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Zusammenfassung 
Im Rahmen dieser Arbeit wurden zwei Ansätze genutzt, um neue Einblicke bezüglich der 
Identität und molekularen Regulation inhibitorischer Interneurone im Gehirn zu erlangen. 
Zum einen wurde eine generelle molekulare Charakterisierung GABAerger Interneuron-
Subpopulationen durchgeführt, zum anderen wurden neue Regulatoren der Bulbus Olfaktorius 
Interneuron-Differenzierung identifiziert und funktionell analysiert. 
 
GABAerge Neurone, die häufigsten inhibitorischen Nervenzellen im Gehirn, sind essentiell 
für die korrekte Informationsverarbeitung im zentralen Nervensystem. Während die große 
Mehrheit dieser Zellen lokal projizierende Interneurone sind, findet man in einigen Arealen 
wie dem Striatum auch GABAerge Projektionsneurone. Bisher wurden GABAerge Neurone 
anhand einiger biochemischer, morphologischer und elektrophysiologischer Eigenschaften 
charakterisiert. Da aber keine strikte Korrelation zwischen diesen Faktoren existiert, gelang es 
bisher nicht, Subpopulationen GABAerger Zellen systematisch zu unterteilen.  
Im ersten Teil dieser Arbeit wurden die generellen molekularen Eigenschaften GABAerger 
Neurone analysiert und Unterschiede zwischen verschiedenen Hirnarealen definiert. Dazu 
wurden fluoreszent markierte GABAerge Neurone aus transgenen GAD67-GFP Mäusen mit 
Hilfe der FACS Technologie aus dem gesamten Hirn sowie den definierten Arealen Bulbus 
Olfaktorius, Cortex, Striatum und Cerebellum isoliert. Anschließend wurden Proteom- sowie 
Genexpressions-Analysen durchgeführt, die mit Hilfe von in situ Hybridisierungen und 
qPCRs validiert wurden. Neue intrazelluläre und Zelloberflächen-Marker sowie Gene, die 
vermutlich wichtig für die Entwicklung und Funktionalität GABAerger Neurone sind, wurden 
identifiziert. Korrelations- und Clusteranalysen zeigten insbesondere Unterschiede zwischen 
Zellen des Vorder- und Hinterhirns auf. Während GABAerge Neurone des Vorderhirns 
hauptsächlich durch drei Familien von Transkriptionsfaktoren, der Distal-less-Familie, der 
POU-Familie und der ETS/FOX-Familie, charakterisiert waren, definierten spezifische 
Transkriptionsfaktoren der ZIC- und LHX-Familien inhibitorische Hinterhirn-Neurone. 
 
Interneurone des Bulbus Olfaktorius werden zeitlebens durch adulte neuronale Stammzellen 
in der Subventrikulär-Zone generiert. Die molekularen Mechanismen der terminalen 
Differenzierung dieser Zellen sind bisher allerdings nur ansatzweise verstanden. 
Definierte Differenzierungsstadien dieser Interneurone sowie ihrer Vorläuferzellen wurden 
mit Hilfe magnetischer Zellisolierung nach Mikrodissektion von periglomerulärem 
beziehungsweise subventrikulärem Gewebe isoliert. Durch Genexpressions-Analysen wurde 
eine Reihe von Kandidaten identifiziert, die vermutlich an der Differenzierung olfaktorischer 
Interneurone beteiligt sind. Zwei dieser Gene, NeuroD1 und NeuroD2, wurden auf ihre 
funktionelle Relevanz in vivo hin untersucht. Mit Hilfe der in vivo Elektroporation wurde die 
Überexpression dieser Transkriptionsfaktoren in Stamm-, Vorläufer- sowie ausdifferenzierten 
Zellen induziert. Dabei konnte gezeigt werden, dass die starke Expression von NeuroD2 eine 
verzögerte Differenzierung GABAerger Interneurone des Bulbus Olfaktorius bewirkt. Im 
Gegensatz dazu war die Überexpression von NeuroD1 ausreichend, um eine vorzeitige und 
ektopische Differenzierung von Vorläuferzellen entlang ihrer tangentialen Migrationsroute 
sowie im Striatum auszulösen. Diese Überexpression führte weiterhin hochspezifisch zur 
Ausbildung eines Dopaminergen Neurotransmitter-Phänotyps, woraus eine zentrale Rolle von 
NeuroD1 für die Spezifizierung bifunktionaler GABA/Dopamin-positiver Interneurone 
hervorgeht. 
 
Im Rahmen dieser Studie wurde eine umfassende molekulare Basis für das Verständnis 
räumlich und zeitlich definierter GABAerger Neurone bereitgestellt. Weiterhin wurden Gene 
identifiziert, die zentrale Funktionen während der Differenzierung inhibitorischer Interneuron-
Subpopulationen übernehmen. 
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Abstract 
In this project two approaches have been used to gain insights into the identity and molecular 
regulation of interneurons in the brain. First, a general molecular characterization of 
GABAergic neuron subtypes has been performed and second, novel fate determinants 
specifically for olfactory bulb interneurons have been identified and investigated in detail. 
 
GABAergic neurons, the largest population of inhibitory neurons in the brain, play crucial 
roles in information processing. While most of these neurons are interneurons, some, for 
example in the striatum, represent projection neurons. So far, biochemical, morphological, 
and electrophysiological properties served as exclusive criteria for the classification of 
GABAergic neurons. Although these parameters allow for a partial description of 
subpopulations, a systematic dichotomy is not available.  
Therefore, the general molecular characteristics of GABAergic neurons were analyzed and 
differences among distinct brain regions were defined. Transgenic GAD67-GFP mice in 
concert with flow cytometric cell sorting were used to isolate GABAergic neurons from 
defined regions of the postnatal mouse brain, namely olfactory bulb, cortex, striatum and 
cerebellum. Subsequently, gene expression profiling as well as cell surface proteome analysis 
were carried out and identified genes were validated by in situ hybridization and qPCR. 
Potential new marker genes for GABAergic neurons and candidate factors necessary for their 
differentiation and general functionality were determined. Clustering of gene expression data 
revealed major differences between hind- and forebrain GABAergic neurons indicating a 
correlation between their development and localization. For example, while GABAergic 
neurons of the forebrain are characterized mainly by three groups of transcription factors, 
namely the Distal-less-family, the POU-family and the ETS/FOX-family; specific members 
of the ZIC- and LHX-family define hindbrain inhibitory neurons. 
 
Olfactory bulb interneurons are generated throughout live by adult neuronal stem cells 
localized in the subventricular zone. While considerable information is available concerning 
the generation and migration of these cells, the molecular mechanisms regulating their 
terminal differentiation are barely understood. 
Therefore, mature interneurons from the periglomerular layer and their specific precursors 
were isolated by microdissection and magnetic cell sorting. Gene expression analysis was 
performed by microarray analysis. Several candidate factors to be involved in the 
differentiation of olfactory bulb interneurons were identified. The bHLH transcription factors 
NeuroD1 and NeuroD2 were analyzed for their functional relevance in vivo. Using in vivo 
electroporation, overexpression of these transcription factors was induced in postnatal 
forebrain stem cell populations as well as their progeny, namely neuronal precursors and 
mature neurons of the olfactory system. It was shown that high expression of NeuroD2 
delayed the differentiation of Type A neuronal precursor cells into granule- and 
periglomerular neurons. In contrast, overexpression of NeuroD1 induced the premature and 
ectopic differentiation of precursor cells. Furthermore, NeuroD1 induced specifically a 
dopaminergic phenotype, indicating that it represents a novel key fate determinant for the 
specification of periglomerular interneurons, possibly with a GABA/dopamine bifunctional 
neurotransmitter phenotype. 
 
In conclusion, this study represents a comprehensive molecular basis for the understanding of 
spatially as well as temporally defined GABAergic neuron subpopulations and led to the 
identification of novel fate determinants for the differentiation of inhibitory interneuron 
subpopulations. 
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Abbreviations 
 
bp       Base pair(s) 
BrdU       5-Bromo-2-deoxyuridine 
BSA       Bovine serum albumin 
cDNA        Copy DNA 
CNS       Central nervous system 
dATP       Deoxyadenosine triphosphate 
dCTP       Deoxycytosine triphosphate 
dGTP       Deoxyguanosine triphosphate 
DMEM      Dulbecco’s modified Eagle’s medium 
DNA       Deoxyribonucleic acid 
dNTP       Deoxyribonucleotid triphosphate 
dTTP       Deoxythymidine triphosphate 
E       Embryonic day 
ECM       Extracellular matrix 
EPL       External plexiform layer 
FACS       Fluorescence-activated cell sorting 
FCS       Fetal calf serum 
GABA       γ-aminobutyric acid 
GCL       Granule cell layer 
GO       Gene Ontology 
h       Hour(s) 
HBSS       Hank’s Balanced Salt Solution 
IPL       Internal plexiform layer 
LV       Lateral ventricle 
MACS       Magnetic cell separation 
MCL       Mitral cell layer 
min       Minute(s) 
mRNA       Messenger RNA 
NSC       Neural stem cell(s) 
OB       Olfactory bulb 
P       Postnatal day 
PBS       Phosphate-buffered saline 
PCR       Polymerase chain reaction 
PGL       Periglomerular layer 
qPCR       Quantitative real-time PCR 
RMS       Rostral migratory stream 
RNA       Ribonucleic acid 
RT       Room temperature 
SAM       Serial analysis of microarrays 
sec       Second(s) 
SGZ       Subgranular zone 
SVZ       Subventricular zone 
U       Unit(s) 
VZ       Ventricular zone 
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1 Introduction 

1.1 GABAergic neurons: function and diversity 

Gamma-aminobutyric acid (GABA) represents the main inhibitory neurotransmitter in the 

adult mammalian brain (Owens and Kriegstein, 2002b). It was identified over half a century 

ago (Awapara et al., 1950). In vertebrates, GABA is synthesized from glutamate (Roberts and 

Frankel, 1950), which is the main excitatory neurotransmitter in the central nervous system. 

Two glutamic acid decarboxylase (GAD) enzymes, GAD65 and GAD67, catalyze this step 

(Erlander et al., 1991; Erlander and Tobin, 1991). Whereas GAD67 is more generally 

distributed among GABAergic neurons, GAD65 predominates in the visual and the 

neuroendocrine systems (Feldblum et al., 1993). Subsequent to its synthesis, GABA is 

transported into synaptic vesicles by the vesicular neurotransmitter transporter VGAT (Fon 

and Edwards, 2001). Upon activation of the cell, GABA is released into the synaptic cleft 

where it can bind to pre- or postsynaptically localized GABAA, GABAB or GABAC receptors 

(Fig. 1.1). While GABAA and GABAB receptors are found throughout the brain, GABAC 

receptors are predominantly expressed in the vertebrate retina (Bormann and Feigenspan, 

1995). GABAA and GABAC receptors are ionotropic, meaning that upon binding of GABA a 

chloride specific ion pore is opened, which results in a direct hyperpolarization of the target 

cell (Bormann, 2000). In contrast, GABAB receptors are metabotropic, mediating their 

downstream effect by activating a heterotrimeric G-protein coupled signaling cascade and 

therefore induce a slower but more persistent inhibition by modulation of either presynaptic 

calcium or postsynaptic potassium currents (Bormann, 1988). Subsequently, a reuptake of 

GABA by GABA transporters (GATs), localized in the plasma membrane of surrounding 

glial and neuronal cells, terminates the signaling (Cherubini and Conti, 2001). After 

transamination of GABA, catalyzed by the enzyme GABA-T, it is metabolized in the 

tricarboxylic acid cycle (Madsen et al., 2008; Palmada and Centelles, 1998). 

 

As nearly all organisms from bacteria to humans synthesize GABA, multiple functions of this 

amino acid have evolved (Elliott and Hobbiger, 1959; Morse et al., 1980; Owens and 

Kriegstein, 2002a), including the regulation of key developmental steps, like cell proliferation 

and circuit refinement (Owens and Kriegstein, 2002b). 

However, the most important role of GABA is its function as a neurotransmitter. 

Interestingly, while GABA acts exclusively as an inhibitory neurotransmitter in the adult 

brain, it can function also as an excitatory neurotransmitter during development. In 
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developing neurons, the intracellular chloride concentration is much higher than in mature 

neurons (Ben-Ari et al., 1989). Therefore, activation of GABAA receptors induces an efflux of 

chloride resulting in membrane depolarization that can directly evoke an action potential 

discharge in some cases (Chen et al., 1996). During cortical development, GABAA, GABAB 

and GABAC mediated signaling induces the modulation of proliferation, migration as well as 

differentiation (Owens and Kriegstein, 2002b). In addition, nonsynaptic GABA signaling 

from neuroblasts towards GFAP expressing neuronal stem cells during adult neurogenesis in 

the subventricular zone inhibits proliferation of these stem cells (Liu et al., 2005). 

 

 
Figure 1.1: GABA signaling and metabolism 
Schematic diagram of GABA metabolism and synaptic signaling. GABA is synthesized from glutamate 

via decarboxylation catalyzed by the enzymes GAD65 or GAD67and transported into synaptic vesicles 

by the vesicular neurotransmitter transporter VGAT. Upon activation of the cell, GABA is released into 

the synaptic cleft where it can bind to pre- or postsynaptically localized GABAA, GABAB or GABAC 

receptors. GABAA and GABAC receptors are ionotropic, whereas GABAB receptors are metabotropic. 

GATs (GABA transporters), localized in the plasma membrane of surrounding glial and neuronal cells, 

are responsible for the reuptake of GABA. After transamination of GABA, catalyzed by the enzyme 

GABA-T, it is metabolized in the tricarboxylic acid cycle. Modified from Owens and Kriegstein (Owens 

and Kriegstein, 2002b). 
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GABAergic neurons (Tab. 1.1) are defined as group of neurons using GABA as their primary 

neurotransmitter. Functioning mainly as inhibitory neurons, they play a crucial role in 

information processing by regulating the activity of other neurons. Their essential role for 

correct brain function becomes apparent as the loss or malfunction of these neurons results in 

the development of neurological diseases like Huntington’s disease or Schizophrenia (Bossy-

Wetzel et al., 2004a; Hashimoto et al., 2003). GABAergic neurons show a high degree of 

anatomical, electrophysiological and synaptic diversity (Blatow et al., 2005; Markram et al., 

2004). Historically defined, GABAergic neuron subtypes were classified and named 

according to their morphology and localization (Tab. 1.1). Whereas GABAergic cells 

represent local projecting interneurons in most brain regions, there are also GABAergic 

projection neurons in the striatum, which build up long range axonal innervations of the 

globus pallidus externa and substantia nigra (Flames and Marin, 2005; Lobo et al., 2006). 

Research over the past decades lead to further classification of these cells with respect to the 

expression of marker genes as well as their electrophysical properties. The calcium binding 

proteins Calbindin (CB), Parvalbumin (PV) and Calretinin (CR) as well as the neuropeptides 

Vasoactive intestinal peptide (VIP), Somatostatin (SST), Cholecystokinin (CCK) and 

NeuropeptideY (NPY) are differentially expressed among GABAergic neuron subtypes 

(Markram et al., 2004). Furthermore, a remarkable variety of receptors, especially AMPA-, 

NMDA-, Metabotropic glutamate-, GABAA, 5-HT3- and nicotinic receptors, complexes their 

diversity (Blatow et al., 2005). The interaction of these proteins as well as so far unidentified 

factors allow for a broad pattern of electrophysiological properties. Non-accommodating, 

accommodating, stuttering, bursting and irregular spiking are the five major 

electrophysiological classes among neocortical interneurons (Markram et al., 2004). Although 

all these parameter allow for a valuable, detailed and partly functional description of different 

GABAergic neurons, there is no clear correlation among these characteristics and a systematic 

dichotomy of defined subclasses is still lacking. 
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Table 1.1: Major GABAergic neuron subtypes 
    

    

Olfactory bulb Cortex Striatum Cerebellum 
    

    

Periglomerular neuron Chandelier neuron Striatopallidal medium  Purkinje neuron 
  spiny neuron  
Granule neuron Large basket neuron  Stellate neuron 
  Striatonigral medium   
 Nest basket neuron spiny neuron Basket neuron 
    
 Small basket neuron  Golgi neuron 
    
 Double bouquet neuron   
    
 Bipolar neuron   
    
 Bitufted neuron   
    
 Martinotti neuron   
    
 Cajal Retzius neuron   
    
 Neurogliaform neuron   

    

    

 

 

1.1.1 GABAergic neurons of the olfactory bulb 

Two main subtypes of GABAergic neurons are found in the olfactory bulb. Both 

subpopulations, namely periglomerular layer interneurons and granule neurons, are named 

according to their localization in the periglomerular- or granule layer of the olfactory bulb 

(see also Fig. 1.4). The periglomerular layer contains glomeruli, which are build up of 

globular tangles of axons and represent the region where axons from olfactory receptor 

neurons, localized in the olfactory epithelium, and dendrites from mitral and tufted neurons, 

projecting to the olfactory cortex, are connected (Ache and Young, 2005). Each glomerulus 

contains the axons of olfactory receptor neurons that express the same odorant receptor 

(Treloar et al., 2002). Therefore, it has been hypothesized that each odor is spatially mapped 

in the glomerular layer (Lledo et al., 2005). 

In contrast to previous data, which claimed that only a subpopulation of periglomerular layer 

interneurons are GABAergic, recent studies have shown that all of these cells indeed use 

GABA as neurotransmitter (Panzanelli et al., 2007). However, about 16% of periglomerular 

layer interneurons show a bifunctional GABAergic/dopaminergic neurotransmitter phenotype 

(Panzanelli et al., 2007; Parrish-Aungst et al., 2007). Further non overlapping subpopulations 

of these cells express either the calcium binding proteins Calbindin (14%) or Calretinin 
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(44%). Periglomerular interneurons establish intra- as well as interglomerular connections and 

therefore play a key role during the first step of olfactory processing (Lledo et al., 2005). 

Complex neuronal interactions via chemical synapses as well as gap junctions between 

periglomerular interneurons and mitral-, tufted- and olfactory receptor neurons are found 

(Kosaka and Kosaka, 2005). In general, upon activation of an interneuron by one of these 

cells, it triggers feedback- as well as lateral inhibition to the surrounding neurons via a rare bi-

directionality, dendro-dendritic class of synapses (Kosaka and Kosaka, 2005). 

Granule cells of the olfactory bulb connect to mitral and tufted cells via bi-directional, 

dendro-dendritic synapses (Arevian et al., 2008). Upon release of the excitatory 

neurotransmitter glutamate by mitral or tufted cells, the granule cell is activated and releases 

GABA, thereby inhibiting the initial as well as neighboring mitral and tufted cells (Ache and 

Young, 2005; Schoppa and Urban, 2003). 

In conclusion, both systems trigger feedback- as well as lateral inhibition to mitral- and tufted 

neurons. The general function of lateral inhibition is to enhance contrast, facilitate 

discrimination of similar stimuli, and mediate competitive interactions between active neurons 

(Hirsch and Gilbert, 1991). This probably increases the discrimination of similar odors and 

advantage strong versus intermediate and weak signals (Urban, 2002). 

One special feature of granule as well as periglomerular layer interneurons is the generation 

and replacement of these cells throughout live by adult neurogenesis (Lledo and Saghatelyan, 

2005), which is described in detail in chapter 1.2. 

 

1.1.2 GABAergic neurons of the cortex 

The cortex forms up to 80% of the mammalian brain and is essential for higher brain 

functions like memory, attention, perceptual awareness, thought, language and consciousness. 

This area harbors a huge amount of diverse GABAergic interneuron subtypes. More than 10 

morphological defined classes are localized in this area. However, the overall amount of 

GABAergic interneurons is outnumbered by pyramidal cells in cortical regions by 

approximately 10-fold (Peters et al., 1985). Despite their huge variety, cortical interneurons 

also have common features that distinguish them from pyramidal neurons. The majority of 

mature interneurons has aspiny dendrites and can receive excitatory as well as inhibitory 

synapses onto their somata. Furthermore, the axons of inhibitory neurons usually arborize 

within a cortical column and can project laterally across columns, but do not typically project 

down into the white matter to contact distant brain regions (Markram et al., 2004). 



Introduction 
   

6 

The major subclasses, which are listed in table 1.1, can be grouped according to their axonal 

aborization as interneurons seem to be particularly specialized to target different domains of 

neurons, different layers of a column and different columns (Markram et al., 2004). Thereby, 

they can be functionally divided into axon-targeting (Chandelier neuron), soma- and proximal 

dendrite-targeting (Nest basket-, Large basket- and Small basket neuron), dendrite-targeting 

(Double bouquet-, Bipolar-, Neurogliaform- and Bitufted neuron), and dendrite and tuft-

targeting (Cajal Retzius- and Martinotti neuron) interneurons (DeFelipe, 1997). Expression of 

the calcium binding proteins Calbindin, Parvalbumin and Calretinin as well as the 

neuropeptides Vasoactive intestinal peptide, Somatostatin, Cholecystokinin and 

NeuropeptideY further divides these anatomically defined classes into subpopulations. Most 

anatomical classes express several of these markers, but there are also excluded combinations. 

For example, Large basked cells never express Vasoactive intestinal peptide, whereas Double 

bouquet cells do not express Parvalbumin, Somatostatin or NeuropeptideY (Markram et al., 

2004). The observation of at least 15 distinct electrophysiological patterns further complexes 

the situation for an appropriate sorting of these cells into groups, especially, as no strict 

correlation among these characteristics exists (Markram et al., 2004; Monyer and Markram, 

2004). 

As the cortex processes many different higher brain functions, the huge diversity of inhibitory 

interneurons in this area may be necessary to provide sufficient sensitivity, complexity and 

dynamic range to match excitation regardless of the intensity and complexity of the stimulus. 

The synaptic diversity might be further crucial to secure the dynamic range and to 

choreograph moments of imbalance between excitation and inhibition in the context of any 

background (Silberberg et al., 2004). Subtypes with diverse electrophysiological properties 

could be driven by the need of interneurons to monitor and respond to many sources of 

excitatory input, like those from the same layer, the adjacent layer, neighboring columns, 

other neocortical regions, the opposite hemisphere as well as subcortical input (Markram et 

al., 2004). 

The developmental mechanisms underlying this wide range of interneuron diversity are still 

barely understood (Fig. 1.2). One factor is the existence of several origins for these neurons 

(Parnavelas et al., 2002; Parnavelas et al., 2000). Although initial studies focused on the 

lateral ganglionic eminence as source for cortical interneurons (Anderson et al., 1997), recent 

data claims that the medial ganglionic eminence is the primary source of these cells (Wonders 

and Anderson, 2005). Several observations also support the hypothesis that a minor 

population of cortical GABAergic neurons originates from the lateral ganglionic eminence 
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and, like cortical projection neurons, from the cortex itself (Wonders and Anderson, 2005). 

There is a number of correlations among the origin and later subtype of these interneurons. 

Whereas Parvalbumin expressing interneurons exclusively and Somatostatin expressing 

interneurons mainly originate from the medial ganglionic eminence, Calretinin positive cells 

are largely derived from the lateral ganglionic eminence (Wonders and Anderson, 2006). 

Furthermore, it was shown that the combinatory expression of DLX1, DLX2, DLX5, DLX6, 

NKX2.1, LHX6 and ER81 in combination with general position inputs can define the fate of 

cortical interneuron subtypes during embryonic development (Wonders and Anderson, 2006).  

 

 
Figure 1.2: Origins of cortical interneuron subpopulations 
Parvalbumin expressing cortical interneurons exclusively and Somatostatin expressing interneurons 

mainly originate from the medial ganglionic eminence (blue). Calretinin positive cells are largely 

derived from the lateral ganglionic eminence (green and red). In addition, also olfactory bulb 

interneurons are generated by stem cells localized in the dorsal part of the lateral ganglionic eminence 

(red) during development. The arrows indicate the migration path of newly generated interneuron 

precursors. Modified from Wonders and Anderson (Wonders and Anderson, 2005). Abbreviations: 

OB = olfactory bulb; CTX = cortex 

 

 

1.1.3 GABAergic neurons of the striatum 

The striatum, the largest component of the basal ganglia, is a key regulator for planning and 

modulation of movement. In contrast to other brain areas, where GABAergic neurons 

represent mainly local projecting interneurons, those of the striatum are GABAergic 

projection neurons innervating distant areas of the brain. However, there is also a minor 

fraction (< 2%) of GABAergic interneurons in the striatum, expressing either Parvalbumin, 

Somatostatin or Calretinin (Marin et al., 2000). Two morphologically indistinguishable and 

mosaically distributed subpopulations of GABAergic projection neurons are found in this area 

and defined by their target region (Lobo et al., 2006). The Striatopallidal medium spiny 
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neuron innervates the globus pallidus externa, whereas the Striatonigral medium spiny neuron 

innervates the substantia nigra (Gerfen, 1992). 

Current models of striatal function suggest that these two pathways provide balanced but 

antagonistic influences on the basal ganglia output. The Striatonigral (direct) pathway 

promotes movement, whereas the Striatopallidal (indirect) pathway inhibits movement 

(Graybiel, 2000). The functional imbalance of these pathways leads to a variety of movement 

disorders, like Huntington’s disease, Parkinson’s disease, Tourette syndrome and dystonia 

(DeLong, 1990). The specific loss of striatal GABAergic projection neurons probably 

represents the initial reason for the development of Huntington’s disease (Beal and Ferrante, 

2004). Therefore, the in vitro differentiation and subsequent transplantation of GABAergic 

neurons from multipotent neural stem cells is one promising approach for cell replacement 

therapies of this disease (Bosch et al., 2004). 

There is considerable agreement that the lateral ganglionic eminence is the origin of striatal 

projection neurons (Deacon et al., 1994), whereas less is known about the origin of striatal 

interneurons. The actual model proposes that both cell types originate from the lateral 

ganglionic eminence, with radially migrating cells generally become projection neurons, 

whereas tangentially migrating cells mainly form interneurons of the striatum and cerebral 

cortex (Marin et al., 2000). 

 

1.1.4 GABAergic neurons of the cerebellum 

The cerebellum is part of the hindbrain and plays a crucial role in integration of sensory 

perception and motor control. However, recent studies have demonstrated that the cerebellum 

influences also cognitive functions such as planning, verbal fluency, abstract reasoning, 

prosody and use of correct grammar in humans (Fine et al., 2002). The by far most frequent 

neurons in the cerebellum are glutamatergic granule cells, the overall most abundant cell type 

of the mammalian central nervous system constituting up to 80% of all brain cells (Fine et al., 

2002). However, this area harbors several subtypes of GABAergic neurons in distinct layers. 

Purkinje cells, like GABAergic projection neurons of the striatum, build long range axons to 

innervate the deep cerebellar- and vestibular nuclei in the brainstem (Huang et al., 2007). 

These cells receive excitatory input from cerebellar glutamatergic granule neurons via parallel 

fibers and from the inferior olivary nucleus via climbing fibers (Huang et al., 2007). A single 

Purkinje cell can receive input from 100,000 to 200,000 parallel fibers. Stellate- and basket 

cells are GABAergic interneurons localized in the molecular layer of the cerebellum. The 

stellate cell axons selectively innervate Purkinje cell dendrites, whereas basket cells project 
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exuberant axon terminals to the axon initial segments to form pinceau synapses (Sotelo, 

1990). Finally, golgi cells that are localized in the granule cell layer locally project to 

surrounding granule cells (Eccles et al., 1966; Schulman and Bloom, 1981). 

The function of GABAergic neurons in the cerebellum is mainly to regulate synaptic 

integration, probability and timing of action potential generation, and plasticity in principal 

neurons in order to refine sensory perception and motor control (Huang et al., 2007). 

Despite their variety, different types of cerebellar GABAergic neurons all derive from a 

subset of ventricular zone cells, which migrate in the white matter and proliferate up to the 

postnatal life span (Leto et al., 2006). 

 

1.2 Adult neurogenesis 

In contrast to the historical view that the brain is a static organ and existing neurons can not 

be replaced by new cells after birth (Ramon, 1952), post-developmental neurogenesis has 

been shown across species from crustaceans, birds and mammals up to humans (Lledo et al., 

2006). Interestingly, the degree of postnatal neurogenesis decreases with increasing brain 

complexity. Adult neurogenesis in lower vertebrates, such as lizards, provides an additional 

supply of neurons capable of regenerating entire brain parts, whereas in mammals adult 

neurogenesis is restricted to only a few regions, where it provides neuronal replacement 

(Lledo et al., 2006). This may be due to the problems of more difficult integration for 

newborn neurons in highly complex systems (Kempermann et al., 2004). It is widely accepted 

that two areas in the mammalian brain, namely the subgranular zone (SGZ) of the 

hippocampal dentate gyrus and the subventricular zone (SVZ), show adult neurogenesis 

(Fig. 1.3). The existence of constitutive neurogenesis in other brain areas, such as the 

substantia nigra, is discussed controversially (Frielingsdorf et al., 2004; Zhao et al., 2003). 

Granule cells of the dentate gyrus are generated throughout live by neuronal stem cells of the 

SGZ (Ming and Song, 2005). These cells are excitatory glutamatergic microneurons, 

projecting to the CA3 area of the Hippocampus. In contrast, inhibitory GABAergic 

interneurons of the olfactory bulb are generated by adult neuronal stem cells localized in the 

SVZ (Lledo and Saghatelyan, 2005). This system of adult neurogenesis was found in many 

mammalian species, including mice, rats and apes (Curtis et al., 2007a). However, whereas 

the existence of adult neuronal stem cells in the human SVZ is widely accepted, there is an 

ongoing discussion based on controversial data about the existence of adult neurogenesis in 

the human olfactory bulb (Curtis et al., 2007b; Sanai et al., 2004). 
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The function of neurogenesis during adulthood is not fully understood. It was suggested that 

the cellular function of adult born neurons might differ from that of their older counterparts 

(Lledo et al., 2004). For example, young granule cells in the adult dentate gyrus show a 

greater propensity for synaptic plasticity compared to older granule cells (Snyder et al., 2001). 

Newborn granule and periglomerular cells in the olfactory bulb show markedly different 

active membrane properties and greater plasticity in response to sensory deprivation 

compared with the existing neurons around them (Carleton et al., 2003; Saghatelyan et al., 

2005). However, it is not known, if adult-born cells only replace each other or if they also 

replace much older neurons (Lledo et al., 2006). The ongoing neurogenesis in the olfactory 

bulb probably enlarges the possibility of this system for building up new neuronal circuits in 

order to allow an increased adaptation to changing environmental influences (Lledo et al., 

2006). This is in concordance to data showing that an increase in neurogenesis could be 

initiated by olfactory discrimination learning (Alonso et al., 2006) and that reduction of 

progenitor proliferation leads to impaired odor discrimination in rodents (Gheusi et al., 2000). 

However, oppositional data exists regarding the modulation of neurogenesis in the dentate 

gyrus upon spatial learning (Lledo et al., 2006). 
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Figure 1.3: Regions of postnatal neurogenesis 
In the mammalian brain mainly two areas, namely the subgranular zone of the hippocampal dentate 

gyrus and the subventricular zone, show adult neurogenesis. Glutamatergic granule cells of the 

dentate gyrus are generated throughout live by neuronal stem cells of the SGZ. Furthermore, adult 

neuronal stem cells localized in the SVZ (1) generate precursors that migrate along the rostral 

migratory stream (2) and differentiate into inhibitory GABAergic interneurons of the olfactory bulb (3). 

In addition, there is also restricted early postnatal neurogenesis and migration in the cerebellum and 

the hypothalamus. Germinal zones (green) and adjacent target zones (red) are indicated by color. 

Modified from Ghashghaei et al. (Ghashghaei et al., 2007). Abbreviations: IGL = internal granule cell 

layer; EGL = external granule cell layer; CB = cerebellum; Hipp = hippocampus; DG = dentate gyrus; 

SGZ = subgranular zone; V = ventricle; SVZ = subventricular zone; RMS = rostral migratory stream; 

OB = olfactory bulb; Hyp = hypothalamus; OE = olfactory epithelium 

 

 

1.2.1 Stem cells in the subventricular zone 

The neuronal stem cells that give rise to GABAergic interneurons of the olfactory bulb 

throughout live are localized in the subventricular zone between the lateral ventricle and the 

striatum. Before and during approximately two weeks after birth, radial glia cells in the 

ventricular zone, directly contacting the lateral ventricle, represent the stem cells in this 

system (Merkle and Alvarez-Buylla, 2006). In several species, like birds, lizards, turtles and 

fish, radial glia remain neurogenic throughout live, whereas in mammals their role as neuronal 

stem cells is adopted by GFAP expressing astrocyte-like cells later on (Merkle and Alvarez-

Buylla, 2006). During the first weeks, the remaining radial glia give rise to neurons, 

oligodendrocytes, ependymal cells and parenchymal astrocytes as well as the mentioned 

neurogenic astrocytes in the SVZ of the mammalian brain (Merkle et al., 2004). However, 

some data indicate an intermediate role for Prominin-1 (CD133) expressing ependymal cells 
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as early, slow dividing stem cells which generate SVZ neurogenic astrocytes instead of their 

generation directly by radial glia (Coskun et al., 2008). 

Despite their different morphology and localization, radial glia and neurogenic astrocytes 

share common features as both equally give rise to neuronal precursors and mature neuronal 

cell types in the olfactory bulb. Both stem cell populations divide asymmetrically, resulting in 

the generation of one stem cell and one Type C transiently amplifying neuronal progenitor 

cell (Gotz and Barde, 2005). Upon arrival of these intermediate precursors in the SVZ, they 

send out numerous processes and start to divide symmetrically (Noctor et al., 2004). These 

divisions amplify the number of precursors originating from a single stem cell division (Gotz 

and Huttner, 2005). The molecular mechanisms underlying these processes are barely 

understood. However, it was shown that GABA is released by the precursor cells and inhibits 

the stem cell proliferation via nonsynaptic, SNARE-independent GABAA receptor signaling 

(Liu et al., 2005). This feedback loop thereby negatively regulates the amount of newly 

generated precursors, avoiding an overproduction of these cells (Liu et al., 2005), whereas 

synaptically released dopamine enhances the Type C cell proliferation via activation of 

D2 receptors (Hoglinger et al., 2004). Upon amplification, the Type C cells can differentiate 

into astrocytes, oligodendrocytes or Type A neuronal progenitors, which start their migration 

towards the olfactory bulb via the rostral migratory stream (Marshall et al., 2005). 

Recent studies have shown that the neuronal stem- and progenitor cells represent a 

heterogeneous population regarding both their origin and fate. Young et al. (Young et al., 

2007) determined the embryonic origins of adult forebrain SVZ stem cells. It was shown that 

all parts of the telencephalic neuroepithelium, including the medial ganglionic eminence, the 

lateral ganglionic eminence and the cerebral cortex, contribute multipotent, self-renewing 

stem cells to the adult SVZ (Young et al., 2007). The embryonic origin thereby determines 

the localization of generated adult neuronal stem cells. Whereas descendants of the medial 

ganglionic eminence localize to the ventral parts of the SVZ, those of the lateral ganglionic 

eminence are present in the lateral SVZ during adulthood (Young et al., 2007). Adult 

neuronal stem cells originating from the embryonic cerebral cortex localize to the dorsal parts 

of the SVZ (Young et al., 2007). In addition, recent data also indicates a heterogeneous fate of 

newly generated precursors which depends on the localization of the initial stem cell (Merkle 

et al., 2007). It was shown that adult neuronal stem cells of a given localization generate only 

a specific subset of GABAergic interneurons. For example, whereas Calretinin expressing 

periglomerular layer interneurons originate from stem cells in the lateral parts of the anterior 

SVZ, Calbindin expressing cells are generated by stem cells in the ventral parts of the more 
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posterior SVZ (Merkle et al., 2007). Also the localization of mature granule cells is dependent 

on their origin, as deep granule cells are generated by stem cells in the ventral SVZ, whereas 

superficial granule cells are descendants of dorsal SVZ stem cells (Merkle et al., 2007). 

