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2.4.5.2. Combining Molecular Fingerprints and Maximal Common Subgraph 

 

The previously described algorithm (2.4.4,2.4.4.1,2.4.4.2,2.4.4.3) based solely on 

molecular fingerprint and percentage atomic weight was too stringent to find all the 

possible molecular interactions. Hence, a dynamic weighted matrix based on the 

combination of molecular fingerprinting (refer to section 2.4.4.1) and the maximal 

common subgraph discovery algorithm (refer to section 2.4.5) was used to identify all 

the connected subgraphs (metabolites) in the reaction process. 

 

2.4.5.3. Mapping Function for the Dynamic Weighted Matrix 

 

Problem: Given a subgraph '
G  of reaction and compounds, find all the possible links 

between the substrate and product metabolites based on the molecular structure 

similarity. 

 

Solution: In order to identify most similar structures a constraint based search 

approach was conducted. Starting point for the analysis was a matrix M (refer to 

section 2.4.4.3), where each row uM  and column vM  in the matrix is filled with the 

similarity u,vS   (refer to section 2.4.4.3 and equation (2.15) ) for a specified subgraph 

'
G  (reaction, metabolites). The search for the most similar structures is conducted by 

maximizing the value of uM  in mutual dependency of vM  and vice versa or, in other 

words by minimizing the loss. 

 

Lemma 1: (Calculation of similarity between two molecules) Let '
1,2H  be the MCS 

(refer to section 2.4.5) of given graphs 1G  (substrate) and 2G  (product). The selected 

pair (substrate and product) is then mapped using MCS algorithm and the matched 

sub-structure pattern is removed from the data set (using divide and conquer 

technique). Hence the resulting graph is '
1,2 1( )H G�  and '

1,2 2( )H G� .  

 

The matrix is refilled with the similarity score u,vS  between the remaining metabolite 

structures in the matrix and the process of selection is started iteratively again until 

no more mapping can be done or the similarity score equals zero (for a perfectly 
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balanced reaction)(Figure 15) (Figure 16). Here the length of the matrix is dependant 

on the stoichiometry∗ of the substrate and products.  

 
Figure 15. The remaining structures in the data set are mapped using the same concept of MAX-

MAX domination of the similarity score (S) in row/column of the matrix (M). The mapping 

shows A being mapped to D and B being mapped to C. The mapped structures are again 

removed from the dataset (This is done by mapping them using MCS algorithm. The common set 

of nodes and edges are deleted from the structure graph). As there is no further data to be 

mapped in the dataset, the algorithm automatically terminates the mapping search. 

                                                             

∗ "Die stöchyometrie (Stöchyometria) ist die Wissenschaft die quantitativen oder 
Massenverhältnisse zu messen, in welchen die chymischen Elemente gegen einander 
stehen." [Stoichiometry is the science of measuring the quantitative proportions or 
mass ratios in which chemical elements stand to one another.] … Jeremias Benjaim 
Richter, 1792 
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Figure 16. Based on the structural similarity score, structure A is mapped to structure C and 

structure B is mapped to structure E, as they dominate the scores in rows/columns in the 

Dynamic Weightage Matrix (M). The mapped part of the structure is then removed from the 

data set (This is done by mapping them using MCS algorithm. The common set of nodes and 

edges are deleted from the structure graph). 

 

Thus we were able to find better mapping between substrate and product as each and 

every pattern, including the sub-structural pattern was mapped (Figure 17). This 

allows us to understand the conserved functional structural patterns and identify 

conserved links between different cellular processes. 
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Figure 17. Metabolite mapping obtained from our old algorithm shows that ATP maps to ADP 

(thick black line) and D-Glucose maps to D-Glucose-6phosphate (thick black line), whereas the 

improved algorithm can also predict mapping between ATP and D-Glucose-6phosphate (thin 

black line). The new algorithm is able to match all the possible structure patterns between 

substrate and product. This algorithm can further be extended for classification of reactions and 

enzymes apart from path-finding. 
 

 

2.4.6. Adaptive Breadth First Search Algorithm (BFS) Under Constraints 
 
 
Problem:  Find the k-shortest path between source u and sink v, such that dG (u, v) of 
two vertices u,v V ! is the minimum number of edges of shortest paths between u and 
v in G. 
 
 

Input:  Given a graph pruned network 
'
G  of the original G = (V, E, L): '

G G! . 

Solution: Applying the breadth first search algorithm on the pruned network 
'
G , and 

find all the possible k-path of same length from a single source u to all the sinks v,  

via set of edges E 
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The modified BFS algorithm of Newman (Newman 2001) was further modified by 

constraining search space in the un-weighted graph G of the metabolic network. 

Providing the algorithm with some knowledge about the search space did this.  

 

Definition 18: Given a bipartite graph ( , , )G V E L= and its pruned graph 

' ' '( , , )G V E L= obtained from section 2.4.5.3 apply the BFS algorithm for finding 

shortest path uv!  in the network. If the given network is a directed bipartite graph 

| |G , then the search space will further reduce by direction constraints !" in '
E . 

 

 

Proof:  

Condition (a): Given a set of subgraphs Gi = (Vi, Ei, L) of a graph G. Where each 

source ( )iu V G! and ( )iv V G! sink is associated with reaction L(v) L! and each edge 

uv E (G) ! represents the reaction between u and v. 

 

Condition (b): Given a pruned subgraph ' ' '
i i iG  = (V , E , L)  of a graph G. Where each 

source ' '( ')u V G! and ' '( ')v V G! sink is associated with reaction ( ')L V L! and each 

edge ' ' '( )u v E G! represents the reaction between ' 'u  and  v . As | | ' |E   |E! , 

therefore | ' |G   |G|! . 
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2.4.7.        Tracking Changes in Metabolite Structural Patterns 

 

The metabolic network is a collection of metabolites that share certain common 

pattern between them to form links. Hence keeping track of the changes in these 

structure patterns in a defined path will help us understand the intricacies of the 

network. 

 

The tracing of the metabolite structure patterns can be divided into two parts. While 

traversing through the metabolic pathway it is possible to set the similarity measure 

score (Atom Mapper) between interacting molecules, and to define minimum amount 

of structure conserved with respect to this reference molecule at each reaction step 

(Atom Tracer). 

 

2.4.7.1.  Local Similarity (Atom Mapper) 

 

Local similarity is defined as the minimum amount of structure change conserved 

between two interacting metabolites (substrate and product) in the network with 

respect to the substrate metabolite. 
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Let u,v be the intermediate metabolites in a given graph G    (2.20) 

 

If we define  u! as the set of all elements iu!  in vector 
u
!  whose value is 1 (the 

"on" bits) and v!  as the set of all elements iv!  in vector 
v
!  whose value is 1. 

Hence applying equation (2.8) and (2.10), we can deduce the following equation 

(2.21). Hence the “Local Similarity” sL  between two intermediate metabolites in the 

network can be defined as  

100
u v

s

u

L
! !

!

" #$
= %& '
( )

 (2.21) 

 

2.4.7.2.   Global Similarity (Atom Tracer) 

 

i i iLet u ',v ' be the intermediate metabolites in a given subgraph G ' of G            (2.22) 

i+1 i+1 i+1
Let u' ,v'  be the intermediate metabolites in a given subgraph G'  of  G (2.23) 

-1n-1 n-1  n
Let u' ,v'  be the intermediate metabolites in a given subgraph G' of  G

    (2.24) 

n n  n
Let u' ,v'  be the intermediate metabolites in a given subgraph G' of  G

         (2.25) 

'' ' '
i i+1 n-1 nwhere as u = u , ......,u v=           (2.26) 

 

Hence we can trace a common substructure k! along a give shortest path ' '
,
i n
u v

! path 

by the following equation based on the equations (2.22), (2.23),(2.24), (2.25),(2.26) 

 

' ' ' ' ' '
1 2 1.........k i i i k n nu u u u u v! + + "= # # # # #   (2.27) 
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Thus the “Global Similarity” (2.28) along between two metabolites (source and sink) 

can be derived by equations (2.27),(2.26) 

 

 

   
'

100
k

G

i

L

u

!" #
= $% &
% &
' (

                (2.28) 
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2.4.8.   Pathway Analysis under Constraints 

 

Predefined exclusion of small metabolites (like ATP, ADP etc) or vertices in the 

graph in the metabolic pathway may lead to broken links in the network or longer 

connectivity. This means that at each reaction step the algorithm should be able to 

decide, which metabolite to choose for further connectivity in the pathway and which 

to skip. Our new algorithm automatically discriminates between side metabolites (like 

ATP, ADP, Water, CO2 etc) and main metabolites while finding the shortest path.  In 

order to increase the flexibility of the path finding algorithm, few constraints are 

allowed on the system. 

 

There are sets of user-defined constraints, which can be used for an in-depth network 

analysis without affecting the biochemical/biological relevance.  

 

• While traversing through the metabolic pathway it is possible to set the 

similarity measure score (Atom Mapper refer to section 2.4.7.1) between 

interacting molecules and to define the amount of structure change with 

respect to his reference molecule at each reaction step (Atom Tracer refer to 

section 2.4.7.2).  

• By setting the Minimum path length (defined by shortest path) and 

Maximum path length (a heuristic measure defined by next shortest path by 

not including all the previous visited edges in shortest path) between two 

metabolites in the network, the reported path can be altered. For example, if 

the minimum path length is set to six, then the algorithm will drop paths 

below it and report the next possible shortest path above or equal to six, which 

is the shortest possible path under the given constraint. 

• A reaction cannot repeat itself in a given path or no cycle can be observed in 

the reported paths, both at level of metabolites and reactions. Also no 

substrate in a path can become connected product in the next step.  

• It is possible set certain on constraints on the path finding algorithm like via 

Metabolite (preference for certain vertices in the graph), not via Metabolites 

(exclusion/deletion of certain vertices in the graph) and not via Enzymes 

(exclusion/deletion of certain edges in the graph). 
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• It is possible to build a tailored network of metabolites and reactions from the 

existing network as reference in the database under the option of Build 

Virtual Organism. This is very useful for identification of the missing links 

in the network. 

 

2.4.9. Variants of the Algorithm 

 

The algorithm in Pathway Hunter Tool (PHT) supports four options.  

 

• Find k-shortest path to convert one metabolite into another in a given network 

(organism-specific or general metabolic network). 

• Find k-shortest paths from a substrate metabolite to all feasible metabolites in a 

given network (organism-specific or general). 

• Find k-shortest path to a product metabolite from all feasible substrate metabolites 

in a given network (organism-specific or general). 

• Statistical analysis of the metabolic pathways like average path length , diameter 

of the network, average node connectivity, loose ends in the network, hubs in a 

given network (organism-specific or general). 
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2.5. Results 

 

This section highlights the different properties of a metabolic path. All the 

analyses are carried out using Pathway Hunter Tool (PHT). 

 

2.5.1. Shortest Path Analysis Without Atom Mapper and Atom Trace 

 

           The shortest path analysis between Pyruvate and L-Lysine in an amino acid 

producing bacteria Corynebacterium glutamicum results (Figure 18) (Figure 19) in 2 

steps (undirected network) and 3 steps (directed network) respectively. Both the 

reported shortest paths are not valid in biochemical context as they are through a side 

metabolite or a promiscuous metabolite (highlighted in red). Hence we need an 

algorithm to skip such promiscuous metabolites while finding shortest path.  

