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1. Introduction 
 

1.1   The Acid Sphingomyelinase 
 
     Sphingomyelinases catalyse the hydrolysis of sphingomyelin into ceramide and 

phosphorylcholine. Seven sphingomyelinases (SMases) are currently known and 

classified with regard to their pH-optimum, their cellular localisation or their 

dependency of bivalent metal ions. The Acid Sphingomyelinase (ASMase) is the 

most intensely characterised among the SMases (Levade and Jaffrezou 1999). 

ASMase is expressed ubiquitously in most mammalian cell types. Its name refers to 

its pH-optimum of about pH 5 and it localises to the extracellular leaflet of the plasma 

membrane and to the luminal leaflet of lysosomes, phagosomes and endosomes 

(Kanfer, Young et al. 1966; Krönke 1999; Grassmé, Schwarz et al. 2001; Schneider-

Brachert, Tchikov et al. 2004). The ASMase is activated by a number of extracellular 

ligands binding to their specific cell-surface receptors, e.g. tumour necrosis-factor 

(TNF), Fas-ligand (FasL or CD95L) or interleukin (IL)-1ß (Schütze, Potthoff et al. 

1992; Cifone, Roncaioli et al. 1995). Deficiency in ASMase results in accumulation of 

sphingomyelin in multilamellar bodies in a variety of cells, among them macrophages 

and neuronal cells of the cerebellum (Otterbach and Stoffel 1995). Loss of cerebellar 

cells leads in ASMase-/- humans to Niemann-Pick Disease, type A or B, lethal in early 

childhood or late and adolescence, respectively. In ASMase-/- mice first clinical 

symptoms of Niemann-Pick Disease show up at about three months and the mice die 

at about 9 month of age (Horinouchi, Erlich et al. 1995; Lozano, Morales et al. 2001).   

     Agonist-induced sphingomyelin hydrolysis by SMases is a major source of 

ceramide in cells. During recent years, ceramide has received great attention as a 

possible mediator of various cellular signalling pathways, e.g. programmed cell 

death, cell differentiation and proliferation (Futerman and Hannun 2004), which, 

however, has been disputed (Hofmann and Dixit 1998; Hofmann and Dixit 1999; 

Kolesnick and Hannun 1999; Perry and Hannun 1999; Watts, Aebersold et al. 1999). 

In fact, although direct ceramide interacting partners have been identified in vitro 

including protein kinases, protein phosphatase 2A, phospholipase A2, and cathepsin 

D (Zhang, Yao et al. 1997; Huwiler, Fabbro et al. 1998; Heinrich, Wickel et al. 2000; 

Chalfant, Szulc et al. 2004), the respective physical interaction has not been 

demonstrated in intact cells. In light of both, the biophysical properties of ceramide 
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predicting strict association with the membrane bilayer and the subcellular topology 

of ceramide generation, the functional consequences of possible interactions of 

ceramide with specific signalling proteins, especially interactions with cytosolic 

proteins, remained elusive. 

 

1.2  Effects of ASMase on lipid bilayers 
 
     In consideration of the biophysical impact of sphingomyelin hydrolysis on 

membrane bilayers, the involvement of ASMase in cellular signalling is likely to be 

indirect. Sphingomyelin and cholesterol interact with each other to form detergent-

resistant domains in the plasma membrane, also known as lipid rafts, which are 

central for the spatial organization of cell-surface receptors. Sphingomyelin 

hydrolysis within lipid rafts alters the composition of lipid rafts, because ceramide 

spontaneously self-associates and has the tendency to form ceramide-enriched 

membrane microdomains (Holopainen, Subramanian et al. 1998). Ceramide 

generation by ASMase may thus indirectly and non-specifically impact on many 

signalling pathways through reorganization of cell-surface receptors and their 

signalosomes (Bollinger, Teichgraber et al. 2005). 

     Moreover, for comprehensive appreciation of the impact of ASMase activity, it is 

important to stress that its substrate, sphingomyelin, is an important component of 

the outer leaflet of the plasma membrane or the intraluminal leaflet of endo-

lysosomal vesicles (Futerman and Riezman 2005; Holthuis and Levine 2005). Due to 

this asymmetric distribution of sphingomyelin and the tendency of ceramide to 

separate into domains, ASMase-generated ceramide will spontaneously form 

negative curvatures that in turn lead to membrane invagination (Fig. 1) and budding 

as previously shown with synthetic liposomes (Holopainen, Angelova et al. 2000). 

The impact of ASMase activity and ceramide generation on basic membrane 

architecture has been implicated by our workgroup as well as by others as a possible 

mechanism modifying cellular signalling (Krönke 1999; Goni and Alonso 2002; 

Bollinger, Teichgraber et al. 2005) and was the conceptual framework of the present 

study. 
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Fig. 1 Effects of ASMase on lipid bilayers 
Acid Sphingomyelinase (ASMase) hydrolyses sphingomyelin into ceramide. In lipid bilayers the lipid 
distribution is asymmetric and generation of the cone-shape ceramide within one leaflet leads to 
increased surface tension, result in budding of the whole membrane with a negative curvature of the 
ceramide-containing leaflet. 
 
 

1.3 Involvement of ASMase in immune responses 
 
     ASMase is activated by a number of pro-inflammatory cytokines like TNF, IL-1ß or 

IFN-γ (Schütze, Potthoff et al. 1992; Cifone, Roncaioli et al. 1995) and localises to 

phagosomes, lysosomes and endosomes, i.e. those organelles that are essential for 

bacterial uptake, inactivation and degradation as well as the processing and 

presentation of antigens. It has been previously shown in our workgroup that 

ASMase deficient macrophages are strongly impaired in their capacity to kill 

intracellular bacteria, which results in an increased susceptibility of ASMase-/- mice to 

infections with e.g. Listeria monocytogenes or Salmonella typhimurium (Utermöhlen, 

Karow et al. 2003). On the other hand, Grassmé et al. showed that ASMase is 

required for the uptake of Neusseria gonorrhoeae in vitro (Grassmé, Gulbins et al. 

1997) and Pseudomonas aeruginosa in vivo (Grassmé, Jin et al. 2006). Thus, 

depending on specific characteristics of pathogens, ASMase appears to contribute to 

various mechanisms of antibacterial defence. 

 

1.4   Acute infection of ASMase-/- mice with the Lymphocytic  
Choriomeningitis virus 

 
     The consequences of ASMase-deficiency on an adaptive immune response in 

vivo were studied in mice acutely infected with the Lymphocytic Choriomeningitis 

ASMase

ASMase      
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ceramideASMase

ASMase      
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ceramide
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virus (LCMV). The infection of mice with LCMV is one of the best characterised 

animal models of virus-induced cell-mediated immune responses (Buchmeier, Welsh 

et al. 1980; Butz and Bevan 1998; Oldstone 2002; Zinkernagel 2002). ASMase-

deficient (ASMase-/-) mice cleared acute infection with the LCMV with a significant 

delay from the spleen (Fig. 2; our unpublished observation). In adult 

immunocompetent mice, CD8+ cytotoxic T lymphocytes (CTL) are necessary and 

sufficient to eliminate the LCMV from the spleen during acute primary infection 

(Buchmeier, Welsh et al. 1980; Moskophidis, Cobbold et al. 1987). Thus, the delayed 

elimination of LCMV suggested an impaired effector function of CD8+ virus-specific 

CTL in ASMase-/- mice. 

 

 
Fig. 2 Delayed clearance of the LCMV from the spleen of acutely infected ASMase-/- mice 

(unpulished data) 
Mice were infected i.v. with 105 IU of the LCMV. At the indicated days after infection, the virus load in 
the spleen was measured as PFU/g spleen and converted to IU as described in Methods. Shown are 
the means and standard errors for groups of three mice per day. The limit of detection of the LCMV 
was 2 x 104 IU/g. 

 

 

     In my Diploma project I found, the virus-specific cytotoxic activity of ASMase-/- 

CTL to be severely impaired on day 8 after infection in comparison to wild type (wt) 

littermates (citation Diploma; (Fig. 3A)). Surprisingly, the absolute numbers of LCMV-

specific CD8+ T cells per spleen were found to be similar in wt and ASMase-/- mice on 

day 8 and 9 post infection (p.i.) (Fig. 3B). The aim of this study was to elucidate the 

ASMase dependent mechanism in virus-specific CD8+ T cells.  
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Fig. 3 LCMV-specific cytotoxic activity of ASMase-/- CD8+ T cells is impaired despite equal 

numbers of LCMV-specific CD8+ T cells (Diploma)  
Mice were infected i.v. with 105 IU of the LCMV.  
(A) At day 8 after infection, wild type or ASMase-/- CD8+ T cells were enriched from splenic single cell 
suspensions. Cytotoxic activity of CD8+ T cells against LCMV infected C57BL/6 fibroblasts was 
determined in a 3 h or 5 h Chromium [51Cr] -release assay. 
(B) Absolute numbers of CD8+ T cells per spleen expressing TCR-specific for the three major 
immunodominant epitopes gp33-41, gp276-286 and np396-404 of the LCMV. Data were calculated from the 
total number of mononuclear spleen cells, the percentage of CD8+ spleen cells and the percentage of 
epitope-specific CD8+ spleen cells. 
 
 

1.5 Cytotoxic activity of CD8+ T lymphocytes 
 
     CD8+ cytotoxic T lymphocytes induce target cell death by two distinct pathways: 

(i) the receptor-mediated pathway and (ii) the usually dominant granule exocytosis 

pathway. The receptor-mediated pathway involves activation of receptors of the TNF 
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family of receptors, such as Fas. Engagement of Fas receptor on the target cell 

surface by the Fas Ligand on the surface of the CTL leads to induction of apoptosis 

via multiple protein-protein interactions involving caspases. The details of the 

receptor-mediated pathway will not be described here (Kägi, Ledermann et al. 1994; 

Barry and Bleackley 2002).  

     The granule exocytosis pathway as major cytotoxic effector mechanism of 

CD8+ CTL depends on the exocytosis of cytotoxic granules at the immunological 

synapse leading to apoptosis of the target cell (Griffiths and Isaaz 1993; Henkart, 

Williams et al. 1997; Shresta, Pham et al. 1998; Stinchcombe and Griffiths 1999). 

Cytotoxic granules were identified as secretory lysosomes (Peters, Borst et al. 1991), 

a cellular compartment combining both, degradative as well as secretory functions. 

Within secretory lysosomes the major cytotoxic effector molecules perforin (perf), 

granzyme (gzm) A and -B are complexed to an acidified chondroitin sulfate 

proteoglycan matrix, which reduces the osmolarity allowing storage of cytotoxic 

effector molecules high concentrated (Raja, Metkar et al. 2003). 

 

1.6          Secretion of cytotoxic granules: mechanistic steps identified so far  
 
     In CTL, exocytosis of cytotoxic granules is triggered by ligating the antigen 

specific T cell receptor (TCR). Upon TCR ligation, cytotoxic granules previously 

scattered all over the cytoplasm of the cell are polarised towards the immunological 

synapse, i.e. the contact zone between CTL and its target cell. Polarisation requires 

directed transport of cytotoxic granules, including the reorientation of the Golgi 

complex and the microtubule organizing center (MTOC) towards the immunological 

synapse. Adaptor protein 3 (AP-3) is required for the transport of cytotoxic granules 

along microtubules toward the MTOC close to the immunological synapse (Clark, 

Stinchcombe et al. 2003). The immunological synapse is comprised of an outer ring 

of adhesion molecules and an inner region containing signalling molecules, termed 

central supramolecular activation complex (cSMAC) (Stinchcombe, Bossi et al. 2001; 

Vyas, Maniar et al. 2002). Cytotoxic granules are secreted in the secretion zone of 

the inner region distinct from cSMAC.  

      Exocytosis of cytotoxic granules is thought to require at least four distinct steps 

and two molecules contributing to these have been identified so far. The first step is 

the release of cytotoxic granules from the microtubules. In the absence of the small 

GTPase Rab27a, cytotoxic granules remain connected to microtubules in the zone  
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directly adjacent to the immunologic synapse. This shows that Rab27a is involved in 

release of cytotoxic granules from microtubules (Menasche, Pastural et al. 2000; 

Haddad, Wu et al. 2001). After detachment from microtubules the granules are 

tethered and docked to the plasma membrane at the immunological synapse. 

Thereafter, the granule membrane fuses with the plasma membrane by virtue of 

soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptors 

(SNARE) (Jahn, Lang et al. 2003). This process is regulated by Munc13-4, a member 

of the Munc13 family (Feldmann, Callebaut et al. 2003). It has been shown that in 

Munc13-4-deficient CTL, cytotoxic granules dock to the plasma membrane, but 

membrane fusion does not take place, completely blocking secretion of the granular 

contents. Finally, the contents of granules are secreted into the synaptic cleft (Fig. 4). 

Although the functions of AP-3, Rab27a, and Munc13-4 have been identified, the 

remaining molecular machinery responsible for this specialised secretory mechanism 

is by far not completely understood (Stinchcombe and Griffiths 2007). 

 
 
Fig. 4 Molecules involved in the polarised secretion of cytotoxic granules in CTL 
In CTL (left) cytotoxic granules (green) move in a minus-end direction along microtubules towards the 
MTOC (purple), localised beneath the immunological synapse. Granules dock and tether to the 
membrane at the immunological synapse and fuse with the plasma membrane, before releasing their 
contents into the synaptic cleft. The illustration indicates the side of action of AP-3, Rab27a and 
Munc13-4. In AP-3-/- CTL, cytotoxic granules do not move along microtubules. In Rab27a-/- CTL, 
cytotoxic granules remain aligned along the microtubules. In Munc13-4-/- CTL, cytotoxic granules 
cannot fuse with the plasma membrane.  

 
 
1.8 Aim of this work 
     The aim of this study is to elucidate the mechanism by which ASMase contributes 

to effective secretion of cytotoxic granules in CD8+ cytotoxic T lymphocytes.
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2. Material and Methods 
 

2.1 Material 
 

2.1.1 Mice 

     Breeding pairs of heterozygous Acid Sphingomyelinase-deficient (ASMase-/-) mice 

were kindly provided by Richard Kolesnick (Memorial Sloan-Kettering Cancer Center, 

New York) and originally obtained by Prof. Edward H. Schuchmann (Mount Sinai 

School of Medicine, New York). ASMase-/- mice already backcrossed six times to the 

C57BL/6 background were obtained from Douglas R. Green and Tesu Lin, La Jolla 

Institute of Allergy and Immunology, San Diego and further backcrossed to the 10th 

generation. Their genotypes were analysed as described (Diploma). 

     Perforin-deficient (perf-/-) C57BL/6 mice were kindly provided by Hans Hengartner, 

Institute of Experimental Immunology, University Hospital Zürich, Switzerland and 

serglycin-deficient (SG-/-) C57BL/6 mice by Magnus Abrink, University of Agricultural 

Sciences, Department of Molecular Biosciences, The Biomedical Centre, Uppsala, 

Sweden. ASMase-/- mice were crossed either with perf-/- or SG-/- C57BL/6 to generate 

ASMase-/-/perf-/- or ASMase-/-/SG-/- mice. 

   All mice were bred and maintained under specific pathogen-free (SPF) conditions 

and experiments were performed in accordance with the Animal Protection Law of 

Germany in compliance with the Ethics Committee at the University of Cologne. 

2.1.2 Virus 

     Lymphocytic Choriomeningitis virus (LCMV), strain WE, was propagated and 

titrated as plaque forming units (PFU) on murine L929 cells (Lehmann-Grube and 

Ambrassat 1977). 

