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+Für Michal+ 
 
 
Acknowledgements 
 
 
 
 „…odlazi cirkus iz našeg malog grada…“ 
Djordje Balašević, 1980 
 
 
Für die Unterstützung während der Promotionszeit bedanke ich mich herzlich bei meinem 
Doktorvater, Prof. Thomas Wiehe, der es mir ermöglicht hat als Informatiker in der Biologie 
zu promovieren. Sein offenes Ohr, sei es für Vorschläge, Kritik, Sorgen oder verrückte Ideen, 
z.B. s.exons zu realisieren, waren immer ein guter Antrieb für mich. Dankbar bin ich ihm 
auch für die einmalige Gelegenheit, mich 2 Monate lang am Europäischen Biotechnologie-
Zentrum in Barcelona forschen zu lassen. Diese Erfahrung hat mich persönlich sehr geprägt.  
I am also deeply grateful for the support and inspiration of an extraordinary bright and shiny 
person, PhD Sushma Nagaraja Grellscheid who taught me to see chances and structure in 
even the greatest chaos and disaster, and to realize and focus on important things, in science 
and in life.  
Bei Prof. Bernhard Haubold bedanke ich mich für seine Tipps eine gute Arbeit zu schreiben, 
sowie für seine Beharrlichkeit das A-Feature zu erforschen.  
Prof. Nürnberg danke ich für seine Skepsis und Expertise bezüglich der Splicing-Daten.  
 
Ich werde meine Freunde im Garlic-Room sehr vermissen und bedanke mich beim Danielsan 
für seine zynische Art, sowie beim Dalesan fürs Englisch-Tuning der wichtigen Begriffe, 
sowie einige exzellente Tournament-Runden. Mit Andreas war es schön auch endlich mal 
wieder „Informatisch“ zu sprechen und Katya machte unsere kleine Doktoranden-Truppe 
komplett.  
Ohne Evas Hilfe hätte ich vermutlich weder Gehalt noch Urlaub gehabt, sie war die gute Fee 
des Hauses und löste die administrativen Aufgaben gutgelaunt und vor allem ohne Bürokratie.  
Bei diesem Stichwort danke ich auch Fr. Gotzmann, der vermutlich besten Dekanin der 
Universitätsgeschichte, die es versteht einen einfachen Pfad in den komplizierten Dschungel 
der Paragraphen zu schlagen. 
Bei Anton und Frank bedanke ich mich für die Computer Administration und schnelle Hilfe,  
und vor allem für die letzten 2 (nahezu) absturzfreien Jahre. 
 
Mein besonderer Dank gilt meiner wundervollen Mama *cmok*, die für mich viele Personen 
in einer vereint: eine Heldin, Schönheit und beste Freundin. Jürgen bin ich dankbar für die 
anregenden Gespräche, die schönen Abende im Sauerland, das Interesse an meiner 
Forschung, sowie die vielen, vielen Mails zur aktuellen Lage. Marta danke ich, dass sie mich 
immer wieder mit Köstlichkeiten und gutem Gespräch aufpäppeln konnte. Stefan danke ich 
im Voraus dafür, dass er mich eventuell eines Tages aus dem Gefängnis für Steuersünder 
rausholen wird. Ovim putem koristim šansu da pošaljem mojoj baka Savki, koja je sto posto 
strašno ponosna na mene, milion poljubaca. 
Auch dem Rest meiner Familie (in diesem Wort sind die Freunde inkludiert) danke ich vom 
Herzen, da es ein gutes Gefühl ist zu wissen, dass sie immer für mich da sind. 
 
+Diese Arbeit wäre ohne Deine grandiose Unterstützung niemals so zustande gekommen, 
daher widme ich Dir den ersten und letzten Gedanken dieser Danksagung, sowie eines jeden 
meines Tages+ 



 
 



i

Abstract

Alternative pre-mRNA splicing is a major source of transcriptome and proteome diversity.

In humans, aberrant splicing is a cause for genetic disease and cancer. Until recently it was

believed that almost 95% of all genes undergo constitutive splicing, where introns are always

excised and exons are always included into the mature mRNA transcript. It is now widely

accepted that alternative splicing is the rule rather than the exception and that perhaps

more than 75% of all human genes are alternatively spliced. Despite its importance and

its potential role in causing disease, the molecular basis of alternative splicing is still not

fully understood. The incompleteness of our knowledge about the human transcriptome

makes ab initio predictions of alternative splicing a recent, but important research area.

This thesis investigates different aspects of alternative splicing in humans, based upon

computational large-scale analyses. We introduce a genetic programming approach to pre-

dict alternative splicing events without using expressed sequence tags (ESTs). In contrast

to existing methods, our approach relies on sequence information only, and is therefore

independent of the existence of orthologous sequences.

We analyzed 27,519 constitutively spliced and 9,641 cassette exons (SCE) together with

their neighboring introns; in addition we analyzed 33,316 constitutively spliced introns and

2,712 retained introns (SIR). We find that our tool for classifying yields highly accurate

predictions on the SIR data, with a sensitivity of 92.1% and a specificity of 79.2%. Pre-

diction accuracies on the SCE data are lower: 47.3% (sensitivity) and 70.9% (specificity),

indicating that alternative splicing of introns can be better captured by sequence properties

than that of exons.

We critically question these findings and in particular discuss the huge impact of the feature

”length” on predictions in retained introns. We find that the number of adenosines in an

exon, called ”feature A” is a highly prominent feature for classification of exons. Adenosines

are especially overrepresented in the most abundant exonic splicing enhancers, found in

constitutive exons. Furthermore we comment on inconsistencies of the nomenclature and on

problems of handling the splicing data. We make suggestions to improve the terminology.

For further in silico exploration of sequence properties of exons, we generated a dataset

of synthetic exons. We describe a general rule for creating sequences with similar exonic

splicing enhancer and -silencer densities to real exons, as well as similar exonic splicing

enhancer networks. We find that exonic splicing enhancer densities are well suited for
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differentiating real and randomized exons, whereas the densities of SR protein binding

sites are largely uninformative. Generally, we find that features described on small scale

experimental data are not transferable to computational large-scale analyses, which makes

creation of rules for alternative splicing prediction based only upon DNA/RNA sequence,

an extraordinarily difficult task.

According to our findings, we suggest that in case of the SCE, only 20%, and in case of

SIR, only 30% of the whole splicing information is encoded on sequence level.

In the last chapter we investigated the question whether alternative splicing may be con-

nected to adaptive evolutionary processes in a species or population. Unfortunately, the

currently available population genetical tools are not sensitive enough to identify traces of

positive or balancing selection on the scale of a few 100bp. Additional problems are the in-

complete SNP databases and SNP ascertainment bias. The evolutionary role of alternative

splicing remains, at least for the moment, speculative.
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Zusammenfassung

Alternatives pre-mRNA Splicing ist die Hauptquelle für Transkriptom- und Pro-

teomvielfalt. Bei Menschen ist anormales Splicing eine Entstehungsursache für genetisch

bedingte Krankheiten und Krebs. Bis vor einigen Jahren wurde angenommen, dass beinahe

95% aller Gene konstitutiv gespleißt werden, wobei Introns grundsätzlich herausgeschnit-

ten und Exons immer in das reife Transkript eingeschlossen werden. Heutzutage ist allge-

mein akzeptiert, dass alternatives Splicing eher die Regel als die Ausnahme ist, und dass

wahrscheinlich mehr als 75% aller menschlichen Gene alternativ gespleißt werden. Trotz

seiner herausragenden Bedeutung und der wachsenden Erkenntnis, dass der Mechanismus

des alternativen Splicings in Zusammenhang zu einigen Krankheiten steht, wird er noch

nicht vollständig verstanden. Die Unvollständigkeit unseres Wissens über das menschliche

Transkriptom macht ”ab initio” Vorhersagen über alternatives Splicing zu einem innova-

tiven und bedeutenden Forschungsgebiet.

Diese Arbeit untersucht die unterschiedlichen Aspekte des alternativen Splicings beim Men-

schen mit Hilfe von computergestützen Genomanalysen. Wir verwenden die Methode der

Genetischen Programmierung, um das Auftreten des alternativen Splicings ohne die Ver-

wendung von Expressed Sequence Tags (ESTs) Information vorauszusagen. Im Gegensatz

zu anderen Methoden basiert unser Ansatz nur auf Sequenzinformationen innerhalb der

Zelle, und er ist daher unabhängig von orthologen Sequenzen anderer Spezies, oder an-

deren, der Zelle nicht zugänglichen Informationen.

Wir haben 27.519 konstitutiv gespleißte und 9.641 Kassettenexons (SCE) inklusive ihrer

Nachbar-Regionen analysiert. Zusätzlich haben wir 33.316 konstitutiv gespleißte Introns

mit 2.712 alternativen Introns verglichen. Wir fanden heraus, dass der Klassifikator eine

hoch präzise Voraussage mit einer Sensivität von 92,1% und einer Spezifität von 79,2% auf

den SIR Daten erzielte. Voraussagegenauigkeiten auf den SCE Daten sind niedriger: 47,3%

(Sensivität) und 70,9% (Spezifität). Dies zeigt, dass alternatives Splicing von Introns durch

Sequenzeigenschaften besser erfasst werden kann als das von Exons.

Wir hinterfragen diese Ergebnisse kritisch und machen den großen Einfluss der Eigenschaft

”Länge” in erfassten Introns deutlich. Außerdem haben wir herausgefunden, dass das ”Fea-

ture A” das wichtigste Merkmal für die Klassifizierung von Exons ist, da es insbesondere

in den häufigsten exonischen Spliceverstärkern angreichert ist, die in konstitutiven Exons

gefunden wurden. Darüber hinaus heben wir Inkonsistenzen bei den Bezeichnungen sowie
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im Umgang mit gespleißten Daten hervor und zeigen auf, wie die Terminologie verbessert

werden kann.

Um Sequenzeigenschaften von Exons zu erforschen, haben wir einen neuen Datensatz, die

”synthetischen Exons” generiert. Wir haben zusätzlich eine allgemeine Regel zur Erschaf-

fung von Sequenzen mit ähnlichen Dichten an exonischen Spliceverstärkern und -hemmern

wie in realen Exons sowie von exonischen spliceverstärkenden Netzwerken beschrieben.

Wir fanden heraus, dass die Dichten der exonischen Spliceverstärker gut geeignet für die

Trennung von echten und zufälligen Exonen sind. Dagegen erwiesen sich die Dichten von

SR Proteinbindungsstellen zur Lösung dieser Aufgaben als nicht hilfreich. Im Allgemeinen

fanden wir heraus, dass Eigenschaften, die in klein angelegten experimentellen Versuchen

beschrieben sind, nicht auf computergestützte Genomanalysen übertragbar sind. Dies

macht das Aufstellen von Regeln für die Voraussage von alternativem Splicing, die nur auf

DNA/RNA-Sequenzen basieren, zu einer sehr schweren Aufgabe.

Aufgrund unserer Ergebnisse legen wir nahe, dass im Fall von SCE nur 20% und im Fall

von SIR nur 30% der gesamten Splicing Information in der Sequenz codiert sind.

Der letzte Teil der Dissertation zeigt die Notwendigkeit der Justierung des ”Ascertain-

ment Bias”, wenn man sich mit den evolutionären Aspekten des alternativen Splicings im

Allgemeinen und mit Hapmap Daten im Speziellen beschäftigt.
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Chapter 1

Introduction

1.1 Motivation

Sequencing the human genome a few years ago revealed a great surprise. Instead of support-

ing the expected number of 100,000-140,000 genes, nowadays only around 22,000 genes are

assumed. This number is not much bigger compared to the primitive nematode C.elegans.

However, the repertoire of the human proteins and their functions is clearly more complex

compared to invertebrates. Science is confronted with new challenges. In violation of the

”one gene, one protein” dogma, alternative splicing allows individual genes to produce

more than one mature transcript.

Alternative splicing carries a decisive meaning for the flexibility that allows the entire

organism to adapt phenomenally to certain or changing environmental conditions. The

richness of genetic information contained in the genetic make-up is, during the whole

life-cycle, interpreted as an precise interchange with the environment, depending on the

situation. Only by doing so, the organism can defend itself efficiently, e.g. against intrusive

bacteria, virus and other pathogenic micro organisms. Wounds can re-close after injuries,

broken bones can heal and the female organism can adapt to the crucial changes during

pregnancy. If mistakes or disturbances occur in this precisely balanced interchange between

genetic constitution and environment, they can lead to crucial functional changes or losses.

These often mean severe consequences for the human, stretching from serious malaise,

dangerous diseases, chronic pain, to death. Recently, the elementary meaning of alternative

mRNA-Splicing becomes obvious when it comes to the formation and chronification of

differently occurring hereditary diseases.

The Eucaryotic Cell Biology Research Group from the Roskilde University in Den-
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mark, reported very recently that basic pathological changes of the brain-metabolism,

as they are observed in the context of the appearance of an Alzheimer’s disease,

are apparently directly associated with the phenomenon of the alternative splicing

(Dahmcke and Mitchelmore 2008). Other results point out that a connection be-

tween the different splicing variants of subunits of the membrane-continuous estrogen-

receptor, might be implicated in the development and progression of colorectal cancers

(Jiang et al. 2008).

These two examples may demonstrate the significant importance of a proper splicing regu-

lation. Until very recently, RNA was considered to be mere a genomic servant for ”ferrying”

protein-coding instructions from DNA, whereas the DNA has been thought to be the mas-

ter molecule of the genome. Nowadays the outstanding importance of post-transcriptional

gene regulation by alternative splicing is getting more and more obvious. Based on these

findings, useful therapeutical means of intervention can be found, with the knowledge

about the exact procedure of alternative splicing as a key role. The better it succeeds to

decipher these molecular mechanisms on biological level, the more target-oriented the drug

design can be proceeded. Especially, the medical control of pathogenic alternative splicing

variants can open completely new horizons at the individual, custom designed treatment

of illnesses, namely the therapeutic ones; or maybe even prophylactic individual-medicine

can be a reachable task.

The goal of this thesis was to study two special alternative splicing events, the most

prevalent one in human, exon skipping, and intron retention. We addressed the questions

of how the splicing information is encoded within the human genomic sequence, and how

this information is used to specify whether an exon or intron has the potential to be

spliced alternatively, or not. The concept thereby was not to rely on data inaccessible

to the organism, such as conservation levels to other species, but to only use sequence

information.

1.2 Organization of the thesis

Chapter 2 provides an overview on alternative splicing, and an introduction to Genetic

Programming (GP). Starting with the biological background of alternative splicing, the

reader is introduced to the technique of EST-clustering, to identify alternative splicing

events, as well as to different strategies for identifying splicing regulatory elements, such as
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exonic splicing enhancers (ESEs) and -silencers (ESSs). The subsequent section explains

the main ideas and concepts of GP, and provides en example for their realization within

the GP-system Discipulus. The concept of the feature matrix is introduced in this chapter,

as well.

Chapter 3 describes a GP approach, we used for the prediction of alternative splicing

variants in human. It introduces the basic feature matrix and gives an overview about

the best features suited for the task of classification. We show that retained introns are

distinguishable from real introns, because they tend to bear ”exonlike”properties. On the

other hand, skipped exons are very similar to constitutive exons and we find that the most

important feature to separate them is the number of ”A”s.

Chapter 4 addresses the unsolved questions of the previous chapter, such as the reason

for the importance of the A-Feature in the exon dataset, as well as the reason for the

big discrepancy between the prediction abilities within the two different splicing variants,

intron retention and exon skipping. We start with an attempt to increase the prediction

accuracies on exon data by investigating and adding new features to the feature matrix.

Although we find that the most prevalent ESEs in exons tend to be especially A-rich in case

of constitutive exons, we are unable to derive a general rule and to increase the prediction

accuracies. Therefore we critically question the hypothesis that sequence composition is

responsible for the good recognition of intron retention events, by analyzing a subset of

short constitutive introns. To eliminate the possibility of achieving poor results on skipped

exon data only due to the GP-system used, we compare our results with a SVM approach.

Finally we comment on inconsistencies of the nomenclature and on problems of handling

the splicing data. We make suggestions to improve the terminology.

Chapter 5 describes our attempt to understand the content and sequence composition of

exons, by creating a dataset of synthetic exons (s.exons).

Chapter 6 is separated into two parts. The first part investigates skipped an constitutive

exons by applying population genetical measures of selection with the SNPs (Single Nu-

cleotide Polymorphism) found in these sequences. The latter part investigates orthologous

regions of retained introns in human and other species, to search for the origins of retained

introns. We are interested in finding out if retained introns are intronic parts on their way

to generate bigger exons, or if they are evidence of the separation of big exons into smaller

pieces.

Chapter 7 summarizes the results and gives an outlook to the future perspectives.



Chapter 2

Background

2.1 Splicing

2.1.1 The basal splicing mechanism

Higher metazoan genomes have a split gene structure where ”exon islands” are embed-

ded in an order of a magnitude larger ”sea” of noncoding nucleotides, the so-called in-

trons (Gilbert 1978). An average human gene is 27,000 nucleotides long and composed

of ten exons of 145 nucleotides that are separated by nine introns (Consortium 2004;

Lander and all 2001). The process by which the introns are removed from the precur-

sors of messenger RNA (pre-mRNA) after transcription, and exons are ligated together

to form the mature mRNA, is called splicing. It is carried out inside the nucleus by a

huge protein complex, the spliceosome, which consists of five small T1-rich nuclear RNA

(snRNA) molecules (U1,U2,U4,U5 and U6 snRNA) and more than 150 proteins. Each of

the five snRNA’s binds to multiple proteins to form small nuclear ribonucleoprotein parti-

cles (snRNPs) in order to regulate splicing (Zhou et al. 2002; Jurica and Moore 2003;

Jurica 2008). The spliceosome must also integrate the splicing regulation with other

steps in RNA processing, such as capping, cleavage and polyadenylation. The con-

trol of gene expression is believed to be a network of interactions between transcription

and RNA processing, export and transcript quality control. (Holste and Ohler 2008;

Maniatis and Reed 2002; Nilsen 2003). The spliceosome is one of the most complex

macromolecular machines in the cell and despite intense research, the mechanisms govern-

1Since splicing is analyzed mainly from a genomic viewpoint, T is written instead of U throughout this
thesis, also when referring to RNA sequence
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ing splicing are not fully understood (Nilsen 2003; Brown 1999; Stamm et al. 2006).

There are at least five classes of introns which differ significantly from one another re-

garding their lengths and sequences; each of the classes has a different intron excision

mechanism (Brown 1999). Here, we focus on the most abundant form of spliceosomal

introns, the U2-type introns, where almost all introns start with the dinucleotide GT and

end with AG. In addition to the canonical /GT and AG/ termini, there is also a very

small fraction of U2-type introns with /GC-AG/ termini, spliced with the same mecha-

nism (Holste and Ohler 2008; Roy and Gilbert 2006).

Four basal splice signals are required to specify the exon-intron boundaries (Figure 2.1)

(Kim et al. 2008b).

• The donor splice site (5’ splice site) demarcates the exon-intron junction. Across

mammals this sequence is conserved, the consensus sequence is MAGgtragt (exonic nu-

cleotides are written in capital letters, intronic are in lower case) (McKeown 1992).

Thereby M represents either A or C and R represents A or G (NC-IUB 2004).

• The acceptor splice site (3’ splice site) labels the intron-exon junction. The mam-

malian specific consensus sequence is yagG (Smith et al. 1989).

• The acceptor splice site is preceded by a stretch of pyrimidines (Yn, thereby Y

represents C or T), known as the polypyrimidine tract (ppt) (Sharma et al. 2008).

• The branch point sequence (BPS) is located upstream of the polypyrimidine tract, in

a vicinity of 18-40bp to the 3’ splice site. In contrast to yeast, where the BPS

is strictly defined, the BPS signal in mammals is degenerate and poorly char-

acterized (Wang and Burge 2008). A consensus sequence for the mammalian

BPS is ynytray; the branch point ”a” is underlined (Reed and Maniatis 1985;

Smith and Valcarcel 2000; Gooding et al. 2006). However, a very recent study

from this year suggests that the BPS in humans is even more degenerate than ex-

pected and that the consensus sequence is yunay (Gao et al. 2008).

Spliceosome assembly proceeds in a defined order as illustrated in Figure 2.1. The process

starts with the binding of specific proteins to each of the four core splice signals within

the intron: the U1 snRNP binds to the donor splice site; SF1 (Splicing Factor 1) inter-

acts with the branch point sequence; the U2 snRNP auxiliary factor (U2AF), a dimer of

65 and 35kDa subunits, binds the polypyrimidine tract and the acceptor splice site. In
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the next step, the tri-snRNP consisting of U4, U5 and U6 enters the spliceosome. The

U6 snRNP replaces U1 by binding to the donor splice site, and U1 and U4 are released

from the spliceosome. After mRNA cleavage at the donor splice site, the 5’ intron end

is attached to branch point adenine, forming a lariat structure. The intron remains in

the nucleus and is degraded, while ligated exons are transported outside to the cytoplasm

(Alberts et al. 2002; Black 2003; Burge et al. ).

Figure 2.1: Workflow of the splicing mechanism

exon- and intron-definition models

During spliceosome assembly, the splice sites are not recognized independently, but there

are interactions between the donor- and acceptor splice sites, and the splicing factors

that recognize them. The pairs of recognized splice sites can be either across exons

(exon-definition (ED)) or across introns (intron-definition (ID)) (McGuire et al. 2008;

Ast 2004). Typically, in pre-mRNA with exons smaller than introns, the spliceosome

searches for closely spaced 3’ss-5’ss termini across an exon. In contrast, intron-definition is



2.1 Splicing 7

a process, where the spliceosome searches for closely spaced 5’ss-3’ss termini across an in-

tron. Experiments in yeast and Drosophila have shown that in species where splice sites are

presumably recognized by ID, a mutation of a single splice site disrupts splicing of the intron

adjacent to the mutation. The intron remains retained instead of being spliced out, how-

ever nearby introns are not effected (Romfo et al. 2000; Talerico and Berget 1994).

Mutations in splice sites which are introduced by the ED model affect both introns flanking

the exon adjacent to the mutation, and lead to exon skipping, which is also the most preva-

lent type of splicing in many metazoans(Talerico and Berget 1990; Berget 1995;

Ast 2004). Therefore, it is believed that with ID, splicing errors are more likely to re-

sult in intron retention, whereas with ED, splicing errors lead to exon skipping. Both

models are not mutually exclusive; in Drosophila there is a case of ED and ID within a

single mRNA (McGuire et al. 2008).

2.1.2 Alternative Splicing

In violation of the ”one gene, one protein” rule, alternative splicing allows individual genes

to produce more than one mature transcript. Different transcripts from one gene are often

translated into different protein isoforms. Therefore alternative splicing is a major source

of transcriptome and proteome diversity and plays a central role in generating complex pro-

teomes, such as in higher eukaryotes (Matlin et al. 2005). In human, aberrant splicing

is an important cause for genetic diseases and cancer (Kim et al. 2008a; Wirth 2002;

Kalnina et al. 2005; Venables 2004; Wang et al. 2005; Zhang et al. 2005). It has

been estimated that at least 15%, and perhaps as many as 50%, of human genetic dis-

eases arise from mutations within the splice sites and the cis-regulatory regions involved

in splicing (Matlin et al. 2005; Pagani and Baralle 2004; Cartegni et al. 2002;

Cáceres and Kornblihtt 2002). The impact of alternative splicing was underestimated

for many years. In the mid-1990s it was still believed that almost 95% of all genes undergo

constitutive splicing, where exons are always included and introns are always excluded from

the mature mRNA (Fig. 2.2.A.a). It is now widely accepted that alternative splicing is the

rule rather than the exception and that perhaps more than 75% of all human genes are alter-

natively spliced (Mironov et al. 1999; Brett et al. 2000; Clark and Thanaraj 2002;

Johnson et al. 2003; Stamm et al. 2006).

Most forms of alternative splicing can be classified into the following basic events (Figure

2.2.A.):
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• Cassette exon splicing. This is the most frequent type of alternative splicing

(Sugnet et al. 2004; Thanaraj et al. 2004). Stamm et al. report that in human,

52% of the basic alternative events are of this type (Stamm et al. 2006). Cassette

exons can be either included or excluded from the ripe mRNA. They are further sub-

divided into ”skipped” and ”cryptic” exons according to whether the main observed

variant includes or excludes the exons, respectively (Figure 2.2.A.b).

• Intron Retention. In 17% of alternative cases, an intron remains retained in the final

transcript (Figure 2.2.A.c).

• Alternative donor or acceptor sites account for 27% of alternative cases (Figure

2.2.A.d and 2.2.A.e). This event is also known as ”competing 5’ and 3’ splice sites”

and represents exon modification events. A special case of the alternative accep-

tor site is the highly controversial alternative splicing at NAGNAG acceptors (also

called tandem acceptors), with 3’ splice site insertion/deletion (indel) events of 3bp

(Hiller et al. 2004; Hiller et al. 2006; Chern et al. 2006).

• Mutually exon exclusion events involve the selection of only one from an array of two

or more exon variants and occur in 4% of alternative transcripts (Figure 2.2.A.f).

Finally, there are more complex events, since the basic events can also be combined with

one another (e.g. and an exon can make several alternative splice site choices) to produce

sometimes rather complex splicing patterns. Furthermore alternative splicing can be cou-

pled to transcriptional variations such as alternative transcription start sites and multiple

polyadenylation sites (Matlin et al. 2005). However, this thesis focuses on splice variants

described in Figure 2.2.A.(a-c): Constitutive splicing, simple cassette exons (SCE) and

simple intron retention (SIR). SCEs are exons which are either skipped or not, and their

flanking exons have no alternative 3’- or 5’- splice sites. Also in case of SIR, the exons that

flank the retained intron do not undergo modifications (Stamm et al. 2006).

2.1.3 Regulation of alternative splicing

The spliceosome is highly conserved from yeast to human, with increasingly more com-

plex eukaryotes adding more components to the regulatory network; e.g., in yeast there

are no serine/aginine-rich (SR) proteins, contrary to flies and mammals, where these pro-

teins are used to regulate constitutive and alternative splicing. In contrast to yeast, the
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Figure 2.2: Basic types of splicing events and regulatory elements. A: Constitutive exons
are shown in white and alternatively spliced exons in grey, introns are represented by
solid lines and dashed lines indicate splicing activities. B: Auxiliary splicing elements.
Splicing enhancers, exonic and intronic (ESEs and ISEs), can activate adjacent splice
sites or antagonize silencers, whereas silencers (ESS and ISS) can repress splice sites or
enhancers.

four basal splicing signals (Figure 2.1) are rather degenerative in higher organisms and

do not contain sufficient content for a proper recognition of exons and introns. It has

been estimated that in metazoans these signals provide only half of the information re-

quired (Lim and Burge 2001). Moreover, real splice sites are outnumbered by an order

of magnitude, by false sites (also called pseudo splice sites) that match the consensus se-

quence as well or better than the true sites, but are never used (Senapathy et al. 1990;

Zhang et al. 2003). