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INTRODUCTION 

1. INTRODUCTION 

1.1. Cell polarity 

Cell polarity is fundamental for many aspects of cell and developmental biology. It is 

important for differentiation, proliferation and morphogenesis in both the unicellular 

and multicellular organisms. For instance, establishment and maintenance of cell 

polarity is the prerequisite for asymmetric cell division, which contributes to cell fate 

diversification by generating daughter cells with distinct identities. In epithelial cells, 

the loss of cell polarity is associated with tumor development and metastasis (Bilder 

et al., 2000; Mueller-Klieser, 2000; Wodarz, 2000).  

Usually cell polarity is induced by the localisation of proteins to distinct subcellular 

regions. In many cases, the localised protein is accomplished by localising the 

corresponding mRNA. For example, 71% of the expressed genes during early 

Drosophila embryogenesis are found to encode mRNAs exhibiting clear subcellular 

distribution patterns (Lecuyer et al., 2007). There are a number of mechanisms by 

which mRNAs are localised. The most and best characterised examples of mRNA 

localisation are thought to be accomplished by active transports along the 

cytoskeleton. The studies come from a range of organisms, and the localisation can 

occur in actin-, or microtubule (MT)-dependent fashion (St Johnston D., 2005). 

Prominent examples of MT-based transport come from studies of the Drosophila 

melanogaster oocyte. 

1.2. Drosophila oogenesis 

Drosophila ovaries are composed of parallel bundles of developmentally ordered egg 

chambers, each of which supports the development of a single oocyte. These bundles, 

called ovarioles, are divided into the anterior germarium and the posterior vitellarium 

(Fig. 1A). Oogenesis is initiated in the anterior germarium, by a stem cell division that 
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produces a cystoblast and regenerates a stem cell (Fig. 1B). The cystoblast proceeds 

through four mitotic divisions to produce a cyst of 16 germline cells. Cytokinesis is 

incomplete in each of the cystoblast divisions, so that these 16 germline cells are 

interconnected by cytoplasmic bridges called ring canals (Fig. 1B). This 

interconnected cluster of germline cells is encapsulated by a layer of somatically 

derived follicle cells to form the complete egg chamber, which is the functional unit 

of oogenesis. Soon after this occurs, the egg chamber pinches off from the germarium 

and enters the vitellarium as a stage 2 egg chamber (Fig. 1B). Ultimately at stage 14 a 

mature egg chamber is produced (Fig. 1A). During oogenesis, one of the 16 germline 

cells differentiates to form the single oocyte and the rest become nurse cells. The 

nurse cells synthesise maternal components that are transported to the oocyte. 

2 
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Fig. 1 Overview of Drosophila oogenesis and MT organisation in the oocyte (A) Drawing of a 
wild-type ovariole, with somatic cells in green and germ cells in blue. Oogenic stages are indicated. 
(B) Drawing of the construction of an egg chamber. The large variety of cell types and the basic 
structure found within the germarium and early egg chambers are indicated. (C) In stages 2–6, the 
germline MTs (red) are organized with their minus-ends at the oocyte posterior and their plus-ends 
extending into the nurse cells. During these stages, the oocyte sends signals to the overlying follicle 
cells at the posterior with Gurken (green). (D) At about stage 6 to 7, upon receiving the back 
signaling (purple arrow) from the posterior follicle cells (purple), MTs in the oocyte undergo a 
rearrangement, and oocyte nucleus migrates to the dorso-anterior corner of the oocyte. The posterior 
MTOCs established in stage 2 disassemble (red dashed lines). MTs are emanating from the anterior 
and lateral oocyte cortex (red solid lines). (E) At stage 9, the organised MT network directs the 
localisation of bicoid mRNA (blue) to the anterior corners and gurken mRNA (green) to the 
dorso-anterior corner of the oocyte, probably via MT minus-end directed motor Dynein. The 
localisation of oskar mRNA (yellow) is directed to the posterior pole by MT plus-end directed 
motor Kinesin. A-B adapted and edited from Bilder (Horne-Badovinac and Bilder, 2005); C-E 
adapted and edited from Steinhauer and Kalderon (Steinhauer and Kalderon, 2006). 
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1.3. MT nucleation and the generation of non-centrosomal MT 

arrays 

MTs are the cytoskeletal filaments with the largest diameter. MTs are constructed 

from α/β-tubulin heterodimers. The head to tail assembly of α/β-tubulin heterodimers 

into linear protofilaments confers polarity on the MT, with α-tubulin at the slower 

growing minus-end and β-tubulin at the faster growing plus-end (Desai and Mitchison, 

1997). MTs act as directional tracks for the transport of organelles and cargos by 

molecular motors: Kinesin subfamily drives cargos to the plus-end; while Dynein 

drives cargos to the minus-end (Kamal and Goldstein, 2002).  

In most of the proliferating and migrating animal cells, the centrosome is the main 

MT organisation centre (MTOC), leading to the formation of radial MTs, with 

minus-ends at the centrosomes and plus-ends extended to the cell periphery. The 

centrosome consists of a pair of centrioles and a pericentriolar matrix (PCM). PCM 

contains the γ-tubulin ring complex (γTuRC), which is necessary to regulate the MT 

nucleation (Wiese and Zheng, 2006). By contrast, in some differentiated cells, for 

example muscle, epithelial and vascular plant cells, MTs are organised in 

non-centrosomal arrays that are not radial but usually linear. A three step model has 

been proposed for generating linear, non-centrosomal MT arrays: (1) generation of 

non-centrosomal MTs; (2) movement of non-centrosomal MTs to assembly sites and 

(3) assembly of non-centrosomal MTs into linear arrays. Non-centrosomal MTs are 

the key building blocks for the formation of non-centrosomal MT arrays. They can be 

generated by three mechanisms: release from centrosomes, nucleation from    

non-centrosomal sites and breakage distal to the non-centrosome. Once 

non-centrosomal MTs are generated, they are brought to sites where they can be 

assembled into linear arrays (Bartolini and Gundersen, 2006).   
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1.4. MT organisation of the oocyte during Drosophila oogenesis 

Throughout oogenesis, MTs in the oocyte are highly dynamic and successively 

required in several steps for the establishment of the oocyte polarity. The following 

will address the role of MTs in polarity establishment at three different developmental 

stages: early oogenesis (stage2-6); mid-oogenesis (stage 7-10a) and late-oogenesis 

(after stage 10b).     

During early oogenesis, MTOCs reside at the posterior of the oocyte, from where MTs 

extend through ring canals into the nurse cells (Theurkauf et al., 1992; Clark et al., 

1997). Along these MTs, a number of mRNAs produced in the nurse cells are 

transported into the oocyte and accumulate at the posterior (Bashirullah et al., 1998; 

Pokrywka and Stephenson, 1995). gurken mRNA is one of these mRNAs and encodes 

a TGF-α homologous protein. The locally restricted TGF-α signaling from the oocyte 

to the underlying follicle cells at the posterior specifies those follicle cells to adopt a 

posterior fate (Fig. 1C). These posterior cells then send an unidentified signal back to 

the oocyte, thereby inducing the repolarisation of the MT cytoskeleton and the 

migration of the oocyte nucleus to the dorso-anterior corner of the oocyte (Fig. 

1D)(Neumansilberberg and Schupbach, 1993; Roth et al., 1995) . 

During mid-oogenesis, upon receiving the back signaling from the posterior follicle 

cells at about stage 6 to 7, MTs within the oocyte rearrange, and mediate the 

establishment of the final axial polarity within the oocyte. The reorganised MTs direct 

the localisation of bicoid mRNA to the anterior corners and gurken mRNA to the 

dorso-anterior corner of the oocyte, probably via MT minus-end directed motor 

Dynein (Duncan and Warrior, 2002; Januschke et al., 2002; Schnorrer et al., 2000). 

Analogously, MTs direct the localisation of oskar mRNA to the posterior pole by MT 

plus-end directed motor Kinesin (Brendza et al., 2000). Such asymmetric RNA 

localisation is essential for embryonic patterning: localisation of bicoid mRNA to the 

anterior and oskar mRNA to the posterior specifies the anterior-posterior (A/P) axis; 

localisation of gurken mRNA to the dorsal-anterior corner specifies the dorsal-ventral 

(D/V) axis (Riechmann and Ephrussi, 2001). Thus, axis determination of the fly 
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occurs during mid-oogenesis.  

Given that the MT dependent transport of mRNAs exhibit a clear anterior-posterior 

polarity, the MTs of the oocyte are thought to be polarised from anterior to posterior. 

This idea is supported by the studies using MT motor proteins fused to the E.coli 

β-galactosidase protein. Fusion protein KHC::β-Gal contains the motor domain of 

Kinesin heavy chain (KHC) and accumulates at the posterior pole of the oocyte, 

indicating the posterior MT plus-ends accumulation (Clark et al., 1994). Conversely, 

fusion protein NOD::β-Gal contains the motor domain of Kinesin-related protein 

(NOD) and accumulates at the anterior corners of the oocyte. As NOD::β-Gal is found 

at the minus-ends of MTs in other cell types, in which the MT polarity is well 

established, the localisation of NOD::β-Gal in the oocyte is taken as the area where 

minus-ends are focused (Clark et al., 1997). However, the use of these markers is not 

enough to explain the complex MT organisation of the oocyte at this stage. The study 

of MT organisation in fixed samples at the level of individual MTs does not reveal a 

clear anterior-posterior polarisation within the MT network of the oocyte (Cha et al., 

2001). Live images of stage 9 oocytes with fluorescently labelled MTs from 

transgenic GFP::α-tubulin reveal that the MT organisation appears as a random 

network lacking detectable order; and MTs are more abundant at the anterior than at 

the posterior of the oocyte (Serbus et al., 2005). In support of the gradient of MT 

density from the anterior to posterior, the measurement of fluorescent signals of the 

MT marker along the oocyte cortex depicts a decrease of signals from anterior to 

posterior (Cha et al., 2002). 

Although numerous genes affecting the MT organisation during mid-oogenesis have 

been identified (Steinhauer and Kalderon, 2006), none of them is shown to be a MT 

organising factor or to interact directly with MTs. Thus, how the organising of MTs in 

the oocyte is regulated remains elusive. An early study using the MT inhibitor 

colcemid to depolymerise MTs of the oocyte suggested that MTs nucleate primarily at 

the anterior cortex, as short MTs were only found at the anterior cortex after treatment 

(Theurkauf et al., 1992). Recent studies suggest that MTs are emanating from the 

anterior and lateral cortex of the oocyte at stage 9-10. This is supported by the fact 
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that antibodies for components of the γTuRC are detected at the entire oocyte cortex. 

Given that the density of MTs is extremely low at the posterior pole of the oocyte, it 

was proposed that the γTuRC might be locally inactivated (Cha et al., 2002). Recently, 

Januschke (Januschke et al., 2006) showed that during stage 7 to 8, MTs nucleate 

from a centrosome that is associated with the oocyte nucleus at the anterior-dorsal 

corner. The authors proposed that MTs nucleate from the centrosome and are released 

and subsequently captured at cortical sites at stage 9. If this is true, it would be 

analogous to the situation in epithelial cells mentioned above, where MTs nucleate 

from the centrosome, and subsequently are released and captured at the apical cortex 

(Bartolini and Gundersen, 2006). Nevertheless, considering the γTuRC detected at the 

oocyte cortex, several issues remain to be elucidated: First, whether the γTuRC is 

capable for nucleating MTs or solely for anchoring MTs; second, how the γTuRC 

localisation to the cortex is mediated; and third, what is the biological significance of 

cortical localisation of the γTuRC. 

From stage 10b, the content produced in nurse cells is rapidly transferred into the 

oocyte in a process called dumping. Dumping is accompanied by a fast and 

unidirectional movement of cytoplasm called fast ooplasmic streaming. Streaming 

facilitates the dispersal of nurse cell contents within the oocyte. It has been shown that 

fast ooplasmic streaming is essential for the posterior accumulation of the axis 

determinant nanos mRNA (Forrest and Gavis, 2003). In addition, oskar mRNA can 

be localised by fast ooplasmic streaming (Glotzer et al., 1997).  

Concomitantly with fast ooplasmic streaming, MTs in the oocyte are rearranged into 

parallel arrays in the subcortical region (Serbus et al., 2005; Theurkauf et al., 1992). It 

has been shown that MTs are required for fast ooplasmic streaming as treating egg 

chambers with colcemid blocked the streaming (Theurkauf, 1994). Another factor 

required for the onset of fast streaming is Kinesin, as in Kinesin heavy chain (Khc) 

null mutants fast ooplasmic streaming is completely abolished (Palacios and St 

Johnston, 2002; Serbus et al., 2005). A model for fast ooplasmic streaming involving 

MTs and Kinesin has been proposed: Kinesin transports cargos to the MT plus-ends, 

exerting the force on the surrounding cytoplasm. The concerted movement of multiple 
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Kinesin transportations along the MTs that are oriented in the same general direction 

creates the fast streaming (Serbus et al., 2005). In weak Khc mutants parallel MT 

arrays completely disappear at stage 11. As in 27% of weak Khc mutants fast 

streaming is still initiated, it was proposed that the Kinesin dependent fast ooplasmic 

streaming activity above a certain threshold is required to wash the MTs into arrays in 

subcortical regions (Serbus et al., 2005). Nevertheless, how the rearrangement of the 

MT cytoskeleton is accomplished from mid-oogenesis to late-oogenesis (stage 10a to 

stage 10b) remains to be further elucidated.  

1.5. The role of actin for the MT organisation of the Drosophila 

oocyte  

Actin is a globular protein that exists in a dynamic equilibrium, cycling between 

monomeric and filamentous states. Filamentous actin occurs in many different forms, 

for example, the cortical actin found in all cells; the thin filaments found in muscle 

sarcomeres. The question rises that what determines the organisation of actin into 

different structures. In many organisms multiple actin isoforms are expressed. For 

example, in Drosophila, there are six actin proteins. The sequence of different actins 

does affect their ability to incorporate into different actin structures (Roeper et al., 

2005). It has been proposed that different actin isoforms interact with different sets of 

actin-binding proteins to perform specialised functions (Jacinto and Baum, 2003). 

Although individual actin-binding proteins can influence the formation of different 

actin structures, the cell needs to coordinate the activity of distinct sets of 

actin-binding proteins to build up specific structures as required. The small Rho 

GTPases have been shown to play important roles for mediating the construction of 

different actin structures in response to specific intracellular or extracellular cues 

(Hall, 1998).   

For long time it has been proposed that the MT reorganisation in the Drosophila 

oocyte from stage10a to 10b is regulated by the actin cytoskeleton. The finding, that 

the thick peripheral network of actin filaments observed in stage 10a oocyte is 
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decreased in the thickness at stage 10b when MTs reorganise, suggests that MTs can 

not reorganise until the actin dissipates (Riparbelli and Callaini, 1995). This idea is 

supported by the fact that the treatment with drugs sequestering actin monomers of 

stage 9/10a oocytes induces premature fast ooplasmic streaming and the formation of 

subcortical MT arrays (Manseau et al., 1996). Additionally, mutations in the 

actin-binding proteins chickadee (chic), spire (spir) and cappuccino (capu) cause 

similar phenotypes, with the induction of premature streaming and the formation of 

MT arrays (Emmons et al., 1995; Manseau et al., 1996; Theurkauf, 1994). These 

evidences support the hypothesis that the actin cytoskeleton is regulating the 

reorganisation of the MT cytoskeleton in the oocyte. However, how the regulation 

between actin and MT cytoskeleton is achieved and the functional relationships 

between these two cytoskeletal elements remain elusive.  

1.6. The function of Par-1 during Drosophila oogenesis 

The par (partitioning defective) genes have been discovered in a screen for mutants 

that affect anterior-posterior polarity in the C.elegans one cell embryo (Kemphues et 

al., 1988; Morton et al., 2002; Watts et al., 1996). In Drosophila homologues of par 

genes which have been identified to be essential for the polarity establishment in 

epithelial cells, neuroblasts and the oocyte (Benton et al., 2002; Kuchinke et al., 1998; 

Petronczki and Knoblich, 2001; Shulman et al., 2000; Tomancak et al., 2000; Wodarz, 

2000). The mammalian homologues were implicated in the specification of distinct 

membrane domains in cultured epithelial cells (Suzuki et al., 2001; Lin et al., 2000; 

Joberty et al., 2000; Izumi et al., 1998). 

One of the par genes is par-1, which encodes a serine/threonine kinase. In the 

Drosophila female germline, Par-1 is involved in several polarisation events. First, 

Par-1 is required to maintain the oocyte cell fate. In germline clones of par-1 null 

allele, the oocyte fails to polarise during early oogenesis and reverts to nurse cell fate, 

resulting in the egg chamber with 16 nurse cells (Cox et al., 2001; Huynh et al., 2001). 

Second, during mid-oogenesis Par-1 is required for proper MT organisation in the 
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oocyte. In par-1 mutants MT are nucleating from the entire oocyte cortex including 

the posterior pole, directing their plus-ends towards the centre of the oocyte. In these 

mutants, oskar mRNA is mislocalised to the centre of the oocyte, which is most likely 

the consequence of aberrant MT organisation (Tomancak et al., 2000; Shulman et al., 

2000). Finally, beginning from stage 9, accumulation of Par-1 at the posterior pole of 

the oocyte guarantees the maintenance of posterior polarity by phosphorylating, and 

thus stabilising, Oskar protein (Riechmann et al., 2002).  

Multiple isoforms encoded by par-1 gene (N1, N2, and N3) have been identified. The 

Par-1 N1 isoform appears to play an important role in polarising the oocyte because 

Par-1 N1 fully rescues the polarity defects of par-1 hypomorphs. GFP-tagged Par-1 

N1 (GFP- Par-1 N1) is recruited to the posterior cortex of the oocyte at stage 7 in 

response to the back signaling from the follicle cells. Thus, it has been suggested that 

the posterior Par-1 N1 polarises the MT cytoskeleton (Doerflinger et al., 2006).  

The mammalian Par-1 homologues belong to MAP/MT affinity regulating kinase 

(MARK) family. MARK proteins phosphorylate MT associated proteins (MAPs) Tau, 

MAP2 and MAP4, thereby reducing their affinity for MTs and consequently 

destabilising MTs (Drewes et al., 1995). This suggests the possibility that Par-1 is a 

direct mediator for MT organisation in the oocyte. However, mutations in Drosophila 

Tau do not disrupt oocyte polarity, implying that Tau may be not an essential target of 

Par-1 in the oocyte. On the other hand, Drosophila Par-1 seems to regulate MTs by a 

different mechanism from that proposed for MARKs, because Par-1 stabilises MTs in 

epithelial cells, while the MARKs destabilise MTs (Doerflinger et al., 2003). Thus, 

downstream effectors of Drosophila Par-1 for regulating MTs of the oocyte remain to 

be identified.  

As GFP- Par-1 N1 is recruited to the posterior cortex of the oocyte at stage 7, it has 

been suggested that GFP- Par-1 N1 is the earliest posterior marker of the oocyte 

(Doerflinger et al., 2006). One question raised by this result is how the posterior 

recruitment of Par-1 N1 is accomplished. The treatment with the actin-destabilising 

drug latrunculinA abolishes the posterior enrichment of GFP Par-1 N1, suggesting 

that Par-1 N1 is recruited to the posterior in an actin dependent way (Doerflinger et al., 
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2006). However, the upstream activators that regulate the actin cytoskeleton 

organisation for directing the posterior recruitment of Par-1 N1 remain elusive.  

1.7. Screening for targets of Par-1 kinase   

To identify Par-1 substrates a proteomic screen has been performed (Riechmann and 

Ephrussi, 2004). The first release of the Drosophila collection of Expressed Sequence 

Tags (EST) produced by the Berkeley Drosophila Genome Project (BDGP) was 

screened. Among the 5849 screened cDNAs, 133 (2.2%) encode proteins that were 

phosphorylated by Par-1 kinase in vitro. Those were analysed using data provided by 

the BDGP and FlyBase. Based on the presence of certain protein domains, homologies 

to proteins from other species and functional data, seven groups of substrates were 

classified: Cytoskeletal proteins (11), proteins involved in different aspects of signal 

transduction (35), DNA-associated proteins (34), RNA-associated proteins (11), 

enzymes (9), novel proteins (25) and others (9).  

1.8. Tao-1 kinase 

CG14217 gene was identified in the screen for Par-1 phosphorylation substrates and 

classified into the group of proteins involved in the signal transduction. CG14217 is 

the Drosophila homologue of mammalian Tao-1 (Thousand And One amino acid). 

Drosophila Tao-1 shares 50% identity to Human Tao-1 and 43% to Rat Tao-1. Tao-1 

belongs to the Ste20 like kinase family. The Ste20 group kinases are characterised by 

the presence of a conserved kinase domain and a non-catalytic region of great 

structural diversity that enables the kinases to interact with various signaling 

molecules and regulatory proteins of the actin cytoskeleton (Dan et al., 2001).  

In vitro studies revealed that mammalian Tao-1 is an upstream kinase of the 

mammalian Par-1 homologue MARK. Tao-1 activates Par-1 by phosphorylation. In 

cell culture experiment, the activity of Tao-1 enhances MT instability through the 

activation of MARK and leads to phosphorylation and detachment of Tau and other 

MAPs from MTs (Timm et al., 2003).  
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In the Drosophila oocyte, Tau is not an essential target of Par-1 as mentioned above. 

Nevertheless, overexpression of Tau in Drosophila eyes reduces the size of eyes and 

disrupts the regular arrays of lenses. To investigate the mechanism responsible for Tau 

function, a screen was conducted to search for genetic modifiers which enhance or 

suppress the eye phenotype induced by overexpression of Tau. Both Par-1 and Tao-1 

were recovered in this screen. Overexpression of Par-1 suppresses, while 

overexpression of Tao-1 enhances the eye phenotype (Shulman and Feany, 2003).   

To summarise, Drosophila Tao-1 was identified as a Par-1 phosphorylation target. 