 

2.1.3 Cell lines 

     Simian virus (SV) 40 transformed C57BL/6 murine embryonic fibroblasts (MEF), 

EL4.F15 T cell lymphoma, MBL.2 and MBL.Fas thymic lymphoma, L1210.3 

lymphocytic leukaemia (DBA subline 212 origin) and the CTL line 1.3E6 SN, are 

murine cell lines of C57BL/6 origin and were used as target cells or controls. 
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     Cell lines were propagated in Dulbecco´s minimal essential medium (DMEM) 

supplemented with 10% heat-inactivated fetal calf serum (FCS) at 37°C and 5% CO2.  

For 1.3E6 SN cells, medium was supplemented with 10% rat Concanavalin A 

supernatant (ConA SN) and MBL.Fas were cultivated in the presence 1 mg/ml G418 

for Fas-transfected cell selection. The cells were regularly treated to be free of 

mycoplasms. 

     MBL.2, MBL.Fas, L1210.3 and 1.3E6 SN cell lines were a gift from Markus M. 

Simon, Max-Planck Institute for Immunobiology, University of Freiburg. 

 

2.1.4 Peptide 

     The H2-Db-restricted, LCMV glycoprotein derived peptide gp33-41 (KAVYNFATC) 

was obtained from Biosynthan, Berlin. The lyophilised peptide was dissolved in 

dimethylsulfoxid (DMSO) to a 20 mg/ml stock solution.  

 

2.1.5 Oligonucleotides (Primer) 

The following primers were purchased from Sigma-Aldrich (Munich) or Hermann 

(Freiburg): 

 
gene  sequenz 
HPRT sense: 5´GCT GGT GAA AAG GAC CTC T 3´ 

 antisense: 5´CAC AGG ACT AGA ACA CCT GC 3´ 

amplifying a 249-bp segment 

perforin sense: 5´ACA TTC TCA AAG TCC ATC T 3´ 

 antisense: 5´GGG GAT CTA CAA CTT GTA CGG 3´ 

amplifying a 380-bp segment 

granzyme A sense: 5´GGG GAT CTA CAA CTT GTA CGG 3´  

 antisense: 5´ATT GCA GGA GTC CTT TCC ACC AC 3´ 

amplifying a 291-bp segment 

granzyme B sense: 5´TCA GGC TGC TGA TCC TTG ATC G 3´ 

 antisense: 5´ATG AAG ATC CTC CTG CTA C 3´ 

Amplifying a 135-bp segment. 
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2.1.6 Chemicals, media, buffers and solutions 

     All chemicals were of research grade and purchased from Applichem (Darmstadt), 

MERCK (Darmstadt), Roth (Karlsruhe) or Sigma-Aldrich (Munich) if not otherwise 

specified. All buffers and solutions were prepared by using deionised or bidestilled 

water from an EASYpure® UV/UF water purification unit (Werner 

Reinstwassersysteme, Leverkusen), sterilised by autoclaving or sterile-filtered with a 

0.2 µm filter if necessary and stored at room temperature. 

 
ß-mercaptoethanol (ß-ME) 0.02 M in water, stored at 4°C 

bath solution for patch-clamp 145 mM NaCl, 10 mM KCl, 10 mM HEPES, 2.5 mM CaCl2, 1 

mM MgCl2 adjusted to pH 7.4 with NaOH 

blocking buffer for IFM PBS with 3% BSA and 0.1% saponin 

blocking buffer for WB 5% skim milk (Oxoid, Hampshire, UK), 2% BSA in 1 x TBST, 

stored at -20°C 

cell sorting buffer for MACS PBS with 0.5% BSA and 2 mM EDTA 

chromogenic substrates 

 

gzmA: HD-Pro-Phe-Arg-pNA 

gzmB: Ac-Ile-Glu-Pro-Asp-pNA 

ß-hexosaminidase: 4-methylbelliferyl-2-acetamido-2-deoxy-

ß-D-glycopyranoside (Bachem, Weil am Rhein)  

concanamycin A (CMA) 0.1 mg/ml in DMSO, stored at -20°C 

cultivation medium for target cells DMEM (1 x Dulbecco´s modified Eagle medium, Biochrom 

AG, Berlin) supplemented with 5 or 10% FCS, stored at 4°C  

cultivation of splenic T cells standard medium: RPMI (1 x VLE RPMI-1640 Medium) 

supplemented with 10% FCS and 1% PS, stored at 4°C 

 for enzymatic activity measurements: MEM (Minimal 

essential medium, Eagle’s salt) without phenol red 

supplemented with 2 mg/ml BSA 

 for [35S]-labelling: sulfate-free RPMI medium containing 10% 

FCS, 1% PS and 50 µM ß-ME 

cyclosporine A 5 mg in 1 ml ethanol, stored at -20°C 

cytochalasin D 2 mg in DMSO, stored at -20°C 

DNA standard 1 kb ladder (BioLabs, Frankfurt am Main) 

erythrocyte lysis buffer 0.2% or 1.6% NaCl in water 

FACS fixation buffer PBS with 1% paraformaldehyde (PFA) and 0.5% BSA 

fixation buffer for IFM 3% PFA in PBS, stored at -20°C 

FK-506 2 mg in 1 ml DMSO, stored at -20°C 



  Material and Methods 

 11

fetal calf serum (FCS) heat-inactivated at 56°C for 30 min, stored at -20°C 

(Biochrom AG, Berlin) 

Golgi Stop reagent contains monensin (BD Pharmingen) 

imipramine 500 mM in water, stored at -20°C 

Indo-1 calcium sensitive fluorescent dye (Invitrogen) 

ionomycin  1 M ready to use solution in DMSO, stored at -20°C 

lymphocyte lysis buffer 10 mM Tris/HCl, adjust at room temperature pH to 7.5, 0.1% 

triton-X-100 (v/v), store at 4°C, add Complete protease 

inhibitor cocktail before use (Roché) 

lysis buffer for 51Cr-release 1.6% triton-X-100 (v/v) in water 

MES calibration buffer 5 mM NaCl, 115 mM KCl, 1.2 mM MgSO4 and 25 mM MES; 

adjust pH 3, 4, 5, 6, 7 and 8 

[N-methyl-14C]-sphingomyelin  0.2 µCi/ml, specific activity 56.6 mCi/ml (Amersham) 

monensin  0.1 M in ethanol, stored at -20°C 

PBS 1 x Dulbecco´s phosphate buffered salt solution, pH 7.4 

(Biochrom AG, Berlin) 

PBS / EDTA  PBS with 0.5 M EDTA for target conjugate separation 

penicillin/streptomycin (PS) penicillin (10 000 U/ml) and streptomycin (10 ng/ml) in 

water, stored at -20°C (Biochrom AG, Berlin) 

permeabilising buffer PBS, 0.1% w/v saponin 

phorbol 12-myristate 13-acetate 

(PMA) 

2 mg were dissolved in 1 ml DMSO and stored in the dark at 

-20°C 

protein standard See blue plus 2 pre-stained standard (Invitrogen, Karlsruhe) 

or pre-stained protein ladder 10-180 kD (Fermentas) 

10 x running buffer 1 x 25 mM Tris, 192 mM glycine, 1% SDS, pH 8.3 (Bio-Rad) 

sample buffer (5 x laemmli) 60 mM Tris-HCl (pH 6.8), 2% SDS-solution, 25% glycerol, 

0.2% bromphenol blue and 10% ß-ME added before use 

sheep-erythrocyte washing buffer HBSS (Hanks balanced salt solution), 2 mg/ml BSA, 0.01 M 

HEPES (pH 7.4), 8 mM CaCl2 

sodium chromate [51Cr]  

 

400 µl sodium chromate (Na2CrO4), 2 mCi/ml (Hartmann 

Analytics, Braunschweig) 

streptavidin-PE IFM: diluted 1:500; FACS 1:100 (Becton Dickinson), 

TBS (pH 7.4) 10 mM Tris-HCl, 150 mM NaCl 

TBST (pH 7.4) 1 x TBS, 0.5% Tween-20 

trypan blue solution  1 x ready to use solution (Sigma-Aldrich) 

trypsin-EDTA solution 10 x trypsin-EDTA solution (Biochrom AG, Berlin), made up 

to 1 x using sterile water  



  Material and Methods 

 12

western blot transfer buffer 25 mM Tris, 192 mM glycine, 20% methanol (Roth, 

Darmstadt) and 0.05% SDS pH 8.3, stored at 4°C 

 

2.1.7 Antibodies 

   Rabbit against murine gzmA immune serum was a gift of Markus M. Simon, Max-

Planck Institute for Immunobiology, Freiburg.  

 
antigen Specification provider 
primary   

ß-actin chicken anti-mouse monoclonal antibody 

(mAb) (clone AC-15), WB 1:10 000 

Sigma-Aldrich 

ASMase affinity purified goat polyclonal anti-mouse 

(clone A-19), IFM 1:100 

Santa Cruz 

CD3ε  armenian hamster (IgG1, κ) anti-mouse mAb 

(clone 145-2C11) 

BD Pharmingen 

CD8a (Ly-2) rat anti-mouse APC-, PE- or FITC-

conjugated mAb (clone 53-6.7), FACS 

1:100 

BD Pharmingen 

 conjugated to paramagnetic beads, MACS Miltenyi Biotec 

CD28 syrian hamster (IgG2λ1) anti-mouse (clone 

37.51) 

BD Pharmingen 

lamp1 (CD107a) rat (IgG2a, κ) anti-mouse purified or FITC-

conjugated mAb (clone 1D4B), FACS 

1:100, IFM 1:1000 

BD Pharmingen 

gzmA  affinity-purified rabbit anti-mouse immune 

serum, FACS and IFM 1:100 

Markus Simon 

gzmB rat (IgG2a) anti-mouse mAb (clone 216315), 

WB 1:500 

R&D Systems 

 

 

mouse (IgG1) anti-human PE-conjugated 

mAb (clone GB11), FACS 1:20 

CALTAG 

Laboratories 

IFN-γ rat (IgG1) anti-mouse FITC-conjugated 

mAb (clone XMG1.2), IFM 1:100 

BD Pharmingen 

perforin  rat (IgG2a) anti-mouse mAb (clone KM585), 

WB 1:1000 

Kamiya 

RANTES rat anti-mouse biotinylated mAb (clone 

53405), IFM 1:100 

R&D Systems 
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isotype controls (IC)   

rabbit IgG immune serum whole IgG (H+L) rabbit immune serum Dianova 

hamster IgG1k mouse (IgG2b, κ) anti-armenian and anti-

syrian hamster IgG1 mAb (clone G94-56) 

BD Pharmingen 

mouse IgG1 mouse IgG1 PE-conjugated mAb CALTAG 

   

secondary   

anti-mouse HRP anti-mouse HRP-conjugated, WB 1:5 000 Amersham 

anti-rat HRP goat anti-rat HRP-conjugated, WB 1:10 000 Amersham 

anti-goat Alexa488 or -555 donkey anti-goat IgG (H+L) conjugated with 

Alexa-488, IFM 1:1000 

Invitrogen 

anti-mouse PE affinity purified goat anti-mouse IgG1 

polyclonal PE-conjugated Ab, FACS 1:100 

Invitrogen 

anti-rabbit Alexa594 chicken anti-rabbit IgG (H+L), conjugated 

with Alexa-594, IFM 1:1000 

Invitrogen 

anti-rabbit FITC 

 

goat anti-rabbit IgG FITC-conjugated, 

intracellular FACS 1:500 

Dianova 

anti-rat Cy3 goat anti-rat IgG (H+L) Cy3-conjugated 

mAb, IFM 1:1000 

Invitrogen 

protein A 10 nm  protein A conjugated gold particles of 10 

nm in diameter, EM 

Amersham 
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2.1.8 Technical equipment 

β-counter   1217 Rackbeta    Wallac  

Blot and gel chambers Criterion blotter    Bio-Rad 

Centrifuge   5417 R      Eppendorf 

    Megafuge 1.0 R     Heraeus 

Confocal Microscope  DMIRE2     Leica 

Developer   AGFA Curix     AGFA 

ELISA-reader   MRX Tc     Dynex Technol. 

ELISpot reader  System ELR02    AID Diagnostic 

Flow cytometer  FACSCalibur     Becton Dickinson 

Fluorescence Microscope IX81       Olympus 

Gel-photosystem  Gel-doc 2000     Bio-Rad 

γ-counter   COBRA II     Canberra-Packard 

Incubator   Heracell     Heraeus 

Magnetic separator   Quadro MACS     Miltenyi Biotech 

Microscope   Axiovert 25     Zeiss 

Power supply   Power Pac 3000    Bio-Rad 

Spectrophotometer   SpectraMax 190    Molecular Devices 

 

2.1.9 Kits 

BD Cytofix/Cytoperm kit       Becton Dickinson 

BCA-protein assay kit        Thermo Scientific 

CD8+ T cell isolation kit       Miltenyi Biotec 

Diacylglycerol-kinase assay kit       GE Healthcare 

ECL western blotting detection kit      GE Healthcare  

ELISA mouse IFN-γ OptEIA set      Becton Dickinson 

ELISA mouse RANTES DuoSet       R&D Systems 
ELISpot mouse IFN-γ detection kit      R&D Systems 

RNase-free DNase kit        Qiagen 

RNeasy mini kit        Qiagen 
SpectraMax 190        Molecular Devices 

Thermocycle PTC-200 DNA-Engine  MJ Research,  

UV-transluminator Vilber Lourmat 
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2.2 Methods 

 

2.2.1 Infection of adult mice with the Lymphocytic Choriomeningitis virus 

   For acute infection of adult mice (6 to 8 weeks of age) with the LCMV, strain WE, 

plaque-forming units (PFU) were converted into infectious units (IU) by multiplying 

PFU with a factor of 10. Mice were infected by intravenous (i.v.) inoculation of 1 x 105 

IU of the LCMV in 0.3 ml PBS with 5% penicillin/streptomycin (PS) and 1% fetal calf 

serum (FCS) into the tail vein. 

 

2.2.2 Preparation of LCMV-specific CD8+ T cells from spleens 

2.2.2.1 Splenic single cell suspensions 
   On day 8, 9 or 30 post infection (p.i.), animals were sacrificed and their spleens 

were removed under sterile conditions. Single cell suspensions were obtained by 

gently squeezing the spleen and passing cell suspensions through a 70 µm nylon 

mesh with the plunger of a 2 ml syringe. Cells were centrifuged at 1200 rpm, for 5 

min at 4°C and cell pellets were resuspended in 10 ml ice cold 0.2% NaCl to lyse red 

blood cells. After 30 seconds, isotonic conditions were reconstituted by adding the 

same volume 1.6% NaCl solution to the cells. Cells were then centrifuged, the pellet 

resuspended in 1 ml medium and viable cells were counted by using trypan blue 

exclusion in a Neubauer chamber. 

 

2.2.2.2 Magnetic cell sorting (MACS) 
   For positive selection, CD8+ T cells were enriched by MACS from splenic cell 

suspensions, using a CD8-specific monoclonal antibody (mAb) conjugated to 

paramagnetic particles following the manufacturer’s instructions (Miltenyi Biotec). 

After 20 min the cells were washed twice and resuspended in sorting buffer. The 

magnetically labelled cells were retained in LS-columns, while unlabelled cells were 

washed out by several rinses. The retained cells were eluted from the column after 

removal from the magnetic field, centrifuged, resuspended in medium and counted in 

trypan blue solution using Neubauer chambers. 

