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Zusammenfassung

Ziel der sequentiellen Change-Point Analyse ist es, geeignete Methoden zum Auffinden
struktureller Briiche in stochastischen Prozessen bereitzustellen. Diese Arbeit befasst
sich mit nicht-parametrischen Verfahren auf der Basis gewichteter, gleitender Durch-
schnitte. Es werden bekannte Prozeduren diskutiert und neue Testverfahren vorgestellt.
Die Hauptresultate dieser Arbeit, der PWMA-Test (polynomially weighted moving av-
erage) und der FWMA-Test (fractionally weighted moving average), sind Erweiterungen
des CUSUM-Tests. Weiterhin werden in dieser Dissertation die Grenzverteilungen der
bedingten Stoppzeiten des MOSUM-Tests bestimmt und zur Konstruktion asymptotis-
cher Konfidenzintervalle fiir den Zeitpunkt eines Strukturbruches eingesetzt.

Abstract

The aim of sequential change-point analysis is to provide adequate methods for detecting
structural breaks in stochastic processes. This work is concerned with non-parametric
procedures, which are based on weighted moving averages. We discuss known control-
charts and also introduce new procedures. The main results of this work, namely the
PWMA-Test (polynomially weighted moving average) and the FWMA-Test (fractionally
weighted moving average), are generalizations of the CUSUM-Test. Furthermore, we
derive the limiting distributions of the conditional stopping-times for the MOSUM-Test.
The latter result is utilized to provide asymptotic confidence intervals for the location
of a change-point.
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Conventions
We shortly state some conventions, which will be used in the sequel without further

comment:
iff : if and only if,
inf ) = oo,

Y ...=0, if b<a.

Let {z; }ier and {y; }1er be two real-valued sequences, where for the index set either
T =N, or T"=R, holds. Then, we define

Tt
T~y — —1 as t— oo,
Yt
xn
T~y <& — —c as t— oo forsome ¢ >0,
n

T
i >c>0.
Yt

t—o0

Let {X; her and {Y;}ier be two sequences of real-valued random variables on some
probability space (€2,.4, P ), where for the index set either 7" = N, or 7" = R, holds.

Then, we define

X
thlz'Yt<:>7t 1 as t— oo,

t

P X P
X, ~Y, &= —¢ as t—oo forsome c>0,
n

20)21 for some ¢ > 0.

P X,
X;| 2 Y] < lim P (‘
‘ t’ N’ t’ tggo )/;
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Introduction

The implementation of the Shewhart chart (see Shewhart, 1931) in quality control laid
the foundation for the branch of statistics subsumed under the notion of change-point
analysis.

The aim of change-point analysis is to provide and investigate methods, which al-
low to detect a structural break in an underlying data set. Following Brodsky and
Darkhovsky (1993), we distinguish between a-posteriori and sequential procedures. A-
posteriori procedures are designed to detect a change in a fixed data set. If data arrive
online, and after each new observation we have to decide whether the assumption of
homogeneity still holds, sequential procedures are applied. This classification can fur-
thermore be divided in parametric and non-parametric tests. Parametric tests require
a priori information on the stochastic model of the underlying data set, while non-
parametric tests are based on asymptotic results for large data sets, or the investigation
of a limiting process. This work is concerned with sequential, non-parametric pro-
cedures, which are furthermore partitioned into closed-end and open-end procedures.
Even though monitoring will sooner or later end, open-end procedures are required, if
the size of the monitoring period is not a-priori known.

Procedures for change-point detection are also named control-charts. This term is
originated from the possibility of a graphical evaluation, which is provided by several
tests as for example Page’s CUSUM-chart (Page, 1954) and the EWMA-chart (expo-
nentially weighted moving average) introduced by Roberts (see Roberts, 1959). Due
to the fact that the boundaries in the latter charts are chosen as constant values, for
large sizes of the monitoring period the null hypothesis of structural homogeneity will
be rejected by both of them with high probability, even though it is true. However, the
CUSUM- and the EWMA-chart are very popular tests, since their typical performance
measure, the average run length (ARL), is for many applications more important than
the errors of type one. If a false alarm is costly, other procedures are required and an
adequate approach is given by the concept of asymptotic tests with (asymptotic) power
one (see Robbins, 1970). While the CUSUM-procedure has been adapted to the concept
of asymptotic tests by several authors, we refer to Chu, Stinchcombe and White (1996),
Horvath, Huskové, Kokoszka and Steinebach (2004), Aue, Horvéath, Huskové, Kokoszka
(2006) and Aue and Kiihn (2008) for more details, the only extension of the EWMA-
chart in this direction, to our knowledge, has been given by Gut and Steinebach (2004).
We will extend the latter result for exponential weights to a wider class of possible
weight functions in Chapter 2.

If we compare the CUSUM-chart (without renewals) and the EWMA-chart, we see
that both can be considered as tests, which are based on weighted moving averages of



the underlying observations. The main part of this work is concerned with the question
how weights, which lie in between the constant weights of the CUSUM-chart and the ex-
ponentially decreasing weights of the EWMA-chart, can be utilized to construct asymp-
totic tests. As result, we introduce two new control-charts, namely the PWMA-chart
(polynomially weighted moving average, Chapter 3) and the FWMA-chart (fractionally
weighted moving average, Chapter 4).

If a control-chart detects a change-point, it is also of interest where the change-point
is located. Based on the limiting distribution for the conditional stopping times of
the MOSUM-chart (moving sum, Chapter 1 and Chapter 5), we will derive asymptotic
confidence intervals for the location of a change-point.

The simulations in this work are performed using the free software R, see
http://cran.r-project.org for more information.



Part 1

Monitoring Procedures






Chapter 1

Control charts based on moving
sums

In this chapter, we consider the so called MOSUM-chart (moving sum). This chart takes
action, if at time k the sum of the observations Xy _p.1,..., Xy crosses a predetermined
boundary function, where h is the so called window size. MOSUM-charts have been
suggested by several authors as more quickly reacting alternatives to CUSUM-type
procedures in case of a late change. We refer to Bauer and Hackl (1978,1980), Chu,
Hornik and Kuan (1995), Leisch, Hornik and Kuan (2000) and Gut and Steinebach
(2002) for more details. Due to the sensitivity of the MOSUM-chart, one has to choose
the boundary function with great care, which has been pointed out by Horvath, Kiihn
and Steinebach (2008).

We derive the asymptotic limit distribution of the extremes of standardized moving
sums for known and estimated in-control parameters and furthermore, investigate the
finite sample behavior by a simulation study.

1.1 Closed-end control charts

1.1.1 Model assumptions for known 1 and o

Let {e;}i=1,2,.. be a sequence of real random variables on some probability space (€2, A, P ).
We suppose that

Ee;=0 and Varg;=0>>0 forall i=1,2,... (1.1.1)

Furthermore, we claim that there exists a Wiener process {W (t),t > 0} such that

1 k
sup e —oW(k)| <o as. (1.1.2)
i=1

1<k<oo KMV | &

for some v > 2.
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The sequence of observations is modeled as a stochastic process {X;}iz12. ny+ns
following

(it e L 1<i<hyitk
XZ-:{ (1.1.3)
k,ll—f‘A—i-&i , hN+/€*<i§hN+N,

where g is the in-control mean, A represents the size of a level shift, and k* is the
unknown time of a possible change. The window size hy determines the number of
observations needed to initialize the first detector. Hence, these observations can not
be monitored sequentially. The assumption that a possible change occurs after this
‘initialization period’ is mostly made for technical reasons. According to the treatment
of late changes one can show that also earlier changes may be detected.

We assume that hy is an increasing, integer-valued function of N satisfying

- ((N+hy)*™  NY
and
. hy

We are interested in testing either
Hy: k>N wversus H;:k*< N, A>0 (one-sided alternative), (1.1.6)
or

Hy:k*> N versus Hy:k* <N, A#0 (two-sided alternative). (1.1.7)

1.1.2 Monitoring procedures for known p and o
We define the sequence of detectors { My n}ix=1,. n by

k
Min= Y (Xiyny—p) forall k=1,...,N. (1.1.8)
i=k—hn+1

We mention here that since the asymptotics are carried out for N — oo, we do not
consider a sequence of detectors, but a triangular array. However, we only accentuate
the triangular structure, if it is needed.

Depending on the alternative, we reject Hy if

nn=m(a,N) = inf{l <k<N:My>c(a,N)oyhy }, (1.1.9)
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or

Ty = To(a, N) = inf{l <k<N:|Mny|l> CQ(Q,N)U\/hN} (1.1.10)

are finite (with the usual convention that inf() = o0), where a €]0, 1] is the level of
significance.
The critical constants ¢1(«, N) and co(a, N) are given by

1— b 1— b
(o, N) = a1l =) + by and co(a, N) = (1= a)+ Al (1.1.11)

an an

where ay and by are defined in (1.1.15), respectively (1.1.16). The constants ¢;(1 — «)
and ¢2(1 — ) are chosen as

01— a) = —log(—log(1—a)) and g(1—a) = —log (—;log(l ~a)). (1112)

Note that monitoring always ends in min{r;, N}, i = 1,2.
The following theorem justifies the choice of the critical constants, since it shows
that the false alarm rate of the procedures converges to a as N tends to infinity.

Theorem 1.1.1 Let the sequence { Mg n}r=1.. n be defined as in (1.1.8). We assume
that hy is an increasing, integer-valued function of N, satisfying (1.1.4) and (1.1.5).
Then, under Hy, for all real x it holds that

M
lim P <aN sup —e _py < x> = exp(—e ") (1.1.13)

N—oo 1<k<N oV hy

and
M,
lim P <aN sup | M| —by < a:> = exp(—2e™%), (1.1.14)
where
N
an = 4/2log — (1.1.15)
hn
and
N 1 N 1
by = 2log — + —loglog — — =1 ) 1.1.16
N 0g—+ 5 loglog;— — 5 logr ( )

Moreover, under slight restrictions on k*, both procedures have asymptotic power
one as can be seen by the next theorem.
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Theorem 1.1.2 Let the sequence { My n}ti—1,...n and the function hy be defined as in
Theorem 1.1.1. If k* = k*(N) < N — VhyN* for some p > 0, then, under Hy, for all
real x it holds that

M,
lim P <aN sup —2 _py > :z:> =1 (1.1.17)
N—oo 1<k<N 0V hy
and under Hy we have
M,
lim P <aN sup | M — by > x) =1, (1.1.18)
N—o0 1<k<N 0V hy

where ay and by are defined in (1.1.15) and (1.1.16), respectively.

1.1.3 Model assumptions for unknown p and o

If the target parameters are unknown, a common approach is to utilize the observations
of a training period for the estimation (see Chu, Stinchcombe and White, 1996). The
data obtained within the training period is assumed to be homogeneous (noncontamina-
tion assumption). We follow this idea, which requires slight modifications of the model
assumptions.

Let {&;}i=12,.. be a sequence of real random variables, satisfying (1.1.1) and (1.1.2).
We assume that the observations {X;}i—12  my+n satisfy

[ te S 1<i<my+k
Xi:{ (1.1.19)

k,u—l—A—Fsz , mN+k‘*<2§mN—|—N,

where p, A and k* denote the same parameters as in (1.1.3) and my denotes the size of
the training period.

The window size hy is chosen as in case of known parameters and the interplay
between the window size, the training period, and the monitoring period N is described

h N
lim <Nlog > =0 and % —0 as N — 0. (1.1.20)

We furthermore assume that the size of the training period is increasing, as the moni-
toring period increases. Note that if we choose for example hy = N2? and my = N2%
with 1/v < ¢ < ¢ < 1/2, then (1.1.4), (1.1.5) and (1.1.20) are satisfied.

The procedures proposed in the next paragraph are designed to test either

Hy: k>N wversus H;:k*< N, A>0 (one-sided alternative), (1.1.21)
or

Hy:k*> N versus Hy:k* <N, A#0 (two-sided alternative). (1.1.22)
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1.1.4 Monitoring procedures for unknown p and o

If we estimate u by

1 X

iy = — > X, (1.1.23)

my ;3

then, a consequence of the invariance (1.1.2) principle is that

1
iy — b =0 as N — oo.
Mo 2 P (\/m_N>
We furthermore can assume that there exists an estimator &, =~ for o such that
1
62, —0’=op <19> as N — oo for some ¥ >0, (1.1.24)
my

what will be shown in Lemma 1.1.3 below. Plugging in the mean estimator yields the
sequence of detectors

k
Mux= S (Xigmy — fmy), k=1,...,N (1.1.25)

Z'Zkfh]\ri»l

and depending on the alternative, we reject the null hypotheses if the corresponding
stopping time

f=n(N)=inf {1 <k < N: My > cr(a, N)omyV/hy} (1.1.26)
or

7y =F(N) = inf {1 <k < N : [Myn| > ca(c, N)omy/hw} (1.1.27)
is finite.

If the critical constants are chosen as in (1.1.11), the false alarm rate of the procedures
converges to a as N — oo, what is implied by the counterpart of Theorem 1.1.1 for
estimated in-control parameters, coming next.

-----

size hy is assumed to satisfy (1.1.4) and (1.1.5) and the size of the training period is
determined via (1.1.20). Then, under Hy, for all real = it holds that

) My, n _
lim P ay sup ————— —by <z | =exp(—e™”* 1.1.28
B P (o g, 52— <) = el )
and
. | My x| _
lim P (ay sup —— —by < x| =exp(—2e %), 1.1.29
N—co ( AR Y/ F p( ) ( )

where ay and by are defined in (1.1.15) and (1.1.16), respectively.
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Like in case of known parameters, the asymptotic power of the procedures is one.

Theorem 1.1.4 Let the sequence {Mk,N}kzl,...,N be defined as in (1.1.25). We suppose
that (1.1.4), (1.1.5) and (1.1.20) hold. If k* = k*(N) < N — \/hyN? for some p > 0 ,
then, under Hy, for all real x holds

~

. My N
lim Play sup ——— —-by >z =1 1.1.30
N—oco ( ngkg\f 6mNVhN N ) ( )

and under Hy we have

. | M|
lim P RNy > ) =1, 1.1.31
im (aN sup - e o x ( )

where ay and by are defined in (1.1.15) and (1.1.16), respectively.

1.1.5 Simulations and discussion

In this section, we report the results of a simulation study on the finite sample properties
of the MOSUM-chart.

We start with a small discussion about the framework for unknown in-control pa-
rameters. It is important to mention that in practice the size of the training period
is predetermined. Based on a simulation, a test is considered to be applicable, if its
empirical size for fixed m and N is smaller or equal than the prescribed nominal size
a. The considered MOSUM-chart allows for an adjustment via the window size h, but
in view of (1.1.20) the possibilities in our setting are limited, since the asymptotic re-
sults of Theorem 1.1.3 require h < m. The simulation is carried out for innovations
with slightly more than five existing moments and we consider training periods of size
m = 10,50, 100, 250, 500. We take into account three window sizes h, which are also
used in case of known in-control parameters. Under the null hypothesis the monitoring
periods are chosen such that the empirical sizes keep, and also exceed the nominal size,
which shows the possibilities for applications.

The tables providing the empirical power of the MOSUM-chart contain a five point
summary of the empirical distribution of the stopping time. Note that the stopping time
is set to IV, if a change is not detected. The power is simulated for monitoring periods
N that are chosen such that the empirical sizes lie close to the nominal size.

Since we are dealing with constant boundary functions, it suffices to consider a
structural break immediately after the initializing, respectively training period, hence
k* = 0. We focus on the stopping times 7; and 7y, stated in (1.1.9) and (1.1.26), where
the level shift is chosen as A= 1.

The innovations {e;};—1 2, are independent identical symmetric Pareto(5.1) distrib-
uted, where we consider a random variable X to be symmetric Pareto(x) disributed, if
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its density function follows
fx(x) = g(l + |z))~" Y forall —oo <z < oo, where &> 0.

Clearly it holds that
Ee; =0, Vare;=1 and Elg|"<oo forall v<k

and the strong approximation according to Komlds, Major and Tusnady (1975,1976)
and Major (1976) shows that (1.1.2) is satisfied. The variance of the observations is
estimated by
52 — 1 i( X. — /:L )2
m m — 1 Pt (3 m Y
obviously satisfying (1.1.24).
All values in the following tables are based on 5,000 replications and the nominal
size has been chosen as a = 0.05.
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Empirical sizes

| innovations: symmetrical Pareto(5.1), a = 0.05

N

10 20 | 30 | 40 [ 50
9 [ 0.0124 | 0.0246 | 0.0334 | 0.0346 | 0.0422
0.0138 | 0.0326 | 0.0376 | 0.0426 | 0.0428
7 || 0.0196 | 0.0312 | 0.0392 | 0.0462 | 0.0524

N
150 [ 200 | 250 | 300 | 350

40 ]/ 0.0324 [ 0.0372 | 0.0382 [ 0.0380 | 0.0408

35 | 0.0346 | 0.0394 | 0.0458 | 0.0490 | 0.0484

30 || 0.0400 | 0.0444 | 0.0476 | 0.0498 | 0.0512
N

500 | 600 | 700 [ 800 | 900

85 [ 0.0334 [ 0.0346 | 0.0372 [ 0.0364 | 0.0378

80 | 0.0370 | 0.0388 | 0.0402 | 0.0414 | 0.0398

75 || 0.0404 | 0.0398 | 0.0424 | 0.0450 | 0.0462
N

2000 | 2500 | 3000 | 3500 | 4000

210 || 0.0366 | 0.0386 | 0.0422 | 0.0436 | 0.0442
200 || 0.0396 | 0.0422 | 0.0436 | 0.0450 | 0.0446
190 || 0.0364 | 0.0392 | 0.0428 | 0.0448 | 0.0472

N
4000 [ 5000 [ 6000 [ 7000 | 8000

420 || 0.0334 | 0.0344 | 0.0388 | 0.0382 | 0.0406
400 || 0.0320 | 0.0372 | 0.0392 | 0.0412 | 0.0412
380 || 0.0344 | 0.0364 | 0.0402 | 0.0390 | 0.0414

h

oo

h

Table 1.1: MOSUM-charts, Empirical sizes for stopping time 77
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innovations: symmetrical Pareto(5.1), a = 0.05

m h N
10 \ 12 \ 14 \ 16 \ 18
9 0.0604 | 0.0810 | 0.1010 | 0.1106 | 0.1192
10 8 0.0664 | 0.0858 | 0.1022 | 0.1172 | 0.1226
7 0.0754 | 0.1056 | 0.1164 | 0.1166 | 0.1336
m h N
50 \ 60 \ 70 \ 80 \ 90
40 || 0.0392 | 0.0546 | 0.0698 | 0.0726 | 0.0844
50 | 35 || 0.0500 | 0.0684 | 0.0734 | 0.0822 | 0.0860
30 || 0.0604 | 0.0688 | 0.0860 | 0.0872 | 0.0902
m h N
100 [ 120 | 140 [ 160 | 180
85 || 0.0336 | 0.0462 | 0.0614 | 0.0778 | 0.0820
100 | 80 || 0.0352 | 0.0474 | 0.0698 | 0.0812 | 0.0836
75 || 0.0426 | 0.0536 | 0.0732 | 0.0844 | 0.0900
m h N
250 \ 300 \ 350 \ 400 \ 450
210 || 0.0328 | 0.0464 | 0.0588 | 0.0668 | 0.0748
250 | 200 || 0.0342 | 0.0488 | 0.0594 | 0.0676 | 0.0814
190 |{| 0.0400 | 0.0508 | 0.0614 | 0.0682 | 0.0830
m h N
500 \ 600 \ 700 \ 800 \ 900
420 || 0.0312 | 0.0424 | 0.0610 | 0.0648 | 0.0752
500 | 400 || 0.0314 | 0.0486 | 0.0624 | 0.0698 | 0.0730
380 || 0.0322 | 0.0472 | 0.0644 | 0.0716 | 0.0778
Table 1.2: MOSUM-charts, Empirical sizes for stopping time 74

13
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Empirical power

| innovations: symmetrical Pareto(5.1), a = 0.05 |

’ N ‘ h H min ‘ Q.25 ‘ Qs ‘ Q.75 ‘ max H power ‘

9 1 8 11 | 19 20 || 0.9870
50 8 1 8 13 | 21 50 || 0.9754
7 1 8 14 | 26 50 || 0.9496
40 1 18 | 22 | 26 20 || 1
350 | 35 1 17 121 | 24 24 || 1
30 1 16 | 19 | 23 65 || 1
85 1 26 | 32 | 38 72 |1
900 | 80 1 26 | 31 | 37 72 |1
5 1 25 | 30 | 36 62 || 1
210 1 43 | b3 | 63 | 112 || 1
4000 | 200 1 43 | 52 | 61 | 108 || 1
190 2 41 | 51 | 60 | 101 || 1
420 6 61 | 75 | 87 | 160 | 1
8000 | 400 1 59 | 73 | 86 | 144 || 1
380 1 59 | 72 | 84 | 146 | 1

Table 1.3: MOSUM-charts, Empirical power for stopping time 7
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|

innovations: symmetrical Pareto(5.1), a = 0.05

|

’ m \ N \ h H min \ Q 25 ‘ Q5 ‘ Q.15 \ max H power ‘
9 1 5 8 10 10 0.6478
10 10 8 1 5 7 10 10 || 0.6620
7 1 5) 7 10 10 0.6628
40 2 14 19 | 24 50 0.9852
50 50 35 2 13 17 | 22 o0 0.9832
30 1 12 16 | 21 o0 0.9806
85 3 23 | 28 | 35 100 || 0.9990
100 | 100 | 80 6 22 | 27 | 33 100 || 0.9998
75 6 21 26 | 32 100 || 0.9988
210 14 36 44 52 130 || 1
250 | 300 | 200 7 30 | 42 50 108 || 1
190 8 34 41 49 116 || 1
420 || 26 53 | 62 72 | 200 || 1
500 | 600 | 400 || 24 51 61 71 226 || 1
380 || 14 50 | 59 | 69 | 147 || 1

Table 1.4: MOSUM-charts, Empirical power for stopping time 7,

15
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Discussion

As we can see by Table 1.1, in case of known parameters p and o, the empirical size of
the test can be adjusted via the window size h, such that the test is applicable for various
monitoring periods N. However, if the in-control parameters are estimated (Table 1.2),
acceptable values for the empirical sizes are only obtained, if the length of the monitoring
period is chosen close to the length of the training period. It seems that the empirical
sizes are decreasing, as the training period increases, but the rate is very slow. The
results under the alternative (Tables 1.3 and 1.4) indicate that the MOSUM-chart has
asymptotic power one.

We now consider three possibilities to reduce the empirical false alarm rates in case
of unknown in-control parameters. Heuristically the test takes action, if the value of

1 k \/Em
ﬁ Z 5i+m—mj2::15j

i=k—h+1

exceeds a boundary function. In our setting, the application of extreme value theory
requires h/m — 0, however, also in case of h/m — ¢ > 0 limit distributions for the
extremes can be derived and we refer to Horvath, Kithn and Steinebach (2008) for
details. The results given there show that adequate chosen boundary functions depend
on the number of existing moments of the innovations and it should be mentioned that
the empirical sizes in case of h/m — 1 in a simulation with m = 100 and N = 100 - m
did not exceed the nominal size significantly.

Another possibility is to improve the rates of the estimators. This leads to recursive
estimators (sequential estimators), introduced by Brown, Durbin and Evans (1975). We
refer to Gut and Steinebach (2002), Horvéath, Huskova, Kokoszka and Steinebach (2004)
and Aue and Kiihn (2008) for an overview on the usage of recursive estimators in an
asymptotic framework. The basic idea is that if no action has been taken at time k, all
past observations may be used to estimate the parameters. The simulations in Aue and
Kiihn (2008), carried out for a CUSUM-type detector, showed that recursive estimators
lead to lower empirical sizes, however, also increase the reaction time. The main reason
for this effect is that the underlying test reacts with some delay, hence the recursive
estimators also take values after the change into account. An approach to avoid the
slower reaction time may be the following. If no action has been taken at time k, the
estimation is based on the observations up to time k£ — d, where d is chosen such that
with high probability k* > k —d. The last approach requires detailed information about
the distribution of the delay time and may be realized by taking into account the results
of Chapter 5.

The third method follows the idea of exponential smoothing and is elaborated in the
next chapter.
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1.1.6 Proofs
Proof of Theorem 1.1.1

We define the sequence {Qp n}Fi=1,.,
Qen =0c(W(k+hy) —W(k)) forall k=1,...,N, (1.1.32)
where {W (t),t > 0} is the approximating Wiener-process introduced in (1.1.2).

Lemma 1.1.1 Let the sequences {Myn}ti=1..n and {Qkn}r=1..n be defined as in
(1.1.8) and (1.1.32), respectively. Then

M, n Qe \
ay <lr§1}%}§v P v max W) =op(l) as N — oo. (1.1.33)

PROOF' We have

U\/_ 1I<I}€3%>§V|Mk,N — Qk,N]|
— LV max |(S(k+ hy) — S(k)) — (W (k+ hy) — W(k))|

hN 1<k<N

< W (k)|

2(7,/ 1<k<N+h |S(k) —

N + hy)'"
=0p <aN(+N)> as N — 00,

Vhy
where we have used (1.1.2). Now the lemma follows by (1.1.4).
0J
Let the process {Un(t)}+>0 be defined as
Un(t)=c(W(t+hy)—W(t)) foral t>0, (1.1.34)

where {W(t),t > 0} again is the approximating Wiener-process.

Lemma 1.1.2 Let the processes {Qp.n }i=1...n and {Un(t)}i>0 be defined as in (1.1.32)

and (1.1.34), respectively. Then

77777

Qi),N UN(t)>
an | su — — su =o0p(1) as N — oo. 1.1.35
N <1§t§pNU hy 1§t§pN ovhy r(l) - ( )

ProOF: By the definition of the processes we have
su - U
Ju \/— P \Q [t),N N(t)]

< QW S (W (t) = W([t])]

and the lemma follows by (1.1.4) and Theorem 1.2.1 of Csérgé and Révész (1981).
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O

Now the self-similarity of the Wiener-process implies

Un(t) p
su = su Wit+1)—Wi(t 1.1.36
1§t§pN ovhy 1/hN§t§pN/hN( ( ) ®) ( )

and (1.1.13) follows by Lemma 1.1.1, Lemma 1.1.2 and on combining (1.1.36) with
Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983). Assertion (1.1.14) follows

by (1.1.13) and the asymptotic independence of the maxima and minima (see Bickel
and Rosenblatt, Theorem A 1, 1973).

