
Chapter 2                                                                           Shortest Path Analysis in Metabolic Networks 

17 

2. Shortest Path Analysis in Metabolic Networks 

Equation Chapter 2 Section 2 

2.1. Biological Network 

 

The state of a cell consists of all those parameters--both internal and external - which 

determine its behaviour. Following the Central Dogma of molecular biology, the 

activity of a cell is determined by which of its genes are, and are not being expressed. 

If a particular gene is being expressed, its DNA is transcribed into complementary 

messenger RNA (mRNA), which is then translated into the specific protein the gene 

codes for. We can measure the level of expression of each gene by measuring how 

many mRNA copies are present in the cell. 

 

Apart from the manifestation of the classical central dogma, of DNA -> mRNA -> 

protein pathway, it is important to note that the genes in the DNA are themselves 

regulated by the presence or absence of certain proteins. Furthermore, many of the 

interactions going on in the cell occur entirely at the protein level, which can cause 

significant discrepancies between protein and mRNA levels. In a recent comparison 

of selected mRNA and protein abundances in the human liver, a correlation of only 

0.48 was observed between the two (Anderson and Seilhamer 1997). Clearly, protein 

levels form an important part of the internal state of a cell.  

 

In addition to mRNA and protein levels, one could imagine measuring a number of 

other parameters, including cell volume, growth rate, methylation states of DNA, 

phosphorylation state of proteins, localization of proteins and mRNA within the cell, 

ion levels, etc. One class of data which prove be very useful is metabolite and nutrient 

levels.  

 

In the post genomic era the key aim for researchers is to understand the interactions 

between various biological processes within the living cell (Hartwell, Hopfield et al. 

1999; Wagner and Fell 2001; Barabasi and Oltvai 2004; Xia, Yu et al. 2004). 

Biological networks can be broken down into genetic (Hasty, McMillen et al. 2002; 

Wall, Hlavacek et al. 2004), protein (Koonin, Wolf et al. 2002) and metabolic (Bray 

2003) networks. Various types of interaction webs, or networks, (including protein–
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protein interaction (Lappe and Holm 2004), metabolic, signalling and transcription-

regulatory networks (Ideker 2004)) emerge from the sum of these interactions (Kitano 

2002; Oltvai and Barabasi 2002). None of these networks are independent, instead 

they form a 'network of networks' that is responsible for the behaviour of the cell 

(Oltvai and Barabasi 2002; Alon 2003). A major challenge of contemporary biology is 

to embark on an integrated theoretical (Kelley, Sharan et al. 2003) and experimental 

programme to map out, understand and model in quantifiable terms the topological 

and dynamic properties (Barabasi and Albert 1999) of the various networks  that 

control the behaviour of the cell (Wagner and Fell 2001; Papp, Pal et al. 2004).  

 

Currently, most studies trying to infer expression mechanisms from cell state data use 

mRNA levels, because they are the easiest to measure (especially with the new large-

scale gene expression technologies). Large-scale protein measurements tend to be 

incomplete (typically only measuring the highest abundant proteins), but can be 

supplemented with more exact measurements of individual proteins, which are known 

to play an important role. If most protein levels turn out to be exactly correlated with 

the corresponding mRNA levels, they can always be left out of the model. Similarly, 

when measuring gene expression data in a process involving cellular metabolism an 

effort should be made to quantify the most important metabolite and nutrient levels.  

 

For example, in the diauxic shift, yeast switch from anaerobically fermenting glucose 

to form ethanol to aerobically consuming this ethanol when the glucose is exhausted. 

Analysis of the diauxic shift using DNA microarrays revealed that very many genes 

change their expression during this switch in nutrient utilization. The interrelationship 

between specific gene expression changes and metabolic changes however, remains 

unclear primarily because the temporal course of changes in metabolite concentrations 

and fluxes has not been studied adequately. 

 

For example, by using information on the network topology from genome-scale 

protein & metabolic reconstruction, it is possible to reveal patterns in these networks 

that follow a common transcriptional response. The gene expression pattern is a strong 

indicator of perturbations induced in specific part(s) of the metabolic network. Any 

changes due to the perturbation are then propagated through the biological network 

because of the highly connected nature of metabolism.  
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 In the following section I will introduce some biological networks and their design 

principles. 

2.1.1. Gene Network 

"The mRNA levels sensitively reflect the state of the cell, perhaps uniquely defining 

cell types, stages, and responses. To decipher the logic of gene regulation, we should 

aim to be able to monitor the expression level of all genes simultaneously ... " [Eric S. 

Lander] (Lander 1996) 

The gene network inference techniques tend to be data-hungry. Measuring gene 

expression time series has the fastidious feature of yielding lots of data. However, all 

the data points in a single time series tend to be about a single dynamic process in the 

cell, and are related to the surrounding time points. A data set of ten expression 

measurements under different environmental conditions, or with different mutations, 

will actually contain more information than a time series of ten data points on a single 

phenomenon. The advantage of the time series is that it can provide crucial insights in 

the dynamics of the process. 

In a genetic network genes are nodes and their interaction is given by edges. Most of 

the genetic networks are Boolean in nature thereby the weights on the edges can be 

assigned a weight of either 0 or 1. Both types of data, and multiple data sets of each, 

will likely be needed to unravel the regulatory interactions of the genes. Indeed, to 

correctly infer the regulation of a single gene, we need to observe the expression of 

that gene under many different combinations of expression levels of its regulatory 

inputs. This implies a wide variety of different environmental conditions and 

perturbations.  
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2.1.2. Protein Networks 

Proteins perform distinct and very well-defined tasks, but little is known about how 

interactions among them are structured at the cellular level. In a protein interaction 

network each link in the network is assigned a length of 1. In principle, if a protein 

interacts with its partner, the link was designed as one. If however, a protein does not 

interact with other proteins, zero was given in the link. For constructing the network, 

the basic principle therefore follows adjacent matrix that is a matrix with rows and 

columns labeled by graph nodes with a 1 or 0 in position (i, j) according to whether i 

and j are adjacent or not. Protein complexes and modules are derived from clustering 

the protein interaction network.  