 
Figure 18. Shortest path between Pyruvate and L-Lysine in Corynebacterium glutamicum (cgl)  
on an undirected metabolic network without mapping information 
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Figure 19. Shortest path between Pyruvate and L-Lysine in Corynebacterium glutamicum (cgl) on 
a directed metabolic network without mapping information 

One option is to delete all such promiscuous metabolites from the network by 

manually assigning the valid connectivity in the pathway as in the case of KEGG 

pathway chart. Using such manually curated pathway charts like KEGG may give 

valid and known biochemical information. Here the shortest path results in 11 reaction 

steps (Figure 20).   
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Figure 20. Shortest path between Pyruvate and L-Lysine in Corynebacterium glutamicum (cgl)  on 
a directed metabolic network with KEGG mapping information 

 
2.5.2. Mapping Examples between Metabolites in a Pathway 

 

One of the shortest paths between beta-D-glucose and 6-Phospho-D-gluconate 

highlights the structural similarities between the connecting metabolites. The mapping 

of metabolites in the pathway and their structural similarity based upon binary 

fingerprint is highlighted in (Figure 21).  
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Figure 21. Tracing and mapping metabolites in reaction pairs found in a biochemical conversion 
pathway.  
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2.5.3. Shortest Path Analysis with Atom Mapper and Atom Tracer 

 

The shortest path between pyruvate and L-lysine in Corynebacterium glutamicum 

comprises of 7 reaction steps as per our mapping algorithm (Figure 22) . The “Atom 

Mapper” was set to 15% (refer to 2.4.7.1) and “Atom Tracer” (refer to 2.4.7.2) was set 

to 5%. The obtained path is shorter than the normal shortest path obtained by KEGG 

pathway map by 4 reaction steps (refer to section 2.5.1). This is indeed a strong 

indicator that biochemical mapping would enable the analysis of genome-environment 

interactions, such as the prediction of new pathways (Figure 23). Such a study can 

highlight reactions, enzymes and genes that would degrade new environmental 

compounds. 

 
Figure 22. Shortest path between pyruvate and l-lysine in Corynebacterium glutamicum comprises 
of 7 steps as predicted by new mapping algorithm. This path is much shorter than the usual path 
obtained from hand-drawn maps available through KEGG. 
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Figure 23. Shortest path between pyruvate and l-lysine in Corynebacterium glutamicum comprises 
of 7 steps as predicted by new mapping algorithm. This picture highlights the genes, metabolites 
and enzymes required for conversion (as obtained using Pathway Hunter Tool). 
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2.5.3.1. Local and Global Similarity Score and its Impact on Path Finding 

 

The local and global similarity score define the minimum amount of structural 

similarity expected in the reported path. In order to demonstrate the impact of these 

scoring functions Escherichia coli K12 MG1655 was chosen as our model organism. 

The shortest path between “beta-D-glucose” and “pyruvate” was calculated. If the 

local similarity is increased step by step till no more paths are found, the path length 

increases with similarity score (Table 3). The impact of global similarity on the path 

length is very drastic as seen in the following example (Table 4). Hence, number of 

links in the network is inversely proportion to the local and global similarity score. 

Table 3. Local similarity and its impact on the shortest path. Higher the similarity score, longer 
the path as many links are skipped. 

Atom Mapper Atom Trace Path Length Number of Paths

10 5 5 1

15 5 5 1

20 5 6 2

25 5 7 1

30 5 7 1

35 5 7 1

40 5 10 1

45 5 0 0

50 5 0 0

60 5 0 0  
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Table 4. Impact of the Global similarity on the length of the reported shortest path. 

Atom Mapper Atom Trace Path Length Number of Paths

10 1 5 1

10 5 5 1

10 10 5 0

10 15 0 0

15 1 5 1

15 5 5 1

15 10 5 1

15 15 0 0

15 20 0 0

20 1 6 2

20 5 6 2

20 10 7 1

20 15 0 0  

 

2.5.4. Shortest Path Analysis of the Escherichia coli  

 

The shortest path in various Escherichia coli strains was calculated using metabolites 

mapping information (the algorithm explained in sections 2.4.5 and 2.4.7). The 

shortest path between beta-D-glucose and pyruvate using “Atom Mapper” (refer to 

2.4.7.1) as 15% and “Atom Tracer” (refer to 2.4.7.2) at 5% resulted in 5 reaction steps 

in Escherichia coli CFT073 (Figure 24) , Escherichia coli O157:H7 EDL933 (Figure 

25) , Escherichia coli K-12 W3110 (Figure 26), Escherichia coli K-12 MG1655 

(Figure 27), Escherichia coli O157:H7 Sakai (Figure 28). 
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Figure 24. Shortest path between beta-D-glucose and Pyruvate in Escherichia coli CFT073 
comprises of 5 steps with local similarity 15% and global similarity 10%. 
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Figure 25. Shortest path between beta-D-glucose and Pyruvate in Escherichia coli H7 EDL933 
comprises of 5 steps with local similarity 15% and global similarity 10%. 
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Figure 26. Shortest path between beta-D-glucose and Pyruvate in Escherichia coli K12 W3110 
comprises of 5 steps with local similarity 15% and global similarity 10%. 
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Figure 27. Shortest path between beta-D-glucose and Pyruvate in Escherichia coli K12 MG1655 
comprises of 5 steps with local similarity 15% and global similarity 10%. 
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Figure 28. Shortest path between beta-D-glucose and Pyruvate in Escherichia coli H7 Sakai 
comprises of 5 steps with local similarity 15% and global similarity 10%. 
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2.5.4.1.   Network properties 

 

The comparative study (Table 5) of a pathogenic Escherichia coli O157:H7 strain and 

a non-pathogenic bacteria Corynebacterium glutamicum is presented in (Table 6) and 

(Table 7).  The results are solely based on the network connectivity. 

Table 5. Escherichia coli O157:H7, Corynebacterium glutamicum and their network features like 
Degree Distribution (DD) = 2*N/L, Average Path Length (APL), Average k-Path Length (AKPL)    

Organism Genes Enzymes Reactions Metabolites DD APL AKPL

Escherichia coli O157:H7 Sakai 5341 586 1050 1044 3.52 8.06 8.52

Corynebacterium glutamicum ATCC 13032 3057 435 899 1069 2.8 8.22 8.88

 

Table 6. Top 10 metabolite hubs in Escherichia coli O157:H7 Sakai based on connectivity and 
ranked by incoming degree. 

Metabolite  Incoming degree  Outgoing degree

Pyruvate 26 24

CoA 18 14

Tetrahydrofolate 13 8

ATP 12 19

5-Phospho-alpha-D-ribose 1-diphosphate 11 10

L-Glutamate 11 15

Succinate 11 6

Acetate 10 7

beta-D-Fructose 6-phosphate 10 9

D-Galactose 10 5  

Table 7. Top 10  metabolite hubs based on metabolite connectivity in Corynebacterium 
glutamicum (Ranked by incoming degree). 

Metabolite  Incoming degree  Outgoing degree

Pyruvate 14 15

CoA 14 14

Tetrahydrofolate 13 8

Acetate 10 6

L-Glutamate 10 13

5-Phospho-alpha-D-ribose 1-diphosphate 9 10

Succinate 9 6

Acetyl-CoA 8 5

L-Homocysteine 8 4

D-Ribose 5-phosphate 7 6

Glycine 7 6

UMP 7 7

ATP 7 11  
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2.5.4.2. Top 10 Hubs based on k- Shortest Paths 

 

The top 10 metabolite hubs based on the shortest path analysis in a pathogenic 

Escherichia coli O157:H7 strain (Table 8) and a non-pathogenic bacteria 

Corynebacterium glutamicum) (Error! Reference source not found.) are presented.  

Table 8. Shortest path (SP) based top 10 incoming metabolite hubs in Escherichia coli O157:H7. 

Metabolite SP (IN) SP (IN) Normalized SP (OUT) SP (OUT) Normalized 

Pyruvate 74061 6.08 74273 6.08

5-Phospho-alpha-D-ribose 1-diphosphate 72466 6.06 72185 6.05

(2R)-2-Hydroxy-3-(phosphonooxy)-propanal 49825 5.68 50040 5.68

D-Ribose 5-phosphate 43499 5.54 43509 5.54

beta-D-Fructose 6-phosphate 43283 5.54 43377 5.54

D-Xylulose 5-phosphate 40630 5.48 40781 5.48

AMP 38323 5.42 38049 5.41

UMP 37962 5.41 37709 5.4

Glycerone phosphate 36096 5.36 36229 5.36

D-Ribulose 5-phosphate 35610 5.34 35665 5.35

 

 

The paths were normalized by using the following formula, ( )log msp

sp

!

!

" #
$ %$ %
& '(
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2.5.4.3. Shortest Path Distribution 

 

The Shortest path distribution in a pathogenic Escherichia coli O157:H7 strain and a 

non-pathogenic bacteria Corynebacterium glutamicum are presented in (Table 9). 

This global similarity was chosen as 5% and Local similarity was chosen as 15%. The 

percentage of shortest path in each organism is presented in (Table 10). 

Table 9. The shortest path distribution between Escherichia coli O157:H7 strain and a non-
pathogenic bacteria Corynebacterium glutamicum, calculated by Pathway Hunter Tool using 
CUBIC mapping algorithm (Local similarity 15%, Global similarity 5%). 

Shortest Path Distribution
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Table 10. Distribution of the shortest path percentage in the pathogenic Escherichia coli O157:H7 
strain and a non-pathogenic bacteria Corynebacterium glutamicum 
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3 Biochemical Pathway Alignment 

3.1  Introduction 

Equation Chapter 3 Section 3  

A metabolic network can be referred to as a set of interconnected enzymes and small 

molecules giving rise to anabolic, catabolic and amphibolic pathways. The underlying 

cellular topology may vary from organism to organism and this may give rise to 

different functionalities of a pathway(Ravasz, Somera et al. 2002). It is interesting to 

understand how the connectivity between the networks affects the conversion of 

metabolites (Hartwell, Hopfield et al. 1999; Csete and Doyle 2002). Some 

connectivity in the network may be conserved across many genomes (Kelley, Sharan 

et al. 2003) and vice versa. Thus it is essential to understand the underlying functions 

of these cellular networks and the cross-talk between them (Chen and Vitkup 2006; 

Rahman 2006). 

 

Metabolic enzymes represent one of the most important classes of proteins and 

extensive studies about their sequence, structure and function have been carried out in 

the past (Rison, Teichmann et al. 2002). Many enzyme families usually catalyze a 

range of biochemical reactions (Jensen and Gu 1996; Dandekar, Schuster et al. 1999), 

whereas some of these reactions may also be catalyzed by members of apparently 

unrelated protein families (Copley and Bork 2000). This fortifies the hypothesis that 

metabolic enzyme families exhibit complex patterns of divergent and convergent 

evolution (Hartwell, Hopfield et al. 1999; Albert, Jeong et al. 2000; Chen and Vitkup 

2006). The functional assignment by homology (Iliopoulos, Tsoka et al. 2001; Chen 

and Vitkup 2006) to proteins of known function may overlook issues of evolutionary 

divergence (Castresana 2001; Chen and Vitkup 2006), which may lead to error 

propagation in sequence databases (Karp 1998). Understanding the enzyme sequence 

and function(s), based on the metabolic pathway provides us with a better and deeper 

understanding of the system (Rison, Teichmann et al. 2002) (Teichmann, Rison et al. 

