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1 Introduction 
 

1.1 Obesity 
 

Obesity is a steadily growing health problem in industrialized societies (Figure 1) 

representing a major risk factor for numerous diseases, including diabetes mellitus type 

2, cardiovascular diseases, sleep apnea, hypertension, stroke and certain forms of 

cancers (Bray, 2004; Haslam and James, 2005; Hill and Peters, 1998). According to the 

World Health Organization (WHO), the worldwide number of obese adults doubled in 

the last ten years to more than 400 million. In addition to the high number of obese 

people, currently more than one billion adults are overweight. Furthermore, the 

prevalence of obesity and overweight is predicted to rise dramatically within the next 

years. Projections of the WHO predict more than 700 million obese adults by 2015. 

However, obesity is not exclusively a problem concerning adults, as also childhood 

obesity rises rapidly with more than 20 million overweight children under five years of 

age worldwide (WHO).  

The presence of overweight and obesity is commonly assessed by the body mass 

index (BMI), which is defined by the ratio of body weight to height (body 

weight/height2) (Mei et al., 2002). While overweight is defined by a BMI of 25 to 29.9 

kg/m2, obesity is defined by a BMI of 30 kg/m2 or greater (WHO). Approximately 20 % 

of all german adults and even 30 % of all adults in the USA exhibit a BMI of greater 

than 30 kg/m² (Telefonischer Gesundheitssurvey 2003 (GSTel03), Centers for Disease 

Control and Prevention) (Seidell, 1997). The likelihood of developing diseases like 

diabetes mellitus type 2 rises with increasing BMI. Consequently, not only the 

incidence of obesity but also the incidence of obesity associated diseases rises rapidly. 

Thus, the number of people suffering from diabetes mellitus type 2 is predicted to 

double by 2030 to at least 360 million (WHO). Even mortality is increased in obesity, 

with a BMI of over 32 associated with a doubled risk of death (Manson et al., 1995). 

However, there is evidence that the risk of chronic diseases already increases 

progressively from a BMI of 21 (WHO). As a consequence of the high prevalence of 

obesity, at least 6 % of total health care costs are associated with overweight and 

obesity in several industrialized countries. However, these calculations do not include 

all obesity-related issues (WHO).  
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Various genetic conditions that feature obesity, such as Prader-Willi syndrome 

and leptin and melanocortin receptor mutations have been identified. However, the 

known single gene mutations have been found in only 5 % of all obese individuals. 

Therefore, these mutations described in patients with severe obesity cannot explain the 

epidemic increase of overweight and obesity, but make it possible to relate clinical to 

experimental findings (Barsh et al., 2000). The huge increase in the prevalence of 

obesity is rather based on behavioural and environmental changes resulting from 

technological advances, which are in part amplified by genetic predisposition. Most 

likely, the combination of an excessive and energy-dense nutrient intake combined with 

reduced physical activity causes the rapid acceleration of obesity in industrialized 

societies in the last decades (Hill and Peters, 1998). 
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Figure 1: Prevalence of obesity in the USA 

Trends in the age-specific prevalence of obesity of women (left panel) and man (right panel) in the USA 

between the years 1960 and 2000 (Flegal et al., 2002). 

 

 

1.2 Energy homeostasis 
 

Body weight is determined by the balance between energy intake and energy 

expenditure. An imbalance of energy intake over energy expenditure leads to a positive 

energy balance resulting in calories stored in form of fat. Obesity results from a long-
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term positive energy balance. Therefore, the research on mechanisms regulating energy 

homeostasis, i.e. the balance between caloric intake and energy expenditure is 

imperative to understand the mechanisms of obesity.  

Energy homeostasis is achieved by the integration of peripheral metabolic 

signals by neural circuits and is predominantly regulated by the central nervous system 

(for review, see (Schwartz and Porte, 2005)). The brain integrates signals from 

hormones and nutrients and adjusts feeding behaviour and substrate metabolism to 

regulate energy homeostasis (Figure 4). In times of sufficient fat stores and food 

availability, the brain receives signals that lead to the inhibition of food intake and 

endogenous glucose production and to the increase of energy expenditure and 

mobilization of fat stores. Conversely, signals on food deficiency and low energy stores 

result in responses that promote energy intake and hepatic glucose production and in 

contrast inhibit energy expenditure.  

Two major hormones secreted from peripheral organs that are crucial for the 

regulation of energy homeostasis are the adipocyte-derived hormone leptin and the 

pancreatic β-cell hormone insulin. They regulate energy balance by directly acting on 

peripheral organs and by signaling the body’s energy stores to the central nervous 

system. 

 

 

1.3 Leptin 
 

Adipose tissue was considered as an inert energy depot for a long time. 

Nowadays various functions of adipocytes are known, which are controlled by neuronal 

and hormonal mechanisms (Ailhaud, 2000; Kahn and Flier, 2000). Adipose tissue 

serves as an energy reservoir for the body. To expand its capacity, the number of cells 

can increase and individual adipocytes can alter their volumes up to 1000-fold to be 

filled with triacylglycerol (Fruhbeck et al., 2001). Leptin is a hormone predominantly 

secreted from white adipose tissue (from greek: leptos = thin) and at low levels 

produced in gastric epithelium, placenta and testis (Bado et al., 1998; Herrid et al., 2007; 

Masuzaki et al., 1997; Zhang et al., 1994). Leptin is the product of the obese (ob) gene 

and critically involved in energy homeostasis. The 16 kDa protein was discovered in 

1994 by J. Friedman, who found that mutation of the ob gene resulted in profound 
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obesity and type 2 diabetes mellitus (Zhang et al., 1994). For the first time a hormone 

secreted from adipose tissue was identified that informs the brain about body energy 

stores. Leptin is secreted in proportion to adipocyte size and number and thus signals 

energy stores from the periphery to the central nervous system to suppress food intake 

and stimulate energy expenditure (Campfield et al., 1995; Halaas et al., 1995; Schwartz 

et al., 1996b; Walker et al., 2002). The importance of leptin in the regulation of energy 

homeostasis is reflected in ob/ob mice, which do not synthesize leptin and in db/db mice, 

which lack the leptin receptor. Ob/ob and db/db mice show a similar phenotype, both 

are characterized by hyperphagia and extreme obesity (Li et al., 1998; Licinio et al., 

2004). Central and peripheral administration of leptin to ob/ob mice reverses the 

hyperphagia and obesity (Campfield et al., 1995; Pelleymounter et al., 1995). Similarly, 

chronic peripheral administration of leptin to wild type rodents results in reduced food 

intake, loss of body weight and fat mass (Halaas et al., 1995). Shortly after the 

discovery of leptin, the corresponding defects to ob/ob and db/db mice were also 

described in patients with forms of severe hyperphagia and obesity (Clement et al., 1998; 

Montague et al., 1997). As in rodents, also the obesity in humans caused by mutations 

resulting in the absence of leptin can be ameliorated with recombinant leptin therapy 

(Farooqi et al., 1999; Licinio et al., 2004).  

In addition to the ability for long-term signaling as a reflection of body energy 

stores, leptin also responds to acute stimuli. Leptin expression decreases during fasting 

and is restored by refeeding. However, leptin secretion does not increase significantly 

after a meal and thereby does not by itself lead to the termination of a meal (Considine 

et al., 1996b; Maffei et al., 1995). Leptin secretion from adipocytes is stimulated by 

glucose, insulin and increased adipocyte glucose metabolism (Levy et al., 2000; Mizuno 

et al., 1996; Saladin et al., 1995; Walker et al., 2005). Conversely, the secretion of leptin 

is inhibited by some fatty acids (Cammisotto et al., 2003; Shintani et al., 2000) and an 

increased rate of lipolysis in adipocytes (Coppack et al., 1998; Donahoo et al., 1997). 

Circulating leptin is transported to the brain across the blood-brain barrier via a 

saturable process (Banks et al., 1996). The transport of leptin is regulated by acute 

stimuli. Starvation reduces and refeeding increases the transport of leptin across the 

blood-brain barrier (Kastin and Pan, 2000). 

Besides its ability to regulate energy metabolism, leptin plays an important role 

in the regulation of growth and reproduction, reflected in ob/ob and db/db mice, which 

exhibit reduced body length and are infertile (Chehab et al., 1996). Equally, circulating 
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leptin levels are also correlated with fertility in humans (Mantzoros et al., 1997; 

Matkovic et al., 1997; Welt et al., 2004). Furthermore, leptin activates the thyroid axis 

and the sympathetic nervous system and suppresses the production of adrenal 

corticosteroids (Bornstein et al., 1997; Harris et al., 2001; Pralong et al., 1998; 

Rahmouni et al., 2002). Moreover, leptin regulates glucose homeostasis both directly 

and secondary to the regulation of body weight. The direct regulation is partly mediated 

via the central nervous system, and additionally, leptin also directly regulates pancreatic 

β-cells and insulin-sensitive tissues (Burcelin et al., 1999; Covey et al., 2006; Kulkarni 

et al., 1997; Liu et al., 1998) . 

 

 

1.3.1 Mechanisms of leptin receptor signaling 

 

Multiple leptin receptor isoforms are encoded by a single leptin receptor gene 

(ObR), each containing an identical ligand binding domain but differing by the 

presence or absence of a transmembrane domain or a complete cytosolic domain (Lee 

et al., 1996; Tartaglia et al., 1995). The function of the short splice variants which lack 

a complete cytosolic domain (LEPR-A, C, D, E and F) remains undistinct. The secreted 

isoforms (LEPR-E and proteolytic cleavage products of membrane-bound leptin 

receptor forms) of the leptin receptor contain only the extracellular leptin-binding 

domain and are thought to bind circulating leptin thus modulating its biological activity 

(Ge et al., 2002). LEPR-A is expressed ubiquitously and is the predominant form of the 

short isoforms (Lollmann et al., 1997). The long form of the leptin receptor LEPR-B is 

also expressed ubiquitously, but at much lower levels than LEPR-A, except for the 

hypothalamus, where the LEPR-B isoform represents the predominant form of the 

leptin receptor transcripts (Hoggard et al., 1997; Luoh et al., 1997). Of all isoforms, 

only LEPR-B (ObRb) contains the complete cytosolic domain required for modulation 

of the known intracellular signaling effectors of leptin action. ObRb is a member of the 

class I cytokine receptor family and functions as a dimer activating the Janus 

kinase/signal transducer and activator of transcription (Jak/Stat) signaling pathway 

(Kloek et al., 2002; Tartaglia et al., 1995). Binding of leptin to the long form of the 

receptor results in activation of constitutively associated Jak2 leading to the 

autophosphorylation of Jak2 on multiple tyrosine residues and phosphorylation of three 

tyrosine residues of the receptor, Tyr985, Tyr1077 and Tyr1138 (Figure 2) (Banks et al., 
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2000; Tartaglia, 1997; White et al., 1997). Importantly, ObRb is the only leptin 

receptor isoform that contains intracellular tyrosine residues. The phosphorylation of 

each of the three tyrosine residues of the receptor leads to activation of different 

downstream signaling pathways.  

Phosphorylation of Tyr985 results in binding and phosphorylation of the tyrosine 

phosphatase Shp2 and thereby in activation of the extracellular signal-regulated kinase 

(Erk) signaling pathway, which was suggested to play a role in energy balance and 

metabolism (Figure 2) (Bagnol et al., 1999; Bjorbaek et al., 2001; Zhang et al., 2004). 

The function of Tyr1077 of the leptin receptor is controversial, but it was shown recently, 

that phosphorylation of Tyr1077 recruits and activates the signal transducer and activator 

of transcription (Stat) 5, presumably contributing to the transcriptional response to 

leptin (Gong et al., 2007). Phosphorylation of Tyr1138 creates a docking site for Stat3, 

which is activated by tyrosine-phosphorylation upon binding to the receptor (Banks et 

al., 2000; Vaisse et al., 1996). Phosphorylated Stat3 dimerizes and translocates from 

the cytoplasm to the nucleus to modulate transcription of multiple target genes via Stat-

responsive elements (Lutticken et al., 1994; Stahl and Yancopoulos, 1994). One of the 

genes activated by Stat3 is the suppressor of cytokine signaling 3 (Socs3) (Endo et al., 

1997; Naka et al., 1997; Starr et al., 1997). Expression of Socs3 is induced in 

hypothalamic regions important for the regulation of feeding by peripheral 

administration of leptin to ob/ob mice (Bjorbaek et al., 1998). Socs3 plays an important 

role in leptin signaling by inhibiting leptin signaling in a negative feedback loop by 

multiple mechanisms. Socs3 can bind directly to Jak2, leading to diminished 

phosphorylation of downstream molecules by Jak2 (Endo et al., 1997; Naka et al., 1997; 

Yasukawa et al., 1999) and to attenuated leptin-induced tyrosine phosphorylation of 

Jak2 (Bjorbaek et al., 1999). Moreover, Socs3 directly inhibits the leptin receptor itself 

by binding to Tyr985 and consequently inhibiting the Stat3 signal (Bjorbak et al., 2000). 

However, binding of Socs3 to Tyr985 does not diminish the activation of Erk (Dunn et 

al., 2005). Inhibition of Erk by Stat3 is rather mediated via inhibition of Jak2 (Dunn et 

al., 2005). 

Additionally, binding of leptin to ObRb mediates tyrosine-phosphorylation of 

insulin receptor substrate (IRS) proteins and activation of the phosphatidylinositol-3 

kinase (PI3K) directly by Jak2, independently of tyrosine phosphorylation sites of the 

receptor (Figure 2) (Banks et al., 2000; Niswender et al., 2001).  
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Figure 2: Leptin receptor signaling 

Binding of leptin to the long form of the leptin receptor leads to activation of Jak2 and subsequently to 

Jak2-mediated phosphorylation of three different intracellular tyrosine residues of the receptor resulting 

in different downstream signaling pathways. Phosphorylated Jak2 directly activates the IRS/PI3K and the 

Shp2/Erk signaling pathway. Furthermore, Jak2-mediated Tyr985 phosphorylation of the receptor 

contributes to the activation of the Shp2/Erk pathway. Phosphorylation of Tyr1077 leads to activation of 

Stat5, whereas phosphorylation of Tyr1138 mediates the phosphorylation and thereby activation of Stat3. 

Activated Stat3 dimerizes, translocates to the nucleus and activates target genes including Socs3, which in 

turn inhibits leptin signaling in a negative feedback loop by inhibiting Jak2 and the receptor via Tyr985. 

ObRb: long form of the leptin receptor; Jak2: janus kinase 2; Stat3: signal transducer and activator of 

transcription 3; Socs3: suppressor of cytokine signaling 3; Shp2: protein tyrosine phosphatase 2; Erk: 

extracellular signal-regulated kinase; IRS: insulin receptor substrate; PI3K: phosphatidylinositol-3 kinase. 
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1.4 Insulin  
 

The peptide-hormone insulin produced by the β-cells of the islets of Langerhans 

in the pancreas represents a major hormone in the control of energy homeostasis and 

glucose metabolism. Insulin was discovered in 1921 by Frederick Banting and Charles 

Best, who were awarded the Nobel Prize in Medicine for their discovery two years later. 

Insulin is synthesized as the inactive precursor proinsulin, which is then cleaved to 

insulin by different peptidases (Docherty and Hutton, 1983). Insulin is predominantly 

secreted upon rising levels of blood glucose and acts on peripheral tissues, particularly 

on muscle cells and adipocytes via translocation of the glucose transporter to remove 

the glucose from the blood and store it in form of glycogen (Birnbaum, 1992; Cushman 

and Wardzala, 1980; Poitout et al., 2006). In addition to glucose clearance from the 

blood, insulin increases glycolysis and inhibits gluconeogenesis (for review, see (Pilkis 

and Granner, 1992)). Insulin stimulates anabolic processes like triacylglycerol storage 

in adipocytes by augmenting adipocyte glucose uptake and by directly stimulating 

enzymes involved in fatty acid esterification (Cushman et al., 1984; Sul et al., 2000) and 

inhibits catabolic processes like glycogenolysis and lipolysis. In addition to the effect of 

insulin on peripheral tissues, it circulates in proportion to fat mass and crosses the 

blood-brain barrier to act on the central nervous system as an adiposity signal (Bagdade 

et al., 1967; Polonsky et al., 1988). Neuronal insulin receptor knockout mice 

demonstrate diet-sensitive obesity and insulin resistance (Bruning et al., 2000). 

