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Zusammenfassung
Ziel der sequentiellen Change-Point Analyse ist es, geeignete Methoden zum Auffinden
struktureller Brüche in stochastischen Prozessen bereitzustellen. Diese Arbeit befasst
sich mit nicht-parametrischen Verfahren auf der Basis gewichteter, gleitender Durch-
schnitte. Es werden bekannte Prozeduren diskutiert und neue Testverfahren vorgestellt.
Die Hauptresultate dieser Arbeit, der PWMA-Test (polynomially weighted moving av-
erage) und der FWMA-Test (fractionally weighted moving average), sind Erweiterungen
des CUSUM-Tests. Weiterhin werden in dieser Dissertation die Grenzverteilungen der
bedingten Stoppzeiten des MOSUM-Tests bestimmt und zur Konstruktion asymptotis-
cher Konfidenzintervalle für den Zeitpunkt eines Strukturbruches eingesetzt.

Abstract
The aim of sequential change-point analysis is to provide adequate methods for detecting
structural breaks in stochastic processes. This work is concerned with non-parametric
procedures, which are based on weighted moving averages. We discuss known control-
charts and also introduce new procedures. The main results of this work, namely the
PWMA-Test (polynomially weighted moving average) and the FWMA-Test (fractionally
weighted moving average), are generalizations of the CUSUM-Test. Furthermore, we
derive the limiting distributions of the conditional stopping-times for the MOSUM-Test.
The latter result is utilized to provide asymptotic confidence intervals for the location
of a change-point.





Preface
The foundation of this work was laid at a Travis concert in Frankfurt, which I attended
together with Alexander Aue. At this point, Alexander had already left Marburg, where
we had studied together, to work on his dissertation at the University of Cologne. Since I
was interested in the subject of change-point analysis, he initiated contact to my current
supervisor Prof. Dr. Josef Steinebach, whom I had met briefly during his teaching time
at the Philipps –University in Marburg. It was a great concert.

Acknowledgements
I am deeply grateful to my supervisor Prof. Dr. Josef Steinebach. I highly benefited
from his rich experience in many fields of stochastics. He also supported my research by
providing me with the opportunity to meet other mathematicians, who were working in
related fields. Furthermore, I want to sincerely thank Prof. Dr. Lajos Horváth and Prof.
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Conventions
We shortly state some conventions, which will be used in the sequel without further
comment:

iff : if and only if,

inf ∅ = ∞,

bX
i=a

. . . = 0, if b < a.

Let {xt}t∈T and {yt}t∈T be two real-valued sequences, where for the index set either
T = N, or T = R+ holds. Then, we define

xt ∼ yt ⇔
xt
yt
→ 1 as t→∞,

xt ' yt ⇔
xn
yn

→ c as t→∞ for some c > 0,

|xt| & |yt| ⇔ lim inf
t→∞

�����xtyt
����� ≥ c > 0.

Let {Xt}t∈T and {Yt}t∈T be two sequences of real-valued random variables on some
probability space (Ω,A, P ), where for the index set either T = N, or T = R+ holds.
Then, we define

Xt
P∼ Yt ⇔

Xt

Yt

P−→ 1 as t→∞,

Xt
P' Yt ⇔

Xn

Yn

P−→ c as t→∞ for some c > 0,

|Xt|
P

& |Yt| ⇔ lim
t→∞

P
�����Xt

Yt

���� ≥ c
�

= 1 for some c > 0.
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Introduction

The implementation of the Shewhart chart (see Shewhart, 1931) in quality control laid
the foundation for the branch of statistics subsumed under the notion of change-point
analysis.

The aim of change-point analysis is to provide and investigate methods, which al-
low to detect a structural break in an underlying data set. Following Brodsky and
Darkhovsky (1993), we distinguish between a-posteriori and sequential procedures. A-
posteriori procedures are designed to detect a change in a fixed data set. If data arrive
online, and after each new observation we have to decide whether the assumption of
homogeneity still holds, sequential procedures are applied. This classification can fur-
thermore be divided in parametric and non-parametric tests. Parametric tests require
a priori information on the stochastic model of the underlying data set, while non-
parametric tests are based on asymptotic results for large data sets, or the investigation
of a limiting process. This work is concerned with sequential, non-parametric pro-
cedures, which are furthermore partitioned into closed-end and open-end procedures.
Even though monitoring will sooner or later end, open-end procedures are required, if
the size of the monitoring period is not a-priori known.

Procedures for change-point detection are also named control-charts. This term is
originated from the possibility of a graphical evaluation, which is provided by several
tests as for example Page’s CUSUM-chart (Page, 1954) and the EWMA-chart (expo-
nentially weighted moving average) introduced by Roberts (see Roberts, 1959). Due
to the fact that the boundaries in the latter charts are chosen as constant values, for
large sizes of the monitoring period the null hypothesis of structural homogeneity will
be rejected by both of them with high probability, even though it is true. However, the
CUSUM- and the EWMA-chart are very popular tests, since their typical performance
measure, the average run length (ARL), is for many applications more important than
the errors of type one. If a false alarm is costly, other procedures are required and an
adequate approach is given by the concept of asymptotic tests with (asymptotic) power
one (see Robbins, 1970). While the CUSUM-procedure has been adapted to the concept
of asymptotic tests by several authors, we refer to Chu, Stinchcombe and White (1996),
Horváth, Hušková, Kokoszka and Steinebach (2004), Aue, Horváth, Hušková, Kokoszka
(2006) and Aue and Kühn (2008) for more details, the only extension of the EWMA-
chart in this direction, to our knowledge, has been given by Gut and Steinebach (2004).
We will extend the latter result for exponential weights to a wider class of possible
weight functions in Chapter 2.

If we compare the CUSUM-chart (without renewals) and the EWMA-chart, we see
that both can be considered as tests, which are based on weighted moving averages of



the underlying observations. The main part of this work is concerned with the question
how weights, which lie in between the constant weights of the CUSUM-chart and the ex-
ponentially decreasing weights of the EWMA-chart, can be utilized to construct asymp-
totic tests. As result, we introduce two new control-charts, namely the PWMA-chart
(polynomially weighted moving average, Chapter 3) and the FWMA-chart (fractionally
weighted moving average, Chapter 4).

If a control-chart detects a change-point, it is also of interest where the change-point
is located. Based on the limiting distribution for the conditional stopping times of
the MOSUM-chart (moving sum, Chapter 1 and Chapter 5), we will derive asymptotic
confidence intervals for the location of a change-point.

The simulations in this work are performed using the free software R, see
http://cran.r-project.org for more information.



Part I

Monitoring Procedures
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Chapter 1

Control charts based on moving
sums

In this chapter, we consider the so called MOSUM-chart (moving sum). This chart takes
action, if at time k the sum of the observations Xk−h+1, . . . , Xk crosses a predetermined
boundary function, where h is the so called window size. MOSUM-charts have been
suggested by several authors as more quickly reacting alternatives to CUSUM-type
procedures in case of a late change. We refer to Bauer and Hackl (1978,1980), Chu,
Hornik and Kuan (1995), Leisch, Hornik and Kuan (2000) and Gut and Steinebach
(2002) for more details. Due to the sensitivity of the MOSUM-chart, one has to choose
the boundary function with great care, which has been pointed out by Horváth, Kühn
and Steinebach (2008).

We derive the asymptotic limit distribution of the extremes of standardized moving
sums for known and estimated in-control parameters and furthermore, investigate the
finite sample behavior by a simulation study.

1.1 Closed-end control charts

1.1.1 Model assumptions for known µ and σ

Let {εi}i=1,2,... be a sequence of real random variables on some probability space (Ω,A, P ).
We suppose that

E εi = 0 and Var εi = σ2 > 0 for all i = 1, 2, . . . (1.1.1)

Furthermore, we claim that there exists a Wiener process {W (t), t ≥ 0} such that

sup
1≤k<∞

1

k1/ν

����� kX
i=1

εi − σW (k)

����� <∞ a.s. (1.1.2)

for some ν > 2.

5



6 CHAPTER 1. CONTROL CHARTS BASED ON MOVING SUMS

The sequence of observations is modeled as a stochastic process {Xi}i=1,2,...,hN+N ,
following

Xi =

8><>:µ+ εi , 1 ≤ i ≤ hN + k∗,

µ + M + εi , hN + k∗ < i ≤ hN +N,
(1.1.3)

where µ is the in-control mean, M represents the size of a level shift, and k∗ is the
unknown time of a possible change. The window size hN determines the number of
observations needed to initialize the first detector. Hence, these observations can not
be monitored sequentially. The assumption that a possible change occurs after this
’initialization period’ is mostly made for technical reasons. According to the treatment
of late changes one can show that also earlier changes may be detected.

We assume that hN is an increasing, integer-valued function of N satisfying

1) lim
N→∞

 
(N + hN)2/ν

hN
log

N

hN

!
= 0 (1.1.4)

and

2) lim
N→∞

hN
N

= 0. (1.1.5)

We are interested in testing either

H0 : k∗ ≥ N versus H1 : k∗ < N, M> 0 (one-sided alternative), (1.1.6)

or

H0 : k∗ ≥ N versus H2 : k∗ < N, M 6= 0 (two-sided alternative). (1.1.7)

1.1.2 Monitoring procedures for known µ and σ

We define the sequence of detectors {Mk,N}k=1,...,N by

Mk,N =
kX

i=k−hN+1

(Xi+hN
− µ) for all k = 1, . . . , N. (1.1.8)

We mention here that since the asymptotics are carried out for N →∞, we do not
consider a sequence of detectors, but a triangular array. However, we only accentuate
the triangular structure, if it is needed.

Depending on the alternative, we reject H0 if

τ1 = τ1(α,N) = inf
n
1 ≤ k ≤ N : Mk,N > c1(α,N)σ

È
hN

o
, (1.1.9)
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or

τ2 = τ2(α,N) = inf
n
1 ≤ k ≤ N : |Mk,N | > c2(α,N)σ

È
hN

o
(1.1.10)

are finite (with the usual convention that inf ∅ = ∞), where α ∈]0, 1[ is the level of
significance.

The critical constants c1(α,N) and c2(α,N) are given by

c1(α,N) =
q1(1− α) + bN

aN
and c2(α,N) =

q2(1− α) + bN
aN

, (1.1.11)

where aN and bN are defined in (1.1.15), respectively (1.1.16). The constants q1(1− α)
and q2(1− α) are chosen as

q1(1−α) = − log(− log(1−α)) and q2(1−α) = − log
�
−1

2
log(1− α)

�
. (1.1.12)

Note that monitoring always ends in min{τi, N}, i = 1, 2.
The following theorem justifies the choice of the critical constants, since it shows

that the false alarm rate of the procedures converges to α as N tends to infinity.

Theorem 1.1.1 Let the sequence {Mk,N}k=1,...,N be defined as in (1.1.8). We assume
that hN is an increasing, integer-valued function of N , satisfying (1.1.4) and (1.1.5).
Then, under H0, for all real x it holds that

lim
N→∞

P

�
aN sup

1≤k≤N

Mk,N

σ
√
hN

− bN ≤ x

�
= exp(−e−x) (1.1.13)

and

lim
N→∞

P

�
aN sup

1≤k≤N

|Mk,N |
σ
√
hN

− bN ≤ x

�
= exp(−2e−x), (1.1.14)

where

aN =

s
2 log

N

hN
(1.1.15)

and

bN = 2 log
N

hN
+

1

2
log log

N

hN
− 1

2
log π. (1.1.16)

Moreover, under slight restrictions on k∗, both procedures have asymptotic power
one as can be seen by the next theorem.
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Theorem 1.1.2 Let the sequence {Mk,N}k=1,...,N and the function hN be defined as in
Theorem 1.1.1. If k∗ = k∗(N) ≤ N −

√
hNN

ρ for some ρ > 0, then, under H1, for all
real x it holds that

lim
N→∞

P

�
aN sup

1≤k≤N

Mk,N

σ
√
hN

− bN > x

�
= 1 (1.1.17)

and under H2 we have

lim
N→∞

P

�
aN sup

1≤k≤N

|Mk,N |
σ
√
hN

− bN > x

�
= 1, (1.1.18)

where aN and bN are defined in (1.1.15) and (1.1.16), respectively.

1.1.3 Model assumptions for unknown µ and σ

If the target parameters are unknown, a common approach is to utilize the observations
of a training period for the estimation (see Chu, Stinchcombe and White, 1996). The
data obtained within the training period is assumed to be homogeneous (noncontamina-
tion assumption). We follow this idea, which requires slight modifications of the model
assumptions.

Let {εi}i=1,2,... be a sequence of real random variables, satisfying (1.1.1) and (1.1.2).
We assume that the observations {Xi}i=1,2,...,mN+N satisfy

Xi =

8><>:µ+ εi , 1 ≤ i ≤ mN + k∗,

µ+ M +εi , mN + k∗ < i ≤ mN +N,
(1.1.19)

where µ, M and k∗ denote the same parameters as in (1.1.3) and mN denotes the size of
the training period.

The window size hN is chosen as in case of known parameters and the interplay
between the window size, the training period, and the monitoring period N is described
by

lim
N→∞

�
hN
mN

log
N

hN

�
= 0 and

mN

N
→ 0 as N →∞. (1.1.20)

We furthermore assume that the size of the training period is increasing, as the moni-
toring period increases. Note that if we choose for example hN = N2φ and mN = N2ϕ

with 1/ν < φ < ϕ < 1/2, then (1.1.4), (1.1.5) and (1.1.20) are satisfied.
The procedures proposed in the next paragraph are designed to test either

H0 : k∗ ≥ N versus H1 : k∗ < N, M> 0 (one-sided alternative), (1.1.21)

or

H0 : k∗ ≥ N versus H2 : k∗ < N, M 6= 0 (two-sided alternative). (1.1.22)



1.1. CLOSED-END CONTROL CHARTS 9

1.1.4 Monitoring procedures for unknown µ and σ

If we estimate µ by

µ̂mN
=

1

mN

mNX
i=1

Xi, (1.1.23)

then, a consequence of the invariance (1.1.2) principle is that

µ̂mN
− µ = OOOP

 
1

√
mN

!
as N →∞.

We furthermore can assume that there exists an estimator σ̂2
mN

for σ2 such that

σ̂2
mN

− σ2 = oooP

�
1

mϑ
N

�
as N →∞ for some ϑ > 0, (1.1.24)

what will be shown in Lemma 1.1.3 below. Plugging in the mean estimator yields the
sequence of detectors

M̂k,N =
kX

i=k−hN+1

(Xi+mN
− µ̂mN

) , k = 1, . . . , N (1.1.25)

and depending on the alternative, we reject the null hypotheses if the corresponding
stopping time

τ̂1 = τ̂1(N) = inf
n
1 ≤ k ≤ N : M̂k,N > c1(α,N)σ̂mN

È
hN
o
, (1.1.26)

or

τ̂2 = τ̂2(N) = inf
n
1 ≤ k ≤ N : |M̂k,N | > c2(α,N)σ̂mN

È
hN
o

(1.1.27)

is finite.
If the critical constants are chosen as in (1.1.11), the false alarm rate of the procedures

converges to α as N → ∞, what is implied by the counterpart of Theorem 1.1.1 for
estimated in-control parameters, coming next.

Theorem 1.1.3 Let the sequence {M̂k,N}k=1,...,N be defined as in (1.1.25). The window
size hN is assumed to satisfy (1.1.4) and (1.1.5) and the size of the training period is
determined via (1.1.20). Then, under H0, for all real x it holds that

lim
N→∞

P

 
aN sup

1≤k≤N

M̂k,N

σ̂mN

√
hN

− bN ≤ x

!
= exp(−e−x) (1.1.28)

and

lim
N→∞

P

 
aN sup

1≤k≤N

|M̂k,N |
σ̂mN

√
hN

− bN ≤ x

!
= exp(−2e−x), (1.1.29)

where aN and bN are defined in (1.1.15) and (1.1.16), respectively.
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Like in case of known parameters, the asymptotic power of the procedures is one.

Theorem 1.1.4 Let the sequence {M̂k,N}k=1,...,N be defined as in (1.1.25). We suppose
that (1.1.4), (1.1.5) and (1.1.20) hold. If k∗ = k∗(N) ≤ N −

√
hNN

ρ for some ρ > 0 ,
then, under H1, for all real x holds

lim
N→∞

P

 
aN sup

1≤k≤N

M̂k,N

σ̂mN

√
hN

− bN > x

!
= 1 (1.1.30)

and under H2 we have

lim
N→∞

P

 
aN sup

1≤k≤N

|M̂k,N |
σ̂mN

√
hN

− bN > x

!
= 1, (1.1.31)

where aN and bN are defined in (1.1.15) and (1.1.16), respectively.

1.1.5 Simulations and discussion

In this section, we report the results of a simulation study on the finite sample properties
of the MOSUM-chart.

We start with a small discussion about the framework for unknown in-control pa-
rameters. It is important to mention that in practice the size of the training period
is predetermined. Based on a simulation, a test is considered to be applicable, if its
empirical size for fixed m and N is smaller or equal than the prescribed nominal size
α. The considered MOSUM-chart allows for an adjustment via the window size h, but
in view of (1.1.20) the possibilities in our setting are limited, since the asymptotic re-
sults of Theorem 1.1.3 require h < m. The simulation is carried out for innovations
with slightly more than five existing moments and we consider training periods of size
m = 10, 50, 100, 250, 500. We take into account three window sizes h, which are also
used in case of known in-control parameters. Under the null hypothesis the monitoring
periods are chosen such that the empirical sizes keep, and also exceed the nominal size,
which shows the possibilities for applications.

The tables providing the empirical power of the MOSUM-chart contain a five point
summary of the empirical distribution of the stopping time. Note that the stopping time
is set to N , if a change is not detected. The power is simulated for monitoring periods
N that are chosen such that the empirical sizes lie close to the nominal size.

Since we are dealing with constant boundary functions, it suffices to consider a
structural break immediately after the initializing, respectively training period, hence
k∗ = 0. We focus on the stopping times τ1 and τ̂1, stated in (1.1.9) and (1.1.26), where
the level shift is chosen as M= 1.

The innovations {εi}i=1,2,... are independent identical symmetric Pareto(5.1) distrib-
uted, where we consider a random variable X to be symmetric Pareto(κ) disributed, if
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its density function follows

fX(x) =
κ

2
(1 + |x|)−(κ+1) for all −∞ < x <∞, where κ > 0.

Clearly it holds that

E ε1 = 0, Var ε1 = 1 and E |ε1|ν <∞ for all ν < κ

and the strong approximation according to Komlós, Major and Tusnády (1975,1976)
and Major (1976) shows that (1.1.2) is satisfied. The variance of the observations is
estimated by

σ̂2
m =

1

m− 1

mX
i=1

(Xi − µ̂m)2,

obviously satisfying (1.1.24).
All values in the following tables are based on 5, 000 replications and the nominal

size has been chosen as α = 0.05.
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Empirical sizes

innovations: symmetrical Pareto(5.1), α = 0.05

h
N

10 20 30 40 50

9 0.0124 0.0246 0.0334 0.0346 0.0422
8 0.0138 0.0326 0.0376 0.0426 0.0428
7 0.0196 0.0312 0.0392 0.0462 0.0524

h
N

150 200 250 300 350

40 0.0324 0.0372 0.0382 0.0380 0.0408
35 0.0346 0.0394 0.0458 0.0490 0.0484
30 0.0400 0.0444 0.0476 0.0498 0.0512

h
N

500 600 700 800 900

85 0.0334 0.0346 0.0372 0.0364 0.0378
80 0.0370 0.0388 0.0402 0.0414 0.0398
75 0.0404 0.0398 0.0424 0.0450 0.0462

h
N

2000 2500 3000 3500 4000

210 0.0366 0.0386 0.0422 0.0436 0.0442
200 0.0396 0.0422 0.0436 0.0450 0.0446
190 0.0364 0.0392 0.0428 0.0448 0.0472

h
N

4000 5000 6000 7000 8000

420 0.0334 0.0344 0.0388 0.0382 0.0406
400 0.0320 0.0372 0.0392 0.0412 0.0412
380 0.0344 0.0364 0.0402 0.0390 0.0414

Table 1.1: MOSUM-charts, Empirical sizes for stopping time τ1
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innovations: symmetrical Pareto(5.1), α = 0.05

m h
N

10 12 14 16 18

10
9 0.0604 0.0810 0.1010 0.1106 0.1192
8 0.0664 0.0858 0.1022 0.1172 0.1226
7 0.0754 0.1056 0.1164 0.1166 0.1336

m h
N

50 60 70 80 90

50
40 0.0392 0.0546 0.0698 0.0726 0.0844
35 0.0500 0.0684 0.0734 0.0822 0.0860
30 0.0604 0.0688 0.0860 0.0872 0.0902

m h
N

100 120 140 160 180

100
85 0.0336 0.0462 0.0614 0.0778 0.0820
80 0.0352 0.0474 0.0698 0.0812 0.0836
75 0.0426 0.0536 0.0732 0.0844 0.0900

m h
N

250 300 350 400 450

250
210 0.0328 0.0464 0.0588 0.0668 0.0748
200 0.0342 0.0488 0.0594 0.0676 0.0814
190 0.0400 0.0508 0.0614 0.0682 0.0830

m h
N

500 600 700 800 900

500
420 0.0312 0.0424 0.0610 0.0648 0.0752
400 0.0314 0.0486 0.0624 0.0698 0.0730
380 0.0322 0.0472 0.0644 0.0716 0.0778

Table 1.2: MOSUM-charts, Empirical sizes for stopping time τ̂1
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Empirical power

innovations: symmetrical Pareto(5.1), α = 0.05

N h min Q.25 Q.5 Q.75 max power

50
9 1 8 11 19 50 0.9870
8 1 8 13 21 50 0.9754
7 1 8 14 26 50 0.9496

350
40 1 18 22 26 50 1
35 1 17 21 24 54 1
30 1 16 19 23 65 1

900
85 1 26 32 38 72 1
80 1 26 31 37 72 1
75 1 25 30 36 62 1

4000
210 1 43 53 63 112 1
200 1 43 52 61 108 1
190 2 41 51 60 101 1

8000
420 6 61 75 87 160 1
400 1 59 73 86 144 1
380 1 59 72 84 146 1

Table 1.3: MOSUM-charts, Empirical power for stopping time τ1
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innovations: symmetrical Pareto(5.1), α = 0.05

m N h min Q.25 Q.5 Q.75 max power

10 10
9 1 5 8 10 10 0.6478
8 1 5 7 10 10 0.6620
7 1 5 7 10 10 0.6628

50 50
40 2 14 19 24 50 0.9852
35 2 13 17 22 50 0.9832
30 1 12 16 21 50 0.9806

100 100
85 3 23 28 35 100 0.9990
80 6 22 27 33 100 0.9998
75 6 21 26 32 100 0.9988

250 300
210 14 36 44 52 130 1
200 7 35 42 50 108 1
190 8 34 41 49 116 1

500 600
420 26 53 62 72 200 1
400 24 51 61 71 226 1
380 14 50 59 69 147 1

Table 1.4: MOSUM-charts, Empirical power for stopping time τ̂1
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Discussion

As we can see by Table 1.1, in case of known parameters µ and σ, the empirical size of
the test can be adjusted via the window size h, such that the test is applicable for various
monitoring periods N . However, if the in-control parameters are estimated (Table 1.2),
acceptable values for the empirical sizes are only obtained, if the length of the monitoring
period is chosen close to the length of the training period. It seems that the empirical
sizes are decreasing, as the training period increases, but the rate is very slow. The
results under the alternative (Tables 1.3 and 1.4) indicate that the MOSUM-chart has
asymptotic power one.

We now consider three possibilities to reduce the empirical false alarm rates in case
of unknown in-control parameters. Heuristically the test takes action, if the value of

1√
h

kX
i=k−h+1

εi+m −
√
h

m

mX
j=1

εj

exceeds a boundary function. In our setting, the application of extreme value theory
requires h/m → 0, however, also in case of h/m → c > 0 limit distributions for the
extremes can be derived and we refer to Horváth, Kühn and Steinebach (2008) for
details. The results given there show that adequate chosen boundary functions depend
on the number of existing moments of the innovations and it should be mentioned that
the empirical sizes in case of h/m → 1 in a simulation with m = 100 and N = 100 ·m
did not exceed the nominal size significantly.

Another possibility is to improve the rates of the estimators. This leads to recursive
estimators (sequential estimators), introduced by Brown, Durbin and Evans (1975). We
refer to Gut and Steinebach (2002), Horváth, Hušková, Kokoszka and Steinebach (2004)
and Aue and Kühn (2008) for an overview on the usage of recursive estimators in an
asymptotic framework. The basic idea is that if no action has been taken at time k, all
past observations may be used to estimate the parameters. The simulations in Aue and
Kühn (2008), carried out for a CUSUM-type detector, showed that recursive estimators
lead to lower empirical sizes, however, also increase the reaction time. The main reason
for this effect is that the underlying test reacts with some delay, hence the recursive
estimators also take values after the change into account. An approach to avoid the
slower reaction time may be the following. If no action has been taken at time k, the
estimation is based on the observations up to time k − d, where d is chosen such that
with high probability k∗ > k−d. The last approach requires detailed information about
the distribution of the delay time and may be realized by taking into account the results
of Chapter 5.

The third method follows the idea of exponential smoothing and is elaborated in the
next chapter.
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1.1.6 Proofs

Proof of Theorem 1.1.1

We define the sequence {Qk,N}k=1,...,N as

Qk,N = σ(W (k + hN)−W (k)) for all k = 1, . . . , N, (1.1.32)

where {W (t), t ≥ 0} is the approximating Wiener-process introduced in (1.1.2).

Lemma 1.1.1 Let the sequences {Mk,N}k=1,...,N and {Qk,N}k=1,...,N be defined as in
(1.1.8) and (1.1.32), respectively. Then

aN

�
max

1≤k≤N

Mk,N

σ
√
hN

− max
1≤k≤N

Qk,N

σ
√
hN

�
= oooP (1) as N →∞. (1.1.33)

Proof: We have
aN

σ
√
hN

max
1≤k≤N

|Mk,N −Qk,N |

=
aN

σ
√
hN

max
1≤k≤N

|(S(k + hN)− S(k))− (W (k + hN)−W (k))|

≤ 2
aN

σ
√
hN

max
1≤k≤N+hN

|S(k)−W (k)|

= OOOP

 
aN

(N + hN)1/ν

√
hN

!
as N →∞,

where we have used (1.1.2). Now the lemma follows by (1.1.4).

�

Let the process {UN(t)}t≥0 be defined as

UN(t) = σ(W (t+ hN)−W (t)) for all t ≥ 0, (1.1.34)

where {W (t), t ≥ 0} again is the approximating Wiener-process.

Lemma 1.1.2 Let the processes {Qk,N}k=1,...,N and {UN(t)}t≥0 be defined as in (1.1.32)
and (1.1.34), respectively. Then

aN

�
sup

1≤t≤N

Qbtc,N

σ
√
hN

− sup
1≤t≤N

UN(t)

σ
√
hN

�
= oooP (1) as N →∞. (1.1.35)

Proof: By the definition of the processes we have

aN
σ
√
hN

sup
1≤t≤N

|Qbtc,N − UN(t)|

≤ 2
aN

σ
√
hN

sup
1≤t≤N+hN

|W (t)−W (btc)|

and the lemma follows by (1.1.4) and Theorem 1.2.1 of Csörgő and Révész (1981).
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�

Now the self-similarity of the Wiener-process implies

sup
1≤t≤N

UN(t)

σ
√
hN

D
= sup

1/hN≤t≤N/hN

(W (t+ 1)−W (t)) (1.1.36)

and (1.1.13) follows by Lemma 1.1.1, Lemma 1.1.2 and on combining (1.1.36) with
Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983). Assertion (1.1.14) follows
by (1.1.13) and the asymptotic independence of the maxima and minima (see Bickel
and Rosenblatt, Theorem A 1, 1973).

Proof of Theorem 1.1.2

We only show (1.1.17), since (1.1.18) follows by similar arguments. If we define the

sequence {M (0)
k,N}k=1,...,N as

M
(0)
k,N =

kX
i=k−hN+1

εi+hN
for all k = 1, . . . , N,

then it holds that

Mk,N = M
(0)
k,N + (k −max{k∗, k − hN}) M for all k = 1, . . . , N.

Since k∗ < N −
√
hNN

ρ (w.l.o.g. Nρ/
√
hN → 0 as N →∞) we have

max
1≤k≤N

(k −max{k∗, k − hN}) M≥
È
hNN

ρ M

and it follows that for all real x it holds that

P

�
aN max

1≤k≤N

Mk,N

σ
√
hN

− bN ≤ x

�
≤ P

�
aN max

1≤k≤N

|M (0)
k,N |

σ
√
hN

− bN ≤ x− Nρ

σ
M +2aN max

1≤k≤N

|M (0)
k,N |

σ
√
hN

�
. (1.1.37)

Now Theorem 1.1.1 implies

aN max
1≤k≤N

|M (0)
k,N |

σ
√
hN

− bN = OOOP (1) as N →∞

and

aN max
1≤k≤N

|M (0)
k,N |

σ
√
hN

= OOOP (a2
N) as N →∞,

hence Nρ

σ
M is the dominating term in (1.1.37) and (1.1.17) follows as N →∞.
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Proof of Theorem 1.1.3

First, we provide the rates of the estimators, following the results in Steinebach (1995).

Lemma 1.1.3 Let µ̂mN
be defined as in (1.1.23) and let σ̂2

mN
be given by

σ̂2
mN

=
1

bmN/vNc

bmN/vN cX
i=1

1

vN

�
ivNX

j=(i−1)vN+1

Xj − vN µ̌mN

�2

,

where vN ≤ mN is an integer-valued function of N satisfying vN ∼ mδ
N as N →∞ for

some 2/ν < δ < 1 and

µ̌mN
=

1

bmN/vNc

bmN/vN cX
i=1

1

vN

ivNX
j=(i−1)vN+1

Xj.

Then, it holds that

µ̂mN
− µ = OOOP

 
1

√
mN

!
as N →∞ (1.1.38)

and

σ̂2
mN

− σ2 = oooP

�
1

mϑ
N

�
as N →∞ (1.1.39)

for all 0 < ϑ < min{1/2− δ/2, δ/2− 1/ν}.

Proof: The invariance principle (1.1.2) yields

µ̂N − µ =
1

mN

mNX
j=1

εj

=
1

mN

�
mNX
j=1

εj − σW (mN)

�
+

1

mN

σW (mN)

= OOOP

�
m

1/ν−1
N

�
+OOOP

 
1

√
mN

!
as N →∞,

which implies (1.1.38) since ν > 2.
Next, we consider the estimator for the variance. If {W (t), t ≥ 0} denotes the

approximating Wiener process and KN = bmN/vNc, we get

1

KN

KNX
i=1

1

vN

�
ivNX

j=(i−1)vN+1

Xj − vN µ̌mN

�2

− 1

KN

KNX
i=1

σ2

vN

�
W (ivN)−W ((i− 1) vN)− 1

KN

W (vNKN)
�2

=:
1

KN

KNX
i=1

1

vN
I1(i) · I2(i), (1.1.40)
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where for all 1 ≤ i ≤ KN

I1(i) =

�
ivNX

j=(i−1)vN+1

Xj − vN µ̌mN

�
−σ

�
W (ivN)−W ((i− 1)vN)− 1

KN

W (vNKN)
�

and

I2(i) =

�
ivNX

j=(i−1)vN+1

Xj − vN µ̌mN

�
+σ

�
W (ivN)−W ((i− 1)vN)− 1

KN

W (vNKN)
�
.

