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1 Introduction

An entity might be considered as complex if it is �consisting of many di�erent and
connected parts� [1]. In light of this de�nition, transition-metal oxides are of spe-
cial complexity, as their physical behavior arises from the sophisticated interplay
between many di�erent degrees of freedom including spin, charge, orbital, and the
crystal lattice [2]. The electronic correlations often result in a competition or even
coexistence of states with very di�erent characteristics, and small external pertur-
bations can lead to a giant response and novel behavior, as e. g. high-temperature
superconductivity in cuprates [3] and the colossal change of the electric resistivity
in a magnetic �eld in perovskite manganites, known as CMR-e�ect [4].
In manganites, a slight change of parameters tunes between ground states with

contrasting properties, and the competition between various interactions results
in a very rich � one might as well call it complex � phase diagram containing a
variety of phases. In the neighborhood of two distinct states, the balance between
the di�erent degrees of freedom is often very subtle and can easily be manipulated.
The most popular consequence is the CMR-e�ect, which today is considered as
the switching between a ferromagnetic metallic and an antiferromagnetic charge-
ordered state [4, 5]. A second remarkable feature, appearing at the border of two
di�erent antiferromagnetic states, is a gigantic magnetoelectric coupling, which
has recently been discovered in multiferroic manganites [6] and which, due to its
possible technical applications, immediately attracted a lot of interest.
The present thesis analyzes the magnetic excitation spectrum of three di�erent

manganese oxides related to these e�ects, undoped LaSrMnO4, charge-ordered
La1/2Sr3/2MnO4 and multiferroic TbMnO3, which were studied by means of in-
elastic neutron scattering. Common to all three systems is a complex magnetic
ordering, and the magnetic state is strongly in�uenced by the interplay with other
degrees of freedom. Conversely, understanding the static and dynamic magnetic
properties does not yield insight only into the magnetic, but also e. g. into the
orbital correlations.
LaSrMnO4 is the two-dimensional analog of the parent compound of manganese

oxides, LaMnO3. Although considered as a simple antiferromagnet in the recent
literature [7], the spin-wave spectrum is not consistent with this simple approach,
and the present results provide signi�cant evidence for a heterogenous magnetic
ground state driven by a close correlation of magnetic and orbital degrees of free-
dom.
Structurally similar to LaSrMnO4, the hole-doped system La1/2Sr3/2MnO4 ex-
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1 Introduction

hibits the typical cooperative ordering of charges, orbitals, and spins, generic for
manganites with a rational fraction of charge carriers. Although the ordered state
has attracted a lot of interest since its prediction half a century ago [8], and de-
spite the great importance for the understanding of the CMR-e�ect, even the
ground-state properties of the ordered state are not well established and di�erent
concepts are still controversially discussed [9]. Analyzing the spin-wave dispersion
allows to distinguish between the di�erent proposals, unambiguously con�rms the
predictions of the classical model, and reveals certain similarities between the anti-
ferromagnetic charge-ordered and the ferromagnetic state, which seem to compete
in a wide parameter range resulting in the famous metal-insulator transition in
perovskite manganites.
The orthorhombic manganite TbMnO3 is one of the pivoting materials in the fas-

cinating class of multiferroic oxides [10]. The dynamics of systems with simultane-
ous magnetic and ferroelectric order is predicted to be controlled by new collective
excitations regarded as hybridized magnon-phonon vibrations [11], and the strong
magnetoelectric coupling in TbMnO3 allows, for the �rst time, the experimental
observation of such excitations. The physical properties of TbMnO3 are well un-
derstood by the momentum, temperature, and �eld dependence of the hybridized
�uctuations, and the experimental results are in excellent agreement with recent
theories connecting the observed ferroelectricity with complex magnetic ground
states [12, 13].

The present thesis is divided into six chapters, which are arranged according
to ascending physical complexity. These introductory remarks are followed by
a brief introduction into the technique of inelastic neutron scattering in chapter
2. Subsequently, chapter 3, the �rst of three experimental chapters, discusses
the magnetic and orbital correlations of the single-layered manganite LaSrMnO4.
Chapter 4 is the longest section of this thesis and is dedicated to the charge- and
orbital-ordered state in half-doped La1/2Sr3/2MnO4, including the analysis of the
excitation spectrum in La1/2Sr3/2MnO4, as well as the thermal evolution and the
doping dependence of the ordered state. The last experimental chapter 5 deals
with the characterization of the excitation spectrum of multiferroic TbMnO3, and
the thesis is �nally closed by a summary of the most relevant results in chapter 6.
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2 Magnetic neutron scattering

Only four years after the discovery of the neutron by J. Chadwick in 1932 it has
been demonstrated that neutrons can be di�racted by condensed matter. More-
over, due to its magnetic moment neutrons are not only di�racted by crystalline,
but also by magnetic lattices, as �rst has been suggested by Bloch in 1936 and
�fteen years later has been veri�ed in the pioneering work of Shull, Wollan and
Strauser [14, 15]. Since then, and especially with today's advanced reactor sites
and modern spallation sources neutron scattering has become one of the most
powerful and versatile experimental techniques for probing condensed matter.
The fundamental physical properties of the neutron provide insight into the

static and dynamical correlations of modern materials, which mostly are hardly
accessible with alternative techniques. In elastic neutron studies one takes advan-
tage of the short-range nature of the nuclear interaction potential, which yields a
high visibility of light elements and a sizable contrast even between di�erent iso-
topes, and of the neutron's magnetic moment, which interacts with the magneti-
zation density of unpaired electrons and o�ers a unique method to study magnetic
correlations on a microscopic scale. In the �eld of dynamic correlations neutron
scattering is today by far the most important experimental tool, since only neu-
trons allow a sizeable momentum transfer at energy scales valid for collective exci-
tations like phonons and magnons. Due to its rest mass mn = 1.674928× 10−24 g
a thermal neutron with wavelength λ=2.4Å possesses an energy E ≈ 14 meV,
which is of the order of typical collective excitations. In contrast, the energy of a
photon with similar wavelength is 7− 8 orders of magnitude larger and an excel-
lent energy resolution and thus a huge experimental e�ort is required to resolve
a meV-change in the photon energy, which is available only since a few years at
the most brilliant x-ray sources. Indeed, the recent developments in the wide �eld
of spin and lattice dynamics are founded on experimental results achieved with
inelastic neutron scattering.

2.1 Neutron scattering formulas

In a neutron scattering experiment the count rate C of neutrons with energy E in
the interval E ′ and E ′ + dE ′ scattered into a given solid angle dΩ normalized to
the incident neutron �ux I0 is given by the di�erential cross section d2σ

dΩdE′ . In this
section we recall brie�y the basic expressions for the cross section of elastic and
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2 Magnetic neutron scattering

inelastic scattering and connect the cross sections with the physical properties
of the system under investigation. For an extended derivation and a detailed
discussion of the various cross sections we refer, however, to the classical review
articles and textbooks on neutron scattering [16�20].
Let ki be the wave vector and σi the spin state of the incident neutron. If we

label the initial and �nal states of the scattering system by quantum numbers λi

and λf the di�erential cross section for a scattered neutron with �nal wave vector
kf and �nal spin state σf is given by Fermis Golden Rule:

(
d2σ

dΩdE ′

)
ki→kf

=
1

N

kf

ki

( m

2π~

)2∑
λiσi

pλi
pσi

∑
λf σf

|〈kfσfλf |V |kiσiλi〉|2 δ(~ω + Eλi
− Eλf

) (2.1)

with the energy of the incident and scattered neutrons Ei and Ef , the energy
change of the scattering system ~ω, the probability pj to �nd the system or the
neutron in the state j and the interaction potential V . This masterformula of
neutron scattering is a very general result as no assumption about the interaction
potential V (r) is made, and the determination of the cross sections for the various
magnetic and nuclear scattering processes has reduced to the elaboration of the
matrix elements of the interaction potential V (r).
The interaction of neutrons with matter can be divided into two parts � a

nuclear part due to the scattering of the neutron at the nucleus and a magnetic
part due to the magnetic dipole interaction between the magnetic moment of the
neutron and the electrons of an atom. Since the focus of this thesis is on magnetic
correlations, we will state the scattering formulas for the nuclear interaction brie�y
and discuss afterwards the magnetic interaction in some more detail.

2.1.1 Nuclear neutron scattering

The nuclear forces which cause the nuclear scattering act on a scale much smaller
than the typical wavelength of a neutron. The scattering potential of an assembly
of N atoms at positions Rj of, for simplicity, a single element can therefore be
modeled as

VN(r) =
2π~2

m

∑
j

bδ(r −Rj) (2.2)

with a single parameter b describing the scattering power of the atom j. The
scattering length b is not only element speci�c, but does also depend on the vari-
ation of isotopes and on the total spin of the nucleus-neutron system. De�ning
the scattering vector Q = kf − ki the di�erential cross section for coherent and
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2.1 Neutron scattering formulas

incoherent nuclear scattering reads as:

(
d2σ

dΩdE ′

)
coh

=
1

N

σcoh
4π

1

2π~
kf

ki

∑
jj′

∞∫
−∞

〈e−iQRj(0)eQRj′ (t)〉eiωt dt (2.3)

(
d2σ

dΩdE ′

)
inc

=
1

N

σinc
4π

1

2π~
kf

ki

∑
j

∞∫
−∞

〈e−iQRj(0)eQRj(t)〉e−iωt dt (2.4)

where σcoh = 4πb
2
and σinc = 4π(b2− b

2
). We will focus only on the coherent part

in the following, as the incoherent part does not give interference e�ects between
di�erent atoms j and j′.
It is useful and common practice to express the cross section eq. 2.3 in terms of

correlation functions: If we de�ne the coherent scattering function S(Q, ω) as

S(Q, ω) =
1

N

1

2π~

∞∫
−∞

∑
jj′

〈e−iQRj(0)eQRj′(t)〉e−iωt dt (2.5)

the cross section for coherent scattering reduces to(
d2σ

dΩdE ′

)
coh

=
σcoh
4π

kf

ki

S(Q, ω). (2.6)

The scattering function S(Q, ω) describes the correlations in space and time be-
tween an atom j at time t = 0 at site Rj and a second atom j′ at a �nite time
t at site Rj′ . Obviously, the scattering function contains all desired informations
about the static and dynamic behavior of the system under investigation.

Elastic nuclear Bragg scattering Consider a crystal with translation invariance
j and d atoms in the unit cell. Because of thermal motion each atom will oscillate
around its equilibrium position d and the position of atom d is

Rjd = j + d + ud(j, t), (2.7)

where ud(j, t) is the displacement from the equilibrium. The translation invariance
of the crystal reduces the double sum in eq. 2.5 to a single summation over the
distances j − j ′ and for elastic scattering (ω = 0) the di�erential cross section
transforms to (

dσ
dΩ

)el

coh

=
(2π)3

v0

∑
τ

|FN(Q)|2 × δ(Q− τ ) (2.8)
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2 Magnetic neutron scattering

with a reciprocal lattice vector τ , the unit cell volume v0 and the nuclear structure
factor FN(Q) de�ned by

FN(Q) =
∑

d

bd eiQde−Wd(Q). (2.9)

The Debye-Waller factor exp(−Wd(Q)) = exp(−〈(Qu(j, d))2〉) takes into account
the mean square displacement of each atom and decreases the observed intensity
of a Bragg peak with increasing |Q|.

One phonon cross section The coherent one phonon cross section is derived
from the expansion of the displacement correlation functions 〈Qud(j, 0)Qud(j

′, t)〉
and can shown to be:(

d2σ

dΩdE ′

)inel

coh

=
kf

ki

(2π)3

2v0

∑
τ

∑
ν,q

1

ων(q)

∣∣∣∣∣∑
d

bd e−Wd(Q)eiQd · Qed(q, ν)√
Md

∣∣∣∣∣
2

×
(

[nν(q) δ(Ei − Ef + ~ων(q))δ(Q + q − τ )]

+ [(nν(q) + 1) δ(Ei − Ef − ~ων(q)δ(Q− q − τ )]
) (2.10)

with the mass Md of atom d, the thermal population factor for Bose particles
nν(q) and the polarization vector ed(q, ν) and the frequency ων(q) of the phonon
ν [17]. The coherent one phonon cross section can be divided into two parts: The
δ-functions in eq. 2.10 give the conservation of both energy and momentum in the
scattering process and it is easily seen that the second line in eq. 2.10 describes
the annihilation of a phonon and thus an increase of the neutron's energy in
the scattering process, while the third line de�nes the creation of a phonon and
an energy loss of the neutron. The contribution of these two processes to the
cross section is asymmetric with respect to the principle of detailed balance: The
annihilation of a phonon with frequency ω is counted with the single population
function nν(q), while the creation of a phonon contributes with a prefactor nν(q)+
1 to the summation.

2.1.2 Magnetic neutron scattering

In the case of magnetic neutron scattering the interaction potential between a
neutron in spin state σ and a moving electron of momentum p and spin s is

VM(r) = −γµN2µBσ ·

[
curl

(
s× R̂

R2

)
+

1

~
p× R̂

R2

]
(2.11)

where γ = 1.9132 is the gyromagnetic ratio, µn and µB are the nuclear and
the Bohr magneton and R is the distance vector between the electron and the
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2.1 Neutron scattering formulas

neutron. Restricting ourselves for the moment to an unpolarized beam of neutrons,
inserting the potential VM into the masterformula eq. 2.1 results after some more
sophisticated algebra in the di�erential cross section for pure magnetic scattering(

d2σ

dΩdE ′

)
mag

=
(γr0)

2

~
kf

ki

∑
α,β

(
δα,β −

QαQβ

Q2

)
Sαβ(Q, ω) (2.12)

with the classic radius of the electron r0 and the summation over the spatial
coordinates α, β ∈ [x, y, z]. The magnetic scattering function S(Q, ω) is de�ned
by the spin-spin correlations

Sαβ(Q, ω) =
1

2π

∞∫
−∞

∑
j,d

1
2
gdfd(Q)e−Wd(q) eiQ(j+d)〈Sα

0 (0)Sβ
j+d(t)〉e

−iωt dt (2.13)

where g is the Landé factor, S describes the local magnetic moment and fd(Q)
the atomic form factor of atom d in unit cell j.
The magnetic interaction leads in addition to magneto-vibrational scattering

which is not included in the above cross section [17].

Elastic magnetic scattering For elastic magnetic scattering we have to eval-
uate the scattering function S(Q, ω = 0). De�ning in analogy with the elastic
structural scattering the magnetic structure factor

FM(Q) = γr0

∑
d

1
2
gdfd(Q)〈Sd〉eiQde−Wd(Q) (2.14)

and FM⊥ = Q̂ × FM × Q̂ with Q̂ = Q/Q, the cross section for elastic magnetic
scattering reads (

dσ
dΩ

)el

mag

=
2π3

v0

∑
τM

|FM,⊥(τM)|2 × δ(Q− τM), (2.15)

and the form of the elastic magnetic cross section looks very similar to the one
for nuclear scattering. However, there are some very crucial di�erences which
turn out to be fruitful and will later on allow us to easily separate magnetic
from nuclear scattering: In the magnetic structure factor the scattering power
of each spin is determined by the prefactor p = 1

2
γr0gfd(Q),1 which due to the

atomic form factor fd(Q) rapidly decreases with increasing |Q| and thus exhibits
a contrary |Q|-dependence as in the nuclear case, where the scattering length b is

1Notice that p has the dimension of a length; for Q = 0 the magnetic scattering length p0 =
1
2γr0 =0.2695×10−12 cm is of the same order as a typical nuclear scattering length b.
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2 Magnetic neutron scattering
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Figure 2.1: |Q|-dependence of mag-
netic scattering Simulation of the |Q|-
dependence of the e�ective magnetic
scattering length fMn3+(Q) sin(α) of a
Mn3+-ion for various angles α between
the scattering vector Q and the magnetic
moment S [21].

Q-independent. This behavior is superimposed by the general scattering law for
magnetic scattering, that only the magnetization perpendicular to the scattering
vector Q contributes to the cross section.
To resume, magnetic scattering always exposes a characteristic decrease with

|Q|, which furthermore depends sensitively on the angle α between the scattering
vector Q and the magnetic moment S, see Fig. 2.1.

Inelastic scattering by spin waves If we choose the quantization axis to be
along z and if we assume the total z-component of the magnetization Sz to be a
constant of motion (as is e. g. the case for the Heisenberg Model) only the terms
α = β contribute in eq. 2.13 to the scattering function S(Q, ω) and we obtain for
a Bravais lattice:(

d2σ

dΩdE ′

)
mag

∝
(

1− Q2
z

Q2

)
1

2π~

∫ ∞

−∞

∑
j

eiQj〈Sz
0(0)S

z
j (t)〉e−iωt dt

+
∑

α∈[x,y]

(
1− Q2

α

Q2

)
1

2π~

∫ ∞

−∞

∑
j

eiQj〈Sα
0 (0)Sα

j (t)〉e−iωt dt.
(2.16)

In linear approximation the �rst part of eq. 2.16 is time independent and re-
produces the elastic magnetic scattering we have just discussed, and the inelas-
tic scattering by spin waves is determined only by the transverse correlations
〈Sx,y

0 (0)Sx,y
j (t)〉.

However, evaluating the transverse spin correlation terms for a given complex
magnetic structure is in general a non-trivial task. To derive a semi-classical
picture of the magnetic excitations in an ordered structure, which later on will be
helpful in the interpretation of the observed spectra, we discus here the simplest
possible case � the Heisenberg FM with nearest-neighbor exchange only. The
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2.1 Neutron scattering formulas
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Figure 2.2: Spin waves in the FM Heisenberg model Magnon dispersion for the
FM Heisenberg model calculated from eq. 2.18 (a), and snap shot of a spin wave as a
precession of the transversal moment in the limit of large S (b)

Hamiltonian of a Heisenberg ferromagnet on a square lattice

H = −
∑
i,j

Ji,jSiSj = −
∑
i,j

Ji,j

(
Sz

i S
z
j + 1

2

(
S†

i S
−
j + S−

i S†
j

))
(2.17)

is easily diagonalized using the Holstein-Primako� transformation yielding the
spin-wave dispersion, see Fig. 2.2:

~ω(q) = 4S(Jq=0 − J(q)) = 4JS · (2− cos(qxa)− cos(qya)). (2.18)

The transverse cross section for the Heisenberg FM is �nally given by(
d2σ

dΩdE ′

)inel

mag

= (γr0)
2 1

2
S(1

2
gf(Q))2kf

ki

(
1 +

Q2
z

Q2

)
e−W (Q)

×
∑
τM ,q

(
n(q)δ(Ei − Ef + ~ωq)δ(Q− q − τM)

+ (n(q) + 1)δ(Ei − Ef − ~ωq)δ(Q + q − τM)
)
,

(2.19)

and consists as for phonon scattering of two parts describing separately the an-
nihilation and creation of a magnon with energy ~ωq by the neutron [17]. In the
limit of large moments Si the expectation values of the transverse correlations
obey the equations

〈Sx
0 (0)Sx

j (t)〉 ∝ cos(qj − ωt) and (2.20a)

〈Sy
0 (0)Sy

j (t)〉 ∝ sin(qj − ωt), (2.20b)

and a spin wave can be visualized as a precession of the spins around the z-axis,
see Fig. 2.2.
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2 Magnetic neutron scattering

Polarization analysis So far we have always integrated out the spin states of the
neutron and the cross sections for nuclear and magnetic scattering did not depend
explicitly on the neutron spin σ. However, with today's advanced spectrometers
and polarization devices it is possible to manipulate very accurately the spin σ of
the neutron and the technique of polarized neutron scattering yields additional,
often very important details about the system under investigation.
A general treatment of the polarization analysis is quite complex [20]; here, we

will restrict ourselves to the case of the longitudinal polarization analysis intro-
duced �rst by Moon, Riste and Koehler [22], and analyze only the projection of
the �nal polarization Pf of the scattered neutrons on the direction of the initial
polarization Pi.
For the moment, we de�ne a coordinate system (ζ, ς, ξ) for the spin space and

take the spin-quantization axis to be along ξ. Treating the spin state of the
neutron separately, each cross section using unpolarized neutrons will now give
rise to two cross sections in which the spin state of the neutron changes from the
|±〉 to the |∓〉 state in the scattering process (�spin-�ip scattering�), and two cross
sections in which the spin state remains unchanged (�non spin-�ip scattering�).
Ignoring the incoherent scattering from the magnetic moments of the nuclei these
cross sections are determined by the four transition amplitudes:(

d2σ

dΩdE ′

)
|±〉→|±〉

∝
∣∣∣N(Q)±M ξ

⊥(Q)
∣∣∣2 and (2.21a)(

d2σ

dΩdE ′

)
|±〉→|∓〉

∝
∣∣∣M ς

⊥(Q)± iM ζ
⊥(Q)

∣∣∣2 (2.21b)

with the Fourier transform of the nuclear and magnetic density N(Q) and M(Q)
[22]. As aforementioned, in the magnetic channel only the component M⊥(Q) of
the magnetic density M(Q) perpendicular to the scattering vector Q contributes
to the cross section.
It is now intriguing to discuss the implications derived directly from eq. 2.21,

rather than reciting the bulky expressions for the various cross sections.2 In-
specting the cross sections eq. 2.21 the fundamental rules for the longitudinal
polarization analysis are immediately derived:

(i) Nuclear scattering does not �ip the spin of the neutron.
(ii) The components of M⊥(Q) parallel to Pi always contribute to the non spin-

�ip scattering.
(iii) The magnetic components perpendicular to both Pi and Q are always de-

tected in the spin-�ip channel.

2A comprehensive discussion of this lengthy algebra is e. g. given in the classical textbook on
neutron scattering by Marshall and Lovesey [17] and in the more modern review by Chatterij
[20].
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2.1 Neutron scattering formulas

NSF SF
Pi‖x̂ � (My

⊥)2 + (M z
⊥)2

Pi‖ŷ (My
⊥)2 (M z

⊥)2

Pi‖ẑ (M z
⊥)2 (My

⊥)2

Table 2.1: Contribution of the in-plane and out-of-plane e�ective magnetic moments
My

⊥ and M z
⊥ to the non spin-�ip (NSF) and spin-�ip (SF) channels for various choices

of the incident polarization: parallel to the scattering vector Q (x), perpendicular to Q
within (y), and perpendicular to both Q and the scattering plane (z). For convenience,
we neglect the in�uence of chiral terms and scattering due to nuclear-magnetic interfer-
ence, which would give additional contributions in the SF-Px- and NSF-Py,z-channels,
see e. g. Ref. [20].

These simple rules exhibit their full beauty upon combining the cross sections for
di�erent choices of the incident polarization Pi: We de�ne the spatial coordinates
(x, y, z) by x̂‖Q, ŷ⊥Q within and ẑ ⊥ Q perpendicular to the scattering plane,
as will always be the case for the polarized neutron data presented in this thesis.
Now, if Pi‖x̂, magnetic intensity is only observed in the SF-channel, while for Pi‖ŷ
only the vertical component M z

⊥(Q) of the magnetization density contributes to
the SF-scattering, see Tab. 2.1.2. Taking the di�erence between the two observed
intensities the common background cancels out and we obtain directly the in-plane
component of the e�ective moment My

⊥(Q):(
d2σ

dΩdE ′

)|±〉→|∓〉

P ‖x̂
−
(

d2σ

dΩdE ′

)|±〉→|∓〉

P ‖ŷ
∝ |My

⊥(Q)|2. (2.22)

Measuring the various SF cross sections, respectively their di�erences provides
thus the opportunity to de�ne all three components of the magnetic density inde-
pendently.
In conclusion, the longitudinal polarization analysis enables to recover the spa-

tial details of the magnetic density distribution of a magnetically ordered struc-
ture, like e. g. in di�raction experiments the direction of the ordered moment,
or, in the case of inelastic scattering, the eigenvectors of magnetic excitations in
addition to their eigenfrequencies ωq [17, 22].

Crystal-�eld excitations So far, we have discussed the scattering of collective
phenomena like e. g. spin waves. However, neutron scattering is also sensible to
local excitations, which will concern us especially in the discussion of the excitation
spectrum of the multiferroic compound TbMnO3.
In a crystal, the surrounding electrostatic �eld as well as the spin-orbit coupling

lifts the degeneracy of an un�lled 4fn con�guration of a rare-earth ion and gives
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2 Magnetic neutron scattering

rise to J-multiplets. The neutron can excite the rare-earth ion from a lower to
a higher state with a corresponding loss of the neutron energy or deexcite from
a higher to a lower energy level. The obtained spectrum re�ects the splitting of
the J-multiplet and superimposes the scattering by collective excitations: If the
di�erent crystal-�eld states have eigenfunctions |i〉 with energies δi and thermal
population ni, the cross sections for a crystal-�eld excitation is determined by a
series of delta functions:(

d2σ

dΩdE ′

)
CEF

∝ kf

ki

f(Q)2
∑
i,j

ni|〈i|J⊥|j〉|2δ(δi − δj − ~ω), (2.23)

and again only the component J⊥ of the momentum J perpendicular to Q con-
tributes to the cross section [23]. The best way to separate the di�erent con-
tributions is to study the Q-dependence, since local excitations do not posses a
characteristic dispersion.

2.2 The triple-axis spectrometer

The experimental realization for using neutrons as a spectroscopic tool for de-
termining the dispersion of phononic and magnetic excitations is the triple-axis
spectrometer (TAS) installed at a reactor neutron source. First build by Brock-
house in the late 1950s, a TAS spectrometer allows the full control over the entire
(Q, ω)-space within the borders set by the scattering kinematics in a wide en-
ergy and momentum transfer regime. In addition, today's spectrometers are very
�exibel and extreme sample environments as e. g. strong magnetic �elds and ad-
vanced neutron techniques like polarization analysis can often be mounted onto
these machines.
The TAS spectrometers used for the studies in this work are situated at the

four major reactor sources in Germany and France � the �Hahn-Meitner Institut�
(HMI) in Berlin, the �Forschungsneutronenquelle Heinz Maier-Leibnitz� (FRM II)
in Munich, the �Laboratoire Léon Brillouin� (LLB) near Paris and the �Institut
Laue Langevin� (ILL) in Grenoble. According to the energy spectrum of the
incident neutrons from the reactor the various spectrometers are divided into
three categories: cold, thermal and hot. At the cold spectrometers, like FLEX
at the HMI, PANDA at the FRM II, 4F at the LLB and IN12 and IN14 at
the ILL, the incoming neutrons are moderated inside the reactor to energies of
∼25 K. These machines are well suited for high-resolution studies at low energies
~ω between 0 − 10 meV. Thermal spectrometers with incident energies around
300K are dedicated to the energy regime ~ω = 10−100 meV and are optimized to
a high neutron �ux at the sample with reduced energy and Q resolution. Thermal
spectrometers used in this thesis are the PUMA spectrometer installed at the FRM
II, the 1T at the LLB and the IN22 at the ILL. Even higher energy transfers up
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2.2 The triple-axis spectrometer

Figure 2.3: General layout of a TAS-spectrometer Classical �W�-con�guration of
a triple-axis spectrometer with the three movable axis, the horizontal collimation αi and
the trajectory of the neutron in real and reciprocal space.

to 500meV can be achieved at hot sources, which are, however, not used in this
work.

2.2.1 Basic principles of a TAS spectrometer

Although the characteristics of the various spectrometers are quite di�erent, their
general layout is very similar, see Fig. 2.3 and 2.4. In order to access a general point
in the four-dimensional (Q, ω)-space it is su�cient to control both the direction
and the modulus of the wavevector of the neutron ki before and kf after the
scattering process. The momentum transfer is then given by Q = kf −ki and the
energy transfer by ~ω = ~2

2mn
(k2

i − k2
f ). In a triple-axis spectrometer ki and kf are

usually manipulated by applying Bragg's law for re�ection from a crystal. From
the incident beam of neutrons with a continuous energy spectrum determined by
the temperature of the moderator a speci�c energy k2

i is selected by elastic Bragg
re�ection from a monochromator crystal �xing ki in the reactor frame:

ki =
2π

2dM sin 2ϑM

, (2.24)

with the distance dM between a set of crystal planes and the associated grazing
angle ϑM . After the scattering at the sample the beam of neutrons is again poly-
chromatic due to inelastic processes and a de�ned energy k2

f in a given direction
kf can be selected by a second Bragg re�ection from an analyzing single crystal
before the neutrons are counted in the detector unit. The spatial arrangement of
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2 Magnetic neutron scattering

Figure 2.4: Cold triple-axis spectrometer 4F at the LLB The primary spec-
trometer with the monochromator unit is marked by green, the sample area equipped
with a closed-cycle cryostat and the typical Helmholtz coils for longitudinal polarization
analysis by blue, and the secondary spectrometer with the monochromator crystal by
red annotations. The reactor core is situated in the left and the neutron's trajectory
from left to right is marked in yellow.

the monochromator, the sample, the analyzer and the detector thereby de�nes a
plane in the coordinate system of the reactor to which the possible choices for the
set (ki, kf ) is restricted. The momentum transfer Q is thus obviously limited to
a single particular crystallographic plane, which has to be chosen properly at the
beginning of each experiment!
Besides the reactor, the most important components which determine the per-

formance of a spectrometer are the monochromator and the analyzer. Typically,
for unpolarized studies the neutrons are analyzed using the (0 0 2)-re�ection of
pyrolytic Graphite (PG), and in the case of polarized experiments by the (1 1 1)-
re�ection of a Heusler alloy . At lower incident energies Ei . 40 meV the PG(0 0 2)
re�ection is also commonly used for monochromation, while the thermal spectrom-
eters provide additionally a Cu(1 1 1) or Cu(2 2 0) monochromator for higher neu-
tron energies. To increase the neutron intensity, the monochromator as well as the
analyzer consists of several blades which can be curved vertically (and sometimes
also horizontally) to focus the divergent neutron beam to the sample position.
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2.2 The triple-axis spectrometer
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Figure 2.5: Double-focusing PG monochromator at the PANDA spectrom-

eter Double-focusing PG(0 0 2) monochromator of the PANDA spectrometer consisting
of 117 single blades mounted on the curvature mechanics (a). Measured elastic intensity
from a Vanadium standard as a function of the vertical monochromator curvature with
a neutron energy of kf=1.55Å−1 (b).

With this type of curvature on both the monochromator and the analyzer side the
measured intensity can easily gain more than a factor 10, see Fig. 2.5, which more
than overcompensates the small decrease in resolution due to the focusing. All of
the inelastic experiments presented in this thesis have been performed using fully
focusing con�gurations.
The transfer of energy in the scattering process can be realized in two alternative

ways � one may either �x the energy of the incident or of the �nal neutrons to a
constant value and vary the other. If possible, we always choose the second alter-
native with kf �xed, since in this con�guration the spatial angles on the secondary
spectrometer are held constant and the angular dependence of the re�ectivity of
the analyzer has not to be taken into account. Checking the �ux of the neutrons
behind the monochromator allows to easily correct for changes in the re�ectivity
of the monochromator and the intensity spectrum of the reactor source simply by
normalization to the monitor countrate.
The actual value of the �xed �nal neutron energy depends decisively on the

velocity spectrum of the incident neutron beam. The Maxwell distribution for
thermal neutrons has a broad maximum centered at ≈ 50 meV, while on a cold
spectrometer the incident �ux is maximized around ≈5 meV. Therefore, thermal
spectrometers perform best with kf = 3−4Å

−1
, as on a cold machine the incident

�ux limits the �nal energy to kf < 2Å
−1
. As the density of the reciprocal space

increases with decreasing wavelengths, the resolution in both Q and ω is best
on a cold source with small �xed �nal energies � the typical energy resolution
determined by the width of the incoherent line of a Vanadium standard on a cold

17



2 Magnetic neutron scattering

TAS with kf �xed to 1.5Å−1 of ∆E ≈50µeV is an order of magnitude better than
on a thermal spectrometer with ∆E ≈800µeV for kf=2.662Å−1.
A major problem on a triple-axis spectrometer are higher-harmonic wavelengths,

which also satisfy the Bragg condition at the monochromator and analyzer. To
reduce the contamination by these parasitic wavelengths appropriate �lter based
once more on Bragg re�ection are commonly used: The maximum wavelength for
which Bragg scattering can occur is λmax = 2dmax with a maximum d-spacing dmax.
For wavelengths greater than λmax the �lter is transparent, and choosing a mate-
rial with an appropriate dmax allows to diminish contaminations by higher-order
neutrons. In the low-energy regime we have always used polycrystalline Beryllium
with an upper cut-o� energy of 5.2meV(≈1.58Å−1) as a band-pass �lter. In the
higher-energy regime at thermal spectrometers �lters of pyrolytic Graphite are
the best choice. However, PG-�lters are restricted to certain energies with a high
transmittance for λ and simultaneously low transmittance, of the order of 10−4, for
λ/2. These energies are well known to be at 13.70meV, 14.68meV, 30.6meV and
34.8meV, energies which appear in almost all publications on inelastic neutron
scattering.

2.2.2 The resolution function

One of the most important aspects in the planning, realization and analysis of a
TAS experiment concerns the resolution of the chosen instrument. As the proper
manipulation of the resolution is of such immense importance in a TAS mea-
surement, we will present the basic properties of the resolution function in the
following paragraph. For further insights into this widespread problematic we,
however, refer to the original literature [24�26] and to the excellent illustration in
the practical textbook of the Brookhaven group [19].
In a TAS experiment a selected point (Q0, ω0) of the four-dimensional (Q, ω)-

space is selected by the proper settings of the scattering angles at all three axis
of the spectrometer, see Fig. 2.3. However, the �nite collimation and the imper-
fect mosaicity of the monochromator crystals allows neutrons corresponding to
the scattering event (Q0 + ∆Q, ω + ∆ω) to reach the detector as well, and the
resolution function R of a TAS instrument is de�ned as the probability of detec-
tion of neutrons as a function of ∆Q and ∆ω when the instrument has been set
to measure a scattering process corresponding to the point (Q0, ω0) [24]. Quite
obviously, for any given scattering function S(Q, ω) the observed intensity in an
experiment is determined by the convolution of the scattering function with the
instrument's resolution function R,

I(Q0, ω0) =

∫
R(Q−Q0, ω − ω0)S(Q, ω) dQ dω. (2.25)

It is very useful to visualize the resolution function as a four-dimensional ellip-
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2.2 The triple-axis spectrometer

soid in (Q, ω) space. The ellipsoid is centered at (Q0, ω0) and the points at the
borders of the ellipsoid possess a probability of 50% to reach the detector unit,
see Fig. 2.6. The exact size and the spatial orientation of the ellipsoid depends,
of course, sensitively on the neutron wavelength, the type of the monochromator
crystals, or more precisely on the selected d-spacing, on the scattering sense at
the three axis, and on the selected collimation restricting the divergence of the
beam.
The control of the spatial orientation of the resolution ellipsoid is often of great

importance in an experiment, especially when dealing with dispersive excitations.
In Fig. 2.6a we show the low-energy part of the spin-wave dispersion of the charge
and orbitally ordered compound La1/2Sr3/2MnO4, which is analyzed in detail in
chap. 4. Leaving a detailed discussion to one of the following chapters, for the
moment the dispersion can well be understood by two equivalent magnon branches
propagation outward from the magnetic zone center Q = (0.75 0.75 0), correspond-
ing to the modes traveling in the±[qh−qh0] directions. Typically, such a dispersion
is mapped experimentally by scanning the momentum transfer Q at a constant
energy E, as is indicated by the dotted red line in Fig. 2.6a. However, the exper-
imental response depends decisively on the relative orientation of the resolution
ellipsoid and the dispersion surface in the four-dimensional (Q, ω)-space, and the
experimentally observed signal for both (equivalent) branches will be di�erent:
For one of the two sides the slope of the dispersion is inclined to the long axes of
the ellipsoid, and at this �focusing� side the convolution of the resolution function
with the dispersion surface yields a sharp signal. On the other side, the long axes
of the ellipsoid are, in the most extreme case, oriented perpendicular to the dis-
persion surface resulting in a very broad response, see Fig. 2.6b. Of course, in an
experiment it is always preferable to choose an appropriate Q-position allowing
to work on the focusing side!
So far, the argumentation seems reversed, as usually the dispersion surface is

not known before the experiment. Inverting however the above argumentation,
the scattering function S(Q, ω) has to be extracted by a �deconvolution� of the
observed intensity and the experimental resolution. The resolution matrix of a
TAS instrument can easily be calculated [24], we usually use the ResLib code
implemented for Matlab [27]. An arbitrary scattering function S(Q, ω) can then
be convoluted with the resolution ellipsoid and subsequently be �tted to a set of
data to extract the desired parameters, as e. g. the dispersion relation ~ω(q) of
a magnon excitation. A typical example is shown in Fig. 2.6b, where the exper-
imental data are �tted to a model dispersion convoluted with the experimental
resolution. Note, that in addition to the physical parameters describing the prop-
erties of the scattering function S(Q, ω) there is only one adjustable parameter
for all data points scaling the neutron intensity in this procedure.
In principle, iterating the above algorithm allows a very accurate description

of the experimental data yielding simultaneously all relevant physical parameters.
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Figure 2.6: The resolution function of a TAS instrument Low-energy part of the
spin-wave dispersion in La1/2Sr3/2MnO4, cf. chap. 4. Red ellipses denote the projection
of the resolution ellipsoid onto the ([1 1 0], ω)-plane along a scan with constant energy
E = 4 meV marked by the dotted line (a). Corresponding raw-data scan recorded at
the spectrometer 1T.1 installed at the reactor Orphée in Saclay with the focusing side
at negative qh. The solid line denotes a �t of the scattering function S(Q, ω) convoluted
with the resolution function to the experimental data (b).

However, performing a triple-axis experiment is always a compromise between sev-
eral, sometimes con�icting aspects, and the actual situation is often more complex,
e. g. the experimental data might not be su�cient to determine all parameters of
the scattering function S(Q, ω), the resolution function of the spectrometer might
not be properly known, as the spatial distances of the instrument had to be varied
to optimize the experimental background or the neutron �ux, or the experimental
conditions are slightly imperfect due to a bad mosaicity of the used single crystal.
Therefore, in most of the data presented in this thesis we neglect the, nevertheless,
small in�uence of resolution e�ects in the analysis, and we obtain the excitation
frequencies with a very good accuracy by �tting the data assuming simple Gaus-
sian or Lorentzian line shapes. To acquire a satisfying and consistent description
of the data, only in very few cases resolution e�ects have to be taken explicitly
into account, and these exceptions will be considered separately whenever they
occur within the following discussion.
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3 Magnetic excitation spectrum

of single-layered LaSrMnO4

The parent compound of the perovskite CMR-manganites LaMnO3 is surely one
of the most intensively studied and best characterized compounds in the wide �eld
of transition-metal oxides. The physical properties of pseudo-cubic LaMnO3 are
especially in�uenced by the orbital degree of freedom, and over the last 50 years
experimental and theoretical studies of LaMnO3 have revealed some very general
concepts in the range of what today is called �orbital physics� [28�30]: The strong
coupling of the orbital and magnetic degrees of freedom, summarized in the famous
Goodenough-Kanamori-Anderson rules (GKA) determining the magnetic ground
state of very di�erent transition-metal oxides [31�33], the cooperative ordering of
orbitals [34, 35] and the possibility of elementary excitations within this orbital
lattice [36, 37] are all inspired by pioneering work on LaMnO3. However, besides
the great success on the way towards a comprehensive understanding of the Mott-
insulator LaMnO3 in the last decades, some of the main physical properties are
still discussed very controversially today, and the debate is remarkably vivid, see
e. g. Refs. [38�40].
Closely related to the perovskite LaMnO3 is its two-dimensional analog, single-

layered LaSrMnO4. However, in light of the enormous amount of work on
perovskite and even bilayer manganites, it appears very astonishing that the
single-layered system is only little studied so far. The reduction of the elec-
tronic dimensionality together with the simple crystallographic structure in the
La1−xSr1+xMnO4-series o�ers the unique opportunity to study the complex inter-
play between orbital, spin and lattice degrees of freedom, typical for the physics
of manganites, in a less complex environment, and opens the way to a systematic
investigation of certain aspects related with the CMR-e�ect, namely charge and
orbital order phenomena.
In this chapter we present our results of inelastic neutron-scattering experi-

ments on the magnetic excitation spectrum in the parent compound of the fam-
ily of single-layered manganites, LaSrMnO4. To introduce the properties of the
La1−xSr1+xMnO4-series more closely, we review in the beginning of this chapter the
main features of the electronic phase diagram, focusing, however, on the orbital
and magnetic ordering in the undoped compound LaSrMnO4. Subsequently, we
continue with the discussion of the experimental results on the magnetic excitation
spectrum, and, �nally, we close the chapter with some concluding remarks.
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3 Magnetic excitation spectrum of single-layered LaSrMnO4

3.1 Basic properties of single-layered LaSrMnO4

The partial substitution of three-valent La by two-valent Sr in the series of single-
layered manganites La1−xSr1+xMnO4 oxidizes the central Manganese sites, which
possess a formal valence Mn(3+x)+. In this sense, the composition LaSrMnO4

corresponds to the perovskite LaMnO3, as all Mn-ions are three valent with a 3d4

electron con�guration. Therefore, we frequently refer to LaSrMnO4 as undoped.
The main physical features of undoped LaSrMnO4 and of the phase diagram of
La1−xSr1+xMnO4 and 06x61 have been elaborated by several groups, see Refs. [7,
41�45], as well as [46] and [sen�05a], and we will shortly summarize the basic
properties in the following introductory section.

All known compounds of the se-

Figure 3.1: Tetragonal crystal structure
of space-group symmetry I4/mmm
of the single-layered 214-manganites
La1−xSr1+xMnO4.

ries La1−xSr1+xMnO4 crystallize in the
tetragonal K2NiF4 structure with space-
group symmetry I4/mmm [41, 43], see
Fig. 3.1. In this high-symmetry struc-
ture the characteristic MnO6-octahedra
are linked by common corners to form
an array of perfect MnO2-square planes.
These planes are topologically identical
to those of the other known members
of the Ruddlesden-Popper series of rare-
earth manganites Rn+1MnnO3n+1, such
as the perovskite RMnO3 (n = ∞, fre-
quently referred to as 113-structure) and
the double-layer compound R3Mn2O7

with n = 2 (often labeled as 327-
structure), and in this, as well as in
the following chapter, we will mainly
be concerned with the orbital and mag-
netic correlations within these layers.
While in the perovskite structure neigh-
boring planes are directly linked to form
a three-dimensional network, in the 214-

structure adjacent planes are shifted by [a/2 a/2 0] with respect to each other and
separated by an intermediate rock-salt like La/Sr-O block along the tetragonal
axis, reducing the electronic dimensionality from three down to two.
The electronic phase diagram of the La1−xSr1+xMnO4-series as published in

Ref. [7] is shown in Fig. 3.2. Similar to LaMnO3, the parent compound LaSrMnO4

is a typical Mott-Hubbard system [47, 48], showing an insulating behavior with,
due to the layered structure, very anisotropic transport properties [42]. Below
TN ≈ 128 K the system orders magnetically with, contrary to the well-known
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Figure 3.2: Electronic phase diagram of La1−xSr1+xMnO4 Phase diagram of
single-layered manganites La1−xSr1+xMnO4 as published by Larochelle et al. [7]. The
abbreviations are G-type antiferromagnet, G-AFM; CE-type antiferromagnet, CE-AFM;
spin glass, SG; charge/orbital order phase, COO; short-range charge and orbital order,
SRO. Also included is the occupation of the eg-orbitals; in the low doping regime the
electrons occupy orbitals with d3z2−r2-symmetry aligned perpendicular to the planes,
whereas for larger x the orbitals are oriented within the MnO2-layers. The phase diagram
for x > 0.75 has been studied in Ref. [44] and the charge ordered state extends to x ≈ 0.9.

A-type ordering in LaMnO3, an AFM coupling within the MnO2-layers [49, 50].
Next-nearest neighbor planes order ferromagnetically, and in analogy to the classi-
�cation scheme of the perovskites the spin arrangement in LaSrMnO4 is frequently
referred to as a G-type ordering, see Fig. 3.3.1

Upon doping, the room temperature resistivity decreases continuously, but all
compounds remain insulating [42]. Simultaneously, hole doping suppresses the
G-type ordering observed for x = 0: The Néel temperature rapidly decreases with
increasing hole concentration and the G-type ordering �nally disappears around
x ≈ 0.15 [7, 43]. For intermediate doping concentrations 0.15 < x < 0.4 no long-
range order exists, and spin-glass behavior is revealed by several experimental

1However, as the classi�cation scheme derived by Wollan and Kohler is ambiguous in the case
of layered structures, the magnetic ordering in LaSrMnO4 is referred to as C-type in some
publications [51, 52].
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3 Magnetic excitation spectrum of single-layered LaSrMnO4

techniques [7, 42, 53]. For larger values x ≥ 0.4 magnetic ordering reappears, but
the ordering scheme is more complex than the simple G-type. The region around
half doping is characterized by a combined ordering of charge, orbital and lattice
degrees of freedom [42, 54], which is discussed very controversially [8, 9], and seems
to be intimately coupled to the observed huge drop of the electric resistivity at the
metal-insulator transition in the perovskite manganites. However, this region of
the phase diagram will be the issue of the following chapter, and for the moment
we will restrict ourselves to the low-doping regime x < 0.4. Note, however, that
our analysis of the magnetic correlations around half doping results in a critical
revision of the present phase diagram shown in Fig. 3.2, see Fig. 4.34 in Chap. 4.

Orbital correlations in single-layered manganites La1−xSr1+xMnO4 The elec-
tronic phase diagram is signi�cantly in�uenced by the orbital degree of freedom,
which in the single-layered manganites is strongly correlated with the magnetic
ordering via the GKA-rules.
In the undoped compound LaSrMnO4 all Mn-ions are three valent with elec-

tronic con�guration 3d4 and the doubly degenerate eg-level of cubic symmetry is
single occupied. The remaining degeneracy of the two eg-levels can further be
removed in a tetragonal symmetry, either by a tetragonal crystal �eld [55] or by
the well-known Jahn-Teller e�ect [29], and it has been shown by band structure
calculations and by Monte Carlo simulations that an intermediate crystal-�eld Ez

stabilizes a dominant occupation of the out-of-plane d3z2−r2-orbitals against the in-
plane dx2−y2-states in LaSrMnO4 [56, 57].2 Indeed, x-ray and neutron di�raction
experiments reveal a negative thermal expansion of the tetragonal c-axis below
TJT ≈ 600 K, which is shown to arise from a temperature-dependent elongation of
the MnO6-octahedra and which is interpreted as evidence for a ferro-orbital order-
ing of the d3z2−r2-states, see [43, 46] and [sen�05a]. Later on, this argumentation
has been con�rmed by measurements of linear dichroism [58] and by results of
x-ray absorption experiments [51, 52].
Slightly substituting La by Sr removes electrons from the eg-band forming iso-

lated Mn4+-ions with local electron con�guration 3d3 and empty eg-states, thereby
a�ecting also the orbital occupation on the neighboring sites. The subtle balance
of the crystal-�eld energy Ez and the orbital ordering is decisively in�uenced even
by small changes in the eg-electron density ne [57], and it has been shown that a
localized hole attracts the surrounding orbitals to form a composite object involv-
ing several Mn-sites, which frequently is referred to as �orbital polaron� [59, 60].
Consequently, even slight hole doping changes the orbital occupation considerably,
and the out-of-plane occupation in LaSrMnO4 �ops into the MnO2-layers for in-

2The crystal �eld parameter Ez is usually understood as an e�ective parameter parameterizing
the splitting of the eg-level due to the tetragonal crystal �eld Etetra and the Jahn-Teller
energy EJT.
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3.1 Basic properties of single-layered LaSrMnO4

termediate doping levels x ≥ 0.25, as is experimentally evidenced by the rapid
suppression of the c-axis elongation with increasing x and recent results of x-ray
absorption measurements [43, 52] and [sen�05a].
The orbital structure is closely related with the observed magnetic correlations,

and the AFM coupling of adjacent Mn-sites within the planes in the G-type or-
dering is fully consistent with the ferro-orbital ordering of the d3z2−r2-type [33].
The observed rapid suppression of the G-type ordering upon slight hole doping is
the counterpart of the reorientation of orbital occupation in the magnetic sector:
The appearance of the spin-glass phase for x ≈ 0.25 might be attributed to the
competition between the AFM superexchange and the FM Zener double exchange
in a Mn3+-Mn4+ cluster, mediated within the planes by the anisotropic orbital
arrangement [57, 60].