Consistently, central administration of insulin results in reduction of body weight 

whereas insulin-deficient animals are hyperphagic (Sipols et al., 1995; Strubbe and 

Mein, 1977). In contrast, central administration of antibodies against insulin and 

diminished insulin receptor expression increase food intake (Obici et al., 2002a; Woods 

et al., 1979). Furthermore, the central nervous system is required for insulin’s ability to 

suppress hepatic glucose production (Inoue et al., 2006; Konner et al., 2007).  
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1.4.1 Mechanisms of insulin receptor signaling 

 

 The heterotetrameric insulin receptor is ubiquitiously expressed and belongs to 

the family of ligand-activated receptor tyrosine kinases. Binding of insulin leads to 

autophosphorylation of the receptor on three intracellular tyrosine residues resulting in 

complete activation of the intrinsic tyrosine activity of the receptor. Receptor 

autophosphorylation results in recruitment and binding of intracellular proteins through 

their phosphotyrosine binding domains. Signaling molecules for the insulin receptor 

include the insulin receptor substrates (IRS) 1 to 4 which are phosphorylated by the 

receptor upon binding and thereby serve as a docking platform for other proteins, 

leading to activation of different downstream signaling pathways. Two major pathways 

activated by the IRS proteins are the Ras/Raf Mitogen activated protein (MAP) kinase 

and the PI3K pathway (Backer et al., 1992; Howe et al., 1992). 

 

 

1.5 Central regulation of energy homeostasis 
 

1.5.1 The hypothalamus 

 

During the last decades, the research on the central regulation of energy 

homeostasis has focused on the hypothalamus. The hypothalamus is a part of the 

diencephalon located in the middle of the base of the brain below the thalamus. It 

synthesizes and secretes neurohormones and -peptides, many of them involved in the 

control of feeding and energy balance. The hypothalamus is also involved in the 

regulation of body temperature, circadian cycles, reproduction and the autonomic 

nervous system. Histological analysis of the hypothalamus revealed nuclei as clusters of 

neurons whithin the hypothalamus. Lesion and electrical stimulation studies of different 

hypothalamic nuclei suggested them to act as satiety or feeding centers. The major 

hypothalamic nuclei include the arcuate nucleus (ARC), the paraventricular nucleus 

(PVN), the ventromedial nucleus of the hypothalamus (VMH), the dorsomedial 

hypothalamic nucleus (DMH) and the lateral hypothalamic area (LHA), which is 

vaguely defined (Figure 3) (for review, see (Williams et al., 2000)). 
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Figure 3: Basic anatomy of the hypothalamus 

Schematic frontal section of the hypothalamus including main regions implicated in energy homeostasis. 

PVN, DMH, VMH and ARC surround the third ventricle (black). PVN: paraventricular nucleus; DMH: 

dorsomedial hypothalamic nucleus; VMH: ventromedial nucleus of the hypothalamus; ARC: arcuate 

nucleus; ME: median eminence; LHA: lateral hypothalamic area. 

 

 

The ARC is located in the mediobasal hypothalamus adjacent to the base of the 

third ventricle and lies above the median eminence. The ARC/median eminence area 

has a modified blood-brain barrier that allows simplified signaling of circulating 

molecules, including insulin and leptin (Broadwell and Brightman, 1976; Faouzi et al., 

2007). The PVN is located at the dorsal end of the third ventricle and represents the 

hypothalamic part where numerous neuronal pathways implied in the regulation of 

energy balance converge, including the major projections from the ARC. Lesions of the 

PVN and the VMH, which is located directly above the ARC, result in severe 

hyperphagia and obesity. The DMH is located dorsal of the VMH and was suggested to 

integrate information from the LHA and other medial hypothalamic nuclei. The LHA 

contains projections from and to the medial hypothalamus and brainstem structures. The 

LHA was described as a classical feeding centre, as lesions of the LHA result in 

hypophagia (Bernardis et al., 1992). 
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1.5.2 The arcuate nucleus of the hypothalamus 

 

Recent research on energy homeostasis has focused on the ARC of the 

hypothalamus. The ARC senses and integrates signals received following changes in 

peripheral energy stores. The integrated signals regulate neuropeptides, which modulate 

feeding and energy expenditure. Two major neuronal populations situated in the ARC 

responsible for integrating energy signals from the periphery are the orexigenic agouti-

related peptide (AgRP)/neuropeptide Y (NPY) producing neurons and the anorexigenic 

proopiomelanocortin (POMC) producing neurons. AgRP and NPY are orexigenic 

neuropeptides that stimulate feeding and reduce energy expenditure, while the 

anorexigenic neuropeptide POMC suppresses feeding and increases energy expenditure 

(Larhammar, 1996; McMinn et al., 2000; Rossi et al., 1998). Consistently, mutation of 

the human AgRP gene (Ala67Thr) is associated with inherited leanness (Marks et al., 

2004), whereas mutations causing a deficiency in POMC or its receptor (melanocortin-3 

and -4 receptor (MC3R and MC4R)) are the most common reasons of genetic obesity in 

humans (Farooqi and O'Rahilly, 2005b). The neurotransmitters AgRP and POMC are 

part of the melanocortin system which promotes negative energy balance. The 

melanocortin system is inhibited by AgRP and activated by melanocortins derived from 

POMC (for review, see (Wilson et al., 2006)).  

POMC is a 241 amino acid precursor peptide of the melanocyte-stimulating 

hormones (MSHs) and adrenocorticotrophin (ACTH) as well as β-endorphin (Chretien 

et al., 1979). Apart from the ARC, POMC is expressed in the pituitary, the nucleus 

tractus solitarius of the brainstem and in several peripheral tissues (Harris, 1959; Joseph 

et al., 1983; Lacaze-Masmonteil et al., 1987). The energy status of the body is reflected 

by levels of POMC expression, as POMC mRNA is markedly reduced in fasted animals 

and restored after refeeding (Swart et al., 2002). In the hypothalamus, the most potent 

melanocortin α-MSH binds MC3R and MC4R, which are G-protein coupled receptors 

that activate the adenylate cyclase (Jegou et al., 2000; Mountjoy et al., 1994). 

Intracerebroventricular (ICV) injection of α-MSH reduces food intake and body weight  

and POMC deficiency is characterized by severe early onset obesity in mice (McMinn 

et al., 2000; Yaswen et al., 1999). 

The orexigenic neurotransmitter AgRP consists of 132 amino acids. It is 

coexpressed with NPY in a distinct neuronal population of the ARC and functions as a 

MC3R/MC4R antagonist (Ollmann et al., 1997). Aside from the ARC the only 
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peripheral tissue with detectable AgRP expression is the adrenal gland (Ollmann et al., 

1997). The expression of AgRP mRNA in the ARC is elevated upon fasting (Swart et 

al., 2002). Transgenic mice with ubiquitous overexpression of AgRP are obese 

(Ollmann et al., 1997) and ICV injection of AgRP increases food intake and is able to 

block the reduction of food intake resulting from ICV injection of α-MSH (Rossi et al., 

1998). Reduction of hypothalamic AgRP mRNA results in increased metabolic rate and 

in reduction of body weight without affecting food intake (Makimura et al., 2002). 

While neonatal ablation of AgRP/NPY neurons has minimal effects on feeding, 

selective ablation of AgRP/NPY neurons in adult mice results in acute reduction of food 

intake (Gropp et al., 2005; Luquet et al., 2005).  

The orexigenic neuropeptide NPY is a 36 amino acid peptide and one of the 

most abundant neurotransmitters (Minth et al., 1984). NPY binds to a family of seven-

transmembrane-domain G-protein-coupled receptors, Y1 to Y6 to increase food intake 

and body weight gain and reduce energy expenditure (Larhammar, 1996). NPY is 

expressed at high levels in several central nervous system regions, however, the major 

site for NPY expression is the ARC of the hypothalamus (Morris, 1989). NPY is the 

most potent endogenous orexigenic signal. Like the expression of AgRP, also the 

expression of hypothalamic NPY mRNA and the release of NPY increase with fasting 

and decrease after refeeding, but the decrease after refeeding appears earlier than that of 

AgRP (Chua et al., 1991; Pages et al., 1993; Swart et al., 2002). Central administration 

of NPY causes obesity as a result of hyperphagia and decreased energy expenditure 

(Billington et al., 1991; Stanley et al., 1986). As described above, ablation of 

AgRP/NPY neurons in adult mice causes immediate starvation and drastic weight loss 

(Gropp et al., 2005; Luquet et al., 2005).  

Both AgRP/NPY and POMC neurons originating in the ARC project primarily 

to the PVN, where numerous feeding-related pathways converge. Moreover, they 

project to the DMH and VMH and the perifornical part of the LHA, regions known to 

be important in the control of energy homeostasis (Bagnol et al., 1999; Williams et al., 

2000). In the PVN, AgRP, NPY and POMC are secreted from the nerve terminals and 

bind to their specific receptors, resulting in the regulation of neuropeptides important 

for energy homeostasis in the PVN, including corticotropin-releasing hormone (CRH) 

and thyrotropin-releasing hormone (TRH), which were shown to exhibit anorexigenic 

potential (Fekete et al., 2001; Sainsbury et al., 1997). Moreover, peptides of the 

perifornical part of the LHA have been shown to act as downstream mediators of ARC 
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signaling. Melanin-concentrating hormone (MCH) for example is expressed in in the 

LHA in neurons that receive synaptic input from AgRP/NPY and POMC neurons 

originating in the ARC (Elias et al., 1998). MCH acts as an orexigenic neuropeptide, 

reflected in animals lacking MCH which exhibit reduced food intake and body fat stores 

(Qu et al., 1996; Shimada et al., 1998). Hypothalamic MCH neurons in turn project to 

diverse forebrain and hindbrain areas also known to be involved in the regulation of 

food intake. Another group of neurons in the perifornical part of the LHA receiving 

synaptic input from AgRP/NPY neurons are the hypocretin expressing neurons, which 

in turn innervate AgRP/NPY and POMC cells in the ARC (Williams et al., 2000). 

Hypocretin acts as an orexigenic peptide to stimulate food intake and concomitantly 

increases locomotor activity in mice. Accordingly, hypothalamic hypocretin levels are 

upregulated during fasting (Sakurai et al., 1998). 

 

 

1.5.2.1 Regulation of neurons located in the arcuate nucleus 

 

A major target site for leptin signaling is the ARC of the hypothalamus. Aside 

from the DMH and the VMH, the highest levels of ObRb expression are found in the 

ARC (Elmquist et al., 1998). Both AgRP/NPY and POMC neurons within the ARC 

express the long form of the leptin receptor (Cheung et al., 1997; Wilson et al., 1999) 

and are directly regulated by leptin. While the orexigenic AgRP/NPY-producing 

neurons are inhibited by leptin (Elias et al., 1999; van den Top et al., 2004), the 

anorexigenic POMC neurons are activated (Cowley et al., 2001; Elias et al., 1999). 

Thus, leptin stimulates the production and secretion of anorexigenic neuropeptides and 

reciprocally suppresses levels of orexigenic peptides. Consistently, ob/ob and db/db 

mice exhibit elevated levels of AgRP and NPY mRNA and reduced levels of POMC 

mRNA (Mizuno and Mobbs, 1999; Schwartz et al., 1997; Shutter et al., 1997). 

Administration of leptin stimulates expression of POMC (Kitamura et al., 2006; 

Schwartz et al., 1996c) and inhibits expression of AgRP and NPY (Fekete et al., 2006; 

Morrison et al., 2005). Moreover, administration of a MC4R antagonist attenuates the 

anorexigenic response of leptin (Seeley et al., 1997). It has been shown that leptin 

increases the frequency of action potentials in POMC neurons by depolarization through 

a nonspecific cation channel and reduced inhibition by local NPY neurons (Cowley et 

al., 2001).   
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Both AgRP/NPY and POMC neurons coexpress the insulin receptor and the 

leptin receptor (Benoit et al., 2002; Schwartz et al., 1992). Insulin signals to the ARC of 

the hypothalamus to inhibit orexigenic AgRP/NPY neurons and to stimulate 

anorexigenic POMC neurons (Benoit et al., 2002; Choudhury et al., 2005; Schwartz et 

al., 2000; Sipols et al., 1995). Central administration of insulin results in increased 

POMC and decreased NPY expression, without affecting the expression of AgRP 

(Fekete et al., 2006). Recently, it was shown that insulin signaling in AgRP neurons is 

required for insulin’s ability to suppress hepatic glucose production (Konner et al., 

2007). 

Besides the ability of the central nervous system to integrate information about 

the body energy status derived from hormones like insulin and leptin, the hypothalamus 

can also respond directly to circulating concentrations of nutrients, in particular of 

glucose and free fatty acids. Central administration of glucose decreases blood glucose 

levels (Lam et al., 2005) and central administration of oleic acid inhibits food intake by 

inhibiting NPY gene expression (Obici et al., 2002b). It has been shown that molecular 

disruption of the hypothalamic nutrient-sensing mechanism via overexpression of 

malonyl-coenzyme A decarboxylase involved in fatty acid metabolism induces obesity 

(He et al., 2006). Furthermore, inhibition of hypothalamic lipid oxidation and central 

inhibition of fatty acid synthase inhibit feeding (Benoit et al., 2002; Clegg et al., 2002; 

Loftus et al., 2000; Obici et al., 2002b).  
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Figure 4: Regulation of energy homeostasis 

The brain, in particular AgRP/NPY and POMC neurons located in the ARC of the hypothalamus sense 

and integrate signals on body energy stores such as insulin secreted from the pancreas and leptin secreted 

from white adipose tissue and signals on circulating nutrients such as glucose and free fatty acids. 

AgRP/NPY and POMC neurons respond via second order neurons, thus regulating hepatic glucose 

production and energy balance by the regulation of energy intake and energy expenditure (Schwartz and 

Porte, 2005). 
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1.5.3 Central regulation of energy homeostasis by leptin in vivo 

 

 The study of db/db mice, which lack the long form of the leptin receptor in all 

tissues, and of ob/ob mice, which do not synthesize leptin, reveals the importance of 

leptin signaling in the regulation of energy homeostasis. The phenotype observed in 

db/db and ob/ob mice resembles abnormalities seen in starved animals, including 

decreased body core temperature, hyperphagia accompanied by elevated AgRP and 

NPY and reduced POMC expression, decreased energy expenditure, locomotor activity 

and immune function and infertility (Coleman, 1978). Db/db and ob/ob mice develop 

profound and early-onset obesity weighing three times more than normal mice and 

exhibiting a fivefold increase in body fat content. Although the leptin receptor is widely 

expressed in many tissues, the absence of central leptin receptor signaling accounts for 

most of the defects observed in db/db mice. Accordingly, mice exclusively lacking 

neuronal leptin receptors show defects similar to db/db mice, which lack peripheral 

leptin receptors additionally (Cohen et al., 2001). Furthermore, expression of a neuron-

specific leptin receptor transgene in db/db mice leads to a complete rescue of obesity, 

diabetes and infertility along with improved expression of AgRP, NPY and POMC 

mRNA (de Luca et al., 2005).  

Mutation of Tyr985 of the leptin receptor in vivo leads to the absence of 

inhibitory leptin signals. Leptin activates autoinhibitory signals via Tyr985 of its receptor 

to attenuate the anti-obesity effects. According to this, mice carrying the Tyr985 

mutation exhibit increased leptin sensitivity, reduced adiposity, hypophagia and 

decreased AgRP and NPY but normal POMC expression. (Bjornholm et al., 2007). On 

the other hand, deletion of neuronal Shp2 leads to development of early-onset obesity 

due to alterations of energy metabolism in the absence of hyperphagia in spite of 

increased NPY expression (Zhang et al., 2004). 

The involvement of the IRS/PI3K signaling pathway in ObRb-mediated leptin 

signaling is reflected in IRS2 deficient mice, which display increased feeding and 

decreased metabolic rate in the presence of increased adiposity and circulating leptin, 

suggesting leptin resistance (Burks et al., 2000; Tobe et al., 2001). Leptin-evoked 

activation of PI3K regulates the membrane potential of hypothalamic neurons in vivo 

(Harvey et al., 2000; Plum et al., 2006; Spanswick et al., 1997). Pharmacological 

inhibition of hypothalamic PI3K blocks the anorectic effect of leptin (Niswender et al., 
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2001). Moreover, PI3K is also involved in the regulation of sympathetic nervous system 

function by leptin (Rahmouni et al., 2002).  

