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Abstract / Kurzzusammenfassung 
 

Metabolic network analysis will play a major role in “Systems Biology” in the future 

as they represent the backbone of molecular activity within the cell. Recent studies 

have taken a comparative approach toward interpreting these networks, contrasting 

networks of different species and molecular types, and under varying conditions. We 

have developed a robust algorithm to calculate shortest path in the metabolic network 

using metabolite chemical structure information. A divide and conquer technique 

using Maximal Common Subgraph (MCS) approach and binary fingerprint was used 

to map each substrate onto its corresponding product. Then for the calculation of the 

shortest paths (using modified Breadth First Search algorithm) the two biochemical 

criteria “local” and “global” structural similarity were used, where “local similarity” 

is defined as the similarity between two intermediate molecules and “global 

similarity” is defined as the amount of conserved structure found between the source 

metabolite and the destination metabolites after a series of reaction steps. The 

pathway alignment was introduced to find enzyme(s) preference in the pathway of 

various organisms (a local and global outlook to metabolic networks). This was also 

used to predict potentially missing enzymes in the pathway. A novel concept called 

“load points” and “choke points” identifies hot spots in the network. This was used to 

find important enzymes in the pathogens metabolic network for potential drug targets. 

 

Die Analyse von metabolischen Netzwerken wird eine große Rolle in der 

„Systembiologie“ der Zukunft spielen, weil sie das Rückgrat der molekularen 

Aktivitäten in der Zelle repräsentieren. Kürzlich erfolgte Studien verwenden 

vergleichende Ansätze zur Interpretation dieser Netzwerke, um zwischen 

verschiedenen Spezies und verschiedenen Bedingungen zu unterscheiden. Wir haben 

eine robusten Algorithmus zur Berechnung von kürzesten Pfaden in metabolischen 

Netzen unger Verwendung von chemischer Strukturinformation entwickelt. Eine 

Divide-and-Conquer-Technik unter Verwendung von Maximal Common Subgraph 

(MCS) und Fingerprint Algorithmen bildet jedes Substrat auf das korrespondierende 

Produkt ab. Für die Berechnung der kürzesten Pfade (mit einem modifizierten 

Breitensuche-Algorithmus) werden die beiden Kriterien “lokale” und “globale” 

strukturelle Ähnlichkeit verwendet, wobei die “lokale Ähnlichkeit” als Ähnlichkeit 

zwischen zwei Molekülen einer Reaktion und die “globale Ähnlichkeit” als Anteil der 



vii 

konservierten Struktur zwischen Ausgangs- und Endpunkt nach einer Reihe von 

Reaktionsschritten definiert ist. Das Alignment von Pfaden wurde eingeführt, um die 

Enzyme eines Pfades zwischen verschiedenen Organismen zu vergleichen (für eine 

lokale und globale Betrachtung von metabolischen Netzen). Das Alignment wurde 

ebenfalls benutzt, um potentiell fehlende Enzyme im Pfad vorherzusagen. Ein neues 

Konzept, das “load points” und “choke points” genannt wird, identifiziert Hotspots im 

Netzwerk. Es wurde verwendet, um wichtige Enzyme in metabolischen Netzen von 

pathogenen Organismen als potentielle Ziele für Medikamente zu finden. 
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1. Network  

Equation Chapter 1 Section 1 

The advances in technology and communication have motivated the development of 

numerous random network models (Banavar, Maritan et al. 1999; Newman, Watts et 

al. 2002) contending to describe graphs of biological, technological, and sociological 

origin (Wasserman and Faust 1994; Newman 2001). The success of a graph model 

has been evaluated by how well it reproduces a few key features of the real-world 

data, such as degree distributions, mean geodesic lengths, and clustering coefficients 

(Newman 2001; Strogatz 2001; Barabasi 2002). The network can be described using 

graph theory, as a set of nodes and edges depicting a relationship between them 

(Newman, Strogatz et al. 2001; Watts 2003). For example, a graph model of actors 

(nodes) and their movies (edges) highlights the connection (often called as ties) 

between them. Both actors and ties can be defined in different ways depending on the 

questions of interest. An actor might be a single person, a team, or a company (Albert 

and Barabasi 2000). A tie might be a friendship between two people, collaboration or 

common member between two teams, or a business relationship between companies. 

