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1. Introduction 
 

1.1 GTPases - general mechanism of GTP hydrolysis 
 

An estimated 10–18% of all known gene products contain the 

mononucleotide-binding fold, which forms part of the P-loop domain (G1 motif) of 

both guanosine triphosphatases (GTPases) and adenosine triphosphatases 

(ATPases) (Leipe et al., 2002). However, the biological roles of GTPases and 

ATPases are very different. ATP hydrolysis liberates the energy needed to move 

motor proteins and accelerate metabolic reactions. Instead, GTP hydrolysis appears 

to have evolved exclusively to regulate guanine nucleotide-binding proteins, either 

through promoting their action as molecular switches or their self-assembly as 

mechanoenzymes (MacMicking, 2004). 

The conversion of guanosine triphosphate (GTP) to guanosine diphosphate 

(GDP) and inorganic phosphate (Pi) by GTP binding proteins (GTPases) is a 

fundamental process in living cells. GTP hydrolysis controls numerous vital functions, 

including cellular growth and differentiation (Ras family; (Vojtek and Der, 1998), 

cytoskeletal dynamics and transcription (Rho/Rac/Cdc42 family; (Mackay and Hall, 

1998), vesicular transport (Rab family; (Schimmoller et al., 1998), membrane 

trafficking (Arf family; (Moss and Vaughan, 1998), nucleocytoplasmic transport and 

mitotic spindle assembly (Ran family; (Hetzer et al., 2002), translation and protein 

translocation (EF-Tu, EF-G, SRP; (Chu et al., 2004), endocytosis (dynamin; 

(Hinshaw, 2000; Hunn, 2007); (Song and Schmid, 2003); (Praefcke and McMahon, 

2004), as well as cell-autonomous resistance against a variety of intracellular 

pathogens (Mx, GBP and IRG families; (Martens and Howard, 2006).  

GTPases function as molecular switches, generally cycling between GTP-

bound, active and GDP-bound, inactive form (figure 1.1). Only in the activated state 

these proteins interact with and activate downstream effectors, which in turn trigger 

cellular responses. GTP hydrolysis returns GTPases to their inactive state, thereby 

terminating downstream signalling (Scheffzek and Ahmadian, 2005).  
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Figure 1.1. GTPase cycle  

The GDP-bound form of the GTP-binding protein is considered inactive, whereas the GTP-bound form 

represents the active form interacting with effector proteins. For many GTPases, but not all, transition 

between GDP- and GTP-bound states is regulated by different proteins. GDIs prevent dissociation of 

GDP, keeping the GTPase in the inactive form. GEF activity catalyses the release of GDP and the 

subsequent uptake of GTP. GAP activity triggers GTP hydrolysis, terminating the active state and 

restoring the inactive GDP form.  

 

 

1.1.1. Nucleotide binding domain of GTPases 
 

Common for all GTPases analysed to date is a nucleotide-binding domain 

(Leipe et al., 2002). The core of the GTP binding motif consists of central six-

stranded beta sheets, five parallel and one antiparallel, surrounded by five alpha 

helices (figure 1.2). Binding of guanine nucleotide is mediated by five motifs termed 

G1–G5, of which the G1 [G(X)4GK(S/T)], G3 [DXXG], and G4 [(N/T)KXD] motifs are 

more or less universally conserved.  

G1 motif G(X)4GK(S/T) (also referred to as P-loop) stabilises the phosphates 

of GDP and GTP of the bound nucleotide by hydrogen bonds formed by both lysine 

and serine/threonine residues (Kjeldgaard et al., 1996). In addition, the side chain of 

the Ser/Thr residue coordinates the position of magnesium ion, necessary for the 

catalytic activity of GTPases. In most of the known structures, the Asp residue in G3 

motif DXXG is involved in binding a magnesium ion via a water molecule. 

Furthermore, the Asp residue appears to form a hydrogen bond with the conserved 

Ser/Thr residue in the G1 motif. In the GTP-bound form, this aspartic acid interacts 
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with the γ-phosphate. The G4 motif (N/T)KXD determines the specificity for the 

guanine base (Kjeldgaard et al., 1996).  

 

 

 
Figure 1.2. The strucure of the GTP-binding domain 
Ribbon plot of the minimal GTP-binding domain is shown, with the conserved sequence elements and 

the switch regions in different colors as indicated (Vetter and Wittinghofer, 2001). 

 

 

 

1.2. Regulation of GTPase activity 
 

The fraction of protein molecules in the GTP-bound state depends on the 

relative rates of two reactions: dissociation of GDP from the GDP-bound protein and 

hydrolysis of bound GTP, characterized by kdissGDP and kcatGTP rate constants 

respectively. Thus, the proportion of protein in the active GTP-bound state can be 

increased either by accelerating kdissGDP or by reducing kcatGTP (Bourne et al., 1990), 

performed for many GTPases by specific ligands.  

Three groups of structurally distinctive proteins regulate GTPase cycle of 

some of the GTPases. Guanine-nucleotide dissociation inhibitors (GDIs) trap 

GTPases in an inactive, GDP-bound state whereas guanine-nucleotide exchange 

factors (GEFs) catalyze the release of GDP and the subsequent uptake of GTP. 

GTPase activating proteins (GAPs) accelerate the rate of GTP hydrolysis and 

thereby terminate downstream signaling. 
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1.2.1. Guanine-nucleotide dissociation inhibitors (GDI) 
 

Guanine-nucleotide dissociation inhibitors for Rho and Rab family proteins 

have been identified. GDIs bind to the prenylated COOH-terminus of small GTPases 

and thereby shield the hydrophobic tail from the aqueous environment. GTPase-GDI 

complexes constitute a cytoplasmic pool of prenylated proteins, allowing Rab and 

Rho proteins to be recycled between different membrane compartments in the cell 

(Vetter and Wittinghofer, 2001). However, no GDI candidates have been reported for 

the large GTPases like dynamin, Mx, GBP or IRG proteins. 

 

 

1.2.2. Guanine-nucleotide exchange factors (GEF) 
 

 GEFs constitute a highly diverse group of proteins in the cell (Sprang, 2001). 

They contain a variety of regulatory and protein-protein interaction domains (Cerione 

and Zheng, 1996) and they can be differentially expressed in a tissue-specific 

manner (Sprang, 2001). GEFs often possess multiple signal transduction modules 

allowing their activation by the interaction with various upstream regulators (Hoffman 

and Cerione, 2002). In addition, GEFs can be also activated by the phosphorylation 

(Kato et al., 2000). Thus, they can respond to various intra- and extracellular signals 

often resulting in their translocation to a specific membrane compartment where they 

than activate GTPases. Although diverse in structure, GEFs use a common 

mechanism to release nucleotide either by disrupting the magnesium ion binding site 

in the GTP binding proteins (Worthylake et al., 2000) or, in addition, by influencing γ-

phosphate binding site and the P-loop (Sprang, 2001). GEF-GTPase nucleotide-free 

complex is dissociated by rebinding of the nucleotide (Hutchinson and Eccleston, 

2000), normally GTP because of its higher concentration in cells (Kleinecke and 

Soeling, 1979) and because for most of the GTPases the affinity for GTP is higher 

than that for GDP. In the case of the large GTPases it has been argued that no GEF 

activity is required, on the ground of the low nucleotide binding affinity of these 

GTPases (Uthaiah et al., 2003). 
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1.2.3. GTPase-activating proteins (GAP) 
 

GTP-hydrolysis by GTP-binding proteins is usually very slow but can be 

accelerated upon interaction with GTPase-activating proteins (GAPs). GAPs 

stimulate GTP hydrolysis in two ways: by supplying a catalytic arginine to the 

GTPase active site to facilitate the transition state and by reducing the flexibility of the 

switch segments, stabilising them in a catalytically functional state (Scheffzek et al., 

1997). An exposed loop of the GAP inserts into the catalytic site of an appropriate 

GTPase, allowing the interaction of an arginine side chain (the arginine finger) with 

the β-phosphate of GTP. In addition, the arginine finger forms a hydrogen bond with 

the side chain of catalytically important glutamine (Gln61 in Ras) (Scheffzek et al., 

1998). The exception is Rap1GAP, which uses a catalytic asparagine instead of an 

arginine (Daumke et al., 2004). Other variations, not involving a separate GAP 

protein, have been reported. In heterotrimeric G proteins, as well as in the human 

guanylate-binding protein hGBP1, the critical arginine residue is part of the GTP-

binding protein itself and is supplied in cis (Sprang, 1997; Prakash et al., 2000b) 

whereas dynamins and Irga6 provide it in trans by self-association (Tuma and 

Collins, 1994; Uthaiah et al., 2003). 

  

  

 

1.3. Dynamins 
 

 Dynamins are large GTPases (98 kDa) found in yeast, plants and animals. 

They have been implicated in various cellular processes, such as vesicular trafficking 

and scission, organelle fusion and division and in cytokinesis (Praefcke and 

McMahon, 2004).  

 Classical dynamins consist of five domains: GTP-binding domain; middle 

domain, with no sequence homology to any known structural motif; pleckstrin 

homology domain (PH), which binds preferentially to phosphoinositides, in particular 

to phosphoinositide(4,5)biphosphate [PI(4,5)P2]; GTPase effector domain (GED), 

acting as a GAP for dynamin; proline rich domain (PRD), playing an important role in 

protein-protein interaction (Hinshaw, 2000).  
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1.3.1. Dynamin as GTPase 
 

 Dynamin was found in a monomer-tetramer equilibrium in solution (Hinshaw 

and Schmid, 1995; Tuma and Collins, 1995; Eccleston et al., 2002). It has low 

binding affinity for nucleotides, with dissociation constant in the micromolar range 

(Stowell et al., 1999; Binns et al., 2000; Marks et al., 2001). Considering the cellular 

nucleotide concentration (Kleinecke and Soeling, 1979) and that dynamin binds GTP 

40-fold more tightly that GDP, it is expected that dynamin would predominantly exist 

in GTP-bound form in the cell.  

Dynamin tetramers have a relatively high intrinsic rate of hydrolysis (kcat of 

~200 min-1), which increases upon self-assembly of dynamin into oligomeric 

structures (Tuma and Collins, 1994; Hinshaw and Schmid, 1995). Up to 50-fold 

stimulation of GTP hydrolysis was shown to be mediated by dynamin itself, namely 

by GTPase effector domain (GED) (Sever et al., 1999), in this way providing its own 

GAP.  

Self-assembly of dynamin tetramers into ring-like structure is spatially limited 

to the membranes, where the pleckstrin homology and another, yet unidentified, 

domain mediate lipid binding and proper positioning of dynamins (Burger et al., 

2000). Although GTP binding is not necessary for membrane recruitment itself (Tuma 

and Collins, 1995; Burger et al., 2000), membrane tubulation and vesicle scission 

require GTP incorporation and its subsequent hydrolysis, respectively (Sweitzer and 

Hinshaw, 1998; Stowell et al., 1999; Marks et al., 2001).  

The exact mechanism of dynamin function is still under dispute. The fact that 

GTP-bound dynamin oligomers tubulate membranes in vitro (Hinshaw and Schmid, 

1995) and in vivo (Marks et al., 2001) and that the vesicle scission requires GTP 

hydrolysis led to the model describing dynamin as mechanochemical enzyme. 

Alternatively, dynamin is considered as regulatory protein, recruiting effectors 

proteins in GTP-bound form via the proline rich domain (Praefcke and McMahon, 

2004). 
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1.4. IFN-inducible GTPases 
 

1.4.1. Mx proteins 
 

 Murine Mx1 was the first IFN-inducible GTPase implicated in cell-autonomous 

resistance against intracellular pathogens. Mx1 locus was discovered more than 40 

years ago through a polymorphism in influenza virus resistance among different 

mouse strains. The A2G mouse was found to be resistant while all other strains were 

susceptible (Lindenmann et al., 1963). Resistance behaved genetically as a single 

dominant trait (Lindenmann, 1964). The resistance phenotype was confirmed at the 

cellular level in vitro as well (Lindenmann et al., 1978), indicating its cell-autonomous 

character. Mx genes were found in all vertebrates (Staeheli and Haller, 1985). In 

mouse and humans two Mx genes were characterized, Mx1 and Mx2, and MxA and 

MxB, respectively, and they were found to be induced by type I IFN (Goetschy et al., 

1989; Simon et al., 1991). 

 Mx proteins are large GTPases (70-80 kDa) consisting of N-terminal GTP-

binding domain and C-terminal domain involved in protein-protein interactions. 

Recombinant MxA hydrolyses GTP to GDP with a turnover rate of 27 min-1 (Richter 

et al., 1995). High GTPase activity and several fold stronger binding of GTP than 

GDP suggest that most MxA proteins in vivo could be in the GTP-bound form. 

Although no lipid-binding motif has been identified, purified MxA binds to lipid 

vesicles in a nucleotide-independent manner (Accola et al., 2002). In vivo, MxA partly 

co-localised with the smooth endoplasmic reticulum but the relevance of MxA lipid 

binding to its antiviral function is not clear. In the presence of GDP, however, MxA 

protein in solution formed evenly shaped rings that condensed to spirals or stacks of 

rings after incubation with GTPγS (Kochs et al., 2002). The oligomerisation property 

of Mx proteins was also confirmed by gel filtration analysis of both recombinant 

human His-tagged MxA (Richter et al., 1995) and mouse Mx1 (Melen et al., 1992). 

MxA was shown to form homo-oligomers in vivo as well (Ponten et al., 1997) and the 

C-terminus of the protein, containing a putative leucine zipper, was required for the 

interaction. In mouse Mx1, the only Mx protein localising to the nucleus, the same 

domain carries a nuclear localisation signal. Both cytoplasmic and nuclear Mx 

proteins are found in granular and dotty structures, generally considered as Mx 

oligomers. 
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 Mx proteins are antiviral resistance factor. Transfected murine Mx1 confers 

resistance against influenza virus even in the absence of IFN induction (Staeheli et 

al., 1986; Arnheiter et al., 1990), implying that other IFNα/β induced factors are not 

essential for protection against the virus, thought they may play a significant role in 

establishing the antiviral state (Staeheli et al., 1986). Human MxA blocks nuclear 

import of Thogoto virus nucleocapsids by GTP-dependent interaction of its C-terminal 

domain with a nucleoprotein (Kochs and Haller, 1999a; Kochs and Haller, 1999b). 

Cytoplasmic MxA inhibits the multiplication of both influenza virus and vesicular 

stomatitis virus (Zurcher et al., 1992b). Interestingly, when moved to the nucleus with 

the help of a foreign nuclear transport signal, MxA not only retained its activity 

against influenza virus but was actually more effective, exerting its function by 

blocking primary transcription of influenza virus like mouse Mx1, whose natural 

location is the cell nucleus (Krug et al., 1985; Pavlovic et al., 1992). Nuclear 

localisation of mouse Mx1 protein is, however, necessary for inhibition of influenza 

virus (Zurcher et al., 1992a). 

  

 

 
Figure 1.3. Model of MxA-MxA interaction mediated by the carboxyl-terminal region (Haller et 
al., 2007) 
MxA can form two types of assemblies. In the absence of infection, MxA forms oligomers by 

intermolecular association of the LZ domain of one molecule (green box) with the CID of another 

molecule (blue box). These assemblies represent a storage form of antivirally inactive molecules, from 

which antivirally competent monomers are transiently released. In infected cells, MxA monomers bind 

to viral targets, such as nucleocapsids or nucleocapsid-like structures (red shape). 
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Mx proteins fold into three functional domains (Haller et al., 2007): N-terminal 

GTP-binding domain, containing self-assembly motif (Nakayama et al., 1993), central 

interactive domain (CID) and C-terminal leucine zipper domain (LZ). It has been 

reported that the C-terminal LZ domain interacts with both GTP-binding domain 

(Schwemmle et al., 1995) and with the CID of another Mx molecule (Schumacher 

and Staeheli, 1998). Based on these findings, a model for Mx antiviral function has 

been proposed (Di Paolo et al., 1999; Janzen et al., 2000; Haller and Kochs, 2002). It 

proposes that MxA proteins exist in two forms in the cell: an active monomeric and an 

inactive oligomeric form. The oligomers may represent a storage form of Mx 

molecules preventing their activation without the presence of the specific target. 

Prerequisite for MxA oligomer formation is the folding of the C-terminal LZ domain (in 

green in figure 1.3.) (Di Paolo et al., 1999; Haller and Kochs, 2002). Folded LZ 

domain interacts with both CID (in blue, figure 1.3.) and self-assembly sequence in 

the GTP-binding motif of another MxA molecule, giving rise to the formation of large 

aggregates. After viral infection, cellular or viral protein(s) induce the dissociation of 

the MxA oligomers, releasing antivirally competent monomers. MxA monomers bind 

to viral targets, such as nucleocapsids or nucleocapsid-like structures (red shape, 

figure 1.3.) and sort them to locations where they are trapped and degraded. The 

exact mechanism of how monomeric Mx inhibits viral activity is not resolved. MxA 

needs to be in the GTP-bound form in order to interact with Thogoto virus 

nucleocapsid (Kochs and Haller, 1999a) though GTP hydrolysis itself seems not to 

be required (Janzen et al., 2000). 

 

 

1.4.2. The guanylate-binding proteins (GBPs) 
 

 The response of cells to IFNγ is dominated by the induction of two families of 

GTPases, the IRG family and the guanylate-binding proteins (GBPs). There are 

seven GBP genes described in human, hGBP1-7 (Cheng et al., 1991; Olszewski et 

al., 2006) and eleven in mouse, mGBP1-11 (Degrandi, in press) and the family is well 

conserved in vertebrates (Robertsen et al., 2006). Despite their massive induction 

upon IFNγ treatment, only a weak antipathogenic effect of hGBP1 against vesicular 

stomatitis virus (VSV) and encephalomyocarditis virus (ECMV) in vitro has been 

reported (Anderson et al., 1999). Additionally, hGBP1 and mGBP2 were proposed to 
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have a role in regulation of vasculogenesis by proinflammatory cytokines (Guenzi et 

al., 2001; Guenzi et al., 2003) and IFN-mediated cell growth (Gorbacheva et al., 

2002), respectively. 

 GBPs are large GTPases (65-67 kDa), consisting of an N-terminal GTP-

binding motif and very elongated C-terminal helical domain (Prakash et al., 2000a). 

The G4 motif, TLRD, responsible for the recognition of the guanine moiety of the 

nucleotide, is characterized by unique substitution of conserved lysine at the position 

2 to the hydrophobic leucine (Praefcke et al., 1999). Three of the human (hGBP1, 

hGBP2 and hGBP5) and mouse (mGBP1, mGBP2 and mGBP5) GBPs posses a C-

terminal CaaX box, resulting in farnesylation of hGBP1 and isoprenylation of all 

others (Nantais et al., 1996; Stickney and Buss, 2000).  

The mechanism of GTP hydrolysis by hGBP1 is well studied. The binding 

affinity of hGBP1 for GTP, GDP and GMP is very low (0.5-2.4 µM) (Praefcke et al., 

2004), due to high nucleotide dissociation rates. In the presence of GMP and GDP, 

hGBP1 was found as a monomer, but it is dimeric in the GTP-bound state and 

tetrameric in GDP-AlFx stabilised transition state (Prakash et al., 2000a; Praefcke et 

al., 2004). GTP-dependent dimerisation of hGBP1 results in at least an eight-fold 

increase in GTP hydrolysis by providing the catalytic arginine in cis (Prakash et al., 

2000b; Ghosh et al., 2006). The unique position of hGBP1 amongst known GTPases 

is demonstrated by the hydrolysis of GTP to GDP and GMP (Schwemmle and 

Staeheli, 1994; Praefcke et al., 1999), leaving predominantly GMP as a product of 

hydrolysis (85-95% at 37°C; (Kunzelmann et al., 2006). Although GTP is hydrolysed 

in two successive cleavages of γ- and β-phosphates, GDP in solution cannot serve 

as a substrate. The crystal structure of hGBP1 in complex with the non-hydrolysable 

GTP analog GppNHp (Prakash et al., 2000b) illustrated that the largest structural 

changes involve guanine and phosphate caps around GTP-binding site, suggesting a 

shift of the nucleotide toward the catalytic centre after GTP hydrolysis by positioning 

the β-phosphate of GDP at the same place as the γ-phosphate of GTP was located 

before. 

 Recent data document subcellular localisation of hGBP1 to the Golgi 

apparatus (Modiano et al., 2005). Redistribution from the cytosol to the Golgi occurs 

when hGBP1 is in the GDP-AlFx transition state and requires isoprenylation and the 

presence of another, so far unidentified IFNγ-induced factor. Although the lipid 

modification of hGBP1 was shown to be important for the relocalisation of this protein 
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to the Golgi, its role in hGBP1 function in vivo, nor its effect on the biochemical 

properties of hGBP1 in vitro are not known. 

 

 

1.4.3. Very large inducible GTPase (VLIG) 
 

VLIG-1 protein, with a molecular weight of approximately 280 kDa, is the 

largest known GTPase (Klamp et al., 2003). Its expression is massively induced by 

IFNγ, and to a somewhat lesser extent by IFNβ. The GTP-binding domain of VLIG-1 

is related to that of other IFN-inducible resistance GTPases, in particular with Mx and 

GBP proteins. In the assay using nucleotide-agaroses it was shown that VLIG-1 

binds strongly to GDP-agarose and very weakly to GTP- and GMP-agaroses, 

indicating that this protein is, indeed, a GTP-binding protein (Klamp et al., 2003). The 

largest part of the long protein sequence does not share any structural similarities 

with any other protein. Recently, it has been reported that the central part of VLIG-1 

exhibit 43% similarity to the CARD6 protein (Dufner and Mak, 2006), microtubule-

interacting protein that positively modulates NF-kappaB activation (Dufner et al., 

2006). However, the role of this central VLIG-1 region in its potential immunity-related 

function is unknown. 

 

 

1.4.4. Immunity-related GTPases (IRGs) 
 

 IFNγ induction of mouse macrophages results in an immense transcription 

activation. Of estimated 1300 genes induced (Ehrt et al., 2001), messages of GBP 

and IRG protein families are the most abundant (Boehm et al., 1998), indicating their 

importance in immune response to pathogen infections.  

 IRG proteins are typically 47 kDa in molecular weight, with a canonical GTP-

binding domain positioned approximately 80 amino acid from the N-terminus. 

Analysis of the N-terminal sequence revealed that more than half of the mouse 

GTPases could be myristoylated. In mouse, three of the IRG proteins are 

characterized by the unique substitution of the universally conserved lysine in G1 

motif (GX4GKS) to the methionine (GX4GMS), implying a distinct catalytic mechanism 
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for GTP hydrolysis. Thus, based on the sequence of the G1 motif, IRG proteins can 

be grouped into GKS and GMS subfamily (Boehm et al., 1998). 
 

 

1.4.4.1. Genomic structure of IRG genes 
 

The genome structure of IRG genes in the C57BL/6 mouse strain was 

analysed in detail (Bekpen et al., 2005). There are all together 25 coding units 

present, of which 24 contain IFN-responsive GAS and ISRE motifs in their promotor, 

resulting in their strong induction upon IFNγ stimulation. Exception is the Irgc gene, 

which is not induced by IFNγ nor does it possess IFN-response elements in its 

promotor. Interestingly, the only human full-length gene, IRGC, is an ortholog with 

90% identity to the Irgc mouse gene. As in the mouse, human IRGC protein is 

constitutively expressed in male gonad (Rohde, 2007). In human genome, another 

Irg-like gene fragment was identified, containing only part of the GTP-binding domain 

of an IRGM protein. Although some IRG genes were found in zebrafish, there are no 

clear homologs in invertebrates below the Cephalohordates (Bekpen et al., 2005). 

The Cephalochordate Branchiostoma floridae has a large family of IRG genes (Hunn, 

2007). Absence of IFN-induced IRG proteins in humans show that they either 

possess alternative mechanisms effective against intracellular pathogens or they 

deploy other already known mechanisms more efficiently (Bekpen et al., 2005). 
 

 

1.4.4.2. Localisation of IRG proteins 
 

Analysis of cellular localisation of five of the IRG members, Irga6, Irgb6, Irgd, 

Irgm1 and Irgm3 (IIGP1, TGTP, IRG-47, LRG-47 and IGTP, in old nomenclature) in 

IFNγ-induced mouse fibroblasts and macrophages, revealed different levels of 

membrane association of these proteins (Martens et al., 2004). Irgm1 and Irgm3 

were found almost exclusively bound to the membranes whereas, in contrast, Irgd 

protein was mainly soluble. Irga6 and Irgb6 partitioned roughly equally between the 

membrane bound and soluble fractions. Co-staining with different organelle markers 

localised Irgm1 and Irgm2 to the Golgi apparatus and Irgm3 to the endoplasmic 

reticulum (Martens, 2004; Martens et al., 2004). Irga6 and Irgb6 were found 
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predominantly co-localising in a reticular pattern with ER markers, contrasting 

findings reporting Irga6 association with Golgi markers (Zerrahn et al., 2002). 

 

 

1.4.4.3. The involvement of IRG proteins in resistance to intracellular 
pathogens 
 

Consistent with their strong inducibility by IFNγ, many members of the IRG 

family have been implicated in resistance against intracellular pathogens in mice, 

both of bacterial and protozoan origin: Mycobacterium tuberculosis (MacMicking et 

al., 2003), Mycobacterium avium (Feng et al., 2004), Salmonella typhimurium (Taylor 

et al., 2004), Listeria monocytogenes (Collazo et al., 2001), Chlamydia trachomatis 

(Nelson et al., 2005; Bernstein-Hanley et al., 2006), Chlamydia psittaci (Miyairi et al., 

2007), Tripanosoma cruzi (Santiago et al., 2005), Leishmania major (Feng et al., 

2004) and Toxoplasma gondii (Taylor et al., 2000; Collazo et al., 2001; Halonen et 

al., 2001; Butcher et al., 2005; Martens et al., 2005; Ling et al., 2006). Involvement of 

different IRG proteins in resistance against these pathogens is shown in table 1.1. 

Influence of IRG proteins in viral infections is limited to reports correlating 

overexpression of Irgb6 and relative reduced plaque formation by vesicular stomatitis 

virus but not herpes simplex virus in L cells (Carlow et al., 1998) and even weaker 

effect for Coxackie virus in Hela cells expressing Irgm2 (Zhang et al., 2003). Ebola 

virus and mouse cytomegalovirus have failed to reveal a susceptibility phenotype 

(Taylor et al., 2000). 

Although several studies document susceptibility of IRG-deficient mice to 

various pathogens, little is known about the mechanism of their function. Irgm1-

defficient mice infected with M. avium display severe lymphopenia at the site of 

bacterial replication (Feng et al., 2004) whereas pathology of T. gondii infected 

Irgm3-deficient mice was contributed to the overproduction of inflammatory cytokines 

(Taylor et al., 2000). Recently, infection with C. psittaci revealed that C57BL/6J mice 

were 105-fold more resistant than DBA/2J mice due to differential expression of both 

Irgb10 and Irgm2 proteins (Miyairi et al., 2007). Microarrays of infected peritoneal 

lavage showed over 10-fold upregulation of neutrophil-recruiting chemokines in 

susceptible mice and over 100-fold increase in macrophage differentiation genes in 

resistant mice. Massive neutrophil recruitment was seen in susceptible in comparison 
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to resistant mice indicating that the susceptibility pattern involves the stimulation of 

different inflammatory pathways.  

 

 
Table 1.1. Susceptibilities of IRG-deficient mice and cells to intracellular pathogens (modified 
from (Martens and Howard, 2006) 
R, wild type or knockout mouse resistant; S, knockout mouse sensitive; ND, not done; Rc, knockout 

cells resistant; Sc knockout cells sensitive; Ss, wild type mouse strain DBA/2J sensitive; Si, RNAi wild- 

type cells sensitive. 

 

 

1.4.4.4. The involvement of IRG proteins in cell-autonomous resistance to 
intracellular pathogens 
 

 Loss of resistance of Irgm1- and Irgm3-deficient mice to infection with T. 

gondii correlates with the loss of IFNγ-dependent resistance in infected cells in vitro 

(Halonen et al., 2001; Butcher et al., 2005), demonstrating the role of IRG proteins in 

cell-autonomous resistance. Effect of IRG proteins in challenging pathogen infections 

is not redundant (Collazo et al., 2001; Butcher et al., 2005; Bernstein-Hanley et al., 

2006; Miyairi et al., 2007), indicating that they may regulate each other’s functions in 

infected cells. Five of the known IRG proteins, Irgb6, Irga6, Irgd, Irgm2 and Irgm3 

were found concentrated at the parasitophorous vacuole membrane in IFNγ-induced 

astrocytes infected with T. gondii (Martens et al., 2005), already 15 min after 

infection. Both Irga6 and Irgm3 were found to be involved in T. gondii vacuole 

vesiculation and disruption in astrocytes and macrophages (Martens et al., 2005; 

Ling et al., 2006), effectively striping parasite of its membranes. A series of disruption 
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events was proposed involving parasitophorous vacuole membrane (PVM) ruffling, 

PVM vesiculation, disruption, and parasite plasma membrane stripping, leading to 

lysosomal degradation of the parasite (Ling et al., 2006). Disruption of T. gondii 

containing vacuoles, measured by uracil incorporation, was slightly decreased in 

Irga6-deficient cells, although Irga6-deficient mice showed no significant susceptibility 

to T. gondii infection (Martens et al., 2005).  

 Irgm1 protein was not found on parasitophorous vacuole (Martens et al., 2005) 

but associated with phagosomes containing M. tuberculosis in IFNγ-induced 

macrophages (MacMicking et al., 2003). Recruitment of Irgm1 to the mycobacterial 

phagosome seems not to require a pathogen-derived signal since this relocalisation 

occurs as well during phagocytosis of latex beads in fibroblasts and macrophages 

(Martens et al., 2004). Absence of Irgm1 results in delayed and limited phagosome 

acidification in Irgm1-deficient cells (MacMicking et al., 2003). 

 A role of Irgm1 in induction of autophagy has been also proposed (Gutierrez et 

al., 2004). As autophagosome-like vacuoles were closely associated with disrupted 

T. gondii-containing vacuoles (Martens et al., 2005; Ling et al., 2006), susceptibility of 

Irgm1-deficient mouse to T. gondii infection could be explained by inability of cells to 

engulf disrupted vacuole into the autophagosome. Because autophagy also targets 

cytosolic pathogens (Rich et al., 2003; Deretic, 2005), its promotion by Irgm1 may 

also explain how Irgm1 helps mice to resist infections by L. monocytogenes (Collazo 

et al., 2001) and T. cruzi (Santiago et al., 2005). 

 

 

1.4.4.5. Biochemical properties of IRG proteins 
 

 GTPase activities of three of the IRG proteins, Irga6, Irgb6 and Irgm3, have 

been reported. Partly purified GST-Irgb6 and GST-Irgm3 proteins were shown to 

hydrolyse GTP to GDP in vitro (Taylor et al., 1996; Carlow et al., 1998). Weak GTP 

hydrolysis was also demonstrated for FLAG-Irgm3 immunoprecipitated from NIH/3T3 

fibroblasts (Taylor et al., 1997). It is suggested that cellular Irgm3 is predominantly 

GTP-bound (Taylor et al., 1997), although nucleotide-binding affinity were not 

measured. Both endogenous, IFNγ-induced Irgm3 and transfected FLAG-Irgm3 

proteins were shown to be mostly in the GTP-bound form in cells (up to 96%), 

indicating that the IFNγ state of the cell does not influence the activity of this protein 
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(Taylor et al., 1997). However, recombinant Irga6 protein is the only IRG member 

whose biochemical and enzymatic properties were studied in detail.  

 Recombinant Irga6, purified from Escherichia coli, crystallized as a dimer in 

the nucleotide-free and GDP-bound state (Ghosh et al., 2004). Structure shows Irga6 

folding into helical and G domain, consisting of 6-stranded β sheets surrounded by 6 

α helices. Helical domain is unique, being built from both N- and C-terminal helices 

(figure 1.4.). Since recombinant Irga6wt contained a short non-canonical N-terminal 

extension derived from the GST fusion (Uthaiah et al., 2003) and, in addition, 

because prokaryotes do not expressed enzymes necessary for protein myristoylation 

(Heuckeroth et al., 1988), the structural position of the N-terminal myristoyl group 

could not be determined. 

  

 
Figure 1.4. Structure of Irga6 (Ghosh et al., 2004) 
 

 

Irga6 binds to GTP and GDP with dissociation constants in the micromolar 

range with at least 10 times higher affinity for GDP than for GTP (Uthaiah et al., 

2003). Considering cellular nucleotide concentration, 330µM GTP and 120 µM GDP 

(Kleinecke and Soeling, 1979), Irga6 in cells should be predominantly GDP-bound. It 

hydrolyses GTP to GDP but not to GMP, and the GTPase activity is concentration-

dependent with a maximum GTP turnover rate of 2 min-1. Magnesium ions were 

found to be essential for the GTPase reaction. Irga6 oligomerises in the presence of 
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GTP, and the oligomers resolve as GTP hydrolysis proceeds. Micromolar nucleotide 

affinities and oligomerisation-dependent hydrolytic activity are properties that Irga6 

shares with other large GTPases, GBPs, Mx proteins and with the paradigm of the 

self-activating GTPases, the dynamins. As in all other large GTPases (Boehm et al., 

1998; Prakash et al., 2000a; Danino and Hinshaw, 2001; Haller and Kochs, 2002; 

Klamp et al., 2003), the catalytically important Gln61Ras in Irga6 is replaced by a 

hydrophobic amino acid, suggesting the requirement for a different catalytic residue 

(Mishra et al., 2005). Irga6 oligomer formation and GTP hydrolysis is necessary for 

AlFx to bind and trap the complex in AlFx-GDP transition state, indicating that the 

oligomer is the catalytically active form in which an additional catalytic residue can be 

provided in cis or in trans (Uthaiah et al., 2003). 

