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1 Introduction 
1.1 Replication of Hepatitis B Virus (HBV) and hepatocyte differentiation 
1.1.1 HBV is an important public health problem 
 

Hepatitis B Virus (HBV) is a noncytopathic enveloped deoxyribonucleic acid 

(DNA) virus. It belongs to the family of hepadnaviridae (hepatotrop associated DNA 

viruses) 1. The virus is also classified as a pararetrovirus because DNA synthesis of 

HBV occurs via reverse transcription of a ribonucleic acid (RNA) intermediate.  

The human HBV is highly species specific 2 and infects only humans and 

humanoid primates, such as chimpanzees 3, orang utans 4, gibbons 5 and gorillas 6. 

HBV is also highly organ-specific. It transiently and persistently infects the liver, 

which may result in an inflammatory liver disease – acute or chronic hepatitis B 7.  

HBV is an important health public problem worldwide. To date, out of 2 billion 

people, infected with HBV, 350 million are chronically infected 8, 9. Prevalence of HBV 

infection varies greatly.  It is endemic in Southeast Asia, China and Africa with about 

10% of the population infected. Intermediate infection rates of 1 to 8% are found in 

the Middle East, Russia, India and Brazil. HBV is least prevalent in developed 

countries (Europe, Australia, North America). Despite the availability of a potent 

vaccine, infection levels continue to increase, predominantly in the developing  

world 8, 10.   

HBV is transmitted by perinatal, percutaneous, and sexual exposure. The virus 

is also transmitted by close person-to-person contact presumably by open cuts and 

sores, especially among children in hyperendemic areas. The ability of HBV to 

survive outside the body for prolonged periods facilitates the transmission 9.   

The natural history of hepatitis B is complex and not well defined. Primary 

infection is followed by a six week to four month long incubation period. At the onset 

of HBV infection, only one-third of adults experience symptoms of acute hepatitis, 

while the majority (65%) have subclinical disease 11. The course of the disease 

depends on age and immune status of the patient. An excessive immune response 

may result in a severe form of acute hepatitis - fulminant hepatitis. It is unusual, 

occurring in approximately 0.1 to 0.5 percent of patients 12. It is generally assumed 

that patients after an acute hepatitis B develop life-long immunity. After complete 

recovery from acute hepatitis B, despite high levels of serum antibodies and  

HBV-specific cytolytic T lymphocytes, traces of HBV are often detectable in the blood 
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for many years 13. So, sterilizing immunity to HBV frequently fails to occur, and HBV-

specific cytolytic T lymphocytes keep the virus under control, perhaps for life 14. 

During immunosuppression, HBV infection can reactivate, and in some cases even 

develop a fulminant course 15, 16, 17.  

About 5% of adults do not clear the virus and develop chronic hepatitis B. The 

rates of chronicity are higher in newborns (90%), children (30%), and in immune 

deficient individuals 11. 15% to 40% of individuals chronically infected with HBV will 

develop cirrhosis, hepatic decompensation, and hepatocellular carcinoma (HCC) 

during their life time 9. Importantly, 25% of patients infected as neonates die 

prematurely from cirrhosis or liver cancer 18.  

At present, there is no treatment capable of eradicating HBV. The aims of 

current treatment of chronic hepatitis B are to achieve sustained suppression of HBV 

replication and remission of liver disease. The ultimate goal is to prevent cirrhosis, 

hepatic failure and HCC. The efficacy of currently available treatment (interferons: 

standard interferon, peginterferon and nucleoside analogues: lamivudine, telbivudine, 

adefovir dipivoxil, and entecavir) is still very low 11, 9. Prognosis of patients with HBV-

related HCC is poor. Curative approaches, such as surgical resection and liver 

transplantation, are possible in a very limited cohort of patients, and the recurrence 

rate of HCC is high. Other therapeutic options, such as systemic and local 

chemotherapy, external radiation, administration of octreotid, tamoxifen, interferon, 

and antiandrogenics, do not improve survival of patients 19.  

Taken together, the overall prognosis of patients with chronic hepatitis B, even 

when under treatment, is unacceptable. Therefore, development of new therapeutic 

approaches and, especially, improvement of prophylaxis of vertical HBV infection are 

urgently required.  

 

1.1.2 Intrauterinal transmission of HBV: Epidemiology and possible 
mechanisms 

 

The active-passive immunization against HBV is reported to effectively protect 

infants at high-risk against viral transmission 20,  21. However, perinatal transmission 

of HBV still occurs. There are three possible routes of perinatal transmission of the 

virus: transplacental transmission of HBV in utero, transmission during delivery, or 

postnatal transmission during care or through breast milk.  



1 Introduction 
 

- 3 - 

Since transplacental transmission occurs antenatally, hepatitis B vaccine and 

anti-HBV immunoglobulin cannot block this route. Epidemiological studies on HBV 

intrauterine infection in China showed that intrauterine infection occurs in 3.7-9.9% 

pregnant women with positive Hepaitis B virus s Antigen and in 9.8-17.39% with 

positive Hepaitis B virus s Antigen (HBsAg) / Hepatitis B virus e Antigen (HBeAg) 22. 

Other studies suggest higher rates of HBV intrauterine infection: up to 40.1% 23.  

The main risk factors for intrauterine HBV transmission are: history of 

threatened premature labor, HBeAg positivity 24, 25, low titers of maternal anti-HBV 

core antibodies 26, presence of HBV DNA in placenta 27, 28, 24, and maternal  

viremia 29, 30, 31. Del Canho et. al  reported that high maternal serum HBV DNA 

concentration is the most important factor associated with failure of passive-active 

hepatitis B immunoprophylaxis 32. However, even very low levels of viremia in a 

mother are sufficient for transmission of HBV to the fetus 33, 34.  

The studies on transplacental transmission of HBV suggested two possible 

mechanisms: first, a hematogenous route. Certain factors, such as threaten abortion, 

can break the placental microvasculature, thus the high-titer maternal blood leaks 

into fetus circulation. Second, a cellular transfer is also possible. The placental tissue 

is infected by a high-titer of HBV in maternal blood from the mother’s side to the fetus 

step by step, and, finally, HBV reaches fetus circulation through the villous capillary 

endothelial cells 22. As support of the second mechanism, HBsAg and HBcAg were 

detected in placentas from HBsAg-positive mothers, whereas the concentration of 

both antigens decreased from the mother’s side to the fetus side of placenta: 

maternal decidual cells > trophoblastic cells > villous mesenchamal cells> villous 

capillary endothelial cells 23. Bhat and Anderson have shown that trophoblast-derived 

cells were able to transcytose cell-free HBV, hereby the transcytosed virus remains 

infectious 35. Since transcytosis of HBV was reduced with syncytiotrophoblast 

formation, transplacental viral transmission is most probable in the first trimester of 

pregnancy.  

However, it is still unknown, at what stage of the liver development exclusively 

hepatotropic HBV can infect and replicate in hepatocyte precursors. The lack of 

knowledge on the infectious and replicative potential of the virus in the developing 

liver represents a major obstacle for the development of prophylaxis for intrauterine 

HBV transmission. 
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1.1.3 Structure and genomic organization of HBV 
 

HBV is an enveloped virus with a partially double-stranded (ds) DNA genome.  

The intact virion, also referred to as a Dane particle, has a spherical structure and is 

42 nm in diameter 36 (Fig.1). The envelope consists of a host derived lipid bilayer with 

three integrated viral surface proteins: the small protein (S), the middle protein (M), 

and the large protein (L) 37. Homodimers of the viral core protein, arranged with 

triangulation numbers of three or four, build the 27 nm icosahedral capsid inside the 

envelope 38. The capsid encloses the 3.2 kilo base pairs (kb) viral genome, with the 

viral polymerase (P) covalently linked to the negative strand via its terminal protein 

(TP) domain 39.   

 

 
 

Fig. 1: Electron micrograph of HBV: Dane particles, spheres and filaments  
 Adopted from www.bact.wisc.edu 
 

The 3.2 kb DNA genome present in the virion is a partially double-stranded 

(ds) relaxed circular (rc) molecule. The minus strand is of unit length and linked to the 

viral polymerase via the terminal protein at the 5` end. The 5` end of the plus strand 

is of variable length so that part of the minus strand is single stranded (ss). The small 

genome is organised compactly with four partially overlapping open reading frames 

(ORF) and does not contain non coding regions 37 (Fig. 2). The open reading frames 

include: 
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1) Product of ORF P is the viral polymerase (P). 

2) ORF C encodes the core protein (C) and the precore protein (HBeAg).  

3) ORF S/pre-S products are the surface proteins S, M and L.  

4) ORF X codes for the X protein (X).  

Four promoters in concert with enhancers I and II 40, 41, 42 control transcription 

of the independent mRNAs: preC/C, preS1, preS2/S and X (summarized in Ganem 

and Schneider 37).  Enh1 increases transcription from all four promoters, in contrast 

to enh2, which only up-regulates transcription from the preS1 promoter. HBV RNA 

transcription starts at the different promoters and stops at one common 

polyadenylation signal 43.  

3.5 kb preC/C RNA, the longest transcript, consists of a subset of more than 

genome length RNAs, which are transcribed from two physically overlapping, but 

functionally distinct, promoters 44, 45. C RNA contains complete genomic information 

of the virus and can serve as mRNA for translation of HBV core and polymerase 

proteins or as pregenomic RNA (pgRNA), which is encapsidated and reverse 

transcribed in the viral capsid 37. preC mRNA is only translated into the hepatitis B e 

antigen (HBeAg) 46.  

The core protein is the structural component of the viral capsid. It possesses  self-

assembly properties, first building homo-dimers, which then aggregate to form 

capsids 47.   

The protein product of the polymerase gene encompasses three functional domains, 

the RNAseH domain, the reverse transcriptase (RT) domain, and the TP domain. 

The polymerase drives packaging of the pgRNA into the capsids by binding to the 

encapsidation signal (ε) of the RNA. As soon as the RNA-polymerase complex is 

encapsidated, the polymerase reverse transcribes the pgRNA into DNA and removes 

the RNA with its RNAseH activity.  

PreC protein, also referred to as HBeAg, contains identical amino acids (aa) as the 

core protein plus additional 29 aa at the N-terminus. It is a non structural protein that 

is secreted in high amounts from infected cells 48. The function of HBeAg is yet 

unknown. 

The 0.7 kb X (X protein), 2.1 kb preS2/S (M and S protein) and 2.4 kb preS1 

(L protein) are subgenomic RNAs and serve as mRNAs.  
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Subgenomic RNAs of 2.4 kb and 2.1 kb encode the L protein, and the S and M 

envelope proteins, respectively. All surface proteins share the S-protein sequence. 

HBV L protein is considered to be essential for viral entry 49, 50. 

 

 
 

Fig. 2: Genome organisation of HBV 
Outer circles depict the transcripts (genomic and subgenomic RNAs). The triangles 
indicate the transcription starts, the square symbols the encapsidation signal (ε). The 
bold black lines represent the partially ds genome. Enhancers (Enh1, Enh2) and 
direct repeats (DR1, DR2) are outlined in squares. The arrows illustrate the four open 
reading frames (ORF) with their protein products X, C, P and the surface proteins S, 
M and L. (modified from Zedler U., dissertation, 2008). 

 

Small subgenomic 0.7 kb HBV RNA gives rise to HBV X protein. This protein 

is reported to be a prerequisite for productive viral infection in vivo 51 and a positive 

regulator of HBV replication in vitro and in vivo 52. HBV X protein may also be 

involved in liver cancerogenesis 53.  

HBV is highly organ specific, reproducing only in the liver. The target cell of 

HBV is the hepatocyte.  

 

1.1.4 Liver – the target organ of HBV 
 

The liver is the largest internal organ in mammals with numerous endocrine 

and exocrine functions, which serve to maintain homeostasis within an organism. 



1 Introduction 
 

- 7 - 

 Liver functions include: (1) production of serum proteins, including clotting 

factors and transport proteins e.g. albumin, transferrin; (2) removal and breakdown of 

serum proteins, red blood cells and microbes; (3) gluconeogenesis and glycolysis; (4) 

processing of fatty acids and triglycerids; (5) synthesis and catabolism of cholesterol; 

(6) synthesis and interconversion of non-essential amino acids; (7) breakdown of 

toxic endogenous compounds e.g. ammonia, bilirubin; (8) production and excretion of 

bile components; (9) detoxification of xenobiotic agents; and (10) storage of  

numerous substances, e.g. glycogen 54. 

The liver anatomy is favourable for carrying out these functions. First, the liver 

receives blood from two sources, the portal vein and the hepatic artery. Second, the 

hepatic biliary system enables the liver to transport bile into the intestines. Finally, the 

hepatic architecture facilitates the exchange of materials between blood and 

hepatocytes and prevents leakage of bile components into blood.  

The adult liver is comprised of repeating structural units termed lobules. The 

lobule is a hexagonal structure consisting of plates of anastomosing hepatocytes. At 

the center of the lobule is the central vein, whereas six portal triads ring the 

hypothetical edge of each lobule. Each portal triad is comprised of an intrahepatic 

bile duct, portal vein and hepatic artery 55. This lobular organization is of physiological 

significance. Some liver functions can be carried out by all hepatocytes, but other 

functions are limited to hepatocytes located around the central vein or in the 

periportal regions 56. This compartmentalization of function within the liver lobule is 

called positional (zonal) heterogeneity or metabolic zonation. Zonal heterogeneity 

may be of the “gradient” type, with gradual changes in levels of expression across 

the portocentral axis, or of the “compartment” type, in which a highly defined 

boundary of expression is observed. The example of the later is the expression of 

carbamoyl phosphate synthetase I and glutamin synthetase, which are present only 

in periportal and pericentral regions, respectively 54. Certain zonal expression 

patterns are “dynamic”, changing in response to hormonal or metabolic changes in 

the liver, while others are “stable”, in which adaptive changes do not occur 57.  
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1.1.4.1 Liver cell types 
 

The adult liver is comprised of numerous cell types.  

Hepatocytes carry out most liver functions and are the predominant cell type in 

this organ. These polygonal, metabolically active, parenchymal cells comprise 60% 

of the cells and 80% of the cellular mass within the liver 58, 55. Hepatocytes are 

polarized cells with apical and basolateral surfaces separated by intercellular 

domains 59. The apical surface, or canalicular membrane, of hepatocytes, form small 

channels called bile canaliculi and is involved in the unidirectional transfer of 

components into the bile. The basolateral surface, or the sinusoidal membrane, 

interfaces with the space of Disse and is involved in the bidirectional exchange of 

materials between hepatocytes and the bloodstream 60. The intercellular domains are 

regions of hepatocyte-hepatocyte contact and contain junctions involved in 

intercellular communication. In particular, the tight junctions, occurring between 

canalicular and intercellular domains, ensure that components of the bile do not leak 

into the bloodstream 61.  

The other cell types in the liver are bile epithelial cells or cholangiocytes, oval 

cells, liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate-, DCs, NK-, 

NKT-cells, conventional and unconventional T and B-lymphocytes.  

The cholangiocytes line the bile ducts and have multifaceted functions. Their 

capability to secrete a range of different pro-inflammatory mediators, cytokines, and 

chemokines, indicates a major role of cholangiocytes in the inflammatory reaction. 

Furthermore, paracrine secretion of growth factors and peptides mediates an 

extensive cross-talk with other liver cell types, including hepatocytes, stellate, 

endothelial and inflammatory cells 62, 63. 

The transitional region between the intrahepatic bile ducts and bile canaliculi, lined by 

cholangiocytes and hepatocytes, respectively, is called the canals of Hering. These 

regions contain a population of cells called oval cells 64. Oval cells serve as resident 

stem cells in the adult liver and can serve as progenitors for both hepatocytes and 

cholangiocytes 65.  

Liver sinusoidal endothelial cells (LSEC) surrounding the sinusoids are crucial 

for exchange of materials between blood and the space of Disse. These cells also 

produce proteins of the extracellular matrix and factors, regulating blood coagulation 
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and vessel tone. By secreting cytokines and presenting antigens, LSEC play an 

important role in liver immunity 66, 67, 68, 69.  

Kupffer cells are hepatic macrophages, accounting for 80% to 90% of the total 

population of fixed tissue macrophages in the body. Comprising a part of the 

sinusoidal lining of Disse spaces, Kupffer cells eliminate microbes, LPS, aged red 

blood cells, cell debris and immune complexes out of the blood flow. They also exert 

metabolic functions including degradation of LDL, and synthesis of erythropoietin, 

insulin-like growth factor, proteoglycans and apolipoprotein E. Kupffer cells present 

antigens and produce a number of cytokines and paracrine factors, thereby 

modulating innate and adaptive immune responses and functions of other liver  

cells 70. 

Hepatic stellate cells are the major reservoir of vitamin A in the body. They 

also produce a variety of extracellular matrix proteins as well as a number of 

cytokines and chemokines 55. 

NK, NKT, conventional and unconventional T- and B-lymphocytes in the liver 

carry out numerous immunological functions 71. 

 

1.1.4.2 Liver development and hepatocyte differentiation 
 

In mammals, the liver is formed from the developing ventral foregut endoderm.  

By approximately embryonic day (ED) 8.0, the ventral foregut endoderm initiates its 

development towards a hepatic fate 72, 73. The cells of the ventral foregut endoderm 

start to express HNF3β and GATA4 74, 75, 76, and mRNA transcripts of albumin and 

AFP become detectable 77. Between ED 8.5 and ED 9.5, cells of the ventral gut 

endoderm – hepatoblasts - start to proliferate and generate the primary liver bud 73. 

By ED 9.5, the basement membrane surrounding the liver bud is lost and cells 

delaminate from the bud and invade the septum transversum mesenchyme as cords 

of hepatoblasts. Between the migrating hepatic cords, angioblasts, the primitive 

sinusoidal endothelial cells, form capillary-like structures 78. At ED 10-11 

hematopoietic stem cells colonize the fetal liver, and the liver becomes the major site 

of hematopoiesis 79. Beginning at approximately ED 10-11 of mouse embryogenesis, 

the caudal part of the liver bud gives rise to the extrahepatic bile ducts, the cystic 

duct, and the gallbladder, which remain in continuity with the foregut and connect the 

liver hilum with the digestive tract. By ED 12.5, the liver is a relatively large, 
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differentiated organ composed of various cell types, of which up to 60% are 

haematopoietic cells 79.  

Prior to ED 12 in mice, hepatoblasts remain morphologically undifferentiated. 

They have an irregular shape, a large nucleus to cytoplasmic ratio and relatively few 

organelles when compared to the mature hepatocyte. Around ED 12, rough 

endoplasmic reticulum and Golgi apparatus increase that reflects the onset of the 

synthesis of secreted proteins. Between ED13.5 and ED15.5, hepatoblasts start to 

differentiate towards either hepatocytes or bile duct cells. Around ED18, 

differentiating hepatocytes gain a spherical shape and depositions of glycogen and 

the presence of peroxisomes become identifiable. Just prior to birth, on ED 20, 

hepatocytes become polygonal and begin to establish the polarized epithelium 78. 

During the perinatal period, the zonal heterogeneity of the liver develops and a large 

number of metabolic enzymes are induced within the hepatocytes. The 

hematopoietic cells migrate elsewhere and the liver prepares to control metabolite 

and serum protein levels in the blood, store glycogen, and detoxify 54.  

 

1.1.4.3 Markers of hepatocyte differentiation 
 

At present, there is no consensus in defining a differentiated hepatocyte. Since 

the hepatocyte is a metabolically active cell, the evaluation of specific enzymatic 

properties, such as glycogen metabolism and gluconeogenesis, is crucial for 

assigning the cell as a hepatocyte 80.  

Many key enzymes of hepatocytes, such as phosphoenolpyruvate 

carboxykinase (PEPCK) 81, 82, 83 and 2’3’-tryptophan dioxygenase (TDO) 84, 85, 86, are 

first expressed at birth and therefore considered to be markers of adult differentiated 

hepatocytes.  

Transcellular bile 87 and xenobiotic 88 secretion from sinusoidal blood plasma 

into bile canaliculi is also an important function of differentiated hepatocytes in all 

mammalian species. This vectorial secretory process is driven by the polarized 

expression of distinct transport systems at the basolateral (sinusoidal) and 

canalicular (apical) surface domains of hepatocytes 87. Expression of several 

members of these transport systems, such as organic anion transporting  

polypeptide - C (OATP-C) and bile salt exporting pump (BSEP) mRNA in the liver 

occurs first in the late phase of rat gestation 89 and increases during the postnatal 
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period of liver development 90. Moreover, expression of OATP-C displays a strong 

positive correlation with the morphological differentiation of HCC 91. Therefore, the 

expression levels of OATP-C and BSEP can also be considered as markers of 

differentiated hepatocytes.  

 

The differentiation of hepatoblasts into hepatocytes during liver development 

as well as the maintenance of liver-specific gene transcription in the adult liver are 

governed by the coordinated interaction of hepatocyte-enriched transcription factors 

with the ubiquitous transactivating factors 92, 93, 78.   

 

1.1.4.4 Hepatocyte-enriched transcription factors: role in liver development 
and hepatocyte differentiation 

 

A number of hepatocyte-enriched transcription factors including HNF3αβγ, 

HNF1α, C/EBPα, HNF6 and HNF4 are known. On the basis of homology within DNA-

binding domains, the hepatocyte-enriched transcription factors are grouped into 

related protein families.  

HNF3α (Foxa1), HNF3β (Foxa2), and HNF3γ (Foxa3) bind to DNA as a 

monomer and activate transcription of target genes using a winged helix DNA-

binding domain. HNF3α, HNF3β and HNF3γ share greater than 90% homology in 

amino acid sequence in this domain and therefore bind to similar DNA target 

sequences within hepatocyte-specific regulatory regions and exhibit functional 

redundancy in hepatocytes 94.  

During development of definitive endoderm, HNF3β is the first to be activated, 

followed by HNF3α and subsequently HNF3γ. HNF3β -/- embryos die in utero prior to 

liver development because of severe defects in gastrulation resulting in abnormalities 

of the node, notochord, gut and visceral endoderm. In contrast, postnatal conditional 

deletion of HNF3β had no apparent effect on liver gene expression 95, 94. 

Overexpression of HNF3β leads to 50% reduction in the levels of Pepck, glycogen 

synthase, Glut-2, and UDP-glucoronosyltransferase, and decreased expression of 

NTCP as well as accumulation and increased β-oxidation of lipids 94. HNF3α and 

HNF3γ are dispensable for early liver development. However, HNF3α -/- mice are 

hypoglycaemic and show severe postnatal growth retardation followed by death 
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between days 2 and 12 postnatally 96. HNF3γ-deficient mice displayed merely a 50% 

reduction in hepatic expression of tyrosine aminotransferase, Pepck, and TNF with 

compensatory increases in levels of HNF3α and β genes, suggesting that disruption 

of HNF3γ gene is not sufficient to cause severe defects in hepatic function 94.  

The HNF6 or ONECUT-1 binds to its DNA recognition site as a monomer 

through the cut-homeodomain 94. HNF6 is essential for regulating expression of 

HNF1β and stimulates HNF3β-induced gene transcription. HNF6 largely contributes 

to differentiation of hepatoblasts into cholangiocytes 97 and is involved in 

gluconeogenesis 93, 98 as well as hepatocyte regeneration 99. 

The C/EBPα and β proteins are coexpressed in hepatocytes and are able to 

form either homodimers or heterodimers for DNA-sequence-specific binding through 

the bZIP protein motif 94.  

C/EBPα is already expressed in endodermal cells of liver primordium on ED 9.5, 

whereas the expression C/EBPβ is first observed between ED 13.5 and 14.5 100. 

C/EBP-/- mice die from hypoglycemia within the first hours post partum due to a 

complete absence of hepatic glycogen storage and a failure to store lipids in 

hepatocytes and adipocytes 101. Even postnatally induced C/EBPα knock-out leads to 

the rapid and severe impairment of glucose and lipid metabolism and death of  

mice 102. C/EBP is involved in the regulation of hepatocyte proliferation 103, 104 The 

knock-out of C/EBP gene in mice results in increased hepatocyte proliferation and 

disruption of the normal liver architecture 104. Thus, C/EBP is involved in the 

regulation of hepatocyte glucose, lipid homeostasis and hepatocyte proliferation.   

The HNF1α uses a POU-homeodomain sequence and a myosine-like 

dimerization domain in the amino terminus of the protein to bind its DNA recognition 

sequence as a dimer. In the liver, HNF1α is coexpressed with the isoform HNF1β 

(vHNF1) and forms heterodimers with the HNF1β-related family member 94.  

HNF1α is dispensable for mammalian liver development and specification of the 

hepatocyte cell lineage 105. HNF1α is an important regulator of glucose and amino 

acid homeostasis 106. HNF1α-/- mice die at the time of weaning due to a severe 

wasting syndrome with massive glucosuria, phosphaturia, and aminoaciduria from 

renal tubular dysfunction. Hepatic expression of phenylalanine hydroxylase is 

completely extinguished. HNF1α-/- mice also exhibit a partial reduction in hepatic 

expression of albumin, A1-antitrypsin, and fibrinogen 107. HNF1α plays an important 
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role in the formation of tight and adherens junctions 108, 109. It is a key transcription 

factor that regulates expression of transporters of apical and basolateral hepatocyte 

membranes 110, 111. HNF1α binds 6% of RNA-polymerase II-enriched promoters in 

hepatocytes 112. Expression levels of HNF1α correlate with differentiation of 

hepatoma cell lines 113 as well as hepatocellular carcinoma and hepatoblastoma 114, 
115. Thus, HNF1α contributes to the development and maintenance of a differentiated 

and polarized phenotype of hepatocytes and normal liver structure 116. 

HNF1β plays an important role in the development of the gallbladder and 

intrahepatic bile ducts 94. 

The orphan nuclear receptor HNF4α protein utilizes the zinc finger DNA-

binding domain to recognize DNA while both the DNA- and ligand-binding domain 

are used to form homodimers or heterodimers with retinoic X receptor α.  HNF4α is 

critical for transcriptional regulation of the orphan receptor - pregnane-X-receptor 

(PXR) and for crossregulation of the HNF1α 117. 

In mouse development, HNF4α is expressed in the primary and extraembryonic 

visceral endoderm prior to gastrulation and in epithelial cells at the onset of liver, 

pancreas, and intestine formation 118. HNF4α-/- embryos exhibit a severe visceral 

endoderm defect preventing gastrulation and causing a failure to develop past  

ED 6.5 119. Heterozygous mice have a diminished expression of albumin, AFP, 

transferrin, several distinct apolipoproteins, L-type fatty acid binding protein, 

erythropoietin, and the retinal-binding protein. The prenatal conditional knock-out of 

HNF4α results in a failure to store glycogen due to the decreased expression of 

glycogen-synthase, Pepck, and glucose-6-phosphatase. Since HNF4α regulates the 

developmental expression of a myriad of proteins required for cell junction assembly 

and adhesion 120, prenatal conditional knock-out of the transcription factor also leads 

to the marked disruption of the liver architecture with loss of organized hepatic cords 

and sinusoids 121.  Mice with postnatal conditional knock-out of HNF4α in 

hepatocytes accumulate lipids in the liver, exhibit greatly reduced serum cholesterol 

and triglyceride levels and increased serum bile acid concentrations 105 as well as 

severely impaired amino acid metabolism 122.  

Thus, HNF4α is a key regulator of carbohydrate, lipid, cholesterol, amino and bile 

acid homeostasis and is essential for formation of epithelial phenotype of 

hepatocytes and normal liver structure.  
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HNF4α was shown to bind to 12% of genes represented on the Hu13K microarray 

from HepG2 cells, which was significantly higher than either HNF1α (1.6%) or HNF6 

(1.7%). Moreover, 42% of hepatocyte genes are regulated by HNF4α 112. 

The siRNA against HNF4α have been shown to abrogate hepatocyte  

differentiation 116. In contrast, overexpression of HNF4α in dedifferentiated hepatoma 

cells restores many important functions of differentiated hepatocytes 123, 124. 

Furthermore, forced expression of HNF4α in either NIH3T3 fibroblasts or in E9 

embryonal carcinoma cells induces a mesenchymal to epithelial transformation that 

includes expression of cell junction proteins 109.  

HNF4α is lost during the progression of slow-growing, non-invasive mouse HCC, to a 

fast-growing invasive form. Forcible expression of HNF4α in the fast-growing 

invasive hepatocellular carcinoma cells leads to reduced proliferation and 

suppression of tumor formation 125. The expression levels of HNF4α also correlate 

with differentiation of human HCCs 115, 92, 113.  

Thus, HNF4α is the central regulator of hepatocyte differentiation and liver function. 

Transcriptional regulation of target genes by HNF4α is closely associated with 

PGC-1α acting as a positive co-factor and COUP-TF 126, 127, 128 often working as an 

antagonist of HNF4α. PGC-1α synergises with HNF4α in the regulation of 

carbohydrate 129, 98 and lipid 130 metabolism and coordinates the process of metabolic 

adaptation in the liver 130. 

 

1.1.5 Replication cycle of HBV 
 

The early steps of HBV infection are still obscure, but current data suggest 

that L protein is responsible for attachment and binding to still unknown receptors on 

hepatocyte surface 131, 49 (Fig. 4).  

After uncoating, the capsid translocates in a microtubule-dependent manner to 

the nucleus. Within the nucleus the gap in the rcDNA is repaired by a host-specific 

polymerase, generating a fully duplex genome. This form of the hepatitis B viral 

genome exists only inside the host-cell nucleus and is termed covalently closed 

circular DNA (cccDNA). It serves as a template for the transcription of viral RNAs 132.  

The transcription of HBV genes by host RNA-polymerase II is finely regulated 

by hepatocyte enriched transcription factors: CCAAT/enhancer binding protein 



1 Introduction 
 

- 15 - 

(C/EBP) 133, 134 and hepatocyte nuclear factors (HNF), such as HNF1 135, HNF3 136 or 

HNF4 137, 138 in concert with nuclear receptors PGC-1α 139 and COUP-TF 137, 140 (Fig. 

3). These factors confer hepatocyte specific activity of the viral preS1 133, 134, 141, 142 

and preC/C promoters 143, 133, 134, 135, 137, 139, 138, 144, 145, and the viral enhancer  

elements 42, 146 and determine, to a great extent, the hepatocyte tropism of HBV.  

 

 
Fig. 3: Regulation of HBV gene transcription by different liver-enriched 
 transcription factors 
  Adopted from Ganem D and Schneider RJ, Fields, Virology, 2001 

 

All HBV RNAs are transported into the cytoplasm without splicing. Translation 

of the viral surface proteins S, M and L takes place at ribosomes of the ER, where 

they integrate into the ER membrane. The products of the pregenomic (core and 

polymerase) and precore (HBeAg) RNAs are synthesised at free ribosomes 37.   

As soon as a sufficient amount of core protein has been produced, it self-

assembles into capsids. The TP domain of the polymerase recognises a stem-loop-

formation at the 5` end of the pgRNA (ε) 37 and the pgRNA-protein-complex is 

packaged into the capsids, where the polymerase starts to reverse transcribe the 

DNA minus strand. Simultaneously, the pgRNA is eliminated by the RNAseH activity 

of the viral polymerase. Then, synthesis of the DNA plus strand initiated at direct 

repeat 2 (DR2) occurs, resulting in the rcDNA genome with an overlapping minus 
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strand segment. Complementary sequences at the 5` end of the plus strand and the 

3` end of the minus strand lead to circularisation of the DNA molecule 37. 

The newly developed mature nucleocapsids can now follow two different 

pathways. Some translocate to the nucleus and re-import the DNA to refill the 

cccDNA pool. Others bud into the ER, thereby receiving their envelope, consisting of 

the viral surface proteins S, M and L integrated into the ER lipid bilayer. They 

traverse the Golgi before being exocytosed. Little is known about the transport and 

sorting mechanisms, which HBV uses to be efficiently exported in order to infect 

neighbouring cells and new hosts. Recently, the role of cell polarity for egress of 

DHBV 147 and HBV 35 has been shown.       

 
 
Fig. 4: Replication cycle of HBV 

Virions bind to a receptor on the cell surface and enter. The nucleocapsids uncoat 
and the partially ds DNA genome is imported into the nucleus. DNA reparation leads 
to cccDNA formation and transcription of viral RNAs. Transcription of viral RNAs is 
finely regulated by C/EBP and HNFs. After translation and capsid formation, the 
pgRNA is encapsidated. Reverse transcription takes place within the capsids. 
Nucleocapsids are either re-imported into the nucleus or bud into the ER, obtaining 
their envelope. Virions, as well as budded SVP, are transported to the cell surface 
and are secreted.        
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1.1.6 Models of HBV infection 
 

The establishment of an animal model of HBV is hampered by the species 

specificity of the virus and the fact that the animal species, which can be infected with 

a human HBV, are not characterised and difficult to maintain.  

To date, HBV transgenic mice serve as an in vivo model for chronic HBV 

infection.  

Guidotti et. al. generated HBV-trangenic mice with a terminally redundant viral DNA 

construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely 

around the circular viral genome, and ends just downstream of the unique 

polyadenylation site 148. These transgenic animals replicate the virus at levels 

comparable to that seen in the infected livers of patients with chronic hepatitis without 

any evidence of cytopathology 148.  

Using mutations in the HBV genome construct, various types of HBV-transgenic mice 

were produced. By introducing a 3’ and 5’ frameshift mutation into the ORF X of the 

HBV 1.3 construct, which results in a premature stop codon, HBV 1.3 xfs transgenic 

mice were generated. These mice lack expression of the HBV X protein 149, 150. 

Transduction of mice with adenoviral vectors containing the complete HBV 

genome mimics many aspects of an acute HBV infection 151; John von Freyend M et. 

al., in preparation.  