A group of actors are related if they share common edges between them. Further these 

networks can be assigned as directed or undirected depending upon the relationship 

they depict. Consider the directed graph whose nodes correspond to static pages on 

the web, and whose edges correspond to hyperlinks between these pages. Some 

interesting properties of a network’s topology include its diameter, degree 

distributions, connected components, and macroscopic structure (Newman 2001; 

Newman 2001). 

 

Many of the existing networks such as biological networks, food webs, social 

acquaintance networks, the Internet or highway transportation networks appear to 

share common architectonic principles (Strogatz 2001; Barabasi 2002; Newman 

2003). All these networks are sparse yet possess clusters. Many of them also feature a 

highly efficient pathway structure, in which only a small number of intermediate 

connections have to be passed in order to get from one node to another. In relation to 

social networks this has long been known as the “small-world” phenomenon where 

persons are linked with only six degrees (that means, six intermediate persons) of 

separation (Milgram 1967). 
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More recently, the growing availability of network data—from topological data about 

the Internet to metabolic and regulatory cellular networks—has attracted researchers 

to undertake a joint heading of network analysis (Krapivsky, Rodgers et al. 2001; 

Liljeros, Edling et al. 2001; Barabasi and Oltvai 2004; Lieberman, Hauert et al. 2005; 

Ma'ayan, Lipshtat et al. 2006). Moreover, the field was recently called network 

science to emphasize the interdisciplinary nature of the research. 

 

1.1. Types of Graphs 

 

The informal definition of a graph is a set of nodes with edges connecting some of 

them. However, there can be several variations on this theme, each of which has a 

special name. The graph can be directed (when edges point from one node to another) 

or undirected (edges point both ways). A graph can be a self-graph or a bipartite graph 

depending on whether the set of nodes pointed to by edges is the same as the set of 

nodes pointed from, or not. In addition, edges can have different weights, or not, 

which differentiates weighted graphs from unweighted graphs. All of these terms are 

formally defined below (Figure 1, Figure 2, Figure 3) show examples of these. 

 
Figure 1. Edges in a directed graph point one way, such as a graph of metabolic network were 
edges implies relationship from one metabolite (substrate) to another (product) 
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Figure 2. Undirected graphs have edges pointing both ways, such as a enzyme-enzyme graph. 
These represent  self-graphs.  

 
Figure 3. A bipartite graph has edges connecting two different sets of nodes, such as reactions 
and the metabolites coding it.  A weighted graph has weights for each edge, such as the 
stoichiometric weight of the reaction. 

 
Definition 1 (A simple Graph or Self-graph is defined as) 

A graph  = ( , ) is a set of Ν nodes, and a set  of E edges between them. The 

number of nodes is denoted by N = ║ ║, and the number of edges by E = ║ ║. 

 
Definition 2 (Bipartite graph is defined as) 

 In a bipartite graph, the set of nodes  consists of two disjoint sets of nodes 1 and 

2:  = 1
 U 2.  Any edge connects a node in 1 to a node in 2, that is, (i, j) ∈ 
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 ⇒ i ∈ 1 and j ∈ 2. The number of nodes in the two node set are N1 = ║ 1║ 

and N2 = ║ 2║. The number of edges is still E = ║ ║. 

 

Definition 3 (Directed and undirected graph is defined as) 

In a directed graph  = ( , ), each edge (i, j) ∈  points from node i to node j. An 

undirected graph is a directed graph where edges point both ways, that is, (i, j) ∈  

⇒ (j, i) ∈ . 

 

Definition 4 (Weighted and unweighted graphs is defined as)  

A weighted graph  = ( , , ), has a set of nodes , and a set of edges  ; and 

 represents the corresponding weights of those edges. 

 
Weighted graphs can be both self-graphs or bipartite graphs. Unweighted graphs are 
a special case of weighted graphs, with all weights set to 1. 
 
Definition 5 (Adjacency matrix of a self-graph) 
 
The adjacency matrix A of a weighted self-graph  = ( , , ) is an N × N matrix 
such that  
 
    

 ,
,

( , )
1.....

i j
i j

w      if i j   
A for i N

0          otherwise

!"#$
= "%
$&

 (1.1) 

 
 
The adjacency for an unweighted self-graph merely replaces wi,j by 1. 
 