A study of protein interaction network in yeast cells found that they are not random, 

but well organized (Fraser, Hirsh et al. 2002). In another study by Schwikowski et.al 

(Schwikowski, Uetz et al. 2000) a global analysis of 2,709 published interactions 

between proteins of the yeast Saccharomyces cerevisiae was performed, enabling the 

establishment of a single large network of 2,358 interactions among 1,548 proteins. 

They found that proteins of known function and cellular location tend to cluster 

together, with 63% of the interactions occurring between proteins with a common 

functional assignment and 76% occurring between proteins found in the same sub-

cellular compartment. They suggested that possible functions can be assigned to a 

protein based on the known functions of its interacting partners. This approach was 

used to correctly predict a functional category for 72% of the 1,393 characterized 

proteins with at least one partner of known function, and 364 previously 

uncharacterized proteins. 

Apparently in scale-free protein–protein interaction networks, or 'interactome' 

networks (Jeong, Mason et al. 2001; Li, Armstrong et al. 2004), most proteins interact 

with few partners, whereas a small but significant proportion of proteins, the 'hubs', 

interact with many partners (Figure 8). Both biological and non-biological scale-free 

networks are particularly resistant to random node removal but are extremely sensitive 

to the targeted removal of hubs (Jeong, Mason et al. 2001). A link between the 

potential scale-free topology of interactome networks and genetic robustness 

(Winzeler, Shoemaker et al. 1999; Gu, Steinmetz et al. 2003) seems to exist, because 

knockouts of genes (Winzeler, Shoemaker et al. 1999; Giaever, Chu et al. 2002) 
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encoding for hubs are approximately three times more likely to confer lethality than 

those of non-hubs (Jeong, Mason et al. 2001). Han et.al (Han, Bertin et al. 2004) 

investigated how hubs might contribute to robustness and other cellular properties for 

protein–protein interactions dynamically regulated both in time and in space. They 

uncovered two types of hub: 'party' hubs, which interact with most of their partners 

simultaneously, and 'date' hubs, which bind their different partners at different times 

or locations. Both, in silico studies of network connectivity and genetic interactions 

described in vivo support a model of organized modularity in which date hubs 

organize the proteome, connecting biological processes—or modules (Hartwell, 

Hopfield et al. 1999), to each other, whereas party hubs function inside modules. 

 
Figure 8. Map of protein-protein interactions in yeast. Each point represents a different protein 
and each line indicates that the two proteins are capable of binding to one another. Only the 
largest cluster, which contains ~78% of all proteins, is shown. The colour of a node signifies the 
phenotypic effect of removing the corresponding protein (red, lethal; green, non-lethal; orange, 
slow growth; yellow, unknown) 
 
Adapted from: [H. Jeong, S. P. Mason, A.-L. Barabási & Z. N. Oltvai, "Lethality and centrality in 
protein networks", Nature, Vol 411, p41, 3 May 2001] 
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2.1.3. Metabolic Networks 

 

The metabolism of an organism is the basic biochemical system that generates 

essential components such as amino acids, sugars and lipids and the energy required 

to synthesize and use them in creating proteins and cellular structures. This system of 

connected chemical reactions is known as metabolic network (Figure 9). The 

metabolites correspond to nodes in the graph, and reactions correspond to connections 

between these nodes. 

 
Figure 9. General Metabolic Pathway. Adapted from 

http://www.genome.jp/kegg/pathway/map/map01100.html 
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The metabolic network can be broken down into sub-networks consisting of sets of 

metabolites, reactions and enzymes specialized in certain biochemical process. Below 

is an example of such a network. The partitioning of the metabolic network into 

pathways is not always straightforward (Schuster, Fell et al. 2000). As a result there 

may be correlations that are not visible in a pathway-oriented perspective which 

emerge in a whole-network oriented view. There is also an element of arbitrariness 

involved in assigning promiscuity to compounds (compounds involved in many 

reactions, e. g. H2O, ATP and other cofactors). This is the subsystem for the synthesis 

of the amino acids valine, leucine and isoleucine. This image (Figure 10) was taken 

from the KEGG (Kanehisa, Goto et al. 2004) database. The green boxes indicate 

enzymes, which have been, identified in the organism, in this case Corynebacterium 

glutamicum.   

 
Figure 10. Valine, Leucine and Isoleucine in Corynebacterium glutamicum. Adapted from 
KEGG http://www.genome.jp 
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With the help of such a graphic representation, Barabasi and his coworkers have 

studied the structure of metabolic networks using methods adopted from studies of the 

world wide web (Adamic, Huberman et al. 2000).  It was found that the metabolic 

network of 43 distinct organisms are organized into many small, highly connected 

topologic modules that combine in a hierarchical manner into larger, less cohesive 

units, with their number and degree of clustering following the power law (Ravasz, 

Somera et al. 2002). They found that like all the other networks studied, metabolic 

networks exhibited typical characteristics of small world networks, thus implying that 

most nodes have a low connection degree, while few have a very high connection 

degree. 

Indeed, recent studies have demonstrated that the probability that a substrate can react 

with k other substrates [the degree distribution P(k) of a metabolic network] decays as 

per the power law P(k)~k-  with  2.2 in all organisms (Jeong, Tombor et al. 2000; 

Wagner and Fell 2001), suggesting that metabolic networks have a scale-free topology 

(Barabasi and Albert 1999). A distinguishing feature of such scale-free networks is the 

existence of a few highly connected nodes (e.g., pyruvate or coenzyme A), which 

participate in a very large number of metabolic reactions. It was found that within 

Escherichia coli, the uncovered hierarchical modularity closely overlaps with known 

metabolic functions. Further, it was speculated that the identified network architecture 

may be generic to system-level cellular organization (Ravasz, Somera et al. 2002). 
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2.1.4. Network Analysis Emphasizing Shortest Path 

Previously mentioned studies based on graph theory were shown to be useful for 

network structure analysis. It was found that the high degree nodes dominate the 

network structure and are called hubs of the network. Most of the nodes are connected 

through them by a relatively short path (Strogatz 2001; Albert and Barabasi 2002). 