2001; Tsoka and Ouzounis 2001) . 

 

In recent years there have been major efforts to understand metabolic pathways based 

on the concept of pathway alignment (Dandekar, Schuster et al. 1999; Tohsato, 

Matsuda et al. 2000; Matsuda and Tohsato 2001; Kelley, Sharan et al. 2003; Brandes, 

Dwyer et al. 2004; Chen and Hofestadt 2004). In one such study the power of a 
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comparative study of pathways captured the plasticity of the glycolytic pathway 

(Dandekar, Schuster et al. 1999). These researches highlight the need for robust 

algorithms to perform pathway reconstruction and pathway alignment for facilitating 

the discovery of pharmacological targets and complementing biotechnological 

applications.  
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3.2  Background 

 

With the stock pile of already sequenced genomes ever increasing, computational 

reconstruction of metabolic networks becomes a crucial step for metabolic pathway 

analysis. Robust methods and tools are required to detect and bring out conserved and 

diverged metabolic pathway connectivity (enzymes/metabolites) in various genomes. 

One such method is metabolic pathway alignment, which can help us understand the 

cross-talk between pathways arising from the underlying connectivity at the 

biochemical level. Alignment tools would find application in various areas, such as 

genome annotation and would prove valuable to a wide range of users including 

pharmacologists, metabolic engineers etc. 

 

3.3  Proposed Model 

 

We present a novel method to perform pathway alignment based on the shortest path 

as implemented in Pathway Hunter Tool (PHT) (Rahman, Advani et al. 2005). The 

output of the pathway aligment will highlight the convergence/divergence of small 

molecule(s) coding enzyme-enzyme connectivity in the pathway across genomes. In 

the first section of this chapter enzymes usage matrix obtained from the ab-initio 

reconstructed network based on the shortest path analysis is presented In the second 

section the alignment procedure together with insertions for handling missing links in 

the network(s) is introduced. The visualization aspect of the alignment, which presents 

the connectivity information from the obtained matrix, highlighting the intricacies of 

the pathways in the selected organism is discussed. Thus we combine the top down 

and bottom up approach to perform the metabolic pathway alignment on the 

reconstructed metabolic network of the selected genomes from KEGG (Kanehisa, 

Goto et al. 2004) are combined. The standard Gibbs energy (Mavrovouniotis 1991) 

change of reactions has been used as an indicator to score/ rank the biochemical 

flexibility of the pathways. The Gibbs energy-based thermodynamics curve (with an 

option to add metabolite concentration data for the calculation) of selected 

((Mavrovouniotis 1993) and references therein), aligned pathways can then be viewed 

and compared. 
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3.4  Method 

 

Exploring the pathway capabilities in different organisms based on connectivity 

information helps us understand the evolutionary relationship (Forst and Schulten 

1999; Forst and Schulten 2001; Teichmann, Rison et al. 2001) as well as alternate 

pathways (Dandekar, Schuster et al. 1999; Heymans and Singh 2003) available in 

various species ( i.e. Prokaryote, Eukaryote). Using graph theory one can define the 

metabolic network as a directed graph where 

G = (V, E) V  metabolites and E  enzymes! ! .  

 

The general procedure used in PAT to perform pathway alignment can be described 

as: 

 

3.4.3 Data Collection 

 

Collecting the connectivity information from the metabolic network of the 

genomes by, a) Selecting organisms from the evolutionary tree based on KEGG 

(Kanehisa, Goto et al. 2004) ontology; and b) Building a consensus network and 

percentage enzyme occurrence matrix (refer to 3.4.6) from the selected organisms 

(Figure 29).  

 



Chapter 3                                                                                                 Biochemical Pathway Alignment 
 

83 
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Figure 29. Enzyme-Percentage occurrence matrix resulting from the conversion of beta-d-glucose 
to pyruvate in the reconstructed network of cgl, eco, mtu, mtc. 

 
3.4.4 Path Finding 

 

Querying a pathway between two metabolites with or without insertion(s) of 

enzymes in the queried pathway by, a) Finding the shortest path between source and 

destination metabolites in selected organisms; and b) If possible, finding and 

extending the shorter shortest path in a genome(s) to match the longer shortest path of 

other genome(s).  
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3.4.5 Viewing Aligned Path 

 

The user views the alignment output and saves it as an image (PNG, JPEG, 

GIF format). Enzymes are coloured (Figure 30) according to their percentage 

occurrence in the selected reference matrix. A consensus of the alignment is 

represented by bar charts and they are coloured according to the enzyme preference 

along the aligned pathway. 

 
Figure 30. Color code for representing the percentage occurrence of enzymes in the organisms. 
Insertion(s)/Deletion(s) of enzymes in the alignment is represented by white colors. 

 

3.4.6 Enzyme-Percentage Occurrence Matrix and Enzyme-Enzyme 

Connectivity Matrix 
 

The enzyme-percent matrices (refer to 3.4.3) were constructed for three 

classes of organisms - Bacteria, Eukaryote, Archae; representing the percentage 

occurrence (3.1) of each enzyme Mi,j (E) occurring in selected organism(s)(“i” th 

enzyme is “j” th organism).   

 
m

j j
j=1

Let = O  {  j   Organisms}! " #$  (3.1) 

 }{
n

i,j (E) i,j j
j=1

M   =  E /    100  i  Enzymes |1<i<m!
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$ % & ' (
$ %
) *
+  (3.2) 
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The resulting matrix named as Enzyme-percentage matrix (3.2) highlights the 

percentage occurrence of an enzyme across the selected genome. For example the 

enzyme-percentage occurrence matrix for the conversion of beta-D-glucose to 

pyruvate will appear as shown in (Figure 29). The enzyme 3.6.1.7 is absent in 

Mycobacterium tuberculosis H37Rv (mtu) hence its percentage occurrence is 75%. 

 

Enzyme-enzyme connectivity matrix is a sparse matrix, which contains information 

about the neighbours of each enzyme. An enzyme is connected to another enzyme if 

and only if it shares a common metabolite between them in a pathway. Finding the 

shortest path in the network under a certain criterion of local and global similarity 

score between all the metabolites in the network is used to calculate this matrix. 

 

3.4.7 Pathway Alignment Based on Shortest Path using the Matrices 
 

The basic alignment procedure revolves around the shortest path between a source 

and destination metabolite. The general alignment procedure can be defined by the 

following flow chart (Figure 31). 

 

3.4.8 Organizing Consensus Header and Assigning Color Codes 
 

Generating a consensus header from the alignment provides a global view of the 

alignment. The preference of the organism for certain enzymes at each step of the 

conversion can be viewed instantly (Figure 31). However, the length of these paths 

may vary from one organism to another. This may prove to be a hitch for the 

alignment. To overcome this problem a new method, “building reference headers” is 

implemented. In the “Building reference headers” method separates reference headers 

are built with different path lengths and the paths with identical path lengths are 

aligned to their corresponding reference header. At the local level, such results 

indicate whether or not an enzyme is unique to an organism. This is done by 

examining its percentage occurrence in various organisms which is presented in the 

enzyme percentage matrix where each enzyme is color coded (Figure 30) based on its 

percentage occurrence. 
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The resulting output increases the potential for biochemical/metabolic engineering 

application and has the potential to facilitate the ongoing systems biology research 

outlook for deciphering the genomes. 
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Figure 31. A flowchart for the proposed pathway alignment model. 
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3.4.9 Finding Alternate Paths based on Metabolites and Enzymes 
 

There can be more than one path for converting a substrate to the final product after a 

series of reaction steps. These paths were classified on the basis of the 

metabolites/enzymes (iso-enzymes) involved at each step of conversion. 

 

Two levels of coding - “x.y” were used to classify the pathways. If an alignment 

between two metabolites results in three paths and if the first two paths evolve with 

the same set of connecting metabolites (but with alternate enzymes doing this 

conversion). Then this path is shown as “1.1” and “1.2” is represented by “y”. 

However in the third path, one of the connecting metabolites used for conversion has 

changed but the source and end product metabolites of the path remains unaltered. 

This path is therefore represented as “2.1” which is represented by “x”.  

 

Hence, this implies that the change in convention at the first level represents a 

change in at least one of the connecting metabolites during the conversion. If the 

second level changes then there is at least one change in the connecting enzyme(s) 

involved during the conversion. Thus the information about the alternate pathway is 

coded in the alignment procedure. 

 

3.4.10 Handling gaps in the pathway alignment 
 

It is well-acknowledged that a path between two metabolites might not be discovered 

due to the missing intermediate conversion step(s) (Osterman and Overbeek 2003; 

Green and Karp 2004; Brouns, Walther et al. 2006). This may happen due to lack of 

information about the pathway (i.e. lack of functional data). It would thus be of 

interest to insert or delete an enzyme in the system and observe the change(s) in the 

pathway alignment (Ettema, Makarova et al. 2004; Chen and Vitkup 2006). In terms 

of graph theory, we are interested in finding the shortest path with one or more 

inserted nodes (missing enzymes). This may change the entire search space and hence 

the topology of the network may also be affected (especially if the inserted enzyme is 

highly connected). Hence, this may result in a combination of paths (due to alternate 

paths) of different lengths thereby increasing the runtime of the alignment. The gap 
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handling subroutine holds true if and only if no path exists between two metabolites in 

an organism (Figure 31).  In order to avoid combinatory explosion, a maximum of 

five gaps (hypothetical enzyme(s) to be inserted in the path) is allowed in the 

alignment.  

 

For the purpose of better visualisation, insertion(s) in our system are reported in 

“white” color and a “+” sign is inserted bellow the consensus header. If an enzyme is 

unique to an organism it is represented in the colour “black”. Handling 

insertion/deletions in the pathway may help us improve the annotation in the 

organism. It would also cater to the requirements of pharmacological and bio-

technological research (Schilling and Palsson 2000; Papin, Price et al. 2003). 
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3.4.11 Algorithm Complexity for Handling Alignment  

 

Metabolic pathway alignment for various species may result in paths of different 

lengths between two metabolites under certain criteria of local and global similarity 

(refer to section 2.4.7) (Rahman, Advani et al. 2005). Hence it is important to build a 

consensus header from the alignment by encapsulating path(s) of equal lengths. In 

order to capture the local preference(s) of the enzymes in the selected organism(s) at 

various steps of the pathway, a consensus header is generated from the pathway(s) of 

different path lengths. This increases the quality of information representation without 

making the alignment visualization too complex.  

 

At the metabolic-centric level, paths of similar lengths were encapsulated and ranked 

according to the summation of standard Gibbs energy of reaction(s) (refer to section 

3.4.12) involved in each pathway. Standard Gibbs energy is an indicator of the 

tentative biochemical energy (thermodynamics) requirement for a pathway (i.e. G!  

of pathway may vary), thereby highlighting the biochemical nature of various 

pathways (Mavrovouniotis 1993).  
 

This information when combined with genomic data allows us to view the system in 

an extremely comprehensive manner (a comparative study of pathways between 

various metabolic networks of the genome(s) will highlight the preference for certain 

class/type of enzymes at various steps) (Kummel, Panke et al. 2006; von Stockar, 

Maskow et al. 2006). 