 Since recombinant Irga6wt, purified from E. coli was not myristoylated, it is not 

clear whether IFNγ-induced Irga6wt in cells share the same biochemical properties 

with the recombinant Irga6wt in vitro. It has been reported that the lipid modification 

affects enzymatic activity of Rac GTPase (Molnar et al., 2001) or the nucleotide 

binding affinities of small GTPase Arf1 (Randazzo et al., 1995). However, there is no 

information about the role of the myristoyl group in the enzymatic properties of Irga6. 

 

 

 

1.5 Lipid modifications and membrane-binding properties of GTPases 
 

 Lipid modifications, both extra- and intracellularly oriented, are increasingly 

recognised as important mechanisms for targeting proteins within cells and for 

controlling their activity. Intracellularly oriented lipid modifications include reversible 

S-acylation (palmitoylation) as well as covalent myristoylation and prenylation 

(farnesylation and geranylgeranylation) (Magee and Seabra, 2005). These 

hydrophobic moieties are found on a wide variety of proteins and are thought to 

regulate signal transduction, movement of a signaling protein within the cell and its 

final destination and reversible protein-protein and protein-membrane associations 

(Resh, 2006).  
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1.5.1 S-acylation 
 

 S-acylation is a unique modification that is reversible in vivo and can therefore 

regulate protein localisation and function (Milligan et al., 1995). Nearly all S-acylated 

proteins contain palmitate, a saturated sixteen-carbon fatty acid, linked through 

thioester bond to one or more cysteine residues. Addition of palmitate is not limited to 

the N- or C-terminus of the protein and there is no consensus-binding motif. 

Palmitoylated cysteine residues are often found near sites of N-myristoylation or 

prenylation where they increase membrane-binding energy, although mono- and di-

palmitoylation alone can localise protein to the plasma membrane (McCabe and 

Berthiaume, 1999; Baker et al., 2003; Magee and Seabra, 2005) and the Golgi region 

(Perez de Castro et al., 2004; Magee and Seabra, 2005), respectively. 

 

 

1.5.2. Prenylation 
 

 Protein prenylation is a posttranslational reaction that occurs in the cytosol. A 

15-carbon (farnesyl) or 20-carbon (geranylgeranyl) isoprenoid are linked irreversibly 

through thioether bond to one or more cysteine residues at or near the C terminus of 

the protein. Many prenylated proteins contain a C-terminal ‘CaaX box’ (Cys-aliphatic- 

aliphatic-X) and the ‘X’ amino acid determines whether the cysteine within the CaaX 

box is farnesylated by farnesyltransferase (X is not leucine) or geranylgeranylated by 

geranylgeranyltransferase I (X is leucine) (Konstantinopoulos et al., 2007). Upon 

prenylation, proteins are translocated to the ER where the three C-terminal amino 

acids (aaX) are cleaved (Boyartchuk et al., 1997) and, subsequently, the C-terminal 

prenylated cysteine residue carboxymethylated (Gelb, 1997). 

 For small G proteins, the number of prenyl groups as well as their identity 

influence protein targeting. RhoB exists in farnesylated and geranylgeranylated 

forms; farnesylated RhoB is targeted to the plasma membrane, whereas 

geranylgeranylated RhoB localises to late endosomes (Gomes et al., 2003). Most 

Rab proteins are doubly geranylgeranylated at the two cysteine residues at the C-

terminus (Zerial and McBride, 2001; Goody et al., 2005) and localise to endosomes, 

whereas monogeranylgeranylated Rabs mistarget to the ER and are nonfunctional 

(Calero et al., 2003; Gomes et al., 2003). Geranylgeranylated Rab proteins are in the 
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cytosol in complex with a GDI molecule, which sequester the prenyl groups to form a 

soluble complex. Rab-GDI interaction is strongly dependent on Rab prenylation and 

the presence of GDP (Sasaki et al., 1990; Sasaki et al., 1991). Upon association with 

appropriate membrane (Soldati et al., 1994), GDI is released from the Rab protein 

which, anchored to the membrane via its geranygeranyl groups, can interact with a 

membrane-localised GEF. Process of membrane association and GDI release often 

involves proteins known as GDI-displacement factors (GDFs), which are proposed to 

catalyse Rab-GDI dissociation at particular membrane surfaces (Pfeffer and 

Aivazian, 2004). GTP-bound Rab senses its target proteins and the interaction is 

terminated upon GAP-dependent GTP hydrolysis, allowing soluble Rab-GDI complex 

formation (Behnia and Munro, 2005). Similar mechanism was reported for Rho 

(Dransart et al., 2005) and Ras (Pechlivanis and Kuhlmann, 2006) GTPases. 

 GBP proteins are also characterized by presence of the C-terminal CaaX box, 

predicting protein modification either by farnesylation (hGBP1 and mGBP5) or 

geranygeranylisation (hGBP2, hGBP5, mGBP1 and mGBP2) (Vestal et al., 2000; 

Vestal, 2005). However, in vivo prenylation was only shown for mGBP2 (Vestal et al., 

2000) and hGBP1 (Modiano et al., 2005). Redistribution of soluble hGBP1 to the 

Golgi is GTP-dependent and requires both farnesylation and IFNγ-induced factor 

(Modiano et al., 2005). 

 

 

1.5.3. Myristoylation 
 

 Approximately 0.5% of all eukaryotic proteins are modified by co-translational 

binding (Olson and Spizz, 1986; Wilcox et al., 1987) of myristate (rare 14-carbon fatty 

acid) to the N-terminal glycine residue (Kamps et al., 1985) on a variety of eukaryotic 

and viral proteins (Resh, 2006). After the initiating methionine is removed by 

methionine aminopeptidase, myristate is linked through an amide bond to the N-

terminal glycine in the reaction catalysed by N-myristoyltransferase (Farazi et al., 

2001). Myristoylation absolutely requires N-terminal glycine residue at position 1 and 

preferentially small, polar serine and, to a lesser extent, threonine residue at position 

5 (Maurer-Stroh et al., 2002).  

N-myristoylation alone does not provide sufficient hydrophobicity to stably 

anchor proteins to a lipid bilayer but rather promotes weak and reversible protein-
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membrane and protein-protein interactions (Peitzsch and McLaughlin, 1993; Silvius 

and l'Heureux, 1994; Murray et al., 1997; Murray et al., 1998). Stable membrane 

association of N-myristoylated proteins requires a second lipid-binding motif. This 

secondary signal can be either palmitoyl group, attached by palmitoyl 

acyltransferases residing in the target membrane domain (Schroeder et al., 1996) or 

N-terminal stretch of basic amino acids associating electrostatically with negatively 

charged phospholipids (Murray et al., 1997; Murray et al., 1998).  

 Alternatively, regulated membrane association of myristoylated proteins is 

achieved by ligand-promoted conformational changes, so-called switches. In 

myristoyl-electrostatic switch, phosphorylation within the N-terminal polybasic motif 

introduces negative charge and reduces the electrostatic component of bilayer 

interaction, thus releasing the protein from the membrane (McLaughlin and Aderem, 

1995). In the case of myristoyl-ligand switches, the myristoylated N-terminus is, in the 

absence of ligand, sequestered in a hydrophobic binding site located on the protein 

(Bhatnagar and Gordon, 1997). Binding of ligand induces a protein conformational 

change that exposes the myristoyl moiety, allowing the protein to associate with 

membranes (Zozulya and Stryer, 1992; Ames et al., 1995).  

 The small GTPase ADP-Ribosylation Factor-1 (ARF1) provides one example 

of a myristoyl-ligand switch, interacting with the membrane through two components: 

the myristate, which gives a basal affinity for lipid regardless of the protein 

conformation (Franco et al., 1995), and a protein region that becomes available for 

membrane binding only when ARF switches to the active, ARF-GTP conformation. In 

the GDP-bound form, ARF1 is soluble, with hydrophobic residues of the N-terminal 

amphipathic peptide buried in the protein core. When ARF switches to the GTP state, 

these residues insert into membrane lipid layer (Antonny et al., 1997). 

 Eleven members of IRG protein family are shown to carry the amino-terminal 

myristoylation signal MGxxxS. However, lipid modification of only one of them, 

namely Irga6, was reported (Martens et al., 2004). Even though the N-terminus of 

Irga6 targets EGFP to membranes in a myristoyl-dependent manner, myristoylation is 

not absolutely necessary for membrane association of Irga6 itself since only a minor 

increase of cytosolic pool of nonmyristoylated Irga6, relative to the wild type protein, 

was found (Martens et al., 2004). Apart from the influence on the resting localisation 

of Irga6, nothing is known about the effect of the myristoyl group on Irga6 activity and 

its relocalisation to the PVM. 
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1.6. The aim of this study 
 

 Immunity-Related GTPases (IRG), represented by 25 coding units in the 

mouse genome, are implicated in resistance against a variety of bacterial and 

protozoal pathogens (table 1.1.). Several studies have documented the susceptible 

phenotype of IRG-deficient mice upon challenge with various pathogens, but the 

exact mechanism of their function in cell-autonomous immunity is still not known.  

 This study attempts to understand the role of IRG proteins in cell-autonomous 

immunity by analysis of one member of IRG family, Irga6. Identification of Irga6 

interaction partners in IFNγ-induced cells could give more insight into the function of 

Irga6. Because IRG proteins show non-redundancy in resisting pathogen infection 

(Collazo et al., 2001; Butcher et al., 2005; Bernstein-Hanley et al., 2006; Miyairi et al., 

2007) and, thus, probably regulate each other’s functions, association of Irga6 with 

other IRG proteins was also analysed.  

 Recombinant nonmyristoylated Irga6wt was shown to form GTP-dependent, 

catalytically active homooligomers in vitro (Uthaiah et al., 2003), characterized by 

increased GTPase activity. However, there was no information about Irga6 self-

association in vivo. Therefore, the ability of Irga6 to form GTP-dependent 

homooligomers in vivo was studied in an attempt to analyse the nucleotide state of 

Irga6 in IFNγ-induced cells and possible changes of Irga6 activity during infection. 

IRG proteins possess few obvious structural features, apart from the GTP-

binding domain itself, which would indicate their function in vivo. One exception is 

Irga6, which has a myristoylation sequence (MGQLST) at the N-terminus. 

Additionally, Triton X-114 partitioning demonstrated the hydrophobic character of 

native Irga6 (Martens et al., 2004) that was dependent on the integrity of the 

myristoylation motif, indicating, all together, that Irga6wt is probably myristoylated in 

vivo. In this study, it was attempted to analyse the role of the myristoyl group in Irga6 

activity in vivo and in the ability of Irga6 to relocalise to the parasitophorous vacuole 

membrane of Toxoplasma gondii.  

The structure and biochemical properties of purified, recombinant, 

nonmyristoylated Irga6 protein have been intensively studied in vitro and are well 

characterised (Uthaiah et al., 2003; Ghosh et al., 2004). However, there have been 

reports demonstrating that the lipid modification significantly affects the enzymatic 

properties of the GTPases in the presence of lipid vesicles and membranes. Addition 
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of membranes increased GTP hydrolysis of only prenylated Rac GTPase and had 

hardly any effect on the nonprenylated protein (Molnar et al., 2001). Myristoylation of 

the small GTPase Arf1 strongly influences its nucleotide binding affinities. In the 

absence of lipids, Arf1 has a higher affinity for GDP than for GTP, whereas, in the 

presence of phospholipids, Arf1 affinity for GTPγS is much higher than for GDP 

(Randazzo et al., 1995). 

In addition to identifying the role of myristoyl group on Irga6 function in vivo, 

this study also aimed to purify the myristoylated Irga6 and analyse its GTPase activity 

as well as nucleotide binding affinities in the presence and absence of lipid vesicles. 

The analysis of biochemical properties of myristoylated Irga6 would, hopefully, 

contribute to better understanding of the function of Irga6 in T. gondii infected cells 

and give more insight in its role in the vesiculation and disruption of the 

parasitophorous vacuole membrane and degradation of the parasite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                  Material and Methods 

 23

2. Material and Methods 
 

2.1 Reagents and Cells 
 

2.1.1 Chemicals, Reagents and Accessories 
 

All chemicals were purchased from Aldrich (Steinheim), Amersham-Pharmacia 

(Freiburg), Applichem (Darmstadt), Baker (Deventer, Netherlands), Boehringer 

Mannheim (Mannheim), Fluka (Neu-Ulm), GERBU (Gaiberg), Merck (Darmstadt), 

Pharma-Waldhof (Düsseldorf), Qiagen (Hilden), Riedel de Haen (Seelze), Roth 

(Karlsruhe), Serva (Heidelberg), Sigma-Aldrich (Deisenhofen) or ICN biochemicals, 

Oxoid, (Hampshire UK). Developing and fixing solutions for Western Blot detection 

were from Amersham Pharmacia (Freiburg), Luminol from Sigma Aldrich 

(Deisenhofen), Coumaric acid from Fluka (Neu-Ulm). Deionised and sterile water 

(Seral TM) was used for all the buffers and solutions, Ultra pure water derived from 

Beta 75/delta UV/UF from USF Seral Reinstwassersysteme GmbH, (Baumbach) 

equipped with UV (185/254nm) and ultrafiltration (5000 kd cut off), or from Milli-Q-

Synthesis (Millipore). 

 

 

2.1.2 Equipment 
 

Centrifuges used were: Biofuge 13, Heraeus; Sigma 204; Sigma 3K10; Labofuge 

400R, Heraeus; Sorvall RC-5B, Du Pont instruments; Optima TLX Ultracentrifuge, 

Beckmann and Avanti J-20 XP, Beckman. BioRAD Gel dryer, Model-583; BioRad 

Power pack 300 or 3000; electrophoresis chambers from FMC Bioproducts 

(Rockland Maine US); Gel Electrophoresis Chamber, Cambridge electrophoresis; 

Biorad Mini Protean II; PTC-100, MJ Research Inc.; ÄKTA P-920, OPC-900, Frac-

950, Amersham; Centrifuge tubes 15ml, TPP Switzerland; 50ml Falcon, 

BectonDickenson; Zeiss Axioplan II fluorescence microscope equipped with a 

Quantix cooledCCD camera. 
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2.1.3 Materials 
 

Sterile filters FP 030/3 0,2 µm and ME 24 0,2 µm (Schleicher und Schüll, Dassel); 

Nitrocellulose transfer membrane PROTRAN (Schleicher und Schüll, Dassel); 3MM 

Whatmann Paper (purchased via LaboMedic); 100 Sterican 0,50 x 16mm hypodermic 

needles (Braun AG, Melsungen); 0.2µm and 0.45µm sterile filters (Schleicher und 

Schuell, Dassel); X-OMAT LS and AR X-ray films, Kodak. All plastic ware for cell 

culture was from Sarstedt (Nümbrecht) or Greiner (Solingen). 

 

 

2.1.4 Enzymes/ Proteins 
 

Restriction enzymes (New England Biolabs); “Complete Mini” protease inhibitor 

cocktail (Roche, Mannheim); Pyrococcus furiosus (Pfu) DNA Polymerase (Promega, 

Mannheim); T4 DNA ligase (New England Biolabs); RNase A (Sigma); shrimp 

alkaline phosphatase (SAP) (USB, Amersham); PageRulerTM Prestained Protein 

Ladder (Fermentas); PageRulerTM Protein Ladder (Fermentas); SigmaMarkerTM Wide 

Range (Sigma); GeneRulerTM DNA Ladder Mix (Fermentas). 

 

 

2.1.5 Kits 
 

Plasmid Maxi and Midi kit (Qiagen, Hilden), 

Terminator-cycle Sequencing kit version 3 (ABI), 

QuikChange TM Site directed mutagenesis kit (Stratagen), 

Rapid PCR product purification Kit (Roche, Mannheim), 

 

 

2.1.6 Vectors 
 

pGW1H (British Biotech),  

pGEX-4T2 (Amersham),  

pVL1393 (BD Biosciences),  

pEGFP-N3 (BD Bioscience Clontech). 
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2.1.7 Cell lines 
 

L929 (CCL-1) and gs3T3 (Invitrogen) mouse fibroblasts were cultured in IMDM or 

DMEM supplemented with 10% FCS (Biochrom AG, Berlin), 2 mM L-Glutamine, 1 

mM sodium pyruvate, 100 U/ml penicillin and 100 µg/ml streptomycin, all from Gibco 

BRL. Hybridoma 10D7 and 10E7 cells were grown in IMDM, supplemented with 5% 

FCS (Biochrom AG, Berlin), 2 mM L-Glutamine, 1 mM sodium pyruvate, 100 U/ml 

penicillin and 100 µg/ml streptomycin, all from Gibco BRL. Sf9 insect cells, cloned 

from IPLB-Sf21 derived from pupal ovarian tissue of the Fall armyworm, Spodoptera 

frugiperda, were grown in Insect-XpressTM Medium (Lonza) or in TNM-FH Insect 

Medium (Sigma). 

 

 

2.1.8 Media 
 

Luria Bertani (LB) medium 

10 g bacto tryptone, 5 g yeast extract, 10 g NaCl, destilled water 1l 

LB plate medium 

10 g bacto tryptone, 5 g yeast extract, 10 g NaCl, 15 g agar, destilled water 1l 

IMDM (Iscove’s Modified Dulbecco’s Medium) supplemented with 10% FCS 

(Biochrom AG, Berlin), 2 mM L-glutamine, 1 mM sodium pyruvate, 1x non-

essencial amino acids, 100 U/ml penicillin, 100 µg/ml streptomycin (all from 

Gibco BRL) 

DMEM (Dulbecco’s Modified Eagle Medium) supplemented with 10% FCS (Biochrom  

AG, Berlin), 2 mM L-glutamine, 1 mM sodium pyruvate, 1x non-essencial 

amino acids, 100 U/ml penicillin, 100 µg/ml streptomycin (all from Gibco BRL) 

Insect-XpressTM Medium with L-glutamine (Lonza) 

TNM-FH Insect Medium (Modified Grace’s Medium) with L-glutamine and sodium 

bicarbonate (Sigma) 
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2.1.9 Bacterial and protozoan strains 
 

Escherichia coli DH5α: 80dlacZ ∆Μ15, recA1, endA1, gyrA96, thi-1, hsdR17 (rB
-, 

mB
+), supE44, relA1, deoR, ∆(lacZYA-argF)U169 

Escherichia coli BL-21: E. coli B, F-, omp T, hsd S (rB
-, mB

-), gal, dcm 

Toxoplasma gondii Me49 

 

 

2.1.10. Serological reagent 
 

2.1.10.1. Primary antibodies and sera 
 
Name Immunogen Species Concentration Dilution Origin 

10D7 recombinant mouse 

Irga6wt 

mouse 

monoclonal

1-3 µg/µl WB: 1:2000 

IF: 1:500 

IP: 10µl/ 50µl PAS 

Jens Zerrahn, 

Berlin 

10E7 recombinant mouse 

Irga6wt 

mouse 

monoclonal

1-3 µg/µl WB: 1:2000 

IF: 1:500 

IP: 10µl/ 50µl PAS 

Jens Zerrahn, 

Berlin 

5D9 recombinant mouse 

Irga6wt 

mouse 

monoclonal

1-3 µg/µl IP: 10µl/ 50µl PAS Jens Zerrahn, 

Berlin 

165 recombinant mouse 

Irga6wt 

rabbit 

polyclonal 

1-3 µg/µl WB: 1:25000 

IF: 1:8000 

IP: 7µl/ 50µl PAS 

 

2600 peptide 

KLGRLERPHRD 

rabbit 

polyclonal 

 IF: 1:4000 

IP: 7µl/ 50µl PAS 

EUROGENTEC 

αIGTP 

clone 7 

Mouse Irgm3 aa 283-

423 

mouse 

monoclonal

0.25 µg/µl WB: 1:2000 

 

BD Transduction 

laboratories 

A20 

(sc11079) 

N-teminal peptide of 

Irgb6 

goat 

polyclonal 

0.2 µg/µl WB: 1:500 Santa Cruz 

 

 

2.1.10.2. Secondary antibodies and antisera 
 

donkey-α-mouse  Alexa 488, donkey-α-rabbit Alexa 546, donkey-α-mouse Alexa 546, 

donkey-α-rabbit Alexa 488 (all Molecular Probes), goat-α-mouse kappa light chain-
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FITC (Southern Biotech), donkey-α-rabbit (Amersham), goat-α-mouse HRP 

(Amersham), donkey-α-goat HRP (Santa Cruz), DAPI (Roche). 

 

 

 

2.2 Molecular Biology 
 

All plasmids and constructs were amplified, cloned or propagated using protocols 

adapted from Sambrook, J., Fritsch, E.F., and Maniatis, T., Vol. 1, 2, 3 (1989), or 

from the cited references. 

 

 

2.2.1 Agarose gel electrophoresis 
 

DNA was analysed by agarose gel electrophoresis (1x TAE; 0.04 M Tris, 0.5 mM 

EDTA, pH adjusted to 7.5 with acetic acid) The DNA was stained with ethidium 

bromide (0.3 µg/ml), a fluorescent dye which intercalates between nucleotide bases, 

and the migration of the DNA molecules was visualized by using bromophenol blue. 

 

 

2.2.2 Generation of Irga6 expression constructs 
 

pGW1H-Irga6cTag1 construct was made by amplification of Irga6cTag1 sequence 

from pGEX-4T-2-Irga6cTag1 by using IIGP-SAL5 as forward and IIGPm3 as reverse 

primers. IIGPm3 primer introduces new SalI site after the stop codon (marked in red) 

and, additionally, mutates the internal SalI restriction site (residue in green). PCR 

product was digested with SalI and ligated into the SalI-digested pGW1H vector. 

IIGP-SAL5 forward 5’-CCCCCCCCCGTCGACCACCATGGGTCAGCTGTTCTCTTCACCTAAG-3’ 

IIGPm3 reverse 5’-CCCCCCCCCGTCGACTCAGTCACGATGCGGCCGCTCGAGTCGGCCTAG-3 

 

Following mutations were introduced in both pGW1H-Irga6wt and pGW1H-

Irga6cTag1 constructs using listed primers: 

pGW1H-Irga6-G2A forward 5’-GAGTCGACCACCATGGCTCAGCTGTTCTCTTCA-3’ 

pGW1H-Irga6-G2A reverse 5’- TGTAGAGAACAGCTGAGCCAGGGTGGTCGACTC-3’ 
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∆7-12 forward 5’-GGGTCAGCTGTTCTCTAATAATGATTTGCCC-3’ 

∆7-12 reverse 5’- GGGCAAATCATTATTAGAGAACAGCTGACCC-3’ 

K82A forward 5’-GGGAGACGGGATCAGGGGCGTCCAGCTTCATCAATACCC-3’ 

K82A reverse 5’- GGGTATTGATGAAGCTGGACGCCCCTGATCCCGTCTCCC-3’ 

S83N forward 5’-GGAGACGGGATCAGGGAAGAACAGCTTCATCAATACCCTG-3’ 

S83N reverse 5’- CAGGGTATTGATGAAGCTGTTCTTCCCTGATCCCGTCTCC-3’ 

E106A forward 5’-GCTAAAACTGGGGTGGTGGCGGTAACCATGGAAAG-3’ 

E106A reverse 5’-CTTTCCATGGTTACCGCCACCACCCCAGTTTTAGC-3’ 

 

Primers listed below were used to introduce mutations only in pGW1H-Irga6wt 

construct. 

T21I forward 5’-CCCTCCAGCTTTATTGGTTATTTTAAGAAATTTAATACGG-3’ 

T21I reverse 5’-CCGTATTAAATTTCTTAAAATAACCAATAAAGCTGGAGGG-3’ 

G22E forward 5’-CCCTCCAGCTTTACTGAGTATTTTAAGAAATTTAATACGG-3’ 

G22E reverse 5’-CCGTATTAAATTTCTTAAAATACTCAGTAAAGCTGGAGGG-3’ 

F24L forward 5’-GCCCTCCAGCTTTACTGGTTATTTGAAGAAATTTAATACGGG-3’ 

F24L reverse 5’-CCCGTATTAAATTTCTTCAAATAACCAGTAAAGCTGGAGGGC-3’ 

∆7-25 forward 5’-CCACCATGGGTCAGCTGTTCTCTAAATTTAATACGGG-3’ 

∆7-25 reverse 5’- CCCGTATTAAATTTAGAGAACAGCTGACCCATGGTGG-3’ 

∆2-12 forward 5’-CGAGATCTAGAGTCGACCACCATGAATAATGATTTGCCC-3’ 

∆2-12 reverse 5’- GGGCAAATCATTATTCATGGTGGTCGACTCTAGATCTCG-3’ 

 

Following primers were used to make deletions in pEGFP-N3-Irga6-1-33 construct, 

containing first 33 Irga6 amino acids. This way, three constructs were created 

containing first 20, 23 and 25 Irga6 amino acids, respectively. 

∆21-33 forward 5’-CCTCCAGCTTTGTCGACGGTACCGCG-3’ 

∆21-33 reverse 5’-CGCGGTACCGTCGACAAAGCTGGAGG-3’ 

∆24-33 forward 5’-GCTTTACTGGTTATGTCGACGGTACCGCG-3’ 

∆24-33 reverse 5’- CGCGGTACCGTCGACATAACCAGTAAAGC-3’ 

∆26-33 forward 5’-GGTTATTTTAAGGTCGACGGTACCGCGGGC-3’ 

∆26-33 reverse 5’-GCCCGCGGTACCGTCGACCTTAAAATAACC-3’ 

 

To create pVL-Irga6wt construct, pGEX-Irga6wt was digested with SmaI and NotI 

restriction enzymes. Appropriate fragment containing Irga6wt was excised from the 
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agarose gel and ligated into the pVL1393 vector, which was already digested with 

SmaI and NotI. Thrombin cleavage site (underlined), between Irga6wt sequence and 

the stop codon was introduced by site directed mutagenesis using pVL-Irga6wt-

thrombin forward and pVL-Irga6wt-thrombin reverse primers. Sequence encoding six 

histidine residues (in red) behind the thrombine cleavage site was introduced by pVL-

Irga6wt-thrombin-His forward and pVL-Irga6wt-thrombin-His reverse primers. Site 

directed mutagenesis was used to create G2A and S83N mutation in pVL-Irga6wt-

thrombin-his construct using pVL-Irga6wt-G2A, pVL-Irga6wt-G2A and S83N forward, 

S83N reverse primers, respectively. 

pVL-Irga6wt-thrombin forward 5’-GAGATATGTTTAAGAAACCTGGTCCCCCGCGGCTCGTA 

GGTCGACTCGAGCGG-3’ 

pVL-Irga6wt-thrombin reverse 5’-CCGCTCGAGTCGACCTACGAGCCGCGGGGGACCAGGT 

TTCTTAAACATATCTC-3’ 

pVL-Irga6wt-thrombin-His forward 5’-GGTCCCCCGCGGCTCGCATCATCACCATCACCAT 

TAGGTCGACTCGAGCGG-3’ 

pVL-Irga6wt-thrombin-His reverse 5’-CCGCTCGAGTCGACCTAATGGTGATGGTGATGATG 

CGAGCCGCGGGGGACC-3’ 

pVL-Irga6wt-G2A forward 5’-GGGTCGACCACCATGGCTCAGCTGTTCTCTTCACC-3’ 

pVL-Irga6wt-G2A reverse 5’-GGTGAAGAGAACAGCTGAGCCATGGTGGTCGACCC-3’ 

 

 

2.2.3 Cloning of PCR amplification products 
 

Amplified PCR products were purified using the rapid PCR purification Kit (Roche) 

and eluted with 100 µl 10mM Tris, pH 8.5. DNA yield was monitored by agarose gel 

electrophoresis and DNA fragments were digested with the appropriate restriction 

endonuclease (New England Biolabs) according to the suppliers’ protocol. Restriction 

enzymes were used at a 5-10 fold over-digestion. Following restriction, DNA 

fragments were again column purified using the rapid PCR purification Kit (Roche) 

and DNA yield was monitored by agarose gel electrophoresis. 

 

 

 

 

 



                                                                                                  Material and Methods 

 30

2.2.4 Purification of DNA fragments from agarose gels 
 

DNA fragments were loaded on agarose gels of the suitable percentage after 

incubation with appropriate restriction endonucleases. After proper separation of the 

fragments, DNA was visualized under a low energy UV source and cut out of the gel 

using a clean blade. DNA fragments were eluted from the gel with the rapid PCR 

purification Kit (Roche) according to the manufactures protocol. Purity and yield of 

the DNA was determined by agarose gel electrophoresis and UV spectroscopy. 

 

 

2.2.5 Ligation 
 

The appropriate cloning vector was cut with the respective restriction enzyme(s) (10 

U/ 1 µg DNA) for 1 h under according to the restriction enzyme suppliers’ protocol. 

After the first hour the same amount of restriction enzyme and 0.1 U of shrimp 

alkaline phosphatase were added to the reaction followed by 1.5 h incubation. 

Following restriction, DNA fragments were column purified using the rapid PCR 

purification Kit (Roche) and DNA yield was monitored by agarose gel electrophoresis. 

Vector and the appropriate cut insert were mixed at a ratio of 1:3 and ligated with T4-

DNA ligase in a total volume of 10 µl at 16°C over-night according to the 

manufactures protocol. As control, the same reaction without insert was carried out 

which should not yield any colonies after transformation into competent DH5α. 

 

 

2.2.6 Preparation of competent cells 
 

A single colony from a particular E .coli strain was grown over-night in 2 ml LB 

medium with 0.02 M MgSO4/ 0.01 M KCl with vigorous shaking (~300 rpm). It was 

diluted 1:10 into fresh medium with the same constituents and grown for 90 min, at 

37°C to an OD600 of 0.45. Cultures were incubated on ice for 10 min after which the 

cells were pelleted by centrifugation at 6000 rpm at 4°C for 5 min. Cells were 

resuspended in TFB I (30 ml/ 100 ml culture), incubated 5 min on ice, pelleted again 

by centrifugation at 6000 rpm at 4°C for 5 min and finally resuspended in TFB II (4 ml 

per 100 ml culture). 100 µl aliquots of the competent bacteria were frozen at –80°C. 
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Composition of the buffers: 

TFB I (30 mM KOAc/ 50 mM MnCl2/ 100 mM RbCl2/ 10 mM CaCl2/ 15% w/v glycerin, 

pH 5.8) 

TFBII (10 mM MOPS, pH 7.5/ 75 mM CaCl2/ 100 mM RbCl2/ 15% w/v glycerin) 

Both the solutions were sterilized and stored at 4°C. 

 

 

2.2.7 Transformation of competent bacteria 
 

100 µl of competent bacteria were thawed on ice and gently mixed 3-4 times. 5 µl of 

the ligation reaction was added to the cells followed by incubation for 20 min on ice 

Cells were then heat-shocked for 45 sec at 42°C followed by a further incubation on 

ice for 2 min. Antibiotic free LB medium was added to a total volume of 1 ml and cells 

were rolled at 37°C for 1 h. The culture was spun at 9000 rpm for 2 min and 800 µl of 

the supernatant was removed. The cell pellet was resuspended in the remaining 200 

µl medium in the 1.5 ml reaction tube and plated on a LB agar plate supplemented 

with the appropriate antibiotics. 

 

 

2.2.8 Plasmid isolation 
 

For screening a large number of cultures for clones containing the desired insert, 4 

ml LB cultures with the appropriate antibiotics were inoculated with single colonies 

picked from a ligation plate and grown over-night at 37°C, 250 rpm. All following 

steps were performed at room temperature. 1.5 ml of the cultures was transferred 

into a 1.5 ml reaction tube and pelleted by centrifugation at 23000 g for 5 min. The 

supernatant was discarded and pellet resuspended in 100 µl P1 (50 mM Tris, pH 8.0/ 

10 mM EDTA/ 100µg/ml RNase A). After addition of 100 µl P2 (200mM NaOH/ 1% 

SDS) the reaction was gently mixed and incubated for 5 min. 140 µl of P3 (3M 

potassium acetate, pH 5.5) was added and the reaction was spun for 15 min at 

23000 g. The supernatant (~340 µl) was transferred into a new tube and 700 µl of 

100% ethanol was added. After mixing, the reaction was spun for 15 min at 23000 g 

and the supernatant was removed. The pellet was washed by addition of 700 µl of 

70% ethanol and spun at 23000 g. After removal of the supernatant the pellet was 
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air-dried and resuspended in 50 µl 10mM Tris pH 8.0. 5 µl of the plasmid preparation 

was cut with the appropriate restriction enzyme(s) in a total volume of 50 µl for 1 h 

and 10 µl of the reactions were subjected to agarose gel electrophoresis to identify 

insert-containing clones. 

For preparation of large amounts of plasmid, the Qiagen Midi and Maxi Plasmid 

Preparation Kits were used according to the manufactures instructions. 

 

 

2.2.9 Determination of the concentration of DNA 
 

The concentration of DNA was measured using a spectrophotometer at 260 nm. The 

purity of the DNA solution was determined using the ratio of OD readings at 260 nm 

and 280 nm. Pure preparations of DNA have an OD260/OD280 ratio of 1.8. The 

concentration was calculated according to the following equation. c = A260 x 50 

µg/ml x dilution factor. 