Since

max
1≤i≤KN

|I1(i)| ≤ 2 max
1≤i≤mN

������ iX
j=1

εj − σW (j)

������+ 1

KN

������
�
vNKNX
j=1

εj −W (vNKN)

�������
= OOOP

�
m

1/ν
N

�
+OOOP

 
vN

m
1−1/ν
N

!
as N →∞

and vN ≤ mN it follows that

max
1≤i≤bmN/vN c

|I1(i)| = OOOP

�
m

1/ν
N

�
as N →∞. (1.1.41)

Furthermore, it holds that

max
1≤i≤KN

|I2(i)|

≤ max
1≤i≤KN

|I1(i)|+ 2 max
1≤i≤KN

σ
����W (ivN)−W ((i− 1)vN)− 1

KN

W (vNKN)
���� .

The definition of vN and Theorem 1.2.1 of Csörgő and Révész (1981) yield

max
1≤i≤KN

σ |W (ivN)−W ((i− 1)vN)| = OOO
�È

vN logmN

�
a.s. as N →∞

and obviously���� 1

KN

W (vNKN)
���� = OOOP

 
vN√
mN

!
as N →∞.

Comparing the rates we see that

max
1≤i≤KN

|I2(i)| = OOOP

�È
vN logmN

�
= OOOP

�
m
δ/2
N

È
logmN

�
as N →∞ (1.1.42)

and (1.1.40)–(1.1.42) show that

1

KN

KNX
i=1

1

vN
I1(i) · I2(i) = OOOP

 √
logmN

m
δ/2−1/ν
N

!
as N →∞.
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Hence,

1

KN

KNX
i=1

1

vN
I1(i) · I2(i) = oooP

 
1

mϑ1
N

!
as N →∞ (1.1.43)

for all 0 ≤ ϑ1 < δ/2− 1/ν.
Now

1

KN

KNX
i=1

σ2

vN

�
W (ivN)−W ((i− 1) vN)− 1

KN

W (vNKN)
�2

D
=

σ2

KN

χ2
KN−1,

where χ2
KN−1 is a chi-square distributed random variable with KN−1 degrees of freedom.

The law of the iterated logarithm implies that

σ2

KN

χ2
KN−1 − σ2 = oooP

�
1

Kθ
N

�
as N →∞

for all 0 ≤ θ < 1/2 and we see that

1

KN

KNX
i=1

σ2

vN

�
W (ivN)−W ((i− 1) vN)− 1

KN

W (vNKN)
�2

= oooP

�
1

mϑ2

�
(1.1.44)

for all 0 ≤ ϑ2 ≤ (1− δ)θ and 0 ≤ θ < 1/2. Assertion (1.1.39) now follows from (1.1.43)
and (1.1.44).

�

Now let the sequence {Hk,N}k=1,...,N be defined as

Hk,N =
kX

i=k−hN+1

(Xi+mN
− µ) , k = 1, . . . , N. (1.1.45)

Condition (1.1.20) and the proof of Theorem 1.1.1 immediately imply that under the
null hypothesis

lim
N→∞

P

�
aN sup

1≤k≤N

Hk,N

σ
√
hN

− bN ≤ x

�
= exp(−e−x) as N →∞ (1.1.46)

and also

lim
N→∞

P

�
aN sup

1≤k≤N

|Hk,N |
σ
√
hN

− bN ≤ x

�
= exp(−2e−x) as N →∞ (1.1.47)

hold.
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Lemma 1.1.4 Let the sequences {M̂k,N}k=1,...,N and {Hk,N}k=1,...,N be defined as in
(1.1.25) and (1.1.45), respectively. Furthermore, we assume that (1.1.4), (1.1.5) and
(1.1.20) are satisfied. Then, under H0, it holds that

aN

 
max

1≤k≤N

Hk,N

σ
√
hN

− max
1≤k≤N

M̂k,N

σ
√
hN

!
= oooP (1) as N →∞. (1.1.48)

Proof: With (1.1.38) we get

aN
σ
√
hN

max
1≤k≤N

���Hk,N − M̂k,N

��� = aN
σ
√
hN

max
1≤k≤N

|hN(µ− µ̂mN
)|

=
aN
σ

√
hN√
mN

OOOP (1) as N →∞

and the lemma follows by (1.1.20). �

Lemma 1.1.5 Let the sequence {M̂k,N}k=1,...,N be defined as in (1.1.25). If σ̂2
mN

satisfies
(1.1.24), then, under H0, it holds that

aN

 
max

1≤k≤N

M̂k,N

σ
√
hN

− max
1≤k≤N

M̂k,N

σ̂mN

√
hN

!
= oooP (1) as N →∞. (1.1.49)

Proof: We have

aN max
1≤k≤N

����� M̂k,N

σ
√
hN

− M̂k,N

σ̂mN

√
hN

����� = �����1− σ

σ̂mN

����� aN max
1≤k≤N

|M̂k,N |
σ
√
hN

.

Now (1.1.46), (1.1.47) and Lemma 1.1.4 imply that

aN max
1≤k≤N

|M̂k,N |
σ
√
hN

= OOOP

�
log

N

hN

�
as N →∞

and since (1.1.39) implies

|σ̂mN
− σ| = oooP

�
1

mϑ
N

�
as N →∞ (∀ 0 < ϑ < min{1/2− δ/2, δ/2− 1/ν}),

the lemma follows.

�

Combining (1.1.46), (1.1.47), Lemma 1.1.4 and Lemma 1.1.5 now yields Theorem 1.1.3.

Proof of Theorem 1.1.4

Since ρ can be chosen arbitrarily small, we can assume by (1.1.20) and (1.1.39) that

Nρ

σ̂mN

M −N
ρ

σ
M= oooP

�
1

N ε

�
as N →∞ for some ε > 0.

Hence the proof of Theorem 1.1.2 carries over.



Chapter 2

Control charts based on
weighted averages of moving sums

As we have seen in the previous chapter, the discussed MOSUM-chart is too sensitive, if
the model parameters are estimated. Gut and Steinebach (2004) provided a modification
of the chart, which is based on exponential smoothing methods and allows to control
the sensitivity of the test via a weight parameter λ.

In this chapter we extend the approach of Gut and Steinebach (2004) to a wide class
of weight functions including many convergent series and all finite sequences, which are
decreasing and non-negative.

2.1 Closed-end control charts

2.1.1 Model assumptions for known µ and σ

Let {εi}i=1,2,... be a sequence of real valued random variables on some probability space
(Ω,A, P ) with

E εi = 0 and Var εi = σ2 > 0 for all i = 1, 2, . . . . (2.1.1)

We assume that there exists a Wiener process {W (t), t ≥ 0} such that for some ν > 2

sup
1≤k<∞

1

k1/ν

������ kX
j=1

εj − σW (k)

������ <∞ a.s. (2.1.2)

The observations are modeled as a discrete-time stochastic process {Xi}i=1,2,...,hN+N

satisfying

Xi =

8><>:µ+ εi , 1 ≤ i ≤ hN + k∗,

µ+ M +εi , hN + k∗ ≤ hN +N,
(2.1.3)

23
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where µ and M are real parameters and k∗ is the unknown time of a possible change in
the mean.

The window size hN is chosen such that

hN ' N2φ as N →∞, where 1/ν < φ < 1/2. (2.1.4)

We are interested in testing

H0 : k∗ = N versus H1 : k∗ < N, M> 0 (one-sided alternative), (2.1.5)

or

H0 : k∗ = N versus H2 : k∗ < N, M 6= 0 (two-sided alternative). (2.1.6)

2.1.2 Monitoring procedures for known µ and σ

The detectors are defined as weighted averages of standardized moving sums that is

Ak,N =
k−1X
j=0

wjBk−j,N for all k = 1, 2, . . . , N, (2.1.7)

where {wj}j=0,1,... is a real sequence satisfying

1) {wj}j=0,1,... is non-increasing, (2.1.8)

2)
∞X
j=0

wj = 1, (2.1.9)

3)
kX
j=0

j wj = OOO
�
kφ
�

as k →∞ for some 0 < φ < 1, (2.1.10)

4)
∞X
j=k

wj = OOO
�

1

kψ

�
as k →∞ for some ψ > 0. (2.1.11)

The sequence {Bk,N}k=1,...,N is defined as

Bk,N =
1√
hN

hN−1X
i=0

(Xk−i+hN
− µ) for all k = 1, 2, . . . , N. (2.1.12)

Note that it follows by (2.1.8) and (2.1.9) that wj ≥ 0 for all j = 0, 1, . . ., hence

jwj = ooo(1) as j →∞. (2.1.13)
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Remark 2.1.1 Condition (2.1.9) is only made for technical reasons and may be replaced
by the assumption that the sum of the weights is converging. Conditions (2.1.10) and
(2.1.11) are satisfied by many convergent series as for example

wj =
1

(j + 1)γ
, j = 0, 1, . . . , γ > 1

but do not hold for

wj =
1

(j + 1)(log(j + 2))γ
, j = 0, 1, . . . , γ > 1,

even though the corresponding series converges.

The influence of the weights on the boundary function of the procedure is described
by the following sequence

σ2
N = σ2

�
∞X
k=0

w2
k + 2

∞X
k=0

wk

�
hN−1X
j=1

hN − j

hN
wk+j

��
. (2.1.14)

Note that (A.1.2) implies that

σN − σ → 0 as N →∞. (2.1.15)

If we test the null hypotheses versus the one-sided alternative, we rejectH0 if τ1 <∞,
where

τ1 = τ1(α,N) = inf{1 ≤ k ≤ N : Ak,N > c1(α,N)σN}. (2.1.16)

As usual α ∈]0, 1[ denotes the level of significance. If the alternative is two-sided, we
replace τ1 by τ2, where

τ2 = τ2(α,N) = inf{1 ≤ k ≤ N : |Ak,N | > c2(α,N)σN}. (2.1.17)

The critical constants c1(α,N) and c2(α,N) are given by

c1(α,N) =
q1(1− α) + bN

aN
and c2(α,N) =

q2(1− α) + bN
aN

, (2.1.18)

where aN and bN are defined in (2.1.22) and (2.1.23) below and

q1(1− α) = − log(− log(1− α)), q2(1− α) = − log
�
−1

2
log(1− α)

�
. (2.1.19)

The choice of critical constants is based on the next theorem.



26 CHAPTER 2. WEIGHTED AVERAGES OF MOVING SUMS

Theorem 2.1.1 Let the sequence {Ak,N}k=1,...,N be defined as in (2.1.7) and assume
that hN satisfies (2.1.4). If we define σN via (2.1.14), then, under H0, for all real x it
holds that

lim
N→∞

P
�
aN max

1≤k≤N

Ak,N
σN

− bN ≤ x
�

= exp(−e−x) (2.1.20)

and

lim
N→∞

P

�
aN max

1≤k≤N

|Ak,N |
σN

− bN ≤ x

�
= exp(−2e−x), (2.1.21)

where

aN =

s
2 log

N

hN
(2.1.22)

and

bN = 2 log
N

hN
+

1

2
log log

N

hN
− 1

2
log π. (2.1.23)

Under weak conditions imposed on k∗, the procedures also have asymptotic power
one.

Theorem 2.1.2 Let {Ak,N}k=1,...,N , hN and σN be defined as in Theorem 2.1.1. If we
assume that k∗ = k∗(N) < N − hN , then for all real x it holds that under H1

lim
N→∞

P

�
aN sup

1≤k≤N

Ak,N
σN

− bN > x

�
= 1 (2.1.24)

and under H2

lim
N→∞

P

�
aN sup

1≤k≤N

|Ak,N |
σN

− bN > x

�
= 1, (2.1.25)

where aN and bN are defined in (2.1.22) and (2.1.23), respectively.

2.1.3 Model assumptions for unknown µ and σ

We assume that the innovations {εi}i=1,2,... satisfy (2.1.1) and (2.1.2).
Again the estimators are based on a training period that is assumed to be homoge-

neous, hence we suppose that

Xi =

8><>:µ+ εi , 1 ≤ i ≤ mN + k∗,

µ+ M +εi , mN + k∗ < i ≤ mN +N.
(2.1.26)
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The conditions imposed on the size of the training period are

1) mN +N ∼ N as N →∞ (2.1.27)

and

2) lim
N→∞

�
hN
mN

log
N

hN

�
= 0, (2.1.28)

where the window size hN still satisfies (2.1.4).

2.1.4 Monitoring procedures for unknown µ and σ

Replacing µ by the estimator

µ̂mN
=

1

mN

mNX
j=1

Xj (2.1.29)

we define

Âk,N =
k−1X
j=0

wjB̂k−j,N for all k = 1, . . . , N, (2.1.30)

where {wj}j=0,1,... satisfies (2.1.8)–(2.1.11) and

B̂k,N =
1√
hN

hN−1X
i=0

(Xk−i+mN
− µ̂mN

) for all k = 1, . . . , N. (2.1.31)

With σ̂2
mN

being an estimator for σ2 satisfying

σ̂2
mN

− σ2 = oooP

�
1

mϑ
N

�
as N →∞ for some ϑ > 0 (2.1.32)

(the existence has been shown in Lemma 1.1.3), we set

σ̂2
N = σ̂2

mN

�
∞X
k=0

w2
k + 2

∞X
k=0

wk

�
hN−1X
j=1

hN − j

hN
wk+j

��
(2.1.33)

which yields the modified stopping times

τ̂1 = τ̂1(α,N) = inf{1 ≤ k ≤ N : Âk,N > c1(α,N)σ̂N} (2.1.34)

and

τ̂2 = τ̂2(α,N) = inf{1 ≤ k ≤ N : |Âk,N | > c2(α,N)σ̂N}. (2.1.35)

The critical constants c1(α,N) and c2(α,N) are chosen as in (2.1.18) according to
the next theorem.
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Theorem 2.1.3 Let the sequence {Âk,N}k=1,...,N be defined as in (2.1.30). Furthermore,
σ̂N is chosen as in (2.1.33) and we assume that (2.1.4), (2.1.27) and (2.1.28) are satis-
fied. Then for all real x it holds that under H0

lim
N→∞

P

 
aN sup

1≤k≤N

Âk,N
σ̂N

− bN ≤ x

!
= exp(−e−x) (2.1.36)

and

lim
N→∞

P

 
aN sup

1≤k≤N

|Âk,N |
σ̂N

− bN ≤ x

!
= exp(−2e−x), (2.1.37)

where aN and bN are chosen as in (2.1.22) and (2.1.23), respectively.

The asymptotic power of the test is not influenced by the estimations, so it still holds
that the procedures have asymptotic power one.

Theorem 2.1.4 Let {Âk,N}k=1,...,N and σ̂N be defined as in Theorem 2.1.3 and suppose
that (2.1.4), (2.1.27) and (2.1.28) are satisfied. If we assume that k∗ = k∗(N) < N−hN ,
then for all real x it holds that under H1

lim
N→∞

P

 
aN sup

1≤k≤N

Âk,N
σ̂N

− bN > x

!
= 1 (2.1.38)

and under H2

lim
N→∞

P

 
aN sup

1≤k≤N

|Âk,N |
σ̂N

− bN > x

!
= 1, (2.1.39)

where aN and bN are chosen as in (2.1.22) and (2.1.23), respectively.

2.1.5 Simulations and discussion

The aim of the simulations provided in this paragraph is to investigate the effect of
smoothing for different kinds of weights. If we choose the weight function

wj =

8<:1 , j = 0,

0 , j > 0,

we obtain the MOSUM-chart for which we already know the empirical results stated in
Tables 1.1–1.4. These tables provide guidelines for the choices of the parameters m, h
and N and will be used as benchmark.

We expect that the empirical sizes decrease, if we put more weight on past observa-
tions, but we also expect that the test then will be less sensitive. Since we have seen
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that in case of known parameters the MOSUM-chart is well applicable for different sizes
of the monitoring period, there is no need to put more weight on past observations.
Hence, we focus on the weighted averages for unknown µ and σ.

The simulation is carried out for the stopping time τ̂1 and the symmetrical Pareto(5.1)
variables specified in the simulation part of Chapter 1. The variance of the observations
is estimated by

σ̂2
mN

=
1

mN − 1

mNX
i=1

(Xi − µ̂mN
)2.

The empirical power is simulated for M= 1 and k∗ = 0. The parameters m,h and N are
chosen with regard to the results stated in Table 1.2.

The values for σ̂2
mN

are approximated by

σ̂2
N ≈ σ̂2

mN

�
4999X
k=0

w2
k + 2

4999X
k=0

wk

�
hN−1X
j=1

hN − j

hN
wk+j

��
.

Each result in the following tables is based on 5, 000 replications and the nominal
size has been chosen as α = 0.05.

Weight functions (WF)

• WF–1: The weights are chosen according to

wj =
1

Cγ(j + 1)γ
, j = 0, 1, . . . , γ > 1, Cγ =

∞X
j=0

1

(j + 1)γ
.

• WF–2: The weights are chosen according to

wj = (1− λ)λj, j = 0, 1, . . . , λ ∈ [0, 1[.
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Empirical sizes

symmetrical Pareto(5.1), α = 0.05

m h N γ = 1.1 γ = 1.2 γ = 1.3 γ = 1.4 γ = 1.5

10 8
10 0.0366 0.0420 0.0454 0.0480 0.0516
14 0.0790 0.0796 0.0800 0.0836 0.0924
18 0.0970 0.0978 0.0992 0.1022 0.1034

50 35
50 0.0328 0.0332 0.0346 0.0378 0.0422
70 0.0506 0.0510 0.0552 0.0562 0.0616
90 0.0646 0.0696 0.0702 0.0720 0.0766

100 80
100 0.0214 0.0254 0.0298 0.0312 0.0328
140 0.0428 0.0466 0.0518 0.0510 0.0524
180 0.0578 0.0636 0.0608 0.0628 0.0666

250 200
250 0.0204 0.0214 0.0228 0.0258 0.0276
350 0.0394 0.0442 0.0468 0.0498 0.0546
450 0.0536 0.0564 0.0602 0.0612 0.0656

500 400
500 0.0208 0.0240 0.0256 0.0282 0.0310
700 0.0336 0.0474 0.0488 0.0464 0.0494
900 0.0496 0.0574 0.0592 0.0640 0.0664

Table 2.1: WAMS-charts, Empirical sizes for stopping time τ̂1 and WF–1

symmetrical Pareto(5.1), α = 0.05

m h N λ = .95 λ = .90 λ = .85 λ = .80 λ = .75

10 8
10 0.0114 0.0220 0.0398 0.0444 0.0510
14 0.0298 0.0550 0.0740 0.0750 0.0874
18 0.0536 0.0834 0.0980 0.0996 0.1052

50 35
50 0.0190 0.0322 0.0352 0.0408 0.0418
70 0.0364 0.0492 0.0496 0.0554 0.0572
90 0.0580 0.0672 0.0706 0.0722 0.0730

100 80
100 0.0226 0.0260 0.0274 0.0290 0.0322
140 0.0390 0.0406 0.0476 0.0558 0.0564
180 0.0536 0.0540 0.0616 0.0626 0.0680

250 200
250 0.0188 0.0202 0.0228 0.0264 0.0272
350 0.0390 0.0450 0.0486 0.0556 0.0566
450 0.0502 0.0542 0.0604 0.0672 0.0686

500 400
500 0.0226 0.0254 0.0256 0.0278 0.0280
700 0.0422 0.0426 0.0454 0.0514 0.0552
900 0.0512 0.0610 0.0620 0.0648 0.0682

Table 2.2: WAMS-charts, Empirical sizes for stopping time τ̂1 and WF–2
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Empirical power

symmetrical Pareto(5.1), α = 0.05

m N h γ min Q.25 Q.5 Q.75 max power

10 10 8
1.1 2 6 9 10 10 0.6054
1.3 1 6 8 10 10 0.6080
1.5 1 6 8 10 10 0.6246

50 70 35
1.1 5 17 21 26 70 0.9932
1.3 6 16 20 25 70 0.9918
1.5 6 15 19 24 70 0.9898

100 140 80
1.1 13 29 34 40 140 0.9996
1.3 4 26 31 38 140 0.9998
1.5 9 25 30 36 140 0.9986

250 350 200
1.1 27 49 56 64 181 1
1.3 18 44 51 59 136 1
1.5 18 40 47 56 119 1

500 700 400
1.1 45 72 81 91 168 1
1.3 35 64 72 83 173 1
1.5 24 59 68 78 187 1

Table 2.3: WAMS-charts, Empirical power for stopping time τ̂1 and WF–1

symmetrical Pareto(5.1), α = 0.05

m N h λ min Q.25 Q.5 Q.75 max power

10 10 8
.95 3 10 10 10 10 0.3230
.85 2 7 10 10 10 0.5666
.75 1 6 9 10 10 0.6250

50 70 35
.95 12 23 27 31 70 0.9920
.85 8 17 21 26 70 0.9890
.75 6 16 19 24 70 0.9894

100 140 80
.95 19 35 40 46 140 0.9992
.85 11 26 31 37 140 0.9994
.75 7 24 29 36 140 0.9992

250 350 200
.95 31 52 58 66 132 1
.85 20 40 48 55 125 1
.75 18 38 45 53 127 1

500 700 400
.95 37 69 77 88 155 1
.85 26 57 66 76 145 1
.75 20 54 63 74 167 1

Table 2.4: WAMS-charts, Empirical power for stopping time τ̂1 and WF–2
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Discussion

Tables 2.1 and 2.2 clearly show that the empirical sizes reduce, if we put more weight
on past observations. We furthermore see that the empirical sizes also decrease, if the
size of the monitoring period increases. However, for the considered values of m, even
if we put rather heavy weights on the past observations the test keeps the nominal size
only if N < 2m. Better proportions seem to be only possible for larger training periods.

Under the alternative we see that the delay times increase, if we put higher weights
on past observations.

A commendation which one of the weight functions is preferable is not possible. For
finite samples both functions may be adjusted via the parameters γ and λ, respectively,
so that more ore less weight lies on the past observations.

We finally give a possible explanation why, in case of estimated parameters, the
empirical sizes do exceed the nominal size for rather small monitoring periods (compared
to the training periods). To this end we consider the detectors of the MOSUM-chart for
known and unknown µ, namely

Mk =
kX

i=k−h+1

εi+h and M̂k =
kX

i=k−h+1

εi+m −
h

m

mX
j=1

εj.

If the innovations are for example independent, standard normal variables, the corre-
sponding variances are given by

h and h+
h2

m
= h

�
1 +

h

m

�
.

Remember that the application of extreme value theory required the standardization of
the detectors. Since the asymptotic results for {M̂k} have been traced back to the results
for {Mk}, each M̂k is standardized by

√
h, even though the real standard deviation is

given by (h (1 + h/m))1/2. Now we have a dilemma. Obviously, h/m should be small,
but since in a real setting m is fixed, this goal can only be achieved by reducing the
window size h. However, for fixed m the simulations for the MOSUM-chart clearly
showed that the empirical sizes increase, as the window size decreases. A solution for
this problem may be to consider boundary functions, which take the standard deviations
of the detectors for estimated parameters into account. This will be done in the next
chapter for polynomially weighted moving averages.
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2.1.6 Proofs

First, we introduce a process that will be needed frequently. We extend the approx-
imating Wiener process in the usual way to a two-sided Wiener process denoted by
{W (t),−∞ < t <∞} and define {Vt,N ,−∞ < t <∞} by

Vt,N =
1√
hN

σ(W (t+ hN)−W (t)) for all −∞ < t <∞. (2.1.40)

It is clear that the following proofs are concerned with triangular arrays, however,
this will be only pointed out if needed.

Proof of Theorem 2.1.1

We define the sequence {Qk,N}k=1,...,N by

Qk,N =
k−1X
j=0

wjVk−j,N for all k = 1, . . . , N. (2.1.41)

Lemma 2.1.1 Let the sequences {Ak,N}k=1,...,N and {Qk,N}k=1,...,N be given by (2.1.7)
and (2.1.41), respectively. σN is determined by (2.1.14). Then it holds that

aN

�
max

1≤k≤N

Ak,N
σN

− max
1≤k≤N

Qk,N

σN

�
= oooP (1) as N →∞. (2.1.42)

Proof: We have

aN
σN

max
1≤k≤N

|Ak,N −Qk,N | =
aN
σN

max
1≤k≤N

������k−1X
j=0

wj(Bk−j,N − Vk−j,N)

������
≤ aN
σN

∞X
j=0

wj max
1≤k≤N

|Bk,N − Vk,N |

≤ aN
σN

max
1≤k≤N

|Bk,N − Vk,N |.

The weak approximation (2.1.2) implies that

aN max
1≤k≤N

|Bk,N − Vk,N | = OOOP

 
aN

(N + hN)1/ν

√
hN

!
as N →∞

and since σN → σ as N →∞, (2.1.42) follows by (2.1.4).

�

Next, we approximate {Qk,N}k=1,...,N by the continuous-time process {QN(t)}0≤t≤N ,
defined as

QN(t) =
btc−1X
j=0

wjVt−j,N for all 0 ≤ t ≤ N. (2.1.43)
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Lemma 2.1.2 Let the sequence {Qk,N}k=1,...,N be given by (2.1.41) and define the process
{QN(t)}0≤t≤N as in (2.1.43). Then

aN

�
sup

1≤t≤N

Qbtc,N

σN
− sup

1≤t≤N

QN(t)

σN

�
= oooP (1) as N →∞. (2.1.44)

Proof: Obviously,

aN
σN

sup
1≤t≤N

���Qbtc,N −QN(t)
��� ≤ aN

σN
sup

1≤t≤N

btc−1X
j=0

wj
���Vt−j,N − Vbtc−j,N

���
≤ aN
σN

sup
1≤t≤N

���Vt,N − Vbtc,N
���

≤ 2
σaN
σN

sup
1≤t≤N+hN

|W (t)−W (btc)|√
hN

.

Now Theorem 1.2.1 of Csörgő and Révész (1981) shows that

sup
1≤t≤N+hN

|W (t)−W (btc)| = OOO
�È

log(N + hN)
�

a.s. as N →∞

and since σN → σ as N →∞, the Lemma follows by (2.1.4).

�

The next step is to introduce a stationary extension of {QN(t)}0≤t≤N . To this end
we define the process {UN(t)}0≤t≤N as

UN(t) =
∞X
j=0

wjVt−j,N for all 0 ≤ t ≤ N. (2.1.45)

Lemma 2.1.3 Let the processes {QN(t)}0≤t≤N and {UN(t)}0≤t≤N be defined as in (2.1.43)
and (2.1.45), respectively. Then

aN

�
sup

1≤t≤N

UN(t)

σN
− sup

1≤t≤N

QN(t)

σN

�
= oooP (1) as N →∞. (2.1.46)

Proof: We first show that for some suitable chosen Ñ it holds that

aN sup
1≤t≤Ñ

QN(t)

σN
− bN

P−→ −∞ as N →∞. (2.1.47)

If we set θ = 2φ+ (1− 2φ)γ for some 0 < γ < 1, then we see by (2.1.4) that

N θ

hN
'
�
N

hN

�γ
as N →∞. (2.1.48)
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Now

sup
1≤t≤Nθ

QN(t) ≤ sup
1≤t≤Nθ

������btc−1X
j=0

wjVt−j,N

������ ≤ ∞X
j=0

wj sup
1≤t≤Nθ

|Vt,N | = sup
1≤t≤Nθ

|Vt,N |

and from Theorem 1.2.1 of Csörgő and Révész (1981) it follows that

lim sup
N→∞

 
2

 
log

N θ + hN
hN

+ log log(N θ + hN)

!!−1/2

sup
1≤t≤Nθ

|Vt,N | ≤ σ a.s.

Since obviously

N θ + hN
hN

'
�
N

hN

�γ
as N →∞

this implies that for all ε > 0 it holds

P

 
sup

1≤t≤Nθ

|Vk,N | ≥
�
2γ log

N

hN

�1/2

(1 + ε)

!
→ 0 as N →∞,

which together with the definitions of aN , bN and σN shows that for all Ñ . N θ

(N → ∞) assertion (2.1.47) holds. A similar statement for {UN(t)}0≤t≤N is given in
Lemma 2.1.5 below.

Now, in view of (2.1.47) and the corresponding result for {UN(t)}0≤t≤N it suffices
to show (2.1.46) on a truncated range for the suprema. Without loss of generality we
assume that Ñ is integer-valued. We have

aN
σN

sup
Ñ≤t≤N

|UN(t)−QN(t)| = aN
σN

sup
Ñ≤t≤N

������ ∞X
j=btc

wjVt−j

������
≤ aN
σN

∞X
j=Ñ

wj sup
0≤s<1

���VÑ−j−s��� . (2.1.49)

Note that

sup
0≤s<1

���VÑ−j−s��� D
= sup

0≤s<1
|V−s| for all j ≥ Ñ (2.1.50)

and

sup
0≤s<1

|V−s| = sup
0≤s<1

|W (hN − s)−W (−s)|√
hN

≤ sup
0≤s<1

|W (hN − s)|√
hN

+ sup
0≤s<1

|W (−s)|√
hN

≤ sup
0≤t≤hN

|W (t)|√
hN

+ sup
0≤s<1

|W (−s)|√
hN

=: I1(N) + I2(N).
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For some suitable chosen C1 > 0 independent ofN (cf. Karatzas and Shreve, Chapter
2.8, 1988) it holds that

E I1(N) ≤ C1 (2.1.51)

and È
hN E I2(N) ≤ C1, (2.1.52)

hence, on combining (2.1.50)–(2.1.52) we see that

E sup
0≤s<1

���VÑ−j−s��� ≤ 2C1 for all j ≥ Ñ

and

E

�
∞X
j=Ñ

wj sup
0≤s<1

���VÑ−j−s���� ≤ 2C1 ·
∞X
j=Ñ

wj. (2.1.53)

Now (2.1.11) and the definition of Ñ yield the existence of some ε > 0, such that

∞X
j=Ñ

wj = OOO
�

1

N ε

�
as N →∞ (2.1.54)

and the lemma follows by (2.1.22), (2.1.49), (2.1.53), (2.1.54), and the Markov-inequality.

�

Finally, we consider the extremes of {UN(t)}0≤t≤N .

Lemma 2.1.4 Let the process {UN(t)}0≤t≤N be given by (2.1.45). For all real x it holds
that

lim
N→∞

P

�
aN sup

1≤t≤N

UN(t)

σN
− bN ≤ x

�
= exp(−e−x). (2.1.55)

Proof: We define the processes {ŨN( t̃ )}t̃≥0 as

ŨN( t̃ ) := UN( t̃hN) for all t̃ ≥ 0. (2.1.56)

Obviously, it holds that

sup
1≤t≤N

UN(t)

σN
= sup

1/hN≤t̃≤N/hN

ŨN(t̃ )

σN

and since Lemma A.3.1 shows that the assumptions of Theorem 5.1 in Gut and Steinebach
(2004) are satisfied, the lemma follows. �
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Lemma 2.1.5 Let the process {UN(t)}0≤t≤N be defined as in (2.1.45). Furthermore, let
θ = 2φ+ (1− 2φ)γ for some 0 < γ < 1. Then for all real x it holds that

lim
N→∞

P

 
aN sup

1≤t≤Nθ

UN(t)

σN
− bN ≤ x

!
= 1. (2.1.57)

Proof: In the following, we also denote N θ by Ñ .
Since 2φ < θ < 1 we can find a constant φ̃ such that 1/ν < φ̃ < 1/2 and

hN ' Ñ2φ̃ as N →∞. (2.1.58)

Comparing (2.1.58) with (2.1.4) we see that Lemma 2.1.4 also holds, if we replace N by
Ñ in the domain of the supremum. Hence (Ñ →∞ iff N →∞)

lim
N→∞

P

�
aÑ max

1≤t≤Ñ

UN(t)

σN
− bÑ ≤ x

�
= exp(−e−x), (2.1.59)

where

aÑ =

Ì
2 log

Ñ

hN

and

bÑ = 2 log
Ñ

hN
+

1

2
log log

Ñ

hN
− 1

2
log π.