The contribution of Stat3 signaling to leptin action was studied in mice with 

mutated Tyr1138 of the leptin receptor leading to a selective disruption of the leptin 

receptor-Stat3 signal. Mice with mutated Tyr1138 are obese, hyperphagic, exhibit 

reduced energy expenditure including reduced locomotor activity but show no growth 

impairment or infertility. While hypothalamic NPY expression is not increased as 

observed in db/db mice, the melanocortin signaling pathway is suppressed indicated by 

reduced POMC and elevated AgRP mRNA expression (Bates et al., 2003). Consistent 

with those mice, pan-neuronal Stat3 knockout mice are also obese, hyperphagic with 

reduced energy expenditure and exhibit elevated expression of AgRP mRNA (Gao et al., 

2004). Thus, leptin receptor mediated activation of Stat3 mediates the effect of leptin on 

melanocortin signaling and thereby on energy homeostasis. On the other hand, leptin-

regulated expression of NPY is regulated by signals other than Stat3 (Bates et al., 2003).  

The role of leptin signaling in POMC neurons in vivo was investigated in mice 

with selective deletion of the leptin receptor in POMC neurons. These mice are mildly 

obese, hyperleptinemic and exhibit reduced expression of POMC mRNA (Balthasar et 

al., 2004). Mice with deletion of Stat3 selectively in POMC neurons demonstrate that 

POMC expression is directly activated by Stat3 (Xu et al., 2007).  

Several observations indicate that inhibition of AgRP by leptin is independent of 

Stat3 in vivo, although Stat-responsive elements exist in the 5’ region of AgRP and 

overexpression of Stat3 caused inhibtion of AgRP in reporter gene assays (Brown et al., 

2001; Kitamura et al., 2006). On the other hand, it was shown that leptin requires intact 

PI3K signaling for inhibition of AgRP expression and that activation of Stat3 by leptin 

is not required for the regulation of AgRP neurons (Morrison et al., 2005). Most 

importantly, mice lacking Stat3 in AgRP neurons exhibit normal levels of AgRP mRNA 

(Kaelin et al., 2006). However, the exact molecular mechanism by which leptin inhibits 

AgRP expression is still unclear. 

Besides the regulation of food intake, leptin also regulates locomotor activity, as 

ob/ob mice are hypoactive and leptin treatment normalizes this defect in locomotor 

activity (Pelleymounter et al., 1995). One study has implicated leptin action in the ARC 

in the regulation of locomotor activity, since selective unilateral restoration of leptin 

signaling in the ARC of leptin receptor deficient mice leads to a decrease of food intake 

and body weight and also normalizes locomotor activity (Coppari et al., 2005). 
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Nevertheless, the exact neuronal population in the ARC responsible for leptin-evoked 

locomotor activity has not been identified and the molecular mechanisms involved still 

remain unknown. 

 

 

1.6 Objectives 
 

The role of leptin signaling and in particular the role of leptin-evoked Stat3 

signaling in the regulation of AgRP neurons remains a controversial issue. To address 

the role of Stat3 signaling directly in AgRP expressing neurons of the ARC in vivo, 

mice expressing a constitutively active version of Stat3 selectively in AgRP neurons 

upon Cre-mediated recombination were generated (Stat3-CAgRP mice). Characterization 

of Stat3-CAgRP mice elucidated the physiological role of Stat3 signaling in AgRP 

neurons, particularly on the regulation of energy homeostasis and neuropeptide 

expression. Additionally, Stat3-CAgRP mice were crossed with leptin-deficient ob/ob 

mice to further analyze the role of leptin evoked Stat3 signaling in vivo. 
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2 Materials and Methods 
 

2.1 Chemicals and biological material 
 

All chemicals used in this work are listed in table 1 and all enzymes used in this 

work are listed in table 2. Solutions were prepared with double distilled water. Bacterial 

media were autoclaved prior to use. 
 

Table 1: Chemicals 

Chemicals Supplier 

Agarose Peqlab, Erlangen, Germany 

Agarose Ultra Pure Invitrogen, Karlsruhe, Germany 

Ascorbic acid Sigma, Steinheim, Germany  

5-bromodeoxyuridine (BrdU) Sigma, Steinheim, Germany  

Calcium chloride Merck, Darmstadt, Germany 

Carbon dioxide (solid) Hans Berrenrat GmbH, Köln, Germany 

Chloroform Applichem, Darmstadt, Germany  

Dimethylsulfoxide (DMSO) Sigma, Steinheim, Germany  

Formaldehyde Merck, Darmstadt, Germany 

Formamide Applichem, Darmstadt, Germany 

Denhardt’s Applichem, Darmstadt, Germany 

di-sodium hydrogen phosphate Merck, Darmstadt, Germany 

dNTPs Amersham, Freiburg, Germany 

Ethanol, absolute Roth, Karlsruhe, Germany  

Ethidium bromide  Applichem, Darmstadt, Germany  

Ethylendiamine tetraacetate (EDTA)  Applichem, Darmstadt, Germany  

Fetal calf serum (FCS) Invitrogen, Karlsruhe, Germany  

Gene Ruler DNA Ladder Mix Fermentas, St. Leon-Rot, Germany 

Glucose, 20 % DeltaSelect, Dreieich, Germany 

Glycerol Applichem, Darmstadt, Germany 

Glycine Sigma, Steinheim, Germany  

Hepes Applichem, Darmstadt, Germany 
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Hydrochloric acid (37 %) KMF Laborchemie, Lohmar, Germany 

Hydrogen peroxide Sigma, Steinheim, Germany  

Isopropanol (2-Propanol)  Roth, Karlsruhe, Germany  

Lithium chloride Applichem, Darmstadt, Germany 

Luria-Bertani (LB) Agar Sigma, Steinheim, Germany  

Luria-Bertani (LB) Medium Applichem, Darmstadt, Germany 

Magnesium chloride Merck, Darmstadt, Germany 

β-Mercaptoethanol Merck, Darmstadt, Germany 

Nitrogen (liquid) Linde, Pullach, Germany 

NP-40 Applichem, Darmstadt, Germany 

α-32P-CTP Amersham, Freiburg, Germany 

Paraformaldehyde (PFA) Sigma, Steinheim, Germany  

PBS Gibco, Karlsruhe, Germany 

Potassium chloride Merck, Darmstadt, Germany 

Sodium acetate Merck, Darmstadt, Germany 

Sodium chloride Applichem, Darmstadt, Germany 

Sodium cholide solution, 0.9 % Berlin-Chemie, Berlin, Germany 

Sodium citrate Merck, Darmstadt, Germany 

Sodium di-hydrogen phosphate Merck, Darmstadt, Germany 

Sodiumdodecylsulfate (SDS) Applichem, Darmstadt, Germany 

Sucrose Sigma, Steinheim, Germany  

Trishydroxymethylaminomethan 

(Tris) 
Applichem, Darmstadt, Germany 

Triton X-100 Sigma, Steinheim, Germany  

Tween Applichem, Darmstadt, Germany 
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Table 2: Enzymes 

Enzymes Supplier 

DdeI 
New England Biolabs, Schwalbach, 

Germany 

DNase, RNase-free Promega, Madison, WI, USA 

EuroScript Reverse Transcriptase  Eurogentec, Seraing, Belgium 

NcoI Fermentas, St. Leon-Rot, Germany 

Proteinase K Roche, Basel, Switzerland 

REDTaq® DNA Polymerase Sigma, Steinheim, Germany  

RNase A, DNase-free Fermentas, St. Leon-Rot, Germany 

RNase inhibitor Roche, Basel, Switzerland 

SacI Fermentas, St. Leon-Rot, Germany 

T7 polymerase Roche, Basel, Switzerland 

 

 

2.2 Molecular biology 
 

Standard methods of molecular biology were performed according to protocols 

described by J. Sambrook (Sambrook et al., 1989), if not stated otherwise. 

 

2.2.1 Competent cells and isolation of plasmid DNA 

 

Competent Escherichia coli (E. coli) DH5α cells were prepared according to a 

standard protocol (Inoue et al., 1990) and used in heat shock transformation of plasmid 

DNA. Isolation of plasmid DNA was performed using an alkaline lysis method 

(E.Z.N.A.® Plasmid Miniprep Kit 1, Peqlab, Erlangen, Germany) according to 

manufacturer’s instructions.  

 

 

2.2.2 Isolation of genomic DNA from mouse tissue 

 

 For isolation of genomic DNA, mouse tail biopsies were incubated in lysis 

buffer (10 mM Tris/HCl [pH 8]; 10 mM EDTA; 150 mM NaCl; 0.2 % (w/v) SDS; 400 
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mg/ml proteinase K) at 55 °C for several hours. DNA was precipitated by adding an 

equal volume of isopropanol, mixed and pelleted by centrifugation. After washing with 

70 % (v/v) EtOH, the pellet was dried at room temperature and resuspended in TE-

buffer (10 mM Tris/HCl [pH 8]; 1 mM EDTA). 

 

 

2.2.3 Agarose gel electrophoresis and DNA gel extraction 

 

Amplified and digested DNA fragments were separated by size using agarose 

gel electrophoresis (1 to 3 % (w/v) agarose (depending on fragment size); 1 x TAE; 0.5 

mg/ml ethidiumbromide; 1 x TAE electrophoresis buffer). To elute DNA fragments, the 

fragments were excised and the DNA was eluted using the QIAEX II kit (Qiagen, 

Hilden, Germany) according to manufacturer’s instructions. 

Quality of RNA was assessed by electrophoresis on denaturing agarose gels (1.2 

% (w/v) agarose; 1 x MOPS; 1 % (v/v) formaldehyde; 1 x MOPS electrophoresis 

buffer). 

 

 

2.2.4 Construction of a vector for in situ hybridization probe synthesis 

  

To clone a vector for in situ hybridization probe synthesis, a PCR fragment was 

amplified in vitro from mouse hypothalamic cDNA using the High Fidelity PCR Master 

Kit (Roche, Basel, Switzerland) and primers containg NPY specific sequences (listed in 

table 3). The PCR fragment was cloned into the pGEM®-T Vector using the pGEM®-T 

Vector System (Promega, Madison, WI, USA) according to manufacturer’s instructions. 

Finally, the construct was verified by SacI and NcoI endonuclease digestion. 

 

Table 3: Primers used for amplification of NPY cDNA 

Name of primer Sequence (5’-3’) 

NPY-5’ ATG CTA GGT AAC AAG CGA ATG G 

NPY-3’ TCA CCA CAT GGA AGG GTC TTC 
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2.2.5 Quantification of DNA and RNA 

 

Concentration of nucleic acids was quantified using a spectrophotometer 

(NanoDrop ND-1000, NanoDrop Technologies, Wilmington, DE, USA). Absorption of 

samples was measured at 260 nm, which is the highest absorption wavelength for 

nucleic acids. An OD260 (optical density) of 1 corresponds to 50 µg/ml for double-

stranded DNA and to 40 µg/ml for RNA. To assess purity of nucleic acids, the ratio of 

absorptions at 260 nm versus 280 nm was calculated, as proteins absorb maximum at 

280 nm. An OD260/OD280 ratio of 2 refers to pure nucleic acids, lower values display 

protein contaminations. 

After eluting DNA from agarose gels using the QIAEX II kit, the concentration 

was assessed by comparing the intensity of the DNA fragment with the band intensity 

of a standard marker on an agarose gel, as the glassmilk used in the kit for the elution of 

DNA interferes with UV absorption. 

 

 

2.2.6 Polymerase chain reaction (PCR) 

 

 The polymerase chain reaction was performed to amplify a cDNA fragment in 

vitro for in situ hybridization probe synthesis, and to detect targeted alleles or 

transgenes for genotyping of mice (Saiki et al., 1986; Saiki et al., 1985).  

To amplify cDNA fragments, the High Fidelity PCR Master Kit (Roche, Basel, 

Switzerland) containing a polymerase with proofreading activity was used according to 

manufacturer’s guidlines with 500 ng template cDNA and 25 pmol of each primer 

(listed in table 4). After an initial denaturation step at 94 °C for 2 min, 13 cycles of 

denaturation at 94 °C for 15 sec, annealing at 54 °C for 30 sec and elongation at 72 °C 

for 1 min were followed by another 17 cycles of denaturation at 94 °C for 20 sec, 

annealing at 54 °C for 30 sec and elongation at 72 °C for 1.5 min. The PCR was 

finished with a final extension step at 72 °C for 10 min. 

Genotyping of mice was performed with 500 ng DNA isolated from tail biopsies 

in a total volume of 25 µl containing 25 pmol of each primer (listed in table 8), 25 µmol 

dNTPS, 2 to 6 % (v/v) DMSO, 0.625 to 1.2 U REDTaq® DNA Polymerase and 1 x 

REDTaq® PCR Reaction Buffer (Sigma, Steinheim, Germany). Again, the different 
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PCRs started with an initial denaturation step at 95 °C for 5 min, followed by 35 to 40 

cycles of denaturation at 95 °C for 30 sec, annealing at 54 to 63 °C for 30 to 45 sec and 

elongation at 72 °C for 30 to 90 sec. The elongation was finished with a final extension 

step at 72 °C for 10 min. 

All PCR reactions were carried out either in an iCycler Thermocycler (Bio-Rad, 

Hercules, CA, USA) or in a PTC-200 Peltier Thermal Cycler (MJ Research, Waltham, 

MA, USA). 

 

 

2.2.7 RT-PCR 

 

Different mouse tissues were dissected and homogenized using an Ultra Turrax 

homogenizer (IKA, Staufen, Germany). RNA isolation was performed using the 

RNeasy system (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. 

Total RNA was treated with RNase-free DNase and 200 ng RNA were reverse 

transcribed with EuroScript Reverse Transcriptase according to manufacturer’s 

guidelines. Fragments of Stat3-C, endogenous Stat3 and GAPDH were amplified using 

specific primers (listed in table 4).  

 

Table 4: Primers used for amplification of cDNA fragments 

amplified cDNA 

fragment 
Name of primer Sequence (5’-3’) 

Rosa512 GCC GTT CTG TGA GAC AG 
Stat3-C 

3StatRT AGG ACA TTG GAC TCT TGC AG 

5StatRT CAG TCG GGC CTC AGC CC 
endogenous Stat 

3StatRT AGG ACA TTG GAC TCT TGC AG 

GAPDH-5' ACC ACA GTC CAT GCC ATC AC 
GAPDH  

GAPDH-3' TCC ACC ACC CTG TTG CTG TA 
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2.2.8 Analysis of RNA expression 

 

Expression of mRNA was analyzed using quantitative RT-PCR. cDNA was 

obtained from hypothalamic tissue, white and brown adipose tissue as well as skeletal 

muscle as described above and amplified using TaqManR Universal PCR-Master Mix, 

No AmpErase® UNG with TaqMan® Assay on demand kits for AgRP (agouti related 

protein), HCRT (hypocretin (orexin)), HPRT (hypoxanthine guanine phosphoribosyl 

transferase 1), MCH (pro-melanin-concentrating hormone), NPY (neuropeptide Y), 

Socs3 (suppressor of cytokine signaling 3), Stat3 (signal transducer and activator of 

transcription 3), UCP-1 (uncoupling protein 1), UCP-2 (uncoupling protein 2) and UCP-

3 (uncoupling protein 3) (Applied Biosystems, Foster City, CA, USA) . Analysis of 

POMC mRNA expression was performed with customized primers listed in table 5. 

Standard curves were used based on hypothalamic cDNA, white or brown adipose 

tissue and skeletal muscle cDNA. Relative expression of samples was adjusted for total 

RNA content by HPRT RNA quantitative PCR. Calculations were performed by a 

comparative method (2-ddCT). Quantitative PCR was performed on an ABI-PRISM 

7700 Sequence Detector (Applied Biosystems, Foster City, CA, USA). Assays were 

linear over at least 4 orders of magnitude. 