3.1.1 Magnetic order in undoped LaSrMnO4

So far, the magnetic and orbital ordering in the undoped compound seems well
understood. However, as we will show below, this seems far from truth as certain
experimental observations are inconsistent with the simple G-type ordering.
The G-type magnetic ordering in

Figure 3.3: Magnetic G-type ordering in
LaSrMnO4 showing the two di�erent mag-
netic domains.

undoped LaSrMnO4 has been inves-
tigated in detail by several groups
[7, 42, 43, 46, 49, 50]. Below TN ≈
128 K the compound orders antifer-
romagnetically as evidenced by the
appearance of superstructure re�ec-
tions with propagation vector Q =
(1/2 1/2 0) in neutron scattering exper-
iments. The magnetic moments are
aligned along the tetragonal c-axis,
and at low temperatures the ordering
is three dimensional and long range.
Due to the antiferromagnetic order-
ing within the planes, the coupling
between neighboring planes is frus-
trated in the body-centered K2NiF4

structure, and two di�erent twin do-
mains corresponding to the two ordering schemes shown in Fig. 3.3 contribute
in di�raction experiments. Next-nearest neighbor planes are coupled ferromag-
netically via a weak higher-order process yielding the three-dimensional G-type
arrangement. At low temperatures, the ordered moment is quite large, 3.21 µB,
but still lower than 4.0 µB expected for a Mn3+-ion without an orbital contribution,
and the reduction of the ordered moment can only partially be explained by the
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Figure 3.4: Macroscopic magnetization of LaSrMnO4 Temperature dependence
of the macroscopic magnetization M(T ) in LaSrMnO4 for a �eld H = 1T applied parallel
and perpendicular to the c-axis. Upon �eld cooling (FC), a �nite magnetization is visible
for H||c, while in the zero-�eld run (ZFC) the magnetization vanishes for T → 0 K (a).
Field dependence of the magnetization M(H) at T = 4K for the �eld H applied along c
revealing a �nite remanent magnetization of ≈0.05 µB/Mn (b). All data were digitized
from Ref. [43].

in�uence of magnetic �uctuations in the two-dimensional structure. The critical
behavior close to the phase transition at TN has been shown to resemble the char-
acteristic behavior of a two-dimensional antiferromagnet with a strong Ising-like
anisotropy, which furthermore is supported by a large anisotropy-gap in the mag-
netic excitation spectrum, and LaSrMnO4 is treated as a simple two-dimensional
Heisenberg antiferromagnet in the recent literature [7]. However, although the
above picture seems consistent and agrees nicely with the proposed orbital order-
ing in LaSrMnO4, a careful analysis of the macroscopic magnetization and of the
magnetic excitation spectrum are contrasting this simple approach and the actual
situation is more complex [43, 46].

Macroscopic magnetization of LaSrMnO4 In Fig. 3.4 we show the tempera-
ture and �eld dependence of the macroscopic magnetization M(T, H) as reported
by P. Reutler [43]. In a wide temperature regime the magnetization M(T ) ex-
hibits the typical behavior of a conventional antiferromagnet with the moment
aligned along c � above TN = 128 K M(T ) shows a Curie-like increase and below
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3.1 Basic properties of single-layered LaSrMnO4

the Néel transition the parallel magnetization M||(T ) with the �eld H applied
parallel to the ordered moment decreases, while the perpendicular magnetization
M⊥(T ) is only slightly a�ected due to the induced canting of the spins. However,
at low temperatures T < 40 K the progression of M||(T ) signi�cantly deviates
from the expected behavior of a simple antiferromagnet: While M||(T ) vanishes
for T → 0 K in the zero-�eld cooled (ZFC) cycle, the �eld-cooled (FC) signal
shows a pronounced cusp at Tstat ≈ 36 K and the magnetization remains at a
�nite value of ≈ 0.015 µB/Mn for T → 0 K. A similar behavior is absent in the
perpendicular magnetization and the low-temperature properties of the magne-
tization M(T ) point to the existence of ferromagnetic domains, which can be
aligned by a magnetic �eld applied along c.
The �eld dependence of the magnetization M(H) at T = 4 K further sup-

ports the existence of ferromagnetic correlations. Below Tstat, for small �elds
H||c ∂2M

∂H2 > 0, and M(H) is curved to the left, while M(H) is right-curved for
strong �elds H > 10 T, somehow reminiscent of a metamagnetic transition [61].
Furthermore, with decreasing �eld a signi�cant hysteresis and a �nite remanent
magnetization ≈ 0.05 µB/Mn is observed, in strong contrast to the expected be-
havior of an antiferromagnet with vanishing macroscopic magnetization in zero
�eld [43].

Magnon spectrum of LaSrMnO4 The second experimental evidence against
the simple Heisenberg ordering in LaSrMnO4 comes from the analysis of the spin-
wave excitation spectrum. The magnon dispersion in the ordered phase has been
investigated using inelastic neutron scattering by Larochelle et al. [7] and in the
Diploma thesis of myself [46]. The q-dependence of the magnetic excitations along
the main symmetry directions as elaborated in Ref. [46] is shown in Fig. 3.5.
Using cold neutrons, the energy scan at the antiferromagnetic zone-center

Q = (0.5 0.5 0) reveals three di�erent contributions to the excitation spectrum
at ~ωcl,1 = 3.3 meV, ~ωcl,2 = 6.5 meV, and ~ωsw = 8.80 meV [46],3 in contrast to
the expectation of a single magnon branch in a two-dimensional Heisenberg model,
see Fig. 3.5b. However, only the mode ωsw possesses a pronounced q-dependence
within the MnO2-planes, see Fig. 3.5a, which is well describable following linear
spin-wave theory. With only a nearest-neighbor exchange JAFM in the layers, the
Heisenberg model on a two-dimensional square lattice yields in linear approxima-
tion the dispersion relation

~ω = 4JAFMS

√(
1 + α

)2 − 1
4

(
cos(2πqh) + cos(2πqk)

)2
, (3.1)

with α = Λ/2JAFM and the single-ion anisotropy Λ [62]. The observed q-
dependence is excellently modeled using the parameter set JAFM = 3.07 meV

3Note, that Larochelle et al. only discuss a single magnon branch at 8.80meV, although a
second feature at 6.5meV is clearly resolvable in the data shown in Fig. 4 of Ref. [7].
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Figure 3.5: Spin-wave dispersion in LaSrMnO4 Spin-wave dispersion of LaSrMnO4

at T = 10 K as determined in Ref. [46] (a). Energy scan at the antiferromagnetic zone
center Q = (0.5 0.5 0) recorded at the cold TAS-instrument 4F.1 with Ef = 8.04 meV
revealing the three di�erent contributions to the magnetic excitation spectrum at ~ωcl,1 =
3.3 meV, ~ωcl,2 = 6.5 meV, and ~ωsw = 8.80 meV (b). In (a), solid lines denote the �t of
the data using the dispersion relation eq. 3.1, while in (b) solid lines represent the �t of
the raw data using Gaussian line shapes for the di�erent components of the spectrum.

and Λ = 0.38 meV [46], which is in good congruence with the results reported
by Larochelle et al. [7]. Along [0 0 1] the frequency of the mode ωsw does not
change signi�cantly, and the magnetic exchange along c is considerably small �
from the experimental resolution one may deduce Jc < 0.02JAFM � pointing to the
two-dimensional character of the magnetic ordering in the layered structure.
As aforementioned, the two additional modes at 3.3 meV and 6.5 meV are not

consistent with the simple G-type approach. In contrast to the branch ωsw these
modes do not possess a signi�cant q-dependence, and both are localized around
q = 0 in reciprocal space fading rather rapidly away upon increasing |q| [46]. The
physical origin of the two modes ωcl, and whether or not these two modes have
to be connected with the ferromagnetic domains revealed in the analysis of the
macroscopic magnetization is still an open question. First attempts to explain at
least the unusual behavior of the magnetic susceptibility suggest a slight canting
of the magnetic moments away from the tetragonal axis or even a ferrimagnetic
ordering for LaSrMnO4, but remain somehow speculative [43].
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Before we proceed with the presentation of our new results on the magnetic ex-
citation spectrum in LaSrMnO4, we �rst want to comment on the generality of the
above observations, which seems of certain relevance for the following discussion.
Regarding the drastic changes of the magnetic properties upon slight changes in
the nominal valency of the Mn-ions, see the phase diagram Fig. 3.2, a precise
control of the stoichiometry of the used sample crystals is vital for the interpre-
tation of the experimental data. In light of this aspect, it seems noteworthy that
the experimental �ndings discussed above, the unusual behavior of the magnetic
susceptibility and the unconventional magnetic excitation spectrum, have been
obtained from experiments on the same specimen grown by P. Reutler at the Uni-
versity of Paris [43]. However, although not explicitly discussed in the literature,
both features are visible in the published data, too � e. g. a non-vanishing macro-
scopic magnetization for H||c is revealed in the data published by Moritomo et
al. [42], while the neutron data of Larochelle et al. exhibit an additional mode in
the excitation spectrum around ≈6.5 meV [7].
To further cross-check these results, another sample crystal of nominal compo-

sition LaSrMnO4 was grown by M. Benomar at the University of Cologne [63].
Although the Néel temperature was slightly higher in this crystal, pointing to
an even better stoichiometry of this specimen, the same unconventional behavior
with three di�erent magnon branches and a �nite macroscopic magnetization for
T → 0 K is observed [64, 65]. Furthermore, a recently grown crystal of nomi-
nal stoichiometry La0.95Sr1.05MnO4, x = 0.05, does not show similar e�ect [66].
Hence, with at least four di�erent sample crystals, two in our group and the crys-
tals used in Refs. [42] and [7], showing similar results, the unconventional behavior
is unique and can not be ascribed to the in�uence of a slight non-stoichiometry of
the samples, but has to be attributed to the physics of undoped LaSrMnO4.

3.2 Revision of the magnetic excitation spectrum

in LaSrMnO4

In order to establish the magnetic character of the two additional modes in the
magnetic excitation spectrum of LaSrMnO4 and to further characterize the prop-
erties of these unusual features, we have extended our former neutron studies to a
comprehensive investigation with polarized neutrons as well as with strong mag-
netic �elds. Both experiments were performed at the thermal triple-axis spectrom-
eter IN22 installed at the ILL in Grenoble. We used the same large single crystal
grown by P. Reutler as in our previous studies [43, 67]. The sample was �xed in
a special mount, which allowed to easily change the orientation of the sample, so
that re�ections of the kind (h k 0) or (hh l) were accessible in these experiments �
however, in most of the cases we worked with the �rst orientation and the scatter-
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3 Magnetic excitation spectrum of single-layered LaSrMnO4

ing plane de�ned by the directions [1 0 0] and [0 1 0] of the tetragonal structure. At
the thermal beam, we typically �xed the energy of the scattered neutrons on the
analyzer side to 14.7meV (corresponding to kf = 2.662Å

−1
), but to increase the

experimental resolution selected scans were repeated with the �nal energy set to
Ef = 8.04 meV (=̂1.97Å

−1
). In all cases a PG-�lter was used to suppress spurious

contributions by second-order neutrons. The �eld dependence of the excitations
was studied using a 12T superconducting vertical magnet, while the polarization
analysis was performed using the Cryopad device mounted on IN22 [68]. In the
�rst case, the energy of the initial and �nal neutrons was controlled using the
(0 0 2)-re�ection of pyrolytic Graphite, whereas we used the (1 1 1)-re�ection of a
Heusler alloy on both sides of the spectrometer to control both the neutron wave
vector and spin in the polarization study.

3.2.1 Polarization analysis of the magnetic excitations

We start with the discussion of the polarization analysis of the magnetic excitation
spectrum in LaSrMnO4. In Fig. 3.6 we show the spin-�ip (SF) intensity of the
energy scan at the antiferromagnetic zone center Q = (0.5 0.5 0) at T = 1.5 K for
the spin quantization axis parallel to the scattering vector Q. In the SF-channel
nuclear scattering does not contribute and all observable scattering is magnetic.
Also included in Fig. 3.6 is the similar scan recorded with unpolarized neutrons
and enhanced experimental resolution, presented already in Fig. 3.5b: Although
the polarized data appear slightly scattered around the unpolarized data due to a
lower statistic,4 both data sets scale almost perfectly, proving unambiguously the
magnetic character of all three features in the excitation spectrum.
Hence, as a �rst result we conclude that two additional modes ωcl,1 and ωcl,2 are

indeed magnetic excitations. However, polarization analysis is much more pow-
erful, and the combination of di�erent choices of the neutron spin quantization
axis allows to resolve not only the frequencies of the di�erent modes, but also
their polarization with respect to the ordered moment. In the classical longitu-
dinal polarization analysis described in the introductory chapter, the projection
Pf of the neutron spin after the scattering process onto the direction of the spin
quantization axis Pi before the scattering process is analyzed for three di�erent
choices of Pi: Parallel to the scattering vector Q (x), perpendicular to the scat-
tering vector Q and parallel to the scattering plane de�ned by ki and kf (y), and
perpendicular to both Q and the scattering plane (z), as is illustrated in the inset

4Note that working with polarized neutrons signi�cantly reduces the neutron �ux as only one
neutron spin state is selected and the experimental setup is more complex. Compared to a
measurement with unpolarized neutrons the count rate is decreased by at least a factor 6 at
the IN22 spectrometer, which due to the limited beam time available restricts the polarization
analysis to some selected scans or points.
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Figure 3.6: Polarization analysis of the magnetic excitation spectrum at q=0

Spin-�ip channel (SF) of the energy scan at the antiferromagnetic zone center Q =
(0.5 0.5 0) at T = 1.5 K recorded using polarized neutrons at the IN22 spectrometer with
the spin quantization axis parallel to the scattering vector Q and Ef = 14.7 meV (a).
Open symbols denote the corresponding scan with unpolarized neutrons already shown
in Fig. 3.5b. Black triangles mark the energies which were investigated in more detail
using di�erent choices of the quantization axis, see text for details. The inset sketches the
classical choice of the coordinate system for spin space in the longitudinal polarization
analysis relative to the scattering vector Q and to the scattering plane.

of Fig. 3.6.5 The combination of the di�erent cross sections allows to reconstruct
the components of the magnetization parallel and perpendicular to the scattering
plane, see Tab. 2.1.2 in Chap. 2. As for the complete polarization analysis six
di�erent cross sections have to be measured � NSF- and SF-channel for each of
the three di�erent choices for Pi � this analysis is very time consumptive, and
we have decided to study in detail �ve representative energies of the excitation
spectrum with su�cient statistic, depicted by the black triangles in Fig. 3.6. A
typical counting time for these measurement is 45min for one of the six necessary

5Note, that the Cryopad device allows to go beyond this classical analysis and enables even to
reconstruct the non-diagonal terms of the polarization matrix, which is frequently referred
to as full or spherical polarization analysis [20, 68]. We will, however, restrict ourselves to
the analysis of the longitudinal terms, as the transverse terms usually vanish in a collinear
magnetic structure.
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Q Energy Px Py Pz FRx FRy FRz

(0.5 0.5 0) 0.0meV SF 256144 257032 10711
NSF 10651 10376 254484 0.042(1) 0.040(1) 23.8(2)

(0.5 1.5 0) 0.0meV SF 189503 189114 6719
NSF 6636 6729 190015 0.035(1) 0.036(1) 28.3(4)

(2 0 0) 0.0meV SF 5074 5185 5354
NSF 124427 127020 128507 24.5(4) 24.5(3) 24.0(3)

(0.5 0.5 0) 3.4meV SF 425 -14 460
NSF 23 455 10 0.054(9) 32(8) 0.021(7)

6.5meV SF 612 19 604
NSF 13 577 12 0.021(6) 30(7) 0.020(6)

7.4meV SF 598 22 621
NSF 30 631 25 0.050(9) 29(6) 0.040(8)

8.8meV SF 1267 60 1212
NSF 70 1216 47 0.055(7) 20(2) 0.039(6)

13.0meV SF 427 25 397
NSF 32 410 49 0.075(9) 16(4) 0.040(8)

Table 3.1: Summary of the results of the longitudinal polarization analysis in
LaSrMnO4 at T=1.5K as determined at the spectrometer IN22. The spin quantiza-
tion axis is given by Pj , where the subscripts x, y, z refer to P ||Q (x), P⊥Q within
(y), and P⊥Q perpendicular to the scattering plane (z). For each Q-position the spin-
�ip (SF) and the non spin-�ip (NSF) intensity, as well as the corresponding �ipping
ratio FRj=(SF/NSF)j is shown at various energies. A common background has been
subtracted in all the data shown.

con�gurations, restricting the detailed analysis to selected points only. The results
are summarized in Tab. 3.1.
However, before we proceed with the polarization analysis of the magnetic ex-

citations, we �rst discuss the elastic response, and investigate in detail the exact
orientation of the magnetic moments in the ordered phase of LaSrMnO4. In the
upper part of Tab. 3.1 we have included the results of the elastic polarization anal-
ysis for the two magnetic Bragg positions Q1 = (0.5 0.5 0), Q2 = (0.5 1.5 0), and
for the structural Bragg position Qtet = (2 0 0). At the integer-indexed position
Qtet only structural scattering contributes, and the detected spin-�ip intensity
de�nes the experimental loss of polarization along the trajectory of the neutron
� the observed large �ipping ratio FR = ISF /INSF ≈ 24 for all three choices of
Pi, corresponding to a loss of polarization of 4%, demonstrates the high precision
of our experimental setup. Regarding next the two magnetic Bragg positions Q1

and Q2, strong intensity is observed in the spin-�ip channels for Pi||x, y, and in
the non spin-�ip channel for Pi||z, as is expected for a magnetic structure with
the ordered moment aligned along c (z). A static magnetic moment within the
planes, as e. g. might be induced by a slight canting of the spin structure away
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from the tetragonal axis, should be detectable as a reduction of the �ipping ratios
for i = y, z, and in a signi�cant di�erence of the spin-�ip intensities for i = x, y.
However, the observed �ipping ratios are comparable to those at the structural
position Qtet, respectively to their inverse, and we do not �nd any evidence for a
considerable canting of the spin structure away from the c-axis as is suggested in
Ref. [43]: Within the statistics of our data we can exclude any canting away from
the c-axis larger than 0.5◦, and the ordered moment is perfectly aligned along the
tetragonal c-axis in the ordered phase of LaSrMnO4.
Turning our attention now to the polarization analysis at �nite energies, which

is shown in the lower part of Tab. 3.1, we �rst focus on the two highest energy
transfers available, ~ω = 8.8 meV and ~ω = 13.0 meV. Regarding the energy scan
in Fig. 3.6, these two points characterize the behavior of the dispersive mode ωsw

identi�ed in Ref. [46]. Note at this point, that the asymmetric shape of the mode
ωsw in Fig. 3.5 has to be ascribed to the convolution of the resolution function
with the dispersion surface as discussed at the end of Chap. 2. For both energies,
the magnetic intensity revealed in the SFx-channel is spin-�ip scattering for Pi||c
and non spin-�ip scattering in the y-channel, just opposite to the response at the
elastic position. Hence, the mode ωsw is polarized within the MnO2-layers, and
this mode corresponds to the conventional transverse magnon described by linear
spin-wave theory.
Interestingly, the polarization analysis at the three remaining energies, which

characterize the two localized modes ωcl,1 and ωcl,2, reveals a similar behavior as for
the spin-wave excitation ωsw � for all energies investigated the magnetic scattering
�ips the spin in the z-channel, and is non spin-�ip in the y-channel. We have no
indication for a longitudinal magnetic �uctuation along c, the associated cross
sections are all zero within the determined �ipping ratio, and we may summarize
the results of the polarization analysis of the magnetic excitation spectrum by
stating that at the magnetic zone center q = 0 three di�erent contributions can
be identi�ed, which all correspond to magnetic �uctuations within the MnO2-
planes.

3.2.2 Field dependence of the magnetic excitations

The �eld dependence of the magnetic excitation spectrum for a maximum �eld
of 11T applied parallel to c is shown in Fig. 3.7. As is obvious at �rst sight, the
magnetic �eld induces drastic changes in the excitation spectrum, which, however,
can only partially be explained by linear spin-wave theory.
Again, we start with the discussion of the properties of the dispersive mode

with frequency ~ωsw = 8.8 meV in zero �eld. Upon increasing �eld, the high-
energy branch seems to split into two distinct signals, and for H = 11 T two well-
separated modes are resolvable around ≈7.5 meV and ≈10.5 meV. The observed
splitting of the mode ωsw is consistent with the predictions of linear spin-wave
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Figure 3.7: Field dependence of the magnetic excitations in LaSrMnO4 (I.)

Energy scan at the magnetic zone center Q = (0.5 0.5 0) at T = 5K for di�erent magnetic
�elds H||c recorded at the thermal spectrometer IN22 with Ef = 14.7 meV. Solid lines
denote �ts to the data assuming Gaussian pro�les for the di�erent contributions (a).
Di�erence spectra between the data in �nite and zero �eld calculated from the data
presented in (a) (b). Vertical gray bars mark the frequencies of the di�erent magnetic
excitations in zero �eld.

theory for the Heisenberg model, as a magnetic �eld parallel to the easy axis is
expected to remove the degeneracy of the two antiferromagnetic magnon branches
[62, 69]. The splitting is proportional to the magnetic �eld H and assuming a
linear change of the magnon frequencies with H, ωsw(H) = ωH=0

sw ±λH, results in
a satisfying description of the experimental data above ≈6 meV yielding the spin-
wave frequencies ~ω−

sw = 7.49(3) meV and ~ω+
sw = 10.11(3) meV for H = 11 T, see

Fig. 3.7.
The �eld dependence of the two localized modes ωcl is, in contrast, more sub-

tle, and the evolution of the inelastic intensity below ≈ 6 meV is less obvious.
With increasing �eld the mode ωcl,1 is shifted to higher energies and the spec-
tral weight around 3.0 meV is nearly completely suppressed in the spectrum at
11 T. Simultaneously, the mode ωcl,2 seems to soften with the increase of the
�eld, and both modes merge into a single, rather intense excitation ωcl centered
at ~ω = 5.15(5) meV for H = 11 T, which dominates the energy region below
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Figure 3.8: Field dependence of the

magnetic excitations in LaSrMnO4

(II.) Energy scan at Q = (0.5 0.5 0) at
T = 5K in zero �eld and for a magnetic
�eld H = 11 T applied perpendicular to
c recorded at the spectrometer IN22 with
Ef = 14.7 meV. Vertical gray bars mark
the positions of the three di�erent modes
in zero magnetic �eld.
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≈ 6 meV in the high-�eld data. However, as the low-energy branch of the spin-
wave ωsw partially overlaps with mode ωcl,2 for strong �elds, we can not exclude
a more complex behavior for ωcl,2 � one might expect a splitting of this mode as
well.
In contrast to the drastic in�uence of a magnetic �eld applied parallel to c, a

magnetic �eld Hab in the perpendicular direction has nearly no impact on the
magnetic excitation spectrum. In Fig. 3.8 we show similar scans as presented
before, however, this time measured in a rotated orientation and the magnetic
�eld H applied perpendicular to c � up to the maximum available �eld of 11T we
can not resolve any changes in the excitation spectrum. For the dispersive mode
ωsw this behavior is again consistent with conventional spin-wave theory, whereas
the response of the modes ωcl seems quite interesting in light of the origin of the
additional branches: Similar to the response of the ferromagnetic domains in the
macroscopic magnetization, the additional modes in the excitation spectrum are
�active� only for the magnetic �eld applied along the tetragonal axis. Therefore,
it seems very intriguing to associated the two magnetic excitations ωcl with the
dynamic properties of the ferromagnetic clusters.
In conclusion, combining all results of the magnetic excitation spectrum, in-

cluding the polarization analysis as well as the �eld dependence, with the analysis
of the macroscopic magnetization yields a complete experimental characterization
of the magnetic ordering in LaSrMnO4, which obviously can not be interpreted
on the basis of a simple G-type antiferromagnet:
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� The analysis of the macroscopic magnetization in Ref. [43] reveals the exis-
tence of ferromagnetic domains with an ordered moment of ≈ 0.05 µB/Mn,
which can be aligned only by a magnetic �eld applied along c.

� The analysis of the magnetic excitation spectrum reveals three di�erent
branches. One of these three modes, ωsw, is polarized transversely, splits
linearly in a magnetic �eld parallel to the magnetic easy axis, and exhibits
a pronounced dispersion. This mode is the conventional transversal magnon
of the G-type structure predicted by linear spin-wave theory.

� The additional modes with ~ωcl,1 = 3.3 meV and ~ωcl,2 = 6.5 meV are associ-
ated with the ferromagnetic clusters. These modes are localized around the
AFM zone-center, correspond to magnetic �uctuations perpendicular to c,
and exhibit an unusual behavior in a magnetic �eld parallel to the tetragonal
axis.

Considering the physical origin of this unconventional properties, an explanation
based on a homogenous magnetic state seems very unlikely to us � a possible
canting of the spins against the tetragonal axis suggested in Ref. [43] to explain
the �nite remanent magnetization is excluded by the polarization analysis of the
magnetic Bragg scattering, proving that the ordered moment is almost perfectly
aligned along c. Instead, we propose a scenario in which the �nite magnetization is
associated with small two-dimensional FM clusters with a net magnetic moment
along c, embedded in the AFM matrix. The two localized branches identi�ed
in the excitation spectrum correspond to the possible excitations within these
clusters.
This idea is supported by theoretical investigations of spin-wave excitations

in �nite-size clusters [70], and by observations of con�ned spin-waves in slightly
doped perovskite manganites [71, 72]. Hendriksen et al. have shown, that in a
magnetic cluster of �nite dimensions the associated excitation spectrum consists
of discrete energy levels, which are considerably broadened in momentum space. In
the case of small clusters, the possible excitations can be viewed as standing waves
with wavelength commensurate with the cluster dimensions [70]. Experimentally,
con�ned spin-waves are recently reported to exist in perovskite manganites close
to the metallic state, and the observations resemble much of the properties of
the localized modes in LaSrMnO4. The spin-wave dispersion in La7/8Sr1/8MnO3

consists of one dispersive branch and several dispersionless energy levels with
constant distance ∆E localized around the FM zone boundary in reciprocal space,
which are interpreted as an evidence for a clustered magnetic state. The discrete
energy levels are associated with con�ned spin excitations within the clusters
[71, 72], and the similarities with the properties of the modes ωcl might suggest a
similar mechanism in LaSrMnO4, too: The modes ωcl,1 and ωcl,2 are both observed
around the position Q = (0.5 0.5 0) in reciprocal space, which is a zone center

36
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Figure 3.9: Orbital polaron in

LaSrMnO4 Sketch of the majority
spin and orbital correlations in the
ordered state of LaSrMnO4 with the
occupied orbitals pointing out of the
plane and an antiferromagnetic spin
alignment (a). A minority of the eg-
electrons occupy the in-plane dx2−y2-
states forming an orbital polaron with
the surrounding Mn-sites with ferro-
magnetic correlations (b).

of the antiferromagnetic lattice, and, simultaneously, a zone boundary for the
ferromagnetic unit cell.6

However, what might be the reason for �nite-size ferromagnetic clusters in un-
doped LaSrMnO4, as in an electronically homogenous system a heterogenous mag-
netic state appears very unusual? Although the orbital state in LaSrMnO4 seems
to be well de�ned with a predominant occupation of the out-of-plane states with
d3z2−r2-symmetry, the orbital polarization is not perfect and experimental results
suggest a slight, but non-vanishing occupation of the in-plane states [51, 52], which
is supported by theoretical investigations demonstrating that the orbital state
depends sensitively on small changes in the local crystallographic environment
[57, 73]. Recently, it has been shown that the quenched disordered σ associated
with the solid solution of the A-site cations substantially in�uences the ground-
state properties of single-layered manganites around half doping [74, 75], and it
seems very likely that in LaSrMnO4 with a maximal mixing of Lanthanum and
Strontium ions the enhancement of the A-site disorder e�ects the orbital arrange-
ment as well: In the surrounding of Sr-rich regions the crystal �eld Ez might be
slightly modulated, which leads to a local ��op� of the orbital and to the stabi-
lization of the in-plane dx2−y2-state, resulting in the formation of orbital polarons
with, as we will show below, ferromagnetic correlations embedded in the AFM
matrix [59, 60], see Fig. 3.9.
The �op of a single eg-electron from an out-of plane d3z2−r2-state into a dx2−y2-

state oriented within the plane a�ects the magnetic exchange interactions in the
cluster, and locally the situation is well comparable with the perovskite LaMnO3,
as the central eg-orbital points to empty orbitals on neighboring sites [34, 35].
Hence, the magnetic coupling in the orbital polaron will be ferromagnetic with a
net magnetic moment along the tetragonal axis, see Fig. 3.9b.

6Following the argumentation in Refs. [71, 72], the same excitations should be visible around
Q = (0.5 0 0), which has, unfortunately, not been checked so far.
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3 Magnetic excitation spectrum of single-layered LaSrMnO4

The formation of ferromagnetic polarons furthermore provides a natural inter-
pretation for the two localized modes in the magnetic excitation spectrum. One
of the two modes, probably the one with lower energy, corresponds to the vibra-
tion of the central spin of the polaron in phase opposition to its neighbors � which
corresponds to the zone-boundary mode in a conventional ferromagnet � and tests
essentially the ferromagnetic coupling JFM within the cluster. The second mode
can be ascribed to the in-phase �uctuations of the cluster with respect to the sur-
rounding AFM matrix. This modes basically senses the magnetic anisotropy at
the boundaries of the cluster, which should be reduced compared to the anisotropy
Λ in the core of the AFM matrix by ≈25%.
What remains somehow puzzling is the observed response to an applied mag-

netic �eld. Clearly, a moderate �eld applied perpendicular to the ordered moment
should not disturb the clusters, which agrees with the experimental results. How-
ever, for the �eld along c the situation is more complex as the moment of the
cluster can either be parallel or antiparallel to the external �eld. In the �rst case,
a su�cient �eld should �ip the central spin of the cluster. Due to the strong
coupling the orbital follows and the polaron is completely �annealed� into the
AFM ordered structure. In contrast, the clusters with parallel moments are sta-
bilized and might even grow in the external �eld, and the di�erent response of
the two types of clusters can qualitatively explain the observed behavior of the
macroscopic magnetization M(H).
Obviously, for the analysis of the �eld dependence of the magnetic excitations

we only have to consider the clusters with parallel moment. As the clusters are
stabilized by the �eld, the low-energy mode corresponding to the out-of phase
�uctuation should harden, as it perceives the additional anisotropy of the external
�eld. For a ferromagnet linear spin-wave theory predicts an increase of the magnon
frequencies by gµBH ≈ 0.12 meV/T for the �eld applied along the easy axis [62],
which is in good agreement with the observation, as we �nd ~ωH>0 − ~ωH=0 =
1.6 meV at H = 11 T for the low-energy mode ωcl,1. Since the second mode ωcl,2

should be related to the anisotropy of the antiferromagnetic phase, one might
expect this mode to split in the external �eld, similar to the dispersive mode
ωsw. The data do not exclude such an scenario, however we can only observe the
lower-energy branch ω−

cl,2 since the higher energy branch strongly overlaps with
the lower branch ω−

sw of the spin-wave mode. Nevertheless, it is interesting to note
that the mode ω−

cl,2 softens by 1.53 meV, which again is in good agreement with
the expected value for a �eld H = 11 T.

3.3 Conclusions

In this chapter we presented an extensive revision of the magnetic excitation spec-
trum of the parent compound LaSrMnO4 of single-layered manganites using po-
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larized neutrons as well as strong external magnetic �elds.
The basic properties of LaSrMnO4 can well be understood by a ferro-orbital or-

dering with the eg-electrons occupying out-of-plane d3z2−r2-states associated with
an antiferromagnetic ordering of neighboring spins in the MnO2-layers, and the
system is referred to as a simple G-type antiferromagnet in the recent literature
[7], which is widely accepted. However, the actual situation is more complex, and
the macroscopic magnetization [43], as well as the magnetic excitation spectrum
are inconsistent with this simple approach. In particular, our previous neutron
scattering study revealed three di�erent contributions to the magnetic excitation
spectrum [46], which were investigated in further detail in this chapter.
One of the three modes corresponds to the classical spin-wave excitation as-

sociated with the antiferromagnetic G-type ordering. The polarization analysis
con�rms its transversal character, and the mode splits in an external magnetic
�eld, which together with the observed dispersion is fully consistent with linear
spin-wave theory for a two-dimensional antiferromagnet. The two other modes can
not be described within the G-type arrangement, but the polarization analysis un-
ambiguously establishes their magnetic character, and both modes correspond to
magnetic �uctuations within the MnO2-layers. The unconventional character of
these modes is furthermore demonstrated by an unusual �eld dependence � for
a strong �eld along c both modes merge into a single excitation at intermediate
energies.
To explain the observed unusual behavior we suggest the existence of ferro-

magnetically correlated orbital polarons arising from a slight modulation of the
crystal �eld due to quenched disorder in the crystal structure, which are embedded
in the antiferromagnetic matrix. The observed additional modes in the spin-wave
spectrum are associated with the magnetic excitations within the cluster, and the
unusual �eld dependence of the magnetization and of the excitation spectrum is
related to the response of the orbital polarons to the external �eld.
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4 Spin-wave excitations in

charge-ordered manganites

The strong correlations between di�erent degrees of freedom in manganese oxides
result in complex phase diagrams characterized by the close competition of various
ground states with very di�erent properties. The most famous consequence of this
interplay is the colossal magnetoresistance e�ect (CMR) in perovskite manganites,
the �eld-induced metal-insulator transition with a change of the electric resistivity
by more than ten orders of magnitude in a narrow temperature interval, which is
in the focus of interest since it's discovery in the 1990's [4, 76]. Qualitatively, the
CMR-e�ect can be understood on the basis of the double exchange mechanism
connecting the kinetic energy of the charge carriers with ferromagnetic correlations
between the localized Mn spins [77�79]. However, a quantitative analysis has to go
beyond this simple picture [80], and today more sophisticated models are discussed
[2].
A second regime of strong interest in the phase diagrams of manganites is the

insulating phase at half band �lling with a cooperative ordering of orbitals, charges
and spins [30]. Besides the intrinsic fascination of a collective ordering of several
degrees of freedom this charge- and orbital-ordered state (COO) is intimately
coupled to the CMR-regime as it competes with the FM metallic state, which
seems to be crucial for the huge drop of resistivity at the metal-insulator transition.
Indeed, recent experimental [81�84] and theoretical [5, 85�87] studies on the CMR-
e�ect focus on phase separation scenarios between the FM metallic and the COO
insulating phases, and electronically soft states with the CMR-e�ect appearing as
a percolative phenomenon.
In light of it's relevance for the colossal magnetoresistivity and the huge number

of investigations on the CMR-e�ect in all kinds of perovskite manganites, it seems
astonishing that some of the basic physical properties of the COO state are not
yet fully established today. Even the exact nature of the COO ground state
is still discussed controversially, as di�erent experimental results favor di�erent
theoretical explanations: The classical CE-type picture with the charges centered
on the Mn-sites introduced in the pioneering work of Wollan and Koehler [88]
and Goodenough [8] has recently been challenged by a model consisting of closely
coupled magnetic dimers with the charges localized on the bridging oxygen ions,
usually referred to as Zener polaron ordering [9].
Particulary well suited for a systematic study of the COO state is the two-

41



4 Spin-wave excitations in charge-ordered manganites

dimensional single-layered 214-compound La1−xSr1+xMnO4 already introduced in
the previous chapter, as the ordered state is exceptionally stable in this system.
In this chapter, we report on a comprehensive analysis of the development of the
ordered state in La1−xSr1+xMnO4: Starting with a brief introduction into the main
physical ideas behind the two di�erent concepts, the CE ordering on the one side
and the Zener polaron on the other, we discuss the spin-wave dispersion of the
optimally doped compound La1/2Sr3/2MnO4 (x=0.5) and analyze the relevant mag-
netic interactions in light of those of the FM metallic manganites. Subsequently,
we focus on the thermal evolution of the ordered state and study the critical
magnetic scattering and the spin dynamics in the disordered state. Following the
discussion of the half-doped compound we extend our analysis and focus on the
doping dependence of the ordered state by investigating the electron-rich system
La0.6Sr1.4MnO4 revealing a tendency towards FM correlations, and the overdoped
compound La0.4Sr1.6MnO4 exhibiting an incommensurable ordering scheme. The
chapter is �nally closed by the revision of the magneto-orbital phase diagram of
the single-layered manganites La1−xSr1+xMnO4 around half doping, summarizing
all results obtained in this chapter.
Some of the results presented in this chapter are included in the publications

[sen�06a] and [sen�07c].

4.1 Basic properties of the ordered state

In the 113-perovskite manganites Re1−xAxMnO3 the doping level x controls the
formal valence of the Mn-sites. At rational values, as e. g. x = 1

8
, 1

2
, 2

3
. . . , the ratio

of three- and four-valent Mn-sites is commensurable and these systems are often
unstable against the real-space localization of the doped charge carriers [89�92].
Especially around half doping, x = 1

2
, with the Mn-ions possessing a formal

valence close to 3.5+, charge ordering appears as a generic feature in the phase di-
agrams of the three dimensional CMR-perovskites Re1−xAxMnO3, as well as in the
related two-dimensional single- and double-layered compounds La1−xSr1+xMnO4

and La2−2xSr1+2xMn2O7, manifesting itself by a sharp increase of the electric resis-
tivity and the simultaneous appearance of characteristic superstructure re�ections
in di�raction experiments [30, 42, 93, 94].

4.1.1 The classic CE-type ordering

The �rst interpretation of a charge- and orbital-ordered state in the half-doped
manganite La1/2Ca1/2MnO3 has been given by Goodenough in the 1950's basing on
the results of one of the �rst neutron scattering experiments on magnetic structures
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4.1 Basic properties of the ordered state

by Wollan and Koehler [8, 88].1

To explain the observed quarter-indexed magnetic superstructure re�ections
Goodenough predicted a checkerboard-like ordering of Mn3+ and Mn4+ sites with
each three-valent cation always surrounded by four-valent ions within the ab-
planes of the pseudo-cubic structure and vice versa. As a Mn3+-ion has an elec-
tronic con�guration 3d4 with a single electron occupying the eg-level, which is
absent in the 3d3 con�guration of a four-valent Mn-site, this charge ordering is
accompanied by the ordering of the orbital occupation: To minimize the elas-
tic strain the single eg-electron alternatingly occupies a d3x2−r2- or d3y2−r2-orbital
along the Mn-Mn bonds, resulting in a stripy ordering of orbitals along the face
diagonals of the pseudo-cubic structure, see Fig. 4.1a.
Since the Goodenough-Kanamori-Anderson rules (GKA) closely couple the

magnetic correlations between transition-metal ions to the orbital degrees of free-
dom [31�33], the combined ordering of charges and orbitals sets strict conditions
for the magnetic ground state. If the occupied eg-orbital points along the bond
of a Mn3+-Mn4+ pair the magnetic coupling between these two will be ferromag-
netic, and it will be antiferromagnetic if the orbital is oriented perpendicular to
the bond. Hence, the underlying orbital lattice of the COO structure results in a
complex magnetic structure consisting of an AFM stacking of FM ordered zig-zag
chains; the corner sites of the chains are always constituted by four-valent ions,
which are ferromagnetically coupled via a bridging Mn3+-site, see Fig. 4.1b.
In the following, we will refer to this combined ordering of charges, orbitals

and spins as the CE-type ordering or the Goodenough model of the COO state.2

Experimentally the CE-type ordering has conventionally been tested by x-ray and
neutron di�raction experiments. Although neither of the two techniques is di-
rectly sensitive to the ordering of charges or orbitals, both superstructures result
in a characteristic structural distortion of the MnO6-octahedra detectable in con-
ventional di�raction experiments: A smaller Mn4+ ion compresses the octahedron
with respect to an average 3.5-valent site, whereas a Mn3+ ions expands it. In
addition, due to the half-�lled eg-level the three-valent ions are Jahn-Teller active
leading to a characteristic shear-type distortion of the octahedra with an elonga-
tion in the direction of the occupied orbital, see Fig. 4.1a.
Based on powder di�raction, the �rst structural re�nement of the charge- and

orbital-ordered state has been reported by Radaelli et al. for the 113-compound

1To be more precise, the experiment of Wollan and Koehler �rst established the CE-type
magnetic order in La1/2Ca1/2MnO3, which then has been explained by Goodenough on the
basis of a charge- and orbital-ordered state.

2According to the original classi�cation scheme set up by Wollan and Koehler the CE-type
ordering denotes only the magnetic part of the structure. However, today it is common use
in the literature to include the charge and orbital part as well, and the cooperative ordering
of charges, orbitals and spins as described by the Goodenough model depicted in Fig. 4.1 is
frequently referred to as CE ordering.
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4 Spin-wave excitations in charge-ordered manganites

Figure 4.1: Goodenough model of the COO state Sketch of the CE-type order-
ing in the ab-planes of half-doped manganites after Goodenough [8]. The checkerboard
ordering of charges with Mn3+ and Mn4+-sites alternating along the cubic axis is ac-
companied by a stripe ordering of occupied d3x2−r2/d3y2−r2-orbitals along the diagonal.
Both charge and orbital order imply characteristic distortions of the MnO6-octahedra
with the same modulation wavelength (a). The magnetic ground state consists of an
AFM ordering of FM zig-zag chains re�ecting the anisotropic exchange pathways set by
the orbital order (b).

La1/2Ca1/2MnO3 [95], which was followed by a series of publications on di�erent
half-doped manganites yielding similar results [96�102]. In the pseudo-cubic per-
ovskites the transition into the charge- and orbital-ordered phase coincides with a
systematic reduction of the crystallographic symmetry from orthorhombic down
to the monoclinic space group P21/m and a quadrupling of the cubic unit cell
in the ab-planes with three inequivalent Mn-sites, both fully consistent with the
Goodenough model. However, the analysis of the di�erent bond distances excludes
a full segregation of the eg-electron and the charge ordering has to be considered
as incomplete resulting in formal valencies Mn3.5±δ and δ ≈ 0.12−0.25 for the two
distinct Mn-sites [99, 102, 103]. The identi�cation as Mn3+, respectively Mn4+,
seems nevertheless justi�ed, as the crystallographic environment of both sites is
distinct: One of the two species, labeled �Mn3+�, exhibits a typical Jahn-Teller dis-
tortion of the surrounding oxygen polyhedra with two long and four short Mn-O
bonds. In contrast, the sites referred to as �Mn4+� expose an isotropic structural
environment with six equal Mn-O distances.
Further support for an imperfect charge ordering is given by the re�nement

of the magnetic structure. Several authors observe two independent magnetic
sublattices attributed to the di�erent size of the localized moments at the distinct
Mn-positions in the charge ordered structure, once more fully consistent with the
proposed CE-type ordering. However, the re�ned moments amount to ' 3.0µB

for the �3+�-sites and ' 2.7µB for the �4+�-sites [93, 96], which di�er signi�cantly
from the values expected for a complete charge disproportionation.
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Figure 4.2: Zener polaron ordering Sketch of the Zener polaron model in the ab-
planes of doped manganites with the magnetic dimers marked by thick lines. As the
dimers are stacked diagonal to the Mn-Mn bonds and parallel aligned dimers are always
coupled antiferromagnetically magnetic zig-zag chains are formed similar to the classical
CE-type ordering.

The experimental results are supplemented by numerous theoretical investiga-
tions, and the CE ground state can be stabilized by electron-phonon coupling
[104], as well as by pure magnetic [105] and electronic interactions [106]. How-
ever, all of these studies qualitatively reproduce basically the same charge- and
orbital-ordered pattern as predicted almost 50 years ago.

4.1.2 The Zener polaron model

The classical Goodenough model described above for the COO state in half-doped
manganites has recently been challenged by neutron di�raction experiments on a
Pr0.6Ca0.4MnO3 single crystal [9].3 Re�ning more than 700 COO superstructure
re�ections the data are not consistent with the monoclinic symmetry P21/m and
the Mn3+/Mn4+ checkerboard charge ordering. Instead, Daoud-Aladine et al. pro-
pose a coherent stacking of dimerized Mn-pairs along the face diagonals of the cu-
bic lattice with the single eg electron fully delocalized between the two sites of the
dimer. Consequently, all Mn-sites are equally charged and posses a formal valence
3.5+, see Fig. 4.2. As the dimers are formed by the strong FM exchange mediated
through the common eg electron this alternative picture is frequently called Zener
polaron (ZP) model. This interpretation is further supported by x-ray absorption
experiments, which seem to exclude di�erent manganese valencies at half doping
[107, 108].
The magnetic structure induced by the Zener polaron ordering is less obvious

3Note that in the (Pr,Ca)-series the COO state extends down to doping levels x=0.3, implying
the substitution of Mn3+ at the Mn4+ sites for x 6= 0.5.
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4 Spin-wave excitations in charge-ordered manganites

than in the Goodenough model. Clearly, the intradimer exchange is strongly ferro-
magnetic, but the magnetic correlations between di�erent dimers are less de�ned.
Efremov et al. have proposed, that the coupling between adjacent dimers which
are oriented parallel is always antiferromagnetic, while the magnetic moments of
perpendicular dimers are orthogonal [109]. As the dimers are stacked diagonal
to the Mn-Mn bonds, the magnetic ordering again gives rise to magnetic zig-zag
chains with a modulation wavelength similar to the classical Goodenough model;
however, in the ZP model the orientation of the magnetic moments within a single
chain is not always collinear, see Fig. 4.2, and the magnetic structure appears as
a special kind of spiral ordering [110].
With the publication of an alternative model for the COO state in half-doped

manganites, the Zener polaron ordering immediately gained attention, and various
theoretical groups stabilized the ZP state against the CE-type model [109, 111,
112], so that two contrary models for the COO state are discussed in the literature.
As both contrasting models yield similar structural modulations � in both cases
the charge and orbital ordering quadruples the cubic unit cell in the ab-plane,
while the magnetic order octuplicates it � standard di�raction experiments can
hardly di�erentiate between both concepts. In contrast, as the magnetic exchange
interactions are supposed to be distinct, the dynamic spin correlations will be
di�erent and analyzing the spin-wave dispersion in the COO state might yield a
clear indication for either of the two competing models [113].
However, due to the systematic reduction of symmetry from cubic down to

monoclinic in the COO phase, Re1−xAxMnO3 single crystals are always heav-
ily twinned, and a sample crystal consists of up to 12 di�erent domains in
the charge-ordered phase, rendering the systematic analysis of inelastic neutron
data nearly impossible. To escape these di�culties the single-layered compound
La1/2Sr3/2MnO4 has recently attracted a lot of interest, as it allows to study the
properties of the COO phase in a less complex crystallographic environment.