However, heterotopical grafting of respective SVZ stem cells does not change the cell types 

they generate, indicating that these features are intrinsically determined and not dependent on 

local signals (Merkle et al., 2007). In conclusion, the further identity of newborn neurons in 

the olfactory bulb seems to be already determined by their originating SVZ stem cells. 

Whereas a correlation among stem cell localization and neuron subpopulations derived 

thereof was nicely shown, there is a lack of knowledge concerning molecular factors 

determining these fate decisions. At the level of Type C intermediate precursors, some 

respective genes have been identified. For example, a subset of these cells, expressing the 

basic helix-loop-helix transcription factor OLIG2, differentiates into astrocytes and 

oligodendrocytes (Hack et al., 2005; Marshall et al., 2005). In contrast, only three genes, 

DLX2, PAX6 and SP8, are so far known to be important for the specification of the numerous 

neuronal subtypes, namely dopamine/GABA double positive periglomerular interneurons in 

the case of DLX2 as well as PAX6 and non-dopaminergic Calretinin positive cells in the case 

of SP8 (Hack et al., 2005; Kohwi et al., 2005; Waclaw et al., 2006). 

 

1.2.2 Migration in the rostral migratory stream 

Upon the differentiation of a Type C intermediate precursor into a Type A neuronal precursor, 

this cell migrates along the rostral migratory stream towards the olfactory bulb. The mode of 

migration in the RMS is unique, as the Type A neuronal precursors migrate as chains, sliding 

along each other in the RMS (Lois and Alvarez-Buylla, 1994). This chain migration is 

different to the glial- or axonal-guided modes of neuronal migration in the developing brain, 

because the substrate for motility is provided by the migrating cells themselves (Ghashghaei 

et al., 2007). The existence of astrocytes, which encapsulate the migrating cells by forming a 

glial tube, raises the possibility that migrating neurons might use them as an additional 

substrate for oriented migration (Lois et al., 1996). However, as isolated RMS cells can also 

migrate as chains in vitro in the absence of glial cells, they do not seem to be essential 

(Wichterle et al., 1997). Several molecules have been identified which are probably involved 

in this migratory process (Ghashghaei et al., 2007; Pennartz et al., 2004). 

The initiation of migration is probably regulated by a dynamic balance of chemorepulsive and 

chemoattractive signals. However, it has been shown that the existence of an olfactory bulb is 

not essential for correct migration of Type A precursors, therefore it seems that 
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chemorepulsion is the main force in this case (Kirschenbaum et al., 1999). The 

chemorepulsive Slit-Robo pathway represents one key signal important for the initiation of 

migration. In SLIT1-deficient mice, clusters of Type A precursors migrate caudally into the 

corpus callosum, instead of into the RMS (Nguyen-Ba-Charvet et al., 2004). SLIT1 and 

SLIT2 are secreted by cells surrounding the SVZ and both proteins have been shown to 

repulse the ROBO1, ROBO2 and ROBO3-receptor expressing Type A neuronal precursors 

(Wu et al., 1999). Besides its initial role, Slit-Robo signaling may modulate the polarity of 

SVZ neuroblasts during migration by regulation of the cell-polarity factors glycogen synthase 

kinase-3β and protein kinase Cζ, which are needed for centrosome reorientation and process 

stabilization (Higginbotham et al., 2006). Although long-distance chemoattractive signals 

appear to be not necessary for the initiation of migration (Kirschenbaum et al., 1999), local 

chemoattraction may be involved. Netrin1-DCC signaling can attract migrating Type A cells 

in vitro and therefore represents one candidate pathway for this process (Mason et al., 2001). 

In addition, the start of migration may be partially supported by the highly polarized 

processes of radial glia or neurogenic astrocytes, which could direct the neuronal precursors 

towards the RMS (Ghashghaei et al., 2006). 

Once the cells left the SVZ and joined the RMS, their polarity and migratory speed have to be 

regulated continuously in order to direct them towards the olfactory bulb. A migration speed 

of up to 120 µm/h has been observed in wild type Type A cells in vitro (Wichterle et al., 

1997). A complex interaction of extracellular matrix signals, secreted guidance- or motogenic 

signals, cell adhesion molecules, and cell-surface tyrosine kinase- or integrin signaling is 

necessary for correct maintenance of migration (Juliano, 2002). One key factor for the chain 

organization of Type A cells is the polysialated form of the neuronal cell adhesion molecule 

(PSA-NCAM). NCAM-knockout mice show an enlarged RMS and smaller olfactory bulb 

containing fewer newly generated neurons (Cremer et al., 1994; Rutishauser, 1996; 

Tomasiewicz et al., 1993). The tyrosine kinase receptor ERBB4 and its ligands, neuregulin1 

and neuregulin2, are expressed by the migrating cells themselves. It has been shown that these 

molecules are involved in the regulation of orientated migration in the RMS and dysfunction 

of this pathway leads to a lack of oriented processes (Anton et al., 2004). Besides ErbB4, also 

the Eph tyrosine kinase receptors and their ephrin ligands have been identified as indirect 

modifiers of neuroblast migration in the RMS (Ghashghaei et al., 2007). Blocking of integrin 

α1, α5, α6, β1 or β4 function modulates neuronal migration in the RMS, probably by 

interrupting the transmission of extracellular matrix signals into the cells (Emsley and Hagg, 

2003; Schmid et al., 2005). These integrins are differently expressed by migrating Type A 
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precursors dependent on the age of mice. Whereas the α1, β1 and β8 subunits are expressed 

mainly during early postnatal periods, β3 and β6 integrin expression persists in until 

adulthood (Ghashghaei et al., 2007). Putative ligands for these receptors are the laminin 

subunits α5 and γ1, which have been identified in the RMS as well as tenascin-C, which is 

expressed by the astroglial tube (Murase and Horwitz, 2002). As for the initiation of 

migration, again the microtubule associated proteins GSK3β and PKCζ are essential for the 

ability of migrating cells to reorient their centrosomes and stabilize their processes 

(Higginbotham et al., 2006). Furthermore, the protein Doublecortin (DCX), which localizes to 

the microtubule cage around the nucleus as well as the leading processes, was shown to be 

important for regulating the velocity of migration, branching of leading processes and nuclear 

translocation towards the centrosome in the direction of migration (Koizumi et al., 2006a; 

Koizumi et al., 2006b). 

In conclusion, the coordinated actions of several signaling pathways allow the migrating 

Type A neuronal precursors to arrive in the olfactory bulb, where they stop the tangential 

migration phase. 

 

1.2.3 Migration and differentiation within the olfactory bulb 

Upon arrival in the center of the olfactory bulb, Type A neuronal precursors change their 

migration mode from tangential chain migration into a radially, individual and glial-

independent migration towards their final positions in the granule and periglomerular layers 

(Ghashghaei et al., 2007). The transcription factor ARX (aristaless-related homeobox gene) is 

essential for the entry of cells into the olfactory bulb, as mutations in ARX lead to the 

accumulation of Type A cells at the junction between the end of the RMS and the olfactory 

bulb (Yoshihara et al., 2005). However, the molecular mechanism of this process is not 

known. One factor, the extracellular matrix protein Reelin, was shown to be critical for the 

change from tangential chain- to radial individual migration as it acts as a detachment signal 

for the migrating neuronal precursors (Hack et al., 2002). Whereas Reelin is expressed and 

secreted by the mitral cells of the olfactory bulb, its receptor apolipoprotein-E receptor 2 and 

its downstream signaling target, the adaptor protein disabled-1 are present in the migrating 

neuroblasts (Ghashghaei et al., 2007). In addition to Reelin, the extracellular matrix protein 

tenascin-R seems to modulate the initiation of detachment and radial migration of precursor 

cells (Saghatelyan et al., 2004). Interestingly, the expression of tenascin-R is olfactory 

sensory-activity dependent, suggesting that tenascin-R might be important for the recruitment 
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of new neurons to regions of the olfactory bulb where network activity demands incorporation 

and input from new neurons (Saghatelyan et al., 2004). 

About 80% to 90% of the Type A neuronal precursor cells stop their radial migration in the 

deep- or superficial granule layer and become granule neurons (Kohwi et al., 2005). The 

remaining precursors migrate further to periglomerular layer, where they become post-

migratory, late precursors and differentiate into periglomerular interneurons (Fig. 1.4). 

Granule neurons as well as periglomerular neurons can be further divided into several 

subpopulations based on the expression of marker genes (see also 1.1.1). The three main 

subtypes of periglomerular layer interneurons are bifunctional GABAergic/dopaminergic cells 

(16%), and either Calbindin- (14%) or Calretinin- (44%) expressing populations (Panzanelli 

et al., 2007; Parrish-Aungst et al., 2007). The granule cell population is further divided 

concerning the localization into deep- and superficial granule neurons, with a subpopulation 

of superficial granule neurons also being dopaminergic and GABAergic (Saino-Saito et al., 

2004). During the differentiation of granule neurons as well as periglomerular neurons, a 

typical expression pattern of known marker genes, correlating with the differentiation status 

of many neuronal cell types, can be observed. Whereas the expression of PSA-NCAM, DCX, 

TUJ1 (β-III-tubulin) and TUC4 is downregulated, that of NeuN in general and of Calbindin, 

Calretinin or TH in the respective subpopulations is upregulated (Lledo et al., 2006). The first 

functional sodium current spikes in newborn granule and periglomerular neurons appear about 

14 days after the initial generation of their progenitors in the SVZ (Belluzzi et al., 2003; 

Mizrahi, 2007). In contrast to these markers, which correlate with the differentiation status, 

only three genes, namely DLX2, PAX6 and SP8, have been identified to regulate the 

differentiation of olfactory bulb interneuron subpopulations. Expression of PAX6 was shown 

to be necessary for the differentiation of periglomerular interneurons with a GABA/dopamine 

bifunctional neurotransmitter phenotype (Hack et al., 2005; Kohwi et al., 2005). Recent data 

indicates that this function of PAX6 is dependent on a direct interaction with the transcription 

factor DLX2 (Brill et al., 2008). In contrast, expression of SP8 is required for the 

development of non-dopaminergic Calretinin positive cells in the periglomerular layer 

(Waclaw et al., 2006). 

However, all these genes act during earlier time windows, whereas almost nothing is known 

about the factors that regulate the final differentiation of newly generated olfactory bulb 

interneurons. 
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Figure 1.4: Differentiation of newly generated olfactory bulb interneurons 
Upon arrival in the center of the olfactory bulb, Type A neuronal precursors (red in RMS) change their 

migration mode from tangential chain migration into a radially, individual migration towards their final 

positions in the granule and periglomerular layers. The majority of Type A neuronal precursor cells 

stop their radial migration in the granule layer and differentiate into granule neurons (red in GCL), 

whereas the remaining precursors migrate further to periglomerular layer, become post-migratory and 

differentiate into periglomerular interneurons (red in GL). However, it is not known if adult-born cells 

only replace each other or if they fulfill a more general role by replacing the functions of much older 

neurons (brown). Modified from Lledo et al. (Lledo et al., 2006). Abbreviations: GL = periglomerular 

layer; EPL = external plexiform layer; GCL = granule cell layer; RMS = rostral migratory stream 

 

 

1.2.4 Neurodegenerative diseases affecting the subventricular zone 

The human subventricular zone is specifically affected in several neurological diseases, like 

Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. In 

response to neurodegeneration in Huntington’s disease, epilepsy and stroke, there is an 

upregulation of progenitor cell production, cytokine levels and migratory proteins in the SVZ, 

leading to an increase in the number of adult-born neurons (Curtis et al., 2007a). In contrast, 

in Alzheimer’s disease and Parkinson’s disease fewer proliferating cells are found in the SVZ 

(Curtis et al., 2007a). 
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Huntington’s disease, an autosomal dominant disorder caused by expanded CAG repeats in 

the huntingtin gene, results in a loss of GABAergic projection neurons of the striatum 

(Vonsattel et al., 1985). The loss of neurons next to the localization of adult neuronal stem 

cells induces an increased progenitor cell production in the SVZ (Phillips et al., 2005). It was 

suggested that enriched expression of NPY and NOS upon the development of Huntington’s 

disease are possible mechanisms initiating increased mitosis in the SVZ (Hansel et al., 2001; 

Reif et al., 2004). 

Parkinson’s disease is characterized by a degeneration of dopaminergic neurons in the 

substantia nigra pars compacta, which is part of the basal ganglia circuitry that projects to the 

striatum and synapses on GABAergic projection neurons in this region (Curtis et al., 2007a). 

Progenitor proliferation in the SVZ was shown to be reduced in animal models as well as 

human patients with Parkinson’s disease which leads to impaired odor discrimination in 

rodents and is also a common and early sign of this disease in humans (Lledo et al., 2006). 

The molecular mechanisms are not fully understood yet. However, it was shown that 

synaptically released dopamine enhances Type C cell proliferation via activation of 

D2 receptors and a lack of this signaling may therefore reduce the amount of new cells 

(Hoglinger et al., 2004). 

During Alzheimer’s disease, an accumulation of neurofibrillary tangles and amyloid plaques, 

composing of β-amyloid peptides, is observed. This probably causes the massive cell death of 

mature neurons (Mattson, 2000). Animal studies that were based on presenilin 1 transgenes as 

well as intraventricular infusion of β-amyloid peptides were found to result in an impairment 

of adult neurogenesis (Donovan et al., 2006; Haughey et al., 2002a). Besides the reduction of 

adult stem cell proliferation, β-amyloid peptides can directly promote apoptosis in neuron 

restricted neural progenitor cells (Haughey et al., 2002b). In addition, an immunotherapy 

against the N-terminus of the β-amyloid peptide in a transgenic mouse model of Alzheimer’s 

disease was shown to stimulate endogenous neurogenesis (Becker et al., 2007). 

The involvement of the SVZ in major neurodegenerative diseases and its modulation by 

defined factors may offer new opportunities for specific therapies. However, the molecular 

basis underlying adult neurogenesis has to be understood in order to identify possible targets 

and mechanisms for subsequent approaches. 
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1.3 Aim of this study 

Several attempts have been made to categorize subpopulations of GABAergic neurons at 

different developmental stages. This included, amongst others, the analyses of their major 

functional role, spatiotemporal placement, plasticity, morphology, discharge properties, 

connectivity pattern, neurochemistry, as well as protein, sugar, and lipid markers. However, 

while all these parameter allow for a valuable, detailed and partly functional description of 

different GABAergic neurons they have not led to a systematic dichotomy so far. Therefore, 

new marker genes as well as factors important for the differentiation and general functionality 

of GABAergic neurons have to be identified. Furthermore, the molecular analysis of 

GABAergic neurons from different brain regions is a promising approach to classify these 

cells and define region specific characteristics. However, due to the lack of a specific surface 

marker for GABAergic neurons it is not possible to purify these cells, which is a prerequisite 

for a subsequent molecular characterization. 

Therefore, the first aim was to establish a protocol for the isolation of GABAergic neurons in 

general as well as from defined brain regions. Subsequently, these cells had to be analyzed on 

a molecular level by comprehensive whole genome expression profiling. This method has 

emerged as a reliable tool for the description of cells. Based on the expression of thousands of 

genes, each cell type or cell stage is assigned an unambiguous and specific pattern. 

Furthermore, bioinformatic analyses offer the opportunity to quantify the relationship of 

individual cell populations by calculating correlation matrices. Moreover, by assessing 

prominent transcription pathways, functional explanation of the observed differences can be 

given and new single gene markers identified. Analyzing the transcriptomes of GABAergic 

neurons in general as well as subpopulations of these cells should give new insights into the 

topics mentioned above. 

 

In a parallel approach, the focus was to identify novel factors that regulate interneuron 

differentiation. The postnatal generation of olfactory bulb GABAergic interneurons offers a 

promising model system to study the development of these cells in detail. As this system is 

affected in major neurodegenerative diseases, a detailed understanding of the molecular 

mechanisms regulating defined steps during the differentiation process is essential for the 

development of cell- or drug based therapeutic approaches. In addition, the identification of 

novel fate determinants, important for the differentiation of specific neuronal subtypes, may 

offer new possibilities for the in vitro generation of these cells from neuronal- or even 

embryonic stem cells in order to replace lost neurons after neurodegeneration caused by injury 
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or disease. Several factors that regulate the proliferation of adult stem cells in the SVZ as well 

as the migration of progenitor cell towards the olfactory bulb have been identified. However, 

there is a striking lack of known factors that are involved in the further differentiation of these 

progenitors. 

Therefore, novel genes that are important for the differentiation of olfactory bulb GABAergic 

neurons had to be identified. Again, whole genome expression profiling was the most 

promising approach to address this point. To identify genes that are significantly regulated 

during differentiation, a protocol for the isolation of mature olfactory bulb interneurons as 

well as their progenitor cells had to be established in order to analyze and compare the 

transcriptomes of these subpopulations. In addition, promising candidates had to be examined 

for their functional relevance in vivo to distinguish marker genes, which are regulated as a 

consequence of the differentiation state, from those which are fate determinants and are 

important for the regulation of this process. 
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2 Material and Methods 

2.1 Enzymes and Reagents 

ABI Prism Big Dye Terminator Cycle  

Sequencing Kit       Applied Biosystems / Perkin Elmer  

SUPERSCRIPT II RT-Kit     Invitrogen 

RNA 6000 Pico Assay     Agilent Technologies 

Total RNA Isolation NucleoSpin®RNAII   Macherey Nagel 

Gel extraction NucleoSpin®ExtractII    Macherey Nagel 

RNA Clean-up NucleoSpin®RNA Clean-up   Macherey Nagel 

Rediprime DNA labeling system     GE Healthcare 

BCATM Protein Assay Kit      Pierce 

ECL+-Kit        GE Healthcare 

Terminal deoxynucleotidyl transferase   GE Healthcare 

Taq-Polymerase      Invitrogen  

Elongase-Enzyme-Mix     Invitrogen 

DNaseI       Ambion, Roche 

Proteinase K       Roche  

RNaseA       Roche 

RNaseH       Invitrogen 

Alkaline Phosphatase      Roche 

DNA Polymerase I, large (Klenow) fragment  NEB 

T4-DNA-Ligase      Promega 

Allophycocyanine (APC)     Cyanotech 

Papain        Worthington 

Trypsin       Gibco 
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2.2 Antibodies and MicroBeads 

Mouse IgG anti-NeuN     Invitrogen 

Mouse IgM anti-A2B5     G. Rougon 

Mouse IgG1 anti-Calb2     Sigma 

Mouse IgG2a anti-PSA 735     R. Gerardy-Schahn 

Rabbit anti-GAD65/67     Sigma 

Rabbit anti-NeuroD1      Abcam 

Rabbit anti-NeuroD2      Abcam 

Rabbit anti-GAPDH      Assay Designs 

Rabbit anti-TUJ1      Covance 

Rabbit anti-GFAP      Sigma-Aldrich 

Guinea pig IgG anti-DCX     Chemicon 

Swine anti-rabbit HRP     Dako Cytomation 

Goat anti-mouse IgM Alexa 488    Molecular Probes/Invitrogen 

Goat anti-rabbit IgG Cy5     Cambridgeshire 

Goat anti-guinea pig IgG Cy5    Abcam 

Goat anti-mouse IgG Alexa 633    Molecular Probes 

Goat anti-mouse IgM Alexa 633    Molecular Probes 

Goat anti-mouse IgG Fc Cy3     Jackson 

Goat anti mouse IgM Texas Red     Abcam 

Donkey anti-mouse IgG Cy3     Jackson 

Donkey anti-rabbit Cy3     Jackson 

AffiniPure Goat-anti-rabbit IgG (H+L)    Dianova 

R-PE-goat-anti-rabbit      Molecular Probes 

full length A. v. EGFP Polyclonal AB   Clontech 

Goat-anti-rabbit-FITC, F2765    Molecular Probes 

anti-Dig. fab fragments phosphatase    Roche 

anti-rabbit IgG MicroBeads     Miltenyi Biotec 

anti-mouse IgM MicroBeads     Miltenyi Biotec 

anti-mouse IgG MicroBeads     Miltenyi Biotec 

anti-PE MicroBeads       Miltenyi Biotec 
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2.3 Chemicals and expendable items 

All chemicals, unless otherwise specified in the text, were purchased at Merck. All buffers 

and media for cell culture were purchased at Invitrogen. NanoPURE DiamontTM ultrapure 

water (Barnstead) was used for experiments. 

 

10-20% Tris/Glycine-gel     Anamed 

1 kb-PLUS-DNA-LadderTM     Invitrogen 

GeneRulerTM 100bp DNALadder Plus   NanoDrop Technologies 

MagicMarkTM Western Protein Standard   Invitrogen 

PAGE-RulerTM Prestained Protein Ladder   Fermentas 

Extra thick Blot Paper (Mini Blot size)   BioRad 

Hybond-P PVDF-Membrane     GE Healthcare 

Hybond-XL Nylon-Membrane    GE Healthcare 

Electroporation Cuvette (Type 165-2107)    BioRad 

NAP-10-Column      GE Healthcare 

PD-10-Column      GE Healthcare 

Superdex 200 16/60- Column     GE Healthcare 

Microcons Type YM-10     Millipore 

Neubauer chamber      Brand 

µ-MACS® Separation column    Miltenyi Biotec 

Pre-Separation filter      Miltenyi Biotec 

Syringe needle 26G ½“, short    Braun 

SuperFrost® Plus microscope slides    Menzel 

Sigma Fast BCIP/NBT     Sigma 

CpG ODNs 1668      Metabion 

PHA-Lectin       Sigma 

Azaserine       Sigma 

Freunds Adjuvant incomplete    Sigma 

Polyethylenglycol      Roche 
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2.4 Instruments 

NanoDrop       NanoDrop Technologies 

Agilent 2100 Bioanalyzer     Agilent Technologies 

Trans-Blot SD SemiDry Transfer Cell   BioRad 

LSM 510        Carl Zeiss 

Axioskop 2+       Carl Zeiss 

Axioplan 2 equipped with ApoTome    Carl Zeiss 

Cryo 1°C-freezing container      Nalgene 

Gene Pulser II       BioRad 

Electroporator CUY21 edit device    Nepagene 

Electrodes CUY650P10     Nepagene 

Flow cytometer FACScaliburTM     BD Biosciences 

Flow cytometer FACSvantageSETM     BD Biosciences  

µ-MACS-Separator      Miltenyi Biotec 

Cell culture hood: Hera Safe     Heraeus 

Incubator: Hera Cell      Heraeus 

Scale APX-200      Denver Instruments 

Scale SPB61       Scaltec 

Heating block BT 1301     HLC 

Bacteria incubator      WTB Binder 

Water bath       Julabo 

Centrifuge Eppendorf 5415D     Eppendorf 

Centrifuge Megafuge 1.0     Heraeus 

Cyclone Storage Phosphor System    Packard 

Thermocycler: PTC-225     MJ Research 

Multiplate reader Genios     Tecan  

Cell culture incubator Labotec Gasboy C40   Labotec 

Vibratome microtome     Microm 

Cryostat CM3050      Leica 

Binocular MZFLIII      Leica 

Peristaltic pump Lamda Preciflow    Lambda Laboratory Instruments 

Stereotaxic rig       Kopff 
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2.5 E. coli strains 

 

Table 2.1 E. coli strains 

E. coli 
strain 

Genotype Reference 

DH5αTM 

 

F- φ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 
endA1 hsdR17(rk-, mk+) phoA  
supE44 thi-1 gyrA96 relA1 λ- 

Invitrogen 

 

 

2.6 Molecular biological methods 

Unless otherwise specified, standard molecular biological methods were carried out according 

to Sambrook and Russell (Sambrook and Russell, 2001).  

 

2.6.1 Isolation of RNA 

RNA was isolated using the NucleoSpin® RNA Clean-up Kit (Macherey Nagel) according to 

the manufacture’s instructions. RNA quality was confirmed using Agilent Bioanalyzer Pico 

chip gel electrophoresis (Agilent). RINs (RNA Integrity Numbers) and ratios of 28S/18S 

rRNA served as quality controls. 

 

2.6.2 Isolation of DNA 

2.6.2.1 Plasmid preparation from E. coli 

Preparation of plasmid DNA from E. coli was done using alkaline lysis followed by column 

purification (Birnboim and Doly, 1979). For small scale preparations the NucleoSpin® 

Plasmid Kit (Macherey Nagel) and for large scale preparations the EndoFree Plasmid Kit 

(Qiagen) was used according to the manufacture’s instructions. DNA was dissolved either in 

elution buffer (10 mM Tris/HCl, pH 8.5) or PBS (pH 7.2, Invitrogen) and stored at -20°C. 

 

2.6.2.2 DNA preparation from agarose gels 

DNA was isolated from agarose gels using the NucleoSpin® Extract II Kit (Macherey Nagel) 

according to the manufacture’s instructions. DNA was dissolved either in elution buffer 

(10 mM Tris/HCl, pH 8.5) or distilled water and stored at -20°C. 
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2.6.2.3 DNA preparation from mouse tails 

Tail biopsies of four to six week old mice were incubated in 700 µl lysis buffer (50 mM 

Tris/HCl pH 8.0, 100 mM EDTA pH 8.0, 100 mM NaCl, 1% SDS) containing 35 µl 

Proteinase K (10 mg/ml) over night at 55°C. After centrifugation (10 min, 14000 g), the 

supernatant was transferred into a new tube and DNA was precipitated using isopropyl 

alcohol at a final concentration of 60%. After centrifugation (10 min, 14000 g), the DNA was 

desalted using 1 ml 70% ethanol (centrifugation for 10 min, 14000 g) and dissolved in 300 µl 

TE buffer. 

 

2.6.3 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) allows the amplification of precise parts from a DNA 

template by using primers specific for both ends of the sequence (Mullis et al., 1986; Saiki et 

al., 1988). The target sequence is amplified by the factor 2n, where n is the number of cycles. 

For standard PCRs the Taq-Polymerase (Invitrogen) and for cloning approaches the 

Elongase-Enzyme-Mix (Invitrogen) was used.  

 

Table 2.2 Constitution of standard PCRs  

 Taq-Polymerase Elongase-Enzyme-Mix 
   

DNA template 1-100 ng 1-100 ng  

1. primer  200 nM 200 nM  

2. primer  200 nM 200 nM 

dNTP-mix (10 mM) 200 µM 200 µM 

10 x PCR-Buffer 1 x 1 x 

MgCl2 1,5 - 2,8 mM 1,5 - 2,0 mM 

DNA-Polymerase 1 U 1 µl**  

Distilled H2O up to 30-50 µl up to 30-50 µl 

** Activity (U/µl) not known 
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Table 2.3 PCR programs  

Step Taq-Polymerase Elongase-Enzyme-Mix 
     

1. Denaturing 95°C 4 min 95°C 4 min 

2. Annealing 57 - 63°C 30 s 50-68°C 30 s 

3. Primer extension 72°C 60 s 68°C 2 min 

4. Denaturing 94°C 30 s 94°C 30 s 

5. Cycles (step 2.-4.) 20-34 x 34 x 

6. Annealing 57 - 63°C 30 s 50-68°C 30 s 

7. Final extension 72°C 5 min 68°C 5 min 

8. Cooling 10°C stop 10°C stop 

 

The Thermocycler PTC-225 (MJ Research) was used for all PCRs. Size determination and 

purification of the PCR products was done using agarose gel electrophoresis (Loeb and 

Chauveau, 1969; Takahashi et al., 1969). 

 

2.6.4 DNA sequencing 

The method of chain termination was used for DNA sequencing (Sanger et al., 1977). During 

this method (also called “cycle sequencing”) cyclic, PCR-based DNA amplification is 

combined with base specific chain termination (Carothers et al., 1989; Murray, 1989). For all 

sequencing reactions, the ABI Prism Big Dye Terminator Cycle Sequencing Kit (PE Applied 

Biosystems) was used. Amplified fragments were purified using 96-well-G50-Superfine 

plates (GE Healthcare). Subsequently, the purified fragments were separated and analyzed in 

an ABI PrismTM 377 DNA Sequencer (PE Applied Biosystems). 

Raw data was processed with Sequence Analysis 3.0 software (PE Applied Biosystems). 

Sequence data was analyzed with Lasergene (DNASTAR, London, UK). 

 

2.6.5 Restriction hydrolysis 

Sequence specific hydrolysis of DNA was achieved by incubation for at least 1 h with 

restriction enzymes at a concentration of 1 Unit/µg DNA template. Buffers and incubation 

temperatures were chosen referring to the manufacture’s instructions. Subsequently, the DNA 

fragments were separated in an agarose gel electrophoresis and purified with the NucleoSpin® 

Extract II Kit (Macherey Nagel, see 2.6.2.2). 
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2.6.6 DNA dephosphorylation 

Prior to ligation of insert fragments with vector-DNA, the vector-DNA was dephosphorylated 

to prevent internal ligation. The target DNA was incubated with alkaline Phosphatase (Roche, 

1 Unit/µg DNA) in dephosphorylation buffer (Roche) for 30 min at 37°C. For removal of the 

enzyme, DNA was precipitated with isopropyl alcohol (see 2.6.2.3) and resolved in distilled 

water. 

 

2.6.7 DNA ligation 

DNA fragments were ligated by incubation with 10 Units T4-DNA-Ligase (Promega) per µg 

of DNA in Ligation Buffer (Promega) at 16°C over night. To obtain highest ligation 

efficiency, vector- to insert-DNA ratios from 1:1 to 1:5 were tested. 

 

2.6.8 Transformation of E. coli 

For amplification, plasmids were transformed into DH5α-cells (Invitrogen) using the “heat 

shock”-transformation protocol of the manufacturer. 

 

2.6.9 Cloning of expression vectors 

2.6.9.1 Generation of an expression vector for NeuroD1 

The coding sequence for Neurogenic Differentiation 1 (NeuroD1, GeneID: 18012) was 

obtained from the SwissProt Database (http://www.expasy.ch/sprot/). As the complete open 

reading frame is spanning only one exon of the gene, the coding sequence was amplified from 

genomic DNA using the following primers: 

 

Forward primer: 

5’ GGGGGAAGCTTCACCATGACCAAATCATACAGCGAGAG 3’ 

(red: HindIII recognition site, blue: Start-codon) 

 

Reverse primer: 

5’ GGGGGGGATCCGAAACTGACGTGCCTCTAATCGTG 3’ 

(red: BamHI recognition site) 
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After amplification (see 2.6.3) and purification (see 2.6.2.2), the PCR fragment was incubated 

with the restriction enzymes BamHI (NEB) and HindIII (Fermentas) in SureCut B restriction 

buffer (Roche) followed by purification (see 2.6.5). A eukaryotic expression vector based on 

the chicken β-actin promoter and the CMV enhancer, pCX-MCS2 (see Fig. 2.1), a gift from 

Xavier Morin (Morin et al., 2007), was treated the same way. After dephosphorylation of the 

vector DNA, the NeuroD1 PCR fragment was ligated with pCX-MCS2 (see 2.6.7) and 

transformed into DH5α-cells (see 2.6.8). The final construct, pCX-ND1, was verified by 

sequencing (see 2.6.4 and 6.1). 

 

 
Figure 2.1: The expression vector pCX-MCS2 
Map showing the main modules and restriction endonuclease binding sites of the pCX-MCS2 

expression vector. 
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2.6.9.2 Generation of an expression vector for NeuroD2 

The coding sequence for Neurogenic Differentiation 2 (NeuroD2, GeneID: 18013) was 

obtained from the SwissProt Database (http://www.expasy.ch/sprot/) and amplified from 

whole brain cDNA (a gift from Sonja Gemmel), using the following primers: 

 

Forward primer: 

5’ GGGGGAAGCTTCTCTCTGAGGCACCATGCTGAC 3’ 

(red: HindIII recognition site, blue: Start-codon) 

 

Reverse primer: 

5’ GGGGGGGATCCGTCGGCGCGAGGTCTCAGTTATG 3’ 

(red: BamHI recognition site) 

 

Cloning of the PCR fragment into pCX-MCS2 was equal to NeuroD1 (see 2.6.9.1). The final 

construct, pCX-ND2, was verified by sequencing (see 2.6.4 and 6.1). 

 

2.6.10 Microarray analysis 

2.6.10.1 Amplification of RNA 

For the generation of amplified cDNA after MACS- (see 2.8.4) or FACS-purification (see 

2.8.5), the SuperAmp Protocol (Miltenyi Biotec) was applied. Briefly, 5000-10000 cells per 

approach were collected in 6.4 µl SuperAmp Lysis Buffer, the mRNA was extracted using 

magnetic beads and transcribed into cDNA using tagged random and oligo(dT) primers. First 

strand cDNA was 5’ tagged by incubation with 21.5 Units terminal deoxynucleotidyl 

transferase (GE Healthcare) for 60 min at 37°C. The enzyme was inactivated at 70°C for 

5 min. Tagged cDNA was globally amplified using primer complementary to the tag sequence 

using the PCR program in Table 2.4. The PCR Products were purified using the NucleoSpin® 

Extract II Kit (Macherey Nagel, see 2.6.2.2) and cDNA yield was quantified by OD 

measurement (NanoDrop, NanoDrop Technologies). Length distribution of amplified cDNA 

was analyzed by capillary electrophoresis (Bioanalyzer, Agilent). 



Material and Methods 
   

31 

Table 2.4 PCR program for SuperAmp amplification of cDNA  

Step Parameters 
   

1. Sample prewarming 78°C 30 s

2. Denaturing 95°C 15 s

3. Annealing 65°C 30 s

4. Primer extension 68°C 2 min

5. Cycles (step 2.-4.) 20 x

6. Denaturing 94°C 15 s

7. Annealing 65°C 30 s

8. Primer extension 68°C 2 min + 10 s/cycle

5. Cycles (step 6.-8.) 21 x

6. Annealing 65°C 30 s

7. Final extension 68°C 10 min

8. Cooling 10°C stop

 

 

2.6.10.2 Fluorescent labeling of RNA 

To detect hybridized cDNA after microarray hybridization, 250 ng of the purified PCR 

product (see 2.6.10.1) was labeled with either Cy5- or Cy3-dCTP (GE Healthcare) in a 

Klenow Fragment (10 Units per sample) reaction for 2 h at 37°C before heat inactivation at 

70°C for 5 min. Labeled cDNA was purified using the CyScribe GFX Purification Kit (GE 

Healthcare) and quantified by OD measurement (NanoDrop, NanoDrop Technologies). 