Studies in the Drosophila eye revealed that Par-1 and Tao-1 have opposite roles in 

regulating the function of Tau. This raises the possibility that Drosophila Par-1 

negatively regulates Tao-1 by phosphorylation. This suggestion is in contrast to the 

cell culture studies of mammalian homologues of Par-1 and Tao-1. The mammalian 

homologue of Tao-1 was shown to activate Par-1 by phosphorylation. These 

evidences implicate a complex cross regulation between Tao-1 and Par-1. The study 

of the role of Tao-1 in the oocyte may help to gain insight into Tao-1 function in 

regulating the cytoskeleton.  

1.9. Aims  

The first aim of this thesis is to understand the architecture of the Drosophila oocyte 

cytoskeleton. Of particular interest is the reorganisation of the cytoskeleton at the 

onset of fast ooplasmic streaming and the functional relationship between the actin 

and MT cytoskeleton. The second aim is the characterisation of different Tao-1 alleles 

regarding their oogenesis phenotypes. 
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2. MATERIALS AND METHODS 

2.1. Genomic sequence, EST and fly stock searches 

Searches for annotated Drosophila genomic sequences, Drosophila ESTs and 

Drosophila P-element insertion strains were conducted using Flybase 

(http://flybase.bio.indiana.edu/). EST and cDNA sequences were obtained from the 

Berkeley Drosophila Genome Project (BDGP). (http://www.fruitfly.org/EST/). 

 

2.2. Fly strains and genetics 

2.2.1. Drosophila melanogaster strains  

Stock genotype  Reference Source 
w;γTub37C1 40A 42B/CyO (Schnorrer et al., 2002) In our lab 
w;;UASp Dgrip75- GFP (Schnorrer et al., 2002) In our lab 
w;oskar54 / TM3 Ser (Kimha et al., 1991) In our lab 
w;;Df(3R)p-XT103/ TM3 Sb  (Lehmann and 

Nusslein-Volhard, 1986) 
BL 1962 

w;UASp Actin5C-GFP; (Verkhusha et al., 1999) BL 7310 
w; maternal α-tubulin: Gal4-VP16;TM2/TM3 (Martin and St, 2003) In our lab 
w;Bl/Cyo; nanos:Gla4-VP16 Sb/TM6  (Van et al., 1998) In our lab 
w;chic1320; (Cooley et al., 1992) BL 4891 
w;capu1 ; (Emmons et al., 1995) In our lab 
w;spire1; (Wellington et al., 1999) BL 5113 
w;Df Exel 6046/CyO;  BL 7528 
w;GFP-Capu; (Rosales-Nieves et al., 2006) S. Parkhurst lab 
w;GFP-SpireD; (Rosales-Nieves et al., 2006) S. Parkhurst lab 
w;capulet10 FRT40A /CyO  (Baum et al., 2000) B.Baum lab 
w; ovoD1 FRT 40A / Ms(2)M1 / CyO (Chou et al., 1993) In our lab 
w moesin G0415 /FM7;; (Jankovics et al., 2002) BL 12015 
w moesin EP1652 (Jankovics et al., 2002) BL 11272 
w;swallow1;;  (Meng and Stephenson, 2002) In our lab 
w; FRT 42B Khc27 /CyO; (Brendza et al., 2000) In our lab 
w; FRT 42B ovoD1 / Ms(2)M1 / CyO (Chou et al., 1993) In our lab 
w hs Flp;Sp5/ SM6-TM6 (Chou and Perrimon, 1992) In our lab 
w P{EP}Tao-1EP1455 ;; (Spradling et al., 1999) BL 11458 
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w;transposase Δ2-3, Sb/TM6 (Robertson et al., 1988) In our lab 
w;Grk/CyO; Kin LacZ (Clark et al., 1994) In our lab 
w;Nod LacZ143.2/TM3 Sb (Clark et al., 1997) In our lab 
w PBac{RB}e01713;; (Thibault et al., 2004) Exelixis collection
w P{XP}d02300;; (Thibault et al., 2004) Exelixis collection
w;;hs Flp MKRS/TM6 (Chou and Perrimon, 1992) In our lab 
w GFP FRT 19A/ FM6;; (Xu and Rubin, 1993)  In our lab 

 

2.2.2. Fly maintenance and egg laying collection 

The flies were maintained under standard conditions (Ashburner, 1989). Without 

specification, the flies were grown up at 25°C. Three- to four-day old females were 

well fed with yeast paste before dissection.  

For the egg laying and embryo collection, females were kept in a cage and the eggs 

were collected on an apple juice agar plate. The plate was changed once a day and the 

hatching rate was counted at least two days later.  

2.2.3. Expression using the UAS/GAL4 system 

In Drosophila, the GAL4/UAS system is widely used to express genes of interest in a 

temporally and spatially regulated manner (Brand and Perrimon, 1993). This system 

uses two transgenes, a GAL4 driver and a GAL4-responive UAS (upstream activation 

sequence) expression vector. The driver directs tissue or time point specific 

expression of the yeast transcription activator, GAL4, a sequence specific 

transactivator. The UAS vector contains its target sequence, UAS, and designed to 

drive the expression of the inserted cDNA sequence downstream of the UAS 

sequence when GAL4 is present. Combining appropriate GAL4 driver and UAS 

transgene allows conditional expression of cloned genes temporally and spatially. The 

original GAL4/UAS (Brand and Perrimon, 1993) system does not work in the 

germline. A modified UAS vector UASp overcomes this problem and allows the 

expression in the germline during oogenesis (Rorth, 1998).  
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2.2.4. Generation of HA-Tao-1 transgenic flies 

4-kb Tao-1 cDNA was cloned into pUASp2 vector (Rorth, 1998). To generate 

transgenic flies, DNA was injected into blastoderm stage embryos, according to 

Spradling and Rubin (Rubin and Spradling, 1982; Spradling and Rubin, 1982). The 

injected embryos were allowed to develop into flies, which were crossed to flies 

carrying balancers of the second and third chromosomes. The progeny with colored 

eyes were selected and stocks were established. 

2.2.5. Generation of P-element imprecise deletions 

In the Bloomington fly stocks, one P-element Tao-1EP(X) 1455 was identified to be 

inserted into the 5’UTR of Tao-1 about 2kb upstream of the start codon. Homozygous 

females carrying this P-element Tao-1EP(X)1455 were crossed to males carrying the 

Δ2–3 transposase transgene (Robertson et al., 1988). The progeny males carrying both 

the P-element and the transgene were crossed to females carrying the X chromosome 

balancer. Individual progeny females with white eyes were selected to cross with 

males carrying the X chromosome balancer to establish stocks. The lethality and the 

fertility of these flies were subsequently analysed. 

2.2.6. Generation of the Exelixis deficiency 

In the Exelixis collection of piggyBac and P-element insertions (Parks et al., 2004; 

Thibault et al., 2004), one piggyBac insertion PBac{RB}e01713 was found to be 

inserted at the position about 300bp upstream of the Tao-1 open reading frame. 

Downstream of the Tao-1 locus, P-element insertion P{XP}d02300 was found to be in 

the first intron of CG32532, the third gene downstream of Tao-1. Females carrying 

PBac{RB}e01713 were crossed to males carrying the transgene of the heat shocked 

induced Flipase (FLP) recombinase. Progeny males carrying both the insertion and 

the transgene were crossed to females carrying P{XP}d02300. After two days the 

progeny were heat shocked for one hour at 37°C per day. This procedure was repeated 
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for four days. The progeny were then raised to adulthood, and virgin females were 

crossed to males carrying the balancer of the X chromosome, FM6. The progeny 

females with white eyes were selected to cross with FM6 males to establish the stocks. 

The loss of colored eyes is the result of the trans-recombination between the 

Flp-recombination target (FRT) sites of PBac{RB}e01713 and P{XP}d02300. Finally 

genomic PCR was conducted to verify the occurrence of the recombinant event.   

2.2.7. Induction of germline clones by the FLP/FRT system 

capulet1, Khc27, Tao-1ETA and Df 14.1 are lethal. To examine the oogenesis phenotype 

of these mutants, the FLP/FRT system of mitotic recombination was used to generate 

the homozygous clones of these lethal alleles (Xu and Rubin, 1993). The clones are 

marked either by the loss of GFP (Xu and Rubin, 1993) or by the loss of the dominant 

female sterile insertion ovoD1 (Chou et al., 1993).  

[w hs Flp;Sp5/ SM6-TM6] females were crossed to [w; ovoD1 FRT 40A / Ms(2)M1 / 

CyO] and [w; FRT 42B ovoD1 / Ms(2)M1 / CyO] to harvest the males of [w hs Flp/Y; 

ovoD1 FRT 40A/SM6-TM6] and [w hs Flp/Y; FRT 42B ovoD1 /SM6-TM6] in the next 

generation respectively. These males were subsequently crossed to [w; capulet10 

FRT40A /CyO] and [w; FRT 42B Khc27 /CyO;] respectively. 24 hour pulses of 

progeny from these crosses were allowed to develop for another 24 hours, and then 

heat shocked for four days at 37°C for one hour per day in a water bath. In the 

non-CyO female individuals, heat shock induced expression of the FLP recombinase 

led to the mitotic recombination between the two FRT sties on the second 

chromosome homologs. A fraction of the germline cells thus became homozygous for 

capulet10 or for Khc27, while the others remaining ovoD1 would not develop further 

than stage 6.  

For the lethal alleles of the X chromosome, Tao-1ETA and Df 14.1 were recombined to 

FRT 19A sites. [w;;hs Flp MKRS/TM6] females were crossed to [w GFP FRT 19A/ 

FM6;;] to harvest [w GFP FRT 19A/Y;; hs Flp MKRS/+] males, which were 

subsequently crossed to [w Tao-1ETA FRT 19A/ FM6;;] or [w Df 14.1 FRT 19A/ FM6;;] 
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females. The progeny were heat shocked as described above. A fraction of the 

germline cells thus became homozygous for Tao-1ETA or for Df 14.1 monitored by the 

loss of the copy of GFP.   

2.3. Preparation of egg shell and larval cuticle  

To visualise the egg shell under the microscope, eggs were washed with tap water and 

mounted in Hoyer’s medium. For larval cuticle preparation, collected embryos were 

dechorionated using 50% bleach and washed in water with 0.1% Triton X-100 and 

followed in tap water. Embryos without chorions were fixed in 4% Formaldehyde 

(Polyscience) in PBS: heptane 1:1 solution at room temperature for 20 minutes, 

followed with vigorous shaking and removing the lower (aqueous) phase afterwards. 

Devitellinisation was done by adding methanol: heptane 1:1 solution and vortexing 

for half a minute, followed by removing all the supernatant and washing with 

methanol for several times. The devitellinised embryos were then transferred to a 

slide and mounted in a mixture of Hoyer’s medium and lactic acid 2:1 after the 

methanol was evaporated. The mounted samples were incubated at 60°C for at least 

24 hours before they were analysed by Zeiss Axiovert.  

2.4. Drug treatment  

2.4.1. LatrunculinA treatment 

LatrunculinA (Molecular Probes) was initially dissolved in DMSO in a concentration 

of 1mM and stored in -20°C. Before use it was further diluted to the Graces insect 

medium (Sigma) to working concentrations described following. Controls were 

performed by adding identical volume of DMSO to the Graces medium. For 

immunohistochemistry, ovaries were dissected in the Graces medium and 

subsequently incubated for 45 minutes in Graces medium containing 2.8 μM 

latrunculin A at room temperature. Treated ovaries were fixed and immunolabelled. 

For time lapse microscopy, Graces medium containing 100μM latrunculinA and 0.4% 
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Trypan Blue (Sigma) was injected into the female abdomen. Live imaging was taken 

after two hour incubation.  

2.4.2. Colcemid treatment  

Colcemid (Sigma) was initially dissolved in water in a concentration of 1mg/ml and 

stored in 4°C. It was further diluted before use to 200µg/ml in water and mixed with 

some dry yeast. 2- to 3-day old female flies were fed with yeast paste containing the 

drug for 16 hours after five hours starvation. Afterwards ovaries were dissected and 

fixed as described below.   

2.5. Immunohistochemistry and in situ hybridisation 

2.5.1. Immunohistochemistry, mounting and sectioning 

Ovaries were dissected in the Graces medium and then fixed for 10 minutes at room 

temperature in 8% methanol free formaldehyde (Polyscience) diluted in PBS. After 2 

short washes in 0.1% PBT ovaries were blocked for one hour in 1%PBT containing 

0.5% BSA. Incubation with the primary antibody was performed overnight at room 

temperature in 0.3% PBT with 0.5%BSA. After two short washes with 0.1% PBT, and 

one hour wash with 0.1 PBT containing 10% NGS, ovaries were incubated for two 

hours with a secondary antibody coupled to Alexa flourochromes (Molecular Probes), 

and for Actin staining with rhodamine coupled phalloidin (Molecular Probes), 

followed by a final wash with 0.1% PBT. 

For whole mounts, ovaries were mounted in vectashield (Vector Laboratories). For 

sections, stained ovaries were separated on a coverslip on a droplet of 0.1%PBT under 

a Stereomicroscope. Individual egg chambers were sorted and stage was determined 

according to the size, the ratio of nurse cells versus the oocyte and the epithelium 

morphology. Selected egg chambers were transferred from PBT to a droplet of 

Aquapolymount (Polysciences) on the same coverslip, and PBT was removed with a 

tissue. Egg chambers were cut manually into two slices of approximately 60μm with a 
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0.40*20mm injection needle (Sterican, Braun). Aquapolymount was polymerised over 

night at room temperature. On the following day the coverslip was flipped upside 

down and mounted on a slide with Aquapolymount. After four hour incubation 

Aquapolymount was polymerised. 

2.5.2. Primary antibodies for immunohistochemistry 

The following primary antibodies were used: 
 
antigen  source  working concentration distributer 
α-Tubulin FITC mouse 1:10 Sigma 
α-tyrosinated -Tubulin  rat 1:3000 Sero Tec 
γ-Tubulin mouse 1:100 Sigma 
Green Fluorescent Protein 
( GFP ) 

mouse 1:100 Roche 

Green Fluorescent Protein 
( GFP ) 

rabbit 1:2000 Molecular Probes 

Oskar rabbit 1:3000 In our lab 
Gurken mouse 1.50 Developmental 

Studies Hybridoma 
Bank, Iowa city, US 

β-Galactosidase (Gal) rabbit 1:100 Molecular Probes  
Hemagglutinin (HA) rat 1:100 Roche 

 

2.5.3. In situ hybridisation  

Digoxingenin (DIG)-labelled RNA probes corresponding to full-length Tao-1, oskar, 

bicoid and gurken mRNA were generated using Ambion Megascript kit and DIG RNA 

labelling mix (Roche). RNA in situ hybridisation was performed according to Tautz 

and Pfeifle (Tautz and Pfeifle, 1989). Ovaries were dissected in the Graces medium 

and fixed for 10 minutes at room temperature in 8% methanol free formaldehyde 

diluted in PBS. For alkaline-phosphatase detection, after a wash in 0.1%PBT, ovaries 

were incubated for five minutes with proteinase K (50μg/ml). After one wash with 

2mg/ml glycine for two minutes to stop the digestion, ovaries were post-fixed in 4% 

formaldehyde in PBS for 10 minutes. The treatment of proteinase K and subsequent 
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post fixation was skipped for the fluorescence detection. After fixation or 

post-fixation, ovaries were washed with 1:1 hybridisation solution (Hyb1)/PBS for ten 

minutes and for next ten minutes with Hyb1. Pre-hybridisation required at least one 

hour of ovaries incubated in Hybridisation solution with 100μg/mg salmon sperm 

DNA (Sigma) (Hyb2) at 55℃. 1-2μl of the probe was added to 50μl Hyb2 and 

allowed to hybridise over night at 55℃. On the next day, the probe was removed and 

the ovaries were rinsed with the prewarmed Hyb1 and washed four times 30 minutes 

at 55℃ in Hyb 1 and in a series of Hyb1/ PBST mixture in proportions of 4:1, 3:2, 

2:3 and 1:4 for 10 minutes at 55℃ except the last wash, which was done at room 

temperature (RT).  

For the fluorescence detection, ovaries were incubated with POD-conjugated 

anti-DIG antibody in 0.1%PBT (1:100, Roche) for at least one hour at RT. After three 

ten minute washes with 0.1%PBT, Cy3-conjuagted HRP (anti-horse radish peroxidase) 

(1:75) antibody was added to the amplification solution and allowed to incubate for 

30 minutes. After 2 washes in 0.1%PBT ovaries were mounted in vectashield medium. 

For the alkaline-phosphatase detection, ovaries were incubated with 

alkaline-phosphatase conjugated anti-DIG antibody in 0.1%PBT (1:500, Dianova) for 

at least one hour. After several washes in 0.1%PBT over 45 minutes, ovaries were 

transferred into alkaline-phosphatase staining buffer (100mM NaCl, 50mM MgCl2, 

100mM Tris-Cl, pH 9.5, 0.2% Tween) and incubated for five minutes. The antibody 

bound to the epitope was visualised by a blue alkaline-phosphatase reaction. The 

reaction was initiated by adding NBT and X-phosphate to the staining buffer (for 1ml 

staining buffer: 4.4 ml of 75mg/ml NBT and 3.5ml of X-phosphate). The reaction was 

monitored and stopped with several washes of 0.1% PBT. Ovaries were mounted in 

100% glycerol.  
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2.6. Microscopy and image processing 

2.6.1. Confocal microscopy and image analysis 

All pictures were taken with a Leica SP2 confocal microscope. Fluorescence 

intensities in the region of interest from the oocyte cortex to the interior were 

measured by ImageJ v1.35 (National Institutes of Health, Bethesda, Maryland, USA, 

http://rsb.info.nih.gov/ij/). The measurement results were imported as ascii format to 

the graphing and analysis program Origin Pro v6 (OriginLab cooperation, 

www.originlab.com). The intensities of the fluorescence signals were normalized by 

the maximum value. Pixels at the exterior border of cortex were set as zero in the 

pixel sequences. The graphs in Fig. 7, 10 and 18 were plotted using pixel sequence 

(from the cortex to the center as the X axes) and the normalized intensities of 

fluorescence signals (as Y axes). The full width at half maximum (FWHM), used to 

describe the width of the distribution curve, was defined by the distance between 

points on the curve at which normalized intensity value is 0.5.  

2.6.2. Time lapse microscopy 

For live imaging, 0.4% Trypan Blue dye (Sigma) in the Graces medium was injected 

into the female abdomen. For latrunculinA treatment, Graces medium containing 

100μM latrunculinA and 0.4% Trypan Blue was injected. After two hour incubation, 

the ovaries were dissected under halocarbon oil and covered with a YSI Do membrane 

(Yellow Springs Instrument, Ohio) for live imaging. Time-lapse movies were 

recorded with a Leica SP2 confocal microscope by taking images every 30 second. 

All movies were compressed to 232 x real time using QuickTime. Thus, 3.8 seconds 

of movie represents 15 minutes of real time. As an alternative way to visualise the 

endosome movements of the oocyte, the Kalman stacks function provided by ImageJ 

v1.35 was applied. Although Kalman averaging is normally used to reduce noise in 

images of stationary objects, moving particles become increasingly blurred as the 
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number of scans is increased, and the direction of blurring indicates the orientation of 

their motion. Using this technology, ten images representing 10 consecutive time 

points was projected into a single layer.   

2.7. Genomic PCR and sequencing 

2.7.1. Oligonucleotides 

Oligonucleotides were designed by Vector NTI 9.0.0 and purchased from Sigma. The 

pellet was resuspended in water at a concentration of 100µM and stored at –20°C. 

Aliquots of 10-20 µM were made and 1µl was used in 25µl PCR reactions. 
 