Now

P

�
aN max

1≤t≤Ñ

UN(t)

σN
− bN ≤ x

�
= P

�
aÑ max

1≤t≤Ñ

UN(t)

σN
− bÑ ≤

aÑ
aN

(x+ bN)− bÑ

�
and since elementary calculations show that for any real x it holds

aÑ
aN

(x+ bN)− bÑ →∞ as N →∞,

the lemma follows by (2.1.58).

�

On combining the Lemmas (2.1.1)–(2.1.5) we see that assertion (2.1.20) of Theorem
2.1.1 holds. The symmetry of {UN(t)}0≤t≤N and the asymptotic independence of maxima
and minima in the underlying extreme value asymptotic imply (2.1.21) (see also Gut
and Steinebach, 2004).
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Proof of Theorem 2.1.2

Under the one-sided alternative for all 1 ≤ k ≤ N we have

Ak,N =
k−1X
j=0

wj
1√
hN

hN−1X
i=0

(Xk−j−i+hN
− µ)

=
hN−1X
i=0

1√
hN

k−1X
j=0

wj (Xk−j−i+hN
− µ)

=
k−1X
j=0

wj
1√
hN

hN−1X
i=0

εk−j−i+hN
+

M√
hN

hN−1X
i=0

k−i−k∗−1X
j=0

wj

=: I1(N) + I2(N)

and since for I2(N) it holds that

M√
hN

hN−1X
i=0

k−i−k∗−1X
j=0

wj =
M√
hN

hN−1X
i=0

�
k−hN−k∗−1X

j=0

wj +
k−i−k∗−1X
j=k−hN−k∗

wj

�
=
È
hN M

k−hN−k∗−1X
j=0

wj +
M√
hN

hN−1X
j=0

(hN − j)wk−hN−k∗+j

≥
È
hN M

k−hN−k∗−1X
j=0

wj,

the assumption k∗ < N − hN implies

max
1≤k≤N

Ak,N
σN

≥
√
hN M
σN

N−hN−k∗−1X
j=0

wj − max
1≤k≤N

������ 1

σN

k−1X
j=0

wj
1√
hN

hN−1X
i=0

εk−j−i+hN

������
≥
√
hN M
σN

w0 − max
hN≤k≤N

������ 1

σN

k−hNX
j=0

wj
1√
hN

hN−1X
i=0

εk−j−i

������ .
Now (2.1.21) shows that

max
1≤k≤N

������ 1

σN

k−1X
j=0

wj
1√
hN

hN−1X
i=0

εk−j−i+hN

������ = OOOP

 s
log

N

hN

!
as N →∞

and assertion (2.1.24) follows, since for all real x

P

�
aN max

1≤k≤N

Ak,N
σN

− bN ≤ x

�
= P

�
max

1≤k≤N

Ak,N
σN

≤ x+ bN
aN

�
≤ P

�√
hN M
σN

w0 − max
1≤k≤N

������ 1

σN

k−1X
j=0

wj
1√
hN

hN−1X
i=0

εk−j−i

������ ≤ x+ bN
aN

�
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and

x+ bN
aN

= OOO

 s
log

N

hN

!
as N →∞.

Similar arguments show (2.1.25), hence the proof of Theorem 2.1.2 is complete.

Proof of Theorem 2.1.3

Note that we already know by Lemma 1.1.3 that

µ̂mN
− µ = OOOP

 
1

√
mN

!
as N →∞ (2.1.60)

and

σ̂2
mN

− σ2 = oooP

�
1

mϑ
N

�
as N →∞ (2.1.61)

for some ϑ > 0.
The proof of Theorem 2.1.3 is traced back to the proof of Theorem 2.1.1, but since

the training period mN does not coincide with the window size hN , we need some
preliminaries. We define

Ãk,N =
k−1X
j=0

wjB̃k−j,N for all k = 1, 2, . . . , N, (2.1.62)

where

B̃k,N =
1√
hN

hN−1X
i=0

(Xk−i+mN
− µ) for all k = 1, 2, . . . , N. (2.1.63)

It follows immediately by (2.1.27) and (2.1.28) that the results of Theorem 2.1.1 also
hold for the sequence {Ãk,N}k=1,...,N .

Lemma 2.1.6 Let the sequences {Ãk,N}k=1,...,N and {Âk,N}k=1,...,N be defined as in
(2.1.62) and (2.1.30), respectively. Then it holds that

aN

 
max

1≤k≤N

Ãk,N
σN

− max
1≤k≤N

Âk,N
σN

!
= oooP (1) as N →∞. (2.1.64)

Proof: By (2.1.60) it follows that

aN
σN

max
1≤k≤N

���Ãk,N − Âk,N
��� = aN

σN
max

1≤k≤N

������ k−1X
j=0

wj
1√
hN

hN−1X
i=0

(µ̂mN
− µ)

������
≤ aN
σN

È
hN | µ̂mN

− µ|

=
aN
σN

√
hN√
mN

OOOP (1) as N →∞

and since σN → σ (N →∞), (2.1.28) implies the lemma.
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�

Next, we replace σN by σ̂N .

Lemma 2.1.7 Let the sequence {Âk,N}k=1,...,N be defined as in (2.1.30). Furthermore,
σN and σ̂N are defined via (2.1.14) and (2.1.33), respectively. Then it holds that

aN

 
max

1≤k≤N

Âk,N
σN

− max
1≤k≤N

Âk,N
σ̂N

!
= oooP (1) as N →∞. (2.1.65)

Proof: Since Theorem 2.1.1 together with Lemma 2.1.6 implies

max
1≤k≤N

Âk,N
σN

= OOOP

 s
log

N

hN

!
as N →∞

and (2.1.61) gives

σN
σ̂N

= 1 + oooP

�
1

mϑ
N

�
as N →∞, for some ϑ > 0,

we get

aN
Âk,N
σ̂N

= aN
Âk,N
σN

+ oooP

�
1

mϑ
N

log
N

hN

�
as N →∞,

uniformly in k = 1, 2, . . . , N . The lemma now follows by (2.1.4) and (2.1.28).

�

Obviously, Theorem 2.1.3 now follows on combining Lemma 2.1.6 and Lemma 2.1.7.

Proof of Theorem 2.1.4

The proof of Theorem 2.1.4 follows by the same proof steps as Theorem 2.1.2, hence we
omit the details. We only mention that (2.1.61) implies

√
hN M
σ̂N

=

√
hN M
σN

+ oooP

 √
hN
mϑ
N

!
as N →∞.

and
√
hN
mϑ
N

= OOO
�
h

1/2−ε
N

�
as N →∞ for some ε > 0.



Chapter 3

Control charts based on
polynomially weighted moving
averages

Following the idea of exponential smoothing, in this chapter we introduce a control chart
based on polynomially weighted moving averages (PWMA), which allows for a flexible
adjustment of the weights that are assigned to recent observations.

We first consider the PWMA-chart for a closed-end setting and then extend the
results to an open time horizon. To this end we derive the asymptotic boundary crossing
probabilities of the Wiener process for a new class of boundary functions.

3.1 Closed-end control charts

3.1.1 Model assumptions for known µ and σ

Let {εi}i=1,2,... be a sequence of real-valued random variables on some probability space
(Ω,A, P ) with

E εi = 0 and Var εi = σ2 > 0 for all i = 1, 2, . . . (3.1.1)

We assume that there exists a Wiener process {W (t), t ≥ 0} satisfying

sup
1≤k<∞

1

k1/ν

����� kX
i=1

εi − σW (k)

����� <∞ a.s. (3.1.2)

for some ν > 2.
We are interested in monitoring a discrete-time stochastic process {Xi}i=1,...,N , which

is assumed to follow the model

Xi =

8><>:µ+ εi : 1 ≤ i ≤ k∗,

µ+ M + εi : k∗ < i ≤ N,
(3.1.3)

41
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where µ is the in-control mean, k∗ is the unknown time of a possible change and M is
the size of the level shift.

The hypotheses which are tested sequentially can be stated as

H0 : k∗ = N versus H1 : k∗ < N, M> 0 (one-sided alternative), (3.1.4)

or

H0 : k∗ = N versus H2 : k∗ < N, M 6= 0 (two-sided alternative). (3.1.5)

3.1.2 Monitoring procedures for known µ and σ

Let q be a monomial of degree d ∈ N0. If we define

pj,k = q
�
j

k

�
=
�
j

k

�d
for all j = 0, 1, . . . , k, k = 1, 2, . . . (3.1.6)

and

p(x, t) = q

�
x

t

�
=

�
x

t

�d
for all 0 ≤ x ≤ t, t > 0, (3.1.7)

the sequence of detectors is given by

Pk =
kX
j=1

pj,k(Xj − µ), k = 1 . . . , N. (3.1.8)

Remark 3.1.1 The proofs show that any function f(x) = xγ, γ ≥ 0, x ≥ 0 may be used
to define the weights. Monomials are chosen with regard to an extension of the model
to wider classes of polynomials.

The variances of the detectors can be conveniently approximated by

σ2
t = σ2

Z t

0
p2(x, t)dx = σ2

Z t

0

�x
t

�2d

dx =
σ2

2d+ 1
t, t ≥ 0. (3.1.9)

If we test the null hypotheses versus the one-sided alternative (α ∈]0, 1[ ), we stop
monitoring at min{τ1, N}, where

τ1 = τ1(α,N) = inf{1 ≤ k ≤ N : Pk > c1(α,N)σk} (3.1.10)

and reject H0, if τ1 ≤ N (inf ∅ = ∞). If the alternative is two-sided, we replace τ1 by
τ2, where

τ2 = τ2(α,N) = inf{1 ≤ k ≤ N : |Pk| > c2(α,N)σk}. (3.1.11)
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The critical constants c1(α,N) and c2(α,N) are given by

c1(α,N) =
q1(1− α) + bN

aN
and c2(α,N) =

q2(1− α) + bN
aN

, (3.1.12)

where aN and bN are defined in (3.1.16) and (3.1.17) below. Moreover,

q1(1− α) = − log(− log(1− α)) and q2(1− α) = − log
�
−1

2
log(1− α)

�
. (3.1.13)

The choice of the critical constants is well-founded, since the following theorem
implies that the false alarm rate of the procedures converges to α as N →∞.

Theorem 3.1.1 Let the sequence {Pk}k=1,...,N be defined as in (3.1.8). The sequence
{σk}k=1,...,N is defined via (3.1.9). Then, it holds under H0 and for all real x that

lim
N→∞

P
�
aN max

1≤k≤N

Pk
σk

− bN ≤ x
�

= exp
�
−e−x

�
(3.1.14)

and

lim
N→∞

P

�
aN max

1≤k≤N

|Pk|
σk

− bN ≤ x

�
= exp

�
−2e−x

�
, (3.1.15)

where

aN =
�
2 log logN2d+1

�1/2
(3.1.16)

and

bN = 2 log logN2d+1 +
1

2
log log logN2d+1 − 1

2
log π. (3.1.17)

Furthermore, the procedures have asymptotic power one, if the change is not located
too close to the end of the monitored period N .

Theorem 3.1.2 Let the sequence {Pk}k=1,...,N and {σk}k=1,...,N be defined as in Theorem
3.1.1. If k∗ = k∗(N) ≤ N −Nρ, where 1/2 < ρ < 1, then, it holds under H1 and for all
real x that

lim
N→∞

P
�
aN max

1≤k≤N

Pk
σk

− bN > x
�

= 1 (3.1.18)

and under H2

lim
N→∞

P

�
aN max

1≤k≤N

|Pk|
σk

− bN > x

�
= 1, (3.1.19)

where aN and bN are chosen as in (3.1.16) and (3.1.17), respectively.
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3.1.3 Model assumptions for unknown µ and σ

Suppose that (3.1.1) holds. As in the previous chapters, the estimators for the in-
control parameters are based on a historical data set (training period) of size m, which
is assumed to be homogeneous.

Monitoring starts after the training period and the length N of the monitoring period
depends on m as follows

N ≥ cm for some c > 1 and N ' mλ (m→∞) for some λ ≥ 1. (3.1.20)

Instead of (3.1.2), we now claim that there exist two sequences of Wiener processes
{W1,m(t), t ≥ 0}m=1,2,... and {W2,m(t), t ≥ 0}m=1,2,... satisfying

sup
1≤k<∞

1

k1/ν

����� kX
i=1

εm+i − σW1,m(k)

����� = OOOP (1) as m→∞ (3.1.21)

and

mX
i=1

εi − σW2,m(m) = OOOP (m1/ν) as m→∞, (3.1.22)

respectively. We mention that, for fixed m, it is not required that {W1,m(t), t ≥ 0} and
{W2,m(t), t ≥ 0} are independent.

The process {Xi}i=1,...,m+N is modeled as

Xi =

8><>:µ+ εi : 1 ≤ i ≤ m+ k∗,

µ+ M + εi : m+ k∗ < i ≤ m+N
(3.1.23)

and we are interested in testing

H0 : k∗ = N versus H1 : 0 ≤ k∗ < N, M> 0 (one-sided alternative), (3.1.24)

or

H0 : k∗ = N versus H2 : 0 ≤ k∗ < N, M 6= 0 (two-sided alternative). (3.1.25)

3.1.4 Monitoring procedures for unknown µ and σ

Replacing µ by the estimator

µ̂m =
1

m

mX
j=1

Xj, m = 1, 2, . . . (3.1.26)
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yields the sequence of detectors

P̂m,k =
kX
j=1

pj,k(Xm+j− µ̂m) =
kX
j=1

pj,kεm+j−
Pk
j=1 pj,k

m

mX
i=1

εi, k = 1, . . . , N. (3.1.27)

The proof of Lemma 1.1.3, together with (3.1.20), shows that there exists an estimator
σ̂m for σ, which is based on the observations that are obtained within the training period
and satisfies

σ̂m − σ = oooP

�
1

mϑ

�
as m→∞ for some ϑ > 0. (3.1.28)

With

gc(m, k) =
√
m

s�
1

2d+ 1

k

m

��
1 +

2d+ 1

(d+ 1)2

k

m

�
k = 1, . . . , N (3.1.29)

(c stands for ’closed-end’),we define

σ̂m,k = σ̂m
√
m

s�
1

2d+ 1

k

m

��
1 +

2d+ 1

(d+ 1)2

k

m

�
, k = 1, . . . , N. (3.1.30)

Depending on the alternatives, the stopping times are

τ̂1 = τ̂1(α,m) = inf{1 ≤ k ≤ N : P̂m,k > ĉ1(α,m)σ̂m,k} (3.1.31)

and

τ̂2 = τ̂2(α,m) = inf{1 ≤ k ≤ N : |P̂m,k| > ĉ2(α,m)σ̂m,k}, (3.1.32)

where ĉ1(α,m) and ĉ2(α,m) are given by

ĉ1(α,m) =
q1(1− α) + bm

am
and ĉ2(α,m) =

q2(1− α) + bm
am

. (3.1.33)

The quantiles q1 and q2 are chosen as in (3.1.13) and the definition of am and bm is given
in (3.1.36) and (3.1.37) below.

As in case of known parameters, the false alarm rate of the procedures is asymptoti-
cally α (m→∞) and the asymptotic power is 1, if the change occurs not too late. This
can be seen by the following two theorems.
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Theorem 3.1.3 Let the sequences {P̂m,k}k=1,...,N and {σ̂m,k}k=1,...,N be defined as in
(3.1.27) and (3.1.30), respectively. Then, it holds under H0 and for all real x that

lim
N→∞

P

 
am max

1≤k≤N

P̂k
σ̂m,k

− bm ≤ x

!
= exp

�
−e−x

�
(3.1.34)

and

lim
N→∞

P

 
am max

1≤k≤N

|P̂k|
σ̂m,k

− bm ≤ x

!
= exp

�
−2e−x

�
, (3.1.35)

where

am =
�
2 log logm2d+1

�1/2
(3.1.36)

and

bm = 2 log logm2d+1 +
1

2
log log logm2d+1 − 1

2
log π. (3.1.37)

Theorem 3.1.4 Let the sequences {P̂m,k}k=1,...,N and {σ̂m,k}k=1,...,N be defined as in
Theorem 3.1.3. If k∗ = k∗(N) ≤ N − N%, where 1 − (1/2λ) < % < 1 and λ is given in
(3.1.20), then, under H1 for all real x holds

lim
m→∞

P

 
am max

1≤k≤N

P̂m,k
σ̂m,k

− bm > x

!
= 1 (3.1.38)

and under H2

lim
m→∞

P

 
am max

1≤k≤N

|P̂m,k|
σ̂m,k

− bm > x

!
= 1, (3.1.39)

where am and bm are chosen as in (3.1.36) and (3.1.37), respectively.

3.1.5 Simulations and discussion

We now investigate the finite sample properties of the PWMA-chart in a simulation
study.

We focus on the one-sided stopping rule based on stopping time τ̂1 and the simu-
lation is carried out for the symmetric Pareto(5.1) variables, which are specified in the
simulation part of Chapter 1. As mentioned in Remark 3.1.1 the degree d has not to be
integer-valued and we take into account d = 0.0, 0.5, 1.0, 1.5, 2.0.

Since we are also interested in the effect of the curved boundary functions on the
delay time (i.e. τ̂1 − k∗), we consider structural breaks in k∗ = 0 and k∗ = N/2, where
N = 1000 and M= 1. The empirical delay times are described by the associated .25−,
.5− and .75− quantiles and stated together with the empirical power.

All values in the following tables are based on 5, 000 replications and the nominal
size has been chosen as α = 0.05.
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Empirical Sizes

innovations: symmetrical Pareto(5.1), α = 0.05

m N d = 0.0 d = 0.5 d = 1.0 d = 1.5 d = 2.0

10

100 0.0734 0.0836 0.1068 0.1148 0.1420
500 0.0704 0.0880 0.1056 0.1254 0.1376
1000 0.0748 0.0874 0.1104 0.1264 0.1394
2500 0.0710 0.0858 0.1018 0.1166 0.1424
5000 0.0748 0.0866 0.1086 0.1274 0.1386

50

100 0.0410 0.0472 0.0538 0.0712 0.0748
500 0.0458 0.0490 0.0574 0.0646 0.0778
1000 0.0390 0.0510 0.0612 0.0736 0.0796
2500 0.0426 0.0492 0.0560 0.0694 0.0816
5000 0.0412 0.0420 0.0606 0.0686 0.0810

100

100 0.0324 0.0336 0.0484 0.0624 0.0684
500 0.0292 0.0390 0.0492 0.0606 0.0660
1000 0.0364 0.0382 0.0494 0.0586 0.0702
2500 0.0324 0.0392 0.0502 0.0546 0.0666
5000 0.0356 0.0406 0.0512 0.0592 0.0710

250

100 0.0264 0.0314 0.0400 0.0466 0.0584
500 0.0286 0.0322 0.0414 0.0500 0.0614
1000 0.0354 0.0308 0.0426 0.0514 0.0616
2500 0.0358 0.0366 0.0422 0.0524 0.0628
5000 0.0368 0.0382 0.0426 0.0482 0.0680

500

100 0.0300 0.0320 0.0404 0.0502 0.0584
500 0.0240 0.0300 0.0412 0.0532 0.0576
1000 0.0338 0.0360 0.0398 0.0496 0.0586
2500 0.0314 0.0344 0.0376 0.0476 0.0566
5000 0.0328 0.0332 0.0392 0.0492 0.0596

Table 3.1: Empirical sizes for stopping time τ̂1
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Empirical Power

innovations: symmetrical Pareto(5.1), α = 0.05

m N d Q.25 Q.50 Q.75 power

10 1000

0.0 4 11 1000 0.7462
0.5 3 15 1000 0.6656
1.0 3 18 1000 0.6292
1.0 2 21 1000 0.6070
2.0 2 26 1000 0.6198

50 1000

0.0 6 10 19 0.9902
0.5 7 14 29 0.9776
1.0 7 18 39 0.9664
1.5 8 22 51 0.9564
2.0 6 23 59 0.9536

100 1000

0.0 6 10 16 0.9980
0.5 8 15 24 0.9990
1.0 9 19 32 0.9970
1.5 9 21 40 0.9956
2.0 9 25 46 0.9952

250 1000

0.0 7 11 16 1
0.5 9 15 23 1
1.0 11 19 29 1
1.5 12 23 37 1
2.0 11 26 42 1

500 1000

0.0 7 11 15 1
0.5 10 16 22 1
1.0 12 19 28 1
1.5 13 24 36 1
2.0 14 28 41 1

Table 3.2: Empirical power for stopping time τ̂1, k
∗ = 0
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innovations: symmetrical Pareto(5.1), α = 0.05

m N d Q.25 Q.50 Q.75 power

10 1000

0.0 458 1000 1000 0.2674
0.5 447 1000 1000 0.2686
1.0 359 1000 1000 0.3092
1.0 309 1000 1000 0.3342
2.0 240 1000 1000 0.3744

50 1000

0.0 229 370 1000 0.6674
0.5 205 317 1000 0.7404
1.0 167 263 428 0.8034
1.5 147 228 371 0.8364
2.0 127 197 335 0.8542

100 1000

0.0 166 239 342 0.9136
0.5 145 204 281 0.9536
1.0 123 171 237 0.9724
1.5 109 151 206 0.9784
2.0 94 129 180 0.9830

250 1000

0.0 113 154 202 0.9974
0.5 99 131 166 0.9988
1.0 87 113 142 0.9990
1.5 76 98 124 0.9994
2.0 68 91 113 0.9996

500 1000

0.0 91 122 153 1
0.5 81 105 129 1
1.0 72 91 111 1
1.5 65 82 99 1
2.0 59 74 90 1

Table 3.3: Empirical power for stopping time τ̂1, k
∗ = 500

Discussion

In accordance with Lemma 3.1.7, Table 3.1 shows that most of the false alarms are given
immediately after the training period. The empirical sizes increase with the degree d,
however, for d = 0 and m ≥ 50 they are always below the nominal size. Hence, we can
adjust the test to a given nominal size quite accurately by the degree d. Note that for
d = 0.0 we obtain a CUSUM-type detector.
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The simulations under the alternative show that the performance of the test does
not only depend on the degree d, but also on the location of the change-point k∗ (for
fixed d). While in case of an early change d = 0 yields the highest empirical power and
smallest delay times, in case of a late change the degree should be chosen as high as
possible. Tables 3.2 and 3.3 also show that the empirical power increases with the size
of the training period.

Summarizing the results, we see that the PWMA-chart provides a flexible tool for
change point-analysis, especially for the detection of late changes.

3.1.6 Proofs

In the proofs, sums of the innovations will also be denoted by S(k) =
Pk
i=1 εi.

We mention that in case of estimated parameters we are dealing with triangular
schemes, however, this will be only pointed out if needed.

Proof of Theorem 3.1.1

We define the sequence {Qk}k=1,...,N by

Qk = σ
kX
j=1

pj,k(W (j)−W (j − 1)) for all k = 1, . . . , N, (3.1.40)

where {W (t), t ≥ 0} is the approximating Wiener process given in (3.1.2).

Lemma 3.1.1 Let the sequences {Pk}k=1,...,N and {Qk}k=1,...,N be defined as in (3.1.8)
and (3.1.40), respectively. If n is a non-decreasing, integer-valued function of N with
1 ≤ n ≤ N , then it holds that

max
n<k≤N

Pk
σk

− max
n<k≤N

Qk

σk
= OOOP

�
1

n1/2−1/ν

�
as N →∞. (3.1.41)

Proof: For all k = 1, 2, . . . we define the sequence {dj,k, 1 ≤ j ≤ k} by

dj,k = pj,k − pj−1,k, j = 1, 2, . . .

and reformulate the processes {Pk}k=1,...,N and {Qk}k=1,...,N as

Pk =
kX
j=1

dj,k (S(k)− S(j − 1)) for all k = 1, . . . , N (3.1.42)

and

Qk = σ
kX
j=1

dj,k (W (k)−W (j − 1)) for all k = 1, . . . , N. (3.1.43)
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Then

max
n<k≤N

1

σk
|Pk −Qk| ≤ max

n<k≤N

1

σk

kX
j=1

dj,k (|S(k)− σW (k)|+ |S(j − 1)− σW (j − 1)|)

≤ 2 max
n<k≤N

kX
j=1

dj,k max
n≤k≤N

1

σk
|S(k)− σW (k)|

= 2 max
n≤k≤N

1

σk
|S(k)− σW (k)|

and the Lemma follows by (3.1.9) and (3.1.2).

�

The next step is to approximate the sequence {Qk}k=1,...,N by the continuous-time
process {U(t)}t≥1 defined as

U(t) = σ
Z t

0
p (x, t) dW (x) = σ

Z t

0

�x
t

�d
dW (x) for all t ≥ 1. (3.1.44)

Lemma 3.1.2 Let the sequence {Qk}k=1,...,N and the process {U(t)}t≥1 be defined as in
(3.1.40) and (3.1.44), respectively. If t̃ is a non-decreasing function of N with 1 ≤ t̃ ≤ N ,
then

sup
t̃≤t≤N

U(t)

σt
− sup

t̃≤t≤N

Qbtc

σbtc
= OOOP

 �
logN

t̃

�1/2
!

as N →∞. (3.1.45)

Proof: Integration by parts yields for all t ≥ 1

1

σ
U(t) = W (t)−

Z t

0
p′(x, t)W (x) dx

= W (t)−
btcX
j=1

Z j

j−1
p′(x, t)W (x) dx−

Z t

btc
p′(x, t)W (x) dx.

Taking into account (3.1.43) we get for all k = 1, 2, . . .

1

σ
Qk = W (k)−

kX
j=1

dj,kW (j − 1)

= W (k)−
kX
j=1

(pj,k − pj−1,k)W (j − 1)

= W (k)−
kX
j=1

Z j

j−1
p′(x, k)W (j − 1) dx.
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Hence, for all t ≥ 1 we have

1

σ

�
U(t)−Qbtc

�
= (W (t)−W (btc))−

btcX
j=1

Z j

j−1
p′(x, t)W (x)−p′(x, btc)W (j−1)dx

−
Z t

btc
p′(x, t)W (x) dx

and get

sup
t̃≤t≤N

�����U(t)

σt
−
Qbtc

σt

�����
≤ sup

t̃≤t≤N

√
2d+ 1√
t

|W (t)−W (btc)|

+ sup
t̃≤t≤N

√
2d+ 1√
t

btcX
j=1

Z j

j−1
|p′(x, t)W (x)− p′(x, btc)W (j − 1)| dx

+ sup
t̃≤t≤N

√
2d+ 1√
t

Z t

btc
|p′(x, t)W (x)| dx

=: I1(N) + I2(N) + I3(N). (3.1.46)

Theorem 1.2.1 of Csörgő and Révész (1981) immediately implies that

I1(N) = OOO

 √
logN

t̃1/2

!
a.s. as N →∞. (3.1.47)

For the second term we get

I2(N) ≤ sup
t̃≤t≤N

√
2d+ 1√
t

btcX
j=1

Z j

j−1
|p′(x, t)− p′(x, btc)||W (x)|dx

+ sup
t̃≤t≤N

√
2d+ 1√
t

btcX
j=1

Z j

j−1
|p′(x, btc)||W (x)−W (j − 1)|dx

=: J1(N) + J2(N).
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For J1(N) it holds that

J1(N)

≤ sup
t̃≤t≤N

√
2d+ 1√
t

sup
0≤s≤t

|W (s)|
btcX
j=1

Z j

j−1
p′(x, btc)− p′(x, t)dx

= sup
t̃≤t≤N

√
2d+ 1√
t

sup
0≤s≤t

|W (s)|
btcX
j=1

(p(j, btc)− p(j − 1, btc)− (p(j, t)− p(j − 1, t)))

= sup
t̃≤t≤N

√
2d+ 1√
t

sup
0≤s≤t

|W (s)|

�
1−

btcX
j=1

(p(j, t)− p(j − 1, t))

�
= sup

t̃≤t≤N

√
2d+ 1√
t

sup
0≤s≤t

|W (s)|
 

1−
�btc
t

�d!
= sup

t̃≤t≤N

√
2d+ 1√
t

sup
0≤s≤t

|W (s)| t
d − btcd

td
.

Since the law of the iterated logarithm implies

sup
0≤s≤t

|W (s)|√
t

= OOO(
È

log log t) a.s.,

while an application of the mean value theorem shows that

td − btcd

td
≤ dtd−1(t− btc)

td
≤ d

t
,

we obtain

J1(N) = OOO

 √
log logN

t̃

!
as N →∞. (3.1.48)

For J2(N) it holds that

J2(N) ≤ sup
t̃≤t≤N

√
2d+ 1√
t

sup
1≤j≤t

sup
0≤s≤1

|W (j − 1 + s)−W (j − 1)|

and again by Theorem 1.2.1 of Csörgő and Révész it follows that

J2(N) = OOO

 √
logN

t̃1/2

!
a.s. as N →∞. (3.1.49)

Combining (3.1.48) and (3.1.49) we derive

I2(N) = OOO

 √
logN

t̃1/2

!
a.s. as N →∞. (3.1.50)
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Now since

sup
1≤t<∞

sup
0≤s≤t

p′(x, t) = d,

Theorem 1.2.1 implies

I3(N) = OOO

 √
logN

t̃1/2

!
a.s. as N →∞. (3.1.51)

Consequently, (3.1.46)–(3.1.51) yield the intermediate result

sup
t̃≤t≤N

�����U(t)

σt
−
Qbtc

σt

����� = OOO

 √
logN

t̃1/2

!
a.s. as N →∞. (3.1.52)

Next, we have

sup
t̃≤t≤N

�����Qbtc

σbtc
−
Qbtc

σt

����� = sup
t̃≤t≤N

√
2d+ 1

btcX
j=1

pj,btc|W (j)−W (j − 1)|
√
t−

È
btc

√
t
È
btc

.

The law of the iterated logarithm for weighted sums (see Li and Tomkins, 1996) yields

lim sup
btc→∞

√
2d+ 1

Pbtc
j=1 pj,btc|W (j)−W (j − 1)|È

2btc log logbtc
= 1 a.s. as N →∞,

implying that

sup
t̃≤t≤N

�����Qbtc

σbtc
−
Qbtc

σt

����� = OOO

 �
log logN

t̃

�1/2
!

a.s. as N →∞ (3.1.53)

and the Lemma follows by (3.1.52) and (3.1.53).

�

Finally, we consider the extremes of the process {U(t)/σt, 1 ≤ t ≤ N}.