 

Table 5: Primers used for analysis of POMC mRNA expression 

Name of primer Sequence (5’-3’) 

POMC sense GAC ACG TGG AAG ATG CCG AG 

POMC anti-sense CAG CGA GAG GTC GAG TTT GC 

probe sequence FAM-CAA CCT GCT GGC TTG CAT CCG G-TAMRA 
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2.3 Biochemistry 
 

2.3.1 Electromobility-Shift Assay (EMSA) 

 

Mice were intraperitoneally injected with either saline or leptin (5 µg/g body 

weight) (Sigma, Steinheim, Germany) after an over night (16 h) fast and sacrificed after 

20 min. Hypothalamic tissue was homogenized in hypotonic solution (10 mM HEPES 

[pH 7.6]; 10 mM KCl; 2 mM MgCl2; 0.1 mM EDTA; completed with protease inhibitor 

cocktail (Roche, Basel, Switzerland)) using an Ultra Turrax homogenizer (IKA, Staufen, 

Germany) and NP-40 was added to 1 % (v/v) after 10 min incubation on ice. After 

centrifugation, the nuclear pellet was washed in hypotonic buffer and resuspended in 

extraction buffer (50 mM HEPES [pH 7.8]; 50 mM KCl; 300 mM NaCl; 0.1 mM EDTA; 

10 % (v/v) glycerol). Protein concentration was determined using a photometer 

(BioPhotometer, Eppendorf, Hamburg, Germany) and the Christian Warburg formula. 4 

µg of hypothalamic nuclear extracts were incubated at room temperature for 30 min 

with 2 µg poly(dI-dC) (Amersham Pharmacia Biotec, Uppsala, Sweden) and 0.5 ng of 
32P-labeled Stat3 probe (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). 

Samples were fractionated on a 5 % (w/v) PAGE over night and visualized by 

autoradiography. Density of bands was determined using Quantity One software (Bio-

Rad, Hercules, CA, USA). 

 

 

2.3.2 Enzyme-linked Immunosorbent Assay (ELISA)  

 

Serum insulin, leptin and free triiodothyronine (fT3) levels, as well as plasma 

catecholamine concentrations were measured by ELISA according to manufacturer’s 

guidelines (Mouse Leptin ELISA, Mouse/Rat Insulin ELISA, Crystal Chem, Downers 

Grove, IL, USA; free triiodothyronine (fT3) ELISA, Alpha Diagnostic Intl. Inc., San 

Antonio, TX, USA; CatCombi ELISA for Epinephrine and Norepinephrine, IBL, 

Hamburg, Germany). 

Brain catecholamine and serotonin concentrations were measured by ELISA 

(TriCat ELISA and Serotonin ELISA, DRG, Marburg, Germany). Brain areas of interest 

(hypothalamus, ventral tegmental area, frontal association cortex and striatum) were 
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dissected with the aid of a mouse brain atlas (Franklin and Paxinos, 1997) using a 

coronal acrylic brain matrix (Braintree Scientific, Inc., Braintree, MA, USA) 

(hypothalamus: 0 to 2 mm posterior relative to bregma; ventral tegmental area: 2 mm to 

4 mm posterior relative to bregma; frontal association cortex: 2 mm to 4 mm anterior 

relative to bregma; striatum: 0 to 1 mm anterior relative to bregma). The brain areas 

were then dissected from the coronal sections using a scalpel. Brain tissue was 

homogenized in 0.05 N HCl using the Ultra Turrax homogenizer (IKA, Staufen, 

Germany) and after centrifugation the supernatant was used to determine catecholamine 

concentrations according to the manufacturer’s guidelines. For determination of 

serotonin concentrations, ascorbic acid was added to the supernatant to a final 

concentration of 1 mg/ml, and serotonin concentrations were measured according to the 

manufacturer’s guidelines. 

 

 

2.3.3 Staining of hypothalamic sections 

 

2.3.3.1 Immunohistochemistry 

 

AgRPCre+/- mice were mated with RosaArte1 reporter mice (Seibler et al., 2003). 

Mice double-positive for AgRPCre and LacZ (LacZ+/-AgRPCre+/-) were anesthetized 

intraperitoneally with Avertin (240 mg/kg) (2,2,2-tribromoethanol, Sigma, Steinheim, 

Germany) and transcardially perfused with saline followed by 4 % (w/v) 

paraformaldehyde (PFA) in 0.1 M phosphate buffered saline (PBS [pH 7.4]). The brains 

were dissected and frozen in tissue freezing medium (Jung Tissue Freezing Medium; 

Leica Microsystems, Wetzlar, Germany) after post-fixation in 4 % (w/v) PFA at 4 °C 

over night and soaking in 20 % (w/v) sucrose for 6 h. 25 µm thick free-floating coronal 

sections were cut through the ARC using a freezing microtome (Leica Microsystems, 

Wetzlar, Germany). Then, the sections were washed extensively in PBS to remove 

cryoprotectant. Afterwards, the sections were treated with 0.3 % (v/v) H2O2 in PBS for 

20 minutes to quench endogenous peroxidase activity. Following pretreatments, the 

sections were stained using the Renaissance® TSA™ Fluorescence Systems Tyramide 

Signal Amplification Kit (PerkinElmer™, Waltham, MA, USA) according to 

manufacturer’s guidelines (primary antibody: rabbit anti-lacZ; secondary antibody: goat 

anti-rabbit peroxidase labeled; see table 7). The stained sections were embedded in 
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Vectashield Mounting Medium containing DAPI (Vector Laboratories Burlingame, CA, 

USA). 

 

 

2.3.3.2 Combined in situ hybridization and immunohistochemistry 

 

For NPY probe synthesis, the NPY-pGEM-T Vector described in 2.2.4 was used 

as a template to amplify a NPY fragment including an upstream T7 promoter sequence 

by PCR using primers containing a T7 promoter sequence and NPY-specific sequences 

(listed in table 6). The fragment was purified and transcribed into digoxigenin (DIG)-

labeled RNA in vitro using 200 ng of the T7 promoter-NPY-fragment, 1 x DIG RNA 

labeling mix, 4 U T7 polmyerase, 1 x transcription buffer and 40 U RNase inhibitor in a 

total volume of 20 µl (all reagents were obtained from Roche, Basel, Switzerland). 

After incubation at 37 °C for 2 h, the transcribed RNA was DNaseI-digested, ethanol-

precipitated, and the quality of the RNA was assessed by electrophoresis on an agarose 

gel after quantification of RNA concentration. 

 

Table 6: Primers used to amplify a T7-promoter-NPY fragment for in vitro transcription 

Name of primer Sequence (5’-3’) 

NPY-5’ ATG CTA GGT AAC AAG CGA ATG G 

T7-promoter-NPY-3’ 
TAA TAC GAC TCA CTA TAG GGT CAC CAC ATG 

GAA GGG TCT TC 

 

 

For NPY in situ hybridization, mice were fasted for 48 h to stimulate NPY 

expression, anesthetized with Avertin and transcardially perfused as described above. 

After dissection, the brains were post-fixed in 4 % (w/v) PFA for 4 h and soaked in 20 

% (w/v) sucrose over night at 4 °C. 8 µm thick coronal sections containing the ARC 

were dried at room temperature, washed with PBS and treated with proteinase K (0.25 

µg/ml) for 10 min at 37 °C. The sections were rinsed with glycine (2 mg/ml), placed 

into 4 % (w/v) PFA, washed with PBS, and then washed with 2 x SSC. Prehybridization 

was carried out for 5 h at 55 °C in prehybridization buffer containing 50 % (v/v) 

formamide, 5 x SSC, 1 x Denhardt’s and 0.1 % (v/v) Tween 20. Hybridization was 
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performed at 55 °C over night in prehybridization buffer containing 2 ng/µl 

digoxigenin-labeled RNA probe and 360 ng/µl competitor tRNA. After washing with 2 

x SSC the sections were RNase-digested for 1 h at 37 °C and afterwards washed with 

0.1 x SSC for 1 h at 55 °C, cooled to room temperature and treated with hydrogen 

peroxide (1 % (v/v)) for 1 h. The sections were blocked for 1 h in Roti®- ImmunoBlock 

(Roth, Karlsruhe, Germany) and incubated with anti-DIG antibody coupled to alkaline 

phosphatase (see table 7) for 1 h. After washing, NPY in situ hybridization was detected 

using Vector® Blue Alkaline Phosphatase Substrate Kit III (Vector Laboratories, 

Burlingame, CA, USA). Determination of mean NPY neuron size was carried out in 

NPY-stained hypothalamic sections using Zeiss AxioVision 4.2 software (Carl Zeiss 

Microlmaging, Göttingen, Germany).  

For combined Stat3 immunohistochemistry, the sections were incubated with 

Stat3 antibody together with anti-DIG antibody (see table 7). Stat3 immunostaining was 

developed prior to the detection of alkaline phosphatase using the Tyramide Signal 

Amplification Kit as described above (secondary antibody: goat anti-rabbit peroxidase 

labeled; see table 7). 

For combined BrdU immunohistochemistry, the NPY-stained sections were 

treated with HCl (2 N) for 1 h and incubated with anti-BrdU antibody over night at 4 °C 

after blocking. BrdU immunostaining was visualized with the Tyramide Signal 

Amplification Kit as described above (secondary antibody: goat anti-rat peroxidase 

labeled; see table 7).  

After staining, the sections were embedded in Vectashield Mounting Medium 

containing DAPI (Vector Laboratories Burlingame, CA, USA). 
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Table 7: Antibodies used for staining of hypothalamic sections 

Antibody Supplier 
Working 

Dilution 

sheep anti-digoxigenin coupled to 

alkaline phosphatase 
Roche, Basel, Switzerland 1:100 

rabbit anti-Stat3 
Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA, USA 
1:25 

goat anti-rabbit peroxidase labeled 
Vector Laboratories 

Burlingame, CA, USA 
1:1000 

rat anti-BrdU 

Accurate Chemical & 

Scientific, Westbury, NY, 

USA 

1:400 

goat anti-rat peroxidase labeled 

Jackson ImmunoResearch 

Laboratories, Inc., West 

Grove, PA, USA 

1:500 

rabbit anti-lacZ Cappel, Durham, NC, USA 1:200 
All antibodies were diluted in TBS containing 0.5 % (v/v) FCS and  0.1 % (v/v) Triton X-100. 

 

 

2.3.4 Histomorphology  

 

Dissected white adipose tissue samples were incubated in fixation solution 

containing 4 % (w/v) PFA at 4 °C over night and embedded in paraffin according to a 

standard protocol (Plum et al., 2006). 7 µm sections were mounted onto gelatin-coated 

slides and hematoxylin/eosin-stained (HE) (Sigma, St. Louis, MO, USA) after 

deparaffinization as previously described (Plum et al., 2006). The determination of 

mean adipocyte size and adipocyte size distribution was carried out in HE-stained 

tissues using Zeiss AxioVision 4.2 software (Carl Zeiss Microlmaging, Göttingen, 

Germany). 
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2.4 Mouse experiments 
 

2.4.1 Animal care 

 

Care of all animals was within institutional animal care committee guidelines 

and all procedures were approved by local government authorities (Bezirksregierung 

Köln) and were in accordance with NIH guidelines. Mice were housed in groups of 3 to 

5 or individually if required for an experiment as indicated. Animals were kept at 22 to 

24 °C and were exposed to a 12 hours light/dark cycle with lights on at 7 am. Mice were 

either fed normal chow diet (Teklad Global Rodent # T.2018.R12; Harlan, Borchen, 

Germany) containing 53.5 % of carbohydrates, 18.5 % of protein, and 5.5 % of fat (12 

% of calories from fat) or a high fat containing diet (# C1057; Altromin, Lage, Germany) 

containing 32.7 %, 20 % and 35.5 % of carbohydrates, protein and fat (55.2 % of 

calories from fat), respectively. The animals had access to water ad libitum and food 

was only withdrawn if required for an experiment. Body weight was measured once a 

week.  

 

 

2.4.2 Mice 

 

Breeding colonies were maintained by mating Stat3-Cstoplox/stoplox mice (Casola et 

al., 2006) with AgRPCre+/- mice (Kaelin et al., 2004) to analyze Stat3-CAgRP animals 

and ob/+Stat3-Cstoplox/stoplox mice with ob/+AgRPCre+/- mice to analyze ob/obStat3-

CAgRP animals (ob/+ mice were obtained from Charles River Laboratories, Wilmington, 

MA, USA) (Coleman, 1978). Stat3-CAgRP mice were fed either normal chow or high fat 

diet, ob/obStat3-CAgRP mice were fed normal chow diet. Only animals from the same 

mixed background strain generation were compared. Mice were genotyped by PCR 

using genomic DNA isolated from tail tips. Germline deletion was detected using the 

NeoRT primer located in the floxed neomycine cassette. Animals with germline 

deletion (approximately 1 %) were excluded from the experiments. The genotyping 

strategy for the ob/ob mice was based on the fact that the ob mutation generates a DdeI 

restriction site. Therefore, the ob-PCR product spanning the ob mutation was digested 

with the DdeI restriction enzyme. 
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Table 8: Primers used for genotyping of mice 

targeted allele 

/transgene 
Name of primer Sequence (5’-3’) 

AgRPCre-5’ CCC TAA GGA TGA GGA GAG AC 

Cre-intern-rev-3’ ATG TTT AGC TGG CCC AAA TGT AgRPCre  

AgRP-Intron ACT TGG TGC ATG GTG GGT GT 

POMCCre-5’ TGG CTC AAT GTC CTT CTT GG 

Cre-intern-rev-3’ GAG ATA TCT TTA ACC CTG ATC POMCCre  

POMC-Intron CAC ATA AGC TGC ATC GTT AAG 

Typ_forward AAA GTC GCT CTG AGT TGT TAT C 

NeoRT GCA TCG CCT TCT ATC GCC T Stat3-C  

Typ_reverse GAT ATG AAG TAC TGG GCT CTT 

ob-3’ TGT CCA AGA TGG ACC AGA CTC 
ob  

ob-5’ ACT GGT CTG AGG CAG GGA GCA 

 

 

2.4.3 Intracerebroventricular BrdU injection 

 

Detection of 5-bromodeoxyuridine (BrdU) incorporation was performed on 

intracerebroventricularly BrdU-injected mice as described before (Kokoeva et al., 2005). 

Briefly, twenty week old mice were anesthetized intraperitoneally with Avertin as 

described in 2.3.3.1 and received an subcutaneous injection of the analgesic Tramal (15 

mg/kg) (Grünenthal, Aachen, Germany), additionally. Anesthetized mice were placed 

into a stereotactic device and a sterile cannula (Brain Infusion Kit 3, Alzet, Cupertino, 

CA, USA) was implanted into the right lateral brain ventricle (0.2 mm posterior and 1 

mm lateral relative to bregma and 2.3 mm below the surface of the skull) and connected 

to an osmotic minipump (model 1002, flow rate 0.25 µl/h, 14 days, Alzet, Cupertino, 

CA, USA) filled with 2 µg/µl BrdU (Sigma, St. Louis, MO, USA) in artificial 

cerebrospinal fluid (148 mM NaCl; 3 mM KCl; 1.4 mM CaCl2; 0.8 mM MgCl2; 0.8 mM 

Na2HPO4; 0.2 mM NaH2PO4). The mice were infused with 12 µg BrdU per day for 7 

days. 
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2.4.4 Body composition 

 

Body fat content was measured in vivo by nuclear magnetic resonance using the 

minispec mq 7.5 (Bruker Optics, The Woodlands, TX, USA). 

 

 

2.4.5 Collection of blood samples and determination of blood glucose levels 

 

Tail bleeding of mice was performed according to Hogan (Hogan et al., 1987) 

and Silver (Silver 1995). Blood glucose values were determined from whole venous 

blood using an automatic glucose monitor (GlucoMenR GlycÓ; A. Menarini Diagnostics, 

Florence, Italy). Determination of blood glucose levels and collection of blood samples 

were performed in the morning to avoid deviations due to circadian variations.  