4.1.3 Charge and orbital ordering in La1/2Sr3/2MnO4

Like all members of the family of single-layered manganites La1−xSr1+xMnO4,
the half-doped compound La1/2Sr3/2MnO4 crystallizes in the tetragonal K2MnF4-
structure with space group symmetry I4/mmm and room temperature lattice
constants a = 3.863Å and c = 12.421Å [114], see Fig. 3.1 in Chap. 3. The
con�nement of the electrons to the separated MnO2 sheets reduces signi�cantly
the one-electron bandwidth, thereby stabilizing the charge-ordered state against
other ground states, and the COO state appears rather robust in the layered
system rewarding La1/2Sr3/2MnO4 a prototype-system for the investigations of the
properties of the charge- and orbital-ordered state.
Charge and orbital ordering occurs in La1/2Sr3/2MnO4 below TCO ≈ 220 K, as is

determined by the increase of the electric resistivity and the simultaneous appear-
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ance of the typical half- and quarter-indexed superlattice re�ections in di�raction
experiments [41, 42, 54]. At lower temperatures, magnetic ordering of the CE type
accompanies the COO ordering, and neutron di�raction reports the onset of long-
range magnetic ordering below TN ≈ 110 K [54]. The ordered ground state appears
very robust against applied magnetic �elds, and only strong �elds (of the order of
30T) can melt the ordered state, thereby inducing sizable changes in the electric
conductivity, reminiscent of the physics in the CMR-perovskite manganites [115].
In the last years, the ordered state in La1/2Sr3/2MnO4 has been extensively stud-

ied using resonant di�raction techniques, both with hard x-rays probing the Jahn-
Teller distortion of the oxygen octahedron [116�118], and with soft x-rays directly
sensitive to the ordering of the 3d electrons [119�123]. The common intention of
all these works is the observation of orbital ordering of the kind as proposed by
Goodenough, but while the analysis of the data by some groups favors a �clas-
sical� ordering of alternating d3x2−r2/d3y2−r2-orbitals [51, 120], other publications
strengthen an alternative occupation of the dx2−z2/dy2−z2-type for the eg-electrons
[121, 123]. Also the degree of charge ordering is discussed controversially, and the
reported value of the disproportionation ranges continuously from a nearly com-
plete segregation into Mn3+ and Mn4+ [116] to an almost intermediate valence
state close to 3.5+ for both Mn-sites [124]. Nevertheless, besides these inconsis-
tencies, the observed line shapes in the RXD-experiments always seem to support
the site-centered CE-type model for the COO state in La1/2Sr3/2MnO4. However,
the experimental data are, best to our knowledge, never discussed on the basis
of the alternative Zener polaron model, most likely due to theoretical di�culties
in deriving a reasonable modeling of the expected spectra [125]. Therefore, the
RXD-experiments can not (yet) give a clear statement either for or against the
relevance of the Zener polaron approach.
The stable tetragonal symmetry of the single-layered compounds, however,

opens the way to detailed crystallographic investigations of the COO state. The
onset of the charge and orbital order in La1/2Sr3/2MnO4 results in a small or-
thorhombic distortion inducing only a simple twofold twinning [7, 126], as the
orbitals can be either stacked along the [1 1 0]- or the [1 1 0]-direction of the tetrago-
nal structure.4 First results of x-ray di�raction experiments yield an orthorhombic
unit cell 2

√
2a×

√
2a rotated by 45◦ with respect to the crystallographic axis for

the charge-ordered phase [126]. The symmetry of the ordered phase has been
determined to belong to space group Bbmm [7], which is compatible with the
CE-type ordering, but not consistent with the Zener polaron model.
These preliminary results are strongly supported by a recent combined neutron

and x-ray di�raction study on a high-quality single crystal [127]. The unrestricted
re�nement of a large set of superstructure re�ections provides for the �rst time

4Note that in the pseudo-cubic perovskites any crystallographic investigation has to deal with
up to 12 di�erent twin domains in the COO phase.
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a complete and unambiguous determination of the structural distortions of the
ordered phase, and seems to �nally terminate the long lasting debate on the nature
of the charge-ordered ground state in doped manganites. The structure can indeed
be re�ned within the symmetry of space group Bbmm and two crystallographic
inequivalent Mn-sites, fully consistent with the Goodenough picture on the one
side, and excluding the Zener polaron approach on the other: One of the two Mn-
sites exhibits a pronounced Jahn-Teller type distortion of the surrounding oxygen
octahedron, resembling the behavior of a Mn3+-ion, while the octahedron of the
second Mn-site appears compressed and is hence labeled Mn4+. From the analysis
of the di�erent Mn-O bond distances an incomplete charge segregation of 0.2e− is
derived, and the size of the charge separation as well as the determined structural
distortions are in excellent agreement with theoretical predictions for the single-
layered manganites [128]. Furthermore, a current LDA calculation based on the
determined superstructure naturally produces an insulating and charge-ordered
ground state with a predominant occupation of the bands associated with the
d3x2−r2/d3y2−r2-orbitals, once more resembling the basic properties of the classical
CE model [129].
Actual results on half-doped 113-manganites assist this interpretation, as they

also seem to exclude the Zener polaron ordering. At �rst, two high-resolution
neutron powder di�raction studies on Pr1/2Ca1/2MnO3 and La1/2Ca1/2MnO3 are
inconsistent with the Zener polaron description, but in agreement with the CE
ordering and the initial observations by Radaelli [103, 130]. Finally, a NMR
experiment on the (Pr,Ca)-system, sensing precisely the local environment of the
oxygens in the ordered phase, also rejects the bond-centered model, as the number
of observed NMR-active transitions contradicts the expectations derived from the
ZP model, but is, once more, compatible with the classical model of the COO
state [131].
To resume, the nature of the charge-ordered state observed in many manganites

around half doping is still discussed controversially, and two contrasting models,
the classical Goodenough site-centered type of ordering and the coherent ordering
of closely coupled ferromagnetic dimers, have been proposed to explain the exper-
imental observations. Recent results however, especially obtained from di�raction
experiments on the single-layered compound La1/2Sr3/2MnO4, seem to be in contra-
diction with the Zener polaron concept and strongly support the CE-type model
for the COO state.
As we will show in the following, the analysis of the dynamical properties of

the magnetic ground state and the doping dependence of the COO state in the
single-layered compound is in perfect agreement with this interpretation.
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Figure 4.3: Analysis of the superstructures in the COO state Schematic repre-
sentation of the ordered ground state in the ab-plane according to the classical Goode-
nough model (a) and to the Zener polaron picture (b). Note that in both sketches the
orbitals, respectively dimers are stacked along the [1 1 0] direction and the FM zig-zag
chains run along [1 1 0]. In (a) the three magnetic exchange pathways as described later
in the text are also included.

4.1.4 The CE-type ordering in neutron scattering
experiments

Before we can proceed with the presentation and analysis of our neutron data on
the magnetic correlations in La1−xSr1+xMnO4 near half doping, we will �rst have
to setup an unique frame for the discussion of the results.
For this purpose, let us illustrate the di�erent propagation vectors associated

with the two proposals with the aid of Fig. 4.3. We start with the Goodenough
model, Fig. 4.3a. Below TCO the checkerboard arrangement of charges with propa-
gation vector kCO = (1

2
1
2
0) doubles the tetragonal unit cell and the charge-ordered

cell has dimensions
√

2a×
√

2a. The concomitant orbital ordering reduces the crys-
tallographic symmetry and the nuclear lattice becomes orthorhombic with lattice
constants 2

√
2a along [1 1 0] and

√
2a along [1 1 0]. Orbital ordering is related

to superstructure re�ections with kOO = ±(1
4

1
4
0). Considering the magnetic or-

dering, the CE structure has to be divided into two sublattices, as we have to
distinguish between the two magnetic Mn-species. For the Mn3+-sites the mag-
netic lattice is orthorhombic, too, and of the same size as the structural one, but
rotated by 90◦ �

√
2a along [1 1 0] and 2

√
2a along [1 1 0]. The Mn3+ spins there-

fore contribute to magnetic superstructure re�ections with kMn3+ = ±(1
4
−1

4
0);

for example there is a contribution at Q = (0.25 0.75 0)=̂(0.25−0.25 0), but not
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TC fund. re�ections unit cell

charge order '220K ±(1
2

1
2
0)

√
2a×

√
2a

orbital order '220K ±(1
4

1
4
0) 2

√
2a×

√
2a

Mn3+ '110K ±(1
4

1̄
4
0)

√
2a× 2

√
2a

magnetic order
Mn4+ '110K ±(1

2
0 0) 2a× 2a

Table 4.1: Summary of the fundamental superlattice re�ections and the size of the
various unit cells in the COO state according to the Goodenough model together with
the observed transition temperatures for La1/2Sr3/2MnO4.

at Q = (0.25 0.25 0), where the orbital lattice contributes. The Mn4+ spins con-
tribute to neither of these positions, but to positions with kMn4+ = ±(1

2
0 0), where

the Mn3+ spins do not contribute. The full magnetic cell has to be described in a
pseudoquadratic lattice with constants 2

√
2a along [1 1 0] and [1 1 0], as is shown

in Fig. 4.3a. For convenience, Tab. 4.1 summarizes the various unit cells and
fundamental re�ections associated with the CE-type ordering.
The formation of the magnetic dimers in the Zener polaron approach, Fig. 4.3b,

can be visualized as the localization of the eg-electrons on the bridging oxygens
[111], and results in a doubling of the nuclear unit. With the coherent stacking
of the dimers the symmetry is further reduced and the lattice gets orthorhombic
with constants 2

√
2a along [1 1 0] and

√
2a along [1 1 0], both similar to the Good-

enough model. The magnetic structure proposed by Efremov et al. [109] has to be
described in a quadratic supercell with lattice constant 2

√
2a rotated by 45◦ with

respect to the nuclear lattice. However, due to extinction conditions the magnetic
ordering only contributes to re�ections with kmag = ±(1

4
−1

4
0) and ±(1

2
0 0), but

not to kmag = ±(1
4

1
4
0), and the number, as well as the position of the structural

and magnetic Bragg re�ections in the ZP-picture equals those of the CE model.
As aforementioned, the orthorhombic distortion of the ordered state induces a

simple twinning in all sample crystals, as the occupied orbitals or the magnetic
dimers, respectively, can either be stacked along the [1 1 0]- or the [1 1 0]-direction
of the tetragonal lattice, and the arrangement depicted in Fig. 4.3 (orientation I)
is superimposed by the same rotated by 90◦ (orientation II) in scattering experi-
ments. However, throughout this chapter we will always refer to orientation I in
the analysis of our data.

50
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4.2 Spin-wave excitations and magnetic

correlations in La1/2Sr3/2MnO4

The static and dynamic magnetic correlations in La1/2Sr3/2MnO4 were studied in
a series of neutron scattering experiments on various spectrometers: at the ther-
mal spectrometers 1T and 3T.1 and at the cold spectrometers 4F.1 and G4.3, all
installed at the Laboratoire Léon Brillouin (LLB) in Saclay, at the spectrome-
ters PANDA and PUMA of the FRM II in Munich, at IN3 at the Institut Laue
Langevin (ILL) in Grenoble and at the spectrometer FLEX at the Hahn-Meitner
Institut in Berlin.
For our studies we coaligned two single crystals of equal size, each with a vol-

ume of 0.6 cm3, grown by M. Benomar and by O. J. Schumann at the University
of Cologne using a mirror furnace [63, 127]. The high quality of both samples
was checked by di�raction techniques and by macroscopic measurements, yielding
transition temperatures in good agreement with published results, see below.
In most of our experiments the [0 0 1]-direction was set vertical to the scattering

plane, allowing momentum transfers of the kind (h k 0). Only for selected scans
at the PANDA and the G4.3 spectrometer we used a third, smaller crystal with
a di�erent mounting, so that re�ections of the kind (hh l) were accessible dur-
ing these experiments. In all experiments the energy transfer was achieved by
varying the wavelength of the incoming neutrons monochromized either by the
(0 0 2)-re�ection of pyrolytic Graphite (PG) or, at higher incident energies, by the
(1 1 1)-re�ection of Copper, while on the analyzer side the energy of the neutrons
was kept �x to, depending on the desired resolution, Ef = 4.66 meV, 14.7 meV
or 30.5 meV. Spurious contributions by higher-order neutrons were always sup-
pressed by mounting an appropriate �lter, either PG or cooled Beryllium, behind
the sample in the neutron's trajectory. Experiments with polarized neutrons were
performed at the FLEX spectrometer using the standard longitudinal polarization
analysis as described in the introduction, cf. Chap. 2.

Phonons

As we will show below, the magnon frequencies in La1/2Sr3/2MnO4 extend to an
energy regime typical for phononic excitations. The experimental identi�cation of
the magnetic signal is, hence, signi�cantly hampered by the phonon background,
and a very careful analysis is needed to uncover the magnetic contributions in
the scattered intensity. In light of this problematic, a detailed knowledge of the
phonon dispersion seems advantageous. Furthermore, in systems with complex
ordering phenomena and strong electron-phonon coupling the phonon dispersion
provides by itself important insights into the physical properties, as the phonon
modes associated with the ordering scheme often exhibit an unusual behavior
across the phase transition [132�134]. In a series of experiments at the thermal
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4 Spin-wave excitations in charge-ordered manganites

spectrometer 1T.1 we have investigated large parts of the phonon dispersion within
the MnO2-layers of La1/2Sr3/2MnO4. However, as the scope of this chapter is on
the magnetic excitations in the charge- and orbital-ordered phase, we will not
discuss the phonon dispersion. Nevertheless, for the purpose of documentation,
we plot the phonon dispersion for T = 10 K in Fig. 4.4 and comment brie�y on
some important aspects in the following.
Along the main symmetry directions [1 0 0] (∆) and [1 1 0] (Σ) of the tetragonal

structure, the modes are indexed according to three or four irreducible represen-
tations. Common to the notation in Ref. [135], the subscript 1 always refers to
the representation the longitudinal acoustic mode belongs to, while the subscript
3 signi�es the representation containing the transverse acoustic modes. As in our
experiments the [0 0 1] direction was always oriented perpendicular to the scat-
tering plane, we could only measure phonon modes polarized within the MnO2-
layers, transverse phonons polarized along c, corresponding to the subscript 4 in
Ref. [135], are hence not included in the presentation of Fig. 4.4.
In the phonon dispersion shown in Fig. 4.4 several phonon bands, indicated

by the gray-shaded areas, can be distinguished: In the low-energy region be-
low ≈ 20 meV the acoustic modes are observed. The band between 20meV and
25meV represents the La/Sr-Mn vibrations, whereas the modes between 25meV
and 50meV can be associated with the di�erent Mn and Mn-O bond-bending
modes. Phonons with higher frequencies between 50meV to 70meV have to be
ascribed to the vibrations including the apical oxygen [135]. Of special interest
concerning the COO transition at TCO are the bond-stretching phonons at high
energies above 70meV: The in-plane breathing mode of Σ1 symmetry might well
be related to the checkerboard charge ordering, whereas the orbital ordering with
propagation vector (0.25 0.25 0) is connected to the transverse bond-stretching
phonons of Σ3 character � for a detailed discussion of the di�erent polarization
patterns we refer the interested reader to the presentation in Ref. [136].
In Fig. 4.4 we have also included the results of a �rst, very tentative calculation

using a shell model, derived from the analysis of the phonon frequencies in the
parent-compound LaSrMnO4 [137]. The calculation does not consider the reduc-
tion of the structural symmetry from tetragonal to orthorhombic at TCO and is
based on the tetragonal crystal structure at room temperature. However, besides
the bond-stretching modes the phonon frequencies are qualitatively well repro-
duced. Quantitatively, the model underestimates especially the frequencies of the
bond-bending modes, but for such a simple approach the overall agreement in the
intermediate energy regime below 70meV is surprisingly good. In contrast, the
description of the bond-stretching modes above 70meV is insu�cient: The lon-
gitudinal bond-stretching branch with ∆1 symmetry exhibits a very anomalous
behavior and appears to be split into at least two di�erent contributions, whereas
one would expect only a single mode in a tetragonal environment. The frequency
splitting between the two bond-stretching contributions of the order of ≈15 meV
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Figure 4.4: Phonon dispersion in La1/2Sr3/2MnO4 Phonon dispersion of the in-
plane modes at T = 10K along the main symmetry directions [1 0 0] (∆) and [1 1 0] (Σ).
Full symbols denote data for the optimal doped compound La1/2Sr3/2MnO4, whereas
open symbols mark data obtained in the closely related, but slightly overdoped system
La0.4Sr1.6MnO4; solid red lines represent a semi-quantitative description using a shell
model based on the tetragonal high-temperature structure derived from the parent com-
pound LaSrMnO4. Gray-shaded areas mark the di�erent phonon bands. See the text
for more details.

is extraordinarily high. In the [1 1 0]-direction there is again a splitting of the
longitudinal modes, which furthermore both posses a much lower energy than
the corresponding mode at 100meV in the parent compound LaSrMnO4. Note
at this point, that the planar breathing distortion of the charge ordered state is
closely related to the polarization pattern of the bond-stretching modes with Σ1

symmetry.
The structural distortions corresponding to the orbital ordering of the CE

pattern correspond to the transversal bond-stretching modes along the [1 1 0]-
direction of Σ3 symmetry. Following the branch Σ3 from the zone center to the
zone boundary we do not �nd any particularities at the ordering wave vector
(0.25 0.25 0), but similar to the longitudinal modes the bond-stretching frequen-
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4 Spin-wave excitations in charge-ordered manganites

cies are split by several meV.
The observed splitting of the bond-stretching modes agrees nicely with recent

results using Raman spectroscopy [138]: Yamamoto et al. report on the observa-
tion of Raman-active phonon modes at 64meV, 79meV and 86meV in the ordered
state, which disappear at the transition into the disordered phase at TCO. These
phonon frequencies agree very well with our neutron data, as we �nd 63.4meV,
76.3meV and 88.4meV for the frequencies of the highest zone-center modes.
We �nish the little excursion to the phonon scattering by concluding, that the

observed splitting of the bond-stretching modes can not be explained within the
tetragonal crystal structure of space group I4/mmm � the frequencies of the bond-
stretching modes are closely related to the local distortions in the COO state.
However, a comprehensive understanding of the complex phonon dispersion in the
course of a shell-model calculation based on the orthorhombic structure of the
ordered state surely requires a better experimental characterization of the phonon
frequencies both above and below TCO, and more neutron beam-time is surely
needed.

4.2.1 Magnon dispersion in the COO state

The spin-wave spectrum of La1/2Sr3/2MnO4 at the magnetic zone-center Q =
(3

4
3
4
0) for T=10K is shown in Fig. 4.5. Regarding �rst the left panel of Fig. 4.5,

at q = 0 the spectrum consists of two well distinguishable contributions cen-
tered at ω1 = 1.0 meV and ω2 = 2.0 meV. However, the splitting of the two
modes is restricted to the region very close to the zone center, moving away from
q = 0 the two excitations immediately merge into a single feature and already
at |q| = 3.9 × 10−3 Å

−1
away from the zone center no splitting in the magnon

frequencies is resolved anymore, see Fig. 4.5b. As the magnetic moments are
aligned within the ab-planes of the layered structure [54, 122], the splitting of
the modes at the zone center might be caused by the in�uence of the spin-orbit
coupling resulting in a weak anisotropy in the superexchange interaction, which is
rather typical for layered structures [62, 139]. In the two-dimensional isostructural
cuprates, such a mechanism provokes a similar removal of the magnon degeneracy
at the zone center, and the in-plane �uctuations appear lower in energy than the
out-of plane oscillations [140, 141].
To test this interpretation, we measured the ql-dependence of the spin-wave

excitations at the PANDA spectrometer, see Fig. 4.5c. As only the component of
the dynamic magnetization perpendicular to the scattering vector Q contributes
to the cross section, the �uctuations parallel and perpendicular to the ab-planes
are both expected to exhibit a characteristic behavior as the scattering vector is
aligned parallel to the c-axis. However, comparing the measured spectra at the
same Q-position (3

4
3
4
0), the two magnon contributions appear hard to be resolv-

able in the spectra shown in Fig. 4.5c. With the di�erent choice of the scattering
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Figure 4.5: Anisotropy gap at the magnetic zone center Magnetic excitation
spectrum of La1/2Sr3/2MnO4 for T=10K at the magnetic zone-center Q = (3

4
3
4 0) mea-

sured at the cold spectrometer 4F.1 and the energy of the analyzed neutrons �xed to
Ef = 4.66 meV (a). q-dependence of the spectrum close to the zone center with q‖[1 1 0]
determined using the same con�guration (b). ql-dependence of the spectrum recorded
at the PANDA spectrometer, again with Ef �xed to 4.66meV, but with a di�erent scat-
tering geometry, see text (c). For clarity, the spectra are successively shifted vertically
in (c). Lines are �ts to the data including the convolution of the spectrometer resolu-
tion function as described in the text, vertical gray lines mark the positions of the two
excitations as determined in the 4F experiment.

plane � in the �rst experiment at the 4F the c-axis was vertical, whereas for
the PANDA experiment the sample was aligned with the re�ections (1 1 0)/(0 0 1)
de�ning the space of possible momentum transfers � the di�erent line shapes have
to be attributed to resolution e�ects due to the relaxed vertical resolution of a fo-
cusing TAS spectrometer: As in a two-dimensional system the magnon dispersion
along c is negligible, see the discussion in Chap. 3, the �rst choice of the scattering
plane ensures an e�cient integration over large parts of the Brillouin zone with-
out a�ecting the experimentally observed response, whereas in the second case
the integration occurs along the steep part of the dispersion, which signi�cantly
broadens the observed signal, cf. Chap. 2.
To take the di�erent experimental conditions into account, all spectra pre-

sented in Fig. 4.5 were modeled using the ResLib package [27], enabling a four-
dimensional convolution of the resolution function with the dispersion surface. In
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a �rst step, we �tted the spectra obtained with the c-axis vertical, yielding the
magnon energies ~ω1 = 0.97(2) meV and ~ω2 = 1.97(4) meV. These energies were
then kept �xed for the re�nement of the data obtained in the second scattering
geometry.
Now, we can turn to the discussion of the ql-dependence of the spectra shown

in Fig. 4.5c. Apparently, all spectra can be reasonably well described assuming
always the same frequencies for the two di�erent contributions. Therefore, the
magnon dispersion along the c-axis is indeed negligible, and we will ignore it for
the rest of the discussion in this chapter � in the layered structure the coupling
of neighboring planes is at least one order of magnitude weaker than within the
planes, see the dispersion of the undoped compound LaSrMnO4 in Chap. 2. The
increase of the ql-component, however, a�ects essentially the distribution of spec-
tral weight between the two modes. While the intensity of the mode ω1 follows the
magnetic form factor of Mn3+ [21], the mode ω2 is additionally suppressed as the
scattering vector Q is rotated towards the c-axis. This behavior already suggests
a dominant component along c for the mode ω2. Assuming in the �tting process
the mode ω1 to be polarized entirely within, and the mode ω2 perpendicular to the
ab-plane, the observed distribution of spectral weight is described reasonably well
for all recorded spectra. Hence, we conclude that at the magnetic zone center the
degeneracy of the AFM spin-wave branches is removed due to di�erent magnetic
anisotropies; the �uctuations parallel to the ab-plane have a lower frequency than
those perpendicular.
In addition to the experiments at the cold instruments, the full magnon dis-

persion within the ab-planes has been determined in several experiments at the
thermal spectrometer 1T.1. Typical scans aiming at di�erent parts of the disper-
sion are shown in Fig. 4.6. At higher energies, the magnetic scattering interferes
with phonon signals, but the di�erent |Q|-dependence separates between both
contributions, see Fig. 4.6b and c. The counting times for these scans range from
30 sec./point at low energies and using the PG monochromator to 4min./point
for higher energies and using the Copper monochromator. As resolution e�ects
are less pronounced in these scans, these data were always analyzed using simple
Gaussian line shapes. More importantly, in spite of the twinning of the crys-
tal structure in the COO phase, we are able to separate the magnon branches
parallel and perpendicular to the zig-zag chains, as only one twin contributes
to a quarter-indexed magnetic superstructure re�ection: When going from the
antiferromagnetic zone center (3

4
−3

4
0) along the [1 1 0]-direction we determine

the spin-wave dispersion parallel to the chains, see Fig. 4.6e, and, going along
the [1 1 0]-direction, we measure the dispersion perpendicular to the chains, see
Fig. 4.6d.
Already the raw-data scans shown in Fig. 4.6 unambiguously demonstrate that

the dispersion along the zig-zag chains is much steeper than perpendicular to them.
The magnetic structure has to be considered as a weak antiferromagnetic ordering
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Figure 4.6: Raw-data scans to determine the magnon dispersion Scans aiming
at various parts of the magnon dispersion in La1/2Sr3/2MnO4; symbols denote the data
and lines �ts with Gaussians. Constant Q scans at the antiferromagnetic zone center
and zone boundaries (a)-(c), and constant energy scans for di�erent energies across
(0.75 -0.75 0) in the [1 1 0]-direction, i. e. perpendicular to the zig-zag chains, (d), in the
[1 1 0]-direction, i. e. parallel to the zig-zag chains, (e), and in the [1 0 0]-direction, i. e. in
a direction 45◦ to the chains, (f). All scans were measured at the thermal instrument
1T.1 at T = 10K, scans in (a) and (d)-(f) using the PG monochromator and the energy
of the scattered neutrons �xed to Ef = 14.7 meV, scans in (b) and (c) using the copper
monochromator and Ef = 30.5 meV. The di�erent |Q|-dependence separates magnetic
from phononic scattering at higher energies in (b) and (c).

of strongly coupled ferromagnetic chains. The obtained magnon dispersion is
presented in Fig. 4.7.5 The branch propagating along the chains, Γ−C, is much
steeper than the branch propagating perpendicular to it, path Γ − B, and we
�nd magnon energies at the zone boundaries C and B of 19meV and 6.5meV,
respectively. At the point C where q is parallel to the chains, the end point
of the acoustic branch coincides with that of the lowest optic branch, whereas
there is a large gap between these branches along the path Γ −B. The magnon
branch along the [1 0 0]-direction, path Γ − A at 45◦ to the chains, exhibits an

5The splitting of the magnon branches at the zone center discussed above is neglected, as it is
limited to regions close to q = 0 and irrelevant for the overall dispersion. The value chosen
for the �gure is the average of the above results.
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Figure 4.7: Magnon dispersion in La1/2Sr3/2MnO4 Dispersion of the magnetic
excitations in La1/2Sr3/2MnO4 in a direction parallel to [1 0 0], Γ to A, perpendicular to
the zig-zag chains, Γ to B, and parallel to the zig-zag chains, Γ to C. The solid and
the dashed lines give the spin-wave dispersion calculated with the two parameter sets
discussed in the text. The inset sketches a part of the magnetic Brillouin zone, displaying
the high symmetry points Γ = (0 0 0), A = (1

4 0 0), B = (1
8 −

1
8 0), C = (1

8
1
8 0), and the

path of the calculated dispersion. Note, that the zig-zag chains run along the [1 1 0]-
direction.

intermediate dispersion. Finally, all zone-boundary modes connect when passing
along the zone-boundary paths A−B and A−C.
In addition to the scans around quarter-indexed magnetic re�ections, we have

performed measurements around half-indexed ones as well. As explained in the
introductory section, in elastic scans at these Q-values one strictly measures the
scattering contributions due to the Mn3+ and Mn4+ sites, respectively. This sep-
aration should hold for inelastic scattering at rather low energies as well. Around
these Q-values we �nd exactly the same dispersion, as it is expected for collec-
tive magnons. At �nite energies there is also a signi�cant structure factor around
the integer-indexed Q-values, like (1 0 0); again the dispersion of the modes fully
agrees with the other zones. The dispersion shown in Fig. 4.7 was obtained �nally
by combining many scans in di�erent magnetic zones. At energies signi�cantly
above the saturation of the acoustic magnon branch perpendicular to the zig-zag
chains, i. e. 6.5meV, the magnetic interaction perpendicular to the chains does
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not play any role anymore and the magnon dispersion exhibits an one-dimensional
character.
To analyze the observed spin-wave dispersion, the magnon spectrum of the clas-

sical CE-type ordering shown in Fig. 4.3a has been calculated using the Holstein-
Primako� transformation and a simple spin-only Hamiltonian,

H =−
∑

(Mn3+,Mn4+)||
JFMSi · Sj

+
∑

(Mn3+,Mn4+)⊥
JAFMSi · Sj

−
∑

(Mn4+,Mn4+)||
JFM,2Si · Sj −

∑
MnΛS2

z ,

(4.1)

as a part of the PhD-thesis of F. Krüger [142, 143]. The summations in eq. 4.1
extend over all Mn-Mn sites within a plane of the layered structure,6 the �rst sum
includes the FM-interaction JFM between adjacent Mn3+ and Mn4+ sites within
the zig-zag chains, the second the AFM-interaction JAFM of neighboring sites on
di�erent chains, and the third term incorporates a FM interaction JFM,2 between
the cornering Mn4+ spins of the chains. For an illustration of the di�erent magnetic
interactions see the sketch in Fig. 4.3a. The last term in the Hamiltonian eq. 4.1
re�ects a single-ion anisotropy Λ to account for the observed gap at the zone-
center. As we are not aware of an unambiguous determination of the magnetic
structure of the CE phase, the spin-values for the Mn3+ and Mn4+-sites were �xed
to S = 2 and S = 1.5 in the calculation, respectively.
Taking into account only the two nearest-neighbor interactions for a

Mn3+/Mn4+ pair within and in-between the zig-zag chains, JFM and JAFM, we
obtain a good description of the measured dispersion denoted in Fig. 4.7 by the
dotted lines. However, signi�cant discrepancies remain, and it is impossible to si-
multaneously describe the large initial slope of the spin-wave dispersion along the
chains and the relatively lower zone-boundary frequencies. This behavior implies
the relevance of an additional longer-distance interaction parameter acting along
the ferromagnetic chains. Indeed, a fully satisfactory description is obtained by
including the ferromagnetic interaction JFM,2 for Mn4+-Mn4+ spin pairs connected
via a Mn3+ within a zig-zag chain, see the solid lines in Fig. 4.7, and we obtain
the parameters JFM= 4.99meV, JAFM=0.92meV, JFM,2=1.85meV for the relevant
magnetic exchange interactions and an anisotropy term of Λ= 0.05meV.7

6The de�nition of the exchange integral J in the Heisenberg Hamiltonian H =
∑

i,j JijSiSj

may easily evoke a �factor-2-problem�, as there is no consensus at this point in the literature.
Throughout this thesis we follow the �common� convention set by the recent discussion on
manganites, see e. g. Ref. [144], and de�ne the summation over all lattice sites, i. e. each
bond contributes twice to the total energy, in contrast to, for example, the classical work of
Anderson on antiferromagnetic �uctuations [145].

7The magnon dispersion can be described nearly equally well when considering a long-range
FM coupling between two Mn3+-sites along the zig-zag chains, but this parameter appears
less physical.
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Figure 4.8: Simulated neutron intensity Constant energy cuts through the calcu-
lated spin-wave structure factor S(Q, ω) with constant energy resolution of 2meV within
each plot and with energy steps of 2meV between adjacent plots, showing the dispersion
and intensity distribution of the lowest magnon bands within the tetragonal Brillouin
zone. The magnetic zones are denoted by white squares (a). Constant energy scans at
E = 29meV along the direction indicated by the white arrows in (a) to experimentally
verify the one-dimensional character of the high-energy magnetic scattering. The red ar-
rows indicate the expected positions of the magnon as determined from the calculation
(b).

In addition to the dispersion, the calculation also yields the inelastic structure
factors and the neutron scattering intensities, which are presented in Fig. 4.8.
Although a quantitative comparison with the experimental data is very di�cult,
the calculated and observed intensities agree qualitatively very well. Actually,
the theoretical description has always been re�ned as soon as new experimental
informations were available, and the neutron scattering experiments were always
guided by the predictions of the current model, until a conclusive experimental
and theoretical picture was �nally achieved.8

8The calculation predicts the existence of a second, high-energy magnon band between 70meV
and 75meV, which could not be con�rmed so far by the experiment because of the strong
phonon signal at these energies.
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4.2 Spin-wave excitations and magnetic correlations in La1/2Sr3/2MnO4

The contour plots of the calculated structure factors in Fig. 4.8 reveal how
the anisotropic spin-wave cones develop around the magnetic Bragg peaks with
�nite structure factor. At intermediate energies also those magnetic Brillouin
zones contribute where there is no elastic scattering. Fig. 4.8 further illustrates
that well above the maximum of the acoustic magnon perpendicular to the zig-
zag chains, the system looks like a magnetically one-dimensional system as the
magnons disperse only along the zig-zag chains. To further con�rm the one-
dimensional character we have performed constant energy scans at E = 29 meV
parallel to the chain direction at three di�erent positions along the magnon streak.
The observed magnon signals match almost perfectly with the predictions, see
Fig. 4.8b.
In contrast to the excellent modeling of the magnon dispersion based on the

Goodenough model, there is no straightforward description of the observed dis-
persion within the Zener polaron model. Ab initio calculations show, that the
di�erent exchange couplings in the Zener polaron picture are supposed to be very
anisotropic. Clearly, the FM coupling within a dimer sets the magnetic energy
scale within this approach, the interdimer interactions are shown to be at least
one order of magnitude smaller [110, 112]. Hence, the steepest branch of the spin-
wave dispersion is expected along the direction probing the intradimer exchange.
However, in the herringbone pattern shown in Fig. 4.3b, the dimers are stacked
perpendicular to the propagation of the zig-zag chains, and, consequently, the dis-
persive branch is expected along his direction � just opposite to the experimental
result with the steep dispersion parallel to the zig-zag chains. This failure and
the precise spin-wave description obtained within the CE-type model give strong
support for the latter in La1/2Sr3/2MnO4. In the following, we neglect the Zener
polaron and focus only on the Goodenough model.
Analyzing the spin-wave dispersion in more detail, the ferromagnetic interac-

tions along the zig-zag chains are remarkably large, the FM nearest neighbor
exchange JFM is about a factor of 5 stronger than the ferromagnetic coupling in
LaMnO3 acting on two Mn3+ sites with an antiferroorbital ordering [144, 146],
whereas the antiferromagnetic interchain coupling JAFM is only small, probably
due to competing e�ects. JFM is even signi�cantly larger than the ferromagnetic
interaction in the metallic ferromagnetic phases with the highest Curie temper-
atures [147, 148], pointing towards a sizable delocalization of the eg-electrons
along the zig-zag chains. Indeed, Furukawa has shown, how the double exchange
model in the metallic manganite phases maps to a Heisenberg model descrip-
tion: with increasing electron localization the spin-spin interactions become more
short range and vice versa [149]. Hence, the strong ferromagnetic interaction
in La1/2Sr3/2MnO4 being not restricted to nearest neighbors indicates that the
electrons are not fully localized in the charge-ordered phase, suggesting an one-
dimensional electronic structure. The insulating character of the zig-zag chains is,
nevertheless, preserved by topological aspects [106].
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A one-dimensional electronic structure of the ordered state is furthermore in
good agreement with theoretical investigations [105] and recent experimental ob-
servations [150�152]. Using optical spectroscopy, it has been demonstrated that
below TCO the optical properties are anisotropic, and the electronic energy gap
is smaller parallel than perpendicular to the chains. Hence, electron hopping is
most e�ective along the chain direction [152], pointing towards a one-dimensional
electronic structure comparable with the implications derived from the anisotropic
spin-wave dispersion.

4.2.2 Di�use magnetic scattering

The dominant character of the ferromagnetic exchange JFM along the zig-zag
chains revealed in the analysis of the spin-wave dispersion also results in a charac-
teristic temperature dependence of the magnetic correlations: As the temperature
is increased the long-range antiferromagnetic CE-type correlations are destroyed
and short-range ferromagnetic correlations appear as the precursor of the zig-zag
ordering above the Néel temperature in the neutron scattering data. In the follow-
ing, we will discuss this di�use magnetic scattering above TN and the temperature
dependence of the magnetic �uctuations.
To characterize the di�use magnetic scattering in a wide temperature regime

between 10K and 250K we have performed two experiments at the double-axis
di�ractometer 3T.1 and at the triple-axis spectrometer G4.3, both installed at
the Orphée reactor at the LLB in Saclay. The 3T.1 di�ractometer is a high-�ux
instrument, and the experiment was performed with at a �xed neutron energy of
Ei = 14.7 meV and relaxed experimental resolution. The spectrometer G4.3 is
installed at a neutron guide serving an excellent signal-to-noise ratio and a good
experimental resolution with Ef = 13.7 meV. Typically, selected scans performed
at the 3T.1 were repeated at the G4.3 to improve the experimental resolution and
to estimate the contribution of slow magnetic �uctuations to the di�use signal,
as the di�ractometer integrates over a sizable energy interval. However, the data
taken on both instruments agree qualitatively and quantitatively very well, setting
an upper cut-o� energy of ∆E ≈ 0.5 meV, corresponding to a timescale for the
magnetic �uctuations of 10−11 sec., for both experiments. Special care was always
put on an e�cient suppression of the contamination by second-order neutrons
with PG-�lters mounted in the neutron's pathway.
As aforementioned, the orbital ordering induces a single twinning as the chains

can either propagate along the [1 1 0] or the [1 1 0] direction. As before, for the
analysis of the data we always refer to the �rst orientation (see Fig. 4.3a), but in an
experiment both twins contribute equally to the scattered intensity. Hence, each
quarter-indexed re�ection measures the magnetic correlations of the �rst twin and,
at the same time, the orbital superstructure of the second and vice versa. How-
ever, the di�erent |Q|-dependence of magnetic and structural scattering allows
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Q Px Py Pz FRx FRy FRz Imag/Istruc

(0.75 0.25 0) SF 14511 1087 14619
NSF 796 14179 848 18.2(7) 0.077(2) 17.2(6) 1.00 / 0.00

(0.75 0.75 0) SF 1625 161 1624
NSF 208 1659 264 7.8(6) 0.097(8) 6.2(4) 0.94 / 0.06

(1.25 0.25 0) SF 3013 475 3194
NSF 486 3085 498 6.2(3) 0.154(8) 6.4(3) 0.91 / 0.09

(1.75 0.25 0) SF 8550 4475 7508
NSF 72665 76331 72745 0.118(1) 0.059(1) 0.103(1) 0.05 / 0.95

(0.5 1 0) SF 12999 1200 13091
NSF 797 12653 734 16.3(6) 0.095(3) 17.8(7) 1.00 / 0.00

(2 0 0) SF 2486 1903 1800
NSF 30032 30846 31304 0.083(2) 0.062(1) 0.058(1) 0.00 / 1.00

Table 4.2: Polarization analysis of di�erent superstructure re�ections at T=5K mea-
sured at the FLEX spectrometer. The spin quantization axis is given by Pj , where the
subscripts x, y, z refer to P ||Q (x), P⊥Q within (y), and P⊥Q perpendicular to the
scattering plane (z). For each Q-value, the columns give the observed intensities with
the spin �ipper on and Pi = −Pf (SF), and o� and Pi = Pf (NSF), as well as the
calculated �ipping ratios FRj=(SF/NSF)j for the di�erent choices of the neutron quan-
tization axis. The last column states the calculated distribution of magnetic and nuclear
scattering at the di�erent Q-positions.

to separate the di�erent contributions, which will be important for the following
discussion; for small |Q|, as e. g. Qmag = (0.75 0.25 0), the structural contribution
is weak and the observed intensity is determined by the magnetic order parame-
ter. In contrast, at large |Q|, as e. g. Qorb = (2.25 0.25 0), the magnetic part is
suppressed following the magnetic form factor and, simultaneously, the structural
structure factor is severely increased, as it scales with |Q|2. To further quantify
these considerations, we have performed a longitudinal polarization analysis of
the scattered intensity for di�erent Q-positions at the FLEX spectrometer at the
HMI in Berlin, see table 4.2.
In the classical polarization analysis [22], spin-�ip scattering (SF) is always mag-

netic, whereas non spin-�ip scattering (NSF) can be either magnetic or structural:
Magnetic moments aligned perpendicular to the neutron quantization axis con-
tribute to the spin-�ip channel, those aligned parallel to the non spin-�ip channel.
These selection rules are corroborated by the general rule, that only the compo-
nent of the magnetization perpendicular to the scattering vector Q contributes to
the cross section (cf. Chap. 2). With the scattering plane de�ned by the ab-plane
and the usual choice of the neutron coordinate system � P ||Q, P⊥Q within and
P⊥Q perpendicular to the scattering plane denoted as x, y, z, respectively � all
magnetic scattering is spin-�ip in the x-channel. With P ||y, the out-of-plane
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4 Spin-wave excitations in charge-ordered manganites

magnetization is detected in the SF-channel and the in-plane component in the
NSF-channel, and vice versa for P ||z.
In addition to the quarter-indexed re�ections, table 4.2 includes the full polar-

ization analysis for the entirely magnetic re�ection Q=(0.5 1 0) and the I4/mmm
Bragg position Q=(2 0 0). These two re�ections serve as a reference for the analy-
sis of the quarter re�ections and probe essentially the quality of the experimental
setup. The imperfectness of the �ipping ratios, FR = ISF : INSF, at these Q-values
re�ects the experimental loss of polarization along the neutron's trajectory. In-
specting the distribution of magnetic scattering in the various Pi-channels at the
magnetic position (0.5 1 0), it is immediately clear that the magnetic moments are
con�ned within the ab-planes, in agreement with the literature [54].
Turning to the quarter-indexed re�ections, the comparison of the �ipping ra-

tios with those of the reference positions directly demonstrates how the charac-
ter of the scattering changes with increasing |Q|. For Qmag = (0.75 0.25 0) the
FR's are nearly identical to those of the magnetic re�ection Q = (0.5 1 0), and
only magnetic scattering contributes at Qmag. With increasing |Q| the structural
scattering gets dominant and at Q = (1.75 0.25 0) the magnetic contribution is
marginal as the FR's are comparable with those determined at Q = (2 0 0). A
quantitative analysis of the data con�rms this qualitative argumentation. Indeed,
the scattering at Qmag = (0.75 0.25 0) is entirely magnetic in character, whereas at
Q = (1.75 0.25 0) only 5% of the scattering has a magnetic origin, while 95% must
be associated with structural distortion induced by the orbital ordering. There-
fore, in the following we will always attribute any scattering around the position
Qmag = (0.75 0.25 0) to magnetic correlations.
In order to analyze the magnetic correlations above the Néel ordering at TN ≈

110 K [7, 54], we mapped the reciprocal space around the magnetic position Qmag

at four di�erent temperatures � well above the COO transition at 250K, below
the phase transition at TCO but above TN at 200K and 150K, and below the Néel
transition at 100K, see Fig. 4.9. All four mappings exhibit a signi�cant magnetic
response and the comparison of the di�erent temperatures directly reveals drastic
changes in the nature of the short-range magnetic correlations.
At T = 250 K, i. e. in the disordered state well above the charge and orbital

ordering, the magnetic scattering appears as a broad, structureless feature cen-
tered around QFM = (1 0 0), see Fig. 4.9a. In the body-centered structure of
space group I4/mmm the existence of a di�raction signal around this position
always points to short-range ferromagnetic correlations, as the (1 0 0)-re�ection is
forbidden for nuclear scattering due to the space-group extinction rules. From the
width of the signal an isotropic correlation length ξiso ≈ 8Å can be estimated for
a pair of ferromagnetically aligned moments, see below. With the transition into
the orbital-ordered phase the distribution of intensity changes remarkably and the
magnetic scattering develops a distinct anisotropy. At T = 200 K the FM signal
at QFM = (1 0 0) has lost a signi�cant amount of spectral weight, and, simulta-
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Figure 4.9: Di�use magnetic scattering in La1/2Sr3/2MnO4 Contour mappings
of the di�use magnetic scattering around the magnetic CE-type position Qmag =
(0.75 0.25 0) at various temperatures above the charge and orbital ordering at T=250K
(a), below TCO but above the Néel transition at T=200K, (b), and 150K (c), and below
the AFM transition at T=100K (d). All maps were calculated from a grid of 41 × 41
data points with ∆qh = ∆qk = 0.0125, measured at the thermal di�ractometer 3T.1.
The two arrows in (c) denote the directions of the scans investigated in more detail, see
text for more informations.

neously, the scattered intensity is increased along the path (1 0 0) → (0.75 0.25 0)
in reciprocal space, see Fig. 4.9b. Upon further cooling this trend continues and
for T = 150 K two distinct features are resolvable. The FM signal at QFM has
further lost intensity, and a second peak has formed around Qmag = (0.75 0.25 0),
representing AFM correlations of the CE type. Still, both peaks are not resolu-
tion limited and along the line in reciprocal space connecting both positions the
scattered intensity remains signi�cantly enhanced above the background level,
Fig. 4.9c. At T = 100 K, i. e. below TN, the di�use scattering around QFM is
completely suppressed and has entirely transformed into the sharp CE-type re-
�ection at Qmag = (0.75 0.25 0). However, the peak shape of this re�ection is still
asymmetric and the distribution of magnetic intensity around the commensurable

65



4 Spin-wave excitations in charge-ordered manganites

position is enhanced towards the FM position, reminiscent of the development of
the di�use magnetic scattering above TN, see Fig. 4.9d.
Already a this stage of the discussion, the development of the di�use mag-

netic scattering with anisotropic magnetic correlations appearing as a precur-
sor for the AFM CE-type ordering below TN nicely demonstrates the di�erent
character of the magnetic interactions along and perpendicular to the zig-zag
chains, as is also found in the spin-wave dispersion, and emphasizes impressively
the close correlation between the orbital ordering and the magnetic correlations.
An equivalent observation has recently been reported by Ye et al. for the 113-
compound Pr0.55(Ca0.8Sr0.2)0.45MnO3 [153], showing similar anisotropic correla-
tions above TN. To discuss their data, these authors introduced the concept of an
one-dimensional, electronically smectic-like liquid crystal, based on the theory of
anisotropic short-range double exchange interactions introduced by van den Brink
et al. and Solovyev and Terakura [105, 106], very similar to our interpretation of
the dominant magnetic interaction along the zig-zag chains.
To further analyze the thermal evolution of the magnetic correlations we studied

the temperature dependence along two selected lines of reciprocal space, depicted
in Fig. 4.9c by the two white lines, in more detail. Scan 1 runs parallel to the
[1 1 0]-direction along the di�use rod of magnetic intensity connecting the two
CE-type re�ections (0.75 0.25 0) and (1.25 -0.25 0) and crossing the FM position
(1 0 0). Scan 2 is oriented perpendicular to the rod along the [1 1 0]-direction,
crossing the di�use streak at the commensurable position Qmag. As only the mag-
netic twin with the chains running along the [1 1 0]-direction contributes around
Qmag = (0.75 0.25 0), both scans measure essentially the magnetic correlations
perpendicular (scan 1) and parallel (scan 2) to the zig-zag chains.
We start with the discussion of the thermal evolution of the magnetic correla-

tions along the [1 1 0]-direction, i. e. perpendicular to the zig-zag chains (scan 1),
shown in Fig. 4.10. At the highest temperature investigated, T=250K, the mag-
netic intensity is dominated by a broad feature centered around QFM = (1 0 0),
as has already been evidenced by the intensity mapping at this temperature. The
line shape of this feature can be described by a Lorentzian, and taking the experi-
mental resolution into account, the determined width σ of the peak corresponds to
a correlation length ξiso = 8Å for a pair of ferromagnetically aligned spins. Upon
decreasing temperature, the intensity and shape of the feature stays roughly unaf-
fected until charge and orbital ordering sets in at TCO ≈ 220 K. With the onset of
the COO order, the FM signal at QFM begins to die out and additional magnetic
scattering emerges along the [1 1 0]-direction: Immediately below TCO weak satel-
lite re�ections become apparent around (1±ε∓ε 0), which upon further cooling
rapidly gain intensity and move outward towards the commensurable CE positions
(1±0.25∓0.25 0). Close to TN ≈ 110 K the FM signal at QFM is �nally suppressed
completely, and the AFM signal has evolved into two sharp, still slightly asym-
metric re�ections centered around the two quarter-indexed positions. Within the
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Figure 4.10: Thermal evolution of the magnetic correlations ⊥ chains Temper-
ature dependence of the magnetic intensity along the scan depicted by line 1 in Fig. 4.9c.
Data were collected between T=100K and 250K at temperature steps of 10K at the
di�ractometer 3T.1 (a). Raw-data scans underlying the contour plot in (a) at tempera-
ture steps of 20K. For clarity, the data are successively shifted vertically by 300 counts.
The inset gives the pro�le of the magnetic Bragg re�ection at low temperatures, T=2.5K.
Lines correspond to �ts as described in the text (b). In all data a minor contamination
by second-harmonic neutrons centered at QFM = (1 0 0) is subtracted.

