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ABSTRACT 

 
The circadian clock generates biological rhythms that have an approximate period-length of 24 h. 

This endogenous timing mechanism is integrated in many signaling pathways and facilitates an 

optimal phase-relationship between internal and external rhythms. For example, the expression of 

photosynthesis genes is reflected in a rhythm that anticipates the environmental light-dark cycle. 

The circadian-clock system in plants has been investigated at the molecular level, and similar to 

other lineages, the plant clock has been found to consist of transcription/translation feedback 

loops. Currently, the circadian network is described to contain three interlocked feedback loops, 

and the CCA1/LHY-TOC1 loop is core within this feedback network. CCA1 and LHY are two 

MYB transcription factors that function in the morning and repress the expression of TOC1. 

Accordingly, TOC1 expression is delayed and peaks in the evening, and TOC1 function leads to 

subsequent induction of CCA1/LHY expression in the end of the night. How the rest of the 

components of the circadian system are connected to the property of the central oscillator 

remains unclear. 

 In this thesis, two components of the circadian system, ELF4 and ELF3, were 

investigated. Both ELF4 and ELF3 are believed to function as inputs to the CCA1/LHY-TOC1 

loop and their loss-of-function leads to arrhythmic behavior of the clock. ELF4 and ELF3 are 

unrelated in sequence, and both genes contain no evolutionarily conserved domains with known 

function. To this end, reverse-genetic approaches were applied in order to characterize the 

structure-function relationship of the ELF4- and ELF3-encoded products. In addition, the ELF4 

and ELF3 circadian activities were related to each other, and both sequences were characterized 

phylogenetically. 

 The comparison of members in the plant-specific ELF4 family revealed that two major 

subclades (ELF4 and EFL) are present in the phylogeny. The ELF4 consensus consists of a single 

domain, which is predicted to fold into a conserved alpha-helical structure. Accordingly, it was 

hypothesized that changes in this structure would correlate with ELF4 function. This was proven 

in two ways. First, ELF4-related sequences outside the ELF4 subclade were insufficient in 

complementation of the arrhythmic phenotype of the elf4 null mutant. Second, the effects of 

point mutations affecting ELF4 structural conservation correlate with the severity of the mutant 
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phenotype. In addition, analysis of efl circadian phenotypes suggests roles for the EFL genes in 

fine-tuning of the circadian oscillator.  

 The analysis of the elf4 point mutations concluded that ELF4 function is tightly 

connected to the light-induced expression of CCA1. This result confirmed previous findings for 

ELF4, and the relationship between ELF4 and the CCA1/LHY-TOC1 loop was further 

investigated by analyzing the effects of ELF4-overexpression on circadian parameters; this was 

compared to new studies on the elf4 loss-of-function mutation. It was found that there is a dose-

effect of ELF4 on clock period, both at the molecular level and in plant physiological 

performance. Additionally, rhythmic expression of ELF4 is not required for sustained clock 

activity under constant conditions, and ELF4 has a critical role in clock entrainment to the light-

Zeitgeber, possibly via a gating function. 

 Epistatis analysis of ELF4 and ELF3 defined ELF3 as the most upstream regulator of 

light input to the central oscillator. ELF3 function was further analyzed by characterization of a 

newly found allele termed elf3-G12. This mutant was found to display subtle and clock-specific 

phenotypes. Expression analyses revealed that ELF3 misexpression confers phase shift of central 

clock genes and ELF3 is likely to be most associated with TOC1 function under free-running 

conditions. Furthermore, it was determined that the phenotype of the elf3-G12 mutant is related 

to PHYB-interaction, supporting the position of ELF3 at the convergence point of light 

transduction and input to the circadian clock.
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ZUSAMMENFASSUNG 

 
Der circadiane Rhythmus ist ein biologischer Rhythmus mit einer Länge von 24 Stunden. Diese 

endogene Uhr spielt eine wichtige Rolle in vielen Signalwegen und erleichtert die optimale 

Abstimmung zwischen internen und externen Rhythmen. So spiegelt sich zum Beispiel die 

Expression von Genen, die in der Photosynthese eine Rolle spielen, im Hell/Dunkel Rhythmus 

der Umwelt wieder. Der circadiane Rhythmus in Pflanzen wurde auf molekularer Ebene 

untersucht und es wurden, wie auch schon bei anderen Organismen, Rückkopplungs-

mechanismen sowohl auf transkriptioneller, als auch auf translationeller Ebene gefunden. 

 Gegenwärtig sind drei dieser Rückkopplungsmechanismen des circadianen Rhythmus 

beschrieben. Für den CCA1/LHY-TOC1 Mechanismus wurde dabei eine zentrale Rolle 

beschrieben. Die beiden Gene CCA1 und LHY kodieren für MYB Transkriptionsfaktoren, die am 

Morgen die Expression des Gens TOC1 suppremieren. Die TOC1 Expression tritt deshalb erst 

später auf und erreicht ihren Höhepunkt am Abend. Das TOC1 Protein wiederum induziert die 

Expression von CCA1 und LHY am Ende der Nacht. Es ist bisher nicht geklärt, wie die weiteren 

Komponenten des circadianen Systems mit diesem zentralen Oszillator interagieren. 

 In der vorliegenden Doktorarbeit wurden zwei Komponenten des circadianen Systems, 

ELF4 und ELF3, untersucht. Es wird davon ausgegangen, dass sowohl ELF4 als auch ELF3 

Funktionen innerhalb des CCA1/LHY-TOC1 Rückkopplungsmechanismus haben. Der Ausfall der 

jeweiligen Genaktivität in Verlustmutanten führt zu Störungen des circadianen Rhythmus. Die 

beiden Gene zeigen keine Verwandtschaft ihrer DNA-Sequenzen und enthalten keine 

konservierten Regionen, von denen sich eine Funktion ableiten ließe. Es wurden deshalb 

rückwärtsgerichtete genetische Ansätze gewählt, um die von ELF4 und ELF3 kodierten Proteine 

in Struktur/Funktionsstudien zu charakterisieren. Die Aktivitäten von ELF4 und ELF3 wurden 

miteinander verglichen und beide Sequenzen bezüglich ihrer Phylogenie untersucht. 

 Der phylogenetische Vergleich der Mitglieder der Pflanzen-spezifischen ELF4-Familie 

zeigte, dass zwei große Untergruppen (ELF4 and EFL) auftreten. Die Konsensussequenz von 

ELF4 bestand aus einer einzelnen Domäne, für die eine alpha-helicale Struktur vorausgesagt 

wurde. Es wurde angenommen, dass Änderungen in diesem konservierten Bereich einen Einfluss 

auf die ELF4-Funktion haben. Diese Annahme wurde in zwei Ansätzen bewiesen: Es konnte 

einerseits gezeigt werden, dass verwandte Sequenzen zu ELF4, die außerhalb der 
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phylogenetischen ELF4-Untergruppe lagen, nicht in der Lage waren, die Störungen des 

circadianen Rhythmus in elf4-Verlustmutanten zu komplementieren. Außerdem zeigte sich, dass 

Punktmutationen im konservierten Bereich von ELF4 den Phänotyp der Verlustmutante 

verändern. Je konservierter die mutierte Position war, desto stärker prägte sich der Phänotyp aus. 

Die Analyse von efl-Verlustmutanten bezüglich ihres circadianen Rhythmus zeigte, dass die EFL 

Gene wahrscheinlich eine Rolle bei der Feinjustierung des circadianen Oszillators spielt. 

 Aus der Analyse von elf4 Punktmutationen ließ sich schließen, dass die ELF4 Funktion 

eng verbunden ist mit der Licht-induzierten Expression des CCA1 Gens. Diese Ergebnisse 

bestätigten vorherige Ergebnisse. In anschließenden Experimenten wurde der Einfluss von ELF4 

auf den CCA1/LHY-TOC1 Rückkopplungsmechanismus näher analysiert. Es wurde untersucht, 

wie sich die Überexpression von ELF4 auf circadiane Parameter auswirkt. Diese Experimente 

wurden mit neuen Studien zur elf4 Verlustmutante verglichen. Es konnte beobachtet werden, 

dass es einen Dosiseffekt von ELF4-Aktivität auf die Periodendauer gibt. Dieser Einfluss auf den 

circadianen Rhythmus konnte sowohl auf molekularer, als auch auf pflanzenphysiologischer 

Ebene beobachtet werden. Es wurde außerdem gefunden, das rhythmische Expression von ELF4 

nicht notwendig ist, um einen normalen circadianen Rhythmus unter konstanten Bedingungen 

aufrecht zu erhalten. Weiterhin konnte gezeigt werden, dass ELF4 eine wichtige Rolle als 

Initiator der biologischen Uhr durch Licht-Zeitgeber hat. Vermutlich fungiert ELF4 als 

Taktgeber. 

 Analysen zur epistatischen Wechselwirkung von ELF4 und ELF3 zeigten, dass ELF3 der 

erste Regulator ist, der bei Licht den zentralen circadianen Oszillator beeinflusst. Die Funktion 

von ELF3 wurde mit einem neuen Allel, elf3-G12, näher analysiert. Diese Mutante zeigte einen 

schwachen und den circadianen Rhythmus betreffende Phänotypen. In Expressionsanalysen 

konnte gezeigt werden, das die Fehlexpression von ELF3 zu einer Phasenverzögerung von 

zentralen Genen des circadianen Rhythmus führt. Außerdem wurde gefunden, dass ELF3-

Aktivität wahrscheinlich mit der TOC1 Funktion unter “frei laufenden” Bedingungen assoziiert 

ist. Außerdem zeigte sich, dass der Phänotyp der er elf3-G12 Mutante mit der PHYB-Interaktion 

in Beziehung steht. Diese Beobachtung unterstützt die These, dass die Position von ELF3 am 

Konvergenzpunt der Lichttransduktion liegt und dadurch direkt auf den circardianen Rhythmus 

wirkt. 
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Diurnal signaling in Arabidopsis 

Rhythms in the diurnal environment 
The environmental light-dark cycle is the major factor that controls daily biological rhythms. 

Most organisms possess a biological clock mechanism, which facilitates anticipation of the daily 

changes in the environment. This chronobiological feature is called the circadian clock. 

Circadian is Latin for “about a day” and thereby relates to the 24-h period of the day-night cycle. 

The diurnal environment results mainly from the daily rotation of the Earth on its own axis. In 

addition, environmental changes occur with the seasons because of the Earth’s rotation around 

the Sun, and these variations in daylength (photoperiod) are apparent in regions at latitudes away 

from the Equator. 

 The beginning of chronobiology, to which circadian biology belongs, can be traced back 

to ancient times when the Greek poet Archilochus of Paros wrote “recognize which rhythms 

governs man” (reviewed in Bretzl, 1903). One of the first reports on plant circadian rhythms 

came from Androsthenes of Thasos, who lived in the age of Alexander the Great. Androsthenes 

recognized that the folding behavior (nyctinasty) of tamarind leaves is regulated by the light-dark 

cycle of the environment (reviewed in Bretzl, 1903). The first circadian experiment, however, 

was not performed until many hundreds of years later. In the 17th century, the French physicist 

and astronomer de Mairan reported that the daily leaf movements of the mimosa tree persisted in 

continuous darkness. Curiously, de Mairan also studied geomagnetism (aurora borealis), but 

ruled out a connection between magnetism and leaf rhythms, because he considered the magnetic 

material to be constant (reviewed in Halberg et al., 2001).  

 Plants, and many other organisms investigated to date, contain a circadian clock 

mechanism. This is crucial for optimal fitness. The circadian clock provides an internal estimate 

of external time and at least three properties define such an endogenous timekeeper. The first 

property is self-sustainability. This means that the clock keeps “ticking” under constant (free-

running) conditions. This continuity is peculiar because it is unclear what advantage it gives the 

plant under natural light-dark cycles. Under free-run, however, the period of the rhythm is 

divergent from the defined 24 h. This fact connects to the second clock property that the clock is 

able to reset itself by changes in the environment to adjust to the environmental photoperiod 

(“local” time). Resetting occurs most notably by the light-dark cycle, but also by daily cycling of 

ambient temperature. Finally, the circa 24-h rhythm of the clock is robust; the clock keeps a 

constant period even under different mean temperature regimes, a circadian feature termed 

temperature compensation. The ubiquitous presence of circadian clocks in nature indicates the 

biological advantage of an endogenous timing mechanism. In particular for plants, because plants 
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are immobile organisms, the internal clock is important for anticipation of certain environmental 

conditions, which for example means that the plant can prepare itself for sunrise instead of just 

acutely reacting when light comes on. 

 In addition to leaf movements, many other aspects of plant physiology were reported to 

exhibit circadian behavior, including the growth rate of the hypocotyl, the opening of stomata, 

and floral petal movements (Bunsow, 1960; Coulter and Hamner, 1964; Dowson-Day and Millar, 

1999; Engelmann et al., 1992; Jouve et al., 1998; Stalfelt, 1963). It follows that these 

physiological rhythms (outputs) originate from rhythms that originate at the molecular level. For 

example, this could be connected to the rhythmic metabolism of the plant. Every day the plant, 

being a phototrophic organism, has to harvest the light during the day and process the energy 

during the night. Accordingly, circadian-clock systems are today known to consist of similar 

molecular feedback-loop mechanisms across kingdoms, but amongst species, we find major 

variations in the nature of clock components, suggesting that clocks have arisen multiple times 

during evolution. As such, for example, results from bacterial and animal research have been of 

little help in elucidating the plant clock system at the molecular level.  

 It has been concluded that plant circadian clocks are distinct from clock systems in other 

lineages, reflecting for example the fact that plants have no central nervous system, as do 

animals. On the contrary, plants have evolved to have multiple clocks that can run independently 

within each organ and probably also within a given cell type (Gorton et al., 1989; Hall et al., 

2002; Mayer and Fischer, 1994; Michael et al., 2003; Thain et al., 2002). We are only in the 

beginning of our understanding of the complexity of the plant circadian system, but it is clear that 

light perception plays a very central role for the clock. In the following sections, the current 

knowledge of light signaling in plants in connection to the components of the Arabidopsis 

circadian system is reviewed.  

Matching internal and external rhythms in Arabidopsis development 
About a hundred years ago, it was observed that the length of the photoperiod influenced the 

flowering time of crops such as soybean and tobacco. More precisely it was found that soybean 

only flowers under short days and most tobacco varieties under long days (Garner and Allard, 

1920). This phenomenon, termed photoperiodism, was subsequently reported for all classes of 

higher organisms, and in most species photoperiodism described the seasonal timing of 

reproduction.  

 Floral induction in short-day plants was shown to be controlled by the length of the dark 

period and was prevented if light pulses were given during the night. Subsequent experiments 

with longer nights and multiple light pulses led to the conclusion that strong induction of 
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flowering occurs in a rhythmic and circadian fashion (Hamner, 1940). For example, using 

tridiurnal cycles (8L:64D) and applying light pulses during the dark period, it was shown that 

soybean flowering time is controlled in 24-h rhythmic intervals. That is, during the first 12 h of 

darkness, flowering was induced by light pulses, in the subsequent 12 h, flowering was inhibited, 

together forming a series of consecutive 12-h photophile and photophobe phases (Coulter and 

Hamner, 1964). These findings prompted the creation of two models explaining the mechanism 

of photoperiodism, the “external” and the “internal” coincidence models (Bunning, 1936). The 

external coincidence model states that the specific phase of two rhythms, an external and an 

internal, have to coincide to lead to induction, e.g. of flowering time. In the internal coincidence 

model both rhythms are endogenous and are only brought into same phase under inductive 

daylengths. Today, extensive research of the photoperiodic phenomenon in the temperate and 

facultative long-day plant Arabidopsis thaliana has concluded that the external coincidence 

model explains the photoperiodic induction of flowering of this species (Fig. 1.1), as has been 

found for the photoperiodic behavior of the majority of all other investigated species as well. 

Evidence for the internal coincidence model has only been found in insects and to some extent in 

rice, which is a short-day plant that is induced by a combination of internal and external 

coincidence of rhythms (dual coincidence) (Doi et al., 2004; Saunders, 2005). 

 The timing of flowering is only one well-known example of a physiological output of the 

circadian system. Much earlier in the plant life cycle, circadian control of growth is evident, for 

example, aspects of seedling photomorphogenesis (hypocotyl growth, circumnutation, shade 

avoidance), stomatal opening, and leaf movements are also clock-regulated processes (Dowson-

Day and Millar, 1999; Mullen et al., 2006; Schuster and Engelmann, 1997). This fact reflects a 

close connection of development and environmental cues and ensures the most favorable timings 

for plant growth, because the plant has the ability to anticipate day and season. Indeed, ecological 

studies confirm a positive correlation of clock properties (correct periodicity) and plant fitness 

(Dodd et al., 2005; Green et al., 2002; Johnson, 2005; Michael and McClung, 2003). 
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Figure 1.1 The external coincidence model of flowering induction in Arabidopsis thaliana 
Under long days (16L:8D), the expression of CONSTANS (CO) is stabilized by photoreceptors (PHYA 
and CRY2) and the rhythmic peak of CO coincides with light at the end of the day period. This peak of CO 
activity initiates a transcriptional cascade that leads to the developmental transition. Under short days, CO 
expression is unstable and peaks in darkness, and the floral transition is prevented (not shown). The 
upstream regulators of the CO rhythm, including the circadian clock, are indicated and are included in this 
review. CCA1: CIRCADIAN CLOCK-ASSOCIATED1. CDF1: CYCLING DOF FACTOR1. CRY2: 
CRYPTOCHROME2. ELF3: EARLY FLOWERING3. ELF4: EARLY FLOWERING4. FKF1: FLAVIN 
BINDING KELCH-REPEAT F-BOX1. GI: GIGANTEA. LHY: LATE ELONGATED HYPOCOTYL. 
LKP2: LOV KELCH PROTEIN2. LUX: LUX ARRHYTHMO. PHYA: PHYTOCHROME A. PHYB: 
PHYTOCHROME B. PRR: PSEUDO RESPONSE REGULATOR. TIC: TIME FOR COFFEE. TOC1: 
TIMING OF CAB EXPRESSION1. ZTL: ZEITLUPE.  
Adapted from Baurle and Dean (2006) and Locke et al. (2006)  

 

The properties of the circadian clock 
Chronobiological rhythms are periodic biological components measured over time. The main 

parameters that are used to describe the circadian rhythms are illustrated in Fig. 1.2. The period 

of the rhythm refers to the length of one cycle (e.g. from peak to peak). Rhythm amplitude is the 

difference between the average oscillation value and the extreme points, peak or trough. Phase 

corresponds to a specific point on the curve and can be translated to subjective time (time in 

relation to the period length). The characteristic waveforms of the biological rhythms facilitate 

cosinor analysis, which fits the data to a mathematical cosine curve by the method of least 

squares. The deviations of the actual data to the fitted mathematical curve are used as a measure 

for confidence values and are often referred to as relative amplitude error (R.A.E., see also 
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Method section in Chapter 2). R.A.E. is one indicator of rhythmicity and can be considered a 

precision trait. 

 

 

 
Figure 1.2 Parameters of circadian rhythms 
Stylized rhythms of wild type (black) and mutants. (A) Period, phase and amplitude. Black dashed line: 
Dampening rhythm. Grey dashed line: shifted rhythm, the stars indicate the phase shift. (B) Examples of 
long period (pink) and low amplitude (grey) rhythms. (C) Rhythms with lack of precision (blue, pink). The 
blue trace is a “changing” clock whereas the pink rhythm is arrhythmic. Circadian (CT) and Zeitgeber time 
(ZT) is illustrated along the lower axis. Grey blocks indicate subjective night during the free-running 
cycles. Note that the CT period is slightly longer under free-run than under entraining cycles. 
Adapted from Hanano et al. (2006).  

 

 

Definition of time 

Experimentally, circadian biology is studied under constant conditions to exclude effects of the 

diurnal cycle. Therefore, the duration of time has to be defined in relation to the constant cue 

assayed. This cue or signal is often light and/or temperature. Collectively, these signals are 

termed Zeitgebers (German for “time giver”), because they describe by which means the 

biological clock tells the time. In general, two “terms” of time is used, circadian (CT) and 
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Zeitgeber (ZT) time, however, some confusion exist about the difference between CT and ZT. 

The most accepted definitions are that CT refers to time in relation to the period length of the 

assayed rhythm, which is relevant when period mutants are compared, e.g. the circadian phase of 

a short and a long period mutant can be the same. ZT refers to time according to the last 

Zeitgeber signal, e.g. ZT is zero at the time of lights on. It is worth mentioning here that so-called 

masking can interfere with the monitoring of the oscillator. For example, acute effects caused by 

the Zeitgeber stimulus on gene expression can mask the circadian rhythm (Roenneberg et al., 

2005). 

Entrainment 

The mechanism of photoperiodism described earlier, illustrates that the phase-relationship (or 

phase angle) between two different rhythms is important to initiate a signal transduction pathway. 

That is, specific phases of rhythms, that have been set differently, at a certain point coincide and 

elicit e.g. the floral transition. In other words, the circadian clock is sensitive to the given 

photoperiod and responds positively only under favorable conditions. It follows that clock setting 

is important and that the oscillator must keep a constant 24-h period to obtain the right phase 

angle in tune with the environmental cycle. Though, it is seen under free-running conditions that 

the “naked” clock only manages an approximate 24-h period. As indicated earlier, this phenotype 

is peculiar and may reflect the plasticity of the circadian clock to ever-adjust itself to the ambient 

environment, or that exactly this slight difference from the precise 24-h period is necessary for 

phase interference (Johnson et al., 2003). Therefore, to attain optimal clock fitness, the circadian 

clock is constantly in the process of self-adjustment (resetting) and this resetting property is 

termed entrainment (from French for “carrying along”). In this way, the clock “aligns” its own 

cycle to the 24-h day and obtains a stable phase-relationship with the environmental photoperiod, 

which in latitudes away from the Equator ranges from short to long days over the year.  

Gated phase response 

Another aspect of clock sensitivity is when a clock response is only initiated at a certain phase (or 

phase angle), and this is termed gating. Clock resetting is selective or gated in the sense that 

pulses of light, generally referred to as the Zeitgebers, only have significant phase-shifting effect 

during the dark period where light is not supposed to occur (shape of a phase response, Fig. 1.3). 

It is noteworthy here that “pulses” in plant biology refer to light given for one or more hours at a 

time, the plant clock is buffered against sudden and transient changes in Zeitgeber intensity, 

which for example occur in shaded environments. It is generally believed that the plant clock 

resets at lights on (dawn) and in this way daily adjusts to the changing daylengths of the year 

(McWatters et al., 2000; Millar and Kay, 1996). This is indicated in the shape of the phase 

response curve (PRC; Fig. 1.3) where a light pulse causes the largest phase shifts during 
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subjective night. Gating prevents shifts during the daytime (gate is closed) and in this way the 

clock controls its own resetting.  

Singularity 

Circadian dysfunction in severe cases is visible as arrhythmicity. One form of arrhythmicity is 

recognized as imprecision where the variance between individuals is high but the average rhythm 

is more or less normal. Complete arrhythmic behavior can be explained using the mathematical 

limit cycle as a model of the circadian system (Fig. 1.4). In short, the limit cycle describes the 

dynamic relationship between two interdependent state variables, A and B, over time. A is 

dependent on B to increase in level and subsequently B becomes suppressed. As B is the limiting 

factor for A to increase, the level of A goes down until levels of B have recovered, and then the 

cycle can start over. This cycle is depicted as a circle, where the x, y coordinates correspond to 

the levels of A and B, respectively (Fig. 1.4).  

 In the “attracting limit cycle”, perturbation (phase resetting) occurs when A and B are 

driven off the “attracting” circle. This change in amplitude (equivalent to the phase shifts in the 

PRC, Fig. 1.3), however, is only temporary, after some time the state variables return to the 

circle, analogous to the free-running period of the circadian clock. Sometimes, that is after a 

stimulus with certain strength (equal to the amplitude), A and B end up in the center of the circle, 

and this state is termed singularity, also called a “phase-less” state (Fig. 1.4). Notably, singularity 

(arrhythmic behavior) following light pulses can be induced in plants when light pulses are 

applied at a specific time of day (ZT 14-20; Covington et al., 2001; Engelmann et al., 1973). This 

observation has lead to the definition of gatekeepers in the circadian system, where the role of the 

gatekeeper is to prevent singularity (Covington et al., 2001; Heintzen et al., 2001; McWatters et 

al., 2000). Only recently, the limit cycle model has been applied to description of the plant 

circadian system, and in general, investigations of the underlying molecular mechanism is still in 

its infancy (Huang et al., 2006; Johnson et al., 2003; Lakin-Thomas, 1995; Salome and 

McClung, 2005b). 
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Figure 1.3 Phase-response curve 
A stylized phase-response curve (PRC) for the phase (φ) shift response of the wild-type Arabidopsis clock 
under free-run in continuous dark. The clock displays either phase advances (Δφ > 0) or delays (Δφ < 0) 
depending on the time of the resetting stimulus, here a 1-h light pulse given every 3h (indicated by light 
bulbs).  
Modified from Covington et al. (2001) and Pittendrigh and Daan (1976).  
 
 

  
 
Figure 1.4 Limit cycle model of the circadian pacemaker 
The attracting circle (thick line) represents the steady state of the oscillator, where time moves around 
clockwise around the circle. Four phase points (isochrons) are indicated, and the singularity is at the 
intersections of the isochrons. During a perturbation (resetting stimulus) the rhythm of the oscillator is 
shifted (dashed circle) according to the strength of the stimulus (vector) and the new phase can be 
determined by the isochron. If the strength of the stimulus is relatively strong (vector = radius) the system 
reaches singularity. 
Modified from Lakin-Thomas (1995) and Huang et al. (2006). 
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Robustness 

Temperature compensation is an additional feature characteristic of the circadian clock. It 

represents an example of clock robustness, which can be defined as the perturbations that are able 

to reset the phase, period and amplitude of the clock (see limit cycle in Fig. 1.4). That the 

circadian clock is temperature compensated means that the clock has a buffering mechanism that 

ensures robust rhythms with constant length over a range of temperatures. This feature is distinct 

from biochemical reactions in general, where it is known that the kinetics correlates positively 

with temperature (e.g. the reaction rate doubles with an increase in temperature of 10°C). The 

mechanism of temperature compensation, however, is poorly understood in plants (Edwards et 

al., 2005; 2006; Gould et al., 2006). 

Peripheral oscillators 

Finally, caution should be taken that not all 24-h rhythms per se are classified as direct outputs 

from the core oscillator of the circadian system. It is well known that peripheral oscillators are 

coupled to the core oscillator downstream in the circadian system, and these secondary loops are 

termed slave oscillators (driven rhythms). Characteristically, core clock genes affect the slave 

oscillator and the slave oscillator fine-tunes an output pathway, but in turn the slave oscillator 

does not influence the central clock genes. Instead, the slave oscillator is simply rhythmic for a 

subset of processes. Possibly slave oscillators are important for the sustainability of the circadian 

system under constant conditions. At least two slave oscillators have been characterized in plants, 

the COLD AND CIRCADIAN REGULATED2 (CCR2) and EARLY-PHYTOCHROME-

RESPONSIVE1 (EPR1) autoregulatory loops, that each drives self-sustained rhythms of their 

own transcripts in a way that the central circadian oscillator is buffered from perceiving 

(Heintzen et al., 1997; Kuno et al., 2003). 

Molecular components of light-dark perception 

The photoreceptors 

A common feature between species, from all kingdoms investigated, is a close connection 

between the photoreceptors and the circadian clock. The Arabidopsis genome encodes at least 

three families of photoreceptors that are involved in the detection of the light spectrum (Chen et 

al., 2004). In connection to the circadian clock, the two major photoreceptor families, the 

phytochromes (phy) and cryptochromes (cry), have the greatest interest. 

 The largest photoreceptor family is the phytochromes, which comprise two major species 

(phyA and phyB) and three minor (phyC to phyE). Plant phytochromes have evolved from light-

regulated histidine kinases and mainly perceive the red wavelengths, from red to far-red. At least 

two active regions are found in the phytochrome apoprotein. An N-terminal domain of PHY 
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binds the light-absorbing chromophore and the C-terminal region has a conserved domain termed 

PER ARNT SIM (PAS), which is involved in dimerization (Rockwell et al., 2006). The 

phytochromes exist in two conformations; the inactive red-light-absorbing Pr form, which upon 

activation, converts to the active far-red light-absorbing Pfr form. Light activation of 

phytochrome results in relocation of phytochrome from the cytoplasm to the nucleus, where 

characteristic speckles are formed (Bauer et al., 2004; Chen et al., 2003; Kircher et al., 2002). It 

is currently believed that the speckles are important for regulation of phytochrome activity, either 

as a mechanism for light desensitivity or as a site for phytochrome degradation (Chen et al., 

2004).  

 One of the phytochromes, phyA, is the only receptor for far-red light and is light labile 

(type I phytochrome). Additionally, phyA acts redundantly with phyB in detecting red light 

signals, and both species have important roles in regulation of flowering time (Fig. 1.1) 

(Tepperman et al., 2001; 2004; 2006; Valverde et al., 2004). phyB to phyE are all light stable and 

belong to the type II phytochromes of which phyB plays the predominant role. phyB is dominant 

in perception of red light relating to red-light-mediated repression of hypocotyl elongation. phyA, 

phyC, phyD, and phyE play additional roles in red light signaling in relation to hook opening and 

cotyledon expansion (Schepens et al., 2004).  

 The cryptochromes evolved from DNA photolyases and perceive the blue wavelengths of 

light (Lin and Shalitin, 2003). Unlike cryptochromes in animals, Arabidopsis cryptochromes 

(cry1 and cry2) are not core components of the circadian clock but have a function in entrainment 

(Lin and Shalitin, 2003). Specifically, cry1 and cry2 play roles in seedling de-etiolation and in 

the transition from vegetative to reproductive phase (Fig. 1.1). The complexity of light perception 

is, for example, illustrated by the fact that the cry1 cry2 double mutant exhibits blue light-

regulated gene expression, which indicates that other classes of photoreceptors are involved in 

blue light signaling (Devlin, 2002; Somers et al., 1998a). 

 Studies of the phy and cry photoreceptors have been combined. The quadruple mutant 

phyA phyB cry1 cry2 was found to exhibit light-regulated gene expression, in addition to clock 

resetting, suggesting additional components in light signaling which could be phyC to phyE and 

the phototropins (phot) (Yanovsky et al., 2000). However, the two members of the phototropin 

family (phot1 and phot2) are only known to be involved in the phototropism response, which is 

blue light-regulated, in addition to aspects of hypocotyl inhibition and chloroplast movement. 

The PHOT loci have not been reported to be involved in entrainment (Briggs and Christie, 2002). 

The phytochromes and cryptochromes are therefore the major photoreceptors responsible for 

seedling de-etiolation, floral transition, and clock resetting. It is noteworthy that the 

transcriptional expression of photoreceptor genes is regulated by the clock (Bognar et al., 1999; 
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Hall et al., 2001; Toth et al., 2001) and therefore represents an example of a clock output that 

feeds back into the clock. On the other hand, it was recently found that the level of “bulk” 

phytochrome is constant leading to the idea that the cellular localization of “newly” translated 

phys (and crys) reflects their rhythms of activity (Devlin, 2006; Sharrock and Clack, 2002). 

These observations also reveal that light perception, by phy and cry, is gated by the clock. Thus, 

it can be difficult to determine which elements are most upstream in the light-input pathway to 

the circadian clock. 

Light signal transduction 

Many screens for mutants defective in red and far-red light signaling have been carried out and in 

this way both mutants hyper- and hyposensitive to light perception have been identified (Quail, 

2006). The current understanding of the corresponding light-transduction genes is that they are 

immediate targets of the phys and together they converge in a signaling web (Quail, 2006). 

Several of the corresponding proteins localize to the nucleus and many are transcription factors. 

A second class of light signaling elements, e.g. the ubiquitin ligase CONSTITUTIVELY 

PHOTOMORPHOGENIC1 (COP1) and the PAS-related ZEITLUPE (ZTL, see below), are 

involved in proteasome-mediated degradation of nuclear proteins (Lin and Wang, 2007; Mas et 

al., 2003b).  

 PHYTOCHROME INTERACTING FACTOR3 (PIF3) represents one of the most 

investigated primary targets of active phytochrome (phyA and phyB) in the nucleus. PIF3 

encodes a bHLH transcription factor that is believed to function in dark-grown seedlings and 

interacts with phytochrome. Additionally, PIF3 can form a ternary complex with two MYB-like 

transcription factors of the circadian clock, but it has been concluded from mutant studies that 

PIF3 itself has no clear role in the clock (Viczian et al., 2005). Upon irradiation, PIF3 is degraded 

via phy-mediated phosphorylation, though, it is unclear whether phy itself performs this kinase 

activity (Al-Sady et al., 2006; Bauer et al., 2004). Thus, the current idea is that the primary 

events of phy-signaling happen in the nucleus and occur both at the transcriptional and post-

translational level. 

 Comparative transcriptional profiling in the phyA and phyB mutants, under far-red and 

red light, respectively, has corroborated the “nuclear hotspots” of phy action. A surprising 

finding was that phyA, in addition to phyB, has a significant role in transduction of red light 

signals. These microarray data conclude in particular that transcription factors are among the 

main “early direct targets” of phytochrome-mediated light signaling (early induction as well as 

repression of gene activation) and some clock genes are strongly activated by light (Tepperman 

et al., 2001; 2004; 2006). Furthermore, the microarray data in general reveal that a major part 

(30-50%) of the Arabidopsis transcriptome cycles in a diurnal fashion (Blasing et al., 2005) and a 
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significant group of genes is expressed in a circadian manner (6-35%) (Edwards et al., 2006; 

Harmer et al., 2000; Michael and McClung, 2003; Schaffer et al., 2001). Thus, phytochrome 

signal transduction is an important means of controlling the timed expression of genes over the 

24-h day. 

 The above-mentioned microarray results prompted further characterization of a small 

group of genes called PHY RAPIDLY REGULATED, which supported the idea that phy-signaling 

goes through the circadian clock (Roig-Villanova et al., 2006). This study was connected to a set 

of plastic responses collectively called the shade avoidance syndrome (SAS). Shade avoidance 

correlates with the red:far-red (R:FR) ratio of the light environment and the Pfr:Pr ratio of the 

plant cell. SAS includes leaf hyponasty and organ elongation and occurs when the plant wants to 

reach out of shade. Red and blue light is absorbed by chlorophyll whereas far-red light is 

reflected, i.e. the plant sees shade as a low R:FR ratio. Several transcription factors are connected 

to phyB-mediated signaling and SAS, and in addition blue-light signaling has recently been 

recognized to be part of SAS. PIF-LIKE1 (PIL1) is the best-characterized SAS gene. PIL1 is 

involved in the elongation growth of the hypocotyl, which is timed at dusk (when light is FR-

enriched) and, interestingly, gated by the clock (Salter et al., 2003). Furthermore, PIL1 protein is 

able to bind the core clock component TIMING OF CAB EXPRESSION1 (TOC1, see below) 

(Yamashino et al., 2003), but it is unclear whether this interaction is significant because TOC1 

transcription is normal in the pil1 mutant. On the contrary, it was recently found that the 

expression of the TOC1-relative PSEUDO RESPONSE REGULATOR9 (PRR9) is low upon 

transfer of pil1 seedlings into the light (Khanna et al., 2006). Collectively, these studies favor that 

the circadian clock is directly downstream of the phytochromes. 

 Recently, the ZTL family has been suggested to represent a class of photoreceptors, and 

this is notable in the present context because ZTL-like genes are linked to the function of the 

circadian oscillator. The ZTL family encodes the PAS-like LOV (Light, Oxygen, Voltage) 

domain-containing proteins ZTL, FLAVIN BINDING KELCH-REPEAT F-BOX1 (FKF1) and 

LOV KELCH PROTEIN2 (LKP2). In an evolutionary perspective, the LOV domain is 

interesting because this is the light-sensing domain present in the blue-light receptors phot1 and 

phot2, in addition to photoreceptors in Neurospora. Two other conserved domains are present in 

the ZTL family, the F-box and the Kelch repeats, involved in proteolysis and protein-protein 

interaction, respectively. The speed of the circadian oscillator in the ztl mutant is strongly slowed 

down and the rhythms are long period. Interestingly, this periodicity correlates positively with 

ZTL dosage and light intensity (Somers et al., 2004). Mutation of the ZTL LOV domain has 

distinguished between ZTL light perception and circadian function, which relates to the ZTL F-

box-mediated degradation of TOC1, which is a central element of the circadian clock (Kevei et 



C H A P T E R  1  I N T R O D U C T O R Y  R E V I E W 

 - 14 - 

al., 2006). Analyses of the two other ZTL family members have revealed important roles in 

controlling the phase of the key floral activator CONSTANS (CO), for example FKF1 regulates 

degradation of CYCLING DOF FACTOR1 (CDF1), which is a transcriptional activator of CO 

(Fig. 1.1) (Fukamatsu et al., 2005; Imaizumi et al., 2003; Nelson et al., 2000), and constitutive 

overexpression of LKP2 confers arrhythmic clock behavior (Schultz et al., 2001). The entire ZTL 

family is thus important for a proper photoperiodism response. 

 In summary, the data reviewed above lead to the general conclusion that light signaling 

goes through the circadian clock. This is supported by the direct interaction-capability of 

photoreceptors and clock components (for example PIF3-PHYB, PHYB-ZTL, PIL1-TOC1, 

PHYB-EARLY FLOWERING3 [ELF3], ZTL-TOC1) (Bauer et al., 2004; Jarillo et al., 2001; Liu 

et al., 2001; Mas et al., 2003b; Yamashino et al., 2003). Though, it is notable that many of such 

reported interactions only have been studied in vitro and their functional relevance is unclear. 

The many input pathways to the clock and the interconnection between inputs and outputs 

complicate a linear light-to-clock hypothesis. Supporting evidence, however, comes from 

photoreceptor mutants that display clock phenotypes (e.g. cry1, cry2, phyA) (Devlin, 2002; Mas 

et al., 2000). This question relates to the discussion whether the plant circadian clock constitutes 

a single or multiple oscillators, and this issue is further reviewed below. 

The Arabidopsis circadian clock system 

Transcriptional control of rhythms 

The circadian clock mechanism appears to have been conserved between organisms in the sense 

that it contains transcriptional feedback loops. Accordingly, a suite of genes is expressed in a 

circadian fashion (Heintzen et al., 1994; Kloppstech, 1985; Zhong and McClung, 1996), and this 

has been studied in detail for a gene involved in photosynthesis, CHLOROPHYLL A/B BINDING 

(CAB) (Kay, 1993). In the post-genomic era, the first microchip used for a circadian experiment 

(Harmer et al., 2000) facilitated identification of a promoter element overrepresented in evening-

phased genes (EE, evening element). This result was followed by the discovery of the morning 

element (ME) (Harmer and Kay, 2005). In addition, other conserved motifs have been found in 

light-regulated promoters, for example the G-box motif, which is related to EE and often 

correlates with evening-phased expression (Edwards et al., 2006). The G-box is specifically 

targeted by many of the bZIP transcription factors and is analogous to the E-box element in 

animals where it is present in both clock oscillator and output genes (Hudson and Quail, 2003; 

Martinez-Garcia et al., 2000; Ueda et al., 2005). An EE-related motif is CBS (CIRCADIAN 

CLOCK-ASSOCIATED1 [CCA1]-binding site), which only differs in one nucleotide from EE 

(Michael and McClung, 2002). 
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 Mutational analyses of the cis-acting promoter elements CBS, EE and ME in plants have 

revealed that many are sufficient to drive circadian expression, but likely additional trans-acting 

factors are needed to result in the multiphased expression patterns that exist in the Arabidopsis 

genome. Furthermore, there are indications that cis-acting phase modifiers are located next to 

EE/CBS, a putative role for the G-box, and that the MYB-related and central clock proteins 

CCA1 and LATE ELONGATED HYPOCOTYL (LHY) act as negative transcriptional regulators 

through EE-binding (Harmer and Kay, 2005; Menkens et al., 1995; Puente et al., 1996). 

Furthermore, it was recently reported that mRNA stability controlled by a sequence-specific 

decay pathway correlates with circadian rhythms (Lidder et al., 2005). In summary, the circadian 

circuitry likely consists of several transcriptional modifiers that result in a distribution of 

transcripts over all phases of the circadian cycle and these transcripts are further modified in 

post-transcriptional processes. 

Molecular clock elements 

CAB represents an important nuclear gene family encoding plastid-localized proteins and is 

referred to here because one of the CAB genes facilitated the isolation of the first clock 

components in Arabidopsis. More precisely, a cis-element controlling the light-regulated 

transcription of CAB was identified. The subsequent fusion of the CAB promoter to a luciferase 

gene enabled forward genetic screens for mutants with altered transcription profiles under free-

running conditions (Millar et al., 1992; 1995a). In these screens at least five clock genes were 

identified, including TOC1 and ZTL (see below) (Hall et al., 2003; Hazen et al., 2005; Panda et 

al., 2002; Somers et al., 1998b; 2000; Strayer et al., 2000). In a second approach, the MYB-like 

transcription factor CCA1 was isolated in a DNA-binding complex specific to the CAB promoter. 

Further analysis revealed arrhythmicity when rhythmic CCA1 transcription control was abolished 

by means of constitutive CCA1 overexpression (Carre and Kay, 1995; Wang et al., 1997). 

Reverse genetic analyses have also been applied. All five PRR genes in the small PRR family, of 

which TOC1 was the founding member, are today recognized as clock components (Farre et al., 

2005; Ito et al., 2003; Kaczorowski and Quail, 2003; Michael and McClung, 2003; Yamamoto et 

al., 2003). Finally, clock mutants have also been isolated from non-targeted screens, for example 

the genes affected in several flowering-time mutants were connected to clock defects: 

GIGANTEA (GI), LHY, ELF3, and ELF4 (Doyle et al., 2002; Fowler et al., 1999; Hicks et al., 

1996; Park et al., 1999; Schaffer et al., 1998; Zagotta et al., 1996). Interestingly, LHY is closely 

related to the MYB transcription factor CCA1. 

The foundations of the core clock 

The transcriptional feedback loop of the circadian oscillator is an evolutionarily conserved 

mechanism. The oscillator is composed of one or more critical clock components, the expression 
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level of which determines clock phase. Resetting of the clock occurs when a Zeitgeber stimulus 

(for example light) acts on the critical clock component and changes its expression level. This 

paradigm fits the limit cycle model described above, and accordingly the limit cycle has been 

used for modeling of the clock. 

 The first oscillator of the plant circadian system was defined after the isolation of the 

transcription factors CCA1, LHY and TOC1. All three loss-of-function mutants, cca1, lhy and 

toc1 have short period. When CCA1, LHY or TOC1 is overexpressed the clock exhibits 

arrhythmic behavior. In particular, TOC1 expression is low when CCA1 and LHY levels are held 

constitutively high, and CCA1 and LHY expression levels are reduced in the TOC1 overexpressor 

(Alabadi et al., 2001; Makino et al., 2002). The double mutant, cca1 lhy, is arrhythmic 

suggesting that CCA1 and LHY function redundantly. Together, these three genes form a putative 

feedback loop because the CCA1 and LHY proteins can bind the TOC1 promoter, and when 

CCA1/LHY is overexpressed TOC1 is repressed (Alabadi et al., 2001). Thus, CCA1 and LHY are 

negative regulators of TOC1 and constitute the negative arm of a transcriptional feedback loop.  

 Over the day, CCA1 and LHY are activated by light and peak in the morning and repress 

TOC1 transcription. Accordingly, TOC1 peaks in the evening. TOC1 is likely to function as a 

transcription factor and promote CCA1/LHY expression, because TOC1 contains a CONSTANS, 

CONSTANS-LIKE, TOC1 (CCT) domain, which is involved in transcription factor-binding 

(Wenkel et al., 2006), however, this action has not been proven. This caveat is followed by 

questions arising from facts like: overexpression of TOC1 has no effect on CCA1/LHY expression 

(Makino et al., 2002); residual rhythmicity is present in cca1 lhy, toc1, and cca1 lhy toc1 mutants 

(Alabadi et al., 2002; Z. Ding, unpubl. ; Somers et al., 1998b); the molecular mechanism behind 

the time delay between the CCA1/LHY and TOC1 peak times is unknown; mutants of GI, ELF3, 

ELF4, and LUX ARRHYTHMO (LUX) display a high degree of circadian dysfunction and the 

activity of these genes is closely linked to CCA1, LHY and TOC1 expression (Alabadi et al., 

2001; Doyle et al., 2002; Fowler et al., 1999; Kikis et al., 2005; Makino et al., 2002; Martin-

Tryon et al., 2007; Onai and Ishiura, 2005; Park et al., 1999). Thus, a single loop is not sufficient 

to explain all features of the Arabidopsis circadian clock. 

 TOC1 sequence homologues are also related to clock function, and transcriptional 

profiling of five PRR genes (TOC1, PRR3, PRR5, PRR7, PRR9) was early interpreted to these 

PRRs were core clock components and controlled circadian rhythms. That is, the peaks of the 

PRR quintet have a remarkably even distribution over the 24-h day, where TOC1 peaks as the 

earliest and PRR9 peaks as the latest gene of the day (Makino et al., 2000). However, after 

further investigations this idea was modified because single prr mutants (except toc1) display 

only very subtle clock phenotypes. For example, the prr5, prr7 and prr9 single mutants only 



C H A P T E R  1  I N T R O D U C T O R Y  R E V I E W 

 - 17 - 

confer small changes in period length and are slightly late flowering (Eriksson et al., 2003; Farre 

et al., 2005; Kaczorowski and Quail, 2003; Salome and McClung, 2005a). When constitutively 

overexpressed (ox), TOC1-ox and PRR5-ox have relatively strong phenotypes, including reduced 

CCA1 and GI expression, whereas PRR3-ox, PRR7-ox and PRR9-ox only display long clock 

period (Makino et al., 2002; Matsushika et al., 2002; 2007; Murakami et al., 2004; Sato et al., 

2002). Generation of prr double mutants led to the current conclusion that the PRRs have 

partially redundant functions and are tightly associated with the clock. The double mutants prr5 

prr7 and prr7 prr9, but not the prr5 prr9 combination, in addition to the triple mutant prr5 prr7 

prr9 have relatively strong clock phenotypes (Eriksson et al., 2003; Farre et al., 2005; Nakamichi 

et al., 2005a; 2005b; 2006; Salome and McClung, 2005a). The significance of PRR3 function is 

still unclear because of the lack of a loss-of-function allele, but possibly PRR3 has a distinct role 

compared to the rest of the family (Michael and McClung, 2003; Murakami et al., 2004). In 

conclusion, PRR3 to PRR9 are likely positioned in loops connected to the central CCA1/LHY-

TOC1 loop and are important for adjustment of the circadian system. 