 

 

2.4.6 Food intake, indirect calorimetry and physical activity  

 

Food intake was measured over a two week period, during which mice were 

housed individually in regular cages using food racks. To minimize handling of the 

animals, food racks were weighed once a week and daily food intake was calculated as 

the average daily intake of chow within the time stated. Indirect calorimetry was 

measured in a Calorimetry Module (CaloSys V2.1, TSE Systems, Bad Homburg, 

Germany and CLAMS, Oximax Windows 4.00, Columbus Instruments, Columbus, OH, 

USA). After two hours of acclimatization, parameters of indirect calorimetry were 

measured for at least 48 hours. For the measurement of physical activity, transmitters 

(PDT-4000 E-Mitter, VitalView Data Acquisition System 4.1; Mini Mitter, Bend, OR, 

USA) were implanted into the peritoneal cavity of Avertin-anesthetized mice. After 7 

days mice that reached at least 90 % of their preoperative body weight were placed into 

3.0 l chambers of a Comprehensive Laboratory Animal Monitoring System (CLAMS, 

Oximax Windows 4.00, Columbus Instruments, Columbus, OH, USA). For the 

measurement of basal locomotor activity, food and water were provided ad libitum. 

Mice were allowed to acclimatize in the chambers for 2 hours. Physical activity was 

measured for at least the following 48 hours. For the measurement of fasting-induced 
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locomotor activity, food was withdrawn and activity was measured for the following 24 

hours. 

 

 

2.4.7 Insulin tolerance test 

 

After determination of basal blood glucose levels each animal received an 

intraperitoneal injection of insulin (0.75 U/kg body weight) (Novo Nordisk, Bagsværd, 

Denmark). Blood glucose levels were measured 15, 30 and 60 min after insulin 

injection. 

 

 

2.4.8 Glucose tolerance test 

 

Glucose tolerance tests were performed in the morning with animals after a 16 h 

fast. After determination of fasted blood glucose levels each animal received an 

intraperitoneal injection of 20 % (w/v) glucose (10 ml/kg body weight). Blood glucose 

levels were measured 15, 30, 60 and 120 min after glucose injection. 

 

 

2.5 Statistical methods 
 

Statistical analysis of data was performed using SPSS 12.0 software (SPSS Inc., 

Chicago, IL, USA). All data were normally distributed. Data were analyzed for 

statistical significance using a two-tailed unpaired student’s t-Test. Prior to performing 

t-tests, homogeneity of variances was tested and accordingly homoscedastic or 

heteroscedastic t-Test was performed. All displayed values are means ± SEM. * p ≤ 

0.05 ; ** p ≤ 0.01 ; *** p ≤ 0.001 versus control.  
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3 Results 
 

3.1 Generation of AgRP neuron specific Stat3-C mice 
 

To investigate the role of Stat3-dependent signaling in AgRP-expressing neurons, 

a constitutively active version of Stat3 was expressed specifically in this cell type. 

Therefore, mice carrying a transgene encoding a constitutively active form of the Stat3 

protein (Stat3-C) including an upstream loxP-flanked stop sequence in the ubiquitously 

expressed Rosa26 locus (Casola et al., 2006) were crossed with mice expressing the Cre 

recombinase under control of the AgRP promoter (Figure 5a and b) (Kaelin et al., 2004).  
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Figure 5: AgRP neuron-restricted expression of a constitutively active Stat3 transgene 

(a) Map of the Stat3-C transgene for Cre-mediated, conditional expression from the Rosa26 locus. In this 

configuration Cre-mediated recombination removes the loxP-flanked NeoR and Westphal stop sequence 

only in cell types expressing Cre, thus allowing transcription of the bicistronic Stat3-C, GFP mRNA. SA: 

adenoviral splice acceptor; filled triangles: loxP sites; NeoR: neomycine resistance gene driven by the 

pGK promoter; WSS: Westphal stop sequence; Stat3-C: constitutively active form of Stat3; closed 

ellipses: FRT sites; IRES: internal ribosome entry site; GFP: GFP gene. (b) Map of the AgRPCre 

transgene. The Cre recombinase cassette is located upstream of the normal AgRP translational initiation 

site in exon 2.  

 

In Stat-C AgRPCre double positive mice (Stat3-C+/-AgRPCre+/-), the loxP-

flanked stop sequence is removed upon Cre-mediated recombination, leading to the 

transcription of Stat3-C selectively in AgRP neurons. In the Stat3-C protein, 
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substitution of two cystein residues for A661 and N663 in the SH2 domain, which is 

responsible for protein-protein interaction, allows to form sulfhydryl bonds between 

Stat3 monomers. Thus, dimerization of Stat3 is allowed by formation of disulfide-bonds 

between the two substituted cysteines independent of signal-dependent tyrosine 

phosphorylation. The dimerized Stat3-C protein was shown to be able to bind DNA and 

activate transcription (Bromberg et al., 1999). 

To confirm the specificity of transgene expression, total RNA from a variety of 

tissues of control (Stat3-C+/-) and Stat3-CAgRP (Stat3-C+/-AgRPCre+/-) mice was isolated 

and the expression of Stat3-C, endogenous Stat3 and GAPDH was determined by RT-

PCR. Since AgRP is selectively expressed in neurons of the ARC of the hypothalamus, 

Cre-dependent Stat3-C transgene expression in Stat3-CAgRP mice should be detectable 

only in the hypothalamus. Indeed, RT-PCR with transgene-specific primers detected 

Stat3-C expression only in the hypothalamus and not in other brain regions or peripheral 

organs isolated from Stat3-CAgRP mice. However, expression of endogenous Stat3 was 

detected to a similar extent in all tissues analyzed from control and Stat3-CAgRP mice 

(Figure 6).  
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Figure 6: Expression of Stat3-C is restricted to the hypothalamus of Stat3-CAgRP mice 

Expression of Stat3-C, endogenous Stat3 and GAPDH in different tissues of control and Stat3-CAgRP mice 

shown by RT-PCR. 
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To investigate whether the mutant Stat3-C acts as a constitutively active DNA-

binding transcription factor, DNA-binding capacity of the transgenically expressed 

Stat3-C was assessed. To this end, control and Stat3-CAgRP mice were treated with either 

saline or leptin. Subsequent electromobility shift assay (EMSA) using isolated nuclear 

hypothalamic extracts revealed a 3-fold enhancement of Stat3 binding activity in the 

hypothalamus of control mice following in vivo leptin treatment (Figure 7a and b). By 

contrast, hypothalamic nuclear extracts of Stat3-CAgRP mice exhibited high Stat3 

binding activity even under basal conditions and this was not further enhanced by leptin 

treatment (Figure 7a and b), indicating that the mutant Stat3-C indeed acts as a 

constitutively active DNA-binding transcription factor. 
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Figure 7: High Stat3 DNA-binding activity in Stat3-CAgRP mice 

 (a) Nuclear binding activity to a Stat3 consensus probe in hypothalamic extracts of saline or leptin 

stimulated control and Stat3-CAgRP mice demonstrated by EMSA. (b) Densitometrical analysis of nuclear 

Stat3 in control and Stat3-CAgRP mice compared to unstimulated controls (n = 8 of each genotype and 

condition). 

 

 

To analyze if expression of overall hypothalamic Stat3 was increased in Stat3-

CAgRP mice, primers were used recognizing both endogenous and transgenic Stat3 

mRNA. In fact, hypothalamic Stat3 expression was 40 to 70 % higher in Stat3-CAgRP 

animals compared to controls (Figure 8a). Then, expression of the Stat3 target gene 

suppressor of cytokine signaling 3 (Socs3) was determined to analyze, if the increase in 

Stat3 expression resulted in elevated Socs3 levels. Hypothalamic Socs3 mRNA 
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expression in Stat3-CAgRP mice appeared to be 80 to 150 % higher than in control 

animals, although this difference did not reach statistical significance (Figure 8b). 
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Figure 8: Enhanced expression of hypothalamic Stat3 and Socs3 in Stat3-CAgRP mice 

Hypothalamic expression of (a) Stat3 and (b) Socs3 of control and Stat3-CAgRP mice under fasted 

conditions (n = 7 of each genotype). 

 

 

To analyze the cell type-specific restriction of Stat3-C expression further, Cre-

mediated recombination was verified by crossing AgRPCre mice with a reporter mouse 

strain (RosaArte1) in which transcription of the β-galactosidase gene (LacZ) under 

control of the Rosa26-promoter is prevented by a floxed hygromycin resistance gene, 

thus leading to a β-galactosidase expression only in cell types expressing the Cre 

recombinase (Figure 9a) (Seibler et al., 2003). In this reporter mouse strain (LacZ+/-

AgRPCre) a β-galactosidase expression pattern was observed reflecting the described 

expression of endogenously expressed AgRP (Figure 9b), consistent with the previously 

demonstrated colocalization of endogenous AgRP and Cre recombinase activity in this 

line of Cre-transgenic mice (Kaelin et al., 2006; Kaelin et al., 2004).  
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Figure 9: Verification of Cre-mediated recombination in AgRPCre mice 

 (a) Map of the LacZ transgene for Cre-mediated, conditional expression from the Rosa26 locus. Filled 

triangles: loxP sites; pGK-hyg: hygromycin resistance gene driven by the pGK promoter. In this 

configuration Cre-mediated recombination removes the loxP-flanked hygromycin resistance gene only in 

cell types expressing Cre, resulting in transcription of β-galactosidase. (b) Immunohistochemistry for β-

galactosidase (β-gal) in brains of double heterozygous reporter mice (LacZ+/-AgRPCre) at the age of ten 

weeks. Blue (DAPI), DNA; green: (β-gal), AgRP neurons. Magnification: 100 x. Scale bar: 200 µm. 

 

 

To further confirm the expression of the transgene selectively in AgRP/NPY 

neurons, combined NPY in situ hybridization and Stat3 immunohistochemistry was 

performed on hypothalamic sections of fasted control and Stat3-CAgRP mice. In fasted 

control animals, Stat3 expression was predominantly located in the cytoplasm of NPY 

neurons. In contrast, Stat3 was also located in the nuclei of NPY neurons of transgenic 

mice. Moreover, the amount of Stat3 in NPY neurons of Stat3-CAgRP mice appeared to 

be higher than in those of control animals (Figure 10).  

Taken together, these data demonstrate that the transgenic approach results in 

AgRP neuron-restricted activation of Stat3-C transcription and thus to enhanced basal 

Stat3 binding activity in the hypothalamus of these mice, independent of leptin-

stimulation. 
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Figure 10: Increased nuclear Stat3 expression in AgRP/NPY neurons of Stat3-CAgRP mice 

Combined NPY in situ hybridization and Stat3 immunohistochemistry of hypothalamic sections of fasted 

control and Stat3-CAgRP mice at the age of 12 weeks. In control animals, Stat3 is mainly located in the 

cytoplasm of NPY neurons, whereas expression of the transgene leads to high Stat3 accumulation in the 

nuclei of NPY neurons in Stat3-CAgRP mice. (Examples are depicted with arrows, respectively). 

Magnification: 100 x. Scale bar: 200 µm.  

 

 

 As Stat3 was described to exhibit oncogenic potential (Bromberg et al., 1999), 

the morphology of NPY-positive AgRP neurons of control and Stat3-CAgRP mice was 

analyzed. First, the size of NPY-positive neurons was determined using NPY-stained 

hypothalamic sections, but there was no difference detectable between the neurons of 

control and Stat3-CAgRP animals (Figure 11a). Furthermore, control and Stat3-CAgRP 

mice were injected intracerebroventricularly with the cell proliferation marker 

bromodeoxyuridine (BrdU). BrdU is a synthetic analogue of thymidine which is 

incorporated into the DNA during replication and can afterwards be detected using 
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specific antibodies. Combined NPY in situ hybridization and BrdU 

immunohistochemistry of hypothalamic sections revealed only a few BrdU-positive 

cells in both control and transgenic animals, and no BrdU incorporation into the DNA 

of NPY-positive neurons was detectable (Figure 11b).  

 Thus, expression of Stat3-C in AgRP neurons appears not to affect neuron size 

or induce proliferation/transformation of these neurons in Stat3-CAgRP mice. 
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Figure 11: AgRP/NPY neurons of Stat3-CAgRP mice display normal morphology 

 (a) Mean NPY neuron size of control and Stat3-CAgRP mice at the age of 12 weeks measured on 

hypothalamic sections stained for NPY (n = 3 mice per genotype). 80 to 120 neurons per mouse were 

measured. (b) Representative photographs of hypothalamic sections of fasted control and Stat3-CAgRP 

mice at the age of 20 weeks double-stained for NPY and BrdU. No neurons positive for both NPY and 

BrdU were detected (n = 4 mice per genotype). Magnification: 100 x. Scale bar: 200 µm.  

 

 

3.2 Leanness in Stat3-CAgRP mice 
 

To investigate the impact of constitutively active Stat3 signaling in AgRP 

neurons on the regulation of energy homeostasis, body weight of female and male 
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control and Stat3-CAgRP mice was monitored from weaning until 20 weeks of age under 

normal chow diet (NCD) and high fat diet (HFD) conditions. Under NCD both female 

and male Stat3-CAgRP mice exhibited an approximately 10 % reduction in body weight 

compared to control mice (Figure 12). This difference was more pronounced under 

HFD conditions, under which Stat3-CAgRP mice gained 15 to 20 % less body weight 

until the age of 20 weeks. This reduction in body weight was similar in female and male 

Stat3-CAgRP mice (Figure 12).  
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Figure 12: Reduced body weight of Stat3-CAgRP mice 

Average body weight of female (upper panel) and male (lower panel) control and Stat3-CAgRP mice under 

NCD and HFD conditions (n = 18 to 53 of each genotype and condition). ■ NCD-fed control mice; □ 

NCD-fed Stat3-CAgRP mice; ● HFD-fed control mice, ○ HFD-fed Stat3-CAgRP mice. 
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To investigate, whether reduced body weight in Stat3-CAgRP mice resulted from 

a decrease in fat mass, the amount of epigonadal fat was examined in female and male 

control and Stat3-CAgRP mice both under NCD and HFD feeding conditions. Consistent 

with the growth curves, female and male Stat3-CAgRP mice displayed significantly 

reduced epigonadal fat pad mass at the age of 20 weeks compared to controls (Figure 

13a and b). The difference in fat pad mass of Stat3-CAgRP and control mice increased 

upon HFD feeding, in that NCD-fed Stat3-CAgRP mice displayed a 30 % reduction in 

epigonadal fat pad weight and HFD-fed mice showed a 40 to 60 % reduction (Figure 

13a and b).  

To further confirm reduced adiposity in Stat3-CAgRP mice, also body fat content 

of 20 week old mice was determined by in vivo magnetic resonance spectrometry. Mean 

body fat content was 20 to 30 % decreased in Stat3-CAgRP mice under NCD and HFD 

conditions (Figure 13c). Leanness was accompanied by reduced concentrations of 

circulating leptin. Here, female Stat3-CAgRP mice exhibited the clearest (40 %) reduction, 

reflecting the most pronounced reduction in fat mass of this group of mice (Figure 13d). 
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Figure 13: Reduced adiposity of Stat3-CAgRP mice 

 (a) Photographs of representative epigonadal fat pads in situ of male control and Stat3-CAgRP mice on 

NCD and female mice on HFD at the age of 20 weeks. (b) Epigonadal fat pad weights of control and 

Stat3-CAgRP mice on NCD and HFD at the age of 20 weeks (n = 5 to 16 of each genotype and condition). 

(c) Average body fat content of control and Stat3-CAgRP mice on NCD and on HFD at the age of 20 weeks 

measured by nuclear magnetic resonance (n = 7 to 11 of each genotype and condition). (d) Serum leptin 

concentrations of control and Stat3-CAgRP mice on NCD and HFD at the age of 20 weeks (n = 13 to 20 of 

each genotype and condition).  
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To investigate whether the reduction in white adipose tissue mass in Stat3-CAgRP 

mice was accompanied by altered adipocyte characteristics, the histomorphology of 

white adipose tissue in control and Stat3-CAgRP mice was assessed by histological 

analysis, which revealed a significant reduction of adipocyte size in Stat3-CAgRP mice 

compared to control mice (Figure 14a). Quantitative assessment of adipocyte size 

revealed a 70 % reduction in the mean adipocyte size in Stat3-CAgRP mice compared to 

control mice under NCD conditions (Figure 14b). Similarly, mean adipocyte size in 

Stat3-CAgRP mice exposed to HFD was reduced by 80 % compared to control mice fed 

the same diet (Figure 14b). Analysis of adipocyte size distribution revealed an increased 

number of small adipocytes and an absence of large adipocytes in epigonadal white 

adipose tissue of Stat3-CAgRP mice both under NCD and HFD conditions (Figure 14c). 
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Figure 14: Reduction of adipocyte size in Stat3-CAgRP mice 

 (a) Representative hematoxylin/eosin-stained epigonadal fat pad sections from male control and Stat3-

CAgRP mice on NCD and HFD at the age of 20 weeks. Magnification: 100 x. Scale bar: 500 µm. (b) Mean 

adipocyte size of epigonadal fat of control and Stat3-CAgRP mice on NCD and HFD at the age of 20 weeks 

(n = 4 to 5 mice per condition). 28 to 49 adipocytes per mouse were measured. (c) Adipocyte size 

distribution of control and Stat3-CAgRP mice under NCD (left panel) and HFD conditions (right panel) (n 

= 4 to 5 mice per condition). 28 to 49 adipocytes per mouse were measured. ■ control mice; □ Stat3-

CAgRP mice. 

