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1 Introduction

1 Introduction

The financial crisis of 2008 was one of the most severe financial crises in history
by almost any measure (Reinhart and Rogoff, 2009). Countries worldwide expe-
rienced severe recessions, banks around the world failed and many companies
went bankrupt (Erdem, 2020). Barnichon et al. (2018) estimate a lifetime
present-value income loss of 70,000 $ for every US-American as a result of the
crisis.
Current research points to the real estate market of the United States as
one of the major causes of the financial crisis in 2008 (Shiller, 2020 among
others): Real estate prices in the United States surged exponentially due to
a rapid increase in the supply of credit in the early 2000s. House prices grew
significantly faster than household incomes, investors began to buy real estate
in anticipation of selling at a higher price and even households with impaired
credit records were able to get mortgage loans (Shiller, 2020). However, in
2006 the boom slowed down and house prices started to decline significantly
(Reinhart and Rogoff, 2009).1 This sharp decline in prices eventually lead to
the bankruptcy of Lehmann Brothers in September 2008, one of the largest
US investment banks at the time - Lehman Brothers was largely exposed to
the real estate market. Their bankruptcy triggered a domino effect within the
financial ecosystem resulting in a worldwide financial crisis.
Financial historians have used the term financial bubble to characterize the
US housing market leading up to the financial crisis in 2008 (Cooper, 2008;
Kindleberger and Aliber, 2011; Shiller, 2015). A financial bubble is defined as
a surge in prices that is not in line with the intrinsic value of the underlying
asset (Brunnermeier, 2008; Stiglitz, 1990). When studying banking crises in
general, bubbles in stocks and real estate prices emerge as a common pattern
(Ferguson, 2008; Kindleberger and Aliber, 2011). This is due to the fact that
macroeconomic research attributes the excessive supply of capital through the
supply of credits by banks or cross border capital flows to be the underlying
cause of many financial crises (Cooper, 2008; Ferguson, 2008; Kindleberger and
Aliber, 2011). Such increase in money supply eventually leads to prices surging
to an unsustainably high level not in line with intrinsic values - or in other
words to a financial bubble.2

1 For a detailed discussion of why the US housing market collapsed beginning in 2006, we
refer to Kindleberger and Aliber (2011).

2 Recent research in the field of behavioural finance also stresses the impact of herd behaviour
and prevalent economic narratives on financial bubbles (Shiller, 2020).
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1 Introduction

Detecting bubbles proves to be difficult: We cannot observe intrinsic asset
values as they usually depend on future events. The value of a stock for instance
depends on future dividend payments. However, Homm and Breitung (2012)
present a model framework allowing to test empirically for the existence of
bubbles in stock markets by only considering historical time series data of
stock prices and dividends. Based on this framework, they suggest various
testing procedures. Their approach can be generalized to other asset classes
with similar return structures and is therefore highly relevant in two ways:
(1) As an ex-post confirmation it provides evidence that a bubble was indeed
present during a specific period in financial history. (2) Valid testing procedures
can serve as an ex-ante warning mechanism alerting regulators to dysfunctional
market behaviour. When having detected a bubble during its inflationary
phase, regulators may prevent financial crises by intervening.
The purpose of this thesis is to elaborate on Homm and Breitung (2012), as
their influential paper presents recent econometric theory concerning testing
for bubbles in financial markets:
We explain statistical concepts used by Homm and Breitung (2012) and rigor-
ously cover their model framework presenting the concept of a rational bubble
in stock prices, which is consistent with rational market participants. In line
with Homm and Breitung (2012) we reason that explosive behaviour in stock
prices together with non-explosive behaviour in stock dividends implies the
existence of a rational bubble. We motivate the specific testing procedures
considered by Homm and Breitung (2012) and discuss their limiting distribu-
tions. In our applications, we implement the test statistics using the statistical
software package R and provide additional critical values by conducting our
own Monte Carlo study. Hereby we find evidence pointing to a rational bubble
in the US stock market of the 1990s and the US housing market leading up to
the financial crisis in 2008.
We first cover general statistical theory in Chapters 2 and 3. In Chapter 4 we
develop the mathematical framework which allows us to test empirically for the
existence of bubbles. We review the different testing strategies in Chapter 5
and apply them to the US stock market of the 1990s and the US housing market
leading up to the financial crisis in 2008 in Chapter 6. Chapter 7 concludes
with discussing the strengths and weaknesses of the presented statistics.
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2 Central Limit and Continuous Mapping Theorem

2 Central Limit and Continuous Mapping
Theorem

We explain and apply statistical testing procedures to detect rational bubbles
in financial markets in the forthcoming chapters. In order to understand
the behaviour of those statistics, their limiting distributions are put forward.
This requires utilizing two theorems in particular, the Central Limit Theorem
and the Continuous Mapping Theorem. Under its conditions, the Central
Limit Theorem (CLT) provides the distribution of a sum of individual random
variables. As the price of a stock can be considered to be the result of a sum of
many individual events, the CLT can be used to derive distributions for the
price process of stocks. Since the statistics in Chapter 5 do not consider the
price process itself, but transformed versions of the price process (the statistics
in Sections 5.3 and 5.4 for instance resemble a variance), we also need the
Continuos Mapping Theorem (CMT) for deriving the distributions of the test
statistics. It helps to get the distribution for transformed random variables.

2.1 Central Limit Theorem

In order to understand the CLT, we first define convergence in distribution.
Suppose, a stock pays a dividend which is uncertain and follows a continuous
uniform distribution with bounds 0 $ and 3 $. The density function is given by

f(x) =


1
3 for 0 ≤ x ≤ 3,
0 for x < 0 or x > 3,

x ∈ R. (1)

Let a second stock have an identical dividend distribution which is independent
of the first stock. The mean dividend of the two stocks can be described by
the following distribution:

3



2 Central Limit and Continuous Mapping Theorem
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Figure 1: Density Function of the Mean Dividend of Two Independent Stocks.
Each stock follows the dividend distribution given by (1).

The density plot illustrates that given density function (1) it is highly unlikely
for both stocks to pay dividends close to e.g. 3 $. Values closer to the intervall
bounds are thus less likely.
But how does the distribution of the mean dividend develop if independent div-
idends of more and more stocks are averaged? If the mean dividend approaches
a certain distribution, it is said to converge in distribution to a limiting distri-
bution for every x ∈ R at which the limiting distribution function is continuous.
The definition is stated in formal terms following Fuller (2009):

Definition 1. Let {Xn}n∈N be a set of random variables with distribution
functions {FXn(x)}n∈N, x ∈ R, with FXn : R −→ [0, 1]. If

lim
n→∞

FXn(x) = FX(x),

at all x for which FX : R −→ [0, 1] is continuous. {Xn}n∈N is said to converge
in distribution to the random variable X. This is denoted by Xn

d−→ X.

An example of such convergence is given by the CLT. It states that a sum
of independent and identically distributed (iid) random variables does not
converge to any distribution, but to a normally distributed random variable.
To illustrate this, consider a portfolio of 1,000 stocks each paying a dividend
independent of the other stocks and following the disribution given by (1).
The mean dividend of this portfolio is obtained by summing up all individual
dividends and dividing the result by the number of stocks. As the dividends are
modeled to be iid random variables, all conditions of the CLT are met in this

4



2 Central Limit and Continuous Mapping Theorem

example and the distribution of the mean dividend will converge to a normal
distribution - despite every individual dividend being uniformly distributed.
The following graph shows a Monte Carlo simulation with 10,000 replications
for the mean dividend of this portfolio of 1,000 stocks. It can be seen, that the
histogram and the density plot approach the bell shaped curve characteristic
for the normal distribution:
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Figure 2: Monte Carlo Simulation for the Mean Dividend of 1,000 Stocks with
10,000 Replications.
In each replication, 1,000 draws are simulated according to (1) and
the mean is taken.

But the CLT is more powerful than this example may convey: Even if the
distribution of a single random variable is unknown, the distribution of the
sum of this variable can be obtained - under the conditions of the following
theorem the sum will converge to a normal distribution. The theorem stated
here is a weaker version following Bomsdorf et al. (2003):3

Theorem 1 (Central Limit Theorem). Let Sn ∈ R, n ∈ N be a random variable,
µ, σ ∈ R and {Xn}n∈N ∈ R be a set of iid random variables with mean µ and
standard deviation σ. Define Sn := ∑n

i=1 Xi. Then for x ∈ R

lim
n→∞

P
(
Sn − nµ
σ
√
n
≤ x

)
= Φ(x),

3 For convergence to a normally distributed variable under weaker assumptions, see e.g.
Lindeberg (1922).
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3 Time Series Analysis

where
Φ(x) =

∫ x

−∞

1
σ
√

2π
e−(x−µ)2/2σ2

dx.

Φ : R −→ [0, 1] is called the cumulative distribution function of a normal
distribution.

