Pseudopotentiale für Quanten-Monte-Carlo-Rechnungen

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Mark Thomas Burkatzki

aus Köln

2008

Berichterstatter: Prof. Dr. F. M. Dolg

Prof. Dr. U. K. Deiters

Vorsitz der Prüfungskommission: Prof. Dr. A. Klein

Tag der letzten mündlichen Prüfung: Mittwoch, der 16.4.2008.

Inhaltsverzeichnis

Einl	eitung		10
Das	elektro	nische Strukturproblem	12
2.1	Einleit	ung	12
	2.1.1	Die CI-Methode	13
	2.1.2	Die Coupled-Cluster-Methode	14
2.2	Quante	en-Monte-Carlo (QMC)	16
	2.2.1	Variationelles Monte-Carlo (VMC)	16
	2.2.2	Diffusions-Monte-Carlo (DMC)	21
2.3	Pseudo	ppotentiale	25
	2.3.1	Einleitung	25
	2.3.2	Formkonsistente Pseudopotentiale	27
	2.3.3	Energiekonsistente Pseudopotentiale	28
	2.3.4	Funktionale Form der Pseudopotentiale	29
	2.3.5	3d-Übergangsmetalle	33
	2.3.6	Pseudopotentiale in QMC-Rechnungen	35
Rec	henmet	hoden der relativistischen Quantenchemie	39
3.1	Die Kl	lein-Gordon-Gleichung	39
3.2	Die Di	irac-Gleichung	41
3.3	Reche	nmethoden	45
	3.3.1	Direkte Störungstheorie	46
	Das 2.1 2.2 2.3 Rec 3.1 3.2	2.1 Einleit	Das elektronische Strukturproblem 2.1 Einleitung 2.1.1 Die CI-Methode 2.1.2 Die Coupled-Cluster-Methode 2.2 Quanten-Monte-Carlo (QMC) 2.2.1 Variationelles Monte-Carlo (VMC) 2.2.2 Diffusions-Monte-Carlo (DMC) 2.3 Pseudopotentiale 2.3.1 Einleitung 2.3.2 Formkonsistente Pseudopotentiale 2.3.3 Energiekonsistente Pseudopotentiale 2.3.4 Funktionale Form der Pseudopotentiale 2.3.5 3d-Übergangsmetalle 2.3.6 Pseudopotentiale in QMC-Rechnungen Rechenmethoden der relativistischen Quantenchemie 3.1 Die Klein-Gordon-Gleichung 3.2 Die Dirac-Gleichung 3.3 Rechenmethoden

		3.3.2	Foldy-Wouthuysen-Darstellung	48
		3.3.3	Douglas-Kroll-Darstellung	50
		3.3.4	Reguläre Entwicklungen	52
4	Pseu	ıdopote	entiale für QMC-Rechnungen	54
	4.1	Existie	erende Pseudopotentiale für QMC	54
		4.1.1	Pseudopotentiale von Greef, Lester, Ovcharenko et al	54
		4.1.2	Pseudopotentiale von Trail und Needs	55
	4.2	Einflu	ss des Potentials auf die Varianz	59
	4.3	Vergle	ichstestrechnungen der Hauptgruppenelemente	61
		4.3.1	Valenzbasissätze	62
		4.3.2	Atomare Testrechnungen	63
		4.3.3	Molekulare Testrechnungen	65
		4.3.4	QMC-spezifische Testrechnungen	67
	4.4	Vergle	richstestrechnungen der 3d-Übergangsmetalle	70
		4.4.1	Valenzbasissätze	70
		4.4.2	Atomare Testrechnungen	71
		4.4.3	Molekulare Testrechnungen	75
	4.5	Zusam	nmenfassung und Ausblick	76
A	Pseu	ıdopote	entialparameter und Basissätze	78
В	Basi	ssätze f	für die Potentiale von Trail und Needs	132
C	Kur	zzusam	nmenfassung	146
D	Abst	tract		147
Lit	teratu	ırverzei	ichnis	147
Er	kläru	ıng gem	näß §3 Abs. 10 der Promotionsordnung	154
Le	bensl	auf		156

Abbildungsverzeichnis

2.1	Der lokale Teil $V_{loc}(r)$ des Pseudopotentials für verschiedene β . Alle Werte sind in atomaren Einheiten (a.E.).	31
2.2	Die Auswirkung der Nebenbedingung $\gamma\delta+\zeta\eta>0$ auf das Pseudopotential. Alle Werte sind in atomaren Einheiten (a.E.)	32
2.3	Vergleich einiger Pseudopotentiale für Silizium. Oben links : Das SBK-Siliziumpseudopotential [39] divergiert im nichtlokalen Teil wie $1/r^2$ für $r \to 0$ (repulsiv) und wie $-1/r$ im lokalen Teil (coulombartig, attraktiv). Oben rechts : Das Stuttgartpseudopotential [49] divergiert wie $-1/r$ und hat keinen nichtlokalen Teil. Unten : Das neue, nichtsinguläre Pseudopotential. Alle Werte sind in atomaren Einheiten (a.E.).	34
2.4	Radiale Orbitale für das Titanatom in der [Ne] $3s^2$ $3p^6$ $4s^2$ $3d^2$ Konfiguration. Alle Werte sind in atomaren Einheiten (a.E.)	35
4.1	Das Kohlenstoffpseudopotential von Trail und Needs [7, 8]. Alle Werte sind in atomaren Einheiten (a.E.).	56
4.2	Pseudopotentiale für Wasserstoff mit $\alpha=3,5,10.$ Alle Werte sind in atomaren Einheiten (a.E.)	61
4.3	Extrapolation zur Ermittlung der exakten $Fixed$ -Node-DMC-Energie $E_{\rm FN}^{\rm extr}$ ohne Lokalitätsnäherung am Beispiel des Kohlenstoffpseudopotentials dieser Arbeit. $E_{\rm VMC}$ bezeichnet die VMC-Energie. Alle Werte sind in atomaren Einheiten (a.E.)	68
4.4	Der Lokalisierungsfehler $E_{\rm FN}-E_{\rm FN}^{\rm extr}$ aufgetragen gegen die Qualität der Testwellenfunktion $E_{\rm VMC}-E_{\rm FN}$ für die Kohlenstoff- und Siliziumpotentiale von Trail und Needs (TN) und die Potentiale dieser Arbeit (DA). Alle Werte sind in atomaren Einheiten (a.E.).	69

Tabellenverzeichnis

2.1 Die verwendeten Konfigurationen für die Justierun stoff-, Silizium- und Scandiumpseudopotentials.	~
4.1 Analytische Darstellung des Kohlenstoffpseudopote und Needs [7, 8]. Das Potential ist als Summe von nen $c \cdot r^n \cdot \exp(-b \cdot r^2)$ dargestellt. Alle Werte sind in heiten (a.E.)	Gaussfunktio- atomaren Ein-
4.2 Abhängigkeit der Varianz und der Fitgenauigkeit v turtermen für die Singularität am Beispiel des Was potentials. Die Summe der Fehlerquadrate $\sum (\Delta E)^2$ die Qualität der Pseudopotentialjustierung. Die Beist in Abschnitt 2.3.6 erläutert. Alle Werte sind in heiten (a.E.).	serstoffpseudo- ist ein Maß für deutung von σ atomaren Ein-
4.3 Abhängigkeit der Varianz und der Fitgenauigkeit v turtermen für die Singularität am Beispiel des Kohpotentials. Die Einträge für σ opt. sind für VMC-R Jastrow-Faktor. Die übrigen Bezeichnungen sind v Alle Werte sind in atomaren Einheiten (a.E.)	enstoffpseudo- echnungen mit rie in Abb. 4.2.
4.4 Fehler der HF-Anregungsenergien, Ionisierungspote tronenaffinitäten für verschiedene Kohlenstoffpseud Fehler sind bezogen auf die entsprechende skalarrele elektronen-HF-Rechnung. TN bezeichnet das Pseud Trail und Needs, GLO bezeichnet das Pseudopoter Lester, Ovcharenko <i>et al.</i> m.a.A. ist die mittlere alchung. Alle Werte sind in Elektronenvolt (eV)	opotentiale. Die ativistische All- dopotential von tial von Greef, osolute Abwei-
4.5 Wie in Tabelle 4.4 nur für Silizium. Alle Werte sind volt (eV).	

4.6	Fehler der MP2/V5Z Bindungslängen, der MP2/V5Z Frequenzen und der CCSD(T)/V5Z Bindungsenergien der 26 Dimere für die Potentiale von Trail und Needs (TN) und dieser Arbeit. Die Fehler sind bezogen auf die Abweichung von der entsprechenden DKH-Allelektronenrechnung.	66
4.7	Relative Effizienz κ_{DA}/κ_{TN} der Potentiale dieser Arbeit (DA) und der Potentiale von Trail und Needs (TN). T_{CPU} ist die Rechenzeit einer VMC-Rechnung gleicher Länge relativ zu der Zeit, welche mit einem Potential dieser Arbeit benötigt wird. σ kennzeichnet die quadratisch gemittelten Fluktuationen in atomaren Einheiten (a.E.) und τ_{corr} ist die Autokorrelationszeit der lokalen Energie.	70
4.8	Erstes (IP1), zweites (IP2) und drittes (IP3) Ionisierungspotential und die Anregungsenergie (EX) für Scandium (oben) und Titan (unten). Für Scandium entsprechen IP1, IP2, IP3 und EX Übergänge in die Zustände 3D :[Ar] $4s^13d^1$, 2D :[Ar] $4s^03d^1$, 1S :[Ar] $4s^03d^0$ und 3F :[Ar] $4s^13d^2$. Für Titan entsprechen IP1, IP2, IP3 und EX Übergänge in die Zustände 4F :[Ar] $4s^13d^2$, 3F :[Ar] $4s^03d^2$, 2D :[Ar] $4s^03d^1$ und 5F :[Ar] $4s^13d^3$. PP bezeichnet Pseudopotentialrechnungen und DKH bezeichnet eine Allelektronenrechnung. Alle CI-und CC-Resultate sind basissatzextrapoliert. Die Pseudopotentialrechnungen mit dem zusätzlichen Index (a) sind mit der äußerst flexiblen, unkontrahierten Basis durchgeführt, während die übrigen Rechnungen mit kontrahierten Basissätzen gerechnet sind. Alle Werte sind in Elektronenvolt (eV))	72
4.9	Einfluss des Rumpfpolarisationspotentials auf die Berechnung der Ionisationspotentiale und Anregungsenergien. Die Bezeichnungen sind wie in Tabelle 4.8 gewählt. Der zusätzliche Index $(^b)$ kennzeichnet eine modifizierte, unkontrahierte Basis (siehe Text). Alle Werte sind in Elektronenvolt (eV))	74
4.10	Vertikale Ionisierungspotentiale (IP1) und Bindungsenergien (D_e) der Moleküle ScO und TiO. Die D_e -Werte (a) sind abgeleitet von D_0^0 mit $\Delta G(1/2)$ aus Ref. [112]. Alle Werte sind in Elektronenvolt (eV)	75
A.1	Н	80
A.2	He	81
۸ 2	1;	82

A.4	Be																		83
A.5	B .										•								84
A.6	C .																		85
A.7	N																		86
A.8	O																		87
A.9	F .																		88
A.10	Ne																		89
A.11	Na																		90
A.12	Mg																		91
A.13	Al																		92
A.14	Si																		93
A.15	P .																		94
A.16	S .																		95
A.17	Cl																		96
A.18	Ar																		97
A.19	K																		98
A.20	Ca																		99
A.21	Sc																		100
A.22	Ti																		101
A.23	V																		102
A.24	Cr																		103
A.25	Mn																		104
A.26	Fe																		105
A.27	Co																		106
A.28	Ni																		107
A.29	Cu																		108
A.30	Zn																		109
A.31	Ga																		110
A.32	Ge																		111
A.33	As																		112

A.34	Se		•																	113
A.35	Br																			114
A.36	Kr																			115
A.37	Rb																			116
A.38	Sr																			117
A.39	In										•		•					•		118
A.40	Sn																			119
A.41	Sb																			120
A.42	Te										•		•					•		121
A.43	Ι.																			122
A.44	Xe																			123
A.45	Cs																			124
A.46	Ba										•		•					•		125
A.47	Tl																			126
A.48	Pb										•		•					•		127
A.49	Bi										•		•					•		128
A.50	Po										•		•					•		129
A.51	At																			130
A.52	Rn																			131
B.1	Li																			133
B.2	Be																			134
B.3	В.																			135
B.4	C .																			136
B.5	ът																			137
B.6																				138
B.7																				139
B.8																				140
B.9																				141
R 10	c:																			142

B.11 P			•	•		•	•								•			•	143
B.12 S																			144
B.13 Cl																			145

Kapitel 1

Einleitung

Die Pseudopotentialmethode zählt zu den etablierten Werkzeugen der Quantenchemie [1]. Dabei werden die als chemisch inert betrachteten Rumpfelektronen durch ein drehimpulsabhängiges, effektives Potential, welches auf die Valenzelektronen wirkt, ersetzt. Dadurch verringert sich die effektive Kernladung und die Anzahl der explizit zu behandelnden Elektronen, was die Rechenzeit besonders für schwere Atome drastisch reduzieren kann. Pseudopotentiale werden in der Dichtefunktionaltheorie (DFT), der Hartree-Fock-Theorie (HF) und den verschiedenen Post-HF-Methoden routinemäßig angewendet (ebd.).

Die Pseudopotentialmethode hat sich auch im Kontext der sog. Quanten-Monte-Carlo-(QMC-)Verfahren etabliert [2]. Besonders das sog. Diffusions-Monte-Carlo (DMC) hat gezeigt, dass es einen signifikanten Teil der Elektronenkorrelation beschreiben kann und dabei vergleichsweise vorteilhaft mit N^4 skaliert, wobei N die Anzahl der Elektronen ist. Dafür skaliert das DMC unvorteilhaft mit der Kernladung Z [3, 4] und man findet eine Abhängigkeit gemäß $Z^{5.5-6.5}$, so dass die Pseudopotentialmethode die Berechnung besonders schwerer Elemente im DMC teilweise erst ermöglicht. Die Auswahl an Pseudopotentialen in der Literatur ist bereits sehr umfangreich. Allerdings sind die publizierten Potentiale nicht für den Einsatz in QMC-Rechnungen gedacht. Es zeigte sich beispielsweise, dass DFT-Pseudopotentiale deutlich unzuverlässigere Resultate in QMC-Rechnungen erzielen als HF-Pseudopotentiale [5]. Die publizierten HF-Pseudopotentiale sind ebenfalls nicht optimal für QMC-Anwendungen, da die meisten entweder wie 1/r oder wie $1/r^2$ am Kern divergieren. In konventionellen Quantenchemieprogrammen ist diese Singularität unproblematisch. Konventionell bedeutet hier, dass die Lösung in einem endlichen Basissatz entwickelt wird und bei der Berechnung der entsprechenden Matrixelemente über die Singularität hinweg integriert werden kann. Das QMC hingegen ist eine lokale Methode ohne Basissatzentwicklung und die Singularitäten verursachen große Fluktuationen der berechneten Bestwerte der Energie. Die in dieser Arbeit vorgestellten Pseudopotentiale eliminieren die Coulombsingularität am Kern und sind somit besonders geeignet für QMC-Rechnungen.

Die Idee, nichtsinguläre HF-Pseudopotentiale für QMC-Rechnungen zu entwerfen, ist bereits von zwei Gruppen unabhängig verfolgt worden. Greef, Lester, Ovcharenko *et al.* publizierten nichtsinguläre HF-Pseudopotentiale für die Elemente Beryllium bis Neon und Aluminium bis Argon [5, 6]. Die Pseudopotentiale haben aber einige gravierende Nachteile, da sie nur einen sehr kleinen Teil des Periodensystems abdecken, keine relativistischen Effekte berücksichtigen, keinen p-Projektor für die Elemente der Siliziumreihe aufweisen und auch keine optimierten Basissätze existieren. Trail und Needs [7, 8] publizierten nichtdivergierende Dirac-Fock spinbahngemittelte Pseudopotentiale für sehr viele Elemente. Allerdings sind auch diese Potentiale ohne Basissätze publiziert und haben keinen d-Projektor für die Potentiale der Elemente schwerer als Zink, welche d-Elektronen ersetzen. Für die 3d-Übergangsmetalle wählen Trail und Needs den Argonrumpf. Die Wahl hat sich als ungünstig erwiesen und die Potentiale mit dem Argonrumpf sollten nach Möglichkeit gemieden werden [9, 10, 11].

In dieser Arbeit werden relativistische Pseudopotentiale für die Hauptgruppenelemente und die 3d-Übergangselemente vorgeschlagen. Die Pseudopotentiale sind nichtsingulär und werden von optimierten Basissätzen ergänzt. Für die Elemente der 1. und 2. Reihe werden Valenz-n-Tupel-(VnZ-)Basissätze mit n=D,T,Q,5 bereitgestellt. Für die Elemente der 3., 4. und 5. Reihe der Hauptgruppen werden VDZ- und VTZ-Basissätze justiert. Für die 3d-Übergangsmetalle sind VTZ- und VQZ-Basissätze verfügbar.

Die Genauigkeit und Transferabilität der Potentiale werden durch entsprechende Vergleichstestrechnungen gezeigt und mit Resultaten der bereits publizierten QMC-Pseudopotentiale verglichen. Zusätzlich werden die QMC-spezifischen Sachverhalte des Lokalisierungsfehlers und der Effizienz untersucht und diskutiert. Die Arbeit ist wie folgt gegliedert: Zunächst wird in Kapitel 2 die QMC-Methode erläutert und es werden die speziellen Anforderungen an das Pseudopotential spezifiziert. Die Konstruktion der Potentiale wird vorgeschlagen und den alternativen Konstruktionen gegenübergestellt. In Kapitel 3 wird eine Auswahl relativistischer Rechenmethoden skizziert. In Kapitel 4 werden die Testergebnisse der Pseudopotentiale und Basissätze präsentiert. Das Kapitel endet mit einer Zusammenfassung und einer Einschätzung der Perspektiven dieser Methode. Die Parameter der Pseudopotentiale und Basissätze werden im Anhang der Arbeit zusammengefasst.

Kapitel 2

Das elektronische Strukturproblem

2.1 Einleitung

Der Hamiltonoperator für das sog. (nichtrelativistische) elektronische Strukturproblem mit N Elektronen und M Atomzentren der Kernladung Z_{α} lautet in atomaren Einheiten

$$\hat{H} = -\frac{1}{2} \sum_{i}^{N} \Delta_{i} - \sum_{\alpha}^{M} \sum_{i}^{N} \frac{Z_{\alpha}}{r_{i\alpha}} + \sum_{i < i}^{N} \frac{1}{r_{ij}}.$$
 (2.1)

Die Lösungen, d.h. die Wellenfunktion Ψ und der Energieeigenwert E für einen bestimmten Zustand der zeitunabhängigen elektronischen Schrödingergleichung

$$\hat{H}\Psi = E\Psi, \tag{2.2}$$

sind bis auf Spezialfälle nicht in analytischer Form bekannt. Für die Beschreibung von Elektronen muss der Lösungsraum von Gl. 2.2 zusätzlich noch auf antisymmetrische Wellenfunktionen beschränkt sein. Theoretisch entspricht das einer Projektion, praktisch kann man das Problem lösen, indem die Wellenfunktion in einer Basis antisymmetrischer N-Teilchenfunktionen, z.B. Slaterdeterminanten Ψ_I , entwickelt wird:

$$\Psi = \sum_{I} c_{I} \Psi_{I} \tag{2.3}$$

mit

$$\Psi_I = \hat{A} \left[\psi_{i1(1)}, \psi_{i2(2)} \dots \psi_{iN(N)} \right].$$
 (2.4)

Der Operator \hat{A} ist der Antisymmetrisierungsoperator. Bilden die Einteilchenfunktionen ψ_i eine Basis des Einteilchen-Hilbertraumes, so bilden auch die Determinanten Ψ_I eine vollständige Basis des linearen Raumes der antisymmtrischen N-Teilchen Funktionen. Dieser Spezialfall entspricht einer sog. *Full-Configuration-Interaction-*Rechnung (FCI) im Limit einer vollständigen Einteilchenbasis und löst

die Gleichung 2.2. Dieser konzeptionell einfache Ansatz ist praktisch nicht durchführbar. Daher wurde ein breites Spektrum verschiedener Methoden entwickelt, um Gleichung 2.2 mit unterschiedlicher Genauigkeit und Geschwindigkeit näherungsweise zu lösen. Die Implementierung nahezu aller Methoden ist auf eine endliche Einteilchenbasis beschränkt.

Der einfachste Ansatz, welcher der fermionischen Permutationssymmetrie genügt, entsteht aus Gleichung 2.3, wenn man anstelle der Summation nur eine einzige Determinante ansetzt und fordert, dass der Energieerwartungswert (für den Grundzustand) extremal sei. Es stellt sich heraus, dass das sog. Hartree-Fock-Verfahren bereits circa 99% der exakten Energie beschreibt. Allerdings sind die totalen Energien und die für chemische Prozesse relevanten Energiedifferenzen um mehrere Größenordnungen voneinander verschieden, weshalb die HF-Resultate, insbesondere für quantitative Betrachtungen, in der Regel unbrauchbar sind. Die verbleibende Differenz zwischen der Hartree-Fock-Energie und dem exakten Energieeigenwert wird als Korrelationsenergie bezeichnet. Viele Verfahren verwenden das Hartree-Fock-Ergebnis als Ausgangspunkt (Referenz) für eine näherungsweise Berechnung der Korrelationsenergie.

2.1.1 Die CI-Methode

Eine Methode der näherungsweisen Korrelationsbehandlung ergibt sich durch "Abschneiden" der FCI-Entwicklung in Gleichung 2.3 und führt zur sog. *Truncated*-CI-Methode. Als Ausgangspunkt wählt man die HF-Wellenfunktion Ψ_0 ,

$$\Psi = \Psi_0 + \sum_{I=1} c_I \Psi_I \tag{2.5}$$

klassifiziert die Ψ_I entsprechend der Anzahl der durch virtuelle Orbitale ersetzten Spinorbitale relativ zu Ψ_0 und spricht von einfach, zweifach, dreifach usf. angeregten Determinanten. Einsetzen von Gl. 2.5 in Gl. 2.2 liefert mit der intermediären Normierung

$$E = \langle \Psi_0 | \hat{H} | \Psi_0 \rangle + \sum_{I=1} c_I \langle \Psi_0 | \hat{H} | \Psi_I \rangle$$
 (2.6)

bzw.

$$\Delta E = E - E_{HF} = \sum_{I=1} c_I \langle \Psi_0 | \hat{H} | \Psi_I \rangle. \tag{2.7}$$

Für einfach angeregte Determinanten ist das Matrixelement $\langle \Psi_0 | \hat{H} | \Psi_I \rangle = 0$ aufgrund des Brillouintheorems (*Closed-Shell-*Fall). Für dreifach angeregte Determinanten (und höhere Anregungen) verschwindet das Matrixelement ebenfalls aufgrund der Condon-Slater-Regeln. Folglich lässt sich die Korrelationsenergie durch die exakten CI-Entwicklungskoeffizienten c^{uv}_{ij} der zweifach angeregten Determinanten berechnen [12, 13, 14]:

$$\Delta E = \sum_{i < j} \sum_{u < v} c_{ij}^{uv} \langle ij | |uv \rangle.$$
 (2.8)

Der Zusammenhang ist als Nesbets Theorem bekannt [12, 13, 14]. Allerdings braucht man zur Berechnung der c_{ij}^{uv} wiederum die FCI-Wellenfunktion. Das heißt, obwohl nur die zweifach angeregten Determinanten mit der HF-Wellenfunktion koppeln, können andere Anregungen indirekt mischen und die c_{ij}^{uv} beeinflussen. Die Theorie lässt allerdings die Vermutung zu, dass die Zweifachanregungen den größten Beitrag stellen und folglich die Mehrzahl der Determinanten u.U. vernachlässigt werden kann. Die Vermutung wird durch Rechnungen bestätigt und die sog. CISD-Methode, d.h. eine truncated CI-Implementierung mit Berücksichtigung aller Einfach- und Zweifachanregungen, ist ein Näherungsverfahren, welches bereits einen signifikanten Teil der exakten Korrelationsenergie beschreiben kann. Üblicherweise reduziert man die Dimension der sekulären Gleichung, wie sie bei der linearen Optimierung auftritt, indem man spin- und symmetrieadaptierte Konfigurationen statt einfacher Determinanten aufstellt. Diese Linearkombinationen aus Determinanten sind dann Eigenvektoren der Operatoren \hat{S}_z und \hat{S}^2 .

Das truncated CI-Verfahren hat den gravierenden Nachteil, dass es nicht größenkonsistent ist. Das bedeutet, dass die Gesamtenergie zweier nicht-wechselwirkender Systeme (z.B. zwei räumlich weit entfernte Moleküle) nicht gleich der Summe der Energien der Teilsysteme ist (sog. Größenkonsistenz unendlich separierter Systeme). Für den Fall nicht-wechselwirkender Systeme ist die Gesamtwellenfunktion gleich dem antisymmetrisierten Produkt der Subsystemwellenfunktionen. Im Falle des CISD hätte man an beiden Subsystemen Doppelanregungen und folglich in der Produktwellenfunktionen Vierfachanregungen, d.h. die Gesamtwellenfunktion ist keine CISD-Wellenfunktion mehr.

2.1.2 Die Coupled-Cluster-Methode

Der sog. Coupled-Cluster-Ansatz [15, 16, 17, 18] formuliert die CI-Theorie dergestalt, dass die Wellenfunktionen unabhängiger Teilsysteme multiplikativ separierbar werden. Der Formalismus versichert, dass automatisch alle Anregungen berücksichtigt werden, um Größenkonsistenz zu gewährleisten. Die Coupled-Cluster-Methode und deren Implementierung gilt als anspruchsvoll und umfangreich. Im Folgenden soll das Prinzip kurz erläutert werden.

Die Wellenfunktion zweier nicht-wechselwirkender Teilsysteme lasse sich darstellen als

$$\Psi^{(i)} = \Psi_0^{(i)} + q_i \Psi_1^{(i)} = (1 + \hat{X}_i) \Psi_0^{(i)}, \quad i = 1, 2$$
(2.9)

mit der intermediären Normierung und dem (einfachen) Anregungsoperator

$$\hat{X}_i = q_i |\Psi_1^{(i)}\rangle \langle \Psi_0^{(i)}|, \qquad (2.10)$$

Die Wellenfunktion des Gesamtsystems lautet dann

$$\Psi = \Psi^{(1)}\Psi^{(2)} = (1 + \hat{X}_1)\Psi_0^{(1)}(1 + \hat{X}_2)\Psi_0^{(2)}$$

$$= (1 + \hat{X}_1)(1 + \hat{X}_2)\Psi_0 \quad \text{mit} \quad \Psi_0 = \Psi_0^{(1)}\Psi_0^{(2)}$$
(2.11)

wegen

$$\hat{X}_1 \Psi_0^{(2)} = \Psi_0^{(2)} \hat{X}_1. \tag{2.12}$$

Mit Hilfe der Kommutatorbeziehung $[\hat{X}_1, \hat{X}_2] = 0$ und $\hat{X}_i \hat{X}_i = 0$ lässt sich Gl. 2.11 etwas umständlicher schreiben als

$$\Psi = \left(1 + \sum_{i=1}^{2} \hat{X}_{i} + \frac{1}{2!} \sum_{i=1}^{2} \hat{X}_{i} \sum_{j=1}^{2} \hat{X}_{j}\right) \Psi_{0}.$$
 (2.13)

In Gl. 2.13 erkennt man den Anfang der Reihendarstellung der Exponentialfunktion wieder. Man kann folglich auch

$$\Psi = e^{\hat{X}}\Psi_0 \tag{2.14}$$

mit der Definition

$$\hat{X} = \sum_{i=1}^{2} \hat{X}_i \tag{2.15}$$

für Gl. 2.13 schreiben, da $\hat{X}^k=0$ für k>2 gilt. Die Reihenentwicklung endet also nach \hat{X}^2 und man erhält eine multiplikativ separable Wellenfunktion, wenn man den entsprechend definierten Anregungsoperator als Argument der Exponentialfunktion schreibt. Das Schema lässt sich auch auf mehrere Teilsysteme und Operatoren höherer Anregungen übertragen.

Der Coupled-Cluster-Ansatz wendet dieses Konzept auf die Berechnung der Korrelationsenergie an. Ψ_0 ist dann üblicherweise die HF-Referenz und man schreibt den Anregungsoperator $\hat{T} = \hat{T}_1 + \hat{T}_2 + \dots$ mit

$$\hat{T}_{1} = \sum_{i}^{occ. \, virt.} \sum_{u}^{u} t_{i}^{u} \hat{T}_{i}^{u}$$

$$\hat{T}_{2} = \sum_{i < i}^{occ. \, virt.} \sum_{u < v}^{uv} \hat{T}_{ij}^{uv} \quad \text{u.s.f.}$$
(2.16)

Die Wellenfunktion wird dann gemäß

$$\Psi = \left(1 + \hat{T}_1 + \frac{1}{2!}\hat{T}_1^2 + \hat{T}_2 + \dots\right)\Psi_0 \tag{2.17}$$

entwickelt. Dabei garantiert der exponentielle Ansatz, dass auch eine nach \hat{T}_N abgebrochene Entwicklung der Größenkonsistenz genügt, da für nicht wechselwirkende Systeme die Anregungsoperatoren additiv separierbar sind. Man kann ferner zeigen [12], dass sich die CI-Entwicklungskoeffizienten c^{uv}_{ij} wie folgt durch die sog. Clusteramplituden t ausdrücken lassen

$$c_{ij}^{uv} = t_i^u t_j^v - t_i^v t_j^u + t_{ij}^{uv}$$
 (2.18)

und man erkennt, dass die CI-Koeffizienten auch Clusteramplituden niedriger Ordnung enthalten.

Das Coupled-Cluster-Verfahren ist im gegenwärtigen Vergleich ein sehr effektives ab-initio Verfahren und wird häufig im Rahmen dieser Arbeit angewendet. Im Gegensatz zu den Multikonfigurations-SCF-Verfahren (MCSCF-Verfahren) bedarf es kaum Interaktion mit dem Benutzer und es existieren z.T. stabile und effiziente Implementierungen [19, 20]. Im Limit einer vollständigen Einteilchenbasis und Einbeziehung aller Anregungen löst das Verfahren Gl. 2.2.

2.2 Quanten-Monte-Carlo (QMC)

Das Erforschen von Prozessen und Eigenschaften mit Hilfe von Pseudozufallszahlen und Computern ist zu einer stark diversifizierten Methode in den Natur-, Sozialund Wirtschaftswissenschaften geworden [21]. Im Rahmen dieser Arbeit werden ausschließlich die sog. Kontinuum-QMC-Methoden zur Berechnung der elektronischen Schrödingergleichung betrachtet.

2.2.1 Variationelles Monte-Carlo (VMC)

Beide Ansätze, d.h. das VMC und das Diffusions-Monte-Carlo basieren auf der sog. Potenzmethode zur Berechnung des betragsgrößten Eigenwertes einer Matrix [22]. Sei $|u\rangle$ ein Startvektor und M eine quadratische Matrix und das Skalarprodukt von $|u\rangle$ mit dem Eigenvektor des betragsgrößten Eigenwertes von M ungleich Null, so lautet die Iterationsvorschrift:

$$|u\rangle_{k+1} = \frac{M|u\rangle_k}{\|M|u\rangle_k\|}. (2.19)$$

Eine Matrix heißt stochastisch, wenn alle $M_{ij} \ge 0$ und die Spalteneinträge auf eins summieren $\sum_i M_{ij} = 1$. Für stochastische Matrizen kann die Normierung in der Iterationsvorschrift Gl. 2.19 entfallen, denn der größte Eigenwert ist Eins. Insbesondere kann dann die Iteration als stochastischer Prozess innerhalb eines Zustandsraumes interpretiert werden [23]: Das System befinde sich bei Iteration n im Zustand j. Die Wahrscheinlichkeit, das System bei Iteration n+1 im Zustand i zu beobachten, ist dann M_{ij} . Prozesse, deren Zukunft nur von der Gegenwart abhängt, nennt man Markovprozesse. Im VMC konstruiert man eine Matrix M zu einem gegebenen $|u\rangle$ mit $M|u\rangle = |u\rangle$.

Der Energieerwartungswert führt auf die Berechnung des Integrals

$$E = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}.$$
 (2.20)

Für reelle Wellenfunktionen Ψ kann man den Ausdruck umformen

$$E = \frac{\int \Psi^2 \frac{\hat{H}\Psi}{\Psi} d\tau}{\int \Psi^2 d\tau}$$
$$= \int E_L p d\tau \tag{2.21}$$

mit der lokalen Energie

$$E_L = \frac{\hat{H}\Psi}{\Psi} \tag{2.22}$$

und $p=\frac{\Psi^2}{\int \Psi^2 d\tau}$. Das auf diese Weise definierte p hat die Eigenschaften einer Wahrscheinlichkeitsdichte mit p>0 und $\int p d\tau=1$. Gleichung 2.21 ist eine mit p gewichtete Summation der E_L und entspricht einem Ensemblemittel. Gelänge es, Konfigurationen X_i (Walker, Quasiteilchen) der Verteilung p zu einem vorgegebenen Ψ zu erzeugen, so könnte das Ensemblemittel als endliches Zeitmittel genähert werden, d.h.

$$E \approx \frac{1}{M} \sum_{i=1}^{M} E_L(X_i). \tag{2.23}$$

Das ist die bereits erwähnte Anwendung der invertierten Potenzmethode [22]. Gesucht ist die stochastische Matrix M_{ij} , welche Zustände der bekannten Verteilung p erzeugt.

Zur Konstruktion der Übergangswahrscheinlichkeitsmatrix empfiehlt sich der Metropolisalgorithmus [24]. Sei M_{ji} die Übergangswahrscheinlichkeit für den Übergang der Quasiteilchen von i nach j. Man fordert die sog. detaillierte Balance

$$M_{ii}P_i = M_{ij}P_i \tag{2.24}$$

als hinreichende Bedingung für eine Gleichgewichtsverteilung. Die detaillierte Balance ist mehr als ein globaler Erhaltungssatz, denn sie garantiert ein Gleichgewicht unter individuellen Pärchen. Im Falle des speziellen Metropolisverfahrens wird die Übergangswahrscheinlichkeit von i nach j allein durch die Akzeptanzverteilung A_{ji} beschrieben. Im verallgemeinerten Verfahren wird die Übergangswahrscheinlichkeit von i nach j durch das Produkt einer Wahrscheinlichkeit T_{ji} für den Übergang $i \rightarrow j$ und der Akzeptanz A_{ji} formuliert. Man kann auch sagen, dass im Falle des speziellen Metropolisverfahrens für T_{ji} eine Gleichverteilung angenommen wird. Für das allgemeine Metropolisverfahren muss demnach gelten:

$$\frac{A_{ji}}{A_{ii}} = \frac{T_{ij}}{T_{ii}} \frac{P_j}{P_i}.$$
 (2.25)

Man kann zeigen [25], dass für beliebige *T* unendlich viele *A* existieren, die der Gleichung genügen. Insbesondere erfüllen alle

$$A_{ji} = F\left(\frac{T_{ij}}{T_{ii}}\frac{P_j}{P_i}\right) \tag{2.26}$$

mit x = F(x)/F(1/x) die Bedingung. Metropolis *et al.* [24] wählten

$$A_{ji} = \min\left\{1, \frac{T_{ij}}{T_{ji}} \frac{P_j}{P_i}\right\} \tag{2.27}$$

und $T_{ij} = T_{ji}$, d.h.

$$A_{ji} = \min\left\{1, \frac{P_j}{P_i}\right\} \tag{2.28}$$

wie im Falle des speziellen Metropolisalgorithmus. Die symmetrische Wahl von T_{ij} liefert bereits einen brauchbaren Algorithmus. Es existieren jedoch Vorschläge für T_{ij} , welche die Effizienz der Methode nochmal um eine Größenordnung verbessern können. Im Rahmen dieser Arbeit wurde das derzeit effizienteste (und komplizierteste) Samplingverfahren nach Umrigar [25] verwendet. Der Algorithmus optimiert die T_{ij} für eine schnellstmögliche zeitliche Entwicklung der Quasiteilchen bei minimaler serieller Korrelation der Messwerte. Dabei kommt eine bisher noch nicht in Betracht gezogene Größe, nämlich die Schrittweite, ins Spiel: Bei der Implementierung werden die möglichen j durch eine endliche Schrittweite auf eine Umgebung von i eingeschränkt. Für kleine Schrittweiten wird P_i/P_i größer werden und man erhält eine hohe Akzeptanz und somit eine zügige zeitliche Entwicklung des Systems. Zwar bleibt die Markoveigenschaft auch für kleine Schrittweiten erhalten, allerdings sind die Messwerte, welche im Raum abgetastet (gesamplelt) werden (vgl. Gl. 2.23), zunehmend sequenziell korreliert und keine statistisch unabhängigen Stichproben mehr. Als Konsequenz wird die Varianz des Bestwertes unterschätzt. Der erwähnte Algorithmus ist dahingehend optimiert, möglichst große Schrittweiten und gleichzeitig eine möglichst große Akzeptanz zu gewährleisten.

Ein besonderes Merkmal des VMC gegenüber den analytischen Wellenfunktionsmethoden (CI,CC) ist die Freiheit bezüglich der Wahl der Wellenfunktionen Ψ, denn für die Erzeugung der entsprechend verteilten Zufallszahlen mit Hilfe des Metropolisverfahrens braucht man weder Integrale über p noch die Umkehrfunktion von p. Im Falle der analytischen Wellenfunktionsmethoden setzt man die Wellenfunktion als Linearkombination von Millionen Determinanten (bzw. CSF's) an, die ihrerseits wiederum aus Linearkombinationen von Gaussfunktionen bestehen. Letztendlich ist das eine Entwicklung in Einteilchen-Spinorbitalen, d.h. die Entwicklung enthält keinerlei explizite Abhängigkeiten vom interelektronischen Abstand. Das Verhalten zweier sich nähernden Elektronen kann nur als ein kombinierter Effekt aller Terme (als Interferenz) beschrieben werden. Im VMC ist es hingegen möglich (und sogar nötig), den Abstand der Elektronen explizit in der Wellenfunktion zu berücksichtigen. Solche Faktoren sind zwingend notwendig, da der elektronische Hamiltonoperator (Gl. 2.1) singulär in Bezug auf den interelektronischen Abstand und den Kernabstand ist, d.h. $1/r_{ij} \to \infty$ für $r_{ij} = 0$ und $1/r_{i\alpha} \to \infty$ für $r_{i\alpha} = 0$. Folglich ist die lokale Energie (Gl. 2.22) an dieser Stelle nur definiert, wenn die Wellenfunktion den sog. Cusp-Bedingungen genügt [28, 29]. Die Wellenfunktionsansätze $\Psi(r_1,\ldots,r_N)$, für welche die VMC-Energieeigenwerte berechnet werden, sind Produkte einzelner oder mehrerer Determinanten D_k mit sog. Korrelationsfunktionen $J(r_1, \ldots, r_N)$.

$$\Psi(r_1,\ldots,r_N) = J(r_1,\ldots,r_N) \sum_k D_k^{\uparrow}(r_1,\ldots,r_{N\uparrow}) D_k^{\downarrow}(r_{N\uparrow+1},\ldots,r_{N\downarrow})$$
 (2.29)

Der Determinantenteil wird im Falle dieser Arbeit mit dem GAMESS-Programm [26] auf HF-Niveau berechnet und dann in das QMC-Programm CHAMP importiert [27]. Aus Gründen der Effizienz wird für den Wellenfunktionsansatz in Gl. 2.29 der an-

tisymmetrische *N*-Teilchen Determinantenteil *D* faktorisiert in je einen Alpha- und Betaspinteil. Da der Hamiltonoperator nicht vom Spin abhängt, bleiben die Erwartungswerte und die lokalen Energien von der Faktorisierung unberührt, obwohl die faktorisierte (Orts-)Wellenfunktion nicht mehr antisymmetrisch bezüglich der Vertauschung zweier Teilchen ungleichen Spins ist [28, 29].

Die Korrelationsfunktionen sind, wie bereits erwähnt, besonders wichtig um die Singularitäten der lokalen Energie zu eliminieren. Mit Hilfe der sog. generalisierten Cuspbedingung [28, 29] findet man bei $r_{ij} = 0$ für parallele Spins

$$\frac{1}{J} \frac{J}{\partial r_{ij}} \bigg|_{r_{ij}=0} = \frac{1}{4} \tag{2.30}$$

und

$$\frac{1}{J} \frac{J}{\partial r_{ij}} \bigg|_{r_{ij}=0} = \frac{1}{2} \tag{2.31}$$

für antiparallele Spins. Die Fälle unterscheiden sich, da sich der Determinantenteil im Falle paralleler und antiparalleler Teilchenkoaleszenzen unterschiedlich verhält. Aufgrund dieser Nebenbedingungen ist die Korrelationsfunktion asymmetrisch bezüglich Vertauschungen von Teilchen unterschiedlichen Spins und kann dazu führen, dass die Wellenfunktion (Gl. 2.29) keine Eigenfunktion des Spinoperators \hat{S}^2 ist. Allerdings ist das Ausmaß der Spinkontamination sehr gering. S^2

Die entsprechende Bedingung am Kern, d.h. das Verhalten der Wellenfunktion für $r_{i\alpha} = 0$, ist von zentraler Bedeutung für die Arbeit und wird im Rahmen des DMC noch einmal erörtert. Sie lautet [28, 29]

$$\frac{1}{\Psi} \frac{\Psi}{\partial r_{i\alpha}} \bigg|_{r_{i\alpha} = 0} = -Z \tag{2.32}$$

wobei Z die Kernladung ist. Wird, wie allgemein üblich, der Determinantenteil D aus Spinorbitalen mit Gaussfunktionen im Ortsteil formuliert, so folgt in jedem Fall $\partial D/r_{i\alpha}=0$ bei $r_{i\alpha}=0$, da die Gaussfunktion am Kern extremal ist. Folglich muss auch am Kern die Korrelationsfunktion die Singularität eliminieren:

$$\frac{1}{J} \frac{J}{\partial r_{i\alpha}} \bigg|_{r_{i\alpha} = 0} = -Z. \tag{2.33}$$

Die Korrelationsfunktionen für diese Arbeit sind vom Typ der Jastrowfaktoren und haben die äußerst flexible Form [28]

$$J = J_{en}J_{ee}J_{een} = \exp(f_{en} + f_{ee} + f_{een})$$
 (2.34)

 $^{^{1}\}Delta S^{2} < 10^{-4}$ in atomaren Einheiten [29]

wobei

$$f_{en}(r_{i\alpha}) = \sum_{i=1}^{N} \sum_{\alpha=1}^{M} \left(\frac{a_1 r_{i\alpha}}{1 + a_2 r_{i\alpha}} + \sum_{p=2}^{N_{ord}} a_{p+1} r_{i\alpha}^p \right)$$

$$f_{ee}(r_{ij}) = \sum_{i=2}^{N} \sum_{j=1}^{i-1} \left(\frac{b_1 r_{ij}}{1 + b_2 r_{ij}} + \sum_{p=2}^{N_{ord}} b_{p+1} r_{ij}^p \right)$$

$$f_{een}(r_{i\alpha}, r_{j\alpha}, r_{ij}) = \sum_{i=2}^{N} \sum_{j=1}^{i-1} \sum_{\alpha=1}^{M} \sum_{p=2}^{N_{ord}} \sum_{k=p-1}^{0} \sum_{l=l-ar}^{0} c_n r_{ij}^k (r_{i\alpha}^l + r_{j\alpha}^l) (r_{i\alpha} r_{j\alpha})^m$$
 (2.35)

mit

$$m = \frac{p - k - l}{2} \quad m \text{ ganzzahlig}$$

$$l_{max} = \begin{cases} p - k, & \text{wenn } k \neq 0 \\ p - k - 2 & \text{wenn } k = 0. \end{cases}$$
(2.36)

Die übrigen Indizes haben die gleiche Bedeutung wie in Gl. 2.1. Die Größe b_1 ist spinabhängig (1/2 bzw. 1/4), sodass die Elektron-Elektron-Cuspbedingung erfüllt wird. In dem Programm CHAMP sind Polynome bis $N_{ord}^{a,b,c}=6$ möglich.

Traditionell verwendet man zum Justieren der Parameter die Zerovariance-Eigenschaft des VMC. Die besagt, dass die Varianz für die exakte Wellenfunktion Null sein muss, da die lokale Energie im ganzen Raum konstant ist. Zum Justieren der Parameter legt man eine kleine Zahl an Konfigurationen X_i (ca. 1000-2000) aus einer equillibrierten Rechnung zu Grunde und minimiert die Varianz mittels der Jastrowparameter. Ein Nachteil ist, dass der Anwender zuvor einen Erwartungswert für die Energie schätzen muss. Die Justierung der Jastrowparameter mit Hilfe des Variationsprinzips gestaltet sich wesentlich schwieriger, denn im VMC ist der Bestwert der Energie aufgrund des statistischen Fehlers nicht strikt beschränkt, wohingegen die Varianz beschränkt ist mit der a priori bekannten Grenze bei $\sigma^2 = 0$. Erst in jüngster Zeit ist es möglich geworden, Jastrowfaktoren, Orbital- und CI-Koeffizienten bezüglich der Energie zu optimieren [30]. Das CHAMP Programmpaket verfügt über diese Möglichkeit und die QMC-Wellenfunktionen dieser Arbeit sind mit dem neuen Algorithmus optimiert.

Die im VMC berechneten Energien hängen ausschließlich von der Wellenfunktion ab. Typischerweise liefert ein Ansatz mit einer Determinante und dem Jastrowfaktor (Gl. 2.35) bereits über 85% der Korrelationsenergie [22]. Möchte man über das Ergebnis hinaus, so geht das im VMC nur über die Konstruktion noch besserer Wellenfunktionen. So ist die nichtrelativistische Heliumgrundzustandsenergie auf 15 Nachkommastellen (in atomaren Einheiten) genau berechnet worden [31]. Diese Wellenfunktion enthält 476 Terme, u.a. hyperbolische Winkelfunktionen. Die Konstruktion dergestalt präziser Wellenfunktion ist sehr zeitaufwendig - bezogen auf die Anwenderzeit, weniger die CPU-Zeit. Man begnügt sich daher mit den einfach zu konstruierenden Wellenfunktionen und akzeptiert die limitierte Genauigkeit. Die Energieerwartungswerte des VMC werden auch nicht unmittelbar für die

Quantenchemie verwendet. Trotzdem ist das VMC von zentraler Bedeutung und Gegenstand aktueller Forschung [30], nämlich zur Konstruktion näherungsweiser Wellenfunktionen als Ausgangspunkt zum DMC.

2.2.2 Diffusions-Monte-Carlo (DMC)

Das DMC basiert ebenfalls auf einer stochastischen Implementierung der Potenziteration. Allerdings ist das DMC keine variationelle Suche sondern eine Methode zur Projektion einer näherungsweisen Lösung auf den exakten Eigenvektor des Hamiltonoperators für den Grundzustand. In Falle des VMC war der Eigenvektor, d.h. eine näherungsweise Lösung der Schrödingergleichung, bekannt und die Übergangsmatrix M unbekannt. Für das DMC ist es genau umgekehrt, also im eigentlich ursprünglichen Sinne der Potenziteration. Der Matrix M entspricht ein Operator \hat{G} , sodass

$$|u\rangle_{t+1} = \frac{1}{c_{t+1}} \hat{G} |u\rangle_t \tag{2.37}$$

für große t gilt. Der Zeitindex t soll wieder die Ausnutzung der Ensemble- und Zeitmittelidentiät suggerieren. Erst diese (nicht immer unkritische [32]) Voraussetzung erlaubt es, durch Beobachtung der zeitlichen Entwicklung der Quasiteilchen auf Erwartungswerte zu schließen. Für die stochastische Lösung wird der Operator \hat{G} als Übergangsmatrix G(i,j) aufgefasst und die hochdimensionalen Vektoren werden als Quasiteilchen X dargestellt. Der Operator \hat{G} ist ein Faltungsintegral [31] und daher hat die explizite Propagationsvorschrift in Matrixschreibweise die etwas ungewöhnlich Form

$$u_{t+1}(X') = \sum_{X} G(X', X) u_t(X). \tag{2.38}$$

Das Matrixelement von G ist gegeben als

$$G_{X'X} = \langle X' | \exp\left(-t(\hat{H} - E_T) | X\right). \tag{2.39}$$

Den Projektionscharakter von $\exp(-t(\hat{H}-E_T))$ kann man sich wie folgt klar machen: Sei $\{\phi_n\}$ eine vollständige Menge der Eigenvektoren des Hamiltonoperators mit den Eigenwerten $\{E_n\}$, so lässt sich ein beliebiger Zustand Ψ in der Basis der Eigenvektoren darstellen:

$$\Psi^{(t)} = \exp\left[-t(\hat{H} - E_T)\right]\Psi = \sum_{n} \phi_n \langle \Psi | \phi_n \rangle \exp\left[-t(E_n - E_T)\right]$$
 (2.40)

wobei

$$\exp(-\hat{H})\phi_n = \exp(-E_n)\phi_n \tag{2.41}$$

unter den oben genannten Voraussetzungen ausgenutzt wurde. Die Grenzwertbetrachtung von Gl. 2.40 für große t liefert

$$\lim_{t \to \infty} \Psi^{(t)} = \phi_0 \langle \Psi | \phi_0 \rangle \exp\left[-t(E_0 - E_T) \right]$$
 (2.42)

d.h. die angeregten Zustände sind exponentiell gedämpft. Im Fall $E_T = E_0$ folgt

$$\lim_{t \to \infty} \Psi^{(t)} = \phi_0. \tag{2.43}$$

Einzige Voraussetzung ist ein nichtverschwindendes Skalarprodukt der Wellenfunktion Ψ mit dem Grundzustand ϕ_0 . Nach diesem Prinzip berechnet man im DMC eine Verteilung p gemäß dem exakten Eigenvektor $\phi_0 = |u\rangle_{t=\infty}$. Allerdings ist noch unklar, wie der Energieeigenwert berechnet werden kann und wie eine Darstellung des Operators $e^{-t(\hat{H}-E_T)}$ aussehen könnte. Eine geschlossene Darstellung ist für Systeme mit Coulombwechselwirkung nur im Limes unendlich kleiner t bekannt [31]:

$$\lim_{t \to 0} \exp\left[-(T + V - E_T)\right] = \lim_{t \to 0} \exp\left[-(Tt)\right] \exp\left[-(V - E_T)t\right] = \lim_{t \to 0} G_{diff} G_B.$$
(2.44)

Für endlich kleine t ist die Faktorisierung lediglich eine Näherung, die sog. Short-Time-Approximation. Der Term G_{diff} beschreibt einen Prozess ohne Potential und kann als Diffusion gedeutet werden, wie z.B. die Brownsche Molekularbewegung. Solche Prozesse werden durch Gaussfunktionen beschrieben, welche mit der Zeit t immer diffuser werden. G_B beschreibt einen Prozess ohne kinetische Energie und kann als Wachstums- bzw. Zerfallsprozess gedeutet werden, z.B. unimolekulare Reaktionen oder atomarer Zerfall. Solche Prozesse wiederum werden durch gewöhnliche Exponentialfunktionen beschrieben. Man erhält für endlich kleine Zeitschritte δt [31]

$$G_{X'X} \approx N_{norm} \exp\left[-\frac{(X'-X)^2}{4\delta t}\right] \exp\left[-\delta t/2(U(X')+U(X))-E_T\right]$$
 (2.45)

und

$$\exp\left[-(\hat{H}-E_T)t\right] \approx G_{diff}G_B = \prod_{n=1}^{n} \exp\left[-(\hat{H}-E_T)\delta t\right]. \tag{2.46}$$

Man kann zeigen [22], dass $G_{X'X}$ aufgrund von G_B nicht stochastisch sein kann wegen $\sum_{X'} G_{X'X} \neq 1$ während G_{diff} alleine genommen stochastisch wäre. Die Beiträge von G_B lassen sich daher als eine Art Gewichtung interpretieren [22, 23, 31]. Zur Verdeutlichung möchte ich das Beispiel einer 2×2 Matrix diskutieren. Die symmetrische, nicht stochastische Matrix

$$G = \begin{pmatrix} 9 & 1 \\ 1 & 5 \end{pmatrix} \tag{2.47}$$

habe die Funktion eines Faktors von Gl. 2.46, d.h. von $\langle X'|\exp{-(\hat{H}-E_T)\delta t}|X\rangle$. Die Matrix lässt sich wie folgt faktorisieren [23]

$$G_{X'X} = G_{diff}G_B = \begin{pmatrix} \frac{9}{10} & \frac{1}{6} \\ \frac{1}{10} & \frac{5}{6} \end{pmatrix} \cdot \begin{pmatrix} 10 & 0 \\ 0 & 6 \end{pmatrix} = P_{X'X} \cdot g_{X'X}$$
 (2.48)

in einen stochastischen Anteil $P_{X'X}$ und ein Gewicht $g_{X'X}$. Sei X_n eine Konfiguration im Zustandsraum zur Zeit $n\delta t$, dann folgt für Gl. 2.46

$$\exp -n\delta t(\hat{H} - E_T) = G_{diff}(X_n, X_{n-1})G_{diff}(X_{n-1}, X_{n-2})\dots$$

$$\dots G_{diff}(X_1, X_0) \times \left\{ \prod_{i=1}^n w(X_i) \right\}$$
 (2.49)

und man definiert das kumulative Gewicht [31]

$$W(X_n) = \prod_{i=1}^{n} w(X_i).$$
 (2.50)

Der Erwartungswert für die asymptotisch exakte Lösung ϕ_0 kann mit den Gewichten berechnet werden:

$$E = \frac{\int \Psi^{2}(X)W(X)E_{L}(X)dX}{\int \Psi^{2}W(X)dx} = \lim_{M \to \infty} \frac{\sum_{i=1}^{M} E_{L}(X_{i})W(X_{i})}{\sum_{i=1}^{M} W(X_{i})}$$
(2.51)

Dieser Algorithmus mit den Gewichtsfaktoren wird *Pure-Diffusion Monte Carlo* (PDMC) genannt und arbeitet im Ensemble fester Teilchenzahl. Der Algorithmus erzeugt, wie beim VMC, die asymptotische Verteilung $\tilde{\phi}^2$, wenn *Importance Sampling* (s.u.) verwendet wird wobei $\tilde{\phi}^2$ eine näherungsweise Lösung ist. Die Gewichte werden nur für die Berechnung der Erwartungswerte herangezogen. Alternativ kann man die Teilchenpopulation auch variabel lassen und die exakte Verteilung ϕ_0 generieren (ebd.).