For metabolic networks, Jeong et al. (H. Jeong 2001) calculated the average path 

length (AL) for 43 organisms and found that AL was almost the same (approximately 

3.2) for all the organisms. This means that most of the metabolites can be converted to 

each other in approximately only 3 steps. From the biochemical point of view this 

result is surprising because often a path longer than 3 steps is used for the synthesis of 

many metabolites.  

2.1.4.1. Existing Shortest Path Analysis Model for Metabolic Networks 

A metabolic network is a directed graph, implying that reactions involved in the 

metabolic pathways are both reversible and irreversible. Hence, information about 

reaction reversibility is important in network analysis. The study conducted by Jeong 

et al. (H. Jeong 2001) lacked this information. There is still no metabolic reaction 

database that gives clear and sufficient information about it. Also, in the study by 

Jeong et al. (H. Jeong 2001), even promiscuous metabolites i.e. ATP, ADP were 

regarded as nodes in the network. This resulted in an unrealistic definition of the path 

length in many cases as illustrated with a part of the Glycolysis pathway (Figure 11). 

It is obvious that the path length (number of reaction steps in the pathway) from 

glucose to pyruvate should be nine in terms of biochemistry. However, having 

included ATP and ADP as nodes in the network and due to the functions of ATP and 

ADP as cofactors in many reaction steps, the path length between glucose and 

pyruvate was concluded as being 2 steps long (pink line in (Figure 11)). This 

calculation of path length is obviously not meaningful in biochemical terms. Similar 

problems also exist regarding the consideration of other current metabolites such as 

ATP, NADH, NAD+ etc. 
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Figure 11. Shortest Path analysis for the Glycolysis pathway: The green lines represent one of the 
valid paths between 'alpha-D-glucose' and 'pyruvate', while the pink line represents a bio-
chemically invalid shortest path via ADP 

2.1.5. Characterizing the Links - Manually Curated Models for Path Finding 

 

Ma et al. (Ma and Zeng 2003) used a revised bio-reaction database to reconstruct 

the metabolic networks of 80 fully sequenced organisms from genome data. They 

distinguished the major co-factor metabolites from normal metabolites and considered 

the reaction direction. They were able to show that quantitative differences exist in the 

network structure of the three domains of organisms, namely eukaryotes, archaea and 

bacteria.  

 

Although the network showed small world phenomenon as it followed the power 

law, there was a change in the top 10-metabolite hubs (as many cofactors i.e. ATP, 

NADH were already removed). The average path length from glucose to all the 

reachable metabolites was calculated using “Breadth First Search (BFS)” as 7.68. The 
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average path length (AL) for the whole network for E. coli was 8.20. Another 

structure parameter is network diameter. It is defined as the path length of the longest 

pathway among all the shortest pathways (Batagelj and Mrvar 1998). The longest 

shortest path length of this pathway is 15. The network diameter can be calculated by 

comparing the longest pathway for all the metabolites. It is 23 for E. coli. AL and 

network diameter tend to increase with an increase in network scale, especially for 

small-scale networks (such as networks with less than 300 nodes). Parasites were 

found to have small-scale and not well-connected networks and they contained many 

separated small networks or pathways. This resulted in a relatively short average path 

length. These results are consistent with the fact that the parasitic organisms have lost 

a great number of metabolic genes in the evolutionary process to adapt to the 

environments of host cells (Podani, Oltvai et al. 2001). For the relatively large 

networks (i.e. networks with more than 300 nodes), the relation between AL and 

network scale (node number) is not very clear. Even for networks with a similar scale, 

the AL values vary greatly. For example, Rattus norvegicus (rno) and Vibrio cholerae 

(vch) have a similar scale, while their AL values are 10.99 and 7.64 respectively. 

These results clearly differ from the results of Jeong et al. (Jeong, Tombor et al. 2000) 

as they found a nearly constant and much shorter average path length for different 

kinds of organisms when using promiscuous metabolites as connections. 

 

The eukaryotes and archaea have a longer AL than bacteria. The average AL 

values for these three domains of organisms are 9.57, 8.50 and 7.22 (7.73 for bacteria 

without considering parasites), respectively. Average diameter values are 33.1, 23.4 

and 20.6, respectively. Eukaryotes and archaea have a longer path length and a larger 

network diameter than bacteria, indicating a difference in the structure of their 

respective metabolic networks (Ma and Zeng 2003).  

 

This indicates that although the fundamental structure of metabolic network is 

similar for all the organisms, they do exhibit quantitative differences in the metabolic 

network structure as described by the parameters average path length and network 

diameter. For example, it may be interesting to identify the shortcuts that lead to the 

lower AL for bacteria. The reactions (enzymes and genes) corresponding to these 

shortcuts can then be determined. These enzymes may be specific for bacteria and 

important for metabolic conversion or pathogenic functions. This class of knowledge 
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can be used for strain improvement through metabolic engineering or for selecting 

pathway targets to develop drugs against pathogenic bacteria. Hence, it is clear from 

the above study (Ma and Zeng 2003) that chemically meaningful connectivity in the 

biochemical networks could lead to a better understanding of the network function 

and organization in various organisms.  