Proof of Theorem 1.1.2
We only show (1.1.17), since (1.1.18) follows by similar arguments. If we define the

sequence {M, ,EO])V} k=1

MO = zkj €ivny forall k=1,... N,
i=k—hn+1
then it holds that
Myn = MO + (k —max{k*,k — hy}) & forall k=1,...,N.
Since k* < N — v/hyN* (w.lo.g. N?/v/hy — 0 as N — o) we have

max (k — max{k*, k — hn}) A> \/AnN" A

1<k<N

and it follows that for all real z it holds that

P <aN max —by < 3:)

My N
1<k<N oy/hy

M NP M
<P <aN 12}%%\[ —by <ax— — A +2ay max . (1.1.37)

oV 1<k<N ov/hy

Now Theorem 1.1.1 implies

0
| M|

ayny Imax
1<k<N g+/hy

—by=0p(l) as N —

and
0
o M
N1<k<N o/hy

hence ¥* A is the dominating term in (1.1.37) and (1.1.17) follows as N — oco.

=0p(d%) as N — oo,
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Proof of Theorem 1.1.3

First, we provide the rates of the estimators, following the results in Steinebach (1995).

Lemma 1.1.3 Let jin,, be defined as in (1.1.23) and let 67, = be given by
, 1 LmNZ/vNJ 1 ZN ?
6m = — X, — UN[IJm s
Yoo Imw/ov] I ow j=(i—1)vy+1 ’ !
where vy < my is an integer-valued function of N satisfying vy ~ mS as N — oo for
some 2/v < § <1 and
1 lmn/vN] 1 wN

e el M S
lmn/on] = wN j=(i—1)ox+1

Then, it holds that

Pomy =

1
v — b= N 1.1.38
and
1
62, —0>=op <m}’§,> as N — o0 (1.1.39)

for all 0 < ¥ <min{1/2 —-§/2,6/2 —1/v}.

PROOF: The invariance principle (1.1.2) yields

. 1 X
Ay == ]2::1 j
1 mN 1
=— | Y g —oW(my) | + — cW(my)
my j=1 my

1

N

=0p (m%wl) +Op ( > as N — oo,

which implies (1.1.38) since v > 2.

Next, we consider the estimator for the variance. If {W(t),t > 0} denotes the
approximating Wiener process and Ky = [my/vy |, we get

1 Ky 1 TN 2
N X — vy,
Ky = o )3 7 ONHm

J=(i—1)vn+1
1 Ky 02 1 2
—— S = (W(ivy) = W((i—1)vy) — — WK
o Db (Wion) =W (i = Dvw) = =W (o k)
1 Ex g

- FN;EW) - L(i), (1.1.40)
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where for all 1 <7 < Ky
TN . . 1
L(i) = Z X; — UNfimy | —0O (W(ZUN) —W((i—1)vy) — KW(UNKN)>
o N
j=(G—1)vy+1
and
TN ' . 1
(i) = Z X; — UNfimy | +0 <W(wN) —W((i—1)vy) — KW(UNKN)) )
. N
j=(@i-1)vn+1
Since

1

max |1(i)] <2 max |} e —oW(j)| + 1—
-1 N

1<i<Ky 1<i<mpy j=

<v1§;N €j — W(UNKN>> ‘

Y v
:Op(m]l\,/)—FOp(Tnl_A;/V) as N — o0
N

and vy < my it follows that

max  |[1(i)] =Op (m%”) as N — 0. (1.1.41)

1<i<|my /v
Furthermore, it holds that

 fnax [ 15(3)]

. . . 1
< max ()| +2 max o ‘W(ZUN) W (i = 1Jox) = =W (oK)

The definition of vy and Theorem 1.2.1 of Csérgé and Révész (1981) yield

max o |W(ivy) — W((i — 1)vy)| =0 (\/UN logmN) a.s. as N — 00

1<i<Kn

and obviously

1 UN
_ K = N i .
KNW(UN N)‘ Op < mN) as 00

Comparing the rates we see that

max |[»(i)] =Op (\/UN logmN) =0p (mfvm\/logmN) as N — oo (1.1.42)

1<i<Kn

and (1.1.40)—(1.1.42) show that

1 & , Viogm
Ko —I,(i) - I(i) = Op ( 5/5;71/15 > as N — oo.
N ;=1 UN N
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Hence,
LS 1](') Ir(7) ! N (1.1.43)
— —L(i)-L(i)=o0 as — 00 1.
Ky i oN ' i i my
forall 0 <dy <6/2—-1/v.
Now
1 EKv 52 1 25 o?
=S T (Wioy) = W((Gi— 1) ox) — —W K>:2,
T 2 o (Wliew) = WG = 1)en) = 2 W(owkN) ) 2 s

where X%{N—l is a chi-square distributed random variable with Ky —1 degrees of freedom.
The law of the iterated logarithm implies that

o? 1

K—in(N_l—agzop <K1€v> as N — 00

for all 0 < 0 < 1/2 and we see that

1 KNO,Q

B 2= o (W(wN) —W((i—1oy) — ;NW(UNKN)Y =op <ml§> (1.1.44)

for all 0 <y < (1 —0)f and 0 < 6 < 1/2. Assertion (1.1.39) now follows from (1.1.43)
and (1.1.44).

O

Now let the sequence {Hy y}r=1.. n be defined as

.....

k

H/QNZ Z (Xz'+mN —[1,), k= 17...,N. (1145)
i=k—hn+1

Condition (1.1.20) and the proof of Theorem 1.1.1 immediately imply that under the
null hypothesis

H,
lim P <a,N sup —2 _py < x) =exp(—e ) as N — o0 (1.1.46)
N—oo 1<k<N O/ Ny
and also
. ‘Hk,N| . —x
lim P {ay sup —by <z)=exp(—2¢") as N — 0 (1.1.47)
N—oo 1<k<N O h/N

hold.
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Lemma 1.1.4 Let the sequences {Mk,N}k:l ,,,,, N and {Hpn}ti=1.. .~ be defined as in
(1.1.25) and (1.1.45), respectively. Furthermore, we assume that (1.1.4), (1.1.5) and
(1.1.20) are satisfied. Then, under Hy, it holds that

~

Hyn Mpn '\
ay (11%:%}3\[ Um—lrgr}gagv P =op(l) as N — oc. (1.1.48)

Proor: With (1.1.38) we get

TN max Ay (k= fomy )|

anN hN

= Op(l) as N — ¢

a\/_

and the lemma follows by (1.1.20). O

max ‘HkN MkN‘

\/ N 1<k<N

Lemma 1.1.5 Let the sequence {MkyN}kzl
(1.1.24), then, under Hy, it holds that

~

a max Mk’N max MkN
1<k<N o'w/hN 1<k<N 0‘m Vhy
Proor: We have
Mk N Mk,N

.....

~ be defined as in (1.1.25). If 62, satisfies

) =op(l) as N — oc. (1.1.49)

| M, N|
1<k<N o h

g

an

~

Omy

:‘1_

1<k<N

O'mN

Now (1.1.46), (1.1.47) and Lemma 1.1.4 imply that

max ‘Mk N’
1<k<N o/ h

and since (1.1.39) 1mphes

|6mN—a|:op<mlﬁ> as N —oo (VO<9<min{l/2-7/2,§/2—1/v}),
N

N
Op<logh > as N — oo
N

the lemma follows.
[
Combining (1.1.46), (1.1.47), Lemma 1.1.4 and Lemma 1.1.5 now yields Theorem 1.1.3.

Proof of Theorem 1.1.4

Since p can be chosen arbitrarily small, we can assume by (1.1.20) and (1.1.39) that

Ne N <1
Grn o PANe

) as N — oo for some € >0.

Hence the proof of Theorem 1.1.2 carries over.



Chapter 2

Control charts based on
weighted averages of moving sums

As we have seen in the previous chapter, the discussed MOSUM-chart is too sensitive, if
the model parameters are estimated. Gut and Steinebach (2004) provided a modification
of the chart, which is based on exponential smoothing methods and allows to control
the sensitivity of the test via a weight parameter .

In this chapter we extend the approach of Gut and Steinebach (2004) to a wide class
of weight functions including many convergent series and all finite sequences, which are
decreasing and non-negative.

2.1 Closed-end control charts

2.1.1 Model assumptions for known u and o

Let {e;}i=12,.. be a sequence of real valued random variables on some probability space
(Q,A, P) with

Ee;=0 and Varg;=0>>0 forall i=1,2,.... (2.1.1)

We assume that there exists a Wiener process {W (t),t > 0} such that for some v > 2

1
sup <00  as. (2.1.2)

1<k<oo KMV

;gj — O'W(]{Z)

The observations are modeled as a discrete-time stochastic process {X;}ic12.  ay+n
satisfying

-flu—i—gi , 1 <i<hy+Ek",

X, = { (2.1.3)
L,U‘|'A+€i R hN+k*§hN+N,

23
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where p and A are real parameters and k£* is the unknown time of a possible change in
the mean.
The window size hy is chosen such that

hy ~ N* as N — oo, where 1/v<¢<1/2. (2.1.4)
We are interested in testing
Hy:k*=N wversus H;:k* <N, A>0 (one-sided alternative), (2.1.5)

or

Hy:k*=N versus Hy:k* <N, A#0 (two-sided alternative). (2.1.6)

2.1.2 Monitoring procedures for known p and o
The detectors are defined as weighted averages of standardized moving sums that is

k-1
Apn = ijBk_ij forall k=1,2,...,N, (2.1.7)
=0

where {w;};—01,.. is a real sequence satisfying

geee

1) {w;}j=01,. Is non-increasing, (2.1.8)
2) Yw=1, (2.1.9)
=0
k
3) > jw;=0(k%) as k—oo forsome 0<¢<1, (2.1.10)
=0
> 1
4) jz%wj =0 <k‘1/’> as k — oo forsome 1 > 0. (2.1.11)

The sequence { By n}r—1.. .~ is defined as

.....

1 hny—1
Bk,N = T Z (Xk,iJrhN - u) for all k= 1, 2, c. ,N. (2112)
N =0

Note that it follows by (2.1.8) and (2.1.9) that w; > 0 for all j = 0,1, ..., hence

Jjwj=o0(1) as j— oo. (2.1.13)
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Remark 2.1.1 Condition (2.1.9) is only made for technical reasons and may be replaced
by the assumption that the sum of the weights is converging. Conditions (2.1.10) and
(2.1.11) are satisfied by many convergent series as for example

1
;= =0,1,..., >1
’LU] (]—i—l)'y? J Y
but do not hold for
1 .
wj = 7=01,..., v>1,

(7 +1)(log(j +2))"
even though the corresponding series converges.

The influence of the weights on the boundary function of the procedure is described
by the following sequence

o0 o0 hN—l h A
ox =0 <Z wp 42" wy ( > Vwkﬂ-)) : (2.1.14)
k=0 k=0 j=1 N

Note that (A.1.2) implies that

on—o0—0 as N — oo. (2.1.15)

If we test the null hypotheses versus the one-sided alternative, we reject Hy if 71 < oo,
where

T = Tl(Oé,N) = mf{l S k < N Ak,N > Cl(Oé,N)O'N}. (2116)

As usual a €]0, 1] denotes the level of significance. If the alternative is two-sided, we
replace 7 by 7o, where

T =To(a, N) =inf{l <k < N :|Apn| > c2(a, N)on}. (2.1.17)

The critical constants ¢1(«, N) and co(a, N) are given by
1—a)+b 1—a)+b
a(a,N) = il =) + by and cy(a, N) = el =)+ N (2.1.18)
an an

where ay and by are defined in (2.1.22) and (2.1.23) below and

(1 —a)=—log(—log(l —a)), @¢(l—a)=—log (—;log(l — a)) . (2.1.19)

The choice of critical constants is based on the next theorem.
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Theorem 2.1.1 Let the sequence {Agn}i=1.. .~ be defined as in (2.1.7) and assume
that hy satisfies (2.1.4). If we define on via (2.1.14), then, under Hy, for all real x it
holds that

: Agn —
]\}1_120 p (aN max, e by < w) = exp(—e™ ") (2.1.20)
and
lim P {ay max [Ar| —by <z ) =exp(—2e") (2.1.21)
N-—oo 1<k<N oy - ’
where
N
ay = 4/2log — (2.1.22)
hn
and
N 1 N 1
by = 2log — + = loglog — — =1 . 2.1.23
N =2log 5 loglog ;— — o logm (2.1.23)

Under weak conditions imposed on k*, the procedures also have asymptotic power
one.

Theorem 2.1.2 Let {Agn}i=1.. N, hy and oy be defined as in Theorem 2.1.1. If we
assume that k* = k*(N) < N — hy, then for all real x it holds that under Hy

A
lim P <aN sup — N _py > x) =1 (2.1.24)
N—oo 1<k<N ON
and under Hy
. | AN | _
lim P (ay sup —by >x) =1, (2.1.25)
N—o0 1<k<N ON

where ay and by are defined in (2.1.22) and (2.1.23), respectively.

2.1.3 Model assumptions for unknown y and o

We assume that the innovations {e;};—1 0, satisfy (2.1.1) and (2.1.2).
Again the estimators are based on a training period that is assumed to be homoge-
neous, hence we suppose that

[ +e L 1<i<my+k
Xi:{ (2.1.26)

ut A +e my +k*<i<my-+ N.
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The conditions imposed on the size of the training period are

1) my+N~N as N — (2.1.27)
and
_ hn N

where the window size hy still satisfies (2.1.4).

2.1.4 Monitoring procedures for unknown p and o

Replacing i by the estimator

i 1
iy = — > X; (2.1.29)
my j=1
we define
A k_l A
Ak,N = ijBk—j,N forall k= 1, ey N, (2130)
7=0

where {w;};—01,. satisfies (2.1.8)-(2.1.11) and

gooe

R 1 hny—1 A
Bk,N = ﬁ Zz:;) (Xk_i+mN — /‘LmN) for all k= ]_, ceey N. (2131)
With 62, being an estimator for 0° satisfying
1
62 —0’=op (19> as N — oo forsome ¥ >0 (2.1.32)
my

(the existence has been shown in Lemma 1.1.3), we set

oo 00 hN_lh s
6% =62 (Z w? 23wy < 3 ]kaﬂ)) (2.1.33)

which yields the modified stopping times

71 =7(a, N) =inf{l <k < N: Ay >ci(a, N)oy} (2.1.34)
and
7y = Fpla, N) = inf{1 < k < N : |Ap x| > oo, N)on}. (2.1.35)

The critical constants ¢;(a, N) and ca(c, N) are chosen as in (2.1.18) according to
the next theorem.
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.....

on is chosen as in (2.1.33) and we assume that (2.1.4), (2.1.27) and (2.1.28) are satis-
fied. Then for all real x it holds that under H,

~

A
lim P (aN sup N _py < x) = exp(—e™ ") (2.1.36)
N—oo 1<k<N ON
and
. |Ak,N| o —x
lim P (ay sup — —by < x| =exp(—2e), (2.1.37)
N—o0 1<k<N ON

where ay and by are chosen as in (2.1.22) and (2.1.23), respectively.

The asymptotic power of the test is not influenced by the estimations, so it still holds
that the procedures have asymptotic power one.

,,,,,

that (2.1.4), (2.1.27) and (2.1.28) are satisfied. If we assume that k* = k*(N) < N—hy,
then for all real x it holds that under Hy

~

A
lim P (aN sup N _py > :c) =1 (2.1.38)
N—oo 1<k<N ON
and under Hy
A
lim P <aN sup | Ak’Nl — by > x) =1, (2.1.39)
N—oo 1<k<N ON

where ay and by are chosen as in (2.1.22) and (2.1.23), respectively.

2.1.5 Simulations and discussion

The aim of the simulations provided in this paragraph is to investigate the effect of
smoothing for different kinds of weights. If we choose the weight function

(1, j=o
w, =
’ io , >0,

we obtain the MOSUM-chart for which we already know the empirical results stated in
Tables 1.1-1.4. These tables provide guidelines for the choices of the parameters m, h
and N and will be used as benchmark.

We expect that the empirical sizes decrease, if we put more weight on past observa-
tions, but we also expect that the test then will be less sensitive. Since we have seen
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that in case of known parameters the MOSUM-chart is well applicable for different sizes
of the monitoring period, there is no need to put more weight on past observations.
Hence, we focus on the weighted averages for unknown p and o.

The simulation is carried out for the stopping time 77 and the symmetrical Pareto(5.1)
variables specified in the simulation part of Chapter 1. The variance of the observations
is estimated by

my
9 1

Omy — Z(X’L _IELmN>2'

my — 1A

The empirical power is simulated for A= 1 and £* = 0. The parameters m, h and N are
chosen with regard to the results stated in Table 1.2.
The values for (Afgw are approximated by

4999 4999 hy—1 hN _j

~2 A2 2

ON R Oy | 2 wp+23 wi | X hy k)]
k=0 k=0 N

Jj=1

Each result in the following tables is based on 5,000 replications and the nominal
size has been chosen as a = 0.05.

Weight functions (WF)

e WF-1: The weights are chosen according to

1

W= j=01,..., y>1 C =
TGy ! 7 Z]+1

e WEF-2: The weights are chosen according to

=(1-=ANN, j=0,1,..., Xe[o1].
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Empirical sizes

| symmetrical Pareto(5.1), a = 0.05 |
| m | h | N [[7=11]7=12|7=13|7y=14|~7=15]|
10 || 0.0366 | 0.0420 | 0.0454 | 0.0480 | 0.0516

10 8 14 || 0.0790 | 0.0796 | 0.0800 | 0.0836 | 0.0924
18 || 0.0970 | 0.0978 | 0.0992 | 0.1022 | 0.1034

50 || 0.0328 | 0.0332 | 0.0346 | 0.0378 | 0.0422
50 | 35 | 70 || 0.0506 | 0.0510 | 0.0552 | 0.0562 | 0.0616
90 || 0.0646 | 0.0696 | 0.0702 | 0.0720 | 0.0766

100 || 0.0214 | 0.0254 | 0.0298 | 0.0312 | 0.0328
100 | 80 | 140 || 0.0428 | 0.0466 | 0.0518 | 0.0510 | 0.0524
180 || 0.0578 | 0.0636 | 0.0608 | 0.0628 | 0.0666

250 || 0.0204 | 0.0214 | 0.0228 | 0.0258 | 0.0276
250 | 200 | 350 || 0.0394 | 0.0442 | 0.0468 | 0.0498 | 0.0546
450 || 0.0536 | 0.0564 | 0.0602 | 0.0612 | 0.0656

500 || 0.0208 | 0.0240 | 0.0256 | 0.0282 | 0.0310
200 | 400 | 700 || 0.0336 | 0.0474 | 0.0488 | 0.0464 | 0.0494
900 || 0.0496 | 0.0574 | 0.0592 | 0.0640 | 0.0664

Table 2.1: WAMS-charts, Empirical sizes for stopping time 71 and WF-1

| symmetrical Pareto(5.1), a = 0.05 |
| m [ A [N [[A=9][A=90]A=8[A=.80]A=.75]
10 || 0.0114 | 0.0220 | 0.0398 | 0.0444 | 0.0510

10 8 14 || 0.0298 | 0.0550 | 0.0740 | 0.0750 | 0.0874
18 || 0.0536 | 0.0834 | 0.0980 | 0.0996 | 0.1052

50 || 0.0190 | 0.0322 | 0.0352 | 0.0408 | 0.0418
50 | 35 | 70 || 0.0364 | 0.0492 | 0.0496 | 0.0554 | 0.0572
90 || 0.0580 | 0.0672 | 0.0706 | 0.0722 | 0.0730

100 || 0.0226 | 0.0260 | 0.0274 | 0.0290 | 0.0322
100 | 80 | 140 || 0.0390 | 0.0406 | 0.0476 | 0.0558 | 0.0564
180 || 0.0536 | 0.0540 | 0.0616 | 0.0626 | 0.0680

250 || 0.0188 | 0.0202 | 0.0228 | 0.0264 | 0.0272
250 | 200 | 350 || 0.0390 | 0.0450 | 0.0486 | 0.0556 | 0.0566
450 || 0.0502 | 0.0542 | 0.0604 | 0.0672 | 0.0686

200 || 0.0226 | 0.0254 | 0.0256 | 0.0278 | 0.0280
500 | 400 | 700 || 0.0422 | 0.0426 | 0.0454 | 0.0514 | 0.0552
900 || 0.0512 | 0.0610 | 0.0620 | 0.0648 | 0.0682

Table 2.2: WAMS-charts, Empirical sizes for stopping time 71 and WF-2
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Empirical power

| symmetrical Pareto(5.1), a = 0.05 |

o [N [ h [ [win] Q[ Qo[ Qoo [max | pover |
1.1 2 6 9 10 10 0.6054
10 10 8 1.3 1 6 8 10 10 0.6080
1.5 1 6 8 10 10 0.6246
1.1 5 17 | 21 26 70 0.9932
50 70 35 | 1.3 6 16 20 25 70 0.9918
1.5 6 15 19 24 70 0.9898
1.1 13 29 34 40 140 || 0.9996
100 | 140 | 80 | 1.3 4 26 31 38 140 || 0.9998

1.5 9 25 | 30 | 36 | 140 | 0.9986

1.1 27 | 49 | 56 | 64 | 181 || 1
250 | 350 | 200 | 1.3 || 18 | 44 | 51 | 39 | 136
1.5 18 | 40 | 47 | 56 | 119

1
1
1.1 45 72 | 81 | 91 | 168 |1
1
1

500 | 700 | 400 [ 1.3 35 | 64 | 72 | 83 | 173
1.5 24 | 59 | 68 | 78 | 187

Table 2.3: WAMS-charts, Empirical power for stopping time 71 and WF-1

| symmetrical Pareto(5.1), a = 0.05 |
’ m ‘ N ‘ h ‘ A H min ‘ Q.25 ‘ Qs ‘ Q.75 ‘ max H power ‘
951 3 10 | 10 | 10 10 ]} 0.3230

10 | 10 8 | .85 2 7 10 | 10 10 || 0.5666
75 1 6 9 10 10 || 0.6250

95 12 | 23 | 27 | 31 70 || 0.9920
50 | 70 | 35 | .85 8 17 | 21 | 26 70 || 0.9890
75 6 16 | 19 | 24 70 || 0.9894
95 19 | 35 | 40 | 46 | 140 || 0.9992
100 | 140 | 80 | .85 || 11 26 | 31 | 37 | 140 | 0.9994
75 7 24 1 29 | 36 | 140 || 0.9992
95 || 31 52 | B8 | 66 | 132 | 1

250 | 350 | 200 | .85 | 20 | 40 | 48 | 55 | 125
a5 18 | 38 | 45 | 53 | 127

1
1
95 37 | 69 | 77T | 88 | 155 || 1
1
1

500 | 700 | 400 | .85 | 26 | 57 | 66 | 76 | 145
a5 20 | 54 | 63 | T4 | 167

Table 2.4: WAMS-charts, Empirical power for stopping time 7, and WF-2
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Discussion

Tables 2.1 and 2.2 clearly show that the empirical sizes reduce, if we put more weight
on past observations. We furthermore see that the empirical sizes also decrease, if the
size of the monitoring period increases. However, for the considered values of m, even
if we put rather heavy weights on the past observations the test keeps the nominal size
only if N < 2m. Better proportions seem to be only possible for larger training periods.

Under the alternative we see that the delay times increase, if we put higher weights
on past observations.

A commendation which one of the weight functions is preferable is not possible. For
finite samples both functions may be adjusted via the parameters v and A, respectively,
so that more ore less weight lies on the past observations.

We finally give a possible explanation why, in case of estimated parameters, the
empirical sizes do exceed the nominal size for rather small monitoring periods (compared
to the training periods). To this end we consider the detectors of the MOSUM-chart for
known and unknown g, namely

k . k ]’L m
My= Y eqn and My= Y cim— - > ey
=1

i=k—h+1 i=k—h+1

If the innovations are for example independent, standard normal variables, the corre-
sponding variances are given by

2

h and h—l—h:h<1+h>.

m m

Remember that the application of extreme value theory required the standardization of
the detectors. Since the asymptotic results for {M « } have been traced back to the results
for {My}, each M is standardized by v/h, even though the real standard deviation is
given by (h(1+ h/m))Y2. Now we have a dilemma. Obviously, h/m should be small,
but since in a real setting m is fixed, this goal can only be achieved by reducing the
window size h. However, for fixed m the simulations for the MOSUM-chart clearly
showed that the empirical sizes increase, as the window size decreases. A solution for
this problem may be to consider boundary functions, which take the standard deviations
of the detectors for estimated parameters into account. This will be done in the next
chapter for polynomially weighted moving averages.
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2.1.6 Proofs

First, we introduce a process that will be needed frequently. We extend the approx-
imating Wiener process in the usual way to a two-sided Wiener process denoted by
{W(t),—o0 <t < oo} and define {V; y, —00 < t < 0o} by

Vin = o(W(t+hy)—W(t)) forall —oo<t< oo. (2.1.40)

1
Vhy
It is clear that the following proofs are concerned with triangular arrays, however,
this will be only pointed out if needed.

Proof of Theorem 2.1.1

We define the sequence {Qg v }tr=1..n by
k—1
Qrn = Z w;Vi—;n forall k=1,...,N. (2.1.41)
=0
Lemma 2.1.1 Let the sequences {Ag n}r=1.. n and {Qx.n}r=1.. N be given by (2.1.7)
and (2.1.41), respectively. oy is determined by (2.1.14). Then it holds that

A
ay < max —°~ — max QkN) =op(l) as N — oc. (2.1.42)
1<kSN gy 1<k<N oy
Proor: We have
. . k—1
an A N — _ N (Bi v — Vi
oy 102 [y = Quy| = max jz%wa( k—iN = Viejin)
an ad
< WSS Bew — Vi
< ON;)MJ 1r§r}€aé>§vl kN — Vin]|
an
< = B nv — Vi nl.
= on 12}@%‘ kN k,N|

The weak approximation (2.1.2) implies that

N—l— h 1/v
ay max |Bi,n — Vin| =Op <aN(\/mN)> as N — 00
and since oy — 0 as N — 00, (2.1.42) follows by (2.1.4).
O
Next, we approximate {Qg n}x=1,.. n by the continuous-time process {Qn(t) bo<i<n,
defined as
[t]-1
Qnt)= > w;V,_jy forall 0<t<N. (2.1.43)

=0
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Lemma 2.1.2 Let the sequence {Qg.n }r=1
{QN<t>}0§t§N as n (2143) Then

~ be given by (2.1.41) and define the process

.....

an < sup Qun _ sup QN(t)) =op(l) as N — 0. (2.1.44)
1<t<N ON 1<t<N ON
PRrROOF: Obviously,
an LtJ—l
aliltlfN‘QLth—QN()‘ <a1§‘tl<PN wy‘vt N = Vit JN‘

S* sup ‘W,N_VLtJ,N‘

ON 1<t<N
cofo o W = W(e)]
ON 1<t<N+hy Vhn

Now Theorem 1.2.1 of Csorg6 and Révész (1981) shows that

sup W (t) — W([t])| =0 (Viog(N +hy)) as. as N— oo
1<t<N+hpn

and since oy — 0 as N — 0o, the Lemma follows by (2.1.4).
U

The next step is to introduce a stationary extension of {Qn(t)}o<t<n. To this end
we define the process {Un(t) }o<t<n as

Un(t) = ij‘/}/,j,N forall 0<t<N. (2.1.45)
=0

Lemma 2.1.3 Let the processes {Qn(t) bo<i<n and {Un(t) }o<i<n be defined as in (2.1.43)
and (2.1.45), respectively. Then

Un(t t
an < sup Un(t) _ sup QJV()) =op(l) as N — oo. (2.1.46)
1<t<N ON 1<t<N ON
PRrOOF: We first show that for some suitable chosen N it holds that
t
ay sup Qnlt) by — —00 as N — . (2.1.47)
1<t<N ON

If we set 0 = 2¢ + (1 — 2¢)~ for some 0 < 7 < 1, then we see by (2.1.4) that

NY N\
— ~ <> as N — oo. (2.1.48)
hn hy
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Now
[t]-1
Z wJVt —J,N

7=0

<ng sup |Vin|= sup |[Vin]
=0 1<t< N 1<t<N?

sup Qn(t) < sup
1<t<N? 1<t<N?

and from Theorem 1.2.1 of Csorgé and Révész (1981) it follows that
N@ h —-1/2
lim sup (2 <10g Ay + loglog(N? + hN)>> sup |Vin| <o as.
N—oo hy 1<t<N®
Since obviously
N® + hy ( N
hn  \hy
this implies that for all € > 0 it holds

.
) as N — o0

N 1/2
P ( sup |Vin| > <2710g> (1+6)> —0 as N — oo,
1<t<N® hy

which together with the definitions of ay, by and oy shows that for all N < N¢
(N — o0) assertion (2.1.47) holds. A similar statement for {Un(t)}o<t<n is given in
Lemma 2.1.5 below.

