
Constrained Planarity

and Augmentation Problems

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Merijam Percan

aus Lübeck

Köln 2007

2

Berichterstatter: Prof. Dr. Michael Jünger
HD. Dr. Hubert Randerath

Tag der mündlichen Prüfung: 18. Januar 2008

3

Acknowledgments

I would like to thank everyone who supported me in writing this thesis. First of all, I would
like to thank my supervisor Prof. Dr. Michael Jünger for giving me the possibility to do
research in automatic graph drawing and graph theory and for providing much help during
internal seminars.

I am grateful for all the constructive and helpful discussions during cooperations with Dr.
Christoph Buchheim, Dr. Elisabeth Gassner, Carsten Gutwenger, Prof. Dr. Michael Jünger,
Dr. Sebastian Leipert, Annette Menze, Prof. Dr. Petra Mutzel, Dr. Markus Schaefer, Prof.
Dr. Klaus Truemper and Dr. René Weiskircher.

Especially, I would like to thank Klaus Truemper for bringing me into the research field of
graph theory, for all his help and great ideas that influence significantly the second part
of my thesis. I am very grateful that I got the possibility to work with him during a two
months stay at the UT Dallas.

A lot of thanks go to Thomas Lange, Marc Egger, Holger Flier, Constantin Hellweg, An-
nette Menze, Robin Noack, Ramin Sahamie and Marc Sprenger for the huge support in
technical questions.

Furthermore, I would like to thank Michael Belling and Ursula Neugebauer for helping me
in the acquisition of literature and all administrative processes.

A big thank goes also to Frank Baumann, Matthias Elf, Dr. Diana Fanghänel, Dr. Stefan
Hachul, Dr. Frauke Liers, Gregor Pardella, HD Dr. Bert Randerath, Michael Schulz, Andrea
Wagner and all mentioned before for their open doors.

Further, I would like to thank my family, for supporting me in all aspects in my life. I am
very grateful for their help and for giving me the possibility to study. Many thanks go to
Dr. Katrina Riehl and Ingrid Truemper for their language support and friendship. Last
but not least, a big thank is addressed to Dr. Martin Gotzes and his family.

ABSTRACT

This thesis has three parts:

Part I focus on clustered graphs. A clustered graph C = (G, T) consists of an undirected
graph G and a rooted tree T in which the leaves of T correspond to the vertices of G =
(V, E). Each vertex µ in T corresponds to a subset of the vertices of the graph called
“cluster”. c-planarity is a natural extension of graph planarity for clustered graphs, and
plays an important role in automatic graph drawing. The complexity status of c-planarity
testing is unknown. It has been shown in [30, 18, 20] that c-planarity can be tested in
linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are
connected.

In this thesis, we provide a polynomial time algorithm for c-planarity testing of “almost”
c-connected clustered graphs, i.e., graphs for which all nodes corresponding to the non-c-
connected clusters lie on the same path in T starting at the root of T , or graphs in which
for each non-connected cluster its super-cluster and all its siblings in T are connected;
see [40] and Sections 7.3 to 7.5 of this thesis. Additionally, we provide a polynomial time
algorithm for planar clustered graphs for which G − G(ν) is connected for each cluster ν
in Section 7.2. The algorithms are based on the concepts for the subgraph induced planar
connectivity augmentation problem presented in [41] and Chapter 6 of this thesis.

Given a planar graph G = (V, E) and a vertex set W ⊆ V , the subgraph induced planar
connectivity augmentation problem asks for a minimum cardinality set F of additional
edges with end vertices in W such that G′ = (V, E ∪ F) is planar and the subgraph of G′

induced by W is connected. We describe a linear time algorithm based on SPQR-trees that
tests if a subgraph induced planar connectivity augmentation exists and, if so, constructs
a minimum cardinality augmenting edge set.

Furthermore, we give some characterization for c-planar clustered graphs based on dual
graphs and forbidden minors in Chapter 4 and Section 7.1.

In Chapter 8, we provide a linear time algorithm for augmenting c-connected c-planar
embedded clustered graphs C = (G, T) by adding edges such that C remains c-planar
embedded even after applying any planar graph augmentation algorithm afterwards.

Parts II deals with edge deletion and bimodal crossing minimization. In Chapter 9 we con-
sider edge deletion problems. In Section 9.1 we prove that the maximum planar subgraph
problem remains NP-complete even for non-planar graphs without a minor isomorphic

i

ii

to either K5 or K3,3, respectively. In Section 9.2, we investigate the problem of finding a
minimum weighted set of edges whose removal results in a graph without minors that are
contractible onto a prespecified set of vertices. Such minors are called rooted. The problem
of a minimum weighted deletion of all rooted Ki,3-minors for a fixed i ∈ N is proved to be
NP-hard on general graphs. Furthermore, an O(n3) time algorithm is developed for the
rooted K1,3-minor deletion problems on planar graphs while for the rooted K2,3-free minor
planar graphs a characterization is presented.

In Chapter 10 we consider the problem of drawing a directed graph in two dimensions with
a minimal number of crossings such that for every node the incoming and outgoing edges
are separated consecutively in the cyclic adjacency lists. We adapt the usual planariza-
tion method and other approaches in a simple way. We report experimental results for the
increase in the number of crossings involved by this additional restriction on the set of
feasible drawings. We can summarize the statement of this chapter as follows: whenever
the direction of edges in a graph carries significant information, this should be stressed
by separating incoming and outgoing edges in the adjacency lists. We show how crossing
reduction algorithms can be adapted in order to comply with this requirement. The neces-
sary changes are not only easy to implement but also neutral with respect to runtime. As
our experiments show, the number of crossings can be expected to grow only slightly for
practical instances.

Part III summarizes, concludes and gives some ideas for future work on the complexity
status of c-planarity studied in Part I of this thesis.

ZUSAMMENFASSUNG

Der erste Teil dieser Arbeit beschäftigt sich mit einer speziellen Planarität definiert auf
einer speziellen Graphen-Klasse. Zuerst möchten wir uns mit Definitionen von Wendy Feng
und Peter Eades (s. [29, 30]) beschäftigen, die wir für unsere späteren Betrachtungen
voraussetzen werden.

Ein Cluster–Graph oder Clustergraph oder geclusterter Graph C = (G, T) besteht aus einem
ungerichteten Graphen G = (VG, EG) und einem Baum T = (VT , ET) mit einer Wurzel,
so daß die Blätter von T genau die Knoten des Graphen G sind. Ein Cluster ist eine
Knotenteilmenge im Graphen G.

Für die Knotenmenge des Graphen G und die Knotenmenge des Baumes T gilt somit

VG ⊂ VT . (1)

Sei ν ∈ T ein Baumknoten, aber kein Blattknoten. Sei die Knotenteilmenge V Cluster
G mit

V Cluster
G ⊂ VG (2)

ein Cluster des Graphen G. Sei der Baum T (ν) ein vom Baumknoten ν induzierter Baum.
Sei lca der kleinste gemeinsame Vorfahre zweier Baumknoten in T . Ferner soll gelten

ν = lca(v, w) für alle v, w ∈ V Cluster
G paarweise verschieden.

Dann wird das Cluster V Cluster
G = VG(ν) im Baum T durch den Baumknoten ν repräsentiert.

In dieser Arbeit ist mit einem Cluster ν aus dem Baum T immer die zu dem Cluster
korrespondierende Wurzel ν ∈ T (ν) ⊂ T gemeint.

Eine Kante ist inzident zu einem Cluster ν, wenn die Kante eines Knotens aus V (ν)
einen Knoten außerhalb von V (ν) verbindet. Eine Kante heißt Auswärtskante (bzw.
Inwärtskante) eines Clusters ν, falls sie Auswärtskante (bzw. Inwärtskante) eines Knotens
aus V (ν), aber nicht Inwärtskante (bzw. Auswärtskante) eines Knotens aus V (ν) ist.

Für jeden Knoten ν ∈ T gilt: chl(ν) sind die Kinder von ν; pa(ν) der Vater von ν , falls ν
nicht die Wurzel von T ist. Jeder Knoten ν des Baumes T repräsentiert einen Cluster V (ν)

iv

der Knoten von G, die die Blätter des Unterbaumes mit Wurzel ν sind. Der Untergraph
von G, der durch V (ν) induziert wird, wird als G(ν) bezeichnet.

Damit beschreibt der Baum T eine Inklusionsrelation zwischen den Clustern.

Wenn ein Knoten ν ′ Nachkomme eines Knotens ν im Baum T ist, so bezeichnet man das
Cluster von ν ′ als Subcluster von ν.

In einer Zeichnung eines Cluster–Graphen C = (G, T) werden die Knoten des Graphen G
wie üblich als Punkte und die Kanten als Kurven in einer Ebene gezeichnet.

Ferner soll für eine Zeichnung des Graphen in einer Ebene gelten, daß für alle ν aus T das
Cluster als ein einfach geschlossenes Gebiet R gezeichnet werden soll, welches im Innern
die Zeichnung von G(ν) enthält, so daß:

1. die Gebiete aller Untercluster von ν ganz im Innern von R enthalten sind;

2. die Gebiete aller anderen Cluster ganz im Äußeren von R enthalten sind;

3. für jede Kante e zwischen zwei Knoten von V (ν) die Zeichnung von e ganz in R
enthalten ist.

Diese Bedingungen erleichtern die Verständlichkeit einer Zeichnung. Hieraus wird nun der
Begriff der c–Planarität abgeleitet.

Wir gehen im folgenden davon aus, dass die Cluster–Regionen als ein geschlossenes Gebiet
dargestellt werden.

Schneidet eine Kante e die Umrandung eines Gebiets R in der Zeichnung von (G, T) mehr
als einmal, dann haben die Kante e und das Gebiet R in dieser Zeichnung einen Kanten–
Gebiet–Schnitt.

Eine Zeichnung eines Cluster–Graphen ist c–planar (compound planar), falls es keine Kan-
tenkreuzungen oder Kanten–Gebiet–Schnitte gibt.

Ein Cluster–Graph C ist c–planar genau dann, wenn er eine c–planare Zeichnung hat.

Eine c–planare Einbettung von C = (G, T) besteht aus einer planaren Einbettung von G
sowie für jedes nichttriviale Cluster (das mehr als einen Knoten enthält) der kreisförmigen
Ordnung in welcher die Inzidenzkanten die Umrahmung des Clustergebiets kreuzen.

Die Planarität eines zugrundeliegenden Graphen G impliziert nicht die Existenz einer c-
planaren Zeichnung D eines Cluster-Graphen C.

D.h. ein c-planarer Cluster-Graph ist ein planarer Cluster-Graph, aber nicht jeder planare
Cluster-Graph ist ein c-planarer Cluster-Graph. c-Planare Cluster-Graphen bilden somit
eine Teilklasse der planaren Cluster-Graphen.

In einem Cluster-Graphen kann es vorkommen, daß der durch ein Cluster induzierte Un-
tergraph nicht zusammenhängend ist, sogar wenn der zugrundeliegende Graph zusam-
menhängend ist. Dieses macht die Betrachtung schwieriger, als es bei klassisch planaren

v

Graphen der Fall ist, da es nunmehr mehrere Möglichkeiten für die Plazierung und Formung
der Regionen gibt, sogar bei gegebener fixer Einbettung.

Sei nun C ein Cluster-Graph, in dem der von jedem Cluster induzierte Untergraph zusam-
menhängend ist. Wir können o.B.d.A. annehmen, daß in T mit Ausnahme der Blätter jeder
Knoten mindestens zwei Kinder hat.

Ein Cluster-Graph C = (G, T) ist ein c-zusammenhängender Cluster-Graph, falls jedes
Cluster einen zusammenhängenden Untergraphen von G induziert.

Das folgende Theorem 1 von Feng, Eades, Cohen [30] gibt uns ein notwendiges wie auch ein
hinreichendes Kriterium für die c-Planarität eines c-zusammenhängenden Cluster-Graphen.

Theorem 1 (Feng, Eades, Cohen [30]). Ein c-zusammenhängender Cluster-Graph ist c-
planar genau dann, wenn der Graph G planar ist und wenn eine planare Zeichnung D von
G existiert, so daß für jeden Knoten ν von T alle Knoten und Kanten aus G\G(ν) in der
äußeren Region der Zeichnung von G(ν) liegen.

Auf dieses Theorem 1 stützt sich der erste Algorithmus des Planaritätstests für c-
zusammenhängende Cluster-Graphen von Feng, Eades, Cohen [30] mit quadratischer
Laufzeit in bezug auf die Anzahl der Eingabeknoten mit der Voraussetzung, dass jedes
Cluster mindestens zwei Kinder hat. Verbessert wurde dieser auf lineare Laufzeit von Elias
Dahlhaus [18, 20].

Unser Augenmerk richtet sich auf das Theorem 2 von Feng, Eades, Cohen [30] welches
die Voraussetzung für unsere Betrachtungen ist. Dieses Theorem gibt uns eine Charak-
terisierung der c-Planarität für allgemeine Cluster-Graphen. Dazu benötigen wir zunächst
eine weitere Definition (Feng, Eades, Cohen [30]):

Seien C1 = (G1, T1) und C2 = (G2, T2) zwei Cluster-Graphen in dem Sinne, daß T1 ein
Unterbaum von T2 ist und G1(ν) ein Untergraph von G2(ν) ist. Dann ist C1 ein geclusterter
Untergraph von C2 und C2 ein geclusterter Supergraph von C1.

Theorem 2 (Feng, Eades, Cohen [30]). Ein Cluster-Graph C = (G, T) ist c-planar genau
dann, wenn er ein geclusterter Untergraph eines c-zusammenhängenden und c-planaren
Cluster-Graphen ist.

Es ist bislang kein effizienter (polynomieller) Algorithmus bekannt, der nicht c-
zusammenhängende Cluster-Graphen zu c-zusammenhängende Cluster-Graphen erweitert.
Überdies ist kein effizienter Algorithmus bekannt, der nicht c-zusammenhängende Cluster-
Graphen auf c-Planarität testet.

Um die Komplexität dieser Probleme zu klären, folgen weitere Arbeiten, die in Koop-
eration mit Carsten Gutwenger, Michael Jünger, Sebastian Leipert, Petra Mutzel und
René Weiskircher entstanden [41, 40]; siehe Kapitel 6 und Kapitelabschnitte 7.3 bis 7.5
dieser Dissertation. Da c-zusammenhängende Cluster–Graphen auf c–Planarität effizient
in polynomieller Zeit getestet werden können, ist es intuitiv ersichtlich, zuerst einen c-
Zusammenhang zu generieren, ohne eine vorhandene c-Planarität zu zerstören. Da dieses

vi

bekanntermassen in bezug auf Komplexität unbekannt ist, gehen wir zuerst nur von
einem nicht zusammenhängenden Cluster aus. Ein dazu verwandtes Problem ist das fol-
gende: Gegeben sei ein planarer Graph und eine echte Teilmenge W aus Knoten en-
thalten im Graphen. Der durch die Knoten aus W induzierte Untergraph GW sei nicht
zusammenhängend. Addiere minimale Anzahl Kanten hinzu, so dass, falls möglich, GW

zusammenhängend wird und G planar bleibt. Das besondere hierbei ist, dass wir über
alle Einbettungen betrachten, die in deren Anzahl exponentiell viele sein können. Er-
staunlich ist, dass dieses in linearer Zeit realisiert werden kann. Dieses Problem ist als
das SIPCA-Problem bekannt [41]; siehe Kapitel 6 dieser Arbeit. Minimale Anzahl Kanten
wird verlangt, da wir für die Addition in einen c–planaren Cluster–Graphen keine Kanten
hinzufügen möchten, die im induzierten Untergraphen eines Clusters einen Kreis schliessen
und so eine vorhandene c–Planarität verletzt werden könnte. Mit Hilfe von SIPCA lassen
sich eine größere Klasse Cluster–Graphen testen [40]; siehe Kapitel 7.3 bis 7.5 dieser
Arbeit. Es verbleiben solche mit den folgenden Eigenschaften: es existieren zwei nicht
zusammenhängende Geschwistercluster, wobei die Möglichkeiten der Kantenhinzufügung
des einen Clusters durch mindestens eine Kantenhinzufügung des anderen eingeschränkt
wird.

Für solche wird die SIPCA-Einsetzung problematisch. Frage hierbei ist, welche Kanten-
hinzufügung bei dem einen Cluster erlaubt sind, so dass die Verbindungsmöglichkeiten
des anderen Clusters nicht allzu eingeschränkt werden. Hier werden graphentheoretische
Ansätze in dieser Arbeit analysiert. Resultierend aus den Betrachtungen ergibt sich ein
polynimieller Algorithmus für planare Cluster-Graphen für die G−G(ν) für jedes Cluster
ν zusammenhängend ist; siehe Kapitel 7.2.

Offen bleibt das Problem u. a. für seriell-parallele Cluster-Graphen, bei denen die Knoten
in bezug auf ihre Clusterzugehörigkeit nicht auf Schichten platziert werden können, son-
dern kreuz und quer im Graphen liegen. Hier existieren exponentiell viele Möglichkeiten
der Kantenhinzufügung und planarer Einbettung. Offen bleibt es auch für Spezialfälle,
wobei der Graph nicht zusammenhängend ist und über die Zusammenhangskomponen-
ten nicht zusammenhängende Cluster verlaufen. Hier können genauso exponentiell viele
Möglichkeiten existieren, die Zusammenhangskomponenten so auszurichten, dass bei einem
c-planaren Cluster–Graphen auch eine c–planare Einbettung erstellt wird. Hier erken-
nen wir, dass die Einschränkung des Planaritätsbegriffs auch Einschränkungen in Aug-
mentationen der Cluster-Graphen mit sich zieht. In dieser Hinsicht wurden auch weitere
Kantenerweiterungen für Cluster–Graphen studiert. Spannend ist auch die Frage nach
Cluster–Graphen, die c–planar sind, sobald sie planar sind. Aus der Literatur bekannt
sind bisher c–zusammenhängende Cluster–Graphen deren Graph ein Baum ist [21], bipar-
tite Graphen [30], und c–zusammenhängende Cluster–Graphen, für die G−G(ν) für jedes
Cluster auch zusammenhängend ist; siehe [15, 54] und Kapitel 8 dieser Dissertation. Auch
studiert werden verbotene Untergraphen eines c-zusammenhängenden c–planaren Cluster–
Graphen, natürlich neben K3,3 und K5 und somit eine neue Charakterisierung für solche
Cluster-Graphen gefunden; siehe Kapitel 7.1.

In Kapitel 8 wird eine Methode vorgestellt, die c-planar eingebettete Cluster-Graphen so

vii

mit Kanten erweitert, so daß jede allgemeine Kantenaddition von Graphen auf den Cluster-
Graphen angewendet werden kann ohne seine c-planare Einbettung zu zerstören.

Im zweiten Teil der Dissertation beschäftigen wir uns mit dem Maximum Planaren Unter-
graphenproblem, das sich formulieren läßt als die Suche nach dem größten - im Sinne
der Kantenanzahl - Untergraphen eines gegebenen Graphen. In Kapitelabschnitt 9.1
zeigen wir, daß das Maximum Planare Untergraphenproblem NP-schwer bleibt auf nicht-
planaren Graphen ohne Minoren isomorph entweder zu K3,3 oder K5. Das Studium
möglicher polynomieller Spezialfälle unter (Tutte) Dekomposition [81] ergab ein neues
Problem zur Reduzierung des Zusammenhangs in bezug auf 3 Knoten (resultierend
aus der Betrachtung von ∆-Summen [81]). Dieses Zusammenhangsreduktionsproblem
wird in Kapitelabschnitt 9.2 diskutiert, und wird als das gewurzelte K1,3- bzw. K2,3-
Minorenlöschungsproblem bezeichnet. In Kapitel 10 schliessen wir den zweiten Teil der
Dissertation mit der Betrachtung von der Kreuzungsreduzierung in gerichteten Graphen
unter der Nebenbedingung daß in der resultierenden Planarisierung für jeden Knoten
alle eingehenden Kanten von den ausgehenden getrennt sind, die sogenannte bimodale
Kreuzungsminimierung. Wir können experimentell zeigen, daß für praktische Instanzen
(ROM-Graphen [74]) die Anzahl der Kreuzungen in dieser speziellen Planarisierung im
Vergleich zur allgemeinen Planarisierung nicht signifikant wächst.

Im dritten Teil der Dissertation geben wir eine Diskussion und Ausblick auf zukünftige
geplante Forschungsarbeiten des ersten Teils der Dissertation.

viii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Graphs and Their Representation . 5

2.1.1 Undirected Graphs . 5

2.1.2 Directed Graphs . 7

2.1.3 Representation of Graphs . 8

2.1.4 Clustered Graphs . 9

2.1.5 Compound Graphs . 10

2.2 Graph Planarity and Embeddings . 11

2.2.1 Planar Graphs . 11

2.2.2 Cluster Planarity . 13

2.3 Topological Inference . 14

2.3.1 Planar Topological Inference/ Hierarchical Topological Inference . . 15

2.3.2 Planar Map/ Hierarchical Map . 16

2.4 SPQR-tree . 17

I Planarity and Planar Augmentation 21

3 State of the Art for Clustered Graphs 23

4 Complexity of Deciding Compound Planarity 29

5 c-Planarity Characterization 39

5.1 Duality of Planar Clustered Graphs . 39

5.2 Facial Characterization of c-Planarity . 41

ix

x

5.2.1 c-Connected Clustered Graphs . 43

5.2.2 co-Connected Clustered Graphs . 43

5.2.3 General Clustered Graphs . 46

6 Subgraph Induced Planar Connectivity Augmentation 47

6.1 An Easy Case: Fixed Embedding . 47

6.2 The Algorithm for the Biconnected Case 50

6.2.1 The Coloring Algorithm . 50

6.2.2 The Embedding Algorithm . 58

6.3 The Algorithm for the Connected Case . 69

6.4 The Algorithm for the General Case . 70

7 c-Planarity Testing 73

7.1 c-Connected Clustered Graphs . 73

7.1.1 The Algorithm for the Triconnected Case 77

7.1.2 The Algorithm for the Biconnected Case 79

7.1.3 The Algorithm for the Connected Case 87

7.2 co-Connected Clustered Graphs . 88

7.2.1 The Algorithm for the Triconnected Case 89

7.2.2 The Algorithm for the Biconnected Case 94

7.2.3 The Algorithm for the Connected Case 118

7.2.4 The Algorithm for the General Case 120

7.3 Clustered Graphs with Two Clusters . 122

7.4 One-Level Clustered Graphs . 128

7.5 Multi-Level Clustered Graphs . 131

8 Edge-Augmentation of c-Planar Clustered Graphs 135

II Minimum Edge Deletion and Crossing Minimization 143

9 Minimum Edge Deletion 145

9.1 Maximum Planar Subgraph
(NP-hardness proofs) . 145

9.2 Rooted Minor Deletion . 149

xi

9.2.1 Problem Statement . 151

9.2.2 The Rooted K1,3-minor Deletion Problem 152

9.2.3 The Rooted K2,3-deletion Problem 168

10 Bimodal Crossing Minimization 185

10.1 Bimodal Embeddings . 186

10.2 Naive Post-Processing Approach . 187

10.3 Maximum Bimodally Planar Subgraphs . 188

10.3.1 Incremental Method . 188

10.3.2 Exact Method . 189

10.4 Edge Reinsertion . 189

10.4.1 Fixed Embedding . 190

10.4.2 All Embeddings . 190

10.5 Exact Directed Crossing Minimization . 191

10.6 Experimental Comparison . 191

III Conclusion and Future Work 197

Bibliography 205

Index 212

xii

Chapter 1

Introduction

Visualization of structural information is getting increasing attention. Graphs are widely
used to model relational structure such as networks.

A graph drawing algorithm takes as input a graph and computes a layout of the graph in
two or three dimensional space by assigning each vertex to a point and mapping each edge
to a simple curve.

The visualization of graphs is getting more and more complex. Consequently, extended
structured graphs variation is needed. That is why various graphs extensions are devel-
oped such as hypergraphs, compound graphs, higraphs and cigraphs. Hypergraphs define
relations over sets of entitles that have edges in compassing several vertices. Higraphs are
derived from hypergraphs with “blobs” or “sub-blobs” that can intersect or enclose one
another. Compound graphs allow for inclusion relations and adjacency relations but are
weaker than higraphs. In total, it seems to be some difficulty in finding drawing algorithms
for these graph types. Only heuristic methods has been established for the hierarchical
layout of compound digraphs.

A subclass of compound graphs are the so-called clustered graphs. A clustered graph con-
sists of a graph G and a recursive partitioning of the vertices of G. Each partition is a
cluster of a subset of the vertices of G. Clustered graphs are getting increasing attention
in graph drawing [18, 21, 20, 25, 30]. Formally, a clustered graph C = (G, T) is defined
as an undirected graph G and a rooted tree T in which the leaves of T correspond to the
vertices of G = (V, E).

In a cluster drawing of a clustered graph, vertices and edges are drawn as usual, and clusters
are drawn as simple closed curves defining closed regions of the plane. The region of each
cluster C contains the vertices W corresponding to C and the edges of the graph induced
by W . The borders of the regions for the clusters are pairwise disjoint. If a cluster drawing
does not contain crossings between edge pairs or edge/region pairs, we call it a c-planar
drawing. Graphs that admit such a drawing are called c-planar.

Drawing clustered graphs is required in many applications. For example in information

1

2 Chapter 1. Introduction

systems: in process analysis, processes are clustered into other processes at different ab-
straction levels. An other example are social networks, the actors are typically grouped
into classes of actors with affine features.

While the complexity status of c-planarity testing is unknown, the problem can be solved in
linear time if the graph is c-connected, i.e., all cluster induced subgraphs are connected [18,
20, 30]. In approaching the general case, it appears natural to augment the clustered graph
by additional edges in order to achieve c-connectivity without loosing c-planarity.

Somehow, this seems to be still difficult when we take a look at Figure 1.1: The question that

Figure 1.1: A planar clustered graph: Is it c-planar?

occurs here is whether the presented clustered graph is c-planar. Somehow, this appears
hard to say directly even if the clustered graph is very small. If we take a closer look, we see
that neither the subgraphs induced by the clusters nor the subgraphs induced by G−G(ν)
for each cluster ν are connected. This fact seems to open a huge number of possibilities for
the edge augmentation described above. After trying all possibilities we recognize that the
clustered graph of Figure 1.1 is not c-planar. The complexity status of this case is still open
- but we show in this thesis that the case where for each cluster ν G− G(ν) is connected
can be solved in polynomial time beside some other special cases.

That is why we do a step more. In Part I of this thesis, we focus on augmenting the
clustered graph such that it remains c-planar, get c-connected and the subgraph induced
by G−G(ν) get connected for each cluster ν. The clustered graph is c-planar if and only
if it remains planar.

Most of the algorithms in Part I of this thesis use ideas from the linear time algorithm
for subgraph induced planar connectivity augmentation presented in Chapter 6 [41]. For
an undirected graph G = (V, E), W ⊆ V , and EW = {(v1, v2) ∈ E : {v1, v2} ⊆ W} let
GW = (W, EW) be the subgraph of G induced by W . If G is planar, a subgraph induced
planar connectivity augmentation for W is a set F of additional edges with end vertices in
W such that the graph G′ = (V, E ∪ F) is planar and the graph G′

W is connected.

While Part I of this thesis focus on planarity and augmentation of clustered graphs, Part II
of this thesis deals with edge deletion and crossing minimization on graphs. Part III gives

Chapter 1. Introduction 3

some future work ideas on Part I.

Part I-III are organized as follows: After an introduction in the technical foundations in
Chapter 2, we start with Part I on Planarity and Planar Augmentation. First, we give a
short overview on the state of the art in the field of clustered graphs. In Chapter 4 we
consider the computational complexity of deciding c-planarity. Then we give some char-
acterizations on c-planarity in Chapter 5. In Chapter 6 we discuss the subgraph induced
planar connectivity augmentation that we use in the following Chapter 7 to derive poly-
nomial running time algorithms for some subclasses of planar clustered graphs. Then, in
Chapter 8 we discuss an augmentation method for c-planar embedded clustered graphs.

In Part II we deal with minimum edge deletion and bimodal crossing minimization. In
Chapter 9 we show that the maximum planar subgraph problem remains NP-hard even for
K3,3- or K5-minor free non-planar graphs. Furthermore, we consider the rooted Ki,3-minor
minimum deletion problem for i = 1, 2. The work of this chapter is motivated by exploring
the maximum planar subgraph problem under (Tutte) connectivity decomposition [81] and
the results are the first steps. In Chapter 10 we do some experimental considerations for
the bimodal crossing minimization that turn out that for practical graphs the number of
crossings is not increased significantly.

Finally, in Part III we conclude, summarize remaining open problems and give some ideas
for future work concerning Part I.

4 Chapter 1. Introduction

Chapter 2

Preliminaries

2.1 Graphs and Their Representation

In this section we use mostly the definitions presented by Jünger, Mutzel in [56].

2.1.1 Undirected Graphs

A graph G = (V, E) consists of a finite set V = V (G) of vertices or nodes and a finite set
E = E(G) of edges . An edge e = (v, v) is called a loop and if for two edges e1, e2 ∈ E we
have e1 = (v, w) = e2 we say that e1 and e2 are multi-edges. Figure 2.1 shows a graph with
a loop and a pair of multi-edges.

e1

e2

e3e4

e5

Figure 2.1: A graph with a loop e1 and two multi-edges e2, e3 [56].

A graph with no loops and no multi-edges is characterized by a finite set V of vertices and
a finite set E ⊆ {{u, v} | u, v ∈ V, u 6= v} of edges and called a simple graph.

5

6 Chapter 2. Preliminaries

For an edge e = {u, v}, the vertices u and v are the end-vertices of e, and e is incident to u
and v. An edge {u, v} ∈ E connects the vertices u and v. Two vertices u, v ∈ V are adjacent
if {u, v} ∈ E. By star(v) = {e ∈ E | v ∈ e} we denote the set of edges incident to a vertex
v ∈ V and adj(v) = {u ∈ V | {u, v} ∈ E} is the set of vertices adjacent to a vertex v ∈ V .
By deg(v) = | star(v)|+ | loop(v)|, where loop(v) is the set of edges of the form {v, v}, we
denote the degree of a vertex v ∈ V , mindeg(G) = min{deg(v) | v ∈ V } is the minimum
degree and maxdeg(G) = max{deg(v) | v ∈ V } is the maximum degree of G. E.g., in
Figure 2.1, star(v1) = {e1, e2, e3}, star(v3) = {e3, e4, e5}, whereas adj(v1) = {v2, v3} and
adj(v3) = {v1, v2, v3}. The degrees of these two vertices are deg(v1) = 3 and deg(v3) = 4, the
minimal degree of the graph is mindeg(G) = 3 and the maximum degree is maxdeg(G) = 4.
A vertex v with deg(v) = 0 is called an isolated vertex .

For W ⊆ V let E[W] = {{u, v} ∈ E | u, v ∈ W} and for F ⊆ E let V [F] = {v ∈ V |
v ∈ e for some e ∈ F}. A graph G′ = (V ′, E ′) is a subgraph of G = (V, E) or contained in
G if V ′ ⊆ V and E ′ ⊆ E. For a vertex set W ⊆ V we call G[W] = (W, E[W]) a vertex-
induced subgraph of G and for an edge set F ⊆ E we call G[F] = (V [F], F) an edge-induced
subgraph of G.

A path W of length k in a graph G is an alternating sequence of distinct vertices and edges
v0, e1, v1, e2, v2, . . . , ek, vk, beginning and ending with the vertices v0 and vk, respectively,
and ei = {vi−1, vi} for i = 1, 2, . . . , k. A path is called a cycle if all vertices are distinct
except for v0 = vk and k ≥ 2. A graph that does not have any cycles is called a forest .

A coloop is an edge in a graph that does not lie in any cycle.

A graph G is connected if every pair of vertices is connected by a path, otherwise it is called
disconnected . A component of G is a maximal connected subgraph of G. Consequently, a
disconnected graph has at least two components. A connected forest G is called a tree.

A graph G = (V, E) is k-connected if at least k vertices must be removed from V in
order to make the resulting vertex-induced subgraph disconnected. By κ(G) = max{k |
G is k-connected} we denote the (vertex-)connectivity of G.

The following definitions are given by Truemper [81]: Let G = (V, E) be a connected graph.
Let (E1, E2) be a pair of nonempty sets that partition the edge set E. Let G1 (resp. G2) be
obtained by removal of the edges E2 (resp. E1). We assume G1 and G2 to be connected. We
suppose that pairwise identification of k vertices of G1 with k vertices of G2 produces G.
(E1, E2) is a (Tutte) k-separation if E1 and E2 have at least k edges each. G is called (Tutte)
3-connected if it has no (Tutte) 1- or 2-separation. G is called a 2-sum (composition) of the
connected graphs G1 = (V1, E1) and G2 = (V2, E2), denoted G = G1⊕2 G2, if the following
process yields G: we identify an arbitrary edge e1 of G1 with an arbitrary edge e2 of G2

and delete this edge in G1 ∪G2.

Of special interest in automatic graph drawing are 1, 2, and 3-connected graphs, also called
connected, biconnected , and triconnected graphs, respectively. A vertex whose removal dis-
connects the graph is called a cut vertex , i.e., a graph is biconnected if it has no cut vertex.
The maximal biconnected components of a graph G are called the blocks of G. The blocks
intersect in cut vertices, see Figure 2.2 for an illustration.

Chapter 2. Preliminaries 7

blocks cut vertex

Figure 2.2: The cut vertices and the blocks of a graph [56].

Two vertices whose removal disconnects a biconnected graph are called a separating vertex
pair , i.e., a graph is triconnected if it has no separating vertex pair.

An edge whose removal disconnects the graph is called a bridge. The graph in Figure 2.2
contains exactly one bridge.

A graph G = (V, E) is k-edge-connected if at least k edges must be removed from E in
order to make the resulting edge-induced subgraph disconnected. By λ(G) = max{k |
G is k-edge-connected} we denote the edge-connectivity of G.

A series-parallel graph is defined recursively [81]. Starting with a single edge e = (v, w), we
can in each step either replace e by a path with two edges with end vertices v and w (that
means by splitting e with a vertex) or with two multiple edges. Doing this recursively, all
possible graphs that can be constructed by this approach is a series-parallel graph.

It is obvious that series-parallel graphs are planar.

An outer-planar graph is a graph without a minor isomorphic to K4 and K1,3 that is a
series-parallel graph without a minor isomorphic to K1,3 [81].

2.1.2 Directed Graphs

A directed graph or digraph G = (V, E) consists of a finite set V = V (G) of vertices and a
finite multi-set E ⊆ V ×V = {(u, v) | u, v ∈ V } of (directed) edges or arcs that are ordered
pairs of vertices. Omitting for every edge the order of its vertices, we get an undirected
graph. Clearly, concepts like, e.g., subgraph, path, cycle, forest, component, or tree, inherit
to directed graphs.

An acyclic digraph (directed acyclic graph: dag) is a digraph with no directed cycle or
loop. If e = (u, v) then e is an outgoing or leaving edge of u and an incoming or entering
edge of v. By instar(v) = {(u, v) ∈ E | u ∈ V } we denote the set of incoming edges of
a vertex v ∈ V and by outstar(v) = {(v, u) ∈ E | u ∈ V } we denote the set of outgoing
edges of a vertex v ∈ V . Accordingly, we define inadj(v) = {u ∈ V | (u, v) ∈ E} and
outadj(v) = {u ∈ V | (v, u) ∈ E}. Then indeg(v) = | instar(v)| is the in-degree and
outdeg(v) = | outstar(v)| is the out-degree of a vertex v ∈ V .

8 Chapter 2. Preliminaries

A source is a vertex with no incoming edges and a sink is a vertex with no outgoing
edges. An acyclic digraph G with exactly one source is called a single source directed
graph digraph. If, in addition, its corresponding undirected graph is connected and has no
loop and no (undirected) cycle, the graph is called a rooted tree whose root is the only
vertex v = root(T) ∈ V with indeg(v) = 0 and whose leaves are vertices v ∈ V with
outdeg(v) = 0. The depth depth(v) of a vertex v in a rooted tree T = (V, E) is the length
of the (unique) directed path from the root of T to v. All vertices of depth k constitute
tree level k. Furthermore, for each v ∈ V that is not a leaf, the vertices in outadj(v) are
called children of v, and for each v ∈ V other than the root, the vertex in inadj(v) is called
parent of v. Children of the same parent are called siblings . An acyclic digraph with exactly
one sink is called a single sink digraph. An acyclic digraph with exactly one source s and
exactly one sink t and an edge (s, t) is called an st-digraph.

A series-parallel digraph is a directed graph with the following recursive definition:

• A graph consisting of a source s, and a sink t, and a directed edge from s to t is a
series-parallel digraph.

• If G′ and G′′ are series-parallel digraphs, the series composition obtained by identi-
fying the sink of G′ with the source of G′′ is also a series-parallel digraph.

• If G′ and G′′ are series-parallel digraphs, the parallel composition obtained by iden-
tifying the source of G′ with the source of G′′ and by identifying the sink of G′ with
the sink of G′′ is also a series-parallel digraph.

A topological numbering of G is an assignment of numbers topnumber(v) to the vertices
v of G such that for every edge (u, v) of G the number assigned to v is greater than the
one assigned to u (i.e., topnumber(v) > topnumber(u)). A topological sorting of G is a
topological numbering of G such that every vertex is assigned a distinct integer between 1
and |V |. It is easy to see that G admits a topological numbering or sorting if and only if
G is acyclic.

2.1.3 Representation of Graphs

There are several ways to represent an (undirected or directed) graph. In this thesis, we
restrict our attention to representation in 2-dimensional space. A graph G = (V, E) is
generally visualized by a drawing in 2 or 3-dimensional space with the vertices drawn as
points or boxes of a pre-specified width and height, and the edges drawn as closed Jordan
curves, connecting their incident vertices. Layouts in which the coordinates of the vertex
representations are restricted to integer values are called grid layouts.

Chapter 2. Preliminaries 9

2.1.4 Clustered Graphs

Clustered graphs are graphs with recursive clustering structures over the vertices [30]. A
clustered graph C = (G, T) consists of an undirected graph G = (V, E) and a rooted tree
T , the cluster-tree or clustertree, such that the leaves of T are exactly the vertices of G.
Each vertex ν of T represents a cluster V (ν) of the vertices of G that are the leaves of the
subtree rooted at ν. The root of T is called root cluster . The tree T is called the inclusion
tree of C because it describes an inclusion relation between clusters. The graph G is called
the underlying graph of C. The tree T (ν) represents the subtree of T rooted at the vertex
ν, and G(ν) denotes the subgraph of G induced by the cluster associated with vertex ν.
We define C(ν) = (G(ν), T (ν)) to be the sub-clustered graph associated with vertex ν and
C to be the super-clustered graph of C(ν). For example, suppose that C1 = (G1, T1) and
C2 = (G2, T2) are two clustered graphs such that T1 is a subtree of T2, and for each node
ν of T1, G1(ν) is a subgraph of G2(ν). Then C1 is a sub-clustered graph of C2, and C2 is a
super-clustered graph of C1. An edge {v, w} ∈ E with v ∈ V (G(ν)) and w ∈ V \ V (G(ν))
is said to be incident to cluster ν.

A cut cluster of C is a non-trivial cluster ν of C that becomes a cut vertex by shrinking. It
is an embedded isolating cut cluster in a given planar embedding of C if it induces a cycle
in G(ν) that isolates G− G(ν) in the embedding. It is called an isolating cut cluster if it
is an embedded isolating cut cluster for all planar embeddings of C.

A clustered graph C = (G, T) is connected if G is connected. A clustered graph C = (G, T)
is c-connected if each cluster induces a connected subgraph of G. A clustered graph is
cluster-biconnected if and only if for every (trivial and non-trivial) cluster ν G − G(ν) is
connected. Observe that G is then biconnected. We formulate a weaker version of cluster-
biconnectivity in the case that only for non-trivial clusters ν G − G(ν) is connected. For
simplicity we call the clustered graphs that satisfy the weaker version co-connected in
this thesis. A clustered graph that is c-connected and co-connected is called completely
connected clustered graph [15].

1 2

3

4

5

6

1 2 3 4 6

b a 5

c

a
b

c

Figure 2.3: A drawing of a clustered graph and its defining tree [56].

In a drawing of a clustered graph C = (G, T), the graph G is drawn with points and curves

10 Chapter 2. Preliminaries

as usual. For each vertex ν of T , the cluster is drawn as a simple closed region R (i.e., a
region without holes) that contains the drawing of V (G(ν)), such that the following three
conditions hold.

(i) The regions for all sub-clusters of ν are completely contained in the interior of R.

(ii) The regions for all other clusters are completely contained in the exterior of R.

(iii) If there is an edge e between two vertices of V (ν) then the drawing of e is completely
contained in R.

Figure 2.3 shows a drawing of a clustered graph C = (G, T) and the corresponding tree T .

We say that there is an edge-region crossing in the drawing if the drawing of edge e crosses
the drawing of region R more than once.

2.1.5 Compound Graphs

Compound graphs have been introduced for representing graphs with both inclusion and
adjacency relationships [78]. A compound graph C = (G, T) is defined as an (undirected
or directed) graph G = (V, EG) and a rooted tree T = (V, ET) that share the same vertex
set V . There is a one to one correspondence between the structure of the tree and the set
of inclusions between the vertices, namely, a vertex u is in direct inclusion relation to v if
and only if u is a child of v in the tree. If the end vertices u and v of all edges {u, v} ∈ EG

belong to different root-leaf paths in T , C is called a simple compound graph . In a simple
compound graph, a pair of vertices (u, v) cannot be in an adjacency and in an inclusion
relation at the same time. Figure 2.4 shows an example of a simple compound graph.

1 2

3

5

7

6

9

8

4

6 8 1 2 3

4 5 9

7

G: T :

Figure 2.4: A compound graph defined by a graph and a tree [56].

Edges connecting vertices of different tree levels are called inter-level edges. If a compound
graph does not contain inter-level edges, we call it a nested graph.

A further restriction allowing only edges between the leaves of the tree leads to an alter-
native definition of clustered graphs (see Section 2.1.4).

Chapter 2. Preliminaries 11

In a drawing of a compound graph C = (G, T), the vertices of the graph G are drawn as
closed regions so that a vertex u is included in the region representing the vertex parent(u)
in T , and the edges in EG are drawn as curves connecting the regions associated with its
end-vertices. Figure 2.5 shows a drawing of the compound graph defined in Figure 2.4.

1 2

3

8

9

6

4
5

7

Figure 2.5: A drawing of the compound graph defined in Figure 2.4 [56].

2.2 Graph Planarity and Embeddings

This section deals with drawings and embeddings of a graph onto the plane. A drawing
of a graph G on the plane yields an embedding Π of G, i.e., a clockwise ordering of the
incident edges for every vertex with respect to the drawing.

2.2.1 Planar Graphs

A graph G = (V, E) is called planar if it can be drawn in the plane such that no two edges
cross each other except at common endpoints. An intersection of two edges in a drawing
other than at their endpoints is called a crossing . A planar or combinatorial embedding Π
of a planar graph G is an embedding with respect to a planar drawing. A graph with a given
fixed planar embedding Π is also called a plane graph. Given a drawing of a plane graph
G, a face of G is a topologically connected region in the drawing bounded by the (Jordan
curves corresponding to the) edges of G. A face of a plane graph is uniquely described by
its boundary edges. The degree deg(f) of a face f is defined as the number of its boundary
edges, where each boundary edge with both sides on the boundary of f is counted twice.
The faces of a plane graph are already described by the planar embedding. Two faces are
adjacent if their boundaries share an edge. The one unbounded face of a plane graph is
called the outer face or exterior face. All other faces are called interior faces. An equivalent
definition of a planar embedding is an ordered list of the boundary edges for each face,
clockwise for interior faces and counter-clockwise for the exterior face.

12 Chapter 2. Preliminaries

A famous result of Euler [27] for polytopes relates the number of vertices, edges, and faces
in any planar embedding of a connected planar graph:

Theorem 2.1 (Euler’s Formula [27]). Let Π be a planar embedding of a connected planar
graph G = (V, E) and let F be the set of faces in Π. Then |V | − |E|+ |F | = 2.

From Euler’s formula, an upper bound on the number of edges of a planar graph with a
given number of vertices is easily derived:

Theorem 2.2. For any simple planar graph G = (V, E) with at least 3 vertices we have
|E| ≤ 3|V | − 6.

The bound is attained for triangulated planar graphs, i.e., planar graphs in which every
face is a triangle.

While, in general, the number of different planar embeddings of a planar graph is exponen-
tial in |V |, a triconnected planar graph has only two different planar embeddings, which
are mirror-images of each other.

A minor can be defined in the following way: Let G and H be two undirected graphs. H
is a minor of G if there exists a subgraph H ′ of G and a partition V (H ′) = V1 ⊎ · · · ⊎ Vk

of its vertex set into connected subsets such that contracting each of V1, . . . , Vk yields a
graph isomorphic to H .

Wagner characterizes a planar graph as a graph that has no K5 and K3,3 minors [84]. His
theorem is a significant reformulation of Kuratowski’s well-known result [58].

Whitney’s 2-isomorphism theorem [81] says that two graphs have isomorphic cycle spaces
if and only if one can be transformed into the other by Whitney flips. There are two types
of these flips:

• 1-flips: either identify two vertices that lie in different components of G or which are
cut vertices embeddable on the same face,

• 2-flips: decompose a graph G along two vertices v, w into two subgraphs Gv and Gw

and then compose them again by identifying v in Gv with w in Gw and vice versa.

Observe that adding or deleting a vertex with degree 0 is a 1-flip.

If two graphs have isomorphic cycle spaces we say that they are 2-isomorphic.

Given a planar embedding Π(G) of a planar graph G = (V, E) with face set F , the dual
graph G′ = (V ′, E ′) is constructed as follows:

The nodes of G′ are the faces of Π(G). For each edge e in Π(G) we have an edge e′G
in G′ connecting the nodes in Π(G) corresponding to the two faces that have e on their
boundaries.

The dual graphs of a planar graph are known to be equal under 2-isomorphisms [81].

Chapter 2. Preliminaries 13

Therefore, there is a one-to-one correspondence between a primal planar graph and its dual
graphs because of the inheritance property of 2-isomorphism. For example, connectivity
and planarity is preserved. Additionally, cuts in the primal graph correspond to circles in
its dual graphs. Expending or deleting, respectively, an edge of the primal graph means
deleting or expending, respectively, its corresponding dual edge. For further details the
reader is referred to [81].

Planarity of a graph G = (V, E) can be tested in O(|V |) time by, e.g., the algorithm
of Hopcroft and Tarjan [49], or an approach of Lempel et al. [60] using the special data
structure PQ-tree introduced by Booth and Lueker [8]. For a planar graph G, an embedding
Π of G can be determined in linear time by, e.g., the algorithms of Chiba et al. [14] or
Mehlhorn and Mutzel [66].

2.2.2 Cluster Planarity

In Section 2.1.4 we have already discussed clustered graphs and their representation. Here,
we adapt the concept of planarity to clustered graphs [30].

A drawing of a clustered graph is c-planar if there are no edge crossings or edge-region
crossings. If a clustered graph C has a c-planar drawing then we say that it is c-planar.
Figure 2.6 shows a planar clustered graph that is not c-planar.

Figure 2.6: A planar clustered graph that is not c-planar [30] (the three disjoint clusters
are represented by different types of vertices)

Therefore, a c-planar drawing contains a planar drawing of the underlying graph. An
embedding of C includes an embedding of G plus the circular ordering of edges crossing
the boundary of the region of each non-trivial cluster (a cluster which is not a single vertex).

The following results from [30] characterize c-planarity:

Theorem 2.3. [30] A c-connected clustered graph C = (G, T) is c-planar if and only if
graph G is planar and there exists a planar drawing D of G, such that for each node ν of
T , all the vertices and edges of G−G(ν) are in the outer face of the drawing of G(ν).

Theorem 2.4. [30] A clustered graph C = (G, T) is c-planar if and only if it is a sub-
clustered graph of a connected and c-planar clustered graph.

14 Chapter 2. Preliminaries

Theorem 2.5. [21] A c-connected clustered graph whose underlying graph is a tree is
c-planar.

A further result from [30] is a c-planarity testing algorithm for c-connected clustered graphs
based on Theorem 2.3 with running time O(n2), where n is the number of vertices of the
underlying graph and each non-trivial cluster has at least two children. An improvement
in time complexity is given by Dahlhaus who constructed a linear time algorithm [18, 20].
Additionally, some special cases are known: If for every cluster ν of a c-connected clustered
graph C1 = (G, T) G−G(ν) is connected, then C is c-planar if and only if G is planar [15,
54]. The same result holds for bipartite graphs B = (V1∪V2, E) in which V1 and V2 induce
each a cluster that are disjoint to each other. Then the corresponding clustered graph
C2 = (B, T) is c-planar if and only if B is planar [30].