Clock model evolution 

Recently, it has been the trend to use mathematical modeling to understand the Arabidopsis 

circadian system and this can be considered as a kind of systems biology (Fig. 1.5) (Locke et al., 

2005; 2006; Zeilinger et al., 2006). The first modeling step was taken by adding a second loop to 

the CCA1/LHY-TOC1 single loop model (Fig. 1.5A,B) (Locke et al., 2005). The “new” loop 

contains TOC1 and the hypothetical evening gating gene Y, defined as a light transmitter and an 

activator of TOC1. The CCA1/LHY loop was expanded with the hypothetical gene X, primarily to 

simulate the delay between CCA1/LHY and TOC1 expression. The significance of the two-loop 

clock model was revealed when it was shown that GI genetically contains many of the Y 

characteristics. For example, it was found that GI displays a second and acute peak to lights-on in 

the morning in addition to the well-known circadian peak in the evening. This expression pattern 

fits Y because Y is light-activated and repressed by LHY, thus the circadian peak is delayed to the 

evening when LHY levels are low and subsequently become repressed when TOC1 levels 

increase during the night. The two-loop model simulated the short period phenotype of the cca1 

lhy double mutant, but failed to predict the short period of the toc1 mutant. 

 The two-loop model was later expanded by a third loop, containing two PRR genes, 

PRR7 and PRR9 (Fig. 1.5C) (Locke et al., 2006; Zeilinger et al., 2006). This loop had been 

proposed in an earlier study based on the results that CCA1 and LHY affect PRR7 and PRR9 

expression and that both PRR7 and PRR9 play roles in transmission of light signals and oscillator 

function (Farre et al., 2005). The three-loop model is an improvement of the earlier model 

because, for example, it simulates correctly the cca1 lhy and toc1 short periods and the prr7 prr9 
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long-period phenotype (Locke et al., 2006). In addition, this model recapitulates the photoperiod 

response in the way that TOC1 expression tracks dusk (via light perception by Y), and the dawn 

response is forced by the acute light-activated peak of CCA1 and LHY. Though, the relative 

strength of these dawn and dusk signals is not equivalent to the biological observations (where 

dawn is strongest) (Millar and Kay, 1996). Finally, the three-loop model facilitates uncoupling of 

oscillator loops producing two different oscillator rhythms within a single cell, a feature 

suggested from in planta experiments (Hall et al., 2002; Michael et al., 2003; Thain et al., 2002). 

 Two different research teams predicted the three-loop model independently of each other 

and therefore two slightly different versions of the model exist. The Zeilinger model is the most 

detailed because it distinguishes between PRR7 and PRR9 in the sense that only PRR9 is light-

activated. However, this model fails to simulate the cca1 lhy short period (which is correctly 

reproduced by the Locke model), but in turn this might indicate that CCA1 and LHY function is 

not redundant, as previously anticipated. Furthermore, both models fail to simulate other clock 

characteristics such as gating, no X candidate gene is predicted, and the known clock genes ZTL, 

LUX, TIME FOR COFFEE (TIC), ELF3, ELF4 are not taken into account. The modeling 

approach thus has provided only a basic framework for visualizing the clock system, i.e. an 

outline upon which future clock research can be built and justified. Importantly, modeling allows 

for hypothesis-driven experiments to biologically define the circadian clock mechanism. 
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Figure 1.5 Model evolution of the Arabidopsis circadian clock 
Three models of molecular feedback loops of the Arabidopsis circadian clock. The models include 
regulation both at the transcriptional and post-transcriptional levels (as indicated by italics). (A) Classical 
CCA1/LHY-TOC1 loop, the first molecular model. CCA1 and LHY transcription is activated by light at 
dawn, and together repress TOC1 transcription by binding to the TOC1 promoter. The TOC1 gene, 
therefore, is not active until later in the day, peaks in the early night and subsequently promotes CCA1/LHY 
expression via unknown mechanism. (B) Two-loop model proposed by Locke et al. (2005). Two clock 
genes, X and Y, are added to the CCA1/LHY-TOC1 loop. TOC1 is now also activated by light, but 
indirectly via the hypothetical gene Y. TOC1 activates a hypothetical gene X, which promotes CCA1/LHY 
expression. GI has been found to possess the main features of Y. No candidate gene for X has been 
suggested. (C) Three-loop model calculated by two groups independently (Locke et al., 2006; Zeilinger et 
al., 2006). A third loop is added to the two-loop model and is composed of two PRR genes, PRR7 and 
PRR9, that also are light activated. Dashed arrows indicate activation by light pulses. A complete arrow 
indicates the continuous light activation of Y. 
Adapted from Alabadi et al. (2000), Locke et al. (2005; 2006) and Zeilinger et al. (2006). 
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The greater network 

In addition to the genes included in the three-loop clock model, other genes are known to be 

important for proper clock function (Fig. 1.6). Much work remains to decipher all of those gears 

within the circadian system. Notably, the expression of the clock genes currently known, except 

SENSITIVITY TO RED LIGHT REDUCED1 (SSR1) (Staiger et al., 2003), is specific to different 

times of day. During the light phase of the day, the expression of FAR-RED ELONGATED 

HYPOCOTYL3 (FHY3) and PRR5 have their peak times (Allen et al., 2006; Sato et al., 2002), 

and at dusk and during the night till dawn the consecutive peak times of PRR3, GI, ELF3, ELF4, 

LUX, and TIC are found (Doyle et al., 2002; Fowler et al., 1999; Hall et al., 2003; Hazen et al., 

2005; Hicks et al., 2001; Murakami et al., 2004; Park et al., 1999). 

 Similar to two of the PRR genes (PRR7 and PRR9), GI was recently “promoted” to be a 

central clock gene in the mathematical two- and three-loop models of the circadian system (Fig. 

1.5). However, it should be kept in mind that GI only possess some features of the hypothetical 

clock gene Y. GI is a pioneer protein and also functions in the photoperiod pathway controlling 

flowering time by activating CO (Fowler et al., 1999; Park et al., 1999). It was recently reported 

that GI’s role in flowering time is separable from its role in the clock (Mizoguchi et al., 2005). GI 

acts at night in both red- and blue-light signaling and the majority of gi mutants have periodicity 

defects of clock rhythms (Fowler et al., 1999; Martin-Tryon et al., 2007; Park et al., 1999). A 

recent breakthrough was the finding that GI is important for temperature compensation, and 

dependent on the temperature regime GI is associated with either CCA1 or LHY expression 

(Gould et al., 2006). Thus, GI functions both in light and temperature perception. 

 One day- and two night-specific genes are involved in gating light signals to the clock 

(Fig. 1.6). The function of gatekeepers in control of light input to the clock was recognized with 

the discovery of ELF3 function (see below). In addition, FHY3 and TIC have been reported to 

play roles in gating. Currently, the idea is that ELF3 and TIC act broadly in gating, controlling 

both phytochrome and cryptochrome signaling, whereas FHY3 has been found to be specific to a 

red-light mediated pathway (Allen et al., 2006; Hall et al., 2003; McWatters et al., 2000). FHY3 

encodes a putative transcription factor and functions during the day. TIC functions during the 

night and encodes a protein of unknown function, but has been localized in the nucleus. Apart 

from TIC’s role in gating, transcription profiling has revealed a close connection between TIC 

and LHY expression suggesting TIC is an activator of LHY transcription, and in addition TIC 

controls both phase and amplitude of the clock (Ding et al., 2007; Hall et al., 2003). 

 Like FHY3, SSR1 is specific to red-light signaling to the clock (Fig. 1.6). SSR1 encodes a 

protein of unknown function with localization in both cytoplasm and nucleus. The srr1 mutant 
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has a high degree of circadian dysfunction, however, unlike the majority of other clock factors 

the SSR1 gene itself is not under circadian control (Staiger et al., 2003). It will be interesting to 

further characterize SSR1 function because it belongs to the few elements important for 

mediating light input to the circadian clock and it has been localized in two different cellular 

compartments. 

 LUX, like CCA1 and LHY, belongs to the MYB-like transcription factors. LUX is 

important for clock robustness and is tightly associated with the CCA1/LHY-TOC1 loop of the 

clock (Fig. 1.6) (Hazen et al., 2005). The phenotype of the lux mutant is very similar to the elf3 

and elf4 loss-of-function phenotypes (see below). Like ELF3 and ELF4, LUX is an evening gene, 

suggesting ELF3, ELF4 and LUX act redundantly close to the clock. Though, constitutive LUX 

overexpression leads to arrhythmia and dampening of free-running rhythms, which is different 

from the ELF3- and ELF4-overexpression phenotypes and indicates that LUX has a unique role 

in the clock (Covington et al., 2001; Onai and Ishiura, 2005; this study). In a recent report, 

expression of LUX has been associated with a period QTL containing FLC, which controls 

aspects of temperature compensation in the circadian clock, and a central role for LUX in the 

clock has also been suggested my mathematical modeling (Edwards et al., 2006). In addition, 

FLC dosage has been reported to correlate with circadian period (Salathia et al., 2006; Swarup et 

al., 1999). Further experiments are needed to understand LUX mode-of-action in relation to the 

temperature Zeitgeber and the clock. 

Multiple oscillators 

The plant circadian clock is organ-autonomous in contrast to animal systems that have a central 

pacemaker. Even in the extreme case, the unicellular algae Gonyaulax, two independent 

oscillators could be distinguished (Roenneberg and Morse, 1993). In higher plants, circadian 

rhythms have been found to “free-run” in excised organs and transplants. Using different 

luciferase reporters, separate oscillators have also been reported. A classical example was that 

cotyledons of the same seedling could be differently entrained (Thain et al., 2000). In addition, 

under free-run the transcriptional control conferred by the promoters PHYB and CAB were found 

to be out of sync, CAB and CATALASE3 (CAT3)-specific clocks could be determined based of 

differences in temperature sensitivity, and rhythms of stomatal opening and carbon dioxide 

assimilation could be uncoupled (Dodd et al., 2004; Hall et al., 2002; Michael et al., 2003). It is 

very likely that the different oscillators are tissue-specific. For example, that there are mesophyll- 

and epidermis-specific clocks, as has been revealed in a study of the CAB and CHALCONE 

SYNTHASE (CHS) promoters (Thain et al., 2002). By analysis of the free-running periodicity, the 

control of the CHS promoter was found to be slightly different for clocks in different organ types. 

Altogether, it has been concluded that the different oscillators share the same molecular 



C H A P T E R  1  I N T R O D U C T O R Y  R E V I E W 

 - 22 - 

components (e.g. CCA1, LHY, TOC1) leading to the question as to how the clocks communicate 

with each other. Candidates for this crosstalk include the hormone network (see below) and the 

cellular accumulation of photoreceptors (Thain et al., 2002; Staiger et al., 2005). 

 

 

 

 

 

 

 
Figure 1.6 The circadian network 
Molecular network of the Arabidopsis circadian system. This diagram is a stylized overview of the 
signaling web that constitutes the circadian clock system and is focused on the most well-studied 
components. See text for further details. The shades of the circle correspond to time-of-day. Proteins are 
depicted as ovals. Arrows indicate activating function and “T”-bars represent repressing activity. 
Adapted from Harmon et al. (2005).  
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Other modes of clock regulation 

The studies on the plant circadian network have mainly revealed control of rhythms at the 

transcriptional level. Nevertheless, different levels of control are increasingly being investigated 

and are worth mentioning in the present context. For example, post-transcriptional control of the 

core clock gene LHY has been reported. More precisely, plants overexpressing LHY have a light-

controlled translation of the LHY transcript leading to a LHY protein profile with a circadian 

rhythm. CCA1, on the other hand, undergoes phosphorylation by a casein kinase (CKII) and this 

modification is necessary for proper CCA1 activity (DNA-binding) and clock function (Daniel et 

al., 2004; Sugano et al., 1998). More studies about the importance of post-translational events in 

clock regulation are needed in the future. 

 Timed and targeted degradation of clock proteins is likely an important mechanism for 

regulation of clock rhythms. This is currently most investigated in light-signaling, where the 

COP1-like elements are key regulators of protein degradation and, interestingly, shuttle between 

cytoplasm and nucleus in response to light signals. SUPPRESSOR OF PHYA-105 (SPA1) 

interacts with COP1 and was recently reported to have an important role in photoperiodic 

flowering time, where SPA1-COP1 controls CO expression (Laubinger et al., 2006). In addition, 

SPA1 functions as a repressor of phyA-mediated de-etiolation of seedlings and controls the free-

running period of the clock by affecting CCA1 and TOC1 expression (Ishikawa et al., 2006). 

Furthermore in relation to the clock, it has been found that ZTL targets TOC1 to the 26S 

proteasome, and DE-ETIOLATED1 (DET1) mediates in the turnover of LHY and GI (Millar et 

al., 1995b; Song and Carre, 2005). 

 GI interacts with SPINDLY (SPY), which encodes a glucosamine transferase that 

modifies the GI protein (Tseng et al., 2004). Notably, SPY is involved in gibberellin-signaling 

indicating cross talk between the circadian clock and the hormone network. The phytohormones 

auxin, cytokinin, abscisic acid and brassinosteriod have recently been reported to affect circadian 

rhythms by regulating phase, periodicity and precision of the clock. Particularly, cytokinin 

functions in phyB-signaling together with ARABIDOPSIS RESPONSE REGULATOR4 (ARR4) 

and modifies circadian phase (Hanano et al., 2006). Furthermore, ARR4 interacts with phyB and 

both ARR4 and its relative ARR3 have a general role in regulation of the circadian period, thus, 

these response regulators represent another way in which light signaling is integrated to the clock 

(Salome et al., 2006). Collectively, it is clear that crosstalk between the clock and various 

hormone-signaling pathways is present. 

 Finally, a distinct mode of molecular signaling has become accepted in mediating 

circadian signal transduction. Calcium (Ca2+) is an intracellular messenger that transduces 
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extracellular signals and regulates many aspects of biological processes (Hetherington and 

Brownlee, 2004). Cytosolic free Ca2+ cycles with a circadian period in plant cells and therefore 

constitutes a candidate time-signaling molecule, though it is still unclear at what level the clock 

and Ca2+ interact. Importantly, Ca2+ has been found to be involved in both red-light and cold-

temperature signaling and therefore represents an integrator of different Zeitgeber signals. 

Furthermore, it has been suggested that the clock gates Ca2+ signaling in response to cold 

temperature (Dodd et al., 2006; Shacklock et al., 1992). 

 The above-mentioned examples of clock-regulation signify the amount of crosstalk that 

exist between the circadian clock and other signaling pathways, and these clock subjects will be 

interesting to follow in the future. In the final introductory sections below, the two genes 

investigated in this thesis, ELF4 and ELF3, are reviewed. Note that additional details of ELF4 

and ELF3, as well as other genes relevant to the present study, are described in the introductions 

to the respective chapters. 

ELF4 

The elf4 mutant was isolated from a screen of flowering-time mutants, and the pioneering study 

revealed that ELF4 is an evening gene, which is important for circadian precision and clock 

function. Among elf4 mutants, a high variation in clock period is present and all output rhythms 

go towards arrhythmicity under constant conditions. The elf4 loss-of-function mutant has very 

low CCA1 expression and recently, it was shown that elf4 also has low LHY levels suggesting 

that ELF4 acts in a feedback loop with CCA1 and LHY, similar to the CCA1/LHY-TOC1 negative 

feedback loop (Doyle et al., 2002; Kikis et al., 2005). 

 The ELF4 sequence does not contain evolutionary conserved domains with known 

functions. The size of the ELF4 protein is relatively small (111 amino acids) and ELF4 belongs 

to a small gene family with five members in Arabidopsis. ELF4 contains a putative nuclear 

localization signal, and accordingly reporter analysis has shown that the ELF4 protein is present 

in the nucleus (Doyle et al., 2002; Khanna et al., 2003).  

 Gene expression data suggest that ELF4 is likely to control flowering time by regulating 

the timing of expression of CO (Doyle et al., 2002). ELF4 has also been implicated in phyB 

signaling because elf4 seedlings are hyposensitive to red light, and ELF4 mRNA levels are low in 

the phyB mutant (Khanna et al., 2003). Transcriptional genome profiling has revealed that the 

phyA mutant has low ELF4 expression in far-red light, and a second microarray experiment 

revealed that ELF4-induced expression is dependent on both phyA and phyB after 1-h red-light 

exposure of wild-type seedlings (Tepperman et al., 2001; 2004). Furthermore, ELF4 is up-

regulated following 1-h red or white light treatment in roots of wild-type seedlings, and ELF4 
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belongs to early dark-response genes together with CCA1 (Kim and von Arnim, 2006; Molas et 

al., 2006). ELF4 is present in the same cluster as ELF3 regarding expression time on a 

microarray generated for determining FLC-responsive genes, suggesting both ELF4 and ELF3 

control clock period in response to a temperature Zeitgeber (Edwards et al., 2006). The elf4 loss-

of-function phenotype is similar to that of elf3, but light-induced expression of ELF4 is relatively 

high in elf3 seedlings suggesting that the roles of ELF3 and ELF4 are not fully overlapping 

(Kikis et al., 2005).  

ELF3 

The elf3 mutant was originally found in a screen for plants with altered flowering time. elf3 

flowers essentially under short days as it does under long days (photoperiod-insensitive), which 

implicates that ELF3 is a floral repressor in the photoperiodic pathway (Zagotta et al., 1992). 

Primary investigations suggested that the photoperiod-insensitivity was caused by misregulation 

of the key photoperiod target gene and floral promoter CO in elf3 mutants (Suarez-Lopez et al., 

2001). However, it was recently reported that the elf3 co double mutant flowers earlier than the 

co single mutant suggesting elf3 can affect flowering time independently of CO (Kim et al., 

2005). Thus, ELF3 likely functions upstream in the photoperiodic pathway and cross talks with 

floral promoters of other flowering time pathways. Accordingly, the precocious flowering-time 

of elf3 leads to low fitness compared to wild-type plants (Green et al., 2002). Characteristic elf3 

morphology also includes elongated hypocotyls in short days, elongated petioles and pale green 

leaves, which is characteristic for mutants in light perception (Zagotta et al., 1992; 1996).  

 The molecular connection between ELF3 and photoperception is poorly understood, but 

is supported by genetic studies. In addition to the elongated hypocotyl in short days, the elf3 null 

mutant has a long-hypocotyl phenotype under continuous red, but not under continuous far-red 

light. This phenotype is also characteristic of the phyB null mutant. The elf3 phyB double mutant 

has the same hypocotyl length in constant red light as either of the respective single mutants, i.e. 

ELF3 is likely to function in phyB signaling (Liu et al., 2001). In relation to flowering time, 

ELF3 may act independently of PHYB, because the double mutant flowers earlier than elf3 in 

both short and long days, and PHYB function is not necessary for the late-flowering phenotype of 

ELF3-ox plants (Liu et al., 2001; Reed et al., 2000). In conclusion, ELF3 may play both phyB-

dependent and -independent roles in light signaling. 

 The elf3 null mutant exhibits arrhythmic circadian outputs in continuous light suggesting 

circadian dysfunction as the primary phenotype (Dowson-Day and Millar, 1999; Fowler et al., 

1999; Hicks et al., 1996; Schaffer et al., 1998). elf3 retains some clock function and the 

arrhythmicity is suggested to be light-dependent, because CAB2:LUC rhythms persist in constant 

darkness (Anderson et al., 1997; Hicks et al., 1996) and elf3 is phenotypically rescued by 
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temperature entrainment (McWatters et al., 2000). The elf3 clock defects include accentuated 

acute light response in light and dark (Anderson et al., 1997; Hicks et al., 1996) in addition to an 

increase in light-induced gene transcription (reduced gating) and arrest of the oscillator in 

constant light. This arrest was phenotypically observed at dusk, implicating ELF3 action at this 

time (McWatters et al., 2000). Furthermore, ELF3 has been suggested to act on the CCA1/LHY-

TOC1 loop of the clock because elf3 seedlings have low LHY and elevated TOC1 expressions 

(Alabadi et al., 2001; Schaffer et al., 1998). The expression level of GI is high in elf3 suggesting 

ELF3 suppresses light-activation of GI at night and the subsequent action of CCA1/LHY gates 

light-activation of GI in the morning (Fowler et al., 1999; Kim et al., 2003). Thus, ELF3 is 

important for regulating light input to both morning and evening elements of the clock. 

 Characterization of the genetic and biochemical mode-of-action of ELF3 has been 

initiated. The expression of ELF3 is under circadian control with trough in early day and peak in 

early night. The ELF3 protein level correlates with amount of mRNA and this rhythmicity is 

consistent to the timing phenotype (Hicks et al., 2001; Liu et al., 2001). The cyclic mRNA 

expression pattern is not necessary for oscillator function because outputs under constant 

conditions are overtly rhythmic when ELF3 is overexpressed (Covington et al., 2001). However, 

plants overexpressing ELF3 exhibit a long-period phenotype that is fluence rate-dependent, 

confirming ELF3’s role in light input to the clock (Covington et al., 2001).  

 ELF3 encodes a protein of 695 amino acids and has no sequence identity to proteins with 

known function, but related sequences are present in other plant species (Hicks et al., 2001; 

Miwa et al., 2006). ELF3 may be a transcription factor because a putative nuclear-localization 

signal is present in the C-terminal region and the ELF3 protein has been located to the nucleus 

(Liu et al., 2001). In yeast two-hybrid experiments, the C-terminal domains of ELF3 are able to 

form homodimers, which can be interpreted as ELF3 regulating its own activity. Furthermore, the 

ELF3 N-terminal region interacts with the C-terminus of PHYB supporting the genetic studies by 

Reed et al. (2000) and Liu et al. (2001) that ELF3 is involved in PHYB-signaling (Liu et al., 

2001). It can be proposed that the biochemical interaction of ELF3 with phyB protein is a 

secondary function of ELF3 compared to ELF3’s role in the circadian clock. The C-terminal 

region of ELF3 has no known activity and therefore is a candidate domain for ELF3-regulation of 

the clock. 
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The TILLING approach 
Reverse genetics is used to understand the function of a gene with known sequence. When a 

reverse-genetic approach is initiated, it is often the case that no characterized homologues of the 

gene-of-interest exist, which can provide information about gene structure. Mutants generated by 

T-DNA insertion mutagenesis very likely cause loss-of-function due to total disruption of the 

coding region. As a refinement in reverse genetics, TILLING (Targeting Induced Local Lesions 

in Genomes) was recently developed as a tool in Arabidopsis genomics and supplements the T-

DNA insertion approach (McCallum et al., 2000). TILLING can be used to obtain mutants with 

point mutations in the gene-of-interest, mutants that are candidate reduced-function alleles 

(neomorphs or antimorphs) and together form an allelic series, in contrast to many T-DNA lines 

that are full amorphs. Accordingly, TILLING mutants can facilitate detailed structure-function 

studies, e.g. functional domains can be identified and the elucidation of a signaling pathway may 

be easier (lethality of a null mutant is avoided). TILLING has subsequently become a popular 

approach for reverse-genetic screening in several species because it is cost-effective, for example 

tissue and DNA samples can be pooled and the data analysis is easy (Comai and Henikoff, 2006; 

Till et al., 2006). Furthermore, in animal research, TILLING is the first effective approach, 

which can be broadly applied for targeting known genes. TILLING has been applied to several 

plant genomes (Glycine max, Lotus japonicus, Medicago truncatula, Oryza sativa, Triticum 

aestivum and Zea mays) (Perry et al., 2003; Slade et al., 2005; Stacey et al., 2004; Till et al., 

2004; VandenBosch and Stacey, 2003; Wu et al., 2005) and animal model systems 

(Ceanorhabditis elegans, Drosophila melagonaster, Danio rerio, Rattus norwegicus, Xenopus 

tropicalis) (Gilchrist et al., 2006b; Goda et al., 2006; Smits et al., 2004; Wienholds et al., 2003; 

Winkler et al., 2005) (Fig. 1.7).  

 TILLING in plants has been based on ethyl methanesulfonate (EMS) mutagenesis of 

embryos (seeds). Identification of mutations in the gene-of-interest is enabled by PCR using 

gene-specific primers followed by a mismatch-specific enzymatic (CELI) digest of the PCR 

products. The endonuclease CELI cleaves at the heteroduplexes in the mutagenized DNA-strand 

and these loci lead to the new TILLING alleles (Greene et al., 2003). In case of Arabidopsis, 

TILLING has been automated (ARABIDOPSIS TILLING PROJECT [ATP] in Seattle; (Till et al., 

2003), and currently additional platforms are in progress for other plant model systems and crops 

(e.g. CAN-TILL, LOTUS TILLING, TOMATILL, PETILL, RAPTILL) (Gilchrist et al., 2006a; Gilchrist et 

al., 2006b) (http://www.evry.inra.fr). The software CODDLE (CODONS OPTIMIZED TO DISCOVER 

DELETERIOUS LESIONS) used for primer design predicts the gene region which is most likely to be 

targeted by EMS and result in loss-of-function. All the Arabidopsis TILLING lines are donated 

to the seed stock center by ATP and are available to the scientific community. 
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 Currently, several studies have been published that include Arabidopsis TILLING 

mutants. These studies can be grouped in two caterogies, one group used TILLING to obtain a 

null mutant of a gene for which no T-DNA lines were available, the other group used TILLING 

to get weak mutant alleles (missense mutations) in the gene-of-interest. Both approaches seem to 

be successful, though, the latter approach is the most valuable, providing information both about 

gene function and corroborating earlier loss-of-function studies. Below in Fig. 1.7, the 

Arabidopsis TILLING mutants are summarized.  

 In conclusion, within just five years, TILLING has proven to be a powerful tool in both 

plant and animal reverse genetics, and is currently being extended to crop research. In the present 

study (Chapters 4 and 6), I applied TILLING to two unrelated genes to initiate a detailed 

understanding of the structure-function relationship of distinct domains. 

 

 

 

 

 

 
 
 
Figure 1.7 TILLING mutants from different genomes 
The pie chart summarizes the number of published studies (per 1 Jan 2007) that included mutants 
generated using TILLING. Currently, most plant studies have been performed in Arabidopsis, followed by 
the other model species Lotus corniculatus, and a pioneering study in wheat (Triticum). TILLING has also 
been successfully applied in animal research (Danio and Ceanorhabditis elegans). The names of the 
Arabidopsis TILLING mutants are listed, divided in missense (dark grey) and nonsense (light grey) 
mutations. The number in brackets indicates the number of alleles in an allelic series of which the most 
characterized allele is listed. Arabidopsis references: abf3-1 (Finkelstein et al., 2005), acr4 (Gifford et al., 
2005), agl42 (Nawy et al., 2005), bps1 (Van Norman et al., 2004), blr-5 (Bao et al., 2004), brk1 (Djakovic 
et al., 2006), chx23 (Song et al., 2004), ddl-3 (Morris et al., 2006), fru-1 (Jakoby et al., 2004), fy-3 
(Henderson et al., 2005), gsl (Enns et al., 2005), hot1-4 (Lee et al., 2005), isa3-3 (Delatte et al., 2006), 
lut5-2 (Kim and DellaPenna, 2006), mag2 (Li et al., 2006), pect1 (Mizoi et al., 2006), rnr2a-1 (Wang and 
Liu, 2006), tfl2 (Kim et al., 2004b), wex-2 (Li et al., 2005). Mutants from other species: C. elegans (Brock 
et al., 2006), Danio rerio (Hurlstone et al., 2003; Wienholds et al., 2002; Wienholds et al., 2003), Triticum 
aestivum (Slade et al., 2005), Lotus corniculatus (Heckmann et al., 2006; Imaizumi-Anraku et al., 2005). 
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Thesis objectives 
Previously, the ELF4 locus was found to be necessary for clock sustainability and precision both 

under free-run in the light and in the dark. ELF4 belongs to a small and uncharacterized gene 

family and the biochemical function of ELF4 is unknown. Based on a comparison of mutant 

phenotypes, the role of ELF4 can be related to ELF3 function. That is, initial analyses of the elf3 

mutant revealed arrhythmicity of clock outputs accompanied by altered seedling physiology and 

precocious flowering, which appears very similar to the elf4 null mutant. These observations lead 

to the hypothesis that ELF3 and ELF4 function in the same signal transduction pathway 

controlling light input to the clock. ELF3 also belongs to a protein family with only 

uncharacterized members, but is distinct from ELF4.  

 In order to expand the understanding of ELF4 and ELF3’s connection to the circadian 

system, results from genetic analyses of the ELF4 and ELF3 encoding sequences are presented in 

this Ph.D. thesis. The approach includes analyses of phylogenetic relationships (Chapters 3 and 

6) and epistasis (Chapter 5), in addition to an elf4 allelic series generated from a TILLING screen 

of ELF4 (Chapters 4). Also in Chapter 5, analysis of ELF4-ox is presented including 

investigation of the residual oscillator, which is present in the elf4 null mutant. Finally, the ELF3 

analysis is focused on the description of an elf3 mutant isolated from a forward genetic screen 

(Chapter 6). 
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Materials 

Mutant lines and genetic markers 
All mutant and transgenic lines (including luciferase reporter lines) of Arabidopsis thaliana 

included in this study, except TILLING lines (see Table 4.1 in Chapter 4, and Tables A.1 and A.2 

in Appendix V), are listed in Tables 2.1 and 2.2.  

 Mutation-specific Cleaved Amplified Polymorphic Sequence (CAPS) and derived CAPS 

(dCAPS) markers (Michaels and Amasino, 1998; Neff et al., 1998) were used in this study to 

genotype the TILLING lines (Tables 2.3 and 2.4). The CAPS/dCAPS markers facilitated tracking 

of the mutations during the backcrossing procedure. A similar type of markers (CAPS/dCAPS) 

was used for elf3 mutants in the C24 background (Table 2.5). 

 T-DNA insertion lines obtained from the public T-DNA collections (e.g. SALK, see Table 

2.1) were genotyped using the oligos listed in Table 2.6 to confirm the locus affected. 

Homozygosity of progeny from crossing the T-DNA insertion lines was obtained (when possible) 

using antibiotic selection for the T-DNA (Table 2.1) in combination with genotyping of the T-

DNA. 
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Table 2.1 Mutant lines 
Antibiotic selection marker is indicated, when present. The lines with stock numbers were obtained from 
the THE EUROPEAN ARABIDOPSIS STOCK CENTRE (NASC) or the FLAG collection at INSTITUT NATIONAL DE LA 
RECHERCHE AGRONOMIQUE (INRA). Other lines were kindly provided by the principal investigators. 
*Original ecotype. PHYB-ox harboring the CAB2:LUC reporter (2CA/C [Millar et al., 1992], introgressed 
using ecotype C24 containing 2CA/C) was further introgressed to C24 in this study, compared to the 
2CA/C reference. 
 
 

Mutant Ecotype Mutagen Reference Stock no. 
elf3-1 Col-0 EMS Zagotta et al., 1992  N3787 
elf3-1 C24 EMS Hall et al., 2003 - 
elf3-4 Ws EMS Hicks et al., 1996 - 
elf3-7 Col-0 EMS McWatters et al., 2000 - 
elf4-1 Ws T-DNA (KanR) Doyle et al., 2002 - 
elf4-101 Col-0 T-DNA Khanna et al., 2003 - 
elf4-102 Col-0 T-DNA Khanna et al., 2003 - 
toc1-1 C24 EMS Millar et al., 1995 - 
toc1-21 Ws T-DNA Ding et al., 2007 - 
cca1-11 Ws T-DNA Hall et al., 2003 - 
PHYB-ox No-0* T-DNA (KanR) Wagner et al., 1991  

Anderson et al., 1997 (2CA/C) 
- 

er-105 Col-0 Fast-neutron Torii et al., 1996  N89504 
efl1-1 Ws T-DNA (KanR) Krysan et al., 1999 - 
efl1-2 Col-0 T-DNA Alonso et al., 2003 SALK_135613 
efl2-1 Ws T-DNA (KanR) Samson et al., 2002  FLAG_198A02 
efl3-1 Ws T-DNA (KanR) Samson et al., 2002 FLAG_140E10 
efl3-2 Col-0 T-DNA (KanR) Alonso et al., 2003 SALK_009170 
efl3-3 Col-0 T-DNA (KanR) Alonso et al., 2003 SALK_092662 
efl3-4 Col-0 T-DNA (KanR) Alonso et al., 2003 SALK_078416 
efl4-1 Col-0 T-DNA Alonso et al., 2003 SALK_084137 
efl4-2 Col-0 T-DNA Alonso et al., 2003  SALK_058067 
efl4-3 Col-0 T-DNA (PPTR) Sessions et al., 2002  SAIL_837_C07 
efl4-4 Ws T-DNA (KanR) Krysan et al., 1999  - 
35S::ELF3 Ws T-DNA (PPTR) L. Kozma-Bognar, unpubl. - 
35S::ELF4 Ws T-DNA (PPTR) M. Doyle/this study - 
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Table 2.2 Luciferase lines 
All luciferase reporter lines included in this study originate from stable transgenic lines that were 
previously generated (see references listed). Each reporter construct consists of a gene-specific promoter 
sequence fused to the coding region of LUCIFERASE (LUC) (GENBANK GI:160793), which is an 
engineered version from the common eastern firefly (Photinus pyralis) (2CA/C; Luehrsen et al., 1992) 
(LUC+, PROMEGA). The C24 lines, except CAB2, were backcrossed three times to C24 in this study to 
remove traces of 2CA/C and mixed ecotypic backgrounds. *Same construct as in Doyle et al. (2002) used 
for transformation of Col-0 and C24. 
 

Reporter Ecotype Selection  Reference 
CCA1:LUC+  Col-0 HygR Doyle et al., 2002* 
CCR2:LUC+  Col-0 HygR Doyle et al., 2002* 
CAB2:LUC+  Ws HygR Bognar et al., 1999 
CCA1:LUC+  Ws HygR Doyle et al., 2002 
CCR2:LUC+  Ws HygR Doyle et al., 2002 
LHY:LUC+  Ws HygR P. Gyula/this study 
TOC1:LUC+ Ws GentR P. Gyula/this study 
CAB2:LUC (2CA/C)  C24 KanR Millar et al., 1992 
CCA1:LUC+  C24 HygR Kevei et al., 2006* 
CCR2:LUC+  C24 HygR Hall et al., 2003 
LHY:LUC+  C24 HygR E. Kevei (unpubl.)  
TOC1:LUC+  C24 HygR E. Kevei, (unpubl.)  
ELF4:LUC+ Ws PPTR M. Doyle/this study 

 
 
 
 
Table 2.3 CAPS/dCAPS elf3 TILLING lines  
The “derived” oligonucleotides are small case letters. Mutant-specific CAPS/dCAPS products are 
underlined. 
 

Forward primer (5’-3’) Allele 
Reverse primer (5’-3’) 

Products (bp) Enzyme 

TGGAAAGAAACTTATCTGTCCAGgAT elf3-201 
ATCTCACATTTTCCATGAAGGACATT 

99 [24, 75] MboI 

GAGAGAGGAAGAAGATTTTGCAGaT elf3-202 
GGAGTGATGAGAGCTAGGTGCCA 

130 [23, 107] HinfI 

GAGAGGAAGAAGATTTTGCAGTTC elf3-203 
ACTTCAGGTTTTGAACAAGTAGCC 

202 [146, 56] HinfI 

GTTCCAGTATATATTAACTCAAG elf3-204 
AGTGATGAGAGCTAGGTGCCACCATcG 

106 [79, 27] TaqI 

ATGGTGAGAGAGGAAGAAGATTTTGC elf3-205 
CGAATGGAGTGATGAGAGCTAGGaG 

140 [114, 26] HinfI 

TGTTTGGCTACTTGTTCAAAACtT elf3-206 
TGATGCTGATTTTTCGAGATCAATC 

126 [23, 103] MseI 

CTTTGTAATCTCTTTAGATGTATtA elf3-207 
CCATTATCAGTGTCCTTCAGACGAG 

165 [23, 142] MseI 
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Table 2.3 CAPS/dCAPS elf3 TILLING lines cont. 
 

GCAAGGTCAGGTGGCTTTGTAATC elf3-208 
CTCGGTATAACCGATTTCTAGAC 

142 [118, 24] HinfI 

CTCGAAAAATCAGCATCAAGTCAT elf3-209 
GTCCTTCAGACGAGTTTTGCCACgA 

111 [85, 26] MboI 

TAGATGTATCAGTCACAGAGGAGAT elf3-210 
CAGCTCCATTATCAGTGTCCTTCAtA 

156 [129, 27] NdeI 

TAGATGTATCAGTCACAGAGGAGAT elf3-211 
CAAGTGAGATTCAGCTCCATTATtA 

167 [142, 25] MseI 

CAAAACTCGTCTGAAGGACACTGATcATG elf3-212 
CGCATGCTCTGCTTTTGCTGTATTC 

131 [26, 105] BspHI 

GTCAGGTGGCTTTGTAATCTCTTT elf3-213 
CATTATCAATGTCTTCAGGACTGC 

245 [175, 70] AluI 

ATGGAGCTGAATCTCACTTGGCcA elf3-214 
GATATAGAATCCACCATCGAATCAT 

175 [22, 153] NcoI 

ATGCTTCCTTGAGACAAGAGTCTA elf3-215 
GGACTGCCATGACCCTCTTGTGAtT 

133 [106, 27] MseI 

CACTTGGCAACGGAAAATCATTCctAA elf3-216 
GAAACGTCATCACTTGCCTCTTCAT 

134 [24, 110] DdeI 

TGGCAAAACTCGTCTGAAGGACACT elf3-217 
TCACGATCATTATCAATGTCTTtA 

111 [87, 24] MseI 

GCAACGGAAAATCATTCACAAGAG elf3-218 
TATCTGCTGCAGAGAGGCGCAaGC 

102 [77, 25] HindIII 

GTCATGGCAGTCCTGAAGACATTG elf3-219 
GATATAGAATCCACCATCGAATCATtA 

130 [103, 27] MseI 

CATCATCAACAATCCAACTACAaGC elf3-220 
CCGAGGGAGACATTACAGGGATCAAC 

139 [22, 117] HindIII 

TCAGGAAATCATCAGCAATGGTaG elf3-221 
CATTGGTGTAGGCATATAATGAC 

132 [23, 109] BglII 

AGCCTCACCCAGGTATGGCACACtCG elf3-222 
GAAGTAGCCATTACCAGGAGGTGG 

125 [23, 102] DdeI 

GTATGGCACACACGGGGCATcAT elf3-223 
CATATGGAGGGAAGTAGCCATTAC 

126 [20, 106] BspHI 

GGACTGATATACAAGCCTCACCCA elf3-224 
GAGGGAAGTAGCCATTACCAcGAGG 

145 [118, 27] DraIII 

TCACCCCGGCATGGGATTCCCAC elf3-225 
CAAACTGGTTCATTTaCTCATTGGGaT 

137 [110, 27] FokI 

GCAAATGAACCAGTTTGGACATCtT elf3-226 
GAAAGGACTTGCTACCAGAGATTC 

194 [23, 171] DdeI 

CATATTGTTCAAGCCAACAACAAC elf3-227 
TCTTGCTCGCGGATAAGACTTTGTcG 

167 [141, 26] TaqI 

GAACCAGTTTGGACATCCTGGAAATC elf3-228 
CTGCTCTTTCTTGCTCGCGGATtA 

126 [102, 24] MseI 

CAGGAAGCAGTCCAAGTGGGCCACtG elf3-229 
GTCATCGTTTGCTCAcGTGCATTGT 

112 [24, 88] DdeI 

AGCCAACAAAGTCTTATCCGCGAGC elf3-230 
TGTTGATGTTGCTGTCCTCATCcA 

138 [110, 28] NcoI 

TGAGGACAGCAACATCAACAATGgA elf3-231 
CGAGCTTTGCGTTGTGAGGTACCA 

143 [24, 119] MboI 
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Table 2.4 CAPS/dCAPS elf4 TILLING lines 
The “derived” oligonucleotides are small case letters. Mutant-specific CAPS/dCAPS products are 
underlined. 
 

Forward primer (5’-3’) Allele 
Reverse primer (5’-3’) 

Products (bp) Enzyme 

GAGACGAAACGGCGGAGGAACGTGTCG elf4-201 
AAAACTGATTGCACTTGTCTGAA 

104 [27, 77] TaqI 

TGACGAAAATCAAAAAGAGAGAAA elf4-202 
CCCACATCGCCGGATCCTCTCCaaGCT 

122 [95, 27] HindIII 

CAGAGCAGGGAGAGGATaCGGCGATG elf4-203 
CAGCCATTCTaGATTGGTGATTG 

129 [41, 88] HpaII 

GGGAGAATCTTGACCGGAATTTCG elf4-204 
CAGCCATTCTaGATTGGTGATTG 

102 [23, 79] TaqI 

CAGAGCAGGGAGAGaATCCGGCGATG elf4-205 
CAGCCATTCTaGATTGGTGATTG 

130 [82, 48] MboI 

GTGCTGCCGGAACTAGAGCTTAtt elf4-206 
CTAACGACAATCATCATTGCAATAC 

149 [23, 126] MseI 

TGACGAAAATCAAAAAGAGAGAAA elf4-207 
CCCACATCGCCGGATCCTCTCCg 

122 [98, 24] RsaI 

AAACGGCGGAGGAACGTGGCGG elf4-208 
AAAACTGATTGCACTTGTCTGAA 

100 [58, 42] BamHI 

GCAGGGAGAGGATCCGGCGATctg elf4-209 
GCCATTCTCGATTGGTGATTGTC 

123 [22, 101] DdeI 

AGGCAGAGCAGGGAGAGGATCaGGC elf4-210 
GCCATTCTCGATTGGTGATTGTC 

130 [44, 86] HpaII 

AGGCAGAGCAGGGAGAGGcTCCGGC elf4-211 
GCCATTCTCGATTGGTGATTGTC 

130 [85, 45] MboI 

GAGAATCTTGACCGGAATTTCAGAC elf4-212 
CAACGTTCTTCGACATGTTATta 

121 [98, 23] MseI 

TGCTTTGATTCAAGAACTCAcC elf4-213 
CACCATCGTGACCGTTCTTCCC 

113 [21, 92] HpaII 

CTTTGATATCAGATAGATACGTCTtC elf4-215 
CGTCAAAGTCGAGAGAAATCAGA 

142 [25, 117] BspHI 

TGGTGATGAAACAGAACTTACTCG elf4-216 
AAAACTGATTGCACTTGTCTGAAA 

246 [78, 168] TaqI 

GGAATCAAATTGTTTCTTCTTACTT  elf4-217 
GTTTGCTCCCACGGATTATTCTAACG 

140 [19, 121] DdeI 

 
 
Table 2.5 CAPS/dCAPS for C24 elf3 lines 
The “derived” oligonucleotides are small case letters. Mutant-specific CAPS/dCAPS products are 
underlined. 
 

Forward primer (5’-3’) Allele 
Reverse primer (5’-3’) 

Products (bp) Enzyme 

GATAAATGAAGAGGCAAGTGATGA elf3-G12 
GAAAGAGCGGAGAATAAATAACCA 

197 [99, 98] MboI 

GTGACTCTGTTTCTCATTACAaTCgA elf3-1 
CAGCTCGAGAAGAAACAAATACTCAT 

133 [111, 22] ClaI 

CTTTGGTTCATCCTGGACCATCTAGTCcG elf3-7 
CAATTGAAACATAGATCAACCAATGTC 

144 [17, 127] HpaII 
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Table 2.6 PCR markers for genotyping T-DNA insertion lines 
A gene specific primer was combined with left border (LB)-specific primer as indicated, and two separate 
PCRs were run, to test for presence of gene and T-DNA, respectively. For some lines one reaction with 
triplex oligos was sufficient, as indicated (‡). 1LBa1: 5’-TGGTTCACGTAGTGGGCCATCG-3’. 2LBb1: 5’-
GCGTGGACCGCTTGCTGCAACT-3’. 3LB2SAIL: 5’-GCTTCCTATTATATCTTCCCAAATTAC-3’. 4JL270: 
5’-TTTCTCCATATTGACCATCATACTCATTG-3’. 5LB4: 5’-CGTGTGCCAGGTGCCCACGGAATAGT-3. 
 