 

2.1.6. Adding Biochemical Meaning: Finding Biochemically Valid Shortest 

Paths (SP) in the Network 

 

A metabolite (often called a small-molecule) consists of several atoms namely carbon, 

hydrogen etc. and their orientation in space embed certain structural patters like a 

carbon-ring structure in case of glucose. Although several groups confirmed the 

small-world property of small-molecule metabolisms in multiple data sources, the 

details of their results differ depending on the purpose of the analysis and its data-

preparation scheme (Fell and Wagner 2000; Jeong, Tombor et al. 2000; Wagner and 

Fell 2001; Ravasz, Somera et al. 2002; Ma and Zeng 2003; Ma and Zeng 2003).  

 

• Jeong et al. (Jeong, Tombor et al. 2000) computed the proximity of 

metabolites by regarding all substrates and products in the same reaction as 

adjacent. 

• Wagner and Fell (Wagner and Fell 2001) computed stoichiometric 

relationships to estimate the transmission degree of perturbations in the 

metabolic network. They used the metrics with and without coenzymes such 

as ATP and NAD in both substrate- and reaction-based networks to compare 

their differences.  

• Ma and Zeng (Ma and Zeng 2003) manually specified links in each reaction, 

aiming to delineate only physical relationships responsible for biosynthesis 

and degradation. To reproduce biochemical pathways in the traditional 

metabolic map however, metabolites to be linked cannot be defined per se by 

compounds or reactions. The biochemical link between metabolites is context-

sensitive; it depends on the conserved structural moieties in the adjacent 

reactions.  
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All of these studies used the same algorithmic procedure, and discrepancies are 

ascribable to the varied aims of their network analyses. The main differences are 

attributable to the reversibility of enzymatic reactions and to the treatment of 

metabolically ubiquitous compounds referred to as coenzymes or inorganic 

compounds. Many studies have been conducted to elucidate the organizational and 

evolutionary principles of the metabolic network using graph-theoretic analysis of 

large biochemical networks responsible for the synthesis and degradation of cellular 

building blocks (Jeong, Tombor et al. 2000; Wagner and Fell 2001; Ma and Zeng 

2003). In such studies, the global properties of the network are computed by 

considering enzymatic reactions as links between metabolites. However, the pathways 

computed in this manner do not conserve their structural moieties and therefore do not 

correspond to biochemical pathways on the traditional metabolic map.  

 

Arita (Arita 2004) proposed a new model to reassess earlier results by digitizing 

carbon atomic traces (i.e. atomic position pairs between substrates and products 

corresponding to the sub-structural moieties conserved in each reaction (Figure 12) in 

metabolic reactions annotated for Escherichia coli. In this study a metabolic pathway 

(shortest path) from metabolite X to Y is defined as a sequence of biochemical 

reactions through which at least one carbon atom in X reaches Y. Only carbon atoms 

are considered throughout this study. A metabolite Y is considered reachable from X if 

there is a pathway from X to Y. He found that the average path length (AL) of 

Escherichia coli metabolism is much longer than previously thought and that the 

metabolic world of this organism is not small in terms of biosynthesis and degradation 

(Table 2) .The metabolite “hubs” was defined by the number of times a metabolite 

structure pattern was involved in a path rather than being defined solely by 

connectivity. With this information, he reassessed the global properties of metabolic 

networks with special emphasis on the small-world hypothesis. This analysis gave a 

completely new dimension to path finding in the bio-chemical network and it was 

widely accepted both in the biochemical society as well as the non-biochemical 

community. Table 2 summarizes differences in the major analyses and compares the 

AL and hub metabolites they identified. 
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Figure 12. Adapted from Arita’s  (Arita 2004) paper. Two ways to represent the reaction of EC 
2.3.1.35. In this reaction, the acetyl moiety of N-acetyl L-ornithine is transferred to L-glutamate 
to form N-acetyl L-glutamate. (Lower Left) In the scheme of Jeong et al. (Jeong, Tombor et al. 
2000), its two substrates and two products are equally linked to the object representing the EC 
number, irrespective of their structural changes. (Lower Right) In Arita’s (Arita 2004) scheme, 
conserved sub-structural moieties, coded in diffferent colors, are computationally detected and 
each link is associated with the information of which atom goes where. 
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Table 2. Comparison of four E. coli network analyses. The top 10 hub metabolites and ALs 
reported in each study. Wagner and Fell (Wagner and Fell 2001) computed several versions of 
the network. The one shown here is the substrate-based network where ATP, ADP, NAD, NADP, 
NADH, NADPH, carbon dioxide, ammonia, sulfate, thioredoxin, (ortho) phosphate (P), and 
pyrophosphate (PP) are removed. 

 
Top 10 hubs Jeong et al. 2000,              

directed

Wagner and Fell 2001, 

undirected

Ma and Zeng 2003, directed Arita 2004,          

(un)directed

1 H2O L-glutamate glycerate 3P carbon dioxide

2 ADP Pyruvate D-ribose 5P Pyruvate

3 P CoA acetyl CoA acetyl CoA

4 ATP pyruvate ATP

5 L-glutamate L-glutamine D-xylulose 5P D-glucose

6
NADP

+ L-aspartate D-fructose 6P L-glutamate

7 PP acetyl CoA 5P-D-ribose 1PP D-galactose

8
NAD

+ phosphoribosyl PP L-glutamate CoA

9 NADPH Tetrahydrofolate D-glyceraldehyde 3P S-adenosyl L-methionine

10 NADH Succinate L-aspartate D-5-phosphoribosyl-1P

AL 3.2 3.8 8.2 8.4 (8.0)

 

The artefact in Arita’s algorithm was that it does not allow the same compound to 

appear iteratively in the same pathway although every reaction is reversible in the 

graph (this was done to avoid combinatory explosion). The cyclic paths are a 

hindrance to such an analysis and the gaps in the network annotation are another 

bottleneck. There thus exists the need for an algorithm, which supplies appropriate 

atomic-level information about the reactions. This vacuum in the computational 

analysis of metabolic networks provided me with the motivation for my study.  
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2.2. Thermodynamic Feasibility of the Metabolic Pathways 

 

The feasibility and reversibility of a reaction is determined by its equilibrium constant 

and the concentrations of its reactants (also called substrates) and products. Because 

intracellular concentrations vary within limited ranges (e.g., 1µM to 5mM), the 

equilibrium constant alone is sufficient for reaching a qualitative conclusion on a 

reaction’s feasibility. In general, a feasible and irreversible reaction is characterized 

by an equilibrium constant, K, much larger than 1. A feasible and reversible (i.e., 

feasible in both the forward and reverse directions) reaction is characterized by an 

equilibrium constant of the order of 1. A reaction that is infeasible in the forward 

direction but feasible in the reverse direction is characterized by equilibrium constant 

much smaller than 1. The quantitative interpretation of these criteria depends on the 

range of permissible intracellular concentrations for metabolites.  