2.3 Topological Inference

The following definitions are based on the work of Michelangelo Grigni, Dimitris Papadias
and Christos Papadimitriou in [39]:
Of great interest for developing intelligent inference engines for geographic database system
are questions like: Given some simply connected regions with relations like A overlaps B
and A contains C, what can be said about the relation of B and C?

Egenhofer pointed out in [26] that there exist eight fundamental relations that can hold
between two planar regions: overlap, disjoint, inside, contains, meets (overlaps only
at the boundary), covers (contains but also shares some boundary), covered by (inverse
of contains) and equal (see Figure 2.7). This resolution is called the high resolution case.
Considering any three planar regions, they cannot be in arbitrary relation. The complete
table of such one-step inferences was derived by Egenhofer in [26] and Smith and Park
in [77].

In some cases not all relations are needed. E.g., in some cases it makes sense not to
distinguish between covered by and inside resp. between covers and contains and call
both covered by and inside. Additionally, in some cases it is reasonable not to distinguish
between overlap and meets and to call both overlap. This is the medium resolution case.
In a sub-case of the medium resolution case the relation overlap is forbidden. The following
table demonstrates the medium resolution one-step inferences without overlap:

disjoint equal inside contains meets
disjoint d ∨ e ∨ i ∨ ct ∨ m d d ∨ i ∨ m d d ∨ i ∨ m
equal d e i ct m

inside d i i d ∨ e ∨ i ∨ ct ∨ m d ∨ m
contains d ∨ ct ∨ m ct ct ∨ e ∨ i ct ct ∨ m

meets d ∨ ct ∨ m m m ∨ i d ∨ m d ∨ e ∨ i ∨ ct ∨ m

Chapter 2. Preliminaries 15

q p

disjoint(p,q)

q p p q

q p
p

q

inside(p,q)

q p

overlap(p,q)

equal(p,q)

contains(q,p)
covered_by(p,q)

covers(q,p)

meets(p,q)

Figure 2.7: The high resolution case of topological relations

The low resolution case considers only the relations overlap and disjoint.

The problem of recognizing whether given pairwise topological relations of a given set of
regions are consistent can be seen as a constrained satisfiability problem (for more details
see [39]). There is a classification depending on the given topological relations of pairs of
regions. We will focus only on the explicit case, in which the topological relations of all
pairs of regions are known.

Additionally, there is a stronger notion of satisfiability: the realizability as a full form of
satisfiability. A topological expression on a set of objects is said to be realizable if it has
a planar model, that is, if there is a set of simply connected planar regions, one for each
object, any two of which are related by a topological relation that is a disjunct of the
corresponding clause.

In [39] the complexities of all these cases have been studied.

We will consider the explicit case of the medium resolution one-step inferences without
overlap realizability problem (EMO) that was first claimed to be in P in [39] but then
revised to be still open.

2.3.1 Planar Topological Inference/ Hierarchical Topological In-
ference

The following definitions are based on the work of Zhi-Zhong Chen and Xin He in [12, 13]:
An instance of the planar topological inference (PTI) problem is a triple (V, ⊲⊳d, ⊲⊳m), where
V is a finite set, ⊲⊳d (subscript d stands for disjoint) and ⊲⊳m (subscript stands for meets) are

16 Chapter 2. Preliminaries

two irreflexive symmetric relations on V with ⊲⊳d ∩ ⊲⊳m= ∅. The problem is to determine
whether we can draw the elements v of V in the plane each as a closed disc homeomorph
Dv in such a way that

1. Dv and Dw are disjoint for every (v, w) ∈ ⊲⊳d, and

2. Dv and Dw have disjoint interiors but share a point of their boundaries for every
(v, w) ∈ ⊲⊳m.

In the fully-conjective case of the PTI problem, it holds that for every pair of distinct
v, w ∈ V , either {(v, w), (w, v)} ⊆ ⊲⊳d or {(v, w), (w, v)} ⊆ ⊲⊳m. This problem is known
to be in P. A restriction of the fully-conjective PTI problem, called the fully-conjective
k-PTI problem, has been investigated in [12] by Chen, He by requiring that no point of the
plane is shared by more than k closed disc homeomorphs Dv with v ∈ V . Notice that the
fully-conjective 3-PTI problem is equivalent to deciding whether a given graph is planar.

A generalization is obtained of the PTI problem by adding another irreflexive, antisym-
metric and transitive relation ⊲⊳i (subscript i stands for inclusion) on V with ⊲⊳i ∩ (⊲⊳d ∪
⊲⊳m) = ∅ and requiring that Dv includes Dw as a sub-region for all (v, w) ∈ ⊲⊳i. A natural
restriction on ⊲⊳i is to require that each Dv with v ∈ V and {(v, w) ∈ ⊲⊳i| w ∈ V } 6= ∅ is the
union of all Dw with (v, w) ∈ ⊲⊳i. This generalization is called the hierarchical topological
inference (HTI) problem. In the fully-conjective case of the HTI-problem, for every pair of
distinct v, w ∈ V , exactly one of the following holds:

1. {(v, w), (w, v)} ⊆ ⊲⊳d,

2. {(v, w), (w, v)} ⊆ ⊲⊳m,

3. {(v, w), (w, v)} ∩ (⊲⊳d ∪ ⊲⊳m) = ∅ and | {(v, w), (w, v)} ∩ ⊲⊳i | = 1.

Analogously to the PTI case, a restriction called the fully-conjective k-HTI problem is
derived by adding the following condition: no point of the plane is shared by more than k
minimal closed disc homeomorphs Dv, i.e., those Dv with v ∈ V such that {w ∈ V | (v, w) ∈
⊲⊳i} = ∅. This problem is known to be in NP but not known whether it is NP-complete
or in P .

2.3.2 Planar Map/ Hierarchical Map

The following definitions are based on the work of Zhi-Zhong Chen and Xin He [12, 13]:
A hierarchical map M is a pair (E ,F), where

1. E is a plane graph whose connected components are biconnected, and

2. F is a rooted forest whose leaves are distinct faces of E .

Chapter 2. Preliminaries 17

Faces of E that are not leaves of F are called the lakes on M, while all other faces of E
are called the leaf districts onM. For each non-leaf vertex α of F , the union of the faces
that are leaves in the subtree of F rooted at α is called a non-leaf district onM.
M is a planar map if each vertex of E is incident to at most three edges of E .M is a disc
map if

1. the boundary of each leaf district onM is a cycle, and

2. for every non-leaf district D onM, there is a cycle C such that D is the union of the
faces in the interior of C.

The map graph G ofM is the simple graph whose vertices are the leaf districts onM and
whose edges are those {f1, f2} such that the boundaries of f1 and f2 intersect (this can be
more than once). Notice that G is planar whenM is a planar map. (G,F) is the abstract
ofM.
The graph-forest pair is a pair of a simple graph G and a rooted forest F where leaves are
exactly the vertices of G. A graph-forest is called planar when G is planar. Notice that
a graph-forest is equal to a clustered graph without the root cluster. Chen and He [13]
developed an O(|F|+ |G| log |G|)-time algorithm using SPQR-trees (see next section) for
deciding whether a graph-forest pair (G,F) is the abstract of a planar disc mapM, where
|G| denotes the total number of edges and vertices of a simple graph G. The planar disc
embedding problem is defined as follows: Given a planar graph-forest (G,F), decide whether
there is a planar embedding Π of G satisfying the inclusion relation induced by F . This is
equivalent to deciding whether a clustered graph is c-planar. Chen and He [13] have given
an O(n logn2)-time algorithm for a special case in which each subgraph induced by a node
of F is connected, called the connected disc embedding (CDE) problem.

2.4 SPQR-tree

SPQR-trees have been introduced by Di Battista and Tamassia [22]. They represent a
decomposition of a planar biconnected graph according to its split pairs (pairs of vertices
whose removal splits the graph or vertices connected by an edge). The construction of
the SPQR-tree works recursively. At every node v of the tree, we split the graph into the
split components of the split pair associated with that node. The first split pair of the
decomposition is an edge of the graph and is called the reference edge of the SPQR-tree.
We add an edge to each of them to make sure that they are biconnected and continue by
computing their SPQR-tree and making the resulting trees the subtrees of the node used
for the splitting. Every node of the SPQR-tree has two associated graphs:

• The skeleton of the node associated with a split pair p is a simplified version of the
original graph where some split-components are replaced by single edges.

18 Chapter 2. Preliminaries

• The pertinent graph of a node v is the subgraph of the original graph that is repre-
sented by the subtree rooted at v.

The two vertices of the split pair that are associated with a node v are called the poles of
v. There are four different node types in an SPQR-tree (S-,P -,Q- and R-nodes) that differ
in the number and structure of the split components of the split pair associated with the
node. The Q-nodes form the leaves of the tree, and there is one Q-node for each edge in
the graph. The skeleton of a Q-node consists of the poles connected by two edges. The
skeletons of S-nodes are cycles, while the skeletons of R-nodes are triconnected graphs.
P -node skeletons consist of the poles connected by at least three edges. Figure 2.8 shows
examples for skeletons of S-, P - and R-nodes.

Skeletons of adjacent nodes in the SPQR-tree share a pair of vertices. In each of the two
skeletons, one edge connecting the two vertices is associated with a corresponding edge in
the other skeleton. These two edges are called twin edges . The edge in a skeleton that has
a twin edge in the parent node is called the virtual edge of the skeleton.

B1

B2

B3

v1v1

v2 v2

ss

tt

e1

e2

e3

(a) Case S-node

C1 C2 C3

ss

t t

e1 e2 e3 e4

(b) Case P -node

U1 U2

U3

U4 U5

ss

tt

e1 e2

e3

e4 e5

(c) Case R-node

Figure 2.8: The structure of biconnected graphs and the skeleton of the root of the corre-
sponding SPQR-tree.

Let e = (u, v) be an edge in a skeleton S of a node µ of the SPQR-tree T of G. Since
e is an edge in a skeleton, the vertices u and v are a split-pair of G. Then we define the
expansion graph of e as follows:

1. If µ is the Q-node for edge e′ in G, then the expansion graph G(e) of e is defined as fol-
lows: if e is the virtual edge of µ then we define G(e) as G(e) = (V, (E − {e′}) ∪ {e}).
Otherwise, we define G(e) as G(e) = ({u, v}, {e, e′}). Therefore the expansion graph
is either isomorphic to G or to S.

2. If µ is an R-node or S-node, then the expansion graph of e is the union of all the
split components of the split pair {u, v} in G that contain no vertices of S except u
and v together with edge e.

3. If µ is a P -node, then there are at least three split components of the pair {u, v} in
G. In the construction of T , all edges ei of S except the virtual edge are associated
with a subgraph Gi of G. Thus we define the expansion graph of each ei as the graph

Chapter 2. Preliminaries 19

Gi together with edge e. The expansion graph of the virtual edge is defined as the
split component of {u, v} that contains the reference edge of T (the edge of G that
is used to start the decomposition) together with edge e.

1

2 3

4

5

6

R-node

P-node

Q-node

S-node

1

3

4

1

4

1

4

2

5

1

6

4

Figure 2.9: A graph G and its SPQR-tree (the Q-nodes of the R- and S-node are omitted).

All leaves of the SPQR-tree are Q-nodes and all inner nodes S-, P - or R-nodes. When
we see the SPQR-tree as an unrooted tree, then it is unique for every biconnected planar
graph. Another important property of these trees is that their size (including the skeletons)
is linear in the size of the original graph and that they can be constructed in linear time [22]
and [42]. As described in [22] and [42], SPQR-trees can be used to represent the set of all
combinatorial embeddings of a biconnected planar graph. Every combinatorial embedding
of the original graph defines a unique combinatorial embedding for each skeleton of a node
in the SPQR-tree. Conversely, when we define an embedding for each skeleton of a node
in the SPQR-tree, we define a unique embedding for the original graph. The skeleton of
S- and Q-nodes are simple cycles, so they have only one embedding. But the skeletons
of R-and Q-nodes have at least two different embeddings. Therefore, the embeddings of
the R- and P -nodes determine the embedding of the graph and we call these nodes the
decision nodes of the SPQR-tree.

20 Chapter 2. Preliminaries

Part I

Planarity and Planar Augmentation

21

Chapter 3

State of the Art for Clustered Graphs

In this chapter we summarize the existing methods for drawing clustered and compound
graphs. Let C = (G, T) be a clustered graph.

We assume that C is c-connected. Obviously, we may assume that C is planar. In the
following we discuss the first c-planarity testing algorithm presented by Feng [30, 29],
already mentioned in the Chapter 2 and based on Theorem 2.3.

The idea of the c-planarity testing algorithm is that for each cluster ν it is first checked
whether G−G(ν) can be embedded outside of G(ν). In the positive case, G(ν) is replaced by
a smaller representative graph that preserves all feasible embeddings of G(ν). This is done
bottom-up in the clustertree T in postorder traversal for each cluster ν in G: the possible
embeddings of G(ν) are found by combining all possible embeddings of the children of ν
which are found recursively and are saved for the further testing of the parent of ν. Finally,
after reaching the root cluster the resulting graph G is tested for planarity to ensure that
such a cluster representation is feasible for C in total.

In particular, bottom-up in postorder traversal in T we check if there is a planar embedding
for G′(ν) that is G(ν) with the end vertices of its cluster incident edges that belong to
G−G(ν) shrinked in a single dummy vertex.

In the positive case we replace G(ν) by its representive graph that is a wheel graph. The
wheel graph is build of wheels which have a simple cycle called the rim and a center vertex
named hub such that each vertex on the rim is connected with the hub by a single edge.
In a planar embedding of such a wheel all faces are in a triangular form except the rim
face. If the rim face is unbounded in the planar embedding we say that the wheel is given
in canonical form. Moreover, the wheels share pairwise at most one vertex in the wheel
graph. Observe that this vertex corresponds to a cut vertex while the wheel itself represents
a block in G(ν).

For the planarity testing step we use an adaption of the approach for general graphs. To
understand the adaption we first investigate briefly in the general approach.

The planarity testing algorithm test planarity for each block of the graph. The vertices of a

23

24 Chapter 3. State of the Art for Clustered Graphs

G(ν) G−G(ν)

Figure 3.1: c-Planarity Testing

block get a topological numbering, the so-called st-numbering with the following property.
Given an edge (s, t) where s is the source with st-number 1 and t is the sink with the
number |V | all other vertices are adjacent to both higher and lower st-numbered vertices.
The algorithm tests planarity using the vertex addition approach that adds a vertex after
each other in st-number ordering starting with the source and ending when all vertices are
visited. The correctness of this algorithm follows from the fact that by assigning directions
to the edges according to the st-numbering we transform the graph in a dag. Whenever
the edge (s, t) of the dag can be embedded in the unbounded face and for every subgraph
Gk = (Vk, Ek) of the dag also all edges and vertices of G−Gk can be places in the unbounded
face for k = 1, 2, 3, . . . , |V | then the original graph is planar. To make this process more
efficient in its running time, the well-known data structure PQ-tree [8] is used to represent
all possible planar embeddings of each Gk from k = 1 to |V |.
A PQ-tree is based on a set S of elements that form its leaves and has two kinds of internal
nodes, the P -node and the Q-node (see Figures 3.2 and 3.3). A P -node allows all possible
permutations of its child nodes and a Q-node forbids all permutations except mirroring of
the ordering of its children.

We assume that all leaves are horizontally aligned at the bottom, the root at the top, the
children of the P- and Q-nodes are ordered and the drawing is planar. Then each such
drawing corresponds to exactly one ordering of S, called the frontier of T .

Consequently, a PQ-tree gives all possible permutations of its leaves under the given restric-
tions of its internal nodes. Moreover, for any subset S ′ of S, we call S ′ the restriction set,
we can test whether there exists a frontier with the elements of S ′ ordered consecutively.

In the positive case, we can even transform the PQ-tree such that the elements of S ′ are
ordered consecutively in every frontier of the PQ-tree. In our situation where we apply
the vertex addition approach, instead of using Gk, we use the corresponding PQ-tree such

Chapter 3. State of the Art for Clustered Graphs 25

T1 T2 Tk

Figure 3.2: A P -node

T1 T2
T3

Figure 3.3: A Q-node

A C

D

E

G H

I

J K

B

F

Figure 3.4: A PQ-tree with the set S = {A, B, C, D, E, F, G, H, I, J, K}

AC

D

E

G H

I

JK

B

F

Figure 3.5: A PQ-tree that is isomorph to the PQ-tree of Figure 3.4

26 Chapter 3. State of the Art for Clustered Graphs

A CB

Figure 3.6: A PQ-tree with set S ′ = {A, B, C} and the feasible permutations {ABC,CBA}.

that the P -nodes represent the cut vertices and the Q-nodes the blocks of Gk. The leaves
of the PQ-tree correspond to the edges that have an end vertex with st-number higher
than k. Next, the PQ-tree is manipulated such that the leaves with label k +1 are ordered
consecutive in every frontier if such an ordering exists. In the negative case we stop because
the graph cannot be planar. If the final vertex with st-number |V | is reached, then G is
planar.

Next we turn to the adaption of this planarity testing algorithm to use it for c-planarity
testing of c-connected clustered graphs. To test planarity of G′(ν) for each cluster we apply
the PQ-tree on the block that has included the incident edges of ν. To be more precise,
the restriction set of the PQ-tree correspond to the incident edges of ν. Whenever this
restriction set can be ordered consecutively, we build the wheel graph out of the resulting
PQ-tree: for each Q-node we add a wheel and for each P -node we have a vertex on the rim
of the wheel graph whose corresponding Q-node is adjacent to the P -node. Observe that
this vertex is a cut vertex in the constructed wheel graph that is the representative graph
of G(ν).

Out of this testing algorithm an embedding algorithm is derived by Feng [29, 30]. The
main idea is to embed all wheels in its canonical form such that they can be replaced by
the original subgraphs and do some post-processing steps to guarantee that G − G(ν) is
embedded outside of G(ν). The implementation of the algorithm is quite technical and
omitted here.

An improvement to linear running time was given by Dahlhaus [18, 20]. Another test was
derived by He, Zhi-Zhong [13] that has running time O(n log(n2)) and was constructed
for topological inferences purposes (see Chapter 4). Lengauer [61] present a contribution
on hierarchical graphs that also can be adapted for c-connected planar clustered graphs.
Additionally, for some other special classes of clustered graphs polynomial time algorithms
for testing c-planarity are derived [3, 21, 30, 38, 51].

Cornelson and Wagner [15] state that a c-connected graph for which G−G(ν) is connected
for each cluster ν is c-planar if and only if its underlying graph is planar. This was ob-
served independently by Jünger, Leipert, P. [54] and used in an approach for triangulating
clustered graphs that is described in Chapter 8.

Cortese et al. [16] develop an algorithm to test c-planarity of a clustered graph whose
underlying graph is a cycle and has a linear running time.

Chapter 3. State of the Art for Clustered Graphs 27

Biedl et al. [6] study planar graphs where each vertex is assigned to one of two disjoint
classes. They show a linear time algorithm to test if one of such graphs has a planar drawing
such that the vertices of the two classes are separated by an horizontal line, the so-called
y-monotone HH-drawing. This can be interpreted as a c-planarity testing of a graph with
exactly two sibling clusters at the same level. They also show that a planar bipartite graph
has always a y-monotone HH-drawing.

It is a well-known fact that a simple force-directed method can be derived for each cluster
ν by simply connecting a dummy vertex to all vertices of ν and assigning hight attracting
forces to the added edges.

Eades, Feng and Lin [24] construct an algorithm that produces a straightline convex clus-
ter drawing of a c-connected c-planar embedded clustered graph in O(n2) running time.
Nagamocchi and Kuroya [68] improve the running time when T is a binary tree and each
cluster of C is biconnected.

Two orthogonal methods for clustered graphs were derived. The first one is based on the
visibility approach and derived by Eades, Feng [25, 29]. The second one is based on the
topology-shape approach and is an adaption of Tamassia’s algorithm [80].

Multilevel Visualization of clustered graphs is studied in [29].

A planarization approach is given for non c-planar c-connected clustered graphs in [21].

28 Chapter 3. State of the Art for Clustered Graphs

Chapter 4

Complexity of Deciding Compound
Planarity

It is easy to see that the general explicit case of the medium resolution one-step inferences
without overlap realizability problem can be transformed in polynomial time into an ex-
plicit case of the medium resolution one-step inferences without overlap/equal realizability
problem (EMOE).

We show a polynomial reduction from the compound planarity problem to the EMOE
problem. Let an instance of a compound graph C = (G, T) be given. We transform this
instance to an EMOE instance in the following. Then we show that the EMOE instance is
realizable if and only if C is compound planar.

We add for each node v of T other than the root a simply connected region Rv, and for
each edge e of G a simply connected region Re.

For each pair of regions Rx, Ry:

1. inside and contains:
Since T is a tree there exists a unique path Pz from each leaf z in T to the root r -
see Figure 4.1.

Since we have a linear number of vertices v in T we have a linear number of leaves
and therefore a linear number of such paths Pv for every leaf v of T . Further, each
node v 6= w 6= r in such a path Pv for a leaf v has at least one ancestor and at least
one descendant in Pv. We visit for every leaf v its unique path Pv: for each node
v 6= w 6= r in Pv we add for each descendant w1

Rw1
inside Rw

Rw contains Rw1

29

30 Chapter 4. Complexity of Deciding Compound Planarity

r

z

Figure 4.1: In a tree there is a unique path from each leaf to the root, the unique path
from leaf z to the root r is visualized red

and for each ascendant w2 other than the root

Rw inside Rw2

Rw2
contains Rw

For v itself we add for each ascendant w2 other than the root in Pv

Rv inside Rw2

Rw2
contains Rv

In Figure 4.2 the procedure is visualized for an example.

Next, we consider each edge e of graph G. An edge e = (v, w) is related in an inclusion
relation to each vertex ν of T that is on the unique path P (v, w) between the lowest
common ancestor of v, w and the root of T (see Figure 4.3).

Firstly, we do a pre-processing step to calculate the lowest common ancestors lca of
each edge e = (v, w) in C. This can be done in linear time in the number of nodes of
T [45, 76] and therefore linear in the number of vertices of G. Then, lca of an edge
e, say lca(e), can be determined in O(1) time [45, 76].

For every edge e = (v, w) we add for each vertex x in P (v, w) other than the root

Re inside Rx

Rx contains Re

Algorithm 1 gives a pseudo-code description.

Chapter 4. Complexity of Deciding Compound Planarity 31

r

v

Figure 4.2: A path from a leaf v to the root r of a tree T that is visualized black: for a
red edge e = (v1, v2) with w.l.o.g v1 ascendant of v2 in T we add Rv1

contains Rv2
and Rv1

inside Rv2

r

P (v, w)

v w

Figure 4.3: A compound tree T : the lowest common ancestors lca of leaves v and w is
circled red, path from the lca to the root r is highlighted with a dashed blue line

32 Chapter 4. Complexity of Deciding Compound Planarity

v w

Figure 4.4: A compound tree T : the greatest uncommon ancestors of leaves v and w are
circled red

2. meet :
Firstly, we do a pre-processing step to calculate the greatest uncommon ancestors
gua of each edge e = (v, w) in C (see Figure 4.4).

This can be done in linear time in the number of nodes of T [45, 76] and therefore
linear in the number of vertices of G. Then, gua of an edge e, say gua(e), can be
determined in O(1) time [45, 76].

Given an edge e = (v, w) of G, let gua(e)= {ν1, ν2} with ν1 6= ν2. Further, let ν1 be
an ancestor of v and ν2 be an ancestor of w in T (see Figure 4.5).

ν1 ν2

v w

e

P (v) P (w)

Figure 4.5: A compound tree: for an edge e = (v, w) its greatest uncommon ancestors are
ν1 and ν2 with paths P (v), P (w).

Then there is a unique path P (v) from v to ν1 in T , and a unique path P (w) from w to

Chapter 4. Complexity of Deciding Compound Planarity 33

ν2. Observe that e is incident to all nodes on the paths P (v) and P (w). Additionally
P (v) ∩ P (w) = ∅. For every edge e, we add

Rv meets Re

Re meets Rv

Rw meets Re

Rw meets Re

Additionally, for each inner node x1 on P (v) and each inner node x2 on P (w) we add

Rx1
meets Re

Re meets Rx1

Rx2
meets Re

Re meets Rx2

An example is given in Figure 4.6: for each edge e = (v, w) colored red, the previous
meet relation is assigned to the corresponding regions.

ν1 ν2

v w

e

Figure 4.6: For each red edge we add meet between the regions that correspond to (v, w)
and the regions that correspond to the end vertices of the red edge.

Algorithm 2 gives a pseudo-code description.

34 Chapter 4. Complexity of Deciding Compound Planarity

3. disjoint :
For all other remaining unsigned pairs R1, R2 of simply connected regions we add

R1 disjoint R2

R2 disjoint R1

Observe that the constructed EMOE instance fulfills satisfiability in the sense of relational
consistency since a compound graph is well-defined. Further, observe that the regions that
represent edges of G are pairwise disjoint (this is also true for all regions that correspond
to vertices of G that do not stand in any inclusion relation).

We show next that the constructed EMOE instance is realizable if and only if C is com-
pound planar.

1. Given a constructed EMOE instance we show that C is compound planar if the
EMOE instance is realizable. If the EMOE instance is realizable there is a realization
of the EMOE in the plane such that all simply connected regions are planar and
the realization fulfills the satisfiability. We assume that we have such a realization at
hand.

We construct a drawing D of C and show that D is compound planar. Each region
that corresponds to an edge e = (v, w) of G stands in a meet relation with Rv, Rw

and Rx1
, Rx2

for all vertices x1 ∈ P (v), x2 ∈ P (w) and is disjoint to any other object.
We may assume that Re has two meeting points with other regions, one with regions
Rv, Rx1

and the other with Rw, Rx2
. Since a simply curve is also simply connected,

we replace each region Re by a simply curve in D that joins the meeting points of Re

with Rv and Rw. Since Re is planar, the added curve is also planar and therefore does
not have any intersection point with another (disjoint) region. For each region that
corresponds to a leaf of T we assign the simply connected region as the drawing of v
in D. For each inner vertex v in T we assign the border cycle of Rv as the drawing
of the boundary of v in D.

We have in D: the vertices of G are drawn as closed regions so that a vertex u
is included in the region representing the vertex parent(u) in T , and the edges in
EG are drawn as curves connecting the regions associated with its end vertices. By
definition, we have a compound drawing of C. Additionally, because of the planar
model of the realization, we do not have any edge crossings nor any edge-region
crossing. Consequently, D is compound planar and therefore C is compound planar.

2. We assume that C is compound planar. Then C has a compound planar drawing D
with the properties: the vertices of G are drawn as closed regions so that a vertex u
is included in the region representing the vertex parent(u) in T , and the edges in EG

are drawn as curves connecting the regions associated with its end vertices. The only
thing that has to be done in D is to shrink the beginning and ending segments in
each curve that correspond to P (v) and P (w) according Figure 4.5 (see Figure 4.7).

Chapter 4. Complexity of Deciding Compound Planarity 35

P(v) P(w)

Figure 4.7: Pre-processing step to transform a compound planar drawing into a realization
of EMOE: shrink the segments of each curve that correspond to P (v) and P (w) according
Figure 4.5

Then, we do not have any edge crossings nor any edge-region crossing. Since the closed
regions of the vertices of T and the curves of the edges of G are simply connected,
and there is neither an edge crossing nor a edge-region crossing (means all regions
are also planar), D correspond to a realization of the corresponding EMOE instance.

Observe that the Algorithms 1 and 2 have in total O(|V 4|) running time, since the greatest
uncommon ancestor and the lowest common ancestor, respectively, can be calculated in
O(1) running time after a pre-processing step that has O(|V |) running time. Observe that
checking if a node in T is an ancestor or descendant, respectively, of a given node of T is
included in the algorithm for the greatest uncommon ancestor [45, 76] and has the same
running time.

If we assume EMOE to be solvable in polynomial time our polynomial reduction would
apply that testing compound planarity, and in particular c-planarity, would be solvable in
polynomial time as well. By personal email communications with the authors of [39] the
complexity status of EMO and therefore EMOE is still open. Since beside EMO the other
realizability problems in [39] are claimed to be NP-hard it seems more likely EMO to be
NP-hard as well. However, if testing compound planarity turns out to be NP-hard then
EMO is also NP-hard by our polynomial reduction.

36 Chapter 4. Complexity of Deciding Compound Planarity

Algorithm 1: Algorithm INSIDE CONTAINS assigns inside or contains to certain pairs
of simply connected regions

Input: A compound graph C = (G, T), all simply connected regions of EMOE
instance

Result: Assignment of inside and contains to certain pairs of simply connected
regions

Pre-processing for gua and lca;
Calculate the level of each node in T (root has smallest level);
foreach pair v,w of T with v 6= w do

if pair v,w unvisited then
if |gua(v,w)| = 1 then

if level(v)>level(w) then
Assign Rv inside Rw;
Assign Rw contains Rv;

else
Assign Rw inside Rv;
Assign Rv contains Rw;

Mark pair v,w visited;

foreach edge e = (v, w) of G do
Calculate node ν of lca(v,w) in T ;
Calculate path P (v, w) from ν to root r in T ;
foreach vertex x other than root in P (v, w) do

Rx contains Re;
Re inside Rx;

Mark pair v,w visited;

Chapter 4. Complexity of Deciding Compound Planarity 37

Algorithm 2: Algorithm MEET assigns meet to certain pair of simply connected regions.

Input: A compound graph C = (G, T), all simply connected regions of EMOE
instance

Result: Assignment of meet to certain pairs of simply connected regions

Pre-processing for gua;
foreach edge e = (v, w) of G do

Calculate nodes ν1,ν2 of gua(v,w) in T ;
if ν1 is ancestor of v then

Calculate path P (v) from v to ν1 in T ;
Calculate path P (w) from w to ν2 in T ;

else
Calculate path P (v) from v to ν2 in T ;
Calculate path P (w) from w to ν1 in T ;

foreach vertex v1 in P (v) do
foreach vertex v2 in P (w) do

Rv1
meets Re;

Re meets Rv1
;

Rv2
meets Re;

Re meets Rv2
;

Mark pair v,w visited;

38 Chapter 4. Complexity of Deciding Compound Planarity

Chapter 5

c-Planarity Characterization

In this chapter we give a characterization of c-planar clustered graphs. Since we use duality
of planar graphs, the reader is referred to Section 2.2.1 for a short introduction. We adapt
the duality for planar clustered graphs in Section 5.1 and show that c-planarity is a facial
property in a planar graph in Section 5.2.

5.1 Duality of Planar Clustered Graphs

Given a planar clustered graph C = (G, T) we define its dual clustering graph C∗ = (G∗, T ∗)
out of the dual graph G∗ and a clustering relation T ∗ with nodes ν∗ called clusterings:

For each cluster ν in T there is exactly one clustering ν∗ in T ∗ and vice versa.

We assign every edge e∗ of G∗ to a clustering ν∗ of T ∗ if and only if one of the end vertices
of the primal edge e of e∗ belongs to ν in C. Additionally, we assign a dual vertex v∗ to a
clustering ν∗ if and only if the corresponding primal face has a vertex of cluster ν on its
boundary. The resulting graph is C∗.

We define I∗(ν∗) ⊂ G∗ to be the dual subgraph of G(ν) for a cluster ν such that for each
vertex v of G(ν) the dual edges and dual vertices that belong to the boundary of the
corresponding dual face of v are contained. An example is given in Figure 5.1. The cluster
ν is colored blue while G∗ is highlighted with red color. In Figure 5.2(a), all dual faces that
correspond to primal vertices of ν are colored blue. I∗(ν∗) contains all dual edges and dual
vertices on the boundary of the blue marked dual faces, as it is shown in Figure 5.2(b)
where I∗(ν∗) in G∗ is highlighted with a blue box. Observe that I∗(ν∗) is the subgraph
induced by clustering ν∗ in G∗.

We define H∗(ν∗) ⊂ G∗ to be the dual subgraph of G−G(ν) for a cluster ν in an analogous
way. In Figure 5.3, all dual faces that correspond to primal vertices of G−G(ν) are colored
blue. Hence, all edges on their boundaries belong to H∗(ν∗). In this example, this is not
true for exactly one edge in G∗ that is e∗.

39

40 Chapter 5. c-Planarity Characterization

Figure 5.1: Example of a clustered graph, cluster ν is colored blue, the dual of the underlying
graph is visualized red

(a) Dual of clustered graph (b) Dual with subgraph I∗(ν∗)

Figure 5.2: Examples of a clustered graph with I∗(ν∗): on the left-hand side the dual faces
that correspond to primal vertices of ν are colored blue while on the right-hand side the
dual subgraph I∗(ν∗) is highlighted with a blue box

Chapter 5. c-Planarity Characterization 41

e∗

Figure 5.3: Example of a clustered graph with H∗(ν∗): the dual faces that correspond to
primal vertices of G−G(ν) are colored blue; H∗(ν∗) = G∗ − e∗

Observe that C∗ is not a clustered graph since there might be edges that do not belong to
a cluster ν∗ even if its end vertices belong to ν∗. Additionally, even if two primal clusters
ν, µ are siblings in T the corresponding dual clusterings ν∗, µ∗ in C∗ might have common
edges and vertices. Furthermore, I∗(ν∗) ∩ H∗(ν∗) contains all dual edges that correspond
to the primal incident edges of cluster ν.

5.2 Facial Characterization of c-Planarity

First, we consider the dual graphs of completely connected (compl-connected for short) or
c-connected, respectively, planar clustered graphs (see Figure 5.4).

Observe that primal vertices correspond to faces in the dual graph. In Figure 5.5 a dual
face f ∗ is filled with the same color as the cluster ν that contains the corresponding primal
vertex. Notice that the union of the edges and vertices of the boundary of f ∗ belongs to
clustering ν∗. Obviously, a cluster ν is connected if and only if the corresponding dual faces
of the vertices of ν are consecutive. In particular, a cluster ν is connected if and only if
I∗(ν∗) is connected. Moreover, the vertices of a cluster ν can be connected in a given planar
embedding Γ if and only if I∗(ν∗) is connected in the dual of Γ.

We say that C∗ has a property P under 2-isomorphism if there is a planar embedding of
C∗ under 2-isomorphism that has property P .

Therefore, we can even straighten our observation: the vertices of a cluster ν can be con-
nected if and only if I∗(ν∗) is connected under 2-isomorphism.

Let a cut cluster be a cluster ν that disconnects G by the removal of G(ν). We distinguish
two types of cut cluster ν: the first type disconnects G∗ by removal of I∗(ν∗) in every dual
graph G∗ of G. We call the first type the cycle cut cluster. The second type does not have

42 Chapter 5. c-Planarity Characterization

(a) Dual of compl-connected graph (b) Dual of c-connected graph

Figure 5.4: Examples of dual graphs visualized red

(a) Dual of compl-connected graph (b) Dual of c-connected graph

Figure 5.5: Examples of dual graphs visualized red

Chapter 5. c-Planarity Characterization 43

this property and hence H∗(ν∗) is connected under 2-isomorphism (but I∗(ν∗) might not
be connected unter 2-isomorphism).

In Figure 5.5(b) the blue colored cluster form a cut cluster but not a cycle cut cluster.

Recall that in a compl-connected planar clustered graph C for each cluster ν G(ν) is
connected and G−G(ν) is connected. In other words, for each cluster ν I∗(ν∗) is connected
and H∗(ν∗) is connected.

5.2.1 c-Connected Clustered Graphs

We can state the following results.

Lemma 5.1. Let C = (G, T) be a c-connected planar graph and let C∗ be its clustering
graph. C is c-planar if and only if G has a planar embedding such that for each cluster ν
H∗(ν∗) is connected in its dual G∗.

Proof. Follows immediately by Theorem 2.3.

Corollary 5.1. Let C = (G, T) be a c-connected planar clustered graph. C is c-planar if
and only if C does not have a cycle cut cluster.

Proof. If C does not contain a cycle cut cluster then H∗(ν∗) is connected under 2-
isomorphism for every cluster ν of C. Hence, we can augment C to be co-connected and
remain planar. Since C is c-connected C is completely connected and therefore c-planar.

If C is c-planar we can augment C such that it is compl-connected. Then H∗(ν∗) and I∗(ν∗)
are connected under 2-isomorphism for every cluster ν. Therefore, C does not have a cycle
cut cluster.

Observe that for G being a tree, the previous lemma is trivially satisfied. In Chapter 7
we develop an algorithm that test c-planarity of a c-connected clustered graph based on
Corollary 5.1.

5.2.2 co-Connected Clustered Graphs

Recall that we say a clustered graph is co-connected if and only if for every cluster ν
G−G(ν) is connected.

Lemma 5.2. C = (G, T) is a co-connected planar clustered graph if and only if G is planar
and C has no cut cluster.

Proof. If C is co-connected, then G− G(ν) is connected for each cluster ν. Hence, C has
no cut cluster.
If C has no cut cluster then G−G(ν) is connected for each non-trivial cluster. Then C is
co-connected by definition.

44 Chapter 5. c-Planarity Characterization

Since a co-connected clustered graph C has no cut cluster it has no cycle cut cluster. An
example is visualized in Figure 5.6.

(a) Co-connected planar embedded clus-
tered graph with green visualized cluster

(b) Dual of co-connected planar embed-
ded clustered graph with green visual-
ized clustering

Figure 5.6: Examples of dual graphs visualized red, primal clustered graph has non-
connected cluster

Since adding an edge in the primal graph corresponds to expanding an edge in the dual, our
example clustered graph of Figure 5.6 turns in the completely connected planar clustered
graph visualized in Figure 5.7 by connecting the two vertices of the cluster visualized green.

Observe that I∗(ν∗) has to be connected under 2-isomorphism to guarantee the successful
connectivity augmentation of G(ν).

In Figure 5.8 we have a co-connected planar clustered graph C with two disjoint clusters
visualized green and blue. We have the situation that we can augment either the cluster
visualized with blue or with green color in C since the clusters are sibling clusters. Let f ∗

be the dual vertex in C∗ placed middle in Figure 5.8. f ∗ corresponds to the face in the
primal planar embedding that has only vertices of both clusters on its boundary. Hence,
f ∗ has to be expanded for both clusters what is impossible. Consequently, C cannot be
c-planar.

Since a cluster ν in a co-connected planar clustered graph is not a cut cluster observe that
we have to expand every dual vertex that is a cut vertex in I∗(ν∗) (that itself identify a
face in which the primal vertices of G(ν) are not connected by an edge).

We say that tree X covers clustering ν∗ if each vertex in ν∗ is a vertex in X.

Theorem 5.1. Let C = (G, T) be a planar co-connected clustered graph. C is c-planar if
and only if C∗ has the following property P under 2-isomorphism:

there exists pair-wise non-crossing trees Tν∗ such that Tν∗ covers ν∗ for each clustering ν∗

in C∗ and for two clusterings ν∗, µ∗ with G(ν) ⊂ G(µ) Tν∗ ⊂ Tµ∗ .

Chapter 5. c-Planarity Characterization 45

(a) Co-connected planar embedded clus-
tered graph with green visualized con-
nected cluster

(b) Dual of co-connected planar embed-
ded clustered graph with green visual-
ized connected clustering

Figure 5.7: Examples of dual graphs visualized red, primal clustered graph has connected
cluster

(a) Co-connected planar embedded clus-
tered graph with two disjoint clusters vi-
sualized green and blue

(b) Dual of co-connected planar clus-
tered graph with two clustering visual-
ized green and blue

Figure 5.8: Examples of dual graphs visualized red, primal clustered graph has two disjoint
non-connected clusters

46 Chapter 5. c-Planarity Characterization

Proof. If C is c-planar C can be augmented to a c-connected planar clustered graph. Hence
C∗ has a planar embedding with the property P under 2-isomorphism.

We assume that C∗ has a planar embedding Π∗ with property P under 2-isomorphism.
Since the trees are non-crossing we can expand each vertex in Tν∗ that is a cut vertex in
I∗(ν∗) in the given planar embedding Π∗. Observe that expanding a vertex in the dual
graph corresponds to adding an edge in the primal graph. Since Tν∗ covers ν∗ for each
cluster we get a planar embedded c-connected clustered graph. Consequently, since C is
also co-connected, C is c-planar.

5.2.3 General Clustered Graphs

Finally, we consider general planar clustered graphs C = (G, T). We say that tree X covers
a graph G′ if each vertex in G′ is a vertex in X.

Since a completely connected planar clustered graph is c-planar [15, 54] we get the following
result.

Theorem 5.2. Let C = (G, T) be a planar clustered graph. For a cluster ν let ν− :=
G − G(ν) (ν∗

− := H∗(ν∗)). C is c-planar if and only if C∗ has the following property P
under 2-isomorphism:

1. there exists pairwise non-crossing trees Tν∗

−

such that Tν∗

−

covers ν∗
− for each clustering

ν∗ in C∗ and for two clusterings ν∗, µ∗ with G(ν) ⊂ G(µ) Tµ∗

−

⊂ Tν∗

−

and

2. there exists pairwise non-crossing trees Tν∗ such that Tν∗ covers ν∗ for each clustering
ν∗ in C∗ and for two clusterings ν∗, µ∗ with G(ν) ⊂ G(µ) Tν∗ ⊂ Tµ∗ .

Proof. Follows immediately by the fact that a c-planar clustered graph has a c-connected
and co-connected planar super-clustered graph [15, 54].

Observe that each dual vertex corresponds to a primal face. This gives us a primal charac-
terization of c-planarity of a planar graph in terms of facial properties. We use this primal
characterization in Chapter 7 where we develop algorithms that test c-planarity in poly-
nomial time for special classes of clustered graphs. The complexity of the general problem
remains open.

Chapter 6

Subgraph Induced Planar
Connectivity Augmentation

The results of this chapter are joint work with Carsten Gutwenger, Michael Jünger, Sebas-
tian Leipert, Petra Mutzel and René Weiskircher and are published in [41].

For an undirected graph G = (V, E), a subset of vertices W of V , and EW the subset of E
that contains only edges with end vertices in W let GW = (W, EW) be the subgraph of G
induced by W . If G is planar, a subgraph induced planar connectivity augmentation for W
is a set F of additional edges with end vertices in W such that the graph G′ = (V, E ∪ F)
is planar and the graph G′

W is connected.

We present a linear time algorithm based on the SPQR data structure that tests if a
subgraph induced planar connectivity augmentation exists and, if so, constructs a minimum
cardinality augmenting edge set. The difficulty of the subgraph induced planar connectivity
augmentation problem arises from the fact that the computation of an appropriate planar
embedding is part of the problem. Once the embedding is fixed, the decision becomes
trivial.

6.1 An Easy Case: Fixed Embedding

We consider the case that the planar graph G is given together with a fixed embedding. In
the following, we call the vertices belonging to W blue vertices. Our task is to insert edges
so that the induced subgraph GW is connected and G is still planar after edge insertion.

Our algorithm looks at each face f in G that has at least two non-adjacent blue vertices on
its boundary (see Algorithms 3-5 for pseudo-codes). We start at an arbitrary blue vertex
v on the boundary of f and introduce a new edge through f that connects it to the next
blue vertex on the boundary. Thus we step through the blue vertices on the boundary of
f , connecting each to its successor on the boundary until we come back to v. We call the
resulting graph G′. Note that we only introduced a linear number of edges in this step and

47

48 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

that G′ is planar. Another important property of G′ is that G′
W is connected if and only if

there is a planar augmentation for W in G.

Then we compute the graph G′′ by deleting all vertices from G′ that are not blue. We
assign value 1 to all edges introduced in the first step and 0 to all other edges. We can
find a minimum spanning tree in G′′ in linear time because there are only two different
weights on the edges. One way to do this is to use Prim’s Algorithm where we use two lists
instead of the priority queue. The algorithm may now determine that G′′ is not connected.
Then we know that there is no planar augmentation for G. Otherwise, the edges of weight
1 in the minimum spanning tree are our solution. Thus, we can solve the problem in linear
time.

Algorithm 3: Algorithm ConnectSubgraphFix checks if a planar connectivity aug-
mentation in a fixed embedded graph G exists.

Input: A graph G, a subset W of vertices in G and an embedding Π of G

Result: A planar connectivity augmentation of G if it can be built as an extension
of Π and “false” otherwise

BuildComponentsGraph;
return FeasibilityCheck;

Algorithm 4: Algorithm BuildComponentsGraph that builds graph copies G′ of G
where the vertex set W ′ is the set of connected components of the subgraph GW of G
induced by W .

Input: A graph G, a subset W of vertices in G and an embedding Π of G

Result: Graph copies G′ of G with the information about the connected components
of the subgraph GW

Copy graph G in graph G∗;
Delete all edges e = (v, w) in G∗ with ¬(v, w ∈W);
Detect all connected components Ci (i ∈ N) of G∗;
Copy graph G in graph G′;
forall the Ci of G′ do

Create list WC containing all vertices v ∈ W ∩ Ci that correspond to the con-
nected component Ci of G∗;
Mark all vertices of W∩Ci with wC and shrink them to one vertex wC concerning
the embedding Π;

The augmented graph G will be returned if there exists one feasible augmentation. Other-
wise, the algorithm returns ”false”.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 49

Algorithm 5: Algorithm FeasibilityCheck returns the augmented graph G if the
subgraph GW was successfully connected, false otherwise

Input: The graph G′, the subsets WC of vertices in G′ and the embedding Π′ of G′

Result: true, if the subgraph GW is successful connected, false otherwise

forall the faces f ′ of G′ do
Count the number of vertices of WC in the boundary of f ′;

forall the faces f ′ of G′ do
if the number of vertices of WC is at least 2 then

Save f ′ in a list listcount;

forall the faces f ′ of listcount do
Detect the corresponding face f in G;
forall the vertices v in the boundary of f do

Mark first vertex of the boundary as first;
Mark the last connected vertex as second;
Mark the last visited vertex as last;
if last is not blue marked and v is blue marked and second and v are from
different connected components then

Connect second and v;
MergeW;

forall the vertices v ∈W do
if v is not in the last merged component then

return ”false”;

50 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

6.2 The Algorithm for the Biconnected Case

In this section we present an algorithm for the case that the given graph G is biconnected.
First, we compute the SPQR-tree T of G. In Section 6.2.1, we present a recursive algorithm
for coloring all edges in all skeletons of the SPQR-tree. This coloring stores information
about the position of the blue vertices in each skeleton of the SPQR-tree by assigning three
different colors to the edges. The coloring enables us to test if an augmentation is possible
by examining the colors in each skeleton. If an augmentation is possible, we compute an
embedding of the graph that allows an augmentation (see Section 6.2.2). Then we can
apply the algorithm of the previous section to this fixed embedding in order to compute
the list of edges needed to solve the augmentation problem. Algorithm 11 gives an overview
of the algorithm for biconnected graphs.

6.2.1 The Coloring Algorithm

Again we call a vertex blue, if it is contained in W and black otherwise (see Figure 6.1
and Figure 6.2). We assign one of two colors to each edge in each skeleton: blue or black.
We call an edge in a skeleton blue, if its expansion graph contains blue vertices and black
otherwise.

5

7

10

1

2 3 4

6

12 8

9

11

Q

S

P RQQQ

S SS

Q Q Q QQ Q

Q QS QQ

Q Q

Figure 6.1: Example: A graph G and its SPQR-tree.

Additionally, we assign the attribute permeable to some blue edges. Intuitively, an edge is
permeable if we can construct a path connecting only blue vertices through its expansion
graph. Let G(e) be the expansion graph of edge e in skeleton S. In any planar embedding
G(e), there are exactly two faces that have e on their boundary. This follows from the fact
that in a planar biconnected graph, every edge is on the boundary of exactly two faces
in every embedding. We call the edge e in S permeable with respect to W , if there is an
embedding Π of G(e) and a list of at least two faces L = (f1, . . . , fk) in Π that satisfies the
following properties:

1. The two faces f1 and fk are the two faces with e on their boundary.

2. For any two faces fi, fi+1 with 1 ≤ i < k, there is a blue vertex on the boundary
between fi and fi+1.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 51

1

2

5

11

5

1

10

6

9

1

5

6

7

9

8

5

1

3

1

4

5

7

12

8

S-node

P-node
R-node

S-node

S-node

Figure 6.2: Continuation of Figure 6.1: The SPQR-tree where the Q-nodes are omitted;
assigning blue to the vertices of the subset W (visualized with a circle around the vertices).

52 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

We call a skeleton S of a node v of T permeable if the pertinent graph of v together with
the virtual edge of S have the two properties stated above. So S is permeable if the twin
edge of its virtual edge is permeable. We call an expansion graph G(e) permeable if it has
an embedding Π and a list of at least two faces L = (f1, . . . , fk) that satisfies the two
properties stated above.

We develop an algorithm that marks each edge in every skeleton of the SPQR-tree T of
G with the colors black or blue and that assigns the attribute permeable depending on
the expansion graph of the edge. The algorithms works recursively. We assume that T is
rooted at node r and r is not a Q-node.

First we mark all the edges of the skeletons of the children of r recursively black or blue
and assign the permeable attribute by treating them as the roots of subtrees. Each edge
in the skeleton S of r except the reference edge corresponds to a child of r. Let e be such
an edge in S, v the corresponding child of r and S ′ the skeleton of v. If S ′ contains a blue
edge or vertex, we mark e blue and otherwise black. The permeability of e depends on the
type of v:

Q-node: We mark e permeable if the skeleton S ′ contains a blue vertex.