Now, in view of (2.1.47) and the corresponding result for {Ux(t)}o<i<n it suffices
to show (2.1.46) on a truncated range for the suprema. Without loss of generality we
assume that N is integer-valued. We have

a
N sup |Un(t) — Qn(t)] = — sup ZwJVt »
ON N<t<N ON N<t<N |j=[t]
Z w; sup ‘VN sl (2.1.49)
< 0<s<1
Note that
sup ‘VN L osup |V, forall j>N (2.1.50)
0<s<1 0<s<1
and
(W(hy —5) = W(=s)|
sup |[V_4| = su
0§SI<)1| | ogsgl vV hn
(W (hy —s)| [W(=s)|
< sup ———+ sup ————
_ogsgl Vhy ogs% Vhn
C o WO W)

0<t<hN vVhy OS<I;I<)1 Vhy
: Li(N) + I,(N).
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For some suitable chosen C} > 0 independent of N (cf. Karatzas and Shreve, Chapter
2.8, 1988) it holds that

EL(N) <Cy (2.1.51)
and
VhinEL(N) < (4, (2.1.52)

hence, on combining (2.1.50)—(2.1.52) we see that

E sup [Vy , |<2C forall j>N
0<s<1
and
E Z w; sup ‘V]g_jfs <204 - Z wj. (2.1.53)
j:N 0<s<1 j:N

Now (2.1.11) and the definition of N yield the existence of some € > 0, such that

1

> w;j=0 <NE> as N — oo (2.1.54)
j=N

and the lemma follows by (2.1.22), (2.1.49), (2.1.53), (2.1.54), and the Markov-inequality.
U

Finally, we consider the extremes of {Un(t)}o<t<n-

Lemma 2.1.4 Let the process {Un(t) }o<t<n be given by (2.1.45). For all real x it holds
that

Un(t
lim P <aN sup n(t) _ by < :c) = exp(—e ). (2.1.55)
N—oo I<t<N ON

PRrOOF: We define the processes {Un ()} as
Un(t) :==Uy(thy) forall > 0. (2.1.56)

Obviously, it holds that

Un(t) _ Un(t)
sup = sup
1<t<N  ON 1/hny<i<N/hy ON

and since Lemma A.3.1 shows that the assumptions of Theorem 5.1 in Gut and Steinebach
(2004) are satisfied, the lemma follows. O
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Lemma 2.1.5 Let the process {Un(t) }o<i<n be defined as in (2.1.45). Furthermore, let
0 =2¢p+ (1 —2¢)y for some 0 <~ < 1. Then for all real x it holds that

lim P (aN sup Un(t) —by < x) = 1. (2.1.57)

N—oo0 1<t<N® ON

PROOF: In the following, we also denote N 9~by N. )
Since 2¢ < 6 < 1 we can find a constant ¢ such that 1/v < ¢ < 1/2 and

hy ~ N* as N — oo. (2.1.58)

Comparing (2.1.58) with (2.1.4) we see that Lemma 2.1.4 also holds, if we replace NV by
N in the domain of the supremum. Hence (N — 00 iff N — o00)

t
lim P <aN max Unlt) _ by < a:) = exp(—e™ "), (2.1.59)

N—oo 1<t<N ON

where

o, N
ay = QIOgH

and
N N
bN:2logh —10glogh———log7r
Now
t Un(t -
P <aN max Un(t) —by < x> =P <aN max n(®) i (x + by) —b];,>
I<t<N ON 1<t<N ON an

and since elementary calculations show that for any real z it holds

ag
an

(x+by)—by — o0 as N — oo,

the lemma follows by (2.1.58).
U

On combining the Lemmas (2.1.1)—(2.1.5) we see that assertion (2.1.20) of Theorem
2.1.1 holds. The symmetry of {Un (%) }o<t<ny and the asymptotic independence of maxima
and minima in the underlying extreme value asymptotic imply (2.1.21) (see also Gut
and Steinebach, 2004).
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Proof of Theorem 2.1.2

Under the one-sided alternative for all 1 < k£ < N we have
1 hny—1

Ak,N:Zw]\/— Z Xk —j— z+hN_M)

thlkl

= Z Zwﬂ (Xk—jithy — 1)

] =0
1 hny—1 hy—1k—i—k*—1

Z;]wjm ; Ek—j—ithy T Z Z Wj
and since for I5(N) it holds that
hy—1k—i—k*—1 hy—1 [ k—hy—k*—1 k—i—k*—1
ViR P S A w0 Dl WD DR R D SRS
= =0 ! j=k—hn—k* ’

k—hny—k*—1 hn—1

:\/hN A Z w]' Z ’LUk hn—Fk*+j
j=0

k—hny—k*—1
Z\/hN A Z wy,
=0

the assumption £* < N — hy implies

AkN /hN A N—hn—Fk*—1 1 k—1 1 hy—1
max —— > w; — max €
IsksN oy ON jzo T 1<k<N oy ;} J\/_N Z k—j—ithy
Vhn A 1 k—hn hy—1
> wy — max W € .
- onN 0 hn<k<N |opn Zo J Z k—j—i
Now (2.1.21) shows that
1 k—1 1 hny—1 N
max |— Y wj—— Z Ek—jithy| = Op | 1/log — as N — oo
1<k<N |opN =0 /h N hN

and assertion (2.1.24) follows, since for all real x

A
P <aN max N _ by < x)

1<k<N o'N
Ak N x + bN>
= max <

1<k‘<N UN

<P w — max
1<k<N

hny—1

N
ng]l

T+ by
= Tan

it |
SO 2
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and

log> as N — oo.
hn

Similar arguments show (2.1.25), hence the proof of Theorem 2.1.2 is complete.

b N
T+ N:0<
an

Proof of Theorem 2.1.3

Note that we already know by Lemma 1.1.3 that

1
fimy — o =0Op (\/m_N> as N — oo (2.1.60)
and
1
62, —0’=op (19> as N — oo (2.1.61)
my

for some ¥ > 0.

The proof of Theorem 2.1.3 is traced back to the proof of Theorem 2.1.1, but since
the training period my does not coincide with the window size hy, we need some
preliminaries. We define

k-1
Ak,N = ijkaj,N for all k= 1,2, . ,N, (2162)
=0
where
~ 1 hny—1
By = — Xi—itm~y — forall £=1,2,..., N. 2.1.63
kN \/m;)(k+zvu) or a ( )

It follows immediately by (2.1.27) and (2.1.28) that the results of Theorem 2.1.1 also
hold for the sequence {Ag n}r=1.. nN-

..........

Ay e
o (52 - e ) =or) w0 W .
PRrOOF: By (2.1.60) it follows that
k—1 hny—1
an i | an 1 N
2 ey = ] = Z 0 | 3w G 3 o =0

and since oy — o (N — 00), (2.1.28) implies the lemma.
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O

Next, we replace oy by oy.

-----

on and oy are defined via (2.1.14) and (2.1.33), respectively. Then it holds that

Ay Ay
ay (12}%}3\1 o —lglkagvg =op(l) as N — oc. (2.1.65)

PrOOF: Since Theorem 2.1.1 together with Lemma 2.1.6 implies

Ay [N
Jax, p —Op< loghN> as N — o0

and (2.1.61) gives

1
TN:1—|—0p<19> as N — oo, forsome ¢ >0,
UN mN
we get

A A 1 N
an Ak’N =ayn k’N+0p <19 10g> as N — oo,
ON ON mpy hN

uniformly in £ =1,2,..., N. The lemma now follows by (2.1.4) and (2.1.28).
O

Obviously, Theorem 2.1.3 now follows on combining Lemma 2.1.6 and Lemma 2.1.7.

Proof of Theorem 2.1.4

The proof of Theorem 2.1.4 follows by the same proof steps as Theorem 2.1.2, hence we
omit the details. We only mention that (2.1.61) implies

\/HA:\/EA+O <\/E

0)

> as N — oo.
my

ON ON
and

Vhy

my

=0 (h}\{Q—E) as N — oo for some €>0.



Chapter 3

Control charts based on
polynomially weighted moving
averages

Following the idea of exponential smoothing, in this chapter we introduce a control chart
based on polynomially weighted moving averages (PWMA), which allows for a flexible
adjustment of the weights that are assigned to recent observations.

We first consider the PWMA-chart for a closed-end setting and then extend the
results to an open time horizon. To this end we derive the asymptotic boundary crossing
probabilities of the Wiener process for a new class of boundary functions.

3.1 Closed-end control charts

3.1.1 Model assumptions for known p and o

Let {e;}i=12,.. be a sequence of real-valued random variables on some probability space
(Q, A, P) with

Ee;=0 and Varg;=0>>0 forall i=1,2,... (3.1.1)
We assume that there exists a Wiener process {W (t),t > 0} satisfying

k
sup > e —oW(k)
=1

1
Pty W 4 < o0 a.s. (312)

for some v > 2.

We are interested in monitoring a discrete-time stochastic process {X; };—1. . n, which
is assumed to follow the model
-flu—i—gi 1< < k¥
X; = { (3.1.3)

L,U“_A‘I’gi k<1 <N,

41
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where g is the in-control mean, k* is the unknown time of a possible change and A is
the size of the level shift.
The hypotheses which are tested sequentially can be stated as

Hy:k*=N wversus H;:k* <N, A>0 (one-sided alternative), (3.1.4)
or

Hy:k*=N versus Hsy:k* <N, A#0 (two-sided alternative). (3.1.5)

3.1.2 Monitoring procedures for known p and o

Let ¢ be a monomial of degree d € Ny. If we define

. . d
pj,k:q@):(‘;) forall j=01,...k k=12 ... (3.1.6)
and
T 2\
p(z,t) = q<t> = (t) forall 0<ax<t, >0, (3.1.7)

the sequence of detectors is given by
k
szzijk(Xj—,u), kzl,N (318)
j=1

Remark 3.1.1 The proofs show that any function f(x) =27, v >0, x > 0 may be used
to define the weights. Monomials are chosen with regard to an extension of the model
to wider classes of polynomials.

The variances of the detectors can be conveniently approximated by

2

t t 2d
o = 0—2[) Pz, t)dz = o—% (%) dr — 2d0+1 t, t>0. (3.1.9)

If we test the null hypotheses versus the one-sided alternative (a €]0,1[), we stop
monitoring at min{7y, N}, where

7 =7(a,N)=inf{l <k < N: P, >c(a,N)o,} (3.1.10)

and reject Hy, if 73 < N (inf ) = o0o0). If the alternative is two-sided, we replace 7 by
Ty, Where

Ty =To(a, N) =inf{l < k < N :|P;| > co(a, N)oy }. (3.1.11)
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The critical constants ¢;(«, N) and ca(a, N) are given by

1— b 1— b
ZQ1( @) + by and CQ(OK7N):q2( @) + N,

an an

ci(a, N) (3.1.12)

where ay and by are defined in (3.1.16) and (3.1.17) below. Moreover,

@1(1 —a) = —log(—log(1 —)) and ¢(1 —a) = —log <—; log(1 — a)) . (3.1.13)

The choice of the critical constants is well-founded, since the following theorem
implies that the false alarm rate of the procedures converges to a as N — oo.

,,,,,

: Py _
_k_ < — _e %
Apinoo P <aN 1%85\7 o by < x) exp( e ) (3.1.14)
and
. | P -
L2 < — _ x
A}llnoo p <aN Dax p by <z exp (—2e77), (3.1.15)
where
ay = (2loglog N2*+1)"/? (3.1.16)
and
1 1
by = 2loglog N24+1 4 3 log log log N4+t — 3 log 7. (3.1.17)

Furthermore, the procedures have asymptotic power one, if the change is not located
too close to the end of the monitored period N.

Theorem 3.1.2 Let the sequence { Py }r—1.. n and {og}r=1. n be defined as in Theorem
3.1.1. If k* = k*(N) < N — NP, where 1/2 < p < 1, then, it holds under H, and for all
real T that

. Py
]\}1_120 p <aN 12}2%\“; — by > x) =1 (3.1.18)
and under Ho
. | D] _
Apinoo P <aN 1%2}:\{7,{ —by >z =1, (3.1.19)

where ay and by are chosen as in (3.1.16) and (3.1.17), respectively.
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3.1.3 Model assumptions for unknown p and o

Suppose that (3.1.1) holds. As in the previous chapters, the estimators for the in-
control parameters are based on a historical data set (training period) of size m, which
is assumed to be homogeneous.
Monitoring starts after the training period and the length N of the monitoring period
depends on m as follows
N >cm forsome c¢>1 and N ~m" (m — oco) for some A>1. (3.1.20)

Instead of (3.1.2), we now claim that there exist two sequences of Wiener processes

{Wim(t),t > 0}e12,... and {Wo (), > 0}z o,... satisfying
1 k
SUp -7 1D Emri — oWim(k)| = Op(1) as m — oo (3.1.21)
1<k<oo KV |
and
S e — oWy m(m) =0p(m'") as m — oo, (3.1.22)

1=1

respectively. We mention that, for fixed m, it is not required that {Wy ,(¢),¢ > 0} and
{Wa,m(t),t > 0} are independent.
The process {X;}i=1...min is modeled as

.....

(e 1< <m+ kY
X; = { (3.1.23)
\M+A+€i mt+k*<i<m+N
and we are interested in testing
Hy: k"= N versus H;:0<k*<N, A>0 (one-sided alternative), (3.1.24)

or

Hy:k*=N versus Hy:0<k*<N, A#0 (two-sided alternative). (3.1.25)

3.1.4 Monitoring procedures for unknown p and o

Replacing i by the estimator

fm=— 3 Xj, m=12,.. (3.1.26)
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yields the sequence of detectors

- k >hop
Pk =3 pjs(Xomss — Zp]kgmﬂ = J’“Zsi, k=1,...,N. (3.1.27)

m =1

The proof of Lemma 1.1.3, together with (3.1.20), shows that there exists an estimator
om for o, which is based on the observations that are obtained within the training period
and satisfies

1
Om — 0 =0p <I9> as m — oo for some ¥ > 0. (3.1.28)
m
With
2d —|— 1 k
k) 1 k=1,....N 3.1.29
(¢ stands for 'closed-end’),we define
2d+1 k
k= Om 1+ 227 8 k=1, N 3.1.30
O =0 \/_\/ 2d+1 ( +(d+1)2m> ( )
Depending on the alternatives, the stopping times are
71 =7(a,m) =inf{l <k < N: Pm,k > ¢ (o, m)Gm i} (3.1.31)
and
7y = fy(a,m) = inf{1 <k < N : |Ppi| > éa(a,m)omu}, (3.1.32)
where ¢ (o, m) and ¢ (o, m) are given by
1 - bm ~ ]- - bm
¢ (a,m) = ol —a)+ and  éy(a,m) = e =)+ : (3.1.33)
Am G

The quantiles ¢; and ¢, are chosen as in (3.1.13) and the definition of a,, and b,, is given
n (3.1.36) and (3.1.37) below.

As in case of known parameters, the false alarm rate of the procedures is asymptoti-
cally a (m — oo) and the asymptotic power is 1, if the change occurs not too late. This
can be seen by the following two theorems.
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..........

(3.1.27) and (3.1.30), respectively. Then, it holds under Hy and for all real x that

~

]\}1_{1;0 P (am max (;j:; — by < x) = exp (—e ) (3.1.34)
and

1\}1—{%0 P (am max ;Pni — by, < x) = exp (—2¢77), (3.1.35)
where

am = (2loglog deH)l/2 (3.1.36)
and

1 1
by = 2loglog m* 1 + 3 log log log m**+! — 3 log . (3.1.37)

777777777

Theorem 3.1.8. If k* = k*(N) < N — N¢, where 1 — (1/2)\) < o < 1 and X is given in
(3.1.20), then, under Hy for all real x holds

~

Py,
lim P <am max —2% —p,. > x) =1 (3.1.38)
m—00 1<k<N G
and under Hy
P,
lim P (am max |A # — by > g;> =1, (3.1.39)
m—00 1<k<N Um,k

where a,, and by, are chosen as in (3.1.36) and (3.1.37), respectively.

3.1.5 Simulations and discussion

We now investigate the finite sample properties of the PWMA-chart in a simulation
study.

We focus on the one-sided stopping rule based on stopping time 7; and the simu-
lation is carried out for the symmetric Pareto(5.1) variables, which are specified in the
simulation part of Chapter 1. As mentioned in Remark 3.1.1 the degree d has not to be
integer-valued and we take into account d = 0.0,0.5,1.0,1.5,2.0.

Since we are also interested in the effect of the curved boundary functions on the
delay time (i.e. 71 — k*), we consider structural breaks in k* = 0 and k* = N/2, where
N = 1000 and A= 1. The empirical delay times are described by the associated .25—,
.5b— and .75— quantiles and stated together with the empirical power.

All values in the following tables are based on 5,000 replications and the nominal
size has been chosen as a = 0.05.
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Empirical Sizes

|

innovations: symmetrical Pareto(5.1), a = 0.05

|

| m [ N [[d=00]d=05]d=10]d=15]d=20]

100 || 0.0734 | 0.0836 | 0.1068 | 0.1148 | 0.1420
500 || 0.0704 | 0.0880 | 0.1056 | 0.1254 | 0.1376
10 | 1000 || 0.0748 | 0.0874 | 0.1104 | 0.1264 | 0.1394
2500 || 0.0710 | 0.0858 | 0.1018 | 0.1166 | 0.1424
5000 || 0.0748 | 0.0866 | 0.1086 | 0.1274 | 0.1386
100 || 0.0410 | 0.0472 | 0.0538 | 0.0712 | 0.0748
500 || 0.0458 | 0.0490 | 0.0574 | 0.0646 | 0.0778
50 | 1000 || 0.0390 | 0.0510 | 0.0612 | 0.0736 | 0.0796
2500 || 0.0426 | 0.0492 | 0.0560 | 0.0694 | 0.0816
5000 || 0.0412 | 0.0420 | 0.0606 | 0.0686 | 0.0810
100 || 0.0324 | 0.0336 | 0.0484 | 0.0624 | 0.0684
500 || 0.0292 | 0.0390 | 0.0492 | 0.0606 | 0.0660
100 | 1000 || 0.0364 | 0.0382 | 0.0494 | 0.0586 | 0.0702
2500 || 0.0324 | 0.0392 | 0.0502 | 0.0546 | 0.0666
5000 || 0.0356 | 0.0406 | 0.0512 | 0.0592 | 0.0710
100 || 0.0264 | 0.0314 | 0.0400 | 0.0466 | 0.0584
200 || 0.0286 | 0.0322 | 0.0414 | 0.0500 | 0.0614
250 | 1000 || 0.0354 | 0.0308 | 0.0426 | 0.0514 | 0.0616
2500 || 0.0358 | 0.0366 | 0.0422 | 0.0524 | 0.0628
5000 || 0.0368 | 0.0382 | 0.0426 | 0.0482 | 0.0680
100 || 0.0300 | 0.0320 | 0.0404 | 0.0502 | 0.0584
500 || 0.0240 | 0.0300 | 0.0412 | 0.0532 | 0.0576
500 | 1000 || 0.0338 | 0.0360 | 0.0398 | 0.0496 | 0.0586
2500 || 0.0314 | 0.0344 | 0.0376 | 0.0476 | 0.0566
5000 || 0.0328 | 0.0332 | 0.0392 | 0.0492 | 0.0596

Table 3.1: Empirical sizes for stopping time 7,

47
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Empirical Power

| innovations: symmetrical Pareto(5.1), v = 0.05 |

’ m ‘ N ‘ d H Q.25 ‘ @ 50 ‘ Q.15 H power ‘

0.0 4 11 | 1000 || 0.7462
0.5 3 15 | 1000 || 0.6656
10 | 1000 | 1.0 3 18 | 1000 || 0.6292
1.0 2 21 | 1000 || 0.6070
2.0 2 26 | 1000 || 0.6198
0.0 6 10 19 ] 0.9902
0.5 7 14 29 || 0.9776
50 | 1000 | 1.0 7 18 39 || 0.9664
1.5 8 22 ol 0.9564
2.0 6 23 29 || 0.9536
0.0 6 10 16 || 0.9980
0.5 8 15 24 ] 0.9990
100 | 1000 | 1.0 9 19 32 | 0.9970
1.5 9 21 40 || 0.9956
2.0 9 25 46 || 0.9952
0.0 7 11 16 1
0.5 9 15 23 1
250 | 1000 | 1.0 || 11 19 29 1
1.5 ] 12 23 37 |1
20 11 26 42 1
0.0 7 11 15 1
0.5 10 16 22 1
500 | 1000 | 1.0 || 12 19 28 1
1.5 13 24 36 1
201 14 28 41 1

Table 3.2: Empirical power for stopping time 71, k* = 0
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| innovations: symmetrical Pareto(5.1), a = 0.05 |

’ m ‘ N ‘ d H Q.25 ‘ Q50 ‘ Q.75 H power

|

0.0 || 458 | 1000 | 1000 | 0.2674
0.5 || 447 | 1000 | 1000 || 0.2686
10 [ 1000 | 1.0 || 359 | 1000 | 1000 || 0.3092
1.0 || 309 | 1000 | 1000 || 0.3342
2.0 || 240 | 1000 | 1000 || 0.3744
0.0 || 229 | 370 | 1000 | 0.6674
0.5 { 205 | 317 | 1000 | 0.7404
50 | 1000 | 1.0 || 167 | 263 | 428 | 0.8034
1.5 || 147 | 228 | 371 || 0.8364
20| 127 | 197 | 335 || 0.8542
0.0 || 166 | 239 | 342 || 0.9136
0.5 || 145 | 204 | 281 || 0.9536
100 | 1000 | 1.0 || 123 | 171 | 237 || 0.9724
1.5 || 109 | 151 | 206 || 0.9784
20 94 | 129 | 180 | 0.9830
0.0 | 113 | 154 | 202 | 0.9974
05| 99 | 131 | 166 || 0.9988
250 | 1000 | 1.0 || 87 | 113 | 142 || 0.9990
1.5 ] 76 98 124 || 0.9994
20| 68 91 113 || 0.9996
0.0 91 | 122 | 153 || 1
0.5 81 | 105 | 129 | 1
500 | 1000 | 1.0 || 72 91 111 || 1
1.5 || 65 82 99 1
20 59 74 90 1

Table 3.3: Empirical power for stopping time 71, k£* = 500

Discussion

49

In accordance with Lemma 3.1.7, Table 3.1 shows that most of the false alarms are given
immediately after the training period. The empirical sizes increase with the degree d,
however, for d = 0 and m > 50 they are always below the nominal size. Hence, we can
adjust the test to a given nominal size quite accurately by the degree d. Note that for
d = 0.0 we obtain a CUSUM-type detector.



50 CHAPTER 3. POLYNOMIALLY WEIGHTED MOVING AVERAGES

The simulations under the alternative show that the performance of the test does
not only depend on the degree d, but also on the location of the change-point k* (for
fixed d). While in case of an early change d = 0 yields the highest empirical power and
smallest delay times, in case of a late change the degree should be chosen as high as
possible. Tables 3.2 and 3.3 also show that the empirical power increases with the size
of the training period.

Summarizing the results, we see that the PWMA-chart provides a flexible tool for
change point-analysis, especially for the detection of late changes.

3.1.6 Proofs

In the proofs, sums of the innovations will also be denoted by S(k) = ¥ &;.
We mention that in case of estimated parameters we are dealing with triangular
schemes, however, this will be only pointed out if needed.

Proof of Theorem 3.1.1
We define the sequence {Qg}r—1.. n by

Qr = azk:pj,k(W(j) —W(—1)) forall k=1,...,N, (3.1.40)

=1
where {W (t),t > 0} is the approximating Wiener process given in (3.1.2).

Lemma 3.1.1 Let the sequences {Py}r=1,. n and {Qx}x=1,. ~ be defined as in (3.1.8)

and (3.1.40), respectively. If n is a non-decreasing, integer-valued function of N with

1 <n < N, then it holds that
Py Qr

max — — Imax :Op<
n<k<N Oy n<k<N O

1
PROOF: For all k =1,2,... we define the sequence {d;;,1 < j <k} by

dix = pik —Pji—1k, J=1,2,...

and reformulate the processes { Py }x—1, v and {Qx}r=1.. n as

k
Pe=>djn(S(k)—S(j—1)) forall k=1,...,N (3.1.42)
j=1
and
k
Qp=0>d;, (W(k)—W(—1)) forall k=1,...,N. (3.1.43)
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Then

maX—|Pk—Qk\< maX—Zd]k |S(k) — oW (k)| +|S(j—1)—aW(j—1)|)

n<k<N O} n<k<N O}

< 2 max Zd max i|S(/’<:)—<ﬂ/V(k:)|

n<h<N n<k<N oy,

=2 max i|S( k) — oW (k)|

n<k<N Ok
and the Lemma follows by (3.1.9) and (3.1.2).