 
 
 
Definition 6 (Adjacency matrix of a bipartite-graph) 
 
The adjacency matrix A of a weighted bipartite-graph  = ( , , )  with 

 is an N1 × N2 matrix such that 
 

 1

2

, 1.....
, 1.....

( , )i j i N
i j j N

w      if i j   
A for 

0          otherwise

! "
"

"#$
= %
$&

 (1.2) 

 
 
The adjacency for an unweighted bipartite-graph merely replaces wi,j by 1. 
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In addition, graph nodes and edges can have attached labels (i.e., categorical values); 

such graphs are called labeled graphs. However, our work has focused on unlabeled 

and unweighted graphs, both self- and bipartite, and both directed and undirected lists 

(Table 1) these symbols. 

Table 1. Basic Graph Theory Notations 

 

1.2. Properties of Networks 

Network science offers a quantifiable description of the networks that characterize 

various systems. Here I will introduce and define the most basic network measures 

that allow us to compare and characterize different complex networks. 
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1.2.1 Degree 

 

The most elementary characteristic of a node is its degree (or connectivity), k, which 

denotes the number of links the node has with other nodes (Barabasi and Oltvai 

2004). For example, in the undirected network shown in Figure 4, node A has degree 

k = 5. Highly connected nodes in the network are often termed as “hubs” in the 

network, for example node A.  

 

 
Figure 4. An example of an undirected graph. The shortest distance between node B to A is one 
step. The incoming/outgoing degree of node A is 5.  

In a directed network (each link has a defined direction; see Figure 5), there is an 

incoming degree, k in, which denotes the number of links that point to a node, and an 

outgoing degree, k out, which denotes the number of links that start from it. For 

example, node A in Figure 5 has k in = 4 and k out = 1. An undirected network with N 

nodes and L links is characterized by an average degree <k> = 2L/N (where <> 

denotes the average). 
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B

C

A

D

G

FEH

 
Figure 5. An example of a directed graph. The shortest path between node B to A is one step and 
between A to B is three steps. The incoming degree of node A is 4, whereas outgoing degree is 1.  

 
1.2.2 Power Law and the Degree Distribution 

Previous studies indicate that most of the biological networks are scale-free (Barabasi 

and Oltvai 2004), meaning their degree distribution approximates a power law, P(k) ~ 

k –γ, where γ is the degree exponent and ~ indicates ‘proportional to’.  The degree 

distribution, P(k), gives the probability that a selected node has exactly k links. It is 

obtained by counting the number of nodes N(k) with k = 1, 2… links and dividing it 

by the total number of nodes N (Barabasi and Oltvai 2004). The degree distribution 

allows us to distinguish between different classes of networks. 

The value of γ determines many properties of the system i.e. the smaller the value of 

γ, the more important the role of the hubs is in the network. While for γ>3 the hubs 

are not relevant, for 2>γ>3 there is a hierarchy of hubs, with the most connected hub 

being in contact with a small fraction of all nodes, and for γ = 2 a hub-and-spoke 

network emerges, with the largest hub being in contact with a large fraction of all 

nodes. In general, the unusual properties of scale-free networks are valid only for γ<3, 

when the dispersion of the P(k) distribution, which is defined as 2 2 2
k k! =< > " < > , 
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increases with the number of nodes (that is, σ diverges), resulting in a series of 

unexpected features such as a high degree of robustness against accidental node 

failures (Albert, Jeong et al. 2000). For γ>3 however, most unusual features are absent 

and in many respects the scale-free network behaves like a random one (Barabasi and 

Oltvai 2004) . 
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1.3 Shortest Path Analysis 

Distance in networks is measured with the path length, which tells us how many links 

we need to pass through to travel between two nodes. As there are many alternative 

paths between two nodes, the shortest path — the path with the smallest number of 

links between the selected nodes — has a special role (Barabasi and Oltvai 2004). In 

directed networks, the shortest distance lAB from node A to node B is often different 

from the distance lBA from B to A. For example, in Figure 5 lBA = 1, whereas lAB = 3. 