 

2.6.10.3 Microarray hybridization 

Agilent whole mouse genome 44k microarrays were hybridized according to the 

manufacture’s instructions (http://www.chem.agilent.com/scripts). Briefly, 2.5 µg of 

combined Cy3-/Cy5-labeled and purified cDNAs (see 2.6.10.2) were adjusted with dH2O to a 

volume of 200 µl and denatured for 5 min at 95°C. After adding 50 µl control targets 

(Agilent) and 250 µl 2x Hybridization Buffer (Agilent), samples were incubated on the 

microarrays at 65°C for >16 h. Afterwards, microarrays were washed with Wash Buffer I 

(Agilent) for 1 min at 37°C, with Wash Buffer II (Agilent) for 1 min at 25°C and dried after 

30 s incubation in acetonitrile. Scanning was performed using the Agilent DNA-Microarray 

Scanner. 
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2.6.10.4 Microarray data analysis 

Scanned images were analyzed using the Agilent Feature Extraction software (Version 9.1) by 

which the local background was subtracted and a rank consistency based probe selection for 

Lowess normalization was done. After filtering the data with respect to signal significance a 

two-tailed t test was used to determine signal versus background significance. Spots with a P-

value of >0.01 were omitted. Exported raw data were further processed by the Luminator 

software (Agilent) yielding expression values. Subsequently, only expression ratios of genes 

with a P-value of <0.001 were used. After log2-transformation of the ratios, data were 

imported in TIGR MeV Version TM4 (Saeed et al., 2003). Average linkage clustering of 

genes was done using Euclidean Distance (Eisen et al., 1998). Significantly different 

expressed genes among the analyzed brain areas were identified by SAM (Serial Analysis of 

Microarrays) using the Tusher et al. method (Tusher et al., 2001) with at least 100 

permutations per analysis. Gene Ontology (GO) analysis was carried out using TreeRanker 

(Schacherer, F., unpublished) at a significance level of 0.005. Interactions between genes and 

pathway analysis were computed with PathwayArchitect software (Stratagene) interpreting 

only verified interactions. 

 

2.6.11 Quantitative real-time PCR 

Transcript levels were measured by quantitative real-time PCR using PerkinElmer Applied 

Biosystems prism model 7000 sequence detection system (PE ABI 7000 SDS). Forward and 

reverse primer sequences are listed in table 2.5. GAPDH was used to normalize the 

expression data. Four ng of globally amplified cDNA libraries (see 2.6.10.1) were used as 

template for each PCR analysis, all assays were performed with four replicates. Threshold 

cycle, Ct, was measured as the cycle number at which the SYBR green emission increases 

above threshold level. The following cycle conditions were used: 95°C for 10 min followed 

by 50 cycles of 95°C for 15 s, 60°C for 1 min. For each amplified product, melting curves 

were determined according to the supplier’s guidelines ensuring specific amplification. For 

each run, negative controls were performed by omitting the template. 
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Table 2.5 Primers for qPCR 

Strain Forward primer Reverse primer 

DLX1 CCACCGAGTCCTGGACCAC CCCTCCCTCTGATTTCCCC 

DLX2 TATTGGAAGTGGCGACCAGG TGGCACTAAAGGATCCCACG 

DLX5 TCAATCAATTCCCACCTGCC AAACTGAGCAAGAGAAAGTAGCCC 

FOXG1 CGATGTATGTGGTCACTAACAGGTC GCGCAACACAGGTTACATATTTG 

ZIC1 TGCAAACATTTCGTCCCAAAG TGACACGTAGATCCAGGCTCG 

ZIC2 CCACGGTGATTTTAACGGCT AAGGGAAATGGGAGAAAGGC 

LHX5 AAGAGGTTGCTATGGCCACG TCCTCATCTTTGTCTGGCCG 

GAPDH GACCTGACCTGCCGTCTAGAA TCAGTGTAGCCCAGGATGCC 

 

2.7 Protein biochemical methods 

2.7.1 Isolation of proteins 

Cells or tissues were lysed by sonification in RIPA buffer (150 mM NaCl, 1%NP-40, 0.5% 

Sodiumdeoxycholate, 0.1% SDS, 1 mM EDTA, 50 mM Tris pH 8.0) and subsequent 

incubation for 1-2 h at 4°C. Concentration of the protein solutions was determined in a 

Bradford assay (Bradford et al., 1970). 

 

2.7.2 Polyacrylamide gel electrophoresis (PAGE) 

Proteins were separated according to their mass by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) (Laemmli, 1970). Samples (5-20 µg) were diluted in loading 

buffer (2% SDS; 60 mM Tris/HCl, pH 6.8; 10% glycine; 5% β-mercaptoethanole; 0.02% 

bromophenol blue) and loaded onto 10-20% Tris/Glycine-gels (Anamed). Gel electrophoresis 

was performed using an X-cell Sure Lock Novex Mini cell System (Invitrogen) in running 

buffer (50 mM Tris/HCl pH 8.3; 380 mM glycine; 0.1% SDS). Protein sizes were determined 

by referring to the PAGE-RulerTM Prestained Protein Ladder (Fermentas).  
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2.7.3 Western-blotting 

After separation by SDS-PAGE (see 2.7.2), Proteins were blotted onto PVDF membranes 

(Hybond-P, Amersham Biosciences), which were activated with methanol for 30 s and 

equilibrated with transfer buffer for 5 min. Before blotting, protein gels were equilibrated with 

distilled water for 5 min. Proteins were transferred onto the PVDF membrane via a Trans-Blot 

SD SemiDry Transfer Cell (BioRad). 

 

2.7.4 Immunodetection of proteins 

Detection of proteins on PVDF membranes was carried out by binding of specific antibodies. 

To block unspecific binding-sites, membranes were incubated in 5% BSA in TBST (0.9% 

NaCl; 10 mM Tris/HCl, pH 7.4, 0.05% Triton TX100). Subsequently, membranes were 

incubated with the primary antibody in blocking buffer for 2 h at room temperature. 

Membranes were washed 3 times for 10 min in TBST and incubated with a secondary 

antibody, coupled to horseradish peroxidase, in blocking buffer for at least 1 h. The ECL+-Kit 

(GE Healthcare) was used for visualization of bound antibodies. 

 

2.8 Cell biological methods 

2.8.1 Dissociation of brain tissue 

Brain tissue was enzymatically dissociated to obtain a single-cell suspension by using the 

Neuronal Tissue Dissociation Kit (Papain or Trypsin, Miltenyi Biotec). For some 

applications, the concentration of Papain or Trypsin was varied to prevent loss of cell surface 

epitopes. In this case, the protease concentration is specified in the respective section. 
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2.8.2 Cultivation of eukaryotic cells 

2.8.2.1 Cell lines 
All cell lines were cultured in 25-175 cm2 flasks or 6-96 well flat- or round-bottom culture 

plates (BD Falcon). Murine 1881 cells (Promochem) were cultured in Dulbecco’s modified 

Eagles medium (DMEM; Miltenyi Biotec or Invitrogen) supplemented with 10% FCS 

(Biochrom), 15 mM HEPES (Invitrogen) and 2 mM L-Glutamine (Invitrogen) in a humidified 

incubator with a 5% CO2 atmosphere at 37°C. SP2/0 cells (Promochem) were cultured in 

DMEM containing 20% FCS (PAA Laboratories), 20 mM HEPES and 2 mM L-Glutamine in 

a humidified incubator with a 9% CO2 atmosphere at 37°C. 

 

2.8.2.2 Primary brain cells 

Dissociated brain cells (see 2.8.1) were cultured in DMEM/Ham's F12 medium (3/1) 

containing 2 mM Glutamax, 1% N2 supplement, 1% B27 and 1% penicillin/streptomycin (all 

from GIBCO) in poly-l-lysine-coated (0.01%, Sigma) 24-96 well flat-bottom culture plates 

(BD Falcon). For immunocytochemistry, 50.000 cells per well were seeded on poly-l-lysine-

coated (0.01%, Sigma) glass coverslips in 4-well plates containing 500 μl culture medium. 

 

2.8.3 Transfection of cell lines 

Cell lines were transfected by electroporation. During the exponential proliferation phase, 

suspension cells were harvested by centrifugation (150-300 g, 10 min) and resuspended in 

fresh medium without FCS. After transfer into a sterile electroporation cuvette (Type 165-

2107, BioRad), 0.5-1x107 cells were mixed with 15-50 µg pre-diluted DNA and incubated on 

ice for 15 min. Electroporation was performed using the Bio-Rad Gene Pulser II instrument 

with the following settings:  

 

210-270 V 

0.975 µF 

Time constant 15-25 ms 

 

After the pulse, cells were kept at 37°C for 10 min before subsequent culturing (see 2.8.2.1). 
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2.8.4 Magnetic cell separation (MACS®) 

The MACS® technology allows the separation of cells according to specific cell surface 

markers (Abts et al., 1989; Miltenyi et al., 1990; Radbruch et al., 1994). In principle, 

monoclonal antibodies which are covalently linked to superparamagnetic microbeads are 

incubated with single cell suspensions. These antibodies bind to cell surface markers directly 

or indirectly (via specific primary antibodies) and thereby magnetically label the target cell. 

After extensive washing, cell suspensions are separated with high gradient magnetic columns. 

Cells labeled with the microbeads retain in the column, whereas unlabeled cells pass through 

and can be collected as untouched fraction. Subsequently, the labeled cells can be eluted by 

displacing the column from the magnetic field. In general, this technology can be used in two 

ways: either depletion of unwanted cells by collection of the eluted, unlabeled fraction, or 

direct enrichment of labeled cells. After magnetic separation, purity of isolated cell subsets 

can be analyzed by flow cytometry or immunostaining. 

 

The MACS® technology was used for the purification of glomerular layer precursors and 

interneurons. Coronal sections (300 μm) of olfactory bulbs from 20 postnatal day 2 mouse 

brains were serially cut using a vibratome (Leica, see 2.9.1). The glomerular layers of these 

slices were dissected and dissociated (see 2.8.1). Afterwards, the cells were centrifuged at 

300 g for 7 min and the pellet (about 1.1x106 cells) was resuspended in 200 µl HBSS-BSA 

(Miltenyi Biotec) containing 0.6 µl c-ganglioside-specific mouse IgM A2B5 ascites (ATCC 

CRL-1520, kindly provided by G. Rougon, Marseille) and incubated on a gently rocking 

rotator for 30 min at 4°C. Subsequently, the cells were washed in 10 ml HBSS-BSA and 

centrifuged for 7 min at 300 g. The same incubation and washing conditions were applied for 

all further antibodies. The pellet was resuspended in 20% (v/v) anti-mouse IgM MicroBeads 

(Miltenyi Biotec) in 200 µl and, after incubation and washing, resuspended in 1 ml HBSS-

BSA. Cells were separated using an MS Column and a MiniMACSTM Separator (Miltenyi 

Biotec) according to the manufacture’s instruction. The A2B5+ fraction, retained in the 

column, was eluted and kept on ice, while the flow-through was incubated with 5 μg/ml PSA-

specific mouse IgG2a 735 antibody (kindly provided by R. Gerardy-Schahn, Hannover). 

Using 20% (v/v) anti-mouse IgG MicroBeads (Miltenyi Biotec) in 100 µl HBSS-BSA as 

secondary antibody directed against 735, the marked PSA+ cells were selected by retention in 

a column placed in a MiniMACSTM Separator, whereas the PSA- cells were collected from the 

flow-through. Type A early precursor cells were purified similar, by using SVZ- instead of 

glomerular layer-tissue as starting material. 
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2.8.5 Flow cytometry 

The flow cytometric analysis of cells or particles allows the analysis of physical- (cell size, 

cell granularity) and fluorescent-properties (after immunostaining with antibodies coupled to 

fluorescent dyes or internal expression of fluorescent markers). Therefore, singularized 

labeled cells are excited in a fluid stream by Argon- (488 nm) and diode-lasers (633nm). 

Depending on their label, the cells emit light which can be detected. The combination of 

scattered and fluorescent light emissions is detected and analyzed to define information about 

the physical structure and expression pattern of different molecules for each single cell. The 

flow cytometric analysis was done using a FACSCaliburTM combined with the CellQuest 

software version 3.1 or version 3.3 (Becton Dickinson).  

 

Table 2.6 Fluorochromes used for FACS  

Fluorochrome Absorption maximum (nm) Emission maximum (nm) 

EGFP 488 509 

FITC 495 517 

Phycoerythrin (PE) 565 576 

Propidium-Iodid (PI) 538 617 

Allophyconcyanin (APC) 651 660 

 

Besides the analysis of cells, the FACS-technology also allows the separation of a 

heterogeneous cell population (Cantor et al., 1975). This fluorescence-activated cell sorting is 

based on the same flow cytometric principle as mentioned before. In addition, the fluid stream 

is fractionated into single drops containing a maximum of one cell per drop. The drops which 

contain target cells, defined by their scattered and fluorescent light emissions, are electrically 

charged and deflected into reaction tubes based upon their charge.  

 

For the isolation of GFP+ GABAergic cells from whole brains, 4 transgenic GAD67-GFP 

mice at postnatal day 1 were sacrificed and their brains recovered. For the isolation of cells 

from different brain areas, the brains of 6 postnatal day 1 old GAD67-GFP mice were 

dissected into olfactory bulb, cortex, striatum, and cerebellum. GFP+ GABAergic cells for 

immunization were isolated from brains of 8 to 12 postnatal day 1 old GAD67-GFP mice. The 

tissues were then dissociated to a single cell suspension (see 2.8.1). Cells were resuspended in 

PBS (Gibco) and sorted on a FACSVantage SETM cell sorter (Becton Dickinson) for their 

FSC (forward scatter), SSC (side scatter) and FL-1 (EGFP) signals. Background signals were 
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set using dissociated brain cells from wild-type mice (C57Bl/6 / 6NCrl). Dead cells were 

excluded using PI (Sigma, 20 µg/ml), which intercalates into the DNA of dead cells. 

 

2.8.6 In vivo electroporation 

The technology of postnatal electroporation was initially established by Camille Boutin 

(Boutin et al., 2008). This method allows the targeted transfection of radial glia cells in the 

postnatal ventricular zone. At that stage, radial glia cells still represent the stem cell 

population of the SVZ/RMS/olfactory bulb system. Transfection of these cells induces strong 

expression of transgenes in the stem cell population as well as their progeny, neuronal 

precursors and mature neurons of the olfactory system. 

Animals were treated according to guidelines approved by the French ethical committee. 

Postnatal day 1 old mice (CD1 strain, Charles-River) were anesthetized by hypothermia (4 

min) and fixed to a support using band-aid. The skin and the skull covering the lateral 

ventricle were opened for about 2 mm using an ophthalmic scalpel. As a general positional 

marker, a virtual line connecting the right eye with lambda (visualized by a strong cold light 

source) was used and the incision was positioned 1 mm caudal to the midpoint of this line. 

Subsequently, the animal was placed in a stereotaxic rig (Kopff) under a Hamilton syringe 

connected to a glass capillary (diameter 200 µm, pulled out manually, GC100-15, Clark) 

containing 2 µl of plasmid solution (5 µg/µl, in PBS containing 1% Fast Green). The syringe 

was placed over the incision, positioned at the level of the skull, then lowered between 

2.5 mm to 3.0 mm into the lumen of the right lateral ventricle and the stained DNA solution 

was injected. An injection was considered correct when the shape of the now slightly dark 

stained lateral ventricle was visible under the light source. Only successfully injected animals 

were subjected to five electrical pulses (100 V, 50 ms, separated by 950 ms intervals) using 

the CUY21 edit device (Nepagene) and 10 mm tweezer electrodes (CUY650P10, Nepagene) 

coated with conductive gel (Control Graphique Medical). Electroporated animals were 

reanimated for several minutes on a 37°C heating plate before being returned to the mother. 

 

To transfect a different population of neuronal progenitor cells, cortical projection neuron 

precursors were electroporated at embryonic day 14 in utero (Saito and Nakatsuji, 2001; 

Shimogori and Ogawa, 2008). 

Timed pregnant mice (with embryos at E14) were anesthetized with xylazin/ketamin 

(4.6 mg/kg body weight). After cleaning the abdomen with 70% ethanol, a midline lapratomy 

was performed and the uterus taken out. For DNA microinjection, a pulled out glass capillary 
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(diameter 200 µm, GC100-15, Clark) containing 1 µl of plasmid solution (3 µg/µl, in PBS 

containing 1% Fast Green) was used. The DNA was injected into the lateral ventricle using a 

mouth controlled pipette system. The correct injection site was visible through the uterine 

wall by illuminating with a fiber optics light source. Square electric pulses (50 ms, at 25 V, 

5 pulses) were delivered to embryos through the uterus by using the CUY21 edit device 

(Nepagene) and 10 mm tweezer electrodes (CUY650P10, Nepagene). The uterus was kept 

wet by dropping saline. Subsequently, the uterine horns were repositioned in the abdominal 

cavity, filled with prewarmed saline at 37°C, and the abdominal wall and skin were sewed up 

with surgical sutures. The pregnant mice were sacrificed 4 days after electroporation and the 

embryos removed. The embryonic brains were dissected, fixed with 4% PFA over night at 

4°C and cut using a vibratome at 50 µm (see 2.9.1). 

 

2.8.7 Immunization  

Contralateral footpad immunization was used to induce monoclonal antibody production in 

rats (Brooks et al., 1993; Yin et al., 1997). For all immunization approaches, GFP+ 

GABAergic neurons were isolated from dissociated brain tissue (see 2.8.1) of 8 to 12 

GAD67-GFP mice by FACS (see 2.8.5). Subsequently, about 0.8-1.3 x 107 purified cells were 

injected subcutaneously (s.c.) into the left hind footpad of Lewis rats (LEW/HanHsd, Harlan). 

To minimize the unspecific immunoresponse, in most cases a decoy was injected into the 

right hind footpad in parallel. Boosts were administrated at days -3, 0, 4, 7, 11 and 14, with 

only a decoy injection at day -3. In different immunization attempts, several different decoys 

and adjuvants were tested. Either the GFP- fraction after FACS (see 2.8.5), dissociated brain 

tissue of Actin-GFP mice (see 2.8.1) or EGFP protein (a gift from Gritt Günther) served as 

decoy. Detailed immunization schemes are listed in the results section. 

 

2.8.8 Cell fusion 

One day after the last immunization (see 2.8.7), cells from the popliteal lymph node of the one 

hind footpad were isolated and used for the fusion with a murine myeloma partner (Sp2/0 

cells) based on the HAT system (Cotton and Milstein, 1973; Kohler and Milstein, 1975). 

After fusion, cells were seeded into 96 well flat-bottom culture plates (BD Falcon) in 150 µl 

DMEM containing 20% FCS (PAA Laboratories), 20 mM HEPES, 2 mM L-Glutamine, 

0,1 mM Hypoxanthin (Sigma) and 2 µg/ml Azaserine (Sigma). Mouse peritoneal 

macrophages had been isolated 2 days before and cultured in the same wells to increase the 
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survival after fusion. The plates were incubated in a humidified incubator with a 9% CO2 

atmosphere at 37°C. After 5 to 7 days, 50 µl of culture medium was added to each well 

followed by subsequent incubation. 

 

2.8.9 Screening of hybridoma supernatants 

Screening of hybridoma supernatants was carried out by immunolabeling followed by flow 

cytometric analysis (see 2.8.5). Wells containing clones (see 2.8.8) of more than 1 mm 

diameter were marked and 50 µl supernatant was transferred into a new well of a 96 well 

round-bottom culture plate (BD Falcon). About 1 x 104 dissociated cells from brains of 

GAD67-GFP mice (see 2.8.1) were added to each supernatant. After 15 min at 4°C, the plates 

were centrifuged (200 g, 10 min) and washed with 150 µl PBS for three times. The cells were 

resuspended in 50 µl PBS containing mouse anti-rat (mar) kappa (κ) monoclonal antibody 

(1:700, clone 18.5, mouse IgG2a, Miltenyi Biotec) coupled to APC and incubated at 4°C for 

10 min. After three washing steps (150 µl PBS, 200 g, 10 min), the cells were resuspended in 

300 µl PBS containing PI (Sigma, 20 µg/ml) and analyzed by flow cytometry (see 2.8.5). If a 

hybridoma clone had produced an antibody which recognizes a cell surface antigen on 

GABAergic cells, the cells would be double positive for GFP and APC. 

 

2.9 Histological methods 

2.9.1 Preparation of brain tissue 

For histological analysis, pups were deeply anaesthetized with an overdose of xylazin/ketamin 

(more than 10 mg/kg body weight). Perfusion was performed intracardiacally with a solution 

of 4% paraformaldehyde in PBS. The brain was removed and immersed overnight in the same 

fixative at 4°C. For vibratome sectioning, brains were washed three times for 10 min in PBS 

and stored at 4°C. Sections were cut at 50 µm using a microtome (Microm). For cryostat 

sectioning, brains were cryoprotected in 25% sucrose over night and frozen at -80°C. 

Afterwards, 10 µm sections were cut on a CM3050 cryostat (Leica), collected on Superfrost 

Plus slides (Menzel) and stored at -80°C. 
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2.9.2 In situ hybridization 

Labeled antisense RNA probes were generated by T7 based in vitro transcription from 

EasyProbeTM templates (Miltenyi Biotec) using the Dig-RNA labeling kit (Roche) according 

to the manufacture’s instructions. The EC10 EasyProbeTM template (Miltenyi Biotec) 

fragment, homologous to the bacterial ABC transporter YgaD, served as negative control. For 

hybridization, 10 µm cryostat sections were incubated in RIPA buffer (150 mM NaCl, 

1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 50 mM Tris pH 8.0) twice 

for 10 min and post-fixed in 4% paraformaldehyde in PBS for 10 min at room temperature. 

After washing in PBS for 5 min, the slides were hybridized using the a-HybTM hybridization 

station (Miltenyi Biotec) at a continuous pump rate of 1 ml/min. After washing with PBS for 

1 min, the tissue was acetylated for 10 min with 0.25% acetic anhydride in 0.1 M 

triethanolamin/HCl (pH 8.0). After an additional incubation in PBS, the sections were 

prehybridized with hybridization solution (50% formamide, 4x SSC, 1x Denhardt’s, 

2 mM EDTA, 10% dextrane sulphate, 0.5 mg/ml yeast t-RNA, and 0.5 mg/ml salmon sperm 

DNA) for 30 min at 37°C. The labeled probe was dissolved in hybridization solution, 

denatured at 82°C and applied to the sections. Hybridization was carried out for 150 min at 

temperatures from 42°C to 65°C, depending on the probe. After washing twice for 1 min in 

2x SSC/50% formamide at 25°C and twice for 1 min in 1x SSC, the a-HybTM was blocked 

using 0.1% BSA in 1x SSC for 5 min. Following a washing for 1 min in 

2.5x SSC/0.2% Tween 20, the sections were blocked in detection solution (2% sheep serum in 

2.5x SSC/0.2% Tween 20) for 15 min and incubated in detection solution containing 

phosphatase-conjugated anti-Dig fab fragments (Roche) for 30 min. Slides were then washed 

twice in 4x SSC/0.2% Tween 20 for 1 min and twice in AP buffer (100 mM Tris/HCl, 

100 mM NaCl and 50 mM MgCl2) for 1 min. Visualization was performed using NBT/BCIP 

(Sigma) dissolved in AP buffer containing Levamisol (1 mM) until the staining became 

visible, whereas the negative control staid clear. The reaction was stopped by rinsing the 

slides in PBS for 5 minutes. Sections were mounted with Aquamount (DAKO). Microscopy 

was done using a Zeiss Axioskop 2+ equipped with an AxioCam HRc digital camera and the 

AxioVison 3.1 software (all from Zeiss). 

 

2.9.3 Immunocytochemistry 

For immunocytochemistry, 50.000 cells were seeded per well on poly-l-lysine-coated (0.01%, 

Sigma) glass coverslips in 4-well plates containing 500 μl culture medium (see 2.8.2.2). A2B5 
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ascitic fluid was added 1:400 to the living cells for 20 min. The cells were fixed after 1 h to 

avoid in vitro differentiation. After fixation in 3.8% PFA in PB (0.5% BSA in PBS) for 

20 min at room temperature, cells were washed and 3% BSA in PB was added as blocking 

buffer for 30 min. Primary antibodies (A2B5, Mouse IgM, kindly provided by G. Rougon, 

1:400; Calb2, Mouse IgG1, Sigma, 1:1000; GAD65/67, Rabbit, Sigma, 1:400; Polysialic acid 

(PSA) 735, Mouse IgG2a, kindly provided by R. Gerardy-Schahn, 1:400; TUJ1, Rabbit IgG, 

Covance, 1:2000) were diluted in blocking buffer and applied for 2 h at room temperature. 

After washing, the cells were incubated 1 h with secondary antibodies (Goat anti-mouse IgM 

Alexa 488, Molecular Probes/Invitrogen, 1:2000; Goat anti-mouse IgG Fc Cy3, Jackson 

ImmunoResearch Laboratories, 1:1000; Goat anti-rabbit IgG Cy5, Cambridgeshire, 1:800; 

Donkey anti-mouse IgG Cy3, Jackson, 1:400; Donkey anti-rabbit Cy3, Jackson, 1:400; Goat 

anti-mouse IgG Alexa 633, Molecular Probes, 1:1000; Goat anti-mouse IgM Alexa 633, 

Molecular Probes, 1:800). After application of secondary antibodies, the cells were washed 

twice for 10 min in PB, one time for 10 min in distilled water, air-dried and mounted with 

Fluorescence Mounting Medium (DAKO). Fluorescence microscopy was performed using an 

Axioplan 2 equipped with an ApoTome imaging module, an AxioCam MRc digital camera 

and the AxioVison 4.2 software (all from Zeiss).  

 

2.9.4 Immunohistochemistry 

For immunohistochemistry, 50 µm vibratome sections (see 2.9.1) were used. Staining was 

done on floating sections as described previously (Hack et al., 2002). Briefly, sections were 

first incubated overnight at 4°C with primary antibodies (MenB against PSA, 1:250, provided 

by G. Rougon, Marseille, France; DCX, 1:200, Chemicon; Mash1, 1:200, Upstate) before 

incubation with the corresponding fluorescently labeled secondary antibody (Goat anti-guinea 

pig IgG Cy5, Abcam, 1:200; Goat anti mouse IgM Texas Red, Abcam 1:800; Goat anti-

mouse IgG Fc Cy5, Jackson, 1:1000). Cell nuclei were stained with Hoechst 33258 and the 

samples were mounted with Fluorescence Mounting Medium (DAKO). Optical images were 

taken either using an Axioplan 2 equipped with an ApoTome or a LSM510 laser confocal 

scanning microscope (all from Zeiss). 
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2.10 Mouse breeding 

Animals were maintained at a 12 h light-dark circle in an SPF animal facility. All protocols 

were in accordance to the German “Tierschutzgesetz”. Experiments were partially performed 

at the IBDML (Marseille, France) in accordance to protocols approved by local authority 

guidelines. 

 

Table 2.7 Mouse strains 

Name Strain background Reference 

CD1 Crl:CD1 (ICR) Charles River Laboratories 

Bl6 C57Bl/6 / 6NCrl Charles River Laboratories 

Balb/c BALB/cAnNCrl Charles River Laboratories 

GAD67-GFP GAD67-GFP (∆neo), C57Bl/6 / 6NCrl Tamamaki et al., 2003 

TH-GFP TH/EGFP, C57Bl/6 / 6NCrl Matsushita et al., 2002 

Actin-GFP TgN(GFPU)5Nagy, C57Bl/6 / 6NCrl Hadjantonakis et al., 1998 

 

Genotyping was done by PCR (see 2.6.3) using strain specific primers (see Tab. 2.8). 

 

Table 2.8 Primers for genotyping 

Strain Forward primer Reverse primer 

GAD67-GFP GCTGTGAGCCTCACTCGGAGC TGCTCAGGTAGTGGTTGTCG 

TH-GFP AAGTTCATCTGCACCACCG TGCTCAGGTAGTGGTTGTCG 

Actin-GFP AAGTTCATCTGCACCACCG TGCTCAGGTAGTGGTTGTCG 
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3 Results 

Part I: Molecular analysis of region-specific fore- and 
hindbrain GABAergic neuron subpopulations 
GABAergic neurons are a diverse group of inhibitory neurons. Different subpopulations are 

present in all brain regions and several attempts have been made to categorize these 

subpopulations (Markram et al., 2004). While some of these results allow for a valuable, 

detailed and partly functional description of different GABAergic neurons, they have not led 

to a systematic dichotomy. Whole genome gene expression profiling has emerged as a method 

for the molecular description of cell populations. Based on the expression of genes, an 

unambiguous and specific pattern is assigned to each cell type or cell stage. Besides the pure 

categorization of cell types, the interpretation of their specific expression pattern may also 

help to get an understanding of functional properties and to identify novel markers which can 

be used for their isolation. To analyze GABAergic neuron subpopulations on a molecular 

level, first of all a method to isolate the respective cells had to be established. 

 

3.1 Analysis and isolation of GABAergic neurons by flow cytometry 

So far, no surface markers suitable for the isolation of GABAergic neurons by FACS or 

MACS® have been described. However, GAD67-GFP mice express GFP under the control of 

the endogenous glutamate decarboxylase 67 isoform-promotor (Tamamaki et al., 2003). A 

specific expression of GFP in all GABAergic neurons throughout the brain of this mouse 

strain was shown (Tamamaki et al., 2003). To check the suitability of this model system for 

flow cytometric analysis and purification of GABAergic neurons, an appropriate method for 

the dissociation of brain tissue to a single cell suspension was established. 

 

3.1.1 Dissociation and flow cytometric analysis of GABAergic neurons 

Different protocols for an optimal dissociation of brain tissue yielding high recovery rates of 

viable and singularized neural cells were tested. The total number of cells per brain, the 

efficiency for removal of tissue clumps and the percentage of dead cells, measured by 

propidiumiodide (PI) staining (see 2.8.5), served as criteria. Several Trypsin and Papain 

concentrations in combination with mechanical dissociation and filtration by cell strainers of 
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different mesh diameters (Miltenyi Biotec) were assayed. At postnatal day 1, the best results 

were obtained with a Papain based enzyme mix (NTDK Papain, Miltenyi Biotec) at standard 

concentration in combination with a 30 µm cell strainer (data not shown). No additional loss 

of GFP+ GABAergic cells was observed compared to cell strainers with higher mesh sizes. 

However, the use of cell strainers with higher mesh sizes, e.g. 50 or 70 µm, was less 

compatible with flow sorting, due to frequent plugging of the microfluidic parts inside the 

cytometer. Subsequent to the dissociation of either wild-type or GAD67-GFP postnatal day 1 

mouse brains, flow cytometric analysis was used to determine the GFP-fluorescence signals 

of single cells (Fig. 3.1). Whereas cells isolated from wild-type mice showed no GFP-

fluorescence, about 15.8% (Δ = 2.1%, n = 6) of the cells originated from GAD67-GFP mice 

were strongly GFP positive. The rate of dead cells, as identified by PI staining, was 2-3%. 
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Figure 3.1: Flow cytometric analysis of dissociated brain tissue from GAD67-GFP mice 
Brains of postnatal day 1 wild-type (A-C) or GAD67-GFP (D-F) mice were removed and dissociated to 

a single cell suspension. Flow cytometric analysis was used to determine the physical and fluorescent 

properties of each cell. Only events that were identified to have cell typical forward and side scatter 

properties (region in A and D) and showed low fluorescence in the PI channel (region in B and E) were 

considered as viable singularized cells and analyzed for their GFP expression (C and F). Cells 

isolated from wild-type mice showed no GFP fluorescence (C), whereas a subpopulation of cells 

(15.8%, ∆ = 2.1%, n = 6) from GAD67-GFP mice was strongly GFP positive (G). 
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3.1.2 Quantification of GABAergic neurons from different brain regions 

So far, the appearance of GABAergic neurons in distinct brain areas was analyzed mainly by 

immunohistochemistry (Kosaka and Kosaka, 2005). This method comprises several 

disadvantages like the time consuming staining procedures, inhomogeneous staining and the 

unequal distribution of marker proteins in distinct cell compartments, for example in the 

synaptic termini. It was reasoned that by using flow cytometry, it should be possible to 

investigate the regional distribution of GABAergic neurons at a much higher significance 

level, because higher cell numbers can be analyzed. To determine the proportion of 

GABAergic neurons in the major parts of the brain, tissue from olfactory bulb, cortex, 

striatum and cerebellum of twelve P1 old GAD67-GFP knock-in mice was dissected. 

Subsequently, tissues of two mice were pooled, dissociated enzymatically to a single cell 

suspension and analyzed by flow cytometry (Fig. 3.2). The number of EGFP-positive cells 

varied among different brain areas. The highest amount of positive cells was observed in the 

olfactory bulb with 58.8% (Δ = 3.2%, n = 6) reflecting that the largest population in the OB 

are inhibitory granule neurons. Striatal and cortical tissues contained 45.1% (Δ = 5.1%, n = 6) 

and 15.1% (Δ = 2.7%, n = 6) positive cells, respectively. The lowest number of GABAergic 

cells was found in the cerebellum (3.2%; Δ = 0.5%, n = 6).  

 

 
Figure 3.2: Quantification of GABAergic neurons among distinct brain areas 
Flow cytometric analysis of GFP+ cells in the olfactory bulb (A), the cortex (B), the striatum (C) the 

cerebellum (D) and subsequent quantification of positive cells (E). Error bars indicate the standard 

deviation of the mean value (n = 6 replicates from 12 mice). 
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3.1.3 Isolation of GABAergic neurons by FACS 

Based on the results above, it was now tested whether it is also possible to purify GABAergic 

neurons by FACS (see 2.8.5). Cells of dissociated brains from postnatal day 1 old GAD67-

GFP knock-in mice were sorted on a FACSVantage SETM cell sorter (Becton Dickinson) for 

their FSC (forward scatter), SSC (side scatter) and GFP (FL-1) signals. Background signals 

were defined by using dissociated brain cells from wild-type mice (C57Bl/6 / 6NCrl). Dead 

cells were excluded using PI. Each brain yielded around 1.0-1.2 x 106 GFP+ GABAergic 

neurons with purity higher than 99% (Fig. 3.3). The rate of dead cells, as identified by PI 

staining, was again 2-3%. Aliquots of FACS purified cells were successfully cultivated for 

seven days. Neither extensive cell death nor loss of GFP fluorescence was observed, 

indicating that the procedure is not harmful to the cells (data not shown). 

 

 
Figure 3.3: FACS purification of GABAergic neurons 
Flow cytometric purification of GFP labeled GABAergic neurons. No background fluorescence was 

observed in cells from wild type mice (A), whereas in cells from GAD67-GFP mice a clear GFP+ 

population could be identified (B). The purity of GFP+ cells after sorting was above 99% (C). 
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subsequent analysis of these cells on a molecular level. Whole genome gene expression 

profiling has emerged as a method for the description of cell types. The expression of 

thousands of genes allow for each cell type or cell stage to be assigned an unambiguous and 
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individual cell populations by calculating correlation matrices. Moreover, by assessing 
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prominent transcription pathways, functional explanation of the observed differences can be 

given and new single gene markers can be identified. To analyze GABAergic neurons in 

general and the relationship of these cells among distinct brain regions, their gene expression 

profiles were assayed using Agilent whole mouse genome 44k microarrays (see 2.6.10 and 

Fig. 3.4). 

 

 
 
Figure 3.4: Experimental setup 
(A) Scheme of the experimental setup for enzymatic dissociation of whole brains or brain areas from 

GAD67-GFP knock-in mice and purification of GFP+ cells by FACS. RNA of these cells was used to 

generate amplified cDNA, which was labeled with Cy5 in a Klenow reaction (red) and hybridized on 

Microarrays. Cy3 labeled cDNA (green) originated from whole brain mRNA served as a reference in all 

experiments. Furthermore, the number of replicates (B) and origin of the isolated cells (C) are 

indicated. 