AFM-ordered phase below TN, the peak shape of the AFM satellites is no longer
Lorentzian, but Gaussian and fully determined by the experimental resolution,
pointing towards a long-range magnetic ordering, see the inset of Fig. 4.10b.
Scan 2, running along the perpendicular direction, is especially sensitive to

the existence of CE-type correlations along the zig-zag chains. As can be seen
in Fig. 4.11, no magnetic signal is observable well above the COO transition at
T = 250 K. However, with the charge/orbital ordering a magnetic signal appears
at Qmag = (0.75 0.25 0), which is clearly distinguishable from the background
already at T = 220 K, i. e. more than 100K above the Néel transition. Note, that
there is no structural contribution to the scattering intensity at this Q-position,
as is evidenced by the polarization analysis of the scattered intensity, see table
4.2. Upon cooling the Lorentzian-shaped signal rapidly sharpens and increases
in intensity, re�ecting the transfer of spectral weight along the one-dimensional
streak as discussed above. The transition into the magnetically ordered phase
at TN = 110 K is evidenced by the change in the line shape of the observed
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Figure 4.11: Thermal evolution of the magnetic correlations || chains Temper-
ature dependence of the magnetic intensity along the scan depicted by line 2 in Fig. 4.9c,
showing raw-data scans at selected temperatures above, (a), and below the Néel tran-
sition at TN = 110K, (b). Note that for the scans at 150K and 130K the scale on the
ordinate is the same in (a) and (b). In all data a common background is subtracted.
Lines correspond to �ts with either Lorentzians or Gaussians as discussed in the text.

signal, below TN the observed signal changes into a Gaussian pro�le with the
width determined by the experimental resolution. The intensity of the re�ection
continuous to increase monotonically in the entire temperature range down to the
lowest temperature investigated, T = 3 K.
For a quantitative analysis of the development of the di�use magnetic scattering

we modeled the observed spectra using always Lorentzian line shapes for the var-
ious di�use contributions. The observed intensity then directly probes the square
of the magnetic order parameter, whereas the width of the re�ection, corrected for
resolution e�ects, determines the inverse of the correlation length ξ in the direction
of the scan [154]. The results of this analysis are summarized in Fig. 4.12.
Quite obviously, the frame for the discussion of the di�use magnetic scattering

is set by the charge and orbital order. Hence, Fig. 4.12a displays the thermal
evolution of the two structural superlattice re�ections QOO = (2.25 0.25 0) and
QCO = (1.5 1.5 0), probing the orbital and the charge ordering, respectively. The
obtained ordering temperature is consistent with TCO = 229 K as determined from
the analysis of the speci�c heat of the same sample [64], and is furthermore in good
agreement with the recent literature [7, 120].
Before we resume with the analysis of the magnetic correlations, we interrupt
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Figure 4.12: Development of the magnetic correlations in La1/2Sr3/2MnO4

Summary of the results of the analysis of the di�use magnetic scattering showing the
temperature dependence of the intensity of the structural superstructure re�ections
QOO = (2.25 0.25 0) and QCO = (1.5 1.5 0), probing the orbital and the charge or-
dering, respectively, (a), of the intensity observed at the FM position QFM = (1 0 0),
(b), and at the AFM position Qmag = (0.75 0.25 0) on a linear, (c), and logarithmic
scale, (d), of the determined correlation length ξ in a direction parallel to the chains,
ξ||, perpendicular to the chains within the ab-plane, ξ⊥, and along the tetragonal axis,
ξc, (e), and of the position of the AFM signal along the line Q = (1±ε∓ε 0), (f).
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the discussion at this point and comment brie�y on the thermal evolution of the
structural superstructure. As aforementioned, the direct observation of orbital
ordering in this system using resonant x-ray scattering techniques was one of the
�rst major achievements obtained with this advanced technique [116, 119�123]. In
one of the pioneering works in this �elds, Wilkins et al. report on an unusual corre-
lation between the orbital and the magnetic order parameter. At TN the intensity
of the orbital superlattice re�ection is drastically increased with the transition
into the AFM-ordered phase, which was interpreted as an enhancement of the as-
sociated Jahn-Teller distortion at TN [119, 123]. Later, it has been demonstrated
that at the Mn L2,3-edge also magnetic correlations contribute to the x-ray scat-
tering intensities, and the enhancement of the observed intensity below TN has
been ascribed to a magnetic origin [122]. In light of this discussion we mention,
that our neutron studies do not �nd any evidence for an unusual enhancement
of the intensity of the orbital-ordering related superstructure re�ections around
TN. The temperature dependence of the orbital re�ection QOO = (2.25 0.25 0)
is similar to that of the charge ordering re�ection QCO = (1.5 1.5 0), showing a
rapid increase below TCO and then nearly saturating below ≈150 K. More details
about the neutron scattering results on the charge and orbital superstructure in
La1/2Sr3/2MnO4 can be found in [127].
Now we return to the discussion of the magnetic correlations. The temperature

dependence of the intensity of the FM re�ection QFM = (1 0 0) and of the CE-
type re�ection Qmag = (0.75 0.25 0) as determined from the scans presented in
Fig. 4.10 and Fig. 4.11 is shown in Fig. 4.12b � d. With the transition into the
COO phase the FM correlations start to decrease linearly and vanish completely
at TN, below TN no FM correlations can be detected in our neutron scattering
data anymore. In contrast, the AFM correlations of the CE type observed at the
quarter-indexed position Qmag = (0.75 0.25 0) emerge with the transition into the
COO-ordered phase. The peak intensity does not exhibit a clear anomaly around
TN, although the major increase is found below the Néel transition at TN, and
the progression of the AFM correlations appears continuous from TCO down to
lowest temperatures. The interpretation as a magnetic transition at TN ≈ 110 K
is, nevertheless, justi�ed by the divergence of the correlation length within the
ab-plane, see Fig. 4.12e. Both in-plane correlation lengths, ξ|| parallel and ξ⊥
perpendicular to the zig-zag chains, rapidly increase as the temperature decreases
towards TN. However, at all temperatures above TN ξ|| is always larger than
ξ⊥, demonstrating that the intrachain correlations are better de�ned than the
interchain correlations. Close to TN, the di�erence between ξ|| and ξ⊥ is most
pronounced, and ξ|| diverges at slightly higher temperatures as ξ⊥. Also included
in Fig. 4.12e is the temperature dependence of the correlation length ξc along
the tetragonal c-axis. In contrast to both in-plane correlations, the out-of plane
correlations remain always �nite below TN exceeding ξc ≈ 50Å at T = 10 K, and
disappear rapidly above TN, see the discussion below.
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Finally, Fig. 4.12f displays the evolution of the AFM peak position along the line
Q = (1±ε∓ε 0), i. e. in a direction perpendicular to the chains. In this direction
the value of the incommensurability ε directly re�ects the modulation length be-
tween adjacent zig-zag chains. With the onset of the magnetic correlations at TCO

ε increases monotonically and locks into the commensurable value ε = 0.25 close
to TN. Hence, the modulation wavelength perpendicular to the chains decreases
upon cooling until at TN adjacent chains couple antiferromagnetically. Note, that
in the perpendicular direction, i. e. parallel to the zig-zag chains, the signal is al-
ways centered at the commensurable position Qmag, see Fig. 4.11, meaning that
the periodicity along the chains is constant and that single zig-zag fragments are
stable elements.
As already depicted in Fig. 4.12e, we have also investigated the evolution of

the magnetic correlations along the tetragonal c-axis perpendicular to the MnO2-
sheets. Fig. 4.13 presents raw-data scans along the path Q = (0.25 0.25 ql) for
various temperatures below TCO. The position for ql = 0, Q = (0.25 0.25 0), is
equivalent to the quarter-indexed re�ection Qmag = (0.75 0.25 0), and the mag-
netic correlations around this position within the ab-plane have already been
discussed in detail. In contrast to the in-plane scans the scans along the [0 0 1]-
direction are structureless above TN, and the magnetic scattering appears as a
di�use rod of intensity along ql.9 Hence, for T > TN the magnetic correlations
are restricted to single MnO2-layers and are entirely two dimensional. With the
phase transition at TN a well-de�ned structure develops along the rod, and two
types of magnetic re�ections centered around half- and integer-indexed ql-values
become visible. Both types of re�ections can be associated with a di�erent stack-
ing of successive MnO2-planes along the c-axis, and the observed distribution of
intensity with the half-indexed ql-re�ections dominating agrees well with a former
neutron study by Sternlieb et al. [54].10 The shape of both types of re�ections
can always be described assuming a Lorentzian line-shape, pointing to a �nite
correlation length along c at all temperatures. Indeed, the correlation length ξc

derived from the width of the re�ection Q = (0.25 0.25 2.5) increases rapidly in
a small temperature interval around TN up to ξc ≈ 50Å, see Fig. 4.12e. Below
TN, however, the correlation length ξc does not show signi�cant changes and stays
constant down to lowest temperatures, in agreement with former studies [7].
Brie�y summarizing the above results, �nite FM zig-zag fragments begin to

9Note, that at all temperatures the intensity along the rod is indeed magnetic and signi�cantly
above the experimental background, as is evidenced by the scans crossing the rod within the
plane, see e. g. Fig. 4.11.

10Note at this point, that the magnetic correlations along c seem to depend sensitively on
the exact stoichiometry. Similar data reported in Refs. [7, 43, 54] expose a signi�cant
contribution of two-dimensional scattering along (0.25 0.25 ql). In reverse, the well-de�ned
signal along [0 0 1] with no di�use background observable emphasizes the high quality of our
sample.
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Figure 4.13: Magnetic correlations along the c-axis Raw-data scans along the
line (0.25 0.25 ql) determining the magnetic correlations along the tetragonal c-axis at
various temperatures below TCO, measured at the spectrometer G4.3. The gray-shaded
areas mark spurious contributions by the scattering from Aluminium (a). Raw-data
scans along [0 0 1] centered around ql = 2.5 for various temperatures close to TN. Lines
denote �ts with Lorentzians as described in the text (b).

form as soon as the orbital ordering sets in at TCO. Upon further cooling these
elements rise continuously and the interchain correlations develop. Within this
picture, the phase transition at TN appears as a coherent long-range ordering of
already preformed fragments, as is evidenced by the non-critical temperature de-
pendence of the intensity of the magnetic CE-type superstructure re�ections and
the simultaneous divergence of the in-plane correlations lengths. This interpre-
tation is fully supported by the measurements of the macroscopic magnetization
and the speci�c heat.
Fig. 4.14 shows the temperature dependence of the in-plane electric resistivity

ρab [155], of the speci�c heat cp [64], and of the macroscopic magnetization for
a �eld applied parallel and perpendicular to the c-axis [64]. All three quantities
exhibit a distinct anomaly at TCO, but none around TN. The electric resistivity
ρab displays a semiconducting behavior in the entire temperature region, only at
TCO = 229 K ρab shows a jump-like behavior with a considerable increase of the
resistivity across the phase transition, see Fig. 4.14a. Clearly, this behavior re-
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Figure 4.14: Temperature dependence of some macroscopic quantities Tem-
perature dependence of the in-plane electric resistivity ρab (a), the speci�c heat cp (b),
and the macroscopic magnetization for a �eld H = 1 T applied parallel and perpendic-
ular to the ab-planes (c). Also included is the temperature dependence of the observed
intensities of the FM re�ection QFM = (1 0 0), the OO re�ection QOO = (2.25 0.75 0)
and the magnetic CE re�ection Qmag = (0.75 0.25 0) (d). Data in (d) are the same as
presented in Fig. 4.12, lines are included as guides to the eye, data in (a)-(c) are taken
from Refs. [43, 64, 155].

�ects the real-space ordering of the charge carriers at TCO [42]. Also the speci�c
heat, Fig. 4.14b, exhibits a pronounced, lambda-like anomaly at TCO, suggest-
ing a second-order character for the charge/orbital ordering transition, which is
consistent with the continuous increase of the intensity of the characteristic su-
perstructure re�ections in Fig. 4.12. Below TCO the speci�c heat seems to be
determined by phononic contributions, and around TN cp gives no clear indica-
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4 Spin-wave excitations in charge-ordered manganites

tion for an additional release of magnetic entropy, consistent with the formation
of short-range magnetic correlations well above TN. For further details on the
speci�c heat of La1/2Sr3/2MnO4 we refer to Ref. [64].
Contrary to the resistivity and to the speci�c heat, the magnetization M appears

astonishingly structured and of special interest [9, 41, 42]. At highest tempera-
tures TCO < T , M(T ) increases linearly and the magnetization M⊥ with the �eld
H applied vertical to the MnO2-planes is always lower than M|| with H||ab, as
the easy axis lies within the planes, see Fig. 4.14c. The magnetization reaches
a maximum slightly above TCO at T ≈ 240 K and is strongly suppressed with
the transition into the charge- and orbital-ordered phase, as might be expected
for a magnetic phase transition at TCO. Upon further cooling, the suppression of
the magnetization continues linearly down to ≈90 K and scales roughly with the
decrease of the observed intensity of the FM re�ection QFM and with the onset of
short-range antiferromagnetic correlations, see Fig. 4.14d. Quite remarkably, no
anomalous behavior can be observed at the Néel transition, and the macroscopic
magnetization continuously crosses TN both for H⊥ab and H||ab, in strong con-
trast to the expected behavior for a classical antiferromagnet. Only the sequence
of M⊥ and M|| seems to resemble the conventional behavior, as below T ≈ 135 K
M⊥ is always larger than M||. Also notable is the low temperature behavior of
the magnetization, as below T ≈ 50 K both M⊥ and M|| exhibit a signi�cant
Curie-like upturn. Usually, a low temperature upturn in the magnetization is
associated with magnetic impurities, but in the case of La1/2Sr3/2MnO4 it seems
to appear as a generic feature and is observed in various studies using di�erent
sample crystals [42, 43]. However, for the moment we will neglect the low-T up-
turn, leave its detailed discussion to one of the following sections and focus on the
high-temperature behavior of M(T ).
The most pronounced feature of the magnetization is the sudden drop of M(T )

at the charge/orbital ordering transition, which is not only observed in single-
layered La1/2Sr3/2MnO4, but also in charge-ordered perovskite manganites, as
e. g. Nd1/2Ca1/2MnO3 and Pr0.5(Ca, Sr)0.5MnO3 [100, 156, 157]. As is pointed out
by Moritomo et al., the singular behavior at TCO is attributed to the quench-
ing of the double exchange interaction with the localization of the eg-electrons in
the charge-ordered state [42], which is further supported by ESR-measurements,
associating the drop in M(T ) with the spin-susceptibility χs [158].
The unusual behavior of the macroscopic magnetization is fully consistent with

the neutron results and the di�use magnetic scattering discussed above. Fig. 4.15
pictures real-space sketches of the thermal evolution of the static magnetic cor-
relations at various temperatures above TN, as derived from the di�use scatter-
ing presented above.11 In the paramagnetic and disordered regime above TCO

11With the chosen experimental set-up �static� refers to magnetic correlations on a time-scale
longer than 10−11 sec.
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small FM clusters are formed, meditated by the double exchange mechanism, see
Fig. 4.15a. As derived from the di�raction signal, the clusters are isotropic and
their size is of the order of 2-3 lattice spacings (≈8Å) for T = 250 K. Consistent
with the neutron data, well above TCO the macroscopic magnetization exhibits a
Curie-like behavior, and already an early work by Bouloux et al. �nds a Curie-
constant θC = 320 K for the temperature regime between TCO and 1100 K [159],
which is roughly comparable with the results obtained on our and other crystals
[43].
The transition into the charge- and orbital-ordered phase at TCO suppresses the

ferromagnetic correlations. The di�raction signal clearly demonstrates the on-set
of short-range AFM correlations with the emergence of the COO phase, and the
pronounced drop of the macroscopic magnetization M(T ) close to TCO has to be
associated with the competition between FM and AFM correlations. Just below
TCO, �rst zig-zag elements including 2−3 Mn3+-sites begin to form, see Fig. 4.15b.
The correlation length ξ|| parallel to the chains is, however, signi�cantly larger
than ξ⊥ along the perpendicular direction, and single fragments are only loosely
coupled to adjacent elements re�ecting the di�erent strength of the ferromagnetic
and antiferromagnetic exchange JFM and JAFM, respectively: The di�raction signal
perpendicular to the chains � associated with the interchain coupling � is not very
well de�ned, but smeared out into a streak of magnetic intensity. The rod along
the line Q = (1±ε∓ε 0) extends, however, only up to ε 6 0.25, which nicely
proves the stability of the single zig-zag fragments as any smaller modulation,
i. e. ε > 0.25, is incompatible with the stacking of such elements: The shortest
possible real-space modulation for adjacent zig-zag elements is 2

√
2a, any shorter

modulation, implying ε > 0.25, would break the zig-zag ordering, but is not
observed.
Upon further cooling, the zig-zag fragments grow with a characteristic length ξ||

parallel and ξ⊥ perpendicular to the chains, and more and more FM clusters are
subsequently adapted into the CE-type pattern, see Fig. 4.15c. The competition of
isotropic FM clusters and zig-zag fragments is directly re�ected in the transfer of
scattered intensity from the FM position QFM = (1 0 0) to the CE-type position
Qmag = (0.75 0.25 0) and the simultaneous linear decrease of the macroscopic
magnetization between 200K and TN. As more fragments are formed, also the
AFM correlations between the chains get subsequently established, and the AFM
signal evolves along the line Q = (1±ε∓ε 0) until it locks into a well-de�ned
signal centered at the commensurable CE-type position Qmag = (0.75 0.25 0) with
ε = 0.25. Finally, below TN all preformed elements condense into the long-range
CE ordering with a �nite correlation length vertical to the MnO2-layers, thereby
fully suppressing the FM correlations, see Fig. 4.15d. However, as already above
TN a major fraction of the spins has formed �nite CE-like clusters � or is at
least ordered into isolated zig-zag chains � the magnetic transition at the Néel
temperature does not yield a sizable contribution to the speci�c heat, obviously
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Figure 4.15: Real-space evolution of the magnetic correlations Sketches of the
magnetic correlations in the MnO2-layers at various temperatures above TCO (a), in
the paramagnetic, but orbitally ordered state TCO > T > TN, (b) and (c), and in the
long-range ordered phase below TN, as derived from the results of the di�use magnetic
scattering presented above. Qualitatively, the four sketches are correlated to the intensity
mappings presented in Fig. 4.9, as is indicated by the temperatures associated with each
sketch.

there is no signi�cant change of entropy at TN, or, even more astonishing, to the
magnetic susceptibility. The magnetic transition at TN has to be regarded as
the coherent three-dimensional ordering of (rather large) two-dimensional CE-like
clusters, which are stabilized by the predominant FM exchange JFM along the
chains.
The observed sequence of magnetic phases � isotropic short-range correlations

in the disordered regime above TCO, coexistence of FM and anisotropic AFM cor-
relations in the charge/orbital ordered regime for TN < T < TCO and CE-type
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correlations below TN � agrees qualitatively very well with recent theoretical in-
vestigation on the charge-ordered structure of half-doped manganites. Solovyev
has shown that the COO structure at half doping can be stabilized entirely by
anisotropic magnetic interactions with a dominant FM coupling along the chains.
In this concept the Néel transition corresponds to an order-disorder transition,
which takes place between ferromagnetic zig-zag chains: �Namely, only the long-
range AFM order in the x direction disappears at TN, whereas the FM coupling in
the chains survives this transition. Thus, in the interval TN < T < TCO we deal
with a highly anisotropic one-dimensional spin disorder in the direction perpendic-
ular to the chains (x)� [160], which is in almost perfect agreement with the results
of the di�use magnetic scattering and the dominating ferromagnetic interaction.
However, as the observed ferromagnetic correlations above TN are rather weak, we
think that a purely magnetic approach might be insu�cient to explain the very
stable charge- and orbital-ordered state in La1/2Sr3/2MnO4. Indeed, the pure mag-
netic Hamiltonian proposed by Solovyev has recently been extended to include
electron-phonon coupling as well as electronic Coulomb interactions, yielding sim-
ilar results for a reasonable choice of parameters [57, 161].

4.2.3 Thermal evolution of the magnetic �uctuations

In the previous section we have discussed the thermal evolution of the CE-type
ordering based on the results of elastic neutron experiments, or, to be more precise,
studied the temperature dependence of the magnetic correlations on a time scale
longer than 10−11 sec. In this paragraph we extend our analysis to include the faster
magnetic �uctuations, which were studied by means of inelastic neutron scattering.
The discussion of the �static� correlations has revealed, that above TN isolated zig-
zag chains are formed as a precursor of the CE-type ground state, which compete
with isotropic FM correlations. The anisotropy of the magnetic correlations and
the co-existence of AFM and isotropic FM correlations at higher temperatures
should, however, also be visible in the (low energy) magnetic �uctuations.
The experiments on the temperature dependence of the magnetic excitations

were all performed at the thermal spectrometers 1T and 2T at the LLB in Saclay.
We used the same experimental setup as for the analysis of the spin-wave dis-
persion at low temperatures discussed above; incoming neutrons were, however,
always selected with the PG monochromator. In addition to the low-temperature
spectrum we studied the magnetic excitations at both sides of the magnetic phase
transition at 100K and 130K, i. e. below and above TN, in the COO phase at
200K and in the disordered phase at 250K.
The thermal evolution of the magnetic �uctuations at E = 2.75 meV around the

CE-type re�ection Q = (0.75−0.75 0) for a direction parallel and perpendicular
to the propagation of the FM zig-zag chains is shown in Fig. 4.16. To compare the
spectra at the di�erent temperatures, the raw data are always corrected for the
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Figure 4.16: Thermal evolution of the magnetic �uctuations around a CE-

type position Constant energy scans at E = 2.75 meV across the CE-type position Q =
(0.75−0.75 0) for various temperatures in a direction parallel, (a), and perpendicular
to the FM zig-zag chains, (b). All spectra are corrected for the Bose factor after the
substraction of a linear background. For clarity, subsequent spectra are shifted by a
constant amount on the ordinate. Lines denote �ts to the spectra as discussed in the
text, small black crosses mark the centers of the �tted Gaussians.

di�erent Bose factors after the substraction of a linear background. With increas-
ing temperature the magnon signal is suppressed, and the decrease in inelastic
intensity is roughly comparable with the temperature dependence of the magnetic
order parameter, see Fig. 4.12c. However, in-spite of the isotropic evolution of the
observed intensity, signi�cant di�erences can be found in the shape of the magnon
signal along the two distinct directions.
Let us start with the discussion of the temperature dependence of the inelastic

signal in the direction parallel to the propagation of the zig-zag chains, Fig. 4.16a.
At the lowest temperature investigated, T = 10 K, the spectrum can be decom-
posed into two magnon contributions centered at q and −q. However, as in this
direction the dispersion is steep, the scan at E = 2.75 meV can not fully resolve the
di�erent contributions. With increasing temperature, the magnon signal slightly
moves outward in Q-space, and both contributions appear well resolvable in the
spectrum recorded at 100K. Hence, with increasing temperature the magnon fre-
quency is slightly renormalized, which is con�rmed by further scans at 4meV (not
shown) exhibiting a similar behavior. Upon further heating across the magnetic
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transition at TN ≈ 110 K the inelastic response broadens, but does not shift in Q-
space anymore. We do not observe a signi�cant change of the magnon frequencies
between 100K and 200K, and the spectrum at 200K exhibits a structure, which
is well describable by two, though broadened, contributions centered at the same
positions as at 100K. Parallel to the zig-zag chains there is no further renormal-
ization in the frequencies of the magnetic �uctuations, indicative of the strong
ferromagnetic interaction JFM in this direction.
The magnetic �uctuations along the perpendicular direction exhibit a di�erent

behavior, Fig. 4.16b. Again, at lowest temperatures two magnon contributions
are clearly visible in the constant energy scan. However, as the dispersion in this
direction is signi�cantly reduced, both signals are now better separated. With
increasing temperature the signal propagates outward, too, but this trend is en-
hanced compared to the direction parallel to the chains, and continues across the
magnetic transition up to ≈130 K. In addition to the more pronounced soften-
ing of the magnon frequencies, the magnetic intensity is signi�cantly smeared out
at higher temperatures: At 130K the signal develops a distinct asymmetry with
an additional contribution along the streak Q = (0.75−0.75 0) + (h−h 0) and
h > 0. At 200K the di�erence between the spectra parallel and perpendicular to
the chains is most obvious. While there is still a well-de�ned signal along [1 1 0],
i. e. parallel to the chains, the inelastic intensity has completely lost its struc-
ture in the [1 1 0]-direction and appears as a broad streak, comparable with the
elastic scattering, directly pointing to the smaller energyscale of the interchain
correlations.
Comparing the dynamic with the static correlations at ω = 0, both resemble the

anisotropic character of the CE-type correlations with the predominant character
of the intrachain coupling JFM. Following the discussion of the static di�use scat-
tering, we may now ask if there is any evidence for additional, purely ferromagnetic
�uctuations at higher temperatures. In Fig. 4.17a we show constant energy scans
around the FM position QFM = (1 0 0), taken at the same energy, E = 2.75 meV,
and at the same temperatures as before. Notice, that QFM = (1 0 0) is also a
valid Bragg position for the AFM CE-type ordering, however with a signi�cantly
reduced structure factor, see Fig. 4.8a. At T = 10 K the spectrum around QFM

appears similar to those recorded around the quarter-indexed re�ection and the
observed signal has to be ascribed to the already well-known spin-wave dispersion
of the CE pattern. The thermal evolution of the �uctuations around QFM is,
however, in strong contrast to those discussed previously.
Already the spectrum at T = 100 K is qualitatively di�erent from those around

the quarter-indexed position; the two magnon signal associated with the AFM
dispersion still dominates the spectrum, but in addition two weak features ap-
pear at the shoulders. With further increase of temperature the di�erent signals
merge into a broad feature at ±q, and the overall structure remains compara-
ble up to highest temperatures. At T = 250 K the di�erence between the two
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Figure 4.17: Evolution of the FM �uctuations Constant energy scans at E =
2.75 meV across the FM position QFM = (1 0 0) for various temperatures. The spectra
are corrected for the Bose factor after the substraction of a linear background (a).
Raw-data scans aiming at the energy dependence of the ferromagnetic �uctuations for
T > TCO (b). Data presented (a) were measured at the 1T-spectrometer, those in (b) at
the 2T. For clarity, subsequent spectra are shifted by a constant amount on the ordinate
in both panels. Lines denote �ts to the spectra as discussed in the text.

Q-positions is most evident: Around the CE-type position Q = (0.75−0.75 0)
no inelastic signal can be detected anymore, whereas the dynamic correlations
around the FM position QFM are easily separable from the experimental back-
ground. These �uctuations are entirely ferromagnetic in character � there is no
evidence for short-range CE-type correlations at these temperatures � and the pro-
gression of the spin dynamics around QFM directly mirrors the competition of the
CE ordering with ferromagnetic phases, consistent with the development and the
discussion of the static correlations: In conventional low-dimensional magnets the
magnetic �uctuations persist well above TN, representing the �nite time scale of
the magnetic correlations above TN [162�166]. In the comparable two-dimensional
S = 1 system La2NiO4 the antiferromagnetic �uctuations can be observed up
to 600K, corresponding to 2TN, in neutron scattering experiments [167], and the
rapid suppression of the CE-type �uctuations in La1/2Sr3/2MnO4 indicates the close
competition of di�erent magnetic phases.
To further quantify the properties of the FM �uctuations we show in Fig. 4.17b

80



4.2 Spin-wave excitations and magnetic correlations in La1/2Sr3/2MnO4

Figure 4.18: q-dependence
of the FM �uctuations at

T=250KDispersion of the FM
�uctuations within the MnO2-
sheets for T = 250 K above
TCO. Solid lines denote the �t of
the data using an isotropic spin-
wave dispersion as explained in
detail in the text.
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representative raw-data scans aiming at the q-dependence of the spin dynamics for
T = 250 K, i. e. in the disordered regime above TCO characterized by isotropic FM
short-range correlations. The Q-scans illustrate, how the inelastic signal propa-
gates along [1 0 0]; the response is always rather broad in Q, and for E ≥ 12.4 meV
two features are observable in the data, which are, however, centered at equivalent
q-values in neighboring (ferro-)magnetic Brillouin zones. With increasing energy
both signals disperse towards the FM zone boundary at qk = 0.5, which they
�nally reach close to 30 meV. In addition we have analyzed the q-dependence
along the diagonal direction [1 1 0], and the results are summarized in Fig. 4.18,
presenting the dispersion of the FM �uctuations at T = 250 K up to a maximum
energy of 35meV.
The spin-wave relation for an isotropic Heisenberg ferromagnet on a square

lattice with an isotropic nearest-neighbor exchange Jiso is rapidly calculated [69]:

~ω(q) = 4JisoS(2− cos(2πqh)− cos(2πqk)). (4.2)

Fitting this dispersion relation to the observation, the data are reasonably well
described � the slight overestimation of the frequencies at the low q-limit might
be attributed to the in�uence of the �nite size of the FM clusters, ξiso ≈ 8Å.
We do not �nd any evidence for a magnetic anisotropy at q = 0, and obtain
2SJiso = 7.5(5) meV for the exchange interaction, which calls for the following �nal
remarks: Describing the q-dependence of the spin �uctuations with only a single
exchange parameter Jiso is a strong argument for isotropic magnetic correlations
above TCO � there is no evidence for any spatial anisotropy in the FM correlations,
in strong contrast to the short range correlations below TCO and the characteristics
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of the CE-type ordering at lowest temperatures. The strength of the ferromagnetic
exchange Jiso is considerably reduced compared to the FM intrachain coupling in
the CE arrangement, 2SJiso = 7.5 meV and 2SJFM ≈ 18 meV, for T = 250 K and
10K respectively, but still points to a sizable hopping of the eg-electrons mediated
through the double exchange mechanism, even though the system is insulating
[168].12 Furthermore, it is astonishing that Jiso is of the same size as the FM
nearest-neighbor exchange in the metallic phases of the perovskite manganites,
e. g. Ye et al. report 2SJ ≈ 7.5 meV for di�erent Re1−xAxMnO3 compounds with
x = 0.3 [148].

4.3 Doping dependence of the COO order in

La1−xSr1+xMnO4

Charge and orbital ordering in the 113-perovskite manganites exhibits a signi�cant
di�erence upon doping with additional electrons or holes, and the phase diagram
of many di�erent compounds exhibits a striking asymmetry with respect to half
doping, which still is one of the important open issues in the physics of the CMR-
e�ect [169, 170]: Upon hole doping, i. e. x > 0.5, charge and orbital ordering is
rather stable, but gets incommensurate with stripe phases appearing for small
eg-electron densities [90, 91]. On the other side, the COO ordering reacts very
sensitive on additional electrons, and for x < 0.5 the ordering is rapidly suppressed
and transformed into FM metallic phases.13

The in�uence of electronic doping on the COO state in the single-layered system
La1−xSr1+xMnO4 is, in contrast, only little studied so far, partly because single
crystals of high quality are hard to grow for large Sr-contents [44]. The basic
properties of the phase diagram in the intermediate to high doping regime have
recently been elaborated using x-ray and neutron di�raction, as well as electron
microscopy techniques [7, 44, 126]. The COO state persists in the overdoped
regime up to high doping levels, x ≈ 0.85, but gets incommensurable with the
modulation wavelength depending linearly on the eg-electron density ne. The
checkerboard charge ordering of the CE model transforms thereby into a stripe-like
ordering, best observable around x = 2/3 and 3/4 [44]. Electron doping, in contrast,
again rapidly suppresses the ordered state and the COO-superlattice re�ections
disappear for x < 0.4 in di�raction experiments. A signi�cant broadening of the
COO re�ections in the region 0.4 < x < 0.5 was taken as �rst evidence for a

12One might even argue that the ferromagnetic coupling Jiso in the isotropic regime is well
comparable with the coupling in the CE-ordered phase, as the e�ective moment in the high-
temperature phase is considerably reduced compared to the ordered phase.

13Another notable feature in this context is the prediction of a ferroelectric phase for 0.4 < x <
0.5, which would o�er a new route to charge-controlled multiferroics [109], which, however,
has not yet been observed experimentally.
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phase separation between optimal doped COO patches and disordered regions in
this regime of the phase diagram [7].
Hence, around half doping the phase diagram of two-dimensional

La1−xSr1+xMnO4 resembles the basic properties of the three-dimensional per-
ovskite manganites � despite the absence of FM metallic phases for large ne, most
likely due to an enhanced reduction of the one-electron bandwidth W . Further-
more, the results on the La/Sr-series are nicely supported by recent observations in
closely related two-dimensional compounds, as e. g. Nd1−xSr1+xMnO4 [171�174],
Nd1−xCa1+xMnO4 [175, 176], and Pr1−xCa1+MnO4 [177�180], proving that the
asymmetric response of the COO state with respect to doping of electrons or
holes is an intrinsic feature of the ordered state.
Most of the above studies focus, however, on the structural part of the COO

state. The documentation of the evolution of the magnetic properties as a func-
tion of ne appears only fragmentary, and a systematic investigation of the doping
dependence of the magnetic correlations is still lacking. Only Larochelle et al. re-
port on neutron scattering results sensitive to the magnetic correlations [7]. For
x = 0.45 the magnetic ordering is long range and similar to the optimal doped
compound with x = 0.5, whereas for x ≤ 0.4 a spin-glass regime is realized
with short-range CE-like correlations existing close to x = 0.4. In the overdoped
regime, x > 0.5, the magnetic correlations are again only of �nite size, ξ ≈ 30Å
within the MnO2-planes. Even more astonishing, Larochelle et al. claim that
the magnetic ordering remains commensurate for x > 0.5, although the struc-
tural superstructure is incommensurate in this regime. To extend these studies
and to characterize the magnetic correlations close to half doping in more detail,
we (re-)examine in the following the magnetic properties of the electron-doped
compound La0.6Sr1.4MnO4 (x=0.4) with a nominal Mn-valence Mn3.4+, and of
hole-rich La0.4Sr1.6MnO4 (x=0.6) with an average valence Mn3.6+ on the basis of
elastic and inelastic neutron scattering experiments. The comparison of the mag-
netic ordering in all three compounds under investigation, x = 0.4, 0.5 and 0.6,
will �nally allow us to construct a comprehensive magneto-orbital phase diagram
of the La1−xSr1+xMnO4-series around half doping.
The measurements presented below aiming at the static and dynamic spin cor-

relations in La0.6Sr1.4MnO4 and La0.4Sr1.6MnO4 were performed with two large
single crystals, grown for this purpose by P. Reutler and O. J. Schumann us-
ing the �oating zone technique [43, 127]. Neutron scattering experiments using
these crystals were performed at a number of di�erent cold and thermal TAS-
instruments situated at the four major reactor sources in Europe, including the
spectrometers 1T, 4F and G4.3 at the LLB in Saclay, the instruments PANDA
and PUMA installed at the FRM II in Munich, IN12 at the ILL in Grenoble, and
the FLEX spectrometer at the HMI in Berlin. Since we were mainly interested
in the in-plane correlations the scattering plane typically included the [1 0 0]- and
[0 1 0]-directions of the tetragonal structure. As usual, in all experiments we �xed
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the energy of the scattered neutrons to a certain energy, typically 14.7meV on
the thermal machines and 4.66meV at the cold instruments, and changed the
energy of the incoming neutrons to vary the energy transfer. To avoid contamina-
tions by higher-harmonic neutrons, adequate �lters, PG or cooled Beryllium, were
always installed in the neutron's pathway behind the sample, and a su�cient re-
duction of λ

2
-neutrons turned out to be very crucial in all of these measurements,

see the discussion below. The �eld dependence of the magnetic correlations in
La0.6Sr1.4MnO4 was determined using the 15T-cryomagnet VM2 of the HMI.

4.3.1 CE-type correlations in electron-doped La0.6Sr1.4MnO4

We begin with the electron-rich compound La0.6Sr1.4MnO4, x=0.4. As already
pointed out in the discussion of the optimal-doped sample La1/2Sr3/2MnO4, the
frame for the analysis of the magnetic correlations is set by the charge and orbital
order. Hence, we show �rst in Fig. 4.19 raw-data scans characterizing the COO
state in La0.6Sr1.4MnO4. As is clearly seen in Fig. 4.19a, a sizable signal develops at
the orbital-order position QOO = (2.25 0.25 0) below TCO ≈ 210 K, which rapidly
increases in intensity upon further reduction of temperature.14 The shape of the
signal sharpens with decreasing T , but is always broader than the experimental
resolution, and the orbital correlations remain �nite down to lowest temperatures.
From the width of the observed signal at 3K we obtain a correlation length ξOO ≈
20(1)Å, which is isotropic within the MnO2-layers � we do not �nd a signi�cant
di�erence in the correlations parallel and perpendicular to the direction of the
zig-zag chains, in good agreement with the results reported in Ref. [7].
Concomitant with the appearance of the orbital ordering at TCO, we observe

the onset of structural scattering centered at the CO-position QCO = (1.5 1.5 0)
(raw data not shown), which clearly has to be ascribed to the checkerboard charge
ordering. Upon cooling, the signal at QCO exhibits a similar behavior as the orbital
re�ection QOO, but the observed intensity at QCO is signi�cantly lower. Similar
to the orbital ordering, the correlation length associated with the charge ordering
is �nite down to lowest temperatures, and for T = 3 K we obtain ξCO ≈ 13(1)Å
within the planes, roughly comparable with ξOO.
To compare these observations with the COO ordering in the half-doped com-

pound, we normalize the intensity of the various superstructure re�ections on the
fundamental Bragg re�ection Q = (1 1 0).15 The results for lowest temperatures

14We recall that QOO is also a valid magnetic Bragg position in the CE scheme. For a large mod-
ulus |Q|, however, the magnetic form factor determining the magnetic intensity is negligible,
and at QOO = (2.25 0.25 0) practically all scattering is nuclear.

15The normalization based on a single re�ection using triple-axis data is always somewhat
questionable, as especially strong Bragg re�ections may su�er from large extinction e�ects,
resulting in a misleading interpretation of the observed intensity. However, as more advanced
procedures are hard to realize this method is often the only practicable solution.
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Figure 4.19: COO correlations in La0.6Sr1.4MnO4 Raw-data scans tracking the
temperature dependence of the OO-re�ection QOO = (2.25 0.25 0) in the electron-doped
compound La0.6Sr1.4MnO4 (a). Comparison of the typical CO- and OO-re�ections
QOO = (1.5 1.5 0) and QCO = (2.25 0.25 0) for the two compounds La1/2Sr3/2MnO4(black
symbols) and La0.6Sr1.4MnO4 (red symbols) at low temperatures (b). The data in (b)
are normalized on the intensity of the Q = (1 1 0) Bragg re�ection. In both panels lines
denote �ts to the data as described in the text. All data were recorded at the cold
instrument IN12, but with the neutron energy �xed to Ef = 11.9 meV in order to reach
larger parts of reciprocal space.

are shown in Fig. 4.19b. The position of the COO re�ections is similar in both
samples, but for La0.6Sr1.4MnO4 the width is substantially broadened, signaling
the �nite correlation length. In addition, the peak intensity for both QCO and
QOO is reduced by at least one order of magnitude, e. g. we �nd IQOO/I(110) ≈ 0.0015
for La0.6Sr1.4MnO4, compared to IQOO/I(110) ≈ 0.013 in La1/2Sr3/2MnO4,16 and our
neutron results are in good agreement with previous observation using x-ray scat-
tering techniques [7, 126]. Following these works, we may thus conclude, that the
COO structure in La0.6Sr1.4MnO4 consists of �nite-size clusters with dimensions
of the order of 20Å, referred to as nanopatches in Ref. [7].

16The integrated intensity is similar for both compounds, indicating that the ordering in
La0.6Sr1.4MnO4 incorporates a macroscopic fraction of the crystal, as is furthermore con-
�rmed by a detailed crystallographic investigation of the charge and orbital order in
La0.6Sr1.4MnO4 [127].
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Figure 4.20: Elastic magnetic scattering in La0.6Sr1.4MnO4 Mapping of reciprocal
space around QFM = (1 0 0) including typical quarter-indexed CE positions for T=10K
(a), and T=150K (b). The two white lines in (a) depict the direction of the two scans
investigated below in more detail, the dotted white square marks the borders of the
di�use magnetic intensity, see text for details. Both contour plots were derived from a
grid of data with 0.68 ≤ qh ≤ 1.36, −0.5 ≤ qk ≤ 0.5 and ∆qh = ∆qk = 0.02 recorded at
the spectrometer IN12 with Ef = 4.66 meV.

Magnetic order in La0.6Sr1.4MnO4

How does the magnetic ordering react on the diluted orbital order with only a
�nite correlation length? In Fig. 4.20 we show a mapping of reciprocal space
including the typical quarter-indexed positions characteristic of the CE ordering,
as e. g. Qmag = (0.75 0.25 0), as well as the FM position QFM = (1 0 0) for two
di�erent temperatures, T = 10 K and T = 150 K. Clearly, magnetic scattering is
visible around several Q-positions.17

At 10K strong scattering is observed around the characteristic quarter- and
half-indexed positions, representing the ordering on the Mn3+- and Mn4+-sites,
Fig. 4.20a. However, in contrast to La1/2Sr3/2MnO4 the quarter-indexed re�ec-

17Larochelle et al. were not able to observe magnetic scattering in their neutron scattering
experiment on La0.6Sr1.4MnO4 [7], which for us is somehow di�cult to understand as the
magnetic intensity is not too weak. Most likely, both samples di�er slightly in the stoichiom-
etry suppressing the magnetic correlations in the sample used by Larochelle.
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tions, take Qmag = (0.75 0.25 0) as an example, are not resolution limited and ex-
hibit furthermore an anisotropic pro�le: Parallel to the propagation of the chains,
i. e. along [1 1 0] around Qmag = (0.75 0.25 0), the signal appears well de�ned,
but in the perpendicular direction the signal exhibits a distinct asymmetry with
a broad tail towards QFM = (1 0 0). Di�use magnetic intensity is furthermore
observable within the entire square de�ned by the four quarter-indexed positions
(1±1

4
±1

4
0) centered around QFM. No such scattering is visible outside this square.

In addition, a sharp and intense signal is visible at the integer-indexed position
QFM = (1 0 0), usually representing two-dimensional FM correlations breaking the
body centering of the nuclear unit cell. In a TAS-experiment, however, intensity
appearing at QFM always has to be treated with care, since nuclear scattering
can also contribute at QFM via higher-harmonic neutrons or stacking faults in the
tetragonal lattice. Hence, we checked very carefully the e�ciency of the Beryl-
lium �lter excluding a contribution of λ

2
-neutrons18 � no higher-order signal could

be detected at (0.5 0.5 0) and the fraction of 2kf -neutrons is less than 0.05�. A
structural contribution due to stacking faults, which also would break the body
centering, is excluded by the temperature dependence of the signal, see below, and
we �nally ascribe the signal at QFM to (ferro-)magnetic correlations. What ap-
pears astonishing is the width of the FM signal, as it is resolution limited and much
sharper than the quarter-indexed AFM signal. At this point it is interesting to note
that the main characteristics of the scattering for T = 10 K in La0.6Sr1.4MnO4 re-
semble the basic properties of the similar mapping in La1/2Sr3/2MnO4 not at 10K,
but at temperatures close to the magnetic phase transition at TN where CE cor-
relations compete with FM clusters, compare e. g. Fig. 4.20a with Fig. 4.9c,d.
At T = 150 K, Fig. 4.20b, the di�use scattering and the intensity around the

CE-type positions has disappeared, and only a single signal around QFM is de-
tectable. Again, the topography of the mapping resembles the main features of
the scattering in La1/2Sr3/2MnO4 not at 150 K, but at higher temperatures well
above the COO transition, see Fig. 4.9a. In order to characterize the changes in
the magnetic correlations more accurately, we decided to further study the tem-
perature dependence along the same two scans as in the discussion of the thermal
evolution of the static correlations in La1/2Sr3/2MnO4, depicted in Fig. 4.20a by
two white lines. Scans 1 runs along [1 1 0] crossing the CE-type position Qmag and
is especially sensitive to the correlations within the zig-zag chains. The second
scan is oriented perpendicular and connects the two positions (0.75 0.25 0) and
(1 0 0), thereby testing the di�use scattering as well as the FM response at QFM.
The temperature dependence along scan 1 is shown in Fig. 4.21. Clearly, at

Qmag = (0.75 0.25 0) a magnetic signal is detectable above the experimental back-
ground below TN = 110 K, which we tentatively de�ne as the Néel temperature

18Higher harmonics with n ≥ 3 are already cut-o� by the long neutron-guide, at which IN12 is
situated.
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Figure 4.21: Temperature depen-

dence of the CE-type correla-

tions ||chains Thermal evolution of
the magnetic intensity along line 1
depicted in Fig. 4.20a measured at
IN12 (a). Comparison of the mag-
netic re�ection Qmag = (0.75 0.25 0) for
the two compounds La1/2Sr3/2MnO4 and
La0.6Sr1.4MnO4 (b). In (b) data are nor-
malized on the intensity of the (1 1 0) re-
�ection. Lines denote �ts to the data as
discussed in the text, a common back-
ground has been subtracted in all data.

TN. Upon further cooling, the signal rapidly increases in intensity, but remains
always signi�cantly broadened pointing to �nite-size correlations. From the width
of the signal at 10K we estimate a correlation length, which is of the same order
as for the orbital ordering, ξ ≈ 20Å. The di�erence in the magnetic correlations
between the two systems La0.6Sr1.4MnO4 and La1/2Sr3/2MnO4 is already evident by
comparing the raw data. In Fig. 4.19b we plot the CE response at Qmag for both
compounds normalized on the intensity of the tetragonal (1 1 0) Bragg re�ection:
Comparing the two re�ections, the broadening of the peak shape in the under-
doped compound is apparent. The absolute magnetic intensity is reduced, too,
but the suppression is less pronounced than for the charge- and orbital-ordering
re�ections.
The temperature dependence along scan 2 is shown in Fig. 4.22, and the in-

terpretation of the magnetic scattering in the perpendicular direction is more
challenging.19 At highest temperatures, T ≥ 240 K, the signal consists of a single
Lorentzian-shaped response centered around QFM. Upon cooling, the Lorentzian-
like signal is suppressed, and below TN magnetic intensity is partly transferred
across the streak (1 0 0) → (0.75 0.25 0) to the CE-type position, similar to the
observations in La1/2Sr3/2MnO4. However, additional magnetic contributions can
also be identi�ed, not detectable in the half-doped sample. Below TN di�use
magnetic scattering develops along the streak with a broad maximum around
Q = (1−qh qh 0) and qh ≈ 0.15, which monotonically increases in intensity down
to T=10K. The di�use scattering is restricted to qh ≤ 0.25 with the CE posi-
tion as a strict border, forming the �di�use-square� visible in the contour plot
Fig. 4.20a. In addition, at the FM position QFM a sharp, Gaussian-shaped signal

19Please note that the presentation in Fig. 4.22 is similar to Fig. 4.10, analyzing the interchain
correlations in La1/2Sr3/2MnO4, which allows an easy comparison between both compounds.
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Figure 4.22: Thermal evolution of the di�use scattering ⊥chains Temperature
dependence of the magnetic intensity along line 2 depicted in Fig. 4.20a. Data were
collected between 20K and 240K with temperature steps of 10K at the spectrometer
IN12 (a). Raw-data scans underlying the contour plot in (a). For clarity, subsequent
scans are shifted vertically by 100 counts (b). Direct comparison of the 10K and 290K
data (c). Data in (a) and (b) were recorded with Ef = 8.04 meV, those presented in
(c) with Ef = 4.66 meV. In (a) and (b) a minor contamination by second-harmonic
neutrons has been subtracted.

can be distinguished on top of the broad Lorentzian below ≈200 K, which persists
down to lowest temperatures.
The drastic changes in the magnetic scattering for T = 290 K and 10K can

most impressively be summarized by directly comparing the 290K and 10K data,
see Fig. 4.22c. The Lorentzian-shaped signal at high temperatures is completely
suppressed and transformed into a sharp signal at QFM and at the neighboring
quarter-indexed CE-type positions, with sizable di�use intensity appearing be-
tween these two re�ections. Moreover, the comparison of the raw data excludes
a sizable sharp contribution at QFM for T = 290 K, which excludes a structural
contribution due to stacking faults in the tetragonal lattice, proving the magnetic
origin of the signal.20

To acquire a more quantitative description of the thermal evolution, we mod-
eled all data assuming di�erent magnetic contributions. The scans along [1 1 0]

20As aforementioned, a contamination of second-harmonic neutrons is below the detection limit
with EF = 4.66 meV.
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presented in Fig. 4.21 can well be described by a single Gaussian, whereas the
complex structure in the perpendicular direction requires several features. To
contain consistency in the description, we model all spectra along [1 1 0] including
a Lorentzian representing the broad FM signal centered around QFM, a Gaussian
to account for the sharp component at the same position, and two further compo-
nents to incorporate the di�use AFM and well-de�ned CE-type scattering. In the
re�nement all of these components were allowed to vary independently, resulting
in a satisfying �t of the data, see Fig. 4.22b. The results of this analysis are
summarized in Fig. 4.23.
To start with, we show in Fig. 4.23a the temperature dependence of the CO

and the OO superstructure re�ections as derived from the analysis of the data
in Fig. 4.19. Both, charge and orbital ordering exhibit a similar temperature
dependence with only a slow increase below TCO ≈ 200 K.21 In contrast to the
steep rise of the order parameter below TCO in La1/2Sr3/2MnO4, the major increase
in intensity in La0.6Sr1.4MnO4 is found below ≈ 150 K and the intensity curve
possesses an in�ection point around 100K.
Fig. 4.23b,c present the thermal evolution of the di�erent magnetic components

identi�ed in the raw-data scans. At QFM, two distinct contributions have to be
considered, a Lorentzian component observed at high temperatures, depicted as
�broad� in Fig. 4.23b, and a Gaussian component, marked as �sharp�, which grows
on top of the broad signal upon cooling. With decreasing temperature the broad
signal at QFM is continuously weakened and completely diminished below ≈70 K,
showing a similar behavior as the FM response in the optimal-doped sample. On
the contrary, the sharp contribution at QFM monotonically increases from ≈225 K
down to low temperatures, with the major increase between 200K and 100K.
The discussion of the AFM correlations in La0.6Sr1.4MnO4 also has to be di-

vided into two parts � there is a well-de�ned signal centered at the quarter-
indexed position, and a di�use component in-between the CE position and QFM,
which are signed as �sharp� and �di�use� in Fig. 4.23c, respectively. However,
both signals become simultaneously visible below TN ≈ 110 K and display a sim-
ilar T-dependence upon cooling, which is furthermore comparable with that in
La1/2Sr3/2MnO4. More interestingly, the analysis of the position of the CE-type
contribution around (0.75 0.25 0) reveals, that the CE ordering is shifted to slightly
incommensurable values, as for low temperatures the CE re�ection is centered at
Q = (1±ε∓ε 0) and ε = 0.2427(3), see Fig. 4.23d.
The temperature dependence of the in-plane correlations in the half doped com-

pound La1/2Sr3/2MnO4 in the previous section has �nally been completed by a short
remark on the magnetic correlations perpendicular to the MnO2-sheets. Although

21The agreement between the thermal evolution of the two re�ections, QCO = (1.5 1.5 0) and
QOO = (2.25 0.25 0), provides another clear indication for the purely nuclear origin of the
observed intensity at QOO.
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Figure 4.23: Development of the magnetic correlations in La0.6Sr1.4MnO4

Summary of the analysis of the thermal evolution of the magnetic scattering showing
the temperature dependence of the intensity of the structural superstructure re�ections
QOO = (2.25 0.25 0) and QCO = (1.5 1.5 0), probing the orbital and the charge ordering,
respectively, (a), of the intensity of the sharp Gaussian-shaped and the broad Lorentzian
signal at the FM position QFM = (1 0 0) (b), and of the di�use AFM and the sharp CE
signal at Qmag = (0.75 0.25 0) (c). Temperature dependence of the observed position
of the CE-type signal along the line Q = (1±ε∓ε 0) (d). Red symbols denote the
underdoped compound La0.6Sr1.4MnO4, while black symbols mark for comparison the
half-doped system La1/2Sr3/2MnO4. Lines are included as guides to the eye, data for
La1/2Sr3/2MnO4 are the same as presented in Fig. 4.12.
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Figure 4.24: Magnetic cor-

relations along the c-axis

Raw-data scans along the line
Q = (0.25 0.25 ql) aiming at the
magnetic correlations along the
tetragonal c-axis for T = 3 K
and 150K. Gray-shaded areas
mark spurious contaminations
by scattering from Aluminium.

the ordering along c is not perfectly three dimensional, the analysis has revealed
well de�ned re�ections along Q = (0.25 0.25 ql) in the ordered state, pointing to
a �nite magnetic correlation length ξc ≈ 50Å parallel to c in La1/2Sr3/2MnO4.
In Fig. 4.24 we show the similar analysis for the doped sample La0.6Sr1.4MnO4:
The comparison between the 150K and 3K data proves the magnetic charac-
ter of the scattering at low temperatures � besides the spurious intensity from
the Al-scattering � but well-de�ned magnetic re�ections are not observed along
[0 0 1]. Instead, the magnetic intensity is uniformly distributed along the rod
Q = (0.25 0.25 ql) and the short-range CE-type correlations are entirely two di-
mensional and restricted to single MnO2-layers in the case of La0.6Sr1.4MnO4.22

Macroscopic magnetization Following the discussion of the half-doped com-
pound, we now turn to the analysis of the macroscopic magnetization M(T, B),
which is plotted in Fig. 4.25 for La1/2Sr3/2MnO4 and La0.6Sr1.4MnO4. Also included
is the intermediated compound La0.55Sr1.45MnO4 [43, 64]. The magnetization of
all three compounds exhibits some common features, which are best analyzed by
dividing M(T ) into three di�erent temperature regimes, indicated by the gray
lines in Fig. 4.25a.
At high temperatures above TCO, M(T ) follows a Curie-Weiss like behavior and

is comparable for all three compounds. The increase of magnetization with T in
this region is clearly associated with the short-range FM correlations identi�ed in

22The slight modulation of the observed scattering has to be attributed to the change of the
scattering geometry as the angle between Q and the ab considerably increases along the line
Q = (0.25 0.25 ql) for ql = 0 . . . 5.
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Figure 4.25: Macroscopic magnetization in La0.6Sr1.4MnO4 Temperature de-
pendence of the macroscopic magnetization M(T ) for La1−xSr1+xMnO4 and x =
0.4, 0.45, 0.5 for H⊥c and H = 1 T. Vertical gray lines mark the borders of the three
di�erent temperature regimes discussed in the text (a). Magnetization M as a func-
tion of magnetic �eld H⊥c at low temperatures T = 4 K (b). Data are taken from
Refs. [43, 64].

the neutron scattering experiments both in La1/2Sr3/2MnO4 and La0.6Sr1.4MnO4,
and which in the orbitally disordered regime are driven by the classical Zener
mechanism [77]. The onset of the charge and orbital ordering suppresses the
magnetization in all three compounds, but the e�ect is signi�cantly weakened
with doping: In La1/2Sr3/2MnO4, M(T ) exhibits a sharp kink at TCO and continu-
ously decreases with temperature forming a local minimum near ≈75 K, whereas
for the electron-doped compounds the drop in M(T ) at TCO is severely reduced.
In La0.55Sr1.45MnO4 the magnetization displays a broad local maximum around
TCO ≈ 200 K, while for La0.6Sr1.4MnO4 the charge and orbital ordering has no
comparable e�ect on the magnetization � only a slight deviation from the Curie-
like behavior at high temperatures can be observed below 200 K, consistent with
the strong reduction of the orbital ordering found in the neutron scattering exper-
iments.23 Note, that in contrast to La1/2Sr3/2MnO4 there is no distinct anomaly in
the electric resistivity ρ(T ) and in the speci�c heat c(T ) at TCO in La0.6Sr1.4MnO4,
again pointing to the �nite correlation length of the COO ordering in this com-

23These results are consistent with a �rst preliminary experiment on La0.55Sr1.45MnO4, as com-
pared to La1/2Sr3/2MnO4 the COO-superstructure re�ections are weakened, but well stronger
than for x = 0.4.

