graph of Fig. 2.13 for which Bob has the following
winning strategy with 4 colors. W.l.o.g. Alice colors a vertex in the lower
component. Bob colors 1 with color 1. W.l.o.g. Alice colors a vertex in the
lower component or in the lower half of the upper component. Bob colors 2
with color 2. W.l.o.g. Alice colors a vertex in the lower component or in the
lower or right half of the upper component. (This might be also the vertex
adjacent to 1, 2, and 5.) Bob colors 3 with color 3. The next moves will bring
the decision.

If Alice, in her fourth move, colors 5 (with color 4), then Bob colors 6 with
color 1, and 8 cannot be colored any more.

If Alice, in her fourth move, colors 4, Bob colors 6 with color 1. Then
we have to consider two subcases: if Alice, in her next move, colors 8 (with
color 4) then 7 cannot be colored any more. Otherwise either Alice or Bob
color 5 with color 4, and 8 cannot be colored any more.

If Alice proceeds differently in her fourth move, Bob colors 4 with color 4,
and 5 cannot be colored any more. �
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2.5 Open problems

In Section 2.1 the d-relaxed (a, b)-game chromatic number of the class of di-
rected forests was completely determined for every value of a, b and d. How-
ever, for undirected forests there is a gap between the lower and the upper
bound for the d-relaxed (a, b)-game chromatic number:

Open question. For which values of (a, b) and d, (a,b)χd
g(F) =

⌊
b

d+1

⌋
+ 3,

resp. for which values, (a,b)χd
g(F) =

⌊
b

d+1

⌋
+ 2?

Both cases, i.e. attaining the upper resp. the lower bound, are possible.
Kierstead [53] has shown that, in the 0-relaxed case, (a,b)χg(F) = b + 3 if
b ≤ a < 2b or (a, b) = (2, 1), and (a,b)χg(F) = b+2 if a ≥ 2b and (a, b) 6= (2, 1).
But not only the parameters a and b affect the switch between upper and
lower bound, also the parameter d has some influence. In the symmetric case
(a, b) = (1, 1), Chou et al. [27] have proved that

χ1
g(F) = 3

(

=

⌊
b

d + 1

⌋

+ 3

)

,

whereas, by a result of He et al. [49],

χ2
g(F) = 2

(

=

⌊
b

d + 1

⌋

+ 2

)

.

Our results concerning 3-cycled forests might be generalized from the basic
coloring game to the d-relaxed asymmetric coloring game:

Open question. Let a, b, d ≥ 0. Determine (a,b)χd
g(

~FC3).

The most demanding task arisen by this chapter is to determine the d-
relaxed (a, b)-game chromatic number of planar graphs or orientations of pla-
nar graphs. Since the Four-Color-Theorem [10, 11] is a special case of this
question it will be very hard to solve. More generally, one might consider
graphs and orientations of graphs embeddable in an arbitrary surface instead
of planar graphs. In the next chapter we will consider special cases of these
digraphs, i.e. we examine digraphs embeddable in a surface with certain re-
strictions to their cycles.
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Figure 2.13: The digraph of Theorem 23
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Chapter 3

Lightness of digraphs in surfaces

In order to examine the game chromatic number of planar graphs without
4-cycles and with prescribed girth, He et al. [48] proposed an approach sub-
divided into two parts. The first part concerns an edge-partition argument to
bound the game coloring number of such a graph in terms of the game color-
ing number of a more simple subgraph (indeed, of a forest) and the maximum
degree of the graph G′ consisting of the remaining arcs. The second part is
devoted to bound a parameter M∗ of a related planar graph which results in
an upper bound for the maximum degree of G′.

We will generalize the results of He et al. to graphs and simple digraphs
embeddable in some surface with the same restrictions applying to cycles
and girth. While the edge-partition argument still works in these cases (see
Section 3.7), bounding M∗ requires new methods developed in the following
sections.

Recently, Wang [80] generalized the edge-partition argument from planar
graphs to graphs with nonnegative Euler characteristic. With this approach
he achieved better upper bounds for the game coloring number of graphs with
prescribed girth embeddable in one of the two surfaces of Euler characteristic
0 than we will obtain. However, our bounds are still the best currently known
bounds for the other surfaces we consider.

3.1 Lightness and weight

Following the ideas of He et al. [48] we define a more general parameter of a
digraph. For a digraph D = (V, E) and an arc e = (v, w) ∈ E, let L+

D(e) =
max{d+

D(v), d+
D(w)}. We call

L(D) = L+(D) = min
e∈E

L+
D(e)

positive lightness or simply lightness of D. The negative lightness L−(D) of D
could be defined in the same way by considering the out-degrees instead of

43
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Figure 3.1: A non-regular graph for which (3.1) is trivial

the in-degrees.
For a graph G, L(G) is exactly the parameter M∗(G) of He et al. An

edge vw with L(G) = L+
G ((v, w)) is called a light edge. The latter notion was

already used by Zhu [86] and He et al. [48], which is our justification to call
the related parameter ‘lightness’.

The lightness of a digraph D seems to be closely related to another graph
parameter, the weight w(D). It is defined as the minimum arc weight, where
the weight wD ((u, v)) of an arc (u, v) is the sum d+(u)+d+(v). For a graph G,
a light edge in the sense of weight could be defined as an edge uv with w(G) =
wG ((u, v)). Obviously,

1

2
w(D) ≤ L+(D) ≤ w(D) − δ+(D). (3.1)

The relation (3.1) between lightness and weight of a digraph D motivates
the following nonnegative residue parameters

R1(D) = 2L+(D) − w(D),

R2(D) = w(D) − δ+(D) − L+(D).

Obviously, R1(D) = R2(D) = 0 for regular digraphs, i.e., digraphs where each
vertex has the same in-degree. But there are also non-regular digraphs with
arbitrarily large maximum in-degree (or arbitrarily large clique number) ∆,
arbitrarily large minimum in-degree δ < ∆, and arbitrarily large connectiv-
ity κ < δ that have the same property. E.g., consider the graph built by Kδ+1

and K∆ which are glued together by a matching of cardinality κ as in Fig-
ure 3.1. A general criterion to recognize those digraphs for which lightness
and weight describes the same phenomenon is given by the following

Proposition 24. Let D = (V, E) be a digraph with E 6= ∅. Then the following
statements are equivalent:

(i) R1(D) = R2(D) = 0

(ii) L+(D) = δ+(D)
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(iii) D contains an arc (v, w) with d+(v) = d+(w) = δ+(D)

(iv) w(D) = 2δ+(D)

Proof. The system (i) is equivalent to L+(D) = δ+(D) and w(D) = 2δ+(D),
thus (ii) follows from (i). On the other hand, one of the conditions (ii) and
(iv) is redundant as we shall see. Assume that w(D) = 2δ+(D). Then we
have

0 ≤ R1(D) = 2L+(D) − w(D) = 2L+(D) − 2δ+(D), and

0 ≤ R2(D) = w(D) − L+(D) − δ+(D) = δ+(D) − L+(D),

hence δ+(D) = L+(D). As a consequence, (iv) implies (i). Note that, if
(iii) is not true, then, since E 6= ∅, each arc e has at least one end vertex v
with d+(v) > δ+(D), and L+(D) = mine L+(e) > δ+(D). This proves the
implication (ii)⇒(iii). (iii)⇒(iv) follows from the definition of weight. �

Remark. In general, R1 and R2 may not be bounded, even when restricted
to (undirected) trees. To see this, for given integers n1 ≥ 1 and n2 ≥ 1, we
construct a rooted tree T . Its root v has n1 + n2 descendants, each one of
which has n1 + 2n2 descendants again. To form the tree T(n1,n2) take T and
a copy T ′ of T with root v′ and connect v and v′ by an edge. One can easily
check that L(T(n1,n2)) = n1 + n2 + 1, and w(T(n1,n2)) = n1 + 2n2 + 2, therefore
R1(T(n1,n2)) = n1, and R2(T(n1,n2)) = n2. Here, the difference between the
concepts of lightness and weight is expressed by different light edges: vv′ is the
only ‘light edge’ in the sense of lightness (since L(vv′) = L(T(n1,n2)),) whereas
only every leaf edge e is ‘light’ in the sense of weight (since w(e) = w(T(n1,n2)).)
Figure 3.2 depicts T(1,1).

In order to construct an example G with higher minimum degree δ(G) =
δ ≤ n1, we start with T(n1,n2) and introduce δ − 1 new vertices which are

c c c c
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Figure 3.2: The tree T(1,1).
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connected with every leaf of T(n1,n2). Then L(G) = n1 + n2 + 1 and w(G) =
n1 + 2n2 + 1 + δ, as careful case distinctions show. Thus R1(G) = n1 + 1 − δ
and R2(G) = n2. By choosing n1 large enough and δ and n2 arbitrarily the
residue parameters may take any value.

Determining the weight of certain kinds of planar graphs has been consid-
ered for some time. Let G3 be a 3-connected planar graph, and G2 be a planar
graph with δ(G2) ≥ 2. By the righthand side of (3.1), a result of Kotzig [59]
concerning the weight of G3 implies L(G3) ≤ 10. Similarly, if G3 has no 4-
cycles, then L(G3) ≤ 7, and if G3 has girth 5, then L(G3) ≤ 5, both by a
result of Borodin [20]. Planar graphs G2 with minimum degree 2 and without
a certain kind of “alternating” even cycles have L(G2) ≤ 13 by another result
of Borodin [19] combined with (3.1).

He et al. [48] considered the case of planar graphs with minimum degree
δ ≥ 2 and without 4-cycles. They determined upper bounds for the lightness
of these graphs which depend on the girth k and are best-possible if k ≥ 5.
Let Gk

2 be such a graph with girth k. Then, by [48], L(G3
2) ≤ 8, L(Gk

2) ≤ 5
if k ≥ 5, L(Gk

2) ≤ 3 if k ≥ 7, and L(Gk
2) ≤ 2 if k ≥ 11. The main aim

of this chapter is to generalize these results to (planar) simple digraphs, and
to graphs resp. simple digraphs which are embeddable in other surfaces. We
apply the same restrictions on minimum degree, cycles, and girth in the case
of graphs, and in the case of simple digraphs we consider those with minimum
in-degree δ+ ≥ 1, prescribed girth k, and without 4-cycles. In Section 3.3 we
determine upper bounds for the lightness of such simple digraphs embeddable
in a surface S, whereas Section 3.4 is devoted to the case of graphs in S.
S may be either one of the orientable surfaces Sγ, 0 ≤ γ ≤ 6, or one of the
non-orientable surfaces Nγ , 1 ≤ γ ≤ 9, possibly even some other surface.

Whenever k ≥ 5, the bounds are tight for the surfaces of nonnegative
Euler characteristic, i.e., for the sphere, the torus, the projective plane and
the Klein bottle, as shown in Section 3.6. In the case of other surfaces, the
bounds depend on a topological parameter which is not exactly known for
any of these surfaces (exept the double torus). The next section concerns this
topological parameter.

3.2 The parameter M(S)

For the orientable surface Sγ , the minimum edge number M(Sγ) of S is the
minimum number of arcs a digraph with genus γ can have. It is called mini-
mum ‘edge’ number since it is clear that, if we replace ‘digraph’ by ‘graph’ and
‘arc’ by ‘edge’ in the definition, we will obtain the same number. In the same
way, for the nonorientable surface Nγ , the minimum edge number M(Nγ) of S
is the minimum number of arcs a digraph with crosscapnumber γ can have.
(Here we define the crosscapnumber of planar graphs to be 0.)
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Although it is easy to define M(S) for any surface S, it seems to be very
hard to determine the parameter exactly or even to give good lower bounds for
it. Obviously, M(S0) = 0. By Kuratowski’s Theorem [60], M(S1) = M(N1) =
9. Indeed, for a surface Sγ we need only consider the irreducible graphs for
the surface Sγ−1, one of them has the fewest number m of edges amongst all
irreducible graphs, this number m will equal M(Sγ). For S0, there are only
two irreducible graphs, K5 (with 10 edges), and K3,3 (with 9 edges), thus
M(S1) = 9. For nonorientable surfaces we have the same argument.

Unfortunately, the number of irreducible graphs explodes with growing
genus resp. crosscapnumber. Apart from the sphere, only for the projective
plane a complete classification of all irreducible graphs is known: in a series
of papers Glover et al. [43] and Archdeacon [12] proved that there are exactly
103 irreducible graphs for the projective plane, and listed them. The smallest
one has 15 edges. Thus we have

Theorem 25. (Glover, Huneke and Wang [43]; Archdeacon [12])
M(N2) = 15.

Corollary 26. M(Nγ) ≥ 15 for γ ≥ 2.

This lower bound for M(Nγ) is not satisfactory, but there seems to be no
better bound known so far.

Myrvold [67] classified all irreducible graphs for the torus with at most
11 vertices. By her results there are irreducible graphs with 18 edges, and
every irreducible graph has at least 18 edges. Irreducible graphs with 12 or
more vertices must also contain at least 18 edges since irreducible graphs have
minimum degree 3. Thus we have

Theorem 27. (Myrvold [67])
M(S2) = 18.

Corollary 28. For any orientable surface Sγ with γ ≥ 2, M(Sγ) ≥ 16 + γ.

Proof. This is an obvious induction on γ. For γ = 2 the statement is true by
Myrvold’s theorem [67]. Note that the deletion of an edge in a graph reduces
the genus by at most one, which implies the rest. �

γ 1 2 3 4 5 6 7 8 9 10 11 12 ...

M(Nγ) ≥ 9 15 15 15 15 15 15 15 15 15 15 15
M(Nγ) ≤ 9 15 19 23 25 29 33 35 39 41 45 47

Table 3.1: Bounds for M (nonorientable case)

Upper bounds for M(S) of a surface S are easier to find. The upper bounds
for M(S) in the Tables 3.1 resp. 3.2 are given by examples of Km,n − Mk the
crosscapnumber resp. the genus of which are well-known [66, 65].
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γ 1 2 3 4 5 6 7 8 9 10 11 12 ...

M(Sγ) ≥ 9 18 19 20 21 22 23 24 25 26 27 28
M(Sγ) ≤ 9 18 25 33 39 45 49 55 61 67 71 77

Table 3.2: Bounds for M (orientable case)

3.3 The structure of digraphs in surfaces

In this section we will generalize Theorems 2.1. and 2.2. in He et al. [48],
which examine the lightness of planar graphs, to simple digraphs embeddable
in surfaces. First we define for a nonnegative integer k and a surface S

FS(k) =
M(S)k + M(S)

(2χχ(S) + M(S)) k + 2χχ(S) − 3M(S)
, (3.2)

HS =
5M(S)

10χχ(S) + M(S)
. (3.3)

These parameters FS(k) and HS (whenever well-defined and positive) will be
the main part of the upper bounds discussed in Theorems 29, 30, 31, and 32.
In order to simplify the notation we will write M resp. χχ instead of M(S)
resp. χχ(S) when there is only one surface S. Clearly, FS(k) is non-increasing
when k −→ ∞ for 2χχ + M > 0 and k ≥ k0 > 3M−2χχ

2χχ+M
.

Theorem 29. Let S be a surface with Euler characteristic χχ(S) and D be a
simple digraph embeddable in S with δ+(D) ≥ 1 and g(D) ≥ k for odd k ≥ 5.

(a) If χχ(S) > 0, then

L+(D) ≤
⌈

4

k − 3

⌉

.

(b) If χχ(S) ≤ 0, and M(S) + 2χχ(S) > 0, and k > 3M(S)−2χχ(S)
2χχ(S)+M(S)

, then

L+(D) ≤ ⌊FS(k)⌋ .

Proof. Assume D = (V, E) is a counterexample. W.l.o.g. D is connected.
So g(D) ≥ k for odd k ≥ 5 and L+(D) ≥ c + 1 where

c =

⌈
4

k − 3

⌉

in case (a), resp., (3.4)

c = ⌊FS(k)⌋ in case (b), (3.5)

and there is a 2-cell embedding which embeds D in S. By deleting all vertices v
with d+(v) + d−(v) = 1 succesively and subdividing each arc (v, w) with
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=⇒

Figure 3.3: Subdividing the ‘fat’ arcs. A detail of the original digraph D
is depicted on the left-hand side, a detail of the auxiliary digraph D on the
right-hand side. (Here c + 1 = 3.)

d+(v) ≥ c+1 and d+(w) ≥ c+1 once (maintaining the orientation) we obtain
an auxiliary digraph D = (V , E), see Fig. 3.3. Let

Vi :=
{
v ∈ V

∣
∣ d+(v) = i

}
, i = 1, . . . , c

Vc+1 :=
{
v ∈ V

∣
∣ d+(v) ≥ c + 1

}
.

Furthermore ni := #Vi, mi := #{(v, w) ∈ E |w ∈ Vi}, n := #V , m := #E.
D is bipartite with Vc+1 forming one of the partite sets. Thus g(D) ≥ k + 1
since k is odd. By the construction, L+(D) ≥ c + 1, δ+(D) ≥ 1, and

δ±(D) ≥ 2. (3.6)

Like D, the auxiliary digraph D embeds in S, and for a fixed 2-cell embedding
we have

f ≤ 2

k + 1
m

where f denotes the number of faces of D.

Obviously,

c+1∑

i=1

mi = m. (3.7)

In view of (3.6), m1 ≤ mc+1, so that

−mc+1 ≤ −m1, m1 ≤
m

2
(3.8)
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Hence

n =

c+1∑

i=1

ni ≤ m1 +

c∑

i=2

mi

i
+

mc+1

c + 1

≤ m1

2
+

m1 + m2 + . . . + mc+1

2
+

−c + 1

2c + 2
mc+1

(3.7),(3.8)

≤ c + 2

2c + 2
m =

1

2

(

1 +
1

c + 1

)

m

In case (a), by (3.4), 1/(c + 1) ≤ (k − 3)/(k + 1), which implies

n − m + f ≤
(

k − 1

k + 1
− 1 +

2

k + 1

)

= 0,

and contradicts χχ ≥ 1.
In case (b), by the preconditions, FS(k) > 0. Then, by (3.5), 1/(c + 1) <

1/FS(k), hence

n − m + f <

(
1

2
+

(2χχ + M)k + 2χχ − 3M

2Mk + 2M
− 1 +

2

k + 1

)

m

= χχ
m

M
≤ χχ.

The last estimation holds since χχ ≤ 0, and 0 < M ≤ m as we may assume
w.l.o.g. that D (and so D) does not embed in a surface of lower genus resp.
lower crosscapnumber than S. On the other hand, this is a contradiction,
because by definition of Euler characteristics n − m + f ≥ χχ. �

If we drop the prerequisite δ+(D) ≥ 1, it is easy to see that the parameter
L+(D) is not bounded by any constant. Think of an in-star, for example.
The same problem occurs if we allow 4-cycles: for each n ≥ 1, there is an
orientation ~K2,2n of the planar bipartite graph K2,2n with δ+( ~K2,2n) ≥ 1 but

L+( ~K2,2n) ≥ n. However, we may permit 3-cycles, as stated in the following
theorem.

Theorem 30. Let S be a surface with Euler characteristic χχ(S) and D be a
simple digraph embeddable in S with δ+(D) ≥ 1 and g(D) ≥ 3 which does not
contain any 4-cycles.

(a) If χχ(S) > 0, then L+(D) ≤ 4.

(b) If χχ(S) ≤ 0 and M(S) > −10χχ(S), then L+(D) ≤ ⌊HS⌋
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Proof. Assume the theorem is false. W.l.o.g. we may assume that there
is a connected counterexample D = (V, E) with δ±(D) ≥ 2 (cf. the proof of

Theorem 29). Let c = 4 in case (a), and c =
⌊

5M(S)
10χχ(S)+M(S)

⌋

in case (b). We

define
Vc+1 := {v ∈ V | d+(v) ≥ c + 1},

T := {(v, w) ∈ E | v ∈ Vc+1 ∧ w ∈ Vc+1},
Vi := {v ∈ V | δ+(v) = i} for 1 ≤ i ≤ c,

Ei := {(v, w) ∈ E |w ∈ Vi} for 1 ≤ i ≤ c + 1.

ni := #Vi, mi := #Ei, n := #V , m := #E, t := #T . Let fi be the number
of i-faces, i.e., of faces bounded by exactly i arcs, and f the number of faces.
Since f4 = 0 we have

3f3 + 5f5 + 6f6 + 7f7 + . . . = 2m,

and further

f =
1

5
·
∑

i≥3

5fi ≤
1

5

(

2f3 +
∑

i≥3

ifi

)

=
2

5
m +

2

5
f3. (3.9)

As in the preceding proof we will also consider the digraph D = (V , E)
obtained from D by subdividing each arc from T once and maintaining the
orientation. We define ni resp. mi by replacing V and E by V and E, respec-
tivly, in the definitions leading to ni resp. mi. Obviously, n1 = n1 + t, ni = ni

for i ≥ 2, m = m + t. As above we state that

c+1∑

i=1

mi = m, (3.10)

−mc+1 ≤ −m1, (3.11)

from which
m1 ≤ m/2 (3.12)

follows. Thus we conclude

n =
∑

ni =
∑

ni − t ≤
∑ mi

i
− t

≤ m1

2
+

m1 + m2 + . . . + mc+1

2
+

(
1

c + 1
− 1

2

)

mc+1 − t

(3.10)
=

m

2
+

m1

2
− c − 1

2(c + 1)
mc+1 − t

(3.11),(3.12)

≤ c + 2

2(c + 1)
m − t =

1

2

(

1 +
1

c + 1

)

m − c

2(c + 1)
t (3.13)



52 CHAPTER 3. LIGHTNESS OF DIGRAPHS IN SURFACES

Note as well that f3 ≤ t since every 3-face of D contains an arc from T and
there are no adjacent 3-faces (otherwise there would be a 4-cycle). Combining
this with (3.9) and (3.13) yields in case (a)

n − m + f ≤ 2

5
(f3 − t) ≤ 0

since 1/(c + 1) = 1/5. In case (b), by the prerequisite HS > 0, we therefore
have 1/(c + 1) < 1/HS. Furthermore, c ≥ 4 because M > 0, which implies
−c/(2c+2) ≤ −2/5. W.l.o.g. we may assume again that D does not embed in
a surface of lower genus resp. lower crosscapnumber, so M ≤ m. We conclude

n − m + f <

(
1

2
+

10χχ + M

10M
− 1 +

2

5

)

m +
2

5
(f3 − t) ≤ χχ

m

M
≤ χχ.