 

 

The yield of purified GABAergic neurons, especially of those isolated from the cerebellum, 

was too low for conventional RNA amplification techniques. To gain and compare results 

from all subpopulations, a method for rare cell gene expression profiling had to be 

established. Accordingly, a protocol for sensitive gene expression profiling, originally 

established for the analysis of blood cells (Appay et al., 2007; Auffray et al., 2007), was 

adapted for FACS purified neuronal cells (see 2.6.10). The protocol was validated by flow 

cytometric sorting and rare cell gene expression of 1881- and Jurkat cells (see 2.8.2.1). The 

Dissociate FACS

cDNA 
Amplification
and labeling

Array 
hybridisation 

labeled 
cDNA 

purified 
GAD67+ 

cells 

3 Cortex 

3 Striatum 

3 Cerebellum 

3 Olfactory Bulb

4 Whole Brain 

Replicates Origin 

A 

B C



Results 
   

49 

results matched with those of conventional gene expression profiling as well as those of cells 

which were not FACS purified (data not shown). 

Directly after flow cytometric sorting, 10000 cells per experiment were lysed in SuperAmp 

Lysis Buffer and stored at -20°C until RNA extraction and amplification. For quality control, 

capillary chromatography of total RNA, isolated from FACS purified GABAergic neurons, 

was performed, revealing no signs of degradation (Fig. 3.5). Microarray analyses of 

GABAergic neurons isolated from either whole brain (n = 4), olfactory bulb (n = 3), cortex 

(n = 3), striatum (n = 3) or cerebellum (n = 3) was performed, amounting to a total of 16 array 

data sets (Fig. 3.4 B and C). Global PCR amplification of mRNA from 10000 flow sorted 

GFP positive cells yielded 2.5-3.5 µg cDNA. 250 ng of cDNA was labeled and hybridized on 

Agilent whole mouse genome 44k microarrays (see 2.6.10). RNA isolated from wild type 

mice whole brains (n = 4) at postnatal day 1 was amplified in the same way and served as a 

common reference for all hybridizations. Correlation coefficients of independent replicates 

ranged from 0.90 to 0.97, demonstrating high reproducibility. The Gene Expression Omnibus 

(GEO) series entry GSE8984 provides access to all data from this analysis 

(http://www.ncbi.nlm.nih.gov/projects/geo/). Furthermore, supplementary files are available 

for download by FTP (File Transfer Protocol) using the series accession number at 

ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/. 

 

 
Figure 3.5: Quality control of isolated total RNA after FACS purification 
For quality control, capillary chromatography of total RNA, isolated from FACS purified GABAergic 

neurons, was performed. No sign of degradation was observed. RINs (RNA Integrity Numbers) were 

between 7.8 and 8.7. Samples 1 to 3 show representative examples. The two major bands represent 

the 18S and 28S ribosomal RNA. The RNA ladder (L) spans 0.2-4.0 kb. 
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3.2.1 Global gene expression of GABAergic neurons 

The primary goal was to analyze similarities in gene expression of all subpopulations and 

thereby define a general genomic signature of GABAergic neurons. Factors involved in the 

late differentiation and functionality of these cells as well as new marker genes, also with a 

focus on cell surface proteins, should be identified. The general approach was validated by 

assessing the gene expression results of known marker genes (Fig 3.6). As expected, mRNAs 

encoding the two key enzymes for GABA synthesis, GAD67 (GAD1) and GAD65 (GAD2), 

were strongly enriched in purified GABAergic neurons compared to the whole brain 

reference. Furthermore, the vesicular inhibitory amino acid transporter (VIAAT), responsible 

for the transport of GABA into synaptic vesicles, was enriched, whereas mRNA for the 

glutamate transporter SLC1A4 was not. TH, a marker for catecholaminergic neurons, showed 

decreased expression. Consistently, established markers of glial cells, like GFAP, GLT1 

(SLC1A2), GLAST (SLC1A3), OLIG1, OLIG2, VIM, CD44 and PLP were decreased in 

GABAergic neurons. 

Taken together, the expression of known neuronal and glial marker genes matched with the 

purification of GABAergic neurons. 
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Figure 3.6: Expression analysis of known marker genes 
The expression of known marker genes was analyzed to validate the microarray experiments. GAD1 

(GAD67), GAD2 (GAD65) and VIAAT served as markers for GABAergic neurons and showed 

enriched expression. Markers for other neuronal cell types, like the glutamate transporter SLC1A4 and 

TH, a marker for catecholaminergic neurons, showed decreased expression. Also established markers 

of glial cells, like GFAP, GLT1 (SLC1A2), GLAST (SLC1A3), OLIG1, OLIG2, VIM, CD44 and PLP 

were decreased in GABAergic neurons. Expression values were calculated as normalized log2 ratios. 

Error bars indicate the standard deviation of the mean value (n = 16). 

 

 

To analyze if there was a bias towards genes of specific functional classes in the fraction of 

transcripts showing increased or decreased expression, a Gene Ontology (GO) analysis was 

carried out. The 550 strongest enriched genes in GABAergic neurons of all origins or the 

whole brain reference were sorted according to their functional classes as defined by the Gene 

Ontology database (Fig. 3.7). The functional classes “Cell proliferation/differentiation” and 

“Cell adhesion/skeleton” were significantly over-represented in GABAergic neurons, 

indicating a lower developmental stage compared to other brain cells. In contrast, genes which 

are important for general metabolism were enriched in the whole brain reference. 

Additionally, genes coding for different receptors were predominantly found in the whole 

brain reference fraction, reflecting the larger receptor diversity among different cell types 

compared to GABAergic neurons. 
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Figure 3.7: Grouping of genes according to Gene Ontology 
Grouping of genes enriched in GABAergic neurons compared to whole brain enriched genes. The 550 

strongest enriched genes in GABAergic neurons of all origins (black) or the whole brain reference 

(grey) were sorted according to their functional classes as defined by the Gene Ontology (GO) 

database. The absolute number of genes per GO class is depicted. The functional classes “Cell 

proliferation/differentiation” and “Cell adhesion/skeleton” were significantly over-represented in 

GABAergic neurons, whereas more genes which are important for general metabolism as well as 

genes coding for different receptors were found to be enriched in the whole brain reference. 

 

 

To identify the transcripts most significantly expressed in all GABAergic neuron subtypes, 

the data was filtered for probes showing more than 3-fold higher signals in GABAergic cells 

than in the total brain reference in at least 14 of the 16 experiments. Using these criteria, an 

over-representation of genes expressed in the cortex and striatum, which are the regions 

containing the major part of GABAergic neurons in the brain, was avoided. The 55 targets 

which were identified and could be unambiguously annotated to characterized genes are listed 

in table 3.1. 
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Table 3.1: Genes enriched in GABAergic neurons 
    

 

      
 

Gene name GeneBank ratio SD Gene Ontology annotation 
      

 

    
 

Chd7 AK042727 3.5 0.2 
Fos NM_010234 5.7 0.3 
Hoxa1 NM_010449 4.2 0.4 
LOC432637 NM_001004167 6.4 0.8 
Mkx NM_177595 3.5 0.2 
Mll3 AY138582 5.9 0.7 
Myst4 AK129129 13.8 1.4 
Pcgf3 AK033609 6.5 0.5 
Phf21b BC067021 18.9 1.6 
Sox7 NM_011446 7.1 1.0 
Zfpn1a2 NM_011770 4.0 0.5 

Transcription 

Angptl2 AK011976 11.7 1.2 
CD72 AF543214 6.5 1.0 
Cd84 NM_013489 3.8 0.2 
Eps15-rs BC015259 4.9 0.5 
Ifitm5 NM_053088 5.8 1.2 
Ncr1 NM_010746 5.7 0.4 
Prlpc2 NM_023332 3.4 0.4 
Tnfsf5 NM_011616 6.1 0.4 
Trip11 AK077954 3.4 0.2 
Wisp1 NM_018865 5.3 0.8 

Receptor signaling 

Fpr-rs4 NM_008041 5.1 0.7 
Olfr1052 NM_147010 4.1 0.4 
Olfr1269 NM_146342 6.3 0.3 
Olfr560 NM_147113 5.8 1.4 
Olfr672 NM_146760 13.2 4.1 
Olfr700 NM_146600 4.8 0.6 
Olfr849 NM_146527 6.7 0.3 
V1rc30 NM_134185 7.8 0.9 

G-protein signaling 

Gria2 BC048248 3.3 1.0 
Slc34a1 NM_011392 6.3 0.8 
Tnpo3 AK049446 7.2 0.3 

Cellular import/export 

Klk9 NM_010116 3.3 0.1 
Kng2 NM_201375 4.6 0.4 
Usp49 AK019130 8.6 1.0 

Protein degradation 

2900006B13Rik AK085984 5.4 0.6 
Fgb NM_181849 5.1 0.4 
Saps2 AK083335 3.5 0.6 

Other metabolism 

Hamp NM_032541 11.9 2.6 
Zswim6 BC021311 3.7 0.1 Metal ion homeostasis 

Adipor2 AK046591 5.8 1.4 
Pla2g4b BC042758 6.4 1.0 Lipid metabolism 

C330018K18Rik NM_177352 7.1 1.7 Carbohydrate metabolism 
Gp1ba NM_010326 3.8 0.3 Cell adhesion 
Crkl BC023080 6.6 1.1 Cell cycle 
Eml5 AK047762 3.4 0.4 Cytoskeleton 
Gad1 AK054554 3.3 1.1 Neurotransmitter metabolism 
Adarb2 NM_052977 4.4 0.3 Nucleotide metabolism 
Gpx5 NM_010343 3.7 0.3 Response to oxidative stress 
Trspap1 BC055454 4.4 0.3 Translation 
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Table 3.1: continued 

    

 

      
 

Gene name GeneBank ratio SD Gene Ontology annotation 
      

 

    
 

1700081L11Rik BC053389 4.7 0.4 
2810403A07Rik AK038617 3.8 0.6 
2810407A14Rik NM_175156 12.1 1.4 
5330439B14Rik NM_177314 5.1 1.2 
6430706D22RIK BC004768 4.2 0.1 
A430057M04Rik NM_176925 4.9 0.7 
AK040702 AK040702 5.1 0.4 
B230325K18Rik NM_176936 4.4 0.6 
C130023O10Rik NM_177110 14.5 0.8 
LOC385154 AK041326 3.5 0.2 
LOC544848 AK032716 5.1 0.6 
Speer4f NM_027609 6.2 0.2 
Sprrl9 NM_026335 8.9 0.5 

Unknown 

      

 

    
 

List of genes which were >3-fold enriched in GABAergic cells versus whole brain in at least 14 of 16 

experiments. The mean expression ratios of 4 independent experiments using whole brain GABAergic 

cells are shown. The genes are sorted according to their Gene Ontology annotations. Abbreviations: 

SD = standard deviation of the mean value 

 

 

The transcriptional regulator MYST4 (Qkf, Querkopf), which was shown to be required for 

the development of forebrain interneurons, was one of the strongest overrepresented genes 

(Thomas et al., 2000). Furthermore, the homeobox transcription factor HOXA7, which has 

been implicated in neural tube formation in Xenopus (Wright et al., 1989), was strongly 

represented, as were SOX7 and the signaling protein WISP1 which both interfere with WNT 

signaling (Takash et al., 2001). High expression of RNA-editing molecules like ADARB2 

and SECP43 was found. ADARB2 is a double-stranded RNA adenosine deaminase that has 

been suggested to edit defined brain-specific transcripts. It is considered to be a candidate for 

involvement in genetic forms of epilepsy (Melcher et al., 1996; Mittaz et al., 1997). 

Interestingly, the highly expressed cytoplasmatic protein CRKL complexes with the adaptor 

protein Dab1 (Chen et al., 2004), pointing towards an activity of the reelin signaling pathway 

in interneurons. This suggests that several of the here isolated neurons are still migratory. In 

addition to the described genes, many uncharacterized genes and EST-sequences were found 

to be enriched. 
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In a second round of data filtering, less stringent criteria were applied by focusing on genes 

which were enriched in GABAergic neurons in at least 12 of the 16 experiments. In this 

approach, further genes belonging to the GO-groups “cytoskeleton” (e.g. MTAP4, EHD2, 

CAPZA2, PPFIA1, MOBKL1A, MTSS1), “RNA-processing” and “RNA-editing” (e.g. 

SFRS3, PDCD11, THOC1, THOC2, GLE1L, CSDE1, SRPK2), “neuron development” (e.g. 

PTCK3, MYT1, SOX11, LOXL2, SNAP91, POGZ) and “protein-glycosylation” (e.g. 

GALNT11, B3GALT2) were identified. 

In conclusion, a specific genetic signature representative for all major populations of 

GABAergic neurons was generated and considerable amounts of candidate factors maybe 

involved in the generation and regulation of these cell populations were identified. 

 

3.2.2 General differences among distinct brain regions 

After defining the global transcriptome of GABAergic neurons, the gene expression profiles 

of cortical, striatal, olfactory bulb and cerebellar interneurons were compared by calculating 

Pearson correlation coefficients of pairwise comparisons. Unsupervised hierarchical 

clustering of correlation coefficients most strikingly grouped the regions of the forebrain, 

olfactory bulb, cortex and striatum, together but separated them from the cerebellum 

(Fig. 3.8 A). Furthermore, replicates for each brain area clustered together, indicating a 

specific expression profile, which differs from other parts of the brain. Within the forebrain 

regions, there was a subgrouping of striatal and cortical interneurons pointing towards a closer 

relationship among these populations compared to the olfactory bulb. This observation was 

supported by the fact that 31% of all genes which were at least 4-fold enriched in the olfactory 

bulb were found to be overexpressed in this area only. In contrast, in cortex (11%) and 

striatum (3%) considerably smaller amounts of genes showed an exclusive expression. In 

general, only 155 of 2104 (7%) enriched genes were present in all areas, indicating that each 

subgroup displays a unique expression pattern. (Fig. 3.8 B).  

In summary, the approaches applied in this study identified minor differences among 

GABAergic neurons from distinct forebrain regions but major differences between fore- and 

hindbrain GABAergic neurons. 
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Figure 3.8: Correlation analysis 
(A) Correlation matrix showing the relationship of gene expression profiles in all experiments. The 

matrix was generated by unsupervised hierarchical clustering of global expression data. Correlation 

coefficients are indicated by their color from blue (0.5) to yellow (1.0). Replicates for each brain area 

clustered together, indicating a specific expression profile, which differs from other parts of the brain. 

Groups belonging to the forebrain subclustered together and displayed the most significant differences 

compared to the cerebellum, which is part of the hindbrain. (B) Venn diagram showing shared and 

unique expression of genes enriched in GABAergic neurons from different brain areas. Focusing on 

the most important differentially expressed genes, only transcripts with at least 4-fold enrichment 

compared to whole-brain reference in any of the cell groups were selected. Only 155 of 2104 (7%) 

genes were enriched in all areas, indicating that each subgroup displays a unique expression pattern. 

Abbreviations: OB = olfactory bulb 

 

 

3.2.3 Differential gene expression reflects distinct functions of 
GABAergic neurons in specific forebrain regions 

After this general statistical classification of the global relationship between GABAergic cells 

from different brain areas, it was analyzed, which genes were specifically expressed in 

selected forebrain regions. To this end, discriminatory gene analysis using two class unpaired 

SAM (Serial Analysis of Microarrays) with at least 100 permutations per analysis (Tusher et 

al., 2001) was performed. The brain region of interest was compared to the group of all 

remaining areas. Delta value was always chosen to result in 0% median number of false 

significant genes (see 2.6.10.4). 
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The first evaluation focused on genes specifically expressed in the cortex. Using the above 

criteria only 5 genes were found that were significantly higher represented in the cortex than 

in all other brain regions, while 62 were expressed at lower levels. Most of these genes were 

either functionally uncharacterized or not reported in relation to brain function (Fig. 3.9 A-C). 

The rather low number of cortex GABAergic neuron specific genes may reflect the high 

number of different interneuron subpopulations in this area, which maybe suppresses the 

identification of differently expressed genes in distinct subpopulations. 

Next, SAM for olfactory bulb GABAergic neurons led to 272 genes with increased and 265 

with decreased expression compared to other brain regions. Gene Ontology analysis of these 

genes using TreeRanker (Schacherer, F., unpublished) at a significance level of 0.005 

identified enrichment of the GO groups “Development” and “Pattern”. Within the genes 

showing strongest enrichment in this structure, FGF2 and FGF2-receptor as well as PIK3R1 

and ROBO2 were found (Fig. 3.9 D and E). The high expression of these migration and 

differentiation associated genes, as well as the relatively low abundance of the differentiation 

correlated gene ATBF1 (Fig. 3.9 F), is in good agreement with the continuously ongoing 

neurogenesis in the olfactory bulb.  

In striatal cells, the expression of 111 genes was increased compared to other brain regions, 

while not a single gene was found to be notably decreased. GO annotation identified a 

significant enrichment of genes belonging to the GO-groups “Extracellular region”, 

“Extracellular space”, “Signal”, “Secreted”, “Glycoprotein” and “Morphogenesis”. 

The significant enrichment of differently regulated genes (Fig. 3.9 G and H) with an impact 

on morphogenesis correlates with the specific connectivity and function of GABAergic 

neurons in the striatum. In contrast to other forebrain regions, where GABAergic neurons are 

generally found as local projecting interneurons, they represent almost exclusively projection 

neurons in the striatum. Factors regulating cell-cell and cell-matrix adhesion, like CSF1, 

LAMA1 and EDG1 (Matter and Laurie, 1994; Paik et al., 2004; Yang et al., 2006), were 

highly expressed. The same was true for transcription factors, either implicated in long-range 

axonogenesis in corticospinal motor neurons (BCL11B), in the regulation of cytoskeletal 

organization (FOXJ1) or in cell migration (TITF1) (Arlotta et al., 2005; Gomperts et al., 

2004; Pan et al., 2007). 
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Figure 3.9: Expression ratios of selected genes identified by discriminatory gene analysis 
(DGA) for forebrain GABAergic neuron populations 
The expression values of selected genes, identified by DGA to be differently enriched in a distinct 

brain region compared to all others, are depicted. ANKRD27 (A), BC054438 (B) and LOH11CR2A (C) 

were found to be differentially expressed in the cortex, PIK3R1 (D), ROBO2 (E) and ATBF1 (F) in the 

olfactory bulb, and FOXJ1 (G) as well as TTR (H) in the striatum. The columns represent the log2-

transformed expression ratios for each replicate. Abbreviations: OB1-3 = olfactory bulb replicates 1-3; 

ST1-3 = striatum replicates 1-3; CX1-3 = cortex replicates 1-3; CB1-3 = cerebellum replicates 1-3 

 

 

Finally, pathway analysis of genes enriched in the striatum and not related to morphogenesis 

led to the identification of a large number of genes interacting directly or indirectly with IGF2 

(Fig. 3.10). This gene, as well as some of its interaction partners, has been implicated in the 

development of Huntington’s disease, a neurodegenerative disorder that affects primarily 

striatal GABAergic neurons. 

 



Results 
   

59 

 
Figure 3.10: Pathway analysis for genes enriched in striatal GABAergic neurons 
A network of genes, interacting directly or indirectly with IGF2, that where identified to be significantly 

enriched in striatal GABAergic neurons compared to populations of other brain regions, is depicted. 

The molecular network was generated using the PathwayArchitect software. Only manually validated 

interactions where taken into consideration. Interaction legend: light blue square = expression; dark 

blue square = binding; green square = regulation; rotated square = metabolism; circle = protein 

modification; triangle = transport 

 

 

3.2.4 Comparison of fore and hindbrain GABAergic neurons 

As mentioned above, hierarchical clustering demonstrated a grouping of forebrain versus 

hindbrain GABAergic neurons. The genes showing aberrant expression were analyzed in 

more detail. Differential gene analysis of GABAergic neurons from the cerebellum versus the 

three forebrain regions led to the identification of many transcripts showing increased or 

decreased expression levels compared to the other group. 241 genes were significantly 

enriched in forebrain GABAergic neurons. In contrast, 269 genes were expressed notably 

higher in the cerebellar population than in those of the forebrain. Subsequent GO analysis 
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revealed many candidates, involved in the development, migration and differentiation of 

neuronal cells. Expression patterns of these candidates are depicted in figure 3.11.  

 

 
Figure 3.11: Cluster analysis 
Cluster analysis of genes identified by discriminatory gene analysis of GABAergic neurons from the 

cerebellum compared to those of the forebrain. Discriminatory gene analysis (DGA) was done by the 

SAM (Serial Analysis of Microarrays) algorithm using the Tusher et al. method (Tusher et al., 2001). 

Resulting genes and samples were grouped by similarities in gene expression patterns using two-

dimensional hierarchical clustering (Pearson correlation, average linkage). Levels of log2-transformed 

expression ratios are indicated from -3 (green) to 3 (red). (A) Genes identified by DGA show higher 

expression levels in GABAergic cells of the cerebellum compared to the forebrain. (B) Genes identified 

by DGA are highly expressed in GABAergic cells of the forebrain compared to the cerebellum. 

Abbreviations: OB = olfactory bulb 

 

 

GO annotation of the 241 genes, enriched in forebrain GABAergic neurons, identified groups 

connected to the regulation of transcription with a strong bias towards homeobox transcription 

factors. Subsequent pathway analysis revealed three main groups. First, a group connected to 

the Distal-less-family (DLX) comprising DLX1, DLX2, DLX5 and DLX6, ARX, MSX3 and 

VAX1 (Fig. 3.12 A and B). Such genes are well known regulators of GABAergic 
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differentiation in the forebrain (He et al., 2001). Second, transcripts linked to POU-

transcription factors were identified which have been involved in the regulation of cortical 

neuron migration by interfering with Cdk5/Reelin signaling (McEvilly et al., 2002). Third, the 

ETS and forkhead box-family members ETS1, ETV1, FOXG1, FOXO6, FOXP2 and FOXP4, 

as well as MRG1, PBX1 and PBX3 are connected to this group (Fig. 3.12 C and D). These 

transcriptional regulators play an important role in brain development from zebrafish to 

humans (Hoekman et al., 2006; Shah et al., 2006; Wijchers et al., 2006). 
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Figure 3.12: Expression ratios of selected genes identified by discriminatory gene analysis 
(DGA) for hindbrain GABAergic neuron populations 
The expression values of selected genes, identified by DGA to be differently enriched specifically in 

either fore- or hindbrain populations are depicted. The expression of DLX1 (A), DLX2 (B), FOXG1 (C) 

and FOXP4 (D) was decreased in GABAergic neurons of the cerebellum compared to forebrain 

GABAergic neuron populations. In contrast, ZIC2 (E), ZIC5 (F), LHX1 (G) and LHX5 (H) were found to 

be differentially overrepresented in cerebellar GABAergic neurons. The columns represent the log2-

transformed expression ratios for each replicate. Abbreviations: OB1-3 = olfactory bulb replicates 1-3; 

ST1-3 = striatum replicates 1-3; CX1-3 = cortex replicates 1-3; CB1-3 = cerebellum replicates 1-3 
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GO-annotation of the 269 genes, expressed notably higher in cerebellar cells than in cells of 

the forebrain, led to a significant higher representation of the groups “Nervous System 

Development”, “Neuron Differentiation”, “Cell Migration”, “Cell-Cell Signaling”, “Synaptic 

Transmission” and “Calcium Ion Binding”. Pathway analysis displayed striking interactions 

either associated with homeobox transcription factors or with the Somatostatin (SST) pathway 

(Fig. 3.13). Expression of three transcription factors of the Zinc-finger protein of the 

cerebellum-family (ZIC1, ZIC2 and ZIC5), shown to be important for cerebellar development 

(Titomanlio et al., 2005), was increased in the cerebellum but decreased in the forebrain 

(Fig. 3.12 E and F). Similarly, the LIM homeobox-family members LHX1, LHX5 and LHX9 

were enriched (Fig. 3.12 G and H). The second group of strongly interacting genes found in 

the pathway analysis were SST receptors 1 and 2, as well as several related genes, including 

MATH-2 (NeuroD6), EPHB1, CDKN1C, NEF3 and NEFL (Fig. 3.13). 

In conclusion, the comprehensive comparison of fore- and hindbrain GABAergic neurons 

suggests different transcriptional pathways used in these compartments to generate neurons 

with the same neurotransmitter phenotype. 
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Figure 3.13: Pathway analysis for genes enriched in cerebellar GABAergic neurons 
A network of genes, interacting directly or indirectly with the Somatostatin (SST) pathway that where 

identified to be significantly enriched in cerebellar GABAergic neurons compared to populations of the 

forebrain, is depicted. The molecular network was generated using the PathwayArchitect software. 

Only manually validated interactions where taken into consideration. Interaction legend: light blue 

square = expression; dark blue square = binding; green square = regulation; rotated 

square = metabolism; circle = protein modification; triangle = transport 
 

 

3.2.5 Expression analysis of selected GABAergic neuron specific genes 
by in situ hybridization and quantitative real-time PCR 

A general technical validation of the method used in this study, including flow cytometric 

sorting and rare cell gene expression profiling, e.g. by qPCR has been described before in 

detail (Appay et al., 2007). As a biological validation of the results described above and for 

confirmation of newly identified marker genes of GABAergic neurons, in situ hybridization 

(see 2.9.2) was used as it represents an mRNA-amplification independent approach. The cell-

type dependent expression patterns within functionally distinct regions for eleven selected 
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genes (GAD65, GAD67, K19, GATA4, FOS, GRIK3, WISP1, GPX5, ADARB2, CD72 and 

CD84) that showed enriched expression in GABAergic neurons were investigated. In situ 

hybridization patterns in postnatal day 1 old mice were compared to the GFP fluorescence of 

respective sections from GAD67-GFP knock-in mice. In situ hybridizations using a probe for 

GAD67 mRNA served as additional positive control (Fig. 3.14). Furthermore, we assessed the 

gene expression in adult mice by referring to the Allan Brain Atlas (Lein et al., 2007). 

 

 
Figure 3.14: In situ hybridization for GAD67 and colocalization with GFP 
As a further control, in situ hybridizations and colocalization studies using a probe for GAD67 were 

done. Examples of GAD67 in situ hybridization signals and colocalization with fluorescently labeled 

GABAergic neurons in serial brain sections of GAD67-GFP knock-in mice at postnatal day 1. No signal 

was observed in the negative control. 

 

 

In general, in situ signals were in good agreement with the microarray results. All probes 

showed a colocalization of in situ hybridization signal and GFP-fluorescence, whereas no 

signal was observed in the negative control (Fig. 3.15). Exceptions were CD84 and GAD65, 

where no signal was detected.  

One interesting observation was that the widespread expression of ADARB2 in GABAergic 

neurons of the early postnatal brain was strongly retained in the neurogenic regions of the 

adult nervous system, namely the olfactory bulb and the dentate gyrus of the hippocampus. 

This suggests that the gene may be more important during development/maturation of 

GABAergic neurons, than in their functional properties In contrast, many other genes, like 

GRIA2, USP49, CRKL, CD72 and ANGPTL2, maintained their specific expression in 
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GABAergic neurons also in the adult mouse brain. Although the transcript of CD72 was 

highly abundant in GABAergic neurons from early to adult stages, an antibody staining 

showed no labeling, even after dissociation with low protease concentrations (data not 

shown). This could be due to high protease sensitivity, post-transcriptional regulation or post-

translational modification, as the antibody was tested only for CD72 expression on blood cells 

so far. 

The region specific expression of many genes was maintained in 56-day old mice (Lein et al., 

2007). For example, in situ hybridization of DLX genes showed a strong signal in forebrain 

GABAergic neurons. On the other hand, factors like the ZIC-family members, LHX1, LHX5 

and EN2 showed a highly specific expression in the cerebellum. In addition, the differential 

expression of seven genes (DLX1, DLX2, DLX5, FOXG1, LHX5, ZIC1 and ZIC2) among 

fore- and hindbrain GABAergic neurons, as observed in the discriminatory gene analysis, was 

validated by quantitative real-time PCR (see 2.6.11). In all cases, the expression pattern upon 

qPCR reproduced that of the microarray experiments (data not shown). 
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Figure 3.15: Independent validation of gene expression by in situ hybridization 
Examples of tested candidates and colocalization of the signals with fluorescently labeled GABAergic 

neurons in serial brain sections of GAD67-GFP knock-in mice at postnatal day 1 are depicted. The 

slides represent the cortex (A to D), the striatum (E to H), the olfactory bulb (I) and the cerebellum (J). 

(A and F) In situ hybridization using a probe specific for ADARB2 mRNA. (B and G) In situ 

hybridization using a probe specific for GATA4 mRNA. (C) In situ hybridization using a probe specific 

for GPX5 mRNA. (D) In situ hybridization using a probe specific for GRIK3 mRNA. (E and I) In situ 

hybridization using a probe specific for WISP1 mRNA. (H and J) In situ hybridization using a probe 

specific for CD72 mRNA. All probes showed a colocalization of in situ hybridization signal and GFP-

fluorescence. 
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3.3 Generation of monoclonal antibodies specific for GABAergic 
neuron cell surface markers 

In parallel to the molecular analysis of purified GABAergic neuron subpopulations, 

alternative methods for the isolation of these cells or even subpopulations should be 

established. By using FACS, it is only possible to purify GABAergic neurons from 

genetically modified animals like the GAD67-GFP mouse strain. To overcome the need of a 

transgenic background, monoclonal antibodies that recognize cell surface molecules specific 

for these neurons would be very helpful. Such antibodies would allow the direct isolation of 

GABAergic neurons from different genetic backgrounds, e.g. disease models, by using 

magnetic or flow cytometric based cell sorting technologies. As GABAergic neurons could be 

isolated at high purities (see 3.1.3), it was decided to use the purified cells directly as 

immunogenic material. 

Lewis rats were immunized (see 2.8.7) by contralateral footpad immunization to induce 

monoclonal antibody production (Brooks et al., 1993; Yin et al., 1997). About 0.8-1.3 x 107 

purified GABAergic cells were injected subcutaneously into the left hind footpad of the rats. 

Several decoys, containing unspecific epitopes of the target- but also other cells, were injected 

into the right hind footpad in parallel to minimize the unspecific immunoresponse of the 

target lymph node. To increase the immunogenic potential of the injected cells, different 

adjuvants were tested. The immunization schemes are summarized in Table 3.2. 

To screen specifically for antibodies that recognize cell surface molecules, brains of GAD67-

GFP mice were dissociated and intact cells used for staining. By using living cells, the 

antibodies can not pass the membrane and therefore only stain epitopes outside the cell. An 

antibody which specifically binds to a cell surface molecule on GABAergic neurons should 

label all or at least a subgroup of the GFP+ population but no cells from the GFP- fraction. 
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Table 3.2: Immunization schemes  

 Protease Decoy Adjuvant No. of clones 

1 5 U/ml Papain Actin-GFP brain / GFP- fraction FAI / PHA 15 

2 5 U/ml Papain Actin-GFP brain / GFP- fraction FAI / PHA 9 

3 5 U/ml Papain Actin-GFP brain / GFP- fraction FAI / PHA 57 

4 5 U/ml Papain Actin-GFP brain / GFP- fraction FAI / PHA 35 

5 5 U/ml Papain Actin-GFP brain / GFP- fraction FAI / PHA 48 

6 5 U/ml Papain 50 µg recombinant GFP FAI / PHA 74 

7 5 U/ml Papain Actin-GFP brain / GFP- fraction 15 µg/µl CpG >1000 

8 5 U/ml Papain Actin-GFP brain / no decoy 15 µg/µl CpG >1000 

9 0.5 U/ml Papain or  

0.1% Trypsin 

GFP- fraction 15 µg/µl CpG >1000 

10 0.5 U/ml Papain or  

0.1% Trypsin 

50 µg recombinant GFP 15 µg/µl CpG >1000 

Actin-GFP brain and FAI were only used for the first boost. All further administrations were combined 

with the other decoys/adjuvants mentioned. Abbreviations: No. = number; FAI = Freunds Adjuvant 

incomplete; PHA = Leucoagglutinin PHA-L Lectin from Phaseolus vulgaris (red kidney bean); 

CpG = CpG ODNs 1668 

 

The first 5 immunization approaches were carried out using a protease concentration of 

5 U/ml Papain for brain tissue dissociation prior to FACS purification. As the purified 

GABAergic neurons are GFP+, and GFP has a high immunogenic potential, brain tissue of 

Actin-GFP transgenic mice served as decoy during the first boost to guide the unspecific anti-

GFP immune response into the contralateral lymph node. For all further boosts, the GFP- 

fraction from FACS purified GAD67-GFP brain cells was used as decoy to prevent the 

appearance of target cells in the decoy population. As Freunds Adjuvant incomplete (FAI) is a 

very potent stimulator of the immune system, it was co-injected the first day of immunization 

for generally activation of the host immune response. For subsequent boosts, instead of using 

FAI, the cells were coated with PHA-L, a lectin from Phaseolus vulgaris, to increase their 

immunogenic potential. Only very few hybridoma clones, less than 100 per fusion (see 2.8.8), 

were generated by using this strategy. None of the produced antibodies was specific for cell 

surface molecules of GABAergic neurons. 
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It was observed that the lymph node on the decoy injection site was always 3 to 5 times larger 

than that of the GABAergic fraction injection site. Probably, this is due to highly 

immunogenic epitopes in the GFP- fraction. To prevent that the major immune response takes 

place only at the decoy side, the sixth immunization was carried out using recombinant GFP 

protein as decoy. Therefore, only the unspecific anti-GFP immune response should be guided 

into the contralateral lymph node. Again, the lymph node on the decoy injection site was 

approximately 3 times larger, less than 100 hybridoma clones were obtained, and no specific 

staining was observed. The conclusion was that the immunogenic potential of the GFP+ 

fraction itself was rather low. 

To increase the immune response at the GABAergic fraction injection site, CpG ODNs 1668, 

a synthetic pathogen DNA fragment, was co-injected in all further immunizations. 

Immunization approach no. 7 was, except for the different adjuvant, equal to immunizations 

no. 1 to 5. In approach no. 8 only the Actin-GFP decoy during the first boost was 

administrated without any further decoy injections. Both injections yielded in more than 1000 

hybridoma clones per fusion, but again no specific antibody could be identified. During the 

last 2 approaches, the protease concentration of Papain was reduced to 0.5 U/ml and 50% of 

the brains were dissociated using 0.1% Trypsin. Thereby, more protease sensitive surface 

epitopes should be saved. The GFP- fraction served as decoy during approach 9, while 

recombinant GFP protein was used during approach 10. Both injections resulted in more than 

1000 hybridoma clones per fusion, but again no specific antibody could be identified. 

In conclusion, none of the immunization approaches resulted in the generation of an antibody 

specific for GABAergic neurons. One explanation for this result could be that GABAergic 

neurons do not express highly immunogenic epitopes, at least those which are protease 

resistant, on their cell surface. An alternative to continue with further immunizations was to 

identify target proteins in these cells directly by proteome analysis. 

 

3.4 Defining the surface proteome of GABAergic neurons 

As a result of the gene expression analysis, many genes were identified which were highly 

and specifically expressed in GABAergic neurons and therefore may serve as new marker 

genes for these cells. However, only very few of these candidates were located in the plasma 

membrane and could serve as cell surface markers for the isolation of GABAergic neurons. 