 

 

2.2.10 Site directed mutagenesis 
 

Site directed mutagenesis was carried out using a modified protocol supplied with 

“QuikChangeTM XL Site-Directed Mutagenesis” Kit from Stratagene. The 

amplification was carried out using 20 ng plasmid as template, 125 ng of the sense 

and antisense oligonucleotide as primers and 2.5 U of Pfu-polymerase (Promega) in 

a total volume of 50 µl. The following program was used: 1. 95°C, 30 sec; 2. 95°C, 30 

sec; 3. 55°C, 60 sec; 4. 68°C, 15 to 20 min (back to step 2., 15 to 18 times); 5. 68°C, 

15 min. After amplification 1 µl DpnI (20 U, New England Biolabs) was added to the 

reaction and incubated for 1.5 h at 37°C. 5 µl of the reaction was used to transform 

200 µl competent DH5α. As control the whole procedure was carried out without 

addition of Pfu-polymerase. Ideally no colonies are found on the final LB agar plate 

for the control reaction. 
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2.2.11 DNA Sequencing 
 

All constructs generated were verified by sequencing. DNA was sequenced using the 

ABI PrismR BigDyeTM Terminator Cycle Sequencing Ready Reaction Kit (PE 

Applied Biosystems), using fluorescently labeled dideoxynucleotides based on the 

dideoxy-chain termination. Template DNA (0.5 µg), the respective primer (10 pmole) 

and 2 µl Big DyeTM terminator ready reaction mix (ABI) were combined in a total 

volume of 10 µl and the sequencing reaction was carried out as follows: 25x (96°C, 

30 sec; 50°C, 15 sec; 60°C, 4 min). Sequencing was done on an automated 

sequencer (ABI 373A). 

 

 

2.2.12. Transduction of insect Sf9 cells 
 

2x106 Sf9 cells (BD Biosciences) were plated on 60 mm tissue culture plate so that 

the cells density was around 70% confluent. Cells were allowed to attach firmly, 

about 5 min. Old medium was aspirated from the cells and 1 ml of Transfection buffer 

A added. In parallel, 0.5 µg BaculoGoldTM DNA was mixed with 3.5 µg recombinant 

pVL1393 Baculovirus Transfer Vector, containing Irga6, Irga6 G2A or Irga6 S83N 

DNA as insert. Content was mixed well by flicking the tube and incubated at RT for 5 

min. Subsequently, 1 ml of Transfection buffer B was added and mixure was pipetted 

drop-by-drop on to the plates with Transfection buffer A. After 4 h incubation at 27°C, 

medium was aspirated and 3 ml of TNM-FH Insect medium (Sigma) was added and 

incubated for 5 days at 27°C (transfection). 5x106 Sf9 cells in 10 cm plate were then 

infected with 150 µl of transfection in 10 ml TNM-FH medium (infection) and 

incubated for 3 days at 27°C. Virus was further amplified by incubation of 500 µl of 

infection with 2x107 Sf9 cells in 15 cm dish in 15 ml TNM-FH medium for 3 days at 

27°C (amplification). 18 ml of amplified virus was used to infect 300 ml of Sf9 cell 

liquid culture (2x106 Sf9/ml) (in Insect-Xpress, Lonza) for protein purification and cells 

were grown for 2 days at 27°C at 80 rpm. 
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2.3. Expression and purification of recombinant proteins 
 

2.3.1. Expression and purification of Irga6 proteins from E. coli 

 

pGEX-4T-2-Irga6wt was transformed into BL-21 E. coli strain. Cells were grown at 

37°C to OD600 of 0.8 when the protein expression was induced by 0.1 mM isopropyl-

β-D thiogalactoside (IPTG) at 18°C over-night. Cells were harvested (5000 g, 15 min, 

4°C), frozen at –20°C, resuspended in 10 ml PBS/ 2 mM DTT/ “CompleteMini 

protease inhibitor cocktail without EDTA” (Roche) per liter of culture and lysed using 

microfluidiser (EmulsiFlex-C5, Avestin) at a pressure of 150 MPa. The lysates were 

cleared by sequential centrifugation at 50000 g 15 min and 75000 g 30 min at 4°C. 

The soluble fraction was purified on the glutathion-sepharose affinity column (GSTrap 

FF 5ml, Amersham) equilibrated with PBS/ 2 mM DTT. The GST domain was 

cleaved by over-night incubation with thrombin (20 U/ml, (Serva)) on the resin at 4°C. 

Free Irga6 was eluted with PBS/ 2 mM DTT and protein content in fraction analysed 

by SDS-PAGE and visualised by Coomassie staining. The positive fractions were 

pooled and subjected to the size exclusion chromatography on Superdex 75 column 

(HiLoad 26/60 Superdex 75 prep grade, Amersham) equilibrated with 50 mM Tris/HCl 

pH 7.4/ 5 mM MgCl2/ 2 mM DTT. The fractions were analysed by SDS-PAGE and 

those containing Irga6 concentrated in a centrifugal concentrator (Vivascience) with a 

10-kDa cut-off filter. Aliquots were shock-frozen in liquid nitrogen and stored at –

80°C. The concentration of protein was determined by UV spectrophotometry at 280 

nm. 

 

 

2.3.2. Purification of Irga6 proteins from Sf9 cells 
 

700 ml of Sf9 culture infected with appropriate virus for 2 days was pelleted at 2500 g 

for 10 min at 4°C. Pellet was resuspended in 150 ml 0.1% Thesit/ 150 mM NaCl/ 3 

mM MgCl2/ 20 mM Imidazol/ 2 mM DTT/ PBS/ protease inhibitors and incubated for 1 

h at 4°C while rotating. Lysate was passaged 10 times trough 20G needle and 

centrifuged 1 h at 50000 g at 4 °C and subsequently 1 h at 75000 g. Lysate was 

loaded on hisTrap HP 5ml column (Amersham) with fow rate of 0.5 ml/min in lysis 

buffer. Column was subsequently washed with 5 column volume (CV) of lysis buffer 
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and 15 CV of washing buffer (0.1% Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 60 mM 

Imidazol/ 2 mM DTT/ PBS). Elution was done at flow rate of 0.25 ml/min with 0.1% 

Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 250 mM Imidazol/ 2 mM DTT/ PBS and fractions 

analysed by Coomassie staining. Fractions containing Irga6 protein were pooled 

together and incubated with 150 U/ml of thrombin (Serva) for 12 h at 4°C. After 

ultracentrifugation at 45000 g/ 30 min/ 4°C, samples were loaded on HiLoad 26/60 

Superdex 200 prep grade column (Amersham) with 0.05% Thesit/ 5 mM MgCl2/ 2 

mM DTT/ 50 mM Tris pH 7.4 at flow rate of 1 ml/min. Fractions with Irga6 protein 

were incubated with 1 ml Ni-NTA Superflow beads (Qiagen) for 1 h at 4°C to 

separate thrombin-cleaved (in the SN) from uncleaved Irga6 (bound to the beads). 

Cleaved and purified Irga6 was concentrated in a centrifugal concentrator 

(Vivascience) with a 10-kDa cut-off filter. Aliquots were shock-frozen in liquid nitrogen 

and stored at –80°C. The concentration of protein was determined by UV 

spectrophotometry at 280 nm. Uncleaved protein was eluted from beads by boiling 

for 5 min in the SDS-PAGE sample buffer.  

 

 

 

2.4. Biochemical methods 
 

2.4.1. Dynamic light scattering 
 

Recombinant proteins, at the concentrations of 25 and 80 µM, were incubated with 

10 mM GDP or GTP in B1 buffer (5 mM MgCl2/ 2 mM DTT/ 50 mM Tris pH 7.4) in the 

presence or absence of 0.05% Thesit. Dynamic light scattering (DLS) was performed 

by using DynaPro molecular sizing instrument equipped with a MicroSampler 

temperature control unit (MSTC800, Protein Solutions). The scattering of light from a 

750 nm wavelength solid-state laser (25 MW) by the sample was measured at 37°C 

for 20 min in a Quartz cuvette (acquisitio time 10 sec). Data was obtained and 

analysed using the DYNAMICS software (v.5 and v.6). The hydrodynamic radius (RH) 

was calculated from the translational diffusion coefficient (DT), obtained by 

autocorrelation of the data, using the Stokes-Einstein Equation (RH=kbT/6πµDT; kb: 

Boltzmann constant, T: absolute temperature in Kelvin, µ: solvent viscosity). The 

molecular weight (MW) was estimated from the hydrodynamic radius RH using the 
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standard curve of MW versus RH for globular proteins (MW=(RH factor*RH)Power, for 

globular proteins RH factor=1.68, Power=2.3398). 

 

 

2.4.2. GTP hydrolysis assay 
 

Hydrolysis activities of recombinant proteins were determined by resuspending 25 

µM protein in 50 mM Tris pH 7.4/ 5 mM MgCl2/ 2 mM DTT in the final volume of 18 

µl. 50 µl of 100 mM or 10 mM GTP was mixed with 1 µl of αP32GTP. 2 µl of the 

nucleotide mix was added to the protein, so that the final concentration of GTP was 

10 mM or 1 mM, and samples were placed immediately at the 37°C. At indicated time 

points, 0.6 µl of reaction mixed was taken and applied onto the PEI Cellulose F thin 

layer chromatography (TLC) plates (Merck). After air-drying, plates were run in 1 M 

acetic acid/ 0.8 M LiCl. Signals were detected using BAS 1000 phosphor imager 

analysis system (Fuji) and quantified with the AIDA Image Analyser v3 software 

(Raytest). 

 

 

 

2.5. Cell biology 
 

2.5.1. Transfection 
 

Cells were transiently transfected for 24 h at 37°C using FuGENE 6 Transfection 

Reagent (Roche) according to the manufacturer’s protocol. DNA (µg): FuGENE6 (µl) 

ratio was always 1:3. For transfection of cells in 6 well plate or in 60 mm dish 1 µg or 

2 µg of DNA was used respectively. 

 

 

2.5.2.Induction with IFNγ 
 

Cells were induced with 200 U/ml of murine IFNγ (Cell Concepts) for 24 h at 37°C.  
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2.5.3. Hypotonic lysis 
 

1x107 L929 cells, induced with 200 U/ml IFNγ or transfected with appropriate 

construct for 24 h, were washed once with PBS, collected by scraping and disrupted 

in 1 ml of hypotonic buffer/ 3 mM MgCl2/ “CompleteMini protease inhibitor cocktail 

without EDTA” (Roche) for 1 h at 4°C while rotating (hypotonic buffer (10 mM Tris pH 

7.5/ 10 mM NaCl/ 1.5 mM MgCl2) was sterilised and kept at 4°C). Lysate were 

cleared by high-speed centrifugation (23000 g/ 30 min/ 4°C) and supernatant kept as 

a soluble fraction. Pellet was washed twice with hypotonic buffer, resuspended in 1 

ml of appropriate lysis buffer, incubated 1 h at 4°C and cleared by centrifugation as 

above. Supernatant of this step was kept as membrane fraction. 

 

 

2.5.4. Triton X-114 partitioning assay  
 

480 ng of recombinant proteins were resuspended in 500 µl 1% Tx-114/ 3 mM MgCl2/ 

PBS, incubated on ice for 5 min. and subsequently at room temperature for 5 min to 

induce phase separation. After the solution turned cloudy the tube was spun for 1 

min with 23000 g at RT. The aqueous phase (~450 µl) was transferred into new tube 

and the detergent phase was adjusted with PBS to the same volume as the aqueous 

phase and stored on ice (D1). 50 µl of the aqueous phase was taken and stored on 

ice (A1). The remaining 400 µl of the aqueous phase were adjusted to 1% Triton X-

114 by addition of an appropriate volume of ice cold 10% Triton X-114 (~44 µl). The 

tube was incubated on ice until the solution turned clear and was again shifted to 

room temperature to induce phase separation. The following steps are described 

above. The procedure was repeated three times. For Tx-114 partitioning analysis of 

cellular proteins, 6x106 L929 cells, either IFNγ induced or transfected with Irga6wt or 

Irga6-G2A, were lysed in 500 µl 1% Tx-114/ 3 mM MgCl2/ PBS for 1 h at 4°C. Upon 

scraping, lysates were centrifuged for 15 min at 3000 g at 4°C to remove nuclei. 

Supernatants were incubated for 5 min at room temperature to induce phase 

separation and subsequently centrifuged for 1 min at 23000 g at RT. The following 

steps were conducted as described above. Samples were subjected to SDS-PAGE 

and protein detected with 10D7 antibody. 
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2.5.5. Cross-linking  
 

1x106 L929 cells per sample were induced with 200 U/ml IFNγ for 24 h or left 

untreated. Cells were washed with PBS, collected by scraping and mixed in 100 µl 

PBS/ 3 mM MgCl2/ protease inhibitors with the cross-linkers (all from Pierce 

biotechnology): DSP (Dithiobis (succinimidylpropionate),) and EGS (Ethylene 

glycolbis (succinimidylsuccinate)), or their analogs DTSSP (Dithiobis 

(sulfosuccinimidylpropionate)) and Sulfo-EGS (Ethylene glycolbis 

(sulfosuccinimidylsuccinate)) in the presence of 0.1 U Streptolysin O (Murex 

Diagnostics Limited). Concentration of cross-linkers used was 0.25-2 mM. Mixtures 

were incubated for 2 h at 4°C or 30 min at RT respectively and cross-linking reaction 

was subsequently quenched with 50 mM Tris pH 7.5 for 15 min at 4°C. Afterwards, 

cells were lysed in 100 µl 1%Tx-100 (Sigma)/ 3 mM MgCl2/ protease inhibitors for 1 

h/ 4°C, span at 23000 g/ 30 min/ 4°C, boiled for 5 min in the presence or absence of 

5% β-mercaptoethanol (Sigma) in SDS-PAGE sample buffer and subjected to the 

SDS-PAGE and Western blott.  

 

 

2.5.6. Treatment with aluminium fluoride  
 

300 µl 10 mM AlCl3 (final concentration 300 µM) was added to 10 ml of IMDM 

containing no FCS and mixed by vigorous shaking. Subsequently, 166 µl of 600 mM 

NaF was added, mixed and applied on confluent L929 cells in 10 cm dish, previously 

induced with IFNγ or transfected for 24 h. Cells were incubated for 30 min at 37°C, 

then washed with cold PBS and collected by scraping. Cell pellets were lysed in 0.1% 

Thesit or 80 mM OGP/ 3 mM MgCl2/ PBS with 300 µM AlCl3 and 10 mM NaF, with or 

without 0.5 mM GTP for 1 h at 4°C.  

 

 

2.5.7. Antibody purification  
 

Hybridoma cells producing monoclonal 10D7 or 10E7 antibody were grown in 50 ml 

IMDM (supplemented with 5% FCS, 2 mM L-glutamine, 1 mM sodium pyruvate, 1x 

non-essencial amino acids, 100 U/ml penicillin, 100 µg/ml streptomycin (Gibco BRL)) 
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in T-175 for 7 days at 37°C. Culture was centrifuged at 300 g/ 10 min/ 4°C, 

supernatant was frozen at –20°C and cell pellet diluted 1:10 in 50 ml medium and 

cells grown again for a week. Supernatants containing secreted antibody (400 ml) 

were centrifuged at 2800 g for 30 min at 4°C. Supernatant was applied on Protein A 

sepharose column (6 ml) by gravity flow and column subsequently washed with 400 

ml cold PBS. Antibody was eluted by applying elution buffer (50 mM Sodium Acetat 

pH 3.5/ 150 mM NaCl) and 1 ml fractions were collected in eppendorf tubes already 

containing 56 µl of neutralization buffer (1M Tris pH 11). Concentration of protein was 

determined by measuring absorption at 280 nm and fractions containing antibodies 

were pooled together. Buffer was exchanged by dilution of antibody-containing 

sample in 20 ml of papain buffer (0.075 M phosphate buffer pH 7.0/ 0.075 NaCl/ 

0.002 M EDTA) and concentrated in centrifugal concentrator (Vivascience) with a 10-

kDa cut-off filter at 2000 g at 4°C. Buffer exchange was done five times 

subsequently. Concentration of antibody was determined by using formula conc Ab 

(mg/ml)= 0.8 x A280.. 

 

 

2.5.8. Papain digestion  
 

0.5 mg of 10E7 or 10D7 antibodies were digested with 5 µg of papain (papain: 

globulin ratio was 1:100), in the presence of 0.01 M cysteine in 100 µl papain buffer 

(0.075 M phosphate buffer pH 7.0/ 0.075 NaCl/ 0.002 M EDTA). Mixtures were 

incubated at 37°C, and at indicated time points, reaction was stopped by adding 0.5 

M iodoacetamide in papain buffer to the final concentration of 50 mM, and incubated 

at RT for 30 min. Samples were boiled in the SDS-PAGE sample buffer in the 

presence (reducing conditions) or absence (non-reducing conditions) of 5% β-

mercaptoethanol and subjected to SDS-PAGE. Proteins were detected by staining of 

gels in Coomassie solutions. 
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2.5.9. Size Exclusion Chromatography  
 

2.5.9.1. Size Exclusion Chromatography of cell lysates 
 

7x106 L929 cells were lysed in 400 µl hypotonic buffer (10 mM Tris pH 7.5/ 10 mM 

NaCl/ 1.5 mM MgCl2) or in PBS/ 0.1% Thesit (Fluka) or 80 mM OGP (Calbiochem)/ 3 

mM MgCl2 with protease inhibitors 1 h at 4°C while rotating, cleared by 

ultracentrifugation (45000 g/ 30 min/ 4°C) and supernanatant was loaded on the pre-

equilibrated Superose 6 10/300 GL column with 0.2 ml/min, fraction size 0.2 ml, 

fractionation start at 0.3 CV and set pressure of 1 MPa. Column was run on ÄKTA P-

920, OPC-900, Frac-950 and results evaluated using UNICORN 5.01. 

 

 

2.5.9.2. Size exclusion chromatography of 10E7 and 10D7 fragments  
 

600 µl of papain-digested antibodies was loaded on the HiLoad 26/60 Superdex 75 

prep grade column (Amersham) and ran in papain buffer (0.075 M phosphate buffer 

pH 7.0/ 0.075 NaCl/ 0.002 M EDTA) at flow rate of 0.5 ml/min. Fractionation was 

started after 100 ml and 2ml fractions were collected.  

 

 

2.5.10. Immunoprecipitation 
 

1x106 L929 or 6x105 gs3T3 cells per sample were precultured for 12 h, induced with 

200 U/ml IFNγ (Cell Concepts, Umkirch, Germany) and/ or transfected for 24 h or left 

untreated, washed with cold PBS and harvested by scraping. Cells were lysed in 200 

µl 0.1% Thesit or 80 mM OGP/ 3 mM MgCl2/ PBS/ “CompleteMini protease inhibitor 

cocktail without EDTA” (Roche) per sample for 1 h at 4°C in the absence of 

nucleotide or in the presence of 0.5 mM GDP (Sigma), GTP (Sigma), GTPγS 

(Sigma), mant GDP (Jena Bioscience), mant GTPγS (Jena Bioscience), 300 µM 

AlCl3 (Sigma ) and 10 mM NaF (Sigma) at 4°C while rotating. Lysates were passaged 

10 times trough 25G needle (B.Braun Melsungen AG) and cleared by high-speed 

centrifugation (23000 g for 30 min at 4°C). In the case of recombinant proteins, 170 

or 240 ng of proteins, upon high speed centrifugation, were resuspended in 200 µl of 
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0.1% Thesit or 80 mM OGP/ 3 mM MgCl2/ PBS/ “CompleteMini protease inhibitor 

cocktail without EDTA” in the presence or absence of nucleotides. 

50 µl of wet Protein A Sepharose TM CL-4B (Amersham) beads per sample were 

incubated with 10 µl 10D7or 10E7 monoclonal mouse αIrga6 antibody or 7 µl 165 

(αIrga6) or 2600 (αcTag1) polyclonal rabbit sera for 1 h at 4°C while rotating. Beads 

were pelleted by short centrifugation (2000 g/ 1min), washed 5x with PBS and once 

with 0.2 M boric acid pH 9.0 (Merck). Bound antibodies were cross-linked with 20 mM 

DMP (Sigma) in 0.2 M boric acid pH 9.0 for 30 min at RT. Beads were washed once, 

incubated with 0.2 M ethanolamine pH 8.0 (Sigma) for 2 h at 4°C while rotating and 

then washed once with PBS and once with lysis buffer. Lysates were incubated with 

prepared beads for 2 h at 4°C while rotating and then washed twice with lysis buffer 

and twice with PBS/ 3 mM MgCl2. Proteins bound to the monoclonal mouse 

antibodies were eluted by boiling for 10 min in 30 µl 100 mM Tris/HCl pH 8.5/ 0.5% 

SDS with SDS-PAGE sample buffer (50 mM Tris/HCl pH 6.1/ 1% SDS/ 5% glycerol/ 

0.0025% brommephenol blue (Sigma)/ 0.7% β-mercaptoethanol). Proteins bound to 

the polyclonal rabbit serum were eluted by incubation in 50 µl 100 mM Tris/HCl pH 

8.5/ 0.5% SDS for 30 min at RT, residual beads removed by filtration (filter tubes, 

pore size 0.45 µm, Millipore) and eluates then boiled for 5 min with SDS-PAGE 

sample buffer. 

 

 

2.5.11. Pull-down 
 

BL-21 cells transformed with pGEX-4T-2, pGEX-4T-2-Irga6wt and pGEX-4T-2-Irga6-

S83N respectively, were grown to an optical density (OD600nm) of 0.8 at 37°C in 500 

ml LB/ 100 µg/ml ampicillin prior to induction of protein expression with 0.1 mM IPTG 

at 18°C over-night. Cells were harvested by centrifugation (5000 g/ 15 min/ 4°C), 

resuspended in 10 ml PBS/ 2 mM DTT/ “CompleteMini protease inhibitor cocktail 

without EDTA” (Roche) and lysed using microfluidiser (EmulsiFlex-C5, Avestin) at a 

pressure of 150 MPa. The lysates were cleared by sequential centrifugation at 50000 

g 15 min and 75000 g 30 min at 4°C. Lysates were incubated with 700 µl of 

glutathion sepharose suspension (High Performance, Amersham) for 2 h at 4°C and 

washed 10x with PBS/ 2 mM DTT prior to storage as 1:1 suspention in PBS/ 2 mM 

DTT at 4°C. 30 µl of 1:1 protein bound glutathion sepharose were washed once with 
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PBS/ 5 mM MgCl2/ 1 mM DTT and preincubated with or without 1 mM nucleotide 

(GDP, GTPγS (both from Sigma), or mant GTPγS (Jena Bioscience)) in 500 µl PBS/ 

5 mM MgCl2/ 1 mM DTT for 1-2 h at RT. Beads were washed with lysis buffer (PBS/ 

0.1% Thesit/ 3 mM MgCl2/ “CompleteMini protease inhibitor cocktail without EDTA” 

(Roche)) in the presence of 10 µM of the respective nucleotide.  

1.25x106 gs3T3 cells were precultured for 24 h, induced with 200 U/ml IFNγ (Cell 

Concepts, Umkirch, Germany) for 24 h, washed once with PBS and harvested by 

scraping. Cells were lysed in 500 µl lysis buffer with or without 0.5 mM GDP,GTPγS 

or mant GTPγS for 1 h at 4°C. Lysates were cleared by centrifugation (23000 g/ 30 

min/ 4°C), mixed with nucleotide pretreated protein-glutathion sepharose and 

incubated at 4°C over-night. Beads were washed twice with lysis buffer, twice with 

PBS/ 5 mM MgCl2 prior to elution of bound cellular proteins in 30 µl 100 mMTris pH 

8.5/ 0.5% SDS for 30 min at RT. Eluates were boiled for 5 min in the presence of 

SDS-PAGE sample buffer, separated by 10% SDS-PAGE and subjected to Western 

blot. 

 

 

2.5.12. Immunofluorescence 
 

Cells were grown on coverslips, fixed with PBS/ 3% paraformaldehyde (PFA) for 20 

min and subsequently washed 3x with PBS. Cells were permeabilized with PBS/ 

0.1% saponin (washing buffer) followed by a blocking step with PBS/ 0.1% saponin/ 

3% BSA (fractionV) (blocking buffer) for 1 h. Coverslips were incubated with primary 

antibodies (diluted in blocking buffer) in a humid chamber for 1 h at RT and 

subsequently washed 3x 5 min with washing buffer. Incubation with secondary 

antibodies was done as described for primary antibodies for 30 min at RT and 

washed 3x as described above. Coverslips were mounted on slides with ProLong® 

Gold antifade reagent (Invitrogen), sealed with nail polish and cleaned with deionised 

water. DAPI, used to stain DNA (300 nM), was added to the secondary antibody 

solution. Images were taken with a Zeiss Axioplan II fluorescence microscope 

equipped with an AxioCam MRm camera (Zeiss). Images were processed with 

Axiovision rel. 4.6 software (Zeiss).  
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2.5.12.1. Immunofluorescence with antibody fragments 
 

gs3T3 cells were induced with 200 U/ml of IFNγ for 24 h and then infected with T. 

gondii Me49 strain with MOI 8 for 2 h. Upon fixation, cells were labelled with 10D7, 

10D7 C3 fraction (both 10 µg/ml) or with no antibody for 1 h at RT. As secondary 

antibody either donkey-α-mouse IgG Alexa 488 (Invitrogen) or goat-α-mouse kappa 

light chain-FITC (Southern Biotech) antibodies were used. 

 

 

2.5.13. Western blotting 
 

After SDS-PAGE, proteins were transferred to nitrocellulose transfer membranes 

(Schleicher&Schuell) by electroblotting. The gel was placed in contact to a 

nitrocellulose transfer membrane, and was sandwiched between four sheets of 3 MM 

Whatmann paper, two porous pads, and two plastic supports on either side, soaked 

in a transfer buffer containing 25 mM Tris/ 190 mM glycine. The sandwich was then 

placed between platinum plate electrodes, with the nitrocellulose membrane facing 

the anode, and the transfer was carried out at RT for 1 h with a current of 0.5 V. 

Ponceau S staining was used to locate proteins (0.1%(w/v) Ponceau S (Sigma) in 5% 

(v/v) acetic acid) after Western blotting. Membranes were blocked with PBS/ 5% milk 

powder/ 0.1% Tween 20 or Western Blotting Blocking Reagent (Roche) at room 

temperature for 1 h or over-night at 4°C. Antisera/ antibodies were diluted in PBS/ 

5% FCS/ 0.1% Tween 20 or PBS/ 5% Western Blotting Blocking Reagent. Bands 

were visualized with enhanced chemiluminescence (ECL) substrate. 

 

 

2.5.13.1. Western blotting with antibody fragments 
 

60 ng of recombinant Irg6wt per sample was loaded in every second slot of a 10% 

polyacrylamide gel and blotted on the nitrocellulose transfer membrane. Membrane 

was cut in stripes so that each stripe contains a lane with Irga6wt and they were 

blocked in Western Blocking Reagent (Roche) (1:10 dilution in PBS) at RT for 1 h. 

Whole antibodies or their fragments were diluted to a concentration of 10 µg/ml (1:20 

dilution in blocking buffer) and that concentration was considered as 1:1. Serial of 



                                                                                                  Material and Methods 

 44

dilutions was made further, 1:3, 1:9, 1:27 and 1:81. Each stripe was incubated with 

appropriate antibody dilutions at 4°C over night and goat-α-mouse HRP coupled 

antibody was used as secondary antibody. Signals were quantified using 

ImageQuant TL v2005 (Amersham). 

 

 

2.5.14. Colloidal Coomassie staining 
 

Gel was washed 30 min in H2O and subsequently placed in incubation solution (17% 

ammonium sulfate/ 20% MeOH/ 2% phosphoric acid). After 60 min incubation, 330 

mg/ 500ml of solid Coomassie Brilliant Blue G-250 (Serva) was added to the solution 

and incubated 1-2 days. Gel was destained by incubation for 1 min in 20% MeOH 

and stored in 5% acetic acid. All was done at RT and while shaking. 

 

 

2.5.15. Silver staining (method modified according to Blum) 
 

Gel was washed twice for 20 min with 30% EtOH, once for 20 min with H2O and 

sensitised with 0.2 g/l sodium thiosulfate for 1 min. After 3x 20 sec washing with H2O, 

gel was incubated in 2 g/l AgNO3/ 750 µl/l formaldehyde (FA) for 20 min. After 2x 20 

sec H2O washes, gel was developed in 30 g/l sodium carbonate/ 500 µl/l FA/ 4 mg/l 

sodium thiosulfate until the background came up. The reaction was stopped by 

incubation in 5% acetic acid for 10 min. Gel was washed 2x 10 min in H2O and kept 

in 20% EtOH/ 3% glycerol. All was done at RT. 
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3. Results 
 

3.1. Chemical cross-linking of IFNγ-induced Irga6 
 

3.1.1. Irga6 is found in higher molecular weight complex upon chemical cross-
linking 
 

Irga6, a member of the IRG family, hydrolyses GTP to GDP with a specific rate 

that is dependent on the concentration of the enzyme, demonstrating a cooperative 

mechanism of GTP hydrolysis (Uthaiah et al., 2003). In agreement with the 

cooperative activity, Irga6 is characterised by formation of enzymatically active GTP-

dependent oligomers in vitro (Uthaiah et al., 2003). However, almost nothing was 

known about whether and under what circumstances Irga6 forms higher molecular 

weight complexes in vivo. In contrast to in vitro conditions, in cells Irga6 might not 

only self-associate but also form interactions with other cellular components. 

In order to analyse molecular associations of Irga6 in vivo, chemical cross-

linking was performed. Reactive groups that can be targeted using a cross-linker 

include primary amines, sufhydryls, carbonyls, carbohydrates and carboxylic acid. 

Because primary amines are commonly found in proteins, homobifunctional N-

hydroxysuccinimide (NHS) esters were used as cross-linking reagents. Since it is 

difficult to predict the proximity between reactive groups different cross-linkers were 

tested: membrane-permeable DSP (Dithiobis (succinimidylpropionate)) and EGS 

(Ethylene glycolbis(succinimidylsuccinate)) as well as their water-soluble analogs 

DTSSP (Dithiobi(sulfosuccinimidylpropionate)) and Sulfo-EGS (Ethylene glycolbis 

(sulfosuccinimidylsuccinate)). Cross-linking with membrane-insoluble DTSSP and 

Sulfo-EGS was performed in the presence of Streptolysin-O (SLO). SLO is a protein 

produced by Staphylococcus aureus, which interacts primarily with cholesterol 

molecules and upon oligomerisation forms pores in the membranes (30-35 nm in 

diameter) thus allowing transport of ions and macromolecules into the cell (Bhakdi et 

al., 1996). 

L929 fibroblasts, either IFNγ-induced or untreated, were collected form the 

tissue culture plates and resuspended in PBS containing MgCl2. DSP and EGS, 

being lipophilic and membrane-permeant, were added to the cells at a final 

concentration of 1mM. DTSSP and Sulfo-EGS were incubated with the cells at a 
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concentration of 1 mM but in the presence of 0.1 U of SLO. Cross-linking was 

performed for 2 h at 4°C and subsequently quenched in the presence of 50 mM Tris 

pH 7.5 for 15 min at 4°C, since Tris contains primary amines that compete with the 

cross-linking of the proteins. Cells were lysed in 100 µl of 1% Tx-100 for 1 h at 4°C, 

the lysates were cleared by high-speed centrifugation and boiled in SDS-PAGE 

sample buffer in the absence of β-mercaptoethanol. Lysates were subjected to SDS-

PAGE and Western blotting and Irga6 was detected by mouse monoclonal 10D7 

antibody (figure 3.1.).  

 

 

 
Figure 3.1. Cross-linking of Irga6 in IFNγ-induced L929 fibroblasts 

L929 fibroblasts, induced or not induced with 200 U/ml of IFNγ, were treated with different cross-

linkers (DSP, DTSSP, EGS and Sulfo-EGS) at concentration of 1 mM, in the presence or absence of 

0.1 U SLO for 2 h at 4°C. Reaction was quenched with 50 mM Tris pH 7.5 for 15 min at 4°C, lysates 

boiled in the absence of β-mercaptoethanol in SDS-PAGE sample buffer, subjected to SDS-PAGE 

and Irga6 protein detected with 10D7 antibody in Western blot. 

 

 

Incubation of cells in the presence of membrane-permeable cross-linkers DSP 

and EGS, both in the presence and in the absence of SLO, resulted in formation of 
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Irga6-containing complexes that were approximately 85 and 95 kDa in size, marked 

by the arrows in figure 3.1., indicating interaction of Irga6 with another protein of 

molecular weight of around 50 kDa. In this experiment, IFNγ-induced Irga6 atypically 

ran as a double band, even in the absence of cross-linkers. The nature of this 

additional band is unclear. Unsuccessful Irga6 cross-linking with DTSSP and 

SulfoEGS suggested that sulfonated cross-linkers could not be used for efficient 

trapping of Irga6 molecules in high-molecular weight complexes.  

 

 

3.1.2. Analysis of cross-linking conditions 
 

In order to increase the amount of cross-linked Irga6, IFNγ-induced L929 cells 

were incubated with rising concentrations of DSP either for 2 h at 4°C or for 30 min at 

room temperature (RT), as explained above. Lysates were boiled in the absence of 

reducing agent and Irga6 detected by 10D7 antibody on Western blot. 

 

 

 
Figure 3.2. Cross-linking of Irga6 with different DSP concentration at 4°C and RT 
IFNγ-induced L929 cells were incubated with rising concentration of DSP either for 2 h at 4°C or for 30  

min at RT. Upon quenching of cross-linking reaction, lysates were boiled in the absence of β-

mercaptoethanol and Irga6 proteins were identified by staining with 10D7 antibody in Western blot. 
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Amount of Irga6 detected in a 95 kDa complex increased with the rising 

concentration of the cross-linker at 4°C, as depicted in figure 3.2., with the maximum 

reached in the presence of 2 mM of DSP. In contrast, cross-linking of Irga6 at RT 

was very inefficient. Intriguingly, a 85 kDa complex containing Irga6 could not be 

identified. Possible explanations are that the gel resolution was inefficient to separate 

85 and 95 kDa complexes or, alternatively, it indicates high instability of this Irga6-

containing complex in vivo. In addition, DSP cross-linking at both 4°C and RT 

resulted in strong Irga6 signal at the size of approximately 46 kDa, representing 

either degradation product of Irga6 or intra-cross-linked Irga6 molecule adopting 

more globular form and thus running faster in SDS-PAGE. 