Oligo Name  Purpose Sequence 
UP1 EP excision mapping& 

sequencing 
ATACACACACGTACACGAGC 

Low9 EP excision mapping& 
sequencing 

CGGTATTTGACTTAGCGAACTGA 

Invert seq in EP EP excision mapping& 
sequencing 

TCGACGGGACCACCTTATGTTATTCATCATG

For1 Tao-1 locus sequencing TGCGTTAAAGCGTGCAAAGC 
Rev1 Tao-1 locus sequencing TTCAGGCGCACATCGATTGC 
SeqA403 Tao-1 locus sequencing ACCAAGGACACGGTAGCGA 
SeqA801 Tao-1 locus sequencing CAGTACCACATCCTGTTC 
SeqA1201 Tao-1 locus sequencing CCACACAACTCACCTACG 
SeqA1603 Tao-1 locus sequencing ACGAACAGGTGAACGCGGT 
SeqA2001 Tao-1 locus sequencing TTTAGGATGTTGCTACAT 
SeqA2401 Tao-1 locus sequencing CACGAAGGTGGTCAACAA 
SeqA2810 Tao-1 locus sequencing TGCAAATCCCATTTATTC 
SeqA3205 Tao-1 locus sequencing TGTAATTAGTGATAGAGC 
SeqA3602 Tao-1 locus sequencing TAGATACTCGACTAAAAC 
SeqA4005 Tao-1 locus sequencing ATGAACAATTTTATAAAC 
SeqA4401 Tao-1 locus sequencing GGCGTGGAGTTTGTTGTG 
SeqA4802 Tao-1 locus sequencing TTGAATCAAATCGAATCG 
For2 Tao-1 locus sequencing CGATTCCCTCGCGAATGTTGG 
Rev2 Tao-1 locus sequencing CATAGATAATCCACCTCCATGGGC 
SeqB415 Tao-1 locus sequencing CTTTTATTTGAATCAAATCG 
SeqB801 Tao-1 locus sequencing TTTGTTGATCTTTGCTTG 
SeqB1201 Tao-1 locus sequencing TAGCGGCGATTTCTGTTG 
SeqB1611 Tao-1 locus sequencing GCGCGTTCCTGGTTGAAT 
SeqB2008 Tao-1 locus sequencing TGTTCACCGAGCAGCGTCA 
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Oligo Name  Purpose Sequence 
SeqB2401 Tao-1 locus sequencing GTGCATTATGGCTGGGCA 
SeqB2801 Tao-1 locus sequencing CGTCGACTCATCCATGGA 
SeqB3201 Tao-1 locus sequencing TCTGTTCGTGCATCTCCT 
SeqB3601 Tao-1 locus sequencing ACCTTGGTCCTTTCGGGA 
SeqB4003 Tao-1 locus sequencing AGTGTTTAAACTATTGAG 
SeqB4412 Tao-1 locus sequencing GGGGGTAACGAGTACAGT 
SeqB4805 Tao-1 locus sequencing TGGATGGCGGAAGCGTAGC 
For3 Tao-1 locus sequencing CTCCGCTCTGGCTAGGAAATTACACAGG 
Rev3 Tao-1 locus sequencing TCGGTGCTTGGCACTCGAGATG 
SeqC2 Tao-1 locus sequencing TCCGCTCTGGCTAGGAAA 
SeqC401 Tao-1 locus sequencing GATCCCTTATAGTGCCCA 
SeqC812 Tao-1 locus sequencing ATGCGGCAGCACGGAAAT 
SeqC1201 Tao-1 locus sequencing AAGGACAGCTCATGCTCA 
SeqC1618 Tao-1 locus sequencing CATTCAAATTGCACTTAC 
SeqC2008 Tao-1 locus sequencing GTATTGGCCCTCGTCCAT 
SeqC2401 Tao-1 locus sequencing GATTAGAAGTCACTCGGG 
SeqC2801 Tao-1 locus sequencing AAAGGCGATTCCGGTTAG 
SeqC3201 Tao-1 locus sequencing CAGCTGCTTTTTGGCCAG 
SeqC3613    Tao-1 locus sequencing AGCTCCGGCTTTCGCCTAT 
SeqC4001 Tao-1 locus sequencing GCCGAAAAAGAACGCACG 
SeqC4401 Tao-1 locus sequencing CCAAAACGCAAACGCGAA 
SeqC4803 Tao-1 locus sequencing ACGAATCCGCACTGGCTA 
For4 Tao-1 locus sequencing ATTCGGGGGATCGTTACGTCG 
Rev4 Tao-1 locus sequencing CTCGCCGCTAAGCATTATGC 
SeqD1902 Tao-1 locus sequencing AGGTGGCGCGAGAAAAGC 
SeqD1519 Tao-1 locus sequencing GACTATGACTATGATGCG 
SeqD1106 Tao-1 locus sequencing CACCAAGTGCTTCGCGAT 
SeqD718   Tao-1 locus sequencing TGCATAGTTGTAAATAAC 
SeqD304 Tao-1 locus sequencing AACTAATTGAATTGAGCG 
RB+NR1(genomic) Exelixis deficiency 

sequencing 
ATGTGGACTACGCTGATCCTCCGG 

XP+(genomic) Exelixis deficiency 
sequencing 

GGACATCCCGACCATTCTGGCC  

RB+ Exelixis deficiency 
sequencing 

ACCACGGACATCACCACCCG 

RB3'+ Exelixis deficiency 
sequencing 

TGCATTTGCCTTTCGCCTTAT 

XP5'+ Exelixis deficiency 
sequencing 

AATGATTCGCAGTGGAAGGCT 

 

23 



MATERIALS AND METHODS 

2.7.2. Extraction of genomic DNA  

8-15 freshly hatched flies were collected and frozen at –80°C. After a minimum of 

five minutes, the flies were added with 200 ml of Buffer A (100mM Tris-HCl, pH 7.5; 

100mM EDTA; 100mM NaCl; 0.5% SDS) and smashed by a 200μl tip. After the 

mixture got homogeneous, another 200 ml of Buffer A was added. After 30 minute 

incubation at 65°C, 800ml of 1:2.5 [5M] KOAc: [6M] LiCl mixture was added, 

followed by ten minutes precipitation on ice. After centrifuging at 14000 rpm for 15 

minutes, the supernatant was transferred to new tubes. Approximately 7/10 volume 

ethanol was added before centrifuging at 14000 rpm for another 15 minutes. The 

supernatant was removed and the pellet was washed with 1ml of cold ethanol, before 

centrifuging at 14000 rpm for five minutes. The supernatant was removed and the 

pellet was suspended in 100ml of TE. Equal volume of phenol was added to the 

sample and mixed vigorously. After centrifuging, the top (aqueous) phase was 

transferred to new tubes. The same procedure was applied with phenol: chloroform: 

isoamyl alcohol (25:24:1) and chloroform: isoamyl alcohol (24:1) subsequently. The 

volume of the recovered sample was noted. 1/10 volume of NaOAc (3M, pH 5.2) and 

2X volume of ethanol were added and followed by a centrifuging at 14000 rpm for 15 

minutes. The ethanol was removed and 1ml of cold 70% ethanol was added, followed 

by centrifuging at 14000 rpm for five minutes. Finally, after the ethanol was removed, 

the pellet was dried completely and resuspended in 50μl of water, which can be used 

as the template for PCR reactions.  

2.7.3. Genomic PCR  

1μl of genomic DNA (approximately 10ng) and 1μl of each primer were used in 25μl 

PCR reaction. The other components of the PCR reaction were 1μl of 10mM dNTP, 

0.5μl of High Fidelity Taq Polymerase and 2.5μl 10X (Mg2+ containing) Buffer 3 

(Expand Long Template PCR System, Roche). The reaction was carried out in 

Mastercycler gradient (Eppendorf). The PCR program included a denaturation step of 
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two minutes at 94℃ followed by 30 cycles: 15 seconds at 94℃,15 seconds at 50℃, 

the annealing temperature and a few minutes at 68℃, the extension temperature, 

dependent on the length of the amplified fragment. The amplification speed was 

calculated as approximately 1kb per minute. The program ended with a final 

extension of 10 minutes at 72℃. If the amplified fragment is longer than 5kb, after 

ten cycles the extension time was prolonged with 20 seconds per cycle in last 20 

cycles. PCR products were analysed in a 1% agarose gel. For sequencing analysis, 

PCR products at expected size were purified by DNA and Gel band Purification Kit 

(GE Healthcare)  

2.7.4. Sequencing 

For sequencing, the DNA template of approximately 200ng and 1μl of primer were 

added to the buffer and the Big Dye provided by the Big Dye Terminator v3.1 Cycle 

Sequencing Kit. The reaction program included one minute in 94°C and 90 cycles as 

following: 30 seconds at 94°C, 15 seconds at 50°C and four minutes at 60°C. The 

sequencing analysis was done by the Sequencing Facility Centre, University of 

Cologne. Sequencing results were aligned by Basic Local Alignment Search Tool 

(BLAST) provided by The National Centre for Biotechnology Information (NCBI) 

(http://www.ncbi.nlm.nih.gov/BLAST)   

2.8. Northern blot analysis 

Ovaries from 15 females were dissected in Graces medium and immediately frozen in 

liquid nitrogen. Total RNA was extracted by RNeasy Mini Kit (QIAGEN). 2 to 5μl of 

RNA about 10μg was mixed with 2.5 μl 10X MOPS [ 0.2 M MOPS (Sigma), 50mM 

Sodium Acetate (Roth), 10mM EDTA, pH 7.0], 4μl of 37% Formaldehyde (Roth), 

10μl of Formamid (Roth), 1μl of Ethidium Bromide (Sigma). The mixture was 

incubated at 65°C for ten minutes and kept on ice with the addition of 2.5μl RNA 

loading buffer. The RNA is separated in 1.5% Agarose gel containing 1X MOPS and 

6.66% Formaldehyde. The electrophoresis was done in 1X MOPS buffer at 40 to 50 V 
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for three to four hours. The gel was photographed together with a ruler. After one time 

wash of DEPC water, 20 minutes in 0.05N NaOH and 20X SSC buffer, the gel was 

ready for transfer. The nylon membrane was rinsed with DEPC water and washed for 

five minutes in 10X SSC. RNA in the gel was transferred to the membrane in 20X 

SSC over night. On the next day the membrane was rinsed in 6X SSC for five minutes 

and subject to UV-crosslinking for six minutes. Pre-hybridisation required at least 

three hours of the membrane incubated in the hybridisation solution at 48℃. The 

32P-labeled probe for the hybridisation prepared from the fragment of Tao-1 full 

cDNA digested by BamH1-EcoR1 was added to the hybridisation solution and 

allowed to hybridise over night at 48℃. On the next day, the probe was removed and 

the blot was washed three times 20 minutes at 68℃ in a series of mixtures of 2XSSC/ 

0.1%SDS, 1XSSC/ 0.1%SDS and 0.5XSSC/ 0.1%SDS. The blot membrane was 

covered with Saran Wrap and exposed to films.   

2.9. Western blot analysis 

Ovaries from 3-8 females were dissected in Graces medium and immediately frozen 

in liquid nitrogen. The ovaries were homogenised in 95℃ preheated 1x SDS buffer 

(60mM tris-Cl pH 6.8, 6.4% glycerol, 2% SDS, 100mM DTT, Bromophenol blue) 

calculated by approximately 15ml per female followed by two times of the following 

procedures: three minutes in sonicfication bath, vortexing, three minute incubation at 

95℃. The ovary extracts were then centrifuged at 14000 rpm for one minute. The 

aliquots of the supernatant were stored in -20℃ and ready for the electrophoresis. 

The ovary extracts were loaded into the 15% Anderson gel (For the separation gel: 

15ml of 30% Acrylamide; 2.58ml of 1% bis-Acrylamide; 7.5ml of 1.5M Tric pH 8.8; 

4.74ml of water; 150µl of 10% Ammonium Persulphate and 15µl of TEMED. For the  

stacking gel: 2.5ml of 30% Acrylamide; 2.0ml of 1% bis-Acrylamide; 1.875ml of 

1.5M Tric pH 6.8; 8.625ml of water; 150µl of 10% Ammonium Persulphate and 15µl 

of TEMED). A gradient of loading amounts were made for each ovary extract. The 

electrophoresis was done at 100 Volt and 250 Volt for the stacking and separation gel 
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respectively. Proteins were transferred to Immobilon P transfer Membrane (Millipore) 

at about 7 V/cm over night in cold transfer buffer (10% methanol in 10mM 

CAPS-NaOH pH 11). Prestained Standards protein ladder (Invitrogen) was used as 

molecular weight marker. The blot was blocked using 5% dry milk in 0.1% PBST, and 

incubated with anti-Oskar antibody diluted 1:1000 in the mixture of 5% dry milk in 

0.1% PBST. The membrane was washed with 0.1% PBST and incubated with HRP 

coupled goat anti-rabbit secondary antibody diluted 1:2000 in a mixture of 5% dry 

milk in 0.1% PBST. Signals were detected by ECL chemiluminescent detection kit 

(GE health care). The same blot was incubated in the stripping buffer (62.5mM tris-Cl 

pH 6.8; 100mM mercaptoethanol; 2% SDS) at 65℃ for half an hour. Anti-actin 

(Sigma) antibody diluted 1: 2000 for incubation was added. The incubation and 

detection were done as described above.   
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3. RESULTS 

3.1. Cytoskeletal organisation in the wild type oocyte from stage 

9/10a to stage 10b 

3.1.1. Optimal markers to detect cytoskeletal elements and a combination 

of multiple angles to analyse the oocyte 

To analyse the cytoskeleton of the oocyte, several markers were tested. To examine 

microtubule (MT) organisation, two types of antibodies were compared. One widely 

used antibody, which recognises all forms of α-tubulin, gave a strong signal in the 

follicle cells and in the oocyte (Fig. 2A). In contrast, another antibody that recognises 

specifically the tyrosinated form of α-tubulin (Wehland et al., 1983) revealed a strong 

signal only in the oocyte, while the signal intensity in the surrounding follicular 

epithelium was very low (Fig. 2B). As dynamic MTs are thought to be tyrosinated, 

while stable MTs are detyrosinated (Idriss, 2000), this result suggests that the majority 

of the MTs in the oocyte are more dynamic and less stable than the majority of the 

MTs in the follicular epithelium. It had to be noted that some of the MTs stained by 

the anti-α-tubulin antibody in the anterior centre of the oocyte were not detectable by 

the anti-tyrosinated α-tubulin antibody (Fig. 2C, arrows). This absence of staining 

raises the question of whether it reflects the inability of the anti-α-tubulin antibody to 

penetrate into the centre of the oocyte, or whether the central MTs are not tyrosinated. 

The answer to this question is not yet clear. Nevertheless, as the anti-tyrosinated 

α-tubulin antibody allowed a high resolution for visualising the MTs in the oocyte due 

to the absence of interfering signal from the epithelial cells, this antibody was 

subsequently used to label MTs in the oocyte in the following studies. 
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Fig. 2 Markers to detect cytoskeletal elements and multiple angles to analyse the oocyte (A-C) 
Sagittal section of a wild type stage 9 oocyte stained with an antibody recognising all forms of 
α-tubulin together with an antibody that recognises only the tyrosinated form of α-tubulin. (A, B) 
Single channels for the staining as indicated. (C) Overlay of two channels. Some of the MTs stained 
by the anti-α-tubulin antibody (green) in the anterior centre of the oocyte are not detectable (arrows) 
by the anti-tyrosinated α-tubulin antibody (red). (D, E) Sagittal sections of stage 10a oocytes stained 
for γ-tubulin. (D) In wild type, γ-tubulin is enriched at the entire oocyte cortex. (E) In γTub37C1 null 
mutant, the signal in the oocyte cortex is greatly reduced. (F) Sagittal section of a stage 10a oocyte 
expressing Dgrip75 GFP fusion protein by maternal-α-tubulin:Gal4 stained with an antibody 
recognising GFP. The fusion protein is enriched at the entire oocyte cortex. (G) Scheme depicts the 
multiple angles for analysing a stage 10a oocyte and the surrounding follicular epithelium. The blue 
plane represents the optical sagittal section; the pink plane represents the manual cross section; the 
yellow plane represents the optical section at the oocyte cortex. The dark lines represent the four 
structures observed from the optical section at the oocyte cortex in a direction from anterior to 
posterior: (a) the inside of the oocyte, (b) subcortical and (c) cortical layers of the oocyte and (d) the 
follicle cells. In the following studies, for sagittal sections and cortical sections egg chambers are 
oriented that anterior is left and posterior is right. Scale bar: 25 µm 
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The γ-tubulin ring complex (γTuRC), which consists of γ-tubulin, several Grips 

(γ-tubulin ring proteins) and GCPs (γ-tubulin complex proteins), has been shown to 

localise to the MT minus-ends and to mediate MT nucleation (Wiese and Zheng, 

2006). An antibody recognising γ-tubulin was used to investigate the localisation of 

MT minus-ends. Fig. 2D shows that γ-tubulin accumulates along the entire oocyte 

cortex (Cha et al., 2002). To verify the specificity of the γ-tubulin detection, the null 

mutant of γ-tubulin37C, γTub37C1, was analysed (Schnorrer et al., 2002). In 

Drosophila two γ-tubulins are known, γ-tubulin23C and 37C. In the absence of 

γ-tubulin37C, γ-tubulin23C provides the necessary γ-tubulin function required for 

mid-oogenesis (Schnorrer et al., 2002; Tavosanis and Gonzalez, 2003). In γTub37C1 

mutant oocyte, the signal of γ-tubulin at the cortex was greatly reduced, indicating 

that the detection by the anti-γ-tubulin antibody is specific (Fig. 2E). In addition to 

γ-tubulin, another component of γTuRC, Dgrip 75, was also examined. Dgrip 75 is a 

Drosophila γ-tubulin ring complex protein of 75 kDa (Schnorrer et al., 2002). To 

investigate the localisation of Dgrip 75, GAL4/UAS system was used, which is wildly 

used to drive tissue-specific expression of genes in Drosophila (Brand and Perrimon, 

1993; Rorth, 1998). When the Dgrip 75 GFP fusion protein was expressed in the 

germline by maternal-α-tubulin:Gal4-VP16 line, the protein, like γ-tubulin, showed a 

cortical enrichment in the oocyte (Fig. 2F). This result confirms the existence of the 

γTuRC at the oocyte cortex. 

Phalloidin is a group of toxins from poisonous mushrooms, known as phallotoxins. It 

binds to actin filaments (F-actin) and prevents the filament depolymerisation. This 

property allows the fluorescent derivatives of phalloidin to be used to detect actin 

filaments in fixed cells (Cooper, 1987). Below F-actin in the oocytes was visualised 

by rhodamine conjugated phalloidin.  

The analysis of the cytoskeletal organisation of the oocyte was optimised not only by 

the selection of markers, but also by using different observation angles. 

Conventionally, optical sagittal sections made by the confocal microscope are used to 

analyse oocytes (Fig. 2G). To better understand the spatial organisation of the oocyte 

cytoskeleton, we decided to examine the oocyte from different angles. We first made 
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manual cross sections of individual egg chambers stained with markers for the actin 

and the MT cytoskeletons. To this end, a method developed to section Drosophila 

embryos was adopted. In these sections, the oocyte was cut perpendicular to the 

anterior-posterior (A-P) axis; and the cutting line was located in the central part of the 

oocyte along the A-P axis (Fig. 2G). Furthermore, we made optical sections at the 

level of the oocyte cortex by the confocal microscope. These sections cut successively 

four structures in a direction from anterior to posterior: (a) the inside of the oocyte, (b) 

subcortical and (c) cortical layers of the oocyte, and (d) the follicle cells (Fig. 2G). 

Finally, 50 sections, ranging from the centre to the cortex of the oocyte, were 

projected into a single layer.  

To summarise, in this study we have selected optimal markers to detect the 

cytoskeletal elements and combined multiple angles to examine the oocyte. These 

improvements allowed a careful re-examination of the cytoskeletal organisation of the 

oocytes. 

3.1.2. Organisation of the oocyte cytoskeleton at stage 9/10a 

We first examined cross sections of stage 9/10a oocytes triple stained for γ-tubulin, 

F-actin and tyrosinated α-tubulin. A continuous layer of γ-tubulin was detected at the 

cortex (Fig. 3A and C), which was consistent with previous descriptions, confirming 

the cortical localisation of the MT minus-ends. A dense MT network, with a gradient 

from high to low density was detected from the cortex to the interior (Fig. 3A and D). 

To better describe the spatial distribution of the different cytoskeletal elements, the 

intensity of the fluorescent signal from the cortex to the interior was measured. To 

reach a statistically meaningful quantification, six samples have been analysed. 

Further, measurements starting from various cortical locations in one sample were 

compared, which gave similar results. A representative example of a stage 10a cross 

section is shown in Fig. 3A and A´. This analysis showed that the main part of the 

MTs was interior to the γ-tubulin layer, with only a narrow overlap between these two 

signals at the cortex (Fig. 3A and A´). Notably, the cortical region stained for 
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γ-tubulin overlapped with the region stained for F-actin, indicating that MT 

minus-ends were in proximity to actin (Fig. 3A and A´). The confocal picture of cross 

sections revealed that within this cortical layer, these two elements displayed 

differences in their structures: γ-tubulin formed a continuous homogenous layer; 

while F-actin was more filamentous and had several gaps (Fig. 3B, arrow heads). 

Next, we analysed the stained oocytes by optical confocal sections at the cortex level. 

In these sections, the γ-tubulin signal appeared homogeneous without a defined 

structure (Fig. 3F and F´´). MT formed a network, within which individual MTs were 

interweaving in random orientation (Fig. 3F and F´´´). Interestingly, the actin 

cytoskeleton revealed a well defined arrangement. F-actin was organised in long 

structures that were aligned in parallel (Fig. 3F, F´ and Fig. 4D, D´). These long 

structures have not been analysed at an ultrastructural level, and it is unknown how 

the actin filaments are crosslinked. As their organisation was reminiscent of bundles, 

we called these structures “actin bundles”. These bundles were thin at the cortex, and 

became thicker towards the oocyte interior (Fig. 4D), suggesting that they tend to fuse 

or twist.  
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Fig. 3 
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Fig. 3 Architecture of the oocyte cytoskeleton (A-H) Cross sections of oocytes triple stained for 
actin, γ-tubulin and tyrosinated α-tubulin. (A) Stage 10a oocyte stained for actin (red), γ-tubulin 
(green) and tyrosinated α-tubulin (blue). Inset shows the marked region in higher magnification. (A’) 
Graph shows fluorescence signal intensities along the dash line from the oocyte cortex to the interior. 
Analysis of five other stage 10a egg chambers revealed the same distribution of signal intensities 
from the cortex to the centre of the oocyte. (B, C, D) Single channels for the staining as indicated. (B) 
Cortical actin is filamentous and discontinuous. Arrowheads point to the gaps in the actin layer. (C) 
γ-tubulin is restricted at the cortex as a continuous layer. Cutting occasionally affects the staining in 
the region of the follicular epithelium, where the needle penetrates the egg chamber explaining the 
absence of γ-tubulin staining in the uppermost follicle cells. (D) MTs form a continuous network 
with density decreasing from the cortex to the interior. (A, A’) γ-tubulin layer overlaps with the 
cortical actin layer and locates exterior to the MT network, having a narrow overlapping. (E-H) 
Stage 10b oocyte stained as indicated. (E’) Measurements of fluorescence signal intensities along 
the dash line from the oocyte cortex to the interior. The shown graph is representative for seven 
analysed samples. (I-K) Comparisons of indicated fluorescence signal intensities between stage 10a 
and stage 11 (F, I) Cortical actin at stage 11 oocyte becomes thinner. (H, J) MTs are organised into 
parallel arrays in subcortical regions (Arrow heads in H). (G, K) γ-tubulin displays a broader and 
more diffuse distribution in subcortical regions. (F) Optical section at the cortex of a stage 10a 
oocyte stained as indicated. (F´) Actin is organised into long bundles. (F´´) γ-tubulin appears 
homogeneous. (F´´´) MTs are interweaving in random orientation. Scale bar: 25 µm 
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Furthermore, the projection of 50 sections was analysed. The projection of the stained 

actin revealed that these actin bundles were predominantly oriented in an 

anterior-posterior direction (Fig. 4B). Surprisingly, the density of the actin bundles at 

the posterior pole was very low (Fig. 4B). Hence, the actin bundling exhibits features 

of an anterior-posterior polarity. During mid-oogenesis, oskar mRNA is localised to 

the posterior, where the translation starts (Riechmann and Ephrussi, 2001). Oskar has 

been proposed to be involved in polarising the MT cytoskeleton in the oocyte 

(Zimyanin et al., 2007). This raises the question of whether Oskar is also involved in 

polarising the oocyte actin cytoskeleton. To address this question, it was examined 

whether the posterior domain of lower density of actin bundles overlapped the Oskar 

protein localisation domain. Egg chambers were double stained for actin and Oskar, 

and projections from these two channels were overlaid. This revealed that the area of 

low actin bundle density at the posterior indeed overlaps with the domain of Oskar 

localisation (Fig. 4B´). Further, it was tested whether Oskar is responsible for the 

different actin organisation at the posterior. Therefore, the actin cytoskeleton 

organisation was examined in females transheterozygous for an oskar null allele, 

oskar54 and a deficiency deleting the oskar locus, which produced no detectable Oskar 

translation (Kimha et al., 1991). The projection of stained actin in this mutant was 

indistinguishable from that of the wild type (Fig. 4E). This result shows that the 

organisation of the actin cytoskeleton at the posterior pole does not require Oskar.  