 

 

To analyze the onset and development of reduced adiposity, body fat content of 

Stat3-CAgRP mice was determined at different postnatal ages. While at the age of 3 

weeks, there was no difference in body fat content between control and Stat3-CAgRP 

mice, 13 and 20 week old female and male Stat3-CAgRP mice both under NCD and HFD 
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conditions showed 20 to 40 % reduced fat contents (Figure 15). Thus, leanness in Stat3-

CAgRP mice progressively develops after weaning.  

Taken together, these results indicate that constitutive activation of Stat3-

dependent signaling in AgRP-expressing neurons results in a reduction of body weight 

and fat mass. 
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Figure 15: Stat3-CAgRP mice develop reduced adiposity after the postweaning age 

Average body fat content of control and Stat3-CAgRP mice under NCD and HFD conditions at the 

indicated ages measured by nuclear magnetic resonance (n = 7 to 11 of each genotype and condition). 

 

 

3.3 Improved glucose metabolism in Stat3-CAgRP mice 
 

Next, glucose metabolism was compared in control and Stat3-CAgRP mice to 

analyze whether activation of Stat3 signaling in AgRP neurons of Stat3-CAgRP mice 

leads to alterations in glucose metabolism. First, blood glucose of control and Stat3-

CAgRP mice was measured. NCD- and HFD-fed Stat3-CAgRP mice exhibited normal 

blood glucose levels in the fed condition (Figure 16). A 16 h fast resulted in 

significantly lower blood glucose concentrations in female and male Stat3-CAgRP mice 

on HFD compared to controls, whereas Stat3-CAgRP mice on NCD displayed normal 

blood glucose concentrations upon fasting (Figure 16).  
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Figure 16: Improved fasted blood glucose in HFD-fed Stat3-CAgRP mice 

Fed and fasted blood glucose concentrations of control and Stat3-CAgRP mice under NCD and HFD 

conditions at the age of 14 to 15 weeks (n = 15 to 27 of each genotype and condition). 
 

 

Moreover, glucose homeostasis of female and male Stat3-CAgRP mice was 

investigated by insulin and glucose tolerance tests. Insulin tolerance tests revealed no 

difference between insulin sensitivity of control and Stat3-CAgRP mice, neither under 

NCD nor under HFD conditions (Figure 17a). However, glucose tolerance tests 

demonstrate that both female and male HFD-fed Stat3-CAgRP mice were significantly 

more glucose tolerant than controls, while Stat3-CAgRP mice under NCD conditions 

exhibited unaltered glucose tolerance (Figure 17b). 
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Figure 17: Unaltered insulin sensitivity and improved glucose tolerance in Stat3-CAgRP mice 

 (a) Insulin tolerance tests and (b) glucose tolerance tests of female (left panel) and male (right panel) 

control and Stat3-CAgRP mice under NCD and HFD conditions at the age of 13 and 14 weeks, respectively 

(n = 15 to 22 of each genotype and condition). ■ NCD-fed control mice; □ NCD-fed Stat3-CAgRP mice; ● 

HFD-fed control mice, ○ HFD-fed Stat3-CAgRP mice. 

 

 

Consistent with these findings, serum insulin concentrations of Stat3-CAgRP mice 

under NCD conditions were not altered, but serum levels of Stat3-CAgRP mice on HFD 

were slightly decreased (Figure 18).  

The increased glucose tolerance displayed by Stat3-CAgRP mice compared to 

controls indicates that activation of Stat3 in AgRP neurons results in improved glucose 

metabolism. 
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Figure 18: Slightly decreased serum insulin concentrations in HFD-fed Stat3-CAgRP mice 

Serum insulin concentrations of control and Stat3-CAgRP mice under NCD and HFD conditions at the age 

of 20 weeks (n = 13 to 20 of each genotype and condition). 

 

 

3.4 Stat3 activation in AgRP neurons does not alter food intake but 

results in increased energy expenditure 
 

To further analyze the mechanisms resulting in the leanness of Stat3-CAgRP mice, 

energy intake and energy expenditure in these mice were measured. Stat3-CAgRP mice 

showed a food intake comparable to control mice despite their lower body and fat mass 

(Figure 19a). This unaltered food intake was consistent during development both under 

NCD and HFD conditions. However, when food intake was corrected for body weight, 

9 and 13 week old Stat3-CAgRP mice exhibited a relative hyperphagia (Figure 19b). This 

relative hyperphagia was present in female and male Stat3-CAgRP mice under both NCD 

and HFD conditions. In contrast, the relative food intake of 3 week old mice did not 

differ from that of control animals, neither under NCD, nor under HFD conditions 

(Figure 19b).  

Taken together, Stat3-CAgRP mice develop a relative hyperphagia after the 

postweaning age. Thus, decreased body and fat mass in Stat3-CAgRP mice is clearly not 

the result of reduced caloric intake. 
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Figure 19: Relative hyperphagia of Stat3-CAgRP mice 

 (a) Absolute and (b) relative (corrected for body weight) daily food intake of NCD- and HFD-fed control 

and Stat3-CAgRP mice at the indicated ages (n = 6 to 15 of each genotype and condition).  

 

 

Then, energy expenditure of Stat3-CAgRP mice at different ages was determined 

by indirect calorimetrical analysis. This analysis revealed an increase in oxygen 

consumption of Stat3-CAgRP mice compared to control mice (Figure 20). While 5 week 
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old Stat3-CAgRP mice showed only a slight tendency for higher oxygen consumption 

than control animals, 9 week old mice consumed 15 to 20 % more oxygen during both 

day and night phases (Figure 20a and b). Oxygen consumption of older Stat3-CAgRP 

mice at the age of 13 weeks was increased by more than 30 % during the light phase, 

and by even more than 40 % during the dark phase (Figure 20c).  
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Figure 20: Increased basal metabolic rate in Stat3-CAgRP mice 

Oxygen consumption of control and Stat3-CAgRP mice on HFD over time (left panel) and mean oxygen 

consumption of control and Stat3-CAgRP mice (right panel) of (a) 5 week old, (b) 9 week old and (c) 13 

week old mice. ■ control mice; □ Stat3-CAgRP mice. 

 

 

Interestingly, the respiratory exchange ratio, which is the ratio between produced 

carbon dioxide and consumed oxygen, remained unaltered in Stat3-CAgRP mice 

compared to control mice, indicating that control and Stat3-CAgRP mice utilize the same 

substrates for oxidative metabolism (Figure 21).  

Taken together, these data indicate that leanness in Stat3-CAgRP mice is the 

consequence of increased energy expenditure. 
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Figure 21: Unaltered respiratory exchange ratio of Stat3-CAgRP mice 

Mean respiratory exchange ratio of control and Stat3-CAgRP mice under HFD conditions at the age of 13 

weeks (n = 6 of each genotype). 

 

 

3.5 Unaltered AgRP expression in Stat3-CAgRP mice 
 

Next, the expression of different neuropeptides critically involved in the 

regulation of energy homeostasis was determined, particularly the expression of AgRP. 

Basal and fasting-induced AgRP expression in female and male Stat3-CAgRP mice under 

NCD conditions were indistinguishable from AgRP expression in control mice (Figure 

22a). After 48 h of fasting, AgRP mRNA levels were equally elevated in control and 

Stat3-CAgRP mice. This confirms that activation of Stat3 does not alter fasting-induced 

transcription of AgRP mRNA (Kaelin et al., 2006). Analysis of NPY and POMC 

mRNA expression revealed no difference between Stat3-CAgRP and control mice (Figure 

22b).  
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Figure 22: Unaltered hypothalamic neuropeptide expression of Stat3-CAgRP mice 

 (a) Fasting-induced AgRP expression of NCD-fed control and Stat3-CAgRP mice (n = 7 to 9 of each 

genotype). (b) Hypothalamic expression of NPY and POMC of control and Stat3-CAgRP mice on NCD (n 

= 7 of each genotype). 

 

 

As leanness in Stat3-CAgRP mice is a consequence of increased energy 

expenditure, mRNA expression of uncoupling protein (UCP) was determined in white 

adipose tissue, skeletal muscle, and brown adipose tissue of female and male control 

and Stat3-CAgRP mice exposed to HFD. UCPs are mitochondrial proteins involved in 

energy metabolism, thermogenesis and obesity. Whereas UCP-1 is uniquely expressed 

in brown adipose tissue, UCP-2 is expressed in many organs, and UCP-3 is 

predominantly expressed in skeletal muscle. However, this analysis revealed unaltered 

UCP mRNA expression in the analyzed tissues (Figure 23a, b, c). Since energy 

expenditure is also controlled by thyroid function, free triiodothyronine (fT3) levels 

were tested as an indicator of thyroid function in the different groups of mice. Serum 

fT3 levels were not altered in female and male Stat3-CAgRP mice either under NCD or 

under HFD conditions (Figure 23d).  

Thus, increased energy expenditure occurs in the presence of unaltered 

uncoupling protein expression and normal thyroid function. 
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Figure 23: Unaltered UCP expression and thyroid function of Stat3-CAgRP mice 

(a) Expression of UCP-2 and UCP-3 in white adipose tissue (WAT) of female and male control  and 

Stat3-CAgRP mice (n = 6 to 9 of each genotype). (b) Expression of UCP-2 and UCP-3 in skeletal muscle of 

female and male control and Stat3-CAgRP mice (n = 5 to 7 of each genotype). (c) Expression of UCP-1 in 

brown adipose tissue (BAT) of control and Stat3-CAgRP mice (n = 6 to 9 of each genotype). (d) FT3 levels 

in serum of control and Stat3-CAgRP mice under NCD and HFD conditions (n = 13 to 20 of each genotype 

and condition). All experiments were performed on mice under HFD conditions at the age of 20 weeks, if 

not stated otherwise. 
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3.6 Stat3-CAgRP mice exhibit increased locomotor activity 
 

To investigate whether the leanness and the increase in energy expenditure of 

Stat3-CAgRP mice resulted from enhanced locomotor activity, basal locomotor activity of 

control and Stat3-CAgRP mice was analyzed. At 5 weeks of age Stat3-CAgRP mice 

exhibited a mild tendency to higher locomotor activity than their control littermates, 

consistent with the absent tendency towards higher energy expenditure (Figure 24a). At 

9 weeks of age, however, Stat3-CAgRP mice exhibited a drastic increase of basal 

locomotor activity, by 40 % during the light phase and by 60 % during the dark phase, 

compared to control mice, correlating with the observed significant increase of energy 

expenditure at this age (Figure 24b). Stat3-CAgRP mice exhibited highest locomotor 

activity in the beginning of the dark phase, being more than twice as active as their 

control littermates (Figure 24b).  
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Figure 24: Increased basal locomotor activity of Stat3-CAgRP mice 

Basal locomotor activity of control and Stat3-CAgRP mice on HFD over time and mean basal locomotor 

activity of (a) 5 week old and (b) 9 week old control and Stat3-CAgRP mice (n = 7 to 8 of each genotype). 

■ control mice; □ Stat3-CAgRP mice. 

 

 

As fasting increases light and dark phase locomotor activity (Overton and 

Williams, 2004; Williams et al., 2003), fasting-induced locomotor activity was analyzed 

next, to investigate whether locomotor activity of Stat3-CAgRP mice remained higher 

than that of control animals upon fasting. Both control and Stat3-CAgRP mice showed 
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increased locomotor activity upon food deprivation in the light and dark phases (Figure 

25). Again, the fasting-induced locomotor activity of Stat3-CAgRP mice was also 

significantly higher than that of control animals. While the locomotor activity of Stat3-

CAgRP mice was increased by 60 % during the light phase, it was even 70 % higher 

during the dark phase compared to control littermates (Figure 25). 
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Figure 25: Increased fasting-induced locomotor activity of Stat3-CAgRP mice 

Fasting-induced locomotor activity of control and Stat3-CAgRP mice under HFD conditions over time and 

mean basal and fasting-induced locomotor activity of control and Stat3-CAgRP mice at the age of 9 weeks 

(n = 7 to 8 of each genotype) . ■ control mice; □ Stat3-CAgRP mice. 

 

 

To further address whether activating Stat3 signaling specifically in AgRP 

neurons accounts for the observed increase in locomotor activity, mice were generated 

expressing Stat3-C specifically in neighbouring POMC neurons in the ARC of the 

hypothalamus. In contrast to Stat3-CAgRP mice, Stat3-CPOMC mice exhibited unaltered 

locomotor activity and energy expenditure at an age, where both parameters are altered 

in Stat3-CAgRP mice, further supporting the specificity of the observed phenotype in 

Stat3-CAgRP mice (Figure 26a and b). 

Taken together, leanness and increased energy expenditure in Stat3-CAgRP mice 

are the result of a markedly increased locomotor activity of these mice. 
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Figure 26: Unaltered metabolic rate and activity of Stat3-CPOMC mice 

Mean (a) oxygen consumption and (b) locomotor activity of control and Stat3-CPOMC mice at the age of 8 

weeks (n = 5 of each genotype). 

 

 

 To gain insight into the mechanism underlying the increase in locomotor activity 

of Stat3-CAgRP mice, circulating plasma catecholamine concentrations were measured in 

control and Stat3-CAgRP mice to analyze sympathetic nerve activity. Under both NCD 

and HFD conditions, epinephrine and norepinephrine concentrations tended to be lower 

in female and male Stat3-CAgRP mice compared to control mice, while only the 

difference of plasma epinephrine and norepinephrine of NCD-fed male animals reached 

statistical significance (Figure 27a and b).  

Thus, increased locomotor activity does not result from increased peripheral 

sympathetic nerve activity. 
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Figure 27: Plasma catecholamine concentrations of Stat3-CAgRP mice 

Plasma (a) epinephrine and (b) norepinephrine concentrations of female and male control and Stat3-CAgRP 

mice on NCD and HFD at the age of 16 to 18 weeks (n = 8 to 14 of each genotype and condition).  

 

 

Next, catecholamine and serotonin contents in different brain areas critically 

implicated in the regulation of locomotor activity were determined, but this analysis 

revealed no significant differences between control and Stat3-CAgRP mice in the 

examined brain areas (Figure 28a, b, c and d). Nevertheless, Stat3-CAgRP mice exhibited 

a tendency for higher dopamine and serotonin content in the striatum and for higher 

dopamine content in the frontal cortex (Figure 28c and d). 
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Figure 28: Brain monoamine content of Stat3-CAgRP mice 

Relative brain (a) epinephrine, (b) norepinephrine, (c) dopamine and (d) serotonin content of control and 

Stat3-CAgRP mice (n = 7 to 10 of each genotype). All experiments were performed on tissues obtained 

from HFD-fed mice of the indicated genotype and gender at the age of 16 to 20 weeks. Ht: hypothalamus; 

VTA: ventral tegmental area; FrA: frontal association cortex; CPu: caudate putamen (striatum).  

 

 

Moreover, hypothalamic expression of hypocretin and MCH were determined, 

since both neuropeptides are critically involved in the regulation of locomotor activity 

and since AgRP neurons have been demonstrated to project into the lateral 

hypothalamus, where both hypocretin- and MCH-expressing neurons reside (Broberger 

et al., 1998; Hagan et al., 1999). Nevertheless, Stat3-CAgRP mice showed no difference 

in the expression of both hypothalamic hypocretin and MCH compared to control 

animals (Figure 29a and b). 