S-node: If the skeleton S ′ contains a blue vertex or a permeable edge, we mark e permeable.

P -node: If the skeleton S ′ contains only permeable edges or a blue vertex, we mark e
permeable.

R-node: We consider a graph H where the vertices are the faces of S ′ and there is an edge
between two vertices if there is a permeable edge or a blue vertex on the boundary
that separates the two faces. Let s and t be the two faces left and right of the virtual
edge of S ′. If there is a path in H connecting s and t, we mark e permeable (see
Figure 6.3 and Algorithm 20).

After executing this algorithm, which we call MarkEdgesPhase1 (see Algorithm 7 for a
pseudo-code), all edges of the skeleton of the root node r are marked, because we have
visited all the blue vertices of the graph. All other skeletons except the skeleton of r
contain one edge that is not yet marked: the virtual edge of the skeleton.

The algorithm MarkEdgesPhase2 (see Algorithm 22 for a pseudo-code) works top down
by traversing T from the root to the leaves. The edges of the skeleton of the root r of T
are already marked in the first step, therefore we can proceed to the children and mark
the virtual edges of its children. Let v be a node in T where the skeleton S ′ of the parent
node is already completely marked. We mark the virtual edge e in the skeleton S of v
blue if there is a blue edge or vertex in the skeleton of the parent. The permeability of
e again depends on the type of the skeleton in exactly the same way as in the algorithm
MarkEdgesPhase1 (see Figure 6.4). Note that the case Q-node is irrelevant here because
the Q-nodes form the leaves of the tree.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 53

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

st

Figure 6.3: A permeable R-node with the graph H : permeable edges are represented by
dotted lines, the virtual edge of the skeleton by a dashed line

Algorithm 6: Algorithm findPath checks if the expansion graph of the twin edge of
an edge in an R-node skeleton is permeable.

Input: An edge e and an R-node v in T with the property that e is contained in
the skeleton S of v and all edges in S are marked

Result: “true” if the expansion graph of the twin edge of e is permeable

Compute an arbitrary embedding Π of S;
Compute the dual graph D of S with respect to Π;
foreach edge e′ of D do

if the primal edge of e′ is permeable then
Set the cost of e′ to zero;

else
Set the cost of e′ to one;

Set the cost of the dual edge of e to one;
Let v1 and v2 be the two vertices in D that correspond to the two faces in Π with
e on their boundary;
Compute the shortest path p from v1 to v2 in D;
if the cost of p is zero then

return “true”;

else
return “false”;

54 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

Algorithm 7: Algorithm MarkEdgesPhase1 that marks all edges in the skeletons except
the virtual edges.

Input: An node v in T and the set W of vertices

Result: All edges in S(v) except the virtual are marked.

Let L be the set of children of v;
foreach v′ ∈ L do

MarkEdgesPhase1(v′, W);
Let e be the edge that S(v′) shares with S(v);
if S(v′) contains a blue or permeable edge or a vertex of W then

Mark e blue
else

Mark e black;

switch type of node v′ do
case P -node

if All edges in S(v′) except e are permeable or one of the vertices in S(v′)
belongs to W then

Mark e permeable

case S-node
if S(v′) contains a vertex of W or an edge marked permeable then

Mark e permeable

case R-node
Let e be the edge shared by S(v′) and S(v);
if findPath(e, v′) returns true then

Mark e permeable

if v is a Q-node then
Let e be the non-virtual edge of S(v);
if S(v) contains a vertex of W then

Mark e permeable;

else
Mark e black;

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 55

11

5

1

10

6

9

1

5

6

7

9

8

5

1 1

4

5

7

12

8

1

5

23

S-node

P-node
R-node

S-node

S-node

Figure 6.4: Continuation of Figure 6.2: The marking of the edges of the skeletons
of the nodes of the SPQR-tree after calling the algorithms MarkEdgesPhase1 and
MarkEdgesPhase2; permeable edges are represented by dotted lines, blue edges by dashed
lines and blue vertices by a circle around them.

56 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

Algorithm 8: Algorithm MarkEdgesPhase2 marks all the virtual edges of the skeletons
in the subtree rooted at v if all the edges in the skeleton of v are marked.

Input: A node v in the SPQR-tree T where all edges are marked

Result: All edges in the subtree rooted at v are marked

Let S be the skeleton of v;
if v is a Q-node then

Let v1 and v2 be the two vertices in S;
Let e be the virtual edge in the child of v;
if {v1, v2} ∩W 6= ∅ then

Mark e permeable;

else
Mark e black;

else
Let L be the list of edges in S whose twin edge is contained in a skeleton of a
child of v;
if S does not contain a blue or permeable edge or a vertex of W then

Mark all the twin edges of the edges in L black;

else
Mark all the twin edges of the edges in L blue;
switch type of v do

case S-node
if S contains a vertex of W or an edge marked permeable then

Mark every twin edge of the edges in L permeable;

case P -node
if All edges in S are marked permeable then

Mark all twin edges of the edges in L permeable

case R-node
foreach edge e in L do

Let v′ be the child of v that contains e;
if findPath(e, v′) returns true then

Mark e in S(v′) permeable;

forall the children w of v do
MarkEdgesPhase2(w, W);

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 57

The two algorithms MarkEdgesPhase1 and MarkEdgesPhase2 can both be implemented in
linear time because the size of the SPQR-tree of a planar biconnected graph including all
skeletons is linear in the size of the graph [22].

Lemma 6.1. Let e be an edge in a skeleton of an inner node and G(e) its expansion
graph. Then the coloring algorithm marks e blue if and only if G(e) contains a vertex of
W . Furthermore, e is marked permeable if and only if there is an embedding Π of G(e)
together with a sequence of faces f1, . . . , fk with the following property:

(*) The two faces f1 and fk are the two faces with e on their boundary and for any two
faces fi, fi+1 with 1 ≤ i < k, there is a blue vertex on the boundary between fi and
fi+1.

Proof. The statement is obvious for blue and black edges because if a vertex of W exists
in the expansion graph of an edge e, e is marked blue and otherwise black. Hence we have
to consider the permeable edges.

We use induction over the number k of inner nodes of the SPQR-tree of the graph G(e).
Note that if a graph G is permeable, then (∗) holds for every embedding of G. Therefore
if we fix the embedding and the property (∗) holds then it holds for every embedding and
if the property (∗) does not hold for the fixed embedding then it will hold for none.

k = 0: G(e) consists of two edges and two vertices and the SPQR-tree of G(e)
consists of two Q-nodes and an edge. If G(e) contains at least one blue vertex, then
it has to be a pole vertex of the skeleton of each of the Q-nodes. Therefore the two
faces that have e on its boundary have a blue vertex on its boundary. Therefore e
has to be marked permeable. It is obvious that if an edge e represents a Q-node and
it is marked permeable then G(e) has to be permeable.

k > 1: Let v′ be the node attached to v that contains the twin edge of e and S ′ the
skeleton of v′. By induction, the edges in S ′ are marked permeable if and only if (∗)
holds. We distinguish three cases defined by the type of v′.

S-node: If S ′ contains a vertex of W , our algorithms mark e permeable and
it is obvious that in this case (∗) holds (the blue vertex is on the boundary of
the same faces as the virtual edge in S ′ and therefore on the boundary between
the same faces as e in S). If S ′ contains a permeable edge e′′, our algorithms
mark e permeable. By induction, we know that there is an embedding Π of
the expansion graph of e′′ and a sequence of faces such that property (∗)
holds. It follows that there is an embedding and a sequence of faces in S ′

such that property (∗) holds (e′′ is on the boundary of the same two faces as
the virtual edge in S ′ and therefore as e in S) and that G(e) is indeed permeable.

58 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

P-node: If S ′ contains a vertex of W , our algorithms mark e permeable and
it is obvious that in this case (∗) holds because S ′ contains only pole vertices.
If S ′ contains only permeable edges, our algorithms mark e permeable. Let
e′′1, . . . , e

′′
j be a sequence of all permeable edges in S ′. By induction, we know

that there is an embedding Π for the expansion graph of each permeable
edge and a sequence of faces such that property (∗) holds. As the permeable
edges are incident to its end vertices, we know that every face in S ′ has two
permeable edges on its boundary. Hence we can concatenate the sequences of
faces according to the embeddings Π of the expansion graphs in S ′. Therefore
it follows that there is an embedding and a sequence of faces in S ′ such that
property (∗) holds. Hence G(e) is permeable.

R-node: If S ′ contains a pole vertex that is contained in W , our algorithms
mark e permeable and it is obvious that in this case (∗) holds because the pole
vertex is an end vertex of e. If S ′ contains a path in the graph H (where the
vertices are faces of the skeleton and there is an edge between two vertices if
there is a permeable edge or a blue vertex on the boundary that separates the
two faces and the vertices that represents the two faces with the virtual edge on
their boundary are named s and t) connecting s and t, our algorithms mark e
permeable. Let P be such a path in H from s to t. By induction, we know that
there is an embedding Π for the expansion graph of each permeable edge and
a sequence of faces such that property (∗) holds. As such a path exists, then
every blue vertex is on a boundary of a face where at least a permeable edge
or another blue vertex exists. Hence we can concatenate the sequences of faces
according to path P in S ′. Therefore it follows that there is an embedding and
a sequence of faces in S ′ such that property (∗) holds. Hence G(e) is indeed
permeable.

6.2.2 The Embedding Algorithm

Let S be a skeleton of a P -node. We call the embedding of S admissible if all blue edges are
consecutive and the blue edges that are not permeable (if they exist) are at the beginning
and at the end of the sequence (see Figure 6.5 for three examples of admissible orderings).

Our algorithm for finding an augmentation or proving that no augmentation exists works
in two phases:

1. Using the colors and attributes of the edges in each skeleton, we fix an embedding
for every P - and R-node skeleton and thus determine an embedding for G.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 59

Figure 6.5: Admissible embeddings of a P -node skeleton (permeable edges are dotted, blue
edges that are not permeable are dashed)

2. We use the algorithm of Section 6.1 for fixed embeddings to determine whether an
augmentation is possible.

The embedding computed in the first step has the property that it allows an augmentation
if and only if there is an embedding of G that allows an augmentation.

We set the embedding for the skeletons of the R- and P -nodes recursively using the struc-
ture of the SPQR-tree. We assume that the vertices in G are numbered and that all edges
are directed from the vertex with lower number to the vertex with higher number.

For simplicity, we consider whether a special case is presented where a planar connectivity
cannot exist.

Theorem 6.1. Let G be a biconnected series-parallel planar graph and W a subset of
its vertices. There exists a planar connectivity augmentation for W in G if and only if
all P -nodes of the SPQR-tree of G contain at the most two edges that are blue but not
permeable.

Proof. The SPQR-tree of series-parallel graphs contain no R-node. P -nodes with at least
three blue and no permeable edges cannot be augmented (Figure 6.6 shows a graph whose
SPQR-tree contains a P -node with three blue but not permeable edges) and therefore no
planar connectivity augmentation exists.

If every P -node skeleton contains at most two edges that are blue but not permeable, we
can always find an embedding of the graph where we can connect the blue vertices. The
embedding of G is determined by the embedding of each P -node skeleton.

The conclusion of the theorem is that whether there exists a P -node that contains a
skeleton with more than two blue edges in a biconnected graph G, there cannot exist a
planar connectivity augmentation.

First, we test whether the biconnected graph contains only P -nodes with skeletons that
have at the most two edges. Then we can sort the two blue edges as mentioned in Figure 6.5
to obtain an admissible embedding.

It is obvious that this can also be done in linear time (see Algorithm 9 for a pseudo-code).

60 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 6.6: Three blue marked nodes in a graph which corresponding P -node has three
blue edges; in this situation the subgraph induced by W cannot be connected so that the
graph remains planar.

Algorithm 9: Algorithm BiconnectivityFeasibilityCheck checks if the skeletons
of P -nodes can be augmented.

Input: The SPQR-tree T of G where all edges are marked and the subset W of
vertices of G

Result: “true” if a planar connectivity augmentation for W in G is possible and
“false” otherwise

result = “true”;
foreach P -node v of T do

Let S be the skeleton of v;
if at least three edges in S are blue but not permeable then

result = “false”;

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 61

Next, we construct an algorithm that marks edges in the skeletons with a new attribute
that can have three different values: left, right and nil. If the virtual edge (the edge
whose twin edge is in the parent of v) in a skeleton of node v is marked left, then the
pertinent graph of v must be embedded in such a way that there is a blue vertex on the
boundary of the face left of the virtual edge. If the edge is marked right, a blue vertex
must be on the boundary of the face right of the virtual edge. If the virtual edge is marked
nil, there is no restriction on the embedding of the pertinent graph of v.

For each node v in the SPQR-tree, where the embedding of the parent node has already
been fixed, we perform two steps:

1. We determine an embedding using the attribute of the virtual edge and the colors
and attributes of the other edges.

2. We determine the attribute for the virtual edge in the skeleton of each child of v.

Only the skeletons of R- and P -nodes have more than one embedding, so the first step is
only important for these node types. First we consider the case where v is an R-node. In
this case, its skeleton has two embeddings. If the attribute on the virtual edge is nil, we
can choose any of the two embeddings. Otherwise, we choose an embedding where there is
a blue edge or vertex on the face left (right) of the virtual edge if the attribute was left

(right). If none of the two embeddings has this property, no augmentation is possible. If v
is a P -node, we can only choose among the admissible embeddings of the skeleton. Again,
we choose an embedding according to the attribute and if no suitable embedding exists,
there can be no augmentation.

Now we have to determine the attribute for the virtual edge of each child of v. Let S be
the skeleton of v. For all edges in S that are either black or permeable, we pass nil to the
corresponding child. Let L be the set of edges in S that are blue but not permeable.

First we consider the case that v is an S-node. If the attribute of the virtual edge is nil,
we pass nil to every child that corresponds to an edge in L. Otherwise, the attribute on
the virtual edge designates one of the two faces of the S-node skeleton as the one that
must have a blue vertex on the boundary. For each edge e in L, we pass left to the
corresponding child if this face is right of e and right otherwise.

To make the following descriptions more concise, we call a face preferred, if it has a perme-
able edge or a blue vertex on its boundary. If v is a P -node, L contains at most two edges.
For each of edge e in L, there are three possible cases:

1. Exactly one of the faces with e on its boundary contains a blue edge. If this is the face
on the right of e, we pass left to the child corresponding to e and right otherwise.

2. One of the faces with e on its boundary is preferred and the other is not. If the
preferred face is left of e, we pass right to the child corresponding to e and left

otherwise.

62 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

3. The faces left and right of e are both preferred or both contain only black edges and
vertices. In this case, we pass nil to the child.

If v is an R-node, we also have to consider the faces left and right of each edge e in L.
The same cases as for P -nodes apply, but there is one additional case that cannot occur
in a P -node: Both faces left and right of e are not preferred but both contain a blue edge
except e (if this happens in a P -node, there can be no augmentation). In this case, we pass
nil to the corresponding child.

To start the process, we choose an arbitrary P - or R-node as the root of the SPQR-tree. If
we choose an arbitrarily R-node, we select one of the two embeddings of the skeleton. If we
select a P -node, we choose an arbitrary admissible embedding. Now we can compute the
attributes we pass to the children of the node as stated above and compute an embedding
for each skeleton of the SPQR-tree by applying the algorithm in depth first or breadth first
sequence to all inner nodes of the tree.

This algorithm defines an embedding for each R- and P -node in the SPQR-tree and thus
for the graph G. Since we touch each skeleton only once and the operations we perform
for each skeleton can be done in time linear in the size of the skeleton, the embedding
can be computed in linear time. Then we apply the algorithm from Section 6.1 to the
fixed embedding. This algorithm either computes the list of edges that constitutes the
planar connectivity augmentation or it signals that no augmentation is possible for this
embedding.

Theorem 6.2. Let Π be the embedding of G determined by the algorithm described above.
G has a planar connectivity augmentation with respect to W if and only if there exists a
planar connectivity augmentation for G with respect to the embedding Π.

We will give an intuition why the theorem holds. It is obvious that a permeable skeleton of
the SPQR-tree can be embedded arbitrarily. The same fact holds for black skeletons. We
have to consider the blue skeletons that are not permeable. The embeddings that do not
have a planar connectivity embedding have to be avoided. Hence if there are more than
two blue vertices then every blue vertex has to be on a boundary of a face that contains
another blue vertex. As a result, we have to avoid embeddings that have blue vertices
where faces they belong to have only black vertices except the blue one if and only if an
embedding exists that allows a planar connectivity augmentation. As we regard this fact
and the embeddings of the skeletons of the S-, P - and R-nodes (Q-nodes are not needed
to be regarded) we conclude the following:

S-node: If there are blue edges in the skeleton S of the S-node we have to embed the
expansion graphs of the blue edges so that there is at least one blue vertex of each
expansion graph in exactly one face the virtual edge belong to. These expansion
graphs are expansion graphs of the children of the S-node, so we have to pass the
same attribute to them, this means either left for the one face or right for the other
face.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 63

P -node: As we have at the most two blue edges in the skeleton of the P -node and chosen
an admissible fix embedding we have to embed the expansion graph of the blue edges
in the manner that there is at least one blue vertex in the same face as the permeable
edge that represents a permeable expansion graph. Hence we pass the attribute right
to the child of the P -node that represents the expansion graph of a blue edge if the
permeable edge is ordered before the blue edge against clock-order and left otherwise.

R-node: The skeleton of an R-node has two embeddings in respect to the virtual edge if
we ignore the virtual edge. We can treat the embeddings of the R-node as fix because
the boundary of the faces are the same. Therefore we just need to take a look at the
blue edges. We assume that there is a blue edge e and the faces that contain e have
the following properties:

• one has additionally a permeable edge or a blue vertex on the boundary and

• the other has additionally a blue but not permeable edge on the boundary.

We have to embed the expansion graph of e so that there is at least one blue vertex
on the face that contains another blue vertex or another blue vertex of the expansion
graph of the permeable edge. So we introduce the attribute preferred to faces of
skeletons that contain blue vertices or permeable edges. If both faces have permeable
edges or a blue vertex the embedding of the expansion graph of the blue edge can
be done arbitrarily. The same happens if both faces contain additional only blue but
not permeable edges or black edges or black vertices. In that ranking we pass the
corresponding attributes to the children.

As we traverse the rooted SPQR-tree top down and fix the embedding of every skeleton on
the way we obtain a fixed embedding that contains all fixed embeddings of the skeletons
of the SPQR-tree as a property of the SPQR-tree. Therefore this embedding contains the
information whether a planar connectivity augmentation is possible. If one exists we have
constructed one, if not, then there would not be a possibility to construct a feasible one.
This can be tested easily with the algorithm for the fixed embedding.

The proof uses structural induction over the SPQR-tree. We first show that the claim holds
for graphs whose SPQR-tree has only one inner node and then use induction to show that
it holds for graphs whose SPQR-tree has more than one inner node.

Lemma 6.2. G has a planar connectivity augmentation if and only if there is an embedding
Π of G with a sequence of faces f1, . . . , fk with the following property:

(**) for all 1 ≤ i < k, there is at least one vertex of W on the boundary between fi and
fi+1 and the boundaries of the faces fi (1 ≤ i ≤ k) contain all vertices of W .

Proof. ⇐ If there is an embedding Π of G with a sequence of faces f1, . . . , fk with
property (∗∗) then we can create a dummy vertex d for each face f of the sequence
and connect d with the blue vertices on the boundary of f . It is obvious that the

64 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

graph constructed of the dummy vertices and its incident edges is connected because
of property (∗∗). For each dummy vertex d we insert δ(d) + 1 edges: Between two
blue vertices that are the end vertices of two adjacent edges of d we introduce an
edge. We delete the dummy vertices d. It is obvious that the graph GW induced of
the vertices of W is connected and graph G is still planar. Therefore G has a planar
connectivity augmentation.

⇒ If G has a planar connectivity augmentation, then there exists a minimum spanning
tree of the subgraph GW and an embedding Π that allows a planar connectivity
augmentation. We root the minimum spanning tree at a vertex with degree 1 and
we direct the edges in breath search to the leaves. Then we traverse the minimum
spanning tree in preoder:

• For every original edge of G we introduce the face on the left to the list facelist
and

• for every edge of F we introduce the original face of G that has to be split into
the list facelist.

It is obvious that the embedding Π together with the sequence of faces of the list facelist
has the property (∗∗).

Now we are able to prove Theorem 6.2:

Proof. We have shown in Lemma 6.2 that permeable expansion graphs that are represented
by permeable edges can be embedded arbitrarily. It is obvious that expansion graphs of
black edges can also be embedded arbitrarily. Hence we have to consider the blue edges.
Note that we call edges blue if they are blue but not permeable.
We use induction over the number n of inner nodes of the SPQR-tree of the graph G.

n = 0: G consists of two edges and two vertices and the SPQR-tree consists of two
Q-nodes and an edge connecting them. The skeleton of the Q-nodes has only one
embedding and therefore G has only one embedding. Is is obvious that the algorithm
computes an embedding that allows a planar connectivity augmentation if one exists
(firstly, the two vertices in G are connected and there is no need to augment the
graph; therefore the minimum cardinality edge set is empty in all cases, and secondly,
if at least one vertex of G is blue then the Q-node is permeable and by defini-
tion there exists an embedding Π and a sequence of faces so that property (∗∗) holds).

n = 1: The SPQR-tree of G consists of an inner node v′ adjacent to Q-nodes. Let S ′

be the skeleton of v′. We distinguish three cases defined by the type of v′.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 65

1. S-node: It is obvious that the expansion graphs of the edges of S ′ have only
one embedding and are permeable if W is not empty. Since all vertices of the
Q-nodes are contained in S ′, S ′ cannot have blue edges. Therefore if W is not
the empty set it is obvious that S ′ is permeable and that S ′ is equal to G. Hence
G can be embedded arbitrarily. Our algorithm passes attribute nil and works
correctly.

2. P-node: It is obvious that the expansion graphs of the edges of S ′ have only one
embedding and are permeable if W is not empty. Since all vertices of the Q-nodes
are contained in S ′, S ′ cannot have blue edges. Since S ′ has only two vertices
that are pole vertices, S ′ is permeable if W is not the empty set. Furthermore,
this two vertices are connected so there is no need to augment the graph if W
is not empty. Therefore G can be embedded arbitrarily. Our algorithm passes
attribute nil and works correctly.

3. R-node: It is obvious that the expansion graphs of the edges of S ′ have only one
embedding and are permeable if W is not empty. Since all vertices of the Q-nodes
are contained in S ′, S ′ cannot have blue edges. Furthermore, it is obvious that
S ′ is equal to G. S ′ has two embeddings but the boundaries of the faces do not
change. Therefore if G has a planar connectivity augmentation both embeddings
will have a sequence of faces so that property (∗∗) holds. Our algorithm passes
attribute nil and works correctly.

n > 1: Let v′ be the node attached to v that contains the twin edge of e and S ′ the
skeleton of v′. By induction the expansion graphs of the edges of S ′ are embedded
so that the embedding allows a planar connectivity augmentation if one exists. We
distinguish three cases defined by the type of v′.

1. S-node: Our algorithm gives the attribute left or right (according to the same
face) for each blue edge in the skeleton of S ′ if S ′ has no permeable edges or
blue vertices, left or right if S ′ has permeable edges or blue vertices. If S ′ has
a blue vertex or a permeable edge it follows by Lemma 6.2 that there exists an
embedding Π together with a sequence of faces that satisfy (∗). Furthermore,
the coloring algorithm has marked the edges of S ′ so that S ′ represents the
whole graph G. By induction, we know that there is an embedding Π′ for each
expansion graph of the blue edges together with a sequence of faces so that
property (∗∗) holds if there is a planar connectivity augmentation. We have to
distinguish two cases.

(a) If G has a planar connectivity augmentation then there exists an embedding
Π of G together with a sequence of faces such that property (∗∗) holds. As S ′

represents the whole graph, then there have to be such a sequence of faces.
Hence the permeable edge or blue vertex are on the boundary of faces f1

and f2, both faces can but at least one must be contained in this sequence
but at least one must be. To obtain a sequence of faces with property (∗∗)

66 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

the expansion graph of a blue edge has to be embedded so that there is at
least one blue vertex on the boundary of face f1 or face f2 and there is a
sequence of faces of the expansion graphs so that (∗∗) holds. By induction
this embedding is constructed for the expansion graph of each blue edge.
Hence we can concatenate the sequence of faces according to the embeddings
Π′ of the expansion graphs in S ′. As our algorithm passes either left or
right to the blue edges we get an embedding Π with a planar connectivity
augmentation.

(b) If G has no planar connectivity augmentation then there does not exist
an embedding Π of G together with a sequence of faces such that property
(∗∗) holds. Since S ′ represents the whole graph, there is no such sequence of
faces. Therefore the embedding we get by the embedding algorithm cannot
allow a planar connectivity augmentation.

If S ′ does not have permeable edges or blue vertices but blue and black edges, we
know by induction that the expansion graphs have an embedding Π that allows
a planar connectivity augmentation if one exists. As they are not permeable
and there have to be an embedding Π′ together with a sequence of faces so
that property (∗∗) holds, we have to concatenate the sequence of faces in S ′

either according to face f1 or to face f2. It is obvious that this sequence of
faces satisfies property (∗∗) if a planar connectivity augmentation exists. Our
algorithm passes either left or right for this case such that it allows a planar
connectivity augmentation if one exists.

2. P-node: Our algorithm computes an admissible embedding. By Lemma 6.2 we
know that for every expansion graph of a permeable edge there exists an embed-
ding Π together with a sequence of faces so that property (∗) holds. It is obvious
that the algorithm cannot compute an embedding that allows a planar connec-
tivity augmentation if none exists. We assume that G has a planar connectivity
augmentation. By induction there is a planar connectivity augmentation in each
expansion graph of a blue edge e′′ in S ′. To concatenate the sequence of faces
so that property (∗∗) holds we have to embed the expansion graphs of the blue
edges so that there is a blue vertex in the boundary of the face between its blue
edge and the adjacent permeable edge. If S ′ contains no permeable edge and
two blue edges, we have to embed the expansion graphs of the two blue edges so
that the face bounded by the two blue edges in S ′ contains blue vertices of both
expansion graphs on the boundary in the embedding Π. Such an embedding is
constructed by induction. We concatenate the sequence of faces according to the
embedding of the expansion graphs of S ′ and get an embedding that allows a
planar connectivity augmentation. For each blue edge in S ′ the algorithm passes
following attributes:

(a) Exactly one of the faces with e on its boundary contains a blue edge. If this
is the face on the right of e, we pass left to the child corresponding to e
and right otherwise.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 67

(b) One of the faces with e on its boundary is preferred and the other not. If
the preferred face is left of e, we pass right to the child corresponding to
e and left otherwise.

(c) The faces left and right of e are both preferred or both contain only black
edges and vertices. In this case, we pass nil to the child.

Hence our algorithm works correctly.

3. R-node: By Lemma 6.2 we know that for every expansion graph of a permeable
edge there exists an embedding Π together with a sequence of faces so that
property (∗) holds. By induction there is a planar connectivity augmentation
in each expansion graph of a blue edge if one exists. Since the skeleton of the
R-node has only two embeddings we can concatenate the faces according to the
embeddings of the expansion graph in S ′. If this sequence of faces satisfies (∗∗)
then there exists a planar connectivity augmentation. Therefore our algorithm
works correctly.

�
�
�
�

�
�
�
�

Figure 6.7: Sorting the edges of a blue P -node: blue edges are represented by dashed lines
and the permeable edge by a dotted line.

For a pseudo-code description see Algorithm 11.

We can state the following theorem.

Theorem 6.3. Given a planar biconnected graph G = (V, E) and a subset of vertices W ⊆
V . The algorithm BiconnectedAugmenter tests correctly whether a subgraph induced planar
connectivity augmentation exists and, if so, constructs a minimum cardinality augmenting
edge set. It runs in time O(|V |).

68 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

marked leftmost marked rightmost

Figure 6.8: Swapping the leftmost or rightmost marked nodes.

Algorithm 10: Algorithm CalculateEmbedding determines a feasible embedding of
the graph, if there is one and none, if there is none.

Input: A biconnected planar graph G and its SPQR-tree.

Result: An embedding of graph G.

forall the P -nodes which are blue do
Sort and mark the first blue edge leftmost and the second rightmost;
Sort all permeable edges leftmost;

forall the R-nodes which are blue and not permeable do
Extend algorithm findpath to mark the R-node with the labels s, t or nil;

forall the R-nodes which are blue and not permeable do
forall the faces f in the skeleton of the R-node which contain at least two of
the following: blue nodes, blue edges and permeable edges do

Traverse the boundary of f and if there is a blue edge representing an R-node
R, swap the skeleton of R if R is marked t;

if father which is not an R-node is marked leftmost then
Swap the R-node if it is marked t;

if father which is not an R-node is marked rightmost then
Swap the R-node if it is marked s;

Construct an embedding from the SPQR-tree;

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 69

Algorithm 11: The algorithm BiconnectedAugmenter computes a planar connectivity
augmentation for a planar biconnected graph G and a subset W of the vertices, if it
exists.

Input: A biconnected planar graph G and a subset W of its vertices,

Result: true if and only if there is a planar augmentation for W ; in the positive
case an embedding Π and a minimum cardinality augmenting edge set will
be computed.

Calculate the SPQR-tree T of G;
Make an arbitrary node r which is not a Q-node the root of T ;
MarkEdgesPhase1(r, W);
MarkEdgesPhase2(r, W);
BiconnectivityFeasibilityCheck(T);
Embedding Π = CalculateEmbedding;
return FixedEmbeddingAugmenter(Π, W);

6.3 The Algorithm for the Connected Case

In the last section we have dealt with the problem of finding an induced subgraph of W in
a biconnected graph. Hence we already know how to deal with the biconnected blocks of
the graph G using the SPQR-tree. To solve the connected case, we first build the BC-tree
of G. This tree has two types of nodes: The c-nodes correspond to cut-vertices of G and
the b-nodes to biconnected components (blocks). There is an edge connecting a c-node and
a b-node, if the cut-vertex is contained in the block corresponding to the b-node. Taking
this structure into account we can solve the problem also for connected graphs in linear
time.

We split the connected graph G into biconnected components using the BC-tree and we
split the biconnected blocks into triconnected components using the SPQR-tree. In the
last section we have dealt with the problem of finding an induced subgraph of W in a
biconnected graph. Hence we already know how to deal with the biconnected blocks of the
graph G using the SPQR-tree. The blocks which are connected to each other by a cut
vertex can be embedded in each face they belong to. Therefore every blue block has to
be embedded in the same face because we will have to connect them if a feasible planar
connectivity augmentation exists. Further, it is obvious that we have to operate only on
the smallest subtree bc of the BC-tree containing all blue blocks. Such a subgraph induced
of bc can look like the graph G in figure 6.9. If we connect the cut vertices of the blocks of
bc, which are not blue and if the result of the planarity test is positive (that means that the
blocks can be embedded in the same face), we will be able to connect the blue blocks. It is
obvious that at least one cut vertex is also connected to a blue block. If the planarity testing
results true, the blue blocks will be able to be connected in the same face (see figure 6.9).
Otherwise we have the same situation as shown in figure 6.10. The blue blocks cannot be
connected in this case because the cut vertices do not lie on the same face. In the positive
case, we mark all cut vertices that are not blue red. For each blue biconnected component

70 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

its red vertices play a special role since they represents the connection to the other blue
biconnected component in bc. Consequently, its blue vertices has to be connected with the
red vertices to ensure a planar connectivity augmentation for all blue vertices represented
by the vertex subset W . Hence, for each biconnected component that is marked blue
we apply the Algorithm 11 of the biconnected case presented in the last section on its
blue and red vertices. In the coloring algorithm, Algorithm 7, we differ between blue and
red vertices: clearly, the red vertices has to appear in the beginning or the end of the
sequences. Consequently, we assign the attribute blue to a virtual edge e if e has no
attribute permeable created by the blue vertices of its expansion graph but its expansion
graph contains a red vertex.

Corollary 6.1. A connected series-parallel planar graph G with one not connected subgraph
GW induced by the vertex subset W ⊆ V can be augmented if and only if

• all P -nodes of its SPQR-tree contain at the most two blue and not permeable edges
and

• the red vertices of the graph G can be connected with a dummy vertex so that the
graph keeps its planarity.

Corollary 6.2. A connected planar graph G with one not connected subgraph GW induced
by the vertex subset W ⊆ V can be augmented if and only if

• all P -nodes of its SPQR-tree contain no blue pole vertex and at the most two blue
but not permeable edges,

• in every R-node there is no cycle of black vertices and black edges which separate blue
vertices and blue edges and

• the red vertices of the graph G can be connected with a dummy vertex so that the
graph keeps its planarity.

6.4 The Algorithm for the General Case

For general graphs we apply the Algorithm 24 to each connected component. Then we
transform the connected components so that they have at least one blue and all red vertices
on the outer face. Finally we connect the blue vertices on the outer face.

Chapter 6. Subgraph Induced Planar Connectivity Augmentation 71

�
�
�
�

�
�
�
�

�
�
�
�

blue

blue

B

B

Figure 6.9: The graph G induced of the subtree bc and the test if the augmentation is not
feasible.

BC−tree of G

Figure 6.10: No feasible way to connect the blue vertices (drawn as hollow circles) and to
keep planarity of graph G.

72 Chapter 6. Subgraph Induced Planar Connectivity Augmentation

Algorithm 12: Algorithm ExtendedCheckAugmentability checks if a planar connec-
tivity augmentation for W in a connected graph G exists.

Input: A connected planar graph.

Result: An embedding of G′ if G can be augmented, otherwise ”false”.

Calculate BC-tree of graph G;
forall the blocks B of BC-tree do

if B contain a blue vertex then
Mark B blue;

Calculate the smallest BC-subtree bc containing all blue blocks;
forall the C-nodes c in bc do

if C-node c is not blue then
mark c red;

forall the blocks B of bc which are not blue do
Join all red nodes of the blocks B with a single dummy vertex;
Test planarity;

forall the blocks which are blue do
Apply changed algorithm CheckAugmentability with red nodes;

Algorithm 13: Algorithm GeneralCheckAugmentability checks if a planar connec-
tivity augmentation for W in a general graph G exists.

Input: A general graph G.

Result: An embedding of G′ of G can be augmented, otherwise ”false”.

forall the connected components Ci of the graph G do
ExtendedCheckAugmentability;

Sort all Ci in clockwise order and traverse them in this order;
forall the ci which contains at least one blue or red vertex do

Choose a face f with at least one blue or red vertex in the boundary as outer
face;
Save the blue or red vertex in a list listvertex;

forall the vertices in listvertex do
Connect them by inserting clockwise a path that is a cycle minus one edge;

Chapter 7

c-Planarity Testing

7.1 c-Connected Clustered Graphs

In this chapter we consider the c-planarity of a c-connected clustered graph C = (G, T).
There exist two planarity testing algorithms for this class of clustered graphs by Feng
in [29, 30] that runs in quadratic time and by Dahlhaus in [18, 20] who gives a linear
running time improvement.

In this chapter we develop an additional linear time algorithm for this problem. Our aim is
more to create an other view-point on the problem than to show a new algorithmic result
since an elegant algorithm has already been developed by Dahlhaus in [18, 20] first as
mentioned before. In this chapter we focus on a c-planarity characterization with forbidden
minors that surprisingly can be achieved for the c-connected planar clustered graph. By
this, we are able to understand the root of the problem. Finally, using this characterization,
we show an additional algorithmic realization of the problem deciding c-planarity and in
the positive case achieving a c-planar embedding.

Theorem 7.1. Let a c-connected clustered graph C = (G, T) be given and let G be planar.

C is c-planar if and only if for each cluster ν of T C has no minor isomorphic to the
clustered graphs of Figures 7.1 and 7.2.

Proof. We know that a completely connected clustered graph is c-planar if and only if it is
planar (see [15, 54] and Chapter 8). Furthermore, it is a well-known fact that a c-connected
clustered graph with an underlying graph isomorphic to a tree is c-planar [21].

Therefore, given a c-connected planar clustered graph, it is not c-planar if and only if it
has no planar completely connected clustered super-graph. In this case there has to exist
a cluster ν such that G(ν) isolates G−G(ν) in each planar embedding of G.

Since G is planar, G has neither a K3,3 nor a K5 minor. Since C is not c-planar we may
assume that augmentation to a completely connected clustered graph yields a K3,3 or K5,
respectively.

73

74 Chapter 7. c-Planarity Testing

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.1: Forbidden clustered minors of a c-connected clustered graph for a cluster ν
(green vertices are belonging to G(ν), black vertices to G−G(ν))

Chapter 7. c-Planarity Testing 75

(a) (b)

Figure 7.2: Forbidden clustered minors of a c-connected clustered graph for a cluster ν
(green vertices are belonging to G(ν), black vertices to G−G(ν))

Let VG(ν) be the vertex set of G(ν) and VG−G(ν) the vertex set of G− G(ν). Furthermore,
let n∗ = |VG(ν)|.
Therefore, we may suppose that we have the following cases for a c-connected clustered
graph that is not c-planar:

1. K3,3:

(a) n∗ = 1,2,3: G(ν) is a tree since K3,3 has cycles with length at least 4.

(b) n∗ = 4: either G(ν) is a tree (by choosing three vertices adjacent to an other
one) or G(ν) is equal to C4, the cycle of length 4. In the second case there is
a unique edge e between the two vertices of G − G(ν) after choosing the four
vertices of G(ν). This constellation is visualized in Figure 7.1(a).

(c) n∗ = 5: G(ν) is a K2,3.

The assumption that there is a vertex connected to K2,3 introducing a K3,3 leads
to a contradiction that G is planar. Therefore, we have more than one vertex
belonging to G−G(ν). Let V3 be the partition of K2,3 with three vertices.

i. Let us suppose that we have two vertices. Then one vertex of G − G(ν) is
connected to two vertices of V3 and the other vertex is connected to the
remaining vertex of V3. This constellation is visualized in Figure 7.1(h).

ii. Let us suppose that we have three vertices. Then each vertex is connected
to a different vertex of V3. This constellation is visualized in Figure 7.1(c).

2. K5:

(a) n∗ = 1,2: G(ν) is a tree since K5 has cycles with length at least 3. The existence
of K5 contradicts the assumption that G is planar.

76 Chapter 7. c-Planarity Testing

(b) n∗ = 3: G(ν) is equal to C3, the cycle of length 3. Then there is a unique edge e
between the two vertices of G−G(ν) after choosing the three vertices of G(ν).
This constellation is visualized in Figure 7.1(b).

(c) n∗ = 4: G(ν) is equal to K4.

The assumption that there is a vertex connected to all vertices of K4 introducing
a K5 leads to a contradiction that G is planar. Therefore, we have more than
one vertex belonging to G−G(ν). Let V4 be the vertex set of G(ν).

i. Let us suppose that we have two vertices in G−G(ν). Then

A. one vertex of G−G(ν) is connected to three vertices of V4 and the other
vertex is connected to the remaining vertex of V4. This constellation is
visualized in Figure 7.1(g), or

B. one vertex is connected to two vertices of V4 and the other to the re-
maining vertices of V4. This constellation is visualized in Figure 7.2(a).

ii. Let us suppose that we have three vertices in G−G(ν). Then one vertex is
connected to two vertices of V4, and the other two are connected each to a
different vertex of V4. This constellation is visualized in Figure 7.2(b).

iii. Let us suppose that we have four vertices in G − G(ν). Then each vertex
is connected to a different vertex in V4. This constellation is visualized in
Figure 7.1(b).

For example, on the left-hand side of Figure 7.3 the clustered graph has a clustered minor
isomorphic to the clustered graph of Figure 7.1(b), as visualized on the right-hand side of
Figure 7.3.

Figure 7.3: A c-connected clustered graph on the left-hand side, vertices of a cluster are
visualized red, blue and green, respectively. The clustered graph on the left-hand side is
isomorphic to a forbidden minor.

Chapter 7. c-Planarity Testing 77

In Figure 7.1(a) and 7.1(b), notice that merging the vertices of G− G(ν) yields a planar
graph. On the other hand, merging the vertices of G − G(ν) of the other minors cause
non-planarity.

In Figures 7.1 and 7.2, notice that each of the clustered graphs has a triconnected minor
except the graph of Figure 7.1(c). Analyzing the corresponding triconnected minors we
observe that we can classify them (see Figure 7.4).

We may conclude a special characterization.

Corollary 7.1. Let C = (G, T) be a c-connected clustered graph and G be outer-planar.
Then C is c-planar.

Proof. Recall that an outer-planar graph is a series-parallel graph with no minors isomor-
phic to K4 and K2,3 and is planar. The statement follows immediately by Theorem 7.1
since the forbidden minors cannot be included by definition.

Using the previous results and Theorem 2.3 we can state the following corollary.

Corollary 7.2. Let C = (G, T) be a c-connected clustered graph. C is c-planar if and only
if there is no isolating cut cluster in C.

Proof. Follows immediately by Theorems 2.3 and 7.1.

Given a c-connected planar clustered graph, our strategy is to create a planar embedding
such that for all clusters ν of T all vertices of G− G(ν) are outside of G(ν) if and only if
such an embedding exists. Hence, if the created planar embedding isolates G−G(ν) from
G(ν) then C is not c-planar.

Notice that c-connectivity of a clustered graph can be tested easily in linear time by
recursively (bottom up level by level in the clustered tree) shrinking the connected vertices
of a cluster. A cluster is not connected if the shrinked cluster contains more than one
vertex.

7.1.1 The Algorithm for the Triconnected Case

Let C = (G, T) be a c-connected planar clustered graph and G triconnected.

Choose a planar embedding of G such that there is an edge only belonging to the root
cluster on the boundary of the outer face. Since we have at least one cluster other than
the root cluster such an edge must exists.

Hence G is triconnected we have a unique planar embedding Γ beside mirroring. Therefore,
it is easy to see that we can determine isolations of G − G(ν) from G(ν) in Γ simply by
shrinking each cluster ν bottom up level by level in the cluster tree. Obviously, a created
self-loop out of G(ν) indicates an isolation of G−G(ν).

This immediately leads us to Algorithm 14 for the triconnected case.

78 Chapter 7. c-Planarity Testing

(a) (b)

(c) (d)

(e)

Figure 7.4: Characterization of the forbidden clustered minors of Figures 7.1 and 7.2; green
vertices are belonging to G(ν), red circled vertices are green vertices that correspond to
cut vertices connected to connected components containing vertices of G−G(ν), red-black
circled vertices can be seen as red circled vertices or vertices of G− G(ν), bold edges are
virtual edges that contain vertices of G − G(ν) if black, or a path between green vertices
if green

Chapter 7. c-Planarity Testing 79

Algorithm 14: Algorithm Test cplanar triconnected that tests c-planarity for a
c-connected clustered graph C = (G, T) with G planar and triconnected.

Input: A c-connected clustered graph C = (G, T), G planar and triconnected

Result: true, if and only if C is c-planar, otherwise false.

Choose a planar embedding Γ with an edge e on the boundary of the outer face that
belongs to the root cluster;
forall the cluster ν bottom up level by level do

Shrink ν in Γ to a node;
Treat modified embedding as Γ from now on;
if a self–loop is created then

return false;

return true;

7.1.2 The Algorithm for the Biconnected Case

Let us assume that C = (G, T) is c-connected planar and its underlying graph G is bicon-
nected.

To investigate the structure of C, we first omit triconnected minors of G, and assume that
G is series-parallel.

Theorem 7.2. Let C = (G, T) be a c-connected clustered graph and G series-parallel.
C is c-planar if and only if it contains no minor isomorphic to the clustered graph of
Figure 7.1(c).

Proof. Since the other clustered minors visualized in Figure 7.1 and 7.2 have a triconnected
minor their existence in a series-parallel graph leads to a contradiction.

From now on we investigate in the c-planarity testing algorithm for the biconnected case.
First, we build the SPQR-tree T of G. We make the following observations.

Theorem 7.3. Let C = (G, T) be a c-connected clustered graph and G series-parallel. Let
Ti be the SPQR− trees of the biconnected components Ci of G for all i = 1, . . . , n, n ∈ N .

C is c–planar if and only if for all clusters ν there are no isolations of G−G(ν), means ν
is no isolating cut cluster, in the pertinent graphs of the P -nodes of all SPQR-trees of G.

To prove this theorem we prove first the following theorem.

Theorem 7.4. Let C = (G, T) be a c-connected clustered graph and G series-parallel and
biconnected. Let Ti be the SPQR-trees of the biconnected components of G. Let Cν := {V ∈
2V (ν)|Vν is a circle in the expansion graph of a P-node and contains both pole vertices} be
the sets of the vertex sets belonging to cluster ν of all circles in the expansion graphs of
P-nodes that contain both pole vertices.

If for every P-node of the SPQR-trees the following property (∗) holds, then C is c-planar:

80 Chapter 7. c-Planarity Testing

(∗) For every cluster ν in every P-node, there is at the most one circle Vν of Cν such that

1. the union of the expansion graphs of two children ℘1 and ℘2 contains Vν and

2. for i ∈ {1, 2} the cut of G−Gν with the expansion graph of child ℘i is nonempty.

Proof. Since C is c-connected, isolations of G − G(ν) for a cluster ν can only occur if
the pertinent graph of a P -node isolates G(ν). The skeleton of an S-node S is a cycle,
therefore has exactly two faces and one embedding. Therefore isolations can only happen
in the pertinent graphs of the virtual edges of S (it can be shown that otherwise S must be
an R-node). Isolations of G(ν) can only happen if the pertinent graph of a P -node contain
at least three cycles Vν with the conditions above (see for an example Figure 9.7).

Figure 7.5: Isolations in the expansion graph of P-nodes: The circled vertices are vertices
of a connected cluster ν, the others belong to G−G(ν)

This proves the theorem.

Theorem 7.3 follows from Theorem 7.4.

Theorem 7.5. Let C = (G, T) be a c-connected clustered graph and G series-parallel. Let
Ti be the SPQR-trees of the biconnected components of G.

C is c–planar if and only if there is no skeleton of a P -node P in the SPQR-trees
containing at least three disjoint paths X from one pole vertex to the other of a cluster ν
with the following properties:

Each of the pertinent graphs of the skeletons of the children of P containing X do
contain vertices of G−G(ν).

Proof. Follows immediately from Theorems 7.1, 7.2 and 7.3.

By Corollary 7.2, to test c-planarity of a c-connected planar graph with G biconnected we
have to check isolations in the pertinent graphs of every P- and R-node of its SPQR-tree
T .

Chapter 7. c-Planarity Testing 81

In Figure 7.6 a c-connected planar clustered graph C = (G, T) is visualized with G bicon-
nected. As we can see, this clustered graph is obviously not c-planar.

Figure 7.6: Example of a clustered graph (left-hand) and its SPQR-tree (right-hand) we
use in this section to demonstrate the c-planarity testing algorithm; vertices of cluster ν
are visualized green

Definition 7.1. Let C = (G, T) be a c-connected planar clustered graph, G biconnected and
T the SPQR-tree of G. In a skeleton S of a node v of T : A path between the pole vertices
s, t of S that consists of all nodes and edges belonging to the lowest common ancestor of
s, t in T is called an lca(s,t)-path.

We observe that for two disjoint clusters ν and µ their corresponding ν- and µ-path are
disjoint. On the other hand, if ν is a father of µ, the µ-path is contained in the ν-path.

First, we construct an auxiliary copy of T , say HT . For each cluster ν of T , we determine
the isolations of G−G(ν) from G(ν) using HT :

For each skeleton of a child v of a P-node in T we test whether there is a lca(s,t)-path
between its two pole vertices s, t. If there is one, then we mark the corresponding virtual
edge in the P-node with the attribute lca(s,t)-path. Furthermore, if there is an other edge
not belonging to a cluster of the subtree of lca(s,t), then we mark the same virtual edge with
an additional attribute lca(s,t)-outer. Observe that if there are at least three virtual edges
marked both lca(s,t)-path and lca(s,t)-outer in a P-node, then there is an isolation of G−
G(lca(s,t)) from G(lca(s,t)), means lca(s,t) is an isolating cut cluster, in the corresponding
pertinent graph and C cannot be c-planar.

82 Chapter 7. c-Planarity Testing

To apply, if necessary, the previous mentioned attributes lca(s,t)-path and lca(s,t)-outer
to each virtual edge in a skeleton of a node of T , we do some shrink operations in HT .

First, we add the attribute lca(u1, u2)-path to each original edge e = (u1, u2) of C in a
skeleton of T and HT (see Figure 7.7). For further calculations we omit the Q-nodes in
the SPQR-trees. We part the algorithm for marking the edges in two parts, first called
MarkEdgesI and the second named MarkEdgesII.