2.2 Continuous Mapping Theorem

Let us reconsider a portfolio of 1,000 stocks with independent dividends gen-
erated by the uniform distribution given in (1). Applying the CLT, the mean
dividend of this portfolio can be well approximated to follow a normal distribu-
tion. Let a financial derivative have a payoff equal to the squared mean dividend
of this portfolio. The Continuous Mapping Theorem (CMT), which is only
presented for convergence in distribution here, helps to get the approximate
distribution for the payoff of such a derivative:

Theorem 2 (Continuous Mapping Theorem). Let f : Rm −→ Rn be a continuous
function, Xn, X ∈ Rm. If Xn

d−→ X, then

f(Xn) d−→ f(X).

As x2 is a continuous function, the CMT can be applied to get the distribution
of the squared mean dividend of the portfolio - it approximately follows a
squared normal distribution, which is also referred to as a χ2(1) distribution in
statistical literature.4 Thus if the distribution of a random variable is known,
the distribution for a transformation of this variable can be easily obtained -
as long as the transformation is continuous.

3 Time Series Analysis

Building on the theory of Chapter 2, we now introduce mathematical models
used to analyze the dynamics of asset prices and dividends. By applying those
concepts in Chapter 4, we develop a specific framework which allows to detect
patterns indicative of rational bubbles.
We use theory from the field of statistical time series analysis, which is concerned
with studying data points recorded in time order. The models suggested in this

4 The distribution is an approximation as convergence to the normal distribution according
to the CLT is only exact in the limit.

6



3 Time Series Analysis

paper to describe adaquately the time series of prices and dividends are called
autoregressive processes or short AR-processes. They are very popular with
applications ranging from the foraging of wild animals (Bovet and Benhamou,
1988) to financial theory. The AR-process has been controversially used for
instance to falsify the efficient market hypothesis advanced especially by Fama
(1970), who argues that asset prices generally reflect all relevant information.
Section 3.1 introduces AR-processes formally, Sections 3.2 and 3.3 discuss the
behaviour of different AR-processes and Sections 3.4 and 3.5 are concerned
with the limiting distribution of a particular autoregressive process.

3.1 AR-Processes

An autoregressive process specifies that the output variable depends only
on a linear combination of past realisations of the variable and a stochastic
error term. The specific model is abbreviated as an AR(p)-process. p refers
to the order of the process and corresponds to the number of past realizations
of the variable included in the model. The error term is white-noise et, a
process of iid random variables with mean zero. An AR(p)-process is therefore
defined as follows:

Definition 2. Let σ2
e , φi ∈ R, i = 1, ..., p, p ∈ N and et ∈ R be a set of random

variables. Then an AR(p)-process {Yt}t∈N, where Yt ∈ R is a set of random
variables, satisfies the equation

Yt =
p∑
i=1

φiYt−i + et, where et ∼ (0, σ2
e) ∀ t, Cov[ei, ej] = 0 ∀ i, j ∈ N, i 6= j.

The specifcation of an AR(1)-model is therefore

Yt = φ1Yt−1 + et, t ∈ N. (2)

The following plot shows simulations for an AR(1)-model with different param-
eter values for φ1 and the initial condition Y0 = 0:
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Figure 3: Simulated AR(1)-Processes.
We define the autoregressive parameter as φ1.

Both processes appear to be very different. While the time series on the left
maeanders around zero, the time series with φ1 = 1.2 diverges as t gets larger.

3.2 Stationarity of AR-Processes

In order to understand this varying behaviour of AR(p)-processes the concept
of weak stationarity is introduced. It helps to distinguish the two processes
from Figure 3. Weak stationarity is defined by Verbeek (2008) as follows:

Definition 3. Let µ, γi ∈ R, i ∈ N and Yt ∈ R be a set of random variables. A
process {Yt}t∈N is defined to be weakly stationary if for all t ∈ N it holds that

(I) E[Yt] = µ,

(II) V ar[Yt] = γ0,

(III) Cov[Yt, Yt−i] = γi.

In other words, a stationary process has similar statistical properties no matter
which moment in time is considered: The time series has a constant mean and
a constant variance; the covariance only depends on the time distance between
two observations.
Whether an AR-process is stationary critically depends on the parameter values
of φi - they determine the dynamics of the process. The stationarity restrictions
for AR(p)-processes are shown exemplary for an AR(1)-process:
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3 Time Series Analysis

The equation describing an AR(1)-model can be solved through forward iteration
using an initial condition Y0 ∈ R.5 This means by substituting Y1 = Y0 + e1

and so forth we obtain

Y2 = φ1Y1 + e2 = φ1(φ1Y0 + e1) + e2 = φ2
1Y0 + φ1e1 + e2. (3)

This way, we get the general solution

Yt = φt1Y0 +
t−1∑
i=0

φi1et−i. (4)

As et has mean zero, taking the expected value E[·] of (4) we get

E[Yt] = φt1Y0. (5)

It follows that Condition (I) of Definition 3 is not met and the process is
therefore non-stationary. The mean is dependent on the moment in time as
Equation (5) is dependent on t.
However if we consider the limiting value of t and if |φ1| < 1, the expected
value of φt1Y0 converges to zero. This means that for sufficiently large t, the
mean of the time series does not depend on t anymore, formally

lim
t→∞

E[Yt] = lim
t→∞

φt1Y0 = 0, for |φ1| < 1. (6)

Hence there are two conditions that need to be met for the mean of an AR(1)-
process to be time-independent: (1) The data-generating process needs to be
infinite and (2) the parameter φ1 needs to be less than 1 in absolute value.
It can be shown analogously that the variance of the process is constant and
the covariance is time-independent if these conditions are met. The resulting
process is weakly stationary according to Definition 3.6

We summarize this in the following lemma:

5 This works analogously, if there is no initial condition given.
6 This theory can be easily extended to AR(p)-processes without an initial condition. This
would also yield requirements for the absolute value of the parameters φ1, φ2.... and
necessitate an infinite data generating process.
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3 Time Series Analysis

Lemma 1. An AR(1)-process {Yt}t∈N satisfiying Definition 2 fulfills the sta-
tionarity conditions given in Definition 3, if

1. lim
t→∞

Yt is considered and

2. |φ1| < 1.

The implications of Lemma 1 can be clearly seen in Figure 3. As |φ1| is greater
than unity, the left time series does not have a constant mean and the simulation
grows exponentially, which is why an AR(1)-series with |φ1| > 1 is referred
to as explosive. On the contrary, the time series on the left shows a constant
variance and maeanders around its constant mean 0.

3.3 Random Walk Model and Order of Integration

A random walk is a particular AR(1)-process. Within the model framework of
Chapter 4, identifying a bubble critically depends on rejecting a random walk
model for the respective asset price time series. The random walk is defined as
an AR(1)-process with the autoregressive parameter set to 1:

Definition 4. Let σ2
e , φ1 ∈ R and et ∈ R be a set of random variables. A

process {Yt}t∈N, where Yt ∈ R is a set of random variables, is defined as a
random walk if and only if it satisfies the equation

Yt = Yt−1 + et, where et ∼ (0, σ2
e) ∀ t, Cov[ei, ej] = 0 ∀ i, j ∈ N, i 6= j.

The process is non-stationary, as |φ1| ≮ 1. This can be intuitively understood
by considering the variance. Because of φ1 = 1, the impact of every Yt does
not converge to zero over time. Rather, going forward in time, every single
observation Yt adds up. This results in the variance of the process increasing
over time, which contradicts the second stationarity condition (II) given by
Theorem 3.
However, the process can be rewritten by subtracting Yt−1 on both sides of the
equation for all t ∈ N.

Yt − Yt−1 = Yt−1 − Yt−1 + et,

∆Yt = et.
(7)

∆Yt is called the first difference of Yt and is defined as ∆Yt := Yt − Yt−1.
The resulting process is obviously stationary, as et is defined as a stationary

10



3 Time Series Analysis

process. A time series which is stationary after first-differencing is called
integrated of order 1 or short I(1). If a time series is already stationary
in levels, it is called I(0). This concept of stationarity through differencing
can be extended to an arbitrary number of differences. We could also consider
the difference between the first differences of a time series, in other words
considering ∆(∆Yt) = ∆(Yt − Yt−1) = (Yt − Yt−1) − (Yt−1 − Yt−2). If the
resulting series is stationary, the process is integrated of order 2.

3.4 The Wiener Process

In order to express the limiting distributions of the statistics in Chapter 5
we need to find the limiting distribution for a random walk process - the
null hypothesis to be introduced in Chapter 4 asserts that asset prices follow
a random walk. Obtaining those limiting distributions allows us to better
understand the behaviour of the test statistics under the null hypothesis.
For expressing the limiting distribution of a random walk, a second stochastic
process is introduced called Wiener Process. In this section we show that the
random walk converges in distribution to the Wiener Process:
Suppose, we buy a stock for 100 $ in t = 0 and we are interested in the price
change of the stock after buying it. The development of the price during the
following year could be modeled by a simple symmetric random walk:

Definition 5. Let {St}t∈N ∈ R be a set of random variables and {Xt}t∈N ∈ R
be a set of iid random variables following the distribution

Xt =

 +1 with p = 0.5,
−1 with p = 0.5.

St is defined as St := ∑t
i=1 Xi, S0 = 0. St is then called a simple symmetric

random walk.