 

Computationally, this means that the Shortest Path sp!  between two metabolites in 

an organism of interest may result in k steps sp i( (O):= k | k O ) ! " and in another in 

“k + t” steps( )sp m i+m(O )= k+t | k+t O! " . This implies that the path length 

k k t< +  ( ( ) 'sp spo! !" < ) in the alignment. Hence we will get two consensus 

headers for each path length k and k + t respectively, whereas the summation of 

consensus headers will result in length k + t.  
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An alignment between paths of path length of k and k + t in organisms of interest, will 

require the extension of path length k to the next feasible path of length ‘k+t’ in the 

network. Finding next possible shortest path in a metabolic network is a NP-complete 

problem due to combinatory explosion arising from the topological search (i.e. its 

difficult to know that a next possible shortest path exists in the netwrok). To find the 

next possible shortest path in the system, PHT employs heuristics and hence may miss 

some paths in the alignment while looking for the next possible path.  

 

To overcome this situation, we backtrack (based on consensus header) after each 

search to find a possible path (if a path was missed, or no shortest path was reported) 

from the selected enzyme-enzyme connectivity matrix1. Though this may increase the 

running time of alignment in such cases, it greatly enhances the quality of the reported 

alignment - a trade-off that will pay high dividends to the potential users. 

                                                             
1 A sparse matrix containing information about enzyme-enzyme connectivity in the reference network 
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3.4.12 Gibbs Energy Profile of the Aligned Pathways 

 

Once pathways are aligned, they can also be compared with respect to Gibbs energy 

changes (refer to section 2.2) of each reaction step. The standard Gibbs energy of 

formation for each metabolite is computed by a group contribution method 

(Mavrovouniotis 1991). The basic method was further extended and adapted to cover 

metabolites containing vinylog acids and has been implemented in Java. Molecular 

structures are needed for this procedure and were extracted from the KEGG Ligand 

database (Kanehisa, Goto et al. 2006). They have been converted to their standard 

state at pH 7 using the pKa plugin of the ChemAxon software package JChem♣. The 

Gibbs energy prediction method has been applied to the modified structures to give 

the standard Gibbs energy of formation. By weighted summation of these values for 

each reaction, the standard Gibbs energy of reaction is obtainedℜ. The actual Gibbs 

energy of reaction may be calculated when concentration values of participating 

metabolites are at hand (Mavrovouniotis 1993). 

 

                                                             
♣ JChem, version 3.1.6, ChemAxon, Budapest, Hungary. www.chemaxon.com/products.html   
ℜ  Please refer Kai Hartmann’s PhD Work at CUBIC, Cologne, Germany 
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3.5 RESULTS 

 

In order to prove the potential of our new algorithm and method to perform metabolic 

alignment an alignment with the following bacterial genomes was performed.  

 

3.5.3 Comparative Study of Metabolic Network Topology between a 

Pathogenic and a Non-Pathogenic Bacterium 

For conducting a comparative study between Bacillus subtilis 168 and Bacillus 

anthracis Sterne metabolic network, we calculated shortest path distribution (Figure 

32), the average path length (Table 11) and average alternate paths (Figure 33). It is 

important to keep track of alternate paths in the metabolic network because this 

indicates the ability of the organism to survive in adverse conditions. 

Shortest Path Distribution

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Path Length (Reaction Steps)

R
e
la

ti
v
e
 f

re
q

u
e
n

c
y
 *

 1
0
0

Bacillus subtilis 168 Bacillus anthracis Sterne

 

Figure 32. Shortest path distribution in B. subtilis 168 and B. anthracis Sterne 



Chapter 3                                                                                                 Biochemical Pathway Alignment 
 

94 

Average Alternate Path Distribution
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Figure 33. Average alternate path distribution in B. subtilis 168 and B. anthracis Sterne. The 
alternate shortest path in the network can be calculated by dividing the total number of shortest 
paths at each path length (reaction step) by the unique number of shortest path respectively 

Table 11. Metabolic network analysis of B. subtilis 168 and B. anthracis Sterne using shortest 
path 

Genome  Enzymes Reactions Metabolites Average Path 

Length (sp/k-

sp)

Diameter 

of the 

Network

Average 

Degree

B. subtilis 168 468 974 1081 7.93/8.59 28 3.06

B. anthracis 

Sterne 455 997 1127 7.98/8.73 28 3.01

 

Thus, blocking a path may not be lethal as organisms can switch to an alternate path 

performing similar conversions. Alternate paths can be bio-energetically costlier or 

longer than the native pathway. Hence though organisms may slow down their 

metabolic activity, they can still survive.  
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3.5.4 Performing Pathway Alignment 

 

For demonstrating the pathway alignment algorithm four bacterial pathogens i.e. 

Escherichia coli O157:H7, Mycobacterium tuberculosis CDC1551, Bacillus anthracis 

Sterne, Pseudomonas aeruginosa and a non-pathogenic bacteria Bacilus subtilis was 

chosen. The local similarity was set to 15% and global similarity was set to 5%. All 

these alignments were performed using Enzyme-Enzyme Connectivity Matrix and 

Enzyme-Percentage Occurrence Matrix built using over 150 bacteria in the PHT 

database inherited from KEGG. 

 

3.5.4.1 Pathway Plasticity between Bacteria 
  

In order to observe flexibility in the pathways of selected genomes, a comparative 

analysis based on the pathway alignment was performed. The shortest path was 

chosen that converts beta-d-glucose 6-phospate and citrate in selected genomes 

without gap (Figure 34).  
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Figure 34.  The pathway alignment between beta-D-Glucose 6-P and Citrate in four bacterial 
pathogens and one non-pathogenic bacterium.  The assigned local similarity is 15% and global 
similarity is 5% 

 
Figure 35. Progressive pathway alignment highlighting the enzymes preferred at various steps of 
the alignment 
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 Previous research has demonstrated that pathway plasticity even in the central 

pathway i.e. glycolysis and pentose pathway in not only often present but seems to be 

selected by evolution (Forst and Schulten 1999; Schmidt, Sunyaev et al. 2003). This 

section explains the results obtained from the alignment (Figure 35) and discusses its 

capabilities in the light of systems biology. 
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3.5.4.2 Pathway Alignment in Selected Organisms for Converting “beta-D-

glucose 6-phosphate” into “Citrate”     
 

The shortest path to convert “beta-D-glucose 6 phosphate” into “citrate” consists of 

six reaction steps in Escherichia coli O157:H7 and Pseudomonas aeruginosa and nine 

reaction steps in Mycobacterium tuberculosis CDC1551, Bacillus anthracis Sterne, 

and Bacilus subtilis (Figure 36).  

 
Figure 36. Progressive pathway alignment highlighting the enzymes preferred at various steps of 
the alignment. Consensus of the alignment is shown as bar charts and the percentage occurrence 
of each enzyme in bacteria is shown by the respective colors. 

 The alternate pathways (in terms of metabolites (Figure 37) and enzymes) are 

highlighted while performing the pathway alignment. The assigned colors in the 

enzyme block represent its percentage occurrence in bacteria (refer to section 3.4.5 

and 3.4.6). For example in the alignment result (Figure 34) enzyme “1.1.1.49” (at step 

1) occurs less than 70% times in bacteria (colour as green) whereas enzyme “2.7.2.3” 

(at step 5) occurs more than 90 % of the times in bacterial (colour red). Hence this 

global information is very well represented in the alignment-using colour coding 

schema. The local information about the aligned path is very well represented in the 
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terms of bar chats found above the consensus header of the alignment.  For example 

enzymes 3.1.1.31 (step 2) and 4.1.2.14 (step 4) are found to occur less than 30% time 

in this alignment. 

 

At each step of the alignment the headers display different preferences (looking at the 

percentage distribution) of the enzymes at various steps. This implies the existence of 

other enzymes in the path, which can perform similar tasks. The presence of an iso-

enzyme is shown in step 2 and step 3 of (Bacillus antracis) of the alignment where 

enzyme “2.2.1.1” (section 1.1) is substituted by enzymes “2.7.1.11” and “4.1.2.13” 

(section 1.2). Hence they perform the same conversion but in the presence of different 

cofactors thereby highlighting the need to example the metabolites involved in the 

conversion step. Hence the metabolic centric view (Figure 37) and the Gibbs energy 

profile can highlight further dynamics of the path and the moieties involved during the 

conversion process. Using the metabolic profile of the pathway alignment (example 

between step 3 and step 4) it is clear that there are different metabolites involved in 

intermediate conversion steps. Such findings will further boost the relevance of 

comparative network analysis across the genomes and highlights the crosstalk 

between the pathways.  
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Figure 37. Metabolic centric view of the alignment for the selected paths with deltaG score. 
Change is deltaG represents change in on of chemical compound constituting the reaction. 

 

 

This further highlight the fact that selected genomes has a preference for certain 

enzymes over others (based on functionality or evolutionary past) in select pathways 

to carry out certain conversions. Hence this method further provides a global and local 

view to the occurrence of an enzyme in species of interest and its possible relevance 

in the pathway. 
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3.5.5 Gibbs Energy Profile of the alignment 
 

The true meaning of the biochemical pathway can be measured quantitatively using 

Gibbs free energy (refer to 2.2). We have used Gibbs free energy to measure the 

biochemical cost (energy) of various pathways. Thus combining Gibbs free energy 

with biochemical pathway alignment is a very natural phenomenal. 
 

3.5.6 Pathway Alignment with Gaps (insertion)  
 

The shortest path in Helicobacter pylori for converting “3-phospo-D-Glycerate” to 

“pyruvate” has 3 reaction steps if an insertion is allowed while performing alignment. 

The result with an insertion in the alignment of E. coli k-12 (Figure 38) shows that a 

shorter path of length 3 alread exists in E.coli genome. The inserted enzyme is 

“2.7.1.40” shown in white color. In the header section the insertion is shown with a 

“+” sign. 
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Figure 38. The aligned paths between metabolites 3-phospho-D-glycerate and pyruvate in H. 
pylori and E. coli K-12.  The gaps in the alignment as represented by "+" in the header section.   
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The metabolic centric view (Figure 39) of the aligned path further highlights the 

conserved nature of the connecting metabolites between E.coli and H.pylori. 

 
Figure 39. The pathway alignment between 3-phospho-D-glycerate and pyruvate in H. pylori and 
E. coli K-12. The metabolic centric view of the pathway is shown here. 

The biochemical significance of the insertion can be studied by looking at the Gibbs 

profile of the aligned pathway. We performed the standard Gibbs energy profile of the 

aligned path (Figure 40) and found that bio-chemically this insertion is feasible (best 

results can be calculated by finding the gene coding of this enzyme and metabolic 

concentration data). 

 
Figure 40. The Gibbs energy profile the alignment pathway between 3-phospho-D-glycerate and 
pyruvate in H. pylori and E. coli K-12.   
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4 Load Point and Choke Point 
 
4.1 Introduction 
 
Equation Chapter 4 Section 4 
In the present “omics” era, it becomes increasingly more obvious that network 

analysis is essential for the analysis of genetic, proteomics and metabolomics data 

(Hartwell, Hopfield et al. 1999; Grigorov 2005). Large-scale, graph-based 

mathematical models have been developed to demonstrate the intrinsic hierarchical 

modularity of metabolic networks (Ravasz, Somera et al. 2002) and their robustness 

based on the shortest path analysis of the metabolic networks (Arita 2004; Barabasi 

and Oltvai 2004; Papin, Reed et al. 2004).  

 

A typical metabolic network consists of reactions, metabolites and enzymes, which 

can be modelled using graph theory (Jeong, Tombor et al. 2000; Schuster, Fell et al. 