The repertory of cells that can serve as a cell-culture model is limited by the 

hepatotropism of the virus. Human hepatoma cell lines, such as HuH7 or HepG2, are 

useful to study intracellular steps of the viral replication cycle. However, they cannot 

be infected with HBV. The viral genome has to be transferred into the cells via 

transfection or transduction with viral vectors. HepG2.2.15 cells, an established cell 

line replicating HBV from four intergrated dimeric HBV genomes 152, and HepG2-

H1.3 cells, a cell line containing one copy of a 1.3-fold overlength HBV genome and 

establishing HBV cccDNA as additional transcription template 153, 154 are also suitable 

to study the late steps of the viral replication cycle.  

To gain insight into the complete replication cycle of HBV, the culture of primary 

human hepatocytes (PHH) provides a necessary and valuable tool 155. Recently, 

HepaRG, a new hepatoma cell line, has been established from differentiated human 

HCC. Upon differentiation, HepaRG cells exhibit hepatocyte-like morphology, 

express hepatocyte-specific functions and can be infected with HBV 156.     
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1.1.7 HBV replication and hepatocyte differentiation: current research and 
unresolved questions 

 

Studies with the transfection of HBV genomes in hepatoma cells have 

demonstrated that HBV replication takes place in differentiated, but not in 

undifferentiated human hepatoma cells 157 and is more efficient in quiescent 

hepatocytes as compared to proliferating hepatocytes 158. The efficiency of HBV 

replication can be increased by cultivating primary hepatocytes 159, 160 or stable HBV- 

producing hepatoma cell lines 156, 161, 162 under differentiation conditions (usage of 

collagen-coated dishes, low FCS-content in cultivation medium, addition of 

dexamethasone and DMSO). In addition, the activity of preC/C- and especially 

preS1- promoters seems to depend on the hepatocyte differentiation state and is 

enhanced in quiescent hepatocytes 163, 164, 158, 135, 165.  

However, none of these studies thoroughly analyzed, which hepatocellular 

factors link HBV transcription and replication to hepatocyte differentiation. 

Considering hepatocyte-enriched transcription factors as putative candidates, it is not 

known whether only one or a combination of these transcriptional regulators is 

responsible for differentiation-dependent activity of HBV promoters.  

Moreover, it is still unclear, whether hepatocyte-enriched transcription factors 

act on HBV promoters in a dose-dependent manner.  

Thus, the essential link between the efficiency of HBV replication and the 

degree of hepatocyte differentiation remains to be elucidated. A study of the exact 

dependence of HBV replication on hepatocyte differentiation and identification of the 

link factor would help to define the stage of the liver development, at which 

exclusively hepatotropic HBV can infect and replicate in hepatocyte precursors. 

 
1.2 Heme oxygenase I 
1.2.1 Heme oxygenase I, its function and induction 
 
Heme oxygenase (HO) is the small molecule that catalyzes the initial and rate limiting 

step in the oxidative degradation of heme acting together with NADPH-cytochrome 

p450 reductase as a reducing agent 166 (Fig. 5).  
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Fig. 5: Reaction, catalized by heme oxygenase 
 Adopted from http://www.med.unibs.it/~marchesi/heme.html 

 

Heme released from oxidized free haemoglobin of senescent erythrocytes, 

myoglobin or cytochromes, constitutes a potentially harmful molecule and may 

generate reactive oxygen species (ROS), which cause oxidative stress 167. HO 

catabolizes heme and yields equimolar amounts of carbon monoxide, biliverdin, and 

iron. In mammalian cells, biliverdin is subsequently converted to bilirubin by biliverdin 

reductase and the released iron is used in intracellular metabolism or sequestered 

into ferritin 168, 169.  

Until now, three isoforms of the HO protein have been identified, which are 

encoded by separated genes. HO1, also known as heat shock protein 32, is the only 

inducible isozyme 170, 171. Under basic conditions, the 32 kD protein is expressed at 

low levels in the liver, kidney, endothelial cells, bone marrow and most prominently in 

the spleen, where senescent erythrocytes are disposed and red blood cell 

haemoglobin is degraded. Beside the major substrate heme, HO-1 synthesis is 

known to be upregulated by a multitude of non-heme inducers, including heavy 

metals, cytokines e.g. IL-6, hormones, endotoxins, oxidants and a heat shock 172, 173. 

Induction of HO-1 is also highly sensitive to exposure to agents causing oxidative 

stress, such as UV irradiation, sodium arsenite, hypoxia and glutathione depletion, 

which indicates that HO1 induction may be a protective strategy to defend cells 

against oxidative and inflammatory damage 174, 175, 176, 177. Cobalt protoporphyrin-IX, a 

potent inducer of HO-1 is an important experimental tool that is widely used for 
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different in vivo and in vitro studies to examine effects derived from inducible  

HO-1 178, 179, 180, 181. Activation of HO-1 expression by most stimuli is controlled at the 

transcriptional level and involves gene activation and de novo enzyme protein 

synthesis.  

 

1.2.2 Effects of HO-1 induction 
 

Accumulating evidence suggests that HO-1 induction in addition to its role in 

heme degradation might confer a large spectrum of cytoprotection that is mostly 

associated with different end products of heme catabolism 167.  

Bilirubin derived from biliverdin possesses potent free radical scavenging and 

antioxidant properties 182-184. Along with potent antioxidant poperties, bilirubin also 

exerts anti-inflammatory effects. So, bilirubin mediates inhibition of leukocyte 

adhesion and rolling after induction of HO-1 in a model of ischemia-reperfusion injury 

of mesenterial tissues 185. 

Free iron, a strong pro-oxidant, upregulates an iron-transporter ATPase pump 

that removes free iron from the cell and induces the expression of ferritin, a 

multimeric iron-chelating protein. Ferritin limits the generation of free radicals by 

binding free iron and making it unavailable for catalytic reactions 186.  

CO, the third catalytic product of HO-1 activity, possesses anti-thrombotic, 

anti-apoptotic, anti-inflammatory and anti-proliferative effects and also promotes 

vasodilation. For example, CO is able to suppress platelet activation or  

aggregation 187. In addition, CO has also been reported to protect endothelial 

cells 181, 188 fibroblasts, hepatocytes and beta-cells of the pancreas from undergoing 

apoptosis. Furthermore, CO downmodulates the expression of plasminogen activator 

inhibitor type I and markedly inhibits the proinflammatory response in macrophages, 

whereas it stimulates production of IL-10 189. Moreover, CO decreases antigen-

presenting capacity in antigen-presenting cells 190, inhibits T-cell proliferation 191, 192, 

promotes activation-induced cell death in T-cells 193 and increases numbers and 

function of CD4+CD25+FoxP3+ regulatory T-cells 194, 195. Induction of HO-1 and its 

cytoprotective potential have been shown to contribute to therapeutic implications  

in the treatment of diseases associated with oxidative stress, apoptosis  

or inflammation 177, 196, 197, 198, 199. In particular, HO-1 is reported to protect the 
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liver from ischemia-reperfusion 200, hemorrhage/resuscitation 201, and  

immune-mediated 202 and inflammation-related 203 liver damage.  

HO-1 deficiency in animals results in a high mortality rate after 25 weeks 

which is associated with a macromolecular oxidative damage, tissue injury, chronic 

inflammation, significant weight reduction and anemia 204, 205. HO-1 deficiency in 

humans leads to severe growth retardation, persistent endothelial damage and 

haemolytic anemia characterized by marked erythrocyte fragmentation 206.  

In contrast to the beneficial properties of inducible HO-1, the protein has been shown 

to contribute to the protection of solid tumors 207, 208, 209.  

However, induction of HO-1 by non-stressful stimuli appears to be a promising 

target and might become a novel therapeutic approach for diseases associated with 

oxidative stress, apoptotic and inflammation-related tissue damage.  

 

1.2.3 HO-1 in the pathogenesis of viral infections 
 

HO-1 is involved in the pathogenesis of several viral infections and its 

suppression or induction might be implemented in the treatment of viral diseases.   

Thus, induction of HO-1 in monocytes by hemin administration substantially inhibited 

HIV replication in a dose-dependent manner. In addition, hemin treatment 

significantly suppressed infection of both monocytes and T cells inoculated with R5, 

X4, R5X4 tropic HIV strains and reverse transcriptase-resistant, azidothymidine-

resistant, ddC/ddL-resistant, nivirapine-resistant, and other clinical isolates. 

Moreover, induction of HO-1 exerted anti-HIV effects in vivo. Intraperitoneal 

administration of hemin 4 days after HIV infection reduced viral load in the serum of 

human PBMC-reconstituted non-obese diabetic SCID mice by more than 6-fold 210. 

The impact of hepatitis C virus (HCV) proteins on HO-1 expression seems to be 

ambiguous. HCV core protein inhibits HO-1 expression in hepatocytes 211 and 

hepatoma cells 212, thereby sensitizing cells for oxidative injury 212. However, when 

the HCV proteins core, E1, E2, p7, NS2, and the aminoterminal domain of NS3 were 

simultaneously expressed in hepatoma cells, HO-1 expression was upregulated. 

Furthermore, non-structural proteins of HCV induced HO-1 expression 213. The final 

effect of HCV replication on HO-1 expression in vivo seems to be negative as shown 

with biopsy samples from chronically infected patients 211. 
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In histological samples with chronic hepatitis B, HO-1 seems to be upregulated 211. 

However, Protzer  et. al. did not show any up-regulation of HO-1 in HBV-producing 

compared to parental hepatoma cells and suggested that HO-1 induction in HBV 

infection is most likely caused by pro-inflammatory cytokines 154. The authors also 

demonstrated a pronounced antiviral effect of CoPP associated with HO-1 induction 

in HepG2.215 cells, in the mouse model of acute HBV infection (mice transduced 

with an adenoviral vector encoding HBV genome) and in HBV-transgenic mice. In a 

model of HIV infection, Vzorov  et. al. showed that porphyrins display their own 

antiviral activity 214. Therefore, it remains unclear, whether an antiviral effect of CoPP 

against HBV was mediated by HO-1 or was merely caused by porphyrins. Although, 

Protzer et. al showed antiviral activity of HO-1 overexpression using an adenoviral 

vector, proof that knocking out HO-1 expression abolishes the antiviral activity was 

lacking. Also, Protzer et. al showed amelioration of liver injury in the model of acute 

HBV infection, when HO-1 was induced by CoPP prior to the onset of HBV 

replication. Considering a therapeutic application of HO-1 induction in acute hepatitis 

B or during flares of chronic hepatitis B, it is important to study the effect of enzyme 

overexpression on the liver injury on ongoing HBV replication. Here, considering a 

therapeutic potential of HO-1 in acute and flares of chronic hepatitis B, it is important 

to study the effect of enzyme induction at the peak of inflammation. 

 

1.3 Interleukin-6 and its role in HBV infection 
1.3.1 IL-6 is a pleotropic cytokine 
 

Interleukin-6 (IL-6) is a 26-kDa glycoprotein encoded on chromosome-7, 

produced by macrophages, T-cells, endothelial cells and osteoblasts. IL-6 has a wide 

range of biological functions: (1) stimulates antibody production by activated B-cells; 

(2) is involved in T-cell activation, growth, differentiation, and expression of cytotoxic 

cell function; (3) induces the proliferation of pluripotent hematopoietic progenitors and 

acting synergistically with MCSF and GM-CFS, stimulates differentiation of 

macrophages and granulocytes; (4) induces maturation of megakaryocytes; (5) 

regulates the function of macrophages and neutrophiles; (6) induces acute-phase 

response; (7) stimulates secretion of adrenocorticotropic hormone by the pituitary 

gland; (8) stimulates expression of nerve growth factor; (9) directly or indirectly 

affects osteoclast development and plays a role in postmenopausal osteoporosis; 
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(10) is essential for regeneration of hepatocytes; (11) and is involved in the regulation 

of carbohydrate and lipid metabolism and insulin sensitivity  215.  IL-6 knock-out mice 

are viable and fertile and do not exhibit any overt phenotypic abnormality. Females 

demonstrate higher rates of bone turnover. Also, T-cells in both genders are reduced 

in number by 20-40% compared with controls. In addition, the transgenic animals 

have impaired responses to viruses and bacterial infection but an almost normal 

response to lipopolysaccharide 216. Moreover, IL-6-deficient mice exhibit impaired 

liver regeneration and develop mature-onset obesity due to disturbed carbohydrate 

and lipid metabolism 215.  

 

1.3.2 IL-6 signaling 
 

The interaction of IL-6 with its target cells is mediated by IL-6 receptor (IL-6R).  

It consists of two polypeptide chains, a 80 kDa IL-6R and a 130 kDa signal 

transducer (gp130). The 80 kDa receptor exists in two forms, the transmembrane 

form and a soluble form. The transmembrane form has a short intracytoplasmic 

region and, upon stimulation by binding of the IL-6 molecule, triggers an association 

with gp130. The soluble receptor can form a stimulatory complex with IL-6, which can 

associate with gp130 and trigger cellular events called trans-signaling. The gp130 

has a transmembrane domain and is responsible for transducing the signal across 

the membrane 217. IL-6 and its receptor interact to form a complex consisting of two 

IL-6 molecules plus two IL-6 receptor proteins and two gp130 proteins. The 

dimerized gp130 then transduces the signals.  

Activation of gp130 leads to the activation of the intracytoplasmic JAK tyrosine 

kinases (Janus family tyrosine kinases). These kinases cause induction of tyrosine 

phosphorylation and recruitment of STAT3, which dimerizes and is translocated to 

the nucleus and leads to gene expression. Furthermore, formation of the IL-6-IL-6R 

complex leads to the activation of the Ras-mitogen-activated protein (MAP) kinase 

pathway. Moreover, IL-6R activates a number of non-receptor tyrosine kinases, such 

as Btk, Tec, Fes and Hck, although the biological significance of these signal 

transduction pathways remains to be clarified. All signalling pathways activated by IL-

6R may interact with each other and contribute to a variety of biological activities 215. 

IL-6 signaling systems are regulated by negative feedback by the suppressors of 
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cytokine signalling (SOCS) and the protein inhibitors of activated  

STATs (PIAS) 218, 217.  

 

1.3.3 IL-6 and HBV pathogenesis 
 

The role of IL-6 in the pathogenesis of HBV infection is being actively studied.  

In humans, serum levels of IL-6 closely correlate with the severity of tissue injury and 

clinical course of HBV disease 219, 220, 221. IL-6 activity was reported to be significantly 

enhanced during acute exacerbation of the illness, followed by clearance of HBeAg 
219. The levels of sIL-6R correlated with response to IFN-alpha therapy 222. Therefore, 

IL-6 may contribute, at least in part, to the elimination of HBV by the immune system.  

The data concerning the role of human IL-6 for infection of cells with HBV and 

virus replication are controversial. Galun et al. observed that simultaneous incubation 

of human liver tissue with HBV serum and human IL-6 for 24 h before transplantation 

into SCID mice leads to a higher rate of HBV DNA positive animals than incubation of 

liver tissue with HBV serum only 223. Waris  and Siddiqui incubated HBV-replicating 

HepG2.2.15 cells with human IL-6 and demonstrated a positive influence of IL-6 on 

HBV transcription 224. However, in vivo, in the HBV-transgenic mice model, 

administration of the recombinant human IL-6 led to the suppression of HBV 2.1 kb-

steady state mRNA expression 16 to 20 h after injection of the cytokine 225. 

Recently, Hoesel M et. al (submitted) have shown that non-parenchymal liver 

cells, such as Kupffer cells or LSECs, recognize the HBV pattern in inoculum 

containing virions as well as secretory HBsAg and HBeAg prior to HBV replication in 

hepatocytes. The authors emphasized that recognition of HBV envelope proteins 

and, possibly other HBV-patterns, but not HBV replication leads to NF-κβ activation 

and the rapid secretion of the NF-κβ-regulated cytokines: IL-6, IL1β and TNFα. In 

contrast, recognition of the HBV pattern does not induce any interferon response and 

interferon-regulated genes are even down-regulated. Importantly, secretion of NF-κβ-

regulated cytokines was correlated with a decrease of HBV progeny release in the 

cell culture media. Application of IL-6-blocking antibody and recombinant IL-6 (rIL-6) 

confirmed a causative role of the cytokine in the inhibition of HBV replication. Further 

experiments by Hoesel M et. al (submitted) indicate that inhibition of HBV replication 

by IL-6 occurs at the transcriptional level.  
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However, which cellular pathways are involved in the control of HBV replication 

by this cytokine remained unclear. Thus, to further understand the complex role of IL-

6 in the pathogenesis of HBV infection, a detailed study of mechanisms underlying 

the effect of IL-6 on HBV replication is required. 

 

For better understanding of the virus-cell host interactions, the study of the 

replicative potential of HBV in the developing liver and factors linking efficient HBV 

replication to hepatocyte differentiation; detailed analysis of the antiviral and 

cytoprotective activity of HO-1 and the effect of IL-6 on HBV replication should be 

performed. The results of such studies may contribute to the development of new 

therapeutics against HBV and to the improvement of prophylaxis of intrauterine HBV 

infection.  
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2 Aims of the thesis 
 

Hepatitis B is still an important health problem. In 10% of adults and 90% of infected 

newborns, HBV causes a chronic infection with increased risk of liver cirrhosis, 

hepatic decompensation and hepatocellular carcinoma. Intrauterine HBV 

transmission contributes to 8-40% of mother to child transmission. Prophylaxis of 

intrauterine infection has not been established so far. The important obstacle for 

development of a prophylaxis of intrauterine HBV transmission is the lack of 

knowledge on infectious and replicative potential of HBV in the developing liver. In 

this context, it seemed essential to know to what extent HBV replication depends on 

hepatocyte differentiation and which hepatocellular factors are responsible for that.  

The purpose of this study therefore was: 

 

- to determine the replicative potential of HBV in the developing liver;  

- to study the changes of HBV replication efficiency along with hepatocyte 

maturation; 

- to understand in detail, to what extent HBV replication depends on hepatocyte 

differentiation; 

- to pinpoint factors responsible for the dependence of HBV replication on 

hepatocyte differentiation and, in particular, influencing the replicative potential 

of HBV in the developing liver 

 

Heme oxygenase-1 (HO-1), a heme degrading enzyme, is involved in the 

pathogenesis of several viral infections. We observed a pronounced antiviral effect of 

HO-1 induction in stable HBV-producing cell lines, in a mouse model of acute HBV 

infection and in HBV-transgenic mice. However, lacking was: 

 

- a proof that knocking out HO-1 expression abolishes the antiviral activity 

- whether and how HO-1 activity affects the viral persistence form HBV cccDNA  

- considering a therapeutic potential of HO-1 in acute and flares of chronic 

hepatitis B, it is important to study the effect of enzyme induction at the peak of 

HBV-induced inflammation  in the liver 

 

Besides hepatocellular factors, extracellular mediators can also affect HBV 

replication and are therefore important for a detailed understanding of the virus-host 
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interactions. In this term, there are contrary data on the influence of IL-6 on HBV 

replication. Previous study in our working group indicated that IL-6 inhibits HBV 

replication at the transcription level. So far, it has not been studied, which cellular 

pathways are involved in the control of HBV replication by this cytokine. 

Therefore, the third purpose of this study was: 

 

- to further analyze, which step of HBV replication cycle is influenced by IL-6; 

- to find out hepatocellular factors mediating the effect of IL-6 on HBV 

replication. 

 



3 Material and Methods 
 

- 28 - 

3 Material and Methods 
 
3.1 Material 
 
3.1.1 Expendable items 
 
Centricon Plus-70, Biomax 100    Millipore Corp., Billerica, MA, USA 

Chamber Slides LabTekII, RS Glass  Nunc, Wiesbaden, Germany 

Cuvettes       Sarstedt, Nümbrecht, Germany 

Freezing Container NalgeneTM    Nunc, Wiesbaden, Germany 

Nylon membrane, positively charged  Roche Diagnostics, Mannheim, 

Germany 

Nitrocellulose membrane     Whatmann GmbH, Limburg, Germany 

Hyperfilm ECL      GE Healthcare, Buckinghamshire, UK 

Tissue paste Histoacryl®    Braun, Melsung, Germany 

Whatman 3MM      Biometra, Göttingen, Germany 

Ultra centrifuge-tubes, polyallomer  Beranek Laborgeräte, Weinheim,  

Germany  

Dialysis chamber (PERBIO* 66453   

Slide-A-Lyser 10 kDa)     PERBIO Sciences, Bonn, Germany 

 

3.1.2 Equipment 
 
Centrifuges:  

Centrifuge 5417C / 5417R    Eppendorf, Hamburg, Germany 

Megafuge 1.0 / 1.0 R    Heraeus Holding GmbH, Hanau,  

       Germany 

Ultra centrifuges:     

Sorvall RC 50 Plus      Kendro, Langenselbold, Germany 

XL 70        Beckman, München, Germany 

Scales Kern 440-47     Sartorius AG, Göttingen, Germany 

Fraction recovery system    Beckman, München, Germany 

Biocycler Thermocycler T3   Biometra, Göttingen, Germany 

Blot chamber MiniProtean®3    Cell BIO-RAD Laboratories,  

       Hercules, USA 
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Dot blot apparatus Minifold I   Schleicher & Schuell, Dassel,  

       Germany 

ELISA Reader MRX Revelation   Dynex, Gaithersburg, USA 

Film processor Curix 60    Agfa Geveart NV, Mortsel, Belgium 

Gel chambers      BIO-RAD Laboratories, Hercules, 

       USA 

Heating block                                                     Eppendorf, Hamburg, Germany 

Thermomixer comfort    Eppendorf, Hamburg, Germany 

Incubator       Heraeus Holding GmbH, Hanau,  

       Germany 

Light Cycler System    Roche Diagnostics, Mannheim,  

       Germany 

Microscopes 

Fluorescence microscope IX81     Olympus, Hamburg, Germany 

Confocal microscope     Olympus, Hamburg, Germany 

FluoView1000  

pH-Meter       WTW, wissenschaftlich technische  

  Werkstätten 

Phosphoimager, Molecular   BIO-RAD Laboratories, Hercules, 

       USA 

Imager FX 

Photometer Smart Spec 3000   BIO-RAD Laboratories, Hercules, 

       USA 

Photo system for agarose gels   BIO-RAD Laboratories, Hercules, 

       USA 

Gel-doc 2000 

Power Supplies Pack300    BIO-RAD Laboratories, Hercules, 

       USA 

Sterile hood (cell cultur)     Heraeus Holding GmbH, Hanau,  

       Germany 

UV-Oven GS Gene LinkerTM   BIO-RAD Laboratories, Hercules,  

  USA 
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3.1.3 Software 
 
Autoradiography  Quantity One, 4.2.1, BIO-RAD  

   Laboratories, Hercules, USA 

Data processing     Windows 2000, MS Office 2000, Word  

       and Excel, Microsoft, Redmont, USA 

Fluorescence microscopy   Cell P, AnalySIS, Soft Imaging   

      System GmbH, Münster, Germany 

FV10-ASW, Version 1.6a 

Graphic programmes    Adobe Photoshop 5.5, Adobe, San  

     Jose,   USA  

     Power Point 2000, Microsoft,  

     Redmont, USA 

Light Cycler      Probe Design Analysis and Rel Quant,     

 Roche Diagnostics, Mannheim, Germany 

 

3.1.4 Chemicals 
 
All solutions were prepared with deionised water from the Ultra Pure Water System 

Easy Pure UV/UF (Werner Reinstwassersysteme, Wilhelm Werner GmbH, 

Leverkusen, Germany).  

 
Acidic acid      Roth, Karlsruhe, Germany 

Acryl amide      Sigma, Deisenhofen, Germany 

Agarose SeaKem LE    Cambrex Bio Science, Rockland, USA 

Ammonium acetate    Merck, Darmstadt, Germany 

Bromphenol blue     Merck, Darmstadt, Germany 

Caesium chloride    Roth, Karlsruhe, Germany 

Chlorophorm     Roth, Karlsruhe, Germany 

Chlorophorm/Isoamylalcohol 24:1 Roth, Karlsruhe, Germany 

Cobalt protoporphyrin-IX   Alexis Deutschland GmbH, Grunberg,  

       Germany 

Collagen IV      Serva, Heidelberg, Germany 

Developer G153 A + B   Agfa Geveart NV, Mortsel, Belgium 
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1,4- Diazabicyclo[2,2,2]octane 98% Sigma Aldrich Chemie GmbH, Steinheim,    

(DABCO)       Germany 

4',6-Diamidino-2-phenylindol (DAPI) Molecular Probes, Inc, Eugene, USA 

Ethylenedinitrilotetraacedic acid   

(EDTA)      Roth, Karlsruhe, Germany 

Ethidium bromide     Merck, Darmstadt, Germany 

Ethanol      Roth, Karlsruhe, Germany 

Glycerol      Roth, Karlsruhe, Germany 

HEPES     Biochrom AG 

Hydrochloric acid     Roth, Karlsruhe, Germany 

Isopropanol      Roth, Karlsruhe, Germany 

MAPK inhibitors: 

PD98059 for pERK 

SP600125 for pJNK    Calbiochem, La Jolla, USA 

Magnesium Chloride (MgCl2)  Roth, Karlsruhe, Germany 

Methanol      Roth, Karlsruhe, Germany 

Milk powder, low fat    Sigma, Deisenhofen, Germany 

Mowiol 4-88 reagent   Calbiochem, La Jolla, CA, USA 

NaOH      Roth, Karlsruhe, Germany    

Paraformaldehyde    Merck, Darmstadt, Germany 

Phenol      Roth, Karlsruhe, Germany 

Polybed 812 and epoxy resin  Polysciences, Warrington, PA, USA 

Ponceau S      Roth, Karlsruhe, Germany 

Potassium      Roth, Karlsruhe, Germany 

Potassium acetate     Merck, Darmstadt, Germany 

Proteinase Inhibitor tablets  Roche Diagnostics, Mannheim, Germany 

Rapid Fixer G354    Agfa Geveart NV, Mortsel, Belgium 

Sodium acetate     Merck, Darmstadt, Germany 

Sodium chloride     Roth, Karlsruhe, Germany 

Sodium dihydrogenphosphate  Roth, Karlsruhe, Germany 

Sodium hydroxide     Roth, Karlsruhe, Germany 

Sucrose      Sigma, Deisenhofen, Germany 

Tetramethylethylendiamine (TEMED) Sigma, Deisenhofen, Germany 

Tris base     Roth, Karlsruhe, Germany 
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Triton X-100      Roth, Karlsruhe, Germany 

Tween 20     Roth, Karlsruhe, Germany 

Water, DNAse-, RNAse-free  Promega, Mannheim, Germany  

 

3.1.5 Cell lines and primary cells 
 
HepG2    Human hepatoma cell line, ATCC no. HB-8065™ 

HuH7      Human hepatoma cell line, JCRB0403 

PHH  Primary human hepatocytes, isolated from liver 

resections 

Pop10 Hepatocyte cell line established by immortalization 

of primary human hepatocytes using Cre-excisable 

lentiviral vectors coding for SV40 T antigen, 

telomerase, and/or Bmi-1 226 

HepaRG  Human hepatoma cell line, HepaRG cells can be 

differentiated and become permissive for HBV if 

cultivated with corticosteroids and dimethyl 

sulfoxide (DMSO) 50, 156  

293 Human embryonic kidney cell line, stably producing 

adenovirus E1 Protein, ATCC no. CRL-1573 227 

HepG2.2.15  Human hepatoma cell line replicating HBV from four 

integrated dimeric HBV genomes 152 

HepG2-H1.3 Human hepatoma cell line containing one copy of 

a 1.3-fold overlength HBV genome, which 

establishes HBV cccDNA as an additional 

transcription template 153, 154 

 

3.1.6 Experimental animals (mice) 
 

Eight to ten week old male C57BL/6 wild-type mice (purchased from Charles Rivers, 

Sulzfeld, Germany) or HBV or HBVxfs transgenic mice (kindly provided by H. 

Schaller, Heidelberg, Germany) selected for comparable levels of HBV replication 

were used. 

HBV transgenic mice were established with a terminally redundant viral DNA 

construct (1.3-fold overlength of HBV genome) that starts just upstream of HBV 
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enhancer I, extends completely around the circular viral genome, and ends just 

downstream of the unique polyadenylation site in HBV 148. 

HBVxfs transgenic mice were produced with a similar HBV construct, in which a  

3’ and 5’ frameshift mutation, resulting in a premature stop codon, was introduced 

into the open reading frame X. Therefore, these mice lack HBV X protein 149, 150. 

Legal requirements for biosafety and animal care were met. All animals received 

human care according to the criteria outlined in the “Guide for the Care and Use of 

Laboratory Animals" prepared by the US Academy of Sciences and published by the 

National Institutes of Health.  

 

3.1.7 Patient samples 
 

Human HCC or surrounding, non-tumorous (peritumor) HBV infected liver tissue 

samples were selected from the tissue bank of the Institute of Pathology, University 

Hospital Cologne, established after informed consent from patients. Selection criteria 

were: active HBV infection (HBsAg, anti-HBc and / or HBV DNA positive in patient’s 

serum), absence of any other obvious cause for HCC (e.g. HCV infection, 

hematochromatosis) and availability of snap frozen tumor and peritumor tissue. 

Tumors were graded according to the American Joint Commission on Cancer. 