This model assumes that a new price change is recorded at the end of every
month. This change can either be +1 $ or −1 $. The random variable Xt

follows a binomial distribution, which is why the model is called simple. As
every outcome is equally likely, the random walk is called symmetric. Within
the model, the price change after twelve months S12 is equal to the sum of all
price changes during the year, i.e.

S12 =
12∑
i=1

Xi. (8)
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Figure 4: Sample Path of a Simple Symmetric Random Walk for t = 1, 2, ..., 12.

This stock price model is time-discrete, modeling the stock price change only
at the end of every month, i.e. during the first year t is only defined for
t = 1, 2, 3, ..., 12. We could consider measuring price changes more often such
as every week, day or hour. If we model those time intervals to be infinitesimally
small, we obtain the limiting distribution of a simple symmetric random walk:
First the inital model from (8) is rescaled and standardized to be distributed
with mean zero and variance 1 at t = 12. As every price change is independent,
the variance of the process from t = 1 to t = 12 is given by

V ar[S12] =
12∑
i=1

V ar[Xi] = 12 · 1 = 12 . (9)

We denote the largest integer smaller than x by bxc. This way,W 12(t) is defined
for all t ∈ [0, 1] as

W 12(t) := Sb12tc√
12

. (10)

We can write this model dependent on N ∈ N+,

WN(t) := SbNtc√
N

,with t ∈ [0, 1]. (11)

In the context of our example N corresponds to the number of price changes
recorded in the year after the stock acquisition. The following plot visualizes
the model given by (11):
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Figure 5: A Simulation of Two Price Change Models WN(t) with N = 12 and
N = 50.

As the number of time-increments N approaches infinity, the process WN(t)
meets all conditions of the CLT (Theorem 1). This means at t = 1 it converges
to a standard normal distribution, i.e.

lim
N→∞

WN(1) d−→ N(0, 1). (12)

This result can be extended to any point in time t ∈ [0, 1]. With N approaching
infinity, the distribution at time t converges to a normal distribution with mean
0 and variance t, i.e.

WN(t) = SbNtc√
N

= SbNtc√
bNtc︸ ︷︷ ︸

d−→N(0,1)

√
bNtc
√
N︸ ︷︷ ︸√
t

d−→ N(0, t). (13)

We now show that model (11) converges in distribution to a specifically defined
stochastic process called Wiener Process. This way we can express the limiting
distributions of a simple symmetric random walk and therefore of the test
statistics in Chapter 5 with the help of this thoroughly defined Wiener Process.
It is formally introduced by Durrett (2019) as follows:
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Definition 6. A one-dimensional standard Wiener Process is a process W :
R+

0 −→ R, meeting the following properties:

1. W (0) = 0, i.e. the process starts at zero with probability one.

2. W (t) has independent increments, i.e. W (t1)−W (t0), ...,W (tn)−W (tn−1)
are independent for 0 ≤ t0 < t1 < ... < tn.

3. Normal Distribution, i.e. if s, t ≥ 0, then W (s+ t)−W (t) ∼ N(0, s).

4. W (t) has continuous paths, i.e. W : t 7→ W (t) is continuous with
probability one.

So at time t ∈ R+
0 the standard Wiener Process is normally distributed with

mean 0 and variance t, i.e. W (t) ∼ N(0, t). Equation (13) shows that the
rescaled symmetric random walk model given by (11) converges to exactly
this distribution as limN→∞ for t ∈ [0, 1]. Hence for all t ∈ [0, 1], the rescaled
symmetric random walk from Definition 5 converges in distribution to the just
introduced standard Wiener Process.
Up until now, convergence of WN (t) is limited to a specific value of t. So if we
are interested in the probability distribution of the price change of the stock
after 6 months for instance, this limiting distribution could be obtained by
using the Wiener Process from Definition 6.
Donsker’s Theorem first introduced in Donsker (1951) extends this convergence
in distribution even further. It states that the constructed process WN (t) does
not only converge in distribution at time t, but that the entire function WN (t)
converges in distribution to a standard Wiener Process for t ∈ [0, 1]. Therefore
Donsker’s theorem is often refered to as the functional Central Limit Theorem.
This means, also limiting joint distributions of model (11) can be obtained
using the standard Wiener Process. For instance we can express the limiting
probability distribution that the stock has lost in value 6 months after the
acquisition and has gained in value 10 months after the acquisition by using
the Wiener Process.

Theorem 3 (Donsker’s Theorem). Let {Xi}i∈N ∈ R be a set of iid random
variables with E[Xi] = 0 and E[X2

i ] = 1. Let Sj ∈ R be a random variable with
j ∈ N+, Sj := ∑j

i=1 Xi, S0 = 0. Then WN(t) := SbNtc√
N

, N ∈ N+, converges in
distribution to the standard Wiener Process from Definition 6 for t ∈ [0, 1], i.e.

WN(t) := SbNtc√
N

d−→ W (t) for t ∈ [0, 1]. (14)
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3 Time Series Analysis

During this chapter, the very restrictive simple symmetric random walk was
shown to converge in distribution to the standard Wiener Process. It should be
noted that Donsker’s Theorem gives less restrictive conditions for the process
{Xi}i∈N. Therefore, convergence in distribution to the Wiener Process can be
used to express limiting distributions in Chapter 5, although the underlying
random walk model may be neither symmetric nor simple.

3.5 Stochastic Calculus

In order to obtain the limiting distributions of the test statistics in Chapter 5,
we need to consider integrals of the Wiener Process. Due to its characteristic
properties, integrals of the Wiener Process cannot be understood as the limit of
a Riemann sum. Differentials involving the Wiener Process also require distinct
rules, which is why we need to introduce stochastic calculus.
Let us consider a function f dependent on the standard Wiener Process W (t),

f : [0, 1] −→ R,

t 7→ (W (t))2.
(15)

We could think of W (t) being a model for the development of a stock price and
f describing the payoff of a financial derivative dependent on this stock.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Time t

f
(W

(t
))

Figure 6: A Simulation of Equation (15).

In order to derive the dynamics of equation (15), we could think of using the
chain rule from calculus and heuristically rearrange to write (15) as differential

15
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form
df

dt
=
(
f ′(W (t)) dW (t)

dt

)
,

df =
(
f ′(W (t)) dW (t)

dt

)
dt.

(16)

However, (16) does not make any sense due to the following property of the
Wiener Process W (t):

Proposition 1. A sample path of the standard Wiener Process according to
Definition 6 is nowhere differentiable with probability 1, i.e.

dW (t)
dt

does not exist.

This can be intuitively understood by looking at Figure 6. The behaviour
of (W (t))2 is very erratic, meaning that it is not possible to find tangents
fitting the graph. Hence equation (16) does not have a mathematical meaning
within the framework of ordinary calculus. dW (t) cannot be understood as a
traditional differential as the standard rules of calculus do not apply.
Thus dW (t) is considered a stochastic differential. The Japanese mathematician
Kiyoshi Itô introduces a rigorous calculus to deal with stochastic differentials.
Itô (1951) provides the following formula for explicitly stating differential
equations involving the Wiener Process:

Theorem 4 (Itô’s Lemma). Let f(t,W (t)) be a smooth function of two vari-
ables, with f : R2 −→ R, where W (t) denotes a one-dimensional standard Wiener
Process according to Definition 6 and t ∈ R+

0 . Then

df(t,W (t)) =
(
df

dt
+ 1

2
d2f

d(W (t))2

)
dt+ df

dW (t) dW (t).

This formula allows to quantify the dynamics of the stochastic system in (15)
without using undefined expressions. For (15) Itô’s Lemma yields

d(W (t))2 = dt+ 2W (t)dW (t). (17)

Equation (17) is called a stochastic differential equation, as it contains the
stochastic element W (t).
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Let us write (17) by using integrals. Itô defined the integral as being the inverse
of differentiation:7

Definition 7. For stochastic differential equations, integration is defined as
the inverse of differentiation, i.e.

F (t,W (t)) =
∫
h(t,W (t))dW (t) +

∫
g(t,W (t))dt

if and only if

dF (t,W (t)) = h(t,W (t))dW (t) + g(t,W (t))dt.

Rearranging and writing (17) with the use of integrals yields

1
2 d(W (t))2 = W (t) dW (t) + 1

2 dt⇔

1
2 (W (T ))2 =

∫ T

0
W (t) dW (t) +

∫ T

0

1
2 dt =

∫ T

0
W (t) dW (t) + T

2 .
(18)

Rearranging (18) gives

∫ T

0
W (t) dW (t) = 1

2 (W (T ))2 − T

2 . (19)

Result (19) is in contrast to the Rieman integral

∫ T

0
x dx = 1

2 T 2. (20)

This illustrates that calculus involving the Wiener Process cannot be done in the
traditional way due to its characteristic properties, i.e. the erratic behaviour of
W (t). Stochastic calculus provides a framework which allows to use differential
equations and integrals nonetheless. When deriving distributions of the test
statistics in Chapter 5, calculations involving the Wiener Process need to be
done following the distinct rules of stochastic calculus.