Line Left primer (5’-3’) Right primer (5’-3’) 
efl1-1 ATGGAAGGAGATGTGTTGTCAGGAT4 TGATGGTCTTGGACCTCTTGGTTAC 
efl1-2 GTTTGACCTCATTTGGTTTCG2 AAGAACCGGTGGTGGTAGTTG 
efl2-1 GACACTGGCATATCTTTAACCTCC‡,5 TCAGCTTGTTTCGACTCATGG 
efl3-1 TCCATTTGAACTCCACTTCCC‡,5 CCATACCCTTGATTCAATACC 
efl3-2 GCTTCCATGGATTTGGAGAAG‡,2 TTTTCATGGTTTGATGGGTTG 
efl3-3 GATTAGACGCGACAATCCGAC‡,1 TGTTACAAAAGCCAAGAAAAG 
efl3-4 GATTTGTTAGATTTGATTAGGAAATG1 AGTGGAGTTCAAATGGATGGG 
efl4-1 TGGGATCCCTGTATTTCCTTG‡,1 ATGAACCCAAGAGGGAAAGAG 
efl4-2 CGGTTAGGTTTAGGTCAACGG‡,2 AAGAACCCAACACGATTCAGC 
efl4-3 AGCCGATAATGGAAGGAGATG‡,2 GAGAAATCTCGGAGGAGAGGC 
efl4-4 ATGGAAGCATCGAGAAATCGATCGCTCGT4 TTAAGAACCGGTGGTGGTAGTTGTGG 
elf4-101 CGTACACCATATACCTTTTTCCCTATT3 TTGTGTTTTTCTCTCTTTTTGATTTTC 
elf4-102 CAAGTCAACGACAATCACCAA3 ACCCCAATAGAGATGGGTTTG 

 
 

Oligonucleotides for site-directed mutagenesis and cloning 
Tables 2.7 and 2.8 list primers designed for site-directed mutagenesis of yeast two-hybrid clones 

and amplification of the ELF4 promoter. Table 2.9 contains the gene-specific nucleotides for 

GATEWAY® cloning of ELF4 and EFL ORFs. These primers were designed according to the 

GATEWAY® instructions (INVITROGEN). Forward GATEWAY® primer includes the B1 attachment 

(attB1) site, Shine-Dalgarno and Kozak sequences (GWF). Reverse GATEWAY® primer includes 

the attB2 site and a stop codon (GWR).  

 
Table 2.7 Primers for plasmid mutagenesis 
The oligos listed confers change of a single nucleotide, corresponding to three elf3 point mutations. G12: 
elf3-G12. 3221: elf3-221. 3227: elf3-227. 
 

Name Sequence (5’-3’) 
G12-fwd GATGTTGTGGGTATATTAGATCAAAAACGTTTCTGGAGAG 
G12-rev CTCTCCAGAAACGTTTTTGATCTAATATACCCACAACATC 
3221-fwd CAGCAATGGTTGATCTCTGTAATGTCTCCCTC 
3221-rev GAGGGAGACATTACAGAGATCAACCATTGCTG 
3227-fwd CAGCAACAGCAACAGTCAACAAAGTCTTATCC 
3227-rev GGATAAGACTTTGTTGACTGTTGCTGTTGCTG 
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Table 2.8 Primers for ELF4 promoter 
The oligonucleotides listed generate an AscI site 5’ to and a ClaI site 3’ to the ELF4 promoter (1580 bp 
sequence, upstream of the ELF4 ORF). 
 

Name Sequence (5’-3’) 
4pf-AscI TAGTAAGGCGCGCCCTCATGATTTCCTGCGGTAATTATCT 
4pr-ClaI TACCGGATCGATAATAATTTTTAATTGTGTTTTTCTCTCT 

 
 
Table 2.9 GATEWAY® primers 
GWF: 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTGCGAAGGAGATAGAACC-3’.                                         
GWR: 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTA-3’. 
 

Name Sequence (5’-3’) 
attB1-ELF4 GWF-ATGAAGAGGAACGGCGAGACGAAA 
attB1-EFL1 GWF-ATGGAAGCATCGAGAAATCGATCG 
attB1-EFL2 GWF-ATGGAATCAAGAATGGAAGGAGAT 
attB1-EFL3 GWF-ATGGAGGGAGACACAATATCTAGG 
attB1-EFL4 GWF-ATGGAAGGAGATGTGTTGTCAGGA 
attB1-Hv41 GWF-ATGGAGAACAGCAGCGGCCGGGAG 
attB1-In41 GWF-ATGGAGAACACGTCACGAGCCGTA 
attB1-Pt41 GWF-ATGGAGGGGGAAGCATATTCTGCT 
attB2-EFL1 GWR-AGAACCGGTGGTGGTAGTTGTGGTG 
attB2-EFL2 GWR-CCCGGATCTAAATCTCTTCTGG 
attB2-EFL3 GWR-ATTAAGCAGGCCTGATTCTTCT 
attB2-EFL4 GWR-ACCGGATCTAAATCTCTTCTGG 
attB2-ELF4 GWR-AGCTCTAGTTCCGGCAGCACCA 
attB2-Hv41 GWR-CTGTGTGGGGCGCGGCCTCTT 
attB2-In41 GWR-CTGTTCCCGGCCTCCGGAGCG 
attB2-Pt41 GWR-AAACTGAGGTCGAAATCTCTT 

 
 
 

EST clones 
The tables below list references of EST clones included in this study (Tables 2.10 and 2.11) and 

oligonucleotides used to fully sequence the inserts up to publication quality (Tables 2.12 and 

2.13). 
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Table 2.10 ELF3 EST clones 
ELF3-like EST clones included in this study. See footnotes for the primary investigators. 
 

ID Species GenBank Library ID Vector 
Bv31 Beta vulgaris BQ591002 024-018-J04 (5') 1 pCMVSPORT6 
Ec31 Eschscholzia californica CD479176 eca01-36ms4-g04 (5') 2 pBluescript SK (+/-) 
Hc31 Hedyotis centranthoides CB087760 hk07g10 3 pBK-CMV 
Hv31 Hordeum vulgare BF625034 HVSMEa0005J07f 4  lambdaZAP 
Os31 Oryza sativa CB673178 OSJNEe07J11 (3') 6  pBluescript II KS + 
Sb31 Sorghum bicolor CD209215 HS1_47_C08_A012 (3') 7 pME18S-FL3 
So32 Saccharum officinarum CA139517 SCEQRT2099D01 (5') 8 pSPORT1 
Ze31 Zinnia elegans AU291816 Z6505 10 pGEM-T Easy 

 
 
Table 2.11 ELF4 EST clones 
ELF4-like EST clones included in this study. See footnotes for the primary investigators. 
 

ID Species GenBank Library ID Vector 
Am41 Antirrhinum major AJ560195 018_1_12_K06 11 pBluescript SK- 
Bv41 Beta vulgaris BQ582323 024-007-H14 (5') 12 pCMVSPORT6 
Cs41 Citrus sinensis CB292059 UCRCS01_03df02 13 lambdaZAP 
Ga41 Gossypium arboreum BG442606 GA__Ea0017K03f 14 pBK-CMV 
Ga42 Gossypium arboreum BG440619 GA__Ea0009B05f 14 pBK-CMV 
Gm40 Glycine max CF809029 sHB041P04 (5') 15 pBK-CMV 
Ha41 Helianthus annuus BU022246 QHE6F07 (3F07) 16 pBRcDNASfiAB 
Ht41 Hedyotis terminalis CB076655 hf46g12 3 pBK-CMV 
Hv41 Hordeum vulgare BF264415 HV_CEa0009F21f 17 lambdaZAP 
In41 Ipomoea nil BJ571244 JMFF17A23 18 pFLC-I 
Lc41 Lotus corniculatus CB829080 LjNEST93h1r 5 pSPORT1 
Le42 Lycopersicon esculentum BG643359 cTOF27I20 (5') 19 pBluescript SK- 
Ls41 Lactuca serriola BQ991190 QGF22D05 (19D05) 20 pBRcDNASfiAB 
Mp41 Mentha x piperata AW255782 3634902/ML850 21 pBluescript SK- 
Mt42 Medicago truncatula BE124413 pGVN-59D11 22 pBluescript SK- 
Os41 Oryza sativa CB631337 OSIIEb08M19 (3') 6 pBluescript II KS+ 
Pt41 Pinus taeda CF394251 RTDS2_4_A07_A021 (5') 7 pSL1180 
Sb40-1 Sorghum bicolor CF481565 POL1_72_E11_A002 (5') 7 pME18S-FL3 
Sb40-2 Sorghum bicolor CD209380 HS1_42_B01_A012 (3') 7 pME18S-FL3 
So41 Saccharum officinarum CA155074 SCACRZ3034G01 (5') 8 pSPORT1 
So42 Saccharum officinarum CA195391 SCEZSB1093E08 (5') 8 pSPORT1 
St42 Solanum tuberosum BM109150 cPRO3I8 (5') 11 pBluescript SK- 
Zm41 Zea mays BU499441 946175 (B05) 23 lambdaZAP 

 

1Sugar Beet Research, Einbeck, Germany. 2J. Leebens-Mack, Penn State University, PA. 3W. R. McCombie, Cold Spring Harbor 
Laboratory, NY. 4D.W. Choi and T. Close, University of California, Riverside, CA**. 5M.K. Udvardi, MPI Molecular Plant 
Physiology, Potsdam, Germany. 6G.L. Wang, Ohio State University, Columbus, OH*. 7L. Pratt, University of Georgia, Athens, GA. 
8H. Chaimovich, University of Sao Paulo, Brazil. 9K.G. Welinder, University of Aalborg, Denmark. 10T. Demura, RIKEN, Japan. 11Z. 
Schwarz-Sommer, MPI Plant Breeding Research, Cologne, Germany. 12B. Weisshaar, MPI Plant Breeding Research, Cologne, 
Germany. 13T. Close, University of California, Riverside, CA*. 14T.A. Wilkins, University of California, Davis, CA**. 15R. Dean, 
North Carolina State University, NC. 16R.W. Michelmore, University of California, Davis, CA*. 17D.W. Choi, University of 
California, Riverside, CA, and R. Wise Iowa State University, IA**. 18S. Iida, National Institute for Basic Biology, Okazaki, Japan. 
19S. Tanksley, Cornell University, Ithaca, NY*. 20R.W. Michelmore, University of California, Davis, CA*. 21R. Croteau, Washington 
State University, Pullman, WA. 22C.P. Vance, University of Minnesota, St. Paul, MN. 23G. Chuck and S. Stanfield, University of 
California, San Diego, CA*.  
*Distributed by Arizona Genomic Institute, Tucson, AZ.  
**Distributed by Clemson University Genomics Institute, Clemson, SC. 
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Table 2.12 Sequencing primers for EST clones 
Primers in italics are standard sequencing primers available at the ADIS sequencing facility at MPIZ, except 
the vector-specific primers for Sb clones: FL33: 5’-GGGAGGTGTGGGAGGTTTT-3’. FL35: 5’-
CCTCAGTGGATGTTGCCTTT-3’. The sequences of insert-specific primers are listed in Table 2.13.  
 
ELF3-like ESTs ELF4-like ESTs 
Clone Primers Clone Primers 
Bv31 T7, unis, frev, SP6, T20a, Bv01 Am41 T7, SK, T3, unis 
Ec31 unis, pETf, revs, SK, T3, Ec01, Ec02 Bv41 T7, SP6, ADIS, unis 
Hc31 unis, T3, T7, Hc03, Hc04 Cs41 T7, SK, T20a, Cs01 
Hv31 unis, revs, T7, SK, Hv02 Ga41 T7, T3, unis 
Os31 T3, T7, SK, Os01, Os02, Os04, Os05 Ga42 T7, T3, unis 
Sb31 FL33, FL35, Sb01, Sb02 Gm40 T20a, T3 
So32 unis, revs, SP6, T7 Ha41 M13u, M13r, unis, Ha01 
Ze31 unis, revs, SP6, T7 Ht41 T3, T7, unis, Hc01, Hc02, Hc05, Hc06 

Hv41 T7, SK, T3, unis 
In41 T7, T3, unis, revs 
Lc41 unis, revs, SP6, T7 
Le42 T7, SK, Le01, unis, T3 
Ls41 unis, revs, M13u, M13r 
Mp41 T7, SK, T3, unis, T20a 
Mt42 T7, SK, unis, T3, Mt03 
Os41 T3, revs, SK 
Pt41 unis, M13r, Pt01 
Sb40-1 FL35, FL33, Sb03, Sb04 
Sb40-2 FL35, FL33, Sb03, Sb05 
So41 unis, revs, SP6, T7 
So42 unis, revs, So01, T7 
St42 T7, SK, T3, unis 

 

Zm41 T7, SK, T20a, Zm01, Zm02 
 
 
Table 2.13 Insert-specific sequencing primers for EST clones 
See Table 2.12 legend. 
 

ELF3-like ESTs ELF4-like ESTs 
Name Sequence (5’-3’) Name Sequence (5’-3’) 
Bv01 CCAAGCGTATCAGGCTCAA Cs01 CAACAAATCCCGTCCCTCT 
Bv02 AAATTCGGGCTGCTGATTC Ha01 GCTGCTGCTGCTAGTCTTGA 
Ec01 ACCGCCTCCAAATAACGAC Hc01 CAGCACTGAACAACCTTCCA 
Ec02 CCGCAACTCCGTTTACCTT Hc02 TTGCCTTTTCAACCAGCTCT 
Hc03 CACTTCCTTCGGTGGTGTTT Hc05 GGAGGGGACACAAGACAGAG 
Hc04 TTTCATCAACCACAGGGACA Hc06 TTGAGGAGGGGACACAAGAC 
Hv01 ATGCAAAGCAAAGCAGGACT Le01 TGATTCCCCTCGGAGAAAG 
Hv02 CTGCTATGCCTGCTCCTACC Mt03 AATCGGCTTTTAATCAACCAGA 
Lc01 ATGTGATGTTGCTCCATTTCC Pt01 AGCAGGTTTCCCATCAGATTT 
Lc02 CAACGAGATGATGCTTGCTTAC Sb03 GTCTCCGTCTGACAGGCTTC 
Os01 GTGTTGCTCCAAGTTCCCATA Sb04 GGTTCTGGTTGATCTCGTTGA 
Os02 ATTCGGGGATGTTATCCACTC Sb05 CTTGGACTCGTGGTTCTGGT 
Os04 GGAGAGGGTGGGTTCTCTTC So01 AGCAAGCAGAAGCAGAGGAG 
Os05 GGAAAACAGCGAGCATCAA Zm01 GTTGAGCTCCCGGATTAGC 
Sb01 AGGCTCTCAGCTGCTCTCAG Zm02 ATACCCCACCAAACCCAAA 
Sb02 GAAAAAGCTGGCTGGAGATG  
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Other reagents and materials 
The following tables include reagents and materials used for molecular biology and culture of 

microorganisms and plants. 

 

 

Table 2.14 Buffers and other reagents 
 

 
Agarose gel electrophoresis 
 
25xElectrophoresis buffer  
67.23 g/L Tris 
34.31 g/L boric acid 
37.22 g/L EDTA 
pH 8.0 

6xDNA loading buffer 
0.25% (w/v) bromophenol blue 
30% (v/v) glycerol 
10 mM EDTA 

Ethidium bromide 
Stock 10 mg/ml 
in H2O 

 
DNA extraction from plants 
 
DNA Extraction Buffer 
200 mM Tris pH 8.0 
240 mM NaCl 
25 mM EDTA 
1% (w/v) SDS 

10xTE 
0.1 M Tris pH 7.5 
10 mM EDTA 
 

 

 
Other reagents 
 
 
Bleach solution 
33% (v/v) KLORIX® (commercial sodium hypochlorite solution) in 0.02% (v/v) Triton X-100 
 
 
Firefly D-luciferin 50 mM stock 
1 g firefly D-luciferin (D-[4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazole-carboxylic acid] 
(LABTECH INTERNATIONAL) was dissolved in 71.3 ml 1 M triphosphate buffer (Na2HPO4/NaH2PO4) pH 
8.0 to give a 50 mM luciferin solution. 1.5 ml aliquots were stored at -80°C. The luciferin stock was 
diluted to a 5 mM luciferin working solution with 0.01% (w/v) Triton-X100. 
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Table 2.15 Growth media 
 

 
MURASHIGE AND SKOOG (MS) growth media 
 
“1/4 MS0” 
1.1 g/L MS (SIGMA M5524-10L) 
0.5 g/L 2-N-morpholino-
ethanesulfonic acid (MES) 
(BIOMOL 06010) 

MS0 
2.2 g/L MS 
0.5 g/L MES 
1.2% phytoagar (DUCHEFA) 
pH 5.7 

MS3 
4.4 g/L MS 
0.5 g/L MES 
30 g/L sucrose 
1.5% phytoagar 
pH 5.7 

 
Growth media for bacteria 
 
Luria Bertani (LB) 
10 g/L bactopeptryptone 
5 g/L yeast extract 
5 g/L NaCl 
1% agar 
pH 7.5 

CIRCLE GROW 
Medium for liquid culture, 
purchased from QBIOGENE 

YEBS 
5 g/L beef extract 
5 g/L peptone 
5 g/L sucrose 
1 g/L yeast extract 
0.5 g/L MgSO4 
1% agar 
pH 7.0 

 
Table 2.16 Other materials 
 

 
Bacterial strains 
 

 
Enzymes 
 

 
Escherichia coli DH5alpha (INVITROGEN) 
E. coli XL10-Gold (STRATAGENE) 
 
Agrobacterium tumefaciens GV3101 (pMP9ORK) 
(Koncz and Schell, 1986) 
 

 
Calf Intestinal Alkaline Phosphatase (CIP, NEB) 
GATEWAY® BP and LR clonase (INVITROGEN) 
PEQGOLD TAQ-DNA-POLYMERASE (PEQLAB) 
PLATINUM Pfx DNA Polymerase (INVITROGEN) 
Restriction endonucleases (all from NEB) 
T4 ligase (NEB) 
 

 
Antibiotics 
 

 
Kits 
 

 
Stock solutions: 
Carbenicilin 100 mg/ml H2O 
Gentamycin 25 mg/ml H2O 
Hygromycin 30 mg/ml H2O 
Kanamycin 100 mg/ml H2O 
Phosphinothricin (PPT) 12 mg/ml H2O 
Rifampicin 25 mg/ml methanol 
 

 
PEQLAB E.Z.N.A. MINIPREP 
QIAGEN GEL EXTRACTION 
QIAGEN RNAEASY 
 

 
Oligonucleotides 
 

 
Chemicals 
 

 
Synthesized by INVITROGEN or SIGMA 
 

 
From INVITROGEN, MERCK, SERVA and SIGMA 
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Methods 

TILLING 
Two regions of ELF3 (At2g25930) were used as input for CODONS OPTIMIZED TO DETECT 

DELETERIOUS LESIONS (CODDLE, http://www.proweb.org/coddle; Till et al., 2003) (see also 

Chapter 1). ELF3 was split in two regions because the maximum of CODDLE input is about 1 kb. 

Furthermore, previous experiments had suggested functional domains of ELF3 (Chapter 1).  

 One region of ELF3 that was TILLed (region 1) comprises the genomic sequence 1001-

1984 bp and it includes exon 2. The primers used for TILLING of region 1 were ELF3-1fwd 

primer (5’-TGCAGCCTTGTGGTGTGGAAAGAA-3’), and ELF3-1rev primer (5’-TGCCCTACCAC-

AGTCCTCAATGAA-3’). The TILLed region 2 of ELF3 comprises the genomic sequence 3264-

4087 bp and includes exon 4. Primers used for region 2 were ELF3-2fwd primer (5’-TGTCGTC-

AAACAAAGGGGTGACTCG-3’), and ELF3-2rev primer (5’-GCAGCATTCTCACTCGCGAGCTTT-

3’). 

 The entire coding sequence of ELF4 (At2g40080) was TILLed, and this region extended 

880 bp. The primers used in the TILLING screen were ELF4-fwd primer (5’-CCAATCACTTCA-

CAGCTTCACTCACG-3’), and ELF4-rev primer (5’-TGCAACAATCTAACCACAAGCCTTCA-3’). 

 The M3 TILLING plants obtained from ATP/NASC were backcrossed three times to Col-0 

wild type. TILLING was performed on Col-0 carrying the erecta-105 (er-105) mutation (“Big 

Mama”). Because ER (At2g26330) is linked to ELF3, most elf3 plants in this study are er. The 

er-105 line was therefore used as control in most elf3 experiments, however for simplicity, all 

TILLING luciferase controls are referred to as Col-0. During the backcrossing procedure, the 

point mutations were tracked using CAPS/dCAPS markers (Tables 2.3 and 2.4). The 

homozygous mutant BC3-F2 plants were confirmed by sequencing the affected exon. 

G12 
The elf3-G12 allele is in the C24 background. elf3-G12 was isolated and mapped by Eva Kevei et 

al. from a forward genetic screen of EMS-mutagenized populations carrying the CAB2:LUC 

reporter gene (2CA/C, Millar et al., 1995) (Kevei et al., 2006). All mutants in the C24 

background used in this study, elf3-1, elf3-7, elf3-G12 and PHYB-ox (Table 2.1), were 

backcrossed three times to C24 wild type to remove 2CA/C and homogenize the accession 

background. The elf3 mutants were genotyped with the markers listed in Table 2.5.  
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Seed sterilization and germination  
Small aliquots of seeds (up to 300 µl) were surface-sterilized. First the seeds were rinsed in     

200 µl ethanol. After removal of ethanol, the seeds were incubated in 200 µl of bleach solution 

for 1-3 minutes. The bleach was removed and the seeds were rinsed with sterile water. The seeds 

were suspended in 0.01% agar/water before they were plated on appropriate MS agar medium. 

Seed stratification was carried out at 4°C in the dark for 2-3 days before transfer to the 

appropriate growth cabinet. 

Crossing of plants 
For the female parent, flower buds that were just about to open were emasculated using fine 

surface-sterilized forceps. The sepals, petals, and stamens were discarded leaving only the 

receptive carpel. To pollinate this, anthers with mature pollen (visible by eye) from the male 

parent were picked at the time of anther opening (in the morning) and the pollen grains were 

transferred onto the stigma of the female parent. About 3 weeks later, mature siliques were 

harvested and dried for 1-2 weeks before use of the F1 seeds. 

Introgression of luciferase reporters 
Integration of luciferase reporters into the BC3-generation, and other mutant lines, was 

preferably carried-out using the luciferase line as the male parent. Lines homozygous for the 

mutation were identified in the F2 generation and F3 seeds were bulked. Seedlings for 

experiment were germinated on medium containing the appropriate antibiotic to select for the 

luciferase transgene.  

DNA extraction from plant tissue 
High-throughput DNA extractions were performed using QIAGEN collection microtubes (96-

format) and a mixer mill (RETSCH MM 301, QIAGEN) according to the protocol of Michaels and 

Amasino (2001). Briefly, plant tissue was beat using metal beads (manufacturer) at high 

frequency (30 beat/sec) in 400 µl extraction buffer and 60 µl chloroform for 2x2 min. After 

centrifugation (2,500 rpm), the DNA was precipitated by mixing equal volumes of supernatant 

and isopropanol, and the DNA was pelleted by centrifugation (2,500 rpm). The pellet was air-

dried and resuspended in 1xTE buffer. The quality of the DNA was sufficient for genotyping. 

High DNA quality (with longer freezer life) was obtained by a modified protocol using single  

1.5 ml EPPENDORF tubes, sand-grinding of tissue, higher centrifugation speeds (13,000 rpm), and 

by including a 70%-ethanol wash of the DNA pellet before resuspension in 1xTE. 
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Primer design 
Generally, sequences were handled using DNA STRIDER (SERVICE DE BIOCHIMIE ET DE 

GENETIQUE MOLECULAIRE, CEA SACLAY, France). CAPS and dCAPS markers were designed 

using DCAPS FINDER (Neff et al., 2002). PCR markers for publicly available T-DNA lines were 

designed using the SALK T-DNA VERIFICATION PRIMER DESIGN tool (http://signal.salk.edu 

/tdnaprimers.2.html). Additional oligonucleotides were designed using PRIMER3 (Rozen and 

Skaletsky, 2000).  

Phylogenetic analysis 
Candidate orthologous sequences were identified using the BASIC LOCAL ALIGNMENT SEARCH 

TOOL (BLAST) (Altschul et al., 1990) in GENBANK and genome databases (DOE JOINT GENOME 

INSTITUTE, PHYSCOBASE, TIGR). Many EST clones were obtained from the respective 

investigators (Tables 2.10 and 2.11) and these ESTs were fully sequenced using standard primers 

and/or insert-specific oligos (Tables 2.12 and 2.13). Contigs were assembled using the GCG 

package (WISCONSIN PACKAGE, GENETICS COMPUTER GROUP, Madison, WI) and the consensus 

sequence was determined. The protein sequences of the sequenced ESTs, and additional partial 

sequences from the public databases, were compared using the multiple alignment tool 

CLUSTALW/CLUSTALX (Thompson et al., 1994) and visualized after processing with BOXSHADE 

3.21 (http://www.ch.embnet.org/software/BOX_form.html), or a progressive multiple alignment 

algorithm and subsequent formatting was performed in CLC FREE WORKBENCH 3 (CLC BIO, 

http://www.clcbio.com). The alignments were used as input in SPLITSTREE4 (Huson and Bryant, 

2006) to generate bootstrapped phylogenetic trees according to the Neighbor joining method 

(Saitou and Nei, 1987). Similarity of sequences was calculated using PROTDIST in the PHYLIP 

package (http://evolution.genetics.washington.edu/phylip/doc/protdist.html). 
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Structural modeling 
Programs applied for prediction of the secondary structure of proteins: DISORDER PREDICTION 

(DISOPRED; Jones and Ward, 2003), PSIPRED (Jones, 1999), SEQUENCE ALIGNMENT AND 

MODELING SYSTEM (SAM; http://www.soe.ucsc.edu/research/compbio/sam.html), JUFO and 

JUFO_3D (http://www.jens-meiler.de), and COILED-COILS (Lupas et al., 1991). 

 Modeling of the tertiary structures of proteins was performed using the ROSETTA ab 

initio modeling method (Bonneau et al., 2002). In total, 500 models were generated per sequence 

and these models were clustered to a maximum of ten groups. From these groups, the most 

structurally related model from a cluster-center was chosen. 

Polymerase chain reaction (PCR) 
Standard PCR cycling parameters: 94°C 2’30”, (94°C 30”, 56.5°C 30”, 72°C 1’) x 40, 72°C 10’. 

PCR was performed in 10 µl volumes. The reactions contained 3.75 mM MgCl2, 0.25 mM of 

each primer, and additional components according to the Taq-manufacturer’s recommendations 

(PEQLAB). PCR products were separated on TBE-agarose gels containing ethidium bromide and 

visualized using the BIO-RAD GEL DOC 2000 system (software QUANTITY ONE 4.6.2). 

 PCR products for CAPS/dCAPS genotyping were digested by adding 1.2 µl H2O, 1.2 µl 

10x restriction nuclease buffer and 0.2 µl restriction enzyme per 10 µl PCR product volume. The 

restrictions were incubated for 5-6 h or over-night at the appropriate temperature and 

subsequently separated on 4% TBE-agarose gels. 

Plasmid mutagenesis 
The ELF3 coding sequence was cloned into the yeast two-hybrid vector pGAD424 (CLONTECH) 

by Mark Doyle, UW-Madison. The elf3-G12, elf3-221 and elf3-227 mutations were introduced to 

this plasmid using the QUICKCHANGE protocol (STRATAGENE). The primers for mutagenesis were 

designed using PRIMERX (AUTOMATED DESIGN OF MUTAGENIC PRIMERS FOR SITE-DIRECTED 

MUTAGENESIS; http://bioinformatics.org/primerx). 
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Cloning 
E. coli cells were transformed by heat shock at 42°C according to the manufacturers’ instructions 

(INVITROGEN and STRATAGENE).  

GATEWAY® constructs 
The 35S promoter fragment of the binary vector pJawohl (KanR, gift from Bekir Ulker, MPIZ) 

was replaced with the ELF4 promoter using ClaI and AscI sites to create pJawohl/ELF4p. 

Subsequent restriction with AscI and SpeI enabled exchange of the promoter-GATEWAY® 

cassettes of pJawohl/ELF4p and pLeela (BastaR, gift from Marc Jakoby, MPIZ), to give pJalee4. 

Arabidopsis ELF4 and EFL genes were amplified from genomic DNA (Ws ecotype). Ipomoea, 

Hordeum and Pinus genes were amplified from EST plasmids. The cloned pJalee4/EFL 

constructs were confirmed by sequencing. 

Generation of transgenic Arabidopsis plants 
Electro-competent Agrobacterium was prepared and transformed as described (Shen and Forde, 

1989). Plants were transformed with the transgenic Agrobacterium by the floral-dip method, as 

described (Clough and Bent, 1998). 

Hypocotyl elongation 
Seeds were plated on MS3 and stratified for 3-4 days in the dark. Plates were illuminated for     

3-4 hours before transfer to the appropriate cabinet with a short-day regime (8L:16D, 60 µE 

white light). The hypocotyls were measured after 7 days by imaging the seedlings with a flatbed 

scanner (EPSON PERFECTION 1260). The region measurement feature of METAMORPH 

(MOLECULAR DEVICES CORPORATION, Downingtown, PA) was used to calculate the length of the 

hypocotyls. 

Flowering time 
Seeds were stratified on moist paper in the dark for 3-4 days before they were transferred to soil. 

The plants were grown either in a 8-h short-day (8 h light, 16 h dark) greenhouse or in a 

PERCIVAL growth chamber with a 10-h short-day regime (10 h light, 14 h dark), 100 µE white 

light intensity and a constant temperature of 22°C. In the growth chamber, the light source was a 

combination of fluorescent bulbs and incandescent tubes. Total leaf number, including 

cotyledons and cauline leaves, were counted at the time of bolting. 
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Cotyledon movement 
Seedlings were entrained under 12L:12D (100 µE white light) for 5 days before transfer to      

100 mm square plates with 25 compartments (BIBBY STERILIN, UK) (20 seedlings per plate). The 

seedlings were preferably kept on the germination medium to avoid damage of the hypocotyl.    

1-cm-square agar blocks with single seedlings were transferred to the each of the top 20 

compartments of the plate, which afterwards was kept in a vertical position. A few drops of 

sterile water were added inside the plate and the plates were sealed to avoid moisture loss. The 

plates were returned to the entrainment growth chamber for another day following transfer to 

continuous light (low intensity white light, average 15 µE, lighting from the sides) and constant 

temperature of 22°C at dusk the next day. Cotyledon movements were monitored for 7 days 

using video cameras. The images were recorded every 30 minutes using METAMORPH. The 

rhythms of the cotyledon movements were analyzed in METAMORPH. A general threshold was 

applied which allowed detection of as many of the leaves on the plate as possible over the time 

course. Regions were defined for each leaf and the (x,y) pixel coordinates corresponding to the 

central position of the leaves were measured (Edwards et al., 2005). The data were logged into 

EXCEL spreadsheets and analyzed as described below.  

TOPCOUNT® experiment 
Seedlings were entrained under 12L:12D (100 µE white light) for 7 days before transfer to black 

96-well microplates (OPTIPLATE™-96F, PERKINELMER) containing MS3 medium. In general, the 

plate design consisted of a minimum of 24 seedlings/genotype/plate, i.e. maximum of 3 mutant 

lines and 1 control line per plate. However, often a higher number of seedlings per line was used. 

The genotypes were distributed in rows to minimize the effect of the light gradient. 15 µl 5 mM 

luciferin was added to each well and the plates were sealed with transparent film (PACKARD 

TOPSEAL), which was perforated to allow air exchange. The plates were returned to the 

entrainment cabinet for another day following transfer to the TOPCOUNT® scintillation counter 

(PERKINELMER) next day’s evening. Luminescence data were recorded from “lights-on” the next 

morning and for the subsequent 4-5 days. The luminescence level was recorded as the average 

count of a 3-second (LUC+) or 5-second (2CA/C) count time per seedling per second. Under 

light, each plate had a count delay of one minute to eliminate recording of chloroplast 

autoluminescence. In addition, in the stack, reflector plates were combined with the experimental 

microplates to ensure proper light conditions for all 96 plants in the plate. The light source was 

trichromatic LED panels (Mark Darby, MD ELECTRONICS, UK) consisting of blue and red light-

emitting diodes. Light color and intensity was controlled and the standards used were gradients of 

0.9-1.7 µE blue and/or 1.3-1.6 µE red light for each plate. In most experiments, the time 
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resolution (the time between readings of the same plate) was less than one hour between 

measurements.  

Rhythm analysis 
The luminescence data from the TOPCOUNT® scintillation counter were processed using the 

EXCEL macro TOPTEMP II (http://millar.bio.ed.ac.uk/Downloads.html). Cotyledon movement 

movies were assembled using the METAMORPH software. All period and phase analyses were 

performed using the EXCEL macro BIOLOGICAL RHYTHMS ANALYSIS SOFTWARE SYSTEM (BRASS) 

(Southern and Millar, 2005), which includes the FAST FOURIER TRANSFORMATION NONLINEAR 

LEAST SQUARES (FFT-NLLS) method (Plautz et al., 1997). As a rule, a time window 

corresponding to at least three periods (>72 h) was used for FFT-NLLS analysis. The period 

limits used were mostly 15-35 h, except for 35S::ELF4 and some efl lines (15-45 h), and the 

parameter confidence probability was 95%. Rhythms were assessed by comparison of relative 

amplitude of error (R.A.E.)-weighted means of the period lengths calculated by BRASS. This was 

in addition to comparisons of individual period and R.A.E. values. R.A.E. is the ratio of 

amplitude error estimate in relation to the estimate of the most probable amplitude. This 

definition can also be described as the fit of the actual data to the theoretical cosine curve. Thus, 

R.A.E. is a measure for the degree of rhythmicity or rhythmic strength. For example, when R.A.E 

= 0 the trace is perfectly rhythmic (precise) compared to the theoretical curve and when R.A.E. = 

1 the trace is entirely arrhythmic, with no fit to a cosine curve. In this study, R.A.E. < 0.5 is 

considered rhythmic. For luminescence data phase results were also evaluated. The phase marker 

was the cosine acrophase of the first period, unless otherwise stated. Phase results were not 

included for leaf movement data due to high variation in growth angles between seedlings 

(phototropism). 
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Introduction 
ELF4 encodes an important regulator of the Arabidopsis circadian clock. In the absence of ELF4, 

the circadian clock fails to sustain rhythmicity under constant conditions and the residual clock 

rhythms are imprecise. ELF4 belongs to a small gene family consisting of five members in 

Arabidopsis (Doyle et al., 2002; Khanna et al., 2003). Characteristic of this family, classified in 

PFAM as a “protein family of unknown function”, is the conserved domain DUF1313 (Finn et al., 

2006). This domain is approximately of 100 residues in length and plant-specific. The absence of 

similarity to known proteins presents a challenge towards defining the structure-function 

relationship of ELF4. Preliminary analysis has suggested that ELF4 is likely a nuclear factor 

because the protein has been localized in the nucleus using the GFP reporter and ELF4 contains a 

putative nuclear localization signal (Khanna et al., 2003).  In an earlier study, the four 

Arabidopsis ELF4 homologues were named ELF4-LIKE (ELF4-L), this name is here suggested 

changed to EFL (for ELF4-LIKE) with the numbering as in Khanna et al. (2003), i.e. EFL1 

(At2g29950), EFL2 (At1g72630), EFL3 (At2g06255), and EFL4 (At1g17455). None of the EFL 

genes have been thoroughly studied, thus, these genes are subjected to analysis in this chapter to 

define the functional structure of ELF4. 

 Previously, ELF4 homologues from rice, sorghum and iceplant have been reported 

(Boxall et al., 2005; Doyle et al., 2002; Khanna et al., 2003), in addition to the notations of ESTs 

from tomato, soybean and barrel medic (Boxall et al., 2005). The published alignment of most of 

these protein sequences revealed several conserved residues in the ELF4 family. About 20% of 

the ELF4 amino-acid residues are conserved, and two subgroups within the family can be 

phylogenetically defined. One group contains ELF4 and EFL1 and the second group includes 

EFL2, EFL3, EFL4, and the previously reported monocotyledonous sequences (from rice and 

sorghum) (Khanna et al., 2003). The structure-function relationship of most members in the 

ELF4 family has not been investigated. The noted exception are the initial reports that the 

expression of the ELF4 homologue in iceplant is clock-controlled, whereas the rice homologue is 

not, which questions whether ELF4 function is conserved in monocotyledonous plants (Boxall et 

al., 2005; Murakami et al., 2007). 

 In this chapter, the phylogenetic investigation of ELF4 is expanded. Because ELF4 

function is as yet uncharacterized, the aim is to refine the active domain of ELF4, compared to 

the previous studies, via a detailed comparison of sequence relatives from a large number of 

species. This approach is accompanied by reverse-genetic analyses of the EFL genes, where T-

DNA insertion lines are screened for mutant phenotypes and compared to the elf4 loss-of-

function mutant. The functional conservation of ELF4 and the EFLs is tested by expression of 

EFL in elf4 under control of the ELF4 promoter. Finally, the ELF4 and EFL protein structures 
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were modeled using an in silico approach. Together, the result of these analyses is used to 

generate a hypothesis predicting the structure-function relationship of the ELF4 encoded 

sequence, and this hypothesis is tested in the study described in Chapter 4.  

 

Results 

Phylogenetic analysis  
In order to investigate the evolutionary relationship of ELF4 in more detail, new ELF4-like 

sequences were isolated. The ELF4 protein sequence was used as a BLAST (TBLASTN) query 

against the GENBANK EST database. This search revealed several candidates for ELF4 

orthologues. The corresponding EST clones from cDNA prepared from plants other than 

Arabidopsis were requested from their primary investigators, and the inserts were fully 

sequenced (Appendix I; Table 3.1). Many of these ELF4-like clones were full-length coding 

sequences, whereas only four clones encoded partial ORFs. In addition, the genome databases for 

Chlamydomonas rheinhardtii (DOE JOINT GENOME INSTITUTE), Populus trichocarpa (DOE JOINT 

GENOME INSTITUTE), Picea glauca (TIGR) and Physcomitrella patens (PHYSCOBASE) were 

queried to find putative ELF4 homologues. 

 With the aim to define the conserved structural information from the ELF4 primary 

sequences, a multiple alignment of the derived ELF4-like protein sequences was generated (Fig. 

3.1). Three subgroups can be identified within the alignment, a small ELF4 group and a larger 

EFL group, and a small cluster of two monocotyledonous sequences from barley and maize 

(Hv41 and Zm41). All amino-acid sequences are most similar in the central part of the proteins, 

suggesting this domain is important for function.  
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Table 3.1 ELF4-like EST clones 
ELF4-like EST clones from 20 species were fully sequenced with the primers listed in Chapter 2 and 
contigs were assembled to determine an ORF consensus. Three of the clones contained only a partial ORF 
sequence (*). The two Sorghum clones, Sb40-1 and Sb40-2, were found to relate to the same locus, and the 
rice Os41 clone was found to represent the published ELF4Os sequence (AAD27669). 

 
ID Species Contig (bp) ORF (bp) 
Am41 Anthirrhinum major 671 333 
Bv41 Beta vulgaris 1,228 345 
Cs41 Citrus sinensis 905 345 
Ga41 968 384 
Ga42 

Gossypium arboreum 
1,262 345 

Gm40 Glycine max 684 192* 
Ha41 Helianthus annuus 829 315 
Ht41 Hedyotis terminalis 1,486 351 
Hv41 Hordeum vulgare 823 363 
In41 Ipomoea nil 1,288 396 
Lc41 Lotus corniculatus 834 288* 
Le42 Lycopersicon esculentum 1,278 345 
Ls41 Lactuca serriola 899 342 
Mp41 Mentha x piperata 538 234* 
Mt42 Medicago truncatula 1,335 345 
Os41 Oryza sativa 1,232 354 
Pt41 Pinus taeda 1,181 360 
Sb40-1 1,948 347 
Sb40-2 

Sorghum bicolor 
1,947 347 

So41 932 372 
So42 

Saccharum officianarum 
895 360 

St42 Solanum tuberosum 1,184 330 
Zm41 Zea mays 1,113 432 
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 An unrooted phylogenetic tree based on the alignment of the full-length sequences was 

calculated and this revealed that the Physcomitrella sequence (PpELF4) could be defined as an 

outgroup (not shown). In this refined rooted tree, two subclades are evident (Fig. 3.2) and ELF4, 

EFL1, McELF4, Ptr41, Ptr42, and In41 together constitute the ELF4 subclade. It is not clear 

whether the two monocotyledonous sequences Hv41 and Zm41 belong to the ELF4 subclade or 

the EFL subclade (dark area in Fig. 3.2). This rooted phylogeny is consistent with the visual 

inspections of the multiple alignment. 

 The alignment confirms that there is a high degree of conservation within the ELF4 

family, however, the conservation is strongest within the EFL subclade (including EFL2 to 

EFL4, 70-80% identity) (Table 3.2). The ELF4 group is divergent from the EFLs primarily in the 

most N- and C-terminal regions, and within the ELF4 subclade, the putative ELF4 NLS site 

(KRRR) is not conserved. This questions whether any of the ELF4-like sequences can be 

classified as putative transcription factors (as suggested in Khanna et al., 2003). 15 residues in 

the central part of ELF4 are fully conserved across the whole family (Q37, L40, N43, R44, L46, 

I47, N53, N65, V66, I69, E71, N73, N75, V79, and Y83). This is a refinement compared to the 

earlier study (Khanna et al., 2003), which stated 26 conserved residues. Two residues (D22, N51) 

distinguish Hv41 and Zm41 from the rest of the family. Some acidic amino acids (Q) 

characterize the ELF4 subgroup followed by a conserved glycine, an SK pair and another serine 

residue. Altogether, the degree of conservation leads to the conclusion that the poplar sequences 

and the Ipomoea clone can be classified as ELF4 homologues whereas the rest of the clones are 

EFL homologues. In particular, it is unclear whether Hv41 and Zm41 belong to the ELF4 

subclade or they represent functionally divergent sequences, confirming the idea that ELF4 

function is not conserved in monocots (Murakami et al., 2007). 

 



C H A P T E R  3  S T R U C T U R A L  C H A R A C T E R I Z A T I O N  O F  T H E  ELF4  G E N E  F A M I L Y 

 - 54 - 

 

 



C H A P T E R  3  S T R U C T U R A L  C H A R A C T E R I Z A T I O N  O F  T H E  ELF4  G E N E  F A M I L Y 

 - 55 - 

 

 

 

 
 
 

 
 
 
 
 
 
Figure 3.2 ELF4 phylogeny 
Phylogenetic tree with “equal angle display” based on the multiple alignment of full-length ELF4-like 
sequences. This tree was calculated using the Neighbor joining (NJ) method (Saitou and Nei, 1987), rooted 
with PpELF4 and bootstrapped (n = 1,000) in SPLITSTREE4. The bootstrap values indicate the number of 
times each branch topology was found during bootstrap analysis and the color of the branches correlates 
with degree of support (black = 100%). Only bootstrap values below 80% are shown. The ELF4 subclade 
is marked in white, the EFL subclade in light gray and Hv41-Zm41 in dark gray. The scale bar indicates 
the number of amino acid substitutions per site. 
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Table 3.2 Degrees of ELF4 and EFL similarity  
Fractions of amino acid positions identical between the sequences within the ELF4 family as calculated by 
PROTDIST. Sequences with over 80% identity are shaded in dark gray, 70-80% identity is shaded in light 
gray. 
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Hv41                             
Zm41 0.63                            
St42 0.48 0.47                           
Bv41 0.48 0.51 0.88                          
Am41 0.45 0.47 0.84 0.79                         
Pt41 0.49 0.47 0.79 0.77 0.74                        
PgELF4 0.46 0.48 0.74 0.72 0.71 0.84                       
So42 0.46 0.52 0.74 0.74 0.74 0.68 0.62                      
ELF4Os 0.45 0.52 0.76 0.77 0.76 0.70 0.64 0.89                     
EFL3 0.40 0.44 0.73 0.72 0.73 0.71 0.66 0.69 0.70                    
Ls41 0.44 0.49 0.76 0.76 0.76 0.71 0.68 0.71 0.75 0.71                   
Hc41 0.46 0.49 0.85 0.82 0.82 0.78 0.74 0.69 0.73 0.72 0.78                  
Ga41 0.46 0.46 0.72 0.67 0.69 0.63 0.58 0.59 0.61 0.62 0.64 0.66                 
Ga42 0.46 0.47 0.82 0.82 0.77 0.76 0.72 0.73 0.78 0.77 0.76 0.75 0.62                
Cs41 0.46 0.49 0.79 0.80 0.74 0.77 0.71 0.71 0.77 0.71 0.75 0.77 0.63 0.86               
EFL2 0.45 0.49 0.70 0.72 0.65 0.70 0.65 0.67 0.70 0.67 0.68 0.70 0.53 0.77 0.75              
EFL4 0.45 0.49 0.72 0.74 0.67 0.71 0.66 0.68 0.72 0.68 0.71 0.72 0.58 0.80 0.78 0.91             
Mt42 0.42 0.47 0.75 0.75 0.73 0.71 0.67 0.62 0.69 0.66 0.66 0.66 0.59 0.79 0.75 0.68 0.72            
Le42 0.49 0.47 0.77 0.77 0.71 0.69 0.68 0.65 0.72 0.70 0.71 0.69 0.62 0.75 0.73 0.62 0.63 0.67           
Sb40 0.42 0.45 0.69 0.68 0.73 0.63 0.58 0.67 0.68 0.63 0.69 0.67 0.58 0.69 0.68 0.63 0.66 0.63 0.61          
So41 0.43 0.44 0.69 0.68 0.71 0.64 0.59 0.66 0.67 0.62 0.69 0.67 0.58 0.69 0.69 0.64 0.67 0.63 0.62 0.94         
PpELF4 0.43 0.40 0.55 0.51 0.53 0.52 0.49 0.49 0.48 0.48 0.51 0.49 0.48 0.52 0.53 0.46 0.47 0.54 0.52 0.50 0.51        
In41 0.34 0.36 0.40 0.39 0.44 0.42 0.38 0.43 0.43 0.39 0.40 0.42 0.45 0.41 0.42 0.36 0.40 0.38 0.41 0.41 0.40 0.43       
Ptr42 0.34 0.33 0.44 0.42 0.46 0.44 0.44 0.44 0.44 0.46 0.40 0.44 0.43 0.46 0.44 0.38 0.41 0.42 0.45 0.38 0.38 0.43 0.61      
Ptr41 0.33 0.38 0.49 0.48 0.51 0.46 0.44 0.49 0.49 0.44 0.47 0.48 0.43 0.47 0.49 0.41 0.44 0.48 0.47 0.44 0.44 0.51 0.53 0.53     
McELF4 0.33 0.35 0.43 0.42 0.46 0.42 0.42 0.44 0.44 0.40 0.40 0.45 0.40 0.45 0.41 0.39 0.43 0.44 0.38 0.38 0.38 0.37 0.45 0.49 0.61    
ELF4 0.37 0.40 0.41 0.42 0.46 0.44 0.41 0.47 0.46 0.39 0.38 0.46 0.42 0.42 0.43 0.44 0.41 0.43 0.42 0.41 0.41 0.43 0.57 0.56 0.59 0.60   
EFL1 0.27 0.28 0.41 0.40 0.41 0.41 0.38 0.40 0.41 0.40 0.39 0.42 0.39 0.41 0.42 0.36 0.39 0.42 0.39 0.37 0.38 0.36 0.47 0.49 0.48 0.41 0.43  
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Mutant phenotypes of efl T-DNA lines  
The SIGNAL “T-DNA EXPRESS” ARABIDOPSIS GENE MAPPING TOOL was used to screen for 

available T-DNA insertion lines of the EFL genes. In addition, efl1-1 and efl4-4 were kindly 

provided from an initial study of EFL genes (Doyle, 2003). The obtained efl T-DNA collection 

consisted of a total of ten lines, two efl1, one efl2, four efl3 and three efl4 lines (Fig. 3.3). PCR 

analysis with gene and T-DNA specific primers revealed insertion sites mostly in the 5’ UTRs 

and in the exons. This result suggests that the obtained efl lines likely represent a complete efl 

loss-of-function collection (Fig. 3.3). To facilitate analysis of clock phenotypes luciferase 

reporters were integrated in the efl lines by crossing (CCA1:LUC in Col-0 lines; CAB2:LUC, 

CCA1:LUC and CCR2:LUC in Ws lines). In addition, double mutants were generated to 

determine whether the EFLs function in redundant signaling pathways.  