Figure 7.7: Continuation of Figure 7.6: After calling the preprocessing step; ν-paths visu-
alized green

Traversing HT bottom up level by level, for each skeleton S of a node v of HT we add
the attribute lca(s,t)-path to the twin edge of v in the skeleton of the father node if and
only if there is a path between both pole vertices s, t in S using only edges that belong
to the subtree of lca(s,t) in T (see Figure 7.8). We can test this property very easily by
shrinking those edges: If in the resulting skeleton s is merged with t, we have such a path.
Additionally, whether there is a cluster that does not belong to the subtree rooted by
lca(s,t) in T can also be easily verified by level calculations in T . Since the clustered graph
is c-connected there exists an edge that belongs to a cluster with depth smaller than the
depth of lca(s,t) in T .

Furthermore, if there is an other edge e in S other than the reference edge and not marked
lca(s,t)-path we add the attribute lca(s,t)-outer to e and to the twin edge. Notice that
we also mark the corresponding edges in the skeletons of T . For a detailed pseudo-code
description of Algorithm MarkEdgesI see Algorithm 15.

Observe that we do not mark the reference edges of each skeleton of the SPQR-trees in

Chapter 7. c-Planarity Testing 83

Algorithm 15: Part I: Algorithm MarkEdgesI.

Input: A c-connected planar clustered graph C = (G, T), G biconnected

Result: all edges other than reference edges are marked lca(s,t)-path or lca(s,t)-
other

T = SPQR-tree of G;
s,t = pole vertices;
forall the edges e of G do

Add attribute lca(source(e),target(e))-path to e;

forall the nodes v of T bottom up level by level do
S = Skeleton of v;
if v is an S- or R-node then

Calculate lca(s,t)-path in S;
if lca(s,t)-path exists then

Add attribute lca(s,t)-path to twin edge of S;

if exists edge e not of lca(s,t)) in S then
Add attribute lca(s,t)-other to e and twin edge of S;

if v is a P-node then
if one edge has attribute lca(s,t)-path then

Add attribute lca(s,t)-path to twin edge of S;

if one edge has attribute lca(s,t)-other then
Add attribute lca(s,t)-other to twin edge of S;

84 Chapter 7. c-Planarity Testing

Figure 7.8: Continuation of Figure 7.6: After calling the algorithm MarkEdgesI; ν-paths
visualized green, ν-others visualized blue

the first traversal. Next we mark them by traversing HT top down level by level (see
Figure 7.9). In the skeleton of root node of HT all edges are marked. Therefore, we hand
the attributes of a skeleton S of a node v down to the reference edges r of its child nodes
by simply analyzing their corresponding edges er in the skeleton of v. Again, if those edges
er contain an lca(s,t)-path, we give the attribute lca(s,t)-path to r. An analogous criteria
hold for the attribute lca(s,t)-other. Notice that we also mark the corresponding edges in
the skeletons of T .

For a detailed pseudo-code description of Algorithm MarkEdgesII see Algorithm 16.

After finishing both traversals, it is easy to see that isolations (in form of an isolating cut
cluster) are easy to verify: If a skeleton of a P-node in T contains more that two edges
marked both lca(s,t)-path and lca(s,t)-outer, C is not c-planar. In our example clustered
graph in Figure 7.9 the rooted P-node satisfy this property.

Furthermore, we apply the algorithm for the triconnected case of Section 7.1.1 to each
skeleton of an R-node also taking the marked edges into account (but we do not shrink
the reference edge). For example, in Figures 7.9 and 7.10 the R-node has this property
because after the shrinking operation the vertex of the self-loop connects two blocks beside
the reference edge. If the return value is false, C is not c-planar.

We call the algorithm FeasibilityCheck that tests those properties. For a detailed pseudo-
code description of Algorithm FeasibilityCheck see Algorithm 17.

The two algorithms MarkEdgesI and MarkEdgesII can both be implemented in linear time

Chapter 7. c-Planarity Testing 85

Figure 7.9: Continuation of Figure 7.6: After calling the algorithms MarkEdgesI and
MarkEdgesII; ν-paths visualized green, ν-others visualized blue

Figure 7.10: Continuation of Figure 7.6: Testing feasibility of the skeleton of the R-node;
ν-paths visualized green, ν-others visualized blue

86 Chapter 7. c-Planarity Testing

Algorithm 16: Part II: Algorithm MarkEdgesII.

Input: A c-connected planar clustered graph C = (G, T), G biconnected, results of
MarkEdgesI

Result: all edges are marked lca(s,t)-path or lca(s,t)-other

T = SPQR-tree of G;
s,t = pole vertices;
forall the nodes v of T top downlevel by level do

Sf = Skeleton of father of v;
S = Skeleton of v;
if father of v is an S- or R-node then

Calculate lca(s,t)-path in Sf other than twin edge;
if lca(s,t)-path exists then

Add attribute lca(s,t)-path to reference edge of S;

if exists edge e other than twin edge and not of lca(s,t) in Sf then
Add attribute lca(s,t)-other to reference edge of S;

if father of v is a P-node then
if exists edge marked lca(s,t)-path other than twin edge then

Add attribute lca(s,t)-path to reference edge of S;

if exists edge marked lca(s,t)-other other than twin edge then
Add attribute lca(s,t)-other to reference edge of S;

Algorithm 17: Part III: Algorithm FeasibilityCheck checks whether a given clus-
tered graph is c-planar

forall the P-nodes do
if at least three edges are marked both lca(s,t)-path and lca(s,t)-other then

return false;

forall the R-nodes do
Apply Algorithm Test cplanar triconnected;

return true;

Chapter 7. c-Planarity Testing 87

because the size of the SPQR-tree of a planar biconnected graph including all skeletons is
linear in the size of the graph [22].

We get the following algorithm for testing c-planarity of a given c-connected planar clus-
tered graph C = (G, T) with G biconnected.

Algorithm 18: Testing c-planarity of a c-connected clustered graph C = (G, T) with
G biconnected.

if C is planar and c-connected then
MarkEdgesI;
MarkEdgesII;
FeasibilityCheck;

An embedding algorithm can easily be constructed by using the same techniques as in the
embedding step of SIPCA in Chapter 6:

In the positive case, we know that there are no isolating cut clusters. We have first to sort
the virtual edges of the skeleton of each P-node. Those have to be ordered consecutively
for each cluster - this can be done by solving the consecutive one’s problem with the data
structure PQ-tree [8]. Additionally, we might have to swap some skeletons of the R-nodes
in order to not achieve an embedded isolating cut cluster (at least one edge in the skeleton
that belongs to the lowest common ancestor of the poles has to be embedded in the outer
face of the skeleton). This can be done in linear time.

7.1.3 The Algorithm for the Connected Case

Let C = (G, T) be a c-connected planar clustered graph with G connected but not bicon-
nected. Therefore, G has cut vertices that connect blocks.

Obviously, we have to check for two connected components B1 and B2 with a common cut
vertex c whether there is a planar embedding with a face f such that f has

1. c on its boundary and

2. one boundary of f is parted into a path P1 from c to c using edges of B1 and a path
P2 from c to c using edges of B2 and

3. the lowest of all lowest common ancestors of the end vertices of the edges of P1 or
P2, respectively, is lower or equal to the cluster that contains c.

We build a BC-tree, where B and C are the vertices of the tree, representing B the blocks
and C the cut vertices.

For each block we check whether there are at least two clusters and mark the corresponding
B-node in the tree. For each cut vertex that belongs to such a block we mark it red and
assign to it the lowest cluster of T that is included in the block.

88 Chapter 7. c-Planarity Testing

We construct for each block B a SPQR-tree with the red marked cut vertices. Whenever a
red marked vertex occur in the MarkEdges procedure, we add the attribute lca(s,t)-other
with s, t the pole vertices of the corresponding skeleton.

Finally, in the R-nodes for each red marked vertex c we check whether there is a face
bounded by c that has an edge on its boundary with the lowest common ancestor of its
end vertices equal or lower to the cluster of c.

7.2 co-Connected Clustered Graphs

Let C = (G, T) be a co-connected planar clustered graph. In this chapter we show that in
this case c-planarity is decidable and realizable in polynomial time.

Theorem 7.6. Let a co-connected planar clustered graph C = (G, T) be given. C is c-
planar if and only if it has a c-connected planar super clustered graph.

Proof. If C is c-planar it has a c-planar c-connected super-clustered graph SC. Therefore,
SC is planar. Let a c-connected planar super-clustered graph be given that contains a
co-connected planar clustered graph. Then SC is co-connected. Since SC is planar, it is
c-planar. Then C is also c-planar.

Hence our aim is to find an edge-augmentation that makes C c-connected if one exists such
that C remains planar. Therefore, we can state the following corollary.

Corollary 7.1. Let a co-connected planar clustered graph C = (G, T) be given. C is c-
planar if and only if a c-connected super-clustered graph of C exists that has no minor
isomorphic to K3,3 or K5.

Proof. Since C is co-connected the super-clustered graph has to be completely connected.
Additionally, the super-clustered graph is not allowed to have a minor isomorphic to K3,3

or K5, therefore is planar. Recall that a completely connected planar clustered graph is
c-planar [15, 54]. By Theorem 2.4, then C is c-planar.

If C is c-planar, it has a c-planar embedding that can be extended to a completely connected
planar clustered graph.

Furthermore, since C is co-connected, it has no cut cluster.

In this chapter, first we discuss c-planarity of a subclass of planar co-connected clus-
tered graphs with the additional property: For any pair of disjoint clusters ν, µ of C
G− (G(ν) ∪G(µ)) is connected.

In the following, we show how to compute a c-planar embedding of this subclass, if one
exists, in polynomial time. Furthermore, using this results, we discuss c-planarity of general
co-connected planar clustered graphs.

Chapter 7. c-Planarity Testing 89

7.2.1 The Algorithm for the Triconnected Case

Since G is triconnected G has a unique planar embedding Π beside mirroring.

We choose the planar embedding Π that has an edge of the root cluster in the boundary
of the outer face.

Since for all clusters ν G−G(ν) is connected C has no cut cluster. Furthermore, we cannot
create a cut cluster by edge-augmentation.

Assume that we have two vertices v1 and v2 of a cluster ν. Furthermore, we assume that
v1 and v2 belong to different connected components of G(ν) (see Figure 7.47).

P1

P2

P3

v1 v2

Figure 7.11: Triconnected case: connectivity considerations

Since G is triconnected there exist three disjoint paths from v1 to v2, say P1, P2 and P3.
Further, since v1 and v2 are not connected in G(ν) P1, P2 and P3 use vertices of G−G(ν).
Since G−G(ν) is connected there has to be a path connecting P1, P2 and P3 in G−G(ν),
say P4 (see Figure 7.48).

P1

P2

P3

P4

v1 v2

Figure 7.12: Triconnected case: connectivity considerations

If we have two vertices w1 and w2 of a sibling cluster µ there are not so many possibilities
how they can be placed in our construction. Figures 7.13 to 7.16 give some examples in
which G−(G(ν)∪G(µ)) is connected (green path assures connectivity of G−G(µ) such that
G−(G(ν)∪G(µ)) is connected). In Figures 7.17 to 7.20 the connection of G−(G(ν)∪G(µ))
is skipped.

90 Chapter 7. c-Planarity Testing

P1

P2

P3

P4

v1 v2

w1 w2

Figure 7.13: Triconnected case: connectivity considerations

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.14: Triconnected case: connectivity considerations

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.15: Triconnected case: connectivity considerations

Chapter 7. c-Planarity Testing 91

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.16: Triconnected case: connectivity considerations

Furthermore, if we omit that G− (G(ν) ∪G(µ)) is connected we may place w.l.o.g. w1 on
path P4 and w2 on all other paths P2, P3 such that G−G(µ) is connected (see Figures 7.17
to 7.20). Again, since G is triconnected, the edge-augmentation is feasible if there is no
conflict in any face for any two sibling clusters ν, µ.

P1

P2

P3

P4

v1 v2

w1 w2

Figure 7.17: Triconnected case: connectivity considerations

Consequently, if we have any conflicts between two clusters in a face of Π, an example is
visualized in Figure 7.21, C is not c-planar. In Figure 7.22 an example is given where the
co-connected clustered graph is c-planar.

We can state the following theorem.

Theorem 7.7. Let a co-connected planar clustered graph C = (G, T) be given. Let G be
triconnected.

C is c-planar if and only if

1. its planar embedding Π is conflict-free in each face for every cluster and

2. there exists a SIPCA for each cluster.

92 Chapter 7. c-Planarity Testing

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.18: Triconnected case: connectivity considerations

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.19: Triconnected case: connectivity considerations

P1

P2

P3

P4

v1 v2

w1

w2

Figure 7.20: Triconnected case: connectivity considerations

Chapter 7. c-Planarity Testing 93

Figure 7.21: A co-connected clustered graph with cluster conflicts in a face.

Figure 7.22: A co-connected clustered graph with no cluster conflicts.

94 Chapter 7. c-Planarity Testing

Proof.

1. Assume that the planar embedding has conflicts between vertices of sibling clusters
in the faces. Then ν has to be a cluster cut vertex otherwise C is not c-planar. Then
G−G(ν) is not connected that contradicts the assumption that C is co-connected.

2. If C has a planar embedding without the mentioned conflicts then C has a c-connected
planar super-clustered graph that is c-planar. Then C is also c-planar.

By Theorem 7.7, we have to check if each face of Π is conflict-free.

Consequently, there exists an edge-augmentation for every face of Π such that C is c-
connected if and only if C has a c-connected planar super-clustered graph. In particular,
C is c-planar if and only if we apply a SIPCA (see Chapter 6) to each cluster of C in Π
and the resulting planar clustered graph is additionally c-connected. Observe that since no
cluster conflicts are allowed we can apply a SIPCA independently to each cluster. Since
we are interested in a polynomial running time algorithm, we modify the SIPCA approach
such that we augment Π by visiting each face at most a linear time. This can be done very
easily, see Algorithm 19 for a pseudo code.

7.2.2 The Algorithm for the Biconnected Case

Assume G is biconnected but not triconnected. Further, we assume that for any pair of
sibling clusters ν, µ of C G− (G(ν) ∪G(µ)) is connected.

Firstly, for simplification we suppose that G is series-parallel. Figure 7.23 gives an example:
in this case for each cluster ν of C there is a vertex in each path between two split pairs in
G. Since for each cluster ν G−G(ν) is connected, we observe that vertices of each cluster
ν are ordered naturally near to each other. In particular, the vertices of a cluster ν are
leveled in G and hence every cluster appears in a planar hierarchical layering in C.

Naturally, the question arises if we might expect this for every planar embedding of G.
Unfortunately, the answer is negative. An example is given in Figure 7.38. In this case, the
vertex v1 cannot be connected to a red colored vertex in the given embedding since this
would result in an edge-region crossing with a blue colored cluster. Fortunately, a feasible
planar embedding can be constructed by embedding v1 in the other face that has a red
colored vertex without such an edge-region crossing. Therefore, even if we might connect
a red colored vertex with an other red colored vertex (v1) in at least two different faces
only one of those is feasible. Somehow the connection between the blue colored vertices
seems to have a priority: after connecting the blue colored vertices, there is only one face
to embed v1 with an other red colored vertex.

We discuss the observations made so far in the following.

Chapter 7. c-Planarity Testing 95

Algorithm 19: Algorithm Test cplanar triconnected that tests c-planarity for a
co-connected clustered graph C = (G, T) with G planar and triconnected.

Input: A co-connected clustered graph C = (G, T), G planar and triconnected

Result: true, if and only if C is c-planar, otherwise false.

Choose a planar embedding Γ with an edge e on the boundary of the outer face that
belongs to the root cluster;
forall the clusters ν do

first(ν)←nil;

forall the vertices v do
Assign v to the cluster ν that contains v and is farest from the root cluster in
T ;

forall the faces f do
Mark vertices v on the boundary of f : prev(cluster of v)←nil;

forall the faces f do
prev←nil;
forall the vertices v on its boundary do

if first(cluster of v)=nil then
first(cluster of v)← v;

if prev(cluster of v)=nil then
prev(cluster of v)← v;

else
Add edge e =(prev(cluster of v),v) to f ;
Assign edge e to lca(prev(cluster of v),v);
prev(cluster of v)← v;
if lca(prev,v) 6=root cluster then

Add edge e =(prev,v) to f ;
Assign edge e to lca(prev,v);

prev← v;

Treat modified clustered graph as C;
if C is not c-connected or not planar then

return false;

return true;

96 Chapter 7. c-Planarity Testing

Figure 7.23: A co-connected planar clustered graph with a series-parallel underlying graph

v1

v2

Figure 7.24: A planar embedding of a co-connected planar clustered graph that is not
c-planar.

Chapter 7. c-Planarity Testing 97

Assume that we have two vertices v1 and v2 of a cluster ν. Furthermore, we assume that
v1 and v2 belong to different connected components of G(ν) (see Figure 7.25).

P1

P2

v1 v2

Figure 7.25: Biconnected case: connectivity considerations

Since G is biconnected there exist two disjoint paths from v1 to v2, say P1 and P2. Further,
since v1 and v2 are not connected in G(ν) P1 and P2 use vertices of G − G(ν). Since
G − G(ν) is connected there has to be a path connecting P1 and P2 in G − G(ν), say P3

(see Figure 7.26).

P3

P 1
1

P 2
1

P 1
2

P 2
2

v1 v2

z1

z2

Figure 7.26: Biconnected case: connectivity considerations

Consequently, v1 and v2 are no split pairs of G. More precisely, there is no pair of vertices
that belong to different connected components of a disconnected cluster (clearly other than
the root cluster) that is a split pair of G. Let z1 ∈ P1 ∩ P3 and z2 ∈ P2 ∩ P3. If we connect
v1 and v2 by an edge e we introduce a minor isomorphic to K4. Intuitively this is clear
since we introduce a third path from v1 to v2 that is disjoint to P1 and P2. Hence, after
augmentation v1, v2, z1 and z2 is contained in a triconnected minor. Consequently, P3 and
e cannot be embedded in exactly one face of cycle Z = P1 ∪ P2. We say that P3 and e are
conflicting. We split Pi (i = 1, 2) in two paths each: P 1

i from v1 to zi and P 2
i from zi to v2.

Furthermore, z1 and z2 are contained in G−G(ν) by construction. Therefore, we have the
situation visualized in Figure 7.27.

We may assume that all vertices in P i
1 and P i

2 that belong to ν are contained in the same
connected component of G(ν) as vi for i = 1, 2 since we may apply the previous arguments
recursively.

Observe that if we introduce an other path that is conflicting with P3 and e we introduce
a minor isomorphic to K3,3. Consequently, if we have two vertices w1 and w2 of a sibling

98 Chapter 7. c-Planarity Testing

v1 v2

z1

z2

Figure 7.27: Biconnected case: connectivity considerations

cluster µ such that P3 is contained in G−G(µ) and edge (w1, w2) is conflicting with e and P3

our construction is not c-planar. Consequently, the construction is not c-planar if w1 ∈ P 1
1

or w1 ∈ P 2
1 , respectively, and w2 ∈ P 2

2 or w1 ∈ P 1
2 , respectively (see Figure 7.28). Observe

that by deleting P3 and z1, z2 being a split pair both of ν and µ become a cut cluster.
Therefore, in this case sibling clusters are not allowed to be conflicting in the mentioned
way.

P3P3

P 1
1P 1

1 P 2
1P 2

1

P 1
2P 1

2

P 2
2P 2

2

v1v1 v2v2

z1z1

z2z2

w1w1

w2
w2

Figure 7.28: Biconnected case: connectivity considerations

Hence, the construction is c-planar if w1 ∈ P 1
1 or w1 ∈ P 1

2 , respectively, and w2 ∈ P 2
1 or

w1 ∈ P 2
2 , respectively (see Figure 7.29).

P3 P3

P 1
1 P 1

1P 2
1 P 2

1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1

w1 w2

w2

Figure 7.29: Biconnected case: connectivity considerations

In this case e′ is conflicting with P3 but not with e.

As already mentioned before, P3 is contained in G−G(ν) and in G−G(µ). Therefore, by
deletion of P3 and z1, z2 being a split pair ν and µ become each a cut clusters in this case.
Consequently, edge (v1, v2) is not allowed to be conflicting to edge (w1, w2). Observe that in

Chapter 7. c-Planarity Testing 99

this case every planar embedding has no conflicting clusters. Hence, we get a hierarchical
structure as visualized in Figure 7.30 that was already observed for a c-planar drawing by
Feng [29].

P3 P3

P 1
1 P 1

1P 2
1 P 2

1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1

w1

w2

w2

Figure 7.30: Biconnected case: connectivity considerations

Further, we observe that we might assume in the following that z1 and z2 belong to G−G(µ)
since otherwise we can assume that there is an other path that connects the two disjoint
paths between w1 and w2. An example is visualized in Figure 7.31, the path P4 is colored
green and might share a vertex with P3. Then, in the negative case our construction is
c-planar (what does not mean that it is c-planar in general in the following since there
might be additional paths in a planar graph which are conflicting).

P3 P3

P 1
1 P 1

1P 2
1 P 2

1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1

w1

w2 w2

Figure 7.31: Biconnected case: connectivity considerations

Additionally, observe that once one of z1 or z2 is contained in µ and the paths P3, P4 are
conflicting as visualized in Figure 7.31, our construction is c-planar. Once P3 and P4 share
a vertex as visualized in Figure 7.32 our construction is not c-planar.

On the other hand, the construction is c-planar if w1 ∈ P 1
1 or w1 ∈ P 2

1 , respectively, and
w2 ∈ P 1

2 or w1 ∈ P 2
2 , respectively (see Figure 7.33).

Unfortunately, the construction is not co-connected. Consequently, there exists a path P4

that connects the two disjoint paths between w1 and w2 in G−G(µ) (see Figure 7.34, path
is visualized green). Observe that P4 is not conflicting with e or P3.

Additionally, in this case e′ = (w1, w2) is conflicting with e but not with P3. Therefore, the
construction is c-planar, but not every planar embedding of this construction is c-planar
as visualized in Figure 7.35.

100 Chapter 7. c-Planarity Testing

P3 P3

P 1
1 P 1

1P 2
1 P 2

1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1w1

w2 w2

Figure 7.32: Biconnected case: connectivity considerations

P3 P3

P 1
1 P 1

1P 2
1 P 2

1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1
w1

w2
w2

Figure 7.33: Biconnected case: connectivity considerations

P3 P3

P 1
1P 2

1 P 2
1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1
w1

w2
w2

Figure 7.34: Biconnected case: connectivity considerations

P3 P3

P 1
1P 2

1 P 2
1

P 1
2 P 1

2

P 2
2 P 2

2

v1 v1v2 v2

z1 z1

z2 z2

w1
w1

w2
w2

Figure 7.35: Biconnected case: connectivity considerations

Chapter 7. c-Planarity Testing 101

If we combine our observations an additional critical situation arises (see Figures 7.36
and 7.37). In Figure 7.37 the bold edges are the original edges and the dashed are the
added edges.

w

P3 v1 v2

w1 w2

Figure 7.36: Biconnected case: connectivity considerations

w

P3P3 v1 v2

w1 w2

Figure 7.37: Biconnected case: connectivity considerations

In the case of Figure 7.30 we already observed that the edge-augmentation with (v1, v2)
and (w1, w2) is feasible and results in a c-planar embedding. In the new case the blue
colored vertex v also belongs to the blue colored cluster and has to be connected either to
w1 or w2. Figure 7.37 shows the two possibilities for edge-augmentation: the first between
w and w2 and the second between w and w1. On the left-hand side of the Figure 7.37
the edge-augmentation cause an edge-region crossing with the red colored cluster. Observe
that the red colored and dashed edge (v1, v2) already is conflicting with path P3. Therefore,
this situation creates a minor isomorphic to K3,3. The right-hand side of Figure 7.37 shows
an edge-augmentation between w and w1. Observe that edge (w, w1) is not conflicting
with P3 but conflicting with (v1, v2). Hence, the construction is still c-planar after edge-
augmentation. Consequently, only the edge-augmentation between w and w1 is feasible and
results in a c-planar embedding.

Finally, we observe that a child cluster ν shares the same path as its parent cluster pa(ν)
in G−G(pa(ν)).

In the case that we omit the additional condition that for any pair of sibling clusters ν, µ
G− (G(ν) ∪G(µ)) is connected we observe that there arise an other critical situation. An
example is visualized in Figure 7.38.

102 Chapter 7. c-Planarity Testing

Figure 7.38: A co-connected planar clustered graph C with underlying series-parallel graph
and two sibling clusters, highlighted with blue and red color: left-hand side a planar em-
bedding of C that is not c-planar, on the right-hand side a planar embedding of C that is
c-planar

In comparison to the case visualized in Figure 7.30, in this case if C is c-planar not all
planar embeddings are c-planar. In this case if C is c-planar there exists a planar embedding
where the sibling clusters are not conflicting (otherwise C would have a cut cluster and
consequently be not co-connected).

However, we may observe the following fact in this case for a c-planar clustered graph
C = (G, T) (see Figure 7.30). Once any pair of clusters, say ν and µ, disconnects the
underlying graph G by their removal and there exists a planar embedding of C such
that there is a face where ν and µ are conflicting, then there exists an additional planar
embedding with the following properties (S = {ν, µ}):

• G−G(ν) and G−G(µ) function as a changeover to avoid crossing conflicts between
ν, µ.

• Vertices of G(γ1)−(G−G(γ2)) with γ1 ∈ S and γ2 ∈ S−{γ1} may be sorted into two
vertex sets such that vertices of each such vertex set appear hierarchically in respect
to γ1 and γ2, respectively, in the final c-planar embedding.

Consequently, once we are able to sort the vertices of any cluster pair ν, µ in the previous
described way and the constructed planar embedding has no face that is conflicting for ν,
µ then our given clustered graph is c-planar. We will have a closer look how to do this
sorting to achieve such an embedding (if one exists) in Section 7.2.2.

By induction, we formalize our observations.

Observation 7.1. For any additional edge between a pair v, w of vertices of a cluster ν
(notice: v, w are not connected in G(ν)) there is a conflicting path in G−G(ν) in respect
to cycle Z of the two disjoint paths connecting v and w. Consequently, any additional edge
(v, w) is contained in a triconnected subdivision (even stronger: minor) of the resulting G.

Observation 7.2. Clearly, in order to keep the planarity of G no additional conflicting
path is allowed to be included otherwise a K3,3 minor is constructed.

Chapter 7. c-Planarity Testing 103

Observe that v, w form a split pair by deleting its conflicting path in G − G(ν). More
precisely, the cluster that contains v, w turns into a cut cluster.

Observation 7.3. Let a planar co-connected clustered graph C = (G, T) be given. Let G
be biconnected but not triconnected and s, t be a split pair of G. Let µ be the lowest common
ancestor of s, t in T . Let K be the set of the connected components after deletion of s,t.

Then either

1. µ is equal to the root cluster or

2. G−G(µ) belongs to exactly one connected component k of K (that might also contain
additional vertices of G(ν)).

Summarizing all observations we might expect that once we find a planar embedding with
no conflicting sibling clusters we have a c-planar embedding at hand.

Fortunately, the following theorem gives us the guarantee that at least one such planar
embedding of G exists if and only if C is c-planar.

Theorem 7.8. Let a co-connected planar clustered graph C = (G, T) be given. Let G be
biconnected.

C is c-planar if and only if

1. there exists a planar embedding Π of C such that each face has no conflict between
vertices of non-descendant clusters and

2. there is a SIPCA for each cluster in Π.

Proof.

1. Assume that there is no such planar embedding. Then every planar embedding has a
conflict between vertices of sibling clusters. Furthermore, assume that C is c-planar.
Then there exists an assignment of one cluster for each conflict such that for each
cluster ν G(ν) can be connected and C remains c-planar. Then ν is a cut cluster in
the original clustered graph C (otherwise C would not be c-planar). Then G−G(ν)
is not connected that contradicts the assumption that C is co-connected. Therefore,
there is at least one planar embedding that satisfies the condition of the theorem.

2. If a planar embedding Π of C exists in which each face has no conflict between vertices
of sibling clusters, C is co-connected, and for every cluster exist a SIPCA then C has
a planar c-connected super-clustered graph. Then C is obviously c-planar.

104 Chapter 7. c-Planarity Testing

By Theorem 7.8 we are seeking for an algorithm that finds such a planar embedding if and
only if one exists. Whenever we consider the case where C is co-connected such that for any
pair of sibling clusters ν, µ of C G−(G(ν)∪G(µ)) is connected, our consideration of feasible
edge-augmention results that we may augment each cluster independently but there is one
edge-augmention that is forbidden to use, visualized on the left-hand side of Figure 7.37.
Hence, whenever this situation occurs the edge-augmentation on the right-hand side of
Figure 7.37 has to be applied. An example is given in Figure 7.39.

Figure 7.39: Biconnected case: an example, green circled vertices belong to a split pair,
added edges are visualized with a dashed line, the subgraph involved in the current edge-
augmentation is highlighted with a green dashed rectangle

In the more general case when we omit the previous additional condition we observed that
we have to take more special cases into account, an example is visualized in Figure 7.37.

Chapter 7. c-Planarity Testing 105

In the following we consider an algorithm that tests c-planarity for this more general case.

We adapt the SIPCA approach (see Chapter 6) for all clusters of C. For this, we use
the SPQR-tree data structure (see Chapter 2) to get a polynomial running time algorithm.
Again, we split the approach into two steps, i. e. parted into the coloring (see Section 7.2.2)
and the embedding algorithm (see Section 7.2.2).

The Coloring Algorithm

We adapt the terminology defined in Chapter 6 for our purposes. For a cluster ν, we call a
vertex ν-blue, if the vertex is contained in ν and ν-black otherwise. For each cluster ν, we
assign one of two colors to each edge in each skeleton: ν-blue or ν-black. We call an edge
in a skeleton ν-blue, if its expansion graph contains vertices of ν and ν-black otherwise.

Additionally, for each cluster ν we assign the attribute ν-permeable to some ν-blue edges.
Intuitively, an edge is ν-permeable if we can construct a path connecting only ν-blue vertices
through its expansion graph without destroying any other possibility for connection of any
sibling cluster µ. Let G(e) be the expansion graph of edge e in skeleton S. In any planar
embedding G(e), there are exactly two faces that have e on their boundary. This follows
from the fact that in a planar biconnected graph, every edge is on the boundary of exactly
two faces in every embedding. We call the edge e in S ν-permeable, if there is an embedding
Π of G(e) and a list of at least two faces L = (f1, . . . , fk) in Π that satisfies the following
properties:

1. The two faces f1 and fk are the two faces with e on their boundary.

2. For any two faces fi, fi+1 with 1 ≤ i < k, there is a ν-blue vertex on the boundary
between fi and fi+1.

3. there is no conflicting path of a sibling cluster.

We call a skeleton S of a node v of T ν-permeable if the pertinent graph of v together with
the virtual edge of S have the two properties stated above. Therefore S is ν-permeable
if the twin edge of its virtual edge is ν-permeable. We call an expansion graph G(e) ν-
permeable if it has an embedding Π and a list of at least two faces L = (f1, . . . , fk) that
satisfies the two properties stated above.

We develop an algorithm that marks for each cluster ν each edge in every skeleton of the
SPQR-tree T of G with the colors ν-black or ν-blue and assign the attribute ν-permeable
depending on the expansion graph of the edge. The algorithms work recursively. We assume
that T is rooted at node r and r is not a Q-node.

For each cluster ν, we mark all the edges of the skeletons of the children of r recursively
either ν-black or ν-blue and assign the ν-permeable attribute by treating them as the roots
of subtrees. Each edge in the skeleton S of r except the reference edge corresponds to a
child of r. Let e be such an edge in S, v the corresponding child of r and S ′ the skeleton
of v. If S ′ contains a ν-blue edge or vertex, we mark e ν-blue and otherwise ν-black.

106 Chapter 7. c-Planarity Testing

Let T ′ be the resulting SPQR-tree and v a node of T ′.

For each cluster ν, the ν-permeability of e depends on the type of v:

Q-node: We mark e ν-permeable if the skeleton S ′ contains a ν-blue vertex.

S-node: We take a copy S ′′ of the skeleton S ′. Then we connect the source of each ν-blue
edge (that we mark connected) to the source of a ν-permeable edge or ν-blue vertex
if one exist. If the resulting skeleton S ′′ is not planar C is not c-planar and we stop.
Otherwise, if the resulting skeleton S ′′ contains a ν-blue vertex or a ν-permeable
edge, we mark e ν-permeable.

P -node: If the skeleton S ′ contains only ν-permeable edges or a ν-blue vertex, we mark e
ν-permeable.

R-node: We take a copy S ′′ of the skeleton S ′.

Firstly, we apply the algorithm for the triconnected case (see Algorithm 19) on S ′′

for all ν-blue vertices and for all sources of the ν-permeable edges for every cluster
ν. If the algorithm fails, C is not c-planar. In the positive case, we split the existing
faces such that all ν-blue vertices and all ν-permeable edges get connected.

Secondly, we connect all ν-blue edges to the augmentation previously made for every
cluster ν. We do this by connecting the source of each ν-blue edge e (that we mark
connected) to the source of a ν-permeable edge or ν-blue vertex if one exist in one
of the neighboring faces of e.

Since this augmentation cannot be done independently for each cluster ν, we trans-
form the problem to a 2-SAT instance, that is known to be solvable very efficiently
in polynomial time, in the following way. As a preparation, we construct a conflict
graph for each face f of the given planar embedding of S ′′. The conflict graph repre-
sents the worst case scenario of conflicting cluster pairs that may occur in f . More
particular, if we would use the Algorithm 19 for the triconnected case in f such that
all ν-blue edges for all clusters ν that are contained on the boundary of f has to be
reached within f , certain connection edges might cross within f . For each such edge
we add a vertex in the conflict graph and whenever two connection edges cross in f
we connect the corresponding vertices of the connection edges in the conflict graph.
Clearly, if the resulting conflict graph is not bipartite, we are done because C cannot
be c-planar since it would not be planar after augmentation.

Otherwise, we assign to each connection edge e in f a boolean variable xf
e , that we set

1 if e should be embedded within f and 0 otherwise. We transform each conflict graph
into a 2-SAT subinstance. Intuitively spoken, if two connection edges e1, e2 cross in
a face f then obviously either e1 or e2 may be embedded within f for planarity
reasons. Hence we assign for each edge e = (xf

e1
, xf

e2
) of the conflict graph of f

xf
e1
∨ xf

e2

Chapter 7. c-Planarity Testing 107

x̄f
e1
∨ x̄f

e2

to our 2-SAT instance.

Additionally, every ν-blue edge e for a cluster ν has two neighboring faces, say f
and g. In the best case, vertices of ν that belong to the pertinent graph of e can be
embedded either within f or within g. Hence we assign

xf
e ∨ xg

e

x̄f
e ∨ x̄g

e

to our 2-SAT instance for each ν-blue edge of a cluster ν.

It is known that the (constructed) 2-SAT instance can be solved very efficiently using
the strong connectivity of directed graphs. If the 2-SAT instance is unsatisfiable then
C is not c-planar and we are done.

We assume next that we get a satisfiable solution of our 2-SAT instance. This solution
indentifies that each ν-blue edge may be connected with a ν-permeable edge or ν-blue
vertex on one of its neighboring faces and that none of those connections is crossing
an other one. Consequently, S ′′ remains planar after this edge-augmentation.

Therefore, we modify S ′′ in the following way. We connect the source of each ν-blue
edge e (that we mark connected) to the source of a ν-permeable edge or ν-blue vertex
in the face f where xf

e is set to 1 in the final solution.

Finally, we consider a graph H where the vertices are the faces of S ′′ and there is
an edge between two vertices if there is a ν-permeable edge or a ν-blue vertex on
the boundary that separates the two faces. Let s and t be the two faces left and
right of the virtual edge of S ′. If there is a path in H connecting s and t, we mark e
ν-permeable.

After executing this algorithm, which we call MarkEdgesPhase1 (see Algorithm 21 for a
pseudo-code), all edges of the skeleton of the root node r are marked, because we have
seen all the ν-blue vertices of the graph for each cluster ν. All other skeletons except the
skeleton of r contain one edge that is not yet marked: the virtual edge of the skeleton.

The algorithm MarkEdgesPhase2 (see Algorithm 22 for a pseudo-code) works top down by
traversing T ′ from the root to the leaves. The edges of the skeleton of the root r of T ′ are
already marked in the first step, therefore we can proceed to the children and mark the
virtual edges of its children. Let v be a node in T ′ where the skeleton S ′ of the parent node
is already completely marked. Let ν be a cluster of ν. We mark the virtual edge e in the
skeleton S of v ν-blue if there is a ν-blue edge or vertex in the skeleton of the parent. The
ν-permeability of e again depends on the type of the skeleton in exactly the same way as
in the algorithm MarkEdgesPhase1. Note that the case Q-node is irrelevant here because
the Q-nodes form the leaves of the tree.

108 Chapter 7. c-Planarity Testing

Algorithm 20: Algorithm findPath checks if the expansion graph of the twin edge of
an edge in an R-node skeleton is permeable.

Input: An edge e and an R-node v in T with the property that e is contained in
the skeleton S of v and all edges in S are marked

Result: For every cluster ν: returns ν-permeable if the expansion graph of the twin
edge of e is ν-permeable

Compute an arbitrary embedding Π of S;
Compute the dual graph D of S with respect to Π;
foreach edge e′ of D do

if the primal edge of e′ is ν-permeable then
Shrink e′ in D;

Let v1 and v2 be the two vertices in D that correspond to the two faces in Π with
e on their boundary;
Compute the shortest path p from v1 to v2 in D;
if the cost of p is zero then

return “true”;

else
return “false”;

The two algorithms MarkEdgesPhase1 and MarkEdgesPhase2 can both be implemented in
polynomial time because the size of the SPQR-tree of a planar biconnected graph including
all skeletons is linear in the size of the graph [22].

The Embedding Algorithm

Let S be a skeleton of a P -node. We call the embedding of S ν-admissible if all ν-blue
edges for each cluster ν are consecutive and the blue edges that are not ν-permeable (if
they exist) are at the beginning and at the end of the sequence.

Our algorithm for finding an augmentation or proving that no augmentation exists works
in two phases:

1. Using the colors and attributes of the edges in each skeleton, we fix an embedding
for every P - and R-node skeleton and thus determine an embedding for G.

2. We use the algorithm of Section 7.2.1 for fixed embeddings to determine whether an
augmentation is possible.

The embedding computed in the first step has the property that it allows an augmentation
if and only if there is an embedding of G that allows an augmentation.

We set the embedding for the skeletons of the R- and P -nodes recursively using the struc-
ture of the SPQR-tree. We assume that the vertices in G are numbered and that all edges

Chapter 7. c-Planarity Testing 109

Algorithm 21: Algorithm MarkEdgesPhase1 that marks all edges in the skeletons
except the virtual edges (Q-nodes are omitted).

Input: A node v in T ′ and the cluster tree T

Result: All edges in S(v) except the virtual are marked.

Let L be the set of children of v;
foreach v′ ∈ L do

MarkEdgesPhase1(v′, T);
Let e be the edge that S(v′) shares with S(v);
forall the clusters ν of T do

Mark all original edges ν-permeable that are either incident or belongs to ν;
if S(v′) contains a ν-blue or ν-permeable edge or a vertex of ν then

Mark e ν-blue
else

Mark e ν-black;

switch type of node v′ do
case P -node

forall the clusters ν of T do
if all edges in S(v′) except e are ν-permeable or one of the vertices
in S(v′) belongs to ν then

Mark e ν-permeable

case S-node
Take a copy S ′(v′) of skeleton S(v′);
forall the cluster ν do

forall the edges eb marked ν-blue do
if S ′(v′) contains an edge ep marked ν-permeable then

forall the edges eb marked ν-blue do
Connect source of ep with source of eb;

if S ′(v′) is not planar then
return error ”C not c-planar”;

Calculate SPQR-tree of S ′(v′) and take the skeleton S ′′ that contains the
same reference edge as S(v′);
forall the cluster ν do

if S ′′ contains a vertex of ν or an edge marked ν-permeable then
Mark e ν-permeable

case R-node
Let e be the edge shared by S(v′) and S(v);
Solve corresponding 2-SAT instance, do corresponding augmentation;
if findPath(e, v′, ν) returns true then

Mark e ν-permeable;

110 Chapter 7. c-Planarity Testing

Algorithm 22: Algorithm MarkEdgesPhase2 marks all the virtual edges of the skele-
tons in the subtree rooted at v if all the edges in the skeleton of v are marked (Q-nodes
are omitted)

Input: A node v in the SPQR-tree T where all edges are marked

Result: All edges in the subtree rooted at v are marked

Let S be the skeleton of v;
Let L be the list of edges in S whose twin edge is contained in a skeleton of a child
of v;
forall the clusters ν do

if S does not contain a ν-blue or ν-permeable edge or a vertex of ν then
Mark all the twin edges of the edges in L ν-black;

else
Mark all the twin edges of the edges in L ν-blue;

switch type of v do
case S-node

Take a copy S ′(v) of skeleton S(v);
forall the cluster ν do

forall the edges eb marked ν-blue do
if S ′(v′) contains an edge ep marked ν-permeable then

forall the edges eb marked ν-blue do
Connect source of ep with source of eb;

if S ′(v′) is not planar then
return error ”C not c-planar”;

Calculate SPQR-tree of S ′(v′) and take the skeleton S ′′ that contains the
same reference edge as S(v′);
if S ′′ contains a vertex of ν or an edge marked ν-permeable then

Mark every twin edge of the edges in L ν-permeable

case P -node
forall the clusters ν do

if all edges in S are marked ν-permeable then
Mark all twin edges of the edges in L ν-permeable

case R-node
forall the clusters ν do

foreach edge e in L do
Let v′ be the child of v that contains e;
if findPath(e, v′) returns ν-permeable then

Mark e in S(v′) as ν-permeable;

forall the children w of v do
MarkEdgesPhase2(w, T);

Chapter 7. c-Planarity Testing 111

ν1ν1

ν2ν2
ν2

µ1 µ1µ2 µ2

e1

e2
e3 e4

e5

Figure 7.40: An example for the consecutive ones property in a P -node: index 1 is equal
to blue, and index 2 means permeable, e.g. ν1 is therefore equal to ν-blue

are directed from the vertex with lower number to the vertex with higher number.

For simplicity, we consider whether a special case is presented where a planar c-connectivity
cannot exist.

Obviously, if we have at least three ν-blue edges in S for a cluster ν C is not c-planar.

Therefore, we assume that we have at the most two ν-blue edges in S for each cluster ν.

First, we test whether the biconnected graph contains only P -nodes with skeletons that
have at the most two edges. Then we can sort the two ν-blue edges as previous mentioned
to obtain an ν-admissible embedding.

Since we are interested in obtaining a planar embedding where we have a ν-admissible
ordering for all clusters ν we have to check whether for each P -node its edges has a
cyclic consecutive ones property in respect to the ν-blue and ν-permeable attributes for
all clusters ν. Furthermore, this cyclic consecutive ones property has to guarantee a ν-
admissible ordering for all clusters ν.

In Figure 7.40 an example is given for a P -node.

This figure already shows a ν- and µ-admissible ordering of the edges of the P -node. Note
that the ordering of the 1 entries may be cyclic that means that additionally the last entry
in the row may be consecutive to the first entry in the same row. This property can be
checked using a specific 0/1-matrix in linear time and can be modelled by the so-called
data structure PQR-tree [2]. In our situation, the corresponding consecutive ones property
can be observed in a corresponding matrix that has a column for each edge of the P -node.
The corresponding matrix M of the example in Figure 7.40 is visualized in the following.

112 Chapter 7. c-Planarity Testing

























e1 e2 e3 e4 e5

1.(ν) 1 1 1 1 1
2.(ν) 0 1 1 1 0
3.(ν) 1 1 1 1 0
4.(ν) 0 1 1 1 1
5.(µ) 1 1 1 1 0
6.(µ) 0 1 1 0 0
7.(µ) 1 1 1 0 0
8.(µ) 0 1 1 1 0

























=: M

The first four rows of M are dedicated to cluster ν. In the first row every edge gets a 1 if it is
ν-blue or ν-permeable. This means that all edges that are ν-blue or ν-permeable should be
ordered consecutively. The second row indicates that all edges marked ν-permeable should
be ordered consecutive. The third and fourth rows indicate that the two ν-blue edges e1,
e5 should be in the beginning or end of the sequence. The fifth to last rows are dedicated
to cluster µ and build in the same way as for ν.

In general, we have to take a specific case into account that we already discussed in Fig-
ure 7.38.

To do this, we fix the skeleton of each P -node temporarily. Since the clustered graph
is co-connected, the ν-permeability for a cluster ν occurs in the corresponding pertinent
graph in one specific connected region. Consequently, for each virtual edge that has the
attribute permeable for certain clusters there exists a unique ordering of those connected
regions within the corresponding pertinent graphs. Hence, we can sort the virtual edges by
assigning them into their corresponding groups according the ordering and then we code
them into a 0/1-matrix to solve the corresponding cyclic consecutive ones problem.

To make this more obvious, we give an example; see Figure 7.41.

Group
 1

 2
Group 4

Group

Group
 3

Figure 7.41: A co-connected clustered graph with a feasible embedding on the left-hand
side.

In Figure 7.41 we have a co-connected planar clustered graph with two different planar em-
beddings. In its corresponding SPQR-tree, we have a P -node whose skeleton corresponds
to the graph visualized in Figure 7.42. In Figure 7.42, the planar embedding of the skeleton
is fixed according to the planar embedding presented on the left-hand side of Figure 7.41.

Chapter 7. c-Planarity Testing 113

The co-connected planar clustered graph has two sibling clusters, say blue and red, re-
spectively, that contain blue and red colored vertices, respectively. We recognize that the
planar embedding of the clustered graph visualized on the right-hand side of Figure 7.41
can be augmented to a c-connected planar clustered graph since the planar embedding
of the subgraphs connecting the split pairs is sorted by groups of the same properties.
Obviously, this planar embedding is c-planar while the embedding on the left-hand side
of Figure 7.41 is not. Additionally, those groups depend on the ordering of the pairwise
disjoint cluster pair blue, red which inherit the attributes blue- and red-permeable to the
corresponding virtual edges in the SPQR-tree.

e1 e2 e3 e4

e5 e6 e7 e8

Figure 7.42: The corresponding skeleton of the P -node that is contained in the SPQR-tree
of the clustered graph visualized in Figure 7.41 - the planar embedding of the skeleton
corresponds to the planar embedding on the left-hand side of Figure 7.41

In Figure 7.42, virtual edges e1 to e6 get attributes blue-permeable, and virtual edges e3

to e8 get attribute red-permeable according to the coloring algorithm presented in the
previous section. Neverless, according to the above mentioned ordering, the groups are
classified as follows: virtual edges ei, ei+1 with i = 1, 3, 5, 7 belong to group (i + 1)/2.
When we take a closer look we recognize that group 1 and 3, respectively, have to occur
in between group 2 and 4 in a feasible planar embedding. Clearly, group 1 and 3 are not
allowed to be consecutive in a feasible planar embedding.

Next the question occurs how to determine those groups. We already observed that the
ν-permeability for a cluster ν occurs in the corresponding pertinent graph in one specific
connected region. Consequently, if we fix the planar embedding of the corresponding skele-
ton that belongs to a P -node, see Figure 7.42, we traverse the virtual edges according to
their ordering in the fixed planar embedding, e.g. in our example from e1 to e8. We already
observed that in each virtual edge with the attribute permeable for at least two clusters
those clusters are ordered hierarchically in the corresponding pertinent graph. Therefore,
there is a unique hierarchical ordering of those clusters in the pertinent graph of the corre-
sponding virtual edge. Hence, we check this ordering for any such pair of clusters in each
virtual edge. If a pair of those clusters occur the first time, we assign to their ordering
+1. For example, see Figure 7.42, for the virtual edge e3, the vertex of the red cluster is
ordered before the vertex of the blue cluster, say the ordering is red/blue. For this ordering
we assign +1. If there exists already an ordering with +1 and this pair of clusters occurs
in an other virtual edge with the reversed ordering, then we assign to this virtual edge for

114 Chapter 7. c-Planarity Testing

this pair of clusters −1. In Figure 7.41 and 7.42 for virtual edge e4, the vertex of the blue
cluster is ordered before the vertex of the red cluster, say the ordering is blue/red. For this
ordering we assign −1. Finally, all virtual edges with a red/blue ordering +1 are assigned
to group 3, whether the virtual edges with a blue/red ordering −1 are assigned to group
1. Virtual edges, that have only one of the two clusters and are marked permeable for that
cluster, are assigned to group 2 or 3, respectively.

We transform this restrictions into a 0/1-matrix M in the following way:

Firstly, all vertices that belong to the blue and red cluster, respectively, have to be consec-
utive in a feasible planar embedding. This fact forms the first two rows of M . Additionally,
the vertices that are contained in one of the groups 1 to 4 have to be consecutive in a
feasible planar embedding; this is coded in the rows 3 to 6 in M . Furthermore, group 1
and 3, respectively, has to be sorted in between group 2 and 4; see rows 7, 8 and 9, 10,
respectively, of M .