OJ

The next step is to approximate the sequence {Qg}r=1.. n by the continuous-time

process {U(t) };>1 defined as

.....

t ¢ d
U(t) = 0/ p(x,t) dW(x) = 0'/ <%) dW(z) forall t>1. (3.1.44)
0 0
Lemma 3.1.2 Let the sequence {Qy}r=1... n and the process {U(t)}i>1 be defined as in
(3.1.40) and (3.1.44), respectively. Ift is a non-decreasing function of N with1 <t < N,
then

1/2
sap 7O QW o, (<IOgEN> ) s N — oo, (3.1.45)

i<t<N Ot i<t<N O|t]

PROOF: Integration by parts yields for all £t > 1

Lo =w - /tp (2. )W (2) da

o
t
Z/ ) dx — /Hp’(a:,t)W(x) d.
t
Taking into account (3.1.43) we get for all k =1,2,...
k
—Qr = _Zdj,kW]_D
];1
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Hence, for all t > 1 we have

j_(U(t)—@m)=<W<t>—W<LtJ>>—; [ P OW ) =, L)W (- 1)
- L“p'(x,t)VV(ac) dx
and get

s [0 -2

< sp WO - W)
LtJ

+ s YL ]Z /j 1O () LW = 1) da
" T S o

Theorem 1.2.1 of Csorgd and Révész (1981) immediately implies that

L(N)=0 (1;(1)/%]\[) a.s. as N — oo. (3.1.47)

For the second term we get

LtJ
LIS [ Wt = I @

e
s 2?; S3 [ W )W) < WG - 1)

(V) + (V).

I(N) < sup

I<t<N
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For J;(N) it holds that

Ji(N)
11

< sup sup |W (s / t]) N
P<t<N \/— 0<s<t’ |Z z, [t]) — p'(z,1)

[\
:‘
~

—_

= sup sup |W |Z ]7 Lt ] -1, LtJ) -

I<t<N \/— 0<s<t

[\

S
Nj‘

—_

(p(4,1)

V2d+1 L]
= sup sup [W(s)| | 1 — p(j,t) —p(j —1,t
Jup S g (W) | 1= 3066 =G = L)
V2d+1 < |t] )d
= W 1— | ==
tg&lgpN \/E ossggt| (S” t
V2d +1 td — |t]¢
S T R Wl

Since the law of the iterated logarithm implies

sup W)l =0(y/loglogt) a.s.,
0<s<t \/%

while an application of the mean value theorem shows that

td — md dtd=1(t — M)

—~

td td - t
we obtain
v/1oglog N
Ji(N)=0 <og£og) as N — 0.

For J5(N) it holds that
V2d+1
J(N) < sup YT

I<t<N \/I_f 1<5<t 0<s<1

and again by Theorem 1.2.1 of Csorgd and Révész it follows that

Vlog N

£1/2

J2<N):0< ) as. as N — oo.

Combining (3.1.48) and (3.1.49) we derive
Vlog N

£1/2

JQ(N):0< ) as. as N — oo.

sup sup [W(j—1+s)—W(j—1)|

93

—p(i —1,1)))

(3.1.48)

(3.1.49)

(3.1.50)
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Now since

sup sup p'(z,t) =d,
1<t<o0 0<s<t

Theorem 1.2.1 implies

[g(N):O< ;?iN) a.s. as N — oo. (3.1.51)

Consequently, (3.1.46)—(3.1.51) yield the intermediate result

sup @ _ % =0 ( ' 1~OgN> a.s. as N — oo. (3.1.52)
f<t<N| O oy 1/2

Next, we have

Qu 9 JETTS N v
sup |— — —=| = sup v2d+1 i [W () = W (5 — 1)) Y
i<t<n | O] Ot | i<i<n ; 314 [W (7) (=1 Vil

The law of the iterated logarithm for weighted sums (see Li and Tomkins, 1996) yields

V2d 15 py WG - WG —1)]

=1 as. as N — oo,

lim sup
|t]—o00 2|t | loglog|t]

implying that

Qu _ Qu

O—Ltj O¢

sup
I<t<N

loglog N\ '/?
:O<<Og§g> ) a.s. as N — 00 (3.1.53)

and the Lemma follows by (3.1.52) and (3.1.53).

Finally, we consider the extremes of the process {U(t)/oy,1 <t < N}.

Lemma 3.1.3 Let the process {U(t) }1>1 be defined as in (3.1.44). If {o1}1>1 is defined
via (3.1.9), then for all real x it holds that

Ut
lim P <aN sup ®) —by < x> = exp (—e‘x) as N — oo, (3.1.54)
N—o0 1<t<N O¢

where ay and by are defined in (3.1.16) and (3.1.17).
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PRroOOF: First, note that {U(t)/o;,1 <t < N} is a standardized Gaussian process and
for all 0 < s <t < N its autocorrelation function r(s,t) is given by

U(s) U(t) 2d+1 s jx\d ra\d gd+1/2
T(S7t) = Cov < 5 > - \/3 0 (g) (?) T = W

Os Ot
Comparing the autocorrelation functions, we see that

{U@),lStSN}g{WalﬁtSN}

o td+1/2
and since
W (#24+1) W(t)
sup ————== = su —,
létépN td+1/2 lgtSNgdH \/7_5

the lemma follows by Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983).
O

We now put the results together. Lemma 3.1.1 shows that for any non-decreasing
1 <n < N it holds that

By Qr
(max — — max ) =0p(l) as N — oo.
I<k<n gy, 1<k<n oy,

If we chose n = (log N)° for some § > 1, then, the law of the iterated logarithm for
weighted sums (see Li and Tomkins, 1996) shows that

max O =0 (logloglog N) a.s. as N — oo.
1<k<(log N)3 O},

Hence, for any real x it follows that

lim P <aN max Qr by < x> =1 (3.1.55)
N—oco 1<k<(log N)% O}
and also
. Py,
lim P{ay max — —by<z|=1. (3.1.56)
N—o0 1<k<(log N)® O

Assertion (3.1.14) now follows on combining the Lemmas 3.1.1, 3.1.2 and 3.1.3. The
statement in display (3.1.15) holds, since the above computations can be modified in
an obvious way to consider the minimum of {P;}x—;  n and it is well known, that the
maxima and minima in the underlying extreme value asymptotic are independent (see
Bickel and Rosenblatt, 1973, Theorem Al.). Note that (3.1.15) can also be shown di-
rectly by applying an extended result of Darling and Erdds (1956) to the approximations
of {|P|/ok k=1, .~ (cf. Horvath, Kokoszka and Steinebach, 2007).
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Proof of Theorem 3.1.2

We only show (3.1.18), since (3.1.19) follows by the same arguments. Defining the
sequence {Pk(o)}k:l

..... N as
k
PO =S"pre;, k=1,...N, (3.1.57)
j=1

we get the decomposition

k
P=P"+ Y pixd, k=1,...N.
j=k*+1

For the drift it holds that

k N
max e A= N A
1SEEN | Z Pjk Z PjN

Jj=k*+1 j=k*+1
A Nd+1 o k*d-f—l
>
—d+1 Nd
L8 N (N - NPy
—d+1 Nd

and elementary calculations show that
N (N — N#)H!
Nd
For all real z we have

Py
P (aN max — — by §x>
1<k<N oy,

P(O) N v A P(U)
<P <aN max Lic |—bN§x—asz_k+1p]’N + 2ay max L .

~ NP as N — oo. (3.1.58)

1SkEN oy, on 1SkEN oy,

Theorem 3.1.1 implies

Ly
ay max o —by=0p(l) as N — oo
and
Lyl :
oy max o =Op(ay) as N — oo,

hence (3.1.18) follows, since

Zj'v:k*+1pj7N A
ON
and p > 1/2.

ZN’)—% as N — oo
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Proof of Theorem 3.1.3

First, we show that early time lags & do not contribute to the extreme value asymptotic.
For all k =1,..., N we define

k
Ej:l Pj.k
m

. k
Qm,k = O-ij,k<Wl,m(j) - Wl,m(j - 1)) -

=1

W m(m). (3.1.59)

Lemma 3.1.4 Let the sequences { P, .} r—1
and (3.1.59), respectively. If the sequence {g.(m,k)}r=1
(3.1.29), then for any § > 0 it holds that

A

1 Pk

,,,,,

oy~ or( 3.1.60
(log log log m)1/2 1<k2 (1o m)s 7ga(m, k) p(1) as m — o ( )
and
1 ka
=0r(1 : 3.1.61
(logloglogm)!/? 1<k<(1o}g(m) ch(m k) p(1) as m— o0 ( )
ProoF: We have
max %< max ;Z (Wam(G) — Wi — 1))
1<k<(logm)® Ugc(m7 k‘) - 1<k<(logm)® gc(m k p]k lm 1,m i
1 koo
+  max ZJ—T;pJ,k W (m)|

1<k<(logm)® g.(m, k)
= I1(m) + Iy(m)
Obviously,
0gc(m,k) >0, forall k=1,....N and m=12...,

hence, the final considerations to the proof of Theorem 3.1.1 carry over to I;(m) and
we have

Ii(m) =0 (logloglogm) as. as m — oc. (3.1.62)
Now let {Ws(t),t > 0} be a standard Wiener process and define D as
2d +1
D=———. 3.1.63
(d+1)2 ( )

The distribution of Wy, (m)//m does not depend on m, hence
551 Pidil Wom (M) b 51 P | Wa (1)]
1<k (1o m) (m, k) T 1<k (logm) 1/2
=r=tos Gellms Sl (2d+1m(1+D ))
— Zf 1 D5k
(1+DE))"

=0Op(1
! )Kkgtigm)é (2d+1
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as m — 00. Since

1 k k k
ik:/ ) de < S p; </ k) dr+1
Tl ; p(z, k) a:_]Z::lp],k_ ; p(z, k) de +

it follows that

1 sk , 1k 1
max m 2j=1 Pk 17 <  max cim 73
s (ke (14 DR~ s (k14 D)
Dﬁ 1/2
= m o(1
1§kg%i§m)5 (1 +D:1> +0(1)
as m — 0o, and we see that
k 1
ik | Wom(m
max 2j=1 Pt | W (m)| =0p(1) as m — oo. (3.1.64)

1<k<(log m)? ge(m, k)
Assertion (3.1.61) now follows from (3.1.62) and (3.1.64). Assertion (3.1.60) is an
immediate consequence of (3.1.61) and Lemma 3.1.5 below.

O

Next, we replace the observations by the corresponding increments of the approxi-
mating Wiener processes.

Lemma 3.1.5 Let the sequences {Pmyk}kzl
and (3.1.59), respectively. If {g.(m, k) }r=1,..
a non-decreasing, integer-valued function of m with 1 <n < N, then

A

~ n<k<N Ugc(m k) s

nax, m X k) agc(m Koo <n1/21/y T m1/21/y> a5 1m0,
(3.1.65)
ProoF: We have
max pm k Qm,k
n<k<N |og.(m, k) oge(m, k)
1 )
< max ijk Emij — C(Wim(d) = Wim(j — 1)))‘

+ max ‘ZJ LBk <Z€Z - an,m(m)>‘

n<k<N o'gc m, k; =

—: Iy(m) + Lr(m).
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Since
0ge(m,k) >0y forall k=1,...,N and m=12,...,

the same steps as in the proof of Lemma 3.1.1 show that

1

Furthermore, (3.1.22) implies

1

—_— as m — 00
m1/21/u>

0W2m )‘ :OP<

and since the proof of Lemma 3.1.4 shows that

51 Pk 1k 20+ 1 k\
i S5 S (i) (1 @) =00 o mooo

we conclude that

1

The lemma now follows by (3.1.66) and (3.1.67).

The next result is the counterpart of Lemma 3.1.2.

Lemma 3.1.6 Let i and N be non-decreasing functions of m with1 <n < N < N. If
{gc(m, k) }k=1,.. N is chosen according to (3.1.29), then

ZJHMUJ (Wi () = Wim(j — 1))

max
A<t)<N ge(m, [t])
Loz, t) d log N
— max_ Jo p( t) dWh,m() =0p 8 as m — oo (3.1.68)
A<t<N ge(m, t) n
and
t LW t2d+1
max. Jop(z,t) AW m(z) L max. ! td i ), (3.1.69)
A<t<N ge(m, t) a<t<N V2d +1  ge(m,t)

where {Wy(t),t > 0} denotes a standard Wiener process.
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PROOF: Assertion (3.1.68) follows similar to the proof of Lemma 3.1.2, since

oge(m,t) >0, forall t>1 and m=12,...

and
1 1 1
— =0 <> as t — 00,
ge(m, [t])  ge(m, 1) t
uniformly in m = 1,2, ..., where the last equation is implied by

) . ,/ 1+ DL) = /1) (1+ D)
~ V2d+1
gc(mv LtJ) gc(m / 1+D \/Lt 1_|_DUJ

and the fact that the derivative of the function

(1) = t<1+D;>, £>1

is uniformly bounded for all m = 1,2,... Note that we are dealing with a triangular
array, however, the result of Lemma 3.1.2 carries over since Theorem 1.2.1 of Csorgd
and Révész (1981) holds almost surely.

Assertion (3.1.69) can be seen by comparing the covariances of

{Atp(x,t) AWy m(x), t > 1} and {'2d+1 W (12441 ¢ > 1} '

td
O

N be defined as in (3.1.59). If we choose

=1,..,

holds that

1 Qm k
=0p(1 . 3.1.70
(21og loglog m)1/2 cm/lorélr%<k<N oge(m, k) p(1) as m—oc ( )
PrOOF: We have
1y g ) S e o B) Zpﬂf Wiim(3) = Wim(j = 1))
1 Ay
+  max ZJ*I Pik |Wapm(m)]

em/logm<k<N gc(m k) m
= [1( )+[2( )
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Lemma 3.1.6 and (3.1.20) show that instead of I;(m) we can consider

1 W (t2d+1)
o S e () (15 D)

To this end, we split up the domain into em/logm < k < em and em < k < N.
The rescaling property of the Wiener process yields

1 W (t2d+1) b Wl ($2d+1)

cm/loglr%}étﬁcm ml/2 ( )1/2 (1 + Di)l/2 B C/logln%i{SSC sH1/2 (1 + Ds)l/2

and by the law of the iterated logarithm for s — 0 we see that
Wl (52d+1) W1(82d+1)

m max
¢/logm<s<e gd+1/2 (1 4 DS>1/2 = ¢/logm<s<c sdt+1/2

:O((logloglogm)l/Q) a.s. as m — oo. (3.1.71)

For the upper part of the domain the rescaling property and the law of the iterated
logarithm for s — oo yield

Wl(82d+1)
max 7
e<s<N/m gd+1/2 (1 4+ Ds) /

=0(1) as. as m— 0. (3.1.72)

Next, we consider Iy(m). Let {W5(t),0 < t} be a standard Wiener process. The
distribution of I5(m) does not depend on m, hence, the rescaling property of the Wiener
process gives

S D [Wam(m)] S D [Wa(1)]

D
e glm ) )
1k
o 2j=1 Djk
- Op(l)cm/1£%§k<N 1 = 1/2
- (2d+1m (1+D ))
as m — 00. Since the proof of Lemma 3.1.4 implies that
1 5k .
max m 22j=1Pjk > =0(1) as m— o,
emlogmsks (2d+1m (1 + D ))
we get
I(m)=0p(l) as m — (3.1.73)

and the Lemma follows by (3.1.71), (3.1.72) and (3.1.73).
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O

.....

. Qm,k
lim P {a,, max ————

where a,, and by, are defined in (3.1.36) and (3.1.37), respectively.
PROOF: Lemma 3.1.4 and Lemma 3.1.7 imply that (3.1.74) follows, if it holds that

. Qm,k
lim P {a,, max _—
m—0o0 (logm)®<k<cm/logm Jg(m, k’)

— b, < x) =exp (—e "), (3.1.75)

for some 6 > 0, and ¢ > 0 chosen so that ecm < N.
Since

) 1 o\ 1/2
Dk [ Wom(m D
0 A 23_1 p],k’m‘ 2,m(m)| = O0p(1) am max ( 7 )

(logm)d<k<cm/logm g(m, k) (logm)d<k<em/logm\1 + DE

as m — oo and

DL\ _ ( ok >1/2
A, max < a,, max —
(logm)3<k<em/logm \ 1 + D% (logm)s<k<cm/logm m

1 1 1/2
:0<<0g0gm> ) a5 m— o,

logm

it is sufficient to show that

k . .
(W () — Wi (j— 1
lim P [(a,, max 2j=1 Pit(W1m() 1m(J ) —b, <x|=exp (—e_x) )
m—oo (logm)d<k<cm/logm Ug(m, k)
(3.1.76)
Using (3.1.68), it follows that
a max Z?:l pj,k(Wl,m(j) - Wl,m(j - 1))
" (logm)s<k<cm/logm Ug(m, k’)
¢ 1/2
—a, max fO p(x7t)dW1,m(I) — OP < logm >
(logm)d<t<em/logm O'Q(m, t) <10g m)5

as m — 00. Now if we choose ¢ > 1 and apply (3.1.69), we see that (3.1.76) is satisfied,
if
1 tidWI (t2d+1)

lim P {a, — b, < = —e ") (3.1.77
ml—I>IC1>O (a (logm)‘sgg}ccm/ logm 4/ 2d+1 g(m, t) x) P ( © ) ( )
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holds. To this end, we first show that

t%Wl (t2d+1)
G, max
(logm)é<t<em/logm ml/2 (L)I/Z (]_ + Di)1/2
m m
1 2d+1
w W)
_ FEAARA
fim (logm)égg)c(m/ logm t1/2 OP(l) as oo <3178)
We have
W) — (14 D)V W)
Qm max 7
(logm)é<t<em/logm $d+1/2 (1 + D%)
e O (st () mie
oo (logm)é<t<em/logm td+1/2 (1 + Di)l/2

as m — 00. Since the law of the iterated logarithm implies

|%W1 (t2d+1)‘ |%W1 (t2d+1)‘
,nax 75 < ,max BT TEy
(logm)?<t<em/logm ¢d+1/2 (1 + Di) (logm)o<t<cm/logm t
log1 1/2
=0 ((oglogm)> a.s. as m — oo,
ogm
we see that (3.1.78) holds.
Finally,
t%Wl (t2d+1) Wl (et)
max By sup i/
(log m)? <t<cem/logm 14 §(2d+1) loglog m<t<(2d+1) log(cm/logm) €
D W1 <€t)
= sup 7

0<t<(2d+1) log(em/(log m)1+9)
so that Theorem 12.3.5 of Leadbetter, Lindgren and Rootzén (1983) yields

2ty
lim P (dm sup M — by, < x) = exp (—e_’”) . (3.1.79)
0<t<(

t
mTee 2d+1) log(em/ (log m)1+9) €

where

cm 2d+1\ 1/2
Ay = (2 log log ((log m)1+5> )

and

2d+1 2d+1
~ cm cm
b,, = 2logl -— —loglogl —_— ——1 .
n 08108 <(10g m)1+5> + 2 08108108 <(log m)1+5> 2 08T
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Since elementary calculations show that

am (G — a) =0(1) as m — oo
and

by — by =0(1) as m — oo,
the proof of the lemma is complete.

O

The first assertion of Theorem 3.1.3 now follows on combining the Lemmas 3.1.4—
3.1.8 and the fact that o can be replaced by &,, (see Lemma 1.1.3). The second follows
as in case of known parameters.

Proof of Theorem 3.1.4

A k Zk_ pk m
J=1 i=1

Obviously, it holds that

k
Pup=PY+ Y pixn, k=1,...,N

j=k*+1
and we already know by the proof of Theorem 3.1.2 that

k N

Ao
max E -A:E v A~ N =m as m — 0Q.
25N Pjk Pj,N

Jj=k*+1 k*41
Furthermore,
N
gc(m,N)zﬁzm/\ 1/2 as m — o0
ml/

and since

1 1 1
— —=op <19> for some 1 > 0,
m

~

Om O
it follows that

YR PN A YR apiN A —op (m
Om ge(m, N) 0 ge(m, N)

A(p—1)+1/2—19) 4 M — o0
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Now

N
241 PN A ~ D2 ae o o
o g.(m,N)
and since we have assumed that
Mo—1)+1/2>0,

assertion (3.1.18) follows by Theorem 3.1.3 and the same considerations as in the proof
of Theorem 3.1.2.
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3.2 Open-end control charts

Dealing now with infinite time horizons, a delicate point is the choice of adequate bound-
ary functions. Since we already know that the detectors {Pg}x—1 .. follow a law of the

iterated logarithm for weighted sums (see Li and Tomkins, 1996), it is clear that in case
of known parameters any positive function G satisfying

) Vtloglogt
limsup ———~— =

msup s 0 (3.2.1)

yields non-trivial crossing probabilities. We have seen how adequate boundary functions
for the closed-end PWMA-chart can be derived by transforming boundary functions
for the Wiener process, hence, we first collect some results on the boundary crossing
probabilities of the Wiener process.

First, we mention that there are only a few examples of boundary functions for the
Wiener process, where the crossing probabilities are explicitly known and refer to Lerche
(1986) for an overview on this subject. The most popular examples are given by Robbins
and Siegmund (1970) who provided the following result

Example (Robbins, Siegmund, 1970) Denote by S(k) the partial sum of k i.i.d. random
variables having mean 0 and variance 1. Then

lim P < sup S®) = 1)
mee \igk<oo /(K + m)(a® + log(1 + k/m))

) . W ()|
- <0<t<poo JA+6)(a® +log(1+ 1)) - 1>

= exp <—; a2> (a>0)

and

lim P < sup S(E) = 1>
w S Tl m) 01 (2108 (0/2) + log(L + k/m)

=P sup W) > 1
0<t<oo \/m O-1(2log (a/2) +log(1+1t))

= (a>1/2)

where for all real x
O(z) = 2% + 2log ®(x)

and ® denotes the standard normal distribution function.
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It is possible to derive boundary functions for the PWMA-detectors based on the
latter example (see Appendix C), however, the derived boundary function for the one-
sided alternative can only be computed by numerical methods. Hence, we consider in
this chapter an alternative approach that is based on the family of boundary functions
for the Wiener process, which is introduced in Appendix B.

3.2.1 Model assumptions for known y and o

We assume that (3.1.1)—(3.1.5) hold with N = oc.

3.2.2 Monitoring procedures for known ;. and o

We define the sequence of detectors as
k
Pe=3 pip(X;—p), k=12, (3.2.2)
j=1

where the weights are chosen as in (3.1.6).
For all tg > 1 and ¢ > 0 we choose ¢(t¢,t) according to

to,t) = ! tl o 3.2.3
g(o,)—ﬁ Og( to +€> ()

If we test the null hypotheses versus the one-sided alternative (a €]0, 1), we reject
Hy if 7 < 00, where

7 =T1i(a,tg) =inf{l <k <oo: P, > oci(a,ty)g(to, k)}. (3.2.4)

If the alternative is two-sided we replace 7, by 75, where

Ty = Tg(a,to) = mf{l <k<oo: ‘Pk| > O'CQ(Oé,to)g(to, ]i])} (325)

The critical constants ¢;(«, tg) and ¢, to) are defined as

1— b 1— b
a(l—a) + by and  cy(a, ty) = gl —a) + fo
CLtO Clto

ala,ty) = (3.2.6)

where a;, and by, are given in (3.2.9) and (3.2.10) below. The quantiles ¢; and g, are
chosen as in (3.1.13), according to the following theorem.
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Theorem 3.2.1 Let the sequence {Py}i—12,. be defined as in (3.2.2). Furthermore, let
the sequence {g(to, k)}r=12,. be defined via (3.2.3) for all ty > 1. Then, it holds under
the null hypothesis and for all real x that

t&gr(l)o p <at0 ISSEE)OO Jg(];lj,lﬂ — by < Jc> =exp (—e ) (3.2.7)
and

lim P <at0 sup I by, < m) = exp (—2¢7%) (3.2.8)

to—o0 1<k<oo O'g(to, ]{I) 0= ’
where

ay, = (2loglog to)'/* (3.2.9)
and

1 1
by, = 2loglogty + 5 loglog log ty — 5 log 7. (3.2.10)

The procedures have asymptotic power one, as can be seen by the following theorem.

Theorem 3.2.2 Let the sequences { Py} k=12
orem 3.2.1. Then, under Hy it holds that

and {g(to, k) } k=12, be defined as in The-

goee

. Py >
lim P | sup ———— > ci(a,t =1 3.2.11
<1<l£oo og(to, k) 1@ to) ( )

and under Hy we have

P
lim P < sup ﬂ
to—00 1<k<oo 09(to, k)

where ay, and by, are defined in (3.2.9) and (3.2.10), respectively.

> CQ(OZ,tO)) =1, (3212)

3.2.3 Model assumptions for unknown py and o

We assume that (3.1.1), (3.1.21) and (3.1.22) hold. The monitoring of the process
{Xi}iz12,.. starts after a training period of size m and we suppose that

-{ﬂ+€¢ 1< <m+k
4&:{ (3.2.13)
wtAote m+ k¥ < i < oo,

where the parameters are denoted as in the closed end setting.
We want to test either

Hy: k" =00 versus H;:0<k*<oo, A>0 (one-sided alternative), (3.2.14)
or

Hy: k=00 versus Hy:0<Ek* <oo, A#0 (two-sided alternative). (3.2.15)
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3.2.4 Monitoring procedures for unknown p and o

For all m = 1,2, ... we define the sequence {Pm,k}kzm,.,. as in (3.1.27) with N = oc.
With
2d + 1
D= """ 3.2.16
(d+1)2 ( )
we define for allm =1,2,...and ¢t > 0
\/ﬁ \/t ( t ) <t2d+1 >
Jmt)=—Y" [~ (1+ D)1 . 3.2.17
gl ) = [ (14 DL Yo (e (3:2.17)
The stopping times are
7 = 71(a,m) = inf{l < k < 00: Ppy > é1(a,m)om go(m, k)} (3.2.18)
and
Ty = To(a,m) = inf{l < k < oo : |Pmk| > Co(a, )Gy go(m, k) }, (3.2.19)

where we assume that &, satisfies (3.1.28) and the critical constants ¢ (a,m) and
¢o(a,m) are given by

1 - bm N 1 - bm
_ a(l—ao)+ and Gy(a,m) = ol =)+ , (3.2.20)

am Am

é1 (Oé, m)

with a,, as in (3.2.23) and b, as in (3.2.24) below. The quantiles ¢; and g2 are chosen
as in (3.1.13), justified by the following theorem.

Theorem 3.2.3 Let the sequence {Pmyk}k:LQ,m be defined as in (3.1.27) with N = oc.
The sequence {go(m, k)}k=12.. is chosen as in (3.2.17) for all m = 1,2,... Then, it
holds under the null hypothesis and for all real x that

~

lim P <am nax. %ZZM — b, < x) = exp (—e_x) (3.2.21)
and

lim P <am max M — b, < x) = exp (—2e77), (3.2.22)

m-—00 1<k<oo Gy o(m, k)
where

= (2loglogm)'/? (3.2.23)
and

1 1
b, = 2loglogm + 5 log log logm — B log 7. (3.2.24)
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As in case of known parameters the procedures have asymptotic power one.

