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ABSTRACT 

Neuroinflammation, associated with the onset and progression of neurodegenerative 

events, is predominantly orchestrated by microglia, the resident immune cells of the 

central nervous system. Microglia-mediated neuroinflammation, thus, results from 

dysregulation of its physiological functions, which are tightly controlled by several 

signalling pathways, including growth factor signalling. Despite the involvement of 

Platelet-Derived Growth Factor Receptor (PDGFR) signalling and microglia in 

physiologic and pathologic angiogenesis, this signalling remains uncharacterised in 

microglia. Thus, the role of PDGFR signalling in microglia-mediated 

neuroinflammatory responses have been investigated using BV-2 microglial cell line. 

The expression of PDGFs and their receptors were first characterised in microglia 

using quantitative polymerase chain reaction, immunocytochemistry, and western blot. 

Microglia functions, PDGF receptor’s role and intracellular signal transduction 

pathways were investigated using recombinant human PDGF ligands. 

Resting BV-2 cells expressed Pdgfa, Pdgfb, Pdgfc, Pdgfrα and Pdgfrβ genes. In 

Lipopolysaccharide (LPS) activated cells, Pdgfb and Pdgfrβ were significantly 

upregulated and sustained at protein levels, Pdgfa and Pdgfrα were not significantly 

altered, while Pdgfc was significantly downregulated. PDGF induced an amoeboid-like 

phenotype with concomitant downregulation of the homeostatic gene, P2Y 

purinoceptor-12 (P2ry12); however, migratory and phagocytic capacities were not 

significantly affected. Also, reactive oxygen species (ROS) levels were significantly 

decreased with an upregulation of the anti-oxidant genes, glutathione reductase (Gsr) 

and superoxide dismutase 2 (Sod2), though, the main ROS generating enzymes, 

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, Nox1 and Nox2, 

were significantly upregulated. PDGF induced an inflammatory response in BV-2 cells; 

however, decreasing neurotoxicity effects on 661W photoreceptor cells cultured in 

microglia conditioned medium. Pharmacological inhibition and RNAi mediated 

silencing of Pdgfrβ gene reduced both LPS and PDGF-induced inflammatory 

responses while variable results were seen for Pdgfrα gene. Using small-molecule 

kinase inhibitors, a role for phosphatidylinositol-3-kinase/Akt (PI3K/Akt), extracellular-

signal-regulated kinase -1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways 

were defined in PDGF-induced inflammatory response in BV-2 cells.  

These results demonstrate a fundamental regulatory role of autocrine PDGFR 

signalling in microglia-mediated responses in resting and activated state. 
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ZUSAMMENFASSUNG 

Neuroinflammation, die mit dem Beginn und Fortschreiten neurodegenerativer 

Ereignisse verbunden ist, wird überwiegend von Mikrogliazellen, den lokalen 

Immunzellen des Zentralnervensystems, gesteuert. Eine durch Mikrogliazellen 

vermittelte Neuroinflammation resultiert aus einer Fehlregulation der physiologischen 

Zellfunktionen, welche durch mehrere Signalwege, einschließlich die der 

Wachstumsfaktoren, streng überwacht und gesteuert werden. Es ist bekannt, dass 

sowohl der PDGFR-Signalweg (Platelet-Derived Growth Factor Receptor) als auch die 

Mikrogliazellen bei der physiologischen und pathologischen Angiogenese eine Rolle 

spielen. Bisher ist allerding unbekannt, welche Rolle der PDGFR-Signalweg in 

Mikrogliazellen spielt. Daher wurde die Rolle des PDGFR-Signalwegs in der 

Miikroglia-vermittelten neuroinflammatorischen Reaktionen unter Verwendung der 

BV-2-Mikroglia-Zelllinie untersucht. 

Zunächst wurde die Expression von PDGFs und ihren Rezeptoren in Mikrogliazellen 

mittels quantitativer Polymerasekettenreaktion, der Immunhistochemie und dem 

Western Blot Analyseverfahren charakterisiert. Sowohl die Mikrogliazellfunktion, als 

auch die Rolle von PDGF-Rezeptoren und der intrazelluläre Signalwege wurden unter 

Verwendung rekombinanter menschlicher PDGF-Liganden untersucht. 

Ruhende BV-2-Zellen exprimierten die Gene Pdgfa, Pdgfb, Pdgfc, Pdgfrα und Pdgfrβ. 

In Lipopolysaccharid (LPS) -aktivierten Zellen waren die Gene, welche für Pdgfb und 

Pdgfrβ codieren, signifikant hochreguliert, blieben auf Proteinebene allerdings 

konstant. Expression von Pdgfa and Pdgfrα waren nicht signifikant verändert, während 

Pdgfc signifikant herunterreguliert war. PDGF Stimulation induzierte einen amöboid 

ähnlichen Mikrogliaphänotypen bei gleichzeitiger Herunterregulierung des 

homöostatischen Gens P2Y Purinoceptor-12 (P2ry12). Die Migrations- und 

Phagozytenkapazitäten wurden jedoch nicht signifikant beeinflusst. Auch die 

Konzentrationen an reaktiven Sauerstoffspezies (ROS) wurden durch eine 

Hochregulation der antioxidativem Genes Glutathionreduktase (Gsr) und Superoxid-

Dismutase 2 (Sod2) signifikant verringert, obwohl die Expression der wichtigsten 

ROS-generierenden Enzyme, Nicotinamidadenindinukleotidphosphat (NADPH) 

Oxidasen - Nox1 und Nox2 - signifikant hochreguliert waren. PDGF induzierte eine 

Entzündungsreaktion in BV-2-Zellen, verringerte jedoch die neurotoxischen Effekte in 

661W-Photorezeptorzellen, die in Mikrogliazellen-konditioniertem Medium kultiviert 

wurden. Die pharmakologische Hemmung und RNAi-vermittelte Stummschaltung des 
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Pdgfrβ-Gens reduzierte sowohl die LPS- als auch PDGF-induzierte 

Entzündungsreaktionen in Mikrogliazellen, während gleiche Versuche für das Pdgfrα-

Gen zu variablen Ergebnissen führten. Mittels der Verwendung von 

niedermolekularen Kinase-Inhibitoren konnte festgestellt werden, dass 

Phosphoinositid-3-Kinasen/AKT (PI3K/Akt), extrazelluläre signalregulierte Kinase 1/2 

(ERK1/2) und C-Jun-N-terminale Kinasen (JNK) eine Rolle in der PDGF-induzierten 

Entzündungsreaktion in BV-2-Zellen spielen. 

Diese Ergebnisse zeigen eine grundlegende regulatorische Rolle der autokrinen 

PDGFR-Signalübertragung bei Mikroglia-vermittelten Reaktionen im Ruhezustand 

und im reaktivem Zustand. 
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CHAPTER ONE: INTRODUCTION 

1.1 Role of microglia in central nervous system (CNS) vascular development 

Microglia are the only resident immune cells of the CNS parenchyma under 

homeostatic conditions (Ransohoff and Cardona 2010; Mrdjen et al. 2018). Derived 

from yolk-sac macrophages, microglial cells, function in immune regulation, 

maintenance of homeostasis, tissue development, and wound repair (Arnold and 

Betsholtz 2013).  

During embryonic development, they migrate into the CNS and retinal neuro-

epithelium before the emergence of blood vessels (Arnold and Betsholtz 2013). 

However, soon after colonising the neuro-epithelium, they start to interact with the 

growing blood vessels in the brain and retina (Cuadros et al. 1993; Kurz and Christ 

1998; Herbomel et al. 2001; Chen et al. 2002) at approximately E10.5 (Ginhoux et al. 

2010; Schulz et al. 2012) where they tend to affect each other’s development as seen 

from the ex-vivo study of Rymo et al., 2011. Since the developing CNS is devoid of an 

intrinsic vascular system, the development of blood vessels herein is entirely via 

angiogenesis (Risau 1997; Lee et al. 2009; Eilken and Adams 2010; Vallon et al. 2014) 

where new capillaries, via pro-angiogenic signals sprout from perineural vessels 

(Arnold and Betsholtz 2013). Angiogenesis, thus, involves the co-ordinated responses 

of two primary cells, endothelial cells (ECs) and mural cells [composed of vascular 

smooth muscle cells (VSMCs) and pericytes] which must undergo migration, 

proliferation, polarisation for lumen formation and basement membrane deposition 

(Rymo et al. 2011). During angiogenesis, an endothelial tip-cell (reacting to pro- and 

anti-angiogenic signals from the surrounding tissue), thus leads each sprout.  

Vascular endothelial growth factor-A (VEGFA), the primary pro-angiogenic factor, 

signals through VEGF receptor- 2 present on tip-cells promoting filopodia formation 

and extension in the direction of the VEGFA source (Rymo et al. 2011). In addition to 

VEGFA/VEGFR2 signalling, the PDGFB/PDGFRβ signalling is also critically involved 

in recruiting mural cells to newly formed vessels during which time their proliferation is 

enhanced (Hellstrom et al. 1999; Hoch and Soriano 2003). During the angiogenic 

process, PDGFB is expressed by the sprouting ECs, and it signals through PDGFRβ 

expressed specifically by mural cells which surrounds the blood vessels to provide 

stability (Lindahl et al. 1997; Annika et al. 2005; Adams and Alitalo 2007).  Thus, 

disruption of the PDGFB/PDGFRβ signalling results in the diminished capacity to 
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recruit mural cells thereby contributing to pathologic angiogenesis (Ucuzian et al. 

2010). As earlier mentioned that microglia migrate into the CNS and retinal neuro-

epithelium before the emergence of blood vessels, this positions them to guide the 

initial sprouting, migration, connection and refinement of the developing CNS and 

retina vasculature (Arnold and Betsholtz 2013). This concept of microglia’s 

involvement in CNS vascular development is however strongly supported by 

angiogenic studies following microglia depletion, or in studies of mice devoid of 

microglia (Checchin et al. 2006; Kubota et al. 2009).  

In line with microglia’s important role in retinal angiogenesis (Rathnasamy et al. 2019), 

blood vessel disruption and blood-brain/retina barrier (BBB/BRB) breakdown in 

pathological conditions such as in neurodegenerative diseases have been seen to 

correlate with microgliosis (Matsumoto et al. 2012; Barkauskas et al. 2015). 

Additionally, in the retina of patients with Age-related Macular Degeneration (AMD), 

accumulation of microglial cells were seen in the sub-retinal space especially at 

locations of retinal degeneration and choroidal neovascularization (CNV) (Combadière 

et al. 2007). Also, in the laser-induced CNV animal model, microglia have been seen 

at future CNV sites before angiogenesis commenced (Liu et al. 2013) and these cells 

expressed some pro-angiogenic factors including VEGF and PDGFB (Krause et al. 

2014; Li et al. 2017) establishing their role in the induction of pathological angiogenesis 

(Rathnasamy et al. 2019).  

1.2 Study aim and objectives  

In light of the involvement of microglia and the PDGFR system in physiologic and 

pathologic angiogenesis, this study sought to understand the direct association and 

interaction between microglia and the PDGF/PDGFR system as this remains largely 

uncharacterised. As such, the aim of this study was to investigate the role of PDGFR 

signalling in microglia-mediated neuroinflammatory responses in-vitro. To achieve this 

aim, three specific objectives were set: 

i. To characterise the microglia-specific expression of PDGF ligands and their 

receptors in resting and activated state. 

ii. To study the effect of ligand-mediated PDGFR activation on microglia functional 

properties. 

iii. To determine the role of each PDGFR in microglia inflammatory responses and 

to investigate the signalling pathways involved therein.  
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Microglia 

Microglial cells were first identified and reported as ‘rod cells’ (‘Staebchenzellen’ in 

German) in 1899 and 1900 by Nissl and Robertson respectively on the basis of their 

rod-like nuclei shape describing these cells as reactive neuroglia while also noticing 

that they accumulate at the surroundings of inflammation-induced lesions in the CNS 

(Gomez-Nicola and Perry 2015; Waisman et al. 2015). These cells were later 

characterised and distinguished from all other glial cells and was called “microglia” by 

Pio del Rio-Hortega who also highlighted that these cells had the potential to acquire 

an amoeboid morphology from a ramified one during  pathological conditions 

(Kettenmann et al. 2011; Gomez-Nicola and Perry 2015). 

The glial cells are the third main cells in the CNS asides neurons and vascular cells 

and they account for more than 90% of these three population of cells (Ransohoff and 

Cardona 2010; Greter and Merad 2013). Microglia derived from two words ‘micro’ 

meaning small and ‘glia’ meaning glue, are now the third population of glial cells 

present in the CNS apart from the macroglia which is made up of astrocytes and 

oligodendrocytes (Greter and Merad 2013; ElAli and Rivest 2016). Therefore, 

microglial cells are the only cell type in the CNS parenchyma that is neither vascular 

nor neuronal, instead, they are the resident CNS inflammatory cells (Ransohoff and 

Cardona 2010).  

They are also a member of the mononuclear phagocyte series of cells (comprising of 

CNS-associated macrophages, peripheral tissue macrophages, monocyte-derived, 

and dendritic cells) (Prinz et al. 2011; Gomez Perdiguero et al. 2013) but of myeloid 

lineage (McKercher et al. 1996; Chan et al. 2007; Ransohoff and Perry 2009; Perry et 

al. 2010; Ginhoux et al. 2010). This makes microglia a special and distinct type of cells 

in that they are CNS glial cells as well as a unique type of mononuclear phagocyte.  

These cells are distributed uniformly all through the brain and spinal cord with higher 

neuronal nuclei densities, including the substantia nigra in the midbrain (Lawson et al. 

1990). Their densities also vary between humans and rodents with minute 

morphological differences in different cytoarchitectural regions (Lawson et al. 1990). 

However, depending on the region anatomically, various methods used, health or 

pathology, microglia account for somewhere between 0.5 and 16.6% of the human 

brain total cell population (Mittelbronn et al. 2001; Pelvig et al. 2008; Lyck et al. 2009; 
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Lull and Block 2010) while also varying, depending on the region, at somewhere 

between 5% in the corpus callosum and 12% in the substantia nigra in the normal 

adult mouse brain (Lawson et al. 1990). 

Morphologically, in the healthy adult mammalian CNS, microglia has a small cell soma, 

a small perinuclear cytoplasm, and a host of fine, extremely mobile, branched 

processes covered by fine protrusions (Ransohoff and Perry 2009; Boche et al. 2013; 

Patro et al. 2016; Salter and Stevens 2017). This morphological state is habitually 

termed ‘ramified’, which for a long time has been assumed to reflect a relatively 

inactive or ‘resting’ state (Boche et al. 2013). However, with time-lapse in-vivo two-

photon video microscopy, microglia processes were seen to be constantly in motion 

(highly mobile), actively surveying their immediate environment (Davalos et al. 2005; 

Nimmerjahn et al. 2005). This surveillance activity does support the theory of microglia 

being CNS first line of defense  (Kreutzberg 1996; van Rossum and Hanisch 2004).  

2.1.1 Origin, development and maintenance of microglia 

Prior to the works of Ginhoux et al. 2010 and Schulz et al. 2012, the origin of microglia, 

has been a controversial subject over years, however the general consensus now is 

that microglia stem from primitive hematopoietic progenitors (erythromyeloid 

precursors - EMP) that originate from the extra embryonic yolk sac (Fig. 2.1), a 

structure believed to be present from a previous  stage of embryogenesis (Alliot et al. 

1999; Ginhoux et al. 2010; Schulz et al. 2012; Kierdorf et al. 2013; Prinz and Priller 

2014). The yolk sac origin of microglia was confirmed in sophisticated genetic fate-

mapping experiments in mice (Ginhoux et al. 2010; Schulz et al. 2012). By either 

inducing Cre recombinase activity from the Runx locus (Ginhoux et al. 2010) or from 

the colony stimulating factor 1 (Csf1) receptor locus (Schulz et al. 2012) through 

tamoxifen injections into pregnant mice between E7.0 and E8.5 (when embryonic 

hematopoiesis is confined in the yolk sac), these authors discovered that the principal 

source of microglia were the early yolk sac cells. 

Further characterisation of these early yolk sac precursors that gave rise to the brain 

microglia showed c-kit+ lineage- progenitor cells within the yolk sac with the potential 

to differentiate into CX3CR1+ microglia both in-vitro and in-vivo (Kierdorf et al. 2013). 

These cells were also shown to give rise to Ter119+ erythrocytes representing a 

common EMP in the yolk sac. Subsequently, there is the disappearance of these 

uncommitted EMPs and immature F4/80+CX3CR1- and F4/80+CX3CR1+ 
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macrophages develop, populating the developing brain surface at around E9.0 

(Kierdorf et al. 2013). Starting at E8.5, these EMPs journey through the bloodstream 

to the developing CNS, continuing until the BBB is formed (Alliot et al. 1999; Ginhoux 

et al. 2010; Schulz et al. 2012; Gomez Perdiguero et al. 2015). These early cells 

differentiate under the control of transcription factors Pu.1 and interferon regulatory 

factor-8 (Irf8), where they predominate the developing brain giving rise to embryonic 

microglia at E9.0 - 9.5 (Ginhoux et al. 2010; Schulz et al. 2012; Kierdorf et al. 2013). 

Another transcription factor, Runt-related transcription factor 1 (RUNX1) is important 

in regulating microglia during embryonic development (Ginhoux et al. 2010) (Fig 2.1).  

An interesting finding was that myeloid precursors from the blood did not substantially 

contribute to the pool of adult microglial cell after birth, substantiating that the wide 

majority of adult microglia originate from the yolk sac (Prinz and Priller 2014). After 

predominating the brain, they are said to be present as a closed, long-lived population 

under homeostatic conditions segregated from other bone marrow-derived precursors 

or circulating monocytes by the BBB (Ajami et al. 2007).  

 

Figure 2.1  Microglia development. 

The respective symbols (highlighted on the right) as expressed by each population of 

cell. Microglia derive from immature, uncommitted KIT+ EMPs originating from the 

extra embryonic yolk sac at around E7.5 - E8.0 (Kierdorf et al. 2013). A1 cells: 

upregulation of the CD45 antigen without expression of myeloid markers, A2 cells: 

expression of myeloid cell markers - CX3C chemokine receptor 1 (CX3CR1), F4/80, 

and CSF1 receptor (CSF1R). Migrating A2 cells colonise the brain mesenchyme. 

Image modified and adapted from Prinz and Priller, 2014. 

Three main developmental stages of microglia have been identified in mice from yolk 

sac to adult. Using RNA sequencing and epigenomic analysis to study the 

transcriptional repertoire dynamics, the stages identified were: early stage (less than 
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E14), pre-microglia stage (E14 to a few weeks postnatal - P9), and adult microglia 

stage (more than a few weeks) (Matcovitch-Natan et al. 2016). Similarly, in humans, 

the same developmental pattern seems to exist where microglia-like cells with diverse 

morphologies can already be spotted in human fetuses as early as 13 weeks of 

estimated gestational age (Hutchins et al. 1990). At this period, the cells are denoted 

‘fetal macrophages’ (Lull and Block 2010). These cells have been seen to colonise the 

spinal cord sometime around 9 weeks where the main microglia entry and distribution 

begins at around 16 weeks while the distribution of ramified microglia within the 

intermediate zone take up to 22 weeks (Rezaie and Male 1999, 2002; Rezaie 2003). 

Actually, it is at 35 weeks (close to term), that well-differentiated microglia populations 

(with ramified morphology) can be seen in the developing human brain (Esiri et al. 

1991; Rezaie and Male 1999; Rezaie et al. 2004; Verney et al. 2010). 

Following the establishment of microglia populations, they are said to be maintained 

within the CNS solely by self-renewal (local proliferation) without the dependence or 

contribution of blood-monocyte (Ajami et al. 2007; Ginhoux et al. 2010) (Fig 2.2). 

Thereafter, Schulz et al., 2012, showed that microglia together with other tissue 

macrophages did not require the transcription factor, Myb, for development finally 

establishing that the maintenance of microglia is not reliant on hematopoietic stem 

cells but are continually self-renewed. In the healthy adult mouse brain, individual 

microglial cells usually live for long periods with a turn-over rate of 0.05% cells per 

hour (Lawson et al. 1992). However, human microglia averagely live for 4.2 years with 

a yearly median turn-over rate of 28% meaning that the majority of the microglial cell 

population is renewed many times during lifetime (Réu et al. 2017).  

Thus, microglia maintenance is dependent on CSF1R activation which is also vital for 

its development as well as for macrophage development (Ginhoux et al. 2010; Erblich 

et al. 2011). CSF-1 and IL-34, the endogenous ligands for CSFR1, produced by 

neurons within the CNS during development (Greter et al. 2012; Wang et al. 2012) 

must therefore be released constantly as the pharmacological blockade of CSF1R has 

been shown to rapidly deplete microglial cells (Elmore et al. 2014). 
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Figure 2.2  Microglia maintenance and renewal. 

(a) Microglia is autonomously maintained via TGFβ1, signalling through TGFR1 or 2. 

TGFβ1 controls the transcriptional regulation of genes that encodes the TFs: EGR1, 

MEF2A, SALL1, and MAFB via PU.1 and or SMAD3 TFs. Microglia are identified by 

distinct surface receptors such as SIGLECH, ENTPD1, FCRLS, TMEM119, and 

P2RY12. (b) Microglia self-renew through local clonal expansion (Tay et al. 2017). 

However, peripherally derived macrophages recruited to the CNS can also replace 

lost microglia under certain conditions. TGFβ1 (Transforming growth factor-β1), 

TGFR1/2 (TGF receptor 1/2), EGR1 (early growth response protein -1), MEF2A 

(myocyte-specific enhancer factor 2A), SALL1 (Sal-like protein-1), SMAD3 (mothers 

against decapentaplegic homologue 3), SIGLECH (sialic acid binding Ig-like lectin H, 

isoform CRA_a), ENTPD1 (ectonucleoside triphosphate diphosphohydrolase-1), 

FCRLS (Fc receptor-like S, scavenger receptor), TMEM119 (transmembrane protein-

119), P2RY12 (P2Y purinoceptor-12) (Butovsky and Weiner 2018). 

2.1.2 Physiological functions of microglia 

Microglia participate in a number of physiological roles, but in general, their 

transcriptomes permit them to carry out three important functions: (i) survey their 

microenvironment, (ii) perform physiological housekeeping, and (iii) host defense. 

These physiological functions are essential in the different developmental stages from 

embryonic stage to adulthood to aging. Thus, any functional irregularity causes an 

imbalance initiating the onset of neurodegeneration (Hickman et al. 2018). 

Microglia surveillance and monitoring/Sensing: 

As earlier mentioned, with in-vivo two-photon video microscopy in mice specifically 

expressing green fluorescent protein (GFP) in microglia, it was seen that microglial 

cells have highly dynamic processes, that forms a network which spans the CNS and 

is constantly and actively surveying the microenvironment (Lawson et al. 1990; 

Davalos et al. 2005; Nimmerjahn et al. 2005). On estimate, resident microglia scan 
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and survey the whole brain region within a space of few hours and rapidly migrate 

towards the injurious site or external danger cues (Davalos et al. 2005; Nimmerjahn 

et al. 2005; Hickman et al. 2018) such as pathogens that invade the brain, or internal 

danger cues from locally impaired or dying cells (Bessis et al. 2007; Hanisch and 

Kettenmann 2007). These processes are also in constant contact with axons, neurons 

and dendritic spines (Salter and Stevens 2017). Approximately about 100 gene 

products including AXL, P2yr12, and MER are used by microglia processes to sense 

changes within their immediate environment (their sensome) (Haynes et al. 2006; 

Hickman et al. 2013; Fourgeaud et al. 2016) (Fig. 2.3). Sensome mRNAs are 

expressed consistently by microglia in several brain regions, an indication that all 

microglia have the capability to perform their sensing function. Hence, sensing is 

necessary for microglia to carry out their function of housekeeping and host defense 

(Hickman et al. 2018). 

 

Figure 2.3  Ontology of the sensome. 

Three-dimensional image of a mouse microglia with an overview of the sensome 

gene ontology (Hickman et al. 2018). 

Housekeeping: 

Microglia are involved in a number of physiological housekeeping functions including; 

synaptic monitoring and remodeling (Zhan et al. 2014; Lui et al. 2016; Vasek et al. 

2016); migration to sites of neuronal death in order to phagocytose dying or dead cells 

or other forms of debris, including foreign matter and plaques (Fuhrmann et al. 2010; 

Lull and Block 2010; Krasemann et al. 2017) and myelin homeostasis maintenance 

(Healy et al. 2016). Microglial cells are also known to engage with astrocytes, an 
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essential function that is necessary: for homeostasis maintenance, in inflammation, 

and perhaps neurodegeneration (Liddelow et al. 2017). Several genes are involved in 

these housekeeping functions, amongst them are phagocytosis related genes 

(scavenger receptors and Trem2), genes encoded by chemokine and chemoattractant 

receptors, and the ones involved in synaptic pruning and remodeling (C1q and Cx3cr1) 

(Hickman et al. 2013). Thus, any anomaly with these housekeeping functions can 

result to neurodegeneration (Krasemann et al. 2017). 

Host defense: 

Microglia regulate host defense against pathogens, harmful self-proteins like 

aggregated α-synuclein, amyloid beta (Aβ), prions, mutant or oxidised superoxide 

dismutase (SOD), mutant huntingtin, as well as primary or metastatic CNS tumors. 

Thus, to carry out host defense function, microglia express antimicrobial peptides, 

viral, Toll-like, and Fc receptors (Hickman et al. 2013). In turn, a neuro-inflammatory 

response is initiated by microglia in response to these stimuli and in a similar vein to 

peripheral inflammation, this response involves production of cytokines like IL-1, TNF 

(El Khoury et al. 2003; Hickman et al. 2008), and chemokines like Ccl2 (El Khoury et 

al. 2007), to attract additional cells inducing them to get rid of harmful substances and 

maintain brain homeostasis (Hickman et al. 2018). For instance, monocytes are 

recruited to the brain by microglia in a Ccl2-dependent manner where they play 

essential roles in neuro-inflammatory responses, however, they are not part of the 

resident microglial pool (Ajami et al. 2011).  

Thus, when there is a change in microglia homeostasis, tending towards disease-

associated phenotype, expression levels of these chemokines including Ccl2 are at 

their highest. Unlike peripheral inflammation, neuroinflammation can be microglia 

restricted without attracting other circulating leukocytes. However, unresolved 

neuroinflammation subsequently induces neurotoxicity, which can lead to 

neurodegeneration (Hickman et al. 2018). 

Other physiological functions of microglia have been extensively reviewed in Boche 

et al. 2013; Nayak et al. 2014 and Butovsky and Weiner 2018. 

2.1.3 Microglia activation in neuroinflammation and neurodegeneration 

Microglial cells are dynamic in nature, constantly responding either slightly or greatly 

to various signals. In maintaining CNS homeostasis, these cells notably express a 

category of receptors called the pathogen recognition receptors (PRRs). Examples of 
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PRRs include; Toll-like receptors (TLRs), Scavenger receptors (SRs), C-type lectin 

receptors (CLRs), Nucleotide-binding Oligomerization Domain (NOD)-like receptors 

(NLRs), RIG-I-like receptors (RLRs), and macrophage antigen complex 1 receptor 

(MAC1R, also called complement receptor 3, CR3) functioning as both a PRR and an 

adhesion molecule (Block et al. 2007; Rubartelli and Lotze 2007; Colton 2009; Brown 

and Neher 2010; Figuera-Losada et al. 2014). PRRs are able to recognise molecules 

released by injured or dying cells known as pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular patterns (DAMPs)  capable of activating 

microglia (Rubartelli and Lotze 2007; Colton 2009; Varnum and Ikezu 2012).  

Further, microglia has very minimal activation threshold, with activation being very 

rapid, within a few tens of minutes (Davalos et al. 2005). Thus, their capability to swiftly 

react to a variety of noxious stimuli and or other potential threats has been referred to 

as ‘‘microglial activation’’ (Hanisch 2013a). Microglia activation can be induced by 

PAMPs such as; bacterial, viral, fungal, and parasitic molecules like O-linked mannan, 

α- and β-glucan, flagellin, viral RNA and DNA, chitin, and microbial cell wall 

components. DAMPs capable of inducing microglial activation also include molecules 

that are not usually present in healthy CNS, such as DNA and RNA released by 

necrotic cells, blood coagulation factors, antigen-antibody complexes, 

phosphatidylserine externalised on apoptotic cells, mis-folded proteins or aggregates, 

and opsonizing complement (Block et al. 2007; Hanisch 2013b).  

Microglia activation can also be triggered in-vivo by an underlying pathological 

condition or both in-vivo and in-vitro by stimulating with cytokines, and other chemical 

agents (Figuera-Losada et al. 2014) (Fig. 2.4). However, the common method of 

inducing microglia activation has been with lipopolysaccharide (LPS) (Figuera-Losada 

et al. 2014) (Fig. 2.4) which has also been used in this study to understand the 

expression of PDGFRs and their ligands during microglia activation. LPS is a major 

component of almost all gram-negative bacteria cell wall structure and a well 

characterised endotoxin which is made of a polysaccharide chain (varying from one 

gram-negative bacteria to the other) and lipid A (Alexander and Rietschel 2001). LPS 

recognises and binds TLR4 expressed on microglial cells (Alexander and Rietschel 

2001), this association activates the formation of a myddosome, a macromolecular 

complex, consisting of myeloid differentiation primary response gene 88 (MyD88) and 

TIR domain-containing adaptor protein (TIRAP) and several members of the 

interleukin-1 receptor-associated kinase 1 (IRAK) family (Rosadini and Kagan 2017). 
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Subsequently, this myddosome complex, promotes the activation of downstream 

kinases including IkB (inhibitor of kB) and mitogen activated protein kinase (MAPK) 

which subsequently activates several transcription factors including NF-kB (Nuclear 

Factor kappa-light-chain-enhancer of activated B cells), AP-1 (Activator protein 1), and 

the interferon regulator factor (IRF) families. These transcription factors in turn 

regulate the expression of several genes including those involved in inflammation 

(Takeuchi and Akira 2010; Rosadini and Kagan 2017). 

In general, the extent of  microglia activation is dependent on a number of factors like; 

the nature of insult (or stimuli), duration of the stimuli, factors present within the 

immediate environment (Stout 2010; Luo and Chen 2012) and microglia “primed” 

(sensitised) state which renders it more susceptible to a second inflammatory stimulus, 

thus magnifying the inflammatory response (Perry and Holmes 2014).  

A hallmark of microglia responsiveness is therefore the ability of the cells to change 

their morphology, with or without proliferation (Salter and Stevens 2017). While 

microglia morphological changes, cell proliferation, migration towards the site of injury 

or towards dying or damaged cells (to phagocytose) and the expression and or 

secretion of pro- and anti-inflammatory cytokines have been used to describe 

microglia activation states (Kraft and Harry 2011; Bazan 2012; Perry and Holmes 

2014; Patro et al. 2016), Salter and Stevens, 2017, opined that these changes seen 

in morphology are only an indication that microglia have detected a homeostatic 

change; and that they do not define a specific response state neither do they define 

an activity during any given CNS disease. 

During activation, not only do these cells release neurotrophic factors for 

neuroprotection, they also secrete pro-inflammatory mediators and neurotoxic factors. 

Secreted neurotrophic factors include brain derived neurotrophic factor (BDNF), nerve 

growth factor (NGF), glial cell-derived neurotrophic factor (GDNF), and insulin-like 

growth factor-1 (IGF-1) (Kim and de Vellis 2005; Lu et al. 2005; Block et al. 2007; 

Thored et al. 2009). Pro-inflammatory mediators include; pro-inflammatory enzymes 

(e.g., COX-2, iNOS, glutaminase), cytokines (IL-18, IL-1β, IL-6, TNFα etc), 

chemokines (CCL2, CCL3, CCL4, CCL5, CXCL10 and/or CCL12) while neurotoxic 

factors include reactive oxygen [superoxide (O2-)] and nitrogen [e.g., nitric oxide (NO), 

peroxynitrite (ONOO-)] species (Olson and Miller 2004; Akundi et al. 2005; Block et al. 

2007; Semple et al. 2010; Bazan 2012; Patro et al. 2016; Takahashi et al. 2016) (Fig. 

2.4). Other molecular mediators are also released including interferon (IFN) inducible 
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protein (IP-10) which promotes an inflammatory state (Frank-Cannon et al. 2009), 

excitatory neurotransmitters (glutamate), and complement factors (Akundi et al. 2005; 

Figuera-Losada et al. 2014; Patro et al. 2016).  

In addition to the above, their pattern of receptor expression is also altered as a result 

of cytoskeletal rearrangements (Norden et al. 2015), and their antigen presenting 

capacity is also increased upon activation, resulting from up-regulation of the major 

histocompatibility complex-II (MHC-II) antigen (Kreutzberg 1996; Carson 2006; 

Kettenmann et al. 2011; Gertig and Hanisch 2014). For instance, increase in MHC 

antigen allows microglia act as antigen-presenting cells to T-cells that will invade the 

brain during active infections (Aloisi 2001; Bazan 2012). The lipid mediator cascade is 

also activated, precipitating arachidonic acid (AA) release. Subsequently, the 

enzymes, lipoxygenases (5-LO and 15-LO) and cyclooxygenases (Cox-1 and Cox-2) 

readily oxygenate AA forming a sequence of pro-inflammatory eicosanoids [e.g., 

leukotrienes (LT), prostaglandins (PG), prostanoids, and others] (Akundi et al. 2005; 

Wang et al. 2005; Bazan 2012). Also, matrix metalloproteinases (MMPs) are activated 

resulting in increased BBB permeability, thus, allowing local infiltration of neutrophils 

and other leukocytes, which in-turn secrete more pro-inflammatory mediators, 

activating microglia further and  aggravating the inflammatory response (Bazan 2012). 

MMP-2 and MMP-9 seem to be the predominant culprits of this process (Agrawal et 

al. 2006; Webster and Crowe 2006).  

All these afore-mentioned responses to microglia activation are what goes on during 

acute inflammation (Bazan 2012) which in normal physiological state, is transient and 

somewhat short-lived, effective in getting rid of a host of CNS potential harmful 

substances. On elimination of the trigger or insult, the inflammation is resolved 

followed by a return to homeostasis (Bazan 2012) (Fig. 2.4). However, the 

dysregulation or microglia over-activation and the subsequent inflammation that 

persist when unresolved have neurotoxic effects that causes neurons and glial cells 

to decompose and die (Gao and Hong 2008; Frank-Cannon et al. 2009; Lull and Block 

2010; Bazan 2012; London et al. 2013) (Fig. 2.4). Thus, when activated microglia 

accumulate as a response to neuronal damage or from direct over-activity, this 

process is termed microgliosis (Block et al. 2007). In the end, neuroinflammation 

becomes a secondary pathological process associated with neurodegenerative 

diseases (Kim and de Vellis 2005; Frank-Cannon et al. 2009; Ransohoff and Perry 

2009; Glass et al. 2010; Gao and Hong 2008) (Fig. 2.4). 
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Figure 2.4  Microglia activation in neuroinflammation and neurodegeneration. 

Image modified and adapted from Bazan, 2012. See text for details. 

Activated microglia have been identified by numerous methods while their presence 

has also been established in a number of neurodegenerative diseases such as 

Amyotrophic Lateral Sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease 

(AD), Multiple Sclerosis (MS) (Gao and Hong 2008; Frank-Cannon et al. 2009; 

Sugama et al. 2009; Bazan 2012; Heppner et al. 2015; Chen et al. 2016), HIV- 

associated neurocognitive disorder (HAND) (Chen et al. 2017), stroke (Morioka et al. 

1993), Huntington disease (Möller 2010), and retinal degenerative diseases like AMD 

(Penfold et al. 2001; Langmann 2007; Xu et al. 2009; Bazan 2012). 

2.1.3.1 Microglia in Neovascular AMD 

Neovascular AMD (nAMD) (referred to as ‘exudative’ or ‘wet’ AMD) is an advanced 

stage of AMD accounting for about 15% of all AMD cases, but responsible for nearly 

90% of vision loss due to AMD cases (Chopdar et al. 2003; Noël et al. 2007).  

Neovascular AMD is characterised by pathologic CNV, the in-growth of neovessels 

from the choroid breaking through the Bruch’s membrane into the sub-RPE (retinal 

pigment epithelium) and or the sub-retinal space, leading to exudation, hemorrhage, 

pigment epithelial detachment, retinal edema, and fibrous scarring (Ambati et al. 2003; 

Grossniklaus and Green 2004; Lim et al. 2012) eventually leading to rapid and 
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permanent central vision loss (Bhutto and Lutty 2012; Yang et al. 2016). CNV is a 

complex process involving both angiogenesis and inflammation (Campa et al. 2010). 

While VEGF is the most important contributor to the angiogenesis in CNV (Bhutto and 

Lutty 2012), the role of PDGF also cannot be downplayed as angiogenesis involves 

the coordinated activity of both growth factors (Kudelka et al. 2013). The study by 

Benjamin et al., 1998, provided one of the first leads as to the important role VEGF 

and PDGF play in nAMD during post-natal retina remodelling examination. Since then, 

a number of pre-clinical studies have demonstrated the involvement of PDGFR 

signalling in nAMD. Jo et al., 2006, showed that the combination of anti-VEGF aptamer 

and APB5, a PDGFRβ blocking antibody showed lesser NV lesions in comparison to 

each of the monotherapies in laser-induced CNV mouse model. Similarly, using the 

same mouse model, Strittmatter et al., 2016, reported the formation of PDGFRβ+ 

scaffold before new vessels infiltrated this scaffold which formed the CNV lesions, 

while also observing that this scaffold limited the degree of neovascularization. Now, 

using both genetic and therapeutic approaches, authors showed that the targeting of 

proliferating PDGFRβ+ cells using both methods resulted in the potent inhibition of 

pericyte-like scaffold formation, with a resultant decrease in CNV. 

Accordingly, PDGF has been shown to be contribute to the fibrosis part of nAMD 

pathology (Kudelka et al. 2013). However, anti-VEGF mono therapies are still being 

used to manage patients presenting with nAMD. These therapies are not curative but 

only effective in preventing severe vision loss (Scott and Bressler 2013).  

While the vascular component that drives angiogenesis in CNV is involved in the 

development of nAMD, the extra-vascular component that drives the inflammatory 

process has also been implicated and has been fully elucidated, though, nAMD is said 

not be a classical inflammatory disorder (Cousins et al. 2004; Spaide 2006; Ding et al. 

2009). The vascular component is composed of circulating endothelial progenitor 

cells, endothelial cells, and pericytes while the invading extra-vascular cells are 

composed of inflammatory cells like lymphocytes, foreign body giant cells, 

macrophages, granulocytes, RPE cells, myofibroblasts, fibrocytes, and glial cells 

(Killingsworth 1995; Grossniklaus et al. 2002; Tsutsumi-Miyahara et al. 2004; 

Espinosa-Heidmann et al. 2005). Several histopathological studies have linked an  

increased presence of inflammatory cells to CNV regions (Penfold et al. 2001; McLeod 

et al. 2016).  
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Microglia which are the third population of glial cells are also the resident immune cells 

in the retina (Langmann 2007; Karlstetter et al. 2015). They find their way into the 

retina during embryological development (Ding et al. 2009). In the healthy adult retina, 

they reside within the plexiform layers, with their extremely branched morphology and 

small cell bodies where they are also involved in scanning the retinal environment with 

their branches (Karlstetter et al. 2015) (Fig. 2.5). They become activated by retinal 

injury and degeneration as in nAMD (Ding et al. 2009). These reactive microglia 

multiply, migrate to the injurious site, phagocytose debris, and release pro-

inflammatory chemokines, cytokines and neurotoxins (Langmann 2007) (Fig. 2.5).  

With respect to nAMD, microglia seen at the sub-retinal space has been shown to 

probably impact on CNV vascular density (Rathnasamy et al. 2019). Also, in the laser-

induced CNV animal model, the most recognised nAMD model  (Lambert et al. 2013), 

microglia were seen at future CNV sites before angiogenesis commenced (Liu et al. 

2013) and expressed a number of pro-angiogenic factors including VEGF, fibroblast 

growth factor 1 and 2 (FGF-1 and 2), PDGFB, and TGFβ-1 (Krause et al. 2014; Li et 

al. 2017) (Fig. 2.5) establishing their role in the induction of pathological angiogenesis 

(Rathnasamy et al. 2019). Besides, the expression of Il-6, ICAM-1 and Ccl2 were 

reduced upon treatment with an anti-inflammatory carotenoid, astaxanthin, which also 

subsequently reduced CNV volume (Izumi-Nagai et al. 2008). While the migration of 

microglial cells to the laser induced-damage site is not fully understood, Huang et al., 

2013, proposed that this might be through VEGF receptor activation, as its blockade 

was shown to inhibit microglia and macrophage infiltration while Rathnasamy et al., 

2019, opined that it might be through purinergic receptors expressed by the cells. 
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Figure 2.5  Retina microglia activity. 

Image modified and adapted from Akhtar-Schäfer et al. 2018. See text for details. 

Furthermore, in the retina of patients with AMD, accumulation of microglial cells were 

seen in the sub-retinal space especially at locations of retinal degeneration and CNV 

(Combadière et al. 2007). Additionally, human eyes affected with nAMD had increased 

levels of the chemo-attractants, Cxcl10 and Ccl11, that have the capacity to recruit 

immune cells (Mo et al. 2010). 

2.2 The Platelet-Derived Growth Factor (PDGF) ligands 

The PDGFs are amongst a family of peptide growth factors (that includes the VEGFs) 

that are related in structure and function (Fredriksson et al. 2004) and are highly 

conserved throughout evolution (Andrae et al. 2008). The PDGFs are made up of 

four polypeptide chains of A, B, C and D, encoded by separate genes and regulated 

independently (Hoch and Soriano 2003; Fredriksson et al. 2004; Raica and Cimpean 

2010; Chen et al. 2013; Demoulin and Essaghir 2014; Borkham-Kamphorst and 

Weiskirchen 2016; Papadopoulos and Lennartsson 2018). However, structural 

differences, as well as differences in proteolytic processing, separate the ligands into 

two sub-families (Hoch and Soriano 2003). PDGF-A and PDGF-B, referred to as the 

classical PDGFs were discovered in the 1970s (Betsholtz et al. 1986; Heldin et al. 
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1986) while PDGF-C and PDGF-D in 2000 and 2001 respectively (Li et al. 2000; 

Bergsten et al. 2001; Larochelle et al. 2001)(Fig. 2.6). 

 

Figure 2.6  The mammalian PDGFs. 

The classical PDGFs, PDGF-A and -B, have basic retention motifs which differ from 

the later discovered PDGFs, PDGF-C and -D with CUB domains. Image modified and 

adapted from Andrae et al. 2008. 

The four polypeptide chains form either homo- or hetero-dimers, linked together by 

disulphide bonds. Five dimeric isoforms have been characterised to date where 

PDGF-A and -B form both homodimers and heterodimer (PDGF-AA, PDGF-AB, 

PDGF-BB), while PDGF-C and -D form only homodimers (PDGF-CC and PDGF-DD) 

(Heldin and Westermark 1999; Heldin et al. 2002; Fredriksson et al. 2004; Kazlauskas 

2017). As a result, PDGF-AA or PDGF-BB can be produced by a cell if either of these 

two genes is primarily transcribed. However, if both genes are simultaneously 

transcribed, a combination of PDGF-AA, PDGF-BB and PDGF-AB will be formed. 

PDGF-C has not been reported to form a heterodimer with PDGF-A or PDGF-B (Li et 

al. 2000), a laudable reason might be that the PDGFC’s core domain is not relatively 

similar to that of PDGF-A and -B (Betsholtz et al. 2001).  On the other hand, PDGF-C 

and PDGF-D are closely related in structure but also a heterodimer of both isoforms 

is yet to be reported (Betsholtz et al. 2001). 

The PDGFs are known to be extremely stable. Protein denaturation by heat starts at 

42°C while heating up to 65°C completely inactivates many restriction enzymes 

(Kazlauskas 2017). However, the biological activity of PDGF-AB was unaffected, even 

at 100°C (Antoniades et al. 1979). The intra- and inter-disulphide bonds of the PDGFs 

which are necessary for their biological activity is said to be partly responsible for this 

extraordinary stability. Thus, in order of resistance to heat, PDGF-AB exhibits the 

highest resistance to high temperature, next to PDGFA and PDGFB, with more 

stability than PDGF-C and PDGF-D (Kazlauskas 2017). The PDGFs are functionally 

relevant at physiological temperature (i.e. 37°C); therefore, their extremely stable 
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nature remains incompletely understood (Kazlauskas 2017). In line with PDGFRs 

being able to bind both PDGFs and VEGFA (Ball et al. 2007; Pennock and Kazlauskas 

2012), Pennock and Kazlauskas, 2012, speculates that their extreme stability might 

be a reflection of their clear-cut structure, which therefore allows PDGFRs to 

differentiate between its ligand (that binds and activates) and VEGF, which merely 

binds but results neither in PDGF receptor dimerization nor efficient activation.  

2.2.1 Structure of the genes that encode the PDGFs 

The genomic structures of the PDGF genes are illustrated in figure 2.7. The four PDGF 

genes are similarly organised, especially the exons that code for the growth factor 

domain (GFD) which are involved in dimerization, receptor binding and activation 

(Fredriksson et al. 2004; Borkham-Kamphorst and Weiskirchen 2016) (Fig. 2.7). The 

PDGF genes (A to D) are located on chromosomes 7, 22, 4 and 11 in humans, and 

chromosomes 5, 15, 3 and 9 in mice, respectively (Dalla-Favera et al. 1982; Swan et 

al. 1982; Betsholtz et al. 1986; Uutela et al. 2001; Kazlauskas 2017).  

PDGF-A is synthesised as polypeptides of 196 and 211 amino acid residues owing to 

differential splicing of the transcript (Fig. 2.7) while PDGFB chain is 241 amino acids 

and PDGFC, and PDGFD chains are 345 and 370 amino acid residues in length 

respectively (Fredriksson et al. 2004). PDGF-A and -B are closely related structurally. 

There are seven exons in both Pdgfa and Pdgfb genes while exon one codes for the 

hydrophobic signal sequence, exons two and three code for the precursor sequences 

N-terminal of the GFD which all (exons one, two and three) undergo intracellular 

processing proteolytically in the trans-Golgi network prior to secretion (Fredriksson et 

al. 2004). Exons four and five, on the other hand, codes for the GFD, and exon six 

codes for the carboxyl-terminal (C-terminal) sequences which are processed 

proteolytically when the proteins mature and are released from the extracellular matrix 

(Fredriksson et al. 2004). Two different splice isoforms of the A-chain is expressed 

with or without the exon six-encoded sequence. Exon 7 in both of these genes, is 

primarily non-coding (Li and Eriksson 2003; Fredriksson et al. 2004). 

Human Pdgfc and Pdgfd genes are also structurally similar (Fredriksson et al. 2004) 

with approximately 50% amino acid sequence identity with each other in the 

PDGF/VEGF domain (GFD) while PDGFD shows 20-23% genomic sequence identity 

(with respect to exon numbers and sizes) with the classical PDGFs (PDGFA and 

PDGFB) and VEGFs in the core domains (GFD) (Bergsten et al. 2001; Fredriksson et 



  
  Literature review 

19 

al. 2004) (Fig. 2.7). PDGFC is made up of six coding exons that codes for a 345 amino 

acid protein, while an extra exon is present in Pdgfd gene making it seven exons. In 

both genes, exon 1 codes for the signal peptide, while exons 2 and 3 codes for the 

110 amino acid CUB domain (Fredriksson et al. 2004; Lei and Kazlauskas 2008). Exon 

4 in the Pdgfc gene codes for the hinge region (of 70 amino acids) between the two 

structural domains in the growth factor while two exons, exons 4 and 5, codes for the 

equivalent region in Pdgfd gene (Li and Eriksson 2003; Fredriksson et al. 2004; Lei 

and Kazlauskas 2008). Thus, exons 5 and 6 codes for the 115 amino acid GFD in the 

Pdgfc gene, while exons 6 and 7 codes for the equivalent region in Pdgfd gene (Li and 

Eriksson 2003; Fredriksson et al. 2004; Lei and Kazlauskas 2008). In PDGFC, no 

alternatively spliced transcript has been identified, however, in PDGFD, an 

alternatively spliced mRNA that encodes the CUB domain and partly the GFD has 

been identified in mouse only (Zhuo et al. 2003). 

 

Figure 2.7  Structure of the genes that encode the PDGFs. 

The open boxes represent the exons with the base-pair length marked inside. The 

exons that encode the VEGF/PDGF domains are green while those that encode the 

CUB domains are in purple. The solid lines represent the introns with their respective 

lengths written on the top. The drawings of the introns and exons are not to scale. Also 

indicated are the start (ATG), and stop codons (STOP) together with the polypeptide 

length (amino acid residues written on top of the stop marks). Additionally, two stop 

codons are indicated for PDGFA due to alternative splicing while the arrows in PDGF-

C and PDGF-D indicate the recognised proteolytic cleavage sites. Image modified and 

adapted from Li and Eriksson, 2003. 
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As earlier mentioned, all four genes are structurally similar; however, there exist some 

differences.  

Firstly, PDGF-A and -B have short N-terminal extensions while both PDGF-C and 

PDGF-D, as part of their N-terminal extensions carry a distinct protein domain, the 

auto-inhibitory CUB domain (Complement subcomponents C1r/C1s, Urchin EGF-like 

protein and Bone morphogenic protein 1) (Li and Eriksson 2003; Fredriksson et al. 

2004; Andrae et al. 2008; Lei and Kazlauskas 2008). 

Secondly, in contrast to PDGF-A and PDGF-B, the CUB domains of PDGF-C and 

PDGF-D do not undergo intracellular proteolytic processing before secretion, but are 

maintained on them and secreted as latent factors (Betsholtz et al. 2001; Andrae et 

al. 2008) requiring extracellular proteolysis by proteases such as urokinase 

plasminogen activator (uPA), tissue plasminogen, matriptase or plasmin before 

receptor binding and activation can take place (Li et al. 2000; Fredriksson et al. 2004; 

Lei et al. 2008; Riehle et al. 2014). CUB domains are most commonly found in 

membrane-associated and extracellular proteins and are developmentally controlled. 

They are known to modulate extracellular binding in addition to mediating protein-

carbohydrate and protein-protein interactions (Bork and Beckmann 1993; Lei and 

Kazlauskas 2008). However, with PDGF-C and D, these domains tend to prevent 

activation of PDGFRs while with the VEGF family, the domains facilitate ligand and 

receptor interaction (Lei and Kazlauskas 2008). 

Thirdly, in the C-termini, the classical PDGFs have the basic sequences necessary for 

extracellular matrix binding while both PDGF-C and PDGF-D are devoid of these 

amino acid sequence extensions (Fredriksson et al. 2004) instead they have a C-

terminal PDGF/VEGF domain, that is separated by a hinge region, a region less 

conserved structurally in the range of 80 - 100 amino acid residues in length (Li and 

Eriksson 2003; Rönnstrand 2010). 

Lastly, the intron sizes between the classical and the later discovered PDGFs differ 

remarkably. While the genes that code for the classical PDGFs are approximately 

20 kb of genomic DNA, those that code for the later discovered PDGFS are 

approximately 200 kb of genomic DNA (Li and Eriksson 2003; Fredriksson et al. 2004). 

2.2.2 Expression of PDGFs in cells and tissues 

A variety of diverse cell population is known to express the PDGFs physiologically, 

where they locally act to mediate different cellular responses (Heldin and Westermark 
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1999; Andrae et al. 2008). In-vivo, expression levels are spatiotemporally regulated 

and show plasticity during developmental stages as well as in specific physiological 

hypertrophic responses (Andrae et al. 2008). Expression of PDGF in cultured cells is 

also known to be dynamic and respond to various stimuli, including thrombin (Daniel 

et al. 1986; Harlan et al. 1986), hypoxia (Kourembanas et al. 1997), cytokines, and 

growth factors, including PDGF itself (Heldin and Westermark 1999). 

A detailed expression pattern of each of the ligands is quite complex and have been 

reviewed in-depth (Heldin and Westermark 1999; Hoch and Soriano 2003). However, 

there is an overall expression pattern. PDGF-B expression is mostly seen in 

megakaryocytes, neurons, and vascular endothelial cells. A comprehensive analysis 

of PDGFB/Rβ expression in wild-type embryos and young pups showed that 

endothelium of growing arteries and sprouting, immature, capillary endothelium have 

the highest expression of PDGFB (Hellstrom et al. 1999). In tissues, highest 

expression has been seen in the placenta and heart with other organs expressing 

moderate levels (Fredriksson et al. 2004). PDGF-A and PDGF-C expression have 

been seen in muscles, epithelial cells, and neuronal progenitors with these 

expressions partially overlapping (Lindahl et al. 1997; Betsholtz 2003; Andrae et al. 

2008). In tissues, PDGF-A expression is highest in skeletal muscle, pancreas and 

heart (Fredriksson et al. 2004) while increases in PDGFA expression have also been 

seen in human uterine SMCs during the physiological hypertrophy of pregnancy 

(Mendoza et al. 1990). Expression of PDGFC is seen in most adult tissues in humans 

with the highest expression in the kidney, pancreas, and heart with lower levels in 

ovary and liver, however, no expression could be detected in spleen, colon or 

peripheral blood leukocytes (Fredriksson et al. 2004). PDGF-A and -C have also been 

seen to be co-expressed in the brain, heart, testis, kidney and liver (Fredriksson et al. 

2004). 

Expression of PDGFD has not been well characterised, but have been reported in 

most adult tissues in mouse, rat and human (Bergsten et al. 2001; Larochelle et al. 

2001). The expression has been reported in all three vascular layers (tunica adventitia, 

tunica media, and tunica intima - endothelium), in VSMCs, ECs and fibroblasts (Uutela 

et al. 2001; Chen et al. 2005; Andrae et al. 2008; Karvinen et al. 2009). Expression in 

fibroblasts is probably suggestive of autocrine signalling with PDGFRβ (Uutela et al. 

2001; Andrae et al. 2008). In tissues, expression was highest in the pancreas, ovary, 
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heart, and adrenal gland with none detected in skeletal muscle, lung nor in the brain 

(Larochelle et al. 2001; Fredriksson et al. 2004). 

In the healthy murine retina, expression of PDGF-A and -B have been seen in retinal 

ganglion cells/nerve fibre layer as well as in horizontal and amacrine cells (Cox et al. 

2003). Expression of PDGFA has also been reported in adult retinal vasculature 

(Robbins et al. 1994) although its expression seems to be restricted to retinal neurons 

during development (Mudhar et al. 1993). 

2.3 The PDGF receptors 

The PDGFs exert their biological activity by binding to two structurally similar but 

distinct cell-surface (transmembrane) receptor tyrosine kinases (RTKs), PDGFRα and 

PDGFRβ which both belong to the class III RTKs including c-FMS, c-KIT, and FLT3 

(receptors of CSF1, stem cell factor - SCF, and FLT3-ligand respectively) (Heldin and 

Westermark 1999; Blume-Jensen and Hunter 2001; Lemmon and Schlessinger 2010; 

Raica and Cimpean 2010; Rönnstrand 2010; Demoulin and Essaghir 2014; Borkham-

Kamphorst and Weiskirchen 2016). The RTKs catalyse the transfer of phosphate 

groups from ATP (phosphate donor) to tyrosine residues on protein substrates. In the 

human genome, of the 90 tyrosine kinases identified, 58 are receptor types, and 32 

are non-receptor types (Robinson et al. 2000). 

The PDGF receptors, alpha and beta, have molecular sizes of approximately 170 and 

180 kDa respectively following glycosylation (Yarden et al. 1986; Claesson-Welsh et 

al. 1989; Matsui et al. 1989). The genes encoding the PDGFR alpha and beta are 

located on chromosome 4 and 5 in humans (Yarden et al. 1986; Spritz et al. 1994) 

and 5 and 18 in mice (Kazlauskas 2017) respectively. These receptors are more 

distant in relation to VEGF and FGF receptors (Demoulin and Essaghir 2014). Though 

the PDGFRs are structurally similar, they differ in their expression patterns, ligand-

binding specificities, and physiological roles (Betsholtz et al. 2001; Ostman and Heldin 

2007; Rönnstrand 2010). 

These two receptor isoforms form dimers upon binding of the PDGF dimer and 

depending on the configuration of the ligand and the receptor expression pattern, three 

receptor combinations are possible: -αα, -ββ and -αβ  (Bishayee et al. 1989; Heldin et 

al. 1989; Seifert et al. 1989; Andrae et al. 2008) (Fig. 2.8).  

In theory and in general, based on cell culture experiments, multiple and complex 

PDGF-PDGFR interactions are possible (Fig. 2.8). 
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Figure 2.8  Simple illustration of the PDGF system. 

(Borkham-Kamphorst and Weiskirchen 2016). See text for details. 

PDGF-AA binds only to PDGFR-αα whereas PDGF-BB has the ability to bind both 

PDGFR-α and -β thereby making it the only PDGF ligand with the ability to bind to all 

of the three receptor combinations with high affinity (Hart et al. 1988; Fredriksson et 

al. 2004). PDGF-CC binds to PDGFR-αα and -αβ, but does not bind to PDGFR-ββ, 

thus resembling PDGF-AB (Li et al. 2000; Gilbertson et al. 2001). However, the 

physiological relevance of PDGFR-αβ heterodimer activation has not been established 

to date but studies report that this activation may be responsible for data that shows 

PDGF-CC to be more potent than PDGF-AA (Li and Eriksson 2003). In the chick 

embryo chorioallantoic membrane (CAM) and mouse corneal model of angiogenesis, 

PDGF-CC exhibited more potent angiogenic activity than PDGF-AA (Cao et al. 2002), 

likewise, amongst the tested ligands, PDGF-CC showed the highest potential as a 

mitogen on several mesenchymal cell lines (Gilbertson et al. 2001). The binding 

constant for PDGF-CC binding to PDGFR-αα is said to be similar with PDGF-AA and 

PDGF-BB (Li and Eriksson 2003). PDGF-DD binds to PDGFR-ββ with high affinity, 

but it is also able to bind to PDGFR-αβ but with relatively lower affinity as such it is 

being referred to as PDGFR-ββ specific (Bergsten et al. 2001; Larochelle et al. 2001). 

PDGF-D has been reportedly shown to bind PDGFRα, inducing receptor endocytosis, 

which decreases significantly PDGFRα availability. PDGF-D thus activates PDGFRα 
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specific Tyr754 and Tyr1018 phosphorylation and the adaptor protein that specifically 

associates with activated PDGFRα, CrkII. The recombinant PDGFRα-Fc chimera 

homodimer also binds to PDGF-D thereby preventing PDGF-D signalling (Borkham-

Kamphorst et al. 2015).  

Taken together, all the PDGF dimers except PDGF-DD (PDGF-AA, PDGF-BB, PDGF-

CC and PDGF-AB) can bind to PDGFRα, while PDGF-BB and PDGF-DD binds to 

PDGFRβ (Heldin and Lennartsson 2013; Demoulin and Essaghir 2014) . 

2.3.1 Structure of the PDGF receptors 

The structure of the PDGFR family is characteristic of the RTKs which consists of; a 

ligand binding domain extracellularly; a single transmembrane helix which transmits 

information from outside into the cell and intracellularly; a juxtamembrane segment 

(JM), that reduces tyrosine kinase domain basal activity, a split tyrosine kinase domain 

in the cytoplasmic region (which has a specific inserted sequence of around 100‐

amino acid residues with no resemblance to kinase domains) responding to 

extracellular cues, and undergoing phosphorylation to induce downstream signalling 

events and last, a carboxyl-terminal tail  (Heldin and Westermark 1999; Hoch and 

Soriano 2003; Hubbard 2004; Ostman and Heldin 2007; Andrae et al. 2008; Chen et 

al. 2013; Eger 2016; Kazlauskas 2017) (Fig. 2.9).  

The extracellular part of the receptors consists of five immunoglobulin-like domains 

(D1-D5) of which domains 2 and 3 are most important for ligand binding (Heidaran et 

al. 1990; Lokker et al. 1997; Miyazawa et al. 1998; Shim et al. 2010) while domains 4 

and 5 participate in receptor dimer stabilisation (Omura et al. 1997; Yang et al. 2008) 

(Fig. 2.9). Receptor dimer stabilisation is however important because the receptors 

can attain an orientation that facilitates their activation by trans auto-phosphorylation 

(Heldin and Lennartsson 2013). 

The single transmembrane helix present in each receptor probably functions to relay 

information from the D4 and D5 domains to the intracellular part. In both receptors, the 

linkers present between the transmembrane helix and the D5 domain are just 3-4 

amino acids in length which suggests that the two transmembrane helices from the 

dimerized receptors are not likely by geometry to form inter-helix interactions as a 

result of the D5 domains not being too close to clash into each other (Chen et al. 

2013). 

Between the transmembrane helix and the kinase domain is the juxtamembrane 
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segment, a polypeptide of approximately 40 amino acids in length which maintains the 

kinase domain in an auto-inhibited state until ligand binding activation (Chan et al. 

2003; Griffith et al. 2004; Walter et al. 2007). The JM segment contains several 

tyrosines conserved in all of the class III RTKs saddled with the responsibility for 

attaching the segment to the kinase domain. Most important is that phosphorylation of 

these conserved tyrosines results in constitutively activating PDGFRβ (Mori et al. 

1993). Chen et al. 2013, also noted that the addition of phosphate groups to these 

tyrosines likely prevents the JM segment from binding to the kinase groove, with the 

same tyrosines likely to be involved in the ligand-induced activation of the PDGFRs. 

Mol et al. 2003, also noted that trans auto-phosphorylation of these tyrosines could be 

responsible for kinase domain activation as seen with c-KIT. 

The tyrosine kinase domain is the effector domain in these receptors. Together with 

the phosphorylated tyrosines in the JM segment, the kinase domain of these receptors 

also harbor two major tyrosine auto-phosphorylation sites, one of which is Y751 in 

PDGFRβ, which is found precisely in the insert region within the kinase (Kazlauskas 

and Cooper 1989). These tyrosine phosphorylation thus provides docking sites for 

downstream signalling molecules (Kazlauskas and Cooper 1990; Escobedo et al. 

1991). 

At the C-terminus of the encoding sequences, both receptors possess a highly acidic 

region, rich in serine and threonine (Fig. 2.9). These sequences participate in 

ubiquitination and receptor down-regulation (Lennartsson et al. 2006). 
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Figure 2.9  Structure of PDGFRα and PDGFRβ. 

The different domains (D1-D5) and their compositions are shown. All numbers are for 

human PDGFRs. The two straight lines represent the lipid bilayer. Note that domains 

1 and 2 (D1 and D2) are an integral module while the intracellular kinase domain is a 

split domain having an insert between the N- and C-terminal lobes (Chen et al. 2013).  

2.3.2 Expression of PDGFRs 

While the pattern of expression of the two PDGFRs are not similar (Kazlauskas 2017), 

it is known to be dynamic and spatio-temporally regulated in-vivo as seen with the 

ligands (Andrae et al. 2008; Chen et al. 2013). Their expression has been detected in 

a large number of cell types (Heldin and Westermark 1999). The classical cells known 

to express PDGF, SMCs and fibroblasts, also express both alpha and beta receptors 

but in general higher levels of beta receptors are expressed. Some cells express only 

alpha receptor like the rat liver endothelial cells (Heldin et al. 1991), human platelets 

(Vassbotnlon et al. 1994), and O-2A glial precursor cells (Hart et al. 1989) while some 

others express only beta receptor like mouse capillary endothelial cells (Smits et al. 

1989). In addition, PDGFRα is expressed in lens epithelium (Reneker and Overbeek 

1996). Expression has also been seen in most mesenchyme cells with strong 

expression in subtypes of mesenchymal progenitors in skin, intestine, and lungs 

(Schatteman et al. 1992; Andrae et al. 2008). 
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Expression of PDGFRβ has been seen in mesenchyme, predominantly VSMCs and 

pericytes (Sorkin et al. 1993; Hellstrom et al. 1999; Andrae et al. 2008). PDGFR 

expression is generally low in mesenchymal cells in-vivo, however, expression is 

known to dramatically increase during inflammation and in culture and several factors 

have been reported to result in this expression induction, including TGFβ, FGF-2, 

estrogen, LPS, TNFα and IL-1α (Heldin and Westermark 1999). 

In the developing murine retina, expression of PDGFRα have been seen in astrocytes 

(Mudhar et al. 1993) with PDGFRβ in the microvascular pericytes (Benjamin et al. 

1998). Meanwhile, in the adult retina, expression of PDGFRα have been seen in the 

ganglion cell layer with PDGFRβ at the Müller cell end feet at the internal limiting 

membrane (Cox et al. 2003).  

2.3.3 Activation of the PDGFRs 

Although PDGFR activation independent of PDGF exist, which were first identified 

during pathological conditions, the best-known mechanism of PDGFR activation is the 

direct, PDGF-mediated form of activation (Kazlauskas 2017). 

2.3.3.1 Dimerization and auto-phosphorylation of Receptors 

The PDGF isoforms have two symmetric receptor binding epitopes each due to their 

dimeric nature. Hence, one molecule of PDGF simultaneously binds two receptor 

molecules bringing the two receptor promoters in nearness to each other (Duan et al. 

1991; Fretto et al. 1993; Herren et al. 1993; Heldin and Westermark 1999; Chen et al. 

2013). Hence, receptor dimer is formed which is non-covalently held together by the 

bivalent PDGF ligands (Betsholtz 2003; Heldin and Lennartsson 2013). Receptor 

dimerization and conformational changes results in destabilising the inhibitory 

interactions between the kinase and these three segments; the JM domain, the 

activation loop and the C-terminal tail (Rönnstrand 2010; Demoulin and Essaghir 

2014). Receptor dimerization is therefore crucial in PDGFR activation as it puts side 

by side the receptor’s intracellular parts allowing trans phosphorylation between the 

two receptors in the complex (Kelly et al. 1991; Heldin and Ostman 1996; Hoch and 

Soriano 2003; Chen et al. 2013; Kazlauskas 2017). 

In principle, auto-phosphorylation has two important functions: firstly, auto-

phosphorylation of tyrosines in the activation loop within the protein TK domain (i.e., 

Tyr849 in the PDGFRα and Tyr857 in the PDGFRβ) (Fantl et al. 1989; Kazlauskas 

and Cooper 1989; Kazlauskas et al. 1991; Rönnstrand 2010) results in kinase activity 
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stimulation, and secondly auto-phosphorylation of tyrosines positioned outside the 

kinase domains (i.e., in the JM, kinase insert, and carboxyl-terminal regions) provides 

docking sites for cytoplasmic downstream signalling molecules (Kazlauskas and 

Cooper 1989; Heldin et al. 2002; Betsholtz 2003; Heldin and Lennartsson 2013; 

Demoulin and Essaghir 2014), largely those having the Src homology 2 (SH2) domain 

(Choudhury et al. 1998; Heldin and Westermark 1999; Tallquist and Kazlauskas 

2004), but also those containing pleckstrin homology (PH) domains, recognising 

membrane phospholipids; SH3 domains recognising proline-rich regions; phospho-

tyrosine-binding (PTB) domains, recognising phosphorylated tyrosines; and 

Postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), 

and Zonula occludens-1 protein (zo-1) (PDZ) domains, recognising C-terminal valine 

residue and specific upstream sequences (Pawson and Scott 1997; Pawson and Nash 

2003). However, most PDGFR effectors bind via SH2 domains to distinct sites on the 

phosphorylated receptors (Ostman and Heldin 2007; Andrae et al. 2008).  

So far, PDGFR-α and -β have a total of 11 and 13 tyrosine phosphorylation sites 

respectively out of which 10 and 11 sites respectively have been identified as auto-

phosphorylation sites (Heldin et al. 1998; Rönnstrand 2010). In PDGFRβ, Y934 is not 

auto-phosphorylation site, but phosphorylated by Src family kinases (Hansen et al. 

1996). Thus dimerized and activated PDGFRs associate with diverse families of SH2-

domain containing molecules initiating activation of diverse signalling pathways and 

around 10 different families have so far been identified (Heldin et al. 2002; Ostman 

and Heldin 2007; Heldin and Lennartsson 2013). The SH2-domain containing 

molecules tend to bind specifically, binding specificities of which are determined by 

the three to six amino acid residues (different SH2-domains have preferences that 

differ for these amino acids) lying downstream of the phosphorylated tyrosine residues 

(Songyang et al. 1996; Heldin et al. 2002; Heldin and Lennartsson 2013). Some of the 

SH-2 domain signalling molecules have in-built enzymatic activity [e.g., tyrosine 

kinases Src, Fer and Fes; the tyrosine phosphatase, SHP-2; phospholipase C-γ (PLC-

γ); PI3-kinase; and the GTPase‐activating protein (GAP) for Ras (RasGAP)] (Kim and 

Wong 1995; Heldin and Westermark 1999; Tallquist and Kazlauskas 2004; Ostman 

and Heldin 2007).  

Thus, activation of the corresponding enzymatic activities occur either by receptor 

binding or by receptor kinases phosphorylation. On the other hand, the enzymes are 

constitutively active and are only carried by the activated receptors into the plasma 
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membrane inner leaflet (Heldin and Lennartsson 2013). Others (SH-2 domain 

signalling molecules) are adaptor molecules that are devoid of intrinsic enzymatic 

activity but rather are links between the receptors and other effectors downstream 

(Ostman and Heldin 2007; Shah et al. 2010). Examples of these adaptor molecules 

include; Growth Factor Receptor Bound Protein 2 and 7 (Grb2 and 7), GRB2 

Associatfed Binding Protein 2 (Gab2), Crk, non-catalytic region of tyrosine 

kinase adaptor protein (Nck), Shc, and ALG-2-interacting protein X (Alix) (Yokote et 

al. 1996; Heldin et al. 1998). Grb2 complexes with the nucleotide exchange molecule, 

Sos1 (son of sevenless 1) (Grb2/Sos1 complex) and activates the small GTPase, Ras 

and the extracellular-signal-regulated kinases (ERK) MAPK pathway (Ostman and 

Heldin 2007; Andrae et al. 2008; Heldin and Lennartsson 2013). Nck and Crk activates 

JNK (Nishimura et al. 1993; Su et al. 1997). Alix binds aroufnd Tyr1021 region of the 

carboxyl-terminal tail and aids ubiquitin ligase (Cbl) binding (Lennartsson et al. 2006). 

PDGFRs, independent of auto-phosphorylation, also binds to signalling molecules or 

enhancers (e.g., the PDZ-domain protein, Na+/H+ exchanger regulatory factors, 

NHERF), which binds to the carboxyl-terminal tail end of the receptors, facilitating 

receptor signalling (Maudsley et al. 2000; Demoulin et al. 2003; James et al. 2004; 

Takahashi et al. 2006; Theisen et al. 2007). They are also able to activate transcription 

factors of the STAT family (Darnell 1997; Heldin and Westermark 1999; Ostman and 

Heldin 2007). Additionally, not only do the PDGFRs bind to N-cadherin (Theisen et al. 

2007) and the phosphatase, PTEN (phosphatase and tensin homologue) (Takahashi 

et al. 2006), they also associate with integrins (Assoian 1997; Frisch and Ruoslahti 

1997). Interaction of PDGFRs with integrins aids the localisation of these receptors 

and associating molecules at focal adhesions, which are sites where numerous 

signalling pathways are initiated and are connected (Clark and Brugge 1995). 

2.4 PDGFR-induced signalling pathways 

Potentially, a signalling pathway is initiated with the binding of each signalling molecule 

to the receptors following ligand binding (Heldin et al. 2002). PDGFRs thereby induce 

a number of well-characterised signalling pathways, e.g., MAPK, phosphatidyl-

inositol-3-kinase (PI3K), phospholipase C-γ (PLC-γ), JAK/STAT pathways and others 

that mediate several cellular and developmental responses such as cell survival, 

migration, proliferation, and ECM production (Andrae et al. 2008; Ostendorf et al. 

2012; Heldin and Lennartsson 2013; Borkham-Kamphorst and Weiskirchen 2016) 
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(Fig. 2.8). However, activation of the Ras-MAPK and the PI3K/Akt pathways are the 

two most characterised mechanisms through which cellular responses are being 

mediated by PDGFRs (Li et al. 2007). 

2.4.1 MAPK pathways 

MAP kinases pathways are important intracellular signalling pathways activated by 

PDGFs (Demoulin and Essaghir 2014; Eger 2016). MAP kinase family are proline 

(Pro)-targeted serine/threonine kinases (Turjanski et al. 2007; Roskoski 2012). They 

either undergo auto-phosphorylation i.e., phosphorylating their own dual serine and 

threonine residues or phosphorylate the ones located on their substrates, to either 

result in target activation or deactivation (Johnson and Lapadat 2002; Peti and Page 

2013).  

MAPKs are expressed ubiquitously and are highly conserved evolutionarily from 

plants, fungi, nematodes, insects to mammals (Widmann et al. 1999; Pimienta and 

Pascual 2007; Shaul and Seger 2007; Kyriakis and Avruch 2012; Peti and Page 2013). 

They participate in signal transduction from the cell surface to the cell interior and are 

responsive to enormous extracellular stimuli (Plotnikov et al. 2011; Roskoski 2012). 

They regulate numerous fundamental cellular processes whilst their dysregulation are 

also implicated in a number of diseased states (Dong et al. 2002; Wei and Liu 2002; 

Qi and Elion 2005; Liu et al. 2007; Pimienta and Pascual 2007; Raman et al. 2007; 

Shaul and Seger 2007; Turjanski et al. 2007; Arthur and Ley 2013). Induced cellular 

responses and implicated disease conditions are discussed under each of the 

individual pathways. 

Each MAPK pathway is made up of a three-tiered kinase cascade consisting of MAP 

kinase kinase kinase (MAPKKK, MAP3K, MEKK or MKKK), which is often activated 

by a MAP4K lying upstream. Downstream, MAP3K phosphorylates and activates the 

MAP kinase kinase (MAPKK, MAP2K, MEK or MKK), which in turn, activates the 

MAPK by dual phosphorylation of conserved threonine (Thr) and tyrosine (Tyr) 

residues present in the activation loop (denoted as T-X-Y) (Songyang et al. 1996; 

Canagarajah et al. 1997; Chen et al. 2001; Pearson et al. 2001; Wei and Liu 2002; 

Cargnello and Roux 2011; Plotnikov et al. 2011; Morrison 2012; Roskoski 2012; Lee 

et al. 2016) (Fig. 2.10). Once activation of the MAPK occurs, diverse substrates gets 

phosphorylated (including transcription factors, phosphatases, and protein kinases) 

both in the cytosol and nucleus resulting in changes in gene expression and protein 
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function that execute the corresponding biological responses (Turjanski et al. 2007; 

Plotnikov et al. 2011; Morrison 2012; Roskoski 2012) (Fig. 2.10). For the 

phosphorylation of nuclear targets, active MAPKs often translocate to the nucleus from 

the cytoplasm (Qi and Elion 2005; Plotnikov et al. 2011). In mammalian cells, at least 

14 MAP3Ks, 7 MAP2Ks, and 12 MAPKs have been recognised (Widmann et al. 1999). 

Dephosphorylation of MAPKs occur through the activity of dual specificity MAPK 

phosphatases (MKPs), serine/threonine phosphatases and tyrosine phosphatases 

that dephosphorylate both phospho-threonine and phospho-tyrosine residues on 

MAPKs (Sun et al. 1993; Keyse 2000; Liu et al. 2007; Pimienta and Pascual 2007; 

Zhang and Dong 2007). 

The MAPKs have been grouped into three main families based on their structure, 

activation motif, and function and these are ERKs, ERK1 - ERK8; JNKs/SAPK (C-Jun 

amino (NH3)-terminal kinases/stress activated protein kinase - JNK1, JNK2 and 

JNK3); and p38/SAPKs - p38α, p38β, p38γ and p38δ (Schaeffer and Weber 1999; 

Chen et al. 2001; Kyriakis and Avruch 2001; Wei and Liu 2002; Cui et al. 2007; Zhang 

and Dong 2007; Cargnello and Roux 2011) (Fig. 2.10). 

 

Figure 2.10  Simplified MAPK signalling cascade. 

Image modified and adapted from Morrison, 2012. See text for details. 
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2.4.1.1 ERK pathway 

The MAPK/ERK pathway is also generally denoted as the Ras-Raf-MEK-ERK 

pathway. The ERKs have been the best studied amongst the MAPK pathways 

(Turjanski et al. 2007). They have a TEY motif in the activation segment and are 

generally grouped into two: the classical ERKs, that primarily have a kinase domain 

(ERK1 and ERK2) and the larger ERKs (e.g., ERK5), that have to their kinase domain, 

a relatively more extended carboxyl-terminal sequence (Zhang and Dong 2007). 

ERK1/2, also referred to as p44 and p42 MAPK, respectively, were the initial MAPKs 

to be identified in mammals (Rossomando et al. 1989; Nakielny et al. 1992), with 83-

84% of sequence similarity, sharing almost all functions (Lloyd 2006; Turjanski et al. 

2007). Hence, referred to as ERK1/2 (Roskoski 2012). However, ERK2 remains the 

best characterised member of this group (Turjanski et al. 2007).  

Ras activation occurs in PDGF-stimulated cells and it is a key event in inducing signal 

transduction (Nånberg and Westermark 1993; Satoh et al. 1993; Heldin and 

Westermark 1999). PDGFRs interact with Ras-MAPK majorly through Grb2 and Shc 

adaptor proteins (Andrae et al. 2008). Grb2 is an adaptor molecule having one SH2 

domain and two SH3 domains. The SH3 domains of Grb2 allows it to form a complex 

with Sos1 (Schlessinger 1993; Andrae et al. 2008) while its SH2 domain can either 

directly bind to auto-phosphorylated (activated) PDGFRs, or indirectly bind through 

other components, such as SHP-2 or Shc. Following the binding of these other 

components to PDGFRs, they get phosphorylated on tyrosine residues and are 

recognised by the SH2 domain of Grb2 (Heldin and Westermark 1999; Demoulin and 

Essaghir 2014). Grb2 complexes with Sos1, a guanine nucleotide exchange factor 

(GEF) for Ras, Sos1 subsequently activates Ras [(by converting membrane-bound 

Ras from its inactive, GDP-bound form (Ras-GDP) to its transductionally active, GTP-

bound form - (RasGTP)] (Schlessinger 1993; Heldin and Westermark 1999; Andrae et 

al. 2008; Dance et al. 2008; Jurek et al. 2011). GTP hydrolysis, facilitated by guanine 

tri-phosphatase activator protein (GAP), thus terminates Ras signalling (Yoon and 

Seger 2006; Vigil et al. 2010).  

Upon activation, Ras recruits Raf-1, a serine/threonine kinase, to the plasma 

membrane from the cytoplasm for subsequent activation which involves two key steps 

(Wellbrock et al. 2004; Jurek et al. 2011). First, the auto-inhibition imposed on the 

catalytic domain of Raf-1 by its regulatory domain is eased (Cutler et al. 1998). 

Second, the catalytic domain undergo multiple phosphorylation and de-
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phosphorylation events which is necessary for elevation of Raf-1’s basal activity 

(Chong and Guan 2003). Raf-1 is the first kinase (entry point) in the three-tiered MAPK 

cascade, and once activated, it initiates MAPK cascade activation by phosphorylation 

and activation of MEK1/2 which subsequently activates MAP kinases ERK1/2 by the 

phosphorylation of tyrosine and threonine residues in the TEY sequence in the 

catalytic domain (Heldin et al. 1998; Heldin and Westermark 1999; Thomas and 

Huganir 2004; Qi and Elion 2005; Jurek et al. 2011) (Fig. 2.10). This process is 

facilitated by KSR, a scaffold protein that links the three levels of kinases to Ras (Qi 

and Elion 2005). ERK1/2 thus have several known substrates in all the cellular 

compartments, including the cytoskeleton, membranes, cytoplasm, and nucleus (Yoon 

and Seger 2006). Some of these targets include but are not limited to transcription 

factors, such as NF-kB, AP-1, and Myc, kinases, such as ribosomal protein S6 kinases 

(RSKs), and the RSK-related mitogen and stress-activated kinases (MSKs) that are 

localised to the nucleus, the cell survival regulator, Bcl-2 (B-cell lymphoma-2), cPL2, 

and paxillin (cytoskeletal scaffold protein) (Thomas and Huganir 2004; Qi and Elion 

2005; Turjanski et al. 2007).  

This cascade is therefore involved in the regulation of numerous processes including 

cell migration, adhesion, survival, metabolism, proliferation or differentiation 

(depending on the stimulant strength and duration), cell cycle progression, 

transcription, learning and memory in nerve cells (Marshall 1995; Pearson et al. 2001; 

Qi and Elion 2005; McKay and Morrison 2007; Shaul and Seger 2007; Roskoski 2012). 

2.4.1.2 JNK Pathway 

Initially, a 54-kDa MBP kinase from cycloheximide-treated rat livers was purified as a 

form of JNK/SAPK (Kyriakis and Avruch 1990). Before long, purification by affinity 

adsorption to a c-Jun fusion protein gave rise to 46 and 54 kDa JNK/SAPKs (Hibi et 

al. 1993). Their characteristic feature is the dual phosphorylation motif Thr-Pro-Tyr 

(TPY) within their activation loop (Turjanski et al. 2007; Morrison 2012). Initially 

recognised as a mediator of the c-Jun transcription factor, JNK earned its other name, 

SAPK (stress-activated protein kinase) from being identified as an environmental, 

intra- or extra-cellular stress mediator (such as DNA damage, heat, genotoxic, ionising 

radiation, osmotic, hypoxic or oxidative stress) (Kyriakis and Avruch 1990; Davis 1994; 

Kyriakis et al. 1994; Qi and Elion 2005; Johnson and Nakamura 2007; Roskoski 2012).  
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However, it was later shown that similar to other MAPKs, this cascade is activated by 

several other stimuli that are stress independent like growth factors such as PDGF 

and cytokines such as TNFα and IL-1β (Davis 2000; Weston and Davis 2002; Qi and 

Elion 2005; Roy et al. 2008). Upon activation, signals get transmitted from the stimuli 

or stress factor to Rho family small GTPases such as Rac1 and CDC42, which then 

activates the MAP3Ks either directly or through MAP4Ks (Qi and Elion 2005; Plotnikov 

et al. 2011). Alternatively, association of the MAP3Ks and MAP4Ks with the adaptor 

protein, TRAF can also lead to their direct activation (Bradley and Pober 2001). With 

several MAP4Ks (Dan et al. 2001) and MAP3Ks (Craig et al. 2008) recognised, each 

of them can pass on the cascade’s signal by binding to specific scaffold proteins under 

certain conditions [(e.g. JIPs (Whitmarsh 2006)] (Qi and Elion 2005). MAP3Ks for the 

JNK module include members of: the MEKK group, MEKK1 and MEKK4; the mixed 

lineage protein kinase group, MLK2 and MLK3; the apoptosis signal-regulating kinase 

group, ASK1; transforming growth factor-β activated kinase -1 (TAK1), and tumour 

progression locus 2 (Tpl2) (Davis 2000; Qi and Elion 2005; Weston and Davis 2007; 

Morrison 2012). Following activation of MAP3Ks, their signals are further transmitted 

by Thr and Ser residue phosphorylation in the activation loop, in turn activating the 

MAP2Ks (MKK4 and MKK7) (Qi and Elion 2005; Wang et al. 2007; Weston and Davis 

2007; Morrison 2012). Subsequently, the MAP2Ks activate the three MAPKs, 

JNK1/2/3, by directly phosphorylating the Tyr and Thr residues in the activation loop's 

Thr-Pro-Tyr motif (Weston and Davis 2007; Plotnikov et al. 2011) (Fig. 2.10).  

The JNK gene isoforms, JNK 1, 2 and 3 are a result of differential splicing of a single 

gene whilst JNK1 and 2 are ubiquitously expressed in several tissues, expression of 

JNK3 is specific to brain, testis and heart (Qi and Elion 2005; Roy et al. 2008). Thus, 

each JNK is expressed as a short and long form, 46 and 54 kDa respectively (Cui et 

al. 2007). These forms however, seem to differ in their binding and phosphorylation 

ability to different substrate proteins (Roy et al. 2008). This cascade activation, results 

in the JNKs and perhaps their putative MAPKAPKs, to phosphorylate several targets 

(including transcription factors) present mainly in the nucleus, but also in the cytoplasm 

(non-nuclear proteins) (Barr and Bogoyevitch 2001; Cui et al. 2007; Plotnikov et al. 

2011). Amongst their many substrates is c-Jun, to which JNK binds at the NH2-

terminal activation domain and phosphorylates it on Ser63 and Ser73 residues (Wei 

and Liu 2002; Roy et al. 2008). In addition to c-Jun, the following transcription factors 

can also be phosphorylated by JNK: c-fos, activating transcription factor 2 and 3 (ATF2 
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and 3), JunB, and JunD. Together with c-Jun, these transcription factors collectively 

make up the AP-1 transcription factor which is involved in regulating expression of 

numerous stress-responsive genes (Roy et al. 2008). Additionally, JNK 

phosphorylates DPC4, tumour protein p53 (TP53), nuclear factor of activated T-cells 

4 (NFAT4), c-Myc, SRF (Serum Response Factor) accessory protein 1a (Sap-1a), 

ETS Like-1 protein (Elk-1), Jun Dimerization Protein 2 (JDP2), and the Ets-related 

transcription factor, PEA3 (O’Hagan et al. 1996; Ip and Davis 1998; Widmann et al. 

1999; Bogoyevitch and Kobe 2006). MST1 (Bi et al. 2010) and MAPKAPK3 (Ludwig 

et al. 1996) have also been shown to be phosphorylated by JNKs, however, their 

functional properties as classical MAPKAPKs remains a subject of debate (Plotnikov 

et al. 2011).  

These phosphorylated substrates subsequently control the transcription of numerous 

genes which in turn mediate cellular processes such as immune responses, insulin 

signalling, neuronal activity, survival signalling, apoptosis, metabolism, cytokine 

production (Wei and Liu 2002; Dhanasekaran and Reddy 2008; Haeusgen et al. 2009; 

Huang et al. 2009; Rincón and Davis 2009) and several others (Whitmarsh 2007). 

Thus any dysregulation of this cascade can lead to numerous diseases. JNKs have 

been implicated in a number of neurodegenerative diseases, including but not limited 

to ALS, PD, AD (Kim and Choi 2010), inflammation (Zhang and Kaufman 2008), 

diabetes (Tanti and Jager 2009), and many types of cancers (Wagner and Nebreda 

2009). 

2.4.1.3 p38 MAPK pathway 

The discovery of p38α was borne out of three independent context. First, isolated as 

a 38-kDa tyrosine phosphoprotein present in LPS-treated cell extracts (Han et al. 

1993, 1994). Second, as a pyridinyl imidazole binding drug that blocked the 

biosynthesis of inflammatory cytokines like IL-1 and TNFα in LPS stimulated 

monocytes, as such, it was referred to as cytokine-suppressive anti-inflammatory 

drug-binding protein (CSBP) (Lee et al. 1994) and third, as MAPK activated protein 

kinase-2 (MAPKAP-2) reactivating kinase (Rouse et al. 1994). Furthermore, the other 

three splice variants [p38β (p38-2), p38γ (ERK6 or SAPK3), and p38δ (SAPK4)] 

encoding members of the p38 subfamily were identified by cloning strategies instead 

of biological approaches (Jiang et al. 1996; Lechner et al. 1996; Li et al. 1996; Goedert 

et al. 1997; Jiang et al. 1997; Kumar et al. 1997; Stein et al. 1997). Amongst the four 
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isoforms, p38α and p38β are ubiquitously expressed while p38γ and p38δ are 

expressed differentially depending on the type of tissue (Zarubin and Han 2005).  

A Thr-Gly-Tyr (TGY) dual phosphorylation motif in the activation loop is characteristic 

of all p38 kinases (Hanks and Hunter 1995; Plotnikov et al. 2011; Morrison 2012) while 

comparison of the sequences showed that each of the isoforms share approximately 

60% identity within the group but only 40-45% with other three members of the MAPK 

family (Zarubin and Han 2005). The p38 MAPKs respond to and are activated by 

several chemical and physical stresses including but not limited to ischemia, UV 

irradiation, hormones, heat and osmotic shock, certain mitogens like PDGF, protein 

synthesis inhibitors, LPS, inflammatory cytokines like TNFα and IL-1 (Wei and Liu 

2002; Qi and Elion 2005; Zarubin and Han 2005).  

Upon receptor activation or stress induction, signals get transmitted to the p38 

cascade via small GTPases, adaptor proteins, MAP4Ks and MAP3Ks identical to the 

ones that are involved in the JNK cascade (Plotnikov et al. 2011). However, the 

differences in activation between the p38 and JNK cascades are facilitated by specific 

scaffold proteins, compartmentalisation, and variable substrates (Morrison and Davis 

2003; Cuevas et al. 2007; Raman et al. 2007). Upon transmission of signals by MAP3K 

component cascade level, these signals result in the induction of phosphorylation and 

activation of the p38 cascade MAP2K components, mainly MKK3 and MKK6 (SKK3) 

(Qi and Elion 2005; Rubinfeld and Seger 2005; Zarubin and Han 2005; Raman et al. 

2007; Morrison 2012), but can also include MKK4 for p38-α and -γ (Whitmarsh and 

Davis 2007) under certain conditions. Several MAP3Ks are involved in the p38 

cascade, including MEKK1-MEKK4, DLK (MUK/ZPK), ASK1 (MAPKKK5), MLK2 and 

3, TAK1, TAO1/TAO2 and Tpl2 (Qi and Elion 2005; Zarubin and Han 2005; Raman et 

al. 2007; Morrison 2012). Following the transmission of signals to the MAP2Ks, these 

signals are further passed on to the four p38 isoforms (Fig. 2.10) and a few functional 

differentially spliced forms at the MAPK cascade level (32-54 kDa) (Plotnikov et al. 

2011). Alternatively, p38 activation can also be facilitated by auto-phosphorylation 

independent of MAP2K where activation can be induced either by phosphorylation of 

Tyr323 by ZAP-70 (Salvador et al. 2005), by association with analogues of lipidic 

phosphatidyl inositol (Gills et al. 2007), or by stimulated interaction with TAB1 (TAK1-

binding protein) adaptor proteins (Ge et al. 2002), subsequently catalysing an 

enhanced auto-phosphorylation of p38s on its activatory residues (Plotnikov et al. 

2011). Activation of the p38 MAPKs thus leads to activation of numerous substrates 
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amongst which are transcription factors, protein kinases and other types of substrates 

(Zarubin and Han 2005; Morrison 2012).  

Protein kinase substrates of p38 include: the MAPK-activated protein kinase 2 

(MAPKAPK2 or MK2) (Zarubin and Han 2005), its closely associated family member, 

MK3 (3pk) both of which activate  numerous targets including cAMP response 

element-binding protein (CREB), lymphocyte-specific protein 1 (LSP1), small heat 

shock protein 27 (HSP27), tyrosine hydroxylase (Zarubin and Han 2005). Other 

protein substrates are; MAPKAPK-5, MNK1, MNK2 (Fukunaga and Hunter 1997; 

Waskiewicz et al. 1997; Wei and Liu 2002; Plotnikov et al. 2011).  

Transcription factors substrate of P38 include; Sap-1a, high mobility group-box protein 

1 (HBP1), ATF-1/2/6, NFAT, p53, microphthalmia-associated transcription factor 1 

(MITF1), myocyte enhancer factor 2C and 2A (MEF2C and 2A), ELK1, C/EBPβ, DNA 

damage-inducible transcript 3 protein (DDIT3), NF-kB, and AP-1 (Wei and Liu 2002; 

Qi and Elion 2005; Zarubin and Han 2005). Other p38 substrates include; keratin 8, 

tau, Na+/H+ exchanger isoform-1 (NHE-1), cPLA2, and stathmin (p38δ) (Young et al. 

1993; Reynolds et al. 1997; Kusuhara et al. 1998; Parker et al. 1998; Feng et al. 1999).  

Dephosphorylation of the p38 MAPK cascade is triggered by many dual-specificity 

protein phosphatases while p38α and p38β can be dephosphorylated by several 

members of these proteins (Muda et al. 1996; Camps et al. 1998), p38γ and p38δ 

seem to resist all the identified MKP family members (Zarubin and Han 2005). 

However, MPK5/7 which dephosphorylates JNK also does same for p38, MPK2/4, 

which deactivates ERK also dephosphorylates p38 while MPK1 as a higher specificity 

for p38 (Owens and Keyse 2007; Salojin and Oravecz 2007). 

Activation of p38 MAPK therefore play significant roles in gene expression regulation, 

survival, proliferation, differentiation, development, stress responses, inflammation, 

senescence, apoptosis, and cell cycle regulation (Wei and Liu 2002; Zarubin and Han 

2005; Cuenda and Rousseau 2007; Maruyama et al. 2009; Cuadrado and Nebreda 

2010; Plotnikov et al. 2011; Roskoski 2012). Gene targeting experiments have also 

shown that p38 is indispensable for erythropoietin production and angiogenesis (Qi 

and Elion 2005; Roskoski 2012). Thus, the involvement of this cascade in all these 

essential processes implies that any cascade dysregulation would therefore have 

pathological consequences (Plotnikov et al. 2011) as seen in diabetes (Liu and Cao 

2009), in the induction and sustenance of neurodegenerative diseases (Kim and Choi 
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2010), in cancer (Loesch and Chen 2008), in cardiovascular diseases (Coulthard et 

al. 2009), and in asthma (Qi and Elion 2005). 

2.4.2 Phosphatidylinositol-3-kinase (PI3K) pathway  

The PI3K family is a large and complex family of intracellular lipid kinases that 

phosphorylate phosphatidylinositol and phosphoinositides in their 3' position (i.e., 

phosphorylating the 3-OH group) (Engelman et al. 2006; Vanhaesebroeck et al. 2012) 

(Fig. 2.11).  

 

Figure 2.11  Enzymatic activity of PI3K and SHP1/2 with their corresponding 

substrate. 

Phosphatidylinositol phosphates (PIPs) are made of membrane bound fatty acids and 

a glycerol backbone linked to a cytosolic, phosphorylated, inositol head group. PIP2 is 

phosphorylated at the 3' position by PI3K forming PIP3. The phosphatase, PTEN, can 

dephosphorylate PIP3 back to regenerate PIP2. In addition, SHIP1/2 can 

dephosphorylate PIP3 at the 5' position generating PtdIns(3,4)P2, another potential 

second messenger (Vivanco and Sawyers 2002). 

They are highly conserved evolutionarily amongst multicellular organisms (Engelman 

et al. 2006; Hemmings and Restuccia 2012; Fruman et al. 2017). Molecular cloning of 

the PI3Ks revealed that there are three members (Class I - III) in this family with 

multiple subunits and isoforms (Vivanco and Sawyers 2002), classified according to 

their substrate specificity, structural characteristics, lipid products, and sequence 

homology (Fruman et al. 1998; Katso et al. 2001; Cantley 2002).  

Class I PI3K is further subdivided into IA and IB on the basis of structural and functional 

differences (B Vanhaesebroeck et al. 1997). Class IA is activated by G protein-coupled 

receptors (GPCRs), RTKs like PDGFRs, and certain oncogenes like the small G 

protein RAS while Class IB are exclusively activated by GPCRs (Vivanco and Sawyers 

2002; Carracedo and Pandolfi 2008; Liu et al. 2009). The regulatory subunits of both 

sub-classes differ; p85α/p85β/p55γ (collectively referred to as p85) and 
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p101/p84/p87PIKAP for class IA and IB respectively (Bader et al. 2005; Engelman et 

al. 2006; Carracedo and Pandolfi 2008). Class I is characterised for generating 

predominantly the second messenger, phosphatidylinositol-3,4,5-trisphosphate 

[PI(3,4,5)P3], by phosphorylating phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], 

the main in-vivo substrate (Katso et al. 2001; Vivanco and Sawyers 2002; Liu et al. 

2009). Class II PI3K which have three sub-classes, PI3KC2α, PI3KC2β, and PI3KC2γ, 

generates PI-3,4-P2 from PI-3P as wells as PI-3-P from PI and can be activated by 

cytokine receptors, RTKs, and integrins while Class III PI3K have only one single 

member, homologue of the yeast vacuolar protein sorting-associated protein 34 

(hVPS34) also referred to as PIK3C3 (Carracedo and Pandolfi 2008; Liu et al. 2009; 

Fruman et al. 2017).   

Of the three classes of enzymes, class I, activated by cell surface receptors, have 

been the most studied (Carracedo and Pandolfi 2008; Liu et al. 2009) and this review 

focuses on this class of PI3K enzymes. Members of this PI3K family (Class IA PI3Ks) 

are heterodimers that have a catalytic subunit, p110 [encoded by three genes (α, β 

and δ), which all have similar basic structure] and a regulatory subunit, p85 [also 

encoded by one of three genes (α, β and γ which all undergo differential splicing) 

(Vivanco and Sawyers 2002; Liu et al. 2009). The regulatory subunit, p85, codes for 

an adaptor-like protein containing two SH2 domains (binding to the motif pYXXM, 

where pY denotes a phosphorylated tyrosine residue) (Zhou et al. 1993; Vivanco and 

Sawyers 2002) and an inter-SH2 domain binding constitutively to the catalytic subunit, 

p110 (Vivanco and Sawyers 2002). This p85 regulatory subunit, facilitates binding and 

activation of the receptor as well as enzyme localisation (Liu et al. 2009). It also directly 

binds to two auto-phosphorylated tyrosine residues, conserved in both PDGFRs 

(Tyr740 and Tyr751 in PDGFRβ, both having a methionine at the +3 position) (Yu et 

al. 1991; Fantl et al. 1992; Kashishian et al. 1992; Kazlauskas et al. 1992; Cantley 

2002; Demoulin and Essaghir 2014). This binding therefore activates PI3K. The 

generation of this complex thus results in the membrane translocation and increased 

enzymatic activity of the p110 catalytic subunit, generating the product, PIP3 (Backer 

et al. 1992; Demoulin and Essaghir 2014). Kavanaugh et al., 1994, also showed that 

in addition to the aforementioned tyrosine phosphorylation sites, p85 regulatory 

subunit can also be phosphorylated at Tyr508 following binding to PDGFRβ.  

PI3K can also be activated by RTKs via Ras association and the resulting binding of 

GTPase to the Ras-binding domain (RBD) of PI3K (Engelman et al. 2006). By an 
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extensively studied mechanism which has been reviewed by Hanada et al., 2004, the 

lipid second messenger (PIP3) generation thus results in the activation of a cascade 

of effector kinases that starts with PDK1 (phosphoinositide-dependent kinase-1) 

activation which phosphorylates the serine/threonine kinase, Akt (protein kinase B, 

PKB) (Burgering and Coffer 1995; Franke et al. 1995; Klippel et al. 1997) (Fig. 2.12), 

the atypical protein kinase C isoforms (δ, ε, and ζ) (Nakanishi et al. 1993; Toker et al. 

1994; Akimoto et al. 1996; Moriya et al. 1996), and the p70 S6 kinase (Chung et al. 

1994; Cheatham et al. 1994). All these kinases thus contribute to PDGFR signalling 

(Heldin et al. 1998).  

 

Figure 2.12  Activation and regulation of Akt. 

Image modified and adapted from Hers et al., 2011. See text for details. 

Other effectors of PI3K include small GTPases of the Rho family (Hawkins et al. 1995), 

JNK (Lopez-Ilasaca et al. 1997), and the serine/threonine kinase, mammalian target 

of rapamycin (mTOR), that forms two cellular complexes, mTORC1 and mTORC2, 

having distinct subunit composition and substrate selectivity (Saxton and Sabatini 

2017). In comparison to other effectors, the Akt member family are more commonly 

activated downstream of receptor-induced PI3K activation and phosphorylation of Akt 

is often the prototype readout of PI3K class I activation (Fruman et al. 2017). As such, 
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the PI3K/Akt pathway is regarded as the prototype PI3K signalling (Carracedo and 

Pandolfi 2008). 

Akt, expressed as three isoforms, Akt1, Akt2 and Akt3, are encoded by PKBα, PKBβ 

and PKBγ genes respectively (Scheid and Woodgett 2001; Vivanco and Sawyers 

2002). Expression of these three isoforms are broad while sharing the same structure 

consisting of an amino-terminal PH domain, a central serine/threonine catalytic 

domain, and a short carboxyl-terminal regulatory domain (Vivanco and Sawyers 2002; 

Liu et al. 2009). Activation of Akt thereby begins with its translocation to the plasma 

membrane, facilitated by docking of the PH domain (in the N-terminal region of Akt) to 

PIP3 (which has been generated on the plasma membrane’s inner leaflet in response 

to PI3K activation) on the membrane (Andjelković et al. 1997; Bellacosa et al. 1998; 

Liu et al. 2009). Subsequent conformational changes in Akt thus exposes two 

indispensable amino acid residues (Thr308 and Ser473) for phosphorylation (Alessi, 

Deak, et al. 1997; Heldin et al. 1998; Stephens et al. 1998). Full activation of Akt 

therefore requires phosphorylation of both Thr308 (in the activation loop by PDK1) and 

Ser473 (in the carboxyl-terminal hydrophobic motif by putative PDK2) (Fig. 2.12) 

(Alessi, James, et al. 1997; Stokoe et al. 1997; Stephens et al. 1998; Vanhaesebroeck 

and Alessi 2000). Several potential PDK2s have been recognised, including PKCβ2, 

ILK (integrin-linked kinase), ATm (ataxia telangiectasia mutated), DNA-dependent 

protein kinase (DNA-PK) and Akt itself (Scheid and Woodgett 2001; Feng et al. 2004); 

however, the source of PDK2 in most situation still remains the mTOR–rictor 

(rapamycin insensitive companion of mTOR) complex (mTORC2) (Sarbassov et al. 

2005). So once phosphorylation and activation of Akt occurs, it phosphorylates up to 

about 100 substrates, thus regulating various cellular functions (Hanada et al. 2004; 

Carracedo and Pandolfi 2008). 

First, by phosphorylating and inhibiting important pro-apoptotic proteins, such as 

caspase 9, mouse double minute 2 (MDM2), Bcl-2 associated agonist of cell death 

(BAD), and FOXOs (the forkhead box family of TFs which plays a vital role in PDGFR 

signalling), Akt is able to wield a strong anti-apoptotic effect, (Hanada et al. 2004; 

Carracedo and Pandolfi 2008). It is also able to regulate cell cycle and survival 

(through p21 and MDM2), and regulate metabolism (Hanada et al. 2004; Engelman et 

al. 2006). However, PDGF-mediated anti-apoptotic effect was shown by Romashkova 

and Makarov, 1999 to be reliant on Akt induced NF-kB activation [which binds and 

activates the IkB kinase (IKK)] but this finding was disputed by Rauch et al., 2000 and 
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Peppel et al., 2005 where they showed that PDGF-mediated NF-kB activation is 

insignificant in comparison to actual NF-kB stimuli such as TNFα. 

Second, Akt is able to activate proliferation of cells by p27 inactivation  (Fujita et al. 

2002) and inhibition of glycogen synthase kinase 3 (GSK3)-mediated Myc and cyclin 

D1 inhibition (Scheid and Woodgett 2001; Vivanco and Sawyers 2002; Manning and 

Cantley 2007). In addition, activated PI3K pathway can also regulate the following 

effects in response to PDGF; differentiation, polarity and motility, transcription, protein 

synthesis, vesicle trafficking, glucose homeostasis, promotion of actin reorganisation 

(Hu et al. 1995; Bart Vanhaesebroeck et al. 1997; Vivanco and Sawyers 2002; Bader 

et al. 2005; Engelman et al. 2006; Manning and Cantley 2007; Hemmings and 

Restuccia 2012).  

Numerous proteins have been recognised as negative regulators of PI3K activation 

intensity but the main regulator being, phosphatase PTEN (also referred to as 

MMAC1), that tightly regulates cellular level of PIP3 (Cantley and Neel 1999; Cully et 

al. 2006; Carracedo and Pandolfi 2008). Initially, the PTEN homologue deleted on 

chromosome TEN was identified as a candidate tumor suppressor mutated and lost in 

various cancers (Li and Sun 1997; Steck et al. 1997) until it was characterised as a 

lipid phosphatase that hydrolyses the phosphate group (transferred by PI3K) in the 3' 

position of phosphoinositides making it in control of PI3K signal termination (Maehama 

and Dixon 1998; Stambolic et al. 1998; Wu et al. 1998; Carracedo and Pandolfi 2008) 

(Fig. 2.12). NHERF (EBP50) and NHERF-2 adaptor proteins recruit PTEN to the 

PDGFR complexes (Takahashi et al. 2006) while binding via two PDZ domains to the 

C-terminus of the receptor (Maudsley et al. 2000), disrupting this complex thus induces 

PI3K signalling (Demoulin et al. 2003; Takahashi et al. 2006). Functionally, PTEN is 

able to antagonise PI3K’s activity via its built-in lipid phosphatase activity by reducing 

the cellular level of PIP3 via the conversion of PIP3 back to PIP2 (Vivanco and 

Sawyers 2002; Liu et al. 2009) (Fig. 2.12). PTEN levels are transcriptionally regulated 

by PI3K (Carracedo and Pandolfi 2008) as such any PTEN loss results in dysregulated 

PI3K signalling pathway, which can lead to cancer (Cully et al. 2006).  

Downstream of PI3K, Akt activation can also be negatively regulated by different 

identified proteins. While Thr308 is primarily dephosphorylated by protein 

phosphatase 2A (PP2A), Ser473 is dephosphorylated by PH domain leucine-rich 

repeat protein phosphatase (PHLPP1/2) (Fig. 2.12) (Andjelković et al. 1996; Bayascas 

and Alessi 2005; Gao et al. 2005; Brognard et al. 2007). Additionally, Tribbles 
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homologue 3, a pseudo-kinase, binds and inhibits Akt, causing insulin resistance (Du 

et al. 2003), while the carboxyl-terminal modulator protein, (CTMP) specifically binds 

to the carboxyl-terminal regulatory domain of PKBα at the plasma membrane, thus 

reducing the activity of PKBα by inhibiting Thr308 and Ser473 phosphorylation (Maira 

et al. 2001). As a result of the vital role of Akt in an array of fundamental cellular 

processes, dysregulation of its kinase, inevitably would be associated with numerous 

diseases including cancer and cancer susceptibility syndromes, insulin and non-

insulin dependent diabetes, neurological and cardiovascular diseases (Carracedo and 

Pandolfi 2008; Hers et al. 2011).  

2.5 Crosstalk between the signalling pathways 

In response to PDGF stimulation, a number of signalling pathways are initiated, some 

of which have been discussed. These signalling pathways are however not linear as 

extensive cross-talk occur between them (Eger 2016). For example, PI3K associates 

with Ras, forms a complex to mutually activate each other (Rodriguez-Viciana et al. 

1994; Hu et al. 1995; Klinghoffer et al. 1996). Additionally, Ras mediates some 

particular PI3K responses (Satoh et al. 1993; Hu et al. 1995). Besides, Ras also 

activates the small GTP binding proteins, Rac, Rho, and Cdc42 (Khosravi-Far et al. 

1995; Olson et al. 1995; Qiu et al. 1995, 1997). As a result, a given signal transduction 

pathway can display different degrees of importance for a particular response 

depending on the different signal transduction molecules present in different cells 

(Heldin et al. 1998). 

2.6 Modulation and regulation of PDGFR signalling  

Growth factor signalling, inevitably must be tightly regulated, as a result, PDGFR 

signalling is thoroughly regulated by feedback control mechanisms (Heldin et al. 1998; 

Andrae et al. 2008; Rönnstrand 2010; Borkham-Kamphorst and Weiskirchen 2016). 

One example is Ras-GAP, that negatively regulates Ras, also binds through its SH2 

domain to PDGFRβ (Fantl et al. 1992). Another example is deployed through cAMP 

synthesis induction. PDGF-stimulation results in an increase in intracellular levels of 

cAMP (Heldin et al. 1998), through a mechanism that involves phospholipase A2 

activation mediated by MAPK; ultimately, this results in arachidonic acid release, 

prostaglandin E2 synthesis by cyclo-oxygenase and subsequently adenylyl cyclase 

activation (Graves et al. 1996). The expression of cox enzyme in SMCs is thus a 

determining factor for which direction MAPK pathway activation goes, either leading 
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to stimulation or inhibition of proliferation (Bornfeldt et al. 1997). cAMP-dependent 

protein kinase activation thus inhibits growth in various cells by  inhibiting a number of 

pathways including; the eukaryotic initiation factor 4E (Graves et al. 1995); the MAPK 

(via Raf-1 inhibition or MAPK phosphatase-1 induction) (Heldin et al. 1998); cyclin 

expression and cyclin-dependent kinases (Gagelin et al. 1994; Kato et al. 1994); and 

the p70 S6 kinase (Graves et al. 1995; Monfar et al. 1995).  

Another remarkable feature in PDGFR signalling is the simultaneous occurrence of 

stimulatory and inhibitory signals, utmost response of which is dependent on the 

balance between these signals (Heldin et al. 1998; Borkham-Kamphorst and 

Weiskirchen 2016). An example is the simultaneous binding to activated PDGFRs of 

the Grb2/SOS1 complex (that activates Ras) and of RasGAP (that inactivates Ras) 

(Heldin et al. 1998; Heldin and Lennartsson 2013). 

2.6.1 Cbl mediated ubiquitination and degradation 

A major pathway for RTK protein expression regulation is via receptor ubiquitination, 

which targets them for degradation. Thus, ubiquitin E3 ligase, Cbl, is one of the most 

important ubiquitination regulator of the PDGFRs (Bonita et al. 1997; Miyake et al. 

1999). Upon PDGFR activation, diverse mechanisms recruit Cbl to the receptor and 

induces ubiquitination of the receptor which activates endocytosis (Joazeiro et al. 

1999; Lennartsson et al. 2006). Cbl thus interacts with RTKs either directly through 

the binding of its tyrosine kinase binding (TKB) domain to the receptor or indirectly via 

Grb2 adaptor protein. However, the direct binding via its TKB domain is the major path 

(Bonita et al. 1997) where it associates with activated PDGFRβ by binding to Tyr1021 

in the carboxyl-terminus of the receptor (Reddi et al. 2007).  

Cbl recruitment therefore results in its phosphorylation via Src family kinases and 

ubiquitination of lysine residues on target proteins, this ultimately labels the proteins 

for lysosomal degradation through the endosomal sorting complex (Haglund et al. 

2003). The tyrosine binding site for Cbl is also the docking site for PLCγ-1, which leads 

to competitive binding, as a result, cells lacking Cbl show increased PLCγ-1 activation 

and increased PDGF-induced chemotaxis (Rönnstrand 2010). Additionally, PDGFRβ 

mutants with reduced ability for ubiquitination were seen to have a longer half-life, a 

result of slower degradation (Mori et al. 1992). Cbl degradation is facilitated by the 

adaptor protein, Alix, which binds to the C-terminal domain of PDGFRβ, thus 

preventing receptor ubiquitination and stabilising it (Lennartsson et al. 2006). 
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2.6.2 Dephosphorylation of the PDGFR 

Given that tyrosine phosphorylation mediates essential diverse physiological 

responses, it must therefore be thoroughly controlled. Protein tyrosine phosphatases 

(PTPs) are key players that mediate this regulation. Most PTPs negatively regulate by 

dephosphorylating receptors and downstream targets, thus leading to signal 

termination. PTP’s are known to exhibit a certain level of specificity by recognising 

specific target sequences that vary between PTPs (Rönnstrand 2010). A number of 

PTP’s have thus been shown to be related to PDGFR signalling and these include; 

low-molecular weight PTP (LMW-PTP), PTEN, PTP1B, T-cell PTP, transmembrane 

tyrosine phosphatase CD45, density-enhanced phosphatase-1 (DEP-1, also called 

rPTP-h or CD148) and SHP-2 (also called PTP1D or Syp) (Mooney et al. 1992; Way 

and Mooneys 1993; Kang 2007). 

SHP-2, via its SH2 domain, binds to PDGFRβ, dephosphorylates it and its substrates 

(Lechleider et al. 1993; Heldin et al. 1998). T-cell PTP is expressed ubiquitously, 

regardless of its name (Rönnstrand 2010) and Y1021 in the PDGFRβ (docking site for 

PLCγ-1) was recognised as its target using phospho-specific antibodies directed 

against individual sites in the PDGFRβ and mouse embryonal fibroblasts carrying a 

targeted deletion of T-cell PTP (Persson et al. 2004; Heldin and Lennartsson 2013). 

As expected, cells deficient in T-cell PTP, showed an increase in PLCγ-1 

phosphorylation (Rönnstrand 2010). Overexpression of the LMW-PTP was also 

shown to inhibit phosphorylation of PDGFR and mitogenic stimulation (Berti et al. 

1994) while a mutated, catalytically inactive phosphatase complexes with activated 

PDGFR (Chiarugi et al. 1995). PTEN was shown to dephosphorylate activated 

PDGFR with a resultant decrease in PDGF-induced DNA-synthesis (Mahimainathan 

and Choudhury 2004). 

2.6.3 Receptor signalling regulation by serine/threonine phosphorylation 

Asides tyrosine dephosphorylation on RTKs and their respective degradation, 

serine/threonine phosphorylation is however another mechanism by which  a number 

of RTKs have been controlled (Rönnstrand 2010). PDGF-BB-induced PDGFRβ 

phosphorylation was studied and a sharp increase in serine phosphorylation was seen 

where this effect was blocked by casein kinase 1 inhibitor (CKI is a serine/threonine 

kinase) (Bioukar et al. 1999; Rönnstrand 2010). Another serine/threonine kinase 

known to regulate the kinase activity of PDGFRs is G-protein-coupled receptor kinase-
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2 (GRK2). PDGFRβ is phosphorylated at Ser1104 in the carboxyl-terminal end of the 

protein by GRK2 thus interfering with the binding of NHERF (Hildreth et al. 2004). 

Owing to NHERF’s ability to mediate PDGF-induced receptor dimerization, binding of 

GRK2 thus results in a decrease in PDGFRβ activation and downstream targets like 

Akt (Rönnstrand 2010). A-Raf is also another member belonging to the same family 

as the serine/threonine kinase, Raf-1. A-Raf occurs in a preformed complex with 

PDGFRβ, regulating the receptor’s activity (Mahon et al. 2005). Expression of a 

partially active mutant of A-Raf was shown to result in reduced PDGFRβ 

phosphorylation selectively at Y1021 and Y857, the site of interaction with PLCγ-1 and 

the activation loop site respectively (Rönnstrand 2010). 

2.6.4 Spatiotemporal cellular regulation of PDGFRs  

The synthesis of PDGFRs occur in the the endoplasmic reticulum from where they 

become heavily N- and O-glycosylated in the Golgi (Demoulin and Essaghir 2014). 

Following synthesis, they are not evenly distributed throughout the cell membrane, but 

rather have been found to be concentrated in different cell membrane structures such 

as lipid rafts, clathrin-coated pits, and caveolae (clear-cut membrane invaginations 

involved in endocytosis) (Liu et al. 1996; Demoulin and Essaghir 2014).  

Using image correlation spectroscopy, Wiseman et al., 1997, could also confirm the 

clustering of PDGFRs in the absence of ligand. Upon ligand binding, the ligand-

receptor complex become internalised in the endosomes in a manner dependent on a 

clathrin and dynamin through a process that also partially depends on the receptor’s 

kinase activity - of particular importance for this activity is auto-phosphorylation of 

Tyr579 in the JM (Sorkin et al. 1991; Mori et al. 1994), in addition to  the receptor-PI3K 

interaction (Joly et al. 1994). Signalling is continued in early endosomes (Wang et al. 

2004; Kawada et al. 2009; Muratoglu et al. 2010), until the ligand dissociates from the 

receptor (caused by a decrease in pH) (Heldin and Westermark 1999; Heldin and 

Lennartsson 2013) and the receptor is recycled back to the cell membrane in a PKC-

dependent manner (Heldin and Westermark 1999; Hellberg et al. 2009), or in the 

alternate, the ligand-receptor complex is degraded (Heldin and Westermark 1999). 

Though the recycling of PDGFRβ, but not PDGFRα, have been seen in TC-PTP 

(negatively regulates PDGFRβ phosphorylation) deficient cells (Persson et al. 2004; 

Karlsson et al. 2006), the latter pathway (of degradation), however seems to be 

predominant in the studied cell types (Heldin and Westermark 1999). Most of the 
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internalised PDGFRs undergo degradation by fusion of endosomes with multi-

vesicular bodies and lysosomes (lysosomal degradation) (Heldin et al. 1982; Sorkin et 

al. 1991; Mori et al. 1995; Heldin and Westermark 1999), or are cytoplasmically 

degraded in proteasomes, processes that are facilitated by poly-ubiquitination of the 

receptors (Heldin et al. 1982; Mori et al. 1992, 1995).  

Thus, activated receptors induced by ligand binding will be deactivated by degradation 

within half an hour to one hour after internalisation (Sorkin et al. 1993). Specifically, in 

this activated state, PDGFRα have been reported to have an half-life of approximately 

5 minutes (Rosenkranz et al. 2000) where the half-life of PDGFRβ is said to be 

seemingly 6 times longer (around 30 minutes) while in resting cells, half-lives range 

from approximately 2 hours for PDGFRβ to around 3 hours for PDGFRα (Coats et al. 

1994). 

2.7 Role of PDGFs in physiology and disease 

Clear insights into PDGF’s physiological functions have emerged from genetic studies 

in mice targeting both PDGFs and their receptors. An overview of mouse mutants and 

their phenotypes have been reviewed in Hoch and Soriano 2003; Betsholtz 2004.  

Overall, from these genetic studies, the PDGF/PDGFR system is important during 

embryogenesis, mostly in embryonic blood vessel growth, and organogenesis (Heldin 

and Westermark 1999; Demoulin and Essaghir 2014; Manzat Saplacan et al. 2017). 

The proof for this vital role during embryonic development stemmed from the discovery 

that that deletion or null mutation of either receptor is embryonically lethal (Boström et 

al. 1996; Soriano 1997; Betsholtz 2003; Tallquist and Kazlauskas 2004) where 

PDGFRα knockouts have shown the most severe phenotype (Soriano 1997; Betsholtz 

2003; Ding et al. 2004).  

Signalling through PDGFRα is thus required for the development of the intestinal villus, 

facial skeleton, lungs, astrocytes, and oligodendrocytes. It is also necessary for 

spermatogenesis, hair follicle morphogenesis, in the regulation of the development 

and maturation of non‐neuronal neural crest and chondrocytes (Fruttiger et al. 1999; 

Karlsson et al. 1999, 2000; Östman and Heldin 2001; Boström et al. 2002; Tallquist 

and Kazlauskas 2004; Rönnstrand 2010). 

Signalling through PDGFRβ is involved in recruiting pericyte to capillaries, maturation 

of white adipocytes, SMCs development in vessels, as well as mesangial cells 

development in the kidney (Levéen et al. 1994; Soriano 1994; Andrae et al. 2008; 
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Rönnstrand 2010). It also regulates interstitial fluid pressure, and can therefore control 

fluid transport from the vessels to surrounding tissues (Heuchel et al. 1999). 

In adults, the physiological function of PDGFR signalling is seen in tissue repair and 

wound healing via the stimulation of cells like SMCs, fibroblasts, and various 

inflammatory cells (Robson et al. 1992; LeGrand 1998; Heldin and Westermark 1999; 

Rönnstrand 2010). 

PDGF functions have thus been associated with or linked to a wide range of diseases 

that have been broadly classified into three; tumours, vascular diseases and fibrosis 

which have been reviewed extensively in Andrae et al. 2008. 

In tumours originating from PDGFR+ cells such as in glioblastomas and sarcomas 

(Hermanson et al. 1992; Smits et al. 1992). 

Vascular diseases like atherosclerosis and restenosis (Ross 1993; Rutherford et al. 

1997; Raines 2004), pulmonary hypertension (Humbert et al. 1998; Balasubramaniam 

et al. 2003; Schermuly et al. 2005), and in retinal vascular diseases such as 

proliferative vitreoretinopathy, proliferative diabetic retinopathy, and CNV (Akiyama et 

al. 2006; Jo et al. 2006). 

Fibrotic diseases like pulmonary fibrosis (both PDGFRα and PDGFRβ) (Yi et al. 1996; 

Hoyle et al. 1999), liver fibrosis (and its end stage cirrhosis) (PDGFRβ only) (Pinzani 

et al. 1994, 1996; Bonner 2004), dermal fibrosis (Bonner 2004; Distler et al. 2007), 

renal fibrosis (Johnson et al. 1992; Tang et al. 1996; Floege et al. 1999), and cardiac 

fibrosis (Pontén et al. 2005; Tuuminen et al. 2006). 
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CHAPTER THREE: MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Cells 

Table 3.1  Cell lines and primary cells 

Cell lines Origin 

BV-2 murine microglial cell line 

 

 

 

661W photoreceptor cell line 

Murine primary microglial cultures isolated from 

one week old C57BL/6 mice and infected with a 

v-raf/v-myc recombinant retrovirus (Blasi et al. 

1990) 

Prof. Muayyad Al-Ubaidi, University of Oklahoma 

Health Sciences Center, Oklahoma, USA 

Primary cells Origin 

Primary microglial cells Mixed glial cultures isolated from the brains of 1-

2 day old C57BL/6J mice (Spittau et al. 2013) 

 

3.1.2 Culture media 

Table 3.2  Reagents and culture media formula 

Cell culture reagents Manufacturer, Cat. No 

Antibiotic/Antimycotic Solution (100x), Stabilised Sigma-Aldrich, #A5955 

Dulbecco's Modified Eagle Medium - HG (DMEM-HG) Sigma-Aldrich, #D6429 

Dulbecco's Phosphate-Buffered Saline (DPBS) Gibco, #14190-094 

Fetal Calf Serum (FCS) Gibco, #10270-106 

Hank's Balanced salt Solution (HBSS) Gibco, #14025092 

L-Glutamine (200mM) Gibco, #25030081 

Penicillin/Streptomycin Gibco, #15140-122 

Roswell Park Memorial Institute (RPMI) 1640 medium Gibco, #21875034 

Trypsin/EDTA Sigma-Aldrich, #T3924 

β-mercaptoethanol 

Opti-MEM I 

Sigma-Aldrich, #M-7154 

Gibco, #31985-070 

Cells Media Formula 

BV-2  murine microglial cell line RPMI 1640 

  5 % FCS 

  1 % L-Glutamine 

  1 % Penicillin/Streptomycin 

  195 nM β-mercaptoethanol 

661W  photoreceptor-like cell line 

  

DMEM HG 

5 % FCS 

  1 % Penicillin/Streptomycin 
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3.1.3 Buffers and solutions 

Table 3.3  Recipes for buffers and solutions 

Buffer/Solution Formula Manufacturer, Cat. No 

1x PBS, pH 7.4 
137 mM Sodium chloride 

(NaCl) 
  

  
2.7 mM Potassium chloride 

(KCl) 
Amresco, #E404 

  
10 mM Disodium phosphate 

(Na2HPO4) 
1 tablet/100 ml ddH2O 

  
1.8 mM Monopotassium 

phosphate (KH2PO4) 
  

1x TBS-T 150 mM NaCl Merck, #106400 

  200 mM Tris Roth, #4855.3 

  0.1 % v/v Tween® 20 Merck, #822184 

Antibody solution 

(Western Blot) 

5 % w/v Bovine serum 

albumin (BSA) 
Roth, #3854.2 

  in 1x TBS-T see above 

Membrane blocking 

buffer 
5 % w/v non-fat milk powder  Roth, #T145.3 

  in 1x TBS-T see above 

RIPA buffer 50 mM Tris-HCl pH 7.4 see above 

  150 mM NaCl see above 

  1 % v/v NP-40 Calbiochem, #492016 

  
0.5 % w/v Sodium 

deoxycholate 
Sigma-Aldrich, #D6750 

  
0.1 % w/v Sodium dodecyl 

sulfate (SDS) 
Serva, #20765.03 

  

2mM 

Phenylmethanesulfonyl 

fluoride (PMSF) 

Applichem, #A0999 

  
Complete™ mini protease 

inhibitor  
Roche, #11836153001 

  
(±) 1 % Phosphatase 

inhibitor cocktail 

Cell Signalling 

Technology (CST), #5870 

Running buffer 192 mM Glycine AppliChem, #A1067 

  250 mM Tris see above 

  1 % Antibiotic/Antimycotic 

Primary microglial cells DMEM HG 

  10 % FCS 

  1 % Penicillin/Streptomycin 
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  0.1 % w/v SDS see above 

Transfer buffer 192 mM Glycine see above 

  250 mM Tris see above 

  20 % v/v Methanol Chemsolute, #1437.2511 

Stripping buffer, pH 2.2 15g Glycine see above 

  1g SDS see above 

  
10mL Tween® 20 

in 1L ddH2O 

see above 

 

Antibody solution 2.5 % Goat serum Abcam, #AB7481 

Immunocytochemistry 0.1 % v/v Triton X-100 Sigma-Aldrich, #T8787 

(ICC) in 1x PBS see above 

Blocking buffer (ICC) 10 % Goat serum see above 

  0.3 % v/v Triton X-100 see above 

  in 1x PBS see above 

Wash buffer, pH 7.2-7.4 0.05 % v/v Tween® 20 see above 

  in 1x DPBS see above 

Reagent diluent 

(filtered), pH 7.2-7.4  
1 % w/v BSA see above 

  in 1x DPBS see above 

Stop solution  96 % H2SO4 Roth, #4623 

 (2N H2SO4) in dd H2O (1: 18 dilution)   

 

3.1.4 SDS-Poly Acrylamide Gel Electrophoresis (PAGE) 

Table 3.4  Recipes for SDS-PAGE gels 

Gels Formula Manufacturer, Cat. No 

Resolving gel 8 % (or 15 %) v/v Acrylamide Roth, #A124.1 

  0.4 M Tris pH 8.8 see above 

  0.1 % w/v SDS see above 

  0.1 % w/v Ammonium persulfate (APS) Sigma-Aldrich, #A3678 

  0.01 % v/v TEMED Roth, #2367.1 

Stacking gel 5 % v/v Acrylamide see above 

  0.125 M Tris pH 6.8 see above 

  0.1 % w/v SDS see above 

  0.1 % w/v APS see above 

  0.005 % v/v TEMED see above 
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3.1.5 Kits 

Table 3.5  Commercially available kits 

Kit Manufacturer, Cat. No 

CellTiter 96® Cell Proliferation Assay Promega, #G4000 

Caspase-Glo® 3/7 Assay Promega, #G8090 

DCFDA Cellular ROS Detection Assay kit Abcam, #ab113851 

Mouse CCL2/JE/MCP-1 DuoSet® ELISA R&D SYSTEMS, #DY479-05 

NucleoSpin® RNA isolation kit Macherey-Nagel, #740955 

Pierce™ BCA Protein Assay kit ThermoFisher Scientific, #23225 

RevertAid RT Kit ThermoFisher Scientific, #K1691 

SignalFire™ Elite ECL Reagent CST, #12757 

Takyon™ No Rox Probe 2x MasterMix dTTP Eurogentec, #UF-NPMT-B0701 

Takyon™ No Rox SYBR® 2x MasterMix dTTP Eurogentec, #UF-NSMT-B0710 

 

3.1.6 Antibodies 

Table 3.6  Primary and secondary antibodies and stains 

Antibodies and stains Dilution Manufacturer, Cat. No 

Anti-PDGFB Rabbit polyclonal 
1:1000 (WB) 

1:100 (ICC) 
Abcam, #ab23914 

PDGF Receptor β (28E1) Rabbit 

monoclonal 
1:100 

Cell Signalling Technology, 

#3169 

Phospho-PDGF Receptor β 

(Tyr1009) (42F9) Rabbit 

monoclonal 

1:1000 
Cell Signalling Technology, 

#3124 

Anti-Iba1, Goat polyclonal 1:100 Abcam, #ab5076 

SAPK/JNK Antibody Rabbit 

Polyclonal 
1:1000 

Cell Signalling Technology, 

#9252 

Phospho-SAPK/JNK 

(Thr183/Tyr185) (81E11) Rabbit 

monoclonal 

1:1000 
Cell Signalling Technology, 

#4668 

Akt (pan) (C67E7) Rabbit 

monoclonal 
1:1000 

Cell Signalling Technology, 

#4691 

Phospho-Akt (Ser473) (D9E) XP® 

Rabbit monoclonal 
1:2000 

Cell Signalling Technology, 

#4060 

p44/42 MAPK (Erk1/2) (137F5) 

Rabbit monoclonal 
1:1000 

Cell Signalling Technology, 

#4695 

Phospho-p44/42 MAPK (Erk1/2) 

(Thr202/Tyr204) (D13.14.4E) XP® 

Rabbit monoclonal 

1:2000 
Cell Signalling Technology, 

#4370 
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p38 MAPK (D13E1) XP® Rabbit 

monoclonal 
1:1000 

Cell Signalling Technology, 

#8690 

Phospho-p38 MAPK 

(Thr180/Tyr182) (D3F9) XP® 

Rabbit monoclonal 

1:1000 
Cell Signalling Technology, 

#4511 

β-Actin (C4) Mouse monoclonal 1:500 
Santa Cruz Biotechnology, sc-

47778 

Alexa Fluor® 488 goat anti-rabbit 

IgG, polyclonal 
1:2000 

ThermoFisher Scientific, 

#A11008 

Alexa Fluor® 488 donkey anti-goat 

IgG, polyclonal 
1:1000 

ThermoFisher Scientific, 

#A11055 

goat anti-rabbit IgG-HRP, 

polyclonal 
1:4000 Agilent Dako, #P0448 

goat anti-mouse IgG-HRP, 

polyclonal 1:4000 
Agilent Dako, #P0447 

DAPI 0.1 µg/ml Invitrogen, #D1306 

Phalloidin-TRITC 0.1 µg/ml Sigma-Aldrich, #P1951 

 

3.1.7 Primers and probes 

Table 3.7  TaqMan (Probe-based) and SYBR® Green primers 

TaqMan primers 

Gene Forward primer (5' → 3') Reverse primer (5' → 3') UPL Probe # 

m Atp5b ggcacaatgcaggaaagg tcagcaggcacatagatagcc 77 

m Pdgfa gatgaggacctgggcttg gatcaactcccggggtatct 68 

m Pdgfb cggcctgtgactagaagtcc gagcttgaggcgtcttgg 32 

m Pdgfc tgtgtcccacgtaaagttacaaa tcagtgagtgacttatgcaatcc 109 

m Pdgfrα ttaagccggtcccaacct ctagacctggctgtgggttt 83 

m Pdgfrβ ggcttctgggtgaaggctat gcaggatggtcactcctcag 62 

m Ccl2 catccacgtgttggctca gatcatcttgctggtgaatgagt 62 

m Cox2 gatgctcttccgagctgtg ggattggaacagcaaggattt 45 

m Tnfα ctgtagcccacgtcgtagc ttgagatccatgccgttg 78 

m Nox1 cttgcaccgattgctttttat cattagatgggtgcatgacaa 3 

m Ccl3 tgcccttgctgttcttctct gtggaatcttccggctgtag 40 

m Ccl5 tgcagaggactctgagacagc gagtggtgtccgagccata 110 

m P2ry12 cccggagacactcatatcctt gtcccaggggagaaggtg 102 

m Cd36 ttgaaaagtctcggacattgag tcagatccgaacacagcgta 6 

m Trem2 tgggacctctccaccagtt gtggtgttgagggcttgg 18 

m Msr1 ctggacaaactggtccacct gtccccgatcacctttaaca 1 

m Scarb1 cttcatgacacccgaatcct caaacacccttgattcgttg 41 
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m Gpx1 gtttcccgtgcaatcagttc caggtcggacgtacttgagg 2 

m Gpx4 ccgtctgagccgcttactta gctgagaattcgtgcatgg 71 

m Gsr actatgacaacatccctactgtgg cccatacttatgaacagcttcgt 83 

m Catalase ccttcaagttggttaatgcaga caagtttttgatgccctggt 34 

m Sod1 caggacctcattttaatcctcac tgcccaggtctccaacat 49 

m Sod2 tgctctaatcaggacccattg gtagtaagcgtgctcccacac 3 

m Il-6 gatggatgctaccaaactggat ccaggtagctatggtactccaga 6 

m Il-1β agttgacggaccccaaaag agctggatgctctcatcagg 38 

SYBR® Green Primers 

Gene Forward primer (5' → 3') Reverse primer (5' → 3')   

m Actin aggaggagcaatgatcttg agacctgtacgccaacacag   

m Nox2 ggttccagtgcgtgttgct gcggtgtgcagtgctatcat   

 

3.1.8 siRNA sequences 

Table 3.8  ON-TARGERTplus SMARTpool siRNA sequences 

Gene Target sequence (5'-3') Antisense (5'-3') Cat. No 

Pdgfrα CCAGCGAGUUUAAUGUUUA UAAACAUUAAACUCGCUGG J-048730-05 

 AGGUACAGCUUAUGGAUUA UAAUCCAUAAGCUGCACCU J-048730-06 

  GAGACAGGUUCCAGUAGUU AACUACUGGAACCUGUCUC J-048730-07 

  UAUCGUGGCUGAAGGACAA UUGUCCUUCAGCCACGAUA J-048730-08 

Pdgfrβ CAGCGAGGUUUCACUGGUA UACCAGUGAAACCUCGCUG J-048218-05 

 GAACGACCAUGGCGAUGAG CUCAUCGCCAUGGUCGUUC J-048218-06 

  GGAAGCGUAUCUAUAUCUU AAGAUAUAGAUACGCUUGC J-048218-07 

  UAGAUUACGUGCCCAUGUU AACAUGGGCACGUAAUCUA J-048218-08 

 

3.1.9 General consumables 

Table 3.9  Consumables 

Consumables Manufacturer, Cat. No. 

Nitrocellulose membrane 0.45 µm Bio-Rad, #1620115 

1.5 ml micro tube Sarstedt, #72.690 

1.5 ml micro tube black Roth, #AA80.1 

12-well cell culture plates  Sarstedt, #83.3921 

15 ml reaction tube  Sarstedt, #62.554.502 

2 ml micro tube Sarstedt, #72.689 

30 µl Impact 384 tips Thermo Scientific, #7431 

50 ml reaction tube  Sarstedt, #62.554.254 

6-well cell culture plates  Sarstedt, #83.3920 

96-well microtitre plate  Sarstedt, #83.3924 

Biosphere R  filter tips 1000 µL  Sarstedt, #70.762.211 

Biosphere R  filter tips 2.5 µL  Sarstedt, #70.1130.212 
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Biosphere R  filter tips 200 µL  Sarstedt, #70.760.211 

Black clear-bottomed 96-well microtitre 

plates  

ThermoFischer Scientific, 

#611F96BK 

Cell Culture Dish, 100 x 20 mm Eppendorf®, #0030702115 

Cell scraper  Sarstedt, #83.1830 

Cover glasses 18x18mm  Th.Geyer, #7695023 

FrameStar® 384-well plates with seal 4titude, #4ti-0382 

Gloves  Dermagrip, #100176 

Nunc MaxiSorp® flat-bottom 96-well plates  ThermoFischer Scientific, #44-2404 

PCR stripes  Kisker Biotech, #G003-SF 

Steriflip-HV, 0.45 µm, PVDF, radio-sterilized Sigma-Aldrich, #SE1M003M00 

Superfrost Plus™ Microscope Slides 
ThermoFischer Scientific, 

#J1800AMNT 

T-75 culture flask  Sarstedt, #83.3911.002 

Vannas-Tübingen Spring Scissors Fine Science Tools, #15003-08 

White-walled 96-well microtiter plates  Costar, #3912 

 

3.1.10 Compounds, chemicals and reagents 

Table 3.10 Cytokines, compounds, chemicals and other reagents 

Cytokines, compounds and siRNAs Manufacturer, Cat. No. 

Recombinant human PDGF-AA PeproTech, #100-13A 

Recombinant human PDGF-AB PeproTech, #100-00AB 

Recombinant human PDGF-BB PeproTech, #100-14B 

Recombinant human PDGF-CC PeproTech, #100-00CC 

LPS from E. coli 0111:B4 Sigma-Aldrich, #L4391 

Anti-mouse CD140a (APA5), Functional Grade Invitrogen, #16-1401-82 

Anti-mouse CD140b (APB5), Functional Grade  Invitrogen, #16-1402-82 

Rat IgG2a kappa (eBR2a), Functional Grade Invitrogen, #16-4321-82 

U0126, MEK1 and MEK2 Inhibitor InvivoGen, #tlrl-u0126 

SP600125 PeproTech, #1295666 

LY294002, PI3K Inhibitor 

Mouse PDGFRα siRNA - SMARTpool, 5 nmol 

Mouse PDGFRβ siRNA - SMARTpool, 5 nmol 

Non-targeting pool 

InvivoGen, #tlrl-ly29 

Dharmacon, #L-048730-00-

0005 

Dharmacon, #L-048218-00-

0005 

Dharmacon, #D-001810-10-05 

Chemicals and reagents Manufacturer, Cat. No. 

5x siRNA Buffer Dharmacon, #B-002000-UB-100 

CellTracker™ CM-Dil Invitrogen, #C7001 

Dimethylsufoxide (DMSO) Serva, #20385.01 
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Ethanol 100% Applichem, #A3678 

Ethanol 70 % Applichem, #A2192 

Fluorescence Mounting Medium Dako, #S302380-2 

Isopropanol Merck, #100995 

Laemmli sample buffer  Bio-Rad, #161-0747 

Lipofectamine™ 3000 Transfection Reagent 
ThermoFisher Scientific, 

L3000015 

Methanol Chemosolution, #1437.2511 

PageRuler™ Plus Prestained Protein Ladder 
ThermoFisher Scientific, 

#26619 

PageRuler™ Prestained Protein Ladder 
ThermoFisher Scientific, 

#26616 

Poly-d-lysine Sigma-Aldrich, #P6407 

Micro particles based on polystyrene, dark blue, 

1µm 
Sigma-Aldrich, #51972-5ML-F 

RNase away Molecular Biopro., #70003 

Roti® HistoFix 4% Roth, #P087.4 

Substrate Reagent Pack R&D Systems®, #DY999 

 

3.1.11 Devices 

Table 3.11 Laboratory devices 

Devices Manufacturer 

Adventurer Pro balance Ohaus®  

ApoTome.2  Zeiss 

AxioCam MRC vert. A1 camera  Zeiss 

AxioCam MRm camera  Zeiss 

Centrifuge 5415 R  Eppendorf 

Centrifuge Mini Star  VWR International 

Explorer R Ex 124 balance  Ohaus®  

Galaxy 170S CO2 incubator New Brunswick Scientific 

Heraeus Labofuge 400 R  Thermo Scientific 

Imager.M2 microscope Zeiss 

Infinite® F200 Pro plate reader Tecan 

LightCycler® 480 Instrument II  Roche Applied Science 

Matrix™ Multichannel Pipette ThermoFisher Scientific 

Mini-Protean® Tetra System Bio-Rad 

MiniTrans-Blot® Cell Module Bio-Rad 

MSC-Advantage hood  Thermo Scientific 

MultiImageII Alpha Innotech 

NanoDrop 2000 Spectrophotometer  Thermo Scientific 
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Neubauer counting chamber  OptikLabor 

Orbital incubator S1500 Stuart®  

PCR workstation VWR International 

peQSTAR 2x cycler  peQlab 

See-saw rocker SSL4  Stuart®  

Thermomixer compact Eppendorf  

TW20 watherbath Julabo 

VisiLight® binocular VWR International 

Vortex-genie® Scientific Industries™ 

VWR Electrophoresis Power Source 250V VWR International 

 

3.1.12 Software 

Table 3.12 Software 

Software Manufacturer 

AlphaView FluorChem FC2 Cell Biosciences  

CSl Adobe Creative Suite  Adobe Systems 

GraphPad Prism version 7 GraphPad Software, Inc. 

ImageJ 1.50i  National Institutes of Health 

LightCycler® 480 software 1.5.1  Roche Applied Science 

Nanodrop2000/2000c software ThermoFisher Scientific 

Office Suite 2013 Microsoft Corporation 

Tecan i-control 1.9 PerkinElmer 

Zen 2012  Zeiss 

 

3.2 Methods 

3.2.1 Cell culture 

3.2.1.1 Maintenance and sub-culturing of cell lines 

Cell lines used in this study were murine BV-2 microglia and 661W photoreceptor cells. 

The cell lines were maintained appropriately in their respective media (Table 3.2) in T-

75 flasks at 37°C in a humidified atmosphere of 5% CO2. Cells were routinely sub-

cultured every 2 to 3 days depending on confluency.  BV-2 microglial cells were rinsed 

with 5ml sterile 1x DPBS and detached by gentle scraping in freshly pre-warmed 

media. 661W cells were detached by incubation with 5ml trypsin/EDTA (1x) at 37°C, 

5% CO2 for 5 minutes. Flasks were checked under the microscope to ensure cell layer 

dispersion before an equal volume of complete media was added to stop the trypsin 

reaction. The cell suspension was transferred to a 50ml falcon tube and centrifuged at 

1500 rpm for 5 minutes. Trypsin containing media was aspirated and cells re-
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suspended in fresh media. All cells were split at a 1:5 ratio and appropriate volume re-

suspended in flasks pre-filled with 10ml of complete media. Cells were maintained up 

to a maximum of 23 passages. 

3.2.1.2 Primary microglia cell culture 

Mixed glia cultures were prepared from 1-2 day old C57BL/6J pups as previously 

described by Spittau et al., 2013 with minor modifications. Briefly, pups were 

decapitated and isolated whole brains were rinsed in ice-cold HBSS twice. The brain 

surface were freed from blood vessels and meninges using fine forceps under the 

binocular microscope. Cleaned brains were enzymatically dissociated (by dicing into 

small pieces and immersion in a 2ml Eppendorf tube pre-filled with 1ml 1x 

trypsin/EDTA) for 15 minutes at 37°C in Eppendorf Thermomixer. Subsequently, an 

equal amount of ice-cold FCS previously supplemented with DNase at a final 

concentration of 0.5mg/ml were added. Brains were then mechanically dissociated 

with a 1000µl and then a 200µl pipette tip. Dissociated cells were centrifuged at 500 

RCF for 10 minutes, supernatants were discarded and cells re-suspended in 

appropriate media (Table 3.2). The cell suspension was transferred at a density of 2 

brains/T-75 flasks pre-coated with poly-D-lysine (1µg/cm2). The mixed glia culture was 

maintained at 37°C in a humidified atmosphere at 5% CO2. On the two successive 

days following isolation (i.e., DIV 2 and 3), cultures were washed twice with 1x DPBS 

and fresh complete medium was added. Microglial cells were then harvested from 

adherent astrocytes at around 10-14 days in-vitro, by shaking flasks at 250 rpm for 2-

3 hours at 37°C. The media containing microglial cells were collected in a 50ml falcon 

tube and centrifuged at 800 RCF or 10 minutes. Microglial cell purity was assessed by 

staining for ionized calcium-binding adaptor (Iba-1) protein, a microglia marker 

(Appendix fig. 1A). Harvested microglial cells were counted and seeded in 12-well 

culture plates for experiments.  

3.2.1.3 Cell seeding 

BV-2 cells were seeded either in 6-well culture plates at a density of 3x105 cells/well 

in 2ml media or in 12-well culture plates at a density of 2x105 cells/well in 1ml media 

unless otherwise indicated. Primary microglia cells were seeded in 12-well culture 

plates at a density of 2x105/well in 1ml media. Seeded cells were allowed to attach 

overnight, medium was changed prior to start of experiment and cells were treated 

according to the different experiments. 
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3.2.1.4 Cell treatment 

BV-2 cells: For the expression of PDGF ligands and their receptors, cells were treated 

with 50 and 100ng/ml LPS for 6 hours. For the pharmacological inhibition studies; in 

the first experiment, cells were treated with LPS 100ng/ml for 6 hours with or without 

30 minutes pre-treatment with 10µg/ml IgG, APA5 or APB5; in the second experiment, 

cells were treated with 50ng/ml recombinant human PDGF ligands for 3 hours with or 

without 1 hour pre-treatment with 10µg/ml APA5 or APB5.  

APA5 and APB5 are PDGFR blocking antibodies for Rα and Rβ respectively with IgG 

serving as the isotype control. APA5, APB5 and IgG were diluted in DPBS and the 

concentrations used were based on concentration testing. 

For western blot, in one experiment, cells were treated with 100ng/ml LPS in a time 

kinetic study (3, 6, 24 and 48 hours) while in separate experiments, cells were treated 

with 50ng/ml PDGF-BB also in a time kinetic study (5, 15, 30, 60, 120 and 180 

minutes).  

In the kinase pathway inhibition studies, cells were pre-treated with inhibitors specific 

for MEK (U0126, 10μM), JNK (SP600125, 10μM), and PI3K (LY294002, 10μM) for 1 

hour prior to 50ng/ml PDGF ligand treatment for 3 hours. The inhibitors were prepared 

(reconstituting in DMSO) according to product leaflet and stored in aliquots at -20°C 

where the final concentration of DMSO used on cells was less than 0.05%. The 

concentrations utilised for these small molecule kinase inhibitors were based on 

previously published data (Yao et al. 2009; Bethel-Brown et al. 2012) and cell 

cytotoxicity assay.  

For the indicated experiments, LPS was diluted in DPBS which served as the vehicle 

control. PDGF ligands were first reconstituted in water and further diluted in DPBS 

containing 0.1% BSA as carrier protein and this served as the vehicle control.  

661W cells: Cells were treated with microglia conditioned medium (MCM). Microglia 

conditioned medium was obtained from 24 hours of vehicle treated and 50ng/ml PDGF 

ligand treated BV-2 cells and were centrifuged at 4000 RCF for 10 minutes. 

Conditioned medium was carefully transferred and stored at -80°C until needed. 

Primary microglia cells: In one set of experiments, cells were treated with 50ng/ml 

recombinant PDGF ligands for 3 hours. In another set of experiment, cells were pre-

treated for 1 hour with kinase pathway inhibitors prior to 3 hours PDGF ligand 

treatment.  
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All experiments involving treatment of cells with recombinant PDGF ligands were done 

under serum-free conditions since the PDGF promoter is known to have serum 

response elements (Perez-Albuerne et al. 1993) and serum induces PDGF (Dhillon et 

al. 2007). 

3.2.2 MTT cell proliferation and or viability assay 

The MTT cell proliferation assay is a colorimetric assay measuring the rate of cell 

proliferation and conversely cell viability reduction when metabolic processes results 

in necrosis or apoptosis. It is based on the ability of mitochondrial dehydrogenase 

enzymes (Mosmann 1983) primarily succinate dehydrogenase to reduce the yellow 

water-soluble tetrazolium dye, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT) to its insoluble purple formazan (MTT-formazan) in metabolically active 

cells (Wang et al. 1996; Vajrabhaya and Korsuwannawong 2018). Because this 

reduction is only feasible in viable cells, the amount of purple formazan formed is 

proportional to the number of viable cells (Mosmann 1983). 

BV-2 microglial cells were seeded at a density of 10,000 cells/well in 100µl in 

transparent 96-well culture plates and allowed to attach overnight. Cytotoxic effects of 

increasing concentrations (1-30µg/ml) of APA5 and APB5 were evaluated for 48 hours 

(Appendix fig 2A and B). In separate experiments, cytotoxic effects of U0126, 

SP600125, and LY294002 at 10μM was also evaluated for 4 hours (Appendix fig. 2C). 

At the termination of experiments, 15µl of the dye solution was added to each well 

(avoiding skin or eyes contact as the dye solution is an irritant) and plates re-incubated 

at 37°C for 4 hours in a humidified 5% CO2 atmosphere. In each of the experiments, 

control wells (vehicle in culture medium without cells plus the tetrazolium reagent) 

were included in the set-up to test for chemical interference effect. Reaction was 

stopped by addition of 100µl solubilization solution/stop mix to each well, one hour 

after addition of solubilization solution/stop mix, plate was mixed to get a uniformly 

coloured solution while avoiding bubbles as this could cause interference with 

accurate recording of absorbance values. Absorbance measurements were taken with 

the Tecan Infinite® F200 pro microplate reader at a wavelength of 570nm and values 

of no-cell control were subtracted from all experimental wells to obtain corrected 

absorbance values. 
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3.2.3 Transcript analysis 

3.2.3.1 RNA Isolation 

Total RNA was extracted using the NucleoSpin® RNA Mini Kit according to the 

manufacturer’s instructions. At the termination of experiment and prior to addition of 

lysis buffer, culture medium was removed and the cells washed with 1x DPBS. Cells 

were thereafter lysed with 350µl of lysis buffer RA1 supplemented with 3.5µl of β-

mercaptoethanol as reducing agent. 

The lysis buffer inactivates RNases thus creating suitable binding conditions which 

favours adsorption of RNA to the silica membrane. Thereafter, rDNase solution is 

applied directly onto the silica membrane to remove contaminating DNA which also 

binds to the silica membrane. Subsequent washing steps with two different buffers 

aids to remove salts and other metabolites. 

In a final step, RNA is eluted from silica-based columns in 40µl RNase-free water and 

concentrations measured with 1µl using NanoDropTM spectrophotometer. Absorbance 

is proportional to the RNA concentration and nucleotides absorb ultraviolet light at 

260nm wavelength. Therefore, absorbance ratio at 260nm and 280nm is an 

assessment of the purity of DNA and RNA. Thus, a 260/280 ratio of approximately 2.0 

is accepted as “pure” for RNA samples and subsequently reverse transcribed. 

Samples were either reverse transcribed immediately or stored at -80°C until further 

use.  

3.2.3.2 Reverse transcription  

First-strand cDNA synthesis was performed with 0.1ng - 5µg of RNA in a 20µl final 

volume using the RevertAidTM H Minus First Strand cDNA synthesis kit. The resulting 

cDNA was diluted with nuclease-free water to a final concentration of 20ng/µl which 

was immediately used for quantitative PCR or stored at -20°C until further use. 

3.2.3.3 Quantitative PCR (qPCR) 

Quantitative amplifications of reverse transcribed (RT) cDNA were performed with the 

LightCycler® 480 Instrument II. The use of fluorescent signals affords the quantification 

of gene expression by the detection of the amplicon (PCR product) at every PCR cycle. 

In this study, TaqMan (also known as fluorogenic 5' nuclease assay) and SYBR® green 

I (SG) detection chemistries have been used for different genes.  

The TaqMan assay is based on the principle of the specific hybridisation of a dual-

labelled TaqMan (Holland et al. 1991) probe to the amplicon. At the 5' end of this 
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probe, is a fluorescent reporter dye while at the 3' end is a quencher dye and via 

complementary binding, the probe binds to the target sequence between the forward 

and the reverse primer at the initiation of reaction. The close proximity of the reporter 

and the quencher dye allows the suppression of the reporter fluorescence, thus, 

inhibiting signal. As the amplification primer is extended in the course of the reaction, 

the probe is cleaved by Taq polymerase, spatially separating the reporter and 

quencher dye, allowing reporter dye fluorescence detection. As the amount of target 

gene increases, the fluorescence intensity also increase and thus more probe 

cleavage (Butler 2012). The reaction component can be seen in Table 3.13. Incubation 

was done at 95°C to activate the polymerase and reaction was subjected to 40 

amplification cycles as in Table 3.14. Measurements were done in triplicates, run 

validity was confirmed with both positive and negative controls. 

Table 3.13 TaqMan qPCR components 

TaqMan Assay 

Reaction components Volume (µL) Conc. 

Template DNA (cDNA) 2.5 50 ng 

Forward primer 1 1 µM 

Reverse primer 1 1 µM 

Roche probe 0.125 125 nM 

2x Probe MasterMix 5 1x  

Nuclease-free ddH2O 0.375   

Total Mix/reaction 10   

 

Table 3.14 TaqMan qPCR program 

Program Name Temperature Time   

Initial denaturation 95 °C 5 minutes 1 cycle 

Cycling 
95 °C 15 seconds  

40 cycles 
60 °C 1 minute 

Cooling down 40 °C 20 seconds  1 cycle 

 

SYBR® Green I is a dsDNA-intercalating dye that binds the minor groove of dsDNA. 

Consequently, as PCR proceeds and amplification of target sequence is ongoing, 

every new copy of dsDNA produced is bound by the dye during the extension step 

and fluorescence intensity increases. Fluorescence intensity signal is therefore 

proportional to the amount of dsDNA in the reaction (Arya et al. 2005). Reaction 

components and qPCR program are presented in tables 3.15 and 3.16 respectively. 
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Table 3.15 SYBR® Green qPCR components 

SYBR® Green Assay 

Reaction components Volume (µL) Conc. 

Template DNA (cDNA) 2.5 50 ng 

Forward primer 1 0.5 µM 

Reverse primer 1 0.5 µM 

2x SYBR MasterMix 10 1x  

Nuclease-free ddH2O 5.5   

Total Mix/reaction 20   

 

Table 3.16 SYBR® Green qPCR program 

Program Name Temperature Time   

Pre-incubation 95 °C  5 minutes 1 cycle 

Amplification 

95 °C 10 seconds  

45 cycles 60 °C 10 seconds  

72 °C 10 seconds  

Melting curve 

95 °C 5 seconds  

1 cycle 65 °C 1 minute 

97 °C - 

Cooling 40 °C 30 seconds  1 cycle 

 

Data were normalised using Ct (Cp) values of the endogenous control. ATP synthase 

subunit- β (Atp5b) was used as endogenous control for TaqMan assay while actin was 

used as the endogenous control of SYBR® Green assay. The LightCycler® 480 

software 1.5.1 was used to run absolute quantification/2nd derivative max and 

advanced relative quantification analysis (which automatically calculates fold change 

in expression based on the 2-ΔΔC
T method by Livak and Schmittgen, 2001 for both 

assays. In addition, Melt Curve genotyping analysis was run for SYBR® Green assay.  

3.2.4 Small interfering (siRNA)-mediated gene silencing 

siRNAs are short (approximately 21-25 nucleotides), non-coding double-stranded 

RNAs (dsRNA) that facilitate gene silencing through complementary targeting of the 

mRNA to be degraded. On the 3' end of each strand (sense/passenger and 

antisense/guide strand), siRNAs have  an overhang of 2 nucleotides (Gavrilov and 

Saltzman 2012). Because siRNAs are directly introduced into cells, the dicer (which 

cuts long pieces of dsRNA into the siRNAs) mechanics have already been by-passed 
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(Whitehead et al. 2009). Once in the cell’s cytoplasm, siRNAs get integrated into a 

multi-protein complex called RNA-induced silencing complex (RISC) having 

argonaute-2 as the main protein that executes the process of gene silencing  

(Hammond et al. 2001). Argonate-2 unwinds the dsRNA, with the passenger strand 

being cleaved off leaving the guide strand (i.e., strand with more stability at 5'-end) in 

the complex, which is now the activated RISC (Matranga et al. 2005). The antisense 

strand of the siRNA now guides and positions the RISC complex on the target mRNA 

and with the aid of argonate-2, the target mRNA is degraded resulting in gene silencing 

(Ameres et al. 2007). The active RISC-siRNA complex is then recycled for subsequent 

mRNA degradation further propagating the process of gene silencing (Whitehead et 

al. 2009). 

In this study, ON-TARGETplus SMART pool siRNAs were used. These siRNAs 

combine four different siRNA sequences per gene (Table 3.8) to reduce off target 

effects. siRNAs targeted against mouse PDGFRα and PDGFRβ were used while the 

non-targeting negative control pool served as control siRNA. A 20µM stock solution of 

these siRNAs were prepared from a lyophilized vial of 5nM by reconstituting in 250µl 

of 1x siRNA buffer (diluted from a 5x stock solution with RNase free water). The 20µM 

stock solution of siRNAs were aliquoted (in volumes of single use to avoid freeze and 

thaw degradation) and stored at -20°C until use.  

BV-2 microglial cells were seeded in 12-well culture plates as previously described 

above (section 3.2.1.3). Transfection was done as previously described by Rosner et 

al., 2010. Briefly, one hour before transfection, cells were washed with 0.5ml of pre-

warmed 1x DPBS, thereafter, 900µl of Opti-MEM I reduced serum medium was added 

and re-incubated. siRNA/lipid complexes were prepared by combining 3µl of 

lipofectamine 3000 transfection reagent with 100µl of Opti-MEM I medium for 5 

minutes at room temperature. 2.5µl of siRNA duplex was then added into the mixture 

to a final concentration of 50nM. The siRNA/lipid mixture was then incubated at room 

temperature for 20 minutes after which the combined mixture was added to cells in a 

dropwise manner and incubated at 37°C at 5% CO2. After 6 hours of transfection, 

medium was changed to transfection medium (medium without antibiotics) and 

transfection continued for a total of 48 hours. In one experiment, medium was changed 

to fresh transfection medium and 48 hours post transfection, cells were treated with 

100ng/ml LPS for 6 hours (supernatant used for ELISA while cells were lysed for RNA 

isolation as described in section 3.2.3.1). In separate experiment, medium was 
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changed to fresh serum-free transfection medium and 48 hours post transfection, cells 

were treated with 50ng/ml PDGF-BB for 3 hours (gene expression) or 24 hours 

(protein expression - ELISA). 

3.2.5 Protein analysis 

3.2.5.1 Protein isolation and quantification 

BV-2 microglial cells were seeded in 6-well culture plates (section 3.2.1.3) and treated 

in a time kinetic study as described above (section 3.2.1.4). At the termination of 

experiment, cells were washed once with ice-cold 1x DPBS and lysed in 50µl ice-cold 

RIPA buffer supplemented with protease inhibitor cocktail and phosphatase inhibitor 

(for phospho-proteins). Following an incubation period of 30 minutes on ice, samples 

were transferred into chilled 1.5ml PCR tubes and centrifuged (centrifuge previously 

cooled to 4°C) at maximum RCF at 4°C for 15 minutes. Supernatant containing protein 

was carefully transferred into chilled tubes and stored at -80°C until further use. All 

steps were performed on ice to avoid protein degradation.  

Protein concentration present in samples were determined using the PierceTM 

Bicinchoninic Acid (BCA) protein assay kit according to the manufacturer’s protocol. 

The principle of BCA assay is based on the reduction of Cu2+ to Cu+ by proteins in an 

alkaline medium which results in a purple colour formation from green by BCA. This 

purple colouration is a result of chelation of two molecules of BCA with one molecule 

of cuprous ion. Thus, the colour change is proportional to protein concentration. 

Briefly, Bovine Serum Albumin (BSA) protein standard, provided in the kit at a 

concentration of 2mg/ml was serially diluted with water to 1.5, 1.0, 0.75, 0.5, 0.25, 

0.125 and 0.025mg/ml while the protein samples were diluted 1:20 also with water. 

25µl of each standard or unknown samples were then pipetted in triplicates into a 96-

well culture plate after which 200µl of working reagent (50 parts of reagent A mixed 

with 1 part of reagent B) was added to each well containing standard and samples. 

The plate was mixed thoroughly on a plate shaker for 30 seconds and incubated at 

37°C for 30 minutes. The plate was allowed to cool to room temperature and 

absorbance measured at 570nm with Tecan Infinite® F200 pro microplate reader. 

Absorbance values of the standard (BSA) were plotted against known concentrations 

to generate a standard curve from where concentrations of unknown samples were 

interpolated.  
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3.2.5.2 Western Blot 

Protein samples were denatured at 95°C for 5 minutes following the addition of 1x 

Laemmli sample buffer (diluted from 4x with β-meracptoethanol) to the samples. 20µg 

of protein were separated using 8 or 15% (depending on the molecular size of 

analysed protein) SDS-PAGE with PageRuler™ (Plus) Prestained Protein Ladder at 

100V for 2 hours. Subsequently, proteins were transferred onto a 0.45µm 

nitrocellulose membrane at 70V for 1-2 hours. Following successful protein transfer, 

membranes were blocked in membrane blocking buffer for 1 hour to prevent non-

specific binding. Thereafter, membranes were washed in 1x TBS-T buffer for 15 

minutes at three intervals of 5 minutes each. Subsequently, membranes were 

incubated with diluted primary antibody at 4°C overnight on a roller. All primary 

antibodies used here were diluted in antibody solution for WB except for PDGFB and 

β-actin antibody that were diluted in membrane blocking buffer. The following day, 

membranes were washed in 1x TBST buffer as previously described, thereafter 

incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies 

(against the respective primary antibody) for 2 hours at room temperature on a roller. 

Membranes were developed with SignalFire™ Elite ECL Reagent and protein bands 

visualised and imaged with the MultiImage II system.  

For detection of phosphorylated and total proteins, the phosphorylated proteins were 

probed first after which membranes were stripped off the phospho-protein using mild 

stripping in a series of steps. First, membranes were incubated in stripping buffer twice 

for 10 minutes each, discarding the buffer each time. Second, membranes were 

washed in 1x PBS twice for 10 minutes each and last, membranes were washed in 1x 

TBS-T twice for 5 minutes each. Efficiency of stripping was checked by incubating the 

membrane in the chemiluminescent detection (SignalFire™ Elite ECL) reagent and 

visualisation with the imager. Following successful stripping, membranes were rinsed 

severally with stripping buffer before blocking and continuation with the remaining 

steps for incubation in primary antibody for the total protein. Blocking, washing and 

stripping steps were all done at room temperature on a see-saw rocker to ensure even 

distribution of solutions. Band intensities were quantified using Image J 1.47 software. 

3.2.5.3 Immunocytochemistry  

BV-2 microglial cells were seeded on cover slips in 6-well plates at a density of 1x105 

cells/well in 2ml media and allowed to attach overnight. Cells were treated with 50 and 
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100ng/ml LPS for 24 hours. At the termination of experiment, medium was aspirated, 

cells washed with 1x PBS, thereafter fixed with 4% HistoFix for 10 minutes. 

Subsequently, cells were washed with 1x PBS for 15 minutes at 5 minutes interval 

discarding the PBS each time. Following the third wash, cells were incubated in 

blocking buffer for 30 minutes followed by washing steps as previous. Thereafter, cells 

were incubated in primary antibody (diluted in antibody solution for ICC) at 4°C 

overnight on a see-saw rocker. On the second day, washing steps were repeated as 

previous, and cells were further incubated in secondary antibody (diluted in 1x PBS) 

for 30 minutes. From secondary antibody incubation onwards, cells were protected 

from light. This step was followed by washing steps as previous. Thereafter, cell nuclei 

were stained with 0.1µg/ml DAPI (diluted in 1x PBS) for 5 minutes, washing steps were 

again repeated as previous and cover slips mounted on microscope glass slides with 

Dako fluorescence mounting medium. Fixation, washing, blocking, secondary 

incubation, and nuclei staining steps were all done at room temperature on a see-saw 

rocker to ensure even distribution of solutions. Cover slips were allowed to dry and 

fluorescence photomicrographs were taken with an AxioImager.M2 plus ApoTome2 

microscope. 

3.2.5.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

BV-2 microglial cells were seeded in 12-well culture plates for siRNA experiments as 

described above. At the termination of experiments, culture medium was collected 

from treated cells into 2 ml reaction tubes, centrifuged (centrifuge previously cooled to 

4°C) at 1500 rpm at 4°C for 10 minutes. Supernatants were carefully transferred into 

chilled 2ml reaction tubes and stored at -80°C until used for measurement of CCL2 

protein with ELISA kit according to manufacturer’s instruction.  

Capture antibody was reconstituted in 0.5ml 1x DPBS, detection antibody in 1ml 

reagent diluent, and standard in 0.5ml reagent diluent which were all aliquoted in 

volumes of single use and stored at -20°C. Thereafter, each well of a 96-well ELISA 

microplate was coated with reconstituted 100µl capture antibody (further diluted in 1x 

DPBS to the working concentration of 200ng/ml), plate was sealed with an adhesive 

strip and incubated overnight at room temperature. Following day, wells were 

aspirated and washed with 400µl wash buffer for a total of three washes ensuring 

complete removal of liquid by inverting the plate and blotting against clean paper 

towels. Subsequently, plates were blocked by adding 300µl reagent diluent to each 
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well and incubated at room temperature for 1-2 hours. During this time period, 

standard and samples were prepared accordingly. A two-fold serial dilution (diluted in 

reagent diluent) of the reconstituted standard was prepared from a starting 

concentration of 250pg/ml to the lowest concentration of 3.91pg/ml (a 7-point standard 

curve). Samples were equally diluted in reagent diluent from 1:50 to 1:100 dilution. 

After the indicated period of plate blocking, aspiration/wash steps were repeated as 

previously mentioned. Thereafter, 100µl of each standard and samples were pipetted 

to each well in duplicates, covered with an adhesive strip and incubated for 2 hours at 

room temperature. Following standard/sample addition, aspiration/wash steps were 

repeated as previous and 100µl of reconstituted detection antibody (further diluted in 

reagent diluent to the working concentration of 50ng/ml) was added to each well, plate 

was covered with a new adhesive strip and incubated for another 2 hours at room 

temperature. Aspiration/wash steps were repeated followed by addition of 100µl of 

Streptavidin-HRP (40-fold dilution in reagent diluent) to each well, plate was covered 

and incubated for 20 minutes at room temperature avoiding direct light contact. Again, 

aspiration/wash steps were repeated followed by addition of 100µl of substrate 

solution (1:1 mixture of A and B) to each well, plate was covered and incubated for 

another 20 minutes at room temperature while again avoiding direct light contact 

(green colouration visible). Reaction was terminated by adding 50µl of stop solution 

(2N H2SO4) to each well (colour change with visible yellow colour in sight). The plate 

was gently mixed and resulting colour change was read at a wavelength of 450nm 

with the Tecan Infinite® F200 pro microplate reader. However, to correct for optical 

imperfections in the plate, readings were also taken at 540nm and values from these 

readings were subtracted from readings at 450nm. Absorbance values of the 

standards were plotted against their known concentrations generating a standard 

curve from where concentrations of samples were interpolated. 

3.2.6 Microglia functional assays 

3.2.6.1 Morphology assay 

BV-2 microglial cells were seeded on cover slips in 6-well plates at a density of 1x105 

cells/well in 2ml media and allowed to attach overnight. Cells were treated with 

50ng/ml recombinant PDGF ligands and vehicle control for 3 hours. At the termination 

of experiment, cells were washed once with 1x PBS for 5 minutes. Thereafter, cells 

were fixed with 4% HistoFix, washed thrice with 1x PBS for 5 minutes each and 
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permeabilized in PBS containing 0.1%v/v Triton X-100 for 5 minutes. Previous 

washing steps were repeated. Next, filamentous actin (F-actin) was fluorescently 

labeled with 1µg/ml phalloidin-TRITC (diluted in 1x PBS) for one hour under exclusion 

from light followed by washing steps as previously described. Cell nuclei were stained 

with 0.1µg/ml DAPI (diluted in 1x PBS) for 10 minutes in the dark, and cover slips 

mounted on microscope glass slides with Dako fluorescence mounting medium. All 

steps from the termination of experiments to nuclei staining were done on a see-saw 

rocker (to ensure even distribution of solutions) at room temperature. Cover slips were 

allowed to dry and photomicrographs were taken with an AxioImager.M2 plus 

ApoTome2 microscope. 

3.2.6.2 Migration (Wound healing) assay 

BV-2 microglial cells were seeded at a density of 1x106 cells/well in 2ml media and 

incubated until 100% confluent with daily medium renewal and finally changing to 

serum-free medium prior to the experimental day. On experimental day, cells were 

linearly scratched with a sterile 100μl pipette tip, afterwards the medium was aspirated 

and cells washed twice with medium to remove floating cells. At this point, time ‘0’ 

hour pictures were taken at pre-marked areas after which medium was replaced with 

that containing vehicle and 50ng/ml recombinant PDGF ligands. Migration into the 

open scar was monitored with photomicrographs taken at 3 and 6 hours with an 

AxioVert.A1 inverted microscope (Nikon, Tokyo, Japan). The unpopulated area at 

these time points were measured using the MRI wound healing tool of ImageJ 

software. The values of the scratch area at the different time points (3 and 6 hours) 

were subtracted from the scratch area at time ‘0’ to get the repopulated area (after 3 

and 6 hours). Results are presented as percentage area coverage of scratch area at 

time ‘0’ hour to the repopulated area at time ‘6’ hours. 

3.2.6.3 Phagocytosis assay 

Microglia phagocytic capacity were determined using two different established 

methods, the latex beads method (to mimic exogenous particles) and the apoptotic 

material method (to mimic apoptotic debris). Polystyrene latex beads and 661W 

photoreceptor cell debris were used as substrates for microglia to engulf. BV-2 

microglial cells were seeded in 6-well culture plates as described above (section 

3.2.1.3). While cells were seeded directly into culture plates for the first assay, they 

were seeded on cover slips for the second assay. 
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Polystyrene latex beads: Cells were pre-treated for 2 hours with 50ng/ml 

recombinant PDGF ligands and vehicle control before 4μl polystyrene latex bead 

solution was added to the wells. Cells were further incubated for a period of 3 hours. 

At the termination of the experiment, five independent photomicrographs were taken 

per well using an AxioVert.A1 inverted microscope. The average number of total cells 

per field and the average number of cells which had phagocytosed 10 or more latex 

beads were calculated. Phagocytic capacity was then determined in percentage as 

the average number of cells which had phagocytosed 10 or more latex beads of the 

average number of total cells per field. 

Apoptotic material: Apoptosis was induced in 661W photoreceptor cells by serum 

deprivation for two to three weeks. Dead cells were harvested into 50ml falcon tubes, 

centrifuged at 10,000 RCF for 10 minutes to collect cell pellet which was either stored 

at -80°C until use or immediately labelled with the fluorescent lipophilic dye, 

CellTracker™ CM-Dil. 400µl-stained apoptotic 661W cell suspension were added for 

6 hours to cells pre-treated for 3 hours with 50ng/ml recombinant PDGF ligands and 

vehicle control. At the termination of experiment, cells were thoroughly washed with 

1x PBS to get rid of the remaining extracellular 661W debris. Cells were fixed with 4% 

HistoFix. Thereafter, nuclei were stained with 0.1µg/ml DAPI (diluted in 1x PBS) for 10 

minutes in the dark at room temperature, and cover slips mounted on microscope 

glass slides with Dako fluorescence mounting medium. Cover slips were allowed to 

dry and fluorescence micrographs were taken with an AxioImager.M2 plus ApoTome2 

microscope ensuring constant exposure times for all groups. The ratio of 

phagocytosed photoreceptor debris (background-corrected red signal) relative to the 

total microglial cell number (background corrected DAPI signal) was determined using 

Image J software and values expressed as percentages. 

3.2.6.4 Cellular Reactive Oxygen Species (ROS) generation assay 

The 2',7'-dichlorofluorescein diacetate (DCFDA)-cellular ROS detection assay kit was 

used to measure intracellular ROS production. Hydroxyl, peroxyl and other ROS 

activity within the cell is measured by the cell-permeable fluorogenic dye DCFDA 

which is able to diffuse into the cell to get acetylated by cellular esterases into a non-

fluorescent compound. Intracellular ROS then oxidises this non-fluorescent compound 

into a highly fluorescent compound, 2',7'- dichlorofluorescein (DCF), which is then 
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detected at a maximum excitation and emission spectra of 495nm and 529nm 

respectively.  

BV-2 microglial cells were seeded in phenol free media at a density of 2.5x104 

cells/well in 100µl media in black, clear-bottom(ed) 96-well culture plates and allowed 

to attach overnight. Phenol-free media was used in order to reduce background 

fluorescence. Appropriate volumes needed for the following solutions were freshly 

prepared; 1x buffer solution prepared from a 10x buffer with double-distilled water, 

20µM DCFDA prepared from a 20mM stock with 1x buffer solution, 1x supplemented 

buffer prepared by adding 2ml FBS (not included in the kit) to 18ml of 1x buffer, 50µM 

Tert-Butyl Hydrogen Peroxide (TBHP) prepared from a 55mM stock with 1x 

supplemented buffer.  

Cells were stained with 100µl of 20µM DCFDA at 37°C for 45 minutes followed by 

washing with 1x buffer and treatment in separate wells with 100µl of: 50ng/ml 

recombinant PDGF ligands, vehicle control, 50µM TBHP (positive control) and 1x 

supplemented buffer (control for TBHP) for 3 hours at 37°C. Blank wells with non-

stained cells were included to determine background fluorescence. Intracellular 

production of ROS was then measured by fluorescence detection of DCF in a 

microplate reader - Tecan Infinite® F200 pro reader at an excitation and emission 

wavelength of 485nm and 535nm respectively. Background values were subsequently 

subtracted from all measurements. 

3.2.6.5 661W photoreceptor apoptosis assay 

The Caspase-Glo® 3/7 assay was used to measure caspase activity (an indication of 

apoptotic cell death) in 661W cells treated with MCM in order to investigate microglia 

neurotoxicity. The assay provides a pro-luminescent caspase-3/7 substrate which 

contains the tetrapeptide sequence, DEVD, combined with luciferase and a cell-lysis 

agent. When the Caspase-Glo® 3/7 reagent is directly added to assay wells, this 

causes cell lysis followed by caspase cleavage of the DEVD substrate, and 

subsequently, the generation of luminescence. The luminescence amount is therefore 

proportional to the amount of caspase activity within the sample. 

661W cells were seeded at a density of 10,000 cells/well in 100µl of serum-free media 

in white-walled 96-well luminometer culture plates and allowed to attach overnight. 

Following day, media was aspirated and cells were re-incubated for 48 hours either in 

their own serum-free medium or with serum-free microglia conditioned medium as 
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described above (section 3.2.1.4). The Caspase-Glo® 3/7 reagent was then prepared 

by adding all of the Caspase-Glo® buffer to the Caspase-Glo® 3/7 substrate (both 

provided in the kit) ensuring complete mixture. 100µl of the Caspase-Glo® 3/7 reagent 

was then added to each well and incubated at room temperature for 1 hour. Included 

in the experimental set-up, were blank reactions (vehicle in culture medium without 

cells plus Caspase-Glo® 3/7 reagent), to determine background luminescence 

associated with the Caspase-Glo® 3/7 reagent and the cell culture system and 

negative control reactions (vehicle-treated cells plus Caspase-Glo® 3/7 reagent), to 

determine basal caspase activity of the 661W cells. Following incubation with the 

Caspase-Glo® 3/7 reagent, the generated luminescence was measured using the 

Tecan Infinite® F200 pro microplate reader. Background luminescence values were 

subtracted from all experimental values and the amount of luminescence expressed 

as Relative Light Units (RLU) which is proportional to the amount of caspase activity 

(apoptotic cell death) in 661W cells. 

3.2.7 Statistical analysis 

Statistical analysis was performed using GraphPad Prism version 7 (GraphPad 

Software Inc., San Diego, CA). Depending on the experimental set up, statistical 

significance was determined using either unpaired Student’s T-test (for two groups) or 

one-way ANOVA (for multiple group) followed by Dunnet’s, Tukey’s, or Sidak’s 

multiple comparisons test and p ≤ 0.05 was considered statistically significant. Data 

are expressed as mean ± standard deviation (SD) unless otherwise stated.  
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CHAPTER FOUR: RESULTS 

4.1 Expression of PDGFs and their receptors in murine microglial cells 

Expression of PDGF ligands and their receptors were studied in BV-2 microglial cells 

first using qPCR (Fig. 4.1). In LPS-activated BV-2 microglial cells, where activation 

was confirmed by upregulation of Tnfα gene (Fig. 4.1A), mRNA expression levels of 

Pdgfb (Fig. 4.1E) and Pdgfrβ (Fig. 4.1C) were significantly upregulated while 

expression of Pdgfc (Fig. 4.1F) was significantly downregulated. mRNA levels of Pdgfa 

(Fig. 4.1D) and Pdgfrα (Fig. 4.1B) were not significantly altered while expression of 

Pdgfd could not be detected. 

 

Figure 4.1  Expression of PDGF ligands and their receptors in BV-2 microglial 

cells. 

Quantitative PCR data of gene expression levels of Tnfα (A), Pdgfrα (B), Pdgfrβ (C), 

Pdgfa (D), Pdgfb (E) and Pdgfc (F). Data are presented as mean ± SD of three 

independent experiments measured in duplicates (N=6). **p≤ 0.01, ***p≤ 0.001, ****p≤ 

0.0001 compared to control (PBS), one-way AVOVA with Tukey’s multiple comparison 

test. 

To confirm whether increased gene expression levels of Pdgfb (Fig. 4.1E) and Pdgfrβ 

(Fig. 4.1C) translated into increased protein levels, western blot analysis of BV-2 

microglial cells exposed to LPS in a time kinetic study (3 - 48hrs) and immunostaining 



  
  Results 

74 

of cells exposed to LPS for 24 hours was done. Fluorescence immunostaining of both 

PDGF-BB (observed throughout the whole cell, cytoplasm and nucleus) (Fig. 4.2A) 

and PDGFRβ (observed as punctate staining in the cytoplasm and predominantly in 

the perinuclear region of the cells) (Fig. 4.3A) showed significant increased expression 

with 100ng/ml LPS after 24 hours (Fig. 4.2B and 4.3B) while WB analysis of both 

PDGF-BB (Fig. 4.2C) and phospho-PDGFRβ (Fig. 4.3C) proteins showed significant 

increased expression at 24 and 48 hours respectively. 

 

Figure 4.2  LPS induced protein expression of PDGF-BB in BV-2 microglial 

cells 

(A) Representative immunostaining of PDGF-BB protein (Red), nuclei stained with 

DAPI (blue) and (B) Quantification of fluorescence intensity from six immunostainings 

per group done in duplicates of three experiments, *p≤ 0.05 compared to control 

(PBS), one-way AVOVA with Tukey’s multiple comparison test. (C) Representative 

western blot of PDGF-BB protein and densitometric analysis from five immunoblots, 

**p≤ 0.01 compared to control (PBS), one-way AVOVA with Dunnett’s multiple 

comparison test. All data are presented as mean ± SD. 
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Figure 4.3  LPS induced PDGFRβ and p-PDGFRβ expression in BV-2 microglial 

cells. 

(A) Representative immunostaining of PDGFRβ protein (Red), nuclei stained with 

DAPI (blue) and (B) Quantification of fluorescence intensity from two 

immunostainings, *p≤ 0.05 compared to control (PBS), One-way AVOVA with Tukey’s 

multiple comparison test. (C) Representative western blot of phosphorylated PDGFRβ 

protein and densitometric analysis from two immunoblots, *p≤ 0.05 compared to 

control (PBS), one-way AVOVA with Dunnett’s multiple comparison test. All data are 

presented as mean ± SD. 

4.2 Effect of PDGF on microglia functional properties 

BV-2 microglial cells were treated with human recombinant PDGF ligands and their 

effects on microglia functional properties: morphology, migration, phagocytosis, 

inflammatory response, ROS release and neurotoxicity were studied. 

4.2.1 PDGF induced an amoeboid-like phenotype in microglia 

Treatment of BV-2 microglial cells with 50ng/ml recombinant human PDGF ligands for 

3 hours induced an amoeboid-like phenotype in microglia (Fig. 4.4A). Following 

exposure to PDGF ligands, microglial cells showed clear morphological differences in 

all the treatment groups compared to the control group. In control-treated group, 

microglial cells displayed a ramified morphology characterised by elongated 

processes while in all of the treatment groups, all cells were induced towards an 

amoeboid morphology with large cell bodies indicative of an activated state (Fig. 4.4A). 

The induced activation of BV-2 microglial cells by PDGF was accompanied by 
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concomitant decrease in mRNA levels of the microglia homeostatic gene, P2ry12 (P2Y 

purinoceptor-12) (Fig. 4.4B). P2ry12 gene is one of the ‘sensome’ genes used by 

microglia processes to sense changes within their environment and facilitate tissue 

homeostasis (Haynes et al. 2006; Hickman et al. 2013; Fourgeaud et al. 2016) thus a 

change in microglia homeostasis results in downregulation of these genes (Hickman 

et al. 2013). Results show that all the PDGF ligands significantly decreased the 

expression of the P2ry12 gene (Fig. 4.4B). 

 

 

Figure 4.4  PDGF induced an amoeboid-like phenotype in BV-2 microglial 

cells. 

(A) Representative images of phalloidin-TRITC stained BV-2 microglial cells treated 

with recombinant PDGF ligands. (B) Quantitative PCR data of expression level of the 

microglia homeostatic gene, P2ry12 in the presence of PDGF. Data are presented as 

mean ± SD of at least two independent experiments measured in duplicates (N=4-8). 

***p≤ 0.001, ****p≤ 0.0001 compared control, one-way AVOVA with Dunnett’s multiple 

comparison test. Control - 0.1% BSA in DPBS. 

4.2.2 Effect of PDGF on microglial cell migration  

To investigate the effect of PDGF on microglial cell migration, a wound healing 

(scratch) assay was performed where a ‘wound’ in form of a scratch was introduced 

onto a confluent layer of BV-2 microglial cells and migration into the open scar was 

monitored following treatment with 50ng/ml recombinant human PDGF ligands over 
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the indicated time period. As shown in figure 4.5A and B, PDGF ligands did not 

significantly affect BV-2 microglial cell migration compared to control after 6 hours of 

ligand treatment. However, the pro-migratory related genes, Ccl3 and Ccl5 (Fig. 4.5C 

and D) including Ccl2 (Fig. 4.7A) were significantly upregulated after 3 hours of ligand 

treatment. 

 

Figure 4.5  Effect of PDGF on BV-2 microglial cell migration and pro-migratory 

genes.  

(A) Representative micrograph of scratch migration assay in BV-2 microglial cells 

treated with recombinant PDGF ligands. Scale bar-200µm (B) Quantification of 

surface area coverage from six micrographs taken per group from three experiments 

in duplicates (N=6). No significant differences seen between treatment and control 

group. (C and D) Quantitative PCR data of expression levels of pro-migratory genes, 

Ccl3 and Ccl5 in the presence of PDGF (N=7-11 of at least three independent 

experiments). All data are presented as mean ± SD, **p≤ 0.01, ***p≤ 0.001, ****p≤ 

0.0001 compared to control, one-way AVOVA with Dunnett’s multiple comparison test. 

Control - 0.1% BSA in DPBS. 
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4.2.3 Effect of PDGF on microglia phagocytic capacity 

Microglia are characterised by their ability to phagocytose extracellular protein 

aggregates, pathogens, and apoptotic cell debris (R. Fu et al. 2014) as part of their 

housekeeping functions. Thus, to mimic exogenous particles and apoptotic cell debris, 

polystyrene micro particles latex beads and CM-Dil-stained apoptotic 661W 

photoreceptor fragments were used as substrates for BV-2 microglial cells to engulf 

while the phagocytic capacity following 3 hours of treatment with 50ng/ml 

recombinant human PDGF was assessed. In the latex bead assay, treatment with 

the PDGFs did not significantly affect phagocytic capacity of BV-2 microglial cells 

(Fig. 4.6A and B). Similar results were also observed in the cellular debris assay 

(Appendix fig. 3A and B). In addition, treatment with 50ng/ml PDGF-BB did not 

significantly affect the expression of phagocytosis related genes, cluster of 

differentiation 36 (Cd36) (Fig. 4.6C), triggering receptor expressed on myeloid cells 2 

(Trem2) (Fig. 4.6D), and the scavenger receptors, macrophage scavenger receptor 1 

(Msr1) (Fig. 4.6E), and scavenger receptor class B member 1 (Scarb1) (Fig. 4.6F). 
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Figure 4.6  Effect of PDGF on BV-2 microglia phagocytic capacity. 

(A) Representative micrograph of polystyrene latex bead phagocytosis assay in BV-2 

microglial cells treated with recombinant PDGF ligands. Scale bar-20µm (B) 

Quantification from two experiments in duplicates (N=4). Percentage phagocytosis 

index measured as average number of cells (from 5 fields) that phagocytosed ≥ 10 

latex beads relative to the average total number of cells (from 5 fields) x 100. No 

significant differences were seen between treatment and control group, one-way 

AVOVA with Dunnett’s multiple comparison test. (C-F) Quantitative PCR data of 

expression levels of phagocytosis related genes; Cd36, Trem2, Msr1 and Scarb1 in 

the presence of PDGF-BB, N=4 of two independent experiments in duplicates. No 

significant differences were seen between PDGF-BB treated control group, unpaired 

t-test. All data are presented as mean ± SD. Control - 0.1% BSA in DPBS. 

4.2.4 PDGF induced an inflammatory response in microglia 

The effect of PDGF ligands on inflammatory response in microglial cells were 

assessed as reactive microglia are known to induce the expression of pro-

inflammatory genes. To this end, BV-2 microglial cells were treated with 50ng/ml 
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human recombinant PDGF ligands for 3 hours and transcript levels of pro-

inflammatory genes were assessed by qPCR. All the PDGF ligands significantly 

upregulated the expression of Ccl2, Cox-2 (PDGF target genes) and Tnfα genes (Fig. 

4.7A, B and C respectively). 

To further confirm results from BV-2 microglial cells, primary microglial cells were used 

as they are more physiologically relevant owing to their phenotypic similarities to 

microglia in-vivo (Stansley et al. 2012). To this end, isolated primary microglial cells 

were also treated with 50ng/ml human recombinant PDGF ligands for 3 hours and the 

same set of pro-inflammatory genes were assessed by qPCR. In primary microglial 

cells, all the PDGF ligands significantly upregulated Ccl2, Cox-2 and Tnfα genes (Fig. 

4.7D, E and F respectively) as seen in BV-2 microglial cells. In addition, significant 

differences were seen in Tnfα response between PDGF-AA and PDGF-CC and 

PDGF-AB and PDGF-CC (Fig. 4.7F) which was however not seen in BV-2 microglial 

cells. 

 

Figure 4.7  PDGFs upregulated expression of pro-inflammatory genes in BV-2 

and primary microglial cells. 

Quantitative PCR data of gene expression levels of Ccl2 (A, D), Cox-2 (B, E) and Tnfα 

(C, F) in BV-2 and primary microglial cells respectively. BV-2 microglial cells: N ≥ 9; 

primary microglial cells: N=4 (two independent experiment in duplicate). All data are 

presented as mean ± SD. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001 compared to 
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control; #p≤ 0.05, one-way AVOVA with Tukey’s multiple comparison test. Control - 

0.1% BSA in DPBS. 

4.2.5 PDGF decreased intracellular ROS levels 

Not only do microglial cells release pro-inflammatory cytokines when activated, they 

also release neurotoxic factors like toxic oxygen radicals e.g., ROS (Akundi et al. 2005; 

Block et al. 2007; Bazan 2012; Patro et al. 2016; Takahashi et al. 2016). To this end, 

the effects of 50ng/ml human recombinant PDGF ligands on the release of cellular 

ROS was investigated. Using the DCFDA ROS assay kit, PDGF-BB and -CC 

significantly decreased total ROS levels while no significant effects were seen with 

PDGF-AA and –AB compared to control although the trend shows an overall decrease 

in ROS levels with all the PDGF ligands after 3 hours of treatment (Fig. 4.8A).To 

understand the molecular mechanisms involved in PDGF-mediated decrease of 

microglia ROS levels, firstly, transcript levels of NADPH oxidases (NOXs) including 

the dual oxidases (DUOX1 and 2) were assessed as these are the major ROS 

generating enzymes (Kang 2007; X.-J. Fu et al. 2014; Sun et al. 2016). While the 

expression of Nox1 and Nox2 genes were significantly upregulated (Fig. 4.8B and C), 

expression of Nox4, Duox1 and Duox2 genes could not be detected in BV-2 microglial 

cells. Also, neither Nox3 nor Nox5 transcript levels were assessed for in this study 

because Nox3 is localised to the inner ear and Nox5 is absent in mice (Bedard and 

Krause 2007). 

 

Figure 4.8  PDGF decreased intracellular ROS levels while inducing 

expression of NADPH oxidases. 

(A) DCF fluorescence measurement in BV-2 microglial cells treated with recombinant 

PDGF ligands (N=9-10). (B and C) Quantitative PCR data of gene expression levels 

of ROS generating enzymes, Nox1 and Nox2 in the presence of PDGF ligands (N=8-

13). All data are presented as mean ± SD. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, compared 

to control, one-way AVOVA with Dunnett’s multiple comparison test. Control - 0.1% 

BSA in DPBS; 485/535nm - excitation/emission wavelength respectively. 
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Secondly, the involvement of the anti-oxidant system was investigated by assessing 

the expression levels of the anti-oxidant genes, glutathione peroxidase 1 (Gpx1), 

glutathione peroxidase 4 (Gpx4), glutathione reductase (Gsr), Catalase, superoxide 

dismutase 1 and 2 (Sod1 and Sod2) in the presence of PDGF ligands (Fig. 4.9A-F). 

Of all these antioxidant genes, only the expression of Sod2 gene (Fig. 4.9F) was 

significantly upregulated by all four ligands while expression of Gsr gene (Fig. 4.9C) 

was upregulated by only PDGF-BB. 

 

Figure 4.9  Effect of PDGF-treated BV-2 microglial cells on anti-oxidant genes. 

Quantitative PCR data of expression levels of anti-oxidant genes: Gpx1 (A), Gpx4 (B), 

Catalase (D) and Sod1 (E), N=4 of two independent experiments measured in 

duplicates. No significant differences were seen between treated and vehicle control, 

unpaired t-test; Gsr (C) and Sod2 (F), N=4-8. **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001 

compared to vehicle control, one-way AVOVA with Dunnett’s multiple comparison test. 

All data are presented as mean ± SD, vehicle control - 0.1% BSA in DPBS. 

4.2.6 Effect of microglia neurotoxicity on neuronal cells 

To further test the effect of microglia neurotoxicity, 661W photoreceptor cells were 

cultured in conditioned medium from PDGF-treated BV-2 microglial cells for 48 hours 

and caspase-related apoptotic cell death was measured. 661W photoreceptor cells 

cultured in microglia supernatants from vehicle treated cells showed significantly 
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higher caspase 3/7 activity when compared to control (baseline) while 661W cells 

cultured in microglia supernatants from PDGF-ligand treated cells showed decreased 

caspase 3/7 activity with significant differences seen with PDGF-AA, -AB and -CC 

when compared to vehicle treated cells (Fig. 4.10). This result is suggestive of the 

notion that PDGF limits microglial production of neurotoxic molecules.  

 

Figure 4.10 PDGF decreased apoptosis-related caspase 3/7 activity in 

photoreceptor cells. 

Caspase 3/7 activity in 661W photoreceptor cells at baseline (control - untreated cells) 

and incubation with BV-2 microglia conditioned medium from vehicle (red bar, denoted 

as -) and PDGF-treated cells. Data are presented as mean ± SD, N=11-12. *p≤ 0.05, 

***p≤ 0.001, ****p≤ 0.0001 compared to vehicle treated. One-way AVOVA with Sidak’s 

multiple comparison test. Vehicle - 0.1% BSA in DPBS; RLU - Relative Light Units. 

4.3 Expression of PDGF receptor-β but not receptor-α is induced upon 

microglia activation 

Because PDGF effects are mediated by binding to their cognate receptors, α and β, 

the next step was to investigate the effect of PDGF induced microglia activation on the 

receptors. All the PDGF ligands significantly upregulated expression of β-receptor but 

not α-receptor in both BV-2 and primary microglial cells (Fig. 4.11A and B 

respectively). This result is however similar to that seen with LPS activation of 

microglial cells where β-receptor but not α-receptor was also upregulated (Fig. 4.1C 

and B respectively). 
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Figure 4.11 PDGF ligands upregulated receptor-β but not receptor-α in both 

BV-2 and primary microglial cells. 

Quantitative PCR data of gene expression levels of Pdgfrα (grey) and Pdgfrβ (black) 

in (A) BV-2 and (B) primary microglial cells respectively. BV-2 microglial cells: N=9-16 

(of at least 4 independent experiments performed either in duplicates/triplicates); 

Primary microglial cells: N=4 (two independent experiment performed in duplicates). 

All data are presented as mean ± SD. **p≤ 0.01, ****p≤ 0.0001 compared to control. 

One-way AVOVA with Dunnett’s multiple comparison test. Control - 0.1% BSA in 

DPBS. 

4.4 Antibody blockade of microglial PDGFRβ reduced LPS and PDGF 

induced inflammatory responses 

Having determined the relative expression of PDGF receptors and the effect of both 

LPS and PDGF treatment on their expressions in both BV-2 and primary microglial 

cells, next was to determine the role each receptor played in the induction of 

inflammatory responses. To this end, rat mAbs, APA5 and APB5 were used as 

pharmacological blockers for receptor α and β respectively. 

Firstly, BV-2 microglial cells were pre-treated with 10µg/ml APA5 and APB5 

respectively for 30 minutes followed by 100ng/ml LPS treatment for 6 hours. Antibody 

blockade of microglial PDGF receptor-β but not receptor-α significantly attenuated 

LPS induced Tnfα, Il-6 and Il-1β gene expression (Fig. 4.12A-C).  
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Figure 4.12 Antibody blockade of microglial PDGFRβ reduced LPS-induced 

inflammatory responses. 

Quantitative PCR data of gene expression levels of Tnfα (A), Il-6 (B), and Il-1β (C). 

Data are presented as mean ± SD of two independent experiments measured in 

triplicates (N=5-6). *p≤ 0.05, **p≤ 0.01, ****p≤ 0.0001, One-way AVOVA with Sidak’s 

multiple comparison test. 

Secondly, BV-2 microglial cells were pre-treated with10µg/ml APA5 and APB5 

respectively for 1 hour followed by 50ng/ml PDGF-BB treatment. Similarly, antibody 

blockade of microglial PDGF receptor β but not receptor α significantly attenuated 

PDGF-BB induced Ccl2 target gene expression (Fig. 4.13) 

 

Figure 4.13 Antibody blockade of microglial PDGFRβ reduced PDGF-BB-

induced Ccl2 target gene expression. 

Quantitative PCR data of expression levels of Ccl2 gene induced by PDGF-BB and 

attenuated by antibody blockade of PDGF receptor β. Data are presented as mean ± 

SD of two independent experiments measured in duplicates (N=4). **p≤ 0.01, ****p≤ 

0.0001 compared to PDGF-BB group (red bar), one-way AVOVA with Sidak’s multiple 

comparison test. 
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4.5 Effect of PDGF receptor siRNA-mediated gene silencing on LPS and 

PDGF induced inflammatory responses 

To further corroborate the findings from the pharmacological blockade of PDGF 

receptor-α and -β, BV-2 microglial cells were transfected with PDGFRα, PDGFRβ and 

non-targeting scrambled control (scram.) siRNA respectively followed by LPS and 

PDGF-BB treatment in separate experiments. Transfection of BV-2 microglial cells 

with these siRNAs for 48 hours resulted in significant knockdown with efficiencies of 

70 and 51%  for receptor-α (Fig. 4.14A) and -β (Fig. 4.14B) respectively with a 

significant compensatory effect of 20% on receptor-β when receptor-α was knocked 

down (Fig. 4.14C) (compared with non-targeting scrambled control) as demonstrated 

by qPCR.  

In one experiment, cells were transfected with these siRNAs for 48 hours followed by 

treatment with 100ng/ml LPS for 6 hours. While supernatants were used for protein 

expression (ELISA), cells were lysed in RNA lysis buffer and processed for gene 

expression. LPS-mediated induction of Il-1β (Fig. 4.14D) and Ccl2 (Fig. 4.14E) gene 

expression was attenuated in cells transfected with PDGFRβ siRNA when compared 

to non-targeting scrambled control, however, there was a significant increase in Il-1β 

gene expression (Fig. 4.14D) upon Pdgfrα gene knockdown while no significant effect 

was seen in CCL2 protein expression (Fig. 4.14F) when both receptors were knocked 

down. 

In a separate experiment, cells were transfected for 48 hours as described above 

followed by treatment with 50ng/ml PDGF-BB for 3 hours (gene expression) and 24 

hours for protein expression (ELISA). PDGF-mediated induction of Tnfα gene 

expression (Fig. 4.14G) was attenuated when both receptor-α and -β were knocked 

down while gene expression of Ccl2 (Fig. 4.14H) was only attenuated when receptor-

β but not -α was knocked down with no significant effect observed in CCL2 protein 

expression (Fig. 4.14I) either in PDGF-BB treatment or in receptor knockdown. Taken 

together, these results implicates the involvement of both PDGF receptors in LPS- and 

PDGF-mediated microglia inflammatory response.  
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Figure 4.14 siRNA-mediated gene silencing of Pdgfrβ attenuated LPS and 

PDGF-BB induced inflammatory responses in BV-2 microglial cells. 

Quantitative PCR data of gene expression levels of (A) Pdgfrα, (B) Pdgfrβ, and (C) 

Pdgfrα when receptor-β was knocked down, and Pdgfrβ when receptor-α was knocked 

down following 48 hours of transfection with 50nM of the respective siRNAs. *p≤ 0.05, 

***p≤ 0.001, ****p≤ 0.0001 compared to scram, unpaired t-test. (D-F) Gene expression 

levels of Il-1β, Ccl2 and protein expression of CCL2 respectively following 48 hours of 

receptor-α and -β knockdown plus 6 hours LPS treatment. *p≤ 0.05, **p≤ 0.01, ***p≤ 

0.001, ****p≤ 0.0001 compared to ‘scram. + LPS group’ (red bar), ###p≤ 0.001, one-

way AVOVA with Sidak’s multiple comparison test. (G-I) Gene expression levels of 

Tnfα, Ccl2 and protein expression of CCL2 respectively following 48 hours of receptor 

α and β knockdown plus 3 and 24 hours of PDGF-BB treatment for gene and protein 

expression respectively. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001 compared to 

‘scram. + PDGF-BB group’ (red bar), one-way AVOVA with Sidak’s multiple 

comparison test. All data are presented as mean ± SD of two independent experiments 

measured in triplicates (N=6).  
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4.6 PDGF mediated microglial inflammatory response involves MAPK and 

PI3K/Akt cell signalling pathways 

Having determined the induction of microglia inflammatory response mediated by 

PDGF, next, was to investigate the intracellular signal transduction pathways involved 

in this process. Since PDGF is a known mitogen, the involvement of MAPKs and 

PI3K/Akt signalling pathways were investigated.  

First, BV-2 microglial cells were treated with 50ng/ml recombinant PDGF-BB protein 

and phosphorylation of MAPKs (p38, ERK 1/2, and JNK) and Akt were assessed by 

western blot (figure 4.15A). Treatment of BV-2 microglial cells with PDGF-BB resulted 

in a time-dependent increase in phosphorylation of ERK 1/2, JNK, and Akt but not p38 

with significant increases seen in phosphorylation of ERK 1/2, JNK and AKT from 15, 

120 and 5 minutes respectively compared to vehicle-treated cells (C, D, and E 

respectively).  
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Figure 4.15 PDGF mediated inflammatory response involves MAPK and 

PI3K/Akt cell signalling pathways. 

(A) Representative western blot of time-dependent effect of PDGF-BB on total and 

phosphorylated P38, ERK, JNK, and Akt. (B-E) Densitometric analysis from two 

immunoblots, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001, ****p≤ 0.0001 compared to control (-). 

One-way AVOVA with Dunnett’s multiple comparison test. Data are presented as 

mean ± SD. Control - 0.1% BSA in DPBS. 

Second, the functional implication of the MAPKs and PI3K/Akt signalling in PDGF-

mediated microglia inflammatory response was investigated. BV-2 microglial cells 

were pre-treated with inhibitors specific for the respective signalling pathways for 1 
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hour followed by treatment with 50ng/ml recombinant PDGF ligands for 3 hours and 

subsequently gene expression of Tnfα and PDGF-target genes (early response gene), 

Ccl2 and Cox-2 were assessed for. Treatment of BV-2 microglial cells with MAPK and 

PI3K inhibitors resulted in significant attenuation of PDGF-mediated induction of pro-

inflammatory gene Ccl2, Cox-2 and Tnfα expression levels however inhibition of PI3K 

did not attenuate PDGF-mediated induction of Tnfα gene expression with all PDGF 

ligands except PDGF-BB (C). Similar effects with the inhibitors were seen in primary 

microglial cells with PDGF-BB mediated induction of Cox-2 and Tnfα gene however 

inhibition of JNK signalling did not attenuate PDGF-BB mediated induction of Cox-2 

gene (Appendix fig 1B and C). 
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Figure 4.16 PDGF-mediated induction of inflammatory mediators is inhibited 

by MEK1/2, JNK and PI3K inhibitors 

(A-D) Quantitative PCR data of gene expression levels of Ccl2, Cox-2 and Tnfα in 

PDGF-AA, -AB, -BB and -CC treated BV-2 microglial cells pre-treated with inhibitors 

for MEK1/2 inhibitor - U0126, PI3K - LY294002, and JNK - SP600125. Data are 

presented as mean ± SD of two to three independent experiments measured in 

duplicates and triplicates (N=6-7). **p≤ 0.01, ****p≤ 0.0001 compared PDGF-treated 

group (red bar). One-way AVOVA with Sidak’s multiple comparison test.  
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CHAPTER FIVE: DISCUSSION 

Several cellular and molecular processes are implicated in neurodegenerative events 

including protein aggregate accumulation, oxidative responses, triggering of 

apoptosis, and impaired mitochondrial function (Höglund and Salter 2013). However, 

neuroinflammation also correlates with the initiation and development of both acute 

and chronic neurodegenerative diseases (Frank-Cannon et al. 2009; Amor et al. 2010; 

Heneka et al. 2014). Although acute neuroinflammatory responses are relatively 

transient and in general beneficial to the CNS by getting rid of a host of potential CNS 

harmful substances thereby contributing to tissue homeostasis. However, unresolved 

acute inflammation becomes chronic and pathologic with neurotoxic effects causing 

serious neuronal damage, which interferes with CNS homeostasis thus causing an 

imbalance between restorative and pro-inflammatory responses (Streit et al. 2004; 

Bazan 2012; McManus and Heneka 2017). This pathological neuroinflammation 

associated with neurodegeneration is predominantly orchestrated by microglia, the 

resident immune cells of the CNS (Bazan 2012; Cianciulli et al. 2020). Hence, 

microglia activation is a hallmark common to neurodegenerative diseases.  

Thus, in the quest for understanding microglia activation and how it influences 

pathologic angiogenesis, this present study focused on investigating the direct 

association and interaction between microglia and the PDGF/PDGFR system with 

respect to microglia-mediated neuroinflammatory responses. 

5.1 BV-2 cell line and primary cells as models for microglia cultures 

In order to study the biology of microglia and its role in neuroinflammation, primary 

microglial cultures and quite a number of immortalised microglial cell lines generated 

from mice (N9, BV2, and EOC), rats (HAPI), and humans (HMO6 and HMC3) have 

been established (Sarkar et al. 2018). However, despite the evident differences that 

have been reported between microglia in-vivo and in-vitro (Carson et al. 2008), these 

in-vitro cultures are still beneficial in studying microglia properties like activation state, 

motility, the ability to release numerous factors, characterisation of molecular 

pathways involved in their activation, as well as other important components 

characterising microglia, for which efficient examination in-vivo might not suffice 

(Gresa-Arribas et al. 2012; Stansley et al. 2012). Despite the similarities between 

these culture models, there exists distinct differences that must however be taken into 
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consideration when a neurodegenerative research model is to be utilised (Stansley et 

al. 2012).  

Primary microglia cultures, mostly generated from neonatal cortex of mouse or rats 

(Giulian and Baker 1986) (though the utilisation of adult animals is now prevalent in 

more studies) (Butovsky et al. 2014) show more phenotypic similarities to in-vivo cells 

(Stansley et al. 2012). Following characterisation, these cells were seen to be 

consistently positive for non-specific esterases, negative for galactocerebroside 

(GalC, an oligodendrocyte marker); glial fibrillary acidic protein (GFAP, an astrocyte 

marker); and peroxidase activity (neutrophils); all of which are characteristic of 

microglial cells  (Giulian and Baker 1986). While the measurement of these proteins 

and cell markers in primary microglia is beneficial, in addition to several other 

advantages reviewed by Timmerman et al., 2018, the cost, considerable amount of 

time needed for its preparation, low cell number yield and the limited proliferation 

capacity, makes its use probably not highly favoured in comparison to other microglial 

cells lines with shorter preparation time but comparable cell properties (Stansley et al. 

2012; Sarkar et al. 2018).  

With these, immortalised cell lines mentioned above were generated by infecting 

primary cells with a retrovirus (Stansley et al. 2012; Timmerman et al. 2018). BV2 and 

N9 microglial cell lines, of mouse origin, are the two of these type that are most 

commonly used (Stansley et al. 2012). Of these two mouse cell lines, BV-2 is the best 

characterised and most used culture model appearing in approximately 75% of 

publications as reported by Sarkar et al., 2018. The BV-2 cell line was generated by 

transduction of primary microglia isolated from neonates with the v-raf/v-myc carrying 

J2 retrovirus (Blasi et al. 1990). Characterisation of these cells, showed that they 

express MAC1 and MAC2 macrophage markers but are negative for the antigen, 

MAC-3. In similar vein to primary microglia, these cells were negative for GalC, and 

GFAP, oligodendrocyte and astrocyte marker respectively, and lacked peroxidase 

activity while being 90% positive for non-specific esterases (Bignami et al. 1972; 

Timmerman et al. 2018). 

BV-2 cell line has been used in many neuroinflammatory and neurodegenerative 

studies including those studies on PD and AD (Gao et al. 2013; Griciuc et al. 2013; 

Velagapudi et al. 2018). They also respond very well to LPS as seen with numerous 

studies to mention a few (Stansley et al. 2012; Boza-Serrano et al. 2014; Dai et al. 

2015) which was also seen in this study by the expression of a number of pro-
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inflammatory cytokines including but not limited to Ccl2, Cox-2, Tnfα, Il-6 etc. While 

BV-2 cells are not in morphology or activation state similar to primary microglia, their 

ease of use and the disadvantages of primary microglia usage makes BV-2 cells an 

attractive choice. In light of this, while majority of the experiments in this study were 

done with BV-2 cells, the key experiments were confirmed with primary microglial cells 

(isolated from neonatal mice) as proof of concept. Primary microglial cells used in this 

study were stained for Iba-1 protein to assess microglia purity. Iba-1 is an actin-binding 

cytoplasmic protein primarily expressed by monocytic lineage cells including microglia 

in the brain (Imai et al. 1996) and extensively utilised as a microglia marker during 

immunostainings (Ahmed et al. 2007). 

5.2 Effect of BV-2 microglia activation on the expression of PDGF ligands and 

their receptors 

In the current study, BV-2 microglial cells expressed both PDGF receptors, alpha and 

beta and all of the PDGF ligands but PDGFD. Microglia expression of the PDGF 

isoforms, PDGF-A, -B and -C are however consistent with expression results seen in 

a brain radiation necrosis study, where they investigated the roles of PDGF factors 

and their receptors (Miyata et al. 2014). In this study, authors show microglia (amongst 

other cells) expression of all PDGFs in undamaged brain tissue and at the peri-necrotic 

area. While the expression of the PDGFD isoform could not be detected in BV-2 

microglial cells, these authors show microglial expression of the PDGF-D isoform in 

microglia in their study. This difference could however be attributed to differences 

between rodent and human microglia as reported by Smith and Dragunow, 2014 and 

Streit et al., 2014.  

LPS, a confirmed activator of microglial cells, binds to TLR4 and leads to rapid 

activation of various intracellular signalling pathways thus inducing the expression of 

a broad spectrum of endogenous mediators including pro-inflammatory cytokines like 

TNFα; interleukins like IL-6 and IL-1β (Alexander and Rietschel 2001). In this current 

study, following LPS stimulation, an induction of TNFα expression was seen 

confirming microglia activation while significant increases in gene expression of 

PDGFB and PDGFRβ was seen. Also, a significant decrease in expression of PDGFC 

was seen while the expression of PDGFA and PDGFRα were not significantly altered. 

Furthermore, increased expression of both PDGFB and its receptor-β were sustained 

at protein level as seen by significant increases in expression of both proteins using 
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two independent approaches, ICC and WB. Decreased PDGFC expression seems to 

be contrary to expected results given that the PDGF-PDGFR signalling play critical 

role in and induces inflammation (Olson and Soriano 2011; Miyata et al. 2014) as well 

as contributing to a number of inflammatory associated diseases like asthma (Kardas 

et al. 2020), renal interstitial fibrosis (Eitner et al. 2008), and atherosclerosis (He et al. 

2015) to mention a few. 

The co-expression of both PDGF ligands and receptors seen in microglial cells in this 

study is suggestive of autocrine signalling mechanisms. Such autocrine PDGFR 

signalling have been seen in neural progenitor cells, regulating proliferation 

(Erlandsson et al. 2006), in lens epithelium, contributing to lens development through 

the co-expression of PDGFA and PDGFRα (Andrae et al. 2008) and particularly in 

tumour cells where it contributes to their growth and survival (Maxwell et al. 1990; 

Lokker et al. 2002). 

5.3 Effect of PDGF on microglia functional properties 

Microglia is known to be involved in a number of physiological roles, as it relates with 

this study, in surveillance and monitoring with their dynamic processes (Hickman et al. 

2018), migration to sites of injury or neuronal death to phagocytose dying or dead cells 

or other forms of debris (Fuhrmann et al. 2010; Lull and Block 2010; Krasemann et al. 

2017), in regulating host defense against infectious pathogens (Hickman et al. 2018). 

Thus, any functional irregularity causes an imbalance initiating the onset of 

neurodegeneration (Hickman et al. 2018).  

Here, the effect of ligand mediated PDGF receptor activation in microglia were 

assessed on these functional properties in order to characteristically understand 

microglia-PDGFR system interaction. Firstly, results show that PDGF ligands induced 

an amoeboid-like phenotype in BV-2 microglial cells indicating a change in microglia 

homeostasis. Consistent with this finding, a downregulation of the P2ry12 gene was 

seen. P2ry12 is a member of the purinergic receptors, and one of the ‘sensome’ genes 

used by microglia processes to sense changes within their environment and facilitate 

tissue homeostasis (Inoue 2002; Haynes et al. 2006; Hickman et al. 2013; Fourgeaud 

et al. 2016), thus a change in microglia homeostasis results in downregulation of these 

genes (Hickman et al. 2013) as seen in this study. Furthermore, PDGF ligands did not 

significantly affect microglia migration though pro-migratory genes Ccl2, Ccl3 and Ccl5 

were significantly upregulated which should have translated to the needed response. 
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A possible explanation for this could be that PDGF is not a strong stimulant for BV-2 

microglial cells compared to LPS evidently seen by fold changes in pro-inflammatory 

gene expression between PDGF and LPS. Another plausible reason could be that 

PDGF cellular responses have been reported to be independent of gene expression 

and protein synthesis (Andrae et al. 2008).  

Microglia phagocytic activity has been reported to increase upon inflammation in-vivo 

(Sierra et al. 2010; Karlstetter et al. 2014). However, in this study, PDGF ligands did 

not significantly affect microglia phagocytic capacity while phagocytosis related genes, 

Cd36, Trem2, scavenger receptors: Msr1 and Scarb1 were also not significantly 

changed. These chemokines/chemoattractant and phagocytosis related genes are 

amongst the genes involved in house-keeping functions (Hickman et al. 2018). TREM2 

is particularly indispensable for apoptotic cell membrane phagocytosis by microglia 

(Neumann and Takahashi 2007). 

5.4 PDGF induced an inflammatory response in microglia 

During activation, microglial cells release pro-inflammatory mediators that drive 

immune/inflammatory responses (Alexander and Rietschel 2001). As mentioned 

earlier, while these acute neuroinflammatory responses are in general beneficial to the 

CNS, chronic neuroinflammatory responses thus have neurotoxic effects (Czeh et al. 

2011; Bazan 2012).  

Here, the effects of PDGF ligands on inflammatory responses in microglia was 

investigated by assessing pro-inflammatory gene expression. In BV-2 microglial cells, 

all the PDGF ligands used significantly upregulated the expression of pro-inflammatory 

mediators after 3 hours including the expression of Tnfα, the chemokines, Ccl2, Ccl3 

and Ccl5, and the pro-inflammatory enzyme, Cox-2. Ccl2 and Cox-2 (PTGS2) are 

regarded as PDGF target genes (Wu et al. 2008). To further confirm results from BV-

2 microglial cells, primary microglial cells were used as they are more physiologically 

relevant owing to their phenotypic similarities to microglia in-vivo (Stansley et al. 2012). 

Similar results were also seen in primary microglial cells. 

Not only is this result consistent with the numerous studies as mentioned above of 

increased pro-inflammatory gene expression during microglia activation, it is also 

consistent with the results of PDGF induced Ccl2 expression in fibroblast and SMCs  

(Freter et al. 1996; Poon et al. 1996; He et al. 2015) as well as in astrocytes (Bethel-

Brown et al. 2012). 
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5.5 Effect of PDGF-mediated decrease in intracellular ROS levels in 

microglia 

Not only do microglial cells release pro-inflammatory cytokines in the course of being 

activated, they also release neurotoxic factors like ROS (Akundi et al. 2005; Block et 

al. 2007; Bazan 2012; Patro et al. 2016; Takahashi et al. 2016). On the other hand, 

ROS involvement in PDGFR-signalling has been well established since it was firstly 

observed by Sundaresan et al., 1995 where authors reported the induction of 

intracellular ROS levels in VSMCs  by PDGF. Since then, numerous studies have 

looked at ROS involvement in PDGFR-signalling in different cell types (lens epithelial 

cells, VSMCs, fibroblasts) and have reported that PDGF induces ROS production via 

NADPH oxidases (Marumo et al. 1997; Suh et al. 1999; Kreuzer et al. 2003; Chao-

Wei Chen et al. 2004; Spadoni et al. 2015).  

Here, the effect of PDGF ligands on intracellular ROS production in BV-2 microglial 

cells was investigated. However, contrary to the above referenced studies, PDGF 

ligands, specifically, PDGF-BB and -CC decreased total ROS levels in BV-2 microglial 

cells. Thus, to understand the molecular mechanisms involved herein, gene 

expression levels of the Nox/Duox enzymes were assessed. The Nox/Duox enzymes 

(having seven members, Nox-1 to Nox-5, Duox-1 and Duox-2) are the only enzyme 

system that generates ROS in a controlled manner (Kang 2007; X.-J. Fu et al. 2014; 

Sun et al. 2016; Haslund-Vinding et al. 2017). Though, a number of reports (some of 

which have been referenced above) have implicated these enzymes as the probable 

source of ROS in PDGF-stimulated systems, the mitochondria may also produce ROS 

specifically O2
- as by-products of the electron transport chain (ETC) complex I and III 

(Reczek and Chandel 2015; Haslund-Vinding et al. 2017). Of the seven Nox/Duox 

family, only Nox1 and Nox2 gene expression could be detected in BV-2 microglial cells 

while expression of Nox3 and Nox5 genes were not assessed for in this study as 

expression of Nox3 is localised to the inner ear and Nox5 is absent in mice (Bedard 

and Krause 2007). Although the expression of Nox4 has been reported in microglia 

(Haslund-Vinding et al. 2017), it could not be detected in BV-2 microglial cells in this 

present study.  

Here, the expression of Nox1 and Nox2 genes were significantly upregulated following 

PDGF stimulation. First, the induced expression of Nox1 is consistent with reports of 

Suh et al., 1999, of Nox1 being a mitogenic oxidase involved in PDGF induced ROS 

while the expression of Nox2 is also consistent with literature where it is often referred 
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to as phagocytic Nox (Panday et al. 2015) with high expression levels in rodent as well 

as human microglia (Sorce et al. 2014). Likewise, the PDGF induced upregulation of 

Nox2 gene expression seen in this study is in tandem with results of Spadoni et al., 

2015 where induced gene expression of Nox2 enzyme was also seen in skin 

fibroblasts following PDGF stimulation. However, this induced Nox1 and Nox2 gene 

expression levels did not impact on increased ROS production by the PDGF ligands 

in this study, instead, a decrease in ROS levels were seen with PDGF-BB and -CC 

which is consistent with results of Krieger-Brauer and Kather, 1995, where PDGF-BB 

also inhibited NADPH-dependent H2O2 release in 3T3-L1 pre-adipocyte cells. 

However, since the temporal and spatial regulation of enzymes that generate ROS 

and the cellular antioxidant enzymes are responsible for the transient burst observed 

in receptor-dependent intracellular ROS release (Kang 2007), the involvement of the 

anti-oxidant system was investigated by assessing the expression levels of the 

different anti-oxidant enzymes. Of the antioxidant genes assessed, the expression of 

only glutathione reductase (Gsr) and superoxide dismutase 2 (Sod2) were significantly 

upregulated upon PDGF stimulation. While only PDGF-BB significantly upregulated 

the expression of Gsr gene, all four ligands used significantly upregulated Sod2 gene 

expression. Gsr catalyses the reduction of the oxidised form of glutathione (GSSG) to 

the reduced form (GSH) during Gpx-catalysed ROS detoxification when GSH is 

oxidised to GSSG (Hirrlinger et al. 2000). 

While three isoforms of SODs are known to exist (Miller 2012), only SOD1 (cytosolic 

Cu/Zn-SOD), and SOD2 (mitochondrial Mn-SOD) were assessed for in this study as 

SOD3 (extracellular, EC-SOD) is the predominant antioxidant enzyme present 

extracellularly (Marklund 1984). The dismutation of the highly reactive superoxide 

anion (O2
-) into oxygen and the less reactive specie, H2O2 is catalysed by SOD (Kim 

et al. 2015). 

In this study, a significant upregulation of mitochondrial SOD2 but not cytoplasmic 

SOD1 was seen upon PDGF stimulation, an implication that mitochondrial ROS might 

be in play as SOD2 is known to specifically catalyse the dismutation of the superoxide 

anion generated as a by-product of the mitochondrial ETC (Fukai and Ushio-Fukai 

2011), more so that the mitochondrial ETC has been implicated as another source of 

cytosolic ROS (Reczek and Chandel 2015; Haslund-Vinding et al. 2017). However, 

further studies need to be done to confirm the specific contribution of mitochondrial 

ROS in PDGF stimulated BV-2 microglial cells. 
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Overall, an upregulation of the anti-oxidant enzymes seen here seems to be a parallel 

defence response to ongoing cellular oxidative stress (Hirrlinger et al. 2000), in an 

attempt to regulate and maintain the physiological balance with oxidants. However, 

the shift in balance in favour of the anti-oxidant genes overwhelming that of oxidative 

response might be responsible for the overall decrease in cellular ROS levels seen 

with PDGF ligands in this study. 

5.6 Effect of microglia neurotoxicity on neuronal cells 

Phagocytosis of dying or damaged cells have been used to describe reactive microglia 

(Kraft and Harry 2011; Bazan 2012; Perry and Holmes 2014; Patro et al. 2016), in 

addition, Gupta et al., 2003 have shown that in patients with retinal degenerative 

diseases such as AMD and retinitis pigmentosa (RP), reactive microglia have been 

detected in impaired photoreceptors. Not only have these cells been seen to 

phagocytose apoptotic rod cells in a RP mouse model, they also ingested rod cells 

that were stressed but still living which were negative for apoptotic markers (Zhao et 

al. 2015). As such, Karlstetter et al., 2015, opined that the activation of microglia in the 

retina cannot just be viewed as a bystander effect as it contributes actively to the 

apoptosis of photoreceptor cells during retinal degeneration.  

On this basis, the effect of microglial neurotoxicity on 661W photoreceptor cells were 

investigated using cultured conditioned medium from PDGF-treated BV-2 microglial 

cells while measuring caspase-related 661W apoptotic cell death. In this study, PDGF 

ligands were seen to have decreased microglial neurotoxicity on 661W photoreceptor 

cells suggestive that PDGF probably limits microglial production of neurotoxic 

molecules.  

5.7 Role of PDGF receptors and downstream signalling pathway in 

microglia inflammatory responses 

In an effort to determine the role and or contribution of each of the PDGFRs, 

expression of both receptors were investigated in PDGF ligand induced inflammatory 

responses in microglia. Significant upregulation of gene expression levels of β-

receptor but not α-receptor in both BV-2 and primary microglial cells respectively 

suggested an involvement of the β-receptor in PDGF mediated inflammatory 

responses in microglia. This induced gene expression of β-receptor but not α-receptor 

is similar with earlier result in this study where LPS also induced the expression of the 

β- but not the α-receptor further substantiating the involvement of the β-receptor. 
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However, using both pharmacological and genetic approaches, the relative 

contribution of each receptor in these responses could be better understood. Results 

show that antibody blockade of microglial PDGFRβ with APB5 but not blockade of 

PDGFRα with APA5 significantly decreased LPS induced inflammatory responses 

(Tnfα, Il-6 and Il-1β) and PDGF-BB induced chemoattractant gene, Ccl2. This 

decrease in inflammatory responses seen with the pharmacological blockade of 

receptor-β but not receptor-α is however consistent with previous results that have 

been seen in inflammatory associated disease mouse model. Firstly, Hideto et al., 

2001, showed that using the same monoclonal antibody blockers, APA5 and APB5, 

the functional blockade of PDGF receptor-β but not of receptor-α blocked the 

accumulation of VSMCs in fibrous cap lesions in mice deficient in Apolipoprotein E. 

Secondly, Kishi et al., 2018, have also shown that using the same specific blocking 

antibodies, blockade of PDGF receptor-β but not of receptor-α lessened the pulmonary 

fibrosis induced by bleomycin in mice.  

Consistently, siRNA-mediated gene silencing of Pdgfrβ significantly decreased both 

LPS-induced (Il-1β and Ccl2) and PDGF-BB induced (Tnfα and Ccl2) inflammatory 

responses although gene silencing of Pdgfrα also significantly decreased LPS induced 

Ccl2 and PDGF-BB induced Tnfα gene expression while increasing LPS induced Il-1β 

expression. Attenuation of PDGF-BB mediated induction of Ccl2 gene expression 

seen in this present study is in accordance with the result of Bethel-Brown et al., 2012, 

where it was reported that PDGFRβ engagement is important for increase in MCP-1 

(Ccl2) expression induced by PDGF in human astrocytic cells. In this study, authors 

report that PDGFRβ gene silencing attenuated the increased Ccl2 gene expression, 

an effect not seen in non-siRNA controls cells. The reduction in responses seen with 

Pdgfrα gene silencing were not as pronounced as that seen with silencing of Pdgfrβ 

gene as significant differences were seen between these two responses in LPS 

induced expression of chemo-attractant gene, Ccl2.  

Taken together, these results implicate both PDGF receptor-α and -β in LPS and 

PDGF induced inflammatory responses in BV-2 microglial cells, as such the relative 

contribution of each of the receptors in these responses could not be substantiated, 

perhaps, a third approach would be needed. 

Despite that the relative contribution of each receptor could not be delineated, results 

from the pharmacological inhibition cannot be completely overlooked as the most and 

highly specific way to block or inhibit PDGFR signalling is by inhibition extracellularly 
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either with antibodies (as was done in this present study with monoclonal antibodies) 

or with dominant-negative ligands (Andrae et al. 2008; Chen et al. 2013). This 

approach of extracellular targeting of PDGFRs have been successfully used in studies 

that served as a foundation for several other pre-clinical and clinical studies. Jo et al., 

2006, one of the very first studies, tested the combination of PDGFRβ-blocking 

antibody (APB5) and anti-VEGF DNA aptamer in a corneal and choroidal 

neovascularization model and found that this combination in comparison with anti-

VEGFA monotherapy was more effective in regressing vessels at sites of new vessel 

growth. Similarly, Strittmatter et al., 2016, showed that the blockade of pericyte 

function in a mouse model of AMD with neutralising PDGFRβ-antibodies caused a 

reduction in CNV. 

While siRNA-mediated gene silencing is a highly robust technique to research a cell’s 

loss-of-function effect, this technique is limited by its unspecificity and off-target effects 

are a common occurrence (Lin et al. 2005). Such off-target effects might be 

responsible for the significant upregulation seen with Il-1β gene expression upon 

PDGFRα gene silencing as this result seems to deviate from the trend when compared 

to other pro-inflammatory cytokines. More so that the expression of the Pdgfrα gene 

was not significantly affected upon microglia activation either with LPS or with the 

PDGF ligands. Off-target effects of gene knock-down has been reported to involve 

several mechanisms which includes; the use of high siRNA concentrations causing a 

total up- or down-regulation of genes (Persengiev et al. 2004; Semizarov et al. 2004), 

the degradation of mRNA caused by partial sequence complementation (Jackson et 

al. 2003) and miRNA-like translational inhibition (Saxena et al. 2003; Zeng et al. 2003; 

Scacheri et al. 2004). 

PDGFs, via their two receptors, alpha and beta, trigger a number of intracellular 

signalling pathways (Andrae et al. 2008; Ostendorf et al. 2012; Heldin and 

Lennartsson 2013), however, activation of the MAPK and the PI3K/Akt pathway are 

the two most characterised pathways through which cellular responses are being 

mediated (Li et al. 2007). In this study, the ERK, JNK, and p38 MAPK and the PI3K/Akt 

pathways were evaluated for their involvement in PDGF-mediated inflammatory 

responses in BV-2 microglial cells. First, results show significant increases in 

phosphorylation of Akt, ERK, JNK but not P38 upon PDGF-BB stimulation in a time-

dependent manner. Second, the functional relevance of the phosphorylated proteins 

were investigated. Using small molecule kinase inhibitors, the PDGF-mediated 
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induction of pro-inflammatory cytokines were significantly attenuated thus clearly 

defining a role for ERK, JNK MAPKs and PI3K/Akt signalling pathway.  

Phosphorylation of the MAPKs and Akt mediated by PDGF-BB and the subsequent 

blocking of these pathways which attenuated PDGF-mediated inflammatory 

responses is in accordance with similar results that have been reported in other cell 

types including astrocytes, and SMCs (Bethel-Brown et al. 2012; Zhang et al. 2015) 

to mention a few. 
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CHAPTER SIX: CONCLUSION AND PERSPECTIVE 

PDGFR signalling plays a fundamental regulatory role in microglia where these results 

provide the first evidence of the direct association and interaction between them. Most 

of the studies involving PDGFR signalling have been done in smooth muscle cells and 

fibroblasts. 

Results presented herein is indicative of PDGFR autocrine signalling in microglia as 

seen by the expression of both ligands and receptors. Ligand-mediated activation of 

PDGFR induced an activation state in microglia as seen by morphological changes 

accompanied by the release of pro-inflammatory mediators. However, whether this 

activation state is sufficient to sustain a prolonged inflammatory response is unknown 

as results from other functional assays that define “microglia activation” such as an 

increase in ROS and neurotoxicity were utterly opposite.  

While the complex interplay between several signalling pathways in microglia is of 

utmost importance, their individual roles cannot be downplayed. As such, a detailed 

characterisation of PDGFR signalling in microglia is therefore warranted beyond in-

vitro studies. This characterisation will adequately address its role during microglia 

homeostatic and activation state. It will also provide useful information in pathological 

conditions like nAMD, where the involvement of both systems has been implicated. 
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Appendix figure 1 Primary microglial cells. 

(A) Immunostaining for Iba1 protein (Green), nuclei stained with DAPI (blue). (B and 

C) Quantitative PCR data of gene expression levels of Cox-2 and Tnfα in PDGF-BB 

treated cells pre-treated with inhibitors for MEK1/2 inhibitor - U0126, PI3K - LY294002, 

and JNK - SP600125. Data are presented as mean ± SD of two independent 

experiments measured in duplicates (N=4). **p≤ 0.01, ****p≤ 0.0001 compared to 

PDGF-BB treated group (red bar). One-way AVOVA with Sidak’s multiple comparison 

test.  

 

 
Appendix figure 2 MTT cell viability assay in BV-2 microglial cells. 

Percentage cell viability of BV-2 microglial cells following; (A and B) 48 hours treatment with 

increasing concentrations of PDGFR-α and -β blocking antibodies, APA5 and APB5 

respectively. Data are presented as mean ± SD of three independent experiments 

measured in triplicates (N=9). C - control: untreated cells, V - vehicle: DPBS (C) 4 

hours treatment with kinase inhibitors. Data are presented as mean ± SD of two to three 

independent experiments measured in triplicates (N=6-9). C - control: untreated cells, 

V - vehicle: 0.03% DMSO, U0 - U0126 (MEK1/2 inhibitor), LY - LY294002 (PI3K 

inhibitor) and SP - SP600125 (JNK inhibitor).  

No significant differences were seen between the treatment and control group (red 

bar). One-way AVOVA with Dunnett’s multiple comparison test. 
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Appendix figure 3 Effect of PDGF on BV-2 microglia phagocytic capacity. 

(A) Representative micrograph of CM-Dil-stained apoptotic 661W photoreceptor 

debri phagocytosed by control and PDGF-treated BV-2 microglial cells. 661W debri 

(Orange), microglial cell nuclei stained with DAPI (blue). (B) Quantification from two 

experiments in duplicates (N=4). The ratio of phagocytosed 661W photoreceptor 

debris (background-corrected red signal) relative to the total microglial cell number 

(background corrected DAPI signal) was determined using Image J software and 

values expressed as percentages. No significant differences were seen between 

treatment and control group, one-way AVOVA with Dunnett’s multiple comparison test. 

Control - 0.1% BSA in DPBS. 
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