 

 

  
 
Figure 3.3 T-DNA insertion lines of EFL genes 
Genetic structure of the Arabidopsis ELF4 and the four EFL genes. All genes have one exon in which the 
conserved DUF1313 domain is indicated (gray bars). Exons and UTRs are depicted by black boxes. No 
UTRs have been annotated for EFL1 (GENBANK). The approximate position of the T-DNA insertion sites 
are shown according to the genomic sequence 5’ to the LB of the T-DNA. 
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 Divergent CCA1:LUC phenotypes of the single efl mutants in the Col-0 background were 

only visible for one allele of efl4 (efl4-1), which had early phase tendency (Fig. 3.4A). In 

contrast, more mutant phenotypes were observed for the efl lines in the Ws background, where 

efl1-1 CCA1:LUC had short-period tendency (Fig. 3.4A) and efl2-1 CCA1:LUC had late phase in 

constant light (Fig. 3.4B). No CCA1:LUC phenotypes were found for efl3-1 and efl4-4 (Fig. 3.4B 

and not shown). But the CCR2:LUC marker in efl4-4 displayed a phase change both in constant 

light and dark (Fig. 3.5). The dramatic acute peak of efl2-1 CCA1:LUC was also assayed in 

darkness where it was similar to the light-phenotype (Fig. 3.4B,C). Assays of the rest of the efl 

Ws lines with CAB2:LUC, CCA1:LUC and CCR2:LUC revealed no difference from wild type 

under constant conditions (not shown). Altogether, the analysis of the efl T-DNA insertion lines 

revealed subtle roles for EFL1, EFL2 and EFL4 in control of the CCA1 and CCR2 promoters 

under free-running conditions. 

 Double mutants of the Col-0 efl lines were generated to further assess the roles of EFLs 

in control of the free-running CCA1 period. Early phase compared to wild type and arrhythmic 

tendency was observed for at least two combinations, efl1 efl4 and efl3 efl4 under continuous 

light (Fig. 3.6). In contrast to the efl3-2 efl4-2 allelic combination, the efl3-4 efl4-1 double mutant 

did not have a mutant phenotype (not shown) suggesting efl3-4 has functional EFL3 and that 

EFL3 is redundant to EFL4. Thus, EFL1, EFL3 and EFL4 seem to play additive roles in 

regulating CCA1 periodicity under free-run in the light, because none of the single mutants were 

affected under similar conditions (not shown), except efl4-1, which had early phase (Fig. 3.6A). 

In comparison, the mutant allele of efl2 appears to have a distinct phenotype with a significant 

increase in CCA1:LUC amplitude during the first 24 h under free-run. 
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Figure 3.4 efl CCA1:LUC phenotypes (Ws) 
Free-running rhythms of CCA1:LUC Ws efl lines. Period estimates are R.A.E.-weighted means ± R.A.E.-
weighted S.D. Circadian phase estimates are normalized to 24-h period and are standard means ± S.D. 
(A) Left panel: Free-running profiles of efl1-1, efl4-4 and Ws in LL. Right panel: R.A.E. vs. period 
estimates of efl1-1 (28.1±1.8h*), efl4-4 (29.9±1.1h*), Ws (29.4±1.6h). 
(B) Left panel: Free-running periods of efl2-1 (30.1±5.7h), efl3-1 (31.1±0.5h), and Ws (30.8±0.7h). Right 
panel: Circadian phase of efl2-1 (1.7±8.7h*), Ws (21.7±5.4h). 
(C) Free-running profile of efl2-1 in DD. 
Time is Zeitgeber time. Error bars represent S.E.M. 
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Figure 3.5 efl4 CCR2:LUC phenotypes (Ws) 
Free-running rhythms of efl4-4 CCR2:LUC in LL and DD. Circadian phase estimates are normalized to 24-
h period and are standard means ± S.D. 
(A) Left panel: Free-running rhythms of efl4-4 (29.2±2.0h) and Ws (27.9±1.1h) in LL. Right panel: 
Circadian phase vs. 1-R.A.E. Circadian phase estimates in LL: efl4-4 (9.5±4.3h*), Ws (7.3±2.0h). 
(B) Left panel: Free-running rhythms of efl4-4 (28.4±2.5h) and Ws (27.0±2.2h) in DD. Right panel: 
Circadian phase vs. 1-R.A.E. Circadian phase estimates in DD: efl4-4 (9.7±4.1h**), Ws (13.4±4.6h). 
Time is Zeitgeber time. Error bars represent S.E.M. 
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Figure 3.6 efl single and double mutant phenotypes (Col-0) 
CCA1:LUC profiles in LL of efl single and double mutants in the Col-0 background. Circadian phase 
estimates are normalized to 24-h period and are standard means ± S.D. 
(A) Free-running profiles of efl4-1 and Col-0. 
(B) efl1 efl4 double mutant. Left panel: Free-running profiles of efl1-2, efl4-2, efl1-2 efl4-2, and Col-0. 
Right panel: Circadian phase vs. period length. Circadian phase estimates: efl1-2 efl4-2 (16.7±7.1h*), Col-0 
(21.0±3.7h). 
(A) efl3 efl4 double mutant. Left panel: Free-running profiles of efl3-2, efl4-2, efl3-2 efl4-2, and Col-0. 
Right panel: Circadian phase vs. period length. Circadian phase estimates: efl3-2 efl4-2 (18.4±4.9h), Col-0 
(20.1±3.3h). 
Time is Zeitgeber time. Error bars represent S.E.M. 
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Complementation tests of elf4 with EFL 
The high degree of conservation within the ELF4 family and the efl circadian phenotypes suggest 

that ELF4 function is conserved. Though, expression profiles from microarrays reveal that the 

ELF4 expression profile differs from the EFLs (Fig. A1, Appendix II). ELF4 cycles with high 

amplitude whereas EFL2, EFL3, and EFL4, compared to ELF4, are lower expressed with no 

major difference in level over the diurnal cycle (EFL1 is not included as a probe on the ATH1 

array). The lower expression of EFLs might be a basis for these genes not being redundant to 

ELF4. 

 In order to conclude whether ELF4 function is conserved, a complementation experiment 

of elf4-1 was performed. Different EFL coding sequences were fused to the ELF4 promoter and 

transformed into elf4-1 plants harboring the CCA1:LUC or CCR2:LUC markers. Three 

independent T2 complementation lines were screened under free-running conditions and 

compared to the non-transformed parental elf4-1 line. The results are shown in Figs. 3.7, 3.8 and 

Table 3.3. In constant light, the EFL sequences belonging to the ELF4 group, EFL1, In41 and 

Hv41, were found to fully complement the elf4 loss-of-function phenotype. CCA1:LUC was 

overtly rhythmic and had a wild-type period (except for In41 that caused a slightly shorter 

period). In addition, the expression level of CCA1 was more similar to the wild type (Figs. 3.7A, 

3.8A). EFL1, In41 and Hv41 also restored elf4 “imprecision”, the average ratio was about 93% 

rhythmic seedlings per line in contrast to the average of 70% of seedlings with rhythmicity for 

elf4-1 (Table 3.3). Similar complementation results of EFL1, In41 and Hv41 were found for the 

CCR2:LUC reporter in the light (Figs. 3.7B, 3.8B), but only EFL1 and Hv41 complemented the 

elf4-1 phenotype in continuous darkness, where In41 expression did not rescue arrhythmicity 

(Figs. 3.7C, 3.8C, Table 3.3). This last finding suggests that light regulates aspects of ELF4 

function. 

 The other EFL genes, EFL2, EFL3, EFL4 and Pt41, were insufficient in replacing ELF4 

function when expressed under the control of the ELF4 promoter in the elf4 background (Figs. 

3.7, 3.8, Table 3.3). Although many T2 CCA1:LUC lines had significant ratios of rhythmic 

seedlings in constant light, none of them had wild-type CCA1 amplitude. In addition, both in 

continuous light and dark, CCR2:LUC phenotypes were like the non-transformed control. 

However, some In41 T2 lines had a wild-type ratio of rhythmicity (Fig. 3.8D,E). This indicates 

that the relative activity of the ELF4 promoter influences period because almost all T2 lines 

tested contained multiple inserts of the transgene (not shown, see ELF4 dosage discussion in 

Chapter 5). 
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Figure 3.7 Complementation of elf4-1 with Arabidopsis EFL  
Seedlings were entrained in light-dark cycles (12L:12D) and released into constant light or constant dark as 
indicated by shaded boxes. The traces are average values of 2-3 T2 lines, see also Table 3.2. The control 
plants are ELF4p:ELF4 (positive control), - : ELF4p:- (negative control), elf4-1 (non-transformed parent 
line) and Ws (wild type). (A) CCA1:LUC, EFL1 to EFL4 in LL. (B) CCR2:LUC, EFL1 to EFL4 in LL. (C) 
CCR2:LUC, EFL1 to EFL4 in DD.  
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Figure 3.8 Complementation of elf4-1 with non-Arabidopsis EFL  
Seedlings were entrained in light-dark cycles (12L:12D) and released into constant light or constant dark as 
indicated by shaded boxes. The traces are average values of 2-3 T2 lines, see also Table 3.2. The control 
plants are ELF4p:ELF4 (positive control), - : ELF4p:- (negative control), elf4-1 (non-transformed parent 
line) and Ws (wild type). (A) CCA1:LUC, In41, Hv41, Pt41 in LL. (B) CCR2:LUC, In41, Hv41, Pt41 in 
LL. (C) CCR2:LUC, In41, Hv41, Pt41 in DD. (D) In41 CCR2:LUC in LL, individual T2 traces. (E) In41 
CCR2:LUC in DD, individual T2 traces. 
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Table 3.3 FFT-NLLS results of elf4 complementation experiments 
The period estimates listed are R.A.E.-weighted mean ± R.A.E.-weighted S.D. as calculated by BRASS. 
The three T2 lines tested for each ELF4p construct were compared to the non-transformed elf4-1 parent 
line in the same 96-well plate (most right column). Values in brackets are the ratio of rhythmic plants 
(R.A.E. < 0.5) per 24 seedlings tested per line. +: ELF4p:ELF4 (positive control), -: ELF4p construct with 
no insert (negative control). 

 
 
 

 
LL 

 
 Insert T2-1 T2-2 T2-3 elf4-1 

EFL1 30.9±3.6 (0.92) 33.5±4.8 (0.96) 32.5±3.2 (0.96) 31.4±4.1 (0.58) 
EFL2 26.2±1.3 (0.83) 26.2±2.6 (0.92) 24.6±2.3 (0.83) 29.6±2.2 (0.75) 
EFL3 23.8±1.7 (0.83)  25.4±1.8 (1.00) 29.9±4.0 (0.54) 
EFL4 26.6±1.5 (1.00) 29.6±5.0 (0.67) 27.8±3.6 (0.75) 32.5±3.8 (0.92) 
Hv41 31.8±2.8 (0.92) 33.6±4.3 (0.88) 32.9±3.3 (0.88) 27.9±2.5 (0.63) 
In41 28.7±1.6 (1.00) 28.8±1.2 (0.96) 28.0±1.5 (0.92) 28.8±2.2 (0.75) 
Pt41 27.8±2.8 (0.92)  28.5±2.4 (0.83) 30.1±4.3 (0.88) 
+ 30.2±2.5 (1.00) 
- 32.2±3.9 (0.25) 

CCA1:LUC 

Ws 30.1±3.2 (1.00) 

  

EFL1 29.4±2.5 (0.92) 30.8±2.4 (0.96) 29.3±2.7 (0.79) 31.9±5.2 (0.71) 
EFL2  26.4±3.3 (0.68) 24.6±1.6 (1.00) 30.1±4.7 (0.79) 
EFL3 27.2±3.8 (0.83) 33.0±6.1 (0.58) 32.9±5.0 (0.71) 30.9±4.4 (0.50) 
EFL4 31.5±2.7 (0.46) 34.5±7.3 (0.83) 30.1±4.4 (0.92) 30.3±4.4 (0.58) 
Hv41 31.2±2.0 (0.92) 30.9±1.1 (0.92) 30.4±1.3 (0.96) 27.5±2.7 (0.58) 
In41 27.5±1.0 (1.00) 27.9±1.9 (0.92) 28.5±3.2 (0.83) 33.7±7.3 (0.58) 
Pt41 27.0±1.6 (0.79) 26.8±2.4 (0.71) 30.4±3.6 (0.67) 29.7±4.2 (0.50) 
+ 28.9±1.4 (0.92) 
- 33.6±5.4 (0.50) 

CCR2:LUC 

Ws 29.8±3.1 (0.92) 

  

 
DD 

 
 Insert T2-1 T2-2 T2-3 elf4-1 

EFL1 29.9±3.4 (0.79) 31.3±2.2 (0.96) 31.8±4.6 (0.83) 35.4±4.8 (0.63) 
EFL2  32.5±1.3 (0.75) 27.4±4.9 (0.71) 30.6±4.9 (0.63) 
EFL3 30.0±2.2 (0.71) 31.0±5.3 (0.67) 34.6±4.4 (0.71) 36.3±5.5 (0.67) 
EFL4 34.9±6.0 (0.67) 33.3±3.6 (0.79) 31.1±4.7 (0.63) 32.1±5.7 (0.63) 
Hv41 28.7±2.0 (0.92) 28.1±0.8 (1.00) 28.6±1.0 (1.00) 29.9±3.1 (0.71) 
In41 31.0±5.8 (0.79) 35.1±5.0 (0.67) 33.5±4.8 (0.67) 32.1±7.5 (0.42) 
Pt41 32.2±5.1 (0.63) 30.5±5.3 (0.67) 34.0±6.4 (0.58) 32.5±5.3 (0.50) 
+ 27.7±1.1 (0.92) 
- 34.8±4.7 (0.46) 

CCR2:LUC 

Ws 28.1±1.0 (0.96) 
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Modeling of ELF4 and EFL structures 
With the aim to understand the folding nature of the encoded ELF4 and EFL structures, the 

secondary and tertiary structures of ELF4 and the EFL sequences were predicted using a 

computational structural approach.  

 The results of the secondary predictions from several programs (PSIPRED, SAM, JUFO, 

JUFO_3D) were similar and all reveal that ELF4 consists of an alpha-helical structure in which a 

small central region. The N- and C-terminal ends of the ELF4 protein are predicted by DISOPRED 

to have unfolded structure (Fig. 3.9). These predictions suggest that ELF4 has an all alpha-helical 

core that extends with unstructured “tails” at both termini of the protein. 

 The de novo prediction and design software package ROSETTA is based on homology 

modeling and has been reported to be one of the best programs for structural prediction (Kim et 

al., 2004a). This approach was used to infer tertiary structure of this protein family. The 

ROSETTA modeling of ELF4 and the EFL proteins, both from Arabidopsis and other species 

resulted in very similar folds (Fig. 3.10). The ELF4 protein is predicted to fold as two alpha-

helices connected by a short central bridge (ELF4 residues 54-61). The helices correspond to the 

central part of the protein, which has the greatest conservation of sequence (Fig. 3.1). The “ends” 

of the protein are phylogenetically distinct (Fig. 3.1) and accordingly the ROSETTA prediction 

reveals no clear folding of the ends (disordered structure) (Figs. 3.9, 3.10). 

 In conclusion, based on the ELF4 phylogenetic and complementation analyses, the 

results of the structural modeling fits a hypothesis stating that ELF4 is a one-domain protein, 

where the functional domain is a folded alpha-helix. Though, details of the helix seem to have 

functional importance because members of the ELF4 and EFL subclades were shown in this 

study to be functionally distinct. Nonetheless, ELF4 (or EFL) function is here proposed to be 

most sensitive to residue changes in the helix compared to changes in the ends of the protein. 
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Figure 3.9 ELF4 secondary structure 
(A) ELF4 secondary structure prediction from different programs. The regions predicted as alpha-helical 
are indicated with a “spiral” structure, whereas disordered amino acids are indicated as a “thread”. The 
ELF4 sequence (bottom) is aligned with the predictions. E: Strand. H: Alpha-helix. X: Disordered.  
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Figure 3.10 ELF4 and EFL structural models 
ROSETTA models of ELF4, the Arabidopsis EFL sequences, and representatives of the ELF4 sequences of 
other plants. Blue indicates N-terminal region and red the C-terminal region. 
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Discussion 
In this chapter, an extended phylogenetic analysis of ELF4 was conducted in order to fully define 

the domain structure of ELF4-encoding sequences. The multiple alignment of the ELF4-like 

sequences (Fig. 3.1), revealed that the structure of ELF4-like elements could be divided into three 

parts. All sequences are most similar in the central domain, which is the DUF1313 domain, and 

here defined as the ELF4 domain. In addition, distinct N- and C-terminal regions of the 

sequences can be distinguished. But, as the ELF4 domain is the most conserved, this domain is 

likely to be the active region of the ELF4 protein.  

 The database queries confirmed that the ELF4 family is plant-specific and is present in 

all plants (i.e. Viridiplantae), including basal angiosperms (Persea) and monocots, in addition to 

lower lineages such as gymnosperms, moss and green algae (Chlamydomonas). Furthermore, the 

phylogenetic analysis showed that within the ELF4 family, ELF4 function seems to have 

diverged because three well-supported subclades are present within the phylogenetic tree (Fig. 

3.2). However, due to the incomplete annotation of most plant genomes, it is unclear whether the 

ELF4 function is orthologous to all plant lineages. But, the moss and Chlamydomonas sequences 

cluster with the ELF4 subclade, thus, it appears that ELF4 is present in all major plant clades. 

Also, all ELF4-like genes contain a single ORF, which supports that all ELF4-like genes have 

evolved from a common ancestor. Collectively, the results from the ELF4 phylogenetic analysis 

are in agreement with the fact that circadian clocks have diverged in the eukaryotic lineages (i.e. 

the components of the plant clock are evolutionarily distinct from, for example, animal clock 

systems) and suggest that within the plant clock mechanism ELF4 sensu stricto has a unique 

function. 

 As EFL genes were previously uncharacterized, the question was asked whether EFL 

function could be assessed by mutant analysis. All available efl T-DNA insertion lines from the 

public Arabidopsis T-DNA collections were therefore monitored for clock phenotypes using 

different luciferase reporter genes. The results from these experiments (Figs. 3.4-3.6) indicate 

that EFL genes, compared to ELF4, only have minor roles in regulation of the free-running 

period of the circadian clock. The efl2-1 mutant had the most distinctive phenotype (Fig. 3.4) 

indicating that EFL2 has a different function than the other EFL genes. Moreover, combining efl 

mutations can lead to a mutant phenotype, which is not found for the single mutants (Fig. 3.6). 

These results suggest that EFL genes (EFL1, EFL3, EFL4) have partially overlapping roles. 

Secondly, even though EFL genes have diverged from ELF4, members of the EFL subclade are 

likely to have roles in the circadian clock because many mutants defective in one or two EFL 

genes (EFL2, EFL3, EFL4) displayed minor clock phenotypes. Future studies are needed to 
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conclude the functional significance of EFL genes in the circadian clock and whether ELF4 can 

substitute for EFL function. 

 Functional complementation of the elf4 null mutant was used as an approach to further 

define the conservation of ELF4 activity. Consistent with the ELF4 phylogeny, sequences 

belonging to the ELF4 subclade (EFL1 and In41) were able to rescue the arrhythmic behavior of 

the elf4 mutant (Figs. 3.7-3.8). Interestingly, the barley ELF4 homologue Hv41 also 

complemented elf4, suggesting the members of the small Hv41-Zm41-subclade, containing only 

two monocotyledonous ELF4-like elements, can be classified as true ELF4 orthologues. 

Expression of EFL genes belonging to the EFL subclade in elf4 was insufficient in restoring 

sustained rhythmicity. This insufficiency was especially visible in the amplitude of CCA1:LUC 

expression, which was low (like in the elf4 negative control) for seedlings transgenically 

expressing EFL2, EFL3, EFL4 and Pt41 (Figs. 3.7A, 3.8A). Thus, the conclusion from the elf4 

complementation analysis is that in Arabidopsis three of the EFL genes (EFL2, EFL3, EFL4) 

have diverged and are paralogues of ELF4, whereas EFL1 appears to contain significant ELF4 

activity to be a relatively recent duplication event. Further analysis, e.g. of EFL1 expression, is 

needed to determine what the detailed differences are between ELF4 and EFL1. It is possible that 

EFL1 is a pseudogene because the complete gene structure (UTRs) has not been annotated, 

however this idea is in conflict with the mutant phenotypes found for efl1 T-DNA insertion lines 

in this chapter.  

 The elf4/EFL complementation experiments provide information about the nature of the 

ELF4 promoter. It was observed that there was a correlation in the complementation phenotype 

in relation to the copy number of the EFL transgene (Table 3.3 and not shown). This means that 

there is a dose-dependent relationship between the transcriptional rate of the ELF4 gene and the 

activity of the ELF4 gene product. This finding is consistent with the dose-dependent phenotype 

of plants constitutively expressing ELF4 (see Chapter 5). 

 The ROSETTA modeling of the ELF4 family indicated that the active domain of ELF4 and 

the EFLs is an alpha-helical fold. This suggestion is in agreement with the phylogeny where the 

ELF4 domain is the conserved region of all sequences. Therefore, a hypothesis for the ELF4 

structure-function relationship, based on the phylogenetic results in this chapter, proposes that 

ELF4 function is tightly associated with the alpha-helical fold of the predicted structures. That is, 

it is predicted that point mutations outside the ELF4 domain will have relative minor effects on 

ELF4 stability and/or function compared to mutations in the ELF4 domain itself. This idea is 

tested in Chapter 4 via an ELF4 reverse genetic study, which includes new point mutations of 

ELF4. 
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CHAPTER 4 GENETIC CHARACTERIZATION OF 
ELF4 MISSENSE ALLELES 
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Introduction 
Previous investigations of ELF4 were based on elf4 null mutants and it was concluded that ELF4 

expression is necessary for proper clock function (Doyle et al., 2002; Khanna et al., 2003; Kikis 

et al., 2005). ELF4 is a relatively small gene and belongs to a gene family that is plant specific. 

None of the ELF4 homologues have previously been studied in detail and the ELF4 encoded 

polypeptide has no similarity to characterized proteins outside the ELF4 family. Thus, it remains 

to be investigated how the structure of ELF4 relates to its function. 

 The nature of the mutation in the Ws null allele (elf4-1) is a complete deletion of the 

coding region (Doyle et al., 2002). The two Col-0 elf4 alleles (elf4-101 and elf4-102) are T-DNA 

insertion lines that display a null phenotype similar to elf4-1 in relation to low amplitude of the 

morning clock gene CCA1 and increased hypocotyl length (Khanna et al., 2003; Kikis et al., 

2005). The long elf4 hypocotyl is most significantly induced under a short-day photoperiod 

suggesting a defect in daylength-sensing, which is controlled by the circadian clock (Doyle et al., 

2002). ELF4 has also been found to be necessary for light-induced expression of the CCA1-

homologue LHY (Khanna et al., 2003; Kikis et al., 2005). This means that ELF4 function is 

important for light-activation of the two morning clock genes CCA1 and LHY.  

 In constant light, the elf4 hypocotyl-phenotype is only evident in red light, not white nor 

far-red light, and this suggests that in addition to its role in the clock, ELF4 is important for 

phyB-mediated signaling (Doyle et al., 2002; Khanna et al., 2003). Indeed, the expression of 

ELF4 is inversely correlated with the expression of phyB, and like the phyB mutant, the elf4 plant 

has early flowering time under non-inductive photoperiods (Khanna et al., 2003; Reed et al., 

1993). Thus, it might be that ELF4 has dual roles, one in light signaling and one specific to the 

circadian clock. 

 ELF4 contains a putative nuclear localization signal in the most N-terminal region of the 

sequence and accordingly the ELF4 protein fused to GFP was located to the nucleus in onion 

epidermal cells (Khanna et al., 2003). No attempts have been made to characterize the ELF4-

encoded sequence, for example by promoter deletions or screens for missense mutations; 

therefore the structure-function relationship of ELF4 is unclear. 

 A reverse-genetic approach was chosen in this study for further investigation of the ELF4 

sequence. The introduction of missense mutations in ELF4 was predicted to have various effects 

on the clock phenotype according to the degree of conservation of the residue affected. Based on 

the phylogenetic results described in Chapter 3, the hypothesis generated proposed that mutations 

in the central part of ELF4 would confer stronger phenotypes compared to N- or C-terminal 

residue changes. Thus, this hypothesis was tested by characterization of new elf4 mutants that 
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were not loss-of-function alleles. A targeted screen for EMS-mutations (TILLING) in ELF4 was 

used as an approach to characterize an allelic series of putative subtle elf4 mutants.  

 

Results 
TILLING was used as a reverse-genetic approach for characterization of the ELF4 encoded 

sequence. An 880-bp region including the ELF4 ORF was TILLed with primers designed using 

CODDLE and four separate ELF4 TILLING screens were performed at the ARABIDOPSIS TILLING 

PROJECT. In total 21 new elf4 mutants were obtained (Table 4.1 and Figs. 4.1, 4.2). Three lines 

conferred silent mutations in the coding region and were not further characterized. In addition, 

six mutations were located in the non-coding regions and were excluded. Twelve lines had 

missense mutations in the coding region and two of these were nonsense mutations, which were 

included in this study as positive controls. Thus, ten lines contained missense changes that were 

candidate hypomorphic alleles of ELF4, in contrast to the previously studied elf4 loss-of-function 

alleles (Fig. 4.2). 

 In order to determine the expected subtle phenotypes of the TILLING lines, the M3 lines 

obtained from the stock center were backcrossed three times to the Col-0 wild type and 

homozygous TILLING mutants were subsequently identified in the BC3-F2 populations. During 

this breeding process, the TILLING mutations were tracked by specific CAPS/dCAPS markers 

that were designed for each line (see Chapter 2). This genotyping confirmed all elf4 point 

mutations. Though, no homozygous F2 plants could be found for two of the lines (elf4-206 and 

elf4-217) and for another set of lines (elf4-211 and elf4-212) the segregation pattern differed 

between seed batches from the same generation (in some of which homozygous mutants also 

were absent) suggesting presence of linked lethal mutations (not shown). In total, ten missense 

alleles were suited for phenotypic characterization. 



C H A P T E R  4  G E N E T I C  C H A R A C T E R I Z A T I O N  O F  ELF4  M I S S E N S E  A L L E L E S 

 - 74 - 

Table 4.1 TILLING alleles of ELF4 
The elf4 TILLING lines included in this study 
were named in the order the seeds arrived from 
the stock center. The site of the nucleotide 
change is listed according to the position in the 
genomic sequence. 

Line Stock # Mutation Missense 
elf4-215 N87889 G-153A - 
elf4-216 N86936 C-48T - 
elf4-201 N89610 G43A E15K 
elf4-202 N93293 G52A E18K 
elf4-207 N90524 C55T Q19* 
elf4-208 N87544 C68T P23L 
- N86474 G69A - 
- N93422 G72A - 
elf4-209 N86619 G80A W26* 
elf4-203 N90093 C93T R31W 
elf4-210 N88261 G94A R31Q 
elf4-204 N91664 G103A R34K 
elf4-205 N91652 G133A R44K 
elf4-211 N86681 C136T S45L 
- N91818 C164T - 
elf4-212 N86760 C178T A59V 
elf4-213 N90652 G222A G74R 
elf4-206 N89787 G340A - 
elf4-217 N88032 G370A - 
- N89936 G434A - 
- N87433 C553T - 

 
 

 
 
 
 
 

 
 
Figure 4.1 Structural model of TILLed ELF4 
The residues affected in the elf4 missense 
TILLING are highlighted. This structure 
corresponds to the structural prediction of ELF4 
in Fig. 3.10. 
 
 

 

 
Figure 4.2 ELF4 TILLING map 
Schematic positions of the TILLING promoter, missense and nonsense (*) mutations are indicated along 
the ELF4 gene. The nature of the missense mutations are shown below the allele name. ELF4 has a single 
ORF of 333 bp that is depicted as a box. The gray band indicates the putative nuclear localization signal 
within the encoded polypeptide. The position of the most downstream evening element (EE) in the ELF4 
promoter is shown. The remaining two EEs in the promoter are located at positions -600 and -315. The 
approximate sites of the T-DNA insertions, in elf4-101 and elf4-102 (Khanna et al., 2003), and the deletion 
in elf4-1 (Doyle et al., 2002) are shown for comparison.   
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Luciferase phenotypes under photoperiods 
The circadian clock is entrained by daily light-dark cycles in such a way that the clock anticipates 

these predictable daily changes in the light environment. To address the question of ELF4’s role 

in the entrainment property of the circadian clock, the luciferase reporter constructs CCA1:LUC 

and CCR2:LUC were integrated in the elf4 TILLING lines to facilitate real-time gene expression 

profiling under different light conditions. The lines were monitored under two different 

photoperiodic regimes, because ELF4 is known to be involved in daylength-sensing (Doyle et al., 

2002). 

 Under a short-day photoperiod, the expression of CCA1:LUC begins to increase in the 

end of the dark period and peaks just before lights on. A second peak coincides with the circadian 

peak because of the acute light induction of CCA1 expression. Subsequently, CCA1 declines 

during the day and reaches its minimum in the middle of the night (Fig. 4.3; similar to CAB 

expression in short days, e.g. Hicks et al., 1996). Thus, the increase and decrease in CCA1 

expression mainly reflects the circadian rhythm. 

 In the elf4 loss-of-function mutant, CCA1 expression under short days is a light-driven 

rhythm and has no anticipation of dawn (elf4-209, Fig. 4.3B; see also Chapter 5). For the 

TILLING lines, wild-type CCA1 expression was found for the lines elf4-201, elf4-202, elf4-203, 

elf4-204 and elf4-215 (Fig. 4.3). For the six lines, elf4-205, elf4-208, elf4-210, elf4-211, elf4-212 

and elf4-213, all had driven CCA1 rhythms, however, not as severe as the elf4 null (elf4-209). In 

these six lines the level of CCA1 stayed high during the light period (in elf4-210 and elf4-212, 

CCA1 continued to increase in the light), and CCA1 “sensed” lights off causing the trough to be 

in early night. elf4-210 had the most severe CCA1 expression because CCA1 continuously 

decreased during the night and had no trough till the acute peak in the morning.  

 The CCR2:LUC profile was also monitored for some of the elf4 alleles (elf4-207, elf4-

210 and elf4-213). The null line elf4-207 had early peak coinciding with dusk, but no difference 

from the wild-type CCR2 profile was found for the TILLING mutations (elf4-210 and elf4-213, 

Fig. 4.3F and not shown), indicating that the tested elf4 missense mutations only influence the 

CCA1 loop of the clock.  

 The circadian trough of CCA1 expression in wild-type plants grown under long days is at 

the end of the light period and lights off leads to a diurnal trough of CCA1 in the middle of the 

night (Fig. 4.4). CCA1 expression starts to increase, in anticipation of the light, in late night 

similar to the profile under short days (long nights). The phenotypes of the elf4 lines assayed 

under long-day photoperiods were very similar to the short-day phenotypes (Fig. 4.4). Lines elf4-

205, elf4-210, elf4-212 and elf4-213 exhibited a total loss of the circadian CCA1 peaks and 
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troughs, and had no anticipation of dawn, and these rhythms were therefore driven by the light-

dark cycle. In contrast to the elf4 null, the light caused a constitutively high level of CCA1 during 

the day in five of the elf4 missense lines. Line elf4-208 had a less severe phenotype (some 

anticipation of dawn and dusk) whereas the lines elf4-201, elf4-202, elf4-203, elf4-204 and elf4-

215 were as wild type. As was seen under short days, the CCR2:LUC profile was 

indistinguishable from wild type in long days (not shown), suggesting direct action of ELF4 

missense mutations on the morning clock component CCA1. Thus, six out of eleven elf4 

missense lines display CCA1 misexpression under both short and long photoperiods suggesting 

ELF4 missense alleles specifically affects the function of the CCA1-containing oscillator (see 

also Chapter 5). 

 ELF4 loss-of-function causes fast re-entrainment of the clock following a shift in 

photoperiod (“jet-lag”). This behavior is observed for elf4 null mutants both in the Ws and Col-0 

backgrounds (Fig. 4.5) and is likely caused by the increased sensitivity to light in the elf4 null 

(see Chapter 5). In order to understand the effect of ELF4 missense on clock re-entrainment, elf4 

CCA1:LUC seedlings were monitored during entrainment to 12L:12D, exposure to a 24-h long 

night followed by a 12-h shift in photoperiod. Under 12L:12D photoperiods, the peaks and 

troughs of CCA1 in wild type coincide with the activation of CCA1 by light, and after a 12 h shift 

in photoperiod the rhythm is re-entrained after one day and one night. In the “jet-lag” experiment, 

compared to wild type, elf4 missense lines displayed minor alterations in the re-entrainment. The 

missense of ELF4 in lines elf4-205, elf4-208, elf4-210, elf4-211, elf4-212 and elf4-213 affected 

the mode of clock entrainment because CCA1 steadily increased during the first new day (after 

the long night). This increase was not observed in wild type or in the elf4 null mutant. Similar to 

the short- and long-day assays, CCR2:LUC responded insignificantly to the “jet-lag” in mutants 

elf4-210 and elf4-213 compared to wild type. Altogether the photoperiod data indicate that there 

is direct relation between ELF4 function and light sensitivity of the CCA1 clock. 
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Figure 4.3 CCA1:LUC and CCR2:LUC expression under short-day photoperiods 
elf4 seedlings harboring the CCA1:LUC or CCR2:LUC reporter were entrained in 8L:16D short days and 
subsequently monitored in the scintillation counter under similar photoperiodic conditions (8L:16D, red 
and blue light). Error bars represent S.E.M. Time is assay time. (A) elf4-201, elf4-202 and elf4-203 
CCA1:LUC. (B) elf4-205, elf4-208 and elf4-209 CCA1:LUC. (C) elf4-204 and elf4-215 CCA1:LUC. (D) 
elf4-210 and elf4-212 CCA1:LUC. (E) elf4-211 and elf4-213 CCA1:LUC. (F) elf4-207 and elf4-210 
CCR2:LUC. 
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Figure 4.4 CCA1:LUC expression under long-day photoperiods 
elf4 seedlings harboring the CCA1:LUC reporter were entrained in 16L:8D long days and subsequently 
monitored in the scintillation counter under similar photoperiodic conditions (16L:8D, red and blue light). 
Error bars represent S.E.M. Time is assay time. (A) elf4-201, elf4-202 and elf4-203. (B) elf4-205 and elf4-
208. (C) elf4-207, elf4-210 and elf4-212. (D) elf4-204, elf4-213 and elf4-215. 
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Figure 4.5 Re-entrainment of elf4 lines 
Seedlings were entrained in 12L:12D and transferred to the scintillation counter after one week, where the 
photoperiod was continued for 1-2 full days before an extended dark period (“jet-lag”). Error bars represent 
S.E.M. Time is assay time. (A) elf4-1 (Ws) and elf4-207 (Col-0) CCA1:LUC. (B) elf4-205 and elf4-208 
CCA1:LUC. (C) elf4-210 and elf4-213 CCA1:LUC. (D) elf4-204 and elf4-212 CCA1:LUC. (E) elf4-210 
and elf4-213 CCR2:LUC. 
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Luciferase phenotypes under free-run 
The luciferase assays performed under light-dark cycles indicated that many of the elf4 missense 

lines had circadian dysfunction, at least under a diurnal context. To exclude the effect of the 

photoperiod, and direct effects of the light-dark signals (masking), all lines were therefore also 

monitored for clock defects under constant light conditions. Free-running profiles of the CCA1 

and CCR2 reporter genes have not previously been reported for the elf4 mutant in the Col-0 

background. Comparison of elf4 CCA1:LUC in Col-0 and Ws reveals a variation in the elf4 loss-

of-function phenotype due to the ecotype difference, which was also indicated in the “jet-lag” 

experiment (Fig. 4.5). The wild-type expression of CCA1 is relatively higher in Col-0 than in Ws, 

and in the absence of ELF4, CCA1 is still expressed at quite detectable levels, but note that 

CCA1:LUC luminescence in elf4-101 is decreased compared to wild-type Col-0 (Fig. 4.6). This 

is in contrast to elf4-1 in Ws where the expression of CCA1 is “off”. However, the elf4 clock 

phenotype in Col-0 is still evident because the CCA1 rhythm only lasts for one cycle and then 

dampens rapidly. Thus, the Col-0 elf4 null alleles are not perturbed in CCA1 function to the same 

extent as the published Ws elf4-1 null allele. 

 In wild type, the CCR2 rhythm peaks in early to late subjective night under free-run in 

the light or dark (Fig. 4.6). Both in light and in darkness the elf4 CCR2 phenotype is evident and 

the rhythm dampens rapidly both in Col-0 and Ws backgrounds, however the amplitude is 

slightly higher for elf4 CCR2:LUC in Col-0 than in Ws. Thus, both for CCA1:LUC and 

CCR2:LUC minor phenotypes of the elf4 missense lines are expected under free-running 

conditions. 
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Figure 4.6 CCA1:LUC and CCR2:LUC profiles in the elf4 nulls under free-run 
Free-running luminescence profiles of elf4 mutants in the Col-0 (elf4-101, elf4-209) and Ws (elf4-1) 
backgrounds under constant condition as indicated by shaded boxes. Time is Zeitgeber time. Error bars 
represent S.E.M. (A) CCA1:LUC in LL. (B) CCR2:LUC in LL. (C) CCR2:LUC in DD. 
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 Several of the elf4 TILLING lines had either a period or a phase phenotype under free-

running conditions, compared to wild type. The phenotypes are summarized in the tables and 

figures below (Tables 4.2, 4.3; Figs. 4.7-4.10). The majority of the elf4 alleles were monitored in 

both red and blue monochromatic light as well as in a combination of these two light qualities, 

but none of the phenotypes of the elf4 lines were found to be associated with a particular light 

quality. This indicates that ELF4 functions both in phytochrome- and cryptochrome-mediated 

pathways. 

 Some of the phenotypes of the elf4 TILLING lines were specific to the CCR2 luciferase 

marker. The CCR2:LUC rhythm was slightly altered in elf4-203 and elf4-204, which had no 

significant changes in the free-running period of CCA1:LUC, suggesting the elf4-203 and elf4-

204 mutations only affect downstream output rhythms and not the property of the core CCA1-

containing oscillator (Table 4.2, Fig. 4.7). Thus, the point mutations in elf4-203 and elf4-204 

confer no major effects on ELF4 function. 

 Two elf4 alleles in the TILLING collection can be defined as mutants with intermediate 

strength. Relatively strong effects on period and amplitude of CCA1:LUC was observed in the 

lines elf4-205 and elf4-208 (Tables 4.2, 4.3; Fig. 4.8). elf4-205 displayed shifting of both the 

CCA1:LUC and the CCR2:LUC rhythms and in some free-running assays had arrhythmic 

tendency for CCA1 activity. Similarly, CCA1 expression was shifted for elf4-208, but this mutant 

had no alteration in the CCR2 expression under free-run. The elf4-208 mutation is therefore 

specific to CCA1 expression in contrast to elf4-205 affects ELF4 function relatively more by 

phase-shifting more than one rhythm of the clock. 

 Four of the elf4 lines had similarly severe clock phenotypes. In lines elf4-210, elf4-211, 

elf4-212 and elf4-213, the CCR2:LUC rhythm was significantly phase-shifted or had a shorter 

than wild type (Tables 4.2, 4.3; Figs. 4.9, 4.10). Furthermore, in these four alleles CCA1:LUC 

expression was arrhythmic with a tendency towards reduced levels of CCA1 expression. Thus, 

lines elf4-210, elf4-211, elf4-212 and elf4-213 have the strongest mutant phenotypes of all elf4 

TILLING alleles. 

 Lines elf4-201 and elf4-202 displayed very subtle mutant phenotypes and had only a late 

peak time of CCA1:LUC on the first subjective day in extended darkness (Tables 4.2, 4.3). This 

classifies the elf4-201 and elf4-202 mutations as the most minor mutations in the elf4 collection 

and these two lines might be specifically connected to fine-tuning of the oscillator in response to 

light signals. Line elf4-215, which has a point mutation in the promoter region, was entirely 

indistinguishable from wild type. 
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Table 4.2 FFT-NLLS results for elf4 period under free-run 
Period estimates are R.A.E.-weighted means ± R.A.E.-weighted S.D. as calculated by BRASS. P-values 
from the Student’s two-tailed heteroscedastic t test was used to compare the mutant period estimates with 
Col-0, and the significant mutant values are indicated by *, **, or *** for P < 0.05, P < 0.01, P < 0.001, 
respectively. N.d.: Not determined. D: Damping rhythm. A: Going towards arrhythmicity. S: Shifting 
rhythm. Numbers in parentheses represent n. Bc: Constant blue light. Rc: Constant red light. LL: Constant 
red and blue light. DD: Constant darkness. Due to high variation in the Col-0 CCA1:LUC and CCR2:LUC 
reporter genes, precision analysis (ratio of rhythmic seedlings) was not considered. 
 