In both cases we obtain a contradiction with respect to the definition of the
Euler characteristic. �

3.4 The structure of graphs in surfaces

Theorem 2.1. in He et al. [48], examines the lightness of planar graphs. The
following theorem generalizes this to graphs embeddable in arbitrary surfaces.

Theorem 31. Let S be a surface of Euler characteristic χχ(S) and G = (V, E)
be a graph embeddable in S with δ(G) ≥ 2 and g(G) ≥ k for odd k ≥ 5.

(a) If χχ(S) > 0, then

L(G) ≤
⌈

k + 5

k − 3

⌉

.

(b) If χχ(S) ≤ 0 and M(S) + 2χχ(S) > 0 and k > 3M(S)−2χχ(S)
2χχ(S)+M(S)

, then

L(G) ≤ ⌊2FS(k)⌋ .

Proof. (a) has been proven by He et al. [48] for planar graphs. The same
proof holds for graphs embeddable in the projective plane. We are left to
consider (b). Again we assume that a connected graph G = (V, E) is a
counterexample. Hence g(G) ≥ k ≥ 5 for odd k and L(G) ≥ c + 1 where

c = ⌊2FS(k)⌋ , (3.14)

and there is a 2-cell embedding which embeds G in S. By subdividing each
edge vw with d(v) ≥ c + 1 and d(w) ≥ c + 1 once we obtain (as in the
preceding proof) an auxiliary graph G with vertex set V and edge set E with
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g(G) ≥ k + 1 (since k is odd), L(G) ≥ c + 1, and δ(G) ≥ 2. Again this
construction produces a bipartite graph with partite sets

V1 :=
{
v ∈ V

∣
∣ d(v) ≤ c

}
, and

V2 :=
{
v ∈ V

∣
∣ d(v) ≥ c + 1

}
.

Further ni := #Vi, n := #V , m := #E. Note that here we count the edges,
not the arcs. W.l.o.g. G does not embed in a surface of lower genus resp. lower
crosscapnumber than S. Since G is homeomorphic to G, G embeds in S, and
for a fixed 2-cell embedding we have

f ≤ 2

k + 1
m

where f denotes the number of faces of G. The number of vertices is bounded
by

n = n1 + n2 ≤
(

1

2
+

1

c + 1

)

m,

c.f. He et al. [48]. By the preconditions and by (3.14), 1/(c+1) < 1/ (2FS(k)).
As in the proof of Theorem 29 we obtain the contradiction n−m+ f < χχ. �

By the same refinement which extends the proof of Theorem 29 to a proof
of Theorem 30 the proof of Theorem 31 may be modified to prove the following

Theorem 32. Let S be a surface of Euler characteristic χχ(S) and G be a
graph embeddable in S with δ+(G) ≥ 2 and g(G) ≥ 3 which does not contain
any 4-cycles.

(a) If χχ(S) > 0, then L(G) ≤ 9.

(b) If χχ(S) ≤ 0 and M(S) > −10χχ(S), then L(G) ≤ ⌊2HS⌋
Proof. Let G be a connected graph with vertex set V and edge set E which
is a counterexample to the theorem. So L(G) ≥ c + 1 where c = 9 in the
case of (a), and c = ⌊2HS⌋ in the case of (b). Furthermore there is a 2-cell
embedding which embeds G in S. Let

V1 =
{
v ∈ V

∣
∣ d(v) ≤ c

}
,

V2 =
{
v ∈ V

∣
∣ d(v) ≥ c + 1

}
,

T =
{
vw ∈ E

∣
∣ v ∈ V2 ∧ w ∈ V2

}
,

ni = #Vi for i = 1, 2, n = #V , m = #E, and t = #T .
Let fi be the number of i-faces as in the proof of Theorem 30, and f be

the number of faces. Again, since f4 = 0, we have

3f3 + 5f5 + 6f6 + 7f7 + . . . = 2m,
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from which

f ≤ 2

5
m +

2

5
f3 (3.15)

follows, cf. the proof of Theorem 30.
We will consider the graph G with vertex set V and edge set E, obtained

from G by subdividing each edge from T once. G is bipartite. By construction,
L(G) ≥ c + 1. We define n, ni resp. m by replacing V , Vi resp. E by V , V i

resp. E in the definitions leading to n, ni resp. m. Then we have n1 = n1 + t,
n2 = n2, and m = m + t. Since δ(G) = δ(G) ≥ 2 we have

n1 ≤
1

2
m.

Therefore we calculate

n = n1 + n2 = n1 + n2 − t ≤
(

1

2
+

1

c + 1

)

m − t

=

(
1

2
+

1

c + 1

)

m −
(

1

2
− 1

c + 1

)

t. (3.16)

Also note that
f3 ≤ t (3.17)

since every 3-face of G contains an edge of T , and there are no adjacent 3-faces
(otherwise there would be a 4-cycle).

In case (a) we obtain

n − m + f
(3.15),(3.16)

≤ 3

5
m − 2

5
t − m +

2

5
m +

2

5
f3 =

2

5
(f3 − t)

(3.17)

≤ 0

since 1/(c + 1) = 1/10. In case (b), by the prerequisite HS > 0, therefore

1

c + 1
<

1

2HS

. (3.18)

Furthermore c ≥ 9 because M > 0, which implies

−
(

1

2
− 1

c + 1

)

≤ −2

5
. (3.19)

We may assume again that G does not embed in a surface of lower genus resp.
lower crosscapnumber, so M ≤ m. By (3.15), (3.16), (3.17), (3.18), and (3.19)
we conclude

n − m + f <

(
1

2
+

10χχ + M

10M

)

m − 2

5
t − m +

2

5
m +

2

5
f3

≤ 2

5
(f3 − t) + χχ

m

M
≤ χχ.
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As in case (a) this is also a contradiction with respect to the definition of
Euler characteristic. �

Note that, in the context of Theorem 32 (a), He et al. [48] achieved the
tighter bound 8 for planar graphs using special properties of cycles in planar
embeddings.

3.5 Application range of Theorems 29, 30, 31,

and 32

In Theorems 29 (b) and 31 (b) we assume M(S)+2χχ(S) > 0. It might be true
that this inequality is valid for any nonorientable or any orientable surface S.
However, from the lower bounds for M(S) in Section 3.2 we may only deduce
that it is valid for the surfaces Nγ, 2 ≤ γ ≤ 9, since then, by Corollary 26,

M(Nγ) + 2χχ(Nγ) ≥ 19 − 2γ > 0,

and that it is valid for the surfaces Sγ, 1 ≤ γ ≤ 6, since then, by Corollary 28,

M(Sγ) + 2χχ(Sγ) ≥ 20 − 3γ > 0.

Better lower bounds for M(S) not only tighten the bounds of the theorems,
but also enlarge the application range of the theorems.

The situation is a bit different for Theorems 30 (b) and 32 (b). Here we
have the precondition M + 10χχ > 0. The upper bounds of Tables 3.1 and 3.2
suggest that for the surfaces Nγ , γ ≥ 5, and for the surfaces Sγ, γ ≥ 2, the
condition does not hold. On the other hand the condition is true for the
surfaces Nγ , 2 ≤ γ ≤ 3, since then, by Corollary 26,

M(Nγ) + 10χχ(Nγ) ≥ 35 − 10γ > 0,

and for the surface S1 since, by Kuratowski’s Theorem,

M(S1) + 10χχ(S1) = 9 > 0.

So improving the lower bounds for M(N4) might include N4 into the applica-
tion range of Theorems 30 (b) and 32 (b), other improvements do not have
any effect in this case.

In Tables 3.3 resp. 3.4 the lightness-values are given for graphs embed-
dable in a surface of genus γ resp. crosscapnumber γ with girth k, minimum
degree 2, and without 4-cycles. In order to obtain the lightness-values for sim-
ple digraphs embeddable in the respective surface with girth k and without
4-cycles and with minimum in-degree 1 the floor of the values in the tables
divided by 2 has to be taken.
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S sk(0) sk(1) sk(2) sk(3) sk(4) sk(5)
k

3 (8) 10 ∞ ∞ ∞ ∞
5 (5) 6 18 ∞ ∞ ∞
7 (3) 4 7 25
9 3 5 11

11 (2) 4 8 30
13 2 6 17
15 3 13
17 5 11 126
19 10 52
21 9 35
23 4 8 28
25 23
27 7 21
29 19
31 17
33 16
35 6 15
37 2
39 14
43 13
47 12
51 3
57 11
61 5
71 10

105 9
253 8

Table 3.3: Upper bounds sk(γ) for the lightness of graphs with girth at least
k and without 4-cycles and minimum degree at least 2 in the orientable sur-
face Sγ. The bounds in brackets were already obtained by He et al. [48].

3.6 Tightness of the bounds

There is a series of corollaries from Theorems 29 and 31. Note that, if χχ = 0,
the parameter M is canceled out in the expression FS(k).

Corollary 33. Let D resp. G be a simple digraph with δ+(D) ≥ 1 resp. a
graph with δ(G) ≥ 2 embeddable in the sphere or the projective plane. Then

a) L(G) ≤ 5 if g(G) ≥ 5,

b) L(G) ≤ 3 if g(G) ≥ 7,

c) L(G) ≤ 2 if g(G) ≥ 11,

a’) L+(D) ≤ 2 if g(D) ≥ 5,

b’) L+(D) ≤ 1 if g(D) ≥ 7.

Corollary 33 is tight in the projective plane case: For a) consider the
complete graph K6 and subdivide each edge once. By the result of Ringel



3.6. TIGHTNESS OF THE BOUNDS 57

S nk(1) nk(2) nk(3) nk(4) nk(5) nk(6) nk(7) nk(8)
k

3 9 10 30 ∞ ∞ ∞ ∞ ∞
5 5 6 10 30 ∞ ∞ ∞ ∞
7 3 4 5 8 20
9 3 4 6 10 30

11 2 3 5 7 15
13 2 4 6 11 42
15 5 9 24
17 3 8 18
19 7 15
21 2 4 13 110
23 6 12 60
25 11 43
27 10 35
29 30
31 5 9 26
33 24
35 22
37 8 21
39 20
41 3 19
43 18
45 17
49 7 16
53 15
61 2 4 14
71 13
85 6
87 12

121 11
221 10

Table 3.4: Upper bounds nk(γ) for the lightness of graphs with girth at least
k and without 4-cycles and minimum degree at least 2 in the nonorientable
surface Nγ.

and Youngs [76] K6, and thus the resulting graph, can be embedded in the
projective plane. It has girth 6, minimum degree 2, and lightness 5. For b)
consider the graph depicted in Fig. 3.4. For a’) take the example from a) and
orient the edges in such a way that d+(v) ≥ 1 for every vertex v and every
vertex of degree 5 has in-degree at least 2. The tightness in the undirected
sphere case was already proven in [48], in the directed sphere case a’) edges
are oriented suitably as above.

Corollary 34. Let D resp. G be a simple digraph with δ+(D) ≥ 1 resp. a
graph with δ(G) ≥ 2 embeddable in the torus or the Klein bottle. Then

a) L(G) ≤ 6 if g(G) ≥ 5,

b) L(G) ≤ 4 if g(G) ≥ 7,

c) L(G) ≤ 3 if g(G) ≥ 9,

d) L(G) ≤ 2 if g(G) ≥ 13,
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Figure 3.4: Projective twisted dodekahedron

Figure 3.5: Graph with torus identification

Figure 3.6: Digraph with Klein bottle identification
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Figure 3.7: Double-twisted double-clock

a’) L+(D) ≤ 3 if g(D) ≥ 5,

b’) L+(D) ≤ 2 if g(D) ≥ 7,

c’) L+(D) ≤ 1 if g(D) ≥ 9.

Corollary 34 is tight in the torus case: For a) consider the complete
graph K7 and subdivide each edge once. The resulting graph can be embedded
in the torus and has girth 6, minimum degree 2, and lightness 6. For b)
consider the graph obtained from subdividing each edge once in either the
complete bipartite graph K4,4 or the 4-dimensional hypercube. Both examples
have genus 1, girth 8, minimum degree 2 and lightness 4. Furthermore, c) is
tight since the graph G of Fig. 3.5 with g(G) = 12, δ(G) = 2, and L(G) = 3
can be embedded in the torus. For a’) resp. b’) we may take the same examples
as for a) resp. b) and orient the edges in such a way that the minimum in-
degree is 1 and the positive lightness 3 resp. 2. Such orientations can be found
easily.

Corollary 34 is tight in the Klein bottle case: For a) consider the
graph G of Fig. 3.6 (without the orientation) with g(G) = 6, δ(G) = 2, and
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Figure 3.8: Digraph with 63 vertices and 105 arcs. The upper and the lower
border of this illustration have to be glued together, so that a planar digraph
is obtained. (Imagine rolling the rectangle on a cylinder.)

L(G) = 6. An example for the tightness of b) is obtained from K4,4 by subdi-
viding each edge once. This graph has crosscapnumber 2, girth 8, minimum
degree 2, and lightness 4. For c) consider the double-twisted doubleclock
which is depicted in Fig. 3.7. For a’) consider the graph of Fig. 3.6 again, for
b’) the subdivision of K4,4 with an obvious orientation.

We do not know whether the result of Theorem 30 is tight, not even in
the case of planar digraphs, i.e. whether there exists a planar digraph D with
δ+(D) ≥ 1 and which does not contain 4-cycles, but having L+(D) = 4. Fig-
ure 3.8 depicts a planar digraph D meeting the preconditions of Theorem 30
with L+(D) = 3.

3.7 Application to graph coloring and mark-

ing games

The application of our results to game coloring numbers is based on a simple
but important observation of Zhu [86] on edge partitions. Let G = (V, E),
G1 = (V, E1) and G2 = (V, E2) be graphs with the same vertex set. G1|G2 is
an edge partition of G if E = E1∪̇E2.
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Observation 35. (Zhu [86]; Guan and Zhu [46])
If a graph G has an edge partition G1|G2, then colg(G) ≤ colg(G1) + ∆(G2)
for any version g of the marking game.

We may define an arc partition D1|D2 of a digraph D = (V, E) in line, i.e.
if D1 = (V, E1) and D2 = (V, E2) are digraphs, and E = E1∪̇E2.

Observation 36. If a digraph D has an arc partition D1|D2, then

colg(D) ≤ colg(D1) + ∆+(D2)

for any version g of the directed marking game.

Indeed we may generalize these observations to the (a, b)-marking game.

Observation 37. If a graph G has an edge partition G1|G2, then

(a,b)colg(G) ≤ (a,b)colg(G1) + ∆(G2)

for any version g of the (a, b)-marking game.

Observation 38. If a digraph D has an arc partition D1|D2, then

(a,b)colg(D) ≤ (a,b)colg(D1) + ∆+(D2)

for any version g of the directed marking game.

A graph G is called i-hereditary if, for every subgraph H of G,

δ(H) ≤ 1 or L(H) ≤ i.

Let u(S, k) be an upper bound for the lightness of graphs embeddable in
a surface S with girth at least k, minimum degree at least 2, and without
4-cycles. Possibly, u(S, k) = ∞. For example, u(Sγ, k) = sk(γ) can be taken
from Table 3.3, and u(Nγ, k) = nk(γ) can be taken from Table 3.4. In general,
the values u(S, k) can be calculated with Theorems 31 and 32. Since every
subgraph of a graph G embeddable in S with girth at least k and without
4-cycles embeds in S and has girth at least k and no 4-cycles, too, G is
u(S, k)-hereditary.

He et al. proved the following

Lemma 39. (He, Hou, Lih, Shao, Wang and Zhu [48])
If a graph G is i-hereditary, G has an edge partition G1|G2, so that G1 is an
undirected forest and ∆(G2) ≤ i − 1.

By a result of Faigle et al. [40], the game coloring number of a forest is at
most 4. Kierstead [53] obtained the following generalization of this result.
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Theorem 40. (Kierstead [53])
For any variant of the (a, b)-marking game,

(a,b)colg(F) = ∞ if a < b
(a,b)colg(F) = b + 3 if b ≤ a < 3b
(a,b)colg(F) = b + 2 if 3b ≤ a

Theorem 41. For a graph G embeddable in a surface S with girth at least k
and without 4-cycles,

(a,b)colg(G) ≤ u(S, k) + b + 2 if b ≤ a < 3b
(a,b)colg(G) ≤ u(S, k) + b + 1 if 3b ≤ a

for any version g of the (a, b)-marking game.

Proof. By Lemma 39, since G is u(S, k)-hereditary, G has an edge partition
G1|G2, so that G1 is a forest and ∆(G2) ≤ u(S, k) − 1. By Theorem 40,
(a,b)colg(G1) ≤ b + 3 if b ≤ a < 3b, and (a,b)colg(G1) ≤ b + 2 if 3b ≤ a. The
combination of these facts with Observation 37 yields the theorem. �

For a = b = 1, in Table 3.5 resp. Table 3.6 these bounds which result from
Theorems 31 and 32 and Theorem 41 are given explicitly for the surfaces Sγ ,
0 ≤ γ ≤ 5, resp., Nγ, 1 ≤ γ ≤ 8. For reasons of clarity and space, the bounds
for S6 and N9 are omitted. By Observation 6, these numbers are bounds for
the respective game chromatic numbers, too.

One method to obtain bounds for the (a, b)-game coloring number of simple
digraphs is to use Lemma 39 again in conjunction with Observation 38 and
Theorem 11. So we obtain the main result of this section:

Theorem 42. For a digraph D which is the orientation of a graph G embed-
dable in a surface S with girth at least k and without 4-cycles,

(a,b)colg(D) ≤ u(S, k) + b + 1

for any version g of the (a, b)-marking game with 1 ≤ b ≤ a.

Proof. By Lemma 39, since G is u(S, k)-hereditary, G has an edge partition
G1|G2, so that G1 is an undirected forest and ∆(G2) ≤ u(S, k) − 1. Let V
be the vertex set of D, E the arc set of D, E1 the arc set of G1, and E2

the arc set of G2. Define D1 = (V, E ∩ E1) and D2 = (V, E ∩ E2). Then
D1|D2 is an arc partition of D, so that D1 is a directed forest and ∆+(D2) ≤
∆(G2) ≤ u(S, k) − 1. By Theorem 11, (a,b)colg(D1) ≤ b + 2 if 1 ≤ b ≤ a. By
Observation 38,

(a,b)colg(D) ≤ (a,b)colg(D1) + ∆+(D2) ≤ u(S, k) + b + 1
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if 1 ≤ b ≤ a. �

Guan and Zhu [46] proved that the game chromatic number of outerplanar
graphs is at most 7, a bound which they obtained by analyzing that outer-
planar graphs have an edge partition G1|G2, where G1 is an undirected forest
and ∆(G2) ≤ 3. By this result, in the same way as Theorem 42, we obtain

Theorem 43. Let ~O be the class of orientations of outerplanar graphs, a ≥
b ≥ 1, and g be any version of the (a, b)-marking game. Then

(a,b)colg( ~O) ≤ b + 5.

Corollary 44. Let ~O be the class of orientations of outerplanar graphs and
~Oacy be the subclass of acyclic orientations of outerplanar graphs. Then

4 ≤ χg( ~Oacy) ≤ χg( ~O) ≤ 6

Proof. The upper bound follows from Theorem 43.

12
3

45
6

Figure 3.9: The digraph of Theorem 43

For the proof of the lower bound, consider the digraph of Fig. 3.9, which
is an acyclic orientation of an outerplanar graph. We illustrate a winning
strategy for Bob with 3 colors. In her first move, Alice colors a vertex in
the lower component. Then Bob colors vertex 1 with color 1. W.l.o.g. Alice
colors a vertex different from the numbered vertices. Then Bob colors vertex 4
with color 2. If Alice colors vertex 3 (with color 3), then Bob colors vertex 5
with color 1, and vertex 6 cannot be colored any more. Otherwise, Bob colors
either vertex 2 or vertex 5 with color 3, and vertex 3 cannot be colored any
more. Thus Bob wins. �
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k ≥ sk(0) sk(1) sk(2) sk(3) sk(4) sk(5)

3 (10)[80] (10)[80] (22)[52] (24)[52] (26)[52] (27)[52]

5 (8)[48] (8)[80] 21 (24)[52] (26)[52] (27)[52]

7 (6)[48] (6)[80] 10
9 8 14

11 (5)[48] (5)[80] 7 8
13 9 20
15 6 16
17 8 14
19 13
21 12
23 7 11
25 26
27 10 24
29 22
31 20
33 19
35 9 18
37 5
39 17
43 16
47 15
51 6
57 14
61 8
71 13

105 12
253 11

s(0) s(1) s(2) s(3) s(4) s(5)

(17)[88] (20)[52] (22)[52] (24)[52] (26)[52] (27)[52]

Table 3.5: Upper bounds sk(γ) for the game coloring number of graphs embed-
dable in the orientable surface Sγ with girth at least k and without 4-cycles.
Also the best-known upper bounds s(γ) for the game coloring number of
graphs embeddable in Sγ in general. Previously known bounds are in brack-
ets. The superscript numbers refer to the bibliography. For the given surfaces,
our results do not provide better bounds if the girth is augmented, without
improving the lower bounds for M(S).

3.8 Another application idea

In Section 3.7 we determined upper bounds for directed coloring numbers
of a simple digraph by using our result concerning the lightness of a graph.
The conjecture that these bounds can be improved by applying the results
concerning the positive lightness of a simple digraph seems to suggest itself.
A first step towards this conjecture is the following theorem which makes use
of a refined definition of i-hereditary. A digraph D is called i-+hereditary if,
for every subdigraph H of D, δ+(H) = 0 or L+(H) ≤ i.

Theorem 45. Let i ≥ 0. An i-+hereditary digraph D has an arc partition
D1|D2, so that D1 is acyclic, i.e., does not contain a directed cycle, and
∆+(D2) ≤ i.
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k ≥ nk(1) nk(2) nk(3) nk(4) nk(5) nk(6) nk(7) nk(8)

3 (10)[80] (10)[80] 33 ??? ??? ??? ??? ???

5 8 (8)[80] 13 33 ??? ??? ??? ???

7 6 (6)[80] 8 11 23 ??? ??? ???
9 7 9 13 33 ??? ???

11 5 (5)[80] 6 8 10 18 ??? ???
13 7 9 14 45 ???
15 8 12 27 ???
17 6 11 21 ???
19 10 18 ???
21 5 7 16 113
23 9 15 63
25 14 46
27 13 38
29 33
31 8 12 29
33 27
35 25
37 11 24
39 23
41 6 22
43 21
45 20
49 10 19
53 18
61 5 7 17
71 16
85 9
87 15

121 14
221 13

n(1) n(2) n(3) n(4) n(5) n(6) n(7) n(8)

(19)[86] ??? ??? ??? ??? ??? ??? ???