In order to isolate Irga6-containing cross-linked complexes and analyse their 

composition, a concentration of 2 mM DSP and incubation for 2 h at 4°C were used 

as cross-linking condition in further experiments.  

 

 

3.1.3. Immunoprecipitation of cross-linked Irga6 
 

To be able to identify an Irga6-binding partner by mass spectrometry, 

immunoprecipitation experiments were conducted to isolate DSP cross-linked 

complexes. Lysed IFNγ-induced L929 cells treated with 2 mM DSP were incubated 

for 2 h at 4°C with Protein A sepharose beads coupled either with polyclonal 165 

serum (figure 3.3.) or monoclonal antibodies 10E7 or 5D9 (data not shown). Bound 

proteins were eluted by incubation in 100 mM Tris/HCl pH 8.5/ 0.5% SDS for 30 min 

at RT. Lysates (10% of the total sample) and immuoprecipitated proteins (IP) were 

subjected to SDS-PAGE and analysed by Western blot with αIrga6 antibodies or by 

silver staining of polyacrylamide gels.  

Upon immunoprecipitation with αIrga6 polyclonal serum 165, strong signal for 

the monomeric Irga6 protein and much weaker signal for cross-linked 95 kDa Irga6-

containing complex could be detected in Western blot, as indicated in figure 3.3. 

Even though silver-stained polyacrylamide gels revealed monomeric Irga6 in 

immunoprecipitates, the cross-linked Irga6-containing band at 95 kDa could not be 

identified. In general, the efficiency of Irga6 cross-linking varied in different 

experiments. In addition, during immunoprecipitation cross-linked Irga6-containing 

complex was always binding weakly than the monomeric Irga6. Varying the ratio 
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between the fibroblasts and the antibody-coupled Protein A sepharose beads did not 

improve the yield of the immunoprecipitated cross-linked Irga6 complex. Therefore, 

DSP cross-linking could not by exploited further to identify the Irga6 interaction 

partners.  

 

 

 
Figure 3.3. Immunoprecipitation of cross-linked Irga6 complexes 
IFNγ-induced L929 lysates with Irga6-containing complexes formed in the presence of 2 mM DSP 

were immunoprecipitated with rabbit polyclonal serum 165. Irga6 was detected either by 10D7 

antibody in Western blot or by silver staining of polyacrylamide gel. 

 

 

 

3.2 Size Exclusion Chromatography 
 

3.2.1. Size Exclusion Chromatography of Irga6 proteins in Thesit 
 

To analyse in another way whether Irga6 exists in a monomeric form or in any 

kind of a complex in vivo, size exclusion chromatography was carried out. IFNγ-

induced L929 cells were disrupted in hypotonic buffer, the soluble fraction separated 
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and subsequently the membrane fraction lysed in 0.1%Thesit/ 3 mM MgCl2/ PBS. 

Both soluble and membrane fractions were fractionated on a Superose 6 10/300 GL 

column using 0.1%Thesit/ 3 mM MgCl2/ PBS as running buffer, the fractions 

separated by SDS-PAGE and detected in Western blot using monoclonal 10D7 

antibody.  

Irga6 induced with IFNγ, isolated from both membrane fraction (figure 3.4.(a)) 

as well as from soluble fraction (figure 3.4.(b)) separated into two forms, one running 

at the size of a monomer (~50 kDa), the other running much bigger, at the size of 

approximately 150 kDa. Often the proportion of Irga6 molecules in the oligomeric 

form was much larger than in the monomeric form. This behavior is not only due to 

the presence of IFNγ-induced factors since exogenous, transfected Irga6wt, in the 

absence of IFNγ induction, also ran in a similar manner, though most of the protein 

was found in higher molecular weight fractions, as shown in figure 3.4.(c). It was 

observed that, in general, transfected Irga6wt (as well as Irga6 mutants) runs on 

Western blot as a double band, independently of the antibodies used for detection. 

Interestingly, this upper band in the size exclusion analysis was fractionated 

exclusively at the size of a monomer (figure 3.4.(c)). As depicted in figure 3.4.(d), 

transfected Irga6-G2A, which cannot be myristoylated since it lacks N-terminal 

glycine necessary for covalent linkage of myristoyl group, was found only in the low 

molecular weight fractions. Recombinant nonmyristoylated Irga6wt, expressed and 

purified from a bacterial expression plasmid, also ran as monomer (figure 3.4.(e)).  

Size exclusion analysis of Irga6 proteins in 0.1% Thesit, illustrated in figure 

3.4. revealed Irga6wt at the position expected for the monomer (~50 kDa) but also in 

fractions with a molecular weight of 150 kDa, both in the presence and in the 

absence of other IFNγ-induced factors. There are four possible explanations for Irga6 

presence in higher molecular weight complexes. Irga6wt could interact with 

ubiquitously expressed protein, in an IFNγ-independent manner. Since recombinant 

Irga6wt in vitro forms GTP-dependent homooligomers (Uthaiah et al., 2003), 

alternative possibility is that the Irga6-containing complex in non-induced cells could 

represent Irga6 homooligomers, whereas in IFNγ-induced cells they could be either 

Irga6-homooligomers or heterooligomers, containing Irga6wt in complex with another 

IFNγ-induced protein. However, nonmyristoylated proteins, recombinant Irga6wt and 

transfected Irga6-G2A, were found exclusively in the monomeric form, rather 

suggesting that the myristoyl group itself influences running behavior of Irga6 
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proteins in size exclusion chromatography. Interestingly, the upper band of 

transfected Irga6wt (figure 3.4.(c)) was found only in the later fractions, allowing the 

assumption that part of the transfected Irga6 protein is left unmyristoylated in cells in 

vivo. Finally, since concentration of 0.1% Thesit is above critical micellar 

concentration (~0.005%; (Black, 2002), interaction of Irga6 monomer (~50 kDa) with 

Thesit micelle (~90 kDa) could result in Irga6wt protein running as a complex of 150 

kDa in size. 

 

 
Figure 3.4. Size Exclusion Chromatography of Irga6 proteins in 0.1% Thesit 
Proteins were fractionated on the Superose 6 10/300 GL in the presence of 0.1% Thesit/ 3 mM MgCl2/ 

PBS. (a) IFNγ-induced Irga6, membrane fraction; (b) IFNγ-induced Irga6, soluble fraction; (c) 

transfected Irga6wt; (d) transfected Irga6-G2A; (e) recombinant nonmyristoylated Irga6wt. Irga6 

proteins were detected with 10D7 antibody in Western blot. 

 

 

3.2.2. Size Exclusion Chromatography of IFNγ-induced Irga6 in Octyl-β-D 
glucopyranoside 
 

Since the concentration of Thesit used in experiments above was over the 

critical micellar concentration (CMC of Thesit is ~0.005%; (Black, 2002), it was 

necessary to exclude the possibility that the presence of Irga6 in the higher molecular 

weight complexes was a result of association of the protein with a Thesit micelle 

(about 90 kDa). Therefore, another nonionic detergent was considered, namely 

Octyl-β-D-glucopyranoside (OGP), with a much smaller micellar molecular weight of 
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7.89 kDa (Black, 2002). IFNγ-induced L929 cells were lysed in 80 mM OGP (2.3%)/ 3 

mM MgCl2/ PBS, lysate separated again on the Superose 6 column in the same 

buffer and Irga6 detected as described above.  

Irga6 protein, induced with IFNγ, in the presence of OGP displayed wide 

distribution in size, shown in figure 3.5., indicating that use of different detergents 

might affect Irga6 running behavior and/or conformation in a detergent-specific 

manner. Nevertheless, the majority of Irga6 protein in the presence of OGP was 

found running between 67 and 200 kDa, confirming that the presence of Irga6 in 

fractions associated with higher molecular weight components is not due to the 

protein-micelle association. 

 

 

 
Figure 3.5. Size Exclusion Chromatography of IFNγ-induced Irga6 in the presence of OGP 
L929 fibroblasts, induced with IFNγ for 24 h, were lysed in 80 mM OGP/ 3 mM MgCl2/ PBS. Lysate 

was fractionated on the Superose 6 10/300 GL in the same buffer and fractions analysed by SDS-

PAGE and Western blot with 10D7 antibody. 

 

 

3.2.3. Size Exclusion Chromatography of IRG proteins in Thesit 
 

Both IFNγ-induced and transfected Irga6 proteins were found in the higher 

molecular weight complexes upon size exclusion, independent of detergents used 

(figures 3.4. and 3.5.) However, these complexes may not be of the same nature. 

Although presence of transfected Irga6 in 150 kDa complex, in the absence of IFNγ 

induction, suggests that Irga6 proteins could form homooligomers, involvement of 

other IFNγ-induced proteins as Irga6 binding partner in IFNγ-stimulated cells could 

be possible as well. 

As other IRG proteins are IFNγ-induced, and, therefore, could potentially 

interact with Irga6 in the IFNγ-induced cells, their running behaviour was analysed in 

size exclusion chromatography. L929 fibroblasts were induced with IFNγ, lysed in 

lysis buffer containing 0.1% Thesit and, upon fractionation on the Superose 6 
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column, IRG proteins were detected on Western blot with the following antibodies: 

10D7 (for Irga6), αIGTP (for Irgm3) and A20 (for Irgb6). In contrast to Irga6, Irgb6 ran 

only at the size of a monomer whereas Irgm3 was present exclusively in the higher 

molecular weight fractions, as depicted in figure 3.6.. 

The presence of both Irga6 and Irgm3 in the higher molecular weight fractions 

indicated the possible interaction of these proteins in the IFNγ-induced cells, which 

was further characterized. 

 

 

 
Figure 3.6. Size Exclusion Chromatography of IFNγ-induced IRG proteins in 0.1% Thesit 
IFNγ-induced L929 cell lysate was fractionated on the Superose 6 10/300 GL in the presence of 0.1% 

Thesit/ 3 mM MgCl2/ PBS and analysed by SDS-PAGE and Western blot with respective antibodies: 

(a) 10D7 (for Irga6); (b) αIGTP (for Irgm3); (c) A20 (for Irgb6). 

 

 

 

3.3. Irga6-Irgm3 interactions 
 

3.3.1. Co-immunoprecipitation of Irgm3 with Irga6 (in collaboration with Julia 
Hunn) 
 

 In order to further analyse a possible interaction between Irga6 and Irgm3 

proteins, a series of co-immunoprecipitation experiments was conducted. gs3T3 

fibroblasts, induced with IFNγ or left untreated, were lysed at 4°C in buffer containing 

0.1% Thesit in the absence of nucleotide or in the presence of 0.5 mM GDP or 

GTPγS. Lysates were incubated with Protein A sepharose beads coupled with rabbit 

polyclonal serum 165. Bound proteins were eluted by incubation in 100 mM Tris/HCl 

pH 8.5/ 0.5% SDS for 30 min at RT. Eluates were boiled for 5 min in SDS-PAGE 
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sample buffer, subjected to SDS-PAGE on 7.5% polyacrylamide gels and Irga6 and 

Irgm3 detected with 10D7 and αIGTP antibodies, respectively, on Western blot.  

Figure 3.7. presents results of two independent experiments and shows that 

Irga6 can co-immunoprecipitate Irgm3 from IFNγ-induced cell lysate in the absence 

of any exogenous nucleotide and, to a lesser extent, with additional 0.5 mM GDP. 

Importantly, Irga6-Irgm3 interaction was almost completely inhibited in the presence 

of 0.5 mM GTPγS, the non-hydrolysable form of GTP. There was no unspecific 

binding of proteins from the non-induced lysates detected by either αIrga6 or αIrgm3 

antibodies. In contrast to Irga6, which was strongly precipitated with αIrga6 serum-

coupled beads independently of the nucleotide present, co-immunoprecipitated Irgm3 

was detected only after long exposure times (5-10 min) suggesting a greatly sub-

stoichiometric interaction.  

 

 

 
Figure 3.7. Co-immunoprecipitation of Irgm3 with Irga6 
gs3T3 cells, induced with IFNγ or left untreated, were lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS in the 

absence or presence of 0.5 mM GDP or GTPγS. Lysates were incubated with Protein A sepharose 

beads coupled with αIrga6 polyclonal serum 165. Irga6 and Irgm3 were analysed by SDS-PAGE and 

Western blot by staining with 10D7 and αIGTP respectively. (1) and (2) represent results from two 

independent experiments. 
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The weak signal for co-immunoprecipitated Irgm3 could be explained by the 

transient nature of the Irga6-Irgm3 complex in vivo and /or its strong instability during 

precipitation procedure. Alternatively, since presence of exogenous GDP decreases 

the amount of co-immunoprecipitated Irgm3, it could be that Irga6 and/or Irgm3 

interact with other IFNγ-induced factors that compete with Irga6-Irgm3 complex 

formation in the presence of GDP. Finally, since Irga6-Irgm3 interaction is decreased 

in the presence of GDP and practically absent in the presence of GTPγS, it could be 

argued that the hydrolysis of GTP is necessary for the Irga6-Irgm3 complex 

formation. 

 

 

3.3.2. Pull-down of Irgm3 with GST-Irga6 fusion proteins (in collaboration with 
Julia Hunn) 
 

In order to confirm co-immunoprecipitation results and, in addition, to analyse 

the nucleotide state of Irga6 while interacting with Irgm3, pull-down experiments were 

performed. Fusion proteins GST-Irga6wt, GST-Irga6-S83N or GST alone, expressed 

in E. coli from pGEX-4T2-Irga6wt, pGEX-4T2-Irga6-S83N and pGEX-4T2 vectors 

respectively, were bound to Gluthathione Sepharose beads. Conjugated beads were 

preincubated with or without 1 mM nucleotide (GDP, GTPγS or mant GDP) in 5 mM 

MgCl2/ 1 mM DTT/ PBS for 2 h at RT. IFNγ-induced gs3T3 cells were lysed in 0.1% 

Thesit/ 3 mM MgCl2/ PBS with or without 0.5 mM GDP, GTPγS or mant GDP for 1 h 

at 4°C and subsequently mixed with nucleotide-pretreated protein-glutathione 

sepharose beads. Upon over-night incubation at 4°C, bound cellular proteins were 

eluted in 100 mM Tris pH 8.5/ 0.5% SDS for 30 min at RT. Eluates were analysed on 

10% SDS-PAGE and Irgm3 detected with αIGTP antibody in Western blot. The 

amount of conjugated beads was visualised by Ponceau S staining of the membrane 

upon protein transfer. Figures 3.8.(a) and (b) display results of two independent 

experiments. 

Strong signal of Irgm3 was detected upon incubation of IFNγ-induced 

fibroblasts with GST-Irga6wt in the presence of GDP, as shown in figure 3.8.(a) and 

(b). Absence of significant Irgm3 signal in the presence of GDP upon pull-down with 

GST-Irga6-S83N, nucleotide-binding deficient mutant (Hunn, 2007), indicates that the 

Irga6 has to be in the GDP-bound state in order to interact with Irgm3 (figure 3.8.(b)). 
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The presence of GTPγS, the non-hydrolysable form of GTP, inhibited the Irga6-Irgm3 

association almost completely, confirming that this interaction is GDP-dependent.  

 

 

 
Figure 3.8. Pull-down of IFNγ-induced Irgm3 with GST-Irga6 proteins 
GST-Irga6wt, GST-Irga6-S83N and GST proteins were coupled to Gluthathione Sepharose beads and 

preincubated with or without 1 mM GDP, GTPγS or mant GDP. IFNγ-induced gs3T3 fibroblasts were 

lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS in the presence or absence of 0.5 mM GDP, GTPγS or mant 

GDP; (a) and (b): Irgm3 was detected with αIGTP antibody in Western blot; (c): Ponceau S staining of 

the nitrocellulose transfer membrane. 

 

 

Nucleotides labelled with mant, a large fluorescent group, interfere with 

oligomerisation of recombinant Irga6 since the mant group inserts between two 

binding interfaces preventing protein interaction via GTP-binding domains 

(Pawlowski, unpublished data). Since the incubation of fibroblast lysate and GST-

Irga6wt beads with mant GDP reduced Irgm3 signal to the basal level (figure 3.8.(b)), 
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it is likely that the GDP-dependent Irga6-Irgm3 interaction happens via GTP-binding 

domains of these proteins. In pull-downs with both GST-Irga6wt and GST-Irga6-

S83N a weak nucleotide-independent signal for Irgm3 was detected in the absence 

of nucleotide or in the presence of GDP and mant GDP, but not in the presence of 

GTPγS (figure 3.8.(b)). This difference in Irgm3 signal strength was not due to 

unspecific binding of Irgm3 protein to the gluthathion sepharose beads, since 

incubation of Irgm3-containing cell lysates with GST-coupled beads resulted in no 

Irgm3-specific staining. It rather represents the basal affinity of these molecules that 

is independent of their nucleotide state. In addition, results described above are not 

affected by varying amount of GST fusion protein determined by Ponceau S staining 

in figure 3.8.(c). 

Pull-down experiments, using GST-Irga6 fusion proteins coupled to the 

gluthathione sepharose beads and IFNγ-induced cell lysates, suggest that Irgm3 and 

Irga6 interact in the GDP-dependent manner. Only in the presence of GDP Irga6 and 

Irgm3 interacted strongly, over the background level seen in figure 3.8.(b). Since 

nucleotide-binding deficient Irga6-S83N mutant could not form strong interaction with 

Irgm3, it is probable that Irga6 has to be in GDP-bound form in order to interact with 

Irgm3. Practically no interaction between Irgm3 and Irga6 proteins was detected in 

the presence of GTPγS, which traps molecules in the GTP-like state. This result 

allows the possibility that Irga6 and/or Irgm3 molecules, when activated, could have 

other binding partners. 

 

 

 

3.4. Irga6 nucleotide-dependent self-interactions 
 

3.4.1. αcTag1 immunoprecipitation 
 

 Presence of transfected Irga6 in a 150 kDa size complex in size exclusion 

analysis (figure 3.4.(c)), in the absence of any other IFNγ-induced protein, suggested 

the possibility of Irga6 homointeraction in cells. It has been reported that purified, 

recombinant Irga6wt in vitro can interact with itself and form GTP-dependent 

oligomers (Uthaiah et al., 2003). However, nothing was known about potential self-

interaction of Irga6 molecules in vivo. 
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 In order to address this question, a series of co-immunoprecipitations was 

conducted, in the presence of different nucleotides from detergent lysates of IFNγ-

induced or non-induced L929 or gs3T3 fibroblasts. To be able to distinguish Irga6 

molecules in the potential homooligomer, a tagged version of Irga6 was generated. 

This tag was cloned at the C-terminus of Irga6wt and therefore named cTag1. The 

cTag1 modification of Irga6wt replaces the last two amino acids (RN) with residues 

KLGRLERPHRD. It is know from in vitro and in vivo data that Irga6cTag1 has the 

same biochemical properties as Irga6wt (Uthaiah et al., 2003; Martens et al., 2005), 

thus, the cTag1 could be considered as a neutral tag. Two specific rabbit polyclonal 

sera against cTag1 were raised, named 2600 and 2601 and analysed for specificity 

(data not shown). The 2600 serum was used in further co-immunoprecipitation and 

immunofluorescence experiments.  

 

 

 
Figure 3.9. Immunoprecipitation of tagged or not tagged Irga6 with 165 and 2600 sera in L929 
cells 
IFNγ-induced or transfected Irga6wt or Irga6cTag1 were immuoprecipitated either with preimmune, 

165 (αIrga6) or 2600 (αcTag1) sera. Irga6 proteins were detected with 10D7 antibody in Western blot. 
  

 

To test the specificity of αcTag1 serum, IFNγ-induced Irga6, as well as Irga6wt 

and Irga6cTag1, expressed from transiently transfected pGW1H-Irga6wt and 

pGW1H-Irga6cTag1 plasmids (further on referred as transfected Irga6wt or 

Irga6cTag1) in L929 fibroblasts, were immunoprecipitated with preimmune serum, 

αIrga6-specific 165 or αcTag1-specific 2600 sera. Upon SDS-PAGE, Irga6 proteins 

were detected with 10D7 antibody in Western blot. Figure 3.9. indicates that the 
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serum 2600 specifically recognises only cTag1-tagged Irga6 in contrast to the serum 

165, which equally well binds to IFNγ-induced or transfected Irga6 proteins, 

regardless of the tag presence. The specificity of the serum 2600 was retained even 

when Irga6cTag1 was transfected into IFNγ-induced cells. Upon transfection, Irga6 

proteins always appear as a double band in Western blots, independently of the 

antibody used for detection, where the ratio of the upper band to the lower band 

varies in intensities. As seen in figure 3.4.(c), in size exclusion chromatography the 

upper band ran as a monomer in contrast to the lower band, which was also present 

in fractions associated with higher molecular weight components. Interestingly, both 

sera were able to precipitate upper and lower form of transfected Irga6 proteins. 

 

 

3.4.2. Co-immunoprecipitation of IFNγ-induced Irga6 with transfected 
Irga6cTag1 
 

 To analyse the potential interaction between Irga6 molecules in cellular 

contexts, co-immunoprecipitation experiments were conducted. L929 fibroblasts were 

either simultaneously induced with IFNγ and transfected with Irga6cTag1 (i+t) or 

induced and transfected separately and mixed just prior to lysis ((i)+(t)), in order to 

distinguish if the potential interaction occurs in vivo, inside cells or ex vivo, during 

lysis. Cells were lysed in 80 mM OGP/ 3 mM MgCl2/ PBS in the absence of 

nucleotides or in the presence of 0.5 mM GDP, GTP or GTPγS.  

Additionally, cells were preincubated with 300 µM AlCl3 and 10 mM NaF for 30 

min at 37°C, prior to lysis, which was done in the presence of AlCl3 and NaF, with or 

without 0.5 mM GTP. In aqueous solution fluoride and aluminium can form 

tetrahedral aluminium fluoride complex (AlFx), analog of a phosphate group 

(Strunecka et al., 2002). In vitro data with recombinant Irga6 showed that AlFx could 

replace the leaving γ-phosphate in the oligomer after GTP hydrolysis and thus lock 

the protein in the GTP-like bound oligomeric state (Uthaiah et al., 2003). As 

aluminium fluoride complexes are able to penetrate plasma membranes, incubation 

of AlFx with intact cells results in binding of AlFx to the GTPases during GTP 

hydrolysis, keeping them trapped in the GTP-like bound form in vivo (Hart et al., 

1998). Lysates were incubated with Protein A sepharose beads coupled to the 2600 
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serum, eluates subjected to the 7.5% SDS-PAGE and Irga6 proteins detected with 

10D7 antibody. 

 

 
Figure 3.10. Co-immunoprecipitation of IFNγ-induced Irga6 with transfected Irga6cTag1 in 
lysates of L929 fibroblasts 
L929 fibroblasts were either simultaneously (I+t) or separately ((i)+(t)) induced with IFNγ and 

transfected with Irga6cTag1, lysed in the presence of nucleotides and AlFx, and immunoprecipitated 

with αcTag1 serum. Irga6 proteins were detected with 10D7 antibody in Western blot. 

 

 

IFNγ-induced Irga6 could be co-immunoprecipitated with Irga6cTag1 in the 

presence of GTPγS and in the presence of GTP and AlFx, shown in figure 3.10., 

indicating that Irga6 can form at least homodimers when the protein is locked in the 

GTP-bound state. Absence of co-immunoprecipitated endogenous Irga6 in the 

presence of GTP suggests that, under these conditions, self-associated GTP-

dependent Irga6 complexes are disrupted upon GTP hydrolysis that can occur during 

co-immunoprecipitation procedure. This result confirms that Irga6 GTP-dependent 

homooligomers can be isolated only if they are trapped in the GTP-bound state. 

Incubation of cells in the presence of AlFx did not result in detection of Irga6 

homooligomers, indicating that, at least in IFNγ-induced cells, Irga6 does not self-

associate in vivo. This conclusion could be further strengthened by the fact that GTP-

dependent homooligomers were built during the cells lysis. Namely, co-

immunoprecipitated IFNγ-induced Irga6 could be found in samples that were induced 

with IFNγ and transfected with Irga6cTag1 separately and mixed prior to lysis ((i)+(t)), 

both in the presence of GTPγS and GTP with AlFx, implying that Irga6 can form 

homooligomers during lysis, ex vivo (figure3.10., marked with red arrows). 

Thus, Irga6, in the presence of IFNγ-induced factors, cannot form GTP-

dependent homooligomers in intact cells in vivo.  
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3.4.3. Effect of IFNγ induction on co-immunoprecipitation of Irga6 proteins 
 

 As described previously, in IFNγ-induced L929 cells Irga6 interacts with Irgm3 

in the presence of GDP but not in the presence of GTPγS, the non-hydrolysable form 

of GTP. It was tempting to postulate that Irgm3 and/or other IFNγ-induced factors 

keep Irga6 in an inactive, GDP-bound form. In the absence of these factors Irga6 

might get activated thought GTP-binding in vivo and be detectible in GTP-dependent 

oligomers without adding exogenous GTPγS. In order to analyse the effect of IFNγ 

on Irga6 homointeraction, L929 fibroblasts were either simultaneously induced with 

IFNγ and transfected with Irga6cTag1 or not induced by IFNγ but double transfected 

with Irga6wt and Irga6cTag1. Cells were lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS and 

co-immunoprecipitation was done as described above.  

In the IFNγ-induced background, Irga6 could interact with Irga6cTag1 only in 

the presence of GTPγS and AlFx+GTP (figure 3.11.(a) and (b)). However, in cells 

that were only transfected, Irga6wt could be co-immunoprecipitated with Irga6cTag1 

also in the presence of AlFx alone, depicted by arrows in figure 3.11.(a) and (b), 

indicating that IFNγ-induced factors prevent self-association, and, thereby, probably 

the activation of Irga6 in intact cells. Same results were obtained when gs3T3 

fibroblasts were used (data not shown). The use of different detergents for cell lysis 

(Thesit and OGP) did not affect self-interaction of Irga6 proteins. Incubation of lysates 

in the presence of mant GTPγS almost completely prevents co-immunoprecipitation 

of Irga6 proteins (figure 3.11.(b)), thus indicating that binding of Irga6 molecules 

occurs through interaction of GTP-binding domains.  

In summary, Irga6 can form GTP-dependent homooligomers in cell lysates, 

independently of other IFNγ-induced factors, in the presence of GTPγS or GTP and 

AlFx. Exogenously added GTP and AlFx as well as nonhydrolysable GTPγS trap 

Irga6 molecules in a GTP-like state and, thus, allow building of GTP-dependent Irga6 

homooligomers ex vivo. Although this interaction does not reflect the Irga6 state in 

vivo, it does show that cellular Irga6 molecules possess the intrinsic property to self-

interact in the GTP-dependent manner.  
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Figure 3.11. Co-immunoprecipitation of Irga6 with Irga6cTag1 in the presence or absence of 
IFNγ 
In (a) and (b), L929 fibroblasts, simultaneously induced with IFNγ and transfected with Irga6cTag1 or 

double transfected with Irga6wt and Irga6cTag1, were lysed in the presence of nucleotides and AlFx 

and immunoprecipitated with αcTag1 serum; in (c), gs3T3 fibroblasts, induced with IFNγ and 

transfected with Irga6cTag1, were infected with T. gondii Me49 strain, lysed in the presence of 

nucleotides and AlFx and immunoprecipitated with αcTag1 serum. Irga6 proteins were detected with 

10D7 antibody. 

 

 

However, incubation of cells in the presence of AlFx alone resulted in trapping 

of Irga6 homooligomers only in the absence of other IFNγ-induced factors, indicated 

by the arrows in figures 3.11.(a) and (b). This result demonstrates that Irga6 proteins 

can indeed form homooligomers in intact cells, in vivo, but only if other IFNγ-induced 

factors are missing. These IFNγ-induced proteins could, therefore, play a role of 

activation inhibitors for Irga6 molecules, keeping them in an inactive, GDP-bound 
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form. Irgm3 could be one of these proteins since it appears to interact with Irga6 in 

the GDP- but not in GTP-bound form, as reported in chapters 3.3.1 and 3.3.2. 

When mouse astrocytes (Martens et al., 2005) or gs3T3 fibroblasts (Hunn, 

2007) are infected with Toxoplasma gondii Me49 strain, Irga6 is rapidly, within few 

minutes (Khaminetz, unpublished data) translocated to the parasitophorous vacuole 

(PV). Together with other IRG proteins, Irga6 participates in the destruction of T. 

gondii PV (Martens et al., 2005).To analyse whether under these condition, IFNγ-

induced Irga6 can be found in an active, GTP-bound state, gs3T3 cells were 

simultaneously induced with IFNγ and transfected with Irga6cTag1 for 24 h and 

subsequently infected for 2 h with Me49 T. gondii strain with multiplicity of infection 

(MOI) of 10. Cells were then lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS and co-

immunoprecipitation was done as described above. As shown in figure 3.11.(c), it 

was indeed possible to visualize a very faint signal of co-immunoprecipitated IFNγ-

induced Irga6 in the presence of AlFx alone, indicated by the arrow, leading to the 

conclusion that, upon infection, IFNγ-induced Irga6 could be activated in vivo. 

However, the amount of co-immunoprecipitated Irga6 was very weak and the result 

was not always reproducible. Therefore, to analyse the presence of activated Irga6 

proteins around T. gondii PVM another method has to be employed.  

 

 

3.4.4. Effect of mutations on co-immunoprecipitation of Irga6 proteins 
 

Recombinant Irga6wt, expressed and purified from E. coli, forms GTP-

dependent homooligomers in vitro (Uthaiah et al., 2003). However, this protein is not 

myristoylated and, thus, may not reflect the properties of Irga6 proteins expressed in 

cells. Cellular, myristoylated Irga6 can form homooligomers in the presence of 

GTPγS, as shown in figure 3.11.. Even though this interaction occurs ex vivo, in the 

cell lysates, it could be used to test the ability of various Irga6 mutants to form GTP-

dependent self-associations. Irga6 proteins, with mutations in the N-terminal as well 

as in the GTP-binding domain, were analysed in their ability to form homooligomers 

in the presence or absence of GTPγS, in order to confirm that Irga6 homointeraction 

is indeed GTP-dependent.  

Irga6-G2A mutant protein cannot be myristoylated whereas Irga6-∆7-12 

construct, which has the indicated six amino acids deleted, is still able to covalently 
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bind myristoyl group. From in vitro data with recombinant protein, it is known that 

both K82A and E106A mutants have nucleotide binding properties of a wild type 

Irga6 but cannot hydrolyse GTP (Pawlowski, unpublished data). On the other hand, 

the S83N mutant binds both GDP and GTP very inefficiently (Hunn, 2007). Mutations 

were introduced both in Irga6wt and Irga6cTag1 proteins. L929 fibroblasts were 

double transfected, lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS and immunoprecipitated 

in the presence or absence of GTPγS with αcTag1 serum.  

As depicted in the figure 3.12., Irga6wt and Irga6-∆7-12 show strong self-

interaction only in the presence of GTPγS. The Irga6-G2A mutant interacts with itself 

in a GTP-dependent manner but very weakly. However, both K82A and E106A 

mutants form homooligomers independently of any additional nucleotide. 

Interestingly, Irga6-E106A mutant ran much smaller in SDS-PAGE than other Irga6 

proteins. Finally, the S83N mutant did not show any self-interaction, even in the 

presence of GTPγS.  

 

 

 
Figure 3.12. Co-immunoprecipitation of Irga6wt and mutant proteins 
L929 fibroblasts were double transfected with Irga6wt and Irga6cTag1, with or without mutations. Cells 

were lysed in the presence or absence of GTPγS and immunoprecipitated with αcTag1 serum. Irga6 

proteins were detected with 10D7 antibody in Western blot. 

 

 

Indeed, Irga6 interacts with itself in a GTP-dependent manner, since mutants 

that cannot hydrolyse GTP form homooligomers even in the absence of exogenously 

added GTPγS, probably exploiting cellular GTP. In agreement with that, nucleotide-

binding deficient mutant did not exhibit homooligomerisation, confirming the 

nucleotide-dependent nature of the Irga6 self-interaction. The deletion of six amino 
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acids (∆7-12) at the N-terminus of Irga6 did not affect self-association of this protein. 

In contrast, absence of myristoyl group severely impaired the ability of Irga6 to form 

homooligomers. Although this effect occurs ex vivo, it still might indicate that lipid 

modification could have a significant role in Irga6 function in vivo. 

 

 

 

3.5. IFNγ-induced factors are necessary for proper localisation of Irga6 
 

 When Irga6 is induced with IFNγ, it is localised in immunofluorescence in a 

reticular pattern, with the signal overlapping with those of ER proteins like TAP, 

Calnexin or ERP60 (Martens et al., 2004). In contrast to IFNγ-induced Irga6 (figure 

3.13.(a)), transfected Irga6wt, as well as tagged Irga6cTag1, forms small dots or 

larger aggregates, whose presence is independent of the amount of protein 

expressed in cells (figure 3.13.(b),(c),(d)).  

However, when L929 fibroblast were simultaneously induced with IFNγ and 

transfected with Irga6cTag1, cells with low amount of transfected Irga6cTag1 showed 

normal ER-like reticular localisation of exogenous protein, as in figure 3.13.(g). The 

amount of transfected Irga6cTag1 in these “low transfected cells” roughly equals the 

amount of Irga6 upon IFNγ-induction.  

After quantification, of all cells that were simultaneously induced with IFNγ and 

transfected with Irga6cTag1, 16.5% showed relocalisation of exogenous Irga6cTag1, 

and always those with low amount of transfected protein (figure 3.14.(g), whereas 

high (40.5%) and medium (43%) transfected cells displayed no relocalisation of 

transacted Irga6cTag1, as in figures 3.14 (e) and (f) respectively. Transfected 

Irga6cTag1 was detected with rabbit polyclonal αcTag1 serum 2600.  