To overcome this problem and focus directly on the identification of such markers, the cell 

surface proteome of GABAergic neurons was analyzed in collaboration with the group of 
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Dr. Bernd Wollscheid at the ETH in Zurich (Zhang et al., 2003). Using this approach, 

proteins that contain N-linked carbohydrates and are localized in the plasma-membrane are 

labeled and identified by tandem mass spectrometry (MS/MS). The specificity is based on the 

conjugation of glycoproteins to a solid support using hydrazide chemistry on intact cells and 

the specific release of formerly N-linked glycosylated peptides via peptide-N-glycosidase F 

(PNGase F). Using this approach, the amount of identified membrane proteins is much higher 

than by conventional proteome analysis of whole membrane fractions. One limitation is the 

huge number of 1x108 cells that is needed for optimal results.  

The brains of 49 GAD67-GFP brains were resected. Half of the brains were dissociated with 

0.5 U/ml Papain, the other half by using 0.1% Trypsin. Subsequently, the GFP+ and GFP- 

fractions were isolated by FACS (see 2.8.5), yielding approximately 3x107 positive and 7x107 

negative cells. The cells were labeled and the glycoproteins isolated using the “Cell Surface 

Glycopeptide Capture Protocol” (Tao et al., 2005). Peptides from both populations were 

identified by tandem mass spectrometry. 

As expected from the low cell numbers used, only 25 proteins were identified in the GFP+ 

fraction, whereas 79 proteins were identified in the GFP- fraction. Seventeen proteins were 

found in both fractions. The 25 proteins that were specific for the GABAergic fraction are 

listed in table 3.3. Indeed, 22 (88%) of these proteins were GO annotated to the membrane 

fraction, whereas 3 of the proteins were fully uncharacterized. However, for some of the 

candidates the definitive membrane compartment was still not known, therefore a fraction 

may localize to intracellular membranes. Most of the identified candidates were sparsely 

characterized in general and no antibodies, or at least none suitable for flow cytometric 

analysis, are available. When compared to data from the transcriptome profiling, many 

correlations were observed. Several identified proteins, like Vcork1, 4732465J04Rik, Mpzl1, 

Siglece, Tmpo and Ndufa4, also displayed enrichment on the transcriptome level. In contrast, 

several candidates, like Atp1a3, P2ry1, Cxadr, Slc35c2 and Stx1b2, were not enriched in the 

microarray analysis. This was expected, as it is well known that due to post-transcriptional 

regulation many differences among the transcriptome and the proteome of a cell could be 

observed. 



Results 
   

71 

Taken together, a number of proteins were identified which are presumably expressed on the 

cell surface of GABAergic neurons. Besides new insights on the specific function for these 

proteins in inhibitory neurons, they may serve as target proteins for the generation of 

antibodies specific for extracellular epitopes. In addition, the proteins which were found only 

in the GFP- fraction might represent novel surface markers for other populations of brain cells 

and may therefore be used for the purification or depletion of these cells. 

 

Table 3.3: Proteins identified by mass spectrometry 
   

 

 

     
 

 

Protein name IPI link Entrez accession Number of Peptides Score 
     

 

 

   
 

 

Atp1a3 IPI00122048 232975 4 1.0000 
Pgrmc1 IPI00319973 53328 3 0.9996 
Armc10 IPI00137460 67211 2 0.9966 
Stx1b2 IPI00113149 56216 2 0.9962 
Acsl3 IPI00169772 74205 2 0.9955 
Tmpo IPI00320399 21917 2 0.9952 
Tmed2 IPI00127983 56334 1 0.9942 
Fkbp8 IPI00130833 14232 2 0.9942 
Dcakd IPI00221828 68087 1 0.9935 
Slc25a5 IPI00127841 11740 1 0.9894 
Vamp3 IPI00132276 22319 2 0.9844 
Ndufa4 IPI00125929 17992 1 0.9827 
Vkorc1 IPI00133579 27973 1 0.9737 
Lrrc59 IPI00123281 98238 1 0.9645 
EG639162 IPI00113394 639162 2 0.9325 
4732465J04Rik IPI00402943 414105 1 0.7431 
Siglece IPI00172333 83382 1 0.6712 
Por IPI00621548 18984 1 0.6425 
P2ry1 IPI00116191 18441 1 0.6411 
Syt13 IPI00111520 80976 1 0.6321 
Cxadr IPI00270376 13052 1 0.5571 
AI464131 IPI00464256 329828 1 0.5398 
Slc35c2 IPI00756392 228875 2 0.5395 
Mpzl1 IPI00620858 68481 1 0.5347 
Col24a1 IPI00551234 71355 1 0.5136 
     

 

 

   
 

 

List of proteins which were identified by tandem mass spectrometry peptide fingerprinting. The number 

of peptides indicates how many peptides were identified matching to a respective protein. The score 

indicates the statistically probability of a unique identification. 
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Part II Molecular analysis of interneuron development 
In the previous part, a molecular analysis of GABAergic neurons in general as well as the 

relationship among subpopulations of these cells from different brain regions was carried out. 

In a second part, the aim was to analyze the differentiation of progenitor cells into 

GABAergic neurons. As several neurodegenerative disorders, like Huntington’s disease, show 

a loss of inhibitory neurons, a promising therapeutic approach is to replace these neurons to 

retain functionality. One possibility is to generate specific neuronal cell types in vitro before 

grafting, the other opportunity may be the activation and targeted differentiation of persistent, 

brain localized adult stem cells directly in vivo. For both approaches there is a prerequisite in 

deep understanding of the underlying mechanisms involved in neuronal differentiation. The 

goal was therefore to identify new candidate genes involved in the differentiation of 

GABAergic interneurons. Therefore, the transcriptome of mature GABAergic neurons as well 

as their progenitor cells was analyzed to identify genes which are differentially regulated 

during differentiation and may act as regulatory factors. 

As a model system, the generation of inhibitory interneurons in the olfactory bulb was 

analyzed. These interneurons are generated from adult neuronal stem cells, localized in the 

subventricular zone (SVZ), throughout live (Lledo et al., 2006). Interestingly, about 16% of 

these GABAergic interneurons show a bifunctional neurotransmitter phenotype as they are 

also dopaminergic (Panzanelli et al., 2007). As the loss of dopaminergic neurons is the major 

phenotype at the onset of Parkinson’s disease, understanding of their development is also of 

broad interest. 

In this case, the use of dissociated brain tissue from GAD67-GFP mice in combination with 

flow cytometry sorting was not possible, as the precursor population already expresses GFP. 

The polysialylated form of NCAM (PSA-NCAM) serves as a marker for the differentiation 

status in this system as it is only present in precursor cells but absent in mature interneurons 

(Durbec and Cremer, 2001). Therefore, the expression profile of PSA- mature periglomerular 

layer interneurons was compared to that of late PSA+ precursors localized also in the 

periglomerular layer (Fig 3.16 C and D). Furthermore, both cell populations were compared 

to their earlier progenitors, the Type A neuronal precursor cells, which migrate from the SVZ 

to the olfactory bulb via the rostral migratory stream and represent a mixed population that 

can give rise to granule as well as periglomerular interneurons (Fig 3.16 A and B). 
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Figure 3.16: Immunohistochemistry of glomerular layer interneurons and their precursors 
An immunostaining for the precursor marker PSA (green) and the GABAergic marker GAD65/67 (red) 

in the SVZ and the periglomerular layer is shown. Cell nuclei were stained with Hoechst (blue). In the 

SVZ, most of the cells were PSA+/GAD65/67+ Type A early neuronal precursor cells (stars), whereas 

only few mature PSA-/GAD65/67+ cells (arrows) were present (A and B). In contrast, a mixed 

population of PSA+/GAD65/67+ late precursor cells (stars) and mature PSA-/GAD65/67+ interneurons 

(arrows) were found in the PGL (C and D). Scale bar = 20 µm for A and C; 10 µm for B and D; 

Abbreviations: SVZ = subventricular zone; PSA = polysialic acid; PGL = periglomerular layer 

 

 

3.5 Isolation of olfactory bulb interneurons and their precursors 

As already mentioned, one major requirement for a molecular analysis of a cell population is 

the usage of pure starting populations. Using the postnatal generation of olfactory bulb 

interneurons as a model system, it was possible to isolate all required cell types at high 

purities. The established purification strategy combined a selective magnetic cell sorting 

based approach for known surface markers with a prior reduction of the starting tissue 

complexity (see 2.8.4 and Fig. 3.17). 
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Figure 3.17: Scheme for purification of glomerular layer interneurons and their precursors 
Glomerular layer interneurons and their progenitors were purified using a two step MACS® strategy. 

The glomerular layer of olfactory bulbs from 20 postnatal day 1 mice was dissected and dissociated to 

a single cell suspension. Subsequently, A2B5+ glial cells (violet) were depleted by using magnetic 

antibodies specific for A2B5. In the remaining neuronal fraction, magnetic antibodies specific for PSA 

were used to separate PSA+ late precursor cells (light blue) from PSA- mature interneurons (orange). 

The nissl stained olfactory bulb was adopted from the Allan Reference Atlas (Lein et al., 2007). 

Abbreviations: PSA = polysialic acid; P1 = postnatal day 1 

 

 

The reduction of the starting material complexity prior to magnetic cell sorting was done by 

microdissection of the periglomerular layer. This step was crucial to deplete tissue containing 

cell types that could not be selectively sorted by MACS®. Subsequently, the periglomerular 

layer tissue was dissociated to a single cell suspension and sorted using a two step magnetic 

cell sorting strategy. In the first step, magnetic antibodies specific for A2B5 were used to 

deplete A2B5+ glial cells yielding a population of mature interneurons and late precursor 

cells. In the second step, magnetic antibodies specific for PSA were used to separate PSA+ 

late precursor cells from PSA- mature interneurons. Dissection and sorting of 20 mouse 

olfactory bulbs yielded 1.1x105 PSA+ precursor cells and 1.4x105 PSA- interneurons with 

good purities (Fig. 3.18). In the PSA+ enriched fraction, 94% of all cells showed 

immunoreactivity for PSA. 71% were double positive for PSA and GAD65 and 8% were still 

PSA+
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positive for A2B5. In the PSA- fraction, 72% were positive for GAD65, 10% for A2B5 and 

2% were still PSA+.  

The PSA+ Type A early precursor cells were purified using an equal approach, but with 

dissected SVZ- instead of periglomerular layer tissue as starting population. Subsequent 

immunolabeling of isolated cells indicated purities above 95% (data not shown). 

 

 
Figure 3.18: Purification of glomerular layer interneurons and their precursors 
Immunostainings for the precursor marker PSA (red) and the interneuron marker CALB2 (green) in the 

olfactory bulb are shown (A and B). Cell nuclei were stained with DAPI (blue, A to E). In addition, 

immunostainings for the precursor marker PSA (green) and the interneuron marker GAD65/67 (red) 

after dissociation (C) and MACS® purification are shown (D and E). The dissociation of periglomerular 

layer tissue from the olfactory bulb is indicated by the grey area (A and B). Subsequent to dissociation 

(C), the single cell mixture contained PSA+/GAD65/67+ late precursor cells (arrows) and mature PSA-

/GAD65/67+ interneurons (stars). The two step MACS® separation yields purified populations of 

PSA+/GAD65/67+ periglomerular layer precursor cells (D) and mature PSA-/GAD65/67+ interneurons 

(E). 

 

 

3.6 Molecular analysis of olfactory bulb interneurons and their 
precursors 

As mentioned above, dissection and sorting of periglomerular layer tissue from 20 mouse 

olfactory bulbs yielded 1.1x105 PSA+ precursor cells and 1.4x105 PSA- interneurons. The 

yield of Type A precursor cells, isolated from SVZ tissue, was in the same range. As this cell 

numbers did not allow for standard gene expression profiling, all experiments were carried 

out using SuperAmp amplification of mRNA. For each experiment, 7000-10000 cells were 

directly lysed in lysis buffer after MACS® sorting and stored at -20°C until further processing. 

RNA amplification, cDNA labeling and microarray processing of Agilent whole mouse 

DAPI 
CALB2
PSA 

DAPI
GAD
PSA 

A B C
D 

E 
* *

*

DAPI 
GAD 
PSA 



Results 
   

76 

genome 44k microarrays were carried out as described for the FACS purified cells (see 

2.6.10). RNA, isolated from postnatal day 1 old wild type mice brains (n = 4), was amplified 

in the same way and served as a common reference for all hybridizations. Olfactory bulbs of 

20 mice were pooled and used in each experiment. Two replicate hybridizations including a 

dye-swap were done for each of the 3 cell types, namely the Type A early precursors, the 

periglomerular late precursors and the mature periglomerular interneurons. Merged dye-swap 

data were used for further analysis. Correlation coefficients within replicates ranged from 

0.92 to 0.98, demonstrating a good reproducibility. 

 

3.6.1 Global changes during differentiation 

In a first step, the general relationship among the 3 cell types was analyzed. Therefore, the 

gene expression profiles of the Type A early neuronal precursors, the periglomerular late 

precursors and the mature periglomerular interneurons were compared by calculating Pearson 

correlation coefficients of pairwise comparisons. Unsupervised hierarchical clustering of 

correlation coefficients grouped both cell types isolated from the periglomerular layer 

together and separated them from the Type A cells (Fig. 3.19 A). The correlation coefficients 

between Type A cells and periglomerular layer cells were 0.64 in comparison to PSA+ cells 

and 0.60 in comparison to PSA- cells. This result is in agreement with the model that PSA+ 

periglomerular layer precursors represent an intermediate state between SVZ precursors and 

PSA- periglomerular layer interneurons. Furthermore, the high similarity between the two 

periglomerular layer cell types (correlation coefficient of 0.97) indicates that the major 

changes during the development of olfactory bulb GABAergic interneurons occur during the 

migration of Type A precursor cells from the SVZ to the olfactory bulb, whereas only minor 

changes occur during the late step of differentiation in the periglomerular layer. 

In addition, a multiclass SAM analysis was computed. Using this approach, the significant 

enrichment of genes showing a similar expression pattern is calculated. Enrichment for three 

groups of patterns was identified (Fig 3.19 B to D): first, genes which are downregulated 

during the migration of Type A precursor cells from the SVZ to the olfactory bulb that stay 

downregulated; second, genes which are upregulated during the migration of Type A 

precursor cells from the SVZ to the olfactory bulb that stay upregulated; third, genes which 

are upregulated during the last step of differentiation in the periglomerular layer. No 

significant enrichment of genes that are upregulated first and subsequently downregulated 

again or vice versa was observed. This result is again in good agreement with the proposed 

model.
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Figure 3.19: Correlation and multiclass SAM analysis 
(A) Correlation matrix showing the relationship of gene expression profiles in all experiments. The 

matrix was generated by unsupervised hierarchical clustering of global expression data. Correlation 

coefficients are indicated by their color from blue (0.0) to yellow (1.0). The correlation coefficients 

between Type A cells and periglomerular layer cells were 0.64 when compared to PSA+ cells and 0.60 

when compared to PSA- cells. In combination with the high similarity between the two periglomerular 

layer cell types (correlation coefficient of 0.97), this correlates to the model that PSA+ periglomerular 

layer precursors represent an intermediate state between SVZ precursors and PSA- periglomerular 

layer interneurons. (B to D) A multiclass SAM analysis to calculate significant enrichment of genes 

showing similar expression patterns is shown. The relative change of expression ratios for each 

analyzed cell type compared to the common reference is depicted. Groups of genes which are 

downregulated during the migration of Type A precursor cells from the SVZ to the olfactory bulb that 

stay downregulated (B), which are upregulated during the migration of Type A precursor cells from the 

SVZ to the olfactory bulb that stay upregulated (C) and which are upregulated during the last step of 

differentiation in the periglomerular layer were significantly enriched. Abbreviations: 

SVZ = subventricular zone; PSA = polysialic acid; PGL = periglomerular layer 
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3.6.2 Changes in gene expression during the migration of Type A 
precursor cells from the SVZ to the olfactory bulb 

To obtain further information about the molecular changes which occur during the migration 

of Type A early neuronal precursor cells from the SVZ into the olfactory bulb and their 

differentiation to periglomerular cells, genes were analyzed that altered the expression 

patterns during these stages. As expected from the rather low correlation coefficients between 

Type A cells and olfactory bulb cells of 0.64 (compared to PSA+ cells) and 0.60 (compared to 

PSA- cells), many genes were found to be significantly regulated. The 110 strongest 

upregulated as well as the 110 strongest downregulated genes are listed in supplementary 

tables 1 and 2 (see Tab. 6.1 and 6.2). Selected candidates are described below. 

Many genes showed strong enrichment in both periglomerular cell types compared to their 

SVZ progenitors and may therefore represent candidates important for the differentiation of 

GABAergic interneurons. The enrichment of NeuropeptideY, which has signal modulating 

function and may be involved in many diseases, in these later stages of differentiation, is in 

concordance to its expression in mature subtypes of GABAergic interneurons (Kanatani et al., 

2000; Rohner-Jeanrenaud et al., 1996). A huge number of genes was identified which are 

involved in synaptogenesis and synaptic plasticity. Examples are PTN, VTN, APOE, APOD, 

FBLN2, S100A1 and S100A13, NRXN1 and NLGN2 (Comoletti et al., 2003; Hartmann et 

al., 1994; Missler et al., 2003; Okazaki et al., 2002). Furthermore, NLGN2 is specific for 

inhibitory synapses (Varoqueaux et al., 2004), which correlates with the observation that it is 

upregulated during differentiation. All these genes may play important roles during the 

synaptogenesis of olfactory bulb interneurons. 

In addition, genes like EphrinA5, Semaphorin4A, Vimentin and CSPG3 act as axon guidance 

and cell motility factors (Lampa et al., 2004; Li et al., 2005; Menet et al., 2003; Moretti et al., 

2006). Even more enriched genes, which were shown to be functional in mature neurons, like 

the glutamate receptors GRIK1 and GRINL1A, CALB1, CALR, GLUD, SLC13A3, MT2 and 

DBI correlate with an increased state of differentiation in periglomerular layer cells (Pajor et 

al., 2001; Stankovic, 2005). As an example, mice deficient for TNC have a delayed onset of 

odor detection, again showing that genes identified in this screen have important functions 

during olfactory bulb neurogenesis (de Chevigny et al., 2006). Upregulation of extracellular 

matrix components like MATN2, FBLN2, TNC, PTN, VTN and CSPG3 by periglomerular 

layer precursors and interneurons suggests also an active role of these cells in building up the 

neurogenic environment of the olfactory bulb (Mates et al., 2002). A number of transcription 

factors, upregulated in periglomerular cells compared to SVZ precursors, indicate a function 
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of these molecules in the late phase of interneuron differentiation. Examples are OLIG1, 

XBP1, NFI/A, ZFP277, ZMYND11, GTF2B and E4F1. Several of them, like 

Nuclear Factor I/A, are already known to be involved in neuronal development but not linked 

to the olfactory bulb (Shu et al., 2003; Wang et al., 2004). 

 

3.6.3 Genes differentially expressed during the maturation from 
periglomerular layer precursors to interneurons 

After identifying candidates that may be involved in early stages of differentiation, genes 

which were differently regulated among the 2 periglomerular layer cell types were further 

analyzed. These genes may be important for late differentiation steps. Although a high 

correlation coefficient of 0.97 between PSA+ periglomerular layer precursors and PSA- 

periglomerular layer interneurons indicated a high similarity of these cell types, several 

interesting genes with strong expression differences were found. The >5-fold upregulated as 

well as the >5-fold downregulated genes are listed in supplementary tables 3 and 4 (see 

Tab. 6.3 and 6.4). 

Comparable to the results for periglomerular layer- against Type A cells, genes with functions 

in mature neurons were identified to be enriched in the PSA- fraction showing their advanced 

differentiation status. Examples of these genes were GAD2, SST, NEFL, NRXN, HTR3B, 

SLC1A1, CALB1 and CALR. Additionally, markers of neuronal progenitor cells, like 

TUBB3, Nestin and DCX were downregulated. Some of them, for example DCX and Nestin, 

had already been downregulated in late PSA+ periglomerular layer precursors compared to 

early Type A precursors and than even more in mature PSA- periglomerular layer 

interneurons. Enriched expression of several OLFR- and other rhodopsin like receptors in 

mature olfactory bulb interneurons was consistent to results from the expression profiling of 

GABAergic neurons.  

Several upregulated genes, like STX3, STX6, SYT4 and SLC1A1, are important for 

vesicular- and neurotransmitter transport (Ferguson et al., 2004a). Many genes with functions 

in the regulation of the cytoskeleton, especially involved in axon outgrowth and guidance, like 

KTN1, NTRK3, NTRK3, C130076O07Rik, TBCE, BC050903 (DCAMKL1) and Ablim1 

were identified (Bommel et al., 2002; Deuel et al., 2006; Erkman et al., 2000; Martin et al., 

2002; Stenqvist et al., 2005). But also in the fraction of downregulated transcripts, many 

genes connected to the cytoskeleton, like CRMP1, MAPT, KIF5A, TUBB3 and EPB4.2 were 

found (Bretin et al., 2005; Kanai et al., 2000; Yamashita et al., 2006). The interaction of these 
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genes probably regulates the final positioning, morphological changes and axonal 

innervations during the final differentiation of olfactory bulb interneurons. 

As before, a number of transcription factors with expression differences among the 2 

periglomerular populations were found that may be important for the regulation of this 

differentiation step. The transcription factors BHLHB9, PAX6 and PAX8, OBOX2 and 3, 

PMS1, SFPI1, GABPB1, MTF1, ZHX3 and ISL2 were enriched in PSA- cells. For example, 

ISL2 specifies RGC laterality by repressing an ipsilateral pathfinding program (Pak et al., 

2004). In contrast, the transcription factors PNMA1, SOX30, ZFP219 and NFKBIE were 

downregulated in PSA- interneurons. Interestingly, an oppositional regulation of DLX1 and 

DLX2 was found. DLX2 was upregulated in PSA- interneurons, whereas DLX1 was 

downregulated. In contrast, DLX5 and 6 were already downregulated in periglomerular layer 

cells compared to Type A precursors, suggesting that DLX genes are important for the early 

and late differentiation of olfactory bulb interneurons. 

In addition, also oppositional regulation of the basic helix-loop-helix transcription factors 

NeuroD1 (ND1) and NeuroD2 (ND2) was found. Whereas NeuroD1 became highly 

upregulated in mature interneurons, NeuroD2 was downregulated during this step. Both genes 

are already known as important factors for the development of the nervous system (Cho and 

Tsai, 2004; Noda et al., 2006). The PAX6 gene, which was also enriched in mature 

interneurons, is activated by NeuroD1 (Marsich et al., 2003). PAX6 plays a role in the 

establishment of a postmitotic phenotype and periglomerular differentiation, but not in 

olfactory granule cell differentiation (Cartier et al., 2006; Hack et al., 2005). This data 

represents the first evidence for an involvement of NeuroD1 and NeuroD2 in olfactory bulb 

interneuron differentiation, which may be partially mediated by PAX6. 

In conclusion, many genes were identified to be differently expressed during early or late 

stages of periglomerular interneuron differentiation. Several of them, especially the 

transcription factors, may play important roles in the control of differentiation. Others, like 

the cytoskeletal proteins and regulators, probably represent essential downstream effectors. 

 

3.6.4 Independent validation of gene expression 

To validate the microarray hybridization results, the expression data were compared to 

already published expression patterns for several marker genes. Expression patterns of the 

genes CALB1, CALR, TUBB3 and DCX in the analyzed cell populations matched with 

published data (Lledo et al., 2006). Furthermore, expression of known marker genes like TH, 

GAD65, SST and Nestin was nicely reproduced by the microarray results and the differential 
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expression of CRMP1 among the periglomerular layer cell types also matches with published 

data (Veyrac et al., 2005). 

As adult neurogenesis takes place throughout live in mice, the results should match with 

expression patterns observed in the SVZ/RMS/olfactory bulb-system of adult mice. 

Therefore, the microarray results were compared with in situ hybridization data obtained from 

the Allan Brain Atlas (Lein et al., 2007). The expression signals of in situ hybridizations for a 

number of genes (NPY, GRIK1, VTN, APOD, APOE, FBLN2, S100A1, NRXN1, GLUD, 

FABP7, DBI, SEPT4, SLC13A3, SCD2, IGF1 and PEA15), found to be enriched in 

periglomerular layer cells compared to Type A precursors, were checked and showed the 

expected patterns. In addition, in situ hybridizations for KIF5A and TUBB3 showed high 

expression in the SVZ and RMS but no signals in the glomerular layer, also in concordance to 

the microarray data. Furthermore, the differential expression of several genes (GAD2, NEFL, 

NeuroD1, NeuroD2, CRMP1, GPR103, NTRK3, STX3, KTN1, C130076O07Rik, NFKBIE, 

GREM1, PAX6, SFPI1, GABPB1 and MTF1) in PSA+ late precursors and PSA- mature 

interneurons could be reproduced by in situ data (Lein et al., 2007). As an example, the in situ 

signal for NeuroD1 was only detectable in the periglomerular layer. In contrast, the signal for 

NeuroD2 was also abundant in the centre of the olfactory bulb. This pattern would also be 

expected from the microarray results, which showed that NeuroD1 became highly upregulated 

in mature interneurons, whereas NeuroD2 was enriched in the progenitor population. In 

addition, the number of positive cells for NeuroD1 observed in the in situ hybridization 

suggests that this gene is highly expressed in only a subpopulation of periglomerular 

interneurons rather than all of these cells (Fig. 3.20). The specific expression of NeuroD1 was 

also validated by the observation of an equal expression pattern in the NeuroD1-GFP mouse 

strain (strain Tg(Neurod1-EGFP)1Gsat/Mmcd, http://gensat.org/). 

The results of this screen yielded many interesting candidates for an involvement in olfactory 

bulb interneuron differentiation. Two particularly interesting genes were further analyzed for 

their functional relevance in vivo. 
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Figure 3.20: In situ hybridization for NeuroD1 and NeuroD2 
Expression patterns of NeuroD1 and NeuroD2 from in situ hybridizations in adult mice were analyzed 

(Lein et al., 2007). The square in the nissl stained olfactory bulb (A) indicates the region depicted in 

B to D. The in situ hybridization signals (B and D) were automatically quantified and plotted as 

expression strength (C and E) from low (blue) to high (red). A specific signal for NeuroD1 was only 

detectable in the periglomerular layer, where the mature interneurons are localized (B and C). In 

contrast, the signal for NeuroD2 was also abundant in the centre of the olfactory bulb, where the 

precursors arrive (D and E). Abbreviations: ISH = in situ hybridization 

 

 

3.7 Functional in vivo analysis of NeuroD1 and NeuroD2 

As mentioned above, an oppositional regulation of the basic helix-loop-helix transcription 

factors NeuroD1 and NeuroD2 was found. Whereas NeuroD1 was upregulated in mature 

PSA- periglomerular layer interneurons, NeuroD2 was downregulated at the same time. These 

two genes were selected for functional analysis, as both are involved in several differentiation 

processes during the development of the central nervous system. This was also true for DLX1 

and DLX2, but in contrast to genes of the DLX-family, no impact on inhibitory interneuron 

differentiation was known so far for NeuroD1 and NeuroD2. To address the question, if these 

genes function as key regulators in the control of interneuron development, or if they are only 

downstream markers correlating with the stage of differentiation, the functional relevance of 

NeuroD1 and NeuroD2 expression in vivo was analyzed. 
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3.7.1 In vivo electroporation 

A novel method, allowing the targeted transfection of adult neuronal stem cells in the SVZ 

(see 2.8.6), was established by Camille Boutin (Boutin et al., 2008) Expression vectors are 

injected into the lateral ventricle of early postnatal mice. Subsequently, a series of defined 

electrical currents causes transfer of the plasmid DNA into radial glia cells, the stem cells in 

the SVZ/RMS/olfactory bulb system of adult neurogenesis. Therefore, transfection induces 

strong expression of transgenes in radial glia, neuronal precursors and mature neurons of the 

olfactory system. Using this method, the effects upon expression of specific genes during 

adult neurogenesis can be analyzed in vivo. 

In this study, postnatal day 1 mice were used for in vivo electroporation. For each transgene 

and time point, always 10 biological replicates were analyzed. Electroporation of empty 

expression vector (pCX-MCS2, see 2.6.9) served as control. Control electroporations were 

carried out at the same day and as for the transgene, always 10 replicates were analyzed. To 

visualize transfected cells, transgenes and controls were co-electroporated with either GFP 

(pCX-GFP) or RFP (pCX-RFP, both gifts from Camille Boutin). The efficiency of co-

electroporation was always higher than 95% (Boutin et al., 2008). 

Between 6 and 8 hours after electroporation, only radial glia cells expressed the transgene 

(Fig. 3.21 B). After 1 to 2 days, many Type A neuronal precursor cells (Fig. 3.21 C) were 

labeled in the SVZ. After 4 days, most of these cells were localized in the RMS or already 

arrived in the olfactory bulb. Differentiated granule neurons (Fig. 3.21 D) and periglomerular 

interneurons (Fig. 3.21 E) were found in the olfactory bulb 15 days post electroporation. As 

the cells only proliferate during the first days, the expression of transgenes is stable for more 

than 30 days (data not shown). 
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Figure 3.21: In vivo electroporation of a GFP expression construct 
(A) Scheme of the injection and electroporation process. A virtual line (red), connecting the right eye to 

the craniometrical landmark lambda, served as positional marker for DNA injection. The incision point 

is indicated as a dot. Lateral bars indicate the position of the electrodes. Between 6 and 8 hours after 

electroporation, only radial glia cells expressed GFP (B). After 1 to 2 days, many Type A neuronal 

precursor cells (C) were labeled in the SVZ. After 4 days, most of these cells were localized in the 

RMS or already arrived in the olfactory bulb. Differentiated granule neurons (D) and periglomerular 

interneurons (E) were found in the olfactory bulb 15 days post electroporation. Abbreviations: 

LV = lateral ventricle 

 

 

3.7.2 Overexpression of NeuroD1 and NeuroD2 

To analyze the effects of an ectopic and strong expression of either NeuroD1 or NeuroD2 by 

in vivo electroporation, constructs for overexpression of both genes were generated (see 

2.6.9). To test the functionality of the resulting constructs, pCX-ND1 and pCX-ND2, the 1881 

cell line was transfected with the respective vector by electroporation (see 2.8.3). One day 
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after transfection, the cells were lysed and protein expression was analyzed by Western Blot 

(see 2.7.1 to 2.7.4). Both constructs showed strong expression of either NeuroD1 in the case 

of pCX-ND1 or NeuroD2 in the case of pCX-ND2 (Fig. 3.22). 

 

 
Figure 3.22: Validation of the expression constructs 
The 1881 cell line was transfected with an overexpression plasmid containing the cDNA of either 

NeuroD1 (A) or NeuroD2 (B). After 24 h, the cells were lysed and protein expression analyzed by 

Western blot. Both constructs showed strong expression of either NeuroD1 in the case of pCX-ND1 

(A) or NeuroD2 in the case of pCX-ND2 (B). A coomassie staining of the gel and expression of the 

housekeeper gene GAPDH served as loading controls. Abbreviations: CM = coomassie staining 

 

 

3.7.3 Effects of NeuroD2 overexpression 2 days post electroporation 

NeuroD2 was found to be downregulated during differentiation of periglomerular 

interneurons. This suggests an early role of this transcription factor during the development of 

olfactory bulb interneurons. However, it had to be examined, if the downregulation of 

NeuroD2 is a result of increasing differentiation, or if it is necessary to allow differentiation. 

To check the effect of an early NeuroD2 overexpression, radial glia were transfected with 

pCX-ND2 in vivo. After 2 days, the mice were perfused with 4% PFA, the brains removed 

and cut at 50 µm on a vibratome (see 2.9.1). Fluorescence microscopy did not reveal any 

obvious morphological differences of transfected cells between NeuroD2 (n = 10) and control 

(n = 10) electroporations. Furthermore, also quantification of identified cell types did not 

reveal significant differences (Fig 3.23). 
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In conclusion, overexpression of NeuroD2 neither led to a morphological nor to a quantitative 

alteration of transfected cells after short time periods. 
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Figure 3.23: Quantification of cell types after NeuroD2 expression for 2 days 
Radial glia cells were electroporated with pCX-ND2 in vivo. After 2 days, GFP+ transfected precursor- 

and radial glia cells were quantified. The ratio of both cell types is depicted. No significant difference 

between NeuroD2 (n = 997 cells from 10 mice) and control (n = 1360 cells from 10 mice) 

electroporations was observed. 

 

 

3.7.4 Effects of NeuroD2 overexpression 4 days post electroporation 

After this short time period, the same experiment was carried out with a survival time of 

4 days after electroporation to check for effects of NeuroD2 overexpression at this time point. 

A very strong difference between the NeuroD2 and control electroporation was observed 

(n = 10 mice for NeuroD2 and 10 mice for control electroporation). In the control 

electroporation, the majority of GFP+ cells were found to be Type A neuronal precursors. 

These cells were mainly localized in the anterior part of the RMS or already in the core of the 

olfactory bulb, whereas some radial glia cells remained in the SVZ (Fig. 3.24 A). In contrast, 

cells overexpressing NeuroD2 showed normal morphology but were localized in much more 

caudal parts, especially the posterior SVZ (Fig. 3.24 A). Quantification of transfected cells 

along the anterior-posterior axis of the brain revealed significant differences in their 

distribution (Fig. 3.24 B; n = 2168 cells from 6 mice for the control; n = 2022 cells from 

6 mice for NeuroD2). In the control, most of the cells already reached the anterior- (21.3%, 
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Δ = 1.5%) or posterior core (37.5%, Δ = 2.8%) of the olfactory bulb, whereas only few cells 

remained in the anterior- (18.7%, Δ = 3.1%) or posterior SVZ (8.4%, Δ = 1.4%). Upon 

overexpression of NeuroD2 for 4 days, few cells were localized in the anterior- (1.4%, 

Δ = 0.8%) and only a small percentage in the posterior olfactory bulb (2.8%, Δ = 0.8%). In 

contrast, most of the Type A precursors were found in the anterior- (29.6%, Δ = 3.1%) or 

posterior SVZ (57.6%, Δ = 2.7%). 