Der beschriebene Algorithmus ist lediglich eine Minimalversion des im CHAMP-Programmes implementierten PDMC Verfahrens [33]. Eine gravierende Verbesserung kann durch das sog. *Importance Sampling* erreicht werden [23]. Ausgangspunkt ist die Faktorisierung von *G* in einen stochastischen Anteil *P* und einen Gewichtsfaktor *g*, wie in Gl. 2.46 und Gl. 2.48:

$$G_{X'X} = g_{X'X}P_{X'X}. (2.52)$$

Sei $\tilde{\phi}_0$ eine Näherung der exakten Eigenfunktion ϕ_0 . Man definiert eine transformierte Matrix \tilde{G} mit

$$\tilde{G}_{X'X} = \frac{1}{\tilde{E}_0} \tilde{\phi}_0(X') G_{X'X} \frac{1}{\tilde{\phi}_0(X)}$$
 (2.53)

Sei $\tilde{\phi}_0 = \phi_0$, dann ist, weil G symmetrisch ist, der linke Eigenvektor gleich dem rechten Eigenvektor und folglich $\tilde{G} \propto G$. Die Idee dabei ist, ein \tilde{G} zu erzeugen, welches "etwas stochastischer" ist. Als Beispiel nehme ich wieder die Matrix

$$G = \begin{pmatrix} 9 & 1 \\ 1 & 5 \end{pmatrix} \tag{2.54}$$

mit dem betragsgrößten Eigenwert $7 + \sqrt{5}$ und dem zugehörigen Eigenvektor $(1/\sqrt{5} - 21)$. Die Transformation mit dem exakten Eigenvektor

$$\tilde{G} = \frac{1}{7 + \sqrt{5}} \begin{pmatrix} \frac{1}{\sqrt{5} - 2} & 1 \end{pmatrix} \begin{pmatrix} 9 & 1\\ 1 & 5 \end{pmatrix} \frac{1}{\begin{pmatrix} \frac{1}{\sqrt{5} - 2}\\ 1 \end{pmatrix}}$$
(2.55)

liefert ein stochastisches \tilde{G} mit Eigenwert 1. Für Transformationen mit näherungsweisen Eigenvektoren ist \tilde{G} nicht stochastisch, aber die Fluktuationen der Gewichte, die ja gerade Ausdruck der nichtstochastischen Natur von G sind, kann drastisch durch näherungsweise stochastische \tilde{G} reduziert werden. Im Endeffekt äußert sich das in einer ebenfalls drastisch reduzierten Varianz der Erwartungswerte. Man beachte, dass die Varianz quadratisch in die Effizienz einer stochastischen Methode eingeht.

Durch die Einführung des *Importance Sampling* wird das DMC wesentlich komplexer. Beispielsweise ändern sich auch die analytischen Ausdrücke für G_{diff} und G_B . Insbesondere tritt in G_B anstelle des Potentials (Gl. 2.45) die lokale Energie der näherungsweisen Lösung $\tilde{\phi}_0$:

$$\tilde{G}_B = \exp\left[-\delta t/2(E_L(X') + E_L(X)) - E_T\right]. \tag{2.56}$$

Das ist von großem Vorteil, denn wie bereits im Rahmen des VMC diskutiert wurde, ist das Coulombpotential in bestimmten Punkten singulär. Diese Singularitäten führen dazu, dass das DMC ohne *Importance Sampling* praktisch wertlos ist. Allerdings kann man durch Auswahl der Jastrowparameter die Funktion $\tilde{\phi}_0$ dergestalt präparieren, dass die Cuspbedingungen erfüllt sind und die lokale Energie immer endlich bleibt.

Der Elektron-Elektron-Cusp unterscheidet sich grundlegend vom Elektron-Kern-Cusp, obwohl beide Fälle durch die Coulombwechselwirkung beschrieben werden. Die Elektron-Elektron-Wechselwirkung ist repulsiv. Man kann also annehmen, dass für bessere Funktionen $\tilde{\phi}_0$ die Elektron-Elektron-Wechselwirkung auch besser beschrieben wird und das Betragsquadrat der Wellenfunktion für $r_{ii} \rightarrow 0$ klein sein wird. Das Potential am Kern ist jedoch attraktiv mit einer z.T. beträchtlichen Elektronendichte in der unmittelbaren Kernumgebung. Zwar kann der Jastrowfaktor die Singularität aufheben, dennoch kann die lokale Energie in der unmittelbaren Umgebung stark variieren. Da aber gerade in dieser Region viele Werte abgetastet werden, führt das zu großen Fluktuationen der Bestwerte (hohe Varianz) und macht die Verwendung sehr kleiner Zeitschritte nötig. Aus Gl. 2.46 wird klar, dass die Effizienz des DMC proportional zum Zeitschritt δt ist. Das Problem ist also, dass eine kleine, u.U. für die Chemie (im Gegensatz zu der Valenzschale) wenig relevante Region in Kernnähe den Zeitschritt bestimmt und somit die Effizienz negativ beeinflusst. Der Effekt wächst mit steigender Kernladung Z an. Tatsächlich findet man [3, 4] eine dramatische Zunahme der Rechenzeit um $\mathbb{Z}^{5.5-6.5}$. Die in dieser Arbeit justierten Pseudopotentiale verringern den effektiven Wert von Z und verbessern außerdem das Verhalten der lokalen Energie in Kernnähe, da sie keine coulombartige Divergenz mehr aufweisen.

Schließlich ist es das *Importance Sampling*, welches eine näherungsweise Behandlung von Fermionen erlaubt. Im QMC wird die Wellenfunktion dargestellt als eine Wahrscheinlichkeitsdichte der Quasiteilchen. Aber die Wellenfunktion ist sowohl positiv als auch negativ. Das übliche Vorgehen ist daher die sog. *Fixed-Node-*Nähe-

rung. Dabei übernimmt man die Knoten der Funktion $\tilde{\phi}_0$ und hält diese fest². Das bedeutet, dass alle diejenigen Übergänge der Quasiteilchen, für welche $\tilde{\phi}_0$ ihr Vorzeichen wechselt, verworfen werden. Dadurch ist die asymptotische Verteilung des PDMC wieder $\tilde{\phi}_0^2$ [31]. Die innerhalb der *Fixed-Node-N*äherung ermittelte Energie ist eine obere Grenze für die exakte Energie. Man beachte, dass der Jastrowfaktor sich praktisch symmetrisch bezüglich der Teilchenvertauschung verhält [29], d.h. die Knoten werden ausschließlich von dem Determinantenteil bestimmt. Der Fehler aufgrund der *Fixed-Node-N*äherung lässt sich durch Verbessern der $\tilde{\phi}_0$ systematisch reduzieren.

Die Probleme, welche bei der Beschreibung von Fermionen auftreten, sind als Preis für eine Methode zu betrachten, welche ohne Basissatz arbeitet. Denn abgesehen von der Fixed-Node-Näherung ist die Funktion $\tilde{\phi}_0$ nur aus praktischen Erwägungen von Bedeutung. Das Importance Sampling verändert die im Limit beliebiger Rechenzeit ermittelten Energieeigenwerte nicht und das DMC mit Importance Sampling löst ebenfalls exakt im Rahmen der Fixed-Node- und Short-Time-Näherungen. Die Wellenfunktion wird also nicht in einer endlichen Basis von Ein- und Vielteilchenfunktionen dargestellt. Ohne das Einteilchenbild gibt es aber auch keine Orbitale und keine Quantenzahlen mehr. Folglich ist es unmöglich, im OMC einen nicht-lokalen Operator, wie den Austauschoperator, zu behandeln. Das OMC bezieht ausschließlich lokale Informationen und scheitert prinzipiell bei nicht-lokalen Operatoren. Die Fixed-Node-Näherung transformiert die Antisymmetrie näherungsweise in eine Randbedingung. Eine Randbedingung ist lokal, während Symmetrie immer entfernte Objekte zueinander in Beziehung setzt und somit nicht lokal sein kann [22]. Die in dieser Arbeit justierten Pseudopotentiale sind ebenfalls nicht-lokal. Es gilt also, den Fehler bei der Behandlung des nicht lokalen Pseudopotentials im QMC zu untersuchen.

2.3 Pseudopotentiale

2.3.1 Einleitung

Die Pseudopotentialmethode kann gleichermaßen im Zusammenhang des nichtrelativistischen Strukturproblems und im Zusammenhang der relativistischen Quantenchemie (Kapitel 3) behandelt werden. Da in dieser Arbeit besondere Aufmerksamkeit auf die Verbindung des QMC mit der Pseudopotentialmethode gelegt wird, erscheint die Pseudopotentialmethode in Anschluss an die QMC-Methoden.

Die Einteilung der Atomstruktur in einen Rumpf- und einen Valenzraum ist ein erfolgreiches Konzept, beispielsweise zur Vereinfachung der Interpretation chemischen Verhaltens und der damit zusammenhängenden Organisation der chemischen Elemente im Periodensystem. Die Rumpfelektronen sind i.d.R. viel stärker gebunden, was sich beispielsweise in den Orbitalenergien wiederfindet. Auch die räum-

 $^{^2}$ Als Knoten von $\tilde{\phi}_0$ bezeichnet man den 3N-1-dimensionalen Raum für welchen $\tilde{\phi}_0=0$ gilt, wenn N die Zahl der Elektronen ist.

liche Verteilung der Rumpfelektronen ist stärker in Kernnähe lokalisiert, während die Valenzelektronen lediglich ein abgeschirmtes Kernpotential erfahren. Die *Frozen-Core*-Näherung geht davon aus, dass sich die Verteilung der Rumpfelektronen bei einem (moderaten) Wechsel der chemischen Umgebung nicht signifikant ändert und daher als konstant betrachtet werden kann. Die Wellenfunktion wird als ein antisymmetrisches Produkt aus einer Rumpf- und einer Valenzwellenfunktion angesetzt

$$\Psi(1,2,...,n) = \hat{A}\Phi_{core}(1,2,...,n_c)\Phi_{val}(n_c+1,n_c+2,...,n)$$
 (2.57)

wobei \hat{A} der Antisymmetrisierungsoperator ist [12]. Die Faktorisierung ist im Falle einer Hartree-Fock-Wellenfunktion grundsätzlich möglich. Falls Φ_{core} bekannt ist, kann man einen Valenzhamiltonoperator \hat{H}_{val} für die n_v Valenzelektronen mit den Valenzenergieeigenwerten $E_{val} = E - E_{core}$ formulieren

$$\hat{H}_{val}\Phi_{val} = E_{val}\Phi_{val} \tag{2.58}$$

mit

$$\hat{H}_{val} = \sum_{i=1}^{n_v} \left(\hat{h}_i + \sum_{j \neq i}^{n_v} \frac{1}{r_{ij}} \right) + \hat{V}_{core}.$$
 (2.59)

Der Operator \hat{V}_{core} beschreibt die Rumpf-Valenz-Wechselwirkung. Aufgrund des Antisymmetrisierungsoperators in Gl. 2.57 ist \hat{V}_{core} ein nicht-lokaler Operator, der auch den Austausch zwischen Rumpf- und Valenzelektronen beschreibt. Eigentlich müsste man für eine variationelle Lösung von Gl. 2.58 fordern, dass die Valenzwellenfunktion Φ_{val} orthogonal zum Raum der Rumpforbitale ist, da sonst ein variationeller Kollaps in den Zustand der Rumpforbitale stattfinden könnte. Phillips und Kleinman zeigten, dass die Nebenbedingung der Orthogonalität in einer Eigenwertgleichung durch die Addition eines nicht-lokalen Operators ersetzt werden kann, ohne die Valenzenergien zu verändern [34]. Verwendet man den exakten Operator \hat{V}_{core} , so spart man praktisch keine Rechenressourcen. Der Operator kann allerdings erfolgreich genähert werden durch relativ einfache, semi-lokale Ansätze \hat{V}_{pp} , welche die Abstoßung zwischen den Rumpf- und Valenzelektronen und die Orthogonalität näherungsweise beschreiben können. Bei den semi-lokalen Ansätzen ist das Potential lokal im Radialteil und nicht-lokal im Winkelteil:

$$\hat{V}_{pp} = V_{loc}(r) + \sum_{l=0}^{l_{max}} V_l(r) \hat{P}_l,$$
 (2.60)

wobei \hat{P}_l der Projektionsoperator auf die Kugelflächenfunktionen ist:

$$\hat{P}_{l} = \sum_{m=-l}^{l} |Y_{lm}\rangle \langle Y_{lm}|. \qquad (2.61)$$

Aufgrund der Orthogonalitätserwägungen sollte l_{max} mindestens gleich der größten Drehimpulsquantenzahl sein, welche in der Orbitalbesetzung des Rumpfsystems zu

finden ist. Für die Justierung der Pseudopotentiale, d.h. der Parameter im lokalen Teil V_{loc} und der im nicht-lokalen Teil V_l gibt es zwei unterschiedliche Methoden, welche im folgenden erläutert werden sollen. Die meisten in der Literatur verfügbaren Pseudopotentiale sind formkonsistenter (*shape-consistent*) Natur während die Potentiale in dieser Arbeit energiekonsistent sind [36].

Der Vollständigkeit halber möchte ich das alternative Konzept der sog. Modellpotentiale zur Konstruktion eines Valenzhamiltonoperators zumindest kurz erläutern. Die Methode verwendet einen Operator zur Verschiebung der Energieniveaus (sog. *Level-Shift-Operator*)

$$\hat{U}_{MP} = \sum_{c} |\Phi_{c}\rangle B_{c}\langle \Phi_{c}| + V_{MP}$$
 (2.62)

wobei V_{MP} das Modellpotential ist. Die Verschiebung um den Betrag B_c betrifft alle Rumpforbitale Φ_c und platziert die Rumpforbitale energetisch über den Valenzorbitalen, welche dadurch ohne weitere Nebenbedingungen variationell stabil werden. Der zweite Term in Gl. 2.62 beschreibt die effektive Coulomb- und Austauschwechselwirkung des Rumpfes mit der Valenzregion

$$V_{MP} = -\frac{Z_{\text{eff}}}{r}U(r). \tag{2.63}$$

Dadurch, dass die Valenzorbitale nicht modifiziert werden, bleibt auch die Anzahl der Nullstellen (Knoten) erhalten. Die Modellpotentiale sind daher in der Korrelationsbehandlung auf Grund der etwa gleichgroßen Basissätze nicht günstiger als vergleichbare Allelektronenrechnungen. Der Einsatz singulärer Modellpotentiale in QMC-Rechnungen ist in [37] diskutiert.

2.3.2 Formkonsistente Pseudopotentiale

Für die Konstruktion formkonsistenter Pseudopotentiale berechnet man zunächst die Valenzorbitale für den Grundzustand des betreffenden Atoms. Formkonsistente Pseudopotentiale wurden sowohl auf HF-Niveau [5, 6, 7, 8, 38, 39, 40] als auch im Rahmen der Kohn-Sham-Dichtefunktionaltheorie [41, 42, 43] (KS-DFT) generiert. Man wählt einen Rumpfradius r_c und konstruiert ein nullstellenfreies Pseudoorbital, welches für $r > r_c$ den gleichen Verlauf hat wie das Allelektronenvalenzorbital. Zusätzlich wurden unterschiedliche Nebenbedingungen wie Gleichheit der Steigung und Krümmung in r_c vorgeschlagen. Die sog. Normerhaltung (Norm-Conservation) fordert die Gleichheit der Norm von Pseudo- und Allelektronorbital und garantiert ein in erster Ordnung identisches Streuverhalten [41]. Ausgehend von dem Pseudoorbital erhält man das Pseudopotential entweder durch Inversion der HF- oder KS-DFT-Gleichungen [7, 35, 38, 41, 42, 43] oder durch einen direkten Fit eines analytischen Pseudopotentials an die Orbitalenergien und die Form der Pseudoorbitale [5, 39]. Im Fall der Inversionsprozedur entsteht das Pseudopotential zunächst auf einem numerischen Raster (grid). Für eine analytische Darstellung des Potentials in Gaussfunktionen ist noch ein weiterer, nichtlinearer Fit notwendig. Dieser Fit ist als eine numerisch fragile Prozedur bekannt [35, 39] und generiert lange analytische Entwicklungen mit stark oszillierenden Koeffizienten. Umgekehrt ergibt das direkte Fitverfahren eine sehr kompakte analytische Darstellung des Pseudopotentials [5, 39].

Allgemein bestimmt immer nur der Grundzustand des Atoms das formkonsistente Pseudopotential. Die Transferabilität des Pseudopotentials kann teilweise durch die Nebenbedingungen, insbesondere die der Normerhaltung, erhöht werden.

2.3.3 Energiekonsistente Pseudopotentiale

Energiekonsistente Pseudopotentiale verfolgen eine andere Strategie, um Transferabilität zu gewährleisten. Man sucht ein Potential, welches die atomaren Allelektronenvalenzenergien für eine Anzahl elektronischer Konfigurationen bestmöglich reproduziert. Dazu startet man mit einem analytischen Ausdruck für das Potential und justiert die variationellen Parameter in einem direkten Fitverfahren an die Referenzenergien. Zunächst wird das allgemeine Vorgehen für die Hauptgruppenelemente besprochen. Anschließend werden spezielle Themen bzgl. der 3d-Übergangsmetalle erörtert.

Die atomaren Allelektronenrechnungen zur Konstruktion der energiekonsistenten Pseudopotentiale sind skalarrelativistisch, d.h. spinbahnwechselwirkungsfrei mit dem Wood-Boring-Hartree-Fock-Verfahren und dem LS-Kopplungsschema durchgeführt worden (siehe Kap. 3 und insbesondere Abschnitt 3.3.4). Für atomare Einelektronensysteme in S-Zuständen gleichen sich die Eigenwerte des Wood-Boring-Operators und des Dirac-Operators, während sich für andere Drehimpulse Näherungen der J-gemittelten Dirac-Hartree-Fock-Lösungen ergeben. Dadurch, dass die Potentialjustierung und die spätere Verwendung des Potentials in den üblichen Quantenchemieprogrammen dasselbe nichtrelativistische Kopplungsschema verwenden, ist bei diesem Vorgehen keine zusätzliche Mittelung über das Potential nötig. Der verwendete Operator ist auch noch für den Vielelektronenfall eine erfolgreiche Näherung im Vergleich zum Spin-Bahn-gemittelten Dirac-Hartree-Fock Verfahren. Die Abweichungen der berechneten Elektronenaffinitäten und Ionisierungspotentiale für Elemente wie Gold bewegen sich lediglich in der Größenordnung einiger hundertstel Elektronenvolt [44]. Alle atomaren Berechnungen, d.h. sowohl die Allelektronenreferenzdaten als auch die Pseudopotentialjustierung selbst, sind mit einem numerischen (finite Differenzen-) Verfahren durchgeführt, um eventuelle Fehler aufgrund eines endlichen Basissatzes auszuschließen.

Zunächst wird für das betreffende Atom eine Anzahl an elektronischen Konfigurationen ausgewählt und die LS-zustandsgemittelte skalarrelativistische HF-Energie berechnet. Die Auswahl der Konfigurationen umfasst energetisch niedrig liegende Einfach- und Zweifachanregungen der Valenzelektronen sowie das einfach und zweifach geladene Kation, sofern die Valenzschale genügend Elektronen bietet. Der Grundzustand des Anions wird ebenfalls berücksichtigt, sofern die Rechnung konvergiert. Die Konvergenz wird ab einschließlich der dritten Spalte (Borspalte) beobachtet. Die Valenzenergie ergibt sich durch Subtrahieren der Allelektronen-

Kohlenstoff	Silizium	Scandium
Konfigurationen	Konfigurationen	Konfiguration
$2s^2 2p^2$	$3s^2 3p^2$	$3s^23p^64s^23d^1$
$2s^1 2p^3$	$3s^1 3p^3$	$3s^23p^6$
$2s^2 2p^1$	$3s^2 3p^1$	$3s^23p^5$
$2s^1 2p^2$	$3s^1 3p^2$	$3s^23p^64s^13d^1$
$2s^2 2p^1 3d^1$	$3s^2 3p^1 3d^1$	$3s^23p^64s^03d^1$
$2s^2 3d^1$	$3s^2 3d^1$	$3s^23p^64s^03d^14f^1$
$2s^2 2p^1 3s^1$	$3s^1 3p^1 3s^1$	$3s^23p^64s^03d^15p^1$
$2s^1 2p^2 3d^1$	$3s^1 3p^2 3d^1$	$3s^23p^64s^03d^16s^1$
$2s^2 3d^2$	$3s^2 3d^2$	$3s^23p^64s^03d^2$
$2s^2 4d^1$	$3s^2 4d^1$	$3s^23p^64s^13d^2$
$2s^2 2p^1 4d^1$	$3s^2 3p^1 4d^1$	$3s^23p^64s^03d^3$
$2s^2 2p^3$	$3s^2 3p^3$	$3s^23p^64s^03d^04f^1$
$2s^2$	$3s^2$	$3s^23p^64s^23d^2$

Tabelle 2.1: Die verwendeten Konfigurationen für die Justierung des Kohlenstoff-, Silizium- und Scandiumpseudopotentials.

rumpfenergie von der jeweiligen Energie der ausgewählten Allelektronenkonfigurationen. Beispielsweise subtrahiert man im Fall des Siliziums die Si⁴⁺ Rumpfenergie von der Energie für den Grundzustand und die diversen angeregten Zustände, um schließlich die Valenzenergie für jede einzelne Konfiguration zu erhalten. Die Tabelle 2.1 zeigt exemplarisch alle verwendeten Konfigurationen für die Justierung von Kohlenstoff und Silizium. Alle zur Konstruktion der Pseudopotentiale verwendeten Konfigurationen sind außerdem im Anhang aufgelistet. Die Pseudopotentiale der Hauptgruppenelemente sind mit dem größtmöglichen Edelgasrumpf zzgl. einer besetzten d-Schale für die Elemente rechts der Übergangsmetalle konstruiert. Für die Elemente Tl, Pb, Bi, Po, At und Rn ist noch eine abgeschlossene f-Schale im Rumpf. Der Vollständigkeit halber ist auch ein lokales Potential für Wasserstoff und Helium vorhanden. Die Pseudopotentialparameter werden nun wie folgt justiert: Man wählt Startwerte für die variationellen Parameter des Pseudopotentials und löst die Valenz-HF-Gleichungen für das Pseudopotential. Dann optimiert man die Parameter dergestalt, dass das Potential die Valenzenergien der Allelektronenrechnung bestmöglich reproduziert. Man iteriert so lange, bis keine Verbesserung mehr zu erzielen ist. Auf diese Weise können sehr kompakte Darstellungen der Pseudopotentiale konstruiert werden.

2.3.4 Funktionale Form der Pseudopotentiale

Die Pseudopotentiale sind als eine Summe aus Gaussfunktionen multipliziert mit Potenzen des Kernabstandes parametrisiert. Diese Darstellung entspricht der Standardform, wie sie von praktisch allen Quantenchemieprogrammen akzeptiert wird. Das Pseudopotential soll, wie bereits in der Einleitung erwähnt, keine Singularitäten am Kern aufweisen, damit es insbesondere für QMC-Rechnungen geeignet ist. Für die lokale Komponente von Gl. 2.60 wird daher der folgende, einfache Ausdruck gewählt:

$$V_{loc}(r) = -\frac{Z_{eff}}{r} + \frac{Z_{eff}}{r} \exp(-\alpha r^2) + Z_{eff} \alpha r \exp(-\beta r^2) + \gamma \exp(-\delta r^2), \qquad (2.64)$$

wobei $Z_{\rm eff}$ die effektive Kernladung ist und α , β , γ und δ variationelle Parameter sind. Eine Maclaurinentwicklung der Exponentialfunktionen zeigt, dass die so gewählte lokale Komponente des Pseudopotentials endlich am Kern ist und sich für kleine r quadratisch verhält:

$$-\frac{Z_{\text{eff}}}{r} + V_{\text{loc}}(r) \approx -\frac{Z_{\text{eff}}}{r} + \frac{Z_{\text{eff}}}{r} \cdot \left[1 - \alpha r^2 + O(r^4)\right]$$

$$+ Z_{\text{eff}} \alpha r \cdot \left[1 - \beta r^2 + O(r^4)\right] + \gamma \cdot \left[1 - \delta r^2 + O(r^4)\right]$$

$$\approx -\frac{Z_{\text{eff}}}{r} + \frac{Z_{\text{eff}}}{r} - Z_{\text{eff}} \alpha r + Z_{\text{eff}} \alpha r + \gamma - O(r^2).$$
 (2.65)

Das vollständige Pseudopotential für ein Element der ersten Periode (Kohlenstoffreihe) lautet

$$\hat{V}_{pp} = V_{loc}(r) + \zeta \exp(-\eta r^2) |0\rangle \langle 0|, \qquad (2.66)$$

wobei $|0\rangle\langle 0|$ den Projektionsoperator auf den Hilbertraum mit Winkelsymmetrie l=0 bezeichnet und ζ und η variationelle Parameter sind. Idealerweise sollte das Potential möglichst "sanft" verlaufen, d.h. möglichst wenige oder geringe Oszillationen aufweisen. Starke Oszillationen des Potentials, welche einer physikalischen Begründung entbehren, verlangen in der Anwendung nach unnötig flexiblen Basissätzen. Für das Potential ergeben sich daher einige Nebenbedingungen. Die erste Nebenbedingung wurde im Rahmen dieser Arbeit empirisch gefunden und verlangt, dass

$$\beta \ge \frac{\alpha}{2} \tag{2.67}$$

für glatte, lokale Potentiale ist. Die Abhängigkeit des lokalen Teils $V_{loc}(r)$ des Pseudopotentials von der Wahl des Parameters β ist in Abb. 2.1 dargestellt. Man erkennt, wie die Nebenbedingung 2.67 das Auftreten zusätzlicher Extremstellen verhindert. Wie bereits erwähnt, habe ich diese Wahl empirisch gefunden. Allerdings beobachtet man für den Spezialfall $\beta = \frac{\alpha}{2}$ das Aufheben der kubischen Terme in Gl. 2.64. Wegen

$$-\frac{Z_{\text{eff}}}{r} + V_{\text{loc}} \approx -\frac{Z_{\text{eff}}}{r} + \frac{Z_{\text{eff}}}{r} \cdot \left[1 - \alpha r^2 + \frac{1}{2} \alpha^2 r^4 - o(r^6) \right]$$

$$+ Z_{\text{eff}} \alpha r \cdot \left[1 - \beta r^2 + \frac{1}{2} \beta^2 r^4 - o(r^6) \right]$$

$$\approx -Z_{\text{eff}} \alpha r + \frac{1}{2} Z \beta^2 r^3 - O(r^6) + Z \alpha r - Z \alpha \beta x^3 + O(r^5) (2.68)$$

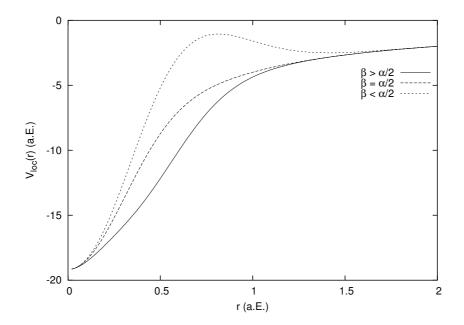


Abbildung 2.1: Der lokale Teil $V_{loc}(r)$ des Pseudopotentials für verschiedene β . Alle Werte sind in atomaren Einheiten (a.E.).

können die Terme $O(r^3)$ durch die Wahl

$$0 = \frac{1}{2}Z\alpha^{2}r^{3} - Z\alpha\beta r^{3}$$

$$\Rightarrow \frac{1}{2}\alpha = \beta$$
(2.69)

eliminiert werden. Auf die Wahl $\beta=\frac{\alpha}{2}$ kann aber verzichtet werden, da sich keine Verbesserungen der Varianz erzielen lassen und man folglich die variationelle Freiheit, welche sich aus der Wahl $\beta \geq \frac{\alpha}{2}$ ergibt, zur Justierung des Potentials ausnutzen kann.

Eine zweite Nebenbedingung ergibt sich aus der Forderung, dass das s-Potential in Kernnähe maximal repulsiv sein soll und für größere Abstände anziehend wird. Das heißt, die Summe der lokalen und nichtlokalen Terme muss am Kern eine negative Krümmung aufweisen. Eine Entwicklung der Gl. 2.66 um r=0 liefert

$$V_{\rm pp} \approx -Z_{\rm eff} \alpha \beta r^3 + \gamma - \gamma \delta r^2 + \zeta - \zeta \eta r^2. \tag{2.70}$$

Die Krümmung soll negativ sein

$$-3Z_{\text{eff}}\alpha\beta r^{2} - 2\gamma\delta r - 2\zeta\eta r < 0$$

$$\Rightarrow \alpha\beta > -\frac{2}{3Z_{\text{eff}}}(\gamma\delta + \zeta\eta)$$
(2.71)

was immer zu erfüllen ist, mit der Wahl

$$\gamma \delta + \zeta \eta > 0 \tag{2.72}$$

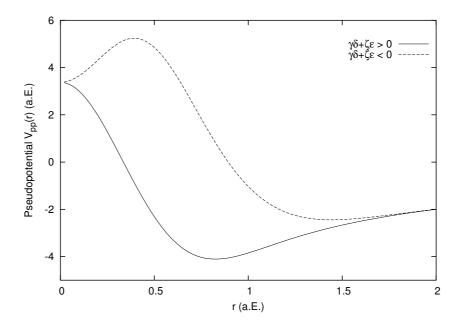


Abbildung 2.2: Die Auswirkung der Nebenbedingung $\gamma\delta + \zeta\eta > 0$ auf das Pseudopotential. Alle Werte sind in atomaren Einheiten (a.E.).

wegen $\alpha > 0$ und $\beta > 0$. Abb. 2.2 zeigt, wie die Nebenbedingungen das unphysikalische Auftauchen zusätzlicher Wendestellen und Extremstellen unterdrückt. Demnach wird die Justierung der Pseudopotentiale unter Berücksichtigung der nichtlinearen Nebenbedingungen durchgeführt. Für die Elemente der 2. Periode (Siliziumreihe) muss ein p-Projektor addiert werden, welcher zwei weitere variationelle Parameter μ und ν enthält:

$$\hat{V}_{pp} = V_{loc}(r) + \zeta \exp(-\eta r^2) |0\rangle \langle 0|$$

$$+ \mu \exp(-\nu r^2) |1\rangle \langle 1|.$$
(2.73)

Man erhält durch völlig analoge Betrachtungen, d.h. eine negative Krümmung des p-Potentials um r = 0, die Nebenbedingung

$$\gamma \delta + \mu v > 0. \tag{2.74}$$

Die nichtlokalen Teile der Pseudopotentiale werden für alle Elemente mit einer einzigen Gaussfunktion für jede Drehimpulsquantenzahl beschrieben. Folglich liefern auch die d- und f-Projektoren jeweils zwei neue variationelle Parameter und weitere nichtlineare Nebenbedingungen. Die Optimierung der Pseudopotentialparameter unter Berücksichtigung der nichtlinearen Nebenbedingungen war mit dem verfügbaren Programm [45] nicht möglich. Daher wurde der Programmcode zu Beginn dieser Arbeit um die DONLP2 Routine erweitert [46, 47, 48].

Das nichtsinguläre Pseudopotential für Silizium ist in Abb. 2.3 zwei "traditionellen", d.h. singulären Potentialen gegenübergestellt. Dargestellt ist das sog. Stevens-Basch-Krauss-(SBK-)Pseudopotential [39] für Silizium, welches ein formkonsistentes HF-Pseudopotential ist. Außerdem zeigt Abb. 2.3 noch ein Stuttgartpseudopotential [49], welches ein energiekonsistentes Wood-Boring-HF-Potential ist. Mit der speziellen Wahl der funktionalen Form bleibt die analytische Form der Pseudopotentiale äußerst kompakt. Für ein Element der Kohlenstoffreihe werden insgesamt 4 Gaussfunktionen benötigt. Drei davon sind im lokalen Teil und eine ist im nichtlokalen Teil des Potentials (siehe Gl. 2.66 und Gl. 2.64). Zum Vergleich möchte ich den lokalen Anteil eines typischen, formkonsistenten Pseudopotentials, welches durch Inversion (vgl. Abschnitt 2.3.2) der HF-Gleichungen ermittelt wurde, angeben:

```
\begin{array}{lll} -& 46103.374392 \exp \left(-49.563073\,r^2\right) \\ +& 0.005662 \exp \left(-0.228067\,r^2\right) \\ -& 116916.129127 \exp \left(-19.049581\,r^2\right) \\ +& 218223.632125 \exp \left(-19.817161\,r^2\right) \\ -& 220299.253059 \exp \left(-22.505546\,r^2\right) \\ +& 259728.640302 \exp \left(-26.504117\,r^2\right) \\ -& 277916.921510 \exp \left(-31.298309\,r^2\right) \\ +& 255251.919307 \exp \left(-36.815260\,r^2\right) \\ -& 202096.162953 \exp \left(-42.324305\,r^2\right) \\ +& 130188.763301 \exp \left(-46.986465\,r^2\right). \end{array}
```

Dabei handelt es sich um die nichtlokale s-Komponente eines Pseudopotentials für Neon gemäß der sog. Vanderbiltkonstruktion [50].

2.3.5 3d-Übergangsmetalle

Neben den Pseudopotentialen für die Hauptgruppenelemente wurden auch Potentiale für die 3d-Übergangsmetalle justiert. Im Gegensatz zu den Hauptgruppen, ist für die Übergangsmetalle die Verwendung eines sog. *Small-Core*-Rumpfes, also eines kleinen Rumpfes, obligatorisch [9, 10, 11]. Wie bereits in Abschnitt 2.3.1 erwähnt, basiert die erfolgreiche Trennung der Rumpf- und Valenzelektronen auf einer hinreichend großen energetischen Separation (z.B. der Orbitalenergien) einerseits und auf einer räumlichen Separation andererseits. Im Fall der 3d-Übergangsmetalle können insbesondere aufgrund der unzureichenden räumlichen Trennung der 3p-Orbitale mit den 3d-Orbitalen die 3p-Orbitale nicht in den Rumpf des Pseudopotentials übernommen werden. Die radialen Valenzorbitale des Titans sind in Abb. 2.4 abgebildet. Jede Änderung der d-Besetzung verlangt für genaue Resultate eine Relaxation der Rumpforbitale. Wählt man daher Pseudopotentiale mit einem Argonrumpf (*Large-Core*), so resultiert ein von der d-Schalenbesetztung

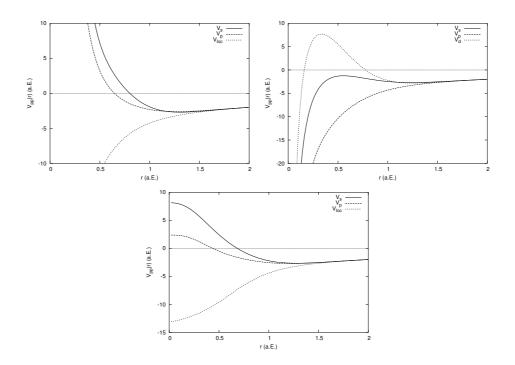


Abbildung 2.3: Vergleich einiger Pseudopotentiale für Silizium. **Oben links**: Das SBK-Siliziumpseudopotential [39] divergiert im nichtlokalen Teil wie $1/r^2$ für $r \rightarrow 0$ (repulsiv) und wie -1/r im lokalen Teil (coulombartig, attraktiv). **Oben rechts**: Das Stuttgartpseudopotential [49] divergiert wie -1/r und hat keinen nichtlokalen Teil. **Unten**: Das neue, nichtsinguläre Pseudopotential. Alle Werte sind in atomaren Einheiten (a.E.).

abhängiger systematischer Fehler des Pseudopotentials. Beispielsweise reduziert sich die Genauigkeit um eine Größenordnung für die berechnete Bindungslänge des Scandiumoxides, wenn man vom Neon- zum Argonrumpf im Pseudopotential übergeht [10, 11]. Darüber hinaus ist es mit einem Argonrumpf unmöglich, die z.T. äußerst wichtige Rumpf-Valenz-Korrelation zwischen den 3s/3p und den 4s/3d Elektronen zu berechnen. In jüngster Zeit wurde der Beitrag der Rumpf-Valenz-Korrelation für die Berechnung des ersten Ionisierungspotentials des Scandiumatoms auf 0.13 eV berechnet [51], was immerhin 2% des ersten Ionisierungspotentials ausmacht. Folglich wurde für die Pseudopotentiale der 3d-Übergangsmetalle ein Neonrumpf gewählt. Tabelle 2.1 zeigt repräsentativ die Konfigurationen, welche in den Fit des Scandiumpotentials eingehen. Man erkennt, dass auch solche Konfigurationen berücksichtigt werden, bei denen ausschließlich die 3s3p-Subschale besetzt ist, beispielsweise die 3s²3p⁶(Sc³⁺) und die 3s²3p⁵(Sc⁴⁺) Konfiguration. Art und Anzahl der verwendeten Konfigurationen orientieren sich an den erfolgreichen, energiekonsistenen 3d-Pseudopotentialen nach Ref. [52]. Die funktionale Form der Pseudopotentiale entspricht einem Potential für Elemente

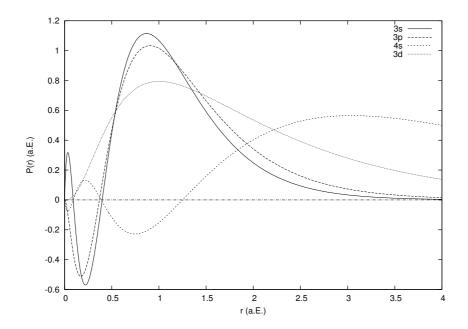


Abbildung 2.4: Radiale Orbitale für das Titanatom in der [Ne] $3s^2$ $3p^6$ $4s^2$ $3d^2$ Konfiguration. Alle Werte sind in atomaren Einheiten (a.E.).

der Siliziumreihe, d.h.

$$\hat{V}_{pp} = V_{loc}(r) + \zeta \exp(-\eta r^2) |0\rangle \langle 0|$$

$$+ \mu \exp(-\nu r^2) |1\rangle \langle 1|, \qquad (2.75)$$

mit

$$V_{loc}(r) = -\frac{Z_{eff}}{r} + \frac{Z_{eff}}{r} \exp(-\alpha r^{2})$$

$$+ Z_{eff} \alpha r \exp(-\beta r^{2}) + \gamma \exp(-\delta r^{2}), \qquad (2.76)$$

damit das Potential am Kern endlich ist. Analoge Betrachtungen ergeben die bereits bekannten Nebenbedingungen

$$\gamma \delta + \zeta \eta > 0$$
 und $\gamma \delta + \mu v > 0$. (2.77)

2.3.6 Pseudopotentiale in QMC-Rechnungen

Die Pseudopotentiale dieser Arbeit reduzieren die effektive Kernladung und erleichtern durch die Wahl einer speziellen funktionalen Form die Konstruktion der Testwellenfunktionen $\tilde{\phi}_0$ in Einteilchengaussfunktionen, welche auch in unmittelbarer Kernnähe gute näherungsweise Lösungen sind. Dabei zeichnen sich gute

näherungsweise Lösungen für QMC-Anwendungen durch minimale Fluktuationen der lokalen Energie aus. Diese Testwellenfunktionen werden mit Quantenchemie-programmen und VMC-Methoden erstellt und dann für das Importance-Sampling im DMC verwendet (vgl. Abschnitt 2.2.2). Da die Pseudopotentiale auch nichtlokale Anteile haben, welche nur auf Komponenten der Wellenfunktion mit bestimmen Drehimpuls wirken, ist unmittelbar klar, dass es in einer lokalen Methode zu Problemen kommen muss. Die Situation ähnelt der bereits erwähnten Problematik mit der Austauschwechselwirkung und der damit einhergehenden Fixed-Node-Näherung, bei der man die Knoten der Testwellenfunktion $\tilde{\phi}_0$ für das DMC als unveränderlich nimmt. Das Pseudopotential für ein Atom lässt sich aufspalten in einen lokalen Anteil V_{loc} und einen nichtlokalen Anteil W

$$V_{\rm pp} = V_{\rm loc} + W \tag{2.78}$$

mit

$$W = \sum_{i} \sum_{lm} v_l(r_i) Y_{lm}(\Omega_i) \int d\Omega_i' Y_{lm}^*(\Omega_l')$$
 (2.79)

wobei v_l das radiale Potential, Y_{lm} die Kugelflächenfunktion und Ω_i die Winkelvariable ist. Gleichung 2.79 ist die ausformulierte Fassung der bisherigen Projektionsoperatoren $|l\rangle\langle l|$. Für das DMC muss man ein lokales Potential anstelle von W formulieren. Dazu verwendet man ein lokalisiertes Potential [53]

$$\frac{\tilde{\phi}_0 W}{\tilde{\phi}_0},\tag{2.80}$$

d.h. das Potential kann nur näherungsweise im DMC erfasst werden. Die Näherung ist in dem Maße exakt, wie die Testwellenfunktion $\tilde{\phi}_0$ die exakte Wellenfunktion für den Valenzhamiltonoperator in dem relevanten Bereich beschreibt. Im Grenzfall einer exakten Testwellenfunktion, d.h. $\tilde{\phi}_0 = \phi_0$, kann auch das exakte, lokale Potential im DMC verwendet werden. Wichtig ist auch hier, dass man die Fehler aufgrund der Näherung durch systematisches Verbessern der Testwellenfunktion sukzessive minimieren kann. Der Beitrag des i-ten Elektrons ist gegeben als [53]

$$\frac{\tilde{\phi}_0 W}{\tilde{\phi}_0} = \sum_{l} \frac{(2l+1)}{4\pi} v_l(r_i) \times \int_{4\pi} P_l \left[\cos\left(\theta_i'\right) \right] \frac{\tilde{\phi}_0(r_1, \dots, r_i', \dots, r_N)}{\tilde{\phi}_0(r_1, \dots, r_i, \dots, r_N)} d\Omega_i' \qquad (2.81)$$

wobei P_l ein Legendrepolynom kennzeichnet und die z-Achse auf dem i-ten Elektron liegt. Falls $\tilde{\phi}_0$ nur aus Determinanten besteht, kann die Integration analytisch durchgeführt werden [54, 55]. Besteht, was üblicherweise der Fall ist, $\tilde{\phi}_0$ aus einem Determinantenteil und Korrelationsfunktionen, so kann man mit der analytischen Integration nur den Determinantenteil zur Lokalisierung des Potentials nutzen. Genauer ist es, auch die Korrelationsfunktionen zur Lokalisierung zu nutzen, da für bessere Wellenfunktionen der Fehler der näherungsweisen Lokalisierung kleiner wird. In diesem Fall muss eine zweidimensionale numerische Integration durchgeführt werden. Für die Hauptgruppenelemente muss vor jedem Monte-Carlo-Schritt eine 6-Punktquadratur und für die 3d-Übergangsmetalle eine

12-Punktquadratur durchgeführt werden [53].

Zur Analyse der Effizienz einer DMC-Rechnung wird für diese Arbeit die Effizienz κ wie folgt definiert

$$\kappa = 1/(\sigma^2 \tau_{\text{corr}} T_{\text{CPU}}), \qquad (2.82)$$

wobei T_{CPU} die Rechenzeit, σ die quadratisch gemittelten Fluktuationen der lokalen Energie und τ_{corr} die Autokorrelationszeit [57] der lokalen Energie sind. Die Definition ist eine Erweiterung der Definition in Ref. [53], welche keine Autokorrelationszeit berücksichtigt. Die Abhängigkeit der Rechenzeit von der analytischen Komplexität der Testwellenfunktion und des Pseudopotentials ist im DMC gering, da zu Beginn der Rechnung sowohl die Testwellenfunktion als auch das Pseudopotential auf einem Raster (Grid) diskretisiert werden. Dennoch existiert eine Abhängigkeit der Rechenzeit von dem Pseudopotential: Aufgrund der zusätzlichen Quadratur ist es vorteilhaft, wenn das Potential nur einen minimalen Satz nichtlokaler "Kanäle" $V_l(r)$ aufweist. Das Potential sollte aber mindestens Projektoren für jede Drehimpulsquantenzahl l der Rumpfelektronen ausweisen. Für Kohlenstoff ist das ein s-Kanal, für Silizium und Titan ein s- und ein p-Kanal, für Germanium ein s-, p- und d-Kanal. Die Potentiale dieser Arbeit kommen alle mit einem minimalen Satz an Kanälen aus, was sich günstig auf die Rechenzeit im QMC auswirken sollte. Bei hinreichend großer Entfernung des Elektrons vom Kern wird der nichtlokale Anteil $V_I(r)$ des Potentials so gering, dass auf dessen Beitrag und die Quadratur verzichtet werden kann. In den Rechnungen dieser Arbeit werden Beiträge $V_l(r) < 10^{-4}$ Hartree vernachlässigt. Idealerweise ist demnach der nichtlokale Anteil des Pseudopotentials möglichst kurzreichweitig. Die Autokorrelationszeit hängt maßgeblich von der Größe der Zeitschritte im DMC ab. Je konstanter die lokale Energie, desto größer kann der Zeitschritt gewählt werden. Man beachte, das der Ausdruck für \tilde{G}_B (Gl. 2.56) die lokale Energie im Exponenten hat. Ein zu großer Zeitschritt resultiert in einer instabilen Rechnung, d.h. das Programm stürzt i.d.R. aufgrund eines Überlaufs ab. Die Größe ist mit der Varianz verbunden, welche der dominierende Faktor ist. Sie beschreibt die Fluktuationen der lokalen Energie, also wie gut die Testwellenfunktion das System beschreibt. Ein am Kern divergierendes Potential kann nur schlecht mit den verfügbaren Testwellenfunktionen näherungsweise gelöst werden. Für die Qualität der neuen, nichtsingulären Potentiale ist also entscheidend, wie gut die verfügbaren Testwellenfunktionen den Valenzhamiltonoperator mit dem Pseudopotential lösen können. Der Erfolg wird demnach von zwei Seiten bestimmt: 1. Einem möglichst sanften, d.h. "anspruchslosen" Pseudopotential und 2. einer möglichst guten, d.h. für das Potential optimierten Einteilchenbasis zur Konstruktionen effizienter Testwellenfunktionen. Genauere Testwellenfunktionen reduzieren darüber hinaus die Fehler der Fixed-Node-Näherung und den Lokalisierungsfehler.

Auch an dieser Stelle lassen sich wieder prinzipielle Unterschiede zwischen den QMC-Methoden und den CI/CC-Methoden aufzeigen. Das systematische Verbessern der Ergebnisse im Falle der CI/CC-Methoden wird immer teurer, je näher man der FCI-Lösung im Limit einer vollständigen Einteilchenbasis kommt. Das DMC wird hingegen immer effizienter, je genauer die Testwellenfunktion sind und

je besser die Transformation nach Gl. 2.53 durchgeführt werden kann. Allerdings setzt der steigende Rechenaufwand zur Berechnung der lokalen Energie Grenzen bezüglich der Testwellenfunktion.

Kapitel 3

Rechenmethoden der relativistischen Quantenchemie

Im Rahmen dieser Arbeit werden unterschiedliche Rechenmethoden für die Korrelationsbehandlung und die Behandlung der relativistischen Beiträge verwendet. Einige Methoden der relativistischen Quantenchemie sollen im Folgenden erläutert werden.

3.1 Die Klein-Gordon-Gleichung

Die Invarianzeigenschaften der klassischen Hamiltonfunktion bezüglich räumlicher Drehungen und Translationen übertragen sich auch auf die nichtrelativistische Schrödingergleichung. Somit übertragen sich auch die Eigenschaften bzgl. der Galilei-Transformationen [58]. Das besondere Charakteristikum der Galilei-Transformation ist die Addition der Geschwindigkeiten, wie es auch der alltäglichen Erfahrung entspricht. Im klaren Widerspruch dazu steht der experimentelle Befund von Michelson und Morley [59], d.h. die Konstanz der (Vakuum-) Lichtgeschwindigkeit. Die Konstanz der Lichtgeschwindigkeit und die Annahme der Identität aller Naturgesetze in allen Inertialsystemen führen zur Lorentztransformation [60]. Zwar transformieren die Maxwell'schen Gleichungen (nach einigen Umdeutungen [61, 62]) gemäß der Lorentztransformation, nicht aber die Bahnkurven der Newton'schen Bewegungsgleichungen. Albert Einstein schloss daraus, dass die Newton'schen Bewegungsgleichungen falsch sein müssen [61]. Anstelle der nichtrelativistischen Hamiltonfunktion

$$H(p,x) = \frac{p^2}{2m} \tag{3.1}$$

tritt die relativistische Hamiltonfunktion

$$H(p,x) = \sqrt{m^2c^4 + p^2c^2}$$
 (3.2)

mit den üblichen Bewegungsgleichungen

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} \tag{3.3}$$

$$\frac{dp}{dt} = -\frac{\partial H}{\partial x}. (3.4)$$

Die so gewählte Hamiltonfunktion geht für kleine Impulse in den klassischen Grenzfall über und ist Ausgangspunkt für den Hamiltonoperator der Klein-Gordon-Gleichung

$$\hat{H} \cdot \hat{H} \Psi = (m^2 c^4 + \vec{p}^2 c^2) \Psi = -\hbar^2 \frac{\partial^2 \Psi}{\partial t^2}$$
(3.5)

für ein freies Teilchen. Die Gleichung ist zweiter Ordnung in der Zeit t, weshalb sowohl $\Psi(\vec{x},t)$ als auch $\partial \Psi(\vec{x},t)/\partial t$ für ein t bekannt sein müssen. Man sieht ferner, dass der Ansatz

$$\Psi(\vec{x},t) = A \exp \frac{i}{\hbar} (\vec{p} \cdot \vec{x} - \varepsilon t)$$
 (3.6)

zu Lösungen mit positiver und negativer Energie führt:

$$\varepsilon = \pm \sqrt{m^2 c^4 + \vec{p}^2 c^2} \tag{3.7}$$

Die Aussagen der Klein-Gordon-Gleichung sind für Atome entweder falsch (Feinstrukturaufspaltung) oder unvollständig (kein Spin). Im nichtrelativistischen Grenzfall $\partial\Psi/\partial t\approx -\frac{i}{\hbar}mc^2\Psi$ reduziert sich die Klein-Gordon-Gleichung zur Schrödingergleichung ohne Spin, woraus man schließen kann, dass die Klein-Gordon-Gleichung Teilchen mit Spin 0 beschreibt und eben keine Elektronen [63]. Aus heutiger Sicht sind die negativen Wahrscheinlichkeitsdichten im Verbindung mit der Klein-Gordon-Gleichung kein prinzipielles Problem mehr [63]. Zwar gibt es wie in der nichtrelativistischen Quantenmechanik eine Kontinuitätsgleichung

$$\frac{\partial \mathbf{p}}{\partial t} + \vec{\nabla} \cdot \vec{J} = 0 \tag{3.8}$$

mit der formal unveränderten Stromdichte

$$\vec{J} = \frac{\hbar}{2mi} (\Psi^* \vec{\nabla} \Psi - \Psi \vec{\nabla} \Psi^*) \tag{3.9}$$

dafür aber ein

$$\rho = \frac{i\hbar}{2mc^2} (\Psi^* \frac{\partial \Psi}{\partial t} - \Psi \frac{\partial \Psi^*}{\partial t}). \tag{3.10}$$

Da $\Psi(\vec{x},t)$ und $\partial \Psi(\vec{x},t)/\partial t$ willkürliche Werte annehmen können, braucht ρ nicht positiv definit zu sein und kann nicht als Wahrscheinlichkeitsdichte interpretiert werden. Dieser Umstand motivierte Dirac nach einer anderen Gleichung zu suchen.

3.2 Die Dirac-Gleichung

Das historische Vorgehen Diracs wird u.a. in [63] beschrieben. Demnach machte Dirac folgende Annahmen:

• Wenn die Gleichung der Form $i\hbar\partial\Psi/\partial t = \hat{H}\Psi$ genügen soll, muss der Hamiltonoperator auf Grund der Gleichberechtigung von Raum- und Zeitkoordinaten auch in den Raumableitungen linear sein:

$$i\hbar\frac{\Psi}{\partial t} = \left[\frac{\hbar c}{i}\left(\sum_{i=1}^{3}\hat{\alpha}_{i}\frac{\partial\Psi}{\partial x_{i}}\right) + \hat{\beta}m_{0}c^{2}\right] = \hat{H}\Psi.$$
 (3.11)

Aus Gl. 3.11 erkennt man, dass Ψ kein Skalar sein kann, sondern ein Spaltenvektor, Spinor genannt, sein muss:

$$\begin{pmatrix} \Psi_{1}(\vec{x},t) \\ \Psi_{2}(\vec{x},t) \\ \vdots \\ \Psi_{N}(\vec{x},t) \end{pmatrix}$$
(3.12)

Die Koeffizienten $\hat{\alpha}_i$ und $\hat{\beta}$ müssen dann quadratische (und hermite'sche) $N \times N$ Matrizen sein. Daher kann man bereits an dieser Stelle ein System von N gekoppelten Differenzialgleichungen 1. Ordnung zwischen den Spinorkomponenten erwarten.

Für das freie Teilchen darf der Hamiltonoperator keine von der Raumzeit abhängigen Energien enthalten (sonst würden auf das Teilchen Kräfte wirken). Daher sind die Parameter $\hat{\alpha}$ und $\hat{\beta}$ unabhängig von \vec{x}, t, \vec{p} und E.

• Es soll sich ein positiv definiter Ausdruck für die Dichte

$$\rho = \Psi^{\dagger} \Psi = (\Psi_1^*, \Psi_2^*, ..., \Psi_n^*) \begin{pmatrix} \Psi_1 \\ \Psi_2 \\ \vdots \\ \Psi_N \end{pmatrix} = \sum_{i=1}^N \Psi_i^{\dagger} \Psi_i$$
 (3.13)

konstruieren lassen, für welche außerdem eine Kontinuitätsgleichung gelten muss, damit $\rho(\vec{r})$ als Wahrscheinlichkeitsdichte interpretiert werden kann.

• Jede einzelne Komponente des Spinors Ψ soll der Klein-Gordon-Gleichung genügen. Diese Bedingung impliziert die relativistische Energie-Impulsbeziehung für ein freies Teilchen und besagt, dass im klassischen Grenzfall $\hbar \to 0$ die Einstein'sche Mechanik zurückgewonnen wird.

Es stellt sich heraus, dass die kleinste Dimension, für welche die hermite'sche Operatoren $\hat{\alpha}$ und $\hat{\beta}$ mit oben genannten Bedingungen existieren, die Dimension vier

ist. Bezüglich ihrer Darstellung bleibt noch eine gewisse Freiheit. In der sog. Standarddarstellung lauten die Matrizen

$$\beta = \begin{pmatrix} \mathbb{I} & 0 \\ 0 & -\mathbb{I} \end{pmatrix} \tag{3.14}$$

mit \mathbb{I} als 2×2 Einheitsmatrix und

$$\alpha_1 = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix}, \qquad \alpha_2 = \begin{pmatrix} 0 & \sigma_y \\ \sigma_y & 0 \end{pmatrix}, \qquad \alpha_3 = \begin{pmatrix} 0 & \sigma_z \\ \sigma_z & 0 \end{pmatrix}$$
 (3.15)

mit $\sigma_{x,y,z}$ als Pauli-Spinmatrizen.