Healthy liver tissue was obtained from human liver grafts (HBV, HCV, HIV negative) 

not suited for transplantation.  
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Staging and grading of hepatocellular carcinoma samples 
 

patient 
number 

serum 
HBsAg/ 
antiHBc 

tumor staging and grading peritumor, 
fibrosis  
stage 

peritumor, 
inflammation 

grade 
1 + pT3 N0 Mx G2 R0 3 3 
2 + pT1 N0 Mx G2-4 R0 

areals of mixed (high and 
no) differentiation 

2-3 2 

3 + pT1 N0 Mx G2 R0 2-3 2 
4 + pT1 N0 Mx G2 R0 nd nd 
5 + pT2 N0 Mx G2 R0 2-3 2 
6 + pT1 N0 Mx G1 R0 4 2 
7 + pT3 N0 Mx G3 R0 4 1 
8 + pT1 N0 Mx G1 R0 4 1 

 
3.1.8 Media and supplements 

 

Ampicillin      Sigma, Deisenhofen, Germany 

Collagenase Worthington   Biochemical Corporation, 

       Lakewood, NJ, USA 

Dulbeccos MEM     Gibco, BRL, Eggenstein, Germany 

Dimethylsulfoxid (DMSO)    Merck, Darmstadt, Germany 

Ethyleneglycolbis (2-aminoethyl)  Roth, Karlsruhe, Germany 

 -tetraacetic acid (EGTA) 

Fetal calf serum (FCS)    Biochrom AG, Berlin, Germany 

Gentamycin      Gibco BRL, Eggenstein, Germany 

Glutamine     Gibco, BRL, Eggenstein, Germany 

HBSS      Gibco BRL, Eggenstein, Germany 

Heparin Liquemin N 25000   Roche, Mannheim, Germany 

HEPES      Gibco BRL, Eggenstein, Germany 

Hydrocortison     Sigma, Deisenhofen, Germany 

Inosine      Serva, Darmstadt, Germany 

Insulin      Serva, Darmstadt, Germany 

Penicillin/ Streptomycin (P/S)  Biochrom AG, Berlin, Germany 

Sodium pyruvate    Gibco BRL, Eggenstein, Germany 

Non essential amino acids (NEAA) Biochrom AG, Berlin, Germany 

Polyethylenglycol (PEG) 6000  Serva Electrophoresis, Heidelberg, Germany 

RPMI 1640     Gibco, BRL, Eggenstein, Germany 



3 Material and Methods 
 

- 35 - 

Williams Medium E     Gibco, BRL, Eggenstein, Germany 

 

Primary human hepatocytes  
 

Preperfusion medium   HBSS, Ca/Mg-free  500 ml  
     EGTA, 100 mM  2.5 ml  
     Heparin, 5000 U/ml  1 ml 
  

Collagenase medium   Williams Medium E  250 ml 
     CaCl2, 1 M   0.9 ml   
 Gentamycin, 10 mg/ml 2.5 ml  
     Collagenase type IV 200 mg 
 
Wash medium    Williams Med E  500 ml   
     *Glutamine, 200 mM 5.6 ml   
     *Glucose, 5%  6 ml    
     *Hepes, 1 M, pH 7.4 11.5 ml   
     *P/S, 5000 U/ml  5.6 ml  

  (*Solutions were mixed and stored as premix at –20°C) 

 

PHH medium    Wash medium  500 ml  
     Gentamycin, 10 mg/ml 5 ml   
         Hydrocortison             0.5 ml   
     Insulin    0.45 mg   
     DMSO    8.7 ml   
     Inosine, 82.5 mg/ml  2 ml   

 

HuH7 and HepG2  
 

Cultivation medium   Dulbeccos MEM  500 ml   
     FCS                      50 ml 

Glutamine, 200 mM     5.5 ml    
 P/S, 5000 U/ml     5.5 ml   

     NEAA, 100 x      5.5 ml   
 

Freezing medium    Dulbeccos MEM  500 ml   
     FCS                      20% 
     DMSO     10%  
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HepaRG 
 
Cultivation medium   Williams E medium  500 ml  

FCS    5 ml (10 %) 
     P/S, 5000 U/ml     5.5 ml 
     Streptomycin, 5000 U/ml 5.5 ml 
     Hydrocortison  
     hemisuccinate         0.005mM   
     Insulin    2.5 mg   
      
Differentiation medium   Williams E medium  500 ml  
     FCS 10 %   5 ml   
     P/S, 5000 U/ml     5.5 ml 
     Streptomycin, 5000 U/ml 5.5 ml 
     Hydrocortison  
     hemisuccinate         0.005mM   
     Insulin    2.5 mg 
     DMSO   10 ml (2%) 
 
Pop10     

   

Cultivation medium    Dulbeccos MEM-F12 500 ml   
     FCS                      50 ml 
     Glutamine, 200 mM     5.5 ml   
     P/S, 5000 U/ml     5.5 ml   
     NEAA, 100 x      5.5 ml 
     NaPyruvate   5.5 ml 
     Dexamethason  500µl (1 µM) 
     Insulin    830µl  (5µg/ml) 

 

293 cells  
 

Cultivation medium   Dulbeccos MEM  500 ml   
     FCS                      50 ml 
     Glutamine, 200 mM     5.5 ml    
     P/S, 5000 U/ml     5.5 ml   

 
 

 
 
HepG2.2.15  
 

Cultivation medium   Dulbeccos MEM  500 ml   
     FCS                      50 ml 
     Glutamine, 200 mM     5.5 ml    
     P/S, 5000 U/ml     5.5 ml   
     NEAA, 100 x      5.5 ml 
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Virus production medium  PHH medium  250 ml 
     Williams E medium  250 ml    
     FCS                      25 ml 
     Glutamine, 200 mM     2.5 ml    
     P/S, 5000 U/ml     2.5 ml   
     NEAA, 100 x      2.5 ml 
 

HepG2-H1.3  
 
Differentiation medium  PHH medium  250 ml 
     HepG2/HuH7 cultivation medium  
     w/o FCS   250 ml 
     FCS    5 ml  (1%)  
 

 

3.1.9 Buffers and solutions 

3.1.9.1 Solutions for purification and storage of adenoviral vectors 
 

CsCl, 1.2 g/ml   CsCl    26.8g 
     Tris-Cl, 10 mM, pH 8.0 92 ml 

 
CsCl, 1.4 g/ml   CsCl    53g 
     Tris-Cl, 10 mM, pH 8.0 87 ml 

 
Dialysis buffer   Tris-Cl, pH 8.0  10 mM 
     MgCl2    2 mM 
     Sucrose 4%   w/v 
     ddH2O  
      
Storage buffer   Tris-Cl, pH 8.0  10 mM 
     NaCl    100 mM 
     BSA    0.1% 
     Glycerol   50% 
     ddH2O 
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3.1.9.2 Cytospins 
 
modified HBSS (GibcoBRL without Ca and Phenolred):  

      HBSS (10x)   50 ml 
      MgCl2 (1M)    400µl (0.8  mM) 
      HEPES pH 7.4 (1M) 10ml (20 mM) 
      Pen/Strep   5 ml 
      ddH2O    ad 500 ml 
 

The solution was sterile filtered using 22 µm filter and stored at 40C  

 

modified HBSS+EGTA (5 mM) 
      HBSS  modified  4.8 ml  
      EGTA (47.5µg/ml) 
      pH 7.6    200µl (0.125M)  
 

 

3.1.9.3 Transfer of nucleic acids and radioactive hybridization 
 

Proteinase K buffer    Tris (100 mM), pH 8.5 10 ml (1 M) 
EDTA (5 mM)  1 ml (0.5M) 
SDS (0.2%)   1 ml (20%) 
NaCl (200 mM)  4 ml (5M) 
ddH2O   ad 100 ml 

 
TE-buffer     TrisHCl pH 8.0  10 mM 

EDTA     1 mM 
 
STE-buffer     NaCl     100mM 
      Tris HCl pH 7.5   20 mM 
      EDTA     10mM 
 
TBE 10x     Tris pH 8.0     
      adjusted with HCl   121.1g (100mM) 
      Boric acid   47.8g (77 mM)  
      EDTA 2.5 mM     5 ml (0.5M) 
      add 1000ml H2O 
 

TAE 50x     Tris base    242g 
      glacial acetic acid  57.1g 
      EDTA 0.5M   100 ml  
      ddH2O ad 1000ml 
      pH 8.0 was adjusted 
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Denaturation solution    NaOH    20.0g (0.5 M) 
      NaCl    58.55g (1 M) 
      ddH2O                                ad 1000ml 
           

Neutralisation solution   Tris, pH 7.4   60.6g (0.5 M) 
      NaCl    175.3g (3 M) 
      ddH2O                                ad 1000ml 
  

10x Electrophoresis buffer (E-buffer)       NaH2PO4x2 H2O   
(300 mM)   46.8 g 

      EDTA (50 mM)  18.6 g 
      DEPC-H2O   ad 1000 ml 
      pH 7.0 adjusted with NaOH 

 
RNA loading mix                       Sample RNA 15µg  10µl 
      E-buffer 10x   10µl 
      Formaldehyd   15 µl 
      Formamid (deionised)  40 µl 

heat to 650C for 10 min, then cool on ice and 
add 5µl loading buffer (see DNA loading 
buffer besides H2O: DEPC-H2O) 

 

Marker loading mix 
      RNA-Marker   6µl 
      DEPC-H2O   3µl 
      E-buffer 10x    2µl 
      Formaldehyd   3 µl 
      Formamid (deionised) 8 µl  
      heat to 650C for 5 min, then cool on ice  
      and add 2.5µl loading buffer (see DNA  
      loading buffer besides H2O: DEPC-H2O) 
 

NaOH 0.2M     200 ml  (1M) + 800 ml ddH2O 
NaOH 0.4M     400 ml  (1M) + 600 ml ddH2O 
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SSC buffer  
 1x 2x 10x 20x 

 
NaCl , g 6 12 60 120 
Na-citrate 
dehydrate, g 

4.4 8.8 44 88 

ddH2O add 1000ml (for Northern blot DEPC-H2O) 
    

 
Pre-hybridization /  
hybridization buffer    salmon sperm  1% (10µg/ml) 
      Church buffer  1x 
 

Church buffer    Phosphate buffer 0.5M,  
      pH 7.2    250 ml (0.25M) 
      EDTA 0.5M   1ml (1mM) 
      BSA    5 g (1%) 
      SDS     35 g (7%) 
      ddH2O   ad 500 ml 

store at –200C 
 
Phosphate buffer    Na2HPO4x2H2O (1M) 342 ml 
      NaH2PO4x2H2O (1M) 158 ml 
      ddH2O   ad 500 ml 

pH 7.2 was adjusted with NaOH 
 
Wash buffer     SSC    1 x 
      SDS    0.5% 
 

3.1.9.4 Protein analysis 

3.1.9.4.1 Immunofluorescence 

3.1.9.4.1.1 Immunofluorescence staining of cell lines 
 
Fixation solution    Paraformaldehyde  3.7%  
      PBS    1 x  
 

Saturation solution    Ammonium chloride  50 mM 

 

Permeabilisation buffer   Saponin   0.5% 
       PBS    1 x 
 

Blocking solution    FCS    10% 
Saponin   0.1% 
PBS    1 x 
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Antibody incubation buffer   Saponin   0.1% 
       PBS    1 x 
 

Mounting medium    Mowiol   2.4 g 
      Glycerol   12 g 
      Tris, pH 8.5   0.2 M 
      Dabco    50 mg 
 
Donkey serum    Sigma 

 

3.1.9.4.1.2 Immunofluorescence staining of cytospins 
 

BB (blocking buffer)    Donkey serum   5% 
PBS     1x 
Tween 20   0.05% 

 

Antibody Blocking solution  

 
Primary Antibody    Donkey serum   1%  

PBS     1x 
Tween 20   0.05%  

 

Secondary Antibody   Donkey serum   1% 
PBS     1x  
Tween 20   0.05% 
DAPI     0.01%  

 

3.1.9.4.2 Protein isolation and Western blot 
 

CHAPS, buffer for extraction 

of total cellular proteins HEPES, pH 7.4 (10 mM) 500µl 1M HEPES 
 NaCl 150mM 0.433 g 
 CHAPS (1%)   0.5 g 
 Protease inhibitor cocktail 1 tablette for 50 ml 

 

SDS, buffer for extraction 

of total cellular proteins   Tris HCl, pH 6.8  15 mM 
       Glycerol   2.5% 
       SDS    0.5% 
       EDTA    1 mM 
 
TED, buffer for extraction  

of membrane proteins  
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Tris HCl (1M) 
pH 7.5     5 ml (50mM) 

       DTT 15.42 mg  1 mM 
       EDTA    1 mM 

Protease inhibitor cocktail 1 tablette for 50 ml 
 
APS      APS    2g 

ddH2O    20 ml 
stored at –200C 

 

2 x Sample buffer     Tris HCl, pH 8.8   200 mM 
       EDTA         5 mM 

SDS         3% 
Bromphenol blue       0.1% 
Sucrose      10% 
β-Mercaptoethanol       1.7% 

 

1 x Running (Laemmli) buffer, 1l   Glycine   14.4 g              
    Tris Base       3.03 g 
    SDS       1.0 g  

ddH2O ad 1000ml  
  

1x Transfer buffer, 1l   Tris Base (25 mM)    3.03 g   
Glycine (192 mM)     14.4 g     

  Methanol 20%  200 ml 
ddH2O ad 1000ml  

 

 
Blocking solution    Milk powder, non fat 0.5% 
      PBS    1x 
      Tween 20   0.05%  

 

Resolving gel   
  

 12.5% 10.0% 8.0% 6.5% 
Acryl amide, 30%, ml 2.5 2.0 1.6 1.2 
Tris, 1.5 M, pH 8.8, ml 1.5 1.5 1.5 1.5 
H2O, ml  1.92 2.42 2.82 3.22 
SDS, 10%, µl 60 60 60 60 
TEMED, µl 3 3 3 3 
APS, 10%, µl 40 40 40 40 
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Stacking gel, 5%    Acryl amide, 30%  340 µl 
Tris, 0.5 M, pH 6.8  500 µl 
H2O    1.12 ml 
SDS, 10%   20 µl 
TEMED     2 µl 
APS, 10%   20 µl 
 

Antibody incubation buffer   Tris 10 mM   0.6 g 
      Dry milk powder (5%) 25.0 g 
      BSA (2%)   10.0 g 
      Tween20 (0.1%)  0.5 g=0.5 ml 
      H2O    ad 500 ml 

pH 7.6 adjusted with HCl oder NaOH, stored 
at –200C 
 

Wash buffer     Tween20 (0.5 %)  5 ml 
      PBS (10 x)   100 ml 
      ddH2O   ad 500 ml 
 

Stripping buffer    Sodium hydroxide  0.2 M 
 

 

3.1.10  Antibodies 

3.1.10.1 Immunofluorescence and immunohistochemistry 

3.1.10.1.1 Primary antibodies 

 

Target Source Working 
dilution 

Manufacturer 

HBV core protein (H800) rabbit 1:5000 polyclonal antiserum 46  
HNF4α mouse 1:1000 Clone 6939, Abcam, Cambridge, UK 
Pancytokeratin mouse 1:1000 Clone C-11, Sigma, Deisenhofen, 

Germany 
HBV core protein rabbit 1:100 DAKO, Glostrup, Denmark 
 

3.1.10.1.2 Secondary antibodies 
 

Alexa Fluor 488 F(ab)2 fragment  Invitrogen, Karlsruhe, Germany 

  goat anti mouse IgG (H+L) 

Alexa Fluor 568 F(ab)2 fragment  Invitrogen, Karlsruhe, Germany 

  goat anti rabbit IgG (H+L) 
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Alexa Fluor 594 F(ab)2 fragment  Invitrogen, Karlsruhe, Germany 

  goat anti rabbit IgG (H+L) 

Cy™-3-conjugated  

donkey-anti-mouse IgG (H+L)  Dianova, Hamburg, Germany 

 

3.1.10.2 Western blot 

3.1.10.2.1 Primary antibodies 
 
Primary antibodies used for Western blot analysis 
 

Target Source Working 
dilution

Manufacturer 

liver specific antigen (LSA)  mouse 1:1000 Clone OCH1E5, DAKO 
organic anion transporter 
polypeptide C (OATP-C) 

mouse 1:1000 Clone mMDQ 
(provided by D. Keppler) 

β-actin mouse 1:4000 Clone AC-15, Sigma 
Lamin B goat 1:2000 polyclonal antiserum, 

Santa Cruz 
hydroxyl-methylglutaryl-CoA-
reductase (HMG-CR) 

goat 1:400 polyclonal antiserum, 
Santa Cruz 

steroid regulatory element binding 
protein –2 (SREBP-2) 

mouse 1:5000 Clone IgG-1C6,  
BD Biosciences 

cytochrome p450 family member 
(CYP1A2) 

rabbit 1:1000 polyclonal antiserum,  
BD Biosciences 

apolipoprotein B (ApoB) mouse 1:1000 Clone 13, 
BD Biosciences 

Albumin rabbit 1:2000 polyclonal antiserum, 
DAKO 

Ferritin rabbit 1:1000 polyclonal antiserum, 
Santa Cruz 

heme oxygenase-1 (HO-1)  rabbit 1:5000 Stratagene Biotechnologies 
Inc., San Diego, USA 

hepatocyte nuclear factor (HNF)4α rabbit 
 HNF1 rabbit 
 HNF3α rabbit 
 HNF3β rabbit 
 HNF3γ goat 
CCAAT/enhancer binding protein 
(C/EBP)α 

rabbit 

C/EBPβ rabbit 
PGC-1α rabbit 
ARP-1 goat 

all 
1:400 

polyclonal antisera, 
Santa Cruz 
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Target Source Working 

dilution
Manufacturer 

liver receptor homolog – 1 (LRH-1) mouse 1:400 clone H2325, R&D 
HBV Core and GFP rabbit 1:2000 polyclonal antiserum 228 
HBV core protein (H800) rabbit 1:10000 polyclonal antiserum 46  
HBV L and M (H863) rabbit 1:1000 polyclonal antiserum 50  

 
 

3.1.10.2.2 Secondary antibodies 
 

Goat anti rabbit, HRP-conjugated  Sigma, Deisenhofen, Germany  

Goat anti mouse, HRP-conjugated  Sigma, Deisenhofen, Germany 

Rabbit anti goat, HRP-conjugated  Sigma, Deisenhofen, Germany 

 

3.1.10.3 Infection studies 
 

Hepatect®    human hepatitis B immunoglobulin, Biotest  

  Pharma GmbH, Dreieich, Germany 

3.1.11 Enzymes 
 
RNaseA 10 mg/ml  Roche Diagnostics, Mannheim, Germany 

Proteinase K Roth, Karlsruhe, Germany 

RNAse free DNAse Qiagen, Hilden, Germany 

 

3.1.12 Kits 

3.1.12.1 RNA isolation 
 
RNeasy® total RNA extraction kit Qiagen, Hilden, Germany 

3.1.12.2 RT-PCR 
 
LC FastStart DNA MasterPlus  Roche Diagnostics, Mannheim, Germany  

SYBR Green1 mix 

Superscript II Reverse  

Transcriptase     Invitrogen, Carlsbad, USA  
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3.1.12.3 DNA isolation 
 
DNeasy® Blood and Tissue Kit  Qiagen, Hilden, Germany   

QIAamp MinEluate Virus Spin Kit  Qiagen, Hilden, Germany 

QIAquick Gel Extraction kit Qiagen, Hilden, Germany 

 

3.1.12.4 DNA labelling 
 
Rediprime DNA Labeling System  Amersham, Buckinghamshire, England 

 

3.1.12.5 Transfection 
 
HiPerFect     Qiagen, Hilden, Germany 

 

3.1.12.6 Western blot detection 
 
ECL Western Blotting Detection  Amersham, Buckinghamshire, England 

        Reagents   
WestDura  

Enhanced Chemiluminescence  Pierce, Rockford, USA 

 
3.1.13 Nucleic acids 

3.1.13.1 Vectors 
 

pAdGH1.3  
Adenoviral vector for transduction of eukaryotic cells, containing a 1.3-fold HBV 

overlength genome and a GFP reporter cassette under CMV promoter control 151. 

 

pAdHBV 
Adenoviral vector for transduction of eukaryotic cells, containing a 1.3-fold overlength 

genome of HBV 154. 
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pAdHBVk/o 

Adenoviral vector for transduction of eukaryotic cells that contains a 1.3-fold HBV 

overlength genome. Stop codons were introduced in all open reading frames so that 

translation of viral proteins does not occur 154. 

 

3.1.13.2 Plasmids 
 

pCH -9/3091 

Contains a 1.3 overlength HBV construct under the control of the CMV promoter 

(HBV nucleotides 3091-3182, 1-3182, 1-84). It was used to establish an external 

standard of HBV DNA for LightCycler™ real-time PCR and HBV DNA probe for 

radioactive hybridization (from R. Bartenschlager; s. also Nassal et al. 46). 

 

3.1.13.3 Oligonucleotides 

3.1.13.3.1 SiRNAs (target sequences) 
 

HNF4α      (aacctagagattgttacagaa) 

HNF1α      (caggacaagcatggtcccaca) 

HNF3γ      (ttgatggatgttattggctaa) 

non-silencing control     

labelled with AlexaFluor™ 488  (aattctccgaacgtgtcacgt) 

all from     Qiagen, Hilden, Germany 

human HO-1     (gagcctggaagacaccctaat) 

      Eurogentec Deutschland, Cologne, Germany 
 

3.1.13.3.2 Primers for quantitative real-time PCR 
 

All  primers were purchased from Invitrogen. 

For gene expression analysis, appropriate exon-exon spanning primer pairs were 

selected whenever possible. To recognize gene DNA, primers were selected to bind 

the intron sequences. 
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Target gene GenBank 

accession 

number 

Primer 

forward 

Primer reverse 

organic anion transporter 

polypeptide C (OATP-C) 

NM_006446 1939-1954 2038-2021 

bile salt exporting pump 

(BSEP) 

NM_003742 3577-3592 3901-3886 

2’3’-tryptophan 

dioxygenase (TDO) 

NM_005651 921-936 1130-1114 

pterin-4 alpha-

carbinolamine 

dehydratase (PDG) 

NM_000281 316-332 519-503 

glyceraldehyde-3-

phosphate-

dehydrogenase 

(GAPDH) 

NM_002046 607-623 973-958 

delta-aminolevulinic acid 

synthetase (ALAS) 

NM_000688 2007-2026 2192-2177 

cytosolic 

phosphoenolpyruvate 

carboxykinase (PEPCK) 

NM_002591 1626-1643 1840-1824 

hepatocyte nuclear factor 

(HNF) 4α 

NM_000457 687-702 962-945 

HNF  1α NM_000545 980-995 1309-1292 

HNF  3γ NM_004497 327-344 571-550 

2’5’-oligoadenylate 

synthetase (2’5’ OAS) 

NM_016816 377-392 601-585 

interferon-gamma 

inducible protein –10  

(IP-10) 

NM_001565 145-160 310-294 

C-reactive protein (CRP) NM_000567 1224-1239 1554-1569 

human HO-1 NM_002133 700-718 929-911 

mitochondrial DNA Wieland et. al. 229 
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mHNF4α NM_008261 1297-1313 1481- 1496 

mHNF1α NM_009327    1721-1736 1980-1996 

 mouse peroxisome 

proliferator-activated 

receptor gamma 

coactivator-1α 

(mPGC-1α) 

NM_008904     2141-2156 2329-2346 

mouse HO-1 NM_010442 318-338 716-696 

mouse GAPDH NM_001001303 512-527 782-767 

hypoxanthine guanine 

phosphoribosyl 

transferase 1 

(mHPRT) 

DNA primers 

NM_013556   756-776 1013-1032 

HBV 3.5 RNA 383-401 705-721 

total HBV DNA 1745-1767 1844-1823 

HBV ccc DNA 

HBV genotype D, 

subtype ayw, 

numbering from 

core AUG = 1 
2251-2267 92-71 

 

 

3.1.14  Ladders 

3.1.14.1 DNA standards 
 

SmartLadder, 0.2-10 kb    Eurogentec, Liege, Belgium 

SmartLadder, 0.1-2 kb    Eurogentec, Liege, Belgium 

 

3.1.14.2 Protein standards 
 

Prestained Protein ladder    Invitrogen, Karlsruhe, Germany 
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3.2 Methods 
 

All procedures were performed at room temperature (RT), if not indicated otherwise. 

 
3.2.1 Cell culture 
 
All procedures were carried out under sterile conditions using sterile solutions and 

equipment. All cells were cultivated in a humidified incubator at 37°C containing 5% 

CO2.   

 

3.2.1.1 Calculation of cell number and cell viability 
 
To determine cell numbers, a Neubauer hemacytometer was used. The 

hemacytometer consists of a glass chamber, which is divided into 4 large B-squares, 

each consisting of 4 small C-squares. The C-squares are further divided into smaller 

D-squares, which possess a surface area of 1 mm2 und a depth of 0.1 mm. Thus, 

each D-square has a volume of 0.1µl. Therefore, to calculate a cell number in 1 ml of 

suspension, a multiplication factor of 104 must be taken into account. A homogenous 

cell suspension was filled into the hemacytometer by capillary action. In all 4 large 

squares, cells were counted and the cell number was calculated as follows:  

 

Cell number/ml = total cell number x dilution factor x 104 

          4 

 

The cell viability was determined with trypan blue.  

 

3.2.1.2 Freezing and thawing of cells 
 
Cell pellets were re-suspended in freezing medium. 1 ml of cell solution with a 

density of approx. 1 to 3 x 106 cells was transferred to one cryo vial. The vials were 

slowly cooled to -80°C in a freezing container and then stored in liquid nitrogen. To 

re-cultivate frozen cells, they were quickly thawed and carefully re-suspended in 10 

ml cultivation medium. After centrifugation for 5 min at 1200 rpm, the cells were re-

suspended in cultivation medium.  
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3.2.1.3 Primary cells: Primary human hepatocytes 
 
PHH were isolated from surgical liver specimen of patients undergoing partial 

hepatectomy. The procedure was approved by the local Ethics Committee, with 

obtained informed consent of the patients.  

The protocol is based on collagenase perfusion with an additional pre-perfusion step 

using Ca2+ and Mg2+ free medium, followed by differential centrifugation 155.    

A large branch of the port vein of a healthy liver tissue piece was canulated, and the 

canula was fixed with tissue paste (Histoacryl®, Braun, Melsung). The two-step 

collagenase perfusion started with 500 ml pre-perfusion medium, with a flow rate 

between 20 and 40 ml/min. At cut surfaces with high medium passage, the large 

vessels were occluded with tissue paste. The medium was discarded after traversing 

the liver tissue. After 15 to 20 min, perfusion was continued with 350 ml perfusion 

medium containing freshly added collagenase type IV (Worthington, Lakewood). 

Collagenase treatment was performed for 15 to 20 min, depending on liver section 

size. As soon as the tissue softened and liver cells appeared in the medium, the liver 

was cut into small pieces and the tissue was scratched off with a scalpel. If 

collagenase digestion was incomplete, the suspension was transferred to a sterile 

beaker and stirred for 10 min at 37°C. The cell suspension was filtered through 

double-layered gauze and a 70 µm cell strainer. After centrifugation in 50 ml Falcon 

tubes for 5 min at 50 x g at 10°C, the pellet was re-suspended in 40 ml wash 

medium. The wash step was repeated three times. The cells were re-suspended in 

PHH medium and the cell number and viability was determined. The cells were 

seeded on collagen IV-coated dishes at a density of 8 x 105 cells/ml of PHH medium 

supplemented with 10% FCS. After 3 h, the medium was exchanged to remove non-

adherent cells. One day post seeding, the cells were kept in medium containing 5% 

FCS. From day two post seeding the cells were cultivated in FCS-free medium and 

used for experiments.        
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3.2.1.4 Treatment of cells with CoPP 
 

CoPP solution    CoPP    10 mg/ml 
NaOH    0.2 mol/L 
H2O    10 ml   
adjusted to neutral pH level 
 

CoPP was diluted in the PHH/DMEM 1:1 culture medium to obtain the final 

concentration of 10µg/ml, sterile filtered and added to the cells. Cell culture medium 

containing CoPP was changed every two days in order to achieve continuous 

induction of HO-1. 

 

3.2.1.5 Transfection of cells with siRNAs 
 

HepG2-H1.3 cells were transfected with indicated siRNAs using the HiPerFect 

transfection reagent according to the fast forward protocol supplied by the 

manufacturer. Briefly, 3.5x105 HepG2-H1.3 cells per well were seeded onto collagen 

IV-coated six-well plates just prior to transfection. SiRNAs were mixed with serum-

free Dulbecco’s MEM without antibiotics to achieve the final concentration of 5 nM/ml 

in a well. Then, 12 µl of HiPerFect per well of six-well plate were added to siRNA 

solution. After 15 min incubation at RT, the solution was added drop wise to the cells. 

No medium exchange was carried out before harvesting. Transfection efficiency was 

controlled by fluorescent microscopy using Alexa Fluor 488™ labeled siRNA. Knock-

down efficiency was determined by quantitative Western blot analysis (see below). 

 

3.2.1.6 Production of wild type HBV 
 

For the production of wtHBV, the HepG2.2.15 cell line was used. For virus 

preparation, the cells were cultivated in complete DMEM medium until they were 

100% confluent. Then, the medium was exchanged to 50% PHH medium and 50% 

complete Williams E medium. Every three days, the virus-containing medium was 

collected. Cell debris was removed by centrifugation at 1000 rpm for 5 min. The 

supernatant was transferred to centrifugal filter devices (Centricon Plus-70, Biomax 

100, Millipore Corp., Billerica) The first centrifugation was performed at 3500 x g for 1 

h at 4°C to capture the virus particles in a filter. Due to the exclusion limit of 100 kDa, 
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serum proteins flow through the filter, while proteins larger than 100 kDa remained in 

the filter. Then, an invert centrifugation step with the filter system turned upside down 

was performed at 2600 x g for 10 min to elute the virus. The virus concentrate was 

supplemented with 10% glycerol and stored at -80°C. The titer of the produced 

wtHBV was determined by caesium chloride density-gradient, followed by dot blot 

analysis, as outlined below. 

 

3.2.1.7 HBV infection of cells 
 

Infection of cells with HBV was performed in medium containing 5% PEG 6000 230. 

The cells were incubated over night with HBV at a moi of 100 vp/cell. If indicated, 

neutralising antibodies (1 IU/106 cells; Hepatect, Biotest Pharma, Dreieich) were 

added simultaneously 155. After over night inoculation, cells were washed 3 times with 

PBS. Cells were further cultivated in fresh medium and harvested at indicated time 

points.  

 

3.2.1.8 Treatment with IL-6 
 
In order to examine the effect of endogenous IL-6 released after contact with HBV, 

200 ng/ml of IL-6ab were added to PHH cultures prior to HBV infection.  

To study the effect of IL-6 on HBV transcription and replication, 15 ng/ml recombinant 

IL-6 (rIL-6) were added to HBV infected cells on day 1 and 3 p.i., after the peak 

amount of endogenous IL-6 in HBV-infected cells had been removed by exchanging 

the culture medium. As a control, rIL-6 was pre-incubated with anti-IL-6 antibodies (1 

µg/ml). Cells and supernatants were analyzed on day 5 p.i. 

 

3.2.1.9 Production and purification of adenoviral vectors 
 

Adenoviruses (Ad) are known to infect a broad range of cells and are therefore 

widely used as vectors. In this study, the adenoviral vectors of the first generation 

based on Ad type 5 and produced as described in Sprinzl et al. were used 151, 231. 

The plasmids were linearised with Pac1 before transfection of 293 cells using the 

calcium phosphate method. The 293 cells provide the adenoviral E1 genes in trans, 
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which are necessary for virus production 227. Three days after transfection, the 

medium, containing dead cells and virions, was collected and subjected to three 

freeze / thaw cycles in liquid nitrogen and a 37°C water bath. This breaks the cells 

and sets the intracellular virions free. Following a centrifugation step for 5 min at 

2000 rpm to remove the cell debris, the virus containing supernatant was 

supplemented with 10% glycerol and stored at -80°C. The Ad vectors obtained are 

suitable for transduction of cell culture, however, these stocks are too diluted and not 

pure enough for in vivo applications.  

To establish Ad stocks for in vivo applications, 9x175cm2 flasks with 293 cells were 

seeded. After they become 80% confluent, cells were transduced with 1-2x108 IU of 

Ad vectors per flask (moi 5-10) and cultivated for 48 hours until all cells showed the 

cytopathic effect. Then, cells were taken up into suspension and pelleted at 2000 rpm 

for 5 min, RT. Ad vectors were set free from cells by three freeze / thaw cycles. After 

centrifugation for 5 min at 4000 rpm, RT, the supernatant containing Ad vectors was 

kept, and, if not clear enough, centrifuged again.   

The purification of Ad vectors was carried out using a CsCl density gradient. 8 ml of 

CsCl solution with a density of 1.4 g/ml were added to the bottom of SW-28 

polyallomer vials and carefully overlayed with 6 ml of CsCl solution with a density of 

1.2 g/ml. After CsCl solutions were added, 10 ml of supernatant containing Ad 

vectors were layered, and the vials were filled up with 8 ml Tris-Cl (10 mM) and 

mineral oil. The first centrifugation step was performed in an SW 28 rotor at 100.000g 

for 1.5 hours without the brake. A band containing Ad vectors was taken up, 

dissolved using 10 mM Tris-HCl solution, and loaded up onto the similar CsCl density 

gradient. The second centrifugation step was performed under the same conditions. 

The band containing Ad was taken up. Since CsCl is toxic to cells, it must be 

removed before the adenoviral stock is used for in vivo applications. For this 

purpose, several dialysis steps were performed in a dialysis chamber with the virus 

dialysis buffer under agitation. The final dialysis was carried out using a virus storage 

buffer. Thereafter, the virus was taken up and stored at -80°C. 

To determine the titer of the produced Ad vectors, 293 cells were plated on a 12 well 

cell culture dish. Serial dilutions of the vector stock were added to the confluent cells. 

The cytopathic effect and/or GFP fluorescence was monitored 48 h after 

transduction. Cells display a cytopathic effect if they are transduced with 3-5 

adenoviral vectors. Since each well contains 106 cells, the well with 100% cytopathic 
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effect yields 3-5x106 adenoviral particles. Therefore, to calculate a number of Ad 

particles per ml, 5x106  was multiplied with a dilution factor of viral stock given onto 

the cells. 

 

3.2.1.10 Transduction of cells with GFP-expressing adenoviral vectors 
 

Prior to transduction of cells with adenoviral vectors, the medium was exchanged. 

The indicated multiplicity of infection (moi) of the vector was added to the cells to 

achieve 90-95% green fluorescent cells. For PHH, I used a multiplicity of infection of 

5, for HuH7 and HepaRG, 30, and for HepG2 and Pop10 cells, 10 infectious units / 

cell. After 3 h, the inoculum was removed and fresh medium was added. 

 

3.2.1.11 Caesium chloride (CsCl) density gradient centrifugation 
 

During HBV preparation, different types of viral particles are obtained: naked DNA, 

unenveloped DNA-containing capsids, and enveloped virions. Their different 

densities enable their separation using a density gradient. DNA is centrifuged down 

to the bottom, due to the very small size. DNA-containing capsids sediment at a 

density of 1.3 g/ml, while intact virions can be found in the 1.22 g/l fraction.      

The CsCl (Roth, Karlsruhe) density gradient ultra centrifugation was performed with 

the SW-60 swing bucket rotor. In SW-60 polyallomer vials (Beranek Laborgeräte) 

500 µl of CsCl solutions with the following densities were carefully layered one upon 

the other: 1.4 g/ml, 1.3 g/ml and 1.15 g/ml. On top of the CsCl solutions, 500 µl of a 

20% sucrose solution was layered, and the sample was applied. The vials were filled 

with PBS and tared on micro scales. Ultra-centrifugation was performed at 55000 

rpm at 20°C for 4 h. The density fractions were collected with a Fraction recovery 

system (Beckman). Each fraction contained 6 drops, which approximates a volume of 

175 µl. The fractions were subjected to quantitative dot blot analysis.       

 



3 Material and Methods 
 

- 56 - 

3.2.1.12 Determination the half-life of cccDNA 

 
HepG2-H1.3 cells were seeded on collagen IV-coated dishes and cultivated until 

confluent. After changing the medium to PHH / DMEM 1:1, cells were cultivated for 

additional 10 days to establish the pool of cccDNA in the nucleus. Thereafter, the first 

treatment with either lamivudin (15 µM) or CoPP (10µg/ml) or both was performed. 

Every two days during the 10 day study, the treatment was repeated and cells were 

harvested for isolation of total cellular DNA. Amounts of cccDNA were determined 

relative to mitochondrial DNA using real-time PCR. 

 

3.2.2 Molecular biological methods 

3.2.2.1 Calculation of RNA or DNA concentrations 
 
To calculate the concentration of a RNA or DNA preparation, the absorption at 260 

nm and 280 nm was determined with a photometer (Smart Spec 3000, BIO-RAD, 

Hercules). This technique relies on the characteristic of nucleic acids to absorb UV 

light with a wave length of 260 nm.  Absorption at 260 nm (OD260) of one equals a 

DNA concentration of 50 µg/ml or an RNA concentration of 40 µg/ml. The ratio of the 

absorption at 260 nm and 280 nm gives an estimation of the purity of the RNA or 

DNA and should range between 1.8 and 2.0. The absorption was always normalised 

to ddH2O.   

 

3.2.2.2 Gel electrophoresis 
 

DNA molecules are negatively charged, with the charge being proportional to the 

molecular weight. Therefore they can be separated according to their size in an 

electric field.  

 Electrophoresis was performed in 0.8 to 2% horizontal agarose gels. The agarose 

(Cambrex Bioscience, Rockland) was dissolved in 1 x TAE or TBE buffer and boiled. 