In addition, the organisation of the MT network was analysed by projection of 

confocal sections in the wild type. The projection of the stained MTs revealed that the 

bulk MTs do not adopt a clear orientation (Fig. 4A). Optical sagittal sections, however, 

revealed a gradient of MT density from anterior to posterior (Fig. 4C), which was 

already described previously (Serbus et al., 2005). 

Taken together, our data suggest that at stage 9/10a the actin cytoskeleton at the 

oocyte cortex is assembled into long bundles and the MT minus-ends reside among 

these bundles. Originating from the cortical minus-ends, MTs are spreading into the 

interior of the oocyte. 
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Fig. 4 Reorganisation of the oocyte cytoskeleton between stage 9/10a and stage 11 (A-E) Stage 
10a oocytes. (A, B, E) Projection of 50 sections from the centre to the cortex of oocytes stained as 
indicated. (A) The projection reveals a MT network with no clear polarity. (B) The projection of 
stained actin reveals that the actin bundles are predominantly oriented in an anterior-posterior 
direction. The density of the actin bundles at the posterior pole is very low. (B´) The same oocyte 
showing Oskar protein localisation (green) together with actin (red) reveals that the region of low 
density of actin bundles coincides with Oskar localisation domain. (E) The projection of the oskar 
mutant oocyte that produces no detectable Oskar protein reveals normal formation of actin bundles 
at the cortex. (C) Sagittal section of a stage 10a wild type oocyte stained for tyrosinated α-tubulin. 
The highest concentration of MTs occurs at the anterior and lateral cortex and lowest concentration 
is present at the posterior pole. The bulk MTs spread from the cortex to the interior of the oocyte. (D) 
Optical section at a stage 10a oocyte cortex stained for actin. (D’) depicts marked region in higher 
magnification. Cortical actin is organised into bundles. These bundles are thin at the cortex, and 
become thicker towards the oocyte interior. (F, G) A stage 10b oocyte double stained for tyrosinated 
α-tubulin and actin. (F) Sagittal section of the tyrosinated α-tubulin staining shows a reorganisation 
of MTs into parallel arrays at the subcortical region. (G) Cortical section of the actin staining and 
(G´) the marked region in higher magnification. Actin bundles disappear and actin is organised into 
patches and small filaments. Scale bar: 25 µm  
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3.1.3. Changes in the oocyte cytoskeleton at stage 10b 

The above described organisation of the MT cytoskeleton changes dramatically at 

stage 10b. MTs form loose and parallel arrays at this stage (Fig. 3H, arrows and Fig. 

4F), indicating the onset of fast ooplasmic streaming (Gutzeit and Koppa, 1982). 

However, it is not clear where the MT minus-ends are located during the fast 

streaming. To address this question, cross sections of stage 10b egg chambers stained 

for the actin and MT cytoskeleton were examined. In total seven samples have been 

analysed. Within each sample the measurements starting from various cortical 

positions have been compared, which gave similar results. A representative example 

is shown in Fig. 3E and E´. At stage 10b, the thin and dense cortical γ-tubulin layer 

was no longer present. Instead, a broader and more diffuse subcortical layer 

developed (Fig. 3E, G and J). Thus, concomitantly with the onset of fast ooplasmic 

streaming and the formation of MT arrays, the MT minus-ends redistribute from the 

cortex to subcortical regions. The finding, that the MT minus-ends are embedded 

within the cortical actin bundles before stage 10b, raised the question of whether the 

change in γ-tubulin localisation was accompanied by structural changes in the actin 

cytoskeleton. To test this, F-actin of the stage 10b oocyte was investigated by cross 

sections and optical cortical sections. Strikingly, at stage 10b the cortical actin became 

thinner (Fig. 3F and I) and the actin bundles disappeared from the cortex (Fig. 4G). 

Instead, actin patches and thin filaments with random orientation were present (Fig. 

4G and G´).  

Thus, corresponding with the onset of fast ooplasmic streaming at stage10b, the actin 

structure at the cortex rearranges and γ-tubulin redistributes. This result raises the 

possibility that the cortical actin organisation is responsible for the change in the 

localisation of the MT minus-ends. 
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3.1.4. Cortical localisation of MT minus-ends is dependent on the actin 

bundling 

To test the hypothesis that the cortical actin organisation is responsible for the change 

in the localisation of the MT minus-ends, we first examined the role of actin bundles 

for the localisation of the MT minus-ends at the cortex during stage 9/10a. To this end, 

we interfered with the bundle formation by treating egg chambers with latrunculinA, 

which inhibits the actin polymerisation by binding to and sequestering actin 

monomers. It has been shown that the treatment of the stage 9/10a oocyte with 

cytochalasin D, which inhibits the actin polymerisation in a similar way as 

latrunculinA, induced fast ooplasmic streaming before stage 10b (Manseau et al., 

1996). However, the underlying mechanism has not been elucidated.   

First it was tested whether treating egg chambers with latrunculinA also resulted in 

premature fast ooplasmic streaming. To this end, latrunculinA in a concentration of 

100μM was injected into the abdomen of wild type females. To visualise the 

streaming in the oocytes, the yolk granules within the ooplasm were traced. To make 

yolk granules visible, Trypan blue dye was injected into the abdomen, which was 

subsequently endocytosed with yolk by the oocyte and marked the yolk granules with 

fluorescence. Then time lapse fluorescence microscopy was performed to analyse the 

endosomes (Gutzeit and Arendt, 1994). In stage 9/10a wild type oocytes, the 

endosomes showed slow movements at multiple locations, which were primarily 

restricted in the anterior half of the oocyte. These movements were orientated to 

different directions (Serbus et al., 2005). After drug injection a strong increase in the 

speed of the endosome movement (6 out of 6) was observed. Moreover, the 

movement appears unidirectional (Fig. 5B and B´). Thus, latrunculinA treatment 

induces premature fast ooplasmic streaming in the stage 9/10a oocyte. 
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Fig. 5 Endosome movements in stage 9/10a oocytes (A-C) Fluorescent yolk endosomes were 
imaged in stage 9/10a egg chambers. Each panel is a projection of ten images from one focal plane 
acquired at 15-second intervals (see Materials and Methods). Moving endosomes appear as 
elongated streaks, while the non-moving endosomes appear as spots. (A´-C´) The streaks are 
outlined by lines and the direction is indicated by arrows. (A, A´) In the wild type stage 9 oocyte, 
endosomes show slow movements at multiple locations in the anterior half of the oocyte. These 
movements are oriented to different directions. (B, B´) In a stage 10a oocyte after latrunculinA 
injection, endosomes show a fast and unidirectional movement. Note the spiral pattern formed by 
the endosomes movement is orientated in parallel to the dorsal-ventral axis. This movement spans 
the entire oocyte from the posterior to the anterior. (C, C´) In a stage 10a oocyte overexpressing 
GFPactin5C, a fast and unidirectional endosome movement is formed. The moving orientation is in 
perpendicular to the dorsal-ventral axis. Scale bar: 25 µm 

 

The next step was to test whether the organisation of the cortical actin cytoskeleton is 

affected after the latrunculinA treatment. To assess this, dissected ovaries from the 

wild type were incubated in medium containing a lower concentration of latrunculinA 

(2.8μM), and then fixed and stained for the cytoskeleton markers. This treatment did 

not induce a fully penetrant phenotype regarding the formation of MT arrays 

indicative of the fast streaming, probably due to the lower concentration and shorter 

incubation time of the drug than that in the injection treatment. Statistical analysis 

revealed that in 45% (n=33) of the treated stage 10a egg chambers the subcortical MT 

arrays were formed (Fig. 6C); while in 40% the MT cytoskeleton appeared unaffected 
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(Fig. 6A). Importantly, analysis of the actin cortex revealed that the actin bundling 

was not affected in those oocytes with normal MT organisation (Fig. 6B). In contrast, 

in those oocytes displaying the formation of MT arrays at the subcortical region, the 

actin bundles disappeared from the cortex (Fig. 6D). The actin cortex was not 

completely vanished; instead, it appeared like short filaments or patches, which 

resembled the actin cortex in stage 10b wild type oocytes (compare Fig. 6D and Fig. 

4G). Thus, the presence or absence of the actin bundles correlates perfectly with the 

absence or presence of fast ooplasmic streaming, strongly suggesting that the actin 

bundles are required to prevent fast ooplasmic streaming at stage 9/10a.   

To test whether the destruction of actin bundles led to a premature redistribution of 

MT minus-ends from the cortex to subcortical regions, cross sections of the egg 

chambers treated with latrunculinA were analysed. To better characterise the γ-tubulin 

distribution pattern, a quantitative analysis has been applied: Multiple cross sections 

stained for γ-tubulin were included. Within each sample, γ-tubulin signals starting 

from different cortical positions to the interior were measured. The plotted results 

revealed maximal signal intensities restricted within a certain area of the cross section. 

The width of the area with the maximal signal intensities was calculated. For each 

sample, the average value of five different measurements was also calculated. In 

addition, the average value for all analysed samples was calculated. This procedure 

was applied in the following studies to analyse the γ-tubulin distribution in cross 

sections. After latrunculinA treatment (2.8μM), eight samples exhibiting the 

formation of MT arrays, were analysed. These revealed that when the MT arrays 

indicative of fast ooplasmic streaming were formed, γ-tubulin was distributed in a 

region approximately three times broader than the narrow region observed in the 

untreated wild type (Fig. 7C and D). This indicates that γ-tubulin relocates from the 

cortex to the subcortical regions when MT arrays are formed. Thus, when the cortical 

actin bundles are disrupted due to latrunculinA treatment, γ-tubulin redistributes to 

subcortical regions prematurely at stage 9/10a. This suggests that the actin bundles are 

required to anchor the MT minus-ends at the cortex. 
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Fig. 6 Regulation of actin and MT organisation Stage 10a egg chambers double stained for 
tyrosinated α-tubulin and actin. Each row depicts the same oocyte showing MTs in a sagittal section 
(A, C, E, G, I, K) and actin in a cortical section (B, D, F, H, J, L). (A-D) Egg chambers treated with 
latrunculinA. (A, B) In 40% of the drug treated oocytes MT organisation and actin bundling is not 
altered. (C, D) In 45% of the drug treated oocytes MTs are organised in subcortical arrays, and actin 
bundles are destroyed. (E, F) In an egg chamber expressing GFP-actin5c under control of 
maternal-α-tubulin:Gal4, MTs form subcortical arrays, and actin bundle formation is disrupted. (G, 
H) In chic mutant oocyte, MT arrays form prematurely, and actin bundles are absent. (I, J) capu and 
(K, L) spire mutants show premature formation of MT arrays, but actin bundles are not affected. 
Scale bar: 25 µm 
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To confirm the role of actin bundles for the localisation of MT minus-ends 

independently of drug treatment, the actin organisation was altered by overexpression 

of actin5C that was tagged to GFP. When the transgene was expressed by 

nanos:Gal4-VP16 that gives a high level expression in the female germline starting 

from early stages, mitotic divisions in the germline were perturbed. This suggests that 

overexpression of GFPactin5C interferes with the formation of the contractile ring 

during germ cell cytokinesis (Roeper et al., 2005). To test whether GFPactin5C 

expression also interferes with the formation of cortical actin bundles, the early 

defects in the germline have to be circumvented, so that the oogenesis can proceed 

and the oocyte can develop. Therefore, another promoter, 

maternal-α-tubulin:Gal4-VP16 was tested, which is also expressed in the germline, 

but at a lower level in the early stages than that of nanos:Gal4. The expression driven 

by maternal-α-tubulin:Gal4-VP16 did not affect germline cell divisions and allowed 

the development of oocytes with a normal size. When the expression was induced at 

25℃, all examined stage 10a oocytes (n=25) formed subcortical MT arrays indicating 

the onset of premature fast ooplasmic streaming (Fig. 6E). The fast streaming was 

confirmed by the time lapse microscopy of endosomes (Fig. 5C and C´). Consistent 

with this, the analysis of cross sections revealed that when the premature MT arrays 

formed, γ-tubulin distributed in a broader region, indicating the relocation from the 

cortex into subcortical regions (Fig. 7E and F). It was next asked whether the 

relocation of γ-tubulin was correlated with a change in actin organisation at the cortex. 

When GFPactin5C expression was induced in the oocyte, the formation of cortical 

actin bundles was disrupted, and the actin cortex resembled that of the wild type stage 

10b oocyte (Fig. 6F). Thus, overexpression of GFPactin5C in the oocyte interferes 

with the actin bundle formation at the cortex, which is correlated with the γ-tubulin 

relocation from the cortex. The result supports the hypothesis that actin bundles are 

required to anchor the MT minus-ends at the cortex. 
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Fig. 7 Regulation of the cortical anchoring of MT minus-ends Cross sections of stage 10a egg 
chambers double stained for tyrosinated α-tubulin (A, C, E, G, and H) and γ-tubulin (B, D, F, H and 
J). (B’, D’, F’, H’ and J´) Plots of the γ-tubulin signal intensities along the dotted line (11 o’clock) 
from the exterior to the interior of the oocyte shown in corresponding cross sections. The full width 
at half maximum (FWHM) describes the width of the distribution curve (see Materials and 
Methods), and the black bar indicates where the value is achieved. The left chart next to the diagram 
shows the average FWHM value of five measurements achieved along lines at four other locations 
(3, 6, 9, 12 o’clock) of the shown cross section. The average FWHM value of all analysed samples 
from corresponding genotypes or treatment is shown in the right chart. (A, B) In wild type MT 
forms a dense network at the cortex (A) and γ-tubulin is restricted as a continuous layer at the cortex 
(B, B´). In egg chambers treated with latrunculinA (C, D), overexpressing GFPactin5C (E, F), of 
capu mutants (G, H) and chic mutants (I, J), the same phenotype is observed: The MTs are 
reorganised into subcortical arrays and γ-tubulin relocates from the cortex to a broad subcortical 
region. Scale bar: 25 µm 
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In summary, interfering with the actin bundle formation either by overexpression of 

GFP-actin or by actin inhibitory drug treatment leads to a premature redistribution of 

γ-tubulin from the cortex to subcortical regions and the onset of premature fast 

ooplasmic streaming. These findings indicate that actin bundling at the cortex of the 

stage 9/10a oocyte is essential for anchoring the MT minus-ends and for the 

repression of fast ooplasmic streaming. 

3.2. The oocyte cytoskeletal organisation in the mutants affecting 

actin-regulatory proteins 

It was the next step to determine the genes required for regulating actin bundle 

formation. A number of mutations in actin-regulatory proteins have been shown to 

induce cytoskeleton defects in the oocyte. Taking them as candidates, cross sections 

and optical cortical sections were made to examine the MT and the actin organisation, 

respectively, in these mutants. 

3.2.1. Profilin is required for actin bundle formation 

The chickadee (chic) gene of Drosophila encodes Profilin, a protein that binds actin 

monomers (Cooley et al., 1992). A series of chic mutants have been shown to display 

premature fast ooplasmic streaming, with the frequency dependent on the strength of 

the allele. The chic1320 allele has dramatically reduced expression of Profilin in the 

germline (Verheyen and Cooley, 1994) and showed a highly penetrant premature 

streaming phenotype (Manseau et al., 1996). Our analysis of this allele confirmed the 

presence of MT arrays at stage 10a indicative of premature fast ooplasmic streaming 

(Fig. 6G). Additionally, cross sections show that γ-tubulin redistributed to a broader 

subcortical region at stage 10a, when the MT arrays were prematurely formed (Fig. 7I 

and J). Importantly, in all chic mutant oocytes, in which the formation of MT arrays 

was unambiguously detected, the cortical actin bundles were disrupted (Table1). The 

actin cortex of the stage 9/10a chic oocyte resembled that of the wild type stage 10b 
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oocyte when the fast streaming is started (Fig. 6H). This indicates that Profilin is 

required for actin bundle formation at the cortex of stage 9/10a oocytes.  

3.2.2. Capu and Spire act downstream of actin bundling for MT anchoring 

at the cortex 

The cytoskeleton was also examined in cappuccino (capu) and spire (spir) mutant 

oocytes, in which the premature fast streaming phenotype was observed in high 

penetrance (Emmons et al., 1995; Manseau et al., 1996; Theurkauf, 1994). Capu 

contains Formin homology (FH) domains (Emmons et al., 1995), which is involved in 

organising the actin cytoskeleton (Evangelista et al., 1997). Spire contains a WASP 

homology 2 (WH2) domain, which is implicated in actin binding (Machesky and 

Insall, 1998; Miki and Takenawa, 1998; Wellington et al., 1999). Recently, it has 

been shown that Spire is able to nucleate actin filaments in vitro (Quinlan et al., 2005). 

These findings suggest that Capu and Spire may be involved in the formation of 

cortical actin bundles in the oocyte. On the other hand, the FH domain is known to 

bind MTs in vitro and in vivo (Wallar and Alberts, 2003). Consistent with this, Capu 

has been shown to crosslink actin filaments and MTs in vitro, and this crosslinking 

activity is modulated by binding to Spire (Quinlan et al., 2007; Rosales-Nieves et al., 

2006). Therefore, an alternative hypothesis is that Capu and Spire crosslink MTs to 

actin bundles at the oocyte cortex. To distinguish between these two possibilities, the 

oocyte cytoskeleton was examined in these two mutants. 

 

 wild type chic capu spire 
Actin bundles detected  89% 0% 90% 86% 
No actin bundles detected 11% 100% 10% 14% 
The number of analysed samples  45 24 50 51 

Table 1 Actin bundle formation in stage 10a oocytes Egg chambers were double stained for 
Actin and tyrosinated α-Tubulin. For capu, chic and spire mutants only those egg chambers were 
counted, in which the formation of MT arrays indicative of fast ooplasmic streaming was 
unambiguously detected.  
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In stage 9/10a capu and spire mutant oocytes, subcortical MT arrays were detected as 

expected, indicating the onset of fast streaming (Fig. 6I, K and Fig. 7G). Furthermore, 

γ-tubulin was detected in a broader subcortical region (Fig. 7H), indicating the 

redistribution of γ-tubulin from the cortex. The above described data have 

demonstrated a good correlation between the cortical actin bundles and cortical 

γ-tubulin anchoring: when the γ-tubulin is relocated from the oocyte cortex, the actin 

bundles are disrupted. To test whether this is also the case in capu and spire mutants, 

the actin cortex was analysed in mutant oocytes in which the presence of MT arrays 

was clearly determined. Strikingly, in most of mutant oocytes that displayed the MT 

phenotype unambiguously, actin bundling appeared as normal as in stage 9/10a wild 

type oocyte (Fig. 6J, L and Table1). Thus, Capu and Spire are not involved in actin 

bundling. This result suggests that the premature γ-tubulin redistribution phenotype 

observed in capu and spire mutants is downstream of the actin bundle formation.  

 

 
Fig. 8 Cortical localisation of GFP-Capu and GFP-SpireD Cross sections of egg chambers 
double stained for tyrosinated α-tubulin (A-D) and GFP (E-H) of indicated stages. GFP-Capu and 
GFP-SpireD are expressed in the germline by maternal-α-tubulin:Gal4, and the localisation of the 
fusion protein is detected with an antibody recognising GFP. (A, B) MT staining reveals normal MT 
organisation at stage 10a. (C) At stage 10a after latrunculinA treatment and (D) at stage 10b, 
subcortical MT arrays are formed. (E, F) At stage 10a localisation of GFP-SpireD (E) and 
GFP-Capu (F) is enriched at the cortex. (G, H) After the onset of the fast ooplasmic streaming at 
stage 10a with latrunculinA treatment or at stage 10b, the cortical enrichment of GFP-Capu and 
GFP-SpireD does not change. Scale bar: 25 µm 
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This observation favors the possibility that Capu and Spire crosslink MTs to actin 

bundles at the oocyte cortex. The premature γ-tubulin redistribution and the onset of 

fast streaming observed in the mutants may be the consequence of impaired MT 

anchoring within the cortical actin bundles. In support of this view, Spire and Capu 

have been shown to be enriched at the stage 9/10a oocyte cortex (Quinlan et al., 2007; 

Rosales-Nieves et al., 2006). This finding raised the possibility that the anchoring of 

MT minus-ends at the cortex and the inhibition of fast ooplasmic streaming was 

controlled at the level of the cortical localisation of Capu and Spire. The displacement 

of these two proteins from the cortex at stage 10b might result in the loss of MT 

minus-end anchoring, and thereby induce fast streaming. To test this, GFP-Capu and 

GFP-Spire localisation in the oocyte was examined by cross sections of oocytes. 

Consistent to previous studies, at stage 10a GFP-Capu and GFP-Spire was restricted 

at the oocyte cortex (Fig. 8E and F). At stage 10b when MTs reorganised into 

subcortical arrays, GFP-Capu was still found to be restricted at the cortex (Fig. 8D 

and H). It was next asked whether there is a displacement of Capu and Spire after the 

induction of premature fast streaming. Stage 10a oocytes were treated with 

latrunculinA. In the treated oocyte with the formation of MT arrays, GFP-Spire was 

still restricted to the oocyte cortex (Fig. 8C and G). Thus, there is no difference in the 

Capu and Spire localisation before and after the onset of fast ooplasmic streaming. 

This suggests that the regulation of Capu and Spire localisation is not accounting for 

the γ-tubulin relocation. Other mechanisms, for example, the regulation of Capu and 

Spire activities, may thus be considered to modulate the MT anchoring within the 

cortical actin bundles.  