Lemma 3.1.3 Let the process {U(t)}t≥1 be defined as in (3.1.44). If {σt}t≥1 is defined
via (3.1.9), then for all real x it holds that

lim
N→∞

P

�
aN sup

1≤t≤N

U(t)

σt
− bN ≤ x

�
= exp

�
−e−x

�
as N →∞, (3.1.54)

where aN and bN are defined in (3.1.16) and (3.1.17).
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Proof: First, note that {U(t)/σt, 1 ≤ t ≤ N} is a standardized Gaussian process and
for all 0 ≤ s ≤ t ≤ N its autocorrelation function r(s, t) is given by

r(s, t) = Cov

�
U(s)

σs
,
U(t)

σt

�
=

2d+ 1√
st

Z s

0

�x
s

�d �x
t

�d
dx =

sd+1/2

td+1/2
.

Comparing the autocorrelation functions, we see that¨
U(t)

σt
, 1 ≤ t ≤ N

«
D
=

(
W (t2d+1)

td+1/2
, 1 ≤ t ≤ N

)
and since

sup
1≤t≤N

W (t2d+1)

td+1/2
= sup

1≤t≤N2d+1

W (t)√
t
,

the lemma follows by Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983).

�

We now put the results together. Lemma 3.1.1 shows that for any non-decreasing
1 ≤ n ≤ N it holds that�

max
1≤k≤n

Pk
σk

− max
1≤k≤n

Qk

σk

�
= OOOP (1) as N →∞.

If we chose n = ( logN)δ for some δ > 1, then, the law of the iterated logarithm for
weighted sums (see Li and Tomkins, 1996) shows that

max
1≤k≤(logN)δ

Qk

σk
= OOO (log log logN) a.s. as N →∞.

Hence, for any real x it follows that

lim
N→∞

P

�
aN max

1≤k≤(logN)δ

Qk

σk
− bN ≤ x

�
= 1 (3.1.55)

and also

lim
N→∞

P

�
aN max

1≤k≤(logN)δ

Pk
σk

− bN ≤ x

�
= 1. (3.1.56)

Assertion (3.1.14) now follows on combining the Lemmas 3.1.1, 3.1.2 and 3.1.3. The
statement in display (3.1.15) holds, since the above computations can be modified in
an obvious way to consider the minimum of {Pk}k=1,...,N and it is well known, that the
maxima and minima in the underlying extreme value asymptotic are independent (see
Bickel and Rosenblatt, 1973, Theorem A1.). Note that (3.1.15) can also be shown di-
rectly by applying an extended result of Darling and Erdős (1956) to the approximations
of {|Pk|/σk}k=1,...,N (cf. Horváth, Kokoszka and Steinebach, 2007).
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Proof of Theorem 3.1.2

We only show (3.1.18), since (3.1.19) follows by the same arguments. Defining the

sequence {P (0)
k }k=1,...,N as

P
(0)
k =

kX
j=1

pj,kεj, k = 1, . . . N, (3.1.57)

we get the decomposition

Pk = P
(0)
k +

kX
j=k∗+1

pj,k M, k = 1, . . . N.

For the drift it holds that

max
1≤k≤N

kX
j=k∗+1

pj,k M =
NX

j=k∗+1

pj,N M

≥ M
d+ 1

Nd+1 − k∗d+1

Nd

≥ M
d+ 1

Nd+1 − (N −Nρ)d+1

Nd

and elementary calculations show that

Nd+1 − (N −Nρ)d+1

Nd
∼ Nρ as N →∞. (3.1.58)

For all real x we have

P
�
aN max

1≤k≤N

Pk
σk

− bN ≤ x
�

≤ P

�
aN max

1≤k≤N

|P (0)
k |
σk

− bN ≤ x− aN

PN
j=k∗+1 pj,N M

σN
+ 2aN max

1≤k≤N

|P (0)
k |
σk

�
.

Theorem 3.1.1 implies

aN max
1≤k≤N

|P (0)
k |
σk

− bN = OOOP (1) as N →∞

and

aN max
1≤k≤N

|P (0)
k |
σk

= OOOP (a2
N) as N →∞,

hence (3.1.18) follows, sincePN
j=k∗+1 pj,N M

σN
& Nρ− 1

2 as N →∞

and ρ > 1/2.
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Proof of Theorem 3.1.3

First, we show that early time lags k do not contribute to the extreme value asymptotic.
For all k = 1, . . . , N we define

Q̂m,k = σ
kX
j=1

pj,k(W1,m(j)−W1,m(j − 1))−
Pk
j=1 pj,k

m
W2,m(m). (3.1.59)

Lemma 3.1.4 Let the sequences {P̂m,k}k=1,...,N and {Q̂m,k}k=1,...,N be defined as in (3.1.27)
and (3.1.59), respectively. If the sequence {gc(m, k)}k=1,...,N is chosen according to
(3.1.29), then for any δ > 0 it holds that

1

(log log logm)1/2
max

1≤k≤(logm)δ

P̂m,k
σgc(m, k)

= OOOP (1) as m→∞ (3.1.60)

and

1

(log log logm)1/2
max

1≤k≤(logm)δ

Q̂m,k

σgc(m, k)
= OOOP (1) as m→∞. (3.1.61)

Proof: We have

max
1≤k≤(logm)δ

Q̂m,k

σgc(m, k)
≤ max

1≤k≤(logm)δ

1

gc(m, k)

kX
j=1

pj,k(W1,m(j)−W1,m(j − 1))

+ max
1≤k≤(logm)δ

1

gc(m, k)

Pk
j=1 pj,k

m
|W2,m(m)|

= I1(m) + I2(m).

Obviously,

σgc(m, k) ≥ σk for all k = 1, . . . , N and m = 1, 2, . . . ,

hence, the final considerations to the proof of Theorem 3.1.1 carry over to I1(m) and
we have

I1(m) = OOO (log log logm) a.s. as m→∞. (3.1.62)

Now let {W2(t), t ≥ 0} be a standard Wiener process and define D as

D =
2d+ 1

(d+ 1)2
. (3.1.63)

The distribution of W2,m(m)/
√
m does not depend on m, hence

max
1≤k≤(logm)δ

Pk
j=1 pj,k

1
m
|W2,m(m)|

gc(m, k)
D
= max

1≤k≤(logm)δ

Pk
j=1 pj,k

1
m
|W2(1)|�

1
2d+1

k
m

�
1 +D k

m

��1/2
= OOOP (1) max

1≤k≤(logm)δ

1
m

Pk
j=1 pj,k�

1
2d+1

k
m

�
1 +D k

m

��1/2
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as m→∞. Since

1

d+ 1
k =

Z k

0
p(x, k) dx ≤

kX
j=1

pj,k ≤
Z k

0
p(x, k) dx+ 1

it follows that

max
1≤k≤(logm)δ

1
m

Pk
j=1 pj,k�

1
2d+1

k
m

�
1 +D k

m

��1/2 ≤ max
1≤k≤(logm)δ

1
d+1

k
m

+ 1
m�

1
2d+1

k
m

�
1 +D k

m

��1/2
= max

1≤k≤(logm)δ

 
D k

m

1 +D k
m

!1/2

+OOO(1)

as m→∞, and we see that

max
1≤k≤(logm)δ

Pk
j=1 pj,k

1
m
|W2,m(m)|

gc(m, k)
= OOOP (1) as m→∞. (3.1.64)

Assertion (3.1.61) now follows from (3.1.62) and (3.1.64). Assertion (3.1.60) is an
immediate consequence of (3.1.61) and Lemma 3.1.5 below.

�

Next, we replace the observations by the corresponding increments of the approxi-
mating Wiener processes.

Lemma 3.1.5 Let the sequences {P̂m,k}k=1,...,N and {Q̂m,k}k=1,...,N be defined as in (3.1.27)
and (3.1.59), respectively. If {gc(m, k)}k=1,...,N is chosen according to (3.1.29) and n is
a non-decreasing, integer-valued function of m with 1 ≤ n ≤ N , then

max
n<k≤N

P̂m,k
σgc(m, k)

− max
n<k≤N

Q̂m,k

σgc(m, k)
= OOOP

�
1

n1/2−1/ν
+

1

m1/2−1/ν

�
as m→∞.

(3.1.65)

Proof: We have

max
n<k≤N

����� P̂m,k
σgc(m, k)

− Q̂m,k

σgc(m, k)

�����
≤ max

n<k≤N

1

σgc(m, k)

������ kXj=1

pj,k(εm+j − σ(W1,m(j)−W1,m(j − 1)))

������
+ max

n<k≤N

1

σgc(m, k)

�����Pk
j=1 pj,k

m

 
mX
i=1

εi − σW2,m(m)

!�����
=: I1(m) + I2(m).
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Since

σgc(m, k) ≥ σk for all k = 1, . . . , N and m = 1, 2, . . . ,

the same steps as in the proof of Lemma 3.1.1 show that

I1(m) = OOOP

�
1

n1/2−1/ν

�
as m→∞. (3.1.66)

Furthermore, (3.1.22) implies

1√
m

����� mX
i=1

εi − σW2,m(m)

����� = OOOP

�
1

m1/2−1/ν

�
as m→∞

and since the proof of Lemma 3.1.4 shows that

max
n<k≤N

Pk
j=1 pj,k

m

,
σ

s�
1

2d+ 1

k

m

��
1 +

2d+ 1

(d+ 1)2

k

m

�
= OOO(1) as m→∞,

we conclude that

I2(m) = OOOP

�
1

m1/2−1/ν

�
as m→∞. (3.1.67)

The lemma now follows by (3.1.66) and (3.1.67).

�

The next result is the counterpart of Lemma 3.1.2.

Lemma 3.1.6 Let ñ and Ñ be non-decreasing functions of m with 1 ≤ ñ ≤ Ñ ≤ N . If
{gc(m, k)}k=1,...,N is chosen according to (3.1.29), then

max
ñ≤btc≤Ñ

Pbtc
j=1 pj,btc(W1,m(j)−W1,m(j − 1))

gc(m, btc)

− max
ñ≤t≤Ñ

R t
0 p(x, t) dW1,m(x)

gc(m, t)
= OOOP

�s
log Ñ

ñ

�
as m→∞ (3.1.68)

and

max
ñ≤t≤Ñ

R t
0 p(x, t) dW1,m(x)

gc(m, t)
D
= max

ñ≤t≤Ñ

1√
2d+ 1

1
td
W1(t

2d+1)

gc(m, t)
, (3.1.69)

where {W1(t), t ≥ 0} denotes a standard Wiener process.
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Proof: Assertion (3.1.68) follows similar to the proof of Lemma 3.1.2, since

σgc(m, t) ≥ σt for all t ≥ 1 and m = 1, 2, . . .

and

1

gc(m, btc)
− 1

gc(m, t)
= OOO

�
1

t

�
as t→∞,

uniformly in m = 1, 2, . . . , where the last equation is implied by

1

gc(m, btc)
− 1

gc(m, t)
=
√

2d+ 1

r
t
�
1 +D t

m

�
−
É
btc

�
1 +D btc

m

�r
t
�
1 +D t

m

�É
btc

�
1 +D btc

m

�
and the fact that the derivative of the function

f(t) =

Ê
t
�
1 +D

t

m

�
, t ≥ 1

is uniformly bounded for all m = 1, 2, . . . Note that we are dealing with a triangular
array, however, the result of Lemma 3.1.2 carries over since Theorem 1.2.1 of Csörgő
and Révész (1981) holds almost surely.

Assertion (3.1.69) can be seen by comparing the covariances of�Z t

0
p(x, t) dW1,m(x), t ≥ 1

�
and

(√
2d+ 1

td
W1(t

2d+1), t ≥ 1

)
.

�

Lemma 3.1.7 Let the sequence {Q̂m,k}k=1,...,N be defined as in (3.1.59). If we choose
{gc(m, k)}k=1,...,N according to (3.1.29), then for any constant c > 0 with cm ≤ N it
holds that

1

(2 log log logm)1/2
max

cm/logm≤k≤N

Q̂m,k

σgc(m, k)
= OOOP (1) as m→∞. (3.1.70)

Proof: We have

max
cm/logm≤k≤N

Q̂m,k

σgc(m, k)
≤ max

cm/logm≤k≤N

1

gc(m, k)

kX
j=1

pj,k(W1,m(j)−W1,m(j − 1))

+ max
cm/logm≤k≤N

1

gc(m, k)

Pk
j=1 pj,k

m
|W2,m(m)|

=: I1(m) + I2(m).



3.1. CLOSED-END CONTROL CHARTS 61

Lemma 3.1.6 and (3.1.20) show that instead of I1(m) we can consider

max
cm/ logm≤t≤N

1
td
W1(t

2d+1)

m1/2
�
t
m

�1/2 �
1 +D t

m

�1/2 .
To this end, we split up the domain into cm/ logm ≤ k ≤ cm and cm ≤ k ≤ N .

The rescaling property of the Wiener process yields

max
cm/ logm≤t≤cm

1
td
W1(t

2d+1)

m1/2
�
t
m

�1/2 �
1 +D t

m

�1/2 D
= max

c/ logm≤s≤c

W1(s
2d+1)

sd+1/2 (1 +Ds)1/2

and by the law of the iterated logarithm for s→ 0 we see that

max
c/ logm≤s≤c

W1(s
2d+1)

sd+1/2 (1 +Ds)1/2
≤ max

c/ logm≤s≤c

W1(s
2d+1)

sd+1/2

= OOO
�
(log log logm)1/2

�
a.s. as m→∞. (3.1.71)

For the upper part of the domain the rescaling property and the law of the iterated
logarithm for s→∞ yield

max
c≤s≤N/m

W1(s
2d+1)

sd+1/2 (1 +Ds)1/2
= OOO (1) a.s. as m→∞. (3.1.72)

Next, we consider I2(m). Let {W2(t), 0 ≤ t} be a standard Wiener process. The
distribution of I2(m) does not depend on m, hence, the rescaling property of the Wiener
process gives

max
cm/logm≤k≤N

Pk
j=1 pj,k

1
m
|W2,m(m)|

g(m, k)
D
= max

cm/logm≤k≤N

Pk
j=1 pj,k

1
m
|W2(1)|�

1
2d+1

k
m

�
1 +D k

m

��1/2
= OOOP (1) max

cm/logm≤k≤N

1
m

Pk
j=1 pj,k�

1
2d+1

k
m

�
1 +D k

m

��1/2
as m→∞. Since the proof of Lemma 3.1.4 implies that

max
cm/logm≤k≤N

1
m

Pk
j=1 pj,k�

1
2d+1

k
m

�
1 +D k

m

��1/2 = OOO(1) as m→∞,

we get

I2(m) = OOOP (1) as m→∞ (3.1.73)

and the Lemma follows by (3.1.71), (3.1.72) and (3.1.73).
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�

Lemma 3.1.8 Let the sequence {Q̂m,k}k=1,...,N be defined as in (3.1.59). If we choose
{gc(m, k)}k=1,...,N according to (3.1.29), then for all real x it holds that

lim
m→∞

P

 
am max

1≤k≤N

Q̂m,k

σgc(m, k)
− bm ≤ x

!
= exp

�
−e−x

�
, (3.1.74)

where am and bm are defined in (3.1.36) and (3.1.37), respectively.

Proof: Lemma 3.1.4 and Lemma 3.1.7 imply that (3.1.74) follows, if it holds that

lim
m→∞

P

 
am max

(logm)δ≤k≤cm/ logm

Q̂m,k

σg(m, k)
− bm ≤ x

!
= exp

�
−e−x

�
, (3.1.75)

for some δ > 0, and c > 0 chosen so that cm ≤ N .
Since

am max
(logm)δ≤k≤cm/ logm

Pk
j=1 pj,k

1
m
|W2,m(m)|

g(m, k)
= OOOP (1) am max

(logm)δ≤k≤cm/ logm

 
D k

m

1 +D k
m

!1/2

as m→∞ and

am max
(logm)δ≤k≤cm/ logm

 
D k

m

1 +D k
m

!1/2

≤ am max
(logm)δ≤k≤cm/ logm

�
D
k

m

�1/2

= OOO

 �
log logm

logm

�1/2
!

as m→∞,

it is sufficient to show that

lim
m→∞

P

 
am max

(logm)δ≤k≤cm/ logm

Pk
j=1 pj,k(W1,m(j)−W1,m(j − 1))

σg(m, k)
− bm ≤ x

!
= exp

�
−e−x

�
.

(3.1.76)

Using (3.1.68), it follows that

am max
(logm)δ≤k≤cm/ logm

Pk
j=1 pj,k(W1,m(j)−W1,m(j − 1))

σg(m, k)

− am max
(logm)δ≤t≤cm/ logm

R t
0 p(x, t)dW1,m(x)

σg(m, t)
= OOOP

 �
logm

(logm)δ

�1/2
!

as m→∞. Now if we choose δ > 1 and apply (3.1.69), we see that (3.1.76) is satisfied,
if

lim
m→∞

P

 
am max

(logm)δ≤t≤cm/ logm

1√
2d+ 1

1
td
W1(t

2d+1)

g(m, t)
− bm ≤ x

!
= exp

�
−e−x

�
(3.1.77)
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holds. To this end, we first show that

am max
(logm)δ≤t≤cm/ logm

1
td
W1(t

2d+1)

m1/2
�
t
m

�1/2 �
1 +D t

m

�1/2
− am max

(logm)δ≤t≤cm/ logm

1
td
W1(t

2d+1)

t1/2
= oooP (1) as m→∞. (3.1.78)

We have

am max
(logm)δ≤t≤cm/ logm

|W1(t
2d+1)−

�
1 +D t

m

�1/2
W1(t

2d+1)|

td+1/2
�
1 +D t

m

�1/2
= am max

(logm)δ≤t≤cm/ logm

|W1(t
2d+1)−

�
1 + D

2
√

1+D
t
m

+ ooo
�
t
m

��
W1(t

2d+1)|

td+1/2
�
1 +D t

m

�1/2
as m→∞. Since the law of the iterated logarithm implies

max
(logm)δ≤t≤cm/ logm

| t
m
W1(t

2d+1)|
td+1/2

�
1 +D t

m

�1/2 ≤ max
(logm)δ≤t≤cm/ logm

| t
m
W1(t

2d+1)|
td+1/2

= OOO

 
(log logm)1/2

logm

!
a.s. as m→∞,

we see that (3.1.78) holds.
Finally,

max
(logm)δ≤t≤cm/ logm

1
td
W1(t

2d+1)

t1/2
= sup

δ(2d+1) log logm≤t≤(2d+1) log(cm/ logm)

W1(e
t)

et/2

D
= sup

0≤t≤(2d+1) log(cm/(logm)1+δ)

W1(e
t)

et/2

so that Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983) yields

lim
m→∞

P

 
ãm sup

0≤t≤(2d+1) log(cm/(logm)1+δ)

W1(e
2t)

et
− b̃m ≤ x

!
= exp

�
−e−x

�
, (3.1.79)

where

ãm =

 
2 log log

�
cm

(logm)1+δ

�2d+1
!1/2

and

b̃m = 2 log log

�
cm

(logm)1+δ

�2d+1

+
1

2
log log log

�
cm

(logm)1+δ

�2d+1

− 1

2
log π.
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Since elementary calculations show that

ãm(ãm − am) = ooo(1) as m→∞

and

b̃m − bm = ooo(1) as m→∞,

the proof of the lemma is complete.

�

The first assertion of Theorem 3.1.3 now follows on combining the Lemmas 3.1.4–
3.1.8 and the fact that σ can be replaced by σ̂m (see Lemma 1.1.3). The second follows
as in case of known parameters.

Proof of Theorem 3.1.4

We only show (3.1.18). We define the sequence {P̂ (0)
m,k}k=1,...,N by

P̂
(0)
m,k =

kX
j=1

pj,kεj −
Pk
j=1 pj,k

m

mX
i=1

εi, k = 1, . . . , N. (3.1.80)

Obviously, it holds that

P̂m,k = P̂
(0)
m,k +

kX
j=k∗+1

pj,k M, k = 1, . . . , N

and we already know by the proof of Theorem 3.1.2 that

max
1≤k≤N

kX
j=k∗+1

pj,k M=
NX

k∗+1

pj,N M ' N% = mλ% as m→∞.

Furthermore,

gc(m,N) ' N

m1/2
= mλ−1/2 as m→∞

and since

1

σ̂m
− 1

σ
= oooP

�
1

mϑ

�
for some ϑ > 0,

it follows thatPN
k∗+1 pj,N M

σ̂m gc(m,N)
−
PN
k∗+1 pj,N M
σ gc(m,N)

= oooP
�
mλ(ρ−1)+1/2−ϑ� as m→∞.
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Now PN
k∗+1 pj,N M
σ gc(m,N)

' mλ(ρ−1)+1/2 as m→∞

and since we have assumed that

λ(%− 1) + 1/2 > 0,

assertion (3.1.18) follows by Theorem 3.1.3 and the same considerations as in the proof
of Theorem 3.1.2.
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3.2 Open-end control charts

Dealing now with infinite time horizons, a delicate point is the choice of adequate bound-
ary functions. Since we already know that the detectors {Pk}k=1,2,... follow a law of the
iterated logarithm for weighted sums (see Li and Tomkins, 1996), it is clear that in case
of known parameters any positive function G satisfying

lim sup
t→∞

√
t log log t

G(t)
= 0 (3.2.1)

yields non-trivial crossing probabilities. We have seen how adequate boundary functions
for the closed-end PWMA-chart can be derived by transforming boundary functions
for the Wiener process, hence, we first collect some results on the boundary crossing
probabilities of the Wiener process.

First, we mention that there are only a few examples of boundary functions for the
Wiener process, where the crossing probabilities are explicitly known and refer to Lerche
(1986) for an overview on this subject. The most popular examples are given by Robbins
and Siegmund (1970) who provided the following result

Example (Robbins, Siegmund, 1970) Denote by S(k) the partial sum of k i.i.d. random
variables having mean 0 and variance 1. Then

lim
m→∞

P

�
sup

1≤k<∞

|S(k)|È
(k +m)(a2 + log(1 + k/m))

≥ 1

�
= P

�
sup

0<t<∞

|W (t)|È
(1 + t)(a2 + log(1 + t))

≥ 1

�
= exp

�
−1

2
a2
�

(a > 0)

and

lim
m→∞

P

�
sup

1≤k<∞

S(k)È
(k +m) Θ−1(2 log (a/2) + log(1 + k/m))

≥ 1

�
= P

�
sup

0<t<∞

W (t)È
(1 + t) Θ−1(2 log (a/2) + log(1 + t))

≥ 1

�
=

1

2a
(a > 1/2),

where for all real x

Θ(x) = x2 + 2 log Φ(x)

and Φ denotes the standard normal distribution function.
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It is possible to derive boundary functions for the PWMA-detectors based on the
latter example (see Appendix C), however, the derived boundary function for the one-
sided alternative can only be computed by numerical methods. Hence, we consider in
this chapter an alternative approach that is based on the family of boundary functions
for the Wiener process, which is introduced in Appendix B.

3.2.1 Model assumptions for known µ and σ

We assume that (3.1.1)–(3.1.5) hold with N = ∞.

3.2.2 Monitoring procedures for known µ and σ

We define the sequence of detectors as

Pk =
kX
j=1

pj,k(Xj − µ), k = 1, 2, . . . , (3.2.2)

where the weights are chosen as in (3.1.6).

For all t0 ≥ 1 and t > 0 we choose g(t0, t) according to

g(t0, t) =
1√

2d+ 1

s
t log

�
t2d+1

t0
+ e

�
. (3.2.3)

If we test the null hypotheses versus the one-sided alternative (α ∈]0, 1[ ), we reject
H0 if τ1 <∞, where

τ1 = τ1(α, t0) = inf{1 ≤ k <∞ : Pk > σc1(α, t0)g(t0, k)}. (3.2.4)

If the alternative is two-sided we replace τ1 by τ2, where

τ2 = τ2(α, t0) = inf{1 ≤ k <∞ : |Pk| > σc2(α, t0)g(t0, k)}. (3.2.5)

The critical constants c1(α, t0) and c2(α, t0) are defined as

c1(α, t0) =
q1(1− α) + bt0

at0
and c2(α, t0) =

q2(1− α) + bt0
at0

, (3.2.6)

where at0 and bt0 are given in (3.2.9) and (3.2.10) below. The quantiles q1 and q2 are
chosen as in (3.1.13), according to the following theorem.
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Theorem 3.2.1 Let the sequence {Pk}k=1,2,... be defined as in (3.2.2). Furthermore, let
the sequence {g(t0, k)}k=1,2,... be defined via (3.2.3) for all t0 ≥ 1. Then, it holds under
the null hypothesis and for all real x that

lim
t0→∞

P

�
at0 sup

1≤k<∞

Pk
σg(t0, k)

− bt0 ≤ x

�
= exp

�
−e−x

�
(3.2.7)

and

lim
t0→∞

P

�
at0 sup

1≤k<∞

|Pk|
σg(t0, k)

− bt0 ≤ x

�
= exp

�
−2e−x

�
, (3.2.8)

where

at0 = (2 log log t0)
1/2 (3.2.9)

and

bt0 = 2 log log t0 +
1

2
log log log t0 −

1

2
log π. (3.2.10)

The procedures have asymptotic power one, as can be seen by the following theorem.

Theorem 3.2.2 Let the sequences {Pk}k=1,2,... and {g(t0, k)}k=1,2,... be defined as in The-
orem 3.2.1. Then, under H1 it holds that

lim
t0→∞

P

�
sup

1≤k<∞

Pk
σg(t0, k)

> c1(α, t0)

�
= 1 (3.2.11)

and under H2 we have

lim
t0→∞

P

�
sup

1≤k<∞

|Pk|
σg(t0, k)

> c2(α, t0)

�
= 1, (3.2.12)

where at0 and bt0 are defined in (3.2.9) and (3.2.10), respectively.

3.2.3 Model assumptions for unknown µ and σ

We assume that (3.1.1), (3.1.21) and (3.1.22) hold. The monitoring of the process
{Xi}i=1,2,... starts after a training period of size m and we suppose that

Xi =

8><>:µ+ εi : 1 ≤ i ≤ m+ k∗,

µ+ M + εi : m+ k∗ < i <∞,
(3.2.13)

where the parameters are denoted as in the closed end setting.
We want to test either

H0 : k∗ = ∞ versus H1 : 0 ≤ k∗ <∞, M> 0 (one-sided alternative), (3.2.14)

or

H0 : k∗ = ∞ versus H2 : 0 ≤ k∗ <∞, M 6= 0 (two-sided alternative). (3.2.15)
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3.2.4 Monitoring procedures for unknown µ and σ

For all m = 1, 2, . . . we define the sequence {P̂m,k}k=1,2,... as in (3.1.27) with N = ∞.
With

D =
2d+ 1

(d+ 1)2
(3.2.16)

we define for all m = 1, 2, . . . and t > 0

go(m, t) =

√
m√

2d+ 1

s
t

m

�
1 +D

t

m

�
log

�
t2d+1

m
+ e

�
. (3.2.17)

The stopping times are

τ̂1 = τ̂1(α,m) = inf{1 ≤ k <∞ : P̂m,k > ĉ1(α,m)σ̂m go(m, k)} (3.2.18)

and

τ̂2 = τ̂2(α,m) = inf{1 ≤ k <∞ : |P̂m,k| > ĉ2(α,m)σ̂m go(m, k)}, (3.2.19)

where we assume that σ̂m satisfies (3.1.28) and the critical constants ĉ1(α,m) and
ĉ2(α,m) are given by

ĉ1(α,m) =
q1(1− α) + bm

am
and ĉ2(α,m) =

q2(1− α) + bm
am

, (3.2.20)

with am as in (3.2.23) and bm as in (3.2.24) below. The quantiles q1 and q2 are chosen
as in (3.1.13), justified by the following theorem.

Theorem 3.2.3 Let the sequence {P̂m,k}k=1,2,... be defined as in (3.1.27) with N = ∞.
The sequence {go(m, k)}k=1,2,... is chosen as in (3.2.17) for all m = 1, 2, . . . Then, it
holds under the null hypothesis and for all real x that

lim
m→∞

P

 
am max

1≤k<∞

P̂m,k
σ̂m go(m, k)

− bm ≤ x

!
= exp

�
−e−x

�
(3.2.21)

and

lim
m→∞

P

 
am max

1≤k<∞

|P̂m,k|
σ̂m go(m, k)

− bm ≤ x

!
= exp

�
−2e−x

�
, (3.2.22)

where

am = (2 log logm)1/2 (3.2.23)

and

bm = 2 log logm+
1

2
log log logm− 1

2
log π. (3.2.24)
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As in case of known parameters the procedures have asymptotic power one.

Theorem 3.2.4 Let the sequences {P̂m,k}k=1,2,... and {go(m, k)}k=1,2,... be defined as in
Theorem 3.2.3. Then, under H1 it holds that

lim
m→∞

P

�
max

1≤k<∞

Pk
σ̂(m)go(m, k)

> ĉ1(α,m)

�
= 1 (3.2.25)

and under H2 we have

lim
m→∞

P

�
max

1≤k<∞

|Pk|
σ̂(m)go(m, k)

> ĉ2(α,m)

�
= 1, (3.2.26)

where am and bm are defined as in (3.2.23) and (3.2.24), respectively.

3.2.5 Proofs

Since

σgo(m, t) ≥ σgc(m, t) for all t ≥ 1 and m = 1, 2, . . . ,

the most parts of the following proofs are basically identical with the proofs for the
closed-end setting.

Proof of Theorem 3.2.1

We define the sequence {Qk}k=1,2,... as

Qk = σ
kX
j=1

pj,k(W (j)−W (j − 1)) for all k = 1, 2, . . . , (3.2.27)

where {W (t), t ≥ 0} is the approximating Wiener-process.

Lemma 3.2.1 Let the sequences {Pk}k=1,2,... and {Qk}k=1,2,... be defined as in (3.2.2)
and (3.2.27), respectively. Then for any δ ≥ 0 and all real x it holds that

lim
t0→∞

P

�
at0 max

1≤k≤(log t0)δ

Pk
σg(t0, k)

− bt0 ≤ x

�
= 1 (3.2.28)

and

lim
t0→∞

P

�
at0 max

1≤k≤(log t0)δ

Qk

σg(t0, k)
− bt0 ≤ x

�
= 1. (3.2.29)

Proof: The lemma follows by (3.1.55) and (3.1.56), since

σk ≤ σg(t0, k) for all k = 1, 2, . . . and t0 ≥ 1.
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�

Lemma 3.2.2 Let the sequences {Pk}k=1,2,... and {Qk}k=1,2,... be defined as in (3.2.2)
and (3.2.27), respectively. Then for any δ > 0 it holds that

sup
(log t0)δ≤k<∞

Pk
σg(t0, k)

− sup
(log t0)δ≤k<∞

Qk

σg(t0, k)
= OOOP

�
1

(log t0)δ(1/2−1/ν)

�
(3.2.30)

as t0 →∞.

Proof: As in the proof of Lemma 3.1.1 we derive

sup
(log t0)δ≤k<∞

|Pk −Qk|
σg(t0, k)

≤ 2 sup
(log t0)δ≤k<∞

|S(k)− σW (k)|
σg(t0, k)

,

where S(k), k = 1, 2, . . . denote the partial sums of the innovations. Now (3.1.2) implies

sup
(log t0)δ≤k<∞

|S(k)− σW (k)|
σg(t0, k)

= OOOP (1) sup
(log t0)δ≤k<∞

k1/ν

g(t0, k)
as t0 →∞

and since for all t0 ≥ 1 we have

sup
(log t0)δ≤k<∞

k1/ν

g(t0, k)
≤ sup

(log t0)δ≤k<∞

1√
2d+ 1

k1/ν

k1/2
,

the lemma follows as t0 →∞.