93



4 Spin-wave excitations in charge-ordered manganites

pound [42, 64, 155].
In the low temperature regime below ≈ 70 K all three compounds show a dis-

tinct upturn in M(T ), which scales with the eg-electron density ne and is most
pronounced in La0.6Sr1.4MnO4, reaching at 4 K a maximum value of 0.25 µB/Mn
for H = 1 T, well comparable with published data [42]. Obviously, this unusual
behavior can not be associated with the antiferromagnetic ordering of the CE type,
but rather points to FM correlations. Furthermore it is noteworthy, that close to
half doping the absolute value of the low-temperature magnetization seems to de-
pend sensitively on the exact stoichiometry of the sample, as the reported values
in the literature are not consistent [42, 43].24

To further investigate the properties of the ferromagnetic correlations at low
temperatures we show in Fig. 4.25b the �eld dependence M(H) of the macroscopic
magnetization at 4 K and H⊥c for all three compounds [43, 64]. In the half-doped
sample La1/2Sr3/2MnO4 a distinct anomaly is observable around 5T with a jump-
like increase of the magnetization, which is ascribed to a spin-�op transition within
the CE-ordered phase [43]. In the two underdoped compounds a similar e�ect is
absent, and both M(H)-curves are right-curved with ∂2M

∂H2 < 0 in the entire �eld-
range up to 14T, indicative of ferromagnetic correlated moments. For the highest
�elds available � 10T in the case of La1/2Sr3/2MnO4 and 14T for the doped samples
� the magnetization is still not saturating, but the size of the induced moment
increases monotonically upon doping and reaches in La0.6Sr1.4MnO4 already a
sizable value of ≈ 1.5 µB/Mn. Even more interestingly, with increasing electron
doping the M(H)-curves develop a distinct hysteresis upon ramping the �eld,
clearly documenting the existence of FM ordered parts as already deduced from the
sharp contribution at QFM = (1 0 0), and we �nd a small remanent magnetization
of 0.08 µB/Mn La0.6Sr1.4MnO4 at T = 4 K.

Field dependence of the magnetic correlations To study the impact of the
magnetic �eld on the magnetic correlations we have investigated the �eld depen-
dence of several magnetic superstructure re�ections at the spectrometer FLEX
using the 15T-cryomagnet VM2 of the HMI in Berlin. In this experiment the sam-
ple was mounted with the two re�ections (1 1 0) and (0 0 1) de�ning the scattering
plane and the �eld applied along the vertical direction. As the FM correlations are
expected to be long-ranged due to the applied �eld, the magnetic superstructure
re�ections will be situated on top of the fundamental structural Bragg re�ections.
Hence, to track even small changes in the FM correlations we decided to focus on
the Bragg position Q = (0 0 2), which has only a weak structural contribution.

24Although inhabited in the macroscopic data of our sample, a FM response could not be
detected in the neutron experiments in La1/2Sr3/2MnO4 � most likely due to the weakness
of the FM correlated moments. From the magnetization data the size of these moments is
estimated to be of the order of 0.04 µB/Mn [43], suppressing the FM signal by a factor of
≈40 in di�raction experiments.
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Figure 4.26: Field dependence of the FM scattering Field dependence of the
nuclear and FM Bragg re�ection Q = (0 0 2) in the low-temperature phase at T = 2 K
recorded at the FLEX spectrometer using the 15T-cryomagnet VM2 and the �eld applied
along [1 1 0]. Lines correspond to �ts to the data as described in the text, the asymmetric
pro�le has to be attributed to a slight misalignment in the experimental setup (a).
Comparison of the change in the magnetization derived from the neutron data with the
results from the macroscopic magnetization as a function of applied �eld at T = 2 K
(b), and as a function of temperature at a constant �eld, 2.5 T in the neutron case and
1T for the macroscopic data (c).

The �eld dependence of the (0 0 2) re�ection is shown in Fig. 4.26. With in-
creasing �eld the observed intensity rapidly increases, and for the maximum �eld
available, H = 14 T, the signal has gained a factor of 50 compared to zero �eld,
see Fig. 4.26a.25 This enormous increase of intensity has to be attributed to the
induced three dimensional ferromagnetic correlations already revealed in the �eld-
dependence of the macroscopic magnetization. To compare the magnetization
with the neutron results of Fig. 4.26a, we extract the magnetic component from
the observed signal by subtracting the zero-�eld and zero-�eld cooled response,
which �xes the structural scattering at Q = (0 0 2). The magnetic intensity is

25Please note that the asymmetric pro�le of the re�ection has to be assigned to a slight mis-
alignment in the experimental setup.
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Figure 4.27: Field de-

pendence of the AFM

CE-type scattering Field
dependence of the magnetic
scattering along the line
(0.25 0.25 2.5) → (0 0 2.5) at
low temperature T = 2K (a).
Di�erence spectra (b), calcu-
lated from the data presented
in (a). In order to increase
the statistics the data are
symmetrized with respect to
the position Q = (0 0 2.5).

then directly proportional to the square of the induced moment, cf. Chap. 2. The
neutron data scale almost perfectly with the macroscopic data, thereby calibrating
the neutron intensity in absolut units, see Fig. 4.26b.
We have also investigated the temperature dependence of the magnetic signal

up to 100K for a constant �eld of 2.5 T. Again, the increase of the neutron
intensity upon cooling nicely agrees with the observed increase of the macroscopic
magnetization in this temperature regime, see Fig. 4.26c, and we �nd a one-to-one
correspondence between the induced moment in the magnetization and the FM
correlations in the neutron data.
What appears more astonishing is the response of the AFM CE-type corre-

lations to the applied magnetic �eld: In Fig. 4.27 we show raw-data scans at
T=2K in zero and high �eld, H = 14 T, connecting the two AFM CE positions
(±0.25±0.25 2.5). As the magnetic correlations in zero �eld are two dimensional,
this scan is equivalent to the path (0.75 0.25 0) → (1 0 0) already discussed in
more detail, see Fig. 4.22. Indeed, for H = 0 T the scan along (qk qk 2.5) exhibits
an asymmetric response with a sharp border for qh > 0.25 and signi�cant dif-
fuse intensity in-between the two quarter indexed positions, very similar to the
characteristic features discussed before. The sharp signal at Q = (0 0 2.5) re-
�ects the almost uncorrelated stacking of two-dimensional ferromagnetic clusters
along the c-direction and has to be compared with the FM scattering observed at
QFM = (1 0 0). Interestingly, all three components reveal a di�erent response to
the strong magnetic �eld: For H = 14 T the di�use magnetic scattering is com-
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pletely suppressed, whereas the quarter-indexed re�ections are not a�ected. Both
the width and the intensity of the re�ections at Q = (±0.25±0.25 2.5) remain
unchanged, and the well-de�ned CE-type scattering persists in the strong mag-
netic �eld. Moreover, the CE re�ections acquire a nearly symmetric shape, which
most likely is hidden in the di�use background for H = 0 T. The (pseudo)-FM
position (0 0 2.5) is also in�uenced by the strong magnetic �eld. For H = 14 T the
intensity at (0 0 2.5) is considerably enhanced, pointing to some misaligned FM
clusters along c even for the strong �eld, but the increase of intensity can not be
compared with the behavior of the (0 0 2) re�ection as discussed before.

Evidence for microscopic phase separation The di�erent response of the dif-
fuse and the well de�ned CE-type scattering around the quarter-indexed positions
to an applied magnetic �eld yields strong evidence for a magnetically heterogenous
state in La0.6Sr1.4MnO4 [2, 5, 86]. However, before developing a qualitative picture
of the magnetic ordering in La0.6Sr1.4MnO4 we summarize the main experimental
observations such a model has to reproduce:

� At low temperatures the system is charge and orbital ordered. However, the
ordering is only �nite with a correlation length ξ ≈ 20Å within the planes.

� Well-de�ned magnetic scattering is observed around the typical half- and
quarter-indexed positions. The ordering of the Mn3+-sites is slightly incom-
mensurate and restricted to single MnO2-sheets. The magnetic correlation
length within the planes is �nite and comparable to that of the COO order.

� Di�use AFM scattering persists down to lowest temperatures. The di�use
intensity is restricted to a square centered around an integer-indexed re�ec-
tion with sharp borders de�ned by the four surrounding quarter-indexed po-
sitions. A strong magnetic �eld suppresses the di�use scattering, in contrast
to the CE-like scattering at the quarter positions, which remains unchanged
up to 14T.

� In addition to the AFM scattering a considerable response is observed at
QFM = (1 0 0), representing two-dimensional FM correlations. In an external
�eld the FM correlations are strongly enhanced, and the macroscopic mag-
netization reveals a sizable induced moment of 1.5 µB/Mn for H[1 1 0] = 14 T.

According to the discussion of the properties of the half-doped compound the
most stable elements of the CE structure are the FM zig-zag chains. It appears
reasonable that these fragments also constitute the building blocks of the magnetic
ground state in La0.6Sr1.4MnO4. In order to acquire some physical intuition into
the properties of these elements, we consider in the following a simple toy-model
treating di�erent arrangements of FM zig-zag fragments in real and reciprocal
space, see Fig. 4.28.
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4 Spin-wave excitations in charge-ordered manganites

To construct the real-space structures shown in the left panel of Fig. 4.28 we
consider stable spin-1

2
zig-zag elements along [1 1 0] on a grid of 128× 128 points.

Within each chain, neighboring sites are coupled ferromagnetically with a prob-
ability p||, yielding a correlation length ξ|| (in units of the grid) along the chains
given by p|| = exp(− 1

ξ||
). To build-up the real-space pattern shown, the spin ar-

rangement of each zig-zag path is calculated independently from the neighboring
chains, and the coupling between adjacent chains is subsequently included with a
probability p⊥ of an AFM alignment along a single row of the grid. As long as the
correlation length ξ|| is in�nite, this procedure yields a well de�ned correlation per-
pendicular to the chains and reproduces the CE pattern in the limit p|| = p⊥ = 1,
see Fig.4.28a. However, as soon as the correlations along the chains become �nite,
the algorithm does not take into account the domain structure within the chains
and the perpendicular correlations are not taken into account properly. In this
case the correlation length ξ⊥ is not well de�ned and the chains are treated as
isolated objects. Nevertheless, since the magnetic coupling between the chains is
only weak, adjacent chains can be considered as isolated and this simple approach
seems well justi�ed.26

The right panel of Fig. 4.28 shows the Fourier transformations of the corre-
sponding real-space structures, calculated using the two-dimensional FFT algo-
rithm implemented in the Matlab package. In order to compare the calculation
with the experiment, the data shown are broadened by a Gaussian mimicking the
�nite experimental resolution. In addition, the simulated picture of reciprocal
space is �nally superimposed by its 90◦-twin to take into account the twinning
induced by the OO transition in a sample crystal.
Let us now discuss the di�erent con�gurations. In Fig. 4.28a both the intra-

and interchain correlations are long-ranged, ξ|| = ξ⊥ = ∞, and the real-space
pattern resembles the perfect CE ordering. The associated response in recipro-
cal space consists of sharp re�ections at the quarter- and half-indexed position,
corresponding to the correlations on the corner and bridge sites, respectively. In
a �rst step, Fig. 4.28b, we keep the long-range ordering within, but weaken the
correlations perpendicular to the chains, ξ|| = ∞ and ξ⊥ = 5. In consequence,
some chains �ip and form FM clusters with the neighboring sites. In Fourier space
an additional sharp signal appears at QFM = (1 0 0), which is connected with the
quarter-positions via a di�use x-shaped streak representing the di�erent modula-
tion wavelengths perpendicular to the chains. Interestingly, the di�use intensity
around the half-indexed re�ections is less pronounced signalling a signi�cantly re-
duced structure factor. If we now additionally reduce the correlation length within
the chains the clustering in the real-space structures is enhanced, Fig. 4.28c and

26Improving this model to take explicitly into account the domain structure and the �nite
correlations between adjacent chains would require a Quantum Monte Carlo simulation at
�nite temperatures [181].

98



4.3 Doping dependence of the COO order in La1−xSr1+xMnO4

Figure 4.28: Simulation of the evolution of the CE order upon electron doping

Calculated real-space images of the magnetic ordering for di�erent values ξ|| and ξ⊥ of
the intra- and interchain correlation length. The two spin states ±1

2 are represented by
red and blue color, respectively (left). Symmetrized Fourier transformation calculated
from the real-space structures depicted in the left panel (right). All calculations were
performed on a grid of 128×128 points, for clarity in the left panel only the �rst 64×64
points are shown. For more details see the text.
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d, and the sharp CE-type re�ections disappear in the simulated di�raction pat-
tern. Simultaneously, with decreasing ξ|| the di�use x-like signal gains intensity
and smears out, but remains always con�ned to the square centered around QFM:
Due to the stability of the zig-zag elements the shortest real-space modulation
perpendicular to the chains possible is λmin = 2

√
2, corresponding to the (1

4
1
4
0)-

re�ections in reciprocal space. Finally, for very short correlations, ξ|| ≈ 10, the
di�use scattering is nearly equally distributed in the entire square and combines
with the weaker di�use scattering around the half-indexed positions.
The simulated di�raction patterns of Fig. 4.28 contain all characteristic elements

of the observed magnetic scattering in La0.6Sr1.4MnO4, at least if we combine two
of them, and we are �nally in a position to combine all the pieces of the puzzle
and to construct a phenomenological picture of the magnetic ordering: At low
temperatures La0.6Sr1.4MnO4 is a heterogenous system with two magnetic phases
coexisting on a microscopic scale. One of the two phases is perfectly CE ordered.
In the di�raction data this phase is associated with the sharp re�ections at the
quarter positions and the ordering pattern can roughly be associated with the
arrangement depicted in Fig. 4.28a. From the width of the re�ections the average
size of these CE clusters is found to be of the order of 20Å. The CE clusters are
stable in a strong magnetic �eld, very similar to the long-range CE ordering in
the half-doped compound.
The second phase is connected with the di�use magnetic intensity and the FM

response at QFM. Comparing the experimental data at low temperatures with
the simulations shown in Fig. 4.28c and d, this phase is characterized by loosely
bound zig-zag fragments with �nite length. From the di�raction data the width
of this �disordered� clusters is hard to estimate, but the comparison with the
simulation suggests a size of ≈30− 40Å, comparable with the spatial dimensions
of the CE clusters. The magnetic correlations in this phase should be much
weaker than in the strictly CE-ordered phase, and the strong impact of an applied
�eld observed in the magnetization as well as in the �eld-dependent di�raction
experiments originates in the response of this �disordered� regions to a magnetic
�eld: An applied �eld can easily align the loosely coupled spins and induce large
magnetic moments. Consequently, the di�use magnetic scattering is suppressed
and transformed into well de�ned FM scattering.
In conclusion, the results of the elastic neutron di�raction experiments presented

above give strong support for a magnetically inhomogeneous state in electron-
doped La0.6Sr1.4MnO4 at low temperature. However, so far we have not com-
mented on the microscopic origin of the phase separation, and in our opinion it
seems very unlikely that the di�erent phases base on purely magnetic interactions.
Note, that we have not yet discussed the in�uence of the extra electrons, as com-
pared to the optimal-doped compound each �fth Mn4+ is substituted by a Mn3+-
ion with localized eg-electron in La0.6Sr1.4MnO4. The additional electrons severely
disturb the charge and orbital lattice of the CE pattern, and will in�uence the sen-
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sible balance of electronic, magnetic and lattice degrees of freedom � most likely
the additional eg-electrons will localize on the cornering sites of the zig-zag struc-
ture occupying the out-of plane states with d3z2−r2-symmetry. Therefore, it seems
plausible that the magnetic phase separation is coupled to a charge segregation
into hole- and electron-rich regions. In this picture the magnetically CE-ordered
phase is hole rich with a 1:1-ratio of Mn3+ and Mn4+ similar to La1/2Sr3/2MnO4,
whereas the magnetic �disordered� phase is coupled to the electron-rich regimes
containing all excess electrons. A �rst indication for this scenario is given by the
observed slight incommensurability of the CE re�ections, which can be interpreted
as a local strain in the lattice originating from the magnetic ordering via the un-
derlying orbital ordering. However, this hypothesis surely has to be tested by
further experiments sensitive to phase separation in both the spin and the lattice
channel, as e. g. small angle neutron scattering.

4.3.2 Magnetic correlations in hole-doped La0.4Sr1.6MnO4

In contrast to electron doping, the COO state is very stable upon removing elec-
trons, and COO phenomena are reported in La1−xSr1+xMnO4 up to large Sr-
concentrations x ≤ 0.85 [44]. It is well established, that for x > 0.5 the COO
state is incommensurate with the incommensurability εOO depending linearly on
the density ne of eg-electrons, εOO = 1−2ne

4
[126]. As aforementioned, the evolution

of the magnetic state is only little explored, Larochelle et al. report on commensu-
rate short-range magnetic correlations with an in-plane correlation length ξ = 29Å
in La0.4Sr1.6MnO4 (x = 0.6), in contrast to the incommensurate character of the
orbital correlations [7]. As in these complex ordered systems the magnetic and
orbital degrees of freedom are typically closely correlated this contrasting behavior
is very astonishing. Hence, we have decided to (re-)examine the magnetic correla-
tions in La0.4Sr1.6MnO4 using elastic and inelastic neutron scattering. As we will
demonstrate in the following, the result of Larochelle et al. is not correct, and the
magnetic ordering for x = 0.6 is � in agreement with the orbital correlations �
incommensurate.
Before proceeding with the description of the magnetic ordering, we make a

short remark on the orbital correlations in La0.4Sr1.6MnO4. At TCO = 255 K, we
observe the onset of structural scattering characteristic for the COO transition.
The orbital ordering is incommensurate and the typical orbital superstructure
re�ections are shifted longitudinally peaking at QOO = (2.25−εOO 0.25−εOO 0)
with εOO = 0.043(1)27 [46]. Both, the COO-transition temperature TCO and the
incommensurability εOO are in good agreement with the published data for x = 0.6
[44, 126].

27Determining the average valence with the help of the scaling relation ε(x) the observed in-
commensurability yields a slight non-stoichiometry x = 0.588.
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Figure 4.29: Temperature dependence of the magnetic correlations for

x=0.6 Temperature dependence of the magnetic intensity along the line Q =
(0.25+qh 0.25−qh 0), i. e. parallel to the propagation of the zig-zag chains, in
La0.4Sr1.6MnO4, recorded at the spectrometer G4.3 with Ef = 14.7 meV (a). Com-
parison of the thermal evolution of the magnetic intensity of the magnetic CE-type
re�ections (b), and of the in-plane magnetic correlation length (c) for the two com-
pounds La1/2Sr3/2MnO4 and La0.4Sr1.6MnO4. Lines depicted in (a) are �ts to the data,
in (b) and (c) included as guides to the eye.

In Fig. 4.29 we show the development of the magnetic order in La0.4Sr1.6MnO4.
Fig. 4.29a pictures the temperature dependence of the magnetic scattering in a
transversal direction along the line Q = (0.25+qh 0.25−qh 0). Clearly, magnetic
intensity develops below TN ≈ 95 K with two well-de�ned re�ections centered at
Q = (0.25±εSO 0.25∓εSO 0) and εSO = 0.030(1). Scanning along the perpendicular
direction we do not �nd a splitting of the magnetic intensity. To con�rm these
observations, which are contradicting the results published by Larochelle el at.,28

we checked very carefully the magnetic scattering in di�erent magnetic Brillouin
zones at low temperatures, but all yield similar results. Hence, the magnetic or-

28In the neutron scattering experiments reported by Larochelle et al. in Ref. [7] the scattering
plane was de�ned by [1 1 0]/[0 0 1], allowing only to test the magnetic correlations perpen-
dicular to the orientation of the zig-zag chains. Obviously, these authors did not check the
third direction before publishing and hence misinterpreted the magnetic intensity appearing
at the commensurable position Q = (0.25 0.25 0).
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dering in La0.4Sr1.6MnO4 is incommensurate, as is the orbital order. Furthermore,
both the magnetic and the orbital correlations are incommensurably modulated
parallel to the zig-zag chains.29

Not explicitly shown here is the magnetic ordering on the Mn4+-sites. At the
half-indexed positions magnetic scattering becomes visible below TN as well, but,
contrary to the quarter-re�ections, this scattering is centered at the commensurate
positions (n

2
0 0) and the ordering of the Mn4+-spins is not a�ected by the hole-

doping [46].
To further characterize the magnetic transition in La0.4Sr1.6MnO4 we show in

Fig. 4.29 the thermal evolution of the intensity of the magnetic superstructure
re�ections, Fig. 4.29b, and of the magnetic correlation length ξ|| parallel to the
zig-zag chains, Fig. 4.29c. As aforementioned, magnetic scattering is detectable
below TN ≈ 95 K, but the magnetic ordered parameter rises only little close to
TN, the major increase is found below ≈ 50 K. The magnetic correlation length
ξ|| along the chains exhibits a gradual increase at TN and remains �nite down to
low temperatures, in contrast to the well de�ned transition in the optimal doped
compound La1/2Sr3/2MnO4. At lowest temperatures we �nd ξ|| = 27(1)Å, which is
comparable with the magnetic correlation length ξ⊥ in the perpendicular direction,
but is in strong contrast to the almost long-range orbital ordering [46].

Evidence for stripe ordering in La0.4Sr1.6MnO4 The propensity of various
systems to form stripe phases has attracted a huge interest over the last years
[182�185], e. g. it has been suggested that dynamically �uctuating stripe phases
may be of central importance for an understanding of the physics of the high-
temperature superconductors [186�188]. Today, stripe phases are well established
in single-layered nickelates [189, 190] and cuprates [184, 191], and there is a �rst
evidence for stripe phenomena in isostructural layered cobaltates as well [192].
Typical for all these systems is a linear scaling of the incommensurability ε with
ne and a close correlation between the magnetic and the structural modulations,
suggesting a stripe scenario also for the overdoped regime of the COO state in
charge-ordered manganites.
Indeed, di�erent stripe pictures have been proposed to explain the COO pheno-

mena in various manganite compounds at high doping levels, which today still are
discussed controversially [193]. In a �Wigner-Crystal� approach, isolated electron-
rich Mn3+-stripes are separated as far as possible to reduce the Coulomb repulsion
of the charged objects [91, 194]. On the contrary, the proposal of a bi-stripe

29At �rst sight, this result appears confusing as the orbital superstructure re�ection is shifted
longitudinally, whereas the magnetic re�ections are found in a transverse scan. However,
we recall that the magnetic and orbital correlations associated with the same twin do not
contribute at the same quarter-indexed positions; at Q = (0.25 0.25 0) we test the orbital
correlations of twin 1 with the chains along [1 1 0] and, at the same time, the magnetic
correlations of twin 2 with the chains along [1 1 0].
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4 Spin-wave excitations in charge-ordered manganites

Figure 4.30: Stripe ordering of the excess Mn4+ in La0.4Sr1.6MnO4 Sketch of the
possible charge and orbital arrangement in hole-doped La0.4Sr1.6MnO4. The additional
holes form stripes aligned perpendicular to the propagation of the zig-zag chains. Across
the stripes the orbital ordering of the remaining eg-electrons acquires a phase shift π,
whereas the magnetic ordering of the Mn4+ across the stripes is frustrated and the
phase is not well de�ned. The gray-shaded area marks a plaquette which is magnetically
frustrated, see text for details.

ordering suggests the existence of coupled Mn3+-stripes embedded in an electron-
depleted background, yielding the same orbital arrangement as for half doping
within the stripes. The exact mixing of the electron- and hole-rich regions is
determined by the lever rule following the exact stoichiometry of the compound,
and the ordering appears incommensurate in di�raction experiments [90]. It is
noteworthy that for x = 0.5 both models are indistinguishable and reproduce the
CE-type COO ordering.
Regarding the results of the previous sections it appears very tempting to extend

the �bi-stripe� picture to describe the incommensurate ordering in La0.4Sr1.6MnO4,
as in contrast to the �Wigner Crystal� this approach naturally contains the ex-
istence of stable zig-zag elements. In Fig. 4.30 we sketch a possible real-space
ordering scheme for La0.4Sr1.6MnO4, which reproduces all characteristic results
of our elastic neutron scattering experiments: Compared to La1/2Sr3/2MnO4, each
�fth Mn3+-ion is transformed into a Mn4+-site in La0.4Sr1.6MnO4, and a regular
spacing of the additional holes along the zig-zag chains results in a stripe order-
ing of the excess holes oriented perpendicular to the propagation of the chains.
The Mn4+-stripes cut the zig-zag chains and provoke a modulation parallel to the
chains of both the orbital and the spin ordering on the three-valent sites. More-
over, the magnetic ordering on the regular Mn4+-sites is not a�ected, and the
arrangement reproduces qualitatively the experimentally observed superstructure
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4.3 Doping dependence of the COO order in La1−xSr1+xMnO4

re�ections.30 The model predicts furthermore the existence of a new type of nu-
clear superstructure re�ection associated with the regular spacing of the stripes,
which is not observed so far. However, the related structural distortions are sup-
posed to be very small and the intensity of the corresponding Bragg re�ections
might be too weak to be detected in a neutron scattering experiment.
Let us inspect the ordering scheme of Fig. 4.30 in more detail. The orbital

superstructure re�ections are modulated longitudinally in the experiment. There-
fore, the stripes must be aligned perpendicular to the propagation vector kOO of
the orbital modulation and, hence, perpendicular to the zig-zag chains. Regarding
only the orbital ordering on the Mn3+-sites, two alternatives are possible, as the
orbital occupation across the stripe might be either in-phase with the undistorted
pattern of the CE structure, or acquires an additional phase-shift π, which is
the situation shown in Fig. 4.30. However, only the second alternative results in
an incommensurable modulation, as is observed in di�raction experiments � the
�rst alternative would in contrast imply a reduction of the structure factor, but
the modulation wavelength would remain commensurate. Clearly, the modula-
tion wavelength is determined by the spatial distance between two stripes and the
incommensurability εOO depends linearly on the electron concentration ne. For
x = 0.6 this stripe model results in an incommensurability εOO = 0.05, which is
quite close to the experimentally observed value.
Next we consider the charge ordering. Although we have no experimental infor-

mation of the evolution of the charge-order re�ection QCO, the magnetic re�ections
associated with the ordering of the Mn4+-ions are not a�ected by the additional
holes and are observed at the commensurate position Q = (1

2
0 0) [46]. This leads

to the conclusion, that the commensurate modulation of the charge density per-
sists in overdoped La0.4Sr1.6MnO4. The commensurate ordering on the Mn4+-sites
also sets strict conditions for the insertion of the stripes into the CE background.
In Fig. 4.30 the stripes are neighbored by two Mn4+-sites. However, one might
imagine more sophisticated models in which the stripe intersects a Mn3+-Mn4+

pair � deplete one of the two Mn4+-rows adjacent to each stripe in Fig. 4.30 � or
the strips might include two (or even more) Mn-sites, forming a kind of double
stripe. However, both scenarios violate the observed commensurable ordering on
the Mn4+-sites.31

Focusing now on the magnetic ordering of the zig-zag elements, the situation
appears more tricky. The magnetic coupling between two zig-zag chains on both

30It is not clear to us how an alternative approach starting from the �Wigner Crystal� model can
preserve the commensurate ordering of the regular Mn4+-spins, and simultaneously presume
an incommensurate ordering on the Mn3+-sites. However, we want to remark, that recent
results of transition electron microscopy on Nd1−xCa1+xMnO4 and x > 0.5 seem to be
inconsistent with the bi-stripe model [175].

31Nevertheless, we can not exclude a more complicated structure including the formation of
�triple-stripes�, which seems, however, very unlikely.
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4 Spin-wave excitations in charge-ordered manganites

sides of the stripes is mediated by an exchange interaction between two Mn4+-
species, which is weakly antiferromagnetic [32]. As in the CE pattern adjacent
zig-zag chains are aligned AFM, the nearest-neighbor exchange in each plaque-
tte at the border of the stripe is magnetically frustrated, see Fig. 4.30, and the
magnetic coupling is determined by a higher-order process. Similar to the orbital
sector, the magnetic ordering may remain unchanged across the stripe or acquire
an additional phase shift, which is the situation depicted in Fig. 4.30. Due to
the frustration the actual arrangement may consist of a �ne mixing of both al-
ternatives [90]. Therefore, the magnetic incommensurability εSO is not strictly
correlated with the wavelength of the charge and orbital modulation by a ratio-
nal fraction, as is found in the nickelates and cuprates [184, 185]. The in�uence
of the magnetic frustration furthermore provides an explanation for the reduced
magnetic correlation length ξSO, which is found to be much shorter than that for
the orbital ordering, and for the sluggish increase of the magnetic order parameter
below TN.

Spin dynamics in La0.4Sr1.6MnO4

Motivated by the discussion of the optimal-doped compound La1/2Sr3/2MnO4 we
have also investigated the magnetic excitation spectrum of La0.4Sr1.6MnO4: How
does the stripe ordering of the additional holes a�ect the spin-wave dispersion of
the CE type?
To characterize the properties of the magnon spectrum in the stripe-ordered

phase of La0.4Sr1.6MnO4 we performed two inelastic neutron scattering experi-
ments at the cold instrument 4F and at the thermal spectrometer 1T.1, both
installed at the Orphée reactor in Saclay. To follow the magnon dispersion start-
ing from the incommensurable Bragg positions the scattering plane included the
directions [1 0 0] and [0 1 0] of the tetragonal structure in both experiments. At
the cold instrument we �xed the energy of the scattered neutrons to 4.66meV
to improve the experimental resolution, whereas at the thermal spectrometer we
chose Ef = 14.7 meV in order to gain in the neutron intensity. Typical raw-data
scans are presented in Fig. 4.31 and 4.32.
Compared to the spectrum of the half-doped compound, in La0.4Sr1.6MnO4 pro-

nounced di�erences can be found in the spin-wave excitations along the direction of
the zig-zag chains, Fig. 4.31. At low energies, E < 1.0 meV, the inelastic response
is centered at the incommensurable Bragg-positions Q = (0.25±εSO 0.25∓εSO 0).
For slightly higher energies a strong signal develops at the commensurate position
Q = (0.25 0.25 0), which upon further increase of energy is, however, rapidly sup-
pressed. For E ≥ 5 meV the signal close to the quarter-indexed position has �nally
lost its structure and the spectra are dominated by the spin-wave response prop-
agating from the neighboring half-indexed positions towards the commensurable
zone center at Q = (0.375 0.125 0).
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Figure 4.31: Raw-data scans at �nite energies for La0.4Sr1.6MnO4 (I.) Raw-
data scans at T = 10 K aiming at the spin-wave dispersion in La0.4Sr1.6MnO4 in the
direction of the zig-zag chains, i. e. parallel to the magnetic incommensurability, below
4meV (a), and at higher energies (b). Data shown in (a) are recorded at the cold
instrument 4F with Ef = 4.66 meV, those in (b) at the thermal spectrometer 1T.1 and
Ef = 14.7 meV. Lines represent �ts to the data as described in the text, vertical gray
bars mark the positions of the magnetic Bragg re�ections.

The observed behavior appears well understandable by assuming di�erent spin-
wave branches with similar spin sti�ness, dispersing outward from the two in-
commensurable Bragg positions. For E < 5 meV, all spectra can be accurately
modeled assuming four di�erent magnon contributions centered at Q0±q(ω) and
Q0 = (0.25±εSO 0.25∓εSO 0). Within this picture, the strong enhancement of
the inelastic structure factor at the commensurate position for E = 1.6 meV cor-
responds to the crossing of the modes traveling in opposite directions, similar to
the observations in stripe-ordered cuprates and nickelates, where a resonance ap-
pears at the in�ection point of the famous hourglass dispersion [165, 195�197].
For higher energies these excitations seem to loose their structure factor and the
di�erent contributions merge into the strong magnon signal propagating from the
half-indexed positions.

As the static ordering on the Mn4+-sites remains commensurate we do not ex-
pect similar anomalies in the magnon frequencies associated with the half-indexed
re�ections. Indeed, the inelastic response around these positions exhibits a con-
ventional behavior and the estimated magnon frequencies are comparable with
the dispersion in the half-doped compound La1/2Sr3/2MnO4 investigated in the
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Figure 4.32: Raw-data scans at �nite energies for La0.4Sr1.6MnO4 (II.) Raw-
data scans aiming at the spin-wave dispersion in La0.4Sr1.6MnO4 perpendicular to
the zig-zag chains (b), and along [1 0 0] (b) and (c). Full, colored symbols mark
the data for La0.4Sr1.6MnO4, open symbols represent the optimal doped compound
La1/2Sr3/2MnO4 discussed in the previous sections. All data were recorded at the thermal
instrument 1T.1 using the PG monochromator and Ef = 14.7 meV. Lines denote �ts to
the data as described in the text.

very beginning of this chapter, see below.
To further characterize the q-dependence of the magnetic excitations we have

studied the dispersion perpendicular to the propagation of the zig-zag chains
and along the [1 0 0]-direction, i. e. rotated by 45◦ with respect to the chains.
In Fig. 4.32 we show representative examples of these data together with the cor-
responding scans in La1/2Sr3/2MnO4. All scans on La0.4Sr1.6MnO4 were geared to
the structure factor calculations for the half-doped sample, see Fig. 4.8, and our
observations along these two directions yield some remarkable similarities between
both compounds. A typical counting time for the data shown is, depending on
the energy, 1-4min/point.
Perpendicular to the chains, path Γ−B in the notation of Fig. 4.7, the magnetic

excitations are not a�ected by the formation of the stripes and we could easily
follow the dispersion throughout the entire Brillouin zone � the energy scan at
the zone-boundary B = (0.875 0.875 0) yields almost the same magnon frequency
for La0.4Sr1.6MnO4 as for La1/2Sr3/2MnO4, see Fig. 4.32a. Note however, that for
x = 0.6 the signal is slightly broadened, re�ecting the �nite length scale of the
static correlations. For intermediate energies the structure factor calculations
exhibit also a �nite contribution around the integer-indexed positions, and along
the line Q = (1 qk 0), path Γ−A, we could follow the acoustic and the �rst optic
branch throughout the entire zone. At the Γ-point we estimate an upper cut-o�
energy for the �rst magnon band of 27.5(4) meV.32 In this direction the magnon

32Remember that the calculations for the half-doped compound predict an additional magnon-
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frequencies are slightly renormalized compared to La1/2Sr3/2MnO4, but the overall
agreement between both compounds is still remarkable, see the comparison of the
raw data in Fig. 4.32b,c.
Combining the results of di�erent magnetic Brillouin zones we �nally obtain

the spin-wave dispersion of the overdoped compound La0.4Sr1.6MnO4, which is
shown in Fig. 4.33. To compare the dispersion with the half-doped compound we
neglect the slight incommensurability and the complex behavior of the low-energy
excitations, since these are irrelevant for the discussion of the overall properties of
the q-dependence of the magnetic excitations. As is already evidenced in the raw-
data scans presented above, the dispersion perpendicular to the chains, i. e. path
Γ − B, is very similar for both compounds, and the magnon frequencies at the
zone-boundary B amount to 6.5(1)meV and 6.8(2)meV for La1/2Sr3/2MnO4 and
La0.4Sr1.6MnO4, respectively. In the two other directions the magnon frequen-
cies are softened in the overdoped compound � the upper cut-o� energy at the
Γ-point in the doped systems amounts to 27.5(4)meV, which has to be com-
pared to 36.2(6)meV in the case of La1/2Sr3/2MnO4 � but the overall shape of the
dispersion is well comparable: The dispersion along the chains, path Γ − C, is
more pronounced and extends to higher energies than in the perpendicular direc-
tion, re�ecting the dominant character of the ferromagnetic exchange JFM within
the zig-zag chains. The �rst optical band, folded back into the �rst Brillouin
zone, connects with the acoustic branch at the zone-boundary C and exhibits
an upward dispersion towards the zone-center Γ, very similar to the dispersion
in La1/2Sr3/2MnO4. In the intermediate direction along [1 0 0], path Γ − A, the
frequencies of both the acoustic and the optic branch are slightly renormalized,
too, and are similar to those along the path Γ−C.
In summary, besides the striking di�erences at very low energies the magnon

dispersion of the stripe-ordered compound La0.4Sr1.6MnO4 exhibits the same char-
acteristic properties, a signi�cant anisotropy in the dispersion parallel and per-
pendicular to the chains and a dispersive optical band, as the half-doped system
La1/2Sr3/2MnO4 with perfect CE order � there is only a slight softening of the
magnon frequencies. The main result derived from the analysis of the magnetic
correlations in La1/2Sr3/2MnO4 has been the dominant character of the FM zig-
zag elements, the CE ordering has to be considered as a loose coupling of stable
zig-zag fragments, and together with the stripe ordering of the excess holes this
approach provides also a qualitative explanation for the observed behavior in
La0.4Sr1.6MnO4.
In the stripe approach presented above the additional Mn4+-sites order into

regular rows aligned perpendicular to the orientation of the zig-zag chains. The
stripes intersect the FM chains, but the region between two stripes remains per-
fectly CE ordered. The AFM correlations of adjacent zig-zag elements perpendic-

band at higher energies, which could not be observed so far.
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Figure 4.33: Magnon dispersion in La0.4Sr1.6MnO4 Comparison of the dispersion
of the magnetic excitations in La1/2Sr3/2MnO4 and La0.4Sr1.6MnO4 along the main sym-
metry directions [1 0 0], path Γ − A, perpendicular and parallel to the propagation of
the zig-zag chains, pathes Γ −B and Γ −C, respectively. Full circles denote the data
for La0.4Sr1.6MnO4, open symbols those of La1/2Sr3/2MnO4 already presented in Fig. 4.7.
Small red lines give the �t of the dispersion in the half-doped compound as discussed in
the beginning of this chapter.

ular to the chains are not altered, and hence it appears plausible that along this
direction the magnon dispersion in La0.4Sr1.6MnO4 is directly comparable to that
in La1/2Sr3/2MnO4, as is observed.
In contrast, the alignment of the stripes a�ects the magnetic correlations within

the zig-zag chains. Consequently, the spin dynamics is altered and the low-energy
part of the dispersion is considerably changed: For low energies we �nd di�erent
magnon signals propagating outward from the incommensurable magnetic Bragg
positions and a signi�cant enhancement of the magnetic structure factor at the
intersection point of the di�erent branches. However, for higher energies well
above this �resonance� the magnon dispersion resembles again the properties of
the pure CE ordering � with increasing q the magnetic �uctuations are more
sensitive to the short-range correlations, and hence probe especially the magnetic
coupling within the zig-zag fragments.
In conclusion, our results of the elastic and inelastic neutron scattering exper-
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iments reveal that both the orbital and the magnetic ordering in the overdoped
compound La0.4Sr1.6MnO4 is incommensurate. The static correlations might be
understood by a regular arrangement of the additional holes into stripes aligned
perpendicular to the propagation of the FM zig-zag chains in the CE arrangement.
The ordering between two stripes is similar to the half-doped compound and the
magnon dispersion of both systems is remarkably similar, highlighting once more
the dominant character of the FM intrachain coupling and the stability of the
zig-zag fragments.

4.3.3 Magneto-orbital phase diagram

To close this chapter we summarize the above results and construct the magneto-
orbital phase diagram of the single-layered manganites La1−xSr1+xMnO4 around
half doping, which is shown in Fig. 4.34. The basic structural, electronic and
magnetic properties of the phase diagram of the La1−xSr1+xMnO4-series have al-
ready been elaborated in former publications [7, 43, 46] and [sen�05a], but our
systematic neutron scattering investigation presented in this chapter extends, and
partly corrects the published results. For completeness, we have also included the
low-doping regime in the phase-diagram Fig. 4.34, which is characterized by a pre-
ferred occupation of the out-of-plane 3d3r2−z2 orbitals and an antiferromagnetic
ordering as discussed in detail in Chap. 3.
At half doping, x = 0.5, the ground state is characterized by the commensurable

ordering of charge, spin and orbital degrees of freedom according to the classical
CE-type picture. However, the neutron scattering results have revealed, that this
state competes with short-range isotropic correlations: The charge and orbital
disordered phase above T 0.5

CO = 229 K is characterized by isotropic FM correlations
within the MnO2 layers. Below the COO transition at TCO, these correlations are
suppressed by and transformed into anisotropic AFM correlations of the CE type,
and they �nally disappear close to the transition into the long-range ordered CE
state at T 0.5

N = 110 K.
Electron doping destabilizes the charge and orbital ordered state, and for x = 0.4

both the COO and the magnetic correlations are �nite. Above the COO transition
at T 0.4

CO = 210 K short-range isotropic FM correlations exist as well, but in contrast
to the optimal doped systems these are no longer suppressed by the onset of the
CE-type correlations and persist down to lowest temperatures. The ground state
in the underdoped regime is no longer homogenous, but phase separated on a
microscopic scale into regions with nearly perfect CE order and regions with loose
FM correlations.
In contrast, the charge and orbital ordered state is quite robust against the

doping of additional holes, and the overall behavior for x = 0.6 is very similar
to the case of half doping. The excess holes localize in a regular arrangement
and form electron-poor stripes aligned perpendicular to the characteristic zig-zag
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Figure 4.34: Revised phase diagram of single-layered La1−xSr1+xMnO4

Magneto-orbital phase diagram of the single-layered manganites La1−xSr1+xMnO4 in-
cluding the results of this chapter (full circles) and from the literature [7] (open circles).

chains of the CE structure. The ordering pattern for x > 0.6 is incommensurate
with the tetragonal crystallographic lattice, and around half doping the phase
diagram of single layered La1−xSr1+xMnO4 resembles the main features of the
three-dimensional perovskites.

4.4 Conclusions

We analyzed the static and dynamic magnetic properties of the charge, orbital and
magnetic ordered state observed in La1−xSr1+xMnO4 around half doping. The or-
dered state is generic for very di�erent types of manganites, but although predicted
more than 50 years ago, the exact nature of the ground state is still discussed con-
troversially today.
The determined spin-wave dispersion of the optimal-doped compound

La1/2Sr3/2MnO4 is in excellent agreement with model calculations based on the
classical CE-type arrangement proposed by Goodenough [8], and rejects a recent
alternative picture for the charge- and orbital-ordered state consisting of magnet-
ically coupled dimers [9]. The q-dependence of the magnetic excitations exhibits
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an anisotropic character with a steep dispersion parallel to the FM zig-zag chains,
and the dispersion is only weak in the perpendicular direction, re�ecting the di�er-
ent energy scales of the FM and AFM exchange interactions within and between
the zig-zag elements. In conclusion, the CE-ordered state has to be considered as
a weak antiferromagnetic ordering of strongly coupled ferromagnetic chains.
The di�erence of the intra- and interchain coupling also governs the thermal

evolution of the magnetic ordering, which is discussed subsequently to the spin-
dynamics. The long-range magnetic ordering of the CE type melts at the Néel
transition, but static short-range correlations persist well above TN. These corre-
lations are connected with the existence of FM zig-zag elements above TN, and for
TN < T < TCO the system has to be considered as an electronically smectic-like
crystal of one-dimensional zig-zag fragments. The Néel transition at TN must be
regarded as the long-range AFM ordering of already existing FM-ordered zig-zag
elements. Furthermore we show, that for TN < T < TCO the CE-type ordering
closely competes with FM correlations. The disordered state above TCO is charac-
terized by isotropic short-range FM correlations, which coexist and compete with
the AFM correlations of the CE type below TCO, and are �nally suppressed at
TN. The simultaneous existence of AFM CE type and FM correlations is very
remarkable, as the competition of these two states is considered as the key for a
quantitative understanding of the CMR-e�ect in perovskite manganites.
The competition of the AFM CE type and the isotropic FM correlations

can be considerably manipulated by electron doping. In the doped compound
La0.6Sr1.4MnO4 the CE-type correlations are signi�cantly weakened and the or-
dering is only of �nite dimensions. Concomitantly, the isotropic FM correlations
existing above TCO are no longer suppressed completely by the onset of the CE-
type correlations, but persist down to lowest temperatures, and the magnetic
ground state of La0.6Sr1.4MnO4 consists of a heterogenous mixture of CE and FM
regions coexisting on a microscopic scale at low temperatures.
On the contrary, the CE state is stable against the doping with additional holes.