7 See Kempthorne et al. (2013). Itô also defined the integral to have a meaningful inter-
pretation by adapting the concept of Riemann sums to fit the distinct properties of the
Wiener Process.
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4 The Time Series of Stock Prices and Dividends

4 The Time Series of Stock Prices and
Dividends

As Chapters 2 and 3 covered general statistical methods for anaylzing time
series data, we now motivate a specific model for the dynamics of stock prices
and dividends and formally introduce the concept of a rational bubble. This
theory allows to test empirically for the existence of rational bubbles. While
we present the theory by considering stock prices, it can be easily extended to
other asset classes with a similar return structure.

4.1 The Price of a Stock

We model the price of a stock following Homm and Breitung (2012) and
Campbell et al. (1997):
If a stock is held for one period and sold after the dividend payment, the return
Rt+1 is given by

Rt+1 := Pt+1 +Dt+1

Pt
− 1, (21)

where t is a time index, Pt is the stock price and Dt is the dividend.

4.1.1 Assumptions

In order to get the price of the stock Pt, we need to rearrange (21). We make
three assumptions:

Assumption 1. An arbitrage-free market:
Arbitrage describes a situation where a risk-free profit can be made. For instance
this is the case when the same stock is priced differently at two stock exchanges.
Then we could buy the stock at the cheaper price at one stock exchange and sell
it at the other exchange profiting from the price difference.

Assumption 1 is a standard assumption in many economic pricing models
(Albrecher et al., 2011) such as Black and Scholes (1973), who develop an influ-
ential model used for pricing particular financial derivatives. It seems plausible
that opportunities for making risk-free profits in modern competitive financial
market are negligible - especially since the technologies of the information age
fosters transparency and flow of information. A consequence of the no-arbitrage
assumption is often referred to as the law of one price - the same asset can
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4 The Time Series of Stock Prices and Dividends

only have one price at any time t. If Assumption 1 did not hold, we could
not specify a price for an asset, as every asset could have multiple prices.

Assumption 2. All investors are risk-neutral:
Prices and dividends in future periods are volatile and therefore associated with
risk. It is assumed that investors do not need extra compensation for taking on
this risk.

Empirical findings within the field of economics show investors to be risk
averse (Chiappori and Paiella, 2011; Paravisini et al., 2017 among others).
Therefore the return of an asset must depend on its volatility. However our
testing strategy is not based on estimating rates of return correctly, but on
comparing the dynamics of dividends and prices. The specific rate of return
itself is not needed. Hence we can assume risk premia to be zero and simplify
our notation. This way we do not need to distinguish rates of return between
different assets.

Assumption 3. A constant expected return:
We assume E[Rt] = R ∀ t, where E[·] is the expected value.

Assumption 3 allows us to develop a model which we can test empirically. In
the short run, returns can of course vary by large. However, we consider a long
time horizon as stocks are expected to pay dividends for infinity. Assuming a
constant return in this long run can be considered plausible: Jordà et al. (2019)
examine historical rates of return from 1870 to 2015 and find stable returns for
risky assets. When valuating a company, analysts usually estimate the future
long term rate of return to be constant and in line with the general growth
rate of the economy (Ballwieser and Hachmeister, 2016).

4.1.2 The Stock Price Model

The three assumptions lead to the price of a stock at time t

Pt = Et[Pt+1 +Dt+1]
1 +R

. (22)

The expected value at time t is denoted by Et[·]. Equation (22) can be solved by
employing the law of iterated expectations and forward iteration substituting
Pt+1 = Et+1[Pt+2+Dt+2]

1+R and so forth, yielding what we refer to as the fundamental
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stock price

P f
t :=

∞∑
i=1

1
(1 +R)i Et[Dt+i]. (23)

According to (23), P f
t only depends on the development of the dividends - or

in other words only on economic fundamentals.
However, we can find alternating solutions for (22). We consider a process
{Bt}∞t=1 with

Et[Bt+1] = (1 +R)Bt. (24)

If we add Bt to the solution (23), we also solve (22). This can be shown by
substituting Pt = P f

t + Bt in Equation (22) and using property (24), which
leads to a true statement.

P f
t +Bt = Et[(P f

t+1 +Bt+1) +Dt+1]
1 +R

,

P f
t +Bt = Et[P f

t+1 +Dt+1]
1 +R

+ (1 +R)Bt

1 +R
,

P f
t +Bt = P f

t︸︷︷︸
fundamental stock price

+ Bt︸︷︷︸
bubble component

= Pt. (25)

There is an infinite number of solutions to (22) all taking the form of (25),
which decomposes the stock price into a fundamental component and a bubble
component. As long as Bt 6= 0, a rational bubble is present - which is defined
here as a deviation from the fundamental stock price P f

t .
Considering (24), the bubble component is expected to grow at rate 1 + R.
Therefore even a rational investor is willing to spend more than the fundamental
value on a stock, since he is compensated sufficiently well in two ways: (1) The
fundamental stock price P f

t pays off in the form of future dividends. (2) The
investment in the bubble component also gives an expected return of R in the
form of capital gains, as it is expected to grow at rate 1 + R (cf. (24)). If
enough market participants expect (24), they will buy shares as they expect
sufficient return and the price will indeed grow - even if it cannot be justified
by market fundamentals.
There is no irrational behaviour within this model. This is why we call a price
development including Bt 6= 0 in line with equation (24) and (25) a rational
bubble.
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4.2 A Time Series Model for Dividends and Prices

Within our testing strategy, we try to identify any Bt 6= 0 present in the price
process. However we can not observe the fundamental stock price P f

t as it
depends on future dividend payments. By making assumptions about the
time series of P f

t , we can test for the existence of a bubble component Bt by
considering only the historical time series of dividends Dt and prices Pt - which
we can both observe.
Following Homm and Breitung (2012), dividends are assumed to follow a
random walk with drift, i.e. there is a constant µ added to the random walk
model in Definition 4.

Dt = µ+Dt−1 + et, (26)

where Dt is the dividend, t indexes the time and et describes a white noise
process, i.e. an iid random variable with mean zero.
This model assumes dividends to be stationary in first differences, which is
consistent with the literature on rational bubbles (Diba and Grossman, 1988;
Li et al., 2019; Phillips et al., 2011 among others) and in line with the more
general literature on testing for the presence of an autoregressive parameter with
value 1 in other macroeconomic time series (cf. Perron, 1988). The intuitive
motivation behind this is that macroeconomic variables such as aggregate
dividends of a stock index tend not to change rapidly in absence of a significant
macroeconomic shock and can therefore be modelled well by a random walk
with drift.
If we substitute (26) in Equation (23) and simplify, we get an equation describing
the time series of P f

t ,

P f
t =

∞∑
i=1

1
(1 +R)i Et[Dt+i] =

∞∑
i=1

1
(1 +R)iEt[µ+Dt+i−1 + et]. (27)

In order to express Dt+i−1, we use iteration (see Chapter 3, Equation (3)) and
obtain

P f
t =

∞∑
i=1

1
(1 +R)i (iµ+Dt) =

∞∑
i=1

iµ

(1 +R)i +
∞∑
i=1

Dt

(1 +R)i . (28)
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As iµ
(1+R)i = 0 for i = 0, we can start this sum at 0 and use formulas for

simplifying a geometric series.

P f
t = µ

∞∑
i=0

i

(1 +R)i +
∞∑
i=1

Dt

(1 +R)i

= µ
1

1+R
( 1

1+R − 1)2 + 1
R
Dt

= µ
1 +R

R2 + 1
R
Dt .

(29)

As Dt is by assumption a random walk with drift, (29) shows that P f
t also

follows a random walk with drift, since it is a linear transformation of Dt for
all t.
This is in contrast to the bubble component of the general solution (25). The
bubble component is characterised by an explosive process, as the coefficient
for Bt is given by (1 +R) which is greater than unity (see Equation (24)).
The following plot shows simulations for the time series of P f

t (according to
(29)) and Bt (according to (24)):
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Figure 7: Simulation of the Time Series Model for the Fundamental Stock Price
and the Bubble Component.
D0 = 5, R = 0.05, µ = 0.01, B0 = 1, et ∼ N(0, 1).

As (25) states, the stock price Pt is given by the sum P f
t +Bt. If there is no

bubble present, the stock price can be modeled adequately by a random walk
with drift as it only includes the fundamental stock price P f

t . However if a
bubble component is present in the stock price, the price process Pt will show
explosive behaviour:
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Figure 8: Plot of Pt According to (25).
P f
t and Bt are simulated as in Figure 7, i.e. D0 = 5, R = 0.05, µ =

0.01, B0 = 1, et ∼ N(0, 1). We clearly see explosive behaviour in the
time series of Pt as the bubble component starts to singinificantly
influence the price process.

Figure 8 sums up our identification strategy: We try to detect a bubble
component Bt 6= 0 by testing for explosive behaviour in the time series of
stock prices and dividends. If dividends follow a random walk with drift and
our model for P f

t is correct, explosive behaviour in Pt has to be caused by an
existing bubble component.

5 Testing for Rational Bubbles

Based on the model of Chapter 4, we now introduce test statistcs to detect
rational bubbles. We test for explosive behaviour in the time series of stock
prices and dividends and identify a bubble if we can reject a random walk
model for prices and cannot reject a random walk model for dividends.
Section 5.1 covers a method for detrending a time series, which we use to
simplify the test statistics. Section 5.2 formalizes the test hypotheses and
sections 5.3 to 5.7 put forward five different test statistics.