Table 3.6: Upper bounds nk(γ) for the game coloring number of graphs em-
beddable in the nonorientable surface Nγ with girth at least k and without
4-cycles. Also upper bounds n(γ) for the game coloring number of graphs em-
beddable in Nγ . Previously known bounds are in brackets. The superscript
numbers refer to the bibliography. For the entries with question marks, it is
not known whether bounds exist.

Proof. We proceed by induction on the number of arcs. If there is no arc
the statement is trivial. If δ+(D) = 0, there is an arc (v, w) with d+(v) = 0,
and by induction hypothesis an arc partition D′

1|D′
2 of D′ = D − (v, w) exists

with the desired properties for D′. Set D2 = D′
2 and D1 = D′

1 + (v, w). D1 is
acyclic since D′

1 contains no directed cycle and d+(v) = 0. On the other hand,
in case δ+(D) > 0, there is an arc e = (v, w) with L+(e) ≤ i, and by induction
hypothesis an arc partition D′

1|D′
2 of D′ = D − e with the desired properties

for D′. Let D2 = D′
2 + e and D1 = D′

1. We have d+
D2

(v) ≤ d+
D(v) ≤ i,

and d+
D2

(w) ≤ i. So ∆+(D2) ≤ i. In both cases, D1|D2 is the required edge
partition. �
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In order to apply Observation 38, however, we have to determine the di-
rected coloring number of acyclic simple digraphs embeddable in a given sur-
face with a given girth and without 4-cycles. Maybe, this problem is as difficult
as the general (not necessarily acyclic) case. Thus we have the following

Open question. Determine good upper bounds for (a,b)colg(D) for acyclic
digraphs D which are embeddable in a fixed surface, and have given girth and
do not contain 4-cycles.

Future work. Our discussion of lightness (and weight) leaves some inter-
esting open problems, too. Here we mention some of them.

Open question. Characterize the class of digraphs D with L−(D) = L+(D).

Open question. For fixed n1, n2 ≥ 0, characterize the class of digraphs D
with R1(D) = n1 and R2(D) = n2.

Open question. Discuss the tightness of the bounds of Theorems 29, 30, 31
and 32 in the case of surfaces of negative Euler characteristic.

The most demanding task for future research on the subjects introduced
in this chapter will be to examine the topological parameter M(S).

Open question. For a surface S, determine M(S). Or, at least, determine
good lower bounds for M(S).



Chapter 4

The incidence game chromatic
number

This chapter is devoted to the game chromatic number of a special type of
graphs: incidence graphs. The incidence graph of a graph G = (V, E) with
edge set Ẽ is the digraph GI = (V I , EI) the vertex set V I of which is the
set of all incidences of G. An incidence of G is a pair (v, e) with v ∈ V and
e ∈ Ẽ, so that v is incident with e. Two distinct incidences (v, e) and (w, f)
are adjacent if v = w or e = f or v is incident with f or w is incident with e.
(In this definition, the conditions v = w and e = f are redundant.) See
Fig. 4.1 for examples and counterexamples for the adjacency of incidences.
((v, e), (w, f)) is defined to be in EI if, and only if, (v, e) and (w, f) are
adjacent. Because of the symmetry of the adjacency relation of incidences in
this case ((w, f), (v, e)) ∈ EI , too. Thus GI is a graph.

Later we will also consider incidences of the orientation ~G of a graph G.
These incidences will be denoted in the form (v, ~e), where v is a vertex and ~e
is an arc contained in an edge e of G. However, by (v, ~e) we mean the same
object as (v, e). The orientation of the graph will only help us to simplify the

(a) (b)

Figure 4.1: (a) pairs of adjacent incidences (b) pairs of non-adjacent inci-
dences. A white dot denotes a vertex, a black dot on an edge e next to a
vertex v denotes the incidence (v, e).

67
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proof of Theorem 46.
The incidence game chromatic number ιg(G) is the game chromatic num-

ber χg(G
I) of GI . Whenever we consider the incidence game chromatic num-

ber of a graph, with the exception of the proof of Theorem 48, we will not
explicitly consider the coloring game on the vertices of its incidence graph
since this graph is very dense, but, in order to simplify the arguments, we will
consider a coloring game on the incidences which can be regarded as a half
of an edge. For an edge vw we say that vw has the incidences (v, vw) and
(w, vw), and that these are incidences of vw.

Throughout this chapter we assume that the version g of the coloring game
we consider is gA, the version where Alice begins and passing is not allowed.

The incidence game chromatic number of a graph is a competitive ver-
sion of the incidence coloring number of a graph introduced by Brualdi and
Massey [23]. Upper bounds for the incidence coloring number have been deter-
mined for several classes of graphs, e.g. for k-degenerate graphs, K4-minor free
graphs and planar graphs [50], and graphs with maximum degree 3 [64]. These
bounds depend on the maximum degree of the graphs. Guiduli [47] found the
tight asymptotic upper bound ∆+O(log ∆) for the incidence coloring number
of graphs with maximum degree ∆. For forests [23], Halin graphs of maximum
degree ∆ ≥ 5 and outerplanar graphs of maximum degree ∆ ≥ 4 [79], certain
types of meshes [51], and complete k-partite graphs [61], the exact values of
the incidence coloring numbers are known.

A trivial upper bound for the incidence game chromatic number of graphs
G∆ with maximum degree ∆ ≥ 1 is

ιg(G∆) ≤ 3∆ − 1. (4.1)

This is simply the maximum number of adjacent incidences an incidence can
have plus one. (Indeed, consider two adjacent vertices v and w of degree ∆
in G∆ and an uncolored incidence (v, vw). Then all 2∆ − 2 incidences of
the edges incident with v (except vw) are adjacent to (v, vw). The incidence
(w, vw) is also adjacent to (v, vw). As well, the ∆ − 1 incidences (w, e) of
the edges incident with w (except vw) are adjacent to (v, vw). The incidence
(v, vw) cannot have more than these 3∆−2 adjacent incidences. In the worst
case, if all incidences are colored distinctly, we need color 3∆ − 1 in order to
color (v, vw).)

The main theorem of this chapter improves the trivial upper bound for k-
degenerate graphs (Section 4.1.) As a corollary, we obtain bounds for forests,
outerplanar graphs, and planar graphs. The trivial upper bound is attained
by K2 and K3. It is attained by large cycles, too, whose incidence game
chromatic number is determined in Section 4.2. Furthermore, in that section,
we determine the exact incidence game chromatic number of stars and wheels.
By using the ideas of these proofs we obtain a lower bound for the incidence
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game chromatic number of graphs with maximum degree ∆, a bound which
is half of the trivial upper bound. This phenomenon also occurs for the game
chromatic index, the trivial lower bound of which is half of its trivial upper
bound.

4.1 k-degenerate graphs

In this section we will consider the incidence game chromatic number of k-
degenerate graphs. The proof uses an activation strategy. The idea of such an
activation strategy was already used by Cai and Zhu [24] in order to bound
the game chromatic index of k-degenerate graphs.

We start with a reformulation of the definition of k-degeneracy. A graph
G with vertex set {v1, v2, . . . , vn} is k-degenerate if there is a linear order

L(v1) < L(v2) < · · · < L(vn)

on its vertex set such that, for every 1 ≤ i ≤ n, the vertex vi has degree at
most k in the induced subgraph on the vertex set {v1, v2, . . . , vi}. We will
prove the following

Theorem 46. For a k-degenerate graph G with maximum degree ∆ we have

(a) ιg(G) ≤ 2∆ + 4k − 2,

(b) ιg(G) ≤ 2∆ + 3k − 1 if ∆ ≥ 5k − 1,

(c) ιg(G) ≤ ∆ + 8k − 2 if ∆ ≤ 5k − 1.

Proof. We will describe a winning strategy for Alice with

max{∆ + 8k − 2, 2∆ + 3k − 1}

colors. First, we need some preparations. The vertex set {v1, v2, . . . , vn} of G
is considered as ordered according to a linear order L, i.e.

L(v1) < L(v2) < · · · < L(vn),

so that, for every 1 ≤ i ≤ n, vi has vertex degree at most k in the induced sub-
graph on {v1, v2, . . . , vi}. (Such an order exists, since G is k-degenerate.) To
every edge vivj an orientation is assigned in such a way that, if L(vi) > L(vj),

then (vi, vj) is an arc. We call the digraph created this way ~G. Every time

we color an incidence, we color it in both G and ~G. Recall that d−(v) is the
number of out-arcs (v, w) of a vertex v. By construction, d−(v) ≤ k for every
vertex v. The level of vertex vi is the number i. The level of an arc is the
level of its starting vertex.
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During the game certain arcs are considered as active, all other arcs as
inactive. A subset of the active arcs is represented by the half-selected resp.
selected arcs, i.e. those arcs one incidence resp. both incidences of which are
colored. For short, by an arc of minimum level we mean an uncolored or
half-selected arc the level of which is minimal among all such arcs. For an
arc (v, w), we call the incidence (v, (v, w)) top incidence of (v, w), and the
incidence (w, (v, w)) is called bottom incidence of (v, w). An arc is called
top-half-selected if its top incidence is colored and its bottom incidence is
uncolored.

At the beginning Alice colors a bottom incidence of an arc incident with
a sink and activates its arc. After that, for each of Bob’s moves, where he
colors an incidence of an arc e0 = (v, w), she answers as follows:

(Step 0) activate e0

(Step 1) while w has inactive out-arcs do
choose an inactive out-arc (w, w1), activate it,
w := w1

end do
(Step 2a) if w has an unselected or top-half-selected active out-arc e

color the bottom incidence of e
(Step 2b) else if w has an half-selected active out-arc e

color the uncolored incidence of e,
(Step 2c) else color an incidence of an arc e of minimum level, activate e

(in Step 2c color a bottom incidence if possible)

We will show that as a result of this strategy, after every move of Alice,
every uncolored incidence of an unselected or half-selected arc (v, w) has at
most max{2∆+3k−3, ∆+8k−4} colored adjacent incidences. Note that, in
Step 2c, no arc (x, v) can be (half-)selected before (v, w) by Alice as (v, w) lies
on a lower level. Therefore arcs (x, v) can only show up in Step 1 or Step 2a
or Step 2b of Alice’s answer before both incidences of (v, w) are colored. We

3k-1

k-1

v

w

-1

Figure 4.2: Arcs adjacent to (v, w) which may be activated
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v wx

Figure 4.3: The incidences adjacent to the incidence x = (v, vw) are indicated
by black dots and the incidence (v, vw) is depicted by a grey dot with ‘x’.
Here a black dot on an edge f next to a vertex z means the incidence (z, f).

will now count the number of activated arcs of type (x, v). There are at most
#vout = k − 1 arcs (v, y) different from (v, w). So at most k arcs (x, v) can
have been activated in Step 1 right before activating arcs of the type (v, y).
After that at most 2k − 1 arcs (x, v) can have been activated right before
coloring 2k − 1 of the 2k incidences of the arcs (v, y) (Steps 1, 2a, 2b). Thus
there are at most #vin = 3k − 1 active arcs of the form (x, v). Note that, if
Bob colors an incidence of an arc of type (x, v), Alice will continue activating
or coloring arcs of type (v, y) by Step 1, 2a, or 2b. Therefore #vin is really an
upper bound for the number of active arcs of type (x, v). In the worst case
there are #w = ∆ − 1 active arcs incident with w. See Fig. 4.2.

So, in the worst case the top incidence (v, (v, w)) has at most

#w + 1 + 2#vout + 2#vin = ∆ + 8k − 4

adjacent incidences on active arcs. See Fig. 4.3 for an example. On the other
hand, the bottom incidence (w, (v, w)) has at most

2#w + 1 + #vout + #vin = 2∆ + 4k − 3

adjacent incidences on active arcs after a move by Alice.
However, we need not count the number of adjacent incidences on active

arcs, but only the number of colored adjacent incidences. The latter number
is smaller than the previous since the set of selected and half-selected arcs is a
subset of the set of active arcs, and since Alice, by her strategy, prefers to color
bottom incidences. Therefore, when the incidence (w, (v, w)) is to be colored,
the top incidence of any arc of type (v, y) is either uncolored or colored by
Bob. If #v′

out = m top incidences of the arcs of type (v, y) (including (v, w))
are colored by Bob, then, by the same reasons as before, there are at most
#v′

in = 3k − 1 − m active arcs of the form (x, v). Thus the bottom incidence
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(w, (v, w)) has at most

2#w + #v′
out + #v′

in = 2∆ + 3k − 3

colored adjacent incidences.
Summarizing, we state that after Alice’s move an incidence can have at

most
max{∆ + 8k − 4, 2∆ + 3k − 3}

colored adjacent incidences. After Bob’s next move an incidence can have at
most

max{∆ + 8k − 3, 2∆ + 3k − 2}
colored adjacent incidences. We obtain the conclusion that

max{∆ + 8k − 2, 2∆ + 3k − 1}

colors are sufficient to color every incidence during the game.
Further we have ∆+8k−2 ≤ 2∆+3k−1 if, and only if, ∆ ≥ 5k−1, from

which (b) and (c) follows. Note that, for ∆ ≥ 4k, ∆ + 8k − 2 ≤ 2∆ + 4k − 2,
and for ∆ ≤ 4k − 1, the trivial upper bound 3∆− 1 is better than the bound
b0 = 2∆ + 4k − 2. Thus b0 is an upper bound for all ∆, as stated in (a). �

As we have seen in the structure of the proof, upper bounds for the inci-
dence game chromatic number are more related to the game chromatic index
than to the game chromatic number. The game chromatic index χ′

g(G) of a
graph G is the game chromatic number of the line graph L(G) of G. The line
graph L(G) has the edge set Ẽ of G as vertex set, and two vertices e1, e2 ∈ Ẽ
are connected by an edge in L(G) if, and only if, they are adjacent in G.
Mainly two methods are known in order to deal with the game chromatic
index: activation strategies and splitting strategies.

The game chromatic index of a k-degenerate graph of maximum degree ∆
is at most ∆ + 3k − 1 [24]. Our bound is better than simply doubling this
bound.

Corollary 47. Let P be a planar graph, O be an outerplanar graph, and F
be a forest. Then

ιg(P ) ≤ 2∆(P ) + 18, ιg(O) ≤ 2∆(O) + 6, ιg(F ) ≤ 2∆(F ) + 2.

Proof. This follows, by Theorem 46 (a), from the fact that planar graphs are
5-degenerate, outerplanar graphs are 2-degenerate and forests are 1-degener-
ate. �

Note that the upper bound 2∆+2 for the incidence game chromatic number
of a forest of maximum degree ∆ could be obtained in a different way, namely
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by the use of a splitting strategy instead of an activation strategy. Splitting
strategies have been successfully used by several authors [24, 37, 1, 3] in order
to prove that the game chromatic index of forests of maximum degree ∆ 6= 4
is at most ∆+1. In this case the activation strategy of Cai and Zhu [24] only
led to the weaker upper bound ∆ + 2. However, a second proof of the third
assertion of Corollary 47 by means of a splitting strategy is not described here
since this proof is not easier than the proof of the more general Theorem 46.

The results of this section have an interesting noncompetitive analogue:
Hosseini Dolama et al. [50] found ∆+2k−1 as an upper bound for the incidence
coloring number of k-degenerate graphs and ∆ + 7 as an upper bound for the
incidence coloring number of planar graphs of maximum degree ∆.

4.2 Some simple classes of graphs

In this section we consider the incidence game chromatic number of cycles,
stars and wheels. While the incidence game chromatic number of cycles attains
the trivial upper bound (4.1), its counterparts for stars and wheels will make us
discover a trivial lower bound that cannot be improved for graphs in general.
All following theorems depend on the assumption that g = gA is the game
where Alice has the first move and missing a turn is not allowed.

Theorem 48. ιg(Ck) = 5 for k ≥ 7.

Proof. Let Ck be a cycle with k ≥ 7 edges. Then CI
k = (V I , EI) is the graph

with vertex set V I = {v1, v2, . . . , v2k} and arc set

EI = {(vi, vj) | i− j ≡ ±1,±2 mod 2k}.

ιg(Ck) ≤ 5 follows from the trivial upper bound (4.1). So, we only have to
prove ιg(Ck) = χgA

(CI
k) ≥ 5, i.e. we have to explain a winning strategy for

Bob for the coloring game with 4 or less colors on CI
k . It is easy to see that

Bob wins with 3 or less colors. Assume for the following that the players have
4 colors at their disposal. The general winning idea of Bob is to construct a
configuration as in Fig. 4.4.

1

2 3

4

v

Figure 4.4: A winning configuration for Bob on a cycle. If there are only 4
colors in the game, the uncolored vertex v cannot be colored any more.
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1
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2k−1
2k

1
2

3
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k
k+1

2k−2
2k−3

2k−4

2k−5

Figure 4.5: State of the game after Bob’s second move. Uncolored vertices of
of CI

k are black circles, colored vertices are white circles with the number of
the color in it.

W.l.o.g. Alice starts the game by coloring v2k−1 with color 1. Bob then
colors a vertex at distance 3, namely v2 with color 2. By reasons of symme-
try we may assume that Alice, in her next move, colors one of the vertices
v3, . . . , vk, and if she colors v3, then she uses color 1. Indeed if Alice colored
v2k or v1 (with color 3), Bob would color v3 or v2k−2 at distance 3 from Alice’s
vertex with color 4, so that v1 or v2k could not be colored any more. In the
same way, if Alice colored v3 with color 3, Bob would color v2k with color 4,
which would result in a win for him since he has constructed a winning con-
figuration around the uncolored vertex v1. Since the vertex Alice has colored
in her second move is far enough away from v2k−4, Bob can color v2k−4 with
color 2 in his second move. (Here we need the precondition k ≥ 7, from which
(2k − 4)− k ≥ 3 follows.) The situation of the game after Bob’s second move
is depicted in Fig. 4.5.

Now Alice is stuck. By the reason discussed above, Alice may not color
v2k−5 or v3 with a color different from 1. Furthermore, if she colors v2k−3,
v2k−2, v2k or v1, Bob can force a win in his next move. The next moves until
either there is a winning configuration for Bob or there are only 5 uncolored
vertices left is called a round. Everything Alice can do is to color the remaining
of the vertices v3, . . . , v2k−5 in the round. Bob will then color only vertices
v4, . . . , v2k−6 in the round. Assume that the round ends if there are only 5
uncolored vertices left. We will show that in this case Bob wins, too.

If Alice, in her last move, has colored v3 with a color different from color 1,
Bob can force a win as described above. Thus we may assume without loss of
generality that v3 is colored with color 1. We distinguish two cases.

The first case is that one of the vertices v4, . . . , v2k−6 is uncolored or v2k−5
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is uncolored but can be colored with color 1. Then Bob colors this vertex,
preferably with color 1. Now the only uncolored vertices are v2k−3, v2k−2,
v2k, and v1. Alice colors one of these vertices with color 3 or 4. Then Bob
colors the uncolored vertex at distance 3 with a different color, and one of the
remaining uncolored vertices cannot be colored any more. (The colors 3 and 4
are allowed for the vertex Bob has colored since v2k−5 and v3 are colored with
color 1.)

In the second case v2k−5 is uncolored and cannot be colored with color 1.
We may assume that v2k−5 can be colored with color 3. Then Bob colors v2k−2

with color 4. In order to avoid the situation that v2k−3 cannot be colored any
more, Alice must either color v2k−3 with color 3 or v2k−5 with color 4. Then
Bob colors v1 with color 3 and wins since v2k cannot be colored any. His move
is feasible as we have assumed that v3 is colored with color 1. �

The reason why the same argumentation does not work for paths with
k ≥ 8 edges is that in the incidence graph of a cycle, because of its symmetry,
we can assume without loss of generality that Alice colors v2k−1 in her first
move. However, in the incidence graph of a path we cannot assume that Alice
starts coloring a vertex in the middle of a path. So we may formulate

Open question. Let P be a large path. Is ιg(P ) = 4 or ιg(P ) = 5?

Let Sk be the star with k edges which are incident with the same center
vertex. Further let Wk be the wheel with 2k edges. Let v0 be the center
vertex of a star or a wheel. We call an incidence (v0, e) inner incidence, and
an incidence (v, e) with v 6= v0, but where v0 is incident with e, outer incidence.
Incidences on the rim of a wheel, which are neither inner nor outer incidences,
are called border incidences. In a star or a wheel, inner incidences are adjacent
to all inner and outer incidences, but two different outer incidences are not
adjacent.

Theorem 49. For k ≥ 1, ιg(S2k) = 3k.

Proof. First, we describe a winning strategy for Alice playing on S2k with 3k
colors. At the beginning, Alice colors inner incidences. If Bob colors an outer
incidence with color i, then Alice also colors an outer incidence with color i. In
this way, Bob can use at most k colors for outer incidences. If Alice is forced
to color an outer incidence (this is only the case when all inner incidences are
colored), then she colors an outer incidence with a color already assigned to
an outer incidence, except if there is no such color. In the latter case there
are k remaining colors for the outer incidences. Even if Bob always uses a
new color for his outer incidences, in his last move he will be forced to take a
color already used. In every case, 2k colors are used for inner incidences, and
at most k colors for outer incidences, so Alice wins.
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Now we discuss a winning strategy for Bob with 3k− 1 or fewer colors. In
his k first moves, Bob colors k outer incidences with k distinct colors. Then
there are at most 2k − 1 colors left to color the inner incidences. Thus it is
impossible to color all of them, and Bob wins. �

Theorem 50. For k ≥ 0, ιg(S2k+1) = 3k + 2.

Proof. A winning strategy for Alice playing on S2k+1 with 3k + 2 colors is
given as follows. Alice, in her first k + 1 moves, colors outer incidences with
a fixed color i. Meanwhile, Bob can use at most k distinct colors for outer
incidences. So 2k + 1 colors are left for the inner incidences, and Alice wins.

We still have to exhibit a winning strategy for Bob with 3k + 1 or fewer
colors. If Alice, in her first move, colors an inner incidence, Bob, in his first
k + 1 moves, colors outer incidences with k + 1 distinct colors. On the other
hand, if Alice, in her first move, colors an outer incidence with color i, then
Bob, in his next k moves, colors outer incidences with k distinct colors different
from i. In both cases, at most 2k colors are left for the inner incidences, which
therefore cannot be colored any more, i.e. Bob wins. �

Theorem 51. For k ≥ 7, ιg(W2k) = 3k.