Both, the orbital and the magnetic ordering is incommensurate in La0.4Sr1.6MnO4,
which due to similarities with observations in cuprates and nickelates is under-
stood by a stripe-like ordering of the excess holes perpendicular to the orientation
of the zig-zag chains. We studied the full magnon dispersion in the overdoped
compound, but besides a complex behavior at low energies the excitation spec-
trum is well comparable with the optimal doped compound La1/2Sr3/2MnO4, and
the phase diagram of the single-layered manganites La1−xSr1+xMnO4 exhibits the
same asymmetric behavior with respect to half doping as has been observed in the
three-dimensional perovskite systems, rendering the di�erent response to electron
or hole doping a fundamental property of the charge and orbital ordered state.
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multiferroic TbMnO3

TbMnO3 is the prototype of a recently discovered novel class of magnetic and
simultaneously ferroelectric materials, in which the ferroelectric (FE) properties
are intimately coupled to the magnetic degrees of freedom resulting in gigan-
tic magnetoelectric e�ects. In conventional ferroelectrics, a detailed knowledge
of the dynamics of the system is usually of great importance, as one of the
transverse optical phonons softens towards the phase transition and condenses
according to the Lyddane-Sachs-Teller relation [198]. As in the magnetic ferro-
electrics the ferroelectric phase is closely correlated with the magnetic degrees
of freedom, these modes are no longer of pure phononic origin, but are pro-
posed to possess a magnetic component as well, forming a new type of quasi-
particle: strongly hybridized magnon-phonon excitations, referred to today as
electromagnons [199, 200]. Hence, a comprehensive experimental and theoretical
understanding of the dynamic magnetic correlations of TbMnO3 seems very desir-
able in favor of a fundamental understanding of the coupling between magnetism
and ferroelectricity and of the possibility of tuning these systems towards new
technological applications.
The magnetoelectric e�ect (ME), the induction of magnetization by an electric

�eld or of polarization by a magnetic �eld, has been predicted by P. Curie at
the end of the 19th century and has been experimentally con�rmed in Cr2O3 in
the 1960s [201, 202]. Technical applications were, however, hampered by the
restricted number of systems and of the weakness of the e�ect: Expanding the
free energy in powers of the electric polarization P and of the magnetization
M , the magnetoelectric e�ect is in leading order given by the tensor αij, which
linearly couples P to an applied magnetic �eld H and M to an electric �eld E.1

With conventional materials typical values for αij of the order of 10 psm−1 can
be achieved, which corresponds to the magnetization obtained by the reversal of
one out of 105 spins in an electric �eld of 106 Vcm−1 [201]. Furthermore, it can
be shown that the ME response is limited by the product of the magnetic and

1To be more precise, the expansion of the free energy also contains higher-rank tensors coupling
electric and magnetic �eld. However, the contribution of these terms is very small and it is
common practice to refer to the linear coupling as the magnetoelectric e�ect.
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electric susceptibilities [203]:

α2
ij < χelec

ii χmag
jj . (5.1)

The strongest ME response is, therefore, to be expected for systems with large
electric and magnetic susceptibility, hence systems with simultaneous ferroelectric
and (anti-)ferromagnetic order, which in the following we refer to as multiferroic.2

However, symmetry arguments require strict conditions for the coexistence of fer-
roelectric and magnetic order as both time and spatial inversion invariance have
to be broken, and multiferroicity has been considered as a very rare phenomenon
in the past [201, 205, 206]. Indeed, until �ve years ago only a couple of multifer-
roic systems were known, like e. g. BiFeO3 or some hexagonal manganites RMnO3

with small rare earth ions R=Sc, In,...,Lu [207�209]. In all of these compounds,
however, the transition temperatures of the ferroelectric and the magnetic order-
ing, TFE ' 1000 K and TSO ' 100 K respectively, typically di�er by an order of
magnitude, and a macroscopic ME response is, if existent at all, very small [11].
It has been recognized only recently [12, 13, 210], that certain types of in-

commensurable magnetic structures may induce ferroelectricity leading to sizable
magnetoelectric e�ects and the possibility to switch the electric polarization by an
applied magnetic �eld and vice versa, which seems very advantageous in the light
of possible technical applications. In the last few years multiferroicity has indeed
been found in a variety of di�erent incommensurable magnets such as perovskite
manganites RMnO3 with R=Gd, Tb and Dy [6, 211, 212], RMn2O5 with R=Tb,
Ho and Dy [213, 214], spinel chromates CoCr2O4 [215], vanadates Ni2V2O3 [216],
spin-chain cuprates LiCu2O2 [217, 218], delafossite CuFeO2 [219], and huebnerite
MnWO4 [220, 221].
In this emerging �eld of incommensurable multiferroics TbMnO3 serves as a

model system, partly due to fundamental, partly due to more practical reasons.
The polarization in TbMnO3 is one of the largest for this class of materials, ME
e�ects are very pronounced and the transition temperatures are relatively high
[6, 212]. Furthermore, large single crystals of high quality can easily be grown
and TbMnO3 does not su�er from strong neutron absorbtion, so that reliable
data sets on the magnetic structure are available [222, 223].
In this chapter we report on the magnetic excitations of multiferroic TbMnO3.

The chapter is organized as follows: First, we summarize the main physical prop-
erties of TbMnO3 and introduce the basic theoretical concepts behind the mag-
netoelectric coupling in this system. The discussion of the experimental results
starts with a comprehensive analysis of the zone-center modes in the FE phase,

2According to the original de�nition by Schmid [204], a crystal is called multiferroic when
two or more of the primary ferroic properties are united in the same phase. However, it is
practical to treat this de�nition in a less strict sense and to include antiferromagnetic phases
as well.
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5.1 Basic properties and multiferroicity in TbMnO3

Figure 5.1: Crystal structure of TbMnO3 Orthorhombic perovskite structure of
TbMnO3 of space-group symmetry Pbnm (a). Sketch of the ab-plane of the Pbnm-
structure showing the staggered ordering of the single-occupied Mn eg-orbitals in rare-
earth manganites RMnO3 and the relevant magnetic exchange pathes, the FM nearest-
neighbor coupling JFM along the bonds and the AFM next-nearest neighbor exchange
JNN via the bridging oxygen sites O1 and O3 along b (b). A similar exchange along a
is excluded due to the underlying orbital lattice and the large distance between O2 and
O4.

which turn out to be most relevant for the observed ferroelectricity and the mag-
netoelectric coupling. Subsequently, we study the temperature dependence of the
spectrum across the ferroelectric transition and present the zone-center excita-
tions in the paraelectric phase. The discussion of the zone-center modes is �nally
closed by the analysis of the magnetic-�eld dependence of the magnon spectrum.
Subsequently, we focus on the q-dependence of the magnetic excitations and study
the spin-wave dispersion along the main symmetry directions in the ferro- and in
the paraelectric phase, and discuss the strength of the relevant magnetic exchange
interactions.
The main results on the excitation spectrum of TbMnO3 presented in this chap-

ter are published in [sen�07a] and [sen�07d].

5.1 Basic properties and multiferroicity in

TbMnO3

TbMnO3 crystallizes in the orthorhombic symmetry of space group Pbnm with
room temperature lattice constants a = 5.302Å, b = 5.857Å and c = 7.402Å
[224, 225], see Fig. 5.1. Comparing with the isostructural parent compound of the
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5 Magnetic excitations in multiferroic TbMnO3

Figure 5.2: Phase diagram of the rare-earth manganites RMnO3 Magnetic
phase diagram of the rare-earth manganites after Kimura et al. [228]. For large rare-
earth ions the A-type and for small the E-type ordering is stabilized. In the gray-shaded
region in-between for R=Tb and Dy an incommensurable (although falsely depicted here
as commensurable) region develops as the ground state (a). Sketch of the ordering of
the Mn-moments in the A-type (b) and the E-type ordering (c) as being realized in the
end members LaMnO3 and HoMnO3, respectively.

CMR-manganites LaMnO3 the reduction of the ionic radius on the rare-earth site,
1.040Å for eightfold coordinated Tb3+ and 1.160Å for La3+ [226], results in an
enhancement of the typical GdFeO3 distortions, which, together with the stable
staggered ordering of the d3x2−r2/d3y2−r2-orbitals [227], determine the magnetic
ground state in the series of isovalent rare-earth manganites RMnO3 [228, 229].
With an increasing rotation of the MnO6-octahedra for smaller rare-earth ions

the Mn−O−Mn bond angle and, consequently, the FM exchange JFM between
nearest neighbors within the ab-planes reduces, while an additional AFM ex-
change path between next-nearest Mn-sites arises along b: The enhancement of
the cooperative rotation of the MnO6-octahedra around the c-axis decreases the
distance between the two oxygen sites O1 and O3 (referring to the notation in
Fig. 5.1b) and allows for a signi�cant exchange interaction JNN between next-
nearest Mn-sites along [0 1 0]. Simultaneously, the distance between O2 and O4
increases and suppresses a similar interaction along [1 0 0] [228].3 The competi-
tion of JFM with JNN subsequently destabilizes the ferromagnetic coupling within
the ab-planes, and the famous A-type ordering of LaMnO3 �nally transforms for
|JNN| > |JFM| into the E-type ordering with an AFM correlation of the Mn-
moments along [0 1 0] and an �up-up-down-down� con�guration along the bonds

3For TbMnO3 a structural re�nement yields dO1−O3=3.0994Å and dO2−O4=4.9792Å at room
temperature [224].
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5.1 Basic properties and multiferroicity in TbMnO3

for orthorhombic HoMnO3, the end member of the isostructural perovskite man-
ganites, see Fig. 5.2 [230].4

In the regime |JNN| . |JFM| the magnetic system is heavily frustrated, and in-
between the two commensurable ground states, the A-type with magnetic propa-
gation vector kA = (0 0 0) and the E-type with kE = (0 1

2
0)5, an incommensurable

magnetic ordering with modulation kMn = (0 εb 0) and 0 < εb < 1
2
is observed for

TbMnO3 and DyMnO3 [228]. As we will discuss in the following paragraphs, this
incommensurable magnetic ordering generates the observed ferroelectric polariza-
tion and drives the gigantic ME e�ects.

5.1.1 Magnetoelectric e�ect in TbMnO3

The incommensurable magnetic structure of TbMnO3 has �rst been investigated
in an early work by Quezel et al. [231]. The network of Mn-spins undergoes at the
Néel temperature TN = 42 K a transition into an incommensurable ordered phase
with modulation vector kMn = (0 εb 0) and, depending on temperature, εb ≈ 0.28.
This phase is regarded as a sinusoidal modulation with the Mn-moments aligned
collinear along the b-axis. Further anomalies in the magnetic susceptibility at
TTb = 7 K and TFE = 28 K are attributed to the ordering of the Tb-spins and to
a second magnetic transition in the Mn-sublattice, respectively [231].
In a more recent work, this second Mn-transition at TFE has been interpreted

as a �lock-in� transition of the modulation vector into the constant, but still in-
commensurable value εb = 0.275. Furthermore, together with the magnetic super-
structure weak lattice modulations appear in di�raction experiments below TFE

with a propagation vector kL twice that of the magnetic ordering, kL = 2kMn,
which are understood as second harmonics to the magnetic ordering pointing to
a close coupling of the lattice to the magnetic subsystem via exchange striction
[6, 211, 232]. Associated with the appearance of the structural modulations the
onset of a spontaneous electric polarization Pc parallel to the orthorhombic c-axis
is observed at TFE. The value of the polarization of Pc = 0.08 µC/cm2 at 10K [6]
is small compared to conventional ferroelectrics as BaTiO3 with P = 26 µC/cm2

[233], but typical for so called improper ferroelectrics, in which the ferroelectric
order appears as a secondary e�ect [234].
As in TbMnO3 the lattice modulation itself seems to be closely related to a

modulation of the magnetic subsystem, a strong correlation between the elec-
tric polarization and the magnetization might be expected. Indeed, Kimura et
al. report on a drastic impact of an applied magnetic �eld on the ferroelectric
properties and gigantic ME e�ects [6]: A magnetic �eld applied parallel to the

4For smaller rare earth ions as e. g. Er the orthorhombic structure is unstable and crystals
grown under ambient conditions have hexagonal symmetry.

5Throughout this chapter we refer to the standard orthorhombic setting of the Pbnm-structure
to index vectors of reciprocal space.
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5 Magnetic excitations in multiferroic TbMnO3

Figure 5.3: Magnetoelectric phase diagram of TbMnO3 Magnetoelectric phase
diagram of TbMnO3 for magnetic �elds along the a- (a), b- (b) and c-axis (c). Gray
regions indicate ferroelectric phases. Taken from [212].

a- or the b-axis �ops the electric polarization by 90◦ from c to a as Pc is com-
pletely suppressed and Pa emerges spontaneously above the critical �eld exceeding
a value of Pa ≈ 0.04 µC/cm2 at 10K and Hb = 9 T. It is this ability to switch the
electric polarization in TbMnO3 by an applied magnetic �eld which has triggered
the huge amount of work in this �eld in the last years, and which renders the new
multiferroic systems so interesting for possible technical applications. In contrast,
a magnetic �eld applied along c again suppresses Pc, but the high-�eld state is
paraelectric as no �nite polarization is observed above the critical �eld Hc [212].
A summary of the complete magnetoelectric phase diagram of TbMnO3 is given
in Fig. 5.3.
We note, that similar phase diagrams have been reported for the closely related

rare-earth manganites DyMnO3 and GdMnO3 [212, 235]. In the later compound
the magnetic ground state is supposed to be commensurate and of the A-type, but
an electric polarization can easily be induced by applying small magnetic �elds.

5.1.2 Spiral ordering in TbMnO3

An important step towards the understanding of the ME phenomena observed
in TbMnO3 has been the theoretical prediction of the induction of an electric
polarization by certain types of magnetic spiral ordering [12, 13, 210] and the
simultaneous experimental observation of such a spiral in TbMnO3 [222, 223].
Based on the broken invariance of both time and spatial inversion symmetry in

a multiferroic system, it can be shown [13], that the polarization P induced by a
magnetization M for an orthorhombic lattice has to be of the form

P ∝ [(M · ∇)M −M(∇ ·M)]. (5.2)

Considering a spatially varying magnetization M with the moments rotating in
a plane spanned by b and c around a third axis a,

M = Mbb̂ cos(k · x) + Mcĉ sin(k · x) + Maâ, (5.3)
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5.1 Basic properties and multiferroicity in TbMnO3

the resulting electric polarization is calculated to obey the fundamental equation

〈P 〉 ∝ MbMc · k × â. (5.4)

Hence, the electric polarization induced by a spin modulation of the form given
by eq. 5.3 is determined by the vector product between the propagation vector
k and the unit vector â characterizing the rotation of the ordered moments in
the incommensurable structure [13]. Eq. 5.4 obviously implicates, that a collinear
sinusoidal structure can not account for the �nite electric polarization observed
in TbMnO3, as might have been guessed since such a structure does not break
spatial inversion symmetry. For non-collinear ordering schemes the induction of a
�nite polarization depends on the relative orientation of k and â: with k‖b and
the rotation of the moments around a, the central equation 5.4 predicts a �nite
polarization along c, as is observed in TbMnO3.
Within this phenomenological argumentation the observed polarization can be

predicted qualitatively correct, but the underlying microscopic mechanism respon-
sible for the coupling of the lattice to the magnetic modulation can not be ex-
plained. At present, di�erent theoretical alternatives can be found in the liter-
ature, which, however, both are based on the Dzyaloshinsky-Moriya interaction
(DMI) [236, 237]: On the one side the DMI is proposed to induce a polarization
of the electronic orbits without the involvement of the lattices degrees of free-
dom [12, 238, 239], whereas in a second approach the DMI induces a FE lattice
displacement and helps to stabilize the helical magnetic structure [210].
The above interpretation is strongly supported by the results of neutron di�rac-

tion experiments published nearly simultaneously with the theoretical considera-
tions on the spiral structures. Re�ning more than 900 �rst-order magnetic Bragg
re�ections above and below the FE transition, Kenzelmann et al. show that the
transition from the para- into the ferroelectric phase in TbMnO3 coincides with
a rearrangement of the magnetic structure as predicted by eq. 5.4 [222]. At
T = 35 K, i. e. in the AFM but paraelectric phase, the magnetization M of the
Mn-sublattice can be re�ned as a longitudinal sinusoidal modulation of the form

MSDW
b = Mb,0 · cos(kMnx), (5.5)

with MSDW
a = MSDW

c ≡ 0, MSDW
b,0 = 2.90 µB and kMn||b, see Fig. 5.4a. Within the

ferroelectric phase at T = 15 K the Mn-spins order instead in a spiral structure
with the moments con�ned to the bc-plane and rotating around a, see Fig. 5.4b,
describable by

MFE
b = MFE

b,0 · cos(kMnx + δb) and

MFE
c = MFE

c,0 · sin(kMnx + δc),
(5.6)

where MFE
a ≡ 0, MFE

b,0 = 3.9 µB and MFE
c,0 = 2.8 µB, i. e. an elliptical spiral with

the long axis of the ellipse close to b. The phases δi could not be resolved in
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5 Magnetic excitations in multiferroic TbMnO3

Figure 5.4: Magnetic structure of TbMnO3 Collinear magnetic ordering in the
bc-plane of TbMnO3 for TFE < T < TN with the modulation vector set to kMn =
(0 0.25 0) for simplicity (a). Elliptic spiral ordering of the Mn-subsystem in the FE
regime according to eq. 5.6 with the moments con�ned to the bc-plane and the spin-
rotation axis parallel to a. The phases δb and δc are arbitrarily set to 0 and π

2 , respectively
(b). As in the A-type ordering the magnetic correlations are ferromagnetic along a (not
shown) and always antiferromagnetic along c.

the experiment. At T = 15 K, also the Tb-subsystem adapts already a sizeable
magnetization, probably as a consequence of the exchange �eld from the Mn or-
dering [222]. The Tb-system itself orders at TTb = 7 K with a propagation vector
kTb = (0 0.42 0) and the Tb-moments probably aligned parallel to a [222, 232].
At this point we have to mention a problem of nomenclature, as the magnetic

structure in the ferroelectric phase described by eq. 5.6 is not a classical spiral,
but a cycloid. The main di�erence between both geometrical objects concerns the
chirality. In a strict sense, only the spiral posses a well de�ned chirality � a screw
might be either left- or right-handed � whereas the helicity for a cycloid is not well
de�ned � obviously, it is impossible to construct a right-handed cycloid. However,
it is common practice in the actual literature to refer to the magnetic structure of
TbMnO3 as a spiral, or sometimes conical spiral, and a �chirality� is often adopted
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5.1 Basic properties and multiferroicity in TbMnO3

to describe the direction of the rotation axis in the cycloid structure. We will follow
this convention for the rest of the discussion, but comment on the actual situation
whenever the misuse of the terminology might cause a misunderstanding.
Returning to the magnetic order, the above argumentation is further sup-

ported by a work on substituted Tb1−xDyxMnO3 [223], as for a well chosen Dy-
substitution x = 0.59 with TN = 41 K and TFE = 22 K the modulation εb ' 1

3

is commensurable and temperature independent, therefore de�nitively excluding
a simple �lock-in� scenario for TbMnO3. Furthermore, the authors again �nd a
reorientation of the spin structure at TFE from a collinear to a spiral structure
similar to pure TbMnO3. The observed sequence of magnetic transitions from the
paramagnetic into the paraelectric sinusoidal SDW phase at TN and subsequently
into the ferroelectric spiral phase at TFE < TN is a consequence of the magnetic
anisotropy. While for an isotropic system the ground state is a (circular) spiral,
an anisotropic system is expected to undergo a transition to the sinusoidal state
with M along the easy axis �rst, before at lower temperatures an (elliptical) spi-
ral is stabilized [13, 240]. Finally, the close interplay between the spiral ordering
and the electric polarization in TbMnO3 has been revealed by Yamasaki et al. in
a polarized neutron di�raction experiment [241]: �The helicity of the magnetic
structure can be controlled by an applied electric �eld and the cycloid is inverted
from a counterclockwise to a clockwise rotation by the inversion of the �eld�.6

Polarization �op in magnetic �elds To handle the observed strong ME e�ects
in TbMnO3, obviously the impact of a magnetic �eld on the spiral structure has
to be considered.
In weak magnetic �elds the spins rotate in the easy plane (bc) and, consequently,

with kMn‖b the polarization is induced along c. A strong �eld will �op the spiral,
so that the rotation axis of the spins is aligned parallel to the �eld and the spiral
is conical [240]. However, the simple adaption of this argument to the case of
TbMnO3 does not reproduce the observed phase diagram: With the �eld applied
parallel to b, the spiral should be forced into the ac-plane and according to eq. 5.4
this �op of the spiral should suppress the electric polarization. Instead, for this
con�guration the polarization in TbMnO3 is observed to be �nite and �opped by
90◦ from c to a, see Fig. 5.3, suggesting the spins to rotate around c as kMn stays
along b in the high-�eld phase [242, 243].
However, the observed magnetoelectric phase diagram can qualitatively be re-

produced phenomenologically taking into account the complex behavior of the
rare-earth spins [13], which exhibit a complex response to an applied �eld show-

6As aforementioned, a helicity is not well de�ned in TbMnO3. We think, the experiment by
Yamasaki et al. has to be interpreted as selecting a structure with modulation vector kMn

against the −kMn modulation by applying an electrical �eld, which is nevertheless a very
interesting result and consistent with the mechanism proposed by Katsura et al. [12].
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5 Magnetic excitations in multiferroic TbMnO3

ing several metamagnetic transitions [231]. The important in�uence of the Tb-
subsystem on the multiferroic properties in TbMnO3 has furthermore been demon-
strated by experiments on substituted rare-earth manganites: The partial substi-
tution of Tb by Gd can �op the electric polarization from c to a even without
applying an external �eld [244]. Completely replacing the magnetic Tb-ions by a
mixture of Eu and Y with quenched 4f -magnetic moments but similar ionic radii,
the ground state is shown to be ferroelectric with P ‖a and �ops under an applied
�eld to P ‖c, just opposite to the observations in TbMnO3 [245, 246]. Moreover,
in the related compound DyMnO3 the onset of the Dy-spin ordering is shown to
enhance the electric polarization by more than a factor of 2, providing the most
impressive example of the strong in�uence of the magnetism on the rare-earth side
on the FE phenomena [247, 248].
To resume today's understanding of the multiferroic properties of TbMnO3, the

zero-�eld regime of the magnetoelectric phase diagram of TbMnO3 is qualitatively
well understood and the emergence of the ferroelectric phase is correlated with a
reorientation in the magnetic subsystem from a collinear into a spiral structure.7

The gigantic ME e�ects in strong magnetic �elds may originate in a �op of the
rotation axis of this spiral under an applied magnetic �eld, which seems evident
but remains to be con�rmed by experiments in the case of TbMnO3.8

5.2 Spin-wave spectrum at the magnetic zone

center

The experiments on the magnetic excitation spectrum in TbMnO3 presented in
this chapter have been performed on the thermal spectrometers PUMA and 1T.1
installed at the FRM II in Munich and at the Laboratoire Léon Brillouin (LLB) in
Saclay, respectively, and at the cold spectrometers PANDA at the FRM II, 4F.2
at the LLB and IN14 at the ILL in Grenoble.
The large single crystal of volume 1 cm3 used for our studies has been grown

in the group of D. Argyriou at the HMI in Berlin using the �oating zone tech-
nique. The high quality of our specimen has been veri�ed using neutron and x-ray
di�raction, as well as susceptibility measurements yielding transition temperatures
of TN = 42.3 K and Tspiral = 27.9 K, in good agreement with the literature.
In all experiments on the cold spectrometers the sample was mounted with the

scattering plane de�ned by the directions [0 1 0] and [0 0 1] of the orthorhombic
crystal structure. Only to study the magnetic dispersion in the [1 0 0] direction at
the PUMA spectrometer a peculiar mounting was used with the direction [0 4 2]

7To stress the magnetic character of the FE transition we will refer to the FE transition
temperature as Tspiral instead of TFE in the following.

8For Eu0.75Y0.25MnO3 the �op of the magnetic spiral has recently been con�rmed [10].
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vertical to the scattering plane, so that re�ections of the type (h 0.28 1) were easily
accessible without tilting the scattering plane too much.
Typically, at the cold spectrometers the energy of the analyzed neutrons was

�xed to 4.66 meV, corresponding to kf = 1.50Å
−1
, but to increase the ex-

perimental resolution some scans were repeated with the �nal energy �xed to
2.98 meV(kf = 1.20Å

−1
). In order to suppress higher-order contaminations a

nitrogen-cooled Be-�lter was installed in the neutron's pathway behind the sam-
ple. At the experiments at the thermal spectrometers we usually worked in the
constant kf -mode and the energy on the analyzer side set to 8.04 meV(=̂1.97Å

−1
)

or 14.7 meV(=̂2.662Å
−1

). Due to technical problems with the PUMA spectrom-
eter some scans, however, had to be performed with the initial energy of the
neutrons held �xed to Ei = 14.7 meV and the variation of Ef was used to deter-
mine the energy transfer. At the thermal spectrometers we always used a PG �lter
to avoid spurious contributions by second harmonic neutrons. In all experiments
the collimation of the neutron divergence was relaxed as much as possible to take
full advantage of focusing e�ects and to increase the neutron �ux on the sample.
Experiments using polarized neutrons were done at the IN14 with the Cryopad

device ensuring full control of the neutron's polarization [68], the magnetic �eld
dependence of the magnon spectrum was studied using the superconducting 15T
vertical magnet of the PANDA spectrometer.

5.2.1 Tb crystal-�eld excitations and data treatment

In all recorded spectra on the magnetic excitations spectrum of TbMnO3 a pro-
nounced peak is always present at an energy transfer ECEF ≈ 4.5 meV, which
seems not to depend explicitly on Q, see Fig. 5.5. In accordance with the litera-
ture [249], we attribute this feature to a low-lying crystal �eld excitation (CEF)
of the Tb-subsystem. Following Hund's rules, Tb3+ with 8f electrons has the
ground state con�guration 7F6, which in a spherical symmetry is 13-fold degen-
erate. In a crystalline environment this degeneracy can (partly) be removed, the
orthorhombic CS-symmetry in TbMnO3 completely splits the Jz-levels giving rise
to 13 non-degenerate singlet states [250].
In Fig. 5.5 energy scans for various values of Q are shown. Common to all scans

is a feature at ≈ 4.5 meV. The scans with low |Q| are, however, dominated by
the inelastic magnetic signal from the Mn-subsystem, see the discussion below.
Fitting the data with Gaussians allows to estimate the relative intensity of this
feature and correcting for resolution e�ects the |Q|-dependence of the intensity
can be �tted to the square of the magnetic form factor for a Mn3+ and Tb3+ ion
[21]: We �nd a nice agreement with the |Q|-dependence of a Tb3+-form factor,
while the matching with a Mn3+-form factor is only poor, see Fig. 5.5b. Hence, we
attribute this excitation to the Tb-sublattice and as no dispersion can be resolved
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5 Magnetic excitations in multiferroic TbMnO3

Figure 5.5: Tb crystal-�eld excitation Energy scans at di�erent scattering vectors
Q at low temperature T = 4.5 K taken at the PUMA spectrometer. In all scans a
Tb CEF excitation is visible at E ≈ 4.5 meV, for low |Q| the spectra are, however,
dominated by Mn-magnetic scattering at lower energies. Lines correspond to �ts with
Gaussians (a). Fit of the intensity of the 4.5meV-feature to the square of the magnetic
form factor of Mn3+ and Tb3+ (b).

we identify it with a low-lying crystal-�eld excitation (CEF) between two di�erent
Jz-states.
The CEF excitation superimposes the spin-wave spectrum and severely hampers

the analysis of the data. To achieve an unique description of the relevant magnetic
excitations the width and the position of the CEF excitation were always �xed
within a 10%-interval in the �tting process of all inelastic data presented below.
The relative intensity of the CEF excitation was allowed to vary within the borders
of 10% according to the |Q|-dependence set by the Tb3+-form factor.
In addition to the correction of the Tb-CEF excitation, the data taken at the

PUMA spectrometer with ki �xed have to be corrected for resolution e�ects be-
fore comparing with the data acquired in the usual constant kf mode. Due to the
variation of the analyzer scattering angle 2ϑAna the resolution volume at the sec-
ondary part of the spectrometer changes signi�cantly for various energy transfers
and scales with k3

f cot(ϑAna) [19]. In the presentation below, this resolution factor
has always been corrected in the constant-ki data sets.

5.2.2 Spin-wave spectrum in the spiral phase

Fig. 5.6 presents the magnetic excitation spectrum at T = 17 K in the spiral phase
at the magnetic zone center Q = (0 0.275 0) measured at the PANDA spectrometer
with the �nal energy �xed to 4.66meV. The typical counting time for the data
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Figure 5.6: Magnetic excitation spectrum in the spiral phase at Q =
(00.2751) Energy scan at the magnetic zone center Q = (0 0.275 1) at T = 17 K in
the spiral phase on a linear and a logarithmic scale taken at the PANDA spectrometer
with the �nal energy �xed to Ef = 4.66 meV. Data are shown as red circles, while lines
correspond to the �t as described in the text. For comparison, a vanadium scan probing
the experimental energy resolution at the elastic line is included by open squares. The
calculated resolution at an energy transfer of E = 2.5 meV is marked by a black bar.

shown is 8 min/point. Clearly, the scattered intensity is dominated by the elastic
contribution centered at E = 0 meV, but in addition several inelastic signals can
be resolved: A separated excitation is visible at ~ω⊥2 ≈ 2.5 meV, and a second
feature is distinguishable around ~ω⊥1 ≈ 1.0 meV at the tail of the elastic line.
Comparing the elastic contribution with the energy resolution of the spectrometer,
which is calculated to be (∆E)0meV = 0.136 meV, the observed signal di�ers
around ≈0.5 meV signi�cantly from the incoherent signal of a Vanadium standard
sample. This deviation cannot be attributed to the in�uence of ω⊥1 alone and
points to a third, low-lying excitation with ~ω‖ . 0.2 meV. As aforementioned,
at ' 4.5 meV a fourth excitation is observed which, however, has to be ascribed
to a low-lying crystal-�eld excitation of the Tb-subsystem.
To model the observed spectrum we assume a linear background, which is well

justi�ed by the comparison of several scans at various points in reciprocal space.
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5 Magnetic excitations in multiferroic TbMnO3

The magnetic excitations ω⊥1 and ω⊥2 can be well described by a Gaussian line
shape, while we tentatively describe the soft mode at low energies by a Lorentzian.
Within this description we achieve a good agreement with the observed intensity,
yielding the eigenfrequencies ~ω‖ = 0.19(8) meV, ~ω⊥1 = 1.05(1) meV and ~ω⊥2 =
2.61(2) meV. The width of the two higher-energy, Gaussian-shaped excitations
ω⊥1/2

is slightly broader than the experimental resolution, while the soft mode
seems to be strongly overdamped with an energy width comparable to its frequency
ω‖.
To further separate the soft mode from the elastic contribution we have repeated

the same scan as above with the �nal energy �xed to Ef = 2.98 meV, see Fig. 5.7.
The change from kf = 1.50Å

−1
to kf = 1.20Å

−1
increases the experimental

resolution by a factor of ≈ 2.5, (∆E)0meV = 0.056 meV instead of 0.136meV,
which, however, has to be paid by a drastic loss of count rate � for a similar
statistic the counting time is increased by a factor 5. Typical counting times for
the data presented in Fig. 5.7 are 30min/point, which restricts this con�guration
only to a few selected scans in our time-limited experiments.
As can be seen by the comparison with the relaxed resolution, the high-

resolution data yield qualitatively the same spectrum with the soft mode at low
energies and the magnon feature around 1.05meV. However, the increase of resolu-
tion signi�cantly sharpens the elastic line, see the comparison in Fig. 5.7a, and the
additional contribution due to the soft mode becomes apparent as an asymmetric
broadening. The asymmetry of the low-energy part of the spectrum with respect
to ω → −ω re�ects the principle of detailed balance (cf. Chap. 2) and points
to its inelastic origin � elastic scattering is always expected to give a symmetric
contribution.
The asymmetric line shape of an overdamped soft mode is usually described by

a damped harmonic oscillator:

f(ω, ω0) ∝
1

1− exp(− ~ω
kBT

)
× 4ωω0Γ0

[ω2 − (ω2
0 + Γ2

0)]
2 + 4ω2Γ2

0

, (5.7)

with a damping constant Γ0 for the mode at ω0 [251]. However, describing our
data with a model consisting of three di�erent contributions, two Gaussians rep-
resenting the elastic line and the mode at 1.05meV and a damped oscillator for
the soft mode, the �tting process is not stable and does not converge towards
a reasonable solution. Instead, replacing the oscillator by two Lorentzians with
equal width Γ centered at ω‖ and −ω‖ yields an accurate description, see Fig. 5.7.
Within the best �t we obtain an eigenfrequency ω‖ = 0.07(4) meV for the low-
lying mode, but we cannot unambiguously rule out a slightly di�erent, or even
vanishing frequency within his phenomenological model.
To gain more insight into the physical origin of the di�erent spin-wave compo-

nents in the spiral phase of TbMnO3, we next extend our analysis to the use of
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Figure 5.7: High-resolution spectrum at Q = (00.2751) The same scan as in
Fig. 5.6, but with Ef = 2.98 meV instead of 4.66meV, on a logarithmic (a) and a linear
scale (b). Data with increased resolution are shown in red, while open symbols are
the same data as presented in Fig. 5.6. Lines correspond to the �t as described in the
text and the gray-shaded area marks the elastic contribution. The calculated resolution
at E = 0 meV is given by a red and a black bar for Ef = 2.98 meV and 4.66meV,
respectively.

polarized neutrons. The polarization analysis of the excitation spectrum has been
performed on the IN14 spectrometer. Again, the energy of the analyzed neutrons
was �xed to Ef = 4.66 meV, since a better resolution with Ef = 2.98 meV, al-
though desirable, seemed not to be practicable due to the increased counting time.
Note, that in an experiment with polarized neutrons the neutron �ux is already
suppressed by a factor of 5-10 compared to an unpolarized experiment because of
the restriction to a certain polarization and the more complex devices. Typical
counting times for the polarized data presented below are ≈18 min/point for each
polarization channel.

In our experiment, the polarization analysis was achieved using the Cryopad-
device. However, here we will not use the full power of Cryopad enabling full
three-dimensional polarization analysis and restrict ourselves to the classical lon-
gitudinal polarization analysis, discussed in the introductory chapter 2. Never-
theless, Cryopad ensures the precise control of the polarization essential for a
substantial data analysis: Our experimental setup yielded �ipping ratios on fun-
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Figure 5.8: Polarization analysis of the magnon spectrum in the spiral phase

Energy scans at the magnetic zone center Q = (0 0.275 1) at T = 17 K using polarized
neutrons with spin-quantization axis along x, y and z for the spin-�ip channel taken
at the IN14 spectrometer (a). Longitudinal polarization analysis based on the data
presented in (a) with the magnetization S‖ within and S⊥ perpendicular to the spiral
plane shown in green and red symbols, respectively. Data are shifted by +5 to avoid
negative count rates on the log-scale. Open circles are the same data as presented in
Fig. 5.6 acquired using unpolarized neutrons. Lines correspond to �ts as described in
the text (b).

damental Bragg peaks as good as INSF : ISF = 35 and an accuracy of 2% in
the transverse polarization terms. As usual, we have chosen a coordinate system
for the spin space with x‖Q, y⊥Q within and z⊥Q and perpendicular to the
scattering plane. With a vertical to the scattering plane, this setup allows to
determine the components of the magnetization within and perpendicular to the
bc-plane, i. e. the plane of the magnetic spiral: Under the reasonable assumption
of a polarization independent experimental background, subtracting the di�erent
spin-�ip intensities for P ‖|x, y, z directly yields the components S‖ parallel and
S⊥ perpendicular to the spiral plane of the total magnetization, cf. Tab. 2.1.2 in
Chap. 2. The results of the longitudinal polarization analysis of the magnetic ex-
citation spectrum in the spiral phase at T = 17 K and Q = (0 0.275 1) are shown
in Fig. 5.8.
In the S⊥-channel two inelastic features are well distinguishable. Comparing

with the above unpolarized data the analysis of the spectrum is now more in-
structive, as there is no overlap with the elastic signal and the excitations ap-
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5.2 Spin-wave spectrum at the magnetic zone center

Energy (meV) Polarization

sliding mode ω‖ 0.11± 0.05 ‖bc

ω⊥1 1.07± 0.05 ‖aorthogonal modes
ω⊥2 2.50± 0.08 ‖a

Table 5.1: Overview of the observed energies and polarization schemes of the magnetic
zone-center excitations in the spiral phase at T = 17 K determined using polarized
neutrons.

pear well separated. Fitting the excitations with Gaussian line shapes, we obtain
~ω⊥1 = 1.07(5) meV and ~ω⊥2 = 2.50(8) meV, which is in excellent agreement
with the above results using unpolarized neutrons. Again, the width of the exci-
tations is slightly broader than the experimental resolution.
In addition to the inelastic features, a sharp response is obvious at the elastic

position in the S⊥-channel, which turns out to be an artefact due to an experi-
mental loss of polarization. As can be seen in the raw data scans in Fig. 5.8a, the
ratio of the elastic count rate in the Sz and the Sy spin-�ip (SF) channel matches
within 10% the observed �ipping ratio INSF : ISF ' 35. The Sy NSF signal mea-
sures the same magnetic contributions as the Sz SF channel and the observed
elastic spin-�ip intensity in Sy must be attributed to an experimental loss of spin
polarization. The static magnetization has, hence, no component along a, which
is in perfect congruence with a magnetic spiral in the bc-plane [222]. The arti-
�cially observed elastic Sy SF signal serves, however, as a rough estimate of the
experimental resolution, and will be helpful for the interpretation of the results in
the S‖-channel.
In the S‖-channel the spectrum consists of a single peak centered around the

elastic position E = 0 meV. The tail of the peak is signi�cantly broader than the
experimental resolution, as is nicely proven by the comparison between S‖ and
S⊥ and which, in consistence with the unpolarized data, has to be attributed to a
third, low-lying magnetic mode. We model the data by a Gaussian describing the
elastic part and, as before, a Lorentzian for the inelastic contribution. The best
�t gives a satisfying description and yields ~ω‖ = 0.11(5) meV for the energy of
the soft mode.
Comparing the polarized with the unpolarized measurements, both methods

render similar results concerning the number of magnon branches and their eigen-
frequencies at the incommensurable zone center, thus proving the magnetic origin
of the di�erent excitations. However, the longitudinal polarization analysis goes
beyond and allows to decompose the excitation spectrum, thereby corroborating
the analysis of the unpolarized data: At the A-type zone center Q = (0 0.28 1)
the excitation spectrum within the spiral phase consists of three di�erent magnon
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5 Magnetic excitations in multiferroic TbMnO3

branches. Two of them, the modes ω⊥1 and ω⊥2 with higher energy, are polarized
along a, perpendicular to both the local ordered moment and the plane of the
spiral, while the third mode ω‖ is very soft and polarized parallel to the spiral
plane bc. In the following we will call the a-polarized modes orthogonal and refer
to the bc-polarized mode as the sliding mode, as has already been indicated by
the tentative labeling of the di�erent modes.

Magnetic excitations in a spiral magnet The theoretical treatment of mag-
netic excitations in spiral magnets has been under discussion since 50 years. How-
ever, early publications focus on �proper� spirals, in which the rotation axis of
the spiral is parallel to the propagation vector and therefore does not induce fer-
roelectricity [240, 252]. A theoretical investigation of the magnon spectrum in
multiferroic spiral magnets and its relevance for the magneto-electric coupling has
been reported only very recently [253]. Indeed, in their work Katsura et al. pre-
dict three di�erent magnon branches, two polarized along a and the third within
the spiral plane, just as we observe in TbMnO3.
For simplicity, we consider for the moment a perfect, circular spiral with vector

chirality Si×Sj along a and propagation vector kspiral‖b. Then, we may describe
the local moment at the site ri as

Si = S0 · cos(kspiral · ri)eb + S0 · sin(kspiral · ri)ec. (5.8)

One possible magnetic excitation within this structure polarized within the rota-
tional bc-plane is the phason of the spiral, i. e. a transversal �uctuation of the local
moment around the rotation axis a: The mode only alters the phase of the spiral
with respect to the underlying crystal lattice, but leaves the orientation within
the spin system constant � hence we refer to it as phason or sliding mode. The
polarization pattern of this mode is sketched in Fig. 5.9a. To analyze the coupling
of this mode to the induced electric polarization we need to generalize the central
equation 5.4 controlling the polarization and obtain:

P ∝
∑

i

ri,i+1 × (Si × Si+1), (5.9)

with the distance vector ri,i+1 connecting adjacent spins Si and Si+1 [12]. Note,
that for a spiral the cross product Si×Si+1 is constant and we reproduce eq. 5.4.
The sliding mode does obviously not a�ect the cross product between neighboring
spins and therefore does not couple to the electric polarization.
As the high moment ordered structure observed in TbMnO3 excludes a longitu-

dinal spin �uctuation, we identi�ed the observed bc-polarized, low-lying excitation
ω‖ with the sliding mode. The observed small �nite energy can be explained by
pinning e�ects and the asymmetry of the spiral ordering, which is elliptic instead
of circular in the case of TbMnO3.
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5.2 Spin-wave spectrum at the magnetic zone center

Figure 5.9: Magnetic excitations in a spiral magnet Sketch of the polarization
schemes of the di�erent magnon excitations at Q = kspiral in a spiral ordering as de-
scribed in the text. The static spin structure is marked by thick gray and the local
�uctuations by smaller, colored arrows. In addition, in the left corner the vector prod-
uct Si×Si+1 is shown for the sketched instantaneous spin arrangement with the di�erent
modes marked by the color scheme. The bc-polarized sliding mode can be regarded as
a rotation of the spin plane around a (a). For the a-polarized modes the �uctuations
can either be in-phase with the static b-component (b), or with the static c-component
(c), resulting in a rotation of the spiral plane around c and b, respectively.

Next, we answer the question why there are two a-polarized branches: At the
magnetic zone center the �uctuations along a can be considered as standing waves,
which cant the spins out of the bc-plane, thereby inducing a time dependent
magnetization Sa

i (q, ω) along a at the site ri:

Sa
i (q = 0, ω) = Sa

0 cos(kspiralri + δ) · cos(ωt). (5.10)

The �uctuation necessarily possesses the same wavelength as the static spin struc-
ture, but the oscillation can be either in-phase with the static b-component of the
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5 Magnetic excitations in multiferroic TbMnO3

spiral given by eq. 5.8, cosinusoidal modulated, or with the static c-component
yielding a sinusoidal �uctuation. The arising polarization patterns are distinct
and are shown in Fig. 5.9b and c.
For small amplitudes Sa

0 we can evaluate eq. 5.9 for the excited state at q = 0
and obtain with the phase di�erence ϕ0 between adjacent sites for the cosinusoidal
modulation

(Si × Si+1)
cos = (sin(ϕ0), S

a
0 sin(ϕ0) · cos(ωt), 0), (5.11a)

and for the sinusoidal modulation

(Si × Si+1)
sin = (sin(ϕ0), 0, S

a
0 sin(ϕ0) · cos(ωt)). (5.11b)

Hence, both modes a�ect the plane of the spiral, and inspecting eqs. 5.11 more
closely we �nd, that in the cosinusoidal case the spiral plane oscillates around c,
while the sinusoidal mode rotates it around b, see Fig. 5.9. However, Katsura
et al. have shown that only the sinusoidal mode couples to an uniform lattice
displacement along a and to the ferroelectric polarization. Neglecting the �nite
energy due to single-ion anisotropy, this mode would be the Goldstone boson of the
multiferroic transition [254]. The second a-polarized mode is entirely decoupled
from the polarization and gapped by the e�ective spin anisotropy introduced by
the spin-lattice interaction [253].
In consequence, we attribute the two observed orthogonal magnons ω⊥1/2

to
the two di�erent a-polarized modes just discussed. Both branches posses a �nite
energy due to magnetic anisotropy e�ects, and we are now left with the iden-
ti�cation of the b- and c-rotation modes. In a perfect circular spiral only the
later one is expected to couple to the FE lattice distortion, but due to magnetic
anisotropy the spiral is elliptic in TbMnO3 and both modes might slightly mix
rendering the actual situation more complex. Nevertheless, at least one of the two
modes is closely connected with a �uctuation of the static electric polarization,
and this mode should be detectable in IR spectroscopy as well. Hence, we inter-
rupt the discussion of our neutron data at this point and continue with a brief
summary of recent results of optical spectroscopy on TbMnO3 published by Pi-
menov et al. [255]. As we will demonstrate next, comparing the IR data with our
neutron results yields a comprehensive and unambiguous picture of the magnetic
excitations in the ferroelectric phase of TbMnO3.

IR spectroscopy and identi�cation of the electromagnon response In
Fig. 5.10 we show the frequency dependence of the dielectric properties both with
and without the external magnetic �eld for TbMnO3 as published by Pimenov
et al. [255]. The data in the ferroelectric state at T = 12 K without magnetic
�eld and with the electric a. c. component e||a show two broad relaxation-like
excitations with frequencies ν1 = 10 cm−1 and ν2 = 20 cm−1, corresponding to
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5.2 Spin-wave spectrum at the magnetic zone center

Figure 5.10: Dielectric function of TbMnO3 in the THz regime Frequency
dependence of the real (a), and imaginary (b) part of the terahertz-dielectric function
in TbMnO3 with e||a and B||c, as published by Pimenov et al. [255]. Open spheres
represent the data without external �eld, �lled spheres those in the CA-AFM state
obtained by applying B = 8T along c. Filled triangles are the corresponding data for
B = 0T.

~ω1 = 1.24 meV and ~ω2 = 2.48 meV, respectively. Note, that in Ref. [255] only
the mode at higher energies is discussed, but a second mode at lower energies is
well visible for T = 12 T. Both modes seem to be connected with the modulated
magnetic structure, as they are suppressed with the transition into the canted
AFM phase induced by the magnetic �eld Hc = 8 T applied along c. However,
the very unusual point concerning these modes is the close correlation to the po-
larization of the electric a. c. component: Both modes are well visible for e||a, but
not if the electric component is aligned along b. In contrast, both modes are not
sensitive to the orientation of the magnetic component of the a. c. �eld, and the
authors conclude that the modes are new hybrid spin-lattice excitations which
can be excited by an electric �eld and which they therefore refer to as electro-
magnons. Subsequently to the publication by Pimenov et al., recent publications
have proven the existence of similar excitations in other multiferroic compounds
as e. g. TbMn2O5, YMn2O5 [256], and (Eu, Y)MnO3 [257].
Comparing the IR data with our neutron results, and regarding the discussion

of the magnetic excitations in a spiral magnet presented above, the origin of the
unusual properties of the electromagnons in the IR data is quite obvious � these
excitations are indeed hybridized phonon-magnon excitation, predicted to exist in
magnetic ferroelectrics by Russian groups already in the 1970's [199, 200, 258], and
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5 Magnetic excitations in multiferroic TbMnO3

the IR signal has to be combined with the two orthogonal modes ω⊥1/2
identi�ed in

our neutron data. The agreement both of the polarization dependence and of the
energies of the modes between IR and neutron data is excellent. The frequencies
~ω1 = 1.24 meV and ~ω2 = 2.48 meV of the IR experiment have to be compared
with those of the two orthogonal modes ~ω⊥1 = 1.07 meV and ~ω⊥1 = 2.50 meV
determined from the neutron data, proving that both techniques probe the same
fundamental excitation: In the IR spectroscopy the lattice part is tested, while
we sense the magnetic channel of the hybridized phonon-magnon excitation in
the neutron experiment. As aforementioned, the fact that both orthogonal modes
ω⊥1/2

couple to the electric polarization has to be attributed to the mixing of the
b- and c-rotation mode of a perfect spiral due to the complex magnetic anisotropy;
a further identi�cation seems, hence, meaningless.
To resume the discussion of the excitation spectrum in the spiral phase at

T=17K, the observed three branches of the spectrum can well be interpreted
based on the theory developed by Katsura et al. [253]. The lowest, bc-polarized
mode is the sliding mode of the magnetic spiral ordering, this mode does not cou-
ple to the electric polarization. The two a-polarized branches correspond to the
rotation of the spiral plane around the c and the b axis. The excellent agreement
with recent results of IR spectroscopy proves that both modes are correlated to the
dynamic electric polarization, and are �nally interpreted as a new type of funda-
mental excitation in a multiferroic systems: electromagnons � strongly hybridized
magnon-phonon excitations.