3.2.3. Cortical actin bundling is independent on the Capulet, Swallow and 

Moesin functions 

The cytoskeleton in capulet (cap), Drosophila moesin (Dmoe) and swallow (swa) 

mutants was also investigated. Cap encodes the Drosophila homologue of 

cyclase-associated protein (CAP) (Baum et al., 2000). CAPs have been shown to 
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inhibit the actin polymerization by sequestering actin monomers (Freeman et al., 1995; 

Gieselmann and Mann, 1992; Gottwald et al., 1996). Dmoe is an ezrin–radixin–

moesin (ERM) protein (McCartney and Fehon, 1996), which acts as a cross-linker 

between plasma membranes and the actin cytoskeleton (Tsukita et al., 1997). Swa is a 

unique protein only found in Drosophila (Huang et al., 2000) and has been shown to 

associate with Drosophila homolog of Dynein light chain (Schnorrer et al., 2000). In 

cap, Dmoe and swa mutants, ectopic actin clumps accumulate in the oocyte, 

indicating their roles in regulating the actin organisation of the oocyte (Baum et al., 

2000; Jankovics et al., 2002; Meng and Stephenson, 2002; Polesello et al., 2002).  

In germline clones of the null allele of capulet, cap10, ectopic actin clumps in the 

stage 10a oocytes were observed (Fig. 9A), confirming the previous finding (Baum et 

al., 2000). Nevertheless, the actin bundles at the oocyte cortex appeared 

indistinguishable from that in the wild type (Fig. 9B). Similarly, the actin bundles 

were not affected in Dmoe and swa mutant oocyte either, in which ectopic actin 

clumps were present (Fig. 9C and D and data not shown). Thus, the cortical actin 

bundling is independent of the Capulet, Swallow and Moesin function. This result 

suggests that the cortical anchoring of the MT minus-ends is not affected in these 

mutants. Consistent with this finding, the premature fast streaming phenotype has not 

been reported in these mutants (Baum et al., 2000; Jankovics et al., 2002; Meng and 

Stephenson, 2002; Polesello et al., 2002). In conclusion, our data show that Profilin is 

required for the actin bundle formation in the stage 9/10a oocyte cortex. Capu and 

Spire act downstream of the bundle formation for regulating the anchoring of MT 

minus-ends at the cortex, probably by their crosslinking activities between actin and 

MTs. The crosslinking activity prevents the premature onset of fast ooplasmic 

streaming. Capulet, Swallow and Moesin are neither involved in the bundle formation 

nor in inhibition of premature fast ooplasmic streaming. 
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Fig. 9 Actin organisation in cap and swa mutant oocytes (A, C) Sagittal sections and (B, D) 
cortical sections of stage 10a oocytes stained for actin with genotypes indicated. (A, B) cap mutant. 
(A) Ectopic actin clumps (arrows) are observed in the oocyte. (B) Cortical actin bundles are not 
affected. (C, D) swa mutant. In our experiment ectopic actin clumps are only detected after stage 
10b. (D) Cortical actin bundles are normally formed. Scale bar: 25 µm 

3.3. Different steps in the reorganisation of the oocyte cytoskeleton  

Our data show that the relocation of MT minus-ends from the cortex to subcortical 

regions correlates with the onset of fast ooplasmic streaming. However, it is not clear 

how the cytoskeletal reorganisation is ordered. This raised the question of whether 

fast ooplasmic streaming was the prerequisite or the consequence of MT minus-end 

relocalisation from the cortex to subcortical region. This question could be addressed 

by analysing the null allele of Kinesin heavy chain, Khc27, given that in germline 

clones of Khc27 ooplasmic streaming is completely abolished (Serbus et al., 2005; 

Palacios and St Johnston, 2002).  

The first step was to analyse the actin cortex and the γ-tubulin localisation in Khc 

mutants. The formation of cortical actin bundles appeared unaffected in Khc mutants 

at stage 10a (Fig. 10A). In addition, the MT organisation was indistinguishable from 

that in wild type (Fig. 10B and F). Cross sections also revealed that γ-tubulin was 

restricted at the cortex of the stage 10a oocyte as a narrow layer (Fig. 10G), 

demonstrating that MT minus-ends were correctly anchored at the oocyte cortex. Thus, 
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at stage 10a Khc mutants neither display defects in the organisation of the MT 

cytoskeleton nor for the cortical actin bundling. The next step was to analyse the 

cytoskeleton organisation in stage 10b Khc mutant oocytes. Consistent with previous 

results, we found that MT arrays were not formed in Khc mutants at stage 10b (Fig. 

10E and H), indicating the absence of fast streaming (Serbus et al., 2005). However, 

the MT organisation appeared different from that in stage 10a oocyte. The highest 

concentration of MTs was no longer restricted to the cortex, but expanded to a 

broader subcortical region (compare Fig. 10B, E and F, H). This change in the MT 

organisation strongly suggested a redistribution of MT minus-ends. To test this, cross 

sections of stage 10b mutant oocytes stained for γ-tubulin were analysed. This 

revealed that γ-tubulin was present in a broader subcortical region than in stage 10a 

(Fig. 10I). This result indicates that MT minus-ends are relocated from the cortex into 

subcortical regions at stage 10b mutant oocytes. Thus, our data show that MT 

minus-ends redistribute normally in the absence of fast ooplasmic streaming. We 

therefore conclude that the redistribution of MT minus-ends from the cortex into 

subcortical regions does not require fast ooplasmic streaming. 

As a corollary of the conclusion drawn above, one would expect to find a premature 

redistribution of γ-tubulin in Khc oocyte at stage 9/10a if the actin bundling is 

disrupted. To assess this, dissected ovaries from Khc mutants were incubated in 

medium containing latrunculinA (2.8μM). After drug treatment, actin bundles were 

disrupted in 7 out of 10 oocytes (Fig. 10C). In these oocytes MTs did not form the 

parallel arrays. The highest concentration of MTs was not restricted to the cortex, but 

present in a broader region adjacent to the cortex (Fig. 10D). Cross sections of egg 

chamber displaying an evident disruption of the cortical actin were examined. As 

expected, γ-tubulin was present in a broader subcortical region in correlation with the 

redistribution of MTs (Fig. 10J and K), indicating the relocation of MT minus-ends 

from the cortex to subcortical regions. This result supports the conclusion that the 

redistribution of MT minus-ends from the cortex into subcortical regions does not 

require fast ooplasmic streaming. Thus, it provides further evidence that the 

redistribution of MT minus-ends is the upstream event of fast ooplasmic streaming. 
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Fig. 10 Cytoskeletal organisation in Khc mutant oocytes (A, C) Cortical sections. (A) A stage 
10a oocyte reveals the normal formation of actin bundles at the cortex. (C) After latrunculinA 
treatment, in 70% of the analysed oocytes actin bundling is disrupted. (B, D, E) Sagittal sections of 
egg chambers stained for tyrosinated α-tubulin. (B) MT staining reveals the normal MT 
organisation at stage 10a. (D) At stage 10a after latrunculinA treatment and (E) at stage 10b, cortical 
MTs are reduced, accompanied by an increase of MTs distributed in subcortical regions. (F-K) 
Cross sections of egg chambers double stained for tyrosinated α-tubulin (F, H, J) and γ-tubulin (G, I, 
K). (G´, I´, K´) Plots of the γ-tubulin signal intensities along the dotted line (11 o’clock) from the 
exterior to the interior of the oocyte shown in corresponding cross sections. The black bar indicates 
where the FWHM value is achieved. The left chart next to the diagram shows the average FWHM 
value of five measurements achieved along lines at four other locations (3, 6, 9, 12 o’clock) of the 
shown cross section. The average FWHM value of all analysed samples from corresponding stage 
or treatment is shown in the right chart. (F, G) At a stage 10a Khc mutant oocyte, MT forms a dense 
network at the cortex (F), and γ-tubulin is restricted as a continuous layer at the cortex (G, G´). In 
egg chambers at stage 10b (H, I) and at stage 10a after latrunculinA treatment (J, K), similar 
phenotype is observed: MTs redistribute into a broader region subcortically but do not form arrays; 
γ-tubulin relocates from the cortex to a broad subcortical region. Scale bar: 25 µm 
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3.4. A novel cytoskeletal phenotype exhibited by a mutation in Tao-1 

gene 

To examine upstream mechanisms that regulate the organisation of the oocyte 

cytoskeleton, we investigated the function of Drosophila Tao-1. In mammals, Tao-1 

is a regulator of the polarity-inducing kinase Par-1 (Timm et al., 2003). Tao-1 belongs 

to the Ste20 like kinase family, which interacts with various signalling molecules and 

regulatory proteins of the actin cytoskeleton (Dan et al., 2001). Thus, Tao-1 is a good 

candidate for an upstream regulator of the cytoskeletal organisation of the oocyte.  

3.4.1. Characterisation of Tao-1 gene 

3.4.1.1. Tao-1 is a Serine/Threonine protein kinase 

The highly conserved serine/threonine kinase Par-1 has been shown to be required for 

polarising the MT network in the oocyte during oogenesis (Shulman et al., 2000; 

Tomancak et al., 2000). To identify the Par-1 phosphorylation substrates, 5849 

cDNAs, which contain Expressed Sequence Tags (EST) produced by the Berkerly 

Drosophila Genome Project (BDGP), were screened in a biochemical in vitro assay. 

Among the 5849 screened cDNAs, 133 encode proteins that were phosphorylated by 

Par-1 kinase in vitro. These proteins were classified into seven groups: Cytoskeletal 

proteins (11), proteins involved in different aspects of signal transduction (35), DNA- 

associated proteins (34),  RNA- associated proteins (34), enzymes (9), novel proteins 

(25) and others (9) (Riechmann and Ephrussi 2004). The gene CG14217 was 

identified from this screen as a Par-1 phosphorylation substrate and classified into the 

group of proteins involved in the signal transduction. CG14217 is the Drosophila 

orthologue of mammalian Tao-1, which belongs to the Ste20 like kinase family. 

Drosophila Tao-1 shares 50% identity to Human Tao-1 and 43% to Rat Tao-1. 

Interestingly, in vitro studies revealed that the rat Tao-1 homologue is able to 

phosphorylate, and thereby activate the rat Par-1 homologue (Timm et al., 2003). 
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These data suggest a cross regulation between Tao-1 and Par-1. For this reason, 

Drosophila Tao-1 was among the most interesting Par-1 substrates identified in the 

screen.  

 

 
Fig. 11 Schematic drawing of the Tao-1 genomic locus, Tao-1 translations and the genomic 
structures of Tao-1 associated alleles. The top line shows a representation of genomic region 
18D2 to D3 where Tao-1 is located. Black arrows indicate the direction of transcription. Open boxes 
indicate the untranslated regions (UTR) and black boxes indicate the coding sequences. The lines 
connecting boxes indicate the introns. Four transcripts are annotated by the database. Red arrows 
indicate the primer pair used in RT-PCR. The predicted protein domains contained in the 
translations were indicated in color boxes below the corresponding coding sequences. The coding 
sequence for the Ser/Thr domain covers a part of exon2, entire exon3 and a part of exon4. The 
coding sequence for coiled-coil domain covers eight exons at the C-terminus. EP(X) 1455, 
represented by the green triangle, is inserted into the 5’ UTR of Tao-1 about 2kb upstream from the 
start codon. In Tao-1No.7 mutants, a fragment of about 5 kb from the EP element was left at the 
original insertion site. In Tao-1ETA mutants, the single nucleotide transition indicated by the red 
point is located 38 base pairs upstream from the 3 prime of exon2. The induced stop codon truncates 
the translation to approximately 6% of the predicted full length protein and 14% of the catalytic 
domain. The start codon for short transcripts might not be affected in Tao-1ETA. 

 

The Tao-1 locus is located between 18D2 to 18D3 at the X-chromosome. Four 

transcripts, Tao-1-RA, -RB, -RD, -RE (GenBank accession numbers: NM_134475, 
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NM_167667, NM_167665, NM_167666) were annotated according to EST clones. 

The gene structure of each transcript was also annotated (Fig. 11). Tao-1-RD and -RE 

are about 4 kb long and comprise 13 exons, with mild difference in the length of 5’ 

untranslated region (UTR). Tao-1-RA and -RB are approximately equivalent to the 

C-terminal part of Tao-1-RD and -RE starting with exon 6, the length of which is 

about 2.3 kb. Simple Modular Architecture Research Tool (SMART) (Schultz et al., 

1998) reveals that the protein product encoded by the long transcripts, Tao-1-RD and 

-RE contains a serine/threonine protein kinase domain at the N-terminus, with the 

encoding region extending from exon 2 to 4. The kinase domain is followed by 

coiled-coil regions at the C-terminus, which are encoded by the common sequence 

shared by all of the transcripts (Fig. 11).  

Here, it has to be noted that the Tao-1 isoform identified to be phosphorylated by 

Par-1 kinase was encoded by the 2.3-kb transcripts. Whether the other Tao-1 isoform 

encoded by the 4-kb transcripts, which contains the kinase domain, is also 

phosphorylated by Par-1 kinase has not yet been tested. This was due to the fact that 

the Tao-1 cDNA clones available in the public database only contain the 2.3-kb 

transcripts; while the clones containing the 4-kb Tao-1 transcripts were lacking.  

3.4.1.2. Tao-1 transcripts are expressed during oogenesis 

To obtain the full length Tao-1 cDNA expressed during oogenesis, RT-PCR of total 

mRNAs of ovaries was performed. The primer pair was designed on the basis of the 

4-kb transcripts annotated by the database. One primer was located in the 5´ UTR and 

other one was located in the 3´ UTR of the 4-kb transcripts (Fig. 11 red arrows). 

Using this primer pair, a DNA fragment of about 4 kb, which was in agreement the 

length of predicted full length Tao-1 transcripts, was specifically amplified by 

RT-PCR. Therefore, this cDNA fragment was regarded as the Tao-1 full length cDNA 

and cloned into vectors for various uses in the following studies.  

To confirm the result of RT-PCR, Northern blot analysis of ovarian RNAs was 

performed using the 4-kb Tao-1 cDNA obtained from RT-PCR as the probe. If the 
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annotation of Tao-1 transcripts was accurate and complete, we would expect to detect 

one transcript of 4 kb and another one of 2.3 kb by the Northern blot. Surprisingly, the 

Northern blot analysis revealed one transcript of about 3 kb and another transcript of 

about 6 kb, neither of which corresponded to the length of the predicted transcripts 

(Fig. 14F, lanes indicated). Thus, the annotation provided by the database did not 

completely describe the complexity of Tao-1 transcripts expressed during oogenesis. 

The expression of the 4-kb transcripts annotated by EST clones was verified by 

RT-PCR. The failure to detect these 4-kb transcripts by the Northern blot analysis 

indicated low expression levels of these transcripts. Given the lower sensitivity of 

Northern blot analysis, it was not clear whether the predicted 2.3-kb transcripts were 

present during oogenesis. Nevertheless, even if the 2.3-kb transcripts were expressed, 

the expression must be in a low level. Instead, the 6-kb and 3-kb transcript of Tao-1 

were predominantly expressed during oogenesis.  

To further examine the expression pattern of Tao-1 during oogenesis, RNA in situ 

hybridization in ovaries was performed using a probe corresponding to the 4-kb Tao-1 

cDNA. In the germline, signals were detected from stage 2 (Fig. 12A). The expression 

was consistently high in the nurse cells. At stage 10a the expression level was even 

increased. In the follicle cells, Tao-1 expression was also detected, but at a low level 

(Fig. 12A inset). The expression was first evident at stage 6 and continued through 

stage 9.  

3.4.1.3. Tao-1 protein is localised at the oocyte cortex 

To determine the subcellular localisation of Tao-1 protein, the GAL4/UAS system 

was applied, due to the lack of antibodies recognising Drosophila Tao-1 protein. 

Transgenic flies were generated, which carried the construct of 4-kb Tao-1 cDNA 

fused with an N-terminal hemagglutinin (HA) tag epitope sequence. When the 

HA-Tao-1 fusion protein was expressed in the germline by the nanos:Gal4-VP16 

driver line, notably, the protein was enriched at the oocyte cortex and co-localised 

with F-actin (Fig. 12B´, B´´ and B ). 
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Fig. 12 The expression of Tao-1 transcripts and the localisation of Tao-1 protein during 
oogenesis (A) RNA in situ hybridization of Tao-1 in ovaries. Inset shows the marked region in 
higher magnification. Signals are detected in the germline from stage 2 on. The expression level is 
high in the nurse cells. At stage 10a the expression level is even increased. Expression in the follicle 
cells is in a low level (inset, between arrow heads). The expression is first evident at stage 6 and 
continuing through stage 9. (B) Sagittal section of a stage 10a oocyte expressing HA-Tao-1 fusion 
protein by maternal-α-tubulin:Gal4 double stained with an antibody recognising HA (B´) and 
phalloidin for actin (B´´). The HA-Tao-1 fusion protein (green) is enriched at the entire oocyte 
cortex, overlapping with cortical actin (red). Scale bar: 25 µm 
 

3.4.2. Anterior-posterior and dorsal-ventral patterning defects manifested 

in Tao-1No.7 mutants 

3.4.2.1. Generation of a Tao-1 mutant by imprecise P-element excision  

The cortical localisation of Tao-1 protein places Tao-1 in a good location to regulate 

actin and MT organisation. To investigate the function of Tao-1, mutants in Tao-1 

gene were required. One P-element insertion line, Tao-1 EP(X) 1455, is inserted in 

the 5’ UTR of Tao-1, approximately 2kb upstream of the start codon (Fig. 11). Tao-1 

EP(X) 1455 flies did not manifest defects regarding the viability and the fertility. By 

mobilising this P-element using the Δ2–3 transposase (Robertson et al., 1988), a 

collection of progeny with excision of the P-element was generated. The excision 

lines were screened for lethal or sterile mutation, which might be caused by imprecise 
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excision events that altered the expression of Tao-1 protein. After screening 80 

excised lines, one line (No.7), was identified because of its lower fertility. 

No.7 mutant males were viable and fertile. No.7 homozygous females also survived to 

adults. However, they produced fewer eggs than wild type females when they were 

raised at room temperature (Fig. 13B). As the mutant females were mated with wild 

type males, the phenotype was maternal effect. To determine whether the severity of 

the impaired fertility was temperature dependent, the egg production and the hatching 

rate of mutant females kept at different temperatures were compared. At 29 , ℃ No.7 

flies laid as many eggs as the wild type (Fig. 13 C); a large proportion of these eggs 

hatched (Fig. 13D). At 18 , ℃ the mutant flies produced significantly fewer eggs than 

the wild type (Fig. 13A); while most of the eggs did not hatch (Fig. 13D). In 

following studies, the phenotype was mostly characterised in the flies kept in 18 , ℃

the temperature at which No.7 flies produced defects with the highest penetrance. 
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Fig. 13 Fertility and patterning defects in No.7 mutants (A-C) The comparison of capabilities 
for egg laying between wild type and No.7 females, which are raised at different temperatures as 
indicated. The Y-axis depicts the average number of eggs layed by a female. The X-axis depicts the 
consecutive days. n represents the number of analysed females. (D) The comparison of hatching 
rates of the eggs layed by wild type and by No.7 females, which are raised at different temperatures 
as indicated. The Y-axis depicts the percentage of hatched eggs. The X-axis depicts different 
temperatures. n represents the number of eggs totally analysed. (E, F) Larval cuticle preparations. (E) 
The denticle belts in wild type mark eight abdominal segments (A1-A8). (F) The “posterior group” 
phenotype manifested in embryos produced by No.7 mutants. The structures at the posterior 
including some abdominal segments (A3-A8) are missing. (G, H, I) Eggshells. (G) Wild type with a 
pair of dorsal appendages at the dorso-anterior position. (H, I) Ventralised eggshells produced by 
No.7 mutants with fused appendage (H) or lacking dorsal appendages altogether (I). 
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3.4.2.2. Tao-1No.7 is a novel allele of Tao-1 affecting the anterior-posterior and 

dorsal-ventral patterning 

As the majority of eggs laid by No.7 homozygous females did not hatch, larval cuticle 

preparation was examined. This analysis revealed that 19% (n=404) of the eggs 

displayed a “posterior group” phenotype, characterised by a lack of the posterior 

structures (Fig. 13F). This phenotype is primarily found in the mutations affecting the 

genes essential for pole plasm formation at the posterior pole (St Johnston and 

Nussleinvolhard, 1992). In addition to the “posterior group” defects, the morphology 

of eggs produced by mutant females appeared abnormal. In the wild type eggshell, 

there was a clear dorsal-ventral (D-V) polarity, marked by a pair of dorsal appendages 

at the dorsal-anterior position. A fraction of eggs (16%, n=113) produced by the 

mutants had a single fused dorsal appendage, among those most eggs (59%) even 

lacked dorsal appendages altogether (Fig. 13H and I). This eggshell phenotype has 

been described in the mutants affecting the Gurken/Torpedo pathway, which 

determines dorsal follicle cell fates (Schupbach, 1987). Thus, No.7 mutants interfere 

with both the posterior and the dorsal-ventral patterning.  

The finding that the posterior patterning is affected in No.7 mutants suggests that pole 

plasm formation is affected. Oskar protein has been shown to be essential to recruit 

pole plasm components to the posterior pole (Breitwieser et al., 1996; Ephrussi and 

Lehmann, 1992). Therefore, the localisation of Oskar protein in the oocyte was 

examined by antibody staining. In this analysis only egg chambers at stage 10a were 

included, the stage at which Oskar protein is unambiguously localised at the posterior 

pole of the wild type oocyte (Fig. 14A). In 83% of the mutant oocytes (79 out of 96), 

Oskar protein was not detectable at the posterior (Fig. 14B). Given that the severity of 

the impaired fertility manifested by No.7 mutants is temperature dependent, we asked 

whether this was also the case for the localisation defect of Oskar protein. To assess 

this, the localisation of Oskar protein was analysed in the oocyte of mutant flies raised 

at higher temperatures. When the flies were kept at 29℃, only in 4% of stage 10a 
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oocytes (n=111), Oskar protein was absent at the posterior of the oocyte. Thus, at 

lower temperature a higher penetrance of Oskar protein localisation defects was 

observed, which is consistent with the temperature dependency of the fertility defect. 