�

Lemma 3.2.3 Let the sequence {Qk}k=1,2,... be defined as in (3.2.27). Then

sup
t0≤k<∞

Qk

σg(t0, k)
= oooP (1) as t0 →∞. (3.2.31)

Proof: The law of the iterated logarithm for weighted sums (Li and Tomkins, 1996)
yields

sup
t0≤k<∞

Qk

σg(t0, k)
= OOO(1) sup

t0≤k<∞

√
k log log kq

k log
�
k2d+1

t0
+ e

� a.s. as t0 →∞.

and elementary calculations show that

max
t0≤k<∞

√
log log kq

log
�
k2d+1

t0
+ e

� =

√
log log t0q

log
�
t2d0 + e

� ,
implying the lemma as t0 →∞.
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�

Next, we replace {Qk}k=1,2,... by the continuous-time process {U(t)}t≥1 defined as

U(t) = σ
Z t

0
p (x, t) dW (x) = σ

Z t

0

�x
t

�d
dW (x), t ≥ 1. (3.2.32)

Lemma 3.2.4 Let the processes {Qk}k=1,2,... and {U(t)}1≤t<∞ be defined as in (3.2.27)
and (3.2.32), respectively. Then for all ε > 0 it holds that

sup
(log t0)1+ε≤t≤t0

U(t)

σg(t0, t)
− sup

(log t0)1+ε≤t≤t0

Qbtc

σg(t0, btc)
= OOOP

�
1

(log t0)ε/2

�
(3.2.33)

as t0 →∞.

Proof: Since

σt ≤ σg(t0, t) for all t ≥ 0 and t0 ≥ 1

and elementary calculations show that

1

g(t0, btc)
− 1

g(t0, t)
= OOO

�
1

t

�
as t→∞, uniformly in t0 ≥ 1,

the proof is just a repetition of the arguments used to show Lemma (3.1.2).

�

Lemma 3.2.5 Let the process {U(t)}t≥1 be defined as in (3.2.32). Then for all δ ≥ 0
it holds that

sup
1≤t≤(log t0)δ

U(t)

σg(t0, t)
= OOOP

�È
log log log t0

�
as t0 →∞. (3.2.34)

Proof: We already know that(√
2d+ 1

σ
√
t

U(t), 1 ≤ t <∞
)

D
=

(
W (t2d+1)

td+1/2
, 1 ≤ t <∞

)
, (3.2.35)

hence, we consider

sup
1≤t≤(log t0)δ

W (t2d+1)q
t2d+1 log

�
t2d+1

t0
+ e

� = sup
1≤t≤(log t0)δ(2d+1)

W (t)q
t log

�
t
t0

+ e
�

and the lemma follows by the law of the iterated logarithm as t0 →∞.

�
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Lemma 3.2.6 Let the process {U(t)}t≥1 be defined as in (3.2.32). Then

sup
t
1/(2d+1)
0 ≤t<∞

U(t)

σg(t0, t)
= OOOP (1) as t0 →∞. (3.2.36)

Proof: In view of (3.2.35) we can consider

sup
t
1/(2d+1)
0 ≤t<∞

W (t2d+1)q
t2d+1 log

�
t2d+1

t0
+ e

� = sup
t0≤t<∞

W (t)q
t log

�
t
t0

+ e
�

and Lemma B.1.1 completes the proof.

�

Lemma 3.2.7 If we define the process {U(t)}t≥1 as in (3.2.32), then it holds that

sup
(t0/ log t0)1/(2d+1)≤t≤t1/(2d+1)

0

U(t)

σg(t0, t)
= OOOP

�È
log log log t0

�
as t0 →∞. (3.2.37)

Proof: The same steps as in the preceding lemma yield

sup
(t0/ log t0)1/(2d+1)≤t≤t1/(2d+1)

0

U(t)

σg(t0, t)
D
= sup

t0/ log t0≤t≤t0

W (t)q
t log

�
t
t0

+ e
�

and Lemma B.1.2 shows that (3.2.37) holds.

�

In the next lemma we derive the limiting distribution of the extremes for the process
{U(t)/σg(t0, t)}t≥1.

Lemma 3.2.8 Let the process {U(t)}t≥1 be defined as in (3.2.32). Then, for any δ ≥ 0
and all real x, it holds that

lim
t0→∞

P

�
at0 sup

(log t0)δ≤t≤(t0/ log t0)1/(2d+1)

U(t)

σg(t0, t)
− bt0 ≤ x

�
= exp

�
−e−x

�
, (3.2.38)

where at0 and bt0 are defined in (3.2.9) and (3.2.10), respectively.

Proof: Taking into account Lemma 3.2.5, it suffices to show the case δ = 0. Applying
(3.2.35) we see that

sup
1≤t≤(t0/ log t0)1/(2d+1)

U(t)

σg(t0, t)
D
= sup

1≤t≤t0/ log t0

W (t)q
t log

�
t
t0

+ e
�

and Lemma B.1.3 together with Lemma B.1.4 yield (3.2.38).

�

Assertion (3.2.7) now follows on combining the Lemmas 3.2.1–3.2.8 and since the as-
ymptotic independence of maxima and minima carries over from the underlying extreme
value asymptotic (see Theorem B.1.1), we also obtain (3.2.8).
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Proof of Theorem 3.2.2

It suffices to show (3.2.11), since (3.2.12) follows by similar considerations.

If {P (0)
k }k=1,2,... denotes the extension of (3.1.57) to an open time horizon, we get the

decomposition

Pk = P
(0)
k +

kX
j=k∗+1

pj,k M, k = 1, 2, . . .

For any finite N > k∗ it holds that

P

�
max

1≤k<∞

Pk
σg(t0, k)

> c1(α, t0)

�
≥ P

�
max

1≤k≤N

Pk
σg(t0, k)

> c1(α, t0)

�
≥ P

�
max

1≤k≤N

Pk
j=k∗+1 pj,k M

σg(t0, k)
− max

1≤k≤N

|P (0)
k |

σg(t0, k)
> c1(α, t0)

�
≥ P

�PN
j=k∗+1 pj,N M

σg(t0, N)
− max

1≤k≤N

|P (0)
k |

σg(t0, k)
> c1(α, t0)

�
(3.2.39)

and we have

NX
j=k∗+1

pj,N M≥ M
d+ 1

Nd+1 − k∗d+1

Nd
.

If we choose N = bt0c, then it follows by the definition of g thatPbt0c
j=k∗+1 pj, M

σg(t0, bt0c)
& tρ0 for all ρ <

1

2
as t0 →∞. (3.2.40)

Now Theorem 3.2.1 implies

max
1≤k<∞

|P (0)
k |

σg(t0, k)
= OOOP

�È
log log t0

�
as t0 →∞ (3.2.41)

and from the definition of at0 and bt0 follows

c1(α, t0) '
È

log log t0 as t0 →∞. (3.2.42)

Hence, (3.2.11) follows by putting together (3.2.39)–(3.2.42).
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Proof of Theorem 3.2.3

Lemma 3.2.9 Let the sequences {P̂m,k}k=1,2,... and {Q̂m,k}k=1,2,... be defined as in (3.1.27)
and (3.1.59) with N = ∞. The sequence {go(m, k)}k=1,2,... is given by (3.2.17). If ñ and
is a non-decreasing functions of m with 1 ≤ ñ ≤ Ñ , where Ñ is either a non-decreasing
function of N , or Ñ = ∞. Then

max
ñ<k≤Ñ

P̂m,k
σgo(m, k)

− max
ñ<k≤Ñ

Q̂m,k

σgo(m, k)
= OOOP

�
1

ñ1/2−1/ν
+

1

m1/2−1/ν

�
as m→∞.

(3.2.43)

Proof: We have

max
ñ<k≤Ñ

P̂m,k
σgo(m, k)

− max
ñ<k≤Ñ

Q̂m,k

σgo(m, k)

≤ max
ñ<k≤Ñ

1

σgo(m, k)

������ kXj=1

pj,k(εm+j − σ(W1,m(j)−W1,m(j − 1)))

������
+ max

ñ<k≤Ñ

1

σgo(m, k)

�����Pk
j=1 pj,k

m

 
mX
i=1

εi − σW2,m(m)

!�����
=: I1(m) + I2(m).

Recalling the proofs of Lemma (3.1.1) and Lemma 3.1.5, we see that the results did not
depend on the upper bound of the domain for the maximum. Since furthermore

go(m, k) ≥ gc(m, k) for all k = 1, 2, . . . , m = 1, 2, . . . ,

the proofs can be modified in an obvious way to show the lemma.

�

Lemma 3.2.10 Let the sequences {P̂m,k}k=1,2,..., {Q̂m,k}k=1,2,... and {go(m, k)}k=1,2,... be
defined as in Lemma 3.2.9 . Then for all real x and δ > 0 it holds that

lim
m→∞

P

 
am max

1≤k≤(logm)δ

P̂m,k
σgo(m, k)

− bm ≤ x

!
= 1 (3.2.44)

and

lim
m→∞

P

 
am max

1≤k≤(logm)δ

Q̂m,k

σgo(m, k)
− bm ≤ x

!
= 1. (3.2.45)

Proof: The lemma obviously follows by the proof of Lemma 3.1.4, since

go(m, k) ≥ gc(m, k) for all k = 1, 2, . . . and m = 1, 2, . . .
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�

Lemma 3.2.11 Let the sequences {Q̂m,k}k=1,2,... and {go(m, k)}k=1,2,... be defined as in
Lemma 3.2.9 . Then

max
m≤k<∞

Q̂m,k

σgo(m, k)
= OOOP (1) as m→∞. (3.2.46)

Proof: We have

max
m≤k<∞

Q̂m,k

σgo(m, k)

≤ max
m≤k<∞

1

σgo(m, k)

������ kXj=1

pj,k(σ(W1,m(j)−W1,m(j − 1)))

������
+ max

m≤k<∞

1

σgo(m, k)

�����Pk
j=1 pj,k

m
σW2,m(m)

�����
=: I1(m) + I2(m). (3.2.47)

Since

go(m, k) ≥ g(m, k) for all k = 1, 2, . . . , m = 1, 2, . . . ,

where g(m, k) is defined in (3.2.3), Lemma 3.2.3 implies that

I1(m) = oooP (1) as m→∞. (3.2.48)

For the second term we get

I2(m) = OOOP (1) max
m≤k<∞

1√
m

Pk
j=1 pj,k

go(m, k)
as m→∞

and, since for all k = 1, 2, . . .

kX
j=1

pj,k ≤
1

d+ 1
k + 1,

we have

max
m≤k<∞

1√
m

Pk
j=1 pj,k

go(m, k)
≤ max

m≤k<∞

√
D k

m
+

√
2d+1
mq

k
m

�
1 +D k

m

�
log

�
k2d+1

m
+ e

� .
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Now

max
m≤k<∞

√
D k

mq
k
m

�
1 +D k

m

�
log

�
k2d+1

m
+ e
� ≤ max

m≤k<∞

1q
log

�
k2d+1

m
+ e
�

=
1È

log (m2d + e)

= ooo(1) as m→∞,

hence, also

max
m≤k<∞

√
2d+1
mq

k
m

�
1 +D k

m

�
log

�
k2d+1

m
+ e

� = ooo(1) as m→∞,

so that

I2(m) = oooP (1) as m→∞ (3.2.49)

and the lemma follows by (3.2.47), (3.2.48) and (3.2.49).

�

Lemma 3.2.12 Let ñ and Ñ be non-decreasing functions of m with 1 ≤ ñ ≤ Ñ < ∞.
Then

max
ñ≤btc≤Ñ

Pbtc
j=1 pj,btc(W1,m(j)−W1,m(j − 1))

go(m, btc)

− max
ñ≤t≤Ñ

R t
0 p (x, t) dW1,m(x)

go(m, t)
= OOOP

�s
log Ñ

ñ

�
as m→∞ (3.2.50)

and

max
ñ≤t≤Ñ

R t
0 p(x, t)dW1,m(x)

go(m, t)
D
= max

ñ≤t≤Ñ

1√
2d+ 1

1
td
W1(t

2d+1)

go(m, t)
, (3.2.51)

where {W1(t), 0 ≤ t} is a standard Wiener-process.

Proof: Assertion (3.2.50) follows by the same computations as Lemma 3.1.2, since

σgo(m, t) ≥ σt for all t ≥ 1 and m = 1, 2, . . .

and elementary calculations show that

1

go(m, btc)
− 1

go(m, t)
= OOO

�
1

t

�
as t→∞, uniformly in m ∈ N.

Assertion (3.2.51) follows by comparing the covariances of�Z t

0
p (x, t) dW1,m(x), t ≥ 1

�
and

(
W1(t

2d+1)

td
√

2d+ 1
, t ≥ 1

)
.
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�

Lemma 3.2.13 Let the sequences {Q̂m,k}k=1,2,... and {go(m, k)}k=1,2,... be defined as in
Lemma 3.2.9 . Then

max
(m/ logm)1/(2d+1)≤k≤m

Q̂m,k

σgo(m, k)
= OOOP

�È
2 log log logm

�
as m→∞ (3.2.52)

Proof: We have

max
(m/ logm)1/(2d+1)≤k≤m

Q̂m,k

σgo(m, k)

≤ max
(m/ logm)1/(2d+1)≤k≤m

1

σgo(m, k)

������ kXj=1

pj,k(σ(W1,m(j)−W1,m(j − 1)))

������
+ max

(m/ logm)1/(2d+1)≤k≤m

1

σgo(m, k)

�����Pk
j=1 pj,k

m
σW2,m(m)

�����
=: I1(m) + I2(m). (3.2.53)

Since

go(m, k) ≥ g(m, k) for all k = 1, 2, . . . , m = 1, 2, . . . ,

the Lemmas 3.2.6, 3.2.7 and 3.2.12 imply

I1(m) = OOOP

�È
2 log log logm

�
as m→∞. (3.2.54)

Furthermore, similar computations as in the proof of Lemma 3.2.11 yield

I2(m) = OOOP (1)
1É

log
�

1
logm

+ e
� as m→∞. (3.2.55)

and the lemma follows by (3.2.53), (3.2.54) and (3.2.55).

�

Lemma 3.2.14 Let the sequences {Q̂m,k}k=1,2,... and {go(m, k)}k=1,2,... be defined as in
Lemma 3.2.9 . Then

lim
m→∞

P

 
am max

1≤k<∞

Q̂m,k

σgo(m, k)
− bm ≤ x

!
= exp

�
−e−x

�
(3.2.56)
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Proof: In view of the Lemmas 3.2.9– 3.2.13 it suffices to show that for all real x

lim
m→∞

P

 
am max

(logm)δ≤k≤(m/ logm)1/(2d+1)

Q̂m,k

σg(m, k)
− bm ≤ x

!
= exp

�
−e−x

�
, (3.2.57)

for some δ > 1.
Since go(m, k) ≥ gc(m, k) for all k = 1, 2, . . . and m = 1, 2, . . ., it follows as in the

proof of Lemma 3.1.8 that

am max
(logm)δ≤k≤(m/ logm)1/(2d+1)

Pk
j=1 pj,k

1
m
|W2,m(m)|

go(m, k)
= oooP (1) as m→∞

and we see that (3.2.57) is satisfied, if for all real x and some δ > 1

lim
m→∞

P

 
am max

(logm)δ≤k≤(m/ logm)1/(2d+1)

Pk
j=1 pj,k(W1,m(j)−W1,m(j − 1))

σgo(m, k)
− bm ≤ x

!
= e−e

−x

.

(3.2.58)

Lemma 3.2.12 implies that (3.2.58) holds, if

lim
m→∞

P

 
am max

(logm)δ≤t≤(m/ logm)1/(2d+1)

1√
2d+ 1

1
td
W1(t

2d+1)

go(m, t)
− bm ≤ x

!
= exp

�
−e−x

�
(3.2.59)

is satisfied and as in the proof of Lemma 3.1.8, it follows that

am max
(logm)δ≤t≤(m/ logm)1/(2d+1)

1
td
W1(t

2d+1)

go(m, k)

− am max
(logm)δ≤t≤(m/ logm)1/(2d+1)

1
td
W1(t

2d+1)q
t log

�
t2d+1

m
+ e

� = oooP (1) as m→∞.

Now without loss of generality we assume that δ = δ̃/(2d+ 1). Then

max
(logm)δ̃/(2d+1)≤t≤(m/ logm)1/(2d+1)

W1(t
2d+1)q

t2d+1 log
�
t2d+1

m
+ e

�
= max

(logm)δ̃≤t≤m/ logm

W1 (t)q
t log

�
t
m

+ e
�

and by Lemma 3.2.5 and Lemma 3.2.8 we see that the proof is complete.

�

Combining the Lemmas 3.2.9– 3.2.14 and since σ can be replaced by σ̂m, we obtain the
first assertion of Theorem 3.2.3. The second assertion is an immediate consequence of
the first assertion and the asymptotic independence of maxima and minima.
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Proof of Theorem 3.2.4

We define the sequence {P̂ (0)
m,k}k=1,2,... as

P̂
(0)
m,k =

kX
j=1

pj,kεj −
Pk
j=1 pj,k

m

mX
i=1

εi for all k = 1, 2, . . . (3.2.60)

Under the alternative it holds that

P̂m,k = P̂
(0)
m,k +

kX
j=k∗+1

pj,k M, k = 1, 2, . . .

and as in the proof of Theorem 3.2.2 we get for any finite N > k∗

P

 
max

1≤k<∞

P̂m,k
σ̂(m)g0(m, k)

> ĉ1(α,m)

!
≥ P

�PN
j=k∗+1 pj,N M

σ̂(m)go(m,N)
− max

1≤k≤N

|P̂ (0)
m,k|

σ̂(m)go(m, k)
> ĉ1(α,m)

�
. (3.2.61)

For N = m3/2 it holds that

m3/2X
j=k∗+1

pj,m3/2 M' m3/2 as m→∞

and since the definition of go yields

σgo(m, k) ' m
È

logm as m→∞,

we see thatPm3/2

j=k∗+1 pj,m3/2 M

σgo(m)
'
Ê

m

logm
as m→∞.

Now Theorem 3.2.3 implies

max
1≤k<∞

|P̂ (0)
m,k|

σ̂mgo(m, k)
= OOOP

�È
log logm

�
as m→∞

and it holds that

ĉ1(α,m) '
È

log logm as m→∞,

hence, since

1

σ̂m
− 1

σ
= oooP

�
1

mϑ

�
for some ϑ > 0,

it follows that the drift term is dominating in (3.2.61), which gives (3.2.25). Assertion
(3.2.26) follows by similar arguments.



Chapter 4

Control charts based on
fractionally weighted moving
averages

A carefully study of the proofs for the PWMA-chart shows that the application of the
invariance principle would only require a boundary function, which is slightly stronger
increasing than the rate of the approximation. Hence, in case of independent obser-
vations, we see that the number of existing moments of the innovations yields a lower
bound for possible weight functions. This observation laid the foundation for a control-
chart, which is based on fractionally weighted moving averages.

The chart is only provided for known parameters. An extension to estimated para-
meters, which follows the lines of the proof for the PWMA-chart, will be part of future
work.

4.1 Closed-end control charts

4.1.1 Model assumptions for known µ and σ

Let {εi}i=1,2,... be a sequence of real-valued random variables on some probability space
(Ω,A, P ), with

E εi = 0 and Var εi = σ2 > 0 for all i = 1, 2, . . . . (4.1.1)

We assume the there exists a Wiener process {W (t), t ≥ 0}, satisfying

sup
1≤k<∞

1

k1/ν

 
kX
i=1

εi − σW (k)

!
<∞ a.s. (4.1.2)

for some ν > 2.
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The sequence of observations {Xi}i=1,...,N follows the model

Xi =

8><>:µ+ εi : 1 ≤ i ≤ k∗,

µ+ M +εi : k∗ < i ≤ N,
(4.1.3)

where µ, k∗ and M denote the usual parameters.
We are interested in testing either

H0 : k∗ = N versus H1 : k∗ < N, M> 0 (one-sided alternative), (4.1.4)

or

H0 : k∗ = N versus H2 : k∗ < N, M 6= 0 (two-sided alternative). (4.1.5)

4.1.2 Monitoring procedures for known µ and σ

Let fφ : R≥ 0 → R> 0 be defined as

fφ(x) =

8>><>>:
1

1/2 + φ
, x = 0,

1

x1/2−φ , x > 0,

(4.1.6)

where 1/ν < φ ≤ 1/2. In the sequel we omit the index φ and for integer-valued x we
also use the notation f(x) = fx.

The detectors are given by

Fk =
k−1X
j=0

fj(Xk−j − µ) for all k = 1, . . . , N (4.1.7)

and we define

σ2
t = σ2

Z t

0
f 2(x)dx =

σ2

2φ
t2φ for all t ≥ 0. (4.1.8)

The stopping times are given by

τ1 = τ1(α,N) = inf{1 ≤ k ≤ N : Fk > c1(α,N)σk} (4.1.9)

and

τ2 = τ2(α,N) = inf{1 ≤ k ≤ N : |Fk| > c2(α,N)σk}, (4.1.10)

where α ∈]0, 1[, if τi <∞, i = 1, 2.
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The critical constants c1(α,N) and c2(α,N) are chosen as

c1(α,N) =
q1(1− α) + bN

aN
and c2(α,N) =

q2(1− α) + bN
aN

, (4.1.11)

where aN and bN are defined in (4.1.15) and (4.1.15) below and

q1(1− α) = − log(− log(1− α)), q2(1− α) = − log
�
−1

2
log(1− α)

�
. (4.1.12)

The following theorems show that the false alarm rate of the procedures is asymp-
totically α and both have asymptotic power one.

Theorem 4.1.1 Let the sequence {Fk}k=1,2,... be defined as in (4.1.7). If {σk}k=1,...,N is
given by (4.1.8), then, it holds under the null hypothesis and for all real x that

lim
N→∞

P
�
aN max

1≤k≤N

Fk
σk

− bN ≤ x
�

= exp
�
−e−x

�
(4.1.13)

and

lim
N→∞

P

�
aN max

1≤k≤N

|Fk|
σk

− bN ≤ x

�
= exp

�
−2e−x

�
, (4.1.14)

where

aN =
È

2 log logN, (4.1.15)

bN = 2 log logN +
1− φ

2φ
log log logN + log

 
C1/(2φ)H2φ

2(1−φ)/(2φ)

√
2π

!
(4.1.16)

and

C = 2φ
Z ∞

0
z−1+2φ

 
1−

�
1 +

1

z

�−1/2+φ
!
dz. (4.1.17)

The definition of the constant H2φ is given, for example, in Leadbetter, Lindgren and
Rootzén (1983).

Theorem 4.1.2 Let the sequences {Fk}k=1,...,N and {σk}1≤k≤N be defined as in (4.1.7)
and (4.1.8). If k∗ = k∗(N) < N −Nρ, where ρ > φ/(1/2 + φ), then, it holds under H1

that for all real x

lim
N→∞

P
�
aN max

1≤k≤N

Fk
σk

− bN > x
�

= 1 (4.1.18)

and under H2

lim
N→∞

P

�
aN max

1≤k≤N

|Fk|
σk

− bN > x

�
= 1. (4.1.19)
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4.1.3 Discussion

Even though a simulation is not provided, we discuss briefly the related problems. Only
two values of the constant H are explicitly known, namely H1 = 1 and H2 = 1/π.
Shao (1996) provided boundaries for H, so that a more conservative adjustment of the
boundary function is possible. However, detailed study is required and will be carried
out, when the proof for the FWMA-chart with estimated parameters is complete.

4.1.4 Proofs

In the sequel, sums of the innovations will also be denoted by S(k) =
Pk
i=1 εi.

Intermediate results in the following proofs are derived via integration by parts, but
since the weight function has a singularity in zero, we need the following considerations.

Preliminaries

Let {W (t),−∞ < t <∞} be the two-sided extension of the Wiener-process, claimed in
(4.1.2). We define the process {H(t)}t≥0 as

Ht =
Z t

t−1
f(t− x) dW (x), t ≥ 0. (4.1.20)

Note that the process is well defined, since f is square-integrable.
Obviously Cov (H(s), H(t)) = 0, if |s− t| > 1 and for |s− t| ≤ 1 we get (s ≤ t)

Cov (H(s), H(t)) =
Z s

t−1
(s− x)−1/2+φ(t− x)−1/2+φdx

=
Z 1−(t−s)

0
y−1/2+φ(y + (t− s))−1/2+φdy,

implying that {H(t)}t≥0 is a stationary process with

VarH(t) =
Z 1

0
y−1+2φdy =

1

2φ
. (4.1.21)

The autocorrelation function of {H(t)}t≥0 is given by

r(h) =

8>>>>><>>>>>:
0 , |h| > 1,

2φ
Z 1−|h|

0
y−1/2+φ(y + |h|)−1/2+φdy , |h| ≤ 1, 0 < φ <

1

2
,

1− |h| , |h| ≤ 1, φ =
1

2
.

(4.1.22)

The next lemma provides the limiting distribution for the extremes of the process
{H(t)}t≥0.
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Lemma 4.1.1 Let the Gaussian process {H(t)}t≥0 be defined as in (4.1.20). Then, for
all real x it holds that

lim
N→∞

P
�
AN max

0≤t≤N

È
2φH(t)−BN ≤ x

�
= exp

�
−e−x

�
(4.1.23)

and

lim
N→∞

P
�
AN max

0≤t≤N
|
È

2φH(t)| −BN ≤ x
�

= exp
�
−2e−x

�
, (4.1.24)

where

AN =
È

2 logN, (4.1.25)

BN = 2 logN +
1− φ

2φ
log logN + log

 
C1/2φH2φ

2(1−φ)/2φ

√
2π

!
(4.1.26)

and

C = 2φ
Z ∞

0
z−1+2φ

 
1−

�
1 +

1

z

�−1/2+φ
!
dz. (4.1.27)

H2φ is defined as in Theorem 4.1.1.

Proof: In view of Theorem 12.3.5 in Leadbetter, Lindgren and Rootzén (1983), we
have to show that

r(h) log h→ 0 as h→∞ (4.1.28)

and

r(h) = 1− C|h|α + ooo (|h|α) as h→ 0 for some 0 < α ≤ 2 and C > 0. (4.1.29)

In case of φ = 1/2 it is easy to see that these conditions hold, hence, we only consider
the case 0 < φ < 1/2. Obviously (4.1.28) is satisfied, so it remains to show (4.1.29).
Note that (h ≥ 0)

2φ
Z 1−h

0
(y + h)−1+2φdy ≤ r(h) ≤ 2φ

�Z 1−h

0
y−1+2φdy

Z 1−h

0
(y + h)−1+2φdy

�1/2

,

where the right-hand side of the inequality follows by the Cauchy-Schwarz inequality.
Elementary calculations show that

1− h2φ ≤ r(h) ≤ (1− h)φ
�
1− h2φ

�1/2 ≤ �
1− h2φ

�1/2
,

so that for h→ 0

1− h2φ ≤ r(h) ≤ 1− 1

2
h2φ + ooo

�
h2φ

�
.
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Now the last inequality justifies the assumption

r(h) = 1− C|h|2φ + ooo
�
|h|2φ

�
for some C > 0 (h→ 0), (4.1.30)

which will be shown next.
Since

1 = 2φ
Z 1−h

0
y−1+2φdy + 2φ

Z 1

1−h
y−1+2φdy

we have

1− r(h)

h2φ
=

2φ

h2φ

 Z 1−h

0
y−1+2φ

 
1−

�
1 +

h

y

�−1/2+φ
!
dy +

Z 1

1−h
y−1+2φdy

!
=

2φ

h

Z 1−h

0

�y
h

�−1+2φ
 

1−
�

1 +
h

y

�−1/2+φ
!
dy +

1

h2φ

�
1− (1− h)2φ

�
=: I1(h) + I2(h).

First, we consider I1(h). We have

I1(h) = 2φ
Z 1/h−1

0
z−1+2φ

 
1−

�
1 +

1

z

�−1/2+φ
!
dz.

Note that for any fixed h the integral is finite, sinceZ 1

0
z−1+2φdz <∞.

Now

1−
�
1 +

1

z

�−1/2+φ

=
�

1

2
− φ

�
1

z
+ ooo

�
1

z

�
as z →∞

and we see that (φ < 1/2)

lim
h→0

I1(h) <∞. (4.1.31)

Next, the Taylor expansion of
�
1− (1− h)2φ

�
yields�

1− (1− h)2φ
�

= 2φh+ ooo(h) as h→ 0

and it follows that

lim
h→0

I2(h) = 0. (4.1.32)

(4.1.31) and (4.1.32) now show that (4.1.30) holds with C = limh→0 I1(h) and Theo-
rem 12.3.5 of Leadbetter, Lindgren and Rootzén et al. completes the proof of (4.1.23).
The statement given in display (4.1.24) follows by (4.1.23) and the asymptotic indepen-
dence of maxima and minima.
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�

Remark 4.1.1 An immediate consequence of Lemma 4.1.1 is that

max
0≤t≤N

|Ht| = OOOP

�È
logN

�
as N →∞. (4.1.33)

Proof of Theorem 4.1.1

We define

Qk = σ
k−1X
j=0

fj(W (k − j)−W (k − j − 1)) for all 1 ≤ k ≤ N, (4.1.34)

where {W (t), t ≥ 0} is the Wiener-process, introduced in (4.1.2).

Lemma 4.1.2 Let the sequences {Fk}k=1,...,N and {Qk}k=1,...,N be defined as in (4.1.7)
and (4.1.34), respectively. If n is a non-decreasing, integer-valued function of N , with
1 ≤ n ≤ N , then

max
1≤k≤n

Fk
σk

= OOOP

�È
log log n

�
as N →∞ (4.1.35)

and

max
1≤k≤n

Qk

σk
= OOO

�È
log log n

�
a.s. as N →∞. (4.1.36)

Proof: Since Qk is a weighted sum of normal random variables and

σ
k−1X
i=0

f 2
i ∼ σ2

k ' k2φ as k →∞,

the law of the iterated logarithm for weighted sums according to Stadtmüller (Corollary
1, 1984) holds and we get

lim sup
k→∞

QkÈ
2σ2

k log log σ2
k

= 1 a.s.,

implying (4.1.36). Assertion (4.1.35) follows on combining (4.1.36) with Lemma 4.1.3
below.

�

Lemma 4.1.3 Let the sequences {Fk}k=1,...,N and {Qk}k=1,...,N be defined as in (4.1.7)
and (4.1.34), respectively. If n is a non-decreasing, integer-valued function of N , with
1 ≤ n ≤ N , then

max
n≤k≤N

Fk
σk

− max
n≤k≤N

Qk

σk
= OOOP

�
1

nφ−1/ν

�
as N →∞. (4.1.37)
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Proof: With

di = fi − fi+1 for all i = 0, 1, . . . ,

we get

Fk =
k−1X
i=0

di

�
kX
j=1

εj −
k−i−1X
j=1

εj

�
+ fk

kX
j=1

εj for all 1 ≤ k ≤ N (4.1.38)

and

Qk =
k−1X
i=0

di (W (k)−W (k − i− 1)) + fkW (k) for all 1 ≤ k ≤ N. (4.1.39)

Then

max
n≤k≤N

1

σk
|Fk −Qk| = max

n≤k≤N

1

σk

������ k−1X
i=0

di (S(k)−W (k))

+
k−1X
i=0

di (W (k − i− 1)− S(k − i− 1)) + fk (S(k)−W (k))

������
≤ p0

È
2φ

1

nφ−1/ν
max
n≤k≤N

�����S(k)−W (k)

k1/ν

�����
+ p0

È
2φ

1

nφ−1/ν
max
n≤k≤N

max
1≤i≤k−1

�����S(i)−W (i)

k1/ν

�����
+ p0

È
2φ

1

nφ−1/ν
max
n≤k≤N

�����S(k)−W (k)

k1/ν

�����
and (4.1.37) follows by (4.1.2).