Thus, IFNγ-induced factors are required not only for keeping Irga6 proteins in 

an inactive form prior to infection (figure 3.11.) but are also necessary for proper, ER 

localisation of Irga6. This effect of IFNγ is dose-dependent since only cells 

expressing relatively low amount of Irga6cTag1 show relocalisation of transfected 

Irga6 proteins.  
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Figure 3.13. Localisation of IFNγ-induced and transfected Irga6cTag1 in L929 cells 
Localisation of IFNγ-induced Irga6 (a), transfected Irga6cTag1 without IFNγ (b, c, d) or with IFNγ 

induction (e, f, g). (b) and (e) represent high transfected cells, (c) and (f) medium and (d) and (g) low 

transfected cells. IFNγ-induced Irga6 in (a) was detected with αIrga6 10E7 antibody (green); 

transfected Irga6cTag1 (b, c, d, e, f, g) was detected with αcTag1 serum 2600 (green). 

 

 

 

3.6. 10D7 antibody in immunofluorescence recognises transfected Irga6 and 
Irga6 on T. gondii PV but not Irga6 that is relocalised to the ER 
 

IFNγ-induced Irga6 localises to the ER in contrast to transfected Irga6cTag1, 

which adopt punctual localisation, forming aggregates of different size (figure 3.13.). 

In the IFNγ-induced cells, transfected Irga6cTag1 can be partly relocalised to the ER. 

It appears that Irga6 on the ER, either IFNγ-induced or relocalised, is kept in an 
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inactive, GDP-bound form by GMS proteins. Transfected Irga6cTag1, in the absence 

of inhibitory effect of GMS proteins, can form GTP-dependent homooligomers in vivo 

(figure 3.11.), and the Irga6-positive aggregates seen throughout the cell might 

represent this active form of Irga6.  

 

 

 
Figure 3.14. Detection of transfected Irga6cTag1 with 10D7 antibody in gs3T3 fibroblasts 
(a) cells transfected with Irga6cTag1; (b) cells simultaneously induced with IFNγ and transfected with 

Irga6cTag1; (c) cells induced with IFNγ and transfected with Irga6cTag1 24 h prior to 2 h infection with 

T. gondii Me49 strain with MOI 8. αcTag1 staining is shown in red and 10D7 staining in green. 

Parasitophorous vacuole is indicated by the arrow. 
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Upon infection with Toxoplasma gondii, IFNγ-induced Irga6 protein is found at 

the parasitophorous vacuole membrane (Martens et al., 2005). It is proposed that 

Irga6 at the PVM is in GTP-bound form and actively participate in the disruption of 

the parasitophorous vacuole containing T. gondii (Martens et al., 2005). However, no 

formal proof has been reported. Co-immunoprecipitation assay, performed in order to 

detect GTP-dependent Irga6 homooligomers in T. gondii-infected cells in vivo, was 

not efficient (figure 3.11.(c)), implying that another method had to be used to identify 

potentially activated Irga6 molecules on the PVM. 

It has been observed that, in immunofluorescence analysis, 10D7 antibody, 

one of the αIrga6 monoclonal antibodies, does not recognise IFNγ-induced Irga6 on 

the ER, but does detect transfected Irga6 (Schroeder, 2005). To analyse whether this 

antibody binds to Irga6 on the PVM, gs3T3 cells were either transfected with 

Irga6cTag1 (figure 3.14.(a)), simultaneously transfected with Irga6cTag1 and induced 

with IFNγ (figure 3.14.(b)) or transfected with Irga6cTag1 and induced with IFNγ 24 h 

prior to 2 h infection with T. gondii Me49 strain with MOI 8 (figure 3.14.(c)). 

Transfected Irga6cTag1 was analysed by staining with both αcTag1 serum 2600 

(red) and with monoclonal antibody 10D7 (green).  

As described previously, 10D7 recognised Irga6cTag1 in cells that were only 

transfected, regardless of the amount of protein present (figure 3.14.(a)). However, 

10D7 did not stain relocalised Irga6cTag1 in cells that were simultaneously 

transfected and induced with IFNγ, whereas aggregated Irga6cTag1 was still 

detected (figure 3.14.(b)). Transfected Irga6cTag1 accumulating around PV 

containing T. gondii Me49 strain in IFNγ-induced cells was also detected with 10D7 

antibody, as shown in figure 3.14.(c). 

Since 10D7 antibody binds to mis-localised transfected Irga6 as well as to 

Irga6 around T. gondii-containing vacuoles but not to Irga6 at the ER, it was tempting 

to postulate that the 10D7 antibody recognises a specific, namely, active 

conformation of Irga6 in vivo. Another option would be that the 10D7 is a low affinity 

antibody and, thus, efficiently binds only to the densely packed Irga6 molecules in 

aggregates or around T. gondii-containing PV. In order to distinguish between these 

two possibilities, the binding affinity of 10D7 antibody was analysed further, in 

comparison with the monoclonal antibody 10E7, which fails to discriminate between 

IFNγ-induced and aggregated or vacuole-bound Irga6 (Schroeder, 2005). 
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3.7. 10D7 antibody affinity determination  
 

3.7.1. Purification of 10D7 and 10E7 Fab and Fc fragments 
 

 Antibody binding to antigen is noncovalent and reversible and the strength of 

this interaction is termed affinity (Harlow, 1988). However, overall stability of the 

antibody-antigen complex depends not only on the intrinsic affinity of an antibody for 

the epitope but also on the valency of the antibody and antigen. The measure of this 

overall stability of the complex between antibody and antigen is named avidity. 

 Most immunochemical procedures involve multivalent interactions, which 

greatly stabilise immune complexes, resulting in practically irreversible reactions. 

Antibodies are multivalent and antigens can be also multivalent either because they 

contain multiple copies of the same epitope (as in homopolymer) or because they 

contain multiple epitopes recognised by different antibodies. Multimeric interactions 

allow low-affinity antibody to bind tightly to the antigens, transforming a low affinity 

antibody to an antibody of high avidity.  

10D7, belonging to the IgG1 class of antibodies (Zerrahn, personal 

communication), is bivalent. Densely packed Irga6 molecules either in aggregates 

following transfection into uninduced cells, or around T. gondii PV, could act as a 

multivalent antigen in contrast to more distributed, probably monomeric Irga6 

molecules bound to the ER in resting cells. If 10D7 is a low affinity antibody, bivalent 

interaction with Irga6 in aggregates and around PV will increase its avidity and result 

in strong binding. If that is the case, then papain-cleaved, monomeric 10D7 Fab 

fragments will not be able to bind efficiently to concentrated Irga6, illustrated in figure 

3.15.. In contrast, if 10D7 is a high affinity antibody, its monomeric Fab fragments will 

retain their strong binding property.  

 An IgG molecule is a symmetrical dimer consisting of four polypeptide chains: 

two identical heavy chains and two identical light chains held together by interchain 

disulfide bonds (Harlow, 1988). Conventionally, antibodies are thought of as having 

three protein domains, two identical antigen-binding sites called Fab fragments 

(fragments of antigen binding) connected by a hinge region to an effector domain 

known as the Fc fragment (crystallisable fragment). Treatment with papain protease 

results in digestion of the antibody in the hinge region, releasing the two Fabs 

(consisting of a light chain and N-terminal domain of a heavy chain, bridged by 
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disulfide bond) and one Fc fragment (consists of two C-terminal parts of heavy chains 

connected by two disulfide bridges). The principal sites of papain cleavage are found 

an the amino-terminal side of the disulfide bonds that hold the light and the heavy 

chains together thus resulting in release of two Fab fragments with molecular weight 

of around 45-55 kDa and one Fc fragment of 50 kDa, under non-reducing conditions 

(figure 3.18.). However, mouse monoclonal antibodies from the different classes 

show a wide degree of variation of secondary papain cleavage sites in the flexible 

hinge region, which usually results in a presence of additional fragments of different 

sizes. 

 

 

 
Figure 3.15. Properties of a low affinity antibody 
If 10D7 is a low affinity antibody, bivalent interaction of 10D7 with Irga6 in aggregates and around PV 

will increase the avidity of the complex and will result in strong binding. However, its papain-cleaved 

Fab fragments will not be able to bind efficiently to the densely packed Irga6 molecules. 
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To test papain digestion condition, 10E7 antibody was digested with papain 

(papain: globulin ratio was 1:100) in the presence of 0.01 M cysteine (Gorini et al., 

1969). Mixtures were incubated at 37°C for 1 h and at indicated time points (figure 

3.16.) 20 µl of sample were taken for cleavage efficiency analysis. The digestion 

reaction was stopped by adding iodoacetamide to the final concentration of 50 mM 

and incubation at RT for 30 min. Samples were then boiled in the SDS-PAGE sample 

buffer in the presence (reducing conditions) or absence (non-reducing conditions) of 

5% β-mercaptoethanol. Upon SDS-PAGE, proteins were visualised by staining of gel 

in Coomassie Brilliant Blue solutions.  

 
Figure 3.16. Papain digestion of mouse monoclonal 10E7 antibody 
10E7 antibody was incubated with papain and 0.01 M cysteine at 37°C and at indicated time points (0, 

5, 10, 15, 30, 45 and 60 min) 20 µl of mixture was taken. Reaction was stopped by adding 

iodoacetamide to a final concentration of 50 mM and incubation at RT for 30 min. Upon boiling in the 

SDS-PAGE sample buffer in the presence or absence of 5% β-mercaptoethanol and SDS-PAGE, 

proteins were detected by staining in Coomassie Brilliant Blue solutions. 
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Figure 3.16. shows that most of the antibody was cleaved in the first 15 

minutes of papain digestion, but even after 1 h there was a small amount of 

antibodies that was only partially digested. Under non-reducing conditions, three 

major bands between 40 and 50 kDa were observed whereas after boiling in the 

presence of reducing agent only two bands of 25 and 30 kDa were present. 

In order to get more complete digestion of antibodies, both 10D7 and 10E7 

antibodies were incubated as described above, but for longer time periods, up to 4 h, 

and analysed under non-reducing conditions. As figure 3.17. depicts, 2 h incubation 

with papain was enough to cleave most of the antibodies and those conditions were 

used in further experiments. 

 

 
Figure 3.17. Papain cleavage of 10D7 and 10E7 antibodies 
10D7 and 10E7 antibodies were incubated with papain at 37°C for up to 4 h. Upon termination of 

reaction, samples were subjected to SDS-PAGE and stained with Coomassie Brilliant Blue. No 

reducing agent was used. 

 

 

 To further separate papain-cleaved fragments from non-cleaved whole 

antibody molecules, digestions were subjected to size exclusion chromatography on 
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a Superdex 75 column (HiLoad 26/60 Superdex 75 prep grade, Amersham) under 

non-reducing conditions. This column was chosen for its separation range of 3-70 

kDa, thus only monovalent fragments should be separated whereas uncleaved 

antibody of 150 kDa in size should be excluded.  

 

 
Figure 3.18. Size exclusion chromatography of 10E7 and 10D7 fragments 
Papain cleaved 10E7 (a) and 10D7 (b) antibodies were separated on a Superdex 75 column. 

Fractions were subjected to SDS-PAGE and protein detected by Coomassie Brilliant Blue staining. No 

reducing agent was used. 
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Indeed, after size exclusion, there was no trace of uncleaved antibody in 

fragment fractions detectable by Coomassie Brilliant Blue staining (figure 3.18.). 

Antibody fragments from both 10E7 and 10D7 were detected in fractions B11-C7, 

corresponding to sizes 55-42 kDa. In following experiments fractions B13 and C3 

were assayed. 

 

 

3.7.2. Determination of affinity of 10D7 and 10E7 fragments in Western blot 
 

 The Irga6 binding affinity of purified 10D7 and 10E7 papain-cleaved fractions, 

as well as the affinities of whole 10D7 and 10E7 antibodies were analysed in 

Western blot. Recombinant Irg6wt was loaded on a polyacrylamide gel and blotted on 

the nitrocellulose transfer membrane. The membrane was cut in strips so that each 

strip contained a lane with Irga6wt and they were blocked in Western Blocking 

Reagent (1:10 dilution in PBS) at RT for 1 h. 10D7 and 10E7 as well as 10D7 B13, 

10D7 C3, 10E7 B13 and 10E7 C3 fractions (figure 3.18.) were diluted to a 

concentration of 10 µg/ml (in 1:20 diluted blocking buffer) and that concentration was 

considered as 1:1. Serial of dilutions of antibodies and their fragments was made 

further, 1:3, 1:9, 1:27 and 1:81. Each strip was incubated with appropriate antibody 

dilution and goat-α-mouse HRP-coupled antibody was used as secondary detection 

reagent (figure 3.19.(a)). Signals were quantified using ImageQuant TL v2005 

(Amersham) and plotted against logarithmic values of antibodies in µg/ml as in figure 

3.19.(b).  

As depicted in figure 3.19.(b), 10D7 antibody showed much higher titre to 

Irga6 than 10E7 at equal concentration. Interestingly, the titre of the C3 fraction of 

10D7, containing only monovalent Fab fragments, was only third of the titre of 

bivalent 10E7. In the case of both 10D7 and 10E7 antibodies, C3 fractions displayed 

higher titres for Irga6 than earlier eluting B13 fractions, excluding the possibility that 

the strong αIrga6 signal originated from trailing of uncleaved antibody during 

separation on the Superdex 75 column. 

Both uncleaved 10D7 and 10E7 antibodies appeared to have higher titres than 

the C3 fragments. However, the secondary HRP-coupled detection reagent was 

raised against whole mouse monoclonal IgG antibody. Stronger signals for the native 
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antibodies could be, at least partially, due to binding of the detection reagent to the 

constant region of the uncleaved antibodies  

 

 

 
Figure 3.19. Titration of 10D7 and 10E7 fragments on Irga6 Western blot 
Affinity of antibodies was analysed by binding to the recombinant Irga6 fixed to the nitrocellulose 

membrane. 10 µg/ml of antibodies was considered as 1:1 and further dilutions were made, 1:3, 1:9, 

1:27 and 1:81. Goat-α-mouse-HRP antibody was used as a secondary detection reagent, (a). Signals 

were quantified using ImageQuant TL v2005 (Amersham) and plotted against logarithmic values of 

concentration of antibodies used, (b). 
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3.7.3. Estimation of the relative affinities of 10D7 antibody and 10D7 C3 
fragments in immunofluorescence 
 

 In order to compare the behaviour of 10D7 and 10D7 C3 fragments in a 

biological context, immunofluorescence analysis was conducted. gs3T3 fibroblasts 

were induced with 200 U/ml of IFNγ for 24 h and then infected with T. gondii Me49 

strain with MOI 8 for 2 h. Upon fixation, cells were labelled with native 10D7 or 10D7 

C3 Fab fragments (both 10 µg/ml) for 1 h at RT. To avoid the fluorescent signal due 

to the constant region of the uncleaved antibody, a secondary antibody goat-α-

mouse kappa light chain-FITC (αkappa) antibody was used. Images were taken with 

a Zeiss Axioplan II fluorescence microscope equipped with an AxioCam MRm 

camera (Zeiss) and acquisition times are depicted in figure 3.20. Binding affinity was 

evaluated by the acquisition time necessary to detect Irga6 signal of equal intensity 

around T. gondii PV. 

As seen earlier (figure 3.14.(c)), the 10D7 antibody binds to the Irga6 

molecules around T. gondii PV. If 10D7 is a low affinity antibody, its Fab fragments 

(in fraction C3), which are unable to form bivalent interactions with antigens and 

therefore have low avidity, will bind to Irga6 molecules very inefficiently. This would 

result in longer exposure time necessary to detect signal of Irga6 around PV with 

10D7 C3 fragments compared to noncleaved 10D7 antibody. 

However, when secondary α-mouse kappa light chain-FITC antibody was 

used, Irga6 rings, labelled with the whole 10D7 antibody (figure 3.20.(a)) as well as 

with 10D7 C3 fragment (figure 3.20.(b)), were detected after 400 ms in both cases. 

Thus, 10D7 C3 fragment detect Irga6 around PV vacuoles as efficiently as the whole 

10D7 antibody, indicating that 10D7 is a high affinity antibody when detecting Irga6 in 

the vacuole-bound or aggregated state. Thus, the failure of 10D7 to detect non-

aggregated Irga6 presumably implies that there is a conformational change between 

Irga6 molecules in resting, IFNγ-induced state and Irga6 molecules in aggregates or 

bound to the T. gondii vacuole. 
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Figure 3.20. Detection of Irga6 rings around PV using 10D7 antibody and 10D7 C3 fragments 
gs3T3 fibroblasts were induced with IFNγ and infected for 2 h with T. gondii Me49 strain. Irga6 was 

detected with 10 µg/ml of 10D7 antibody or 10D7 C3 fraction (10D7 C3); as secondary detection 

reagent goat-α-mouse kappa light chain-FITC (αkappa) was used.  
 

 

 

3.8. The 10D7 epitope is located between amino acids 20-25 of Irga6 
 

 Previous experiments reported that the 10D7 epitope resides in the first 68 

amino acids of the Irga6 molecule (Martens, 2004). In order to locate the epitope of 

the 10D7 antibody more precisely, various deletion constructs of Irga6wt were cloned 

into the pEGFP-N3 vector. Constructs pEGFP-N3-Irga6-1-20, pEGFP-N3-1-23 and 

pEGFP-N3-1-25, containing first 20, 23 or 25 amino acids of Irga6 respectively fused 

N-terminally of EGFP, were transfected into L929 fibroblasts. The EGFP signal was 

used to identify transfected cells and the presence of the epitope in these fusion 

proteins was detected by staining with 10D7 (red).  

As depicted in figure 3.21., 10D7 antibody could not bind to the first 20 aa of 

Irga6 (figure 3.21.(a)), whereas in 30% of transfected cells it did bind to Irga6-1-23 
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(figure 3.21.(b)). Finally, 100% of cells containing Irga6-1-25 peptide were 10D7 

positive (figure 3.21.(c)). This result indicates that 10D7 epitope is largely situated 

between amino acid 20-25. 

 

 

 
Figure 3.21. 10D7 epitope is between Irga6 amino acids 20-25 
L929 fibroblasts were transfected with pEGFP-Irga6-1-20 (a), pEGFP-Irga6-1-23 (b) or pEGFP-Irga6-

1-25 (c). EGFP signal was used to detect transfected cells and 10D7 epitope was analysed by staining 

with 10D7 antibody (red). 
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Figure 3.22. Irga6-T21I protein is 10D7-negative 
L929 fibroblasts were transfected with Irga6wt, Irga6-T21I, Irga6-G22E and Irga6-F24L. Proteins were 

detected with αIrga6 serum 165 (red) and 10D7 (green). Only overlays are shown. Numbers represent 

percentage of transfected cells showing 10D7 positive signal. 

 

 

In contrast to Irga6, homologues protein Irga2 cannot be detected by 10D7 

(Zeng, personal communication). In the region where the 10D7 epitope is located, 

Irga6 and Irga2 differ in three residues. In order to identify which of them is necessary 

for 10D7 to bind to the Irga6 molecules, site directed mutagenesis was used to 

introduce T21I, G22E and F24L mutations into pGW1H-Irga6wt vector, respectively. 

L929 fibroblasts were transfected with respective constructs, the Irga6 protein 

detected with αIrga6 serum 165 (red) and 10D7 (green) and overlays depicted in 
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figure 3.22. The 165 serum was used to detect transfected cells and the number of 

10D7 positive cells for each construct was determined.  

Figure 3.22. indicates that 88% of cells transfected with Irga6wt were 10D7 

positive. Cells expressing Irga6-G22E and Irga6-F24L mutant proteins were 45% and 

55% 10D7 positive, respectively. In contrast, none of the cell containing Irga6-T21I 

mutant displayed 10D7 signal, suggesting that the threonine residue in position 21 in 

Irga6 is the most important for 10D7 recognition.  

The 10D7 epitope was also analysed in Western blot. L929 fibroblasts were 

transfected with Irga6wt, Irga6-G2A, Irga6-∆2-12, Irga6-∆7-25 and Irga6-F24L and 

lysed in 0.1% Thesit/ 3 mM MgCl2/ PBS. Lysates were subjected to SDS-PAGE and 

Irga6 proteins were detected with monoclonal mouse antibodies 10D7 and 10E7.  

Figure 3.23. shows that deletion of amino acids 7-25 and F24L mutation 

resulted in complete or almost complete loss of 10D7 epitope, respectively. Deletion 

of amino acids 2-12 or the absence of the myristoyl group in Irga6-G2A mutant had 

no effect on the 10D7 recognition, thus excluding the involvement of the very N-

terminal region of Irga6 protein in the 10D7 epitope. 

 

 

 
Figure 3.23. Western blot analysis of the 10D7 epitope 
L929 fibroblasts were transfected with Irga6wt, -G2A, -F24L, -∆7-25 and -∆2-12 constructs and lysates 

run on SDS-PAGE. Proteins were detected with 10D7 and 10E7 antibodies. 

 

 

 In conclusion, the 10D7 epitope is located between amino acid 20-25 in Irga6 

molecule, where the mutation of threonine at position 21 to isoleucine shows the 
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strongest effect on 10D7 binding. The myristoyl group and first 12 N-terminal amino 

acids of Irga6 protein are not part of the 10D7 epitope, as illustrated in figure 3.23..  

The exact position of the epitope in the structural model of Irga6, as well as 

orientations of side chains of T21, Y23, F24 and K25 amino acids, are depicted in red 

in figure 3.24.(a) and (b) respectively. T21 and K25 residues point to the solvent, 

whereas Y23 and F24 residues are located in the interhelical space, between helices 

αB, αC and αF. The fact that the epitope is a part of the first α helix in Irga6 molecule 

suggests that the GTP-binding domain itself is excluded from the 10D7 recognition 

sequence.  

 

 

 
Figure 3.24. Location of the 10D7 epitope in the Irga6 molecule 
(a) 10D7 epitope, marked in red, includes amino acids 20-25 but not the myristoyl group, first 12 N-

terminal amino acids nor the GTP-binding domain. GppNHp and Mg2+ are shown as atomic stick figure 

and black sphere respectivly; (b) orientation of side chains of T21, Y23, F24 and K25 amino acids in 

the Irga6 structure. 
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3.9. 10D7 immunoprecipitations 
 

3.9.1. 10D7 precipitates Irga6 proteins in the presence of OGP but not in the 
presence of Thesit 
 

10D7, in immunofluorescence analysis, binds to Irga6 proteins in aggregates 

and around T. gondii PV, but not to the Irga6 in its resting localisation, on ER (figure 

3.14.). This is not an effect of aggregation per se since it is not lost in 10D7 Fab 

fragments (chapter 3.7.). The most possible explanation for the differential binding 

specificities of 10D7 to monomeric and aggregated or assembled Irga6 would be that 

it recognises a specific conformation of Irga6 molecule.  

To examine this possibility, a series of immunoprecipitation experiments was 

carried out. Purified recombinant Irga6wt was diluted in buffers containing either no 

detergent, 80 mM OGP or 0.1% Thesit, using 10% FCS or noninduced L929 cell 

lysate to block the unspecific binding of protein to Protein A sepharose beads. 

Samples were incubated with Protein A sepharose coupled to 10D7 (D), 10E7 (E) or 

no antibodies (/) for 2 h at 4°C. Bound proteins were eluted by incubation in 100 mM 

Tris/HCl pH 8.5/ 0.5% SDS for 30 min at RT, eluates boiled for 5 min with SDS-

PAGE sample buffer and analysed by SDS-PAGE and Western blot. Irga6 was 

detected by rabbit polyclonal serum 165. 

 

 

 
Figure 3.25. Immunoprecipitation of recombinant Irga6wt with 10D7 (D) and 10E7 (E) 
monoclonal antibodies 
Purified recombinant Irga6wt was incubated with Protein A sepharose coupled with 10D7 (D), 10E7 

(E) or no antibodies (/) in the presence of OGP, Thesit or without any detergent. FCS or non-induced 

cell lysate were used to prevent unspecific binding of Irga6 to the beads. Irga6 was detected by rabbit 

αIrga6 polyclonal serum 165.  
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10E7 antibody could immunoprecipitate recombinant Irga6wt regardless of 

detergents present, as shown in figure 3.25.. In contrast, 10D7 could precipitate Irga6 

only in the presence of OGP but not in Thesit or in the absence of detergent, 

indicating that the Irga6 conformation recognised by 10D7 in immunoprecipitation 

experiments is detergent-dependent. 

Effect of detergents on 10D7 immunoprecipitation of IFNγ-induced and 

transfected Irga6 proteins was analysed next. L929 fibroblasts were induced with 

IFNγ (ind.) or transfected with Irga6wt (transf.) for 24 h. Cells were lysed in buffers 

containing either 0.1% Thesit or 80 mM OGP for 1 h at 4°C. In parallel, recombinant 

Irga6wt (rec.) was diluted in Thesit- or OGP-containing noninduced L929 cell lysate, 

as mentioned above. Samples were incubated with Protein A sepharose beads 

coupled with either 10D7, 10E7 or with no antibodies (/) for 2 h at 4°C. Upon 

incubation of beads in 100 mM Tris/HCl pH 8.5/ 0.5% SDS for 30 min at RT, eluated 

proteins were boiled for 5 min with SDS-PAGE sample buffer, separated by SDS-

PAGE and Irga6 proteins detected by rabbit polyclonal serum 165 in Western blot.  

 

 
Figure 3.26. Immunoprecipitation of Irga6 with 10D7 and 10E7 in the presence of Thesit or OGP 
L929 fibroblasts, induced with IFNγ (ind.) or transfected with Irga6wt (transf.), were lysed in the 

presence of 0.1% Thesit or 80 mM OGP. Purified recombinant Irga6wt (rec.) was diluted in non-

treated L929 cell lysates also in the presence of either Thesit or OGP. Samples were incubated with 

Protein A sepharose coupled to the 10D7 and 10E7 or no antibodies (/) for 2 h at 4°C. Eluates were 

subjected to the SDS-PAGE and Irga6 proteins detected by serum 165 in Western blot. 

 

 

As figure 3.26. indicates, in the presence of OGP, 10D7 and 10E7 

immunoprecipitate all Irga6 proteins (IFNγ induced, transfected and recombinant) 

with the similar efficiency. However, in the presence of Thesit, only 10E7 could 

efficiently immunoprecipitate Irga6 proteins. 10D7 bound both IFNγ-induced and 
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transfected Irga6 very weakly and failed completely to immunoprecipitate 

recombinant Irga6wt, confirming that 10D7 precipitates Irga6 proteins in detergent–

dependent manner. As it was mentioned earlier, 10D7 in immunofluorescence does 

not recognise Irga6 on ER but does bind to transfected Irga6 molecules as well as 

Irga6 on the parasitophorous vacuoles. Thus, it appears that, in immunoprecipitation 

experiments, the aggregated or vacuole-bound conformation of Irga6 can be induced 

by binding of OGP but not by Thesit. 

 

 

3.9.2. Effect of nucleotide in Irga6 immunoprecipitation by 10D7 
 

 IFNγ-induced factors are necessary for proper, ER localisation of Irga6 (figure 

3.13.). In addition, the Irga6 protein in the GDP-bound state interacts with a member 

of the GMS family, Irgm3 (chapter 3.3.). It was tempting to assume that Irga6 in the 

resting state, bound to the ER, is in an inactive, GDP-bound form. In the absence of 

IFNγ-induced factors, Irga6 is found localised in dotty structures throughout the cell 

(figure 3.13.) and can form GTP-dependent homooligomers (figure 3.11.(a)). Finally, 

GTP-dependent Irga6 homooligomers could be visualized in IFNγ-induced cells upon 

infection with T. gondii (figure 3.11.(c)). As 10D7 stains Irga6 proteins around T. 

gondii PV and in aggregates but not when they are localised to the ER (figure 3.14.), 

it might be possible that 10D7 recognises the GTP-bound form of Irga6. 

The effect of nucleotides on 10D7 immnuprecipitation of Irga6 was tested. 

Samples, as described above, were incubated with Protein A sepharose coupled with 

10D7 or 10E7 in the absence of nucleotides or in the presence of 0.5 mM GDP or 

GTPγS. Bound proteins were eluted by boiling of beads for 5 min in SDS-PAGE 

sample buffer and eluates than analysed by SDS-PAGE and Western blot. Irga6 was 

detected by rabbit polyclonal serum 165. 

In the presence of OGP there was no effect of nucleotide, both antibodies 

immunoprecipitated equally well all Irga6 proteins, shown in figure 3.27. In the 

presence of Thesit, however, again, there was no precipitation of recombinant 

Irga6wt by 10D7 antibody. In contrast, 10D7 showed stronger binding to IFNγ-

induced and transfected Irga6 in the presence of GTPγS than in the presence of 

GDP or in the absence of exogenously added nucleotides. In this experiment, low 

signal for IFNγ-induced and recombinant Irga6 immunoprecipitated by 10E7 in the 
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presence of GTPγS is probably result of an unequal gel loading. In all other 

experiments, 10E7 bound Irga6 proteins equally well, regardless of nucleotide or 

detergent present. 

Taken together, it appears that 10D7 antibody, in the presence of Thesit, binds 

preferentially to the GTP-bound state of IFNγ-induced and transfected Irga6 but, 

interestingly, not to recombinant protein. 

 

 

 
Figure 3.27. Immunoprecipitation of IFNγ-induced, transfected and recombinant Irga6 proteins 
by 10D7 and 10E7 antibodies in the presence of different nucleotides 
L929 fibroblasts, induced with IFNγ or transfected with Irga6wt, were lysed in the presence of 0.1% 

Thesit or 80 mM OGP. Recombinant Irga6wt was diluted in non-treated L929 cell lysates also in the 

presence of either Thesit or OGP. Samples were incubated in the absence of nucleotide or in the 

presence of 0.5 mM GDP or GTPγS with Protein A sepharose coupled to the 10D7 or 10E7 for 2 h at 

4°C. Eluates were subjected to SDS-PAGE and Irga6 proteins detected by serum 165 in Western blot. 
 

 

3.9.3. Effects of detergents on binding of Irga6 to 10D7 
 

 The influence of other detergents on 10D7 immunoprecipitation of Irga6 was 

tested further. L929 fibroblasts were transfected with Irga6wt and lysed in the 

absence or presence of 0.5 mM GTPγS with different detergents: 80 mM OGP, 0.1% 

Thesit, 20 mM CHAPS, 1% Triton X-100, 1% Triton X-114, 0,7% SDS or 1% 

Digitonin (figure 3.28.).  

Nonionic detergents Thesit and Digitonin as well as the zwitterionic detergent 

CHAPS showed nucleotide-dependent immunoprecipitation of Irga6 by 10D7. When 

lysed with these detergents, Irga6 was immunoprecipitated up to10 times stronger in 

the presence of GTPγS than in its absence. Thus, results with Thesit, CHAPS and 

Digitonin suggest that the 10D7 determinant is modified by nucleotide binding.  
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On the other hand, Irga6 was efficiently precipitated even in the absence of 

GTPγS in nonionic OGP, Triton X-110, Triton X-114 and ionic SDS, suggesting that 

these detergents induce the 10D7-exposed Irga6 conformation probably 

independently of nucleotide. 

 

 

 
Figure 3.28. Effects of detergents on binding of Irga6 to 10D7 
L929 fibroblasts were transfected with Irga6wt and lysed in the absence or presence of 0.5 mM 

GTPγS with different detergents: 80 mM OGP, 0.1% Thesit, 20 mM CHAPS, 1% Triton X-100, 1% 

Triton X-114, 0,7% SDS or 1% Digitonin. Bound proteins were eluted by boiling in SDS-PAGE sample 

buffer and detected with 165 serum in Western blot. 

 

 

3.9.4. Effects of mutations in Irga6 on binding of Irga6 to 10D7 
 

 To confirm that 10D7 antibody preferentially recognises a GTP-bound form of 

the Irga6 molecule, different Irga6 mutants were tested for their ability to bind to 10D7 

in the presence of nucleotides. Two mutations in the G1 binding motif were 

introduced. Irga6-K82A has wild type nucleotide binding affinity but no GTPase 

activity, whereas Irga6-S83N essentially binds no nucleotide (Hunn, 2007). In 

addition, Irga6-E106A mutant was tested, that caries mutation in the primary 

interaction interface (Pawlowski, unpublished data). This mutant binds nucleotides 

with the wild type affinities but cannot hydrolyse GTP, similarly to the K82A mutant. In 

addition, nonmyristoylated Irga6-G2A protein as well as Irga6-∆7-12 mutant were 

analysed, in order to study the influence of the myristoyl group and the N-terminus of 

Irga6 protein on the 10D7 binding. 

L929 fibroblasts were transfected with Irga6wt, Irga6-G2A, -∆7-12, -K82A, -

S83N and -E106A respectively. Cells were lysed in 0.1% Thesit, lysates bound to 

10D7-coupled beads in the presence of 0.5 mM GTPγS and bound proteins eluted by 
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boiling. Eluates and 10% of corresponding lysates were subjected to the SDS-PAGE 

and Irga6 proteins detected with 165 serum in Western blots. Signals from 

immunoprecipitated Irga6 proteins were normalised to the signal of corresponding 

lysates (data not shown) and value for imunoprecipitated Irga6wt in the presence of 

GTPγS set as 100%. Figure 3.29. shows representative immunoprecipitation results 

and mean values of quantified signals from at least three independent experiments.

 10D7 immunoprecipitated Irga6wt in the presence of GTPγS with up to 10 fold 

higher efficiency than in the absence of exogenous nucleotide. Two mutants, K82A 

and E106A, which are not able to hydrolyse bound GTP and are expected to be 

constitutively in GTP-bound state in vivo, displayed strong binding to 10D7 

independently of nucleotide added. The S83N mutant that, on the other hand, 

exhibits essentially no GDP or GTP binding, was precipitated by 10D7 very 

inefficiently, even when GTPγS was added to the lysates.  