 

The standard Gibbs free energy (2.1) of formation of a compound is the change of 

Gibbs free energy that accompanies the formation of 1 mole of that substance from its 

component elements, at their standard states (the most stable form of the element at 25 

degrees Celsius and 100 kilopascals). 

 

 lnG G RT K! = ! ° +  (2.1) 

 

If the free energy change in a chemical reaction is negative, the reaction can occur 

spontaneously. If the free energy change in a chemical reaction is positive, the 

reaction cannot occur spontaneously. This is obvious if you remember that free energy 

changes correspond to work being done. When G!  is negative, the system will give 

you work, do work for you. When G!  is positive, you have to do work on it. Suppose 

you are pushing a large rock up a hillside. As long as you keep pushing (doing work 

on it, putting work into it) it continues to move uphill. But let go, and it will roll down 

the hill and, if you are standing in the way, it will do considerable work on you in the 

process.  

A negative G!  corresponds to a "downhill" direction while a positive G!  

corresponds to an "uphill" direction. And, just as up is opposite to down, so the 
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direction of a chemical reaction for which G!  is negative, as for example C(s) + 

O2(g) --> CO2(g) which takes place spontaneously, is opposite to the direction of the 

reaction CO2(g) --> C(s) + O2(g) for which G!  is positive and which we know does 

not take place spontaneously.  

 f (REACTANTS)f (PRODUCTS)
G= G  - G , ! ! !" "  (2.2) 

The values for G! , since (2.2) are numerically the same but opposite in sign for these 

two reactions. The value of the free energy change of a chemical reaction changes 

only in sign when the direction of the reaction is reversedω.  

                                                             
ω (refer http://www.intute.ac.uk/sciences/reference/plambeck/chem2/p02052.htm ) 
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2.3. Motivation and Proposed Model 

 

With the advent of the "omics" era more and more system-based approaches to 

biological functions are being developed. Metabolome analysis and metabolomics are 

gaining higher attention and help to understand the complexity of the underlying 

cellular networks in organisms (Kromer, Sorgenfrei et al. 2004; Strelkov, von 

Elstermann et al. 2004; Verhoeckx, Bijlsma et al. 2004; Oliver 2006). The sequencing 

of a large number of genomes has made the comparative study of genomes possible at 

different levels (Kromer, Sorgenfrei et al. 2004; Catchpole, Beckmann et al. 2005). 

One means of gaining a deeper insight into the sequenced genomes is to analyse the 

underlying metabolic network(s) and its topology in different genomes (Cakir, Patil et 

al. 2006). For example, a virtue of studying metabolism in systems like yeast is that 

metabolites are remarkably conserved between species—even more so, in fact, than 

genes. Thus, lessons learned in unicellular organisms can rapidly inform medical 

issues, such as the molecular basis of metabolic malfunctioning that occurs in human 

disease. Several databases provide information about metabolic pathways i.e. KEGG 

(Kanehisa, Goto et al. 2004), BioCyc (Karp, Ouzounis et al. 2005), BRENDA 

(Schomburg, Chang et al. 2004) and PROSITE (Hulo, Sigrist et al. 2004).  

 

A global view of the metabolic network highlights the contribution and usage of 

metabolites. Shortest path analysis (Fell and Wagner 2000; Jeong, Tombor et al. 2000; 

Wagner and Fell 2001; Ravasz, Somera et al. 2002; Ma and Zeng 2003; Ma and Zeng 

2003; Simeonidis, Rison et al. 2003; Arita 2004; Croes, Couche et al. 2006) is one of 

the best-defined methods to analyse a graph (metabolic pathways) at different levels 

in terms of local and global connectivity. Fact is that in the metabolic process, not just 

one atom (in a compound) but usually a set of atoms are involved in the reaction 

process. Utilising information about the overall change(s) in the structural pattern for 

the metabolite(s) will improve the connectivity of the network and increase the 

coverage of the pathway. The superficial connectivity depicted in metabolic networks 

based on substrate-level network topology does not always correspond to metabolic 

pathways. Hence, structural information of metabolites is indispensable for computing 

biochemical pathways. Thus, atomic-level analysis complements virtually any 



Chapter 2                                                                           Shortest Path Analysis in Metabolic Networks 

35 

metabolism-related study, from gene annotation to network evolution, to potential 

drug targeting.  

 

We propose an ab-initio algorithm to compute k-shortest paths (more than one 

competing shortest path) in the given metabolic network. We developed a novel 

algorithm to computationally map substrates to the products in the biochemical 

reaction. This will help us to dynamically reconstruct the network connectivity and 

avoid false links in the pathway analysis. In order to make the path finding bio-

chemically meaningful we track the overall change(s) in the metabolite structural 

pattern both at the local and global level. Further, the path finding algorithm is able to 

handle constraints like ‘via’ and ‘not via’ certain enzyme(s)/metabolite(s). It can 

calculate various statistical measures on the network topology i.e Average Shortest 

Path (AL), Degree distribution etc. Our algorithm was coded in the new tool which 

was termed Pathway Hunter Tool (PHT) (Rahman, Advani et al. 2005)  The database 

for PHT has more than 200 organisms and their pathway maps. The basic version of 

PHT is available on the Internet, while the more comprehensive stand-alone version is 

in use in-house and by close collaborators. The output of this tool connects metabolic 

information back to the enzymes and genes of the genome. PHT is a robust and user- 

friendly “Systems Biology”-based Bioinformatics tool to process biologically relevant 

information about shortest path analysis.  
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2.4. Method 

 

This study addresses the bio-chemically valid k-shortest path discovery problem in the 

context of biological networks. We can model a metabolic network as a bipartite 

graph where metabolites are connected to reach other via a reaction/enzyme (refer to 

definition 2 & 6). Here we will consider a metabolic network as an unweighted 

directed graph (refer to definition 6). The input to the problem is a set of graphs in 

which nodes correspond to metabolites and edges correspond to interactions between 

these metabolites.  