Proof. First, we describe a winning strategy for Alice with 3k colors which
is very similar to the case of stars. Alice wants to keep 7 colors which are
not used for inner incidences for coloring border incidences. Since a border
incidence has exactly 7 adjacent incidences one of which is an inner incidence
then every border incidence can be colored by using one of these 7 colors.
Alice chooses 7 colors. During the game, if one of her chosen colors is used for
an inner incidence, she exchanges that color with one of the colors not yet used
for an inner incidence. This is possible since there are 3k ≥ 2k + 7 colors. As
long as Bob colors inner incidences and border incidences, Alice colors inner
incidences (or, if she is forced to, border incidences). If Bob colors an outer
incidence, Alice replies by coloring an outer incidence with one of her chosen
7 colors, preferably with the same color as Bob (if necessary Alice exchanges
a color not used before among her 7 colors with Bob’s color). There is always
a feasible color among these because an outer incidence is affected by at most
4 border incidences. The same strategy will make Alice win if she is forced to
color outer incidences first (at the end Bob can also use one of the 7 colors).
Note that border incidences are affected by at most 4 border incidences, at
most 2 outer incidences, and one inner incidence. Thus a border incidence
can always be colored by one of Alice’s 7 colors.

The winning strategy for Bob with 3k − 1 or fewer colors is just the same
as for a star: Bob first colors outer incidences with k distinct colors, then he
will win. �
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Theorem 52. For k ≥ 6, ιg(W2k+1) = 3k + 2.

Proof. First, we prove a winning strategy for Alice with 3k +2 colors. Alice
chooses 7 colors. Every time one of these colors is used for inner incidences
she exchanges this color with a color not used so far. This is possible since
there are 3k + 2 ≥ (2k + 1) + 7 colors. In her first move, Alice colors an
outer incidence with one of the chosen colors. As long as Bob colors inner
or border incidences, Alice colors inner or border incidences. If Bob colors
an outer incidence, she colors an outer incidence, preferably with the same
color (and in this case she exchanges this color with one of the seven colors
which has not been used before if such a color exists), or else with one of the
seven colors, preferably with a color already used. Playing this way Alice can
guarantee that the final set of seven colors will be used for outer incidences
and that the outer incidences are colored by at most k + 1 colors. Note that
there is no problem coloring the border incidences with these k+1 ≥ 7 colors.
So Alice wins.

A winning strategy for Bob with 3k +1 or fewer colors is the same as with
stars. In his first k + 1 moves Bob can guarantee that k + 1 outer incidences
are colored distinctly. Then he will win as the inner incidences cannot be
colored any more. �

Stars and wheels are classes of graphs for which the incidence game chro-
matic number is asymptotically half of the value of the trivial upper bound.
There is no class of graphs where this fraction is lower because of the following
proposition.

Proposition 53. For any graph G with maximum degree ∆, ιg(G) > 3∆−1
2

Proof. A winning strategy for Bob with ⌈3∆
2
⌉ − 1 or fewer colors is given as

follows. Bob chooses a vertex v of degree ∆. An outer incidence of v is an
incidence (w, e) such that e = vw. In his first ⌈∆

2
⌉ moves, Bob (possibly with

Alice’s help) colors ⌈∆
2
⌉ outer incidences of v with ⌈∆

2
⌉ distinct colors. Then

there are only less than ∆ colors left for the incidences of type (v, e). Thus
Bob wins. �

Let G∆ be a graph of maximum degree ∆. We have the analogon between
the lower and upper bounds for the incidence game chromatic number

3∆ − 1

2
< ιg(G∆) ≤ 3∆ − 1 (4.2)

and the trivial lower and upper bounds for the game chromatic index

2∆ − 1

2
< χ′

g(G∆) ≤ 2∆ − 1. (4.3)
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By the example of stars, the lower bounds are tight for every ∆ in the
sense that no positive integer may be added to them. The upper bound (4.2)
is tight for ∆ = 2, as we have seen in Theorem 48 for large cycles, the upper
bound (4.3) is also tight for ∆ = 2, consider paths Pk with k ≥ 5.

Open question. For fixed ∆ > 2, are the upper bounds in (4.2) and (4.3)
tight?

In Appendix B we will see that for ∆ = 3 the bound (4.3) is also tight, by
the example of the Petersen graph (Theorem 101).

Open question. Is the incidence game chromatic number a monotonic pa-
rameter (i.e. for a graph G is it as least as big as for any subgraph of G?)

The game chromatic number is known to be non-monotonic (consider Km,m

and its subgraph where a perfect matching is deleted.) The game chromatic
index, too, is non-monotonic (consider C6 together with an isolated edge, and
its subgraph P6.) Hence, it would be no surprise if the answer of the last
question was not affirmative.

Future work. If ~GI is an orientation of the incidence graph of a k-de-
generate graph G, it would be interesting to determine an upper bound for

χg( ~GI). This construction would be one of the possibilities to generalize the
incidence game chromatic number of a graph in a certain way to digraphs.
Other possibilities would be to define an adjacency relation for incidences of
digraphs. There are several ways to define an incidence of a digraph, e.g. the
pair of arcs (v, w) and (w, v) could consist of the four incidences (v, (v, w)),
(w, (v, w)), (v, (w, v)), and (w, (w, v)), or only of the two incidences (v, vw)
and (w, vw) as in the case of graphs.

In order to tighten the upper bounds of Theorem 46 and Corollary 47 one
could try to obtain non-trivial lower bounds for the incidence game chromatic
number of the class of k-degenerate graphs resp. forests. Another approach
to generalize the results of this chapter would be to consider the parameter
(a,b)χd

g(G
I) for certain graphs G, and a, b, d ≥ 0.



Chapter 5

Game-perfect graphs

5.1 Perfectness and game-perfectness

A graph G is called nice if its chromatic number χ(G) equals its clique number
ω(G). There are many nice graphs: for example, the graph formed by the
two components C5 and K3 is nice. However, the example also illustrates a
problem: C5 itself is not nice. One might prefer a graph property that holds
for all induced subgraphs as well. So, a graph G is called perfect if every
induced subgraph of G is nice, i.e. if for every induced subgraph H of G,
χ(H) = ω(H). Motivated by an application in coding theory, Berge was the
first to examine the structure of perfect graphs, cf. [13]. Since then, there
have been several hundreds of contributions to the theory of perfect graphs.
By the famous Strong Perfect Graph Theorem [29] a graph is perfect if, and
only if, it contains neither induced cycles Cl of odd length l ≥ 5 nor their
complements.

We generalize perfectness of a graph in a natural way to perfectness of
a digraph. A digraph D is called perfect if for every induced subdigraph H
of D, χ(H) = ω(H), where χ(D) is the dichromatic number of D. It is obvious
that, for graphs, our two definitions of perfectness are the same. Astonishingly,
this generalization of perfectness seems to be unknown in literature. There
are three other definitions of perfectness of digraphs known, namely diperfect
digraphs [14], kernel-perfect digraphs [31, 41, 42], and the perfect digraphs of
Fachini and Körner [39]. But by these definitions, every graph is diperfect and
kernel-perfect, and the transitive tournament T3 is not perfect in the sense of
Fachini and Körner. (In our sense T3 is perfect since χ(T3) = ω(T3) = 1.)
Thus these parameters are different from the perfectness we consider.

It is evident that a digraph with clique number 1 is perfect if, and only if, it
is acyclic. That means that simple digraphs are perfect if, and only if, they are
acyclic. A graph with clique number 2 is perfect if, and only if, it is bipartite.
However, it seems to be a big problem to decide whether a given digraph

79
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with clique number 2 is perfect or not. This could be related to the fact that
the decision problem whether a digraph has dichromatic number at most 2 is
NP-complete as we will prove in Appendix A and as was already shown by
Bokal et al. [18]. In contrast, the same decision problem for a graph is easy,
as remarked above. Graph coloring becomes hard for 3 colors. In spite of that
it is possible to recognize perfect graphs in polynomial time. Two results of
ingenious work led to the solution of this recognition problem: first, the proof
that recognizing Berge graphs is in P by Chudnovsky et al. [28], and second,
the proof of the Strong Perfect Graph Theorem [29] which means that a graph
is perfect if, and only if, it is a Berge graph. The latter theorem was formerly
known as Berge’s Strong Perfect Graph Conjecture.

In the spirit of Berge we formulate the following Strong Perfect Digraph
Conjecture. First we start with two definitions. An extended odd hole of size n
is a digraph D = (V, E ∪E ′) with an odd number #V = n of vertices, so that
(V, E) is an undirected cycle Cn and (V, E ′) is a simple digraph. An extended
odd anti-hole of size n is a digraph D = (V, E ∪ E ′) with an odd number
#V = n of vertices, so that (V, E) is the complement of an undirected cycle Cn

and (V, E ′) is a simple digraph.

Conjecture 54. A digraph D is perfect if, and only if,

(1) D contains no induced directed cycles ~Cn with length n ≥ 3,

(2) D contains no induced extended odd holes of size n ≥ 5, and

(3) D contains no induced extended odd anti-holes of size n ≥ 5.

Since this conjecture is a generalization of the Strong Perfect Graph The-
orem (SPGT) it might be difficult to solve. The only help to simplify it could
be to use the SPGT essentially.

This was only a motivation for the main definition of this section. Let g
be a variant of the coloring game. In this chapter we assume a = b = 1 and
d = 0. A digraph D is g-nice if χg(D) = ω(D). A digraph D is g-perfect if
every induced subdigraph of D is g-nice. Thus g-perfectness is a competitive
version of perfectness.

While most results in the literature concerning game chromatic numbers
deal with Bodlaender’s original version gA of the game where Alice has the
first move and missing a turn is not allowed, considering the versions A and
B has some advantages.

The first advantage is given by Observation 1: any upper bound for the
B-game chromatic number is also an upper bound for the g-game chromatic
number for any g, and any lower bound for the A-game chromatic number is
also a lower bound for the g-game chromatic number for any g. This does
not seem to help a lot besides giving a simple Sandwich structure, since for
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a lot of single digraphs the A-game chromatic and the B-game chromatic
numbers differ. However, for interesting classes of digraphs these numbers
often equal, as we have seen in Chapter 2 for directed forests. So for classes
instead of single digraphs sometimes the examination of the versions gA and
gB is superfluous after an examination of the versions A and B of the game.

Furthermore, as a second advantage, the versions A and B are more stable.
There are graphs for which Alice wins the version gA, but if an isolated vertex
is added, then Bob wins the version gA. The versions A and B are more
‘stable’ since such a simple trick does not work for these versions where the
outcome of the game depends on the global structure of the digraph and does
not depend so much on local details as in Bodlaender’s version.

This motivates us to focus on the more stable versions A and B. We have

ω(G) ≤ χ(G) ≤ χA(G) ≤ χB(G).

The first two inequalities are obvious, the third is part of Observation 1. Thus,
B-perfect graphs are A-perfect, and A-perfect graphs are perfect.

In this chapter we determine all the A-nice and B-nice graphs with clique
number 2 and thus the A-perfect and B-perfect graphs with clique number 2.
As a corollary we obtain the game-perfect graphs with clique number 2 for
Bodlaender’s original version gA of the game and for its dual gB. We also de-
termine the B-perfect graphs with clique number 3. The only class of perfect
graphs which could be recognized as A-perfect in general are complements of
bipartite graphs, see Section 5.5. These are first steps towards results anal-
ogous to the Strong Perfect Graph Theorem for game-perfectness. However,
the sets of forbidden induced subgraphs occurring in Sections 5.2, 5.3, and 5.6
are far from being complete.

Unlike perfectness of graphs, game-perfectness of graphs does not have
the Weak Perfect Graph Theorem’s property, i.e. a graph is perfect if, and
only if, its complement is perfect [62], but there are A-perfect (B-perfect)
graphs whose complements are not A-perfect (B-perfect), cf. Section 5.6. One
should mention that for digraphs in general there is no Weak Perfect Digraph
Theorem, even in the non-competitive case. E.g., the digraph ~C4 is not perfect,
whereas its complement is perfect.

In Section 5.8 a classification of some A-perfect digraphs with clique num-
ber 2 is given. In particular, we determine the A-perfect paths, cycles, and
semiorientations of complete graphs with clique number 2.
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The cycle C4 The path P4

Figure 5.1: Two forbidden configurations for B-perfect graphs
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5.2 B-perfect graphs with clique number 2

In Sections 5.2, 5.3, 5.4, 5.5, and 5.6 we consider (undirected) graphs. Recall
that a graph G is B-nice if χB(G) = ω(G). G is B-perfect if every induced
subgraph of G is B-nice. The classification of B-nice (and B-perfect) graphs
with clique number 2 is given in this section. In particular, we will see that
B-perfect graphs are a subclass of the class of trivially perfect graphs. A
graph is trivially perfect if it does not contain a cycle C4 or a path P4 as an
induced subgraph. C4 and P4 are depicted in Fig. 5.1. The notion ‘trivially
perfect graphs’ was introduced by Golumbic [44], however this type of graphs
has been examined already earlier, e.g. by Wolk [82].

Lemma 55. Let G be a graph with ω(G) = 2 containing an induced C4. Then
G is not B-nice.

Proof. Let v1v2v3v4 be an induced C4. Bob has the following winning
strategy with 2 colors: He misses his turns until Alice either colors a vertex
vi of the C4 or one of its neighbors n with – say – color 1. In case Alice
has colored vi he replies by coloring vi+2 (index mod 4) with color 2. This is
possible since neither vi+1, vi+2, vi+3 nor any other neighbor of vi+2 has been
colored before. Bob wins, since vi+1 cannot be colored any more. In case Alice
has colored a neighbor n of vi outside the C4, Bob answers by coloring vi+1

with color 2. This is possible, since no neighbor of vi+1 has been colored. Note
that n is not a neighbor of vi+1, otherwise there would be a triangle nvivi+1

contradicting ω(G) = 2. Here again, since vi cannot be colored any more, Bob
wins. �

Lemma 56. Let G be a graph with ω(G) = 2 containing an induced P4. Then
G is not B-nice.

Proof. This is quite similar to the previous lemma. �

Theorem 57. A graph G with ω(G) ≤ 2 is B-nice if, and only if, it contains
neither an induced C4 nor an induced P4 (i.e. if it is trivially perfect). This
is the case if, and only if, G is a forest of stars.

Proof. The graphs without induced C3, C4 and P4 are obviously forests
whose components have diameter of at most 2, i.e. forests of stars. If G
contains a C4 or P4, G is not B-nice, by Lemma 55 resp. 56. We are left to
prove a winning strategy for Alice with 2 colors in case the graph is a forest
of stars: in order to fix the coloring, whenever possible, Alice colors centers of
stars, preferably the center of the star in which Bob has colored a vertex in
his previous move. �
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Since every induced subgraph of a forest of stars is a forest of stars we
obtain

Corollary 58. A graph G with ω(G) ≤ 2 is B-perfect if, and only if, it is
trivially perfect. This is the case if, and only if, G is a forest of stars.

5.3 A-perfect graphs with clique number 2

Recall that a graph G is A-nice if χA(G) = ω(G). G is A-perfect if every
induced subgraph of G is A-nice. It is very easy to decide whether a graph
with clique number 2 and diameter 6= 3 has A-game chromatic number 2, see
the Propositions 59 and 60. But there are graphs with diameter 3 and clique
number 2 with A-game chromatic number 2 as well as with larger A-game
chromatic number. E.g., χA(C6) = 2 and χA(Π) = 3, where Π is the graph
formed by the path P6 = v1v2v3v4v5v6 with an additional edge connecting v2

and v5, see Fig. 5.2. This section contains a classification of A-nice graphs
with clique number 2 which begins with Lemma 61 and does not make use of
the notion diameter.

Proposition 59. Let G be bipartite and diam(Gi) ≤ 2 for each component
Gi of G. Then G is A-nice.

Proof. We prove a winning strategy with 2 colors for Alice. Alice forces Bob
to be the first to color any component. That means, if Bob does not color
a vertex of a new component, she misses her turn. Assume Bob has colored
a first vertex x in some component Gi. If every remaining vertex of Gi is a
neighbor of x, Alice continues passing since the coloring of Gi is fixed by the
color of x. On the other hand, if there is a vertex y with distance d(x, y) = 2,
then Alice colors the middle vertex z on a shortest path xzy from x to y. We
state that now the coloring is fixed since every vertex of Gi has either distance
at most 1 from x, or distance at most 1 from z. Assume that there is a vertex
a with d(a, x) = 2 and d(a, z) = 2. Then there are paths abx and acz. In case
b = c we have a triangle bxz, otherwise a C5 abxzc, both contradicting the

C6

χA(C6) = 2

Π

χA(Π) = 3

Figure 5.2: Two graphs with diameter 3
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fact that G is bipartite. Alice uses this strategy for each component that Bob
begins to color, so there is no need for more than two colors. �

Proposition 60. Let G be bipartite and diam(Gi) ≥ 4 for some component
Gi of G. Then G is not A-nice.

Proof. We prove a winning strategy for Bob with 2 colors. In Gi there
is a shortest path v1v2v3v4v5 from a vertex v1 to another vertex v5. If Alice
colors vj or some neighbor of vj , Bob replies by coloring a vertex at distance 2
with the remaining color, making it impossible to color the graph completely.
Otherwise, Bob colors v3. No matter what Alice does, since there are no
common neighbors of v1 and v5, Bob may color either v1 or v5 different from
v3 in his next move. Again, Bob wins. �

For the following, we need the definition of Km,n − Mk, which is given in
Section 1.2 on page 4.

Lemma 61. Let 1 ≤ k + 1 ≤ m ≤ n. Then Km,n − Mk is A-nice.

Proof. Let P resp. Q be the partite sets with m resp. n vertices. Since
k ≤ m − 1 ≤ n − 1, P and Q each contain a vertex p resp. q that is adjacent
to all vertices of the other side. Alice’s winning strategy with two colors is the
following. In her first move she uses her right to miss a turn. W.l.o.g. Bob
colors a vertex of P . If he colors a vertex that is adjacent to every vertex of Q,
Alice colors q with the second color. If Bob colors a vertex that is adjacent to
every vertex of Q except one vertex q′, Alice colors q′ with the second color.
In both cases the coloring is fixed after Alice’s move. �

Lemma 62. For m ≥ 2, Km,m − Mm is A-nice.

Proof. This is the same as the second case in the proof of the previous
lemma. �

Lemma 63. For 2 ≤ m < n, Km,n − Mm is not A-nice.

Proof. Let P resp. Q be the partite sets with m resp. n vertices. Let W ⊆ Q
be the vertices which are adjacent to all vertices of P . As m < n, W 6= ∅. We
prove a winning strategy for Bob with two colors in the game A. If Alice uses
her first move to color a vertex with the first color, then Bob colors a vertex
of the same partite set with the second color. As the graph is connected, Bob
will win. If Alice misses her turn, Bob colors a vertex of W with the first
color. No matter what Alice does in her second move, since m ≥ 2, Bob may
always color a vertex of Q \ W with the second color in order to win. �



5.3. A-PERFECT GRAPHS WITH CLIQUE NUMBER 2 85

@@
��t

t
t t t t t t t t t

The multistar S1,1,2 The path P6

v1,1

v2,1
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Figure 5.3: Two forbidden configurations for A-perfect graphs

Lemma 64. Let G be a graph with ω(G) = 2 and let H be an induced subgraph
of G which does not contain any isolated vertices. Assume that, in her first
move of the game A played on G with 2 colors, Alice colors a neighbor v ∈
V (G \ H) of w ∈ V (H). Then Bob wins.

Proof. Since there are no isolated vertices in H , there is an edge wz ∈
E(H). There is no edge vz ∈ V (G), otherwise there would be a triangle vwz,
contradicting ω(G) = 2. So Bob may color z different from v. During the
game, w cannot be colored feasibly any more, i.e., Bob wins. �

The proof of the following lemma is straightforward.

Lemma 65. Let G be a graph with ω(G) = 2 and let H be an induced subgraph
of G, so that every vertex of H lies on an induced P4 ⊆ H. Assume that, in
her first move of the game A played on G with 2 colors, Alice colors a vertex
of H. Then Bob wins.

For the next lemma we use the notation from Fig. 5.3.

Lemma 66. Let G be a graph with ω(G) = 2 that contains an induced multi-
star S1,1,2. Then G is not A-nice.

Proof. We prove a winning strategy for Bob with 2 colors. If Alice colors a
neighbor of v, v1,1, v2,1, v3,1 or v3,2 in her first move, Bob will win by Lemma 64.
If Alice colors v, v1,1, v2,1, v3,1 or v3,2, then Bob will also win, by Lemma 65.
So we are restricted to the case that Alice passes or colors a vertex which is
neither one of S1,1,2 nor one of its neighbor vertices. In this case Bob colors
v1,1 with the first color. Now, Alice may neither color v3,2 with the first color
nor v2,1 or v3,1 with the second color, otherwise she will loose. If Alice colors a
vertex with the first color, Bob answers by coloring either v2,1 or v3,1 with the
second color. On the other hand, if Alice colors a vertex with the second color
or if she misses her second turn, Bob colors either v3,2 with the first color or
v2,1 with the second color. In either case, Bob wins. �

Lemma 67. Let G be a graph with ω(G) = 2 that contains an induced path
P6. Then G is not A-nice.
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Proof. Let v1v2v3v4v5v6 be an induced P6 in G. We prove a winning strategy
for Bob with 2 colors. If Alice, in her first move, colors a neighbor of some vi,
Bob has a winning strategy by Lemma 64, if she colors some vi, Bob wins by
Lemma 65. We are left with the case that Alice colors some other vertex or
misses her turn. In this case, Bob will respond by coloring v3 with the first
color. Then, if Alice colors some vertex with the first color or if she passes,
Bob may color either v1 or v5 with the second color in order to win. In case
Alice colors some vertex v 6= v6 with the second color, Bob colors v6 with the
first color and wins. If Alice colors v6 with the second color, Bob wins by
coloring v1 with the second color. �

Note that in Lemma 67 we may not replace P6 by P5. The undirected
cycle C6 (= K3,3 − M1) is A-nice by Lemma 61 but contains an induced P5.

Lemma 68. Let G be a connected bipartite graph that does neither contain
an induced S1,1,2 nor an induced P6. Then G is a Km,n − Mk, where k ≤
min{m, n}.