Therefore, 10D7 indeed recognises GTP-bound Irga6. This leads to 

conclusion that IFNγ-induced Irga6wt in the resting state is in inactive, GDP-bound 

form, and therefore unable to interact with 10D7 antibody. Upon infection with 

Toxoplasma gondii, Irga6wt is found accumulating around parasitophorous vacuoles 

in the active, GTP-bound conformational state, with the 10D7 epitope exposed. 

Additionally, Irga6-G2A mutant, that cannot be myristoylated, was precipitated 

very weakly and only in the presence of GTPγS, indicating that myristoyl group has 

an important role in GTP-dependent conformational change of Irga6. Finally, Irga6-

∆7-12, lacking six amino acids at the N-terminus, bound to 10D7 in a nucleotide-

independent manner, suggesting that this region might be responsible for blocking of 

10D7 epitope when Irga6 is in the GDP-bound state.  

 Thus, 10D7 determinant is positively affected by the presence of the myristoyl 

group and by GTP binding. It is, however, negatively affected by the residues 7-12 at 

the N-terminus of the protein. In other words, GTP binding to Irga6 results in a 

conformational change involving GTP-binding domain, myristoyl group and N-

terminal region between amino acids 7-12. 



                                                                                                                         Results 

 88

 
Figure 3.29. Effect of mutations on binding of Irga6 to 10D7 
L929 fibroblasts were lysed in 0.1% Thesit in the absence or presence of 0.5 mM GTPγS. Lysates 

were incubated with Protein A sepharose coupled to 10D7 and bound protein eluted by boiling in SDS-

PAGE sample buffer. Eluates were subjected to SDS-PAGE and detected in Western blot by 165 

serum. Signals were quantified using ImageQuant TL v2005 and normalised mean values of at least 

three independent experiments are show in the histogram. 

 

 

3.9.5. Immunofluorescence analysis of Irga6 mutants  
 

 Transfected Irga6cTag1 forms dotty, 10D7-positive structures throughout the 

cell. However, it can be partly relocalised to the ER in the presence of IFN-induced 

factors and those relocalised proteins are not stained by 10D7, as illustrated in figure 

3.14. (b). In order to confirm that Irga6 bound to the ER is in an inactive form, the 

following constructs were analysed in immunofluorescence: Irga6cTag1-wt, 

Irga6cTag1-G2A, Irga6cTag1-∆7-12, Irga6cTag1-S83N, Irga6cTag1-K82A and 

Irga6cTag1-E106A. gs3T3 cells were either only transfected (figure 3.30. (/)) or 

simultaneously transfected and induced with IFNγ (figure 3.30. (IFNγ)). Cells were 

stained with 10D7 antibody (green) and αcTag1 serum (red), which was used to 

identify transfected cells. The number of cells that displayed a 10D7 signal was given 

as a percentage of total number of transfected cells. 
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 As depicted in table 3.1., 100% of cells transfected with Irga6cTag1-wt, were 

10D7 positive and they all showed aggregated, dotty localisation of protein. When 

cells were simultaneously induced with IFNγ and transfected with Irga6cTag1-wt, 

more than half of transfected cells were 10D7 negative and in those cells transfected 

Irga6cTag1-wt showed endogenous, ER-like localisation, indicating that relocalised 

Irga6 is in GDP-bound form. 

Irga6cTag1-G2A protein formed very fine and small aggregates that were 

distributed through the whole cell. Surprisingly, all cells expressing the G2A mutant 

were 10D7 positive in the absence of IFNγ induction even though it showed 

inefficient binding to the 10D7 antibody in immunoprecipitation experiments (figure 

3.29.). Upon IFNγ induction, only about 40% of transfected cells displayed a 10D7 

positive signal. Interestingly, the Irga6cTag1-G2A mutant was often found 

aggregated in the nucleus in the presence of IFNγ induction. The discrepancy 

between results in immunoprecipitation and immunofluorescence in the case of 

Irga6cTag1-G2A mutant could be due to the different conditions under which these 

experiments were conducted. In immunofluorescence analysis, cells were fixed in 

paraformaldehyde and then permeabilized with 0.1% Saponin, in contrast to 

immunoprecipitation where cells were lysed in 0.1% Thesit.  

 

 

Cells with 10D7 positive signal (%)  
transfection transfection + IFNγ induction 

Irga6cTag1 wt 100 45.51 
Irga6cTag1 G2A 100 41.89 
Irga6cTag1 ∆7-12 100 79.61 
Irga6cTag1 S83N 77.68 47.15 
Irga6cTag1 K82A 87.64 91.73 
Irga6cTag1 E106A 86.76 84.78 

 
Table 3.1. Percentage of cells with 10D7 positive signal 
Following Irga6 proteins were tested: Irga6cTag1-wt, Irga6cTag1-G2A, Irga6cTag1-∆7-12, 

Irga6cTag1-K82A, Irga6cTag1-S83N and Irga6cTag1-E106A. Cells were either transfected or 

transfected and induced with IFNγ simultaneously. Cells were stained with 10D7 antibody and αcTag1 

serum that was used to detect transfected cells. Number of cells with 10D7 signal is given as 

percentage of total number of transfected cells. 
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Transfected Irga6cTag1-∆7-12, even in IFNγ-induced cells, was 10D7 positive 

in 80-95% of cells, consistent with the fact that deletion of N-terminal amino acids 

exposes the 10D7 epitope.  

Irga6cTag1-S83N proteins showed no aggregation even in the absence of 

IFNγ induction. Nevertheless, in almost 78% of transfected cells 10D7 signal could 

be detected. In the presence of IFNγ-induced factors, more then half of Irga6cTag1-

S83N transfected cells were 10D7 negative. However, 10D7 staining of Irga6cTag1-

S83N was, in general, much weaker in intensity than staining of any other Irga6 

protein tested, indicating the weak binding of 10D7 to this mutant.  

Around 90% of cells transfected with either Irga6cTag1-K82A or Irga6cTag1-

E106A were 10D7 positive, independently of IFNγ induction, and no relocalisation 

was observed, confirming that Irga6 bound to the ER is in inactive, GDP-bound form 

in contrast to aggregated, GTP-bound Irga6. 
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Figure 3.30. 10D7 staining of Irga6 proteins in immunofluorescence analysis 
Irga6cTag1-wt, Irga6cTag1-G2A, Irga6cTag1-∆7-12, Irga6cTag1-S83N, Irga6cTag1-K82A and 

Irga6cTag1-E106A proteins were tested. gs3T3 fibroblasts were either only transfected (/), transfected 

and induced with IFNγ (IFNγ) or transfected, induced with IFNγ and infected with T. gondii Me49 strain 

(IFNγ+T. gondii). Cells were stained with 10D7 antibody (green) and αcTag1 serum (red) that was 

used to identify transfected cells. Only overlays are presented. 
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As mentioned earlier, 10D7 antibody recognises Irga6 proteins accumulating 

around T. gondii PV (figure, 3.14.(c)). On the other hand, it has been already 

reported that Irga6cTag1-K82A protein, which does not hydrolyse bound GTP, act as 

a dominant negative mutant, preventing wt protein to target to the PV (Martens et al., 

2005). Therefore, the ability of other Irga6 mutants to accumulate around T. gondii 

PV and their influence on the endogenous Irga6 was analysed. 

gs3T3 fibroblasts were simultaneously induced with IFNγ and transfected with 

Irga6cTag1-wt, Irga6cTag1-G2A, Irga6cTag1-∆7-12, Irga6cTag1-S83N, Irga6cTag1-

K82A and Irga6cTag1-E106A, respectively, 24 h prior to infection with Toxoplasma 

gondii strain Me49 with MOI 8 (figure 3.30. (IFNγ+T. gondii)). Cells were stained with 

10D7 antibody (green) and αcTag1 serum (red) and only parasitophorous vacuoles in 

transfected cells were analysed. Presence of only 10D7 positive ring around PV 

indicates presence of only endogenous, IFNγ-induced Irga6 protein. In contrast, both 

10D7 and αcTag1 staining around PV evidence vacuolar targeting of transfected 

protein. 

 

  

 

 

Counted 

vacuoles 

No rings 

(%) 

Only 10D7 

positive rings (%)

10D7 and αcTag1 

positive rings (%) 

Irga6cTag1 wt 90 30 0 70 

Irga6cTag1 G2A 150 46.67 34 19.33 

Irga6cTag1 ∆7-12 93 28 0 72 

Irga6cTag1 S83N 91 53.85 46.15 0 

Irga6cTag1 K82A 117 92.31 0.85 6.84 

Irga6cTag1 E106A 66 93.34 1.52 4.54 

 
Table 3.2. Determination of number of PV coated with transfected Irga6cTag1 proteins 
gs3T3 fibroblasts were simultaneously induced with IFNγ and transfected with Irga6cTag1-wt, 

Irga6cTag1-G2A, Irga6cTag1-∆7-12, Irga6cTag1-K82A, Irga6cTag1-S83N and Irga6cTag1-E106A 

proteins respectivly, 24 h prior to infection with T. gondii Me 49 strain. Cells were stained with 10D7 

antibody and αcTag1 serum. Only vacuoles in transfected cells were counted. 

 

 

Table 3.2. illustrates that, when Irga6cTag1-wt and -∆7-12 proteins were 

transfected, 70% of PV were both 10D7 and αcTag1 positive. There was no vacuole 
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with only 10D7 staining found, indicating that ∆7-12 mutation does not prevent PV 

targeting nor it inhibits accumulation of endogenous Irga6 around PV. 

In contrast, 34% of PV in cells transfected with Irga6cTag1-G2A were only 

10D7 positive, whereas 19% had both 10D7 and αcTag1 staining. This indicates that 

the targeting of the Irga6 proteins to the PV strongly depends on myristoyl group.  

In cells transfected with Irga6cTag1-S83N, only 10D7 positive rings around PV 

were found, suggesting that this mutant is unable to relocalise to the PV and that the 

presence of endogenous Irga6 on the vacuoles is not inhibited.  

Both Irga6cTag1-K82A and -E106A mutants exhibit strong dominant negative 

effect on endogenous Irga6 protein since, in the case of both mutants, only one PV 

with 10D7 staining was found. In addition, there were few vacuoles with both 10D7 

and αcTag1 staining. 

 Intensities of 10D7 and αcTag1 signal around PV were measured. Images 

were taken with the same exposure time and the pixel intensities of rings were 

detected using ImageJ software. 

In cells transfected with Irga6cTag1-wt, -∆7-12, -K82A and -E106A, average 

intensities of 10D7 and αcTag1 rings for each protein were very similar (figure 3.31.), 

suggesting the both endogenous and transfected Irga6 proteins are relocalised to the 

PVM. However, in cells transfected with Irga6cTag1-S83N, no αcTag1 positive ring 

around PV could be measured confirming the inability of this nucleotide-binding 

deficient mutant to target PV. In the case of Irga6cTag1-G2A, average intensity of 

10D7 rings was twice as strong as intensity of αcTag1 rings, indicating inefficient 

relocalisation of non-myristoylated transfected protein to the parasitophorous 

vacuole.  

Dominant-negative effect of Irga6-K82A and -E106A mutants could be 

explained by the ability of the endogenous Irga6wt to associate with constitutively 

active mutant proteins in cells before reaching the PVM. As Irga6-S83N mutant 

practically does not bind nucleotides, it cannot target PVM nor it can interact with the 

endogenous Irga6 protein. Nonmyristoylated Irga6-G2A inefficiently binds to the PVM 

through probably two effects. As this mutant builds homooligomers very inefficiently 

in lysates of transfected cells (figure 3.12.), it might act as a chain terminator, 

preventing also the endogenous protein from further association. Alternatively, or in 

addition, absence of myristoyl group in the homooligomer can destabilise its 

membrane attachment and result in oligomer disassembly from the PVM. 
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Figure 3.31. Pixel intensities of 10D7 and αcTag1 positive rings 
gs3T3 fibroblasts were simultaneously induced with IFNγ and transfected with Irga6cTag1-wt, 

Irga6cTag1-G2A, Irga6cTag1-∆7-12, Irga6cTag1-K82A, Irga6cTag1-S83N and Irga6cTag1-E106A 

proteins, 24 h prior to infection with T. gondii Me 49 strain. Cells were stained with 10D7 antibody and 

αcTag1 serum. Images were taken with the same exposure time and the pixel intensities of rings were 

detected using ImageJ software. (a) pixel intensities of individual 10D7 and cTag1 positive ring around 

PV; (b) average intensities of 10D7 and cTag1 positive rings around PV. 
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3.10. Biochemical analysis of recombinant myristoylated Irga6 
 

The myristoyl group is apparently involved in conformational change of Irga6 

protein induced upon GTP binding (figure 3.29.). In addition, unmyristoylated 

Irga6cTag1-G2A mutant is less efficient in targeting T. gondii PV (table 3.2.), 

indicating that the myristoyl group might be necessary for proper binding of Irga6 to 

the parasitophorous vacuole membrane.  

Structure and biochemical properties of Irga6 protein, expressed and purified 

from E. coli, have been intensively studied in vitro (Uthaiah et al., 2003; Ghosh et al., 

2004). However, this recombinant protein could not be myristoylated due to the N-

terminal thrombin cleavage site associated with the GST-fusion protein (Uthaiah et 

al., 2003) and also because prokaryotes do not express enzymes necessary for 

protein myristoylation (Heuckeroth et al., 1988). Thus, in order to study biochemical 

properties of myristoylated Irga6 in vitro, Irga6 with a normal N-terminus was 

expressed and purified from insect Sf9 cells. 

 

 

3.10.1. Purification of myristoylated Irga6 
 

 Myristoylated Irga6wt as well as Irga6 G2A and S83N mutants were 

expressed using Baculovirus Expression Vector System (BEVS). This system allows 

expression of genes from different sources in insect cells. The likelihood that 

expressed Irga6wt would be myristoylated in these cells was supported by the fact 

that several post-translational modifications have been reported to occur, such as 

glycosylation, phosphorylation, acylation, isoprenylation, and others. In order to purify 

Irga6 proteins from Sf9 cells, they were expressed with the C-terminal thrombin 

cleavage site (LVPRGS), followed by six histidines (Irga6-thrombin-his). Upon 

purification over NiNTA column and thrombin cleavage, Irga6 proteins would contain 

four additional amino acids at the C-terminus, LVPR. To assure that this small C-

terminal tag does not influence the biochemical properties of the enzyme, Irga6 

protein with this tag was expressed and purified from E. coli (Irga6-LVPR). GTP 

hydrolysis and oligomerisation properties of Irga6-LVPR and Irga6wt protein were 

indistinguishable (data not shown), indicating that these four amino acids do not 

affect the enzymatic properties of Irga6 protein.  
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Figure 3.32. Purification of myristoylated Irga6wt 
Sf9 cell containing Irga6wt-thrombin-his were lysed in 0.1% Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 20 

mM Imidazol/ 2 mM DTT/ PBS. Lysate was purified over HisTrap HP 5ml column, bound protein eluted 

with 0.1% Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 250 mM Imidazol/ 2 mM DTT/ PBS (HisTrap) and 

cleaved with 150 U/ml of thrombin o/n at 4°C (HisTrap Thrombin). Irga6 was further purified over a 

Superdex 200 prep grade column (GeFi total) with 0.05% Thesit/ 5 mM MgCl2/ 2 mM DTT/ 50 mM Tris 

pH 7.4 and incubated with NiNTA beads to separate cleaved (GeFi cut) from uncleaved protein (GeFi 

uncut). Proteins were analysed on SDS-PAGE and were stained with Coomassie Brilliant Blue. 

 

 

Sf9 culture, infected with appropriate recombinant virus for 2 days at 27°C, 

was lysed in 0.1% Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 20 mM Imidazol/ 2 mM DTT/ 

PBS and loaded on HisTrap HP 5ml column in lysis buffer. After washing steps, 

elution of protein was done with 0.1% Thesit/ 150 mM NaCl/ 3 mM MgCl2/ 250 mM 

Imidazol/ 2 mM DTT/ PBS and fractions analysed by Coomassie Brilliant Blue 

staining (figure 3.32., HisTrap). Fractions containing Irga6-thrombin-his protein were 

pooled together and incubated with 150 U/ml of thrombin for 12 h at 4°C (figure 3.32., 

HisTrap Thrombin). Afterwards, samples were loaded on HiLoad 26/60 Superdex 200 

prep grade column with 0.05% Thesit/ 5 mM MgCl2/ 2 mM DTT/ 50 mM Tris pH 7.4 

as the running buffer. Fractions with Irga6 protein (figure 3.32, GeFi total) were 

incubated with 1 ml Ni-NTA beads for 1 h at 4°C to separate thrombin-cleaved (figure 

3.32., GeFi cut) from uncleaved Irga6 (figure 3.32., GeFi uncut). Uncleaved protein 

was eluted from beads by boiling for 5 min in the SDS-PAGE sample buffer.  
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3.10.2. Triton X-114 partitioning assay 
 

 In order to analyse whether Irga6 proteins, purified from Sf9 cells, are lipid 

modified, the Triton X-114 partitioning assay was performed. The Triton X-114 assay 

applies the general property of non-ionic detergents, namely that they undergo phase 

separation at a particular temperature (cloud point) to yield a detergent-rich (D) and 

an aqueous (A) layer. The cloud point of Triton X-114 is around 22°C, thus it can be 

used to separate lipid-soluble from hydrophilic molecules at RT (Bordier, 1981; 

Bhairi, 2001). This assay has been previously used to analyse lipid modification of 

mammalian Irga6wt and Irga6-G2A mutant. Upon lysis in 1% Triton X-114, Irga6wt 

partitioned into detergent phase whereas G2A mutant protein, which cannot be 

myristoylated, stayed in the aqueous phase (Martens et al., 2004). 

 

 

 
Figure 3.33. Tx-114 partitioning of Irga6 proteins 
Lysates from L929 fibroblasts induced with IFNγ or transfected with Irga6wt or Irga6-G2A (a) or 

recombinant Irga6wt, -G2A or -S83N proteins purified from Sf9 cells (b), were separated into 

detergent-soluble and aqueous fractions by the Triton X-114 partitioning assay. Samples were 

subjected to the SDS-PAGE and Irga6 proteins detected with 10D7 antibody. 
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Upon purification from Sf9 cells, Irga6wt, Irga6-G2A and Irga6-S83N were 

analysed for the presence of lipid modification using Triton X-114 partitioning assay 

by dilution in 1% Tx-114/ 3 mM MgCl2/ PBS (figure 3.33.(b)). In parallel, L929 

fibroblasts, either IFNγ-induced or transfected with Irga6wt or Irga6-G2A (figure 

3.33.(a)), were lysed in the same buffer for 1 h at 4°C and subjected to the Tx-114 

assay as well. Partitioning of Irga6 proteins was done in four successive steps. 

Samples were subjected to SDS-PAGE and protein detected with 10D7 antibody. 

As depicted in figure 3.33.(a), nonmyristoylated, transfected Irga6-G2A 

partitioned into aqueous phase. In contrast, approximately 70% of IFNγ-induced 

Irga6 and the lower band of transfected Irga6wt partition into detergent phase in each 

partitioning step, indicating that they are lipid modified. Interestingly, the upper band 

of transfected Irga6wt stayed in aqueous phase throughout the whole partitioning 

assay indicating that a proportion of transfected Irga6 in mammalian cells is not 

efficiently myristoylated. The same band, in the size exclusion chromatography 

(figure 3.4.) was running at the size of a monomer, paralleling the running behaviour 

of transfected Irga6-G2A, confirming that the transfected Irga6wt protein in the upper 

band is not myristoylated. 

Irga6-G2A, expressed and purified from insect Sf9 cells, partitioned into 

aqueous phase, illustrated in figure 3.33.(b). Irga6wt and Irga6-S83N purified from 

insect cells partition into detergent phase in each partitioning step, indicating that 

they are lipid modified. In insect cells, lipid modification was not 100% efficient since 

approximately 5% of Irga6wt and somewhat less than 5% of Irga6-S83N were found 

in the aqueous phase.  

In order to confirm that the lipid modification of Irga6 proteins containing intact 

N-terminus is indeed a myristoyl group, Irga6wt and Irga6-G2A, purified from insect 

cells, were analysed by mass spectrometry. Only the Irga6wt protein was shown to 

be myristoylated at the N-terminus. In contrast, mass spectrometric data indicated 

that the Irga6-G2A protein is N-terminally acetylated. 
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3.10.3. Effect of the myristoyl group on running behaviour of recombinant Irga6 
proteins in Size Exclusion Chromatography 
 

 IFNγ-induced, myristoylated Irga6 protein, when analysed by size exclusion 

chromatography, ran mostly at an apparent molecular weight of 150 kDa, both in the 

presence of 0.1% Thesit and 80 mM OGP (figures 3.4. and 3.5.). In contrast, 

nonmyristoylated proteins, transfected Irga6-G2A and recombinant Irga6wt purified 

from E. coli (from now on referred to as Bact Irga6wt), were running at the size of a 

monomer (figure 3.4.).  

During the purification of Irga6 proteins from insect cells (Ins Irga6wt, -G2A, -

S83N) similar observations were made. As explained in chapter 3.10.1., the last step 

of purification of Ins Irga6 proteins is size exclusion chromatography on a HiLoad 

26/60 Superdex 200 prep grade column in the presence of 0.05% Thesit. Even 

though the calculated values for the sizes of eluted proteins may not reflect the exact 

molecular weight of the protein, it was clear that recombinant Ins Irga6-G2A (in red) 

and Bact Irga6wt (in blue) eluted approximately at the size of a monomer, depicted in 

figure 3.34.. In contrast, myristoylated, recombinant Ins Irga6wt (in green) and Ins 

Irga6-S83N (in black) ran at an apparent molecular weight of over 200 kDa. Although 

myristoylated proteins showed only a very small increase in size in SDS-PAGE 

analysis (not more than1-2 kDa), the myristoyl group had a strong effect on the 

elution of Irga6 protein in size exclusion chromatography. Since the effect of other 

detergents on recombinant Irga6 proteins was not tested, it is possible that the 

myristoyl group, exposed in the presence of Thesit micelle, results in this size shift. 

However, it is more likely that the myristoyl groups of more than one Irga6 protein 

insert into the detergent micelle, providing higher local concentration of the protein 

around the micelle.  
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Figure 3.34. Running behaviour of recombinant Irga6 protein in size exclusion chromatography 
Recombinant protein expressed and purified from E. coli (Bact Irga6wt in blue) or from Sf9 cells (Ins 

Irga6wt in green, Ins Irga6-G2A in red and Ins Irga6-S83N in black) were analysed on a HiLoad 26/60 

Superdex 200 prep grade column in the buffer containing 0.05% Thesit/ 5 mM MgCl2/ 2 mM DTT/ 50 

mM Tris pH 7.4. Molecular weights of the proteins in depicted peaks were calculated using calibration 

curve obtained by running marker proteins under the same conditions. 

 

 

3.10.4. Dynamic light scattering of Ins-Irga6 proteins 
 

 During the purification on a size exclusion column in the presence of 0.05% 

Thesit, myristoylated proteins, Ins Irga6wt and Ins Irga6-S83N, were found running at 

the size of 200-250 kDa, whereas nonmyristoylated Ins Irga6-G2A was running as a 

monomer, at 50 kDa. This observation suggested that the oligomerisation properties 

of myristoylated Irga6 proteins might be different from those of Bact Irga6 or 

nonmyristoylated Ins Irga6-G2A. 

 Ins Irga6 proteins (at a concentration of 25 µM) as well as Bact Irga6wt (25 

and 80 µM) were incubated with 10 mM GDP or GTP in the presence or absence of 
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0.05% Thesit. Oligomerisation was analysed using dynamic light scattering at 37°C 

for 20 min and change in hydrodynamic radius (R) was plotted against time (figure 

3.35.).  

Confirming previous results ((Uthaiah et al., 2003); Pawlowski, unpublished 

data), Bact Irga6wt showed a striking increase in hydrodynamic radius upon addition 

of GTP. At a protein concentration of 80 µM high molecular forms of Bact Irga6wt 

were detected within seconds and at concentration of 25 µM the process took longer, 

2-3 minutes (figure 3.35.(a)). Interestingly, in the presence of 0.05% Thesit, GTP-

dependent oligomer formation was much faster, taking only few seconds even at the 

protein concentration of 25 µM (figure 3.35.(b)). The addition of GDP to 80 µM Bact 

Irga6wt in the present of detergent resulted in the formation of high molecular weight 

structure only after 800 seconds of incubation (figure3.35.(b)).  

The incubation of 25 µM of myristoylated Ins Irga6wt and Ins Irga6-S83N in 

the presence of 0.05% Thesit resulted in the formation of higher molecular weight 

structures after approximately 180 seconds, in presence of both GTP and GDP 

(figure 3.35.(c)). Nonmyristoylated Ins-Irga6-G2A showed an increase in size in the 

presence of GTP and detergent much later (500 sec).  

The fact that both wild type Ins Irga6wt and nucleotide binding deficient Ins 

Irga6-S83N form higher molecular weight structure in the presence of both GTP and 

GDP argues against nucleotide-dependent oligomerisation. It is rather that the 

presence of the myristoyl group induces the formation of the Ins Irga6 complexes, 

probably via binding of myristoyl groups to the detergent micelle. 
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Figure 3.35. Dynamic light scattering of Ins Irga6wt, Ins Irga6-G2A, Ins Irga6-S83N and Bact 
Irga6wt 
25 and 80 µM of Bact Irga6wt were incubated with 10 mM GDP or GTP in the absence (a) or presence 

(b) of 0.05% Thesit. In (c), 25 µM of Ins Irga6 proteins were incubated with 10 mM GDP or GTP in the 

presence of Thesit. Measurements were done at 37°C and changes of hydrodynamic radius were 

plotted against time. 

 

 

3.10.5. 10D7 immunoprecipitation of Ins-Irga6 proteins 
 

 It has been proposed that the binding of GTP to the Irga6 molecule induces a 

conformational change, which affects the GTP-binding domain, the N-terminal region 

and the myristoyl group as well (chapter 3.9.4.). The 10D7 antibody, recognising only 

the active form of Irga6 protein, can, therefore, efficiently precipitate Irga6wt in the 

presence of GTPγS, but not nonmyristoylated Irga6-G2A or nucleotide-binding 

deficient mutant Irga6-S83N, as illustrated in figure 3.29. On the other hand, as 

discussed in the previous chapter, the myristoyl group induces the formation of Ins 
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Irga6wt- and Ins Irga6-S83N-containing complexes independent of nucleotide 

present. As it was not possible to purify the recombinant myristoylated Ins Irga6 

proteins without detergent (data not shown), it was assumed that the myristoyl group 

has to be inserted into the Thesit micelle during purification. 10D7 

immunoprecipitation of Ins Irga6 proteins could provide the opportunity to test 

whether this potential repositioning of myristoyl group could mimic the conformation 

of Irga6 molecule in its active state. 

 

 

 
Figure 3.36. 10D7 immunoprecipitation of recombinant Ins Irga6 and Bact Irga6 proteins 
(a) Ins Irga6wt, -G2A and -S83N were diluted in either 10% FCS/ 0.1% Thesit/ PBS or in noninduced 

L929 cell lysate/ 0.1 % Thesit/ PBS in the presence or absence of 0.5 mM GTPγS; (b) Ins Irga6wt, -

S83N and Bact Irga6wt, -S83N were diluted in noninduced L929 cell lysate/ 0.1 % Thesit/ PBS in the 

presence or absence of 0.5 mM GTPγS. Samples were incubated with 10D7-coupled Protein A 

sepharose beads and bound protein eluted by boiling in SDS-PAGE sample buffer (IP). 10% of the 

sample prior to immunoprecipitation was loaded to control the amount of protein in each sample 

(input). Irga6 proteins were detected with 165 serum in Western blot. 
 

 



                                                                                                                         Results 

 104

Ins Irga6wt, -G2A and -S83N were diluted either in 10% FCS/0.1% Thesit/PBS 

or in noninduced L929 cell lysate/0.1 % Thesit/PBS in the presence or absence of 

0.5 mM GTPγS. Samples were incubated with 10D7-coupled Protein A sepharose 

beads for 2 h at 4°C and bound protein eluted by boiling in SDS-PAGE sample 

buffer. As depicted in figure 3.36.(a), 10D7 was not able to immunoprecipitate 

recombinant nonmyristoylated Ins Irga6-G2A. In contrast to the result obtained with 

cellular proteins, 10D7 could equally well bind Ins Irga6wt and Ins Irga6-S83N, 

independently of nucleotide present.  

To confirm these results, immunoprecipitation was done not only with Ins 

Irga6wt, -S83N but also with Bact Irga6wt and Bact Irga6-S83N. Again, only 

myristoylated Ins Irga6wt and -S83N were bound by 10D7 both in the presence and 

absence of GTPγS (figure 3.36.(b)). As expected, nonmyristoylated Bact Irga6wt and 

-S83N were not immunoprecipitated by 10D7 antibody, confirming the involvement of 

the myristoyl group in the Irga6 conformational state recognised by 10D7 antibody. 

 

 

3.10.6. Hydrolysis properties of myristoylated Irga6 
 

 Nonmyristoylated, recombinant Irga6wt, expressed and purified from E. coli 

(Bact Irga6wt), hydrolyses GTP to GDP (Uthaiah et al., 2003). Therefore, hydrolysis 

properties of Ins Irga6wt, Ins Irga6-G2A and Ins Irga6-S83N proteins were analysed.  

Ins-Irga6wt, Ins-Irga6-G2A, Ins-Irga6-S83N, as well as Bac-Irga6wt, all at a 

concentration of 25 µM, in the presence or absence of 0.05% of Thesit, were 

incubated at 37°C with 10 mM GTP containing 20 µCi/ml of αP32GTP. At indicated 

time points, samples of reaction mix were subjected to thin layer chromatography 

(TLC). Signals were detected using BAS 1000 phosphor imager analysis system and 

quantified with the AIDA Image Analyser v3 software. 

As shown in figure 3.37., Ins Irga6-S83N did not hydrolyse GTP at all whereas 

all other proteins tested did. Ins Irga6wt and Ins Irga6-G2A hydrolysed GTP with 

roughly the same efficiency. Presence of 0.05% Thesit seems to increase the 

hydrolysis activity of Bac-Irga6wt.  

Analysis of GDP and GMP levels upon hydrolysis revealed dramatic 

differences between myristoylated Irga6 (Ins-Irga6wt) and nonmyristoylated Ins 
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Irga6-G2A and Bact Irga6wt. While nonmyrystoylated Irga6 proteins hydrolysed GTP 

to GDP only, myristoylated Ins Irga6wt hydrolysed GTP to GDP and GMP as well. 

  
 

 
Figure 3.37. Hydrolysis properties of Irga6 proteins  
25 µM of Ins Irga6wt, -G2A, -S83N and Bact Irga6wt were incubated with 10 mM of GTP containing 20 

µCi/ml of αP32GTP. After indicated time points, probes were subjected to TLC. Signals were detected 

using BAS 1000 phosphor imager analysis system and quantified with the AIDA Image Analyser v3 

software. 
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 To confirm this result, 25 µM of Ins Irga6wt, Ins Irga6-G2A and Ins Irga6-S83N 

were incubated with either 10 mM or 1 mM GTP containing 20 µCi/ml of αP32GTP, as 

described above.  
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Figure 3.38. Hydrolysis activity of Ins Irga6 proteins 
(a) 25 µM Ins Irga6wt, -G2A and -S83N were incubated with 10 mM GTP containing 20 µCi/ml of 

αP32GTP, as described above; (b) 25 µM Ins-Irga6wt and Ins-Irga6-G2A were incubated with 1 mM 

GTP containing 20 µCi/ml of αP32GTP. 

 

 

Upon 4 h incubation of Ins-Irga6 proteins with 10 mM GTP (figure 3.38.(a)), 

40% and 50% of GTP was hydrolysed by Ins Irga6-G2A and Ins Irga6wt respectively. 

While Ins Irga6-G2A hydrolysed GTP only to GDP, 60% of GTP hydrolysed by Ins-

Irga6wt was in the form of GDP and 40% in the form of GMP. There was no 

hydrolysis activity of Ins Irga6-S83N detected.  

After protein incubation with 1 mM GTP (figure 3.38.(b)), up to 60% of GTP 

was hydrolysed to GDP by Ins Irga6-G2A after 4 h. In contrast, 80% of GTP was 
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hydrolysed by Ins Irga6wt in the same time frame. In the case of Ins Irga6wt, the 

amount of GDP increased in the first 60 min of hydrolysis reaction but then 

decreased significantly in the next 3 h. Amount of GMP obtained by Ins Irga6wt 

hydrolysis of GTP was increasing steadily during time. As a result of Ins Irga6wt 

hydrolysis of GTP for 4 h, the amount of GMP obtained was approximately 6 times 

higher than the amount of GDP. 

 Thus, recombinant myristoylated Irga6wt protein exhibits strikingly different 

hydrolysis properties compared to the nonmyristoylated protein. Since the GDP 

concentration rises in the first hour of Ins Irga6wt hydrolysis and decreases in the 

next three hours, it is assumed that GTP hydrolysis to GMP by Ins Irga6wt does not 

occur in two successive steps while the nucleotide remains bound, as in hGBP1 

(Prakash et al., 2000b). It is more likely that GTP is hydrolysed to GDP only but, as 

the GDP concentration rises, GDP itself becomes a substrate for Ins Irga6wt and is 

further hydrolysed to GMP.  
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4. Discussion 
 

 Results in this study demonstrate that the Irga6 activity in IFNγ-induced cells is 

regulated by other members of IRG family and by the infectious status of the cell. 