5.2.3 Spin-wave spectrum in the spin-density wave phase

Next, we focus on the magnetic excitation spectrum in the paraelectric SDW phase
above Tspiral. We have analyzed the magnon spectrum at T = 32 K in detail using
unpolarized neutrons on the PANDA spectrometer as well as polarized neutrons
on IN14.
In Fig. 5.11a we compare the energy scan at the A-type zone center Q = (0 εb1)

at T = 32 K with the spectrum at T = 17 K discussed so far. In the SDW phase
the spectrum is less structured than in the spiral phase, and with the standard
con�guration of the PANDA spectrometer and the energy of the analyzed neutrons
set to Ef = 4.66 meV only a broad signal centered around E ≈ 1.5 meV can be
resolved. An additional inelastic contribution seems to be hidden at low energies,
as the tail of the elastic line deviates signi�cantly from the expected experimental
resolution and exhibits a comparable line shape as in the spiral phase.
A satisfying description of the observed data appears challenging, as a �minimal

model� consisting of two inelastic contributions, a Lorentzian for the low-energy
excitation and a Gaussian for the broad feature, does not result in a fully satisfying
�t. However, adding further contributions to this model, the �tting process does
not result in a unique description and various alternatives model the spectrum
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Figure 5.11: Spin-wave spectrum at T = 32K and comparison with spiral

phase Energy scan at the incommensurable zone center Q = (0 0.28 1) in the SDW phase
at T = 32 K taken at the PANDA spectrometer with the energy of the �nal neutrons
�xed to Ef = 4.66 meV. Open symbols are the same data as presented in Fig. 5.6
for T = 17 K. Lines correspond to the �t with a �minimal model� as described in the
text (a). Comparison of the unpolarized data for T = 32 K measured at the PANDA
spectrometer with the scattered intensity in the spin-�ip Px-channel in the polarized
experiment at IN14 (b).

equally well. The unpolarized data do not allow to resolve all the details of the
excitation spectrum in the SDW phase. In the following we will show that the
use of polarized neutrons enables to decompose the spectrum into at least four
di�erent magnon branches.
In the inset of Fig. 5.11 some of the results of the polarized experiment on

IN14 are superimposed on top of the unpolarized data. With the polarization
P parallel to the scattering vector Q, the scattering in the spin-�ip channel is
the sum of all magnetic contributions: The polarized spectrum scales nicely with
the unpolarized data, thereby proving the magnetic character of the signal. Once
more, we now make use of the full power of the longitudinal polarization analysis
by taking the di�erences between the measured intensities in the spin-�ip channel
for di�erent choices of the quantization axis, and we obtain the dynamic spin
correlations S⊥ perpendicular and S‖ parallel to the scattering plane, which in
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Figure 5.12: Polarization analysis of the magnon spectrum in the SDW phase

Longitudinal polarization analysis of the magnetic excitation spectrum in the SDW phase
with the magnetization S⊥ perpendicular, (a), and S‖ parallel, (b) and (c), to the bc-
plane. (b) and (c) compares the magnetic scattering at the two equivalent A-type zone
centers Q1 = (0 0.28 1) and Q2 = (0 1.72 1) for the S‖-channel. Colored symbols always
represent T = 32K-data and open data taken at T = 17K; for Q = (0 0.28 1) the 17 K-
data are the same as presented in Fig. 5.8. Lines correspond to �ts as described in the
text.

our case was chosen to be the bc-plane. The results of this analysis for T = 32 K
are shown in Fig. 5.12.
We start with the discussion of S⊥, i. e. in our con�guration the dynamic mag-

netization parallel to the a-axis. Like in the spiral phase, two contributions can be
resolved in S⊥ for T = 32 K. However, compared to the spectrum in the FE-spiral
phase the intensities appear to be smeared out and the two signals are signi�cantly
broadened and shifted to lower energies. The observed spectrum can best be de-
scribed assuming a Lorentzian line shape for the low-energy mode, which again
appears to be overdamped, and a Gaussian for the higher-energy mode. This
model yields the eigenfrequencies ~ωa

1 = 0.31(9) meV and ~ωa
2 = 2.16(10) meV for

the two a-polarized modes.
To understand the di�erent contributions in the S‖-channel we have to compare

the spectra recorded at two equivalent magnetic Bragg positions Q1 = (0 0.28 1)
and Q2 = (0 1.72 1). At Q1, a low-lying excitation is clearly visible as a broad
contribution close to the elastic line. However, the comparison with the 17 K-data
suggests an additional contribution centered around ≈ 1.5 meV, as the intensity
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5.2 Spin-wave spectrum at the magnetic zone center

Energy (meV) Polarization

ωc
1 0.10± 0.10 ‖bcsoft modes

ωa
1 0.31± 0.09 ‖a

ωc
2 1.32± 0.08 ‖chard modes

ωa
2 2.16± 0.10 ‖a

Table 5.2: Summary of the results of the longitudinal polarization analysis in the
SDW phase at T = 32K with the eigenfrequencies and polarization patterns of the four
observed zone-center modes.

is increased around this energy transfer in the SDW phase. Further support for a
second contribution to S‖ is given by the spectrum determined at Q2, where this
signal appears enhanced compared to Q1 and which is clearly absent in the spiral
phase at T = 17 K. Describing both spectra assuming, as usual, a Lorentzian
line shape for the low-energy mode and a Gaussian for the second excitation, we
obtain as the best �t ~ωc

1 = 0.10(10) meV and ~ωc
2 = 1.32(8) meV for the energies

of the two S‖-contributions. However, the �tting process occurs to be unstable
against the re�nement of the low-energy mode, and the reported value of ~ωc

1 has
to be considered as a crude approximation. A detailed analysis of the low-energy
behavior would require a signi�cant increase of the experimental resolution to
separate the inelastic contribution from the elastic scattering. Nevertheless, our
data clearly prove the existence of a low-lying mode below ~ω . 0.15 meV in the
S‖ channel at T = 32 K.

Considering now only the fourth mode ωc
2, the observed strong Q-dependence

allows us even to go beyond the longitudinal polarization analysis for this partic-
ular mode: The polarization analysis can only di�erentiate between �uctuations
parallel and perpendicular to the bc-scattering plane. However, in neutron scat-
tering only the component of the magnetization perpendicular to the scattering
vector Q contributes to the cross section. With the di�erent choice of the two
zone centers Q1 and Q2 we signi�cantly a�ect this selection rule, as Q1 spans
an angle of 19.49◦ with the c?-axis, while Q2 includes an angle of 65.29◦ with
c?. Taking the orthogonal complement from the projections onto c? we expect,
after the correction of the di�erent form factors, an intensity ratio for a purely
c-polarized mode of IQ1 : IQ2 = 1 : 4.99, which is in fair agreement with the
observed intensity ratio for ωc

2, IobsQ1
: IobsQ2

= 1 : 4.29(82). Hence, we conclude that
the mode ωc

2 has a transversal character with a polarization pattern predominantly
parallel c, i. e. perpendicular to the ordered moment. Due to the strong overlap
with the elastic line and the resulting uncertainties in the determination of the
spectral weights a similar analysis for the low-energy mode ωc

1 is, unfortunately,
not possible.
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5 Magnetic excitations in multiferroic TbMnO3

In conclusion, using the longitudinal polarization analysis we resolve four di�er-
ent magnon contributions in the magnetic excitation spectrum of the paraelectric
SDW phase at T = 32 K, two modes at very low energies, which we will refer to
as �soft modes� in the following, and two branches with �nite energies, which we
will tentatively label �hard modes�, see Table 5.2 for a summary. In each of these
two groups, one mode is polarized along a, whereas the other mode is polarized
within the bc-plane. Moreover, comparing di�erent Q-position we can show that
the hard mode ωc

2 possess an entirely transversal character and corresponds to a
magnetic �uctuation along the c-direction.

Magnetic excitations in a collinear spin-density structure Magnetic exci-
tations in spin-density wave structures have been studied both experimentally
and theoretically for more than a decade, as they seem to be crucial for the un-
derstanding of the complex phase diagram of elemental Chromium and related
systems [259, 260]. In metallic Chromium, however, the incommensurable order-
ing stems from nesting e�ects at the Fermi surface and it is not obvious how to
adopt these well developed theories to the case of a localized system like TbMnO3.
Instead, we will follow the discussion of the magnetic excitations in the spiral

phase and extend the above arguments to the case of a collinear order. In a spin-
density wave structure with modulation vector kSDW and the ordered moments
aligned along b the spin Si at the site ri may be described as

Si = S0 · cos(kSDWri + δ)eb. (5.12)

Applying similar arguments as for the analysis of the spiral phase to the SDW
structure, we expect up to six di�erent magnon branches at q = 0: Two modes
with similar polarization along each of the three orthorhombic axes. We will now
discuss whether or not these modes are degenerate and if they all contribute in
our neutron scattering experiments.
We start with the two branches polarized along b, i. e. along the direction of

the ordered moment. In a conventional magnet, take a simple ferromagnet as
an example, longitudinal modes do not exist within linear spin-wave theory [69].
However, the incommensurate character of the SDW ordering activates them in
our case. At the magnetic zone center, q = 0, a sinusoidal �uctuation along b
possess the same wavelength as the static modulation, but it can be either in-
phase or out-of-phase with the ordered structure. The later case corresponds to
the phason mode of the SDW structure, as it oscillates the phase δ of the SDW
with respect to the underlying crystal lattice. Similar to the phason mode of the
spiral phase, the energy of this sliding mode is expected to be very low. The second
b-polarized mode, the in-phase oscillation, corresponds to the �magnitudon�, as it
yields a �uctuation of the amplitude of the local moment around its mean value.
In principle, such a mode can also exist in a conventional magnet, but usually it
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5.2 Spin-wave spectrum at the magnetic zone center

Figure 5.13: Magnetic excitations in a SDW structure Polarization schemes of
the two π

2 -modes in a SDW arrangement. The a polarized mode transforms the SDW
structure into a magnetic spiral constraint to the ab-plane (a), while the c-polarized
mode results in a bc-spiral. This mode is the magnetic soft mode of the FE transition
at Tspiral (b). In the left corner the vector product Si × Si+1 is shown for the excited
states with the di�erent modes marked by the color code.

is very hard, and we do not expect it to contribute in the low-energy regime we
are interested in.
The transverse magnetic �uctuations along a and c can again be divided into

two di�erent groups, according to the relative phase of the oscillation with respect
to the ordered moment. At the magnetic zone center, the two in-phase modes
retain the collinear spin con�guration, and these modes correspond to the tilting
of the magnetic structure along a and c, respectively. Hence, at q = 0 both
modes test the e�ective magnetic anisotropy Λi along a and c and are, therefore,
expected to possess a �nite energy in the case of TbMnO3. However, both in-phase
modes, one polarized along a and one along c, are irrelevant for the ferroelectric
transition and the magnetoelectric coupling, as the cross product between adjacent
sites obviously vanishes in the collinear arrangement.
In contrast, the two out-of-phase, or π

2
-modes, are most relevant for the ferro-

electric transition and couple to an electric polarization even in the paraelectric
phase. The polarization schemes of both modes are shown in Fig. 5.13. Both
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5 Magnetic excitations in multiferroic TbMnO3

polar. phase frequency hybridized

Phason ωb
1 ||b 0 soft no

Magnitudon ωb
2 ||b π

2
hard no

ac-spiral ωa
1 ||a π

2
soft yes

a-tilt ωa
2 ||a 0 Λa no

bc-spiral ωc
1 ||c π

2
soft yes

c-tilt ωc
2 ||c 0 Λc no

Table 5.3: Overview of the possible magnetic excitations in the collinear SDW ar-
rangement summarizing the polarization pattern, the phase with respect to the static
ordering, the expected frequency, and the possible coupling to a varying electric �eld of
the various modes. For more details see the text.

transform the SDW ordering into a spiral structure � for the a-polarized mode
the spiral is constraint to the ab-plane, while the c-mode results in a bc-spiral.
Evaluating the central equation 5.9 for the excited states we obtain with ϕ0 de-
noting the phase di�erence between neighboring sites

(Si × Si+1)
a-pol = (0, 0, sin(ϕ0)) · cos(ωt) and

(Si × Si+1)
c-pol = (sin(ϕ0), 0, 0) · cos(ωt)

(5.13)

for the a and the c polarized mode, respectively. Hence, with the modulation
vector kSDW‖b the a-mode should couple to an electric polarization Pa along a,
and the c-mode to an electric polarization Pc along c. Close to TFE the energy of
both modes is expected to be very low, since these modes condensate at the phase
transition into the ferroelectric spiral phase. At zero �eld, it is the bc-spiral which
is realized in TbMnO3, and, consequently, the π

2
-mode polarized along c is the

associated magnetic soft mode of the ferroelectric transition. The π
2
-mode along

a should be slightly harder � we recall, however, that a modest magnetic �eld
�ops the electric polarization and the energy of both π

2
-modes associated with the

di�erent orientations of the spiral is, therefore, expected to be comparable.
An overview of the possible spin-wave branches of the SDW structure is given

in Tab. 5.3, summarizing the polarization pattern, the phase with respect to the
static ordering, the expected frequency, and the possible coupling to an external
a. c. electric �eld of the di�erent modes. What still remains is the identi�cation of
the experimentally observed modes with the di�erent modes just discussed, i. e. we
have to combine the frequencies of Tab. 5.2 with the results given in Tab. 5.3.
However, following the di�erent character of the various branches associating the
observed spin-wave excitations with one of the above modes appears apparent,
and is already indicated by the labeling of the magnon branches in Tab. 5.3.
The polarized neutron experiment has revealed two a-polarized excitations at

~ωa
1 = 0.31 meV and ~ωa

2 = 2.16 meV, respectively. Consequently, we attribute
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5.2 Spin-wave spectrum at the magnetic zone center

these two modes with the ferroelectric ab-spiral mode, ωa
1 , and with the a-tilt

mode, ωa
2 . The other four modes should all be detectable in the S||-channel, but

we observe only two further components. As aforementioned, the longitudinal in-
phase mode, the magnitudon, is expected to possess an energy beyond the energy
range of our experiment, so that we are left with three modes. Two of these
excitations, the sliding mode ωb

1 and the bc-spiral mode ωc
1 are very soft and we

attribute the observed low-energy response in the S||-channel at ~ωc
1 ≈ 0.1 meV

to the superposition of these two modes � with the energy resolution available we
can not resolve a splitting of these two modes and they appear degenerate in the
experiment.9 The third mode possesses a �nite energy, ~ωc

2 = 1.32 meV, and we
have demonstrated that this mode is predominantly polarized along c. Hence, we
attribute it with the in-phase c-mode.
The classi�cation scheme just described is consistent with the phase diagram of

TbMnO3 and with the results of Pimenov et al., revealing an electromagnon re-
sponse in the paraelectric SDW phase above TFE [255]. In zero �eld the magnetic
bc-spiral is stabilized, in agreement with our classi�cation scheme as the bc-spiral
mode is lower in energy than the corresponding mode polarized along a. A similar
argument also con�rms the identi�cation of the two tilt excitations: Macroscopic
measurements unambiguously show, that the orthorhombic a-axis is the magneti-
cally hard axis [212]. As for q = 0 the two tilt modes basically sense the magnetic
anisotropy, the mode polarized along a should be highest in energy, as is found
experimentally, and the observed level scheme of the di�erent excitations is con-
sistent with the macroscopic properties of TbMnO3. Furthermore, in the IR data
a electromagnon response is observed in the paraelectric phase for TFE < T , too
[255]. Compared to the FE phase the polarization of the electromagnons is the
same, but the signal is shifted to lower energies and appears to be smeared out,
see Fig. 5.10. This response has to be ascribed to the π

2
-modes ωa

1 polarized along
a, which couples to an a. c. electric �eld and possesses a phonic counterpart.

5.2.4 Thermal evolution of the spin-wave spectrum

Having analyzed the magnetic excitation spectrum for the spiral phase at T = 17 K
and for the SDW phase at T = 32 K in great detail, we now turn to the discus-
sion of the thermal evolution and the apparent changes of the spin-wave spectrum
across the ferroelectric spiral transition. For this purpose we have investigated the
magnon spectrum at Q = (0 εb1) for various temperatures below and above Tspiral

using the high neutron �ux of the PUMA spectrometer with the energy of the
initial neutrons �xed to Ei = 14.7 meV. At a thermal instrument, the experimen-

9We stress, however, the very di�erent character of both modes, since only the bc-spiral mode
is connected with the ferroelectric transition. The phason and the spiral mode are both
very soft, however due to very di�erent reasons, and in this sense the observed degeneracy
is accidental.
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Figure 5.14: Temperature dependence of the zone-center spectrum Energy
spectrum at the incommensurable zone center Q = (0 0.28 1) measured at the thermal
spectrometer PUMA. Full circles represent temperatures T < Tspiral, open symbols stand
for T > Tspiral. The data are corrected for the population factor (n(ω, T ) + 1) after the
substraction of a linear background (a). Polarization analysis of the development of the
elastic spin-�ip intensity for the quantization axis parallel to Q = (0 1.72 1), recorded at
the spectrometer IN14 (b). Lines are always included as guides to the eye.

tal resolution is signi�cantly lower than on a cold source, but the high neutron
�ux provokes low counting times, essential for an extensive analysis of the tem-
perature dependence; a typical counting time for the data presented in Fig. 5.14
is 1 min/point, which has to be compared to counting times of 8 min/point for
su�cient, but still lower statistics on a cold spectrometer. To compare the scans
at di�erent temperatures, the data have to be corrected for the di�erent Bose con-
tributions. However, the Bose factor changes slightly within the resolution volume
of a thermal instrument, and the correction would require the four-dimensional
convolution of the resolution function with the dispersion surface. As it is not
obvious how to perform such an analysis with the available data, we tentatively
correct each data point by the Bose factor for the �nominal� energy, neglecting the
small in�uence of the �nite resolution in the correction. The results are presented
in Fig. 5.14.
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5.2 Spin-wave spectrum at the magnetic zone center

To characterize precisely the transition from the SDW into the ferroelectric spi-
ral phase we show in the inset of Fig. 5.14 elastic data of the polarized experiment
at the IN14. The temperature dependence of the spin-�ip signal with the quan-
tization axis parallel Q = (0 1.72 1), which is entirely magnetic intensity, exhibits
a sharp, but continuous upturn at the transition temperature Tspiral = 28 K. As
aforementioned, the chosen A-type Bragg-re�ection Q = (0 1.72 1) includes an
angle of 65.29◦ with the c?-axis of reciprocal space. Since only the component of
the magnetization perpendicular to the scattering vector contributes to the cross
section, the observed increase of the intensity at Tspiral essentially re�ects the in-
crease of the static c-component of the magnetization as the spin-density wave
transforms into the spiral ordering. Clearly, the transition is continuous and the
phase transition is of second order, consistent with the reported thermodynamics
of the FE transition [261, 262].
Considering the excitation spectrum in Fig. 5.14, magnetic �uctuations are

resolvable even in the paramagnetic phase at T = 50 K as a broad and structure-
less contribution. With decreasing temperature the inelastic signal increases in
intensity and in the SDW phase below TN magnetic scattering is visible in the
entire energy range below E = 3.5 meV. As we have shown before, the excitation
spectrum consists of at least four di�erent contributions in the SDW regime. Due
to the relaxed experimental resolution of the thermal instrument we integrate over
sizable parts of the dispersion surface of the di�erent modes, and in consequence
the di�erent modes can not be resolved anymore but appear as a single, rather
broad feature in the energy scans. With the ferroelectric transition the spectrum
changes signi�cantly and two excitations seem to emerge continuously from the
unmodulated structure. Upon further cooling down to T = 12 K the spectral
weight of these features rapidly increases and both signals appear well separated.
The data reveal nicely the drastic changes of the magnetic excitation spectrum

at the SDW-to-spiral transition at Tspiral. Concomitant with the ferroelectric tran-
sition the excitation spectrum gets dominated by two well de�ned features, and
comparing the thermal data with the detailed analysis of the spin-wave spectrum
at T = 17 K these modes obviously have to be associated with the two electro-
magnon features ω⊥1/2

. However, a reliable analysis of the thermal evolution close
to the phase transition on the basis of the thermal data appears, unfortunately,
impossible, as the relaxed resolution does not allow to reconstruct the behavior
of the magnetic soft mode of the ferroelectric phase transition close to Tspiral. It
seems, however, very intriguing to follow the thermal evolution of the ferroelectric
soft mode and to characterize the temperature dependence of the electromagnon
modes across the ferroelectric transition in more detail. Such an analysis, how-
ever, surely requires a careful and very time-consumptive study on a cold triple-
axis instruments using polarized neutrons in combination with an excellent energy
resolution.
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5 Magnetic excitations in multiferroic TbMnO3

5.2.5 Field dependence of the spin-wave spectrum

The �eld dependence of the magnetic superstructure is obviously the key to the
understanding of the gigantic magnetoelectric e�ects observed in TbMnO3. How-
ever, unlike the thermal evolution of the magnetic structure in zero �eld, the
impact of an applied magnetic �eld on the spiral structure has not yet been stud-
ied in detail, and the assumption of a �eld induced �op of the chirality of the
spiral, which would imply the observed �op of the electric polarization from c to
a, has not yet been con�rmed by neutron-di�raction experiments for TbMnO3.
As such an experiment is extremely di�cult to perform � a reliable data set on
the magnetic structure requires the integration of a huge set of magnetic re�ec-
tions within a large solid angle, whereas the cryomagnet supplying strong enough
magnetic �elds signi�cantly restricts the experimentally accessible parts of recip-
rocal space � recent publications on TbMnO3 focus on the evolution of only a few
magnetic re�ections with the �eld applied along various directions [242, 243, 263].
Nevertheless, in the closely related compound Eu0.75Y0.25MnO3 the high �eld mag-
netic structure has been determined very recently and, indeed, concomitantly with
the electric polarization the chirality of the magnetic spiral �ops by 90◦ [10].
In the case of TbMnO3, using x-ray and neutron di�raction techniques it has

been shown that the polarization �op for H‖a and H‖b coincides with a transition
into a commensurable magnetic phase with propagation vector (0 0.25 1) [242, 243].
With the �eld applied along c, the ferroelectric order melts and, simultaneously,
the incommensurable modulation disappears, while a simple magnetic structure
with propagation vector (0 1 0) is stabilized [263]. These di�raction results are
supplemented by experiments on the thermal expansion and magnetostriction,
which unravel the �rst-order nature of the �eld induced incommensurate-to-
commensurate transition [262].
We have studied the impact of a magnetic �eld on the excitation spectrum in the

spiral phase. The experiment has been performed on the PANDA spectrometer
using a 15T cryomagnet.10 The geometry of the magnet together with the mag-
netic modulation along the b axis restricts the possible choices for the scattering
plane to the bc-plane with the �eld applied along the vertical a axis. However,
in this con�guration a maximum �eld of 12T is well suited to switch between the
two magnetic phases. The PANDA spectrometer was operated using the stan-
dard con�guration with the energy of the scattered neutrons �xed typically to
Ef = 4.66 meV. All measurements presented in this section were performed at
T = 17 K.

Field dependence of the elastic signal Before we consider the spin-wave spec-
trum we begin with the discussion of the �eld dependence of the elastic magnetic

10Due to technical reasons the maximum �eld reachable was limited to 12T at the time of the
experiment.
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Figure 5.15: Field dependence of the magnetic modulation Intensity mapping
of a cut through reciprocal space along the line (0 k 1) for a complete �eld cycle Ha =
0 T → 12 T → 0 T with the �eld applied along a. Open points mark the positions of the
magnetic Bragg re�ections and dotted lines denote the phase transitions between the
low-�eld incommensurable (LF-IC) and the high-�eld commensurable structure (HF-C)
as found by thermodynamic measurements [261, 262] (a). Intensity of the magnetic
superstructure re�ection Q = (0 εb 1) with the applied �eld increasing from 0 T to 12 T
(b) and �eld dependence of the incommensurability εb for the complete �eld cycle (c).
The gray-shaded regions mark regimes with coexistence of both magnetic phases.

signal. Figure 5.15 summarizes the evolution of the magnetic superstructure re-
�ection Q = (0 εb1) with a magnetic �eld applied along a.
Upon increasing �eld we �nd a continuous increase of the magnetic intensity.

The magnetic modulation remains nearly unchanged up to 8T, and we observe
only a slight decrease of the zero-�eld incommensurability ε0

b = 0.2772(1). With
further increasing �eld εb(H) exhibits a sharp discontinuity around a critical �eld
Ha
↑ ≈ 9 T, and for H > Ha

↑ the magnetic intensity appears centered around the
commensurable position Q = (0 0.25 1). In the vicinity of the �rst order transi-
tion a region of coexistence of both incommensurable (IC) and commensurable
(C) phases can be observed, and the 10T-data can best be described assuming
two di�erent magnetic contributions. Ramping the �eld down again the commen-
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surable phase is stable until the critical �eld Ha
↓ ≈ 8 T, below Ha

↓ the system
switches back into the incommensurable magnetic modulation. Again, around
the phase transition a region of phase coexistence can be found, which appears
broader than with increasing �eld. The pronounced hysteresis and the size of the
critical �elds Ha

↑ and Ha
↓ is in good congruence with the reported phase diagram

based on high-precision thermal expansion measurements [262].
Besides the magnetic hysteresis a complete �eld cycle Ha = 0 T → 12 T → 0 T

reveals an unusual behavior of the magnetic incommensurability. Upon decreasing
�eld the incommensurability does not fully recover its initial value ε0

b at zero �eld,
see Fig. 5.15c: Switching back from the HF-C into the LF-IC phase the mag-
netic incommensurability εb(8 T↓) ≈ 0.2624(3) is signi�cantly reduced compared
to the initial upward run. With further decreasing �eld εb slightly increases, but
stays always well below the value obtained when ramping up the magnetic �eld.
After the complete magnetic cycle we determine a magnetic incommensurability
ε∗b = 0.2716(1) at zero �eld, which is reduced by ≈2% compared to the incommen-
surability ε0

b before switching on the �eld. The full magnetic incommensurability
ε0

b = 0.277 can only be recovered by heating up the sample above the spiral tran-
sition temperature to T = 35 K and subsequently cooling down to 17K. Hence,
in the spiral phase the magnetic system memorizes its magnetic history even at
zero �eld, and the size of the magnetic incommensurability at zero �eld depends
on the magnetic diary of the sample.
To take into account this magnetic memory e�ect and to ensure always identical

conditions in the investigation of the �eld dependence of the magnon spectrum,
all data presented below have been obtained in an upward run of the �eld after a
careful check of the magnetic incommensurability at zero �eld.

Magnetic excitations In Fig. 5.16, the magnetic excitation spectra recorded at
the magnetic zone center Q1 = (0 εb 1) is shown for various magnetic �elds up to
12T. However, before we analyze the changes in the spin-wave spectrum of the
Mn-sublattice we �rst have to brie�y consider the impact of the magnetic �eld on
the Tb crystal-�eld excitations.
We observe the lowest excitation within the Tb3+ J-multiplet at ECEF =

4.5 meV, which for g = 2 corresponds to a magnetic energy of ≈ 78 T. Since
in the orthorhombic symmetry the 7F6-con�guration splits into 13 singlet states
[250] we thus can neglect the in�uence of the applied �eld on the CEF-level scheme.
Indeed, up to a maximum �eld of 12T we do not observe any changes in the neu-
tron spectra for energies E > 3.5 meV, see Fig. 5.16c. Hence, in the following
analysis we will always disregard the in�uence of the magnetic �eld on the Tb
crystal-�eld excitations.
In contrast, in the energy region of the magnon excitations below 3.5meV dras-

tic changes can be observed: For low magnetic �elds the structure of the spectrum
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Figure 5.16: Field dependence of the magnetic excitation spectrum Energy
scans for various magnetic �elds applied parallel to a at the magnetic zone center
Q1 = (0 εb 1) at T=17K. Colored lines are �ts to the data as described in the text
and vertical gray lines mark the position of the two orthogonal modes ω⊥1/2

in zero
�eld (a). Di�erence spectra between the data in �nite and zero �eld presented in (a)
(b). Comparison of the spectra at H = 0 T and 12 T recorded with Ef = 4.66 meV
(c), and with enhanced resolution and Ef = 2.98 meV (d). In the 12T-data a spurious
contribution is always visible around ≈ 1.5 meV, marked by small black diamonds, for
Ef = 4.66 meV. All scans were taken at the PANDA spectrometer. The zero-�eld data
are the same as presented previously.

at Q1 = (0 0.28 1) does not change signi�cantly and for 4T and 8T we �nd the
same characteristic three magnon branches of the spiral ordering as in zero �eld.
However, within the experimental con�guration with Ef = 4.66 meV, only the two
orthogonal modes are well resolvable, the low-lying phason mode is superimposed
with the elastic signal and appears as a broadening of the tail of the magnetic
Bragg re�ection. All spectra for the LF-IC phase can be described using com-
parable parameter sets as for the zero �eld data and the �tting process always
yields energies for the two orthogonal modes ω⊥1/2

similar to the frequencies pre-
viously obtained for H = 0 T. The energy and the width of the phason mode were
�xed to their zero-�eld values in the re�nement. With increasing �eld, all modes
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gain neutron intensity, which is consistent with the �eld response of the elastic
magnetic signal.
At the transition into the HF-C phase, the magnon spectrum changes consider-

ably and for H = 12 T the data exhibit remarkable di�erences compared with the
low-�eld spectra, see e. g. the di�erence spectra in Fig. 5.16b: The 12T-spectrum is
dominated by two intense excitations centered around ≈0.5 meV and ≈2.0 meV.
A third excitation, though weaker, is resolvable around ≈ 3.0 meV, but the in-
elastic intensity at 1meV is completely suppressed with the transition into the
high �eld phase. An additional, sharp feature is detectable in the data taken at
12T around ≈ 1.5 meV, marked in Fig. 5.16 by small diamonds. However, we
ascribe this feature to a spurious contribution, as it disappears by changing the
wavelength, see Fig. 5.16d, is not visible at equivalent Bragg positions, and does
not exhibit a signi�cant dispersion, in contrast to all other observable signals.
Therefore, we will ignore this feature in the following discussion.
To resolve the behavior of the phason mode across the IC-to-C transition in more

detail, we have repeated the scan at H = 12 T with the analyzer energy �xed to
2.98meV, see Fig. 5.16d. With the enhanced experimental resolution the low-lying
excitation appears better separated and the Bragg tail develops a Gaussian line
shape in the high-�eld phase.11 Following the previous analysis of the low-�eld
spectra the description of the high-�eld data is straightforward. Using a Lorentzian
for the low-energy and Gaussian line shapes for the two higher-energy modes, the
combination of both data sets yields the frequencies ωC

⊥1
= 0.44(1) meV, ωC

⊥2
=

3.06(2) meV and ωC
‖ = 2.20(2) meV for the three di�erent magnon branches of the

HF-C phase.
So far, we have not yet considered the spectrum at H = 10 T. At this critical

�eld close to the �rst-order phase transition the analysis of the elastic data proves
the coexistence of both LF-IC and HF-C phases, and the inelastic spectrum can
well be explained assuming two di�erent contributions, too. At H = 10 T the
observed spectrum deviates considerably from the low-�eld data as the magnon
branch at 1.05 meV is severely suppressed. However, the structure of the high-�eld
phase observed for H = 12 T has not yet developed completely and the data are
well described by scaling a weighted summation of the 8T and 12T models to the
10T-spectrum, see Fig. 5.16a.
Resuming the �eld dependence of the spectra at Q = (0 εb 1) presented so far,

our neutron data unravel three di�erent magnon branches for the commensu-
rable high-�eld phase with polarization P ‖a, similar to the spin-wave spectrum
of the spiral phase with polarization Pc at zero �eld. However, unlike to the zero
�eld phase the strong magnetic �eld does not allow us to use polarized neutrons
to explore the polarization schemes of the di�erent modes in the HF-C phase.

11Notice the di�erent shape of the elastic line in the zero-�eld data, which once more points to
the inelastic contribution of the low-lying phason mode
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Figure 5.17: Q-dependence of the spectrum at H = 12T Energy spectrum
of the spin-wave excitations in the HF-C phase at H = 12 T measured at the three
equivalent A-type zone centers Q1 = (0 0.25 1), Q2 = (0 1.75 1) and Q3 = (0 0.25 3) on
a logarithmic (a) and linear scale (b). Solid lines correspond to the �ts as described
in the text and vertical gray bars mark the positions of the three magnon branches of
the HF-C phase. Measurements were performed at the PANDA spectrometer with the
energy of the scattered neutrons �xed to Ef = 4.66 meV. Small diamonds mark regions
with spurious contributions, see text.

Nevertheless, as we will show next applying the fundamental selection rules of
magnetic neutron scattering, the Q-dependence of the scattered intensities may
suggest at least a qualitative classi�cation.
In Fig. 5.17 we compare the spectra for H = 12 T obtained at the three A-type

zone centers Q1 = (0 0.25 1), Q2 = (0 1.75 1) and Q3 = (0 0.25 3). Because of the
limited beam time the energy of the scattered neutrons was �xed to Ef = 4.66 meV
for these scans, although an improved resolution might have been desirable. All
spectra exhibit a similar structure, and the data recorded at Q2 and Q3 yield the
same energies for three magnon branches as the one at Q1 discussed before. Of
course, such a behavior has to be expected, as all three Q-vectors are equivalent
Bragg positions in reciprocal space. However, with the di�erent choices of the
scattering vector Q we substantially a�ect the scattering geometry; while Q1

and Q3 include only a small angle α with the c?-axis, α1 = 17.53◦ and α3 =
6.01◦, respectively, Q2 and c? span an angle of 65.67◦. As only the component
of the magnetization perpendicular to the scattering vector Q contributes to the
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5 Magnetic excitations in multiferroic TbMnO3

magnetic cross section, a magnetic �uctuation along c = c? will thus give an
intense response at Q2, while its intensity at Q1 and Q3 should be signi�cantly
reduced.
Considering �rst the Q-dependence of the intensity for the branch ωC

⊥1
in

Fig. 5.17, the mode appears most intense at Q2, whereas it is hardly detectable
at Q3. This behavior reminds of the properties of a �uctuation with a large
c-component. Indeed, correcting the intensities for the di�erent magnetic form
factors the observed ratio Iobsω⊥1

,Q1
: Iobsω⊥1

,Q2
= 1 : 4.8(4) resembles the expected

behavior for a purely c-polarized mode with IQ1 : IQ2 = 1 : 6.2, providing a
predominant contribution along c for ω⊥1 . Regarding next the mode ωC

‖ , the Q-
dependence of the scattered intensity is reversed compared to that of ωC

⊥1
, and

the distribution of spectral weight follows the magnetic form factor, as the ob-
served intensity decreases continuously from Q1 to Q3. The third branch ωC

⊥2

again resembles the behavior of the �rst mode and the signal is most pronounced
at Q2.
Summarizing the Q-dependencies of the di�erent magnon branches, we conclude

that the two modes ωC
⊥1

and ωC
⊥2

possess a di�erent character than the third
mode ωC

‖ . In analogy with the analysis of zero-�eld excitations we tentatively
refer to the branches ωC

⊥1/2
as orthogonal modes in the following, while the mode

ωC
‖ may be labeled as the sliding mode. However, while in the zero �eld phase

the longitudinal polarization analysis clearly con�rms an a-character for the two
orthogonal modes, the Q-dependence of the modes ωC

⊥1/2
suggests a polarization

along c for these modes in the HF-C phase. The sliding mode seems to change
its polarization pattern across the polarization-�op transition, too; in the LF-
IC phase the phason is polarized within the bc-plane, whereas we can exclude a
signi�cant component along c of the sliding mode ωC

‖ in the HF-C phase.

Experimental evidence for the �eld-induced �op of the magnetic spiral As
has been mentioned several times already, on the basis of the theory developed by
Katsura et al. [12] and Mostovoy [13] the magnetic �eld-induced �op of the electric
polarization from Pc to Pa may be understood by the change of the chirality of
the magnetic spiral structure from a rotation around the a-axis with the moments
in the bc-plane to a rotation around c with the spins con�ned to the ab-plane.
What would such an interpretation imply for the magnon spectrum in the high-
�eld phase?
Following the discussion of the magnetic excitations in the spiral phase at zero

�eld [253], we expect three low-lying magnon branches for an ab-spiral. However,
as the spins rotate around c instead of a, the polarization pattern of the di�er-
ent modes are supposed to be interchanged: The phason mode of the spiral is
no longer polarized within the bc-plane, but should correspond to a �uctuation
parallel to the ab-plane, and the two orthogonal modes ω⊥1/2

polarized initially
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5.2 Spin-wave spectrum at the magnetic zone center

H = 0 T H = 12 T
Energy (meV) Energy (meV)

sliding mode ω‖ 0.11± 0.05 ‖bc 2.20± 0.02 ‖ab

ω⊥1 1.07± 0.05 ‖a 0.44± 0.01 ‖corthogonal modes
ω⊥2 2.50± 0.08 ‖a 3.06± 0.02 ‖c

Table 5.4: Comparison of the observed energies and estimated polarization schemes of
the magnetic zone center excitations in the LF-IC and the HF-C phase at T = 17K.

along a are expected to transform into c-polarized �uctuations in the high-�eld
structure. These considerations agree nicely with our observations of the �eld
dependence. Indeed, for H = 12 T we �nd three well-separated magnon branches,
two of them are predominantly polarized parallel and the third perpendicular to
c, just opposite to the polarization patterns in zero �eld, see table 5.4.
Considering the energy scheme of the spin-wave spectrum, the sequence of

the di�erent magnon branches has also been a�ected by the spiral-�op tran-
sition. While in zero �eld the phason mode of the spiral is very low in en-
ergy, ~ω‖ . 0.11 meV, it is signi�cantly increased in the HF-C spiral as we �nd
~ωC

‖ = 2.20 meV. This distinct behavior might be attributed to di�erent pinning
potentials; in the HF-C phase the magnetic �eld Ha is applied parallel to the spin-
rotation plane of the ab-spiral and, consequently, the phase of the spiral might
be �xed by the applied �eld resulting in a substantial hardening of the phason
mode.12 In contrast, the energy of the two orthogonal modes ωC

⊥1/2
is comparable

with their zero-�eld counterparts. Moreover, from the above analysis it is evident,
that at least one of these two modes should be hybridized with a phonon and, as
the spiral is rotated by 90◦, couple to the dynamic electric polarization along c.
Hence, a comparison of our high-�eld neutron data with IR spectroscopy seems
very desirable, but, unfortunately, optical data acquired in the proper experimen-
tal setup � i. e. electric a. c. component e parallel to c and a su�cient magnetic
�eld applied along a � are, best to our knowledge, not yet available.
In summary, with a magnetic �eld H applied parallel a the magnetic excitation

spectrum exhibits signi�cant changes at the critical �eld inducing the �op of the
electric polarization. Similar to the zero-�eld spectrum we are able to resolve
three di�erent magnon branches in the high-�eld phase. The di�erent polarization
schemes of the various modes, two are polarized predominantly along and one
perpendicular to c, strongly supports the interpretation of a �eld-induced �op

12The �eld should even a�ect the static properties of the spiral as a parallel con�guration of
the ordered moment to the �eld is more favorable than an antiparallel. A plausible magnetic
structure would thus consist of the rotation of the spins around a �nite value S = (Sa 0 0)
within the ab-plane, i. e. a spiral around a �nite moment Sa.
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5 Magnetic excitations in multiferroic TbMnO3

of the chirality of the magnetic spiral structure from a rotation around a in the
low-�eld to a rotation around c in the high-�eld phase.

5.3 Spin-wave dispersion in TbMnO3

So far we have only considered the magnetic excitation spectrum for q = 0, i. e. at
the center of the magnetic Brillouin zone. In this section we will extend the anal-
ysis and discuss the spin-wave dispersion along the a-, b-, and c-direction of the
orthorhombic crystal structure at two di�erent temperatures, in the ferroelectric
spiral phase at T = 23 K, and in the paraelectric SDW phase at T = 32 K. A com-
prehensive analysis of the full magnon dispersion will yield detailed insights into
the strength of the relevant magnetic exchange couplings and allows to compare
the magnetic interactions in TbMnO3 underlying the complex magnetic structure
with those of other, less distorted perovskite manganites with commensurable
ordering schemes.
Experiments to determine the spin-wave dispersion in TbMnO3 were performed

at the same spectrometers as used for the analysis of the spectrum at q = 0: at the
thermal instruments 1T.1 and PUMA, and at the cold machines 4F.2 and PANDA,
installed at the LLB in Saclay and at the FRM2 in Munich, respectively. Data
using polarized neutrons were acquired at the IN14 spectrometer. As pointed out
in the previous discussion, to fully resolve all details of the excitation spectrum
an excellent resolution is desirable, but often not practicable due to the restricted
amount of beamtime. In order to achieve a comprehensive overview of the com-
plete q-dependence of the excitation spectrum we usually used the high �ux of
the thermal instruments with relaxed experimental resolution. As before, selected
scans were then repeated at the cold instruments with signi�cantly increased res-
olution to extract the di�erent contributions in the spectra. The determination of
the dispersion is further complicated by the Tb-CEF, which at �nite q strongly
interferes with the spin-wave signal.
To cope with all of these di�culties, we present the di�erent branches of the

dispersion in order of increasing complexity: First we will discuss the magnon
dispersion along the c− and the a−direction of the orthorhombic crystal structure,
starting with the spectrum in the spiral phase at T = 23 K, followed by the
discussion of the SDW phase at 32 K. Along these directions the magnetic coupling
is always anti-, respectively ferromagnetic [222], and the shape of the dispersion
is basically determined by the nearest-neighbor exchange coupling JAFM and JFM.
Finally, we deal with the dispersion along b, i. e. parallel to the modulation k of
the magnetic structure. Here, the spin-wave spectrum is strongly a�ected by the
competition of the two magnetic interactions responsible for the complex magnetic
structure, the FM coupling JFM between nearest neighbors and the AFM exchange
JNN of next-nearest neighbors along b, and the shape of the dispersion strongly
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5.3 Spin-wave dispersion in TbMnO3
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Figure 5.18: Analysis of the spin-wave dispersion (I.) Raw-data scans at Q =
(0 0.28 1 + ql) to determine the spin-wave dispersion in the FE spiral phase at T = 23K
along c, recorded at the PUMA spectrometer with Ei = 14.7 meV (a). Contour plot of
the dispersion calculated from the data shown in (a), blue corresponds to low, red to high
neutron count rate (b). Energy scans along (0 0.28 1+ql) taken at the spectrometer 4F.2
with Ef = 4.97 meV and enhanced experimental resolution for ql = 0.15 (c), and 0.35
(d). Lines denote �ts to the data with Gaussians, in (c) and (d) the various contributions
to the spectra are marked by the gray-shaded pro�les, see text for details. Note that the
CEF excitation is described by the same parameter set in (c) and (d).

deviates from that of a simple antiferromagnet.

5.3.1 Dispersion along a and c: nearest-neighbor exchange

As aforementioned, we begin with the discussion of the dispersion along c, as this
turns out to be most instructive. In Fig. 5.18, we present representative energy
scans along Q = (0 0.28 1+ql) to determine the magnon dispersion in the FE spiral
phase at T = 23 K, measured at the PUMA spectrometer with relaxed resolution
and Ei �xed to 14.7 meV, Fig. 5.18a, and with increased energy resolution and
Ef = 4.97 meV recorded at the cold spectrometer 4F.2, Fig. 5.18c,d. Starting at
the zone center, q = 0, the data clearly reveal, how the inelastic signal propagates
with increasing q through the Brillouin zone. At the zone boundary, ql = 0.5,
the signal appears centered around 4 meV, and partly overlaps with the Tb-CEF
excitation, which is visible in all scans around ECEF = 4.5 meV.
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5 Magnetic excitations in multiferroic TbMnO3

From the extensive analysis of the zone-center spectrum it is clear, that in the
FE phase the spectrum at q = 0 consists of three contributions, the spiral mode
ω|| at very low, and the two orthogonal modes ω⊥1,2 at �nite energies. For small
momentum transfers |q| close to the zone center, this decomposition of the spec-
trum should be valid as well, and in order to resolve the di�erent contributions,
Fig. 5.18c shows the spectrum for ql = 0.15 recorded with enhanced energy reso-
lution ∆E ≈ 150 µeV. Indeed, in addition to the CEF excitation two additional
modes are resolvable around 1.5 meV and 3 meV, which we identify with the two
a-polarized modes ω⊥1,2 . A third excitation at lower energies can not be resolved
due to the strong overlap with the incoherent elastic signal. Note however, that
at q = 0 the phason mode was also hard to detect using unpolarized neutrons, the
�nal identi�cation of the soft mode has only been achieved by the use of polarized
neutrons. For larger magnon momenta q, both modes remain resolvable in the
spectra, but close to the zone boundary the energy of the second mode ω⊥2 be-
comes comparable with those of the CEF excitation, signi�cantly hampering the
analysis of the data. Hence, for a quantitative analysis of the spectra, great care
has to be taken on a consistent description of the Tb crystal �eld.
Keeping these annotations in mind, we are now prepared to interpret all ob-

served spectra and to extract the magnon dispersion along c for the spiral phase.
For a quantitative modeling of the data we included two di�erent magnon contri-
butions in addition to the elastic line at E = 0 meV and the CEF excitation. In
the �tting process, we always assumed Gaussian pro�les for the di�erent compo-
nents. Of course, the starting point for the description were the results derived
in the analysis of the zone-center spectrum. Moreover, to handle the in�uence of
the crystal �eld, a common parameter set was used for the CEF excitation in all
spectra, which was not allowed to vary during the re�nement. At the end, the
analysis of the thermal data was checked against the results obtained from the
data collected on the cold instruments, so that �nally a consistent picture was
achieved. Using this procedure, the re�nement yields a reasonable description for
all observed spectra, see Fig. 5.18. However, before we proceed with the discussion
of the results of this analysis, we �rst continue with the spin-wave dispersion in the
paraelectric SDW phase, and with the q-dependence of the magnetic excitation
spectrum parallel to a, which were both analyzed in a similar way.
In Fig. 5.19, we show typical scans to determine the spin-wave dispersion along

c in the paraelectric phase at T = 32 K. Again, the data nicely prove how the in-
elastic signal propagates with increasing |q| towards the zone boundary. However,
compared to the spectra in the FE spiral phase the signal appears now broader and
less structured. Following the discussion of the zone-center spectrum, the di�erent
shape of the spectra appears reasonable, as the four di�erent magnon branches of
the SDW phase can only be resolved with the help of polarized neutrons. With
unpolarized neutrons, however, we sum over the di�erent branches and the spec-
trum can tentatively be modeled assuming two di�erent contributions: a broad
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Figure 5.19: Analysis of the spin-wave dispersion (II.) Raw-data scans at the
same positions as presented in Fig. 5.18, but taken in the paraelectric SDW phase at
T = 32K (a). Contour plot of the dispersion calculated from the data shown in (a) (b).
Note that the intensity scale in the contour plot is the same as in Fig. 5.18b. Exemplary
analysis of the zone-boundary spectrum at ql = 0.5 showing the decomposition into the
di�erent contributions (c). Comparison of the zone-boundary spectra in the spiral and
in the SDW phase, the parameter set for the CEF excitation is the same for both spectra
(d). In all panels lines denote �ts to the data as described in the text.

Gaussian at �nite energies, and a Lorentzian describing the low energy mode close
to the tail of the elastic line. This decomposition holds for all spectra along the
line Q = (0 0.28 1 + ql) up to the zone boundary with ql = 0.5, see Fig. 5.19c.
A dispersion can, however, only be resolved for the mode at �nite energies, the
low-energy contribution remains always within the energy resolution of the elastic
line and cannot be analyzed properly with the existing data.
Along a the magnetic coupling is always ferromagnetic for both magnetic phases

[222], and the magnetic Brillouin zone extends up to integer-indexed values for qh,
i. e. along the line Q = (qh 0.28 1) the spin-wave disperses up to qh = ±1. Typical
scans aiming at the dispersion in this direction for T = 23 K and 32 K are shown
in Fig. 5.20. It is immediately clear, that along a the spin-wave signal extends to
higher energies than along c, reaching up to 8meV at the zone boundary.
In the spiral phase, Fig. 5.20a and b, the magnetic intensity is again split into

two spin-wave branches, and the splitting appears to persists throughout the whole
magnetic zone. Both modes propagate continuously and �tunnel� through the Tb
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Figure 5.20: Analysis of the spin-wave dispersion (III.) Raw-data scans at Q =
(qh 0.28 1) to determine the low-energy part of the spin-wave dispersion in the FE spiral-
phase at T = 23K along a, recorded at the PUMA spectrometer with Ei = 14.7 meV
(a). Contour plot of the inelastic structure factor S(Q,ω) for Q = (qh 0.28 1) calculated
from a grid of data as shown in (a) for 0 6 qh 6 1 and ∆qh = 0.1. Blue denotes low,
red high neutron intensity (b). The same scans as presented in (a), but for T = 32 K,
i. e. in the SDW phase (c). Contour plot of S(Q,ω) for 32K, similar to (b) (d). Note
that the intensity scale is the same in (b) and (d).