Proof. Since G is bipartite, there exist integers m and n, so that G is a
subgraph of Km,n. Assume that in G there are two different vertices v and w
on the same side and a vertex z on the other side which are pairwise non-
adjacent. As G is connected, there are shortest paths v . . . z and w . . . z in G.
Assume that one of them has length ≥ 5. Then this path contains an induced
P6, contrary to the precondition. So both paths have length exactly 3. Let
vxyz and wabz be these paths which w.l.o.g. have a maximal number of
common edges among all such pairs of paths. Let z0 be the first common
vertex of both paths. So the vertices after z0 are equal in both paths.

Case 1: z0 = z
There is no edge ya, otherwise y would be the first common vertex of the paths
vxyz and wayz, but the existence of the path wayz would be a contradiction
to the choice of vxyz and wabz as paths with a maximal number of common
edges. By the same argument, va, wx, and bx do not exist in G, since otherwise
a, x, or b would be the first common vertex, respectively. Thus vxyzbaw is an
induced P7, which contradicts the precondition.

Case 2: z0 = y = b
There is no edge va (resp. wx), because otherwise a (resp. x) would be the first
common vertex of the paths. Thus {v, x, y, a, z} induces an S1,1,2, contrary to
the precondition.

Case 3: z0 = x = a, y = b
In this case {v, w, x, y, z} induces an S1,1,2.

In every case, we obtain a contradiction, hence our assumption was wrong,
and in Km,n misses a matching at most. �
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Theorem 69. Let G be a graph with ω(G) = 2. Then G is A-nice if, and
only if, each component H of G is K1 or Km,n − Mk, for k < m ≤ n, or
Km,m − Mm.

Proof. If every component H of G is K1 or Km,n − Mk, for k < m ≤ n, or
Km,m −Mm, then by Lemma 61 resp. Lemma 62 Alice has a winning strategy
with two colors for every component, which gives her a global winning strategy
if she always plays in the component where Bob has played just before. Note
that her local winning strategies always guarantee that she may miss her first
turn. So G is A-nice.

Now consider the case that a component H of G is different from K1 and
Km,n−Mk, for any k < m ≤ n, and Km,m−Mm. Then either H is a Km,n−Mm

with 2 ≤ m < n, in which case Bob has a winning strategy with two colors
by Lemma 63, or H is not bipartite, in which case Bob obviously wins with
two colors, or H is bipartite but not of the form Km,n − Mk. In the latter
case, by Lemma 68, H contains an induced S1,1,2 or an induced P6, therefore
Bob has a winning strategy with two colors by playing only in H , according
to Lemma 66 resp. Lemma 67. So G is not A-nice since ω(G) = 2. �

Corollary 70. A graph G with ω(G) ≤ 2 is A-perfect if, and only if, every
component of G is either K1 or Km,n or Km,n − M1 for some m, n.

Proof. The A-nice configurations Km,n−Mk for m, n ≥ 3, k ≥ 2 are excluded
from being A-perfect, since they contain an induced subgraph isomorphic to
K3,2 − M2, which is not A-nice. �

5.4 Bodlaender’s original version

We consider two other variants of the game. The first one is Bodlaender’s
original game, which we denote by gA, where Alice has the first move, but
missing a turn is not allowed for any player. Its dual version is gB, where Bob
has the first move and missing a turn is not allowed. For the associated game
chromatic numbers by [3] we have for any graph G

χA(G) ≤ χgA
(G) ≤ χB(G),

and

χA(G) ≤ χgB
(G) ≤ χB(G).

Thus gA-nice and gB-nice graphs with clique number 2 are contained in the set
of A-nice graphs. As in the proof of Lemma 61 resp. 62 it is easy to see that
the connected gA-nice graphs with clique number 2 are exactly nontrivial stars,
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i.e. the connected B-nice graphs with clique number 2, and the connected gB-
nice graphs with clique number 2 are the connected A-nice graphs with clique
number 2.

In the following, odd resp. even stars are stars with an odd resp. even
number of vertices. Denote by A-component a connected Km,m − Mm or a
connected Km,n − Mk for k < m ≤ n that is not a star. An odd resp. even
A-component is an A-component with an odd resp. even number of vertices.
Then we may formulate

Theorem 71. Let G be a graph with clique number 2. Then G is gA-nice if,
and only if, either

(i) every component of G is a star, not all of which are trivial, or

(ii) G consists of an odd number of odd stars and an arbitrary number of even
stars and exactly one odd A-component, or

(iii) G consists of an odd number of odd stars and an arbitrary number of
even stars and an arbitrary number of even A-components.

Theorem 72. Let G be a graph with clique number 2. Then G is gB-nice if,
and only if, either

(i) every component of G is a star, not all of which are trivial, or

(ii) G consists of an even number of odd stars and an arbitrary number of
even stars and exactly one odd A-component, or

(iii) G consists of an even number of odd stars and an arbitrary number of
even stars and an arbitrary number of even A-components.

Proof. (Theorems 71 and 72) In both variants, every A-component has
to be colored by Bob first, otherwise Alice will loose. The possibilities for
Alice to force Bob to do this are given in the theorems. �

Independently from the author, Borowiecki and Sidorowicz gave an ana-
logue characterization of graphs with gA-game chromatic number 2. In their
recent paper [21], their Theorem 2 corresponds to our Theorem 71.

Corollary 73. A graph G with clique number 2 is gA-perfect if, and only if,
it is a forest of stars.

Proof. The graphs in case (i) of Theorem 71 are obviously gA-perfect. Con-
sider the case that G contains an odd number of odd stars as in case (ii)
and (iii). Then the subgraph of G in which one of the odd stars is deleted has
an even number of odd stars and at least one A-component, hence it is not
gA-nice. �
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Corollary 74. A graph G with clique number 2 is gB-perfect if, and only if, it
is either a forest of stars or a single A-component of type Km,n or Km,n −M1.

Proof. Case (i) of Theorem 72 obviously describes gB-perfect graphs. Now
consider case (ii) and (iii) of Theorem 72. If G contains an even number
≥ 2 of odd stars, then the subgraph where one of these odd stars is deleted
has an odd number of odd stars and is not gB-nice. Also, if G contains an
arbitrary number ≥ 1 of even stars, then the subgraph where one vertex in
an even star is deleted has an odd star, thus it is not gB-nice. So G has no
stars and a single odd A-component in case (ii) or some even A-components
in case (iii). In the latter case, if G has more than one even A-component
then the subgraph H which is obtained by deleting one vertex has either one
odd A-component and at least one even A-component or a single odd star
and at least one even A-component, thus H is not gB-nice. So in case (ii) and
(iii) G is a single A-component which is of the form Km,n −M0 or Km,n −M1

by Corollary 70 using χgB
(G) ≥ χA(G). It is easy to see that such a graph

is always gB-perfect since every induced subgraph is of the form Km′,n′ − Mk

with k ∈ {0, 1}. �

5.5 The general case

Theorem 75. A graph G is B-nice if, and only if, for each component H of G
Alice has a winning strategy in the game B played on H with ω(G) colors.

Proof. Assume that there is a component H0 with the property that Bob has
a winning strategy in the game B played on H0 with ω(G) colors. We have
to prove that Bob has a winning strategy on G with ω(G) colors. Consider
the game played on G. Then Bob only plays on H0 according to his winning
strategy for H0. (If Alice plays in a component different from H0, Bob misses
his next turn.) So Bob will win globally, i.e. on G.

Now assume that Alice has a winning strategy for every component H
of G in the game B with ω(G) colors. We shall prove a winning strategy for
Alice on G with ω(G) colors. Alice always answers a move of Bob by playing
in the same component where Bob has just colored a vertex according to her
winning strategy for this component. If the component is completely colored
or if Bob misses his turn, she arbitrarily chooses a component and thinks that
Bob has missed his turn playing in that particular component. Playing like
that Alice wins on G with ω(G) colors. �

Theorem 76. If a graph G is A-nice, then for each component H of G Alice
has a winning strategy in the game A played on H with ω(G) colors.
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Figure 5.4: The graph G2

Proof. Assume that there is a component H0, so that Bob wins the game A
on H0 with ω(G) colors. Then Bob has a global winning strategy on G with
ω(G) colors if he only plays on H0. If Alice colors a vertex in a different
component, Bob imagines that she has missed a turn. So Bob wins on G. �

Remarkably, the inverse implication of Theorem 76 does not hold for
ω(G) ≥ 3. It is easy to see that each component of the graph G2 of Fig. 5.4
has A-game chromatic number 3 = ω(G2), but G2 itself has A-game chromatic
number 4.

Special classes of perfect graphs are bipartite graphs, comparability graphs
and triangulated graphs, and their complements, cf. [13]. Interval graphs
are special triangulated graphs. Bipartite graphs are special comparability
graphs. None of these classes, except the class of complements of bipartite
graphs, is contained completely in the class of B-perfect or A-perfect graphs.
P4 is a bipartite interval graph and the complement of a bipartite interval
graph, as it is self-complementary, but not B-perfect. P5 is an example of a
bipartite interval graph which is not A-perfect. S1,1,2 is not A-perfect but the
complement of an interval and comparability graph, namely the graph in Fig.
5.10 (a). Some non-trivial examples for interval graphs are given in Figs. 5.5
and 5.6.

Theorem 77. Complements of bipartite graphs are A-perfect.

Proof. Let G = (A∪B, E) be a bipartite graph and G′ be its complement. So
A and B are the vertex sets of cliques in G′, but not necessarily of maximum
cliques. Let ω(G′) be the clique number of G′. Since G′ is perfect, there is a
coloring c : A∪B −→ {1, . . . , ω(G′)} with ω(G′) colors. We call a vertex which
is the only vertex in c of a certain color a single vertex. All other vertices are

Figure 5.5: An interval graph which is not B-perfect
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Figure 5.6: An interval graph which is not A-perfect

called double vertices as every color class in c has at most two vertices. If v is a
vertex and w is a vertex of the same color in c, then w is called the companion
of v. We will prove that for the variant A, Alice has a winning strategy with
ω(G′) colors. (This will prove the theorem since induced subgraphs of G′ are
also complements of bipartite graphs.)

Alice misses her first turn. If Bob colors a single vertex, Alice misses her
turn. If Bob colors a double vertex v with a color not used so far and the
companion w of v is uncolored, then Alice colors w with the same color as
Bob has colored v. The last case is that Bob colors a double vertex v with a
color already used for another vertex and the companion w of v is uncolored.
In this case Alice colors w with a new color. Note that the number of colors in
the partial coloring Alice and Bob produce is never greater than the number
of colors in the partial coloring of c induced by the same vertices. This is true
because the last case may only occur if at a certain point of the game Bob
has used the color he already assigned to a single vertex for a double vertex.
(And after that Bob may iteratively have used the color of a double vertex
for a double vertex which is not its companion.) There are no further cases
since after Alice’s moves, if a double vertex is colored, its companion is also
colored. So at the end the players will have used only ω(G′) colors. �

5.6 Towards a Strong Perfect Graph Theorem

for B-perfect graphs

We define a broken wheel as a graph G with a center vertex v0 and n sets
A1, . . . , An of vertices and possibly an additional set B of vertices with the
following properties. Between vertices of different sets Ai and Aj or B there
are no edges. The subgraph induced by Ai ∪ {v0} is a complete graph. The
subgraph induced by B ∪ {v0} is a complete graph without one edge b1b2

between two vertices b1, b2 ∈ B. So the maximum cardinality of Ai ∪ {v0}
resp. B determines the clique number ω(G). See Fig. 5.7 for an example of a
broken wheel with clique number 3.

Theorem 78. A graph each component of which is a broken wheel is B-perfect.
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Proof. First, we prove that such a graph G is B-nice. By Theorem 75 we
may assume that G is a broken wheel. We describe a winning strategy for
Alice with ω(G) ≥ 3 colors. Alice has to do two things: to color the center
vertex as early as possible, but if Bob colors bi, i ∈ {1, 2}, then she has to
color b3−i with the same color. So the center vertex will be colored after Alice’s
second move (possibly with the third color) and the remaining ω(G) − 1 or
fewer vertices of a set Ai can always be colored. The same holds for B if Alice
colors b3−i immediately after Bob has colored bi. If Bob forces Alice to color
the first vertex of {b1, b2}, then this will be at the end of the game when every
vertex of B except b1 and b2 is colored. But then there is no danger for Alice
when she colors a vertex bi. So Alice will win in every case. For ω(G) ≤ 2 a
broken wheel is simply a star.

Now we have to prove that every subgraph of a graph the components of
which are broken wheels is a graph all components of which are broken wheels.
But this is obvious: if vertices in a set of type Ai are missing then we obtain
again a clique, thus a set of type Ai. On the other hand, if vertices in a set
of type B are missing we either obtain a set of type Ai or of type B. Hence,
in every component there is at most one set of type B. If v0 is missing, then
every set Ai and B forms a trivial broken wheel where any vertex except b1

and b2 can be considered as a new center vertex. We conclude that a graph
of broken wheels is B-perfect. �

B

Figure 5.7: A broken wheel with clique number 3
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Figure 5.8: Two more forbidden configurations for B-perfect graphs

One may conjecture that these are mainly all B-perfect graphs.

Conjecture 79. Every B-perfect graph is a graph all components of which
are some generalized broken wheels.

It is left open how to generalize broken wheels appropriately. The structure
of A-perfect graphs seems to be a lot richer and thus more complicated.

We will prove that for graphs with clique number 3 the B-perfect graphs
are exactly the broken wheels. In order to prove this result we need a lemma
which was shown by Wolk [82]. We start with a definition.

Definition 5.1. Let G = (V, E) be a graph. A universal vertex of G is a
vertex v ∈ V that is adjacent to all vertices w ∈ V , v 6= w.

Lemma 80. (Wolk [82])
Let G be a connected trivially perfect graph. Then G has a universal vertex.

Theorem 81. A graph G with ω(G) = 3 is B-perfect if, and only if, every
component of G is a broken wheel.

Proof. By Theorem 78 a graph each component of which is a broken wheel is
B-perfect. Now consider the case that G with ω(G) = 3 is B-perfect. By Lem-
mata 55 and 56 G is trivially perfect. Then by Lemma 80 every component H
of G contains a universal vertex of H . Consider such a component H0 with
universal vertex v0. Let S be a 2-connected block of this component. Since
S \ {v0} has clique number of at most 2 and does not contain an induced P4

or C4, S \ {v0} is a star. If it is a star with three or more leaves, then Bob
has a winning strategy with three colors: in his first move he colors a leaf,
in his second move a leaf with a different color. So S \ {v0} is either K1, K2

or P3. If two different blocks of H0 without the universal vertex are P3, then
Bob has the following winning strategy: in his first move he colors the first
leaf v1 of the first P3 with the first color. If Alice colors one of the neighbors
v2 or v0 of v1 with the second color or a vertex of the second P3 or of another
block with an arbitrary color, then Bob colors the second leaf of the first P3

with the third color, so that eventually either v2 or v0 will be surrounded by
all three colors. So the only possibility for Alice to play safely is to color the
second leaf of the first P3 with the first color. But then Bob colors the first
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Figure 5.9: Two B-perfect graphs with clique number 4

leaf of the second P3 with the second color. By the same argument as above,
the only chance for Alice to play safely is to color the second leaf of the second
P3 with the second color. However, then Bob colors v2, the third vertex of the
first P3, with the third color, and Alice has lost as v0 cannot be colored any
more. Thus the respective component of G is a broken wheel. �

From Theorem 81 we can deduce that the two graphs with clique number 3
in Fig. 5.8 are forbidden configurations for B-perfectness since they are no
broken wheels.

There are connected graphs with clique number of at least 4 which are
B-perfect but no broken wheels, e.g. the graphs in Figure 5.9. Thus, Con-
jecture 79 is not correct without the word ‘generalized’. So the definition of
broken wheels has to be refined.

In order to formulate the next conjecture we need the following definitions.
Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. Then G1 ∪ G2 denotes the
disjoint union of G1 and G2, i.e. the union of disjoint copies of G1 and G2.
G1 ∨ G2 denotes the join of G1 and G2, i.e. the graph consisting of G1 ∪ G2

and the additional arcs of (V1 × V2) ∪ (V2 × V1). For a graph G and n ≥ 0,
nG denotes the graph

G ∪ G ∪ . . . ∪ G
︸ ︷︷ ︸

n

.

Here 0G denotes the empty graph.

Conjecture 82. A graph G with ω(G) = 4 is B-perfect if, and only if, G is
of the form

K1 ∨ (n1K1 ∪ n2K2 ∪ n3P3

∪n4K3 ∪ n5(K1 ∨ 2K2) (5.1)

∪n6(K1 ∨ (K1 ∪ K2)) ∪ n0(K2 ∨ K2
0
))

with ni ≥ 0, and n0 + n3 + n5 + n6 ∈ {0, 1}.
The two graphs of Fig. 5.9 are of the type described in Conjecture 82. For

the left-hand graph, we have to choose n6 = 1 and ni = 0 for i 6= 6, for the
right-hand graph, n5 = 1 and ni = 0 for i 6= 5.
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(a) (b)

Figure 5.10: An (a) A-perfect resp. a (b) B-perfect graph the complement of
which is not A-perfect resp. B-perfect

Final remark. The Weak Perfect Graph Theorem [62] states that a graph is
perfect if, and only if, its complement is perfect. There is no game theoretic
analogon of this theorem. An example with 5 vertices is the graph in Fig-
ure 5.10 (b) which is B-perfect but its complement C4 ∪ K1 is not B-perfect.
The complement of the A-perfect graph in Figure 5.10 (a) is S1,1,2 which is
not A-perfect.

Open question. Find a characterization of game-perfectness in terms of for-
bidden induced subgraphs as an analogon to the Strong Perfect Graph Theo-
rem.

5.7 B-perfect digraphs

The characterization of B-perfect digraphs is very easy, provided the B-perfect
graphs are known. Since the digraph consisting of two vertices connected by a
single arc has clique number 1 but B-game chromatic number 2 and, therefore,
is not B-perfect, we have the following

Observation 83. The class of B-perfect digraphs is exactly the same as the
class of B-perfect graphs.

5.8 A-perfect digraphs with clique number 2

In spite of the afore-mentioned characterization of B-perfect digraphs, the
class of A-perfect digraphs is richer than the class of A-perfect graphs. In
the following subsections we will examine some of the internal structures
of A-perfect digraphs with clique number 2. The fact that DIRECTED 2-
COLORING is NP-complete (see Appendix A) might indicate that a com-
plete characterization of all A-perfect digraphs with clique number of at most 2
is very difficult.

We start with the following remark on A-perfect digraphs with clique num-
ber 1.
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Proposition 84. The A-perfect digraphs with clique number 1 are exactly the
in-stars.

Proof. Obviously, in-stars are A-perfect. Let D be a simple digraph (i.e., a
digraph with clique number 1) which is not an in-star. We will prove that D
is not A-nice (and therefore, not A-perfect).

Since D is not an in-star, D has at least two vertices with in-degree of at
least 1. Let v and w be such vertices. A winning strategy for Bob with 1 color
is the following. If Alice, in her first move, colors a vertex z with non-zero
out-degree, Bob wins, since an out-neighbor of z cannot be colored any more.
Otherwise, we may assume w.l.o.g. that w has not been colored by Alice.
Then Bob colors an in-neighbor of w, so that w cannot be colored any more.
Thus he wins in any case. �

5.8.1 Semiorientations of complete graphs

A semiorientation of a graph G = (V, E) is a digraph D = (V, ~E∪F ) consisting

of an orientation (V, ~E) of G and a possibly nonempty set F ⊆ E of additional
arcs. E.g., by our definition, the paths are the semiorientations of undirected
paths. Fig. 5.11 depicts all semiorientations of the complete graph K3 with
clique number of at most 2.

Theorem 85. The only A-perfect semiorientations of K3 with clique number
of at most 2 are K1,++

3 and K1,+−
3 .

Proof. This is a simple case analysis on the configurations of Fig. 5.11. �

Theorem 86. The only A-perfect semiorientation of K4 with clique number

of at most 2 is ~C4

0

, the loop deletion digraph of the true complement of the
directed 4-cycle.

Proof. Let D be a semiorientation of K4 with vertices v1, v2, v3, v4. In case D
has at most one edge, D contains an orientation of a K3 which is not A-perfect.
If D has two adjacent edges, either D contains a K2

3 which is not A-perfect
or D has clique number at least 3. So we may assume that D contains the

K0,c
3 K0,t

3 K1,++
3 K1,+−

3 K1,−−
3 K2

3

Figure 5.11: Semiorientations of K3
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v v

v v

1 2

4 3

Figure 5.12: ~C4

0

edges v1v2 and v3v4 and no further edges. W.l.o.g. the arc between v1 and
v3 is directed as (v1, v3). Since the subdigraph on the vertices v1, v3, v4 may
not be K1,−−

3 which is not A-perfect the arc between v1 and v4 is directed as
(v4, v1). With the same arguments concerning the sets of vertices {v1, v2, v4}
resp. {v2, v3, v4} one finds the orientation of the other arcs that are (v2, v4)
resp. (v3, v2). �

~C4

0

is depicted in Fig. 5.12.

Theorem 87. There is no semiorientation of Kn, n ≥ 5, with clique number 2
that is A-perfect.

Proof. Obviously, it is sufficient to prove the theorem for n = 5. Let D
be a semiorientation of K5 with vertices v1, v2, v3, v4, v5. Assume that D is
A-perfect. By Theorem 86, the subdigraph on the vertices v1, v2, v3, v4 must
be the digraph of Fig. 5.12. Either there is an edge v1v5 or an edge v3v5,
otherwise the digraph on {v1, v3, v5} would be an orientation of K3. W.l.o.g.
there is an edge v1v5. Then there is no edge v3v5 (otherwise {v1, v3, v5} would
induce a K2

3 .) Since ω(D) = 2, there is no edge v2v5. But then, as {v2, v4, v5}
may not induce an orientation of a K3, there is an edge v4v5. Hence {v1, v4, v5}
induces a K2

3 , which is not A-perfect, a contradiction. �

5.8.2 Paths

Paths are a simple class of digraphs since every subdigraph of a path is a
forest of paths. Therefore we consider the hereditary class ~PF of forests of
paths, i.e. of those digraphs each component of which is a path. For questions
of A-perfectness we do not need to consider forbidden configurations that are
not in ~PF .
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Figure 5.13: The forbidden configuration F3,1

Figure 5.14: The forbidden configuration F3,2

Figure 5.15: The forbidden configuration F4

Figure 5.16: The forbidden configuration F5,1

Figure 5.17: The forbidden configuration F5,2

Figure 5.18: The forbidden configuration F7,1

Figure 5.19: The forbidden configuration F7,2

Figure 5.20: The forbidden configuration F8

Lemma 88. If a digraph D contains any of the forbidden configurations F3,1,
F3,2, F4, F5,1, F5,2, F7,1, F7,2, or F8 depicted in Figs. 5.13–5.20 as induced
subdigraph, then D is not A-perfect.