Irgm3, a member of the GMS family, interacts with Irga6 in the presence of GDP and, 

together with other two GMS proteins, keeps Irga6 in inactive form at the ER. 

Infection with T. gondii results in the relocalisation of activated, GTP-bound Irga6 to 

the parasitophorous vacuole membrane. GTP binding promotes the conformational 

change of Irga6, which involves GTP-binding domain, N-terminal 12 amino acids and 

the myristoyl group. 

 Recombinant myristoylated Irga6wt and nonmyristoylated Irga6-G2A proteins 

show striking differences in their biochemical properties in vitro. In addition to their 

different running behavior in size exclusion chromatography, myristoylated Irga6wt 

hydrolyses GTP to GDP and GMP, in contrast to Irga6-G2A, which hydrolyses GTP 

to GDP only.  

 Thus, both in vivo and in vitro data suggest that the myristoyl group plays an 

important role in Irga6 enzymatic activity and, therefore, in Irga6 function in cells. 

 

 

 

4.1. Irga6 interacts with Irgm3 in a GDP-dependent manner 
 

 Endogenous, IFNγ-induced Irga6 protein localises in the reticular pattern, with 

the signal overlapping with those of endoplasmic reticulum (ER) proteins like TAP, 

Calnexin or ERP60 (Martens et al., 2004). In contrast to IFNγ-induced Irga6 (figure 

3.13.(a)), Irga6wt (Martens, 2004) and Irga6cTag1 (figure 3.13.(b),(c),(d)), transacted 

into cells not induced with IFNγ, form small dots or larger aggregates distributed 

throughout the cell. This aggregation of transfected Irga6 proteins in the absence of 

IFNγ-induced factors is dose-independent since Irga6-containing dots are found even 

in cells expressing a very low level of transfected protein (figure 3.13.(d)). The Irga6-

S83N mutant, characterized by very low binding affinity for both GDP and GTP in 

vitro (Hunn, 2007), was distributed in transfected fibroblast cytoplasmin a “smooth” 

pattern (figure 3.30.). Inability of Irga6-S83N proteins to adopt punctate morphology 
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indicates that the Irga6 aggregation in cells not induced with IFNγ is dependent on 

the nucleotide-binding integrity of the protein. 

However, transfected Irga6cTag1 can be relocalised to the ER compartment if 

the cell is, in addition, simultaneously induced with IFNγ, as in figure 3.13.(g). This 

relocalisation effect of IFNγ induction is dose-dependent, since only cells expressing 

low amount of transfected Irga6 proteins showed distributed, ER-like localisation of 

exogenous protein. The amount of transfected Irga6cTag1 in cells that are able to 

relocalise exogenous protein approximately equals the amount of Irga6 induced by 

IFNγ. In other words, IFNγ-induced and transfected cells, which are able to relocalise 

exogenous Irga6, contain at most twice as much Irga6 as cells only induced with 

IFNγ. This indicates that Irga6 protein and the IFNγ-induced factors, necessary for its 

proper localisation to the ER, are expressed in certain equilibrium in IFNγ-induced 

cells, allowing the relocalisation of only limited additional amount of Irga6 molecules.  

Several IFNγ-induced IRG proteins have been implicated in resistance against 

pathogen infections and their role is not redundant (Martens and Howard, 2006). This 

nonredundancy in function suggests that IRG proteins might regulate each other in 

cells, both prior to and during infection, possibly by direct interaction.  

Effect of IRG proteins on the relocalisation of Irga6 was studied in gs3T3 

fibroblasts, stably transfected with Irga6 DNA (gs3T3-Irga6), whose transcription is 

stimulated by synthetic hormone Mifepristone (GeneSwitch, Invitrogen). In these cells 

Mifepristone induces expression of Irga6 protein in an IFNγ-negative background 

(Hunn, 2007). Mifepristone-induced Irga6 formed aggregates, as seen in transiently 

transfected cells (Hunn, 2007). However, simultaneous transfection of the three GMS 

proteins, Irgm1, Irgm2 and Irgm3, carrying the unique substitution of the universally 

conserved lysine in G1 motif (GX4GKS) to the methionine (GX4GMS) (Boehm et al., 

1998), into Mifeprestone-induced gs3T3-Irga6 cells resulted in Irga6 relocalisation to 

the ER in up to 80% of transfected cells (Schroeder, 2005). The effect of GMS 

proteins was nucleotide-dependent since their GMN mutants, carrying serine to 

asparagine substitution in their G1 binding motif and, thus, being unable to bind 

nucleotides (in analogy to Irga6; (Hunn, 2007), were not able to relocalise Irga6 

molecules (Schroeder, 2005).  

Thus, only Irgm1, Irgm2 and Irgm3 proteins are necessary and sufficient for 

localisation of Irga6 to the ER, indicating that GMS proteins are, either direct or 

indirectly, interaction partners of Irga6 in IFNγ-induced cells.  
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Irga6-Irgm3 interaction was confirmed by yeast-two hybrid screen (Hunn, 

2007), co-immunoprecipitation and pull-down experiments (chapters 3.3.1. and 3.3.2. 

respectively). Irga6 could co-immunoprecipitate Irgm3 from the IFNγ-induced gs3T3 

cell lysate, in the absence of any exogenously added nucleotide and, to a lesser 

extent, in the presence of additional GDP (figure 3.7.). Presence of GTPγS, 

nonhydrolysable form of GTP, almost completely inhibited Irga6-Irgm3 interaction. 

However, the Irga6 and Irgm3 co-precipitation was greatly sub-stoichiometric. 

The weak signal for co-immunoprecipitated Irgm3 could be explained by the transient 

nature of the Irga6-Irgm3 complex in vivo and/or instability during the precipitation 

procedure. Alternatively, since the addition of exogenous GDP decreased the 

amount of co-immunoprecipitated Irgm3, it could be that Irga6 and/or Irgm3 interact 

with other IFNγ-induced factors that compete with Irga6-Irgm3 complex formation in 

the presence of GDP.  

Pull-down experiments, using GST-Irga6 fusion proteins coupled to 

gluthathione sepharose beads and IFNγ-induced cell lysates, indicate the GDP-

dependent Irgm3-Irga6 interaction (figure 3.8.). Only in the presence of GDP Irga6 

and Irgm3 interacted strongly, over the background level. The background signal is 

not due to unspecific binding of Irgm3 to the gluthathion sepharose beads or GST 

alone. It rather seems to represent a basal affinity of these molecules for each other 

that is independent of their nucleotide state. Since the nucleotide-binding deficient 

Irga6-S83N mutant could not form a complex with Irgm3, it is probable that Irga6 has 

to be in GDP-bound form in order to interact strongly with Irgm3. As incubation of 

fibroblast lysate and GST-Irga6wt beads with mant GDP reduced Irgm3 signal to the 

basal level, the GDP-dependent Irga6-Irgm3 interaction might occur via GTP-binding 

domains of these proteins since mant group interferes with the dimeric Irga6 

interactions occurring through the GTP-binding domain (Pawlowski, unpublished 

data). 

In conclusion, active Irgm1, Irgm2 and Irgm3 proteins are necessary and 

sufficient for localisation of Irga6 to the ER. As Irgm3 interacts with Irga6 protein in 

the presence of GDP, it is possible that IFNγ-induced Irga6, at the ER, is kept in an 

inactive, GDP-bound state by the three GMS proteins. 

A yeast- two hybrid screen revealed not only interactions between Irga6 and 

GMS protein, but also strong affinities of other GKS for GMS proteins (Hunn, 2007). It 

is, therefore, expected that the interactions between IRG proteins in vivo have to be 
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tightly regulated. An excess or deficiency of any of them, especially GMS proteins 

since they are represented by only one gene in the mouse genome, would result in 

instability of the whole system. That might explain the non-redundancy of IRG 

proteins in the experiments done with mice or cells deficient in one of the IRG 

members (Collazo et al., 2001; Butcher et al., 2005; Bernstein-Hanley et al., 2006; 

Miyairi et al., 2007). Interestingly, overexpression of Irgm3 rendered mouse 

embryonic fibroblasts more susceptible to Chlamydia trachomatis infection 

(Bernstein-Hanley et al., 2006). In the view that Irgm3 interacts with Irga6 in the 

GDP-bound form, overexpression of Irgm3 could strengthen the inhibitory effect on 

Irga6 activation upon infection and, therefore, prevent the efficient relocalisation of 

Irga6 to the PVM.  

 

 

 

4.2. Irga6 forms GTP-dependent homooligomers in vivo in the absence of IFNγ-
induced factors 
 

 Recombinant Irga6wt, expressed and purified from E. coli, was shown to form 

GTP-dependent homooligomers (Uthaiah et al., 2003) resulting in an increased 

GTPase activity of the protein. Upon GTP hydrolysis, Irga6 oligomers are dissolved. 

Addition of AlFx, which plays the role of the leaving γ-phosphate and mimics the 

transition state of GTP hydrolysis (Mittal et al., 1996), could trap Irga6wt in the 

oligomeric form when GTP is bound and being hydrolysed. Binding of AlFx to Irga6-

GDP complex when the oligomer is preformed indicates that the oligomer is the 

catalytically active form in which an additional catalytic residue can be provided in cis 

or in trans (Uthaiah et al., 2003). 

 In this study, the ability of Irga6 proteins to form self-associations in vivo was 

analysed. Transfected Irga6cTag1 and Irga6wt, either transfected or IFNγ-induced, in 

the cell lysates formed homooligomers in the presence of GTPγS or in the presence 

of GTP and AlFx (figure 3.11.(a)). Exogenously added GTP and AlFx as well as 

nonhydrolysable GTPγS trap Irga6 molecules in GTP-like state and, thus, allow 

building of GTP-dependent Irga6 complexes. The number of Irga6 molecules in these 

GTP-dependent complexes was not resolved. For simplicity reasons, throughout this 

study, the homooligomer is considered only to be more than a monomer. 
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Mant-labeled nucleotides interfere with oligomerisation of recombinant Irga6 

by insertion between two binding interfaces preventing protein interaction via GTP-

binding domains (Pawlowski, unpublished data). Incubation of lysates in the 

presence of mant GTPγS almost completely prevented self-interaction of Irga6 

molecules (figure 3.11.(b)), thus indicating that the self-association of cellular Irga6 

proteins occurs through the interaction of GTP-binding domains. This GTP-

dependent homooligomerisation of Irga6 molecules, both in the presence of GTPγS 

and GTP with AlFx, takes place in the cell lysate, thus, ex vivo (figure 3.10.). Namely, 

co-immunoprecipitated IFNγ-induced Irga6 could be found in samples that were 

induced with IFNγ and transfected with Irga6cTag1 separately and mixed prior to 

lysis ((i)+(t)), excluding the possibility that this interaction occurred in the cell. 

Nevertheless, this result suggests that cellular Irga6 proteins can form GTP-

dependent self-interactions, similar to the recombinant Irga6wt in vitro.  

 It has been reported that AlFx can bind to oligomeric recombinant Irga6 in vitro 

(Uthaiah et al., 2003). AlFx can penetrate plasma membranes of intact cells and, 

thus, trap GTPases in GTP-like, GDP+AlFx transition state in vivo (Hart et al., 1998). 

Incubation of intact cells in the presence of AlFx alone resulted in trapping of Irga6 

homooligomers only in the absence of other IFNγ-induced factors, indicated by the 

arrow in figure 3.11.(a). This result demonstrates that Irga6 proteins can indeed form 

homooligomers in intact cells, in vivo, but only if other IFNγ-induced factors are 

missing. 

 As discussed earlier, transfected Irga6 proteins form small dots or larger 

aggregates throughout the cell. In contrast, Irga6 in IFNγ-induced cells is localised to 

the ER. Three GMS proteins, Irgm1, Irgm2 and Irgm3, were reported to be necessary 

and sufficient to position Irga6 molecules to the ER. As Irga6 interacts with Irgm3 in 

the GDP-bound form, the role of GMS proteins, in general, might be to keep Irga6 in 

an inactive, GDP-bound form on the ER, prior to infection. In the absence of IFNγ 

induction, there is no inhibitory effect of GMS proteins on Irga6, therefore Irga6 can 

get activated and can form GTP-dependent homooligomers that disassemble upon 

hydrolysis unless stabilised by AlFx molecules. These Irga6 homooligomers might be 

represented by the Irga6-positive dots and aggregates in cells not induced by IFNγ 

(figure 3.13.). 
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4.3. Possible Irga6 homooligomers in cells infected with Toxoplasma gondii 
 

Toxoplasma gondii, an apicomplexan protozoan pathogen, actively invades 

the host cell (Morisaki et al., 1995; Dobrowolski and Sibley, 1996; Sibley, 2004). 

Within host cells, T. gondii replicates in parasitophorous vacuoles (PVs) formed 

during invasion by invagination of the plasma membrane (Suss-Toby et al., 1996). 

Parasitophorous vacuole membrane (PVM) is devoided of most host plasma 

membrane proteins (Mordue et al., 1999a; Charron and Sibley, 2004) and does not 

fuse with the host cell endocytic compartment and mature to lysosomes (Joiner et al., 

1990; Mordue et al., 1999b). 

Irgm1, Irgm3 and Irgd are implicated in resistance against T. gondii infection 

(Taylor et al., 2000; Collazo et al., 2001). Susceptibility to infection, related to the 

absence of these proteins, was shown in knockout mice and in isolated cells, in vitro 

(Halonen et al., 2001; Butcher et al., 2005), thus implying involvement of IRG 

proteins in cell-autonomous resistance. In order to understand the mechanism of IRG 

protein function and how they potentially regulate each other, detailed analysis of 

these proteins during infection with T. gondii is being conducted. 

It has been reported that IFNγ-induced IRG proteins (Irgb6, Irga6, Irgd, Irgm3, 

Irgm2 (Martens et al., 2005) and Irgb10 (Koenen-Waisman, unpublished data)) 

relocalise from their resting localisation to the PVM upon infection with the 

nonvirulent T. gondii strain Me49. IRG protein accumulation around the PVM is not 

random. In contrast, it seems to be highly organized and follows a certain hierarchy. 

Approximately 80% of PVM in infected gs3T3 fibroblasts are coated with Irgb6 

(Koenen-Waisman, unpublished data) and this process is very rapid; the first Irgb6-

positive PVs are detected within two minutes of infection (Khaminetz, unpublished 

data). In addition, Irgb6 does not require any other IRG protein for PVM targeting 

(Hunn, 2007). In contrast, Irga6 binds to the PVM very inefficiently in the absence of 

other IRG proteins (Hunn, 2007). Irga6 accumulates around PVM in the presence of 

Irgb6. Additionally, the presence of GMS proteins is also required for relocalisation of 

Irga6 to the PVM (Hunn, 2007), probably by positioning Irga6 to the ER and 

preventing its activation prior to infection. The prerequisite for Irgd accumulation 

around T gondii-containing vacuole is presence of Irgb6 and Irga6 molecules at the 

PVM. Finally, only vacuoles coated with three GKS proteins, Irgb6, Irga6 and Irgd, 

contain Irgm3- and Irgm2-positive signals (Koenen-Waisman, unpublished data).  



                                                                                                                    Discussion 

 115

IFNγ-induced astrocytes and primed macrophages effectively resist T.gondii 

infection by stripping the parasite of its membranes (Martens et al., 2005; Ling et al., 

2006). A series of disruption events was proposed involving parasitophorous vacuole 

membrane (PVM) ruffling, PVM vesiculation, disruption, followed by parasite plasma 

membrane stripping, leading to lysosomal degradation of the parasite (Ling et al., 

2006). Both Irgm3 and Irga6 proteins were found to be involved in T. gondii vacuole 

vesiculation and disruption in astrocytes and macrophages, respectively (Martens et 

al., 2005; Ling et al., 2006). 

Involvement of an active Irga6 protein in T. gondii PVM disruption would imply 

the presence of GTP-dependent Irga6 homooligomers in the cells induced with IFNγ 

and infected with T. gondii, as GTP binding results in self-association of Irga6 

molecules. As shown above, there was no evidence for Irga6 homooligomerisation in 

cells stimulated with IFNγ and not infected with T. gondii. AlFx was unable to trap any 

oligomers in these cells. This result was consistent with the evidence that the 

“resting” Irga6 is held in a GDP-dependent state, probably by transient interaction 

with GMS proteins. However, after infection with T. gondii, the relocalisation of Irga6 

to the PV depends on the integrity of the nucleotide binding site (Martens et al., 

2005) and probably requires GTP binding. It was, therefore, possible that AlFx could 

detect this by trapping oligomers in IFNγ-induced, T. gondii-infected cells. Indeed, it 

was possible to detect evidence for some oligomers (figure 3.11.(c), indicated by the 

arrow). However, this band was very weak and not always detectable. This co-

immunoprecipitation assay appears not really to be sensitive enough for this purpose, 

though the result is promising. Low level of Irga6 homooligomerisation in IFNγ-

induced cells infected with T. gondii could be explained by the inefficiency of this 

assay. Homooligomerisation is analysed by the coimmunoprecipitation of IFNγ-

induced Irga6wt by the transfected Irga6cTag1 (chapter 3.4.2.). Treatment with IFNγ 

results in the protein induction in practically all cells. In contrast, DNA transfection of 

fibroblasts using FuGENE6 transfection reagent (Roche) is very inefficient, resulting 

in expression of transfected protein in only 5-10% of cells. Finally, even when high 

MOI of T. gondii were used (MOI>10), not all cells were infected and, in addition, only 

70% of PVs were coated with Irga6. Thus, only 3.5-7% of cells were in the condition 

where Irga6 homooligomers could be detected by co-immunoprecipitation, which is 

not enough to obtain a clear result and make a valid conclusion. Another method has 
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to be employed in order to analyse the presence of activated Irga6 proteins around T. 

gondii PVM.  

 

 

 

4.4. Analysis of the binding affinity of the αIrga6 monoclonal 10D7 antibody 
 

IFNγ-induced Irga6 localises to the ER and accumulates around PVM upon 

infection with T. gondii, as discussed earlier. Transfected Irga6cTag1 adopts 

punctate localisation, forming aggregates of various size. In IFNγ-induced cells, 

transfected Irga6cTag1 can be partly relocalised to the ER. It is presently cosidered 

that Irga6 on the ER, either IFNγ-induced or relocalised, is kept in an inactive, GDP-

bound form by GMS proteins prior to infection. Upon infection, IFNγ-induced Irga6 

protein is found at the PVM, presumably in the active form. The argument continues, 

that transfected Irga6cTag1 protein, in the absence of inhibitory effect of GMSs, 

activates spontaneously in the absence of infection, and the Irga6-positive 

aggregates seen throughout the cell might, therefore, represent the active form of 

Irga6. 

10D7, one of the αIrga6 monoclonal antibodies, in immunofluorescence 

analysis does not recognise Irga6 on the ER, either IFNγ-induced or relocalised 

(figure 3.14.(b)). In contrast, transfected Irga6cTag1 protein (figure 3.14.(a)) or 

Irga6cTag1 around PV containing the Me49 strain of T. gondii (figure 3.14.(c)) is 

stained by 10D7 antibody. 

It was, therefore, tempting to postulate that 10D7 antibody recognises only 

active, GTP-bound Irga6. The plausible alternative, however, is that the 10D7 is a low 

affinity antibody, which efficiently binds only to the densely packed, probably 

oligomerised, Irga6 molecules in aggregates or around T. gondii-containing PV. 

 Multimeric interactions allow a low-affinity antibody to bind tightly to an 

antigen, transforming a low affinity antibody to an antibody of high avidity (Harlow, 

1988). 10D7 belongs to the IgG1 class of antibodies (Zerrahn, personal 

communication), and is, therefore, bivalent. Densely packed Irga6 molecules, either 

in aggregates or around T. gondii PV upon transfection, could act as a multivalent 

substrate in contrast to distributed, possibly monomeric Irga6 molecules bound to the 

ER. If 10D7 were a low affinity antibody, bivalent interaction with Irga6 in aggregates 
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and around PV would increase its avidity, which would result in stronger binding. This 

could be tested by creating monovalent 10D7 antibody Fab fragments by papain 

cleavage. Single Fab fragment could not be able to bind more efficiently to oligomers 

than to monomeric molecules. In contrast, if 10D7 is a high affinity antibody, sensitive 

to a distinctive conformational state associated with PV-bound or aggregated Irga6, 

then Fab fragments would show the same sensitivity as the native antibody. 

The IgG molecule is a symmetrical dimer consisting of four polypeptide chains: 

two identical heavy chains and two identical light chains held together by interchain 

disulfide bonds (Harlow, 1988). Treatment with papain protease results in digestion of 

the antibody into two Fabs (fragments of antigen binding), consisting of a light chain 

and the N-terminal domains of a heavy chain, bridged by disulfide bonds, and one Fc 

fragment (crystallisable fragment), which consists of two C-terminal parts of heavy 

chains connected by disulfide bridges. The principal sites of papain cleavage are 

found at the amino-terminal side of the disulfide bonds that hold the light and the 

heavy chains together thus resulting in release of two Fab fragments with molecular 

weight of around 45-55 kDa and one Fc fragment of 50 kDa, under non-reducing 

conditions (Harlow, 1988). However, mouse monoclonal antibodies from the different 

classes show a wide degree of variation of secondary papain cleavage sites, which 

usually results in the presence of additional fragments of different sizes. 

Indeed, papain cleavage of monoclonal antibodies 10D7 and 10E7,which does 

not distinguish aggregated and dispearsed Irga6 molecules, resulted in formation of 

three to four major fragments, having molecular weights between 42 and 55 kDa 

under non-reducing conditions, both in SDS-PAGE and in size exclusion 

chromatography (figure 3.18.). As it will be discussed later, fragments in later 

fractions, named C3, of both antibodies showed stronger αIrga6 binding than those in 

earlier fractions (B13 in figure 3.18.). It can be, therefore, assumed that the majority 

of the Fab fragments of 10D7 and 10E7 represent the strongest bands in C3 

fractions, whereas Fc fragments are found in the earlier, B13 fractions.  

Relative binding affinities of purified 10D7 and 10E7 papain-cleaved fractions, 

compared with whole 10D7 and 10E7 antibodies for Irga6 proteins were analysed in 

Western blot and in immunofluorescence. Western blot analysis revealed that, in 

general, 10D7 antibody and its fragments in B13 and C3 fractions bound at higher 

dilutions to the recombinant Irga6 than 10E7 antibody and its fragments. Fragments 

in C3 fractions, presumably Fabs, of both antibodies displayed binding at higher 
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dilutions than earlier B13 fractions, excluding the possibility that the strong αIrga6 

signal originated from the uncleaved antibody trailing in the size exclusion column. 

Even though 10D7 C3 fraction bound to the recombinant Irga6 almost as 

efficiently as non-cleaved 10E7 antibody, uncleaved 10D7 antibody bound at higher 

dilutions than its C3 fragments. Since secondary HRP-coupled antibody raised 

against the whole mouse monoclonal IgG antibody was used for detection, it could 

not be determined if the stronger 10D7 signal was due to the higher binding affinity 

compared to its Fabs or it resulted from an additional signal from the secondary HRP 

antibody binding to the constant region of uncleaved 10D7 antibody. 

 Immunofluorescence analysis provided clearer view on the relative 

binding affinity of 10D7 and its fragments. To avoid the signal coming from the 

constant region of an uncleaved antibody, goat-α-mouse kappa light chain-FITC was 

used as a secondary detection reagent, which binds only to the light chain of the 

antibody. IFNγ-induced gs3T3 cells were infected with Me49 strain of T. gondii and 

stained by 10D7 and its fragments in C3 fraction. Relative binding affinity was 

estimated by the acquisition time necessary to detect Irga6 signal of equal intensity 

around T. gondii PV. If 10D7 were low affinity antibody, its Fab fragments, which are 

unable to form bivalent interactions with antigens and therefore have low avidity as 

well, would bind to Irga6 molecules on T. gondii PV very inefficiently. This would 

result in longer exposure time necessary to detect signal of Irga6 around PV with 

10D7 C3 fragments compared to noncleaved 10D7 antibody. 

When secondary α-mouse kappa light chain-FITC antibody was used, Irga6 

rings around PV, labelled with the whole 10D7 antibody as well as with 10D7 C3 

fraction were detected after the same exposure time (figure 3.20.). Therefore, 10D7 

fragments in C3 fraction, presumably containing Fabs, detect Irga6 around PV 

vacuoles as efficiently as the whole 10D7 antibody, indicating that 10D7 is a high 

affinity antibody. Thus, 10D7 antibody preferentially recognises a specific 

conformation of Irga6 molecules in cells, associated with aggregation or 

oligomerisation. 
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4.5. 10D7 epitope is located in the first N-terminal α helix of Irga6 but excludes 
its myristoyl group and the GTP-binding domain  
 

 To be able to interpret the 10D7-Irga6 interactions properly, the 10D7 epitope 

was analysed in detail. Deletion constructs and single amino acid mutants of Irga6 

located the 10D7 epitope between amino acid 20-25 in the Irga6 molecule, where the 

mutation of the threonine residue in position 21 shows the strongest effect on 10D7 

binding (figures 3.21. and 3.22.). In addition, the myristoyl group and first 12 N-

terminal amino acids of Irga6 protein are not part of the 10D7 epitope (figure 3.23.). 

The fact that the epitope is a part of the first α helix in the Irga6 molecule suggests 

that the GTP-binding domain itself is excluded from 10D7 recognition sequence.  

 

 

 

4.6. Active form of Irga6 is recognised by 10D7 antibody 
 

 The possibility that 10D7 recognises Irga6 in its active, GTP-bound state was 

tested by immunoprecipitation experiments using the non-hydrolysable GTP analog, 

GTPγS. Recombinant, IFNγ-induced and transfected Irga6wt molecules were 

analysed. All these Irga6 proteins could form homooligomers in the presence of 

GTPγS ((Uthaiah et al., 2003) and figure 3.11.). However, in contrast to purified, 

recombinant Irga6wt, IFNγ-induced and transfected Irga6wt were expressed in 

fibroblasts where the other cellular components mignt affect the 10D7 binding. In the 

presence of the nonionic detergent Thesit, 10D7 bound more efficiently to the 

GTPγS-bound IFNγ-induced and transfected Irga6wt. However, 10D7 did not 

recognise recombinant Irga6wt, even in the presence of GTPγS (figure 3.27.). Apart 

from being expressed in different cells (murine fibroblasts and E. coli), IFNγ-induced 

and transfected Irga6wt differ from recombinant Irga6wt, expressed and purified from 

E. coli (Bact Irga6wt), by the N-terminal lipid modification.  

 IFNγ-induced Irga6 and transfected Irga6wt proteins are believed to be 

myristoylated at the N-terminal glycine residue in vivo. In the Triton X-114 partitioning 

assay, used to separate proteins with hydrophobic domains from hydrophilic 

molecules at RT (Bordier, 1981; Bhairi, 2001), IFNγ-induced Irga6 and the lower 

band of transfected Irga6wt partition, roughly 70:30, into the detergent phase, 
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indicating the partial lipophilic character of these molecules. Mutation of the N-

terminal glycine residue to alanine (G2A) in Irga6 molecule results in Irga6-G2A 

protein partitioning exclusively into the aqueous phase, suggesting that this glycine is 

indeed lipid modified in vivo ((Martens et al., 2004) and figure 3.33.(a)). Absolute 

requirement of N-terminal glycine residue for myristoylation, after the initiating 

methionine is removed by methionine aminopeptidase, and the presence of an 

appropriate myristoylation sequence (MGQLST) indicate that Irga6wt is myristoylated 

in vivo. 

 In contrast, recombinant Bact Irga6wt, expressed and purified from E. coli, 

cannot be myristoylated for two reasons. First, Irga6wt is expressed as GST-fusion 

protein in the pGEX-4T2 vector and subsequently cleaved by Thrombin in the linker 

region between GST and Irga6 sequence (Uthaiah et al., 2003). Thrombin cleavage 

results in 10 amino acids long N-terminal extension, which itself would prevent 

covalent binding of the myristoyl group to the recombinant Irga6wt. In addition, 

prokaryotes do not express enzymes necessary for protein myristoylation 

(Heuckeroth et al., 1988). As a consequence, Bact Irga6wt purified from E. coli is not 

myristoylated. 

 10D7 recognises IFNγ-induced and transfected Irga6wt preferentially in the 

GTP-bound form but not recombinant Bact Irga6, suggesting that not only nucleotide 

state of Irga6 but, in addition, the presence of the myristoyl group may be required for 

the exposure of the 10D7 epitope. As mentioned earlier, the GTP-binding domain 

and myristoyl group are not part of the 10D7 epitope. It is therefore more likely that 

the GTPγS binding to the Irga6wt protein results in a conformational change, 

involving the nucleotide binding domain and myristoyl group, which exposes or 

creates the 10D7 epitope in the first α helix. 

 To analyse further this possibility, Irga6 mutants were tested for their ability to 

bind to the 10D7 antibody (figure 3.29.). Two mutations in the G1 binding motif were 

introduced. Irga6-K82A has wild type nucleotide binding affinity but no GTPase 

activity, whereas Irga6-S83N essentially binds no nucleotide (Hunn, 2007). In 

addition, the Irga6-E106A mutant was tested, that caries a mutation in the primary 

interaction interface (Pawlowski, unpublished data). This mutant binds nucleotides 

with the wild type affinities but cannot hydrolyse GTP and is, thus, considered to be 

constitutively in the GTP-bound state, similarly to the K82A mutant.  
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Irga6wt is precipitated by 10D7 in the presence of GTPγS with up to 10 fold 

higher efficiency than in the absence of exogenous nucleotide. On the other hand, 

K82A and E106A Irga6 mutants, which are not able to hydrolyse bound GTP and are 

considered to be constitutively in the GTP-bound state, displayed strong binding to 

10D7 independently of nucleotide added. In contrast, the S83N mutant, that exhibits 

essentially no GDP or GTP binding, was precipitated by 10D7 very inefficiently, even 

when GTPγS was added to the lysates.  

Additionally, Irga6-G2A mutant, that cannot be myristoylated, was precipitated 

very weakly and only in the presence of GTPγS, indicating that myristoyl group has 

an important role in GTP-dependent conformational change of Irga6. Finally, Irga6-

∆7-12, lacking six amino acids at the N-terminus, bound strongly to 10D7, in the 

nucleotide-independent manner, suggesting that this region might be responsible for 

blocking of 10D7 epitope when Irga6 is in the GDP-bound state.  

Thus, 10D7 indeed recognises GTP-bound Irga6. GTP binding to Irga6 results 

in a conformation change of GTP-binding domain, myristoyl group and N-terminal 

region between amino acids 7-12. 

This leads to the conclusion that IFNγ-induced Irga6wt in the resting state is in 

an inactive, GDP-bound form, and therefore unable to interact with 10D7 antibody. 

Upon infection with Toxoplasma gondii, Irga6wt is found accumulating around 

parasitophorous vacuoles in the active, GTP-bound conformational state, with the 

10D7 epitope exposed. 

 

 

 

4.7. Model of conformational change of Irga6 induced by GTP binding 
 

In the crystal structure of recombinant nonmyristoylated Irga6, the first N-

terminal 13 amino acids were not resolved (Ghosh et al., 2004). Thus, the position of 

the amino acids 7 to 12 in the protein structure is not known. However, based on the 

10D7 immunoprecipitation data, the following model can be proposed.  

As illustrated in figure 4.1.(a), in the GDP-bound state, Irga6wt is in a 

hypothesized “closed” conformation, where the myristoyl group (red) together with 

the N-terminal 12 amino acids is folded in such way that the 10D7 epitope (aa 20-25) 

is covered and inaccessible to the antibody (open green circle). Upon GTP binding, 
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conformational change in the GTP-binding domain induces the structural change of 

the N-terminus, with the myristoyl group being in the exposed position, facilitating 

insertion of activated Irga6wt into the membrane and stabilising the molecule. In this 

model, amino acids 7 to 12 might act as a hinge (yellow). Reorientation of the N-

terminus would then expose amino acids 20-25 and allow binding of the 10D7 

antibody (closed green circle). The absence of a myristoyl group in Irga6-G2A mutant 

prevents the stable reorientation of the N-terminus even in the GTP-bound state, 

thus, keeping the 10D7 epitope hardly accessible. If the “hinge” region is missing, 

10D7 epitope may be constitutively exposed. The Irga6-S83N mutant, unable to bind 

nucleotides, would be in the constitutive “closed” conformation and, therefore, 

inaccessible for 10D7 antibody binding (figure 4.1.(b)). In contrary, Irga6-K82A and 

Irga6-E106A mutants, which bind GTP but cannot hydrolyse it, would be locked in the 

“open” conformation and accessible to the 10D7 antibody (figure 4.1.(c)). 

In this model, 10D7 exposure was used as an indicator of the “open” or 

“closed” Irga6 conformation in respect of the bound nucleotide, in the presence of 

nonionic detergent Thesit. The same is true for another nonionic detergent Digitonin 

and zwitterionic detergent CHAPS (figure 3.28.). In contrast, other nonionic 

detergents, n-octyl-β-D-glucopyranoside (OGP), Triton X-100 and Triton X-114 

induced 10D7 epitope exposure independently of the nucleotide present (figure 

3.28.). Nonionic detergents are generally considered to be mild and relatively non-

denaturing, and as such, not affecting the proteins’ structural features. However, it 

has been reported that short chain nonionic detergents, such as OGP, can often lead 

to deactivation of the protein (Seddon et al., 2004). In the case of Irga6wt, nonionic 

detergents affect the structure of the N-terminal region in a different manner. This 

might indicate flexibility of the myristoylated N-terminus and/or the hinge region (aa 7-

12). 
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Figure 4.1. Model of Irga6 nucleotide-dependent conformational change 
(a) GTP binding induces conformational change of the GTP-binding motif, myristoyl group (red) and 

the N-terminus, where aa 7-12 could serve as a hinge (yellow); (b) Irga6-S83N mutant is constitutively 

in the “closed” conformation; (c) Irga6-K82A and Irga6-E106A mutants are kept in the “open” 

conformation. Exposure (filled green circle) and nonexposure (open green circle) of the 10D7 epitope 

are used as determinants of “open” and “closed” conformation 

 

 

 

4.8. Effects of the nucleotide state and the myristoyl group on Irga6 
relocalisation to the parasitophorous vacuole membrane 
 

Activation of Irga6wt proteins leads to the formation of Irga6 homooligomers, 

both in vitro (Uthaiah et al., 2003) and in and ex vivo (figure 3.11.). 