Oft ist es zweckmäßig, den vierkomponentigen Spinor in zwei Bispinoren ϕ und χ aufzuteilen:

$$\phi = \begin{pmatrix} \Psi_1 \\ \Psi_2 \end{pmatrix}, \qquad \chi = \begin{pmatrix} \Psi_3 \\ \Psi_4 \end{pmatrix} \tag{3.16}$$

Die Dirac-Gleichung für das freie Teilchen lautet

$$i\hbar \frac{\partial \Psi}{\partial t} = \left(c\alpha \vec{p} + m_0 c^2 \beta\right) \Psi.$$
 (3.17)

Für stationäre Zustände ist [63]

$$\Psi(\vec{x},t) = \Psi(\vec{x})e^{-\frac{i}{\hbar}\varepsilon t} \tag{3.18}$$

und mit 3.16 geht 3.17 über in

$$\varepsilon \phi = c \ \sigma \vec{p} \ \chi + m_0 c^2 \ \phi$$

$$\varepsilon \ \chi = c \ \sigma \vec{p} \ \phi - m_0 c^2 \ \chi. \tag{3.19}$$

Die Lösungen zu einem bestimmten Impuls sind ebene Wellen

$$\begin{pmatrix} \phi \\ \chi \end{pmatrix} = \begin{pmatrix} \phi_0 \\ \chi_0 \end{pmatrix} \cdot e^{\frac{i}{\hbar}\vec{p}\vec{x}} \tag{3.20}$$

und man erhält das Gleichungssystem

$$(\varepsilon - m_0 c^2) \mathbb{I} \phi_0 - c \sigma \cdot \vec{p} \chi_0 = 0$$

$$-c \sigma \vec{p} \phi_0 + (\varepsilon + m_0 c^2) \mathbb{I} \chi_0 = 0$$
(3.21)

mit nichttrivialen Lösungen, wenn die Determinante der Koeffizienten den Wert Null hat. Das bedeutet¹

¹unter Verwendung der Pauli-Identität $(\sigma \cdot \vec{A})(\sigma \cdot \vec{B}) = \vec{A}\vec{B} \mathbb{I} + i \sigma \cdot (\vec{A} \times \vec{B})$

$$\varepsilon = \pm E_p, \qquad E_p = c\sqrt{\vec{p}^2 + m_0^2 c^2}.$$
 (3.22)

Die zwei Lösungstypen der Diracgleichung werden je nach Vorzeichen von ϵ positive oder negative Lösungen genannt. Für jedes ϵ existieren zwei linear unabhängige Lösungen. Aus 3.19 folgt durch Substitution

$$\chi_0 = \frac{c \ (\mathbf{\sigma} \cdot \vec{p})}{m_0 c^2 + \varepsilon} \phi_0. \tag{3.23}$$

Für kleine Impulse ist $\varepsilon \approx m_0c^2$ und der Quotient in 3.23 von der Größenordnung v/c, weshalb man χ auch als kleine und ϕ als die große Komponente bezeichnet. Für negative Energien ist es umgekehrt. Die vier Lösungen lassen sich jetzt durch Einsetzen konstruieren. Wählt man zum Beispiel

$$\phi_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{3.24}$$

dann ist

$$\chi_0 = \frac{c \left(\sigma \cdot \phi_0\right) \cdot \vec{p}}{m_0 c^2 + \varepsilon} = \frac{c}{m_0 c^2 + \varepsilon} \begin{pmatrix} p_z \\ p_x + i p_y \end{pmatrix}. \tag{3.25}$$

Das Einschalten eines Magnetfeldes wird formal durch die Substitution $\hat{p} \to \hat{p} - q \vec{A}$ und dem Vektorpotential $\vec{B} = \vec{\nabla} \times \vec{A}$ mit $\vec{A} = 1/2 \ \vec{B} \times \vec{x}$ berücksichtigt. Gleichung 3.23 lautet dann:

$$\chi_0 = \frac{c \left(\mathbf{\sigma} \cdot \vec{p} - q \, \mathbf{\sigma} \cdot \vec{A} \right)}{m_0 c^2 + \varepsilon} \phi_0. \tag{3.26}$$

Einsetzen in das Analogon von 3.19 ergibt

$$(mc^{2} - \varepsilon)\phi_{0} + \frac{c^{2}}{mc^{2} + \varepsilon} \left\{ (\sigma\vec{p})(\sigma\vec{p}) - q \left[(\sigma\vec{p})(\sigma\vec{A}) + (\sigma\vec{A})(\sigma\vec{p}) \right] \right\} \phi_{0} = 0. \quad (3.27)$$

wobei der Terme der Ordnung $O(\vec{A}^2)$ vernachlässigt wurden, d.h. das magnetische Feld sei schwach (die Terme addieren nur eine Konstante). Der Ausdruck lässt sich weiter vereinfachen zu [64]:

$$\frac{c^2}{m^2c^4 - \varepsilon^2} \left\{ \vec{p}^2 - q \left[(2\vec{A}\vec{p} + \sigma\vec{B}) \right] + 1 \right\} \phi_0 = 0, \qquad (3.28)$$

Die ebenen Wellen

$$\phi = \phi_0 \cdot e^{\frac{i}{\hbar}\vec{p}\vec{x}} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cdot e^{\frac{i}{\hbar}\vec{p}\vec{x}}$$
 (3.29)

lösen 3.28, falls $\vec{A} \cdot \vec{p} = 0$ und ϕ_0 ein Eigenvektor der 2×2 Matrix $(\vec{B}\sigma)$ ist. Seien beispielsweise

$$\vec{B} = (0,0,B)$$
 $\Rightarrow \vec{A} = \frac{1}{2}B(-Y,X,0)$
 $\vec{p} = (0,0,p)$ $\Rightarrow \vec{A} \cdot \vec{p} = 0$

so folgt

$$\phi_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{3.30}$$

wegen

$$B_{x}\left[\sigma_{x}\left(\begin{array}{c}1\\0\end{array}\right)\right]+B_{y}\left[\sigma_{y}\left(\begin{array}{c}1\\0\end{array}\right)\right]+B_{z}\left[\sigma_{z}\left(\begin{array}{c}1\\0\end{array}\right)\right]$$

$$=\left(\begin{array}{c}iB_{y}+B_{z}\\B_{x}\end{array}\right)=\left(\begin{array}{c}B_{z}\\0\end{array}\right) \qquad (3.31)$$

Der Term $\sigma \cdot \vec{B}$ beschreibt eine Wechselwirkung, die es in der klassischen Physik nicht gibt. Insbesondere existiert diese Wechselwirkung auch für den Fall, dass sich das Elektron parallel zum magnetischen Feld bewegt oder sogar ruht $(\vec{p} = \vec{0})^2$. Der Term hat außerdem Konsequenzen für das Verhalten der Spinoren bei Rotationen des Bezugssystems. Eine Drehung im Raum hätte im Falle des obigen Beispiels zur Folge, dass auch \vec{B} eine andere Darstellung hätte und folglich der Spinteil ϕ_0 keine Eigenfunktion mehr von $(\vec{B}\sigma)$ zum Eigenwert B_z sein könnte. Der allgemeine Drehoperator für eine skalare Wellenfunktion hat die Form [66]

$$^{r}U = \exp\left(-i\,\theta\,\vec{n}\,\hat{l}\right) \tag{3.32}$$

wobei θ den Drehwinkel, \vec{n} die Drehachse und \hat{l} den Drehimpulsoperator bezeichnet. Bei der Transformation des Bispinors muss zusätzlich noch der Spinteil transformiert werden gemäß:

$$^{s}U = \exp\left(-i\,\alpha/2\,\vec{n}\,\sigma\right). \tag{3.33}$$

Für eine Rotation um die z-Achse folgt:

$$\exp\left(i\,\sigma_z\,\alpha/2\right) = \left[\mathbb{I} - \frac{(\sigma_z\alpha)^2}{2\cdot 2!} + \dots\right] - \left[\frac{\sigma_z}{2} - \frac{(\sigma_z\alpha)^3}{2\cdot 3!} + \dots\right] \tag{3.34}$$

$$=\mathbb{I}\frac{\alpha}{2}-i\sigma_z\frac{\alpha}{2} \tag{3.35}$$

Daher resultiert im Falle des oben angeführten Beispiels für eine 2π Drehung um die z-Achse ein Vorzeichenwechsel der Wellenfunktion.

Allgemein formuliert tritt anstelle des Drehimpulsoperators in 3.32 der Gesamtdrehimpuls $\vec{j} = \vec{l} + \vec{s} = \vec{l} + \sigma/2$. Im Falle eines isotropen Zentralpotentials gilt für den Dirac-Hamiltonoperator H_D , dass $[\hat{H}_D, \hat{j}] = 0$ und es existieren gemeinsame Eigenfunktionen des Wasserstoffatoms für \hat{H}_D, \hat{j}^2 und \hat{j}_z . Die Eigenfunktionen von \hat{j}^2 zum Eigenwert j(j+1) sind 2j+1-fach entartet.

²W. Greiner [65] betont, dass die Existenz des Spins keine Konsequenz einer relativistischen Theorie ist, sondern vielmehr eine Folge der Linearisierung der Wellengleichung. Auch eine nichtrelativistische Theorie (Lévy-Leblond-Gleichung) kann das richtige innere magnetische Moment des Spin-1/2-Teilchens vorhersagen. Dieser Umstand wurde erst verhältnismäßig spät erkannt [68], was die z.T. fehlerhafte Darstellung des Elektronenspins in einigen Lehrbüchern erklären könnte (beispielsweise in [69]).

3.3 Rechenmethoden

Die Diracgleichung kann ein Spin-1/2-Teilchen im elektrostatischen Feld beschreiben. Das elektrostatische Potential V = -Z/r geht als zusätzlicher Summand auf der rechten Seite von 3.17 ein. Bei der Lösung treten jedoch eine Reihe prinzipieller Probleme auf, welche im nichtrelativistischen Fall ausbleiben.

Der Diracoperator für das Wasserstoffatoms hat ein (beidseitiges) Kontinuum von Eigenwerten. Die Suche nach der tiefsten Energie und der assoziierten bestmöglichen Lösung (Variationsprinzip) macht in diesem Kontext keinen Sinn mehr. Für eine Matrixdarstellung des Diracoperators muss die Basis außerdem speziell gewählt sein (sog. *Kinetic-Balance-Condition*). Wie aus den Gleichungen 3.23 bis 3.25 ersichtlich ist, erzeugt der Operator $\sigma \hat{p}$ durch Differenzieren nach dem Ort aus den Lösungen in Gl. 3.20 Funktionen mit höheren Nebenquantenzahlen für die kleine Komponente. Wählt man die Basis ungünstig, beispielsweise ausschließlich s-Funktionen χ_{μ} für alle Spinorkomponenten $(\chi_{\mu},0,0,0)$, $(0,\chi_{\mu},0,0)$ u.s.f, so ist die Diracmatrix daher blockdiagonal

$$\begin{pmatrix} \langle \chi_{\mu} | \hat{V} | \chi_{\nu} \rangle + mc^{2} \mathbb{I} & 0 & 0 & 0 \\ 0 & \langle \chi_{\mu} | \hat{V} | \chi_{\nu} \rangle + mc^{2} \mathbb{I} & 0 & 0 \\ 0 & 0 & \langle \chi_{\mu} | \hat{V} | \chi_{\nu} \rangle - mc^{2} \mathbb{I} & 0 \\ 0 & 0 & 0 & \langle \chi_{\mu} | \hat{V} | \chi_{\nu} \rangle - mc^{2} \mathbb{I} \end{pmatrix}$$

$$(3.36)$$

und die Eigenwerte konvergieren nicht bei Basissatzvergrößerung. Um dennoch ein brauchbares Verfahren zu erhalten, nähert man den Ausdruck 3.23 und erhält

$$\chi_0 \approx \frac{(\mathbf{\sigma} \cdot \vec{p})}{2m_0 c} \phi_0 \tag{3.37}$$

für die *Kinetic-Bbalance-Condition*. Beispielsweise wählen Stanton und Havriliak [67]

$$\phi = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot e^{-\alpha r^2}, \qquad \chi = \begin{pmatrix} z \\ x + iy \end{pmatrix} \cdot e^{-\alpha r^2}$$
 (3.38)

als Basisfunktionen für die große bzw. kleine Komponente. Ein Vergleich mit 3.24 und 3.25 zeigt deren Beziehung auf. Eine Näherung für einen relativistischen Vielteilchenoperator ist der Dirac-Coulomb-Operator. Die Einteilchenoperatoren sind gegeben durch die Diracoperatoren während die Zweiteilchenwechselwirkung nichtrelativistisch durch den $1/r_{ij}$ -Term beschrieben wird:

$$\hat{H}_{DC} = \sum_{i}^{N} \hat{H}_{D} + \sum_{i < j} \frac{1}{r_{ij}}.$$
(3.39)

Im Mehrelektronenfall kommt eine weitere Komplikation hinzu, der sog. Brown-Ravenhall Effekt [70]: Da das Eigenwertspektrum beidseitig kontinuierlich ist, kann man zu jedem gebundenen elektronischen Zustand unendlich viele ungebundene Zustände konstruieren, welche zu dem gebundenen elektronischen Zustand

entartet sind. Bei der Korrelationsbehandlung im Anschluss an eine Dirac-Fock-Rechnung kann der betrachtete gebundene Zustand mit den Kontinuumszuständen mischen. Die Molekülorbitale negativer Energie werden daher für die Korrelationsbehandlung ausprojeziert. Vierkomponentige quantenchemische Berechnungen mit dem Dirac-Fock-Operator sind wesentlich rechenintensiver als die ohnehin schon als komplex anzusehenden nichtrelativistischen Hartree-Fock-Rechnungen. Die Basis muss im Vergleich etwa 4-fach größer gewählt werden und man muss mit einer komplexwertigen Wellenfunktion arbeiten. Ohne sog. *Screening*-Prozeduren ist die Dirac-Fock-Rechnung für Moleküle circa 100-mal teurer [71], was zu der Entwicklung verschiedener Näherungen führte [72, 73].

3.3.1 Direkte Störungstheorie

Es ist es zweckmäßig, mit der sog. modifizierten Dirac-Gleichung zu arbeiten. Dazu subtrahiert man mc^2 von den Energieeigenwerten. Der positronische Ast des Spektrums verschwindet dann für den Grenzfall $(c \to \infty)$ ins negativ Unendliche während die elektronischen Zustände konvergieren und sich wie im Fall der Schrödingergleichung verhalten³.

$$\begin{pmatrix} V & c\sigma\vec{p} \\ c\sigma\vec{p} & V - 2mc^2 \end{pmatrix} \begin{pmatrix} \phi \\ \chi \end{pmatrix} = E \begin{pmatrix} \phi \\ \chi \end{pmatrix}$$
 (3.40)

Im Formalismus der direkten Störungstheorie [74, 75] identifiziert man die bereits kurz erwähnte Lévy-Leblond-Gleichung als den korrekten nicht-relativistischen Grenzfall einer relativistischen Theorie (und eben nicht die Schrödingergleichung). Ausgehend von der modifizierten Dirac-Gleichung 3.40 erhält man durch skalieren der unteren Komponente gemäß

$$\begin{pmatrix} \phi \\ \tilde{\chi} \end{pmatrix} = \begin{pmatrix} \phi \\ c\chi \end{pmatrix} \tag{3.41}$$

die Dirac-Gleichung in einer neuen Metrik [76]

$$\begin{pmatrix} V & \sigma \vec{p} \\ \sigma \vec{p} & V c^{-2} - 2m \end{pmatrix} \begin{pmatrix} \phi \\ \tilde{\chi} \end{pmatrix} = E S \psi = \begin{pmatrix} 1 & 0 \\ 0 & c^{-2} \end{pmatrix} \begin{pmatrix} \phi \\ \tilde{\chi} \end{pmatrix}$$
(3.42)

beziehungsweise

$$\left[D^{(0)} + c^{-2}D^{(2)}\right] \Psi = E\left[S^{(0)} + c^{-2}S^{(2)}\right] \Psi \tag{3.43}$$

mit den Definitionen

$$D^{(0)} = \begin{pmatrix} V & \sigma \vec{p} \\ \sigma \vec{p} & -2m \end{pmatrix}, \quad D^{(2)} = \begin{pmatrix} 0 & 0 \\ 0 & V \end{pmatrix}$$

$$S^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad S^{(2)} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

$$(3.44)$$

³Ohne diesen Kunstgriff dehnt sich die Zone zwischen den negativen und positiven Energieeigenwerten immer weiter aus für $(c \to \infty)$.

Für ψ und E werden ebenfalls Potenzreihen angenommen

$$E = E^{(0)} + \frac{1}{c^2}E^{(2)} + \dots, \quad \Psi = \Psi^{(0)} + \frac{1}{c^2}\Psi^{(2)} + \dots$$
 (3.45)

Der nichtrelativistische Grenzfall ($c \to \infty$) von Gl. 3.43 ist die Lévy-Leblond-Gleichung und entspricht der nullten Ordnung einer Entwicklung in c^{-2} :

$$D^{(0)}\Psi^{(0)} = E^{(0)}S^{(0)}\Psi^{(0)}. (3.46)$$

Ohne externes Magnetfeld kann man die Schrödingergleichung als Spezialfall aus 3.46 herleiten [76]:

$$V \phi^{(0)} + \sigma \vec{p} \tilde{\chi}^{(0)} = E^{(0)} \phi^{(0)}$$

$$\sigma \vec{p} \phi^{(0)} - 2m \tilde{\chi}^{(0)} = 0$$
(3.47)

woraus die Schrödingergleichung

$$V\phi^{(0)} + \frac{1}{2m}\vec{p}^2\phi^{(0)} = E^{(0)}\phi^{(0)}$$
(3.48)

durch Substitution (vgl. 3.19-3.23) folgt. Für die Eigenwerte der Lévy-Leblond-Gleichung gilt ein Variationsprinzip, wenn man die Lösungen von $D^{(0)}$ auf den Lösungsraum

$$\psi^{(0)} = \begin{pmatrix} \phi^{(0)} \\ \sigma \vec{p} \phi^{(0)} / 2m \end{pmatrix}$$
(3.49)

beschränkt (vgl. 3.37). Für die Energiekorrektur der zweiten Ordnung findet man (ebd.)

$$\hat{H}^{(2)} = \langle \tilde{\chi}^{(0)} | V - E^{(0)} | \tilde{\chi}^{(0)} \rangle$$

$$= \frac{1}{4m^2c^2} \langle \phi^{(0)} | \sigma \vec{p} (V - E^{(0)}) \sigma \vec{p} | \phi^{(0)} \rangle$$
(3.50)

wobei die letzte Identität nur in Verbindung mit 3.49 gilt. In diesem Fall lässt sich demnach die führende Ordnung der Energiekorrektur aus der Lösung $\phi^{(0)}$ der Schrödingergleichung berechnen. Der Operator lässt sich mit der Pauli-Identität aufspalten

$$\sigma \vec{p}(V-E)\sigma \vec{p} = \vec{p}(V-E)\vec{p} + i\sigma(\vec{p}V \times \vec{p})$$

$$= -\nabla(V-E)\nabla + \sigma(\nabla V) \times \vec{p}$$

$$= -\nabla(V-E)\nabla + \frac{Z}{r^3}\sigma \cdot \vec{l}$$
(3.51)

in einen skalar-relativistischen Anteil und einen Spin-Bahn Anteil. In Matrixform ist der Spin-Bahn Anteil die Darstellung von $\vec{l}\sigma$ und enthält auch Einträge ungleich Null für Integrale über Funktionen unterschiedlichen Spins. Das erklärt beispielsweise die Feinstrukturaufspaltung des 2p-Niveaus im Wasserstoffatom [69].

Die einzelnen Beiträge lassen sich noch etwas genauer analysieren, wenn man annimmt, dass $\phi^{(0)}$ die Schrödingergleichung exakt löst. Dann gilt

$$\hat{H}^{(0)}\phi^{(0)} = E^{(0)}\phi^{(0)} = \vec{p}^2(2m)^{-1}\phi^{(0)} + V\phi^{(0)}$$
(3.52)

und der Ausdruck in 3.50 vereinfacht sich zu⁴

$$\begin{split} &\frac{1}{4m^2c^2}\langle\phi^{(0)}|\,\sigma\vec{p}(V-E^{(0)})\sigma\vec{p}\,|\phi^{(0)}\rangle = \\ &-\frac{1}{8m^3c^2}\langle\phi^{(0)}|\,\vec{p}^4\,|\phi^{(0)}\rangle \qquad \text{Masse-Geschwindigkeits-Term} \\ &+\frac{\pi Z}{2m^2c^2}\langle\phi^{(0)}|\,\delta(\vec{r})\,|\phi^{(0)}\rangle \qquad \text{Darwin-Term} \\ &+\frac{Z}{2m^2c^2r^3}\langle\phi^{(0)}|\,\vec{l}\,\vec{s}\,|\phi^{(0)}\rangle \qquad \text{Spin-Orbit-Term} \end{split} \tag{3.53}$$

Der Masse-Geschwindigkeits-Term ist die Energiekorrektur erster Ordnung aufgrund der relativistischen Masse-Geschwindigkeits-Beziehung. Wenngleich in der Diracgleichung die Wechselwirkung zwischen dem Elektron und dem Kern lokal ist, so erscheint in obiger Näherung der sog. Darwin-Term, welcher eine nichtlokale Wechselwirkung des Elektrons mit dem Kern beschreibt. Die Beträge des Darwin-Terms erscheinen ausschließlich für s-Elektronen [69]. Der Spin-Bahn-Term beschreibt die Wechselwirkung des intrinsischen Momentes des Elektrons mit dem Magnetfeld, welches im Bezugssystem des Elektrons durch die Bewegung des Kerns erzeugt wird. Alle drei Beiträge sind von der Größenordnung α^2 , wenn α die Feinstrukturkonstante ist (ebd.). Addiert man noch die kinetische und potentielle Energie zu Gl. 3.53, so erhält man den sog. Pauli-Operator. Dadurch, dass das Spektrum des Pauli-Operators nicht nach unten beschränkt ist, ist er für den Einsatz in quantenchemischen Berechnungen eher ungeeignet. Selbst für das freie Teilchen können die Energieeigenwerte beliebig weit ins Negative reichen. Die Energiekorrekturen in höherer Ordnung von Gl. 3.50 sind bekannt und können (nach dem Überwinden einiger praktischer Hürden) ebenfalls berechnet werden [75].

3.3.2 Foldy-Wouthuysen-Darstellung

Wie bereits erwähnt, werden im nichtrelativistischen Grenzfall der Dirac-Theorie für positive Energien die oberen Komponenten der Spinoren groß gegenüber den unteren (und umgekehrt). Bei der Foldy-Wouthuysen-Darstellung [78] wählt man eine unitäre Transformation

$$\hat{U}_n = \exp\left(\hat{W}_n\right), \quad \hat{W}_n = \begin{pmatrix} 0 & w_n \\ -w_k^{\dagger} & 0 \end{pmatrix}$$
 (3.54)

dergestalt, dass die Wellenfunktion bei gegebenem Vorzeichen der Energie auch für große Geschwindigkeiten vollständig durch zwei Komponenten bestimmt ist.

⁴Wobei die Poissongleichung $\nabla^2 r^{-1} = -4\pi\delta(\vec{r})$ benutzt wurde. Für Details zu der nur augenscheinlich unproblematischen Umformung siehe [77].

Formal entspricht das einer Blockdiagonalisierung des Diracoperators

$$\hat{H}_D = \begin{pmatrix} V + mc^2 & c \,\sigma \vec{p} \\ c \,\sigma \vec{p} & V - mc^2 \end{pmatrix} \tag{3.55}$$

gemäß

$$U\hat{H}_D U^{\dagger} = \begin{pmatrix} h_+ & 0\\ 0 & h_- \end{pmatrix} \tag{3.56}$$

so dass die Eigenwerte von h_+ den positiven Energieeigenwerten der Diracoperators entsprechen. Im allgemeinen Fall lässt sich die Blockgestalt lediglich durch sukzessive Transformationen immer besser approximieren:

$$\hat{H}_{D}^{(n)} = \exp(\hat{W}_{n}) \dots \exp(\hat{W}_{2}) \exp(\hat{W}_{1}) \hat{H}_{D} \exp(-\hat{W}_{1}) \exp(-\hat{W}_{2}) \dots \exp(-\hat{W}_{n}).$$
(3.57)

Für die erste Transformation erhält man:

$$\hat{H}_D^{(1)} = \exp(\hat{W}_1)\hat{H}_D \exp(-\hat{W}_1) = \hat{H}_D + \left[\hat{W}_1, \hat{H}_D\right] + \frac{1}{2}\left[\hat{W}_1, \left[\hat{W}_1, \hat{H}_D\right]\right] + \dots (3.58)$$

Ziel ist es, den ungeraden Anteil von \hat{H}_D

$$\hat{H}_D = \begin{pmatrix} mc^2 & 0 \\ 0 & -mc^2 \end{pmatrix} + \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix} + \begin{pmatrix} 0 & c \,\sigma\vec{p} \\ c \,\sigma\vec{p} & 0 \end{pmatrix}$$

$$= \hat{E}_{-2} + \hat{E}_0 + \hat{O}_{-1} \tag{3.59}$$

also \hat{O}_{-1} , immer kleiner werden zu lassen, wobei der tiefgestellte Index die Potenz von 1/c kennzeichnet. Man wählt

$$[\hat{W}_1, \hat{E}_{-2}] + \hat{O}_{-1} = 0 \qquad \Rightarrow w_1 = \frac{1}{2mc} \sigma \vec{p}.$$
 (3.60)

Damit sind die geraden Terme von 3.58

$$\hat{E}_{-2} + \hat{E}_0 + \left[\hat{W}_1, \hat{O}_1\right] + \frac{1}{2} \left[\hat{W}_1, \left[\hat{W}_1, \hat{E}_2\right]\right] + \mathcal{O}(c^{-2}) \tag{3.61}$$

insbesondere aber erhält man für die ungeraden Terme

$$[\hat{W}_1, \hat{E}_2] + \hat{O}_{-1} + O(c^{-1}) = O(c^{-1})$$
(3.62)

d.h., der führende (Kopplungs-)Term auf der Außerdiagonalen ist nur noch von der Ordnung $O(c^{-1})$. Der transformierte Operator ist von der Form

$$\hat{H}_D^{(1)} = \hat{E}_{-2} + \hat{E}_0^{(1)} + \hat{E}_2^{(1)} + \dots + \hat{O}_1^{(1)} + \hat{O}_3^{(1)} + \dots$$
(3.63)

mit

$$\hat{E}_{0}^{(1)} = \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix} + [\hat{W}_{1}, \hat{O}_{-1}]$$

$$\hat{O}_{1}^{(1)} = [\hat{W}_{1}, \hat{E}_{0}] + \frac{1}{2} [\hat{W}_{1}, [\hat{W}_{1}, \hat{O}_{-1}]]. \tag{3.64}$$

Der nächste Transformationsschritt eliminiert dann die Terme $O(c^{-1})$ von der Außerdiagonalen. Dazu bildet man

$$\hat{H}_D^{(3)} = \exp(\hat{W}_3)\hat{H}_D^{(1)}\exp(-\hat{W}_3)$$
(3.65)

und wählt entsprechend

$$\left[\hat{W}_{3}, \hat{E}_{-2}^{(1)}\right] + \hat{O}_{1}^{(1)} = 0. \tag{3.66}$$

Die Außerdiagonale ist dann von der Ordnung $O(c^{-3})$, während der gerade Teil von $\hat{H}_D^{(3)}$ sich nur um Terme der Ordnung $O(c^{-4})$ unterscheidet.

Die Terme bis einschließlich $\mathcal{O}(c^{-2})$ von 3.63 bilden im übrigen wieder den Pauli-Operator 3.53. Aus praktischen Gründen bleibt die Transformation zwangsläufig immer unvollständig (von einigen Spezialfällen abgesehen). Wie bereits der Pauli-Operator, so ist auch der Foldy-Wouthuysen-transformierte Hamiltonoperator unbrauchbar für quantenchemische Berechnungen [79]. Die Reihenentwicklung der relativistischen kinetischen Energie

$$T = mc^2 \sqrt{(p/mc)^2 + 1} (3.67)$$

in c^{-2} muss zwangsläufig in Kernnähe scheitern, da hier p/mc > 1 und die Reihenentwicklung jenseits des sog. Konvergenzradius angewendet wird (ebd.).

3.3.3 Douglas-Kroll-Darstellung

Die Douglas-Kroll-Transformation [80, 81] führt zu einer variationell stabilen Darstellung des Dirac-Operators ohne singuläre Terme. Dabei entwickelt man im Gegensatz zur Foldy-Wouthuysen-Transformation nach Potenzen des externen Potentials, d.h. für Atome in Potenzen der Kernladung Z. Der Operator nullter Ordnung (Z=0) ist hierbei der relativistische Operator für das freie Teilchen. Im Falle des freien Teilchens sind alle Eigenwerte und Eigenfunktionen bekannt

$$\hat{h}_{+} \exp(i\vec{k}\vec{r}) = \sqrt{m^2c^4 + c^2k^2} \exp(i\vec{k}\vec{r})$$
 (3.68)

und man kann eine exakte Foldy-Wouthuysen-Transformationsvorschrift *U* formulieren, welche den Dirac-Operator für das freie Teilchen diagonalisiert [63, 81]:

$$\hat{U}_0 = \begin{pmatrix} \hat{A} & \hat{A}\hat{R} \\ -\hat{A}\hat{R} & \hat{A} \end{pmatrix} \tag{3.69}$$

mit

$$\hat{R} = \frac{c\sigma\vec{p}}{\hat{E}_0 + mc^2}$$

$$\hat{A} = \sqrt{\frac{\hat{E}_0 + mc^2}{2\hat{E}_0}}$$

$$\hat{E}_0 \exp(i\vec{k}\vec{r}) = \sqrt{m^2c^4 + c^2k^2} \exp(i\vec{k}\vec{r})$$
(3.70)

so daß

$$\hat{U}_0 \begin{pmatrix} mc^2 & c \, \sigma \vec{p} \\ c \, \sigma \vec{p} & -mc^2 \end{pmatrix} \hat{U}_0^{\dagger} = \begin{pmatrix} \hat{E}_0 & 0 \\ 0 & -\hat{E}_0 \end{pmatrix}. \tag{3.71}$$

Der Trick der Douglas-Kroll-Transformation besteht darin, auch den Dirac-Operator mit Kernpotential 3.55 gemäß der Transformationsvorschrift für das freie Teilchen zu transformieren:

$$\hat{U}_0 \begin{pmatrix} V & 0 \\ 0 & V \end{pmatrix} \hat{U}_0^{\dagger} = \begin{pmatrix} \hat{E}_1 & \hat{O}_1 \\ \hat{O}_1^{\dagger} & \hat{E}_1 \end{pmatrix}, \tag{3.72}$$

mit

$$\hat{E}_1 = \hat{A}(V + \hat{R}\hat{V}\hat{R})\hat{A}$$

$$\hat{O}_1 = \hat{A}[\hat{R}, \hat{A}]\hat{A}$$
(3.73)

wobei die unteren Indizes die Ordnung von Z beschreiben. Der transformierte Dirac-Operator $\hat{H}_D^{(1)}$ im externen Potential ist dann die Summe von 3.71 und 3.73. Dieser ist wird durch die Transformation nicht blockdiagonal. Es zeigt sich aber [80, 81], dass der so transformierte Operator Ausgangspunkt für die Entwicklung eines günstigen, d.h. nicht singulären Operators ist. Die sich anschließenden Transformationsschritte verlaufen analog der Foldy-Wouthuysen-Transformation. Die ungeraden Terme in 3.73 sind linear in Z, d.h. man transformiert im ersten Schritt [80]

$$\hat{H}_D^{(2)} = \hat{U}_1 \hat{H}_D^{(1)} \hat{U}_1^{\dagger} \tag{3.74}$$

und wählt

$$\hat{U}_1 = \exp(\hat{W}_n), \quad [\hat{W}_n, \hat{E}_0] + \hat{O} = 0.$$
 (3.75)

Die ungeraden Terme sind jetzt von der Ordnung Z^2 , bzw. das Potential von der Ordnung V^2 . Durch sukzessive Transformationen kann das Energiespektrum immer weiter separiert werden (ebd.).

Die Douglas-Kroll-Darstellung begründet das heute wahrscheinlich erfolgreichste 2-Komponenten-Rechenverfahren [81]. Dabei ist der tatsächliche Durchbruch der Douglas-Kroll-Darstellung, nämlich die effiziente Implementierung, auf die Arbeiten von Hess [81, 82, 83] zurückzuführen, weshalb man von der Douglas-Kroll-Hess-Methode spricht. Die Implementierung nach Hess setzt voraus, dass die Basisfunktionen ω_i Eigenfunktionen von \hat{E}_0 sind:

$$\hat{E}_0 \omega_i = \sqrt{m^2 c^4 + c^2 k_i^2} \omega_i = \varepsilon_i \omega_i. \tag{3.76}$$

Dann sind

$$\hat{A}\omega_{i} = \sqrt{\frac{\varepsilon_{i} + mc^{2}}{2\varepsilon_{i}}}\omega_{i}$$

$$\hat{R}\omega_{i} = \frac{c}{\varepsilon_{i} + mc^{2}}\sigma\vec{p}\omega_{i}$$
(3.77)

und man kann die Matrixelemente von \hat{E}_0 , $\hat{A}V\hat{A}$ und $\hat{A}\hat{R}V\hat{R}\hat{A}$ über ω_i einfach angeben. Rechnet man in einer Basis aus Gaussfunktionen, so diagonalisiert man \vec{p}^2 und arbeitet mit näherungsweisen Eigenfunktionen von \vec{p}^2 .

3.3.4 Reguläre Entwicklungen

Ähnlich wie bei der direkten Störungstheorie wurde auch die *Zero-Order Regular Approximation* (ZORA) bzw. der Chang-Pélissier-Durand (CPD-) Operator gleich mehrmals formuliert [84, 85, 86, 87, 88]. Auflösen der modifizierten Diracgleichung 3.40 nach der kleinen Komponente χ (vgl. 3.23) und anschließende Substitution (Eliminierung der kleinen Komponente) liefert

$$\chi = \frac{c\sigma\vec{p}}{2mc^2 - V + E} \tag{3.78}$$

bzw.

$$\left(V + c^2 \sigma \vec{p} \frac{1}{2mc^2 - V + E} \sigma \vec{p}\right) \phi = E \phi. \tag{3.79}$$

Der Operator 3.79 kann noch etwas umgeformt werden

$$\hat{H}_{WB} = \frac{1}{2}\sigma\vec{p} \left(1 + \frac{E - V}{2mc^2} \right)^{-1}\sigma\vec{p}$$
 (3.80)

zum sog. Wood-Boring-Operator [90, 89]. Der Operator enthält eine explizite Abhängigkeit von der Energie, was seinen praktischen Nutzen stark einschränkt. Die Implementierung des Wood-Boring-Operators (Gl.3.80) bleibt numerischen Hartree-Fock Programmen vorbehalten. Üblicherweise wird die j-abhängige Spin-Bahn-Wechselwirkung nicht berücksichtigt und man kann ohne das relativistische (Drehimpuls-) Kopplungsschema arbeiten. Die Spin-Bahn-Wechselwirkung kann im Anschluss noch störungstheoretisch behandelt werden. Insbesondere wurden die in dieser Arbeit berechneten Referenzdaten zur Pseudopotentialjustierung mit dem Wood-Boring-Operator berechnet. Aufgrund der Austauschwechselwirkung ist es nicht möglich, ein Potential V mit $V = V(\vec{r})$ zu formulieren. Die Austauschwechselwirkung wird daher in dieser Arbeit durch Slaters lokale Näherung (zzgl. der Perdew-Zunger Korrektur für die Selbstwechselwirkung) beschrieben [91, 92]. Der Wood-Boring-Operator 3.80 wird in der Literatur eigentlich nicht als regularisierter Operator bezeichnet. Es erscheint jedoch zweckmäßig, ihn an dieser Stelle zu

behandeln, denn das Ziel der folgenden Bemühungen ist es, die Energieabhängigkeit zu eliminieren. Formt man 3.78 wie folgt um

$$\chi = \frac{c\sigma\vec{p}}{2mc^2 - V + E} = \frac{\sigma\vec{p}}{2mc} \left[\frac{1}{1 - \left(\frac{V - E}{2mc^2}\right)} \right]$$
(3.81)

und benutzt die asymptotische Näherung

$$\frac{1}{1-w} = \sum_{n=0}^{\infty} w^n \quad \text{für} \quad w < 1$$
 (3.82)

so resultiert, wie im Falle der Foldy-Wouthuysen-Darstellung, ein unbrauchbarer Operator, da in hinreichender Kernnähe stets $|V| \gg 2mc^2$ gilt [86]. Stattdessen formt man 3.78 erneut um [85, 86, 87, 88]:

$$\chi = \frac{c\sigma\vec{p}}{2mc^2 - V + E} = \frac{c\sigma\vec{p}}{2mc^2 - V} \left(1 + \frac{E}{2mc^2 - V} \right)$$
(3.83)

und erhält, da $2mc^2 - V \ll E$, eine reguläre Entwicklung. Die nullte Ordnung liefert den ZORA/CPD-Operator:

$$\left(V + \sigma \vec{p} \frac{c^2}{2mc^2 - V} \sigma \vec{p}\right) \phi = E \phi \tag{3.84}$$

Die ZORA/CPD-Gleichung sowie höhere Ordnungen (*First-Order Regular Approximation* - FORA) können auch im Formalismus der direkten Störungstheorie hergeleitet werden [88].

Kapitel 4

Pseudopotentiale für QMC-Rechnungen

4.1 Existierende Pseudopotentiale für QMC

Die Idee, Pseudopotentiale speziell auf die Bedürfnisse der QMC-Rechnungen anzupassen, ist nicht neu und entsprechende Arbeiten sind von zwei Arbeitsgruppen unabhängig publiziert worden [5, 6] bzw. [7, 8]. In beiden Fällen handelt es sich um nichtdivergierende HF-Pseudopotentiale. Die Autoren berichten in beiden Fällen, dass HF-Pseudopotentiale zuverlässigere Ergebnisse in QMC-Rechnungen erzielen als DFT-Pseudopotentiale. Dieses Resultat ist empirischer Natur, deckt sich aber auch mit den Erfahrungen von C. Filippi [93]. Die erwähnten Arbeiten stehen in unmittelbarer Konkurrenz zu der vorliegenden Arbeit und sollen daher kurz beschrieben werden.

4.1.1 Pseudopotentiale von Greef, Lester, Ovcharenko et al.

Die Konstruktion dieses nichtsingulären HF-Pseudopotentials wurde 1998 vorgeschlagen [5] und vorerst nur für das Kohlenstoffatom demonstriert. 2001 wurden Pseudopotentiale für Beryllium bis Neon und Aluminium bis Argon präsentiert [6]. Weitere Elemente sind seitdem nicht mehr hinzu gekommen. Die verfügbaren Potentiale decken also nur einen sehr kleinen Teil des Periodensystems ab. Die Potentiale sind nichtrelativistisch. Für schwerere Elemente wäre die Berücksichtigung relativistischer Effekte wünschenswert. Das Konstruktionsschema wurde von den SBK-Pseudopotentialen übernommen [39]. Die SBK-Potentiale zählen, wie bereits in Abschnitt 2.3.2 erwähnt, zu den formkonsistenten Pseudopotentialen. Diese werden durch einen direkten Fit eines analytisch formulierten Potentials an die Orbitalenergien und die Form der Pseudoorbitale konstruiert. Der lokale Teil der nichtsingulären Potentiale wird ähnlich formuliert wie in dieser Arbeit. Allerdings können Greef, Lester, Ovcharenko *et al.* keine nichtlinearen Nebenbedingungen

behandeln und wählen $\beta=\alpha$ in Gl. 2.64, was weniger Flexibilität bedeutet. Die HF-Rechnungen der Atome und der Pseudoatome werden mit "konventionellen" Programmen in einer Einteilchenbasis aus 16 s- und 11 p-Gaussfunktionen durchgeführt. Die berechneten Orbitalenergien sind daher nicht besonders genau und die Justierung des Potentials an die Orbitalenergien erfolgt lediglich mit einer Genauigkeit von 10^{-3} Hartree.

Die Pseudopotentiale von Greef, Lester, Ovcharenko $et\ al.$ sind ausschließlich für den Teil der Wellenfunktion mit Winkelsymmetrie l=0 nichtlokal. Das heißt, die Potentiale haben auch für die Elemente der Siliziumreihe nur einen s-Projektor und keinen p-Projektor, obwohl Elektronen mit l=1 im Rumpf liegen. Valenzelektron mit l=1 und l>1 erfahren folglich kein differenziertes Potential, was zu sehr großen Fehlern der Potentiale Aluminium bis Argon führt. Vergleichende Testrechnungen sind in Abschnitt 4.3 aufgeführt.

Wie bereits erläutert, wird die Effizienz der DMC-Methode von der Qualität der Testwellenfunktion bestimmt. Das nichtsinguläre Potential sollte daher von einer optimierten Einteilchenbasis ergänzt werden. Für die Potentiale von Greef, Lester, Ovcharenko *et al.* sind keine Basissätze verfügbar, was den Wert der Pseudopotentiale einschränkt. Abschließend möchte ich die Nachteile noch einmal zusammenfassen:

- Kein p-Projektor für die Elemente der Siliziumreihe
- Nur wenige Elemente werden abgedeckt
- Keine optimierten Basissätze verfügbar
- Nichtrelativistische Theorie

4.1.2 Pseudopotentiale von Trail und Needs

Trail und Needs veröffentlichten 2005 sog. Dirac-Fock-AREPs, d.h. Dirac-Fock-Averaged Relativistic Effective Potentials [7, 8]. Die Konstruktion wurde von Ref. [38, 35] übernommen. Hierbei handelt es sich ebenfalls um formkonsistente Pseudopotentiale. Allerdings wird das Potential nicht durch einen direkten Fit gewonnen, sondern durch die in Abschnitt 2.3.2 beschriebene Inversionsprozedur. Man erhält das Potential daher zunächst auf einem Raster (grid). Die Potentiale berücksichtigen auch relativistische Effekte. Allerdings ist das relativistische jj-Kopplungsschema denkbar ungeeignet, da die Mehrheit der Quantenchemieprogramme mit dem nichtrelativistischen LS-Schema arbeitet. Die Potentiale zu verschiedenen Quantenzahlen l werden daher entsprechend der j-Entartung gewichtet und gemittelt [35] (daher die Bezeichnung averaged). Nebenbei ergibt das Verfahren die sog. Spin-Bahn-Operatoren, welche in nichtrelativistischen Programmen beispielsweise störungstheoretisch behandelt werden können.

Trail und Needs zeigen, dass es aufgrund der Austauschwechselwirkung zu einem langreichweitigen, nichtlokalen Potential kommen kann, sofern man die In-

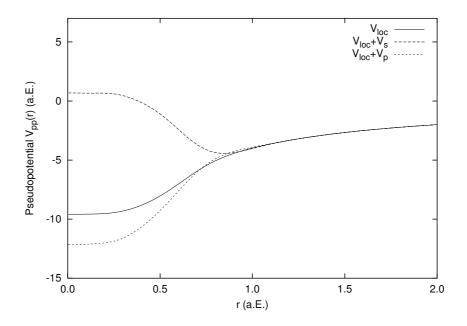


Abbildung 4.1: Das Kohlenstoffpseudopotential von Trail und Needs [7, 8]. Alle Werte sind in atomaren Einheiten (a.E.).

versionsmethode verwendet [7, 8]. Sie präsentieren daher eine Transformationsvorschrift, um den langreichweitigen, nichtlokalen Anteil zu entfernen. Die Autoren lassen allerdings völlig offen, inwiefern Pseudopotentialrechnungen davon profitieren könnten. Die Transformation wirkt außerdem der Normerhaltung [41] entgegen, welche sich als wichtiges Kriterium für die Transferabilität formkonsistenter Pseudopotentiale erwiesen hat (vgl. Abschnitt 2.3.2). Die Aufhebung der Coulombsingulariät geschieht allein durch den Faktor der ersten Gaussfunktion, d.h. der Parameter α in Gl. 2.64 wird ebenfalls optimiert. Das Potential ist dann linear für $r \rightarrow 0$ (vgl. Abschnitt 2.3.4).

Der Satz der publizierten Pseudopotentiale ist sehr umfangreich. Er umfasst die Hauptgruppenelemente außer Thallium bis Radon und die 3d-, 4d- und 5d-Übergangsmetalle. Aber auch für diese Pseudopotentiale sind keine Basissätze verfügbar. Für die Übergangsmetalle sind die größtmöglichen Rümpfe gewählt, d.h. die Elemente Scandium, Yttrium und Lutetium haben alle die effektive Kernladung $Z_{\rm eff}=3$. Diese Wahl ist, wie in Abschnitt 2.3.5 erläutert, sehr problematisch, da sich keine hinreichend gute räumliche Trennung der Rumpf- und Valenzelektronen für einen großen Rumpf ergibt. Selbst die Pseudopotentiale der Hauptgruppenelemente sind nur eingeschränkt brauchbar, da für Elemente schwerer als Zink ein d-Projektor im Potential vorhanden sein sollte. Die Problematik ist analog zu dem fehlenden p-Projektor für die Potentiale der Siliziumreihe von Greef, Lester, Ovcharenko *et al.* Wie bereits in Abschnitt 2.3.2 erwähnt, ist die Darstellung eines Pseudopotentials auf dem Raster in Gaussfunktionen eine numerisch fragile Prozedur [35, 39].

Erschwerend hinzu kommt die Besonderheit der von Trail und Needs gewählten Pseudopotentialkonstruktion nach Christiansen [35, 38]: Das Potential verläuft im Rumpfbereich nahezu konstant. Als Beispiel zeigt Abb. 4.1 das Trail und Needs Pseudopotential für Kohlenstoff. Dieses konstante Potential kann nur auf dem Raster problemlos behandelt werden. Denn die ohnehin schon schwierige Darstellung eines zusätzlich noch konstanten Potentials in einer dafür ungeeigneten Basis aus Gaussfunktionen führt zu numerisch bedenklichen Resultaten. Tabelle 4.1 zeigt die analytische Darstellung des in Abb. 4.1 geplotteten Potentials für Kohlenstoff. Das Potential ist als Summe von Gaussfunktionen

$$c \cdot r^n \cdot \exp\left(-b \cdot r^2\right) \tag{4.1}$$

dargestellt. Man erkennt, dass die Darstellung sehr lang ist und betragsmäßig große Koeffizienten und Exponenten enthält. Oftmals lassen sich Paare identifizieren, deren Beiträge sich nahezu aufheben, d.h. zwei Gaussfunktionen haben ähnlich große Exponenten und bis auf das Vorzeichen auch betragsmäßig ähnlich große Koeffizienten bei gleicher Potenz des Elektron-Kern-Abstandes r. Das Auftreten dieser Beiträge scheint eine Eigenart der gewählten Konstruktion nach Christiansen [35, 38] zu sein, welche das Potential im Rumpf nahezu konstant werden lässt. Die Christiansenpotentiale zeigen das gleiche unbefriedigende Fitverhalten. Man beachte, dass beispielsweise die Vanderbiltkonstruktion in Abschnitt 2.3.2 sich deutlich vernünftiger analytisch darstellen lässt. Abschließend fasse ich die Nachteile zusammen:

- Keine optimierten Basissätze verfügbar
- Kritische Wahl des großen Rumpfes für die Übergangsmetalle
- Kein d-Projektor für die Elemente schwerer als Zink
- Eine numerisch fragwürdige analytische Darstellung

Koeffizient c	Potenz n	Exponent b				
	$V_{ m loc}$					
4.00000000	-1	14.18038947				
-191045.80417457	0	9.98337117				
191036.22253941	0	12.48203153				
-5.44386315	1	7.90943462				
62.16542104	1	7.13014891				
44221.23987918	2	12.72575413				
146831.00815853	2	10.28807138				
286186.73250606	2	11.48850451				
	$V_{ m s}$					
-3750.11048539	0	9.50142741				
3760.37648333	0	5.56933451				
-282.45495330	1	15.38467668				
395.21455742	1	12.61293221				
-112.75960412	1	4.78267585				
10961.18997530	2	10.02732151				
-7322.83872921	2	6.38496423				
-18326.95925617	2	9.56239560				
	V					
60070 20245477	$V_{\rm p}$	0.60077500				
-69979.38345477	0	8.69277599				
69976.82776410	0	9.78057783				
-7317.21246438	1	7.36054009				
1187.74671018	1	9.35997886				
6129.46575421	1	6.97849340				
76379.77670179	2	9.23165085				
-269.92729934	2	5.85803103				
-11.14397361	2	95.35707275				

Tabelle 4.1: Analytische Darstellung des Kohlenstoffpseudopotentials von Trail und Needs [7, 8]. Das Potential ist als Summe von Gaussfunktionen $c \cdot r^n \cdot \exp(-b \cdot r^2)$ dargestellt. Alle Werte sind in atomaren Einheiten (a.E.).

4.2 Einfluss des Potentials auf die Varianz

Es erscheint zweckmäßig, zunächst den einfachsten Fall, d.h. das Wasserstoffatom, zu untersuchen. Das Pseudopotential für das Wasserstoffatom ersetzt überhaupt keine Rumpfelektronen sondern modifiziert ausschließlich das Kernpotential ohne Änderung der effektiven Kernladung. Da keine Elektronen im Rumpf ersetzt werden, ist das Potential vollständig lokal. Das nichtsinguläre Pseudopotential für das Wasserstoffatom hat die Form (vgl. Gl. 2.64)

$$V_{loc}(r) = -\frac{1}{r} + \frac{1}{r} \exp(-\alpha r^2)$$

$$+ \alpha r \exp(-\beta r^2) + \gamma \exp(-\delta r^2).$$
(4.2)

Die Tests wurden noch vor der Implementierung der DONLP2-Routine [46, 47, 48] durchgeführt, d.h. es konnten keine Nebenbedingungen berücksichtigt werden. Der Parameter β ist daher in Übereinstimmung mit Gl. 2.67 gemäß $\beta = \alpha/2$ fixiert. Der Parameter α wird vorgegeben und nicht optimiert, d.h. es werden nur die Parameter γ und δ justiert. Tabelle 4.2 zeigt die für α gewählten Werte und die Summe der Fehlerquadrate als Maß für die Qualität des resultierenden Pseudopotentials. Es ist klar, dass Gl. 4.2 für $\alpha \to \infty$ wieder zu einem singulären Potential führt, da die Korrekturterme immer kurzreichweitiger werden. Das Potential ist für $\alpha = 3,5,10$ in Abb. 4.2 dargestellt. Aus den Daten in Tabelle 4.2 erkennt man, dass für sehr kleine α das Fitresultat schlechter wird. Allerdings sind Werte kleiner 10^{-8} Hartree 2 für die Summe der Fehlerquadrate immer noch ein sehr gutes Resultat, wenn man die üblichen Fitresultate "echter" Pseudopotentiale betrachtet.

Die Sigmawerte in Tabelle 4.2 stammen aus VMC-Rechnungen der einzelnen Pseudopotentiale. Die Wellenfunktion wird jeweils mit dem GAMESS-Programm berechnet und die Einteilchenbasis ist mit 20 s-(Gauss-)Funktionen besonders groß und flexibel gewählt, um für alle Potentiale vergleichbar gute Wellenfunktionen zu gewährleisten. Die VMC-Resultate sind dabei ohne Elektron-Kern-Jastrowfaktoren ermittelt.

Das Verhalten von σ ist weniger einheitlich. Zwar ist der Trend zu größeren σ für größere α erkennbar, allerdings ist die Veränderung nicht monoton sondern unterliegt Schwankungen. Wichtig ist, dass sich die σ Werte für sinnvolle α nur langsam verändern: Während α sich von 3.0 auf 20 um fast eine Größenordnung ändert, beträgt die Änderung von σ zirka einen Faktor 3. Allerdings sind beliebig kleine σ

α	σ	$\sum (\Delta E)^2$
3.0	0.00114	0.25037438E-07
5.0	0.00247	0.21733609E-08
8.0	0.00183	0.20257967E-09
10.0	0.00131	0.99541350E-10
12.0	0.00175	0.82120581E-10
14.0	0.00246	0.61726164E-10
16.0	0.00300	0.65942600E-10
18.0	0.00317	0.64668989E-10
20.0	0.00312	0.28650672E-10

Tabelle 4.2: Abhängigkeit der Varianz und der Fitgenauigkeit von den Korrekturtermen für die Singularität am Beispiel des Wasserstoffpseudopotentials. Die Summe der Fehlerquadrate $\sum (\Delta E)^2$ ist ein Maß für die Qualität der Pseudopotentialjustierung. Die Bedeutung von σ ist in Abschnitt 2.3.6 erläutert. Alle Werte sind in atomaren Einheiten (a.E.).

und eine entsprechend effiziente QMC-Rechnung wertlos, wenn das Pseudopotential dafür zu ungenau wird. Für die Potentiale dieser Arbeit werden daher generell alle Parameter (unter den Nebenbedingungen) für die Optimierung frei gegeben, um in erster Linie die Genauigkeit zu optimieren.

Die Energien der Allelektronenrechnungen und der Pseudopotentialrechnungen sind auf $\epsilon=10^{-10}$ Hartree konvergiert. Eine einfache, numerische, symmetrische Ableitung, wie sie die DONLP2-Routine berechnet, hat dann eine ausreichende Genauigkeit von etwa $\epsilon^{2/3}\approx 10^{-7}$ Hartree.

Die somit bestimmten Werte für α liegen alle in vernünftigen Größenordnungen: Für Kohlenstoff ergibt sich $\alpha=8.4$ und für das wesentlich weichere Silizium ein $\alpha=1.8$. Aus den Tests am Wasserstoffatom kann man schließen, dass die Varianz auch in diesen Fällen nur mäßig von α abhängen wird.

Für das Kohlenstoffpseudopotential habe ich die Vorhersage überprüft und jeweils ein Potential mit $\alpha=5.0$, $\alpha=10.0$ und $\alpha=15.0$ justiert und im VMC getestet. Für den Determinantenteil der Testwellenfunktion wird eine besonders flexible Einteil-

α	σ	σ opt.	$\sum (\Delta E)^2$
5.0	0.40385	0.21784	0.11102537E-05
10.0	0.40083	0.21835	0.78806346E-06
15.0	0.40007	0.21301	0.75574534E-06

Tabelle 4.3: Abhängigkeit der Varianz und der Fitgenauigkeit von den Korrekturtermen für die Singularität am Beispiel des Kohlenstoffpseudopotentials. Die Einträge für σ opt. sind für VMC-Rechnungen mit Jastrow-Faktor. Die übrigen Bezeichnungen sind wie in Abb. 4.2. Alle Werte sind in atomaren Einheiten (a.E.).