M =

































e1 e2 e3 e4 e5 e6 e7 e8

1.(blue) 0 1 1 1 1 1 0 1
2.(red) 1 0 1 1 1 1 1 0
3.(group1) 0 0 0 1 0 1 0 0
4.(group2) 0 1 0 0 0 0 0 1
5.(group3) 0 0 1 0 1 0 0 0
6.(group4) 1 0 0 0 0 0 1 0
7.(group1&group2) 0 1 0 1 0 1 0 1
8.(group1&group4) 1 0 0 1 0 1 0 1
9.(group2&group3) 0 1 1 0 1 0 0 1
10.(group3&group4) 1 0 1 0 1 0 1 0

































Observe that for each virtual edge we have to take into account any pair of clusters ν, µ
with attributes ν-, µ-blue in the corresponding pertinent graph in which at least one has
additional the attribute ν- or µ-permeable, respectively. All ν-blue marked virtual edges
for a cluster ν have to be ordered in the same manner as we described for ν-permeable
marked virtual edges. In Figure 7.43 the vertex v has to be embedded consecutively to
group 1 which results in a feasible planar embedding. Embedding v consecutively to group
2 would result in a not feasible planar embedding.

We build such a matrix M for each P -node and test the cyclic consecutive ones property
of its 1 entries. If no one exists C cannot be c-planar and we stop. Otherwise we fix the
planar embedding of the P -nodes in the order as determined by the cyclic consecutive ones
property. In the example of Figure 7.41 and 7.42 a feasible planar embedding is achieved
by the ordering e4, e6, e2, e8, e3, e5, e1, e7, visualized on the right-hand side of Figure 7.41.

Recall that we have fixed the planar embedding of each skeleton of a P -node. The pla-
nar embedding of an S-node is unique hence all the skeletons of S-nodes are fixed by
construction. Consequently, we have still to fix the planar embedding of the skeletons of
the R-nodes. Recall that by construction a skeleton of an R-node has exactly two planar

Chapter 7. c-Planarity Testing 115

Group 2Group 1 v
v

Figure 7.43: Calculation of a feasible planar embedding of P -nodes.

embeddings and we switch from one to the other by swapping.

The calculation that is left to be done is the embedding of the pertinent graphs of all ν-blue
edges in the partially fixed planar embedding so far.

Observe that for all ν-permeable edges the embedding is also fixed so far. Consequently,
we can already augment all vertices that are involved in the ν-permeability of a virtual
edge.

For all other vertices involved in a cluster ν we do the following. For each cluster ν we
test whether a pair of its vertices e belong to a face f of the modified graph G. If so, we
mark the pair and assign the boolean variable xe

f to the pair of vertices. We identify e as
a potential edge that might be feasible in the final planar embedding. xe

f gets value 1 if e
is feasible and 0 otherwise. Observe that the number of those pairs is O(n2).

To achieve a fixed planar embedding out of the partially fixed planar embedding we trans-
form the edge-augmentation problem left so far into an other problem, the 2-XOR SAT,
that is in P [75].

The decision problem 2-XOR SAT is given in the following way:

Given: Set U of variables, collection C of clauses with XOR over U such that each clause
c ∈ C has |c| = 2.
Question: Is there a satisfying truth assignment for C?

Our aim now is to develop a 2-XOR SAT instance that codes the conflicting clusters for
each face. If the instance is feasible it will give us a fixed planar embedding of the partially
fixed planar embedding so far such that the faces have no conflicting clusters. Afterwards,
we have to check whether or not the modified clustered graph with the constructed planar
embedding is c-connected. In the positive case the original input clustered graph is c-planar.

To do so, we need to consider pairwise disjoint pairs of vertices that belong to different non-
descendant clusters. Additionally, this pair of vertices has to be embeddable into the same
face. Observe that then they form a potential connection in a cluster in order to achieve
c-connectivity of the clustered graph. Recall that there is at most one of such a face for
a co-connected clustered graph. This face can be determined by a simply applying the
embedding step of SIPCA; see Chapter 6. Furthermore, recall that each planar embedding

116 Chapter 7. c-Planarity Testing

can be achieved by fixing the planar embedding of each skeleton of the SPQR-tree. Since
we have already fixed the planar embedding of each P -node, each face of the partially
fixed embedding corresponds to exactly one face in exactly one skeleton of the SPQR-tree.
This face is uniquely defined by its split pairs that surrounds it. Observe that those faces
never contain the reference edge of a skeleton in its boundary. In the following we identify
the face with the corresponding face in a skeleton of the SPQR-tree since we are dealing
with a partially fixed planar embedding so far. We declare a list for each face, and a list
for each vertex of the pairs. In the first step we check each pair of vertices v, w if they
satisfy the above properties. If they do, we assign a boolean variable xf

(v,w) to them, (v, w)
is regarded as a potential edge, mark them feasible and save the variable in the lists of the
corresponding face f and of the corresponding end vertices v, w.

Recall that we have O(n2) such pairs, hence we have O(n4) pairwise disjoint pairs. Whether
two clusters are non-descandant can be determined very easily: this is the case if and only
if the lowest common ancestor of two clusters is disjoint from them.

Recall that we have a list in which we saved all boolean variables that belong to the same
face f . We consider pairwise the pairs of vertices in it. Let e1 and e2 be such a pair which
belong to the same face f . If they are conflicting we can embed either e1 or e2 in f . Let xf

e1

and xf
e2

be the boolean variables of two conflicting pairs e1 and e2. We add the following
clause to the 2-XOR SAT instance; see Figure 7.44:

xf
e1
∨̇xf

e2
= (¬xf

e1
∨ ¬xf

e2
) ∧ (xf

e1
∨ xf

e2
) = (¬xf

e1
∧ xf

e2
) ∨ (xf

e1
∧ ¬xf

e2
) = xf

e1
⊕ xf

e2

v
w

x

e1

e2

y

Figure 7.44: Transformation in 2-XOR SAT clause - first case

Observe that those conflicts can be determined easily in a face since the ordering of the
corresponding vertices of each pair is alternating; see Figure 7.44.

Additionally, if we have two pairs of vertices e1 = (v, w), e2 = (v, z) that contain each the
same vertex v that can be embedded either in f or in g, we add xf

e1
⊕ xg

e2
to the 2-XOR

SAT instance; see Figure 7.45. Recall that we have a list for vertex v that contains the
corresponding boolean variables for the two faces f and g.

Finally, we have the last case visualized in Figure 7.46. There we see that v and w cannot
be embedded into the same face. Consequently, if e1 is the pair of vertices that contains v

Chapter 7. c-Planarity Testing 117

v
f g

Figure 7.45: Transformation in 2-XOR SAT clause - second case

and e2 is the pair of vertices that contains w we have xf
e1
⊕ xf

e2
and xg

e1
⊕ xg

e2
.

v w
f g

Figure 7.46: Transformation in 2-XOR SAT clause - third case

Recall that the planar embedding of the skeletons of all R-nodes are left to be fixed. To
do so we traverse the SPQR-tree from bottom to top level by level. For each R-node on
the way we add the previous mentioned 2-XOR SAT clauses for all virtual edges that are
ν-blue but not ν-permeable. This can be done and inherited easily. Once we arrive at the
root of the SPQR-tree we have completed our 2-XOR SAT instance.

This 2-XOR SAT instance can be solved easily: Recall that in each clause once we fix
one variable the other is also fixed. Additionally, all other variables joining those variables
in other clauses are fixed. Obviously, we have some sort of connected component induced
by all those variables. Consequently, we have to solve all those connected components
by assigning either 1 or 0 to one of its variables each. Once a contradiction in assigning
of boolean values occurs we know that the original 2-XOR SAT instance is not feasible.
Otherwise, we have a feasible solution.

Once we have a feasible solution of the 2-XOR SAT instance this can be transformed to
a fixed planar embedding of the original clustered graph out of the partially fixed planar
embedding so far. Observe that each pair of vertices e can be connected by an edge if the
corresponding boolean variable in the feasible 2-XOR SAT solution is set to 1. We only
need to add those edges to the partially fixed planar embedding so far. The only thing left

118 Chapter 7. c-Planarity Testing

to be done is now to check whether or not this planar embedding induces a c-connected
planar clustered graph. We do this by running the algorithm for the triconnected case
on the calculated planar embedding. In the positive case the original clustered graph has
a planar c-connected super-clustered graph and therefore is c-planar; otherwise it is not
c-planar.

7.2.3 The Algorithm for the Connected Case

We assume that G is connected but not biconnected. Furthermore, for simplicity we first
suppose that G is a tree.

Assume that we have two vertices v1 and v2 of a cluster ν. Furthermore, we assume that
v1 and v2 belong to different connected components of G(ν) (see Figure 7.47).

P1
v1 v2

Figure 7.47: Tree case: connectivity considerations

Since G is connected there does not exist two disjoint paths but one path from v1 to v2,
say P1 (see Figure 7.48). Further, since v1 and v2 are not connected in G(ν) P1 use vertices
of G − G(ν). Since G − G(ν) is connected and G is a tree (and therefore no other path
other than P3 exists that might connect connected components of G − G(ν)) all vertices
of G−G(ν) have to be contained in P1 and connected to each other.

P1

v1 v2

Figure 7.48: Tree case: connectivity considerations

Consequently, v1 and v2 are leaves of G or are each connected to a leaf in G(ν).

Since for each cluster ν G−G(ν) is connected ν might have several connected components
Ci for i ∈ N. Then Ci is equal to a subtree Gi in G by induction. Additionally, Gi contains
all vertices that are descendants of the lowest common ancestor of Ci in G. Figure 7.49
gives an example.

Observe, once the leaves of two subtrees of G contained in a cluster ν are ordered consecu-
tive the subtrees are ordered consecutive. Therefore, we may restrict ourselves on ordering
the leaves in respect to the inclusion relation of the clusters they belong to.

One way to do so is to take G as a PQ-tree and the leaves of each cluster for one restriction
set.

Chapter 7. c-Planarity Testing 119

Figure 7.49: A co-connected clustered graph C = (G, T) with a tree G

The other more efficient way is to use the following theorem.

Theorem 7.9. Let C = (G, T) be a co-connected clustered graph and G a tree. C is
c-planar if and only if G ∪ T is planar.

Proof.

1. We assume that G ∪ T is planar. Since T is the clustertree of C, C ′ = (G ∪ T, T) is
c-connected. Since, C ′ is a super-clustered graph of C it is additionally co-connected.
Consequently, C ′ is c-planar. Since C is a sub-clustered graph of C ′ C is also c-planar.

2. We assume that C is c-planar. Since C is co-connected and G a tree there exists a
consecutive ordering of the leaves that belong to cluster ν for each cluster ν in T .
Consequently, if we assume that each such leaf is a representive of ν in the beginning,
we may add for each cluster ν a star connecting its representives. In each step we
reassign the representives such that an added star vertex v becomes a representive
of ν instead of the leaves that are connected with v. Clearly, the union of stars is a
tree that is isomorphic to the cluster tree T . Therefore, we have a clustered graph
C ′ = (G ∪ T, T) that is still c-planar. Then, G ∪ T is planar.

Since G is planar and hence C has a linear number of (trivial and non-trivial) clusters, G∪T
can be tested in linear time for planarity. Consequently, C can be tested for c-planarity in
linear time by Theorem 7.9.

In the following we assume that G is planar and connected but not biconnected.

In the last section we have dealt with the problem restricted on biconnected graphs. Hence
we already know how to deal with the biconnected blocks of the graph G using the SPQR-
tree. To solve the connected case, we first build the BC-tree of G. Recall that this tree
has two types of nodes: The c-nodes correspond to cut vertices of G and the b-nodes to

120 Chapter 7. c-Planarity Testing

biconnected components (blocks). There is an edge connecting a c-node and a b-node, if
the cut vertex is contained in the block corresponding to the b-node. Taking this structure
into account we can solve the problem also for connected graphs in polynomial time.

We split the connected graph G into biconnected components using the BC-tree and we
split the biconnected blocks into triconnected components using the SPQR-tree. Then we
connect the blocks by augmenting the vertices of a cluster ν using the cut vertices in bc.

It is obvious that we have to operate only on the smallest subtree bc of the BC-tree that
contains all clusters ν of T .

For each cluster ν, we mark a cut vertex ν-red that is contained in a block with a vertex
of ν.

Further, for each cluster ν of T we add a dummy vertex and connect it to cut vertices that
are marked ν-red.

Then we test planarity of the modified BC-tree.

The ν-blue blocks can be connected in the same face if and only if the planarity testing
results true. In the positive case, we mark all cut vertices that are ν-red and belong to
ν ν-blue. For each ν-blue biconnected component its ν-red vertices play a special role
since they represents the connection to the other ν-blue biconnected component in bc.
Consequently, its ν-blue vertices has to be connected with the ν-red vertices to ensure
a planar connectivity augmentation for all ν-blue vertices. Hence, for each biconnected
component that is marked ν-blue we apply the algorithm of the biconnected case presented
in the last section on its ν-blue and ν-red vertices. In the coloring algorithms, Algorithms 21
and 22, we differ between ν-blue and ν-red vertices: clearly, the ν-red vertices has to appear
in the beginning or the end of the sequences. Consequently, we assign the attribute ν-blue
to a virtual edge e if e has no attribute ν-permeable created by the ν-blue vertices of
its expansion graph but its expansion graph contains a ν-red vertex. We apply for all
biconnected blocks B the algorithm CheckAugmentability of the biconnected case and
extend it for the ν-red cut vertices as described.

7.2.4 The Algorithm for the General Case

We assume that G is not connected. Since G−G(ν) is connected for each cluster ν, G−G(ν)
is contained in exactly one connected component of G for each cluster ν. Consequently,
every vertex of ν connected to G−G(ν) is contained in the same connected component as
G−G(ν). An example is given in Figure 7.50.

Obviously, if there exists a component of G in which vertices of a cluster ν are contained
but no vertices of G − G(ν) then this connected component can be placed in the final
planar embedding into a face that itself contains at least one vertex of ν. Consequently,
we have to take care about all connected components that contain vertices of G(ν) and of
G−G(ν) for a cluster ν.

For those connected components, we apply a modified variant of the algorithm for the

Chapter 7. c-Planarity Testing 121

Algorithm 23: Algorithm ExtendedCheckAugmentability checks if a planar c-
connectivity augmentation for T in a connected graph G exists.

Input: A connected planar graph.

Result: An embedding of G′ if G can be augmented, otherwise ”false”.

Calculate BC-tree of graph G;
forall the blocks B of BC-tree do

forall the clusters ν of T do
if B contain a vertex of ν then

Mark B ν-blue;

Calculate the smallest BC-subtree bc containing all ν-blue blocks;
forall the C-nodes c in bc do

forall the clusters ν of T do
if C-node c is not ν-blue then

mark c ν-red;

forall the clusters ν of T do
forall the blocks B of bc which are not ν-blue do

Join all ν-red nodes of the blocks B with a single dummy vertex that repre-
sents ν;

Test planarity;
if not planar then

return error ”C not c-planar”;

forall the clusters ν do
forall the blocks which are ν-blue do

Apply changed algorithm CheckAugmentability with ν-red nodes;

122 Chapter 7. c-Planarity Testing

Figure 7.50: An example of a co-connected planar clustered graph C = (G, T) with a
disconnected underlying graph G.

connected case of the previous section (see Algorithm 24) to each of those connected
component. The difference is that we transform those connected components so that they
have at least one ν-blue and all ν-red vertices on the outer face for each cluster ν. Finally, for
each cluster ν, bottom up level by level in the cluster-tree of C, we connect the connected
components by connecting its ν-blue vertices in the outer face.

Theorem 7.10. Let a co-connected planar clustered graph C = (G, T) be given. c-Planarity
can be tested and in the positive case a c-planar embedding can be achieved in polynomial
time.

The remaining results of this chapter are joint work with Carsten Gutwenger, Michael
Jünger, Sebastian Leipert, Petra Mutzel and René Weiskircher and published in [40].

7.3 Clustered Graphs with Two Clusters

Let C = (G, T) be a clustered graph with a root cluster and exactly one additional cluster
ν. Let the graph G be connected and the subgraph induced by the vertices of the cluster
ν non-connected. Observe that G−G(ν) might also be disconnected. The problem of con-
necting the subgraph induced by one cluster is similar to the problem of planar connectivity
augmentation of an induced subgraph discussed in Chapter 6.

In the following, recall from Chapter 6, we name the vertices of G(ν) blue vertices. After
constructing an SPQR-tree T for every biconnected component of G we mark for every
SPQR-tree each edge in every skeleton either blue or black. Recall that an edge of a skeleton
is marked blue, if its expansion graph contains blue vertices. Otherwise it is marked black.

Additionally, recall from Chapter 6, we assign an attribute called permeable to certain blue
edges. Intuitively, an edge is permeable if it is possible to construct a path connecting only

Chapter 7. c-Planarity Testing 123

Algorithm 24: Algorithm GeneralCheckAugmentability checks if a planar connec-
tivity augmentation for ν in a general graph G exists.

Input: A general co-connected clustered planar graph C = (G, T).

Result: An embedding of C that can be c-connectivity augmented, otherwise
”false”.

forall the connected components Ci of the graph G do
ExtendedCheckAugmentability;

Sort all Ci that contains G(ν) and G−G(ν) for a cluster ν in clockwise order and
traverse them in this order in the following;
forall the Ci which contains at least one ν-blue or ν-red vertex do

Choose a face f with at least one ν-blue or ν-red vertex for each cluster ν in the
boundary as outer face;
forall the clusters ν of T do

Save the ν-blue or ν-red vertex in a list listvertex(ν);

forall the clusters ν of T do
forall the vertices in listvertex(ν) do

Connect them by inserting clockwise a path;

blue vertices through its expansion graph. Let G(e) be the expansion graph of edge e in
skeleton S. Recall that since G(e) is biconnected we have that in any planar embedding
G(e) there are exactly two faces that have e on their boundary. Recall that the edge e in
S is permeable with respect to W , if there is an embedding Π of G(e) and a list of at least
two faces L = (f1, . . . , fk) in Π that satisfies the following properties:

1. The two faces f1 and fk are the two faces with e on their boundary.

2. For any two faces fi, fi+1 with 1 ≤ i < k, there is a blue vertex on the boundary
between fi and fi+1.

Recall from Chapter 6 that we call a skeleton S of a node ℘ of T permeable if the pertinent
graph of ℘ and the virtual edge of S have the two properties stated above. Recall that S
is permeable if the twin edge of its virtual edge is permeable.

Theorem 7.11. Let C = (G, T) be a clustered graph such that the following conditions
hold:

• G is series-parallel

• C contains only one non-trivial non-root cluster ν and W is its corresponding vertex
set.

124 Chapter 7. c-Planarity Testing

Let T be the set of the SPQR-trees of every biconnected component of G. Let C := {V ∈
2W |V is a circle in the expansion graph of a P-node and contains both pole vertices} be the
set of the vertex sets of all circles in the expansion graphs of P-nodes that contain both pole
vertices. Let the subgraph GW induced by W in G allow a planar connectivity augmentation
for W . If for every P-node the following property (∗) holds, then C is c-planar:

(∗) In every P-node, there is at the most one circle V of C such that

1. the union of the expansion graphs of two children ℘1 and ℘2 contains V and

2. for i ∈ {1, 2} the cut of G−GW with the expansion graph of child ℘i is nonempty.

Proof. We calculate the BC-tree of G and for every block B the SPQR-tree of its bicon-
nected component. The SPQR-tree of a series-parallel graph does not contain R-nodes.

Hence GW has a planar connectivity augmentation, we assume that GW is connected. As we
introduce a minimum cardinality edge set applying the planar connectivity augmentation,
we do not loose c-planarity. According to Theorem 2.3 we need to show that a planar
embedding exists such that the subgraph G−GW is embedded into the outside of GW . It
follows that we need to show that G−GW is not embedded partially inside of GW (if it is
embedded completely in an inner face we choose a face f that has an edge e = (v, w) with
v ∈ W and w /∈ W as outer face). Consider now the P -, S- and Q-nodes. For P -nodes we
have the following cases

• the P -node is black, means it contains only black edges,

• the P-node is blue and there exists exactly one blue edge in a P -node. The expansion
graph of this blue edge contains the subgraph GW or

• the P-node is blue and permeable.

A blue P-node that is not permeable such that case 2 does not hold cannot exist for the
following reasoning. If there is at least one blue edge in the P -node and another blue vertex
or blue edge in another node, at least one pole vertex has to be blue due to the connectivity
of GW . If there are at least two blue edges in the P -node, the pole vertex must be blue.

Similar reasoning holds for S- and Q-nodes of the SPQR-trees and for the cut vertices of
graph G. The latter are blue if at least two blocks which they belong to are blue.

We have to show that there does not exist a planar embedding such that the subgraph
G−GW is embedded in the outside of GW if and only if there exists a P-node P with more
than one circle of vertices of W in the corresponding expansion graph fulfilling conditions
1 and 2. Note, that G(ν) is equal to GW and that P is permeable in this case since both
pole vertices belong to G(ν).

If there exists a P-node P with more than one circle of vertices of W in the corresponding
expansion graph fulfilling conditions 1 and 2., then we order the edges that correspond to
the union of expansion graphs fulfilling conditions 1 and 2. consecutively in P. We want to

Chapter 7. c-Planarity Testing 125

find an embedding according to Theorem 2.3. As we have only two clusters (a root cluster
and cluster ν) this is equal to the fact, that G(ν) can be embedded into the outside of
G − G(ν). As G(ν) is connected (there exists a planar connectivity augmentation) there
has to be an embedding Π of G with a sequence of faces f1, . . . , fk such that there is at
least one vertex of G − G(ν) in the boundary between two consecutive faces fi and fi+1

and the boundaries of all those faces contain all vertices of G−G(ν). This is equal to the
fact that G−GW has a planar connectivity augmentation for V −W in G as described in
Chapter 6. The faces containing vertices of G−G(ν) in their boundaries in P are contained
in the sequence of faces f1, . . . , fk. As the pole vertices are contained in G(ν) and there
exists at least two circles of vertices of G(ν) that are contained in at least three expansions
graphs, the sequence of faces f1, . . . , fk cannot be consecutive and therefore there cannot
exist a planar connectivity augmentation of G−GW for V −W in G. Therefore, we cannot
find an embedding according to Theorem 2.3 and therefore C is not c-planar.

If C is not c-planar, then there is an embedding Π in which the vertices of G − G(ν)
cannot be embedded into the outside of G(ν) according to Theorem 2.3. As G(ν) is con-
nected (there exists a planar connectivity augmentation) there does not exist a sequence
of consecutive faces f1, . . . , fk which are consecutive so that there is at least one vertex of
V −W on the boundary between two faces and all vertices of V −W are included in the
union of the boundaries of f1, . . . , fk. Therefore there exists a sequence of faces f1, . . . , fk

in which their boundaries contain all vertices of G−G(ν) and there is a minimum number
of consecutive faces fi and fi+1 so that on the boundary between fi and fi+1 is no vertex of
G−G(ν). This is equal to the fact, that on the boundary between fi and fi+1 are vertices
of G(ν). Let F be the set of all the faces fi and fi+1. As the S- and Q-nodes have skeletons
with only one embedding and a skeleton represents the whole corresponding biconnected
component in G, we have to consider the P-nodes. As the pole vertices are contained in
G(ν) and F is a minimum cardinality face set, there has to be l paths of vertices of G(ν)

from one pole vertex to the other with l = |F|
2

+ 2 and l ≥ 3. Combining the paths to
circles (the first and the last vertex of the paths are the pole vertices), we get more than
one circle fulfilling condition 1 and 2.

Note, that (∗) in the previous theorem can be replaced by: There exists a planar connec-
tivity augmentation for V −W in G, if the subgraph GW is connected using the planar
connectivity augmentation.

Observe that the previous theorem can be easily extended to c-connected clustered graph
C = (G, T) with series-parallel underlying graph G, already stated in Theorems 7.3 and 7.4
that we proved in Section 7.1.

Recall from Section 7.1 that c-planarity can be destroyed in the expansion graphs of R-
nodes and in the expansion graphs of P -nodes even if the clustered graph is c-connected.

Theorem 7.12. A connected clustered graph C = (G, T) where G is planar with one
non-connected cluster ν is c-planar if and only if

1. there exists a planar connectivity augmentation of the subgraph induced by the non-

126 Chapter 7. c-Planarity Testing

connected cluster ν and

2. there is an embedding of G that contains no circle of vertices of G(ν) that separates
vertices of G−G(ν).

Proof. The proof follows from the previous theorems.

Note, that item 2 in the previous theorem can be replaced by: There exists a planar
connectivity augmentation for the vertices of G−G(ν) in G.

As a result, we are able to deal with c-planarity of a special subclass of clustered graphs
using planar connectivity augmentation and SPQR-trees.

According to Theorem 7.12, we know how to test planar connectivity augmentation of a
subgraph of a planar graph. We now show how to test whether there exists an embedding
of G that contains no circle in G(ν) that separates G−G(ν).

Consider a clustered graph C = (G, T) that has only one non-root cluster ν that is non-
connected. Therefore the subgraph G(ν) has more than one connected component. As we
choose a minimum cardinality planar augmenting edge set M and take the pole vertices
belonging to G(ν) into account to augment C to a c-connected clustered graph and if such
an augmentation exists, c-planarity of C is maintained if C is c-planar. Therefore to test
whether C is c-planar is equal to the following:

Let Ci, i = 1, . . . , l, l ≥ 2 be the connected components of G(ν).

I. There exists a drawing such that the drawing of G−Ci can be drawn outside of the
drawing Ci for all i = 1, . . . , l and

II. there exists a planar connectivity augmentation between all Ci, i ∈ N and therefore
for G(ν).

We test I. on an auxiliary modified clustered graph C̃ of C as follows. Cluster ν is split
into l dummy clusters so that each connected component Ci i = 1, . . . , l corresponds to
a dummy cluster. By construction C̃ is a c-connected clustered graph and can be tested
according Feng, Eades and Cohen [29, 30] and according Dahlhaus [18, 20] for c-planarity.

Definition 7.2. Let C be a clustered graph with a connected root cluster and a non-
connected cluster ν. Let Csub be the clustered graph created by splitting ν into one dummy
cluster for each connected component of the subgraph induced by ν that contains at least
two vertices (see Fig. 7.51). A connected component that contains only one vertex is treated
as a trivial cluster. We call Csub the c-split clustered graph of C.

Note, that Csub is a c-connected clustered graph.

Theorem 7.13. Let C be a clustered graph with a connected root cluster and a non-
connected cluster ν. Let Csub be its c-split clustered graph. If Csub is not c-planar then C is
not c-planar.

Chapter 7. c-Planarity Testing 127

Figure 7.51: A clustered graph C with a non-connected cluster. By splitting the non-
connected cluster, C is extended to a c-connected clustered graph.

Proof. If Csub is not c-planar, there exists an edge crossing or a cluster crossing in at
least one cluster µ. The subgraphs induced by the dummy clusters of Csub are connected
components of the corresponding non-connected cluster ν of C. Thus there exists an edge
crossing or a cluster crossing in ν and C is not c-planar.

Figure 7.52: An example where C is not c-planar but its c-split clustered graph Csub is
c-planar

Note that C must not be c-planar if its c-split clustered graph Csub is c-planar (see Fig. 7.52).
In the case that Csub is c-planar and C is not there will not exist a planar connectivity
augmentation in C for the non-connected cluster ν.

Thus after a positive result and after the application of the c-planarity test by Cohen, Feng,
Eades, [29, 30, 18, 20] resp. Dahlhaus [29, 30, 18, 20] we apply the planar connectivity
augmentation algorithm on G and the vertices of ν as subset W (if we have pole vertices
that belong to G(ν), we use them for connectivity). Together with Theorem 7.12 we get
the following theorem.

Theorem 7.14. Let C = (G, T) be a connected clustered graph and ν its only non-trivial
non-root cluster that is non-connected. C can be tested for c-planarity in linear time with
respect to the number of vertices of C and in the positive case embedded in linear time.

128 Chapter 7. c-Planarity Testing

Algorithm 25: The algorithm for clustered graphs C = (G, T) that contain a con-
nected root cluster and a non-connected cluster ν. It computes an embedding Π and
the minimum cardinality augmenting edge set.

Input: A clustered graph C = (G, T) that contains a connected root cluster and a
non-connected cluster ν.

Result: true if and only if there is a c-planar connectivity augmentation for ν; in
the positive case an embedding Π and the minimum cardinality augmenting
edge set.

Compute Csub by splitting the non-connected cluster for each connected component
of the subgraph G(ν);
Apply the linear time c-planarity test on Csub;
if the test return false then

return false;

Apply the subgraph induced planarity augmentation algorithm for C and ν;
if a planar connectivity augmentation exists then

Compute Π;
return true;

else
return false;

Next we consider the case that G is non-connected and there is only one cluster ν that is
not the root cluster and is non-connected. For all connected components of G we apply our
algorithm for clustered graphs with one non-connected cluster. Then we choose for each
connected component a face as outer face that contains at least one blue vertex v1 and
one non-blue vertex v2. We connect the blue vertices in the outer face so that the edges
of a minimum cardinality augmenting edge set is inserted (as described in Chapter 6).
In the positive case a c-planar embedding with a minimum cardinality augmenting edge
set will be computed. Thus we have that the clustered graph has a c-planar connectivity
augmentation for the non-connected cluster ν which leads us to the following theorem.

Theorem 7.15. Let C = (G, T) be a not necessarily connected clustered graph and ν its
only non-trivial non-root cluster that is non-connected. C can be tested for c-planarity in
linear time concerning the number of vertices of C and in the positive case embedded in
O(n) time.

7.4 One-Level Clustered Graphs

As shown in the last section it is possible to test c-planarity of a clustered graph with one
non-connected cluster and a root cluster in O(n) time, where n is the number of vertices of
G. Next we consider a clustered graph C = (G, T) with a cluster tree T with only one level
below the root cluster. So now we allow more than one non-root cluster. Further let only

Chapter 7. c-Planarity Testing 129

one child cluster of the root cluster be non-connected. We assume, that every non-trivial
cluster has at least two vertices.

We construct a c-split clustered graph Csub of C as described in Section 7.3. If G is not
connected, we apply this technique to every connected component of G.

First, we test if the c-split clustered graph Csub of C is c-planar. We call Gmod by the
c-planarity test of Feng, Eades and Cohen [29, 30] modified graph G. Then we apply
the planar connectivity augmentation algorithm described in Chapter 6 for the vertices
belonging to ν in Gmod. If one exists, then an embedding Π and a minimum cardinality
augmenting edge set is computed and true is returned. Otherwise, C is not c-planar. If
we get Π, we can apply the techniques used in the c-planarity embedding algorithm of
Feng, Eades for the connected clusters using Π to obtain a c-planar embedding of C. For
the case that the root cluster is non-connected, we apply further the planar connectivity
augmentation algorithm for the root cluster.

Theorem 7.16. Let C = (G, T) be a connected clustered graph with a cluster tree T with
only one level below the root cluster and ν its only non-root non-connected cluster. Let
Csub be the c-split clustered graph of C. Let Gmod be the modified graph G obtained by the
c-planarity test by Feng, Eades and Cohen [29, 30] of Csub = (G, Tsub). C is c-planar if and
only if Csub is c-planar and there exists a planar connectivity augmentation of the vertices
belonging to the subgraph G(ν) in Gmod.

Proof.

• ”⇐” We have that Csub is c-planar and there exists a planar connectivity augmenta-
tion of G(ν) in Gmod. Thus G is planar and there exists a planar drawing of G such
that for every node µ of Tsub, all the vertices and edges of G−G(µ) are in the external
face of the drawing of G(µ). Note that this holds for the connected clusters of C and
for the dummy clusters in Csub constructed of ν. Therefore, Gmod allows only those c-
planar embeddings that respect the connected clusters of C and takes the connected
components of G(ν) into account. Hence the planar connectivity augmentation within
Gmod has introduced a minimum cardinality augmenting edge set, connecting G(ν)
such that the boundary of its external face in any planar drawing of G(ν) consists
of a connected not simple cycle. Furthermore, the minimum cardinality augmenting
edge set connects the connected components of the original G(ν), so that there exists
at the most one edge between two connected components. Therefore Gmod −G(ν) is
embedded in the outer face of G(ν) after planar connectivity augmentation. Hence,
C is c-planar.

• ”⇒” We have that C is c-planar. Thus Csub is c-planar. Hence the vertices of G(ν)
can be embedded so that there is a sequence of faces f1, . . . , fk with the following
property: for all 1 ≤ i < k, there is at least one vertex of W on the boundary between
fi and fi+1 and the boundaries of the faces fi (1 ≤ i ≤ k) contain all vertices of W .

130 Chapter 7. c-Planarity Testing

Therefore G has a planar connectivity augmentation in respect to the vertices of
G(ν).

Theorem 7.17. Let C = (G, T) be a connected clustered graph with a cluster tree T with
only one level below the root cluster and ν its only non-root non-connected cluster. C can
be tested for c-planarity in O(n2) time in respect to the number n of vertices of C.

Proof. We can create the c-split clustered graph Csub in O(n) time where n is the number of
vertices of G. The c-planarity testing can be done in O(n2) time and the planar connectivity
augmentation of the subgraph induced by the non-connected clustered graph in O(n) time.
As a result the algorithm can be implemented in O(n2) time where n is the number of
vertices of G.

Algorithm 26: The algorithm for clustered graphs C = (G, T) that contain a con-
nected root cluster, a non-connected child cluster ν and an arbitrarily number of con-
nected child clusters. It computes an embedding Π and the minimum cardinality aug-
menting edge set if C is c-planar.

Input: A clustered graph C = (G, T) that contains a connected root cluster, a
non-connected child cluster ν and an arbitrarily number of connected child
clusters.

Result: true if and only if there is a c-planar connectivity augmentation for ν; in
the positive case an embedding Π and the minimum cardinality augmenting
edge set will be computed.

Compute Csub by splitting the non-connected cluster for each connected component
of the subgraph G(ν);
Apply the c-planarity test by Cohen, Eades and Feng [29, 30] on Csub;
if the test return false then

return false;

Apply on Gmod (see Theorem 7.16) in respect to the vertices of G(ν) the planar
connectivity augmentation algorithm;
if a planar connectivity augmentation exists then

Compute Π;
return true;

else
return false;

Chapter 7. c-Planarity Testing 131

7.5 Multi-Level Clustered Graphs

We extend the algorithm of the previous section to clustered graphs with more than one
level in the tree T . Consider a clustered graph C = (G, T) with at least two non-connected
clusters where G is connected. Then if for every non-connected cluster ν in the cluster
tree T the parent cluster and all siblings of ν are connected, we show that it is possible to
connect the non-connected clusters using the planar connectivity augmentation described
in Chapter 6.

To do so, we compute the c-split clustered graph Csub of C, described in Section 7.3. Then,
we traverse T towards the root starting at the leaves in order to do the followings: For
every non-connected cluster ν of C that has connected siblings µ and a connected parent
pa(ν), we test whether the subgraph G(pa(ν)) is planar, test whether the edges that are
incident to pa(ν) can be drawn into the outside of the drawing of G(pa(ν)) (see Figure 7.53)
and test whether there exists a planar connectivity augmentation of the vertices of ν. If a

G(ν) t

Figure 7.53: Constructing an auxiliary graph Gmod from the connected subgraph G(ν)
where the incident edges of ν are connected with a dummy vertex t [30]

planar connectivity augmentation exists, then an embedding Π and a minimum cardinality
augmenting edge set is computed and true is returned. Otherwise, C is not c-planar. If we
get Π, we can apply the techniques used in the c-planarity embedding algorithm of Feng
and Eades for the connected clusters using Π to obtain a c-planar embedding of C.

Theorem 7.18. Let C = (G, T) be a connected clustered graph where its non-connected
clusters ν have a connected parent cluster and only connected sibling clusters. Let Csub =
(G, Tsub) be its c-split clustered graph. Let Gmod be the graph constructed by the c-planarity
test of Feng, Eades and Cohen [29, 30] applied to pa(ν) of Csub and where the subgraphs
G(chl(pa(ν))) are replaced with their wheel graphs. If Csub is c-planar and there exists for
every non-connected cluster ν a planar connectivity augmentation for the vertices of the
subgraph G(ν) in Gmod then C is c-planar.

Proof. The proof is by construction. We extend the c-planarity test by Cohen, Eades and

132 Chapter 7. c-Planarity Testing

Feng [29, 30] as follows: For every connected parent cluster pa(ν) with a non-connected
child cluster ν, we construct the graph Gmod as stated in the theorem (see Fig. 7.53). Then
we apply the linear time planarity test based on PQ-trees [8, 11] to Gmod and in the positive
case the planar connectivity augmentation for the subgraph induced by the non-connected
cluster (see Chapter 6).

As we do this recursively for every connected parent node that has a non-connected cluster
by taking the wheel graphs as constructed in the c-planarity test into account, we can test
c-planarity in O(n2) time where n is the number of vertices of G.

Theorem 7.19. Let C = (G, T) be a connected clustered graph where its non-connected
clusters ν have a connected parent cluster and only connected sibling clusters. C can be
tested for c-planarity and in the positive case embedded in O(n2) time with respect to the
number n of vertices of C.

Algorithm 27: The algorithm for clustered graphs that contain a connected root
cluster and non-connected clusters with a connected parent cluster and sibling clusters.
It computes an embedding Π and the minimum cardinality augmenting edge set if C is
c-planar.

Input: A clustered graph C = (G, T) that contains a connected root cluster and
non-connected clusters with connected parent cluster and sibling clusters.

Result: true if and only if there is a c-planar connectivity augmentation for ν; in
the positive case an embedding Π and the minimum cardinality augmenting
edge set will be computed.

Compute Csub by splitting the non-connected cluster for each connected component
of the subgraph G(ν);
Change the c-planarity test of Cohen, Eades and Feng [29, 30] as follows and apply
it to Csub;
for every connected parent cluster of a non-connected cluster do

Construct Gmod as described in Theorem 7.18;
Test planarity of Gmod;
if the planarity test returns false then

return false;

Apply the subgraph induced planar connectivity augmentation algorithm for the
vertices of G(ν) in Gmod (see Chapter 6);

if a planar connectivity augmentation exists then
Compute Π;
return true;

else
return false;

We note that this technique can be applied to connected clustered graphs C = (G, T)
where the non-connected clusters lie on the same path from the root to the leaves. This is

Chapter 7. c-Planarity Testing 133

done again by computing the c-split clustered graph Csub, see Section 7.3 for details, for
every connected component Ci of C, testing it for c-planarity. In this step, every connected
component is modified with wheel graphs. Then we get graph Gmod.

We now traverse the path of non-connected clusters in the original cluster tree T from
the leaves to the root and apply to the vertices of these clusters the planar connectivity
augmentation algorithm (see Chapter 6) in Gmod. This can be done in O(n2) time where
n is the number of vertices in the underlying graph G. In the positive case, an embedding
can be computed in O(n2) time.

Finally, we consider two non-connected clusters that are siblings in an arbitrary clustered
graph where all other clusters are connected and G is planar. If the two clusters are con-
tained in two different connected components (if additionally the root is non-connected) or
if they are contained in two different biconnected components or in two different subtrees
of a BC-tree, we can apply the one-cluster-method for each connected or biconnected com-
ponent independently. This can be extended to an arbitrarily number of non-connected
clusters that are siblings under the condition that they are in different connected or bicon-
nected components.

Observe that combining the techniques used in Sections 7.3 and 7.4, there is an even more
larger class of clustered graphs that can be tested for c-planarity.

134 Chapter 7. c-Planarity Testing

Chapter 8

Edge-Augmentation of c-Planar
Clustered Graphs

Parts of this chapter have already been published in [54] and are joined work with Michael
Jünger and Sebastian Leipert.

One could expect that once we have a c-planar embedded clustered graph C = (G, T) at
hand it may be augmented by general planar edge-augmention of the planar embedding of
G.

For simplicity, we first consider edge-augmentation on the example of triangulation. A
planar graph is triangulated (triangular or maximal planar) when every face has exactly
three vertices. If a planar graph is not triangulated, then there exists a face f that has at
least four different vertices, for example v1, v2, v3 and v4 in this order around the face. Hence
G is planar, we can achieve a planar embedding. Since the edges (v1, v3) and (v2, v4) are
not included in f , adding one of them and repeating this for all not triangulated faces, we
receive a triangulated planar graph. It is assumed, that G is biconnected planar, otherwise
an augmentation algorithm is used. The first triangulation algorithm is due to Read [70],
and modified by De Freysseix such that it runs in linear space. It works as follows: For
every pair of consecutive neighbors u and v of a current visited vertex v, we add an edge
e = (u, w) to G if w is not adjacent to u according to the planar embedding. Applying
this to all vertices of G a triangulated graph is received that might contain multiple edges.
The multiple edges can be replaced as follows: if we delete a multiple edge e we get a face
with four vertices v1, v2, v3, v4. W.l.o.g. we assume that e = (v1, v3), then we add an edge
that connects v2, v4. Hagerup and Uhrig [44] modified that algorithm so that the resulting
triangulated graph is simple. Kant and Bodlaender present in [7] a canonical triangulation
as a good and simple method for computing a canonical ordering while triangulating the
graph. He also give a proof of NP-completeness for triangulating a planar graph while
minimizing its maximum degree. Additionally, they introduce an approximation algorithm.
Obviously, since a clustered graph is a generalization of a graph, all NP-hard problems on
graphs remain NP-hard on clustered graphs and (hence NP-hard on compound graphs).

135

136 Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs

The first algorithms that use triangulation for a c-planar clustered graph C = (G, T) by tri-
angulating planar G are presented in [25]. However, triangulation of a c-planar embedding
by edge addition has not been investigated.

In Figures 8.1 and 8.2 two examples of triangulated c-planar embedded clustered graphs
are given.

(a) Not feasible case (b) Feasible case

Figure 8.1: c-Planar embedded c-connected clustered graph C = (G, T) visualized black
with a red cluster; triangulation with edge colored blue destroys c-planarity in a) but
preserves it in b)

In Figure 8.1, we have a c-connected clustered graph C = (G, T) with a c-planar embedding
visualized black. Additionally, C is triangulated with an edge visualized blue. Observe, that
the blue edge e has end vertices in the cluster colored red and therefore should belong to
that cluster.

Unfortunately, in Figure 8.1(a) e encapsulates a vertex that belongs to the root cluster.
Additionally, there is no way to embed e into an other face since G is triconnected. Hence,
C is not c-planar after the addition of e and therefore adding e is not feasible. On the
other hand, in Figure 8.1(b) shows a feasible edge addition that preserves the c-planar
embedding of C.

In Figure 8.2, we have a clustered graph C = (G, T) without a cut cluster and with a c-
planar embedding also visualized black. While the edge addition in Figure 8.2(a) produces
a non-repairable edge-region crossing the edge addition in Figure 8.2(b) keeps the c-planar
embedding.

Consequently, we cannot extend a c-planar clustered graph by simply extending G. Nat-
urally, the question arises whether there exists a c-planar clustered graph class that is
resistant in concerning to general planar edge-augmentation. Fortunately, we may answer
this request positively. We assume from now on that every non-trivial cluster of C contains
at least two vertices of G.

Theorem 8.1. Let C = (G, T) be a c-connected c-planar clustered graph without any cut

Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs 137

(a) Not feasible case (b) Feasible case

Figure 8.2: c-Planar embedded clustered graph C = (G, T) without a cut cluster visualized
black with a red cluster; triangulation with edge colored blue destroys c-planarity in a) but
preserves it in b)

cluster. C remains c-planar after edge-augmentation if and only if G remains planar after
edge-augmentation.

Proof. A c-connected clustered graph is c-planar if G is planar and for all clusters ν,
G−G(ν) can be drawn outside of the drawing of G(ν) (see Theorem 2.3). If additionally
G−G(ν) is connected for all clusters ν, it is obvious that G−G(ν) can be drawn outside
of G(ν) for all clusters ν. As we add edges to C, we do not destroy the properties of C.
Therefore, for all clusters ν, G(ν) is still connected, and G− G(ν) is also still connected.
Therefore, C is still c-planar. As mentioned in [41, 40], we destroy the c-planar embedding
if we introduce edges to a connected cluster µ of T that isolates vertices belonging to a
cluster ν not equal to µ. But this only happens, if one of the following cases is true:

1. Either ν is an ancestor of µ, but then G−G(µ) is not connected before augmentation,
or

2. ν is no ancestor of µ, but then G(ν) is not connected before augmentation.

If G(ν) is connected, we destroy the c-planar embedding, if we isolate G(ν) by adding
edges to a connected cluster µ not descendant of ν around the drawing of G(ν). But this
only happens if a connected component of G−{G(ν)∪G(µ)} is isolated to G(ν). But this
means that G−G(µ) is not connected in the c-planar embedding before adding the edges
what leads to a contradiction.

Consequently, whenever we can augment a given planar clustered graph C = (G, T) to a
c-connected planar clustered graph without any cut cluster, C is c-planar and keeps its
c-planarity by planar edge-augmentation.

Let C be the class of c-planar c-connected clustered graphs without any cut cluster.

Naturally, the question arises how hard it is to augment a planar clustered graph C such
that the final C belongs to C. Unfortunately, the complexity status of this problem is still

138 Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs

Algorithm 28: Augmentation of a c-planar embedded c-connected clustered graph C.

Input: c-connected clustered graph C = (G, T) with a c-planar embedding Γ.

Result: edge-augmented C that is c-planar and has the properties of the used planar
edge-augmentation.

Augment Γ by edge-addition s. t. resulting C ′ = (G′, T) ∈ C;
Augment planar embedding of G′ by general approach;

unsolved. Clearly, a c-planar clustered graph can always be edge-augmented such that the
resulting c-planar clustered graph belongs to C.
In this chapter, we focus on clustered graphs with a given c-planar embedding. How to
augment a c-planar embedded clustered graph with a given c-planar embedding in poly-
nomial time such that it is c-connected is presented by Feng [29]. Hence we may assume
that we have a c-connected clustered graph with a c-planar embedding at hand. In the
following we consider the complexity of edge-augmentation with the minimum number of
edges such that the final C belongs to C.
Kant and Bodlaender [7] studied augmentation problems for planar graphs. Especially,
they showed that the minimum planar biconnectivity edge-augmentation problem is NP-
complete.

Theorem 8.2 (Kant,Bodlaender [7]). The problem of deciding whether adding at most K
edges to a connected planar graph G = (V, E) can lead to a biconnected planar graph is
NP-complete.

Recall that a clustered graph is cluster-biconnected if it has no cut cluster and no cut
vertex.

Since biconnectivity is a specification of cluster-biconnectivity:

Corollary 8.1. The problem of deciding whether adding at most K edges to a c-planar
c-connected clustered graph C = (G, T) can lead to a cluster-biconnected c-planar clustered
graph is NP-complete.

Proof. Follows immediately by Theorem 8.2 since a graph can be seen as a clustered graph
with only one cluster, the root-cluster.

Observe that this is even true when restricted to cut clusters. We transform each planar
graph instance IG to a clustered graph instance IC by replacing each cut vertex by a star,
and assigning the star to a cluster. Then IG can be edge-augmented by K edges to a
biconnected graph if and only if IC can be edge-augmented by K edges to a clustered
graph without any cut clusters.

Corollary 8.2. The problem of deciding whether adding at most K edges to a c-planar
c-connected clustered graph C = (G, T) such that for every cut cluster ν G − G(ν) is
connected is NP-complete.

Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs 139

Fortunately, it turns out that we do not need the minimum number of edges for our edge-
augmentation problem: for every cut cluster ν it is sufficient to add edges to G−G(ν) such
that the edge addition forms a tree. This follows directly from the characterization made
in Chapter 5. Consequently, it is sufficient to consider a heuristic algorithm to augment a
given c-planar embedded c-connected clustered graph to a clustered graph of C. Next we
develop such an algorithm that has linear running time.

First we consider the problem of deciding whether a given clustered graph belongs to C.
Recall that having two vertices v, w of G at hand, we define the lowest common ancestor
(lca) of v, w to be the ancestor of v, w in T that is the farest away from the root cluster in
T . Recall that the greatest uncommon ancestors (gua) of v, w we define to be the children
of lca(v, w) on the two (unique) paths from v and w to lca(v, w) in T . Recall that if v, w
are connected by an edge e, we define lca(e) := lca(v, w).

The level graphs are constructed as follows (a similar construction is made by Feng [29]):
For each cluster ν of T we define a shrink graph in respect to ν

Gshrink|ν = (Vshrink|ν, Eshrink|ν)

with the vertex set

Vshrink|ν = {µ ∈ T | µ is a child of ν in T} ∪ {d}

with a dummy vertex d and the edge set

Eshrink|ν = {e ∈ E | lca(e) = ν} ∪ {(v, d) | (v, w) are incident edges of ν in T} ∪ {(d, d)}.

Observe that the vertices of Vshrink|ν correspond to (trivial or non-trivial) child clusters of
ν in T .

Further, the cut vertices in Gshrink correspond to cut clusters and cut vertices in C. Hence,
C is cluster-biconnected if and only if all shrink graphs has no cut vertex (beside d)
that corresponds to a cut cluster. Consequently, either we augment each shrink graph to
biconnectivity or we adapt the biconnectivity augmentation such that it consults only the
cut vertices that correspond to cut clusters in C.