Often there is no direct path between two nodes. As shown in Figure 5, although there 

is a path from C to A, there is no path from A to C.  

1.3.1 Common Algorithms for Calculating Shortest Path in the Network 

• Dijkstra’s algorithm — solves single source problem if all edge weights are 

greater than or equal to zero. Without worsening the run time, this algorithm 

can in fact compute the shortest paths from a given start point s to all other 

nodes (Cormen, Leiserson et al. 2001; Jungnickel 2002). Time complexity O 

(|V||E| log |V|) or O|V3|. 

• Bellman-Ford algorithm — solves single source problem if edge weights may 

be negative (Cormen, Leiserson et al. 2001; Jungnickel 2002). Time 

complexity O (|V|2|E|) 

• A* search algorithm — solves for single source shortest paths using heuristics 

to try to speed up the search (http://en.wikipedia.org/wiki/A-

star_search_algorithm). 

• Floyd-Warshall algorithm — solves all pairs shortest paths (Jungnickel 2002). 

Time complexity varies from O |V3| to O |E|. 

 

 

In the present work we will deal with un-weighted graphs, hence the complexity 

would be O (|E|).
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1.3.2 Path Finding with Breadth First Search Algorithm (BFS) and its 

Improvised Version 

The standard algorithm of BFS can be defined as naϊve method (non-heuristic) that 

aims to expand and examine all nodes of a graph logically in search of a solution. In 

other words, it exhaustively searches the entire graph without considering the goal 

until it finds it.  From the standpoint of the algorithm, all child nodes obtained by 

expanding a node are added to a FIFO (First In First Out) queue. In typical 

implementations, nodes that have not yet been examined for their neighbors are 

placed in some container (such as a queue or linked list) called "open" and then once 

examined are placed in the container "closed" (Jungnickel 2002). The standard 

runtime complexity for a BFS to find shortest path is O (|V||E|).  

 

A modified form of standard Breadth First Search (BFS) algorithm was proposed by 

Newman (Newman 2001) to calculate shortest path in an un-weighted network. The 

algorithm allows to calculate the shortest paths from all vertices to the target j in a 

single run, and not just from the single vertex i as per original algorithm. Thus we can 

calculate n shortest paths in time O(m), where n is the number of vertices in the graph. 
 
 

 

1.4   Mean Path Length 

 

The Average Shortest Path (ASP) (1.3), <l> or, represents the average over the 

shortest paths between all pairs of nodes and offers a measure of a network’s overall 

navigability (Watts 1999). Another term used for such an analysis is Average Path 

Length (AL), which is defined as the shortest path length averaged for every pair of 

metabolites in the whole network (Jeong, Tombor et al. 2000). 

 

 
,

1
( , )

( 1)
i j

ASP d i j    with  i j
N N

= !
"
#     (1.3)  
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1.5 Clustering Coefficient 

 

In many networks, if node A is connected to B, and B is connected to C, then it is 

highly probable that A also has a direct link to C (Figure 4, Figure 5). This 

phenomenon can be quantified using the clustering coefficient (Watts and Strogatz 

1998) I IC  = 2n /k (k-1) ! , where nI is the number of links connecting the kI neighbors 

of node I to each other.  
 
The average clustering coefficient <C>, characterizes the overall tendency of nodes to 

form clusters or groups. An important measure of the network’s structure is the 

function C(k),which is defined as the average clustering coefficient of all nodes with k 

links. For many real networks C(k) ~ k – 1, which is an indication of a network’s 

hierarchical character (Ravasz, Somera et al. 2002). 

 

Note: The average degree <k>, average path length <l> and average clustering 

coefficient <C> depend on the number of nodes and links (N and L) in the network. 

By contrast, the P (k) and C (k) functions are independent of the network’s size and 

they therefore capture a network’s generic feature, which allows them to be used to 

classify various networks. 