    In some instances, negative selection of CD8+ T cells was performed by depletion 

of undesired cells. Non-CD8+ T cells were labelled and eliminated from the cell 

suspension according to the instructions. The non-magnetic cell fraction containing 
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the CD8+ T cells was collected and the purity of selected CD8+ cells was assessed 

by flow cytometry to be between 94–98%. 

 

2.2.2.3 Preparations of cell-lysates 
   CD8+ T cells or control cells were washed twice in ice-cold PBS and a total of 5 x 

107 cells were lysed in 1 ml lymphocyte lysis buffer, containing protease inhibitors, on 

ice for 60 min. Thereafter, cell lysates were cleared by centrifugation for 15 min at 

2500 g and 4°C for removal of nuclei and intact cells. The protein concentration was 

determined by using the BCA-protein assay kit according to instructions of the 

manufacturer (Thermo Scientific). The supernatants were resuspended in 5 x SDS 

sample buffer and run on a SDS-gel (2.2.10), tested for perforin, gzmA, gzmB, 

hexosaminidase enzymatic activity (2.2.8) or stored at -80°C. 

 

2.2.3 Cell culture 

   Cells lines were grown and maintained in incubators at 37°C, 5% CO2 and water 

vapour saturated atmosphere. 

   Adherent SV40-transformed C57BL/6 MEF, MBL.2 and MBL.Fas lymphoma cells 

were maintained in tissue culture flasks and passaged weekly after trypsin-EDTA-

treatment. A small number of cells was passaged in a ratio of one to five every 3 to 

5 days. 

   For L1210.3, EL4.15 and 1.3E6 SN suspension cells, medium was removed and a 

fraction of the cell pellet was resuspended in fresh medium every 3 to 5 days. 

   To produce concanamycin A (ConA) supernatant (SN), rat spleen cells were 

stimulated with 5 µg/ml ConA for 2 days. Subsequently the spleen cells were treated 

with 20 mg/ml α-methyl-D-mannopyranosid to block residual ConA activity and the 

SN was prepared.  
 

2.2.4 Infection or peptide loading of target cells with LCMV 

   As target cells in cytotoxicity assays, C57BL/6-SV fibroblasts infected with the 

LCMV strain WE were used. Cells were plated in cell culture dishes at a density of 

1 x 106 and 0.5 x 106. After 3 h adhesion, the cells were infected with LCMV at a 

multiplicity of infection (MOI) of 0.01 and incubated for 48 h before being used in the 
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assay. At the experimental day the target cells were harvested and counted in trypan 

blue solution using Neubauer chambers.  

    In some instances target cells were loaded with synthetic peptide corresponding to 

the major immunodominat Db-restricted epitope (gp33-41, KAVYNTATC) of the LCMV 

glycoprotein at a final concentration of 10-6 M for 60 min prior to the assay. The cells 

were frequently resuspended by pipetting to avoid aggregation.  

    L1210.3 B cells lymphoma were used as target cells in assays of “re-directed 

cytolysis” in the presence of anti-CD3 and anti-CD28 mAb. 

 

2.2.5 Assay for virus-specific cytotoxicity of CD8+ T cells 

    The virus-specific cytotoxic activity of splenic CD8+ T cells was measured in 
51Chromium ([51Cr]) -release assays according to Brunner et al. (Brunner, Mauel et 

al. 1968) with modifications (Lehmann-Grube, Lohler et al. 1993). 

     CD8+ T cells were immunomagnetically enriched from splenic single cell 

suspensions of mice acutely infected with LCMV on day 8 p.i. as described in (2.2.2). 

CD8+ effector cells were adjusted to 3 x 106 /ml in RPMI medium and 200 µl were 

dispensed in 96-U bottom microtiterplates in replicates of four and furthermore 

diluted 3-times two-fold to achieve effector to target ratios of 100:1, 50:1, 25:1 and 

12.5:1.  

    1 x 106 target cells either infected with LCMV or loaded with gp33, were incubated 

with 50 µCi [51Cr] sodium chromate (Hartmann Analytics) for 60 min at 37°C, washed 

and adjusted to a density of 3 x 104 cells/ml. 100 µl of target cell suspension were 

added to each well with effector cells. As negative controls fibroblasts without antigen 

were used. The spontaneous release of each [51Cr]-labelled target cells was 

determined in 8 wells without effector cells. In these samples the spontaneous 

release was less than 9% of the maximum release.  

    The maximal release was determined by total target cell lysis in 1.6% Triton-X-100 

in water. The virus-specific cytotoxic activity of CD8+ T cells was determined after 4 h 

incubation at 37°C. For the determination of the Fas Ligand dependent lysis, the 

supernatants were harvested after 9.5 h incubation time. Cells were spun down and 

100 µl cell-free supernatants were harvested. Supernatants from each well were 

measured in a gamma-counter to detect the amount of [51Cr] as counts per minute 

(cpm). Mean of the 4 replicates were calculated before the virus-specific lysis of 
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target cells was calculated with correction for background lysis, as followed for each 

effector to target ratio:  

% specific lysis = (cpm sample – cpm spontan) / (cpm maximal – cpm spontan) x100 

 

2.2.6 Stimulation or inhibition of virus-specific T lymphocytes  

2.2.6.1 Antigen-specific stimulation of CD8+ T cells 
    For measurement of the intracellular accumulation of IFN-γ (2.2.7), the frequency 

of IFN-γ secreting cells (2.2.8) and the amount of secreted cytokine into the 

supernatant was determined (2.2.8). Splenocytes were stimulated with LCMV 

infected C57BL/6-SV target cells at an effector to target ratio of 10:1. 

 

2.2.6.2 TCR-triggered degranulation of CD8+ T cells 
   For analysing gzmA secretion and polarisation of cytotoxic granules towards the 

target cell, enriched CD8+ T cells from LCMV infected mice were incubated with 

L1210.3 cells in the presence or absence of increasing concentrations of anti-CD3 

mAb plus the same amount anti-CD28 mAb.  

 

2.2.6.3 PMA and ionomycin induced secretion 
   For some experiments, CD8+ T cells were stimulated for different periods of time 

with 10 ng phorbol 12-myristate 13-acetate (PMA) and 500 ng ionomycin per ml.  

 

2.2.6.4 Specific inhibition of perforin 
   To inhibit perforin, CD8+ T cells were pre-treated in some experiments with 200 nM 

concanamycin A (CMA) for 2 h before being added to target cells in the continued 

presence of the drug. 
 
2.2.6.5 Inhibition of ASMase with imipramine 
   CD8+ T cells were pre-treated with graded concentrations (5-50 µM) and for 

defined periods of time (1-120 min) with the specific inhibitor of ASMase, imipramine. 

The cells were washed three times and counted before used in experiments. 

 

2.2.6.6 Inhibition of exocytosis 
    To inhibit exocytosis, CD8+ T cells were stimulated with PMA/ionomycin in the 

presence of 0.5 µg/ml cytochalasin D, 100 nM cyclosporin A or 100 nM FK-506. 
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2.2.7 Flow cytometry 

2.2.7.1 Surface staining 

   The frequency of CD8+ T cells among spleen cells was determined by flow 

cytometry. A total of 1 x 106 splenocytes was washed with PBS, 0.5% BSA and 

stained for 15 min with 1 µg of fluorochrom-labelled monoclonal antibodies specific 

for CD8 or isotype control antibody diluted in PBS with 0,5% BSA at 4°C in the dark. 

   For the detection of extracellular gzmB, CD8+ T cells were incubated for 45 min at 

4°C with a PE-conjugated mAb to human and mouse gzmB or isotype control mAb, 

diluted 1:20. After incubation, the cells were washed twice with cold PBS, 0.5% BSA, 

stained with a PE-conjugated amplifying antibody, fixated and analysed using a 

FACSCalibur flow cytometer (Becton Dickinson). 

 

2.2.7.2 Intracellular staining of IFN-γ and gzmA 
   The accumulation of intracellular IFN-γ in CD8+ T cells triggered by TCR-mediated 

recognition of MHC-restricted epitopes of the LCMV was measured according to 

Assenmacher et al. (Assenmacher, Schmitz et al. 1994). 1 x 106 splenocytes of a 

single cell suspension of mice day 8 and 9 p.i. were incubated with the LCMV epitope 

gp33 for 5 h. After 1 h of incubation, monensin (Golgi Stop reagent, Becton Dickinson) 

was added to block the secretion of vesicles loaded with IFN-γ. In the following, 

splenocytes were stained with antibodies specific for CD8 (2.2.7). Afterwards the 

cells were fixed and permeabilised with the BD Cytofix/Cytoperm kit according to the 

instructor’s manual. 

   For analysis of intracellular gzmA, day 8 immune splenocytes were stained with 

surface markers as described above and fixed with PBS containing 2.5% PFA for 15 

min at 4°C. Subsequently, cells were incubated in 100 µl permeabilising buffer for 10 

min at 4°C, than stained for 45 min at 4°C with rabbit anti-mouse gzmA immune 

serum or rabbit IgG isotype control (Dianova) and washed with permeabilising buffer. 

Afterwards, cells were stained with FITC-labelled goat anti-rabbit IgG as secondary 

antibody (Dianova), diluted 1:500 in permeabilising buffer and washed twice. The 

cells were fixed in PBS with 1% PFA, 0.5% BSA and analysed by flow cytometry. 
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2.2.7.3 Detection of Lamp1 (CD107a) exposure on the cell surface 
   Surface expression of Lamp1 (CD107a) was measured by flow cytometry as 

described previously (Rubio, Stuge et al. 2003). Briefly, splenic single cell 

suspensions of mice on day 8 after LCMV infection were co-incubated with L1210.3 

target cells at a ratio of 1:1 with or without anti-CD3 mAb for 10 min at 37°C in U-

bottom microtiterplates. To avoid quenching of FITC fluorescence intensity, 1 µM 

monensin in ethanol was given per well. 1 µl of FITC-conjugated anti-Lamp1 

(CD107a) or FITC-conjugated isotype control mAb was added. Cells were harvested 

and washed once using PBS with 0.5 M EDTA to dissociate effector-target cell 

conjugates at the indicated time points. CD8+ T cells were stained with APC-

conjugated mAb and exposure of Lamp1 on the cell surface of CD8+ T cells with 

FITC-conjugated Lamp1 monoclonal antibody Finally, the cells were fixed using 

FACS fixation buffer and measured by flow cytometry. 

 

2.2.8 Assay for secretion of cytotoxic granules 

2.2.8.1 Quantifying enzymatic activity of gzmA, gzmB, ß-hexosaminidase or  
 perforin 
   Enzymatic activity of gzmA, gzmB and ß-hexosaminidase in CD8+ LCMV-immune T 

cells was analysed by cleavage of the chromogenic substrate HD-Pro-Phe-Arg-pNA, 

Ac-Ile-Glu-Pro-Asp-pNA and 4-methylbelliferyl-2-acetamido-2-deoxy-ß-D-

glycopyranoside (Bachem, Weil am Rhein) (Ebnet, Hausmann et al. 1995; Martin, 

Wallich et al. 2005) in cooperation with Julian Pardo, MPI Freiburg by 

spectrophotometer (SpectraMax 190, Molecular Devices, Munich) as described 

above at wavelength 405 nm/690 nm. 

    The activity of gzmA secreted by serial dilutions of wt and ASMase-/- CD8+ T cells 

in response to target cells was determined after incubation with L1210.3 cells in the 

presence or absence of 2 µg/ml anti-CD3 monoclonal antibody at an effector to target 

ratio of 20:1. The cells were cultured in MEM without phenol red, supplemented with 

2 mg/ml BSA to avoid FCS-mediated inhibition of released gzmA. Cell-free 

supernatants were harvested after 6 h. 

   The activity of ß-hexosaminidase activity in supernatant was measured with the 

substrate 4-methylbelliferyl-2-acetamido-2-deoxy-ß-D-glycopyranoside in 400 mM 

acetate buffer, pH 4.4 containing 250 mM sucrose. The released product 4-
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methylumbelliferone was measured with a fluorescence microtiterplate reader at 

excitation and emission wavelengths of 355 nm and 460 nm, respectively. 

   The lytic activity of perforin was determined by the release of haemoglobin from 

sheep-erythrocytes as described (Shresta, Graubert et al. 1999; Fruth, Prester et al. 

1987). Serial dilutions of lysates of CD8+ T cells from d8 p.i LCMV infected mice were 

prepared by resuspending 1 x 107 CD8+ T cells in 100 µl PBS with 1 mM EDTA. The 

cells were subjected to repeated freeze / thawn cycles and ultrasonificated 3 times 

for 30 sec with a break of 30 sec. The cellular debris were removed by centrifugation 

(5 min at 10 000 rpm at 4°C). Sheep-erythrocytes were washed twice in PBS and 

resuspended in HBSS buffer at 3 x 107 cells/ml. 50 µl of CTL lysates and 150 µl of 

sheep-erythrocytes in HBSS buffer were incubated in a round-bottom microtiterplate 

for 20 min at 37°C. After centrifugation for 10 min at 1200 rpm at 4°C, 100 µl cell-free 

supernatant per well were transferred into a flat-bottom microtiterplate and the 

haemoglobin in the SN was quantified at 405 nm in a microtiterplate reader.  

 

2.2.8.2 Quantification of cytokines secreted by CD8+ T cells 
   IFN-γ and RANTES secreted into the supernatant by 1 x 106 LCMV-specific CD8+ T 

cells/ml on day 8 or 9 p.i. in response to antigen-specific stimulation, were quantified 

in the culture supernatants after 24 h by specific enzyme-linked immunosorbent 

assays (ELISA) according to the instructions of the manufacturer (R&D Systems or 

Becton Dickinson). 

 

2.2.8.3 Measuring the frequency of IFN-γ secreting T cells via ELISpot 
   1 x 106 enriched LCMV-immune CD8+ T cells/ml were seeded by ten-fold dilution 

series in polyvinyliden-difluorid (PVDF)-coated microtiterplates of a mouse IFN-γ 

ELISpot (R&D Systems). For antigen-specific stimulation of CD8+ T cells, 1 x 106 / ml 

of naïve wt splenocytes, pre-incubated 1 h with the gp33-41 epitope at a concentration 

of 10-6 M or LCMV infected C57BL/6-SV target cell, were added. After 24 h, the cells 

were washed off the membrane to detect spots of IFN-γ according to the instructions 

of the manufacturer. 

 

2.2.8.4 Pulse/chase labelling of cytotoxic granules with fluid phase markers 
   CD8+ T cells were enriched from the spleen on day 8 p.i. from wt and ASMase-/- 

mice. Lysosomes were pulsed with fluid phase markers dextran of graded size i.e. 3, 
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70 or 500 kDa molecular weight, Alexa488-, Texas Red (TR)-, Oregon Green- or 

FITC- conjugated (Invitrogen, Karlsruhe) by incubating the CD8+ T cells with 10 µM 

of dextrans at a density of 1 x 106 cells/ml in DMEM with 10% FCS for 2 h. Non-

endocytosed fluid phase marker were removed by washing three times with PBS. 

Fluid phase markers were chased into cytotoxic granules by incubation in fresh 

culture medium for 2 h at a density of 1 x 106 cells/ml. Afterwards intracellular 

localisation of dextrans in lysosomes was verified after staining cells specific for 

Lamp1 by confocal microscopy. Secretion of dextran from lysosomes was monitored 

after stimulation with PMA/ionomycin by flow cytometry. 

     Formation of conjugates between CTL and target cell was assessed after 

incubation of L1210.3 cells with CD8+ T cells for 10 min by immune-fluorescence 

microscopy. 