Consequently, a clustered graph C is cluster-biconnected if and only if for every cluster
ν its shrink graph has no cut vertices beside d. Therefore, cluster-biconnectivity can be
tested in linear time by testing biconnectivity of every shrink graph of C. Observe that
we can test the weaker version of cluster-biconnectivity, the co-connectivity, easily that
restricts on cut clusters.

Next we consider how to augment c-planar embedded c-connected clustered graphs in order
to make them additionally cluster-biconnected.

We assume that the given clustered graph C = (G, T) is c-connected and c-planar embed-
ded.

140 Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs

Algorithm 29: Augmentation of a c-planar embedded c-connected clustered graph C
to a clustered graph of C.

Input: c-connected clustered graph C = (G, T) with a c-planar embedding Γ.

Result: edge-augmented Γ s. t. resulting C ′ ∈ C.
foreach cluster ν top down level by level in T do

Calculate Gshrink|ν according to Γ;
Apply planar biconnectivity edge-augmentation on the resulting planar embed-
ding Γ|ν of Gshrink|ν ;
Introduce added edges of Gshrink|ν to Γ according to Γ′;

We seek to augment the given c-planar embedding of C. We compute the shrink graph for
each cluster ν of C and apply the planar biconnectivity edge-augmentation on them (see
Algorithm 29).

In Figure 8.3 we show an example how this edge-augmentation works. While C does not
have any cut cluster (and therefore no edge-addition is required for the weaker version of
cluster-biconnectivity, the co-connectivity, that consider only cut clusters), edges e1 and e2

are added for achieving cluster-biconnectivity. Observe that the minimum number of edges
to be added in this case would be 1 since it is sufficient to add e2.

By Theorem 8.1 the resulting c-planar embedding remains c-planar if and only if it is planar.
Consequently, we can apply any planar augmentation graph approach on the resulting
cluster-biconnected embedding, since it implies co-connectivity.

Theorem 8.3. Let C = (G, T) be a c-planar embedded c-connected clustered graph. C
can be tested on cluster-biconnectivity in linear time concerning the number of vertices of
G. If C is not cluster-biconnected, it can be augmented to a cluster-biconnected c-planar
embedded clustered graph in linear time.

Proof. Since the original edges appear in at most constant number of shrinked graphs and
the biconnectivity augmentation for an embedded graph can be done in linear time, we
have a linear running time in total.

Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs 141

e1

e1

e1

e1

e2

e2

ν
ν

C :

C ′ ∈ C :

Gshrink|root

Gshrink|ν

d

Figure 8.3: Example of calculating cluster-biconnectivity of a c-planar clustered graph C
with resulting clustered graph C ′; on the left-hand side the modification in the embedding
of C is visualized while on the right-hand side the shrink graphs are presented - upper
shrink graph corresponds to the root cluster while the lower represents the cluster ν, edges
colored blue are added edges

142 Chapter 8. Edge-Augmentation of c-Planar Clustered Graphs

Part II

Minimum Edge Deletion and
Crossing Minimization

143

Chapter 9

Minimum Edge Deletion

The results of this chapter are based on joint work with Elisabeth Gassner and are available
as technical reports (see [36] and [37]).

In Section 9.1 we show that the maximum planar subgraph problem remains NP-complete
even for graphs without a K3,3 or K5 minor, respectively.

In Section 9.2 we investigate the problem of finding a minimal weighted set of edges whose
removal results in a graph without minors that are contractible onto a prespecified set of
vertices. Such minors are called rooted. The problem of a minimal weighted deletion of
all rooted K1,3-minors and K2,3-minors, respectively, is proved to be NP-hard for general
graphs. Furthermore, an O(n3) time algorithm is developed for the rooted K1,3-minors
deletion problem on planar graphs while for the rooted K2,3-minor planar graph a charac-
terization is presented.

9.1 Maximum Planar Subgraph

(NP-hardness proofs)

The results of this section are joint work with Elisabeth Gassner.

Wagner characterizes a planar graph as a graph that has no K5 and K3,3 minors [84].
His theorem is a significant reformulation of Kuratowski’s well-known result [58]. If G has
either no K5 or no K3,3 minor it is intuitively close to planarity.

The maximum planar subgraph problem (MPSP for short) is well-studied: Given a graph
G = (V, E) and a positive integer k ≤ |E|, is there a subset E ′ ⊆ E with |E ′| ≥ k such
that the graph G′ = (V, E′) is planar?

Liu et al., Yannakatis, and Watanabe et al. all independently showed that this problem is
NP-complete [64, 85, 86].

145

146 Chapter 9. Minimum Edge Deletion

The weighted version of MPSP is a generalization of MPSP in which weights are assigned
to the edges and the task is to find a planar subgraph of maximum total weight. Recently,
Faria, de Figueiredo, and de Mendonça have shown that the maximum planar subgraph
problem remains NP-complete for cubic graphs [28]. For a survey on the maximum planar
subgraph problem, the reader is referred to [63].

Obviously, the class of non-planar cubic graphs is not equal to the class of graphs that are
either K5-free or K3,3-free (see Figure 9.1).

(a) Cubic graph (b) K3,3 minor

Figure 9.1: A non-planar cubic graph that has minors isomorphic to K5 and to K3,3

Throughout this section Tutte connectivity is used.

In this section we prove NP-completeness of the maximum planar subgraph problem on
K5-free or K3,3-free graphs, respectively.

Clearly the problem is in NP and we may obviously reduce the problem on connected
graphs.

We use the following lemma for our NP-hardness proofs.

Lemma 9.1 (Truemper [82]). If G is a 2-sum of G1 and G2, then for any 3-connected
minor N of G, G1 or G2 has a minor isomorphic to N .

Proof. If this is not so, then N has a 2-separation induced by the 2-separation that is given
by G1 or G2 minus their connecting edges. This leads to a contradiction to the fact that
N is 3-connected.

Let K5 be the following class of graphs, each constructed as follows. Let G = (V, E) be a
connected planar graph and E ′ a nonempty subset of E.

We apply an iterative processing of the edges e of E ′: We take the 2-sum of the current
graph G with K5, i.e. G⊕2 K5, where e ∈ E ′ is the edge of G involved in the 2-sum. Then,
we redefine G to be the 2-sum.

We name G[K5] to be the final 2-sum that results from this iterative process.

Further, we define K3,3 and G[K3,3] analogiously way, using K3,3 instead of K5.

Chapter 9. Minimum Edge Deletion 147

Theorem 9.1. The maximum planar subgraph problem is NP-complete for the two classes
K5 and K3,3.

Given a connected planar graph G = (V, E) the connected vertex cover decision problem
(CVC for short) asks for a vertex cover N in G of cardinality at most k, such that the
subgraph induced by N is connected. CVC is known to be NP-hard [33].

The proof of Theorem 9.1 uses the following result by Asano:

Theorem 9.2 (Asano [1]). Let G = (V, E) be a connected planar graph, and G(2) ob-
tained of G by splitting each edge of G once. The new vertices are denoted by ai with
i = 1, 2, 3, . . . , |E|. Let G2 be the graph constructed by a planar embedding of G(2): for
every face f add edges between two ai, aj, i 6= j, if they belong to the boundary of f and
are adjacent to the same vertex. Let G∗

2 be the dual graph of G2 with the modified planar
embedding of G(2). Let N ⊂ V be a connected vertex cover of G with |N | ≤ k, k ∈ N.

If G has a connected vertex cover of size at most k, then G(2) has a Steiner tree T for the
terminal set A = {ai | i = 1, 2, . . . , |E|} where |E(T)| ≤ k and all edges (ai, aj)

∗ ∈ F ∗ with
i, j = 1, 2, 3, . . . , |E|, i 6= j in G∗

2 − E(T)∗ are coloops.

On the other hand, let S ⊂ E(G∗
2)− F ∗ be a subset of edges in G∗

2 with |S| ≤ k such that
all edges (ai, aj)

∗ ∈ F ∗ with i, j = 1, 2, 3, . . . , |E|, i 6= j in G∗
2 − S are coloops, then G has

a connected vertex cover of size at most k.

Asano’s result [1] implies that the following multi-cut problem (MC for short) is NP-
complete.

Corollary 9.1. Given a connected planar graph H = (V, E) with edge partition E = E1⊎E2

and an integer k, deciding whether there exist a subset S ⊂ E1 with |S| ≤ k such that all
edges e ∈ E2 are coloops in H − S is NP-complete.

Observe that MC is related to the minimum multi-cut problem [19] (MMC for short):
Given is a graph G = (V, E), a set S ⊆ V ×V of source-terminal pairs, k ∈ N and a weight
function w : E → N . Is there a multi-cut, i.e., a set E ′ ⊆ E such that the removal of E ′

from E disconnects si from ti for every pair (si, ti) ∈ S such that
∑

e∈E′ w(e) ≤ k?

Therefore, MC seeks for a minimum multi-cut in E1 whether MMC uses E. Hence MC is
equal to MMC if and only if E2 = ∅. Note that MMC is a generalization of the minimum
multiway cut and is NP-hard even when the graph is a tree [19, 35]. For a survey and
bibliography the reader is referred to [4, 17].

Proof of Theorem 9.1. We show that there exists a polynomial reduction of MC (that is
NP-complete by Corollary 9.1) to the maximum planar subgraph problem on graphs of
the classes K5 or K3,3, respectively.

Given an instance of MC, i.e., a planar graph G = (V, E1 ⊎ E2) and an integer k, we can
construct an instance of the weighted MSPS for graphs of K5 or K3,3, respectively: We set

148 Chapter 9. Minimum Edge Deletion

E ′ = E2 and create iteratively an instance G[N] of K5 or K3,3, respectively, with N = K5

or N = K3,3, respectively.

Moreover, we define a weight function for the edges of G[N]: For each edge e of G[N] that
is also included in G, i.e., e ∈ E1, we set c(e) = 1; otherwise c(e) = k + 1.

Claim: Let G = (V, E1 ⊎E2) be a connected, planar graph, N ∈ {K3,3, K5}, E ′ = E2 and
let S ⊆ E1. Then G[N] − S does not contain any N -minor if and only if all edges e ∈ E2

are coloops in G− S.

Proof of claim: First assume that there exists an edge e ∈ E2 such that e = (i, j)
is not a coloop in G − S. Then there exists a path P from i to j in G − S that does not
contain edge e. Since E2 = E ′ and hence e is involved into a 2-sum with G − S and N ,
G[N]− S contains an N -minor using path P instead of e. This leads to a contradiction to
the assumption that G[N]− S is N -free.

Now assume that there exists an N -minor in G[N] − S. Since G− S is planar and hence
N -free we conclude that there is an edge e = (i, j) ∈ E ′ = E2 that is involved into a 2-sum
of G − S and N . Furthermore, since G[N] − S is not planar there is a path P in G − S
from i to j. This contradicts the assumption that e is a coloop in G− S. This proves the
claim.

Our claim implies that there exists a feasible solution S ⊂ E1 with |S| ≤ k of instance
G = (V, E1 ⊎E2) for MC if and only if there exists a subset of edges S ′ of G[N] with total
weight c(S ′) ≤ k whose removal yields a planar subgraph. Observe that c(e) = k+1 > c(S ′)
for e ∈ E ′ = E2 and hence S ′ ⊆ E1.

Moreover, if we replace every edge e in G[N] with c(e) = k + 1 by (k + 1) copies of edge e
we conclude the theorem.

Finally, we get the following result.

Corollary 9.2. The maximum planar subgraph problem is NP-complete for the following
classes of graphs.

1. The graphs without a K5 minor,

2. The graphs without a K3,3 minor.

Proof. Clearly the problem is in NP since planarity is polynomially checkable.

The NP-completeness follows immediately by Lemma 9.1: The class of graphs without
a K5 or K3,3 minor, respectively, contains the class K3,3 or K5, respectively, for which
Theorem 9.1 establishes the problem to be NP-complete.

Surprisingly, the (weighted) maximum planar subgraph problem is easy for triconnected
non-planar graphs G without a minor isomorphic to K3,3. By the major decomposition

Chapter 9. Minimum Edge Deletion 149

theorems in [81], G is then isomorphic to K5. Hence, the maximum planar subgraph of G
is equal to K5 minus one of the cheapest edges.

We consider a triconnected non-planar graph G without a minor isomorphic to K5. G is
called a ∆-sum (composition) of G1 and G2, denoted G = G1 ⊕∆ G2, if identification of
an arbitrary triangle of G1 with an arbitrary triangle in G2 and subsequent deletion of
the edges of this triangle produces G. By the major decomposition theorems in [81], G
is then either isomorphic to K3,3, or to V8, or is equal to a ∆-sum composition of planar
graphs. For the first two cases, the (weighted) maximum planar subgraph problem is easy:
we delete one of the cheapest edges in K3,3 or V8, respectively. For the remaining case we
conjecture that it is NP-complete as well.

Furthermore, we conjecture that the crossing minimization problem on graphs without a
K5 or K3,3 minor, respectively, is NP-hard.

9.2 Rooted Minor Deletion

The results of this section are joint work with Elisabeth Gassner. While the results of
Section 9.2.2 are based mainly on Elisabeth Gassner’s ideas, the results of Section 9.2.3
are mainly due to the author.

Many combinatorial optimization problems can be stated as minor deletion problem. Con-
sider for instance the following problem: Given a graph G = (V, E), find a subset of edges
of minimal cardinality whose deletion results in a graph without C1-minors (where C1 is a
loop). This minor-deletion problem is equivalent to the maximum spanning tree problem
which can be solved in polynomial time. On the other hand there are several minor-deletion
problems that are NP-hard such as the maximum planar subgraph problem or the longest
path problem.

The characterization of graphs with special properties by means of minor exclusion has
gained increasing attention in recent years. A famous theorem in this area is Wagner’s
reformulation of Kuratowsky’s theorem: A graph is planar if and only if it has no minor
isomorphic to K5 or K3,3 [84]. A similar characterization holds for outerplanar graphs: A
graph is outerplanar if and only if it has no minor isomorphic to K4 or K2,3. If a graph
class can be fully described by excluding a set of forbidden minors two natural problems
occur: Let a graph G and a set of forbidden minors F be given:

1. Decide whether G contains a forbidden minor of F .

2. Delete a minimum number of edges whose deletion results in a graph without any
forbidden minor of F .

The first problem was considered by Robertson and Seymour [73]. They proved that, for
any class of graphs closed under isomorphism and taking minors, there exists an O(n3)
time algorithm to decide if an input graph on n vertices belongs to the class (but generally

150 Chapter 9. Minimum Edge Deletion

we do not know the algorithm). Hence, this problem can be solved in strongly polynomial
time. However, the second problem is not in P in general. Watanabe, Ae and Nakamura [85]
proved NP-hardness for the minor-deletion problem on general graphs if F is a nonempty
class consisting of triconnected graphs and there are arbitrary large graphs without minors
of F . Asano [1] strenghted the above result and showed that the edge-deletion problem
is NP-hard even on planar graphs if F describes a property π which is nontrivial and
determined by the weighted triconnected components of a graph. This class of edge-deletion
problems includes properties π such as series-parallel, outerplanar, co-outerplanar, ladder,
or without cocycles of cardinality at least three.

In this chapter we will be concerned with the deletion of complete minors and complete
bipartite minors. As we have already mentioned above, the maximum planar subgraph
problem is to find a subset of edges of minimum cardinality whose deletion results in a
graph without K3,3-minors and K5-minors. Liu and Geldmacher [64] proved the maximum
planar subgraph problem to be NP-hard. As we have seen in Section 9.1, this remains true
even when restricted to K5- or K3,3-minor free, respectively, non-planar graphs.

If K3,3 is replaced by K2,3 and K5 by K4 we get a characterization of outerplanar graphs.
Yannakakis [87] proved the maximum outerplanar subgraph problem to be NP-hard on
general graphs and Asano [1] proved NP-hardness even for planar graphs.

Finally, the problem of deleting all K1,3-minors and K3-minors is equivalent to the prob-
lem of finding a maximum subgraph with maximum degree two and without cycles. By
reduction from the Hamiltonian path problem it can be shown that this problem is also
NP-hard.

In order to understand the reason of the NP-hardness of these problems we turn our
attention to the problem of only excluding the corresponding bipartite minor.

The problem of deleting all K1,3-minors is given by a (planar) graph G = (V, E). The task
is to find a maximum subgraph G′ = (V, E \ E ′) that does not contain any K1,3-minor.
Observe that a graph G′ contains a K1,3-minor if and only if G′ contains a vertex v ∈ V
with deg(v) ≥ 3. Hence, the K1,3-minor deletion problem boils down to finding a maximal
subgraph whose maximum degree is equal to 2, i. e., a simple 2-matching. This problem can
be solved in O(

√
nm) time (in the unweighted case) and in O(mn log(n)) or O(n3) time (in

the weighted case) by using the algorithms of Gabow [32]. On the other hand, excluding
all K3-minors is equivalent to the problem of finding a maximal subgraph without minors
that are cycles of length greater or equal to three which leads to the maximal spanning
tree problem (if the graph is simple). Hence, the K1,3-minor deletion problem as well as
the K3-minor deletion problem are solvable in polynomial time while the deletion problem
of both minors becomes NP-hard.

However, the behavior of the deletion problems corresponding to the minors K2,3 and K4

is quite different. Using the notation of Asano [1], the property of a graph to be K2,3-
minor free is determined by the weighted triconnected components of the graph. The same
holds for the property to be K4-minor free (i. e., series-parallel). Hence, both the K2,3-
minor deletion problem as well as the K4-minor deletion problem are NP-hard even for

Chapter 9. Minimum Edge Deletion 151

2-connected planar graphs [1].

Our contribution to this topic deals with a much weaker minor definition, the so-called
rooted bipartite minors, i. e., minors that can be contracted onto prespecified vertices.
Rooted minors have already been investigated in order to prove the existence of minors.
For instance, Robertson, Seymour and Thomas [72] proved the following observation: Given
a graph G and four vertices v1, v2, v3 and v4, then either there exists a K4-minor which is
contractible onto v1, . . . , v4 or G is planar with the four vertices on the same boundary. This
observation was crucial for their proof of Hadwiger’s Conjecture for K6-free graphs. And
Jørgensen [52] investigated rooted minors in order to prove that a 4-connected K4,4-minor
free graph on n vertices has at most 4n−8 edges, which results in the observation that K4,4-
free graphs have vertex-arboricity of at most 4. Recently, Jørgensen and Kawarabayashi [53]
proved extremal results on the minimum number of edges which guarantees the existence
of a rooted K3,4-minor (and K3,3- and K2,3-minor, respectively).

Our motivation to this topic is to study NP-hard deletion problems, e.g., the maximum
planar subgraph problem, under certain decompositions. The question is how to boil down,
e.g. the maximum planar subgraph problem of a given graph, to its decomposition primes.
Beside the common minimum cut problem that comes up while trying to reduce the con-
nectivity in a (Tutte) 2-separation, we observe that in the case of (Tutte) 3-separation
there occurs an additional connectivity reduction problem [57] that is equal to the prob-
lem of minimum deletion of rooted Ki,3-minors with i ∈ N. Consequently, the results of
this chapter are first steps towards extracting new polynomial sub-cases and gaining new
insight in order to improve heuristics and exact methods.

In this chapter (see [37] for a technical report) we apply the edge-deletion approach to
rooted Ki,3-minors with i = 1, 2. In Section 9.2.1 we introduce some definitions and nota-
tions. Section 9.2.2 is dedicated to the problem of deleting rooted K1,3-minors. In contrast
to the K1,3-minor deletion the problem of finding a subset of edges of minimum weight
whose deletion results in a graph without any rooted K1,3-minor is proved to be NP-hard
on general graphs. However, for the special case of planar graphs we suggest an efficient
algorithm which solves the problem in O(n3) time (where n is the number of vertices of the
planar graph). Finally, in Section 9.2.3 the problem of minimum deletion of all rooted Ki,3-
minors for a fixed i ∈ N is proved to be NP-hard on general graphs. This explains why it
is so difficult to achieve e.g. a maximum planar subgraph in general even under decomposi-
tion. For planar graphs that have no rooted K2,3-minor we give a detailed characterization,
while the complexity of the deletion problem remains open.

9.2.1 Problem Statement

Throughout this section we will use the following additional notation:

Let G be a planar graph and let Z be a face in G. Then the set of vertices of the boundary
of Z is denoted by bd(Z).

A k-star is a tree in which all vertices except one are leaves and one vertex has degree k.

152 Chapter 9. Minimum Edge Deletion

The vertex with degree k is called the root of the k-star.

Let G be planar and let Z be a face in G with |bd(Z)| = k. The graph that results by
adding a k-star to G such that the leaves of the k-star coincide with the vertices on the
boundary of Z is denoted by G ⊛ Z. Observe that G ⊛ Z is still planar. The root of the
inserted k-star is denoted by r(Z).

The contraction of a set of edges L ⊆ E in a graph G is denoted by G/L. A graph resulting
from adding an edge e to graph G is denoted by G + e.

Given a path P that contains the vertices i and j we denote the subpath of P from i to j
by P (i, j).

Finally, given an edge weight function ℓ : E → R and a subset of edges L ⊆ E the total
weight of L is defined by ℓ(L) =

∑

e∈L ℓ(e).

Let X = {x1, . . . , xp} be a set of p vertices of G. Then G contains a rooted Kp-minor with
respect to X (Kp[X]-minor for short) if Kp is a minor of G and Kp is contractible onto X,
i. e., there exists a subgraph H ′ of G and a partition V (H ′) = V1 ⊎ · · · ⊎Vp of its vertex set
into connected subsets such that contracting each of V1, . . . , Vk yields a graph isomorphic
to Kp and xi ∈ Vi for i = 1, . . . , p.

Bipartite rooted minors are defined in a similar way. Let X = {x1, . . . , xq} be a set of
vertices of G. Then G contains a rooted Kp,q-minor with respect to X (Kp,q[X]-minor for
short) if there exists a bipartite subgraph H ′ of G and a partition V (H ′) = U1⊎Up⊎W1⊎Wq

of its vertex set into connected subsets such that contracting each U1, . . . , Up, W1, . . . , Wq

yields a graph isomorphic to Kp,q and xi ∈ Wi for i = 1, . . . , q.

An instance of the minimum weighted rooted K1,3-minor deletion problem (K13-DEL for
short) is given by an edge weighted graph G = (V, E, ℓ) and three prespecified vertices
a, b, c ∈ V . These three vertices are called terminals. Using the notation from above we
are interested in deleting all K1,3[X]-minors for X = {a, b, c}. Hence, the task is to find a
subset of edges E ′ ⊂ E with minimum total weight such that G′ = (V, E \ E ′) does not
have any K1,3[X]-minor with X = {a, b, c}.
The minimum weighted rooted K2,3-minor deletion problem (K23-DEL for short) is defined
analoguesly.

9.2.2 The Rooted K1,3-minor Deletion Problem

In this section we investigate the problem of deleting edges with minimum total weight
such that the remaining graph does not contain any rooted K1,3-minor. We will first prove
NP-hardness for general graphs and then develop an efficient polynomial time algorithm
for the problem on planar graphs.

K13-DEL can be reformulated in the following way: Given a graph G = (V, E) and three
terminals a, b, c. Find a subset of edges E ′ at minimum total weight whose deletion results
in a graph G′ = (V, E \ E ′) with the following property: In G′ there does not exist any
vertex v ∈ V \ {a, b, c} such that v can reach a, b and c along paths that do not contain

Chapter 9. Minimum Edge Deletion 153

the terminals a, b or c as intermediate nodes.

K13-DEL on General Graphs

In this section we show that K13-DEL is strongly NP-hard on general graphs.

Theorem 9.3. Given a graph G = (V, E) and a set X ⊂ V with |X| = 3. The problem
of finding a subset of edges with minimum weight such that the resulting graph does not
contain any K1,3[X]-minor is NP-hard.

The proof is done by a reduction from Max-Cut. Let Ḡ = (V̄ , Ē) be an instance of Max-
Cut with |V̄ | = n and |Ē| = m. We construct an instance G = (V, E, ℓ) of K13-DEL in
the following way: For every vertex i ∈ V we add two copies i1 and i2 and add the three
terminals a, b and c. The edge set E consists of edges in Ev and Ee.

V = {i, i1, i2 | i ∈ V̄ } ∪ {a, b, c}
Ev = {(i1, a), (i, b), (i2, c), (i1, i), (i, i2) | i ∈ V̄ }
Ee = {(i1, j2), (j1, i2) | (i, j) ∈ Ē}
E = Ev ∪Ee

In Figure 9.2 the construction for an edge (i, j) ∈ Ē is displayed. The edge weights are set
as follows:

ℓ(i1, a) = ℓ(i, b) = ℓ(i2, c) = 2m(n + 1) for i ∈ V̄

ℓ(i1, i) = ℓ(i, i2) = 2m for i ∈ V̄

ℓ(i1, j2) = ℓ(i2, j1) = 1 for (i, j) ∈ Ē

i1 i i2 j1 j j2

a b c

2m 2m 2m 2m
1

1

Figure 9.2: Construction of the K13-DEL instance for an edge (i, j) ∈ Ē.

Given the Max-Cut instance Ḡ the K13-DEL instance G = (V, E, ℓ) can be computed in
polynomial time. We claim that Ḡ has a cut of size K or greater if and only if G has a
feasible solution with weight of at most 2m(n + 1)−K.

Let (V̄1, V̄2) be a cut of size K or greater. Then we set

154 Chapter 9. Minimum Edge Deletion

E ′ ={(i1, i) | i ∈ V̄1} ∪ {(i, i2) | i ∈ V̄2} ∪
{(i2, j1) | (i, j) ∈ Ē, i ∈ V̄1, j ∈ V̄2} ∪
{(i2, j1), (i1, j2) | (i, j) ∈ Ē and i, j ∈ V̄1 or i, j ∈ V̄2}

If i ∈ V̄1 then (i1, i) ∈ E ′ and (i2, j1) ∈ E ′ for all (i, j) ∈ Ē. Therefore, the vertices i and
i2 can only reach b and c. The only possibility for vertex i1 to reach terminal b is to use
an edge (i1, j2). By construction (i1, j2) (for some (i, j) ∈ Ē) is not deleted only if j ∈ V̄2

and hence (j, j2) ∈ E ′. Therefore, there are only two kinds of edges incident to j2: Either
(j2, c) or (j2, k1) for some (j, k) ∈ Ē with k ∈ V̄1. Hence, i1 can only reach a or c and
non-terminal vertices j2 for j ∈ V̄2 and k1 for k ∈ V̄1. An analogous argument holds for
i ∈ V̄2. Therefore, there is no vertex that reaches all three terminals directly. Hence, G′ is
feasible. Furthermore, we conclude that

ℓ(E ′) = 2mn + K + 2(m−K) = 2m(n + 1)−K

holds.

Now we assume that G′ = (V, E \E ′) is feasible for K13-DEL and ℓ(E ′) ≤ 2m(n + 1)−K.
Observe that all edges that are incident to terminals have weight 2m(n+1). Therefore, we
conclude that E ′ does not contain any of these edges. Moreover, E ′ contains at least one
edge of {(i, i1), (i, i2)} for all i ∈ V̄ because otherwise G′ would not be feasible. Assume
that there exists a vertex i ∈ V̄ such that both edges (i, i1) and (i, i2) are in E ′. Then the
weight of E ′ is bounded by

ℓ(E ′) ≥ (n− 1)2m + 2(2m) = 2m(n + 1) > 2m(n + 1)−K.

This contradicts the assumption of the weight of E ′. Hence, we conclude that for every
i ∈ V̄ either (i, i1) ∈ E ′ or (i, i2) ∈ E ′ but not both.

If (i, i1) ∈ E ′ and (i, i2) /∈ E ′ then (i2, j1) ∈ E ′ for all (i, j) ∈ Ē since otherwise i2
would reach all terminals. And if (i, i2) ∈ E ′ and (i, i1) /∈ E ′ then (i1, j2) ∈ E ′ for all
(i, j) ∈ Ē. Hence, let (i, j) ∈ Ē, and let (i, i1) ∈ E ′ and (j, j2) ∈ E ′. Then the edges
in Ee corresponding to (i, j) contribute at least 2 to the value of E ′. The same holds if
(i, i1), (j, j2) ∈ E ′. However, if (i, i1), (j, j1) ∈ E ′ (resp. (i, i2), (j, j2) ∈ E ′) then at least
(i2, j1) ∈ E ′ (resp. (i1, j2) ∈ E ′) and therefore the edges in Ee corresponding to (i, j)
contribute at least 1 to the value of E ′. We set

V̄1 = {i ∈ V | (i, i1) ∈ E ′}
V̄2 = {i ∈ V | (i, i2) ∈ E ′}.

Let C̄ be the size of cut (V̄1, V̄2). Then we have

Chapter 9. Minimum Edge Deletion 155

2m(n + 1)−K ≥ ℓ(E ′)
≥ 2mn + |{(i, j) ∈ Ē | i, j ∈ V̄1 or i, j ∈ V̄2}|+

2|{(i, j) ∈ Ē | i ∈ V̄1, j ∈ V̄2}|
= 2mn + C̄ + 2(m− C̄) = 2m(n + 1)− C̄

We conclude that C̄ ≥ K holds.

K13-DEL on Planar Graphs

In this section we develop an O(n3) time algorithm for K13-DEL on planar graphs.
Throughout this section an instance of K13-DEL is given by an edge-weighted planar
graph G = (V, E, ℓ) and three terminals a, b and c. Let X = {a, b, c}. Observe that we
can assume without loss of generality that G does not contain any terminal-connecting
edges. If G contains a terminal-connecting edge, e. g., (a, b) ∈ E, then a subgraph G′ of
G is feasible if and only if G′ + (a, b) is feasible. Hence, (a, b) 6∈ E ′ holds for any optimal
solution and we can delete (a, b) from G in advance and solve K13-DEL on the reduced
graph.

Let us start with a structural investigation of a feasible solution, i.e., a graph G′ = (V, E′)
that does not contain any K1,3[X]-minor of the form explained above. Observe that G′

may consist of several connected components. We distinguish the following three cases:

1. a, b and c are the only vertices of one connected subgraph. We call this situation
type I.

2. a, b and c are not in one connected component. This constellation is called type II.

3. a, b and c are in one connected component that contains at least one further vertex:
Let Ĝ be the connected component of G′ containing a, b and c. Consider the dual
graph ĜD of Ĝ such that the outer face does not correspond to a terminal. Such
a dual graph can always be found since there are no edges connecting the terminal
vertices. Let A, B, C be the faces associated with the terminals a, b, c.

Now we delete all edges of ĜD that are not part of the boundaries of A, B or C.
The resulting graph HD contains at least four faces, face A, B, C and one outer face
that corresponds to an accumulation of some non-terminal vertices. Assume that the
boundary of the outer face in HD consists of boundary edges of A, B and C. See
Figure 9.7.

Then there exists a vertex v in Ĝ that can reach a, b and c without using a, b or c
as intermediate nodes on its paths since there are cut edges in HD connecting face
V with the faces A, B and C. This leads to a contradiction to the feasibility of G′.
Hence, we know that the outer face of HD is bounded by edges of boundaries of at
most two different faces A, B or C. Assume without loss of generality that edges of
the boundaries of A and B bound the outer face.

156 Chapter 9. Minimum Edge Deletion

A B C

V

Figure 9.3: The faces A, B and C are adjacent to the outer face.

(a) The boundaries of A and B have at most one vertex in common.
Then the face C is surrounded by the boundary of A or B. See Figure 9.4. This
constellation is called type III.

A

C B

Figure 9.4: Face A surrounds face C and separates C with B.

(b) The boundaries of A and B have at least two vertices in common.
Face C is then surrounded by a part of edges of the boundary of A and a part
of the edges of the boundary of B. Hence, there exists a cycle in HD consisting
of two paths, one path from a vertex s to a vertex t containing only edges of
the boundary of A and one path from t to s containing only edges from the
boundary of B. See Figure 9.5(a).

If the boundary of C does not contain vertex s then there exists a face V in HD

such that there exist paths of cut edges from V to A, B and C without crossing
the faces A, B or C. See Figure 9.5(b).

This leads to a contradiction to the feasibility of G′. The same argument holds
for vertex t. Hence, there are two vertices s and t that lie on the boundaries of
A, B and C. See Figure 9.20. This constellation is called type IV.

We have shown that if G′ is feasible then it contains one of the types I, II, III or IV. On
the other hand, if a graph is of one of these types, it is feasible. Translating type III and
IV into the primal graph immediately yields the following structural theorem.

Chapter 9. Minimum Edge Deletion 157

A C B

s

t

(a) Face A and B have at least
two common vertices and C is sur-
rounded by boundary edges of A

and B.

A C B

s

t

V

(b) Face V can reach A, B and C

without crossing one of the termi-
nal faces.

Figure 9.5: Illustration of case 3(b).

A C B

s

t

Figure 9.6: Constellation of type IV.

Theorem 9.4. Given a planar graph G′ and three terminal vertices a, b and c. Let X =
{a, b, c}. Then G′ does not contain a K1,3[X]-minor if and only if

1. a, b and c are the only vertices of a connected component, or

2. a, b and c are not in the same connected component, or

3. at least one terminal is a cut vertex, or

4. there exists an embedding such that the three terminals lie on two common boundaries.

Observe that item 4 may be rewritten as “each pair of a, b, c is a split pair in G′”. Hence,
if one planar embedding satisfy item 4 then all planar embeddings do.

If graph G′ is connected we get the following corollary.

Corollary 9.3. Given a planar connected graph G′ and three terminal vertices a, b and c.
Let X = {a, b, c}. Then G′ does not contain a K1,3[X]-minor if and only if either at least
one terminal is a cut vertex or there exists an embedding such that the three terminals lie
on two common boundaries.

158 Chapter 9. Minimum Edge Deletion

Based on the characterization of K1,3[X]-free graphs of Theorem 9.4 we are looking for
an edge removal strategy such that the resulting graph satisfies one of the properties of
Theorem 9.4. An algorithm solving each type at minimum cost and taking the cheapest
solution among the four types would solve the problem. An example is visualized in Fig-
ure 9.7, where a graph and its subgraphs G′ that correspond to types II-IV are presented.
By assuming that each edge has cost 1, type III would be optimal.

a b c

v1

v2 v4

v3

v5

Type II:

a b c

v1

v2 v4

v3

v5

Type III:

a b c

v1

v2 v4

v3

v5

Type IV:

a b c

v1

v2 v4

v3

v5

Figure 9.7: A graph with K1,3[X]-minors on the left-hand side. On the right-hand side the
corresponding subgraphs G′ that depend on the types II-IV are visualized. Type I cannot
be achieved and therefore is omitted.

Let us analyze the four types:

Every solution of type I contains all edges that are incident to one terminal and one non-
terminal vertex. Since we assume that there are no terminal-connecting edges we conclude
that every solution E ′ of type I yields a pairwise separation of the terminal nodes. Hence,
E ′ is also feasible for type II. Therefore, an optimal solution of type I can not dominate
an optimal solution of type II.

A graph is of type II if there exists at least one terminal that is separated from the other
two terminals. The problem of finding a type II constellation at minimum cost boils down
to three min-cut problems.

Chapter 9. Minimum Edge Deletion 159

Consider type III: Observe that the deletion of an edge in the primal graph leads to the
contraction of the edge in the dual graph. In order to achieve type III we have to find a
path starting on the boundary of the first terminal face, surrounding the face of the second
terminal and ending on the boundary of the first terminal face in such a way that the
second and third faces are separated. See Figure 9.8(a).

Let s and t be starting and end vertices of the path on the boundary of A in GD. We are
interested in a path starting at s and ending at t that separates face B from C. Every path
of this kind corresponds to a cycle in GD ⊛A that contains vertex r(A). See Figure 9.8(b).

A B C

s

t

(a) Solution in GD.

r(A)
B C

s

t

(b) Cycle in GD ⊛ A.

Figure 9.8: Solution of type III.

If we set ℓ(e) = 0 for all edges e of the inserted k-star then the total length of a minimum
cycle XA in GD ⊛ A that separates B from C and contains r(A) is equal to a shortest
path that starts and ends on the boundary of A and separates B from C. Consider the
following relaxed problem:

(RMC) min ℓ(X)
s. t. ∃Z ∈ {A, B, C} such that X is a cycle in GD ⊛ Z

that separates the terminals in {A, B, C} \ {Z}

We show that the set of feasible solutions of (RMC) is equal to the set of feasible solutions
of type II and III.

Lemma 9.2. An optimal solution of (RMC) is optimal among all type II and type III
solutions.

Proof. Let X be a feasible solution of (RMC) that separates A from B in GD ⊛ C. If X
contains r(C) then X is a feasible solution of type III. Otherwise, if X does not contain
r(C), then X is a feasible solution of type II since it separates A from B in GD. Together
with the same argumentation for A and B yields that every feasible solution of (RMC) is of
type II or III. On the other hand, let XA be a feasible solution of type III that separates B
from C and contains r(A). Then XA is feasible for (RMC) for Z = A. Analogous arguments
hold for B and C. And finally, if XAB is a solution of type II that separates A and B from
C in GD, then XAB separates B from C in GD ⊛ A. Since analogous arguments hold for
XAC and XBC we conclude that every solution of type II or III is feasible for (RMC).

160 Chapter 9. Minimum Edge Deletion

Lemma 9.2 implies an algorithm that simultaneously solves type II and type III to opti-
mality. See Algorithm 30 for a pseudo-code description.

Algorithm 30: Algorithm for type II and type III: Output is an optimal solution
among all solutions of type II and type III.

forall the Z ∈ {A, B, C} do
Determine a minimum cut in the primal graph of GD ⊛ Z that separates the
terminals in {A, B, C} \ {Z}.;
Let X∗

Z denote the determined minimum cut;

ℓ(X∗)⇐ min{ℓ(X∗
A), ℓ(X∗

B), ℓ(X∗
C)};

Return: X∗;

In Algorithm 30 we have to solve three minimum st-cut problems in planar graphs. Hassin
and Johnson [46] suggested an O(n log2 n) time algorithm for the maximum flow problem in
planar graphs. Using Frederickson’s shortest path algorithm for planar graphs [31] within
the algorithm of Hassin and Johnson yields an O(n log n) time algorithm for the maximum
flow problem and hence for the minimum cut problem in planar graphs. Therefore, an
optimal solution of type II and III can be found in time

O(n logn).

Finally, we have to show how to solve type IV. To achieve type IV, we have to find two
vertex-disjoint connected subgraphs S and T each of them containing at least one vertex of
the boundary of A, B and C. Let us fix two vertices of each boundary, i. e., a1, a2 ∈ bd(A),
b1, b2 ∈ bd(B) and c1, c2 ∈ bd(C). Clearly S and T are trees in an optimal solution. See
Figure 9.25(b).

A B C

a1

a2

b1

b2

c1

c2

x

y

Pa Pb Pc

Qa Qb Qc

Figure 9.9: Solution of type IV.

Hence, this leads to the vertex disjoint Steiner Tree packing problems, where {a1, b1, c1}
is one net of terminals and {a2, b2, c2} is the second net of terminals. The vertex disjoint
Steiner Tree packing problem is in general NP-hard on planar graphs [65]. For several

Chapter 9. Minimum Edge Deletion 161

special cases the problem becomes solvable in polynomial time, e. g., if each net has cardi-
nality two and the number of nets is fixed (Robertson and Seymour [71]) or if the terminals
lie only on one or two face boundaries (Robertson and Seymour [73], Suzuki, Akama and
Nishizeki [79] and Liao and Sarrafzadeh [62]). For a survey on this problem the reader is
referred to Wagner [83].

Our approach to this special vertex disjoint Steiner Tree packing problem is to solve the
problem to optimality only if the choice of a1, a2, b1, b2, c1 and c2 is a ”potential optimal
choice”. If we can guarantee that an optimal solution for a fixed choice of boundary vertices
is dominated by a solution of type III or a solution of type IV with another choice of ai,
bi and ci we do not solve the corresponding vertex disjoint Steiner Tree packing problem
to optimality. Moreover we know that tree S contains at most one vertex of degree 3 since
it has to connect three terminals. The same observation holds for tree T . If S contains no
vertex of degree 3 then S is a path. If S is a path then there exists exactly one terminal,
i. e., a vertex on the boundary of a terminal face, that is not a leave. This vertex is called
degenerated degree-3-vertex.

Let x, y ∈ VD be the two degenerated degree 3-vertices of S and T . Then S∪T is a disjoint
union of the paths Pz and Qz where Pz is a path from x to a boundary vertex of terminal
z ∈ {a, b, c} and Qz is a path from a boundary vertex of terminal z ∈ {a, b, c} to y.

Lemma 9.3. Assume that an optimal solution of problem K13-DEL is of type IV. Let
S ∪ T be the corresponding optimal set of edges and let x and y be the two (degenerated)
degree 3 vertices. Furthermore, let

min{ℓ(Pa) + ℓ(Qa), ℓ(Pb) + ℓ(Qb), ℓ(Pc) + ℓ(Qc)} = ℓ(Pf) + ℓ(Qf)

for f ∈ {a, b, c}. Then (Pf , r(F), Qr) is a shortest path from x to y in GD ⊛ F .

Proof. The proof is by contradiction. Assume that there exists a path P ∗ from x to y in
GD ⊛ F with

min{ℓ(Pa) + ℓ(Qa), ℓ(Pb) + ℓ(Qb), ℓ(Pc) + ℓ(Qc)} > ℓ(P ∗). (9.1)

Furthermore, let i and j be two vertices on P ∗∩(S∪T). Then P ∗(i, j) denotes the subpath
of P ∗ from i to j and P (i, j) denotes the unique subpath of S∪T from i to j. Observe that
we can assume without loss of generality that ℓ(P ∗(i, j)) < ℓ(P (i, j)) holds for all pairs of
vertices i, j ∈ P ∗ ∩ (S ∪ T).

Now we consider a special pair of vertices: Let i be the first vertex on P ∗ on its way from
x to y such that the edge leaving i is not in S ∪ T and let j be the first vertex after i on
P ∗ that is on S ∪ T . Since x is on Pa ∪ Pb ∪ Pc we conclude that i is on Pa ∪ Pb ∪ Pc or on
Qf . Now we distinguish the following cases:

1. Both vertices i and j are on the same path Pa, Pb or Pc. See Figure 9.10:

162 Chapter 9. Minimum Edge Deletion

A B C

a1

a2

b1

b2

c1

c2

x

y

j
i

Figure 9.10: Vertex i and j are on Pa.

We set

S ′ = S ∪ P ∗(i, j) \ P (i, j)

T ′ = T

Since S ′ ∪ T ′ is a feasible solution and

ℓ(P ∗(i, j)) < ℓ(P (i, j))

holds, we have a contradiction to the optimality of S ∪ T .

2. Both vertices i and j are on a path Pz for z ∈ {a, b, c} but not on the same; see
Figure 9.11: We can assume without loss of generality that i 6= x because otherwise
we get the first case.

A B C

a1

a2

b1

b2

c1

c2

x

y

i
j

Figure 9.11: Vertex i is on Pa and j is on Pb.

Observe that the following chain of inequalities holds

ℓ(P ∗(i, j)) < ℓ(P ∗(x, j)) < ℓ(P (x, j))

Chapter 9. Minimum Edge Deletion 163

We set

S ′ = S ∪ P ∗(i, j) \ P (x, j)

T ′ = T

S ′ is a tree that covers a1, b1 and c1 where vertex i is the degree 3-vertex. Furthermore
S ′∪T ′ dominates S∪T . Hence, vertex x was the wrong choice for the degree 3-vertex.
This leads to a contradiction to the optimality of S ∪T and x, y as degree 3-vertices.

3. Vertex i 6= x is on a path Pz and j is on some Qz′ for z 6= z′; see Figure 9.12:

A B C

a1

a2

b1

b2

c1

c2

x

y

i

j

Figure 9.12: Vertex i is on Pa and j is on Qb.

Then the following chain of inequalities holds:

ℓ(P ∗(x, j)) ≤ ℓ(P ∗(x, y))

< ℓ(Pf) + ℓ(Qf)

≤ ℓ(Pz) + ℓ(Qz)

We conclude that
ℓ(P ∗(x, j)) < ℓ(Pz) + ℓ(Qz)

holds. We set
S ′ ∪ T ′ = S ∪ T ∪ P ∗(x, j) \ (Pz + Qz) .

Observe that S ′∪T ′ dominates S ∪T . Now we show that S ′∪T ′ is a solution of type
III.

In order to simplify the notation let z = a and z′ = b. See Figure 9.12. Then S ′ ∪ T ′

contains a path P̂ consisting of the edges of Pc, Pa(x, i), P ∗(i, j), Qb(j, y) and Qc

such that P̂ is a path from c1 to c2 separating the faces A and B. Hence, S ′ ∪ T ′ is
a solution of type III which dominates S ∪ T .

4. Vertex i is on Pz and vertex j is on Qz:

Let k be the next vertex after j on P ∗ such that k is on S ∪ T but the edge arriving
at k is not in S ∪ T .

164 Chapter 9. Minimum Edge Deletion

(a) If k is on Pz (see Figure 9.13(a)) we conclude

ℓ(P ∗(i, j)) < ℓ(P ∗(i, k)) < ℓ(P (i, k)) = ℓ(Pz(i, k)).

Set
S ′ ∪ T ′ = S ∪ T ∪ P ∗(i, j) \ Pz(i, k).

S ′ ∪ T ′ is a solution of type III that dominates S ∪ T .

A B C

x

y

i

j

k

(a) Case 4(a) for z = b: Vertex i is on
Pb, j is on Qb and k is on Pb.

A B C

x

y

i

j

k

(b) Case 4(b) for z = b: Vertex i is on
Pb and j and k are on Qb.

Figure 9.13: Proof of Lemma 9.3: Subcases of 4.

(b) If k is on Qz (see Figure 9.13(b)) we know that

ℓ(P ∗(j, k)) < ℓ(P (j, k)) = ℓ(Qz(j, k)) (9.2)

We set
S ′ ∪ T ′ = S ∪ T ∪ P ∗(j, k) \Qz(j, k)

S ′ ∪ T ′ is of type IV and dominates S ∪ T .

(c) If k is on Pz′ for z′ ∈ {a, b, c} \ {z} (see Figures 9.14(a) and 9.14(b)) then the
following two chains of inequalities hold:

ℓ(P ∗(x, k)) < ℓ(P (x, k)) = ℓ(Pz′(x, k))

and

ℓ(P ∗(x, k)) ≤ ℓ(P ∗(x, y)) < ℓ(Pf) + ℓ(Qf) ≤ ℓ(Pz) + ℓ(Qz)

If P ∗(i, j) lies in the region bounded by (Pz, Z, Qz, Qz′, Z
′, Pz′) (Figure 9.14(a))

we set
S ′ ∪ T ′ = S ∪ T ∪ P ∗(x, k) \ Pz′(x, k)

and get a solution of type III otherwise (Figure 9.14(b)) we set

S ′ ∪ T ′ = S ∪ T ∪ P ∗(x, k) \ (Pz, Qz)

and get a solution of type II. In both cases the solution S ′∪T ′ dominates S ∪T
and therefore leads to a contradiction to the optimality of S ∪ T .

Chapter 9. Minimum Edge Deletion 165

A B C

x

y

i

j

k

(a) Case 4(c) for z = b and z′ = c:
P ∗(i, j) lies in the region bounded by
(Pz , Z, Qz, Qz′ , Z ′, Pz′).

A B C

x

y

i

j

k

(b) Case 4(c) for z = b and z′ = a:
P ∗(i, j) lies not in the region bounded
by (Pz , Z, Qz, Qz′ , Z ′, Pz′).

Figure 9.14: Proof of Lemma 9.3: Subcases of 4.

(d) Finally, if k is on Qz′ (see Figures 9.15(a) and 9.15(b)) we know that

ℓ(P ∗(x, k)) ≤ ℓ(P ∗(x, y)) < ℓ(Pz) + ℓ(Qz). (9.3)

We set
S ′ ∪ T ′ = S ∪ T ∪ P ∗(x, k) \ (Pz + Qz)

and get a solution of type III that dominates S ∪ T .

A B C

x

y

i

j k

(a) Case 4(c) for z = b and z′ = c.

A B C

x

y

i

jk

(b) Case 4(c) for z = b and z′ = a.

Figure 9.15: Proof of Lemma 9.3: Subcases of 4.

This completes the proof of case 4.

5. Vertex i is on Qf :

Since P ∗ is a shortest path from x to y we conclude that P ∗ is also a shortest path
from y to x. Hence, we consider the following pair of vertices: Let i′ be the first vertex

166 Chapter 9. Minimum Edge Deletion

on P ∗ on its way from y to x such that the edge leaving i′ is not in S ∪ T and let j′

be the first vertex after i′ on P ∗ on its way from y to x that is on S ∪ T . Then we
can use the same arguments as above by replacing i by i′ and j by j′ and changing
the roles of the paths Pz and Qz; for z ∈ {a, b, c}.

This completes the proof.