 

1.6     Types of Networks 

Network models are crucial for shaping our understanding of complex networks and 

help to explain the origin of observed network characteristics. One can also plot the 

relative frequency of each node as a function of the number of connections of the 

nodes. Both axes in the plot use logarithmic scales. Using data from real networks or 

from simulations of different types of randomized networks, one obtains log-log plots 

that have characteristic shapes depending on the properties of the networks and how 

they were generated. Examples are shown in the Figure 6 cited by (Barabasi and 

Oltvai 2004).  
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Figure 6. Three models had a direct impact on our understanding of biological networks. They 
were Random, Scale-free and Hierarchical networks 

 

The classical random network theory by Erdös and Renyi (Erdös and Rényi 1960) 

states that given a set of nodes, the connections are made randomly between the 

nodes. This results in a network where most nodes have the same number of 

connections. The log-log frequency plot for this kind of network is shown above. 

(Figure 6). 
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Recent research has shown that this model does not fit the structure found in several 

important networks, such as the World-Wide Web, power grids, or social networks. 

Instead, a so-called scale-free, hierarchical model better describes these complex 

networks where most nodes have only a few connections, but a few nodes (called 

hubs) have a very large number of connections. Jeong, Barabasi et al (Jeong, Tombor 

et al. 2000), indicate that metabolic networks are examples of such scale-free 

networks. For example, Pyruvate would be a hub in metabolic networks as it is a 

metabolite that takes part in many chemical reactions. This result is important, and 

will probably lead to new insights into the function of metabolic networks, and into 

the evolutionary history of the networks. 

 

The characteristic shape of a scale-free, hierarchical network can be represented 

in a log-log plot (Figure 6). Scale-free networks can be generated by growth and 

preferential attachment (Barabasi and Albert 1999). Starting with some connected 

nodes, at each step a new node is added to the network (growth). The new node 

establishes connections with the already existing nodes. However, nodes with many 

connections are preferred. This results in an imbalanced degree distribution, in which 

highly connected nodes of the existing network get even more new connections (“rich 

get richer”) (Barabasi 2002). The network that is created by the Barabási–Albert 

model does not have an inherent modularity, so C(k) is independent of k (Figure 6). 

Scale-free networks with degree exponents 2< <3, a range that is observed in most 

biological and non-biological networks, are ultra-small (Chung and Lu 2002; Cohen 

and Havlin 2003), with the average path length following l log log N� , which is 

significantly shorter than log N that characterizes random small-world networks.  
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1.7 Biological Networks 

 

In the present “omics” era, it becomes increasingly more obvious that network 

analysis is essential for the analysis of genetic, proteomics and metabolomics data 

(Hartwell, Hopfield et al. 1999; Grigorov 2005). Large-scale, graph-based 

mathematical models have been developed to demonstrate the intrinsic hierarchical 

modularity of metabolic networks (Ravasz, Somera et al. 2002) and their robustness 

based on the shortest path analysis of the metabolic networks (Arita 2004; Barabasi 

and Oltvai 2004; Papin, Reed et al. 2004).  

 

A typical metabolic network consists of reactions, metabolites and enzymes, which 

can be modelled using graph theory (Jeong, Tombor et al. 2000; Schuster, Fell et al. 

2000; Girvan and Newman 2002; Oltvai and Barabasi 2002; Steinbeck, Han et al. 

2003). These representations lead from a simple graph consisting of edges (reactions) 

and nodes (metabolites) or vice versa to a complex bipartite graph where two nodes 

(metabolites) share a common node (reaction/enzymes) (Rahman, Advani et al. 2005). 

Joining enzymes that share a common metabolite in a path can create enzyme-centric 

networks. The enzyme-centric view (Horne, Hodgman et al. 2004; Rahman, Advani et 

al. 2005) simplifies the representation of the metabolic network(Figure 7) by removing 

loose ends in the network (metabolites at the periphery of the network) and forming 

clusters of interacting enzymes. The gene-centric view has been successfully used in 

determining co-regulated genes in the metabolic and regulatory networks (Levchenko 

2003; Covert, Knight et al. 2004; Luscombe, Babu et al. 2004; Ozbudak, Thattai et al. 

2004; Barrett, Herring et al. 2005). 
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Figure 7. Bipartite view of one of the shortest paths between pyruvate and citrate in Bacillus 
subtilis 168 (A). Metabolic-centric view (B-top-right) and enzyme-centric view (C-bottom-right) 
of the above mentioned path. 
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