2000; Girvan and Newman 2002; Oltvai and Barabasi 2002; Steinbeck, Han et al. 

2003). These representations lead from a simple graph consisting of edges (reactions) 

and nodes (metabolites) or vice versa to a complex bipartite graph where two nodes 

(metabolites) share a common node (reaction/enzymes) (Rahman, Advani et al. 2005). 

Joining enzymes that share a common metabolite in a path can create enzyme-centric 

networks. The enzyme-centric view (Horne, Hodgman et al. 2004; Rahman, Advani et 

al. 2005) simplifies the representation of the metabolic network by removing loose 

ends in the network (metabolites at the periphery of the network) and forming clusters 

of interacting enzymes. The gene-centric view has been successfully used in 

determining co-regulated genes in the metabolic and regulatory networks (Levchenko 

2003; Covert, Knight et al. 2004; Luscombe, Babu et al. 2004; Ozbudak, Thattai et al. 

2004; Barrett, Herring et al. 2005). 

 

In the present work we extend our analysis to the identification of “load points”. The 

“load points” analysis of metabolites in a metabolic network depends on the ratio of 

the number of valid k-shortest path passing through the metabolites and its nearest 

neighbour connectivity. We believe “load points” can complement other existing 

methods of metabolic network analysis (Schilling, Schuster et al. 1999; Steinbeck, 

Han et al. 2003; Klamt and Gilles 2004; Croes, Couche et al. 2005). It provides a 

global view to the metabolic network activity and such information might help in the 
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analysis of metabolic concentration data obtained from high throughput methods like 

GC/MS (Fiehn, Kopka et al. 2000; Strelkov, von Elstermann et al. 2004). A global 

perspective reveals that certain pathways such as the citrate cycle are highly used in 

the cell. Most of the enzymes/metabolites in the citrate cycle of glycolysis have high 

“load” values. The load point(s) analysis might help interpret concentration data, or 

flux data obtained by flux balance analysis or metabolic control analysis. Hence the 

importance of a metabolite in a metabolic network can be represented and ranked  

 

In chapter 2, an algorithm was developed to identify bio-chemically correct 

connectivity in the metabolic network (refer to section 2.4.4) by pruning the network 

based on metabolic structural similarity (Rahman, Advani et al. 2005). The concept of 

“Global” and “Local” similarity was used to find a valid connectivity in the network 

(refer to section 2.4.7). The effect of metabolic structural similarity on the reported 

path and connectivity is very significant as this determines the abstraction level of the 

sub-network (Hattori, Okuno et al. 2003).  

 

4.2  Formulation of the Critique  
 

In the present work we extend our analysis to the identification of “load points”. The 

“load points” analysis of metabolites in a metabolic network depends on the ratio of 

the number of valid k-shortest path passing through the metabolites and its nearest 

neighbour connectivity. We believe “load points” can complement other existing 

methods of metabolic network analysis (Schilling, Schuster et al. 1999; Steinbeck, 

Han et al. 2003; Klamt and Gilles 2004; Croes, Couche et al. 2005). It provides a 

global view to the metabolic network activity and such information might help in the 

analysis of metabolic concentration data obtained from high throughput methods like 

GC/MS (Fiehn, Kopka et al. 2000; Strelkov, von Elstermann et al. 2004). A global 

perspective reveals that certain pathways such as the citrate cycle are highly used in 

the cell. Most of the enzymes/metabolites in the citrate cycle of glycolysis have high 

“load” values. The load point(s) analysis might help interpret concentration data, or 

flux data obtained by flux balance analysis or metabolic control analysis. Hence the 

importance of a metabolite in a metabolic network can be represented and ranked by 

this method. 

 



Chapter 4                                                                                                        Load Point and Choke Point 
 

107 

Choke points are critical points in metabolic networks. Inactivation of choke points 

may lead to an organism’s failure to produce or consume particular metabolites which 

could cause serious problems for fitness or survival of the organism (Yeh, Hanekamp 

et al. 2004). We propose a new method to analyse choke points by screening the entire 

metabolic network of pathogens and report the probable choke points in the network. 

This extended graph theory model ranks the choke points according to the k-shortest 

path passing through it and the load (in/out) on it. This ranking has a major advantage 

as this measure may help determine the biochemical essentiality of a 

metabolite/enzyme (when a chokepoint enzyme is removed from the network). For 

example, in P. falciparum - a parasite causing malaria in humans, a host cell enzyme 

4.2.1.24 (d-aminolevulinate dehydratase; ALAD) involved in heme biosynthesis was 

suggested as an antimalarial target (Bonday, Dhanasekaran et al. 2000). This enzyme 

is also a choke point enzyme and identifying such potential targets in the pathogens 

can accelerate the drug discovery. Also all three clinically validated drug targets for 

malaria are chokepoint enzymes. A total of 87.5% of proposed drug targets with 

biological evidence in the literature are chokepoint reactions (Yeh, Hanekamp et al. 

2004).   
 

For building the biochemical network we used the LIGAND (Goto, Okuno et al. 

2002) database from KEGG (Kanehisa, Goto et al. 2004) as this data model is the 

backbone for the Pathway Hunter Tool (Rahman, Advani et al. 2005) in addition to 

BRENDA (Schomburg, Chang et al. 2004). For the predicted choke points in the 

pathogen we performed a homology search against the human genome using BLAST 

(Altschul, Madden et al. 1997). 
 

Here we provide a generic framework and model for an automated analysis of 

metabolic networks by ranking the metabolites on the basis of their load point 

property. Load points help determine the importance of enzymes and metabolites in 

the biochemical network. The concept of choke points was used in our study to find 

potential drug targets in the metabolic network of Bacillus anthracis Sterne. The 

metabolites and enzymes are further ranked on the basis of their loads in the given 

network. A comparative study was performed between the human metabolic network 

and pathogen choke points to discriminate human choke points from the pathogenic 
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bacterial choke points. A homology search was performed against human genome to 

find non-homologues potential drug targets from the pathogen choke points.  
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4.3  Method 

  

4.3.1 Data and System 

 

In order to demonstrate the efficiency of our algorithm we chose two microbial 

organisms, namely Bacillus subtilis 168 (Kunst, Ogasawara et al. 1997) and Bacillus 

anthracis Sterne (Read, Salzberg et al. 2002) from the KEGG database. B. subtilis is 

totally innocuous to man and has been widely used in scientific and industrial 

applications in the past. B. anthracis is a pathogen that causes anthrax, which in its 

pulmonary or digestive form is often lethal to humans. A comparative study of the 

metabolic networks of these two organisms highlights the analogies and differences 

between their respective pathways. Of course, there is sometimes more than one 

reaction for an enzyme in KEGG ligand database. Some of the potential reactions may 

be irrelevant to the organism, as the organism may not use all the reactions coded by 

an enzyme. 

 

4.3.2 Data Representation in Graph Theory 

 

Using graph theory we can define the system in terms of a bipartite graph (refer to 

section 2.4.2), which can be reduced to an enzyme-centric graph and a metabolic-

centric graph (refer to section 2.4.1.4). In a bipartite view, two nodes share a common 

enzyme and the edges define the biological relationship between a set of metabolites 

and enzymes. In the metabolic-centric view metabolites are nodes and 

reactions/enzymes are edges whereas in the enzyme-centric view, enzymes are nodes 

and metabolites are edges. 
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4.4   ALGORITHM 
 
4.4.1 Load Points 

 
 
Load points are defined as hot spots in the metabolic network (enzymes/metabolites) 

based on the ratio of number of k-shortest paths passing through a metabolite/enzyme 

(in/out) and number of nearest neighbour links (in/out) attached to it, compared to the 

average load value in the network.  

 

For a given metabolic network, the load l on metabolite m can be defined as (4.1) 
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where -∞ < l m (in / out) < ∞, sp! is the number of shortest paths (in/out) passing through 

a metabolite m; k is the number of nearest neighbour links (in/out) for m in the 

network; 
( )isp!  is the total number of shortest paths and K is the sum of links in the 

metabolic network of M metabolites (where M is the number of metabolites in the 

network). Use of the logarithm makes the relevant values more distinguishable.  
 
 
The network model emphasises metabolites participating in the shortest path 

connectivity, thus minimizing the number of less important links. Since the 

connectivity is based on the metabolite structural similarity, only metabolites 

satisfying the similarity constraints are included in the pathway (for example, false 

links via ATP, ADP etc are excluded by the algorithm). A higher load value will 
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result if a greater number of shortest paths pass through a node (e.g. maximum 

number of paths) having a minimum number of nearest neighbour connectivity (e.g. 

minimum number of edges). In the bio-chemical context, load points can suggest the 

importance of an enzyme or metabolite in a given static metabolic network of various 

organisms.  
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4.4.2 Choke Points 
 

 
 
Choke points are those enzymes, which uniquely consume and/or produce a certain 

metabolite. Choke point enzymes are ranked by the load (in/out) and number of k-

shortest paths (in/out) passing through them. Since it is a reasonable assumption that 

a large number of the biochemical reactions follow the shortest path, we assume that 

the shortest path count can be a good indicator of the biochemical activity.   

 

In our graph model (Figure 41), node 6 (metabolite) and the unique edges (enzymes) 

attached to it, all represent choke points. Choke points are bio-chemically essential 

points in the network. Thus removing a single choke point enzyme (edge between 

nodes 5 & 6 or 6 & 7) from the network affects the consumption or production of the 

metabolite(s) (e.g. node 5 or 7) attached to it.  

 
Figure 41. Metabolic-centric view of a graph model. Grey colour node (6) is a choke point 
(metabolite) and thinner edges adjacent to this node (enzymes) are also choke points. This figure 
is generated by yEd (http://www.yworks.com/). 
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4.4.3 Hunting and Classification of the Potential Drug Targets 
 

In order to confer biological meaning to the graph-based approach of finding choke 

points, we proceeded in the following steps. 
 

4.4.4 Reconstruction of the Network 
 

The reconstruction of the metabolic network was done using systems biology 

knowledge like gene expression data, enzymes and metabolome data for the chosen 

pathogen (Figure 42). 

Network Reconstruction

 
Figure 42. Example of metabolic network reconstruction using systems biology knowledge i.e. 
Plasmodium falciparum. 
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4.4.5 Finding the Choke Points/Non-Choke Points Based Targets 
 

The choke points and the non-choke point enzymes and metabolites were found using 

PHT. After the calculation of the choke points and non-choke point enzymes in the 

network, they were ranked on the basis of the number of incoming shortest paths i.e as 

shown in Plasmodium falciparum  (Figure 43). 

CP Enzymes & Loads Non-CP Enzymes & Loads

Network Analysis

 

Figure 43. Finding Load and Choke points in the Pathogen and Human metabolic network. 

 

4.4.6 Classification of the Potential Drug Targets  
 

 

The potential drug targets are divided into four major classes (Figure 44). The Class 1 

contains those enzymes which are unique to the pathogen and do not share any 

homology with human genome. A homology search (Figure 45) was performed 

between the human and pathogen’s metabolic network enzymes using BLAST and 

choke points with a closest homologue with e-values < 1.0e-02 were removed. The 

Class 2 contains those enzymes, which are found in the human genome (based on the 
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enzyme nomenclature identifier) but they are not homologues to each other and these 

enzymes are non-choke point enzymes in Homo sapiens. The Class 3 enzymes are 

those enzymes that are common choke points between Homo sapiens and pathogen 

yet they are non-homologous. The Class 4 enzymes are enzymes that are choke points 

in Homo sapiens as well as the pathogen and are also homologous to each other. In 

order to corroborate the results, existing and potential drug targets from the literatures 

were also included as a control factor for our prediction. A network based 

comparative study of the choke points between pathogen and Homo sapiens was 

performed using Pathway Hunter Tool (PHT).  