CEF excitation touching the zone boundary Q = (1 0.28 1) at 6 meV and 8 meV,
respectively. Note, how the spin wave interferes with the CEF excitation in the
intensity mapping around qh = 0.4, Fig. 5.20b, and we stress once more that a
consistent description of the Tb-CEF is essential for the quantitative analysis of
the magnon dispersion: For all spectra we used the same parameter set to describe
the parasitic contribution of the crystal �eld.
In the paraelectric phase at 32 K the spectra with small |q| appear less struc-

tured with a single, broad magnon contribution at �nite energies, similar to the
spectra along the antiferromagnetic c-direction, see Fig. 5.20c. However, for
qh ≥ 0.5 the magnon signal splits again into two contributions centered around
6meV and 8meV, resembling the high-energy behavior in the spiral phase. The
splitting appearing in the paraelectric phase may be associated with a di�erent q-
dependence of the various magnon branches of the SDW structure, the polarization
analysis has revealed four di�erent contributions at q = 0, but a detailed discus-
sion of this aspect would require more reliable experimental data, as e. g. a study
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5.3 Spin-wave dispersion in TbMnO3

with polarized neutrons and enhanced experimental resolution. Consequently, in
our analysis we included a single, broad magnon contribution for the low |q|-
range and two magnon signals for the high-energy region, resulting in a satisfying
description of the data.
The results of the above analysis are summarized in Fig. 5.21, presenting the

spin-wave dispersion along a and c for the ferroelectric spiral and the paraelec-
tric SDW phase. As aforementioned, with the relaxed resolution of the thermal
instrument we were not able to resolve all details and the presentation is some-
how oversimpli�ed, the actual situation might be more complex, especially in the
SDW phase. Nevertheless, Fig. 5.21 provides a complete overview of the spin-wave
dispersion including the most important properties. To further inspect the disper-
sion, the full spin Hamiltonian H as given by Katsura et al. has to be diagonalized
[253], which is an ambitious theoretical task for the incommensurable magnetic
structure present in TbMnO3 [264] and surely beyond the scope of this thesis.
However, as the magnetic coupling in the ac-plane of TbMnO3 is the same as for
the commensurable A-type ordering of LaMnO3 � the magnetic correlations are
strictly FM along a and AFM along c � we may directly compare the observed
spin-wave dispersion with dispersion relations derived for LaMnO3: The spiral
ordering develops from the A-type structure by a modulation of the magnetic
correlations along [0 1 0] due to the emergence of a frustrating AFM exchange
JNN between next-nearest neighbors along b. The magnetic correlations in the
perpendicular directions are not a�ected, and the overall shape of the spin-wave
dispersion should remain the same along a and c.
The magnon excitations in LaMnO3 were �rst studied by Moussa et al. and by

Hirota et al. [144, 146]. Based on a simple spin-only Hamiltonian

H = −
∑
i,j

Ji,jSiSj − Λ
∑

i

Sz
i
2 (5.14)

with a FM exchange JFM between nearest neighbors within the ab-planes, an
AFM exchange JAFM along c, and a single-ion anisotropy Λ, the following spin-
wave relations are derived:

~ω(q) = 2S
√

A(q)2 + B(q)2, (5.15)

with A(q) and B(q) de�ned by

A(q) = +2JFM [2− cos(π(qh + qk))− cos(π(qh − qk))]− 2JAFM + Λ,

and B(q) = −2JAFM cos(πql).

The simple model can, of course, not predict the splitting of the magnon
branches observed in TbMnO3, but neglecting for the moment this unusual behav-
ior and treating all branches separably, the simpli�ed spin-wave relations describe
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Figure 5.21: Spin-wave dispersion in the ac-plane Spin-wave dispersion of
TbMnO3 along a and c in the paraelectric SDW phase at T = 32 K (a), and in the
ferroelectric spiral phase at T = 23K (b). Solid lines denote �ts to the experimentally
observed dispersion as described in the text, dotted lines mark the magnon dispersion
of LaMnO3 as derived from the analysis given in [144, 146].

accurately the observed dispersion of the di�erent modes in both magnetic phases,
see Fig. 5.21. The obtained values for the magnetic exchange interactions and
the strength of the single-ion anisotropy are summarized in Tab. 5.5, e. g. from
the magnon dispersion in the paraelectric SDW-phase we extract the parameters
JFM = 0.20(1) meV, JAFM = −0.30(2) meV, and Λ = 0.11(1) meV. There are
no signi�cant changes of the exchange integrals upon the magnetic transition at
Tspiral, as the bandwidth of the di�erent modes remains approximately constant,
and the magnetic transition from the SDW to the spiral ordering is solely driven
by the complex magnetic anisotropy [13, 240].
Furthermore, our results agree qualitatively with those reported in an earlier

spin-wave study on TbMnO3 derived using the same semi-empirical analysis [249].
However, Kajimoto et al. only discuss the magnetic excitation spectrum of the
ferroelectric phase at 10K. In contrast to our argumentation they do not observe
a splitting of the magnon frequencies, which most likely has to be attributed to
the poor experimental resolution, as the results presented in Ref. [249] are based
only on thermal neutron data.13 Furthermore, Kajimoto et al. do not analyze

13The authors, nevertheless, note a signi�cant broadening of the magnon signal close to the
magnetic zone center, which they can resolve into three di�erent branches in a �rst test
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5.3 Spin-wave dispersion in TbMnO3

JFM JAFM Λ TN

TbMnO3 SDW 0.20(1)meV -0.30(2)meV 0.11(1)meV 42K
Spiral, ω⊥1 0.10(1)meV -0.37(3)meV 0.02(1)meV
Spiral, ω⊥2 0.15(1)meV -0.60(3)meV 0.11(2)meV

TbMnO3
[249] Spiral1 0.15meV -0.50meV 0.13meV 42K

PrMnO3
[249] A-type 0.56meV -0.60meV 0.08meV 100K

LaMnO3
[146] A-type 0.84meV -0.61meV 0.15meV 140K

LaMnO3
[144] A-type 0.83meV -0.58meV 0.17meV 140K

1Data presented in Ref. [249] were all recorded in the spiral phase at T = 10 K, the splitting of
the magnon modes is not discussed.

Table 5.5: Results of the analysis of the spin-wave dispersion using the simpli�ed model
described in the text, and comparison with the exchange constants obtained in di�erent
RMnO3 compounds showing the A-type ordering. Note that the di�erent authors use
di�erent de�nitions of J and Λ. The values given have been converted to the Hamiltonian
eq. 5.14, which is the convention used in [144].

the magnon-dispersion starting at the incommensurable zone center, but from the
commensurable A-type Bragg position.
The values of the nearest-neighbor magnetic exchanges integrals JFM and JAFM

obtained for TbMnO3 should be compared to those of LaMnO3 with a less dis-
torted orthorhombic structure and an A-type ordering. In Fig. 5.21 the magnon
dispersion of LaMnO3 as derived from the analysis given in Ref. [144] is in-
cluded by the dotted line. It is immediately clear, that the dispersion along
c, and hence the strength of the antiferromagnetic coupling JAFM, is similar in
both compounds. Along a, the spin-wave dispersion is signi�cantly �attened in
TbMnO3; for LaMnO3 the magnon band extends up to ≈ 33 meV, whereas the
zone-boundary frequency in TbMnO3 amounts to 8meV, directly demonstrating
the reduction of the FM interaction JFM. Indeed, the AFM coupling in TbMnO3 is
comparable with JAFM = −0.58 meV obtained for LaMnO3 [144], whereas the FM
exchange is strongly suppressed, JFM = 0.83 meV for LaMnO3 and ≈0.2 meV for
TbMnO3, respectively.
In a mean-�eld approach [265], the Néel temperature TN is correlated with the

magnetic interactions via

TN =
2

3
S(S + 1)

∑
i

|Ji| =
2

3
S(S + 1) (4JFM + 2|JAFM|) . (5.16)

measurement using cold neutrons. Obviously, these mode have to be identi�ed with the
phason and the two orthogonal modes.
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In Fig. 5.22 we plot the suppression of the Néel temperature TN in the RMnO3-
series as a function of the average Mn−O−Mn bond angle φ. Also depicted
are all reported values on JFM available to us, including the results of this thesis.
The linear decrease in TN scales perfectly with the observed softening of JFM.14

As discussed in the introduction, the ferromagnetic correlations and the A-type
ordering are destabilized by the enhancement of the structural distortion resulting
in a reduction of the bond angle φ; it is well established that TN is closely coupled
to cos2 φ, in perovskite manganites as well as in nickelates and ferrates [266�269].
One may, however, ask, if the (relatively) small change in φ, the di�erence between
R=La and Tb is only 10◦, is able to fully explain the rapid suppression of JFM,
and hence of TN.
With the staggered orbital ordering the ferromagnetic coupling JFM between

adjacent Mn-sites in the ab planes is determined by the e1
g−O−e0

g superexchange-
path and can be parameterized as JFM = 4b2/U and b ≈ d−3.5 cos φ [31, 227]. As
the Mn-Mn distance d is almost constant in the RMnO3-series [225], JFM includes
only a factor proportional to cos2 φ. However, the decrease in cos2 φ does not size
that of JFM, see Fig. 5.22, and the reduction of φ can only cover a fraction of the
observed suppression of JFM. Note on the other hand, that the AFM exchange
along c is mainly mediated through the isotropic t32g −O− t32g exchange, which is

14Note that the AFM exchange JAFM is almost constant in the series of rare-earth manganites,
and TN is determined only by the size of JFM.
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5.3 Spin-wave dispersion in TbMnO3

expected to be almost independent of φ [267], in congruence with the experimental
data.
To overcome this insu�cient description, di�erent authors have recently ex-

tended the above argumentation, taking explicitly into account the orbital degree
of freedom and the role of the cooperative Jahn-Teller e�ect [229, 270]. Based on
optical spectroscopy, Kim et al. have shown [270], that not only the binding angle
φ is a�ected by the substitution of the smaller rare-earth ions, but also the orbital
mixing angle θ determining the orbital ordering in the compound [28, 29], result-
ing in an additional decrease of JFM. Zhou and Goodenough even point out, that
the increase in the Jahn-Teller splitting εJT is the dominant factor in controlling
JFM(R), in this scenario the cooperative octahedral-site rotations even play only
a minor role [229].
In conclusion, the analysis of the spin-wave dispersion in the ac-plane based on a

semi-empirical model derived from the A-type ordering has revealed a pronounced
softening of the ferromagnetic exchange interaction JFM in the series of rare-earth
manganites RMnO3, which is the driving force behind the suppression of the Néel
transition form LaMnO3 to TbMnO3. The microscopic origin of the huge decrease
of JFM is discussed controversially in the literature, a structural origin due to the
reduction of the bond-angle φ alone is, however, not su�cient to explain the
experimental results.

5.3.2 Dispersion along b: magnetic frustration

Along the third crystallographic axis the magnetic ordering is frustrated due to the
competition of the FM nearest-neighbor exchange JFM and the AFM next-nearest
neighbor exchange JNN, resulting in the incommensurable modulated magnetic
structure propagating along b below TN. The magnetic frustration will also af-
fect the magnetic excitation spectrum and the dispersion along this direction will
signi�cantly di�er from the simple behavior expected for the A-type arrangement.
However, before we proceed with the presentation of the experimental results,

we �rst want to acquire some physical intuition of the spin dynamics in a frustrated
system. In a simple approach, we expand the Hamiltonian eq. 5.14 to include an
AFM exchange JNN between next nearest neighbors along [0 1 0] and calculate the
Fourier components Jq, resulting for q||b in the dispersion relation

~ω(0 qk 0) = 2S
([

2JFM
(
2− 2 cos(πqk) + JNN

JFM
cos(2πqk)

)
− 2JAFM − 2JNN + Λ

]2
− 4J2

AFM

) 1
2
. (5.17)

Fig. 5.23 plots the dispersion given by eq. 5.17 for Λ = JFM, JAFM = 0 and
various values of η = |JNN/JFM|. For small η < 1

2
the spin-wave frequencies increase

monotonically from the A-type zone center with qk = 0 to the zone boundary at
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Figure 5.23: Magnon disper-

sion for various values of the

magnetic frustration Shape of
the spin-wave dispersion along [0 1 0]
calculated from eq. 5.17 for various
values of η = | JNN

JFM |.

qk = 1, resembling the shape of the dispersion of LaMnO3 with η ≈ 0. For η > 1
2
,

however, the shape of the dispersion changes and develops a local minimum at
qk0 = 1

π
arccos(− 1

2η
): The static A-type order is suppressed and transformed into

an incommensurable arrangement with modulation qk0. The observed value of the
static incommensurability, εb ≈ 0.28 in TbMnO3, thus points to a strong magnetic
frustration JNN = −0.78JFM, nicely reproducing the value of η derived in a mean-
�eld approximation [228]. The maximum magnon frequency, in contrast, does not
depend on the frustration η, for all values of η the zone-boundary energy amounts
to 2S[(8JFM − 2JAFM + Λ)2 − 4J2

AFM]1/2, independent of JNN.15

The experimentally observed dispersion along the line Q = (0 qk 1) is shown
in Fig. 5.24. The data were collected at the cold spectrometer PANDA with the
energy on the analyzer side �xed to Ef = 4.66 meV, compared with the above
discussion of the thermal data yielding a signi�cantly enhancement of the exper-
imental resolution. Already at �rst sight, the intensity mapping in Fig. 5.24a

15It is interesting to note, that at this point the discussion touches again the charge and or-
bital ordering in half-doped manganites, studied extensively in Chap. 4. Konstantinidis and
Patterson have derived the spin-wave spectrum for the Zener polaron picture by mapping
the Hamiltonian for the Zener polaron ordering onto a Heisenberg model on a square lattice
with frustrated magnetic exchange equivalent to the situation in the multiferroic manganites
[110], and the conclusions presented in Ref. [110] are very similar to those discussed here.
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Figure 5.24: Analysis of the spin-wave dispersion along b for T=17K Intensity
mapping along the line Q = (0 qk 1) for 0 ≤ qk ≤ 1 calculated from a grid of energy scans
with step size ∆qk = 0.1 measured in the spiral phase at T = 17 K at the cold spec-
trometer PANDA with enhanced experimental resolution and Ef = 4.66 meV. White
areas were not accessible in the scattering experiment. Open circles mark the estimated
positions of the magnon signals, solid lines denote the �t with the dispersion relation
eq. 5.17, for details see the text (a). Exemplary analysis of the magnon spectrum at
Q = (0 0.14 1) using unpolarized and polarized neutrons (b), and at the boundary of
the extended zone Q = (0 1.0 1) (c), showing the decomposition of the raw data into the
di�erent magnetic contributions. Lines denote �ts to the data as described in the text.
Data using polarized neutrons were collected at the IN14 spectrometer.

exhibits a more complex behavior than that expected for the simple A-type con-
�guration. Starting at the initial A-type zone center Q = (0 0 1) the spin-wave
frequencies soften and form a local minimum around qk = 0.28. Upon further in-
crease of qk the dispersion exhibits a steep increase, and reaches the zone boundary
of the extended zone scheme, qk = 1.0, around ≈8.5 meV. Notice, that the disper-
sion in the perpendicular direction [1 0 0], well describable by the simple dispersion
relation eq. 5.15 derived for the A-type arrangement, extends to similar energies.
There is also a splitting of the magnon frequencies observable along b, and the
second branch progresses up to ≈ 6 meV, again comparable with the dispersion
along a.
For the quantitative analysis of the data we proceed using the same systematic as

above, i. e. treating the Tb crystal-�eld excitation hampering the identi�cation of
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5 Magnetic excitations in multiferroic TbMnO3

the spin-wave signal with greatest care. In addition to the enhanced experimental
resolution, we have also applied a longitudinal polarization analysis to resolve the
di�erent magnon contributions in the region qk ≤ 0.28. The polarized data were
collected at the IN14 spectrometer using similar experimental conditions as in the
PANDA measurement. Concerning the de�nition of the coordinate system for
the spin space we use the usual convention: x̂||Q, ŷ⊥Q and within, and ẑ⊥Q
and perpendicular to the scattering plane, which was chosen to be parallel to the
spiral-plane bc.
An example of how the combination of unpolarized and polarized techniques

enables us to deconvolute the observed spectrum into the di�erent contributions
is given in Fig. 5.24b. With the high �ux of the PANDA instrument two magnon
excitations are easily detectable around 1.5 meV and 3.0 meV. The polarization
analysis, however, reveals that the �rst signal is composed of two distinct ex-
citations with di�erent character: One is polarized within the spiral plane at
~ω|| = 0.98(4) meV, while the second is polarized perpendicular with energy
~ω⊥1 = 1.69(9) meV. The third mode ~ω⊥2 = 2.83(9) meV is also observed in
the S⊥-channel, and the three di�erent branches obviously have to be associated
with the sliding and the two orthogonal modes of the spiral structure introduced
in the discussion of the zone center spectrum. All three modes can be followed
starting from the magnetic zone center at qk = 0.28 to the A-type position with
qk = 0, and the estimated dispersion of the di�erent branches is superimposed onto
the intensity mapping in Fig. 5.24b. All modes exhibit a comparable dispersion.
In the outward direction from qk = 0.28 to qk = 1.0, where the intensity mapping

in Fig. 5.24 reveals a steep increase of the magnon frequencies, we have to rely
only on the unpolarized data, as the polarization analysis at higher energies is not
possible at the IN14 spectrometer. A representative example of the analysis for
this region is shown in Fig. 5.24c, providing the decomposition of the spectrum
at Q = (0 1.0 1), i. e. qk = 1. The inelastic intensity appears split throughout
the extended magnetic zone, and assuming two di�erent magnon contributions in
addition to the CEF excitations the observed spectrum is described reasonably
well, yielding for qk = 1.0 the spin-wave frequencies ~ω1 = 5.7(4) meV and ~ω2 =
8.3(2) meV.16 The dispersion of these two modes can be followed in the entire
region 0.28 ≤ qk ≤ 1.0. A third magnetic mode, however, can not be resolved
based on the unpolarized data, most likely due to the strong overlap of the sliding
and the lowest orthogonal mode. The acquired dispersion is also superimposed
onto the contour map in Fig. 5.24a, providing hence the full magnon dispersion
along [0 1 0] for the FE spiral phase at T = 17 K.
The shape of the observed dispersion resembles very much the properties of

the empirical spin-wave calculation eq. 5.17. All magnon branches exhibit a local

16As usual, the parameters describing the Tb-CEF were not allowed to vary during the re�ne-
ment of the data.
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5.3 Spin-wave dispersion in TbMnO3

minimum in the spin-wave frequencies around qk = εb and a steep increase towards
qk = 1. Indeed, �tting the dispersion relation Eq. 5.17 to each of the observable
branches results in a reasonable description of the data, see the solid lines in
Fig. 5.24a.17 In the re�nement JFM and Λ are the only e�ective parameters � the
size of the magnetic frustration η is �xed by the value of the static modulation to
η = 0.78, and the shape of the dispersion is not sensible to the AFM exchange JAFM
� and the obtained values agree very well with those derived from the analysis of
the dispersion along b and c, e. g. for the higher-energy mode ~ω⊥2 we �nd here
JFM = 0.11(4) meV and Λ = 0.15(9) meV, which have to be compared with the
values reported in Tab. 5.5. Note, that the consistency in the description can
directly be extracted frow the raw data, as the maximum magnon frequency,
which is determined solely by JFM, is similar both along a and b.
The last point remaining in the discussion of the q-dependence of the magnetic

excitations is the dispersion along [0 1 0] in the paraelectric SDW phase. So, we
�nally present in Fig. 5.25 the analysis of the excitation spectrum along Q =
(0 qk 1) for T = 32 K. As the focus of the experiment at the IN14-spectrometer
with polarized neutrons was laid on the spiral phase, the analysis of the spin-
wave dispersion in the SDW phase has to be based entirely on unpolarized data.
However, from the discussion of the zone-center spectrum we already know that
without polarization analysis we can not resolve all the details of the spectrum,
but sum over the di�erent magnon branches � remember that we have identi�ed
four di�erent modes at the zone center for the SDW phase using polarization
analysis. Indeed, all spectra presented in 5.25a exhibit a very broad response,
which in analogy to the previous discussion tentatively can be modeled assuming
a Lorentzian-shaped mode at very low energies and a Gaussian-like excitation
at higher energies, but which does not properly take into account the complex
structure of the excitation spectrum, as revealed earlier.
Close to the magnetic zone center with 0 ≤ qk ≤ 0.4 all spectra are quite

comparable. We do not �nd a signi�cant change in the energy of the spin-wave
frequencies, and all data for qk ≤ 0.4 nearly collapse onto a single curve, in strong
contrast to the behavior in the spiral phase, see Fig. 5.25a,b. In the outward
direction with 0.4 ≤ qk ≤ 1.0, however, the data reveal a steep dispersion, this
time similar to the spiral phase. At qk = 0.5 the magnetic signal is shifted towards
higher energies and appears signi�cantly broadened, see Fig. 5.25e. The rapid
increase of the observed width towards qk = 0.5 already signals the enhancement
of the splitting of the magnon frequencies, and indeed, for larger values of qk ≥ 0.8
two di�erent magnetic modes can be resolved. At the A-type zone boundary
qk = 1.0 the spectrum is similar to that of the spiral phase, although the data
appear a bit scattered due to a lower statistic, Fig. 5.25c, and two distinct magnon

17A slight underestimation of the magnon energies at qk = 0 may be attributed to a more
complex magnetic anisotropy.
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Figure 5.25: Analysis of the spin-wave dispersion along b for T=32K Raw-
data scans at Q = (0 qk 1) and 0 ≤ qk ≤ 0.35 measured in the paraelectric SDW phase
at T = 32K at the PANDA spectrometer with Ef = 4.66 meV (a). Comparison of the
excitation spectra for T = 17K and 32K at qk = 0 (b), and qk = 1.0 (c). In (a)-(c) solid
represent �ts to the data as described in the text. Spin-wave dispersion along [0 1 0] in
the SDW phase at T = 32K derived from the data presented in (a)-(c). For comparison,
the dispersion in the FE phase at 17K is shown by the solid black lines, dashed lines are
included as guides to the eye (d). Estimated width (FWHM) of the magnon-signal (e).
Towards the gray-shaded region the estimated width of the magnon signal signi�cantly
increases, being the precursor of the splitting of the di�erent branches observable for
qk ≥ 0.8.

branches can be identi�ed centered at ~ω1 = 5.4(5) meV and ~ω2 = 8.6(1) meV.
The resulting spin-wave dispersion is presented in Fig. 5.25d, which also in-

cludes the dispersion for the ferroelectric spiral phase. The direct comparison
between both phases reveals, that close to zone boundary of the extended zone at
qk = 1.0 the spin-wave frequencies are hardly a�ected by the reorientation in the
static spin-structure � for short magnon wavelengths the spin-wave dispersion is
comparable in both phases. On the other side, however, at the long-wavelength
limit remarkable di�erences can be observed, as the resolved dispersion in the
SDW phase is essentially �at, in contrast to the spiral phase, which exhibits a
pronounced minimum in the spin-wave frequencies at q = kspiral. At this point
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the analysis of the magnon dispersion in the SDW has, however, to be treated very
carefully: Especially for low energies the full complexity of the spin-wave spectrum
as revealed earlier using polarized neutrons can not be resolved using unpolarized
neutrons. Whether the di�erent modes possess a signi�cant q-dependence in the
low energy regime or not can not be answered with the existing data. A better
understanding of the di�erent behavior in the low q-regime above and below TFE

would, however, require further experimental work and a detailed theoretical in-
vestigation. We may, however, conclude that on a length scale well shorter than
the wavelength of the magnetic modulation the magnetic correlations are compa-
rable for the SDW and the spiral ordering, and hence are the dynamics at large
q. The spiral ordering, however, signi�cantly alters especially the magnetic cor-
relations on a larger length scale, and the changes in the static spin-correlations
are expected to be resumed in the spin dynamics for |q| → 0.

5.4 Conclusions

We presented a detailed analysis of the spin dynamics in the multiferroic com-
pound TbMnO3, including the identi�cation of the di�erent spin-wave modes in
the two incommensurable phases, the longitudinally modulated SDW and the fer-
roelectric phase with cycloidic order, as well as the temperature, momentum and
�eld dependence of the di�erent modes.
The dispersion of the magnetic excitations is discussed along all three or-

thorhombic axes for two selected temperatures above and below the ferroelectric
transition at TFE. In the ac-plane, perpendicular to the magnetic modulation, the
observed spin-wave dispersion is well comparable with those of the parent com-
pound LaMnO3 with a less distorted structure. Describing the observed data using
a semi-empirical model we derive the strength of the nearest-neighbor exchange
integrals. The AFM coupling JAFM is similar for both LaMnO3 and TbMnO3. The
FM exchange JFM in the planes is, in contrast, signi�cantly reduced in the case of
TbMnO3, and it is shown that the strength of JFM controls the magnetic transition
temperature in the series of rare-earth manganites RMnO3. The magnon disper-
sion parallel to the incommensurable propagation vector ||b is strongly a�ected by
the AFM next-nearest neighbor exchange JNN competing with JFM; for a strong
magnetic frustration the commensurable A-type arrangement is destabilized and
the magnon dispersion develops a local minimum. From the magnetic incommen-
surability and the observed position of the minimum in the spin-wave dispersion
we �nally deduce that the AFM next-nearest neighbor exchange is nearly com-
parable with the FM nearest-neighbor coupling and conclude that TbMnO3 is
magnetically heavily frustrated.
Using unpolarized, as well as polarized techniques we have shown, that in the

FE spiral phase the excitation spectrum at the magnetic zone center consists of
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three di�erent branches. In consistence with the recent literature [253] we identify
the di�erent characters of the modes. The branch lowest in energy corresponds to
the phason mode of the spiral, while the two other modes represent the twisting
of the spiral plane. The comparison with IR data [255] furthermore allows to
identify both modes as new collective excitations predicted to exist in magnetic
ferroelectrics: hybridized magnon-phonon vibrations, or electromagnons.
Upon heating into the paraelectric SDW phase we �nd a drastic change of the

excitation spectrum with the spiral-to-SDW transition. In the SDW phase four
di�erent magnon contributions can be identi�ed experimentally, and following our
previous discussion we attribute two of the di�erent modes to the collinear rotation
of the spin density wave around a and c. The other two modes are ascribed to the
transformation of the SDW into a spiral ordering. Both modes are predicted to
couple to an alternating electric �eld even in the paraelectric regime of the phase
diagram, and one of these mode, the one which transforms the SDW ordering into
the proper magnetic spiral con�ned to the bc-plane, is identi�ed as the magnetic
soft mode of the ferroelectric transition, which condenses across the FE phase
transition.
The strong coupling of ferroelectricity and magnetism in TbMnO3 allows to

�op the direction of the electric polarization by 90◦ by an external magnetic �eld
[6]. Following the di�erent theoretical approaches this e�ect originates in the
�op of the rotation axis of the magnetic spiral [13], a prediction, which, however,
remains to be tested by experiment. The response of the excitation spectrum to an
applied �eld supports this interpretation, as we �nd a pronounced change in the
spectrum with the �rst order transition at Hc. The high-�eld spectrum thereby
consists again of three di�erent modes, similar to the spectrum of the zero-�eld
spiral phase, but the polarization pattern of the di�erent modes is changed by
90◦, providing the �rst experimental evidence for the predicted �op of the spiral
plane.

170



6 Summary

In this thesis we studied the magnetic excitation spectrum of three di�erent
manganese oxides with complex magnetic ordering by means of inelastic neu-
tron scattering. Two of the three compounds under investigation, LaSrMnO4 and
La1/2Sr3/2MnO4, are structurally closely related, but correspond to di�erent con-
centrations of charge carriers. Two-dimensional LaSrMnO4 is electronically un-
doped and the physical properties are determined by a close correlation of orbital
and magnetic degrees of freedom, whereas the doped system La1/2Sr3/2MnO4 is
well known to exhibit a cooperative ordering of charges, orbitals, and spins, typi-
cal of many di�erent manganites with a rational fraction of charge carriers. The
third compound under investigation, orthorhombic TbMnO3, is one of the pro-
totypical examples for the emerging class of multiferroic oxides with pronounced
magnetoelectric coupling, which recently have attracted a lot of interest.
The magnetic properties of undoped LaSrMnO4 reveal some unusual features

at low temperatures, which are not consistent with the widely accepted simple
antiferromagnetic G-type ordering proposed for this system, see e. g. Ref. [7]: The
macroscopic susceptibility proves a non-vanishing magnetization in modest mag-
netic �eld for T → 0 K [43], and a previous analysis of the spin-wave excitation
spectrum of the ordered state �nds three di�erent excitation branches [46]. The
revision of the excitation spectrum using polarized neutrons and the application
of strong magnetic �elds unambiguously proves the magnetic origin of all three
modes. The observed behavior of one of the three branches agrees with the pre-
dictions of linear spin-wave theory; it possesses a transversal character, exhibits
a pronounced dispersion, and splits in a magnetic �eld along the magnetic easy
axis. This branch is the conventional magnon associated with the G-type antifer-
romagnetic ordering.
The two additional modes are shown to be polarized within the MnO2-planes of

the layered structure, similar to the spin-wave mode, but they do not reveal a sig-
ni�cant q-dependence, and an unusual �eld dependence connects both modes with
the existence of ferromagnetic domains uncovered by the analysis of the macro-
scopic susceptibility. Similarities with recent observations in perovskite mangan-
ites [71] lead to the conclusion that these two localized modes correspond to the
magnetic excitations within small ferromagnetic polarons embedded in the anti-
ferromagnetic matrix. The clusters are formed as a response to the in�uence of
quenched disorder in the layered structure, and they are directly correlated with
the unusual excitation spectrum and with the observed anomalies in the magnetic
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susceptibility.
The hole-doped system La1/2Sr3/2MnO4 with an equal ratio of three- and four-

valent Mn-sites is well known for its stable ordering of charges, orbitals, and spins.
However, although predicted 50 years ago, and despite its enormous relevance
for the CMR-e�ect in perovskite manganites, the nature of the ordered state is
still discussed controversially, and even the ground-state properties are not well
established today. Our analysis of the spin-wave excitations in the ordered state
at low temperatures is in excellent agreement with one of two contrasting models,
namely the classical Goodenough model characterized by an AFM alignment of
FM zig-zag chains [8], and rejects the second proposal containing tightly bound
magnetic dimers [9]. The magnon dispersion is �at perpendicular to the zig-zag
chains and very pronounced along the chains, directly mirroring the dominant
magnetic exchange within the zig-zag chains: The complex magnetic arrangement
has to be considered as a weak AFM coupling of stable FM elements.
This interpretation is strongly supported by the thermal evolution of the mag-

netic state. The analysis of the di�use magnetic scattering in the paramagnetic
state above the CE transition at TN �nds anisotropic magnetic scattering, which is
associated with the existence of one-dimensional zig-zag fragments above TN, and
the magnetic phase transition at TN corresponds to the melting of the AFM or-
dering of stable FM zig-zag fragments. Above TN, and especially close the charge-
and orbital-ordering transition at higher temperatures, the short-range CE-type
correlations furthermore compete with isotropic ferromagnetic correlations, which
dominate for TCO < T . The disordered phase above TCO is characterized by the
existence of small isotropic ferromagnetic clusters, highlighting the close connect-
ing of the charge ordered and FM states, which seems the key to the quantitative
understanding of the CMR-e�ect.
The competition of ferromagnetic and antiferromagnetic CE-type correla-

tions can decisively be in�uenced by doping, and the ordered states exhibit an
anisotropic response to the in�uence of additional electrons or holes. Electron
doping destabilizes the charge-ordered state, thereby enhancing the competition
between ferromagnetic and CE-type antiferromagnetic correlations: FM clusters
persist in the entire temperature region below 300K, and the ground-state prop-
erties of electron-doped La0.6Sr1.4MnO4 are interpreted on the basis of a heteroge-
nous mixture of CE and FM regions coexisting on a microscopic scale. In contrast,
the ordered state is robust against the doping of additional holes. For x > 0.5 the
orbital and the magnetic ordering is incommensurate, and the analysis of the mag-
netic correlations in hole-doped La0.4Sr1.6MnO4 suggests a picture in which the
additional holes replace some of the three-valent sites to form a regular arrange-
ment of electron-poor stripes oriented perpendicular to the FM zig-zag chains.
The detailed investigation of the magnetic correlations for three di�erent com-

pounds of the La1−xSr1+xMnO4-series with x = 0.4, 0.5, 0.6 �nally results in the
construction of the orbital and magnetic phase diagram for the series of single-
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layered manganites around half doping. The topography of the phase diagram is
well comparable with those of the related perovskite manganites in this doping
region: The anisotropic response with respect to hole or electron doping has to be
considered as an intrinsic feature of the charge- and orbital-ordered state.

TbMnO3 is the prototypical compound for the new class of multiferroic oxides
with close coupling between electric polarization and a non-collinear spiral-like
magnetic order [6, 12, 13]. In the ferroelectric phase three di�erent magnetic
excitations can be identi�ed by inelastic neutron scattering using polarized neu-
trons, and the comparison with theoretical considerations allows to ascribe the
modes to the di�erent excitations in a cycloidic structure. Furthermore, in sys-
tems with strong magnetoelectric coupling new collective excitations, considered
as hybridized magnon-phonon oscillations, are predicted to exist for a long time
[11]. The combination of the neutron with recent IR-spectroscopy results [255]
permits the �rst unambiguous experimental veri�cation of such electromagnons
in a multiferroic compound, which are furthermore extensively characterized by
studying the momentum, temperature, and �eld dependence.
Considering the q-dependence of the magnetic excitations, the observed disper-

sion is well comparable with those of commensurate LaMnO3 for q||ac, whereas
the magnetic frustration along b considerably a�ects the dispersion of the spin-
wave excitation in this direction. Using linear spin-wave theory we derive the
strength of all relevant magnetic interaction parameters for TbMnO3. The anti-
ferromagnetic exchange between nearest neighbors JAFM is comparable with that
of LaMnO3, in contrast to the ferromagnetic exchange, which is considerably re-
duced. The antiferromagnetic next-nearest neighbor exchange JNN competing
with JFM along b, which is responsible for the in the incommensurate magnetic
structure, is rather strong, JNN = 0.78JFM, and we conclude that TbMnO3 is a
heavily frustrated magnetic system.
In the paramagnetic phase TFE < T < TN the magnetic structure consists of a

longitudinal magnetic modulation. The spin-wave spectrum contains six distinct
branches, but the use of polarized neutrons admits to unravel the two modes
transforming the SDW structure into a magnetic spiral con�ned either in the bc-
plane with electric polarization Pc, or in the ab-plane and Pa. These two modes
are expected to hybridize with a phonon and couple to the electric susceptibility,
even in the paraelectric phase, as is already con�rmed by comparing with IR
spectroscopy for the mode polarized along a [255].
The strong magnetoelectric e�ects observed in TbMnO3 are assumed to base

upon the response of the spiral structure to an external �eld. A magnetic �eld
is predicted to induce a spin �op from a bc- to an ab-spiral structure [13], corre-
sponding to the reported �op of the electric polarization from Pc to Pa for H||a, b
[6]. The observed �eld dependence of the magnetic excitations in the ferroelectric
phase strongly supports this interpretation, as the excitation spectrum of the high-
�eld phase is comparable with the zero-�eld spectrum, but with all polarization
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6 Summary

patterns rotated by 90◦, yielding the �rst experimental support for the predicted
origin of the gigantic magnetoelectric e�ects observed in TbMnO3.

174



List of Figures

2.1 |Q|-dependence of magnetic scattering . . . . . . . . . . . . . . . . . . . 10
2.2 Spin waves in the FM Heisenberg model . . . . . . . . . . . . . . . . . . 11
2.3 General layout of a TAS-spectrometer . . . . . . . . . . . . . . . . . . . 15
2.4 Cold triple-axis spectrometer 4F . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Double-focusing PG monochromator at the PANDA spectrometer . . . . 17
2.6 The resolution function of a TAS instrument . . . . . . . . . . . . . . . . 20

3.1 Crystal structure of single-layered manganites . . . . . . . . . . . . . . . 22
3.2 Electronic phase diagram of La1−xSr1+xMnO4 . . . . . . . . . . . . . . . 23
3.3 Magnetic G-type ordering in LaSrMnO4 . . . . . . . . . . . . . . . . . . 25
3.4 Macroscopic magnetization of LaSrMnO4 . . . . . . . . . . . . . . . . . 26
3.5 Spin-wave dispersion in LaSrMnO4 . . . . . . . . . . . . . . . . . . . . . 28
3.6 Polarization analysis of the magnetic excitation spectrum at q=0 . . . . 31
3.7 Field dependence of the magnetic excitations in LaSrMnO4 (I.) . . . . . 34
3.8 Field dependence of the magnetic excitations in LaSrMnO4 (II.) . . . . . 35
3.9 Orbital polaron in LaSrMnO4 . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Goodenough model of the COO state . . . . . . . . . . . . . . . . . . . . 44
4.2 Zener polaron ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Analysis of the superstructures in the COO state . . . . . . . . . . . . . 49
4.4 Phonon dispersion in La1/2Sr3/2MnO4 . . . . . . . . . . . . . . . . . . . . 53
4.5 Anisotropy gap at the magnetic zone center . . . . . . . . . . . . . . . . 55
4.6 Raw-data scans to determine the magnon dispersion . . . . . . . . . . . 57
4.7 Magnon dispersion in La1/2Sr3/2MnO4 . . . . . . . . . . . . . . . . . . . . 58
4.8 Simulated neutron intensity . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Di�use magnetic scattering in La1/2Sr3/2MnO4 . . . . . . . . . . . . . . . 65
4.10 Thermal evolution of the magnetic correlations ⊥ chains . . . . . . . . . 67
4.11 Thermal evolution of the magnetic correlations || chains . . . . . . . . . 68
4.12 Development of the magnetic correlations in La1/2Sr3/2MnO4 . . . . . . . 69
4.13 Magnetic correlations along the c-axis . . . . . . . . . . . . . . . . . . . 72
4.14 Temperature dependence of some macroscopic quantities . . . . . . . . . 73
4.15 Real-space evolution of the magnetic correlations . . . . . . . . . . . . . 76
4.16 Thermal evolution of the magnetic �uctuations around a CE-type position 78
4.17 Evolution of the FM �uctuations . . . . . . . . . . . . . . . . . . . . . . 80
4.18 q-dependence of the FM �uctuations at T=250K . . . . . . . . . . . . . 81

175



List of Figures

4.19 COO correlations in La0.6Sr1.4MnO4 . . . . . . . . . . . . . . . . . . . . 85
4.20 Elastic magnetic scattering in La0.6Sr1.4MnO4 . . . . . . . . . . . . . . . 86
4.21 Temperature dependence of the CE-type correlations ||chains . . . . . . 88
4.22 Thermal evolution of the di�use scattering ⊥chains . . . . . . . . . . . . 89
4.23 Development of the magnetic correlations in La0.6Sr1.4MnO4 . . . . . . . 91
4.24 Magnetic correlations along the c-axis . . . . . . . . . . . . . . . . . . . 92
4.25 Macroscopic magnetization in La0.6Sr1.4MnO4 . . . . . . . . . . . . . . . 93
4.26 Field dependence of the FM scattering . . . . . . . . . . . . . . . . . . . 95
4.27 Field dependence of the AFM CE-type scattering . . . . . . . . . . . . . 96
4.28 Simulation of the evolution of the CE order upon electron doping . . . . 99
4.29 Temperature dependence of the magnetic correlations for x=0.6 . . . . . 102
4.30 Stripe ordering of the excess Mn4+ in La0.4Sr1.6MnO4 . . . . . . . . . . 104
4.31 Raw-data scans at �nite energies for La0.4Sr1.6MnO4 (I.) . . . . . . . . . 107
4.32 Raw-data scans at �nite energies for La0.4Sr1.6MnO4 (II.) . . . . . . . . 108
4.33 Magnon dispersion in La0.4Sr1.6MnO4 . . . . . . . . . . . . . . . . . . . 110
4.34 Revised phase diagram of single-layered La1−xSr1+xMnO4 . . . . . . . . 112

5.1 Crystal structure of TbMnO3 . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Phase diagram of the rare-earth manganites RMnO3 . . . . . . . . . . . 118
5.3 Magnetoelectric phase diagram of TbMnO3 . . . . . . . . . . . . . . . . 120
5.4 Magnetic structure of TbMnO3 . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Tb crystal-�eld excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Magnetic excitation spectrum in the spiral phase at Q = (0 0.275 1) . . . 127
5.7 High-resolution spectrum at Q = (0 0.275 1) . . . . . . . . . . . . . . . . 129
5.8 Polarization analysis of the magnon spectrum in the spiral phase . . . . 130
5.9 Magnetic excitations in a spiral magnet . . . . . . . . . . . . . . . . . . 133
5.10 Dielectric function of TbMnO3 in the THz regime . . . . . . . . . . . . . 135
5.11 Spin-wave spectrum at T = 32K and comparison with spiral phase . . . 137
5.12 Polarization analysis of the magnon spectrum in the SDW phase . . . . 138
5.13 Magnetic excitations in a SDW structure . . . . . . . . . . . . . . . . . . 141
5.14 Temperature dependence of the zone-center spectrum . . . . . . . . . . . 144
5.15 Field dependence of the magnetic modulation . . . . . . . . . . . . . . . 147
5.16 Field dependence the magnetic excitation spectrum . . . . . . . . . . . . 149
5.17 Q-dependence of the spectrum at H = 12T . . . . . . . . . . . . . . . . 151
5.18 Analysis of the spin-wave dispersion (I.) . . . . . . . . . . . . . . . . . . 155
5.19 Analysis of the spin-wave dispersion (II.) . . . . . . . . . . . . . . . . . . 157
5.20 Analysis of the spin-wave dispersion (III.) . . . . . . . . . . . . . . . . . 158
5.21 Spin-wave dispersion in the ac-plane . . . . . . . . . . . . . . . . . . . . 160
5.22 Scaling of TN and JFM in the RMnO3-series . . . . . . . . . . . . . . . . 162
5.23 Magnon dispersion for various values of the magnetic frustration . . . . 164
5.24 Analysis of the spin-wave dispersion along b for T=17K . . . . . . . . . 165
5.25 Analysis of the spin-wave dispersion along b for T=32K . . . . . . . . . 168

176



Glossary of Symbols

Common symbols throughout all chapters

ki wave vector of the neutron before the scattering process

kf wave vector of the neutron after the scattering process

R, r point in the direct lattice of a crystal

τ point in the reciprocal lattice of a crystal

Q point in reciprocal space

q point in the �rst Brillouin zone of reciprocal space

S(Q, ω) scattering function in neutron scattering experiments

TN Néel temperature

ISF/NSF intensity in the spin �ip / non-spin �ip channel in experiments
using polarized neutrons

Pi polarization of the neutron before the scattering process

Pf polarization of the neutron after the scattering process

Chap. 3: Magnetic excitation spectrum of single-layered LaSrMnO4

JAFM antiferromagnetic coupling between neighboring sites within the
MnO2-layers

Λ single-ion anisotropy in the antiferromagnetic ordered phase

ωsw spin-wave excitation related with the G-type ordering

ωcl magnetic excitation correlated with �nite size clusters

Chap. 4: Spin-wave excitations in charge-ordered manganites

COO Charge and orbital ordered state in half doped manganites

CE model classical model for the charge ordering in half-doped manganites
predicted by Goodenough
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Glossary of Symbols

ZP model alternative Zener polaron model for charge ordering in half-
doped manganites

kCO propagation vector of charge ordering

kOO propagation vector of orbital ordering

kMn3+ propagation vector of the magnetic ordering of the Mn3+ spins

kMn4+ propagation vector of the magnetic ordering of the Mn4+ spins

JFM FM interaction between adjacent sites within the zig-zag chains

JAFM AFM interaction between adjacent sites on di�erent zig-zag
chains

JFM,2 FM interaction between cornering Mn4+-sites of the zig-zag
chains

Jiso isotropic FM nearest neighbor exchange

QOO scattering vector related to orbital ordering

QCO scattering vector related to charge ordering

Qmag scattering vector related to AFM correlations

QFM scattering vector related to ferromagnetic correlations

ξ|| in-plane correlation length parallel to the zig-zag chains

ξ⊥ in-plane correlation length perpendicular to the zig-zag chains

ξc magnetic correlation length along the c-axis

M⊥ macroscopic magnetization perpendicular to the MnO2-planes

M|| macroscopic magnetization parallel to the MnO2-planes

ne eg-electron density

εOO incommensurability of the orbital ordering in the overdoped
regime

εSO incommensurability of the magnetic ordering

Chap. 5: Magnetic excitations in multiferroic TbMnO3

P electric polarization

M magnetization

TFE ferroelectric transition temperature

Tspiral transition temperature of the spiral ordering

kMn propagation vector of the magnetic ordering of the Mn-
subsystem

kTb propagation vector of the magnetic ordering of the Tb-subsystem
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εb incommensurability of the magnetic modulation of the Mn-
subsystem

ω⊥ spin-wave excitation polarized perpendicular to the spiral plane

ω‖ spin-wave excitation polarized parallel to the spiral plane

ωC spin-wave excitation in the high-�eld commensurable phase

JFM FM exchange interaction between nearest neighbors in the ab-
plane

JNN AFM exchange interaction between next-nearest neighbors along
b-direction
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Kurzzusammenfassung

Der Schwerpunkt der vorliegenden Arbeit umfasst die Untersuchung des magne-
tischen Anregungsspektrums dreier unterschiedlicher Manganoxide mittels inelas-
tischer Neutronenstreuung.
Die Eigenschaften von LaSrMnO4 sind bestimmt durch das für Manganate typ-

ische komplexe Wechselspiel zwischen orbitalen und Ladungsfreiheitsgraden mit
dem Gitter, und der Grundzustand von LaSrMnO4 weist einige äuÿerst ungewöhn-
liche Eigenschaften auf. Die Analyse des magnetischen Anregungsspektrums legt
einen inhomogenen Grundzustand nahe, in dem ferromagnetische orbitale Cluster
oder Polaronen in einen antiferromagnetisch geordneten Hintergrund eingebettet
sind.
Das dotierte System La1/2Sr3/2MnO4 zeichnet sich durch eine sehr stabile

ladungsgeordnete Phase aus, die zur Zeit in der Literatur kontrovers diskutiert
wird. Auf Grundlage der beobachteten Spinwellendispersion �nden wir eine exzel-
lente Übereinstimmung mit einem klassischen Ansatz zur Beschreibung des geord-
neten Zustandes, während ein alternativer Zugang eindeutig ausgeschlossen wer-
den kann. Der starke Unterschied zwischen ferro- und antiferromagnetischen Aus-
tauschenergien führt zu dem Schluss, dass der geordnete Zustand als eine schwache
AFM-Kopplung stabiler FM-Ketten zu interpretieren ist. Diese Folgerung wird
weiterhin belegt durch die thermische Entwicklung des geordneten Zustandes, der
oberhalb des Néel-Übergangs mit einer ferromagnetischen Phase konkurriert, und
durch die Dotierungsabhängigkeit, die ein stark unterschiedliches Verhalten im
Bezug auf zusätzliche Elektronen oder Löcher aufweist.
Im Perowskit TbMnO3 ist das Auftreten einer spontanen elektrischen Polari-

sation eng an eine komplexe magnetische Struktur gekoppelt. Durch eine genaue
Analyse der verschiedenen magnetischen Anregungen können die mit dem fer-
roelektrischen Übergang korrelierten magnetischen Anregungen identi�ziert wer-
den, die auf Grund der starken magnetoelektrischen Kopplung als eine neue Art
kollektiver Anregungen � stark gemischte Magnon-Phonon-Anregungen � zu in-
terpretieren sind. Die detaillierte Untersuchung der Impuls-, Temperatur- und
Feldabhängigkeit dieser Anregungen ist in Übereinstimmung mit verschiedenen
Vorhersagen aktueller Theorien zur Erklärung der ungewöhnlich starken magneto-
elektrischen Kopplung in der Familie multiferroischer Oxide.
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Abstract

This thesis deals with magnetic excitations in three di�erent Manganese oxides,
single-layered LaSrMnO4, charge- and orbital-ordered La1/2Sr3/2MnO4, and multi-
ferroic TbMnO3, which are studied by means of inelastic neutron scattering.
The properties of the �rst system, LaSrMnO4, are governed by the complex

interplay of orbital, spin, and lattice degrees of freedom typical for the physics
of manganites. The magnetic low-temperature behavior is quite unusual, and
the comprehensive analysis of the spin-wave spectrum of LaSrMnO4 suggests a
heterogenous ground state with ferromagnetic orbital polarons embedded in an
antiferromagnetic background.
The doped system La1/2Sr3/2MnO4 exhibits a stable charge- and orbital-ordered

state, which today is discussed very controversially, as it is of great relevance for
the colossal increase of electric conductivity at the metal-insulator transition in
perovskite manganites. Analyzing the spin-wave dispersion of the ordered state,
we �nd an excellent agreement with classical predictions by Goodenough and
reject a recent alternative proposal. The di�erent strength of the ferromagnetic
and antiferromagnetic exchange in the CE-type ordering leads to the conclusion
that the magnetic state has to be considered as a weak AFM coupling of stable FM
elements. This thesis is further supported by the thermal evolution of the ordered
state, revealing anisotropic correlations and the close competition of FM and AFM
correlations above the Néel transition, as well as by the doping dependence of the
charge- and orbital-ordered state, which is interpreted on the basis of a di�erent
response of the magnetic system with respect to additional electrons or holes.
In the orthorhombic perovskite TbMnO3 the electric polarization is closely cou-

pled to the magnetic degrees of freedom via a complex, non-collinear magnetic
ordering. Precisely characterizing the di�erent magnon excitations allows to iden-
tify all relevant modes of the ferroelectric phase, which for systems with strong
electromagnetic coupling were predicted to contain a new type of collective exci-
tations � strongly hybridized phonon-magnon vibrations � which have not been
observed experimentally before. The temperature and momentum dependence, as
well as the response of the di�erent modes to an external magnetic �eld, is re-
ported in detail, and the results strengthen recent theoretical concepts explaining
the strong magnetoelectric coupling in the fascinating class of multiferroic oxides.
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