 

2.2.9 qRT-PCR analysis of perf-, gzmA- and gzmB-specific mRNA transcripts 

2.2.9.1 RNA isolation 
     Total RNA was extracted from LCMV-infected splenic CD8+ T cells, using the 

QIAshredder spin columns and extracted RNA was further cleaned up by using the 

RNeasy mini kit and the RNase-free DNase kit (all from Qiagen, Hilden). 

 

2.2.9.2 cDNA synthesis 
     mRNA was transcribed by incubating total RNA with random hexamer primer (33 

mM, Pharmacia, Freiburg), RNasin inhibitor (20 U, Promega, Madison, USA), dNTPs 

(0,5 mM, Qbiogene, Heidelberg) and Omniscript RT (4U, Qiagen, Hilden) as advised 

by the manufacturers and in cooperation with Julian Pardo, MPI Freiburg. The 

reverse transcription was performed in a Thermocycle PTC-200 DNA-Engine (MJ 

Research, Waltham, MA, USA). The transcription reaction profile was as follows: 

37°C for 60 min and 70°C for 10 min. The resulting cDNA was used as a template for 

qRT-PCR hypoxanthin:guanine phosphoribosyltransferase (HPRT)-, perf-, gzmA- 

and gzmB-amplification. 

 

2.2.9.3 qRT-PCR 
     PCR-reaction was carried out in a Thermocycler PTC-200. The PCR reaction 

profiles were as follows: 1 cycle at 94°C for 2.5 min as an initial denaturation step, 

then denaturation at 94°C for 20 sec, annealing at 56°C for HPRT or 55°C for perf, 
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gzmA and gzmB for 20 sec; extension at 72°C for 20 sec for HPRT or 30 sec for perf, 

gzmA and gzmB (35 cycles), followed by further incubation for 3 min at 72°C (1 

cycle). Specific sense and antisense primers shown in 2.1.5, were used for HPRT, 

perf-, gzmA- and gzmB-specific transcripts. The PCR products were analysed by gel 

electrophoreses (2% agarose), stained with ethidiumbromide and visualized in an 

UV-transluminator (Vilber Lourmat, New Ark, NJ, USA). As size marker, 1kb DNA 

marker was used (BioLabs, Frankfurt am Main). 

 

2.2.10 Immunoblotting 

     GzmB and perforin in lysates of CD8+ T cells, were quantified by western blot 

analysis. Cell lysates of wt and ASMase-/- CD8+ T cells (2.2.2) were diluted in 5-fold 

SDS sample buffer and boiled for 5 min at 100°C with 10% ß-ME. The samples were 

centrifuged for 1 min at 9000 rpm and equal volumes of supernatants were loaded on 

a 10% polyacrylamid gel and run under standard conditions. A commercial protein-

marker was used (SeeBluePlus2 pre-stained standard, Invitrogen or prestained 

protein ladder 10-180 kD, Fermentas) for the identification of protein sizes. After gel 

electrophoresis, proteins were transferred to nitrocellulose membrane (Protran 0.2 

µm; Schleicher and Schuell). Free protein binding sites were blocked for 1 h with 

blocking buffer and perf or gzmB labelled with the primary antibodies anti-perf 

(KM585, Kamiya Biomedical, Seattle, USA), anti-gzmB (R&D Systems) or anti-mouse 

ß-actin monoclonal antibody, respectively. After three times washing with TBS-T, 

membranes were then incubated with the appropriate horseradish peroxidase-

conjugated secondary antibodies for 1 h (2.1.7, p 9-10), followed by washing in TBS-

T and once with TBS. The immune complex was visualised by an enhanced 

chemiluminescence system (ECL western blotting reagent, Amersham) and detected 

by hyper film (Amersham ECL hyperfilm, GE healthcare). 

 

2.2.11 Immunological synapse formation 

     Granule polarisation and synapse formation were studied in dextran-pulsed 

(2.2.8) or untreated CD8+ T cells co-incubated at 1:1 ratios with L1210.3 target cells 

in the presence of 3 µg/ml anti-CD3 in 1 ml complete medium. Cells were centrifuged 

at 500 rpm for 3 min at room temperature for synchronisation of cell contact and 

incubated for 10 min at 37°C. Conjugates were fixed for 30 min with 2.5% PFA by 
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adding the same volume 5% PFA into the sedimented cell culture and resuspended 

carefully after 10 min with a 1 ml pipette. Cells were washed and further processed 

for EM (2.2.13) or IFM (2.2.12).  

 

2.2.12 Immunofluorescence microscopy 

   Fixed wt or ASMase-/- CD8+ T cells alone or conjugated to target cells were washed 

with permeabilising buffer for 20 min. Cells were incubated with blocking buffer for 30 

min and incubated for 30 min with primary antibodies specific for Lamp1, RANTES or  

IFN-γ or antisera specific for gzmA or ASMase, followed by staining with 

corresponding fluorescence-labelled secondary antibodies (2.1.7, p 9-10) in blocking 

buffer for 30 min. Nuclei were stained with DAPI (Invitrogen), mounted on glass 

microscopic slides in ProLong Gold anti-fading reagent (Invitrogen) and examined by 

fluorescence microscopy (Olympus IX81) or confocal laser scanning microscope 

(Leica DMIRE2). Individual cells were photographed in the focus plane with the 

highest fluorescence intensity. The mean number of gzmA-positive granules per cell 

was determined by counting multiple optical planes. 

 

2.2.13 Electron Microscopy 

   For immunogold labelling, enriched CD8+ T cells were fixed with 4% 

paraformaldehyde and 0.4% glutaraldehyde in 0.2 M PHEM buffer, pH 7.4 for 2 h at 

room temperature. Afterwards, the cells were spun down at 3500 rpm for 10 min, 

resuspended in 1 ml storage solution and subsequently further processed by Eric 

Bos and Peter J. Peters, The Netherlands Cancer Institute, Amsterdam. The cells 

were processed for cryo-ultramicrotomy, embedded in 12% gelatine and infiltrated for 

3 h in 2.3 M sucrose and subsequently plunge-frozen in liquid nitrogen as described 

(Peters, Bos et al. 2006). Ultrathin cryosections of 50 nm thickness were prepared 

from the frozen sections with a cryo-ultramicrotome using a 35° angle knife (Ultracut 

FCS, Leica). The frozen sections were allowed to thaw on a droplet of 2.3 M sucrose 

and transferred to a formvar-coated copper grid. Then the sections were labelled with 

rabbit anti mouse gzmB-specific serum for 1 h and with protein A conjugated gold 

particles of 10 nm in diameter (Amersham Biosciences) overnight. The labelled 

sections were embedded and air-dried in 2% methylcellulose containing 0.6% uranyl 
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acetate. Analysis was performed with a Philips CM120 microscope and digital 

images were made with a Keen View camera (Soft Imaging System). 

   Conjugates of CD8+ T cells and target cells were fixed in 2.5% glutaraldehyde 

buffered with sodium cacodylate after 10 min of co-incubation. Osmification, 

dehydration, embedding and sectioning were performed as described (Zentgraf and 

Franke 1984). Micrographs were taken with a Zeiss EM-10A electron microscope at 

80 kV at the German Cancer Research Center in Heidelberg by Hans-Walter 

Zentgraf. A grating replica was used as a scale bar. 

 

2.2.14 Measurement of ASMase activity 

     ASMase activity was determined in cooperation with Katja Wiegmann, Institute for 

Medical Microbiology, Immunology and Hygiene, Cologne. CD8+ T cells were 

washed twice with PBS. The pellet was resuspended in 200 µl of 0.2% triton-X-100 

and incubated for 15 min at 4°C. To prepare cellular lysates, cells were homogenized 

and spun at 14.000 rpm. From the supernatants, 30-50 µg of protein was incubated 

for 2 h at 37°C in a buffer (50 µl final volume) containing 250 mM sodium acetate, 1 

mM EDTA (ph 5.0) and 2.25 µl of [N-methyl-14C]-sphingomyelin (Amersham). 

Thereafter, the amount of radioactive phosphorylcholine produced was measured as 

described (Wiegmann, Schütze et al. 1994). 

 

2.2.15 Thin-layer chromatography 

     The following preparations were done by Katja Wiegmann, Institute for Medical 

Microbiology, Immunology and Hygiene, Cologne as described (Krut, Wiegmann et 

al. 2006). CD8+ T cells were washed twice with PBS. Pellets were resuspended in 

1.825 ml water and the supernatants were transferred into glass tubes. 

Subsequently, 6 ml of chloroform/methanol/1 N acidic acid (100/100/1, v/v/v) were 

added. Tubes were sonicated for 5 min in a water bath sonicator and then 

centrifuged for 10 min at 6000 x g. The lower organic phase was dried down under 

nitrogen. The dry samples were resuspended in 2 ml of 0.1 N potassium hydroxide 

and incubated for 1 h at 37°C (alkaline hydrolysis). 6 ml chloroform/methanol/ 

1 N acidic acid (100/100/1, v/v/v), 1 ml of chloroform and 2.25 ml of water were 

added. After vortexing, the samples were centrifuged for 10 min at 6000 x g. The 

lower organic phase was dried down under nitrogen and resuspended in 100 µl of 
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chloroform followed by transfer into Eppendorf tubes. From this point, the 

diacylglycerol-kinase assay kit protocol was followed according to the manufacturer 

(GE Healthcare). 

     For TLC, plates were pre-run in a solvent system composed of 

methanol/chloroform (1:1, v/v). Plates were removed from the tank and air-dried. The 

TLC chambers were pre-equilibrate for 1 h at room temperature with 

chloroform/methanol/acidic acid (65:15:5, v/v/v). Dried samples were resuspended in 

20 µl chloroform/methanol (95:5 v/v). Samples were streaked onto 10 x 10 silica gel 

thin layer plate. The plates were placed in a paper-lined TLC developing tank and the 

solvent was allowed to migrate to the top of the plate. 

 

2.2.16 Measurement of the intracellular calcium-response 

     Intracellular calcium response was analysed in cooperation with Julian Pardo, MPI 

Freiburg by flow cytometry. 1 x 107 splenocytes were labelled with anti-CD8 

monoclonal antibody conjugated to phycoerythrin (PE) and subsequently with the 

calcium sensitive fluorescence dye Indo-1 according to the instructions of the 

manufacturer (Invitrogen) in the presence of Pluronic Acid® for 45 min. The calcium-

response was measured for 10 min at 37°C and analysed in a LSRII FACS (Becton 

Dickinson) with FACS Diva software (Becton Dickinson). Release of calcium was 

induced by thapsigargin at a concentration of 1 µM. To assess the total amount of 

intracellularly stored Ca2+, thapsigargin was added at a concentration of 1 µM. TCR 

was ligated with CD3-specific mAb cross-linked with anti-hamster IgG.  

 

2.2.17 Measurement of intragranular pH 

     On day 8 p.i., CD8+ T cells were enriched and cytotoxic granules were pulsed with 

10 µM FITC- and TRITC-conjugated dextrans for 2 h, washed and chased 2 h in 

fresh culture medium. FITC- was used as pH-dependent and TRITC-dextran as pH-

independent sensor. The fluorescence intensities of test samples and samples of a 

standard curve were measured by flow cytometry (Vergne, Constant et al. 1998).  

     To acquire a pH calibration curve, cells were incubated in ice-cold MES calibration 

buffers of graded pH from 3 to 8 for 20 min in the presence of the ion transporters 

nigericin (10 µM) and monensin (10 µM) to equilibrate the intracellular and 

extracellular pH (Diwu, Chen et al. 1999; Holopainen, Saarikoski et al. 2001). 
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Granular pH of samples was determined by comparison with the standard curve (see 

Fig. 12). 

 

2.2.18 Two-Photon vital microscopy 

   Two-photon Extracellular Polar-tracer (TEP) life-cell imaging was performed in 

cooperation with Elmon Schmelzer, MPI Cologne as described (Kasai, Hatakeyama 

et al. 2005). Briefly, day 8-immune splenocytes were stimulated in vitro for 2 days 

with recombinant IL-2 (10 units/ml). CD8+ T cells were negatively enriched using 

CD8+ T cell Isolation Kit (2.2.2), suspended in complete medium containing 25 µM 

FM1-43 and 500 µM sulforhodamin B (SRB; Invitrogen) and seeded into LabTek-

chamber slides (Nunc) previously coated with each 3 µg/ml anti-CD3 and anti-CD28 

mAb or isotype control. Microscopy was performed with a Zeiss LSM 510 microscope 

adjusted to laser power of 8-10 mW at an excitation wavelength of 850 nm. The 

fluorescence of SRB was detected at 569-665 nm and that of FM1-43 at 400-550 nm. 

Acquisition and image analysis were performed using Metamorph or Zeiss LSM 

Image Analyser software. 

 

2.2.19 Radiolabeling of CD8+ T cells with [35S]-sulfate 

   Splenic CD8+ T cells were labelled with [35S]-sulfate according to Masson et al. 

(Masson, Peters et al. 1990). At day 30 p.i., immune splenocytes were restimulated 

with LCMV infected C57BL/6-SV at an effector to target ratio of 10:1 in the presence 

of 10% ConA SN. After three days, 3 x 107 cells were biosynthetically labelled for 24 

hours in 10 ml of sulphate-free RPMI medium containing 10% FCS, 1% PS and ß-

ME and 1 mCi of carrier-free [35S]-sulfate  (Hartmann Analytics, Braunschweig). 

Afterwards, cells were washed twice in PBS, CD8+ T cells were immunomagnetically 

enriched and chased for 2 h in fresh medium. CD8+ T cells were stimulated with 

PMA/ionomycin and the supernatants were collected at different time points. Total 

amounts of incorporated [35S]-sulfate were determined in aliquots harvested before 

stimulation, lysed by adding 100 µl lysis buffer for 30 min. [35S] radioactivity was 

quantified by scintillation counting. 
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2.2.20 Patch-clamp technique 

    CD8+ T cells were enriched on day 8 p.i. and subsequently further processed by 

Elza Kuzmenkina and Stefan Herzig, Pharmacology, University of Cologne. Briefly, 

cells were washed and placed in bath solution containing 145 mM NaCl, 10 mM KCl, 

10 mM HEPES, 2.5 mM CaCl2, 1mM MgCl2 adjusted to pH 7.4 with NaOH. Patch 

pipettes were filled with the same solution and had resistance of 5-8 MΩ. 

Capacitance measurements were performed in the cell-attached configuration using 

Axopatch 200A amplifier (Axon Instruments, Union City, CA), controlled by PClamp6 

software. The holding potential was 0 mV. Short voltage steps of 100 mV were 

applied with a frequency of 20 or 100 Hz. The resulting capacitive currents were 

filtered at 50 kHz with a four-pole low-pass Bessel filter and sampled at 200 kHz. 

Similar measurement parameters were used by Powell and Marrion (Powell and 

Marrion 2007). Exocytosis was initiated by simultaneous addition of 10 ng PMA and 

500 ng ionomycin per ml, respectively. Averaged currents elicited before the 

exocytosis was substracted from all recordings.  