Theorem 3.2.4 Let the sequences {Pmﬁ}k:lyg,m and {go(m, k) k=12, be defined as in
Theorem 3.2.3. Then, under Hy it holds that

: By .
n!‘l_l’go P (115622}; W > Cl(Oé, m)) =1 (3225)
and under Hy we have
| Py A -
7711_1120 P (12%3250 W > CQ(O(, m) =1, (3226)

where a,, and by, are defined as in (3.2.23) and (3.2.24), respectively.

3.2.5 Proofs

Since
0go(m,t) > og.(m,t) forall t>1 and m=12...,

the most parts of the following proofs are basically identical with the proofs for the
closed-end setting.

Proof of Theorem 3.2.1

We define the sequence {Qg}r—12.. as

goun

k
Qr=0> pjs(WQyH) —W(—1)) forall k=1,2,..., (3.2.27)
j=1

where {W(t),t > 0} is the approximating Wiener-process.

Lemma 3.2.1 Let the sequences {Pg}r—12,. and {Qr}r=12, . be defined as in (3.2.2)
and (3.2.27), respectively. Then for any § > 0 and all real x it holds that

. By
—b <zl = 2.
tgl_rgo P <at° 1§k1§%}gt0)6 og(to, k) b < x> ! (3:2.28)
and
lim P <at max O by, < x> =1. (3.2.29)
to—00 % 1<k<(logto)® og(to, k) 0

PROOF: The lemma follows by (3.1.55) and (3.1.56), since

or < og(te, k) forall k=1,2,... and t;>1.
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O

Lemma 3.2.2 Let the sequences {Pg}r=12,. and {Qi}r=12,. be defined as in (3.2.2)
and (3.2.27), respectively. Then for any § > 0 it holds that

P 1
sup  ——— —  sup Q > (3.2.30)

—
(logtp)d<k<oco Ug(t07 k:) (log tp)d <k<oco Ug(to’ k) (IOg t0)6(1/2—1/y)

as ty — oo.

PROOF: As in the proof of Lemma 3.1.1 we derive

P, — S(k)—oW(k
sup | Pk — Qx| <2 sup |S(k) — o W( )|7
(logtp)d <k<oo Ug(t07k) (log tg)% <k<oo Ug(to,k’)

where S(k),k = 1,2, ... denote the partial sums of the innovations. Now (3.1.2) implies

S(k) — oW (k kv
SR W@l
(logto)d <k<oo O'g(t(), k) (log o) <k<oco g(t07 k)

as tg — o0

and since for all g > 1 we have

kl/y 1 k.l/u
sup <  sup )
(logtp)d <k<oo g(t07 k) (logtp)d<k<oco V 2d +1 k1/2

the lemma follows as ty; — oo.

Lemma 3.2.3 Let the sequence {Qy}r=12

sup
to<k<oo 04 (to, k)

be defined as in (3.2.27). Then

goon

=op(l) as tyg— . (3.2.31)

PROOF: The law of the iterated logarithm for weighted sums (Li and Tomkins, 1996)
yields

Qx Vkloglog k
sup ———— =0(1) sup — a.s. as tg— oo.
to<k<oo O'g(t07 k) to<k<oco 4/ k log (k t0+ + e)

and elementary calculations show that

Vioglogk — /loglogiy

WS flog (P 1 o) Jlog (130 1 ¢)

implying the lemma as ¢y, — oo.
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O

Next, we replace {Qy }x=12,. by the continuous-time process {U(t)};>; defined as

yooo

v =0 [ plet) Vi) =o [ (f)ddW(az), £> 1. (3.2.32)

0

Lemma 3.2.4 Let the processes {Qy}r=12.. and {U(t) }1<i<0o be defined as in (3.2.27)
and (3.2.32), respectively. Then for all € > 0 it holds that

Ut 1
sup ®) — sup _Qu =0p <2> (3.2.33)
(ogto)l+e<t<ty T9(tost)  (ogto)ite<i<to 79(to, [t]) (logto)</

as tg — oo.

PROOF: Since
o < og(ty,t) forall t>0 and t;g>1

and elementary calculations show that

1 1 1 . .
— =0 <> as t— oo, uniformlyin %> 1,
g(t07 |_tJ) g(t07 t) 13

the proof is just a repetition of the arguments used to show Lemma (3.1.2).

O

Lemma 3.2.5 Let the process {U(t) }+>1 be defined as in (3.2.32). Then for all § > 0
it holds that

t
sup U(t) =0p (\/logloglogto) as tg — o0o. (3.2.34)

1<t<(log to)? Ug<t07 t)

Proor: We already know that

V2d +1 D W(th“)
hence, we consider
W(t2d+1) W(t)

Sup 2d41 $2d+1 = t
1<t<(logto)? \/t +1]og (T 4+ e) 1<t<(log to)32d+1) [t log (% + e)

and the lemma follows by the law of the iterated logarithm as ¢ty — oo.
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Lemma 3.2.6 Let the process {U(t)}+>1 be defined as in (3.2.32). Then
Ul(t
sup (1)

té/(2d+1)§t<oo O'g(to, t)

=0p(l) as ty— oc. (3.2.36)

PROOF: In view of (3.2.35) we can consider
W(t2d+1> W(t)

sup = sup
t(l)/(2d+1)§t<oo \/t2d+1 log (152:70*1 + 6) to<t<oo tlog (% + 6)

and Lemma B.1.1 completes the proof.

Lemma 3.2.7 If we define the process {U(t)}i>1 as in (3.2.32), then it holds that

Ut
sup ®) =0p (\/log log log to) as to— oo. (3.2.37)

(to log to)1/ (24+1) <p< gL/ 24+ og(to,t)

PROOF: The same steps as in the preceding lemma yield
U(t W (t
sup (t) sup (t)

(to/logt0)1/<2d+1>§t§té/<2d+1) Ug(tm t) to/ logto<t<to tlog (% + e)

and Lemma B.1.2 shows that (3.2.37) holds.

llo

O

In the next lemma we derive the limiting distribution of the extremes for the process

{Ut)/og(to, t) }rz1-

Lemma 3.2.8 Let the process {U(t)}+>1 be defined as in (3.2.32). Then, for any 6 >0
and all real z, it holds that

U(t
lim P | a sup (®)
to—00 (log t0)% <t<(to/ log to)1/(2d+1) Ug(tg, t)

where ay, and by, are defined in (3.2.9) and (3.2.10), respectively.

— by, < x) =exp (—e ™), (3.2.38)

Proor: Taking into account Lemma 3.2.5, it suffices to show the case 6 = 0. Applying
(3.2.35) we see that
U(t W (t
sup U L2 sup ®)
1§t§(t0/10gt0)1/(2d+1) Ug(t07 t) IStSto/logto tlog (% + e)

and Lemma B.1.3 together with Lemma B.1.4 yield (3.2.38).

O

Assertion (3.2.7) now follows on combining the Lemmas 3.2.1-3.2.8 and since the as-
ymptotic independence of maxima and minima carries over from the underlying extreme
value asymptotic (see Theorem B.1.1), we also obtain (3.2.8).
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Proof of Theorem 3.2.2

It suffices to show (3.2.11), since (3.2.12) follows by similar considerations.

goee

decomposition

k
Pk:P’gO)+ Z ijgA, k’Zl,Q,
j=k*+1

For any finite N > k* it holds that

P
' <1§?§oag<t0,k> g Cl(“’t°)>

Py
> v
> P <1r§%€8§}§\/ og(to, k) ~ Cl(aﬂfo))

k (0)
o ik A P,
P { max Lz +1Pik & max L > c1(a, tp)
1I<k<N - og(to, k) 1<k<N ag(to, k)

N (0)
Y 1 DiN A P
- p <ZM +1PjN max BT > cl(a,to)> (3.2.39)

v

og(te, N)  1<k<N ag(to, k)

and we have

A N+ _ prdtl

N
N A=
j;ﬂpﬂv T d+1 N

If we choose N = |ty], then it follows by the definition of g that

Lto]

. TAN 1

Zj=k+1Pj 2 >th forall p< = as ty— oo. (3.2.40)
Ug<t0a LtUJ) 2

Now Theorem 3.2.1 implies

PO
X AR =0p (\/loglogto) as to — 00 (3.2.41)

12}5200 Ug(t07 k)
and from the definition of a;, and b, follows

c1(a, tg) ~ /loglogty as ty— 0. (3.2.42)

Hence, (3.2.11) follows by putting together (3.2.39)—(3.2.42).
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Proof of Theorem 3.2.3

Lemma 3.2.9 Let the sequences {Pm,k}k:1,2,... and {Qm,k}k:1,27... be defined as in (3.1.27)
and (3.1.59) with N = co. The sequence {go(m, k) }r=12.... is given by (3.2.17). Ifii and

is a non-decreasing functions of m with 1 <n < N, where N 1s either a non-decreasing
function of N, or N = oco. Then

goee

pm,k Qm’k o O < 1 1
TN P

max ————— — max — +
pl/2—1/v ml/2—1/v

as m — 0.
i<h<N 0Go(m, k) a<k<n 0go(m, k) >

(3.2.43)

PRrRoOOF: We have

fi<k<N 0go(m, k)

max 7Pmk — max 7ka
i<k<N 0go(m, k)  a<k<N 0go(m, k)
1 b . .
< max ij,k<5m+j - U(WLm(J) - Wl,m(] - 1)))‘

J=1

1 Z?:1 Pik [
: [ W m
* A<helt ogo(m, k) ‘ m ;8 oWam(m)

= [1(m) + ]Q(m)

Recalling the proofs of Lemma (3.1.1) and Lemma 3.1.5, we see that the results did not
depend on the upper bound of the domain for the maximum. Since furthermore

go(m, k) > g.(m,k) forall k=1,2,..., m=12,...,
the proofs can be modified in an obvious way to show the lemma.

O

Lemma 3.2.10 Let the sequences {pmk}kﬂ,z,,_., {Qm,k}k:m,_, and {go(m, k) }r=12, . be
defined as in Lemma 3.2.9. Then for all real x and 6 > 0 it holds that

b,
lim P (a4, max —2F _—p <z]=1 (3.2.44)
m—00 1<k<(logm)® Tgo(m, k)

and

) Qm,kz
lim P a, max —————
m—o0o 1<k<(logm)9 Ugo<m7 k)

— by < x) = 1. (3.2.45)

PROOF: The lemma obviously follows by the proof of Lemma 3.1.4, since

go(m, k) > g.(m, k) forall k=1,2,... and m=12,...
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O

Lemma 3.2.11 Let the sequences {Qm,k}kzl,l..- and {g,(m, k) }r=12.. be defined as in
Lemma 3.2.9. Then

ka o
max —— s P =0p (1) as m — oo. (3.2.46)

Proor: We have

max Qm k
m<k<oo ago(m k)

ijk (Wim () — Wlm(]_l)))‘

< max
m<k<oo 0 g,(m, k
1 2?21 Djk
+ mhes 0go(m, k) ‘ m oWaim(m)
=: I1(m) + Iy(m). (3.2.47)
Since
go(m, k) > g(m,k) forall k=1,2,..., m=1,2 ...,

where g(m, k) is defined in (3.2.3), Lemma 3.2.3 implies that
Ii(m)=o0p(l) as m — 0. (3.2.48)
For the second term we get

\/“Zy lpjk

as m —

I)(m) =0p(1l) max

mshk<oo  go(m, k)
and, since for all k =1,2,...
Zp K < —k+ 1,
Jj=1 ) d+

we have

. \/»Ej lp]k< \/Ek_i_\/Qd-i-
m<k<oo go(m k; - m<k<oo \/ log (k2d+1 i e) .
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Now
VDL 1
max — < max —
m<k<°°\/m 1+ DE)log (B ¢ m<k<x/log (= + ¢)
B 1
log (m?? + e)
=o(l) as m — oo,
hence, also
V2d+1
max & — =o(l) as m — oo,
m<k<oo\/ ].+D g(km +6)
so that
IL(m)=o0p(l) as m — o0 (3.2.49)
and the lemma follows by (3.2.47), (3.2.48) and (3.2.49).
O
Lemma 3.2.12 Let i and N be non-decreasing functions of m with 1 < i < N < oo.
Then
S5 i) (Wi () = Wi (G — 1))
max
A<t]<N go(m, [1])
bp (z,t) AWy, log N
— max_ Jop (@,t) dWhm() =O0p °8 as m — oo (3.2.50)
R<t<N go(m, t) n
and
"z, t)d 1 LWy (¢!
max Jo p(z, )AW:m () L max td I ), (3.2.51)
A<t<N go(m, t) a<t<N V2d + 1 go(m, 1)

where {W1(t),0 <t} is a standard Wiener-process.
PROOF: Assertion (3.2.50) follows by the same computations as Lemma 3.1.2, since
0go(m,t) >0y, forall t>1 and m=1,2,...

and elementary calculations show that

1 1 1
— =0 <> as t— oo, uniformlyin m & N.
go(m, [t])  go(m, 1) t

Assertion (3.2.51) follows by comparing the covariances of

: AW 1 d Wi () 1
£) AW (2), ¢ > ) sl
[ bt a2 1) w {td o) }



78 CHAPTER 3. POLYNOMIALLY WEIGHTED MOVING AVERAGES
U

Lemma 3.2.13 Let the sequences {ka}k:l,g,m and {go(m, k) }r=12,.. be defined as in
Lemma 3.2.9. Then

max Qe _ =0Op (\/210g log log m) as m — 00 (3.2.52)

(m/ log m)1/Ga4D <k<m 0 go(m, k)

Proor: We have

k
(m/logm)1/ 24+ <k<m 0g,(m, k)

< max
(m/ log m)Y/ 4+ <k<m agg(m k)

1 ‘ 2?21 Djk

ijk Wlm ) Wi m(] - 1)))‘

Wom
(m/logM)IB%§+l><k<m 0go(m, k) gV, (m)‘

m

Since
go(m, k) > g(m,k) forall k=1,2,..., m=12 ...,
the Lemmas 3.2.6, 3.2.7 and 3.2.12 imply

Ii(m)=0p (\/210g log log m) as  m — oo. (3.2.54)

Furthermore, similar computations as in the proof of Lemma 3.2.11 yield

L(m) = 0p(1) ! as m — oo, (3.2.55)

log (logm + e)

and the lemma follows by (3.2.53), (3.2.54) and (3.2.55).

t

Lemma 3.2.14 Let the sequences {ka}k:l,g,__ and {go(m, k) }r=12,.. be defined as in
Lemma 8.2.9. Then

lim P (am max @ ) — b, < x) = exp (—e‘x) (3.2.56)

m—00 1<k<oo ag,(m, k
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PROOF: In view of the Lemmas 3.2.9- 3.2.13 it suffices to show that for all real z

lim P ma M

. by <a| =exp(—e®), (3.2.57
m—00 (CL (logm)ggkg(m/)l(ogm)l/(2d+1) 0-9(7%7 k‘) = ZL‘) eXp( € ) ( )

for some 6 > 1.
Since g,(m, k) > g.(m,k) for all k = 1,2,... and m = 1,2, ..., it follows as in the
proof of Lemma 3.1.8 that

. e S Dk [ Wam (m)]
m

=op(l
(log m)® <k<(m/ logm)!/(2d+1) go(m,k) OP( ) as m — o0

and we see that (3.2.57) is satisfied, if for all real z and some § > 1

]?_ (W m(7) — 1% m(J—1 -
<am( | o it = Wanli 2 1), x) o
logm

lim P

m—00

max
5 <k<(m/logm)1/(24+1) ogo(m, k)

Lemma 3.2.12 implies that (3.2.58) holds, if

1 t% Wl (th-‘rl )

lim P [a, max —b,<zxz|=exp(—e”*
meee ( (log m)5<t<(m/logm)1/2d+1) \/2d + 1 go(m, 1) B > P ( )
(3.2.59)
is satisfied and as in the proof of Lemma 3.1.8, it follows that
a max tid Wi <t2d+1)
" (log m)%<t<(m/logm)t/(2d+1) go(m, k’)
1 2d+1
S W(t
—a AL ) =op(l) as m — oo.

m 5oy iax 1/(2d+1) (2d+1
(logm)°<t<(m/logm) \/t log (T + e)

Now without loss of generality we assume that § = 6/(2d + 1). Then

Wl (t2d+ 1 )
max

(log m)8/(2d+1) <¢<(m/ log m)1/(2d+1) \/th'H log (tgd;l + e)
m

_ Wi (t)
= max
(logm)*<t<m/logm \ [t log (L + e)

and by Lemma 3.2.5 and Lemma 3.2.8 we see that the proof is complete.
O
Combining the Lemmas 3.2.9— 3.2.14 and since o can be replaced by &,,, we obtain the

first assertion of Theorem 3.2.3. The second assertion is an immediate consequence of
the first assertion and the asymptotic independence of maxima and minima.
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Proof of Theorem 3.2.4

We define the sequence {]575%};{:172,.“ as

m,k

50) _ o Y1 ik &
Z pjkc; — —2———=> g forall k=12,... (3.2.60)
— m i
Under the alternative it holds that
pmk—P(Ok—f— Z p]kA k=1,27

j=k*+1

and as in the proof of Theorem 3.2.2 we get for any finite N > k*

A

Pm,k ~
P(m%o Samge(m ) > m>>

SN 1 Pin D 1P|
p| S0 — _ITmEl S . 3.2.61
i <&<m>go<m, N) B Gy (m Ry ) G20

For N = m3/? it holds that

m3/2

Z Djms/z A m*? as m — oo
j=k*+1

and since the definition of g, yields

0go(m, k) ~ my/logm as m — oo,

we see that
3/2
Z;ﬂ k* 41 pj m3/2 A m
as m — 0.
ago(m) log m

Now Theorem 3.2.3 implies

max ‘ ’ =0p (\/loglog m) as  m — o0

1<k<00 GG, (m k:)

and it holds that

¢1(a,m) >~ /loglogm as m — oo,

hence, since

1 1 1

— — — =op <ﬂ> for some ¥ > 0,

Om O m

it follows that the drift term is dominating in (3.2.61), which gives (3.2.25). Assertion
(3.2.26) follows by similar arguments.



Chapter 4

Control charts based on
fractionally weighted moving
averages

A carefully study of the proofs for the PWMA-chart shows that the application of the
invariance principle would only require a boundary function, which is slightly stronger
increasing than the rate of the approximation. Hence, in case of independent obser-
vations, we see that the number of existing moments of the innovations yields a lower
bound for possible weight functions. This observation laid the foundation for a control-
chart, which is based on fractionally weighted moving averages.

The chart is only provided for known parameters. An extension to estimated para-
meters, which follows the lines of the proof for the PWMA-chart, will be part of future
work.

4.1 Closed-end control charts

4.1.1 Model assumptions for known p and o

Let {e;}i=12,.. be a sequence of real-valued random variables on some probability space
(Q, A, P), with

Eg;=0 and Varg;=0°>>0 forall i=1,2,.... (4.1.1)
We assume the there exists a Wiener process {W(t),t > 0}, satisfying

1 k
SUp - (;51 —0W(k)> <00  as. (4.1.2)

1<k<oo i

for some v > 2.

81
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The sequence of observations {X;},—1 _n follows the model

.....

.r,u—l—Ei 1 <a <k

Xi:{ (4.1.3)
(ut A e kT <1 <N,

where u, £* and A denote the usual parameters.
We are interested in testing either

Hy:k*=N wversus H;:k* <N, A>0 (one-sided alternative), (4.1.4)
or

Hy:k*=N wversus Hsy:k* <N, A#0 (two-sided alternative). (4.1.5)

4.1.2 Monitoring procedures for known p and o

Let f; : R>¢ — R be defined as

(
folz) = { 1/21+ ¢ (4.1.6)

where 1/v < ¢ < 1/2. In the sequel we omit the index ¢ and for integer-valued x we
also use the notation f(x) = f,.
The detectors are given by

k—1
F.=> fi(Xy_j—p) forall k=1,...,N (4.1.7)
j=0
and we define
t 0'2
ol = 02/ fAz)de = —t*¢ forall t>0. (4.1.8)
0 2¢
The stopping times are given by

7 =711(a,N)=inf{l <k < N: F; > ci(a,N)op} (4.1.9)
and

7 =7n(a, N) =inf{l <k < N :|Fy| > co(ar, N)o }, (4.1.10)

where a €]0,1[, if 7; < 00, 1 =1, 2.
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The critical constants ¢;(«, N) and co(a, N) are chosen as
1—- b 1— b
— @(l— o) +by and cy(a, N) = (1 —a) + N
an an
where ay and by are defined in (4.1.15) and (4.1.15) below and

ci(a, N) (4.1.11)

01(1—a) = —log(—log(1 — ), ga(1 —a) = —log <—; log(1 — a)) (41.12)

The following theorems show that the false alarm rate of the procedures is asymp-
totically a and both have asymptotic power one.

Theorem 4.1.1 Let the sequence {Fy }r—12,.. be defined as in (4.1.7). If {ok}r=1, N 1S
given by (4.1.8), then, it holds under the null hypothesis and for all real x that
lim P B _py <o) = (e ) 4.1.13
Jim <aN1rSr}€ag§vm€— N_x)—exp —e (4.1.13)
and
lim P [ ay max I _ by <z ) =exp(—2¢7") (4.1.14)
N—oo 1<k<N oy, - ’ o
where
ay =+4/2loglog N, (4.1.15)
— 2(1-9)/(2¢)
by = 2loglog N + logloglog N + log | CY @)y = —— (4.1.16)
V2w
and
00 1 —1/2+¢
C =2 [ a1 <1 - <1 4 ) ) dz. (4.1.17)
0 z

The definition of the constant Hyy is given, for example, in Leadbetter, Lindgren and
Rootzén (1983).

Theorem 4.1.2 Let the sequences {Fy}r—1... n and {oy}1<k<n be defined as in (4.1.7)
and (4.1.8). If k* = k*(N) < N — N*, where p > ¢/(1/2 + ¢), then, it holds under H,
that for all real x

: Fy,
A;Lmoo P <aN 12}%}%\/(; — by > x) =1 (4.1.18)

and under Hs

. | F| _
J&EHOO P <aN 11;}%}5\70—]? —by>zx) =1 (4.1.19)
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4.1.3 Discussion

Even though a simulation is not provided, we discuss briefly the related problems. Only
two values of the constant H are explicitly known, namely H; = 1 and Hy = 1/7.
Shao (1996) provided boundaries for H, so that a more conservative adjustment of the
boundary function is possible. However, detailed study is required and will be carried
out, when the proof for the FWMA-chart with estimated parameters is complete.

4.1.4 Proofs

In the sequel, sums of the innovations will also be denoted by S(k) = 5, &;.
Intermediate results in the following proofs are derived via integration by parts, but
since the weight function has a singularity in zero, we need the following considerations.

Preliminaries

Let {WW(t), —oco < t < 0o} be the two-sided extension of the Wiener-process, claimed in
(4.1.2). We define the process {H(t)}:>0 as

t
H, :/ ft—2)dW(z), t>0. (4.1.20)
t—1
Note that the process is well defined, since f is square-integrable.
Obviously Cov (H(s),H(t)) =0, if |s —t| > 1 and for |s —t| < 1 we get (s < t)

Cov (H(s), H(t)) = ﬂ (s — 2)"VHo(t — 1) L2y

-1

1—(t—s)
:[) y71/2+¢(y + (Zf . S))71/2+¢>dy’

implying that {H (t)}:>0 is a stationary process with

! 1
Var H (t) :A T2y = o (4.1.21)

The autocorrelation function of {H (t)}:>0 is given by

0 , b > 1,
1-|h| B 1
r(h) = 2% y )T Ry <1, 0<6< o (4122)

1

P —

The next lemma provides the limiting distribution for the extremes of the process
{H (1)} 0.
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Lemma 4.1.1 Let the Gaussian process {H(t) }i>0 be defined as in (4.1.20). Then, for
all real x 1t holds that

/2 <z)= —e ¥ ,
A}linoo P <AN Iga<>]<v ¢pH(t) — By < x) exp( e ) (4.1.23)
and
1&1_1;100 P <AN max, |\/20H (t)| — By < x) = exp (—2e77), (4.1.24)
where
Ay =+/2log N, (4.1.25)
By = 2log N + =% loglog N + log [ €Y% 1 200 4.1.26
N = 2log +2¢ oglog N + log 2¢\/_ (4.1.26)
and
00 1 —1/2+¢
C:2¢/ XH%<1—<L%> )d& (4.1.27)
0 z

Hyy is defined as in Theorem 4.1.1.

PROOF: In view of Theorem 12.3.5 in Leadbetter, Lindgren and Rootzén (1983), we
have to show that

r(h)logh —0 as h— oo (4.1.28)
and
r(h) =1—=Clh|*+0o(]h|*) as h— 0 forsome 0 < a <2 and C >0. (4.1.29)

In case of ¢ = 1/2 it is easy to see that these conditions hold, hence, we only consider
the case 0 < ¢ < 1/2. Obviously (4.1.28) is satisfied, so it remains to show (4.1.29).
Note that (h > 0)

1=h —142¢ 1-h —142¢ 1=h —142¢ 12
2 [y m Ty <o) <20 ([T 0y [ ) ay)

where the right-hand side of the inequality follows by the Cauchy-Schwarz inequality.
Elementary calculations show that

1 p2¢ < T’(h) < (1 B h) ( h2¢)1/2 (1 . h2q§)1/27
so that for h — 0

1
1—h%grm>g1—§m¢+ow%y
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Now the last inequality justifies the assumption

r(h) =1—C|h[** +0(|h]**) forsome C >0 (h—0), (4.1.30)
which will be shown next.
Since
1-h 1
1=2¢ / y dy + 2¢ / y~ 1y
0 1-h
we have

1—r(h) 2¢ =h o < h) e Lo
= — 1— (14— +2¢
126 h20 (A Yy + y dy + A_h?/ dy

2¢ [l-h sy —1+20 ( h>—1/2+¢ 1 )
== Z 1— (14— dy+ — (1 —(1—h)*
v ) < Ty v+ g (1= (0= 1)%)
First, we consider I;(h). We have

Uh=1 1\ —1/2+¢
Jl(h):m% z—+¢<1—(1+2> >dz.

Note that for any fixed h the integral is finite, since

1
/ 21290 < .
0

—1/2+¢
1—(1+1> :<1—¢>1+0<1> as 2 — 0o
z 2 z z
and we see that (¢ < 1/2)
lim £, (1) < oo. (4.1.31)

Now

Next, the Taylor expansion of (1 —(1- h)2¢) yields
(1—(1—h)*)=2¢h+o(h) as h—0
and it follows that
lim (k) = 0. (4.1.32)

(4.1.31) and (4.1.32) now show that (4.1.30) holds with C' = lim;,_,¢ [;(h) and Theo-
rem 12.3.5 of Leadbetter, Lindgren and Rootzén et al. completes the proof of (4.1.23).
The statement given in display (4.1.24) follows by (4.1.23) and the asymptotic indepen-
dence of maxima and minima.
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O
Remark 4.1.1 An immediate consequence of Lemma 4.1.1 is that
olgti}fvlﬂt’ =0p (\/log N) as N — oo. (4.1.33)
Proof of Theorem 4.1.1
We define
k—1
QL = O'Z f[iW(k—37)=W(k—-35—-1)) forall 1<k<N, (4.1.34)

=0
where {WW(t),t > 0} is the Wiener-process, introduced in (4.1.2).