�

Next, we approximate {Qk}1≤k≤N by the continuous-time process

U(t) = σ
Z t

0
f(t− x)dW (x), t ≥ 0. (4.1.40)

Lemma 4.1.4 Let the processes {Qk}k=1,...,N and {U(t)}t≥0 be defined as in (4.1.34)
and (4.1.40), respectively. {σt}t≥0 is given by (4.1.8). If t̃ is a non-decreasing function
of N with 1 ≤ t̃ ≤ N , then 

sup
t̃≤t≤N

Qbtc

σbtc
− sup

t̃≤t≤N

U(t)

σt

!
= OOOP

 √
logN

t̃φ

!
as N →∞. (4.1.41)
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Proof: Integration by parts yields

U(t)

σ
=
Z t−1

0
f(t− x)dW (x) +

Z t

t−1
f(t− x)dW (x)

= f(t− x)W (x)
���t−1

0
+
Z t−1

0
f ′(t− x)W (x)dx+

Z t

t−1
f(t− x)dW (x)

= f(1)W (t− 1) +
Z t

1
f ′(x)W (t− x)dx+

Z t

t−1
f(t− x)dW (x)

= f(1)W (t− 1) +
btc−1X
i=1

Z i+1

i
f ′(x)W (t− x)dx+

Z t

btc
f ′(x)W (t− x)dx

+
Z t

t−1
f(t− x)dW (x). (4.1.42)

Furthermore, using (4.1.39) we get

Qbtc

σ
=

btc−1X
i=0

(fi − fi+1) (W (btc)−W (btc − i− 1)) + fbtcW (btc)

= f(0)W (btc)−
btc−1X
i=0

(fi − fi+1)W (btc − i− 1)

= f(0) (W (btc)−W (btc − 1))+f(1)W (btc − 1)−
btc−1X
i=1

(fi−fi+1)W (btc−i−1)

= f(1)W (btc − 1) +
btc−1X
i=1

Z i+1

i
f ′(x)W (btc − i− 1)dx

+ f(0) (W (btc)−W (btc − 1)) (4.1.43)

and (4.1.42), together with (4.1.43) shows that

1

σ
sup

1≤t≤N

���U(t)−Qbtc

��� ≤ sup
1≤t≤N

f(1) |W (t− 1)−W (btc − 1)|

+ sup
1≤t≤N

btc−1X
i=1

Z i+1

i
|f ′(x)||W (t− x)−W (btc − i− 1)|dx

+ sup
1≤t≤N

Z t

btc
|f ′(x)||W (t− x)|dx

+ sup
1≤t≤N

����Z t

t−1
f(t− x)dW (x)

����
+ sup

1≤t≤N
f(0) |W (btc)−W (btc − 1)|

=: I1(N) + I2(N) + I3(N) + I4(N) + I5(N). (4.1.44)

First, note that Theorem 1.2.1 of Csörgő and Révész (1981) implies

I1 = OOO
�È

logN
�

a.s., I5 = OOO
�È

logN
�

a.s. (4.1.45)
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and also

I2 = OOO
�È

logN
�

a.s. as N →∞, (4.1.46)

where the last equation follows since |(btc − i− 1)− (t− x)| ≤ 2 for all x ∈ [i, i+ 1].
Obviously

I3 = OOO (1) a.s. as N →∞ (4.1.47)

and since we already know by Remark 4.1.1 that

I4 = OOOP

�È
logN

�
as N →∞, (4.1.48)

we conclude by (4.1.44)–(4.1.48) that

1

σ
sup

1≤t≤N

���U(t)−Qbtc

��� = OOOP

�È
logN

�
as N →∞. (4.1.49)

Now

sup
t̃≤t≤N

�����Qbtc

σbtc
− U(t)

σt

����� ≤ sup
t̃≤t≤N

1

σbtc

���Qbtc − U(t)
���+ sup

t̃≤t≤N
|U(t)|

�����σt − σbtc
σtσbtc

�����
=: J1(N) + J2(N).

By (4.1.49) and (4.1.8) we see that

J1(N) = OOOP

 √
logN

t̃φ

!
as N →∞

and Remark 4.1.2 below, together with (4.1.8), implies

J2(N) = OOOP

 √
log logN

t̃2φ

!
as N →∞,

completing the proof of the Lemma.

�

We now consider the extremes of {U(t), t ≥ 0} on [1, N ].

Lemma 4.1.5 Let the process {U(t)}t≥0 be defined as in (4.1.40). With {σt}t≥0 being
defined via (4.1.8) for all real x holds

lim
N→∞

P

�
aN max

1≤t≤N

U(t)

σt
− bN ≤ x

�
= exp

�
−e−x

�
as N →∞, (4.1.50)

where aN and bN are defined in (4.1.15) and (4.1.16), respectively.
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Proof: First, note that Lemma (3.1.3) yields the result for φ = 1/2. Hence, in the
following we assume that 1/ν < φ < 1/2.

If we define the process {Ũ(t)}t≥0 by

Ũ(t) = U(et) for all t ≥ 0, (4.1.51)

then obviously

max
1≤t≤N

U(t)

σt
= max

0≤t≤logN

Ũ(t)

σet

.

The covariance of {Ũ(t)}t≥0 is given by (0 ≤ s ≤ t)

Cov
�
Ũ(s), Ũ(t)

�
= σ2

Z es

0
(es − x)−1/2+φ

�
et − x

�−1/2+φ
dx

= σ2e2φt
Z 1−(1−es−t)

0
y−1/2+φ

�
y + 1− es−t

�−1/2+φ
dy,

hence

Var
�
Ũ(t)

�
=
σ2e2φt

2φ
(4.1.52)

and for the autocorrelation function r̃ of {Ũ(t)}t≥0 holds (φ < 1/2)

r̃(h) = 2φ eφ|h|
Z 1−(1−e−|h|)

0
y−1/2+φ

�
y + 1− e−|h|

�−1/2+φ
dy, h ∈ R, (4.1.53)

showing that {Ũ(t)}t≥0 is a stationary process.
Now, as in the proof of Lemma 4.1.1, we show that

r̃(h) log h→ 0 as h→∞ (4.1.54)

and

r̃(h) = 1− C|h|α + ooo (|h|α) as h→ 0 for some 0 < α ≤ 2 and C > 0. (4.1.55)

Since

r̃(h) ≤ 2φ eφ|h|
Z e−|h|

0
y−1+2φdy = e−φ|h|,

we see that (4.1.54) is satisfied.
With 1− e−|h| = h̃ and r as in (4.1.22), we get

1− r̃(h)

|h|2φ
=

1− r(h̃) + r(h̃)(1− eφ|h|)

|h|2φ

=
1− r(h̃)

h̃2φ
· h̃

2φ

|h|2φ
+ r(h̃)

1− eφ|h|

|h|2φ

=: I1(h) + I2(h).
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The Taylor expansion of h̃, together with the Taylor expansion of x 7→ x2φ in 0, yields

lim
h→0

h̃2φ

|h|2φ
= 1

and the proof of Lemma 4.1.1 shows that

lim
h→0

1− r(h̃)

h̃2φ
= 2φ

Z ∞

0
z−1+2φ

 
1−

�
1 +

1

z

�−1/2+φ
!
dz,

hence

lim
h→0

I1(h) = C, (4.1.56)

with C being defined as in (4.1.17).
Since r(h̃) → 1 as h→ 0 and the Taylor expansion of 1− eφ|h| shows that

1− eφ|h|

|h|2φ
= OOO

�
h1−2φ

�
as h→ 0,

it follows that

I2(h) = ooo(1) as h→ 0. (4.1.57)

Now (4.1.56) and (4.1.57) show that (4.1.55) also holds with α = 2φ and C chosen
as in (4.1.17), hence the assumptions of Theorem 12.3.5 in Leadbetter, Lindgren and
Rootzén (1983) are satisfied and the proof of the lemma is complete.

�

Remark 4.1.2 Lemma 4.1.5, the asymptotic independence of the maximum and mini-
mum and the symmetry of {U(t)}t≥0 immediately imply

sup
1≤t≤N

|U(t)|
σt

= OOOP

�È
log logN

�
as N →∞. (4.1.58)

In view of Lemma 4.1.2 and Lemma 4.1.3 for any δ > 0 it holds that

lim
N→∞

P
�
aN max

1≤k≤N

Fk
σk

− bN ≤ x
�

= lim
N→∞

P

�
aN max

(logN)δ≤k≤N

Fk
σk

− bN ≤ x

�
= lim

N→∞
P

�
aN max

(logN)δ≤k≤N

Qk

σk
− bN ≤ x

�
.

If δ is chosen so that δφ > 1/2 holds, Lemma 4.1.4 implies

lim
N→∞

P

�
aN max

(logN)δ≤k≤N

Qk

σk
− bN ≤ x

�
= lim

N→∞
P

 
aN sup

(logN)δ≤t≤N

U(t)

σt
− bN ≤ x

!
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and since an immediate consequence of Remark 4.1.2 is that

lim
N→∞

P

 
aN sup

(logN)δ≤t≤N

U(t)

σt
− bN ≤ x

!
= lim

N→∞
P

�
aN sup

1≤t≤N

U(t)

σt
− bN ≤ x

�
,

assertion (4.1.13) of Theorem 4.1.1 follows by Lemma 4.1.5. Assertion (4.1.14) is derived
by the usual arguments.

Proof of Theorem 4.1.2

We only show (4.1.18), since (4.1.19) follows by the same arguments. We define the

sequence {F (0)
k , 1 ≤ k ≤ N} as

F
(0)
k =

k−1X
j=0

fjεk−j, 1 ≤ k ≤ N, (4.1.59)

and get the decomposition

Fk = F
(0)
k +

k−k∗−1X
j=0

fj M, 1 ≤ k ≤ N.

For the drift holds

max
1≤k≤N

k−k∗−1X
j=0

fj M =
N−k∗−1X
j=0

fj M

≥
NρX
j=0

fj M

≥ M
1/2 + φ

Nρ(1/2+φ).

and for all real x we get

P
�
aN max

1≤k≤N

Fk
σk

− bN ≤ x
�

≤ P

�
aN max

1≤k≤N

|F (0)
k |
σk

− bN ≤ x− aN

PN−k∗−1
j=0 fj M

σN
+ 2aN max

1≤k≤N

|F (0)
k |
σk

�
.

By Theorem 4.1.1 we see that

aN max
1≤k≤N

|F (0)
k |
σk

− bN = OOOP (1) as N →∞
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and

aN max
1≤k≤N

|F (0)
k |
σk

= OOOP (a2
N) as N →∞,

hence (4.1.18) follows sincePN−k∗−1
j=0 fj M

σN
& Nρ(1/2+φ)−φ as N →∞

and ρ(1/2 + φ)− φ > 0.
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Chapter 5

The conditional stopping time of
the MOSUM-chart

A first result on the asymptotic normality for stopping times, which are based on curved
boundary functions has been given by Siegmund (1968), followed by the result of Teicher
(1973). The asymptotic normality of the stopping time for CUSUM-procedures has been
investigated by Aue (2003) and Aue, Horváth, Kokoszka and Steinebach (2007). In this
chapter we investigate how the limiting distribution of a conditional stopping time can
be used to construct an asymptotic confidence interval for the location of a detected
change-point.

5.1 One-sided alternatives

Throughout this section, we adopt the nomenclature of Section 1.1. For the convenience
of the reader and since we have to modify the model assumptions, we first repeat the
framework and some definitions, which are frequently used in the sequel. Note that all
computations are carried out under the alternative H1.

5.1.1 Model assumptions for known µ and σ

Let {εi}i=1,2,... be a sequence of independent, identically distributed random variables
on some probability space (Ω,A, P ). We assume that

E ε1 = 0, Var ε1 = σ2 > 0 and E | ε1| ν <∞ for some ν > 2. (5.1.1)

The sequence {Xi}i=1,2,... is assumed to satisfy

Xi =

8><>:µ+ εi , 1 ≤ i ≤ hN + k∗,

µ+ M +εi , hN + k∗ < i ≤ hN +N,

97
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where M> 0. Instead of (1.1.4) and (1.1.5) we now impose a more restrictive condition
on the window size hN . Namely, it is required thatÈ

hN ' Nφ as N →∞, where 1/ν < φ < 1/2. (5.1.2)

The change-point k∗ is assumed to depend on N as follows

k∗ = k∗(N) = bκNc for some 0 < κ < 1. (5.1.3)

We are interested in the limit distribution of the stopping time

τ1 = τ1(α,N) = inf
n
1 ≤ k ≤ N : Mk,N > c1(α,N)σ

È
hN

o
, (5.1.4)

where

Mk,N =
kX

i=k−hN+1

(Xi+hN
− µ) for all k = 1, . . . , N (5.1.5)

and the critical constant c1(α,N) is defined in (1.1.11).

5.1.2 The conditional limit distribution of τ1

The first result is obtained for known in-control parameters and provides the conditional
limit distribution of τ1.

Theorem 5.1.1 Let τ1 be defined as in (5.1.4) and assume that k∗ satisfies (5.1.3).
Then, for all real x, it holds that

lim
N→∞

P

�
(τ1 − k∗)− αN

βN
≤ x

������ τ1 > k∗

�
= Φ(x), (5.1.6)

where

βN =
σ
√
hN

M
and αN = c1(α,N)βN . (5.1.7)

Remark 5.1.1 It can be seen from the proof of Theorem 1.1.2 that the parametrization
of k∗ does not affect the asymptotic power of the underlying test, hence it still holds that
limN→∞ P (τ1 ≤ N) = 1.

If M is known, which is of course unrealistic, Theorem 5.1.1 allows to define two
kinds of asymptotic confidence intervals for k∗.
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Corollary 5.1.1 Let τ1 be defined as in (5.1.4) and assume that k∗ satisfies (5.1.3).
Then, for all real x, it holds that

lim
N→∞

P

 
τ1 − (c1(α,N) + x)

σ
√
hN

M
≤ k∗ < τ1

���� τ1 > k∗
!

= Φ(x) (5.1.8)

and

lim inf
N→∞

P

 
τ1 − (c1(α,N) + x)

σ
√
hN

M
≤ k∗ < τ1

!
≥ Φ(x)(1− α). (5.1.9)

Proof: (5.1.8) is a direct consequence of (5.1.6), and (5.1.9) follows, since

lim inf
N→∞

P (τ1 > k∗) ≥ 1− lim sup
N→∞

P (τ1 ≤ k∗) ≥ 1− α.

�

Next, we treat the case of an unknown level shift M. The following lemma provides
an adequate estimator for M under the assumption that the level shift is bounded.

Lemma 5.1.1 Let τ1 be defined as in (5.1.4). We assume that k∗ satisfies (5.1.3) and
furthermore, that 0 <M≤Mmax. If we define

M̂N =
1

λN

τ1X
i=τ1−λN+1

Xi − µ, (5.1.10)

where

λN =

$
σ
√
hN

Mmax

%
, (5.1.11)

then, for any 0 ≤ γ < φ− 1/ν and ε > 0, it holds that

lim
N→∞

P
�
|M̂N− M | > ε

Nγ

���� τ1 > k∗
�

= 0. (5.1.12)

We are now prepared to extend Theorem 5.1.1.

Theorem 5.1.2 Let τ1 be defined as in (5.1.4). We assume that k∗ satisfies (5.1.3) and
that 0 <M≤Mmax. If M̂N is defined as in (5.1.10), then, for all real x, it holds that

lim
N→∞

P

�
(τ1 − k∗)− α̂N

β̂N
≤ x

������ τ1 > k∗

�
= Φ(x), (5.1.13)

where

β̂N =
σ
√
hN

M̂N

and α̂N = c1(α,N)β̂N . (5.1.14)
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The corresponding asymptotic confidence intervals are given in the next corollary.

Corollary 5.1.2 Let τ1 be defined as in (5.1.4). We assume that k∗ satisfies (5.1.3)
and that 0 <M≤Mmax. If M̂N is defined as in (5.1.10), then, for all real x, it holds that

lim
N→∞

P

�
τ1 − (c1(α,N) + x)

σ
√
hN

M̂N

≤ k∗ < τ1

������ τ1 > k∗

�
= Φ(x) (5.1.15)

and

lim inf
N→∞

P

 
τ1 − (c1(α,N) + x)

σ
√
hN

M̂N

≤ k∗ < τ1

!
≥ Φ(x)(1− α). (5.1.16)

5.1.3 Model assumptions for unknown µ and σ

We assume that the sequence of innovations {εi}i=1,2,... satisfies (5.1.1) and that the
observations {Xi}i=1,2,... follow the model

Xi =

8><>:µ+ εi , 1 ≤ i ≤ mN + k∗,

µ+ M +εi , mN + k∗ < i ≤ mN +N,

where

lim
N→∞

�
hN
mN

log
N

hN

�
= 0 and

mN

N
→ 0 as N →∞. (5.1.17)

The window size hN is chosen as in (5.1.2)and the change-point k∗ is assumed to depend
on N as in (5.1.3).

We are interested in the limit distribution of the stopping time

τ̂1 = τ̂1(α,N) = inf
n
1 ≤ k ≤ N : M̂k,N > c1(α,N)σ̂mN

È
hN

o
, (5.1.18)

where

M̂k,N =
kX

i=k−hN+1

(Xi+mN
− µ̂mN

) for all k = 1, . . . , N (5.1.19)

and the critical constant c1(α,N) is defined in (1.1.11). Taking into account the results
of Lemma 1.1.3 we can assume that the estimators µ̂mN

and σ̂mN
satisfy

µ̂mN
− µ = oooP

 
1

√
mN

!
as N →∞ (5.1.20)

and

σ̂2
mN

− σ2 = oooP

�
1

mϑ
N

�
as N →∞ (5.1.21)

for some ϑ > 0.
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5.1.4 The conditional limit distribution of τ̂1

The next Theorem shows that the conditional limit distribution of τ̂1 basically coincides
with the conditional limit distribution of τ1. Note that each of the following accents has
a different meaning: α̂, bα, æα.

Theorem 5.1.3 Let τ̂1 be defined as in (5.1.18) and assume that k∗ satisfies (5.1.3).
Then, for all real x, it holds that

lim
N→∞

P

�
(τ̂1 − k∗)− bαNbβN ≤ x

������ τ̂1 > k∗

�
= Φ(x), (5.1.22)

where

bβN =
σ̂mN

√
hN

M
and bαN = c1(α,N) bβN . (5.1.23)

If M is known, we get the following asymptotic confidence intervals for k∗.

Corollary 5.1.3 Let τ̂1 be defined as in (5.1.18) and assume that k∗ satisfies (5.1.3).
Then, for all real x, it holds that

lim
N→∞

P

 
τ̂1 − (c1(α,N) + x)

σ̂mN

√
hN

M
≤ k∗ < τ̂1

���� τ̂1 > k∗
!

= Φ(x) (5.1.24)

and

lim inf
N→∞

P

 
τ̂1 − (c1(α,N) + x)

σ̂mN

√
hN

M
≤ k∗ < τ̂1

!
≥ Φ(x)(1− α). (5.1.25)

To make use of the theoretical results above, we need an estimator for M.

Lemma 5.1.2 Let τ̂1 be defined as in (5.1.18). We assume that k∗ satisfies (5.1.3) and
furthermore, that 0 <M≤Mmax. If we define

çMN =
1

λ̂N

τ̂1X
i=τ̂1−λ̂N+1

Xi − µ̂mN
, (5.1.26)

where

λ̂N =

$
σ̂mN

√
hN

Mmax

%
, (5.1.27)

then, for any 0 ≤ ζ < φ− 1/ν and ε > 0, it holds that

lim
N→∞

P
�
|çMN− M | > ε

N ζ

���� τ1 > k∗
�

= 0. (5.1.28)
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The following theorem and the corresponding corollary may be considered as the
main result of this chapter.

Theorem 5.1.4 Let τ̂1 be defined as in (5.1.18). We assume that k∗ satisfies (5.1.3)
and that 0 <M≤Mmax. If çMN is defined as in (5.1.26), then, for all real x, it holds that

lim
N→∞

P

�
(τ̂1 − k∗)− æαNæβN ≤ x

������ τ̂1 > k∗

�
= Φ(x), (5.1.29)

where

æβN =
σ̂mN

√
hNçMN

and æαN = c1(α,N) æβN . (5.1.30)

Corollary 5.1.4 Let τ̂1 be defined as in (5.1.18). We assume that k∗ satisfies (5.1.3)
and that 0 <M≤Mmax. If çMN is defined as in (5.1.26), then, for all real x, it holds that

lim
N→∞

P

�
τ̂1 − (c1(α,N) + x)

σ̂mN

√
hNçMN

≤ k∗ < τ̂1

������ τ̂1 > k∗

�
= Φ(x) (5.1.31)

and

lim inf
N→∞

P

 
τ̂1 − (c1(α,N) + x)

σ̂mN

√
hNçMN

≤ k∗ < τ̂1

!
≥ Φ(x)(1− α). (5.1.32)

5.1.5 Proofs

Proof of Theorem 5.1.1

For any real x we define

δ = δ(x, α,N) =
(c1(α,N) + x)σ

√
hN

M k∗
(5.1.33)

and

n = n(x, α,N) = k∗ + bδk∗c. (5.1.34)

Note that, for any x, it holds that δ is positive if N is large enough and furthermore,

lim
N→∞

�
c1(α,N)− M (n− k∗)

σ
√
hN

�
= −x. (5.1.35)

Lemma 5.1.3 Let τ1 be defined as in (5.1.4) and assume that k∗ satisfies (5.1.3). With
n(x, α,N) being defined as in (5.1.34), it holds that

lim inf
N→∞

P (τ1 ≤ n | τ1 > k∗) ≥ Φ(x). (5.1.36)
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Proof: First, note that

P (τ1 ≤ n | τ1 > k∗) =
P
�
max1≤k≤k∗

Mk,N

σ
√
hN

≤ c1,maxk∗<k≤n
Mk,N

σ
√
hN

> c1
�

P (τ1 > k∗)

≥
P
�
max1≤k≤k∗

Mk,N

σ
√
hN

≤ c1,
Mn,N

σ
√
hN

> c1
�

P (τ1 > k∗)
(5.1.37)

and for the numerator of the last term it holds

P

�
max

1≤k≤k∗
Mk,N

σ
√
hN

≤ c1,
Mn,N

σ
√
hN

> c1

�
= P

�
max

1≤k≤k∗−hN

Mk,N

σ
√
hN

≤ c1, max
k∗−hN<k≤k∗

Mk,N

σ
√
hN

≤ c1,
Mn,N

σ
√
hN

> c1

�
.

By the stationarity of the innovations, we conclude that

P

�
max

k∗−hN<k≤k∗
Mk,N

σ
√
hN

≤ c1

�
= P

�
max

1≤k≤hN

Mk,N

σ
√
hN

≤ c1

�
and the law of the iterated logarithm yields (extend the partial sums)

max
1≤k≤hN

Mk,N

σ
√
hN

= OOO
�È

log log hN
�

a.s. as N →∞.

Hence, since c1(α,N) '
È

log(N/hN) as N →∞, we have

lim
N→∞

P

�
max

1≤k≤hN

Mk,N

σ
√
hN

≤ c1

�
= 1 as N →∞,

showing that

lim inf
N→∞

P

�
max

1≤k≤k∗−hN

Mk,N

σ
√
hN

≤ c1, max
k∗−hN<k≤k∗

Mk,N

σ
√
hN

≤ c1,
Mn,N

σ
√
hN

> c1

�
= lim inf

N→∞
P

�
max

1≤k≤k∗−hN

Mk,N

σ
√
hN

≤ c1,
Mn,N

σ
√
hN

> c1

�
= lim inf

N→∞
P

�
max

1≤k≤k∗−hN

Mk,N

σ
√
hN

≤ c1

�
P

�
Mn,N

σ
√
hN

> c1

�
= lim inf

N→∞
P

�
max

1≤k≤k∗
Mk,N

σ
√
hN

≤ c1

�
P

�
Mn,N

σ
√
hN

> c1

�
.

Combined with (5.1.37), the latter result yields

lim inf
N→∞

P (τ1 ≤ n | τ1 > k∗) ≥ lim inf
N→∞

P

�
Mn,N

σ
√
hN

> c1

�
.
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Now

lim inf
N→∞

P

�
Mn,N

σ
√
hN

> c1

�
= lim inf

N→∞
P

�
Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

> c1 −
M (n− k∗)

σ
√
hN

�

and the central limit theorem together with (5.1.35) yield the Lemma.

�

Lemma 5.1.4 Let τ1 be defined as in (5.1.4) and assume that k∗ satisfies (5.1.3). If
n(x, α,N) is defined as in (5.1.34), then, it holds that

lim sup
N→∞

P (τ1 ≤ n | τ1 > k∗) ≤ Φ(x). (5.1.38)

Proof: For any ξ > 0 we get the decomposition

P (τ1 ≤ n | τ1 > k∗) =
P
�
k∗ < τ1 ≤ n,

Mn,N

σ
√
hN
− M(n−k∗)

σ
√
hN

> −x(1 + ξ)
�

P (τ1 > k∗)

+
P
�
k∗ < τ1 ≤ n,

Mn,N

σ
√
hN
− M(n−k∗)

σ
√
hN

≤ −x(1 + ξ)
�

P (τ1 > k∗)

=: I1(N) + I2(N).

First, note that the same arguments as in the proof of Lemma 5.1.3 show that

lim sup
N→∞

I1(N)

= lim sup
N→∞

P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1,
Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

> −x(1 + ξ)

�
≤ lim sup

N→∞
P

�
Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

> −x(1 + ξ)

�
and therefore the central limit theorem implies

lim sup
N→∞

I1(N) ≤ Φ(x(1 + ξ)). (5.1.39)

Next, we show that I2(N) tends to zero. It holds that

I2(N) =

Pn
k=k∗+1 P

�
τ1 = k,

Mn,N

σ
√
hN
− M(n−k∗)

σ
√
hN

≤ −x(1 + ξ)
�

P (τ1 > k∗)

and since

lim inf
N→∞

P (τ1 > k∗) ≥ 1− α,
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it suffices to consider the numerator of I2(N). We get

nX
k=k∗+1

P

�
τ1 = k,

Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

≤ −x(1 + ξ)

�
=

nX
k=k∗+1

P

�
τ1 = k,

Mk,N

σ
√
hN

> c1,
Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

≤ −x(1 + ξ)

�
≤

nX
k=k∗+1

P

�
Mk,N

σ
√
hN

> c1,
Mn,N

σ
√
hN

− M (n− k∗)

σ
√
hN

≤ −x(1 + ξ)

�
≤

nX
k=k∗+1

P

�
Mn,N −Mk,N

σ
√
hN

− M (n− k)

σ
√
hN

≤ −x(1 + ξ)− c1 +
M (k − k∗)

σ
√
hN

�
≤

nX
k=k∗+1

P

�Pn
j=k+1 εj+hN

−Pn−hN
j=k−hN+1 εj+hN

σ
√
hN

≤ −xξ − M (n− k)

σ
√
hN

�
=

nX
k=k∗+1

P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ −xξσ

È
hN− M (n− k)

�
,

(5.1.40)

where we have used (N large)

c1 ≥ −x+
M (n− k∗)

σ
√
hN

.

Now assume x > 0. The Markov inequality yields

P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ −xξσ

È
hN− M (n− k)

�
≤ P

������� nX
j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN

������ ≥ xξσ
È
hN+ M (n− k)

�

≤
E
���Pn

j=k+1 εj+hN
−Pn−hN

j=k−hN+1 εj+hN

��� ν�
xξσ

√
hN+ M (n− k)

�ν .

By Rosenthal’s inequality (see Rosenthal, Theorem 3, 1970) there exists a constant
C1 > 0, only depending on ν, such that

E

������ nX
j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN

������
ν

≤ C1 max
§�

2(n− k)σ2
�ν/2

, 2(n− k) E |ε1|ν
ª
.

Hence

E

������ nX
j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN

������
ν

≤ C2(n− k)ν/2
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for some suitable C2 > 0, independent of n and k, and for the last term in (5.1.40) it
holds

nX
k=k∗+1

P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ −xξσ

È
hN− M (n− k)

�
≤ C2

nX
k=k∗+1

(n− k)ν/2�
xξσ

√
hN+ M (n− k)

�ν
= C2

bδk∗cX
k=1

(bδk∗c − k)ν/2�
xξσ

√
hN+ M (bδk∗c − k)

�ν
= C2

bδk∗c−1X
k=1

kν/2�
xξσ

√
hN+ M k

�ν
=
C2

Mν

bδk∗c−1X
k=1

kν/2�
C3

√
hN + k

�ν ,
where

C3 =
xξσ

M
.

Now
bδk∗c−1X
k=1

kν/2�
C3

√
hN + k

�ν ≤ bδk∗c+bC3
√
hN c−1X

k=bC3
√
hN c+1

(k − bC3

√
hNc)ν/2

kν

≤
∞X

k=bC3
√
hN c+1

1

kν/2
→ 0 as N →∞

and we see that in case of x > 0

lim
N→∞

I2(N) = 0 as N →∞. (5.1.41)

Next, we assume x < 0. Since δk∗ '
È
hN log(N/hN) as N →∞, it follows that for

sufficiently large N it holds that

M (n− k) ≥ 2|x|ξσ
È
hN .

Hence (N large)

P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ −xξσ

È
hN− M (n− k)

�
≤ P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ xξσ

È
hN

�
≤ P

������� nX
j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN

������ ≥ |x|ξσ
È
hN

�
.
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Similar computations as before show that for (5.1.40) now it holds

nX
k=k∗+1

P

�
nX

j=k+1

εj+hN
−

n−hNX
j=k−hN+1

εj+hN
≤ −xξσ

È
hN− M (n− k)

�
≤ C2�

xξσ
√
hN
�ν bδk∗c−1X

k=1

kν/2 → 0 as N →∞,

where the convergence is a consequence of

bδk∗c−1X
k=1

kν/2 '
 s

hN log
N

hN

!1+ν/2

as N →∞

and ν > 1 + ν/2. So, for x < 0 also holds

lim
N→∞

I2(N) = 0 as N →∞ (5.1.42)

and the lemma follows for all x 6= 0 by (5.1.39), (5.1.41) and (5.1.42) as ξ → 0. The
continuity of the standard normal distribution function now implies that the lemma also
holds for x = 0.

�

Theorem 5.1.1 now follows obviously from Lemma 5.1.3, Lemma 5.1.4 and the defi-
nition of n.

Proof of Lemma 5.1.1

Theorem 5.1.1 implies that for any sequence {xN}N=1,2,..., with xN → −∞ as N →∞,
it holds that

lim
N→∞

P

�
(τ1 − k∗)− αN

βN
≤ xN

������ τ1 > k∗

�
= 0,

hence

lim
N→∞

P

�
τ1 − (c1(α,N) + xN)βN ≤ k∗

������ τ1 > k∗

�
= 0.