5.1 Ordinary Least Squares Detrending

Before calculating test statistics we detrend the time series. This way, we
remove a possible constant (the detrended time series has mean zero) and a
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possible linear trend in the time series of prices and dividends. After detrending
we can test a simpler model and use less complicated test statistics.
We detrend by using ordinary least squares (OLS) and regress on a constant
and a linear time trend. The regression model is therefore given by

Xt = β0 + β1t+ ut, (30)

where Xt is the respective value of the time series, t is a time index, β0 and
β1 are the coefficients of the regression and ut is the residual. The tests are
then computed by using the residuals ût from an OLS-estimation of (30). We
denote those residuals by Yt in the following chapters.

Residual û12
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Figure 9: Detrending Using OLS.
An AR(1)-process is simulated and the OLS-model is illustrated by
the straight blue line.

5.2 Test Hypotheses

Detrending removes a possible linear trend in stock prices and dividends (which
we would model by including the drift parameter µ) and a possible constant.
Therefore we can test the simple AR(1)-model

Yt = ρtYt−1 + et. (31)

t is a time index, Yt is the estimated residual ût of the regression from Section
5.1, ρt is the autoregressive parameter and et is a stochastic white noise error
term, i.e. an iid random variable with mean zero. The null hypothesis of the
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tests asserts a random walk for the time series of prices and dividends for all
t. If this holds true for the time series of stock prices, no significant bubble
component is present in the price process:

H0 : ρt = 1 for t = 1, 2, 3, ..., T , (32)

where T is the last time index of the time series.
Under the alternative hypothesis there is a structural change in the autore-
gressive parameter: If a bubble component starts to significantly influence the
price process, the time series of prices changes will change from from I(1) to
explosive. We denote this moment of change by t∗.

H1 : ρt = 1 for t = 1, 2, 3, ..., t∗ and ρt > 1 for t = t∗ + 1, ..., T . (33)

The time series under the alternative hypothesis is visualized in the following
plot:
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AR(1)-Process with Change from I(1) to Explosive

Figure 10: Simulation of an AR(1)-Process with a Change in the Autoregressive
Parameter from 1 to 1.1 at t = 50.
The value at t = 0 is set to 0, et ∼ N(0, 1).

If we can reject H0 for the time series of prices and there is no explosive
behaviour in dividends (in Chapter 4 we assumed that dividends follow a
random walk with drift), we conclude that a rational bubble is present in the
price process.
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5.3 Bhargava Statistic

Bhargava (1986) proposes a test statistic, which is adapted by Homm and
Breitung (2012) to fit the hypotheses from section 5.2. Let

s2
τ := 1

T − bτT c

T∑
t=bτT c+1

(Yt − Yt−1)2, (34)

with τ ∈ [τ0, 1 − τ0] and τ0 ∈ (0, 0.5). As the moment of change from a
random walk to explosive t∗ is not known beforehand, the statistic is recursively
calculated for subsamples of the time series and the supremum is taken. The
size of the smallest subsample is determined by the choice of τ0. The statistic
is given by

supB(τ0) := sup
τ∈[τ0,1−τ0]

Bτ, Bτ := 1
s2
τ (T − bτT c)2

T∑
t=bτT c+1

(Yt − YbτT c)2︸ ︷︷ ︸
forecast error for period t

.

(35)
Equation (35) can be motivated by the following considerations: Recall that a
random walk has no clear tendency to move in any direction. For a random
walk, the expected value in period t for all further periods is Yt. Hence the
present value is a reasonable forecast. The statistic sums up all squared errors
of this forecast Yt and divides the result by the variance of the process. If the
process of Yt can be modeled by random walk, the forecast errors are small and
so is the value of the test statistic. However if the process is explosive, Yt will
grow exponentially and the forecast error will become very large.

26



5 Testing for Rational Bubbles

-2

0

2

4

0 10 20 30 40 50
Time

Va
lu
e

Random Walk Process

0

2500

5000

7500

0 10 20 30 40 50
Time

Va
lu
e

Explosive AR(1)-Process

Figure 11: Intuition Behind the Bhargava Statistic.
In the left plot, forecasting the present value in t = 0 (red line)
proves to be reasonable for a random walk process. In the right plot
however, the forecast is very much off. Therefore the test statistic
will have a large value and reject the null hypothesis.

The limiting distribution of the test statistic can be expressed using a Wiener
Process:

Proposition 2. If Yt is generated by the random walk model from (31), the
limiting distribution of the test statistic in (35) under the null hypothesis (32)
is given by

supB(τ0) d−→ sup
τ∈[τ0,1−τ0]

{ 1
(1− τ)2

∫ 1−τ

0
(W (r))2dr

}
. (36)

Proof. First the statistic is simplified using the binomial formula:

Bτ = 1
s2
τ (T − bτT c)2

T∑
t=bτT c+1

(
Y 2
t − 2YtYbτT c + Y 2

bτT c

)
.

Secondly, we rearrange 1
s2
τ (T−bτT c)2 and factorize (1− τ)−2.

Bτ =
T∑

t=bτT c+1

[(
Yt

sτ
√
T − bτT c

)2
(T − bτT c)−1 −

2YtYbτT c
s2
τ (T − bτT c)2 +

Y 2
bτT c

s2
τ (T − bτT c)2

]

= (1− τ)−2
T∑

t=bτT c+1

[( Yt

sτ
√
T

)2
T−1 − 2YbτT csτT−0.5 Yt

sτ
√
T
T−1 +

Y 2
bτT c

s2
τT

2

]
.
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Under the null hypothesis Yt follows a random walk, i.e. Yt = Yt−1 + et, which
can be solved by iteration (see Chapter 3): Yt solves to be the sum of all
previous error terms et. We define St as the sum of all error terms up until
time t, i.e. St := ∑t

i=1 ei with S0 = 0. Hence we can substitute St for Yt.

Bτ = (1− τ)−2
T∑

t=bτT c+1

[( St

sτ
√
T

)2
T−1 − 2YbτT csτT−0.5 St

s2
τ

√
T
T−1 +

Y 2
bτT c

s2
τT

2

]
.

The next step involves using an integral to simplify St
στ
√
T
T−1. The intuition

behind this can be easily visualized:

Rectangle 1 Rectangle 2 Rectangle 3

0.0
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Figure 12: Intuition for Simplifiying St
στ
√
T
T−1 with the Help of Integration.

In Figure 12 a segment of a time-discrete random walk St with S0 = 0 starting
at t = 0 is plotted. Every 1

T
a new error term is added to the sum of the

previous error terms. The Riemann-integral operator calculates the area under
the graph. This means, for every interval [(t− 1/T ), t/T ], the area is calculated
using the value of the function and multiplying it by 1

T
- as width times length

is the formula for the area of a rectangle. This is why we can write St
στ
√
T
T−1

as
∫ t/T

(t−1)/T
Sbtrc
στ
√
T
dr. Both expressions multiply the value of St

στ
√
T
with 1

T
.

Bτ = (1− τ)−2
T∑

t=bτT c+1

[∫ t/τ

(t−1)/T

( Sbtrc
στ
√
T

)2
dr − 2YbτT csτT−0.5

∫ t/τ

(t−1)/T

2Sbtrc
s2
τ

√
T
dr

+
Y 2
bτT c

s2
τ (T − bτT c)2

]
.
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The next step involves simplyfying the sum of the integrals ΣT
t=1

∫ t/T
(t−1)/T ( Sbtrc

στ
√
T

) dr.
As an integral is additive, instead of summing all individual "rectangles", the
entire integral from [τT ]/T to 1 can be taken.

Bτ = (1− τ)−2
[ ∫ 1

[τT ]/T

(
Sbtrc

στ
√
T

)2
dr − 2YbτT csτT−0.5

∫ 1

[τT ]/T

(
Sbtrc

στ
√
T

)
dr

+
T∑

t=bτT c+1

Y 2
[τT ]

s2
τT

2

]
.

The last step involves considering the limit of T , i.e. T −→ ∞. In this
case the last two summands converge to zero. As established by Donsker’s
Theorem (Theorem 3), the standardized and rescaled random walk sequence
Sbtrc
στ
√
T
converges in distribution to a standard Wiener Process. Since the integral

itself is continuous and x2 is a continuous function, the CMT states that
the transformed random walk converges to the similiarly transformed Wiener
process. As the statistic is not calculated for the entire sample, but only for
the respective subsample, the length of the Wiener Process to be integrated
is not given by 1, but by 1− τ . So taking the limit gives the distribution of
Proposition 2:

Bτ =(1− τ)−2
[ ∫ 1

[τT ]/T

(
Sbtrc

στ
√
T

)2
dr︸ ︷︷ ︸

d−→∫ 1−τ
0 (W (r))2dr

− 2YbτT csτT−0.5
∫ 1

[τT ]/T

(
Sbtrc

στ
√
T

)
dr︸ ︷︷ ︸

−→ 0

+
T∑

t=bτT c+1

Y 2
[τT ]

s2
τT

2

]
︸ ︷︷ ︸

−→ 0

.