Homooligomerisation of Irga6 proteins in the presence of GTPγS, thus ex vivo, could 

be used to test the self-association properties of various Irga6 mutants. According to 
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the 10D7 immunoprecipitation results, it would be expected that K82A and E106A 

Irga6 mutants, deficient in the GTP hydrolysis, could form homooligomers even in the 

absence of exogenously added GTPγS. In contrast, nucleotide-binding deficient 

Irga6-S83N mutant would be unable to homooligomerise, regardless of nucleotide 

present.  

Indeed, co-immunoprecipitation experiments confirmed that GTP-hydrolysis 

deficient mutants, K82A and E106A, do homooligomerise even in the absence of 

GTPγS (figure 3.12.). Conversely, the S83N mutant did not show formation of 

oligomers at all. Absence of myristoyl group severely impaired the ability of Irga6 to 

form homooligomers, indicating that this lipid modification plays a significant role in 

activation and, thus, in function of Irga6 in vivo.  

The Irga6 mutant, lacking the six amino acids at the N-terminus (Irga6-∆7-12), 

homooligomerised in the same manner as the wild type protein, only in the presence 

of GTPγS. The 10D7 epitope in this mutant, on the other hand, was constitutively 

exposed, regardless of the nucleotide present. These results confirmed that the 10D7 

epitope exposure is not the result of GTP-dependent Irga6 homooligomerisation but 

rather the consequence of the conformational change of Irga6 caused by GTP 

binding and can be exposed in other ways too. 

 IFNγ-induced Irga6 binds to the membrane of the parasitophorous vacuole 

containing Me49 Toxoplasma gondii strain, and is shown to be involved in vacuolar 

vesiculation and disruption (Martens et al., 2005). Thus, relocalisation of Irga6 

proteins to the PVM can be used as an assay to study the function of Irga6 in 

infected cells, in regard to its activation and membrane binding. 

Irga6cTag1 in IFNγ-induced cells accumulated around T. gondii PV upon 

infection. However, the Irga6cTag1-K82A mutant, deficient in GTP-hydrolysis, not 

only failed to target the PVM but, additionally, acted as a dominant negative mutant, 

preventing IFNγ-induced Irga6wt from relocalising to the T. gondii-containing vacuole 

(Martens et al., 2005). As expected, the Irga6cTag1-E106A mutant displayed the 

same dominant negative effect on endogenous Irga6wt (figure 3.30. and table 3.2.). 

Not surprisingly, the nucleotide-binding deficient Irga6cTag1-S83N mutant did not 

accumulate at the PVM and also did not prevent endogenous Irga6wt from PV 

targeting. Nonmyristoylated Irga6cTag1-G2A bound to the PVM but inefficiently; only 

19% of vacuoles were coated with G2A mutant in comparison to cells transfected 

with Irga6cTag1 where 70% of the vacuoles were positive for Irga6cTag1. 
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Interestingly, accumulation of the endogenous, IFNγ-induced Irga6wt at the PV was 

slightly decreased in the presence of nonmyristoylated Irga6-G2A. In contrast, 

transfected Irga6cTag1-∆7-12 mutant was practically indistinguishable from the wild 

type protein.  

Irga6 at the PVM is in the active, GTP-bound form. As GTP-bound Irga6 can 

self-associate in vivo, it can be assumed that Irga6 forms homooligomers at the 

vacuolar membrane. Deletion of six amino acids at the N-terminus (∆7-12) does not 

affect this process. Interestingly, mutants that are unable to hydrolyse bound GTP 

(K82A and E106A) do not target PVM and, in addition, almost completely inhibit 

endogenous protein from going to the PV.  

As will be discussed later, it is believed that IFNγ-induced Irga6 exist in an 

equilibrium between membrane bound and cytosolic pools (Martens et al., 2004). It is 

probably the cytosolic pool of Irga6 that is initially relocalised to the PVM. The 

dominant-negative effect of Irga6-K82A and -E106A mutants could be explained by a 

tendency of the cytosolic Irga6wt to oligomerise with constitutively active mutant 

proteins in cells before reaching the PVM. As the Irga6-S83N mutant practically does 

not bind nucleotides, it cannot target PVM nor it can interact with the endogenous 

Irga6 protein. Nonmyristoylated Irga6-G2A inefficiently binds to the PVM through 

probably two effects. As this mutant, in cell lysate, builds homooligomers very 

inefficiently, it might act as a chain terminator, preventing the endogenous protein 

from further association. Alternatively, or in addition, absence of the myristoyl group 

in the homooligomer may destabilise its membrane attachment and result in oligomer 

disassembly from the PVM.  

 

 

 

4.9. Effect of the myristoyl group on biochemical properties of Irga6 protein 
 

The myristoyl group is involved in Irga6 conformational change induced by 

GTP binding (chapter 4.6.). Lack of the myristoyl group results in an inefficient 

targeting of Irga6 protein to the PV (table 3.2.), indicating that the myristoyl group 

might be necessary for proper binding of Irga6 to the parasitophorous vacuole 

membrane.  
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Structure and biochemical properties of Irga6 protein, expressed and purified 

from E. coli, have been intensively studied in vitro (Uthaiah et al., 2003; Ghosh et al., 

2004). However, this recombinant protein could not be myristoylated due to the N-

terminal extension of the purified protein (Uthaiah et al., 2003) and also because 

prokaryotes do not express enzymes necessary for protein myristoylation 

(Heuckeroth et al., 1988). Thus, in order to study the effect of the myristoyl group on 

oligomerisation, GTPase activity and membrane binding in vitro, Irga6wt, -G2A or -

S83N proteins without N-terminal fusion (Ins Irga6wt, -G2A, -S83N) were expressed 

and purified from insect Sf9 cells. 

Ins Irga6wt was mostly membrane bound, indicating that its membrane-

binding signal is functional in insect cells (data not shown). Triton X-114 partitioning 

assay and mass spectrometric analysis of Ins Irga6 proteins revealed the presence of 

a myristoyl group at the N-termini of Ins Irga6wt and Ins Irga6-S83N. In contrast, the 

Ins Irga6-G2A protein was not myristoylated but N-terminally acetylated.  

N-terminal acetylation is one of the most common protein modifications in 

eukaryotes, occurring on approximately 80–90% of the cytosolic mammalian proteins 

(Polevoda and Sherman, 2003). There is no simple consensus motif or dependence 

on a single type of residue that is identified as necessary for protein acetylation. So 

far, two ARF-like GTPases Arl3p and Arl8a/b are found acetylated and this 

modification was required for Golgi and lysosomal localisation of these proteins, 

respectively (Setty et al., 2004; Hofmann and Munro, 2006). However, the function of 

the Irga6-G2A N-terminal acetylation is not known. 

 In the absence of detergent, myristoylated Ins Irga6 protein was excluded from 

the HiLoad 26/60 Superdex 200 prep grade column, suggesting that under these 

conditions purified myristoylated protein forms large aggregates of over 600 kDa in 

molecular weight. Other large GTPases, dynamin (Hinshaw and Schmid, 1995), 

farnesylated hGBP1 (Fres, 2007) as well as Mx1 (Melen et al., 1992), also eluted as 

large oligomers in the process of purification. Even in the presence of 50% ethylene 

glycol, which efficiently prevents protein-protein interactions without denaturing them, 

Mx1 was eluting from a gel filtration column in the molecular mass range of 120-240 

kDa (Melen et al., 1992). It was argued that these oligomers in vitro might correspond 

to the observed Mx1 granular structures in vivo.  

 To avoid aggregation of Ins Irga6wt, 0.05% Thesit was used during purification 

and final elution from the size exclusion column. However, even in the presence of 
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0.05% Thesit, recombinant myristoylated proteins behaved markedly different from 

nonmyristoylated proteins. Myristoylated Ins Irga6wt and Ins Irga6-S83N ran at 200-

250 kDa in size exclusion chromatography, in contrast to nonmyristoylated Ins Irga6-

G2A or Bact Irga6wt, which eluted from the column at the size of a monomer (figure 

3.34.). Myristoylated Irga6 proteins, IFNγ-induced and transfected, expressed in L929 

fibroblast also eluted from the Superose 6 column bigger than a monomer (approx. 

150 kDa), in contrast to nonmyristoylated Irga6-G2A (figure 3.4.). It is, therefore, 

possible that myristoyl group itself affects the running behavior of Irga6 proteins, 

independently of any other protein. 

Analysis of the change in hydrodynamic radius of Ins Irga6 proteins in dynamic 

light scattering experiments at 37°C revealed again large differences between 

recombinant myristoylated and nonmyristoylated Irga6 proteins. Even in the presence 

of detergent, nonmyristoylated Bact Irga6wt formed high molecular weight complexes 

only in the presence of GTP, indicating the formation of GTP-dependent Irga6 

homooligomers in vitro (figure 3.35.). Unfortunately, due to the limited amounts of 

purified Ins Irga6 proteins only few measurements with these proteins could be 

made. In contrast to Bact Irga6wt, nonmyristoylated Ins Irga6-G2A formed higher 

molecular weight complexes in the presence of GTP after long incubation time (over 

500 sec). As no measurement with GDP or in the absence of nucleotide was made, it 

is not clear whether this increase in size is GTP dependent or not.  

Myristoylated Ins Irga6wt and Ins Irga6-S83N formed high molecular weight 

complexes much earlier, already after 180 sec. Ins Irga6wt forms complexes in the 

presence of both GDP and GTP. Similarly, Ins Irga6-S83N protein in the presence of 

GTP formed high molecular weight complexes as well, even though the same 

mutation in the Bact Irga6-S83N protein resulted in negligible nucleotide binding 

affinity (Hunn, 2007). Assuming that the S83N mutant in the Ins Irga6 protein would 

have the same property, high molecular weight structure formation would not be a 

result of nucleotide-dependent oligomerisation of myristoylated Ins Irga6 proteins. It 

seems more likely that the presence of myristoyl group induces formation of the Ins 

Irga6 complexes, probably via binding of myristoyl groups to the detergent micelle. 

As myristoylated Ins Irga6 aggregated in the absence of detergent, detergent micelle 

could be used to sequester the hydrophobic myristoyl group from the environment. In 

such way, more than one molecule of myristoylated Ins Irga6 proteins could 

associate with a micelle, resulting in a high local concentration of the protein. 
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10D7 antibody recognises the GTP-bound conformation of Irga6wt. It is earlier 

discussed that GTP binding to Irga6 molecule induces conformational change, which 

affects the GTP-binding domain, the N-terminal region and the myristoyl group. It is 

proposed that the myristoyl group in the GTP-bound cellular Irga6wt is exposed, 

allowing the binding of 10D7 antibody to its epitope in the presence of GTPγS, but 

not in Irga6-G2A nor in nucleotide binding deficient Irga6-S83N. However, incubation 

of 10D7 with Ins-Irga6 proteins revealed that myristoylated Ins Irga6wt and Irga6-

S83N proteins were strongly immunoprecipitated, independently of the nucleotide 

present. In contrast, nonmyristoylated Ins Irga6-G2A was not precipitated, even in the 

presence of GTPγS (figure 3.36.). This indicates that purified recombinant 

myristoylated Irga6 proteins adopt different conformation compared to cellular Irga6 

proteins. As it was discussed earlier in this chapter, recombinant myristoylated 

proteins might be stabilised in solution by insertion of myristoyl group into the 

detergent micelle, and as such are recognised by 10D7 antibody. This exposed 

myristoyl group might mimic the conformation of activated, membrane-bound Irga6wt 

protein in vivo. In the cells, the myristoyl group on Irga6 might be sequestered from 

the aqueous environment by protein-protein interaction or by insertion into the 

membrane.  

 

 

 

4.10. Myristoylated Ins Irgs6wt hydrolyses GTP to GDP and GMP in vitro 
 

Although nucleotide-binding affinities of Ins Irga6 were not measured, analysis 

of GTPase activity of Ins Irga6 proteins revealed dramatic differences between 

myristoylated Ins Irga6wt and nonmyristoylated Ins Irga6-G2A. While 

nonmyristoylated Irga6 proteins, Ins Irga6-G2A as well as Bact Irga6wt, hydrolysed 

GTP to GDP only, myristoylated Ins Irga6wt hydrolysed GTP to GDP and GMP 

(figure 3.37.).  

hGBP1 is another GTPase that can hydrolyse GTP to GMP (Schwemmle et 

al., 1995; Praefcke et al., 1999) leaving predominantly GMP as a product of 

hydrolysis (85-95% at 37°C; (Kunzelmann et al., 2006)). Hydrolysis of GTP to GMP 

occurs by the two consecutive cleavages of γ- and β-phosphates, in a process 

involving a shift of the nucleotide toward the catalytic center after GTP hydrolysis by 
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positioning the β-phosphate of GDP at the same place as the γ-phosphate of GTP 

was located before (Prakash et al., 2000b). This explains the inability of hGBP1 to 

take GDP as a substrate from the solution (Praefcke et al., 1999). 

However, it seems that Ins Irga6wt uses a different mechanism for GTP 

hydrolysis. First of all, the final amount of hydrolysed GMP depends on the starting 

concentration of GTP. Hydrolysis of 1 mM GTP by Ins Irga6wt resulted in three times 

more GMP as a final product, compared to the hydrolysis of 10 mM GTP (figure 

3.38.), which would not be expected if the GTP hydrolysis to GMP would occur in two 

successive steps while the nucleotide remains bound, as in hGBP1 (Prakash et al., 

2000b). A second argument against the hGBP1 model of hydrolysis for Ins Irga6wt is 

that the GDP concentration raised in the first hour of Ins Irga6wt hydrolysis and 

decreased in the next three hours (figure 3.38.(b)). Therefore, it is more likely that 

GTP is hydrolysed to GDP only but, as GDP concentration rises, GDP itself becomes 

a substrate for Ins Irga6wt and is further hydrolysed to GMP. This model would 

predict that GDP itself could serve as a substrate for Ins Irga6wt hydrolysis, which 

remains to be tested.  

 

 

 

4.11. Model of Irga6 regulation in vivo 
 

 Immunity-Related GTPases (IRG) are represented by 25 coding units in the 

mouse genome. At least six of them are implicated in resistance against bacterial and 

protozoan pathogens (table 1.1.). Effects of IRG proteins in challenging pathogen 

infections are not redundant (Collazo et al., 2001; Butcher et al., 2005; Bernstein-

Hanley et al., 2006; Miyairi et al., 2007), indicating that they may regulate each 

other’s functions. 

 The function of the Irga6 protein is regulated by three GMS proteins, Irgm1, 

Irgm2 and Irgm3, as well as by Irgb6. These three GMSs are necessary and 

sufficient for proper localisation of Irga6 to the ER membrane (Schroeder, 2005). 

Irgm3 was shown to interact with Irga6 in immunoprecipitation and pull-down 

experiments most probably in the presence of GDP. In addition, ER-localised Irga6 is 

not visualised by the 10D7 antibody, which seems to recognise specifically the active, 

GTP-bound form of Irga6. It can be, therefore, postulated that GMS proteins in IFNγ-
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induced cells keep Irga6 in an inactive, GDP-bound form. In this model, GMS 

proteins would act like Irga6 guanine-nucleotide dissociation inhibitors (figure 4.2.).  

 In the absence of IFNγ induction, in transfected cells, Irga6 is found in dotty 

structures throughout the cell. Misfolded, functionally inactive proteins, which are not 

degraded by the proteasome, can aggregate in the cell, forming structures called 

aggresomes (Kopito, 2000). However, transfected Irga6 was not found in such 

structures, analysed by immunofluorescence analysis and low-speed centrifugation 

(Kaiser, 2005). It is proposed that Irga6-containing aggregates represent the active 

form of this protein (figure 4.2.). Transfected Irga6 is recognised by 10D7 antibody, 

which binds specifically to the active form of Irga6. In addition, transfected Irga6, in 

the absence of INFγ-induced factors, forms GTP-dependent homooligomers in vivo. 

Interestingly, it has been reported that rough ER in cells transfected with Irga6 is 

distended, building abnormal voluminous structures (Kaiser, 2005). Irga6-containing 

structures were identified in close proximity to these deformed ER regions, indicating 

the necessity of tight Irga6 regulation in cells. 

 IFNγ-induced Irga6, which is kept inactive by GMS proteins in the resting cells, 

is relocalised to the parasitophorous vacuole membrane (PVM) upon infection with 

nonvirulent, Me 49 strain of T. gondii (Martens et al., 2005). Irga6 on the PVM is 

10D7-positive, thus, in the active form, probably building GTP-dependent 

homooligomers (figure 4.2.). However, in the absence of Irgb6 on the vacuoles, Irga6 

binds very inefficiently to the PVM (Hunn, 2007), indicating the possibility of Irga6-

Irgb6 heterooligomers formation in infected cells. Irga6 and Irgb6 also interacted 

strongly in the yeast-two hybrid assay (Hunn, 2007). 

The mechanism of relocalisation of Irga6, and in general all IRG proteins, from 

the resting localisation to the T. gondii vacuole is unclear. Recruitment of Irga6 to the 

PVM by the simple proximity of the ER to the vacuole was excluded since other 

typical ER markers were not found associated with the PVM (Martens et al., 2005). 

Even though Irga6 was reported to interact with microtubule-associated protein, 

Hook3 (Kaiser et al., 2004), microtubules themselves are not used to transport Irga6 

to the PVM (Khaminetz, unpublished data). 
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Figure 4.2. Model of relocalisation of Irga6 to the PVM 
In IFNγ-induced cells, Irga6 is kept in an inactive, GDP-bound form (red oval) by GMs proteins 

(turquoise oval). Upon infection with nonvirulent T. gondii, Irga6 is relocalised to the PVM, together 

with Irgab6 (yellow oval) or when Irgb6 is already at the vacuole. On the PVM, Irga6 is in the active, 

GTP-bound form (green oval), able to form GTP-dependent homo-, and possibly, heterooligomers. In 

contrast, transfected Irga6wt, in cells not induced with IFNγ, cannot target the PVM, confirming the 

necessity of GMS and Irgb6 proteins for proper function of Irga6. 

 

 

Irga6 in the IFNγ-induced cell is in a equilibrium between a membrane-bound 

(70%) and a soluble pool (Martens et al., 2004). However, it is believed that the 

soluble, cytosolic pool of Irga6 targets the PVM. As discussed earlier, membrane 

bound Irga6 is kept inactive by GMS proteins. Soluble Irga6 is released from the 

inhibitory effect of GMSs and can therefore be activated. The possibility that soluble 

Irga6wt can get activated is confirmed by the effect of hydrolysis-deficient mutants 

Irga6-K82A and Irga6-E106A on the wild type protein. These mutants, which are 
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unable to hydrolyse bound GTP, act as dominant-negative mutants, preventing 

relocalisation of endogenous Irga6 to the vacuole. They do so presumably by 

trapping wild type Irga6 in the GTP-dependent homoologomers, before it reaches the 

PVM. Since hydrolysis-deficient Irga6-K82A and -E106A mutants build 

homooligomers in cells but cannot target PVM, it can be postulated that GTP-bound 

Irga6wt binds to the PVM in its monomeric form. Inability of transfected, presumably 

oligomerised Irga6wt to target the PVM in the absence of IFNγ (Hunn, 2007), also 

argues that Irga6, which oligomerised prior to infection, cannot bind to the T. gondii-

containing vacuoles. 

  

  

 
Figure 4.3. Model of Irga6 membrane interaction 
In the IFNγ-induced cells, GMS mediate binding of inactive Irga6 to the ER. Upon infection, Irga6 

interacts with the PVM in its GTP-bound form, probably by insertion of myristoyl group. 

Homooligomerisation of Irga6 could increase the avidity of this interaction, stabilising Irga6 on the 

vacuole. 
 

Irga6 could interact with T. gondii PVM either by recognising a specific 

receptor on the membrane, by inserting into a lipid microdomain, or both. Since Irga6 

binds efficiently to the PVM only in the presence of Irgb6, Irgb6 could act as a 

specific receptor for Irga6 on the parasitophorous vacuole membrane. Irga6 and 

Irgb6 proteins have been shown to interact in yeast-two hybrid assays (Hunn, 2007).  
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On the other hand, it has been reported that phosphatidylinositol 4,5-

bisphosphate, PI(4,5)P2, promotes the exposure of the myristoyl group (Saad et al., 

2006). PI(4,5)P2 is normally associated with the inner leaflet of the plasma membrane 

(Behnia and Munro, 2005). As parasitophorous vacuole membrane (PVM) is formed 

during T. gondii invasion by invagination of the plasma membrane (Suss-Toby et al., 

1996), it is possible that the active Irga6wt, with the exposed myristoyl group, binds 

preferentially to the Pi(4,5)P2-rich microdomains on the PVM.  

However, Irga6 is absent from the cellular plasma membrane, thus simple 

association of Irga6 with the Pi(4,5)P2-rich microdomains would not be enough for the 

stable interaction with PVM. It is more plausible that both Irgb6 and lipid composition 

of PVM are involved in targeting Irga6 to the T. gondii vacuole. In this model, active 

Irga6wt, via its exposed myristoyl group, could bind to the Pi(4,5)P2 microdomains on 

the vacuole. This interaction could be further stabilised in the presence of Irgb6, by 

formation of Irga6-Irgb6 complex on the PVM. This complex would then act as a 

platform for building Irga6 homo- or heterooligomers.  

 Alternatively, Irga6 could bind to the PVM as a dimer. Biochemical analysis of 

recombinant, nonmyristoylated Bact Irga6wt propose that GTP-binding itself induce 

only minor conformational changes of Irga6 molecule. Rather dimerisation results in 

the major conformational change of Bact Irga6 (Pawlowski, unpublished data). If that 

would be the case, homodimerisation of the cytosolic Irga6 could result in exposure 

of myristoyl groups allowing the attachment of the Irga6 dimer to the Pi(4,5)P2-

containing membranes. This model would allow not only Irga6 homodimerisation in 

the cytosol but also formation of Irga6-Irgb6 heterodimers, which could then have 

higher affinity for the PVM in comparison to the Irga6 homodimer. 

The myristoyl group itself is not sufficient for stable insertion of myristoylated 

proteins into the liposomes and membranes (Shahinian and Silvius, 1995). 

Homooligomerisation of Irga6 on the PVM could increase the avidity of the Irga6-

membrane interaction, by providing additional hydrophobic groups and stabilising the 

complex (figure 4.3.). The behaviour of nonmyristoylated Irga6-G2A supports the 

necessity of myristoyl groups for stable integration of Irga6 into the PVM. As seen in 

chapter 3.9.5., Irga6-G2A has a certain inhibitory effect on targeting of the 

endogenous Irga6wt to the PVM. Since this mutant homooligomerises very 

inefficiently, measured by co-immunoprecipitation from transfected cells, Irga6-G2A 

might act as a chain terminator, preventing the endogenous protein from further 
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association to the PVM. Alternatively, or in addition, absence of the myristoyl group in 

the homooligomer by binding of Irga6-G2A can destabilise its membrane attachment 

and result in oligomer disassembly from the PVM.  

If and how the insertion into the parasitophorous vacuole membrane affects 

the biochemical properties of Irga6 is not known. Association of dynamin with lipid 

vesicles results in a 1000-fold increase of its GTPase activity (Stowell et al., 1999). 

Similarly, addition of membranes increased GTP hydrolysis of only prenylated Rac 

GTPase and had hardly any effect on the nonprenylated protein (Molnar et al., 2001), 

emphasizing the importance of the lipid modification in the GTPase function. 

Significance of myristoylation on nucleotide binding affinities of the small GTPase 

Arf1 was also reported. In the absence of lipids, Arf1 has a higher affinity for GDP 

than for GTP. In contrast, in the presence of phospholipids, Arf1 affinity for GTPγS 

was much higher than for the GDP (Randazzo et al., 1995). 

The analysis of GTPase activity of recombinant myristoylated Irga6wt revealed 

significant difference between the myristoylated and the nonmyristoylated protein. 

Nonmyristoylated Irga6 hydrolyses GTP to GDP only, in contrast to myristoylated 

Irga6, which hydrolyses GTP to GDP and GMP. Relation of myristoylated Irga6 

hydrolysis property to its anti-pathogenic function is unknown.  

 Other biochemical properties of recombinant myristoylated Irga6wt remain to 

be studied. Binding affinity of myristoylated Irga6wt to lipid vesicles, in comparison to 

the nonmyristoylated protein, should be analysed. Identification of vesicle lipid 

compositions preferred by the myristoylated Irga6 could be used to confirm the 

subcellular compartmentation of the endogenous Irga6 in resting and infected cells. 

Finally, defining the nucleotide affinity of myristoylated Irga6wt in the presence and 

absence of lipid vesicles might contribute to a better understanding of the function of 

Irga6 in T. gondii infected cells, its role in the vesiculation and disruption of the 

parasitophorous vacuole membrane and degradation of the parasite. 
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6. Summary 
 

Immunity-Related GTPases (IRGs) are implicated in cell-autonomous 

resistance against intracellular bacterial and protozoan pathogens in the mouse. 

Members of the IRG family are involved in Toxoplasma gondii-vacuole vesiculation 

and disruption, in acidification of phagosomes containing Mycobacterium 

tuberculosis, as well as in induction of autophagy. However, how they work is 

unclear. 

Irga6, a member of the IRG family that is myristoylated in vivo, accumulates at 

vacuoles containing T. gondii, in a process that requires an intact GTP-binding 

domain. In vitro, recombinant nonmyristoylated Irga6wt forms GTP-dependent, 

catalytically active homooligomers, characterized by increased GTPase activity. 

However, there is no information about Irga6 self-association in cells. Although Irga6 

is lipid modified in vivo, the role of the myristoyl group in function and in the 

enzymatic properties of Irga6 has not been characterized. 

This study was set to analyze the mechanism of activation of myristoylated 

Irga6 in cells. Furthermore, the effect of myristoyl group on enzymatic activity and 

function of Irga6 was studied, in vivo and in vitro. 

Irga6 forms GTP-dependent homooligomers in vivo, in the absence of other 

IFNγ-induced factors. In IFNγ-induced cells, however, Irga6 is kept at the ER in an 

inactive, GDP-bound form through interactions with members of the GMS family. 

Infection with T. gondii results in the relocalisation of activated, GTP-bound Irga6 to 

the parasitophorous vacuole membrane. GTP binding promotes a conformational 

change of Irga6, which involves GTP-binding domain, N-terminal 12 amino acids and 

the myristoyl group. Myristoylation of the Irga6 protein is required for efficient binding 

of the enzyme to vacuoles containing T. gondii. 

 Recombinant myristoylated Irga6wt and nonmyristoylated mutant Irga6-G2A 

proteins show striking differences in their biochemical properties in vitro. In contrast 

to Irga6-G2A, which hydrolyses GTP to GDP only, myristoylated Irga6wt hydrolyses 

GTP to GDP and GMP.  

Results in this study highlight the importance of lipid modification for Irga6 

function in vivo and in vitro. The presented data build a platform for further analysis of 

myristoylated Irga6 in order to understand better the role of this enzyme in cell-

autonomous resistance against pathogens. 
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7. Zusammenfassung 

 

’Immunity-Related GTPases’ (IRGs) spielen in Mäusen eine Rolle in der 

zellautonomen Resistenz gegen intrazelluläre Bakterien und Protozen. Diese 

GTPasen sind an der Vesikulation und Zerstörung von Toxoplasma gondii, an der 

Azidifizierung von Mycobacterium tuberculosis enthaltenden Phagosomen sowie der 

Induktion der Autophagie beteiligt. Ihre genaue Funktion bei diesen Prozessen ist 

jedoch noch unklar. 

Eines der IRG Proteine, Irga6, das in vivo myristoyliert wird, akkumuliert an 

Vakuolen, die T. gondii enthalten. Dafür ist das Vorhandensein einer intakten GTP-

Bindungsdomäne in Irga6 essentiell. In vitro kann nicht-myristoyliertes Irga6wt GTP-

abhängige, katalytisch aktive Homooligomere ausbilden, die eine gesteigerte 

GTPase Aktivität aufweisen. Ob Irga6 auch in lebenden Zellen homooligomerisieren 

kann, war nicht bekannt. Der Einfluß der Myristoylierung von Irga6 auf die Funktion 

und die enzymatischen Eigenschaften des Proteins konnte noch nicht geklärt 

werden.  

Das Ziel dieser Arbeit war, den Aktivierungsmechanismus von myristoyliertem 

Irga6 in vivo zu analysieren. Des weiteren sollte der Einfluß der Myristoylgruppe auf 

die enzymatische Aktivität und die Funktion von Irga6 sowohl in vivo als auch in vitro 

untersucht werden. 

Es konnte gezeigt werden, daß Irg6 in Abwesenheit anderer IFNγ-induzierter 

Faktoren in vivo GTP-abhängige Homooligomere ausbildet. Andererseits interagiert 

Irga6 in IFNγ-induzierten Zellen in einer inaktiven, GDP-gebunden Form mit 

Mitgliedern der GMS Famile und wird dadurch am ER gehalten. Infektionen mit T. 

gondii führen zur Ansammlung von aktiviertem, GTP-gebundenem Irga6 an der 

Membran der parasitophoren Vakuole. GTP Bindung löst eine 

Konformationsänderung von Irga6 aus, die die GTP bindende Domäne, die 12 

Aminosäuren am N-Terminus und die Myristoyl-Gruppe betrifft. Letztere ist für eine 

effiziente Bindung des Enzyms an die T. gondii enthaltenden Vakuolen notwendig.  

Rekombinantes myristoyliertes Irga6wt und Irga6-G2A, das aufgrund eines 

Aminosäureaustauschs nicht myristoyliert werden kann, unterscheiden sich 

grundlegend in ihren biochemischen Eigenschaften in vitro: im Gegensatz zu Irga6-

G2A, das GTP nur zu GDP hydrolysiert, kann Irga6wt GTP zu GDP und GMP 

hydrolysieren. 
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Die Ergebnisse dieser Arbeit unterstreichen die Bedeutung der 

Lipidmodifikation für die Funktion von Irga6 in vivo und in vitro. Sie bilden die 

Grundlage weiterer Untersuchungen an myristoylisiertem Irga6, mit dem Ziel die 

Funktion dieses Enzyms in der zellautonomen Resistenz gegen Krankheitserreger 

besser zu verstehen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                        Acknowledgement 

 159

8. Acknowledgement 
 

 

I’d like to thank Prof. Dr. Jonathan Howard, for giving me the opportunity to work in 

his lab, for all his support, advices and for making me think twice before just saying 

“just”. 

 

Prof. Dr. Thomas Langer for reviewing my work and being in my examination 

committee. 

 

Dr. Matthias Cramer and his almighty signature, for the assistance in bureaucratic 

matters and his kindness. 

 

Steffi, for being such a great roommate and for all the colours she’s carrying around. 

 

Rita, the “Cloning Queen”, for all her help, experience and honesty.  

 

Gaby, for sharing all the good and the bad times with our favourite Sf9s. 

 

Christoph, for his infinite good moods and for his patience with “noch eine Frage”. 

 

Niko and Gerrit, for guiding me through the world of P-loops, interfaces and catalytic 

fingers.  

 

Tobi, for his irreplaceable mega-gels. 

 

Claudia and Bettina, for their help and kindness. 

 

Julia, for her friendship, support, understanding, discussions and many, many more. 

 

And all other members of the lab, present and past, for helpful discussions and the 

friendly atmosphere. 

 

 



                                                                                                                       Erklärung 

 160

9. Erklärung 
 

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, 

mit Ausnahme der Daten in Kapitel 3.3.1. und 3.3.2., die in Zusammenarbeit mit Julia 

Hunn erstellt wurden, die benutzten Quellen und Hilfsmittel vollständig angegeben 

und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen-, die 

anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem 

Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch 

keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie 

abgesehen von den unten angegebenen Teilpublikationen noch nicht veröffentlicht 

worden ist, sowie, dass ich eine solche Veröffentlichung vor Abschluss des 

Promotionsverfahrens nicht vornehmen werde. 

Die von mir vorgelegte Dissertation ist von Prof. Dr. Jonathan C. Howard betreut 

worden. 

 

Köln, im November 2007 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                   Lebenslauf 

 161

10. Lebenslauf 
 

Name:    Nataša Papić 

Geburtsdatum:   06.05.1975. 

Geburtsort:    Belgrad, Serbien 

Staatsangehörigkeit:  serbisch 

Familienstand:   ledig 

 

 

Ausbildung 
 

1982-1990    Besuch der Grundschule „Lazar Savatić“ in Belgrad 

 

1990-1994  Besuch des „Prva beogradska gimnazija“ Gymnasiums in 

Belgrad 

 

1994  Immatrikulation an der Biologischen Fakultät der 

Universität Belgrad, Serbien 

Diplomstudiengang: Molekularbiologie und Physiologie 

 

1994-1999  Studium der Biologie an der Universität Belgrad, Serbien 

 

1999-2000  Diplomarbeit an dem „Institute of Molecular Genetics and 

Genetic Engineering”, Belgrad 

 

ab WS 2002  Promotionsstudiengang Biologie (Fachrichtung Genetik) 

am Institut für Genetik, Universität zu Köln, Abteilung von 

Prof. Dr. Jonathan C.Howard 

 