Classifying the Targets

Plasmodium CP Enzymes (LP)

Human CP Enzymes (LP)
Homolog 
Enzyme

Classify

Class 1(+,-,+,-,+/-) Class 2(+,-,-,-,+/-) Class 3(+,-,-,+,+/-) Class 4(+,+,-,+/-)

Literature based
Drug targets

Pathogen Specific 
Enzymes

 
Figure 44. Potential drug targets can be divided in four major categories. Class 1 represents the 
best and Class 4 the worst. “+” implies that a particular enzyme classification criterion is true 
(read clockwise). 
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Comparative Genomics

Unique Genes

BLAST against Human Genome

Homolog Genes

 
Figure 45. Finding Homolog and Non-Homolog genes between pathogen and Human genome 

The similarity measure (refer to 2.4.7) between the two metabolites used in our 

approach is based on the similarity of their molecular structures as measured by the 

agreement of their respective 2D molecular fingerprints (Steinbeck, Han et al. 2003). 

The chosen metabolite similarity criteria (for calculating the shortest pathways) 

determine the range of network sizes and average degrees of the nodes for the various 

metabolic networks (Hattori, Okuno et al. 2003; Le, Ho et al. 2004). Thus the higher 

the global similarity (structural similarity between substrate or source and product or 

sink in a pathway over a series of intermediate metabolites) and local similarity (the 

metabolite structural similarity between a pair of consecutive metabolites) cut-off 

score (Rahman, Advani et al. 2005), the smaller is the network diameter and the 

average degree of the nodes. In the discussed example the local similarity score was 

chosen as 15% and global similarity score was chosen as 5%. 
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4.5   Results 
 
4.5.1 The Choke Point Enzyme Analysis in Corynebacterium glutamicum 
 

The choke point enzyme “1.1.1.25” in the Shikimate pathway of Corynebacterium 

glutamicum was knocked out (Figure 46). This resulted in serious repercussion in the 

growth of the bacteria in the wet lab Ξ. The “load points” also indicated this 

phenomenon as a major shift in the load graph was observed (Figure 47). 

Knock-Out

D-Erythrose
4-phosphate Phosphoenolpyruvate

7P-2-Dehydro -3-deoxy-
D-arabino -heptonate

3-Dehydroquinate

Quinate

3-Dehydroshikimate

Protocatechuate

Shikimate Chorismate

PrephenatePhenylpyruvate

Phenylalanine Tyrosine

Tryptophan

EC 1.1.1.25

 
Figure 46. The choke point enzyme 1.1.1.25 in the Shikimate pathway was reported to have high 
load value. 

                                                             
Ξ  Experiments were conducted in Prof. D. Schomburg’s laboratory of Biochemistry by his metabolome 
work group. 
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Understanding Metabolomics 
Data

1.1.1.25Mutant of C. glutamicum

A choke point enzyme

Hampers the growth

GC/MS Data

 
Figure 47. The impact of the knock-out choke point enzyme (gene) 1.1.1.25 as shown in GS/MS 
peak and the load point analysis. 

  

4.5.1.1 Load Point Analysis of Metabolic Networks between a Pathogenic and a 
Non-Pathogenic Bacterium 

 

In the pathogenic bacteria Bacillus anthracis Sterne (bat) and in non-pathogenic 

bacteria Bacillus subtilis 168 (bsu), we identified the top 10 metabolite load points 

(The top ‘10’ load points were chosen purely for convenience – both of presentation 

and of comprehensibility). The loads on the metabolites differ between the two 

bacterial networks (incoming load (Table 12) and outgoing load (Table 13)). Most of 

the metabolites in the list of top 10 load points in pathogenic bacteria Bacillus 

anthracis Sterne (bat) do not match with the load points in non-pathogenic bacteria 

Bacillus subtilis 168 (bsu).  
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Table 12. Top 10 Metabolite load points based on incoming load value in Bacillus subtilis 168 
(bsu) and Bacillus anthracis Sterne (bat). 

9

6

5

1896521594661.741.7710Oxaloacetate

78546900221.951.7311
1-(2-Carboxyphenylamino) -1' -deoxy -D-

ribulose 5' -phosphate

1736315086551.831.5913Phosphoenolpyruvate

1630614881551.771.58143-Phospho -D-glycerate

16533681111.091.79108
2-Amino -4-hydroxy -6-(erythro -1,2,3 -

trihydroxypropyl)dihydropteridine

2.11 1373710924331.78393-Phospho -D-glyceroyl phosphate

3086134146991.821.82775-Phospho -alpha -D-ribose 1 -diphosphate

34144145111.811.9186
2,5 -Diamino -6-(5'-triphosphoryl -3',4' -

trihydroxy -2'-oxopentyl) -

Not Found4345
Not 

Found
1

Not 

Found
1.96-5Cystathionine

37884613111.922.0264
2,5 -Diaminopyrimidine nucleoside 

triphosphate

41645079112.012.1143
Formamidopyrimidine nucleoside 

triphosphate

60606061112.392.2922GTP

1491212960222.62.36112-Phospho -D-glycerate

k-

Shortest

Path 

bat

k-

Shortest

Path

bsu

Links

bat

Links

bsu

Load

bat

Load

bsu

Rank

(bat)

Rank

(bsu)
Metabolites
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Table 13. Top 10 Metabolite load points based on outgoing load value in Bacillus subtilis 168 
(bsu) and Bacillus anthracis Sterne (bat). 

1.828

1.847

1.856

NRNR

3427

3503

17678

NR21851NR71.638Oxaloacetate

15222551.69Phosphoenolpyruvate

2866111.5410Biotinyl -5'-AMP

2749111.514Biotin

21.944

32.132 140351099031.796
3-Phospho -D-glyceroyl 

phosphate

7745673221.77
1-(2-Carboxyphenylamino) -1' -

deoxy -D-ribulose 5' -phosphate

30473681111.71.79106

2,5 -Diamino -6-(5' -

triphosphoryl -3',4' -trihydroxy -2'-
oxopentyl) -

1655214932442.011.81853-Phospho -D-glycerate

954811233331.741.81135N6-(1,2 -Dicarboxyethyl) -AMP

34144145111.811.9194
2,5 -Diaminopyrimidine 

nucleoside triphosphate

37884613111.922.0253
Formamidopyrimidine

nucleoside triphosphate

45834725112.112.0432Acetyl adenylate

1515313028222.612.36112-Phospho -D-glycerate

k-Shortest 

Path bat

k-Shortest 

Path bsu

Links 

bat

Links 

bsu

Load 

(bat)

Load 

(bsu)

Rank 

(bat)

Rank

(bsu)
Metabolites
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4.5.1.2 Choke Point Analysis in B. anthracis - A Pathogen 
 
An analysis of the top 10 choke points ϑ in B. anthracis - a pathogen, revealed a 

number of possible drug targets against infection of B. anthracis are identified (Table 

14). 

Table 14. A comparative study of top 10 choke points in Bacillus anthracis Sterne against the 
Homo sapiens metabolic network. Top 10 Choke point enzymes in B. anthracis Sterne ranked by 
number of shortest paths. 

  

Enzyme 

Id
Enzyme Name Gene Ids

Load 

(in)

Load 

(out)

k-SP 

(in)

k-SP 

(out)

Human 

Choke 

Top Blast Hit (e-

value < 1.0e-

Top Blast Hit 

(identity)

2.4.2.7
adenine 

phosphoribosyltransferase
BAS4303 1.67 1.87 31454 31454 + 7.00E-30 42%

2.6.1.1 aspartate transaminase BAS1454 0.46 0.27 16600 16600 + 5.00E-41 30%

6.2.1.1 acetate-CoA ligase BAS2376 0.13 0.41 15831 15831 + e-109 36%

6.2.1.1 acetate-CoA ligase BAS4543 0.13 0.41 15831 15831 + e-109 40%

6.2.1.1 acetate-CoA ligase BAS4560 0.13 0.41 15831 15831 + 5.00E-89 34%

3.5.4.16 GTP cyclohydrolase I BAS1260 2.59 2.36 14341 14341 + No Homologue
No 

Homologue

3.5.4.16 GTP cyclohydrolase I BAS1421 2.59 2.36 14341 14341 + 9.00E-43 47%

4.2.1.20 tryptophan synthase BAS1161 1.67 1.26 14321 14321 - No Homologue
No 

Homologue

4.2.1.20 tryptophan synthase BAS1162 1.67 1.26 14321 14321 - No Homologue
No 

Homologue

2.7.4.6
nucleoside-diphosphate 

kinase
BAS1425 0.87 0.74 14199 14199 + 7.00E-46 57%

4.2.1.11
phosphopyruvate 

hydratase
BAS4985 1.85 2.13 13692 13692 + e-120 53%

2.4.2.18
anthranilate 

phosphoribosyltransferase
BAS1158 1.54 1.65 12622 12622 - No Homologue

No 

Homologue

2.7.4.14 cytidylate kinase BAS1407 0.82 0.92 12264 12264 + No Homologue
No 

Homologue

2.7.1.40 pyruvate kinase BAS3136 0.65 0.39 11919 11919 + 6.00E-73 42%

2.7.1.40 pyruvate kinase BAS4492 0.65 0.39 11919 11919 + e-105 44%

 

                                                             
ϑ  The top ‘10’ choke points were chosen purely for convenience – both of 
presentation and of comprehensibility 
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4.5.2 Potential Drug Targets in Plasmodium falciparum 

 

The load point and choke point strategy was implemented on the re-annotated 

metabolic network of Plasmodium falciparum, a malaria-causing agent. Most of the 

existing/potential drug targets are found by our model (Table 15). We found 31 non-

choke points based potential drug targets and 6 of the choke point enzymes targets 

were found in only one of the malaria life cycle stages. We propose new 29 choke 

point based anti-malarial potential drug targets. Three proven drugs- fosmidomycin 

(acting on EC 1.1.1.267), Trimethoprim/ Proguanil/ Pyrimethamine (inhibiting EC 

1.5.1.3) and Sulfadiazine/Sulfametopyrazine/ Sulfisoxazole/ Sulfoxone (inhibiting EC 

2.5.1.15) are successfully identified by our model. Hence this result, which was used 

as a control, further highlights the usefulness of our modelℑ. 

 
Table 15. Drug Targets in Plasmodium falciparum, and its relevance to our prediction model. 