Ethidium bromide was added to a final concentration of 0.5 µg/ml after the agarose 

was cooled. Ethidium bromide intercalates into dsDNA. This results in a complex that 

fluoresces when exposed to UV light (254 nm to 366 nm). Emission of 590 nm light 

allows for the visualisation of the DNA, with a detection limit of approximately 20 ng 

dsDNA. The polymerised gel was covered with TAE or TBE buffer. The samples 
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were mixed with 1x DNA sample buffer to provide ballast to the DNA with glycerol 

and to mark the separation front with bromphenol blue. In addition to the samples, a 

DNA standard with defined DNA sizes was loaded on the gel.  Electrophoresis was 

performed with a constant voltage of 50 to 120 V. 

 

3.2.2.3  Phenol/Chloroform extraction of DNA 
 

This method was used to isolate total DNA from cells for subsequent Southern blot 

analysis. First, to destroy DNA-protein complexes, cells were lysed using 1ml 

proteinase K buffer, and lysates were digested with 100µl (1µg/ml) proteinase K at 

560C over night. In order to avoid RNA contamination, samples were then digested 

with RNAse A (10µg/ml) for 1 hour at 370C. During subsequent steps, samples were 

purified from proteins. First, samples were mixed with equal volumes of phenol and 

centrifuged at 3.500 g for 20 min. Second, the upper aqueous phase, which contains 

DNA, was transferred into a clean tube, mixed with an equal volume of 

phenol:chloroform (1:1) and centrifuged at 3.500 g for 20 min. Third, the aqueous 

phase was taken up into a clean tube, mixed with chloroform: isoamylalcohol (24:1) 

and centrifuged at at 3.500 g for 20 min. For DNA precipitation,  the aqueous phase 

was transferred into a clean tube, mixed with 10% of the volume of 3M Na+ acetate, 

pH 5.0, and a 2.5-fold volume of 100% ethanol. Samples were then incubated over 

night at -200C. Thereafter, DNA was pelleted by centrifugation at 17000 g for 30 min 

at 4°C and washed using 70% ethanol. Purified DNA pellets were air dried for 5-10 

minutes, re-suspended in DNAse-, RNAse-free water and stored at -200C. 

 

3.2.2.4 DNA isolation with DNeasy Blood and tissue kit 
 

High-purity DNA for real-time PCR was isolated from cells or mouse liver tissue using 

a DNeasy Blood and tissue kit according to the manufactor’s instructions. The 

method allows for rapid purification of total DNA (genomic, mitochondrial and 

pathogen) and is based on the ability of DNA to selectively bind to silica-based 

membrane in the presence of high concentrations of chaotropic salts. Samples were 

lysed with proteinase K over night under vortexing. Addition of lysis buffers set DNA 

free from proteins and optimized DNA binding to the silica-based membrane. During 

centrifugation, DNA bound to the silica-based membrane as contaminants passed 
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through. Remaining contaminants and enzyme inhibitors were removed in two wash 

steps and DNA was then eluted with DNAse-, RNAse- free water.  

 

3.2.2.5 DNA isolation from sera or supernatants 
 

High-purity DNA from sera or cell culture media was isolated using a QIAamp 

MinElute Virus Spin kit.  The method is based on the ability of DNA to selectively bind 

to a silica-gel-based membrane in the presence of high concentrations of chaotropic 

salt. Since the spin procedure is established for use with a starting volume of 200µl, 

the volume of all samples was adjusted to 200µl using 1xPBS. Samples were lysed 

under highly denaturating conditions at elevated temperatures. Optimal binding of 

DNA to the silica-based membrane was achieved by addition of an RNA-carrier and 

ethanol to the sample. During the centrifugation step, nucleic acid bound to the 

membrane as the lysate passed through. Salt and pH conditions ensured that protein 

and other contaminants were not retained on the QIAamp MinElute membrane. All 

contaminants were washed away during 3 wash steps. Purified DNA was then eluted 

with DNAse-, RNAse- free water equilibrated to RT. 

 

3.2.2.6 Production of 32P-probe 
 

The pCH-9/3091 HBV construct was digested with Nhe I and Sal I and digestion 

products were loaded onto a 0.8% gel. 3054 bp long DNA fragment was purified 

using a QIAquick Gel Extraction kit. This fragment was amplified and radioactively 

labeled using the Rediprime DNA Labeling System. This kit contains oligonucleotides 

(random primers), nucleotides, polymerase and buffer. First, the HBV DNA probe 

was dissolved in 45µl TE-buffer and boiled for 10 min at 100°C in a water bath for 

DNA denaturation. Second, the denatured HBV DNA probe was added to a 

Rediprime reaction kit tube, and 5 µl radioactive [32P] dCTP were added. For HBV 

DNA probe amplification and radioactive labeling, the reaction mix was incubated at 

37°C for 30 min. Finally, the HBV DNA probe was purified a using purification column 

(Stratagene) and 1xSTE-buffer. For hybridization, the HBV DNA probe was dissolved 

in 25ml church buffer containing 10µg/ml salmon sperm DNA, boiled for 10 min at 
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100°C in a water bath to denature the HBV DNA probe, cooled and put on the 

membrane.  

 

3.2.2.7 Southern blot analysis 
 

Southern blot analysis was used to study the synthesis of HBV replicative 

intermediates. 

15 µg of total cellular DNA were cut with 150 units of Hind III  (10 enzyme units per 1 

µg DNA) for 16-18 hours in order to excise the HBV integrate. Subsequently, DNA 

fragments were separated by electrophoresis using 0.8% agarose gel. For DNA 

depurination, the gel was incubated with 0.25 M HCl for up to 25 minutes until the 

bromophenol blue marker turned yellow. Then, to denature the DNA, the gel was 

incubated with 0.4 M NaOH. For transfer of the DNA fragments from the gel onto 

positively charged nylon membrane, a downward capillary transfer procedure was 

performed (Fig. 6). It is rapid and the intensity of signal is 30% greater than can be 

achieved by conventional upward transfer. The Whatman papers and positively 

charged nylon membrane were pre-wet with 0.4 M NaOH and ddH2O, respectively, 

and the transfer tower was set up without air bubbles as shown on the picture below. 

The transfer was performed over night (16 hours) using a 0.4 M NaOH solution as 

the transfer buffer. The alkaline transfer buffer is drawn from reservoirs on the top of 

the gel through wicks and sucked through the gel by an underlying stack of paper 

towels. DNA fragments are thus carried through in a downward direction with the flow 

of buffer and are deposited onto the surface of a positively charged nylon membrane. 

After the transfer finished, the membrane was removed, neutralized for 5 minutes 

with 2x SSC and air dried.  Further, DNA was twice cross linked to the membrane by 

UV irradiation at 254 nm and 125 kJ. The membrane was pre-hybridised using 0.1 ml 

of pre-hybridisation solution per cm² for 2 hours at 650C and then hybridised with a 
32P-labeled HBV DNA probe 151 over night at 65 °C in the hybridisation oven. 

Thereafter, the membrane was washed twice with 2xSSC for 5 min at 65 °C and 

twice with 2xSSC containing 0.1 % SDS for 15 min at 65 °C. Autoradiography was 

performed using a phosphor-screen for 24 hours and HBV replicative intermediates 

were quantified relative to the HBV integrates using autoradiography software.  
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Fig. 6: Setup of downward capillary transfer 
 Adoped from www.ambion.com 

 

3.2.2.8 Dot blot analysis 
 

For quantitative and qualitative analysis of the produced wtHBV or secreted HBV 

particles, a DNA dot blot was performed. The DNA fractions, obtained by CsCl 

density centrifugation, were dotted to a nylon membrane (Roche Diagnostics, 

Mannheim) in a dot blot aperture (Schleicher & Schuell, Dassel). A HBV plasmid 

standard ranging from 8 pg to 1000 pg was added. The dotted samples and 

standards were washed with 200 µl PBS before the membrane was transferred to a 3 

mm Whatman paper soaked with denaturation solution. Subsequently, the 

membrane was transferred to a 3 mm Whatman paper soaked with neutralisation 

solution. Then, the DNA was cross linked to the membrane by UV irradiation at 254 

nm and 125 kJ. The membrane was hybridised with a 32P-labelled HBV DNA probe 

at 65°C over night. After hybridization, the membrane was washed and 

autoradiography was performed (see Southern blot analysis). 

 

3.2.2.9 RNA isolation using TRIzol reagent 
 

A TRIzol reagent was used to isolate total RNA for Northern blot analysis.  

The TRIzol reagent, a mono-phasic solution of phenol and guanidine-isothiocyanate, 

efficiently disrupts cells and dissolves cell components while maintaining the integrity 

of RNA. 1.3x106 cells were homogenized with 1 ml TRIzol reagent for 5min. 200µl 

chloroform were mixed with each sample, incubated for 2 min and centrifuged at 

12.000xg for 15 min at 40C. The upper RNA-containing aqueous phase was taken up 
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and RNA was precipitated using 500µl of isopropyl alcohol at -200C for 1 hour. RNA 

was pelleted by centrifugation for 10 min at 12.000g and at 40C and washed using 

75% ethanol (75% ethanol + 25% DEPC-water). The RNA pellet was air dried for 5 

min and dissolved in DNAse-, RNAse- free water.  

 

3.2.2.10 RNA isolation using RNeasy Mini Kit 
 
To purify RNA for cDNA synthesis, an RNeasy Mini Kit was used. This method allows 

for purification of RNA molecules longer than 200 nucleotides. The procedure 

provides an enrichment for mRNA since most RNAs < 200 nucleotides (5.8S rRNA, 

5S rRNA and tRNAs) are selectively excluded. The principle is based on the ability of 

RNA to selectively bind to a silica-gel-based membrane in the presence of high 

concentrations of a chaotropic salt.   

First, samples were lysed and homogenised in the presence of a highly denaturing 

guanidine-thiocyanate- and β-mercaptoethanol-containing buffer. Guanidine-

thiocyanate and β-mercaptoethanol immediately inactivate RNAses and thereby 

ensure the purification of intact RNA. After sample lysis, ethanol was added to 

provide appropriate binding conditions. Samples were then applied to an RNeasy 

Mini spin column where the total RNA bound to the membrane, but contaminants 

were washed away. To avoid the contamination of purified RNA with DNA, DNAse 

digestion was performed on the column. After subsequent wash steps, high-quality 

RNA was eluted with DNAse-, RNAse- free water.  

 

3.2.2.11 Northern blot analysis 
 

Norhern blot analysis was performed to study the expression of HBV RNAs. 

15µg of total cellular RNA were separated by size via electrophoresis in an vertical 

1.5% agarose gel (1.5g agarose + 105 ml DEPC-H2O+15 ml 10x E-buffer) under 

denaturing conditions (30 ml formaldehyde) and constant voltage (60 – 90V). To 

transfer RNA from the gel onto a positively charged nylon membrane, the downward 

capillary transfer was performed over night (16 hours) with 10xSSC as transfer 

buffer. Thereafter, the membrane was rinsed with 2xSSC and the transferred RNA 

was twice cross linked to the positively charged nylon membrane by UV irradiation at 
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254 nm and 125 kJ.  The membrane was pre-hybridised using 0.1 ml of pre-

hybridisation solution per cm² for 2 hours at 650C and then hybridised with a  
32P-labeled HBV DNA probe 151 or 32P-labeled GAPDH DNA probe over night at 65 

°C in the hybridisation oven. The membrane was washed and autoradiography was 

performed (see Southern blot analysis). HBV RNAs were quantified relative to 

GAPDH using autoradiography software.  

 

3.2.2.12 Reverse Transcription 
 

Reverse Transcription (RT reaction or first strand cDNA synthesis) is a process of 

complementary DNA (cDNA) synthesis by a reverse transcriptase (RTase) enzyme 

using single-stranded RNA as a template. In this study, SuperScript™ III First-Strand 

Synthesis SuperMix (Invitrogen), including  RTase Enzyme Mix, 2xRT Reaction Mix 

and RNase H was used. RTase Enzyme Mix is a version of MMLV RTase with 

reduced RNAse H activity and increased thermal stability. 2xRT Reaction Mix 

contains RNAseOUT™ (RNase inhibitor), oligo(dT)20, random hexamers, MgCl2, 

and dNTPs in a buffer formation.  The reaction was performed as followed: 

 
Reagent        Vol. 

2xRT Reaction Mix        10 µl 

RT Enzyme Mix         2 µl 
RNA (1µg)         x µl 

DEPC-treated water        to 20 µl 

 

The reaction mix was incubated at 25°C for 10 min to allow primers to anneal to the 

RNA. Then, cDNA synthesis was performed at 50°C for 30 min. To inactivate the 

enzyme, samples were heated for 5 min at 85°C. To remove the RNA template from 

the cDNA:RNA hybrid molecules, 1µl (2 U) of RNAse H was added and samples 

were incubated at 37°C for 20 min. cDNA was stored at -20°C. 
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3.2.2.13 Real-time polymerase chain reaction 
 

PCR is a method used to amplify specific DNA sequences located between two 

primers complementary to the 5` and 3` ends of the sequence. Real-time PCR 

detection techniques make a kinetic quantification of amplified sequence possible.  

The Light Cycler© instrument from Roche Diagnostics, Mannheim, is a thermocycler 

combined with a fluormeter. For fluorescence detection, the SYBR Green I Dye was 

used. This fluorescent dye intercalates only in dsDNA. The fluorescence intensity of 

this DNA-SYBR green complex is much higher than the intensity of the dye alone. 

The signal intensity is directly proportional to the DNA amount and, therefore, the 

highest at the end of the elongation phase. The fluorescence intensity is measured at 

the end of each elongation phase, at a certain temperature, and in a single optical 

unit. The quantification occurs in the log-linear phase of constant amplification since 

only in this phase the dependence between the amounts of PCR end product and 

starting material is linear. The cycle number, at which the increase in fluorescence is 

exponential, is measured and called the crossing point. 

Different quantification methods are available with the LightCycler© System. Absolute 

quantification is performed with an external standard curve of known concentrations 

of the target DNA. The relative quantification expresses the target gene 

concentration in relation to a reference gene, usually a house keeping gene. The 

efficiency of amplification reactions of target and reference genes is normalized using 

a dilution series of calibrator DNA or cDNA. Standard curves of both target and 

reference gene are used to obtain the concentrations.  

The identification of specific DNA products is possible using melting curve profiles. 

The melting temperature of dsDNA depends on length, sequence, and GC content. 

Thus, every sequence has a specific melting curve profile. Within the PCR reaction, 

the melting curve is obtained by steadily increasing temperatures while the 

fluorescence is monitored.       

The LightCycler PCR is very sensitive with a detection limit of one to ten copies for 

plasmid DNA per sample. For genomic DNA the detection of a single-copy gene in 3 

pg DNA is estimated.    

This sensitive PCR technique was used to detect low amounts of HBV rcDNA and 

cccDNA, to clearly distinguish between the two DNA forms, for precisely quantify the 
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expression of the HBV pgRNA as well as of differentiation markers and transcription 

factors.  

The reaction mix for real-time PCR contains the Taq-DNA-polymerase, reaction 

buffer, MgCl2 and dNTPs. The following master-mix was prepared for each reaction:                 

 

Reagent         Vol. 

LightCycler FastStart DNA Masterplus SYBR Green I   4 µl 

Primer fw            1 µl 
Primer rev            1 µl 

ddH2O          12 µl  

 

2 µl of template DNA or ddH2O were added to the mix. The LightCycler instrument 

was programmed as shown: 

 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C    10 sec 

4. Elongation    72°C    30 sec 

5. Detection    at the end of the elongation phase 

 

For some target genes the detection temperature and time were changed. 
 
 

Human oligoadenylate synthetase 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C    10 sec 

4. Elongation    72°C    30 sec 

5. Detection    87°C      1 sec 
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HBV pgRNA 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C      5 sec 

4. Elongation    72°C    20 sec 

5. Detection    83°C      2 sec 

 

HBV rcDNA 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C      5 sec 

4. Elongation    72°C    20 sec 

5. Detection    at the end of the elongation phase 

 

HBV cccDNA 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C      5 sec 

4. Elongation    72°C    45 sec 

5. Detection    88°C      2 sec 

 

mito DNA 

Step    Temperature     Time 

1. Initial denaturation  95°C      5 min    

2. Denaturation   95°C    15 sec 

3. Annealing    60°C      5 sec 

4. Elongation    72°C    30 sec 

5. Detection    at the end of the elongation phase 
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3.2.3 Protein analysis 

3.2.3.1 Protein isolation 

3.2.3.1.1 Isolation of total cellular proteins 
 
For extraction of total cellular proteins, cells were lysed with CHAPS or SDS- buffer 

and incubated for two hours at room temperature. For total protein extraction from 

the human tissue, human tissue pieces of approximately 25 mg were chopped up 

using plastic chops and liquid nitrogen. Then, chopped tissue was homogenized by 

passaging 10 times through a 24 gauge needle and incubated with SDS- buffer for 

two hours on ice. To discard cell or tissue debris, samples were centrifuged at 13.000 

rpm for 30 min at +40C. The supernatant containing total proteins was kept and the 

pellet containing cell or tissue debris was discarded. Isolated proteins were stored at 

-200C. Prior to the Western blot analysis, samples were mixed with the Western blot 

probe buffer, boiled at 950C for 5 min under reducing conditions for denaturation of 

secondary and tertiary structures and loaded onto SDS-page.  

 

3.2.3.1.2 Isolation of membrane proteins 
 
Cells were homogenized in TED buffer, and cell lysates were centrifuged for 15 min 

at 500g and 40C for isolation of total proteins. One volume of supernatant was mixed 

with one volume of KCl (1M) and incubated for 15 min at RT. Then, samples were 

centrifuged for 45 min at 100.000g and 40C. Pellets, which contained membrane 

proteins, were re-suspended in 150 µl TED buffer and stored at -800C. 

 

3.2.3.2 Calculation of protein concentrations 
 

To determine total protein concentrations, the BCATM Protein Assay Kit (Pierce, 

Rockford) was used. This assay is based on the reduction of Cu2+ to Cu+ by proteins 

in an alkaline medium, combined with the colorimetric detection of Cu+ with a reagent 

containing bicinchonic acid (BCA). The complex formed by the chelation of 2 BCA 

molecules with one Cu+ molecule exhibits a strong absorbance at 562 nm. The 

absorbance is linear with increasing protein concentrations over a working range of 

20 to 2000 µg/ml. The reaction was performed according to the manufacturers’ 



3 Material and Methods 
 

- 67 - 

instructions, and dilution series of bovine serum albumin served as the protein 

standard.  

 

3.2.3.3 SDS-page gel electrophoresis 
 
15 µg or 30µg or 80µg of total cellular or membrane proteins from cells, human or 

mouse tissue, respectively, were mixed with probe buffer containing β-

mercaptoethanol  and boiled for 5 min at 95°C. Samples were loaded onto a 6.5-

12.5% SDS polyacrylamid gel according to the expected protein size. As a standard 

for protein size a pre-stained marker (Fermentas) was added. The proteins were 

electrophoresed using a blot chamber (MiniProtean®3 Cell, BIO-RAD, Hercules) with 

constant voltage (100V per gel).   

 

3.2.3.4 Western blot 
 
The proteins were transferred from the SDS gel onto a nitrocellulose membrane 

(Amersham, Buckinghamshire) using a semi-dry transfer cell (BIO-RAD, Hercules). 

The amperage was calculated with the following formula: 1.2 mA/cm² of the gel for a 

1 h transfer.  

After protein transfer, the membrane was blocked in blocking solution for 1 h and 

probed for 1.5 h at RT or over night at 4°C with the indicated antibody. After three 

washing steps of 10 min each, the secondary antibody was added in a 1: 2000 

dilution for 1h. The detection was performed with the WestDura or WestFemto 

enhanced chemiluminescence detection kit (Amersham, Buckinghamshire) using the 

Gel Doc 2000 System (BioRad Laboratories, Munich, Germany).  

If re-probing of the membrane with another antibody was necessary, the membrane 

was stripped with 0.2 M NaOH for 10 min, rinsed twice for 5 min with ddH2O, blocked 

using blocking solution and then incubated with the appropriate primary and 

secondary antibody.  
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3.2.3.5 Immuno-fluorescence staining 
 
HepG2-H1.3 cells were plated onto collagen IV-coated 8-well glass slides and 

transfected with either siRNA against HNF4α or with non-silencing control siRNA. 5 

or 7 days post transfection, cells were washed 3 times with PBS and fixed in 3.7% 

PFA for 10 min. Immediately after fixation, cells were incubated with 50 mM 

ammonium acetate to saturate the free PFA residues. Following three washes with 

PBS, cells were permeabilised with 0.5% saponin/PBS for 10 min. Unspecific 

antibody binding sites were blocked with 10% serum in 0.1% saponin/PBS for 1 h. 

The primary antibody was added over night. Three washing steps with 0.1% 

saponin/PBS for 10 min each followed, before the cells were incubated for 1 h with 

the secondary antibody, diluted 1 : 2000 and supplemented with Dapi (0.5 µg/ml). 

The cells were washed 3 times with 0.1% saponin/PBS. All incubation and washing 

steps were performed on a slowly rocking platform. After the staining procedure, the 

8-well chambers were removed from the slide, and cells were mounted with 

Mowiol/Dabco. A cover slip was sealed on the slide with nail polish. The slides were 

stored at 4°C. Immunofluorescence analysis was performed on an Olympus 

FluoView1000 confocal microscope (Olympus, Hamburg).        

For staining of cytospins, cytospins were first air dried for 30 min at RT and 

subsequently fixed with a mix of acetone and methanol 1:1. Second, cytospins were 

re-hydrated using 1xPBS for 10 min at RT. Finally, after blocking for 60 min at RT, 

the cytospins were incubated with primary antibody over night at 4°C, and after two 

wash steps, with secondary antibody for one hour at RT. The stained cytospins were 

mounted and stored at -20°C. Immunofluorescence analysis was performed on an 

Olympus IX81 microscope (Olympus, Hamburg). 

 

3.2.3.6 Immunohistochemistry 
 
Liver tissues were formalin fixed for 24 h, embedded in paraffin and sectioned. Three 

μm sections were stained with hematoxylin/eosin using a standard protocol and liver 

histology was analyzed by light microscopy. Immunohistochemical detection of HBV 

core antigen was carried out using a polyclonal rabbit anti-HBcAg antibody. Tissue 
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embedding, staining with hematoxylin/eosin and immunohistochemistry were 

performed by the Institute of Pathology, University Hospital Cologne. 

 

3.2.4 Animals 
 

For the study of HO-1 influence on HBV replication, C57Bl6 mice were used.  

Adenoviral vectors encoding a 1.3-fold overlength HBV genome genotype D 

(AdHBV) or an HBV-genome with all knocked out open reading frames (AdHBVk/o) 

were diluted with 1xPBS to obtain 109 infectious units per inoculum (200 µl) and 

injected intravenously into the tail vein.   

CoPP (10 mg/kg body weight) was dissolved in 0.2 mol/L NaOH, adjusted to neutral 

pH level, and administered intraperitoneally in a final volume of 200μl/20g of mouse. 

For the study of onset of HBV replication during the liver development and 

hepatocyte differentiation, HBV 1.3 and HBV xfs transgenic mice were used. 

Breeding pairs were selected according to the high serum levels of HBeAg, (15 

ng/ml) indicating efficient HBV replication (measurement of HBeAg was performed by 

the Institute of Virology, University of Cologne). Mice were killed using a CO2-

chamber at ED 12.5, 15.5, 18.5, day 0.5, 2; week 1, 2 and 4 postnatally.  

Mouse blood was taken up by heart puncture and the liver was removed. Liver tissue 

was cut into pieces and distributed for different purposes. To obtain paraffin slices, 

liver pieces were fixed with formalin for 24 hours at 40C and, upon rinsing with 

1xPBS, paraffin-embedded. For RNA, DNA or protein isolation, liver pieces were 

conserved with 600 µl RNAlater, incubated at +40C over night and stored at -200C.  

 

3.2.4.1 Analysis of liver injury 
  
Liver injury in mice was determined by measurement of serum ALT activity using 

specific bioreaction strips on a Reflovet® Plus reader (Roche Diagnostics, Mannheim, 

Germany). The measurement of GPT is based on the following reactions: 

 
The change in indicator colour was detected by a photodiode element.  
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3.2.4.2 Cytospins 
 
The abdominal cavity of pregnant mice was opened and foetuses were removed from 

the uterus and placed in the modified HBSS solution. Livers of embryos were isolated 

using 40 gauge needles, scalpel and light microscope, homogenized in the modified 

HBSS+EGTA solution and centrifuged for 5 min at 400g and 40C. To perform single 

cell suspensions from adult mouse livers, mice were killed and the abdominal cavity 

was opened. The mouse liver was perfused using portal vein with pre-warmed 

calcium-free wash medium for 10 min, 80-100 ml, 5-9 ml/min and subsequently with 

collagenase medium for 10 min, 80-100 ml, 10-15 ml/min (for medium contents see 

PHH isolation). Softened mouse livers were taken out of the abdominal cavity. 

Hepatocytes were gently removed from of the liver capsule using forceps and a 

scalpel, homogenized in the modified HBSS+EGTA solution and filtered through a 

70µm cell strainer. The cell suspension was centrifuged for 5 min at 400g and 40C. 

Pellets were washed with the modified HBSS+EGTA solution, re-suspended in 10% 

FCS-DMEM and filtered using a 40µm cell strainer into a 50 ml falcon tube. Cells 

were washed with 10% FCS-DMEM.  The cell number was counted and then 

adjusted to 1-2x107/ml. 100 µl of cell suspension were put into a cytospin camera 

and centrifuged at 1100 rpm for 2 min at RT. Then, cytospins were air dried for  

1 hour and stored at –200C.  

 

3.2.5 Statistical analysis 
 

The results were analyzed using Student’s t test, Kruskal-Wallis test and 

Pearson/Spearman correlation. All data are expressed as a mean ± standard 

deviation. A p value of 0.05 or less was considered significant. 
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4 Results                                          
4.1 Hepatocyte differentiation and replicative potential of HBV 
4.1.1 HBV replication starts after birth 
 

Although the HBV prophylaxis for newborns from HBV-positive mothers is available 

and has proven to be efficient, the rate of perinatal HBV transmission is still high, 

especially in developing countries. Here, intrauterinal transmission of the virus plays 

an important role. A prophylaxis for intrauterinal transmission of HBV has not been 

established so far. Recently, HBV has been shown to be able to cross the placenta 

and remain infectious. However, it is not known whether HBV can infect hepatocyte 

precursors and replicate in the developing liver.  

I aimed to analyze the starting point of HBV replication in the developing liver, 

changes in HBV replication efficiency during liver development, and the 

hepatocellular factors that are responsible. 

To analyze the starting point of HBV replication, I took advantage of HBV-transgenic 

mice that replicate the virus from a 1.3-fold overlength of HBV genome integrated in 

the mouse chromosomal DNA. Thus, I could investigate HBV replication irrespective 

of the early steps of the viral replication cycle. I selected breeding pairs based on 

high concentrations of HBeAg (>15 ng/ml), which  indicated efficient HBV replication. 

Markers of HBV replication, such as HBV pgRNA, core and L proteins, and 

intracellular HBV DNA were studied in fetal livers on embryonic day (ED) 12.5, 15.5, 

18.5, day 0.5, 2 (dpn) and week 1, 2 and 4 (wpn) postnatally and compared with 

those in corresponding adult mice.  

 

4.1.1.1 Synthesis of HBV DNA during liver development 
 

Since HBV replication is defined by new synthesis of viral DNA, the starting point of 

HBV replication was analyzed with sensitive qPCR using a Relative Quantification 

Software™ algorithm (Roche Diagnostics) with a detection limit of 0.2 HBV DNA 

copies per 103 cells as determined previously 232. In order to distinguish newly 

synthesized HBV DNA from integrates of HBV genome present in all cells of the 

transgenic mice, the highest levels of HBV DNA in tails of homozygous adult mice 

were taken as baseline. HBV DNA levels in liver samples of homozygous animals at 

ED 15.5 and ED 18.5 were equal to baseline and double that of heterozygous 
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animals at ED 15.5, which clearly indicates that only integrated HBV genome was 

detected (Figure 7). While at 0.5 dpn, intracellular HBV DNA levels remained almost 

at baseline, levels of HBV DNA slightly increased in 2 / 5 animals at 2 dpn and 

significantly increased at 1 wpn in 3 / 5 animals (Kruskal-Wallis, p ≤ 0.05) (Figure 7).  

After 1 wpn, HBV DNA levels increased rapidly and achieved levels seen in adult 

mice between 2 and 4 wpn (Figure 7). However, at all stages of postnatal liver 

development, HBV DNA levels showed high variations among individual animals with 

some transgenic mice having very low and others having rather high HBV DNA 

levels. 

Interestingly, kinetics of HBV replication in HBV 1.3 xfs mice, which carry an X-

deficient HBV genome, were comparable to those in HBV 1.3 mice, but generally 

higher at corresponding time points (Figure 7). To achieve maximal sensitivity, HBV 

1.3 xfs mice were used for most of my studies, while HBV 1.3 mice were used to 

control for an influence of the lacking expression of HBV X-protein.  

From these analyses, I concluded that even if all hepatocytes carry the HBV genome, 

HBV replication does not start before birth. I determined that replication of the virus 

starts within the first week after birth. 
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Fig. 7: Synthesis of HBV DNA during liver development 

 Total DNA from livers and tails of adult HBV 1.3 transgenic mice (+) and HBV 1.3 xfs 
 mice (-), was isolated and compared to fetal liver DNA obtained at ED 15.5 and ED 
 18.5 and to newborn liver DNA obtained 0.5 and 2 days (dpn) as well as 1, 2 and 4 
 weeks (wpn) after birth. HBV DNA was quantified by LightCycler™ real time PCR 
 relative to the house keeping gene HPRT and normalized to a dilution series of a 
  calibrator DNA. Maximal levels of HBV DNA determined in tails of adult transgenic 
 animals were set to 1 and used as baseline. Levels of HBV DNA from individual 
 samples and mean values are given. At ED 15.5, heterozygous (het) and 
 homozygous (hom) fetuses were analyzed. 

 

4.1.1.2 Transcription of HBV pgRNA during liver development 
 

To analyze why HBV replication started late during liver development, expression 

levels of HBV pgRNA, the template for reverse transcription and translation of HBV 

core and polymerase proteins, were determined by qPCR (Figure 8A&B). HBV 

pgRNA was barely detectable at ED 12.5 with levels at only 1.4 % of those found in 

the corresponding maternal adult liver (Figure 8A). Along with fetal and early 

postnatal liver development, amounts of HBV pgRNA increased continuously, 

although it still was significantly lower than in the AL until 1 wpn: 5.8%, 19.4%, 23% 

and 45.1% on ED15.5, ED 18.5, 0.5 dpn (p ≤0.01) and 2 dpn (p ≤0.05), respectively 

(Fig. 8A and B).  
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Interestingly, in HBV 1.3 mice, the dynamics of HBV pgRNA was comparable, but 

levels of HBV pgRNA were generally lower than in HBV 1.3 xfs mice at 

corresponding time points (Figure 8B). Irrespective of the mouse strain, levels of 

HBV DNA correlated closely with those of HBV pgRNA in individual animals 

(Spearman correlation: 0.78, p ≤ 0.05).  
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Fig. 8:  Expression of HBV pgRNA during liver development  
 Total RNA from livers of adult HBV 1.3 transgenic mice (+) and HBV 1.3 xfs mice (-), 
 which carry an X-deficient replication competent HBV genome, was isolated and 
 compared to fetal liver RNA obtained at ED 12.5, ED 15.5 and ED 18.5 and to 
 newborn liver RNA obtained 0.5 and 2 days (dpn) as well as 1, 2 and 4 weeks (wpn) 
 after birth. Expression of HBV pgRNA was quantified relative to GAPDH (A) or 
 to β-actin (B) by LightCyclerTM real-time PCR and normalized to a dilution series of 
 calibrator cDNA using the Relative Quantification Software. 
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4.1.1.3 HBV protein expression during liver development 
 

HBV core protein builds the HBV nucleocapsid and is a prerequisite for HBV DNA 

replication. While HBV pgRNA was detected at very low level from ED 12.5 onwards, 

expression of HBV core protein was first detected by Western blot analysis at ED 

18.5 (Figure 9A, B&C). At this time point, amounts of HBV core protein composed 

only 0.53% of those in AL. Levels of HBV core protein increased continuously during 

postnatal liver development (Figure 9A) irrespective of the presence of HBV X protein 

(Figure 9C), but did not reach levels detected in adult livers even at 4 wpn. HBV core 

protein comprised 2.2%, 3.3%, 28.4%, 32.5% and 37.8% of those in AL on 0.5 dpn, 2 

dpn, 1, 2 and 4 weeks postnatally, respectively, as measured by Western blotting 

(Figure 9B). 

 

 
 
Fig. 9: Expression of HBV core protein during liver development 
 (A) Total cellular proteins from livers of transgenic mice carrying replication 
 competent, x-deficient HBV genomes were isolated at ED 12.5, ED 15.5 and ED 
 18.5, 0.5 and 2 days (dpn) as well as at 1, 2 and 4 weeks (wpn) after birth and from 
 maternal adult livers (AL). 80 µg of proteins per sample were separated by SDS-
 PAGE, blotted and stained for HBV core protein and β-actin. Representative Western 
 blots are shown. 
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(B) HBV core protein expression in 60 µg of total protein extracted from livers at 2 days 
postnatally (2 dpn) was compared to that in 3 to 60 µg of total protein in maternal livers. 
(C) Expression levels of HBV core protein in HBV 1.3 transgenic mice (+) and HBV 1.3 xfs 
mice (-) were compared at different stages of liver development.  
 

To study the expression of HBV core protein at the single cell level and with higher 

sensitivity, I isolated fetal liver cells at ED 12.5 and ED 15.5 and subjected them to 

immunostaining. At neither time point, did fetal liver epithelial cells, as identified by 

co-staining with an epithelial-specific pancytokeratin marker, express HBV core 

protein, whereas hepatocytes isolated from adult mouse livers stained clearly positive 

(Figure 10A).  