 

CCA1:LUC CCR2:LUC 
Line Mutant period (h) Col-0 period (h) Mutant period (h) Col-0 period (h) 
elf4-201 Bc: 25.7±1.3 (15) 

Rc: 26.5±1.5 (21) 
LL: 26.4±1.9 (24) 

Bc: 26.2±1.2 (17) 
Rc: 26.6±2.4 (19) 
LL: 25.7±1.6 (24) 

Bc: 25.6±1.1 (10) 
Rc: 28.2±2.0 (14) 
LL: 28.0±1.8 (15) 
DD: 26.4±2.4 (27) 

Bc: 25.9±1.0 (25) 
Rc: 27.3±1.7 (18) 
LL: 27.6±1.8 (21) 
DD: 26.7±1.9 (28) 

elf4-202 Bc: N.d. 
Rc: 27.6±2.1 (20) 
LL: 27.7±1.6 (24) 

Bc: N.d. 
Rc: 27.7±2.0 (19) 
LL: 27.8±1.9 (19) 

Bc: 25.4±0.9 (24) 
Rc: 27.4±1.7 (40) 
LL: 26.8±1.4 (21) 
DD: 27.2±2.3 (24) 

Bc: 25.8±1.3 (39) 
Rc: 28.5±2.5 (42) 
LL: 27.0±2.5 (18) 
DD: 27.8±2.7 (24) 

elf4-203 Bc: N.d. 
Rc: 26.5±1.7 (27) 
LL: 25.2±2.1 (19) 

Bc: N.d. 
Rc: 26.9±1.1 (24) 
LL: 26.7±2.1 (21) 

Bc: 24.9±2.1* (23) 
Rc: 27.7±2.0* (38) 
LL: 25.4±1.1** (21) 
DD: 26.1±1.4** (39) 

Bc: 28.0±2.5 (13) 
Rc: 28.7±1.4 (42) 
LL: 27.2±0.8 (23) 
DD: 26.5±1.0 (44) 

elf4-204 Bc: 27.4±2.9 (30) 
Rc: 27.2±1.5* (45) 
LL: 26.7±1.2 (24) 

Bc: 31.2±3.3 (37) 
Rc: 26.6±1.6 (38) 
LL: 26.7±2.1 (21) 

Bc: 26.3±1.5 (30) 
Rc: 27.9±1.0* (22) 
LL: 25.9±1.0* (14) 
DD: 26.3±0.9 (16) 

Bc: 26.8±2.3 (31) 
Rc: 28.4±1.9 (42) 
LL: 26.6±2.0 (19) 
DD: 26.1±0.9 (14) 

elf4-205 Bc: 28.6±3.0 A (13)  
Rc: 28.1±2.3 A (31) 
LL: 28.5±1.6 S (22) 

Bc: 27.7±1.9 (21) 
Rc: 29.4±2.5 (34) 
LL: 27.4±1.7 (11) 
 

Bc: 26.2±1.7 S (39) 
Rc: 27.0±1.6 S ** (46) 
LL: 27.0±1.4 S (30) 
DD: 26.0±1.2 S (39) 

Bc: 26.1±1.4 (41) 
Rc: 28.1±1.5 (46) 
LL: 26.8±2.1 (28) 
DD: 25.8±1.2 (40) 

elf4-208 Bc: 27.9±2.1S, A (14) 
Rc: 30.3±3.8 D, A (31) 
LL: 27.6±1.7D (19) 
 

Bc: 27.7±1.9 (21) 
Rc: 28.3±2.7 (34) 
LL: 27.6±1.7 (17) 
 

Bc: 26.0±1.1 (44) 
Rc: 27.2±1.5 (42) 
LL: 26.9±2.1 (38) 
DD: 26.1±1.2 (14) 

Bc: 26.0±1.4 (43) 
Rc: 27.3±1.2 (45) 
LL: 27.1±1.9 (32) 
DD: 26.1±0.9 (14) 

elf4-210 Bc: N.d. 
Rc: 29.3±5.3 A (14) 
LL: 28.3±3.6 S, A (15) 
 

Bc: N.d. 
Rc: 27.7±2.2 (11) 
LL: 27.6±2.0 (17) 
 

Bc: 26.7±1.5* S (24) 
Rc: 28.4±1.3 S (21) 
LL: 26.6±0.7 S (24) 
DD: 26.8±1.6 S (20) 

Bc: 25.8±1.3 (25) 
Rc: 28.4±1.3 (44) 
LL: 26.6±1.2 (16) 
DD: 26.7±0.8 (8) 

elf4-211 Bc: N.d. 
Rc: 27.3±5.1 D (10) 
LL: 26.9±2.6** (19) 
 

Bc: N.d. 
Rc: 29.6±3.0 (12) 
LL: 29.2±2.2 (41) 
 

Bc: N.d. 
Rc: N.d. 
LL: 27.5±0.6 S (32)  
DD: 26.9±0.7 (36) 

Bc: N.d. 
Rc: N.d. 
LL: 27.2±0.9 (18) 
DD: 26.7±1.0 (20) 

elf4-212 Bc: N.d. 
Rc: 27.3±4.8** (28) 
LL: 25.1±1.9* (8) 
 

Bc: N.d. 
Rc: 29.3±2.9 (39) 
LL: 27.7±1.6 (21) 
 

Bc: N.d. 
Rc: N.d. 
LL: 26.7±0.9* (33) 
DD: 27.0±1.0 (34) 

Bc: N.d. 
Rc: N.d. 
LL: 27.3±0.9 (18) 
DD: 26.7±1.0 (20) 

elf4-213 Bc: N.d. 
Rc: 27.4±2.3* (36) 
LL: 28.1±3.2 S (19) 
 

Bc: N.d. 
Rc: 28.5±2.2 (32) 
LL: 27.7±1.6 (21) 
 

Bc: N.d. 
Rc: 27.3±1.4 S (10) 
LL: 25.6±0.8*** (14) 
DD: 26.0±1.5 (21) 

Bc: N.d. 
Rc: 27.5±2.8 (17) 
LL: 28.2±1.6 (13) 
DD: 27.0±1.8 (25) 

elf4-215 Bc: N.d. 
Rc: 26.9±1.5 (1.5) 
LL: 26.4±1.8 (24) 
 

Bc: N.d. 
Rc: 25.9±1.5 (19) 
LL: 27.4±2.2 (20) 
 

Bc: 25.4±1.5 (17) 
Rc: 27.7±1.8 (11) 
LL: 25.7±1.2 (16) 
DD: 26.5±1.6 (21) 

Bc: 26.1±2.1 (36) 
Rc: 27.0±1.9 (13) 
LL: 26.1±1.5 (23) 
DD: 26.2±1.3 (15) 
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Table 4.3 FFT-NLLS results for elf4 phase under free-run 
Only values significantly different from Col-0 wild type are listed, see also figures below. Values are 
standard mean ± S.D. The first peak in DD is sidereal phase. Other values are circadian phase, where the 
acrophase is normalized to a 24-h period. P-values from the Student’s two-tailed heteroscedastic t test was 
used to compare the mutant phase estimates with Col-0, and the significant mutant values are indicated by 
*, **, or *** for P < 0.05, P < 0.01, P < 0.001, respectively. D: Damping rhythm. A: Going towards 
arrhythmicity. Numbers in parantheses represent n. Bc: Constant blue light. Rc: Constant red light. LL: 
Constant red and blue light. DD: Constant darkness. 
 
 

Line Mutant phase (h) Col-0 phase (h) 
elf4-201 CCA1:LUC DD 1st peak: 26.6±1.4* (24) CCA1:LUC DD 1st peak: 25.8±0.9 (24) 
elf4-202 CCA1:LUC DD 1st peak: 27.1±1.2*** (24) CCA1:LUC DD 1st peak: 25.8±0.9 (24) 
elf4-204 CCR2:LUC Rc: 9.4±2.4*** (22) CCR2:LUC Rc: 11.7±3.1 (42) 
elf4-205 CCA1:LUC DD 1st peak: 23.8±2.5** (20) 

CCA1:LUC Rc: 22.7±7.3* (31) 
CCA1:LUC LL: 18.7±2.7*** (22) 
CCR2:LUC DD: 12.7±4.2* (39) 
CCR2:LUC Rc: 11.8±3.2* (46) 
CCR2:LUC Bc: 14.5±6.1* (39) 

CCA1:LUC DD 1st peak: 25.8±0.7 (12) 
CCA1:LUC Rc: 19.9±4.3 (34)  
CCA1:LUC Rc: 0.3±4.4 (21) 
CCR2:LUC DD: 10.5±4.8 (40) 
CCR2:LUC Rc: 10.5±3.2 (46) 
CCR2:LUC Bc: 12.9±3.3 (41) 

elf4-208 CCA1:LUC DD 1st peak: 24.5±2.6* (23) 
CCA1:LUC Bc: 0.7±6.8 A *  (14) 

CCA1:LUC DD 1st peak: 25.8±0.7 (12) 
CCA1:LUC Bc: 20.3±5.2 (21) 

elf4-210 CCA1:LUC DD 1st peak: 24.9±1.4 D *** (22) 
CCR2:LUC DD: 10.4±3.8* (20) 
CCR2:LUC Rc: 8.6±2.1*** (21) 
CCR2:LUC Bc: 12.1±2.5** (24) 
CCR2:LUC LL: 11.3±1.9** (24) 

CCA1:LUC DD 1st peak: 25.2±0.6 (12) 
CCR2:LUC DD: 13.9±2.3 (8) 
CCR2:LUC Rc: 11.3±2.7 (44) 
CCR2:LUC Bc: 14.4±3.3 (25) 
CCR2:LUC LL: 14.1±3.4 (16) 

elf4-211 CCR2:LUC LL: 12.4±1.2* (32) CCR2:LUC LL: 13.5±2.0 (18) 
elf4-212 CCA1:LUC DD 1st peak: 24.6±2.6* (21) CCA1:LUC DD 1st peak: 26.1±1.0 (17) 
elf4-213 CCA1:LUC DD 1st peak: 23.7±2.6** (18) 

CCA1:LUC LL: 21.0±6.6* (19) 
CCR2:LUC Rc: 9.8±2.3* (10) 

CCA1:LUC DD 1st peak: 26.1±1.0 (17) 
CCA1:LUC LL: 0.4±4.1 (21) 
CCR2:LUC Rc: 12.6±3.3 (17) 
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Figure 4.7 Phenotypes of elf4-203 and elf4-204 under free-run 
Seedlings were entrained in light-dark cycles and released into continuous light or dark, as indicated by 
shaded boxes. Period and phase estimates are listed in the tables above. The phase angles of the acrophases 
are normalized to 24-h period (circadian phase). Time is Zeitgeber time. Error bars represent S.E.M.  
(A) elf4-203 CCR2:LUC in LL. Left panel: Free-running profile. Right panel: Period estimates vs. R.A.E. 
(B) elf4-203 CCR2:LUC in DD. Left panel: Free-running profile. Right panel: Period estimates vs. R.A.E. 
(C) elf4-204 CCR2:LUC in Rc. Left panel: Free-running profile. Right panel: Circadian phase vs. 1-R.A.E.  
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Figure 4.8 Phenotypes of elf4-205 and elf4-208 under free-run 
Seedlings were entrained in light-dark cycles and released into continuous light, as indicated by shaded 
boxes. Period and phase estimates are listed in the table above. The phase angles of the acrophases are 
normalized to 24-h period (circadian phase). Time is Zeitgeber time. Error bars represent S.E.M.  
(A) elf4-205 CCA1:LUC in LL. Left panel: Free-running profile. Right panel: Circadian phase vs. 1-R.A.E.  
(B) elf4-205 CCR2:LUC in Rc. Left panel: Free-running profile. Right panel: Circadian phase vs. 1-R.A.E.  
(C) Free-running profile of elf4-208 CCA1:LUC in Rc.  
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Figure 4.9 (p. 88) Phenotypes of elf4-210 and elf4-211 under free-run 
Seedlings were entrained in light-dark cycles and released into continuous light, as indicated by shaded 
boxes. Period and phase estimates are listed in the table above. Time is Zeitgeber time. Error bars represent 
S.E.M. The phase angles of the acrophases are normalized to 24-h period and plotted against the period 
estimates. 
(A) Free-running profile of elf4-210 CCA1:LUC in LL.  
(B) elf4-210 CCR2:LUC in LL. Left panel: Free-running profile. Right panel: Circadian phase vs. period.  
(C) Free-running profile of elf4-211 CCA1:LUC in LL.  
(D) elf4-211 CCR2:LUC in LL. Left panel: Free-running profile. Right panel: Circadian phase vs. period. 
 
 
 
Figure 4.10 (p. 89) Phenotypes of elf4-212 and elf4-213 under free-run 
Seedlings were entrained in light-dark cycles and released into continuous light, as indicated by shaded 
boxes. Period estimates are listed in the table above. Time is Zeitgeber time. Error bars represent S.E.M.  
(A) elf4-212 CCA1:LUC in Rc. 
(B) elf4-212 CCR2:LUC in LL. Left panel: Free-running profile. Right panel: Period estimates vs. R.A.E. 
(C) elf4-213 CCA1:LUC in LL.  
(D) elf4-213 CCR2:LUC in LL. Left panel: Free-running profile. Right panel: Period estimates vs. R.A.E. 
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Physiological phenotypes 
Monitoring leaf movements of the Arabidopsis seedling in constant light is a classic assay to 

determine a clock phenotype (e.g. Edwards et al., 2005) and the elf4-1 mutant has a leaf 

movement phenotype (Doyle et al., 2002). Accordingly, cotyledon movements were recorded for 

the elf4 TILLING lines and the results from these experiments indicated that several of the 

TILLING mutations affected ELF4 function in relation to a physiological clock output. Six elf4 

missense lines (elf4-201, elf4-203, elf4-205, elf4-210, elf4-212 and elf4-213) had altered period 

length compared to wild type (Table 4.4, Fig. 4.11). There is thus no direct correlation between 

leaf movement and luciferase phenotypes. As for example, the elf4-201 allele has short period 

tendency for leaf movements but no detectable period phenotypes for the luciferase reporter 

genes tested, and line elf4-205 is long period for leaf movement but only phase-shifted or short 

period for the luciferase markers. This suggests that different clocks control these outputs and 

ELF4 is differentially associated with the properties of these clocks. 

 In addition to leaf movements, physiological outputs like hypocotyl growth and 

flowering time often correlate with clock function in Arabidopsis (e.g. Mizuno and Nakamichi, 

2005). The elf4 loss-of-function mutant has a relatively long hypocotyl after growth under short 

photoperiods and it flowers early both under short and long photoperiods (Doyle et al., 2002). 

The hypocotyl length of the TILLING elf4 mutants was scored after one week’s growth under a 

8L:16D regime. From the results of the hypocotyl measurement, the lines elf4-210 and elf4-213 

had significantly altered length of the hypocotyl suggesting defects in light perception or clock 

properties in these alleles. These results correlate to some degree with the time of flowering in 

non-inductive short days (10L:14D). Both the lines elf4-210 and elf4-213 started flowering with 

about 10 leaves less than wild type. Additionally, lines elf4-204 and elf4-212 was similarly early 

flowering whereas the rest of the elf4 missense lines had no change in flowering time. None of 

the elf4 TILLING alleles, however, was as early flowering as the nulls and this could indicate 

that ELF4 missense is only indirectly related to flowering time control. In addition, this confirms 

that the alleles studied here all maintain residual ELF4 activity. 
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Table 4.4 Cotyledon movement results of elf4 TILLING lines  
All values for the cotyledon movement period estimates are R.A.E.-weighted means and R.A.E.-weighted 
S.E.M. The ratio of rhythmic seedlings (R.A.E. < 0.5) was excluded from analysis because of high error in the 
threshold for leaf detection between experiments (i.e. plate positions). Due to variation in light intensity between 
experiments, the mutant line was always compared to the wild type of the respective experiment. The values 
listed are the averages of two experiments per mutant genotype performed at similar light intensities. The P 
value from the Student’s two-tailed heteroscedastic t test was used to compare the mutant period with Col-0. 
 

Mutant Period (h) Col-0 Period (h) 
Line Mean S.E.M n Mean S.E.M n t test 
elf4-201 25.2 0.3 21 26.2 0.2 27 P = 0.067 
elf4-202 24.8 0.1 33 24.7 0.2 24 P = 0.510 
elf4-203 23.5 0.2 32 24.2 0.2 29 P = 0.003* 
elf4-204 25.1 0.2 27 24.9 0.2 33 P = 0.350 
elf4-205 25.5 0.2 28 24.6 0.2 26 P = 0.001** 
elf4-208 25.0 0.2 35 25.1 0.3 18 P = 0.885 
elf4-210 23.8 0.2 29 25.2 0.1 27 P = 0.002** 
elf4-211 25.6 0.3 27 25.1 0.2 30 P = 0.710 
elf4-212 23.9 0.2 27 25.6 0.1 26 P < 0.001*** 
elf4-213 25.7 0.2 20 25.3 0.1 28 P = 0.077 

 
 
 

 
 
Figure 4.11 Cotyledon movement phenotypes of elf4 TILLING lines 
Representative traces of mutant and wild-type cotyledon movements for the lines that differ significantly 
from the wild type (see Table 4.4). (A) elf4-201. (B) elf4-203. (C) elf4-205. (D) elf4-210. (E) elf4-212. (F) 
elf4-213. (Insets) R.A.E. plots (R.A.E. vs. period length [h]).



C H A P T E R  4  G E N E T I C  C H A R A C T E R I Z A T I O N  O F  ELF4  M I S S E N S E  A L L E L E S 

 - 92 - 

Figure 4.12 Hypocotyl length of elf4 TILLING lines 
Relative hypocotyl length of elf4 seedlings normalized to dark-grown controls. Seedlings were grown in 
8L:16D white light and measured after one week. An average of 20 seedlings were measured per line. 
Error bars represent S.D. 
 

 
Figure 4.13 Flowering time elf4 TILLING lines 
Total leaf number (incl. cotyledons and cauline leaves) at the time of bolting of elf4 plants grown under a 
10L:14D regime. An average of 14 plants were counted per line. Error bars represent S.D.  
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Discussion 
At the time when the TILLING study of ELF4 was initiated (in 2002), TILLING was a very new 

technique for mutational analysis in Arabidopsis, or in fact for model organisms in general. 

Therefore, two questions were addressed by performing the TILLING screen of ELF4. One 

question was whether TILLING would work as a method for finding new and subtle alleles of a 

small gene (ELF4) in Arabidopsis. The second question asked whether the isolated elf4 TILLING 

alleles would provide the information about the structure-function relationship of ELF4 that 

would allow a proper test of the hypothesis generated from the phylogenetic study (in Chapter 3). 

The results presented in this chapter give satisfactory answers to both of these questions.  

ELF4 as a TILLING target  
In the post-genomic era, establishment of a traditional forward-genetic screen is likely to be 

inefficient when the aim is to isolate weak alleles of a gene with a relatively small size, in 

particular, when sophisticated analyses are needed to detect the expected weak phenotype or the 

mutation is silent due to redundancy. Here, TILLING can be applied in order to perform a 

targeted screen. This reverse-genetic approach was in this chapter proven to be successful in the 

“test case” where ELF4 was TILLed. Two rounds of TILLING, at the TILLING facility, were 

performed before an adequate elf4 allelic series of missense lines was isolated, though, no 

mutants were found in the last third of the ELF4 sequence. However, this ratio of mutant 

discovery was expected because statistically about 10 mutations, of which half are missense 

mutations, are found per screen (Greene et al., 2003).  

 A disadvantage of the TILLING screen is the mutational load from the EMS 

mutagenesis, for example a high rate of mutagenesis likely interferes with the weak phenotype of 

a TILLING point mutation. Therefore, these background mutations have to be removed by 

backcrossing to wild type. The experience from the ELF4 screen, in addition to the TILLING of 

ELF3 (see Chapter 6), is that the background mutations cause problems in isolating homozygous 

TILLING mutants (distorted segregation ratios due to lethal combinations) and in some 

TILLING mutants the background mutations interfere with the targeted genotype. Thus, it is 

critical that the phenotype in question is confirmed, for example by analysis of allelic strength by 

using transheterozygous F1 plants, generated from a cross between the null mutant for the gene-

of-interest and the homozygous TILLING line, as has been previously applied (Bao et al., 2004; 

Enns et al., 2005), and/or by biochemical analysis of the gene product. In addition, the TILLING 

allele could be confirmed in a complementation experiment by expression of the mutated 

sequence in the null mutant background. An alternative control, which was not applied in the 

presented TILLING studies, could be to keep the wild-type sister plants from the BC3-F2 
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populations and use these plants, instead of “normal” wild type (Col-0), as respective references 

in the TILLING phenotyping. 

Interpretation of the elf4 missense mutations 
The results presented in this chapter confirm the hypothesis generated from the phylogenetic 

results in Chapter 3. In general, the elf4 TILLING mutations that have the most central position 

in the ELF4 sequence affect ELF4 function the most (mutations elf4-210, elf4-211, elf4-212, elf4-

213). The relative strong phenotypes of these four elf4 alleles confirm that the DUF1313 region 

of ELF4 is the active domain of the ELF4 protein and therefore, it is here proposed that this 

region is named the ELF4 domain. It is likely that the ELF4 domain is involved in protein-protein 

binding (e.g. heterodimer formation) because the structural predictions revealed a conserved and 

“zipper”-like alpha-helical fold of the ELF4 “consensus” of all sequences subjected to structural 

prediction. A future biochemical analysis of ELF4 activity should include the TILLING point 

mutations in order to confirm the genetic data in this chapter.  

 Two of the TILLING point mutations affected residues that have a central position in the 

ELF4 domain and are fully conserved in the ELF4 subclade (Fig. 3.1; Fig. A.2, Appendix III): 

R44 and G74, corresponding to lines elf4-205 and elf4-213, respectively. In agreement with the 

conservation of these residues the resulting changes in elf4-205 and elf4-213 conferred detectable 

mutant phenotypes. The nature of these two residue changes, however, is different. In elf4-205, 

the arginine is changed to a lysine and those two residues are both positively charged, i.e. the 

mutation mainly confers a size change in the structure. In elf4-213, the glycine is changed to 

arginine, which has a more dramatic change in the physico-chemical property because a 

relatively neutral amino acid (G) is altered to a charged residue (R). Thus, the quality of the point 

mutations correlates with the mutant phenotypes in lines elf4-205 and elf4-213. Generally, both 

the relative position and the change of the residues affected (e.g. R31Q in elf4-210, S45L in elf4-

212, and A59V in elf4-212) explain the mutant phenotypes of the elf4 TILLING lines, and in this 

way the phylogenetic hypothesis about ELF4 structure-function from Chapter 3 is confirmed. 

 The ELF4 TILLING study supports previous ideas about ELF4 mode-of-action, for 

example that ELF4 functions as a transcriptional activator of the morning clock gene CCA1 and 

that ELF4 has an important role in light signaling to the circadian clock. In all luciferase 

expression assays, the mutant phenotypes of the elf4 TILLING lines were most penetrant for the 

expression of the CCA1:LUC reporter gene. Under light-dark cycles (Figs. 4.3 and 4.4), the 

strongest TILLING alleles displayed driven rhythms of CCA1:LUC, which were distinctive from 

the characteristic “saw tooth”-curve of the elf4 null mutant. Particularly, it seemed that 

CCA1:LUC was constitutively activated in the light (in the lines elf4-205, elf4-210, elf4-211, 
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elf4-212 and elf4-213) suggesting that the activity of ELF4 in these mutants was most 

compromised in the light phase. The CCA1-specific phenotypes were corroborated by the 

observation that CCR2:LUC expression under photoperiodic conditions were indifferent from 

wild type. The photoperiodic CCA1 phenotypes of the TILLING mutants thus suggest that ELF4 

is required for proper entrainment of the CCA1-containing oscillator to light-dark cycles and 

indicate that ELF4’s role in control of the CCA1 loop of the circadian clock is separable from the 

control of the CCR2 slave oscillator. 

 The “jet-lag” experiment underscored the role of ELF4 in entrainment. In the strongest of 

the elf4 TILLING mutants, CCA1 expression continued to increase during the first day after the 

extended night instead of damping at peak level in the middle of the daytime-period, as observed 

in wild type. Similar to the assays performed under normal photoperiods, these mutant 

phenotypes of the TILLING lines are different from the elf4 null mutant, which also has a light-

driven rhythm after the “jet-lag”. Thus, the results of this assay are in agreement with the other 

photoperiodic data that the morning gene CCA1 has increased sensitivity to light in the elf4 

alleles with the highest degree of ELF4 reduced-function. 

 Most of the elf4 TILLING lines were assayed extensively under free-running conditions 

in the light, under different light qualities, in an attempt to correlate the mutant phenotypes to a 

specific light-signaling pathway. However, no clear connection to either red or blue light was 

found. This might be a surprising result considering a previous report that elf4 null mutants have 

a strong hypocotyl phenotype in constant red light compared to far-red light (Khanna et al., 

2003), but no assays in blue light were performed in that study, hence, ELF4’s role in blue-light 

signaling has not been properly addressed. In addition, it is well-known that phytochromes also 

mediate in blue-light signaling (Neff and Chory, 1998; Poppe et al., 1998), and therefore, it is 

difficult to dissect the mode of light signaling without comparison to the expression and activity 

of photoreceptors or known light-signaling elements. 

 The results from the free-running experiments revealed that ELF4 is associated with all 

parameters of the circadian clock, because in the elf4 allelic series, subtle changes in clock 

period, phase and amplitude were observed in addition to arrhythmic behavior. Additionally, 

mutant phenotypes for basically all of the elf4 missense lines were isolated in the assays 

performed under constant light conditions. These results further confirm the importance of ELF4 

function for sustained clock properties under free-run. Though, these phenotypes may also 

indicate the presence of background mutations in the TILLING lines, and this genetic “noise” 

was observed by eye in plant morphology for some elf4 lines (e.g. line elf4-210 is segregating for 

a chlorophyll mutation, not shown). Future analyses, using for example trans-heterozygous plants 
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as described above, will facilitate a final assessment of the penetrance of the elf4 mutant 

phenotypes. 

 The circadian phenotypes in relation to the physiology of the elf4 TILLING lines were 

found difficult to determine in detail, probably because the differences between the lines and 

compared to wild type were small (Figs. 4.11-4.13). These findings further suggest that the 

primary mutant phenotype of elf4 is its clock defect (see also Chapter 5). Here, however, it 

should be kept in mind that the result from a previous report on natural variation isolated an 

ELF4-modifying locus (termed enhancer of elf4 and mapped to the hua2 gene) in the Landsberg 

erecta (Ler) background compared to the Ws ecotype (Doyle et al., 2005). It was found that in 

the F2 populations from crosses between elf4-1 (Ws) and Ler, plants with earlier flowering than 

elf4-1 could be identified (which were hua2). This study concluded that Col-0, in addition to 

other accessions including Ws, contains an active allele of HUA2, which is a repressor of 

flowering time. Therefore, in the absence of HUA2 the effect of ELF4 in relation to photoperiod-

sensing is more apparent. The HUA2 study indicates that there is natural variation in flowering-

time regulation in relation to ELF4 activity and such a mechanism might explain why it was 

difficult to determine alterations in flowering time in the elf4 TILLING lines. 
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Introduction  
In recent years, several molecular components associated with the plant clock have been 

identified. Most of these components are themselves circadian-regulated, with peak expression of 

each phased at a specific time of day. For example, the MYB-related transcription factors, CCA1 

and LHY (Schaffer et al., 1998; Wang and Tobin, 1998), are morning-specific genes, both acting 

in a feedback loop on the pseudo-response regulator TOC1, which peaks in the evening (Alabadi 

et al., 2001; Mas et al., 2003a). This transcription/translation feedback loop has been placed at 

the core of the circadian clock (Alabadi et al., 2001). The original single-loop model was recently 

extended to incorporate additional loops (Farre et al., 2005; Locke et al., 2005; 2006; Salome and 

McClung, 2005a; Zeilinger et al., 2006). Beyond this core, the wider plant-circadian system 

constitutes a complex network of multiple and interconnected pathways, many of which feedback 

on each other, controlling responses to light, temperature and daylength. These features are 

poorly understood. 

 Previously, the elf4 mutant was identified and it was shown that ELF4 is important for 

circadian precision and normal clock function (Doyle et al., 2002). The elf4 loss-of-function 

mutation attenuated free-running rhythmicity in all clock outputs tested, and this included 

components believed to make up the central-clock machinery (Doyle et al., 2002; Kikis et al., 

2005; this study). Circadian specificity of ELF4 within the clock was only partially defined with 

these studies. 

 Light signals perceived by photoreceptors, including the phytochromes and 

cryptochromes (Lin, 2002; Nagy and Schafer, 2002; Quail, 2002), are the most important 

environmental inputs to the plant circadian clock (Ni, 2005). Photoperception allows entrainment 

of the clock to dawn and dusk cues, allowing correct phasing of the various clock-controlled 

genes and pathways (Salome and McClung, 2005b). Clock control of light-signaling pathways is 

critical for photoperiodic regulation of many aspects of Arabidopsis development, including 

hypocotyl elongation and seasonal induction of the floral transition. Here, ELF4 has been 

implicated in phyB-signaling as elf4 seedlings are hyposensitive to red light, and ELF4 mRNA 

levels are low in the phyB mutant. Further, it has been interpreted that ELF4 controls red-light 

repression of hypocotyl elongation (Khanna et al., 2003) and that ELF4 together with TOC1 

plays a major role in phytochrome-mediated input to the clock (Kikis et al., 2005). The early-

flowering behavior of elf4 is accompanied by misregulation of the flowering-activator CO 

implying ELF4 acts on flowering time by regulating expression of CO (Doyle et al., 2002). 

Connecting ELF4’s action on the clock to downstream red-light perception is required to 

understand the pleiotropic nature of the elf4 mutations. 
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 Previously, it was found that ELF4 is expressed in the evening and that the elf4 loss-of-

function mutant has low CCA1 expression leading to arrest of the elf4 oscillator after one cycle 

under free-run (Doyle et al., 2002). In addition, it has been shown that elf4 also has low LHY 

levels implicating ELF4 in a feedback loop with CCA1 and LHY (Kikis et al., 2005). In this loop 

ELF4 may act in parallel with the gating response factor ELF3 because ELF3 gates expression of 

ELF4 and in general the elf3 and elf4 loss-of-function mutants have similar phenotypes (Kikis et 

al., 2005). Thus, both ELF3 and ELF4 are believed to be closely associated with the light-

activated expression of the morning elements (CCA1, LHY) of the core oscillator. 

 In this chapter, the understanding of ELF4 function in the circadian-clock network was 

expanded. The property of the elf4 circadian clock was tested in relation to the light-dark 

Zeitgeber and oscillator performance was monitored both during and after entrainment using 

different release protocols. The physiology of plants constitutively overexpressing ELF4 (ELF4-

ox) was characterized and the effect of this genotype on core-clock genes was determined. 

Furthermore, the relationship between ELF4 and ELF3 was explored to define their roles in the 

clock under free-running conditions. Together these experiments improve the understanding of 

ELF4’s role in entrainment of the circadian clock and refine its position in relation to ELF3 and 

the central CCA1/LHY-TOC1 feedback loop.
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Results 

Hypo- and hypermorphic red-light-signaling in elf4 
Under natural 24-hour days, the light-dark rhythm defines the diurnal environment. However, 

signaling through light-input pathways in plants is itself a clock-controlled process, being gated 

by so-called Zeitnehmer functions, one of which requires ELF3 (McWatters et al., 2000). 

Previous reports on ELF4 characterization have supported ELF4 action in a phyB-dependent 

pathway of red-light perception (Khanna et al., 2003). Accordingly, the elf4-1 mutants and 

ELF4-ox lines were tested for alterations in detecting light-input signals and/or diurnal 

processing of information (the circadian phenotype of ELF4-ox is described later in this chapter). 

elf4-1 seedlings had a mild hypocotyl elongation phenotype under a range of fluences of red 

light, as elf4-1 appeared hyposensitive to red-light repression of elongation growth (Fig. 5.1A). 

This confirms previous work by the Quail group (Khanna et al., 2003). Interestingly, ELF4-ox 

lines were indistinguishable from wild type under these assay conditions. Thus, if ELF4 is a 

component of proper red-light perception, then it is not a genetically limiting factor for the 

repression of hypocotyl by light. 

 A gating assay was conducted to test if the red-light defects in elf4-1 were in part due to 

alterations in circadian processing of light information. For this, wild type and elf4-1 plants 

harboring the CAB2:LUC marker were entrained to light-dark cycles, and replicate samples were 

placed into continuous darkness. At two-hour intervals, a set of replicate samples was given a 

five-minute pulse of red light, and the acute response of light activation of CAB2:LUC induction 

was assayed. As reported previously (McWatters et al., 2000), the wild type has a gated response 

of CAB2 induction (Fig. 5.1B), and this was maximal around the time where the plant anticipated 

the transition of dark to light (subjective dawn; times 0-12 and 24-36 in Fig. 5.1B). In elf4-1 

mutants, the gate was open during subjective night (Fig. 5.1B) when elf4-1 displayed a high 

activation of CAB2 in response to the light pulse. These plants have increased sensitivity to light 

at night relative to wild type, and thus elf4 is a partial gating mutant. Red-light perception in the 

elf4-1 mutant is therefore altered, at least in part, because of an underlying clock defect that 

affects the gating of this red-light response pathway. 
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Figure 5.1 ELF4 is involved in red-light response and acts at night 
(A) Hypocotyl length of 1-week-old seedlings grown under continuous red light. elf4-1 has a long 
hypocotyl under a range of red light fluences where ELF4-ox has no phenotype. (B) ELF4 participates to 
light input to the clock during the night (ZT13 to ZT23), here shown as the difference in elf4-1 CAB2:LUC 
luminescence in light-induced vs. non-induced seedlings. Seedlings were entrained in 12L:12D cycles and 
transferred to continuous dark at dusk (ZT12). Time is hours since the start of transfer (hence time = 0 was 
ZT12). 
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elf4-1 mutants arrest in the evening 
It was noted that after transfer to constant conditions following exposure to light-dark cycles, 

elf4-1 mutants displayed weak rhythmicity on the first day (Doyle et al., 2002). This could mean 

that the oscillator was, upon transfer to constant conditions, “running down” rather than 

“stopping instantly.” To understand the kinetics of the elf4 oscillator, the oscillator behavior 

following the transfer from entraining conditions to constant darkness was assayed. Seedlings 

harboring the CAB2:LUC reporter were entrained to 8L:16D cycles and then transferred to DD at 

dusk (ZT8). At 3-h-intervals from one hour after the light-to-dark transition, a five-minute red-

light pulse was given to replicate plates of seedlings, and luminescence was measured over the 

next 48 hours. This light pulse is not sufficient to reset the clock in wild-type plants (Covington 

et al., 2001; Hall et al., 2002; McWatters et al., 2000; Millar et al., 1992), but it does induce a 

circadian peak of CAB2 activity, the timing of which is under circadian control (Millar and Kay, 

1996).  

 Until 32 hours after the last dawn (i.e. subjective dusk for these plants previously 

entrained to 8L:16D), the timing of the peak in elf4 seedlings was indistinguishable to that of 

wild-type plants (Fig. 5.2). However the two sets of seedlings responded differently to pulses 

given at or after 36 hours after last dawn (t-test, P < 0.05): wild-type seedlings continued to show 

circadian control, but the peak of CAB2:LUC in elf4-1 occurred about 30 hours after the pulse, 

regardless of when the pulse was given (Fig. 5.2). Thus, the circadian clock in elf4 runs down at 

the end of the first subjective day in DD to a point where it is strongly reset by even a brief light 

pulse. This is interpreted as, although rhythmicity can be driven by a light-Zeitgeber in elf4, 

ELF4 is needed to sustain clock activity beyond the end of the first subjective day in constant 

dark. 

Characterization of ELF4-ox 
Previously, loss-of-function studies led to the conclusion that ELF4 is both a repressor of the 

floral transition and is required to sustain normal clock function (Doyle et al., 2002). Since ELF4 

expression is normally rhythmic, plants overexpressing ELF4 under the control of the 

constitutive 35S CaMV promoter (ELF4-ox) were tested to see if ELF4 acted in a dose-

dependent manner and if rhythmicity of transcription was required for ELF4 function. In contrast 

to elf4-1, which was confirmed as largely insensitive to photoperiod, ELF4-ox lines were 

modestly late flowering under inductive (long-day) photoperiods. Under non-inductive 

conditions of short days, ELF4-ox plants were as delayed in flowering as the wild type 

(Fig. 5.3A). This finding further supports that ELF4 is a floral repressor that is part of the 
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photoperiod pathway and reveals that ELF4 works to coordinate the floral transition as part of the 

photoperiod pathway. 

 As elf4-1 is a severe clock mutant under light or in darkness, it was reasoned that ELF4-

ox lines should also show circadian alterations. Three independent transgenic lines were tested 

for alterations in circadian leaf movement rhythms. All lines showed an increased free-running 

period length under constant light (Table 5.1). These results were confirmed for molecular 

rhythms of ELF4-ox plants harboring the morning CAB2:LUC and evening CCR2:LUC reporters 

(Table 5.1; Fig. 5.3B-E). These lines also had rhythms with longer periods in constant light after 

entrainment to light-dark cycles (Table 5.1; Fig. 5.3B,C). In darkness, ELF4-ox peaked later than 

wild type most significantly for the evening marker CCR2:LUC (Fig. 5.3D,E). Thus, ELF4 

modulates rhythmicity of multiple clock outputs. Additionally, it is defined, based on these 

misexpression studies, that ELF4 is a strong genetic repressor of clock periodicity. 

 

 

 
Figure 5.2 The elf4 clock runs for one day and stops at subjective dusk  
Time-to-peak of CAB2:LUC activity in dark-adapted elf4-1 seedlings after red-light pulse treatment. 
Seedlings were entrained in 8L:16D cycles and then transferred to darkness at dusk (ZT8). Time of pulse is 
shown as hours since last dawn; five minutes of red light were given at 3-hour intervals from time 9. Error 
bars represent S.E.M.  
 
 

 
 
Figure 5.3 (p. 105) Dose-dependent effect of ELF4  
(A) ELF4-ox plants flower late under long days (white bars), but not short days (gray bars).  
(B,C) Left panels: Free-running profiles of ELF4-ox CAB2:LUC and CCR2:LUC under continuous light. 
Gray bars indicate subjective night. Right panels: R.A.E. plots of luminescence rhythms (R.A.E. vs. period 
length). Each period estimate corresponds to one seedling. 
(E,F) Peak time of ELF4-ox (E) CAB2:LUC and (F) CCR2:LUC in continuous dark.  
Error bars represent S.E.M. All seedlings were entrained in 16L:8D cycles. Time is Zeitgeber time. 
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Table 5.1 Free-running period estimates for ELF4-ox 
R.A.E.-weighted means and S.E.M for period length of ELF4-ox lines and controls. 
 

Line Period (h ± S.E.M.) n 
 
Leaf movement 
ELF4-ox -2 25.87 ± 0.13 28 
ELF4-ox -8 25.84 ± 0.21 29 
ELF4-ox -11 25.60 ± 0.14 30 
Ws 23.58 ± 0.10 42 
 
Luciferase 
ELF4-ox CAB2:LUC 31.60 ± 0.35 36 
Ws CAB2:LUC 26.74 ± 0.33 38 
 
ELF4-ox CCA1:LUC 31.17 ± 0.37 37 
Ws CCA1:LUC 28.30 ± 0.31 44 
 
ELF4-ox CCR2:LUC 30.08 ± 0.38 45 
Ws CCR2:LUC 27.23 ± 0.18 45 
 
ELF4-ox LHY:LUC 31.19 ± 0.40 46 
Ws LHY:LUC 26.94 ± 0.29 48 
 
ELF4-ox TOC1:LUC 30.40 ± 0.45 15 
Ws TOC1:LUC 27.33 ± 0.44 24 
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Entrainment to light-dark cycles is altered in elf4-1 
The gating assay (Fig. 5.1B) revealed that elf4-1 has greater sensitivity to light than wild type. 

CCA1 and CAB2 are both under clock control and normally rise during the late night with peak at 

or shortly after dawn, respectively. They are also regulated directly by light. CCR2 expression is 

also clock-controlled but is less directly affected by light (Kim et al., 2003; Suarez-Lopez et al., 

2001). Accordingly, CCA1, CAB2 and CCR2 expression was measured via LUC reporter activity 

in long- and short-day light-dark cycles to compare the effects of clock and light control on these 

genes.  

 In elf4-1 under long or short days, there was a strong reduction in the rising of gene 

expression during darkness, and instead, there was an abrupt increase in CCA1:LUC and 

CAB2:LUC expression immediately following “lights on” (Figs. 5.4A-D and 5.5B), which 

implies an increase in light sensitivity in elf4-1 relative to wild type. This suggests that the ability 

of the elf4-1 mutant to anticipate dawn was attenuated, and it extends the possibility that 

entrainment of the oscillator is altered in elf4-1. In contrast, ELF4-ox correctly anticipated the 

coming lights on before photic signals were present (Figs. 5.4 and 5.5). This result strongly 

suggests that ELF4 is essential for normal entrainment to light, whereas rhythmic accumulation 

of ELF4 transcript is not necessary for clock entrainment to light-dark cycles. 

 The transcription of CCR2 cycles with a trough in the day and peak in the night, and this 

is similar to the phase angle of ELF4 (Fig. 5.6A). In short days, only a marginal rhythm is seen 

for CCR2:LUC in elf4-1, however a weak rhythm that apparently is able to anticipate dusk is 

seen in long photoperiod conditions (Fig. 5.4E,F), suggesting that the slave oscillator of CCR2 

(Heintzen et al., 1997) still runs under these conditions even in the elf4-1 mutant. Again, the 

same phase of the CCR2 peak was seen in the ELF4-ox plants compared to the wild type (Fig. 

5.4E,F), reinforcing the earlier proposition that, whilst ELF4 is necessary for correct entrainment 

of plants, rhythmic ELF4 expression is not. 
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Figure 5.4 ELF4 under entrainment 
Morning-gene expression (CCA1:LUC, CAB2:LUC) is less affected than expression of an evening specific 
gene (CCR2:LUC). Luminescence profiles of elf4-1 and ELF4-ox kept under entraining conditions, 8L:16D 
short day (left panel) and 16L:8D long day (right panel). (A,B) CCA1:LUC. (C,D) CAB2:LUC. (E,F) 
CCR2:LUC. Gray blocks indicate night time. Error bars represent S.E.M. 
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 To further refine the understanding of clock resetting, and ELF4’s role in this 

entrainment process, the time taken by wild type, elf4-1 and ELF4-ox CCR2:LUC to re-entrain to 

a light-dark cycle following the inversion of day and night was measured (Fig. 5.5). The rapid 

change in light regime induces “jet-lag” as the circadian clock is no longer in its correct 

orientation with respect to the environmental cycle. This protocol is similar to that used to define 

entrainment defects in the cca1 and lhy mutants (Kim et al., 2003) (Fig. 5.5). Under this regime, 

the timing of peak CCR2:LUC activity, relative to the “lights-out” signal, was nearly restored in 

elf4-1 within the first day (Fig. 5.5A). In contrast, neither the wild type nor the ELF4-ox line 

displayed a near normal timing of the peak in CCR2 expression until the second day. Thus, elf4 

resets faster than wild type and ELF4-ox. 

 To understand the preliminary events that led to rapid clock resetting in elf4-1 relative to 

wild type and the ELF4-ox line, the “jet-lag” assay was repeated with the three genotypes 

expressing the CCA1 or LHY reporter genes. This showed that the morning peak of CCA1 and 

LHY in wild type and the ELF4-ox line occurred when the plants “expected” dawn (e.g. after time 

48 for CCA1 or time 72 for LHY; Fig. 5.5B,C), although this point was now in darkness because 

of the extended night. Wild-type plants exhibited little response to the “lights-on” that occurred at 

subjective dusk (listed as time 60 for CCA1, Fig. 5.5B; and time 84 for LHY, Fig. 5.5C), relative 

to the original entraining cycle (Fig. 5.5B,C). These results can be explained by gated repression 

of light activation of these genes during the subjective night, similar to that shown for CAB2 in 

wild-type seedlings (Fig. 5.1B). In contrast, the peak of luciferase activity in elf4-1 was much 

reduced after time 48, but the relative increase in gene induction in response to lights-on at time 

60 was much greater. This is consistent with the defective gating found in this mutant, in which 

the gate for light responsiveness is open during subjective night. The light-induction of CCA1 

and LHY in elf4-1 is the likely cause of its rapid clock resetting. 

 ELF4-ox plants also exhibited accelerated clock resetting of CCR2:LUC relative to wild 

type. However, expression of CCA1:LUC and LHY:LUC in ELF4-ox matched that of wild type 

between time 36 and 72 for CCA1 (Fig. 5.5B) and time 48 and 96 for LHY (Fig. 5.5C), 

implicating that the resetting behavior here is not likely to be due to changes in the gating of light 

responsiveness. Instead, it may be due to the longer endogenous period allowing easier resetting 

via a single phase delay. 
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Figure 5.5 Re-entrainment of elf4 and ELF4-ox 
Normalized (A) CCR2:LUC, (B) CCA1:LUC, and (C) LHY:LUC profiles of elf4-1 and ELF4-ox seedlings, 
compared to Ws wild type, before and after exposure to a “jet-lag” (an extended night of 24 h) under light-
dark cycles. White bars indicate light intervals and grey bars indicate darkness. 
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Timing of ELF4 action 
ELF4 is required for robust rhythmicity and for a normal response to light-dark cycles. To aid the 

understanding of ELF4’s role in the circadian signaling network, molecular-expression 

phenotypes of core-clock genes were measured in various ELF4 genotypic backgrounds. 

Luminescence rhythms were measured in wild-type plants expressing ELF4:LUC under constant 

light after entrainment under light-dark cycles. Compared to the evening marker CCR2, 

ELF4:LUC generated a rhythm with peak expression in the middle of the subjective night (Fig. 

5.6A). Previously, it was shown that ELF4 transcript levels are clock-controlled and peak in the 

evening and that ELF4 expression is affected by photoperiod (Doyle et al., 2002). Taken 

together, these results support an evening-to-night function of ELF4 action, and illustrate that the 

precise timing of the ELF4 peak is influenced by the presence and/or duration of a photoperiod. 

 As expected, ELF4:LUC activity in elf4 was arrhythmic (Fig. 5.6B), as was that of 

CCR2:LUC expression, in agreement with the previous report (Doyle et al., 2002). Rhythmicity 

in the elf4-1 mutant could be rescued by restoring ELF4 expression with the ELF4:ELF4-LUC 

construct (Fig. 5.6B). Like ELF4-ox, ELF4:ELF4-LUC plants had a long period phenotype. 

Thus, ELF4 regulation appears to be primarily transcriptional and ELF4 activity is potentially 

dose-dependent even under the control of its own promoter.
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Figure 5.6 ELF4 is expressed in subjective night 
(A) ELF4:LUC luminescence activity compared to wild-type CCR2:LUC in constant light. Left panel: 
Free-running profiles. Right panel: Circadian phase vs. 1-R.A.E.  
(B) Luminescence of ELF4:ELF4-LUC and ELF4:LUC in the elf4-1 mutant, in constant light.  
Gray bars indicate subjective night. Time is Zeitgeber time. Error bars represent S.E.M. The seedlings were 
entrained in 16L:8D cycles. 
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 The elf4 mutant phenotype includes low transcription of the morning gene CCA1. In 

ELF4-ox CCA1:LUC rhythms were increased in amplitude and had a long period phenotype 

(Table 5.1; Fig. 5.7A). Thus, ELF4 is a limiting factor in CCA1 induction. In the elf4-1 mutant, 

LHY:LUC was repressed to a very low level and arrhythmic (Fig. 5.7C), which is similar to the 

earlier findings for CCA1 and LHY expression (Doyle et al., 2002; Kikis et al., 2005). In 

addition, ELF4-ox displayed long period of LHY:LUC rhythms (Table 5.1; Fig. 5.7C). Thus, 

ELF4 is likely to control activation of the morning clock genes CCA1 and LHY, the rhythm of 

which controls the rhythmic transcription of ELF4. This idea was confirmed by assaying the free-

running property of ELF4-ox in the cca1 loss-of-function background (cca1-11; Hall et al., 2003) 

(Fig. 5.7B). Compared to ELF4-ox itself, the double mutant was only long period for the first    

48 h under free-run, after this time point the rhythm was like wild type and had arrhythmic 

tendency (Fig. 5.7B). This observation strongly suggests that sustained ELF4 function depends 

on the morning clock gene CCA1. 