Prediction Status

Dapsone , sulfone /sulfonamide --
+ All, -

Sporozoite
2.5.1.15

fosmidomycin--
Virtual and 3 

stages
1.1.1.267

Atovaquone+++ All1.10.2.2

Dapsone--
+ All,  -

Sporozoite
2.7.6.3

Halofantrine / QuinineNANANA1.14.13.67

Halofantrine
+-Non-CP3.6.3.14

DapsoneNANAVirtual4.1.2.25

DapsoneNANANA1.14.13.80

Sulfadiazine/ Sulfametopyrazine / 

Sulfisoxazole / Sulfoxone
++Non-CP1.3.3.1

Trimethoprim / Proguanil / 

Pyrimethamine
+-

Merozoite , 

Sporozoite
2.1.1.45

Trimethoprim / Proguanil / 

Pyrimethamine
+++ All, - Ring 1.5.1.3

Drugs/InhibitorsHomologyCP H. sapiensCP P.falTargets

Non-Choke Points

Non-Choke Points

 

                                                             
ℑ  For details please refer the CUBIC project thesis (report) of T. Biru (2005-2006) and J. Padiadpu 
(2004-2005). 
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4.5.3 Potential Drug Targets in Mycobacterium tuberculosis 

 

The proven potential drug targets, which exist against the tuberculosis producing 

pathogen Mycobacterium tuberculosis, was analysed by our model (Table 16). The 

results conjure similar prediction rates as observed in the case of the malaria parasite 

Plasmodium falciparum. The non-pathway based drug targets were not picked up by 

our method as this model is exclusively designed for predicting targets in metabolic 

networks (Table 17). 

Table 16. Classification of the drug targets in Mycobacterium tuberculosis 

+

III

III

III

II

I

I

I

Class

thiolactomycinMT2306fab2.3.1.41

pyrazinamideMT0486cmaA12.1.1.79

Drug/InhibitorGene IDGenesEnzyme

kanamycinMT0275aac2.3.1. -

isoniazidMT1959katG1.11.1.6

PASMT2834thyA2.1.1.45

Clavulanic acidMT2128bla3.5.2.6

cycloserineMT3059ddlA6.3.2.4

Isoniazid , ethoniamide , triclosanMT1531inhA1.3.1.9
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Table 17. Classification of the drug targets in Mycobacterium tuberculosis 

No path 

No path 

No path

No path

+

+

+

Class Drug / InhibitorGene IDGenesEnzyme

StreptomycinMT0720rpsLnone

AmikacinMT0720rpsLnone

CapreomycinMT0680rplJnone

oxfloxacinMT0006gyrA5.99.1.3

RifapenteneMT0696rpoC2.7.7.6

RifabutinMT0695rpoB2.7.7.6

RifampicinMT0695rpoB2.7.7.6
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5 Discussion 

 

Metabolic network analysis will play a major role in “Systems Biology” in the future. 

Molecular networks represent the backbone of molecular activity within the cell. 

Recent studies have taken a comparative approach toward interpreting these networks, 

contrasting networks of different species and molecular types, and under varying 

conditions. 

 

5.1 Network Analysis 

 

The shortest path between metabolites can be calculated by various methods 

(analytical assumption or biochemical knowledge). We proposed a novel method, 

which uses biochemical information to calculate the shortest path in the metabolic 

network. In order to achieve such a meticulous approach we have mapped each 

substrate in the bio-chemical reaction to its corresponding product (refer to section 

2.1.5 and 2.1.6). For the calculation of the shortest paths the two biochemical criteria 

“local” and “global” structural similarity were used, where “local similarity” is 

defined as the similarity between two intermediate molecules and “global similarity” 

is defined as the amount of conserved structure (refer to section 2.5.2) found between 

the source metabolite and the destination metabolites after a series of reaction steps 

(refer to section 2.4.7). These two criteria helped us to achieve bio-chemically valid 

shortest path (refer to section 2.5.2 and 2.5.3) in the metabolic network without 

making any analytical presumptions (elimination of the frequently occurring 

metabolites in the network). 

 

The atomic mapping algorithm developed by us handles the biochemical mapping in 

the network, while dynamically finding the paths. Since we use binary fingerprints-a 

heuristic method (refer to section 2.4.4.1) to find biochemical similarity, we might get 

some false positive mapping in the network. Though it keeps track of the structural 

changes molecular fingerprint is not a very sensitive measure. In future it will be a 

useful to change fingerprints with actual atom counts (of the metabolites) for keeping 

track of the conserved /matched chemical moieties in the pathway (refer to the MCS 

method on 2.4.5). Another potential drawback of this method is given by the fact that 
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not all metabolites in the metabolite databases have structures (e.g. macromolecules 

like proteins or nucleic acids, or generic molecules like “an alcohol”), as a result of 

which, the user may miss some connectivity due to lack of structural information.  

 

The shortest path between source and destination metabolite is the minimum number 

of reaction steps between them. We consider the metabolic pathway in our system to 

be a directed graph, and all the edges (reactions) share the same cost (here 1). Hence 

this does not lead us to NP-complete problem as one can calculate the k-shortest path 

between two metabolites using BFS (Breadth First Search) algorithm. The 

biochemical knowledge about the chemical similarity (refer to section 2.4.2, 2.4.5 and 

2.4.6) has been used to satisfy the constraints (similarity) with BFS algorithm in order 

to calculate k-shortest paths between two metabolites (source and destination). This 

means that the runtime of the tool depends on the metabolites and reactions present in 

an organism. We are able to generate all possible k-shortest paths between two 

metabolites under given criteria of global and local similarity.  

 

In order to cross-check this result it is possible to switch off the “Atom Mapper” 

(Local similarity) and “Atom Tracer” (Global Similarity) options thereby performing 

the search on the ligand-number-based mapping obtained from the KEGG reaction 

database. On the other hand the power and biochemical relevance of having local 

similarity and global similarity is very high. In the future we plan to provide non-

standard structural information for these metabolites in order to allow the inclusion of 

such reactions.  

 

The impact of local similarity is more than global similarity while path finding (refer 

to 2.5.3.1). This may be because the number of connectivities in the network is 

directly proportional to the local similarity score. The strength of using shortest path 

with biochemical knowledge is very well cited in this example (refer to section 2.5.1, 

2.5.2). The shortest path between pyruvate and L-lysine resulted in 11 steps in KEGG 

pathway map whereas by using chemical knowledge we found a shorter path of length 

7 (refer to 2.5.3). Thus such missing links can be explored with this algorithm which 

can be very helpful while interpreting –omics data set. 
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A comparative study of the network of E.coli was performed (refer to 2.5.4). A subset 

of shortest path (between beta-d-glucose and pyruvate) was found to be similar at the 

biochemical level. When the metabolic network of C. glutamicum was compared with 

E.coli (refer to section 2.5.4.2 and 2.5.4.1) it was evident that they differ both in terms 

of connectivity and shortest path. It is clear that at the biochemical level the top 10 

hubs (in both the organism) based on shortest path may be a better criterion to 

understand the network rather than just connectivity. On the other hand one can also 

observe that highly connected metabolites do not occur as top scores in shortest path 

hubs. While performing the shortest path analysis (distribution of shortest paths refers 

to section 2.5.4.3) it was also evident that E.coli has a greater number of alternate 

pathsΨ although both the genomes have approximately similar average path length. 

This further highlights the strength of our algorithm that by using chemical 

information for calculating pathways, we can achieve biochemical meaningful results. 

 

Thus we are able to calculate a valid shortest path in network. Using Pathway Hunter 

Tool (PHT) we are able to perform comparative studies between the genomes i.e. 

hubs, alternate path, paths under constraints (via not via metabolites etc).  

 

 

 

 

 

 

 

 

                                                             
Ψ This might also be because of the fact that E.coli has been a model organism since long, hence we 
have better understanding of the genome. 
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5.2 Pathway Alignment 

 

With the stock pile of already sequenced genomes ever increasing, computational 

reconstruction of metabolic pathways becomes a crucial step for metabolic pathway 

analysis (Sharan and Ideker 2006). We present a novel method to perform metabolic 

pathway alignment from the reconstructed metabolic networks of various genomes. 

Our method highlights both conserved as well as diverged parts in the metabolic 

networks of various genomes. This study further can be used to bring out the alternate 

path, iso-enzymes and evolutionary relationship that may give us a better 

understanding of the genomes. The enzyme-percentage matrix (refer section 3.4.6 ) 

and enzyme-enzyme matrix can not only provide information about the enzyme 

preference in the genomes but it can also help us to annotate organisms based on 

evidence of molecular interactions. 
  

The new tool provides flexibility to the user both at the level of selection of genomes 

based on the existing phylogenetic profile and pathway alignment based on the chosen 

source (substrate) and destination (product) metabolite. The user can also build 

reference matrices from the chosen genomes (network topology) and set the 

abstraction level of the graph based on the molecular similarity (local and global 

similarity) as implemented in PHT. Certain enzymes can be skipped while aligning 

the pathway by the option “not via enzymes” or “not via metabolites” thereby giving 

the user complete control over the pathway elucidation.  

 

Any pathway alignment without gap (insertion/deletion) may sound very stringent, 

especially since almost all the annotated metabolic pathways have gaps. To overcome 

this bottleneck in the pathway alignment we provide the user with a gap insertion 

option thus giving the user a new insight into the pathways. Further evidences about 

the existence of the suggested enzymes (insertions/gaps) can be obtained by looking 

into different annotation database. The “gap filling” or “hole filling” idea in the 

metabolic alignment may take more computation time but it yields high dividends for 

the users (refer section 3.4.10 and section 3.5.6). 
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From the perspective of the algorithm, pathway alignment is an NP-complete problem 

as finding all the possible paths (of various lengths) in the network is not possible 

(refer section 3.4.11). Hence we allow a maximum of five gaps in the network as it 

affects the run time due to increase in the search space. We intend to include an 

automated annotation module for the suggested insertions (enzymes) while 

performing the pathway alignment. We expect our tool to be of use in different 

applications and of value to a wide range of users including pharmacologists, 

metabolic engineers and in genome annotation. 

 

In the results section a comparative study between two bacilli strains (pathogenic and 

non pathogenic) were performed. They exhibited similar network topology except that 

they had alternate paths of different lengths (refer to section 3.5.3). Thus we need a 

method to amplify these changes/variations in the genomes.  

 

Hence we performed a pathway alignment between four pathogens and a non- 

pathogenic bacterium (refer to section 3.5.4). The results were promising as one could 

expect preferences of various enzymes/metabolites in these genomes. The pathogenic 

strains Escherichia coli O157:H7 and Pseudomonas aeruginosa have a shorter 

shortest path between them, while Mycobacterium tuberculosis CDC1551, Bacillus 

anthracis Sterne, and a non-pathogenic bacteria Bacilus subtilis have a longer shortest 

path for the same conversion (refer to section 3.5.4, 3.5.4.1). The enzymes preferences 

between them also vary (refer to section 3.5.4.2). The pathogenic strain of Bacillus 

anthracis at step 5 does not use enzyme EC 3.6.1.1., while the non-pathogenic strain 

Bacilus subtilis uses this enzyme. The colour codes further highlight that this enzyme 

is only used by 30% to 40 % of bacteria (although this knowledge is limited to the 

present data). The bar charts above the header further highlight the enzyme 

preferences at certain steps of conversion between these genomes. Thus the global 

information about enzyme usage in bacteria and local information about enzyme 

preference at various steps of conversion is very well captured by this representation.  

 

 

 

 



 

130 

Further investigation of the metabolite connectivity in the metabolic-centric view of 

the alignment makes clear that certain metabolites are conserved and some of them 

vary (refer to 3.4.9). Invariably, it is the side metabolites (or non-connecting) that vary 

in the pathway rather than the connecting metabolites. The impact of such variation 

will change the Gibbs energy profile of the pathway and its dynamics. Thus the Gibbs 

energy perspective gives us an idea of the thermodynamic feasibility of the reactions.  

 

Since the present network suffers with gaps, pathway alignment that allows filling of 

these gaps is very beneficial. One such example is demonstrated in the section 3.4.10. 