We therefore propose that the temperature dependency is a general feature of the No.7 

phenotype.  

In the majority of mutant egg chambers, Oskar protein was not detectable at the 

posterior pole of the oocyte. To confirm this result by using a different detection 

method, western blot analysis was performed. Western blot analysis of ovary extracts 

showed that the expression of Oskar protein was greatly reduced in the mutant ovaries 

(Fig. 14G, lanes indicated). Taken together, Oskar protein translation is severely 

affected in No.7 mutants. 

As the dorsal-ventral patterning was also affected, the localisation of Gurken (Grk) 

protein was examined in stage 10a oocyte by antibody staining. In wild type oocyte, 

Gurken protein was restricted at the dorsal-anterior corner adjacent to the oocyte 

nucleus (Fig. 14C). In 88% (60 out of 68) of the mutant oocytes, the expression of 

Gurken protein was not detectable (Fig. 14D). This result indicates that the translation 

of Gurken protein, like Oskar protein, is also disrupted in the mutant oocyte.  
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Fig. 14 
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Fig. 14 Localisation defects of Oskar and Gurken protein in No.7 mutant oocytes, rescue 
experiment by Tao-1 transcripts and molecular characterisation of No.7 allele (A-D) Sagittal 
sections of stage 10a egg chambers stained for Oskar protein (A, B) and for Gurken protein (C, D). 
(A) In wild type, Oskar protein is localised at the posterior pole of the oocyte. (B) In 83% of No.7 
mutant oocytes, Oskar protein is not detectable at the posterior. (C) In wild type, Gurken protein is 
restricted at the dorsal-anterior corner adjacent to the oocyte nucleus. (D) In 88% of the mutant 
oocytes, Gurken protein is not detectable. (E) Genomic PCR analysis. Using a primer pair flanking 
the EP(X) 1455 insertion site, an approximately 1 kb fragment is amplified from wild type genomic 
DNA. A fragment of 5 kb is amplified from No.7 genomic DNA. To control the specificity of the 
PCR reaction performed with No.7 genomic DNA, a primer pair in other genomic region is used, 
which produces the fragment at the expected size. (F) Northern blot analysis of ovarian RNAs using 
4-kb Tao-1 cDNA as the probe. The amounts of loaded RNAs are identical in different lanes. In 
wild type one transcript of approximately 3 kb and the other one of about 6 kb are detected. In No.7 
mutants, the transcription level of Tao-1 is reduced, particularly with regard to the short transcript. 
(G) Western blot analysis of ovarian protein extracts probed with anti-Oskar antibody. Genotypes 
are indicated. The loading amounts for different lanes are compared by the blot probed with 
anti-Actin antibody and the gradient is indicated by the black triangles. In No.7 mutants, the 
expression of Oskar protein is greatly reduced. The expression of Oskar protein is restored to wild 
type level when Tao-1 transcripts are expressed in the germline. Scale bar: 25 µm 
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To progress further, it was necessary to determine whether the phenotype was the 

result of the disrupted function of Tao-1. It was first asked whether the Tao-1 locus 

was affected after P-element excision in No.7 mutants. To this end, PCR was 

performed using the genomic DNA as the template, and using a primer pair that flanks 

the EP(X) 1455 insertion site. In the wild type, the PCR amplified a DNA fragment of 

about 1 kb. In No.7 mutants, the PCR amplified a DNA fragment of 5 kb (Fig. 14E, 

lanes indicated). Subsequent sequencing analysis of this 5-kb fragment revealed that 

this DNA fragment contained sequences of the P-element. Thus, in No.7 mutants the 

original P-element was imprecisely excised, and a fragment of about 4 kb from the EP 

element was left at the original insertion site in the 5’ UTR. Sequencing analysis also 

showed that the rest of the genomic sequence in the Tao-1 locus was not affected.  

To further determine whether this insertion interferes with the transcription of Tao-1, 

Northern blot analysis was performed. The analysis showed that the transcription 

level of Tao-1 was greatly reduced in mutant ovaries, particularly with regard to the 

short transcript (Fig. 14F, lanes indicated). This raised the question whether the 

reduced transcription level of Tao-1 resulted in the phenotype described above. This 

question could be addressed by asking whether this phenotype can be rescued when 

Tao-1 transcripts are supplied in the mutant background. For this purpose, the 

GAL4/UAS system was applied. Both the nanos:Gal4-VP16 and 

maternal-α-tubulin:Gal4-VP16 drivers were used to express Tao-1 long cDNA in the 

germline of the mutant females. Western blot analysis with the ovary extracts was 

examined. Importantly, with the expression of Tao-1 cDNA in the germline, the 

expression of Oskar protein in the mutant oocyte was recovered to a level identical to 

that in wild type (Fig. 14G, lanes indicated). Furthermore, in every stage 10a egg 

chamber stained with anti-Oskar antibody (n=63), Oskar protein was found to be 

correctly localised at the posterior pole of the oocyte. In addition, the defect of 

Gurken translation was completely rescued, with Gurken protein correctly localised at 

the dorsal-anterior corner adjacent to the oocyte nucleus in every egg chamber (n=47). 

Thus, these data verify that the phenotypes observed in No.7 mutants are the result of 

the reduced Tao-1 transcription.  
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In summary, we have identified Tao-1No.7 as a novel mutant allele of Tao-1 gene, 

which reduces Tao-1 transcription. This mutant affects the translation of Oskar and 

Gurken protein in the oocyte. The absence of Oskar protein at the posterior pole of the 

mutant oocyte prevents pole plasm formation and results in embryos lacking posterior 

structures; while the absence of Gurken protein at the dorso-anterior corner of the 

mutant oocyte prevents the specification of dorsal follicle cells and causes the 

ventralisation of the eggshell.    

3.4.2.3. The patterning phenotype of Tao-1No.7 is the result of mislocalisation of 

transcripts of axis determinants during mid-oogenesis 

It has been shown that Oskar protein translation at the posterior of the oocyte requires 

oskar mRNA localisation to the posterior pole of the oocyte. oskar mRNA is 

translational repressed until it reaches to the posterior of the oocyte, which ensures 

that the protein activity is restricted at the correct subcellular location (Kimha et al., 

1995; Markussen et al., 1995; Rongo et al., 1995). The finding that the translation of 

Oskar protein is affected in Tao-1No.7 oocytes raised the possibility that oskar mRNA 

localisation was affected. Therefore, fluorescent in situ hybridisation was performed 

to examine the localisation of oskar mRNA in Tao-1No.7 oocytes. In wild type oocytes 

at stage 9/10a, oskar mRNA is localised at the posterior pole and remains there until 

egg deposition (Fig. 15C; Ephrussi, 1991; Kim-Ha, 1991 (Ephrussi et al., 1991; 

Kimha et al., 1991) ). In Tao-1No.7 oocytes, oskar mRNA was not accumulated at the 

posterior pole, but dispersed ubiquitously within the ooplasm as diffuse particles (Fig. 

15F).  
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Fig. 15 Localisation of bicoid, gurken and oskar mRNAs in Tao-1No.7 mutant oocytes 
Fluorescent RNA in situ hybridisations of bicoid (A, D), gurken (B, E) and oskar (C, F) in stage 10a 
wild type (A, B, C) and Tao-1No.7 mutant oocytes (D, E, F). (A-C) In wild type, bicoid mRNA is 
restricted at the anterior corners and accumulates as a cortical ring at the oocytes. gurken mRNA 
accumulates as a cap above the nucleus at the dorsal-anterior corner. oskar mRNA is localised at the 
posterior. (D-F) In Tao-1No.7 mutants, bicoid mRNA is not restricted tightly at the anterior. gurken 
mRNA is not accumulated at the dorsal-anterior corner associated with the nucleus. oskar mRNA 
does not accumulates at the posterior. Instead, they are all released into the entire ooplasm and 
disperse ubiquitously within the ooplasm as diffuse particles. Scale bar in A-F: 25 µm; Scale bar in 
C and F insets: 10 µm 

 

As the translation of Gurken protein was also disrupted in the mutant oocyte, the 

localisation of gurken mRNA was examined. In wild type stage 9/10a oocytes, gurken 

mRNA accumulates as a cap above the nucleus at the dorsal-anterior corner of the 

oocyte (Neumansilberberg and Schupbach, 1993). In mutant oocytes, gurken mRNA 

was not accumulated at the dorsal-anterior corner associated with the nucleus, but 

distributed randomly in particles through the ooplasm (Fig. 15E). 

In wild type stage 9/10a oocytes, another transcript displaying highly polarised 

localisation is bicoid mRNA, which is required for establishing the head and thoraic 

patterning of the embryo (Berleth et al., 1988; St Johnston and Nussleinvolhard, 

1992). Therefore, the analysis was extended to the bicoid mRNA localisation. In wild 

type oocytes, bicoid mRNA was restricted at the anterior corners and accumulates as a 

cortical ring at the oocytes (Berleth et al., 1988). In mutant oocytes, bicoid mRNA 
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was not restricted tightly at the anterior, but released into the entire ooplasm (Fig. 

15D).  

Taken together, oskar, gurken and bicoid mRNAs, which are important for the 

embryo patterning, were all mislocalised in Tao-1No.7 oocytes at stage 9/10a. A 

question raised by this result was that during oogenesis when the mRNA localisation 

defect begins: Does it start at mid-oogenesis or at early-oogenesis? To assess this, we 

examined the localisation of oskar, gurken and bicoid mRNAs in Tao-1No.7 oocyte at 

stage 5, when mRNAs normally accumulate at the extreme posterior of the wild type 

oocyte (Fig. 15C inset). In all cases of Tao-1No.7 mutants, oskar, gurken and bicoid 

mRNAs are correctly accumulated at the posterior of the oocyte (Fig. 15D inset). 

Thus, the mRNA localisation defect in Tao-1No.7 mutant is restricted to mid-oogenesis.    

3.4.3. Cytoskeletal organisation is disrupted in Tao-1No.7 oocytes 

3.4.3.1. MT organisation is disrupted in Tao-1No.7 oocytes 

The localisation of oskar, gurken and bicoid mRNAs to correct positions within the 

oocyte depends on MTs and MT motors (Brendza et al., 2000; Clark et al., 1994; 

Duncan and Warrior, 2002; Januschke et al., 2002; Pokrywka and Stephenson, 1991; 

Schnorrer et al., 2000). Therefore, the organisation of MT cytoskeleton in Tao-1No.7 

oocyte was investigated. 

The MT organisation analysed by optical sagittal sections revealed the following 

pattern: Unlike in the stage 10a wild type oocyte, where the bulk MTs spread from the 

cortex to the interior of the oocyte (Fig. 16A), in the mutant oocyte, the amount of 

MTs emanating from the cortex was greatly reduced. This reduction was accompanied 

by a strong increase of interlacing MTs that were spreading within the interior of the 

ooplasm (Fig. 16B). Additionally, it appeared that the level of MTs distributed in the 

ooplasm was equal from anterior to posterior (Fig. 16B). Thus, this gradient was not 

correctly formed in the mutant oocyte. Moreover, MTs present in Tao-1No.7 oocyte 

appeared thicker than that in wild type (Fig. 16B). As the movement of the oocyte 
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nucleus at stage 6, from the posterior to the anterior-dorsal corner of the oocyte, 

depends on MTs (Riechmann and Ephrussi, 2001), we also examined the localisation 

of the oocyte nucleus in mutant stage 10a oocytes. In the majority of mutant oocytes 

(53 out of 54), the nucleus was correctly positioned.    

 
Fig. 16 MT organisation and colcemid treatment of Tao-1No.7 mutant oocytes Sagittal sections 
of stage 10a egg chambers stained for tyrosinated α-tubulin with genotypes and the treatment 
indicated. (A) In wild type, the bulk MTs spread from the cortex to the interior of the oocyte. The 
highest concentration of MTs occurs at the anterior and later cortex and lowest concentration is 
present at the posterior pole. (B) In Tao-1No.7 mutants, cortical MTs are reduced. Instead, the density 
of MTs present in the ooplasm is increased. These MTs are interlacing in the interior of the ooplasm. 
Additionally, the MTs appear thicker than that in wild type (compare A and B). (C, D) After 
colcemid treatment, in the wild type short MTs are associated with the anterior and lateral cortex (C); 
in Tao-1No.7 mutants, short MTs are dispersed within the ooplasm (D). Scale bar: 25 µm 

 

The MT organisation was further examined by using the MT plus-end reporter   

Khc:: lacZ. This fusion protein consists of the motor domain of MT plus-end directed 

motor Kinesin heavy chain (KHC) and the enzyme, β-galactosidase (β-Gal) (Clark, 

1994). Although the direct visualisation of the MTs in wild type oocytes did not 
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exhibit a clear anterior-posterior orientation, KHC-β-Gal accumulated at the posterior 

pole of the oocyte (Fig. 17C). This indicates the accumulation of MT plus-ends at the 

posterior pole. In Tao-1No.7 mutant oocytes, KHC-β-Gal was not restricted at the 

posterior pole, but released into the entire ooplasm, indicating that the MT plus-ends 

are ubiquitously distributed within the ooplasm (Fig. 17D). 

 
Fig. 17 The distribution of MT polarity markers in Tao-1No.7 mutant oocytes (A-D) Sagittal 
sections of stage 10a egg chambers double stained for tyrosinated α-tubulin (A´-D´) and β-Gal 
(A´´-D´´) with genotypes indicated. (A, C) In wild type, the MT staining reveals normal MT 
organisation (A´, C´). NOD-β-Gal is concentrated at the anterior corners (A´´) and KHC-β-Gal 
accumulates at the posterior pole of the oocyte (C´´). (B, D) In Tao-1No.7 mutants, MTs show the 
similar phenotype described in Fig. 15B (B´, D´). In the corresponding oocyte, KHC-β-Gal is not 
restricted at the posterior pole (B´´) and NOD-β-Gal is not concentrated at the anterior corners (D´´). 
They both are ubiquitously distributed within the oocytes (B´´, D´´). Scale bar: 25 µm 
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The MT minus-end reporter Nod:: lacZ, whose protein product contains the motor 

domain of Kinesin-related protein (NOD) and β-Gal (Clark et al., 1997) was also 

investigated. In wild type oocytes, NOD-β-Gal was concentrated at the anterior 

corners of the oocyte (Fig. 17A). In mutant oocytes, NOD-β-Gal was dispersed within 

the ooplasm, indicating that the MT minus-ends are also ubiquitously distributed 

within the oocyte (Fig. 17B). Interestingly, the mislocalisation defect of the 

minus-end marker NOD-β-Gal (95%, n=128) was more severe than that of the 

plus-end marker KHC-β-Gal, indicating that the minus-ends are more fragile than the 

plus-ends (70%, n=35). One speculation is that in mutant oocytes MTs are primarily 

affected in the minus-ends; subsequently, MT plus-ends are redistributed. 

To test the hypothesis, MT minus-ends were examined in Tao-1No.7 mutant oocytes. 

Unlike in wild type oocytes, where γ-tubulin and Dgrip75 were present at the anterior 

and lateral oocyte cortex (Fig. 18A and C), γ-tubulin and Dgrip75 were uniformly 

distributed in the entire ooplasm in Tao-1No.7 mutants (Fig. 18B and D). Cross 

sections of mutant oocytes were further investigated, and the fluorescent signal of the 

γ-tubulin staining was measured. Consistent with observations acquired by optical 

sagittal sections, cross sections of mutant oocytes revealed that MTs were not 

restricted at the cortex, and the gradient from high to low density was not detected 

from the cortex to the interior. Instead, a high density of evenly dispersed MTs was 

observed within the entire ooplasm (Fig. 18F). Concomitantly, the thin and dense 

network of γ-tubulin restricted at the cortex was no longer present (Fig. 18H). Instead, 

γ-tubulin was homogeneously distributed from the cortex to the interior of the oocyte 

(Fig. 18H and H´), indicating the relocation of MT minus-ends from the cortex to the 

entire ooplasm.  
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Fig. 18 The distribution of MT minus-ends in Tao-1No.7 mutant oocytes (A-B) Sagittal sections 
of stage 10a oocytes stained for γ-tubulin. In wild type, γ-tubulin is enriched at the entire oocyte 
cortex (A). In Tao-1No.7 mutants, γ-tubulin is distributed in the entire ooplasm (B). (C, D) Sagittal 
section of stage 10a oocytes expressing Dgrip75 GFP fusion protein by maternal-α-tubulin:Gal4 
stained with an antibody recognising GFP. (C) In wild type, the fusion protein is enriched at the 
entire oocyte cortex. (D) In Tao-1No.7 mutants, the fusion protein is uniformly distributed in the 
entire ooplasm. (E-H) Cross sections of stage 10a egg chambers double stained for tyrosinated 
α-tubulin (E, F) and γ-tubulin (G, H). (G’, H’) Plots of the γ-tubulin signal intensities along the 
dotted line (11 o’clock) from the exterior to the interior of the oocyte shown in corresponding cross 
sections. (E, G) In wild type, MTs form a dense network at the cortex (E), and γ-tubulin is restricted 
as a continuous layer at the cortex (G, G´). (F, H) In Tao-1No.7 mutant, MTs are not restricted to the 
oocyte cortex, but spread evenly within the ooplasm (F); γ-tubulin is homogeneously distributed 
from the cortex to the interior of the oocyte (H). Scale bar: 25 µm 
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As an alternative way to visualise the MT minus-ends, a method independent of the 

MT minus-end markers was applied. MTs normally nucleate at the minus-ends; while 

polymerisation and depolymerisation preferentially occur from the plus-ends. 

Therefore, treating MTs with drugs to inhibit the MT polymerisation can leave short 

MTs at the minus-ends. Previous studies with the MT inhibitor colcemid indicated 

that MTs nucleate primarily at the anterior cortex (Theurkauf et al., 1992). Our 

colcemid treatment of wild type females revealed that MTs nucleate not only from the 

anterior but also from the lateral cortex (Fig. 16C). This result is consistent with the 

distribution of the MT minus-end marker γ-tubulin to the anterior and lateral cortex. 

In Tao-1No.7 mutant oocytes, colcemid treatment resulted in short MTs, which were 

dispersed within the ooplasm (Fig. 16D). This result supports the idea that MT 

minus-ends are released from the anterior and lateral cortex into the ooplasm in 

Tao-1No.7 mutants. Thus, our data indicate that the anchoring of MT minus-ends at the 

cortex is affected in Tao-1No.7 oocytes. 

In summary, our data show that in Tao-1No.7 oocytes, the MT minus-ends are not 

anchored at the cortex, but relocate to the entire ooplasm. As a result, the MTs are 

spreading through the ooplasm, with minus-ends and plus-ends randomly distributed. 

The gradient of MT from anterior to posterior is not properly formed, and the MT 

network is not correctly organised. These results imply that the motor dependent 

transport of cargos along the MTs to the plus-ends or minus-ends can not be directed 

properly in Tao-1No.7 oocyte. Thus, the transcripts for the axis determinants are not 

transported to the correct subcellular locations.  

3.4.3.2. Cortical actin bundles are disrupted in Tao-1No.7 oocytes 

Tao-1 protein is present at the oocyte cortex (Fig. 12B). This raises the possibility that 

Tao-1 regulates the actin and MT organisation. The above described observation 

indicated that MT minus-end anchoring at the cortex of Tao-1No.7 mutant oocytes is 

affected. Therefore, it is possible that the actin bundling is affected in Tao-1No.7 

mutant oocytes. To test this, the actin organisation in Tao-1No.7 mutant oocyte was 
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examined. The analysis of optical sagittal sections showed that the actin cortex in 

Tao-1No.7 oocyte was wavy (Fig. 19C), which was different from the smooth actin 

cortex observed in wild type oocyte (Fig. 19A). Optical cortical sections at the cortex 

of the stage 10a mutant oocyte revealed that actin bundles were not formed the cortex 

(Fig. 19D). Instead of the bundles, actin patches and thin filaments were observed, 

which was reminiscent of the cortex of wild type stage 10b oocytes, when the fast 

streaming has started. In addition to the actin bundling defect, ectopic actin clumps 

were observed in the mutant oocyte (Fig. 19C, arrows), indicating that actin 

aggregates irregularly. Our studies of cap, Dmoe and swa mutants showed that ectopic 

actin clumps in the ooplasm are not necessary coupled to actin bundling defects. In 

Tao-1No.7 oocyte, the simultaneous occurrence of ectopic actin clumps and the 

disruption of cortical actin bundling suggest that Tao-1No.7 may affect more than one 

pathway that regulates the actin cytoskeleton of the oocyte.  

 
Fig. 19 Actin organisation in Tao-1No.7 mutant oocytes (A, C) Sagittal sections and (B, D) cortical 
sections of stage 10a oocytes stained for actin with genotypes indicated. (A, B) In wild type, the 
oocyte cortex is smooth (A); cortical actin is organised into bundles (B). (C, D) In Tao-1No.7 mutant, 
the oocyte cortex appears wavy and ectopic actin clumps (arrows) are observed in the oocyte (C); 
Cortical actin bundles are disrupted (D). Scale bar: 25 µm   

 

In summary, in Tao-1No.7 mutant oocytes cortical actin bundling is disrupted. MT 

minus-ends are not anchored at the cortex but redistribute into the entire ooplasm. 
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Organising from these dispersed minus-ends, MTs are spreading through the entire 

ooplasm. Such defects have not been described before. Therefore, the cytoskeletal 

organisation in Tao-1No.7 mutant oocytes might represent a novel phenotype for the 

MT and actin cytoskeleton organisation of the oocyte.  

3.5. Screen for new Tao-1 alleles  

The P-element mobilisation experiment generated only one allele of Tao-1. This allele 

reduces but does not abolish Tao-1 transcription. We therefore applied other strategies 

to generate more alleles of Tao-1, with the expectation to obtain an amorph allele. 