Changes in the membrane capacitance (C) were calculated by integration of the 

measured capacitive currents (Im): C = 1/V ∫ Im dt,   (eq. 1) 

where V is the amplitude of the voltage step, t is the time after the voltage step, and 

Im is the convolution of the evoked capacitive currents (I) and the impulse response 

function (IRF) of the filter: Im = I * IRF = ∫ I(t − t’) IRF( t’) dt’.  (eq. 2) 

Because of low-pass filtering, ∫ IRF( t) dt = 1, and C = 1/V ∫ I dt. We confirmed the 

validity of our approach experimentally by comparing capacitance values obtained 

from voltage-step and voltage-ramp protocols. The characteristic time (the first 

moment) of the measured capacitive currents (τm) was defined as follows: 

τm = ∫ Im t dt / ∫ Im dt.        (eq. 3) 

It is convenient to introduce a Cτm integral, Cτm = 1/V ∫ Im t dt.  (eq. 4) 

Thus, τm = Cτm / C.        (eq. 5)   

To reduce noise and avoid division by zero, we calculated τm from equation 5, using 

average values of C and Cτm integrals. Because the first moment of the convolution 

is the sum of the first moments of the convoluted functions (Laury-Micoulaut 1976),  

τm  = τ  + τIRF,         (eq. 6) 

and, thus, τ  = τ m − τIRF,       (eq. 7) 
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where τ  is our quantity of interest, the characteristic time of the evoked capacitive 

currents, and τIRF is the characteristic time of the IRF, 

τIRF = ∫ IRF t dt / ∫ IRF dt .       (eq. 8) 

The IRF for our 50 kHz Bessel filter was obtained as follows. We measured 

capacitive currents using 5 kHz filtering and 20 kHz time resolution, and then 

rescaled abscissas and ordinates by dividing and multiplying, respectively, by 10. 

With equation 8, we obtained τIRF of 5.7 ± 0.1 µs. Finally, we used C to characterize 

size and amount of granules, and τ to address size of fusion pores. When a single 

fused granule is represented by an RC circuit,  τ  = R C = C / G, (eq. 9) 

where R and G = 1/ R are resistance and conductance of the fusion pore, 

respectively. For multiple fused granules, τ is the average of τs from individual 

granules, weighted by their Cs. 

 

2.2.21 Statistical analysis 
     For statistical analysis, the data were subjected to two-tailed Student´s t-test. P-

values of p < 0.05, p < 0.01 or p < 0.001 are indicated by *, ** or *** respectively. 
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3. Results 
 
3.1 CD8+ T cells of ASMase-deficient mice are severely impaired in perforin-

dependent but not in Fas Ligand-mediated cytotoxicity 

     Based on the above summarized findings of my diploma, this study aimed at 

elucidating the specific function of ASMase in CTL. To confirm the impaired effector 

function of CTL, the LCMV-specific cytotoxic activity was determined on day 8 p.i., 

when the cytotoxic activity in wt mice reaches the peak level (Moskophidis, 

Assmann-Wischer et al. 1987). LCMV-specific CD8+ T cells were 

immunomagnetically enriched from spleens of wt and ASMase-/- mice and incubated 

for 4 hours with C57BL/6-SV fibroblasts as target cells loaded with the viral 

glycoprotein 33-41 peptide (gp33). This Db-restricted gp-derived peptide induces the 

majority of LCMV-immune CD8+ T cells in C57BL/6 mice (Gairin, Mazarguil et al. 

1995; Butz and Bevan 1998). Gp33-specific cytotoxic activity of ASMase-/- CD8+ T 

cells was significantly reduced compared to wt CD8+ T cells. As shown in Fig. 4A, 

ASMase-/- CTL required a 4-fold higher effector to target ratio than wt CD8+ T cells to 

achieve the same degree of target cell lysis. This equals a 4-fold reduced cytotoxic 

activity of ASMase-/-CTL. 

     CTL induce target cell death by two distinct pathways: (i) the granule exocytosis 

pathway, which results in induction of cell death via secretion of perforin and 

granzymes within less than 5 h or (ii) the induction of target cell apoptosis via the Fas 

Ligand-mediated pathway, detectably after about 8 h (Lowin, Mattman et al. 1996). 

To identify the effector mechanism affected by deficiency in ASMase, perforin-

deficient (perf-/-) and ASMase-/-/perf-/- mice were used. Neither perf-/- nor ASMase-/- 

/perf-/- CD8+ T cells lysed the Fas-deficient C57BL/6-SV target cells (Fig. 4A). In an 

additional approach, inhibition of the perforin-mediated cytotoxic activity in wt and 

ASMase-/- CTL by concanamycin A (CMA) completely abolished the lytic activity of wt 

and ASMase-/- CD8+ T cells in 4 h cytotoxicity assays (Fig. 4B). 

     To assess, whether the Fas Ligand-mediated cytotoxicity was also impaired, 9.5 

hours-cytotoxicity assays with Fas-deficient and Fas overexpressing target cells were 

performed. ASMase-/- CTL lysed Fas-deficient C57BL/6-SV target cells to markedly 

reduced extent within 9.5 h co-incubation, confirming and extending the above 

described observations. Neither perf-/- nor ASMase-/-/perf-/- lysed these target cells 
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despite the long incubation time (Fig. 4C). In contrast, Fas overexpressing MBL.2 

target cells (MBL.Fas) were lysed to similar extents by wt as well as ASMase-/- CTL 

(Fig. 4D). Moreover, perf-/- and ASMase-/-/perf-/- CTL also lysed MBL.Fas target cells 

effectively, indicating that the Fas Ligand-mediated cytotoxic pathway is not affected 

by deficiency in ASMase. 

Together, these observations suggest a selective defect of the granule exocytosis 

pathway in ASMase-/- CTL. 
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Fig. 4 Perforin-mediated cytotoxicity is severely impaired in ASMase-/- CTL 
Wild type (wt), ASMase-/-, perf-/- and ASMase-/-/perf-/- mice were infected i.v. with 105 IU of the LCMV 
WE. At day 8 after infection, CD8+ T cells were immunomagnetically enriched from splenic single cell 
suspensions and used as effector cells in Chromium (51Cr) -release assays against target cells. Target 
cells were loaded with 10-6 M gp33 peptide prior to the assay. 
(A) Cytotoxic activity of CTL against C57BL/6 fibroblasts in a 4 h standard 51Cr-release assay. 
(B) Inhibition of perforin by 200 nM concanamycin A (CMA) in wt and ASMase-/- CTL in a 4 h standard 
51Cr-release assay against C57BL/6-SV target cells. 
(C) Cytotoxic activity of CTL against C57BL/6-SV (D) or Fas-overexpressing MBL.2 target cells in a 
9.5 h 51Cr-release assay. 
The experiments were repeated five times with similar results. Lysis of non-infected target cells was 
below 6% (not shown).  
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3.2   Impaired secretion of cytotoxic effector molecules by ASMase-/-  
virus-specific CTL 

 
     To unravel the molecular mechanism responsible for the decreased cytotoxic 

activity of ASMase-/- CD8+ T cells, the secretion of the cytotoxic effector molecules 

was measured. Strikingly, the amount of granzyme A (gzmA) secreted by ASMase-/- 

CD8+ T cells in response to T cell receptor (TCR) ligation was drastically reduced 

compared to wt CD8+ T cells. Actually, 1x106 ASMase-/- CD8+ T cells secreted less 

gzmA than 1 x 105 wt CD8+ T cells (Fig. 5A). Moreover, constitutive secretion of 

gzmA by ASMase-/- CD8+ T cells was also reduced as compared to wt CD8+ T cells 

(Fig. 5A, right). Quantitative real time PCR revealed that wt and ASMase-/- CD8+ T 

cells contained similar numbers of mRNA copies coding for each of the effector 

molecules gzmA, gzmB and perforin (Fig. 5B). The percentages of CD8+ T cells 

expressing gzmA as well as the mean signal intensities for this cytotoxic effector 

molecule were similar for wt and ASMase-/- splenocytes as determined by flow 

cytometry of LCMV-immune CD8+ T cells intracellularly stained for gzmA (Fig. 6A). In 

addition, lysates of CD8+ T cells from wt and ASMase-/- mice exerted similar gzmA- 

and gzmB-related proteolytic activity (Fig. 6B). The contents of perforin and gzmB as 

determined by Western blot were comparable in wt and ASMase-/- CD8+ T cells 

(Fig. 6C). Moreover, perforin-associated lytic activity was also similar in wt and 

ASMase-/- CD8+ T cells (Fig. 6D).  

     The secretion of ß-hexosaminidase activity in response to TCR ligation was 

investigated to corroborate the impaired secretion of gzmA with a widely used 

independent marker of cytotoxic granules (Stinchcombe, Barral et al. 2001). As 

shown in Fig. 6E, secretion of ß-hexosaminidase activity was strongly reduced in 

ASMase-/- compared to wt CD8+ T cells although lysates of both cell populations 

contained comparable quantities of hexosaminidase activities. 

     Taken together, these data indicate that exocytosis of contents from cytotoxic 

granules is severely impaired in ASMase-/- CD8+ T cells although the cells contain 

similar quantities of cytotoxic effector molecules at the level of mRNA, protein and 

enzymatic activity. 
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Fig. 5 Reduced secretion of granzyme A by virus-specific ASMase-/- CTL 
At day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically enriched 
from spleens. 
(A) Granzyme A specific proteolytic activity secreted by serial dilutions of wt or ASMase-/- CTL during 6 
h co-incubation with L1210.3 target cells in the absence (right; constitutive secretion) and presence of 
2 µg/ml CD3 specific mAb (left; TCR-stimulated secretion). GzmA secretion assays were done in 
cooperation with Julian Pardo, MPI Freiburg. 
(B) Expression of mRNA coding for granzyme A (gzmA) , gzmB and perforin in 1 x 104 wt and 
ASMase-/- CTL as detected by quantitative RT-PCR. 
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Fig. 6 Severely impaired secretion of cytotoxic effector molecules by virus-specific  
ASMase-/- CTL  

(A) Percentage of gzmA expressing CD8+ T cells measured by flow cytometry. Cumulative data of 
three independent experiments are shown as mean ± standard errors (right). 
(B) GzmA- and gzmB-specific proteolytic activity in serial dilutions of lysates of wt and ASMase-/- CTL. 
(C) Contents of gzmB and perforin in lysates of wt and ASMase-/- CTL as determined by Western blot 
using specific mAb. Reprobing for ß-actin ensured equal loading of wt and ASMase-/- protein. 
(D) Perforin-associated haemolytic activity in serial dilutions of lysates of wt and ASMase-/- CD8+ 

T cells. Lysates of murine CTL clone 1.3E6SN served as positive and of EL4 cells as negative control. 
(E) ß-hexosaminidase activity in lysates or supernatants from wt and ASMase-/- CD8+ T cells. 
Supernatants were collected after 6 h co-incubation of T cells with L1210.3 target cells with or without 
2 µg/ml CD3 specific mAb. Secretion of cytotoxic effector molecules has been done in cooperation 
with Julian Pardo, MPI Freiburg. 
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3.3 ASMase localises to lytic granules of CTL  
 
     The impaired secretion of cytotoxic effector molecules might be caused by 

misdirected loading of cytotoxic granules in ASMase-/- CD8+ T cells. Therefore, the 

subcellular localisation of the cytotoxic effector molecules in CTL was determined by 

confocal immunofluorescence microscopy (IFM). As shown in Fig. 7, lysosome-

associated membrane glycoprotein 1 (Lamp1/CD107a) co-localises with gzmA in 

vesicular structures, showing that the effector molecule is properly loaded to these 

compartments in a similar pattern in wt and ASMase-/- CD8+ T cells. In wt CD8+ T cell 

granules, co-localization of gzmA and Lamp1 with ASMase was evident, showing 

that ASMase localises to secretory lysosomes in CTL. As expected, ASMase staining 

was not detectable in ASMase-/- CD8+ T cells. 

     As shown in Fig. 8A, wt and ASMase-/- CTL both contain the same average 

number of about five gzmA-positive granules per cell and show non-distinguishable 

distributions of granule numbers (Fig. 8B). 

     Proper loading of cytotoxic effector molecules was further verified by immuno-

electronmicroscopy. GzmB was detectable in both wt and ASMase-/- cells exclusively 

in membrane-surrounded structures, resembling lysosomes (Fig. 9). These 

structures are alike in wt and ASMase-/- CD8+ T cells with regard to the size and 

intensity of labelling for gzmB. 

     Altogether, these data strongly argue against an intracellular mislocalisation of 

cytotoxic effector molecules in ASMase-/- CTL. 
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Fig. 7 ASMase localises to cytotoxic granules of CTL 
Immunofluorescence microscopical images of virus-induced wt or ASMase-/- CD8+ T cells on day 8 p.i. 
CTL were stained with antisera specific for gzmA or ASMase or with mAb specific for Lamp1. Bars are 
5 µm. 
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Fig. 8 Analysis of granule-numbers in wt and ASMase-/- CTL 
CD8+ T cells were intracellularly stained on day 8 after infection with gzmA specific antiserum and 
FITC-conjugated secondary antibody. Individual cells were photographed in the focus plane with the 
highest fluorescence intensity. GzmA-positive granules were counted in 167 T cells of each genotype. 
(A) Shown are the mean ± standard error and (B) the frequency distribution of the number of granules 
per CTL as cumulative data from 2 experiments. 
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Fig. 9 Ultrastructural studies of cytotoxic granules in wt and ASMase-/- CTL 
On day 8 after infection, LCMV-specific CD8+ T cells were immunomagnetically enriched from splenic 
single cell suspensions and further processed by Eric Bos and Peter J. Peters, The Netherlands 
Cancer Institute, Amsterdam. Electron micrographs of wt and ASMase-/- CTL were stained with gzmB-
specific mAb and gold (10 nm)-conjugated secondary mAb. 
Cytotoxic granules are indicated by arrows, gzmB gold labeling by arrowheads, mitochondria: m, 
plasma membrane: pm and nucleus: n. Scale bar is 500 nm. 

wt

ASMase-/-

m

m

m

n

pm

pm
wt

ASMase-/-

m

m

m

n

pm

m

m

m

n

pm

pm



  Results 
 

 40

3.4 Selective secretory defects of ASMase-/- CD8+ T cells 

 
     To exclude that ASMase-/- T cells are generally impaired in their secretory 

capacity, two further secretory pathways independent of cytotoxic granules were 

studied: The secretion of IFN-γ and RANTES. In ASMase-/- CD8+ T cells, secretion of 

IFN-γ via the constitutive secretion pathway was significantly impaired during 

incubation with LCMV infected target cells as compared to wt effector cells 

(Fig. 10A). Spontaneous secretion of IFN-γ by either ASMase-/- or wt CD8+ T cells 

was below the limit of detection (data not shown). Remarkably, the frequency of 

ASMase-/- CD8+ T cells secreting IFN-γ was slightly, but not significantly lower, than 

that of wt CD8+ T cells as determined by ELISpot analysis (Fig. 10B). However, the 

percentages of ASMase-/- and wt CD8+ T cells containing intracellular IFN-γ were 

comparable (Fig. 10C). This data clearly indicates that ASMase-/- T cells are not 

impaired in the production or accumulation of IFN-γ but rather in its secretion. 

Fluorescence microscopy revealed that ASMase co-localises with IFN-γ (Fig. 10D). 