5.4 Busetti-Taylor Statistic

Homm and Breitung (2012) also adapt a statistic proposed by Busetti and
Taylor (2004) yielding

supBT (τ0) := sup
τ∈[τ0,1−τ0]

BTτ , BTτ := 1
s2

0(T − bτT c)2

T∑
t=bτT c+1

(YT − Yt−1)2,

(37)
where s2

0 is the variance estimator given by (34) based on the entire sample and
τ0 ∈ (0, 0.5). There are two differences compared to statistic (35). First, the
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entire sample is used to estimate the variance of the process. Second, only the
final value is forecasted based on the previous periods under the random walk
hypothesis. Again, large values indicate explosive behaviour. In the explosive
case, the last value of the time series YT differs significantly from the previous
values. The following plot visualizes this:
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Figure 13: Intuition Behind the Busetti-Taylor Statistic. The red line gives the
value of YT .
While the Bhargava statistic sums the squared difference to the first
value of the resepective intervall, the Busetti-Taylor statistic sums
the squared difference to the last value.

The limiting distribution of the statistic is obtained in a similar way to the
Bhargava statistic and is presented in the following proposition:

Proposition 3. If Yt is generated by the random walk model from (31), the
limiting distribution of the test statistic in (37) under the null hypothesis (32)
is given by

supBT (τ0) d−→ sup
τ∈[τ0,1−τ0]

 1
(1− τ)2

∫ 1

τ
(W (1− r))2dr

.
5.5 Kim Statistic

Kim (2000) is once again slightly adapted by Homm and Breitung (2012). The
statistic is given by

supK(τ0) = sup
τ∈[τ0,1−τ0]

Kτ , Kτ =
(T − bτT c)−2∑T

t=bτT c+1(Yt − YbτT c)2

bτT c−2∑bτT c
t=1 (Yt − Y1)2

, (38)
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with τ0 ∈ (0, 0.5). The statistic splits the sample in two. Under the null
hypothesis, Yt follows a random walk in both parts of the sample. This is why
the first value of the respective subsample is a reasonable forecasts for the
subsample if H0 is true. If the second part of the sample is an explosive time
series, the forecast YbτT c is not accurate. In the explosive case, the nominator
will become large and therefore large values of the statistic indicate rejection.
The following proposition states the limiting distribution of the Kim statistic:

Proposition 4. If Yt is generated by the random walk model from Equation (31),
the limiting distribution of the test statistic in (38) under the null hypothesis
(32) is given by

sup
τ∈[τ0,1−τ0]

Kτ
d−→ sup

τ∈[τ0,1−τ0]

{(
τ

1− τ

)2 ∫ 1
τ (W (r − τ))2dr∫ τ

0 (W (r))2dr

}
. (39)

This result can be made clear by recalling the limiting distribution of the
Bhargava statistic in Proposition 2. The Kim statistic could be interpreted
as taking the quotient of a Bhargava statistic for the second subsample and
a Bhargava statistic for the first subsample. So the limiting distribution is
obtained by utilizing the Continuous Mapping Theorem and dividing the
limiting distributions of the two subsamples.

5.6 Philipps et al. Statistic

Phillips et al. (2011) suggest to use Dickey-Fuller tests8 for testing the hypothe-
ses. This involves estimating the AR(1)-process given by (31) using ordinary
least squares (OLS).

8 Dickey and Fuller (1979) introduce very popular tests for the existence of autoregressive
parameters with the value of 1 in a time series.
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Figure 14: Simulated AR(1)-Model According to (31) and the Respective OLS-
Estimation.
The autoregressive parameter is set to 1.1, Y0 = 0, et ∼ N(0, 1).

Their test statistic resembles a standard t-test for a parameter of an OLS-
regression. Contrary to Phillips et al. (2011), we do not use a constant in our
regression, as we have detrended the time series (cf. (31)). As the moment
of change is once again unknown, the statistic is recursively calculated for
subsamples of the time series and the supremum is taken. The statistic is thus
given by

supDF (τ0) := sup
τ0≤τ≤1

DFτ = ρ̂τ − 1
σ̂ρ̂τ

, (40)

where ρ̂τ is the autoregressive parameter obtained by an OLS-estimation of
(31) when only considering the subsample {Y1, Y2, ..., YbτT c}, σ̂ρ̂τ is the usual
unbiased estimator for the variance of ρ̂τ and τ ∈ [τ0, 1] with τ0 ∈ (0, 0.5). The
size of the smallest subsample is therefore determined by the choice of τ0.
The intuition behind this statistic is straightforward: If the true value of the
parameter ρτ exceeds 1 in the respective subsample, the OLS-estimation should
fit a model with the parameter ρ̂τ also greater than one. This means, large
values of statistic (40) indicate explosive behaviour in the time series. The
limiting distribution of this statistic is presented following Homm and Breitung
(2012) as:

Proposition 5. If Yt is generated by the random walk model from (31), the
limiting distribution of the test statistic in (40) under the null hypothesis (32)
is given by

sup
τ0≤τ≤1

DFτ
d−→ sup

τ0≤τ≤1

∫ τ
0 W (r)dW (r)∫ τ

0 (W (r))2dr
. (41)
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The following considerations do not prove Proposition 5, but illustrate how it
is obtained:
The OLS-method computes the estimator ρ̂τ for a given subsample as a fraction
of covariance and variance,

ρ̂τ = Cov[Yt, Yt−1]
V ar[Yt−1] . (42)

As we have detrended the time series, the mean of Yt is equal to zero. This
helps to simplify the calculation of (42):

ρ̂τ =
∑bτT c
t=2 YtYt−1∑T
t=2 Y

2
t

=
∑bτT c
t=2 (Yt−1 + ∆Yt)Yt−1∑T

t=2 Y
2
t

=
∑bτT c
t=2 (Y 2

t−1 + etYt−1)∑bτT c
t=2 Y 2

t

= 1 +
∑bτT c
t=2 etYt−1∑bτT c
t=2 Y 2

t

.

(43)

This simplified solution is used to express bτT c(ρ̂τ − 1),

bτT c(ρ̂τ − 1) = bτT c
−1∑bτT c

t=2 etYt−1

bτT c−2∑bτT c
t=2 Y 2

t

. (44)

The limiting distribution of the nominator and denominator of (44) can be
derived in a similar way as in Section 5.3. Utilizing the Continuous Mapping
Theorem, the distribution of a quotient is given by the the quotient of the
respective limiting distributions of nominator and denominator. After a few
extra steps of simplification and using Itô-Calculus, we get the distribution of
Proposition 5.

5.7 A Chow-Type Statistic

The idea behind the last test introduced by Homm and Breitung (2012) is to
incorporate the information that both under H0 and H1 the time series follows
a random walk at first. In order to use this information, the model from (31)
is rewritten by using 1{.}, which is an indicator function that equals one if the
statement in braces is true and equals zero if the statement is false.

Yt = ρτ (Yt−11{t>bτT c}) + et,

Yt − Yt−1 = (1− ρτ )(Yt−11{t>bτT c}) + et,

∆Yt = δτ (Yt−11{t>bτT c}) + et,

(45)
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where ρτ is the autoregressive parameter for a given τ , δτ = (1 − ρτ ), τ ∈
[τ0, 1− τ0] with τ0 ∈ (0, 0.5).
This way the sample is split in two. In the first part of the sample {Y1, ..., YbτT c},
the indicator function 1{.} equals zero and (45) simplifies to

∆Yt = et, (46)

which corresponds to the first difference of a random walk model. In the second
part of the sample {YbτT c+1, ..., YT}, the indicator function equals one and the
model is given by

∆Yt = δτYt−1 + et. (47)

If the time series is explosive in the second part of the sample, i.e. ρτ > 1,
the correct specification for (47) includes a δτ > 0. If the time series follows
a random walk in the second part of the sample, the correct specification of
(47) corresponds to δτ = 0, as the first difference of a random walk is given by
∆Yt = et.
In order to test the null hypothesis of a random walk against a change from
I(1) to explosive, we therefore test H0 : δτ = 0 against H1 : δτ > 0.
We estimate (45) with OLS and obtain the t-statistic by dividing the OLS-
estimator δ̂τ by its variance σ̂δ̂τ .

DFCτ := δ̂τ
σ̂δ̂τ

=
∑T
t=bτT c+1 ∆YtYt−1

σ̂τ
√∑T

t=bτT c+1 Y
2
t−1

, (48)

with
σ̂τ := 1

T − 2

T∑
t=2

(∆Yt − δ̂τ (Yt−11{t>bτT c})2.

As the moment of change is once again not known, the statistic is recursively
calculated for different splits of the sample and the supremum is taken:

supDFC := sup
τ∈[τ0,1−τ0]

DFCτ . (49)

The limiting distribution is obtained by Homm and Breitung (2012) and stated
in the following proposition:
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Proposition 6. Let Yt be generated by the random walk model from (31).
Under the null hypothesis (45), the limiting distribution of (49) is given by

supDFC
d−→ sup

τ∈[τ0,1−τ0]

1
2 [{(W (1))2 − (W (τ))2 − (1− τ)}]√∫ 1

τ (W (r))2dr
.