Taken together, Stat3-CAgRP mice do not exhibit significantly altered brain 

catecholamine and serotonin concentrations or hypothalamic MCH and hypocretin 

expression. Nevertheless, Stat3-CAgRP mice display a tendency for higher dopamine 

concentration in the striatum and the frontal cortex and for higher serotonin 

concentrations in the frontal cortex, potentially accounting for the increased locomotor 

activity in those mice. 
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Figure 29: Unaltered hypothalamic expression of hypocretin and MCH of Stat3-CAgRP mice 

Hypothalamic expression of (a) hypocretin and (b) MCH of control and Stat3-CAgRP mice under NCD 

conditions at the age of 20 weeks (n = 7 of each genotype). 

 

 

3.7. Expression of the Stat3-C transgene selectively in AgRP neurons of 

ob/ob mice ameliorates the obese phenotype  
 

To investigate if expression of a constitutively active Stat3 protein selectively in 

AgRP neurons of ob/ob mice leads to an amelioration of the obese phenotype, Stat3-

CAgRP mice were crossed with ob/ob mice. First, body weight of control ob/ob 

(ob/obStat3-C+/-) and ob/obStat3-CAgRP (ob/obStat3-C+/-AgRPCre+/-) mice under NCD 

conditions was monitored from weaning until the age of 16 weeks to analyze if 

expression of Stat3-C in AgRP neurons of ob/ob mice has an impact on body weight. 

Ob/obStat3-CAgRP mice exhibited an approximately 10 % reduction in body weight from 

weaning until the age of 16 weeks compared to control mice (Figure 30). This reduction 

in body weight was similar in female and male ob/obStat3-CAgRP mice (Figure 30).  
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Figure 30: Reduced body weight of ob/obStat3-CAgRP mice 

Average body weight of NCD-fed female (upper pannel) and male (lower panel) control (ob/ob) and 

ob/obStat3-CAgRP mice (n = 8 to 15 of each genotype). ■ control (ob/ob) mice; □ ob/obStat3-CAgRP mice. 

 

 

To investigate whether the reduction in body weight observed in ob/obStat3-

CAgRP mice resulted from a decrease in fat mass, the amount of epigonadal fat of 16 

week old mice was examined. There was no significant difference between the fat pad 

weights of ob/obStat3-CAgRP and control mice, however, the fat pads of ob/obStat3-

CAgRP mice showed the tendency to be slightly reduced (Figure 31a). 

To further investigate the adiposity of ob/obStat3-CAgRP mice, total body fat 

content of 16 week old mice was determined by in vivo magnetic resonance 

spectrometry. Body fat content of 16 week old ob/obStat3-CAgRP mice was comparable 

to that of control mice (Figure 31b). 
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Figure 31: Unaltered adiposity of ob/obStat3-CAgRP mice 

 (a) Epigonadal fat pad weights and (b) average body fat content of control (ob/ob) and ob/obStat3-CAgRP 

mice at the age of 16 weeks measured by nuclear magnetic resonance (n = 5 to 7 of each genotype).  

 

 

Moreover, glucose metabolism was compared in control and ob/obStat3-CAgRP 

mice to analyze whether expression of Stat3-C in AgRP neurons of ob/ob mice results 

in improved glucose metabolism, similar to the improvement observed in Stat3-CAgRP 

mice. To this end, blood glucose of control and ob/obStat3-CAgRP mice was determined. 

Ob/obStat3-CAgRP mice exhibited normal blood glucose levels in the fed and fasted 

condition, although fasted blood glucose levels were slightly reduced compared to those 

of control animals (Figure 32a). Serum insulin concentrations of ob/obStat3-CAgRP mice 

were comparable to those of control animals (Figure 32b). Glucose tolerance tests 

revealed a tendency for improved glucose tolerance in ob/obStat3-CAgRP mice (Figure 

32c). 
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Figure 32: Slightly improved glucose metabolism of ob/obStat3-CAgRP mice 

 (a) Fed and fasted blood glucose concentrations of control (ob/ob) and ob/obStat3-CAgRP mice at the age 

of 9 and 12 weeks, respectively (n = 7 to 14 of each genotype). (b) Serum insulin concentrations of 

control (ob/ob) and ob/obStat3-CAgRP mice at the age of 8 weeks (n = 7 to 14 of each genotype). (c) 

Glucose tolerance tests of female (left panel) and male (right panel) control (ob/ob) and ob/obStat3-CAgRP 

mice at the age of 12 weeks (n = 8 to 12 of each genotype). ■ control (ob/ob) mice; □ ob/obStat3-CAgRP 

mice. 
 

 

To investigate if the reduced body weight and adiposity of ob/obStat3-CAgRP 

mice was a result of reduced caloric intake, food intake of control and ob/obStat3-CAgRP 

mice was measured. As observed in Stat3-CAgRP animals, absolute food intake of both 

female and male ob/obStat3-CAgRP mice was comparable to that of control animals 
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(Figure 33a). Accordingly, when food intake was corrected for body weight, female 

ob/obStat3-CAgRP mice developed a relative hyperphagia, and also male ob/obStat3-

CAgRP mice did not eat less than control mice (Figure 33b).  

Taken together, reduced body weight and adiposity of ob/obStat3-CAgRP mice is 

not the result of reduced caloric intake. 
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Figure 33: Relative hyperphagia of ob/obStat3-CAgRP mice 

(a) Absolute and (b) relative (corrected for body weight) daily food intake of control (ob/ob) and 

ob/obStat3-CAgRP mice under NCD conditions at age of 9 weeks (n = 6 to 9 of each genotype).  

 

 

Next, energy expenditure of ob/obStat3-CAgRP mice was determined by indirect 

calorimetrical analysis. This analysis revealed a small increase in oxygen consumption 

of ob/obStat3-CAgRP mice compared to control mice, which did not reach statistical 

significance (Figure 34a). As observed in Stat3-CAgRP mice, respiratory exchange ratio 

of ob/obStat3-CAgRP mice was not altered (Figure 34b). 

 

 

 

 

 

 



  Results 

 69

 

0

0.2

0.4

0.6

0.8

1

1.2

ob/ob
ob/obStat3-CAgRP

day night

re
sp

ira
to

ry
ex

ch
an

ge
ra

tio

b

day night
40

60

80

100

120

140

160

180

time of day

07
 a

m
09

 a
m

11
 a

m
01

 p
m

03
 p

m
05

 p
m

07
 p

m
09

 p
m

11
 p

m
01

 a
m

03
 a

m
05

 a
m

07
 a

m

VO
2

[%
 o

f c
on

tro
l]

VO
2

[%
 o

f c
on

tro
l]

day night

ob/ob
ob/obStat3-CAgRP

0

20

40
60

80

100

120
140

160

180

0

0.2

0.4

0.6

0.8

1

1.2

ob/ob
ob/obStat3-CAgRP
ob/ob
ob/obStat3-CAgRP

day night

re
sp

ira
to

ry
ex

ch
an

ge
ra

tio

b

day night
40

60

80

100

120

140

160

180

time of day

07
 a

m
09

 a
m

11
 a

m
01

 p
m

03
 p

m
05

 p
m

07
 p

m
09

 p
m

11
 p

m
01

 a
m

03
 a

m
05

 a
m

07
 a

m

VO
2

[%
 o

f c
on

tro
l]

day night
40

60

80

100

120

140

160

180

time of day

07
 a

m
09

 a
m

11
 a

m
01

 p
m

03
 p

m
05

 p
m

07
 p

m
09

 p
m

11
 p

m
01

 a
m

03
 a

m
05

 a
m

07
 a

m

VO
2

[%
 o

f c
on

tro
l]

VO
2

[%
 o

f c
on

tro
l]

day night

ob/ob
ob/obStat3-CAgRP
ob/ob
ob/obStat3-CAgRP

0

20

40
60

80

100

120
140

160

180

0

20

40
60

80

100

120
140

160

180

 

Figure 34: Slightly increased metabolic rate of ob/obStat3-CAgRP mice 

 (a) Oxygen consumption of 9 week old control (ob/ob) and ob/obStat3-CAgRP mice over time (left panel) 

and mean oxygen consumption of control (ob/ob) and ob/obStat3-CAgRP mice (right panel) (n = 3 to 4 of 

each genotype). (b) Mean respiratory exchange ratio of control (ob/ob) and ob/obStat3-CAgRP mice at the 

age of 9 weeks (n = 3 to 4 of each genotype). ■ control (ob/ob) mice; □ ob/obStat3-CAgRP mice. 

 

 

To investigate, whether the leanness and the increase in energy expenditure of 

ob/obStat3-CAgRP mice resulted from enhanced locomotor activity as observed in Stat3-
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CAgRP mice, basal locomotor activity of control and ob/obStat3-CAgRP mice was 

analyzed. Both female and male ob/obStat3-CAgRP mice exhibited a trend towards 

increased locomotor activity compared to control mice (Figure 35). 

Taken together, expression of a constitutively active Stat3 protein selectively in 

AgRP neurons of ob/ob mice leads to an amelioration of the obese phenotype. This 

amelioration is not the result of reduced caloric intake, but a consequence of increased 

energy expenditure and locomotor activity, consistent with the phenotype observed in 

Stat3-CAgRP mice. 
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Figure 35: Slightly increased locomotor activity of Stat3-CAgRP mice 

Basal locomotor activity control (ob/ob) and ob/obStat3-CAgRP mice over time (left panel) and mean basal 

locomotor activity of control (ob/ob) and ob/obStat3-CAgRP mice (right panel) at the age of 9 weeks (n = 3 

to 4 of each genotype). ■ control (ob/ob) mice; □ ob/obStat3-CAgRP mice. 
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4 Discussion 
 

4.1 Leptin in obesity 
 

Obesity and associated insulin-resistant type 2 diabetes represent a steadily 

growing health burden in industrialized societies. To prevent or treat these diseases, it is 

critical to define the physiological principles for the precise regulation of energy 

homeostasis. The identification and sequencing of the mouse obese gene by J. 

Friedman's group in 1994 opened important new avenues in obesity research. Shortly 

after the discovery of leptin, defects concerning leptin or the leptin receptor were 

described in patients with severe obesity. However, only a very small number of all 

cases of obesity is associated with the absence of leptin or mutations in the leptin 

receptor gene. By contrast, in correlation with increased adipocyte size and number, 

most of the cases of obesity are associated with increased levels of circulating leptin 

(Considine et al., 1996b; Farooqi and O'Rahilly, 2005a; Maffei et al., 1996). Obesity in 

spite of high levels of circulating leptin indicates leptin resistance, i. e. the failure of 

high levels of leptin to suppress food intake and to decrease body weight and adiposity 

(for review, see (Myers et al., 2007)). Various mechanisms are involved in the 

development of leptin resistance, including alterations in the transport of leptin across 

the blood-brain barrier and most importantly alterations in intracellular leptin signaling 

(El-Haschimi et al., 2000; Munzberg et al., 2005). Lack or mutation of the leptin 

receptor on the other hand only accounts for the minority of all cases of obesity-related 

leptin resistance (Considine et al., 1996a). 

 

 

4.2 Central leptin signaling 
 

Several experiments over the last decade have highlighted the pivotal role of 

leptin for normal body weight and glucose homeostasis both in rodents and humans. 

Analyses of brain-restricted leptin receptor knockout mice as well as leptin receptor 

knockout mice with reconstitution of leptin receptor expression selectively in the brain 

have provided clear evidence that leptin action in the central nervous system accounts 

for most of leptin’s effects on energy and glucose homeostasis, if not for all (Cohen et 
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al., 2001; Kowalski et al., 2001). However, the leptin receptor is expressed in several 

regions of the central nervous system, and recent experiments with mice lacking the 

receptor in specific neuronal subpopulations have begun to shed light on the relative 

contribution of leptin signaling in individual regions of the central nervous system with 

respect to the regulation of energy and glucose homeostasis. Mice lacking the leptin 

receptor in POMC and AgRP neurons of the ARC and in neurons of the VMH have 

emphasized the significance of hypothalamic leptin signaling, in particular of leptin 

signaling in neurons of the ARC (Balthasar et al., 2004; Dhillon et al., 2006; van de 

Wall et al., 2007). Moreover, pharmacological studies showing that MC4R antagonists 

can blunt the acute anorectic effect of centrally applied leptin have underlined the 

importance of the melanocortin system in regulating leptin’s effect at least concerning 

the regulation of food intake (da Silva et al., 2004). Furthermore, alterations in 

intracellular leptin signaling in neurons of the ARC were suggested to play a crucial 

role in the development of leptin resistance (El-Haschimi et al., 2000; Munzberg et al., 

2004).  

Taken together, leptin action in POMC- and AgRP-expressing neurons plays a 

key role in the regulation of energy homeostasis. 

 

 

4.3 Activation of a constitutively active Stat3 protein in AgRP neurons 
 

Although our understanding about leptin signaling in the ARC of the 

hypothalamus has improved significantly over the last years, the role of leptin signaling 

and particularly of leptin-evoked Stat3 signaling in AgRP neurons remains controversial. 

Therefore, the aim of this thesis was to study the role of Stat3 in AgRP expressing 

neurons. To this end, mice expressing a constitutively active version of the Stat3 protein 

(Stat3-C) selectively in AgRP neurons were generated. The Stat3-C protein was 

demonstrated to act as a constitutively active DNA-binding transcription factor in vivo 

without exhibiting any oncogenic effects. Furthermore, it was shown that Stat3-C is 

selectively expressed in AgRP neurons of Stat3-CAgRP mice. Therefore, mice 

overexpressing Stat3-C in AgRP neurons provide an adequate tool to study the role of 

Stat3 signaling in AgRP neurons in vivo. Moreover, overexpression of Stat3-C in leptin 
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deficient ob/ob mice serves as a second valuable model to study the role of leptin-

evoked Stat3 activation in AgRP neurons. 

 

 

4.3.1 Role of Stat3 in the regulation of AgRP expression 

 

Much of the research on intracellular signaling pathways activated by the leptin 

receptor and their relative contributions to mediating different aspects of leptin action 

has focused on the leptin-stimulated activation of the Stat3 signaling pathway. Indeed, 

mice with mutated leptin receptors that do not bind Stat3, as well as mice lacking Stat3 

specifically in the brain develop an obese phenotype (Bates et al., 2003; Gao et al., 

2004), underlining the essential role of leptin-stimulated Stat3 activation in the 

regulation of energy homeostasis. Nevertheless, while Stat3 is directly responsible for 

the regulation of POMC expression (Xu et al., 2007), the role of leptin-stimulated 

activation of Stat3 in other distinct leptin-responsive neurons and particularly in the 

regulation of AgRP expression has remained a controversial issue.  

Several observations suggest that leptin regulates AgRP expression directly via 

Stat3. First of all, phosphorylated Stat3 rapidly accumulates in AgRP neurons upon 

leptin administration (Hakansson and Meister, 1998). Furthermore, two Stat3-

responsive elements exist in the AgRP promoter region (Brown et al., 2001). Indeed, 

overexpression of Stat3 in cultured cells inhibits AgRP transcription in reporter gene 

assays (Kitamura et al., 2006). Moreover, mice with a point mutation on the Stat3 

binding site of the leptin receptor as well as pan-neuronal Stat3 knockout mice exhibit 

increased AgRP mRNA expression (Bates et al., 2003; Gao et al., 2004), but these 

experiments do not rule out whether Stat3 activation is directly involved in AgRP 

regulation. Alternatively, increased AgRP expression in those mice and in pan-neuronal 

Stat3 knockout mice may occur secondary to other disturbed signaling events.  

On the other hand, several observations indicate that leptin regulates AgRP 

expression independently of Stat3 activation. The model of Stat3 as a direct regulator of 

AgRP expression in vivo suggests Stat3 to function as a transcriptional repressor, 

indicated by the reverse relationship of leptin signaling and AgRP expression. However, 

in most cases Stat3 functions as a transcriptional activator rather than a repressor 

(Aaronson and Horvath, 2002; Levy and Darnell, 2002). Importantly, AgRP 

overexpression in mice with disrupted leptin receptor-Stat3 signaling was much less 
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pronounced than in db/db mice (Bates et al., 2003). Furthermore, neuronal activity of 

AgRP neurons in mice with leptin receptor-Stat3 disruption was appropriately 

suppressed by leptin (Munzberg et al., 2007), indicating mechanisms other than Stat3-

activation in the suppression of AgRP expression. Above all, AgRP neuron-restricted 

Stat3 gene inactivation has no effect on AgRP expression in vivo (Kaelin et al., 2006). 