 

Problem: Given a graph G = (V, E, L), find the k-shortest path between source u and 

sink v, such that dG (u, v) of two vertices u,v V ! is the minimum number of edges of 

shortest paths between u and v in G. Each ( )v V G  ! is associated with a set of 

reaction pair L(v) L! . Each edge ( )uv E G!  represents a reaction between u and v.  

 

2.4.1. Database and Input 

 

The knowledge about genes, enzymes, reactions, compounds and pathways in various 

organisms was obtained from two very comprehensive databases KEGG (Kanehisa, 

Goto et al. 2004) and BRENDA (Schomburg, Chang et al. 2004). 

 

2.4.1.1.    KEGG 

 

KEGG provides a knowledge-based approach for network prediction by reference 

knowledge base that integrates current knowledge on molecular interaction networks 

such as pathways and complexes generated by genome projects and information about 

biochemical compounds and reactions. The RPAIR contains curated chemical 

structure transformation patterns extracted from known enzymatic reactions 

(Kanehisa, Goto et al. 2006). Additionally, drug information is now stored separately 

and linked to new KEGG DRUG structure maps. 
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2.4.1.2.    BRENDA 

 

The enzyme centric database BRENDA (BRaunschweig ENzyme DAtabase)  

(Schomburg, Chang et al. 2004) represents a comprehensive collection of enzyme and 

metabolic information, based on primary literature. The database contains several 

enzymes (83,000 different enzymes) obtained from approximately 9800 different 

organisms. These enzymes have been classified in approximately 4200 EC numbers 

with chemical structure information (ligands), controlled vocabulary, ontology and a 

thesaurus for ligand names.  

 

2.4.1.3.    Enzymes 

 

The enzymes in the metabolic pathway are divided into six different classes. Each 

class consists of certain reaction pattern as substrate(s) and product(s) share common 

molecular structures between them as depicted in Figure 13.  
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Figure 13. Enzyme class and its reaction mechanism can be solved by mapping the respective 
metabolites in the reaction dataset. 

Interactions between these enzyme classes can give rise to a metabolic pathway.  
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2.4.1.4.   Enzyme Centric View and Metabolic Centric View 

 

Using graph theory we can define the system in terms of a bipartite graph (Figure 7), 

which can be reduced to an enzyme-centric graph (Figure 7) and a metabolic-centric 

graph (Figure 7). In a bipartite view, two nodes share a common enzyme and the 

edges define the biological relationship between a set of metabolites and enzymes. In 

the metabolic-centric view metabolites are nodes and reactions/enzymes are edges 

whereas in the enzyme-centric view, enzymes are nodes and metabolites are edges. 

 
2.4.2. Modelling the Network 

 

In the metabolic network, we are looking for bio-chemically valid interactions that are 

connected and exhibit similar patterns (common molecular structure or maximum 

common subgraph refer to to section 2.4.1.3). In the context of biological networks 

(metabolic pathways), labeling of nodes is based on the assessment of functional 

correspondence, as suggested by similarity of molecular structures or hierarchical 

classification of enzymesϒ. Without loss of generality, nodes can be referred to as 

metabolites and labeled on the basis of the assignment of these enzymes and similarity 

of molecular structures.  

 

Hence the problem can be reformulated and the path finding algorithm can be divided 

into two steps.  

 

• Decomposing a given network into reaction subgraphs and finding 

meaningful interactions in the network by looking into the metabolic structure 

similarity.  

• Since the above procedure will reduce the number of false interactions the 

pruned graph can then be used to find a biochemical k-shortest path between a 

substrate and a product. 

 

Since the observed interactions of metabolites in the network represent a 

superimposition of dynamically organized molecular structural in spatial and temporal 

                                                             
ϒ  http://www.chem.qmul.ac.uk/iubmb/  
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dimensions, this model accurately captures the dynamic and complex organization of 

cellular processes. This will improve the runtime of the algorithm and make path 

finding more meaningful. 
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The model of metabolic network can be defined as:  

 

Definition 7: Metabolic network model: Given a set of metabolites V in a network 

and set of interactions E between these metabolites, and a many-to-many mapping of 

these metabolites L, the corresponding metabolic network is modeled using a 

bipartite graph G = (V, E, L). Each v V (G) ! is associated with a set of reaction 

pair L(v) L! . Each edge uv E (G) ! represents a reaction between u and v. 

 

In molecular networks, a connected graph may be interpreted as a set of interactions 

related to each other through at least one molecule. Therefore, interactions that are 

related to a particular cellular process are expected to form a connected common 

subgraph or isomorphism. Such subgraphs may also be connected to each other as a 

reflection of a crosstalk between different processes. 

 

2.4.3. Decomposition of Network to Map Metabolites in the Reactions 

 

The network can be decomposed into smaller subgraphs of reaction and metabolite 

pairs. This will help us find common structural pattern shared between substrate and 

product metabolites. 

 

The metabolic network can be defined as set of subgraphs consisting of reactions and 

compounds (metabolites). 

 

Input: A set of reaction networks 1 1 1 G = {G  = (V , E , L),  2 2 2G  = (V , E , L), ...,  

m m mG  = (V , E , L)} , each belonging to a different reaction. 