Lemma 4.1.2 Let the sequences {Fy}i=1,. n and {Qi}r=1.. n be defined as in (4.1.7)
and (4.1.34), respectively. If n is a non-decreasing, integer-valued function of N, with
1 <n <N, then

max i =0p (\/loglogn) as N — oo (4.1.35)

lgkén Uk)

and
max Or =0 (\/loglogn) a.s. as N — oo. (4.1.36)
1<k<n o},

PROOF: Since @)y, is a weighted sum of normal random variables and
k—1
afowa,z:k% as k — oo,
=0
the law of the iterated logarithm for weighted sums according to Stadtmiiller (Corollary
1, 1984) holds and we get
Qr

lim sup =1 a.s.,

koo 1/202loglogo?

implying (4.1.36). Assertion (4.1.35) follows on combining (4.1.36) with Lemma 4.1.3
below.

O

Lemma 4.1.3 Let the sequences {Fy}r=1,. N and {Qi}x=1,. ~n be defined as in (4.1.7)
and (4.1.34), respectively. If n is a non-decreasing, integer-valued function of N, with
1<n<N, then
Fy, Q < 1
P

max — — max — = —_
n<k<N 0},  n<k<N oy, ne—1/v

) as N — oo. (4.1.37)
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PRrROOF: With

di:fi_fi—l-l for all izO,l,...,

we get
k—1 k —i—
Fo=>di| > ¢ Z + f 25] forall 1<k<N (4.1.38)
=0 j=1 7j=1 7j=1
and
k—1
Qr=>Y d(W(k)-W(k—i-1)+ fiW(k) forall 1<k<N. (4.1.39)
i=0
Then
1 k—1
B 5 1= Qul = max, 211 0 i (S(h) = W(k))
k—1
+> di(W(k—i—1)=S(k—i-1))+ fu (S(k) —W(k))
=0
R S(k) — W (k)
< Do n¢ 1/V n<k<N kl/v
2 S() — W)
tPo 1/V n<k<N 1<I?<akX 1 kl/v
g S(k) —W(k)
T Po 1/V n<k<N k1/v
and (4.1.37) follows by (4.1.2).
U
Next, we approximate {Qx}1<x<n by the continuous-time process
t
Ut) = o A F(t—2)dW(z), t>0. (4.1.40)

Lemma 4.1.4 Let the processes {Qy}r=1,. n and {U(t)}>0 be defined as in (4.1.34)
and (4.1.40), respectively. {oi}i>0 is given by (4.1.8). Ift is a non-decreasing function
of N with 1 <t < N, then

(sup Qu _ sup U(t)> :Op< l;§N> as N — oo. (4.1.41)

i<t<N O|t] i<t<N Ot
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PRrROOF: Integration by parts yields

ult) _ [)t_lf(t_x)dW(x) [ = 2)dw ()

o t—1

— ft—aW)| + /OH £t = )W (2)de + L F(t = 2)dW ()

W(t—1)+/tf’ )W(t—x)dx+/t F(t = 2)dW ()
lt]-1

= f(HW t—1+2/ t—a:d$~|—/ )W (t — z)dx
+/ £t —2)dW ( (4.1.42)
Furthermore, using (4.1.39) we get
1t]-1
UL = S~ o) OV (1) = W12 = = 1)+ g W(12)
1t]—1
= [OW([t]) — Z:O (fi = fir)W([t] —i—1)
1t]-1
= fO)(W(t)-W(lt] =)+ OW([t] —1) - ; (fi—fir)W([t]—i—1)
1t]—1
FOW J—1+Z/ W(t] —i—1)de
+ £(0) (W([t]) —W([t] —1)) (4.1.43)

and (4.1.42), together with (4.1.43) shows that

S s U0 =Qul < s fOW(E=1) =Wl -1

0 1<t<N

+ sup z:(/ 1£/@)IW(t =) = W([t] —i - 1)|de

1<I<N i= 1 i

+ sup If( W (t = z)|dx

1<t<N

+ sup L £t — 2)dW ()
+ sup F(0)[W(11]) ~ W(lt] 1)
— L(N) 4+ B(N) + I(N) + L(N) + L(N).  (4.1.44)

First, note that Theorem 1.2.1 of Csorgé and Révész (1981) implies

L =0 (\/log N) a.s.,, Iy=0 (\/log N) a.s. (4.1.45)
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and also

I,=0 (\/log N) a.s. as N — oo, (4.1.46)

where the last equation follows since |([t] —i —1) — (t —z)| < 2 for all x € [i,i + 1].
Obviously

I;=0() as. as N — o (4.1.47)
and since we already know by Remark 4.1.1 that

I;=0p (\logN) as N — o, (4.1.48)
we conclude by (4.1.44)—(4.1.48) that

1
— sup ‘U(t) — QM‘ =0p (\/logN) as N — o0. (4.1.49)
0 1<t<N
Now
Ut 1 o — 0
sup |28 IO 0 —|Quy — U]+ sup JU(r)] |7k
i<t<N | Ot Ot i<t<N Ot {<t<N O¢0 ¢t

By (4.1.49) and (4.1.8) we see that

Ji(N) =Op <1;§;N> as N — oo

and Remark 4.1.2 below, together with (4.1.8), implies

Jg(N)IOp(lO%;(E%J\I) as N — oo,

completing the proof of the Lemma.

We now consider the extremes of {U(t),t > 0} on [1, N].

Lemma 4.1.5 Let the process {U(t) }+>0 be defined as in (4.1.40). With {o:}+>0 being
defined via (4.1.8) for all real x holds

U(t
lim P <aN max ® _ by < :1:) =exp(—e) as N — o0, (4.1.50)

N—=o0 1I<t<N 0y

where ay and by are defined in (4.1.15) and (4.1.16), respectively.
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PRrOOF: First, note that Lemma (3.1.3) yields the result for ¢ = 1/2. Hence, in the
following we assume that 1/v < ¢ < 1/2.
If we define the process {U(t)}+>0 by

Ut)=U(e') forall t>0, (4.1.51)
then obviously

max ) = X U(t).

1I<t<N 0oy 0<t<log N Ot

The covariance of {U(t)}tzo is given by (0 < s < ¢)
Cov (U(s), U(t)) — 2 /)6 (e° — x)71/2+¢> (et . :)3)_1/2+¢ da

2 20t [T g s—t)~1/240
=o‘e A Y (y +1—e ) dy,

hence
. o220t
t)) = 4.1.52
Var (U(t)) 2% (4.1.52)
and for the autocorrelation function # of {U(t)};>0 holds (¢ < 1/2)
1—(1—e~Inl _
7(h) = 26 *H A y 2 (y 41— e )T gy heR, (4.1.53)
showing that {U(t)};¢ is a stationary process.
Now, as in the proof of Lemma 4.1.1, we show that
7(h)logh —0 as h— oo (4.1.54)
and
r7(h) =1—=Clh|*+0(]h|*) as h— 0 forsome 0 < a <2 and C >0. (4.1.55)
Since

e_‘hl
) < 26 et [ oy = oo,
0

we see that (4.1.54) is satisfied.
With 1 — e " = h and r as in (4.1.22), we get

1—7(h)  1—r(h)+r(h)(1 — M)
|nf2e |h|*
1—r(h) h* - 1 — e?lhl
—= — . _.I_ r -
h2e [h[* |h|*

= I,(h) + L(h).
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The Taylor expansion of &, together with the Taylor expansion of z — 22¢ in 0, yields

h2e

EAE

and the proof of Lemma 4.1.1 shows that
1= 142 < 1)1/2+¢
lim —— h2¢ — 2 / 14 - dz,

lim I; () = C, (4.1.56)

h—0

with C being defined as in (4.1.17).
Since 7(h) — 1 as h — 0 and the Taylor expansion of 1 — e?/"l shows that

hence

1 — e?lhl
|h[2?
it follows that

=0 (h1_2¢) as h—0,

L(h) =o(1) as h— 0. (4.1.57)

Now (4.1.56) and (4.1.57) show that (4.1.55) also holds with a = 2¢ and C' chosen
as in (4.1.17), hence the assumptions of Theorem 12.3.5 in Leadbetter, Lindgren and
Rootzén (1983) are satisfied and the proof of the lemma is complete.

4

Remark 4.1.2 Lemma 4.1.5, the asymptotic independence of the mazimum and mini-
mum and the symmetry of {U(t)}+>0 immediately imply

sup v =Op (\/loglogN) as N — oo. (4.1.58)

1<t<N O

In view of Lemma 4.1.2 and Lemma 4.1.3 for any ¢ > 0 it holds that

F F
lim P<aNmaxk—bN<a:>:hmP< max —bN<a:>
N—oo 1<k<N oy, N—oo (logN)5<k<N Ok
:hmP< max Q—bN<x>
N—o0 (logN)5<k:<N Ok

If § is chosen so that d¢ > 1/2 holds, Lemma 4.1.4 implies

t
hmP< max Q—bN<x>—hmP< sup U()—bN§x>

N—oo (log N)S<k<N O}, N—oo (log N)o<t<N Ot
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and since an immediate consequence of Remark 4.1.2 is that

Ut Ut
limP(aN sup )—bN§x>:limP ay sup ()—bNSx ,
N—o0 (log N)S<t<N Ot N—o0 1<t<N O

assertion (4.1.13) of Theorem 4.1.1 follows by Lemma 4.1.5. Assertion (4.1.14) is derived
by the usual arguments.

Proof of Theorem 4.1.2

We only show (4.1.18), since (4.1.19) follows by the same arguments. We define the
sequence {F,EO),l <k <N} as

FY =Y fierg 1<k<N, (4.1.59)

and get the decomposition

k—k*—1
F=F"+ Y fa 1<k<N.
=0

For the drift holds
k—k*—1 N—k*—1

NP
> fin
j=0

A
> NP(L/2+¢)
=124 4

and for all real x we get

F
P (aN max k—bN§x>

1<k<N 0,

FY N A FY
SP(@N max’ k |—bN§:v—aN]_O—J—|—2aN maX‘ k| .
1<k<N - 0y, oN 1<k<N 0y,

By Theorem 4.1.1 we see that

7]
ay max —by=0p(l) as N — o0

1<k<N 0y,
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and

ay max |Fk(0)‘ =Op(ay) as N — oo
ngkSN o P\WN )

hence (4.1.18) follows since
SN A
ON

and p(1/24 ¢) — ¢ > 0.

> NPA/249)=¢ 49 N — 0o
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Chapter 5

The conditional stopping time of
the MOSUM-chart

A first result on the asymptotic normality for stopping times, which are based on curved
boundary functions has been given by Siegmund (1968), followed by the result of Teicher
(1973). The asymptotic normality of the stopping time for CUSUM-procedures has been
investigated by Aue (2003) and Aue, Horvéth, Kokoszka and Steinebach (2007). In this
chapter we investigate how the limiting distribution of a conditional stopping time can
be used to construct an asymptotic confidence interval for the location of a detected
change-point.

5.1 One-sided alternatives

Throughout this section, we adopt the nomenclature of Section 1.1. For the convenience
of the reader and since we have to modify the model assumptions, we first repeat the
framework and some definitions, which are frequently used in the sequel. Note that all
computations are carried out under the alternative H;.

5.1.1 Model assumptions for known p and o

Let {e;}iz12.. be a sequence of independent, identically distributed random variables
on some probability space (€2, A, P). We assume that

Ee; =0, Vare;=0°>>0 and El|g|” <oo forsome v > 2. (5.1.1)

The sequence {X;}i—12 . is assumed to satisfy

gooe

(e, 1 <i<hy+k
L,U‘|'A+€i R hN+k*<i§hN—|-N,

97
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where A> 0. Instead of (1.1.4) and (1.1.5) we now impose a more restrictive condition
on the window size hy. Namely, it is required that

Vhy =~ N? as N — oo, where 1/v<¢<1/2. (5.1.2)
The change-point k* is assumed to depend on N as follows
k* =k*(N)=|kN] forsome 0<k<1. (5.1.3)

We are interested in the limit distribution of the stopping time

nn=m7(a,N) = inf{l <k<N:M,y>c(oN)oyhy }, (5.1.4)
where
k
Min= >  (Xishy —p) forall k=1,...,N (5.1.5)
i=k—hn+1

and the critical constant ¢;(«, N) is defined in (1.1.11).

5.1.2 The conditional limit distribution of &

The first result is obtained for known in-control parameters and provides the conditional
limit distribution of 7.

Theorem 5.1.1 Let 7y be defined as in (5.1.4) and assume that k* satisfies (5.1.3).
Then, for all real x, it holds that

m p (TR —aw
N—oo Bn

G k*> = (), (5.1.6)

where

h
Oy = U X N and ay = c1(a, N)fy. (5.1.7)

Remark 5.1.1 [t can be seen from the proof of Theorem 1.1.2 that the parametrization
of k* does not affect the asymptotic power of the underlying test, hence it still holds that
th—»oo P (7'1 S N) =1.

If A is known, which is of course unrealistic, Theorem 5.1.1 allows to define two
kinds of asymptotic confidence intervals for £*.
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Corollary 5.1.1 Let 7y be defined as in (5.1.4) and assume that k* satisfies (5.1.3).
Then, for all real x, it holds that

NI
A}im p (7’1 — (c1(a, N) —i—x)g n N<k<n|n> k*) = d(x) (5.1.8)
and
lim inf P <ﬁ — (e1(a, N) + m)‘”AhN <k*< ﬁ> > &(z)(1 — o). (5.1.9)

ProoOF: (5.1.8) is a direct consequence of (5.1.6), and (5.1.9) follows, since

liminf P (7 > k%) > 1 —limsup P(my <k*) > 1—«a.

N—oo N—oo

OJ

Next, we treat the case of an unknown level shift A. The following lemma provides
an adequate estimator for A under the assumption that the level shift is bounded.

Lemma 5.1.1 Let 7y be defined as in (5.1.4). We assume that k* satisfies (5.1.3) and
furthermore, that 0 < A < Apax. If we define

A 1 1
Av =+ > Xi—u (5.1.10)
N j=r —Ay+1
where
o hN
AN = 5.1.11
N { A max J ’ (5.1.11)

then, for any 0 < v < ¢ —1/v and € > 0, it holds that
€

- [n> k) =0, (5.1.12)

Jm P (1dv-a>

We are now prepared to extend Theorem 5.1.1.

Theorem 5.1.2 Let 7y be defined as in (5.1.4). We assume that k* satisfies (5.1.3) and
that 0 < A < Apax. If Ay is defined as in (5.1.10), then, for all real x, it holds that

im p (LK) Ay <z|m >k | =d), (5.1.13)
N—oo Bn
where
. ovhn ) .
Oy = — and &y = c1(a, N)fx. (5.1.14)

AN
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The corresponding asymptotic confidence intervals are given in the next corollary.

Corollary 5.1.2 Let 7y be defined as in (5.1.4). We assume that k* satisfies (5.1.3)
and that 0 < A < Apax. If Ay is defined as in (5.1.10), then, for all real x, it holds that

h
A}im P <7’1 — (c1(a, N) +x)0A N<k<n|n> k*> = ®(x) (5.1.15)
—00 N
and
Vh
lij{fninf P <7'1 — (c1(a, N) + x)UA N <k < 71> > d(x)(1 — ). (5.1.16)

5.1.3 Model assumptions for unknown y and o

We assume that the sequence of innovations {e;};,—1 2 . satisfies (5.1.1) and that the

observations {X;}i—1 2 . follow the model

goon

geoe

Vg , 1 <i<my+ k",
Xi_{
(Ut D +e my +k* <1< my+ N,
where
h N
J\}E%o<m]]\;10gfm>:0 and %HO as N — oo. (5.1.17)

The window size hy is chosen as in (5.1.2)and the change-point k* is assumed to depend
on N asin (5.1.3).
We are interested in the limit distribution of the stopping time

f=r(0,N) =inf {1 <k <N: My > cr(o, N)omy/hy | (5.1.18)
where
N k
Mk,N = Z (Xi-"mN —ﬂmN) fOI' all = 1,...,N (5119)
i=k—hn+1

and the critical constant ¢;(a, N) is defined in (1.1.11). Taking into account the results
of Lemma 1.1.3 we can assume that the estimators ji,,, and 6,,, satisty

1
ﬂmN — U= Op <\/m_N> as N — OO (5120)
and
1
6o, — 0" =o0p <§> as N — oo (5.1.21)
my

for some ¥ > 0.
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5.1.4 The conditional limit distribution of 7;

The next Theorem shows that the conditional limit distribution of 71 basically coincides
with the conditional limit distribution of 7. Note that each of the following accents has
a different meaning: &, a, a.

Theorem 5.1.3 Let 71 be defined as in (5.1.18) and assume that k* satisfies (5.1.3).
Then, for all real x, it holds that

im p (LK) = dy <z |7 >k | =d(2), (5.1.22)
N—oo ﬁN
where
N 5 R _
Oy = Imy VAN nd ay = c1(a, N)By. (5.1.23)

A

If A is known, we get the following asymptotic confidence intervals for k*.

Corollary 5.1.3 Let 7, be defined as in (5.1.18) and assume that k* satisfies (5.1.3).
Then, for all real x, it holds that

Oy VI L
A}im p (%1 — (e1(a, N) —l—a:)UNTN <k '<m|T> k:*) = d(z) (5.1.24)
and
S VN
lin inf P <%1 — (e1(o, N) + a;)“mNTN <k < %1> > o(2)(1 — ). (5.1.25)

To make use of the theoretical results above, we need an estimator for A.

Lemma 5.1.2 Let 7y be defined as in (5.1.18). We assume that k* satisfies (5.1.3) and
furthermore, that 0 < A < Apax. If we define

- 1 i
AN = = > Xi— iy, (5.1.26)
AN i=f1—An+1
where
. TV D
Ay = VNNJ , (5.1.27)
Amax
then, for any 0 < { < ¢ — 1/v and € > 0, it holds that
lim P (|Ev—a]> K) =0 5.1.28
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The following theorem and the corresponding corollary may be considered as the
main result of this chapter.

Theorem 5.1.4 Let 71 be defined as in (5.1.18). We assume that k* satisfies (5.1.3)
and that 0 < A < Apax. If An is defined as in (5.1.26), then, for all real , it holds that

im p((BTK) 28 e ) Z aa), (5.1.29)
N=eo BN
where
- T VI _ -
By = 0%7]\[ and ay = c1(a, N)Bn. (5.1.30)
N

Corollary 5.1.4 Let 71 be defined as in (5.1.18). We assume that k* satisfies (5.1.3)
and that 0 < A < Apax. If An is defined as in (5.1.26), then, for all real z, it holds that

A}im p <%1 — (c1(a, N) +x)0m%hN <K <n|T> k:*> = P(z) (5.1.31)
and
Omy VI .
liminf P <ﬁ — (c1(a, N) + :L“)U%iN <k*< 71> > o(x)(1 — a). (5.1.32)

5.1.5 Proofs
Proof of Theorem 5.1.1

For any real x we define

(c1(, N) + w)ovhy

A k*

d=06(z,a,N) = (5.1.33)

and
n=n(z,a, N)=k"+ [0k]. (5.1.34)

Note that, for any z, it holds that ¢ is positive if N is large enough and furthermore,

Jim. <cl(a,N) - %) = —a. (5.1.35)

Lemma 5.1.3 Let 7y be defined as in (5.1.4) and assume that k* satisfies (5.1.3). With
n(xz, o, N) being defined as in (5.1.34), it holds that

lij{fninf P(n<n|n >k > d(x). (5.1.36)
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PrOOF: First, note that

M, M,
P (max1<k<k* PN < e, maxys =N
Sk< W — YD k*<k<n h 1
P(r <nln > k)= QU QU

P(’Tl > k’*)

P (maxlgkgk* ;\4% <cy, U\/— > Cl)
> (5.1.37)
P (Tl > k'*)

and for the numerator of the last term it holds

My M,y
< b
P (IE}%* g\/— T

kN My n My, N
=P max — < max < c,—F——= >0 ).
1<k<k*—hy a\/hN = k—hy<k<k ov/hy T ov/hi

By the stationarity of the innovations, we conclude that

P max < ci ] =P | max
(k *—hy<k<k* 0'\/ 1> <1<k<hN ovh >

and the law of the iterated logarithm yields (extend the partial sums)

My N
1Ry ovhy 0( logloghN) a.s. as N — oo.

Hence, since ¢;(«, N) =~ \/log(N/hy) as N — oo, we have

max

lim P
Nooo 1<k<hn g,/

showing that

>:1 as N — oo,

hm inf P <

—0Q

max Mk’N <c max M<c M>c
1<heki—hy oy/hy — kt—hy<h<k* a\/ = 1’0\/ !

=tpnint P (o, w— <o)

M, n
T <
hJVHEoIéf P <1<krgk* hN 0'\/_ Cl) P <o'\/_ > Cl)

~ liminf P M, n
=tpint P (may <) P (-

Combined with (5.1.37), the latter result yields

li]\r[ninf P(r <n|mn > k") > liminf P <

—0Q

i )
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Now
M,n A (n—Fk%) A(n—k*))
li tP > li f P — — >0 - —————
piat P (2> o) =t P (G - £ e - S0

and the central limit theorem together with (5.1.35) yield the Lemma.

Lemma 5.1.4 Let 7y be defined as in (5.1.4) and assume that k* satisfies (5.1.3). If
n(x, o, N) is defined as in (5.1.34), then, it holds that

limsup P (7 <n|n > k%) < O(z). (5.1.38)

N—o0

PrROOF: For any £ > 0 we get the decomposition

P (k* <7 <n, 2 U("k)>—x(1+§)
P(rn<n|n>k")= ( \Z_>k§ )
1
P(k* <m <2l - 808) < g1 4 ¢))
! P(r > k)

First, note that the same arguments as in the proof of Lemma 5.1.3 show that

lim sup /;(N)
N—oo
Mn N A (n - ]{I*) >
=i P — — > —x(1
ljr\fn—?olip <k:*<k<n O'\/hN U\/hN ovhy x( +€)
<1 P — — > —x(1
<t P (- S > 1+
and therefore the central limit theorem implies
limsup I1(N) < ®(z(1 +&)). (5.1.39)

N—o0

Next, we show that (V) tends to zero. It holds that

Sioien P (n =k gy — 00 < —a(1+9)

N

P(Tl > k*)

Iz(N) =

and since

lij{fninf P(rn>k)>1-a,
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it suffices to consider the numerator of I(N). We get

S P <ﬁk Moy M%*) s—x(1+£>)

k=k*+1
MkN M A (n — k*) >
= P (7‘ < —z(1+¢
k=k*+1 L oV/h oV hy ( )

MkN nN A(n—k:*)
J h U\/_ O'\/m = _x(l—i_g))
MnN_MkN A(n—k)

N <—2(1+¢) —ca+

<Z =k+1Ej+hy — Z? I?NhNH Ejthy A (n— k))

P

IN

ol

IN
&)

A (k—k*)>

T
=

*
+
—

IA
NE
v

P/ < —x€ —

k=k*+1
n n n—hpy
= > P Y g — X ity < —x€o/hn— A (n—k) |,
k=k*+1 Jj=k+1 j=k—hn-+1

where we have used (N large)
A (n— k%)
ER
o/ h,N

Now assume x > 0. The Markov inequality yields

n n—hyn
P ( Z Ej+hy — Z Ej+hy < —LL’fO’\/E— A (n — ]C))

j=k+1 j=k—hn+1

1 > —

n n—hyn
<P ( Z Ejthy — Z Ejrhy > zéo/ hy+ A (n — k))
j=kt1 j=k—hn+1

h v

E ‘Z?=k+l €j+h1\/ - Z] k—hn+1 8,Y‘i’hN
(:Efm/hN—l— A (n— ))

By Rosenthal’s inequality (see Rosenthal, Theorem 3, 1970) there exists a constant
C7 > 0, only depending on v, such that

<

v

n n—hn
E Z Ej+hy — Z Ej+hn < Cl max{(Q(n - k)o_2)y/2 ) 2(” - k) E ‘51’1/} :
=kt 1 j=k—hy+1

Hence

v
n—hy

n
E| Y g — 2 Ejeny| < Ca(n—k)"?
Jj=k+1 j=k—hn+1
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for some suitable Cy > 0, independent of n and k, and for the last term in (5.1.40) it
holds

n n n—hy
> P ( Do Cithy = D iy < &0V hy— B (n— k))
k=k*+1 j=k+1 j=k—hy+1
n —k v/2
S C& E: (n ) v
w1 (#€oVhn+ A (n—k))
= U2 v
= (z€ov/hn+ o ([6k*] — k)
[0k*]-1 /2
- C .
2 ,; ($€U\/hN+ A k:)
02 [ok*]—1 kz//2
& = (Csvhn + k)
where
r€o
Cy = i.
Now
[6k*]—1 Lv/2 . Lék*JHCZS\/WJ—l (k — ch\/m“y/g
k=1 (03 Vi + k) - k=|C3vhy]+1 k¥

> 1
< > k”/Q_)O as N — o0

k=|C3vhy]+1
and we see that in case of z > 0

lim IL(N)=0 as N — oo. (5.1.41)

N—oo

Next, we assume = < 0. Since d0k* ~ (/hy log(N/hy) as N — oo, it follows that for
sufficiently large N it holds that

A (n—k) > 2|z|€oy/hy.
Hence (N large)

n n—hy
P 2 Ejthy — Z Ejthy < —x€o\/hy— A (n—k)
j=kt1 j=k—hy+1
n n—hyn
<SP Y gy — Y Eihy S agov/hy
j=kt1 j=k—hy+1
n n—hy
<SP ey = D Einy| 2 2léovhn .
j=k+1 j=k—hy+1
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Similar computations as before show that for (5.1.40) now it holds

n n n—hpy
Y. Pl X ey = D iy < —wbovhy— b (n—k)
k=k*+1 j=k+1 j=k—hn+1
c k™ |1
< > k%2 -0 as N — oo,

(ﬂfoM)V k=1

where the convergence is a consequence of

|0k ] —1 N 1+v/2
> k”’/2:<,/thog> as N — oo
k=1 hy

and v > 1+ /2. So, for z < 0 also holds

lim IL,(N)=0 as N — oo (5.1.42)

N—oo

and the lemma follows for all x # 0 by (5.1.39), (5.1.41) and (5.1.42) as & — 0. The
continuity of the standard normal distribution function now implies that the lemma also
holds for x = 0.

O

Theorem 5.1.1 now follows obviously from Lemma 5.1.3, Lemma 5.1.4 and the defi-
nition of n.