All together, strong expression of NeuroD2 for 4 days in vivo decelerates or even impairs the 

migration of Type A precursor cells from the SVZ to the olfactory bulb. In addition, neither 

the morphology nor the overall number of transfected cells seemed to be affected. 
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Figure 3.24: Analysis NeuroD2 transfected cells after 4 days in vivo 
Figure legend on the next page 
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Figure 3.24: Analysis NeuroD2 transfected cells after 4 days in vivo 
The localizations of respective coronal sections I to V are indicated by the black lines crossing the 

sagittal overview of a brain (A). In the control electroporation, the majority of GFP+ cells were Type A 

neuronal precursors, localized mainly in the anterior part of the RMS or already in the core of the 

olfactory bulb, whereas only several radial glia cells remained in the SVZ. In contrast, cells 

overexpressing NeuroD2 showed normal morphology but were localized to much more caudal parts, 

especially the posterior SVZ. Subsequently, the transfected cells of control (n = 2168 cells from 

6 mice) and NeuroD2 (n = 2022 cells from 6 mice) electroporations were quantified and displayed with 

their relative abundance in each slice (B). In the control, most of the cells were found in the anterior- 

(21.3%, ∆ = 1.5%) or posterior core (37.5%, ∆ = 2.8%) of the olfactory bulb, whereas only few cells 

remained in the anterior- (18.7%, ∆ = 3.1%) or posterior SVZ (8.4%, ∆ = 1.4%). Upon overexpression 

of NeuroD2 for 4 days, nearly no cells were localized in the anterior- (1.4%, ∆ = 0.8%) and only a 

small percentage in the posterior olfactory bulb (2.8%, ∆ = 0.8%). In contrast, most of the Type A 

precursors were found in the anterior- (29.6%, ∆ = 3.1%) or posterior SVZ (57.6%, ∆ = 2.7%), 

indicating decelerated or impaired migration upon NeuroD2 overexpression. Scale bar = 200 µm 

 

 

3.7.5 Effects of NeuroD2 overexpression 15 days post electroporation 

Considering the strong phenotype after 4 days of NeuroD2 overexpression, the influence of 

the observed differences on the further fate of transfected cells was investigated. To 

distinguish, if the onset of migration was completely blocked, or if the defect was rescued 

after a certain time, a time point 15 days after the initiation of NeuroD2 overexpression was 

analyzed. In the control condition, nearly all GFP+ cells had reached the olfactory bulb and 

were differentiated in the granule- or the periglomerular layer (Fig. 3.25 A). In contrast, after 

NeuroD2 overexpression many of the cells still showed a bipolar, precursor like morphology 

and were localized in the center of the olfactory bulb (Fig. 3.25 B). Relative quantification of 

the specific cell types, namely the precursor like cells, the granular neurons and the 

periglomerular neurons, yielded significant variation with and without NeuroD2 

overexpression (Fig. 3.25 C; n = 1184 cells from 8 mice for the control; n = 645 cells from 

10 mice for NeuroD2). Most of the transfected cells were differentiated into granule cells or 

periglomerular interneurons in the control (77.8%, Δ = 2.9% for granule cells; 9.9%, 

Δ = 1.2% for periglomerular interneurons), whereas about 12.4% (Δ = 2.5%) still had a 

precursor like morphology. In the NeuroD2 electroporated mice, the portion of differentiated 

granule neurons but more strikingly that of periglomerular neurons was reduced (53.7%, 

Δ = 4.1% for granule cells; 2.0%, Δ = 1.0% for periglomerular interneurons), whereas the 

number of precursor like cells was significantly increased (44.3%, Δ = 4.8%). Indeed, the 



Results 
   

90 

final differentiation of periglomerular layer interneurons was affected most drastically with a 

reduction of about 80% in this subpopulation. 

 

 
Figure 3.25: Analysis NeuroD2 transfected cells after 15 days in vivo 
Figure legend on the next page 
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Figure 3.25: Analysis NeuroD2 transfected cells after 15 days in vivo 
Coronal sections from the olfactory bulb of control (A) or NeuroD2 (B) electroporated mice showed 

differing distributions of transfected cells. Whereas in the control condition, nearly all GFP+ cells had 

reached the olfactory bulb and were differentiated in the granule- or the periglomerular layer, after 

NeuroD2 overexpression many of the cells still showed a bipolar, precursor like morphology and were 

localized in the center of the olfactory bulb. The relative abundance of a specific cell types is indicated 

in C (n = 1184 cells from 8 mice for the control; n = 645 cells from 10 mice for NeuroD2). Most of the 

transfected cells differentiated into granule cells (77.8%, ∆ = 2.9%) or periglomerular interneurons 

(9.9%, ∆ = 1.2%) in the control, whereas about 12.4% (∆ = 2.5%) still had a precursor like 

morphology. In the NeuroD2 electroporated mice, the portion of differentiated granule neurons (53.7%, 

∆ = 4.1%) but more strikingly that of periglomerular neurons (2.0%, ∆ = 1.0%) was reduced, whereas 

the number of precursor like cells (44.3%, ∆ = 4.8%) was significantly increased. Scale bar = 50 µm; 

Abbreviations: GCL = granule cell layer; IPL = internal plexiform layer; MCL = mitral cell layer; 

EPL = external plexiform layer; PGL = periglomerular layer; GC = granule cell; PGC = periglomerular 

layer cell 

 

 

The morphological analysis revealed that not only the ratio between differentiated and non-

differentiated cells was shifted but that the morphology of the cells, especially that of 

periglomerular interneurons, was affected. In the control, GFP+ cells that were localized in the 

periglomerular layer showed a differentiated morphology with multiple neurite branches 

innervating the glomeruli (Fig. 3.26 A). Upon NeuroD2 overexpression, cells in this area still 

showed a more precursor like morphology, as they had only few branches (Fig. 3.26 B). 

Several cells showed bipolar morphology, which was never observed in the control 

periglomerular layer after 15 days. Quantification of neurite branches revealed a significant 

reduction in case of NeuroD2- (8.7, Δ = 5.6; n = 52 cells from 10 mice) compared to control 

electroporated (52.8, Δ = 13.6; n = 52 cells from 8 mice) cells (Fig. 3.26 C). 

To summarize these results, NeuroD2 overexpression decelerated the migration and changed 

the final differentiation of Type A neuronal precursor cells. This was particularly evident for 

the differentiation of periglomerular interneurons. 
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Figure 3.26: Analysis of periglomerular layer interneurons upon NeuroD2 overexpression 
In the control, GFP+ cells that were localized in the periglomerular layer 15 days post electroporation 

showed a differentiated morphology with multiple neurite branches innervating the glomeruli (A). Upon 

NeuroD2 overexpression, cells in this area still showed a more precursor like morphology with only 

few branches (B). Quantification of neurite branches revealed a significant reduction in NeuroD2- (8.7, 

∆ = 5.6; n = 52 cells from 10 mice) compared to control electroporated (52.8, ∆ = 13.6; n = 52 cells 

from 8 mice) cells (C). Scale bar = 20 µm 

 

 

3.7.6 Effects of NeuroD1 overexpression 2 days post electroporation 

The transcription factor NeuroD1 was found to be upregulated during the final differentiation 

of periglomerular precursors to mature interneurons, indicating the involvement of NeuroD1 

in the late stage of olfactory bulb interneuron differentiation. However, it had to be examined, 

if the increased expression was only a marker of differentiation, or if NeuroD1 is involved in 

the regulation of this final transition step. 

As for NeuroD2, radial glia were transfected with the NeuroD1 expression vector pCX-ND1. 

The SVZ of electroporated mice was analyzed after 2 days (n = 10 mice for the control and 

10 mice for NeuroD1). In the control, the morphology showed radial glia stem cells in the 

ventricular zone (VZ) and neuronal precursor cells in the SVZ (Fig. 3.27 A). In contrast, a 

dramatic reduction of radial glia cells was observed upon overexpression of NeuroD1 for 

2 days (Fig. 3.27 B). No morphological differences were observed in the SVZ. 

In conclusion, the expression of NeuroD1 is not compatible with radial glia identity. 
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Figure 3.27: Analysis of NeuroD1 overexpression in vivo after 2 days 
Two days after electroporation of either a control- or a NeuroD1 expression vector, the brains were 

sectioned coronally (n = 10 mice for the control and 10 mice for NeuroD1). The area between the 

lateral ventricle and the striatum is depicted. In the control, radial glia stem cells (stars) in the VZ as 

well as neuronal precursor cells (arrows) in the SVZ could be identified according to their morphology 

(A). Upon overexpression of NeuroD1, a dramatic reduction of radial glia cells was observed (B). No 

morphological differences were observed in the SVZ. Scale bar = 100 µm; Abbreviations: 

SVZ = subventricular zone; VZ = ventricular zone; LV = lateral ventricle 
 

 

3.7.7 Effects of NeuroD1 overexpression 4 days post electroporation 

Subsequently, the effect of NeuroD1 expression after an extended time period was examined. 

Sagittal and coronal sections of control- (n = 9 mice) and NeuroD1 (n = 10 mice) transfected 

brains were analyzed 4 days post electroporation. As already shown before, control 

electroporated cells at this time point were Type A neuronal precursors showing a bipolar, 

migratory phenotype (Fig. 3.28 A and B). These cells were mainly localized in the RMS or 

already in the core of the olfactory bulb. In contrast, a population of NeuroD1 expressing cells 

had left the RMS and was found inside the striatum (Fig. 3.28 C). In addition to their ectopic 

localization, also the morphology of these cells was different. Instead of the bipolar Type A 

cell phenotype, a multipolar, differentiated morphology was observed (Fig. 3.29 A and B). 

Furthermore, also cells inside the RMS (Fig. 3.28 D) or the olfactory bulb (Fig. 3.29 C) 

showed a multipolar phenotype which was similar to that of interneurons. Interestingly, there 

was a correlation between the expression level of GFP, and therefore NeuroD1, and the 

degree of altered morphology. Whereas the majority of cells with strong expression displayed 
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a differentiated morphology, cells with only weak expression showed a nearly normal 

phenotype, indicating a dose dependency. 

 

 
Figure 3.28: Analysis of precursor cells after NeuroD1 overexpression in vivo for 4 days 
Sagittal sections of control (A and B) and NeuroD1 (C and D) transfected mice are shown. In the 

control (n = 9 mice), the majority of GFP+ cells were Type A neuronal precursors showing a bipolar, 

migratory phenotype (A and B). The cells in this region were exclusively localized in the RMS. 

Contrarily, a population of NeuroD1 expressing cells (n = 10 mice) had left the RMS and was found 

inside the striatum (C, arrows). This was observed in particular for the cells with highest transgene 

expression. In addition to their ectopic localization, also the morphology of these cells was different. 

Instead of a bipolar phenotype, a multipolar, differentiated morphology was observed (C). 

Furthermore, also cells inside the RMS (D, arrows) showed a multipolar phenotype which was similar 

to that of interneurons. Scale bar = 50 µm for A and C; 20 µm for B and D; Abbreviations: 

RMS = rostral migratory stream; ST = striatum 
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Figure 3.29: Cellular morphology upon NeuroD1 overexpression in vivo for 4 days 
After 4 days of NeuroD1 overexpression, the cellular morphology changed dramatically. In the control, 

the majority of GFP+ cells were Type A neuronal precursors showing a bipolar, migratory phenotype 

(A). In contrast, a population of NeuroD1 expressing cells showed a multipolar, differentiated 

morphology. Some of these cells were found in the striatum (B) or the olfactory bulb (C) and had a 

phenotype which was similar to that of interneurons. Scale bar = 20 µm 

 

 

As the cellular morphology upon NeuroD1 expression changed to a differentiated phenotype, 

the question was, if these transformations were accompanied with a characteristic change in 

the expression of known marker genes that indicate the differentiation status of the cell. To 

address this question, immunohistochemical stainings for the progenitor cell markers 

doublecortin (DCX) and PSA-NCAM were done (n = 4 mice for the control and 4 mice for 

NeuroD1). In the analyzed region of the anterior forebrain, all control transfected cells were 

localized inside the RMS and expressed the characteristic precursor markers DCX and PSA-

NCAM (Fig. 3.30 A to D). In contrast, the differentiated cells transfected with NeuroD1 

showed indeed no expression of these marker genes indicating an advanced state of 

differentiation (Fig. 3.30 E to H). 
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Figure 3.30: Immunohistochemical analysis for the expression of precursor markers 
An immunohistochemical analysis of PSA-NCAM (red) and DCX (yellow) expression was done on 

sections from either control (A to D) of NeuroD1 (E to H) transfected brains after 4 days in vivo 

(n = 5 mice for the control and 5 mice for NeuroD1). In the anterior forebrain, all control transfected 

cells were localized inside the RMS and expressed the characteristic precursor markers DCX and 

PSA-NCAM (A to D). In contrast, the morphologically differentiated cells upon transfection with 

NeuroD1 showed no expression of these marker genes (E to H). Scale bar = 20 µm; Abbreviations: 

DCX = doublecortin; PSA = polysialic acid 
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The observation of an advanced differentiation state was further confirmed by the expression 

of NeuN, a frequently used marker specifically expressed in differentiated neuronal cells. As 

NeuN is upregulated upon differentiation of neurons, it is absent in all types of progenitor 

cells. Therefore, usually no expression of NeuN is found in the SVZ or the RMS. As 

expected, no specific staining was observed to colocalize with control transfected cells 4 days 

after electroporation (Fig. 3.31 A to C). In the SVZ and RMS of NeuroD1 electroporated mice 

however, NeuN was expressed and colocalized with transfected cells that showed a 

differentiated morphology (Fig. 3.31 D to F). 

 

 
Figure 3.31: Immunohistochemical analysis for the expression of NeuN 
An immunohistochemical analysis of NeuN (red) expression was done on sections from either control 

(A to C) of NeuroD1 (D to F) transfected brains after 4 days in vivo. No specific staining was observed 

to colocalize with control transfected cells (A to C, arrows). In the SVZ and RMS of NeuroD1 

electroporated mice, NeuN was expressed and colocalized with transfected cells displaying a 

differentiated morphology (D to F, star). Scale bar = 10 µm 
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As suggested from the in situ hybridization (see Fig. 3.20), NeuroD1 seemed to be highly 

expressed only in a subpopulation of olfactory bulb interneurons. The aim was to determine, 

if cells expressing this transcription factor differentiate into a specific subpopulation of 

periglomerular interneurons. As already mentioned, one of these subpopulations localized in 

the olfactory bulb shows a bifunctional dopaminergic and GABAergic neurotransmitter 

phenotype. It was shown that the transcription factor PAX6 is necessary for the differentiation 

of these cells (Hack et al., 2005). As PAX6 is activated by NeuroD1 (Marsich et al., 2003), it 

was possible that also NeuroD1 is involved in this system. To test this hypothesis, TH-GFP 

mice were transfected with the NeuroD1 expression vector and mice analyzed after 4 days 

(n = 6 mice). TH-GFP mice express GFP under the control of the tyrosine hydroxylase 

promotor which becomes active exclusively in dopaminergic neurons (Sawamoto et al., 

2001). During postnatal neurogenesis, the TH promotor activity is restricted to the anterior 

RMS and the olfactory bulb (Saino-Saito et al., 2004). To identify transfected cells, NeuroD1 

was coelectroporated with a RFP expression vector, since GFP was already used as readout of 

TH promotor activity. 

As expected, SVZ tissue not transfected with NeuroD1 showed no GFP+ cells (Fig. 3.32 A 

to C), whereas upon NeuroD1 expression, GFP fluorescence was observed in this region. 

Colocalization analysis showed that only transfected cells became GFP+ (Fig. 3.32 D to F). In 

addition, quantification of labeled cells in the SVZ (n = 298 cells from 6 mice, Fig. 3.32 G) 

showed that the vast majority of cells were GFP/RFP double positive (96.0%, Δ = 2.1% 

GFP/RFP double positive; 0.7%, Δ = 0.9% only GFP+; 3.3%, Δ = 1.8% only RFP+). 

Therefore, expression of NeuroD1 seemed to induce a differentiation towards a dopaminergic 

fate at ectopical localizations even after 4 days. 
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Figure 3.32: Analysis of effects on dopaminergic differentiation upon NeuroD1 expression 
Figure legend on the next page 
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Figure 3.32: Analysis of effects on dopaminergic differentiation upon NeuroD1 expression 
TH-GFP mice, expressing GFP specifically in dopaminergic neurons, were transfected with a NeuroD1 

expression vector and analyzed after 4 days in vivo (n = 6 mice). Transfected cells were visualized by 

coexpression of RFP. SVZ tissue not transfected with NeuroD1 showed no GFP+ cells (A to C). Upon 

NeuroD1 expression, GFP fluorescence was observed in the SVZ (E). Colocalization analysis showed 

that only cells expressing NeuroD1 became GFP+ (D to F). Quantification of fluorescent cells in the 

SVZ (n = 298 cells from 6 mice) resulted in 96.0% (∆ = 2.1%) GFP/RFP double positive, 0.7% 

(∆ = 0.9%) only GFP+ and 3.3% (∆ = 1.8%) only RFP+ cells (G). Quantification of fluorescent cells in 

the RMS (n = 147 cells from 6 mice) resulted in 77.0% (∆ = 4.6%) only GFP+ cells, reflecting the 

normal activation of the TH promoter in this region. In contrast, only 1.0% (∆ = 1.6%) of the cells were 

only RFP+, whereas 22.3% (∆ = 4.3%) were GFP/RFP double positive, indicating that again nearly all 

transfected cells expressing NeuroD1 induced the TH-promotor. Scale bar = 20 µm; Abbreviations: 

RMS = rostral migratory stream; SVZ = subventricular zone 

 

 

In addition to the TH promotor activation inside the SVZ, nearly all NeuroD1 transfected cells 

in the RMS (Fig. 3.33 A to C) and the striatum (Fig. 3.33 D to F) became GFP positive. 

However, as the TH promotor is naturally activated in the anterior part of the RMS (Saino-

Saito et al., 2004), many not transfected GFP+ cells were found (Fig. 3.33 A to C). 

Quantification of fluorescent cells in the RMS (Fig. 3.32 G, n = 147 cells from 6 mice) 

resulted in 77.0% (Δ = 4.6%) GFP+ only cells. In contrast, only 1.0% (Δ = 1.6%) of the cells 

were only RFP+, whereas 22.3% (Δ = 4.3%) were GFP/RFP double positive, indicating that 

again nearly all transfected cells became dopaminergic. In addition, the GFP fluorescence was 

stronger in double positive cells, probably because the promotor was activated earlier and the 

GFP protein was already accumulated at this time. 

To summarize these results, overexpression of NeuroD1 in neuronal progenitor cells induced 

a premature differentiation into an interneuron like phenotype at ectopic localizations. These 

cells adopted a multipolar morphology, downregulated the expression of precursor markers 

and induced the expression of markers specific for maturated neurons. In addition, nearly all 

NeuroD1 transfected cells induced a differentiation towards a dopaminergic fate. 
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Figure 3.33: Analysis of effects on dopaminergic differentiation upon NeuroD1 expression 
TH-GFP mice, expressing GFP specifically in dopaminergic neurons, were transfected with a NeuroD1 

expression vector and analyzed after 4 days in vivo (n = 6 mice). Transfected cells were visualized by 

coexpression of RFP. Nearly all transfected cells in the RMS (A to C) and the striatum (D to F) 

became GFP positive. As the TH promotor is naturally activated in the anterior part of the RMS, many 

not transfected GFP+ cells were found (A to C, arrows). Scale bar = 20 µm; Abbreviations: 

RMS = rostral migratory stream 

 

 

3.7.8 Effects of NeuroD1 overexpression at later time points 

As already shown, NeuroD1 induced the differentiation of Type A neuronal precursor cells 

already after 4 days and at localizations which naturally do not show neuronal differentiation. 

To investigate the further fate of these cells, it was analyzed if they were able to survive and 

further differentiate in these regions. 

Again, NeuroD1 was electroporated in vivo and the brains were removed and analyzed after 

8 days (n = 10 mice for NeuroD1- and 10 mice for control electroporations). In the control, 

nearly all transfected cells had reached the olfactory bulb and started their final 
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differentiation. Most of them were localized in the granule cell layer and already extended a 

long primary dendrite in lateral direction (Fig. 3.34 A). Upon NeuroD1 transfection, the 

number of cells localized inside the olfactory bulb was strongly reduced (80% reduction 

compared to the control, Fig. 3.34 B). Furthermore, the morphology of cells that reached their 

correct position was different as again an increased number of processes was observed 

(Fig. 3.34 C). In contrast to the control, where no cells remained in the RMS, many NeuroD1 

transfected cells were still found in this region (Fig. 3.34 D and E). In addition, the 

differentiated cells inside the striatum were still present; however, their number was reduced 

compared to the experiment at day 4 (Fig. 3.34 D and E). 
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Figure 3.34: Analysis NeuroD1 transfected cells after 8 days in vivo 
Eight days after electroporation of either a control- or a NeuroD1 expression vector, brains were 

removed and sectioned coronally (n = 10 mice for the control and 10 mice for NeuroD1). In the control, 

nearly all of the transfected cells reached the olfactory bulb and started their differentiation. Most of 

them were localized in the GCL and already extended a long primary dendrite in lateral direction (A). 

Upon NeuroD1 transfection, the number of cells localized inside the olfactory bulb was strongly 

reduced (>80% less cells compared to the control, B). The morphology of some cells that reached 

their correct position was different from the one found also mainly in the control (C, arrow), as again 

multiple processes were observed (C, star). In contrast to the control, where no cells remained in the 

RMS, many NeuroD1 transfected cells were still found in this region (D and E). Also the differentiated 

cells inside the striatum were still present (D and E). Scale bar = 50 µm for A and B, 20 µm for D and 

E; Abbreviations: RMS = rostral migratory stream; ST = striatum; GCL = granule cell layer; 

MCL = mitral cell layer; OB = olfactory bulb 

 

The dramatic loss of NeuroD1 transfected cells was even more obvious after 15 days 

(n = 10 mice for NeuroD1- and 10 mice for control electroporations). Comparable to the 

control electroporation of the NeuroD2 experiment, most of the GFP only transfected cells 

were differentiated into granule- or periglomerular neurons after 15 days (Fig. 3.35 A). In 

contrast, nearly no GFP+ cells were found anymore in NeuroD1 transfected brains 

(Fig. 3.34 B). The small amount of cells that were still present, expressed GFP only very 
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weak. In addition, GFP+ cells in the SVZ of control mice were differentiated into 

ependymocytes or Type B neurogenic astrocytes, whereas only ependymocytes were found in 

the respective tissue upon NeuroD1 transfection (data not shown). 

In conclusion, the number of neuronal precursors that reached their final positions in the 

olfactory bulb and differentiated into granule- or periglomerular layer neurons was strongly 

reduced upon expression of NeuroD1. Whereas after 8 days in vivo many of the cells were 

still present, all of them disappeared after 15 days indicating that massive apoptosis occurred 

in this fraction of prematurely and ectopically differentiated cells. 

 

 
Figure 3.35: Analysis NeuroD1 transfected cells after 15 days in vivo 
Fifteen days after electroporation of either a control- or a NeuroD1 expression vector, brains were 

removed and sectioned coronally (n = 10 mice for the control and 10 mice for NeuroD1). Most of the 

only GFP transfected cells were differentiated into granule- or periglomerular neurons after 15 days 

(A). In contrast, nearly no cells were found anymore in NeuroD1 transfected brains (B). The few cells 

that were still present in the olfactory bulb, expressed GFP only very weakly. Scale bar = 50 µm; 

Abbreviations: GCL = granule cell layer; IPL = internal plexiform layer; MCL = mitral cell layer; 

EPL = external plexiform layer; PGL = periglomerular layer 
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4 Discussion 

4.1 The distribution of GABAergic neurons among different brain 
areas 

As a first step towards the molecular analysis of GABAergic neurons, a new method for the 

isolation of these cells was established. The gentle dissociation in combination with the use of 

fluorescently labeled GABAergic neurons derived from the GAD67-GFP mouse strain 

(Tamamaki et al., 2003) allowed for the quantification as well as the isolation of these cells 

by flow cytometry. The quantification of GABAergic neurons resulted mainly in two 

observations. First, the dynamic range of the cell numbers was very high, with about 3% of 

the total cells in the cerebellum and a 20-fold higher number in the olfactory bulb. Second, the 

number of GABAergic neurons in the olfactory bulb was considerably higher than previously 

reported. Kosaka et al. (Kosaka and Kosaka, 2005) concluded from immunohistochemical 

analyses that only 50% of glomerular neurons in the olfactory bulb are GABAergic, pointing 

to an overall lower number of this cell type than observed in the flow cytometric analysis. 

This may be due to the higher sensitivity of FACS in combination with the enrichment of 

GABA at synapses in the cell periphery, leading to low signal intensities of 

immunohistochemical staining in the cell soma. However, the higher number of GABAergic 

neurons that was found here is in agreement with recent data, claiming that almost all 

periglomerular cells are GABAergic (Panzanelli et al., 2007) and do not represent a mixed 

population of either dopaminergic or GABAergic neurons. In addition, also developmental 

differences between neonatal and adult mice should be considered. 

The dynamic range of GABAergic neuron numbers probably reflects the high degree of 

specialization for different brain regions, especially regarding information processing. For 

instance, while the olfactory bulb is mainly responsible for modulation of incoming sensory 

stimuli and replacement of interneurons might be one way to adapt to a continuously 

changing environment, the cerebellum coordinates motor output which depends on a high 

degree of recurring activity patterns. 
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4.2 The general gene expression signature of GABAergic neurons 

Isolation of GABAergic neurons from whole brain tissue as well as distinct brain areas 

allowed molecular analysis of these populations by gene expression profiling. Combination of 

the transcriptomes of GABAergic neurons from whole brain, cortex, olfactory bulb, striatum 

and cerebellum led to the identification of genes that were expressed in all of these 

populations and may therefore represent genes important for GABAergic cell functionality in 

general. Furthermore, some of these candidates may serve as novel marker genes in addition 

to GAD1, GAD2 and VIAAT. 

The transcriptome signature of general GABAergic neurons assembled, as expected, groups 

of over represented genes acting in GABA metabolism and groups of underrepresented genes 

related to non-GABAergic neurons and glia. Among the genes not described so far to be 

overexpressed in GABAergic neurons were mainly RNA processing enzymes, transcription 

factors and genes coding for cytoskeletal proteins. RNA processing enzymes like ADARB1 

and DRADA have been shown to broaden the repertoire of electrophysiological properties by 

editing the mRNA coding for glutamate receptor subunits (Melcher et al., 1996; Mittaz et al., 

1997). It is tempting to speculate that the closely related homologs ADARB2 and TRSPAP1, 

which were overexpressed in GABAergic neurons, fulfill similar functions to yet unknown 

targets, thereby adding a further level of regulation to input signal modulation. Furthermore, 

RNA editing mechanisms have been linked to different neurological diseases including 

Alzheimer's disease, Huntington's disease and schizophrenia (Akbarian et al., 1995) and it 

would be interesting to address their roles in GABA related dysfunctions. 

An interesting observation was the strong expression of genes that are linked to 

developmental processes in GABAergic neurons. For example, the strong presence of SOX7 

and HOXA1, both genes that have multiple functions in brain development, point to a general 

delayed differentiation of GABAergic neurons. Furthermore, MYST4 (Qkf, Querkopf) plays a 

major role in the development of cortical interneurons and adult neurogenesis in the olfactory 

bulb (Merson et al., 2006; Thomas and Voss, 2004). Although there was a peak of expression 

in the olfactory bulb, a universal and strong expression of MYST4 in interneurons from all 

brain areas was observed, suggesting that this gene might be a general marker for developing 

GABAergic neurons. Due to these observations, it might be interesting to test whether 

transgenic expression of MYST4 in embryonic stem- or adult progenitor cells is sufficient to 

drive GABAergic differentiation. This would allow generating a broader spectrum of 
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GABAergic neurons than it has been shown for DLX, which has a restricted expression in the 

developing mouse forebrain. 

 

4.3 The genomic relationship among GABAergic neurons from 
different brain regions 

In addition to the general genomic signature of GABAergic neurons, differences among 

GABAergic neuron subpopulations from distinct brain regions were defined. 

Unsupervised hierarchical clustering of correlation coefficients pointed to a general genomic 

relationship between regionally defined interneurons. Whereas GABAergic neurons from all 

forebrain regions showed a high degree of similarity, major changes were observed when 

comparing forebrain to hindbrain populations. The major differences among fore- and 

hindbrain populations probably reflect their distinct origins that separate these subpopulations 

early during development. Whereas GABAergic neurons of the forebrain are generated 

mainly in the medial and caudal ganglionic eminences, those of the cerebellum originate from 

the ventricular neuroepithelium (Leto et al., 2006; Xu et al., 2004). 

Nevertheless, a subgrouping among the forebrain populations was found, showing more 

differences between olfactory bulb cells to those of the striatum and cortex. This may be due 

to the general aspect that GABAergic neurons in the striatum and cortex are in late or even 

terminal differentiation stages, whereas in the olfactory bulb, the differentiation of these cell 

types from neuronal Type A precursor cells continues throughout live (Lledo et al., 2006). 

 

4.4 Differential gene expression reflected distinct functions of 
GABAergic neurons in specific forebrain regions 

Unsupervised hierarchical clustering of correlation coefficients pointed to a general genomic 

relationship between regionally defined interneurons of the forebrain. However, differences 

between distinct forebrain populations were also evident. As mentioned above, olfactory bulb 

GABAergic neurons were clearly distinct from those of the striatum and cortex, probably 

because the olfactory bulb contains a considerable amount of type A interneuron precursors 

(Lois et al., 1996). Previous studies showed that these precursors already express the here 

used selection marker GAD67 and would therefore be represented in the olfactory bulb 

samples. This immature cell population shows a particular gene expression profile in which, 

for example, gene clusters involved in cell cycle, apoptosis, axon outgrowth or chemotaxis are 
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highly represented (Pennartz et al., 2004). Thus, the obvious differences might be partially 

due to a high degree of immature precursors in the olfactory bulb.  

This view was exemplified by several factors specifically expressed in the olfactory bulb 

fraction. For example, FGF2 plays an important role in maintaining neural stem cells in the 

subventricular zone where the new interneurons destined for the olfactory bulb are generated. 

As a result of decreased neurogenesis in knockout animals, FGF2-/- mice have smaller 

olfactory bulbs (Zheng et al., 2004). Furthermore, the phosphatidylinositol 3-kinase 

regulatory subunit gene PIK3R1 is crucial for neuronal cell proliferation and survival and a 

role of this isoform in neuronal signaling has been suggested (Horsch and Kahn, 1999). 

Concerning recognition cues defining functional differences, strong expression of SLIT1/2 

and ROBO1/2 in the olfactory bulb GABAergic neuron fraction was found. The Slits and 

ROBO1 have been directly implicated in the migration of precursors in the olfactory bulb 

(Chen et al., 2001; Nguyen-Ba-Charvet et al., 2004) as well as in cortical interneuron 

migration (Andrews et al., 2007). The finding of additional strong ROBO2 expression in 

GABAergic neurons suggests that this receptor might also be involved in the guidance of 

postnatally generated interneurons in the forebrain. 

 

In contrast to other forebrain interneurons, striatal GABAergic neurons are projection 

neurons. This was reflected by the finding that a variety of genes that were linked to cellular 

processes like axonogenesis and cytoskeleton control were differentially expressed compared 

to the other brain areas. Genes like CSF1, LAMA1, EDG1, BCL11B, FOXJ1 and TITF1 

might represent regulators important to distinguish between interneuron and projection neuron 

morphologies. Furthermore, the two genes ACE and NOS were found to be enriched, whose 

expression lead to decreased reactivity of GABAergic neurotransmission, thereby modulating 

also specifically the electrophysiological properties of this subpopulation (Frisch et al., 2000; 

Li and Pan, 2005). 

Interestingly, Insulin-like growth factors and interacting partners were found to be over 

represented in the striatum. During brain development, IGFs act as tropic factors and are 

important for development of the nervous system (Naeve et al., 2000). Although IGF2, IGF-

receptors and binding proteins are expressed in the adult CNS, their role in the adult brain is 

less well understood (Dikkes et al., 2007). Notably, while IGF1 is neuroprotective in mouse 

models of Huntington’s disease, several reports have shown that IGF2 may antagonizes 

neuroprotective effects, possibly by displacing it from IGF-binding proteins (Alexi et al., 

1999; Dikkes et al., 2007; Guan et al., 1996). One important yet not fully understood feature 
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of Huntington’s disease is the early loss of GABAergic neurons in the striatum prior to cell 

death in other brain areas. High expression of IGF2 and IGFBP3 especially in striatal 

GABAergic neurons - as observed in this study - may contribute to an increased sensitivity of 

these cells. 

 

4.5 Forebrain and hindbrain GABAergic neurons are generated by 
different transcriptional mechanisms 

Despite the fact that differences between the different forebrain populations could be clearly 

established, GABAergic neurons from these areas were strongly related concerning the 

transcription factors that regulate their generation and identity. This was particularly obvious 

when comparing forebrain interneurons to such isolated from the cerebellum. 

 

Forebrain GABAergic neuron specific transcription factor families could be arranged in three 

groups, one connected to the Distal-less-family (DLX), a second to POU-transcription factors 

and a third linking ETS and FOX family members. DLX-genes are well known regulators of 

GABAergic differentiation with DLX1 and DLX2 in earlier and DLX5 and DLX6 in later 

stages (He et al., 2001). Ectopic expression of DLX2 and DLX5 is sufficient to induce GAD1 

expression and mice lacking DLX1 show subtype specific loss of interneurons, reduced 

inhibition and epilepsy (Cobos et al., 2005b; Stuhmer et al., 2002a; Stuhmer et al., 2002b). In 

addition, transcription of ARX, the vertebrate homolog of aristaless, is regulated by DLX 

(Cobos et al., 2005a) and essential for the correct formation of interneurons in the olfactory 

system (Yoshihara et al., 2005). Finally, mutations of VAX1, as for other DLX family 

members, have been reported to impair forebrain interneuron generation (Taglialatela et al., 

2004). Also members of the other two families are linked to the development of the central 

nervous system (Hoekman et al., 2006; McEvilly et al., 2002; Shah et al., 2006; Wijchers et 

al., 2006). These transcription factor families may therefore regulate the identity and 

differentiation of forebrain specific GABAergic neurons. 

 

In contrast, cerebellar interneuron identity and function appears to be regulated by 

fundamentally different factors. This was exemplified by the observation that none of the 

above forebrain specific factors was expressed or has been shown to be important for the 

generation of hindbrain GABAergic neurons. Instead, Zinc-finger transcription factors like 

ZIC1, ZIC2 and ZIC5 were found to be cerebellum specific. Furthermore, Engrailed2, LHX1 
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and LHX5 were highly over-represented in this brain region. For all of these genes, striking 

and specific cerebellar phenotypes have been observed in the corresponding murine knockout 

models. Mutations in ZIC1 and ZIC2 are responsible for abnormal cerebellar development 

and a targeted deletion of the Engrailed2 gene leads to an altered cerebellar foliation pattern 

(Titomanlio et al., 2005; Wurst et al., 1994). Besides these general cerebellar defects, mice 

lacking the function of LHX1 and LHX5 show a severe and specific reduction in the number 

of Purkinje cells (Zhao et al., 2007). These genes may extend the knowledge about candidates 

important for differentiation of cerebellar GABAergic neurons, which is very limited so far to 

a few genes like PTF1A. PTF1A is highly expressed in a subpopulation of cerebellar 

ventricular zone precursors at embryonic stages E12 to E14 and specifically drives 

GABAergic over glutamatergic granule cell differentiation in the cerebellum (Hoshino et al., 

2005; Pascual et al., 2007). 

Also differences in the physiological function of GABAergic neurons among fore- and 

hindbrain populations were defined by several enriched candidates. One example was the 

strong presence of factors associated with the SST pathway. SST modulates GABA-signaling 

and a differential expression of its receptors during cerebellar development has been reported 

in rats (Bossy-Wetzel et al., 2004b; Viollet et al., 1997). Furthermore, differential expression 

of the potassium inwardly-rectifying channel KCNJ6 might characterize the specific 

electrophysiological features of these cells. 

 

4.6 Candidates that may serve as surface markers for GABAergic 
neurons 

To overcome the need of mouse strains with genetically labeled GABAergic neurons and 

maybe allow the purification of further subpopulations of these cells, new surface markers 

have to be identified. This would enable direct labeling of intact GABAergic neurons 

followed by magnetic or flow cytometric isolation protocols. 