Lemma 9.3 implies the following main theorem.

Theorem 9.5. Assume that an optimal solution of problem K13-DEL is of type IV. Let
S ∪ T = Pa ∪ Pb ∪ Pc ∪ Qa ∪ Qb ∪ Qc be the corresponding optimal set of edges and let x
and y be the two degenerated degree 3 vertices. Moreover, let

ℓ(Pf) + ℓ(Qf) ≤ ℓ(Pg) + ℓ(Qg) ≤ ℓ(Ph) + ℓ(Qh)

for {f, g, h} = {a, b, c}. Then the following holds:

• (Pf , r(F), Qf) is a shortest path from x to y in GD ⊛ F .

• (Pg, r(G), Qg) is a shortest path from x to y in GD ⊛ G/ (Pf , Qf).

• (Ph, r(H), Qh) is a shortest path from x to y in GD ⊛ H/ (Pf , Qf , Pg, Qg).

Proof. The correctness of the shortest path condition on (Pf , r(F), Qf) was already proved
in Lemma 9.3.

Now we contract Pf and Qf . Clearly, S∪T \(Pf , Qf) is an optimal solution of the contracted
instance. Assume that there exists a path P ∗ from x to y in GD ⊛G/ (Pf , Qf) with ℓ(P ∗) <
ℓ(Pg) + ℓ(Qg). We use the technique of the proof of Lemma 9.3 where Pf and Qf of the
lemma play the role of Pg and Qg, respectively, here. Since P ∗ does not contain any vertex of
Pf∪Qf except for x and y all inequalities of the proof of Lemma 9.3 hold for the contracted
instance, too. Hence, we can find a contradiction to the optimality of S∪T \ (Pf , Qf). This
proves the shortest path condition on (Pg, r(G), Pg).

Finally, we have to prove the shortest path condition on (Ph, r(H), Qh). For any xy-path
P ∗ in GD ⊛ H/ (Pf , Qf , Pg, Qg) the solution Pf ∪Qf ∪ Pg ∪Qg ∪ P ∗ is a feasible solution:
If P ∗ contains r(H) the corresponding solution is of type IV. Otherwise, if P ∗ does not
contain r(H), the resulting solution is of type III. Therefore, (Ph, r(H), Qh) has to be a
shortest path in an optimal solution. This completes the proof.

Observe that Theorem 9.5 implies that the xy-paths of an optimal solution are shortest
paths in appropriate graphs. However, the shortest path condition is not only necessary
but also sufficient for the optimality of a solution of K13-DEL.

Chapter 9. Minimum Edge Deletion 167

Lemma 9.4. Assume that an optimal solution S ∪ T of problem K13-DEL is of type IV,
and let x and y be the degenerated degree 3 vertices. Furthermore, let P ′

z be a shortest path
from x to r(Z), and let Q′

z be a shortest path from r(Z) to y in GD ⊛ Z for z ∈ {a, b, c}.
Then there exists a terminal f ∈ {a, b, c} and an optimal solution that contains P ′

f and
Q′

f .

Proof. Let S ∪ T be an optimal solution that contains the maximal number of edges in
P ′

f ∪Q′
f . We know that S ∪ T is of the form Pa ∪ Pb ∪ Pc ∪Qa ∪Qb ∪Qc. Let

min{ℓ(Pa) + ℓ(Qa), ℓ(Pb) + ℓ(Qb), ℓ(Pc) + ℓ(Qc)} = ℓ(Pf) + ℓ(Qf)

Observe that (P ′
f , Q

′
f) satisfies the necessary optimality condition of Theorem 9.5. However,

assume that Pf and Qf differs from P ′
f and Q′

f .

Let i be the first vertex on R′ = (P ′
f , r(F), Q′

f) on its way from x to y such that the edge
leaving i is not in S ∪ T , and let j be the first vertex on R′ on its way from x to y after i
that is on S ∪ T . We distinguish the five cases of the proof of Lemma 9.3 for P ∗ = R′ and
apply the exchange strategies suggested therein. Since ℓ(R′) = ℓ(Pf) + ℓ(Qf) holds, some
inequalities of the proof of Lemma 9.3 do not hold strict if P ∗ is replaced by R′. However,
if we end up in a case where the exchange procedure produces a solution that strictly
dominates the previous one we get a contradiction to the optimality of S ∪ T . Otherwise,
if the objective value of the modified solution equals the previous one, we get an optimal
solution that contains at least one more edge of R′. This contradicts the assumption that
S ∪ T contains a maximal number of edges of R′.

Observe that analogous results to that of Lemma 9.4 hold for the paths (Pg, r(G), Qg) and
(Ph, r(H), Qh).

Combining the results of Theorem 9.5 and Lemma 9.4 immediately leads to an algorithm
that solves type IV: Using enumeration we fix one order (f, g, h) of the faces. From Lemma
9.4 we know that there exists an optimal solution that contains every pair of shortest
paths P ′

f and Q′
f . According to Theorem 9.5 we contract P ′

f and Q′
f and determine a pair

of shortest paths P ′
g and Q′

g. Lemma 9.4 applied to the contracted instance guarantees
that P ′

g and Q′
g is contained in an optimal solution of the contracted instance. The same

procedure is repeated for terminal h. See Algorithm 31 for a pseudo-code description.

It remains to bound the running time of Algorithm 31. The degree 3 vertices x and y can
be chosen in

(

n

2

)

= O(n2)

different ways. Furthermore, there are 3! = 6 possible orderings of the terminal vertices.
And finally, for every ordering we have to solve a sequence of three shortest path problems.
Frederickson [31] showed that a shortest path in an undirected, planar graph can be found
in O(n

√
log n) time. Hence, the running time of Algorithm 31 is bounded by

O(n3
√

log n).

168 Chapter 9. Minimum Edge Deletion

Algorithm 31: Determination of an optimal solution of type IV: Output is an optimal
solution of type IV.

forall the pairs of vertices x, y ∈ V do
forall the orderings (f, g, h) with {f, g, h} = {a, b, c} do

Determine shortest paths Pf from x to r(F) and Qf from r(F) to y;
Contract Pf and Qf ;
Determine shortest paths Pg from x to r(G) and Qg from r(G) to y;
Contract Pg and Qg;
Determine shortest paths Ph from x to r(H) and Qh from r(H) to y;
Sol(f, g, h)⇐ Pf ∪Qf ∪ Pg ∪Qg ∪ Ph ∪Qh;
val(f, g, h)⇐ ℓ(Sol(f, g, h));

val(x, y) ⇐ min{val(f, g, h) | {f, g, h} = {a, b, c} and Sol(f, g, h) is feasible} =
val(f ∗, g∗, h∗);
Sol(x, y)⇐ Sol(f ∗, g∗, h∗);

val ⇐ min{val(x, y) | x, y ∈ V } = val(x∗, y∗);
Return: Sol ⇐ Sol(x∗, y∗);

Henzinger et al. [47] showed that a shortest path in a planar graph can be found in linear
time. Hence, the running time of Algorithm 31 can be bounded by

O(n3).

Putting all together yields a polynomial time algorithm for K13-DEL:

Theorem 9.6. Problem K13-DEL in a planar graph G = (V, E) can be solved in O(n3)
time where n = |V |.

Proof. Algorithm 30 determines an optimal solution of type II and III and Algorithm 31
determines an optimal solution of type IV. The solution with smaller objective value is
then an optimal solution of K13-DEL.

The correctness of this algorithm follows from Theorem 9.5 and Lemma 9.4 and the running
time follows from the complexity analysis of Algorithm 30 and Algorithm 31.

9.2.3 The Rooted K2,3-deletion Problem

In this section we consider the K23-DEL problem on general graphs and on planar graphs.

K23-DEL on General Graphs

In order to prove NP-hardness of K23-DEL on general graphs we use the construction of
Section 9.2.2 and add a rooted K1,3[X], with X = {a, b, c}, whose edges have sufficiently
large weight. This modified construction immediately leads to the following corollary:

Chapter 9. Minimum Edge Deletion 169

Corollary 9.4. The weighted rooted K2,3-deletion problem is in general NP-hard.

Obviously, we can state the following corollary.

Corollary 9.5. The weighted rooted Ki,3-deletion problem for a fixed i ∈ N is NP-hard
in general.

K23-DEL on Planar Graphs

First we characterize detailed a planar graph G that has no K2,3[X]-minor with respect
to three given vertices a, b, c. Let X = {a,b,c}. Then we show how we can solve a partial
problem of finding the minimum number of edges in a given planar graph G in polynomial
time in order to delete all K2,3[X]-minors. For the remaining cases we conjecture that it is
also polynomial time solvable.

Again, let us start with a structural investigation of a feasible solution of a K2,3[X]-free
graph G′. Observe that G′ may consist of several connected components.

Obviously, if G has no K1,3[X]-minor then it also has no K2,3[X]-minor. Therefore, all
K1,3[X]-free subgraphs of G are feasible solutions (see Section 9.2.2, types I - IV).

Additionally, all K2,3[X]-free subgraphs of G with a K1,3[X]-minor are feasible solutions.
We show that these subgraphs are those that have a planar embedding with the three
terminals on a common boundary in this section.

First we give some results by Wagner [81, 84], Hall [81] and Truemper [81] that we use to
prove the main result of this section.

Theorem 9.7 (Wagner [81, 84]). A graph is planar if and only if it has no minor isomor-
phic to K5 or K3,3.

Theorem 9.8 (Hall [81]). A graph has no minor isomorphic to K3,3 if and only if it can
be obtained from planar graphs and K5 by means of 0-, 1- and 2-sums.

Notice that it follows immediately from the last theorem that a triconnected non-planar
graph G has no minor isomorphic to K3,3 if and only if G is isomorphic to K5.

Theorem 9.9 (Truemper [81]). Let G be a 3-connected graph with a K3,3 minor. If G has
a node u of degree 3, then G has as subgraph a subdivision of K3,3 that has u as a corner
node.

Additionally, we need the following lemma for the proof.

Lemma 9.5. Given a biconnected planar graph G = (V, E) and three terminal vertices a,
b, c of V . Let Ĝ be the modified graph G after adding a 3-star S whose leaves are a, b, c.
Then Ĝ has exactly one triconnected prime Ĉ in its decomposition into triconnected primes
that contains a, b, c. Furthermore, Ĉ contains S.

170 Chapter 9. Minimum Edge Deletion

Proof. Obviously, if G is triconnected then Ĝ is triconnected. Furthermore, there is a
unique decomposition into triconnected primes for a biconnected graph.

We assume that G is biconnected but not triconnected. Then G has a split pair s, t of V
such that G splits into k triconnected primes C1 to Ck (k ∈ N) by removing s, t from G.
We state the following cases.

1. a, b, c are contained in the same triconnected prime Ci, 1 ≤ i ≤ k (see Figure 9.16).
Then S is added to Ci and we get a triconnected prime Ĉi. Since the decomposi-
tion into triconnected primes is unique and G = Ĝ − S, Ĉi is equal to exactly one
triconnected prime of Ĝ.

a

b

c

SCi

s

t
Figure 9.16: Proof of Lemma 9.5, case 1

2. W.l.o.g., a, b belong to the same triconnected prime Ci, and c to an other Cj with
1 ≤ i, j ≤ k, i 6= j. See Figure 9.17. Then at least one terminal of a, b is not equal to
s or t, say a. Furthermore, c cannot be equal to s or t. Therefore, we have at least
two vertices that are not equal to s or t, say a and c.

a

c

b

S
Ci Cj

s

t
Figure 9.17: Proof of Lemma 9.5, case 2

If we add S, we connect a and c by a path P not using b. Therefore, P connects Ci

and Cj without using s or t. Therefore, for each vertex pair x ∈ Ci,y ∈ Cj, there is
an additional disjoint path over P . Hence, for each vertex pair x, y there are three
disjoint paths in total. By Menger’s well-known result, s and t do not remain split pair
of Ci and Cj. This implies that Ci and Cj merge into a single triconnected prime,

Chapter 9. Minimum Edge Deletion 171

say Ĉl (l ∈ N), that contains S. Because of uniqueness of the decomposition into
triconnected prime and G = Ĝ−S, Ĝ has exactly one triconnected prime isomorphic
to Ĉl.

3. a, b, c are belonging to three different triconnected primes Ci, Cj , Cl (1 ≤ i,j,l ≤ k,
i 6= j 6= l) of G. See Figure 9.18. Therefore, a, b, c are not equal to s or t. If we add
S, we connect a, b, c.

Ci Cj Ck

S
a

b
c

s

t
Figure 9.18: Proof of Lemma 9.5, case 3

Therefore, there is a path P1 connecting Ci and Cj resp. a path P2 connecting Cj

and Cl resp. a path P3 connecting Cl and Ci. Observe that neither P1 nor P2 nor P3

use s or t. Therefore, there are three disjoint paths that connect a vertex of Ci and
a vertex of Cj . The same holds for vertex pairs of Cj and Ck resp. Ci and Ck. By
Menger, s and t do not remain split pairs of Ci, Cj , Cl. Hence, Ci, Cj, Cl merge into

a single triconnected prime, say Ĉr (r ∈ N), that contains S. Since the decomposition
into triconnected primes is unique and G = Ĝ − S, Ĝ has exactly one triconnected
prime equal to Cr.

Now we can prove the following main result of this section.

Theorem 9.10. Given a biconnected planar graph G and three terminal vertices a, b and
c with X = {a,b,c}. Then G does not contain a K2,3[X]-minor if and only if

1. G has no K1,3[X]-minor or

2. there exists a planar embedding such that the three terminals lie on a common bound-
ary.

Proof. Let G∗ be G with a 3-star S connected to a, b and c. By Lemma 9.5, G∗ has exactly
one triconnected prime, say C∗, in its decomposition into triconnected prime that contains
a, b, c. Furthermore, C∗ contains S.

172 Chapter 9. Minimum Edge Deletion

1. (a) Assume G has no K1,3[X]-minor. Since K2,3[X] contains two disjoint K3,1[X],
G has obviously no K2,3[X]-minor.

(b) G has a planar embedding such that a, b, c lie on a comon boundary. Assume
G has a K2,3[X]-minor.

Obviously, G∗ is planar. Since G has a K2,3[X]-minor, G∗ has a K3,3[X]-minor.
Therefore G∗ has a K3,3 minor. By Theorem 9.7, G∗ is non-planar that leads to
a contradiction. Therefore, G has no K2,3[X]-minor.

2. G is planar. Furthermore, there is no planar embedding of G such that a, b, c lie on
the boundary of the same face. Assume that G has no K2,3[X]-minor.

G∗ is not planar since G∗ has no planar embedding. Since G = G∗ − S is planar, G∗

has a K3,3[X]- or K5[X]-minor. Observe that K3,3 and K5 are triconnected. Since the
decomposition into triconnected prime of a biconnected graph is unique, a K3,3[X]-
resp. K5[X]-minor is contained in the same triconnected prime as a, b, c and S that
is C∗. Therefore, C∗ is non-planar.

Assume, G∗ has a K5[X]-minor but no K3,3[X]-minor. Therefore, G∗ has a K5 minor
but no minor isomorphic to K3,3. By Wagner’s Theorem 9.7 and Hall’s Theorem 9.8,
C∗ is isomorphic to K5. Since C∗ contains S and therefore at least one vertex with
degree 3 this leads to a contradiction.

Therefore, we assume that C∗ is not isomorphic to K5 and not planar. By Wagner’s
Theorem 9.7, C∗ has a minor isomorphic to K3,3. Since G = G∗−S is planar, C∗−S
is planar. Hence C∗ has a K3,3[X]-minor. Notice that C∗ contains S and therefore at
least one vertex u with degree 3. Let u be the vertex of S. By Truemper’s Theorem 9.9,
C∗ has a subgraph a subdivision of K3,3 that has u as a corner node. Therefore, C∗

has a subgraph a subdivision of K3,3[X], that has u as a corner node. Since S is
isomorphic to K1,3[X], C∗−S = C∗− u has a K2,3[X] subdivision. Therefore, G has
a K2,3[X] subdivision. This contradicts the assumption that G has no K2,3[X]-minor.

Theorem 9.10 gives us a characterization of K2,3[X]-free biconnected graphs.

First we focus on the characterization of planar biconnected graphs with the property
that a planar embedding exists such that the three terminals a, b and c lie on a common
boundary.

Lemma 9.6. Given a biconnected planar graph G′ and three terminal vertices a, b and c
(X = {a,b,c}), and let {e,f ,g} = {a,b,c}.
There exists a planar embedding of G′ such that the three terminals lie on a common
boundary if and only if

1. for all planar embeddings of G′ a, b, c lie on a common boundary, or

Chapter 9. Minimum Edge Deletion 173

2. there exist vertices s, t of G such that for all planar embeddings of G′:

(a) s, t lie on two common boundaries,

(b) e, f , s, t lie on a common boundary, and

(c) g, s, t lie on a common boundary,

or

3. there exist vertices s, t, u of G′ such that for all planar embeddings of G′:

(a) s, t, u lie on a common boundary,

(b) e, s, t lie on a common boundary,

(c) f , t, u lie on a common boundary, and

(d) g, s, u lie on a common boundary.

(e) each pair of s, t, u lie on two common boundaries.

e

f

g

s

t
Figure 9.19: Lemma 9.6, item 2.

or

4. e, f , g lie in different triconnected primes. Then there exist different s, t, u of G
such that for all planar embeddings of G:

(a) s, t, u lie on a common boundary,

(b) e, s, t lie on a common boundary,

(c) f , t, u lie on a common boundary, and

(d) g, s, u lie on a common boundary.

(e) each pair of s, t, u lie on two common boundaries.

Observe that in the last theorem whenever the phrase “lie on two common boundaries”
occurs it may be replaced by “is a split pair in G′”.

Proof. We assume that G is biconnected but not triconnected.

174 Chapter 9. Minimum Edge Deletion

s

t

u e

g

f

Figure 9.20: Lemma 9.6, item 3

1. (a) Since C is triconnected there is a unique planar embedding of C. Since the
decomposition into triconnected primes is unique, G has a planar embedding
such that e, f , g lie on a common boundary.

(b) We assume that s, t belong to G − X. Since s, t lie on at least two common
boundaries b1, b2, s, t are a split pair of G. Since e, f , s, t lie on a common
boundary, w.l.o.g. we may assume that the common boundary is equal to b1.
Since s, g, t lie on a common boundary, w.l.o.g. we may assume that the common
boundary is equal to b2. Since s, t lie on b1 and b2 there are two disjoint paths
P1 and P2, where P1 is the path from s over e and f to t in b1 and P2 from s
over g to t in b2. Therefore, since s, t are split vertices of G there exists a planar
embedding of G with a boundary b that consist of P1 and P2. Hence, there is a
planar embedding of G with s, t, e, f , g on a common boundary. Observe that
if s, t are terminals, then e, f , g are contained in a triconnected component.
Furthermore, if one of s, t, say s, is a terminal x ∈ X, then in the paths P1, P2

the corresponding subpath s to x is contracted. Therefore, the same statement
holds in this case.

(c) We assume that s, t, u belong to G − X. Since s, t resp. s, u resp. t, u lie at
least on two common boundaries b1, b2, resp. b3, b4 resp. b5, b6, s, t resp. s, u
resp. t, u are split pairs of G. Furthermore, s, t, e resp. t, u, f resp. s, u, g lie
on at least one common boundary b7 resp. b8 resp. b9. W.l.o.g. we may assume
that b1 = b7, b3 = b8 and b5 = b9.

Therefore, w.l.o.g. we may assume that we have three disjoint paths P1, P2, P3

where P1 is the path from s over e to t in b7, and P2 is the path from t over f
to u in b8, and P3 is the path from t over f to u in b9.

Since s, t, u lie on at least one common boundary, w.l.o.g. we may assume that
there is a planar embedding with a boundary that consists of P1, P2, P3. Hence,
G has a planar embedding such that s, t, u, e, f , g lie on a common boundary.

Observe that if s, t, u are terminals, then e, f , g are contained in a triconnected
component. Furthermore, if two of s, t, u, say s, t, are different terminals x, y ∈

Chapter 9. Minimum Edge Deletion 175

X, then in the paths P1, P2, P3 the corresponding subpaths between s and x
resp. y (analogue for t and u) are contracted. The same holds if one of s, t, u is
a terminal. Therefore, the statement also holds in this case.

2. Let Γ be the planar embedding with e, f , g on a common boundary. Since G is
biconnected but not triconnected, we have the following cases.

(a) e, f , g lie in a common triconnected component C. Then C has a unique planar
embedding.

(b) Two of e, f , g lie in a common triconnected component C1, say e, f . Hence g
lies in a different triconnected component C2. Therefore, there exist a split pair
s, t in G such that G splits into connected components by removal of s, t and
C1, C2 lie in different connected components.

Assume that w.l.o.g. s = e and t = f . Then we have e, f , g in C2, which
contradicts the assumption.

Therefore, at most one of s, t is a terminal. We assume w.l.o.g that s, t are no
terminals. Since s, t are a split pair they lie on at least two common boundaries.
Therefore, e, f , g, s, t lie on a common boundary. Since e, f belong to C1, there
is a boundary in C1 that contains a path from s over e, f to t. Additionally,
there is a boundary in C2 that contains a path from s over g to t. Hence, e, f , s,
t lie on a common boundary and g, s, t lie on a common boundary. Observe that
if one of s, t is a terminal the same argument holds since we contract subpaths
between x ∈ {s,t} and y ∈ X on the boundaries if x = y and all other vertices
of the subpath belong to G−X ∪ {s,t}.

(c) e, f , g belong to different triconnected components. We assume that no pair of
e, f , g is a split pair. Therefore, there exists at least one split pair s, t such that
e, f , g lie in different connected components by removal.

If there is exactly one split pair with this property, then s, t lie on at least
two common boundaries. Furthermore, s, e, t resp. s, f , t resp. s, g, t lie on a
common boundary. Therefore, we have three disjoint paths P1, P2, P3 such that
P1 is a path from s over e to t, P2 is a path from s over e to t and P3 is a path
from s over g to t. This implies a K2,3[{e,f ,g}]-minor. By Theorem 9.10 there
is no planar embedding with e, f , g on a common boundary, which leads to a
contradiction.

We assume that two of e, f , g lie in a common triconnected component C1, say
e, f , and g in an other triconnected component C2. Since C1 is triconnected,
and e, f , g lie on a common boundary, there is a unique boundary in C1 that
contains e, f . Furthermore, this boundary has to contain s and t. Since e, f , g
are contained in a common boundary and C2 is triconnected, there is a unique
boundary in C2 that contains g, s, t. Since s, t is a split pair they lie on two
common boundaries in G.

176 Chapter 9. Minimum Edge Deletion

We assume that we have three split pairs. Therefore, we have three vertices
s, t, u that connect each two of the three triconnected components of e, f , g.
Obviously, s, t, u lie on at least one common boundaries. Therefore, s, t, u, e,
f , g lie on a common boundary. W.l.o.g. we assume that s, t resp. t, u resp. s, u
are the split pair of the triconnected component that contains e resp. f resp. g.
Hence s, t, e resp. t, u, f resp. s, u, g lie on a common boundary. Furthermore,
any pair of s, t, u lie on two common boundaries.

A characterization for a K2,3[X]-free graphs that is connected but not biconnected remains
open. Obviously, a characterization for a K2,3[X]-free graph that is not connected reduces
to the characterization for the connected case: we consider each connected component
independently.

We have the following theorem.

Theorem 9.11. Given a connected planar graph G and three terminal vertices a, b and
c. Let X = {a,b,c}. Let t ∈ X and B a block of G: for t not in B, let vB

t be the cut vertex
that disconnects B from t by removal. If a ∈ B (resp., b ∈ B, c ∈ B) we set eB = a (resp.,
fB = b, gB = c) otherwise eB = vB

a (resp. fB = vB
b , gB = vB

c). Let Y B = {eB,fB,gB}.
Then G does not contain a K2,3[X]-minor if and only if

1. G has no K1,3[X]-minor, or

2. for each block B of G: |Y B| ≤ 2, or

3. for block B with |Y B| = 3: B has no K2,3[Y
B]-minor.

Proof. We assume G to be connected but not biconnected. Otherwise Theorem 9.10 holds.
Furthermore, since K2,3 is biconnected, G has no K2,3-minor if and only if each block of
G has no K2,3-minor. Additionally, for t ∈ X and a block B let P B

t be the union of all
paths between t and vt if vt 6= t otherwise P B

t = ∅. Observe that if P B
t 6= ∅ then all vertices

of B has to use a path of P B
t after traversing vB

t to reach t since G is connected but not
biconnected and vB

t is a cut vertex of G. Therefore, B has a K2,3[X]-minor after contracting
all paths of P B

t 6= ∅ if and only if B has a K2,3[Y
B]-minor before contraction.

Therefore, G has no K2,3[X]-minor if and only if each block B of G has no K2,3[Y
B]-minor.

Notice that |Y B| ≤ 3 for a block B of G since |X| = 3 for G.

1. (a) Since K1,3[X] is a proper subgraph of K2,3[X] G has no K2,3[X]-minor.

(b) For each block B of G: |Y B| ≤ 2. Since |Y B| ≤ 2, either at least one path of
P B

a , P B
b or P B

c contracts onto a terminal t ∈ X that is a cut vertex in B or
two of those paths contract onto a cut vertex v of B. Therefore, in the first case

Chapter 9. Minimum Edge Deletion 177

the vertices in B can reach at least one terminal of X − t only using terminal
t. Hence B induces no K2,3[Y

B]-minor. In the second case, the vertices of B
can reach at least two terminals not in B only using v. Hence B induces no
K2,3[Y

B]-minor. Therefore, for each block B we have no K2,3[Y
B]-minor. Hence

G has no K2,3[X]-minor.

(c) For block B with |Y B| = 3: B has no K2,3[Y
B]-minor.

Assume that we contract each such block into a single vertex. Then for each
block B of G: |Y B| ≤ 2 and therefore G has no K2,3[X]-minor.

Therefore, since for each block B with |Y B| = 3 B has no K2,3[Y
B]-minor, G

has no K2,3[X]-minor.

2. G does not contain a K2,3[X]-minor. Therefore, for each block B in G, B does not
contain a K2,3[Y

B]-minor. Therefore, either we have at most two terminals in B or
the three terminals in B does not induce a K2,3[Y

B]-minor. Therefore, we have either
|Y B| ≤ 2 or for all blocks B with |Y B| = 3, B contains no K2,3[Y

B]-minor.

Observe that it exists at most one block with |Y | = 3 in a connected but not biconnected
graph.

In Figures 9.21 and 9.22 two examples are given: the first example graph has a block B
for that |{va,vb,vc}| = 3. B has a K2,3[va,vb,vc]-minor that implies a K2,3[X]-minor. The
second example graph has exactly one block for that |{a,vb,vc}| = 2. Hence, it has no
K2,3[X]-minor.

a b cva vb vc

Figure 9.21: An example graph G with exactly one block B. B has a K2,3[va,vb,vc]-minor
that implies a K2,3[X]-minor for G with X = {a,b,c}

Theorems 9.10 and 9.11 provide a characterization of K2,3[X]-free planar graphs. We seek
for an edge removal strategy such that a given graph fulfills the conditions of Theorems 9.10
and 9.11. An algorithm that solves all types of the characterization at minimum cost and
takes the cheapest among them would give us the result. In Section 9.2.2 we investigated
how to get the cheapest solution among the types I – IV. The algorithm runs in O(n3)
time.

178 Chapter 9. Minimum Edge Deletion

a

b

c
vb = vc

Figure 9.22: An example graph G with exactly one block B for that |{a,vb,vc}| = 2: B has
no K2,3[a,vb,vc]-minor that implies that G has no K2,3[X]-minor with X = {a,b,c}

Let us analyze types presented in Theorems 9.10 and 9.11. First we begin with triconnected
planar graphs. Obviously, a triconnected planar graph has a unique dual graph since it has
a unique planar embedding Γ. By Theorem 9.10 first item, Γ has a face f such that a, b,
c lie on its boundary. Therefore, the planar embedding ΓD of the dual graph has a unique
vertex vABC corresponding to f . Hence, we have the constellation visualized in Figure 9.23
that we name type V.

A B

C

vABC

(a) Face A, B and C have at
least one common vertex vABC

A B

C

vABC

V

(b) Face V can reach A, B and
C without crossing one of the
terminal faces.

Figure 9.23: Illustration of case V.

Given a planar triconnected graph G we construct its extended dual graph such that we
add a k-star for each of the faces A, B and C of the dual of G. We name the vertex of the
k-star of A (B resp. C) r(A) (r(B) resp. r(C)). We set ℓ(e) = 0 for all edges e of the k-stars.
Our task is to determine a Steiner tree with the terminals r(A), r(B) and r(C). When we
contract the edges contained in the resulting Steiner tree we get a vertex vABC belonging
to the boundaries of A, B and C. Transforming the edge contraction into the primal graph
leads us to the deletion of the minimum number of edges in order to construct a planar
subgraph of G that has a planar embedding with a, b and c on a common boundary.

Using the same techniques as in Section 9.2.2 we can prove the following theorem. See
Figure 9.24.

Chapter 9. Minimum Edge Deletion 179

r(A) r(B) r(C)

â b̂ ĉ

v = vABC

Pa Pb Pc

Figure 9.24: Solution of type V.

Theorem 9.12. Assume that an optimal solution of problem K23-DEL is of type V. Let
T = Pa ∪ Pb ∪ Pc be the corresponding optimal set of edges and let x be the degenerated
degree 3 vertex. Moreover, let

ℓ(Pf) ≤ ℓ(Pg) ≤ ℓ(Ph)

for {f, g, h} = {a, b, c}. Then the following holds:

• (Pf , r(F)) is a shortest path from x to r(F) in GD ⊛ F .

• (Pg, r(G)) is a shortest path from x to r(G) in GD ⊛ G/Pf .

• (Ph, r(H)) is a shortest path from x to r(H) in GD ⊛ H/ (Pf , Pg).

Therefore, we determine the Steiner tree with terminals r(A), r(B), r(C) in the following
way. See Figure 9.24:

For a vertex v in GD we contract the shortest path from v to r(A). Since edges of the k-star
of A have weight 0, this is equal to determining the shortest path from v to the closest
vertex â on the boundary of A, say Pa. In an analogous way we calculate the corresponding
shortest path Pb resp. Pc from v to the closest vertex on the boundary of B resp C, say
b̂ resp. ĉ. We contract Pb and Pc after each other. Notice that Pb resp. Pc might differ
from the corresponding shortest path in the original GD. Since we contract Pa first, Pb

corresponds to the shortest path from the vertices of Pa to b̂. Finally, Pc corresponds to
the shortest path from the vertices of Pa and Pb to ĉ. Obviously, the resulting contraction
is a feasible solution of the type V resp. VI, but must not be the cheapest one. We have to
consider every ordering of {a, b, c} for the shortest path calculation. We do this for every
vertex of GD to get the cheapest solution.

See Algorithm 32 for a pseudo-code description.

We bound the complexity of Algorithm 32: The degree 3 vertex v = vABC can be determined
in O(n) time since we have to visit each vertex of GD once. Additionally, there are 3! = 6

180 Chapter 9. Minimum Edge Deletion

Algorithm 32: Determination of an optimal solution of type V: Output is an optimal
solution of type V.

forall the vertex v ∈ V do
forall the orderings (f, g, h) with {f, g, h} = {a, b, c} do

Determine shortest path Pf from v to r(F);
Contract Pf ;
Determine shortest paths Pg from v to r(G);
Contract Pg;
Determine shortest paths Ph from v to r(H);
Sol(f, g, h)⇐ Pf ∪ Pg ∪ Ph;
val(f, g, h)⇐ ℓ(Sol(f, g, h));

val(x, y) ⇐ min{val(f, g, h) | {f, g, h} = {a, b, c} and Sol(f, g, h) is feasible} =
val(f ∗, g∗, h∗);
Sol(x)⇐ Sol(f ∗, g∗, h∗);

val ⇐ min{val(x) | x ∈ V } = val(x∗);
Return: Sol ⇐ Sol(x∗);

possible orderings of the three terminals. For each ordering we have to solve three shortest
path problems that can be done in O(n) time.

Therefore, the Algorithm 32 has a O(n2) running time.

Comparing the optimal solution E ′
IV of type IV with the optimal solution E ′

V of type
V resp. E ′

V I of type VI we get ℓ(E ′
V) ≤ ℓ(E ′

IV) resp. ℓ(E ′
V I) ≤ ℓ(E ′

IV) since one of the
Steiner trees of type IV induces already a feasible solution of type V resp. VI. Therefore,
the optimal solution of type IV is dominated by the optimal solutions of types V and VI.

The next constellation type VI is introduced by Theorem 9.10 item 2: s, t is a split pair such
that e, f lie in one triconnected component and g lie in an other triconnected component.
Furthermore, e, f , s, t are on a common boundary in every planar embedding of G. The
same holds for s, t, g. Obviously, a solution is that e, f , g have a common boundary for a
given planar embedding. See constellation of type V. Notice that this solution might not
be optimal. Therefore, we have additionally the cases visualized in Figure 9.25.

Hence, we have to solve the following minimization problem: Given a planar embedding of
a biconnected planar graph G we construct its extended dual graph D such that we add
a k-star for each of the faces E, F , G of the dual of G. We name the vertex of the k-star
of E (F resp. G) r(E) (r(F) resp. r(G)). We set ℓ(e) = 0 for all edges e of the k-stars.
Additionally, we have two different faces S, T of D. In an analogous way we add k-stars and
get vertices r(S), r(T). Our task is to determine a Steiner forest with the terminals r(E),
r(F), r(G), r(S), r(T) and the nets N1 = {r(E),r(F),r(S),r(T)}, N2 = {r(G),r(S),r(T)}
and N3 = {r(S),r(T)} such that S, T separates E, F from G. Notice that the trees of the
Steiner forest do not need to be disjoint.

Since the number of terminals and nets is bounded we conjecture that the optimal solution

Chapter 9. Minimum Edge Deletion 181

S T

G

E F

x

y

(a) Faces S, T , E, F resp. S, T ,
G have a common vertex x resp. y

and S, T separates E, F from G

S T

G

x

y

E F

(b) Faces S, T , E, F resp. S, T ,
G have a common vertex x resp.
y and S, T that have an addi-
tional common vertex separates E,
F from G

Figure 9.25: Illustration of case VI.

of type VI can be solved in polynomial time.

In an analogous way we solve the edge-deletion problem introduced by Theorem 9.10 item
3 that we name constellation type VII; see Figures 9.26 to 9.28:

S T U

E F

G

Figure 9.26: Lemma 9.6, item 3: constellation of type VII a

Notice that the types VII a - c visualized in the Figures 9.26 - 9.28 are equal under
2-isomorphism. Again, one solution is type V but do not need to be an optimal one.
Additionally, we have three instead two as in the previous case different faces S, T , U of
D. After the addition of the corresponding k-stars we get r(S), r(T), r(U).

Our task is to determine a Steiner forest with the terminals r(E), r(F), r(G), r(S), r(T),
r(U) and the nets

• N1 = {r(E),r(S),r(T)},

182 Chapter 9. Minimum Edge Deletion

G

E FS T U

Figure 9.27: Lemma 9.6, item 3: constellation of type VII b

E F

G

S T U

Figure 9.28: Lemma 9.6, item 3: constellation of type VII c

• N2 = {r(F),r(T),r(U)},

• N3 = {r(G),r(S),r(U)},

• N4 = {r(S),r(T),r(U)},

such that

• S, T separates E from F , G,

• S, U separates G from E, F , and

• T , U separates F from E, G.

Notice that the trees of the Steiner forest do not need to be disjoint.

Since the number of terminals and nets is bounded we conjecture that the optimal solution
of type VII can be solved in polynomial time.

Chapter 9. Minimum Edge Deletion 183

Unfortunately, the characterization for rooted K2,3-minor free planar graphs has not lead
yet to a polynomial algorithms for the corresponding weighted minimum deletion prob-
lem, only some sub-cases could be solved in polynomial time. What makes this case far
more difficult is the fact that it is even unclear whether the number of types for charac-
terizing all planar embeddings in a rooted K2,3-minor free planar graph could be bounded
polynomially.

184 Chapter 9. Minimum Edge Deletion

Chapter 10

Bimodal Crossing Minimization

The importance of automatic graph drawing stems from the fact that many different types
of data can be modeled by graphs. In most applications, the interpretation of an edge is
asymmetric, so that the graph is intrinsically directed. This is the case, e.g., for metabolic
networks. Here, the incoming edges of a reaction vertex correspond to reactants, while
the outgoing edges correspond to products of the modeled reaction. Consequently, a good
layout of such a network should separate incoming from outgoing edges, e.g., by letting
the incoming edges enter on one side of the vertex and letting the outgoing edges leave on
the opposite side. By this, the human viewer is able to distinguish reactants from products
much more easily; see Figure 10.1.

In spite of its practical relevance, the direction of edges is ignored by many graph drawing
algorithms. The graph is processed as an undirected graph first; only after the positions of
vertices and edges have been determined the direction is visualized by replacing lines by
arrows. An important exception is given by hierarchical drawings, in which incoming and
outgoing edges are separated by definition. Furthermore, a polynomial time algorithm for
hierarchical drawings of digraphs that allows directed cycles and produces the minimum

malate

malatep

NAD

NADH

MDH

OAA

malate malatepNAD

NADH

MDH

OAA

Figure 10.1: Two drawings of the same graph, both have three crossings, with unsorted
(left) and sorted (right) incoming and outgoing edges; gray vertices represent reactions

185

186 Chapter 10. Bimodal Crossing Minimization

number of bends is given by Bertolazzi, Di Battista and Didimo in [5]. However, the
restriction to this special type of drawing may lead to many more crossings than necessary.

In this chapter, our aim is to adapt the planarization method in order to obtain the desired
separation of incoming and outgoing edges.

This is joint work with Christoph Buchheim, Michael Jünger and Annette Menze, published
as a conference paper [10]. The implementation of the used heuristics is by Maria Kandyba.

We focus on the planarization step, i.e., the computation of a planar embedding of the
graph after possibly adding artificial vertices representing edge crossings. The objective is
to add as few such vertices as possible. For a comprehensive survey over the planarization
approach, see [63].

In order to obtain the separation of edges, we consider the additional bimodal restriction
that all incoming edges appear consecutively in all cyclic adjacency lists. We show how to
adapt the well-known approach based on finding a planar subgraph first and then reinsert-
ing the missing edges one after the other in a very efficient way. We use an experimental
evaluation to investigate the question of how many additional crossings have to be expected
from restricting the class of feasible embeddings in this way. The results show that—for
practical instances—this increase is usually negligible.

We do not address the question of how to realize the resulting embedding by an actual
drawing of the graph. Notice however that once we have such an embedding at hand, it
is easily possible to adapt, e.g., the orthogonal layout algorithm such that incoming and
outgoing edges lie on opposite sides [67].

In Section 10.1 we recall the concept of bimodality and describe the basic transformation
used by the evaluated algorithms. Next we propose a postprocessing technique that can
be combined with any crossing reduction approach, see Section 10.2. Then we look into
the planarization method; the problem of finding a planar subgraph is considered in Sec-
tion 10.3, while edge reinsertion is dealt with in Section 10.4. In Section 10.5, we discuss a
recently developed exact approach for crossing minimization. In Section 10.6, we present
an experimental evaluation showing that the number of crossings computed by different
methods does not grow much due to our additional requirement.

10.1 Bimodal Embeddings

An embedding of a graph G = (V, E) is called bimodal if and only if for every vertex v
of G the circular list of the edges around v is partitioned into two (possibly empty) linear
lists of edges, one consisting of the incoming edges and the other consisting if the outgoing
edges. A planar digraph is bimodally planar if and only if it has a bimodal embedding
that is planar. This structure was first investigated by Bertolazzi, Di Battista, and Didimo
in [5]. Bimodal planarity of a graph G can be decided by testing planarity of a simple
transformation of G in O(|V |) time [5]. The transformation is applied in the following way:
for every vertex v of G expand v by an expansion edge e and add all incoming edges of

Chapter 10. Bimodal Crossing Minimization 187

v−

v+

v

Figure 10.2: A directed graph G and its d-graph Gd. The bold edge is an expansion edge.
Notice that Gd is equal to K3,3

v to one end vertex v− of e and all outgoing edges to the other end vertex v+ of e. The
resulting graph is denoted by Gd = (Vd,Ed) in the following. We call Gd the d-graph of G.
An illustration of this construction is given in Figure 10.2.

Throughout this chapter, we will denote the set of all expansion edges by E ′. We use
this simple transformation for adapting techniques for undirected crossing minimization
to the directed variant. Planar directed graphs are not necessarily bimodally planar. By
Kuratowski’s theorem, this can only happen if a K3,3 or K5 subdivision is created by the
transformation into a d-graph. For graphs with all vertices of degree at most three the
transformation of G to Gd is trivial, as no vertices are split in this case. In particular, this
holds for cubic graphs that are defined by the property that all vertices have degree three.
Therefore, a directed cubic graph is bimodally planar if and only if it is planar. This is
also true for graphs in which each vertex has at most one incoming edge or at most one
outgoing edge.

10.2 Naive Post-Processing Approach

We first discuss a post-processing procedure that can be used after applying any crossing
reduction algorithm or heuristic to the d-graph Gd. Our aim is to embed Gd such that
no expansion edge crosses any other edge; contracting all expansion edges then yields an
embedding of G with the desired separation of incoming and outgoing edges.

So assume that any embedding of Gd is given. We first delete all edges crossing any ex-
pansion edge. If two expansion edges cross each other, we delete one of them. Next, we
reinsert all deleted edges one after another, starting with the deleted expansion edges. As
explained in Section 10.4.1 below, we can insert a single edge with a minimum number
of crossings for the fixed embedding computed so far such that crossings with expansion
edges are prevented. If reinserting an expansion edge produces any crossings, the crossed
(non-expansion) edges have to be deleted and put to the end of the queue of edges to be
reinserted.

At the end of this reinsertion process, no expansion edge will cross any other edge. However,
the number of crossings of the remaining edges might grow significantly in this approach.
In the following sections, we explain how to get better results by adapting well-known
crossing minimization approaches for our purposes, especially the planarization approach.

188 Chapter 10. Bimodal Crossing Minimization

10.3 Maximum Bimodally Planar Subgraphs

Recall from Chapter 9 that the maximum planar subgraph problem—the problem of finding
a planar subgraph of a given graph that contains a maximum number of edges—is NP-
hard [64, 86, 85]. Recently, it was shown that this remains true even for cubic graphs:

Theorem 10.1 (Faria et al. [28]). The maximum planar subgraph problem is
NP-hard for cubic graphs.

In Chapter 9 we observed that this is even true for K5-minor or K3,3-minor, respectively,
free graphs.

As a cubic graph is equal to its d-graph, we derive that this also holds for the maximum
bimodally planar subgraph problem:

Corollary 10.1. It is an NP-hard problem to compute a maximum bimodally planar
subgraph of a directed graph, even for a cubic graph.

For computing maximal bimodally planar subgraphs, i.e., bimodally planar subgraphs such
that adding any further edge of G destroys bimodally planarity, we do the following: it is
easy to see that the bimodally planar subgraphs of G are in one-to-one correspondence
to the planar subgraphs of Gd containing all expansion edges. Thus we have to modify a
given maximal planar subgraph algorithm such that it never deletes any expansion edge.
Methods for finding maximal planar subgraphs have been studied intensively [23, 50, 59];
here we only discuss the incremental method; see Section 10.3.1. We also have a look at
the exact approach; see Section 10.3.2.

10.3.1 Incremental Method

Starting with the empty subgraph (VH , ∅) of some graph H = (VH , EH), the incremental
method tries to add one edge from EH after the other. Whenever adding an edge would
destroy planarity, it is discarded, otherwise it is added permanently to the subgraph be-
ing constructed. The result is a maximal planar subgraph of H , which however is not a
maximum planar subgraph in general.

To find a maximal bimodally planar subgraph of G, we have to compute a maximal planar
subgraph of its d-graph Gd. However, this subgraph must always contain all expansion
edges, so that the latter can be contracted at the end. We thus have to start with the sub-
graph (Vd, E

′)—which is obviously planar—instead of the empty subgraph (Vd, ∅). Then we
try to add the remaining edges Ed \E ′ as before. The resulting subgraph of Gd corresponds
to a maximal bimodally planar subgraph H of G.

Chapter 10. Bimodal Crossing Minimization 189

10.3.2 Exact Method

An exact approach for finding a maximum planar subgraph of H = (VH , EH) based on
polyhedral techniques was devised in [55]. The problem is modeled by an integer linear
program (ILP) as follows: for every edge e ∈ EH , a binary variable xe is introduced, having
value one if and only if e belongs to the chosen subgraph. To enforce that the modeled
subgraph is planar, one has to make sure that it contains no Kuratowski subgraph of H ,
i.e., no subdivision of K5 or K3,3. In terms of the model, this is equivalent to the constraint

∑

e∈K

xe ≤ |K| − 1

for every (edge set of a) Kuratowski graph K in G. As we search for a planar subgraph
containing the maximal number of edges, the number of variables set to one should be
maximized. The integer linear program is thus

max
∑

e∈EH
xe

s.t.
∑

e∈K xe ≤ |K| − 1 for all Kuratowski subgraphs K of G

xe ∈ {0, 1} for all e ∈ EH .

(10.1)

This integer linear program can now be solved by branch-and-cut. However, in order to
improve the runtime of such algorithms and hence obtain a practical solution method, one
further has to investigate this formulation and exhibit other classes of valid inequalities as
well as fast techniques for finding violated constraints for a given fractional solution. For
details, the reader is referred to [55].

This solution approach can easily be adapted to our new situation: we only have to ensure
that the edges in E ′ always belong to the chosen subgraph. In other words, we only have
to add the constraint xe = 1 to the ILP (10.1) for each edge e ∈ E ′. Observe that this type
of constraint is harmless with respect to the complexity of the problem, as it cuts out a
face from the polytope spanned by the feasible solutions of (10.1).

10.4 Edge Reinsertion

After calculating a maximal (resp., maximum) bimodally planar subgraph, the deleted
edges have to be reinserted. Our objective is to reinsert them one by one so that the
minimum number of crossings are produced for each edge.

This can be done in two different ways: either by inserting an edge into a fixed bimodally
planar embedding of the bimodally planar subgraph, see Section 10.4.1, or by inserting an
edge optimally over all bimodally planar embeddings of the bimodally planar subgraph,
see Section 10.4.2. Again, we have to treat expansion edges differently, as they may not be
involved in any edge crossings.

190 Chapter 10. Bimodal Crossing Minimization

Figure 10.3: A maximal planar subgraph with its extended dual graph. Edge e = (v, w)
has to be reinserted (v and w are circled). The bold edge is an expansion edge and has no
dual

10.4.1 Fixed Embedding

Given a fixed embedding Γ(Gd) of Gd, it is easy to insert an edge e = (v, w) into Γ(Gd)
such that a minimal number of crossings is produced. For this, one can use the extended
dual graph D of Γ(Gd), the vertices of which are the faces of Γ(Gd) plus two vertices vD

and wD corresponding to v and w. For each edge in Ed \ E ′, we have the dual edge in D.
Additionally, we connect v (resp., w) with all vertices in D corresponding to faces that are
adjacent to v (resp., w) in Γ(Gd).

Then we calculate the shortest path from v to w in the extended dual graph and insert
the edge e into Γ(Gd) along this path, replacing crossings by dummy vertices. Clearly, the
shortest path does not cross any edge of E ′ as its dual edge is not included in D. This can
be done in O(|V |) time.

10.4.2 All Embeddings

In the previous section we have considered reinserting an edge into a fixed embedding. For
getting fewer edge crossings, a powerful method is to calculate the shortest path between
two vertices v and w over all embeddings. In [43] a linear time algorithm is presented
for finding an optimal embedding which allows to insert e with the minimum number
of crossings. It uses the SPQR-tree BC-tree data-structures for representing all planar
embeddings of a connected graph.

In the same straightforward way as explained in the previous section, this approach can

Chapter 10. Bimodal Crossing Minimization 191

be adapted such that no expansion edge is crossed by any reinserted edge. The resulting
algorithm runs in O(|V |) time.

10.5 Exact Directed Crossing Minimization

It is a well-known fact that the general crossing minimization problem for undirected graphs
is NP-hard [34]. More recent results show that this is even true for graphs with all vertices
of degree three:

Theorem 10.2 (Hliněný [48], Pelsmajer, Schaefer, Štefankovič [69]). The crossing mini-
mization problem is NP-hard for cubic graphs.

Corollary 10.2. It is an NP-hard problem to compute a drawing of G separating incoming
and outgoing edges such that the number of crossings is minimal. This even holds for cubic
graphs.

Despite the NP-hardness of undirected crossing minimization, an exact approach has been
devised recently [9]; a branch-and-cut algorithm is proposed for minimizing the number of
crossings over all possible drawings.