Proof of Lemma 5.1.1

geee

it holds that

k) —
1imP<(Tl ) N < n

T1>k'*> =0,
T1 >k'*> =0.

hence

N—oo

lim P (7'1 — (Cl(Oé,N) +xN)ﬁN S k*

The choice zx = 1 — ¢1(a, N) yields

7'1>/{5*> =0

Nhinoop <T1—ﬁN§k’
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and since
gy hN
By > = \n,
AII"I&X

it follows that

A}LH;OP <Tl—/\N§k’

> k:) = 0. (5.1.43)

Now

€

N ™ > l{:*)

P (‘AN—A|>

7'1>]{I*>:P(’AN—A|>%,T1—)\N§]€*

€

N7’

+P (lAv— 21> m = Ay > K |1 > k)

.= [,(N) + I,(N)

Obviously, (5.1.43) implies

lim I,(N) = 0. (5.1.44)

— 00
For the second term we have

P(|AN—A|>L,T1—)\N>I{T*)
L(N) = N7
2(N) P(r > k*)

and since
l%ninf P(n>k)>1—-«

we only consider the numerator. Note that
€

N’

= limsup P (| An— O] >

N—oo

lim sup P <| An— A | >

N—oo

E*+ Ay < 7'1>
€

Nv’k;*+/\N<7—1§N)7

since the underlying test has asymptotic power one.
It holds that

)

>e}.

k

Z Cithy

i:k‘—/\N—i-l

(
) . N7
{lAN A’>N'y’k +)\N<T1_N}Cik*+£rzlva<)§f§\f)\zv
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Applying the strong invariance principle according to Komlés, Major and Tusnady
(1975,1976) and Major (1976) we can find a Wiener process {W(t),t > 0}, such that

k

Z Cithy

iZk—)\N-i-l

N7

max
k*+AN<k<N Ay

N7
— a |W(k+hN)—W(k:+hN—)\N)|=O<

max
E*+AN<k<N Ay

N7(N + hN)l/”>
a.s.
AN

as N — oo and since Ay ~ v/hy as N — 0o, we see that

NY(N + hy)'¥
AN

—0 as N — oo.

Next, Theorem 1.2.1 of Csorgé and Révész (1981) implies

N7
max —
E*+An<k<N Ay

Y
Wk + h) — Wk + by — Aw)| = O (N VlOgN) as.

VAx

as N — oo and since v < ¢ — 1 /v, it follows that

N7\/log N
VAN

—0 as N — oo.

But then

lim Ir(N) = 0. (5.1.45)

N—o0

and Lemma 5.1.1 follows from (5.1.44) and (5.1.45).

Proof of Theorem 5.1.2

In view of Theorem 5.1.1 it suffices to show that for any € > 0 it holds that

lim P (
N—oo

(i — k) —an _ (n— k) —an

By B

> €

> k> = 0. (5.1.46)
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We have
P<(Tl_k*)_aN—( ) > € 7'1>k*>
By By
< P (5N—5N)(7'1
BBy
+ P (aN _an > €
An
P OZN(ﬁN—ﬁN>
BBy

= [1(N) + Is(N) + I3(N).

> €

T > k*>

T > l{?*>
T > kZ*)

Before we can consider I1(N), we need some preliminaries. For any real 2 we choose

n according to (5.1.34). Theorem 5.1.1 implies that
O(x) = lim P(rq <n|m > k")

N—oo
) n—k" _n—Fk
:hmP<1 < 7'1>k*>
N—oo QN QN

A
:hmP<T1 <1+ 2 n>k*>,
N—oo QN 1

hence it holds, for all € > 0
™ > k?*) =1.

lim P (T
N—oo

Now, taking into account (5.1.47), we get

— k*

an

-1

<e

— k*
limsup [;(N) = limsup P (1 - ﬁAN> n
N—o0 N—oo0 ﬁN ﬁN
k*
= limsup P (1—AN
N—oo0 A anN
~ C1 €
<l P A —AN|l— > <
o (Ja-aa] >

Since

c1(a, N) :O(\/logN) as N — oo,

(5.1.47)

T > k*>
T > k*>
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display (5.1.12) shows that

lim I,(N) = 0. (5.1.48)

N—oo

Moreover, (5.1.12) also implies

lim /5(N)= lim P (‘1—@\[

N—oo N—oo N

cp > € 7'1>k:*>

. ~ C *
~ lim P (‘A—AN‘A1>6 7’1>/€>
—0 (5.1.49)

and

lim I5(N) = 0. (5.1.50)

N—oo

Hence (5.1.46) holds and the theorem follows.

Proof of Theorem 5.1.3

We start with some technical preliminaries. Let € > 0. We define the stoping times 7,
and 7, as

m=m(e,a,N) = inf{l <k<N:Mgy>(ci(a,N)— e)ax/hN} (5.1.51)
and
Ny = Nu(€,, N) = inf{l <k<N:Mgy>(ci(a,N) —|—€)0'\/hN} : (5.1.52)

Additionally, for any real x we set

((c1(e, N) =€) + (x — €))ovhy

0 =0(e,x,a,N) = N , (5.1.53)

8y = O,(e,z, 0, N) = ((erf, N) ) + (& +))ovhn (5.1.54)
A k*

n, =mn(e,xz,a, N) = k" + [0,k"], (5.1.55)

Ny = ny(€,2,a, N) = K + [ 0,k7]. (5.1.56)

Lemma 5.1.5 With the notation of (5.1.51)~(5.1.56) for any real x and € > 0 it holds
that

A}im P <ngm>k")=d(x—e¢ (5.1.57)
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and
A}im Py <ny|ne>E) =d(x+e). (5.1.58)

Furthermore, the limits are completely determined by the alarms after the change, i.e.

]\}im Pk*<m<n)=(x—¢) (5.1.59)
and
Jim P (" <nu <ny) =®(x+e). (5.1.60)

PROOF: The proofs of (5.1.57) and (5.1.58) are just a repetition of the arguments, used
to show Theorem 5.1.1.

(5.1.59) and (5.1.60) follow by (5.1.57) and (5.1.58), since the extremes of the the
detectors before and after the change are asymptotically independent (cf. the proof of
Lemma 5.1.3) and it holds that

A}im Pp>k)=1—0q forsome 0<q <1

and

]\}im P(n,>k)=1—q, forsome 0<a,<]I,

which can be seen utilizing the same arguments as those used in the proof of Lemma
5.1.6 below.

U

Lemma 5.1.6 Let 7y and 71 be defined as in (5.1.4) and (5.1.18), respectively. Fur-
thermore, assume that k* satisfies (5.1.3). Then it holds that

A}im P(fi>k")= lim P(rn>k")=1—a forsome 0<a<]l. (5.1.61)

—00

PrROOF: First, note that
and

limsup P (71 > £*) = limsup P (N > 7, > k¥),

N—o0 N—o0

since the underlying test has asymptotic power one.
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Similar arguments as in the proof of Lemma 5.1.3 show that

lim inf P (7 > k")

o My N M.~
=liminf P [ max ————— < ¢, max ————— > ¢
N—oco 1<k<k* gmN,/hN k*<k<N o'mN\/hN

. My, My
=liminf P [ max ———— <¢ | P | max ————— >
N—oo 1<k<k* o'me/hN k*<k<N o'me/hN

and

limsup P (71 > k%)
N—oo

~

= limsup P | max BN <0 max My > c
- ~ =~ 1, ~ 1
N—oo 1<k<k* 0V RN k*<k<N GV B

~

M M,
= limsup P | max % <c¢ | P max A& >c .
N—o0 1<k<k* O-mN\/ hN

Now the proof of Theorem 1.1.4 implies
. My,
o P (&% P/ e Cl) =1L
hence it suffices to show that
M
lim P ( kN

N—oo

max

1<k<k* Gy VRN

The parametrization of k* and the proof of Theorem 1.1.3 show that
Mk,N

< c1> —1-a. (5.1.62)

D
— b — G as N — oo,

R T SES
where
k*
N
* * 1
b =21 —logl ——1 5.1.64
! oghN+20goghN 5 log ™ ( )

and G denotes a Gumbel-distributed random variable.
Finally, elementary calculations yield

apcy — b — ¢ as N — o0

and we see that (5.1.62) holds.
It is obvious that the same calculations also hold for 7, hence the proof of the lemma
is complete.
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O

Lemma 5.1.7 Let 1 and 7, be defined as in (5.1.4) and (5.1.18), respectively. Further-
more, assume that k* satisfies (5.1.3). For any real x we define n = n(x,«, N) according
to (5.1.34). Then

lim P(k* <7 <n)= ]\}im P(k*<m <n) (5.1.65)

N—oo

PRrROOF: Assume for the moment that

: Mk,N L My n
i P <km%§wm > Cl) = Jim P <km%XW >a (5.1.66)
holds. Then the asymptotic independence of the maxima of the detectors before and

after the change (see the proof of Lemma 5.1.3), together with the proof of Lemma 5.1.6
yields

. -~ . Mk- A
* - < — — _—
A}lm Pk*<mn<n)=(1-a) ]\}lm P <k*1r<1%><<n e > cl>

7 My, N
=(1—4&) Jim P <kn<l%§n i Cl>
= i * <

]\}I_I)Iclxj P(k* <m <n).

To see that (5.1.66) holds, first note that for sufficiently large N we have

MkN
Pl max —F—>¢
k*<k<n G, VR

k .
o Yimtny+1(Xitmy — 1) [y — I
<6mN kg%;(n A /hN N a-mN €1

i R
v X; — m
(AU max Zickny1(Xivny = 1) - \/mu g Cl>>

N
Omn k*<k<n U\/hN a'mN

where the last equation follows by the stationarity of the innovations and the fact that
(k* — hy)/my — o0 as N — oo. Hence

Mk,N . Mk,N é-mN ﬂmN — K
P <kmkx PR e ) =P (Jnkx o A TV T ) (B16T)

For any fixed € > 0, Lemma 5.1.5 and the definition of n;, n,, imply

liminf P max —e¥ ¢p—e€ | > liminf P max —N cp— €
N—oo k*<k<n o+/hxn N—oo k*<k<n; o+/hy

= Oz — € (5.1.68)
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and
. _ < 3 —
hjrvnjo%p P <kg%><<n U\/_N > ¢ e) < h]r\?jolip P <k*r£1]?<>%u J\/_ > ¢ e>
=d(z +e). (5.1.69)

Now (5.1.17), (5.1.20) and (5.1.21) show that

<01 Y+ h 'umN - > —cp=o0p(l) as N — oo (5.1.70)
and we see that (5.1.66) follows by (5.1.67)—(5.1.70), if we let € — 0.
OJ
Theorem 5.1.3 now follows by Lemma 5.1.6 and Lemma 5.1.7.
Proof of Lemma 5.1.2
Theorem 5.1.3 implies that (cf. the proof of Lemma 5.1.1)
A}unP( — By < k* %1>k:*>—0
and since
By = TN s
Amax
it follows that
]\;lmP( )\N<k7 7A'1>]€*>:O
Hence, in the decomposition
_ € ~ * A *
P(|AN—A|>ﬁ n>k=) <|AN A|>NC, — Ay <k 71>k:)
+ P (IEn- A|>NC, — A >k > )

.= I,(N) + L,(N)

only I5(N) has to be considered.
Since furthermore

lij\rfnian(ﬁ >kE)>1—«
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and the underlying test has asymptotic power one, we can focus on

limsup P (|ZN—A | >—, k*+5\N<7A—1§N)-
N—o0 N¢

Now note that
)|

>€}.

k

Z €i+mN

i=k—An+1

“ ( N¢
{|AN A]>k*+AN<%1§N}ci max -

) ~
N¢ kAN <k<N Ay

It follows by (5.1.2), (5.1.17) and (5.1.21) that

lim P (Ay — N9 <Ay <Ay + N99) =1,

N—oo
> €>
k

Z Eitmy

which implies

k

Z Eitmy

i=k—An+1

N—oo kAN <k<N Ay

N¢
limsup P ( max =

N¢
= limsup P max =
N—o0 E*4An<k<N Ay

> €, ‘S\N — )\Nl < N¢(1_19)> .

i=k—An+1
Obviously
{ max {VC zk: Eivmn| > 6 | An — Ay < N(;S(lq?)}
k*+An<k<N Ay b
( N¢ . N
C i)\N_NM K LhaN |A_/\Nr|n§%<¢(l_ﬁ) i:gH Eitmy| > e}.

The strong invariance principle according to Komlds, Major and Tusnady (1975,1976)
and Major (1976) shows that there exists a Wiener-process {W (t),t > 0}, such that

l
SNoei—W(l)=0o(I") as. as [ — oo,

k

Z Eitmy

i=k—A+1

— -+ Ila max
Ay — No(1=9) k*<k<N A=A |<N@(1-9)

N¢
B m k*n<ll?%<N |)\,)\NI|11S%(¢(1—79)
O\ Ay = NeD)

[W(k+my)—W(k+my— N

) a.s. as N — oo.
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Since

(N +mpy)Y" ~ NV as N — oo,

Ay — N O N? as N — o0
and ¢ < ¢ — 1/v we see that

NS(N +mp)v  NSNYY

v NO—9) ~ TN —0 as N — oo.

Finally, Theorem 1.2.1 of Csorgé and Révész (1981) implies

N¢
Ay — NOU=0) p1Zh2N |y An|ENoa-) (W (k +my) — W(k+my — A

_ 0 (NC\/logN

a.s. as N — o
)

and since ( < ¢ — 1/v, it follows by the definition of Ay that

N¢y/log N
VAN

But then also

—0 as N — oo

lim Io(N) =0

N—oo

and Lemma 5.1.2 follows.

Proof of Theorem 5.1.4

If we show that, for any € > 0, it holds that

lim P (
N—oo

then Theorem 5.1.4 follows by Theorem 5.1.3.

(h—k)—ay (h—Fk)—ay

By B

> €

ﬁ>H>:Q (5.1.71)



118 CHAPTER 5. THE STOPPING TIME OF THE MOSUM-CHART

7A'1 > k’*>

We have
P<(ﬁ—kﬂ—aN_(ﬁ—kﬂ—aN

B O

> €

< P<(§N_6:N)A(ﬁ_k*> > € %1>k;*>
B B BN
+I)<:aN;_aN > € %1>k¥>
Bn
+P<U%_M) ﬁ>w>
B BN

= Il(N

~—

+ I,(N) + I3(N).

We only consider [;(N) in detail, since all three terms finally depend on the same
expression.
Theorem 5.1.3 implies that for any € > 0 we have

lim P <
N—o0

Now, with (5.1.72) we get

=k

— -1
an

<e

ﬁ>H>:L (5.1.72)

limsup I;(N) = limsup P (1 — QN> >e |7 >k
N—oo N—oo BN ﬁN
A — k¥
—11msupP<1—N c1 > € 7'1>/<:*>
N—oo A O[N
<hmsupP A—AN‘Ci>E > k"
N—oo A 2

and since

c(a, N) =0 (\/@) as N — oo,
it follows by (5.1.28) that
lim I,(N) = 0.

N—oo

By similar computations we obtain limy .., I5(N) = 0 and also limy_.o, I3(N) = 0,
hence the proof of Theorem 5.1.4 is complete.



Appendix A

Covariances

In this chapter we consider the covariance function of the process {Un(t)}+>0, laid down
n (2.1.45).
Before we start, we provide a simple but useful lemma.

Lemma A.0.1 Let {p,}n—01.. be a sequence of real numbers. Then for all ¢ =0,1,...
andn=1,2,... it holds that

n—1 n—1 min{n—1,q}
Z Pli—j+q] = Z(n — J)Pgrj + Z (n—J)pg-j + Z 9)Pi-q (A.0.1)
1,7=0 7=0 j=1 Jj=q+1

ProOOF: The proof carried out via induction over n. Obviously assertion (A.0.1) holds
for n = 1. Assuming that it also holds for n — 1 we get

Y Dijte = Z Pli—jtal + me S th ntd

,7=0 4,7=0
n—1 min{n—1,q} n—1
=" (n = §)pgss + Z (n = J)Pg—j + D (n—3)pj—yg
Jj=0 Jj=q+1
n—1 n—q—1
+ qu-‘rj + Z Pi—n+q + Z Pn—i—q
Jj=0 t=max{0,n—q} i=0
n—1 min{n—1,q} n—1
=3 (n—J)pgs + Z (n—)pg—i+ > (n—J)piq
J=0 Jj=q+1
mln{n,q}
+ZPQ+J+ Z Pg—j + Z Pj—q
Jj=q+1
n mln{n q}
Z”"’l J)Pqrj + Z (n+1=J)pg—j + Z (n+1-7)pjq
Jj=0 Jj=q+1
showing (A.0.1). ]

119
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Remark A.0.2 In case of ¢ = 0 assertion (A.0.1) can be stated as

Z Pli-j| = 1o + 2 Z n—j)p (A.0.2)

4,j=0

We are now prepared to carry out the so called elementary calculations.
Since obviously {Un () }+>0 is a strictly stationary process, we can assume that

Un(t) => w;Vijn forall 0<t< oo, (A.0.3)
=0
where
1
Vin = N o(W(t)—W(t—hy)) forall —oo<t<oo (A.0.4)
N

and {W(t), —oo <t < oo} is a two-sided Wiener process.

A.1 The variance of {Uy(t)}

Lemma A.1.1 For all natural numbers N the variance of {Un(t)}i>0 is given by

hny—1 h s
j=1 N
Furthermore, it holds that
9 1
l—oy=0|++ as N — o0, (A.1.2)
hy

where v = min{1 — ¢, ¥} with ¢ and ¢ being defined as in (2.1.10) and (2.1.11), respec-
tively .

PROOF: Let {V;}_cocicoo and { P} _coct<oo be defined as
Ny=W(t)—W(t—-1) forall —oco<t<oo (A.1.3)

and

P, =) wjN,_; forall —oo<t< oo. (A.1.4)

Jj=0



A.l. THE VARIANCE OF {Uy(T)}

Then

hny—1 1

=2 U

and for all real ¢ it holds that
E(Un(t)Un(t)) =E (Un(0)Un(0))

<h§1 1 h§1 >

1hN 1hy—1

>, ) B

N =0 75=0
The definition of {P;, —oo < t < oo} yields

P_;, forall —oo<t< oo,

E(P_,P_;) = E(PyPi_j)) = > wiwyiji—y forall i,j=0,1,...

k=0
hence
hy—1hy—1
E (Un(t)Uy Zwk Yo D Wiyl
Nk 0 i=0 j=0

and applying (A.0.2) we get

E(UN(t)UN( szk <thk+2h§1 hN )’war])

7=0
00 hy—1 Ay —
:ZwijLQZwk Z ]\;LijUJkH_j,
k=0 k=0 j=1
what is (A.1.1).
If N — o0, (A.1.2) follows immediately by (2.1.8)—(2.1.11), since

0o 2
1_012\7—<Zwk> — o3
k=0
%) [e's) o0 9] oS hy—1
:Zwi—FZZwkakﬂ» — <Zwi+22wk Z
k=0 = j=1 k=0 k=0

Jj=1

hny—1 00
_QZwk<Z hj Wi + Z wkﬂ-).

j=1 "N j=hn

121
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hy — j >
7 Wk
N
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A.2 The covariance function of {Uy(?)}

In this section we provide the covariance function of {Ux(t)}i>0. In view of Lemma
2.1.4 we are finally interested in the covariance function of the time-transformed process
{Un(1t)}i>0, defined as

Un(1) :=Uy(thy) forall —oo<t< oo, (A.2.1)
hence we assume in the following that the time parameters s and ¢ are chosen as
s=3hy and t=thy forsome —oo<3§t< 0. (A.2.2)
Furthermore, we use the following notation
a= sl and ¢=ls|—q. (A.23)
First, we consider the covariance function of {P,}_co<t<oo, defined in (A.1.4). Since
E(PPys) = E(FPyP,) forall —oo<s,t<oo,

it suffices to consider E (PyP;) for some s > 0. We have

§=0i=0

E (P()Ps) =E <Z U}jN_j ZwiNs—i> = Z Z’U)JUJZE (N—st—i)
7=0 =0

and since for all 4,5 = 0,1, ...

(1-¢ . i=j+q
B(NGN) ={¢ . i=j+atl,
'LO , else,
we get
E(PoPys) = wj(wisqE(N_jNe—(j+q)) + Witgr1 E(N—j No—(j1g+1)))
=0
= ij<wj+q(1 — () + Wjtg16)
=0

Wj(Wiag + C(Wjtgr1 — Witq)). (A.2.4)

M

<.
Il
o
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Next, note that (0 < s = ¢+ ()
E(Un(t)Un(t+s)) =E (Un(0)Un(s))
1 hN—l hN—l
=— 2 2. B(PuPy)
N =0 j=0
1 hN—]. hN—].
:hi Z 2 E(POPi—j+8)
N =0 j=0
1 hn—1hy—1
. Z(J) ;; E(BoPi—jtqt)
1= j=
and since
(1. . . .
o 1—7+q|+ ) <q-+1,
li—j+q+ (= ’. ! q+¢ S
(A.2.4) shows that
E(Un@)Un(t+s))
1 hN—l min{qui,hN*l} hN—l
= Y. B(PoPijrg+d) + Do E(PoPi-jigri+a-0)
N =0 j=0 Jj=q+i+1
1 hN—l min{qui,thl} o0
:H > > > Wk(Witi—jrgl T C(Whtlimjrglt1 — Whtli—jql))
i=0 j=0 k=0

j=q+i+1 k=0

hAny—1 oo
+ Z Z wk(wkﬂz’fﬂqﬂ\ + (1 - O(wk+|z’fj+q+1|+1 - wk+ij+q+1))>
1 hny—1 (min{qui,th} 00

> D Wk(Whriimjagl T C(Whtimjql+1 — Whetli—jrql))

hy i=0 j=0 k=0

hny—1 oo
+ > D Wil + C(Whtjimjrgrr + wzc+|w+q|))>
j=qti+1k=0

1 hny—1hny—1 o0

=— > > > we(Wepjijag T C(Whtlizjrqr1] + Whilimjaq]))- (A.2.5)

N =0 j=0 k=0
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Now applying (A.0.1) on (A.2.5) yields the intermediate result

E (UN<t)UN(t -+ S))
1 & hn—1 min{hny—1,q} hn—1

e Zwk Z (AN —=J)Whiqrs + Z (AN —J)Whig—j + Z (hn — J)Wk—q+;
N k=0 j=0 j=1 j=q+1

hy—1 min{hy—1,g+1} hy—1
+ C(( D (AN = ) Wi ganyi+ D (v —J) Wi (grn— + D ( hN J)Wk—(q4+1)+5

Jj=0 Jj=1 j=(g+1)+

hn—1 min{hy—1,q} hAny—1
Z (hy = J)Whiqsj + Z (hy = J)Wryq—j + Z (hn — J)Wk—q+;
7=0

Jj=1 Jj=q+1
A.2.6)

A further simplification of this expression depends on q. We have to consider the
cases q =0,0<g<hy—1land hy —1<q.

First, we assume ¢ = 0. Note that then 0 < s = ¢ < 1, hence 0 < § < 1/hy.
Reformulating (A.2.6) yields

E(UN<t)UN(t+ S))
1 &> hy—1
:hfzwk hywy + 2 Z (hy — J) Wkt
N k=0 Jj=1

Jj=0 7j=2

_ <thk + thl(hN — j)warj) >>

1 & hy—1 hny—1
=72 W hvwi +2 Y (A — Jwisj + ¢ D (Wegje1 — Weey)
N k=0 j=1 j=0

0o 00 hy—1 B — i 00
:sz—FQZwk(Z ];[LN]warj) <Zwk ZwkahN).
k=0

k=0
(A.2.7)

ha—1 ha—1
+¢ <( (hny — Jwprjrr + (hy — Dwi + D (hy — J)wiyj—1

Next, we treat the case 0 < ¢ < hy — 1, equivalent to 1/hy < § < (hy — 1)/hy.
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Then (A.2.6) can be stated as

E (UN(t)UN(t +5))
hy—1 hy—1
T Z W, Z N — ])wk+q+J + Z hN - ])wk—i-q -+ Z hN _])wk q+j
Jj=0 Jj=1 Jj=q+1
h]\]—l q+1 hN—l
+ ¢ D (hnv =P wrr(grias + Y (hn = Wkigr1y—5 + O (AN —J) Wk (g41)+5
=0 = J=(q+1)+1
N hN 1
Z (hn = J)Wiiqys + Z (hn = J)Witq—j + Z (hn = J)Wk—q+j
J=0 J=1 =q+1
1 == hn+g—1 hn—q—
=7 > wy > (hn+q—7j)wes; + Z (hn—q+i)wr; + D ( hN q—J) Wiy j
N k=0 Jj=q J=0 J=1

h hy—2
+C<<Z(hN ]+1)wk+q+]+z (hn=j—Dwiyg—j + > (hy—j—1)wy_ q+j>

Jj=1 Jj=0 Jj=q+1

hy—1 ha—1
- < Z (hy _J)warqﬂ + Z (AN — J)Whiq— —j T 2 (hy — j)wi— q+]>>>

Jj=0 Jj=1 Jj=q+1

and summing up matching terms we obtain

E(Un(t)Un(t + s))
1 == hn+q—1 q—1 hny—q-1
=7 Yowe | D (hv+q—Jwe; + D (hn—q+j)wes; + hn—q—J)Wky;
N k=0 J=q Jj=0 J=1
hN q hN—l
Cl 2o Whtats = 2 Whiq—j = D Wegt
j=1 j=0 j=q+1
1 = hn+q—1 q—1 hy—q—1
=7 Z W Z (hn+q—7)wey; + Z (hn—q+j)wie; + hn—q—7)Wk+;
N k=0 J=q J=0 J=1

Jj=q+1

hn+q q hy—q—1
Cl D0 Whyy— D Whej— Y, Weyy | |- (A.2.8)
=0 =1

Considering the upper bounds of the sums, we see that further splitting is required. We
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first suppose that 0 < ¢ < hy/2 and get

E(Un(t)Un(t+ s))

1 X hny—q—1 hn—+qg—1
=7 wi| (hn— ¢ wk+22 (hn— Q)wk+]+22 (A=) wiri+ Y (An+q—F) Wiy
N k=0 j=1 Jj=q Jj=hn—q
q hn+q
= we+2) Wy — D Wiy
Jj=1 Jj=hn—q

1 & hny—q—1 '
:Tzwk <<thk+22thk+J+2 Z hN—j)wk+j>

Jj=1 Jj=q

—(q+¢) <wk +22q:wk+j>

Jj=1

hy+g—1 ha+q
+ 1 > (v +q— J)Wikij +2qwisg +C Y Wiy

Jj=hn—q j=hn—q

::th liwk (IL(N) = (¢+ Q) I2(N) + I3(N)) (A.2.9)

We now cosider ﬁ Yore o wil3(N) in more detail. Since g < hy /2, we get by (2.1.8) and
(2.1.11)

1 hny+qg—1 ‘ 1 1
hN Z (hN+q—])wk+j§hN Z qujg Z w]_0<hw)

Jj=hn—q =|hn/2] =|hn/2]

as N — oo.
Furthermore, by (2.1.8), (2.1.11) and 0 < ¢ < 1, it follows that

hn+q 1 1
C > U}k—i-]_hN Z wj—0<h1+w> as N — oo

j=hn—q j=lhn/2]
and for the last summand we get by (2.1.8) and (2.1.13)

1

2
qug =0 <hN

h > as N — oo.