 The strong clock phenotype of ELF4-ox was also related to TOC1 expression, and as 

anticipated, TOC1:LUC rhythms displayed a long-period response in ELF4-ox (Table 5.1; 

Fig. 5.8A). The current model of the CCA1/LHY-TOC1 loop (Alabadi et al., 2001; Locke et al., 

2006; Zeilinger et al., 2006) predicts an increase in TOC1 expression given low CCA1 and LHY 

expression. Expression of TOC1:LUC in elf4-1 followed this prediction, being expressed 

arrhythmically and at a higher level in elf4-1 than wild type under free-running conditions in the 

light (Fig. 5.8B). Taken together, these last results strongly suggest that ELF4 is necessary for the 

feedback loop controlling rhythmicity of CCA1, LHY, and TOC1, where it acts at night to 

promote CCA1/LHY expression, and thus indirectly represses TOC1. Constitutive expression of 

ELF4 in a toc1 null background (toc1-21; Ding et al., 2007) revealed that the toc1 mutation 

suppressed the ELF4-ox phenotype (Fig. 5.8C). This finding suggests that ELF4 expression is 

interlocked with the CCA1/LHY-TOC1 loop. 
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Figure 5.7 ELF4 activity is tightly associated with the expression of the CCA1 and LHY 
(A) Left panel: Long period and high amplitude of ELF4-ox CCA1:LUC under continuous light. Right 
panel: R.A.E. vs. period length.  
(B) The long period of ELF4-ox is not maintained without CCA1 expression. Free-running profile of the 
double mutant cca1-11 ELF4-ox CCA1:LUC compared to ELF4-ox and wild type in constant light.  
(C) Left panel: Long period of ELF4-ox LHY:LUC compared to wild type under free-run. (Inset) Low 
expression of LHY:LUC in elf4-1. Right panel: R.A.E. vs. period length.  
Gray bars indicate subjective night. Time is Zeitgeber time. Error bars represent S.E.M. The seedlings were 
entrained in 16L:8D or 12L:12D cycles. 



C H A P T E R  5  ELF4 ’S  P O S I T I O N  I N  T H E  C I R C A D I A N  C L O C K  

 - 115 - 

 
 

 
 
Figure 5.8 ELF4 activity depends on the expression of TOC1 
(A) Left panel: Free-running profile of ELF4-ox TOC1:LUC compared to wild type. Right panel: R.A.E. 
vs. period length.  
(B) Left panel: Free-running profile of elf4-1 TOC1:LUC compared to wild type. Right panel: R.A.E. vs. 
period length.  
(C) Free-running profile of the double mutant toc1-21 ELF4-ox CCR2:LUC compared to the parental 
genotypes and wild type.  
Gray bars indicate subjective night. Time is Zeitgeber time. Error bars represent S.E.M. Seedlings were 
entrained in 16L:8D or 12L:12D cycles. 
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ELF4 in relation to ELF3 
The elf4 loss-of-function phenotype is very similar to elf3. For example, both mutants display 

arrhythmic clock outputs and have low CCA1/LHY and high TOC1 expression (Alabadi et al., 

2001; Doyle et al., 2002; Hicks et al., 1996; Kikis et al., 2005, this study). However, elf3 

physiology is more severe than elf4, and elf3 circadian dysfunction is believed to be light-specific 

whereas the elf4 clock-defects are pronounced under all light conditions assayed. Nevertheless, 

there is basis for the hypothesis that ELF3 and ELF4 function in the same signaling pathway, 

controlling light input to the circadian clock. Previously, this idea has been tested by analysis of 

clock gene expression in elf3 and elf4 dark-adapted seedlings after release into the light (Kikis et 

al., 2005). It was concluded in that study that ELF3 acts upstream of ELF4 in promoting light-

activated expression of the morning clock genes CCA1 and LHY. In other words, ELF3 gates the 

expression of ELF4 and therefore ELF4 can be said to function downstream of ELF3. In addition, 

it was suggested that ELF4 is the activating arm in a negative feedback loop with CCA1/LHY, 

and that this ELF4 loop is interlocked with the CCA1/LHY-TOC1 feedback loop.  

 To test the question of ELF3 and ELF4 genetic interaction in more detail, the double null 

mutant elf3-4 elf4-1 was generated. The physiology of elf3 elf4 was found to be most similar to 

that of the elf3 single mutant. The hypocotyl of the double mutant is as elongated as elf3 (not 

shown) and in the leaf movement assay the double mutant has complete arrhythmic behavior 

(Fig. 5.9A). Consistent with this observation, elf3 elf4 CCA1:LUC expression is strongly 

attenuated under light-dark cycles, where the amplitude is lower than elf4 CCA1:LUC, and at the 

same level as in the elf3 single mutant (Fig. 5.9B). These results are consistent with previous 

findings that the gate is constitutively open in the absence of ELF3 and that the elf3 mutant has 

low CCA1 expression. Thus, in the double mutant, the elf3 mutation masks the effect of elf4, and 

ELF4 appears to be hypostatic to ELF3. 

 To further analyze the relationship between ELF3 and ELF4, in particular because 

“degrees of arrhythmicity” can be difficult to assess, reciprocal mutants between the nulls and the 

overexpression lines (ELF3-ox and ELF4-ox) were generated. In these lines several luciferase 

markers were integrated (CAB2:LUC, CCA1:LUC, LHY:LUC, and CCR2:LUC) to assay the 

clock phenotypes under different light conditions. 

 If the relationship between ELF3 and ELF4 is linear and ELF3 is epistatic to ELF4, then 

ELF4 overexpression would have no effect in an elf3 null background. Indeed, elf3 ELF4-ox 

double mutant seedlings have an elf3-like length of the hypocotyl (not shown) and display 

complete arrhythmicity both in constant light and dark for all circadian markers tested (Fig. 

5.10). In addition, elf3 ELF4-ox has attenuated CCA1:LUC and LHY:LUC expression, as found 
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in the elf3 single mutant (Fig. 5.10B,C). Thus, the free-running phenotype of the elf3 ELF4-ox 

double mutant supports the idea that ELF3 is epistatic to ELF4. 

 Conversely, overexpression of ELF3 in the elf4 null background would lead to an elf4 

phenotype, if ELF3 acts upstream of, and solely through, ELF4. The phenotype of ELF3-ox has 

earlier been reported and it was concluded that overexpression of ELF3 led to light-dependent 

lengthening of the free-running period (Covington et al., 2001). In darkness, the rhythm of ELF3-

ox was only late phase compared to wild type (Covington et al., 2001). Here, these previous 

findings were confirmed for the markers CAB2:LUC, LHY:LUC and CCR2:LUC under constant 

light, and CCR2:LUC in constant darkness (Fig. 5.11). In support of the Kikis model that light 

input to the CCA1/LHY oscillator occurs separately, both through ELF3 and ELF4, the phenotype 

of the ELF3-ox elf4-1 double mutant was not elf4-like, and further the ELF3-ox elf4-1 double 

mutant had a divergent free-running behavior in the light compared to the single ELF3-ox line. 

ELF3-ox elf4-1 CAB2:LUC had long period like ELF3-ox, but ELF3-ox elf4-1 LHY:LUC and 

CCR2:LUC were early phase compared to wild type (Fig. 5.11A-C). These observations are in 

conflict the above-mentioned idea that the ELF3 locus masks ELF4, and might be due to the fact 

that both ELF3 and ELF4 are tightly associated with the CCA1/LHY-TOC1 oscillator, as 

suggested in the Kikis study. This suggestion is supported by the finding that the double mutant 

ELF3-ox elf4-1 has intermediate LHY:LUC amplitude compared to the parental lines and wild 

type (Fig. 5.11B). Thus, ELF3 and ELF4 to some degree possess shared functions in the light-

induced activation of the CCA1/LHY-TOC1 loop, but ELF3 is most upstream because it gates 

light signals to the clock.
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Figure 5.9 elf3-4 elf4-1 double mutant 
The elf3-4 elf4-1 double mutant is as arrhythmic as the elf3-4 single mutant. (A) Representative traces (5 
leaves) of elf3-4 elf4-1 leaf movements in LL compared to Ws wild type (2 representative traces). Time is 
Zeitgeber time. (B) CCA1:LUC expression in the elf3-4 elf4-1 double mutant compared to the elf3-4 and 
elf4-1 single mutants under light-dark cycles (12L:12D). Time is assay time. 
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Figure 5.10 elf3-4 ELF4-ox double mutant 
Overexpression of ELF4 is not sufficient to restore rhythmicity in the elf3-4 background.  
(A) CAB2:LUC in LL. (B) elf3-4 CCA1:LUC and elf3-4 ELF4-ox CCA1:LUC in LL.  
(C) elf3-4 LHY:LUC and elf3-4 ELF4-ox LHY:LUC in LL. (D) CCR2:LUC in LL.  
(E) CCR2:LUC in DD. 
Time is Zeitgeber time. Error bars represent S.E.M.  
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Figure 5.11 (p. 121) ELF3-ox elf4-1 double mutant 
The elf4-1 mutation has minor effects on the ELF3-ox phenotype. Period estimates are R.A.E.-weighted 
means ± R.A.E.-weighted S.D. Circadian phase estimates are standard mean ± S.D. P-values from the 
Student’s two-tailed heteroscedastic t test was used to compare the mutant period estimates with Ws, and 
significant values are indicated by *, **, or *** for P < 0.05, P < 0.01, P < 0.001, respectively. 
 
(A) Left panel: Free-running profiles of CAB2:LUC. Right panel: Period length vs. R.A.E.  
Period estimates: elf4-1 (29.7±3.5h), ELF3-ox (28.1±1.5h**), ELF3-ox elf4-1 (27.8±1.9h*), Ws 
(27.0±1.4h).  
Circadian phase estimates: elf4-1 (2.1±5.4h), ELF3-ox (1.7±2.9h**), ELF3-ox elf4-1 (2.7±3.3h), Ws 
(2.2±2.0h). 
(B) Left panel: Free-running profiles of LHY:LUC. Right panel: Circadian phase vs. 1-R.A.E.  
Period estimates: elf4-1 (27.4±1.8h), ELF3-ox (28.9±1.3h***), ELF3-ox elf4-1 (28.2±1.4h), Ws 
(26.4±1.5h).  
Circadian phase estimates: elf4-1 (3.1±2.4h), ELF3-ox (23.6±2.5h***), ELF3-ox elf4-1 (0.1±1.8h***), Ws 
(3.6±2.7h). 
(C) Left panel: Free-running profiles of CCR2:LUC in LL. Right panel: Circadian phase vs. 1-R.A.E.  
Period estimates: elf4-1 (30.2±4.0h), ELF3-ox (29.7±4.6h*), ELF3-ox elf4-1 (28.7±1.0h), Ws (27.6±1.9h).  
Circadian phase estimates: elf4-1 (13.1±6.6h), ELF3-ox (14.3±3.5h), ELF3-ox elf4-1 (9.3±5.5h**), Ws 
(13.5±3.9h). 
(D) Left panel: Free-running profiles of CCR2:LUC in DD. Right panel: Circadian phase vs. R.A.E. Period 
estimates: elf4-1 (28.4±4.4h), ELF3-ox (28.0±1.3h), ELF3-ox elf4-1 (27.5±1.1h), Ws (27.5±1.3h). 
Circadian phase estimates: elf4-1 (12.7±8.0h), ELF3-ox (14.5±5.0h*), ELF3-ox elf4-1 (14.4±3.1h*), Ws 
(12.0±3.2h). 
 
Time is Zeitgeber time. Error bars represent S.E.M.  
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Discussion 
The data presented in this chapter illustrate that elf4-1 plants have a range of deficiencies in their 

circadian responses to light and photoperiod and do not display sustained rhythmicity in the 

absence of the light-Zeitgeber signals. ELF4 misexpression studies further confirm an important 

clock function for this gene. Analysis of gene expression of key components of the plant clock 

(CCA1, LHY, and TOC1), and targeted assays to define the abrogated rhythm in elf4-1, revealed 

that the central circadian feedback loop in elf4 was locked into the evening phase. However, 

constitutive overexpression of ELF4 does not produce arrhythmia but acts to delay the clock, 

causing a long-period phenotype seen across a range of assays. ELF4-ox exhibited robust 

rhythms of clock-gene expression and was able to respond to photoperiods, for example 

flowering earlier in long days than in short days. These results showed that ELF4 is essential for 

free-running circadian rhythms. Furthermore, it was shown that ELF4 mainly acts downstream of 

the gatekeeper ELF3, and both of these genes are tightly associated with the CCA1/LHY-TOC1 

feedback loop. 

 The elf4-1 mutant cannot entrain normally to a light-dark cycle, instead, expression of 

the various clock outputs is strongly affected by the light-dark Zeitgeber (Figs. 5.4 and 5.5).   

elf4-1 was found to more rapidly re-entrain following a change in the Zeitgeber phase (Fig. 5.5) 

and this indicates that the elf4 clock is reset more rapidly compared to wild type. This is probably 

due to ELF4’s role of gating light input to the clock. The gate in elf4-1 never fully closes 

(Fig. 5.1B), therefore, elf4 seedlings are more sensitive to photic cues due to increased activity of 

the light signaling pathway. Increased light sensitivity is also seen in the pattern of CAB2:LUC 

and CCA1:LUC expression in elf4 mutants under light-dark cycles (Fig. 5.4). ELF4-ox plants 

also showed accelerated clock resetting; this may be due to their longer period, and thus, ELF4-

ox was allowed easier resetting via a single-phase delay. In the absence of a Zeitgeber, elf4-1 

does not show robust free-running rhythms in any of the various “hands” of the clock (Figs. 5.7 

and 5.8). Based on these observations that elf4 displays driven rhythms under both short and long 

photoperiods and has altered re-entrainment properties, ELF4 is concluded to be a critical factor 

for entrainment of the circadian clock. 

 In elf4-1 the putative clock components CCA1, LHY, and TOC1 are virtually arrhythmic 

after the first 24 h in constant light, implying that this feedback loop cannot continue to cycle in 

the absence of ELF4. CCA1 and LHY levels are both low in the elf4-1 mutant whilst TOC1 is 

high – strong circumstantial evidence that ELF4 acts to promote the former whilst repressing the 

latter (Figs. 5.7 and 5.8; Doyle et al., 2002). This evidence leads to the conclusion that ELF4 is 

essential for correct clock function and that in the absence of ELF4, the clock will stop after a 
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single cycle. Conversely, ELF4 expression is dependent on the oscillator loop, because in 

absence of CCA1 expression, no effect of ELF4-ox is seen after the first 48-h under free-run (Fig. 

5.7B). This observation is in agreement with residual clock activity present in elf4 and that ELF4 

in itself is insufficient for sustained clock function under free-running conditions. It remains to be 

tested whether ELF4 is similarly dependent on LHY. 

 ELF4 transcription is rhythmic with a peak during the early night, coinciding with the 

point at which the clock arrests in elf4-1, implying that ELF4 acts at this point of the 24-h cycle 

(Figs. 5.2 and 5.6). In a recent study, it was reported that TOC1 expression is unchanged in 

another elf4 mutant allele (elf4-101, a T-DNA insertion in the Col-0 background) (Kikis et al., 

2005). A difference between elf4 alleles or genetic backgrounds might account for the 

discrepancy between the Kikis report and the present study. However a more plausible 

explanation is that experimental protocols differed widely. Here it was shown that the elf4-1 

mutant has residual rhythmicity for one day following entrainment and in the earlier study, dark-

grown seedlings were assayed for TOC1 levels immediately after 24 h under constant red light 

(Kikis et al., 2005).  

 The near loss of circadian function in elf4 differs from all previously described recessive 

circadian mutants of Arabidopsis. In particular, elimination of any one of the three putative 

central clock components CCA1, LHY, and TOC1 does not stop the clock, but merely confers 

short period upon the output rhythms (Alabadi et al., 2002; Somers et al., 1998b). For example, 

the toc1 mutant can be entrained to light-dark cycles, and other aspects of its circadian deficit (for 

instance loss of photoperiodic control of flowering) can be corrected by rephrasing with the 

environmental cycle (Strayer et al., 2000). elf3 is a mutant with conditionally arrhythmic output, 

being arrhythmic under light but not in darkness (Covington et al., 2001; Hicks et al., 1996; 

2001); similarly lux is arrhythmic in light but rhythmic in darkness (Hazen et al., 2005). In 

absence of one of the core oscillator genes (CCA1, LHY, TOC1), the ELF4 clock only remains 

rhythmic for one cycle. This is seen both in the cca1 ELF4-ox, toc1 ELF4-ox, and cca1 lhy 

double mutants (Figs. 5.7B and 5.8C; Kikis et al., 2005) and in each case the output rhythm has 

early phase. Thus, the relationship between ELF4 and other clock genes appears asymmetric: 

ELF4 is required for rhythmicity of other clock-associated genes, but CCA1, LHY, and TOC1 are 

not required for the residual ELF4 activity present in the elf4-1 mutant. 

 Here it was found that although the CCA1/LHY-TOC1 feedback loop is stalled in the 

evening phase in elf4-1, the clock has full oscillatory function in ELF4-ox, which shows robust 

rhythmicity of gene expression (Table 5.1; Figs. 5.7 and 5.8), and this line is able to distinguish 

between long and short days for the purpose of controlling flowering time. However, the long-

period phenotype and later flowering under long days of ELF4-ox plants highlights the notion 
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that the level of ELF4 expression calibrates circadian period. Previously it was observed that 

ELF4 levels are extremely low and lose rhythmicity in wild-type plants grown in extended 

darkness (Doyle et al., 2002), yet the CCA1/LHY-TOC1 feedback loop continues in wild-type 

plants under these conditions. These two observations lead to the suggestion that, although 

transcription of ELF4 is normally rhythmic (under environmental cycles), and the presence of 

ELF4 is sufficient to drive this loop, rhythmic ELF4 transcription is not necessary for the clock to 

sustain oscillatory function. 

 A previous report on an elf4 mutant allele that demonstrated arrhythmicity of 

CCA1/LHY-TOC1 feedback loop in dark-grown seedlings, indicated that ELF4 was required for 

light activation of this loop (Kikis et al., 2005). In this chapter, it was shown that ELF4 is 

required to sustain this loop under constant light (Figs. 5.1 and 5.7). Taken together, these 

observations indicate that ELF4 is necessary to start the clock, sustain it under constant 

conditions, and to enable it to entrain to a Zeitgeber. These conclusions considerably extend the 

earlier model that placed ELF4 in a light-input loop with CCA1 and LHY (Kikis et al., 2005). 

 Finally, this study provides a more detailed investigation of ELF4’s relationship to the 

ELF3 gene, compared to the earlier report that only contained data from non-entrained seedlings 

(Kikis et al., 2005). The behavior of the double mutants, elf3 elf4, ELF3-ox elf4, and elf3 ELF4-

ox, under constant conditions revealed that the ELF3 locus is most important for sustained clock 

function. The elf3 elf4 mutant looks like the elf3 single mutant and overexpression of ELF4 in the 

elf3 background has no effect (Figs. 5.9 and 5.10). But, there is no support for a linear 

relationship between ELF3 and ELF4, because the phenotype of the ELF3-ox elf4 double mutant 

looks neither like the ELF3-ox nor like the elf4 single mutants (Fig. 5.11). Contrarily, the model 

concluded from the Kikis data is here confirmed by the ELF3-ox elf4 phenotype. That is, both 

ELF3 and ELF4 act on the CCA1/LHY-TOC1 loop, where ELF3 has the major role in light-

induced expression of CCA1 and LHY and here ELF4 has a supplementary function. Therefore, 

ELF3-ox elf4 has a shifted rhythm and low LHY amplitude (Fig. 5.11B). It remains to be tested if 

the CCA1 profile is affected like LHY in the ELF3-ox elf4 double mutant. 

 In conclusion, it is here suggested that ELF4 functions to convert an hourglass into a 

clock. Without ELF4, the CCA1/LHY-TOC1 loop can be turned over by a light-dark cycle but 

stops after the discontinuation of the Zeitgeber rhythm. The closest functional analogue to ELF4 

may be the FREQUENCY (FRQ) locus of Neurospora. In the absence of FRQ, Neurospora 

rhythms are of low amplitude, variable length, and are not temperature compensated (Merrow et 

al., 1999; 2006). Previous reports, this included, have placed ELF4 as part of a light-input 

pathway to the clock. The current data reported allows a revision of this interpretation and state 

that, as ELF4 is essential for at least two critical clock properties, sustainability and entrainment, 
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it should be considered a core-clock component. Assignment of function to FRQ remains a 

controversial issue (de Paula et al., 2006; Lakin-Thomas, 2006; Merrow et al., 1999; Pregueiro et 

al., 2005; Ruoff et al., 2005; Schafmeier et al., 2006); whether it becomes so with ELF4 remains 

to be seen.  
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Introduction  

ELF3 was the first plant clock gene described to possess the Zeitnehmer (“time-taker”) function. 

Here Zeitnehmer is defined as a circadian-controlled input pathway to the clock, a feature that is 

also a clock gating mechanism (McWatters et al., 2000). ELF3 is associated with light input to 

the clock and the suggested light-specificity of ELF3 function is supported by light- and 

circadian-regulated ELF3 expression and rapid dampening of ELF3 levels in darkness (Liu et al., 

2001). The gating defect in elf3 loss-of-function mutants was found in phase-response assays, 

where the acute activation of CAB expression by light was monitored over the 24-h cycle. These 

assays revealed that the elf3 gate fails to close in late day to early night (Covington et al., 2001; 

McWatters et al., 2000). Thus, ELF3 represses light input to the clock during the night phase of 

the circadian cycle. 

 The finding that the elf3 clock responds normally to a temperature Zeitgeber 

(entrainment cue) further supported the specific role of ELF3 in light signaling to the clock. In 

constant light elf3 is arrhythmic, and additionally the elf3 clock has been concluded to be 

rhythmic in the dark (Covington et al., 2001; Hicks et al., 1996; McWatters et al., 2000). 

Though, in the light residual clock activity is briefly present in the elf3 null (elf3-1 allele), for up 

to 12 h under constant conditions, whereas the partial mutant elf3-7 has extended oscillator 

function especially after temperature entrainment (McWatters et al., 2000; Reed et al., 2000). It 

is likely that the functional ELF3 protein (of reduced size due to a splice site mutation) produced 

in elf3-7 represents a minimum amount necessary for partial clock function; however, it is 

unknown how ELF3 expression is affected in the elf3-7 mutant (Hicks et al., 2001; McWatters et 

al., 2000; Reed et al., 2000). 

 ELF3 encodes a protein of 695 residues with no similarity to proteins of known function. 

The Arabidopsis genome contains only one ELF3-homologue, named ESSENCE OF ELF3 

CONSENSUS (EEC), which has been reported to not have a role in the circadian clock (Hall et 

al., 2003). Putative orthologues of ELF3 have been isolated from other organisms, which all 

belong to the plant kingdom (Liu et al., 2001). The phylogenetic analyses of these protein 

sequences have defined at least four conserved domains of ELF3 (Liu et al., 2001), but the 

information from the ELF3 phylogeny remains to be related to ELF3 function. Preliminary 

conclusions from analysis of rice ELF3-sequence relatives have stated that the expression of the 

rice ELF3-like genes is not clock-regulated (Murakami et al., 2007). This result was interpreted 

as that ELF3 function is not conserved in monocots. Collectively, much has to be learnt about 

ELF3 activity before a meaningful understanding of function can exist. 
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 Based on yeast two-hybrid binding assays, two domains of the ELF3 protein were 

distinguished. The N-terminal half of ELF3 (residues 1 to 440) was able to bind the PHYB C-

terminal region, whereas the ELF3 C-terminus (residues 485 to 695) failed to generate PHYB-

interaction (Liu et al., 2001). Interestingly, the ELF3 interaction to PHYB was phy isoform-

specific, as no binding of ELF3 to PHYA was detected. This was suggested as that ELF3 

function was confined to phyB-signaling (Liu et al., 2001). However, ELF3 may have a broad 

role in light signaling because the elf3 phyB double mutant has an additive phenotype in white 

light compared to the single loss-of-function mutants (Liu et al., 2001). Still, the ELF3-PHYB 

interaction remains the only investigated example of ELF3 mode-of-action. 

 ELF3 is important in the control of the floral transition, because loss-of-ELF3 leads to 

early and photoperiod-insensitive flowering time. ELF3 was placed upstream in the photoperiod 

pathway, and this genetic function includes regulation of the flowering activator CO (Suarez-

Lopez et al., 2001; Zagotta et al., 1996). It has been suggested that ELF3 has a broad role in 

flowering-time regulation based on the observations that the early flowering of elf3 can be 

independent of the CO locus (Kim et al., 2005), and the phyA and phyB mutations each 

suppresses the elf3 flowering time phenotype (the double mutant flowers earlier than elf3 and 

phyA/phyB single mutants) (Liu et al., 2001). Thus, ELF3 might act at the post-transcriptional 

level and in more than one flowering time pathway to control the floral transition (Kim et al., 

2005), and probably, ELF3 has separate functions in the circadian clock and in flowering time. 

 In order to further characterize the ELF3 encoded sequence, an extended phylogenetic 

analysis was applied in this chapter to describe the domain structure of ELF3. Next, two genetic 

approaches were taken to start to further define functional domains. Here, a new elf3 allele was 

isolated from a forward genetic screen (elf3-G12). The phenotype of elf3-G12 is subtle and 

distinct from previously characterized alleles of elf3, and the site of the mutation defines an 

active ELF3 domain. Furthermore, it is shown that the G12 site is important for the ELF3-PHYB 

interaction, and that the G12 mutation interferes with PHYB action both at the genetic and 

biochemical level. Finally, comparative analyses of clock gene expression in elf3-G12 and elf3 

null alleles under free-running conditions clearly define elf3-G12 as a reduced-function allele and 

furthermore suggest that ELF3 function is as important during the dark as in the light. 
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Results 

Phylogeny 
ELF3-like sequences have only been reported from plant species. In this chapter, the ELF3 

phylogeny was expanded in the plant kingdom with the inclusion of new ELF3 sequences 

identified largely from crop EST collections (GENBANK; Table 6.1; Fig. 6.1; Appendix IV). Some 

clones were re-sequenced and several partial ORFs were predicted from EST sequences in the 

genome databases (TIGR). Basically all new sequences contained only partial ELF3 ORFs (Table 

6.1; Fig. 6.1; Appendix IV), but they facilitated a detailed comparison of the ELF3 C-terminal 

regions from several plant species (from most lineages). The multiple alignment of the ELF3-like 

C-terminal regions supports previous results from phylogenetic analyses. Three large conserved 

regions are evident, named blocks II, III, and IV in the study by Liu et al. (2001) (Fig. 6.1). An 

additional stretch of conserved residues is present after block III, here named IIIB, this domain 

was also highlighted in the report by Hicks et al. (2001). Most of the monocotyledonous 

sequences, except ELF3 from Lemna, cluster together and share a higher degree of similarity in 

block III than the dicotyledonous sequences. This might indicate that ELF3 function has diverged 

within this lineage and this is in agreement with the earlier report that suggested absence of 

rhythmic ELF3 in rice (Murakami et al., 2007). It is unclear which subdomains constitute the 

primary differences between all the ELF3-like C-terminal regions, except for the putative nuclear 

localization signal, which is only found in Arabidopsis ELF3 (residues 591 to 597; Fig. 6.1). The 

four conserved regions in ELF3 suggest that these domains are important for ELF3 function. 
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Table 6.1 ELF3-like clones 
Completed sequencing of EST clones containing ELF3-like sequences. The clones were fully sequenced 
with the primers listed in Chapter 2 and contigs were assembled to determine an ORF consensus. All ORFs 
were partial except for Os31 (*). 
 
ID Species Partial contig (bp) Partial  

ORF (bp) 
Bv31 Beta vulgaris 1,449 999 
Ec31 Eschscholzia californica 1,441 846 
Hc31 Hedyotis centranthoides 1,415 969 
Hv31 Hordeum vulgare 1,479 849 
Os31 Oryza sativa 2,441* 2,193* 
Sb31 Sorghum bicolor 1,908 1,035 
So32 Saccharum officinarum 1,120 762 
Ze31 Zinnia elegans 1,057 738 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1 (p. 131) ELF3 phylogeny 
Multiple alignment of ELF3-like C-terminal regions generated with a progressive alignment algorithm. 
The residues are shaded according to degree of similarity, where red is 100% and blue is 0% similarity. 
Published ELF3 sequences: rELF3 (AP000399), McELF3 (AI637184), LgELF3_H1 (BAD97872), 
LpELF3_H1 (BAD97868), EEC (AB023045). ESTs: AcELF3 (BP911267), AfELF3 (TA16708), AtELF3 
(DR068049), BdELF3 (TA1306), EeELF3 (DV132852), PaELF3 (TA2053), PpELF3 (BY973257), 
TaELF3 (TA94186). Species codes as follows. Ac: Adiantum capillus-veneris [maidenhair fern]. Af: 
Aquilegia formosa [columbine]. At: Amborella trichopoda. Bd: Brachypodium distachyon. Bv: Beta 
vulgaris [beet]. Ec: Eschscholzia californica [poppy]. Ee: Euphorbia esula [leafy spurge]. Hv: Hordeum 
vulgare [barley]. Lg: Lemna gibba [swollen duckweed]. Lp: L. paucicostata. Mc: Mesembryanthemum 
crystallinum [iceplant]. Os: Oryza sativa [rice]. Pa: Persea americana [avocado]. Pp: Physcomitrella 
patens. Sb: Sorghum bicolor. So: Saccharum officinarum [sugarcane]. Ta: Triticum aestivum [wheat]. Zn: 
Zinnia elegans. 
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TILLING of ELF3  
To learn more about the ELF3 encoded sequence, new elf3 mutants were sought. A reverse 

genetic approach using TILLING was undertaken where many missense mutations in ELF3 were 

identified (Tables A.1, A.2, Appendix V). The backcrossed TILLING lines were analyzed for 

circadian phenotypes using the leaf movement assay, and in addition, CCA1:LUC and 

CCR2:LUC reporter genes were integrated in the lines to facilitate assays under different light 

and photoperiodic conditions. In preliminary tests, a subset of the elf3 TILLING lines were found 

to display subtle circadian phenotypes (not shown), for example short period and arrhythmic 

tendency of CCA1:LUC expression in constant light (Fig. 6.2). However, CCA1:LUC expression 

in trans-heterozygous plants from crosses of the TILLING line and elf3-1 behaved mainly like 

wild type under free-running conditions in the light (e.g. TILLING lines elf3-209, elf3-213 and 

elf3-221; Fig. 6.2). These F1 phenotypes strongly suggested that the mutant phenotypes of the 

elf3 TILLING lines are not caused by the elf3 missense mutations (but rather from background 

mutations still present after the backcrosses) and these lines were not analyzed further. 
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Figure 6.2 elf3 trans-heterozygotes 
Examples of CCA1:LUC free-running profiles of elf3 trans-heterozygous (“F1”) plants compared to 
parental genotypes. The elf3 trans-heterozygotes are the first-generation progeny from crosses between 
homozygous elf3 TILLING lines (without LUC, female parent) and elf3-1 CCA1:LUC (male parent). (A) 
elf3-209. (B) elf3-213. (C) elf3-221. (D) Negative (elf3-1 x elf3-1) and positive (er x elf3-1) controls. The 
er line is equivalent to Col-0 in these assays because er has no circadian phenotype (not shown). The er 
mutant was included in the elf3 experiments because it was the parent line for the ELF3 TILLING screen 
(see Chapter 2). 
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elf3-G12 – a new elf3 mutation 
From a forward genetic screen of plants with altered CAB2:LUC rhythms in the dark (Kevei et 

al., 2006), one mutant (called G12) was isolated that had early phase compared to wild type (Fig. 

6.3A). Map-based cloning of the mutation causing this phenotype revealed a point mutation in 

ELF3 (missense mutation G326D), where the affected glycine residue is fully conserved among 

the ELF3 sequences (Fig. 6.1). The G12 phenotype is subtle and clock-specific because the 

flowering time of G12 was the same as for the C24 wild type, and not precocious as the strong 

alleles elf3-1 and elf3-7 under non-inductive photoperiods (Fig. 6.3B). In addition, overt growth 

of the G12 line resembled wild type and the petioles were not elongated like the previously 

characterized alleles elf3-1 and elf3-7 (Fig. 6.3C). Thus, it seems that the early phase of the 

circadian rhythm in G12 only affects fine-tuning of the oscillator, and other regulators of the 

circadian system are sufficient in compensating for full ELF3 function in relation to leaf 

morphology and flowering time.  

 Altered expression levels of the oscillator genes CCA1, LHY and TOC1 accompany elf3 

loss-of-function. Accordingly, the circadian rhythm of the respective promoter:luciferase genes 

was assayed in G12 under free-run and compared to elf3-1 and/or elf3-7 to further determine the 

G12 clock defect. In constant light, elf3-G12 CCA1:LUC and LHY:LUC had short period and 

reduced amplitude compared to wild type (Fig. 6.4A,B). This phenotype is distinct from elf3-1, 

which effectively has no CCA1:LUC and LHY:LUC expression (Fig. 6.4A,B). The free-running 

period of TOC1:LUC was also significantly affected in elf3-G12 compared both to wild type and 

the strong elf3 alleles (Fig. 6.4C). In relation to wild type, elf3-G12 TOC1:LUC is in antiphase 

(shifted almost 12 h) and has reduced period length and amplitude. Similar to the CCA1 and LHY 

expression phenotypes, the expression profile of elf3-G12 TOC1:LUC is clearly different from 

the arrhythmic behavior of elf3-1 and elf3-7 TOC1:LUC (Fig. 6.4C). Furthermore, in continuous 

darkness, G12 displayed a weak albeit distinct phenotype from both wild type and elf3-1. The 

TOC1:LUC expression of G12 was early phase and dampened rapidly and G12 CCR2:LUC had a 

slight increase in period length (Fig. 6.5). Altogether, the luciferase phenotypes lead to the 

conclusion that there is oscillator function present in the G12-perturbed clock. Additionally, the 

strong phase change of TOC1 expression in G12 (Figs. 6.4C and 6.5A) suggests that the phase 

angle between ELF3 and TOC1 is particularly important for correct clock properties.  This is 

consistent with the earlier observations that the elf3 clock resets at dusk and is hypersensitive to 

light at this time point of the circadian cycle (Covington et al., 2001; Hicks et al., 1996; 

McWatters et al., 2000). 
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ELF3-PHYB interaction 
The site of the G12 mutation within the conserved block II and the binding ability of the ELF3 

fragment consisting of the first 440 residues (i.e. including block II) to PHYB, lead to the 

hypothesis that the G12 mutation affects ELF3-PHYB interaction. To test this idea, both 

biochemical and genetic ELF3-PHYB experiments including the G12 change were designed, e.g. 

including the generation of double mutants of elf3-1 and G12 to most of the circadian mutants 

existing in the C24 background. Here the preliminary results from the experiments with PHYB 

are presented. 

 The ELF3-PHYB interaction was confirmed using an advanced yeast two-hybrid 

protocol with a light-switchable reporter gene system (Shimizu-Sato et al., 2002) (Fig. 6.6A). 

This technique includes the reconstitution of photoactive phytochrome by supplementation of 

chromophore (phycocyanobilin) to the transformed yeast cells and test of phy activity under 

different wavelengths of light. ELF3 was fused to the GAL4 activation domain (AD) and tested 

against different PHY clones fused to the GAL4 binding domain (BD). Growth of the yeast was 

seen under all wavelengths tested both with and without chromophore-supplement suggesting 

ELF3 interacts with PHYB in a non-conformation-specific manner. Interestingly, introduction of 

the G12 mutation in the ELF3-AD construct abolished yeast growth (Fig. 6.6A), whereas two 

other point mutations (isolated from the TILLING screen, elf3-221 and elf3-227) had no negative 

effect on the ELF3-PHYB interaction (not shown). Thus, these results support the hypothesis that 

the G12 mutation interferes with PHYB interaction.  

 The influence of PHYB activity on the clock has been included in previous studies (Hall 

et al., 2002; Somers et al., 1998a; Toth et al., 2001). In order to assess the role of the G12 

mutation further in relation to the rhythmicity of PHYB expression and the free-running property 

of the clock, double mutants of G12 and PHYB-ox were generated and compared to elf3-1 

controls. Under continuous white light the G12 mutation suppressed the shifted rhythm of PHYB-

ox CAB2:LUC and the elf3-G12 PHYB-ox double mutant had significantly shorter period 

compared to the single elf3-G12 line (Fig. 6.6B). This phenotype of the double mutant is 

different from the elf3-1 PHYB-ox mutant which is arrhythmic and has a dampened profile with a 

high level of CAB2:LUC expression, consistent with the previous report by Hall et al. (2002). 

These results are in agreement with a genetic interaction between ELF3 and PHYB and a negative 

effect of the G12 mutation on this interaction, because constitutive PHYB failed in suppression of 

the G12 phenotype. But whether ELF3 and PHYB activities are connected because they overlap 

in control of the same outputs of the circadian system or because ELF3 gates PHYB activity 

cannot be concluded from this experiment. It also remains to be tested whether the circadian 

phenotype of G12 is wavelength specific. 
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Figure 6.3 Isolation of G12 
(A) Free-running profile of CAB2:LUC (2CA/C) expression in elf3-G12 and wild type (C24) in DD. This 
was the mutant phenotype that led to isolation of the elf3-G12 mutation. Error bars represent S.E.M. Time 
is Zeitgeber time. (B) Flowering time in short days (8L:16D) of elf3-G12 compared to elf3-1, elf3-7 and 
wild type (C24). Average leaf number as follows (mean ± S.D.). elf3-1: 24.4±4.5, elf3-7: 25.0±3.1, elf3-
G12: 29.8±1.4, C24: 29.9±1.5. (C) Morphology of elf3-1, elf3-7, elf3-G12 and C24 in short days (8L:16D). 
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Figure 6.4 Expression of CCA1:LUC, LHY:LUC and TOC1:LUC in elf3-G12 
Expression of the luciferase reporter genes in constant light of elf3-G12 compared to elf3-1 and/or elf3-7 and 
wild type (C24). Period estimates are R.A.E.-weighted means ± R.A.E.-weighted S.D. Circadian phase estimates 
are standard mean ± S.D. P-values from the Student’s two-tailed heteroscedastic t test was used to compare the 
mutant period estimates with Ws, and significant values are indicated by *, **, or *** for P < 0.05, P < 0.01, P < 
0.001, respectively. 
(A) CCA1:LUC. Left panel: Free-running profiles. Right panel: R.A.E. vs. period length. Period estimates: elf3-
G12 (24.4±1.9h***), C24 (29.5±3.1h). Circadian phase estimates: elf3-G12 (1.5±4.9h*), C24 (24.0±3.6h).  
(B) LHY:LUC. Left panel: Free-running profiles. Right panel: R.A.E. vs. period length. Period estimates: elf3-
G12 (26.4±0.8h*), C24 (27.8±1.3h). Circadian phase estimates: elf3-G12 (1.6±2.6h), C24 (1.5±2.2h). 
(C) TOC1:LUC. Left panel: Free-running profiles. Right panel: Circadian phase vs. period length. Period 
estimates: elf3-G12 (26.4±0.9h***) C24 (28.3±1.3h). Circadian phase estimates: elf3-G12 (2.1±2.0h***), C24 
(15.1±1.9h).  
Error bars represent S.E.M. Seedlings were entrained in 12L:12D cycles. Time is Zeitgeber time. 
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Figure 6.5 elf3-G12 in darkness 
(A) TOC1:LUC. Left panel: Free-running profiles of elf3-1, elf3-7, elf3-G12 and C24. Right panel: 
Circadian phase vs. period length. Period estimates: elf3-G12 (28.3±1.9h), C24 (28.2±1.4h). Circadian 
phase estimates: elf3-G12 (22.7±1.8h**), C24 (18.6±5.6h). 
(B) CCR2:LUC. Left panel: Free-running profiles of elf3-7, elf3-G12 and C24. Right panel: Period 
estimates vs. R.A.E. Period estimates: elf3-G12 (28.8±1.6h*), C24 (27.8±0.9h). Circadian phase estimates: 
elf3-G12 (11.9±3.3h), C24 (12.7±1.9h). 
 
 
Figure 6.6 (p. 139) elf3-G12 and PHYB 
(A) Yeast two-hybrid growth assay with ELF3 and PHYB clones. AD: pGADT7 construct (GAL4 
activation domain). BD: pD153 construct (GAL4 binding domain). PCB: Phycocyanobilin chromophore.   
-PCB: Selective medium without PCB (negative control). L-W-: Non-selective medium without PCB 
(growth control). The FHY1-PHYA combination was included as a positive control for the assay 
(Hiltbrunner et al., 2005). This experiment was performed by Dr. A. Viczian. 
  
(B) CAB2:LUC (2CA/C) expression of elf3-1, elf3-G12, PHYB-ox and double mutants in LL. Left panel: 
Free-running profiles. Right panel: Period length vs. R.A.E.  
Period estimates: elf3-1 (35.1±5.2h), elf3-G12 (28.7±3.7h**), PHYB-ox (31.1±3.8h), elf3-1 PHYB-ox 
(36.2±3.7h**), elf3-G12 PHYB-ox (26.9±2.0h***), C24 (29.9±3.2h).  
Circadian phase estimates: elf3-1 (1.6±8.6h), elf3-G12 (1.4±3.7h), PHYB-ox (18.7±3.4h**), elf3-1 PHYB-
ox (1.5±6.7h), elf3-G12 PHYB-ox (22.9±3.4h), C24 (23.2±4.0h). 
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Discussion 
Disruption of the ELF3 gene causes one of the strongest phenotypes of any clock mutation in 

Arabidopsis. In particular, lack of ELF3 Zeitnehmer function affects the expression of the central 

oscillator genes (CCA1, LHY and TOC1) and the clock enters a critical state seen as 

arrhythmicity of all outputs. Due to the high complexity of the circadian system, the elf3 

mutation is not lethal, furthermore ELF3 function is confined to the light Zeitgeber and residual 

clock function has been detected in elf3 during the first half of the circadian cycle. The study 

presented in this chapter aimed at identifying new mutant lines of elf3, which would help in 

characterizing the ELF3 encoded protein and thus provide ideas to the mechanism of ELF3 

function and further explain the phenotype of the elf3 null. 

 Many new missense mutations of ELF3 were obtained in a TILLING screen (Tables A.1-

A.2, Appendix V). None of these new alleles had strong clock phenotypes indicating that ELF3 

structure is robust towards residue changes. All TILLING lines were obtained from EMS-

mutagenized populations and therefore backcrossed to wild type at least three times before 

subjected to analysis, but still background mutations were present in several of the lines (e.g. 

visible phenotypes in plant morphology; not shown). This problem was confirmed in elf3 trans-

heterozygous plants, which behaved like wild type in the circadian assays (Fig. 6.2). Thus, the 

TILLING approach was unsuccessful in identifying new phenotypically perturbed alleles of elf3. 

 Compared to the reverse genetic approach, a forward genetic screen was fruitful in 

isolating a new elf3 allele (Fig. 6.3). The elf3-G12 mutant is an interesting line because the 

phenotype is subtle and distinct from the previous characterized lines elf3-1 (null) and elf3-7 

(strong hypomorph). The site of the G12 mutation identifies a functional domain of the ELF3 

protein supporting the functional significance of the N-terminal region of ELF3, as found in 

previous binding assays with PHYB. The G12 phenotypes, both genetically and in the two-hybrid 

assays, refine the functional domain to the conserved block II of the ELF3 sequence (Figs. 6.1 

and 6.6). 

 The circadian clock controls expression of phytochrome genes, and clock period in 

relation to phy activity depends on light quality and intensity (Somers et al., 1998a; Toth et al., 

2001). For example specifically under continuous red light, both the phyB mutant and PHYB-

overexpressor have a circadian period that correlates quantitatively with fluence rate, and 

especially under low fluence rates the mutant has longer period than wild type whereas the 

overexpressor has relatively short period (Hall et al., 2002; Somers et al., 1998a). These 

observations were interpreted as gating of light input to the clock and that the input and output 

pathways of the circadian system are interconnected and feedback on each other. Furthermore, 
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these results are in agreement with ELF3 interacting genetically with PHYB, because ELF3 

regulates the clock input pathway and a change in ELF3 expression then affects the circadian 

expression of PHYB. Indeed, a previous report showed that PHYB:LUC expression is arrhythmic 

in the elf3-1 background (Hall et al., 2002). These previous results are in agreement with the 

suppression phenotype of the elf3-G12 PHYB-ox double mutant (Fig. 6.6B), and it will be 

interesting to follow future experiments where the gating property of elf3-G12 genetic 

combinations are analyzed. 

 Upon light-activation, phyB changes its localization from the cytoplasm to the nucleus. 

Previously, it was shown that this movement of phyB was unaffected by the elf3-1 mutation (Liu 

et al., 2001). The interaction of ELF3 and PHYB was confirmed in this chapter and furthermore 

found to be independent of wavelength and the presence of chromophore (Fig. 6.6). This result 

suggests that ELF3 binds PHYB in a way that is unrelated to the phyB photoconformational state 

nor cellular localization. The importance of the ELF3-PHYB interaction, however, is indicated 

by the fact that the G12 mutation abolishes PHYB-binding in the yeast assay. Further 

experiments will reveal whether it is the cellular localization of ELF3 that determines the timed 

action of the ELF3-PHYB complex. 

 Constitutive expression of the central oscillator components LHY and PRR9 have no 

effect on the circadian expression of ELF3 (Hicks et al., 2001; Matsushika et al., 2002). These 

findings support ELF3’s position in the input pathway to the clock and propose that ELF3 

expression is buffered against the feedback from clock output rhythms. Rather, ELF3 controls the 

expression of the clock components, which is supported by the phenotype of the elf3-G12 

mutant. The altered activity of ELF3 in elf3-G12 results in a significant shift in the circadian 

expression of CCA1:LUC, LHY:LUC and TOC1:LUC in continuous light (Fig. 6.4). The 

amplitude of LHY:LUC is more reduced than CCA1:LUC suggesting that ELF3 is more 

associated with the induction of LHY expression than that of CCA1. Furthermore, in elf3-G12 the 

circadian phase is more shifted for TOC1:LUC than CCA1:LUC and LHY:LUC indicating that 

the phase-relationship of ELF3 and TOC1 is very important for timing of the clock rhythm. 