Many genes had been identified to be highly and specifically expressed in GABAergic 

neurons by gene expression profiling. However, only very few of these candidates were 

localized in the plasma membrane and could serve as cell surface markers for the isolation of 

GABAergic neurons. Only one of these, CD72, was identified for which an antibody specific 

for an extracellular epitope was available. The strong and specific expression of CD72 in 

GABAergic neurons, as identified by microarrays, was validated by in situ hybridization 

using postnatal day 1 as well as adult mice. Subsequently, a monoclonal antibody was used to 
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stain cells dissociated from GAD67-GFP mice to check for protein expression on GABAergic 

neurons. Unfortunately, no staining was observed on any brain cell (data not shown). There 

are several possible reasons for this observation. First, the protein can be sensitive to protease 

digestion. However, even with very low protease concentrations (either 10 min incubation in 

0.5 U/ml Papain or 0.1% Trypsin), no staining was observed. Second, post-translational 

protein modifications, like glycosylations, may differ among distinct tissues. As the antibody 

was generated to recognize the CD72 protein on hematopoietic cells, it may not bind 

differently modified forms in the brain. And third, due to post-transcriptional regulation, the 

protein level may be too low for an antibody staining, although the mRNA level was rather 

high. 

A parallel approach to the molecular identification of novel markers was to use purified 

GABAergic neurons directly as immunogenic material in order to generate antibodies specific 

for so far unknown surface markers of these cells. Unfortunately, ten different immunization 

approaches did not lead to the generation of a single specific antibody. One reason could be 

that GABAergic neurons do not express surface proteins which are exclusively expressed by 

these cells but also on other populations of brain cells. To overcome this problem, 

recombinant GFP protein was used as decoy instead of GFP- cells in several approaches, so 

that only the anti-GFP reactivity but not that for other proteins was directed to the 

contralateral lymph node. However, by using this strategy, again no specific antibody was 

identified. Furthermore, even the use of PHA-L as adjuvant did not result in a larger size of 

the target lymph nodes that were very small compared to the decoy lymph nodes. Therefore, 

the most likely explanation is that GABAergic neurons do not express highly immunogenic 

epitopes on their surface, or at least that these targets are highly sensitive to the obligatory 

protease treatment. The use of CpG as a more potent adjuvant increased the general efficiency 

but not the specificity of the immune response. 

As an alternative to this approach, a newly established protocol for the direct identification of 

cell surface glycoproteins by tandem mass spectrometry was used (Zhang et al., 2003). 

Thereby, novel surface markers can be identified directly on the protein level and therefore 

also overcome the mentioned problem of post-transcriptional regulation. A group of proteins 

was identified in the GFP+ but not the GFP- fraction of cells isolated from GAD67-GFP mice. 

Most of these candidates were indeed known to be localized in the membrane fraction. 

Several identified proteins were also enriched in GABAergic neurons on the transcriptome 

level as found by the gene expression analysis. Other candidates, as expected, did not 

correlate with the transcriptome data. This can be explained by post-transcriptional regulation 
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and protein stability. In conclusion, several proteins were identified that are probably 

expressed on the surface of GABAergic neurons and can serve as targets for a directed 

generation of monoclonal antibodies. Furthermore, an analysis of the specific function for 

these candidates on GABAergic neurons may provide new insights for the understanding of 

this cell population. In addition, the proteins which were found only in the GFP- fraction 

might represent novel surface markers specific for other populations of brain cells. Therefore, 

they may be used either for the purification or the depletion of the respective cells. 

 

4.7 Isolation and molecular analysis of olfactory bulb interneurons 
and their progenitors 

In an additional approach, the differentiation of periglomerular layer interneurons was 

analyzed as it represents an appropriate and accessible model system for the generation of 

GABAergic as well as dopaminergic neurons. Like for the analysis of GABAergic neuron 

subtypes from distinct brain regions, a method for the isolation of the respective cell 

populations was established. In this case, the use of GFP-fluorescence in cells from the 

GAD67-GFP mouse strain as a marker was not possible, because GFP is also expressed in 

progenitor cells and distinct differentiation states can not be distinguished. However, the 

combination of reducing the starting population complexity by microdissection and a two step 

magnetic cell sorting approach based on the surface markers A2B5 and PSA-NCAM, allowed 

for the purification of early Type A neuronal precursors from the SVZ as well as late 

precursors and mature interneurons from the periglomerular layer. The purified populations 

were analyzed by whole genome gene expression profiling. 

Unsupervised hierarchical clustering of correlation coefficients was used again to define a 

general genomic relationship between the respective cell populations. Both cell types isolated 

from the periglomerular layer grouped closely together but displayed major differences 

compared to early Type A neuronal precursors. This indicates that the major changes during 

the development of olfactory bulb GABAergic interneurons occur during the migration of 

Type A precursor cells from the SVZ to the olfactory bulb, whereas only minor changes occur 

during the late step of differentiation in the periglomerular layer. In addition, the genomic 

relationship as well as a multiclass SAM analysis resulted in a molecular validation of the 

proposed model in which PSA+ periglomerular layer precursors represent an intermediate 

state between SVZ Type A precursors and PSA- periglomerular layer interneurons. 
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4.8 Genes important for early differentiation states of olfactory bulb 
interneurons 

Several genes were found to be strongly upregulated in both periglomerular cell types 

compared to their SVZ progenitors and may therefore represent candidates important for early 

steps during the generation GABAergic interneurons. 

Whereas known marker genes of neuronal precursors, like DCX and TUBB3 were 

downregulated, genes that were known before to be expressed in mature GABAergic neurons, 

like CALB1, CALR and NPY were upregulated (Kanatani et al., 2000; Rohner-Jeanrenaud et 

al., 1996). Also the upregulated gene PTN is linked to neuronal differentiation and neurite 

outgrowth (Carvalho, 2003). Furthermore, PTN as well as APOE, APOD, FBLN2, S100A1 

and S100A13 have important functions in neuronal synaptic plasticity, calcium signaling and 

calcium homeostasis (Hartmann et al., 1994; Okazaki et al., 2002). In addition, NRXN1, 

which interacts with the also enriched NLGN2, influences synaptic transmission by regulating 

calcium channels (Comoletti et al., 2003; Missler et al., 2003), whereas VTN can selectively 

regulate the inactivating potassium current (Vasilyev and Barish, 2003). Interestingly, 

NLGN2 was shown to be specific for inhibitory synapses (Varoqueaux et al., 2004), which 

matches with the observation that it is upregulated during differentiation. The enriched gene 

NOTCH1 is also involved in synaptogenesis by decreasing the number of dendrites but 

increasing the number of inhibitory synapses (Salama-Cohen et al., 2006). FABP7, a Notch 

target gene in the central nervous system, was also upregulated (Anthony et al., 2005). In 

summary, many candidates were identified that may play important roles during the 

regulation of synaptic plasticity in olfactory bulb interneurons. 

In addition, an enrichment of further genes connected to neuronal differentiation was 

observed. EphrinA5, Semaphorin4A, Vimentin and CSPG3 act as axon guidance and cell 

motility factors (Lampa et al., 2004; Li et al., 2005; Menet et al., 2003; Moretti et al., 2006). 

Interestingly, it was shown that EphrinA5 expression is modulated by expression of different 

odorant receptors (Cutforth et al., 2003). For SEPT4, a gene of the cytoskeleton, a role in the 

development of neurons was already published (Takahashi et al., 2003). However, it was not 

connected to this system so far, whereas the enriched prion protein was already suggested to 

act during adult neurogenesis (Steele et al., 2006). The glutamate receptors GRIK1 and 

GRINL1A, CALB1, CALR, GLUD, SLC13A3, MT2 and DBI correlated with an increased 

state of differentiation in periglomerular layer cells (Pajor et al., 2001; Stankovic, 2005). Mice 

deficient for TNC show a delayed onset of odor detection, showing that a functional relevance 

for at least several of the identified candidates can be expected (de Chevigny et al., 2006). 



Discussion 
   

114 

The upregulation of extracellular matrix components like MATN2, FBLN2, TNC, PTN, VTN 

and CSPG3 by periglomerular layer precursors and interneurons suggests an intrinsic role of 

these cells in building up the neurogenic environment of the olfactory bulb (Mates et al., 

2002). Furthermore, the high expression of APOE may be involved directly in the change 

from tangential chain- to radial individual migration of neuronal precursors upon arrival in the 

olfactory bulb. The apolipoprotein-E receptor 2 as well as its downstream signaling target, the 

adaptor protein disabled-1 is present in the migrating cells and Reelin acts as a detachment 

signal by activating this cascade (Ghashghaei et al., 2007; Hack et al., 2002). It is possible, 

that the high expression of APOE acts as an autocrine signal to enhance this process. 

As shown for GABAergic neurons from other brain areas, also targets of the WNT signaling 

pathway, like APCDD1 (Jukkola et al., 2004) as well as IGF1 were enriched. A number of 

transcription factors like OLIG1, XBP1, NFI/A, ZFP277, ZMYND11, GTF2B and E4F1 were 

strongly upregulated. Several of them, like Nuclear Factor I/A, are already known to be 

involved in neuronal development (Shu et al., 2003; Wang et al., 2004). However, the 

specific role of these genes during adult neurogenesis still has to be investigated. 

 

4.9 Genes important for late differentiation states of olfactory bulb 
interneurons 

Although a high correlation coefficient of 0.97 between periglomerular layer precursors and 

interneurons indicated a high similarity of these cell types, several candidates were identified 

that were significantly regulated and may therefore be important for this final step of 

differentiation. About three times more genes were strongly upregulated than downregulated, 

indicating that this step is mainly controlled by increasing gene expression of differentiation 

correlated genes. 

Like for the results concerning periglomerular layer- against Type A cells, genes with 

functions in mature neurons, like GAD2, SST and NRXN, were identified to be upregulated 

in the PSA- fraction, whereas markers of neuronal progenitor cells, like TUBB3, Nestin and 

DCX, were further downregulated, correlating with an increased degree of differentiation. 

An upregulation of NPY during the migration of Type A neuronal precursors from the SVZ to 

the olfactory bulb was described above. In the downstream transition from PSA+ to PSA- 

periglomerular layer cells, upregulation of GPR103, an NPY receptor connected to the 

metabolic syndrome (Takayasu et al., 2006), was found. This indicates the existence of an 

autocrine NPY signaling pathway in these cells. 
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Several genes that are important for vesicular and neurotransmitter transport, like STX3, 

STX6, SYT4 and SLC1A1 (Ferguson et al., 2004a; Ferguson et al., 2004b), became 

upregulated in mature interneurons. SLC1A1 is known to be expressed on GABAergic 

neurons, where it provides glutamate as a precursor for GABA synthesis (Palmada and 

Centelles, 1998). 

A large group of genes connected to the cytoskeleton, important for neurite outgrowth, 

morphology and positioning, was differently expressed. Regulators of the cytoskeleton like 

KTN1 as well as NTRK3, C130076O07Rik, TBCE, BC050903 (DCAMKL1) and Ablim1 

were upregulated, which are known to be involved in axon outgrowth and guidance (Bommel 

et al., 2002; Deuel et al., 2006; Erkman et al., 2000; Martin et al., 2002). Also the 

neurotrophic tyrosine kinase NTRK3, which plays a role in axon extension (Stenqvist et al., 

2005), was enriched, as was the receptor tyrosine kinase substrate SPRED1, of which a 

function in the brain was suggested (Engelhardt et al., 2004). In contrast, CRMP1, MAPT, 

KIF5A, TUBB3 and EPB4.2 were examples of downregulated genes connected to the 

cytoskeletal control (Bretin et al., 2005; Kanai et al., 2000; Yamashita et al., 2006). Many of 

the upregulated genes in this group are involved in neurite outgrowth, which is important for 

new interneurons finding their neuronal circuit. In contrast, the downregulated genes mainly 

function in the general migration of cells, important during earlier steps. Together, the 

regulation and interaction of these genes may regulate the final positioning, morphological 

changes and axonal innervations during the differentiation of periglomerular layer 

interneurons. 

Furthermore, a number of transcription factors with expression differences among these 

populations were identified. Transcription factors like BHLHB9, PAX6 and PAX8, OBOX2 

and 3, PMS1, SFPI1, GABPB1, MTF1, ZHX3, and ISL2, were enriched in mature 

interneurons. In contrast, transcription factors like PNMA1, SOX30, ZFP219, and NFKBIE 

were downregulated in PSA- interneurons. These genes are therefore likely to be involved in 

the specification of inhibitory interneurons. Interestingly, an oppositional regulation of the 

homeobox transcription factors DLX1 and DLX2 was observed. Whereas DLX2 was enriched 

in PSA- interneurons, DLX1 was enriched in PSA+ precursors. In contrast, DLX5 and 6 were 

already downregulated in both periglomerular layer populations compared to Type A 

precursors. This suggests that DLX genes are important for the early as well as the late 

differentiation of olfactory bulb interneurons. In combination with the results that members of 

the DLX family were enriched in all GABAergic neuron populations of the forebrain, a 

general function of these genes for GABAergic differentiation from embryonic to adult stages 
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can be suggested, which is in concordance to published data (Brill et al., 2008; He et al., 

2001). In addition, an oppositional regulation of the basic helix-loop-helix transcription 

factors ND1 (NeuroD1) and ND2 (NeuroD2) was observed. Whereas NeuroD1 became 

highly upregulated in mature interneurons, NeuroD2 was downregulated. In addition, also 

PAX6, a target gene of NeuroD1 (Marsich et al., 2003) was upregulated upon differentiation. 

NeuroD1 as well as NeuroD2 are already known to be important factors in the development of 

the nervous system, but in contrast to the DLX genes, nothing was known about their function 

during the generation of inhibitory interneurons so far (Cho and Tsai, 2004; Noda et al., 

2006). As the regulation of these two candidates suggests a function during the differentiation 

of olfactory bulb interneurons, they were chosen for a further analysis in order to test their 

functional relevance in vivo. 

 

4.10 Overexpression of NeuroD2 interfered with the migration and 
differentiation of neuronal precursors in vivo 

The NeuroD2 expression was downregulated during differentiation of periglomerular 

interneurons. This suggested the importance of this transcription factor during an early state in 

the development of olfactory bulb interneurons. Also previous published results concerning 

NeuroD2 indicate an early function of this transcription factor during neurogenesis, important 

especially for an initial neurogenic fate decision (Lin et al., 2004). In concordance, after 

overexpression of NeuroD2 in mouse embryonic stem cells, N1E-115 neuroblastoma cells, or 

P19 embryonal carcinoma cells, neuronal differentiation is observed (Farah et al., 2000; 

Kanda et al., 2004; Mie et al., 2003). Furthermore, as a lack of NeuroD2 expression results in 

Congenital hypothyroidism (cretinism) in mice (Lin et al., 2006), the understanding of its 

function during neurogenesis is of broad interest for the development of novel therapies. The 

question was, if NeuroD2 is downregulated only as a downstream result of an increasing 

differentiation state, or if this downregulation is necessary to allow further differentiation. To 

address this question, NeuroD2 overexpression was induced in radial glia, neuronal precursors 

and mature neurons of the olfactory system by in vivo electroporation. 

After overexpression of NeuroD2 for 2 days in vivo, no significant different phenotype 

compared to the control condition was observed. In conclusion, a strong expression of this 

gene neither affects the stem cell properties of radial glia, nor impairs the behavior of Type C 

or early Type A progenitors regarding their cell morphology or division rate. 
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In contrast, 4 days after electroporation, a strongly altered phenotype was observed. Whereas 

in the control most of the electroporated cells were Type A neuronal precursors localized in 

anterior parts of the RMS or even arrived in the olfactory bulb, NeuroD2 overexpressing cells 

showed an overall more caudal localization. The majority of cells were still localized in the 

SVZ but showed normal bipolar morphology. This indicates that an expression of NeuroD2 

above normal wild type levels decelerates or even impairs the migration of Type A neuronal 

precursor cells from the SVZ to the olfactory bulb. However, it has to be shown if the time the 

cells need to change from a non-migratory phenotype inside the SVZ into a migratory 

phenotype and enter the RMS is prolonged, or if the general speed of migration inside the 

RMS is altered. The first hypothesis seems to be more probable from the overall distribution 

of the cells as well as their intact morphology and orientation. However, an overall decreased 

migratory speed should be visible by in vitro migration assays. 

In addition, the molecular mechanisms underlying this phenotype still have to be evaluated. 

The mechanisms allowing high migration speeds of up to 120 µm/h, as observed in wild type 

Type A cells, are poorly understood (Alvarez-Buylla and Garcia-Verdugo, 2002; Wichterle et 

al., 1997). One possibility is that NeuroD2 directly or indirectly interferes with the expression 

of genes important for correct migration. Possible targets would be genes regulating 

microtubule polymerization and depolymerization, like the microtubule associated protein 

Doublecortin (Gleeson et al., 1999). Doublecortin mutations do not affect the direction of 

migration but can reduce its velocity (Kappeler et al., 2006; Koizumi et al., 2006a; Koizumi 

et al., 2006b). Other targets could be related cell surface adhesion- and chemotaxis signaling 

molecules. Besides PSA-NCAM (Cremer et al., 1994), further candidates are α6β1 integrin 

that appears to be necessary for chain migration of Type A cells (Jacques et al., 1998) or the 

Eph tyrosine kinase receptors EPHA4 and EPHB1-3, which are important for neuroblast 

migration (Conover et al., 2000). On the other hand, NeuroD2 overexpression may result in a 

negative regulation of genes important for the onset of migration. This initiation is regulated 

by chemoattractive as well as chemorepulsive signals (Ghashghaei et al., 2007). However, as 

the existence of an olfactory bulb is not essential for correct migration of Type A precursors 

(Kirschenbaum et al., 1999), it seems that chemorepulsion is the main force to direct 

migration. Chemorepulsion mediated by Slit-Robo signaling may be involved in the migration 

of young neurons in the RMS (Hu, 1999; Wu et al., 1999) and an overexpression of NeuroD2 

probably extends the time until this pathway is activated. Additionally, interfering with 

chemoattraction signals mediated by DCC/Netrin signaling (Mason et al., 2001; Murase and 
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Horwitz, 2002) may lead to comparable results. The interaction of NeuroD2 with these 

candidates will be analyzed in further studies. 

A deceleration instead of a complete migratory block is also in agreement with the 

observation that after 15 days the precursors finally arrived in the olfactory bulb. In the 

control condition, most electroporated cells were differentiated into granule- or 

periglomerular layer interneurons after this time period. In contrast, a significantly higher 

amount of cells overexpressing NeuroD2 were still localized in the core of the olfactory bulb 

and showed a bipolar precursor like morphology. The most prominent effect was observed for 

periglomerular layer interneurons. Besides the strongly decreased amount of this cell type, 

their morphology was altered in the way that the number of neurite branches and synaptic 

connections was significantly reduced suggesting an immature state. Similar effects were 

observed during cortical development, where NeuroD2 was shown to regulate synaptic 

maturation of thalamocortical connections (Ince-Dunn et al., 2006). Experiments with 

extended time periods are required to show if these effects originate from decelerated 

migration inducing prolonged differentiation, or if the maintained expression of NeuroD2 

completely inhibits this process. This may be the case if NeuroD2 is a repressor of factors 

essential for final differentiation, like proteins involved in the regulation of the cytoskeleton, 

cell-cell contacts or synaptic maturation. A further goal would be the identification of the 

downstream target genes mediating these effects. 

In conclusion, NeuroD2 represents a novel key regulator involved in the control of olfactory 

bulb interneuron generation and its downregulation is essential for normal differentiation. 

 

4.11 Overexpression of NeuroD1 induced highly specific a 
premature and ectopic dopaminergic differentiation in vivo 

In contrast to NeuroD2, the expression of NeuroD1 was upregulated during the final 

differentiation of periglomerular layer precursors into mature interneurons. This suggested an 

importance of this transcription factor during the late state of olfactory bulb interneuron 

development, which is in agreement with published data from other systems. Mice lacking 

NeuroD1 show a malformation of the dentate gyrus, the cerebellum and develop epilepsy (Liu 

et al., 2000b; Miyata et al., 1999). Interestingly, the granule cells of the dentate gyrus in these 

mice are normally generated but fail to mature (Schwab et al., 2000). The function of 

NeuroD1 for the final step of differentiation in this system is supported by the here presented 

observation of an upregulation in a late state of development. Notably, granule cells of the 
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dentate gyrus and cerebellum are, like periglomerular interneurons, postnatally generated 

microneurons, suggesting a general role for NeuroD1 during postnatal differentiation. In 

addition, NeuroD1 mutant mice show a severe reduction of sensory neurons in the cochlear-

vestibular ganglion important for vestibular and auditory systems (Kim et al., 2001; Liu et al., 

2000a) and also the terminal differentiation of photoreceptors is dependent on its expression 

(Pennesi et al., 2003). The consequential question was again, if the upregulation of NeuroD1 

is only a marker of an increasing differentiation state, or if this upregulation is essential or 

even sufficient to drive final differentiation. Therefore, the effects upon ectopic expression of 

NeuroD1 were analyzed by in vivo electroporation. 

Overexpression of NeuroD1 for two days resulted in an efficient and specific depletion of 

radial glia. This indicates that an expression of NeuroD1 is not consistent with stem cell 

maintenance. A possible explanation is that NeuroD1 either activates genes responsible for 

the transition of radial glia into progenitor cells or represses factors important for a stem cell 

status. Usually, radial glia undergo asymmetrical divisions resulting in one precursor and one 

radial glia cell (Merkle and Alvarez-Buylla, 2006). Perhaps a NeuroD1 mediated impairment 

of initiating the correct asymmetry results in a prematurely conversion of radial glia into 

precursor cells. Further studies will focus on the identification of target genes mediating this 

phenotype. 

A dramatic phenotype appeared upon overexpression of NeuroD1 for 4 days. In the control 

condition, the majority of cells were bipolar Type A neuronal precursors in the RMS at this 

time point. In contrast, cells expressing NeuroD1, especially the cells with high 

electroporation efficiencies, were localized at ectopic positions and showed a multipolar, 

interneuron-like morphology. Comparable morphologies were found in the control first after 

approximately 15 days. This indicates a dose dependent effect of NeuroD1 for the regulation 

of the cellular differentiation state. Besides the induced morphological differentiation, also the 

expression of known differentiation marker genes was altered. Cells expressing NeuroD1 

downregulated the expression of precursor markers like DCX and PSA-NCAM. As PSA-

NCAM is important for the regulation of cell adhesion in the RMS (Chazal et al., 2000; Ono 

et al., 1994), its downregulation may represent an initial reason for the ectopic localization of 

many cells. Probably, after downregulation of PSA-NCAM the cells are displaced by the 

migratory population. A possible changed expression of other cell adhesion- and chemotaxis 

signaling molecules towards a more mature composition could also lead to an active 

innervation of the striatum as it represents the nearest niche for mature neurons. In 

concordance to the downregulation of progenitor marker genes, expression of NeuN, a 
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frequently used marker of differentiated neurons, was induced. As the morphology of 

ectopically localized cells inside the striatum was still interneuron-like, a significant part of 

the final cellular morphology seems to be regulated intrinsically rather than dependent on 

extracellular cues. Strikingly, an examination of the neurotransmitter phenotype resulted in 

the observation of a highly specific differentiation towards a dopaminergic fate. In the control 

condition, expression from the TH-promotor, a specific marker for dopaminergic cells, is 

activated only in the anterior RMS and mature dopaminergic neurons are exclusively found in 

the granule and periglomerular layers of the olfactory bulb (Saino-Saito et al., 2004; 

Sawamoto et al., 2001). The observation of an ectopic and premature differentiation towards a 

dopaminergic fate inside the striatum, SVZ and RMS suggests that NeuroD1 is a key 

regulator for the specification of this olfactory bulb interneuron subtype. Interestingly, the 

PAX6 gene, which was also found to be enriched in mature interneurons, is activated by 

NeuroD1 (Marsich et al., 2003). It was shown that precursors deficient for PAX6 can not 

differentiate into dopaminergic neurons anymore (Hack et al., 2005; Kohwi et al., 2005). This 

suggests that NeuroD1 is a novel regulator for dopaminergic differentiation which is mediated 

by the activation of PAX6. In addition, as PAX6 was shown to be essential for this step, it is 

likely that also the expression of NeuroD1 is not only sufficient but furthermore essential for 

a dopaminergic fate decision. However, an inhibition of NeuroD1 expression is necessary to 

finally proof this hypothesis. A recent study claims further that a direct interaction between 

DLX2 and PAX6 is important for dopaminergic differentiation (Brill et al., 2008). The 

overexpression of PAX6 and DLX2 by in vivo electroporation may answer the question, if 

there are additional genes involved in this cascade and if their expression is also sufficient to 

induce ectopic and premature dopaminergic differentiation. 

After an extended period of time, the cells that were electroporated with NeuroD1 

disappeared. Whereas after 8 days cells with neuronal morphology inside the striatum and the 

RMS were still visible, none of these cells were found after 15 days, indicating that this 

population was removed, most probably by apoptosis. About 50% of the newly generated 

cells, especially those which do not differentiate properly, are removed by programmed cell 

death also under wild type condition (Kim et al., 2007; Lemasson et al., 2005). It is widely 

accepted that neuronal survival is strictly dependent on extracellular signals, like neurotrophin 

signaling and correct synaptical activity (Lipsky and Marini, 2007). The premature and 

ectopic differentiation of neuronal precursors upon NeuroD1 expression impairs their correct 

positioning as well as circuit establishment. This probably results in the displacement from 



Discussion 
   

121 

correct survival factors resulting in extensive anoikis. Further experiments will define the 

exact time window and perhaps the involved signaling cascades of induced cell death. 

The observed effects seem to be specific for this system, as preliminary experiments showed 

no effect of NeuroD1 overexpression in cortical projection neuron precursors (data not 

shown). This may be due to an already fixed developmental fate of these cells. However, it 

was shown that PAX6 is essential for the generation of glutamatergic neurons during cortical 

development (Heins et al., 2002; Kroll and O'Leary, 2005; Nikoletopoulou et al., 2007; 

Stoykova et al., 1996). As NeuroD1 activates PAX6 (Marsich et al., 2003), its role may be 

changed in this system because of altered functions for such downstream effectors. Another 

point could be that the progenitor population is not competent to respond to NeuroD1 

expression in this case, for example due to missing additional cofactors which still have to be 

identified. 

In summary, an early overexpression of NeuroD1 is not compatible with the stem cell status 

of radial glia cells. Furthermore, NeuroD1 can induce the premature and ectopic 

differentiation of neuronal precursors in the striatum, RMS and SVZ towards a dopaminergic 

neurotransmitter phenotype. This effect seems to be dose dependent. 
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5 Conclusion and Outlook 
In the first part of this work, a molecular analysis of regionally defined GABAergic neurons 

was carried out. This analysis was based on the establishment of a protocol for the isolation of 

highly pure GABAergic neuron populations from distinct brain areas. Potential new marker 

genes for GABAergic neurons and factors probably important for their differentiation and 

general functionality were determined. Furthermore, genes characteristic for regionally 

defined populations of GABAergic neurons were identified, reflecting region specific 

functionality and pointing to different developmental pathways generating fore- and hindbrain 

subpopulations. These genes build a molecular basis for a detailed understanding of 

morphological, physiological and developmental differences among these cells and can be 

used, for example, to generate region-specific knockout mice using the Cre/loxP-system. 

Furthermore, putative cell surface markers specific for GABAergic neurons were identified 

by defining the cell surface proteome. These candidates allow for the targeted generation of 

antibodies that would enable new possibilities to purify GABAergic neurons or even 

subpopulations of these cells. 

In summary, this study led to the identification of new candidate genes that will be 

characterized in future analysis to increase our understanding of the genesis and function of 

GABAergic neurons and associated diseases. 

 

In the second part of this work, a specific molecular analysis of interneuron differentiation 

was carried out. The isolation and characterization of mature olfactory bulb interneurons as 

well as their progenitor cells allowed for the identification of genes involved in the regulation 

of this differentiation process. Two of these candidates, NeuroD1 and NeuroD2, were 

analyzed for their functional relevance in vivo. 

The overexpression of NeuroD2 decelerated or even impaired the migration and 

differentiation of neuronal precursor cells. Therefore, NeuroD2 represents a novel key 

regulator involved in the control of olfactory bulb interneuron generation probably via 

maintaining the precursor state. Further experiments have to identify target genes of NeuroD2 

and clarify the basal mechanisms underlying these effects. Migration assays after the 

overexpression or knock down of NeuroD2 in vitro and in vivo, for example by shRNA, 

probably will increase our understanding concerning these points. 

In contrast, the overexpression of NeuroD1 is sufficient to induce the premature and ectopic 

differentiation of neuronal precursors in the striatum, RMS and SVZ towards a dopaminergic 
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neurotransmitter phenotype. Subsequent experiments will show, if NeuroD1 is also essential 

or if there is a redundancy in this system. Therefore, the knockdown of NeuroD1 expression 

by shRNA or the complete knock out by electroporation of a Cre-expression construct in 

conditionally targeted mice will be done in the near future. It would be also interesting to 

investigate a possible interaction between NeuroD1 and NeuroD2, for example a dependent 

cross regulation and to identify novel target genes as well as interacting partners of NeuroD1. 

As the SVZ represents a major source for adult stem cells in the brain, its targeted modulation 

has a huge potential for intrinsic repair approaches upon neurodegeneration. In addition, it 

will be addressed, if the expression of NeuroD1 alone or in combination with additional 

factors can induce dopaminergic differentiation in embryonic stem- or induced pluripotent 

stem cells. Grafting of such cells into the striatum of Parkinson’s disease model mice would 

represent the first step towards a therapeutic application. However, further molecular and 

electrophysiological characterization of these cells need to be done prior to downstream 

applications. 

This study yielded new insights on the regulation of adult neurogenesis. As the SVZ is 

affected by multiple neurodegenerative diseases, like Huntington’s-, Parkinson’s- and 

Alzheimer’s disease, understanding the underlying mechanisms is essential for the 

development of novel cell- or drug based therapeutic approaches. 
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6 Appendix 

6.1 Sequences of NeuroD1 and NeuroD2 

 

Protein Sequence of NeuroD1 (single letter amino acid code): 
        10         20         30         40         50         60  
MTKSYSESGL MGEPQPQGPP SWTDECLSSQ DEEHEADKKE DELEAMNAEE DSLRNGGEEE  
 
        70         80         90        100        110        120  
EEDEDLEEEE EEEEEEEDQK PKRRGPKKKK MTKARLERFK LRRMKANARE RNRMHGLNAA  
 
       130        140        150        160        170        180  
LDNLRKVVPC YSKTQKLSKI ETLRLAKNYI WALSEILRSG KSPDLVSFVQ TLCKGLSQPT  
 
       190        200        210        220        230        240  
TNLVAGCLQL NPRTFLPEQN PDMPPHLPTA SASFPVHPYS YQSPGLPSPP YGTMDSSHVF  
 
       250        260        270        280        290        300  
HVKPPPHAYS AALEPFFESP LTDCTSPSFD GPLSPPLSIN GNFSFKHEPS AEFEKNYAFT  
 
       310        320        330        340        350  
MHYPAATLAG PQSHGSIFSS GAAAPRCEIP IDNIMSFDSH SHHERVMSAQ LNAIFHD 

 

 

Protein Sequence of NeuroD2 (single letter amino acid code): 
        10         20         30         40         50         60  
MLTRLFSEPG LLSDVPKFAS WGDGDDDEPR SDKGDAPPQP PPAPGSGAPG PARAAKPVSL  
 
        70         80         90        100        110        120  
RGGEEIPEPT LAEVKEEGEL GGEEEEEEEE EEGLDEAEGE RPKKRGPKKR KMTKARLERS  
 
       130        140        150        160        170        180  
KLRRQKANAR ERNRMHDLNA ALDNLRKVVP CYSKTQKLSK IETLRLAKNY IWALSEILRS  
 
       190        200        210        220        230        240  
GKRPDLVSYV QTLCKGLSQP TTNLVAGCLQ LNSRNFLTEQ GADGAGRFHG SGGPFAMHPY  
 
       250        260        270        280        290        300  
PYPCSRLAGA QCQAAGGLGG GAAHALRTHG YCAAYETLYA AAGGGGASPD YNSSEYEGPL  
 
       310        320        330        340        350        360  
SPPLCLNGNF SLKQDSSPDH EKSYHYSMHY SALPGSRPTG HGLVFGSSAV RGGVHSENLL  
 
       370        380  
SYDMHLHHDR GPMYEELNAF FHN 
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6.2 Tables of genes strongly regulated during olfactory bulb 
interneuron differentiation 

 
Table 6.1: Genes upregulated during the differentiation of Type A progenitor cells into 
periglomerular layer precursors and interneurons 

          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

Slc1a3 solute carrier family 1, member 3 NM_148938 159,9 0 
X66118 glutamate receptor subunit GluR5-2c X66118 155,3 0 
Fabp7 fatty acid binding protein 7, brain NM_021272 153,2 0 
AK122233 mRNA for mKIAA0275 protein AK122233 150,9 0 
1810029G24Rik RIKEN cDNA 1810029G24 gene NM_025468 150,8 0 
Aqp1 aquaporin 1 NM_007472 134,5 9,49675E-24 
Phlda1 pleckstrin homology-like domain, family A, member 1 NM_009344 127,7 0 
Sep15 selenoprotein 15 NM_053102 118,1 0 
M10466 mouse alpha-globin mRNA M10466 116,8 0 
Nr2f1 nuclear receptor subfamily 2, group F, member 1 NM_010151 115,0 0 
Hba-a1 hemoglobin alpha, adult chain 1 NM_008218 111,3 0 
D12Ertd553e DNA segment, Chr 12, ERATO Doi 553 NM_029758 109,9 0 
2610205H19Rik RIKEN cDNA 2610205H19 gene NM_027430 98,3 0 
Sepp1 selenoprotein P, plasma, 1 NM_009155 92,3 0 
Olfr807 olfactory receptor 807 NM_146929 90,6 9E-05 
mt-Cytb subunit I of cytochrome c oxidase X57780 87,8 0 
Fmo1 flavin containing monooxygenase 1 NM_010231 85,9 1,58318E-15 
Zcchc2 zinc finger, CCHC domain containing 2 BC055760 81,4 0 
Tm4sf2 transmembrane 4 superfamily member 2 NM_019634 79,6 0 
Srcasm similar to adaptor molecule srcasm AK033712 78,8 0 
Vtn vitronectin NM_011707 75,7 3,65607E-36 
Prkar1a protein kinase, cAMP dependent regulatory, type I, alpha NM_021880 74,2 0 
Scrn1 mRNA for mKIAA0193 protein AK129084 73,8 4,47174E-30 
BF142805 601790552F1 NCI_CGAP_Lu30 cDNA clone IMAGE:4021285 5' BF142805 73,1 0 
Grik1 glutamate receptor, ionotropic, kainate 1 NM_146072 72,8 3,05391E-26 
AF378830 cytochrome c oxidase subunit II AF378830 69,9 0 
Npy neuropeptide Y NM_023456 69,8 0 
Tkt transketolase NM_009388 67,5 0 
Eps15 epidermal growth factor receptor pathway substrate 15 BC048783 66,0 0 
2010012C16Rik RIKEN cDNA 2010012C16 gene NM_025564 64,1 1,96883E-43 
BY592157 BY592157 RIKEN full-length enriched BY592157 63,8 3,62395E-18 
TC1323472 Q86ZH4 probable centromere/microtubule binding protein CBF5 TC1323472 62,4 2,48733E-07 
Ctsl cathepsin L NM_009984 62,3 0 
TC1367583 Cytochrome b (Fragment) TC1367583 62,1 0 
BC055791 cDNA clone MGC:67622 IMAGE:6410794 BC055791 61,9 0 
Rpl26 ribosomal protein L26 NM_009080 58,2 0 
Ptn pleiotrophin NM_008973 58,1 0 
Slc16a6 similar to monocarboxylate transporter 7 AK032026 57,0 0 
1700019B16Rik RIKEN cDNA 1700019B16 gene NM_028829 56,4 0 
Rps26 ribosomal protein S26 NM_013765 55,9 0 
Sc4mol sterol-C4-methyl oxidase-like NM_025436 54,6 0 
Atp6ap2 ATPase, H+ transporting, lysosomal accessory protein 2 NM_027439 52,1 0 
Hs3st1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 NM_010474 51,7 0 
Txn1 thioredoxin 1 NM_011660 51,4 1,89141E-41 
BC020382 Mus musculus, clone IMAGE:3582855 BC020382 50,9 0 
6530401D17Rik RIKEN cDNA 6530401D17 gene NM_029823 50,4 0 
Dbi diazepam binding inhibitor NM_007830 50,0 0 
Lrp4 low density lipoprotein receptor-related protein 4 NM_172668 48,0 1,05803E-36 
8030451F13Rik RIKEN cDNA 8030451F13 gene NM_175418 45,7 0 
Grp58 glucose regulated protein NM_007952 44,8 1,4013E-45 
Mbnl1 muscleblind-like 1 NM_020007 44,6 8,55629E-14 
TC1294250 T-cell immunomodulatory protein precursor TC1294250 44,5 0 
Sec6l1 mRNA for mFLJ00157 protein AK131141 43,2 0,000100646 
AB023957 EIG 180 mRNA for ethanol induced gene product AB023957 43,0 7,471E-42 
D130058I21Rik RIKEN cDNA D130058I21 gene NM_177776 43,0 0 
Aprin mRNA for mKIAA0979 protein AK122414 42,7 0 
Acadl acetyl-Coenzyme A dehydrogenase, long-chain NM_007381 42,2 3,53248E-22 
TC1243572 RL35_RAT (P17078) 60S ribosomal protein L35 TC1243572 42,0 0 
BI646741 BI646741 603279769F1 NCI_CGAP_Mam3 cDNA clone BI646741 41,5 1,34595E-09 
Gas5 growth arrest specific 5 NM_013525 41,4 0 
C1qbp complement component 1, q subcomponent binding protein NM_007573 41,2 0 
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Table 6.1: continued 
          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