The choice xN = 1− c1(α,N) yields

lim
N→∞

P

�
τ1 − βN ≤ k∗

������ τ1 > k∗

�
= 0
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and since

βN ≥
σ
√
hN

Mmax

= λN ,

it follows that

lim
N→∞

P

�
τ1 − λN ≤ k∗

������ τ1 > k∗

�
= 0. (5.1.43)

Now

P
�
| M̂N− M | > ε

Nγ

���� τ1 > k∗
�

= P
�
| M̂N− M | > ε

Nγ
, τ1 − λN ≤ k∗

���� τ1 > k∗
�

+ P
�
| M̂N− M | > ε

Nγ
, τ1 − λN > k∗

���� τ1 > k∗
�

:= I1(N) + I2(N)

Obviously, (5.1.43) implies

lim
N→∞

I1(N) = 0. (5.1.44)

For the second term we have

I2(N) =
P
�
| M̂N− M | > ε

Nγ , τ1 − λN > k∗
�

P (τ1 > k∗)

and since

lim inf
N→∞

P (τ1 > k∗) ≥ 1− α

we only consider the numerator. Note that

lim sup
N→∞

P
�
| M̂N− M | > ε

Nγ
, k∗ + λN < τ1

�
= lim sup

N→∞
P
�
| M̂N− M | > ε

Nγ
, k∗ + λN < τ1 ≤ N

�
,

since the underlying test has asymptotic power one.

It holds that§
| M̂N− M | > ε

Nγ
, k∗ + λN < τ1 ≤ N

ª
⊂

8<: max
k∗+λN<k≤N

Nγ

λN

������ kX
i=k−λN+1

εi+hN

������ > ε

9=; .
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Applying the strong invariance principle according to Komlós, Major and Tusnády
(1975,1976) and Major (1976) we can find a Wiener process {W (t), t ≥ 0}, such that

max
k∗+λN<k≤N

Nγ

λN

������ kX
i=k−λN+1

εi+hN

������
− max

k∗+λN<k≤N

Nγ

λN
|W (k + hN)−W (k + hN − λN)| = ooo

 
Nγ(N + hN)1/ν

λN

!
a.s.

as N →∞ and since λN '
√
hN as N →∞, we see that

Nγ(N + hN)1/ν

λN
→ 0 as N →∞.

Next, Theorem 1.2.1 of Csörgő and Révész (1981) implies

max
k∗+λN<k≤N

Nγ

λN
|W (k + hN)−W (k + hN − λN)| = OOO

 
Nγ
√

logN√
λN

!
a.s.

as N →∞ and since γ < φ− 1/ν, it follows that

Nγ
√

logN√
λN

→ 0 as N →∞.

But then

lim
N→∞

I2(N) = 0. (5.1.45)

and Lemma 5.1.1 follows from (5.1.44) and (5.1.45).

Proof of Theorem 5.1.2

In view of Theorem 5.1.1 it suffices to show that for any ε > 0 it holds that

lim
N→∞

P

������(τ1 − k∗)− αN
βN

− (τ1 − k∗)− α̂N

β̂N

����� > ε

������ τ1 > k∗

�
= 0. (5.1.46)
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We have

P

������(τ1 − k∗)− αN
βN

− (τ1 − k∗)− α̂N

β̂N

����� > ε

������ τ1 > k∗

�
≤ P

������(β̂N − βN)(τ1 − k∗)

βN β̂N

����� > ε

������ τ1 > k∗

�
+ P

������ α̂N − αN

β̂N

����� > ε

������ τ1 > k∗

�
+ P

������αN(β̂N − βN)

βN β̂N

����� > ε

������ τ1 > k∗

�
=: I1(N) + I2(N) + I3(N).

Before we can consider I1(N), we need some preliminaries. For any real x we choose
n according to (5.1.34). Theorem 5.1.1 implies that

Φ(x) = lim
N→∞

P (τ1 ≤ n | τ1 > k∗)

= lim
N→∞

P

�
τ1 − k∗

αN
≤ n− k∗

αN

������ τ1 > k∗

�
= lim

N→∞
P

�
τ1 − k∗

αN
≤ 1 +

x

c1

������ τ1 > k∗

�
,

hence it holds, for all ε > 0

lim
N→∞

P

������τ1 − k∗

αN
− 1

����� ≤ ε

������ τ1 > k∗

�
= 1. (5.1.47)

Now, taking into account (5.1.47), we get

lim sup
N→∞

I1(N) = lim sup
N→∞

P

������ 1− βN

β̂N

!
τ1 − k∗

βN

����� > ε

������ τ1 > k∗

�
= lim sup

N→∞
P

������1− M̂N

M

����� �����τ1 − k∗

αN

����� c1 > ε

������ τ1 > k∗

�
≤ lim sup

N→∞
P

����M −M̂N

��� c1
M
>
ε

2

������ τ1 > k∗

�
.

Since

c1(α,N) = OOO
�È

logN
�

as N →∞,



5.1. ONE-SIDED ALTERNATIVES 111

display (5.1.12) shows that

lim
N→∞

I1(N) = 0. (5.1.48)

Moreover, (5.1.12) also implies

lim
N→∞

I2(N) = lim
N→∞

P

������1− βN

β̂N

����� c1 > ε

������ τ1 > k∗

�
= lim

N→∞
P

����M −M̂N

��� c1
M
> ε

������ τ1 > k∗

�
= 0 (5.1.49)

and

lim
N→∞

I3(N) = 0. (5.1.50)

Hence (5.1.46) holds and the theorem follows.

Proof of Theorem 5.1.3

We start with some technical preliminaries. Let ε > 0. We define the stoping times ηl
and ηu as

ηl = ηl(ε, α,N) = inf
n
1 ≤ k ≤ N : Mk,N > (c1(α,N)− ε)σ

È
hN

o
(5.1.51)

and

ηu = ηu(ε, α,N) = inf
n
1 ≤ k ≤ N : Mk,N > (c1(α,N) + ε)σ

È
hN

o
. (5.1.52)

Additionally, for any real x we set

δl = δl(ε, x, α,N) =
((c1(α,N)− ε) + (x− ε))σ

√
hN

M k∗
, (5.1.53)

δu = δu(ε, x, α,N) =
((c1(α,N) + ε) + (x+ ε))σ

√
hN

M k∗
, (5.1.54)

nl = nl(ε, x, α,N) = k∗ + bδlk∗c, (5.1.55)

nu = nu(ε, x, α,N) = k∗ + bδuk∗c. (5.1.56)

Lemma 5.1.5 With the notation of (5.1.51)–(5.1.56) for any real x and ε > 0 it holds
that

lim
N→∞

P (ηl ≤ nl | ηl > k∗) = Φ(x− ε) (5.1.57)
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and

lim
N→∞

P (ηu ≤ nu | ηu > k∗) = Φ(x+ ε). (5.1.58)

Furthermore, the limits are completely determined by the alarms after the change, i.e.

lim
N→∞

P (k∗ < ηl ≤ nl) = Φ(x− ε) (5.1.59)

and

lim
N→∞

P (k∗ < ηu ≤ nu) = Φ(x+ ε). (5.1.60)

Proof: The proofs of (5.1.57) and (5.1.58) are just a repetition of the arguments, used
to show Theorem 5.1.1.

(5.1.59) and (5.1.60) follow by (5.1.57) and (5.1.58), since the extremes of the the
detectors before and after the change are asymptotically independent (cf. the proof of
Lemma 5.1.3) and it holds that

lim
N→∞

P (ηl > k∗) = 1− αl for some 0 < αl < 1

and

lim
N→∞

P (ηu > k∗) = 1− αu for some 0 < αu < 1,

which can be seen utilizing the same arguments as those used in the proof of Lemma
5.1.6 below.

�

Lemma 5.1.6 Let τ1 and τ̂1 be defined as in (5.1.4) and (5.1.18), respectively. Fur-
thermore, assume that k∗ satisfies (5.1.3). Then it holds that

lim
N→∞

P (τ̂1 > k∗) = lim
N→∞

P (τ1 > k∗) = 1− α̃ for some 0 < α̃ < 1. (5.1.61)

Proof: First, note that

lim inf
N→∞

P (τ̂1 > k∗) = lim inf
N→∞

P (N ≥ τ̂1 > k∗)

and

lim sup
N→∞

P (τ̂1 > k∗) = lim sup
N→∞

P (N ≥ τ̂1 > k∗),

since the underlying test has asymptotic power one.
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Similar arguments as in the proof of Lemma 5.1.3 show that

lim inf
N→∞

P (τ̂1 > k∗)

= lim inf
N→∞

P

 
max

1≤k≤k∗
M̂k,N

σ̂mN

√
hN

≤ c1, max
k∗<k≤N

M̂k,N

σ̂mN

√
hN

> c1

!
= lim inf

N→∞
P

 
max

1≤k≤k∗
M̂k,N

σ̂mN

√
hN

≤ c1

!
P

 
max

k∗<k≤N

M̂k,N

σ̂mN

√
hN

> c1

!

and

lim sup
N→∞

P (τ̂1 > k∗)

= lim sup
N→∞

P

 
max

1≤k≤k∗
M̂k,N

σ̂mN

√
hN

≤ c1, max
k∗<k≤N

M̂k,N

σ̂mN

√
hN

> c1

!
= lim sup

N→∞
P

 
max

1≤k≤k∗
M̂k,N

σ̂mN

√
hN

≤ c1

!
P

 
max

k∗<k≤N

M̂k,N

σ̂mN

√
hN

> c1

!
.

Now the proof of Theorem 1.1.4 implies

lim
N→∞

P

 
max

k∗<k≤N

M̂k,N

σ̂mN

√
hN

> c1

!
= 1,

hence it suffices to show that

lim
N→∞

P

 
max

1≤k≤k∗
M̂k,N

σ̂mN

√
hN

≤ c1

!
= 1− α̃. (5.1.62)

The parametrization of k∗ and the proof of Theorem 1.1.3 show that

ak∗ max
1≤k≤k∗

M̂k,N

σ̂mN

√
hN

− bk∗
D−→ G as N →∞,

where

ak∗ =

s
2 log

k∗

hN
, (5.1.63)

bk∗ = 2 log
k∗

hN
+

1

2
log log

k∗

hN
− 1

2
log π (5.1.64)

and G denotes a Gumbel-distributed random variable.
Finally, elementary calculations yield

ak∗c1 − bk∗ → q̃ as N →∞

and we see that (5.1.62) holds.
It is obvious that the same calculations also hold for τ1, hence the proof of the lemma

is complete.
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�

Lemma 5.1.7 Let τ1 and τ̂1 be defined as in (5.1.4) and (5.1.18), respectively. Further-
more, assume that k∗ satisfies (5.1.3). For any real x we define n = n(x, α,N) according
to (5.1.34). Then

lim
N→∞

P (k∗ < τ̂1 ≤ n) = lim
N→∞

P (k∗ < τ1 ≤ n) (5.1.65)

Proof: Assume for the moment that

lim
N→∞

P

�
max
k∗<k≤n

M̂k,N

σ̂mN

√
hN

> c1

�
= lim

N→∞
P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1

�
(5.1.66)

holds. Then the asymptotic independence of the maxima of the detectors before and
after the change (see the proof of Lemma 5.1.3), together with the proof of Lemma 5.1.6
yields

lim
N→∞

P (k∗ < τ̂1 ≤ n) = (1− α̃) lim
N→∞

P

�
max
k∗<k≤n

M̂k,N

σ̂mN

√
hN

> c1

�
= (1− α̃) lim

N→∞
P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1

�
= lim

N→∞
P (k∗ < τ1 ≤ n).

To see that (5.1.66) holds, first note that for sufficiently large N we have

P

�
max
k∗<k≤n

M̂k,N

σ̂mN

√
hN

> c1

�
= P

�
σ

σ̂mN

max
k∗<k≤n

Pk
i=k−hN+1(Xi+mN

− µ)

σ
√
hN

−
È
hN

µ̂mN
− µ

σ̂mN

> c1

�
= P

�
σ

σ̂mN

max
k∗<k≤n

Pk
i=k−hN+1(Xi+hN

− µ)

σ
√
hN

−
È
hN

µ̂mN
− µ

σ̂mN

> c1

�
,

where the last equation follows by the stationarity of the innovations and the fact that
(k∗ − hN)/mN →∞ as N →∞. Hence

P

�
max
k∗<k≤n

M̂k,N

σ̂mN

√
hN

> c1

�
= P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1
σ̂mN

σ
+
È
hN

µ̂mN
− µ

σ

�
(5.1.67)

For any fixed ε > 0, Lemma 5.1.5 and the definition of nl, nu imply

lim inf
N→∞

P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1 − ε

�
≥ lim inf

N→∞
P

�
max

k∗<k≤nl

Mk,N

σ
√
hN

> c1 − ε

�
= Φ(x− ε) (5.1.68)
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and

lim sup
N→∞

P

�
max
k∗<k≤n

Mk,N

σ
√
hN

> c1 − ε

�
≤ lim sup

N→∞
P

�
max

k∗<k≤nu

Mk,N

σ
√
hN

> c1 − ε

�
= Φ(x+ ε). (5.1.69)

Now (5.1.17), (5.1.20) and (5.1.21) show that�
c1
σ̂mN

σ
+
È
hN

µ̂mN
− µ

σ

�
− c1 = oooP (1) as N →∞ (5.1.70)

and we see that (5.1.66) follows by (5.1.67)–(5.1.70), if we let ε→ 0.

�

Theorem 5.1.3 now follows by Lemma 5.1.6 and Lemma 5.1.7.

Proof of Lemma 5.1.2

Theorem 5.1.3 implies that (cf. the proof of Lemma 5.1.1)

lim
N→∞

P

�
τ̂1 − bβN ≤ k∗

������ τ̂1 > k∗

�
= 0

and since

bβN ≥ σ̂mN

√
hN

Mmax

≥ λ̂N ,

it follows that

lim
N→∞

P

�
τ̂1 − λ̂N ≤ k∗

������ τ̂1 > k∗

�
= 0.

Hence, in the decomposition

P
�
| çMN− M | > ε

N ζ

���� τ̂1 > k∗
�

= P
�
| çMN− M | > ε

N ζ
, τ̂1 − λ̂N ≤ k∗

���� τ̂1 > k∗
�

+ P
�
| çMN− M | > ε

N ζ
, τ̂1 − λ̂N > k∗

���� τ̂1 > k∗
�

:= I1(N) + I2(N)

only I2(N) has to be considered.
Since furthermore

lim inf
N→∞

P (τ̂1 > k∗) ≥ 1− α
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and the underlying test has asymptotic power one, we can focus on

lim sup
N→∞

P
�
| çMN− M | > ε

N ζ
, k∗ + λ̂N < τ̂1 ≤ N

�
.

Now note that§
| çMN− M | > ε

N ζ
, k∗ + λ̂N < τ̂1 ≤ N

ª
⊂

8<: max
k∗+λ̂N<k≤N

N ζ

λ̂N

������ kX
i=k−λ̂N+1

εi+mN

������ > ε

9=; .
It follows by (5.1.2), (5.1.17) and (5.1.21) that

lim
N→∞

P
�
λN −Nφ(1−ϑ) ≤ λ̂N ≤ λN +Nφ(1−ϑ)

�
= 1,

which implies

lim sup
N→∞

P

�
max

k∗+λ̂N<k≤N

N ζ

λ̂N

������ kX
i=k−λ̂N+1

εi+mN

������ > ε

�

= lim sup
N→∞

P

�
max

k∗+λ̂N<k≤N

N ζ

λ̂N

������ kX
i=k−λ̂N+1

εi+mN

������ > ε, | λ̂N − λN | ≤ Nφ(1−ϑ)

�
.

Obviously8<: max
k∗+λ̂N<k≤N

N ζ

λ̂N

������ kX
i=k−λ̂N+1

εi+mN

������ > ε, | λ̂N − λN | ≤ Nφ(1−ϑ)

9=;
⊂

8<: N ζ

λN −Nφ(1−ϑ)
max

k∗<k≤N
max

|λ−λN |≤Nφ(1−ϑ)

������ kX
i=k−λ+1

εi+mN

������ > ε

9=; .
The strong invariance principle according to Komlós, Major and Tusnády (1975,1976)
and Major (1976) shows that there exists a Wiener-process {W (t), t ≥ 0}, such that

lX
i=1

εi −W (l) = ooo
�
l1/ν

�
a.s. as l→∞,

hence

N ζ

λN −Nφ(1−ϑ)
max

k∗<k≤N
max

|λ−λN |≤Nφ(1−ϑ)

������ kX
i=k−λ+1

εi+mN

������
− N ζ

λN −Nφ(1−ϑ)
max

k∗<k≤N
max

|λ−λN |≤Nφ(1−ϑ)
|W (k +mN)−W (k +mN − λ)|

= ooo

 
N ζ(N +mN)1/ν

λN −Nφ(1−ϑ)

!
a.s. as N →∞.
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Since

(N +mN)1/ν ∼ N1/ν as N →∞,

λN −Nφ(1−ϑ) ∼ Nφ as N →∞

and ζ < φ− 1/ν we see that

N ζ(N +mN)1/ν

λN −Nφ(1−ϑ)
∼ N ζN1/ν

Nφ
→ 0 as N →∞.

Finally, Theorem 1.2.1 of Csörgő and Révész (1981) implies

N ζ

λN −Nφ(1−ϑ)
max

k∗<k≤N
max

|λ−λN |≤Nφ(1−ϑ)
|W (k +mN)−W (k +mN − λ)|

= OOO

 
N ζ
√

logN√
λN

!
a.s. as N →∞

and since ζ < φ− 1/ν, it follows by the definition of λN that

N ζ
√

logN√
λN

→ 0 as N →∞.

But then also

lim
N→∞

I2(N) = 0

and Lemma 5.1.2 follows.

Proof of Theorem 5.1.4

If we show that, for any ε > 0, it holds that

lim
N→∞

P

������(τ̂1 − k∗)− bαNbβN − (τ̂1 − k∗)− æαNæβN
����� > ε

������ τ̂1 > k∗

�
= 0, (5.1.71)

then Theorem 5.1.4 follows by Theorem 5.1.3.
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We have

P

������(τ̂1 − k∗)− bαNbβN − (τ̂1 − k∗)− æαNæβN
����� > ε

������ τ̂1 > k∗

�
≤ P

������( æβN − bβN)(τ̂1 − k∗)bβN æβN
����� > ε

������ τ̂1 > k∗

�
+ P

������ æαN − bαNæβN
����� > ε

������ τ̂1 > k∗

�
+ P

������ bαN( æβN − bβN)bβN æβN
����� > ε

������ τ̂1 > k∗

�
=: I1(N) + I2(N) + I3(N).

We only consider I1(N) in detail, since all three terms finally depend on the same
expression.

Theorem 5.1.3 implies that for any ε > 0 we have

lim
N→∞

P

������ τ̂1 − k∗bαN − 1

����� ≤ ε

������ τ̂1 > k∗

�
= 1. (5.1.72)

Now, with (5.1.72) we get

lim sup
N→∞

I1(N) = lim sup
N→∞

P

������ 1−
bβNæβN
!
τ̂1 − k∗bβN

����� > ε

������ τ̂1 > k∗

�
= lim sup

N→∞
P

������1− çMN

M

����� ����� τ̂1 − k∗æαN
����� c1 > ε

������ τ̂1 > k∗

�
≤ lim sup

N→∞
P

����M −M̂N

��� c1
M
>
ε

2

������ τ1 > k∗

�

and since

c1(α,N) = OOO
�È

logN
�

as N →∞,

it follows by (5.1.28) that

lim
N→∞

I1(N) = 0.

By similar computations we obtain limN→∞ I2(N) = 0 and also limN→∞ I3(N) = 0,
hence the proof of Theorem 5.1.4 is complete.



Appendix A

Covariances

In this chapter we consider the covariance function of the process {UN(t)}t≥0, laid down
in (2.1.45).

Before we start, we provide a simple but useful lemma.

Lemma A.0.1 Let {pn}n=0,1,... be a sequence of real numbers. Then for all q = 0, 1, . . .
and n = 1, 2, . . . it holds that

n−1X
i,j=0

p|i−j+q| =
n−1X
j=0

(n− j)pq+j +
min{n−1,q}X

j=1

(n− j)pq−j +
n−1X
j=q+1

(n− j)pj−q (A.0.1)

Proof: The proof carried out via induction over n. Obviously assertion (A.0.1) holds
for n = 1. Assuming that it also holds for n− 1 we get

nX
i,j=0

p|i−j+q| =
n−1X
i,j=0

p|i−j+q| +
nX
j=0

p|n−j+q| +
n−1X
i=0

p|i−n+q|

=
n−1X
j=0

(n− j)pq+j +
min{n−1,q}X

j=1

(n− j)pq−j +
n−1X
j=q+1

(n− j)pj−q

+
nX
j=0

pq+j +
n−1X

i=max{0,n−q}
pi−n+q +

n−q−1X
i=0

pn−i−q

=
n−1X
j=0

(n− j)pq+j +
min{n−1,q}X

j=1

(n− j)pq−j +
n−1X
j=q+1

(n− j)pj−q

+
nX
j=0

pq+j +
min{n,q}X
j=1

pq−j +
nX

j=q+1

pj−q

=
nX
j=0

(n+ 1− j)pq+j +
min{n,q}X
j=1

(n+ 1− j)pq−j +
nX

j=q+1

(n+ 1− j)pj−q,

showing (A.0.1). �
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Remark A.0.2 In case of q = 0 assertion (A.0.1) can be stated as

n−1X
i,j=0

p|i−j| = np0 + 2
n−1X
j=1

(n− j)pj. (A.0.2)

We are now prepared to carry out the so called elementary calculations.

Since obviously {UN(t)}t≥0 is a strictly stationary process, we can assume that

UN(t) =
∞X
j=0

wjVt−j,N for all 0 ≤ t <∞, (A.0.3)

where

Vt,N =
1√
hN

σ(W (t)−W (t− hN)) for all −∞ < t <∞ (A.0.4)

and {W (t),−∞ < t <∞} is a two-sided Wiener process.

A.1 The variance of {UN(t)}
Lemma A.1.1 For all natural numbers N the variance of {UN(t)}t≥0 is given by

VarUN(t) = σ2
N =

∞X
k=0

w2
k + 2

∞X
k=0

wk

�
hN−1X
j=1

hN − j

hN
wk+j

�
. (A.1.1)

Furthermore, it holds that

1− σ2
N = OOO

�
1

hγN

�
as N →∞, (A.1.2)

where γ = min{1−φ, ψ} with φ and ψ being defined as in (2.1.10) and (2.1.11), respec-
tively .

Proof: Let {Nt}−∞<t<∞ and {Pt}−∞<t<∞ be defined as

Nt = W (t)−W (t− 1) for all −∞ < t <∞ (A.1.3)

and

Pt =
∞X
j=0

wjNt−j for all −∞ < t <∞. (A.1.4)
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Then

UN(t) =
∞X
j=0

wj
1√
hN

hN−1X
i=0

Nt−i−j

=
hN−1X
i=0

1√
hN

∞X
j=0

wjNt−i−j

=
hN−1X
i=0

1√
hN

Pt−i for all −∞ < t <∞,

and for all real t it holds that

E (UN(t)UN(t)) =E (UN(0)UN(0))

=E

�
hN−1X
i=0

1√
hN

P−i

hN−1X
j=0

1√
hN

P−j

�
=

1

hN

hN−1X
i=0

hN−1X
j=0

E (P−iP−j).

The definition of {Pt,−∞ < t <∞} yields

E (P−iP−j) = E (P0P|i−j|) =
∞X
k=0

wkwk+|i−j| for all i, j = 0, 1, . . . ,

hence

E (UN(t)UN(t)) =
1

hN

∞X
k=0

wk

hN−1X
i=0

hN−1X
j=0

wk+|i−j|

and applying (A.0.2) we get

E (UN(t)UN(t)) =
1

hN

∞X
k=0

wk

�
hNwk + 2

hN−1X
j=0

(hN − j)wk+j

�
=

∞X
k=0

w2
k + 2

∞X
k=0

wk

hN−1X
j=1

hN − j

hN
wk+j,

what is (A.1.1).
If N →∞, (A.1.2) follows immediately by (2.1.8)–(2.1.11), since

1− σ2
N =

 ∞X
k=0

wk

!2

− σ2
N

=
∞X
k=0

w2
k + 2

∞X
k=0

wk
∞X
j=1

wk+j −

�
∞X
k=0

w2
k + 2

∞X
k=0

wk

hN−1X
j=1

hN − j

hN
wk+j

�
=2

∞X
k=0

wk

�
hN−1X
j=1

j

hN
wk+j +

∞X
j=hN

wk+j

�
.

�
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A.2 The covariance function of {UN(t)}
In this section we provide the covariance function of {UN(t)}t≥0. In view of Lemma
2.1.4 we are finally interested in the covariance function of the time-transformed process
{ŨN( t̃ )}t≥0, defined as

ŨN( t̃ ) := UN( t̃hN) for all −∞ < t̃ <∞, (A.2.1)

hence we assume in the following that the time parameters s and t are chosen as

s = s̃hN and t = t̃hN for some −∞ < s̃, t̃ <∞. (A.2.2)

Furthermore, we use the following notation

q = b|s|c and ζ = |s| − q. (A.2.3)

First, we consider the covariance function of {Pt}−∞<t<∞, defined in (A.1.4). Since

E (PtPt+s) = E (P0P|s|) for all −∞ < s, t <∞,

it suffices to consider E (P0Ps) for some s ≥ 0. We have

E (P0Ps) = E

�
∞X
j=0

wjN−j

∞X
i=0

wiNs−i

�
=

∞X
j=0

∞X
i=0

wjwi E (N−jNs−i)

and since for all i, j = 0, 1, . . .

E (N−jNs−i) =

8>><>>:
1− ζ , i = j + q,

ζ , i = j + q + 1,

0 , else,

we get

E (P0Ps) =
∞X
j=0

wj(wj+qE(N−jNs−(j+q)) + wj+q+1E(N−jNs−(j+q+1)))

=
∞X
j=0

wj(wj+q(1− ζ) + wj+q+1ζ)

=
∞X
j=0

wj(wj+q + ζ(wj+q+1 − wj+q)). (A.2.4)
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Next, note that (0 ≤ s = q + ζ)

E (UN(t)UN(t+ s)) =E (UN(0)UN(s))

=
1

hN

hN−1X
i=0

hN−1X
j=0

E (P−iPs−j)

=
1

hN

hN−1X
i=0

hN−1X
j=0

E(P0Pi−j+s)

=
1

hN

hN−1X
i=0

hN−1X
j=0

E(P0P|i−j+q+ζ|)

and since

|i− j + q + ζ| =

8<:|i− j + q|+ ζ , j ≤ q + i,

|i− j + q + 1|+ (1− ζ) , j > q + i,

(A.2.4) shows that

E (UN(t)UN(t+ s))

=
1

hN

hN−1X
i=0

�
min{q+i,hN−1}X

j=0

E(P0P|i−j+q|+ζ) +
hN−1X

j=q+i+1

E(P0P|i−j+q+1|+(1−ζ))

�
=

1

hN

hN−1X
i=0

�
min{q+i,hN−1}X

j=0

∞X
k=0

wk(wk+|i−j+q| + ζ(wk+|i−j+q|+1 − wk+|i−j+q|))

+
hN−1X

j=q+i+1

∞X
k=0

wk(wk+|i−j+q+1| + (1− ζ)(wk+|i−j+q+1|+1 − wk+|i−j+q+1|))

�
=

1

hN

hN−1X
i=0

�
min{q+i,hN−1}X

j=0

∞X
k=0

wk(wk+|i−j+q| + ζ(wk+|i−j+q|+1 − wk+|i−j+q|))

+
hN−1X

j=q+i+1

∞X
k=0

wk(wk+|i−j+q| + ζ(wk+|i−j+q+1| + wk+|i−j+q|))

�
=

1

hN

hN−1X
i=0

hN−1X
j=0

∞X
k=0

wk(wk+|i−j+q| + ζ(wk+|i−j+q+1| + wk+|i−j+q|)). (A.2.5)



124 APPENDIX A. COVARIANCES

Now applying (A.0.1) on (A.2.5) yields the intermediate result

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
hN−1X
j=0

(hN−j)wk+q+j +
min{hN−1,q}X

j=1

(hN−j)wk+q−j +
hN−1X
j=q+1

(hN − j)wk−q+j

+ ζ

��
hN−1X
j=0

(hN − j)wk+(q+1)+j+
min{hN−1,q+1}X

j=1

(hN−j)wk+(q+1)−j +
hN−1X

j=(q+1)+1

(hN−j)wk−(q+1)+j

�
−

�
hN−1X
j=0

(hN − j)wk+q+j +
min{hN−1,q}X

j=1

(hN − j)wk+q−j +
hN−1X
j=q+1

(hN − j)wk−q+j

���
.

(A.2.6)

A further simplification of this expression depends on q. We have to consider the
cases q = 0, 0 < q < hN − 1 and hN − 1 ≤ q.

First, we assume q = 0. Note that then 0 ≤ s = ζ < 1, hence 0 ≤ s̃ < 1/hN .
Reformulating (A.2.6) yields

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
hNwk + 2

hN−1X
j=1

(hN − j)wk+j

+ ζ

��
hN−1X
j=0

(hN − j)wk+j+1 + (hN − 1)wk +
hN−1X
j=2

(hN − j)wk+j−1

�
−

�
hNwk + 2

hN−1X
j=1

(hN − j)wk+j

���
=

1

hN

∞X
k=0

wk

�
hNwk + 2

hN−1X
j=1

(hN − j)wk+j + ζ
hN−1X
j=0

(wk+j+1 − wk+j)

�
=

∞X
k=0

w2
k + 2

∞X
k=0

wk

�
hN−1X
j=1

hN−j
hN

wk+j

�
− ζ

1

hN

 ∞X
k=0

w2
k −

∞X
k=0

wkwk+hN

!
.