 

Each metabolite has a certain structural pattern and these patterns can be represented 

in the form of a graph. The input graph was transformed into 4 tuple definition graph 

in order to represent metabolites as sub-graphs (Le, Ho et al. 2004): 
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Definition 8: A metabolic network based graph is a 4-tuple G = (V, E, µ, ν) where V 

is a set of finite vertices, E !  V × V is the set of edges, µ: V !  LV is a function 

assigning labels to the vertices and ν: E  !  LE is a function assigning labels to the 

edges. 

 

 

The connectivity between the metabolites (substrate and product) is defined as:  

 

Definition 9: Graph G is called a connected graph if and only if there is at least one 

path between any vertex pair, where a path is a list of vertices such that there is an 

edge between two adjacent vertices. 

 

Definition 10a:  A graph S is a subgraph of reaction network G, i.e., S Gô , if there 

is an injective mapping f : V (S) → V (G) such that for all v V(S)! , L(v) L(f(v)) ! and 

for all uv E(S)! , f(u)f(v) E(G)! . A subgraph S is connected if and only if for any 

subset U V(S),! u U and v V(S)\U! " "  such that uv E(S) or vu E(S)! ! . 

 

Definition 10b:  Gi is called a common subgraph of G and G′ when Gi is a subgraph 

of both G and G′. 
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2.4.4. Algorithm for Finding Valid Links Between Substrate and Product 

 

Molecular fingerprints can be used to define metabolites (here treated as graphs) as a 

set of binary string representation called bitstrings (Holliday, Ranade et al. 1995; 

Flower 1998; Schuffenhauer, Gillet et al. 2000; Bender, Mussa et al. 2004). BitStrings 

consist of sequence of ‘0’s and ‘1’s which are binary representation of certain 

chemical feature present or absent in a molecule (allows fast structural comparison 

between two molecules). Though it is a heuristic method for representing bio-

molecular graph it captures various stereo-chemistry of the bio-molecules (Hubalek 

1982; Schuffenhauer, Gillet et al. 2000; Hattori, Okuno et al. 2003; Whittle, Willett et 

al. 2003). Where the attribute values are restricted to 0 and 1, the expressions used for 

the various similarity and distance measures can often be substantially simplified. We 

have used the Chemistry Development Kit (CDK) (Steinbeck, Han et al. 2003)♣ to 

calculate the binary fingerprints for molecules. CDK uses hashed fingerprints which 

is generated by calculating the possible linear path in a molecule between one to 

defined number of atoms (default is 7). Each of these paths in turn serves as the input 

to a second program that uses hashing procedure to set a small number of bit (default 

four or five) to “1” in the fingerprint bitstrings. Each bit in the fingerprint can be set 

by a different pattern and in case of collision it does not result in false negatives 

(during similarity search) but they result in more hits. 

 

 

2.4.4.1. Calculation of Similarity Score between Substrate and Product 

based on Molecular Fingerprint 

 

In this section the new algorithm for mapping substrate to the product is described.  

 

Definition 11: (Chemical structural similarity between molecules)  

 

Given a subgraph  Gi = (Vi, Ei, L) of a graph G.  

 

                                                             
♣ Descriptors are similar to Daylight (http://www.daylight.com/dayhtml/doc/theory/theory.finger.html) 
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If each source ( )iu V G!  and ( )iv V G!  sink is associated with reaction L(v) L! and 

each edge uv E (G) ! represents the reaction between u and v.  

 

Then let Suv represents the similarity be u and v.  

 

For metabolites u and v characterized by vectors Xu and Xv containing n binary values 

(such as fingerprints) we can analytically formulate the fingerprint vector as:       

1

i         

i n

u

i

a u number of bits "1" in   X!
=

=

="  (2.3) 

1

i           

i n

i

b v number of bits "1" in  Xv !
=

=

="      (2.4) 

1

i i  

i n

 

i

c u v       number of bits "1" in both X an  du Xv! !
=

=

="  (2.5) 

1

(1 )i i i i   

i n

 

i

d u v u v        number of bits "0" in both Xu  Xvand! ! ! !
=

=

= " " +#

 (2.6) 

 

 n = a + b - c + d !  (2.7) 

 

If we define  u! as the set of all elements iu!  in vector Xu  whose value is 1 (the 

"on" bits) and v!  as the set of all elements iv!  in vector Xv  whose value is 1. 

 

Then the above equations can be transformed using set-theoretic notation as 

 

ua u      number of bits "on" in   X!=                                                   (2.8) 

 

b v      number of bits "on" in  Xv!=                                           (2.9) 

 

  c u v        number of bits "on" in both Xu  Xvand! != I
 (2.10) 
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   d n u v       number of bits "off" in both X  du Xvan! != " U
 (2.11) 

 

a + b - c =  u v   ! !Q U                                                            (2.12) 

 

Similarity Su,v (Flower 1998; Willett, Barnard et al. 1998; Willett 2003) between two 

metabolites can be defined using Tanimoto Coefficient (Hubalek 1982) or Jaccard 

indexes (Jaccard 1912). 

 

 

Formula for continuous variables (2.13) 

 

( ) ( )

1

2 2

1

, , 1

i i

i i i i  

i n

i

i=n i=n i n

i=1 i=1 i

u v

u v , where 0.333 u v

u v - u v

S - S

! !

! ! ! !

=

=

=

=

" #
$ %
$ %& '=

" #
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$ %& '

(
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( ( (

 (2.13) 

 

Formula for dichotomous variables (2.14) 

 

, 0 , 1
c

u v  ,   Where u v   (dichotomous) 
a b c

S S=
+ !

" "             (2.14) 

 

 

Set-theoretic definition (2.15) 

 

,
u v

u v
u v

S
! !
! !