Rps24 ribosomal protein S24 NM_207634 40,7 0 
Slc13a3 solute carrier family 13, member 3 NM_054055 40,6 0 
Slco2b1 solute carrier organic anion transporter family, member 2b1 NM_175316 40,6 0 
Atp5h ATP synthase, H transporting, mitochondrial F0 complex, subunit d NM_027862 40,1 0 
Nrxn1 neurexin I NM_020252 39,8 4,07897E-27 
Olig1 oligodendrocyte transcription factor 1 NM_016968 39,0 9,26293E-21 
1700010A06Rik RIKEN cDNA 1700010A06 gene NM_027044 38,3 0 
Rpl35 ribosomal protein L35 NM_025592 38,0 1,74462E-43 
Pgk1 phosphoglycerate kinase 1 NM_008828 37,7 0 
Pea15 phosphoprotein enriched in astrocytes 15 NM_008556 37,5 0 
Tnc tenascin C NM_011607 37,2 2,69162E-29 
Psma5 proteasome subunit, alpha type 5 NM_011967 36,3 0 
Cd81 CD 81 antigen NM_133655 35,9 2,30283E-33 
Mest mesoderm specific transcript NM_008590 35,8 0 
BE985144 UI-M-CG0p-bdi-a-04-0-UI.s1 NIH_BMAP_Ret4_S2 cDNA clone BE985144 35,8 0 
Tmsb10 thymosin, beta 10 NM_025284 35,3 0 
Apod apolipoprotein D NM_007470 35,3 7,08905E-24 
Slc30a4 solute carrier family 30, member 4 NM_011774 34,6 0 
1110019J04Rik UI-M-FZ0-ccu-c-05-0-UI.r1 NIH_BMAP_FZ0 cDNA clone CA326234 34,6 1,77225E-29 
Oat ornithine aminotransferase NM_016978 34,4 0 
Stard13 serologically defined colon cancer antigen 13 NM_146258 34,0 7,20275E-08 
Cct5 chaperonin subunit 5 NM_007637 33,9 0 
D6Wsu176e DNA segment, Chr 6, Wayne State University 176 NM_138587 33,6 4,12227E-20 
Ppp4r1 protein phosphatase 4, regulatory subunit 1 NM_146081 33,5 1,88191E-39 
2700060E02Rik RIKEN cDNA 2700060E02 gene NM_026528 33,0 0 
BC016624 similar to actin, beta, clone IMAGE:4501052 BC016624 33,0 1,26035E-30 
Atp11a potential phospholipid-transporting ATPase IH (EC 3.6.3.13) AK028779 32,9 4,78914E-34 
D130038B21Rik RIKEN cDNA D130038B21 gene NM_178644 32,8 3,74793E-21 
Mtdh LYRIC like (Rattus norvegicus) AK035302 32,6 1,4013E-45 
Rps21 ribosomal protein S21 NM_025587 32,6 1,03183E-17 
BC016267 clone IMAGE:4924122 BC016267 31,3 1,982E-41 
Aatk apoptosis-associated tyrosine kinase NM_007377 31,0 0 
Glud glutamate dehydrogenase NM_008133 30,9 0 
Gpd2 glycerol phosphate dehydrogenase 1, mitochondrial AK079336 30,8 0 
Kctd12 potassium channel tetramerisation domain containing 12 NM_177715 30,8 0 
Maged1 melanoma antigen, family D, 1 NM_019791 30,8 0 
Nab1 Ngfi-A binding protein 1 NM_008667 30,7 2,27299E-31 
Rps21 40S ribosomal protein S21 homolog AK010610 30,6 0 
Il18 interleukin 18 NM_008360 30,5 0 
Rpl9 ribosomal protein L9 NM_011292 30,0 4,89701E-29 
Scd2 stearoyl-Coenzyme A desaturase 2 NM_009128 29,9 9,67975E-27 
Psat1 phosphoserine aminotransferase 1 NM_177420 29,6 0 
Rpl18a Ribosomal protein L18A NM_029751 29,3 0 
Hadhb hydroxyacyl-Coenzyme A dehydrogenase, beta subunit  NM_145558 29,0 2,72763E-42 
Plp1 proteolipid protein (myelin) 1 NM_011123 28,6 3,44929E-40 
Sorcs3 sortilin-related VPS10 domain containing receptor 3 NM_025696 28,6 1,77848E-10 
AU022870 expressed sequence AU022870 NM_177682 28,5 0 
6430556C10Rik RIKEN cDNA 6430556C10 gene NM_178725 27,5 1,87298E-26 
AK042850 similar to serine threonine kinase 32 homolog AK042850 26,9 0,004605 
Igfbp3 insulin-like growth factor binding protein 3 AK077477 26,7 3,29854E-08 
1200015A19Rik RIKEN cDNA 1200015A19 gene NM_026388 26,2 3,69912E-25 
          

     

List of genes that showed the strongest upregulation during the differentiation of Type A progenitor 

cells into periglomerular layer precursors and interneurons. The ratio indicates the mean fold 

upregulation in periglomerular cells compared to Type A progenitor cells. The p-Value indicates the 

significance level (two-tailed t test) of a differential regulation. 
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Table 6.2: Genes downregulated during the differentiation of Type A progenitor cells 
into periglomerular layer precursors and interneurons 

          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

AK122256 mRNA for mKIAA0357 protein AK122256 37,0 0,0042 
D130016K21Rik RIKEN cDNA D130016K21 gene NM_177145 32,0 0,00006 
TC1322692 A33283 ADP-ribosylation factor 1 - human homolog TC1322692 29,9 0 
4932432K03Rik putative HIV-1 infection related protein homolog AK036465 28,9 0,02307 
9430029A11 RIKEN cDNA 9430029A11 gene NM_177881 28,0 1,86789E-16 
A930011O12Rik RIKEN cDNA A930011O12 gene BC030402 27,7 3,44569E-08 
ENSMUST000075701 Q7PI85 (Q7PI85) ENSANGP00000022586 ENSMUST000075701 20,4 6,9735E-28 
Dspg3 dermatan sulphate proteoglycan 3 NM_007884 19,9 2,53065E-40 
E030034C22Rik RIKEN cDNA E030034C22 gene NM_144840 19,6 6,0032E-05 
AV280394 cDNA clone 4933414A22 3' AV280394 19,3 0,032945438
BM934588 UI-M-BH3-aqq-h-06-0-UI.r1 NIH_BMAP_M_S4 cDNA clone BM934588 18,7 3,80591E-18 
Hipk1 homeodomain interacting protein kinase 1 NM_010432 18,0 1,2872E-17 
ORF28 open reading frame 28 NM_138664 17,1 3,94017E-09 
Sema3e sema domain, short basic domain, secreted, 3E AK049580 16,7 0,073725 
AY255623 secretin receptor AY255623 16,3 0,008225 
Plxna4 plexin A4 NM_175750 16,1 1,14243E-11 
BC059864 cDNA clone MGC:69721 IMAGE:6417471 BC059864 15,5 2,83408E-06 
1700122C07Rik serine/threonine kinase 33 AK020360 14,7 0,00277 
Cpz carboxypeptidase Z NM_153107 14,6 1,54633E-13 
AF543214 strain C57BL/6 CD72 variant AF543214 14,6 0 
1700067I02Rik RIKEN cDNA 1700067I02 gene NM_178387 14,1 1,96672E-38 
Kirl2 killer immunoglobulin-like receptor-like 2 NM_177748 14,0 7,8656E-27 
Mc5r melanocortin 5 receptor NM_013596 13,5 1,37067E-15 
D330023I21Rik BB383K5.1 homolog [Homo sapiens] AK077972 13,2 0,04569 
A630050E13Rik RIKEN cDNA A630050E13 gene NM_176982 12,9 0,05395 
Fpr-rs4 formyl peptide receptor, related sequence 4 NM_008041 12,9 5,86865E-42 
Dcdc2 doublecortin domain containing 2 NM_177577 12,9 9,9154E-32 
4930548H24Rik RIKEN cDNA 4930548H24 gene NM_026296 12,5 3,74042E-29 
4931407G18Rik RIKEN cDNA 4931407G18 gene NM_027631 12,1 7,68195E-07 
Nap1l2 nucleosome assembly protein 1-like 2 NM_008671 12,1 0,0001 
6820408C15 RIKEN cDNA 6820408C15 gene NM_177656 12,0 2,74265E-07 
Epb4.9 erythrocyte protein band 4.9 AK048309 11,7 2,9181E-13 
AK019935 serine protease inhibitor 2-1 AK019935 11,6 3,35383E-36 
TC1312776 TGF-beta receptor type I precursor, partial (17%) TC1312776 11,1 1,06042E-08 
AY236491 transmembrane channel-like protein 3 AY236491 11,0 1,00453E-10 
Loxl3 lysyl oxidase-like 3 NM_013586 11,0 6,89564E-21 
Cyp11b2 cytochrome P450, family 11, subfamily b, polypeptide 2 NM_009991 11,0 6,43055E-26 
Z83815 axonemal dynein heavy chain (partial, ID mdhc7) Z83815 10,8 6,31685E-07 
AK040722 GA repeat binding protein, beta 1 AK040722 10,7 0,042985 
D32072 mRNA for TGF-b type II receptor isoform D32072 10,6 0,001975 
Scn3a sodium channel 21 L42337 10,5 1,1122E-06 
AW544865 expressed sequence AW544865 NM_178918 10,5 1,10326E-10 
NAP042698-1 cDNA clone E030012C13 3' NAP042698-1 10,4 1,32003E-25 
2310045A20Rik RIKEN cDNA 2310045A20 gene NM_172710 10,3 1,1391E-18 
Ar androgen receptor NM_013476 10,1 1,27715E-20 
Dnase2a deoxyribonuclease II alpha NM_010062 10,0 3,2938E-34 
4930429J24Rik RIKEN cDNA 4930429J24 gene NM_026132 9,9 2,81371E-21 
1110030H18Rik SV2 related protein homolog AK082744 9,8 0 
Grik2 glutamate receptor, ionotropic, kainate 2 (beta 2) NM_010349 9,7 0,00004 
AK047503 DGCRK6 protein homolog [Homo sapiens] AK047503 9,6 0,002185 
Insm1 insulinoma-associated 1 NM_016889 9,6 2,50185E-20 
NAP013333-001 RIKEN cDNA 4930526H21 gene NAP013333-001 9,4 3,00959E-07 
Rab3b RAB3B, member RAS oncogene family NM_023537 9,2 0,001160223
TC1282921 Q9NS72 (Q9NS72) Leucine-zipper-like protein 1 TC1282921 9,2 2E-05 
AK037161 calcium binding protein P22 AK037161 9,2 0,014075 
AW554518 cDNA clone 4921522H04 3' AV255740 9,1 1,33413E-11 
Akr1b7 aldo-keto reductase family 1, member B7 NM_009731 9,1 7,84803E-11 
AK122557 mRNA for mKIAA1809 protein AK122557 9,1 4,95811E-07 
Cacna2d1 calcium channel, voltage-dependent, alpha2/delta subunit 1 NM_009784 9,0 3,73469E-08 
A430083B19 RIKEN cDNA A430083B19 gene NM_177624 9,0 0,001955 
Kcnd1 potassium voltage-gated channel, Shal-related family, member 1 NM_008423 8,9 4,37471E-20 
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Table 6.2: continued 
     

          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

BC055738 cDNA clone MGC:67028 IMAGE:6413697 BC055738 8,8 0 
H2-M10.5 histocompatibility 2, M region locus 10.5 NM_177637 8,8 1,05415E-08 
AI313915 expressed sequence AI313915 NM_144845 8,8 4,00227E-23 
C030030A07Rik RIKEN cDNA C030030A07 gene NM_178776 8,7 0,01702 
Prelp proline arginine-rich end leucine-rich repeat NM_054077 8,7 1,7016E-09 
Nalp9c NACHT, LRR and PYD containing protein 9c NM_194062 8,6 2,79524E-30 
Scnn1a sodium channel, nonvoltage-gated, type I, alpha polypeptide NM_011324 8,6 5,51302E-26 
NAP022882-001 similar to putative protein (80.3 kD) (5T676) (LOC382989) NAP022882-001 8,5 0,013345 
AK083596 ischemia related factor NYW-1 homolog AK083596 8,5 0 
Golga4 golgi autoantigen, golgin subfamily a, 4 NM_018748 8,5 0,00086 
X65157 desmoyokin, partial X65157 8,5 6,7321E-07 
Shprh SNF2 histone linker PHD RING helicase NM_172937 8,5 0,00531 
Xlr5 X-linked lymphocyte-regulated 5 NM_031493 8,4 1,75296E-21 
AK040212 cDNA FLJ10893 fis, clone NT2RP4002791 homolog AK040212 8,4 0,043185 
AK090281 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 AK090281 8,3 4,66087E-29 
5430404L10Rik RIKEN cDNA 5430404L10 gene NM_025769 8,3 0,001575001
ENSMUST000024744 ORF 2. [Source:SPTREMBL;Acc:Q62295] ENSMUST000024744 8,3 6,77082E-09 
NAP018455-001 similar to KIAA1529 protein NAP018455-001 8,2 0,023271167
AY364010 NALP12 AY364010 8,1 9,47896E-19 
1700028O09Rik RIKEN cDNA 1700028O09 gene NM_029381 8,1 3,21073E-10 
Star steroidogenic acute regulatory protein NM_011485 8,1 0,00337 
Frmd3 FERM domain containing 3 NM_172869 8,0 2,96379E-33 
AK076605 BM259 homolog [Rattus norvegicus] AK076605 8,0 0,121375 
Dcx doublecortin NM_010025 8,0 0,00098 
Nos1 nitric oxide synthase 1, neuronal NM_008712 8,0 1,03225E-09 
Il2ra interleukin 2 receptor, alpha chain NM_008367 7,8 0,000860928
1700027M21Rik RIKEN cDNA 1700027M21 gene NM_025499 7,8 5,6981E-26 
Cox5a cytochrome c oxidase, subunit Va AK046580 7,7 2,78609E-12 
Olfr993 olfactory receptor 993 NM_146435 7,7 0,00001 
AY255593 G protein-coupled receptor PGR23 AY255593 7,7 7,7912E-43 
6430571L13Rik RIKEN cDNA 6430571L13 gene NM_175486 7,7 1,79133E-17 
Myh3 Mouse embryonic/foetal skeletal myosin heavy chain M11154 7,6 4,51187E-15 
Slco6c1 solute carrier organic anion transporter family, member 6c1 NM_028942 7,6 8,7273E-24 
Olfr352 olfactory receptor 352 NM_146940 7,5 0,01954 
Kcnq2 potassium voltage-gated channel, subfamily Q, member 2 NM_010611 7,5 0,000415641
Ms4a1 Mouse CD20 cell surface protein M62541 7,4 1,41442E-22 
Msx2 homeo box, msh-like 2 NM_013601 7,4 5,1206E-15 
AK051460 adenosine deaminase 3 AK051460 7,4 0,005465005
Cnnm1 cyclin M1 NM_031396 7,4 5,1701E-34 
Lenep lens epithelial protein NM_020517 7,4 2,66703E-20 
NAP039752-1 Makorin 1 NAP039752-1 7,4 1,68156E-44 
Lpin3 lipin 3 NM_022883 7,4 3,8046E-15 
AK082644 Zinc finger protein 68 AK082644 7,3 0,000245001
Cd3z CD3 antigen, zeta polypeptide NM_031162 7,2 0,004165 
B830013J05Rik RIKEN cDNA B830013J05 gene NM_178722 7,2 6,0264E-17 
5330420D20Rik similar to D-aspartate oxidase (EC 1.4.3.1) (DASOX) AK017475 7,2 0,072755 
3830417A13Rik RIKEN cDNA 3830417A13 gene NM_027512 7,2 1,70399E-16 
Lgr8 similar to G protein coupled receptor affecting testicular descent AK039086 7,2 4,96148E-08 
Glt8d2 RIKEN cDNA 1110021D20 gene NM_029102 7,1 0,00137 
AB081756 brain chitinase like protein 2 AB081756 7,0 0,006055017
Zfa zinc finger protein, autosomal NM_009540 6,9 3,61342E-11 
          

     

List of genes that showed the strongest downregulation during the differentiation of Type A progenitor 

cells into periglomerular layer precursors and interneurons. The ratio indicates the mean fold 

downregulation in periglomerular cells compared to Type A progenitor cells. The p-Value indicates the 

significance level (two-tailed t test) of a differential regulation. 
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Table 6.3: Genes upregulated during the differentiation of periglomerular layer 
precursors into mature interneurons 

          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

Grap2 RIKEN monocytic adaptor AK030809 694,4 2,11E-28 
Olfr1204 olfactory receptor 1204 NM_146463 478,5 2,34E-22 
BF021831 uy58f06.y1 McCarrey Eddy round spermatid cDNA clone BF021831 478,5 2,74E-15 
Nfat5 nuclear factor of activated T-cells 5 AK045123 381,7 4,83E-18 
Mak10 corneal wound healing related protein AK050805 378,8 1,61E-18 
AK041673 proton myo-inositol transporter homolog AK041673 363,6 8,65E-22 
4833418A01Rik RIKEN cDNA 4833418A01 gene NM_198005 359,7 3,53E-21 
Hpse heparanase NM_152803 344,8 6,54E-22 
Trpv3 transient receptor potential cation channel, subfamily V, member 3 NM_145099 321,5 2,62E-18 
AI592258 mt14e07.y1 Soares mouse 3NbMS cDNA clone AI592258 316,5 4,00E-21 
Obox2 oocyte specific homeobox 2 NM_145708 298,5 4,92E-15 
Trim21 tripartite motif protein 21 NM_009277 293,3 1,60E-15 
Prlpe prolactin-like protein E NM_008930 276,2 5,67E-21 
Gpr103 G protein-coupled receptor 103 NM_198192 273,2 2,57E-11 
Vipr2 vasoactive intestinal peptide receptor 2 NM_009511 267,4 2,97E-14 
BC020388 ATP-binding cassette, sub-family D (ALD), member 2 BC020388 257,1 1,83E-15 
TC1253808 L1 element insertion in intron 3 of Mitf gene TC1253808 251,3 1,46E-20 
AK042696 NMDA receptor-regulated gene 1 AK042696 247,5 1,70E-21 
Edn1 endothelin 1 NM_010104 247,5 4,48E-17 
9230117E20Rik RIKEN cDNA 9230117E20 gene NM_030061 238,7 1,45E-13 
Pi4k2b phosphatidylinositol 4-kinase type 2 beta NM_028744 235,3 4,92E-15 
1700012M14Rik RIKEN cDNA 1700012M14 gene NM_023816 234,2 2,27E-12 
AK173321 mKIAA1993 protein AK173321 230,9 9,76E-14 
Nin ninein NM_008697 211,9 3,14E-18 
4931414P19Rik RIKEN cDNA 4931414P19 gene NM_028890 211,4 5,26E-12 
BC058796 cDNA clone MGC:67967 IMAGE:6486091 BC058796 207,5 3,47E-21 
BC056221 cDNA clone IMAGE:5253487 BC056221 204,5 1,29E-13 
AB049605 caveolin-2 isoform AB049605 189,8 1,65E-13 
AK011813 TAT1protein homolog AK011813 184,8 1,20E-12 
AK017788 small nuclear ribonucleoprotein D1 AK017788 183,8 9,54E-18 
BI732528 603355435F1 NIH_MGC_94 cDNA clone IMAGE:5362568 BI732528 183,8 0,00003 
Olfr908 olfactory receptor 908 NM_146872 180,8 6,02E-12 
Ntng1 netrin G1 AK048796 180,2 8,19E-15 
2600011C06Rik RIKEN cDNA 2600011C06 gene BC067400 179,2 6,81E-12 
Pcdhb11 protocadherin beta 11 NM_053136 178,9 0,0049 
BC022150 cDNA clone IMAGE:5102760 BC022150 170,1 5,48E-08 
Pms1 postmeiotic segregation increased 1 NM_153556 167,5 2,34E-11 
Ndrg3 N-myc downstream regulated 3 AK029378 155,5 3,15E-10 
BC021897 mRNA similar to RIKEN cDNA 2900042B11 gene BC021897 154,1 4,92E-11 
2010002A20Rik RIKEN cDNA 2010002A20 gene NM_025655 145,3 3,83E-09 
AK051306 cAMP responsive element binding protein, delta chain homolog AK051306 144,1 1,76E-10 
V1re2 vomeronasal 1 receptor, E2 NM_134191 142,5 1,81E-12 
AK129034 mRNA for mKIAA0013 protein AK129034 141,2 9,06E-12 
Fgg fibrinogen, gamma polypeptide NM_133862 139,9 6,20E-10 
Htr3b 5-hydroxytryptamine (serotonin) receptor 3B NM_020274 139,7 2,49E-08 
Slco5a1 solute carrier organic anion transporter family, member 5A1 NM_172841 134,8 1,85E-09 
Olfr244 olfactory receptor 244 NM_001005520 132,5 2,62E-08 
AK041992 KPL2 homolog AK041992 131,6 1,81E-11 
Dedd2 similar to death effector domain-containing / DNA-binding protein 2 AK043908 130,9 9,38E-14 
AK053176 interleukin 18 receptor accessory protein AK053176 129,0 3,25E-09 
G630039H03Rik RIKEN cDNA G630039H03 gene BC031204 124,7 5,75E-09 
AY263157 Tmc3 protein AY263157 123,3 3,83E-10 
BC056494 cDNA clone IMAGE:5707460 BC056494 117,0 1,41E-08 
Olfr676 olfactory receptor 676 NM_147095 105,0 8,59E-10 
Mmp20 matrix metalloproteinase 20 (enamelysin) NM_013903 104,4 7,78E-11 
AK035678 programmed cell death 1 ligand 1 AK035678 104,1 2,10E-08 
Cts8 cathepsin 8 NM_019541 103,8 1,11E-10 
AK041814 signal transducer and activator of transcription 1 AK041814 102,6 4,67E-11 
Rgmb RGM domain family, member B NM_178615 101,5 2,25E-09 
G431001I09Rik D123 homolog AK047302 101,1 3,54E-07 
NAP020528-001 similar to MrgA6 G protein-coupled receptor NAP020528-001 96,2 0,00012 
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Table 6.3: continued 
          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

AK036217 F-box protein FBL2 homolog AK036217 95,4 9,50E-10 
Olfr107 olfactory receptor 107 NM_146511 89,6 0,00003 
BC048502 cDNA sequence BC048502 NM_177631 89,0 2,04E-06 
Tnfrsf21 death receptor 6 AK036984 88,4 4,47E-07 
Olfr142 olfactory receptor 142 NM_146984 87,1 2,08E-06 
Ube2l3 ubiquitin-conjugating enzyme E2L 3 AK032396 85,0 1,10E-09 
AK087984 Pinch protein (particulary interesting new cys-his protein) homolog AK087984 82,8 1,81E-08 
ENSMUST000009521 interferon-induced protein with tetratricopeptide repeats 1 ENSMUST000009521 82,0 0,00013 
Pftk1 PFTAIRE protein kinase 1 AK087398 81,0 4,71E-08 
AK018271 requiem AK018271 78,2 1,98E-06 
4922502D21Rik RIKEN cDNA 4922502D21 gene NM_199034 77,5 0,00002 
Ube1y1 ubiquitin-activating enzyme E1, Chr Y 1 NM_011667 74,5 0,00001 
Dhfr dihydrofolate reductase NM_010049 73,6 0,00003 
AK042238 nuclear receptor coactivator 6 interacting protein AK042238 71,3 2,94E-07 
Rapgef6 rap guanine nucleotide exchange factor homolog AK038235 69,8 0,00007 
Stxbp4 syntaxin binding protein 4 AK012293 64,7 2,51E-06 
Tshb thyroid stimulating hormone AK036251 61,9 0,00136 
Grb14 growth factor receptor bound protein 14 AK034134 61,3 0,00058 
Astn2 astrotactin 2 AK047058 61,1 1,70E-06 
Bcl2l10 Bcl2-like 10 NM_013479 60,3 0,00007 
Srpk2 serine/arginine-rich protein specific kinase 2 AK014004 60,0 0,00004 
Ndufab1 acyl carrier protein (ACP) AK003696 59,6 2,95E-07 
Areg amphiregulin NM_009704 59,3 0,00064 
Cd209a CD209a antigen NM_133238 55,6 0,00061 
Neurod1 neurogenic differentiation 1 NM_010894 54,5 0,00063 
Lmo6 LIM domain only 6 NM_175097 53,7 2,15E-07 
Rrm2b ribonucleotide reductase M2 B (TP53 inducible) NM_199476 49,4 4,27E-06 
Kng1 kininogen 1 NM_023125 42,2 0,00523 
Edaradd EDAR (ectodysplasin-A receptor)-associated death domain NM_133643 36,3 0,00019 
Ell3 elongation factor RNA polymerase II-like 3 NM_145973 36,1 0,00314 
V1rb1 vomeronasal 1 receptor, B1 NM_053225 21,4 0,00003 
Klrk1 killer cell lectin-like receptor subfamily K, member 1 NM_033078 21,1 0,00363 
AB093209 mRNA for mKIAA0054 protein AB093209 17,2 1,87E-07 
Creb3l4 cAMP responsive element binding protein 3-like 4 NM_030080 15,5 0,00279 
Eraf erythroid associated factor NM_133245 15,3 0 
2310075A12Rik RIKEN cDNA 2310075A12 gene NM_178027 10,1 6,81E-09 
Tes testis derived transcript NM_207176 10,0 0,00801 
AK048143 SRY-box containing gene 6 AK048143 10,0 0,00367 
Hbb-b1 hemoglobin, beta adult major chain NM_008220 9,0 7,97E-13 
Olfr998 olfactory receptor 998 NM_146436 8,5 0,00059 
C230012O17Rik RIKEN cDNA C230012O17 gene NM_176944 8,2 0,00406 
2010321J07Rik RIKEN cDNA 2010321J07 gene NM_028094 7,7 0 
Clra C lectin-related protein A NM_153506 7,7 0,0031 
Sfpi1 SFFV proviral integration 1 NM_011355 7,4 5,18E-06 
Brd7 bromodomain containing 7 NM_012047 7,3 0,00911 
Olfr805 olfactory receptor 805 NM_146555 7,1 9,36E-29 
Slc4a1 solute carrier family 4 (anion exchanger), member 1 NM_011403 7,1 0 
Zwint ZW10 interactor NM_025635 7,1 3,46E-08 
Ktn1 kinectin 1 NM_008477 6,9 8,48E-15 
BC038279 RIKEN cDNA C130052G03 gene BC038279 6,5 0,00553 
TC1334041 Q7PJ14 (Q7PJ14) ENSANGP00000025094 (Fragment) TC1334041 6,1 0 
Srp54 signal recognition particle 54 NM_011899 5,5 0,00016 
M10466 Mouse alpha-globin M10466 5,3 0 
TC1343649 COAT_FMVD (P09519) Probable coat protein TC1343649 5,2 0,00002 
1100001I19Rik RIKEN cDNA 1100001I19 gene NM_172920 5,1 0,00349 
AA674270 mouse major urinary protein IV AA674270 5,0 1,71E-06 
          

     

List of genes that showed >5-fold upregulation during the differentiation of periglomerular layer 

precursors into mature periglomerular interneurons. The ratio indicates the mean fold upregulation in 

periglomerular layer interneurons compared to periglomerular precursors. The p-Value indicates the 

significance level (two-tailed t test) of a differential regulation. 
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Table 6.4: Genes downregulated during the differentiation of periglomerular layer 
precursors into mature interneurons 

          

Symbol Gene Name GeneBank Ratio p-Value 
          

     

AK051785 12 days embryo spinal ganglion cDNA AK051785 143,6 0,00004 
MOR135-11 olfactory receptor MOR135-11 NM_146923 130,2 3,21E-06 
AK042378 3 days neonate thymus cDNA AK042378 130,1 0,00332 
Pnma1 paraneoplastic antigen MA1 NM_027438 118,5 4,79E-08 
Lrba adult male urinary bladder cDNA AK035483 110,3 1,25E-06 
Bmp15 bone morphogenetic protein 15 NM_009757 106,6 1,53E-08 
Smc2l1 fibroblast growth factor inducible gene 16 U42385 81,7 0,00063 
Adarb2 adenosine deaminase, RNA-specific, B2 NM_052977 77,3 0,00003 
V1rb6 vomeronasal 1 receptor, B6 NM_020522 75,9 0,00023 
Cbfa2t2h core-binding factor, runt domain, alpha subunit 2 AK030597 71,3 0,00002 
Sox30 SRY-box containing gene 30 NM_173384 69,8 0,00005 
Nlgn1 neuroligin 1 homolog AK083116 69,2 0,00029 
Hist1h3a histone 1, H3a NM_013550 64,3 0,00069 
Sdfr2 stromal cell derived factor receptor 2 NM_009146 63,8 0,00058 
2610524B01Rik RIKEN cDNA 2610524B01 gene NM_028150 60,2 0,00013 
AK086594 stromal interaction molecule 1 AK086594 59,2 0,00373 
Sh3d1B SH3 domain protein 1B AK050865 57,9 0,00005 
Prpf39 PRP39 pre-mRNA processing factor 39 homolog BC033575 57,0 0,00017 
Ngfb nerve growth factor, beta NM_013609 51,5 0,00022 
Ptpn13 protein-tyrosine phosphatase nonreceptor-type 13 AK084198 47,6 1,93E-07 
Pla2g4c phospholipase A2, group IVC (cytosolic, calcium-independent) NM_001004762 47,1 0,00041 
Ikbkg inhibitor of kappaB kinase gamma NM_178590 46,4 0,00016 
Armc8 armadillo repeat containing 8 BC030311 45,8 0,00066 
AK031304 eukaryotic translation initiation factor 2, subunit 3 AK031304 43,3 0,00297 
Mum1l1 melanoma associated antigen (mutated) 1-like 1 NM_175541 40,9 0,00039 
Sytl2 synaptotagmin-like 2 NM_031394 40,6 0,00124 
Clca1 chloride channel calcium activated 1 NM_009899 37,7 0,0021 
AK042419 asporin AK042419 35,5 0,00495 
AK016178 histone 4 protein AK016178 35,1 0,00155 
AK030290 sex comb on midleg-like 1 AK030290 33,8 0,00038 
Lipl2 lipase-like, ab-hydrolase domain containing 2 NM_172837 33,4 0,00817 
2810034D10Rik zinc finger protein 54 homolog AK012854 33,1 0,00153 
1700083M11Rik RIKEN cDNA 1700083M11 gene NM_029674 31,8 0,00185 
Ndufab1 acyl carrier protein AK008788 31,0 0,00131 
AF222442 Nkx-1.2 gene, 3' untranslated region AF222442 30,5 0,00109 
Vim vimentin AK033175 30,3 0,00686 
AK009272 flavohemoprotein B5/B5RR AK009272 29,7 0,00878 
1500019C06Rik RIKEN cDNA 1500019C06 gene AK005284 29,4 0,00136 
AK044643 myocyte enhancer factor 2C AK044643 28,0 0,00531 
4931409K22 RIKEN cDNA 4931409K22 gene NM_177676 27,9 0,00824 
AK046777 Cdk5 and Abl enzyme substrate AK046777 23,2 0,00317 
TC1349965 Q8BUJ7 TC1349965 19,7 0,00721 
BE981005 UI-M-CG0-bct-c-04-0-UI.s1 NIH_BMAP_Ret4_S1 cDNA clone BE981005 18,2 0,00876 
BC055056 cDNA clone MGC:62829 IMAGE:6492855 BC055056 17,7 0,00113 
BC055295 dedicator of cytokinesis 8 BC055295 17,3 0,00652 
Lyzs lysozyme NM_017372 16,5 0,00132 
AK049000 mitochondrial intermediate peptidase homolog AK049000 15,5 0,00841 
Prkcn PKC MU protein homolog AK050059 15,3 0,00726 
Igfbpl1 insulin-like growth factor binding protein-like 1 NM_018741 14,3 3,49E-12 
BC054851 cDNA clone IMAGE:6528953 BC054851 13,6 0,00205 
Kif5a kinesin family member 5A NM_008447 10,3 2,53E-10 
Neurod2 neurogenic differentiation 2 NM_010895 9,1 5,80E-08 
S100a5 S100 calcium binding protein A5 NM_011312 8,5 2,81E-41 
1200007B05Rik RIKEN cDNA 1200007B05 gene NM_026165 7,0 0,00239 
Nfkb1 NFkB p105 subunit AK036827 7,0 6,61E-07 
BB254136 BB254136 RIKEN full-length enriched BB254136 6,4 0,00238 
0610030H11Rik RIKEN cDNA 0610030H11 gene NM_026712 6,2 3,06E-13 
D130060C09Rik RIKEN cDNA D130060C09 gene NM_177054 6,0 0,00451 
Gng13 guanine nucleotide binding protein 13, gamma NM_022422 5,6 1,42E-17 
BC055811 cDNA sequence BC055811 NM_198610 5,0 0,00007 
Cadps2 cerebellum postnatal development associated protein 2 AK042634 5,0 0,0001 
          

     

List of genes that showed >5-fold downregulation during the differentiation of periglomerular layer 

precursors into mature periglomerular interneurons. The ratio indicates the mean fold downregulation 

in periglomerular layer interneurons compared to periglomerular precursors. The p-Value indicates the 

significance level (two-tailed t test) of a differential regulation. 
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