Consistent with the data on AgRP neuron-specific Stat3 knockout mice, Stat3-CAgRP 

mice with AgRP neuron-restricted constitutive activation of Stat3 analyzed in this study 

exhibit unaltered expression of AgRP, thus providing evidence that neither the lack of 

Stat3 nor the constitutive activation of Stat3 lead to dysregulated AgRP expression in 

vivo.  

 Several studies suggest the PI3K pathway to be involved in the regulation of 

AgRP expression. Inhibition of the PI3K pathway blocks the inhibitory effect of leptin 

on food intake and PI3K signaling was shown to be directly required for leptin-

mediated inhibition of AgRP expression (Morrison et al., 2005; Zhao et al., 2002). 

These data are consistent with the fact that the AgRP promoter contains two binding 

sites for the transcription factor FOXO and a report indicating that PI3K-mediated 

inhibition of FOXO-1 accounts for leptin’s ability to regulate AgRP expression (Accili 

and Arden, 2004; Kitamura et al., 2006). Besides the involvement of the PI3K pathway, 

it was shown that fasting induced activation of AgRP expression is dependent on the 

presence of glucocorticoids and thus stimulated by the glucocorticoid rerceptor 

(Makimura et al., 2003). 

 

 

4.3.2 Role of Stat3 in AgRP neurons in the regulation of energy homeostasis 

 

Although the expression of AgRP is regulated by mechanisms independent of 

Stat3, Stat3-CAgRP mice reveal a crucial role for Stat3 in AgRP neurons in the regulation 

of energy homeostasis. Stat3-CAgRP mice do not exhibit altered levels of AgRP 

expression, but are leaner than control animals under NCD and exhibit a relative 

resistance to the development of diet-induced obesity. Consistent with the leanness 

observed in Stat3-CAgRP mice, expression of Stat3-C in AgRP neurons of leptin 

deficient ob/ob mice results in reduced body weight compared to control ob/ob mice. 

The leanness of Stat3-CAgRP and ob/obStat3-CAgRP mice underlines the critical role of 

Stat3 activation in AgRP neurons to maintain energy balance. Strikingly, the leanness of 
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Stat3-CAgRP and ob/obStat3-CAgRP mice is not a consequence of reduced food intake but 

occurs as a consequence of increased locomotor activity and energy expenditure. Hence, 

differential pathways activated by leptin within AgRP neurons apparently target 

different biological responses to result in negative energy balance, i.e. leptin-stimulated 

PI3K activation via inhibition of FOXO activity inhibits AgRP mRNA expression, thus 

regulating food intake (Kitamura et al., 2006). These data are consistent with the 

hypophagia observed in mice with acute ablation of AgRP/NPY-expressing neurons and 

also with the late onset hypophagia in AgRP knockout mice (Gropp et al., 2005; Luquet 

et al., 2005; Wortley et al., 2005). This thesis reveals a critical role for Stat3 activation 

in the stimulation of locomotor activity and energy expenditure independent of the 

direct regulation of food intake or AgRP mRNA expression in AgRP neurons. Thus, the 

experiments reveal an important novel mechanistic insight into the role of Stat3 

specifically in AgRP neurons with respect to energy homeostasis.  

 

 

4.3.3 Role of Stat3 in AgRP neurons in the regulation of glucose metabolism 

 

Leptin regulates glucose homeostasis secondary to the control of energy balance, 

feeding and adiposity. On the other hand, there is also evidence for direct regulation of 

glucose metabolism by leptin (Schwartz et al., 1996a). Leptin administration to ob/ob 

mice results in improved glucose metabolism prior to effects on feeding and adiposity, 

presenting an evidence for the direct regulation of glucose metabolism by leptin. 

(Barzilai et al., 1997; Burcelin et al., 1999; Kamohara et al., 1997). Moreover, leptin 

administration to wild type and ob/ob mice regulates hepatic glucose flux (Liu et al., 

1998). The direct regulation of glucose metabolism by leptin is mediated via the central 

nervous system, as central and peripheral administration of leptin have similar effects 

on glucose metabolism (Liu et al., 1998) and brain-specific expression of a leptin 

receptor transgene in db/db mice rescues the diabetic phenotype of db/db mice (Chua et 

al., 2004; Cohen et al., 2001; Kowalski et al., 2001). 

The improved glucose metabolism observed in mice expressing a constitutively 

active Stat3 protein selectively in AgRP neurons most likely occurs as a consequence of 

reduced body weight and adiposity rather than of a direct effect of Stat3 activation in 

AgRP neurons. Thus, while NCD-fed Stat3-CAgRP mice exhibit unaltered blood glucose 

and insulin levels and unaltered glucose tolerance, Stat3-CAgRP mice under HFD 
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conditions exhibit reduced blood glucose and insulin levels and are more glucose 

tolerant than control animals. The amelioration of glucose metabolism in Stat3-CAgRP 

mice correlates with their leanness, which is much more pronounced under HFD 

conditions, indicating that Stat3-CAgRP mice develop a relative resistance to diet-induced 

obesity. Similarly, ob/obStat3-CAgRP mice, which exhibit only a slight reduction in body 

weight without reduced adiposity show almost no improvement of glucose metabolism 

compared to control ob/ob mice. In contrast, a direct effect of Stat3 signaling in AgRP 

neurons on glucose metabolism should result in improved glucose homeostasis in all 

three Stat3-C models. These observations are consistent with data on mice with 

disrupted leptin receptor-Stat3 signaling which indicate that leptin-evoked Stat3 

signaling is involved in the regulation of glucose homeostasis via feeding and adiposity, 

whereas leptin receptor signals independent of Stat3 activation directly regulate glucose 

metabolism independently of effects on energy balance (Bates et al., 2005). 

 

 

4.3.4 Role of Stat3 in AgRP neurons in the regulation of locomotor activity  

 

Locomotor activity plays a substantial role in the regulation of energy 

homeostasis and is thought to represent a major factor in the prevalence of obesity. 

Nevertheless, whereas much research has focused on the control of energy intake in the 

past decade, the research on the regulation of energy expenditure, in particular on 

locomotor activity, has received far less attention. Early studies suggested the 

involvement of the hypothalamus in the regulation of locomotor activity, as chemical 

lesions of the hypothalamus in mice result in hypoactivity (Olney, 1969; Poon and 

Cameron, 1978). Studies on surgical hypothalamic lesions indicated distinct regions of 

the hypothalamus to play a role in the regulation of locomotor activity. Thus, surgical 

lesions of the VMH not only increase food intake and body weight, but also reduce 

locomotor activity (Tokunaga et al., 1991), whereas surgical lesions of the PVN result 

in obesity without affecting locomotor activity (Cox and Powley, 1981).  

Other early studies suggested the involvement of leptin in the regulation of 

locomotor activity, as ob/ob mice are hypoactive (Mayer, 1953). The observation that 

unilateral restoration of leptin signaling in leptin receptor-deficient mice specifically in 

the ARC restores impaired locomotor activity to normal provides the first direct 

evidence for leptin-mediated regulation of locomotor activity in this neuronal site 
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(Coppari et al., 2005). Consistent with these observations, the study of Stat3-CAgRP and 

ob/obStat3-CAgRP mice revealed Stat3-dependent regulation of locomotor activity via 

AgRP neurons. In this thesis, the notion of the involvement of leptin signaling in the 

ARC in the regulation of locomotor activity is extended by two important findings. First, 

the neuronal population responsible for regulating locomotor activity within the ARC is 

directly defined as AgRP-expressing neurons. Second, Stat3 activation in this cell type 

is demonstrated to mediate the regulation of locomotor activity, consistent with the 

reduced locomotor activity of mice with a mutation of the Stat3 binding site of the 

leptin receptor (Bates et al., 2004). Taken together, the data on Stat3-CAgRP and 

ob/obStat3-CAgRP mice introduces a novel model according to which leptin-stimulated 

Stat3 activation in AgRP neurons directly regulates energy homeostasis and locomotor 

activity independent from regulating AgRP mRNA expression. This model is consistent 

with the recent finding that AgRP neuron-specific deletion of the leptin receptor results 

in reduced locomotor activity (van de Wall et al., 2007), but this study did not rule out 

the intracellular signaling molecules responsible for the stimulation of locomotor 

activity whithin AgRP neurons. 

Analysis of central catecholamine concentrations in Stat3-CAgRP mice revealed a 

trend towards elevated dopamine content in the striatum and the frontal cortex, two 

regions receiving projections of various dopaminergic neurons (Lindvall and Bjorlund, 

1983). This notion is supported by the decreased peripheral catecholamine 

concentrations of Stat3-CAgRP mice, as elevated central catecholamine concentrations 

were shown to decrease plasma catecholamine concentrations and thereby peripheral 

sympathetic activity (for review, see (Struthers and Dollery, 1985)). Dopaminergic 

neurons represent classical regulatory centers for locomotor behaviour, as blocking or 

stimulation of postsynaptic dopamine receptors reduces or increases locomotor activity, 

respectively (Arnt, 1987). Moreover, inhibition of dopamine transporters resulting in 

elevated synaptic dopamine concentration stimulates locomotor activity (Woolverton 

and Johnson, 1992) and dopamine-deficient animals are hypoactive (Zhou and Palmiter, 

1995). Thus, increased dopamine levels in the striatum and frontal cortex potentially 

account for the increased locomotor activity of Stat3-CAgRP mice. 

Different studies suggest the involvement of leptin in the regulation of dopamine 

release in distinct brain areas (Krugel et al., 2003; Roseberry et al., 2007), but the role 

for the ARC in this context remains unexplored. AgRP neurons may regulate the 

dopaminergic system via projections to MCH expressing neurons in the lateral 
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hypothalamus, as MCH neuronal projections regulate the dopaminergic system (Marsh 

et al., 2002; Smith et al., 2005). Nevertheless, the absence of detectable changes in 

MCH and hypocretin expression in Stat3-CAgRP mice indicates the existence of 

alternative pathways by which AgRP neurons control locomotor activity. Although the 

literature is sparse on how ARC neurons integrate the regulation of locomotor 

behaviour, some studies indicate a role for Y2, MSH and MC4R-signaling in control of 

striatal dopamine regulation and locomotor activity, consistent with the trend towards 

increased dopamine concentrations in this region observed in Stat3-CAgRP mice. 

(Adewale et al., 2007; Hsu et al., 2005; Sanchez et al., 2001; Sandyk, 1990; Singhal and 

Rastogi, 1982)  

 

 

4.4 Perspectives 
 

Overexpression of a constitutively active Stat3 protein in wild type mice 

revealed a crucial role for Stat3 in AgRP neurons in the regulation of energy 

homeostasis and particularly in the regulation of locomotor activity. Overexpression of 

the constitutively active Stat3 protein in leptin deficient mice further supports this 

finding. Future studies are needed to define the anatomical interaction of AgRP neurons 

with neuronal centers that control locomotor activity and the exact molecular 

mechanism in AgRP neurons leading to Stat3-dependent activation of locomotor 

activity in more detail. Nevertheless, Stat3-dependent regulation of locomotor activity 

provides a promising new target for the development of novel therapeutic approaches to 

the current obesity epidemic.  
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5 Summary 
 

Over the last years, much of the research on obesity has focused on the study of 

leptin. This adipocyte-derived hormone circulates in proportion to fat mass and 

functions as an adiposity signal to decrease energy intake and increase energy 

expenditure in order to maintain energy homeostasis. Leptin signals informations on 

body energy stores to hypothalamic neurons located in the arcuate nucleus (ARC) of the 

hypothalamus. One of the leptin-regulated neuronal subtypes in the ARC are the 

orexigenic agouti-related peptide (AgRP)-producing neurons, which are directly 

inhibited by leptin. A key pathway downstream of the leptin receptor involves 

activation of the signal transducer and activator of transcription 3 (Stat3), but the role of 

Stat3 in the regulation of AgRP neurons remains controversial.  

In this study, analysis of Stat3-CAgRP mice expressing a constitutively active 

version of the Stat3 protein (Stat3-C) selectively in AgRP neurons reveals a crucial role 

for Stat3 in AgRP neurons in the regulation of energy expenditure in vivo. Stat3-CAgRP 

mice are lean and develop a relative resistance to diet-induced obesity accompanied by 

improved glucose homeostasis. The lean phenotype of Stat3-CAgRP mice appears in the 

presence of unaltered AgRP expression and caloric intake as a consequence of increased 

energy expenditure evoked by elevated locomotor activity. Consistent with the 

phenotype observed in Stat3-CAgRP mice, expression of Stat3-C in AgRP neurons of 

leptin deficient ob/ob mice diminishes the obese phenotype of ob/ob mice as a result of 

increased energy expenditure and locomotor activity in the presence of unaltered food 

intake. 

Analysis of brain catecholamines in Stat3-CAgRP mice revealed a trend towards 

elevated dopamine concentrations in the striatum and frontal cortex, which potentially 

account for the increased locomotor activity in those mice. Nevertheless, the anatomical 

interaction of AgRP neurons with neuronal centers that control locomotor activity and 

the exact molecular mechanism in AgRP neurons leading to Stat3-dependent activation 

of locomotor activity have to be defined further. Taken together, this thesis introduces a 

novel model according to which leptin-stimulated Stat3 activation in AgRP neurons 

directly regulates locomotor activity independent of the regulation of AgRP mRNA 

expression.  
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6 Zusammenfassung 
 

 Ein Schwerpunkt der Adipositasforschung der letzten Jahre konzentrierte sich 

auf die Untersuchung von Leptin. Das Hormon Leptin wird von Adipozyten 

proportional zur Fettmasse sezerniert und dient als „Fett-Signal”, indem es die 

Kalorienzufuhr verringert und den Energieverbrauch erhöht, um ein Gleichgewicht im 

Energiehaushalt des Körpers zu erzielen. Leptin signalisiert Neuronen im Nucleus 

Arcuratus (ARC) des Hypothalamus den Zustand körpereigener Energiereserven. Die 

orexigenen AgRP (agouti-related peptide)-produzierenden Neuronen im ARC werden 

unmittelbar durch Leptin inhibiert. Ein Hauptsignalweg des Leptinrezeptors aktiviert 

Stat3 (signal transducer and activator of transcription 3), dessen Rolle in der 

Regulierung der AgRP Neuronen jedoch bisher ungeklärt blieb. 

Die Analyse von Stat3-CAgRP Mäusen, die eine konstitutiv-aktive Form des Stat3 

Proteins (Stat3-C) gezielt in AgRP Neuronen exprimieren, deckt in dieser Arbeit eine 

entscheidende Funktion von Stat3 in AgRP Neuronen in der Regulierung des 

Energieverbrauchs in vivo auf. Stat3-CAgRP Mäuse sind schlank und entwickeln eine 

relative Resistenz gegenüber Fettdiät-induzierter Adipositas bei gleichzeitiger 

Verbesserung der Glukosehomöostase. Dieser Phänotyp resultiert aus einem erhöhtem 

Energieverbrauch, der durch gesteigerte Bewegungsaktivität hervorgerufen wird. Die 

Expression von AgRP und die Kalorienzufuhr in Stat3-CAgRP Mäusen sind jedoch 

unverändert. In Übereinstimmung mit dem beobachteten Phänotyp der Stat3-CAgRP 

Mäuse weisen Leptin-defiziente ob/ob Mäuse mit AgRP-spezifischer Expression des 

Stat3-C Proteins reduzierte Fettleibigkeit aufgrund gesteigerten Energieverbrauchs und 

Bewegungsaktivität bei unveränderter Kalorienzufuhr auf.  

Die Analyse von Katecholaminen im Gehirn von Stat3-CAgRP Mäusen ergab eine 

Tendenz zu erhöhter Dopaminkonzentration im Striatum und frontalen Kortex, die 

möglicherweise die gesteigerte Bewegungsaktivität der Mäuse verursacht. Die 

Interaktion von AgRP Neuronen mit neuronalen Zentren, die die Bewegungsaktivität 

regulieren und der exakte neuronale Mechanismus in AgRP Neuronen, der über die 

Aktivierung von Stat3 zu erhöhter Bewegungsaktivität führt, müssen jedoch weiter 

erforscht werden. Zusammengefasst präsentiert diese Arbeit ein neues Modell, nach 

dem die Aktivierung von Stat3 in AgRP Neuronen durch Leptin die Bewegungsaktivität 

unabhängig von der Expression von AgRP reguliert. 
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