     In contrast, the antigen-induced secretion of RANTES via the RANTES secretory 

vesicle (RSV)-pathway (Catalfamo, Karpova et al. 2004) was not impaired in 

ASMase-/- CD8+ T cells (Fig. 11A). RANTES localises to vesicles clearly distinct from 

ASMase-positive cytotoxic granules (Fig. 11B). Thus, ASMase is selectively involved 

in the cytotoxic granule as well as in the constitutive secretion pathway of IFN-γ but 

not in the secretion of RANTES. 
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Fig. 10 Impaired secretion of IFN-γ by ASMase-/- CD8+ T cells 
On day 8 and 9 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens and stimulated with LCMV infected C57BL/6-SV target cells (E:T = 10:1). 
(A) IFN-γ secreted by 1 x 106 wt or ASMase-/- CTL was measured in the supernatants after 24 h by 
ELISA. Spontaneous secretion was under the limit of detection (not shown). 
(B) The frequency of CD8+ T cells secreting IFN-γ was analysed by ELISpot assay in response to 
LCMV infected C57BL/6-SV fibroblasts. 
(C) The percentage of CD8+ T cells intracellularly accumulating IFN-γ was analysed by flow cytometry. 
Cumulative data of four independent experiments are shown as mean ± standard errors (A-C). 
(D) Wt CD8+ T cells were stained with antisera specific for ASMase and mAb specific for IFN-γ and 
analysed by IFM. Scale bar is 10 µm. 
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Fig. 11 Normal secretion of RANTES by ASMase-/- CD8+ T cells 
On day 8 and 9 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. 1 x 106 wt or ASMase-/- CTL were stimulated with LCMV infected C57BL/6-SV 
target cells (E:T = 10:1) and the supernatants were collected. 
(A) RANTES secreted by wt or ASMase-/- CTL was measured after 24 h by ELISA. Spontaneous 
secretion was under the limit of detection (not shown). Cumulative data of four independent 
experiments are shown as mean ± standard errors. 
(B) Wt and ASMase-/- CTL were stained with mAb specific for RANTES and antisera specific for 
ASMase or gzmA and analysed by IFM. 
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3.5 Specific inhibition of ASMase in CD8+ T cells with imipramine mimics the 
phenotype of ASMase-/- CTL 

 
     Imipramine is a pharmacologic inhibitor of ASMase (Albouz, Le Saux et al. 1986; 

Hurwitz, Ferlinz et al. 1994). Imipramine reduced the activity of ASMase in T cells 

(Fig. 12A) in a time- and dose-dependent fashion and inhibited the cytotoxic activity 

of CD8+ T cells (Fig. 12B, C). Resembling the phenotype of ASMase-/- T cells, the 

release of gzmA and hexosaminidase activity was reduced by treatment of 

CD8+ T cells with 25 µM imipramine (Fig. 12D, E). Furthermore, pre-treatment of 

CD8+ T cells with imipramine led to reduced secretion of IFN-γ in response to LCMV 

infected target cells to a comparable degree as ASMase-/- CD8+ T cells, while 

secretion of RANTES was not affected (Fig. 12F, G). 

     Together, the pharmacological inhibition of ASMase in CD8+ T cells reproduces 

the secretory defects of ASMase-/- CTL, suggesting that the phenotype of ASMase-/- 

CTL is a specific consequence of missing ASMase activity rather than non-specific 

late sequelae of sphingomyelin storage. 
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Fig. 12 Pre-treatment of wt CD8+ T cells with imipramine mimics the phenotype of ASMase-/-  

CD8+ T cells 
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Fig. 12 Pre-treatment of wt CD8+ T cells with imipramine mimics the phenotype of ASMase-/-  
CD8+ T cells 

On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. 
(A) ASMase specific activity was measured in CTL that were pre-treated for 5, 10, 30 and 60 min with 
different concentrations of imipramine. The assay was performed in cooperation with Katja Wiegmann, 
Institute for Medical Microbiology, Cologne. 
(B) Dose- and (C) time-dependency of the cytotoxic activity of wt and ASMase-/- CTL inhibitory effect 
of imipramine in a 4 h standard 51Cr-release assay against gp33-loaded C57BL/6-SV target cells. 
Dose-dependent inhibition of (D) the release of gzmA- and (E) ß-hexosaminidase activity was 
determined after stimulation with L1210.3 target cells in the presence of 2 µg/ml CD3 specific mAb for 
6 h. 
(F) Inhibitory effect of imipramine on secretion of IFN-γ (G) or RANTES measured by ELISA after 24 h. 
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3.6 Membrane-lipid composition is not altered in ASMase-/- CD8+ T cells 
 
     In several cell types, deficiency in ASMase leads to the accumulation of 

sphingomyelin (Horinouchi, Erlich et al. 1995). A perturbed lipid metabolism might 

influence cell signalling, e.g. by disrupting sphingomyelin-cholesterol domains of the 

plasma membrane, i.e. lipid rafts, to which the TCR complex localises (Gulbins and 

Li 2006). The lipid composition of the plasma membrane of ASMase-/- CD8+ T cells 

was analysed by thin-layer chromatography (TLC) after extracting phospholipids from 

CD8+ T cells. The lipid composition of ASMase-/- CD8+ T cells does not show any 

overt alterations when compared to wt CD8+ T cells (Fig. 13). 

     It has been reported that sphingolipid storage is observed predominantly in long-

lived, non-proliferating cells of ASMase-/- mice elder than two months, but less 

pronounced in short-lived, proliferating cells such as T lymphocytes, especially in 

younger mice (Lozano, Morales et al. 2001). These data argue against the defect in 

exocytosis being a secondary effect of alterations in lipid membrane composition in 

ASMase-/- CD8+ T cells. 
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Fig. 13 Lipid composition of the plasma membrane of wt and ASMase-/- CD8+ T cells 
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. Phospholipids were extracted from the lysates and analysed by thin-layer-
chromatography processed by Katja Wiegmann, Institute for Medical Microbiology, Cologne. On the 
left, positions of phospho- and sphingolipid- standards are indicated: PE – phosphatidylethanolamine, 
PS – phosphatidylserine, PC – phosphatidylcholine, SM – sphingomyelin and LPC- 
lysophosphatidylcholine. 
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3.7 Calcium-dependent signalling is normal in ASMase-/- T cells 
 
     Minor changes in membrane lipid composition or subtle alterations of lipid raft 

architecture might escape detection by the above described TLC analysis. Therefore, 

assays for the functions of lipid rafts were performed. Release of Ca2+ from the 

endoplasmic reticulum by thapsigargin, an inhibitor of the calcium endoplasmic 

reticulum-ATPase which increases intracellular calcium in T cells (Gouy, Cefai et al. 

1990), resulted in comparable signals in wt and ASMase-/- effector cells (Fig. 14A). 

Moreover, crosslinking of the TCR, which co-localises with lipid rafts, resulted in a 

comparable Ca2+-release in both ASMase-/- and wt CD8+ T cells (Fig. 14B). The 

similar amount of intracellular Ca2+ as well as identical TCR-triggered Ca2+ signals in 

wt and  ASMase-/- CD8+ T cells rule out that deficiency of ASMase affects the 

intracellular storage of calcium or its release in response to TCR signalling from lipid 

rafts. 

     In combination with the normal Fas Ligand-mediated induction of target cell 

apoptosis and the proper secretion of RANTES, these data rule out any defects in 

TCR-mediated signalling in ASMase-/- CD8+ T cells. 
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Fig. 14 Release of intracellular Ca2+ in CD8+ T cells 
On day 8 after i.v. infection of mice with 105 IU LCMV, 1 x 107 CD8+ T cells were labelled with the 
calcium sensitive fluorescence dye Indo-1 in the presence of pluronic acid. After 45 min calcium 
variations were measured for 10 minutes at 37°C by flow cytometry in cooperation with Julian Pardo, 
MPI Freiburg. 
(A) Release of calcium from intracellular stores was induced by thapsigargin (B) or by TCR ligation 
with anti-CD3 mAb cross-linked with anti-hamster IgG. 
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3.8 Normal intragranular pH in ASMase-/- CD8+ T cells 
 
     Proper acidification of cytotoxic granules is a prerequisite for intragranular 

processing of perforin (Kataoka, Takaku et al. 1994) and for condensation of the 

granule’s matrix (Braga, Grujic et al. 2007). Therefore, acidification of the cytotoxic 

granule was determined by a method relying on pH-dependent quenching of FITC-

fluorescence in comparison to pH-independent TRITC-fluorescence. Cytotoxic 

granules were pulse-chase labelled with equimolar amounts of FITC- and TRITC-

 conjugated dextrans. Fluorescence intensities of FITC and TRITC were measured 

by flow cytometry to calculate the pH of the cytotoxic granules of wt and ASMase-/- 

CD8+ T cells by use of a standard curve (Fig. 15A). As shown in Fig. 15B, a pH of 

5.45 ± 0.35 in cytotoxic granules of wt CTL and of 5.75 ± 0.4 in  ASMase-/- CTL did 

not significantly differ and was in accordance with published data (pH 5.5, (Burkhardt, 

Hester et al. 1990; Masson, Peters et al. 1990)).  
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Fig. 15 Lysosomal pH in ASMase-/- CD8+ T cells 
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. Cytotoxic granules were pulsed 2 h with 10 µM FITC- and TRITC- conjugated 
dextran, washed extensively and chased for 2 h in fresh culture medium. 
(A) Fluorescence intensities of test samples and samples of a standard curve covering pH 3-8 were 
measured by flow cytometry. 
(B) Shown are the cumulative data of four experiments as means ± standard error. 
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3.9 Intracellular transport of cytotoxic granules: Polarisation to the  
immunological synapse and fusion with the plasma membrane  

 
     Crucial steps for cytolysis by CTL are the formation of an immunological synapse 

with its target cell, the polarisation of cytotoxic granules towards the synapse, the 

docking of secretory lysosomes to the plasma membrane and the formation of a 

fusion pore between the granule limiting membrane and the plasma membrane. 

     Ultra-structural analysis of immunological synapse between CD8+ T cells and 

target cells by electron-microscopy revealed synapses of wt or ASMase-/-

 CD8+ T cells indistinguishable with respect to the size of the contact area, the 

number of membrane bridges or the morphology of the synaptic cleft between 

effector and target cell (Fig. 16A). Moreover, the percentage of wt and ASMase-/- 

CD8+ T cells conjugated to targets cells determined by immunofluorescence 

microscopy, was comparable after 10 min of co-incubation (Fig. 16B). In response to 

target cell contact, Lamp1-positive cytotoxic granules, were rapidly polarised toward 

the immunological synapse in wt as well as ASMase-/- CD8+ T cells within less than 

20 min (Fig. 16C). 

     Fusion of cytotoxic granules with the plasma membrane of CD8+ T cells was 

determined by monitoring the translocation of Lamp1 from the inner membrane 

leaflet of cytotoxic granules onto the surface of the T cell. Co-incubation of wt or 

ASMase-/- CD8+ T cells with target cells resulted in a similar time-dependent increase 

of the percentage of CD8+ T cells expressing Lamp1 on the cell surface (Fig. 17A). 

In addition to the kinetics, the signal intensity for Lamp1 was similar on CD8+ T cells 

of both genotypes (Fig. 17B). Resembling the phenotype of ASMase-/- T cells by pre-

treatment of wt CD8+ T cells with imipramine, the exposure of Lamp1 on the plasma 

membrane in response to target cell contact was not altered (Fig. 17C). 

     These data provide evidence that the prerequisites for the secretion of cytotoxic 

contents up to the formation of a fusion pore between granule and plasma membrane 

are fully achieved by wt as well as ASMase-/- CD8+ T cells. Thus, ASMase activity 

has to contribute to the very last steps of the secretion of cytotoxic granules, i.e. the 

actual release of cytotoxic effector molecules. 
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Fig. 16 Proper polarisation of cytotoxic granules at morphologically intact immunological 

synapse in ASMase-/- CD8+ T cells 
 
(legend on next page) 
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Fig. 16 Proper polarisation of cytotoxic granules at morphologically intact immunological 
synapse in ASMase-/- CD8+ T cells 

 
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. Wt and ASMase-/- CD8+ T cells were co-incubated with L1210.3 target cells in 
the presence of 3 µg/ml anti-CD3 mAb. Effector target cell conjugates were incubated for 10 min, fixed 
and (A) further processed for immuno-electron microscopy by Hans-Walter Zentgraf, DKFZ, 
Heidelberg, (B) counted for conjugates of CTL and target cells or (C) stained with antisera specific for 
ASMase and mAb specific for Lamp1. 
Scale bar is 500 nm. Arrows indicate membrane bridges between target and effector cells. 
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Fig. 17 Exposure of Lamp1 on the surface of the T cell in ASMase-/- CD8+ T cells is not altered 
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. Wt and ASMase-/- CD8+ T cells were co-incubated with L1210.3 target cells in 
the absence or presence of 3 µg/ml anti-CD3 mAb. 
(A) Kinetics of the exposure of Lamp1 (CD107a) on the cell surface was determined by flow cytometry 
on wt and ASMase-/- CTL at the indicated time points after staining the cells for CD8 and Lamp1. The 
experiment was repeated five times with similar results. 
(B) Representative dot plots of one experiment for 0 and 5 h time of co-incubation. 
(C) Translocation of Lamp1 to the cell surface of wt CTL pre-treated 60 min with 25 µM imipramine. 
The experiment was repeated three times with similar results. 
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3.9    Characterisation of cytotoxic granule exocytosis in ASMase-/- CD8+ T cells 
  

     Secretion of contents from cytotoxic granules was monitored after pulse-chase-

labelling of cytotoxic granules with fluorescent dextran of 3, 70 or 500 kDa molecular 

weight as fluid phase markers. As shown in Fig. 18A and B, dextran molecules of 

each used size were almost quantitatively incorporated into vesicles that were 

identified as cytotoxic granules by co-staining with gzmA. These vesicles were of 

equal size in wt and ASMase-/- CD8+ T cells (Fig. 18C). 

     CD8+ T cells of both genotypes polarised the dextran-loaded cytotoxic granules 

readily to the immunologic synapse within 10 min (Fig. 19A), suggesting proper 

intracellular transport of the dextran-loaded cytotoxic granules. In response to co-

incubation of CD8+ T cells with LCMV infected target cells for 60 min, the number of 

granules per cell declined similar in both T cell populations (Fig. 19B). 

     Secretion of fluorescent fluid phase markers was monitored by flow cytometry. 

Fluorescent dextran molecules of either 3 kDa or 70 kDa were released from wt and 

ASMase-/- CD8+ T cells in identical quantities and with similar kinetics (Fig. 19C). As 

expected 3 kDa dextran molecules with about 4 nm diameter were secreted a little 

more rapid and to slightly higher extents than the 70 kDa dextran with about 12 nm 

diameter. 500 kDa fluorescent dextran of about 20 nm diameter was neither by wt 

nor by ASMase-/- CD8+ T cells secreted to significant degrees. Secretion of dextran 

was fully inhibited by several inhibitors of exocytosis, including cytochalasin D, 

cyclosporin A or FK-506 to the minimal level of secretion observed in non-stimulated 

cells (Fig. 19D).  

     Secretion of fluid phase markers by wt as well as ASMase-/- CTL further confirms 

proper formation of a fusion pore between granules and the plasma membrane, as 

previously observed by exposure of Lamp1 (Fig. 17A, B). 