Perhaps, ELF3 primarily is a repressor of TOC1 expression. The effects of ELF3 on CCA1 and 

LHY expression may be secondary and arise only from the promoting activity of TOC1 (and 

factor X in the three-loop model) on CCA1/LHY expression. 

 In darkness elf3-G12 also displayed a mutant phenotype (Figs. 6.2 and 6.5). This last 

result indicates that functional ELF3 is indeed necessary in the dark, which also is supported by 

the data from previous gating experiments (Covington et al., 2001; McWatters et al., 2000). In 

this relation, it is controversial whether the elf3 mutant is rhythmic in darkness or not. For 

example, the transcript of ELF3 has been reported to cycle in the dark, but because ELF3 levels 
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dampen in extended darkness it is unclear whether also the ELF3 protein stays rhythmic in DD 

(Hicks et al., 2001; Liu et al., 2001). Thus, it remains to be elucidated why the elf3 mutant was 

found to be rhythmic for various output traits in earlier assays (Covington et al., 2001; Hicks et 

al., 1996), which is contradictory to the findings in the DD experiments with elf3-4 and elf3-7 in 

this study (Fig. 5.10 in Chapter 5 and Fig. 6.5). One possible explanation is that a temperature 

cycle was present in the Hicks and Covington studies, because temperature has been shown to 

entrain the elf3-1 and elf3-7 mutants in the dark (McWatters et al., 2000).  

 ELF3 (in conjunction with PHYB) may have an analogous functional role similar to the 

PAS/LOV-containing protein VIVID (VVD) in Neurospora. VVD functions in light signaling, 

acts as a photoreceptor, and controls clock resetting at dawn (i.e. at the opposite phase as ELF3 

that controls clock resetting at dusk) (Elvin et al., 2005). This means that both VVD and ELF3 

act as desensitizers of light signaling to the clock. The vvd null mutant is, like elf3, arrhythmic 

under constant light. However, VVD has been shown to be important both at dawn and dusk, and 

such a dual role remains to be found for ELF3. 
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ELF4 summary 
In this thesis, the primary aim was to characterize the structure of ELF4. First a phylogenetic 

approach was taken (Chapter 3). From this, it was found that the ELF4 family is present in all 

plant lineages but that ELF4 function has diverged within the ELF4 phylogeny. Two major 

subclades were detected, ELF4 and EFL. A genetic approach was used to study these subclades. 

Mutations in some of the AtEFL genes lead to a subtle mutant phenotype suggesting that these 

genes act redundantly with other components of the circadian system. Finally, structural 

modeling was used to predict the further features of the ELF4 and EFL genes. The predicted 

tertiary structures of ELF4 and EFL polypeptide sequences indicate that an alpha-helical fold is 

conserved in the ELF4 family and that this region (named the ELF4 domain) is the active site of 

the protein. 

 The TILLING screen of ELF4 supported the ELF4 domain structure (Chapter 4). The 

new TILLING alleles of elf4 displayed subtle clock phenotypes, compared to the elf4 null 

mutant, and there was a positive correlation between the site and the nature of the point 

mutations. Expression of CCA1 was found to be tightly associated with ELF4 function, thus 

ELF4’s position in the circadian clock as an activator of CCA1 (and LHY) expression was 

confirmed. 

 Finally, a detailed analysis of ELF4’s placement in the clock resulted in the conclusion 

that ELF4 is critical for entrainment of the circadian clock (Chapter 5). The circadian oscillator 

was found to stop at subjective dusk in elf4-1, and increased sensitivity to light explains the clock 

defect in this mutant. Futhermore, comparison of the elf4 and ELF4-ox phenotypes in relation to 

the expression of genes in the central clock loop (CCA1, LHY, TOC1) reinforces the idea of 

ELF4 as an important component of the circadian clock. The position of ELF4 in relation to the 

light-input gene ELF3 was determined to be mainly downstream of ELF3. 

 

ELF4 perspectives 

Ideas about ELF4 mode-of-action 
The mutant phenotype of lux (Hazen et al., 2005; Onai and Ishiura, 2005) is strikingly similar to 

elf4. Therefore, the prediction is that CCA1 and LHY bind to the EEs in the ELF4 promoter, in 

the same way that CCA1 and LHY have been suggested to regulate LUX transcription (Hazen et 

al., 2005), and such a finding would confirm the ELF4-loop in the model. ELF4 trans-acting 

elements could be tested directly by electric mobility shift assays of tagged CCA1 and LHY 

proteins, or the ELF4 promoter could be used as bait in a yeast one-hybrid screen to isolate 
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candidates for regulators of ELF4 transcription. This approach could be combined with analysis 

of the promoter regions of the EFL genes, which would expand the understanding of the ELF4 

phylogeny and the transcriptional regulation of clock elements. 

 In contrast to the similarity between the lux and elf4 arrhythmic phenotypes, there is a 

significant difference in the corresponding overexpression lines. LUX-ox is arrhythmic (Onai and 

Ishiura, 2005), like overexpression lines of CCA1 and LHY (Schaffer et al., 1998; Wang and 

Tobin, 1998), whereas ELF4-ox is overtly rhythmic and has only a long-period phenotype (Figs. 

5.3, 5.7-5.8). These observations might imply that there is a difference in LUX and ELF4 post-

translational modification, or that LUX is more central to clock function than ELF4. Secondly, 

LUX is a MYB-like transcription factor distantly related to CCA1 and LHY, and this structure is 

different from ELF4. When transcription factors are constitutively expressed, their corresponding 

target sites will be underrepresented in addition to be constantly induced, and it is likely that the 

excess of the transgene product interferes with other transcriptional processes. Here, ELF4 could 

differ in the way that it does not function as a transcription factor; rather ELF4 activity occurs via 

a protein-protein interaction. It is possible that the ELF4 protein is cycling in ELF4-ox (as was 

found earlier for lhy-1 [LHY-ox; Kim et al., 2003]), or that the interacting protein is not 

rhythmically expressed or compartmentalized, which would then confine ELF4 activity in the 

ELF4-ox line to the requirements of the partner protein cycles.  

 It was found in Chapter 4 that the long period of ELF4-ox depends on CCA1 expression 

(Fig. 5.7B). This might just indicate that without a core oscillator gene (CCA1) clock 

sustainability, at least in relation to ELF4 activity, is lost under free-running conditions. This is 

supported by the observation that ELF4 expression is elevated in the cca1 lhy mutant (Kikis et 

al., 2005). The suppression of the ELF4-ox phenotype was even more pronounced when 

combined with the toc1 mutation (Fig. 5.8C). This suggests that TOC1 activates ELF4 expression 

and is consistent with the fact that ELF4 and TOC1 act at the same phase of the circadian cycle. 

Interestingly, these properties of ELF4 fit some of gene X ’s features in the three-loop model of 

the circadian system (Figs. 1.5C and 7.1). Further expression analyses are needed before the 

interrelationship between ELF4 and the CCA1/LHY-TOC1 loop can be fully concluded.  

 A hypothetical function of an ELF4 heterodimer (or multimer) could be in transcriptional 

control of a clock gene, and in this way ELF4 activity could feed back on the circadian clock. For 

example it could transcriptionally promote CCA1 and LHY expression, and in this case it is 

imagined that ELF4 would bind DNA-binding factors. The identity of such an ELF4 interactor 

was attempted by yeast two-hybrid screens, however no obvious candidate clock-regulating 

proteins were isolated (Doyle, 2003; and not shown), except for ELF3, but the specificity of 

ELF4-ELF3 binding was so far not confirmed. Perhaps another approach than two-hybrid (e.g. 



C H A P T E R  7  G E N E R A L  C O N C L U S I O N S  A N D  P E R S P E C T I V E S 

 - 146 - 

using antibody technology) will facilitate a more effective study of the ELF4-ELF3 interaction. 

Further, if an ELF4-ELF3 interaction is genuine, the placement of such a complex in 

transcriptional regulation would remain. 

Divergence of ELF4 
The evolution of ELF4 can be traced back to the origin of lower plant species, such as 

Chlamydomonas and Physcomitrella  (Figs. 3.2, 3.3). Subsequently, ELF4 has diverged into two 

major groups, of which only one has “ELF4” function (Figs. 3.7, 3.8). In this study, the ELF4 

subclade was only found to contain ELF4 sequences from a subset of species, for example basal 

angiosperms as well as many lineages inside and outside the core eudicotyledons are not 

represented (Fig. 3.2), indicating that ELF4 function is not present in all plants. However, a more 

thorough sampling of sequences is needed before this can be concluded. Additionally, it would 

be interesting to study the ELF4 phylogeny at the nucleotide level in order to assess synonymous 

(silent) vs. non-synonymous substitution rates. This approach would reveal whether the ELF4 

subclade is under more strong selection than the EFL subclade and likely confirm the functional 

difference of these two clades. The hypothesis is that such a selection would be most evident in 

the ELF4 domain, because this is the conserved and active region of the sequences. The promoter 

regions of the genes could also be scanned for positive selection, for example it would be 

expected that the EEs were selected for in the ELF4 subclade. Though, no EEs are present in the 

promoter region of EFL1 (not shown) indicating that the EE is not necessary for an ELF4 

function, or unknown cis-acting elements are present in the EFL1 promoter. It is also noteworthy 

that the 35S promoter confers bioactive ELF4 in the ELF4-ox line (Figs. 5.3, 5.7-5.8). Finally, 

these phylogenetic analyses could be supplemented with a screen of the ELF4 genes in natural 

accessions of Arabidopsis, because when ELF4 is an important entrainment factor, it has likely 

been selected for in habitats with different or extreme photoperiods.  

 In Chapter 3, it was found that AtEFLs could act additively or redundantly to each other 

(Fig. 3.6). Whether they have a similar relationship to ELF4 should also be analyzed, and assisted 

by additional expression analyses it could then be proposed where the EFLs are positioned within 

the circadian system. Down-regulation of the entire ELF4 familiy (for example using the 

artificial microRNA approach; Schwab et al., 2006) would reveal if these genes are essential for 

the circadian clock, i.e. whether they suppress or enhance the elf4 clock phenotype. However, the 

hypothesis here is, based on the phylogenetic results, that the ELF4 paralogues (EFL2 to EFL4) 

have ELF4-independent functions. 



C H A P T E R  7  G E N E R A L  C O N C L U S I O N S  A N D  P E R S P E C T I V E S 

 - 147 - 

ELF3 summary  
The new elf3-G12 allele was found to be a promising mutant for further investigation of ELF3 

function (Figs. 6.3-6.6). The phylogenetic analysis of ELF3 suggests that ELF3 is plant-specific 

(like ELF4) and contains several conserved domains. Interestingly, the site of the G12 point 

mutation is within one of these conserved regions (Fig. 6.1), which predicts that this site is 

necessary for ELF3 function. In comparison to previously described elf3 mutants, the phenotype 

of G12 is only visible at the molecular level (elf3-G12 is not early flowering) and it was found 

that G12 displays a significant shift in the circadian rhythm of clock reporter genes. Particularly, 

G12 has a TOC1:LUC expression profile that is in antiphase of the wild type. Generally, the G12 

rhythm is clearly different from the arrhythmic alleles elf3-1 and elf3-7. The G12 allele should 

prove useful in placing ELF3 function within the model-network of the circadian oscillator. 

 The role of ELF3 in phyB-signaling was corroborated with the elf3-G12 mutation. In a 

yeast two-hybrid binding assay, the G12 amino acid change abolished PHYB-binding (Fig. 

6.6A). In addition, G12 suppressed the phase shift of the free-running period in PHYB-ox (Fig. 

6.6B). These findings together support that the G12 amino-acid site is implicated in a protein 

interaction, which is critical for normal phyB function. Additionally, the G12 studies suggest 

ELF3 as a multifunctional protein and the N-terminal half of ELF3 is part of red-light signal 

transduction. The specificity of this action on PHYB is supported by the phenotype of the elf3-1 

PHYB-ox double mutant, which is arrhythmic. 

ELF3 perspectives 
The unique role of ELF3 is its Zeitnehmer function in the circadian clock (McWatters et al., 

2000). This fact, however, implies that additional factors in the circadian system controls light 

input, because ELF3 activity is confined to the dusk phase of the circadian cycle (Covington et 

al., 2001; Hicks et al., 2001; Liu et al., 2001). Indeed, FHY3 and TIC are known to operate in 

gating (Allen et al., 2006; Hall et al., 2002), besides ELF4, which also acts in the evening (Fig. 

5.6). Based on the observations that the circadian network is found to be relatively complex 

(McClung, 2006), and that the three-loop-model incorporates up to three entry points for light-

signaling on the clock (Locke et al., 2006; Zeilinger et al., 2006), one can argue that more gating 

factors remain to be discovered. This in addition to the fact that light can induce the singularity 

state, which is seen in the elf3 loss-of-function phenotype (Covington et al., 2001), and this is 

detrimental to clock performance (Dodd et al., 2005; Green et al., 2002). Therefore, it is 

proposed that as of yet undiscovered gating elements (in addition to ELF3, FHY3, and TIC) are 

needed to explain coordinated light input to the clock at all phases of the 24-h day. One candidate 

class, obviously, are the photoreceptors themselves, which are known to function in a rhythmic 
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fashion and covers basically all wavelengths of light (Toth et al., 2001). The photoreceptors 

might play and assistant role, which is supported by the ELF3-PHYB functional interaction.  

 One unexplored field in relation to gating and light signaling is the effect of far-red light 

on the clock, that is, the action of the phyA photoreceptor on the oscillator. In contrast to ELF4, 

ELF3 induction could not be detected in the microarray experiment designed to isolate far-red-

responsive genes (Tepperman et al., 2001). This means that ELF3 is not the major factor 

controlling this clock light input pathway. Even though far-red light signaling to the clock is 

unexplored, the presence of CCA1 and LHY in the group of early-response genes (Tepperman et 

al., 2001) indicates that the clock perceives this wavelength as an input signal. In line with these 

thoughts, it is peculiar that the gating property of FHY3 only was tested in red and blue light, and 

not far-red, which was the wavelength that originally was applied when the fhy3 mutant was 

isolated (as a hypocotyl mutant). Thus, further studies on ELF3 regarding far-red gating should 

give further insight into this process.  

 In future experiments, the gating property of elf3-G12 should be assessed under different 

wavelengths of light to further characterize the clock defect in this mutant. The specificity of G12 

to a certain light quality could be addressed in phase-response experiments in combination with 

specific down-regulation of (or mutations in) photoreceptor species. Additionally, it should be 

determined if the G12 mutation confers misexpression of ELF3 in such a way that the phase of 

ELF3 is shifted, like the shift seen in the output rhythms in Chapter 6 (Figs. 6.3-6.5). If so, then 

the phase relationship of ELF3 to other clock or light signaling components is important for 

proper ELF3 activity. This question could also be addressed in a transgenic approach, where 

ELF3 could be misexpressed at a different phase using a morning-specific promoter (promoter 

swapping). Such experiments might also provide clues to ELF3 post-translational modification. 

For example in Drosophila expression of the core clock element CLOCK (CLK) in antiphase 

was found not to influence normal clock function (Kim et al., 2002), instead phosphorylation of 

CLK determines its activity (Yu et al., 2006). These experiments should be combined with 

further biochemical characterization of the ELF3-ox line, especially in relation to the 

accumulation pattern of phyB. 

 The rhythm of the elf3 null mutant was described as more severely affected under short 

than long photoperiods (Hicks et al., 1996). No comparison, however, has been made of the free-

running rhythm after the different photoperiodic entrainments (so-called aftereffects). Thus, it 

could be interesting to test aftereffects in elf3 mutants with reduced ELF3 function (elf3-7 and 

elf3-G12), because ELF3 is important for detection of the photoperiod signal (such a test could 

also be applied to elf4). If a correlation between the entraining photoperiod and aftereffect is 

found then this might expand the understanding of seasonal perception in Arabidopsis.  
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 The ELF3 promoter is known to contain EEs and this explains the rhythmic regulation of 

ELF3 expression (Harmer et al., 2000), however, no experiments have been carried out to isolate 

ELF3 trans-acting elements. As for ELF4, this question could be answered by testing the binding 

of candidate factors (CCA1, LHY) or a screen could be performed. Combined with the above 

proposed promoter-swap experiments, these studies would define the requirement for evening 

expression. 

 The future approach taken for further study of elf3-G12 has already been initiated and 

consists of genetic analyses. The ecotype of elf3-G12 is C24, which restricts the number of 

double mutants that can be generated to test epistasis of ELF3 to other clock genes, however, 

several clock mutants exist in this genotypic background. In addition, several new luciferase 

reporter lines in C24 were generated. Furthermore, like the PHYB-ox line, a line constitutively 

overexpressing phyA has been generated and back-crossed to C24, and this PHYA-ox line is 

predicted to help in elucidation of the G12 specificity in light signaling. Another line of particular 

interest is the toc1-1 allele, which has strongly reduced function. G12 toc1-1 (or elf3-1 toc1-1) 

double mutants will help test the hypothesis that ELF3 acts via TOC1 on the circadian clock (Fig. 

7.1). 

 

   

 
Figure 7.1 Extension of the three-loop model 
The network of the three-loop model of the circadian system is expanded according to the findings and 
ideas about ELF4 mode-of-action in this thesis. The model includes regulation both at the transcriptional 
and post-transcriptional levels (as indicated by italics). Factor X is replaced with ELF4, Z, and LUX. Z is a 
hypothetical interaction partner of ELF4. ELF3 is proposed to promote TOC1 expression via the light input 
pathway and factor Y. Dashed arrows indicate activation by light pulses. The long complete arrow 
indicates the continuous light activation of Y. 
Modified from Fig. 1.5C. 
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Final thoughts 
As has been discussed in the previous chapters, ELF4 could be analogous to FRQ in the 

Neurospora circadian clock (de Paula et al., 2006; Lakin-Thomas, 2006; Merrow et al., 1999; 

Pregueiro et al., 2005; Ruoff et al., 2005; Schafmeier et al., 2006), and ELF3 (in combination 

with PHYB) could have analogous function to VVD (Elvin et al., 2005; Heintzen et al., 2001; 

Schwerdtfeger and Linden, 2003). Thus, experiments could be designed to explore this idea. 

Such an analogous system is in spite of the fact that no clock sequence homologues are present in 

Arabidopsis vs. Neurospora. 

 One approach extensively applied in Neurospora (due to few phase markers) is 

monitoring of clock rhythms under and after different T-cycles (different daylengths, for example 

8L:8D and 13L:13D instead of the normal 12L:12D), and such assays have been used to 

determine entrainment defects (e.g. Pregueiro et al., 2005). In Arabidopsis, T-cycles have mainly 

been used in fitness experiments (Dodd et al., 2005; Green et al., 2002). Could it be that elf4-1 

and elf3-7, which arrest at subjective dusk under free-running conditions (Fig. 5.2; McWatters et 

al., 2000), perform better under and/or after 8L:8D entrainment (release into LL or DD following 

different T-cycles)? The residual clock activities present in both of these mutants might be just 

sufficient to “close the loop” under a shorter daylength. Another protocol used in Neurospora to 

define a core-clock component is frequency demultiplication (Roenneberg et al., 2005), which is 

interpreted to clock robustness. Only a wild-type clock is able to demultiply, that is, “ignore” the 

Zeitgeber cycle when the period of the Zeitgeber cycle is for example close to half the length of 

the period of the biological clock, and then only entrain to every second cycle. Caution here 

should be taken to exclude masking effects of the Zeitgeber, but otherwise, performing such 

assays with different elf3 and elf4 alleles may lead to new insights as to how ELF3 and ELF4 

function in the circadian clock. Currently, it is highly debated whether the frq mutant is able to 

demultiply (e.g. Lakin-Thomas, 2006; Pregueiro et al., 2005; Roenneberg et al., 2005), whereas 

vvd has not been tested.  

 It has been stated that singularity behavior is one of the most mysterious features of the 

circadian clock, and a study of the frq mutant in Neurospora has shown that both light and 

temperature pulses can severely perturb the clock (Huang et al., 2006). The perturbing stimuli, 

however, have to be applied with certain strength and at a specific phase of the day to elicit 

arrhythmicity. In this relation, in Arabidopsis, a few studies have included such phase-response 

experiments. For example, Covington et al. (2001) tested the elf3-1 mutant and found that 1-h red 

or blue light pulses induced arrhythmicity of CCR2:LUC in early subjective night, which is the 

time of ELF3 function. In contrast to the Neurospora study of frq’s role concerning 
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arrhythmicity, it was not reported whether elf3 is able to recover after the perturbing stimuli. 

Thus, a lot remains to be learned from phase-response experiments of Arabidopsis circadian 

mutants with comparison to expression patterns of the candidate molecular elements involved 

under such conditions. It would be interesting to determine if the clock can be driven to 

singularity at all phases of the circadian cycle, which would address questions about the 

complexity of light input and the robustness of the clock. 

 How does the plant clock perform under restrictive conditions such as skeleton 

photoperiods (two-pulse entrainment)? It is known that Arabidopsis entrains to light pulses at 

dawn and dusk, but providing light pulses simulating a photoperiod (skeleton photoperiod), the 

plant clock performs a characteristic phase jump, where 16L:8D is interpreted as 8L:16D. 

However, in this preliminary experiment, this protocol was not found to have a major influence 

on the free-running period (Millar, 2003). This mechanism of resetting, as well as continuous 

(parametric) and discrete (non-parametric) entrainment in general, remains unexplored at the 

molecular level in Arabidopsis, but the observed phase jump indicates continuous entrainment. 

Thus, ELF4 and ELF3 could be proposed to contribute to such processes. In Neurospora VVD 

was recently found to be essential for continuous entrainment to a light-dark cycle (Elvin et al., 

2005). In line with these thoughts, it could also be interesting to test the significance of Zeitgeber 

strength in relation to photoperiodic (continuous or discrete) entrainment of the clock. For 

example, it has been reported that simulated twilights increase the “range” of entrainment in 

hamsters and that there was a correlation between the gradual changes in light intensity and clock 

precision (Boulos et al., 2002; Boulos and Macchi, 2005).  

 In conclusion, as indicated by the thoughts above, there is a basis for a great many 

experiments still yet to be done (!). This is required to describe photoperiodic entrainment of the 

circadian clock in Arabidopsis to a minimal level of detail to understand entrainment 

mechanisms. Hopefully one day the Arabidopsis species will be the best characterized with 

respect to the clock’s molecular mode-of-action. 
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Appendix I ELF4-like sequences from EST clones 
Consensus sequences from contigs generated as described in Chapter 2. ORFs are marked in 

upper case. 

 
>Am41 
gcaggcaattcggcacgtggctaatacgactcactatagggctcgagcggccgcccgggcaggtagtaccaagtacaggatggtcgtgt
ctgtcaactcagattttatttgactggattccaaaaaataaaataaaaaaATGGAGGGGGATACATTTTCAAGTCTTGTTAATGGCAAC
CATGTAGATGGAAAGATTGCACACACTTTTCAAAAGAGTTTTGTTCAAGTTCAGAATATACTTGATCAGAATAGGCTGTTGATCAATCA
GATTAATCAGAACCATGAGTCCAAGGTTCCTGACAATTTGAACAGAAATGTGGGATTGATTAGAGAACTCAACAATAATATCAGGAGGG
TTGTTGATCTTTATGCTGATCTTTCGACGAATTTCACGAAGTCGATGGACGGTTCGTCTGAAGGCGATTCGAGCGGTGGAAAAGCTGGT
CACAAGAGGCATAGGCCTGGTTCATGAacataaagaagggattgaacaattgaaaggtagtagaaaaaaaattgtttagattgtgtaag
atgttgtctgaattctgaactcccttgttcatctttagtgactcaattacttactatagttttatcattaagagtacaaataatagtgg
ctcaagtttattactctgtaatgtaattttgtacttctgatctaatggaatgtggatgttttaatggc 
>Bv41 
ccattacgcctatttggtccacactatagaaacaagtttgtacaaaaaagcaggctggtaccggtccggaaattcccgggatatcgtcg
acccacgcgtccggaaattattaaaacaaaaaacaaaaaaaaaagagaggagagagaaagatcaggattttttttagacagcagcgttc
gagcgtgactgtcaaatctacatattctctctttatttatatttttctcgcattttttttttctctcaaaaattttcacagaattcagg
gttgttgttgctgttgtttctttccggtagattcgattcaatttcaatcgccgatctttttttctgttcctcgggaatccctcgtctgt
ctctctctttgtccctcattcaatttctgtcttctccttccagataatgttcctgattttcaagtttggtgaagtacaactggttttgt
tgtgagtggttctaaaaATGGAAGGAGACACATTTTCAGGACTTGGAAATGGTACTCAGATAGACAGTAAGGTATTACAGACATTTCAG
AAGAGTTTTGTGCAAGTTCAGAGTATATTGGATCAAAACAGATTGCTGATCAATGAGATCAATCAAAatCATGAGTCAAGAATTCCAGA
TAATCTTTCCAGAAATGTTGGCTTAATAAGAGAGCTTAACAATAATATTAGGAGGGTTGTTGACCTTTATGGTGATCTTTCTCACACCT
TAACTAGGTCTATGGAAGCTTCATCAGAAGGTGATTCCAGTGGTGCTTTAAAATCTGATGCTAAAGCTACCCACAAGcgaaatcggccc
ggttagcttgctccttgatcatttttaggtgttttaattctttgtctttggtgggcattaagcagaaattaatgcatagattatgtatg
tgcattgaggtagagcaaaacaaaatgatttagaagagattttattactatgtaactctcctgtatctgaatacttctttctaatactc
agtttactcaactttttcccccattaaaaaagaaaccaaaaaaaatctcatgaaataactcttcatagtctctatggatttgtaacctc
tttgtaactctaaacccagttgaattaaaattccaagcttgcttctttaatttcattaaaaaaaaaaaaaaagggcggccgctctagag
tatccctcgaggggcccaagcttacgcgtacccagctttcttgtacaaagtggtccctatagtgagtcgta 
>Cs41 
cccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccat
gattacgccaagctcgaaattaaccctcactaaagggaacaaaagctggagctccaccgcggtggcggccgctctagaactagtggatc
ccccgggctgcaggaattcggcacgaggcttttatcttcattattgttcataattcccattgttttcttcagaaaatccttcgtctgtt
cttcttgttcatccacttttcctgctgcccttccaaggaacaggactgctggaaactgttaaggaagtgaaaactgaaATGGAAGGGGA
TATATTCTCAGGCATTGGTAACGGCACACAAGTGGATGGCAAAGTCTTGCAAACATTTCGCAAGAGTTTCGGGCAAGTTCAAGACATTT
TGGACCAAAACAGGTTGCTAATCAATGAGATTAACCAAAACCATGAATCAAAGGTCCCCGATAACTTGACACGAAATGTTGGTTTGATC
AAAGAGCTGAACAACAACATCAGAAGAGTTGTCAGTCTCTATGCCGATCTCTCAAGCTCTTTCGCCAGATCAGTTGAATCCTCATCTGA
AGGGGAATCGGCAGCTGCATTAAGATCTGATGGTAAAGCCAGCcagaagagaattagatccgggtagtttatcaaactgaactttcttg
gtagttctttgttctttcttgatgtattaggaagttgatttgataaaagagggacgggatttgttgtcattacacaagtcttatgaatc
aattacatgtataatgattgaaacagcctgttggcaaattcaccaccattgtaattatgttaactgtgtcctctcattgaaatcaagaa
tgcttctcttgtttc 
>Ga41 
ataaaatcgatggagctcgccgcctgcaggtcgacactagtggatccaaagaattcggcacgagtctcgctctaagaactctctctcat
aatttagatttttttttgagataacgatttaatcggcggtcctgttcctcgggaatcaatccctcgtcctccttctttcaatctcgtgt
ctcgttcctcagaaatataatgctccagatttttcaaggtctagttttgagatagagagctctctagttcatcaaattcacacacaATG
GAGGGTGAGACATTCTCAAGGCTTGGCAATGGTAGTGATGAAATGGACCCCAAAGTGGTGCAAACATTACAGAAGGGTTTGGTTCAGGT
CCAGACCATGTTGGACCAGAACAGGCTGCTCATCAATGAGATAAACATGAACCATGAGTCCAAGGTCCCTCATAACTTGACCAGGAATG
TTGGGCTAATTAAGGAGCTCAACAATAACATTAAAAGAGTGGTTGATCTTTACACTGATCTTTCAAGTTCATTCATCAAATCATCCATT
GATGTATCGTCTAATGGGGATGACGATGATGATCATGATCATGGTTCTTCTTCATGTGGTGGAGCTTTGGAATCAAATGGCAAAGGTTG
TCATAAAagaaaccgggttgcttgatcttttgttgagaaaaaagaaaacccaattttgtttggttggtaattttttcgacaatggtggc
aaatgtaacatgtgttatgttcatttctaatttttttttaaagctaccatgggctttcttttgttgttgacatttattgtaatgattca
tagacttctaactcgaaatgatttagattttaaatgatttaaattactaaaaaaaaaaaaaaaaaaactcgagagtacttctagagcgg
ccgcgggcccatcgattttccacccgggtggggtaccaggtaagtgtacccaattcgccctatagtgagtcgtattac 
>Ga42 
tgggagctcgcgcgcctgcaggtcgacactagtggatccaaagaattcggcacgagcaacattacaacaacgttaatagagagatagag
agagagaaagagcatatcaatcaaattcatcaaatctttcattcttatattctctttctttcttggtttcatgttttcagggcctttgt
gttgaatctaatccaatctctgctatctttctcagccatctctccacaagcaataagaagaagattccatcccaatcttttcttaaaga
ctacccatatcttcttcttcttttttgtcagaagaaaaaatataccaaaatcccatattttgctgaagaagagattccaattctgctgg
tttttacccctcgacatgtcttgttgtttcaaggattgattgaagtgagaagcaactgttggaATGGAAGGTGATATATGTTCGGGTTT
TGGTAATGGAGGTCAAGTGGATGGCAAGGTTTTGCAAACATTTCAAAAGAGTTTTGTTCAAGTTCAAGACATCCTAGACCAAAACAGGC
TGCTAATCAACGAGATTAACCAAAACCATGAGTCAAAGATTCCTGATAACTTGAGTCGGAATGTGGGGTTAATTAAAGAGTTGAATAAC
AATATTAGAAGAGTAGCTGATCTCTATGCTGACCTCTCCAGCTCTTTCACCAGGTCGATGGAAGCTTCGTCCGAAGGTGATTCCGCCGG
GATGTACGAACCTGATGGAAAAGCTAGTCAGAAgagaattagatctgggtaaaaatttgatcaaactgaaacttttggcataaattatg
ttccctttcgctgtggaataaagggagggggtgttttgatattttagtcaagcgaaaaaaaagaggaagtattctgttttaactctttc
aatgcgagtatgaaatgtgttttgagagcttgaagcttcatcataataatgtatcactatgctgccttgtggaaatcaagcattatctt
tgtttaacatctgcaaatcatggcctggaatcccccctctttttattaataaatgagtatagggttatcttatctgtacttggtctgca
tctttaattgtttgtttaatgaggcaagtctgtgagtgctttaactgtcattaaataaaacagttttggagcaaaaaaaaaaaaaaaaa
aaaaaactcgagagtacttctagagcggccgcgggcccatcgattttccacccgggtggggtaccaggtaagtgtacccaattcgccct
atagtgagtcgtatta 
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>Gm40 
taagcagagctggttttagtgaaccgtcagattccgctagccgcaattactgtgagttagctcactcattaggccccccaggctttaca
ctttatacttccggctcgtatattgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccttgattacgccaagc
tcgaaattaaccctcactaaagggaacaaaagctggagctcgcgcgcctgcaggtcgacactagtggatccaaagaattcggcacgagA
ATGAGATAAACCAAAATCATGAGTCCAAGATGCCTGATAATCTGAGTAGAAATGTGGGTTTGATTAGAGAGCTCAATAGCAATATCAGA
AGGGTGGTTGATCTCTATGCTGATCTTTCTAATTCCTTTACCAAGTCCAGAGAGGCTTCTTCTGAAGGTGACTCCAGTGGGACTTTGAA
GTCTGATGGAAAAGTCAACCAGAAGAGAATTAGATCCAGCTGAttgattgaatttctgctttcacgcaatcaagaagtttattctgaag
ctggaaggaatttgtttggtgtgaatgtgtaacttcctccaaagttatttttgtgccaagtcttccatattggttttatgtttagaggg
ccagagatttagttaatcatctgatttataaaagtagcttcaatttgaggaaaaaaaaaaa 
>Ha41 
aattcgagccattatggccatctcgcgggcattgtcggcgtttttcgtgttcaattaggtcgaagatctctgggtcggcggcgtctaag
ggggtgttgccccaaacgttcaccggatccatggtggtctagagagagtagagttatagagagaggagaggctgtgtgtgtgtgtgact
gtcaaatctacaaattctctctctctctctctctctcgtccttgatatttcctgtcttcaattccctcttcatctgattattATGTTCC
CAGATGTTCAAGGGAAGGGTATGCAGGCATTTGAAAAGAGTTTTGTTCAAGTGCAAAGCATACTGGATCAGAACAGAGTGTTGATCAAT
GAGATTAATCAGAATCATGAGTCAAAGATTCCTGATAATCTGGGCAGAAATGTAGGGCTCATCAGAGAACTCAACAACAATATAAGAAA
AGTGGTTGATCTCTACTCTCATCTTTCATCTAATTTCTCCAAAAATATGGATGCTGTTGTTCAAGTTCAAGGGGATTCAAGACTAGCAG
CAGCAGCAGCAGCTAATATGATGCCCaagaggactagataggcctgcctgcctgaatgcgcagcttaattaattaattactagatccaa
tttaattatcttttcttttgttttaagatggttgtaactcatgcattcaaactagtacgtacgtacgtacccctttcatgaattttttt
agttttaacatttggaggagatgatttatttatttatcaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacgctcggccgcctcggcccag
tcgactctagactcgagcaagcttatgc 
>Hc41 
ttctgggagatattaaagacccgtgaactaaatcgacatgaacaagatttgggaacctaaaaaacaaacggccggaaacaaggaagtcc
caatcgaggaccttgagggacctcacgagacggccatggagattgagccagcgtttggaaacaaaggaattagagttcctctgggaaga
aggaagcttggagaggattctgagaagaacatcatcaggaaggagagaggtgggatccggggaaacaagaaaatctggagaggccttgt
tgggtttaggggagaacaaacaagggggagaagggttttggaggggagggtggtggttggggagagattggagacgcattttgaagaag
atattgttgagagctttcttgtggttgctccatagcttcaagggagagtgagcaatgggtttctcaggggtacaggacatcgtttcaga
ctctgctggggagaagaaatcttcagggaagcattcctccaagtttctgctgcagcttttgtttcagcttcctccctcttactactatg
tattggggcatcaataggaggttgggtcggagagcgtgactgtcaaatctacatattccttctctctcttctctctcttctctctctcc
tctcacttgaattcactctctttatctctcaaattcaggcaaaaacgagtctctctctcaatgtgctctttctctctcttcatcttctt
tctgcagattcgattcaatcgccggttttttctattgttcccaatctctgtcttgtgtcccctcctcaatcttctctctcaaccctgcg
gacaatgtccccagattttcaggcatttttctgattgaatcccagaagattttttgacccaaaaATGGAGGGGGATGCATCTTCTGGTG
GGCTTGGCAATGGGACCACCCAAATAGATGGCAAAGTAATGCAGACATTTCAGAAGAGTTTTGTTCAAGTACAGAACATTTTGGATCAG
AATAGGCTGCTGATCAACGAGATTAATCAGAATCATGAATCCAAGATGCCTGACAACTTAAGCAGGAATGTGGGTCTAATCAGAGAGCT
CAACAACAATATCAAGAGGGTTGTTAATCTTTATTCCGATCTTTCATCTTCTTTCACCAAATCCGTTGATGGTTCATCAGAAGGGGATT
CTAGCGGTGCCCTGAAATCAGATGAAAAAGCCGGTCACAAGAGGACcagagctggttgaaaaggcaacaaaactattccttcctaccta
attctttgttagttgatagagttgagtacccaggaagaagaagaagaacatgcacaaattttagtgcatgtttaaggatcaaggttgtt
tacattccttaagaattctctgttagcaactgagattaaggaaaataatggctcaaatcttttggattgtaagtatttgtacctgcaaa
tctaattggatcaagtactttggatctgtactctacactgtaaaaaaaaaaaaaaaaaaaaa 
>Hv41 
gtggcggccgctctagaactagtggatcccccgggctgcaggaattcggcacgagctcgtcccctgcgtgacgaccccctcccctcccc
tcccctccccgatatccatcttcctcccgcacgcagaatcagatcagggcgagcggggcagggaggATGGAGAACAGCAGCGGCCGGGA
GGTGGTTCCGAACGGAGGAGCCGCCGAGGGGATGGGCAACGGCGCGGCGAACGGGAGGGCGGTGCAGGCGCTGCAGCGGAGCTTCGCGG
AGGTGCAGGTGATCCTGGAGAAGAACCGGATTCTGATCCAGGAGATCACCCAGAACCAGGAGTCCCTCGAGGCCGGCGGCCTCAGCCGC
AACGTCGCCCTCATCCGCGAGCTCAACAGCAACATCGCCCGCGTCGTCGACCTCTACAACGCCCTCTCCTGCTCCTTTTCCAGCTCCCT
CACCAACGGCTCCGCCCCCGCTGCCTCCGACGCCGCCAAGGGGGCCTACAAGAGGCCGCGccccacacagtagaggaggcagaccatgg
gcgccctcttctcccctgttcagatttagatttcttctgtggccctggccatggccagggctcagcctcagcagcagcgggcagatttg
agacttcctttttttttttcttcttcttcgctttctttttaagttttagcgttgagctgagaatatggacatgggcagcttgtcgtcag
agatgagatgaaacaaagatgcaggcagcagttgtgtggctgtatcagtaaaaaaaaaaaaaaaaaaactcgagggggggcccggtacc
caattcgccctatagtgagtcg 
>In41 
actcactatagggcgaaattggagctccaccgcggtggcggccgcataacttcgtatagcatacattatacgaagttatggatcaggcc
aaatcggccgagctcgaattcgtcgagaaccggagtccacccctccaacccattcaacggtcacattactctccgtgacagaccaatcc
ctgattcccacgcctcggcatcatccctacgaaaatgctcgccatttacgacttcggcagttccttcctccgttaccgccgtccgtcaa
ttctctctccataaaaccagataaatttgattctattttcttttcctttttttattaattcgcccccaattcaaaaagctagagattga
ttgaaaaatcgaatattatcgataaatatctagctatatatatgtgtgtatgtatgtatatggatcgtaagtacagttgaggtcggagt
ggtggagttggatcggagcATGGAGAACACGTCACGAGCCGTAAAGAAGCATTTGAAACGAAGCGGCGGCGGCGGCGGAGGCGGAGGAA
GCCGTTTCAGTGGCGGGAGGAAGCAATACGAGAGTGAGAAGGAAGAGGGAGAGGAAGTCGGCGGCGAGGAGTGCGATCAGGAGGCGTGG
GAGACGCTGAGCCAGAGTTTCCGTGATGTTCAGACGGTGCTGGATCAGAACCGGACTCTGATTCAGCAGGTCAACGAGAACCACCAGTC
GAAGCTTCCAAATAACATCGCCAGGAACGTGGATCTGATTCGCGAGATCAACGGGAATATCTCCAAAGTCGTCGGAATGTATTCCGATC
TCTCCGGAAATTTCTCCGGCATCGTTCACCAGCGCCGctccggaggccgggaacagtagccacgacaccgtaccgatccagtcctcact
ggtcaactcattcacctcattattggaaactgcaatacgcaatcttcgcttcaattcgatcggtgacttttctttcagttttacgcttt
aaattaaggtcttcgagtctgcaggtatatatatatatatatctgtactagtccattgtttcttatctgaataaggttacgttgttgaa
ttgttgtatatcgtccaacactgttcgttcaatttggacggtaaatcagtaaatgtgatgctccattgtacgtctgatcttctgtgtaa
tcttattgatgtttgttttccaaaaaaaaaaaaaaaactctccagggttggatccggccataagggcctgatccttcgagggggggccc
ggtaccag 
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>Lc41 
tctaatacgactcacttatagggaaagctggcgcctgcggttaccggtccggaattcccgggtcgacccacgcgtccggtcaccttcca
cagctgggagatgctccactttctcaaggattatttgttaattgaatcctgagtgtaattgaaatggatgggatatatttggagaacta
ggtaatacaagtcaagtagatagcagagttATGCAGGTATTTCAGAAGAGCTTATTGCAAGCCCAAGATATTTTGAATCAGAACCGGGT
GCTGATCAATGAGATAAACCAAAATCATGAGTCCAAGATGCCTGATAATCTGAGTCGAAATGTGGGTTTGATTAAGGAGCTCAATAGCA
ACATCAGAAGGGTGGTTGATCTCTATGCTGATATCTCTAGTTCTTTTACCAAGTCCCAGGAAGCTTCATCTGAAGGGGACTCCAGTGGG
ACTCTGAAGTCTGATGGAAAAGTCAATCAGAAGAGAattagatccggctaataaactgaatccaatgttcacacgaatcactgcaatca
agaagtgtattatgatcttggaaagaatttgtttggtgagactgtataactcctccaaaattttatttgtgctcagtcttccatattgg
ttttatgcctacagggaatagagctctagttaatcttctaatctgttcaaatagcatcaatttgactttgaggactacagaattgtgat
ttcctgtaactctttagcatcatgaaatgaattatgttcatggaccaaaaaaaaaaaaaaagggcggccgctctagaggatccaagctt
aacgtaacgcgtgcatgcgacgtcatagctctt 
>Le42 
ctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagc
gaggaagcggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccga
ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctc
gtatgttgtgtggaattgtgagcggataacaatttcacacaggaaacagctatgaccatgattacgccaagctcgaaattaaccctcac
taaagggaacaaaagctggagctccaccgcggtggcggccgctctagaactagtggatcccccgggctgcaggtgggatttctcatatg
ttcaacaattttaagtatttgatagccgtttctgattttattgagtggtaattgagATGGAAGATGTTGTATTCTCGTGTACTGGTAAT
GGAGTTCAAGTTGACCGTAAAGTAGTTCAGACATTGCAAAAGAATTTTGTGCAAGTACAGAACATTTTGGATCAGAACAGGTTGTTAAT
CAACGAGATCAACCAGAACCACGAGTCAACAATCCCAGATAACTTGACTCGAAATGTTGGTCTAATTAGAGAGCTAAATAACAATATTA
GAAGAGTAGTTGATCTCTATGCTGATCTTTCCAGTTCTGTTACCACATCTATGGAGGCTTTCTCCGAGGGTGAATCAAACAATGCTAAT
CAATCAGATCAAAGAGACGGTCAGaagagaataaggtccagctgaagttcaactttctccgtttgattgtttctaagtaaatcagctct
gtttaaagaggtttgagtagaacagcatggatatatatatatatataccgaggctataagctataacgctttgaaaataaatcctatct
ggtcatgtgttcctttgttatctttctatctgttcctgcaattggactcaaattcatagttagcaagttgtagttttctccttttatgt
ttgttatagtagagttacttgttctgtctttagatgtttgagtgggcgcgaataagctagacatatagccccactcgtagtttctcgtt
tgagtatatacttttgtcctttgttctcgtctttggaactcctcgttgtatcatgaatttgtttccactgttatttccaaaaaaaaaaa
aaaaaaaactcgagggggggcccggtacccaa 
>Ls41 
ggcattgtgttggtacccgggaaattcggccattatggcctgccatcggggagggtctctgcttaatcccagcctttggggaatacctg
atttcgatacccttttttgacgtttccgcaaataatgttctttatgttgcaggtgtttaattctgggtgtttctgattcaacacaaggg
agaagaaaaagaaaaaaaaaacaATGGAAGGTGATATATTTTCAGGAATTGGAAACGGATCACAATTAGGAGTTGATGGGAAAGTACTA
CAAACATTTCAAAAGAGCTTTGTTCAAGTCCAAAACATTTTGGATCAAAACAGACTGCTGATCAATGAAATCAATCAGAATCAAGAATC
TAAACTACCTGTTAATTTGACAAGAAACGTGGGTCTAATCAGAGAACTCAACAACAATGTTAAAAGAGTGGTTGATCTTTATGGTGATC
TTTCAAACTCTTTTAGCAAATCAATGGATGCATCATCTGAAGCTGAGTCAGGTGGGACAACAAGATCTGATGGGAAAAAaagagtgagg
tctggctaaaatgctaatcaaatcaagttcaacatcttttaacatctcttttaggaatgaaatatcattttcataattggcaattcaag
ctaccaaatatcatacccatgttgtaatttttgtttaaaacgtctcttgtttagctattccccatgatttaagcatgtttttaggtttc
ttcttcttttgttataaaattgcagggggtttcccaataatcccatgtaatttggtttttgtaataatactcatctctttataaatcaa
gggttgttcgatatttgttggaaaaaaaaaaaaaaaaaaaaaaaaaaaaaacagctgcggccgcctcggcccagtcgactctagactcg
agcaagctt 
>Mp41 
gGCACGAGCTCGTGCCGATGAGATTAATCAGAACCACGAGTCGAAAATCCCGGATAATTTGAGTAGAAATGTTGGCCTAATTAGGGAAC
TCAACAACAATATAAGGAGAGTTGTTGATCTCTATTCTGATCTCTCCACCTCATTCACTAAATCAATGGATGGTTCGTCCGAAGGCGAC
TCGAGCGGGGGTTTCAAGTCCGATGGAAAAGGGCACAAGAGGCATCAGCCCGGGTAAggctttctcgggttcttgattcttgttgctct
tgaaagggaatggagaaaaagaagaaaaaaaagaagaagaggaacgatgtttagtttttgtgtaagtttgtagctcaaatctctcacca
ctagtttatattgattgcatcctaaattgcttacctatagaaaaataatagtggcactaaatcatctattattagtcttgcttttgtaa
ctttttatgtacttgttctgatctaattgaatcaagaattatgtggagtgaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaa 
>Mt42 
taagggaacaaagctggagctccaccgcggtggcggccgctctagaactagtggatcccccgggctgcaggaaattcggcacgagggct
gtgcccacaacacaactgcatataacctgcgtctcatggatcataaatcatagatataaacgaggttttcacttttcacatatcatatg
tactatcataatctaatcttgtttttttctccatcatttcagggtcttccttcataaaaacctttttttttttcttttccaataataaa
attctcataacatcaaatactccattgagatacttcactttatcaaggattatttgttgagtaaattcaaagtgtaattgagaaATGGA
AGGTGATATATTTGGAGAATTAGGTGATACAAGTCAAGTAGATAGTAGAGTTTTACATGTATTTCAGAAGAGCTTAGTGCAAGCACAAG
ATATTTTGAATCAAAATCGGCTTTTAATCAACCAGATAAACCAAAATCATGAGTCTAGGATTCCTGATAATCTGAGCAGAAATGTTAGT
TTGATTAAAGAGCTGAATAGTAATATCAGAAGAGTGGTTGATCTCTATGCTGATCTTTCGAGTTCGTTTACCAAATCGCGTGAGGCTTC
GTCTGAAGGAGATTCAAGTGGAACTCTCAAATCTGATGGAAAAGTTAACCAGAAGAGAATtagatcaagttaacaggttcaatttgagg
tttcatatgaggcagtgaagtgaagaaatttattctgatacctgaaaggaatgaatttttctggtgagattatgtgtaacttcttcaag
gtttcttctgtgccaattccactcatattggttttatgtatgattaaaccatcaatttagtctctaaagcatggctttcacaattttag
tttctaaagtatgtaaatatcataagtagttcatgaagtatatgaaatccgttactttagtccataaagtatattaaaatacatcattt
tagtccctaccatcttaatggtagggactgaagtgacgaattttaaatactttgaggattgtttattatatttatatacattaaggact
aaattggagataatgtgatacttttgagactaattgatggtttattcttgtatgtttaaaaaggcatagagttttagttgataatctaa
ttattgtagcatcaatttaaggatttcacagttgtgatttcctgtaacactgttagtatatcatgaaatgaaacatattcatggatcag
ttaatcaaatttccaagatttaacttgtggattatttaaaaaaaaaaaaaaaaaaaaactcgagggggggcccggtacccaattcgccc 
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>Os41 
ggcacgcaggcctacacgccacattctctctccctctcctcccccccattgcggctaccaaatgctcctccagatttgctccaagtata
ctattctacaggtggtaggatcagttcctgtttggatggtaggctgaaactggtgcagtgggcacctctcatcccctcccagttccaca
ttttgaagaaaaaatatatcttcatcggtcttgggctaaattattcaaggaattttcagctcagcctggcactgttggagagtagtagc
agcatcagcatgagctaagttgtcaccaaagatccaaatttttgctgtgttgcttggttcttgaaggcaactattcatttaattggctt
ctgcttctgagttctgagttctgaataattggatggacatggattgcttgctcccctttcttccatgaaagtgcaggtgaggtttagct
agctagctctggtgccaagaacaagctgaagaacaaagaagaggttgtcaagcagaagctgagaggagaaaagagagatagagagagAT
GGAAGGTGATAGCTTCTCAGGGATGGCCAATGGCGGCCAGGTGGACAACAAGCTGATCCAGACATTCCACAAGAGCTTCGTTCAGGTTC
AGAGCATCCTGGACCAGAACCGGATGCTCATCAACGAGATCAACCAGAACCACGAGTCCCGGGCGCCGGACAACCTCACCCGGAACGTC
GGCCTCATCCGGGAGCTCAACAACAACATCCGCCGTGTCGTCGGCCTCTACGCCGACCTCTCGGCGTCGTTCGCCCGCACGATGGATGC
CTCGTCGGAGGGCGATTCGTCAGGGACGCTCCGCTCCTCCGACGGGGCAGGCCGGACCGGCCAGAAGCGTGTCCGGCCCGGCTAGgatc
aggtgccattcttggcattttgatgctcagatcaaatagggtggatgaagatgaagatgaagatgatggtgatgatgccattgtcactt
cttggggacttctctagtggtgttactattaggcttagttactcttaatttctttcttgacctcttcatcatcttctctacaaatgctt
ttgcacgagtgtatcattagggagaagcaaaaccttttactatgtagaagaagttgctatgatgatgagagaaaacggcaatgtagtag
ttcttgaaaaaaaaaaaaaaaaaaaactcgagggggggcccggtacccagcttttgttccctttagtgagggtta 
>Pt41 
cacacaggcaaacagctatggacatgattacgaattcggcacgaggattcggaaggtgcgctgatcagtgtggatttatgtctggattg
taggatcggaatgacatcttccatgtttctttattctgaataaataaatttcatctgtggcaggatgatcttttctttttggtttgttg
ggtttgtaatttggtgaatatatggtttttaacgcagaaggatagagatacatgtcaatttgtcccttgaaaggctgaagagatcagga
ggacaaagggtttacatttgttcctgttgcatttaaagATGGAGGGGGAAGCATATTCTGCTCCTGGGAATGGAAGTCAAATCGATGGT
AAGGTCTTGCAAACTTTCCAGAAAAGCTTTGGTCAGGTGCAGAGTATTTTAGACCAGAATCGGTTGCTTATTAATGAGATAAATCAAAA
TCATGAATCCAAGATCCCAGATAATCTAAGTCGAAATGTTACCCTAATTCGAGAGCTCAACAACAACATCAGCAGAGTGGTGGACCTCT
ATGATGGTCTATCCACCTCATTCGCAAAGACAATAGAAACATCTTCAGAGGGAGATTCAGCTGGGACGCTAAAATCTGATGGGAAACCT
GCTGTTGTTTCGGGACAGAAGAGATTTCGACCtcagttttgatgttttttggctttgtaaattcaccaattcttttgtatgttgacaaa
ctgtagaaatgcttgtgtgctgtcattcacaggttaagggtgatatagatcaacttagagtatatgtaatgaaccaatctctttttgag
atgcaaaagtgcttgcagcataattgtattgataagactttgacctagagtttggaggagatattttggactgtattatgatgcatctc
aaagctatacttggctttgatttttccaagtttagatgggtagctttttggaagattaatgctggacttgtaggcaactaagattcttt
aactctacatgatcttttagaaggtagaagggctccgacacttgagtttgccagggagttaaattggattcacttactgctgttgtttt
tattggatgttggcgctttaatgcttgttaaatctggattgaatgagatatcgttaagactaaaaaaaaaaaaaaaaaactcgagaagt
actagtggccacgtgggccgtgcc 
>Sb40 
gtacggaagtgttacttctgctctaaaagctgcggaaattcctcgagcactgttggcctactggagtccatcctgcccgtttcgtgtgt
ctgaggatctcctgatctccttcctcccttgtcctcctcctcctcccccctcccacatcgtcatccacccccctctccagctcccctcc
tcctcgccccctcccctccctcccctcctcctactcctccgatgatgatgatccgagcatctgaaggatagatagcaagcaaaggacgc
tgctcacctccccggagctgctgctgctgctgctacggcggaggaggactgcagctgctactgctactgctacgaggtaagcaccgcca
cccccgccgccgccgccgcctcctgcagctggattgtcctgctgctgagttgactggagctggattcatcccttggttgctctcgctcg
tcgtgttcggccacggggaccgatgctccgatccgcccgcgcctcaattcctccccgcccgtctccgtctgacaggcttcgctgcgatt
tcggccccgaccgattcctccgtcgccctccggccggacgacccgattcctccttcctctccgtctccgtctccgccgccctcttcgcc
tcgctcgctcccgaggtcatctccaccacgtgctctcgggaaggaactctgcctgccgcgcagctccggatctcaatcattccattcca
ttccattcccctcagccagccaccttttcgtttctctgatgaattccttcctcctttctcgttcgtctctcgatcgatcgatcgtaact
tcctttctctctcttcgaggaaagggaagagaatggaaagggaagaaagggaagggaaatcgcggcagttaattccgagatttgtgtcg
attttttcggggcccaagctggaaagattcggcaagtacatctgatcttgtagcatactagtaccctgtgtcctcccatgccccaatag
tgatacttgtctccgccctttgcccttcgattttttttcctccccgaggcctgcagtaaagttcactcacccagattcattcacccatt
tctaaaattgcaatctttttttcttttgctggtataaaattgcaatctttttttttctgctcgtataaaattgcaatctttgtggacaa
gtgaacccacgtccttcttttatctcttgcgagttgcgtgcgtgctcaccaatttccccccatctccattgcaggctgactccgcggcc
gcagctgctgacaagcccacaagagtgcagaattcacagcaccacgacgacgacgacgacgacgaccaggaacaggaggagaggagatt
aaaaagcgaagATGGAGGGCGGCGAGGCGACGCTGTCGGGGTTCGTCGGCGGCGGGGGCGGTGCGGGGGGAAGCCCCGGCGTGGACACC
AAGGTGCTGCACGCGTTCCAGACGAGCTTCGTGCAGGTGCAGACGCTGCTGGACCAGAACCGGCTGCTCATCAACGAGATCAACCAGAA
CCACGAGTCCAAGGTGCCCGGCGACCTCTCCCGCAACGTGGGCCTCATCAGGGAGCTCAACAACAACATCCGCCGCGTCGTCGACCTCT
ACGCCGACCTCTCCTCGCTTTTCGCCGCCTCCGACGCCGGCCGCGCCGCGTCCGAGGGCGGCTCCGTCGGCACCGTCCGCCAGGCGCCC
GGCGCCGGGCACAAGCGGATcaggtccggcctcgactgacttgactagtcaaattccaaattccttcttcttagctagtacagtagcta
gccaccaccagggggacctccccttttctttaacttgagctcttcttgtatctatcgacgtacgccactcctgcctatctataatatct
attagtatctatttatctccaaaaaaaaaaaaaaaaaaaggccacatgtgctcgagctgcaggtcgcgg 
>So41 
cgcatgcacgcgtacgtaagcttggatcctctagagcggccgcagctgctgacaagcccacaagagcgcacgattgccaggacgacgac
gaccaattaagagaggagggcgtccgattccATGGAGGGCGGCGAGACGGCGCTGTCGGGGTTCGGCGGCGGCGGCGCGGGGCCCCCCG
GCGTCGACACCAAGGTGCTGCACGCGTTCCAGACGAGCTTCGTGCAGGTGCAGACGCTGCTGGACCAGAACCGGCTCCTCATCAACGAG
ATCAACCACAACCACGAGTCCAAGGTGCCCGGCGACCTCTCCCGCAACGTCGGCCTCATCAGGGAGCTCAACAACAACATCCGCCGCGT
CGTCGACCTCTACGCCGACCTCTCCTCGCTCTTCGCCGCCTCCGACGGCCGCGCCGCGTCCGAGGGCGGCTCCGTCGGCACCGTCCGCC
TGGCGGCCGGCGCCGGGCACAAGAGGATCAGGTCcggcctcgactgactgacttgttggagaattccaccaaagccattcctgattcct
tcttatcttagctactactccacgagtacagtagctagccaccaccagccgcagcagccaaagggacctcctcccttttctcttctttg
acttgagctcttcttatatctatcgacggacggtactcctgcctatctatatctatctagctatctccattacgactgctactattact
tactgtgtgatatgagcaagagcaatcctctccttcaattaattaccatcttcttgttgctgctatatgagctactagtacttcgtatg
agaggtatgtatttttgatgcaatgcaatgcaatgcaattcatgatgacgcacgcaaaaaaaaaaaaaaaaaaaaaaaacggagcggcg
tgggtcgacccgggaattccggaccggtacctgcaggcgtaccagct 
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>So42 
aaagctggtacgcctgcaggtaccggtccggaattcccgggtcgacccacgcgtccggtttcttccttccagctgctccaaccacgcta
cactccctgattcttgcttggattttcttcagaggaaggattggctactcagataatcttcctactagtgcaggaccgtagcctcctcg
cttgctttctggtttctgctgctgccgtcggtgaggagagagcagagcaagcagaagcagaggagaggcATGGAGGGGGACAGCTACTC
CGGCGCCATGGCGAACGGCGGCGGGCAGGCGGTGGACGGGAAGCTGATCCAGACGTTCCACAAGAGCTTCGTGCAGGTGCAGAGCCTGC
TGGACCAGAACCGGATGCTCATCAGCGAGATCAACCAGAACCACGAGTCCCGGGCGCCCGACAACCTCACCCGCAACGTCGGCCTCATC
CGGGAGCTCAACAACAACATCCGCCGCGTCGTCGGCCTCTACGCCGACCTCTCCTCCTCCTTCGCCCGCACCATGGACGCCTCCTCCGA
CGGCGACTCCTCCGGCACCGCCATCCGCTCCTCCGCCGCCGCCGCCGGCCACAAGCGCGTCCGCCCCGCCTAGctagcagctacctttc
ttggttcttggcatggcgtggcaatcctaacataggcgttgccattgccactaggctgattagtctttttcttgcgcttcttcttgttc
gtcttctttgtttgtcagtgattagtgtatggtaatttagtgacgaacagaaagctgctgctatgtggatgttgttcctaagattctga
tgatgacgcggcacacggtagtaccgtagtagtagtatgtttatgttcttgacagaaatcaatcaatgttcatttttggtaaaaaaaaa
aaaaa 
>St42 
acaaaactggactccaccgcggtggcggccgctctagaactagtggatcccccgggctgcaggaattcggcacgaggcaatcgccgatc
atttcggcttttccaatctatgtctactgcctctcatctccaactataatgttctctctttttcaaggacttgtctgtgttggaattct
gtgtttatgcatatttttttgaaaaatcaaaattctgcatagacatatgagagttatggctaaatctgcagtgcaaataatgactggtc
atttctgggtctggagattcttcttttgaaactgtgagcttagggcatttaggtgtgagtaggcactaaaaaggttcccttttatggaa
atgggatctgctttttcaacatctcatcatacctaaaataatagtaataaaattgctgagaaatcatcatatcaattttcagatgttgt
ggtctcatctttttctttcaagtaaaaaaataaatttatttgactcattattgtttgggatctcctccttttttgcaggccctgttttg
aattgaagaaagagaattgtttgaggaaccaaataATGGAAGGAGATACATTTTCAGTGTTAGGTAATAATGGTACACAAATAGATGGT
AAGGTATTTCAAACATTTCAAAAGAGCTTTGTACAAGTGCAGAACATATTGGATCAGAATAGGTTGCTAATCAATGAGATAAACCAGAA
TCATGAGTCAAAGATCCCTGATAATTTGAGCAGAAATGTTGGTTTAATCAGAGAGTTAAACAATAACATCAGAAGGGTTGTTGACCTTT
ATGCAGATCTTTCATGTTCTTTTACCAAATCAGTAGATGCTTCATCTGAAGGGGATTCTAGTGGaAAAGCTACACATAAGAGGAGCAAA
CCTCTTTAGctagaaggagcaaaaatccccaaattcgaagaagataaattaatggttagatattagtataactttttttttttttttgt
ttcttctagtagttgtacttttttttagtatcttactcagaaataatgacccccccccccttaagaaagaaatctatttcctttgttaa
tgtgccctgcagatctaattgaatcaaaaatatcatcttgctggtaaaaaaaaaaaaaaaaaactcgagggggggcccggtacccaatt
cgccctatagtgagtcgtattacaatc 
>Zm41 
tcatgataacttcatgaataatgaaatcacggctagtaaaattgatgatggtaataattcaaaaccactgtcacctggttggacggacc
aaactgcgtataacgcgtttggaatcactacagggatgtttaataccactacaatggatgatgtatataactatctattcgatgatgaa
gataccccaccaaacccaaaaaaagagatcgaattcggcacgacgtcgtgccgcttttcgggaaagaaccccagcgccgagaggaagag
gagggatctcgtcacccgcgggaacgcgtcccccgttccctcgccgctgccccgacacggtgccgttctcgcccgaatcggcgaatccc
tcccaccgcttcgcctataaatctccccctctgtggccctgatcctcccgtacaacagtgcccagtgcccaccgcggcagatcttcgac
gcctccgagggcgATGGAGGAGGACGGCGGCTCCGGCAGCGATAGCATGGAGTTCGTCGCGGGAGCGGAGACTAGCGCTGGCGCAGGCA
CAAACGCCGGCAGGAACCGCGGCGTGGGTGCAGGGACCAGCGTAGGCGGTGGCGGCGGCACGAAGCTGCCGCATGTGCTGCAAAAGAGT
TTCGGCGAGGTGCAAGGGATTCTGGAGCACAACCGCGTCCTGATTCAGGAGATCAGCCAGAACCAGGAGACGCGCGACGCGGACGGTCT
CAGCCGCAACGTGGCGCTAATCCGGGAGCTCAACACTAATATCGCCCGCGTCGTGGACCTCTACGGCGACATGTCAGGGTCCTTCGCCC
GCGCCGTCGCCGCCAAGAAAGACGCCGCAGGCGACAAGTCGGGCCCTAAGAGGCCCCGCTCCGCCGGCGCTGGAGGGCAGCAGCAGTAG
agccggcgtcttatccagttaatccatcagaggaggctccgtcgtgattgacggcgggggtcaggaaacttcggggttggggtgggtgc
actgcattggaaacctcctctttttttttctccgtccggtaaaggtgacttgaatgatgtactgctggattaactagtttagtgttgag
aattgagatggaccatggcgtggacaaaaaaaaaaaaaaaaaaaa 