To analyze the distribution of HBV core protein within the hepatic lobule, 

immunocyto-/-histochemical stainings of liver samples at all stages of liver 

development were performed. In accordance with the results obtained using Western 

blot analysis, single hepatocytes first stained positive for HBV core protein at ED 18.5 

(Figure 10B). During postnatal liver development, the number of HBV core positive 

cells, and in particular the number of cells with cytoplasmic HBV core staining, 

increased continuously (Figure 10B). Until 1 wpn, HBV core positive cells were 

distributed throughout the whole liver lobule (Figure 10B). The characteristic 

pericentral zonation of HBV core protein expression as seen in adult liver became 

obvious at 2 wpn and was readily formed at 4 wpn (Figure 10B).  
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Fig. 10: Immunocyto-/-histochemistry for HBV core protein during liver 
 development  
 (A) Single cell suspension obtained from embryonic liver at ED15.5 or 
 corresponding adult liver were spanned on cytospins and co-stained for HBV core 
 protein (green) and pancytokeratine (red). Nuclei were stained with DAPI (blue).  

(B) Livers of transgenic mice were fixed with formalin and paraffin-embedded. 
Slices of paraffin-embedded liver tissues were stained for HBV core protein and 
developed using the APC-system and horseradish peroxidase (brown) (performed 
by Dr. Uta Drebber). 

 

To investigate the time point when infectious HBV particles may start to be released, 

the expression of HBV L protein, an essential component of the viral envelope, was 

quantified by Western blot analysis. Low amounts of HBV L protein (15.5% of those 

in AL) were first detected at 0.5 dpn (Figure 11A). Postnatally, production of HBV L 

protein increased continuously, with levels at 23.3%, 35.5% and 50.7% of adult mice 
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on day 2, week 1 and 2 postnatally, respectively, and achieved levels seen in adult 

mice at 4 wpn (Figure 11A). In HBV 1.3 mice, HBV L protein was also first detected 

at 0.5 dpn, but measured amounts of this viral protein were lower than in HBV 1.3 xfs 

mice at corresponding time points (Figure 11B). 

 

 
 

Fig. 11: Expression of HBV L protein during liver development 
 (A) Total cellular proteins from livers of transgenic mice carrying replication 
 competent, x-deficient HBV genomes were isolated at ED 12.5, ED 15.5 and ED 
 18.5, 0.5 and 2 days (dpn) as well as at 1, 2 and 4 weeks (wpn) after birth and from 
 maternal adult livers (AL). 80 µg of proteins per sample were separated by SDS-
 PAGE, blotted and stained for HBV L protein and β-actin. Representative Western 
 blots are shown. 
 (B) Expression levels of HBV L protein were compared in HBV 1.3 transgenic mice 
 (+) and HBV 1.3 xfs mice (-) at different stages of liver development.  

 

 

4.1.2 High expression levels of HNF4α in concert with HNF1α determine the 

efficiency of HBV replication 
 

Then, I aimed to identify cellular factors determining the replicative potential of HBV 

in the developing liver and changes in the efficiency of HBV replication along with 

hepatocyte differentiation.  
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Previous works suggested that the efficiency of HBV replication 159, 160, 157, 158, 156, 161, 
162 and the activity of HBV promoters, especially the preS1-promoter, 163, 164, 158, 135, 165 

depends on the degree of hepatocyte differentiation.  

However, none of these studies throughly analyzed, which hepatocellular factors link 

HBV transcription and replication to hepatocyte differentiation. Considering 

hepatocyte-enriched transcription factors as putative candidates, it is not known 

whether only one or a combination of these transcriptional regulators is responsible 

for differentiation-dependent activity of HBV promoters. Moreover, it is still unclear 

whether hepatocyte-enriched transcription factors act on HBV promoters in a dose-

dependent manner. Thus, the essential link between the efficiency of HBV replication 

and the degree of hepatocyte differentiation remains to be elucidated.  

 

4.1.2.1 Markers of hepatocyte differentiation 
 

To identify hepatocellular factors determining the efficiency of HBV replication during 

hepatocyte differentiation, I switched to cell culture experiments. I first analyzed how 

strong the dependence of HBV replication efficiency on hepatocyte differentiation is.  

For this purpose, I chose primary human hepatocytes (PHH), the hepatoma cell lines 

HepG2, HuH7 and HepaRG and the hepatocyte cell line Pop10. HepaRG cells, 

which differentiate and become permissive for HBV if cultivated with corticosteroids 

and dimethyl sulfoxide (DMSO) 50, 156, were compared in an undifferentiated and a 

differentiated state.  

To prove the differentiation status of my cells, I characterized the expression of 

hepatocyte specific differentiation markers.  

All cells stained positively for albumin and ferritin, whose expression levels (Fig. 12A) 

did not correlate with the expected level of hepatocyte differentiation. Therefore, I 

analyzed key proteins of metabolic pathways in hepatocytes. Expression levels of 

cytochrome p450 family member CYP1A2, steroid regulatory element binding protein 

2 (SREBP-2) (Fig. 12A), 2’3’-tryptophandioxygenase (TDO), and cytoplasmic 

phosphoenolpyruvate carboxykinase (PEPCK) (Fig. 12B) were markedly higher in 

primary hepatocytes than in HepG2 or HuH7 cells and increased upon differentiation 

in HepaRG cells. All cells expressed comparable levels of hydroxymethylglutaryl-

CoA-reductase and pterin-4 alpha-carbinolamine dehydratase. In addition, I 

determined expression of mitochondrial cytochromes (liver specific antigen, LSA). 
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Only in primary hepatocytes and differentiated HepaRG cells expression of LSA was 

detected (Fig. 12A). 

Since polarization is an important feature of hepatocytes and other epithelial cells, I 

analysed the organic anion transporter polypeptide C (OATP-C) and bile salt 

exporting pump (BSEP) localized in the basolateral and apical hepatocyte plasma 

membranes, respectively. Western blotting detected OATP-C only in primary 

hepatocytes (Fig. 12A), in which basolateral distribution and thus polarization was 

confirmed by immunofluorescence staining. Levels of OATP-C and BSEP mRNA 

were highest in PHH and increased upon differentiation in HepaRG cells, which  

indicates regulation mainly at the level of transcription (Fig. 12B). Pop10 cells 

expressed none or little of the studied markers of hepatocyte differentiation. 

Taken together, differentiated hepatocytes expressed a set of proteins that indicate 

high metabolic activity as well as hepatocyte polarization. Expression of TDO, 

PEPCK, BSEP and OATP-C proved most appropriate as indicators of hepatocyte 

differentiation, which were regulated primarily at the transcriptional level. 
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Fig. 12: Differentiation status of cells of hepatocyte origin and HBV replication 
 (A)  Western blot analysis of OATP-C, CYP1A2, LSA, albumin, ferritin, SREBP-2, 
 ApoB100 and β-actin. Molecular weights of corresponding proteins are given in kD.  
 A representative experiment is shown.  
 (B) Expression levels of TDO, PEPCK, OATP-C and BSEP were determined 
 relative to GAPDH by LightCyclerTM real-time RT-PCR. The normalized expression 
 level in PHH was set to 1. Mean values ± SD from three different samples of each 
 cell line are given. PHH from four different donors were included.  
 (C) PHH, HepG2, Huh7, Pop10 and differentiated and undifferentiated HepaRG
 cells  were transduced with Ad-HBV to induce HBV replication. Enveloped HBV 
 progeny released from transduced cells was quantified by DNA dot blot analysis 
 following CsCl gradient sedimentation. Numbers of enveloped HBV particles 
 released per cell were calculated. A representative experiment is shown.  
 (D) HBV pgRNA at day 7 after transduction with Ad-HBV was determined relative to 
 GAPDH by LightCyclerTM real-time RT-PCR. The normalized expression level in 
 PHH was set to 1. Mean values ± SD from two independent experiments are given. 
 (E) Western blot analysis of HBV core protein and GFP. A representative 
 experiment is shown.  
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4.1.2.2 Efficiency of HBV replication in different hepatocytes 
 

To study the efficiency of HBV replication independent of the early steps of virus 

uptake and to enable the transcription of HBV genes from an extrachromosomal 

template, I transduced PHH, HepG2, HuH7, differentiated and undifferentiated 

HepaRG and Pop10 cells with an HBV genome and a GFP cDNA using an 

adenoviral vector Ad-HBV. Adenoviral vectors have been demonstrated to deliver 

genes in a wide range of cell types and allow efficient transcription of genes from an 

episomal template.  

I achieved comparable (90-95%) transduction rates of cells by Ad-HBV as confirmed 

by fluorescence microscopy and Western blot analysis of GFP expression (Fig. 12E). 

I monitored the release of HBV progeny in cell culture media daily and harvested 

cells on day 7 post transduction. To distinguish enveloped HBV virions from HBV 

capsids, I performed CsCl density gradient centrifugation with subsequent 

fractionation that allowed separation of different HBV progeny forms based on their 

density. To quantify enveloped HBV progeny, I performed DNA dot blot analysis. 

As shown in Fig. 12C, PHH started to release enveloped progeny HBV particles at 

day 3, HepG2 and HepaRG cells at day 4, and HuH7 cells at day 5 after transduction 

with Ad-HBV. Pop10 cells did not release progeny HBV at all (detection limit: one 

HBV particle / cell). PHH secreted > 500 virions per cell per day, which was the 

highest amount and markedly more than HepG2 cells (13.6-, 13.4-, 2.7-fold, at day 5, 

6 and 7 post transduction, respectively), differentiated HepaRG cells (14.4-, 14.3-, 

3.9- fold) or HuH7 cells (10.5-, 15.7-, 13-fold). Differentiated HepaRG cells released 

2- to 3.3-fold more HBV progeny than respective undifferentiated cells.  

By analysing the HBV replication cycle, I found expression levels of HBV pgRNA to 

be the limiting step. Although transduced to equal levels, HepG2, differentiated 

HepaRG and HuH7 cells expressed only 9, 8.5 and 6% of the amount of HBV pgRNA 

detected in PHH at day 7, respectively, and Pop10 cells expressed no HBV pgRNA 

at all (Fig. 12D). Upon differentiation, HBV pgRNA increased 5.7-fold in HepaRG 

cells. Accordingly, expression of HBV core protein was highest in primary 

hepatocytes and increased upon differentiation of HepaRG cells (Fig. 12E).  

Taken together, primary hepatocytes, the highest differentiated cells in my study, 

replicated HBV better than hepatoma cells and released more progeny HBV. Pop10 

cells, which express none or little of studied hepatocyte differentiation markers, did 

not replicate HBV at all. The differences in the efficiency of HBV replication 
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depended largely on the expression level of the HBV pgRNA. Thus, efficiency of HBV 

replication was regulated at the transcriptional level.  

 

4.1.2.3 Expression of hepatocyte-enriched transcription factors in cells of 
hepatocyte origin with different degree of differentiation 

 

Since HBV replication as well as hepatocyte differentiation was primarily regulated at 

the transcriptional level, I analyzed the hepatocyte-enriched transcription factors 

HNF1α/β, HNF3α/β/γ, HNF4α, C/EBPα/β, LRH-1, PGC-1α and COUP-TF II as 

candidate common denominators. 

PHH expressed the highest levels of HNF1α, HNF3γ and HNF4α. Upon 

differentiation, HepaRG cells expressed increasing amounts of HNF1α, HNF3γ, 

HNF4α and C/EBPα and β, but decreasing amounts of HNF3α. In addition, PHH as 

well as HepaRG cells expressed different isoforms of C/EBPβ as compared to the 

other analyzed cells. Pop10 cells, in contrast, only contained trace amounts of 

HNF3γ and HNF4α and no detectable HNF1α (Fig. 13A&B). Interestingly, the 

expression of PGC-1α and COUP-TF II, the positive and negative co-factors of 

HNF4α, respectively, did not differ to a large extent between all cells analysed and 

was relatively constant during differentiation of HepaRG cells.   

To correlate transcription factor expression levels with HBV replication, I cultivated 

stable HBV-producing cell lines under conditions promoting differentiation: a collagen 

matrix and medium containing dexamethasone, DMSO and low FCS. Levels of 

OATP-C and BSEP mRNA rose 2.9- and 5.7-fold in HepG2.2.15 and 10.8- and 6.4- 

fold in HepG2-H1.3 cells, respectively, which indicates successful differentiation 

during long-term culture. In parallel, HNF4α (Fig. 14C, D), HNF1α and HNF3γ (Fig. 

14C, 15A&G) levels rose 2.9-, 3.3- and 2.3-fold in HepG2.2.15 cells and 7.0-, 4.5- 

and 3.0-fold in HepG2-H1.3 cells, respectively, whereas C/EBPα/β, HNF3α, HNF3β, 

LRH-1, PGC-1α and COUP-TF expression did not show a clear trend in both cell 

lines (Fig. 15A-J and table 1). 
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Fig. 13: Expression patterns of hepatocyte-enriched transcription factors  
 (A) Western blot analysis of HNF1α, 3α, 3β, 3γ and 4α, C/EBP α and β, LRH-1, 
 PGC-1α and COUP-TF II expression in primary hepatocytes (PHH), HepG2, Huh7, 
 Pop10, differentiated and undifferentiated HepaRG cells. Molecular weights of 
 corresponding proteins are given in kD. (B) LightCyclerTM real-time RT PCR 
 analysis of HNF1α, 3γ and 4α expression. Normalized expression levels in PHH 
 were set to 1. Mean values ± SD from three different samples of each cell line are 
 given (except HepaRG: two samples each). PHH from four different donors were 
 included. 
 

Accordingly, levels of HBV pgRNA increased 8.1-fold in HepG2.2.15 and 8.6-fold in 

HepG2-H1.3 cells. The amount of progeny HBV released into the cell culture medium 

increased from day 0 to 16 from 2.3±0.14 to 217.4±43.38 (HepG2.2.15 cells) and 

from 1.79±0.1 to 1281.8±149.4 HBV-DNA copies / cell (HepG2-H1.3 cells) (Fig. 14A). 

HBV core- and L-protein also increased over time: 10- and 7.1-fold in HepG2.2.15 

cells and 14- and 8.8-fold in HepG2-H1.3 cells, respectively (Fig. 14B). 

Taken together, differentiation of the two HepG2 based cell lines resulted in 

increased expression of HNF1α, HNF3γ and HNF4α and raised HBV replication. In 

both cell lines, HBV replication depended on transcription of HBV pgRNA which 

correlated most closely with rising levels of HNF4α (Pearson correlation 0.93, 

p≤0.01) and also HNF1α and HNF3γ (see table 1). This led us to the hypothesis that 

HNF1α, HNF3γ and/or HNF4α provide the essential link between hepatocyte 

differentiation and HBV replication. 
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Fig. 14: HBV replication and hepatocyte differentiation in stable HBV-producing 
 cell lines  
 Stable HBV-producing cell lines HepG2 2.15 (left panel) and HepG2-H1.3 (right 
 panel) were cultured under differentiating conditions and lyzed at indicated time 
 points. (A) HBV-DNA was quantified by LightCyclerTM real-time PCR in 200µl of cell 
 culture medium relative to an external standard. The amount of HBV progeny per 
 cell was calculated (given as mean ± SD) (grey bars). HBV pgRNA was determined 
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relative to GAPDH by LightCyclerTM real-time RT PCR (black line). (B) Western blot analysis 
of HBV- core and L-protein as well as albumin and β-actin. Molecular weights are given in 
kD. (C) HNF4α, HNF1α and HNF3γ content was quantified relative to β-actin by 
chemiluminescence imaging of Western blots. (D) HNF4α content was quantified relative to 
albumin by chemiluminescence imaging of Western blots. HNF4α mRNA was quantified by 
LightCyclerTM real-time RT-PCR. Normalized expression levels on day 0 were set to 1. 
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Fig. 15: Expression of hepatocyte-enriched transcription factors in stable  
 HBV- producing cell lines  
 Stable HBV-producing cell lines HepG2 2.15 (left panel) and HepG2-H1.3 (right 
 panel) were cultured under differentiating conditions and lyzed at indicated time 
 points. (A-J) Protein content of hepatocyte-enriched transcription factors was 
 quantified relative to β-actin by chemiluminescence imaging of Western blots. 
 Relative band intensity is given. mRNA of hepatocyte-enriched transcription factors 
 was quantified by LightCyclerTM real-time RT-PCR relative to GAPDH and 
 normalized to serial dilutions of calibrator. Normalized expression levels on day 0 
 were set to 1.  
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Table 1 

Pearson correlation: HBV pg RNA and transcription factor 

 HNF1α HNF1β C/EBPα C/EBPβ HNF3α 

HepG2.2.15 0.82 0.51 0.71 0.75 0.21 

HepG2-H1.3 0.87 0.78 0.46 -0.42 0.56 

 HNF3β HNF3γ LRH-1 PGC-1α COUP-TFII

HepG2.2.15 0.57 0.94 -0.73 0.43 -0.30 

HepG2-H1.3 0.61 0.93 0.48 0.87 -0.017 

 

 

4.1.2.4 High expression levels of HNF4α and HNF1α are required for efficient 
HBV replication 

 

To test whether efficient HBV replication depends on high expression levels of 

HNF4α, HNF1α or HNF3γ, I performed knock-down experiments in HepG2-H1.3 cells 

using specific siRNAs for these transcription factors. As control, I used HepG2-H1.3 

cells transfected with AlexaFluor488-labeled, non-silencing siRNA to which all effects 

of specific siRNAs were related.  

The transfection efficiency was approximately 80% as measured by fluorescent 

microscopy of cells transfected with AlexaFluor488-labeled, non-silencing siRNA. 

I achieved a long-lasting 50%, 67% and 82% knock-down of HNF1α, HNF3γ and 

HNF4α, respectively (Fig. 16A).  

On day 5, after the knock-down of HNF4α and HNF1α, mRNA levels of OATP-C 

decreased 2.55±0.23- and 2.30±0.13-fold, BSEP decreased 1.50±0.16- and 

1.30±0.07-fold, TDO decreased 2.60±0.01- and 1.75±0.19-fold, and PEPCK 

decreased 2.80±0,19 and 2.30±0.13-fold (Fig. 16B). 

Transcription of HBV pgRNA was significantly reduced in three independent 

experiments after knock-down of HNF4α (4.7±0.3 – fold on day 3; 2.2±0.1 - fold on 

day 5 post transfection) and HNF1α (4.05±0.25 – fold on day 5) (Fig. 16C). HBV core 

protein was diminished after the knock-down of HNF4α and HBV L protein was 

diminished after the knock-down of HNF1α (Fig. 16 D&E), both leading to a 
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significant decrease in HBV progeny release (Fig. 16F). Unlike HNF1α and HNF4α, 

HNF3γ knock-down did not have any inhibitory effect (Fig. 16A-F). 

Southern blot analysis showed a 70 and 75% reduction in HBV replication after the 

knock-down of HNF1α and HNF4α, respectively (Fig. 16G). Concomitantly, the 

accumulation of HBV cccDNA in the nucleus of HepG2-H1.3 cells was inhibited 

(HNF1α 12% and HNF4α 23%) (Fig. 16H).  

 

 
 
Fig. 16: Expression of hepatocyte differentiation markers and HBV replication 
 after knock-down of HNF4α, HNF1α or HNF3γ 
 HepG2 H-1.3 cells were transfected with 5 nM siRNA (+) either specific to HNF4α, 
 HNF1α or HNF3γ or non-silencing (ns). Cells were harvested on day (d) 3, 5 and 7 
 after transfection. (A) Western blot analysis of HNF4α, HNF1α and HNF3γ. Knock-
 down efficiency of specific siRNAs are given in % (relative to ns siRNA). (B) 
 Normalized expression levels of OATP-C, BSEP, TDO and PEPCK were 
 determined by LightCyclerTM real-time RT PCR relative to delta aminolevulinate 
 synthase (ALAS). (C) Normalized expression levels of HBV pgRNA. (D) Western 
 blot analysis of HBV-core protein at day 5 and 7 and (E) HBV L protein at day 5. (F) 
 HBV-DNA was quantified by LightCyclerTM real-time PCR relative to an external 
 standard. The amount of HBV progeny per cell was calculated. (G) Southern blot 
 analysis of Hind III digested total cellular DNA using a 32P labelled HBV DNA probe. 
 HBV replicative intermediates were normalized to HBV integrates following 
 phosphoimager quantification. (H) PCR amplification products of HBV cccDNA and 
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mitochondrial DNA. Ratios were determined from real-time PCR analysis. Parental HepG2 
cells were used as control. In B, C and F ns siRNA transfected cells were set to 1. In A, D, E, 
G and H representative experiments are shown. In B, C and F, mean values ± SD of three 
independent experiments are given; (∗) p<0.05, (∗∗) p<0.01, student T test.  
 

Since neither HNF1α nor HNF4α siRNA induced interferon-γ-inducible protein-10 (IP-

10) or 2’-5’-oligoadenylate-synthetase, I excluded that induction of interferon type I, 

as a possible side effect of siRNAs, affected HBV replication (Fig. 17). 

 

 
 
Fig. 17: Expression of interferon-inducible genes after transfection of  
 HepG2 - H1.3 cells with siRNAs 

HepG2-H1.3 cells were transfected with 5 nM siRNA (+) either specific to HNF4α, 
HNF1α or HNF3γ or non-silencing (ns). Cells were harvested on day (d) 3, 5 and 7 
after transfection. Normalized expression levels of 2’,5’-oligoadenylate synthetase 
(2’,5’-OAS) (A) and interferon-γ-inducible protein-10 ( IP-10) (B), LightCyclerTM real-
time  RT-PCR. (C) HepG2-H1.3 cells were transfected with 1 µg/ml polyIC and 
used as a positive control for induction of 2’,5’-oligoadenylate and interferon-γ-
inducible protein-10 ( IP-10) 

 

To show the direct effect of HNF4α on HBV replication in a given cell, I performed 

immunostaining for HNF4α and HBV core protein on day 7 after transfection with 

siRNA for HNF4α or with non-silencing siRNA (Fig. 18). In cells with reduced or 

undetectable HNF4α, HBV core protein was also strongly reduced. 

From these experiments, I concluded that high expression levels of HNF4α and 

HNF1α are needed for efficient HBV replication as well as expression of hepatocyte 

differentiation markers. 
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Fig. 18: Analysis of HBV core and HNF4α expression in single cells 
 Immunofluorescence staining of HNF4α (AlexaFluor™ 488, green), HBV-core 
 protein (AlexaFluor™ 568, red) or cell nuclei (DAPI, blue) in cells transfected with 
 either HNF4α-specific or ns siRNA at day 7 post transfection. Laser scanning 
 confocal microscopy, scale bar 60µm. 
 

The inhibitory effect of HNF1α on the expression of HBV pgRNA was unexpected 

since HNF1α does not bind HBV core promoter unless it is mutated. HNF1α is 

reported to regulate the expression of HNF4α, which is one of transcription factors 

regulating activity of the HBV core promoter. I therefore investigated the expression 

of HNF4α after transfection of HepG2-H1.3 cells with siRNA against HNF1α. Indeed, 

after the knock-down of HNF1α, expression of HNF4α was diminished by 75% on 

day 3 and 62% on day 5 (Fig. 19). Expression levels of HNF4α were restored on day 

7 after knock-down of HNF1α, which was consistent with the disappearance of down 

regulation of HBV pgRNA levels (Fig. 19). Thus, inhibition of HBV pgRNA expression 

after knock-down of HNF1α was in first line mediated by decreased  levels of HNF4α. 
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Fig. 19: Expression of HNF4α after the knock-down of HNF1α. 
 Western blot analysis with 15 µg of total cellular proteins from HepG2-H1.3 cells 
 transfected with either ns siRNA or siRNA against HNF1α.  
 

The knock-down of HNF3γ did not show any inhibitory effect on transcription of HBV 

genes and viral replication, but levels of this transcription factor correlated well with 

expression of HBV pgRNA in previous experiments. Since HNF3α and HNF3β 

possess structural and functional homology with HNF3γ, I hypothesized that they 

substituted for decreased amounts of HNF3γ in transfected hepatoma cells. In fact, 

after the knock-down of HNF3γ, expression levels of HNF3α and HNF3β increased 

3.2- and 2.5-fold on day 5 and 4.3 and 2.6-fold on day 7, respectively (Fig. 20). 

 

 

 
 

Fig. 20: Analysis of HNF3α and HNF3β expression after knock-down of HNF3γ 
 LightCyclerTM real-time RT-PCR with 1µg of total cellular RNA isolated from HepG2-
 H1.3 cells transfected with either ns siRNA or siRNA against HNF3γ. Expression of 
 HNF3α and HNF3β was quantified relative to GAPDH and normalized to series 
 dilutions of calibrator cDNA. Normalized expression levels of HNF3α (A) and 
 HNF3β (B) are given. Expression levels of corresponding transcription factors in 
 cells transfected with ns siRNA were set to 1.  
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4.1.2.5 Levels of HNF4α determine HBV core protein expression and HBV 

replication in vivo in human tumor and non-tumor liver tissue 

 
To test whether expression levels of hepatocyte-enriched transcription factors also 

determine the efficiency of HBV replication in vivo, in livers of infected patients, I 

analysed expression of hepatocyte-enriched transcription factors, production of HBV 

core protein and pgRNA in tumor as well as corresponding peritumor tissues of HCC 

patients chronically infected with HBV. Tumors were graded as shown in materials 

and methods. Minor differences of either HBV pgRNA or HBV core protein or 

hepatocyte-enriched transcription factors were shown between tumor and peritumor 

tissue samples of a given patient, whereas I found high interindividual variation. In all 

samples analysed, amounts of HNF4α significantly correlated with amounts of HBV 

core protein (Pearson correlation 0.82, p<0.01) (Fig. 21A). Also, levels of HBV 

pgRNA correlated with expression levels of HNF4α (Pearson correlation 0.57, 

p=0.057) (Fig. 21B). Thus, the data from patient material confirm that efficient HBV 

replication in vivo also relies on high expression levels of HNF4α. 

 

 
 

Fig. 21: Correlation of the amounts of HNF4α and HBV core protein or HBV 
 pgRNA in tumor-peritumor tissues of HCC patients chronically infected 
 with HBV 
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(A) Western blot analysis for HNF4α, HBV core protein and albumin of lysates from tumor-
peritumor tissue samples from five patients (pt 1 to 5), three unpaired HCC tissue samples 
(pt 6,7,8) and three normal liver tissue samples (pooled). HNF4α and HBV core protein, 
respectively, were quantified relative to albumin using chemiluminescence imaging. Relative 
band densities are given. (B) Normalized expression levels of HBV pgRNA were determined 
by LightCyclerTM real-time RT PCR relative to GAPDH, normalized to a series dilutions of 
calibrator cDNA and are shown in comparison to HNF4α expression. 
 

4.1.3 Expression of hepatocyte-enriched transcription factors during liver 
development in transgenic mice 

 

Next, I studied whether HNF4α and HNF1α correlate with the late onset of HBV 

replication and the changes in HBV replication efficiency during hepatocyte 

maturation. In addition, I examined expression of PGC-1α and COUP-TF, since they 

were reported to be an important co-activator and co-repressor of HNF4α-regulated 

transcription during fetal liver development, respectively. In accordance with the 

literature, expression of HNF4α, HNF1α, PGC-1α and COUP-TF was detected at the 

mRNA level on ED12.5, being 15.5%, 21.9%, 32.5% and 70% of those in AL, 

respectively (Fig. 22A).  

In Western blot analysis, I first detected HNF1α, HNF4α and COUP-TF at ED 15.5 

and PGC-1α at ED 18.5 (Fig. 22B). The protein levels of HNF1α, HNF4α and PGC-

1α, which are required for transcription of HBV RNAs, increased from ED 15.5 

onwards, being 12%, 5% and 7% on ED18.5, 33%, 30.5% and 38.4% on 0.5 dpn, 

52%, 52% and 53.8% on 2 dpn, 79.9%, 81%, and 70.8% on week 1, 93.2%, 95% 

and 89.9% on week 2 postnatally, respectively, (Fig. 22B) achieving those in adult 

liver at 4 wpn (Fig. 22B). Expression of COUP-TF, which negatively regulates HBV 

pregenome transcription, readily increased until ED 18.5 and remained constant 

during further liver development (Fig. 22B). Among the studied transcription 

regulators, amounts of HNF1α and HNF4α correlated most closely with expression 

levels of HBV pgRNA (Spearman correlation 0.949, p < 0.01 and 0.889, p < 0.01, 

respectively). 

I suggest that increase in expression levels of HNF4α in concert with HNF1α 

and PGC-1α is responsible for high-level transcription of HBV pregenomes and 

morpholological and metabolic differentiation of hepatocytes required for onset of 

HBV replication and formation and secretion of DNA-containing HBV particles.  
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Fig. 22: Expression of hepatocyte-enriched transcription factors during liver  
 development 

(A)  Total RNA was isolated from livers of HBV 1.3 xfs mouse mothers (AL) and 
compared to fetal liver RNA obtained at ED 12.5, ED 15.5 and ED 18.5 and to 
newborn liver RNA obtained 0.5 and 2 days (dpn) as well as 1, 2 and 4 weeks 
(wpn) after birth. Total cellular RNA was reverse transcribed into cDNA. Expression 
of HNF1α, HNF4α and PGC-1α was quantified relative to GAPDH by LightCyclerTM 
real-time PCR and normalized to a dilution series of calibrator cDNA using the 
Relative Quantification Software. Medium ± SD of at least three animals per time 
point are given. 
(B) Total cellular proteins from livers of transgenic mice carrying replication 
competent X-deficient HBV genomes (HBV 1.3 xfs) were isolated from maternal 
adult (AL) as well as fetal livers at ED 12.5, ED 15.5 and ED 18.5 and newborn 
livers obtained 0.5 and 2 days (dpn) as well as livers at 1, 2 and 4 weeks (wpn) 
after birth. 80 µg of proteins were separated by SDS-PAGE and transferred onto a 
nitrocellulose membrane. Membranes were stained for HNF1α, HNF4α, PGC-1α, 
COUP-TF and β-actin as loading control. A representative Western blot is shown. 

 



4 Results 
 

- 98 - 

4.2 Inhibition of HBV replication by induction of HO-1 in hepatic cells and in a 
mouse model of acute HBV infection 

 

Heme oxygenase I (HO-1) is known to be involved into the pathogenesis of various 

viral infections including hepatitis C and HIV. In the case of HIV infection, HO-1 has 

been reported to inhibit viral replication and protect cells from infection with the virus. 

Recently, Protzer et. al. have shown strong inhibition of HBV replication after 

administration of CoPP in HepG2.215 cells as well as in HBV-transgenic mice and in 

a mouse model of acute HBV infection 154. However, porphyrins were reported to 

possess their own antiviral effect, at least in the model of HIV infection 214. Therefore, 

it is important to investigate whether the antiviral effect of CoPP in HBV infection 

results from HO-1 induction or is merely caused by porphyrins. Although, Protzer et. 

al showed antiviral activity of HO-1 overexpression using an adenoviral vector, proof 

that knocking out HO-1 expression abolishes the antiviral activity was lacking. Also, 

Protzer et. al showed amelioration of liver injury in the model of acute HBV infection, 

when HO-1 was induced by CoPP prior to the onset of HBV replication and 

development of anti-HBV immune response 154. Here, considering a therapeutic 

application of HO-1 induction in acute or flares of chronic hepatitis B, it is important to 

study the effect of enzyme overexpression on liver injury on ongoing anti-HBV 

immune response.  

 

4.2.1 HO-1 mediates antiviral effect of CoPP on HBV replication in cell culture 
 

To confirm that inhibition of HBV replication after CoPP administration is mediated by 

HO-1 induction and is not merely an antiviral effect of porphyrins, I performed knock-

down experiments in HepG2-H1.3 cells using HO-1 specific siRNA or non-silencing 

siRNA as a control. I transfected HepG2-H1.3 cells directly after plating on collagen-

coated dishes, treated the cells with 10 μg/ml CoPP at days 1 and 3 and harvested at 

day 5 post transfection. 

In HepG2-H1.3 cells treated with CoPP, I detected 12.7-fold induction of HO-1 mRNA 

and 7.5-fold of the HO-1 protein as measured by real-time LightCycler PCR and 

Western blot analysis, respectively (Fig. 23A and B). After transfection of cells with 

specific siRNA, I observed a 30% decrease in levels of HO-1 mRNA (Fig. 23A). 
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Further, Western blot analysis proved that HO-1 specific siRNA inhibited CoPP 

induced expression of HO-1 protein by 74.1% (Fig. 23B). 

 

 
 
Fig. 23: HO-1-specific mRNA abolishes induction of HO-1 expression by CoPP 
 HepG2-H1.3 cells were transfected with 5 nM of either HO-1-specific or scrambled 
 siRNA and treated with 10 µg/ml CoPP. 
 (A) 1 µg of total cellular RNA was subjected to LightCyclerTM real-time RT-PCR. 
 Normalized expression level of HO-1 relative to GAPDH is given. 
 (B) 20 µg of total cellular proteins were subjected to SDS-page and transferred to a 
 nitrocellulose membrane. Membrane was stained for HO-1 and β-actin as a loading 
 control.  
 

Then, I studied whether knock-down of HO-1 reversed inhibition of HBV replication 

caused by CoPP treatment.  

First, I analyzed the effect of HO-1 knock-down on expression of viral RNAs by 

Northern blot analysis. Upon CoPP treatment, I found a 2.34-fold and a 1.95-fold 

increase in the expression of 3.5 kb and 2.4 kb HBV RNAs, respectively (Fig. 24A). 

Since the synthesis of HBV pregenomes is a critical step in the HBV replication cycle, 

I additionally quantified HBV pgRNA using LightCycler real-time PCR. Consistent 
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with results obtained by Northern blotting, levels of HBV pgRNA were increased 2.1-

fold upon CoPP administration (Fig. 24B). However, when HO-1 was knocked down, 

levels of HBV RNAs remained unchanged (Fig. 24A&B).  

Thus, HO-1 did not affect transcription of HBV RNAs. 

 

 

 
 
Fig. 24:  Effects of HO-1 knock-down on expression of HBV RNAs 
 HepG2-H1.3 cells were transfected with 5 nM of either HO-1-specific or scrambled 
 siRNA and treated with 10 µg/ml CoPP. (A) Northern blot analysis of 15 µg total 
 cellular RNA using a 32P labelled HBV  DNA probe. Expression of HBV RNAs 
 was quantified relative to GAPDH. (B) 1µg of total cellular RNA was subjected to 
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LightCyclerTM real-time RT-PCR. Normalized expression level of HBV pgRNA relative to 
GAPDH is given. 
 

Second, I looked for production of HBV core protein. Levels of HBV core protein were 

reduced 8.57-fold upon treatment of cells with CoPP (Fig. 25A). HO-1 specific  

siRNA reversed the reduction of HBV core protein by 27.3% (HO-1 siRNA vs. non-

silencing siRNA, Fig. 25A). I also observed a 5.9-fold decrease in levels of HBV L 

protein upon CoPP treatment (Fig. 25B), which was not restored when HO-1 was 

knocked down. 

 

 
 

Fig. 25: Effects of HO-1 knock-down on expression of HBV proteins 
  (A, B) 20 µg of total cellular proteins were subjected to SDS-page and transferred to 
 a nitrocellulose membrane. Membrane was stained for HBV core (A) or HBV L 
 protein (B) and β-actin as a loading control.  
 

Afterwards, I quantified HBV replicative intermediates relative to HBV integrates 

following Southern blot analysis (Fig. 26A). This revealed that HO-1 induction by 

CoPP reduced HBV replication in HepG2-H1.3 cells by 50%. In contrast, synthesis of 

HBV replicative intermediates recovered upon knock-down of HO-1 (52%).  
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Finally, I quantified HBV progeny in cell culture media. I found that application of 

CoPP to the HBV-producing cells decreased the number of HBV DNA in cell culture 

media by 11.2-fold as measured by LightCycler real-time PCR (Fig. 26B). This effect 

was reversed in cells transfected with HO-1 specific siRNA (59%) (Fig. 26B).  

 

 

 
 
Fig. 26: Effects of HO-1 knock-down on HBV replicative intermediates and 
 progeny HBV  
 HepG2-H1.3 cells were transfected with 5 nM of either HO-1-specific or scrambled 
 siRNA and treated with 10 µg/ml CoPP. 
 (A) Southern blot analysis of Hind III-digested total cellular DNA using a 32P labelled    
 HBV DNA probe. HBV replicative intermediates were normalized to HBV integrates 
 following phosphoimager quantification.  
 (B) DNA isolated from cell culture media was subjected to LightCyclerTM real-time 
 PCR. HBV DNA copy number per cell is given, (∗) p<0.05. 
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Taken together, HO-1 induction in hepatocytes directly decreases intracellular HBV 

core protein levels and inhibits HBV replication at the posttranscriptional step.  

Since HBV core particles are required to fulfill the pool of cccDNA, I next studied the 

effect of HO-1 induction on the accumulation of cccDNA. 

 

4.2.2 HO-1 induction reduces HBV cccDNA 
 

HBV cccDNA accumulates and persists as an episome in HBV infected cells, and 

serves as a viral transcription template in natural infection. I analyzed the effect of 

HO-1 on HBV cccDNA in HepG2-H1.3 cells, which replicate HBV from a single 

integrated 1.3-fold overlength HBV genome and establish an HBV cccDNA pool 

(Webb & Protzer, unpublished). Treatment of HepG2-H1.3 cells with CoPP reduced 

the amounts of nuclear cccDNA by 90% (Fig. 27A&B). This effect was due to HO-1 

induction, since it was reversed by knock-down of HO-1 by specific siRNA.  

To elucidate the mechanism by which HBV cccDNA was affected, I treated the cells 

with either the nucleoside analogue, lamivudine (15 µM), completely blocking reverse 

transcription of HBV, or CoPP or a combination of both (Fig. 27C). Half-life times of 

cccDNA were 2.62, 2.59 and 2.53 days, respectively, and thus almost identical under 

all treatments.  

Taken together, these results indicate that HO-1 induction represses HBV replication 

directly in hepatocytes at a posttranscriptional step, that the block of HBV replication 

is sufficient to reduce HBV cccDNA levels and that this effect depends on the 

expression level of HO-1. 
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Fig. 27: HO-1 suppresses cccDNA amplification in HepG2-H1.3 cells  
 cccDNA amounts were compared in HepG2-H1.3 cells transfected with 5 nM of 
 either HO-1-specific or non-specific siRNA and treated with 10 µg/ml CoPP.  
  (A) total cellular DNA was subjected to LightCyclerTM real-time RT-PCR. 
 Normalized expression levels of cccDNA relative to mitochondrial DNA are given. 
 (B) PCR products after PCR amplification of either cccDNA or mitochondrial DNA 
 were visualized using 2% agarose gel. 

(C) HepG2-H1.3 cells were seeded on collagen-IV-coated dishes and cultivated as 
described in materials and methods. After cells reached confluence, they were 
treated with either 15 µM lamivudin or 10µg/ml CoPP or both and harvested every 2 
days during the 10 day period of investigation. CccDNA was quantified as in (A). 
Regression curves set using SigmaPlot Software are shown.  
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4.2.3 Induction of HO-1 during ongoing anti-HBV immune response in the 
mouse model of acute HBV infection, liver injury, and viral replication 

 

Next, I studied the hepatoprotective and antiviral effects of HO-1 when HO-1 was 

induced during ongoing anti-HBV immune response in a mouse model of acute HBV 

infection. I first transduced mice with either AdHBV or an identical construct that 

contained premature stop codons introduced into all open reading frames of the HBV 

genome (AdHBVk/o). Second, I treated the animals intraperitoneally with CoPP on 

day 5 and day 10 after adenoviral transfer of HBV genome, when anti-HBV immune 

response was ongoing (John von Freyend M. et. al., submitted). Finally, I analyzed 

mice on day 15 after transduction with AdHBV or AdHBVk/o. As an additional control, 

I used naïve C57Bl6 mice, which were similarly treated.  

I first looked for the induction of HO-1. In C57Bl6, AdHBVk/o and AdHBV mice, CoPP 

efficiently induced HO-1 mRNA (13.4±0.4, 10.8±2.1 and 14.4±2.5-fold, p<0.001) and 

protein (9.7±0.4, 7.5±2.1 and 8.4±2.5-fold, and p<0.001) expression (Fig. 28). HBV-

replicating mice (AdHBV) expressed 1.47±0.17-fold more HO-1 (p<0.001) mRNA 

than non-replicating mice (AdHBVk/o or non-infected) (Fig. 28A), which 

corresponded with 37% increase in protein level (Fig. 28B). Since induction of HO-1 

by HBV itself was not observed in hepatoma cells 154, it could in first line be explained 

by the action of pro-inflammatory cytokines in response to HBV protein production. 

 

 
Fig. 28: Induction of HO-1 expression in the mouse liver during ongoing  
 HBV-specific immune response 
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(A) 1 µg total RNA from mouse livers was subjected to LightCyclerTM real-time RT-PCR. 
Normalized expression levels of HO-1 relative to GAPDH are given. 
(B) 60 µg of total cellular proteins isolated from mouse livers were subjected to  SDS-page 
and transferred to a nitrocellulose membrane. Membranes were stained  for HO-1 and  
β-actin as a loading control. 
 
I further analysed the effect of HO-1 induction on liver injury.  

Protzer et. al., who treated mice with CoPP prior to the transduction of animals with 

AdHBV, observed that induction of HO-1 significantly decreased ALT activity and 

improved liver histology. In contrast, in this study, induction of HO-1 during ongoing 

anti-HBV immune response in mouse livers was associated with a significant 

increase in liver inflammation as measured by serum ALT activity (Fig. 29). Induction 

of HO-1 by CoPP in naïve C57Bl6 mice did not cause any liver damage. Also, I did 

not find major differences in ALT activity between mice injected with AdHBVk/o and 

treated or not treated with CoPP.  Liver injury was aggravated upon HO-1 induction 

only if mice produced HBV proteins and replicated HBV. When CoPP was not 

administered, mice transduced with AdHBV tended to have higher ALT activity than 

animals injected with the control AdHBVk/o vector. Interestingly, when HO-1 was 

induced, differences in the magnitude of liver injury between HBV-replicating and 

non-replicating mice became significant. Taken together, induction of HO-1 during 

ongoing anti-HBV immune response aggravates liver injury.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 29: Liver injury after induction of HO-1 expression during ongoing  
 HBV-specific immune response 
 Serum ALT activity was measured by Reflovet™ according to the manufacturer’s 
 instructions. 
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Afterwards, I studied whether the antiviral effect of HO-1 was retained in this 

experimental setting.  

Consistent with previous results by Protzer et. al., in mice that were transduced with 

AdHBV, HBV core protein, virus replication and viremia were markedly reduced (Fig. 

30A-C).  

 

 
 
Fig. 30: HBV replication after induction of HO-1 during ongoing HBV- specific 
 immune response in the mouse liver  
 (A) 60 µg of total proteins from mouse livers were subjected to SDS-page and 
 transferred to a nitrocellulose membrane. Membranes were stained for HBV core 
 protein and β-actin as a loading control.  
 (B) DNA extracted from mouse livers was subjected to LightCyclerTM real-time 
 PCR. Normalized expression levels of HBV DNA relative to Ad-DNA are given, (∗) 
 p<0.05. 
 (C) DNA isolated from mice sera was subjected to LightCyclerTM real-time PCR. 
 HBV DNA copy number per 1 ml serum is given, (∗) p<0.05. 
 

Thus, strong induction of HO-1 during ongoing anti-HBV immune response 

aggravates liver injury, but still has a pronounced antiviral effect by reducing levels of 

HBV core protein, decreasing HBV replication, and decreasing progeny HBV release.  
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Besides hepatocellular factors, extracellular mediators can also affect HBV 

replication and are therefore important for a detailed understanding of the virus-host 

interactions. 

 

4.2.4 A decrease in HNF4α and HNF1α levels as well as HO-1 induction 

mediates the inhibition of HBV replication by IL-6 during the early steps 
of HBV infection 

 

Interleukin-6 (IL-6) seems to be involved in the pathogenesis of HBV infection 

because its levels were higher in HBV-infected than HBV-non-infected persons and 

correlated with the clinical course of infection. Furthermore, the level of IL-6 in serum 

of HBV-infected patients correlated with a successful response to therapy with IFNα. 

Recently, Dr. Hoesel et. al. submitted, have shown that IL-6, induced upon HBV 

pattern recognition in mixed PHH cultures, inhibits HBV replication at the 

transcription level. However, it has not been studied so far, which cellular pathways 

are involved in the control of HBV replication by this cytokine.  

 

4.2.4.1 IL-6 inhibits HBV transcription and replication 
 

In order to examine the effect of endogenous IL-6 released after contact with 

HBV, 200 ng/ml of IL-6ab were added to PHH cultures prior to HBV infection. This 

resulted in an almost two-fold decrease in HBeAg and HBV progeny secretion, which 

indicates that endogenous IL-6 blocked HBV gene expression and replication (Fig. 

31B). 

Since the secretion of IL-6 was transient and abolished before virus replication 

began, recombinant IL-6 (rIL-6) was used to confirm the negative effect of IL-6 on 

HBV transcription and replication. 15 ng/ml of rIL-6 were added to HBV infected cells 

on day 1 and 3 post infection (p.i) after the peak amount of endogenous IL-6 in HBV-

infected cells was removed by exchange of the culture medium. As a control, rIL-6 

was pre-incubated with anti-IL-6 antibodies (1 µg/ml). Cells and supernatants were 

analyzed on day 5 p.i. 

CRP expression indicated proper activation of the IL-6 signaling pathway by rIL-6 

(Fig. 31A). In parallel, a 66% decline of HBV pgRNA (Fig. 31 A), a 77% drop in 
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HBeAg secretion and a greater than 50% reduction of HBV progeny release (Fig. 31 

B) was detected.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 31: Effect of IL-6 on HBV transcription and replication and on hepatocyte-
 enriched transcription factors  
 (A) Relative gene expression levels of CRP, HNF4α, HNF1α and HBV pg RNA 
 were determined in HBV-infected hepatocytes by quantitative LightCycler™ real-
 time RT-PCR. Expression in untreated (-) HBV-infected cells was set to 100%. 
 Recombinant IL-6 (rIL-6) was added to the cells with or and without neutralizing IL-6 
 antibodies (rIL-6ab). In addition, cells were incubated with rIL-6ab prior to HBV 
 infection.  
 (B) Dot blot analysis of HBeAg using antibody detection (upper panel) and progeny 
 HBV-DNA using a 32P-labelled HBV-DNA probe (lower panel) secreted into cell 
 culture supernatants. Amounts of HBeAg and HBV DNA in untreated HBV-infected 
 PHH were set to 100%. One representative out of three experiments is shown. 
 (This figure is kindly provided by Dr. M. Hoesel).  
 

Western blot analyses of cytoplasmic protein fractions revealed that in HBV-infected 

cells treated with rIL-6, HBV core protein was reduced by 68% (Fig. 32A) and HBV 
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envelope proteins were diminished by 90% (L), 79% (M) and 60% (S) (Fig 32B). 

These effects could be reversed by neutralization with anti-IL-6 antibodies. 

Thus, IL-6 suppressed HBV gene expression and replication. 

 

 
Fig. 32: Effect of IL-6 on expression of HBV proteins and hepatocyte-enriched 
 transcription factors  
 Western blot analyses of transcription factors HNF4α and HNF1α (30 µg of nuclear 
 proteins) and HBV core and envelope proteins L, M and S (70 µg of cytoplasmic 
 proteins). Expression of β-lamin and β-actin were used as loading controls for 
 nuclear and cytoplasmic proteins, respectively. 
 

4.2.4.2 MAP kinases activated by IL-6 down-regulate HNF 1α and HNF4α 
expression 

 

Dr. Hoesel et. al. (submitted) has shown that contact with HBV inoculum containing 

virions as well as secretory HBsAg and HBeAg do not induce interferons or 

interferon-inducible genes. 

I therefore searched for possible mechanisms to explain how IL-6, without interferon 

induction, inhibited HBV infection. Since the concerted action of the hepatocyte- 

specific transcription factors HNF1α and HNF4α is essential for HBV gene 

expression and replication, I examined whether IL-6 may control expression of these 

transcription factors.  

Quantitative real-time RT-PCR analysis revealed a 48% and 56% decrease in 

HNF1α and HNF4α mRNA expression, respectively, upon rIL-6 stimulation in 

comparison to non-treated cells. The administration of the neutralizing IL-6ab prior to 
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HBV infection and treatment with rIL-6 resulted in a 24% and 54% increase of the 

HNF1α and HNF4α gene expression, respectively (Fig. 31 A). Accordingly,  

Western blot analyses of nuclear extracts prepared from HBV-infected PHH 

confirmed a 55%- and a 58% reduction in the amounts of HNF4α and HNF1α protein 

by treatment with rIL-6, respectively (Fig. 32 A&B). These results showed that both 

endogenously produced IL-6 and rIL-6 were able to control HNF1α and HNF4α 

expression in hepatocytes. 

Since activated mitogen-activated protein kinases (MAPK) ERK1/2 and JNK have 

been reported to control HNF4α expression and IL-6-type cytokines may activate 

members of the MAPK family, I hypothesized that the activation of MAPK by IL-6 

suppressed HBV replication. 

I first examined whether MAPK family members ERK1/2, p38 and / or JNK were 

activated after HBV infection in PHH. As shown in Fig. 33A, levels of phosphorylated 

ERK and JNK, but not p38 were increased upon HBV infection. The activation of 

ERK and JNK was obviously mediated by IL-6 since pre-treatment of PHH with anti-

IL-6 neutralizing antibodies (IL-6ab) abolished activation of ERK and JNK during HBV 

infection (Fig. 33 B). This was confirmed by treatment with rIL-6, which further 

activated ERK and JNK (Fig. 33 B), but not p38.  

To determine the effect of IL-6-induced MAPK activation on HNF4α and HNF1α 

expression, I used specific inhibitors of upstream activators of the phosphorylation of 

MAPK before rIL-6 stimulation of PHH: PD98059 for pERK and SP600125 for pJNK, 

respectively. Treatment with PD98059 largely reduced the amount of activated ERK, 

while exposure to SP600125 before rIL-6 treatment reduced the amount of 

phosphorylated JNK to undetectable levels (Fig. 33 C). Inhibition of JNK activation 

completely overcame and ERK activation partially overcame rIL-6-mediated down-

regulation of HNF4α and HNF1α (Fig. 33 D).  

This results showed that in primary hepatocytes, IL-6 activated the MAPK ERK and 

JNK, which down-regulate expression of HNF4α and HNF1α, and consequently, HBV 

replication.  

I concluded that ERK- and JNK- activation and subsequent down-regulation of the 

essential transcription factors HNF4α and HNF1α is responsible for the negative 

control of HBV replication by IL-6.  
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Fig. 33: Involvement of MAP kinase pathways in IL-6-mediated down-regulation 
 of HNF1α and HNF4α  
 (A) 70 µg of total proteins isolated from mock- or HBV-infected PHH cultures at 24 h 
 p.i. were analyzed by Western blot with antibodies to activated (phosphorylated) 
 ERK, JNK and p38. The respective unphosphorylated forms were used as a loading 
 control. (B) Western blot analysis of pERK, ERK, pJNK and JNK using total proteins 
 (40 µg) isolated from HBV-infected PHH without treatment (-), treated with rIL-6 or 
 rIL6 preincubated with neutralizing anti-IL-6 antibodies (rIL-6&IL6ab) or from cells 
 pre-incubated with IL-6ab prior to HBV infection. (C) Detection of pERK and pJNK 
 in HBV-infected PHH untreated or treated with 50 µM of pERK upstream inhibitor 
 PD98059 or pJNK upstream inhibitor SP600125 for 30 min prior to stimulation with 
 rIL-6. (D) Nuclear proteins (20 µg per lane) were prepared from mock- or HBV-
 infected cells. Cells were either not treated (-) or stimulated with rIL-6 or 
 preincubated with PD98059 and SP600125 before rIL-6 stimulation. Expression of 
 HNF4α and HNF1α were analysed by Western blot. Expression of β-lamin served 
 as a control. 
 

4.2.4.3 IL-6 may also inhibit HBV replication by induction of HO-1 
 
IL-6 is also known to induce HO-1. Therefore, I next asked whether HO-1 was 

induced upon treatment of primary hepatocyte cultures with IL-6 and also played a 

role in the inhibition of HBV replication (Fig. 34). I found a 2.0-fold increase in protein 
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levels of HO-1 after HBV was given to the PHH cultures. However, when 

endogenous IL-6 was blocked by neutralizing antibodies, this effect was abolished. 

Protein levels of HO-1 were increased 2.4- and 3.5-fold upon addition of rIL-6 to 

mock cells or HBV-infected hepatocytes, respectively. Conversely, when rIL-6 was 

given together with neutralizing IL-6 antibodies, this effect was diminished. This 

implied the possible involvement of HO-1 in IL-6-induced inhibition of HBV 

replication.   

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 34: Induction of HO-1 by IL-6  
 Western blot analyses of HO-1 (30 µg of total proteins). Expression of β-actin 
 controlled the loading of cytoplasmic proteins. Expression in untreated (-) HBV-
 infected cells was set to 100%. Recombinant IL-6 (rIL-6) was added to the cells with 
 or without neutralizing IL-6 antibodies rIL-6ab. In addition, cells were incubated with 
 rIL-6ab prior to HBV infection. 
 

Thus, I concluded that IL-6 inhibited HBV replication at the transcriptional level 

through the activation of JNK and, to a lesser extent, ERK and consequent down-

regulation of HNF4α and HNF1α expression. Additionally, inhibition of HBV 

replication by IL-6 may occur at the posttranscriptional level via induction of HO-1.  



5 Discussion 
 

- 114 - 

5 Discussion 
 
5.1 Expression levels of HNF4α, HNF1α and PGC-1α determine replicative 

potential of HBV in the developing liver 
 
5.1.1 Significance of the study models to investigate the dependence of HBV 

replication on hepatocyte differentiation 

5.1.1.1 Cells of hepatocyte origin as a study model to investigate the 
dependence of HBV replication on hepatocyte differentiation 

 

Hepatocyte differentiation is a multi-step process of morphological and 

functional changes in cells governed by a number of liver-enriched transcription 

factors 78. 

In this study, in cells of hepatocyte origin, I demonstrated that HBV replication 

is highly dependent on the degree of hepatocyte differentiation.  

I compared the efficiency of HBV replication in primary human hepatocytes (PHH) 

against conventional highly differentiated hepatoma cell lines (HepG2 and Huh7) and 

a low differentiated hepatocyte cell line (Pop10). Here, I isolated and cultivated PHH 

according to the protocol established by Schulze-Bergkamen H et. al.155, which 

enables to maintain primary hepatocytes differentiated and suitable for studying all 

steps of the HBV replication cycle for up to two weeks in culture. In addition, I 

followed changes in the efficiency of HBV replication during differentiation of 

HepaRG cells. Upon differentiation, hepatoma HepaRG cells display hepatocyte-like 

morphology and functional profile and become infectable by wild-type HBV 156. Using 

late (PEPCK, TDO, OATP-C and BSEP) 81, 84, 87, 89, but not early (albumin or ferritin) 

markers of hepatocyte differentiation, I was able to confirm differentiation of HepaRG 

cells and to prove that PHH are the most and Pop10 are the least differentiated cells 

in my study.  

Many previous studies focused on the dependence of HBV replication on 

hepatocyte differentiation analyzed HBV replication in hepatoma cell lines with 

different genetic backgrounds and degrees of cell differentiation.  In those studies, 

efficiency of HBV replication was not traced during differentiation of the respective 

hepatoma cell line. To date, no direct comparison of HBV replication efficiency 

between hepatoma cell lines and primary human hepatocytes has been performed. 

Using only hepatoma cells, it is not possible to precisely determine to what extent the 

efficiency of HBV replication depends on hepatocyte differentiation, because all 

hepatoma cells are by definition transformed and possess altered signaling 
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pathways. For the same reason, using only hepatoma cells, it is not possible to 

delineate which hepatocellular factors link HBV replication to hepatocyte 

differentiation. Furthermore, although cells of hepatocyte origin with different degrees 

of differentiation were used, none of the previous studies documented their 

differentiation status, for example, by controlling the expression of hepatocyte- 

specific differentiation markers. The exact evaluation and monitoring of cell 

differentiation status during experiments is necessary because it may vary even in 

primary hepatocytes depending upon the isolation procedure, time of cultivation and 

cultivation conditions 233. Hepatocyte dedifferentiation may already be induced by 

ischemia-reperfusion stress during the isolation process, disruption of the normal 

tissue architecture as well as adaptation to the in vitro environment 233. Maintenance 

of differentiated hepatocytes in vitro has been achieved by culturing cells in serum-

free 234 DMSO-supplemented medium 235, 236, 237 using specific attachment surfaces, 

such as extracellular matrix and its components 238, 239. In contrast, when hepatocytes 

are cultured in serum-supplemented standard tissue culture medium, hepatocyte 

morphology and production of liver-specific proteins are rapidly lost, the levels of 

liver-specific mRNA expression steadily drop within 5 days of culture and the 

transcription rates of liver-specific genes, 24h after plating, are between 1% and 10% 

of that seen in the liver 235.  

Up to now, there is no consensus in defining the term: “differentiated 

hepatocyte” 80. Many research groups use albumin, transferrin, α-1-antitrypsin and 

CK8/18 as markers of hepatocyte differentiation 240, 241, 242. However, albumin, 

transferrin, α-1-antitrypsin and CK8/18 are already expressed at early stages of fetal 

liver development and indicate specification of hepatocyte lineage rather than 

hepatocyte differentiation. Enzymes involved in various hepatocyte-specific metabolic 

pathways (i.e. PEPCK or TDO) or markers of hepatocyte polarization (i.e. 

transporters OATP-C or BSEP), whose expression starts in almost mature 

hepatocytes either at the late stages of fetal liver development or even during 

postnatal liver development, can rather be considered as markers of hepatocyte 

differentiation 81, 84, 87, 89. 

I compared efficiency of HBV replication in cells of hepatocyte origin after 

transduction with adenoviral vectors encoding 1.3-fold overlength HBV genome.  I 

chose this system because adenoviral vectors proved to efficiently deliver target 

genes into a broad range of cells and provide efficient transcription of HBV genes 
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from the extrachromosomal template in the context of their own promoters 151, 231. 

Using this approach, it is possible to transduce or deliver equal amounts of HBV 

genome into different cells of hepatocyte origin.  

To date, to study the dependence of HBV replication on hepatocyte 

differentiation, transient transfection of hepatoma cells or stable HBV-producing 

hepatoma cell lines were used. However, transient transfection of hepatoma cells is 

unsatisfactory because transfection efficiency is notoriously low, variable and subject 

to the characteristics of the transfecting vector. Stably transfected cell lines rely on 

viral integration into the host genome, deviating further from the in vivo situation, 

where HBV genome integration is an exceedingly rare event 243.  

    

5.1.1.2 HBV-transgenic mice as a model to study the replicative potential of 
HBV during liver development 

 

In this work, I studied replicative potential of HBV during liver development in 

HBV-transgenic mice possessing one copy of 1.3-fold overlength HBV genome in 

every cell of their body. The HBV-transgenic mice replicate the virus to a level 

comparable with those in chronically infected patients 148. Furthermore, transgenic 

mice allow for the study of HBV replication independent of early steps of the viral 

replication cycle (i.e. viral uptake and establishment of the viral genome in the 

nucleus). Moreover, all stages of liver development are well characterized in the 

mouse model 72, 78, and mice are easy to handle and maintain.  

I showed that HBV replication starts after birth, increases along with 

hepatocyte maturation and achieves levels seen in adult animals between the 

second and fourth week of postnatal development. The late onset of HBV replication 

relied on low levels of viral pregenomes and delayed expression of the HBV core 

protein during prenatal liver development. While HBV pgRNA was already detected 

at ED 12.5, the expression of HBV core protein was not observed until ED 18.5 and 

that of L protein - 0.5 dpn.  

The major concern of this study is whether the data about the replicative 

potential of HBV obtained during liver development  in rodents can be translated to 

liver development in humans.  

The comparable stages of liver development in humans and rodents are well 

described for the embryonic period. According to the data by Godlewski et. al, the 
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status of liver development ED 16.5 in rodents corresponds to the 8th week of 

gestation in humans 244.  

A comparison of late fetal and postnatal stages relies on functional data. The 

fetal liver at 22nd week of gestation is a major site of fetal hematopoiesis in man, and 

is at the critical turning point between immigration and emigration of cells of the 

hematopoietic system. In rodents, these events are dated to the ED 18.5 78. The 

microscopically visible glycogen granules appear in hepatocyte precursors of rodents 

after ED 18.5 78 and in hepatocyte precursors of humans after 21st week of 

pregnancy 245. It is very likely that hepatocyte differentiation status at ED 18.5 in 

rodents corresponds to that at the 21st – 22nd week of pregnancy in humans.  

So, during early fetal liver development, the maturation of rodent liver is 

delayed relative to the development of the human liver. However, during the late fetal 

stages, at birth and early postnatal development, the differentiation status of 

hepatocytes measured by expression levels of liver enzymes 246 and markers of 

hepatocyte polarization (i.e. basolateral transporters (NTCP)) 247, 248, 89 closely 

resembles that in rodents.  

According to these data, the expression of HBV core protein could start as early as 

the 21st – 22nd week of pregnancy in humans. In addition, the starting point of HBV 

replication and the formation of infectious viral particles could be detected in the early 

postnatal period of human development.  

In the HBV-transgenic mouse model, no conclusion can be made about the 

infectious potential of the virus in the developing liver. To understand at what stage of 

liver development HBV can infect hepatocytes, further experiments in an infectious 

model are required, for example using woodchucks and woodchuck hepatitis B virus 

(WHV). 

There are two studies on infection of human fetal hepatocytes with HBV. Lin 

et. al  found that human fetal liver cells isolated from a 6-week old fetus and 

cultivated for a week can be infected with HBV and support viral replication 249. 

However, human fetal liver cells were cultivated in serum-free medium with 

epidermal growth factor, basic fibroblast growth factor and DMSO, which led to 

hepatocyte differentiation. Indeed, upon a week of cultivation, cells started to store 

glycogen, thus displaying a function of late stage hepatocyte maturation. T Ochiya  

et. al.  isolated human fetal hepatocytes from fetal livers at 20-24 weeks of gestation 

and demonstrated infection of cells with HBV and viral replication after a week of 
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cultivation 250. When permissiveness of cells for HBV was analyzed, the human fetal 

hepatocytes displayed functional (glycogen storage; expression of glucose-6-

phosphatase and γ-glutamyl transpeptidase) and morphological (mononuclear, 

polyhedral, arranged in trabeculae) features attributed again to the late stages of liver 

development. Since human fetal liver cells in both studies underwent differentiation 

before infection with HBV, hardly any conclusion can be made about the replicative 

potential of the virus at the stage of cell isolation. 

 

5.1.2 Level of pgRNA synthesis determines the efficiency of HBV replication in 
hepatocytes 

 

I identified transcription of the HBV pgRNA to be the limiting step for the 

efficiency of HBV replication in vitro, in cells of hepatocyte origin, as well as in vivo, in 

HBV-transgenic mice.  

HBV pgRNA serves as the template for reverse transcription and for translation of the 

viral core and polymerase proteins.  

In my in vitro experiments, levels of HBV pgRNA and efficiency of HBV 

replication were the highest in the most differentiated PHH and undetectable in the 

least differentiated Pop10 cells, as well as strongly increased upon differentiation of 

HepaRG cells. Expression of HBV core protein displayed the same tendency.  

In vivo, in HBV 1.3 transgenic mice, Guidotti et al. had previously shown that 

HBV 3.5 kb RNA containing viral pregenomes was first detectable 2 weeks 

postnatally by Northern blot analysis 148. Using highly sensitive qPCR, I show here 

that HBV pregenomes are already transcribed at very low levels at ED 12.5, the 

earliest time point analyzed, and steadily increase thereafter. However, only at 1 wpn 

expression levels of HBV pgRNA reached those in adult livers, matching the starting 

point of significant HBV replication. 

Since essential steps of HBV replication take place in the viral nucleocapsid, 

components of the nucleocapsid such as HBV core protein and the viral polymerase 

are crucial for HBV replication. Both proteins are translated from the HBV pgRNA. 

The expression of HBV core protein was observed first on ED 18.5, when levels of 

HBV pgRNA had risen further. Failure to detect HBV core protein at earlier time 

points, when HBV pgRNA, its translation template, is expressed, could result from 

the detection limit of the Western blot. I could not exclude false-negative results; 
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although, I used 60-80 μg of total cellular proteins per sample and used highly 

sensitive WestDura and WestFemto (see materials and methods) development 

substrates, which allow for the detection of as little as 1 fg of a given protein. 

Therefore, in addition to Western blotting, I stained liver sections and cytospins for 

HBV core protein. Neither method revealed expression of HBV core protein until ED 

18.5. Thus, I consider production of HBV core protein to only start on ED 18.5. 

During further liver development, HBV core protein levels continuously increased. 

Though levels of HBV pgRNA equaled those in adult livers at 1 wpn, intracellular 

amounts of HBV core protein were lower than in adult liver even at 4 wpn because 

HBV core protein tends to aggregate in hepatocyte nuclei from where it can not 

reenter the replication cycle 148. 

Consistent with the continuous increase in HBV pgRNA and HBV core protein 

levels, the amount of the liver HBV DNA significantly increased over baseline during 

the first postnatal week, indicating the onset of HBV replication. Up to two weeks 

postnatally, mice with lower HBV pgRNA levels still have amounts of liver HBV DNA 

below the baseline. Conversely, mice with higher HBV pgRNA levels start to replicate 

the virus earlier. These results are consistent with data of Guidotti  et. al., who 

proposed that the expression threshold for HBV pgRNA, HBV core protein and viral 

polymerase must be reached before HBV replication can occur 148.   

There are three possible options for higher levels of HBV pgRNA in 

differentiated hepatocytes: (1) increased transcription of HBV pgRNA; (2) increased 

stability of HBVpgRNA; (3) both.  

The transcription of pregenomic RNA is controlled by the HBV precore/core 

promoter, whose activity was reported to depend on hepatocyte differentiation 135.  

Therefore, an increase in HBV pgRNA transcription can, to a large extent, explain 

higher levels of viral pregenomes and HBV core protein in differentiated hepatocytes.  

Also, the activity of preS1/S-promoter in the differentiated hepatoma cell lines was 

approximately 5 to 90 times greater than that observed in the undifferentiated or non-

hepatocyte cell lines, indicating that the activity of this promoter is highly specific for 

differentiation state and cell type 135. Consistent with these data, the expression of 

HBV L protein in my experiments was also highly dependent on hepatocyte 

differentiation in vitro as well as in vivo. Although HBV L protein is required for HBV 

particle formation, it is dispensable for intracellular HBV replication.  
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So, HBV- transgenic mice lacking HBV L protein replicate HBV at the same level or 

even more efficiently than mice expressing HBV L protein 251. 

Heise T et. al. identified HBV RNA-binding liver nuclear proteins (p45, p39, 

and p26) that bind to a 91-bp element located at the 5' end of a previously defined 

posttranscriptional regulatory element (PRE) and affect the stability of HBV pgRNA 
252. Later, p45, p39, and p26 proteins were attributed to the full-length La-antigen and 

its proteolytic cleavage products 253.  I can not exclude that expression of La-antigen 

or its proteolytic cleavage products or any other cellular proteins binding to the PRE 

is affected by hepatocyte maturation and regulates the abundance of HBV pgRNA 

transcripts in hepatocyte.  

A number of hepatocyte-enriched transcription factors: HNF4α, HNF3α/β/γ, 

C/EBPα/β in concert with their co-factors are known to bind HBV precore/core and 

preS1/S promoters 254 and could therefore link HBV replication to hepatocyte 

differentiation and be responsible for the onset and the dynamics of HBV replication 

during liver development. 

 

5.1.3 A concerted action of HNF4α and HNF1α determines the transcription of 

HBV pregenome and efficiency of HBV replication in dependence on 
hepatocyte differentiation state 

 

My experiments show that among all hepatocyte-enriched transcription factors 

studied, only HNF4α, the central regulator of hepatocyte differentiation, proved 

essential in controlling intracellular HBV replication. HNF4α regulated transcription of 

the HBV pregenome as a function of the hepatocellular differentiation state. Tang et 

al. had reported earlier that a concerted action of nuclear hormone receptors 

including HNF4α is needed to induce transcription of HBV pgRNA and replication of 

HBV in non-hepatocytes 138. The authors have also shown that the presence of 

HNF4α alone is sufficient to enable efficient HBV replication. In this study, increasing 

amounts of plasmid encoding HNF4α were co-transfected into non-hepatocytes 

together with a vector containing an HBV genome. Therefore, the results may in part 

be explained by the limited transfection efficiency. Also, non-hepatocytes might lack 

a number of co-factors of HNF4α required for its transcriptional activity, e.g. SRC-1, 

GRIP1, p300 255, PGC-1α 139, 256. In cells of hepatocyte origin, where hepatocyte-

enriched transcription factors are constitutively expressed, I found constant levels of 
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nuclear hormone receptor PGC1α, apparently sufficient to serve as a cofactor for 

HNF4α. In contrast, I found a strong positive correlation between intracellular 

amounts of HNF4α and efficiency of viral replication. COUP-TF competing with 

HNF4α for the same binding site 137, 140 was present in all cells at constant levels. 

This explains why a threshold of HNF4α expression had to be reached above which 

HBV replication depended on the level of HNF4α. 

HBV replication rises when HBV-producing cells are kept under differentiating 

conditions 158: plating onto extracellular matrix, culture medium containing 

dexamethasone and DMSO but low FCS (162 and Fig. 3). Dexamethasone enhances 

HNF4α and HNF1α expression via an upstream steroid responsive element 257. 

DMSO induces cellular differentiation by a so far unknown mechanism and enhances 

HBV replication 156, 161, 162. Furthermore, it regulates histone acetylation and 

methylation 258, which may render target sites in the viral genome accessible to 

hepatocyte nuclear factors.  

Although HNF4α was the key player in regulating transcription of the HBV 

pregenome in my experiments, knock-down of HNF1α also influenced HBV 

replication and progeny virus release. Since HNF1α is essential for expression of the 

viral envelope protein L 259, it was expected to control release of viral particles from 

infected cells. Its influence on viral pgRNA transcription and replication was 

unexpected since neither the overlapping HBV precore/core-promoter / enhancer II 

nor the upstream enhancer I, which control pgRNA transcription, contain HNF1α 

binding sites unless they are mutated 260.  

Since HNF1α is essentially involved in the control of HNF4α expression 112, 257, 

I speculated that its knock-down diminished HBV replication by affecting the 

transcription of HNF4α. Indeed, I observed a substantial decrease in the amounts of 

HNF4α at day 3 and 5 after knock-down of HNF1α, coincidentally with down-

regulation of HBV pgRNA transcription during HNF1α knock-down.  

However, in HBV-transgenic mice transcription of the HBV pregenome was not 

measurably affected by knock-out of HNF1α and intracellular HBV replication was 

even slightly increased 251. Since the effect of HNF1α on expression of HNF4α as 

well as on HBV replication ceased after five days in my experiments, I suppose that 

hepatocytes compensate for the lack of HNF1α. 
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Guidotti et al. reported that HBV replication per cell remained constant after 

partial hepatectomy in livers of HBV-transgenic mice 261. This does not argue against 

a strong dependence of HBV replication on a highly differentiated hepatocyte, 

because liver regeneration after partial hepatectomy takes place by proliferation of 

highly differentiated hepatocytes without shortening of the G1-phase 262 or reduction 

of HNF4α expression levels 263.  

I observed a significant positive correlation between levels of HNF4α and HBV 

core protein or pgRNA in tumor-peritumor tissues of patients with HCC and chronic 

hepatitis B. However, I did not see significant differences between tumor and 

peritumor tissue of the same patient. The first possible explanation may relate to the 

significant inter-individual variability in the expression of HNF4α, HBV core protein or 

pgRNA and the relatively low number of tumor and peritumor samples studied. The 

second possible explanation relies on the status of the peritumor, which was highly 

fibrotic or even cirrhotic in most samples. The progression of liver fibrosis has been 

shown to be accompanied by a drop in intracellular HNF4α levels 264.  

 

5.1.4 HNF4α and HNF1α may additionally influence HBV replication by 

controlling cell metabolism and polarization 
 

Although I clearly demonstrated that HNF4α in concert with HNF1α link 

transcription of HBV pgRNA and HBV replication to hepatocyte differentiation, I 

cannot exclude any additional influences of hepatocyte metabolic functions and cell 

polarization controlled by these transcription factors 112, 121, 265. It has been only 

recently pinpointed that HNF4α is the key regulator of morphological and functional 

differentiation of hepatocytes, essential for metabolic function, formation of cell-cell 

contacts 120 and formation of a polarized hepatic epithelium 121. HNF1α primarily 

regulates hepatocyte polarization 108. Accordingly, I found that HNF4α and HNF1α 

knock-down affected expression of bile acid transporters OATP-C and BSEP, which 

are only expressed in highly differentiated polarized hepatocytes. Funk  et al. 

demonstrated the importance of cell polarity for egress of DHBV particles into 

intercellular compartments, which restricts their diffusion and favors transmission of 

virus to adjacent cells 147. Bhat, P et. al.  indicated that functional polarity of 

hepatocytes is required for efficient export of infectious HBV particles 243.  
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I also showed that knock-down of HNF4α and HNF1α down-regulated 

expression of SREBP-2, PEPCK and TDO, which indicate high metabolic activity of 

hepatocytes. In this context, Bhat, P et. al. demonstrated that loss of metabolic 

function negatively affects virus export in both polarized and non-polarized 

hepatocytes 243.  

Thus, I suggest that HNF4α in concert with HNF1α influence the efficiency of 

HBV replication directly, by regulating the expression of HBV pregenomes and 

indirectly, by controlling the metabolism and polarization of hepatocytes. 

 

5.1.5 HNF3γ is not an absolute requirement for efficient HBV replication 

 

In the initial experiments, I found a correlation between the efficiency of HBV 

replication and the expression levels of HNF3γ. Levels of HNF3γ were highest in the 

PHH, lowest in the least differentiated Pop10 cells and increased upon differentiation 

of HepaRG cells. Also, levels of HNF3γ increased in parallel to HBV pgRNA and core 

and L proteins during differentiation of stable HBV-producing cell lines. However, 

after knock-down of this transcription factor, no inhibition was found, but rather I 

observed an increase in transcription of HBV pgRNA and production of HBV 

progeny. Since all Foxa proteins share significant homology in their structure and 

binding sites 93, I supposed that HNF3α and HNF3β could have compensated for the 

lack of HNF3γ. In fact, after knock-down of HNF3γ, I observed an increase in the 

expression of HNF3α and HNF3β mRNA.  

 

5.1.6 HNF4α, HNF1α and PGC-1α and replicative potential of HBV in the 

developing liver 
 

During liver development in HBV-trangenic mice, I confirmed that expression 

levels of HNF4α and HNF1α correlated closely with those of HBV pgRNA, HBV core 

and HBV L proteins. 

Besides HNF4α and HNF1α, the markers of HBV replication in HBV-transgenic mice 

also closely correlated with levels of PGC-1α, an important co-factor of HNF4α 139. 

High expression levels, rather than the presence of PGC-1α alone, are necessary for 

efficient expression of genes regulated by HNF4α and HNF6α 98.  
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Up to ED 18.5, expression of COUP-TF dominated that of HNF4α, the 

competitor for its binding site. This might explain, why the amount of pregenomic 

RNA remained low before birth. I suggest that an increase in the expression level of 

HNF4α is responsible for high-level transcription of HBV pregenomes and onset of 

HBV replication, and in concert with those of HNF1α and PGC-1α, for morphological 

and metabolic differentiation of hepatocytes required for formation and secretion of 

HBV virions. 

Using immunostaining of murine tissue samples, I observed cytoplasmic 

expression of HBV core protein predominantly in hepatocytes of the pericentral area 

of hepatic lobules, which was consistent with observations by Guidotti  et. al. 148. 

Using in situ hybridization analysis with antisense probes, Guidotti  et. al.  detected 

HBV RNA in virtually all hepatocytes, whereas expression of the HBV pgRNA 

containing HBV pregenomes and translational template for core and polymerase 

proteins was stronger in the centrilobular region 148.  

Zonal gene expression in hepatic lobules is reported to be primarily regulated at the 

level of transcription. Transcription regulators involved in maintenance of hepatic 

zonal heterogeneity have not been studied in detail so far 54.To date, only the role of 

Wnt/beta-catenin and Apc for pericentral and periportal gene regulation in the adult 

liver has been demonstrated 266. Besides Wnt/beta-catenin and Apc, HNF4α may 

also contribute to the hepatic zonal nature of gene expression. Using in-situ 

hybridization and Northern blotting, Nagy  et. al. 267 and Lindros et. al. 268 found 

somewhat stronger staining of HNF4α and significantly higher levels of mRNA of this 

transcription factor in the perivenous region. The authors suggest that HNF4α could 

modulate but not govern the zonal expression of liver genes in the mature liver. 

Later, Stanulovic et. al. showed that HNF4α suppresses the expression of pericentral 

proteins in periportal hepatocytes, possibly via an HDAC1-mediated mechanism 269.  

Higher expression levels of HNF4α in the pericentral compared to the periportal 

areas of the hepatic lobule may be responsible for high-level expression of HBV 

pgRNA and core protein perivenously and explain the fact that HBV replication 

predominantly occurs in the cytoplasm of pericentral hepatocytes. Further studies are 

necessary to confirm co-localization of HNF4α, HBV pgRNA and core protein in the 

hepatic lobule. 
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5.1.7 Hepatitis B X protein and replicative potential of HBV in the developing 
liver 

  
HBV X (HBx), a small protein of 154 amino acids encoded by HBV 37, is 

usually considered to increase transcription of HBV genes and viral replication. In 

fact, it interacts with components of the transcriptional machinery 270, influences the 

activity of some DNA cis elements and binds directly to some transcriptional 

activators including the leucine zipper family, p53 and Smad4 271.   

In this work, I investigated the replicative potential of HBV in the developing 

liver using HBV-transgenic mice lacking HBx expression (HBV xfs) because they 

showed higher HBV DNA levels. To exclude false-negative results due to the 

absence of HBx expression in the experimental system, I repeated the relevant time 

points with HBV-transgenic mice expressing wild-type HBV including HBx (HBV 1.3). 

I did not observe any stimulatory effect of HBx on the replicative potential of the virus 

in the developing liver. Moreover, in my study, HBV-deficient mice expressed higher 

levels of HBV pgRNA than animals producing HBx.  

The data on the role of HBx protein in the HBV replication cycle remain 

controversial and largely depend on the model of HBV infection used.  

Tang et. al. 271 and Keasler et. al. 52 found a strong reduction in HBV replication when 

HepG2 cells were transfected with a X-deficient HBV replicon compared to a wild-

type one. In addition, both groups showed that ectopically expressed HBx restores 

HBV replication in the X-deficient replicon to the level of the wild-type one.  

Furthermore, Tang et. al. identified a region of HBx critical for stimulation of HBV 

replication and at the same time responsible  for co-activation of HBV pgRNA 

transcription 271. These results indicate that stimulation of virus replication by HBx 

protein occurs at the transcriptional level.  

However, Blum  et. al. 272 did not show any major differences in the efficiency of HBV 

replication from wild-type or X-defective HBV DNA in Huh7 cells or rat hepatocytes. 

Since there were no major differences in HBV DNA constructs used by Blum  et. al. 
272 and others, the discrepancy may be due to the use of different cell culture 

systems. HBx protein does not possess any DNA-binding domains, therefore it 

functions as a co-activator. Hence, Huh7 cells might lack factors being recruited by 

HBx in HepG2 cells to activate transcription.  



5 Discussion 
 

- 126 - 

Other studies found no stimulatory effect of HBx on the transcription of viral 

genes and attribute the increase of HBV replication by HBx to the activation of 

intracellular signaling pathways via an increase of cytosolic calcium levels and Src 

kinases phosphorylation 273 or inhibition of cellular proteosomes 51.  

In vivo data on the stimulatory role of HBx on HBV replication also seem to be 

contradictory. HBx has been shown to be necessary for establishment of viral 

infection in woodchucks, since productive WHV infection was observed only in 

woodchucks injected with the wild-type but not with the ORF-X mutated WHV  

DNA 274, 275. HBx seemed to increase HBV replication efficiency after breeding  

X-deficient with X-expressing HBV-transgenic mice 276 and when an HBx-coding 

plasmid was co-introduced with an X-deficient HBV plasmid into mice by a 

hydrodynamic injection 52. In contrast, Reifenberg, K et. al. did not report any 

decrease in HBV replication and virion export in X-deficient compared to wild-type 

HBV-transgenic mice 277.  

To rule out the possibility that HBV xfs mice in my study have more integrates 

of the HBV genome as HBV 1.3 mice, I performed real-time PCR with total tail DNA 

and quantified HBV DNA relative to HPRT. Since HBV does not replicate in mouse 

tail tissues, I detected only integrates of HBV genome. When I quantified HBV DNA 

relative to HPRT, I excluded any influence of differences in the quality and amounts 

of starting material on the final results.  I did not find any differences in the amounts 

of HBV genome integrates between the mouse strains and therefore concluded that 

both lines carry a single integrate of 1.3 overlength HBV genome 148.  

On the other hand, my results could be explained by the difference in the 

integration sites of HBV genome between the mouse strains.  

In adult mice, even within the same mouse strain, I observed pronounced differences 

in the efficiency of HBV replication. Other studies with HBV wild-type and X-deficient 

transgenic mice 276 also indicated a large variation of circulating HBV titers among 

different mouse lines carrying the same transgene, be it the wild-type or the mutated 

HBV genomes. This suggests that the effect of HBx on viral replication cannot be 

determined by simply comparing the serum viral titers between different transgenic 

mouse lines. 

I also speculate that the mouse may be the wrong model to study the effect of 

HBx on HBV replication. HBV-transgenic mice are known not to establish  

cccDNA 148. CccDNA, the transcriptional template of HBV during natural HBV 
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infection, accumulates as a stable episome in the nucleus and is organized into 

minichromosomes by histone and nonhistone proteins. Recently, Levrero and  

co-workers showed that HBV replication is regulated by the acetylation status of the 

cccDNA-bound H3/H4 histones 278. They found that class I histone deacetylase 

inhibitors induced an evident increase of both cccDNA-bound acetylated H4 and HBV 

replication. Conversely, histone hypoacetylation and histone deacetylase  

1 recruitment onto the cccDNA in liver tissue correlated with low HBV viremia in 

hepatitis B patients. HBx is reported to bind to DDB1, which is part of the STAGA 

histone acetylase complex 279. The interactions between HBx and DDB1 might be 

involved in the increase of HBV transcription and replication by HBx, since the HBx 

mutant, defective in DDB1-binding, could not complement in trans. Moreover, the 

knock-down of DDB1 reduced HBV transcription and replication from the wild-type 

HBV replicon. Indeed, absence or minimal transcription of cccDNA in X-deficient 

woodchucks would explain why they cannot establish productive WHV infection. The 

fact that a stimulatory effect of HBx protein on HBV replication can be observed in 

mice after a hydrodynamic injection does not argue against this hypothesis, since 

injected plasmid encoding for HBV DNA can behave like cccDNA. However, the 

stimulatory effect of HBx protein on HBV replication was also observed in 18-week 

old transgenic mice 276. Here, age-related changes in the chromatin activity might 

explain the requirement of HBx to stimulate transcription from integrated HBV 

genome.  

In this study, I did not observe any stimulatory effect of HBx on replicative 

potential of the virus in the developing liver. Therefore, the late onset of HBV 

replication in HBx-deficient transgenic mice as well as the slow increase in the 

efficiency of HBV replication during liver development do not result from the absence 

of HBx, but can rather be explained by the strong dependence of HBV replication 

efficiency on expression levels of HNF4α, HNF1α and PGC-1α and therefore 

hepatocyte differentiation.  

 

5.1.8 Possible clinical application of the obtained data 
 

The results of this study provide new insights into virus-host cell interaction 

that will be helpful for the generation of new models of HBV infection, for the 
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development of therapeutics against HBV and prophylaxis against intrauterine 

infection with the virus.  

Since HNF4α and HNF1α are key regulators of the functional and 

morphological phenotype of hepatocytes, down-regulation of these transcription 

factors as a therapeutic approach does not seem feasible. However, recently, 

helioxanthin analogue 8-1 has been described to suppress HBV replication by 

decreasing HNF4α levels in virus-harboring cells without any signs of toxicity 280. 

Furthermore, the results of this study may be taken into consideration when 

prescribing certain drugs such as phenobarbital 281, which increase nuclear 

expression of HNF4α to patients with hepatitis B.   

The information about the replicative potential of HBV in the developing liver 

could contribute to the development of prophylaxis against infection with HBV in 

utero. As it has already been discussed, the transfer of my data onto HBV replication 

during human liver development should be made with caution. While comparable 

stages of liver development are well described for the embryonic  

period 244, a comparison of later fetal and postnatal stages relies on functional data, 

showing that differential expression levels of liver enzymes during human liver 

development also closely resemble those in rodents 246.  

While my studies do not allow for an analysis of the dependence of infection 

on the hepatocyte differentiation state or any potential immune response, my studies 

allow me to conclude, that if in utero infection occurs, it will be hard to detect since 

detection relies on expression of viral antigens and/or on virus replication.  

Also, the late start of replication in the developing liver might explain why the 

active-passive immunoprophylaxis after birth protects infants at high-risk from chronic 

viral infection or viral hepatitis B 20, though it cannot prevent transplacental 

transmission and infections occurring prenatally.  

Currently, two approaches for the prevention of HBV transmission in utero are 

being much discussed: passive vaccination by administration of anti-HBs IgG or 

treatment with nucleoside analogues. Li et. al. 282 and Zonneveld  et. al. 283 strongly 

suggest that the administration of lamivudine to mothers with high serum HBV DNA 

concentrations in the third trimester of pregnancy was more effective than passive 

and active immunization alone in reducing the risk of mother to child transmission. 

The application of lamivudine is hampered by the fact that lamivudine treatment has 

not been adequately evaluated in humans in terms of birth defects. It is generally 
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considered that lamivudine could be used if the benefit of treating during pregnancy 

outweighs potential risks to the mother or fetus 11. The most recent data suggests 

that the rate of birth defects when using lamivudine does not exceed that in the 

general population 284. Currently, lamivudine and zidovudine are recommended for 

HIV-1 infected women during pregnancy. My data show that HBV starts to replicate 

only after birth. Therefore, for prophylaxis of intrauterine HBV infection, application of 

lamivudine to mothers with high viremia can be considered in the last treatment of 

pregnancy in order to decrease maternal viral replication and therefore the probability 

of perinatal infection of a child. The problem of antiviral resistance, however, makes 

the use of lamivudine monotherapy problematic, even for a short time. A potential 

complication for the mother is that flares of hepatitis B can occur if nucleoside 

analogue therapy is stopped after childbirth 11. 

 The purpose of anti-HBs IgG treatment is to prevent entry of HBV into 

hepatocytes. In a number of studies, application of anti-HBV IgG in the last trimester 

of pregnancy was efficient in the prophylaxis of intrauterine HBV transmission 

independent of the viral load and HBeAg status of mothers 285, 286. The application of 

anti-HBV IgG significantly decreased rates of vertical HBV transmission from HBeAg-

positive mothers to their children. Although anti-HBV IgG did not significantly reduce 

vertical transmission of HBV in HBeAg-negative mothers, it was effective in 

improving the neonatal immune response to hepatitis B vaccine.  

However, lamivudine 33 as well as anti-HBV IgG 287 might not prevent perinatal 

transmission of HBV infection in every newborn .  

 The failure to prevent perinatal HBV infection in every high-risk newborn using 

active-passive vaccination or by additional administration of lamivudine or anti-HBs-

IgG in the last trimester of pregnancy does not argue against my data that HBV 

replication starts after birth. These failures could rather be explained by the fact that 

HBV can cross placenta in the first trimester of pregnancy and remain infectious 243. I 

speculate that transmitted HBV could be stored in hepatoblasts or in extrahepatic 

reservoirs until hepatocyte differentiation is completed and the virus can replicate. 

That suggests that a bi-phasic administration of anti-HBV IgG (in the first trimester 

and during last weeks of pregnancy) might be necessary to prevent transmission of 

HBV in utero. 
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5.2 HO-1 induction and HBV replication 
5.2.1 HO-1 mediates antiviral effect of CoPP in HBV infection 
 

An antiviral effect of CoPP in stable HBV-producing cell lines, HBV-transgenic 

mice and mice transduced with AdHBV has previously been shown in our laboratory. 

Since in the model of HIV infection, Vzorov et. al. found that porphyrins possess 

antiviral activity 214, I investigated whether inhibition of HBV replication by CoPP is 

mediated by HO-1 or is merely an effect of porphyrin.  

In this study, I demonstrated that HO-1 mediates suppression of HBV 

replication by CoPP in hepatocytes at a posttranscriptional step that results in a 

reduction of HBV cccDNA, the viral persistence form in hepatocyte nuclei.  

In order to study whether the antiviral effect of CoPP in HBV infection is specific to 

HO-1 induction, I knocked down HO-1 expression using an siRNA approach. HO-1 

specific siRNA reduced HO-1 protein content by 74% and concomitantly reversed the 

inhibition of HBV replication by HO-1 as evidenced by measurement of HBV core 

protein expression, formation of HBV replicative intermediates, HBV progeny 

production and HBV cccDNA content. This strongly argues for an antiviral activity of 

HO-1 and not to a mere porphyrin effect. Porphyrins have been described to inhibit 

binding of HIV to its cellular receptor, CD4 214. In contrast, I observed an antiviral 

activity of HO-1 at a posttranscriptional step of HBV replication. Induction of HO-1 

reduces the stability of HBV core protein and thereby hinders the formation of HBV 

capsids, in which reverse transcription and thus synthesis of new viral genomes 

takes place 154. 

In my experiments, HO-1 induction led to a profound reduction of HBV cccDNA pool 

in HepG2-H1.3 cells, a cell line, which was recently established in our laboratory. 

HepG2-H1.3 cells are stably transfected with one copy of a 1.3-fold overlength HBV 

genome. This cell line establishes a pool of nuclear HBV cccDNA, the natural HBV 

transcription template, by reimporting viral genomes from newly synthetized viral 

capsids. Since Webb et. al  (unpublished result) found that a continuous refill was 

necessary to maintain a constant cccDNA pool in these cells, my results suggest that 

inhibition of HBV replication by HO-1 eliminated HBV capsids and thus blocked the 

amplification of the cccDNA pool. A similar non-cytopathic mechanism of HBV 

cccDNA reduction has been described during clearance of acute hepatitis B in 
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chimpanzees 229 as well as during antiviral treatment of chronic hepatitis B with 

nucleoside analogues 288, which block reverse transcription. 

To prove this hypothesis and to exclude a direct effect of HO-1 on nuclear 

HBV cccDNA, I treated HepG2-H1.3 cells with nucleoside analogue lamivudine with 

and without HO-1 induction. This led to identical regression kinetics of HBV cccDNA, 

and thus indicated that HO-1 induction inhibited the refill of nuclear cccDNA by newly 

formed viral DNA as effectively as inhibition of reverse transcription by lamivudine. 

Since the half-life of cccDNA was not reduced by combined treatment, I concluded 

that HO-1 had no additional direct effect on HBV cccDNA in the nucleus. 

To characterize the molecular mechanisms of the anti-viral effect of HO-1, the 

first experiments were performed using the reaction products of HO-1 (i.e. CO, 

biliverdin, and Fe2+). These ruled out that ferritin induced by Fe2+, which has been 

shown to mediate several biological properties of HO-1, mediates the anti-viral effect 

since the CoPP concentrations used in the study induced ferritin light chain neither in 

vivo nor in vitro (unpublished observations). Initial results indicated that carbon 

monoxide as well as biliverdin can act as mediators of HO-1 antiviral activity. 

 

5.2.2 Induction of HO-1 during ongoing anti-HBV immune response 
 

In the current study, in strong contrast to data obtained in our laboratory, I 

found a significant increase in serum ALT activity after administration of CoPP, when 

an anti-HBV immune response was ongoing. This indicates that induction of HO-1 on 

ongoing anti-HBV immune response aggravates liver injury.  

However, in various models of immune-mediated inflammation, HO-1 

induction has been shown to prevent or at least significantly inhibit inflammation-

related (TNFα-, CD95/CD95L-, lipopolysaccharide - induced) 289 or apoptotic liver 

injury 203. HO-1 induction is reported to suppress functions of macrophages, 

maturation of dendritic cells 290, antigen presentation, secretion of IL-12 and IFNγ. In 

addition, HO-1 inhibits T cell proliferation via reduction of IL-2 production 192, directs 

the Th-cell response to Th2 rather than to Th1 direction and down-regulates IFN I 

pathway 199. Furthermore, HO-1 induction significantly up-regulates Foxp3, TGF-

beta, IL-10, CTLA-4 expression in CD4+ T-lymphocytes 291 and is even engaged in 

Foxa3+-mediated immune suppression 194. 
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 I hypothesized that, either mechanisms underlying anti-inflammatory and 

hepatoprotective effects of HO-1 could not be realized if the enzyme is induced on 

ongoing anti-HBV immune response or, that anti-inflammatory and hepatoprotective 

activity of HO-1 might be restricted to a certain range of overexpression.  

The major difference in the design of experiments between my and former 

experiments 154 was the timing of CoPP treatment. In an earlier experiment, HO-1 

was induced before transduction of mice with HBV genome-coding adenoviral vector. 

Previous works focused on hepatoprotective and anti-apoptotic effects of HO-1 in the 

setting of immune-mediated liver injury also induced enzyme overexpression before 

liver damage was carried out 289, 203. In my experiment, mice were treated with CoPP 

5 and 10 days after HBV replication had been initiated.  

The anti-inflammatory and antiviral activity of HO-1 could be attributed to the effects 

of biliverdin or CO (Protzer U., unpublished). Bilban  et. al. reported that 

administration of exogenous CO leads to a transitory burst of ROS 292. This rapid 

increase in ROS likely results in concomitant induction of antioxidant enzymes and 

protective genes such that upon the addition of pro-oxidant stimuli further production 

of ROS is attenuated. Thus, CO is not acting as an antioxidant molecule; rather, it 

forces the cell to undergo oxidative conditioning leading to cytoprotective gene 

expression, which indirectly modulates the ensuing cellular response to the 

stimulation. In the current work, HO-1 induction and therefore CO production were 

stimulated when HBV replication had started and anti-HBV immune response had 

developed, so that oxidative conditioning, important for protective effect of CO 

against oxidative injury, could not be realized.  

 The second hypothesis is supported by the results of Suttner and Dennery, 

who showed that high levels of HO-1 expression reverse its cytoprotective effect in a 

hamster fibroblast cell line due to accumulation of reactive iron 293. In my case, HO-1 

was induced 14.4±2.5-fold at the mRNA level and 8.4±2.5-fold-fold at the protein 

level, which according to the data of Suttner et. al. is similar to the HO-1 induction 

levels seen with toxic influence in a given  cell. The accumulation of reactive iron as a 

result of excessive induction of HO-1 in my experiments could have augmented the 

oxidative stress caused by HBV replication 294, 295 and consequently led to the 

depletion of intracellular glutathione and sensitization of hepatocytes to TNF-induced 

apoptosis 296. Moreover, excessive oxidative stress also results in necrosis of 

hepatocytes. HO-1 induction does not protect hepatocytes from caspase-3-
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independent necrotic liver injury 203. Thus, the cytoprotective action of HO-1 may be 

restricted to a narrow threshold of overexpression.  

Additional experiments are required to prove both hypotheses and to evaluate 

the optimal timing and dosing of HO-1 induction before application moves to clinical 

practice. 

 

5.2.3 Possible candidates for HO-1 induction in humans 
 

In this study, I used CoPP to induce HO-1 expression in vitro, in hepatoma 

cells, as well in vivo, in mice. However, CoPP is reported to be toxic in higher 

concentrations 297, 298, which would be necessary to induce HO-1 in humans. 

Therefore, CoPP is very unlikely to be administered in clinical studies. 

HO-1 can be induced by drugs already approved for treatment of human diseases, 

e.g. cyclooxygenase inhibitors, statins or rapamycin.  

Aspirin, a well-known COX-2 inhibitor, induces HO-1 in a dose-dependent 

manner in cultured endothelial cells derived from human umbilical vein either by NO-

dependent pathways 299, 300 or by lipoxin A(4) 301. The induction of HO-1 by aspirin 

protects endothelial cells from H2O2-mediated toxicity that is in the first line mediated 

by increased ferritin synthesis 299. Importantly, the dose of aspirin used in the studies 

described above is higher than that used clinically. The application of even low doses 

of the drug increases the risk of upper gastrointestinal bleeding 302. In patients with 

severe acute hepatitis or flares of chronic hepatitis, blood coagulation and 

hemostasis are often severely impaired 303. Therefore, administration of high 

dosages of aspirin required to induce HO-1 in such patients could result in a dramatic 

increase in the risk of any major bleeding. Thus, aspirin seems not to be a probable 

drug candidate for HO-1 induction in patients with acute or flares of chronic  

hepatitis B. 

Statins are the widely used lipid-lowering agents. Simvastatin and lovastatin 

increase HO-1 mRNA levels in cultured endothelial cells derived from human 

umbilical vein 304, 305, in vessel smooth muscle cells 306 and mouse macrophages 307. 

The increase in HO-1 mRNA levels was associated with antioxidative and 

antiproliferative effects. Moreover, simvastatin and lovastatin significantly induce HO-

1 and confer antioxidant and anti-inflammatory actions in the liver when they are 

administered orally to mice 308. The induction of HO-1 by statins involves p38 and 
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ERK MAPK 308 and p13K-Akt 306 signaling pathways. Upon HO-1 induction, effects of 

statins are mediated by production of carbon monoxide and bilirubin 309. Like all 

drugs undergoing metabolism in the liver, statins may cause liver toxicity 310, 311. 

However, in a cohort of patients with cardiovascular diseases and either elevated 

liver enzyme levels, nonalcoholic fatty liver disease, hepatitis C, cirrhosis, liver 

transplants or HCC, statins show benefits without increased risk of adverse effects 
312. Therefore, statins seem to be promising candidates to induce HO-1 in humans 

with HBV-mediated liver disease.       

Rapamycin, a macrolide antibiotic, is a cytostatic agent that blocks cell cycle 

progression in the G1 phase 313. Visner  et al. reported that rapamycin induces HO-1 

and suppresses platelet-derived growth factor-dependent vascular smooth muscle 

cell growth and proliferation 314. Later, Zhou  et. al. showed that HO-1 is critical for 

the antiproliferative and vascular protective effects of rapamycin in vitro and in vivo in 

monocrotaline-induced pulmonary hypertension 315. However, rapamycin abolishes 

effects of hepatocyte growth factor and transforming growth factor β in  

hepatocytes 316. In addition, rapamycin down-regulates major cytokines and growth 

factors important for liver regeneration: TNFα, hepatocyte growth factor, platelet-

derived growth factor, platelet-derived growth factor receptor, insulin-like growth 

factor-1, TGFβ and significantly retards proliferation of hepatocytes after 2/3 

hepatectomy. Furthermore, the drug significantly increases the apoptosis rate in the 

liver, especially between day 3 and 7 after the partial hepatectomy 317, 318. Thus, 

rapamycin could substantially compromise liver regeneration, necessary to restore 

the function of the organ in HBV-caused liver disease, and thus does not seem to be 

a good candidate.  

Resveratrol, an important component in certain varieties of red grapes, has 

recently been shown to induce HO-1 via phosphorylation of p38 MAPK and Akt 319. 

Pretreatment with resveratrol markedly reduces infarct size 24 h after myocardial 

infarction and increases capillary density in the peri-infarct myocardium along with 

better left ventricular function compared with controls 320. Resveratrol treatment 

prevents partial hepatectomy-induced lipid peroxidation, decreases in hepatic 

glutathione and NO levels as well as inhibition of glutathione-transferase activity. 

Compared to the control operated animals, resveratrol diminishes severe 

morphological changes: mitochondrial degeneration, vacuoles, lipid droplets and 

myelin-like figures 321. However, resveratrol modestly stimulates apoptosis through 
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cell cycle arrest in G1 and G2/M phases 322. The latter effects of the drug could 

compromise hepatocyte regeneration and therefore limit potential therapeutic 

application in patients with severe acute or flares of chronic hepatitis B.  

Curcumin, a widely used spice and coloring agent in food, possesses 

antitumor, anti-oxidative and anti-inflammatory properties and has recently been 

reported to induce HO-1 protein levels in vascular endothelial cells 323. The ability of 

curcumin to induce HO-1 is presumably due to the presence of phenol moieties and 

may also work through the activation of the HO-1 promoter at the transcriptional  

level 324. The application of curcumin in the model of CCl4-induced hepatic  

damage and  reduces hepatic enzyme activity and therefore significantly facilitates 

hepatocellular recovery 325.  

Most pharmacological compounds mentioned above induce HO-1 at the 

transcriptional level. Here, the strength of enzyme induction in an individual person 

highly depends on the GT length of the HO-1 promoter. So, patients with long GT 

repeats are more resistant to HO-1 induction and may require higher doses of the 

pharmacological compounds, which ultimately lead to the increased rate of side 

effects. An increase in HO-1 expression via viral-mediated delivery of HO-1 gene 

circumvents this problem and provides for a more selective approach in targeting this 

gene to specific tissues. Changes in CO and bilirubin formation and in heme content 

as a result of increased HO-1 protein expression via genetic intervention are modest 

and less abrupt or volatile than those obtained after bolus administration of chemical 

inducers. The delivery of the human HO-1 gene has proved successful for achieving 

long-term overexpression 326.  

 

5.3 Decrease in intracellular levels of HNF4α and HNF1α as well as induction 

of HO-1 mediates inhibition of HBV replication by IL-6 
 

Together with Dr. M. Hoesel, I analysed mechanisms underlying the effects of 

IL-6 on HBV replication in primary human hepatocytes. The results by Dr. M. Hoesel 

clearly demonstrate the negative influence of recombinant and endogenous IL-6 on 

HBV replication. Since IL-6 suppressed rather than induced IFN response pathways 

in primary liver cells, I wondered about the mechanism by which IL-6 may inhibit HBV 

replication. All experiments indicated a primary negative influence on HBV 

transcription although the survival of the cells was improved and other transcripts 
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remained unaffected or were even upregulated. I showed that inhibition of HBV 

transcription was due to decreasing levels of HNF4α and HNF1α. Additionally, the 

induction of HO-1 may contribute to the inhibition of HBV replication by IL-6.  

Up to date, the role of IL-6 in HBV-infection remains controversial. Waris  and 

Siddiqui  incubated HBV-replicating HepG2.2.15 hepatoma cells with human IL-6 and 

found that IL-6-induced STAT-3, interacted with HNF3, bound to the HBV enhancer I 

and stimulated HBV transcription 224. However, in HBV-transgenic mice, 

administration of recombinant IL-6 led to the suppression of steady state mRNA 

expression 16 to 20 h after administration 327. These in vivo results are in accordance 

with our findings in primary liver cell cultures, and the differences observed in 

hepatoma cells may be due to altered signaling pathways. Galun  et al. observed that 

incubation of human liver tissue with HBV and human IL-6 before transplantation into 

SCID mice leads to a higher rate of HBV DNA positive animals than incubation of 

liver tissue with the virus only 223. This may be explained by the improvement of 

hepatocyte survival by IL-6, since IL-6 up-regulates the expression of a number of 

survival genes, such as cIAP2, Mn-SOD and IGFBP1 (Hoesel M, unpublished).  

As detailed above, I have shown that a concerted action of HNF4α and 

HNF1α, which also determines morphological and functional differentiation of 

hepatocytes, is required for efficient HBV transcription and thereby replication 328.  

I, therefore, examined whether IL-6 treatment has a negative effect on the expression 

of HNF1α and HNF4α transcription factors. Indeed, I found that the addition of 

recombinant IL-6 markedly reduced expression of these transcription factors at both 

mRNA and protein levels. This reduction was IL-6-specific, since addition of 

recombinant IL-6 pre-incubated with IL-6 neutralizing antibodies diminished the 

inhibiting effect of IL-6. Thus, my data suggest that IL-6-mediated down-regulation of 

HNF1α and HNF4α is responsible for reduced HBV gene expression and pregenome 

transcription, thus controlling HBV replication at the level of transcription. In support 

of my data, IL-6 has been shown to be responsible for inhibition of the HNF1α 

expression and transcription from genes regulated by HNF1α in sepsis 329.  

Finally, I attempted to identify a mechanism explaining how IL-6 mediates 

down-regulation of HNF1α and HNF4α transcription factors. It has been reported, 

that the family of IL-6-type cytokines besides STAT-3 activates the mitogen-activated 

protein kinases (MAPK) ERK1/2, p38 and JNK (reviewed in: Heinrich PC et. al. 330). 

In this study, I showed that HBV infection as well as IL-6 treatment upregulates 
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MAPK JNK and ERK, but not p38. Activated ERK1/2 has been reported to reduce 

HNF4α expression in human hepatoma cells 331, 332. Activated JNK has been shown 

to down-regulate HNF4α in hepatoma HepG2 cells 333 and in primary human 

hepatocytes 334. By using specific upstream inhibitors of MAPK, I showed that 

inhibition of pJNK and to a lesser extent pERK prevented down-regulation of 

transcription factors HNF1α and HNF4α, which are essential for HBV transcription. 

Therefore, blocking activation of MAPKs JNK and ERK prevented control of HBV 

gene expression by IL-6. My results thus explain why activation of ERK1/2 

suppressed HBV replication in HBV-transfected hepatoma cells at a transcriptional 

level as reported by Zheng  et al. 335. Since HNF4α also controls expression of 

HNF1α, it remains open whether there is a direct effect of MAPK on HNF1α, or 

whether this is secondary to the suppression of HNF4α.  

Additionally, I cannot exclude any decrease of HNF4α or HNF1α binding to their 

target genes. The transcriptional activity of HNF4α has been shown to be impaired 

by the induction of JAK2 signal transduction pathways, which in turn are induced by 

binding of IL-6 to its receptor 336. IL-6 also impairs the DNA-binding activity of  

HNF1α 329.  
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6 Summary  
6.1 Summary (English) 
 
The importance of host cellular factors for Hepatitis B Virus replication 
 

Hepatitis B virus (HBV), a small enveloped DNA virus, transiently and 

persistently infects the liver, which may result in an inflammatory liver disease - acute 

or chronic hepatitis B. HBV is transmitted by perinatal, percutaneous, and sexual 

exposure. Perinatal transmission of HBV is the most frequent cause of chronic 

hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide despite available 

vaccination and is generally assumed to occur during or after birth. However, recently 

HBV has been shown to be able to cross the intact trophoblastic barrier in early 

pregnancy and remain infectious.  

However, it is unknown, whether and at what stage of liver development HBV 

infects hepatocytes or hepatocyte precursors and when HBV replication in these cells 

is initialized. So far, it has not been thoroughly studied, to what extent the efficiency 

of HBV replication depends on the degree of hepatocyte differentiation and which 

hepatocellular factors link HBV replication to hepatocyte differentiation. The lack of 

knowledge in this regard has major clinical impact, since it may impede a more 

efficient prophylaxis of vertical transmission.  

To identify the starting point of HBV replication in the developing liver and 

analyze changes in replication efficiency along with liver development, I took 

advantage of an HBV-transgenic mouse model, in which every hepatocyte contains a 

replication competent 1.3-fold overlength HBV genome and which allows for studies 

independent of the early steps of infection. I studied markers of HBV replication: HBV 

DNA, HBV pgRNA, HBV core and L proteins at critical time points of fetal and 

postnatal liver development and compared them with that seen in adult animals.  

I found that even if all hepatocytes carry the HBV genome, HBV replication does not 

start before birth and determined the starting point of HBV replication to be within the 

first week after birth. Low levels of HBV pgRNA were detectable beginning at 

(embryonic day) ED 12.5, but HBV core protein was first seen at ED 18.5 and large 

envelope protein not before birth. All studied markers of viral replication increase 

continuously along with liver development. Here, a close correlation between levels 

of HBV replication, transcription of HBV pgRNA and HBV core protein was observed. 
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The results strongly indicate that a threshold of HBV pgRNA and HBV core protein 

levels must be achieved before HBV replication starts.  

Using primary human hepatocytes, hepatoma (HepG2, Huh7, differentiated 

and undifferentiated HepaRG) and hepatocyte cell lines, I confirmed that HBV 

replication is highly dependent on hepatocyte differentiation state with HBV pgRNA 

being the limiting step.  

I determined that high expression levels of HNF4α but not its potential 

cofactors or other hepatocyte-enriched transcription factors were essential for 

efficient HBV replication. The results of this study provide evidence that expression 

levels of HNF4α in concert with those of HNF1α link efficiency of viral replication to 

hepatocyte differentiation. In addition, I showed that increase in the expression level 

of HNF4α during liver development is responsible for high-level transcription of HBV 

pregenomes and onset of HBV replication. Also, expression levels of HNF4α in 

concert with those of HNF1α and PGC-1α account for morphological and metabolic 

differentiation of hepatocytes required for formation and secretion of HBV virions.  

While my studies do not allow for an analysis of the dependence of infection 

on the hepatocyte differentiation state or any potential immune response, my studies 

do allow to state, that if in utero infection occurs, it will be hard to detect since 

detection relies on expression of viral antigens and/or on virus replication. Also, the 

late start of replication in the developing liver might explain why the active-passive 

immunoprophylaxis after birth protects infants at high-risk from chronic viral infection 

or viral hepatitis B, though it cannot prevent transplacental transmission and 

infections occurring pre- or perinatally.  

 Besides hepatocyte-enriched transcription factors, other hepatocellular factors 

can influence the efficiency of HBV replication.  

Recently, administration of cobalt protoporphyrin IX (CoPP), inductor of heme 

oxygenase I, has been shown to inhibit HBV replication in stable HBV-producing 

cells, in HBV-transgenic mice as well as in mice transduced with adenoviral vector 

encoding HBV genome. Since porphyrins were reported to possess their own 

antiviral effect, it is important to investigate whether the antiviral effect of CoPP in 

HBV infection results from HO-1 induction or is merely caused by porphyrins.  

Here, I showed that HO-1 induction in hepatocytes directly decreases intracellular 

HBV core protein levels and inhibits HBV replication at the posttranscriptional step. 
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The results also indicate that the block of HBV replication by HO-1 is sufficient to 

reduce HBV cccDNA levels.  

Also, HO-1 induction has been recently demonstrated to ameliorate liver injury in the 

model of acute HBV infection, when the enzyme was induced by CoPP prior to the 

onset of HBV replication and development of anti-HBV immune response. Here, 

considering a therapeutic application of HO-1 induction in acute or flares of chronic 

hepatitis B, it is important to study the effect of enzyme overexpression during 

ongoing anti-HBV immune response. In the current study, the pronounced antiviral 

effect of HO-1 by reducing levels of HBV core protein, decreasing HBV replication, 

and decreasing progeny HBV release was retained when enzyme was induced 

during ongoing anti-HBV immune response. In contrast to previous studies, I found 

that strong induction of HO-1 during ongoing anti-HBV immune response aggravates 

liver injury. Further studies are required to carefully evaluate dosing and timing of 

HO-1 induction before application moves to clinical practice. 

Besides intracellular factors, extracellular factors can also affect HBV 

replication. Interleukin-6 (IL-6) seems to be involved in the pathogenesis of HBV 

infection because its levels were higher in HBV-infected than HBV-non-infected 

persons and correlated with the clinical course of infection. Recently, IL-6, induced 

upon HBV pattern recognition in mixed PHH cultures, has been shown to inhibit HBV 

replication. However, it remained unclear, which cellular pathways are involved in the 

control of HBV replication by this cytokine.  

The current work has shown that IL-6 inhibits HBV replication at the transcriptional 

level through the activation of JNK, and, to a lesser extent ERK, and consecutive 

inhibition of HNF4α and HNF1α expression. In addition, inhibition of HBV replication 

by IL-6 may also occur at the posttranscriptional level via induction of HO-1.  

 

The results of this work provide new insights into virus-host cell interactions that will 

be helpful for the generation of new models of HBV infection, to improve prophylaxis 

of  perinatal HBV infection and to develop therapeutics for treatment of chronic HBV 

infection. 
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6.2 Summary (German) 
 
Die Bedeutung von zellulären Wirtsfaktoren für die Hepatitis B Virus Replikation 
 

Das humane Hepatitis B Virus (HBV) ist ein kleines umhülltes DNA-Virus aus 

der Gruppe der Hepadnaviridae, welches Menschen und humanoide Primaten 

infiziert und eine akute oder chronische Lebererkrankung – Hepatitis B verursachen 

kann.  

Mit mehr als 2 Mrd. Infizierten, darunter ca. 350 Mio. chronische Träger wird die HBV 

Infektion zu einer der welthäufigsten Infektionskrankheiten gezählt. Der Verlauf der 

Erkrankung hängt in großem Masse von Alter und Immunstatus des Infizierten ab. 

Während nur 5% der Erwachsenen eine chronische Hepatitis B Erkrankung 

entwickeln, beträgt die Chronisierungsrate bei Kindern und Personen mit einer 

Immunschwäche 30% und steigt bei Neugeborenen auf über 90% an. 15% bis 40% 

der chronisch Infizierten entwickeln eine Leberzirrhose und als Folge dessen eine 

hepatische Dekompensation und HCC. Die verfügbaren antiviralen Medikamente 

führen zu keiner vollständigen Beseitigung des Virus und beschränken sich auf eine 

langfristige Hemmung der HBV Replikation und Remission der Lebererkrankung. 

Daher bleibt die Gesamtprognose der Patienten mit einer chronischen Hepatitis B 

Erkrankung unbefriedigend. Im Fokus der Behandlung sollte daher die Prophylaxe 

der HBV Infektion insbesondere im Kindesalter stehen. Obwohl eine Aktiv-Passive-

Immunisierung der Neugeborenen von HBV - infizierten Müttern gegen HBV als 

effizient betrachtet wird, ist eine perinatale u.a. eine intrauterine Transmission des 

HBV in hoch endemischen Gebieten häufig.  

Eine hämatogene Übertragung des Virus durch eine Leckage der Plazenta oder ein 

Transfer des HBV durch die Zellen der Plazenta werden als mögliche Mechanismen 

der intrauterinen Infektion diskutiert. Vor kurzem wurde gezeigt, dass Zellen des 

Trophoblasts eine Transzytose des HBV ermöglichen, wobei das Virus infektiös 

bleibt.  

Es war jedoch weitgehend unklar, ob und in welchem Stadium der Leberentwicklung 

das übertragene Virus die Vorläuferzellen der Hepatozyten infizieren und seine 

Replikation etablieren kann. Außerdem lagen bis jetzt keine detaillierten Daten vor, 

inwiefern die Effizienz der HBV Replikation vom Differenzierungsgrad der 

Hepatozyten abhängt und welche hepatozelluläre Faktoren dafür verantwortlich sein 
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könnten. Der Einblick in das infektiöse und replikative Potential des HBV würde ein 

wichtiger Fortschritt für die Entwicklung neuer Prophylaxeoptionen darstellen.  

Im ersten Teil der vorliegenden Arbeit wurde die Expression der HBV Gene und 

Virusreplikation während der Leberentwicklung untersucht. Die Abhängigkeit der 

HBV Replikation von der Differenzierung der Hepatozyten und die dafür 

verantwortlichen Wirtsfaktoren wurden weiterhin detailliert in verschiedenen Zellen 

mit hepatozytärer Abstammung analysiert. 

Um HBV Replikation in der sich entwickelnden Leber zu untersuchen, nutzte ich die 

Vorteile eines HBV transgenen Mausmodells aus, bei dem die Virusreplikation von 

einem in Chromosom-DNA integrierten 1.3-fachen Überlängegenom des HBV 

stattfindet. Somit konnte ich HBV Replikation unabhängig von den Frühphasen des 

Virusreplikationszyklus analysieren. Die Replikation des Virus wurde an kritischen 

Zeitpunkten der fötalen und postnatalen Leberentwicklung untersucht: embryonalem 

Tag (ED) 12.5, 15.5, 18.5 und postnatalen Tag (dpn) 0.5, 2  und Woche (wpn) 1, 2 

and 4 und mit der in entsprechenden erwachsenen Mäusen verglichen. Als Marker 

der HBV Replikation analysierte ich virale Prägenome und  intrazelluläre DNA mit 

einer Echtzeit Polymerasenkettenreaktion sowie Core und L-Proteine mittels Western 

Blot Analyse.  Um Sensitivität der HBV Core Protein Detektion zu erhöhen, führte ich 

zusätzlich Immunfärbungen der Zytospins und der Leberschnitte durch.  

Obwohl alle Hepatozyten der transgenen Tiere ein HBV Genom besitzen, konnte der 

Startpunkt der Virusreplikation erstmals in der ersten postnatalen Woche detektiert 

werden. In der weiteren postnatalen Leberentwicklung stieg die Menge der HBV DNA 

kontinuierlich an.  

Um Ursache für diesen späten Start in der HBV Replikation während der 

Leberentwicklung zu erklären, analysierte ich als nächstes Transkription der HBV 

pgRNA, die als Matrize für die reverse Transkription sowie für die Translation von 

HBV Core und Polymerase Proteine dient. HBV pgRNA war am ED 12.5 kaum 

nachweisbar, stieg aber während der weiteren fötalen und frühen postnatalen 

Leberentwicklung an. In Übereinstimmung mit dem Start der HBV Replikation 

erreichte die Traskription der pgRNA das Niveau erwachsener Mäuse in der ersten 

postnatalen Woche. Ich beobachtete eine enge Korrelation zwischen Menge an 

Prägenomen und einer Neusynthese der HBV DNA.  

Trotz Detektion der HBV pgRNA schon in Frühstadien der Leberentwicklung, zeigte 

sich die erste, geringe Expression des HBV Core Proteins erst am ED 18.5. In der 
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weiteren Leberentwicklung, parallel zu der HBV pgRNA nahm diese ebenfalls 

kontinuierlich zu, blieb allerdings unter dem Niveau entsprechender erwachsener 

Tiere.  

Um zu analysieren, in welchem Stadium der Leberentwicklung infektiöse HBV-

Partikel gebildet werden können, wurde die Expression des HBV L Proteins 

analysiert. Hier gelang die Detektion geringer Mengen von HBV L Protein erst am 

Tag 0.5 nach Geburt. Auch die Produktion des HBV L Proteins stieg in der 

postnatalen Phase der Leberentwicklung an.  

Somit konnte ich zeigen, dass eine HBV Replikation erst in der ersten postnatalen 

Woche beginnt und stark von der Expression der HBV pgRNA und des Core Proteins 

abhängt. Die Ergebnisse weisen daraufhin, dass ein Schwellenwert von HBV pgRNA 

und Core Protein erreicht werden muss, bevor die HBV DNA Synthese initiiert 

werden kann.  

Um eine Abhängigkeit der HBV Replikation vom Differenzierungsgrad der 

Hepatozyten zu bestätigen und um festzustellen, welche zelluläre Faktoren für einen 

späten Anfang der HBV Replikation verantwortlich sind, habe ich HBV Replikation 

sowie die Expression der Stoffwechselmarker und Marker hepatozytärer 

Polarisierung auf mRNA und Proteinebene in primären humanen Hepatozyten 

(PHH), in Hepatoma Zellinien (HepG2, Huh7 und undifferenzierten und 

differenzierten HepaRG) und in der Hepatozytenzellinie Pop10 verglichen. Die 

stärkste Expression der Stoffwechselmarker und Marker hepatozytärer Polarisierung 

zeigte sich in PHH und erhöhte sich mit steigendem Differenzierungsgrad der 

HepaRG Zellen. Um die HBV Replikation in den oben genannten Zellen zu 

untersuchen, transduzierte ich sie mit einem adenoviralen Vektor, der cDNA des 

grün-fluoreszierenden Proteins und 1,3 Überlängengenom von HBV kodiert. Die 

PHH, die am meisten differenzierten Zellen in dieser Studie, zeigten ein höheres 

Niveau in der HBV Replikation als Hepatoma Zellen. Hingegen wurde in Pop10 

Zellen, mit geringer oder keiner Expression hepatozytärer Differenzierungsmarker, 

keine HBV Replikation nachgewiesen. Die Unterschiede in der Effizienz der HBV 

Replikation hängen in großem Maße von dem Expressionsniveau der HBV 

Prägenome ab. 

Es ist mir somit gelungen sowohl in vitro, in Zellkultur, als auch in vivo, während der 

Leberentwicklung der HBV transgenen Mäuse zu beweisen, dass die HBV 
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Replikation stark vom Grad der hepatozytären Differenzierung abhängt. Hierbei stellt 

die Expression der HBV Prägenome den limitierenden Schritt dar.  

Da die Effizienz der HBV Replikation im Kontext hepatozytärer Differenzierung durch 

die Expression von pgRNA limitiert wird und die Expression der 

Differenzierungsmarker ebenso auf dem Transkriptonsniveau reguliert wird, wurde im 

Folgenden die Expression der Hepatozyten-spezifischen Transkriptionsfaktoren 

(HNF1 α/β, HNF3α/β/γ, HNF4α, C/EBPα/β, LRH-1, PGC-1α, COUP-TF)  untersucht.  

Hier war die Expression von HNF4α, HNF1α und HNF3γ unter allen anderen 

Hepatozyten-spezifischen Transkriptionsfaktoren am höchsten in PHH und stieg 

während der Differenzierung der HepaRG Zellen an. Pop10 Zellen hingegen 

exprimierten nur wenig HNF3γ, HNF4α und keinen HNF1α. Während der 

Differenzierung der HBV stabil produzierenden Hepatoma Zellinien HepG2-H1.3 und 

HepG2 2.15 beobachtete ich eine enge Korrelation zwischen den Expressionslevel 

der HNF4α, HNF1α und HNF3γ und der Transkription der HBV Gene, Produktion der 

HBV Proteine, HBV Replikation und Sekretion der HBV Virionen. Diese Ergebnisse 

deuteten daraufhin, dass HNF4α, HNF1α und HNF3γ eine Verbindung zwischen der 

Effizienz der HBV Replikation und Differenzierung der Hepatozyten darstellen 

könnten.  

Um dies zu bestätigen und um festzustellen, ob das Vorliegen von HNF4α, HNF1α 

und HNF3γ alleine oder hohe Expressionslevel dieser Transkriptionsregulatoren  die 

Effizienz der HBV Replikation bestimmen, führte ich ein Knock down von HNF4α, 

HNF1α und HNF3γ mit spezifischen siRNAs in HepG2-H1.3 Zellen durch.  

Der knock down von HNF4α und HNF1α führte zur signifikanten Inhibition der 

Expression hepatozytärer Differenzierungsmarker und Transkription der HBV 

pgRNA, Expression der HBV Proteine, Replikation des Virus, Sekretion der HBV 

Virionen sowie der Akkumulation der covalently closed circular DNA (cccDNA) im 

Zellkern. Ich konnte ausschließen, dass unsere siRNAs gegen HNF4α und HNF1α 

eine Interferonantwort in den Zellen induzierten. Somit war die Inhibition der HBV 

Replikation spezifisch durch die Verminderung der Mengen von HNF4α und HNF1α 

bedingt. Mittels Ko-Immunfärbung auf HNF4α und HBV Core Protein konnte zudem 

gezeigt werden, dass die Inhibition der HBV Replikation auf einen direkten Effekt der 

Verminderung der HNF4α Level zurückzuführen und nicht durch sekundäre 

Mediatoren verursacht war. Die große Bedeutung hoher Expressionslevel der 

Hepatozyten-spezifischen Transkriptionsfaktoren für eine effiziente HBV Replikation 
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konnte außerdem in vivo, anhand von Tumor/Peritumorgewebe von Patienten mit 

HCC und chronischer Hepatitis B nachgewiesen werden. Hier korrelierten die Level 

der HBV pgRNA und des Core Proteins eng mit den Expressionslevel der HNF4α. 

Darüber hinaus zeigte die Analyse der Expression der Hepatozyten-spezifischen 

Transkriptionsfaktoren während der prä- und postnatalen Leberentwicklung, dass die 

Expressionslevel von HNF4α, dessen Ko-Aktivator PGC-1α und HNF1α parallel zu 

der hepatozytären Reifung anstiegen und eng mit der Expression von HBV pgRNA 

und HBV Replikation korrelierten.  

Somit konnte ich zeigen, dass die HBV Replikation erst nach der Geburt anfängt und 

parallel zu der Reifung der Hepatozyten in der postnatalen Phase der 

Leberentwicklung zunimmt. Ich habe demonstriert, dass HBV Replikation durch den 

Grad hepatozytärer Differenzierung bestimmt wird. Außerdem konnte gezeigt 

werden, dass die Hepatozyten-spezifischen Transkriptionsfaktoren HNF4α und 

HNF1α und während der Leberentwicklung auch PGC-1α, die Verbindung zwischen 

der hepatozytären Differenzierung und der Effizienz der HBV Replikation darstellen 

und für den späten Beginn der HBV Replikation während der Leberentwicklung 

verantwortlich sind.  

Die Ergebnisse dieser Studie erlauben keine Aussage über das infektiöse Potential 

von HBV in der sich entwickelnden Leber oder über eine mögliche Immunantwort. 

Dazu sind weitere Studien an einem Tiermodell notwendig, welches mit HBV oder 

einem verwandten Virus z.B. Murmeltier Hepatitis Virus (WHV) infizierbar ist. 

Allerdings steht anhand meiner Daten fest, dass eine intrauterine Infektion vor der 

Geburt nur sehr schwer detektiert werden kann, da der Nachweis auf die Expression 

viraler Antigene und/oder auf die Virusreplikation angewiesen ist. Weiterhin, erklären 

meine Ergebnisse, warum Aktiv-Passive Immunisierung gegen HBV bei 

Neugeborenen so effizient ist, obwohl sie eine transplazentare Übertragung des 

Virus und Infektion nicht verhindern kann.  

Zusätzlich implizieren die Ergebnisse dieser Studie, dass Patienten mit einer HBV 

Infektion keine Medikamente, wie z.B. Barbiturate, erhalten sollen, die 

Expressionslevel der HNF4α und HNF1α erhöhen und somit HBV Replikation 

verstärken.  

Da die Effizienz der verfügbaren Behandlungsoptionen für chronische Hepatitis B 

Erkrankung limitiert ist, wird die Entwicklung neuer Therapieansätze dringend 
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erforderlich und setzt ein detailliertes Verständnis der Interaktionen zwischen dem 

HBV und dem Hepatozyten voraus.  

Vor kurzem konnten wir einen antiviralen und hepatoprotektiven Effekt der 

Hämexogenase-I (HO-1) in HBV produzierenden Hepatoma Zellinien, HBV 

transgenen Mäuse sowie im Mausmodell einer akuten HBV Infektion beobachten. 

Für die Bestätigung einer antiviralen Aktivität der Enzyminduktion fehlte jedoch der 

Beweis, dass ein Knock down der HO-1 Expression den antiviralen Effekt rückgängig 

macht. Weiterhin war es nicht klar, ob eine HO-1 Induktion die Anreicherung der 

cccDNA beeinflussen kann.   

Deswegen wurde im zweiten Teil dieser Arbeit untersucht, ob durch die Inhibition der 

Expression der HO-1 die antivirale Aktivität der Enzyminduktion rückgängig gemacht 

werden kann. Darüber hinaus wurde der Effekt der HO-1 auf die cccDNA 

Akkumulierung im Zellkern analysiert. Zusätzlich untersuchte ich die anti-

entzündliche und hepatozytenschützende Aktivität von HO-1 in den Mäusen 14 Tage 

nach der Induktion der HBV Replikation durch einen HBV Genom kodierenden 

adenoviralen Vektor. Dieser Zeitpunkt entsprach dem Höchstpunkt der HBV-

spezifischen Immunantwort.  

 Um eine antivirale Aktivität der HO-1 Induktion gegen HBV bestätigen zu 

können, habe ich die stabil HBV produzierende Zellinie HepG2-H1.3 mit der HO-1-

spezifischen siRNA transfiziert und mit CoPP behandelt. Spezifische siRNA führte zu 

einer effizienten Inhibition der durch CoPP induzierten HO-1 Expression. Die weitere 

Untersuchung der Marker der HBV Replikation zeigte eine Verminderung der HBV 

Core Protein Expression, Synthese der replikativen Intermediate und Sekretion der 

Virionen nach der Behandlung der Zellen mit CoPP. Dieser konnte durch die 

Transfektion mit der spezifischen siRNA entgegen gesteuert werden. Mittels Echtzeit 

Polymerasenkettenreaktion konnte ich zeigen, dass HO-1 die Anreicherung von 

cccDNA im Zellkern der Hepatozyten inhibiert. Es handelte sich hierbei um einen 

indirekten Effekt, da eine Kombinationsbehandlung der Zellen mit CoPP und dem 

Inhibitor der HBV Replikation Lamivudin keine synergistische Wirkung auf die 

Halbwertszeit der cccDNA hatte.  

Die Ergebnisse zeigten, dass HO-1 eine antivirale Aktivität besitzt und die HBV 

Replikation auf dem Posttranskriptionsniveau sowie die Akkumulierung der 

persistierenden Form der HBV cccDNA im Zellkern inhibiert.  
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 Zusätzlich, habe ich im Mausmodell einer akuten HBV Infektion untersucht, ob 

der anti-virale, anti-entzündliche und hepatozytenschützende Effekte der HO-1 

Induktion erhalten bleiben, wenn das Enzym auf dem Höchstpunkt der HBV-

spezifischen Immunantwort in der Leber induziert wird. Ich konnte feststellen, dass 

die Induktion der HO-1 auf dem Höchstpunkt der HBV-spezifischen Immunantwort in 

der Leber die Expression des HBV Core Proteins, die Synthese replikativer 

Intermediate und die Sekretion der HBV Virionen hemmt. Im Gegensatz zu den 

vorausgegangenen Studien, fand ich allerdings eine Zunahme der Leberschädigung. 

Die Zunahme der Leberschädigung könnte durch eine zu starke Induktion der HO-1 

Expression mit konsekutiver Umkehrung des anti-oxidativen Effektes und 

Verstärkung des oxidativen Stresses erklärt werden. Hieraus wird klar, dass weitere 

Studien benötigt werden, um festzustellen, welche Medikamente und in welchen 

Dosierungen das optimale Niveau der Induktion der HO-1 Expression hervorrufen. 

Viele zugelassene Medikamente wie z.B. Statine induzieren HO-1 Expression und 

besitzen minimale hepatotoxische Nebeneffekte und werden folglich passende 

Kandidaten zur Induktion der HO-1 Expression in einer Therapie. 

Neben den bereits genannten hepatozellulären Faktoren, kann die HBV 

Replikation auch durch extrazelluläre Mediatoren beeinflusst werden. Bis heute wird 

der Effekt von Interleukin-6 (IL-6) auf die Infektion mit HBV und Virusreplikation sehr 

kontrovers diskutiert. Vorausgegangene Studien in unserer Arbeitsgruppe zeigten, 

dass sowohl das endogene als auch das rekombinante IL-6 die Transkription der 

HBV pgRNA und die HBV Replikation herunterreguliert. Es blieb jedoch unklar, 

welche zellulären Faktoren dafür verantwortlich sind. 

Im dritten Teil dieser Arbeit wurde in Kulturen primärer humaner Hepatozyten 

untersucht,  welche hepatozellulären Faktoren die Inhibition der HBV Replikation 

durch IL-6 vermitteln. Dafür wurden die Zellen mit dem Wildtyp HBV infiziert. 

In dieser Arbeit wurde bereits gezeigt, dass hohe Expressionslevel der HNF1α and 

HNF4α für eine effiziente HBV Replikation essentiell sind.  

Eine Untersuchung dieser Transkriptionsfaktoren nach Behandlung der PHH 

Kulturen mit rekombinantem IL-6 zeigte eine Verminderung der Expression von 

HNF1α and HNF4α auf mRNA- sowie Protein-Niveau. Eine Zugabe IL-6 spezifischer 

Antikörper hob diesen Effekt auf. 
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Da MAPK ERK1/2 und JNK von IL-6 aktiviert werden und diese die Expression von 

HNF4α beeinflussen können, vermutete ich, dass MAPK Aktivierung durch IL-6 zur 

Inhibition der HBV Replikation führt.  

Ich habe festgestellt, dass Phosphorylierung von MAPK ERK1/2 und JNK aber nicht 

p38 nach der Infektion der PHH mit HBV anstieg. Unter Verwendung spezifischer 

Inhibitoren, konnte ich zeigen, dass Inhibierung der JNK – Aktivierung vollständig 

und ERK - Aktivierung partiell die IL-6 induzierte Inhibition der HNF4α and HNF1α 

Expression überwand.  

Ich habe somit bewiesen, dass die Inhibition der HBV Replikation durch IL-6 über die 

Aktivierung von MAPK ERK and JNK und die konsekutive Hemmung der Expression 

von HNF4α and HNF1α vermittelt wird.  

Neben der MAPK, induziert IL-6 auch die Expression der HO-1. Nach der Infektion 

der PHH Kulturen mit HBV verdoppelte sich die Expression der HO-1. Eine 

Inkubation naiver oder HBV infizierter PHH-Kulturen mit rekombinantem IL-6 führte 

zu einer deutlichen Induktion der HO-1 Expression. Die Zugabe der IL-6 Antikörper 

verhinderte diese Effekte.  

Somit wird die HBV Replikation von IL-6 auf dem Transkriptionsniveau durch 

Aktivierung von JNK, weniger auch von ERK und konsekutive Verminderung der 

Expressionslevel von HNF4α and HNF1α inhibiert. Darüber hinaus kann IL-6  die 

Virusreplikation posttranskriptionell durch die Induktion von HO-1 hemmen.  
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