Proof. It is easy to see that the forbidden configurations have A-game
chromatic number 2 if they are simple digraphs, and 3 otherwise, thus they are
not A-perfect. Then, by the definition of A-perfectness, D is not A-perfect. �

Recall that an arc which is not contained in any edge is called single arc.

Lemma 89. Let P be a path with n ≥ 10 vertices. Then P is not A-perfect.
Moreover, P contains a forbidden configuration as an induced subdigraph.
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Proof. Assume P is A-perfect. If P contains 3 single arcs, P has an induced
F3,1, F3,2 or F4. So P has at most 2 single arcs. If there are 2 single arcs then
these are adjacent or at distance 1, otherwise P has an induced F4. Since the
length of the path is n−1 ≥ 9, P contains either an induced P5 = F5,2, which
is a forbidden configuration, or P is of the form v1v2v3v4v5v6v7v8v9v10, where
v1v2v3v4 and v7v8v9v10 are (undirected) P4’s, v5v6 is an edge, and between v4

and v5 resp. between v6 and v7 there are single arcs. If there was an arc (v5, v4)
or an arc (v6, v7), P would contain F5,1. So there are arcs (v4, v5) and (v7, v6).
But then P contains F7,2, which is a contradiction. �

Theorem 90. Let F be a forest of paths with components D1, D2, . . . , Dk.
Then the following statements are equivalent:

(a) F is A-perfect.

(b) F does not contain any of the forbidden configurations F3,1, F3,2, F4,
F5,1, F5,2, F7,1, F7,2, or F8 depicted in Figs. 5.13–5.20 as an induced
subdigraph.

(c) Every component of F , except at most one, is either an undirected path
P1, P2, P3, or P4, and the remaining component is one of the 47 config-
urations depicted in Fig. 5.21.

In particular, the only A-perfect paths are those depicted in Fig. 5.21.

Figure 5.21: The 47 A-perfect paths
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Proof. By Lemma 88 we have (a) =⇒ (b).

Consider (b) =⇒ (c). Assume that F does not contain any forbidden
configuration. As F4 is forbidden, every component Di (with at most one
exception, say D1) is a graph, i.e. an undirected path Pni

. Since P5 = F5,2 is
forbidden, ni ≤ 4 for all i ≥ 2. By Lemma 89 the remaining component has at
most 9 vertices. The configurations of Fig. 5.21 are exactly those paths with
at most 9 vertices which do not contain any of the forbidden configurations
as induced subdigraphs (list all paths with at most 9 vertices and delete all
enlargements of forbidden configurations). Thus F is of the desired form.

Finally we prove (c) =⇒ (a). Assume that F is of the form as in (c). By
case analysis or the use of the program given in Appendix B it is easy to see
that the 47 configurations of Fig. 5.21 are A-nice. Every digraph consisting of
an arbitrary component C ′ which is one of the digraphs of Fig. 5.21 and some
components which are undirected paths P1, P2, P3, or P4 is A-nice as well,
as we shall see. Indeed, a winning strategy for Alice is the following: in her
first move she plays on C ′, after that she always plays in the component on
which Bob has played in his last move, in both cases according to her winning
strategy for the respective components. Playing on a component possibly
includes the use of Alice’s right to miss a turn if this is necessary according
to her winning strategy for C ′ or if a component is completely colored. Note
that her winning strategies for Pj, 1 ≤ j ≤ 4, always allow her to make Bob
color the first vertex, therefore the strategy described above is feasible. Since
every subdigraph of F is also of the type of digraphs described in (c), F is
not only A-nice, but A-perfect. �

Figure 5.22: 8 forbidden cycles
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Figure 5.23: The 14 A-perfect semiorientations of cycles

5.8.3 Cycles

Lemma 91. Let C be a cycle with n ≥ 7 vertices. Then C is not A-perfect.

Proof. Assume C is A-perfect. If C has three single arcs, then it contains a
forbidden configuration F3,1, F3,2, or F4 as induced subdigraph. So C has at
most 2 single arcs, and if there are two, then these are adjacent or at distance 1.
There are remaining m ≥ n−3 ≥ 4 edges, which form a (forbidden) P5 = F5,2,
a contradiction. �

Theorem 92. Let C be a cycle. C is A-perfect if, and only if, C is one of
the 14 configurations of Fig. 5.23.

Proof. Proper subdigraphs of cycles are forests of paths. By case analysis
or the use of the program in Appendix B it is easy to see that among all
22 cycles with at most 6 vertices which do not contain any of the forbidden
configurations F3,1, F3,2, F4, F5,1, or F5,2 as induced subdigraphs there are
exactly the 14 configurations of Fig. 5.23 which are A-nice. Thus, as they do
not contain the forbidden configurations, they are A-perfect. By Lemma 91,
cycles with more than 6 vertices are not A-perfect. �

In Fig. 5.22, 8 forbidden cycles are depicted. These are minimal forbid-
den configurations, i.e. they do not contain other forbidden configurations as
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proper induced subdigraphs. Together with the 7 forbidden paths F3,1, F3,2,
F5,1, F5,2, F7,1, F7,2, and F8, and the non-connected forbidden configuration F4,
so far we have found 16 minimal forbidden configurations for A-perfectness of
digraphs. There might be many more minimal forbidden configurations. E.g.,
if we consider forests, we have already seen that the multistar S1,1,2 of Fig. 5.3
is such a minimal forbidden configuration. But also the digraphs formed by
S1,1,2 in which some leaf edges are replaced by single arcs directed towards the
interior are minimal forbidden configurations.

The next step in order to complete the list of minimal forbidden config-
urations for A-perfectness would be to consider forests in general, instead of
forests of paths. By Lemma 89 we have that a tree of diameter d ≥ 9 is not
A-perfect. However, a lot of trees would have to be examined in order to
determine the forbidden configurations. Note that the number of A-perfect
trees is infinite since, for example, every in-star is A-perfect. Whether or not
the number of minimal forbidden trees is finite remains open.

The last step for the classification of A-perfect digraphs with clique num-
ber 2 would consist in considering semiorientations of arbitrary graphs. It
is clear that every component but one of an A-perfect digraph with clique
number 2 must be a bipartite graph of the form as discussed in Section 5.3.
However, the remaining exceptional component will cause a lot of work.

A classification of all A-perfect digraphs (without restriction to the clique
number) seems to be a demanding task for the future, as well as a description
of A-perfect digraphs by minimal forbidden induced subdigraphs. Such a
classification would be of equal weight as the Strong Perfect Graph Theorem.

Final remark. Another interesting question is the following: Let g be a
variant of the coloring game and k be a nonnegative integer. Let N(g, k) be
the number of isomorphism classes of connected g-perfect digraphs D with
maximum in-degree ∆+(D) = k. Let N ′(g, k) be the number of isomorphism
classes of connected g-perfect graphs G with maximum degree ∆(G) = k.

Open question. Is it true that N(g, k) < ∞? If yes, determine the exact
value of N(g, k).

A weaker formulation of this question concerns only graphs:

Open question. Is it true that N ′(g, k) < ∞? If yes, determine the exact
value of N ′(g, k).

Note that we need the precondition ‘connected’, otherwise the numbers
would be always infinite. For example, if a digraph is A- or B-perfect, then
it is still A- resp. B-perfect when an arbitrary number of isolated vertices is
added.

Obviously, N ′(g, 0) = N ′(g, 1) = 1 for any g. Connected graphs with
maximum degree 2 are cycles Cn or paths Pn with n ≥ 3. C3 is B-perfect
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(and thus A-perfect) since it is a complete graph. By the results of this
chapter, P3 is B-perfect, and Pn and Cn, n ≥ 4, are not B-perfect. Therefore
N ′(B, 2) = 2. Furthermore P4 and C4 are A-perfect, but Pn and Cn, n ≥ 5,
are not A-perfect. Thus N ′(A, 2) = 4. For k ≥ 3, N ′(g, k) is not known.

Counting the numbers N(g, k) and N ′(g, k), if they are finite, might give
new insights into the structure of g-perfect digraphs resp. graphs. Here
we come from the parameter ‘maximum in-degree’ instead of the parameter
‘clique number’ as in the main parts of this chapter. Research combining these
two parameters might lead to better characterizations of g-perfect digraphs
than the use of only one parameter.
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Appendix A

Complexity results

Let k ≥ 0 be a fixed integer. Recall that a k-coloring of a digraph D is a color
assignment from the set {1, 2, . . . , k} to the vertices of D, so that the preimage
of every color induces an acyclic digraph. The problem to decide whether there
exists a k-coloring of a given graph is known as k-COLORING. We consider
the more general problem of DIRECTED k-COLORING where any digraph is
allowed as an instance of the problem. The interesting special case of SIMPLE
DIRECTED k-COLORING is defined by restricting the instances to simple
digraphs.

It is well-known that 1-COLORING and 2-COLORING are in P, but
3-COLORING is NP-complete (see Papadimitriou [75]). In the more gen-
eral case of digraphs this situation changes. DIRECTED 1-COLORING is
in P since Depth-First-Search detects directed cycles in linear time. Bokal
et al. [18] proved that SIMPLE DIRECTED 2-COLORING (and thus DI-
RECTED 2-COLORING) is NP-complete by reducing 2-COLORABILITY
OF 3-UNIFORM HYPERGRAPHS to SIMPLE DIRECTED 2-COLORING.
They reinvent the dichromatic number in [18], the work of Neumann-Lara [69]
seems to have been unknown to them.

The main result of Appendix A will be another proof of the NP-com-
pleteness of SIMPLE DIRECTED 2-COLORING, which was discovered inde-
pendently. We will use a reduction from NAE3SAT (which is defined in the
following paragraph) to SIMPLE DIRECTED 2-COLORING which is similar
to the well-known reduction from NAE3SAT to 3-COLORING [75].

The Not-All-Equal 3-Satisfiability Problem (NAE3SAT) is defined as fol-
lows. An instance of the problem is a boolean formula f(x) in conjunctive
normal form

f(x) =
m∧

j=1

Cj(x) with

Cj(x) = (ℓj1(x) ∨ ℓj2(x) ∨ ℓj3(x)) ∧ (¬ℓj1(x) ∨ ¬ℓj2(x) ∨ ¬ℓj3(x))

with pairs of clauses with 3 literals in each clause as displayed above. The

107
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Figure A.1: Digraph for the formula f(x) = C1(x) ∧ C2(x) with C1(x) =
(x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x1 ∨ x2) and C2(x) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

literals ℓjk(x) are variables xi or negated variables xi. The problem consists
in deciding whether there is a truth assignment which satisfies the formula.
It is well-known that NAE3SAT is NP-complete, see Papadimitriou [75].

Theorem 93. DIRECTED 2-COLORING is NP-complete.

Proof. We will reduce NAE3SAT to 2-DIRECTED COLORING. Let

f(x) =
m∧

j=1

Cj(x) with

Cj(x) = (ℓj1(x) ∨ ℓj2(x) ∨ ℓj3(x)) ∧ (¬ℓj1(x) ∨ ¬ℓj2(x) ∨ ¬ℓj3(x))

be a NAE3SAT-formula with literals ℓjk(x) ∈ {x1, . . . , xn} ∪ {x1, . . . , xn}.
Then we construct a digraph G = (V, E) with 2n + 3m vertices and 2n + 9m
arcs, as in Fig. A.1:

V = {yi, zi : i = 1, . . . , n} ∪ {Djk : j = 1, . . . , m; k = 1, 2, 3}

So for each variable xi there are two vertices yi and zi, and for each pair Cj(x)
of clauses there are three vertices Dj1, Dj2, and Dj3. For all i we connect
yi and zi by an edge, i.e. by the two arcs (yi, zi), (zi, yi) ∈ E. We further
connect yi and Djk by an edge if ℓjk(x) = xi, we do the same with zi and Djk

if ℓjk(x) = xi. Up to this moment we have an (undirected) graph but now we
add directed triangles, namely the arcs (Dj1, Dj2), (Dj2, Dj3), (Dj3, Dj1) for
each j, which are the essential part of the reduction. Note that a directed
triangle may always be colored with two colors if we do not take the rest of
the digraph into account.
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We will prove that there is a truth assignment a ∈ {0, 1}n with f(a) = 1
if, and only if, there is a 2-coloring of G.

If a satisfies f we define a color assignment c : V −→ {0, 1} by setting
c(yi) := 1 − ai; c(zi) := ai; c(Djk) := ai if there is an edge yiDjk, and
c(Djk) := 1 − ai if there is an edge ziDjk. So c(Djk) = ℓjk(a). Because
of the pairwise opposite clauses in Cj(x) and because a is a satisfying truth
assignment it is impossible that c(Dj1) = c(Dj2) = c(Dj3). Thus each triangle
is colored in both colors. Thus c is a 2-coloring.

On the other hand, if a directed coloring c : V −→ {0, 1} exists, define
ai := c(zi) and observe again that c(Djk) = ℓjk(a). Since every triangle is
colored in two colors every double-clause Cj is satisfied by a. �

DIRECTED k-COLORING may be reduced to DIRECTED (k +1)-COL-
ORING: for a digraph D, construct a digraph D′ with an additional vertex
v0 adjacent (by an edge, not only by a single arc!) to every other vertex of
the original digraph. If D′ can be colored with k + 1 colors, then, in every
coloring of D′, v0 is colored differently from every other vertex. Hence the
coloring restricted to the vertices of D only uses k colors. On the other hand,
if D can be colored with k colors, D′ can obviously be colored with k + 1
colors. Thus we have:

Corollary 94. DIRECTED k-COLORING is NP-complete for k ≥ 2.

We will now discuss the complexity of coloring simple digraphs and obtain
a stricter version of Theorem 93. All we need to do is to replace the edges in
the reductions of Theorem 93 and Corollary 94 by appropriate configurations,
such that the arising digraph is simple and can be colored with k colors if,
and only if, the original digraph can be colored like this.

We start with the following definitions. Recall that a tournament is the
orientation of a complete graph. A digraph D is n-dichromatic if χ(D) = n.
D is minimal n-dichromatic if D is n-dichromatic and, for every digraph H
with less vertices than D, χ(H) ≤ n − 1.

A series (AT (n))n of tournaments with χ(AT (n)) = n for each nonnegative
integer n is easily constructed. Let AT (1) be the trivial graph with one vertex.
For n ≥ 1 let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint copies of
AT (n) and z be an additional special vertex. Define AT (n + 1) = (V, E) by
V = V1 ∪ V2 ∪ {z} and

E = E1 ∪ E2 ∪ (V1 × V2) ∪ (V2 × {z}) ∪ ({z} × V1).

Observation 95. χ(AT (n)) = n.

We omit the proof which runs by induction. The first reason for intro-
ducing the tournaments AT (n) is only to prove the existence of a class of
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Figure A.2: Simple digraph replacing an edge

tournaments with arbitrarily large dichromatic number. Later we will come
back to the tournaments AT (n).

However, these tournaments are not minimal n-dichromatic for n ≥ 4.
Erdös et al. [38] have proved that the minimal order of an n-dichromatic
tournament is θ(n2 log2 n), whereas the order of AT (n) is 2n − 1.

Let T (n) = (V, E) be a tournament of minimal order that has dichromatic
number n+1. To find such a tournament can be regarded as diffficult because
we only know such tournaments for 1 ≤ n + 1 ≤ 4 (cf. [70]). Nevertheless
such a tournament exists since the tournaments AT (n + 1) have dichromatic
number n+1. Let n ≥ 2. We pick a vertex z of T (n) and define a new digraph,
the tournament line TL(n) = (V ′, E ′) with vertex set V ′ = V \ {z} ∪ {x, y}
that contains all arcs of T (n) − z. In addition, for each arc of type (v, z),
TL(n) has an arc (v, x) and, for each arc of type (z, v), an arc (y, v). At last
we add the arc (x, y). Thus TL(n) can be constructed by splitting the vertex z
into a target and a source vertex and by adding an arc from the target to the
source.

Lemma 96. For n ≥ 2, TL(n) may be colored with n colors, so that x and
y have arbitrary, different, prescribed colors. For each n-coloring c of TL(n)
we have c(x) 6= c(y).

Proof. In order to prove the first statement, let [n] = {1, 2, . . . , n} be a set
of n colors. Assign distinct colors c(x), c(y) ∈ [n] to the vertices x resp. y.
TL(n) − {x, y} is a proper subtournament of T (n), thus it can be colored
with n colors, among them are c(x) and c(y). Since x and y are a sink resp.
a source in the digraphs induced by the vertices colored with c(x) and c(y)
these digraphs are acyclic. Therefore TL(n) can be colored with n colors.

Assume that there is an n-coloring c with c(x) = c(y). Then, if we identi-
fied x and y (which would not create new directed cycles!), there would be a
directed n-coloring of T (n), which is a contradiction to χ(T (n)) = n+1. This
proves the second assertion. �
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Theorem 97. SIMPLE DIRECTED 2-COLORING is NP-complete.

Proof. In the reduction of Theorem 93 we replace each edge ab by a tourna-
ment line TL(2) identifying a with x and b with y (see Fig. A.2) and obtain
a simple digraph G′.

By the proof of Theorem 93 the NAE3SAT-formula is satisfied if, and
only if, the digraph G from Theorem 93 can be colored with 2 colors. By
Lemma 96, G can be colored with 2 colors if, and only if, G′ can be colored
with 2 colors. �

Corollary 98. The problem SIMPLE DIRECTED k-COLORING is NP-
complete for k ≥ 2.

Proof. In the reduction of Corollary 94 we replace each edge ab by a TL(k)-
digraph, identifying x with a and y with b for k ≥ 3. Then argue as in the
preceding theorem using Lemma 96. �

We do not need the minimality of T (n) in order to construct a tournament
with a functionality similar to TL(n). Alternatively, we might have replaced
the edges by configurations AL(n) which appear from AT (n + 1) when we
split the special vertex of AT (n+1) into a source x and a target vertex y and
connecting the target to the source (cf. Figure A.3). Note that splitting a
vertex different from the special vertex would not always work. It is easy to
see that these configurations have the same property as TL(n). (Indeed, since
χ(AT (n)) = n we also have χ(AL(n)) = n. Assume that in an n-coloring of
AL(n), x and y are colored with the same color. Then, if we identify x and y,
we obtain an n-coloring of AT (n+1), which contradicts χ(AT (n+1)) = n+1.
Therefore we can replace TL(n) in Lemma 96 by AL(n).)

While the complexity of noncompetitive digraph coloring has been solved,
the complexity status of the most interesting competitive digraph coloring
problem still remains open: given a digraph D and a number k, decide whether
χg(D) ≤ k. Even the complexity of the graph relaxation of this problem is
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still open. However, Bodlaender [15] proved for three related problems that
they are PSPACE-complete if k is large enough. In Chapter 5 we saw that,
if we restrict ourselves to graphs and k = 2, the problem is in P, indeed we
gave an explicit solution to this problem.



Appendix B

Game-tree search

In this chapter a computer program is presented. With this program, in prin-
ciple, the task of determining the game chromatic number of any digraph D
can be solved. However, there are natural bounds concerning the time and
space complexity of this algorithm. Since the program is mainly a game-tree
search, its running time is exponential in the size of the input. Thus only very
small instances can be solved within reasonable time. For these instances,
on modern computers, there is no problem with the space complexity, which
depends linearly on the size of the input.

A game-tree is a tree with root r. In order to distinguish between vertices
of the digraph D and vertices of the game-tree, we will call a vertex of the
game-tree node, whereas a vertex denotes a vertex of the digraph. The distance
of a node v to r is the level of v. In case Alice begins the game, the nodes
of even level belong to Alice, the nodes of odd level to Bob. If w is the last
inner node on the path from r to a node v, then w is the parent of v, and v
is the child of w. The nodes of level 2k − 2, 2k − 1 represent the decision of
the k-th move of a player. For each possibility a player has in node w, there
is exactly one child v of w in the next level. A possibility means that a player
chooses a vertex (of D) and a color for this vertex. If we consider a node v
(in the game-tree), then we assume that the state of the game is given by the
chosen vertices (of D) and the chosen colors on the path from r to v. Since
the game is finite, this game-tree will have leaves, and each path beginning
at r will end in a leaf. These leaves are labeled with 1 if Alice wins at this
stage, or labeled with 0 if Bob wins there.

In order to calculate whether Alice or Bob has a winning strategy for the
game we proceed recursively as follows. A node of even level (Alice’s move)
obtains the maximum of the labels of its children. On the other hand, a node
of odd level (Bob’s move) receives the minimum of the labels of its children.
The value of the game is the label of the root r. If the value is 1, Alice has
a winning strategy, otherwise, if the value is 0, Bob has a winning strategy.
This is the so-called minimax-principle.

113
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An algorithm that calculates the value of the game via the minimax-
principle is called complete game-tree search. Usually it is not necessary to
calculate the labels of every node of the game-tree in order to determine the
label of the root. Often a lot of branches of the tree can be cut off and need
not be considered. In this case we speak of a (nearly complete) game-tree
search.

In Section B.1 we present a basic game-tree search algorithm. The running
time of this program is examined in Section B.2. Some empirical results are
given in Section B.3. In Section B.4 we obtain a faster program by introducing
another cutting operation. The section is concluded with empirical results
concerning the improved program.

B.1 The program

The program we describe tests whether for a given digraph D and a given
number of colors Alice wins the coloring game. For simplicity, we have as-
sumed that the coloring game is 0-relaxed, and that every player colors at
most one vertex in a move. Three functions were developped: the first for
a game where missing a turn is not allowed, the other two for games where
Alice resp. Bob have the right to miss a turn.

These functions return 1 if Alice wins the game and 0 if Bob wins the
game. They use a nearly complete game tree search with only two cutting
off rules (in the first function marked by (3) and (3.1.2)). The program was
implemented in C++. For the input and output stdio.h has to be included.
The first function gametree calculates the game-tree recursively at a certain
level.

int gametree

(int ncol, // number of colors

int nvert, // number of vertices

int move, // number of the actual move

int alice, // 1 if it is Alice’s turn,

// 0 if it is Bob’s turn

int*C, // colors of vertices,

// 0 for uncolored vertices

int**N, // adjacency list

int*a) // number of in-neighbors of vertices

{ int max, // saves the actual maximum label

// of the children in the game-tree

min, // saves the actual minimum label

// of the children in the game-tree
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h, // auxiliary variable

i, // vertex to be colored

j, // color to be used for i

k, // label of a child in the game-tree

value, // 1 if Alice wins in the current

// level, 0 if Bob wins

xbreak, // 1 if a vertex cannot be

// colored feasibly any more

test; // auxiliary variable

int*CCC; // new color array

// The new color array CCC is initialized

// by the old color array C

CCC=new int[nvert+1];

for(i=0;i<=nvert;i++)CCC[i]=C[i];

// max and min are initialized

max=0;

min=1;

// Alice wins

// if there is no uncolored vertex any more.

if(move>nvert)value=1;

// Otherwise explore the game-tree’s next level

else

{ // (1) i is the vertex selected to be colored

// in this step.