6 Applications

In this section we apply the testing procedures from Chapter 5 to two important
periods in financial history. Thus, Section 6.1 examines the US stock market
of the 1990s and Section 6.2 studies the US housing market leading up to the
financial crisis in 2008.

6.1 The Dot-com Bubble

Our first application concerns the US stock market of the late 1990s. Its price
dynamics were characterized as irrational exuberance (Shiller, 2015) and the
episode is widely considered to be a classical example of a bubble (Kindleberger
and Aliber, 2011).
During the 1990s optimism was widespread among investors in the United
States (Shiller, 2015). Economic indicators such as the unemployment rate
or the US Treasury’s annual fiscal balance signaled that the economy was in
good shape and US stock prices surged - in the year 1999 alone, the NASDAQ
Composite Index grew by 85.6% (Kindleberger and Aliber, 2011). This surge
in prices was mainly driven by a focus on companies involved in the rapidly
developing field of information technology. The Initial Public Offering of VA
Linux, an American company involved in server technology, on December 9,
1999 provides ancedotal evidence for remarkable price dynamics: Its stock
value jumped by 698% on the first day of the stocks’ listing (Gimein, 1999).
In March 2000, the period of growing stock prices ended abruptly and prices
dropped sharply as the economic context started to change: The Federal
Reserve Bank of America withdrew liquidity and raised interest rates. The
United States eventually experienced a recession starting in the beginning of
2002 (Kindleberger and Aliber, 2011).
In order to examine the price development of US stocks in the 1990s, we turn
to an investment fund called The Growth Fund of America with ticker symbol
AGTHX. Its strategy is based on holding so-called growth stocks, which are
expected to exhibit growth significantly higher than the market average in the
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future. The fund therefore held and still holds stocks of many companies in the
information sector. As of July 30, 2020, 26.3% of its net assets are invested in
the stocks of Netflix, Facebook, Amazon, Microsoft and Alphabet (The Capital
Group Companies, Inc., 2020).
A visual inspection of dividends and prices of the AGTHX seems to confirm
the presence of a bubble in stockprices which burst in the year 2000:
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Figure 15: The Growth Fund of America (AGTHX), Prices (Blue) and Divi-
dends (Red).
The time period of interest is shaded.

6.1.1 Data

We obtain prices and dividends of the fund from Yahoo! Finance. Our obser-
vation period ranges from January 2, 1980 to October 9, 2020 and includes
10,283 daily observations of prices and 81 dividend payments. We adjust our
data for inflation by using the Consumer Price Index for the United States
from the Organization for Economic Co-operation and Development.
As Homm and Breitung (2012) show, the power of the tests is very low if the
observations after the peak are included in the sample. A visual inspection of
the graph suggests that the funds’ value peaks in the year 2000. Evaluating
the data set only in the year 2000 we find the fund to have its highest value in
March. Therefore we limit the time series of prices to March 1, 2000 and test
a total of T = 5,097 observations. As asset prices reflect expectations about
future dividends, we present the results for the restricted and unrestricted
dividend time series.
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6.1.2 Dividends

Following Chapter 5, we test the detrended time series of dividends. As
our unrestricted sample has T = 81 and our restricted sample has T = 60
observations, we take the critical values obtained from Homm and Breitung
(2012) for T = 100. We choose τ0 = 0.3, as our sample is rather small and we
do not want to consider very small subsamples. The following table reports
our results:

Table 1: Testing for Explosive Behaviour in the Dividends of The Growth Fund
of America.

Test Statistics

supB(0.3) supBT(0.3) K(0.3) supDF(0.3) supDFC(0.3)

(a) Restricted Sample January 2, 1980 to March 1, 2000
Value 0.0564 1.2180 14.9782 -0.9142 -6.3282

(b) Unrestricted Sample January 2, 1980 to October 9, 2020
Value 0.0745 0.0752 36.8726** -1.3886 -6.7781

Upper tail critical values for T = 100
1 % 2.3514 1.8448 24.294 0.0599 0.9071
5 % 2.7720 2.3928 33.729 0.3402 1.2864
10% 2.3514 3.7456 55.935 0.7871 2.0408

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.
The test statistics from Chapter 5 are applied to the restricted and unrestricted
sample of the detrended time series of dividends of The Growth Fund of America.
Critical values are obtained from Homm and Breitung (2012).

If we restrict the sample to end in March 2000, no statistic rejects the null
hypothesis on a 10 % significance level.
Only the Kim Statistic is significant on a 5 % level if we test the entire sample
from January 1980 to October 2020. The reason for this is the construction
of the Kim statistic. It opposes the first part of the sample {Y1, ..., YbτT c}
to the second part of the sample {YbτT c+1, ..., YT}. As the funds dividends
were very close to zero from 1980 to about 1995, this half of the sample
exhibits very low variance. The fund starts to pay higher dividends from 1995
onwards and consequently shows a variance significantly larger than zero when
considering only the subsample starting in 1995. Since the statistic divides
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variance measures of the first and second part of the sample, it yields large
values for splits of the sample around the year of 1995 - the nominator value is
divided by a very small number.
But all other tests do not classify the behaviour of the time-series as explosive
even on a 10% level. Concluding, we do not find convincing statistical evidence
for explosive behaviour in the time series of dividends of the AGTHX.

6.1.3 Prices

For testing the detrended time series of real prices of the AGTHX we choose
τ0 = 0.05 as our sample includes T = 5,097 observations and compute critical
values by Monte Carlo simulation: We generate data according to (31) with
ρt = 1 ∀ t, the initial value Y0 = 0, a normally distributed error term, i.e.
et ∼ N(0, 1) ∀ t and sample size T = 5,000. In line with Section 5.1 we apply
the test statistics to the detrended series during the Monte Carlo study. For
every test statistic, τ0 = 0.05 as this is the value chosen in the application and
1,000 replications are performed.
We report the following results:

Table 2: Testing for Explosive Behaviour in the Real Prices of The Growth
Fund of America.

Test Statistics

supB(0.05) supBT(0.05) supK(0.05) supDF(0.05) supDFC(0.05)

Value 2.5391 21.1612*** 146.4415*** 4.3660*** 6.9398***

Upper tail critical values for T = 5000
10 % 3.1534 1.9440 38.6562 1.1894 1.1282
5 % 3.8479 2.3308 53.1084 1.5759 1.5160
1% 5.0723 3.4897 90.0695 2.2057 2.1308

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.
The test statistics from Chapter 5 are applied to the time series of prices of The
Growth Fund of America from January 2, 1980 to March 1, 2000. Critical values are
obtained by Monte Carlo simulation.

All tests but the Bhargava statistic clearly reject the null hypothesis of a
random walk.
The Bhargava statistic does not detect explosive behaviour. This is in line
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with the results of Homm and Breitung (2012), who find that the statistic has
poor power properties. In their Monte Carlo simulations the Busetti-Taylor
statistic shows superior power properties to the Bhargava statistic. It seems
more effective to compare the values of the time series with the last value of
the series, rather than with the first.
Summing up, we find that all statistics apart from the Bhargava statistic detect
explosive behaviour on a 1 % significance level. Since we did not find convincing
evidence for explosive behaviour in dividends, we conclude a rational bubble
was present in the AGTHX.

6.2 The Housing Market of Philadelphia, USA

As shortly discussed in Chapter 1, a dysfunctional housing market can have
severe consequences. We now turn to the Housing Market of Philadelphia, USA
to analyze the price developments which eventually resulted in the financial
crisis of 2008. We use the identification strategy to detect a rational bubble
introduced in Chapters 4 and 5. As we analyze real estate, we do not consider
dividends, but rents.
A visual inspection of the plot of rents and house prices indeed suggests the
presence of a bubble bursting in January 2008. However, we might also suspect
a minor bubble from about 1982 to 1989:
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Figure 16: Housing Market of Philadelphia, Real Prices and Real Rents.
Both time series are normalized to value 100 in October 1976.
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6.2.1 Data

We use the House Price Index (HPI) from the U.S. Federal Housing Finance
Agency for Philadelphia, USA to measure prices. The quarterly time series
starts in the fourth quarter of 1976 and ends in the second quarter of 2020.
It includes T = 175 observations. Rents are examined by considering the
Consumer Price Index for All Urban Consumers: Rent of Primary Residence
in Philadelphia-Camden-Wilmington from the U.S. Bureau of Labor Statistics.
In order to match the time series of prices we examine the monthly time series
of the rent index starting in October 1976. As the Bureau of Labour Statistics
reports the index only every other month from October 1976 to December 1977,
we impute missing values by averaging the neighboring values. For example, if
an index value of 10 was reported for October 1977 and an index value of 20
for December 1977, we would impute an index value of 15 for November 1977.
This is a common procedure when dealing with missing values in a time series
(Le et al., 2018).

6.2.2 Rents

We test the detrended time series of real rents. As a visual inspection of Figure
16 suggests that the housing bubble burst at the beginning of 2008, we only
consider the time series of prices up until the first quarter of 2008 in Section
6.2.3. But as prices reflect expectations about future rents, we present the
results for the restricted and unrestricted time series of rents. The unrestricted
sample has T = 526 observations and the restricted sample has T = 376
observations. We use the critical values obtained from Homm and Breitung
(2012) with τ0 set to 0.2.
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Table 3: Testing for Explosive Behaviour in the Real Rents of the Housing
Market of Philadelphia, USA.