=
U

I                                                                  (2.15) 
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2.4.4.2. Generation of Scoring Function 

 

Definition 12: The Percentage Atomic Mass Contribution (PAMC) (2.16) for two 

competing substrate (v) and product (u) can be defined as hundred times the sum of 

mass for both the metabolites (u and v) divided by the total mass of the metabolites in 

that reaction (Vi). 

 

( )u + v
u,v

i

M M
PAMC  = 100  

V

! "
# $ %
& '(                      

 (2.16) 

 

Definition 13: The final mapping scoring function for given source (u) and sink (v) 

vertices is defined as the product of similarity score ,Su v  and percentage atomic 

mass contribution u,vPAMC  in subgraph i i i i iG  = (V , E , ! , v ) of graph G where Vi 

!  V, E i = E ∩ (Vi × Vi), and µi and νi are restriction on µ and ν to Vi and Ei. 

 

( )
( )

i

i

if  V
!   =       

unidefined otherwise

µ ! !
!

"# $
% &
' (

 (2.17) 

( ) i
i

if  Å
 (!) =       

unidefined otherwise

! µ µ
!

"# $
% &
' (

 (2.18) 

 

Hence we can derive equation (2.19) from equations (2.16) and (2.15) 

 

,i i i i  

  u,v u,v

u,v u v u ,v

Where   0 S 1 and 0 PAMC 100

             Score  = S PAMC

! ! ! !

"
 (2.19) 
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2.4.4.3.  Mapping the Links using Weighted Matrix 

 

The derived scoring function was used to find a suitable mapping between substrate 

molecules and product molecules. A slightly modified form of game theory 

(http://www.gametheory.net/) was used to map the substrate to the product metabolite. 

The method consists of construction of a matrix of substrates as rows and products as 

columns with the score defined above as matrix elements. The score between any 

substrate or product whose extension is smaller than three bonds is set to zero. A 

substrate is mapped to a product when either the score dominates all other scores in 

the present row or column respectively. 

 

Input: Give a set of vertices substrate µi and νi products for reaction graph Gi and 

their score i iu ,vScore   

 

Problem: Find the most compatible edge(s) between µi and νi based on the 

scoring function u,vScore   where Vi !  V, E i = E ∩ (Vi × Vi), and µi and νi are 

restriction on µ and ν to Vi and Ei. Each source ( )iu V G! and ( )iv V G! sink is 

associated with reaction L(v) L! and each edge uv E (G) ! represents the 

reaction between u and v.  

 

Definition 14:  Let 
11 1

,

1

n

m n

m mn

a a

a a

! "
# $

% = # $
# $
& '

K

M O M

L

 be a matrix which represents the 

weighted edges for vertices iµ  and i! . The search for the most similar structures is 

conducted by maximizing the value of iM in mutual dependency of jM . In other words 

choose (vertices) entries in the matrix 1 2( , )G G!  
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As shown in (Figure 14) metabolites (substrates and products) in one of the reactions 

in glycolysis was mapped according to the algorithm explained above. Hence by this 

process we can reduce the number of unwanted or less compatible links in each 

reaction subgraph Gi. 

 

 

Figure 14. Metabolite mapping obtained from our algorithm shows that ATP maps to ADP 

(green line) and D-Glucose maps to D-Glucose-6phosphate (red line). 
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2.4.5.      Improvised Algorithm for Finding Valid Links Between Substrate and 

Product 

2.4.5.1. Maximal Common Subgraph (MCS) Approach 

Since molecular fingerprint is a heuristic way of representing molecules (as we can 

not represent the exact molecule as graph using fingerprints), it is a very fast and 

efficient way to skim through various structural properties embedded in molecules. 

On the other hand maximal common substructure (MCS) (Raymond and Willett 2002) 

can be a very effective way of finding maximum possible overlapping regions 

(isomorphic) between molecules. As we know graph comparison methods such as 

MCS (Raymond and Willett 2002) are fundamentally difficult because graph 

isomorphism problem is NP-complete (Akutsu 2004) and the computational time will 

increase exponentially (Kann 1992). 

Hence we propose a model that combines the heuristic and exhaustive method to get a 

reasonably accurate and fast solution of graph comparison. 

In order to map the common structure between substrate and product in each reaction, 

the maximum common subgraph (McGregor. 1982; Raymond, Gardiner et al. 2002; 

Hattori, Okuno et al. 2003) needs to be found/calculated. Hence the each reaction 

network can be defined as 

Definition 15: Given graph G = (V, E, µ, ν), subgraph Gi = (Vi, Ei, µi, νi) of G is a 

graph where Vi !  V, E i = E ∩ (Vi × Vi), and µi and νi are restriction on µ and ν to Vi 

and Ei as described in equations (2.17) and (2.18). 
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Finding the MCS in the graph can be defined in the following steps: 

Definition 16: (Maximum Clique (MCL)) A clique G(Q) of graph G is defined as an 

induced subgraph of G on Q!V , i.e. if E(Q) = {(v,w) ∈ E|v,w ∈ Q}. A clique with 

the size of being maximum in G is called maximum clique. The number of vertices of a 

maximum cliques of G is expressed is expressed with ( )G!  (Cardinality of the 

clique), 

 

 Definition 17: (Maximal Common Subgraph (MCS)): Let graphs 1 1 1( , , )G V E L= and 

2 2 2( , , )G V E L= be subgraph of graph G. A common subgraph S, i.e. subsets 
'

1 1
E E!  

and 
'

2 2
E E!  of subgraphs 

' '

1 1 1( , , )G V E L=  and 
' '

2 2 2( , , )G V E L=  are isomorphic. 

Cardinality of the maximal common subgraph, i.e.,
'
E

.  

 

In order to find a fast and optimized MCS♠ the problem was reduced to finding 

maximum clique in the association graph (AG) (Hattori, Okuno et al. 2003). 

 

 

 

 

                                                             

♠ The MCS library was coded by Markus Leber, CUBIC, Koeln, Germany as a part of 

his PhD dissertation. 

 