// It is initialized by the first vertex.

i=1;

// (2) xbreak is 1 if there is a vertex that

// cannot be colored feasibly any more

// It is initialized by 0

// since no vertex has been examined

xbreak=0;

// (3) This loop considers all vertices i.

// It stops if xbreak is 1 since

// then we can cut off the game-tree

// at the current level

// as Bob will win at this level.

while((i<=nvert)&&(xbreak==0))



116 APPENDIX B. GAME-TREE SEARCH

// (*) This while-loop can be refined

// see Section B.4

{ // (3.1) We only consider

// uncolored vertices

if(C[i]==0)

{ // (3.1.1) We suspect that vertex i

// cannot be colored feasibly

xbreak=1;

// (3.1.2) We test every color j

// on vertex i.

// We need not use a color

// greater than the move number

// since the use of these colors

// does not give new value results

for(j=1;(j<=ncol)&&(j<=move);j++)

// (*) This for-loop can be refined

// see Section B.4

{ // (3.1.2.1) We assume that vertex i

// can be colored

// with color j

test=1;

// (3.1.2.2) If i has an in-neighbor

// h colored with j, then

// our assumption was wrong

for(h=0;h<a[i];h++)

if(j==C[N[i][h]])test=0;

// (3.1.2.3) If our assumption was

// true, then we can color

// i with j. We do that [2] and

// calculate the label of the game-

// tree at the next level [3].

// Our suspicion was wrong [1].

// We uncolor i [4] and we calculate

// the actual min and max of the

// game-tree labels [5]

if(test==1)

{ xbreak=0; // [1]
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CCC[i]=j; // [2]

// [3] (recursion)

k=gametree

( ncol, nvert, (move+1),

(1-alice), CCC, N, a );

CCC[i]=0; // [4]

// [5]

if(k>max)max=k;

if(k<min)min=k;

}

}

}

// (3.2) The next vertex is considered

i++;

}

// (4) minimax-principle

if(alice==1)value=max;else value=min;

// (5) If the game tree was cut off,

// then the value is 0 (Bob wins)

if(xbreak==1)value=0;

}

// Technical necessity in order to keep

// memory space polynomial

delete[] CCC;

// Now 1 is returned if Alice wins at this level

// otherwise 0

return (value);

}

The other two functions are very similar to the first one. Thus we omit
comments at similar passages. gametreeAA calculates the value of the game
tree for the game where Alice is allowed to miss one or several turns, the
function gametreeBB calculates the corresponding value for the game where
this is true for Bob.
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Note that the variable move has a different meaning in the functions
gametreeAA and gametreeBB compared with the function gametree studied
above. In general, move counts the number of colored vertices minus one. This
number equals the number of a move only in a game where passing is not al-
lowed and we count all moves of Alice and Bob from the beginning. However,
in case missing a turn is allowed for a player, the number nm of the move is
in the range move ≤ nm ≤ 2 · move.

int gametreeAA

(int ncol, int nvert, int move,

int alice, int*C, int**N, int*a)

{ int max,min,i,j,k,value,xbreak,test;

int*CCC;

CCC=new int[nvert+1];

for(i=0;i<=nvert;i++)CCC[i]=C[i];

max=0;

min=1;

if(move>nvert)value=1;

else

{ i=1;

xbreak=0;

// If it is Alice’s move she has the right

// to miss the turn. This possibility

// is another child of the game tree.

// It is examined here

if(alice==1)

{ k=gametreeAA(ncol,nvert,move,0,CCC,N,a);

if(k>max)max=k;

if(k<min)min=k;

}

while((i<=nvert)&&(xbreak==0))

// (*) This while-loop can be refined

// see Section B.4

{ if(C[i]==0)

{ xbreak=1;

for(j=1;(j<=ncol)&&(j<=move);j++)

// (*) This for-loop can be refined

// see Section B.4

{ test=1;

for(k=0;k<a[i];k++)
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if(j==C[N[i][k]])test=0;

if(test==1)

{ xbreak=0;

CCC[i]=j;

k=gametreeAA

( ncol, nvert, (move+1),

(1-alice), CCC, N, a );

CCC[i]=0;

if(k>max)max=k;

if(k<min)min=k;

}

}

}

i++;

}

if(alice==1)value=max;else value=min;

if(xbreak==1)value=0;

}

delete[] CCC;

return (value);

}

int gametreeBB

(int ncol, int nvert, int move,

int alice, int*C, int**N, int*a)

{ int max,min,i,j,k,value,xbreak,test;

int*CCC;

CCC=new int[nvert+1];

for(i=0;i<=nvert;i++)CCC[i]=C[i];

max=0;min=1;

if(move>nvert)value=1;

else

{ i=1;

xbreak=0;

// If it is Bob’s move he has the right

// to miss the turn. This possibility

// is another child of the game tree.

// It is examined here

if(alice==0)

{ k=gametreeBB(ncol,nvert,move,1,CCC,N,a);
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if(k>max)max=k;

if(k<min)min=k;

}

while((i<=nvert)&&(xbreak==0))

// (*) This while-loop can be refined

// see Section B.4

{ if(C[i]==0)

{ xbreak=1;

for(j=1;(j<=ncol)&&(j<=move);j++)

// (*) This for-loop can be refined

// see Section B.4

{ test=1;

for(k=0;k<a[i];k++)

if(j==C[N[i][k]])test=0;

if(test==1)

{ xbreak=0;

CCC[i]=j;

k=gametreeBB

( ncol, nvert, (move+1),

(1-alice), CCC, N, a );

CCC[i]=0;

if(k>max)max=k;

if(k<min)min=k;

}

}

}

i++;

}

if(alice==1)value=max;else value=min;

if(xbreak==1)value=0;

}

delete[] CCC;

return (value);

}

We consider two functions to simplify the input of graphs (graphinput)
and digraphs (digraphinput), respectively. In the latter function, for an edge
vw of a graph, both arcs (v, w) and (w, v) have to be read. The array N saves
the in-neighborhood of all vertices. The array a saves d+(v) for all vertices v.
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int graphinput(int nedges,int**N,int*a)

{ int counter,knota,knotb;

printf("\nInput of the edges:\n");

for(counter=0;counter<nedges;counter++)

{ printf("Edge %i:\n",counter+1);

scanf("%i%i",&knota,&knotb);

N[knotb][a[knotb]]=knota;

N[knota][a[knota]]=knotb;

a[knotb]++;

a[knota]++;

}

return 0;

}

int digraphinput(int narcs,int**N,int*a)

{ int counter,knota,knotb;

printf("\nInput of the arcs:\n");

for(counter=0;counter<narcs;counter++)

{ printf("Arc %i:\n",counter+1);

scanf("%i%i",&knota,&knotb);

N[knotb][a[knotb]]=knota;

a[knotb]++;

}

return 0;

}

The main program only reads the data and calls the different game-tree
functions. The version below considers the game gA, where Alice has the first
move and missing a turn is not allowed.

int main()

{ // (1) variables

int maximumdegree, // maximum (in-)degree

// of input (di)graph D

nvert, // number of vertices of D

narcs, // number of arcs/edges of D

ncol, // number of colors

ii,jj, // counter variables

isgraph; // indicates whether we con-

// sider graphs or digraphs

int result; // variable for the result
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// (win of Alice or Bob)

int*a; // a[i] is number of (in-)neighbors

// of vertex i

int*Color; // Color[i] actual color of vertex i

int**N; // adjacency list: N[i][j] j-th

// (in-)neighbor vertex of vertex i

// (2) Input of general parameters

printf("\nInput graph (1) or digraph (0)?");

scanf("%i",&isgraph);

if(isgraph==1)

printf("\nInput graph\nMaximum degree: ");

else

printf("\nInput digraph\nMaximum in-degree: ");

scanf("%i",&maximumdegree);

printf("\nNumber of vertices: ");

scanf("%i",&nvert);

if(isgraph==1)printf("\nNumber of edges: ");

else printf("\nNumber of arcs: ");

scanf("%i",&narcs);

printf("\nNumber of colors: ");

scanf("%i",&ncol);

// (3) Initialization of the three arrays

a=new int[nvert+1];

Color=new int[nvert+1];

N=new int*[nvert+1];

for(ii=0;ii<=nvert;ii++)

N[ii]=new int[maximumdegree];

for(ii=0;ii<=nvert;ii++)Color[ii]=0;

for(ii=0;ii<=nvert;ii++)a[ii]=0;

for(ii=0;ii<=nvert;ii++)

for(jj=0;jj<maximumdegree;jj++)N[ii][jj]=0;

// (4) Input of the edges or arcs

if(isgraph==1)graphinput(narcs,N,a);

else digraphinput(narcs,N,a);

// (5) Calculation

result=gametree(ncol,nvert,1,1,Color,N,a);

// (6) Output of results

printf("\n\nwith %i Colors: %3i\n",ncol,result);
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return 0;

}

Sometimes we use a modified main program where the command (5) is
replaced by another command. In case we consider the game A, the command
is

// (5) Calculation

result=gametreeAA(ncol,nvert,1,1,Color,N,a);

In case we consider the game gB, the command is

// (5) Calculation

result=gametree(ncol,nvert,1,0,Color,N,a);

For the game B we have to use the function gametreeBB instead.

B.2 Running time of the program

Not surprisingly, the CPU-time of the program increases rather rapidly when
the number of vertices or colors is increased.

Proposition 99. For one call of the function

gametree(ncol,nvert,1,1,Color,N,a)

we need (in the worst case) O(n!c!cn−c) time where n = nvert and c = ncol.
Moreover, the worst case occurs, if the digraph we consider is In, the graph
with n isolated vertices.

Proof. In the naive approach of a game-tree search, the game-tree has at
most n!cn leaves since in the first move we can choose one of the n vertices
and assign one of the c colors to it, in the second move we can choose one
of the remaining n − 1 vertices and assign again one of the c colors to it, in
general, in the k-th move, we can choose between n − k + 1 vertices and are
free to assign any of the c colors to it.

However, we can do better, since in our program, in step (3.1.2), we as-
sume that in the k-th move a player uses only colors from the set {1, 2, . . . , k}.
This assumption has no influence on the outcome of the game (all new colors
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are equivalent with the k-th color), but cuts off a lot of unnecessary branches
of the tree. So, our game-tree has at most

n · 1 · (n − 1) · 2 · · · (n − c + 1) · c · (n − c) · c · · ·2 · c · 1 · c

leaves, i.e. O(n!c!cn−c) leaves in case n ≥ c (which we can assume). Since the
total number of elements of the game-tree is dominated by the number of its
leaves, and running time is directly proportional to number of elements, we
obtain the first assertion.

Furthermore, if the digraph we consider is In, and c ≥ 1, there will be no
cutting of branches of the game-tree. Note that cutting only occurs if at a
certain point Bob wins, but in In Alice will win for every leaf, and so for every
element of the game-tree. Therefore the worst case really occurs. �

Now we will analyze the running time of the more complex function where
Alice is allowed to miss one or several turns. For this purpose let φ be the
golden ratio:

φ =

√
5 + 1

2

Proposition 100. For one call of the function

gametreeAA(ncol,nvert,1,1,Color,N,a)

we need (in the worst case) O(φnn!c!cn−c) time where n = nvert and c =
ncol. Moreover, the worst case occurs for the graph In.

Proof. If we do not count the moves in which Alice misses her turn, then
in the k-th move a player chooses between n − k + 1 vertices and between
min{k, c} colors. Furthermore (maybe at the beginning of the game) Alice
chooses a move sequence X ∈ {A, B}n, where A resp. B in the k-th place
means that Alice resp. Bob colors in move k. Since the rules of the game
do not permit Alice to have two moves without Bob moving inbetween, no
subsequence AA is allowed in X. There are no further restrictions on X.
We want to count all possible move sequences. Let RA(n) be the number of
all possible move sequences of length n starting with A, and RB(n) be the
number of all possible move sequences of length n starting with B. Then

RA(1) = 1

RB(1) = 1

RA(n + 1) = RB(n) for n ≥ 1

RB(n + 1) = RA(n) + RB(n) for n ≥ 1

This leads to the recursive formula

RB(n + 1) = RB(n − 1) + RB(n) for n ≥ 2.
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#V #C G time(s) G time(s) G time(s) G time(s)

6 2 I6 0.008 M6 0.000 P6 0.000 C6 0.004
7 2 I7 0.112 M7 0.028 P7 0.008 C7 0.008
8 2 I8 1.840 M8 0.212 P8 0.048 C8 0.036
9 2 I9 33.826 M9 3.576 P9 0.420 C9 0.176

10 2 I10 681.239 M10 39.774 P10 4.100 C10 3.128
11 2 I11 >1000 M11 856.029 P11 48.267 C11 18.233

Table B.1: Running time versus density: The table depicts the running time
of the check whether Alice has a winning strategy with 2 colors in the game
gA played on instance G. Here the instances in a row are of increasing density.
Therefore the running time decreases in most cases.

So RB(n) = F (n), RA(n) = F (n − 1), where F (n) denotes the n-th Fi-
bonacci number, and the number R(n) of possible move sequences of length n
is R(n) = RA(n) + RB(n) = F (n + 1). It is well-known that the number
F (n + 1) tends asymptotically to the value 1√

5
φn+1. As in the proof of the

preceding proposition we can multiply the numbers of choices (which are in-
dependent) and obtain that the game-tree has at most O(φnn!c!cn−c) leaves
(which dominate the number of elements of the game-tree). �

B.3 Computational results

All tests of the program were run on fireball.mi.uni-koeln.de, a Siemens
Scenic W600 with a 3 GHz Pentium 4 processor and 512 kB cache and 2 GB
RAM, run by Debian Linux.

The running time decreases significantly with increasing density of a di-
graph (if the number of vertices is fixed). This phenomenon is illustrated in
the Tables B.1, B.2 and B.3. Table B.1 and B.2 consider the case that a
game is played with 2 colors. Table B.1 summarizes running time data for the
game gA, Bodlaender’s original variant, and in Table B.2 the game A, where
Alice is allowed to miss a turn, is examined. Table B.3 considers the game gA

played with 3 colors. For each instance, the running time of the program is
given. The running time is measured in seconds, the smallest displayed unit
is one millisecond.

As instances we study the graph In for some n, which consists of n isolated
vertices, and the graph Mn for some n, which has n vertices and a (nearly
perfect) matching of

⌊
n
2

⌋
edges. On these instances, Alice obviously wins any

game g with 2 colors. We further study undirected paths Pn and undirected
cycles Cn for some n ≥ 5, on which Bob wins any game g with 2 colors, with



126 APPENDIX B. GAME-TREE SEARCH

#V #C G time(s) G time(s) G time(s) G time(s)

5 2 I5 0.012 M5 0.004 P5 0.000 C5 0.004
6 2 I6 0.156 M6 0.036 P6 0.012 C6 0.008
7 2 I7 3.692 M7 0.672 P7 0.156 C7 0.052
8 2 I8 99.570 M8 9.705 P8 1.860 C8 1.396
9 2 I9 — M9 — P9 27.622 C9 9.177

Table B.2: Running time versus density: The table depicts the running time
of the check whether Alice has a winning strategy with 2 colors in the game
A played on instance G.

#V #C D time(s) D time(s) D time(s)

6 3 C6 0.008 C2
6 0.000 C2,3

6 0.000

7 3 C7 0.068 C2
7 0.020 C2,3

7 0.000

8 3 C8 1.184 C2
8 0.200 C2,3

8 0.028

9 3 C9 22.401 C2
9 2.760 C2,3

9 0.224

10 3 C10 489.439 C2
10 38.390 C2,3

10 2.428

Table B.3: Running time versus density: The table depicts the running time
of the check whether Alice has a winning strategy with 3 colors in the game
gA played on instance D.

one exceptional case: Alice wins on C6 if the rules of the game allow her
to force Bob to color first, for example in the game A. In spite of the fact
that undirected cycles Cn are very sparse graphs and are only a little denser
than In, the decrease of the running time for Cn compared with In is enormous
(see Tables B.1 and B.2).

In Table B.3 we examine digraphs of increasing density again. Here we
start with undirected cycles Cn and proceed with digraphs C2

n and C2,3
n , which

are defined as follows:
In C2

n there are n vertices 1, 2, . . . , n, and arcs (i, j) if

j ≡ i − 1 mod n or j ≡ i + 1 mod n or j ≡ i + 2 mod n.

In C2,3
n there are the same vertices and arcs as in Cn

2 , and additional arcs (i, j)
if j ≡ i + 3 mod n.

As Table B.4 suggests, the program is indeed useful to calculate the gA-
game chromatic number of digraphs with at most 7 vertices and to calculate
the A-game chromatic number of digraphs with at most 6 vertices. Depending
on the density of the digraph, the number of colors needed, and on the game,
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G #V time(s) time(s)
game gA game A

I1 1 0.008 0.000
I2 2 0.000 0.004
I3 3 0.000 0.000
I4 4 0.004 0.000
I5 5 0.004 0.036
I6 6 0.100 2.120
I7 7 5.184 172.935
I8 8 >200 —

Table B.4: Running time in a sparse case with the maximal number of colors

Figure B.1: The cube

the program can be useful for digraphs with at most 11 vertices, see the
Tables B.1 and B.5. Exploiting symmetries in the input digraphs the program
could easily be refined to deal with digraphs of more than 11 vertices (see
Section B.4).

The program was applied to various instances. We want to mention 3
interesting results. The first one concerns the graph Cube, see Fig. B.1. From

G #V time(s) time(s)
game gA game A

K7 6 0.008 0.152
K8 7 0.060 2.492
K9 8 0.636 42.719
K10 9 7.712 —
K11 10 100.346 —

Table B.5: Running time in the densest case with the maximal number of
colors



128 APPENDIX B. GAME-TREE SEARCH

Pet1 Pet2

Pet3 Pet4

Figure B.2: Semiorientations of the Petersen graph

the results of Table B.6 one can deduce that the gA-game chromatic number of
the Cube is 4, whereas the A-game chromatic number of the Cube is 2. Once
more, this illustrates the fact that the game chromatic number can jump by
more than 1 between two ‘adjacent’ variants of the considered game. The
second application of the program was to prove that the gA-game chromatic
number of the incidence graphs P I

k of small paths Pk, k ≤ 6, is at most 4, see
Table B.6. This result was already mentioned in Chapter 4. Finally, semi-
orientations of the Petersen graph were examined. The Petersen graph Pet1,
which has (di)chromatic number 3, and three semiorientations, which have
dichromatic number 2, are depicted in Fig. B.2. Not surprisingly, the game
chromatic numbers of the three latter semiorientations have game chromatic
number 3, which is bigger than their dichromatic number, for any variant of
the game, see Table B.6. One should expect the same phenomenon for the
undirected Petersen graph, i.e. its game chromatic numbers should also exceed
its chromatic number by 1. However, this is not the case, as can be deduced
from Table B.6. The gA-game chromatic number of Pet1 is 4, but the gB-game
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Digraph Game #V #C A wins B wins time(s)

Cube gA 8 2 × 0.032
Cube gA 8 3 × 0.584
Cube A 8 2 × 1.508
P I

2 gA 2 4 × 0.000
P I

3 gA 4 4 × 0.000
P I

4 gA 6 4 × 0.004
P I

5 gA 8 4 × 1.676
P I

6 gA 10 4 × 695.667
Pet1 gA 10 3 × 81.269
Pet1 A 10 3 × 10098.735
Pet1 gB 10 3 × 81.841
Pet2 gA 10 2 × 2.280
Pet2 A 10 2 × 222.558
Pet3 gA 10 2 × 2.304
Pet3 A 10 2 × 230.046
Pet4 gA 10 2 × 14.861
Pet4 A 10 2 × 1786.976

Table B.6: Computer results and CPU time for various instances

chromatic number of Pet1 is 3, equal to its chromatic number. Again the
Petersen graph has been proven as a counterexample to the mathematician’s
expectations.

B.4 Accelerating the algorithm

The program described so far can be improved by a further cutting operation
on the game-tree. It is done by replacing the code (number (3) in the listing
of the function gametree)

while((i<=nvert)&&(kaputt==0))

// (*) This while-loop can be refined

// see Section B.3

in the functions gametree, gametreeAA and gametreeBB by the following code
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while ( (i<=nvert)

&& (kaputt==0)

&& ( ( (alice==1) && (max<1) )

|| ( (alice==0) && (min>0) )

)

)

further by replacing the code (number (3.1.2) in the listing of the function
gametree)

for(j=1;(j<=ncol)&&(j<=move);j++)

// (*) This for-loop can be refined

// see Section B.3

in the functions gametree, gametreeAA and gametreeBB by the code

for ( j=1;

(j<=ncol)

&& (j<=move)

&& ( ( (alice==1) && (max<1) )

|| ( (alice==0) && (min>0) )

);

j++ )

The inserted condition has the following meaning. If it is Alice’s move
(alice==1) and max = 1, then the program has observed that Alice has a
winning strategy for one of the branches of the game-tree rooted in a child
of the actual node of the game-tree. Therefore, by the minimax-principle,
Alice has a winning strategy for the actual node. So it is unnecessary to
consider other children of the actual node in this case. The same argument
holds for the case that it is Bob’s move (alice==0) and min = 0. In this
case the program has observed that Bob has a winning strategy for one of the
branches of the game-tree rooted in a child of the actual node. Thus Bob has
a winning strategy for the actual node, and it is not necessary to consider the
other children of the actual node in this case. Hence we can terminate the
while-loop and the for-loop if one of the cases discussed above occurs, which
is guaranteed by the inserted condition.