The first step in this approach is to replace every edge of the graph by a path of length
(at most) |E|. After this, one may assume that every edge has a crossing with at most one
other edge. The ILP model used in this approach contains a variable xef for all pairs of
edges (e, f) ∈ E × E, having value one if and only if there is a crossing between e and f
in the drawing to be computed. By appropriate linear constraints, one can ensure that the
given solution is realizable, i.e., corresponds to some drawing of G.

Again, it is easy to adjust this method to our problem, i.e., the problem of computing a
crossing-minimal drawing with incoming and outgoing edges separated. For this, we can
apply the above algorithm to the graph Gd. Then we only have to make sure that the
expansion edges do not have any crossings in the computed solution. We can thus do the
adjustment as follows: first observe that the edges in E ′ do not have to be replaced by
a path at all, as they are not allowed to produce crossings. Now we can just omit the
variable xef whenever e ∈ E ′ or f ∈ E ′, and thereby set this variable to zero implicitly.
The resulting ILP will thus have exactly the same number of variables as the original ILP
for the non-transformed graph. It will not become harder structurally, as it arises from
setting variables to zero.

10.6 Experimental Comparison

In the previous sections, we showed how to adapt several crossing minimization algorithms
and heuristics in a simple way such that for directed graphs the sets of incoming and
outgoing edges are separated in the adjacency lists. This is obtained by transforming the

192 Chapter 10. Bimodal Crossing Minimization

original directed graph into a new undirected graph where certain edges do not allow
any crossings. From the nature of this transformation and the described modifications,
it is obvious that the runtime is not affected negatively. We also observed this in our
experiments.

For this reason, we focused on the number of crossings in the evaluation reported in the
following: we are interested in comparing the number of crossings when (a) the direction of
edges is ignored, i.e., crossing minimization is done as usual, and (b) we apply the trans-
formation in order to separate incoming from outgoing edges. Theoretically, the crossing
number cannot decrease by our modification, but it is possible that it grows considerably.

However, our experiments show that for practical graphs the number of crossings is not
increased significantly. In fact, the increase in the number of crossings is marginal compared
with the variance due to the randomness of the heuristics, such that for many instances the
number of crossings after the transformation even decreases. Combining this observation
with the simpleness of implementation and the fact that runtime does not increase, our
claim is that these techniques should always be applied when dealing with (meaningfully)
directed edges.

For the experiments, we used the instances of the Rome library of directed graphs [74],
consisting of two sets of graphs called north and random. The former contains 1277 directed
acyclic graphs on 10 to 100 vertices derived from real-world instances. The latter contains
909 directed acyclic graphs randomly generated in a specific way, they are much denser in
general.

We first applied the simple incremental method (Section 10.3.1) combined with the optimal
edge reinsertion over all embeddings (Section 10.4.2). As mentioned above, it turned out
that the increase in the number of crossings when separating incoming and outgoing edges
is very small in general. This is shown in Figure 10.4 (a) and (b), where each instance is
given by a plus sign. Its x-coordinate is the number of crossings before the transformation
and the y-coordinate is the number of crossings afterwards. In particular, each cross on
the diagonal line represents an instance with the same number of crossings before and
afterwards. A cross above the diagonal represents an instance for which the number of
crossings increases. Due to the randomness of the heuristics, there are also crosses below
the diagonal, in particular for the random instances.

Another interesting finding is the negligible increase in the number of crossings for planar
graphs: if G is planar, then Gd is not necessarily planar. Anyway, if we consider all 854
planar north instances, then the average number of crossings after the transformation is
only 0.04, i.e., in most cases the graph remains planar. The set of random instances does
not contain any planar graph.

We next applied the optimal planar subgraph method (Section 10.3.2), again in combi-
nation with the optimal edge reinsertion over all embeddings (Section 10.4.2). As many
instances could not be solved within a reasonable running time, we had to set a time limit
of five CPU minutes (on an Athlon processor with 2.0 GHz). Within this time limit, 89 %
of the north instances and 33 % of the random instances could be solved. The results are

Chapter 10. Bimodal Crossing Minimization 193

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600

+++
+++++++++++++++++++++++++
+

++++++++
+

+++++
+

+++++
+

++++

+
+

+++++++++++++++++++++++++++++++

+

++++++++++++++++

+

+

+

+

+

+++++++++++++++++

++

++

+

+

+

+++++++
+

+

+
+++++++++++++++++++

+

+

+

++

+

++++++++++++++++
+

+
+

+

+++++++++

+

++++++++++++++
++

++++++

+

++++++
+

++
++++
+

++++
++

++

+

+

++

+

++
++

+
+++
+

+
++++++++

+
+

+
+++

++
+++++++

++
+++

+

+

+
+

+
+

+
+++++++++++

+
++++++++

++

++

++

++

+

++++
++

+++

(a) north, original directions

0

50

100

150

200

250

300

0 50 100 150 200 250 300

+++++

+
+

+
+++
+

+
+

+++
+++++++
+++++++++++++++++++++
+++++++++++++++

+
+++++++++++++++
++++++++++++++
+++++++++
+++
+

++
+++
+++

+++
+
+++++++
++++
++++++++++
+++++++++
+
+++++++++++
+

+++++++++
+

++++++
+

+
++++++++++
++

+
++

+
++
++++
++++++++
+

++++++
+++
++++
+++ +++++

+

+
+++++
++++
+

+
++++
+

+++++

+++
++++

+

+
++

++
+++

++

++
++

+

+
++++

+
++
+
++++++

+
+
+++++++++

+

++
+

+

+
+++

++++
++

++
+
+

++++
+

+
++
+
+

+
+

++
++++++++

+++++
+++

+++++++

+
+

+
+

+

+

++

+
+
+
+
+++
+

++++
+++

++
+

+
+
+

+ +
++++

+++

+

++

+

+
+
+
++

++++
+

+
+

++++
++
++++

+
++++

+++++++
+

+

+
+ +

++

+
+

+

++
++++
+
+

+

+
++

+
+

+
+

+
+ ++

+
+

+
+

+
+
++++ ++
++

+
++

+

++
+
+

+

+
+

+
++

+

+

+
+

+ +
+

++
++

+++
++
+

+
+

+
++
+

+++
+

+
++
++ +

+
+

++
+

+++++

++
+

+
+++

+
+++

+
+

++
+
++

+
+

++

+
++
++

+++

+
+++
+ +

+

+++
++

+
++

+

+

+

++
+

+

+

+++
+

+
+++

++
+

+

+
+

+
+

+

+

+

+

++
+

+
++

+
++

+
++

+
+++

+
+

+
++

+

+

+

+
++

++

+

+
+

+

++ +

+++

+
++

+

++
+

+

+

+
+

+

++

++
+

+

++
+

+
+

+ +

+

+

++
++

+

+
+

+
+

++
+

++
+

+
+ +

+

+
+

++

+

++
+++

+

++

+
++

++

+

+

++ +
++

+
+

+

+
+

+

+

++
+

+++
+

+++

+

+

+

(b) random, original directions

0

500

1000

1500

2000

0 500 1000 1500 2000

+++++++++++++++++++

++
++

++++++++++++++++++++++++++
+++

++++++++++++++++++++++++

+

++++
+
++++++
+

+

++++++++

+

+++++

+

+++++

+

+

++++++++++++++++++++++++
+

+
++

+
+

++
+
+
+
++++

+

++++++
+

++++++++++++

+

++++

+

++

+

+++++++
+

+++++++++++

+

+

++

+

+

+

+++++++++

+

+

+

+

+

++
+
+++++
+
++++++++++++++++

+

+

+

+++

+

++
+
+

+
++++++
+
+
+
++++

+

+

+

+++

+

++++
+
+

++++++

+

++++++
++
+++++++

++

++++++++

+

+
+

+
+

+

+++

+

+

++

+
+

+
+
+
+

+
+++

++

+
+

+

+

++

+

+

++

+
++

+
+

+

+

+

+

+
+

++++
+

+

+
+

+
++

++

++++++
+

++
+

+

++

+

+

+

+

+

+

+

+++
++
+
+
+++++++

+

++

+++++
+

++

+
+

++

++

++

+

+
++

+

++

+++

(c) north, random directions

0

50

100

150

200

250

300

0 50 100 150 200 250 300

+++++

++

+

+

+

+

+

++

+++
+
+++++++
++++++++++
+++

++
+
++++++++++++
+++++
++++++++
+
++++
++++++
+
++
+++
++
++++
+

+++
++
++
+++
+++

+
+++++
++++++
+

+
+

+++
+++++
+

++++++++
++
+
++
+
++++++

++
+
+

+++++

+
++
+

+

++++

+

+

++
++
+
++

+
++

+
++

+
++

+
+

+

+
+
+
++

+
+

+++
++

+
+
+++

+
++++

++
+
+

+
++++
++

+

+
++
+

++
+++

+

++
+++
+
+

+
+

+
++++

+
+

+

+

+

+
+

+

++
+

++

+

++
+

++

+
++
+
+

+

+

+
+
+

++
++
++

+

+
++

+

+

+++

+
+

+

+

+

++
+++++

+

+

+

+
+
++

++

++

+

+

+

+
+
+

+

+
+

+

+
+

+
+

+

+

+

+

+
+

+
++

+
+

+++

+

+
+

+
+

+

+

+

++++

+

+
++
+

+
+

+
+

+

+++++
+

++

+

+
+

+

++
+

+

+

+
++

+

+

+

+

++

+

+

+

+
++

+++

+

+
+++

+

+

+

+

+

+
+

++++
+

++

+
+

+

+

++

++

++
++

+

+

+

+

++

+

+

+

+

+++

++

+

+

++

+

+++

+

+

+

+

+++

+

++++ +

+

+

+

+

+

+

+

+

++
+

+

+++
+

+

+

+

+

++
+

++

+

+

+

++

+
+

+

++
+

+

+
+

+
+

+

+

+

+

+++

+

+

+

+
+

+
+
+

+

+
+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

++

++

+

+

++
+
++

+
+

+

++

++

+

+

+

+

+

+
+

+

+
+

+

+

+

+

+

+
+

++
+ ++ +

+

++

+
+

+

+

++

+

+

+
++

+
+

+

+

+

+
+

+

+
+

++
+
+

+
+

+

+

+
+

+

+

+

+

+

+

+ +++
+

+

+

+

+

+

++
+

+
+

+

++

+
+

+

+

+++

++

++
+

+ +

+

+

+
+

+

+

+

+

+

+

+

+ +

++
+

+

+
+ +

+

+

+

++

+

+

++

+

+

+ +

+
+
+

+

+

++

+

+

+
+

+

+

+

+
+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+
+ +

+

+

+

++

+

+

+ ++

+

+

+

+

++

+

+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+
+

+

+

+

+
+

+
+

+

+

+ +

+

+ +

+
+

+

+

+

+

+
+

+

+

+

++

+ ++

+

+

+

+

+

+

(d) random, random directions

Figure 10.4: Numbers of crossings before and after the transformation, using the incremen-
tal planar subgraph heuristic. For non-planar graphs, the average increase is 0.36 % (a),
0.59 % (b), 0.95 % (c), and 0.87 % (d), respectively.

shown in Figure 10.5; the general picture is similar to the one for the incremental method.

The directed graphs contained in the libraries north and random are all acyclic. This fact
might favor a small number of additional crossings. For this reason, we also examined
graphs with a random direction for each edge. To allow us to compare the corresponding
results to the results presented so far, we used the north and random instances again,
this time with the direction of each edge reversed with a probability of 1/2. The results
obtained with the incremental heuristic are displayed in Figure 10.4 (c) and (d). In fact,
the increase in the number of crossings induced by sorting adjacency lists is more obvious
now compared to Figure 10.4 (a) and (b), but it is still very small.

Nevertheless, we conjecture that in theory the requirement of separating incoming and
outgoing edges may induce a quadratic number of edge crossings even for planar graphs.
We have constructed a family of directed planar graphs Gk such that Gk has O(k) edges and

194 Chapter 10. Bimodal Crossing Minimization

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

+++
+

+

+++
++

++++++++++++++
+++++++
++

++++++

+

++

++
+

+++

+

+++

++

+

+

++
++

+++++++++++++++

+

++
++++

+

+++
+

++++++
+

+++++++++

+

++
++

+

+
+ +

+

+

+++
+

+

+

++
+

+

++

+

+++++
+++++

++++++

+

+++++
+++

+
++ ++

+++++
+

++

+

+++++++

+

+++++

+
+

++

++

++

+

+

+

+++

+

++
+

+++

+

+++

++
+

+++++++

+

+

+

+
+
+

++
+++
++

+

++
+

+

+
+

+++++++
++++++
+++++

+

+
+

++++
+

+
++ +
+++

+

++

+

++
+

+

++
+

+
+

+

+

++
+

++++++++++
++++

+
++

+

(a) north, original directions

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

+
+
++

+++++++++++
+

++
++

+
++

+
+
+
+

+
++
+
++

++
+
+
++

+
+

+
+
+

++++
+
+
+

+
+
+

++

+
+
+

+

+
+

+
+

+

+

+

+
+

++
+

+

+

+

+
+

+

++

+

+
+
+

+

+

+

+

+

+

+

+
+

+

+

+
+

++
+

+

+
+
++

+
+

+
+

+

++

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+

+
+

+
+
+

+

+
+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+
+
++

+

+

+

+

+
+
+
+

+

+
+

++
+

+

+
+

+ +

+

+
+
+

+
+

+

+
+

+

+
+

+

+
+

+

+

+

+
+

+

+

+
+

+

+

+
+

+
+

+

+

+

+
+

+

+

+

+

+
+

+
+

+
+
+

++

+
+

+

+

+
+

+
+

+

+

++
+

+ +
+

+
+

+ +

+

+

+

+

(b) random, original directions

Figure 10.5: Numbers of crossings before and after the transformation, using the optimal
planar subgraph method. For non-planar graphs, the average increase is 3.30 % (a) and
4.21 % (b), respectively.

such that the planarization heuristic has always produced Ω(k2) crossings when separating
incoming from outgoing edges.

The graph Gk is defined as follows: it consists of two wheel graphs W2k sharing their rim;
one of them has all spokes directed from the rim to the hub, the other one has spokes with
alternating direction.

...

...

Figure 10.6: The graph Gk consisting of two wheel graphs W2k sharing their rim

We applied the planarization method to the graphs Gk many times, with enforced separa-
tion of incoming and outgoing edges (an example for k = 30 is shown in Figure 10.7). For
all k, the smallest number of crossings we could find was

k
∑

i=1

⌊i/2⌋ = Θ(k2).

Chapter 10. Bimodal Crossing Minimization 195

Figure 10.7: A planar drawing of G30 (left) and the bimodal drawing with the minimal
number of crossings 42 obtained by applying the planarization heuristic on its d-graph, the
expansion edge is visualized bold (right)

We conjecture that this is the minimum number of crossings for all bimodal drawings
of Gk. This would mean that a quadratic number of crossings is unavoidable even for
planar graphs.

196 Chapter 10. Bimodal Crossing Minimization

Part III

Conclusion and Future Work

197

Conclusion and Future Work 199

In this part we summarize the results presented in this work and give an overview on the
remaining open problems.

The most interesting problem of the c-planarity research field is to state the computational
complexity of deciding c-planarity for general clustered graphs. In Chapter 4 we discussed
the polynomial relation between a specific topological inference problem and deciding c-
planarity. In Chapter 7 we have given some non-trivial polynomially solvable cases. As a
resulting observation, it seems to be difficult to extract subclasses that are in P . Combining
this observation with the characterizations made in Chapter 5 it would be surprising if we
could decide in polynomial time whether a given planar clustered graph is c-planar even
when restricted to simpler subcases such as

• G has a fixed embedding and T has only one layer (excluding the root cluster),

• G has a fixed embedding,

• G is series-parallel.

If G is a tree or outer-planar we conjecture that it is possible to decide c-planarity of
a given planar clustered graph in polynomial time. For the second subcase, the reason
is that an outerplanar graph has no minors isomorphic to K4 and K2,3 [81] that means
that the corresponding SPQR-tree has only S-, P - and Q-nodes. Further, in an SPQR-
tree each skeleton of a P -node has exactly three edges where one edge is an original one.
Consequently, for any cluster ν in T we have always a path in each skeleton of a P -node
that belongs to G − G(ν) and this path is equal to an original edge of G. Therefore,
for a skeleton of an S-node the reference edge always represents a path in G − G(ν).
Unfortunately, there is no restriction how the vertices of a cluster lie in the pertinent
graph of the S-node. However, we expect the number of feasible edge-augmentations in
order to get the clustered graph c-connected and planar to be low.

One good strategy might be to code the c-planarity problem in an ILP as a crossing
minimization problem and to check experimentally how hard it is to solve. In the following
we discuss and propose an idea for future work.

It is a well-known fact that the general crossing minimization problem for undirected
graphs is NP-hard [34]. Since cluster crossing minimization is a generalization we get the
following corollary.

Corollary 10.3. It is an NP-hard problem to compute a drawing of a clustered graph
such that the number of crossings is minimal. This even holds for underlying graphs that
are cubic.

Despite the NP-hardness of crossing minimization, an exact approach has been devised
recently [9]; a branch-and-cut algorithm is proposed for minimizing the number of crossings
over all possible drawings.

200 Conclusion and Future Work

The first step in this approach is to replace every edge of the graph by a path of length
(at the most) |E|. After this, one may assume that every edge has a crossing with at most
one other edge. The ILP model used in this approach contains a variable xef for all pairs
of edges (e, f) ∈ E×E, having value one if and only if there is a crossing between e and f
in the drawing to be computed. By appropriate linear constraints, one can ensure that the
given solution is realizable, i.e., corresponds to some drawing of G.

In this part we adjust this method to our problem, i.e., the problem of computing a
crossing-minimal drawing of a clustered graph C = (G, T). Before we start with exploiting
the terminology of crossing minimization for clustered graphs we have to investigate the
terminology of c-planarity under the aspects of crossings.

The next theorem gives us a characterization for the case that no crossings are allowed in
the clustered graph C, say C is c-planar.

Theorem 10.3. Let C = (G, T) be a clustered graph. Let R = {R(ν) | ν ∈ T} be a set of
cycles defined as follows: for each cluster ν, there is a cycle R(ν) of length the number of
incident edges of ν.

C is c-planar if and only if there exists a drawing D of G ∪ R such that D has only the
following crossings: for every cluster ν there is a bijective mapping between incident edges
of ν and edges of R(ν) and each assignment corresponds to a crossing in D.

Proof. If C is c-planar then C has a c-planar embedding Γ. Consequently, G is planar
and there are neither region-edge crossings nor region-region crossings. By definition of c-
planarity, for every cluster ν its incident edges are ordered consecutively in Γ. Furthermore,
they are crossing the boundary of a closed cluster region. Hence, the boundary can be
modelled as a cycle that corresponds to R(ν). Therefore, there is a drawing D of G ∪ R
such that each edge in R(ν) is crossed exactly once by an incident edge of ν. Further, an
incident edge of ν is crossed exactly once by an edge of R(ν). Consequently, we have a
bijective mapping of crossings between incident edges of ν and edges of R(ν) in D. Further,
there are no additional crossings between an edge of G and an edge of a cycle in R.

We have given a drawing D of G∪R such that G and R are each plane in D and for each
cluster ν there is a bijective mapping of crossings between its incident edges and edges of
R(ν). We assume that C is not c-planar.

Since there exists a bijective mapping between incident edges of ν and edges of R(ν) for
each cluster, the inclusion structure of T is inherited to every R(ν).

Therefore, we have to check if for each cluster ν G(ν) is drawable into the inside of R(ν)
and G−G(ν) is drawable into the outside of R(ν).

We define the inside of R(ν) to be the bounded face of R(ν) in D and the outside of R(ν)
to be the unbounded face in D. We assume that there is a cluster ν such that there are
vertices of G(ν) and vertices of G − G(ν) drawn into the inside or outside, respectively,
of R(ν). W.l.o.g. we assume that there are two components of G(ν), one drawn into the
inside of R(ν), named G1(ν), and one drawn into the outside of R(ν), called G2(ν). Clearly,

Conclusion and Future Work 201

G1(ν) and G2(ν) are not connected since this would result into a forbidden crossing with
R(ν) in D. The same argument holds for G− (G1(ν) ∪G2(ν)). Furthermore, there is one
connected component C1 of G − (G1(ν) ∪ G2(ν)) connected to G1(ν) and one connected
component C2 of G− (G1(ν)∪G2(ν)) connected to G2(ν). Additionally, C1 and C2 are not
connected because of the previous argument. Notice that C1−G1 or C2−G2, respectively,
and G2 or G1, respectively, are not connected since this connection would have an incident
edge that has to cross exactly one edge of R(ν) once. Hence, C1 may be swapped such that
G1 lies inside of R(ν). Observe that the ordering of the incident edges of ν does not change
by this modification.

Consequently, we may assume that there is a planar drawing of G such that for each cluster
ν G(ν) is drawable into the inside of R(ν) and G− G(ν) into the outside of R(ν). Let us
assume that we have given such a planar drawing D of G.

Since R(ν) is a cycle that corresponds to a cluster ν we may add R(ν) to cluster ν.
Furthermore, we duplicate R(ν) such that it only crosses the incident edges of ν and it
crosses them in the same ordering as R(ν) but lies outside of R(ν) in D. We name this
added cycle R′(ν) and the set of all those R′. We do this transformation for every cluster
ν in D. Since we modify D only by adding exactly the same cycle R(ν) for each cluster
ν the resulting drawing has the same properties as D. Consequently, for every cluster ν
we may add R′(ν) to G − G(ν). Then we add a dummy vertex on each crossing in D.
We name the final graph Ĝ and its drawing D̂. Observe that D̂ is planar and for each
cluster ν Ĝ(ν) and Ĝ − Ĝ(ν) are each connected in D̂. Then, D̂ is c-planar and hence
the corresponding clustered graph Ĉ = (Ĝ, T̂) is c-planar (see [15, 54] and Chapter 8).
Therefore, C is c-planar that contradicts our assumption.

The last theorem gives us a nice equivalence: we may model a clustered graph C = (G, T)
by its underlying graph G and certain cycles that model the clustering structure of T . The
next step is to investigate what kind of crossings we can allow in order to highlight the
clustering structure of T in the crossing minimal drawing of C.

Since we are interested in an easy readability of the visualization of clustered graph we add
the following constraint such that the clustering structure is highlighted in the final drawing
D: a cluster region is only allowed to be crossed by incident edges of the corresponding
cluster in D and no crossing is allowed between the incident edges themselves in the near
of the boundary of the cluster region in D. Furthermore, we only allow crossings between
edge segments of D that are drawn into the region of the same lowest common ancestor in
T .

To easily handle the previous constraint we apply a pre-processing step that transforms the
given clustered graph C into an auxiliary clustered graph Caux with the following properties:

• an incident edge is incident to exactly one cluster,

• two edges e1, e2 cross at most once that have the same lowest common ancestor in
T and are no incident edges to some cluster.

202 Conclusion and Future Work

• all other edges are not allowed to cross.

Given a clustered graph C = (G, T), we replace each edge e = (v, w) that is incident to
any cluster in the following way. First we determine the number of clusters c to whom e is
incident. Then we replace e by a path P (e) of length 2c + 1.

We traverse P (e) and T simultaneously from v to w (see Figure 10.8). In P (e) we visit
every edge on an even position that we call fixed edge. The edges on the odd positions in
P (e) we name variable edges. In T we traverse each cluster on the unique path PT (e) from
v over the lowest common ancestor of e to w.

ν

w

v
µ

(a) An original edge e =
(v, w) that is incident to
cluster ν and µ

ν

4

1

2
3

w

v
µ

(b) Edge e after transfor-
mation into path P (e), bold
edges are fixed edges, the
others are variable edges

lca(e)

ν

wv

µ

(c) The sub-clustered tree
of lca(e) before transforma-
tion

lca(e)

ν

41 2 3 wv

µ

(d) The sub-clustered tree
of lca(e) after transforma-
tion

Figure 10.8: Transformation of incident edges of two clusters ν and µ.

Every fixed edge in P (e) is assigned as incident edge to the current visited cluster ν in
PT (e) and its previous variable edge in P (e) is assigned to ν. Since we have c fixed edges in
P (e) we have a bijective mapping from P (e) to PT (e). Consequently, after transformation
each fixed edge is an incident edge of exactly one cluster in T .

Clearly, the resulting graph is still a clustered graph that we call aux-clustered graph C
aux

Conclusion and Future Work 203

in the following. In order to get our pre-defined drawing of Caux with the minimum number
of crossings we set the following conditions:

1. Each fixed edge in Caux is only allowed to cross the boundary of its corresponding
cluster region and the number of crossings is exactly one.

2. Fixed edges are not allowed to cross each other.

3. Two edges e1, e2 of Caux that are no fixed edges are allowed to cross each other if and
only if lca(e1) = lca(e2).

The lowest common ancestor of an edge can be computed in O(1) time in T after a linear
time pre-processing step in T [45, 76]. For each cluster ν, to model the boundary of its
cluster region we add a cycle R(ν) of length the number of fixed incident edges of ν. To
force the first condition we seek for a bijective mapping from the fixed incident edges of ν
to the edges of the cycle R(ν) such that each assignment corresponds to a crossing between
the mapped edges and fulfills our conditions. Additionally, we forbid edges of those cycles
to cross each other.

In the previous subsection we have calculated the aux-clustered graph Caux = (Eaux, Vaux)
with a set of cycles R corresponding to the boundary of the cluster regions of Caux.

We apply the exact crossing minimization algorithm to Caux and R: all original and variable
edges of Caux are replaced by a path of length (at the most) |Eaux|.
From now on we may assume that every edge pair in Caux and R has at the most one
crossing in the final drawing. Notice that some edge pairs are not allowed to cross and
some have to cross as we described in the last section.

Since omitting a variable xef for two edges e,f in the ILP is equal to setting xef to zero
implicitly, we focus on edge pairs that might have or have to have a crossing in the following.

Therefore, we get the following ILP constraints:

1. For all clusters ν

(a) for all fixed incident edges e of ν:
∑

ê∈R(ν)

xeê = 1.

(b) for all pairs of a fixed incident edge e of ν and an edge ê of R(ν)

xeê ∈ {0, 1}.
2. For a pair e, ê of non-fixed edges with lca(e) = lca(ê)

xeê ∈ {0, 1}.

Notice that if we get a solution with the variables of the last item set to zero, this solution
can be transformed in a c-planar drawing of C. Therefore, in this case the original clustered
graph C is c-planar.

204 Conclusion and Future Work

Bibliography

[1] T. Asano. An application of duality to edge-deletion problems. SIAM Journal on
Computing, 16(2):312–331, 1987.

[2] Christian Bachmeier, Franz J. Brandenburg, and Michael Forster. Radial level pla-
narity testing and embedding in linear time. In Proceedings Graph Drawing 2004,
volume 2912 of Lecture Notes in Computer Science, pages 393–405, 2004.

[3] Guiseppe Di Battista and Fabrizio Frati. Efficient c-planarity testing for embedded
flat clustered graphs with small faces. In Proceedings Graph Drawing 2007, 2008. to
appear.

[4] C. Bentz, M.-C. Costa, L. Létocart, and F. Roupin. A bibliography on multicut and
integer multiflow problems. Technical report, Rapport scientifique CEDRIC 654, 2004.

[5] P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity. Algorithmica,
32:474–506, 2002.

[6] T. C. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar partitions ii: Hh-drawings.
In Workshop on Graph Theoretic Concepts in Computer Science, volume 1517 of Lec-
ture Notes in Computer Science, pages 124–136. Springer-Verlag, 1998.

[7] H. L. Bodlaender and G. Kant. Planar graph augmentation problems. In In Proc.
2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in Computer
Science, pages 286–298. Springer-Verlag, 1991.

[8] K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13:335–379, 1976.

[9] C. Buchheim, D. Ebner, M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher. Exact
crossing minimization. In Graph Drawing 2005, 2006.

[10] C. Buchheim, M. Jünger, A. Menze, and M. Percan. Bimodal crossing minimization.
In Proceedings of the 12th Annual International Conference, Computing and Combi-
natorics, COCOON 2006, volume 4112 of Lecture Notes in Computer Science, pages
497–506, August 2006.

205

206 Bibliography

[11] I. Cederbaum, S. Even, and A. Lempel. An algorithm for planarity testing of graphs.
In Theory of Graphs, International Symposium, Rome, pages 215–232, 1967.

[12] Z.-Z. Chen and X. He. Hierarchical topological inference on planar disc maps. In
Proceedings of the 6th Annual International Conference on Computing and Combina-
torics, pages 115–125, July 2000.

[13] Z.-Z. Chen and X. He. Disk embeddings of planar graphs. Algorithmica, 38(4):539–576,
2004.

[14] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. J. of Computer and System Sciences, 30(1):54–76,
1985.

[15] S. Cornelson and D. Wagner. Completely connected clustered graphs. In Workshop
on Graph Theoretic Concepts in Computer Science, volume 2880 of Lecture Notes in
Computer Science, pages 168–179. Springer-Verlag, 2003.

[16] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering cycles into
cycles of clusters. In Proceedings on Graph Drawing 2004 (GD 04), volume 3383 of
Lecture Notes in Computer Science, pages 100–110. Springer-Verlag, 2004.

[17] M.-C. Costa, L. Létocart, and F. Roupin. Minimal multicut and maximal integer
multiflow: A survey. EJOR European Journal on Operational Research, 162(1):55–69,
2005.

[18] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs and its paral-
lelization (extended abstract). In C. L. Lucchesi, editor, LATIN ’98, 3rd Latin Amer-
ican symposium on theoretical informatics, Campinas, Brazil, April 20–24, 1998., vol-
ume 1380 of Lecture Notes in Computer Science, pages 239–248, 1998.

[19] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894,
1994.

[20] Elias Dahlhaus, Karsten Klein, and Petra Mutzel. Planarity testing for c-connected
clustered graphs. Technical report, Department of Computer Science, University of
Dortmund, June 2006. SYS-1/06, LSXI.

[21] G. Di Battista, W. Didimo, and A. Marcandalli. Planarization of clustered graphs
(extended abstract). In P. Mutzel, M. Jünger, and S. Leipert, editors, Graph Drawing,
volume 2265 of Lecture Notes in Computer Science, pages 60–74. Springer-Verlag,
2002.

[22] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Com-
puting, 25(5):956–997, 1996.

Bibliography 207

[23] H. N. Djidjev. A linear algorithm for the maximal planar subgraph problem. In
Proceedings 4th International Workshop on Algorithms and Datastructures, WADS
’95, volume 955, pages 369–380. Springer-Verlag, Lecture Notes in Computer Science,
1995.

[24] P. Eades, Q.-W. Feng, and X. Lin. Straightline drawing algorithms for hierarchical
graphs and clustered graphs. In Graph Drawing GD 97, volume 1190 of Lecture Notes
in Computer Science, pages 113–128. Springer-Verlag, 1997.

[25] P. Eades, Q.-W. Feng, and H. Nagamochi. Drawing clustered graphs on an orthogonal
grid. Journal of Graph Algorithms and Applications, 3:3–29, 2000.

[26] M. J. Egenhofer. Reasoning about binary topological relations. In Advances in Spatial
Databases, SSD’91 Proceedings, pages 143–160. Springer-Verlag, 1991.

[27] L. Euler. Demonstratio nonnullarum insignium proprietatum quibus solida hedris
planis inclusa sunt praedita. Novi Comm. Acad. Sci. Imp. Petropol., 4:140–160, 1750.
1752-3, published 1758, also: Opera Omnia (1) 26, 94–108.

[28] L. Faria, C. M. H. de Figueiredo, and C. F. X. de Mendonça N. Splitting number is
NP-complete. Discrete Applied Mathematics, 108(1–2):65–83, 2001.

[29] Q.-W. Feng. Algorithms for Drawing clustered graphs. PhD thesis, Department of
Computer Science and Software Engineering, University of Newcastle, April 1997.
PhD Thesis.

[30] Q.-W. Feng, R.-F. Cohen, and P. Eades. Planarity for clustered graphs. In P. Spirakis,
editor, Algorithms – ESA ’95, Third Annual European Symposium, volume 979 of
Lecture Notes in Computer Science, pages 213–226. Springer-Verlag, 1995.

[31] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs, with appli-
cations. SIAM Journal on Computing, 16:1004–1022, 1987.

[32] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, The Association for Computing Machinery, New York,
pages 448–456, 1983.

[33] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32:826–834, 1977.

[34] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 4(3):312–316, 1983.

[35] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

208 Bibliography

[36] E. Gassner and M. Percan. Maximum planar subgraph on graphs not contractive to
k5 or k3,3. Technical report, University of Cologne, 2006. zaik2006-525.

[37] E. Gassner and M. Percan. On the weighted minimal deletion of rooted bipartite
minors. Technical report, University of Cologne, 2007. zaik2007-542.

[38] Michael T. Goodrich, George S. Lueker, and Jonathan Z. Sun. c-planarity of extrovert
clustered graphs. In Proceedings Graph Drawing 2006, pages 211–222, 2006.

[39] M. Grigni, D. Papadias, and C. H. Papadimitriou. Topological inference. In Pro-
ceedings of the 14th International Joint Conference on Artificial Intelligence, pages
901–906, 1995.

[40] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher.
Advances in c-planarity testing of clustered graphs. In Proceedings on Graph Drawing
2002 (GD 02), volume 2528, pages 220–235. Springer-Verlag, 2002.

[41] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and R. Weiskircher.
Subgraph induced planar connectivity augmentation. In Workshop on graph Theoretic
concepts in computer science, volume 2880, pages 261–272. Springer-Verlag, 2003.

[42] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
J. Marks, editor, Graph Drawing (Proc. 2000), volume 1984 of Lecture Notes in Com-
puter Science, pages 77–90. Springer-Verlag, 2001.

[43] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a planar graph.
Algorithmica, 41(4):289–308, 2005.

[44] T. Hagerup and C. Uhrig. Triangulating a planar map without introducing multiple
arcs. Technical report, 1989.

[45] D. Harel and R.Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13:338–355, 1984.

[46] R. Hassin and D. B. Johnson. An o(n log2 n) algorithm for maximum flow in undirected
planar networks. SIAM Journal on Computing, 14:612–624, 1985.

[47] M. R. Henzinger, Ph. Klein, S. Rao, and S. Subramanian. Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[48] P. Hliněný. Crossing number is hard for cubic graphs. In MCFS 2004, pages 772–782,
2003.

[49] J. Hofcroft and R. E. Tarjan. Efficient planarity testing. Journal of ACM, 21(4):549–
568, 1974.

[50] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n2) algorithms for graph
planarization. IEEE Transactions on Computer-Aided Design, 8:257–267, 1989.

Bibliography 209

[51] Eva Jelinkova, Jan Kara, Jan Kratochvil, Marin Pergel, Ondrej Suchy, and Tomas
Vyskocil. Clustered planarity: Small clusters in eulerian graphs. In Proceedings Graph
Drawing 2007, 2008. to appear.

[52] L. K. Jørgensen. Vertex partitions of k4,4-minor free graphs. Graphs Combin., 17:265–
274, 2001.

[53] L. K. Jørgensen and K. Kawarabayashi. Extremal results for rooted minor problems.
Technical report, 2005. Report R-2005-07.

[54] M. Jünger, S. Leipert, and M. Percan. Triangulating clustered graphs. Technical
report, Institut für Informatik, Universität zu Köln, 2002. zaik2002-444.

[55] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice embeddings: Practical
layout tools. Algorithmica, 16(1):33–59, 1996.

[56] M. Jünger and P. Mutzel. Technical Foundations, pages 9–49. Mathematics + Visu-
alization. Springer-Verlag, 2004.

[57] Michael Jünger, Petra Mutzel, , Merijam Percan, and Klaus Truemper. Personal
communications. 2005.

[58] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Math-
ematicae, 15:271–283, 1930.

[59] J. A. La Poutré. Alpha-algorithms for incremental planarity testing. In STOC ’94,
pages 706–715, 1994.

[60] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs.
In Theory of Graphs. Internatonal Symposium, Rome, Italy, July 1966, pages 215–232.
Gordon and Breach, New York, 1967.

[61] T. Lengauer. Hierarchical planarity testing algorithms. Journal of the Association for
Computing Machinery, 36(3):474–509, 1989.

[62] K.-F. Liao and M. Sarrafzadeh. Vertex-disjoint trees and boundary single-layer rout-
ing. In R. H. Möhring, editor, Proceedings 16th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG ’90), volume 484 of Lecture Notes in
Computer Science, pages 99–108, 1990.

[63] A. Liebers. Planarizing graphs – a survey and annotated bibliography. Journal of
Graph Algorithms and Applications, 5(1):1–74, 2001.

[64] P. C. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a graph.
In Proc. of the 10th Southeastern Conference on Combinatorics, Graph Theory, and
Computing, Boca Raton, Florida, USA, 1979, part 2, volume 24, pages 727–738. Con-
gressus Numerantium, 1979.

210 Bibliography

[65] J. F. Lynch. The equivalence of theorem proving and the interconnection problem.
(ACM) SIGDA Newsletter, 5(3):31–36, 1975.

[66] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica, 16:233–242, 1996.

[67] A. Menze. Darstellung von Nebenmetaboliten in automatisch erzeugten Zeichnungen
metabolischer Netzwerke. Master’s thesis, Institute of Biochemistry, University of
Cologne, June 2004.

[68] H. Nagamochi and K. Kuroya. Convex drawing for c-planar biconnected clustered
graphs. In Proceedings on Graph Drawing 2003 (GD 03), volume 2912, pages 369–
380. Springer-Verlag, 2004.

[69] M. J. Pelsmajer, M. Schaefer, and D. Štefankovič. Crossing number of graphs with
rotation systems. Technical report, Department of Computer Science, DePaul Uni-
versity, 2005.

[70] R.-C. Read. A new method for drawing a planar graph given the cyclic order of the
edges at each vertex. Congressus Numerantium, 56:31–44, 1987.

[71] N. Robertson and P. Seymour. An outline of a disjoint paths algorithm. In Paths,
Flows, and VLSI-Layout, pages 267–292, 1990.

[72] N. Robertson, P. Seymour, and R. Thomas. Hadwiger’s conjecture for K6-free graphs.
Combinatorica, 13(3):279–361, 1993.

[73] N. Robertson and P. D. Seymour. Graph minors XIII. the disjoint paths problem.
Journal of Combinatorial Theory Series B, 63:65–110, 1995.

[74] Rome library of directed graphs.
http://www.inf.uniroma3.it/people/gdb/wp12/directed-acyclic-1.tar.gz.

[75] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Symposium on the Theory of Computing, pages 216–226, 1978.

[76] B. Schieber and U. Vishkin. On finding lowest common ancestors, simplification and
parallelization. SIAM Journal on Computing, 17:1253–1262, 1988.

[77] R. Smith and K. K. Park. Algebraic approach to spatial reasoning. International
Journal Geographical Information Systems, 6:177–192, 1992.

[78] K. Sugiyama and K. Misue. Visualization of structural information: automatic draw-
ing of compound digraphs. IEEE Transactions on Systems, Man, and Cybernetics,
4(21):876–893, 1991.

Bibliography 211

[79] H. Suzuki, T. Akama, and T. Nishizeki. Finding Steiner forests in planar graphs. In
Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
90), pages 444–453, 1990.

[80] R. Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

[81] K. Truemper. Matroid Decomposition. Academic Press, University of Texas at Dallas,
Richardson, Texas, 1992.

[82] K. Truemper. Personal communications. July 2006.

[83] D. Wagner. Simple algorithms for Steiner trees and paths packing problems in planar
graphs. CWI Quarterly, 6(3):219–240, 1993.

[84] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen,
114:570–590, 1937.

[85] T. Watanabe, T. Ae, and A. Nakamura. On the NP-hardness of edge-deletion and
-contraction problems. Discrete Applied Mathematics, 6:63–78, 1983.

[86] M. Yannakakis. Node- and edge-deletion NP-complete problems. In STOC ’78, pages
253–264, 1978.

[87] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10:297–309,
1981.

Index

2-isomorphism, 12

acyclic directed graph (dag), 7
adj(v) (adjacent vertices to a vertex), 6
adjacent

face, 11
vertex, 6

arc, see edge of a directed graph

biconnected
component, 6
graph, 6

bipartite graph, 27
block

of a graph, 6
bridge of a graph, 7

C(ν) (sub-clustered graph defined by ν), 9
c-connected, 9, 41, 71–86
c-connectivity, 41
c-planar, 13

drawing, 13
c-planar drawing, 13
c-planarity, 13

testing, 14, 71–131
child

in a tree, 8
clockwise ordering, 11
cluster

drawing, 9
planarity, 13
tree, 9

clustered graph, 9
drawing

force-directed, 27
edge-region crossing, 10

super-clustered graph, 9
clustered graph

augmentation, 133–138
cluster-biconnectivity, 137

c-connected, 9, 41, 71–86
c-connectivity, 41
c-planar, 13
c-planar drawing, 13
co-connected, 41–44, 86–120
connected, 9
cut cluster, 9
drawing

multilevel visualization, 27
orthogonal method, 27
straightline convex, 27

duality, 39
embedding, 13
root cluster, 9
sub-clustered graph, 9
triangulation, 26, 133

co-connected, 41–44, 86–120
coloop, 6
combinatorial embedding, 11
component

biconnected, 6
of a graph, 6

compound graph
drawing, 11

compound graph, 10
inter-level edge, 10
simple, 10

compound planarity, 29
connected disc embedding, 17
connected graph, 6
connecting edge, 6

212

Index 213

crossing
of edges, 11

crossing minimization
cluster, 201

cut
vertex of a graph, 6

cut cluster, 9, 41
cycle, 41

cut vertex, 9
cycle

undirected, 6

dag, see directed acyclic graph
decision nodes, 19
deg(f) (degree of a face), 11
deg(v) (degree of a vertex), 6
degree

maximum, 6
minimum, 6
of a vertex, 6

depth(v) (depth of tree vertex v), 8
digraph, see directed graph
directed

acyclic graph, 7
edge, 7

entering, 7
incoming, 7
leaving, 7
outgoing, 7

directed graph, 7
acyclic, 7
arc, 7
edge, 7
single sink, 8
single source, 8
st-, 8
vertex, 7

disc embedding
connected, 17
planar, 17

disconnected graph, 6
drawing

force-directed cluster, 27

multilevel cluster visualization, 27
of a clustered graph, 9
of a compound graph, 11
of a graph, 8
straightline convex cluster, 27
y-monotone HH-drawing, 27

dual clustering graph, 39

E = E(G) (edges of a graph), 5
edge, 5

coloop, 6
connecting, 6
connectivity of a graph, 7
crossing, 11
end-vertex, 6
incident to a cluster, 9
incident to a vertex, 6
inter-level in a compound graph, 10
of a directed graph, 7
of an undirected graph, 5

embedding
combinatorial, 11
planar, 11

end-vertex, 6
Euler’s formula, 12
expansion graph, 18
exterior face, 11

face
adjacent, 11
exterior, 11
interior, 11
of a plane graph, 11
outer, 11

forest, 6

G(ν) (cluster subgraph defined by ν), 9
G = (V, E) (graph), 5
graph, 5

biconnected, 6
bipartite, 27
block, 6
bridge, 7
clustered, 9

214 Index

sub, 9
component, 6
compound, 10

inter-level edge, 10
simple, 10

connected, 6
k-, 6
k-edge-, 7

cut vertex, 6
directed, 7
disconnected, 6
drawing, 8
dual, 12
edge, 5
edge connectivity, 7
embedding, 11
loop, 5
nested, 10
outer-planar, 7
planar, 11
plane, 11
series-parallel, 7
simple, 5
subgraph, 6
triangulated planar, 12
triconnected, 6
underlying a clustered graph, 9
undirected, 5
vertex, 5
vertex connectivity, 6

grid
layout, 8

in-degree of a vertex, 7
inadj(v) (incoming neighbor vertices of v), 7
incident edge

to a cluster, 9
incident edge

to a vertex, 6
inclusion tree, 9
indeg(v) (in-degree of v), 7
instar(v) (incoming edges of vertex v), 7
interior face, 11

isolated vertex, 6

k-connected graph, 6
k-edge-connected graph, 7
κ(G) (vertex connectivity of graph G), 6

λ(G) (edge connectivity of graph G), 7
layout

grid, 8
leaf of a tree, 8
level of a tree, 8
loop, 5
loop(v) (set of loops at vertex v), 6

map, 16
abstract, 17
graph, 17
graph-forest, 17
hierarchical, 16
lakes, 17
leaf district, 17
planar, 16

maxdeg(G) (maximum degree in a graph), 6
maximum degree, 6
mindeg(G) (minimum degree in a graph), 6
minimum degree, 6
multilevel visualization, 27

nested
graph, 10

node, see vertex

orthogonal method, 27
out-degree of a vertex, 7
outadj(v) (outgoing neighbor vertices of v),

7
outdeg(v) (out-degree of v), 7
outer face, 11
outer-planar graph, 7
outstar(v) (outgoing edges of a vertex v), 7

P-node, 18
parent in a tree, 8
pertinent graph, 18

Index 215

Π (planar/combinatorial embedding of a
graph), 11

planar
cluster, 13
embedding, 11
graph, 11

planar disc embedding, 17
planarization

clustered graph, 27
plane graph, 11
poles, 18
PQ-tree, 13

Q-node, 18

R-node, 18
root

cluster, 9
of a tree, 8

rooted tree, 8

S-node, 18
separating vertex pair, 7
series-parallel graph, 7
sibling in a tree, 8
simple

compound graph , 10
undirected graph, 5

single sink directed graph, 8
sink, 8
SIPCA, 45–68
skeleton, 17
source, 8
SPQR-tree, 17

decision nodes, 19
expansion graph, 18
P-node, 18
pertinent graph, 18
poles, 18
Q-node, 18
R-node, 18
reference edge, 17
S-node, 18
skeleton, 17

twin edge, 18
st-digraph, 8
star(v) (edges incident to a vertex), 6
straightline convex cluster, 27
sub-clustered graph, 9
sub-clustered graph, 9
subgraph, 6

contained in a graph, 6
edge-induced, 6
vertex-induced, 6

subgraph induced planar connectivity aug-
mentation, 45–68

super-clustered graph, 9

T (ν) (cluster subtree defined by ν), 9
topnumber(v) (topological number of vertex

v), 8
topological

inference, 14
numbering, 8
sorting, 8

topological inference, 14, 29
contains, 14
covered by, 14
covers, 14
disjoint, 14
equal, 14
explicit case, 15
fully-conjective, 16
hierarchical, 15
high resolution case, 14
inclusion, 16
inside, 14
low resolution case, 14
medium resolution case, 14
meets, 14
overlap, 14
planar, 15
realizability, 15
satisfiability, 15

tree, 6
child, 8
cluster, 9

216 Index

depth of a vertex, 8
inclusion, 9
leaf, 8
level, 8
parent, 8
PQ, 13
root, 8
rooted, 8
sibling, 8
SPQR, 17

triangulated planar graph, 12
triangulation, 26, 133
triconnected graph, 6
twin edge, 18

underlying graph
of a clustered graph, 9

V (ν) (cluster vertices defined by ν), 9
V = V (G) (vertices of a graph), 5
vertex

adjacent, 6
connectivity, 6
degree, 6
in-degree, 7
isolated, 6
of a directed graph, 7
of an undirected graph, 5
out-degree, 7
separating pair, 7
sink, 8
source, 8

walk
length, 6
undirected, 6

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig und
ohne unzulässige Hilfe angefertigt, die benutzen Quellen und Hilfsmittel
vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen,
Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn
nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; daß diese Dissertation noch keiner anderen Fakultät zur Prüfung
vorgelegen hat; daß sie abgesehen von unten angegebenen Teilpublikatio-
nen noch nicht veröffentlicht ist, sowie daß ich eine solche Veröffentlichung
vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bes-
timmungen der geltenden Promotionsordnung sind mir bekannt. Die von
mir vorgelegte Dissertation ist von Professor Dr. Michael Jünger betreut
worden.

Köln, im November 2007

(Merijam Percan)

• C. Buchheim, M. Jünger, A. Menze, and M. Percan.
Bimodal crossing minimization.
In Proceedings of the 12th Annual International Conference, Comput-
ing and Combinatorics, COCOON 2006, volume 4112 of Lecture Notes
in Computer Science, pages 497–506, August 2006.

• E. Gassner and M. Percan.
Maximum planar subgraph on graphs not contractive to K5 or K3,3.
Technical report, University of Cologne, 2006.
zaik2006-525.

• E. Gassner and M. Percan.
On the weighted minimal deletion of rooted bipartite minors.
Technical report, University of Cologne, 2007.
zaik2007-542.

• C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and
R. Weiskircher.
Advances in c-planarity testing of clustered graphs.
In Proceedings on Graph Drawing 2002 (GD 02), volume 2528, pages
220–235. Springer-Verlag, 2002.

• C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan, and
R. Weiskircher.
Subgraph induced planar connectivity augmentation.
In Workshop on graph Theoretic concepts in computer science, volume
2880, pages 261–272. Springer-Verlag, 2003.

• M. Jünger, S. Leipert, and M. Percan.
Triangulating clustered graphs.
Technical report, Institut für Informatik, Universität zu Köln, 2002.
zaik2002-444.