The pathway alignment between E.coli and H.pylori was performed with one gap. We 

were successfully able to predict a potential missing enzyme in this pathway (refer 

section 3.5.6). It was evident from the alignment that if we insert an enzyme EC 

2.7.1.40 then we will be able to complete the path. Since this enzyme is used by 80% 

of the genome, it was highly probable that this was a good hit. On the other hand the 

Gibbs energy profile was also favourable, as the connecting metabolites do not 

change. Another extension can be the search for the homologous gene in H.pylori, 

which may code for this enzyme.  

 

Thus we define a novel method examining metabolic capabilities of various genomes 

in the light of systems biology to bring out topological complexity and the crosstalk 

between the connectivity (Rahman, Jonnalagadda et al. 2005). Along with 

highlighting the conserved/diverged enzymes in the pathways, our study also provides 

a local and global outlook to metabolic pathway alignment. We are able to predict 

potentially missing enzymes in the pathway. The metabolic pathway flexibility and 

their cross-talk will highlight the adaptation potential in the genomes and allow us to 

tap organism-specific enzymes for potential drug targeting (especially in drug-

resistant strains of parasites).  
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5.3 Potential Drug Targeting using Load Point and Choke Point 

 

In certain common diseases, e.g., diabetes and obesity, metabolic dysfunction is a core 

aspect of the patho-physiology. In others, such as cancer, it is secondary, but 

nevertheless required for disease progression, with, for example, malignant cells 

requiring increased glycolytic metabolism and nucleic acid synthesis to be able to 

divide rapidly in an oxygen-deficient tumor environment. Notably, many important 

drugs (e.g., certain antibiotic and anticancer agents and the leading cholesterol 

lowering agents) target specific metabolic reactions. Hence, an improved 

understanding of metabolism is likely to have great value in developing better drugs 

and disease treatments.  

 

Drug target identification based on “omics” networks (Giaever, Flaherty et al. 2004; 

Holzhutter and Holzhutter 2004; Yeh, Hanekamp et al. 2004; di Bernardo, Thompson 

et al. 2005) is a very promising approach that has only recently become possible. The 

concept of choke points (Dawson and Elliott 1980) in a given network contributes 

effectively in the identification of the lethality/bottleneck (here potential drug targets) 

in a network. Since a high load on a certain enzyme means that a large number of 

shortest paths go through it, therefore indicating a position in the central metabolism, 

we assume that ranking choke points on the basis of load will move enzymes with a 

higher probability of biochemical lethality to the top of the candidate list. A 

comparative study of choke points with the human metabolic network is essential to 

identify possible interference of the drugs with the human metabolism which might 

lead to side effects. It has to be kept in mind though, that presently a large number of 

genes have unidentified functions which could lead to erroneous prediction of choke 

points. For example, often drug targets are identified by a unique pathogen-specific 

metabolic activity, as in the case of reverse transcriptase in the case of HIV (Imamichi 

2004). However, the screening of the entire metabolic network of the pathogen to find 

choke point-based potential drug candidates followed by a comparative study with 

human metabolic network provides additional targets. Examples are the anti-malarial 

drugs (Sixsmith, Watkins et al. 1984) pyrimethamine and cycloguanil, targeting a 

choke point enzyme dihydrofolate reductase (1.5.1.3) (also a human homologue) in 

Plasmodium falciparum with some side effects on humans but lethal to the parasite.   
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Using better pathogen genome annotation (refer to section 4.4.4) and the 

robust algorithm in the Pathway Hunter Tool (Rahman and Schomburg 2006), we 

provide a strong foundation for the identification of Choke Point enzymes by 

metabolic network analysis (refer to section 4.4.6). This has resulted in the prediction 

and classification of potential drug targets in few of the most lethal disease-causing 

organisms. As already proved by previous studies, identifying Choke Point enzymes 

is one of the systematic methods of identifying potential metabolic drug targets (Yeh, 

Hanekamp et al. 2004) (Rahman and Schomburg 2006). This robust method enables 

the prediction of potential targets in metabolic pathways of a pathogenic organism 

(refer to section 4.5.3 and 4.5.2). The lack in functional annotations poses the major 

drawback in any analysis of a metabolic network due to the lack of connecting 

enzymes in the pathways. For example, in M. tuberculosis we have many hypothetical 

proteins belonging to the unique PE (Pro-Glu) and PPE (Pro-Pro-Glu) protein 

families. We may have additional Choke Points due to this lack of connectivity (holes 

in the network), making it a unique enzyme in the pathway. We may also lack few 

critical enzymes due to gaps in the functional annotations. An important and better 

annotation of the pathogen genome would greatly reduce the false Choke Point 

enzymes in the metabolic network. 

 

  There are few gaps in the pathways for which no enzyme(s) has been detected 

in the genome. This implies that either, a) there are enzymes in the genome that have 

not been identified, or b) enzymatic functions have not been assigned to the identified 

proteins, or c) an alternate pathway in the organism exists that does not involve the 

reaction, or d) there is parasite importation of the enzymatic activity from the host. If 

the organism produces these missing enzymes, they must reside in the un-annotated 

(functional) regions of the genome. If the organism does not produce them, they or 

their products may be imported from the host, a variant pathway that does not use the 

reaction may exist (refer to 3.4.10 for hole filling), or the pathway may not exist at all. 

Such discoveries are very important in drug discovery (Morett, Korbel et al. 2003). 

This further fortifies our study and makes it valuable to the immunological and 

molecular research community as alternate paths are promising targets of drug 

discovery. 
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In addition, we found that lack of sequence similarity has a predictive value 

for considering a choke point enzyme as a biologically validated drug target in 

pathogens. Although we have more than hundred choke point enzymes in each studied 

pathogens, the classification based on the relevance with the human pathway 

narrowed down the counts to only few critical enzymes with very few exceptions. 

Enzymes with no significant sequence similarity to any known human enzyme or 

protein make these predicted choke point enzymes very important as targets for drug 

designers (refer to section 4.4.5, 4.4.6, and 4.4.3). Even enzymes with some sequence 

similarity (low e-value) can be considered as drug targets; given the fact that many 

such enzymes are already targets for currently used drugs (Rahman 2006) (Table 15), 

(Table 16) and (Table 17). 

 

We were successful in finding new potential drug targets in pathogen M.tb and 

malarial parasite (P.fal). Apart from this we also found few choke point drug targets, 

which already exist as successful drugs thus complimenting our method ℵ. Most of the 

proposed choke points found support in the existing literature. This fortifies our 

concept and brings out the effectiveness and robustness of our prediction method. The 

results obtained from our in silico method illustrate that many proposed drug targets 

in the literature are predicted Choke Point enzymes (Table 15). The effectiveness of 

our Choke Point analysis for target prediction can be improved with refinement of the 

underlying metabolic network. The structure of the metabolic network will improve 

with further annotation of the metabolic functions in the organism, as well as the 

incorporation of additional types of information, expression at different cellular 

growth phases and cellular localization of specific enzymes (refer to section 4.4.4). 

 

                                                             
ℵ  For Further details please refer CUBIC project report of  T. Biru (2005-2006) and J. Padiadpu (2005-
2006). 
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 An analysis of the top 10 choke points (The top ‘10’ choke points were 

chosen purely for convenience – both of presentation and of comprehensibility) in B. 

anthracis - a pathogen, is presented (Table 14). In (Table 14), a number of possible 

drug targets against infection of B. anthracis are identified. We found that the 

enzymes tryptophan synthase (EC: 4.2.1.20) and anthranilate 

phosphoribosyltransferase (EC: 2.4.2.18) could be effective potential drug targets 

(refer to section 4.5.1.2). Neither of these enzymes are chokepoints in the human 

metabolic network nor do they share a significant homology with the human genome 

(Table 14). This means that blocking these enzymes might affect the pathogen but not 

the human as there exists an alternate pathway.  

 

This approach may contribute to the first identification of potential target 

enzymes for rational drug design. However, it must be noted that the absence of 

complete pathway information may lead to false identification of choke points. 

Additional computational, biological and/or experimental methods or data will further 

narrow down the list of potential drug targets.  

 

To summarize, our analysis is based on the, a) sound biochemical significance 

obtained from experimental facts as stated in the literature, b) a comparative study of 

human and pathogen metabolic network and c) sequence similarity (homologue) 

search of functional assignment.  

 

Although we have developed a robust method to predict the potential targets in 

metabolic pathways of organisms in general, there is always room for further 

improvement. Providing a complete and better annotation in vivo (thereby reducing 

the identification of false Choke Point enzymes and providing previously unreported 

Choke Point enzymes in the metabolic network) is one of the first steps in this 

direction. The current analysis includes only the completely annotated enzymes in 

each organism. Including all the available enzymes for the organisms, such as putative 

enzymes, may complete the analysis of the metabolic network. The enzymes obtained 

as Choke Point enzymes in the analysis can be considered as potential drug targets 

although many other issues need to be taken into consideration (e.g. Non-Choke Point 

enzymes and their impact). Another approach could be combining Choke Point 

analysis with chemo-genomic profiling (micro-array data) (di Bernardo, Thompson et 
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al. 2005) to observe functional responses on the targets. Our provisional targets need 

to be examined further, both computationally and experimentally for these additional 

features.  The rapid emergence of multi-drug resistant strains of these potentially 

lethal pathogens calls for the identification of new targets. The discovery of new 

targets may lead to a drug formulation that would be able to counteract the resurgence 

of these diseases.  
 

Our results highlight the local and global properties of complex biological metabolic 

networks. Thus the load (in/out) of metabolites is a more global indicator of their 

importance, as compared to mere connectivity information. The network model and 

algorithm presented can process the information contained in the topology of the 

metabolic network and extract knowledge about the function, role and importance of 

the metabolites in a network. The extended graph-based choke point concept can 

facilitate drug discovery and ranking choke points based on their load values may be a 

likely pointer to the lethality level of such potential drug targets in the network. 

Further study and comparative analysis of various metabolic networks based on our 

network model can be beneficial for in vivo and in vitro studies (refer to section 

4.5.1). As a note of caution we would like to add that presently such an analysis is 

limited by the limited accuracy and completeness of pathway annotations and by the 

lack of knowledge of the proteins actually present in a certain state of the cell.  

 
The algorithm described has been implemented in the Pathway Hunter Tool (PHT) 

with the aim of identifying enzymes for potential drug targets and designing synthetic 

networks with highly specialised metabolic functions.  
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6 Outlook 

 

Metabolic network analysis will play a major role in “Systems Biology” in the future. 

Molecular networks represent the backbone of molecular activity within the cell. 

Recent studies have taken a comparative approach toward interpreting these networks, 

contrasting networks of different species and molecular types, and under varying 

conditions. The knowledge about metabolites involved in the cellular process will 

improve the connectivity information. We need to substitute the molecular fingerprint 

score while tracking the changes in the metabolite structure by the actual count of the 

atoms. Apart from finding shortest path, a robust algorithm is needed to find all the 

paths (path of variable lengths between fixed source and destination) and their impact 

on the Gibbs energy profile. This will also improve pathway alignment profiles. We 

can further investigate the role of small molecules and their impact on the enzymatic 

activity by understanding the reaction mechanism and evolutionary stature of the 

enzymes. Finding choke point(s), which is lethal to multiple organisms, will be very 

helpful. We can automate the drug identification process by integrating text mining, 

micro-array, and proteome and metabolome data for network analysis.  
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