 
 
 



A P P E N D I X  I I  

 - G - 

Appendix II Microarray data for EFL genes 
 

NASCARRAYS-108 (Edwards and Millar, 2005): Circadian expression of genes, modeling the 

Arabidopsis circadian clock. Seedlings were transferred to continuous white light after 

entrainment to 12L:12D cycles. The values in Fig. A.1 are the mean expression of two replicates. 

 

 

 

 
Figure A.1 Expression profile of EFL2, EFL3, EFL4 and ELF4 on NASCARRAYS-108 
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Appendix III TILLING sites in the ELF4 alignment 
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Appendix IV ELF3-like sequences from EST clones 
 
Consensus sequences from contigs generated as described in Chapter 2. ORFs are marked in 

upper case. 

 
>Bv31 
gcgacactatagaacaagtttgtacaaaaaagcaggctggtaccggtccggaattcccgggatatcgtcgacccacgcgtccgGCGGAA
TCCCCAGATATGCTACTTGAAGGTAGTGCTTTTGTGGGTAAATCTTCTTTGAAGGGTTCTTCTGTTAAGCATTATTCTCCACAGTATGC
AGTAAAAGCTCTTGCTCATAAGACTGCTCCCAAGGTTGATTCCCACAAGGCAACCGATAAGGTAGAAGGTACGGCTGAGAATGCAGTTG
CTAAATCGCCTCCGATTCCTCCTCAAAATGCTATTCAGCCTGCAGCCCACCAGCCTTCCTCCGTCAATACTGTTTCGTCATTTCCACCA
ACCAATATAGATCCGAAAATGAACCCATGGAGCTTCCCTCAACCAGCTCCACATCAATGGTTGGTTCCTGTGATGACCCCTTCAGAAGG
TCTAGTATACAAGCCATATCCTGCACCCGGATGCATAGGCCCAGCTTGTGGTGGGTGTGGACCTGTAGGCCCGACACCTGTGATGAATC
CATATGCAATGCCAACTCCACACTATCAACAAGGCATGGGAATGCCACCAGGCATGCATTTCGGAGGGCAAGGTTACTTCCCTCCATAT
GGCATGCCCATAATGAGCCCAAGCGTATCAGGCTCAACTGTGGAACAACTGAACCAGTTTTCAGGCCCAAACCCATATGGTCAAACCGG
TCAGCCTGTTGGGACCAGTGTCAATTTTGGCAGCATGCAACATCAAAGCTCACTGCATATTCATCCCAGTCAAAAGAATGGAACCATCG
CATCTGCTGCGAGACCCCAACCCCCTAAAGAACGTGAGCTGCAAGGAAGCACAGCAAGTAGCCCTAGTCAGAGAACACGGGAAACAGGT
ACTGCTCTCATGGGAGGAAGAGATGCACTTCCTCTTTTTCTTGCGGCTCCAACGACCCAGATCTCCGGGGGCTTTCCCACTGAAAAGCC
AACTAGAGTAATCAGGGTTGTTCCACATAAATCTACAAGGGAATCAGCAGCACGAATCTTCCAGTCTATACAAGAAGAAAGACGGCAGT
GTGAGTACAATTAGttcatgtttattggggttgacgaatatgatgattccagtcgatttaatcctcacccttttgtgactttgaactgt
tccttttttttttcttttacaaaacatgttttataacatactttgtaatttttgtatcgtgtagaatccttgtatcctatggtctagtt
acaaggttgctaatgtgtacatattgtatttcccaagtttaatcgatgccaagtagttacttccgaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaagggcggccgctctagagtatccctcgaggggcccaagcttacgcgtacccagctttcttgtaacaaag
tggtccctatagtgagtcgtattat 
 
>Ec31 
gcgagcaggatttgaGTTGCATCGATTGATAAAGGTTCAAAAGTTGTTCGCTGGATCACCAATTTGTTACTCGAAGATAGTCCTTATTT
AACTCAACCTTCTCTGAAAGAACCCCCATTAATAAAGCTTCCATCAAAGTTTGTTGTAAAGTCTCTACCAGAGCCCATTAAGCAGAGAG
ACGTTTCCTCCAAACCTAACCGAAGCAGTGATTTTACAGCAGAAAATGCAGTTGAAAAACCATCTCTTCCTTCTCTCAGTGATAATGAA
ATAGAACGAAGAATTATTAACCCACACTCAACTTATGGTCCATCATATTCTGAAAATCTCCATTCAACACCGCCTCCAAATAACGACAA
ACCAGGTTGGTGTTATCATCCACAACCCGGAAATCAATGGTTAGTTCCGGTAATGTCCCCTTCTGAAGGACTTATTTATAAGCCATATT
CAGGGCCTTGTCCTCCATCCCCAGGTTATATGACACCATTTTATGGAGGAGGCTGTGCCCCTATGAGCCTACCACCTATGTCTAGGGAC
TATCTAAATCCTGGTTATCGATTTCCAGCTCCTCACCAACAACAAATGGGTCATCATTCTCCCATCCCAGTTACCCCAAATTACTTTCC
TCCATTTGGTATGCCCGTTATGAACACAGGTATCTCCGCCTCTGGTATTGAACAAGTGAACCCAATGACCCAACAGTTATCAACAGGAG
ATTTCAATGTCAATATGCATTCCCGAAATTCGTGCAATATGTCGAAAAATCAAAAGAGTGAAGCTATTTCTCGACGAATATCTAAGTTT
CCGACATCTAAAGAAAGGAATTTCAAGGAAGTACAGCAAGTAGTCCTGCTGAAAAGGTAAacggagttgcggctcgtgcaggtaatgtt
tctcaatcgatggatgctcttcctctttttcctatggctccagttgtgcaggatcaagatggagacctacaagtaaataatgccgaaaa
gcaaaatacccgagttatcaaagttattcctcataaccctagatctgcaaatgaatcagctgcaaggatttttcggtctatacaggaag
agagacaacaatttgaatcgacatagttcttaacagtcacagacccaactataagttgttatggacagtataatcgtctctttatccat
atcttgtgatatttttgtatcaatatttctctctttaaattccgactgtttttcttttccttttttgtaaatacatcccgtaaaagaat
agagaagagtaagtccgatatgtcattcgatgtatttttgtcttcgcgtgcagttcagtcgacggatgtgtgtatgaagcaaaatgaat
tataatgagaactatgtaagaattgttgtttctattttgaaagtactctaaatgatcgttttggtttaaaaaaaaaaaaaaaaaaaaac
tcgagggggggcccggt 
>Hc31 
tggagctcgcgcgcctgcaggtcgacactagtggatccaaagaattcggcacgaggtgaagaattacaaagtttttctgactacatcct
tttcaccttttagccaacagagagtatttgctgttcaagtatttgaattgcatcgattaattaaggtgcaaagattatttgctgggtca
ccaaatcttctgcttgaggactcaacttacttggggaaacctATGAAAGGATCTTCTCCTAAGAAACTCTCTATAGAGTATGCTGTCAA
AGGAGTTCCAAATGTTTCCACACATCAAAATGTTTCTGAGAAGCAGAATTATAAGATAGAATGCTCTGCTGAAAATACTGTTGGGAAGA
CTTCTCTTTCTTCGGTGCAGAATAATAATCAGCCGCCAAGCTACAATCAGTTGGTAGCAAATTCTCCTGCACCAGCTGCAGCTGGGGAT
CATACTAAAAGTCATTGGTGTTTTCATCAACCACAGGGACATCAATGGTTGATTCCTGTAATGTCACCATCAGAAGGACTTGTTTACAA
GCCGTATCCTGGACCTGGTATGATGACCCCAGCTTGTGGAGGCTGTGGGCCTCCAGGGTCAACCCCGACGCTGGGCACTTTCTTCCCTT
CGCCATATGGCATTCCGGCTATGCATCATTACCACGGAATGGGTGCTCCTCAATTTCCTTCACCTGCTGGACCTCCTGGTTACTTTCCT
CCTTATGGCATGACAGTTGTGAATCAAGGAATTGCTGGTCCACCGGTTGATCCCATGACCCACTATGCTGCATCTGGTGTACAGGGTCA
GCCACCTTGGTTGGGGATTAACAGCAGCATTCAACATCAGAACTCAAGTAATACTCACAGCATGTCGAATGGGGCAACAATGGATGTCT
CAAAGTCAAAAGGTTCACGTGATGGTGGTATGCAAATGAGAACTGCAAGTAGTCCAAATAAGATAGTGCAGgAAAATGGGAAAGGAAAC
ACCACCGAAGGAAGTGGCGTACTTTCTCTTTTCCCTACAGCTCCAATTGTTGAGTCTCCAACTCATAATACCCCACCACCTCGTGAGGT
TGATCACCCGGCCGGGGTGGTCATCAAAGTGGTACCACGTAATGGTAGATCGGCAACTGAATCTGTTGCTCGTATTTTTCGGTCTATAC
AGGAAGAAAGGAAacattacgattcagtctagctgctcgttattctgaactgaatcttactgcagtataggtgcgcctgtatatatgtg
tgaagtctatatatcgatgtaatgttaacttgttctttttggttttgtaaaaaaaaaaaaaaaaactcgagagtacttctagagcggcc
gcgggcccatcgattttccacccgggtggggtacccaggtaagtgtacccaattcgccctatagtgagtcgtattacaat 
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>Hv31 
CGGGTTTTTGCTGTCCAAGTGTTTGAGCTGCATCGACTGATCAAAGTGCAGAAATTGATTGCAGCATCCCCACACCTACTTATTGAAGG
AGATCCATGCCTTGGCAGTGCCCTGGTGACAAGCAAGAAGAAGACAGCTGCAGCCAATGTGGAAAAGCAGCTTCTGTCAGCTAAAAGCA
AAGATGACGATGATGCACAGCTTACCCTGCAGCAGGTGGAGTACTCGAAAGATAACACCGAAGGAAACCAGGCTTCACCATCTCAAGAC
AATGATCTAGTCGAGGTCCGGCATGAGAACCAAGCTGCATCAAACGGTGCGGTTAGCAGTAACCCTCCTGCTATGCCTGCTCCTACCGA
CAACAAGCAGAAcAACTGGTGTGCTCCTcCGCCTCAGAATCAGTGGCTCGTTCCCGTTATGTCTCCGTCGGAAGGGCTCGTCTACAAAC
CATACACAGGGCCGTGCCCCCCTGCAGGAAGCTTCTTGGCCCCGTTTTATGCAAGCTGTGCTCCCCTGAGCCTGCCATCTACAGCTGGG
GAATTCATGAATTCTCCATACGGCATCCCTATGCCTCACCAGCCGCAGCACATGGGCGTCGGCGGCCCTCCAGCCATGCCTCCGATGTA
CTTCCCGCCTTTCAGCGTGCCGGTGATGAAcCCGGTGGTCTCGTCCTCCGCAGTGGAGCAGGTGAGCCGCGTAGCCGCAGCGCGACCCA
ACACTCACCTCGAGCACCACTCGAGGAGCTCGTGCAACATGAGGAACGAGGCCGTGTCGGTCGGCGGCGTCTGGAgGTTCCACTCGTCC
CGCGGCAGCAAGCTGCAAGGGAGCAGCGCCGCCAgcagccctttttgacaggcagcagggccagggcgaggcgaggggccatgcagcgg
ccgcgcctgcggcgcccccgcctacgtcgtcgtcggccgggaacgggaacgggaacgcggcccagcagccccaggtctcctcgggcagt
caggagaacccggtggcggcggcagcagcggcccgtgtgatccgggtggtaccgcacacggcacgcaccgcgtcggagtcggcggcgcg
catctttcggtcgatccagatggagaggcagcagaacggcccgtgaccgagcgaccatcggcatgcggtggttggccggcagaaagaaa
gaaaggaagcttagccaattagcgcttcagagtatgctgttatttttgagcaggcaggcagcaagcaatagcattcctatatataattt
gtctcttggcgtcggtaaaagtggatttttggcgactgtaaatatgcaaagcaaagcaggacttgtatgaatgccagaatgctggttgg
gcaaagcaaagcaggacttgtatctatctatcttatttatctatgccagaatgagaattgtaacaaaaaaaaaaaaaaaaaactcgaga
ctaggagagaactagtctcgagggggggcccggtacccaattcgccctatagtga 
 
>Os31 
gCACGAGGGGAAGGTGATGGGCCCGCTGTTCCCGCGGCTCCACGTCAACGACGCCGCCAAGGGCGGCGGCCCGCGGGCGCCGCCCAGGA
ACAAGATGGCGCTCTACGAGCAGTTCACCGTGCCGTCCCACCGCTTCAGCGGCGGAGGCGGCGCGCTCGCCTCGGCTCGGGGCAGCCTG
GCGCGCTCGACGTCGGCGGCGAGCCAGAGCCAGGTATATGGATGTGACATGCCTCTTTTTGAGCCGTTCAATGTGCCTTCCAATGGACC
TGGCCAGTCTGTTGAAAAGATGAATTCAAATTCTGTCAACAGACAGATTAATGGTTCAAGAAAAGATTCGGGGATGTTATCCACTCAGC
CTAAGGGCATTGATAAATATGGTTCAGGATCAAGGGCTGAGTGTGCCCCACAGCAAAGGGTGGAAAAGGGCATAAAGAGTTCTTCGGGA
AGGAAATTGGCTGATGATGATGAATTCATTGTACCTTCTGTTTTCAGTGCCAGATTTCCTCAATATTCTACTAAAGAGCGTGCGGGGGT
TCAAGAGGAATCAACACCCCTTGTTGCTCTCAgtCCgcAcaaAAGCCCTCCAGCAGTGTCCAAATCACCgACAAAGTGtTATaaCacTG
TTAGTAAGAACTTGGAgAGAATCAATGTTTCTGATGTGAAATCAAGGGGTTCTCAGAAAGACAAGGAGACAGGACCAGCACAaACATTG
AAAAATGTGGAAGTTGAACATTTTTCATCATTTGAGGCATCCAAAGATATGTTTGGAAGCAAACATGCTAAAGTATGTCCTAAGACAGG
CACTATAAATGATTTGGATGAGCCACATTTGGAAAACAGCGAGCATCAaGCGACAAgTAgAAACGGGAGTTCCGTGAAATTTCAGAACC
CTCCaGTGAGAAGAAATACAATATCCGCTAAACCATCTCCTGGTATTGAAAATACCAATGGGCATTGTAATTTACCTCAAGGAGGCTTA
AAGGAAGCTGGTACAAAGAGAAAAAGGTTGGAAGCACAGGATAATGCAGAGAAAATTGATGATTTGTCTGATTCCTCAGTGGAGTGTAT
AACTGCTTGGGAGATTTCTCCAGATGAAATTGTTGGTGCCATTGGTGCAAAGCATTTTTGGAAAGCAAGGCGGGCTATCATAAATCAAC
AGAGGGTTTTTGCTGCCCAAGTTTTTGAGCTGCATAAGTTGGTAAAAGTGCAGAAGTTGATTGCAGCATCGCCACATGTACTTATTGAA
GGTGATCCTTGCCTTGGCAATGCCTTGTTAGCTAGCAAGAAAAAAATGGCGGAAGAGAACTTGAAAGCTCAGCCTGTGTTAGTTGCAAC
CAATGATGATGTGCAGCCAAGTCTACAGGAACCAGAATTATCGAAAGAAAATTCTGAAGAGAACCCACCCTCTCCTCGTGATACTGCAC
CTGTCAGTGGTCATCATGATCAAACTGCAAAAATCGGTGCATCAAAAAGCAATCTTCGAGCTACGCCCGTTGCTTCTGATAACAGACAG
AATAACTGTGGGGTTCAACTACAACCACCGCAGAATCAGTGGCTTATCCCTGTCATGTCTCCTTCAGAAGGGCTTGTCTATAAGCCTTA
TTCTGGCCCATGTCCTCCAGCCGGAAGCATATTGGCCCCATTTTATGCCAATTGTACTCCCCTGAGGCTCCCATCGACAACTGGAGATT
TCATGAATTCAGCATATGGTGTTCCTATACCTCATCAACCACAACATATGGGTGCTCCTGGCACTCCTACCATGCCTATGAACTACTTC
CCGCCTTTCAGTGTACCAGTGATGAACCCAGTTGCACTAGCATCTGCAGTAGAACAAGGCAGGCATCCTTcTATGCCACAGCCTTATGG
GAACTTGGAGCAACACTCTCGGATGTCATGCAACATGTCACATCCAAGTGGCATTTGGAGATTTCATGCCTCAAGAGATAGTGAGGCGC
AAGCCAGCAGCGCTAGCAGTCCTTTTGACAGGCTCCAATGCGGTGGAAGTGGTCCTGTGTCCGCCTTCCCTACAGCATCAGCTCAGAAC
ACACAGCCTCAGCCCTCATcTGGCAGCCGGGACAACCAGACCAATGTTATTAGGGTCATTCCGCATAATAATTCACAAACAGCTTCAGA
GTCAGCAGCACGGATTTTCCGGTCAATACAGATGGAAAGGCAACAAGATGACTCGTAGctgggaaactggcacttatatgctggatggc
atttgactgcttgtaaatgtagagaagagttttgccagattatggtaagcgctttttttgtcttgaccatttattagaagtagattgga
tgctatgattgatcttatgtttactgtacatacttgtagtccctcaaagtcgcaaatagacttcattttgggcatcaatatgttctctc
aaatacaactttgatcactaaaaaaaaaaaaaaaaaaa 
>Sb31 
cctgtacggaagtgttacttctgctctaaaagctgcggaattcctcgagcactgttggcctactggcaacacatgcatttatgaactag
gaacataacagaggtagaaaagaaaaggatgatgccaattggtgtactttgcgtggtggcatatattgaatgtatttcgtcctctttgt
cggaaatgtgtttggaatattaactccctttacaaatttccttttcttgttgtttacactcgcttttctttaaccatacagtcagcaga
gggtttttgctgttcaagtattcgagctgcataggttgatcaaagtgagtctgcggcaaataaataacttcttcaggctcatgcttatg
ggcaggttaacttacgggtgttttaatttgaaatttgatttaaccattgtttATGTTGACTTGCAAGCAGGTGCAGAAGCTGATTGCTG
CATCTCCACATCTACTTATTGAGGGGGATCCTTGCCTTGGCAAATCCTTGGCAGCAAGTAAGAAAAAGCTGGCTGGAGATGTGGAAAAA
CAGCTTCAaTCGGcTAAaAACAATGATGAGGTGcAACCAACAcaGCagCagCAGCTAGAGCACTCAAAAGAGAACAcTGAAGCGAACCA
GCCTTCACCATCTCAAGATGATGCAGCTGGAGTCCAACATAACAATCAAGCTGCAATAAATGGTGCTGTTAGCAGTAATCCTCCCTCGA
TGCCTACCCCTTCTGACAACAAACAGAACAGCTGGTGCATTCCTCCACCTCCGAGTCAGTGGTTGGTACCTGTTATGTCCCCGTCTGAA
GGACTTGTCTACAAACCTTATAGTGGGCACTGCCCTCCGGCGGGGAGTTTCATGGCGCCCCCGTTTTTTGCCAGCTGTGGTCCTGTAAG
CCTCCCATCCACAGCTGGGGATTTCATGAATTCAGCATATAGCGTTGCTATGCCTCATCAGCCACAGCACATGGGTGTTCCTGGTCCTC
CACCCATGCCACCGATGTACTTCCCACCGTTTAGCATGCCGGTGATGAACCCTGCAGTGTCAGCCTCTGCAGTTGAGCAAGTGAGCCAT
GTTGCAGCGTCACAGCGTAATGGGCACATAGAGCAGCATACACGGAACTCGTGTAACGCGTCCCACTTGAGGAGCGAAGCGGTATCAGC
CGGCGTTTGGAGAGTCCATGCATCAAGGGACAGCGAGCTGCAAGGCAGTAGCGCTAGCAGTCCGTTTGACAGGCAGCAAGGTGAAGGGA
GGGGTCCTGCGCCACCCTTTCCAGCATCTTCAGTTGGAAACAGGCAAGCTCAAGCTCAAGCTCAAGCCTCCTCTGGGAGCAGGGAGAAT
CCGAGCAGAGTCATTAGGGTTGTTCCCCACACTGCGCGCACTGCTTCGGAGTCAGCAGCGCGGATTCTCCAGTCAATACAGATGGAGAG
GAAACAAAACGACCCCTGActcgcaaccgcatgctgtatgttcttgacccgtagagttactatacttgtttagctgagagcagctgaga
gcctagacaactagtacttagctactgtattatttttgaccgataatagctgttatatatgattgccgtaaattggctgacctgctgtt
ttgttcagtgtaaatatgtggtgattcaggtgtctgtcagaatgatggccttgtaatacatctgtagctatgttggtcatggtgctgta
tacaggaactggaatttgtaaccttgaaggaattttctacttctgtgttaaggaaaaactggggtttgtcttgacctgcaaaggttgtg
ttgcaggtatgctaagaaattcaaacctgtgtgttaatttatatatgctgatgtgcaatgtctattgtaaaaaaaaaaaaaaaaaggcc
acatgtgctcgagctgcaggtcgcggccgctagactagt 
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>So32 
ccACGCGTCCGGGTGCCGTTAGCAGTAATCCTCCCTCGATGCCTACCCCTTCTGACAACAAACAGAACAGCTGGTGCATTCCTCCACCT
CCGAGTCAGTGGCTGGTTCCTGTTATGTCCCCGTCTGAAGGCCTTGTCTACAAACCTTATACTGGGCACTGCCCTCCGGCGGGGAGTTT
CATGGCGCCCCCGTTTTTTGCCAGCTGTGGTCCTGTAAGCCTCCCGTCCACAGCTGGGGATTTCATGAATTCGACATATGGCGTTGCTA
TGCCTCACCAGCCCCAGCACATGGGTGTTCCTGGTCCTCCACCCATGCCACCGATGTACTTCCCACCTTTTAGCATGCCGGTGATGAAC
CCTGCTGTGTCAGCCTCTGCAGTTGAGCAAGTGAGCCATGTTGCAGCGTCACAGCGTAAGGGGCACATAGAGCAGCATACACGGAACTC
GTGTAACGCATCTCACTTGAGGAGCGAAGCGGTATCAGCCGGCGTTTGGAGAGTCCATGCGTCAAGGGACAGCGAGCTGCAAGGCAGTA
GCGCTAGCGGTCCTTTTGACAGGCAGCAAGGTGAAGGGAGGGGTCCTGCGCCACCCTTTCCGGCATCTTCAGTTGGAAACGGGCAAGCT
CAAGCTCAACCCTCCTcTGGAAGCAGGGAGAATCCGAGCAGAGTCATTAGGGTTGTTCCCCACACTGCACGCACTGcTTCGGAGTCAGC
AGCGCGGATTTTCCAGTCAATACAGATGGAGAGGAAACAAAACGACCCGTGActcgcaatcgcacgctgtatgttacttgacccgtaga
gttactataattgtttagctgagagcctagacaaatagtgctaggtacgtattatttttgaccgataatagctgttatatatgattgcc
gtaaattggctgacctgatgttttgttcagtgtaaatatgcggggattcaggtgtctgtcagaatgatggccttgtaatacatctgtag
ctatgttggttatgatgctgtatacaggaactggaatttgtaaccttgaaggaattttctaaaaaaaaaaaaaaaaaaaaaaaaaaggg
cggccgctctagaggatccaagcttacgtacgcgtgcatgcgacgtcatacg 
 
>Ze31 
gAGATATTACCTGCAGGTACTCCCTAAAGTCAAAGATCGCATTGAGAAGTCAAAGGATGATAAGAGGGAATTCTCTGCTGAGAATGCTG
TTAAGAAGGCTTCTCCTTCAGTCCAAAACAGCAATGGGTCCACTTTAACAAGGTACCCGTTACCACCACTTGACATGAGAATGGGTCCA
TGGAGTCAACAGCCTGGTCAACAATGGCTAATCCCTGTGATGTCACCGTCTGAAGGACTTATCTACAAACCATACCCTGCACCTGGGTA
CATGACCCCAGGTCCAGGACCTCCTCCTGGTCATAACATTGTAAACCATGGGGTTCCAGCGCCAGCTCAGCCTCATTACCAGTGGCCCA
CGGACTTCCCACCATTGATACAACCACCCACTCATGGCTACTTCCCTCCTTATGGCATGACAGCAATGAACCCGTCTAGCGATGGAGAA
ATGAACCCAAACCTGTTCAGCATGCAGATTCGGAGCTCGTGTAACGTTCCAACCGCAGTCCACTTTCATGAGTCAGACAATGAGGTACA
AGTCAGTGCTGCAAGTTGTTCGAGTCAGAGAACAAAAATGCATGATTCCCTTCCTCTTTTTCCTACACTTCCTCCAGCCAAGGGGCCGG
CAGAGCCGACTCGTGCTATAAGAGTTGTACCTCGTAATGCCAGGCTGGCAACAGAATCTGCAGCCCGGATTTTTAGGTGTATACAAGAA
GAGAGAAAGCATCAGGATCCGGTTTAGattggtgcatgaggtggtacatgtgttgcattttttagtgttttgagtgttggtggggctga
tatacatacatacatcatacatgtgaaagatttatcttcatgtaaggtcttataattacagttaaatgagtgtactgatattagtgtat
cgatattgctgtgtaatacaaccattatttgaatttgataatttttttaaaaaaaaaaaaaaaaaaattccgagtacctgcaggtaata
tctcaatcgaattcccgcggccgccatggcggccgggagcatgcgacgtcgggcccaattcgccctatagtgagtcgt 
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Appendix V ELF3 TILLING lines 
 

 
Table A.1 elf3 TILLING alleles, region 1 
Genomic bp numbers 

Line Stock # Mutation Missense 
elf3-201 N89942 C618T L86F 
- N87302 C632T - 
- N93783 C659T - 
- N93226 C671T - 
- N91720 C691T S110F 
- N85872 G710A - 
elf3-202 N91124 C747T P129S 
elf3-203 N91337 C790T T143I 
elf3-204 N86640 C822T P154S 
elf3-205 N91131 G831A A157T 
- N91228 G875A - 
elf3-206 N88058 G921A E187K 
- N91622 G929A - 
- N88453 G941A - 
elf3-207 N92088 G987A V209I 
- N94056 G998A - 
elf3-208 N90550 G1065A E235K 
elf3-209 N91275 G1089A D243N 
elf3-210 N85984 G1105A R248H 
elf3-211 N86418 C1107T T252I 
elf3-212 N86752 G1126A G255E 
elf3-213 N87261 C1129T A256V 
elf3-214 N89931 C1147T T262M 
elf3-215 N90177 C1155T H265Y 
elf3-216 N91871 G1164A E268K 
- N89817 G1166A - 
elf3-217 N87254 C1180T P273L 
elf3-218 N85828 G1219A R286K 
- N86752 G1227A - 
- N91309 C1233T - 
- N87322 G1241A - 
- N85422 G1253A - 
elf3-219 N87420 C1270T S303F 
- N93250 C1388T - 
- N91372 C1419T - 
- N93944 C1427T - 
- N87609 C1503T - 
- N88068 G1520A - 

 

 
Table A.2 elf3 TILLING alleles, region 2 
Genomic bp numbers 

Line Stock # Mutation Missense 
elf3-220 N88514 C2957T P442L 
elf3-221 N91318 C3052T P474S 
elf3-222 N90770 G3112A G494R 
elf3-223 N89932 G3122A G497E 
elf3-224 N89607 C3191T P520L 
- N93569 G3200A G523D 
elf3-225 N91668 C3280T Q550* 
- N93588 C3285T - 
- N88358 C3314T P561L 
elf3-226 N90833 G3316A G562R 
- N89510 G3327A - 
- N89694 G3348A - 
elf3-227 N91988 C3388T P586S 
elf3-228 N88214 C3398T S589F 
- N93790 G3417A - 
- N88899 G3427A G599R 
elf3-229 N86452 G3460A G610R 
- N91617 C3465T - 
elf3-230 N89435 G3499A V623I 
elf3-231 N85585 C3529T P633S 
- N85585 C3530T P633L 
- N88274 G3561A - 
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