(A.2.7)

Next, we treat the case 0 < q < hN − 1, equivalent to 1/hN ≤ s̃ ≤ (hN − 1)/hN .
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Then (A.2.6) can be stated as

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
hN−1X
j=0

(hN − j)wk+q+j +
qX
j=1

(hN − j)wk+q−j +
hN−1X
j=q+1

(hN − j)wk−q+j

+ ζ

��
hN−1X
j=0

(hN−j)wk+(q+1)+j +
q+1X
j=1

(hN−j)wk+(q+1)−j +
hN−1X

j=(q+1)+1

(hN−j)wk−(q+1)+j

�
−

�
hN−1X
j=0

(hN − j)wk+q+j +
qX
j=1

(hN − j)wk+q−j +
hN−1X
j=q+1

(hN − j)wk−q+j

���
=

1

hN

∞X
k=0

wk

�
hN+q−1X
j=q

(hN+q−j)wk+j +
q−1X
j=0

(hN−q+j)wk+j +
hN−q−1X
j=1

(hN−q−j)wk+j

+ ζ

��
hNX
j=1

(hN−j+1)wk+q+j +
qX
j=0

(hN−j−1)wk+q−j +
hN−2X
j=q+1

(hN−j−1)wk−q+j

�
−

�
hN−1X
j=0

(hN − j)wk+q+j +
qX
j=1

(hN − j)wk+q−j +
hN−1X
j=q+1

(hN − j)wk−q+j

���

and summing up matching terms we obtain

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
hN+q−1X
j=q

(hN+q−j)wk+j +
q−1X
j=0

(hN−q+j)wk+j +
hN−q−1X
j=1

(hN−q−j)wk+j

+ ζ

�
hNX
j=1

wk+q+j −
qX
j=0

wk+q−j −
hN−1X
j=q+1

wk−q+j

��
=

1

hN

∞X
k=0

wk

�
hN+q−1X
j=q

(hN+q−j)wk+j +
q−1X
j=0

(hN−q+j)wk+j +
hN−q−1X
j=1

(hN−q−j)wk+j

+ ζ

�
hN+qX
j=q+1

wk+j −
qX
j=0

wk+j −
hN−q−1X
j=1

wk+j

��
. (A.2.8)

Considering the upper bounds of the sums, we see that further splitting is required. We
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first suppose that 0 < q < hN/2 and get

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
(hN− q)wk+2

q−1X
j=1

(hN− q)wk+j+2
hN−q−1X
j=q

(hN−j)wk+j+
hN+q−1X
j=hN−q

(hN+q−j)wk+j

− ζ

�
wk + 2

qX
j=1

wk+j −
hN+qX
j=hN−q

wk+j

��
=

1

hN

∞X
k=0

wk

��
hNwk + 2

q−1X
j=1

hNwk+j + 2
hN−q−1X
j=q

(hN − j)wk+j

�
− (q + ζ)

�
wk + 2

qX
j=1

wk+j

�
+

�
hN+q−1X
j=hN−q

(hN + q − j)wk+j + 2qwk+q + ζ
hN+qX
j=hN−q

wk+j

��
=:

1

hN

∞X
k=0

wk (I1(N)− (q + ζ)I2(N) + I3(N)) (A.2.9)

We now cosider 1
hN

P∞
k=0wkI3(N) in more detail. Since q < hN/2, we get by (2.1.8) and

(2.1.11)

1

hN

hN+q−1X
j=hN−q

(hN + q − j)wk+j ≤
1

hN

∞X
j=bhN/2c

2qwj ≤
∞X

j=bhN/2c
wj = OOO

 
1

hψN

!
as N →∞.

Furthermore, by (2.1.8), (2.1.11) and 0 ≤ ζ < 1, it follows that

1

hN
ζ

hN+qX
j=hN−q

wk+j ≤
1

hN

∞X
j=bhN/2c

wj = OOO

 
1

h1+ψ
N

!
as N →∞

and for the last summand we get by (2.1.8) and (2.1.13)

1

hN
2qwk+q ≤

2

hN
qwq = OOO

�
1

hN

�
as N →∞.

Since the asymptotics above hold uniformly on the underlying domain, we get

1

hN

∞X
k=0

wkI3 = OOO

 
1

hψN

!
as N →∞, (A.2.10)

uniformly in 0 < q < hN/2.
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Combining (A.2.9) with (A.2.10) we see that for all −∞ < s, t <∞

E (UN(t)UN(t+ s))

=
∞X
k=0

w2
k +

∞X
k=0

wk

�
2
q−1X
j=1

wk+j + 2
hN−q−1X
j=q

hN − j

hN
wk+j

�
− |s| 1

hN

�
∞X
k=0

w2
k + 2

∞X
k=0

wk

qX
j=1

wk+j

�
+OOO

 
1

hψN

!
as N →∞, (A.2.11)

uniformly in 0 < b|s|c < hN/2.

Next, we assume that hN/2 ≤ q < hN − 1. (A.2.8) can be reformulated as

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
(hN− q)wk+2

hN−q−1X
j=1

(hN− q)wk+j+
q−1X

j=hN−q
(hN− q+j)wk+j+

hN+q−1X
j=q

(hN+q−j)wk+j

− ζ

�
wk + 2

hN−q−1X
j=1

wk+j +
qX

j=hN−q
wk+j −

hN+qX
j=q+1

wk+j

��
=

1

hN

∞X
k=0

wk

�
hNwk + 2

hN−q−1X
j=1

hNwk+j +
q−1X

j=hN−q
(hN + j)wk+j +

hN+q−1X
j=q

(hN − j)wk+j

− q

�
wk + 2

hN−q−1X
j=1

wk+j +
q−1X

j=hN−q
wk+j −

hN+q−1X
j=q

wk+j

�
− ζ

�
wk + 2

hN−q−1X
j=1

wk+j +
qX

j=hN−q
wk+j −

hN+qX
j=q+1

wk+j

��
.

Replacing q + ζ by s and grouping matching terms we get

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

��
hNwk + 2

hN−q−1X
j=1

hNwk+j

�
− s

�
wk + 2

hN−q−1X
j=1

wk+j

�
− s

�
q−1X

j=hN−q
wk+j −

hN+q−1X
j=q

wk+j

�
+

�
q−1X

j=hN−q
(hN + j)wk+j +

hN+q−1X
j=q

(hN − j)wk+j − ζ (2wk+q − wk+hN+q)

��
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=
1

hN

∞X
k=0

wk

��
hNwk + 2

hN−q−1X
j=1

hNwk+j

�
− s

�
wk + 2

hN−q−1X
j=1

wk+j

�
+

�
q−1X

j=hN−q
(hN − s)wk+j +

hN+q−1X
j=q

(hN + s)wk+j

�
+

�
q−1X

j=hN−q
jwk+j −

hN+q−1X
j=q

jwk+j − ζ (2wk+q − wk+hN+q)

��
=:

1

hN

∞X
k=0

wk

��
hNwk + 2

hN−q−1X
j=1

hNwk+j

�
(A.2.12)

− s

�
wk + 2

hN−q−1X
j=1

wk+j

�
+ I1(N) + I2(N)

�
(A.2.13)

We now consider 1
hN
I1(N) under the assumption hN/2 ≤ q < hN−1, which is equivalent

to hN/2 ≤ bs̃hNc < hN − 1. By (2.1.8) and (2.1.11) we see that

1

hN

q−1X
j=hN−q

(hN − s)wk+j ≤
∞X

j=bhN (1−s̃)c
(1− s̃)wj

= OOO

�
1− s̃

(bhN(1− s̃)c)ψ

�
= OOO

 
1

hψN

!
as N →∞

and

1

hN

hN+q−1X
j=q

(hN + s)wk+j ≤
1

hN

∞X
j=bhN/2c

2hNwj = OOO

 
1

hψN

!
as N →∞.

Since both asymptotics hold uniformly in hN/2 ≤ bs̃hNc < hN − 1 we obtain

1

hN
I1(N) = OOO

 
1

hψN

!
as N →∞, (A.2.14)

uniformly in hN/2 ≤ bs̃hNc < hN − 1.
Next, we investigate 1

hN
I2(N). (2.1.8) and (2.1.10) yield

1

hN

q−1X
j=hN−q

jwk+j ≤
1

hN

hNX
j=1

jwj = OOO

 
1

h1−φ
N

!
as N →∞

and

1

hN

hN+q−1X
j=q

jwk+j ≤
1

hN

2hNX
j=1

jwj = OOO

 
1

h1−φ
N

!
as N →∞.
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Since furthermore

1

hN
ζ(2wk+q − wk+hN+q) = OOO

�
1

hN

�
as N →∞,

we see that

1

hN
I2(N) = OOO

 
1

h1−φ
N

!
as N →∞, (A.2.15)

also uniformly in hN/2 ≤ bs̃hNc < hN − 1. Combining (A.2.12), (A.2.14) and (A.2.15)
we achieve the following result

E (UN(t)UN(t+ s))

=
∞X
k=0

w2
k + 2

∞X
k=0

wk

hN−q−1X
j=1

wk+j −
|s|
hN

�
∞X
k=0

w2
k + 2

∞X
k=0

wk

hN−q−1X
j=1

wk+j

�
+OOO

�
1

hγN

�
(A.2.16)

as N →∞, uniformly in hN/2 ≤ bs̃hNc < hN − 1, where γ = min{1− φ, ψ}.
The outstanding case is hN − 1 ≤ q. Under this assumption (A.2.6) can be reformu-

lated as

E (UN(t)UN(t+ s))

=
1

hN

∞X
k=0

wk

�
hN−1X
j=0

(hN − j)wk+q+j +
hN−1X
j=1

(hN − j)wk+q−j

+ ζ

��
hN−1X
j=0

(hN − j)wk+(q+1)+j +
hN−1X
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hN−1X
j=0

(hN − j)wk+q+j +
hN−1X
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(hN − j)wk+q−j
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−

�
hN+q−1X
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(hN + q − j)wk+j +
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j=q−hN+1
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���
=
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�
hN−1X
j=0

(hN − j)wk+q+j +
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�
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qX
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��
. (A.2.17)
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It follows by (2.1.8)–(2.1.11) that

1

hN

hN−1X
j=0

(hN − j)wk+q+j ≤
1

hN

hN−1X
j=0

(hN − j)w(hN−1)+j

≤
∞X

j=hN−1

wj = OOO

 
1

hψN

!
as N →∞, (A.2.18)

1

hN

hN−1X
j=1

(hN − j)wk+q−j ≤
1

hN

hN−1X
j=1

(hN − j)w(hN−1)−j

≤ 1

hN

hN−2X
j=0

(j + 1)wj = OOO

 
1

h1−φ
N

!
as N →∞,

(A.2.19)

1

hN

hN+qX
j=q+1

wk+j ≤
1

hN

∞X
j=hN

wj = OOO

 
1

h1+ψ
N

!
as N →∞, (A.2.20)

1

hN

qX
j=q−hN+1

wk+j ≤
1

hN

∞X
j=0

wj = OOO
�

1

hN

�
as N →∞ (A.2.21)

and since the results in (A.2.18)–(A.2.21) hold uniformly in hN − 1 ≤ q, we see that for
all hN − 1 ≤ |s| = |s̃hN | it holds uniformly that

Cov (UN(t), UN(t+ s)) = OOO

�
1

hγN

�
as N →∞, (A.2.22)

where γ = min{1− φ, ψ}.

A.3 The autocorrelation functions

of {UN(t)} and {ŨN(t̃ )}
With the results of the preceding sections, we finally obtain the autocorrelation functions
of {UN(t)}t≥0 and {ŨN(t̃ )}t̃≥0, denoted by rN and r̃N , respectively.

Lemma A.3.1 The autocorrelation functions rN and r̃N satisfy

rN(s) =

8>>>>>>><>>>>>>>:

1− |s|
hN

∞X
k=0

w2
k +OOO

 
1

h1+γ
N

!
, uniformly in |s| < 1,

1− |s|
hN

+OOO

�
1

hγN

�
, uniformly in 1 ≤ |s| < hN − 1,

OOO

�
1

hγN

�
, uniformly in hN − 1 ≤ |s|,

(A.3.1)
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as N →∞ and

r̃N(s̃ ) = max{0, (1− |s̃|)}+OOO

�
1

hγN

�
, uniformly, (A.3.2)

as N →∞, where γ = min{1−φ, ψ}. The parameters φ and ψ are laid down in (2.1.10)
and (2.1.11), respectively.

Proof: We first consider the case |s | = |s̃hN | < 1. With (A.1.1) and (A.2.7) we get

rN(s) =1− |s|
hN

P∞
k=0w

2
k −

P∞
k=0wkwk+hN

σ2
N

=1− |s|
hN

∞X
k=0

w2
k +

|s|
hN

(σ2
N − 1)

P∞
k=0w

2
k +

P∞
k=0wkwk+hN

σ2
N

.

Hence, by (2.1.8), (2.1.11) and (A.1.2), we see that

rN(s) =1− |s|
hN

∞X
k=0

w2
k +

|s|
hN

OOO

�
1

hγN

�
as N →∞, (A.3.3)

uniformly in |s | = |s̃hN | < 1, where γ = min{1− φ, ψ}.
Next, we assume that 1 ≤ b|s |c = b|s̃hN |c < hN/2. Then (A.2.11), (A.1.1) and

(A.1.2) imply

rN(s) =

�
1

σ2
N

�
∞X
k=0

w2
k +

∞X
k=0

2wk

�
q−1X
j=1

wk+j +
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j=q

hN − j

hN
wk+j

���
− |s |
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�
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σ2
N

∞X
k=0

w2
k + 2

∞X
k=0

wk

qX
j=1

wk+j

�
+OOO

 
1

hψN

!
= : I1(N)− |s |

hN
I2(N) +OOO

 
1

hψN

!
as N →∞, uniformly in 1 ≤ b|s |c = b|s̃hN |c < hN/2.

First, note that

1− I1(N) =
1

σ2
N

�
2

∞X
k=0

wk

�
hN−1X
j=hN−q

hN − j

hN
wk+j −

q−1X
j=1

j

hN
wk+j

��
.

Since (2.1.8) and (2.1.11) imply

hN−1X
j=hN−q

hN − j

hN
wk+j ≤

hN−1X
j=hN−q

q

hN
wk+j ≤

1

2

hN−1X
j=bhN/2c

wj = OOO

 
1

hψN

!
as N →∞
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and (2.1.8), together with (2.1.10), yields

q−1X
j=1

j

hN
wk+j ≤

1

hN

bhN/2cX
j=1

jwj = OOO

 
1

h1−φ
N

!
as N →∞,

we conclude that

I1 = 1 +OOO

�
1

hγN

�
as N →∞, (A.3.4)

uniformly in 1 ≤ b|s|c = b|s̃hN |c < hN/2, where γ = min{1− φ, ψ}.
Carrying out similar computations for I2(N), we start with

1− I2(N) =
1

σ2
N

�
2

∞X
k=0

wk

�
hN−1X
j=q+1

hN − j

hN
wk+j −

qX
j=1

j

hN
wk+j

��
.

The first inner sum is not converging uniformly to zero, but by (2.1.8) and (2.1.11)
we conclude that

hN−1X
j=q+1

hN − j

hN
wk+j ≤

hN−1X
j=b|s|c+1

wj = OOO

�
1

|s |ψ

�
as N →∞

and in the same way we get

qX
j=1

j

hN
wk+j = OOO

 
1

h1−φ
N

!
as N →∞,

uniformly in 1 ≤ b|s|c = b|s̃hN |c < hN/2.

Now |s|
hN
I2(N) can be stated as

|s|
hN

I2 =
|s|
hN

+
1

hN
OOO
�
|s|1−ψ

�
+
|s|
hN

OOO

 
1

h1−φ
N

!
as N →∞

and since b|s|c < hN/2, it follows that

|s|
hN

I2 =
|s|
hN

+OOO

�
1

hγN

�
as N →∞, (A.3.5)

uniformly in 1 ≤ b|s|c = b|s̃hN |c < hN/2.
Finally, (A.3.4) and (A.3.5) yield

rN(s) = 1− |s|
hN

+OOO

�
1

hγN

�
as N →∞, (A.3.6)

uniformly in 1 ≤ b|s|c = b|s̃hN |c < hN/2, where γ = min{1− φ, ψ}.
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Note that (A.3.6) also holds for the case hN/2 ≤ b|s|c = b|s̃hN | < hN − 1. This
follows by (A.1.1), (A.2.16) and basically the same computations as above, hence we
omit the details.

For the last case, hN − 1 ≤ b|s|c = b|s̃hN |c, we get by (A.2.22) and (A.1.2)

rN(s) = OOO

�
1

hγN

�
as N →∞, (A.3.7)

uniformly in hN−1 ≤ b|s|c = b|s̃hN |c, where γ = min{1−φ, ψ} and the proof of (A.3.1)
is complete.

Assertion (A.3.2) is an immediate consequence of (A.3.1).

�





Appendix B

A class of boundary functions for
the Wiener process

B.1 Boundary functions which are '
√
t log t

Theorem B.1.1 Let the family of functions {g(t0, t)} be defined as

g(t0, t) =

s
t log

�
t

t0
+ e

�
for all t > 0, t0 ≥ 1 (B.1.1)

and let {W (t), t ≥ 0} be a standard Wiener process. Then, for all real x it holds that

lim
t0→∞

P

�
at0 sup

1≤t<∞

W (t)

g(t0, t)
− bt0 ≤ x

�
= exp

�
−e−x

�
(B.1.2)

and

lim
t0→∞

P

�
at0 sup

1≤t<∞

|W (t)|
g(t0, t)

− bt0 ≤ x

�
= exp

�
−2e−x

�
, (B.1.3)

where

at0 =
È

2 log log t0 (B.1.4)

and

bt0 = 2 log log t0 +
1

2
log log log t0 −

1

2
log π. (B.1.5)

Proof of Theorem B.1.1

Lemma B.1.1 Let the family of functions {g(t0, t)} be defined as in (B.1.1). Then, it
holds that

sup
t0≤t<∞

W (t)

g(t0, t)
= OOOP (1) as t0 →∞. (B.1.6)
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Proof: We have

sup
t0≤t<∞

W (t)q
t log

�
t
t0

+ e
� D

= sup
t0≤t<∞

W
�
t
t0

�q
t
t0

log
�
t
t0

+ e
� = sup

1≤t<∞

W (t)È
t log (t+ e)

and the lemma follows by the law of the iterated logarithm.

�

Lemma B.1.2 Let the family of functions {g(t0, t)} be defined as in (B.1.1). Then, it
holds that

sup
t0/ log t0≤t<t0

W (t)

g(t0, t)
= OOOP (

È
log log log t0) as t0 →∞. (B.1.7)

Proof: Since

sup
t0/ log t0≤t≤t0

W (t)q
t log

�
t
t0

+ e
� ≤ sup

t0/ log t0≤t≤t0

W (t)√
t

D
= sup

1/ log t0≤t≤1

W (t)√
t
,

the law of the iterated logarithm in zero yields the lemma.

�

Lemma B.1.3 Let the family of functions {g(t0, t)} be defined as in (B.1.1). Then, it
holds that

at0

 
sup

1≤t≤t0/ log t0

W (t)√
t
− sup

1≤t≤t0/ log t0

W (t)

g(t0, t)

!
= oooP (1) as t0 →∞. (B.1.8)

Proof: First, note that
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�
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as t0 →∞,

uniformly in t ∈ [1, t0/ log t0].
Now
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and
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√
log log tq

log
�
t
t0

+ e
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1≤t≤t0/ log t0

t
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È
log log t ≤ 1

log t0

s
log log

�
t0

log t0

�
,

implying the lemma as t0 →∞.
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�

Lemma B.1.4 Let at0 and bt0 be defined as in (B.1.4) and (B.1.5), respectively. Then,

lim
t0→∞

P

 
at0 sup

1≤t≤t0/ log t0

W (t)√
t
− bt0 ≤ x

!
= exp

�
−e−x

�
. (B.1.9)

Proof: Since¨
W (et)√

et
, 0 ≤ t ≤ log (t0/ log t0)

«
is a standardized, stationary Gaussian process, we obtain from Theorem 12.3.5 in Lead-
better, Lindgren and Rootzén (1983) that

lim
t0→∞

P

 
at0/ log t0 sup

1≤t≤t0/ log t0

W (t)√
t
− bt0/ log t0 ≤ x

!
= exp

�
−e−x
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, (B.1.10)

where

at0/ log t0 =

s
2 log log

�
t0

log t0

�
and

bt0/ log t0 = 2 log log

�
t0

log t0

�
+

1

2
log log log

�
t0

log t0

�
− 1

2
log π.

Now elementary calculations show that

at0/ log t0

�
at0 − at0/ log t0

�
→ 0 and bt0 − bt0/ log t0 → 0 as t0 →∞,

which implies the lemma.

�

Combining the Lemmas B.1.1–B.1.4, we see that assertion (B.1.2) holds. The state-
ment given in display (B.1.3) is a consequence of (B.1.2) and the asymptotic indepen-
dence of maxima and minima in the underlying extreme value asymptotic (see Bickel
and Rosenblatt, 1973).
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B.2 Boundary functions which are '
√
t log log t

Theorem B.2.1 Let the family of functions {h(t0, t)} be defined as

h(t0, t) =

s
t log log

�
t

t0
+ ee

�
for all t > 0, t0 ≥ 1 (B.2.1)

and let {W (t), t ≥ 0} be a standard Wiener process. Then, for all real x it holds that

lim
t0→∞

P

�
at0 sup

1≤t<∞

W (t)

h(t0, t)
− bt0 ≤ x

�
= exp

�
−e−x

�
(B.2.2)

and

lim
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P

�
at0 sup

1≤t<∞

|W (t)|
h(t0, t)

− bt0 ≤ x

�
= exp

�
−2e−x

�
, (B.2.3)

where

at0 =
È

2 log log t0 (B.2.4)

and

bt0 = 2 log log t0 +
1

2
log log log t0 −

1

2
log π. (B.2.5)

Proof of Theorem B.2.1

Lemma B.2.1 Let the family of functions {h(t0, t)} be defined as in (B.2.1). Then, it
holds that

sup
t0≤t<∞

W (t)

h(t0, t)
= OOOP (1) as t0 →∞. (B.2.6)

Proof: We have

sup
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+ ee
� D
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W
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t
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�q
t
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log log
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t
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+ ee
� = sup

1≤t<∞

W (t)È
t log log (t+ ee)

and the law of the iterated logarithm gives the lemma.

�

Lemma B.2.2 Let the family of functions {h(t0, t)} be defined as in (B.2.1). Then, it
holds that

sup
t0/ log t0≤t<t0

W (t)

h(t0, t)
= OOOP (

È
log log log t0) as t0 →∞. (B.2.7)
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Proof: Since

sup
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1/ log t0≤t≤1

W (t)√
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,

the lemma follows from the law of the iterated logarithm in zero.

�

Lemma B.2.3 Let the family of functions {h(t0, t)} be defined as in (B.2.1). Then, it
holds that

at0
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t
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!
= oooP (1) as t0 →∞. (B.2.8)

Proof: Elementary calculations show that
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uniformly in t ∈ [1, t0/ log t0].
Since
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and
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log log t ≤ 1
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s
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�
t0
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,

the lemma follows as t0 →∞.

�

Theorem (B.2.1) now follows by the same arguments as Theorem B.1.1.





Appendix C

PWMA control-charts II

C.1 Open-end control charts

In this chapter, we provide an alternative boundary function for the open-ended PWMA-
chart in the case of two-sided alternatives and known parameters, which yields com-
putable critical values. The approach is based on the following result from Robbins and
Siegmund (1970).

Example Let S(k) denote the partial sum of k i.i.d. random variables having mean 0
and variance 1. Then,

lim
m→∞

P

�
sup

1≤k<∞

|S(k)|È
(k +m)(a2 + log(1 + k/m))

≥ 1

�
= P

�
sup

0<t<∞

|W (t)|È
(1 + t)(a2 + log(1 + t))

≥ 1

�
= exp

�
−1

2
a2
�

(a > 0).

C.1.1 Model assumptions for known µ and σ

We assume that (3.1.1)–(3.1.3) and (3.1.5) hold with N = ∞.

C.1.2 Monitoring procedure for known µ and σ

Let the sequence of detectors be defined as

Pk =
kX
j=1

pj,k(Xj − µ), k = 1, 2, . . . (C.1.1)
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where the weights {pj,k, 1 ≤ j ≤ k, k = 1, 2, . . .} are given in (3.1.6).
Furthermore, we define for all m = 1, 2, . . ., s > 0 and a > 0

h(m, s, a) =

√
m√

2d+ 1

s�
s

m
+
�m
s

�2d ��
a2 + log

�� s
m

�2d+1

+ 1
��
. (C.1.2)

We test the null hypotheses H0 versus the two-sided alternative H2. The stopping
time is defined as

η = η(α,m) = inf{1 ≤ k <∞ : |Pk| > σh(m, k, (−2 logα)1/2)}, (C.1.3)

where α ∈]0, 1[.
The boundary function is justified by the following theorem.

Theorem C.1.1 Let the sequences {Pk}k=1,2,... and {h(m, k, a)}k=1,2,... be defined as
in(C.1.1) and (C.1.2), respectively. Then, it holds under the null hypothesis that

lim
m→∞

P

�
sup

1≤k<∞

|Pk|
σh(m, k, a)

≥ 1

�
= exp

�
−1

2
a2
�

(C.1.4)

Furthermore, the procedure has asymptotic power one.

Theorem C.1.2 Let the sequences {Pk}k=1,2,... and {h(m, k, a)}k=1,2,... be defined as
in(C.1.1) and (C.1.2), respectively. Then, it holds under the alternative that

lim
m→∞

P

�
sup

1≤k<∞

|Pk|
σh(m, k, a)

≥ 1

�
= 1. (C.1.5)

C.1.3 Proofs

Proof of Theorem C.1.1

We define

Qk = σ
kX
j=1

pj,k(W (j)−W (j − 1)) for all k = 1, 2, . . . , (C.1.6)

where {W (t), t ≥ 0} is the approximating Wiener process given in (3.1.2).

Lemma C.1.1 Let the sequences {Pk}k=1,2,... and {Qk}k=1,2,... be defined as in (C.1.1)
and (C.1.6), respectively. Then, it holds that

sup
1≤k<∞

|Pk|
σh(m, k, a)

− sup
1≤k<∞

|Qk|
σh(m, k, a)

= OOOP

�
1

m1/2−1/ν

�
as m→∞. (C.1.7)
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Proof: As in the proof of Lemma 3.1.1 we get

sup
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≤ 2 sup
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Since for k ≤ m and some suitable constant C > 0 it holds that
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�2d ≤ k1/ν

m1/2
≤ m1/ν−1/2

and for k ≥ m we have

k1/ν

h(m, k, a)
≤ C

k1/ν

√
m

É
k
m

+
�
m
k

�2d ≤ k1/ν

k1/2
≤ m1/ν−1/2,

the Lemma follows as m→∞.

�

Lemma C.1.2 Let the sequence {Qk}k=1,2,... be defined as in (C.1.6). Then, it holds
that

max
1≤k≤m/ logm

Qk

σh(m, k, a)
= ooo(1) a.s. as m→∞. (C.1.8)

Proof: Since the sequence {Qk}k=1,2,... obeys the law of the iterated logarithm for
weighted sums (see Li and Tomkins, 1996), it suffices to consider

max
1≤k≤m/ logm

√
k log log k

h(m, k, a)
.

For some suitable chosen constant C > 0 and 1 ≤ k ≤ m/ logm it holds that

√
k log log k

h(m, k, a)
≤

√
k log log k

√
m

É
k
m

+
�
m
k

�2d =

√
log log kÉ

1 +
�
m
k

�2d+1
≤

√
log logmq

1 + (logm)2d+1

and the Lemma follows as m→∞.

�
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Lemma C.1.3 Let the sequence {Qk}k=1,2,... be defined as in (C.1.6). Then, for all
δ > 0 it holds that

sup
m1+δ≤k<∞

Qk

σh(m, k, a)
= ooo(1) a.s. as m→∞. (C.1.9)

Proof: Since for all k ≥ m1+δ

√
k log log k

h(m, k, a)
=

√
2d+ 1

√
k log log k

√
m
É�

k
m

+
�
m
k

�2d� �
a2 + log

��
k
m

�2d+1
+ 1

��
=

√
2d+ 1

√
log log kÉ�

1 +
�
m
k

�2d+1
� �
a2 + log

��
k
m

�2d+1
+ 1

��
≤

√
2d+ 1

√
log log kÉ�

log
��

k
m

�2d+1
+ 1

��
≤
√

2d+ 1
È

log log(m1+δ)q�
log

�
(mδ)2d+1 + 1

�� ,
the Lemma follows by the law of the iterated logarithm for weighted sums.

�

We define the process

U(t) = σ
Z t

0
p (x, t) dW (x) = σ

Z t

0

�x
t

�d
dW (x) for all t > 0. (C.1.10)

Lemma C.1.4 Let the sequence {Qk}k=1,2,... be defined as in (C.1.6). Then, for all
T > 0 it holds that

max
m/T≤k≤mT

Qk

σh(m, k, a)
D−→ sup

1/T≤t≤T

W (t2d+1)

h̃(t2d+1, a)
as m→∞, (C.1.11)

where

h̃(x, a) =
È

(1 + x)(a2 + log(1 + x)) for all x > 0, a > 0. (C.1.12)

Proof: First, note that for all t ≥ m/T we have

σh(m, t, a) ≥ σ
√
t√

2d+ 1

 
a2 + log

 �
1

T

�2d+1

+ 1

!!1/2

= σt

 
a2 + log

 �
1

T

�2d+1

+ 1

!!1/2

,
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where σt is given in (3.1.9). Hence, Lemma 3.1.2 yields����� max
m/T≤k≤mT

Qk

σh(m, k, a)
− sup

m/T≤t≤mT

U(t)

σh(m, t, a)

����� = OOOP

 �
T logmT

m

�1/2
!

= oooP (1)

as m→∞.

Comparing the covariances, we see that(
U(t)

√
2d+ 1

σ
,
m

T
≤ t ≤ mT

)
D
=

(
W (t2d+1)

td
,
m

T
≤ t ≤ mT

)
,

which implies

sup
m/T≤t≤mT

U(t)

σh(m, t, a)
D
= sup

m/T≤t≤mT

W (t2d+1)

md+1/2h̃
��

t
m

�2d+1
� .

Finally, the rescaling property of the Wiener process yields

sup
m/T≤t≤mT

W (t2d+1)

md+1/2h̃
��

t
m

�2d+1
� D

= sup
1/T≤t≤T

W (t2d+1)

h̃ (t2d+1)
,

which completes the proof.

�

Since the continuity of the Wiener process implies

P

 
sup

1/T≤t≤T

W (t2d+1)

h̃ (t2d+1)

!
= P

 
sup

(1/T )2d+1≤t≤T 2d+1

W (t)

h̃ (t)

!
→ P

 
sup

0<t<∞

W (t)

h̃ (t)

!
as T → ∞, combining the Lemmas C.1.1–C.1.4 with Example 3 of Robbins and Sieg-
mund (1970) yields Theorem C.1.1.

Proof of Theorem C.1.2

We define the sequence {P (0)
k }k=1,2,... as in (3.1.57) with N = ∞.

Then, it holds under the alternative that

Pk = P
(0)
k +

kX
j=k∗+1

pj,k M for all k = 1, 2, . . .
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For any finite N > k∗ we have

P
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�
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(C.1.13)

Since k∗ is fixed, we have

max
1≤k≤N

kX
j=k∗+1

pj,k M≥ M
d+ 1

Nd+1 − k∗d+1

Nd
.

Hence, if we choose N = m, it follows by(C.1.2) thatPm
j=k∗+1 pj,m M

σh(m,m, a)
' m1/2 as m→∞. (C.1.14)

Now the law of the iterated logarithm for weighted sums yields

max
1≤k≤m

|P (0)
k |

σh(m,m, a)
= OOO

�È
log logm

�
a.s. as m→∞ (C.1.15)

and Theorem C.1.2 follows by (C.1.13)–(C.1.15).
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[2] Aue, A., Berkes I. , and Horváth, L. (2006). Strong approximations for the sums
of squares of augmented GARCH sequences. Bernoulli 12, 583–608.
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[20] Horváth, L., Kühn, M., and Steinebach, J. (2008). On the performance of the
fluctuation test for structural change. Sequential Analysis 27, 126–140.

[21] Karatzas, I., and Shreve S.E. (1998). Brownian Motion and Stochastic Calculus.
second edition, Springer–Verlag, New York–Berlin.
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