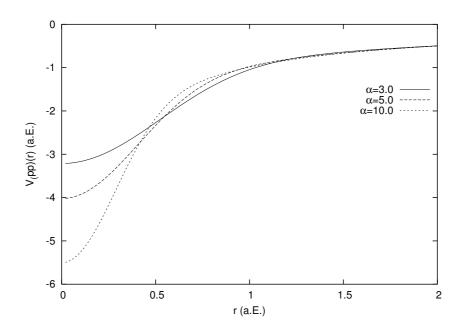


Abbildung 4.2: Pseudopotentiale für Wasserstoff mit $\alpha = 3, 5, 10$. Alle Werte sind in atomaren Einheiten (a.E.).

chenbasis aus 20 s- und 14 p-Funktionen gewählt und eine näherungsweise HF-Wellenfunktion mit dem GAMESS-Programm berechnet. Die Ergebnisse sind in Tabelle 4.3 zusammengefasst. Zusätzlich wird eine Rechnung mit einem optimierten Jastrowfaktor (vgl. 2.35) für das Kohlenstoffpseudoatom durchgeführt. Die entsprechenden Werte für Sigma sind mit σ opt. in Tabelle 4.3 gekennzeichnet. Für zu kleine α wird der Pseudopotentialfit schlechter. Die Sigmawerte hingegen bleiben von der Wahl des Parameters α unverändert. Das gilt sowohl für die Rechnungen mit wie ohne Jastrowfaktor.

4.3 Vergleichstestrechnungen der Hauptgruppenelemente

Die Pseudopotentialmethode kann zu signifikanten Einsparungen der Rechenressourcen führen. Allerdings handelt es sich um eine Näherung, welche einen systematischen Fehler in die Rechnung einbringt. Um so wichtiger ist es, die Pseudopotentiale bezüglich ihrer Genauigkeit und Transferabilität zu untersuchen. Dazu werden die atomaren Anregungsenergien auf HF-Niveau betrachtet und Moleküleigenschaften unter näherungsweiser Einbeziehung der Korrelation berechnet. Schließlich werden die QMC-spezifischen Sachverhalte der Effizienz und des Lokalisierungsfehlers getestet und diskutiert. Die Resultate werden mit denen der

konkurrierenden Pseudopotentiale verglichen. Für die Molekülrechnungen werden optimierte Einteilchenbasissätze benötigt, deren Konstruktion im folgenden Abschnitt beschrieben wird.

4.3.1 Valenzbasissätze

Die besondere Relevanz der optimierten Basissätze wurde schon mehrfach erwähnt. Eine optimierte Testwellenfunktion reduziert die Varianz, den Fixed-Node-Fehler und den Lokalisierungsfehler der Rechnung und erhöht folglich die Effizienz und die Genauigkeit der Methode. Pseudopotentiale ohne Basissätze sind im Nutzen stark eingeschränkt. Die Basissätze der Hauptgruppenelemente für die Pseudopotentiale dieser Arbeit werden in drei Schritten bestimmt. Zunächst wird ein ausgeglichener Satz von 7 bis 10 einzelner (sog. primitiver) Gaussfunktionen mit s- und p-Symmetrie erzeugt und die Exponenten auf Grundlage der CCSD(T)-Energie des Pseudoatoms optimiert. Die primitiven Gaussfunktionen werden im zweiten Schritt zu einer Gaussfunktion pro Drehimpulsquantenzahl auf Basis der Orbitalkoeffizienten der HF-Referenz kontrahiert. Alle VnZ (n=D,T,Q,5) Basissätze eines Elementes teilen sich die gleichen kontrahierten s- und p-Funktionen, um die insgesamt beanspruchte Rechenkapazität für die Basissatzentwicklung zu reduzieren. Für den dritten Schritt werden unkontrahierte, primitive Gaussfunktionen gemäß dem von Dunning et al. [94] vorgeschlagenen Schema korrelationskonsistenter Basissätze hinzugefügt und die Exponenten mit Rücksicht auf die CCSD(T)-Energie optimiert. Eine VDZ-Basis besteht aus dem Funktionensatz (2s2p1d). Die VTZ-, VQZ- und V5Z-Basissätze bestehen jeweils aus (3s3p2d1f)-, (4s4p3d2f1g)- und (5s5p4d3f2g1h)-Funktionen. Im Falle der Alkalimetalle existiert nur ein Valenzelektron und folglich kein Beitrag zur Korrelationsenergie. Die Basissätze der Alkalimetalle wurden anhand der CCSD(T)-Energie der jeweiligen Dimere im Grundzustand justiert. Ebenso wurden die Basissätze der Erdalkalimetalle justiert, welche andernfalls dazu tendieren, räumlich sehr kompakt zu werden. Für die Elemente der Kohlenstoff und Siliziumreihe sind VnZ Basissätze mit n=D,T,Q,5 bereitgestellt. Für die übrigen Elemente der Hauptgruppen sind VnZ Basissätze mit n=D,T verfügbar.

Die molekularen Vergleichstestrechnungen in Abschnitt 4.3.3 vergleichen auch die Potentiale dieser Arbeit mit den Potentialen von Trail und Needs. Da für Letztere aber keine Basissätze verfügbar sind, habe ich auch Basissätze der V5Z-Qualität für die Potentiale der Kohlenstoff- und Siliziumreihe von Trail und Needs entsprechend dem Schema justiert. Die Vergleichbarkeit der Resultate für die unterschiedlichen Potentiale wird durch die einheitlich generierten und äußerst flexiblen Basissätze der V5Z-Qualität zusätzlich erhöht. Für die CC-Rechnungen wurde das MOLPRO-Programmpaket verwendet [20].

Kohlenstoff-	TN	GLO	Diese
konfiguration			Arbeit
$2s^2 2p^2$	0.0000	0.0000	0.0000
$2s^1 2p^3$	0.0696	0.0393	0.0018
$2s^2 2p^1$	0.0127	0.0184	0.0039
$2s^1 2p^2$	0.0451	0.0266	-0.0005
$2s^2 2p^1 3d^1$	0.0127	0.0183	0.0040
$2s^2 3d^1$	0.0487	0.0438	0.0012
$2s^2 2p^1 3s^1$	0.0135	0.0180	-0.0106
$2s^1 \ 2p^2 \ 3d^1$	0.0449	0.0264	-0.0005
$2s^2 3d^2$	0.0486	0.0438	0.0012
$2s^2 4d^1$	0.0493	0.0445	-0.0001
$2s^2 2p^1 4d^1$	0.0127	0.0184	0.0040
$2s^2 2p^3$	-0.0049	0.0141	-0.0011
$2s^2$	0.0499	0.0451	-0.0012
m.a.A.	0.032	0.027	0.002

Tabelle 4.4: Fehler der HF-Anregungsenergien, Ionisierungspotentiale und Elektronenaffinitäten für verschiedene Kohlenstoffpseudopotentiale. Die Fehler sind bezogen auf die entsprechende skalarrelativistische Allelektronen-HF-Rechnung. TN bezeichnet das Pseudopotential von Trail und Needs, GLO bezeichnet das Pseudopotential von Greef, Lester, Ovcharenko *et al.* m.a.A. ist die mittlere absolute Abweichung. Alle Werte sind in Elektronenvolt (eV).

4.3.2 Atomare Testrechnungen

Atomare Anregungsenergien, Ionisierungspotentiale und Elektronenaffinitäten sind in der Literatur als Maß für die Qualität des Pseudopotentials gut etabliert [6, 7, 40, 42, 95]. Da die energiekonsistenten Pseudopotentiale aber dementsprechend justiert sind, diese Eigenschaften zu reproduzieren, sind energiekonsistente Pseudopotentiale bei diesen Tests im Vorteil und der Vergleich mit formkonsistenten Potentialen ist nicht ganz unbefangen. Tabelle 4.4 zeigt die Abweichungen einiger Anregungsenergien, Ionisierungspotentiale und Elektronenaffinitäten des neuen Pseudopotentials dieser Arbeit von den entsprechenden LS-zustandsgemittelten skalarrelativistischen Wood-Boring HF-Allelektronenenergien im Vergleich zu dem Potential von Trail und Needs und dem von Greef, Lester, Ovcharenko et al. für Kohlenstoff. Tabelle 4.5 zeigt den analogen Vergleich für das Siliziumatom. Alle HF-Rechnungen werden mit einem numerischen HF-Programm durchgeführt [45]. Wie zu erwarten, beschreibt das neue, energiekonsistente Pseudopotential das Allelektronensprektrum sowohl für Kohlenstoff als auch für Silizium am besten. Für Kohlenstoff beträgt die mittlere absolute Abweichung von der Allelektronenrechnung 0.002 eV und ist um eine Größenordnung kleiner als die der beiden anderen Pseudopotentiale. Für Silizium beträgt die mittlere absolute Abweichung 0.004 eV

Silizium-	TN	GLO	Diese	
konfiguration			Arbeit	
$3s^2 3p^2$	0.0000	0.0000	0.0000	
$3s^1 \ 3p^3$	0.0347	-0.0228	-0.0019	
$3s^2 3p^1$	0.0105	0.0122	0.0070	
$3s^1 3p^2$	0.0298	-0.0239	0.0037	
$3s^2 3p^1 3d^1$	0.0091	0.0354	0.0074	
$3s^2 3d^1$	-0.0024	0.4206	0.0012	
$3s^1 3p^1 3s^1$	0.0104	0.0097	-0.0055	
$3s^1 3p^2 3d^1$	0.0272	0.0115	0.0030	
$3s^2 3d^2$	-0.0032	0.3986	0.0026	
$3s^2 4d^1$	0.0051	0.2071	-0.0025	
$3s^2 3p^1 4d^1$	0.0097	0.0260	0.0072	
$3s^2 3p^3$	-0.0107	-0.0116	-0.0059	
$3s^2$	0.0088	0.0114	-0.0027	
m.a.A.	0.012	0.092	0.004	

Tabelle 4.5: Wie in Tabelle 4.4 nur für Silizium. Alle Werte sind in Elektronenvolt (eV).

während das Potential von Trail und Needs 0.012 eV mittlere absolute Abweichung zeigt. Das Siliziumpseudopotential von Greef, Lester, Ovcharenko et al. scheitert an einer guten Beschreibung aller atomarer Konfigurationen aufgrund des fehlenden p-Projektors. Aus diesem Grund werden die Potentiale von Greef, Lester, Ovcharenko et al. für die molekularen Testrechnungen nicht weiter berücksichtigt. Es sind daher auch keine Basissätze für die Potentiale von Greef, Lester, Ovcharenko et al. generiert. Es sei noch einmal betont, dass die Potentiale von Trail und Needs prinzipiell dasselbe Problem für die Elemente der 3. und 4. Reihe haben, da sie keinen d-Projektor zur Verfügung stellen. Eine analoge Analyse für Titan ergibt eine mittlere absolute Abweichung von 0.021 für das Potential von Trail und Needs während sich die Genauigkeit der neuen Potentiale fortsetzt mit nur 0.008 eV mittlere absolute Abweichung. Der Trend setzt sich noch deutlicher in der 4. Reihe für Zinn fort: Das Pseudopotential von Trail und Needs verschlechtert sich auf 0.044 eV mittlere absolute Abweichung und das neue Potential zeigt, wie für Germanium, nur 0.008 eV mittlere absolute Abweichung. Die maximale Abweichung unter allen energiekonsistenten Pseudopotentialen beträgt 0.043 eV für das zweifache Ionisierungspotential von Astat.

Die Abweichungen sind im übrigen nicht auf die spezielle Wahl der Hamiltonoperatoren zurückzuführen. Wie bereits erwähnt, weichen die J-gemittelten Dirac-HF-Werte der Anregungsenergien, Ionisierungspotentiale und Elektronenaffinitäten selbst für schwere Elemente wie Gold nur um einige hundertstel Elektronenvolt von den entsprechenden Wood-Boring-HF-Resultaten ab [44].

4.3.3 Molekulare Testrechnungen

Die Genauigkeit und die Transferabilität der Pseudopotentiale soll im Folgenden anhand molekularer Testrechnungen demonstriert werden. Dazu werden die 26 zweiatomigen Moleküle des bekannten G2-Testsatzes [96] herangezogen und die jeweilige Bindungslänge, die Schwingungsfrequenz in harmonischer Näherung und die Bindungsenergie D_e berechnet. Der G2-Testsatz enthält nur Elemente der Kohlenstoff- und Siliziumreihe zuzüglich Wasserstoff. Die Bindungslängen und die harmonischen Schwingungsfrequenzen sind auf MP2-Niveau berechnet. Für die Bindungsenergie D_e wird eine CCSD(T)-Rechnung für die auf MP2-Niveau relaxierte Verbindung durchgeführt. Die Bindungsenergie ergibt sich dann als Differenz der molekularen CCSD(T)-Energie und der Summe der CCSD(T)-Atomenergien. Die Ergebnisse der Pseudopotentialrechnung werden den entsprechenden Resultaten der valenzkorrelierten skalarrelativistischen DKH-Allelektronenrechnungen gegenübergestellt. Zusätzlich werden die Vorhersagen der neuen Potentiale mit denen der Trail- und Needs-Potentiale [7, 8] verglichen. Eine Testumgebung dieser Art kommt dem späteren Einsatz der Pseudopotentiale sicherlich näher als die atomaren Tests des letzten Abschnitts, denn schließlich möchte man mit den Potentialen chemische Fragestellungen an Molekülen unter Einbeziehung der Korrelation erörtern. Allerdings müssen die Moleküle der Testanordnung klein gewählt werden, um möglichst präzise Rechnungen zu ermöglichen. Eine bezüglich Umfang und Genauigkeit vergleichbare Untersuchung der Pseudopotentialmethode für die Hauptgruppenelemente ist mir nicht bekannt.

Für die Pseudopotentialrechnungen werden die in Abschnitt 4.3.1 vorgestellten Basissätze der V5Z-Qualität verwendet. Die sehr flexiblen Basissätze für die Pseudopotentiale (die eigenen und die von Trail und Needs) sind methodisch einheitlich generiert und für jedes Potential individuell optimiert worden, um ein Höchstmaß an Vergleichbarkeit zu gewährleisten. Für die Referenzallelektronenrechnungen wird die gut etablierte V5Z-Basis aus Ref. [97, 98, 99, 100, 101] in einer für den DKH-Hamiltonoperator neukontrahierten Form nach Ref. [102] gewählt. Sowohl für die Pseudopotentialrechnungen als auch für die Allelektronenrechnungen muss die Basis auf g-Funktionen inklusive als die höchste Drehimpulsquantenzahl aufgrund der Beschränkungen des GAUSSIAN-Programms [19] reduziert werden. Die Ergebnisse der MP2/V5Z Geometrieoptimierungen und Frequenzanalysen der 26 Moleküle sind in Tabelle 4.6 zusammengefasst. Die mittlere absolute Abweichung der Frequenzen von der Allelektronenreferenz beträgt 5 cm⁻¹ bzw. 10 cm⁻¹ für die Potentiale dieser Arbeit bzw. die Potentiale von Trail und Needs. Die größte Abweichung der Trail und Needs Pseudopotentiale beträgt 36.33 cm⁻¹ und wird für das LiF-Molekül beobachtet. Die größte Abweichung der neuen Potentiale wird ebenfalls für das LiF-Molekül beobachtet und beträgt 22.71 cm⁻¹. Die mittlere absolute Abweichung der Bindungsenergien der neuen Potentiale beträgt 0.5 kcal/mol. Das ist weniger als die Hälfte der mittleren absoluten Abweichung für die Potentiale von Trail und Needs. Der größte Fehler der neuen Potentiale beträgt 1.75 kcal/mol für SiO während die Potentiale von Trail und Needs einen

		dungslänge	Frequenz		$D_{ m e}$		
	($(\text{Å} \cdot 10^{-2})$	((cm^{-1})		(kcal/mol)	
Dimer	TN	Diese Arbeit	TN	Diese Arbeit	TN	Diese Arbeit	
LiH	2.84	-0.77	-30.10	-12.00	2.28	0.02	
BeH	-0.60	-0.50	1.70	2.85	-0.32	-0.09	
CH	0.08	-0.11	-10.6	-5.61	0.55	0.21	
NH	0.07	-0.04	-8.24	-5.91	0.62	0.40	
OH	0.08	-0.01	-7.54	-4.90	0.52	0.27	
HF	0.07	-0.01	-5.96	-4.31	0.48	0.15	
HCl	-0.22	-0.51	9.75	5.81	-0.61	-0.50	
Li ₂	1.55	-1.31	-6.09	-0.80	0.86	-0.33	
LiF	3.51	-3.59	-36.33	-22.71	4.60	-1.28	
CN	-0.04	-0.42	-27.04	-20.22	1.98	-0.52	
CO	0.12	-0.34	-12.27	-2.88	1.78	-0.94	
N_2	0.09	-0.24	-13.14	-6.77	1.96	-0.24	
NO	-0.01	-0.19	34.55	-8.05	2.01	0.28	
O_2	0.33	-0.01	-11.86	0.32	1.49	-0.06	
F_2	0.35	-0.08	-4.52	2.91	0.66	-0.18	
Na_2	-1.59	-1.43	-0.10	-0.51	-0.25	-0.18	
Si_2	-0.94	-1.22	4.77	1.77	-0.77	-0.64	
P_2	-0.97	-1.29	9.14	4.59	-0.83	-0.41	
S_2	-1.04	-1.45	7.38	5.41	-1.17	-0.92	
Cl_2	-0.75	-1.44	2.04	2.48	-0.45	-0.74	
NaCl	-2.60	-1.50	4.12	-2.14	-1.33	0.26	
SiO	-0.35	-0.97	6.88	-3.07	-2.05	-1.75	
CS	-0.32	-0.86	2.36	2.59	-0.22	-1.17	
SO	-0.75	-1.07	8.93	6.14	-1.14	-1.56	
ClO	-0.47	-1.45	5.03	7.40	-0.12	-1.09	
ClF	-0.27	-0.87	-0.31	0.30	0.29	-0.48	
m.a.A.	0.7	0.8	10	5	1.1	0.5	

Tabelle 4.6: Fehler der MP2/V5Z Bindungslängen, der MP2/V5Z Frequenzen und der CCSD(T)/V5Z Bindungsenergien der 26 Dimere für die Potentiale von Trail und Needs (TN) und dieser Arbeit. Die Fehler sind bezogen auf die Abweichung von der entsprechenden DKH-Allelektronenrechnung.

maximalen Fahler von 4.60 kcal/mol im Falle des LiF-Moleküls aufweisen. Beide Pseudopotentialsätze können sehr gute Bindungslängen vorhersagen. Die mittlere absolute Abweichung der Potentiale von Trail und Needs beträgt 0.007 Å und 0.008 Å für die Potentiale dieser Arbeit. Der maximale Fehler beider Potentiale wird für das LiF-Molekül beobachtet und beträgt 0.031 Å bzw. 0.036 Å. Die Abweichungen dieser Größenordnung haben kaum einen Einfluss auf die berechneten Bindungsenergien. Beispielsweise bewirkt eine Stauchung des relaxierten P2-Dimers um 0.013 Å eine Änderung der Bindungsenergie um nur 0.05 kcal/mol in der CCSD(T)-Allelektronenrechnung. Selbst im Falle des LiF, für welches die Geometrie maximal abweicht, resultiert eine Kompression der Bindung um 0.036 Å aus der Gleichgewichtslage in einer Erhöhung der Bindungsenergie um lediglich 0.17 kcal/mol.

4.3.4 QMC-spezifische Testrechnungen

Im Folgenden werden zwei QMC-spezifische Aspekte untersucht, nämlich der Lokalisierungsfehler in DMC-Rechnungen und die Effizienz in VMC. Für alle QMC-Rechnungen wurde das CHAMP-Programmpaket verwendet [27].

Das DMC-Verfahren konvergiert zur bestmöglichen Energie innerhalb der *Fixed-Node*-Näherung, d.h. zum Zustand tiefster Energie mit den Nullstellen (Knoten) der Testwellenfunktion. In Gegenwart eines nichtlokalen Pseudopotentials kann dieser DMC-Ansatz nicht mehr so einfach angewendet werden und es muss zusätzlich noch die Lokalitätsnäherung eingeführt werden [53, 56, 54, 55]. Dabei approximiert man das nichtlokale Potential durch ein effektives Potential, welches durch Lokalisierung des nichtlokalen Potentials auf die Testwellenfunktion entsteht (vgl. 2.3.6). Das effektive Potential hängt somit von der Testwellenfunktion ab, d.h. die DMC-Energie ist nicht mehr notwendigerweise variationell sondern hängt ebenfalls von der Qualität der Testwellenfunktion ab [103]. Ist die Testwellenfunktion die exakte *Fixed-Node-*Lösung ohne Lokalitätsnäherung, so konvergiert auch das DMC zur korrekten *Fixed-Node-*Energie.

Zur Abschätzung der Auswirkungen der Lokalitätsnäherung für ein gegebenes Pseudopotential werden drei Testwellenfunktionen verschiedener Qualität eingesetzt. Die drei Testwellenfunktionen haben alle den gleichen Determinantenteil bestehend aus einer einzigen Determinante. Die Einteilchenbasis besteht aus 9 unkontrahierten s- und 9 unkontrahierten p-Funktionen. Die Exponenten sind für alle der im folgenden betrachteten Pseudopotentiale individuell optimiert (vgl. Abschnitt 4.3.1). Die drei Wellenfunktionen unterscheiden sich also nur durch die Korrelationsfunktionen. Da alleine der Determinantenteil die Knoten bestimmt, definieren die drei Wellenfunktionen die gleiche *Fixed-Node-DMC-Lösung* und die gleiche *Fixed-Node-DMC-Lösung* und die gleiche *Fixed-Node-DMC-Lösung* und des Potentials. Die Korrelationsfunktionen werden wie folgt gewählt:

- 1. überhaupt kein Jastrowfaktor
- 2. Nur Zweiteilchenterme für den Jastrowfaktor
- 3. Zweilteilchenterme und Dreilteilchenterme im Jastrowfaktor

Die Parameter der Jastrowfaktoren (vgl. Gl. 2.35) wurden mittels Energieminimierung im VMC optimiert [30]. Im Limit einer exakten Testwellenfunktion stimmen die VMC-Energie $E_{\rm VMC}$ und die Fixed-Node-DMC-Energie $E_{\rm FN}$ überein. Trägt man folglich $E_{\rm FN}$ gegen $E_{\rm FN}-E_{\rm VMC}$ der drei Testwellenfunktionen auf, dann lässt sich die exakte Fixed-Node-DMC-Energie $E_{\rm FN}^{\rm extr}$ ohne Lokalitätsnäherung durch lineare Extrapolation abschätzen [103]. Abbildung 4.3 zeigt die Extrapolation am Beispiel des Kohlenstoffpseudopotentials aus dieser Arbeit. Diese Extrapolation wird für die Kohlenstoff- und Siliziumpseudopotentiale von Trail und Needs und für die entsprechenden Potentiale dieser Arbeit durchgeführt und die $E_{\rm FN}^{\rm extr}$ Werte ermittelt. Zur Abschätzung der Auswirkungen der Lokalitätsnäherung wird in einem

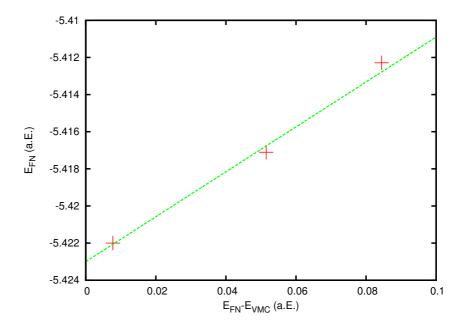


Abbildung 4.3: Extrapolation zur Ermittlung der exakten *Fixed-Node-*DMC-Energie $E_{\rm FN}^{\rm extr}$ ohne Lokalitätsnäherung am Beispiel des Kohlenstoffpseudopotentials dieser Arbeit. $E_{\rm VMC}$ bezeichnet die VMC-Energie. Alle Werte sind in atomaren Einheiten (a.E.).

zweiten Schritt $E_{\rm FN}-E_{\rm FN}^{\rm extr}$ gegen $E_{\rm VMC}-E_{\rm FN}$ für die drei Testwellenfunktionen aufgetragen. Die Größe $E_{\rm FN}-E_{\rm FN}^{\rm extr}$ ist der Lokalisierungsfehler und die Differenz $E_{\rm VMC}-E_{\rm FN}$ kann als Maß für die Qualität der jeweiligen Testwellenfunktion betrachtet werden. Schließlich kann die Steigung als ein Maß für die Abhängigkeit des Lokalisierungsfehlers von der Testwellenfunktion gedeutet werden. Eine solche Darstellung ist in Abb. 4.4 für die vier Potentiale abgebildet. Für bessere Testwellenfunktionen verschwindet der Fehlerterm $E_{\rm FN}-E_{\rm FN}^{\rm extr}$ und die *Fixed-Node*-Energie gleicht der Energie, welche man ohne Lokalitätsnäherung erhalten würde. Das Verhalten der beiden Pseudopotentiale ist für Silizium identisch. Für Kohlenstoff beobachtet man ein geringfügig ungünstigeres Verhalten der neuen Potentiale dieser Arbeit.

Abschließend soll die Effizienz der neuen Potentiale untersucht werden. Dafür wurde die Effizienz κ bereits in Gl. 2.82 wie folgt definiert

$$\kappa = 1/(\sigma^2 \tau_{\text{corr}} T_{\text{CPU}}), \tag{4.3}$$

wobei T_{CPU} die Rechenzeit, σ die quadratisch gemittelten Fluktuationen der lokalen Energie, und τ_{corr} die Autokorrelationszeit [57] der lokalen Energie sind. Je größer κ , desto kleiner das Produkt $\sigma^2 \tau_{corr} T_{CPU}$ und desto höher die Effizienz. Die Ergebnisse sind in Tabelle 4.7 für die Kohlenstoff- und Siliziumpseudopotentiale zusammengefasst. Beide Potentiale werden auf einem Raster dargestellt,

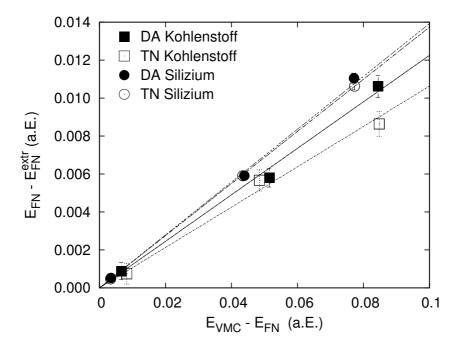


Abbildung 4.4: Der Lokalisierungsfehler $E_{\rm FN}-E_{\rm FN}^{\rm extr}$ aufgetragen gegen die Qualität der Testwellenfunktion $E_{\rm VMC}-E_{\rm FN}$ für die Kohlenstoff- und Siliziumpotentiale von Trail und Needs (TN) und die Potentiale dieser Arbeit (DA). Alle Werte sind in atomaren Einheiten (a.E.).

um die Vergleichbarkeit zu erhöhen. Auch hier werden die neuen Potentiale mit denen von Trail und Needs verglichen. Die Autokorrelationszeit τ_{corr} ist für beide Pseudopotentiale vergleichbar. Allerdings zeigen die Potentiale dieser Arbeit geringere Fluktuationen der lokalen Energie. Für Silizium zeigt sich ein deutlicher Vorteil der Rechenzeit aufgrund der kompakteren räumlichen Ausdehnung: Die nichtlokalen Komponenten $V_s(r)$ und $V_p(r)$ des neuen Potentials sind bereits nach 2.33 Å bzw. 2.38 Å kleiner als 10⁻⁴ atomare Einheiten während entsprechenden Radien des konkurrierenden Potentials 2.43 Å und 3.13 Å betragen. Für nichtlokale Beiträge kleiner 10⁻⁴ atomare Einheiten wird keine Quadratur mehr durchgeführt. Insgesamt folgt aus den Daten in Tabelle 4.7, dass das neue Kohlenstoffpseudopotential 19% effizienter ist und das Siliziumpseudopotential sogar 49% effizienter. Die Pseudopotentiale dieser Arbeit sind, abgesehen von der speziellen Wahl der funktionalen Form, nicht explizit dahingehend optimiert, einen minimalen Lokalisierungsfehler oder eine maximale Effizienz zu zeigen. Der Fokus lag bei der Entwicklung auf der Genauigkeit des Potentials, da sich dieser Fehler anschließend nicht durch Steigerung der Rechenkapazität eliminieren lässt. Die QMC-spezifischen Tests zeigen, dass sich das Potential bezüglich der QMC-Leistungen nicht diskreditiert, sondern ganz im Gegenteil, eine sehr vorteilhafte Effizienz und einen normalen Lokalisierungsfehler zeigt.

	Ko	ohlenstoff	Silizium		
	TN	Diese Arbeit	TN	Diese Arbeit	
σ	0.281	0.258	0.118	0.104	
$ au_{ m corr}$	1.16	1.16	1.19	1.17	
$T_{ m CPU}$	1.00	1.00	1.14	1.00	
$\kappa_{\mathrm{DA}}/\kappa_{\mathrm{TN}}$		1.19		1.49	

Tabelle 4.7: Relative Effizienz κ_{DA}/κ_{TN} der Potentiale dieser Arbeit (DA) und der Potentiale von Trail und Needs (TN). T_{CPU} ist die Rechenzeit einer VMC-Rechnung gleicher Länge relativ zu der Zeit, welche mit einem Potential dieser Arbeit benötigt wird. σ kennzeichnet die quadratisch gemittelten Fluktuationen in atomaren Einheiten (a.E.) und τ_{corr} ist die Autokorrelationszeit der lokalen Energie.

4.4 Vergleichstestrechnungen der 3d-Übergangsmetalle

4.4.1 Valenzbasissätze

Die Besonderheiten der Pseudopotentiale für die 3d-Übergangsmetalle wurden bereits in Abschnitt 2.3.5 erörtert. Insbesondere kann für die 3d-Übergangsmetalle keinen Argonrumpf verwendet werden, sondern man muss für die Potentiale den Neonrumpf wählen. Es wurden im Rahmen dieser Arbeit Basissätze der VTZ und VQZ Qualität für die Pseudopotentiale der Übergangsmetalle generiert. Die Basissätze bestehen aus 6s3p3d2f1g- bzw. 8s4p4d3f2g1h-Funktionen. Die Konstruktion der Basissätze für die Übergangsmetalle unterscheidet sich von der vorherigen Konstruktion für die Hauptgruppenelemente und gliedert sich in drei Schritte. Zunächst wird eine unkontrahierte Basis aus 8s7p6d-Funktionen für den Grundszustand der $3s^23p^64s^13d^{n+1}$ Konfiguration des Pseudoatoms (n=1 für Sc und n=9 für Cu) mit dem Programm ATMSCF [104] optimiert. Für Zink wird die $3s^23p^64s^23d^{10}$ Konfiguration verwendet. Anschließend werden diffuse s-, p- und d-Funktionen ergänzt, deren jeweilige Exponenten um den Faktor 2 kleiner gewählt sind, als die kleinsten zuvor bestimmten Exponenten der betreffenden Winkelsymmetrie. Die diffusen Funktionen bleiben von der Kontraktion im zweiten Schritt ausgeschlossen. Für die Kontraktion wird eine zustandsgemittelte Multikonfigurations-SCF-Rechnung (s.u.) mit einer anschließenden Multireferenz-CISD fuer die Grundzustände der $[Ar]4s^13d^{n+1}$ und $[Ar]4s^23d^n$ Konfigurationen berechnet und eine Mittelung der jeweiligen Dichtematrizen durchgeführt. Die Koeffizienten der natürlichen Orbitale werden dann zur Kontraktion herangezogen. In einem dritten Schritt werden 2 f-Funktionen und eine g-Funktion für eine VTZ- bzw. 3 f-, 2 hund 1 g Funktion für eine VQZ Basis hinzugefügt und anhand der Multireferenz-CISD Energie der o.g. Zustände optimiert. Für Zn wurden die Grundzustände der Konfigurationen [Ar]4s²3d¹⁰ und [Ar]4s¹3d¹⁰ verwendet. Für den Grundzustand

des Zn entspricht die Energie des LS-Zustandes der Energie, welche mit dem numerischen HF-Programm für das Mittel der Konfiguration berechnet wird und man kann die Energien in Anhang A direkt vergleichen. Demnach kann die kontrahierte VTZ-Basis die numerisch berechnete Gesamtenergie bis auf 0.018 eV reproduzieren und somit 99.9996% der HF-Energie beschreiben. Für die atomaren Tests in Abschnitt 4.4.2 wird zusätzlich noch eine V5Z-Basis für Scandium und Titan auf diese Weise justiert. Die Leistungsfähigkeit der Basissätze wird in Abschnitt 4.4.2 getestet. Für diese Tests werden zusätzliche, extrem flexible, unkontrahierte Basissätze mit 15s15p15d13f11g- und 15s15p15d13f11g9h-Funktionen für Scandium und Titan durch Minimierung der Summe der CISD-Energien für die LS-Zustände der Konfigurationen [Ar] $4s^2$ $3d^k$, [Ar] $4s^3$ $3d^k$, [Ar] $4s^3$ $3d^k$, [Ar] $4s^3$ $3d^{k-1}$ und [Ar] $4s^4$ $3d^{k+1}$ mit k=1 für Scandium und k=2 für Titan justiert. Es ist klar, dass diese extrem flexiblen Basissätze Größenordnungen mehr an Rechenleistung beanspruchen, als es die kontrahierten Basissätze tun. Die Berechnungen wurden mit dem MOLPRO-Programmpaket durchgeführt [20].

4.4.2 Atomare Testrechnungen

Zur Berechnung der atomaren Eigenschaften wird eine sog. zustandsgemittelte Multikonfigurations-SCF-Rechnung (state-averaged (SA) multi-configuration selfconsistent field (MCSCF) calculation) durchgeführt, um die Symmetriebrechung auf Orbitalniveau zu unterbinden. Das Verfahren findet u.a. in Ref. [105] und Ref. [106] Anwendung. Die Symmetriebrechung tritt ein, da die Computerprogramme i.d.R. nicht die gesamte sphärische Symmetrie ausnutzen und die besetzten und unbesetzten Orbitale ein unterschiedliches Potential in der HF-Theorie erfahren. Als Konsequenz beobachtet man z.T. unterschiedliche Orbitale selbst wenn sie aufgrund von Symmetriebetrachtungen äquivalent sein sollten. Als Beispiel soll die $[Ar]4s^23d^1$ Konfiguration des Scandiumatoms in der D_{2h} Punktgruppe betrachtet werden. Für einen ²D-Zustand muss eine SA-MCSCF-Rechnung über fünf Zustände durchgeführt werden, wobei jeweils ein Elektron die Orbitale (a_e, a_e, b_{1g}, b_{2g}, b_{3g}), welche den d-Orbitalen entsprechen, besetzt. Die resultierenden fünf energetisch tiefsten Zustände sind dann entartet und die Orbitale symmetrieäquivalent. Als Konsequenz ist die MCSCF-Energie 0.06 eV höher als die Energie einer symmetriebrechenden HF-Rechnung. Die zustandsgemittelten Orbitale werden dann für die CI-, CC- und QMC-Rechnungen verwendet.

Die Ergebnisse der CI-, CC- und QMC-Rechnungen sind in Tabelle 4.8 zusammengefasst. Dargestellt sind die Resultate für die ersten drei Ionisierungspotentiale und der Anregungsenergie für die Anregung des Grundzustandes in die $[Ar]4s^13d^{k+1}$ Konfiguration mit k=1 für Scandium und k=2 für Titan. Die experimentellen Energien entsprechen Übergängen zwischen den jeweils tiefsten J-Niveaus der Zustände. Die daraus resultierenden Korrekturen, welche sich durch Berechnung des 2J+1 gewichteten Mittels ergeben, betragen maximal 0.015 eV. Die Multiplettaufspaltung wird daher nicht weiter berücksichtigt.

Die Pseudopotentialrechnungen sind auf CISD-, CISD- zzgl. der Davidsonkorrek-

Methode	IP1	IP2	IP3	EX
	S	Scandium		
PP+CISD ^a	6.06	12.67	24.50	1.18
PP+CISD+Q ^a	6.33	12.76	24.57	1.34
PP+CCSD(T) ^a	6.55	12.79	24.58	1.49
PP+CCSD(T)	6.50	12.77	24.52	1.54
PP+DMC	6.40(2)	12.80(2)	24.34(2)	1.47(2)
DHK+CCSD(T)	6.54	12.80	24.69	1.42
Experiment [108]	6.56149	12.79977	24.756837	1.428297
		Titan		
PP+CISD ^a	6.28	13.43	27.26	0.61
PP+CISD+Q ^a	6.57	13.54	27.32	0.74
PP+CCSD(T) ^a	6.81	13.59	27.34	0.90
PP+CCSD(T)	6.75	13.56	27.30	0.93
PP+DMC	6.60(3)	13.58(3)	27.24(3)	0.80(3)
DKH+CCSD(T)	6.81	13.59	27.42	0.82
Experiment [108]	6.8204	13.5755	27.49171	0.8129430

Tabelle 4.8: Erstes (IP1), zweites (IP2) und drittes (IP3) Ionisierungspotential und die Anregungsenergie (EX) für Scandium (oben) und Titan (unten). Für Scandium entsprechen IP1, IP2, IP3 und EX Übergänge in die Zustände 3D :[Ar] $4s^13d^1$, 2D :[Ar] $4s^03d^1$, 1S :[Ar] $4s^03d^0$ und 3F :[Ar] $4s^13d^2$. Für Titan entsprechen IP1, IP2, IP3 und EX Übergänge in die Zustände 4F :[Ar] $4s^13d^2$, 3F :[Ar] $4s^03d^2$, 2D :[Ar] $4s^03d^1$ und 5F :[Ar] $4s^13d^3$. PP bezeichnet Pseudopotentialrechnungen und DKH bezeichnet eine Allelektronenrechnung. Alle CI- und CC-Resultate sind basissatzextrapoliert. Die Pseudopotentialrechnungen mit dem zusätzlichen Index (a) sind mit der äußerst flexiblen, unkontrahierten Basis durchgeführt, während die übrigen Rechnungen mit kontrahierten Basissätzen gerechnet sind. Alle Werte sind in Elektronenvolt (eV))

tur Q [107] und auf CCSD(T)-Niveau mit den äußerst flexiblen, unkontrahierten Basissätzen durchgeführt. Zum Vergleich werden die CCSD(T)-Rechnungen auch mit den kontrahierten Basissätzen durchgeführt, welche lediglich ein Bruchteil der Rechenzeit gegenüber den Rechnungen mit unkontrahierten Basissätzen benötigen. Für den Vergleich der Pseudopotentialrechnungen mit Allelektronenrechnungen werden die atomaren Eigenschaften auf dem skalarrelativistischen DKH/CC-SD(T)-Niveau mit dem DK-gewichteten, rumpfvalenz-korrelationskonsistenten Basissätzen von Balabanov und Peterson [51] unter Einbeziehung der (3s3p4s4d)-Elektronen für die Korrelationsbehandlung berechnet. Die Resultate der CI- und CC-Methoden sind basissatzextrapoliert. Der Extrapolation wird das in guter Näherung lineare Verhalten der Energie gegen $1/l^3$ mit l als der höchsten Drehimpulsquantenzahl der Basisfunktionen zu Grunde gelegt [94]. Im Falle der unkontra-

hierten CI-, CI+Q- und CCSD(T)-Pseudopotentialrechnungen wird die 15s15p-15d13f11g- und 15s15p15d13f11g9h-Basis für die Extrapolation verwendet. Für die CCSD(T)-Pseudopotentialrechnungen mit kontrahierten Basissätzen werden die in Abschnitt 4.4.1 verwendeten VQZ und V5Z Basissätze verwendet. Für die CCSD(T)/DKH-Allelektronenrechnung werden die cc-pwCVQZ-DK- und cc-pw-CV5Z-DK-Basissätze verwendet [51]. Die Resultate in Tabelle 4.8 zeigen, dass die CCSD(T)-Allelektronenrechnungen die experimentellen Werte bis auf wenige hundertstel Elektronenvolt vorhersagen können.

Die CISD-Resultate der Pseudopotentialrechnungen mit den unkontrahierten Basissätzen zeigen die schlechteste Übereinstimmung mit dem Experiment. Die Übereinstimmung wird in allen Fällen durch Addition der Davidsonkorrektur verbessert, auch in den Fällen konstanter Teilchenzahl. Allerdings bleiben die davidsonkorrigierten CI-Resultate schlechter als die CCSD(T)-Resultate. Für beide Elemente beobachtet man die maximale Abweichung der CCSD(T)-Pseudopotentialrechnungen mit den unkontrahierten Basissätzen im Falle des dritten Ionisierungspotentials. Für Scandium beträgt der Fehler 0.18 eV und für Titan 0.15 eV. Auch die Allelektronen-CCSD(T)-Rechnung zeigt hier schwächere Resultate und weicht um 0.06 eV für Scandium bzw. 0.07 eV für Titan vom Experiment ab. Die Pseudopotentialrechnungen sind in exzellenter Übereinstimmung mit mit den Resultaten früherer, singulärer, energiekonsistenter Potentiale [109]. Die in Ref. [109] berechneten ersten und zweiten Ionisierungspotentiale für das Scandiumpseudoatom stimmen gleichfalls bis auf 0.02 eV mit dem Experiment überein, wohingegen das dritte Ionisierungspotential um 0.17 eV abweicht. Die reduzierte Genauigkeit, welche offensichtlich mit der Beschreibung höher ionisierter Zustände einhergeht, wird in Ref. [109] für mehrere 3d-Übergangsmetalle demonstriert und scheint die Grenzen der Frozen-Core-Näherung aufzuzeigen. Die Genauigkeit kann jedoch zu einem Großteil durch Addition eines sog. Rumpfpolarisationspotentials wieder hergestellt werden. Insbesondere weicht das in Ref. [109] berechnete dritte Ionisierungspotential des Scandiumpseudoatoms mit Rumpfpolarisationspotential weniger als 0.01 eV vom Experiment ab.

Es stellt sich die Frage, ob jene Rumpfpolarisationspotentiale auch für die Pseudopotentiale dieser Arbeit geeignet sind. Die Resultate der entsprechenden Vergleichstestrechungen sind in Tabelle 4.9 zusammengefasst. Die Rechnungen sind ebenfalls mit der unkontrahierten Basis durchgeführt. Allerdings sind aufgrund der Programmbeschränkungen nur Berechnungen mit Rumpfpolarisationspotentialen mit Basissätzen bis einschließlich g-Symmetrie möglich. Der Extrapolation liegen folglich Berechnungen mit dem unkontrahierten 15s15p15d13f und 15s15p15d13f-11g-Basissatz zu Grunde. Man erkennt durch Vergleich mit entsprechenden Werten der unkontrahierten Basis in Tabelle 4.8 mit den Werten in Tabelle 4.9 für die Berechungen ohne Rumpfpolarisationspotential, dass die Extrapolation in beiden Fällen zu sehr ähnlichen Ergebnissen kommt. Die maximale Abweichung beträgt 0.04eV für das dritte Ionisierungpotential des Scandiums. Der Einsatz des Rumpfpolarisationspotential erhöht die Genauigkeit der Pseudopotentialrechnungen insbesondere in den Fällen, bei denen eine schwächere Übereinstimmung mit dem Experiment

Methode	IP1	P1 IP2		EX						
Scandium										
$PP+CCSD(T)^b$	6.55	12.81	24.54	1.51						
$PP+CCSD(T)+CPP^b$	6.55	12.80	24.62	1.48						
Experiment [108]] 6.56149 12.79977		24.756837	1.428297						
Titan										
$PP+CCSD(T)^b$	6.82	13.59	27.32	0.91						
$PP+CCSD(T)^b$	6.82	12.58	24.40	0.89						
Experiment [108]	6.8204	13.5755	27.49171	0.8129430						

Tabelle 4.9: Einfluss des Rumpfpolarisationspotentials auf die Berechnung der Ionisationspotentiale und Anregungsenergien. Die Bezeichnungen sind wie in Tabelle 4.8 gewählt. Der zusätzliche Index (^b) kennzeichnet eine modifizierte, unkontrahierte Basis (siehe Text). Alle Werte sind in Elektronenvolt (eV))

festzustellen ist. So reduziert sich der Fehler des dritten Ionisierungspotentials für Scandium und Titan um jeweils 0.08 eV.

Aus Tabelle 4.8 folgt, dass die kontrahierten Basissätze die Resultate der wesentlich rechenintensiveren, unkontrahierten Basissätze bis auf 0.05 eV reproduzieren können. Die kontrahierten Basissätze bieten folglich eine hohe Effizienz und Genauigkeit.

Die Testwellenfunktion der DMC-Rechnungen besteht aus einer Determinante multipliziert mit dem flexiblen Jastrowfaktor aus Gl. 2.35. Die Orbitale und die Jastrowfaktoren sind energieoptimiert [30]. Die Einteilchenbasis besteht aus den Funktionen mit s-, p- und d-Symmetrie der kontrahierten VQZ-Basis. Für das DMC werden sowohl die Fixed-Node-Näherung als auch die Lokalitätsnäherung für das nichtlokale Pseudopotential verwendet. Der Zeitschritt im DMC beträgt 0.05 atomare Einheiten. Die DMC-Vorhersagen sind generell besser als die davidsonkorrigierten CI-Rechnungen und präsentieren sich eher uneinheitlich im Vergleich zu den CCSD(T)-Rechnungen. Die ersten Ionisierungspotentiale sind im DMC schlechter als im CCSD(T) während die Anregungsenergien besser beschrieben werden. Wie im CCSD(T) wird das dritte Ionisierungspotential im DMC am schlechtesten vorhergesagt und weicht um 0.42(2) eV für Scandium und um 0.25(3) eV für Titan von dem Experiment ab. Die Qualität der DMC-Resultate wird durch die Fixed-Node-Näherung und die Lokalitätsnäherung beeinflusst. Beide Fehlerquellen lassen sich prinzipiell durch den Einsatz besser Testwellenfunktionen reduzieren.

	IP	1	D_e		
Methode	ScO	TiO	ScO	TiO	
PP+CCSD(T)	6.45	6.85(2)	7.01	6.91	
PP+DMC	6.51(1)	6.91(2)	6.82(2)	6.61(2)	
DKH+CCSD(T)	6.46	6.87	7.02	6.93	
Experiment [110, 111]	6.43(0.16)	6.82(2)	$6.98(1)^a$	$6.93(7)^a$	

Tabelle 4.10: Vertikale Ionisierungspotentiale (IP1) und Bindungsenergien (D_e) der Moleküle ScO und TiO. Die D_e -Werte (a) sind abgeleitet von D_0^0 mit $\Delta G(1/2)$ aus Ref. [112]. Alle Werte sind in Elektronenvolt (eV).

4.4.3 Molekulare Testrechnungen

Die molekularen Tests werden an den Molekülen Scandiumoxid (ScO) und Titanoxit (TiO) durchgeführt. Für beide Moleküle wird das erste vertikale, molekulare Ionisierungspotential, d.h. der Übergange (ScO) $^3\Delta \rightarrow (ScO^+)^2\Delta$ bzw. (TiO) $^2\Sigma^+ \rightarrow$ $(\text{TiO}^+)^{1}\Sigma$ berechnet. Zusätzlich wird die Bindungsenergie D_e bezogen auf die Geometrie des Gleichgewichts nach Ref [113] berechnet. Die DMC-Rechnungen werden dann mit den CCSD(T)-Pseudopotential- und Allelektronenrechnungen verglichen. Für die Allelektronenrechnung werden die VnZ (n=Q,5) DK-gewichteten, rumpfvalenz-korrelationskonsistenten Basissätze von Balabanov und Peterson [51] am Übergangsmetallzentrum verwendet, während die DK-korrelationskonsistenten Basissätze aus Ref. [97, 102] am Sauerstoff zentriert sind. Die sechs energetisch tiefsten Orbitale der Allelektronenrechnungen entsprechen den Rumpfelektronen der Pseudopotentialrechnungen und werden von der Korrelationsbehandlung im CCSD(T) ausgeschlossen. Die Pseudopotentialrechnung verwendet Pseudopotentiale auf beiden Zentren. Die kontrahierten VnZ (n=Q,5) Sauerstoffund Übergangsmetallbasissätze stammen aus dieser Arbeit. Die CCSD(T) Energien sind auf das Basissatzlimit extrapoliert.

Wie bei dem atomaren Tests besteht die Testwellenfunktion aus einer einzigen Determinante multipliziert mit einem flexiblen Jastrowfaktor. Die Parameter der Orbitale und des Jastrowfaktors sind mittels Energieminimierung optimiert. Dabei verwenden die QMC-Rechnungen die kontrahierten VQZ-Basissätze mit s-, p-, d- und f-Funktionen für beide Pseudoatomzentren. Die Ergebnisse sind in Tabelle 4.10 zusammengefasst. Die mit DMC und CCSD(T) berechneten vertikalen Ionisierungspotentiale sind in sehr guter Übereinstimmung mit dem Experiment. Die maximale Abweichung beträgt 0.09(3) eV für die DMC-Vorhersage des TiO Ionisierungspotentials. Die Vorhersagen bezüglich der Bindungsenergie sind uneinheitlich. Das CCSD(T)-Resultat für ScO mit und ohne Pseudopotential stimmt bis auf wenige Hundertstel Elektronenvolt mit dem Experiment überein. Ebenso zuverlässig wird die Bindungsenegie des TiO in den Pseudopotential- und Allelektronen-CCSD(T)-Rechungen vorhergesagt. In beiden Fällen sind die DMC-Ergebnisse weniger genau und weichen um 0.16(2) eV für ScO und 0.32(7) eV für TiO von der experi-

mentellen Referenz ab. Auf Grundlage der deutlich besseren CCSD(T) Ergebnisse kann man für bessere Testwellenfunktionen auch bessere DMC-Resultate erwarten.

4.5 Zusammenfassung und Ausblick

In meiner Arbeit habe ich nichtsinguläre, energiekonsistente, skalarrelativistische HF-Pseudopotentiale für die Hauptgruppenelemente und die 3d-Übergangselemente entwickelt. Die Genauigkeit und Transferabilität der neuen Pseudopotentiale ist anhand ausführlicher Vergleichstestrechnungen dokumentiert.

Die Potentiale der Hauptgruppenelemente sind in einer Testumgebung aus insgesamt 26 zweiatomigen Molekülen des G2-Tests mit Elementen der ersten beiden Perioden getestet. Die Pseudopotentiale reproduzieren die MP2-Frequenzen der valenzkorrelierten Allelektronenrechnungen im Mittel mit 5 cm⁻¹ Abweichung und die entsprechenden CCSD(T)-Bindungsenergien mit 0.5 kcal/mol mittlerer absoluter Abweichung. Für die Pseudopotentiale der Hauptgruppenelemente werden optimierte Basissätze der VnZ Qualität mit n=D,T,Q,5 für die Elemente der 1. und 2. Reihe und n=D,T für die Elemente der 3., 4., und 5. Reihe bereitgestellt. Für die Hauptgruppenelemente existieren alternative, nichtsinguläre HF-Pseudopotentiale von Greef, Lester, Ovcharenko et al. [5, 6] und von Trail und Needs [7, 8]. Allerdings berücksichtigen die Potentiale von Greef, Lester, Ovcharenko et al. keine relativistischen Effekte, decken nur einen kleinen Teil der Elemente ab, verfügen über keinen p-Projektor für Elemente der Siliziumreihe und es existieren keine optimierten Basissätze. Die Pseudopotentiale von Trail und Needs verfügen ebenfalls über keine optimierten Basissätze und verzichten auf einen d-Projektor für Elemente, welche schwerer als Zink sind und somit auch d-Elektronen mit dem Pseudopotential ersetzt werden. Im Vergleich zu den Pseudopotentialen von Trail und Needs weichen die mittleren Fehler der harmonischen Frequenzen und der Bindungsenergien für die neuen Pseudopotentiale nur halb so stark von den Resultaten entsprechender Allelektronenrechnungen ab. Der DMC-Lokalisierungsfehler, bestimmt am Beispiel der Kohlenstoff- und Siliziumpseudoatome, ist vergleichbar dem Lokalisierungsfehler der Trail- und Needspotentiale. Allerdings zeigen die Potentiale dieser Arbeit eine signifikant bessere Effizienz (19% bzw. 49% für Kohlenstoff bzw. Silizium).

In Bezug auf die 3d-Übergangsmetalle sind die neuen Potentiale praktisch konkurrenzlos, da die Potentiale von Trail und Needs den sehr ungünstigen Argonrumpf verwenden. Die Potentiale dieser Arbeit haben einen Neonrumpf. Diese Wahl erlaubt die Konstruktion genauer und transferierbarer Potentiale [9, 10, 11]. Die Transferierbarkeit und Genauigkeit wird anhand atomarer und molekularer Testsysteme aufgezeigt. Für die atomaren Tests werden die ersten drei Ionisierungspotentiale und ein angeregter Zustand des Scandiums und des Titans auf CI- und CC-Niveau berechnet und auf das Basissatzlimit extrapoliert. Die Ergebnisse sind in guter Übereinstimmung mit den experimentellen Werten und den entsprechenden Allelektronenrechnungen. Der größte Fehler tritt bei der Berechnung des dritten

Ionisierungspotentials auf und beträgt 0.18 eV und 0.15 eV für die CCSD(T)-Rechnung und 0.42(2) und 0.25(3) eV im DMC für Scandium und Titan. Für die molekularen Tests wird das vertikale Ionisierungspotential und die Bindungsenergie der Dimere ScO und TiO berechnet. Während die Ionisierungsenergien der CCSD(T)- und DMC-Rechnungen sehr gut mit dem Experiment übereinstimmen, sind die Resultate der Bindungsenergien im DMC uneinheitlich. Die deutlich besseren CCSD(T)-Pseudopotentialrechnungen deuten auf eine unzureichend optimierte Wellenfunktion hin. Für die Pseudopotentiale der Übergangsmetalle werden Basissätze der VTZ- und VQZ-Qualität bereitgestellt. Die Testrechnungen der Übergangsmetalle legen die Aussage nahe, dass die Qualität der DMC-Rechnung zwischen der einer davidsonkorrigierten CI-Rechnungen und der einer CCSD(T)-Rechnung liegt, dabei jedoch der Qualität einer CCSD(T)-Rechnung deutlich näher kommt. Um die CI- und CC- Rechnungen mit den extrem großen Basissätzen durchführen zu können, mussten die Testsysteme minimal gewählt werden. Die Testwellenfunktionen des QMC sind dagegen eher schlicht und die Qualität der DMC-Resultate kann auch auf größere Systeme übertragen werden. Mit den Potentialen ist ein Anfang gemacht, effiziente und genaue Rechnungen mit Übergangsmetallen im QMC durchzuführen und Erfahrungen zu sammeln. Denn gegenwärtig gibt es lediglich eine Handvoll Publikationen, welche die QMC-Methoden auf die Übergangsmetalle anwenden. Übergangsmetalle im QMC sind noch keine Routine und sicherlich lassen sich noch verschiedene Aspekte optimieren, z.B. neue Korrelationsfunktionen oder Multireferenzansätze.

Die Darstellung aller Pseudopotentiale und Basissätze entspricht der Standarddarstellung in Gaussfunktionen, wie sie praktisch jedes bekannte Quantenchemieprogramm verwendet, sofern es Pseudopotentiale unterstützt. Zur Verbreitung der Pseudopotentiale und Basissätze wurde ein anwenderfreundliches Webinterface entwickelt. Dabei handelt es sich um eine sog. datenbankgesteuerte Webapplikation, welche die Technologien des Apache Webservers, der Scriptsprache PHP und der relationalen Datenbank MySQL verbindet. Die Anwendung leitet den Anwender in mehreren Schritten zur Auswahl des Potentials, sucht die Basissätze und bietet verschiedene Ausgabeformate für die Daten an.