Test Statistics

supB(0.2) supBT(0.2) supK(0.2) supDF(0.2) supDFC(0.2)

Unrestricted Sample October 1976 to July 2020
Value 1.0262 0.0679 1.3098 -0.4539 -1.6224

Restricted Sample October 1976 to January 2008
Value 1.3146 0.3125 0.9388 -0.5037 -0.6898

Upper tail critical values for T = 400
10 % 2.6240 1.7661 26.692 0.1192 0.9542
5 % 2.9635 2.28 36.402 0.3562 1.3451
1% 3.9984 3.6151 62.72 0.8264 2.0168

The test statistics from Chapter 5 are applied to the detrended time series of real
rents in Philadelphia, USA. Critical values are obtained from Homm and Breitung
(2012).

Neither the unrestricted, nor the restricted sample shows statistically significant
explosive behaviour. If our theoretical framework from Chapter 4 is correct,
explosive behaviour in prices can only be caused by a bubble component.

6.2.3 Prices

As the plot suggests a burst of the bubble in January 2008, we restrict the time
series of prices from the fourth quarter of 1976 to the first quarter of 2008. This
yields T = 126 observations. We use critical values from Homm and Breitung
(2012) for T = 100 and set τ0 = 0.3 in order to keep subsamples reasonably
large. We obtain the following results:
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Table 4: Testing for Explosive Behaviour in the Real Prices of the Housing
Market of Philadelphia, USA.

Test Statistics

supB(0.3) supBT(0.3) supK(0.3) supDF(0.3) supDFC(0.3)

Prices
(restricted)

4.8631*** 6.6193*** 5.5021 0.4291** 0.6392

Upper tail critical values for T = 100
1 % 2.3514 1.8448 24.294 0.0599 0.9071
5 % 2.7720 2.3928 33.729 0.3402 1.2864
10% 2.3514 3.7456 55.935 0.7871 2.0408

* p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01.
The test statistics from Chapter 5 are applied to the quarterly time series of the
house price index ranging from the fourth quarter of 1976 to the first quarter of 2008
and including T = 126 observations. Critical values are obtained from Homm and
Breitung (2012).

The results are not unambiguous and reveal the strengths and weaknesses of
the testing procedures. They illustrate that the tests are highly dependent
on the specific trajectory of the time series data. Plotting the real detrended
house price data yields the following:
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Figure 17: Real Detrended House Price Data for Philadelphia, USA.

The US housing market boomed in the 1980s and dropped significantly in the
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early 1990s as the result of a market correction.9 The first part of the sample
does not appear to exhibit the pathway of a random walk. This is not in line
with our test hypotheses: H0 and H1 both assert that prices follow a random
walk in the first part of the sample. However, the test statistics handle this
differently well:
The Bhargava statistic and the Busetti-Taylor statistic clearly reject H0. As
they only build on information of the last part of the sample, they are not
affected by the behaviour of the time series in the first part of the sample.
The Kim statistic compares the variance of the first sample part and the second
sample part. Since the time series also exhibits a high variance due to rising
and then falling prices during the 1980s and early 1990s, the Kim statistic does
not detect explosiveness in the second part of the sample. This is in line with
the results from the Monte Carlo study of Homm and Breitung (2012). They
find the Kim statistic to have poor power properties.
The supDF statistic builds on information of the subsample {Y1, Y2, ..., YbτT c}
and fits a regression model. Thus, the statistic is always calculated involving
the first part of the sample. This is why the statistic only detects explosiveness
in the second part of the sample at a 5 % significance level: It can not fit a
regression model clearly indicating explosive behaviour as it always takes the
first part of the sample into account:

9 For a rigorous analysis of this period, we refer to Wheelock (2006).
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Figure 18: Values of the DFτ Statistic for the Detrended Series of Real House
Prices in Philadelphia, USA.
The red line gives the 5 % critical value obtained by Homm and
Breitung (2012) and the x-axis marks the last period of the respective
subsample.

The supDFC statistic does not detect explosiveness at a 10 % significance level.
As the statistic fits a regression model asserting a random walk for the first
part of the sample, it seems to be misspecified in this application. Thus, the
variance of the regression estimators δ̂τ is rather high and the values of the test
statistic remain smaller than the 10% critical value.
Summing up, supB, supBT and supDF detect explosive behaviour the US
housing market from October 1976 to January 2008. As we did not find
evidence for explosive behaviour in the time series of rents, they support the
view of a rational bubble in the housing market. supK and supDFC seem to
have low power properties due to the distinct pathway of the time series and
can not reject the null hypothesis of a random walk.

7 Conclusion

In this thesis we elaborate on Homm and Breitung (2012), who suggest statis-
tical testing procedures to identify rational bubbles in stock markets. Chapter
2 explains the Central Limit and Continuous Mapping Theorem, which we
use to derive the limiting distributions of the test statistics. In Chapter 3 we
cover relevant theory from the field of statistical time series analysis, mainly
focusing on the AR(1)-process and its distribution. By utilizing this theory
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in Chapter 4 we suggest specific models for the time series of asset prices
and dividends. Within this theoretical framework, non-explosive behaviour in
dividends together with explosive behaviour in prices implies a rational bubble.
We discuss the five different testing strategies suggested by Homm and Breitung
(2012) in Chapter 5. They each test the null hypothesis of a random walk
against the alternative of a change from I(1) to explosive and can therefore be
used to detect rational bubbles.
The supB statistic and the supBT statistic only consider the second part of
the sample period. While the supB statistic is based on the idea of comparing
the first value of the respective subsample to the other data points, the supBT
statistic is based on comparing the last value of the subsample to the other
data points. The supK statistic opposes the first part of the sample to the
second part of the sample and the supDF and supDFC statistic are based on
estimating a regression model with OLS and testing for specific values of the
autoregressive parameter: The supDF statistic is concerned with estimating
an AR(1)-model for recursive subsamples of the time series. In contrast, the
supDFC statistic incorporates the information that both under H0 and H1 the
time series follows a random walk at first by considering an adjusted regression
model.
We apply those statistics to the US stock market of the 1990s and the US
housing market leading up to the financial crisis in 2008 in Chapter 6. We
hereby find strong evidence for a rational bubble in the 1990s US stock market
and also find indications of a bubble in the US housing market.
The discussed testing strategies show significant weaknesses in detecting explo-
sive behaviour:
Homm and Breitung (2012) show in their Monte Carlo study that the supB
and supK statistic have weak power properties and generally exhibit the lowest
power among the presented tests. This becomes apparent in our applications,
since the supB statistic does not detect explosive bahviour in the time series
of real prices of the AGTHX and the supK statistic does not reject the null
hypothesis of a random walk for the time series of real house prices of Philadel-
phia, USA.
Furthermore, the power of the tests critically depends on the specific pathway
of the time series. If the time series does not exhibit a random walk in the first
part of the sample, supK, supDF and supDFC statistic appear to have weak
power (see Chapter 6.2.3). On this matter Homm and Breitung (2012) show
that all statistics have difficulties detecting explosive behaviour if the sample
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includes multiple collapsing bubbles. We refer to Phillips et al. (2015a) and
Phillips et al. (2015b) who address this issue by advancing the supDF statistic.
Additionally it should be noted that we tried to identify bubbles in retrospect
in Chapter 6. This allowed us to examine a time series including its peak.
When testing in real time, this is usually not possible and the test statistics
could yield less conclusive results.
Despite those weaknesses, every testing procedure presented in this thesis is
a valid tool for detecting rational bubbles in financial markets. The theoreti-
cal framework presented in Homm and Breitung (2012), which those testing
procedures are based on, is a significant contribution to the study of financial
markets as it allows to test empirically for the existence of rational bubbles.
The presented theory enabled us to identify a rational bubble in The Growth
Fund of America in our applications. Homm and Breitung (2012) and Phillips
et al. (2011) also detect a bubble in the NASDAQ composite index for the same
period using the presented statistics. Those findings provide strong evidence
that a rational bubble was indeed present in the US stock market of the 1990s.
Additionally, supDF, supB and supBT statistic identify a bubble in the US
housing market leading up to the financial crisis in 2008 in our application.
Those results show that the presented statistics are helpful tools for analyzing
financial markets in retrospect. They also encourage employing the testing
strategies to monitor financial markets. The tests can provide important hints
to dysfunctional market behaviour and prompt regulators to action. We there-
fore support the efforts of Martínez-García et al. (2020), who are working on
a computationally efficient implementation of the presented statistics in the
programming language R - in order to facilitate the widespread usage of the
testing procedures.
When reviewing recent research on bubbles in financial markets we find the
presented methods used in a wider context: Süssmuth (2019) for instance
examines bubbles in cryptocurrencies by testing the time series of internet
search queries. Future research could look into other applications of the test
statistics.
In the future we also expect further development of the framework presented
in Homm and Breitung (2012). We see potential benefits in incorporating
additional variables. Considering measures of indebtness for instance could
yield more conclusive results when studying bubbles, as rising indebtness of
individuals is regarded as one of the major causes of bubbles (see Chapter 1).
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