     However, the normal exposure of Lamp1 on the plasma membrane and the 

similar secretion of fluorescent dextrans by wt and ASMase-/- CD8+ T cells is in 

apparent conflict with the impaired secretion of gzmA and ß-hexosaminidase 

(Fig. 5A, 6E). An explanation could be that the effector molecules of cytotoxic 

granules, i.e. perforin and gzm, are not stored as soluble molecules but rather as 

high molecular weight complexes with proteoglycans amounting for about 1300 kDa 

and a diameter of up to 140 nm (Raja, Metkar et al. 2003). Therefore, further 

experiments were designed, to assess secretion of these complexed contents. 
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     After conjugation to target cells, gzmA+ cytotoxic granules appear as small distinct 

dots beneath the immunological synapse of wt CTL. In contrast, much larger clusters 

of gzmA+ granules accumulate beneath the immunological synapse in ASMase-/- CTL 

(Fig. 20A). The resolution of IFM does not allow discriminating whether the gzmA+ 

clusters are lying within the CTL or are adhering to the outside of the cell. Flow 

cytometry analysis of CTL extracellularly stained with gzmB-specific monoclonal Ab 

with or without use of a signal intensifying antibody did not reveal any sign for 

granzyme adhering to the outside of the plasma membrane during PMA/ionomycin-

stimulated secretion (Fig. 20B). Thus, large clusters of gzmA appear to resemble 

granules which were not able to extrude their granule contents. 

     By two-photon microscopy of viable cells the events during secretion of cytotoxic 

granules were further characterised. CD8+ T cells were stimulated by solid-phase-

bound anti-CD3 and anti-CD28 mAb in medium containing the polar fluorescent 

tracer sulforhodamine-B (SRB) and the water-soluble membrane marker FM1-43. 

When the cells were stimulated, exocytic events of individual cytotoxic granules could 

be identified as the appearance of small red-fluorescent spots in wt CTL, due to the 

entry of extracellular SRB into the fused granule (Fig. 21A). Remarkably, significantly 

larger vesicles were stained with SRB in ASMase-/- CTL (Fig. 21B). These exocytic 

events were not seen in unstimulated control cells. 

     FM1-43 is soluble in water and becomes fluorescent after integration into bio-

membranes. It cannot penetrate the cell membrane so that it stains membranes with 

access to the surrounding medium. After formation of the fusion pore, FM1-43 stains 

the granular membrane as well as the contents. This has been reported previously 

for the content of lactotrophic granules in rat pituitary (Angleson, Cochilla et al. 1999). 

Comparable to staining with SRB, large FM1-43 vesicles were detected in ASMase-/- 

CD8+ T cells. These concordant observations suggest that a fusion pore is formed in 

both, wt and ASMase-/- CTL, but the granular content cannot be properly extruded 

from the cytotoxic granules of ASMase-/- CTL. 
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Fig. 18 Fluorescent dextran molecules by wt and ASMase-/- CD8+ T cells 
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. Wt and ASMase-/- CD8+ T cells were pulsed for 2 h in medium containing 10 
µM 3, 70 or 500 kDa dextrans conjugated to Texas Red (TR) or FITC. Cells were washed three times 
and chased for 2 h in fresh culture medium. 
(A) CD8+ T cells were stained intracellularly for gzmA. Scale bar is 5 µm. 
(B) CTL loaded with 3 kDa Texas-Red dextran and intracellularly stained for gzmA were analysed for 
the proportion of gzmA+ vesicles additionally positive for dextran. Shown are mean ± standard errors 
from two experiments including n=126 wt and n=136 ASMase-/- cytotoxic granules. 
(C) 3 and 70 kDa dextran loaded CTL were measured in micrograph from 2PM. Shown are mean ± 
standard errors of two experiments including n=45 cells 
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Fig. 19 Identical secretion of fluorescent fluid phase markers in wt and ASMase-/- CD8+ T cells  
On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens and pulsed for 2 h in medium containing 10 µM 3, 70 or 500 kDa dextran 
conjugated to fluorescent dyes. Cells were washed and chased for 2 h in fresh culture medium. 
(A) CD8+ T cells loaded with Alexa488-labelled 3 or FITC-labelled 70 kDa dextran were co-incubated 
with L1210.3 target cells in the presence of 3 µg/ml anti-CD3 and anti-CD28 mAb for 10 min. 
(B) Cytotoxic granules of CD8+ T cells loaded with 3 or 70 kDa dextran conjugated to Texas Red were 
counted before and after 60 min of stimulation with 10 ng/ml PMA and 500 ng/ml ionomycin. For each 
time point, dextran size and genotype, n=60 cells were counted. 
(C) CD8+ T cells loaded with Alexa488-labelled 3 kDa, Oregon Green-labelled 70 kDa or FITC-labelled 
500 kDa dextran were stimulated with 10 ng/ml PMA and 500 ng/ml ionomycin and fluorescence 
intensity was measured by flow cytometry at the indicated time points. Shown are the relative 
fluorescence intensities normalized for the values at t=0. (D) Secretion of 3 kDa Alexa488-dextran 
labelled cytotoxic granules was inhibited by cytochalasin D, cyclosporin A and FK-506. 
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Fig. 20 In ASMase-/- CD8+ T cells large clusters of gzmA-positive cytotoxic granules persist 
beneath the immunological synapse  

On day 8 after i.v. infection of mice with 105 IU LCMV, CD8+ T cells were immunomagnetically 
enriched from spleens. 
(A) CD8+ T cells (indicated “CTL”) were co-incubated with L1210.3 cells (indicated “target”) in the 
presence of CD3 and CD28 specific mAb for 10 min. The cells were fixed, permeabilised and stained 
with gzmA-specific antiserum and analysed by confocal microscopy. Five representative CTL/target 
conjugates, either wt or ASMase-/- CTL are shown. The small gzmA-positive vesicles are indicated in 
wt CTL by white solid arrows. 
(B) Flow cytometry analysis of CD8+ T cells stained with gzmB specific mAb for extracellular gzmB 
during PMA/ionomycin stimulation. One set of samples was stained by additional use of a PE-
conjugated amplifier mAb against mouse-IgG.  
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Fig. 21 Vital microscopy of CD8+ T cells during secretion: staining of granule clusters in 

ASMase-/- CD8+ T cells 
On day 8 after i.v. infection of mice with 105 IU LCMV, splenocytes were restimulated with 10 U/ml 
recombinant mouse IL-2 in vitro. Two days later, wt and ASMase-/- CD8+ T cells were 
immunomagnetically enriched and immersed in medium containing 500 µM of the polar tracer 
sulforhodamine B (SRB) and 25 µM of the membrane dye FM1-43 in chamber slides coated with anti-
CD3 and anti-CD28-specific mAb or isotype control. Influx of extracellular medium into cytotoxic 
granules after stimulation was visualized via two-photon vital microscopy. 
(A) Three representative CD8+ T cells stimulated with anti-CD3 and CD28 mAb are shown for each 
genotype. 
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Fig. 21 Vital microscopy of CD8+ T cells during secretion: staining of granule clusters in 

ASMase-/- CD8+ T cells 

(B) The size of SRB stained cytotoxic granules from cells shown in (A) was determined in the plane 
focus with the highest fluorescence intensity.  40 cells for each genotype and the mean ± standard 
errors are shown. 
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3.10 Deficiency in ASMase impairs cytotoxicity of CTL independent of the  
 molecular size of granular matrix  
 
     The extrusion of cytotoxic granules might be facilitated in wt CTL by ASMase 

activity contributing to dissolve the high molecular weight matrix of granules. This 

hypothesis was experimentally addressed by using mice deficient for serglycin     

(SG-/-), the core protein of the high molecular weight proteoglycan matrix. SG-/- CD8+ 

T cells generate cytotoxic granules of lower electron density with a matrix consisting 

of only short glycosaminoglycan (GAG) chains. 

     The lack of serglycin itself does not affect the cytotoxic activity of CTL (Grujic, 

Braga et al. 2005). On the contrary, SG-/- CD8+ T cells lysed target cells slightly more 

effective than wt CTL (Fig. 22A). 

    The disturbance in proteoglycan synthesis in SG-/- T cells was indicated by a 10-

fold reduced incorporation of [35S] into SG-/- CD8+ T cells as compared to 

wt CD8+ T cells (Fig. 22B). This decreased incorporation of [35S] into SG-/- CTL is in 

agreement with data of Grujic et al. (Grujic, Braga et al. 2005). As might be expected, 

the relative release of low molecular weight [35S]-labelled material was slightly 

increased in SG-/- as compared to wt CD8+ T cells (Fig. 22C). 

     A possible requirement for ASMase in dissolving the high molecular weight matrix 

of granules was investigated in CD8+ T cells deficient for both SG and ASMase. 

While SG-/- CD8+ T cells lysed their target cells slightly more effective than wt CTL 

(Fig. 23A, left, 21A), the cytotoxic activity of ASMase-/-/SG-/- CD8+ T cells was as low 

as that of ASMase-/- CTL (Fig. 23A, right). Additionally, pre-treatment of SG-/- CTL 

with the ASMase inhibitor imipramine strongly reduces the cytotoxicity of SG-/- and 

wt CTL to the same levels observed in ASMase-/- CTL (Fig.23B). 

   These data show that ASMase is required for effective cytotoxic activity of CTL, 

regardless whether the effector molecules are bound to the high molecular weight 

proteoglycan-matrix or low molecular weight glycosaminoglycan matrix. This argues 

against ASMase dissolving the granule’s matrix.  
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Fig. 22 Characterization of SG-/- CTL  
Wild type and SG-/- mice were infected i.v. with 105 IU of the LCMV-WE. 
(A) At day 8 after infection, CD8+ T cells were immunomagnetically enriched from splenic single cell 
suspensions and used as effector cells in a 4 h standard [51Cr]-release assay against C57BL/6-SV 
target cells loaded with 10-6 M gp33 peptide. Shown are mean and standard error of cumulative data 
from 11 experiments (wt: n=21; SG-/-: n=17). 
(B) At day 30 p.i., immune splenocytes were in vitro stimulated with LCMV infected C57BL/6-SV target 
cells (E:T=10:1) in the presence of 10% ConA SN for 3 days. A total of 3 x 107 cells were incubated in 
10 ml sulphate-free RPMI supplemented with 1 mCi [35S] for 24 h. CD8+ T cells were immuno-
magnetically enriched and chased for 2 h in fresh RPMI medium. Shown is the total [35S] incorporation 
quantified by liquid scintillation counting of cell lysates from four experiments (wt n=9; SG-/- n=4). 
(C) Secretion of [35S]-labelled wt and SG-/- CD8+ T cells was induced by PMA/ionomycin stimulation. 
Shown are mean ± standard errors of percentages of [35S] in cell-free supernatants normalised to the 
total initial load of [35S] material from 4 experiments (wt n=9; SG-/- n=4). Unstimulated CD8+ T cells did 
not secret significant amounts of radioactivity (data not shown). 
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Fig. 23 Similarly impaired cytotoxic activity of ASMase-/- and ASMase-/-/SG-/- CTL 
Wild type, SG-/-, ASMase-/- and ASMase-/-/SG-/- mice were infected i.v. with 105 IU of the LCMV-WE. 
(A) At day 8 after infection, CD8+ T cells were immunomagnetically enriched from splenic single cell 
suspensions and used as effector cells in a 4 h standard [51Cr]-release assay against C57BL/6-SV 
target cells loaded with 10-6 M gp33 peptide. Shown are mean ± standard errors of 6 experiments (wt 
n=6; SG-/- n=6; ASMase-/- n=8; ASMase-/-/SG-/- n=7). 
(B) The cytotoxic activity was measured in CTL that were pre-treated with 25 µM imipramine against 
C57BL/6-SV in a 4 h standard [51Cr]-release assay. 

B 

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

20

40

60

80

wild type
ASMase-/-

SG-/- 

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

20

40

60

80

wild type 
ASMase-/-

SG-/-

no treatment imipramine (50 µM)

effector : target ratio

A

SG-/-

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

10

20

30

40

50

60

ASMase-/- 

0 20 40 60 80 100
0

10

20

30

40

50

60

wild type

ASMase-/-/SG-/-

effector : target ratio

B 

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

20

40

60

80

wild type
ASMase-/-

SG-/- 

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

20

40

60

80

wild type 
ASMase-/-

SG-/-

no treatment imipramine (50 µM)

effector : target ratio

A

SG-/-

0 20 40 60 80 100

%
 s

pe
ci

fic
 ly

si
s

0

10

20

30

40

50

60

ASMase-/- 

0 20 40 60 80 100
0

10

20

30

40

50

60

wild type

ASMase-/-/SG-/-

effector : target ratio



  Results 
 

 66

3.11 Monitoring exocytosis by patch-clamp experiments reveals in ASMase-/- 

CD8+ T cells larger gains in membrane area than in wt T cells 
 
     Electrophysiological patch-clamp experiments were designed to monitor secretion 

of cytotoxic granules of ASMase-/- CD8+ T cells. 

     ASMase-/- CD8+ T cells responded with larger increases in capacitance for 

exocytotic events compared to wt CD8+ T cells (Fig. 24A, B). The capacitance is 

proportional to the area of vesicular membrane added by fusion to the plasma 

membrane. Therefore, post-fusion vesicles are larger in ASMase-/- than in wt CD8+ T 

cells. 

    These data correspond with the larger size of cytotoxic granules stained with SRB 

after influx from the extracellular medium in ASMase-/- T cells during secretion 

determined by TEP-microscopy (Fig. 21). This suggests that the deficiency in 

ASMase leads to defective extrusion of cytotoxic granule contents and might be due 

to a decrease in contractile tension of the vesicle membrane as discussed below. 
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Fig. 24 Enhanced increases of capacitance observed by patch-clamp analysis of secretion 

in ASMase-/- CD8+ T cells 

Wild type and ASMase-/- mice were infected i.v. with 105 IU of the LCMV-WE. At day 8 after infection, 
CD8+ T cells were immunomagnetically enriched from splenic single cell suspensions and used in 
patch-clamp experiments that have been carried out by Elza Kuzmenkina and Stefan Herzig, 
Department of Pharmacology, Cologne. 
(A) Capacitance diagram of one representative for each genotype and (B) corresponding mean ± 
standard errors.
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4. Discussion 
  

     ASMase-induced sphingomyelin hydrolysis has been implicated in many cellular 

responses to external stimuli. However, in many instances the precise mode of action 

remained unresolved. Deficiency of mice in ASMase severely affects the course of 

the immune response during acute LCMV infection. The clearance of the virus by 

ASMase-/- mice is significantly impaired and virus-specific delayed type 

hypersensitivity (DTH) reaction is reduced (Diplom). To control acute infection with 

LCMV, CD8+ T cells are necessary and sufficient in mice (Moskophidis, Cobbold et 

al. 1987). Corresponding to the impaired control of the virus in ASMase-/- mice, the 

cytotoxic activity of ASMase-/- CD8+ T lymphocytes (CTL) in vitro was reduced. This 

work aimed at elucidating the ASMase-dependent mechanism in the cytotoxic 

machinery of CD8+ T cells. 

     The loading of cytotoxic granules both, with respect to biochemical and to 

morphological parameters is properly achieved in CTL of ASMase-/- mice: wt and 

ASMase-/- CTL were indistinguishable regarding a) mRNA copy numbers for gzmA, 

gzmB and perf, b) protein expression levels, c) their confinement to cytotoxic 

granules, d) their size and number per cell, e) the acidification of cytotoxic granules 

and f) enzymatic activity of gzms and perf, which clearly excludes any interference of 

transcription, translation, intracellular storage and processing of cytotoxic effector 

molecules by the absence of ASMase. 

     The accumulation of sphingomyelin in ASMase-/- cells may impair the secretion of 

cytotoxic effector molecules by a lack of lipid rafts or alterations in the lipid 

composition of the plasma membrane as observed in various cell types of another 

strain of ASMase-/- mice (Nix and Stoffel 2000). However, it has been reported that 

sphingolipid storage is observed predominantly in long-lived, non-proliferating cells of 

ASMase-/- mice older than two months, but less pronounced in short-lived, proliferating 

cells such as T lymphocytes, especially in younger mice (Lozano, Morales et al. 

2001). In the strain of ASMase-/- mice used for this study, originally generated by 

Schuchmann and co-workers, none of the alterations described by Stoffel et al. (Nix 

and Stoffel 2000) were detectable (Lozano, Morales et al. 2001) and Diplom). 

     The lipid composition of the plasma membrane of ASMase-/- CD8+ T cells does 

not show any alterations in comparison to wt CD8+ T cells. Furthermore, TCR-

triggered release of calcium from intracellular storages is not altered in ASMase-/-  
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CD8+ T cells. These findings exclude that deficiency in ASMase by affecting the 

composition of membrane lipids in general or specifically in lipid rafts impairs TCR-

signalling as a possible cause of reduced secretion of cytotoxic granules. 

     It is also important to note that ASMase-/- CD8+ CTL do not have a general 

secretory defect, because the secretion of the chemokine RANTES was not affected 

in these cells. RANTES is stored in and secreted via a specialized subcellular 

compartment of microvesicles, for which the term “RANTES secretory vesicle” was 

coined (Catalfamo, Karpova et al. 2004). In contrast, secretion of IFN-γ was impaired 

in ASMase-/- CTL, which is not surprising, because we showed that IFN-γ localises to 

ASMase-positive vesicles in wt CTL.  

     Importantly, the phenotype of ASMase-deficiency is recapitulated by short term 

pharmacologic inhibition of ASMase by imipramine. Incubation of cells with 

imipramine leads to proteolytic degradation of ASMase (Hurwitz, Ferlinz et al. 1994). 

Short-term inhibition of ASMase activity does not allow accumulation of 

sphingomyelin. Therefore, selectively impaired secretion of cytotoxic granules and 

IFN-γ, but not of RANTES and imipramine-induced reduction of the cytolytic activity 

of CTL mimicking the effects of genetic absence of ASMase and preclude that the 

secretory defects of ASMase-/- CTL are secondary to generally impaired vesicular 

traffic caused by sphingomyelin storage. 

     At the level of cellular organelles, the structural reorganization of a CTL required 

for granule exocytosis, i.e. 1) polarisation of granules towards the immunological 

synapse, 2) the release of cytotoxic granules from microtubules, 3) tethering, 4) 

docking to and 5) fusion with the plasma membrane were found to be intact in 

ASMase-/- CD8+ CTL. This is shown by similar kinetics and extent of exposure of 

Lamp1 (CD107a) on the cell-surface after stimulation. Lamp1 localises to the inner 

membrane of the cytotoxic granule. After fusion of the granule with the plasma 

membrane, a fusion pore is formed, which allows Lamp1 to translocate to the plasma 

membrane. Similar kinetics and extent of Lamp1 expression in wt and ASMase-/- 

CTL, indicate that the first four stages of exocytosis are intact in ASMase-/- 

CD8+ T cells. In this respect, the ASMase dependent mechanism can be clearly 

distinguished from that of Rab27a and Munc13-4 which are required for the release 

of cytotoxic granules from microtubules and for the induction of SNARE-mediated 

fusion with the plasma membrane, respectively (Menasche, Pastural et al. 2000; 

Haddad, Wu et al. 2001; Feldmann, Callebaut et al. 2003).            
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     By stepwise analysing the process of cytotoxic granules exocytosis this study 

revealed that ASMase impairs the final step of granule secretion after a fusion pore 

between the granule membrane and the plasma membrane has been formed. 

     Despite the exposure of Lamp1 on the surface of CTL, the release of gzm and 

other proteins from cytotoxic granules is reduced in ASMase-deficient CTL. Two 

independent lines of evidence suggest that cytotoxic effector molecules are retained 

within fused cytotoxic granules beneath the immunologic synapse in ASMase-/- CTL 

and refrained from release. First, confocal microscopy of immunological synapses 

consistently revealed larger areas with gzmA positive granules adjacent to the 

immunologic synapse in ASMase-/- CTL compared to wt CD8+ T cells. Second, two 

photon-microscopy showed that, post-fusion granules stained with the polar tracer 

SRB in the extracellular medium in ASMase-/- CTL are significantly larger than in wt 

CD8+ T cells.  

     In CD8+ CTL, perf and gzms are stored in cytotoxic granules previously 

recognised as secretory lysosomes (Peters, Borst et al. 1991), which impose as 

dense-core vesicles in electron microscopy. Secretion of the contents of dense-core 

vesicles has been studied in greater detail in cells of the nervous system and of 

endocrine glands. In these cells, transmitters are bound to a condensed matrix, 

which reduces the osmolarity to allow storage of the transmitter at high 

concentrations within the vesicle (Artalejo, Elhamdani et al. 1998; Rutter and Tsuboi 

2004). After complete degranulation of these vesicles the matrix is presumably 

dissolved to release the biologic active transmitter. In analogy, the acidified 

proteoglycan matrix allows CTL to store perforin and gzms at high concentrations 

required for cytolysis of target cells (Smyth, Kelly et al. 2001). Serglycin is the protein 

backbone to which the chondroitin sulfate glycosaminoglycans are covalently linked 

giving rise to high molecular weight serglycin-proteoglycans. Within cytotoxic 

granules up to 32 molecules of gzmB are complexed to one serglycin-proteoglycan 

molecule (Raja, Wang et al. 2002). With a molecular weight of about 300 kDa for 

serglycin-proteoglycan and 32 kDa for a single gzmB molecule, large supramolecular 

complexes of up to 1300 kDa arise. By dynamic laser light scattering analysis the 

hydrodynamic diameter of serglycin-proteoglycan itself has been determined to reach 

about 140 nm (Raja, Wang et al. 2002). Thus, CTL do not secrete effector molecules 

as soluble monomers but rather as large stable complexes with a size in the order of 
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viruses. Apparently, the matrix complexed with cytotoxic proteins has to be dissolved 

by influx of fluid from the extracellular environment or expulsed its entirety for release 

of the effector molecules within the cleft of the immunological synapse. Therefore, a 

possible requirement for ASMase in dissolving the high molecular weight matrix of 

granules was investigated in CD8+ T cells by using mice deficient for serglycin (SG-/-). 

Importantly, deficiency of the matrix core protein serglycin results in the lack of the 

electron dense core in cytotoxic granules of CTL, while these cells are otherwise not 

morphologically impaired. CTL of SG-/- mice do not exert at least as effective 

cytotoxic activity as wt CD8+ T cells (Grujic, Braga et al. 2005) and exhibit slightly 

increased release of low molecular weight [35S]-labelled matrix as compared to wt 

CD8+ T cells. Remarkably, additional deficiency in ASMase impairs the cytotoxic 

activity of serglycin-/- CD8+ T cells to the same extend as observed in ASMase-/- CD8+ 

T cells, which are competent to synthesize serglycin-proteoglycans. This argues 

against ASMase contributing to dissolve the dense core material during secretion of 

cytotoxic granules. 

     Decisive insight into the mechanistic effect of ASMase was provided by 

electrophysiological analysis of secretory events in CD8+ T cells: In ASMase-/- T cells 

a considerable fraction of individual secretory events was characterised by larger 

increases of capacitance than those observed in wt T cells.  Since the increase in 

capacitance is proportional to the area of vesicular membrane added by fusion to the 

plasma membrane these data are in accordance with the larger diameters of 

granules in ASMase-/- CTL after fusion with the plasma membrane as detected by 

influx of extracellular tracers in vital microscopy. Prior to stimulation, the size of 

cytotoxic granules does not differ between ASMase-/- and wt CD8+ T cells. The 

detection of larger post-fusion granules suggests that the granules fused with the 

plasma membrane do not properly collapse in ASMase-/- CD8+ T cells. The effects of 

ASMase activity upon the biophysical properties of cytotoxic granules facilitate the 

collapse of fused granules as follows. The removal of the head group 

phosphorylcholine from sphingomyelin generates ceramide in the luminal leaflet of 

the granule’s membrane. Ceramide requires less space within the luminal surface of 

the membrane so that the surface tension increases within this leaflet. Due to the 

asymmetric distribution of sphingomyelin in the membrane and the localization of 

ASMase exclusively in the lumen of the granule, the outer leaflet of the membrane is 

not altered, thereby preventing the granule from shrinking as long as its membrane is 
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not fused to the plasma membrane. After fusion, however, the contractile surface 

tension can be released by the granule collapsing into the plasma membrane. In 

granules of ASMase-/- CD8+ T cells, the lack of surface tension leads to an impaired 

collapse of the granule resulting in reduced extrusion of its contents. This explanation 

is supported by Laplace’s law describing the transmural pressure (p) of contractile 

spherical bodies as a function of the radius of the body (r), the tension (t) and 

thickness (d) of the surrounding membrane as: p = 2t / (r * d). We determined the 

radius (r) of granules in wt and ASMase-/- CD8+ T cells to be identical and the 

thickness (d) of biomembranes is constant. Thus, the transmural pressure of 

cytotoxic granules is directly proportional to the tension of its membrane, which is 

increased by ASMase activity as described above.  

     It has been shown recently, that neutral SMase activity suffices to initiate inside 

budding of microvesicles into artificial giant unilamellar vesicles (Trajkovic, Hsu et al. 

2008). Mechanistically, the generation of cone-shaped ceramide on the surface of 

those giant vesicles creates an area difference between its outer and inner 

membrane leaflet, i.e. surface tension that generates stretches of negative curvature 

resulting in inward budding. The opposite effects of budding in the giant vesicles and 

collapsing in CTL, both are due to the asymmetrical localization of the substrate, 

sphingomyelin and the distinct subcellular localisation. 
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6. Abstract 
 
     The acid sphingomyelinase (ASMase) hydrolyses the membrane lipid sphingomyelin into 

ceramide and phosporylcholine. ASMase localises to phagosomes, endosomes, lysosomes 

and the plasma membrane, i.e. those subcellular sites which are at the crossroads of many 

immunological processes. One of these is granule-mediated cytotoxicity as the major effector 

mechanism of CD8+ cytotoxic T lymphocytes (CTL). Cytotoxic granules have been 

characterized previously as secretory lysosomes. This raised the question, whether ASMase 

contributes to granule-mediated cytotoxicity of CD8+ T cells. In my diploma project, I have 

already shown that ASMase is required for the effective control of the acute infection with the 

Lymphocytic Choriomeningitis Virus (LCMV) in mice. More specifically, ASMase-deficient 

(ASMase-/-) CTL were shown to be severely impaired in their virus-specific cytotoxicity. This 

project aimed at elucidating the ASMase-dependent mechanism contributing to effective 

cytotoxicity of CD8+ CTL. 

     Analysis of ASMase-/- CD8+ T cells revealed that the transcription, translation, intracellular 

storage and processing of cytotoxic effector molecules proceed without defects. Moreover, in 

ASMase-/- CD8+ T cells no hints for the accumulation of sphingomyelin were detected. These 

findings excluded excessive sphingomyelin as the cause for impaired cytotoxicity. The 

specificity of the ASMase-dependent mechanism was shown by a strongly reduced T cell 

receptor-triggered release of cytotoxic effector molecules while secretion of the chemokine 

RANTES was not impaired in ASMase-/- CTL. 

     In ASMase-/- T cells, cytotoxic granules were shown to fuse properly with the plasma 

membrane at the immunological synapse. The very last step of granule exocytosis, i.e. the 

extrusion of granular contents, is impaired by deficiency in ASMase. Even in CTL unable to 

generate high molecular weight granule matrix, the secretion of low molecular weight granule 

contents was strongly impaired by ASMase-deficiency. 

     Biomorphometry revealed that cytotoxic granules are of identical size in wt and ASMase-/- 

CTL prior to fusion with the plasma membrane. However, after fusion with the plasma 

membrane, in ASMase-/- CD8+ T cells the granules remain significantly larger than in wt cells. 

This phenomenon can be explained by the biophysical consequences of ASMase activity: 

Generation of ceramide in wt cells increases the surface tension within the inner leaflet of 

cytotoxic granules. According to Laplace’s law this facilitates the collapse of the fused 

granule, thus leading to effective extrusion of the granules contents. 
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7.  Zusammenfassung 
 
     Die saure Sphingomyelinase (ASMase) hydrolisiert das Membranlipid Sphingomyelin zu 

Ceramid und Phosphorylcholin. ASMase ist in Phagosomen, Endosomen, Lysosomen und 

an der Plasmamembran lokalisiert, d.h. an den subzellulären Orten, die Schnittstelle vieler 

immunologischer Prozesse sind. Einer hiervon ist die Granula-vermittelte zytotoxische 

Aktivität als wichtigster zytotoxischer Effektormechanismus von CD8+ zytotoxischen T 

Lymphozyten (CTL). Zytotoxische Granula wurden bereits als sekretorische Lysomen 

charakterisiert. Daraus entstand die Frage, ob die ASMase an der Granula-vermittelten 

Zytotoxizität von CD8+ T Zellen mitwirkt. In meiner Diplomarbeit habe ich bereits gezeigt, 

dass die ASMase für die effektive Elimination des Virus der Lymphozytären Choriomeningitis 

(LCMV) aus akut infizierten Mäusen notwendig ist. ASMase-defiziente CTL sind in ihrer 

virus-spezifischen Zytotoxizität stark beeinträchtigt. Ziel dieser Arbeit ist die Aufklärung der 

ASMase-abhängigen Mechanismen, die zu einer effektiven Zytotoxizität von CD8+ T Zellen 

beitragen. Die Spezifität des ASMase-abhängigen Mechanismus wurde nachgewiesen durch 

eine stark reduzierte Ausschüttung der zytotoxischen Effektormoleküle nach Stimulation des 

T-Zell Rezeptors, wohingegen die Sekretion von RANTES nicht beeinträchtigt war. 

     Die Analyse von ASMase-/- CTL zeigte, dass die Transkription, Translation, intrazelluläre 

Speicherung und Prozessierung der zytotoxischen Effektormoleküle ungestört ist. Außerdem 

wurden in ASMase-/- CTL keine Hinweise auf die Akkumulation von Sphingomyelin gefunden. 

Diese Daten schließen die übermäßige Speicherung von Sphingomyelin als Ursache für die 

beeinträchtigte Zytotoxizität aus. 

     Überraschenderweise fusionieren in ASMase-/- CTL die zytotoxischen Granula 

unbeeinträchtigt mit der Plasmamembran. Allerdings ist der letzte Schritt der Exozytose 

zytotoxischer Granula, die Extrusion des Granulainhalts, in ASMase-/- T-Zellen gestört. Sogar 

in CTL, die keine hochmolekulare Granulamatrix synthetisieren können, war die Sekretion 

von niedermolekularem Granulainhalt durch den Defekt der ASMase stark gestört.   

     Biomorphometrische Messungen zeigten, dass zytotoxische Granula vor der Fusion mit 

der Plasmamembran in ASMase-/-  CTL genauso groß sind wie in wt CTL. Allerdings bleiben 

die Granula nach der Fusion mit der Plasmamembran in ASMase-/- T-Zellen signifikant 

größer als in wt Zellen. Dieses Phänomen kann über die biophysikalischen Eigenschaften 

der ASMase Aktivität erklärt werden: die Bildung von Ceramid in wt CD8+ T-Zellen erhöht die 

Oberflächenspannung der inneren Membrane des zytotoxischen Granulum. In 

Übereinstimmung mit Laplace´s Gesetz, ermöglicht dies den Kollaps des fusionierten 

Granulums, was zu einer effektiven Ausschüttung des Granulainhalts führt. 
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