Anhang A

Pseudopotentialparameter und Basissätze

Legende zu dem Tabellenteil

Pro Seite im Anhang ist ein Pseudopotential mit Basissätzen aufgelistet. Die Information ist auf vier Tabellen verteilt.

1. Die oberste Tabelle enthält die Pseudopotentialparameter. Das Potential ist als Summe von Gaussfunktionen multipliziert mit dem Elektron-Kern-Abstand und einem Koeffizienten dargestellt:

$$\sum \text{Koeff.} \cdot \mathbf{r}^{\mathbf{n}} \cdot \exp\left(-\text{Exp.} \cdot r^{2}\right). \tag{A.1}$$

- 2. Die zweite Tabelle zeigt in der ersten Spalte die Auswahl der Referenzkonfigurationen (Konf.) für den Pseudopotentialfit. Die zweite Spalte enthält die Energien des Pseudoatoms (E_{ps}), die dritte Spalte die Referenzvalenzenergien (E_{ref}) und die vierte Spalte zeigt die Differenz ($E_{ps}-E_{ref}$), welche idealerweise Null betragen sollte. Die fünfte und sechste Spalte zeigen die Energiedifferenzen bezogen auf den Grundzustand in der ersten Zeile für die Pseudopotentialrechnung (EX_{ps}) und die Allelektronenrechnung (EX_{ref}). Spalte sieben zeigt deren Differenz ($EX_{ps}-EX_{ref}$), welche ebenfalls idealerweise Null betragen sollte. In der letzten Zeile ist die mittlere absolute Abweichung (m.a.A) der Einträge von Zeile vier und Zeile sieben.
- 3. Die dritte Tabelle enthält die Koeffizienten (Koeff.) und Exponenten (Exp.) für den kontrahierten Teil der Basissätze. Die Basissätze der Hauptgruppenelemente verfügen alle über eine kontrahierte Funktion mit s-Symmetrie (erste und zweite Spalte) und eine kontrahierte Funktion mit p-Symmetrie (dritte und vierte Spalte). Die Basissätze der Übergangsmetalle verfügen alle über 5 (Sc und Ti 6) kontrahierte s- und p-Funktionen sowie 4 (Sc und Ti 5) kontrahierte d-Funktionen.
- 4. Die letzte Tabelle enthält die Exponenten der primitiven Funktionen für die jeweils verfügbaren Basissätze. Die unteren beiden Spalten zeigen die Grundzustandsenergie einer RHF und RCCSD(T)-Rechnung (bzw. SA-MCSCF und CISD im Falle er Übergangsmetalle) für das betreffende Pseudoatom im Grundzustand. Für Zweielektronensysteme ($Z_{\rm eff}=2$) reduziert sich die RCCSD(T)-Rechnung auf eine RCCSD-Rechnung. Für Einelektronensysteme ($Z_{\rm eff}=1$) ist keine Korrelationsenergie definiert.

Die Basissätze für die Pseudopotentiale von Trail und Needs sind in Anhang B aufgelistet. Hier entfallen die ersten beiden Tabellen, da nur die Basissatzinformation relevant ist und die Pseudopotentialparameter ggf. aus der Orginalpublikation [7, 8] entnommen werden können.

			T		, .			
			Koeff.			кр.		
		$V_{ m loc}$	1.00000			47692410		
			4.47692			97636451		
			-4.32112			01841596		
Konf.	E_{ps}	E_{ref}		$E_{ps}-E_{t}$		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
H(0) 1s1			0000000	-0.0000		0.0000	0.0000	0.0000
H(0) 2s1			2500000	0.0000		10.2067	10.2049	0.0018
H(0) 3s1			5555000	0.0000		12.0956	12.0949	0.0007
H(0) 4s1			3125000	0.0000		12.7567	12.7561	0.0005
H(0) 2p1			2500000	0.0000		10.2070	10.2049	0.0021
H(0) 3p1			5555000	0.0000		12.0955	12.0949	0.0006
H(0) 4p1	1 -0.03	3124140 -0.0	3125000	0.00000		12.7566	12.7561	0.0005
m.a.A.				0.0000				0.0010
		Koeff.	Exp.		Koeff.	Exp.		
		0.000706	0.0130	00 0	.001242	2 0.0030	00	
		-0.002119	0.0299	00 -	0.00091	3 0.0078	00	
		0.057693	0.0687	70 -	0.00005	64 0.0202	81	
		0.230695	0.1581	70 -	0.00023	88 0.0527	30	
		0.277612	0.3637	92 -	0.01153	0.1370	97	
		0.169833	0.8367	21 -	0.01823	0.3564	51	
		0.097443	1.9244	.58 -0	0.01392	9 0.9267	74	
		0.029966	4.4262	54 -	0.00939	2.4096	12	
		-0.000452	10.180	385 -	0.00034	6.2649	91	
		v5z	vqz		vtz		vdz	
	S	0.1223443374	0.1205	987483	0.17	06535656	0.1704830	527
	S	0.4028922617	0.4047	832489	0.66	23156209	-	
	S	0.7150471210	0.7151	290247	-		-	
	S	1.3798375130	-		-		-	
	p	0.7847652435	0.7745	357752	0.49	53572750	-	
	p	0.1736056209	0.2630	377139	-		-	
	p	0.5136646337	-		-		-	
	d	2.9173882458	2.3158	8831153	0.95	57450248	-	
	d	0.4663792849	0.6366	557479	-		-	
	d	1.1321709156	-		-		-	
	f	1.6496084929	1.1308	3190823	-		-	
	f	0.7931845188			-		-	
	g	1.6068127155	-		-		-	
	E _{RHF}	-0.49990508	-0.499	91595	-0.49	9904292	-0.499045	23

Tabelle A.1: H-Pseudopotential, $Z_{\text{eff}} = 1.00$.

		7 00	n				
		Koeff.	<u>r"</u>	Exp.	368811		
	100	2.00000000 19.68737622	-1		4516233		
		17.20570338			3715264		
K C F						EM	EW EW
Konf. E _p			$E_{ps}-E_{re}$		EXps	EX _{ref}	EX _{ps} -EX _{ref}
\ /		86181334	-0.0001		0.0000	0.0000	0.0000
\ /		00010651	-0.0000		23.4528	23.4497	0.0031
\ / I		2867515 50003329	0.00009		19.9569 64.2745	19.9510 64.2714	0.0059 0.0032
\ /		05570349	0.00002		21.9407	21.9367	0.0040
\ / I		05683897	0.00005		21.9105	21.9058	0.0046
· / L		00001553	0.00057		64.2908	64.2718	0.0190
	.22221607 -0.2	22223406	0.00001		71.8349	71.8311	0.0037
m.a.A.		_	0.00011		_		0.0062
	Koeff.	Exp.	Koeff		Exp.		
	0.012425	0.077786	-0.00		0.228528		
	0.128251	0.161528	2.116		0.422019		
	0.282221	0.335425	-2.18		0.779333		
	0.292427	0.696535	1.545		1.439180		
	0.215025	1.446408	-0.87		2.657706		
	0.125450	3.003576	0.469		4.907934		
	0.064912	6.237154	-0.22		9.063386	0	
	0.038892	12.951926	0.098	422	16.73718)	
	0.002531	26.895662					
	v5z	vqz		vtz		vdz	
S	1.3243120909	0.937228			8684354	0.32174977	766
S	0.8769761920				1850993	-	
S	0.2940752208	0.229162	26930	-		-	
S	0.1165060326	-		-		-	
p	6.7410087585	3.888766			0276403	-	
p	2.6473402977	1.015491	17240	-		-	
p	0.8938497305	-		-		-	
d	1.8422782421	0.939402			7916565	-	
d	2.1752083302	3.054371	13570	-		-	
d	4.2855148315	-	70.60	-		-	
f	0.7497343421	1.021426	7969	-		-	
f	1.6320742369	-		-		-	
g	0.6236689687	-	220	-	00000	-	
E_{RHF}	-2.86193230	-2.86193			93228	-2.8619322	
E_{RCCSD}	-2.90278924	-2.90220	7/42	-2.898	372816	-2.8789336	0
ERCCSD	-2.90278924	-2.90220	142	-2.690	0/2810	-2.0709330	U

Tabelle A.2: He-Pseudopotential, $Z_{\text{eff}} = 2.00. \label{eq:Zeff}$

			Koeff.	r^n	Exp.			
		$V_{ m loc}$	1.000000	000 -1	5.410	40609		
			5.410400	609 1	2.705	20138		
			-4.60151	975 0	2.070	05488		
		V_s	7.09172			19829		
Konf.	E_{ps}	I	ref	$E_{ps}-E_{ret}$	f	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Li(0) 2s	1 -0.		0.19632329	-0.00000	263	0.0000	0.0000	0.0000
Li(0) 2p		12864798 -	0.12865564	0.000007		1.8417	1.8414	0.0003
Li(0) 3s		07379113 -	0.07380080	0.000009		3.3346	3.3342	0.0003
Li(0) 3p		05678489 -	0.05677357	-0.00001	132	3.7973	3.7976	-0.0002
Li(0) 4s		03847226 -	0.03847579	0.000003	353	4.2957	4.2955	0.0002
Li(0) 4p		03178780 -	0.03178117	-0.00000)663	4.4776	4.4777	-0.0001
Li(0) 5s		02356919 -	0.02357078	0.000001		4.7012	4.7011	0.0001
Li(0) 6p	1 -0.0	02027952 -	0.02027572	-0.00000	380	4.7908	4.7908	0.0000
m.a.A.				0.000003	585			0.0002
		Koeff.	Exp.	Koef	f.	Exp.		
		0.00784	1 0.0101	-0.00)5906	0.01830	00	
		0.25811	8 0.0234	137 -0.03	31422	0.03169	9	
		0.42330	0.0542	251 -0.04	13628	0.05490)8	
		0.16782	0.1255	581 -0.01	16781	0.09511	1	
		-0.0683			78594	0.16475	51	
		-0.1192				0.28537	79	
		0.00773	36 1.5576	559 -0.03	30830	0.49433	30	
		0.00363	3.6056	689 0.000	6185	0.85627	73	
		-0.0006	46 8.3464	194 -0.00	08621	1.48322	25	
		v5z	vqz		vtz		vdz	
_	S	0.02501034	74 0.0248	337202	0.02616	95627	0.103721	4994
	S	0.10491669	18 0.1097	699478	0.13225	85940	-	
	S	0.67068123	82 0.5196	933746	-		-	
	S	1.00488066	57 -		-		-	
	p	0.08104052	39 0.0706	615523	0.05295	86934	0.070391	0962
	p	0.13847008			0.11007	53173	-	
	p	0.40435484	0.2075	050026	-		-	
	p	0.80618357	56 -		-		-	
	d	0.06557383	39 0.0298	171379	0.06779	48073	0.110719	6212
	d	0.83575773			0.17713	97740	-	
	d	0.16178388		897218	-		-	
	d	0.98635029			-		-	
	f	0.15298765			0.18075	79398	-	
	f	0.42069789		232306	-		-	
	f	0.85674828			-		-	
	g	0.25447916		697767	-		-	
-	g	0.45749643			-		-	
	E_{RHF}	-0.19631469	-0.196	30709	-0.1960	9338	-0.19561	135

Tabelle A.3: Li-Pseudopotential, $Z_{\text{eff}} = 1.00$.

]	Koeff.	r ⁿ Ex	p.		
	V _{loc}	2.00000000	-1 4.5	8686001		
		9.17372003		9371778		
	-	-8.12599146	0 2.1	0401964		
	V_s	14.90499810	0 2.7	1723988		
Konf. E	E_{ps} E_{ref}	J	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Be(0) 2s2 -(0.96209619 -0.96	6186235 -	-0.00023384	0.0000	0.0000	0.0000
Be(0) 2p2 -(0.70767420 -0.70	0806862 (0.00039442	6.9236	6.9065	0.0171
Be(0) 3s2 -(0.38416419 -0.38	8410261 -	-0.00006158	15.7273	15.7226	0.0047
· / *			-0.00030950	17.3256	17.3277	-0.0021
Be(+) 2s1 -(0.00031133	8.0610	8.0461	0.0148
			-0.00000729	12.0420	12.0359	0.0062
· ·	0.26656426 -0.20	6652269 -	-0.00004157	18.9276	18.9223	0.0052
			-0.00062870	2.6106	2.6213	-0.0107
			0.00023997	7.0684	7.0555	0.0129
			0.00012952	6.1808	6.1709	0.0099
			0.00031122	6.5297	6.5149	0.0148
			-0.00043105	6.7868	6.7921	-0.0054
` /			0.00002325	18.1608	18.1539	0.0070
	0.69751609 -0.69		0.00031134	7.2000	7.1852	0.0148
m.a.A.		(0.00024533			0.0097
	Koeff.	Exp.	Koeff.	Exp.		
	0.025105	0.030068	0.735052	0.015064		
	0.178890	0.054002	-0.476214			
	0.263939	0.096986	0.564806	0.054236		
	0.435946	0.174186	-0.108575	0.102911		
	-0.008188	0.312836	0.233862	0.195269		
	0.049509	0.561850	-0.009003	0.370513		
	-0.114576	1.009077	0.067510	0.703030		
	-0.067207	1.812290	-0.002868	1.333967		
	0.017250	3.254852	0.017869	2.531139		
	v5z	vqz	vtz		vdz	
S	0.0127776721	0.0122870			0.239392359	6
S	0.1088069081	0.1753405		77346802	-	
S	0.2161571085	1.2443982	2363 -		-	
S	1.2072790861	- 0.2170611	1050 0.70	02720070	- 0.00000000000	0
p	0.0725610927	0.3170611			0.222969248	9
p	0.5017147064	1.5857391		51725471	-	
p	0.1844710410	0.1083456	6725 -		-	
p	2.1286723614	0.1050000	- 0.11	22400670	- 017220077	
d	0.0901748240	0.1252280			0.217339977	0
d d	0.7436531782	0.8010650		51981330	-	
d d	0.2384940684 0.9330005646	0.3016558	8588 -		-	
d f		0.1534388	- 9661 0.27	28413045	-	
f	0.1291404665 0.2991504371	0.1334386		20413043	-	
f	0.7390228510	0.5775550	5/10 -		-	
	0.7390228310	0.3388012	2350 -		_	
g	0.8634419441	-	2330 -		_	
g h	0.4090795517	-	_		-	
$\frac{1}{E_{RHF}}$	-0.96194198	-0.961844	- 147 -0.94	5172908	-0.95683779	
E _{RCCSD}		-1.009629			-1.00052493	
-kccsd	1.0077/021	1.00/029	-1.00	707301 7	1.00052775	

Tabelle A.4: Be-Pseudopotential, $Z_{\text{eff}} = 2.00$.

		K	loeff.		r^n	Exp	_		
			.00000000		-1		1423964		
		100	6.2127189		1		678458		
			11.866406		0		974455		
			5.4973762		0		781634		
Konf.	E _{ps}	E _{ref}		E _{ps} -	Erof		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
	-2.54368419		335029	-0.00		390	0.0000	0.0000	0.0000
. ,	-2.28330560		352418	0.000			7.0857	7.0707	0.0150
	-2.51941568		863868	-0.00			0.6604	0.6725	-0.0121
	-2.30787934		809906	0.000			6.4170	6.4019	0.0151
	-2.36657131		647153	-0.00	0099	78	4.8198	4.8134	0.0064
* *	-2.34809739		823642	0.000			5.3225	5.3097	0.0129
	-2.25171181		192926	0.000			7.9455	7.9305	0.0150
. ,	-1.61830563		743605	-0.00	0869	958	25.1824	25.1970	-0.0146
	-2.08026026	-2.08	093087	0.000	670	51	12.6112	12.5839	0.0273
	-0.50111588		023193	-0.00	0883	395	55.5846	55.5996	-0.0150
	-2.28330560		352417	0.000			7.0857	7.0707	0.0150
	-2.27190730		212535	0.000			7.3959	7.3809	0.0150
m.a.A.				0.000)405:	52			0.0149
	Koe	ff.	Exp.	I	Koeff	f.	Exp.		
	0.03	2031	0.040569	(0.019	909	0.029207	_	
	0.24	3317	0.081044	. ().141	775	0.058408		
	0.43	4636	0.161898	().294	463	0.116803		
	0.32	9581	0.323418	(0.309	028	0.233582		
	0.11	1875	0.646080	(0.236	378	0.467115		
	-0.0	78699	1.290648	().131	317	0.934132		
	-0.0	98781	2.578276	(0.066	454	1.868068		
	0.01	6164	5.150520	(0.021	248	3.735743		
	-0.0	00016	10.28899	0 (0.002	837	7.470701		
	v5z		vqz			vtz		vdz	
S	0.070	6637204	0.0829	67564	15	0.62	60258555	0.082513	1759
S		3959192	0.3051	33402	23	0.09	20944288	-	
S	0.375	7198751	0.4222	16653	88	-		-	
S	0.614	1052842	-			-		-	
p	0.0579	9174459	0.0664	44970)7		20555910	0.086803	1904
p		7718421	0.1966			0.23	50163311	-	
p		3273978	0.4470	31110)5	-		-	
p		5112900	-			-		-	
d		3382384	0.1490				73156983	0.3498786	6986
d		1634014	0.4107				91525292	-	
d		2333207	1.1426	13530)2	-		-	
d		2556591	-			-		-	
f		7168798	0.3159			0.47	88720906	-	
f		1740704	0.8700	11091	2	-		-	
f		1710396	-			-		-	
g		1306548	0.7107	46467	1	-		-	
g		3659735	-			-		-	
<u>h</u>		7786446	- 2.5422	75.450		- 2.5	1272507	- 2.542512	770
E _{RHI}		75616	-2.5437				1373587	-2.543712	
E _{RCCSE}	O(T) -2.619	40948	-2.6189	9/244		-2.0	1715904	-2.608984	104

Tabelle A.5: B-Pseudopotential, $Z_{\rm eff}=3.00$.

		Koeff.	r^n	Exp.			
	$V_{ m lc}$	c 4.0000000	00 -1	8.359	973821		
		33.438952	285 1	4.483	361888		
		-19.17537	7323 0	3.938	831258		
	V_s	22.55164	191 0	5.029	991637		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E$	ref	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
C(0) 2s2 2p2	-5.29996101	-5.2999555	5 -0.000	00546	0.0000	0.0000	0.0000
C(0) 2s1 2p3	-4.97712963	-4.9771903	4 0.0000	6071	8.7852	8.7834	0.0018
C(+) 2s2 2p1	-4.93248112	-4.9326196	1 0.0001	3849	10.0003	9.9963	0.0039
C(+) 2s1 2p2	-4.63731360	-4.6372906	0.000	02300	18.0327	18.0332	-0.0005
C(0) 2s2 2p1 3d1	-4.98851200	-4.9886542			8.4755	8.4715	0.0040
C(+) 2s2 3d1	-4.27735076	-4.2773882			27.8284	27.8272	0.0012
C(0) 2s2 2p1 3s1	-5.06148383	-5.0610897			6.4897	6.5003	-0.0106
C(0) 2s1 2p2 3d1	-4.69344633	-4.6934239			16.5051	16.5056	-0.0005
C(0) 2s2 3d2	-4.34981246	-4.3498504			25.8565	25.8553	0.0012
C(+) 2s2 4d1	-4.17717362	-4.1771652			30.5545	30.5546	-0.0001
C(0) 2s2 2p1 4d1	-4.96400223	-4.9641429			9.1425	9.1385	0.0040
C(-) 2s2 2p3	-5.28280657	-5.2827618			0.4668	0.4679	-0.0011
C(++) 2s2	-4.04902246	-4.0489711			34.0419	34.0432	-0.0012
m.a.A.			0.0000	7908			0.0023
	Koeff.	Exp.	Koe		Exp.	_	
	0.0139			1787	0.029281		
	0.1698			0426	0.058547		
	0.3975			1634	0.117063		
	0.3803			2667	0.234064		
	0.1801			9868	0.468003		
	-0.033			0979	0.935757		
	-0.121			2024	1.871016		
	0.0151			4425	3.741035		
	-0.000	705 13.073	594 0.02	1931	7.480076		
	v5z	vqz		vtz		vdz	
S	0.09830		95764115		5523005	0.12785179	91
S	0.23203		58788862	0.132	7997744	-	
S	0.74444		96589828	-		-	
S	1.00991			-		-	
p	0.08404		53893492		7722398	0.14916118	98
p	0.21661		32538199		7423034	-	
p	0.57686		46809435	-		-	
p	1.00625		2454502	-	1055110	-	10
d	0.20661		01711792		4857442	0.56116050	48
d	0.60693		48838925		6109800	-	
d	1.00152		37596130	-		-	
d	1.50488		72020025	-	4051027	-	
f	0.40057		73020935		4851837	-	
f	1.09956		49300718	-		-	
f	1.50109		11001642	-		-	
g	0.79764		41801643	-		-	
g	1.40134			-		-	
h	1.00170 -5.32903		0002007	5 22	001101	5 2200007	
E _{RHF}			2902887 3148557		901101 735119	-5.3289897 -5.4092295	
$E_{RCCSD(}$	1) 3.4324	-5.45	1 10331	5.72	, 55117	J. TO / LL / J.	_

Tabelle A.6: C-Pseudopotential, $Z_{\text{eff}} = 4.00$.

		Koeff.	r^n	Exp.			
	V_{loc}	5.00000000	-1		501007		
	, 100	46.17505034	1		830008		
		-30.18893534			486070		
	V_s	31.69720409	0		536540		
Konf.	Eps	E _{ref}	E _{ps} -E		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
N(0) 2s2 2p3	-9.56331204	-9.56340868	0.0000		0.0000	0.0000	0.0000
N(+) 2s2 2p1 4d1	-8.21130860	-8.21153863	0.0002		36.7922	36.7886	0.0036
N(0) 2s1 2p4	-9.08380377	-9.08387676	0.0000		13.0489	13.0496	-0.0006
N(++) 2s2 2p1	-8.08322107	-8.08340870	0.0001		40.2779	40.2754	0.0025
N(+) 2s2 2p1 3d1	-8.31125530	-8.31152326	0.0002		34.0723	34.0677	0.0047
N(-) 2s2 2p4	-9.56113013	-9.56137145	0.0002	4132	0.0594	0.0554	0.0039
N(+++) 2s2	-6.35004495	-6.34993962	-0.000		87.4430	87.4485	-0.0055
N(+) 2s2 2p2	-9.11482173	-9.11489046	0.0000	6873	12.2048	12.2056	-0.0008
N(0) 2s2 2p2 3d1	-9.17072902	-9.17080061	0.0000	7159	10.6834	10.6841	-0.0007
N(0) 2s2 2p2 3s1	-9.25645996	-9.25591688	-0.000		8.3504	8.3678	-0.0174
N(0) 2s2 2p2 4p1	-9.16050763	-9.16000063	-0.000	50700	10.9616	10.9780	-0.0164
N(0) 2s2 2p2 4d1	-9.14627441	-9.14634481	0.0000	7040	11.3489	11.3496	-0.0007
m.a.A.			0.0002				0.0052
	Koeff.	Exp.	Koef	f.	Exp.		
	0.067266		0.035	758	0.073234		
	0.334290	0.211443	0.153	3945	0.145867		
	0.454257	0.452197	0.277		0.290535		
	0.267861	0.967080	0.297	676	0.578683		
	0.000248	2.068221	0.234	403	1.152612		
	-0.13260	6 4.423150	0.140	321	2.295756		
	0.014437	9.459462	0.067	219	4.572652		
	0.000359	20.230246	0.031	594	9.107739		
	-0.000094	4 43.264919	0.003	301	18.140657		
	v5z	vqz		vtz		vdz	
s	0.1153204				21834850	0.17512328	92
S	0.2866320			0.163	32434130	-	
S	0.7020109)9537	-		-	
S	1.5322210			-		-	
p	0.1206012				01041162	0.22304169	83
p	0.3226971				75471306	-	
p	0.9785376		99266	-		-	
p	1.2727590			-		-	~=
d	0.3055789				35671186	0.83205842	97/
d	0.8914360				24160528	-	
d	1.5425320		58337	-		-	
d	2.7981219		2269	1.000	20066120	-	
f f	0.5876757			1.093	30966139	-	
f	1.5929669 2.4430449		00004	-		-	
	1.0386372		235/10	-		-	
g	2.8420183		23347	-		-	
g h	2.2725424			-		-	
E _{RHF}	-9.668376		630	-9 66	837630	-9.66837630)
E _{RCCSD(}					040203	-9.76029001	
~kCCSD(1) ',''	27100		,		002,000	-

Tabelle A.7: N-Pseudopotential, $Z_{\text{eff}} = 5.00$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Koeff.	r^n	Exp.			
Nonle N		V_{loc}		-1		93903		
Nor N		loc		1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$V_{\rm s}$						
O(O) 252 2p4 -15.66511094 -15.66511451 0.000008572 0.0000 0.00000 0.0000 O(+) 252 2p3 -15.12945044 -15.12953576 0.0000832 14.5770 14.5748 0.00022 O(+) 250 2p5 -13.72058853 -13.72058853 0.00000307 52.9166 52.9166 0.0000 O(O) 252 2p3 3d1 -15.18236518 -15.18352631 0.00003086 40.6239 40.6232 0.0007 O(O) 252 2p3 3d1 -15.19230245 -15.19215547 -0.0014698 12.8666 12.8707 -0.0041 O(O) 252 2p3 3d1 -15.1693727 -14.07273637 -14.07273886 0.0000249 43.3334 43.3335 0.0000 O(+) 252 2p3 4d1 -15.16085083 -15.16093722 0.00008639 13.7225 13.7205 0.0022 O(++) 252 2p2 -15.68539873 -15.68539873 -15.693722 0.00006344 46.8110 46.8110 -0.05523 0.0002 O(++) 252 2p2 -15.16953141 10.125346 0.049498 10.82534 46.8110 46.8110 -0.04948	Konf. E ₁		E_{ref}	$E_{ps}-E$	Eref	EX_{ps}	EX_{ref}	EX _{ps} -EX _{ref}
O(+) 222 p3 -15.12945044 -15.12953576 0.000008522 14.5770 14.5748 0.0002 O(+) 20 2p5 -13.72058553 -13.72058850 0.0000007 52.9166 52.9166 0.0000 O(0) 252 2p3 3d1 -15.18526518 -15.18535231 0.00008713 13.0581 13.0558 0.0023 O(0) 252 2p3 3d1 -14.17230443 -14.127233529 0.0000386 40.6239 40.6232 0.007 O(0) 252 2p3 2d2 -14.24467443 -14.27273886 0.0000249 43.3334 43.3335 0.0000 O(0) 252 2p3 4d1 -15.16085083 -15.16093722 0.00008639 13.7225 13.7202 0.0022 O(+) 252 2p5 -15.68539873 -15.168541143 0.00001270 -0.5521 -0.5523 0.0002 O(+) 252 2p5 -15.0853893 -15.1769852 -0.0001575 13.2952 13.2996 -0.0010 O(0) 252 2p3 4p1 -15.17655340 0.15753 15.06851143 0.00004833 -0.00044 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
O(+) 2s0 2p5		5.12945044	-15.12953576	0.0000	08532	14.5770	14.5748	0.0022
O(f) 2s2 2p3 3d1								
O(+) 2s2 2p2 3d1 -14.17230443 -14.17233529 0.00003086 40.6239 40.6232 0.0007 O(0) 2s2 2p3 4s1 -15.19230245 -15.19215547 -0.00014698 12.8665 12.8707 -0.0041 O(0) 2s2 2p3 2d2 -14.24476743 -14.24470256 0.000002813 38.6545 38.6538 0.0007 O(+) 2s2 2p3 4d1 -15.16085083 -15.16093722 0.0000839 13.7225 13.7202 0.0023 O(-) 2s2 2p5 -15.668539873 -15.6854143 0.00001270 -0.5521 -0.5523 0.0002 O(+) 2s2 2p2 -13.94494662 -13.94491418 -0.00003244 46.8110 46.8120 -0.0010 O(0) 2s2 2p3 4p1 -15.17655340 -15.17639582 -0.00015758 13.2952 13.2996 -0.0044 ma.A. Koeff. Exp. Koeff. Exp. 0.0044878 0.0044988 0.083598 13.2952 13.2996 -0.0044 ma.A. Koeff. Exp. Koeff. Exp. 0.00466627 0.0046679 0.2186677 0.004679 0.218797								
O(0) 2s2 2p3 4s1								
O(0) 2s2 2p2 3d2								
O(+) 2s2 2p2 4d1 -14.07273637 -14.072736880 0.00000249 43.3334 43.3335 0.0000 O(0) 2s2 2p5 -15.0685083 -15.16093722 0.00008639 13.7225 13.7202 0.0002 O(+) 2s2 2p5 -15.68539873 -15.68541143 0.00001270 -0.5521 -0.5523 0.0001 O(0) 2s2 2p3 4p1 -15.17655340 -15.17639582 -0.00015758 13.2952 13.2996 -0.0014 m.a.A. Koeff. Exp. Roeff. Exp. 0.00004833 0.0014 m.a.A. Koeff. Exp. Roeff. Exp. 0.0004833 0.0014 m.a.A. Koeff. Exp. Roeff. Exp. 0.0004833 0.0014 m.a.A. Koeff. Exp. Roeff. Exp. 0.0014 0.0014 m.a.A. Koeff. Exp. Roeff. Exp. 0.004679 0.004833 0.004679 0.004679 0.004679 0.004679 0.004679 0.004679 0.004679 0.004679 0.004679 0.004679 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
O(0) 2s2 2p3 4d1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
O(++) 2s2 2p2	· · ·							
Mar.a. Color Mar.a.								
Name								
0.055741								
0.055741		Koeff.	Exp.			Exp.		
0.304848 0.268022 0.150175 0.167017 0.453752 0.573098 0.255999 0.333673 0.295926 1.225429 0.281879 0.666627 0.019567 2.620277 0.242835 1.331816 -0.128627 5.602818 0.161134 2.660761 0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 v5z vqz vtz vdz s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 1.9375319481 p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 p 1.5899670124 d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 d 4.2924332619 f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 g 1.2076574564 1.7590808868 g 3.5844948292 h 2.6158180237							_	
0.453752 0.573098 0.255999 0.333673 0.295926 1.225429 0.281879 0.666627 0.019567 2.620277 0.242835 1.331816 -0.128627 5.602818 0.161134 2.660761 0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 v5z								
0.295926 1.225429 0.281879 0.666627 0.019567 2.620277 0.242835 1.331816 -0.128627 5.602818 0.161134 2.660761 0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 vyz vtz vdz s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - s 0.9351574183 1.3517711163 - - s 0.9351574183 1.3517711163 - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d								
0.019567 2.620277 0.242835 1.331816 -0.128627 5.602818 0.161134 2.660761 0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 v5z								
-0.128627 5.602818 0.161134 2.660761 0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 V5z								
0.012024 11.980245 0.082308 5.315785 0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 v5z vqz vtz vdz s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
0.000407 25.616801 0.039899 10.620108 -0.000076 54.775216 0.004679 21.217318 v5z vqz vtz vdz s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - s 1.9375319481 - - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.5899670124 - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 3.5844948292 - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
-0.000076 54.775216 0.004679 21.217318 \[\begin{array}{c ccccccccccccccccccccccccccccccccccc								
v5z vqz vtz vdz s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 3.2237207890 - - - g 3.5844948292 - -								
s 0.1606644243 0.2243797332 1.6866325140 0.2585512698 s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 1.2076574564 1.7590808868 - - g 3.5844948292 - - - h 2.6158180237 - </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>vdz</td> <td></td>		_					vdz	
s 0.3845260143 0.8431569934 0.2379974425 - s 0.9351574183 1.3517711163 - - s 1.9375319481 - - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 1.2076574564 1.7590808868 - - g 3.5844948292 - - - h 2.6158180237 - - -	S					5325140		_
s 0.9351574183 1.3517711163 - - s 1.9375319481 - - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 1.2076574564 1.7590808868 - - g 3.5844948292 - - - h 2.6158180237 - - -								
s 1.9375319481 - - - p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 1.2076574564 1.7590808868 - - g 3.5844948292 - - - h 2.6158180237 - - -					-		_	
p 0.1305795759 0.1485616565 0.1846960783 0.2678647935 p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 1.2076574564 1.7590808868 - - g 3.5844948292 - - - h 2.6158180237 - - -					_		_	
p 0.3726736009 0.4523644447 0.6006211638 - p 1.1782265902 1.1067368984 p 1.5899670124 d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 d 4.2924332619 f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 g 1.2076574564 1.7590808868 g 3.5844948292 h 2.6158180237				6565	0.1846	5960783	0.2678647935	
p 1.1782265902 1.1067368984 - - p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 3.2237207890 - - - g 3.5844948292 - - - h 2.6158180237 - - -							-	
p 1.5899670124 - - - d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - - d 4.2924332619 - - - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - - g 3.2237207890 - - - g 3.5844948292 - - - h 2.6158180237 - - -							_	
d 0.4011517763 0.4557114840 0.6693398952 1.2327529192 d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 - d 4.2924332619 - f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 - f 3.2237207890 - g 1.2076574564 1.7590808868 - g 3.5844948292 - h 2.6158180237 -					-		_	
d 1.1745959520 1.3443310261 2.4042782784 - d 2.8239715099 4.0088672638 d 4.2924332619 f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 f 3.2237207890 g 1.2076574564 1.7590808868 g 3.5844948292 h 2.6158180237				4840	0.6693	3398952	1.2327529192	
d 2.8239715099 4.0088672638							-	
d 4.2924332619							_	
f 0.7086655498 0.8762892485 1.4231042862 - f 2.0067875385 2.7631149292 f 3.2237207890 g 1.2076574564 1.7590808868 g 3.5844948292 h 2.6158180237					-		_	
f 2.0067875385 2.7631149292				2485	1.4231	042862	_	
f 3.2237207890					-		-	
g 1.2076574564 1.7590808868					-		-	
g 3.5844948292 h 2.6158180237				8868	-		-	
h 2.6158180237					_		-	
E _{RHF} -15.70844748 -15.70838239 -15.70800126 -15.70594174					-		-	
	$\overline{E_{RHF}}$	-15.708447	748 -15.70838	3239	-15.70	800126	-15.70594174	
$E_{RCCSD(T)}$ -15.90165954 -15.89702107 -15.88204483 -15.82978982		-15.901659	954 -15.89702	2107	-15.88	204483	-15.82978982	

Tabelle A.8: O-Pseudopotential, $Z_{\text{eff}} = 6.00$.

		Koeff.	r^n Exp	o.		
	$V_{ m loc}$	7.00000000	-1 11.	39210685		
		79.74474797	1 10.	74911370		
		-49.45159098	0 10.	45120693		
	V_s	50.25646328	0 11.	30345826		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
\ / I	-23.93644643	-23.93656293	0.0001165	0.0000	0.0000	0.0000
	-23.30745966	-23.30765463	0.0001949			0.0021
	-21.96423450	-21.96427921	0.0000447			-0.0020
	-23.47150900	-23.47075672	-0.000752			-0.0236
· · ·	-23.36320791	-23.36340399	0.0001960			0.0022
\ / I	-23.33882203	-23.33901765	0.0001956			0.0022
\ / I	-22.19085086	-22.19093616	0.0000853			-0.0008
\ / I	-23.98622131	-23.98629276	0.0000714			-0.0012
	-23.41094854	-23.41089479	-0.000053			-0.0046
	-22.09166199	-22.09172964	0.0000676			-0.0013
	-23.35579740	-23.35591261	0.0001152			0.0000
F(0) 2s2 2p3 4d2 m.a.A.	-22.14097533	-22.14104733	0.0000720		46.6013	-0.0012 0.0037
III.a.A.	IZ CC	F				0.0037
	Koeff.	Exp.	Koeff.	Exp.	_	
	0.070240 0.311088		0.035321 0.136924	0.101001 0.204414		
	0.311086		0.130924	0.204414		
	0.28701		0.249333	0.413707		
	0.018759		0.254541	1.694565		
	-0.12860		0.169572	3.429580		
	0.009104		0.088542	6.941026		
	0.000810		0.039843	14.047737		
	-0.00013		0.003378	28.430799		
	v5z	vqz	vtz		vdz	
S	0.191145		7530 2.2	897946835	0.3445686102	_
S	0.4596968			277123570	-	
S	1.2502640	6446 1.705653	0714 -		-	
S	2.5424275	5398 -	-		-	
p	0.1705740	0.205805	4954 0.2	436602414	0.3648308814	
p	0.4890188	3277 0.647240	1619 0.8	041814566	-	
p	1.5050853	3491 1.650688	0522 -		-	
p	2.018697	7386 -	-		-	
d	0.5177113			007633924	1.7224791050	
d	1.5233050			974252701	-	
d	3.901896		0220 -		-	
d	5.6035814		- 4050	500505010	-	
f	0.9814930			592737913	-	
f	2.950321		9159 -		-	
f	4.297888		- 0709		-	
g	1.6389334				-	
g h	4.619953 2.9631260		-		-	
				.93822383	-23.93701901	_
E _{RHF}				.16320374	-24.09250571	
E_{RCCSD}	(T) -27.1929C	-27.103/	-24	.10320377	27.07230371	

Tabelle A.9: F-Pseudopotential, $Z_{\text{eff}} = 7.00$.

		Koeff.	r^n	Exp.			
	$V_{ m loc}$	8.00000000	-1	10.7494	5199		
		85.99561593	1	10.1980	1460		
		-56.79004456	0	10.1869	4048		
	V_s	55.11144535	0	12.8504			
Konf.	E_{ps}	E_{ref}		-E _{ref}	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Ne(0) 2s2 2p6	-34.70906178	-34.70946473		040295	0.0000	0.0000	0.0000
Ne(+) 2s2 2p5	-33.98062448	-33.98073347		010899	19.8230	19.8310	-0.0080
Ne(++) 2s2 2p4	-32.47228399	-32.47263531		035132	60.8697	60.8711	-0.0014
Ne(0) 2s2 2p5 3s1	-34.15443892	-34.15368619		0075273	15.0930	15.1245	-0.0314
Ne(0) 2s2 2p5 4s1	-34.04875376	-34.04862835		0012541	17.9690	17.9834	-0.0144
Ne(0) 2s2 2p5 3p1	-34.08735830	-34.08738023		002193	16.9185	16.9288	-0.0104
Ne(0) 2s2 2p5 4p1	-34.03004640	-34.03012566		007926	18.4781	18.4869	-0.0088
m.a.A.	TT 00	-		026323	i		0.0124
	Koeff.	Exp.	Koeff		xp.		
	0.057514		0.029		.121772		
	0.215776		0.114		.238248		
	0.374799		0.219		.466136		
	0.326313		0.268		.912002		
	0.166383 -0.03914		0.256		.784344 .491095		
	-0.03914		0.191		.830378		
	0.006816		0.112		3.363732		
	0.000310		0.003		6.146332		
	l v5z	vqz	0.000	vtz	0.140332 Vd	7	
s	0.3186783		2833	0.31776		4553833902	_
s	0.8301777			0.53455		+333033702	
s	1.5919038			-	-		
s	2.7449991		, 0.10	_	_		
p	0.2182259		4458	0.29466	553962 0.4	4722239077	
p	0.6369207			0.96212	263146 -		
p	1.8881905	079 1.938376	1883	-	_		
p	3.0201077	461 -		-	-		
d	0.6549243	927 0.738130	8675	1.13406	525286 2	3715329170	
d	1.9315017	462 2.188750	9823	4.16143	70346 -		
d	5.0275664	330 6.170223	7129	-	-		
d	6.9897003	174 -		-	-		
f	1.3142967			2.55675	10128 -		
f	4.0659275		9508	-	-		
f	5.5874872			-	-		
g	2.0709245		9058	-	-		
g	6.0731072			-	-		
<u>h</u>	3.7431175			-	-		_
E _{RHF}	-34.70905			-34.709		4.70905909	
E_{RCCSD}	(T) -35.02753	445 -35.01756	5588	-34.976	23249 -3	4.90030482	

Tabelle A.10: Ne-Pseudopotential, $Z_{\text{eff}} = 8.00$.

				Koeff.		r^n	Exp			
			V_{loc}	1.0000000		-1		838717		
				5.3583871		1		918975		
				-2.077647		0		507673		
			V_s	10.696402		0		389367		
V£	Е		V_p	10.112388		0		052020	EV	EV EV
Konf.		rps	E _{ref}	217000		$-E_{ref}$		EXps	EX _{ref}	$EX_{ps}-EX_{ref}$
Na(0) 3: Na(0) 3:		0.18214394 0.10946887		8216089 0944886		00016 00002		0.0000 1.9777	0.0000 1.9787	0.0000 -0.0010
Na(0) 3		0.05557379		5566681		00002		3.4444	3.4423	0.0021
Na(0) 4:		0.07022304		7016453		00005		3.0457	3.0478	-0.0021
Na(0) 4		0.05027656		5032317		00046		3.5885	3.5877	0.0008
Na(0) 4		0.03126079		3131531		00054		4.1060	4.1050	0.0010
Na(0) 5		0.03708731		3705939		00002		3.9474	3.9487	-0.0012
Na(0) 5	p1 -(0.02890297	-0.02	2893236	0.00	00029	39	4.1702	4.1698	0.0003
Na(0) 6		0.02289518	-0.02	2288060	-0.0	00001	458	4.3337	4.3345	-0.0009
m.a.A.					0.00	00040	17			0.0012
		Koef	f.	Exp.		Koef	f.	Exp.		
		0.200	0118	0.013061	1	-0.00	2840	0.0025	93	
		0.46		0.030041		0.003		0.0067		
		0.22		0.069092			25936	0.0175		
			51581	0.158908			3466	0.0455		
			37533	0.365481			3691	0.1184		
		0.003		0.840589		0.014		0.3079		
		0.003		1.933315		0.000		0.8007		
		0.00	01117	4.446533 10.22681		0.000	1026	2.0818 5.4126		
		v5z	J277	vqz	10		/tz	3.4120	vdz	
•	S	0.063998	36545	0.06491:	50983			536817	0.865134	9545
	s	0.414207		1.13445				507259	-	7545
	s	0.848057		0.77104				20,20,	-	
	s	1.097178		-		_			_	
	p	0.062026	55976	0.05966	15188	8 (0.0894	062072	0.106025	2786
	p	0.098642	29453	0.09671	42650	6 (.6192	734241	-	
	p	0.404379	91294	0.55297	59520	6 -			-	
	p	0.845826		-		-			-	
	d	0.058124		0.04691				195387	0.050789	6133
	d	0.824576		0.81386				142045	-	
	d	0.131674		0.127780	02883	5 -			-	
	d	0.979693		0.12000	2007	-	1224	020624	-	
	f f	0.112793		0.129992				020624	-	
	f	0.429471		0.626429	7478 <i>2</i>				-	
		0.848460		0.588778	80784	- 6 -			-	
	g g	0.263079		-	50780	- -			-	
•	E _{RHF}	-0.18203		-0.18198	8001		0.181	79948	-0.174220	652.
	-KHF	1 0.10203	273	0.10170	,,,,,,		0.101	10	3.17 122	

Tabelle A.11: Na-Pseudopotential, $Z_{\text{eff}} = 1.00$.

		Koeff.	r^n Exp.			
	V_{lc}			537898		
		8.97075796		268949		
		-7.7215340		710474		
	V_s	15.0784804		188656		
	V_p	12.3788838	33 0 1.42	757357		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Mg(0) 3s2	-0.78473668	-0.78492232	0.00018564	0.0000	0.0000	0.0000
Mg(0) 3p2	-0.54033947	-0.54006283	-0.00027664	6.6508	6.6634	-0.0126
Mg(0) 3d2	-0.29724496	-0.29721093	-0.00003403	13.2662	13.2721	-0.0060
Mg(0) 4s2	-0.33464138	-0.33432613	-0.00031525	12.2485	12.2621	-0.0136
Mg(0) 4p2	-0.26266545	-0.26329690	0.00063145	14.2072	14.1950	0.0121
Mg(+) 3s1	-0.54165686	-0.54176142	0.00010456	6.6150	6.6172	-0.0022
Mg(+) 3p1	-0.38350769	-0.38388900	0.00038131	10.9187	10.9134	0.0053
Mg(+) 4s1	-0.23197614	-0.23173662	-0.00023952	15.0423	15.0539	-0.0116
Mg(0) 3s1 3p1	-0.69210164	-0.69150132	-0.00060032	2.5209	2.5423	-0.0214
Mg(0) 3s1 3d1	-0.59898754	-0.59908719	0.00009965	5.0548	5.0571	-0.0023
Mg(0) 3s1 4f1	-0.57292336	-0.57302848	0.00010512	5.7641	5.7663	-0.0022
Mg(0) 3s1 4p1	-0.60013322	-0.60015812	0.00002490	5.0236	5.0280	-0.0044
Mg(0) 3s1 4d1	-0.57383651	-0.57393849	0.00010198	5.7392	5.7415	-0.0023
m.a.A.		_	0.00023849	_		0.0080
	Koeff.	Exp.	Koeff.	Exp.	_	
	0.1652			0.047055		
	0.5062			0.083253		
	0.3331			0.147298		
	0.0574			0.260611		
	-0.137			0.461094		
	-0.135			0.815803		
	0.0483			1.443383		
	-0.005			2.553745		
	0.0004			4.518286		
	v5z	vqz	vtz	1501065	vdz	
S	0.0235027			4531265	0.16237023	47
S	0.0612006			9600897	-	
S	0.7648849		50366 -		-	
S	1.0542905		- 70426 - 0.1266	174516	- 0.10160204	7.4
p	0.0823858			9174516	0.12168324	/4
p	0.1779314			9645529	-	
p	0.3854508 0.8332393		86802 -		-	
p	0.8332393		- 61420 0.0057	7336873	0.13552574	01
d d	0.1020383			5717764	0.13332374	61
d d	0.8133280			0/1//04	-	
d	0.2228340		22313 -		-	
f	0.1416905		- 40188 - 0.1484	5193521	-	
f	0.141090.			11/00/41	_	
f	0.4234408		0)0 1 / -		_	
	0.1711102		- 15604 -		_	
g	0.4384593		-		_	
g h	0.3609371		-		-	
E _{RH}			- 3591 -0.784	57891	-0.78432364	1
E _{RCC}				09520	-0.7843230	
-RCC:	SU 0.017073	0.0170.	20,0 0.01)	0,520	0.0100570.	,

Tabelle A.12: Mg-Pseudopotential, $Z_{\text{eff}} = 2.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	3.00000000	-1 3.073	301275		
	!	9.21903825	1 9.970)55633		
		-9.65888637	0 2.641	134660		
		17.16680112		284747		
	V_p	14.22120694	0 1.793	397208		
	E_{ps} E_{ref}		$-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
			0005344	0.0000	0.0000	0.0000
` /			0014662	4.6064	4.6039	0.0025
() · · · · I			00024990	0.2541	0.2623	-0.0083
\ /			0016014	3.9159	3.9130	0.0029
			00010543	2.8428	2.8471	-0.0043
			00001662	4.6204	4.6223	-0.0019
· ·			0012915	5.4917	5.4897	0.0021
` /			00067023	16.5038	16.5235	-0.0197
` / I			0017812	10.1392	10.1358	0.0034
			0003783	37.1936	37.1941	-0.0004
` '			0013949	29.8651	29.8627	0.0023
	1.69768525 -1.69		0013895	4.9280	4.9256	0.0023
m.a.A.	77 00		0016883	-		0.0046
	Koeff.	1	Koeff.	Exp.	_	
	0.206193		0.009932	0.014848		
	0.559887		0.160212	0.030967		
	0.407852		0.389171	0.064586		
	-0.041098		0.373235	0.134700		
	-0.238652		0.195800	0.280932		
	0.038132 -0.003935		0.022947 -0.053293	0.585913 1.221985		
	0.003933		0.0033293	2.548578		
	-0.000470		-0.000726	5.315330		
	v5z	vqz	vtz	3.313330	vdz	
s	0.0564151853			3029734	0.04402420	067
s s	0.0504131833			.0094988	-	JO 7
S	0.3320414126			.0074700	_	
s	0.7253430486		-		_	
p	0.0339491963		32 0.035	66070139	0.20663052	280
p	0.0831539184			08008516	-	
p	0.2513601482				_	
p	0.3144221306		-		-	
d	0.0886515006		807 0.115	5397296	0.19307868	318
d	0.2412158400			00824306	-	
d	0.5751293302				-	
d	0.9891273379) -	-		-	
f	0.1485979408	0.16090895	524 0.254	8379898	-	
f	0.3748500347	0.40928509	983 -		-	
f	0.7810059190) -	-		-	
g	0.2595482171	0.35202687	798 -		-	
g	0.5613806248	3 -	-		-	
h	0.3287312984		-		-	
E_{RHF}	-1.87884869	-1.8788471		882934	-1.8787859	
E_{RCCSD}	-1.93829808	-1.9379368	7 -1.93	650330	-1.9293815	5

Tabelle A.13: Al-Pseudopotential, $Z_{\text{eff}} = 3.00$.

		Koeff.	r^n Exp			
	$V_{ m loc}$	4.00000000		721061		
	loc	7.22884246		633089		
		-13.06725590		043232		
	V_s	21.20531613		6686403		
	V_p	15.43693603	0 2.11	659661		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Si(0) 3s2 3p2	-3.65847371	-3.65841383	-0.00005988	0.0000	0.0000	0.0000
Si(0) 3s1 3p3	-3.40295584	-3.40282527	-0.00013057	6.9534	6.9554	-0.0019
Si(+) 3s2 3p1	-3.39711133	-3.39730951	0.00019818	7.1125	7.1055	0.0070
Si(+) 3s1 3p2	-3.14346843	-3.14354490	0.00007647	14.0149	14.0112	0.0037
Si(0) 3s2 3p1 3d1	-3.45616623	-3.45637666	0.00021043	5.5054	5.4981	0.0074
Si(+) 3s2 3d1	-3.07203313	-3.07201789	-0.00001524	15.9589	15.9577	0.0012
Si(0) 3s2 3p1 4s1	-3.50558111	-3.50531732	-0.00026379	4.1607	4.1662	-0.0055
Si(0) 3s1 3p2 3d1	-3.20413970	-3.20419028	0.00005058	12.3638	12.3608	0.0030
Si(0) 3s2 3d2	-3.14472239	-3.14475670	0.00003431	13.9808	13.9782	0.0026
Si(+) 3s2 4d1	-2.95863951	-2.95848879	-0.00015072	19.0447	19.0471	-0.0025
Si(0) 3s2 3p1 4d1	-3.43029477	-3.43049916	0.00020439	6.2095	6.2023	0.0072
Si(-) 3s2 3p3	-3.66547601	-3.66519773	-0.00027828	-0.1906	-0.1846	-0.0059
Si(++) 3s2	-2.82060736	-2.82044740	-0.00015996	22.8009	22.8037	-0.0027
m.a.A.			0.00013091			0.0039
	Koeff.	Exp.	Koeff.	Exp.		
	0.167492		0.078761	0.036525		
	0.532550		0.308331	0.076137		
	0.464290		0.417773	0.158712		
	-0.00232		0.281676	0.330843		
	-0.26823		0.069876	0.689658		
	0.031921		-0.056306	1.437625		
	-0.00010		0.000744	2.996797		
	-0.00014: 0.000067		-0.000259 -0.000022	6.246966 13.022097	,	
	v5z	29.724387 VQZ	-0.000022 vtz	13.022097	vdz	
s	0.0755004			01125446	0.05980303	88
S	0.1964589			74667931	-	
S	0.4240361				_	
S	0.9204862		-		-	
p	0.0481361	486 0.054575	52458 0.056	61475307	0.08157000	69
p	0.1158127	7189 0.599111	17954 0.14	67576474	-	
p	0.2385939	0.134680	08225 -		-	
p	0.4969183	3207 -	-		-	
d	0.1279451	1698 0.133117	75119 0.170	03945845	0.28362566	23
d	0.3530958	3891 0.350967	73774 0.539	97555828	-	
d	0.8054256	5439 1.063961	10291 -		-	
d	1.2476954		-		-	
f	0.1728756			29990613	-	
f	0.4022081		18256 -		-	
f	0.8330814		-		-	
g	0.2998851		51118 -		-	
g	0.6470540		-		-	
<u>h</u>	0.5575420		- 2.65	1065262	2 (70(17(
E_{RHF}				7865262	-3.67861760	
E_{RCCSD}	(T) -3.766703	89 -3.76584	·303 -3./(5254290	-3.74734368)

Tabelle A.14: Si-Pseudopotential, $Z_{\text{eff}} = 4.00$.

		Koeff.	r^n I	Exp.		
	$V_{ m loc}$	5.00000000	-1 2	2.02622810		
		10.13114051	1 9	0.95970113		
		-14.94375088	3 0 2	2.74841795		
	V_s	23.62479480	0 2	2.60470698		
	V_p	18.18547203	0 2	2.54957900		
Konf. E _p	s	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
P(0) 3s2 3p3 -6.	28748466	-6.28757768	0.0000930	0.0000	0.0000	0.0000
P(+) 3s2 3p1 4d1 -5.	42939837	-5.42943843	0.0000400	06 23.3512	23.3526	-0.0014
P(0) 3s1 3p4 -5.	93671750	-5.93660883	-0.000108	9.5455	9.5510	-0.0055
P(++) 3s2 3p1 -5.	28458638	-5.28455523	-0.000031	15 27.2920	27.2954	-0.0034
P(+) 3s2 3d2 -5.	08734767	-5.08734068	-0.000006	699 32.6594	32.6622	-0.0027
P(-) 3s2 3p4 -6.	31767765	-6.31770726	0.0000296		-0.8199	-0.0017
P(+) 3s1 3p3 -5.	61625513	-5.61631862	0.0000634	19 18.2662	18.2670	-0.0008
\ / I	96279363	-5.96299387	0.0002002		8.8329	0.0029
\ / I	02214063	-6.02236381	0.000223		7.2173	0.0035
\ / I	08104614	-6.08049654	-0.000549		5.6353	-0.0175
P(0) 3s2 3p2 5p1 -6.	00304195	-6.00288642	-0.000155	553 7.7406	7.7473	-0.0068
P(0) 3s2 3p2 4d1 -5.	99621167	-5.99642462	0.0002129		7.9232	0.0033
m.a.A.			0.0001428	37		0.0045
	Koeff.	Exp.	Koeff.	Exp.		
	0.140225	0.074718	0.072093		<u></u>	
	0.506746	0.160834	0.27873	5 0.102391		
	0.499893	0.346202	0.411034	4 0.208669		
	0.037301	0.745215	0.30472	4 0.425256		
	-0.284591	1.604109	0.09172	7 0.866651		
	0.024766	3.452917	-0.05706			
	0.001798	7.432561	-0.00510			
	-0.000314		0.000328			
	0.000088	34.438408	-0.00004	14.949217		
	v5z	vqz		tz	vdz	
S	0.0820922			.1152884141	0.077260367	76
S	0.1955251			.6460656524	-	
S	0.4347672		74031 -		-	
S	1.0275727		-		-	
p	0.0741592			.0765682608	0.113433323	38
p	0.1893819			.2003012151	-	
p	0.4707975)8477 -		-	
p	0.8156774		-	22.45.4200.62	- 0.200044203	1.5
d	0.1678004			.2345429063	0.390944391	15
d	0.4573073			.7532989383	-	
d	1.0216501		52219 -		-	
d f	1.5987195		-	4697610200	-	
	0.2147512			.4687619209	-	
f f	0.4823797		11528 -		-	
	0.9849660 0.4064842		-		-	
g	0.4064842		+1011 -		-	
g h	0.9243073		-		_	
$\frac{11}{E_{RHF}}$	-6.3590750		507	5.35907507	-6.35907507	,
E_{RHF} $E_{RCCSD(T)}$	-6.476248			6.46839140	-6.44169422	
-kccsb(T)	0.170240	, 5 0.17404			0.11107722	•

Tabelle A.15: P-Pseudopotential, $Z_{\text{eff}} = 5.00$.