3.5.1. Tao-1ETA complements Tao-1No.7  

The EP element carries GAL binding sites (UAS) and a basal promoter. If the binding 

sites are orientated in the same direction as the transcription unit of the gene lying 

adjacent to the EP element insertion site, providing a source of Gal4 will induce the 

expression of the adjacent gene (Rorth, 1996). The orientation of Tao-1 EP(X)1455 

element is known to be in the same orientation as the Tao-1 transcription unit 

(Shulman and Feany, 2003). When the flies carrying a ubiquitous Gal4 driver line 

zygotic-tubulin:Gal4 were crossed to flies carrying the insertion of Tao-1 EP(X) 1455, the 

progeny carrying both the promoter and the EP element insertion was lethal. The 

lethality is most likely due to the overexpression of Tao-1. Based on this lethality, an 

EMS mutagenesis was performed to screen for alleles disrupting the function of Tao-1, 

by reversing the lethality caused by the overexpression of Tao-1 (Verena Benecke’s 

Diploma thesis).  

The allele, Tao-1ETA was identified in this screen. Sequencing analysis revealed a 

Cytosine to Thymine transition at amino acid position 63 of the predicted protein 

containing the Ser/Thr kinase domain (Fig. 11). The rest of the genomic sequence in 

Tao-1 locus appeared no alteration. The C-A transition changed a glutamine codon 

(CAG) to a stop codon (TAG). This premature stop codon will truncate the translation 

to approximately 6% of the normal protein (Fig. 11). Furthermore, the truncated 
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protein only harbours 14% of the kinase domain. None of the predicted catalytic sites 

of the kinase domain (Hanks and Hunter, 1995) remains in the truncated protein. This 

strongly suggests that Tao-1ETA is an allele that does not produce functional Tao-1 

protein, with the lacking of the Ser/Thr kinase domain and the coiled-coil domains.  

Tao-1ETA homozygous flies were lethal. It was next asked whether the lethality was 

caused by the disrupted function of Tao-1 protein. This question was addressed by 

testing whether the ubiquitous expression of 4-kb Tao-1 cDNA could rescue the 

lethality. Indeed, when this Tao-1 cDNA was expressed by a ubiquitous driver, 

zygotic-tubulin:Gal4., the lethality was rescued, verifying that the lethality of 

Tao-1ETA mutants was caused by the disrupted function of Tao-1 protein. When the 

same Tao-1 cDNA construct was expressed in the germline of Tao-1No.7 mutant 

females, the cytoskeletal organisation defects of the oocyte were completely rescued. 

The ability of the Tao-1 cDNA, which encodes the full length Tao-1 protein 

containing the kinase domain and the coiled-coil domains, to rescue both the Tao-1ETA 

lethality and the Tao-1No.7 fertility suggest that Tao-1No.7 and Tao-1ETA both suffer from 

the disruption of Tao-1 protein, but to different extent. Tao-1ETA may represent a 

strong allele, as no functional Tao-1 protein could be produced in Tao-1ETA mutants; 

Tao-1No.7 may represent a weak allele, as Tao-1 transcripts were not completely 

abolished and some Tao-1 protein could be produced in Tao-1No.7 mutants. If this is the 

case, one would expect to detect the defects in MT organisation and Oskar protein 

localisation of a higher penetrance in Tao-1ETA oocytes, than that in Tao-1No.7 oocytes.  

To test this possibility, the oogenesis in Tao-1ETA mutants was analysed. As Tao-1ETA 

homozygous flies were lethal, Tao-1 ETA germline clones were generated to examine 

the oogenesis. To our surprise, Tao-1ETA germline clones did not show defects in the 

organisation of MTs and the localisation of Oskar protein (Fig. 20B), which have been 

observed in Tao-1No.7 oocytes. To test whether these two mutants complement each 

other, Tao-1No.7 flies were crossed to Tao-1ETA flies. Transheterozygous flies of 

Tao-1No.7 and Tao-1 ETA were viable and did not manifest defects in the oocyte, with 

regard to MT organisation and Oskar protein localisation (Table 2). Thus, Tao-1ETA 

complements the oogenesis defects observed in Tao-1No.7 mutants.  
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To summarise, neither in oocytes homozygous for Tao-1ETA, nor in oocytes 

transheterozygous for Tao-1No.7 and Tao-1 ETA, the patterning defects described in 

Tao-1No.7 oocytes has been observed. In Tao-1ETA mutants the functional Tao-1 protein 

is most likely not present. We therefore propose that Tao-1 protein is dispensable for 

the MT organisation and the polarity establishment of the oocyte during oogenesis. 

This suggests a possible role of Tao-1 transcripts involved in the cytoskeleton 

organisation of the oocyte. The reduced level of Tao-1 transcripts in Tao-1No.7 mutants 

may be the cause of the oogenesis phenotype. The provision of Tao-1 transcripts by 

Tao-1ETA in oocytes transheterozygous for Tao-1No.7 and Tao-1 ETA may therefore 

rescue the oogenesis defects observed in Tao-1No.7.  

 

 
Fig. 20 The organisation of MT cytoskeleton and the localisation of Oskar protein in Tao-1ETA 
and Df.14.1 mutant oocytes Sagittal sections of stage 9/10a egg chambers tripled stained for GFP 
(A´-C´), tyrosinated α-tubulin (A´´-C´´) and Oskar (red in A-C) with genotypes indicated. (A) Wild 
type control. (B, C) Germline clones of Tao-1ETA (B) and Df.14.1 (C), marked by the loss of GFP in 
the germline. They both manifest normal MT organisation and correct localisation of Oskar protein, 
like in the wild type. Scale bar: 25 µm  
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3.5.2. Deficiency 14.1 complements Tao-1No.7  

To test whether the cytoskeletal organisation of the oocyte is regulated at the level of 

Tao-1 transcripts, we generated an allele that completely deletes the Tao-1 locus. For 

this purpose, we applied a strategy that allowed the deletion of defined genomic 

region. This method is based on the Flp-recombination target (FRT) sites of the 

piggyBac transposons that are inserted at various sites in the fly genome. When two 

FRT sites orientated in the same direction are present at different locations on 

homologous chromosomes, the recombination event between these two FRT sites 

induced by the presence of Flpase (FRT/FLP-recombination) will remove the genomic 

region between these two FRT sites (Thibault et al., 2004; Parks et al., 2004).  

In the Exelixis collection of piggyBac insertion mutants, one insertion e01713 was 

found to be inserted at the position about 300bp upstream from the Tao-1 open 

reading frame (Fig. 21). Downstream of the Tao-1 locus, the nearest P-element 

insertion suitable for FRT/FLP-recombination was d02300, which was inserted in the 

first intron of CG32532, the third gene downstream of Tao-1(Fig. 21). After the 

trans-recombination between e01713 and d02300, a deficiency (Df.14.1) was acquired 

(see Materials and Methods). The genomic PCR and subsequent sequencing analysis 

revealed that this deficiency removed Tao-1, together with other two genes, Dgrip84 

and carnation completely. The first exon (5’UTR) of another gene, CG32532 of 

unknown function was also removed (Fig. 21). Thus, Df.14.1 is an allele that does not 

produce any Tao-1 transcripts.  
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Fig. 21 Schematic drawing of genomic structures for Exelixis P-element insertions and 
deficiency 14.1 The top line shows a representation of the genomic region 18C to D. The 
neighboring genes of Tao-1 are shown in grey boxes. Arrows indicate the direction of transcription. 
PBac{RB}e01713 indicated by the brown triangle is inserted 300bp upstream of the Tao-1 open 
reading frame. P{XP}d02300 indicated by the blue triangle is inserted in the first intron of CG32532. 
After the trans-recombination between e01713 and d02300, the deficiency Df.14.1 is induced, 
which deletes Tao-1, Dgrip84 and carnation completely, together with the first exon (5’ UTR) of 
CG32532. The deleted region is indicated by the dash line. 

 

If the cytoskeletal organisation of the oocyte is regulated at the level of Tao-1 

transcripts, one would expect to detect the defects in MT organisation and Oskar 

protein localisation of a higher penetrance in Df.14.1 mutant oocytes, than that in 

Tao-1No.7 oocytes. As Df.14.1 homozygous flies were also lethal, the oogenesis was 

analysed in germline clones of Df.14.1. Surprisingly, in Df.14.1 mutant oocytes, MTs 

were correctly organised and Oskar protein was localised at the posterior pole (Fig. 

20C). This result shows that in the absence of Tao-1 transcripts, the oogenesis 

proceeds normally. Thus, Tao-1 transcripts are not required for the cytoskeletal 

organisation of the oocyte. Additionally, this result also excludes the roles of other 

three affected genes involved in the oogenesis. To test whether Df.14.1 and Tao-1No.7 

complements each other, flies transheterozygous for Tao-1No.7 and Df.14.1 were 

generated. These transheterozygous flies were viable and did not exhibit any defect in 
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cytoskeletal organisation and Oskar protein localisation of the oocytes (Table2). Thus, 

Df.14.1 complements the oogenesis defects in Tao-1No.7 mutants.  

 

 stage 10a oocytes with the localisation of Oskar protein at the posterior pole 
 18℃ 29℃ 

Tao-1ETA/ Tao-1No.7 100% n=29 100% n=25 

Df.14.1/ Tao-1No.7 100% n=35 100% n=35 
 
Table 2 Tao-1ETA and Df.14.1 complements the localisation defect of Oskar protein in 
Tao-1No.7 mutants Flies transheterozygous for Tao-1ETA/Tao-1No.7 and Df.14.1/Tao-1No.7 
were raised in different temperatures as indicated. Egg chambers from these flies were double 
stained for tyrosinated α-tubulin and Oskar. Only stage 10a oocytes were analysed for the 
localisation of Oskar protein. “n” represents the number of analysed samples.   

 

Genotype 
Defects in the MT organisation and Oskar protein 

localisation 

Tao-1No.7/ Tao-1No.7 yes 

Tao-1No.7/ Tao-1No.7; Tao-1 cDNA (4-kb) no 

Tao-1ETA/ Tao-1ETA no 

Tao-1ETA/ Tao-1No.7 no 

Df.14.1/ Df.14.1 no 

Df.14.1/ Tao-1No.7 no 

 
Table 3 Summary of the oogenesis phenotypes in various mutants of Tao-1 alleles  
 

These data further complicated the characterisation of the genetic nature of Tao-1No.7. 

The rescue of the cytoskeleton organisation defects observed in Tao-1No.7 oocytes by 

the expression of a Tao-1 cDNA (4-kb) verified that Tao-1No.7 is an allele of Tao-1. 

However, neither mutants of Tao-1ETA that do not produce functional Tao-1 protein, 

nor mutants of Df.14.1 that delete the Tao-1 locus completely, exhibit the defects in 

the cytoskeletal organisation of the oocyte that have been observed in Tao-1No.7 

mutants (Table 3). Moreover, both Tao-1ETA and Df.14.1 mutants complement the 

oogenesis defects in Tao-1No.7 mutants. These evidences strongly suggest that the 

cytoskeleton organisation defects observed in Tao-1No.7 mutants can not be explained 
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as a loss of function of Tao-1. We therefore propose that Tao-1No.7 is a gain of function 

allele of Tao-1; while this gain of function effect is recessive, as two copies of 

Tao-1No7 are required to induce the phenotype (Table 3).  
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4. DISCUSSION 

4.1. Cytoskeletal organisation and reorganisation of the oocyte from 

stage 9/10a to stage10b  

In this study, we show that at stage 9/10a the actin cytoskeleton at the oocyte cortex is 

assembled into long bundles, which are involved in the cortical localisation of 

γ-tubulin. γ-tubulin is part of the γ-tubulin ring complex (γTuRC) that is localised to 

the MT minus-ends. It has been shown that the γTuRC is necessary but not sufficient 

to restore the MT nucleation activity of salt-stripped Drosophila centrosomes. Besides 

the γTuRC, additional factors seem to be required for the MT nucleation (Moritz et al., 

1998). Thus, the presence of γ-tubulin alone does not allow us to conclude whether 

this protein is part of the MT nucleation sites. Here, we use γ-tubulin solely as the 

marker for the MT minus-ends, which are embedded within the cortical actin bundles 

of the oocyte before stage 10b.  

The rearrangements of cytoskeletal organisation at stage 10b include the disassembly 

of the cortical actin bundles, the redistribution of the MT minus-ends from the cortex 

to subcortical regions and the formation of MT arrays parallel to the oocyte cortex. 

Concomitantly with these cytoskeletal changes, the transition from slow to fast 

ooplasmic streaming is triggered. How is the series of changes coordinated? The 

finding that interfering with actin bundle formation by drug treatment or GFPactin5C 

overexpression results in MT minus-ends redistribution, MT array formation and 

premature fast streaming indicates that actin bundling acts upstream of MT 

reorganisation.  

The analysis of Khc mutants allows us to further dissect the sequential steps in the 

reorganisation of the MT cytoskeleton. In the absence of streaming caused by the loss 

of Kinesin function, the redistribution of MT minus-ends occurs normally; while the 

formation of MT arrays is abolished. Thus, minus-end redistribution is upstream of 

streaming, and array formation is downstream. We propose the following model for 
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the cytoskeletal reorganisation of the oocyte from stage 10a to stage 10b. At stage 10a, 

the actin bundles anchor MT minus-ends at the cortex. This cortical anchoring of MT 

minus-ends is essential to prevent fast ooplasmic streaming before stage 10b. At stage 

10b, the cortical actin bundles disassemble, which results in the loss of MT minus-end 

anchoring at the cortex and the cortical release of MTs. This redistribution of MTs is 

the prerequisite of fast ooplasmic streaming.  

This model raises the question how the localisation of MT minus-ends regulates the 

occurrence of fast ooplasmic streaming. It has been proposed that fast ooplasmic 

streaming involving MTs and Kinesin: Kinesin transports cargos to the MT plus-ends, 

exerting the force on the surrounding ooplasm. The concerted movement of multiple 

impellers along the neighbouring MTs that are oriented in the same general direction 

creates the fast streaming (Serbus et al., 2005). Our data suggest that the actin bundles 

tether the MT minus-ends to the cortex. This tethering makes the MTs resistant to the 

force exerted by the concerted movement of cargos, thereby limits the speed of 

ooplasm movement and prevents the MTs from being washed into parallel arrays. As 

the actin bundles disassemble, the tethering of minus-ends is lost and MTs can be 

released from the cortex. The free MTs are subject to the force exerted by the 

concerted movement of cargos, and thereby fast ooplasmic streaming can be initiated. 

At this step, a previously suggested self amplifying loop could be initiated, in which 

MT array formation and Kinesin movement enhances each other. In this loop the 

Kinesin driving streaming helps to sweep MTs into parallel arrays, which in turn 

allow more robust currents in the ooplasm (Serbus et al., 2005). 

4.2. Cortical anchoring of MT minus-ends of the oocyte 

Organised from the cortically localised minus-ends, MTs radiate to the interior of the 

oocyte at stage 9/10a. These non-centrosomal cortical MTs are analogous to MTs in 

some differentiated cells, such as in Drosophila wing epidermal cells, where 

apical-basal MT radiate from multiple nucleation sites associated with the apical 

plasma membrane (Mogensen et al., 1989). Although the plasma membrane 
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associated MT nucleating system is widely employed in polarised epithelial cells, it is 

not clear how they are anchored. Our finding that the cortical localisation of MT 

minus-ends is mediated by the actin bundles may gain insight into the general 

mechanisms how cortical MTs are anchored.   

4.3. The cortical actin bundling of the oocyte, a novel actin based 

structure in the egg chamber 

Previously, several specialised actin-based structures have been identified in the egg 

chamber. One of them is the ring canal. Ring canals interconnect 16 germline cells 

and transport the cytoplasmic components from the nurse cells to the oocyte. Another 

specialised actin structure is the actin bundle in the nurse cell cytoplasm. These actin 

bundles are required to anchor the nurse cell nucleus in the centre of the cell from 

stage 11 on during the process of “dumping”. The third specialised actin structure is 

the parallel actin bundling at the basal cortex of the epithelial cells surrounding the 

oocyte during mid-oogenesis. These actin bundles are required for the egg chamber 

elongation (Bateman et al., 2001; Frydman and Spradling, 2001). Here, we report the 

existence of a novel specialised actin-based structure, the actin bundles at the oocyte 

cortex. These actin bundles have not been analysed at an ultrastructural level, and it is 

not known how the actin filaments are crosslinked. In this study these actin filaments 

are referred to “actin bundles” because their organisation is reminiscent of bundles.  

The actin bundles are predominantly oriented in an anterior-posterior direction. In 

addition, the density of the actin bundles at the posterior pole is very low. Thus, actin 

bundling reveals features of anterior-posterior polarity. Although the area of low actin 

bundle density at the posterior pole overlaps with the domain of Oskar localisation, 

our data reveal that the organisation of the posterior actin cytoskeleton does not 

require Oskar. This suggests that actin bundling is upstream of Oskar localisation. It 

has been suggested that Oskar localisation to the posterior pole is required for 

polarising the MT cytoskeleton in the oocyte (Zimyanin et al., 2007). Thus, actin 

bundling precedes the repolarisation of the oocyte MT cytoskeleton. This raises the 
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possibility that the establishment of the polarity of actin bundling may be one of the 

earliest events in polarising the oocyte during mid-oogenesis. One question to be 

considered is whether the actin organisation is in response to the polarising signaling 

sent back from the follicle cell at stage 6 to7. To address this question, we can analyse 

actin bundling in gurken mutant oocytes. In gurken mutants, the oocyte fails to 

produce the TGF-α signaling to the underlying follicle cells at the posterior. As a 

consequence, those follicle cells can not adopt a posterior fate to send the signal back 

to the oocyte (Roth et al., 1995; Neumansilberberg and Schupbach, 1993) If the 

polarity of actin bundling is induced by the back signaling, we would expect actin 

bundling in gurken mutant oocytes to be organised in an un-polarised manner.  

The recruitment of a Par-1 isoform, Par-1 N1, to the posterior cortex of the oocyte at 

stage 7 has been suggested to be the earliest marker for the posterior of the oocyte. 

The finding that treatment of egg chambers with the actin-destabilising drug 

latrunculinA abolishes the posterior enrichment of GFP Par-1 N1 indicates a role of 

actin in regulating the Par-1 N1 recruitment to the posterior (Doerflinger et al., 2006). 

This raises the question of whether the establishment of the actin bundling polarity is 

upstream or downstream of the Par-1 N1 recruitment to the posterior. To address this 

issue we first need to know how the actin cortex is organised during early oogenesis 

(stage 6-7). In other words, we need to know when the actin bundles are formed. 

However, at present we can detect the existence of actin bundling in the oocyte not 

earlier than stage 8. Before stage 8 the oocyte is very small and the lateral cortex is 

shaped in a steep curve, which prevents the high resolution analysis of the 

cytoskeletal organisation at the cortex.  

Recently Dahlgaard (Dahlgaard et al., 2007) reported the existence of another actin 

based structure in the oocyte, which is also involved in regulating the onset of fast 

ooplasmic streaming. The authors show that an isotropic mesh of actin filaments is 

present in the oocyte cytoplasm at stage 9/10a. This actin mesh is required to prevent 

the fast streaming by suppressing the Kinesin motility. At stage 10b, the actin mesh 

disassembles and fast ooplasmic streaming is therefore induced. We therefore propose 

that the cortical actin bundling and the actin mesh in the ooplasm act together in 
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regulating the MT organisation of the oocyte. 

4.4. The assembly of actin bundles at the oocyte cortex 

How are the actin bundles at the oocyte cortex assembled? We show that chic/profilin 

mutants and latrunculinA treatment both interfere with actin bundle formation. 

LatrunculinA treatment inhibits the actin polymerisation by binding to and 

sequestering actin monomers. Profilin is involved in actin polymerisation by 

delivering actin monomers to the growing ends of actin filaments (Goode and Eck, 

2007). Thus, latrunculinA treatment and profilin mutants appear to interfere with actin 

bundling by limiting the pool of monomers that can be added to growing actin 

filaments.  

We also demonstrate that overexpression of GFPactin5C in the germline abolishes the 

formation of cortical actin bundles. The mechanism underlying this is not clear. 

Nevertheless, it seems unlikely that actin polymerisation is ubiquitously affected, 

given that GFPactin5C is incorporated into some other actin based structures without 

causing abnormities (Roeper et al., 2005). We therefore speculate that the fusion of 

GFP protein to Actin5C monomer interferes with the binding of proteins crosslinking 

the actin filaments to form actin bundles.  

4.5. The role of Capu and Spire in the cytoskeletal organisation of 

the oocyte  

capu and spire mutants do not affect the formation of actin bundles at the oocyte 

cortex. Rosales-Nieves (Rosales-Nieves et al., 2006) have shown that Capu and Spire 

proteins are able to crosslink F-actin and MTs in vitro and that GFP-Spire and 

GFP-Capu fused proteins expressed in the germline localise to the oocyte cortex. 

Recently, Quilan (Quinlan et al., 2007) further examined the localisation of 

endogenous Spire by antibody staining. Endogenous Spire is, like the GFP fusion 

protein, localised to the oocyte cortex through stage 9. In addition, Quilan (Quinlan et 
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al., 2007) demonstrate that the actin-MT crosslinking activity of Capu is regulated by 

the formation of Spire-Capu complex. We therefore propose that Capu and Spire 

anchor the MT minus-ends in a scaffold provided by the cortical actin bundles (Fig. 

22A). The lack of Capu and Spire activity in the mutants prevents cortical MT 

anchoring and allows the fast streaming in the presence of actin bundles. 

Quilan (Quinlan et al., 2007) also demonstrate that the localisation of endogenous 

Spire disappears from the oocyte cortex at stage 10b when the fast streaming is 

initiated. This finding led to the speculation that the displacement or the destruction of 

Spire from the oocyte cortex triggers the initiation of the fast streaming (Quinlan et al., 

2007). Due to the lack of antibodies recognising Capu, it is unclear whether 

endogenous Capu is, like Spire, localised to the oocyte cortex. However, when a GFP 

tagged version of Spire is overexpressed we and others observed high levels of 

GFP-Spire at the oocyte cortex before and after onset of fast ooplasmic streaming 

(Rosales-Nieves et al., 2006). The discrepancy between the detection of endogenous 

Spire and that of overexpressed GFP-Spire might well be explained by overloading 

the machinery for the protein displacement or destruction. Nevertheless, the 

observation that GFP-Spire still accumulates at the oocyte cortex when fast ooplasmic 

streaming is initiated argues against the idea that fast steaming is simply triggered by 

the displacement or the destruction of cortical Spire. It seems therefore unlikely that 

the initiation of fast streaming is regulated at the level of Capu and Spire localisation. 