These modifications of the algorithm have a significant effect on the run-
ning time. While the old program needs 681.239 seconds to confirm that Alice
has a winning strategy on the instance I10 in the game gA with 2 colors (see
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#V #C G time(s) G time(s) G time(s) G time(s)

9 2 I9 0.004 M9 0.004 P9 0.012 C9 0.000
10 2 I10 0.024 M10 0.008 P10 0.008 C10 0.004
11 2 I11 0.076 M11 0.044 P11 0.040 C11 0.008
12 2 I12 0.352 M12 0.140 P12 0.124 C12 0.100
13 2 I13 1.988 M13 0.860 P13 0.744 C13 0.128
14 2 I14 10.289 M14 3.124 P14 2.504 C14 1.700
15 2 I15 59.668 M15 20.317 P15 14.521 C15 1.968
16 2 I16 320.496 M16 79.109 P16 49.343 C16 33.694

Table B.7: Running time versus density: The table depicts the running time
of the check whether Alice has a winning strategy with 2 colors in the game
gA played on instance G. Here the improved algorithm is used.

#V #C G time(s) G time(s) G time(s) G time(s)

6 2 I6 0.012 M6 0.008 P6 0.004 C6 0.000
7 2 I7 0.156 M7 0.036 P7 0.000 C7 0.000
8 2 I8 2.552 M8 0.340 P8 0.012 C8 0.012
9 2 I9 54.963 M9 5.820 P9 0.048 C9 0.008

10 2 I10 964.352 M10 64.044 P10 0.156 C10 0.172
11 2 I11 — M11 1375.046 P11 1.128 C11 0.084

Table B.8: Running time versus density: The table depicts the running time
of the check whether Alice has a winning strategy with 2 colors in the game
A played on instance G. The improved algorithm is used.

Table B.1), the new program needs only 0.024 seconds for the same test (see
Table B.7). For the games in which passing is allowed the improvement is
less remarkable. However, even there is an improvement. E.g., the old pro-
gram needs 99.570 seconds to confirm that Alice has a winning strategy on
the instance I8 in the game A with 2 colors (see Table B.2), the new program
only needs 2.552 seconds (see Table B.8). In some cases the comparatively
bad performance of the function gametreeAA might be improved by reordering
the two main parts of the function. Instead of first checking the possibility
that Alice misses her turn one might check this last.

Tables B.7 resp. B.8 contain the same type of instances as Tables B.1
resp. B.2 for the accelerated algorithm instead of the basic algorithm. In
Tables B.7 and B.8 one can see that for a fixed number of colors and increasing
density of the graph under consideration the CPU time decreases. However,
there are exceptions from a strict decrease. E.g., while the general tendency
in Table B.8 from left to right shows a decrease, between P10 and C10 the



132 APPENDIX B. GAME-TREE SEARCH

G #V time(s) time(s)
game gA game A

I4 4 — 0.000
I5 5 — 0.008
I6 6 — 0.156
I7 7 0.000 6.500
I8 8 0.008 408.978
I9 9 0.072 —
I10 10 0.904 —
I11 11 7.284 —
I12 12 125.660 —

Table B.9: Running time in a sparse case with the maximal number of colors
(improved algorithm).

running time increases.

In Table B.7 the decrease between Mi and Pi is very small compared to
the decrease in Table B.1. The explanation is that paths are structurally
complicated (as far as the coloring game with 2 colors is concerned), whereas
matchings are easy. The accelerated algorithm seems to be fast on easy in-
stances and slow on instances where it is more complicated to determine the
exact game chromatic number.

The same phenomenon can be observed if one compares the running time
of Pi and Ci in Table B.7. For odd i there is a decrease of the running time
by a large factor, for even i there is hardly any decrease. The reason is that
Ci is not bipartite for odd i, so the program does not have to check whether
χgA

(Ci) > 2, only whether χ(Ci) > 2, which is a less complex task: for the
instance Ci with odd i, the label of every vertex of the game-tree which belongs
to Bob is 0, therefore each of Bob’s vertices will have at most one child, thus
a branching of the game-tree will only occur in Alice’s vertices.

Table B.9 illustrates that, with the improved program, it is possible to
determine the gA-game chromatic number of digraphs with up to 12 vertices
and the A-game chromatic number of digraphs with up to 8 vertices. Since
usually the maximum number of colors is not needed, digraphs with even a
few more vertices can be examined. Table B.11 compared with Tables B.10
and B.9 suggests that the most difficult task for the program is to determine
the game chromatic number of graphs which are semi-dense, i.e. which have
approximately half of the number of edges as the complete graph with the
same number of vertices.

Tables B.10 and B.11 illustrate that, if the same digraph D is under consid-
eration and we increase the number of colors, the running time of the program
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#C time(s) A time(s) A time(s) A time(s) A
K11 wins K12 wins K13 wins K14 wins

6 0.000 0.004 0.004 0.004
7 0.004 0.012 0.016 0.024
8 0.012 0.020 0.024 0.040
9 0.028 0.056 0.104 0.188

10 0.036 0.100 0.164 0.292
11 0.016 × 0.164 0.428 0.968
12 0.016 × 0.048 × 0.620 1.448
13 0.016 × 0.044 × 0.196 × 2.892
14 0.012 × 0.044 × 0.200 × 0.732 ×

Table B.10: Running time of the check whether Alice wins the game gA with
#C colors on the complete graphs K11, K12, K13, and K14 (improved algo-
rithm).

is not strictly increasing. Moreover, there is a local maximum of running time
(often followed by a local minimum) if the number of colors equals the game
chromatic number χgA

(D) or to χgA
(D) − 1. When we prove results concern-

ing the game chromatic number often most of the difficulty also lies in the
threshold between χgA

(D) − 1 and χgA
(D). Further a local maximum can be

explained since a winning strategy of Bob with χgA
(D) − 1 colors usually has

to check a lot of winning branches of Alice in every game-tree node of Bob
which leads to a higher running time since sometimes cut operations can be
executed only very late.

#C time(s) A time(s) A time(s) A time(s) A
G11,27 wins G12,33 wins G13,39 wins G14,45 wins

2 0.000 0.000 0.000 0.000
3 0.016 0.020 0.024 0.024
4 0.544 0.412 0.904 1.944
5 0.436 × 23.813 × 388.940 1104.209
6 0.480 × 2.840 × 18.453 × 110.171 ×
7 0.744 × 4.156 × 29.430 × 200.977 ×

Table B.11: Running time of the check with the improved algorithm whether
Alice wins the game gA with #C colors on certain semi-dense graphs Gn,m

with n vertices and m edges
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#C time(s) A wins B wins

1 0.000 ×
2 0.004 ×
3 0.120 ×
4 398.965 ×
5 681.395 ×

Table B.12: Results and running time of the check whether Alice has a winning
strategy for the game gA played on the line graph L(Pet1) of the Petersen
graph with #C colors. (Improved algorithm with precoloring)

Line graph of the Petersen graph. We conclude this chapter with a
remarkable result which was enabled by accelerating the program. Let E ′

be the edge set of the undirected Petersen graph Pet1. For the structure of
Pet1 we refer to Fig. B.2. The line graph L(Pet1) of the Petersen graph is
defined to be the graph with vertex set E ′, and e1, e2 ∈ E ′ are connected by
an edge if, and only if, e1 is adjacent to e2 in Pet1. In order to calculate the
gA- and gB-game chromatic number of L(Pet1), we use a modification of the
program, where the first vertex is precolored with the first color. This does not
change the value of the game because of the symmetry of the Petersen graph.
(Mapping any 5-cycle to some other 5-cycle of the Petersen graph induces an
automorphism of the Petersen graph. Therefore all edges are ‘equivalent’.)

In the program the precoloring is done, e.g. for the game gA, by replacing
the command (5) of the main program by

// (5) Calculation

Color[1]=1;

result=gametree(ncol,nvert,2,0,Color,N,a);

Here, in the call of the game-tree search function, the variable move is set
to 2, which means that the first move is skipped, and the variable alice is
set to 0, which means that it is Bob’s turn. The fixed first move of Alice is
given by setting the first entry of the Color-array to the (fixed) value 1.

With this modification of the program the results of Table B.12 were ob-
tained. With an anologue modification for the game gB we obtain the results
of Table B.13. On the basis of these computational results we conclude with
the following theorems:

Theorem 101. χgA
(L(Pet1)) = 5.

Theorem 102. χgB
(L(Pet1)) = 5.
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#C time(s) A wins B wins

1 0.004 ×
2 0.000 ×
3 0.480 ×
4 1703.014 ×
5 160.522 ×

Table B.13: Results and running time of the check whether Alice has a winning
strategy for the game gB played on the line graph L(Pet1) of the Petersen
graph with #C colors. (Improved algorithm with precoloring)

Theorem 101 answers a long-time open question. Since the articles by Cai
and Zhu [24], Erdös et al. [37] and the author [3] it has been conjectured
that the game chromatic index of a graph with maximum degree ∆ might be
bounded above by ∆ + 1, which would be a competitive analogon of Vizing’s
Theorem (see Berge [13]). Theorem 101 disproves this conjecture.
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Appendix C

Minor open questions

• Chapter 1

Problem C.1. Is there a generalization of colg(D) to some d-relaxed param-
eter coldg(D) with χd

g(D) ≤ coldg(D)?

• Chapter 2

Problem C.2. For which a ≥ b ≥ 1, d ≥ 0 is (a,b)χd
g(F) =

⌊
b

d+1

⌋
+ 2 resp.

(a,b)χd
g(F) =

⌊
b

d+1

⌋
+ 3?

Problem C.2 has been solved completely for d = 0 by Kierstead [53], and
for b = 1 by the results of Kierstead [53], He et al. [49], and Theorem 20.

Problem C.3. Can the results concerning 3-cycled forests be generalized if
the 3-cycles are replaced by n-cycles for n ≥ 4?

Problem C.4. For a, b, d ≥ 0, determine the d-relaxed (a, b)-game chromatic
number of the class of 3-cycled forests.

• Chapter 2/3

Problem C.5. Is there an upper bound for the game chromatic number of
orientations of outerplanar graphs which is smaller than 6?

Problem C.6. Is there an upper bound for the game chromatic number of
orientations of planar graphs which is smaller than 17?

• Chapter 3

Problem C.7. Give a good lower bound for M(S) for any surface S.

Problem C.8. Find a good upper bound for (a,b)colg(D) for acyclic digraphs
D which are embeddable in a fixed surface, have given girth, but no 4-cycles.

137
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Problem C.9. Characterize the class of digraphs D with L−(D) = L+(D).

Problem C.10. For fixed n1, n2 ≥ 0, characterize the class of digraphs D
with residue parameters R1(D) = n1 and R2(D) = n2.

In Proposition 24 the case R1(D) = R2(D) = 0 was solved.

Problem C.11. Discuss the tightness of the bounds of Theorems 29 and 31
in the case of surfaces of negative Euler characteristic.

Problem C.12. Discuss the tightness of the bounds of Theorems 30 and 32.

• Chapter 4

Problem C.13. Discuss the tightness of the upper bounds for the incidence
game chromatic number given in Chapter 4. In particular, what is a lower
bound for the class of forests?

In (4.2) the upper bound 3∆−1 for the incidence game chromatic number
of a graph of maximum degree ∆ was given.

Problem C.14. For fixed ∆ > 2, is the upper bound (4.2) tight?

For ∆ = 2 the tightness has been proven by Theorem 48.

Problem C.15. Is ιg(G) a monotone parameter?

Problem C.16. Is ιg(Pk) ≤ 4 for all paths Pk of length k−1 and for a certain
version g of the game?

Problem C.17. How must the incidence game chromatic number be general-
ized to digraphs in such a way that we obtain ‘interesting’ results?

• Chapter 5

Problem C.18. In which way must broken wheels be generalized, so that
every B-perfect graph is a graph all components of which are some generalized
broken wheels?

Problem C.19. Characterize the B-perfect graphs with clique number 4.

Problem C.20. Characterize the A-perfect digraphs with clique number 2.

Problem C.21. For which k and g is the number of isomorphism classes of
connected g-perfect (di)graphs with maximum (in-)degree k finite?



Appendix D

Major open questions

Problem D.1. For any a, b, d ≥ 0, determine the d-relaxed (a, b)-game chro-
matic number of the classes of planar graphs and of graphs embeddable in some
other surface and of the classes of their orientations.

For the class P of planar graphs, we have (1,0)χ0
g(P) = 4 by the Four-Color-

Theorem [10, 11].

Problem D.2. For any surface S, determine the exact value of M(S).

M(S) is only known for the surfaces S0, S1, S2, N1, and N2. [60, 43, 12, 67]

Problem D.3. Is the Strong Perfect Digraph Conjecture true?

Problem D.4. Find Strong Perfect Graph Theorems for A- and B-perfect-
ness.

Problem D.5. Find Strong Perfect Digraph Theorems for A- and B-perfect-
ness.
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Recognizing Berge graphs, Combinatorica 25 (2005), 143–186



BIBLIOGRAPHY 143

[29] Chudnovsky, M., N. Robertson, P. Seymour, and R. Thomas, The strong
perfect graph theorem, Ann. Math. 164 (2006), 51–229

[30] Dinski, T., and X. Zhu, A bound for the game chromatic number of
graphs, Discrete Math. 196 (1999), 109–115

[31] Duchet, P., A sufficient condition for a digraph to be kernel-perfect, J.
Graph Theory 11, No. 1 (1987), 81–85

[32] Dunn, C. L., “Extensions of a simple competitive graph coloring algo-
rithm”, dissertation, Arizona State University, 2002

[33] Dunn, C., The relaxed game chromatic index of k-degenerate graphs,
Discrete Math. 307 (2007), 1767–1775

[34] Dunn, C., and H. A. Kierstead, A simple competitive graph coloring
algorithm II, J. Comb. Theory B 90, no.1 (2004), 93–106

[35] Dunn, C., and H. A. Kierstead, A simple competitive graph coloring
algorithm III, J. Comb. Theory B 92 (2004), 137–150

[36] Dunn, C., and H. A. Kierstead, The relaxed game chromatic number of
outerplanar graphs, J. Graph Theory 46 (2004), 69–78

[37] Erdös, P., U. Faigle, W. Hochstättler, and W. Kern, Note on the game
chromatic index of trees, Theoretical Comp. Sci. 313 (2004), 371–376

[38] Erdös, P., J. Gimbel, D. Kratsch, Some extremal results in cochromatic
and dichromatic theory, J. Graph Theory 15 (1991), 579–585

[39] Fachini, E., and J. Körner, Colour number, capacity, and perfectness of
directed graphs, Graphs and Combinatorics 16 (2000), 389–398

[40] Faigle, U., W. Kern, H. Kierstead, and W. T. Trotter, On the game
chromatic number of some classes of graphs, Ars Combin. 35 (1993),
143–150

[41] Galeana-Sanchez, H., and V. Neumann-Lara, On kernel-perfect critical
digraphs, Discrete Math. 59 (1986), 257–265

[42] Galeana-Sánchez, H., and V. Neumann-Lara, On the dichromatic num-
ber in kernel theory, Math. Slovaca 48 (1998), 213–219

[43] Glover, H.H., J.P.Huneke, and C.S.Wang, 103 graphs that are irreducible
for the projective plane, J. Combinatorial Theory B 27 (1979), 332–370

[44] Golumbic, M. C., Trivially perfect graphs, Discrete Math. 24 (1978),
105–107



144 BIBLIOGRAPHY

[45] Gross, J.L., and T.W.Tucker, “Topological Graph Theory”, Wiley, New
York, 1987

[46] Guan, D. J., and X. Zhu, Game chromatic number of outerplanar graphs,
J. Graph Theory 30, no.1 (1999), 67–70

[47] Guiduli, B., On incidence coloring and star arboricity of graphs, Discrete
Math. 163 (1997), 275–278

[48] He, W., X. Hou, K.-W. Lih, J. Shao, W. Wang, and X. Zhu, Edge-
partitions of planar graphs and their game coloring numbers, J. Graph
Theory 41, no.4 (2002), 307–317

[49] He, W., J. Wu, and X. Zhu, Relaxed game chromatic number of trees
and outerplanar graphs, Discrete Math. 281 (2004), 209–219
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anti-hole
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A-perfect, 80
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out-, 3
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arc partition, 61
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big block, 32
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DIRECTED k-, 107
k-, 107
SIMPLE DIRECTED k-, 107

coloring, 7
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feasible, 8
k-, 7, 107

coloring construction game, 14
coloring game, 8, 14

d-relaxed directed (a, b)-, 9
directed (a, b)-, 9

coloring rule, 8
companion, 91
complement, 4

true, 4
complete bipartite graph, 4
complete game coloring number, 16
complete game-tree search, 114
complete graph, 4
component, 5

extended, 29
uncolored, 29

connected, 4
connected component, 5
connected surface, 6
crosscapnumber, 6, 7

of digraph, 7
of surface, 6

cycle, 5
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deletion rule
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dichromatic
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n-, 109

dichromatic number, 7, 10
digraph, 2
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planar, 7
simple, 2
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digraph marking game, 11
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edge partition, 60
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Euler characteristic, 7
even A-component, 88
even star, 88
extended component, 29
extended odd anti-hole, 80
extended odd hole, 80
extended star, 32

F , 5
~F , 5
face, 6
feasible coloring, 8
Fibonacci number, 125
forest, 5

directed, 5
undirected, 5

g(D), 5
GI , 67
game

coloring, 8, 14
coloring construction, 14
marking, 11
sequential coloring construction,
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game chromatic index, 15, 72
game chromatic number, 2, 10

incidence, 68
game coloring number, 11
game-tree, 113
game-tree search, 114

complete, 114
nearly complete, 114

genus, 6, 7
of digraph, 7
of surface, 6

g-game chromatic number, 10
girth, 5
global sink, 19
g-nice, 80
golden ratio, 124
g-perfect, 80
graph, 2

bipartite, 4
complete, 4
complete bipartite, 4
Halin, 5
incidence, 67
irreducible, 7
trivial, 4
trivially perfect, 82

half-selected, 70
Halin graph, 5
have an incidence, 68
hereditary

i-, 61
i-+, 64

hole
extended odd, 80

homeomorphic, 6

i-hereditary, 61
i-+hereditary, 64
in-arc, 3
in-degree, 3

maximum, 4
minimum, 4

in-neighbor, 3
in-neighborhood, 3
in-star, 5, 28
inactive, 70
incidence, 67

border, 75
inner, 75
of an edge, 68
outer, 75

of v, 77
incidence coloring number, 68
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incidence game chromatic number, 68
incidence graph, 67
incident, 3
index

game chromatic, 72
induced subdigraph, 4
induced subgraph, 4
induced subtree, 32
inner incidence, 75
ιg(G), 68
irreducible graph, 7
isolated vertex, 4

join, 94

Km,n, 4
Km,n − Mk, 4
Kn, 4
k-COLORING, 107
k-coloring, 7, 107
k-degenerate, 6, 69
kernel-perfect, 79
Klein bottle, 7
Kuratowski’s Theorem, 47

L+(D), 43
L−(D), 43
L(D), 43
L+

D(e), 43
length, 4
level, 69, 113
light edge, 44
lightness, 43

negative, 43
positive, 43

line graph, 72, 134
local sink, 19
loop, 2
loop deletion digraph, 3

M(S), 46
marking game, 11
matching, 4
maximum degree, 4

maximum in-degree, 4
maximum out-degree, 4
maximum total degree, 4
minimal n-dichromatic, 109
minimax-principle, 113
minimum degree, 4
minimum edge number, 46
minimum in-degree, 4
minimum out-degree, 4
minimum total degree, 4
Möbius band, 6
monotone, 16
move, 21

Nγ, 6
N ′(g, k), 102
N(g, k), 102
N+

D(v), 3
N−

D(v), 3
NAE3SAT, 107
n-cycle, 5
n-dichromatic, 109

minimal, 109
nearly complete game-tree search, 114
negative lightness, 43
neighbor

in-, 3
out-, 3

new game chromatic number, 15
nice, 79
node, 113
non-end, 9
nonorientable surface, 6
number

(a, b)-game chromatic, 10
(a, b)-game coloring, 11
chromatic, 7, 10
complete game coloring, 16
d-relaxed (a, b)-game chromatic, 9
d-relaxed game chromatic, 10
dichromatic, 7, 10
game chromatic, 2, 10
game coloring, 11
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g-game chromatic, 10
incidence game chromatic, 68
minimum edge, 46
new game chromatic, 15
oriented game chromatic, 16
relaxed game chromatic, 16

obstruction, 7
odd A-component, 88
odd star, 88
orientable surface, 6
orientation, 2
oriented game chromatic number, 16
out-arc, 3
out-degree, 3

maximum, 4
minimum, 4

out-neighbor, 3
out-neighborhood, 3
outer incidence, 75
outer incidence of v, 77

Pn, 4
parent, 113
path, 4

shortest, 4
undirected, 4

perfect, 79
trivially, 82

planar digraph, 7
planar embedding, 7
plane

projective, 7
positive lightness, 43
projective plane, 7

R1(D), 44
R2(D), 44
region, 6
regular, 44
relaxed directed (a, b)-coloring game,

9
relaxed game chromatic number, 10
relaxed game chromatic number, 16

round, 74

S0, 6
Sγ, 6
Sk, 75
Sin

n , 28
selected, 70
semi-dense, 132
semiorientation, 96
sequential coloring construction game,

14
shortest path, 4
simple digraph, 2
SIMPLE DIRECTED k-COLORING,

107
single arc, 2, 98
single vertex, 90
sink, 4, 19

global, 19
local, 19

sink in a path, 19
size, 4
small block, 32
source vertex, 110
SPGT, 80
sphere, 6
star, 5

even, 88
in-, 5, 28
odd, 88

step, 21
strategy, 9

winning, 9
Strong Perfect Digraph Conjecture, 80
Strong Perfect Graph Conjecture, 80
Strong Perfect Graph Theorem, 79
structure tree, 32
subdigraph, 4

induced, 4
subgraph, 4

induced, 4
subtree

induced, 32
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surface, 6
closed, 6
connected, 6
nonorientable, 6
orientable, 6

T (n), 110
target vertex, 110
TL(n), 110
Tn, 13
top incidence, 70
top-half-selected, 70
torus, 7
total degree, 3

maximum, 4
minimum, 4

tournament, 13, 109
transitive, 13

tournament line, 110
transitive, 13
tree, 5

directed, 5
undirected, 5

trivial graph, 4
trivially perfect, 82
true complement, 4
trunk, 19, 32

uncolored component, 29
undirected cycle, 5
undirected forest, 5
undirected path, 4
undirected tree, 5
universal vertex, 93

V I , 67
value of the game, 113
vertex, 2, 113

double, 91
isolated, 4
single, 90
universal, 93

w(D), 44

Wk, 75
Wn, 5
weight, 30, 31, 44
wheel, 5

broken, 91
winning strategy, 9
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