		Koeff.	r^n	Evn			
	V.	6.00000000	-1	Exp.	178462		
	$V_{ m loc}$	14.53070769	1		148698		
		-17.52965289			094751		
	V_s	25.99260928	0		272173		
	V_s V_p	18.93356489	0		566981		
Konf. E		E _{ref}	E _{ps} -E		EX _{ps}	EX_{ref}	EX _{ps} -EX _{ref}
	9.92796343	-9.92795873	-0.0000		0.0000	0.0000	0.0000
	9.53544250	-9.53546495	0.0000		10.6817	10.6810	0.0007
	9.57729509	-9.57714649	-0.0001		9.5428	9.5467	-0.0039
	9.59468104	-9.59470324	0.0000		9.0696	9.0689	0.0007
	0.03799349	-9.03797971	-0.0000		24.2188	24.2191	-0.0002
	0.59070331	-9.59045431	-0.0002		9.1779	9.1845	-0.0066
	0.10842729	-9.10840915	-0.0002		22.3021	22.3025	-0.0004
· · ·			0.0000				0.0026
	3.90239917	-8.90248879			27.9088	27.9062	
\ / I	9.56887100	-9.56889179	0.0000		9.7720	9.7713	0.0007
\ / I	9.98718080	-9.98736076	0.0001		-1.6115	-1.6165	0.0050
	3.75151017	-8.75163102	0.0001		32.0149	32.0115	0.0034
m.a.A.	TT 00	-	0.0000		_		0.0022
	Koeff.	Exp.	Koeff		Exp.	_	
	0.140074		0.081		0.057087		
	0.490942	0.202385	0.251		0.115901		
	0.515297	0.430611	0.376		0.235305		
	0.050320	0.916203	0.320		0.477723		
	-0.298908		0.143		0.969889		
	0.019827	4.147674	-0.045		1.969099		
	0.007266		-0.017		3.997726		
	-0.001602		0.002		8.116307		
	0.000271	39.950656	-0.000	0222	16.477979)	
	v5z	vqz		vtz		vdz	
S	0.1139176				6423422	0.098454445	56
S	0.2827900			0.792	0249104	-	
S	0.6267018	318 0.65190	45830	-		-	
S	1.3382263	184 -		-		-	
p	0.0791010	0.07871	73882	0.088	6938721	0.128925919	95
p	0.2106320	0.20270	73354	0.247	9667962	-	
p	0.5225369	930 0.30133	27420	-		-	
p	0.9244543	910 -		-		-	
d	0.1865458	6637 0.21570	06115		8893268	0.514134764	17
d	0.4623279	0.56063	80701	0.950	6585598	-	
d	0.9555791	020 1.58820	41454	-		-	
d	2.3343076	5706 -		-		-	
f	0.2743428	0.35655	35545	0.573	2184052	-	
f	0.6615681	648 0.961820	63841	-		-	
f	1.3895331			-		-	
g	0.4866978	824 0.69480	28207	-		-	
g	1.1664950	- 1848		-		-	
h	0.8394940	495 -		_			
E _{RHF}	-9.957417			-9.95	714451	-9.95530668	
$E_{RCCSD(T)}$	-10.13196	958 -10.1272	20702	-10.1	1475615	-10.0638308	3

Tabelle A.16: S-Pseudopotential, $Z_{\text{eff}} = 6.00$.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Koeff.	r^n Exp			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$V_{ m loc}$	7.00000000	-1 2.41	079533		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			16.87556731	1 5.29	139158		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					105513		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
CI(0) 3s2 3p5							
Cl(+) 3s2 3p4							
Cl(++) 3s2 3p3							
Cl(0) 3s2 3p4 5s1	· /						
Cl(0) 3s2 3p4 3d1							
Cl(0) 3s2 3p4 4d1							
Cl(+) 3s2 3p3 3d1							
CI(-) 3s2 3p6							
Cl(0) 3s2 3p4 5p1							
Cl(+) 3s2 3p3 4d1							
C1(0) 3s2 3p4 4p1	CI(u) 382 3p4 3p1						
Main							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-14.30362060	-14.30370046			3 10.2421	
0.148917 0.119944 0.084925 0.074374 0.503616 0.257348 0.270658 0.155084 0.523995 0.552157 0.396022 0.323378 0.013612 1.184691 0.324325 0.674303 -0.328846 2.541836 0.100661 1.406043 0.056309 5.453681 -0.069802 2.931855 -0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 v5z vqz vtz vdz s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 - - p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.28940	111.a./\(\frac{1}{4}\).	Vooff	Eve				0.0021
0.503616 0.257348 0.270658 0.155084 0.523995 0.552157 0.396022 0.323378 0.013612 1.184691 0.324325 0.674303 -0.328846 2.541836 0.100661 1.406043 0.056309 5.453681 -0.069802 2.931855 -0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 v5z							
0.523995							
0.013612 1.184691 0.324325 0.674303 -0.328846 2.541836 0.100661 1.406043 0.056309 5.453681 -0.069802 2.931855 -0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 V5z							
-0.328846 2.541836 0.100661 1.406043 0.056309 5.453681 -0.069802 2.931855 -0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 V5z vqz vtz vdz s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 p 1.1716144085 d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -							
0.056309 5.453681 -0.069802 2.931855 -0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 v5z							
-0.001301 11.701243 -0.000951 6.113450 -0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 v5z							
-0.000294 25.105812 0.001501 12.747651 0.000076 53.866226 -0.000249 26.581165 v5z vqz vtz vdz s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 s 1.6713798046 p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 p 1.1716144085 d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -							
0.000076 53.866226 -0.000249 26.581165 v5z vqz vtz vdz s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 - - s 1.6713798046 - - - p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 - - p 1.1716144085 - - d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -							
v5z vqz vtz vdz s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 - - s 1.6713798046 - - - p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 - - p 1.1716144085 - - - d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -							
s 0.1520493031 0.1615943611 0.1856126785 0.1206671149 s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 - - s 1.6713798046 - - - p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 - - p 1.1716144085 - - - d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -					20.501105		
s 0.6391099095 0.4401112199 0.9915602803 - s 0.8014382720 0.8489281535 - - s 1.6713798046 - - - p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 - - p 1.1716144085 - - d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -					56126785		_
s 0.8014382720 0.8489281535							
s 1.6713798046					15002005		
p 0.1039255261 0.1113087758 0.1122675613 0.1683328897 p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 - - p 1.1716144085 - - - d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -				-		_	
p 0.2755819559 1.2868809700 0.3095833659 - p 0.6674364209 0.2894032896 p 1.1716144085 d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -				7758 0.11	22675613	0.1683328897	
p 0.6674364209 0.2894032896							
p 1.1716144085						_	
d 0.2374187708 0.2530625463 0.3523571193 0.6510713696 d 0.7295169234 0.6425888538 1.1287961006 -				-		_	
d 0.7295169234 0.6425888538 1.1287961006 -				5463 0.35	23571193	0.6510713696	
d 0.9240488410 1.6547173262						-	
d 1.5221822262				-		_	
f 0.3351228833 0.4481748939 0.7319991589 -				8939 0.73	19991589	_	
f 0.7891160846 1.1898069382						-	
f 1.6099745035	f			-		-	
g 0.5761325359 0.8483072519	g	0.57613253	0.848307	2519 -		-	
g 1.4029712677		1.40297126	577 -	-		-	
h 1.0996091366				-		-	
E _{RHF} -14.74197970 -14.74194590 -14.74175886 -14.74042298	$\overline{\mathrm{E}_{\mathrm{RHF}}}$	-14.741979	70 -14.74194	4590 -14.7	74175886	-14.74042298	_
$E_{RCCSD(T)}$ -14.97235460 -14.96638779 -14.94523097 -14.87424636	E _{RCCSD(7}	r) -14.972354	60 -14.96638	3779 -14.9	94523097	-14.87424636	

Tabelle A.17: Cl-Pseudopotential, $Z_{\text{eff}} = 7.00$.

		Koeff.	r^n Exp	•		
	$V_{ m loc}$	8.00000000	-1 3.09	403094		
		24.75224749	1 6.53	700323		
		-20.38446872	0 3.35	769859		
	V_s	30.67006675	0 3.68	203169		
	V_p	20.84338017	0 3.45	735664		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Ar(0) 3s2 3p6	-20.88416184	-20.88413356	-0.0000283	28 0.0000	0.0000	0.0000
Ar(+) 3s2 3p5	-20.34169555	-20.34179965	0.0001041		22 14.7586	0.0036
Ar(0) 3s2 3p5 4f1	-20.37294923	-20.37305373	0.0001045			0.0036
Ar(0) 3s2 3p5 4p1	-20.43408513	-20.43416274	0.0000776	1 12.248	30 12.2451	0.0029
Ar(0) 3s2 3p5 3d1	-20.40031249	-20.40029669	-0.000015	80 13.167	0 13.1667	0.0003
Ar(++) 3s2 3p4	-19.33460043	-19.33459726	-0.000003			0.0007
Ar(0) 3s2 3p5 5s1	-20.40137332	-20.40104676	-0.000326	56 13.138	32 13.1463	-0.0081
Ar(0) 3s2 3p5 5p1	-20.38616942	-20.38626287	0.0000934	5 13.551	9 13.5486	0.0033
Ar(0) 3s2 3p5 4d1	-20.37484811	-20.37487134	0.0000232	3 13.860	00 13.8586	0.0014
m.a.A.			0.0000863	0		0.0030
	Koeff.	Exp.	Koeff.	Exp.		
	0.155473	0.147347	0.079101	0.090580		
	0.494617	0.312164	0.260718	0.188085		
	0.526705	0.661339	0.395065	0.390548		
	0.021986	1.401090	0.334954	0.810953		
	-0.338533	2.968301	0.107462	1.683902		
	0.056023	6.288539	-0.073657	3.496535		
	-0.000115	13.322677	-0.001407	7.260371		
	-0.000595	28.224956	0.001710	15.075781		
	0.000127	59.796402	-0.000275	31.304069)	
	v5z	vqz	vtz		vdz	
S	0.18959370	0.196023	8516 0.22	87400067	0.1475255936	_
S	0.77804028	0.540061	4738 1.19	16297674	-	
S	0.97126579	1.020348	0721 -		-	
S	1.97961223		-		-	
p	0.13391558	0.140701	0108 0.13	83375525	0.2117983699	
p	0.35618567			01893592	-	
p	0.83356243		0681 -		-	
p	1.43092656		-		-	
d	0.26811251			57788658	0.8108875155	
d	0.69775295			08585501	-	
d	1.18536579		6369 -		-	
d	2.11810207		-		-	
f	0.42246147			99311638	-	
f	0.97377645		4930 -		-	
f	2.02061581		-		-	
g	0.69521743		5884 -		-	
g	1.69011104		-		-	
<u>h</u>	1.25894391		-		-	_
E_{RHF}	-20.884138			88413866	-20.88413865	
$E_{RCCSD(7)}$	_{Γ)} -21.170191	84 -21.16125	0049 -21.1	3113398	-21.04207676	

Tabelle A.18: Ar-Pseudopotential, $Z_{\text{eff}} = 8.00$.

			Koeff.		r^n	Exp.			
		loc	1.0000000	00	-1		842198	-	
		ioc	5.4684219		1		438113		
			-7.431692		0		173842		
	V	s	34.848629		0		715169		
		J _D	33.690243	309	0	0.75	016011		
Konf.	E_{ps}	E _{ref}		E _{ps} -	$-E_{ref}$		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
K(0) 4s1	-0.14772045		772430	0.00	00038	5	0.0000	0.0000	0.0000
K(0) 4p1	-0.09562615		558129		000448		1.4176	1.4190	-0.0013
K(0) 3d1	-0.05778403	-0.05	809078	0.00	03067	5	2.4474	2.4392	0.0082
K(0) 5s1	-0.06110737	-0.06	109370	-0.0	000136	57	2.3570	2.3575	-0.0005
K(0) 5p1	-0.04547244		557061		00981		2.7825	2.7799	0.0026
K(0) 4d1	-0.03271046	-0.03	284061	0.00	01301	5	3.1298	3.1263	0.0034
K(0) 6s1	-0.03343582	-0.03	343446	-0.0	000013	36	3.1100	3.1102	-0.0001
K(0) 6p1	-0.02671126	-0.02	677583	0.00	00645	7	3.2930	3.2914	0.0017
K(0) 5d1	-0.02088804	-0.02	2000237	-0.0	008856	57	3.4515	3.4757	-0.0242
m.a.A.				0.00	01721	2			0.0052
	Koeff		Exp.		Koeff		Exp.		
	0.444	154	0.01736	5	-0.022	2303	0.0150	053	
	0.431	906	0.03943	2	-0.055	5106	0.0332	214	
	0.040	955	0.08953	8	-0.050)766	0.0732	286	
	-0.178	3633	0.20331	7	0.022	211	0.161	705	
	-0.162	2292	0.46167	6	0.029	953	0.356	799	
	0.083	942	1.04833	7	-0.008	3213	0.7872	270	
	-0.013	3650	2.38048	1	0.000	160	1.737	100	
	0.001	752	5.40540	7	0.000	253	3.832	883	
	-0.000	0216	12.2741	72	-0.000	0071	8.457	196	
			vtz		V	lz			
	S	3	0.05793	3112	8 0.	13420	082024	-	
	S	;	0.17121	9110:	5 -				
	F)	0.04464	3215	8 0.	03993	342403		
	F		0.25619	9778	6 -				
	Ċ		0.06032	9910	4 0.	05556	522987		
	Ċ	1	0.58173	17963	3 -				
	f	•	0.47311	87820	0 -				
	Ī	RHF	-0.1476	2448	-0	.1475	2701	-	

Tabelle A.19: K-Pseudopotential, $Z_{\text{eff}} = 1.00$.

	$V_{ m loc}$			46886760		
		10.9377352		45174786		
		-7.4232387		93761419		
	V_s	34.6575209		08463527		
	V_p	34.1204422	24 0 0.	91231229		
Konf.		E _{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Ca(0) 4s2	-0.60620351	-0.60607259	-0.00013092		0.0000	0.0000
Ca(0) 4p2	-0.44167865	-0.44147116	-0.00020749	4.4772	4.4793	-0.0021
Ca(0) 3d2	-0.39517484	-0.39559258	0.00041774	5.7427	5.7278	0.0149
Ca(0) 5s2	-0.27841187	-0.27921304	0.00080117	8.9202	8.8949	0.0254
Ca(+) 4s1	-0.41686382	-0.41719286	0.00032904	5.1525	5.1400	0.0125
Ca(+) 4p1	-0.30870113	-0.30948373	0.00078260	8.0960	8.0711	0.0249
Ca(+) 5s1	-0.19266532	-0.19333742	0.00067210	11.2537	11.2318	0.0219
Ca(0) 4s1 4p1	-0.54641754	-0.54553198	-0.00088556	1.6270	1.6475	-0.0205
Ca(0) 4s1 3d1	-0.51521016	-0.51465147	-0.00055869	2.4762	2.4879	-0.0116
Ca(0) 4s1 4f1	-0.44818173	-0.44850898	0.00032725	4.3003	4.2878	0.0125
Ca(0) 4s1 5p1	-0.46917559	-0.46942301	0.00024742	3.7290	3.7187	0.0103
Ca(0) 4s1 5f1	-0.43691694	-0.43724453	0.00032759	4.6068	4.5943	0.0125
Ca(0) 4s1 4d1	-0.46215848	-0.46156409	-0.00059439	3.9199	3.9325	-0.0126
Ca(+) 4d1	-0.16869292	-0.16906795	0.00037503	11.9060	11.8923	0.0138
m.a.A.			0.00044380			0.0140
	Koeff.	Exp.	Koeff.	Exp.		
	0.03108	3 0.019220	-0.00563	0.008008	_	
	0.12959	9 0.044206	0.031052	2 0.018417		
	0.19791	9 0.101674	0.094286	0.042355		
	-0.07544	45 0.233852	0.163876	0.097408		
	-0.1978	49 0.537862	-0.00396	0.224018		
	0.08324	4 1.237092	-0.11191	2 0.515195		
	-0.01288	85 2.845329	0.031892	2 1.184839		
	0.00179	1 6.544301	-0.00451	7 2.724878		
	-0.00024	45 15.05199	0.000588	6.266642		
		vtz	vdz	:		
	S	0.10875	26679 0.12	249753460		
	S	0.36775	32077 -			
	p	0.04455	47923 0.12	262953132		
	p	0.11800	68180 -			
	d	0.18271	99459 0.60	078203321		
	d	0.85447	05510 -			
	f	0.18536				
	E _{RH}	F -1.7385	5556 -1.7	73360256		
	E_{RC}			79964658		
		•				

Tabelle A.20: Ca-Pseudopotential, $Z_{\text{eff}} = 2.00$.

			Koeff.	r^{\prime}	¹ Exp.					
		$V_{ m loc}$	11.000000	000 -1	1.649	16555				
			18.140821							
			-35.19310							
		V_s	97.629134							
		V_p	33.970336							
Konf.		E _{ps}	E _{ref}		ps-E _{ref}	EX		EX_{ref}		ps-EX _{ref}
Sc(0) 4s		-46.24607633			0.0000029		000	0.0000		
Sc(3+) 3		-44.72717262			0.0000844		3341	41.336		
Sc(4+) 3		-42.06232151			.00001445		5.8529	113.85		
Sc(+) 4s		-46.04306619			.00013354		245	5.5208		
Sc(2+) 4	s0 3d1 4f1	-45.59935008 -45.72461536			.00000736		5994 1006	17.599		
` '	s0 3d1 411 s0 3d1 5p1	-45.76126944			.00001827 0.0000862		1906 1931	14.190 13.195		
	s0 3d1 5p1 s0 3d1 6s1	-45.71454303			.00011680		1931 4647	14.461		
Sc(+) 4s		-45.98662562			0.00011080			7.0610		
Sc(1) 4s		-46.16946661			0.0000221		848	2.0921		
Sc(0) 4s		-46.03836127			.0002733		526	5.6470		
	4s0 3d0 4f1	-45.00964752			.00020220		6471	33.645		
Sc(-) 4s		-46.17201644			0.0004134			2.0266		
m.a.A.		.0.1,201044			.00011043				0.00	
	Exp.	Koeff.	Koeff.	Koeff.	Koe		Koeff.	k	Koeff.	-
s	14.340060	-0.078031	0.015177	0.00359		9407	1.05009		.607079	_
-	11.030816	0.229159	-0.051889	-0.0985		00908	-1.6646		7.978106	
	4.956052	-0.556010	0.149051	0.50658		88282	0.45279		5.668922	
	1.248420	0.513414	-0.139407	-1.2478	46 3.36	5983	3.86914	41 -:	5.461576	
	0.625736	0.556322	-0.321755	-0.4049	28 -3.4	59386	-7.9844	45 5	5.616801	
	0.308962	0.184934	-0.099731	1.40257	6 0.23	32684	5.94460)5 -:	2.339271	
	0.068006	0.010551	0.761949	0.68412	29 2.05	50467	-2.8555	79 -	0.335613	
	0.026968	0.000963	0.371138	-1.2787	81 -1.8	71192	1.64722	27 1	.884687	
p	8.073316	0.035772	-0.040371	-0.0557	93 -0.0	81070	-0.2397	11 -:	2.335098	_
	6.208610	-0.112134	0.118321	0.19005	0.37	8559	-0.0273	30 4	.048895	
	2.639156	-0.017985	-0.017375	0.16431		43150	6.55441		.629939	
	2.025978	0.305032	-0.338425	-1.1336		55800	-7.0426		6.330514	
	0.948129	0.463364	-0.383677	-0.0373		60607	0.11104		5.401720	
	0.437784	0.333596	0.290556	1.02294		66049	2.55316		5.190852	
	0.182729	0.065347	0.203590	0.37881		62004	-3.0220		3.404462	_
d	5.791447	0.045257	-0.033400	0.01869		96115	0.48873			
	2.648100 1.104076	0.200610 0.305670	-0.332413 -0.461114	-0.5569 -0.1683		70892	0.26679			
	0.436301	0.356715	0.070362	0.89519		87547 82631	-1.4079 1.85828			
	0.450301	0.323528	0.460141	-0.0481		51139	-1.5499			
	0.056842	0.149427	0.360392	-0.6154		31139	0.61032			
	0.030042	0.145427	v5z	vqz	0.03	vtz	0.01032	-3		
	_	S	0.013500		3500	0.013	500	_		
		p	0.090000	0.00	0000	0.013				
		d	0.028000		8000	0.028				
		f	0.350775		0775	0.654				
		f	2.750970		0970	2.117				
		f	1.151958		1958	-	-			
		f	3.200000	-		-				
		g	1.086040	1.08	6040	1.892	2014			
		g	2.709130	2.70	9130	-				
		g	3.500000	-		-				
		h	2.187900	2.18	7900	-				
		h	4.000000	-		-				
	_	i	3.000000	-		-		_		
		E _{SA-MCSCF}	-46.24592220		24592027		4568940			
		E_{CISD}	-46.6288465	/ -46.0	52266849	-46.5	5283971			

Tabelle A.21: Sc-Pseudopotential, $Z_{\text{eff}} = 11.0$.

			Koeff.	r^n	Exp.			
		$V_{ m loc}$			1.857552	24		
		- 100	22.290626		3.306382			
			-41.26280		2.708790			
		V_s	96.942310		8.030401			
		V_p	38.016413		5.932914			
Konf.		E _{ps}	E_{ref}		-E _{ref}	EX _{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Ti(0) 4	s2 3d2	-57.69985035		0573 -0.00	0015462	0.0000	0.0000	0.0000
Ti(-) 4s	s2 3d3	-57.63735325	5 -57.63736	0.00	000869	1.7007	1.6963	0.0044
Ti(4+)	3s2 3p6	-54.52960985	5 -54.52951	170 -0.00	0009815	86.2721	86.270	0.0015
Ti(5+)	3s2 3p5	-50.91591393	-50.91598	3227 0.00	006834	184.6119	184.60	0.0061
Ti(+) 4	s1 3d2	-57.48534209	-57.48521	591 -0.00	0012618	5.8374	5.8367	0.0008
Ti(2+)	4s0 3d2	-57.01822955	5 -57.01787	969 -0.00	0034986	18.5490	18.554	-0.0053
Ti(3+)	4s0 3d1	-56.08022344	4 -56.08047	0.00 /019	024675	44.0751	44.064	1 0.0109
Ti(0) 4	s1 3d3	-57.63570118	3 -57.63582	2217 0.00	012099	1.7457	1.7382	0.0075
Ti(2+)	4s0 3d1 4f1	-56.36287955	5 -56.36326	5113 0.00	038158	36.3831	36.368	0.0146
Ti(2+)	4s0 3d1 5p1	-56.40907275	5 -56.40880	0525 -0.00	0026750	35.1261	35.129	-0.0031
Ti(2+)	4s0 3d3	-57.44421735	5 -57.44448	8615 0.00	026880	6.9566	6.9450	0.0115
m.a.A.				0.00	019013			0.0066
	Exp.	Koeff.	Koeff.	Koeff.	Koeff.	Koeff.	I	Koeff.
S	15.219933	-0.073265	0.013450	-0.031752	0.21832	20 1.3887	43 4	1.729266
	11.699608	0.235541	-0.052264	-0.047623	-0.2475			8.536840
	5.687890	-0.550536	0.146213	0.467057	-0.4463			5.014340
	1.336288	0.594155	-0.175669	-1.441960	3.08241			5.059082
	0.624474	0.540870	-0.328641	0.064029	-3.7627			5.488475
	0.295808	0.112045	-0.040926	1.247941	0.83408			2.738919
	0.076436	0.007476	0.732596	0.439242	1.74508).177255
	0.029425	0.002550	0.402040	-1.071834	-1.6093			1.331774
p	10.379118	0.020139	-0.026727	-0.027196	-0.4544			0.216531
Р	7.983937	-0.041713	0.062910	0.046963	1.48315			3.168675
	6.141490	-0.055348	0.030277	0.132917	-1.1511			5.448113
	2.303689	0.302880	-0.360398	-0.967489	-1.5133			5.360085
	1.071753	0.469056	-0.351747	-0.049570	2.25035			6.146481
	0.489880	0.321537	0.285495	1.032371	-0.3537			1.948568
	0.203240	0.059823	0.209200	0.339639	-1.7249			3.238958
d	6.490086	0.059096	-0.050402	-0.013220	-0.1815			
	2.981939	0.226612	-0.335530	-0.584162	-0.9818			
	1.253123	0.323168	-0.400756	-0.113546	1.42679			
	0.508429	0.354961	0.083919	0.898000	-0.3227		522 -	
	0.196258	0.285475	0.478069	-0.079932	-0.7004			
	0.070470	0.114711	0.376742	-0.602523	0.62916	63 -0.705	917 -	•
	•	Ĩ	v5z	vqz	,	vtz		
	_	S	0.015000	0.01500		0.015000		
		p	0.100000	0.10000		0.100000		
		d	0.035000	0.03500		0.035000		
		f	0.412936	0.41293		0.733934		
		f	1.318974	1.31897		2.460591		
		f	3.218988	3.21898				
		f	2.000000	-	-			
		g	1.198889	1.19888	39 2	2.176722		
		g	3.118753	3.11875				
		g	2.200000	-	-			
		h	2.558085	2.55808	35 -			
		h	4.000000	-	-			
		i	3.000000	-	-			
	-	E _{SA-MCSCF}	-57.73616327	7 -57.736	15899 -	57.73600501	_	
		E _{CISD}	-58.16275213			58.12704000)	

Tabelle A.22: Ti-Pseudopotential, $Z_{\text{eff}}=12.0.\,$

			_	T 00	" .				
				Koeff.	r^n Exp				
			100	3.00000000		6361754			
				28.12702797		7901780			
				48.27656329		1436396			
				06.23226580		4326050			
			P	1.58043539		3136059			
Konf.		E_{ps}		ref	$E_{ps}-E_{ref}$			EX_{ref}	$EX_{ps}-EX_{ref}$
V(0) 4s2				70.95753401	-0.00056		000	0.0000	0.0000
V(6+) 3s2				60.57066563	-0.00000		.6742	282.6589	0.0153
V(5+) 3s2				65.24996404	-0.00008		.3337	155.3207	0.0130
V(1+) 4s1				70.73261198	-0.00041		249	6.1208	0.0041
V(2+) 4s0				70.24361778	-0.00029		4353	19.4279	0.0074
V(3+) 4s0				69.24505652	0.000567		6327	46.6018	0.0309
V(1+) 4s0				70.36889135	-0.00025		0274	16.0188	0.0086
V(2+) 4s(69.58162240	-0.00039		4475	37.4428	0.0046
V(0) 4s1				70.90509617	0.000209		481	1.4270	0.0211
V(1+) 4s(70.70570812	0.000463		810	6.8530	0.0281
V(2+) 4s1				70.08599778	0.000795		7543	23.7172	0.0371
V(-) 4s2 3	04	-70.90)624784 -	70.90635135	0.000103		111	1.3928	0.0183
m.a.A.		l n	TT 00	T	0.000346		c	TT CC	0.0171
		Exp.	Koeff.	Koeff.	Koeff.	Koef		Koeff.	=
	S	18.360298	-0.023212		-0.0318			0.682255	
		11.577461	0.200288	-0.043911	-0.04602		2159	-1.805171	
		6.390046	-0.554320		0.46269			1.265422	
		1.528787	0.565283	-0.165823	-1.44243			2.580047	
		0.728830	0.543474	-0.313756	-0.00027			-6.324731	
		0.349741	0.134989	-0.055699	1.28751			5.377920	
		0.084685	0.008039	0.717312 0.416763	0.43152			-2.862113	
		0.031952 13.883264	0.002293	-0.004258	-1.04271 0.00715		7100	1.455052 0.023729	=
	p	6.174000	-0.175046		-0.38285			1.948424	
		4.772897	0.155473	-0.192145	0.41800		8262	-4.240938	
		2.182411	0.346594	-0.384477	0.93486		9290	2.998392	
		1.049492	0.443410	-0.232167	-0.28778			-0.327057	
		0.492680	0.263803	0.303537	-0.92782			-2.200438	
		0.206309	0.042826	0.264620	-0.14924			2.902526	
	d	7.384196	0.067593	-0.063942	-0.04470			-	=
	u	3.350355	0.246802	-0.348023	-0.59734			_	
		1.398721	0.336404	-0.366609	-0.03396			_	
		0.571472	0.349348	0.116939	0.88231			-	
		0.223722	0.260107	0.488920	-0.12993		3894	-	
		0.081466	0.096334	0.364762	-0.58776		7078	-	
		•		vqz	vtz				
			S	0.016000		16000			
			p	0.100000	0.1	00000			
			d	0.040000	0.0	40000			
			f	0.609615	0.8	50084			
			f	2.266045	2.8	90823			
			f	4.034968	-				
			g	1.862300	2.4	17118			
			g	4.493135	-				
			h	2.943397	-		_		
			$E_{SA-MCSC}$.03996352			
			E_{CISD}	-71.49984	000 -71	.46798244			

Tabelle A.23: V-Pseudopotential, $Z_{\text{eff}} = 13.0$.

		Vo	off	r^n Exp.			
			eff. .00000000		337662		
		100					
			.20727267		750349		
			5.51413840 3.26274052		587110 231779		
			.80124572		220771		
Konf.	E					EV	EV EV
	E _{ps}	E _r		$E_{ps}-E_{ref}$	EX _{ps}	EX _{ref}	$EX_{ps}-EX_{ref}$
Cr(6) 4s2 3d4			6.16044591	-0.0003253		0.0000	0.0000 0.0072
Cr(6+) 3s2 3p6 Cr(5+) 3s2 3p5			6.88599806	-0.0000621 0.0000084		252.3865 411.8828	0.0072
Cr(3+) 3s2 3p. Cr(1+) 4s1 3d ²			1.02498713 5.92579107	-0.0004092		6.3857	-0.0023
Cr(2+) 4s0 3d4			5.41636517	-0.0004092		20.2487	-0.0023
Cr(3+) 4s0 3d ²			4.35983182	0.0003072		49.0003	0.0168
Cr(1+) 4s0 3d ²			5.54161283	-0.0005283		16.8404	-0.0055
Cr(2+) 4s0 3d3			4.64258073	0.000328		41.3058	0.0188
Cr(0) 4s1 3d5			6.11827249	0.0003659		1.1477	0.0188
Cr(2+) 4s1 3d3			5.23444405	0.0003632		25.1994	0.0187
Cr(-) 4s2 3d5			6.11940129	0.0003522		1.1170	0.0184
Cr(1+) 4s0 3d5			5.91130436	0.0003310		6.7799	0.0165
m.a.A.	-03.71	1102270 -0	3.71130430	0.0002814		0.777	0.0126
III.a.A.	Eve	Koeff.	Koeff.	Koeff.		Koeff.	0.0120
	Exp.				Koeff.		-
S	20.873522	-0.018325	0.002335	-0.036655		0.639757	
	12.659846	0.201956	-0.045706 0.140403	-0.029926 0.423092		-1.921269 1.489592	
	7.354468 1.649421	-0.536231			-0.277227 2.934469		
		0.566443	-0.174037 -0.303901	-1.499751		2.333281	
	0.787288 0.374416	0.532355 0.127019	-0.303901	0.165705 1.210049	-3.649836 0.800115	-5.963462 5.188380	
	0.091528	0.127019	0.705589	0.386886	1.697296	-2.795759	
	0.031328	0.007094	0.703389	-0.996321	-1.562651	1.354657	
	18.121991	0.002901	-0.002319	0.004053	-0.008795	0.067259	•
p	7.510490	-0.101677	0.105040	-0.208320		0.007239	
	4.409955	0.147326	-0.185359	0.412232	-1.520743	-2.573728	
	2.158933	0.363875	-0.399926	0.836587	0.051536	3.554905	
	1.057519	0.420813	-0.132928	-0.523185		-1.415443	
	0.501316	0.223477	0.338694	-0.791625		-1.415038	
	0.210059	0.031914	0.261723	-0.067599		2.671861	
d	8.430220	0.074668	-0.077497	-0.065325		-	
u	3.951450	0.244538	-0.344496	-0.567648		_	
	1.658641	0.337668	-0.362186	-0.038105		_	
	0.684856	0.347566	0.128854	0.873066	-0.327994	_	
	0.269935	0.255319	0.490414	-0.117794		_	
	0.098084	0.093373	0.357756	-0.597830		_	
			vqz	vtz	********		
		S	0.017000	0.017	7000		
		p	0.105000	0.105			
		ď	0.049000	0.049			
		f	0.550420	0.974			
		f	1.743525	3.349			
		f	4.486405	-			
		g	1.455987	2.775	5762		
		g	3.945120	-			
		h	3.164456	-			
		E _{SA-MCSCF}	-86.336693	303 -86.3	3661273		
		E _{CISD}	-86.85149		0680895		
			•				

Tabelle A.24: Cr-Pseudopotential, $Z_{\text{eff}} = 14.0$.

	100		-1 3.2952			
	4	9.42869068	1 3.6159	9152		
	-(61.66925169	0 3.5740	5761		
	V_s 1	12.85037953	0 9.9915	4195		
	V_p 4	9.18832867	0 7.8092	5218		
Konf. E _p		E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
	03.44857021	-103.44818681	-0.000383	340 0.0000	0.0000	0.0000
Mn(7+) 3s2 3p6 -89	9.43632799	-89.43629788	-0.00003	011 381.31	65 381.3069	0.0096
Mn(8+) 3s2 3p5 -83	2.27832175	-82.27833391	0.000012	16 576.10	81 576.0973	0.0108
Mn(1-) 4s2 3d6 -10	03.41603538	-103.41643358	0.000398	20 0.8854	0.8641	0.0213
Mn(0) 4s1 3d6 -10	03.41495569	-103.41535830	0.000402	61 0.9148	0.8934	0.0214
Mn(1+) 4s1 3d5 -10	03.20484325	-103.20428381	-0.000559		6.6374	-0.0048
Mn(2+) 4s0 3d5 -10	02.67621045	-102.67531543	-0.00089	502 21.0183	3 21.0322	-0.0139
Mn(3+) 4s0 3d4 -10	01.56305281	-101.56325390	0.000201	09 51.310	8 51.2949	0.0159
	02.46995200	-102.47044507				0.0239
. ,	01.84563337	-101.84590717	0.000273			0.0179
	03.20091990	-103.20114674	0.000226		6.7227	0.0166
m.a.A.			0.000352		****	0.0156
Exp.	Koeff.	Koeff.	Koeff.	Koeff.	Koeff.	*******
s 23.64506		0.001613	-0.040623	0.162229	0.704071	
13.462029		-0.047599	-0.045716	-0.409782	-2.598445	
8.212629		0.136570	0.504797	-0.089043	2.376836	
1.859943	0.554600	-0.160624	-1.831860	3.105762	1.391972	
0.889754	0.534536	-0.264489	0.491612	-4.484535	-4.717697	
0.422560	0.142766	-0.060593	1.193469	1.708160	4.522334	
0.097455	0.004770	0.633136	0.124452	1.307897	-2.927992	
0.035595	0.004770	0.490003	-0.716669	-1.490146	1.875388	
		-0.004080	0.005030	0.014899	-0.202411	
p 17.80331 8.834995	-0.080060		-0.156795	0.225576	0.501844	
4.161340	0.185735	-0.361627	0.602679	-1.784375	1.819051	
2.129196	0.375367	-0.563508	0.513609	1.175073	-4.085961	
1.063713	0.388624	0.102395	-0.908215	1.191127	3.041186	
0.510141	0.192450	0.571356	-0.418146	-1.327791	-0.107117	
0.211302	0.026146	0.310046	0.371296	-0.567365	-1.916742	
d 9.253736	0.076285	-0.085874	-0.091633	-0.232214	-	
4.363016	0.247722	-0.354436	-0.585058	-0.802283	-	
1.834821	0.330050	-0.361447	0.047403	1.328790	_	
0.756118	0.334518	0.126629	0.839531	-0.310552	_	
0.296092	0.263545	0.481402	-0.138765	-0.744041	_	
0.106125	0.118241	0.347897	-0.544890	0.608147	_	
0.100123	0.110211	vqz	vtz	0.000117		
	S	0.018000	0.0180	00		
		0.105000	0.1050			
	p d	0.050000	0.1030			
	f	0.605263	1.0998			
	f	1.903458	3.8157			
	f	4.999938	5.0157	50		
		1.601712	-			
	g	4.404981	3.0701	03		
	g h	3.584182	-	0.5		
				9317456		
	$E_{SA-MCSCF}$ E_{CISD}	-104.2442541		9517430		
	r-CISD	-107,244234	10 -10-11	/J-T441J		

Tabelle A.25: Mn-Pseudopotential, $Z_{\text{eff}} = 15.0$.

				Loeff.	r^n	Exp.				
			V_{loc} 1	6.00000000	-1	3.720756	532			
				9.53210107	1	3.923212				
			-(58.75847841	0	3.895954	140			
				12.92561163	0	10.42343				
			V_p 5	2.55882759	0	8.416640)76			
	Konf.	E_{ps}		E _{ref}		$E_{ps}-E_{ref}$	EX_p		EX_{ref}	$EX_{ps}-EX_{ref}$
	Fe(0) 4s2 3d6		.96037647	-122.95993385		-0.0004426			0.0000	0.0000
	Fe(8+) 3s2 3p6		.90035078	-102.90035287		0.00000209		8955	545.8834	0.0121
	Fe(9+) 3s2 3p5		33062593	-94.33066009		0.00003417		1043		0.0130
	Fe(1+) 4s1 3d6		.70774776	-122.70713687		-0.0006108			6.8794	-0.0046
	Fe(3+) 4s0 3d5		.99314094	-120.99370250		0.00056156			53.5073	0.0273
	Fe(2+) 4s0 3d6		.16013671	-122.15930509		-0.0008316			21.7876	-0.0106
	Fe(2+) 4s0 3d5		.27561627	-121.27624608		0.00062981			45.8184	0.0292
	Fe(1+) 4s0 3d6		.28529890	-122.28449888		-0.0008000			18.3807	-0.0097
	Fe(-) 4s2 3d7		.93603452	-122.93676934		0.00073482			0.6304	0.0320
	Fe(2+) 4s1 3d5		.93225415	-121.93258784		0.00033369			27.9573	0.0211
_	Fe(0) 4s1 3d7	-122	.93499012	-122.93570409		0.00071397		08	0.6594	0.0315
	m.a.A.	-				0.00051775				0.0191
		Exp.	Koeff.	Koeff.		Koeff.	Koeff.		Koeff.	
	S	25.882657	-0.010318	0.000341		0.030967	0.429968		1.274830	
		14.037755	0.230364	-0.047646		0.034192	-1.78654		-6.369131	
		9.007794	-0.566551			.383443	1.48264		7.265762	
		2.068350	0.544437	-0.153371		1.259192	2.684004		-4.893384	
		0.993498	0.540001	-0.288555		0.098913	-6.15249		4.859963	
		0.471151	0.143115	-0.044212		.194321	4.80662		-1.939411	
		0.102489	0.007386	0.704768		.555024	-2.13483		-0.429262	
		0.036902	0.001869	0.415407		1.077563	0.805728		1.856456	
	p	16.659389	0.007223	-0.005560		.008185	0.037533		-0.348881	
		10.450653	-0.070315			0.125348	0.08980		0.672826	
		4.183289	0.229161	-0.276956		.657186	-1.56959		1.674870	
		2.117962	0.393199	-0.321479		.505908	1.10686		-3.923602	
		1.064494	0.361596	-0.004808		0.773757	1.12915		2.917359	
		0.514743	0.154139	0.330833		0.592779	-1.16799		0.019595	
		0.210442	0.016498	0.357095		.185315	-0.79549		-1.965905	
	d	10.232413	0.081591	-0.086500		0.101424	-0.23364		-	
		4.841151	0.263190	-0.339738		0.548492	-0.79323		-	
		2.039827	0.342856	-0.328882		0.002091	1.27362		-	
		0.840565	0.338326	0.130025		.828457	-0.20138		-	
		0.328485 0.116926	0.240730 0.088375	0.494941		0.088206 0.590958	-0.82192 0.641824		-	
		0.110920	0.088373	0.365933	-		0.041824	+	-	
				vqz		vtz				
			S	0.017500		0.01750				
			p	0.105000		0.10500				
			d	0.058000		0.05800				
			f f	0.817020		1.34040				
				2.413470		4.50241	U			
			f	6.141057		- 2 50056	2			
			g	1.926033		3.59956	<i>L</i>			
			g h	4.951166 4.344918		-				
					10.4	-122.880	052021			
			E _{SA-MCSCF}	-122.881107						
			E_{CISD}	-123.4/1900	,00	-143.412	<i>-</i> ,,+331			

Tabelle A.26: Fe-Pseudopotential, $Z_{\text{eff}} = 16.0. \label{eq:Zeff}$

			71.19928469	1	4.42968808			
			-77.65278252	0	4.39800669			
		V_s	113.90484511	0	10.86075441			
		V_p	56.10698766	0	9.05202771			
Konf.		Eps	E_{ref}		$E_{ps}-E_{ref}$	EX_{ps}	$\mathrm{EX}_{\mathrm{ref}}$	$EX_{ps}-EX_{ref}$
Co(0) 4s2 3d7		-144.83472261	-144.8345710	98	-0.00015153	0.0000	0.0000	0.0000
Co(9+) 3s2 3p6		-117.27824502	-117.2782393	33	-0.00000569	749.8972	749.8932	0.0040
Co(10+) 3s2 3p	5	-107.18233222	-107.1823480	98	0.00001586	1024.6383	3 1024.6337	0.0046
Co(1-) 4s2 3d8		-144.81844700	-144.8194037	71	0.00095671	0.4429	0.4128	0.0302
Co(1+) 4s1 3d7		-144.57377608	-144.5731506	50	-0.00062548	7.1012	7.1141	-0.0129
Co(1+) 4s0 3d8		-144.59009248	-144.5903168	38	0.00022440	6.6571	6.6469	0.0102
Co(2+) 4s0 3d7		-144.00826605	-144.0069926	53	-0.00127342	22.4904	22.5210	-0.0305
Co(3+) 4s0 3d6	,	-142.78919636	-142.7895058	31	0.00030945	55.6651	55.6526	0.0125
Co(2+) 4s1 3d6	,	-143.75914904	-143.7593527	75	0.00020371	29.2697	29.2600	0.0097
Co(2+) 4s0 3d6	4f1	-143.07156854	-143.0719375	51	0.00036897	47.9809	47.9667	0.0142
Co(1+) 4s0 3d6	6s1	-143.04451333	-143.0446668	38	0.00015355	48.7171	48.7088	0.0083
m.a.A.					0.00038989			0.0137
	Exp.	Koeff.	Koeff.	ŀ	Koeff. Koe	eff. I	Koeff.	
	27.026				0.000==00	20501 1	1.10.156	

				0.000389	89	
	Exp.	Koeff.	Koeff.	Koeff.	Koeff.	Koeff.
S	27.936522	-0.007474	-0.000439	-0.033770	0.089581	1.142456
	14.938011	0.211936	-0.040887	0.003260	-0.217837	-6.271663
	9.769645	-0.533263	0.123856	0.314156	-0.222945	7.343849
	2.251871	0.534471	-0.148786	-1.179802	2.575928	-5.069640
	1.088580	0.536750	-0.279173	-0.118347	-2.608916	5.070030
	0.516218	0.148044	-0.040667	1.122775	-0.032275	-2.018487
	0.106962	0.006975	0.707853	0.645616	1.752589	-0.410536
	0.038033	0.001213	0.405219	-1.134673	-1.413735	1.924104
p	16.310172	0.017617	-0.013146	0.018811	0.104869	-0.800761
	12.545701	-0.067242	0.059393	-0.108632	-0.044141	1.207028
	4.409154	0.253781	-0.315138	0.716760	-1.507678	1.360752
	2.172600	0.411786	-0.308179	0.369047	1.329327	-3.724264
	1.075832	0.341583	0.062335	-0.842825	0.865088	3.262418
	0.516678	0.127173	0.340591	-0.484736	-1.274437	-0.581920
	0.205354	0.011320	0.413074	0.342593	-0.486830	-1.520883
d	11.521032	0.083231	-0.093570	-0.106734	-0.232471	-
	5.442077	0.265686	-0.352010	-0.533766	-0.773720	-
	2.289843	0.343942	-0.326266	0.015711	1.237684	-
	0.941792	0.336784	0.155939	0.816938	-0.167961	-
	0.366714	0.239213	0.494779	-0.104448	-0.841484	-
	0.129496	0.088039	0.346994	-0.595625	0.644330	-
			vqz	vtz		
		S	0.019000	0.0190		
		p	0.100000	0.1000		
		d	0.065000	0.0650		
		f	0.746956	1.3238		
		f	6.544415	4.7943	96	
		f	2.403119	-		
		g	1.815736	3.9122	60	
		g	5.269943	-		
		h	4.168072	-		
	-	E _{SA-MCSCF}	-144.94261		4245107	
		E_{CISD}	-145.631340	650 -145.5	6178655	

Tabelle A.27: Co-Pseudopotential, $Z_{\text{eff}}=17.0$.

				8.00000000	-1 4.2287			
				6.11820629	1 4.4620			
					0 4.4496			
					0 11.627			
			V_p 5		0 9.5732			
_	Konf.	E_{ps}		E _{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	$\mathrm{EX}_{\mathrm{ref}}$	$EX_{ps}-EX_{ref}$
	Ni(0) 4s2 3d8		.21128347	-169.21082972	-0.000453		0.0000	0.0000
	Ni(10+) 3s2 3p		.57049165	-132.57049110				0.0123
	Ni(11+) 3s2 3p		.83411391	-120.83412291	0.0000090			
	Ni(1+) 4s1 3d8		.94196738	-168.94099847	-0.000968		7.3429	-0.0140
	Ni(2+) 4s0 3d8		.35867312	-168.35694994				-0.0345
	Ni(3+) 4s0 3d7		.08853675	-167.08898866				0.0246
	Ni(1+) 4s0 3d9		.96723602	-168.96737778	0.0001417		6.6251	0.0162
	Ni(-) 4s2 3d9		.20227344	-169.20315243			0.2089	0.0363
	Ni(1+) 4s1 3d7		.08861997	-168.08918083	0.0005608			0.0276
	Ni(2+) 4s0 3d7		.37079630	-167.37131248	0.000516			0.0264
	Ni(0) 4s1 3d9	-169.	.20124328	-169.20202277	0.0007794		0.2397	0.0336
	m.a.A.				0.0005403			0.0216
		Exp.	Koeff.	Koeff.	Koeff.	Koeff.	Koeff.	
	S	30.258290	-0.006754		-0.028867	0.077232	-0.371856	
		15.329562	0.285782	-0.052825	-0.026894	-0.172441	2.115572	
		10.827340	-0.617275	0.134235	0.325312	-0.285653	-1.875080	
		2.529540	0.528687	-0.135340	-1.017838	2.483551	-2.731699	
		1.212611	0.546651	-0.276025	-0.263044	-2.236910	6.025353	
		0.569930	0.153300	-0.041762	1.078192	-0.309581	-4.432439	
		0.111595	0.006357	0.712058	0.768498	1.731936	1.719811	
		0.039214	0.000559	0.395186	-1.218367	-1.354586	-0.504806	
	p	17.542947	0.018554	-0.010625	0.009328	-0.142759	-0.896533	
		13.493407	-0.069837		-0.094785	0.103869	1.362048	
		4.676387	0.282703	-0.349026	0.767269	1.485555	1.146521	
		2.262485	0.422489	-0.282173	0.264838	-1.470537	-3.542611	
		1.104951	0.325854	0.094042	-0.879272	-0.668792	3.411034	
		0.524422	0.107669	0.364373	-0.391378	1.308684	-0.954567	
		0.201013	0.008076	0.428117	0.416768	0.316027	-1.262489	
	d	12.226319	0.083677	-0.097977	-0.112487	-0.244385	-	
		5.865728	0.274473	-0.364843	-0.533716	-0.758147	-	
		2.498731	0.342297	-0.311735	0.049232	1.242338	-	
		1.032777	0.331910	0.173709	0.800619	-0.172956	-	
		0.402547	0.234937	0.495418	-0.113290	-0.841311	-	
		0.141517	0.086590	0.335459	-0.599733	0.639784	-	
				vqz	vtz			
			S	0.020000	0.0200			
			p	0.100000	0.1000			
			d	0.070000	0.0700			
			f	0.815699	1.4671			
			f	7.146715	5.3121	51		
			f	2.646736	-			
			g	1.982205	4.3942	273		
			g	5.841060	-			
			h	4.638902	-			
			E _{SA-MCSCF}			6670592		
			E_{CISD}	-170.019988	169.9	3948607		

Tabelle A.28: Ni-Pseudopotential, $Z_{\text{eff}} = 18.0.\,$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Nonf. Eps
Cu(0) 4s2 3d9 -196.22715559 -196.22738046 0.00022487 0.0000 0.0000 0.0000 Cu(12+) 3s2 3p6 -148.77801326 -148.77801723 0.00000397 1291.2383 1291.2443 -0.0060 Cu(1) 4s2 3d10 -196.22605561 -196.22675131 0.00069570 0.0299 0.0171 0.0128 Cu(0) 4s1 3d10 -196.22513400 -196.22555786 0.00042386 0.0550 0.0496 0.0054 Cu(4) 4s1 3d9 -195.94988947 -195.94989060 -0.00058041 7.5453 7.5672 -0.0219 Cu(2+) 4s1 3d8 -195.06080377 -195.06052565 -0.0007812 31.7400 31.7537 -0.0137 Cu(1+) 4s0 3d8 -194.02994818 -194.03051301 0.00054819 59.7836 0.0093 Cu(1+) 4s0 3d8 4f1 -194.31213865 -194.31273597 0.0005783 59.7836 0.0001 m.a.A. Exp. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. J.11261 1.000458 -0.077232 -0.371856 </td
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cu(2+) 4s1 3d8 -195.06080377 -195.06052565 -0.00027812 31.7400 31.7537 -0.0137 Cu(3+) 4s0 3d8 -194.02994818 -194.03051301 0.00056483 59.7928 59.7836 0.0093 Cu(1+) 4s0 3d8 4f1 -194.31213865 -194.31273597 0.00059723 52.1135 52.1034 0.0101 ma.A. Exp. Koeff. No.00048819 -0.0172441 2.115572 -0.0145 -0.000711 -0.028867 0.077232 -0.371856 -0.371856 -0.027025 -0.026894 -0.172441 2.115572 -0.0115370 -0.134235 0.325312 -0.285653 -1.875080 -2.731699 -1.212611 0.546651 -0.276025 -0.26044 -2.236910 6.025353 -0.56569 -0.0041762 1.078192 -0.309581 -4.432439 -0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 -0.504806 -175811 -1.354586 -0.504806 -0.94769 <td< td=""></td<>
Cu(3+) 4s0 3d8 Cu(1+) 4s0 3d8 4f1 -194.02994818 -194.31213865 -194.03051301 -194.31273597 0.00056483 0.00059732 59.7928 52.1135 59.7836 52.1034 0.00093 0.0101 m.a.A. Exp. Koeff. Is.329562 0.285782 -0.052825 -0.026894 -0.172441 0.115572 -0.371856 15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 -0.371856 1.5329562 -0.285782 -0.052825 -0.026894 -0.172441 2.115572 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 -0.25353 0.569930 -0.153300 -0.041762 1.078192 -0.309581 -4.432439 -0.111595 0.06357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 -0.504806 -0.504806 -0.041762 0.09328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 -0.262489 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 -0.262489 -0.224422 0.107669 0.364373 -0.091785 0.30868 -1.240667 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 -0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 -0.24488 -0.24488 -0.24422 0.107669 0.364373 -0.091787 0.0402547 0.234937 0.495418 -0.112487 0.024385 -0.244385 -0.244281 0.034297 -0.311735 0.049232 1.242338 -1.242338 -1.032777 0.331910 0.173709 0.800619 -0.172956 -0.402547 0.234937 0.495418 -0.113290 -0.841311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.402547 0.244518 -0.113290 -0.8941311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.504641311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.504641311 -0.0141517 0.086
Cu(3+) 4s0 3d8 Cu(1+) 4s0 3d8 4f1 -194.02994818 -194.31213865 -194.03051301 -194.31273597 0.00056483 0.00059732 59.7928 52.1135 59.7836 52.1034 0.00093 0.0101 m.a.A. Exp. Koeff. Is.329562 0.285782 -0.052825 -0.026894 -0.172441 0.115572 -0.371856 15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 -0.371856 1.5329562 -0.285782 -0.052825 -0.026894 -0.172441 2.115572 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 -0.25353 0.569930 -0.153300 -0.041762 1.078192 -0.309581 -4.432439 -0.111595 0.06357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 -0.504806 -0.504806 -0.041762 0.09328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 -0.262489 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 -0.262489 -0.224422 0.107669 0.364373 -0.091785 0.30868 -1.240667 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 -0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 -0.24488 -0.24488 -0.24422 0.107669 0.364373 -0.091787 0.0402547 0.234937 0.495418 -0.112487 0.024385 -0.244385 -0.244281 0.034297 -0.311735 0.049232 1.242338 -1.242338 -1.032777 0.331910 0.173709 0.800619 -0.172956 -0.402547 0.234937 0.495418 -0.113290 -0.841311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.402547 0.244518 -0.113290 -0.8941311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.504641311 -0.0141517 0.086590 0.335459 -0.599733 0.639784 -0.504641311 -0.0141517 0.086
Cu(1+) 4s0 3d8 4f1 -194.31213865 -194.31273597 0.00059732 52.1135 52.1034 0.0101 m.a.A. Exp. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. Koeff. 8 30.258290 -0.006754 -0.000711 -0.028867 0.077232 -0.371856 15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 10.827340 -0.617275 0.134235 0.325312 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.008559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.0094785 0.103869 1.
Ra.A.
s 30.258290 -0.006754 -0.000711 -0.028867 0.077232 -0.371856 15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 10.827340 -0.617275 0.134235 0.325312 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.3995186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485
s 30.258290 -0.006754 -0.000711 -0.028867 0.077232 -0.371856 15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 10.827340 -0.617275 0.134235 0.325312 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.3995186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485
15.329562 0.285782 -0.052825 -0.026894 -0.172441 2.115572 10.827340 -0.617275 0.134235 0.325312 -0.285653 -1.875080 2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p
10.827340
2.529540 0.528687 -0.135340 -1.017838 2.483551 -2.731699 1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076
1.212611 0.546651 -0.276025 -0.263044 -2.236910 6.025353 0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.8
0.569930 0.153300 -0.041762 1.078192 -0.309581 -4.432439 0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473
0.111595 0.006357 0.712058 0.768498 1.731936 1.719811 0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297
0.039214 0.000559 0.395186 -1.218367 -1.354586 -0.504806 p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.
p 17.542947 0.018554 -0.010625 0.009328 -0.142759 -0.896533 13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418
13.493407 -0.069837 0.056656 -0.094785 0.103869 1.362048 4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 -
4.676387 0.282703 -0.349026 0.767269 1.485555 1.146521 2.262485 0.422489 -0.282173 0.264838 -1.470537 -3.542611 1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 -
1.104951 0.325854 0.094042 -0.879272 -0.668792 3.411034 0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 -
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.524422 0.107669 0.364373 -0.391378 1.308684 -0.954567 0.201013 0.008076 0.428117 0.416768 0.316027 -1.262489 d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 -
d 12.226319 0.083677 -0.097977 -0.112487 -0.244385 - 5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 -
5.865728 0.274473 -0.364843 -0.533716 -0.758147 - 2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 - vqz vtz
2.498731 0.342297 -0.311735 0.049232 1.242338 - 1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 - vqz vtz
1.032777 0.331910 0.173709 0.800619 -0.172956 - 0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 - vqz vtz
0.402547 0.234937 0.495418 -0.113290 -0.841311 - 0.141517 0.086590 0.335459 -0.599733 0.639784 - vqz vtz
0.141517
0.141517
1
1
s 0.020000 0.020000
p 0.100000 0.100000
d 0.070000 0.070000
f 0.815699 1.467198
f 7.146715 5.312151
f 2.646736 -
g 1.982205 4.394273
g 5.841060 -
h 4.638902 -
E _{SA-MCSCF} -169.26694865 -169.26670592
E _{CISD} -170.01998887 -169.93948607

Tabelle A.29: Cu-Pseudopotential, $Z_{\text{eff}} = 19.0$.