Alternatively, it is possible that the activity of Capu and Spire to crosslink MTs with 

actin bundles is regulated. In such a model the crosslinking activities of Capu and 

Spire would be inhibited after stage 10a and thereby allow MT organisation. 

How are the activities of Capu and Spire modulated? One mode of regulation for the 

Capu and Spire activities is suggested by their genetic and biochemical interaction 

with Rho1 (Wellington et al., 1999; Magie et al., 1999). This interaction led to a 

model in which Rho1 initiates fast streaming by regulating the crosslinking activities 

of Capu and Spire (Rosales-Nieves et al., 2006). We show that the prevention of fast 

streaming requires not only Capu and Spire but also the presence of actin bundles. 

The formation of these bundles occurs, however, independently of Capu and Spire. 
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Thus, the onset of fast streaming is not only controlled by regulating Capu and Spire 

activities, but also by disassembly of the actin bundles (Fig. 22B). Whether Rho1 

works also as a regulator for the actin bundling remains to be tested.  

 
 
Fig. 22 Scheme of the oocyte cytoskeleton (A) At stage 9/10a, the cortical actin is organised into 
long thick bundles, that are aligned in parallel. By crosslinking MTs and actin Capu and Spire 
anchor the MT minus-ends at the cortex. (B) At stage 10b, the cortical actin rearranges, and bundles 
disappear. This reorganisation results in the release of the MT minus-ends from the cortex, 
triggering the fast cytoplasm streaming. 
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4.6. Alternative splicing of Tao-1 transcripts during oogenesis 

According to EST clones, four Tao-1 transcripts are annotated: Tao-1-RD and -RE are 

of about 4 kb and encode the Tao-1 isoforms containing a serine/threonine protein 

kinase domain at the N-terminus, coupled with some coiled-coil regions at the 

C-terminus. Tao-1-RA and -RB are approximately equivalent to the C-terminal part of 

Tao-1-RD and –RE, with the length of 2.3 kb. These short transcripts encode the 

Tao-1 isoforms containing only the coiled-coil regions.  

A primer pair was designed on the basis of the 4-kb transcripts annotated by the 

database. One primer was located at the 5´ UTR and other one was located at the 3´ 

UTR of the transcripts. Using this primer pair, RT-PCR of the total mRNAs of ovaries 

amplified the expected DNA fragment of about 4 kb. This verifies the expression of 

the 4-kb transcripts that have been annotated by EST clones. To our surprise, using 

this Tao-1 cDNA isolated by RT-PCR as the probe, the Northern blot analysis of 

ovarian RNAs did not detect the presence of 4-kb transcripts of Tao-1. Instead, one 

3-kb transcript and another 6-kb transcript were detected by the Northern blot analysis. 

Therefore, we conclude that the annotation of Tao-1 according to EST clones does not 

completely predict the complexity of Tao-1 transcripts expressed during oogenesis. 

The predominant Tao-1 transcripts expressed during oogenesis are the 6-kb and 3-kb 

transcripts. Low expression levels of the 4-kb transcripts may explain why they were 

not detected by the Northern blot analysis. Given the lower sensitivity of Northern 

blot analysis, it was not clear whether the transcripts predicted as 2.3 kb are present 

during oogenesis. Even if these 2.3 kb transcripts are expressed, the expression level 

must be relatively low.  

So far, the sequence information of these different Tao-1 transcripts is not known. 

Nevertheless, these transcripts may represent different splicing forms of Tao-1 gene. 

For example, the 3-kb transcripts may contain identical exons as the 4-kb transcripts, 

with the difference that one or two more exons are spliced out. Conversely, if fewer 

exons are spliced out, longer transcripts, like the one of 6 kb would be produced. 
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Another possible explanation is that there is an alternative transcriptional termination 

or initiation site that has not been annotated, so that the length of the produced 

transcripts differs from the annotation. For the future, a RT-PCR method aimed to 

isolate all expressed transcripts, together with the subsequent sequencing analysis 

should give us a thorough idea of Tao-1 transcripts expressed during oogenesis. 

4.7. The molecular and genetic nature of Tao-1No.7 

By mobilising the EP element, Tao-1 EP(X) 1455, which is inserted in the 5’ UTR of 

Tao-1, Tao-1No.7 mutants have been generated. Northern blot analysis reveals that the 

transcription level of 3-kb Tao-1 transcripts is greatly reduced in mutant ovaries. 

Sequence analysis shows that in the Tao-1No.7 mutant, the original EP element is 

imprecisely excised and a 4-kb fragment of the EP element is left at the original 

insertion site; while the rest of the genomic sequence of the Tao-1 locus is not 

affected. We suspect that this unexcised 4-kb P-element sequence alters the 

transcription level of Tao-1. Similar situations have been reported in other studies. For 

example, in the work of Lee and Chung (Lee et al., 2003), which identified new 

alleles of blistery by mobilising an EP element, byex10 was recovered. In this mutant 

line, a 1.1-kb fragment of the original P-element remained at the 5’ upstream of the by 

locus. RT-PCR analysis revealed that the expression level of by was greatly reduced. 

Another example comes from the work of Zhang (Zhang et al., 2003). P-element 

mobilisation was applied to generate alleles of JIL-1. In this study, JIL-128 generated a 

line in which a 3.6-kb fragment from the original EP element is left in the 5’UTR. In 

this mutant, the expression level of JIL-1 protein was reduced to 45% of the wild type 

level. Thus, after P-element mobilisation the fragment of P-element remaining at the 

5’ upstream of the gene adjacent to the insertion site can affect the transcription or 

translation level of the gene.  

When a Tao-1 cDNA was expressed in the germline of Tao-1No.7 females, the 

cytoskeletal organisation defects of the oocyte were completely rescued. This verifies 

that Tao-1No.7 is an allele of Tao-1. Given the fact that the transcription level of 3-kb 
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Tao-1 transcripts is greatly reduced in the Tao-1No.7 ovaries, one would suspect that 

the phenotypes observed in Tao-1No.7 oocytes are due to the reduced level of Tao-1 

transcription. However, complementation test of Tao-1No.7 and other alleles of Tao-1 

indicates that this is not the case.  

An EMS induced allele of Tao-1, Tao-1ETA, was generated in this study. Sequence 

analysis revealed that a premature stop codon was introduced in 5’ region of the Tao-1 

gene. In Tao-1ETA mutant flies, a truncated protein is expressed that lacks the 

functional Ser/Thr kinase domain and the coiled-coil domains. Tao-1ETA flies are lethal 

and the lethality was rescued by ubiquitously expressing the 4-kb Tao-1 cDNA. The 

expression of this cDNA in Tao-1No.7 female germline likewise rescued the 

cytoskeletal organisation defects of the oocyte. The ability of the Tao-1 cDNA, which 

encodes a full length protein containing the kinase domain and the coiled-coil 

domains, to rescue both the Tao-1ETA lethality and the Tao-1No.7 fertility suggest that 

these two alleles both suffer from the disrupted function of Tao-1 protein, but to 

different extent. Tao-1ETA may represent a strong allele, as no functional Tao-1 protein 

can be produced in Tao-1ETA mutants; Tao-1No.7 may represent a weak allele, as Tao-1 

transcripts are not completely abolished and some Tao-1 protein can be produced in 

Tao-1No.7 mutants. If this is the case, one would expect to detect defects in MT 

organisation and Oskar protein localisation of a higher penetrance in Tao-1ETA oocytes, 

than that in Tao-1No.7 oocytes. Surprisingly, Tao-1ETA germline clones did not show 

defects regarding the organisation of MTs and the localisation of Oskar protein. 

Moreover, Tao-1ETA complements the oogenesis defects observed in Tao-1No.7 mutants. 

This indicates that the cytoskeletal organisation defect of Tao-1No.7 oocytes is not the 

result of reduced Tao-1 function.  

We further analysed the Tao-1 function with a deletion called Df.14.1. Df.14.1 is a 

deletion that removes the Tao-1 locus completely. In Df.14.1 mutant flies, Tao-1 

transcripts are most likely not produced at all. If the cytoskeletal organisation defects 

observed in Tao-1No.7 oocytes result from the reduced levels of Tao-1 transcripts, one 

would expect to detect the defects in MT organisation and Oskar protein localisation 

of a higher penetrance in Df.14.1 mutant oocytes, than that in Tao-1No.7 oocytes. 
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However, both in the germline clones of Df.14.1 and in oocytes trans-heterozygous 

for Tao-1No.7 and Df.14.1, the MT cytoskeleton is properly organised and Oskar 

protein is correctly localised to the posterior. These results further argue against the 

suggestion that the phenotype observed in Tao-1No.7 oocytes is the result of the 

reduced level of Tao-1 transcription.  

Therefore, although the transcription level of Tao-1 transcripts is reduced in Tao-1No.7 

mutants, the cytoskeletal organisation defects observed in Tao-1No.7 mutants can not 

be explained as the result of a reduced function of Tao-1. The genetic 

complementation test of Tao-1No.7, Tao-1ETA, and Df.14.1 suggests that Tao-1No.7 is 

most likely a gain of function allele of Tao-1. This gain of function effect is recessive, 

as two copies of Tao-1No7 (Tao-1No7/ Tao-1No7) are required to induce the phenotype. 

Neither one copy of Tao-1No.7 (Tao-1ETA/Tao-1No.7; Df.14.1/Tao-1No.7) nor addition of 

Tao-1 cDNA in Tao-1No7/ Tao-1No.7 induces the phenotype. A good example for 

recessive gain of function allele has been reported for torso: torRL3 (Klingler M, 1988). 

How the gain of function is achieved in Tao-1No7 mutants remains to be elucidated. 

One possibility is that a novel (ultimately toxic) protein is produced in Tao-1No7. This 

idea can be tested by molecular and genetic analysis. Molecular analysis should aim 

to isolate transcripts expressed in Tao-1No7 mutants by RT-PCR, and to obtain the 

sequence information by sequencing analysis. For genetic analysis, one possible way 

is to mutagenise Tao-1No.7 allele, such as by EMS, and look for the revertants that do 

not exhibit the cytoskeletal organisation defects of the oocyte. The revertants are 

expected to bear mutations at the essential regulatory domains of the toxic protein, 

and thereby disrupt the function of this toxic protein. Subsequent analysis of the 

revertants, including the sequence analysis and the genetic interaction with other 

Tao-1 alleles should help us to understand the nature of Tao-1No.7. 

4.8. The unique patterning defects of Tao-1No.7 mutants  

Tao-1No.7 mutants cause patterning defects during oogenesis, resulting in eggs and 

embryos that show alterations along the dorsal-ventral and anterior-posterior axis. We 
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demonstrate that oskar, gurken and bicoid mRNAs are all ectopically localised within 

the ooplasm, instead of accumulating at the posterior pole, dorsal-anterior corner and 

anterior corners, respectively, of stage 9/10a oocytes. Those mislocalised mRNAs are 

not translated efficiently, resulting in greatly reduced level of Gurken and Oskar 

protein in the oocyte. The decrease of Gurken protein explains the ventralisation of 

the egg shell; while the decrease of Oskar protein prevents the pole plasm formation 

and causes the posterior group defect of the embryo produced by Tao-1No.7 mutants. 

We further show that the defect of mRNA localisation starts specifically at 

mid-oogenesis.  

Over the past years, a number of genes have been identified to be required for proper 

localisation of RNAs in the Drosophila oocyte. However, to our knowledge, none of 

those reported phenotypes resembles the defects of the RNA localisation observed in 

Tao-1No.7 mutants. The unique feature of the mRNA localisation defects observed in 

Tao-1No.7 oocytes is the diffuse distribution of oskar, gurken and bicoid mRNAs 

occurred at the same time. These three mRNAs are spreading through the entire 

ooplasm like dispersed particles, indicating that the polarity of the oocyte is 

thoroughly disrupted. In contrast, in most of the mutants that affect mRNA 

localisation in the oocyte, mRNAs accumulated at ectopic locations. For example, in 

gurken, Pka and mael mutants, bicoid mRNA is detected at the posterior pole, while 

oskar mRNA is detected at the centre of the oocyte. The oocytes from these mutants 

are polarised, but the polarity is not established in the correct way. In other mutants, 

mRNAs may exhibit a diffuse distribution pattern. However, in these mutants, the 

localisation defects are not observed for oskar, gurken and bicoid mRNAs 

simultaneously, but primarily restricted to certain type of mRNA. For example, in 

spire and capu mutants oskar mRNA is spreading through the entire ooplasm; while 

bicoid mRNA is correctly localised at the anterior corners of the oocytes (Emmons et 

al., 1995; Manseau et al., 1996; Theurkauf, 1994). In spn-F and ik2 mutants, gurken 

mRNA is diffusedly present at the ooplasm; while the localisation of oskar mRNA at 

the posterior of the oocyte is not affected (Abdu et al., 2006; Shapiro and Anderson, 

2006). These data suggest that the polarity of the oocytes in these mutants is only 
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partially disrupted. The fact that in Tao-1No.7 mutants the polarity of the oocyte is 

completely disrupted makes Tao-1No.7 unique among patterning mutants.  

4.9. The novel cytoskeletal organisation phenotype of Tao-1No.7 

mutant oocytes 

What is the mechanism by which oskar, gurken and bicoid mRNA localisation is 

disrupted, and why are these mRNAs dispersed through the entire ooplasm? The 

localisation of mRNAs to the correct position within the oocyte depends on the 

transport driven by motors along MTs. The localisation of Tao-1 protein, which is 

restricted to the oocyte cortex, places Tao-1 protein at the ideal location to regulate 

actin and MT organisation. In Tao-1No.7 mutant oocytes, cortical actin bundling is 

disrupted, MT minus-ends are not anchored at the cortex but relocate to the entire 

ooplasm, and a high density of interlacing MTs within the ooplasm was observed, 

with minus-ends and plus-ends randomly distributed. It seems impossible that the 

motor dependent transport of transcripts along the MTs to the plus-ends or 

minus-ends can be directed to certain subcellular locations, as the whole ooplasm is 

filled with randomly distributed MTs.  

In Tao-1No.7 oocytes, actin bundling is affected, which results in the relocation of MT 

minus-ends from the cortex into the entire ooplasm leading to a completely disrupted 

MT cytoskeleton. One question to be considered is that whether the altered MT 

organisation resulting from the actin bundling defect is enough to explain the 

simultaneous mislocalisation of oskar, gurken and bicoid mRNAs. If so, one would 

expect that oskar, gurken and bicoid mRNAs are also simultaneously mislocalised in 

chic mutants or in actin inhibitory drug treated egg chambers, in which the cortical 

actin bundling is disrupted and the MT organisation is subsequently altered. However, 

both in the oocytes of chic mutants and in the oocytes treated with drugs, only oskar 

mRNA is mislocalised; while bicoid mRNAs is correctly localised at the anterior 

corners (Emmons et al., 1995; Manseau et al., 1996). The localisation of gurken 

mRNAs has not been unambiguously defined in chic and the drug treated oocytes. 
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Therefore, we mainly focus on the behaviour of oskar and bicoid mRNAs in the 

following discussion.  

In Tao-1No.7 oocytes oskar and bicoid mRNA are both mislocalised; while in chic 

mutant oocytes or in drug treated oocytes, only oskar mRNA is affected. How to 

explain this discrepancy? It has been proposed that there are three populations of MT 

existed in the oocyte during mid-oogenesis: MTs extending from the anterior cortex, 

which are involved in localising bicoid mRNA to the anterior poles; MTs extending 

from the oocyte nucleus around the anterior cortex, which are involved in localising 

gurken mRNA to the dorsal anterior corner; MTs extending from the lateral cortex, 

which are required for localising oskar mRNA to the posterior pole (St Johnston D., 

2005). This organisation offers the possibility that the MTs that are regulated by 

cortical actin bundles are only responsible for localising oskar mRNA to the posterior 

pole; while the other subset of MTs responsible for localising bicoid mRNA is not 

dependent on the actin bundling. For this reason, in the oocytes of chic and the 

oocytes treated with drugs, only oskar, but not bicoid mRNA is mislocalised. Thus, 

the altered organisation of the MT cytoskeleton in Tao-1No.7 oocytes resulting from the 

actin bundling defect is not sufficient to explain the simultaneous mislocalisation of 

oskar, gurken and bicoid mRNAs. Therefore, one should consider other mechanisms 

that globally affect the motor dependent transport of transcripts along the MTs in 

Tao-1No.7 oocytes. One possibility is that Tao-1No.7 directly affects the MT 

organisation. This speculation is supported by the finding that the MTs present in 

Tao-1No.7 oocytes appear thicker than that in the wild type.  

How Tao-1No.7 is directly regulating MTs remains elusive. Over the past year, despite 

that fact that numerous genes affecting the MT organisation in the oocyte during 

mid-oogenesis have been characterised (Steinhauer and Kalderon, 2006), none of 

them has been demonstrated to directly interact with MTs or to be MT organising 

factors. Understanding the mechanism underlying the defects of Tao-1No.7 in 

regulating the organisation of MTs during oogenesis may provide general insight into 

the mechanism regulating the organisation of MT network.  
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5. SUMMARY 

In this study, a careful examination was conducted to analyse the actin and 

microtubule (MT) cytoskeleton organisation during Drosophila oogenesis. We found 

that at stage 9/10a the actin cytoskeleton at the oocyte cortex is assembled into long 

bundles, which are essential for anchoring the MT minus-ends at the cortex. The 

formation of actin bundles requires the function of Profilin. Capu and Spire act 

downstream of the bundle formation, most likely by anchoring MT minus-ends at the 

cortex by crosslinking F-actin and MTs. At stage 10b, the actin bundles disassemble 

and the MT minus-ends are relocated from the actin cortex to subcortical regions. 

Subsequently, fast ooplasmic streaming is initiated and MTs form parallel arrays at 

subcortical regions.  

To identify the regulators of the organisation of the oocyte cytoskeleton, a mutation in 

a serine/threonine kinase Tao-1, Tao-1No.7 was generated. The analysis of Tao-1No.7 

mutants revealed a novel phenotype for the cytoskeleton organisation of the oocyte. In 

Tao-1No.7 mutant oocytes the cortical actin bundling is disrupted. Unlike in other 

mutants which affect actin bundling, in Tao-1No.7 oocytes MTs are not forming 

parallel arrays at subcortical regions; but show high MT density within the entire 

ooplasm. Thus, the MT network is completely disrupted in Tao-1No.7 oocytes. As a 

result, the transcripts for the axis determinants are not transported to correct 

subcellular locations, and as a consequence the embryonic axis is not properly 

established.  

The oogenesis phenotypes observed in Tao-1No.7 mutants was rescued by the 

expression of a Tao-1 cDNA, verifying that Tao-1No.7 is an allele of Tao-1. 

Nevertheless, a deletion removing the Tao-1 locus completely does not exhibit the 

defects in the cytoskeletal organisation of the oocyte. Therefore, Tao-1No.7 is most 

likely a gain of function allele of Tao-1, which shows a phenotype only in a 

homozygous situation (recessive gain of function).  
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6. ZUSAMMENFASSUNG 

Bei dieser Arbeit wurden die Zusammenhänge der Zytoskelett-Organisation von Aktin 

und mikrotubuli (MT) während der Embryogenese von Drosophila sorgfältig 

untersucht. Wir konnten zeigen, dass sich während des Stadiums 9/10a das 

Aktin-Zytoskelett am Kortex der Oocyte in langen Bündeln ansammelt. Diese Bündel 

sind nötig, um die Minus-Enden der MT am Kortex zu verankern. 

Die Ausbildung der Aktinbündel ist auf die Funktion von Profilin angewiesen. Capu 

und Spire wirken downstream von der Bündelentwicklung, höchstwahrscheinlich 

durch Quervernetzung von F-Aktin mit den MT, wodurch deren Minus-Enden an dem 

Kortex verankert werden können. Im Stadium 10b gehen die Aktinbündel auseinander. 

Die Minus-Enden der MT verlagern sich vom Aktin-Kortex in subkortikale Regionen. 

Anschließend wird die schnelle Ooplasma-Strömung eingeleitet, und die MT ordnen 

sich parallel in den subkortikalen Regionen an. 

Um Regulatoren der Zytoskelett-Organisation in der Eizelle zu identifizieren, wurde 

eine Mutation in der Serin/Threonin-Kinase Tao-1 erzeugt (Tao-1No.7). Die Analyse 

der Tao-1No.7-Mutanten zeigte einen bislang unbekannten Phänotyp der 

Zytoskelett-Organisation in der Eizelle. In den Tao-1No.7-Oocyten sind die kortikalen 

Aktinbündel unterbrochen. Anders als in zuvor beschriebenen, die Aktin-Bündel 

betreffenden, Mutanten, ordnen sich MT in Tao-1No.7-Eizellen nicht parallel in den 

subkortikalen Regionen an; stattdessen zeigen diese Mutanten eine hohe Dichte der 

Mikrotubuli im gesamten Ooplasma. Dadurch ist das Mikrotubulinetzwerk in 

Tao-1No.7-Oocyten vollständig gestört. Eine Folge hiervon ist, dass die für die 

Achsendetermination benötigten Transkripte nicht an die richtige subzelluläre 

Position transportiert werden. Folglich wird die embryonale Achse nicht richtig 

aufgebaut. 

Die Oogenese-Phänotypen, die in Tao-1No.7-Mutanten beobachtet wurden, konnten 

durch Expression von Tao-1 cDNA gerettet werden, was bestätigt, dass Tao-1No.7 ein 

Allel von Tao-1 ist. Dennoch führt eine Deletion des gesamten Tao-1-Bereiches zu 
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keinen Defekten der Zytoskelett-Organisation in der Oocyte. Daher ist Tao-1No.7 

höchstwahrscheinlich ein Gain-of-function-Allel von Tao-1, das diesen Phänotyp 

ausschließlich im homozygoten Zustand zeigt (rezessive 

Gain-of-Function-Mutation.).  
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