— 2qw
I qWhtq <

Since the asymptotics above hold uniformly on the underlying domain, we get

Zwkfg <h1 ) as N — oo, (A.2.10)

NkO N

uniformly in 0 < ¢ < hy/2.
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Combining (A.2.9) with (A.2.10) we see that for all —co < s, < 00
E (UN( )UN(t + S))

1h
_Zwk+zwk<22wk+]+2 Z N wk+j>

3\— (Zwk—FQZwkakﬂ) (hlw

N

) as N — oo, (A.2.11)

uniformly in 0 < [|s]] < hn/2.
Next, we assume that hy/2 < ¢ < hy — 1. (A.2.8) can be reformulated as

E(Un(t)Un(t+ s))
hn— q—1 hn—+qg—1
Tzwk (hn— qwk+22 hzv Qi+ (v — q+5) Wi+ (v +q—7) Wi
_] 1 j hN q .7 q

hy—q—1 hn+q
— (| wp+2 Wiyj + Z Wit — D, Wity
Jj=1 j=hn—q Jj=q+1

1 > hn—g—1 q—1 hn+q—1
=72 Wk hywy, + 2 hnwiy; + > (A + Jwirs + Y. (hy — J)wes;
N k=0 j=1 Jj=hn—q Jj=q

hn—g—1 q—1 hn+q—1
—qlwe+2 D Wt D, Wy — Z W

Jj=1 J=hn—q

hny—q—1 hn+q
_C<wk+2 Z Wy + Z Wgj — Z wk+j>>-

Jj=1 Jj=hn—q Jj=q+1

Replacing ¢ + ¢ by s and grouping matching terms we get

E (UN(t)UN(t +5))
hn—g—1 hn—g—1
Zwk hywy + 2 Z hnwie; | —s | wi + 2 2 W j
h k=0 j=1 j=1
g—1 hn+q—1
- Z Wk+j — Z Wi+
J=hn—q Jj=q

q—1 hn+q—1
+ < > (v 4+ wrri + D (hy — J)wis; — ¢ (2wpgq — wk+hN+q)>>

Jj=hNn—q Jj=q
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1 = hny—q—1 hny—q—1
:h Z Wi hNU)k +2 Z thk—l—j — S| wg + 2 Z W45
N k=0 j=1 j=1

q—1 hn+q—1
+ ( > (hy —s)wesj+ Y. (hn + 5)wk+j>

Jj=hn—q J=q

q—1 hny+q—1
+ S jwrgi— Y, JWkss — C(2Whtq — Whihy4q)
Jj=q

Jj=hn—q
1 = hy—q—1
:Zh Z Wi ]’LNU)k +2 Z thk—i-j (A212)

Jj=1

=1

— 5 <wk + 2hN§_1 wk+j> + L(N) + IQ(N)> (A.2.13)

We now consider h—[ 1(IV) under the assumption hy /2 < ¢ < hy —1, which is equivalent
to hy/2 < [Shy| < hy — 1. By (2.1.8) and (2.1.11) we see that

1 ! s 5
. > (v = sy < 3 (1= Swy
Nj=hn—q j=|hn(1-3)]

and
1 hnta-t 1 X 1
. Z (hy + S)wys; < . Z 2hyw; = O <w> as N — oo.
N j=q N j=|hn/2] hn

Since both asymptotics hold uniformly in hy/2 < |Shy| < hxy — 1 we obtain

thll(N) 0 <

1
¢> as N — oo, (A.2.14)
h
N
uniformly in hyx/2 < |Shy]| < hy — 1.
Next, we investigate %IQ(N). (2.1.8) and (2.1.10) yield

1 qil % 1
— JWitj < Jw; O( T > as N — 0o
N g hy = hy
and
1 hn+q—1 2hn 1
. > jwgyy < > jw; =0 < 1_¢> as N — oo
N =g j=1 hy
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Since furthermore

1 1
— C(2Whyg — Witny+q) = O <> as N — oo,
hN hN
we see that
1 1
— Is(N — N A.2.15
=0 (1) Vo (A215)

also uniformly in hy/2 < |Shy| < hy — 1. Combining (A.2.12), (A.2.14) and (A.2.15)
we achieve the following result

E(Un(t)Un(t + s))
oo oo  hy—g-1 oo oo  hny—g-1
s 1
“Yup 2y we Y wkﬂ—;'l'(ZwiHZwkz wk+j>+0<m>
k=0 k=0 j=1 N \ k=0 k=0 j=1 N

(A.2.16)

as N — oo, uniformly in Ay /2 < [Shy]| < hy — 1, where v = min{l — ¢, ¢ }.
The outstanding case is hy — 1 < ¢. Under this assumption (A.2.6) can be reformu-
lated as

E (Un(t)Un(t + s))
1 > hny—1 hny—1
=72 Wk D (hy = ) Whiqes + D (Ay — J)Whiq—;
N k=0 j=0 j=1

hn—1 hy—1
Z (AN = J)Wit(q+1)45 + Z (hn = J) Wit (g+1)—j
J=0 =

7j=1
hN 1 hN 1
Z (hn = J)Whtgtj + Z (AN = J)Witq—;
7=0 7=1
1 o0 hy—1 hy—1
=72 W Z DNwiiqrs + Y (hy = J)Whiq;
N k=0 7=0 j=1
hn+q q

+C<<Z(h1v+q+1—j)wk+j+ > (hN_q_1+j)wk+j>

Jj=q+1 Jj=q—hn+2

- <N2q (hy +q — j)wpy; + qi: (hN—Q+j)wk+j>>>

Jj=q Jj=q—hn+1
hn—1 hn—1
o Z wi | Y (hy = ) Wkigrs + Y (A — J)Whig—;
Jj=0 j=1

C( ijq Wiyj — Xq: wkﬂ-)). (A.2.17)

Jj=q+1 Jj=q—hn+1
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It follows by (2.1.8)—(2.1.11) that

1 hy—1 1 hy—1 .
h— Z (hN )wk+q+] SF Z (hN _])w(hN—l)""j
N =0 N j=0
1
< Z w; = < 1/)) as N — oo, (A.2.18)
j=hn—1 h
1 th]. 1 hN 1 )
. Z (AN — J)Whtq—j <h7 Z (hn _])w(thl)*J'
N j=1 N j=1
<1h§2(‘+1) 0< ! ) N
- W, = as — 0
ST P J J h}vﬂp
(A.2.19)
1 hn+q 1 00 1
— D wpyy < <5 Y w;=0 T as N — oo, (A.2.20)
hn j=q+1 N j=hy hy
1 4 1
— Z Wit < Zw] <h > as N — oo (A.2.21)
N j=g—hy+1 N

and since the results in (A.2.18)—(A.2.21) hold uniformly in hy — 1 < g, we see that for
all hy —1 < |s| = |8hy] it holds uniformly that

1

Cov (Un(t),Un(t+s)) =0 <h7\7> as N — oo, (A.2.22)

where v = min{1 — ¢, ¢ }.

A.3 The autocorrela’gion functions
of {Uy(t)} and {Un(t)}

With the results of the preceding sections, we finally obtain the autocorrelation functions
of {Un(t)}i>0 and {Un(t)}7>0, denoted by ry and 7y, respectively.

Lemma A.3.1 The autocorrelation functions ry and Ty satisfy
( 00 1
il — u > wi + O <h1+7> ., uniformly in |s| <1,
i = N
i 1
ru(s) = { sl +0 (}L,]yv) ., uniformly in 1 <|s| < hy—1, (A3.1)
{

1
(0] <h7> . uniformly in  hy — 1 <s],
N
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as N — oo and
1
7n(5) = max{0, (1 —1|3))} + O <fﬂ> ., uniformly, (A.3.2)
N

as N — oo, where vy = min{1—¢,1}. The parameters ¢ and 1 are laid down in (2.1.10)
and (2.1.11), respectively.

PrOOF: We first consider the case |s| = |[shy| < 1. With (A.1.1) and (A.2.7) we get

| | Yop Owk Zk 0 WeWk+hy

ry(s) =1— Iy 2
N
—1 s & o I8l (o — 1) 2 heo wy + D ohe0 WEWhthy
— 1l — T Z wk + 5 D) .
hN k—0 hN O'N

Hence, by (2.1.8), (2.1.11) and (A.1.2), we see that

1
rn(s) = ——Z wi + —— < ) as N — oo, (A.3.3)
hN e

uniformly in |s| = |Shy| < 1, where v = min{l — ¢, ¢ }.
Next, we assume that 1 < [|s|] = |[|shn]|| < hy/2. Then (A.2.11), (A.1.1) and
(A.1.2) imply

rn(s <12v (Z wk + 2 2wy, (Z W4 + 2 wk+j> >>

hN< Zw’“+22w’“;w’“”> (hw

Nk 0 N
=m0 +o (w)
N

as N — oo, uniformly in 1 < ||s|| = ||Shn]|] < hn/2.
First, note that

" hy = iy
N N N

j=hn—q J=1

Since (2.1.8) and (2.1.11) imply

hN—l hN _] hN—l q 1 hN—l 1
> . Weg S DL Wk S5 ) wj:o(h}{}) as N — o0

j=hn—q j=hn—q "N j=lhn/2]
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and (2.1.8), together with (2.1.10), yields

q—1 j 1 lhn/2] 1
- w: =0 | —— N
Z thk—irJ = hy ]21 JWj <h}v_¢> as — o9,
we conclude that
1
IL=1+0 <h7 > as N — oo, (A.3.4)

uniformly in 1 < [|s|] = [|5hn|| < hn/2, where v = min{l — ¢, }.
Carrying out similar computations for Io(N), we start with

"N by — L
) = (25w (5 3 ) )
ok : N — hy

Jj=q+1 J=1

The first inner sum is not converging uniformly to zero, but by (2.1.8) and (2.1.11)
we conclude that

hn—1

>

J=q+1

hy = j £ 1
N Wep; <Y, w; =0 P as N — oo
N g=llsl)+1

and in the same way we get

2‘1: J w o < ! > as N — o0

=0 [ —— — o0,

=1 H hy*

uniformly in 1 < [|s|] = [|5hn]] < hy/2.
Now %IQ(N) can be stated as

5] [s| , 1 1y I8l 1
—hLh=-—+-—0 N+~ 0 N
I I + I (|s] ) + Iy e as — 00
and since ||s|] < hy/2, it follows that
by, — sl g <1> as N — oo (A.3.5)
hy hn hk ’
uniformly in 1 < [[s|| = [|5hn|] < hn/2.
Finally, (A.3.4) and (A.3.5) yield
1
7’()—1—||+O< > as N — oo, (A.3.6)
hn h

uniformly in 1 < ||s|] = [|5hn|] < hy/2, where v = min{l — ¢, ¢ }.
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Note that (A.3.6) also holds for the case hy/2 < ||s|] = ||Shn| < hxy — 1. This
follows by (A.1.1), (A.2.16) and basically the same computations as above, hence we

omit the details.
For the last case, hy —1 < ||s|] = [|5hn]|], we get by (A.2.22) and (A.1.2)

ryn(s) =0 <h17\,> as N — oo, (A.3.7)

uniformly in Ay —1 < [|s|] = [|Shn]], where v = min{1—¢, ¢} and the proof of (A.3.1)
is complete.
Assertion (A.3.2) is an immediate consequence of (A.3.1).






Appendix B

A class of boundary functions for
the Wiener process

B.1 Boundary functions which are ~ /tlogt

Theorem B.1.1 Let the family of functions {g(to,t)} be defined as

g(to,t) = 4/tlog (; + e> forall t>0, ty>1 (B.1.1)
0

and let {W(t),t > 0} be a standard Wiener process. Then, for all real = it holds that

: W (t) > _
1 P — by, < = —e 7 B.1.2
i P (o s 65—, < ) = e () 12
and
: (W ()] > -
lim P , b <= —2¢77), B.1.3
Jm P (o, 20 g~ 57) e (-2) 13
where
a, = +/2loglogty (B.1.4)
and
1 1
by, = 2loglogty + 5 log loglog ty — 3 log 7. (B.1.5)

Proof of Theorem B.1.1

Lemma B.1.1 Let the family of functions {g(to,t)} be defined as in (B.1.1). Then, it

holds that
W(t)
=0p(1 t ) B.1.6
WP gty 0P s fo o (B-1.6)

135
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PRroor: We have
W(t) b W (%) W (t)

sup = sup = sup ——————
to<t<co ,/tlog (% +e)  tost<oo % log (% +e) 1st<coy/tlog(t+e)

and the lemma follows by the law of the iterated logarithm.
O

Lemma B.1.2 Let the family of functions {g(to,t)} be defined as in (B.1.1). Then, it
holds that

t
sup W) = Op(y/logloglogty) as ty— oc. (B.1.7)

to/ log to<t<to 9(to;1)

PROOF: Since

W (t) W(t) b W (t)
sup < sup — = sup < —~=,
to/log to<t<to 1/t log (% +e)  toflogto<t<to VE  1/1egte<i<t Vi

the law of the iterated logarithm in zero yields the lemma.

O

Lemma B.1.3 Let the family of functions {g(to,t)} be defined as in (B.1.1). Then, it
holds that

" ( sup Wi(t) sup W(t)
u —_—
© \ictzto/logte VE  1<t<to/1ogto 9(t0, 1)

ProOOF: First, note that

. < w0 ‘ log (% + e)W(t) — W(t)>

) =op(l) as ty— oc. (B.1.8)

1<t<to/logto tlog (% + e)
1 (t N W (t
= sup (a: (i) +o i) WD) as tp — o0,
1<t<to/logto tlog (% + e)

uniformly in t € [1,¢y/log to].
Now

W ()] /Toglogt

t
G, sup -o(1)
O

sup
1<t<to/logto /T log (% + e) 1<t<to/logtoy/log (% + e)

L /loglogt t 1 t
sup ¢ < sup — log logt < \/log log < - > )
1<t<to/ logtoy /log (% + e) 1<t<to/logto L0 log ty log ¢

implying the lemma as ¢y, — oo.

a.s. as tyg— o0

and
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[
Lemma B.1.4 Let a;, and by, be defined as in (B.1.4) and (B.1.5), respectively. Then,

. W (t) _
lim P |a su —t b <z =exp(—e ). B.1.9
to—oo ( K 1§t§toﬂogt0 Vit © = ) b ) ( )

PROOF: Since
{W(et)

is a standardized, stationary Gaussian process, we obtain from Theorem 12.3.5 in Lead-
better, Lindgren and Rootzén (1983) that

0<t<log (to/logfo)}

, W(t B
lim P (ato/logto sup Wi _ bey/1ogto < x) =exp(—e ), (B.1.10)

to—00 1<t<to/logto Vi

where

t
Ao/ log to = \/2 log log <log0t0>

to 1 to 1
by /1081, = 210glog (logto> + 3 log log log <10g to) —3 log .

and

Now elementary calculations show that
Qg /log to (ato - ato/logto) — 0 and btg - bto/logto — 0 as ty— oo,
which implies the lemma.
O

Combining the Lemmas B.1.1-B.1.4, we see that assertion (B.1.2) holds. The state-
ment given in display (B.1.3) is a consequence of (B.1.2) and the asymptotic indepen-
dence of maxima and minima in the underlying extreme value asymptotic (see Bickel
and Rosenblatt, 1973).
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B.2 Boundary functions which are ~ /tloglogt

Theorem B.2.1 Let the family of functions {h(to,t)} be defined as

t
h(to,t) = \/tlog log (t + ee> forall t>0, tg>1 (B.2.1)
0

and let {W(t),t > 0} be a standard Wiener process. Then, for all real x it holds that

: W(t) —
tolgréo p <at0 121<poo o t) by, < x> =exp (—e ™) (B.2.2)
and
: W (t)] _
1 P — by, < = —2e™ " B.2.
10200 <“t0 S0P gty e ST) = exp (~2¢7). (B-2.3)
where
ai, = 1/2loglog tg (B.2.4)
and
1 1
by, = 2loglogty + 3 log log log ty — 3 log . (B.2.5)

Proof of Theorem B.2.1

Lemma B.2.1 Let the family of functions {h(to,t)} be defined as in (B.2.1). Then, it
holds that
W(t)

su =0p(1) as t 00. B.2.6
togtfoo h(to, 1) P() o ( )

Proor: We have

W () D W () W (t)

tosgljgoo \/t log 10g (% + ee) _tosﬁltlgoo \/i log log (% + €e> B 1<t<oo \/t log log (t + ee)

and the law of the iterated logarithm gives the lemma.

O

Lemma B.2.2 Let the family of functions {h(to,t)} be defined as in (B.2.1). Then, it
holds that

t
sup W) = Op(\/logloglogty) as tg— oc. (B.2.7)

to/logto§t<t0 h<t07 t)
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PROOF: Since

W (t) W(t) b W (t)
sup < sup — = sup < —~-,
to/logto<t<to \/t log log ( + 66> to/ logto<t<to \/% 1/logto<t<1 \/%

the lemma follows from the law of the iterated logarithm in zero.

O

Lemma B.2.3 Let the family of functions {h(to,t)} be defined as in (B.2.1). Then, it
holds that

Wit Wit
ag, ( sup Wit _ sup (®) ) =op(l) as ty— oo (B.2.8)
1<t<to/logty VT 1<t<to/logto P(t0;1)

PrROOF: Elementary calculations show that

‘\/log log (£ —|— e )W (t) — W(t)‘

ay sup
*\ 1<t<to/ 1ogto \/t log log ( + ee)
1 t t
—a (2exp(e+1) (to) (7) |W( )|)
= a, sup as tg — 00,
1<t<to/logto \/t log log (5 ee)
uniformly in t € [1,%/ logto].
Since
& W ()]
ay, ~ Sup

1§t§to/logto\/t log log ( + ee)

i\/loglogt

=0(1) sup a.s. as tg— oo
1<t<to/log to \/log log —i— e )

and

i\/lo logt 1 t
sup 808 < sup \/log logt < gt log log <1 g?t >
og

1<t<to/logto \/log log —f— 66) 1<t<to/logto to

the lemma follows as ty; — oo.

Theorem (B.2.1) now follows by the same arguments as Theorem B.1.1.
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C.1 Open-end control charts

In this chapter, we provide an alternative boundary function for the open-ended PWMA-
chart in the case of two-sided alternatives and known parameters, which yields com-
putable critical values. The approach is based on the following result from Robbins and
Siegmund (1970).

Example Let S(k) denote the partial sum of k i.i.d. random variables having mean 0
and vartance 1. Then,

IRy C R
Mmoo \dsk<oo /(K + m)(a® +log(1 + k/m))

. ( . W ()| . 1)
o<t<oo /(1 +t)(a? + log(1 + t))

= exp (—; a2> (a>0).

C.1.1 Model assumptions for known p and o

We assume that (3.1.1)—(3.1.3) and (3.1.5) hold with N = oo.

C.1.2 Monitoring procedure for known p and o

Let the sequence of detectors be defined as
k
Pe=3"pip(X; —p), k=12 (C.1.1)
j=1
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where the weights {p;;,1 <j <k, k=1,2,...} are given in (3.1.6).

Furthermore, we define for allm =1,2,..., s >0and a >0
 Ym s my\2\ g\ 2d+1

We test the null hypotheses H versus the two-sided alternative H,. The stopping
time is defined as

n=n(a,m) =inf{l <k < oco:|P| > ch(m,k,(—2loga)?)}, (C.1.3)

where « €]0, 1[.
The boundary function is justified by the following theorem.

Theorem C.1.1 Let the sequences {Py}r=12.. and {h(m,k,a)}k=12.. be defined as
in(C.1.1) and (C.1.2), respectively. Then, it holds under the null hypothesis that

lim P ( sup

m—00

| P E 1) — exp <_1a2> (C.1.4)

1<k<oo ah(m, k, a 2
Furthermore, the procedure has asymptotic power one.

Theorem C.1.2 Let the sequences {Py}r=12.. and {h(m,k,a)}x=12.. be defined as
in(C.1.1) and (C.1.2), respectively. Then, it holds under the alternative that

goee

lim P ( sup |Pk’> > 1) =1. (C.1.5)

m—0oo 1<k<oco ah(m, ]{Z, a

C.1.3 Proofs
Proof of Theorem C.1.1
We define

Qr = azk:pjyk(W(j) —W(—1)) forall k=1,2,..., (C.1.6)
j=1

where {W(t),t > 0} is the approximating Wiener process given in (3.1.2).

Lemma C.1.1 Let the sequences {Py}tr=12.. and {Qr}r=12. . be defined as in (C.1.1)
and (C.1.6), respectively. Then, it holds that

[Pl | Qx| ( 1 >
oh(m, k,a) ey = O0r . (C1.7
138}3500 oh(m,k, a) 122500 oh(m, k,a) P\ ie—iw) @ M0 ( )
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PROOF: As in the proof of Lemma 3.1.1 we get

wp PPl IS0~ W(R)

1<k<oo Oh(m, k a) 1<k<oo Oh(m,k,a)

and by (3.1.2) we obtain

[S(k) — oW (k)] kY

2
15K % oh(m, k,a) 1<k<o0 h(m, ki, a)

Since for £ < m and some suitable constant C' > 0 it holds that
1/v 1/v 1/v
kY kY < k:l//2 < 12
h(m,k,a) — m\2d — mb/2 —
b e (3)

and for k > m we have

1/v 1/v 1/v
h(k:/k < K/ SZliQ < i/,
m ,a m
’ vy E 4 ()"

the Lemma follows as m — oo.

Lemma C.1.2 Let the sequence {Qy}r=12
that

geee

Qk

kB R E gy o) @ a8 m— oo

PRrROOF: Since the sequence {Q}r=12,..
weighted sums (see Li and Tomkins, 1996), it suffices to consider

Vkloglogk
max ————————

1<k<m/logm h(m k CL) .

=0p(l) sup —— as m — 0.

be defined as in (C.1.6).

143

0

Then, it holds

(C.1.8)

obeys the law of the iterated logarithm for

For some suitable chosen constant C' > 0 and 1 < k < m/logm it holds that

Vklog log Vvkloglogk — +/loglogk < Vvl1oglogm

h(m, k,a) \/—\/m 2d \/1 Qd“ B \/1 + (logm)

and the Lemma follows as m — oo.

2d+1
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Lemma C.1.3 Let the sequence {Qp}r=12
0 > 0 it holds that

be defined as in (C.1.6). Then, for all

geoe

Qk

—— =o(l 8. . C.1.9
S0 i, gy o) oo m s (©19

PROOF: Since for all k > m!'*?

Vkloglog k _ Vv2d + 1y/kloglog k
h(m, k,a) m\/(% n (%)Qd) (a2 +log ((%)Qd-&-l N 1))
_ Vv2d + 1+/loglog k
\/(1 N (%)MH) (a2 +1log ((%)Zdﬂ i 1))
- V2d + 1+/Toglog k
(s ((2)" +1))
< V2d + 1,/log log(m1+9)
B \/(log ((m5)2d+1 + 1)) ’

the Lemma follows by the law of the iterated logarithm for weighted sums.

We define the process

T

U =0 [ plet) Vi) =o [ (t>ddW(x) for all £ > 0. (C.1.10)

0

Lemma C.1.4 Let the sequence {Qp}r=12
T > 0 it holds that

be defined as in (C.1.6). Then, for all

geoe

Qk: D S W (t2d+1)

max ——————— = as m — oQ, C.1.11

m/T<k<mT oh(m, k,a) 17<t<T h(t21 a) ( )
where

h(z,a) = /(1 +z)(a® +log(1 4+ ) forall z>0, a>0. (C.1.12)

PRroOOF: First, note that for all t > m /T we have

/2
o/t ) 1\ 24+1 1
> —
oh(m,t,a) > m(a + log ((T) +1

1 2d+1 1/2
= O0¢ <CL2 + 10g <<T> + ]_>> s
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where o, is given in (3.1.9). Hence, Lemma 3.1.2 yields

Qr u) | _ o <<T10ng>1/2> — op(1)

ma —  sup

m/TSk:}gcmT O'h(m, k‘, CL) m/T<t<mT O'h(Tn7 t, G,) m

as m — 00.
Comparing the covariances, we see that

V2d + 1 b {W(tzd“)

m m
- —<t<mT} = — < t<mT
{U(t) . ,T_t_m} i ,T_t_m },

which implies

Ut) o W ()

su — 7 = su - ‘
m/TStzmT oh(m,t,a) m/TStI;mT md+1/2], ((%)Qd—kl)

Finally, the rescaling property of the Wiener process yields

W(t2d+1) D W(t2d+1)
sup — 2d+1 == sup T,
m/T<t<mT md+1/2] ((%) ) 1r<t<T h (t24+1)

which completes the proof.

Since the continuity of the Wiener process implies

t2d+1 t t
P(Sup Iiv()>:P< sup Ii[/()>—>P<sup‘iV()>
1r<t<T h (t24+1) (1/T)2d+1<<T2d+1 h (1) o<t<oo h (t)

as 1" — oo, combining the Lemmas C.1.1-C.1.4 with Example 3 of Robbins and Sieg-
mund (1970) yields Theorem C.1.1.

Proof of Theorem C.1.2

goee

Then, it holds under the alternative that

k
P=P"+ 3 pxas forall k=1,2...
j=k*+1
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For any finite N > k* we have
P ——>1>P —>1
<1<Sllcl£oo oh(m,k,a) — ) - <1ISI}€3§)§V oh(m,k,a) —

: 0)
. ik A P,
P [ max 2j=k 1 Pk — max M >1
1<k<N  oh(m,k,a) 1<k<N oh(m, k,a)

0
Zj’vzkurl DjN A |Pl§ )| )
C.1.1

A%

p

vV

oh(m, N, a) T ASEN oh(m, k,a) oh(m, k,a)

Since k* is fixed, we have

A Nd+L _ prdtl
max .

Z p]k A_
LSkEN 4 d+1 Nd

Hence, if we choose N = m, it follows by(C.1.2) that

m
Z':k* 1p',m A
J +1177 ~ m1/2

. 1.14
e — as m — 00 (C )

Now the law of the iterated logarithm for weighted sums yields

PO
X L =0 (\/loglogm) a.s. as m — oo (C.1.15)

1<k<m gh(m,m,a)

and Theorem C.1.2 follows by (C.1.13)—(C.1.15).
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