						0000000	-1								
					105.	05654526	1	5.8543	3298						
					105	.08806248	0	5.8045	2897						
				V_s	123.	87006927	0	12.521	74964						
				V_p	72.3	3499364	0	11.560	19052						
Konf.			E_{ps}			E _{ref}		$E_{ps}-E_{r}$		EX_{ps}		EX_{ref}		$EX_{ps}-E$	X_{ref}
Zn(0) 4s2 3	d10		-226	5.02288021		-226.022890)73	0.00001		0.000	0	0.0000		0.0000	
Zn(12+) 3s2	2 3p	6	-165	5.90200085	5	-165.902023	396	0.00002	311	1636.	0755	1636.0	752	0.0003	
Zn(13+) 3s2	2 3p	5	-150).54218196	Ó	-150.542215	808	0.00003	312	2054.	0638	2054.0	632	0.0006	
Zn(2+) 4s0	3d1	0	-225	5.11758253	3	-225.117907	741	0.00032	488	24.63	60	24.627	4	0.0086	
Zn(1+) 4s1	3d1	0	-225	5.73680179)	-225.736717	796	-0.0000	8383	7.785	1	7.7876		-0.0026	
Zn(3+) 4s0			-223	3.75249597	7	-223.752504	150	0.00000	853	61.78	42	61.784	2	-0.0001	
Zn(1+) 4s0				5.24267915		-225.243022		0.00034		21.23		21.222		0.0091	
Zn(1+) 4s0				5.30939052		-225.308483		-0.0009		19.41		19.441		-0.0250	
Zn(1+) 4s0				5.25283119		-225.253000		0.00016		20.95		20.951		0.0043	
Zn(1+) 4s0				5.23819831		-225.238493		0.00029		21.35		21.345		0.0077	
m.a.A.	Jui	0 341		7.23017031		223.230473	123	0.00021		21.55	50	21,373		0.0065	
	ı	Exp.		Koeff.		Koeff.	k	Koeff.	Koef	f	Koeff.				
_	s	22.307	721	-0.03547	16	-0.005048		.215443	0.787		3.2142	221			
	3	17.159		0.36838		-0.052386		0.424470	-1.86		-8.896				
		13.199		-0.61361		0.128796		.062047	0.890		6.2743				
		2.6773		0.613159		-0.195106		.883307	2.170		1.0079				
		1.1848		0.52010		-0.277562		0.198460	-2.19		-3.786				
		0.4678		0.064820		-0.006175		0.488003	-0.37		4.1438				
		0.1483		-0.00300		0.714318		0.980381	1.610		-2.434				
		0.0510		0.002372		0.425003		.126140	-0.78		0.5405				
_	р	21.442		0.01514		-0.008913		.002837	0.122		-0.783				
	Р	16.493		-0.05982		0.056732		0.076615		5150	1.1653				
		5.8849		0.24879		-0.378364		.684701		0238	1.4230				
		2.9113		0.405920		-0.323737		.341587	1.250		-3.725				
		1.4495		0.344420		0.120265		0.832886	0.855		3.0498				
		0.6999		0.13262		0.390628		0.415762	-1.11		-0.269				
		0.2761		0.011440		0.317217		.243662	-0.78		-1.793				
_	d	16.423		0.069648		-0.096634		0.091934		9538	-				
	۵	8.0761		0.254450		-0.394295		0.582693		5426	_				
		3.5615		0.33189		-0.368146		.115688	1.161		_				
		1.5225		0.336792		0.225925		.873563		9947	_				
		0.6183		0.24970		0.518695		0.287109		7980	_				
		0.2267		0.09243		0.251161		0.552124	0.607		_				
	I	0.2207	50	0.07243				vtz	0.007	133					
			_			vqz			100						
				S		0.025000		0.0250							
				p		0.140000		0.1400							
				d		0.114000		0.1140							
				f		1.100364		1.8988							
				f		3.449349		6.7624	93						
				f		9.118726			27						
				g		2.458936		5.4179	127						
				g		7.197913		-							
			_	h		5.710068		-		_					
				E _{SA} -MCSO	F	-226.02229			222027						
				E_{CISD}		-226.92149	9406	-226.8	252178	5					

Tabelle A.30: Zn-Pseudopotential, $Z_{\text{eff}} = 20.0$.

		Koeff.	r^n E	xp.		
	V_{loc}	3.00000000		22544253		
	100	3.67632759		71065133		
		-11.23828733		33931968		
	V_s	57.88512249		48772664		
	V_p	43.67871044		12489462		
	$\overset{r}{V_d}$	17.97137628		27124173		
Konf.			E _{ps} -E _{ref}	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Ga(0) 4s2 4p1		1.97772319	-0.00033783	0.0000	0.0000	0.0000
Ga(++) 4d1	-0.46345862 -	0.46419709	0.00073847	41.2170	41.1877	0.0293
Ga(0) 4p3	-1.49278548 -	1.49360179	0.00081631	13.2059	13.1744	0.0314
Ga(+) 4s1 4d1	-1.31152249 -	1.31060095	-0.00092154	18.1386	18.1545	-0.0159
Ga(0) 4s1 4d2	-1.38466967 -	1.38355035	-0.00111932	16.1480	16.1693	-0.0213
Ga(+) 4s1 4f1	-1.21388941 -	1.21371715	-0.00017226	20.7955	20.7910	0.0045
Ga(0) 4s1 4p2	-1.77339231 -	1.77270158	-0.00069073	5.5697	5.5793	-0.0096
Ga(+) 4s1 5d1	-1.21311426 -	1.21276825	-0.00034601	20.8166	20.8168	-0.0002
Ga(+) 4s2	-1.77708431 -	1.77763039	0.00054608	5.4692	5.4451	0.0241
Ga(0) 4s2 4f1	-1.80834614 -	1.80889192	0.00054578	4.6185	4.5944	0.0240
Ga(-) 4s2 4p2	-1.96613113 -	1.96517643	-0.00095470	0.3246	0.3414	-0.0168
Ga(0) 4s2 5s1	-1.87650085 -	1.87757220	0.00107135	2.7638	2.7254	0.0383
Ga(0) 4s2 4d1	-1.83384477 -	1.83459315	0.00074838	3.9246	3.8950	0.0296
Ga(++) 4f1	-0.28270087 -	0.28204634	-0.00065453	46.1360	46.1446	-0.0086
m.a.A.		(0.00069024			0.0195
	Koeff.	Exp.	Koeff.	Exp.		
	0.253171	0.054628	0.759400	0.029207		
	0.598295	0.123743	-0.022059	0.064420		
	0.356909	0.280299	0.368252	0.142086		
	-0.056544	0.634926	0.051142	0.313389		
	-0.411266	1.438218	0.036655	0.691221		
	0.156079	3.257814	-0.078589	9 1.524577		
	-0.025142	7.379514	0.017781	3.362652		
	0.004089	16.715879	-0.002498	3 7.416764		
	-0.000622	37.864367	0.000386	16.358632		
		vtz	vd			
	S	0.069702	28115 0.0	0318984799		
	S	0.34199	40472 -			
	p	0.027308	87639 0.0	0271545127		
	p	0.06402				
	d	0.105092	21157 0.	1823109686		
	d	0.266378				
	f	0.297553				
	E_{RHF}	-1.97753		.97523651		
	E_{RCCSI}	o(T) -2.02832	2188 -2	.01907307		

Tabelle A.31: Ga-Pseudopotential, $Z_{\text{eff}}=3.00$.

	$V_{ m loc}$	4.00000000	-1 1.884	192329		
	100	7.53969315		137268		
		-13.13622589		008364		
	V_s	61.26369269		315885		
	V_p	55.52495744		564031		
	V_d^r	23.49168485)26543		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Ge(0) 4s2 4p2	-3.63170737	-3.63184989	0.00014252	0.0000	0.0000	0.0000
Ge(++) 4s1 4d1	-2.12571624	-2.12601461	0.00029837	40.9827	40.9784	0.0042
Ge(++) 4s1 4p2	-3.09238772	-3.09222744	-0.00016028	14.6766	14.6848	-0.0082
Ge(0) 4s1 4p3	-3.34742866	-3.34721359	-0.00021507	7.7361	7.7458	-0.0097
Ge(++) 4s2	-2.82264645	-2.82261006	-0.00003639	22.0171	22.0219	-0.0049
Ge(+) 4s2 4d1	-3.05302909	-3.05268543	-0.00034366	15.7476	15.7609	-0.0132
Ge(0) 4s2 4d2	-3.12659208	-3.12606925	-0.00052283	13.7458	13.7639	-0.0181
Ge(+) 4s2 4f1	-2.94809523	-2.94807182	-0.00002341	18.6032	18.6077	-0.0045
Ge(+) 4s2 4p1	-3.37886272	-3.37919358	0.00033086	6.8807	6.8756	0.0051
Ge(0) 4s2 4p1 5d1	-3.41141853	-3.41168550	0.00026697	5.9947	5.9914	0.0034
Ge(-) 4s2 4p3	-3.63808848	-3.63771233	-0.00037615	-0.1736	-0.1595	-0.0141
Ge(+) 4s2 5d1	-2.95054241	-2.95053240	-0.00001001	18.5366	18.5408	-0.0042
Ge(+) 4s2 5f1	-2.90299236	-2.90296665	-0.00002571	19.8306	19.8352	-0.0046
Ge(0) 4s2 4p1 4f1	-3.41013104	-3.41046183	0.00033079	6.0298	6.0247	0.0051
Ge(0) 4s2 4p1 5f1	-3.39887761	-3.39920841	0.00033080	6.3360	6.3309	0.0051
m.a.A.			0.00022759			0.0075
	Koeff.	Exp.	Koeff.	Exp.	_	
	0.213230	0.066287	0.098680	0.036511	_	
	0.605570	0.150128	0.372290	0.080524		
	0.413442	0.340013	0.443836	0.177593		
	-0.106356	0.770064	0.232585	0.391677		
	-0.364579	1.744049	0.000058	0.863832		
	0.127448	3.949940	-0.108282	1.905157		
	-0.017166	8.945864	0.021894	4.201772		
	0.002454	20.260687	-0.001911	9.266892		
	-0.000355	45.886614	0.000181	20.437873		
		vtz	vdz			
	S	0.091048	5014 0.043	7808856		
	S	0.445675	7605 -			
	p	0.040411	8896 0.074	7255012		
	p	0.092450				
	d	0.130147		2776358		
	d	0.323826				
	f	0.352814				
	E_{RHF}	-3.65156		151170		
	E_{RCCSL}	o(T) -3.722249	965 -3.71	109904		

 r^n Exp.

Koeff.

Tabelle A.32: Ge-Pseudopotential, $Z_{\text{eff}} = 4.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	5.00000000		796059		
	, loc	6.08980295		302171		
		-14.92625816		158567		
	V_{s}	73.75553709		546456		
	V_p	68.03580909		664249		
	$\overset{\cdot}{V_d}^p$	23.32540737		862616		
Konf.	E _{ps}	E _{ref}	$E_{ps}-E_{ref}$	EX _{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
As(0) 4s2 4p3	-5.97375793	-5.97388037	0.00012244	0.0000	0.0000	0.0000
As(+) 4s1 4p3	-5.29719447	-5.29710986	-0.00008461	18.4114	18.4170	-0.0056
As(0) 4s1 4p4	-5.60438546	-5.60445173	0.00006627	10.0518	10.0533	-0.0015
As(++) 4s2 4d1	-4.53358069	-4.53383151	0.00025082	39.1917	39.1882	0.0035
As(+) 4s2 4d2	-4.80690176	-4.80676213	-0.00013963	31.7538	31.7609	-0.0071
As(++) 4s2 4f1	-4.30934626	-4.30924085	-0.00010541	45.2938	45.3000	-0.0062
As(++) 4s2 4p1	-5.03084345	-5.03081831	-0.00002514	25.6596	25.6636	-0.0040
As(+) 4s2 4p1 4d1	-5.27503084	-5.27446628	-0.00056456	19.0145	19.0332	-0.0187
As(+) 4s2 4p1 4f1	-5.15649329	-5.15649762	0.00000433	22.2403	22.2435	-0.0032
As(+) 4s2 4p2	-5.66662485	-5.66675721	0.00013236	8.3580	8.3578	0.0003
As(0) 4s2 4p2 4f1	-5.69789193	-5.69802442	0.00013249	7.5072	7.5069	0.0003
As(-) 4s2 4p4	-6.00448041	-6.00433229	-0.00014812	-0.8361	-0.8287	-0.0074
As(++) 4s2 5d1	-4.30606180	-4.30648392	0.00042212	45.3832	45.3750	0.0082
As(0) 4s2 4p2 5f1	-5.68663883	-5.68677129	0.00013246	7.8134	7.8131	0.0003
As(++) 4s2 5f1	-4.20739896	-4.20721463	-0.00018433	48.0681	48.0765	-0.0083
m.a.A.			0.00016767			0.0053
	Koeff.	Exp.	Koeff.	Exp.		
	0.192043	0.079412	0.105058	0.050626		
	0.611682	0.178687	0.361819	0.108692		
	0.439261	0.402068	0.452107	0.233354		
	-0.110280	0.904702	0.231243	0.500995		
	-0.394179	2.035691	-0.009549	1.075603		
	0.145632	4.580555	-0.121767	2.309248		
	-0.021379	10.306811	0.028648	4.957802		
	0.003205	23.191593	-0.002941	10.644071		
	-0.000469	52.183937	0.000293	22.852115		
		vtz	vdz			
	s	0.113088	2502 0.051	4804237		
	s	0.540159	1063 -			
	p	0.612326	1452 0.095	6229046		
	p	0.100851	0217 -			
	d	0.165790	0512 0.297	6522617		
	d	0.412063	2708 -			
	f	0.425289	7203 -			
	E _{RHF}	-6.042212	249 -6.04	221254		
	E _{RCCSE}	-6.13341:	563 -6.11	260458		
		\ / I				

Tabelle A.33: As-Pseudopotential, $Z_{\text{eff}} = 5.00$.

	$V_{ m loc}$	6.00000000	-1 1.734	494732		
		10.40968393	1 6.916	532737		
		-17.83199463	0 3.105	551681		
	V_s	85.94238004	0 4.675	503354		
	V_p	78.84838432	0 4.342	256579		
	$\dot{V_d}$	30.92151589	0 2.619	905005		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Se(0) 4s2 4p4	-9.10503014	-9.10515050	0.00012036	0.0000	0.0000	0.0000
Se(++) 4s2 4p2	-8.02376988	-8.02370341	-0.00006647	29.4244	29.4295	-0.0051
Se(+) 4s2 4p2 4d1	-8.28044050	-8.28053791	0.00009741	22.4396	22.4403	-0.0006
Se(0) 4s2 4p2 4d2	-8.35547464	-8.35532292	-0.00015172	20.3977	20.4051	-0.0074
Se(+) 4s2 4p2 4f1	-8.14945635	-8.14943912	-0.00001723	26.0041	26.0079	-0.0037
Se(+) 4s2 4p2 5d1	-8.16174675	-8.16191491	0.00016816	25.6697	25.6684	0.0013
Se(+) 4s2 4p3	-8.74097669	-8.74109116	0.00011447	9.9070	9.9072	-0.0002
Se(0) 4s2 4p3 5d1	-8.77431314	-8.77438185	0.00006871	8.9998	9.0012	-0.0014
Se(0) 4s2 4p3 5p1	-8.82241408	-8.82217219	-0.00024189	7.6909	7.7007	-0.0099
Se(0) 4s2 4p3 5s1	-8.86389934	-8.86371310	-0.00018624	6.5619	6.5703	-0.0083
Se(-) 4s2 4p5	-9.16487389	-9.16477001	-0.00010388	-1.6285	-1.6224	-0.0061
Se(+) 4s2 4p2 5f1	-8.10429933	-8.10427554	-0.00002379	27.2330	27.2369	-0.0039
Se(0) 4s2 4p3 4f1	-8.77224088	-8.77235560	0.00011472	9.0562	9.0564	-0.0002
Se(0) 4s2 4p3 5f1	-8.76098837	-8.76110304	0.00011467	9.3624	9.3626	-0.0002
m.a.A.			0.00011355			0.0037
	Koeff.	Exp.	Koeff.	Exp.		
	0.200965	0.096883	0.073504	0.056147	-	
	0.615093	0.217674	0.334692	0.122259		
	0.462636	0.489067	0.473323	0.266220		
	-0.204179	1.098828	0.276571	0.579694		
	-0.307584	2.468828	-0.032356	1.262286		
	0.109895	5.546920	-0.103709	2.748631		
	-0.012288	12.462726	0.020181	5.985152		
	0.001205	28.001040	-0.001095	13.032685		
	-0.000132	62.912258	0.000019	28.378708		
		vtz	vdz			
	S	0.130387	0.062	4674372		
	S	0.584755	1227 -			
	p	0.069682	27173 0.107	3806658		
	p	0.141231	.3282 -			
	d	0.195235		6492336		
	d	0.471051				
	f	0.466246				
	E _{RHF}	-9.13237		064562		
	E_{RCCSI}	-9.25888	086 -9.22	118720		

Tabelle A.34: Se-Pseudopotential, $Z_{\text{eff}} = 6.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	7.00000000	-1 1.86	793881		
		13.07557164	1 5.30:	536536		
		-18.79056037	0 3.32	134623		
	V_s	88.58537968	0 5.170	694821		
	V_p	79.43718432	0 4.80	714881		
	$\hat{V_d}$	29.35463757	0 3.03	534088		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Br(0) 4s2 4p5	-13.12430968	-13.12442152	0.00011184		0.0000	0.0000
Br(+) 4s2 4p2 4d2	-11.56040108	-11.56061004	0.00020896	5 42.5588	42.5562	0.0026
Br(++) 4s2 4p3	-11.89946004	-11.89950980	0.00004976	33.3320	33.3336	-0.0017
Br(+) 4s2 4p3 4d1	-12.17007066	-12.16946655	-0.0006041	1 25.9678	25.9873	-0.0195
Br(+) 4s2 4p3 4f1	-12.02512393	-12.02522240	0.00009847	7 29.9123	29.9126	-0.0004
Br(+) 4s2 4p3 5d1	-12.04245653	-12.04244170	-0.0000148	3 29.4406	29.4440	-0.0034
Br(+) 4s2 4p4	-12.70052248	-12.70066461	0.00014213	3 11.5326	11.5317	0.0008
Br(0) 4s2 4p4 4d1	-12.76018633	-12.76019601	0.00000968	9.9089	9.9117	-0.0028
Br(0) 4s2 4p4 4f1	-12.73178261	-12.73192623	0.00014362	2 10.6819	10.6810	0.0009
Br(0) 4s2 4p4 5p1	-12.78518318	-12.78520976	0.00002658	9.2287	9.2310	-0.0023
Br(0) 4s2 4p4 5s1	-12.82968280	-12.82936978	-0.0003130	2 8.0177	8.0293	-0.0116
Br(-) 4s2 4p6	-13.21735308	-13.21727531	-0.0000777	77 -2.5320	-2.5268	-0.0052
Br(0) 4s2 4p3 5f1	-12.72053083	-12.72067423	0.00014340		10.9872	0.0009
Br(+) 4s2 4p3 5f1	-11.97997846	-11.98007065	0.00009219	31.1408	31.1413	-0.0005
m.a.A.			0.00014545			0.0040
	Koeff.	Exp.	Koeff.	Exp.		
	0.199832	0.114626	0.107992	0.067990		
	0.605806	0.253024	0.331860	0.145507		
	0.486414	0.558520	0.442871	0.311403		
	-0.208964	1.232866	0.283256	0.666441		
	-0.328448	2.721403	-0.026045	1.426267		
	0.118471	6.007171	-0.111323	3.052389		
	-0.013112	13.260109	0.021712	6.532494		
	0.001206	29.270100	-0.001188	13.980353		
	-0.000121	64.610234	0.000022	29.919703		
		vtz	vdz			
	s	0.154400		7117177		
	S	0.660617		,,11,1,,		
		0.078654		06543628		
	p p	0.164043		33 13020		
	d d	0.234980		2956347		
	d	0.568017				
	f	0.555710				
	E _{RHF}	-13.1259		2461165		
	E _{RCCSD}			3535234		
	- KCCSD	(1) 13.2004.				

Tabelle A.35: Br-Pseudopotential, $Z_{\text{eff}} = 7.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	8.00000000	-1 1.723	97711		
		13.79181690	1 6.705	10242		
		-22.77215308	0 2.754	63922		
	V_s	92.78570269	0 4.850	45356		
	V_p	80.37767796	0 4.523	50391		
	$\hat{V_d}$	31.36172413	0 3.045	56109		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Kr(0) 4s2 4p6	-18.12875485	-18.12891948	0.00016463	0.0000	0.0000	0.0000
Kr(+) 4s2 4p5	-17.64254551	-17.64255685	0.00001134	13.2313	13.2354	-0.0042
Kr(++) 4s2 4p4	-16.75488596	-16.75507685	0.00019089	37.3872	37.3865	0.0007
Kr(0) 4s2 4p5 5s1	-17.77723103	-17.77689390	-0.00033713	9.5661	9.5797	-0.0137
Kr(0) 4s2 4p5 6s1	-17.69988387	-17.69979376	-0.00009011	11.6709	11.6778	-0.0069
Kr(0) 4s2 4p5 5p1	-17.73017645	-17.73013302	-0.00004343	3 10.8466	10.8522	-0.0057
Kr(0) 4s2 4p5 6p1	-17.68532466	-17.68531447	-0.00001019	12.0671	12.0719	-0.0048
Kr(0) 4s2 4p5 4d1	-17.70219175	-17.70225453	0.00006278	11.6081	11.6109	-0.0028
Kr(0) 4s2 4p5 5d1	-17.67618307	-17.67622902	0.00004595	12.3159	12.3191	-0.0032
Kr(0) 4s2 4p5 4f1	-17.67380450	-17.67381608	0.00001158	12.3806	12.3848	-0.0042
m.a.A.			0.00009680			0.0051
	Koeff.	Exp.	Koeff.	Exp.		
	0.183453	0.129911	0.096705	0.079314		
	0.596016	0.282220	0.312567	0.167216		
	0.506410	0.613098	0.448237	0.352539		
	-0.150926	1.331901	0.298640	0.743252		
	-0.423611	2.893437	-0.003641	1.566988		
	0.162644	6.285735	-0.138798	3.303659		
	-0.023284	13.655203	0.029989	6.965055		
	0.003157	29.664719	-0.002578	14.684325		
	-0.000422	64.443973	0.000205	30.958748		
		vtz	vdz			
	S	0.179349	0499 0.6346	6194744		
	S	0.755436	3608 -			
	p	0.094685	2937 0.1499	9023736		
	p	0.189990	9377 -			
	d	0.279730	7968 0.4879	9320264		
	d	0.675347	2686 -			
	f	0.685638	6065 -			
	E _{RHF}	-18.12872		872804		
	E_{RCCSD}	-18.32138	8046 -18.25	297881		
		•				

Tabelle A.36: Kr-Pseudopotential, $Z_{\text{eff}} = 8.00$.

		Koeff.	r ⁿ	Exp.	_	
	$V_{ m lo}$			4.38377252		
		4.3837725		3.19763054		
		-14.258906		0.92493011		
	V_s	120.87192		1.14964523		
	V_p	110.02656		0.75675227		
	V_d	22.4444330		1.97938422		
Konf.	E_{ps}	E _{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Rb(0) 5s1	-0.13958123	-0.13960396	0.0000227		0.0000	0.0000
Rb(+) 4d1	-0.05959499	-0.05977323	0.0001782		2.1724	0.0042
Rb(0) 4f1	-0.03125373	-0.03125730	0.0000035		2.9484	-0.0005
Rb(+) 5d1	-0.03400763	-0.03377522	-0.000232		2.8799	-0.0069
Rb(0) 5f1	-0.02000319	-0.02000608	0.0000028		3.2546	-0.0005
Rb(+) 5p1	-0.09032360	-0.09026677	-0.000056		1.3426	-0.0022
Rb(0) 6p1	-0.04357375	-0.04369605	0.0001223		2.6100	0.0027
Rb(0) 6s1	-0.05877527	-0.05870880	-0.000066		2.2014	-0.0024
Rb(0) 7p1	-0.02582508	-0.02590707	0.0000819		3.0940	0.0016
Rb(0) 7s1	-0.03246465	-0.03243804	-0.000026		2.9163	-0.0013
m.a.A.			0.0000794	10		0.0025
	Koeff.	Exp.	Koeff.	Exp.		
	0.48365					
	0.68297					
	-0.0248					
	-0.1910	0.186966			03	
	-0.2145	0.425839	0.0005			
	0.14739	99 0.969902	-0.005	930 0.7844	80	
	-0.0383	58 2.209071	0.0010	91 1.8785	63	
	0.00736	5.031431	-0.000	097 4.4985	17	
	-0.0010	94 11.45970	-0.000	002 10.772	413	
		vtz	VC	lz		
	S	0.04622	34169 0.	0171246752	•	
	S	0.15088	96351 -			
	p	0.01797	54179 0.	0141402800		
	p	0.13959	31244 -			
	d	0.04831	60801 0.	0379530676		
	d	0.51146	87681 -			
	f	0.06154	08011 -			
	E	RHF -0.13956	6756 -0	.13956755		
		-				

Tabelle A.37: Rb-Pseudopotential, $Z_{\text{eff}} = 1.00$.

		Koeff.	r^n	Exp.			
	$V_{ m loc}$	2.00000000) -1		393876		
	10	8.76787753			649834		
		-14.255243	13 0	0.98	991497		
	V_s	146.871605			683494		
	V_p	140.026228	342 0	0.95	674483		
	V_d^{\prime}	24.4454877			831654		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Sr(0) 5s2	-0.55850082	-0.55814353	-0.00035	729	0.0000	0.0000	0.0000
Sr(+) 4d1	-0.31178032	-0.31151456	-0.00026	576	6.7140	6.7115	0.0025
Sr(+) 5p1	-0.28186665	-0.28279725	0.000930	060	7.5281	7.4930	0.0350
Sr(0) 5p2	-0.40548343	-0.40530383	-0.00017	960	4.1641	4.1592	0.0048
Sr(+) 5s1	-0.38348142	-0.38362879	0.000147	737	4.7628	4.7491	0.0137
Sr(0) 5s1 4d1	-0.47982232	-0.48021007	0.000387	775	2.1411	2.1208	0.0203
Sr(0) 5s1 4f1	-0.41483962	-0.41498377	0.000144	15	3.9095	3.8958	0.0136
Sr(0) 5s1 5f1	-0.40356566	-0.40371033	0.000144	67	4.2163	4.2026	0.0137
Sr(0) 5s1 5p1	-0.50297236	-0.50181423	-0.00115	813	1.5111	1.5329	-0.0218
Sr(0) 5s1 6p1	-0.43304637	-0.43313256	0.000086	519	3.4140	3.4019	0.0121
Sr(+) 6s1	-0.18103661	-0.18184642	0.000809	981	10.2720	10.2402	0.0318
Sr(0) 6s2	-0.26181709	-0.26275952	0.000942	243	8.0737	8.0383	0.0354
Sr(+) 4f	-0.12580108	-0.12550926	-0.00029	182	11.7751	11.7733	0.0018
Sr(+) 5f	-0.08071119	-0.08041145	-0.00029	974	13.0021	13.0006	0.0016
m.a.A.			0.000384	108			0.0139
	Koeff.	Exp.	Koef	f.	Exp.		
	0.0446	54 0.019429	0.079	9015	0.027297		
	0.1383	0.043476	0.109	9563	0.055025		
	0.1696	24 0.097283	0.096	5798	0.110920		
	-0.0938	394 0.217685	-0.04	7473	0.223593		
	-0.2476	613 0.487102	-0.17	1028	0.450721		
	0.1601	01 1.089961	0.104	1848	0.908566		
	-0.0435	595 2.438947	-0.02	9516	1.831493		
	0.0086	84 5.457499	0.006	5196	3.691937		
	-0.0012	296 12.21194	9 -0.00	0955	7.442231		
		vtz		vdz			
	S	0.05877	716550	0.0914	809463		
	S	0.39913	315067	-			
	p	0.28326	641900	0.0986	777246		
	p	0.10387	737148	-			
	d	0.11980)59618	0.4334	164262		
	d	0.52826	588141	-			
	f	0.16454		-			
	E_{RH}			-1.672			
	E_{RG}	CCSD -1.7450	0263	-1.737	61434		

Tabelle A.38: Sr-Pseudopotential, $Z_{\text{eff}} = 2.00$.

		K	oeff.	r^n	Exp.			
		V_{loc} 3.	00000000	-1	0.84	508372		
		2.	53525117	1	5.66	019931		
		-7	.66579852	0		764327		
	I	V_s 58	3.16918845	5 0	1.87	837596		
	I	\tilde{V}_p 43	3.63891951	1 0	1.51:	547534		
			7.93363847	7 0	0.839	917399		
Konf.	E_{ps}	E_{ref}]	E _{ps} -E _{ref}		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
In(0) 5s2 5p1	-1.79174228	-1.791	76142 (0.000019	14	0.0000	0.0000	0.0000
In(++) 5d1	-0.43209379			0.000390	90	37.0003	36.9901	0.0101
In(0) 5p3	-1.35907425	-1.359	85829 (0.000784	04	11.7742	11.7534	0.0208
In(+) 5d2	-0.67555535	-0.675	30088 -	-0.00025	447	30.3749	30.3824	-0.0074
In(0) 5s2 6d1	-1.63494304	-1.635	605914 (0.000116	10	4.2670	4.2644	0.0026
In(+) 5s2 5f1	-1.62314595	-1.623	340697 (0.000261	02	4.5880	4.5814	0.0066
In(0) 5s1 5p2	-1.60966130	-1.608	367064 -	-0.00099	066	4.9550	4.9825	-0.0275
In(+) 5s1 4f1	-1.10501147	-1.103	61692 -	-0.00139	455	18.6881	18.7265	-0.0385
In(+) 5s2	-1.60312774	-1.603	38881 (0.000261	07	5.1328	5.1262	0.0066
In(0) 5s2 4f1	-1.63440004	-1.634	66104 (0.000261	00	4.2818	4.2752	0.0066
In(-) 5s2 5p2	-1.78479530	-1.784	26865 -	-0.00052	665	0.1890	0.2039	-0.0149
In(0) 5s2 6s1	-1.69628066	-1.697	10654	0.000825	88	2.5978	2.5759	0.0220
In(0) 5s2 5d1	-1.65984247	-1.659	81766 -	-0.00002	481	3.5894	3.5906	-0.0012
In(++) 4f1	-0.28609931	-0.286	611535 (0.000016	04	40.9732	40.9733	-0.0001
m.a.A.			(0.000437	60			0.0127
	Koeff		Exp.	Koefl	f.	Exp.		
	0.266	560	0.048513	0.739	358	0.024898		
	0.595	345	0.104327	-0.04	8330	0.052455		
	0.377	654	0.224354	0.414	377	0.110513		
	-0.03	6404	0.482469	0.046	307	0.232832		
	-0.58	1005	1.037542	0.047	980	0.490534		
	0.270	265	2.231217	-0.12	4316	1.033468		
	-0.05	3715	4.798193	0.037	471	2.177331		
	0.008	961	10.318430	-0.00	6011	4.587245		
	-0.00	1283	22.189605	0.000	835	9.664500		
			vtz		vdz			
	S		0.06102	58579	0.024	40112116		
	S		0.25465		-			
	p		0.02383	56758	0.022	28867624		
	p		0.04718	30294	-			
	d		0.09223	85976	0.130	62127364		
	d		0.19011	64800	-			
	f		0.25575	05965	-			
	E_{R}	HF	-1.79129		-1.78	3916818		
		CCSD(T)	-1.83593	3630	-1.82	2807273		
		. /	•					

Tabelle A.39: In-Pseudopotential, $Z_{\text{eff}}=3.00$.

		MOCII.	r Lxp.			
	$V_{ m loc}$	4.00000000		334103		
		2.45336413		326592		
		-9.33070594	0 0.869	945138		
	V_s	58.04190484	0 2.013	880769		
	V_p	43.68447157	0 1.638	883815		
	V_d	17.95660523	0 0.923	346533		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Sn(0) 5s2 5p2	-3.22616790	-3.22635130	0.00018340	0.0000	0.0000	0.0000
Sn(++) 5s1 5d1	-1.89461808	-1.89493699	0.00031891	36.2356	36.2319	0.0037
Sn(++) 5s1 5p2	-2.74202928	-2.74172405	-0.00030523	13.1749	13.1882	-0.0133
Sn(0) 5s1 5p3	-2.97766250	-2.97762951	-0.00003299	6.7626	6.7685	-0.0059
Sn(++) 5s2	-2.49136475	-2.49156185	0.00019710	19.9963	19.9959	0.0004
Sn(+) 5s2 5d1	-2.71324338	-2.71296803	-0.00027535	13.9583	13.9708	-0.0125
Sn(0) 5s2 5d2	-2.78701720	-2.78648959	-0.00052761	11.9507	11.9700	-0.0193
Sn(+) 5s2 4f1	-2.61743723	-2.61773337	0.00029614	16.5654	16.5624	0.0031
Sn(+) 5s2 5p1	-2.99242411	-2.99270622	0.00028211	6.3609	6.3582	0.0027
Sn(0) 5s2 5p1 5d1	-3.05098051	-3.05103194	0.00005143	4.7674	4.7710	-0.0036
Sn(-) 5s2 5p3	-3.23811928	-3.23784299	-0.00027629	-0.3252	-0.3127	-0.0125
Sn(+) 5s2 6d1	-2.61470658	-2.61488255	0.00017597	16.6398	16.6400	-0.0002
Sn(+) 5s2 5f1	-2.57220351	-2.57157454	-0.00062897	17.7964	17.8185	-0.0221
Sn(0) 5s2 5p1 4f1	-3.02371086	-3.02399327	0.00028241	5.5095	5.5068	0.0027
Sn(0) 5s2 5p1 5f1	-3.01245388	-3.01273627	0.00028239	5.8158	5.8131	0.0027
m.a.A.			0.00027442			0.0075
	Koeff.	Exp.	Koeff.	Exp.		
	0.238882	0.059000	0.083958	0.030513	_	
	0.598806	0.124327	0.340660	0.063306		
	0.422531	0.261986	0.458257	0.131342		
	-0.035727		0.257950	0.272497		
	-0.631790		0.020922	0.565351		
	0.294297	2.451407	-0.189121	1.172938		
	-0.057592		0.054068	2.433504		
	0.009333	10.885303	-0.007013	5.048810		
	-0.001298		0.000749	10.474808		
	***************************************	vtz	vdz			
	S	0.078209	06982 0.031	1985519		
	s	0.308424				
	p	0.064892		3846234		
	p	0.376618	39814 -			
	ď	0.107844		3476757		
	d	0.223450				
	f	0.281256				
	E _{RHF}	-3.24433		427732		
	E _{RCCSI}			718052		
	KCCSI	2(1)				

Koeff. r^n Exp.

Tabelle A.40: Sn-Pseudopotential, $Z_{\rm eff}=4.00.\,$

		Koeff.	r^n]	Exp.		
	$V_{ m loc}$	5.00000000	-1 (0.74773404		
		3.73867018	1 :	5.79307847		
		-13.88202267	7 0	1.07909250		
	V_s	57.56076138	0 2	2.04356327		
	V_p	43.88817098	0	1.70062095		
	$\dot{V_d}$	17.82275877	0	1.00414410		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Sb(0) 5s2 5p3	-5.22171260	-5.22177873	0.000066	0.0000	0.0000	0.0000
Sb(+) 5s1 5p3	-4.62363343	-4.62370658	0.000073	16.2756	16.2754	0.0002
Sb(0) 5s1 5p4	-4.90342699	-4.90406794	0.000640	95 8.6615	8.6459	0.0156
Sb(++) 5s2 4f1	-3.78499385	-3.78558849	0.000594	64 39.0976	39.0832	0.0144
Sb(++) 5s2 5d1	-3.96436367	-3.96469334	0.000329	967 34.2164	34.2092	0.0072
Sb(+) 5s2 5d2	-4.22518911	-4.22516446	-0.00002	465 27.1185	27.1210	-0.0025
Sb(++) 5s2 5p1	-4.37659924	-4.37638563	-0.00021	361 22.9982	23.0058	-0.0076
Sb(+) 5s2 5p1 4f1	-4.50333726	-4.50317102	-0.00016	624 19.5492	19.5555	-0.0063
Sb(+) 5s2 5p1 5d1	-4.61297434	-4.61205740	-0.00091	694 16.5657	16.5924	-0.0268
Sb(+) 5s2 5p2	-4.94204571	-4.94196946	-0.00007	625 7.6106	7.6145	-0.0039
Sb(0) 5s2 5p2 4f1	-4.97333404	-4.97325782	-0.00007		6.7630	-0.0039
Sb(-) 5s2 5p4	-5.25684296	-5.25668664	-0.00015		-0.9500	-0.0061
Sb(++) 5s2 6d1	-3.75653894	-3.75699848	0.000459		39.8612	0.0107
Sb(0) 5s2 5p2 5f1	-4.96207703	-4.96200081	-0.00007		7.0694	-0.0039
Sb(+) 5s2 5p1 5f1	-4.45796017	-4.45778951	-0.00017		20.7905	-0.0064
m.a.A.			0.000269			0.0083
	Koeff.	Exp.	Koeff.	Exp.	_	
	0.217459	0.069280	0.08171	2 0.040092		
	0.599932	0.143940	0.32260	5 0.080679		
	0.459407	0.299056	0.46472	2 0.162356		
	-0.042472	0.621332	0.27708	8 0.326720		
	-0.650362	1.290905	0.00909	0.657481		
	0.298333	2.682040	-0.19482	25 1.323093		
	-0.056893	5.572320	0.05439	2 2.662550		
	0.009102	11.577290	-0.00645	55 5.358030		
	-0.001255	24.053472	0.00062	9 10.782327		
		vtz		dz		
	S	0.09505	74949 0	.0379423834		
	s	0.38196				
		0.44476	11570 0	.0736291111		
	S		11570 0	.0736291111		
	s p	0.44476	11570 0 73141 -	0.0736291111		
	s p p d d	0.44476 0.08322 0.13243 0.27735	11570 0 73141 - 12687 0 66842 -			
	s p p d	0.44476 0.08322 0.13243	11570 0 73141 - 12687 0 66842 -	.2106038183		
	s p p d d	0.44476 0.08322 0.13243 0.27735	11570 0 73141 - 12687 0 66842 - 21224 -	.2106038183		

Tabelle A.41: Sb-Pseudopotential, $Z_{\text{eff}} = 5.00$.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Koeff.	r^n Exp.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V_{loc}	6.00000000				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		100					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		V_{c}					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Te(++) 5s2 5p2 -6.89135548 -6.89108713 -0.00026835 26.0723 26.0842 -0.0119 Te(+) 5s2 5p2 4f1 -7.01811454 -7.01824282 0.00012828 22.6228 22.6239 -0.0011 Te(+) 5s2 5p2 5d1 -7.14105703 -7.14119462 0.00013759 19.2772 19.2780 -0.0008 Te(0) 5s2 5p2 5d2 -7.21887027 -7.21873254 -0.00013773 17.1597 17.1680 -0.0083 Te(+) 5s2 5p2 6d1 -7.02447778 -7.02454317 0.00006539 22.4497 22.4525 -0.0028 Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Konf.	-				EX_{ref}	$EX_{ps}-EX_{ref}$
Te(+) 5s2 5p2 4f1 -7.01811454 -7.01824282 0.00012828 22.6228 22.6239 -0.0011 Te(+) 5s2 5p2 5d1 -7.14105703 -7.14119462 0.00013759 19.2772 19.2780 -0.0008 Te(0) 5s2 5p2 5d2 -7.21887027 -7.21873254 -0.00013773 17.1597 17.1680 -0.0083 Te(+) 5s2 5p2 6d1 -7.02447778 -7.02454317 0.00006539 22.4497 22.4525 -0.0028 Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(0) 5s2 5p4	-7.84943627	-7.84960387	0.00016760	0.0000	0.0000	0.0000
Te(+) 5s2 5p2 5d1 -7.14105703 -7.14119462 0.00013759 19.2772 19.2780 -0.0008 Te(0) 5s2 5p2 5d2 -7.21887027 -7.21873254 -0.00013773 17.1597 17.1680 -0.0083 Te(+) 5s2 5p2 6d1 -7.02447778 -7.02454317 0.00006539 22.4497 22.4525 -0.0028 Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(++) 5s2 5p2	-6.89135548	-6.89108713	-0.00026835	26.0723	26.0842	-0.0119
Te(0) 5s2 5p2 5d2 -7.21887027 -7.21873254 -0.00013773 17.1597 17.1680 -0.0083 Te(+) 5s2 5p2 6d1 -7.02447778 -7.02454317 0.00006539 22.4497 22.4525 -0.0028 Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(+) 5s2 5p2 4f1	-7.01811454	-7.01824282	0.00012828	22.6228	22.6239	-0.0011
Te(+) 5s2 5p2 6d1 -7.02447778 -7.02454317 0.00006539 22.4497 22.4525 -0.0028 Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(+) 5s2 5p2 5d1	-7.14105703	-7.14119462	0.00013759	19.2772	19.2780	-0.0008
Te(+) 5s2 5p3 -7.52215914 -7.52219596 0.00003682 8.9062 8.9098 -0.0036 Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(0) 5s2 5p2 5d2	-7.21887027	-7.21873254	-0.00013773	17.1597	17.1680	-0.0083
Te(0) 5s2 5p3 4f1 -7.55344305 -7.55348126 0.00003821 8.0549 8.0584 -0.0035	Te(+) 5s2 5p2 6d1	-7.02447778	-7.02454317	0.00006539	22.4497	22.4525	-0.0028
	Te(+) 5s2 5p3	-7.52215914	-7.52219596	0.00003682	8.9062	8.9098	-0.0036
	Te(0) 5s2 5p3 4f1	-7.55344305	-7.55348126	0.00003821	8.0549	8.0584	-0.0035
Te(0) 5s2 5p3 6d1 -7.55634904 -7.55630924 -0.00003980 7.9758 7.9815 -0.0056	Te(0) 5s2 5p3 6d1	-7.55634904	-7.55630924	-0.00003980	7.9758	7.9815	-0.0056
Te(0) 5s2 5p3 6p1 -7.59860761 -7.59838168 -0.00022593 6.8258 6.8365 -0.0107	Te(0) 5s2 5p3 6p1	-7.59860761	-7.59838168		6.8258	6.8365	-0.0107
Te(0) 5s2 5p3 6s1 -7.63518325 -7.63524758 0.00006433 5.8305 5.8333 -0.0028		-7.63518325	-7.63524758	0.00006433	5.8305	5.8333	-0.0028
Te(-) 5s2 5p5 -7.91128962 -7.91120170 -0.00008792 -1.6832 -1.6763 -0.0070		-7.91128962		-0.00008792	-1.6832	-1.6763	-0.0070
Te(0) 5s2 5p2 5f1 -6.97271597 -6.97281760 0.00010163 23.8583 23.8601 -0.0018	Te(0) 5s2 5p2 5f1	-6.97271597	-6.97281760	0.00010163	23.8583	23.8601	-0.0018
Te(0) 5s2 5p3 5f1 -7.54218698 -7.54222503 0.00003805 8.3612 8.3647 -0.0035		-7.54218698	-7.54222503	0.00003805	8.3612	8.3647	-0.0035
m.a.A. 0.00010983 0.0049	m.a.A.			0.00010983			0.0049
Koeff. Exp. Koeff. Exp.		Koeff.	Exp.	Koeff.	Exp.		
0.172506 0.075142 0.059581 0.044821		0.172506	0.075142	0.059581	0.044821		
0.588177 0.157584 0.289200 0.089826		0.588177	0.157584	0.289200	0.089826		
0.542659		0.542659	0.330475	0.467423	0.180021		
-0.103930 0.693051 0.331776 0.360780		-0.103930	0.693051	0.331776	0.360780		
-0.570963 1.453424 0.005406 0.723040		-0.570963	1.453424	0.005406	0.723040		
0.239627 3.048032 -0.191721 1.449048		0.239627	3.048032	-0.191721	1.449048		
-0.037900 6.392144 0.045538 2.904042		-0.037900	6.392144	0.045538	2.904042		
0.005057 13.405211 -0.003600 5.820001		0.005057	13.405211	-0.003600	5.820001		
-0.000643 28.112581 0.000205 11.663885		-0.000643	28.112581	0.000205	11.663885		
vtz vdz			vtz				
s 0.1047590598 0.0451930389		S	0.104759	0.045	1930389		
s 0.4093414843 -		S	0.409341	4843 -			
p 0.0830676854 0.0800582767		p	0.083067	6854 0.080	0582767		
p 0.4685396850 -			0.468539	06850 -			
d 0.1568555534 0.2385663986		d	0.156855	55534 0.238	5663986		
d 0.3102181554 -		d	0.310218	31554 -			
f 0.3552178442 -		f	0.355217	⁷ 8442 -			
E _{RHF} -7.87362575 -7.87222003		E _{RHF}			222003		
$E_{RCCSD(T)}$ -7.98876987 -7.95092358			_{O(T)} -7.98876	987 -7.95	092358		

Tabelle A.42: Te-Pseudopotential, $Z_{\text{eff}} = 6.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	7.00000000	-1 1.01	780923		
	100	7.12466460		136147		
		-29.18419372	0 1.68	345378		
	V_s	108.68417388		278521		
	V_p	99.35380694		494051		
	$\overset{\cdot}{V_d}$	41.32653157		672279		
Konf.	E _{ps}	E _{ref}	$E_{ps}-E_{ref}$	EX _{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
I(0) 5s2 5p5	-11.17857793	-11.17869795	0.00012002	0.0000	0.0000	0.0000
I(0) 5s2 5p4 6d1	-10.83682033	-10.83675459	-0.00006574	9.3003	9.3053	-0.0051
I(++) 5s2 5p3	-10.10409604	-10.10402603	-0.00007001	29.2400	29.2452	-0.0052
I(+) 5s2 5p3 4f1	-10.23142739	-10.23142133	-0.00000606	25.7749	25.7783	-0.0034
I(+) 5s2 5p3 5d1	-10.36903806	-10.36901846	-0.00001960	22.0301	22.0339	-0.0038
I(+) 5s2 5p3 6d1	-10.24202910	-10.24220214	0.00017304	25.4864	25.4850	0.0014
I(+) 5s2 5p4	-10.80191203	-10.80196472	0.00005269	10.2502	10.2521	-0.0018
I(0) 5s2 5p4 4f1	-10.83319281	-10.83324582	0.00005301	9.3990	9.4008	-0.0018
I(0) 5s2 5p4 5d1	-10.86458461	-10.86436624	-0.00021837	8.5447	8.5539	-0.0092
I(0) 5s2 5p4 6p1	-10.88120761	-10.88120353	-0.00000408	8.0924	8.0957	-0.0034
I(0) 5s2 5p4 6s1	-10.92027187	-10.92024952	-0.00002235	7.0293	7.0332	-0.0039
I(-) 5s2 5p6	-11.26990931	-11.26987950	-0.00002981	-2.4854	-2.4813	-0.0041
I(+) 5s2 5p3 5f1	-10.18602036	-10.18600509	-0.00001527	27.0106	27.0143	-0.0037
I(0) 5s2 5p4 5f1	-10.82193753	-10.82199049	0.00005296	9.7053	9.7071	-0.0018
m.a.A.			0.00006450		,,,,,,	0.0037
	Koeff.	Exp.	Koeff.	Exp.		
	0.205902	0.093293	0.112792	0.056487	_	
	0.623144	0.193211	0.317009	0.113038		
	0.491788	0.400142	0.456514	0.226204		
	-0.11341	8 0.828698	0.284746	0.452663		
	-0.678442	2 1.716243	-0.012076	0.905837		
	0.356660	3.554356	-0.230182	1.812697		
	-0.07867	6 7.361107	0.082214	3.627439		
	0.013475	15.244927	-0.012492	7.258973		
	-0.00185	9 31.572396	0.001285	14.526139		
		vtz	vdz			
	S	0.130955	0554 0.047	4063866		
	S	0.352610	1410 -			
	p	0.107931	7108 0.088	9784172		
	p	0.587426				
	d	0.189832	2552 0.269	4075704		
	d	0.346632	5998 -			
	f	0.430486	3811 -			
	E _{RHF}	-11.18008	3125 -11.1	7877738		
	E _{RCCS}	D(T) -11.32550	0115 -11.2	7090015		
	Rees	- (-) I				

Tabelle A.43: I-Pseudopotential, $Z_{\text{eff}} = 7.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	8.00000000	-1 1.220	029027		
		9.76232213	1 5.146	525292		
		-32.16318995	0 2.105	563577		
	V_s	110.93633943	0 3.203	320603		
	V_p	99.49007680	0 2.860	062806		
	$\hat{V_d}$	41.81892440	0 1.745	523568		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Xe(0) 5s2 5p6	-15.27608813	-15.27622231	0.00013418	0.0000	0.0000	0.0000
Xe(+) 5s2 5p5	-14.84827460	-14.84828904	0.00001444	11.6421	11.6454	-0.0033
Xe(++) 5s2 5p4	-14.08182777	-14.08198177	0.00015400	32.4995	32.4990	0.0005
Xe(0) 5s2 5p5 6s1	-14.97166479	-14.97144116	-0.0002236	3 8.2843	8.2940	-0.0097
Xe(0) 5s2 5p5 7s1	-14.90222825	-14.90216359	-0.0000646	6 10.1739	10.1793	-0.0054
Xe(0) 5s2 5p5 6p1	-14.93026022	-14.93022894	-0.0000312	8 9.4110	9.4156	-0.0045
Xe(0) 5s2 5p5 7p1	-14.88900350	-14.88899885	-0.0000046	5 10.5338	10.5376	-0.0038
Xe(0) 5s2 5p5 5d1	-14.91188682	-14.91187823	-0.0000085	9.9110	9.9149	-0.0039
Xe(0) 5s2 5p5 6d1	-14.88373428	-14.88375287	0.00001859	10.6772	10.6803	-0.0031
Xe(0) 5s2 5p5 4f1	-14.87954951	-14.87956601	0.00001650		10.7942	-0.0032
m.a.A.			0.00006705	5		0.0042
	Koeff.	Exp.	Koeff.	Exp.		
	0.191464	0.102640	0.098971	0.064650		
	0.622770	0.213839	0.311502	0.128837		
	0.534309	0.445507	0.460882	0.256753		
	-0.198001	0.928158	0.309078	0.511669		
	-0.566409	1.933703	-0.040260	1.019678		
	0.286498	4.028632	-0.202851	2.032062		
	-0.056363	8.393159	0.067000	4.049587		
	0.008649	17.486112	-0.008468	8.070204		
	-0.001133	36.430159	0.000710	16.082675		
		vtz	vdz			
	S	0.141270		0263860		
	S	0.525354				
	p	0.129211		8247039		
	p	0.655417				
	d	0.226214		4316518		
	d	0.397375				
	f	0.496836				
	E_{RHF}	-15.2760		7604639		
	E_{RCCSD}	-15.4455	5854 -15.36	6714640		

Tabelle A.44: Xe-Pseudopotential, $Z_{\text{eff}} = 8.00$.

]	Koeff.		r^n	Exp			
		$V_{ m loc}$	1.00000000)	-1	4.56	591654		
		4	4.56591654	4	1	3.44	1071226		
			-10.059013	30	0	0.53	3597632		
			80.6067839	98	0	0.75	497262		
		V_p :	38.4195190)3	0	0.45	697820		
		V_d :	34.3642110)9	0	1.21	638889		
Konf.	E_{ps}	E_{ref}		$E_{ps}-$	E _{ref}		EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Cs(0) 6s1	-0.12769165	-0.12	2772551	0.000	0338	6	0.0000	0.0000	0.0000
Cs(+) 5d1	-0.06458623	-0.06	6482216	0.000	2359	3	1.7173	1.7118	0.0055
Cs(0) 4f1	-0.03135938	-0.03	3127338	-0.00	00860	00	2.6215	2.6248	-0.0033
Cs(+) 6d1	-0.03659825	-0.03	3616604	-0.00	04322	21	2.4789	2.4916	-0.0127
Cs(0) 5f1	-0.02010958	-0.02	2001958	-0.00	00900	00	2.9276	2.9310	-0.0034
Cs(+) 6p1	-0.08442338	-0.08	3436610	-0.00	00572	28	1.1775	1.1799	-0.0025
Cs(0) 7p1	-0.04145571	-0.04	1157288	0.000	1171	7	2.3467	2.3445	0.0023
Cs(0) 7s1	-0.05529079	-0.05	5519535	-0.00	00954	14	1.9703	1.9738	-0.0035
Cs(0) 8p1	-0.02482924	-0.02	2490955	0.000	0803	1	2.7992	2.7979	0.0013
Cs(0) 8s1	-0.03099189	-0.03	3095078	-0.00	0041	11	2.6315	2.6335	-0.0020
m.a.A.				0.000	1269	3			0.0041
	Koe	ff.	Exp.	K	oeff.		Exp.		
	0.30)3329	0.011442	2 0.	1071	73	0.00876	63	
	0.82	24883	0.025922	2 0.	2505	85	0.01996	1	
	0.05	8011	0.058728	8 -0	0.3488	343	0.04546	57	
	-0.2	09752	0.133054	4 0.	1608	06	0.10356	3	
	-0.2	90149	0.301440	6 -0	0.0119	956	0.23589	5	
	0.19	94247	0.682952	2 -0	0.0014	147	0.53731	8	
	-0.0	52400	1.547283	5 -0	0.000	973	1.22389	6	
	0.01	0597	3.50550	7 0.	.0006	58	2.78777	4	
	-0.0	01633	7.94202	7 -0	0.000	179	6.34995	4	
			vtz		vd	Z			
	_	S	0.030554	10431	0.0	0314	251130		
		S	0.113847	72185	-				
		p	0.014389	95280	0.	1871	141493		
		p	0.116111	13158	-				
		d	0.055588	35024	0.	1057	998091		
		d	0.241831	18838	-				
		f	0.180413	35293	_				
	_	E _{RHF}	-0.12767	411	-0	.1276	67411		

Tabelle A.45: Cs-Pseudopotential, $Z_{\text{eff}} = 1.00$.

		T	11	P.		
		Koeff.	r^n	Exp.		
	100	2.00000000	-1	4.56523866		
		9.13047731	1	3.44590138		
		-11.09995006		0.73875795		
		84.60641087		0.87685449		
	P	42.41929187		0.55569714		
T. C		35.35527943		1.68654278	F37	DV DV
Konf.	E _{ps} E _{ref}		$E_{ps}-E_{ref}$	EX _{ps}	EX _{ref}	EX _{ps} -EX _{ref}
Ba(0) 6s2			-0.000086		0.0000	0.0000
Ba(0) 5d1			-0.000762		5.0849	-0.0184
Ba(0) 6p1			0.000829		6.6593	0.0249
Ba(0) 6p2			-0.000104		3.5896	-0.0005
Ba(+) 6s1			0.000034′ -0.000019		4.2791 10.1418	0.0033 0.0018
Ba(+) 4f1						
Ba(+) 6s1 5d1 Ba(0) 5f1			0.001029		1.0618 11.3632	0.0304
Ba(0) 6s1 6p1			-0.000101 -0.001096		1.3032	-0.0004 -0.0275
Ba(0) 6s1 6p1 Ba(0) 6s1 7p1			-0.001096 -0.000012		3.0061	0.0020
Ba(0) 7s1			0.000012 0.0004243		9.0723	0.0020
Ba(0) 7s1 Ba(0) 7s2			0.000424. 0.0004464		7.0348	0.0139
Ba(0) 782 Ba(0) 6s1 4f1			0.000446		3.4230	0.0033
Ba(0) 6s1 4f1 Ba(0) 6s1 5f1			0.000036		3.7304	0.0033
m.a.A.	-0.30420703 -0.5		0.000313		3.7304	0.0096
m.a.A.	Koeff.	Exp.	Koeff.			0.0070
	0.124528	0.026951	0.0014		_	
	0.149294	0.020931	-0.001			
	0.000545	0.142589	0.0828			
	-0.296677	0.327978	0.0020			
	0.159361	0.754402	0.0449			
	-0.038868	1.735248	-0.204			
	0.007982	3.991352	0.0715			
	-0.001801	9.180759	-0.012			
	0.000323	21.117236	0.0016			
		vtz		rdz		
	S	0.046035		0.0744069666		
	S	0.3580013		.0711007000		
	p	0.1791769		0.0827227533		
	p	0.1083510				
	ď	0.083500		.2904334664		
	d	0.3361889				
	f	0.166562				
	E_{RHF}	-1.614237		1.61016966		
	E _{RCCSD}	-1.682836		1.67530426		
	RCCSD	1				

Tabelle A.46: Ba-Pseudopotential, $Z_{\rm eff}=2.00$.

		Koeff.	r^n	Exp.		
	V	3.0000000		1.34540299		
	•	4.0362089		1.80622564		
		-21.68751		0.88272932		
	$V_{\underline{c}}$			1.55008480		
	V			1.34656124		
	V			0.92193030		
	V			0.95782546		
Konf.	E_{ps}	E _{ref}	$E_{ps}-E_{ref}$	EX _{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Tl(0) 6s2 6p1	-1.88983509	-1.88985466	0.0000195		0.0000	0.0000
Tl(++) 6d1	-0.41580919	-0.41634042	0.0005312		40.0989	0.0139
Tl(+) 6d2	-0.65281532	-0.65243377	-0.000381		33.6741	-0.0109
Tl(0) 6p3	-1.34700138	-1.34851380	0.0015124		14.7316	0.0406
Tl(0) 6s1 6p2	-1.65536338	-1.65409703	-0.001266		6.4157	-0.0350
Tl(+) 6s1 6p1	-1.46578699	-1.46446686	-0.001320		11.5761	-0.0365
Tl(+) 6s2	-1.70985141	-1.71042573	0.0005743		4.8828	0.0151
Tl(0) 6s2 5f1	-1.74111449	-1.74169594	0.0005814		4.0319	0.0153
Tl(0) 6s2 6d1	-1.76582569	-1.76597146	0.0001457		3.3712	0.0034
Tl(0) 6s2 6f1	-1.72986197	-1.73044239	0.0005804		4.3381	0.0153
Tl(-) 6s2 6p2	-1.87992036	-1.87927095	-0.000649		0.2880	-0.0182
Tl(0) 6s2 7d1	-1.74127706	-1.74163410	0.0003570		4.0335	0.0092
Tl(++) 6g1	-0.12536311	-0.12507356	-0.000289		48.0252	-0.0084
Tl(+) 6s1 5f1	-1.16088530	-1.16066447	-0.000220		19.8435	-0.0065
Tl(+) 6s1 6f1	-1.11583736	-1.11543557	-0.000401		21.0743	-0.0115
m.a.A.			0.000588			0.0171
	Koeff	. Exp.	Koeff.	Exp.		
	0.3420	000 0.06214	5 0.8495	0.026802	<u>-</u>	
	0.5450	0.12384	8 -0.193	930 0.054580)	
	0.349	532 0.24681	3 0.4800	000 0.111148	3	
	0.191	962 0.49186	66 -0.014	563 0.226344		
	-1.133	3349 0.98022	0.0990	645 0.460933	}	
	0.667	322 1.95346	55 -0.202	294 0.938656	Ó	
	-0.183	3.89300	0.080	577 1.911505	i	
	0.036	089 7.75826	-0.016	6631 3.892639)	
	-0.005	5048 15.4612	238 0.0023	321 7.927075	i	
		vtz		vdz		
	S	0.068	36753839	0.0933838114		
	S	0.224	13206203	-		
	p	0.028	30463304	0.0223995466		
	p	0.141	14236896	-		
	d	0.149	90506828	0.1187005341		
	d	0.594	17490931	-		
	f		16182256	-		
	E _{RF}	_{HF} -1.88	296031	-1.88509202		
	E_{RC}	CCSD(T) -1.92	059551	-1.91432154		
		•				

Tabelle A.47: Tl-Pseudopotential, $Z_{\text{eff}} = 3.00$.

	-	Koeff.		Exp.		
	$V_{ m loc}$	4.00000000		.33905502		
		5.35622008		3.57680327		
		-25.11165802		.08584447		
	V_s	121.69447681		.89957262		
	V_p	114.36466627		.64009233		
	V_d	49.32959048		0.93051806		
	V_f	45.59434323	0 1	.07638351		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Pb(0) 6s2 6p2	-3.28970227	-3.28995190	0.0002490	63 0.0000	0.0000	0.0000
Pb(+) 6s1 6p2	-2.75146960	-2.75117983	-0.000289	77 14.6470	14.6617	-0.0147
Pb(0) 6s1 6p3	-2.98106002	-2.98129782	0.0002378	80 8.3991	8.3994	-0.0003
Pb(+) 6s2 5f1	-2.71300643	-2.71354097	0.0005343	54 15.6937	15.6859	0.0078
Pb(+) 6s2 6d1	-2.79901236	-2.79912147	0.000109	11 13.3532	13.3570	-0.0038
Pb(0) 6s2 6d2	-2.87177802	-2.87163907	-0.000138		11.3836	-0.0106
Pb(+) 6s2 6f1	-2.66789944	-2.66827277	0.0003733	33 16.9212	16.9178	0.0034
Pb(+) 6s2 6p1	-3.06775500	-3.06779285	0.0000378	85 6.0399	6.0456	-0.0058
Pb(0) 6s2 6p1 5f1	-3.09903985	-3.09908476	0.0000449	91 5.1885	5.1941	-0.0056
Pb(0) 6s2 6p1 6f1	-3.08778285	-3.08782684	0.0000439	99 5.4949	5.5004	-0.0056
Pb(-) 6s2 6p3	-3.29773509	-3.29743804	-0.000297	05 -0.2186	-0.2037	-0.0149
Pb(+) 6s2 7d1	-2.70620111	-2.70629864	0.0000973	53 15.8789	15.8830	-0.0041
Pb(++) 6s2	-2.58767794	-2.58716601	-0.000511	93 19.1043	19.1250	-0.0207
Pb(+) 6s2 6g1	-2.64324781	-2.64273395	-0.000513	17.5920	17.6128	-0.0208
m.a.A.			0.0002320	02		0.0084
	Koeff.	Exp.	Koeff.	Exp.		
	0.324264		0.17140		_	
	0.571155		0.35547			
	0.374051		0.43826			
	0.124749		0.18231			
	-1.11272		0.03852			
	0.681231		-0.29522			
	-0.19171		0.12970			
	0.037806		-0.0258			
	-0.00522		0.00310			
		l vtz		dz		
	S	0.093737		.0270528253		
	s	0.216294		.0270320233		
	p	0.364049		.0503326394		
	p p	0.064385		.02033 2 037 F		
	d d	0.172323		.1439031214		
	d	0.607293				
	f	0.238404				
	E _{RHF}	-3.30707		3.30708012		
	E _{RCCS}			3.34779571		
	-RCCS	D(1) 3.33760	017 -	, TII / J 1		

Tabelle A.48: Pb-Pseudopotential, $Z_{\rm eff}=4.00.$

		Koeff.	r^n Exp.			
	$V_{ m loc}$	5.00000000	-1 1.323	337887		
		6.61689433	1 3.575	500194		
		-25.11872438	0 1.269	988106		
	V_s	121.69346942	0 2.178	397203		
	V_p	114.36404033	0 1.852	248885		
	V_d	59.32816833	0 1.108	315262		
	V_f	55.59430794	0 1.137	749297		
Konf.	E_{ps}	E _{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Bi(0) 6s2 6p3	-5.20607229	-5.20643373	0.00036144	0.0000	0.0000	0.0000
Bi(+) 6s1 6p3	-4.55082903	-4.55060060	-0.00022843	17.8312	17.8473	-0.0161
Bi(0) 6s1 6p4	-4.82173821	-4.82207853	0.00034032	10.4589	10.4595	-0.0006
Bi(++) 6s2 6d1	-4.00437295	-4.00449099	0.00011804	32.7020	32.7086	-0.0066
Bi(+) 6s2 6d2	-4.25320108	-4.25306354	-0.00013754	25.9306	25.9442	-0.0136
Bi(++) 6s2 6p1	-4.40341020	-4.40251246	-0.00089774	21.8429	21.8772	-0.0343
Bi(+) 6s2 6p1 5f1	-4.52920775	-4.52979100	0.00058325	18.4196	18.4135	0.0060
Bi(0) 6s2 6p2 6d1	-5.00068079	-5.00018363	-0.00049716	5.5893	5.6127	-0.0234
Bi(+) 6s2 6p2	-4.94140399	-4.94132993	-0.00007406	7.2024	7.2143	-0.0119
Bi(0) 6s2 6p2 5f1	-4.97268792	-4.97262731	-0.00006061	6.3511	6.3626	-0.0115
Bi(-) 6s2 6p4	-5.23652545	-5.23650055	-0.00002490	-0.8287	-0.8182	-0.0105
Bi(++) 6s2 7d1	-3.81251960	-3.81275353	0.00023393	37.9229	37.9264	-0.0035
Bi(+) 6s2 6p1 5f1	-4.48394674	-4.48432076	0.00037402	19.6513	19.6509	0.0003
Bi(0) 6s2 6p2 5f1	-4.96143108	-4.96136865	-0.00006243	6.6574	6.6690	-0.0115
m.a.A.			0.00026626			0.0107
	Koeff.	Exp.	Koeff.	Exp.		
	0.282386		0.143664	0.044793	=	
	0.593494	0.164490	0.347153	0.087289		
	0.424216	0.328968	0.460130	0.170104		
	0.038472	0.657912	0.210922	0.331490		
	-0.99922	7 1.315777	0.005175	0.645988		
	0.598472	2.631462	-0.293261	1.258866		
	-0.160394	5.262739	0.131047	2.453207		
	0.030465	10.525107	-0.025394	4.780671		
	-0.004168	3 21.049473	0.002893	9.316301		
		vtz	vdz			
	S	0.106821	0006 0.033	2315117		
	S	0.302685	3800 -			
	p	0.418167	1739 0.061	0712878		
	p	0.080749				
	d	0.202606	7525 0.168	5336977		
	d	0.774412	20359 -			
	f	0.256448				
	E _{RHF}	-5.26544	250 -5.265	544639		
	E_{RCCSI}	-5.33111	096 -5.312	249166		

Tabelle A.49: Bi-Pseudopotential, $Z_{\text{eff}} = 5.00$.

		Koeff.	r^n Exp.			
	$V_{ m loc}$	6.00000000		915012		
	loc	6.77490072		645639		
		-27.15687722		566151		
	$V_{\rm s}$	123.68767392		166968		
	V_p	116.36047985		261668		
	V_d^r	81.32822758		212112		
	V_f	80.59441478		883356		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	EX_{ps}	EX_{ref}	$EX_{ps}-EX_{ref}$
Po(0) 6s2 6p4	-7.69739034	-7.69776376	0.00037341	0.0000	0.0000	0.0000
Po(++) 6s2 6p2	-6.79245646	-6.79133469	-0.00112177	24.6261	24.6667	-0.0407
Po(+) 6s2 6p2 5f1	-6.91862778	-6.91929419	0.00066641	21.1925	21.1846	0.0080
Po(+) 6s2 6p2 6d1	-7.02701099	-7.02726688	0.00025588	18.2431	18.2463	-0.0032
Po(0) 6s2 6p2 6d2	-7.10385855	-7.10376572	-0.00009283	16.1518	16.1645	-0.0127
Po(+) 6s2 6p2 7d1	-6.91944933	-6.91925039	-0.00019895	21.1702	21.1858	-0.0156
Po(+) 6s2 6p3	-7.38906292	-7.38888744	-0.00017548	8.3905	8.4055	-0.0149
Po(0) 6s2 6p3 5f1	-7.42034508	-7.42018408	-0.00016101	7.5393	7.5538	-0.0145
Po(0) 6s2 6p3 7d1	-7.42264566	-7.42239678	-0.00024888	7.4767	7.4936	-0.0169
Po(0) 6s2 6p3 7p1	-7.46364560	-7.46331854	-0.00032706	6.3609	6.3800	-0.0191
Po(0) 6s2 6p3 7s1	-7.50485771	-7.50505593	0.00019822	5.2394	5.2442	-0.0048
Po(-) 6s2 6p5	-7.75314041	-7.75330867	0.00016826	-1.5171	-1.5115	-0.0056
Po(0) 6s2 6p3 6f1	-7.40909337	-7.40892585	-0.00016752	7.8455	7.8602	-0.0147
Po(+) 6s2 6p2 6f1	-6.87327531	-6.87373055	0.00045524	22.4267	22.4245	0.0022
m.a.A.			0.00032935			0.0133
	Koeff.	Exp.	Koeff.	Exp.		
	0.231892	0.088283	0.081132	0.044924	_	
	0.604604	0.178248	0.312154	0.089086		
	0.486838	0.359891	0.485758	0.176659		
	-0.020877	0.726636	0.289954	0.350319		
	-0.915693	1.467111	-0.005099	0.694690		
	0.530287	2.962164	-0.290284	1.377585		
	-0.134624	5.980742	0.120724	2.731780		
	0.024651	12.075388	-0.021788	5.417177		
	-0.003353	24.380753	0.002411	10.742374		
		vtz	vdz			
	S	0.121539	6300 0.037	7676152		
	S	0.294130				
	p	0.085474	0962 0.062	4662563		
	p	0.447719	1269 -			
	d	0.223320	6183 0.180	3170741		
	d	0.766800	7016 -			
	f	0.260177	7315 -			
	E _{RHF}	-7.72013	103 -7.71	917288		
	E _{RCCSI}	-7.81155	378 -7.77	680375		
		· / I				

Tabelle A.50: Po-Pseudopotential, $Z_{\rm eff} = 6.00.\,$

		Koeff.	r^n Exp.			
	$V_{ m loc}$	7.00000000	-1 1.03089969			
		7.21629781	1 3.692	62441		
		-29.19452905	0 1.4569	93225		
	V_s	128.68209352	0 2.5666	09159		
	V_p	119.35613288	0 2.152	80178		
	V_d	80.33152157	0 1.376	30746		
	V_f	80.58962589	0 1.478	35294		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
At(0) 6s2 6p5	-10.81892900	-10.81929634	0.00036734	0.0000	0.0000	0.0000
At(++) 6s2 6p3	-9.80968432	-9.80847795	-0.00120637	27.4647	27.5075	-0.0428
At(+) 6s2 6p3 5f1	-9.93618235	-9.93700638	0.00082403	24.0223	24.0098	0.0124
At(+) 6s2 6p3 6d1	-10.05633008	-10.05651648	0.00018640	20.7527	20.7576	-0.0049
At(+) 6s2 6p3 6f1	-9.89077186	-9.89142601	0.00065415	25.2580	25.2502	0.0078
At(+) 6s2 6p3 7d1	-9.94076483	-9.94046431	-0.00030052	23.8976	23.9157	-0.0182
At(+) 6s2 6p4	-10.46554546	-10.46549306	-0.00005240	9.6167	9.6281	-0.0114
At(0) 6s2 6p4 5f1	-10.49682490	-10.49678658	-0.00003832		8.7765	-0.0110
At(0) 6s2 6p4 6d1	-10.52715821	-10.52683239	-0.00032582		7.9589	-0.0189
At(0) 6s2 6p4 6f1	-10.48556931	-10.48552915	-0.00004016		9.0828	-0.0111
At(0) 6s2 6p4 7d1	-10.49978538	-10.49963199	-0.00015339		8.6991	-0.0142
At(0) 6s2 6p4 7p1	-10.54268425	-10.54272677	0.00004252	7.5175	7.5263	-0.0088
At(0) 6s2 6p4 7s1	-10.58705594	-10.58715964	0.00010370	6.3100	6.3172	-0.0072
At(-) 6s2 6p6	-10.90281374	-10.90275279	-0.00006095	-2.2828	-2.2711	-0.0117
m.a.A.			0.00031115			0.0139
	Koeff.	Exp.		Exp.		
	0.225290	0.100143		0.053678		
	0.601541	0.199361		0.104254		
	0.515609	0.396881		0.202485		
	-0.010167	0.790095		0.393270		
	-0.996102	1.572891		0.763818		
	0.588717	3.131250		1.483503		
	-0.152415 0.028000	6.233573 12.409558		2.881292 5.596107		
		24.704472		10.868879		
	-0.003759			10.000079		
		vtz	vdz	007101		
	S	0.126317 0.348625		007191		
	S	0.505772		699406		
	p	0.098493		099400		
	p d	0.098493		793716		
	d	0.812389		173110		
	f	0.303468				
	E _{RHF}	-10.82009		901571		
	E _{RCCSD}			942971		
	₽RCCSD	(1) 10.5507(-10.00	/ 14/11		

Tabelle A.51: At-Pseudopotential, $Z_{\text{eff}} = 7.00$.

		Koeff.	r^n Exp	_		
	$V_{ m loc}$	8.00000000		138091		
	100	8.73104728		187023		
		-29.28994938		026568		
	V_s	128.63606138		260183		
	V_p	119.39674828		144059		
	V_d^r	80.33096401	0 1.49	781359		
	V_f	80.58961959	0 1.47	976575		
Konf.	E_{ps}	E_{ref}	$E_{ps}-E_{ref}$	$\mathrm{EX}_{\mathrm{ps}}$	EX_{ref}	$EX_{ps}-EX_{ref}$
Rn(0) 6s2 6p6	-14.62433692	-14.62434180	0.0000048		0.0000	0.0000
Rn(+) 6s2 6p5	-14.22431798	-14.22429825	-0.000019	73 10.8858	10.8864	-0.0007
Rn(++) 6s2 6p4	-13.50685288	-13.50685727	0.0000043	9 30.4102	30.4102	0.0000
Rn(0) 6s2 6p5 7s1	-14.35112430	-14.35112867	0.0000043	7 7.4350	7.4350	0.0000
Rn(0) 6s2 6p5 8s1	-14.27896164	-14.27894356	-0.0000180	08 9.3987	9.3994	-0.0006
Rn(0) 6s2 6p5 7p1	-14.30397758	-14.30400679	0.0000292	1 8.7180	8.7173	0.0007
Rn(0) 6s2 6p5 8p1	-14.26418593	-14.26418378	-0.000002	15 9.8008	9.8010	-0.0002
Rn(0) 6s2 6p5 6d1	-14.28678525	-14.28677785	-0.0000074	40 9.1858	9.1862	-0.0003
Rn(0) 6s2 6p5 7d1	-14.25903586	-14.25905119	0.0000153	3 9.9410	9.9407	0.0003
Rn(0) 6s2 6p5 5f1	-14.25559261	-14.25558820	-0.000004	41 10.0347	10.0349	-0.0003
Rn(0) 6s2 6p5 6f1	-14.24433802	-14.24433159	-0.0000064		10.3413	-0.0003
m.a.A.			0.0000105	8		0.0003
	Koeff.	Exp.	Koeff.	Exp.		
	0.206817	0.107979	0.115991	0.061896		
	0.608890	0.216651	0.305963	0.119480		
	0.544015	0.434692	0.465939	0.230636		
	-0.082252	0.872173	0.298902	0.445207		
	-0.878709	1.749941	-0.018422	0.859401		
	0.506465	3.511108	-0.304231	1.658936		
	-0.124315	7.044740	0.129646	3.202311		
	0.021988	14.134673	-0.022935	6.181551		
	-0.002930	28.360021	0.002383	11.932499		
		vtz	vdz			
	s	0.139908	2690 0.459	99867165		
	S	0.407256				
	p	0.571485		56791151		
	p	0.116352				
	d	0.282443		66036123		
	d	0.826898				
	f	0.343560				
	E_{RHF}	-14.62418		2418335		
	E_{RCCSD}	(T) -14.75899	9181 -14.6	9278878		

Tabelle A.52: Rn-Pseudopotential, $Z_{\rm eff} = 8.00$.

Anhang B

Basissätze für die Potentiale von Trail und Needs

Koeff.	Exp.		Koeff.	Exp.
0.013451	0.0107	18	-0.002068	0.003640
0.275858	0.0246	50	0.002961	0.009463
0.420783	0.0566	90	-0.033540	0.024601
0.149437	0.1303	376	-0.065685	0.063952
-0.065951	0.2998	340	-0.061643	0.166250
-0.137176	0.6895	73	-0.013123	0.432186
0.044027	1.5858	882	-0.003167	1.123517
-0.007570	3.6472	218	0.000901	2.920710
0.001024	8.3878	884	-0.000164	7.592715
		v5	Z	
	S	0.0)231857989	•
	S	0.1	1143688858	
	S	0.4	1635786712	
	S	3.6	6348826885	
	р 0.0)327245370	
	p 0.0)778602958	
	p 0.4		1097776115	
	-		9186744690	
	d	0.2	2649980187	
	d	0.0)476977900	
	d	0.1	140465960	
	d	0.2	2181715518	
	f	0.1	1089707837	
	f	0.2	2242366821	
	f	0.4	1616973698	
	g	0.2	2317081839	
	g	0.3	3520064056	
	E _{RHF}	-0.	19630978	•

Tabelle B.1: Li-Basis, $Z_{\text{eff}} = 1.00$.

Koeff.	Exp.	Koeff.	Exp.
0.230126	0.054397	0.690059	0.012885
0.495690	0.120315	-0.383597	0.025090
0.212336	0.266109	0.472380	0.048856
-0.023673	0.588575	-0.035586	0.095133
-0.170735	1.301797	0.188770	0.185243
0.060330	2.879286	0.030792	0.360708
-0.013373	6.368340	0.036403	0.702374
0.002962	14.085353	0.026879	1.367670
-0.000496	31.153671	-0.002486	2.663140

	v5z
S	0.0107546905
S	0.1394152939
S	0.6041647792
S	0.5502795577
p	0.0826818272
p	0.7179964185
p	0.2165729702
р	2.0498287678
d	0.0874189809
d	0.8119658232
d	0.2393639833
d	0.9707892537
f	0.1645972282
f	0.3553552330
f	0.8393149972
g	0.3681661189
g	0.9292907715
h	0.7438586950
E _{RHF}	-1.91189847
E_{RCCSD}	-2.02136441

Tabelle B.2: Be-Basis, $Z_{eff} = 2.00$.

Koeff.	Exp.	Koeff.	Exp.
0.013927	0.035622	0.004543	0.022638
0.201559	0.071118	0.085664	0.045250
0.404521	0.141983	0.244835	0.090446
0.393389	0.283464	0.324600	0.180784
0.119266	0.565923	0.261019	0.361354
-0.001842	1.129840	0.176382	0.722280
-0.202847	2.255676	0.070985	1.443702
0.071474	4.503357	0.064391	2.885690
-0.009329	8.990754	-0.008925	5.767955
		v5z	
	S	0.1588641554	_
	S	0.0681661367	
	S	0.4494154751	
	S	0.5967056751	
	p	0.1550287455	
	p	0.0606890544	
	p	0.4811554849	
	p	0.4803025424	
	d	0.1392275989	
	d	0.3975565732	
	d	0.7970185280	
	d	1.0009365082	
	f	0.3883064687	
	f	0.7999459505	
	f	1.0002319813	
	g	0.4988310039	
	g	0.8020338416	
	h	0.6031864285	
	E _{RHF}	-0.96101005	_
Е	RCCSD(T)	-1.00924061	

Tabelle B.3: B-Basis, $Z_{\text{eff}} = 3.00$.

TZ CC	Е	IZ CC	Е
Koeff. 0.124000	Exp.	Koeff. 0.062024	Exp. 0.060522
	0.084989	0.062024	0.060522
0.387959	0.179938		
0.447091	0.380962	0.330124	0.261670
0.180532	0.806569	0.287264	0.544094
-0.016351		0.198328	1.131342
-0.186602		0.081849	2.352414
0.066640	7.654567	0.065965	4.891406
-0.012772			
0.001735	34.311536	0.001092	21.148200
		v5z	
	S	0.0914849043	3
	S	0.2174489498	3
	S	0.5120286942	2
	S	0.9204115272	2
	p	0.0883950517	7
	р	0.2334035486	5
	p	0.7201333046	5
	р	0.8410728574	4
	d	0.2074747980)
	d	0.6062403917	7
	d	1.0014159679)
	d	1.504179716	1
	f	0.4005697668	3
	f	1.0995005369)
	f	1.5010288954	1
	g	0.7975631356	5
	g	1.4013324976	5
	h	1.0016926527	7
	E _{RHF}	-5.31622593	
	$E_{RCCSD(T)}$	-5.41853169	
	ACCSD(1)		

Tabelle B.4: C-Basis, $Z_{eff} = 4.00$.

Koeff.	Exp.	Koeff.	Exp.
0.104047	0.111527	0.043624	0.078868
0.365448	0.238299	0.152847	0.151063
0.460788	0.509172	0.258821	0.289345
0.203492	1.087947	0.287989	0.554211
0.002193	2.324613	0.222973	1.061533
-0.196600	4.966996	0.156790	2.033255
0.067636	10.612970	0.060642	3.894487
-0.012976	22.676709	0.063262	7.459482
0.001797	48.453275	-0.009801	14.287855
		v5z	
_	S	0.1185908988	_
	S	0.2926807106	
	S	0.7035829425	
	S	1.2735000849	
	p	0.1222120002	
	p	0.3274051845	
	p	0.9542093277	
	p	1.3665419817	
	d	0.3039962947	
	d	0.8867171407	
	d	1.5144988298	
	d	2.6867837906	
	f	0.5792783499	
	f	1.5574234724	
	f	2.3733890057	
	g	1.0154767036	
	g	2.7562224865	
	h	2.2185754776	
_	E_{RHF}	-9.64519932	
	$E_{RCCSD(T)}$	-9.77503799	
	. /		

Tabelle B.5: N-Basis, $Z_{\text{eff}} = 5.00$.

Koeff.	Exp.	Koeff.	Exp.
0.119117	0.156951	0.075899	0.097935
0.362094	0.333040	0.213069	0.212922
0.455150	0.706688	0.317535	0.462918
0.200262	1.499544	0.292092	1.006439
-0.000278	3.181929	0.215131	2.188118
-0.196659	6.751838	0.092707	4.757227
0.068378	14.326940	0.062826	10.342774
-0.013112	30.400791	-0.009606	22.486415
0.001800	64.508409	0.000928	48.888129
		v5z	
-	S	0.1650443524	_
	s	0.3978510499	
	s	0.9230763912	
	S	1.7015253305	
	p	0.1346687376	
	p	0.3861069977	
	p	1.3860515356	
	p	1.5087156296	
	d	0.3830572963	
	d	1.0945497751	
	d	2.6553380489	
	d	3.9808292389	
	f	0.7111948729	
	f	2.0273885727	
	f	3.1702172756	
	g	1.2319827080	
	g	3.5462744236	
	h	2.5518784523	
-	E_{RHF}	-15.66721114	_
	$E_{RCCSD(T)} \\$	-15.85776777	

Tabelle B.6: O-Basis, $Z_{eff} = 6.00$.

Koeff.	Exp.	Koeff.	Exp.
0.126981	0.206787	0.070755	0.125145
0.358794	0.437780	0.208331	0.275428
0.452400	0.926806	0.317971	0.606184
0.201268	1.962100	0.299336	1.334138
-0.004853	4.153877	0.218986	2.936276
-0.193105	8.793991	0.095394	6.462388
0.067631	18.617376	0.059949	14.222935
-0.012983	39.414035	-0.009103	31.302961
0.001777	83.441736	0.000883	68.894032
		v5z	
_	S	0.2246888429	
	S	0.5439506769	
	S	1.1811475754	
	S	2.2017736435	
	p	0.1773619950	
	p	0.5153834224	
	p	1.8344756365	
	p	1.9550549984	
	d	0.5150842667	
	d	1.5128797293	
	d	3.6527349949	
	d	5.1567950249	
	f	0.9282955527	
	f	2.9418630600	
	f	4.1164879799	
	g	1.6727075577	
	g	4.4218258858	
_	h	2.7758007050	<u></u>
_	E_{RHF}	-23.87589783	
	$E_{RCCSD(T)}$	-24.12763738	

Tabelle B.7: F-Basis, $Z_{\text{eff}} = 7.00$.

Koeff.	Exp.		Koeff.	Exp.
0.261479	0.0197	55	-0.007257	0.002831
0.463509	0.0454	38	0.005283	0.007361
0.172347	0.1045	07	-0.026232	0.019137
-0.065199	0.2403	66	-0.056922	0.049757
-0.187274	0.5528	42	-0.047998	0.129366
0.070451	1.2715	39	0.019027	0.336349
-0.016008	2.9245	44	-0.002918	0.874498
0.003689	6.7264	63	0.000372	2.273672
-0.000647	15.470	891	-0.000049	5.911486
		v5z	S	
	S	0.0	733775944	
	S	0.4	330828190	
	S	1.2	667694092	
	s 6.7		264094353	
	р 0.0		998393744	
	p	0.0	550504848	
	p	0.3	185050488	
	p	2.2	730329037	
	d	0.2	539564669	
	d	0.0	523359925	
	d	0.1	271553785	
	d	0.1	965350658	
	f	0.0	767530128	
	f	0.1	510650665	
	f	0.4	923248589	
	g	0.1	411036551	
	g	0.3	857307434	
	E _{RHF}	-0.	18229611	

Tabelle B.8: Na-Basis, $Z_{\text{eff}} = 1.00$.

Koeff.	Exp.	Koeff.	Exp.
0.233481	0.048674	0.112851	0.026436
0.374144	0.091941	0.331780	0.054041
0.493690	0.173670	0.398901	0.110473
0.053646	0.328050	0.237351	0.225833
-0.000895	0.619662	0.080528	0.461654
-0.367081	1.170494	-0.057991	0.943728
0.185252	2.210975	0.011537	1.929199
-0.042962	4.176363	-0.001704	3.943730
0.005719	7.888833	0.000214	8.061899
		v5z	
_	S	0.0474986546	_
	S	0.0978165492	
	S	0.1819884330	
	S	0.3293535411	
	p	0.0338050947	
	p	0.0842818543	
	p	0.2163871229	
	p	0.3453783989	
	d	0.0842898786	
	d	0.2238857001	
	d	0.5237508416	
	d	0.8673830628	
	f	0.1474454999	
	f	0.3730158806	
	f	0.7814148664	
	g	0.2504657805	
	g	0.5564234257	
	h	0.3275865614	
_	E_{RHF}	-1.87822366	
	$E_{RCCSD(T)} \\$	-1.93766267	

Tabelle B.9: Al-Basis, $Z_{eff} = 3.00$.

Koeff.	Exp.	Koeff.	Exp.
0.200168	0.064810	0.016478	0.025623
0.361460	0.121702	0.150115	0.049544
0.521509	0.228534	0.330165	0.095796
0.086724	0.429145	0.369636	0.185229
0.003024	0.805856	0.223644	0.358155
-0.406441	1.513250	0.072104	0.692518
0.203713	2.841606	-0.068450	1.339035
-0.046461	5.336015	0.016051	2.589124
0.006030	10.020059	-0.002038	5.006262
	,	v5z	

	v5z
S	0.0600996763
S	0.1216046289
S	0.2449045628
S	0.4319606423
p	0.0435928740
p	0.1118208542
p	0.1310134679
p	0.1627663523
d	0.1184335425
d	0.3152775466
d	0.6866136789
d	1.0263222456
f	0.1788782179
f	0.4187285006
f	0.8404432535
g	0.2979989052
g	0.6507709026
h	0.5458981395
E _{RHF}	-3.67286172
$E_{RCCSD(T)}$	-3.76035876

Tabelle B.10: Si-Basis, $Z_{eff} = 4.00$.

Koeff.	Exp.	Koeff.	Exp.
0.161454	0.078573	0.050043	0.044962
0.545447	0.169996	0.254216	0.092879
0.459728	0.367794	0.417333	0.191863
0.037352	0.795741	0.327709	0.396337
-0.396573	1.721626	0.112666	0.818723
0.145973	3.724823	-0.070879	1.691255
-0.032585	8.058841	0.014274	3.493667
0.007100	17.435703	-0.002369	7.216954
-0.001163	37.723012	0.000341	14.908239
		v5z	
	S	0.0754430294	
	S	0.1838116199	
	S	0.3578866720	
	S	0.7590153813	
	p	0.0696243867	
	p	0.1757960320	
	p	0.4570797384	
	p	0.6513437033	
	d	0.1728601605	
	d	0.5142802596	
	d	0.8605191708	
	d	1.1585406065	
	f	0.2774619758	
	f	0.7284204960	
	f	0.9792796969	
	g	0.3627585173	
	g	0.8622183204	
_	h	0.7172841430	<u> </u>
	E_{RHF}	-6.34426757	
	$E_{RCCSD(T)}$	-6.46076954	

Tabelle B.11: P-Basis, $Z_{\text{eff}} = 5.00$.

Koeff.	Exp.	Koeff.	Exp.
0.169812	0.101957	0.087538	0.058209
0.534555	0.217278	0.261715	0.119221
0.467502	0.463036	0.386096	0.244185
0.045409	0.986764	0.313477	0.500132
-0.424336	2.102868	0.133263	1.024353
0.162216	4.481367	-0.075406	2.098044
-0.037347	9.550126	0.015548	4.297144
0.008212	20.352024	-0.002649	8.801265
-0.001347	43.371670	0.000382	18.026454
		v5z	
-	s	0.1003369018	_
	s	0.2380301654	
	s	0.4567885399	
	S	0.9517670274	
	p	0.0802562535	
	p	0.2163624316	
	p	0.7133040428	
	p	0.6299098730	
	d	0.1946439743	
	d	0.5189232826	
	d	1.0937047005	
	d	2.0599048138	
	f	0.2680830956	
	f	0.6405869722	
	f	1.3366370201	
	g	0.4962179959	
	g	1.2056255341	
	h	0.9442617297	
-	E_{RHF}	-9.92914453	<u> </u>
	$E_{RCCSD(T)} \\$	-10.10232046	

Tabelle B.12: S-Basis, $Z_{\text{eff}} = 6.00$.

0.177757 0.128147 0.077531 0.072583 0.527535 0.269080 0.248678 0.147695 0.461110 0.565006 0.382080 0.300536 0.073739 1.186385 0.331097 0.611543 -0.464540 2.491140 0.139882 1.244394 0.184889 5.230830 -0.076205 2.532143 -0.044457 10.983558 0.015333 5.152508 0.009924 23.062983 -0.002436 10.484532 -0.001615 48.427039 0.000322 21.334354 v5z s 0.1251603365 s 0.3103909492 s 0.55555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF	Koeff.	Exp.	Koeff.	Exp.
0.461110	0.177757	0.128147	0.077531	0.072583
0.073739	0.527535	0.269080	0.248678	0.147695
-0.464540	0.461110	0.565006	0.382080	0.300536
0.184889 5.230830 -0.076205 2.532143 -0.044457 10.983558 0.015333 5.152508 0.009924 23.062983 -0.002436 10.484532 -0.001615 48.427039 0.000322 21.334354 v5z	0.073739	1.186385	0.331097	0.611543
-0.044457 10.983558 0.015333 5.152508 0.009924 23.062983 -0.002436 10.484532 -0.001615 48.427039 0.000322 21.334354 v5z	-0.464540	2.491140	0.139882	1.244394
0.009924 23.062983 -0.002436 10.484532 -0.001615 48.427039 0.000322 21.334354 v5z	0.184889	5.230830	-0.076205	2.532143
-0.001615 48.427039 0.000322 21.334354 v5z s 0.1251603365 s 0.3103909492 s 0.5555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527	-0.044457	10.983558	0.015333	5.152508
s 0.1251603365 s 0.3103909492 s 0.5555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527	0.009924	23.062983	-0.002436	10.484532
s 0.1251603365 s 0.3103909492 s 0.5555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527	-0.001615	48.427039	0.000322	21.334354
s 0.3103909492 s 0.5555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527			v5z	
s 0.5555547476 s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527	_	S	0.1251603365	_
s 1.1072740555 p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527		S	0.3103909492	
p 0.2810000181 p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527		S	0.5555547476	
p 0.1041708961 p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527		S	1.1072740555	
p 1.1202490330 p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 ERHF -14.68594527		p	0.2810000181	
p 0.7234202623 d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		p	0.1041708961	
d 0.2187824845 d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		p	1.1202490330	
d 0.5415677428 d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		p	0.7234202623	
d 1.0350339413 d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		d	0.2187824845	
d 2.6045768261 f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		d	0.5415677428	
f 0.3660869300 f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		d	1.0350339413	
f 0.8821559548 f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		d	2.6045768261	
f 1.9877827168 g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		-	0.3660869300	
g 0.5643755794 g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		•	0.8821559548	
g 1.3630605936 h 1.1096979380 E _{RHF} -14.68594527		f	1.9877827168	
h 1.1096979380 E _{RHF} -14.68594527		g	0.5643755794	
E _{RHF} -14.68594527		g	1.3630605936	
		h	1.1096979380	<u> </u>
$E_{RCCSD(T)}$ -14.91521154	_	E _{RHF}	-14.68594527	
		$E_{RCCSD(T)} \\$	-14.91521154	

Tabelle B.13: Cl-Basis, $Z_{eff} = 7.00$.

Anhang C

Kurzzusammenfassung

In der Arbeit werden skalarrelativistische, energiekonsistente Hartree-Fock-Pseudopotentiale für die Hauptgruppenelemente und die 3d-Übergangsmetalle vorgestellt. Die Pseudopotentiale weisen keine Singularität am Kern auf und sind daher besonders für QMC-Anwendungen geeignet. Die Transferabilität und die Genauigkeit der Pseudopotentiale wird anhand ausführlicher atomarer und molekularer Testrechnungen dokumentiert. Insbesondere werden die harmonischen Schwingungsfrequenzen und Bindungsenergien von 26 zweiatomigen Molekülen mit Post-Hartree-Fock-Methoden berechnet. Die Ergebnisse sind in ausgezeichneter Übereinstimmung mit den entsprechenden Allelektronenrechnungen. Die Resultate sind denen anderer nichtsingulärer Pseudopotentiale deutlich überlegen. Die QMC-spezifischen Aspekte des Lokalisierungsfehlers und der Effizienz werden für die Kohlenstoff- und Siliziumpseudoatome diskutiert. Darüber hinaus werden Anwendungen mit 3d-Übergangsmetallen anhand atomarer und zweiatomiger Testsysteme präsentiert. Für die erste und zweite Reihe der Hauptgruppenelemente werden VnZ mit (n=D, T, Q, 5) Basissätze vorgestellt. Für die dritte, vierte und fünfte Reihe der Hauptgruppenelemente sind VDZ- und VTZ-Basissätze justiert und für die 3d-Übergangsmetalle werden VTZ- und VQZ-Basissätze angeboten.

Anhang D

Abstract

The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transition-metal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented.

Literaturverzeichnis

- [1] W. Kutzelnigg, Physica Scripta **36**, 416 (1987).
- [2] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. **73**, 33 (2001).
- [3] D.M. Ceperley, J. Stat. Phys. 43, 815 (1986).
- [4] B.L. Hammond, P. J. Reynolds, W. A. Lester, Jr., J. Chem. Phys. **87**, 1130 (1987).
- [5] C. W. Greeff and W. A. Lester, Jr., J. Chem. Phys. 109, 1607 (1998).
- [6] I. Ovcharenko, A. Aspary-Guzik, and W. A. Lester, Jr., J. Chem. Phys. **114**, 7790 (2001).
- [7] J.R. Trail and R.J. Needs, J. Chem. Phys. 122, 174109 (2005).
- [8] J.R. Trail and R.J. Needs, J. Chem. Phys. 122, 014112 (2005).
- [9] M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. **86**, 866 (1987).
- [10] U. Wedig, M. Dolg, H. Stoll, H. Preuss, in *Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry*, A. Veillard (Hrsg.), Reidel, Dordrecht, NATO ASI Series C 176, 79 (1986).
- [11] U. Wedig, Dissertation, Institut für Theoretische Chemie, Universität Stuttgart (1986).
- [12] I. Meyer, Simple Theorems, Proofs, and Derivations in Quantum Chemistry, Kluwer Academic, New York, (2003).
- [13] R.K. Nesbet, Phys. Rev. **109**, 1632 (1958).
- [14] R.K. Nesbet, Adv. Chem. Phys. 9, 321 (1965).
- [15] F. Coester, Nucl. Phys. 7, 421 (1958).
- [16] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).
- [17] J. Cizek, J. Chem. Phys. 45, 4256 (1966).

- [18] J. Paldus, X. Li, Adv. Chem. Phys. 110, 1 (1999).
- [19] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- [20] MOLPRO Version 2002.3; MOLPRO ein Paket *Ab-initio-*Programme von H.-J. Werner and P. J. Knowles. The authors are R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, U. Schumann, H. Stoll, A. J. Stone R. Tarroni, T. Thorsteinsson, und H.-J. Werner.
- [21] Evolution, Money, War, and Computers Non-Traditional Applications of Computational Statistical Physics, S. Moss de Oliveira, P.M.C. de Oliveira, und D. Stauffer, Teubner, Stuttgart-Leipzig (1999).
- [22] M. P. Mightingale, in *Quantum Monte Carlo Methods in Physics and Chemistry*, M. P. Nightingale und C. J. Umrigar (Hrsg.), NATO ASI Ser. C. **525**, 101 (1999).
- [23] J. H. Hetherington, Phys. Rev. A **30**, 2713 (1984).
- [24] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller, E. Teller, J. Chem. Phys. **21**, 1087 (1953).
- [25] C. J. Umrigar, Phys. Rev. Lett. **71**, 408 (1993).
- [26] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery J. Comput. Chem. 14, 1347 (1993).

- [27] CHAMP Ein Quanten-Monte-Carlo-Programmpacket geschrieben von C. J. Umrigar und C. Filippi, und Mitarbeitern; http://www.ilorentz.org/~filippi/champ.html.
- [28] C. Filippi, C. J. Umrigar, J. Chem. Phys. 105, 213 (1996).
- [29] C-J Huang, C. Filippi, C. J. Umrigar, J. Chem. Phys. 108, 8838 (1998).
- [30] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. **98**, 110201 (2007).
- [31] B. L. Hammond, W. A. Lester, Jr., P.J. Reynolds, *Monte Carlo Methods in abinitio quantum chemistry*, World Scientific, Sigapore (1994).
- [32] W. Greiner, Theoretische Physik Bd.9, Harri Deutsch, Frankfurt a.M. (1993).
- [33] C. J. Umrigar, M. P. Nightingale, K.J. Runge, J. Chem. Phys. 99, 2865 (1993).
- [34] J. C. Phillips, L. Kleinman, Phys. Rev. 116, 287 (1959).
- [35] L. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985).
- [36] M. Dolg, *Effective Core Potentials* veröffentlicht in *Modern Methods and Algorithms of Quantum Chemistry, 2nd ed.*, **3**, 507 (2000) (John von Neumann Institute for Computing, Jülich, Deutschland).
- [37] F. Schautz, *Modellpotentiale in Quanten-Monte-Carlo-Methoden*, Max-Planck-Institut für Physik komplexer Systeme Dresden (2000).
- [38] P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, J. Chem. Phys. **71**, 4445 (1979).
- [39] W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81, 6026 (1984).
- [40] W. R. Wadt and P. J. Hay, J. Chem. Phys. **82**, 284 (1985).
- [41] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
- [42] G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B **26**, 4199 (1982).
- [43] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
- [44] persönliche Mitteilung Prof. Dr. F. M. Dolg.
- [45] Program MCHF77: C. Froese Fischer, Comput. Phys. Commun. 14, 145 (1978); M. Dolg, modifizierte Version für Pseudopotentialrechungen und skalarrelativistische Rechnungen.

- [46] P. Spellucci, Math. Prog. **82**, 413 (1998).
- [47] P. Spellucci, Math. Meth. of Oper. Res. 47, 355 (1998).
- [48] Program DONLP2: P. Spellucci, verfügbar via ftp://ftp.mathematik.tu-darmstadt.de/pub/department/-software/opti/
- [49] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. **80**, 1431 (1993).
- [50] D. Vanderbilt, Phys. Rev. B 32, 8412 (1985).
- [51] N. B. Balabanov, K. A. Peterson, J. Chem. Phys. **125**, 074110 (2006).
- [52] M. Dolg, U. Wedig, H.Stoll, H. Preuss, J. Chem. Phys. **86**, 866 (1987).
- [53] L. Mitas, E. L. Shirley, D. M. Ceperley, J. Chem. Phys. 95, 3467 (1991).
- [54] M. M. Hurley, P. A. Christiansen, J. Chem. Phys. **86**, 1069 (1987).
- [55] B. L. Hammond, P. J. Reynolds, W. A. Lester Jr., J. Chem. Phys. 87, 1130 (1987).
- [56] P. A. Christiansen, J. Chem. Phys. 88, 4867 (1988).
- [57] C. J. Umrigar, Phys. Rev. Lett. **71**, 408 (1993).
- [58] A. Messiah, Quantenmechanik Bd.2, 3. Aufl., de Gruyter, Berlin, (1990).
- [59] A. A. Michelson, E. W. Morley, American Journal of Science **34**, 333-345 (1887).
- [60] D. Stauffer und H. E. Stanley, From Newton to Mandelbrot, 2. Aufl., Springer, (1996).
- [61] A. Einstein, Annalen der Physik 17, 891-921 (1905).
- [62] Gerthsen Physik, Dieter Meschede (Hrsg.), 21. Aufl., Springer, Berlin, (2002).
- [63] W. Greiner, *Theoretische Physik* Bd.6, Harri Deutsch, Frankfurt a.M., (1981).
- [64] F. Schwabl, *Quantenmechanik für Fortgeschrittene*, 4. Aufl., Springer, Berlin, (2005).
- [65] W. Greiner, *Theoretische Physik* Bd.4, 5. Aufl., Harri Deutsch, Frankfurt, (1992).
- [66] http://electron6.phys.utk.edu/qm1/modules/m12/spinor.htm

- [67] R. E. Stanton and S. Havriliak, J. Chem. Phys. **81**, 1910 (1984).
- [68] J.-M. Lévy-Leblond, Comm.math.Phys.6, 286 (1967).
- [69] C. Cohen-Tannoudji *et al.*, Quantum Mechanincs Bd.1+2, John Wiley & Sons, New York, (1977).
- [70] G. E. Brown and D. G. Ravenhall, Proc. Roy. Soc. A208, 552 (1951).
- [71] F. Jensen, *Introduction to Computational Chemistry*, 2nd ed., Wiley & Sons (2006).
- [72] E. van Lenthe, *The Zora Equation*, Dissertation, Vrije Universiteit te Amsterdam (1996).
- [73] C. van Wüllen, Vorlesungsskript *Grundlagen der relativistischen Quantenchemie*.
- [74] A. Rutkowski, Phys. Rev. A 53, 145 (1996).
- [75] W. Kutzelnigg, E. Ottschoffski, R. Franke, J. Chem. Phys. 102, 1740 (1995).
- [76] W. Kutzelnigg, Z. Phys. D 11, 15 (1989).
- [77] W. L. Kennedy, J. Phys. A 21, 3021 (1988).
- [78] L. L. Foldy, S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
- [79] B. A. Hess, *Relativistic theory and applications* in *The Encyclopedia of Computational Chemistry*, Schleyer, P. v. R.; Allinger, N. L., Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.; Schreiner, P. R. (Eds.); Wiley, Chichester, (1998).
- [80] M. Douglas, N. M. Kroll, Ann. Phys. 82, 89 (1974).
- [81] M. Barysz, A. J. Sadlej, THEOCHEM **573**, 181 (2001).
- [82] B. A. Hess, Phys. Rev. A 32, 756 (1985).
- [83] B. A. Hess, Phys. Rev. A 33, 3742 (1986).
- [84] Ch. Chang, M. Pélissier, P. Durand, Phys. Scr. 34, 394 (1986).
- [85] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **99**, 4597 (1993).
- [86] R. van Leeuwen, E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **101**, 1272 (1994).
- [87] E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. **101**, 9783 (1994).

- [88] A. J. Sadlej, J. G. Snijders, E. van Lenthe, E. J. Baerends, J. Chem. Phys. **102**, 1758 (1995).
- [89] J. H. Wood, A. M. Boring, Phys. Rev. B 18 2701 (1978).
- [90] R. D. Cowan, D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).
- [91] M. Dolg, H. Stoll, A. Savin, H. Preuss, Theoret. Chim. Acta 75, 173 (1989).
- [92] J. P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981).
- [93] M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 126, 234105 (2007).
- [94] T. H. Dunning, Jr., K. A. Peterson, and D. E. Woon, *Correlation consistent basis sets for molecular calculations*, in Encyclopedia of Computational Chemistry, P.v.R. Schleyer (Hrsg.), Wiley & Sons, (1998).
- [95] A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, Mol. Phys. **80**, 1431 (1993).
- [96] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. 94, 7221 (1991).
- [97] T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
- [98] R. A. Kendall, T. H. Dunning Jr., and R. J. Harrison, J. Chem. Phys. **96**, 6796 (1992).
- [99] D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).
- [100] K. A. Peterson, D. E. Woon, and T. H. Dunning Jr., J. Chem. Phys. **100**, 7410 (1994).
- [101] A. Wilson, T. van Mourik, and T. H. Dunning Jr., J. Mol. Struct. (Theochem) **388**, 339 (1997).
- [102] W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. **114**, 48 (2001).
- [103] M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95, 100201 (2005).
- [104] R. M. Pitzer, ATMSCF: Atomic Electronic Structutre Code, Ohio State University, (1979).
- [105] X. Cao, M. Dolg, J. Chem. Phys. 115, 7348 (2001).
- [106] A. Moritz, X. Cao, M. Dolg, Theor. Chem. Acc. 117. 473 (2007).
- [107] S. R. Langhoff, E. R. Davidson, Int J. Quantum Chem. 8, 61 (1994).

- [108] Ralchenko, Yu., Jou, F.-C., Kelleher, D. E., Kramida, A. E., Musgrove, A., Reader, J., Wiese, W. L., and Olsen, K. (2007). NIST Atomic Spectra Database (version 3.1.3), [Online]. Available: http://physics.nist.gov/asd3 [2007, September 28]. National Institute of Standards and Technology, Gaithersburg, MD.
- [109] M. Dolg, Theor. Chem. Acc. 114. 297 (2005).
- [110] D. E. Clemmer, J. L. Elkind, N. Aristov, P. B. Armentrout, J. Chem. Phys. 95, 3387 (1991).
- [111] J. M. Dyke, B. W. J. Gravenor, G. D. Josland, R. A. Lewis, A. Morris Mol. Phys. 53, 465 (1984).
- [112] A. J. Merer, Annu. Rev. Phys. Chem. 40, 407 (1989).
- [113] K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV, Van Nostrand, New York, (1979).

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. F. M. Dolg betreut worden.

Teilpublikationen:

- M. Burkatzki, C. Filippi, M. Dolg, J. Chem. Phys. 126, 234105 (2007).
- M. Burkatzki, C. Filippi, M. Dolg, in Vorbereitung, (2008).

Ich versichere, dass ich alle Angaben wahrheitsgemäß nach bestem Wissen und Gewissen gemacht habe und ich verpflichte mich, jedmögliche, die den obigen Angaben betreffende Veränderung, dem Dekanat unverzüglich mitzuteilen.

Datum	Unterschrift

Lebenslauf

für Mark Thomas Burkatzki

geboren am 8.3.1978 in Köln

1984 bis 1988: Besuch der Grundschule in Bergisch Gladbach.

1988 bis 1997: Besuch des Gymnasiums in Herkenrath, beendet mit dem Ab-

itur am 26.5.1997.

1997 bis 1998: Zivildienst im ev. Krankenhaus Bergisch Gladbach.

1998 bis 2004: Studium der Fächer Physik und Chemie für das Lehramt der

Sekundarstufe I und II an der Universität zu Köln. Abschluss

mit dem 1. Staatsexamen am 23.11.2004.

2005 bis 2008: Wissenschaftlicher Angestellter am Institut für Theoretische

Chemie der Universität zu Köln bei Herrn Prof. Dr. F. M.

Dolg.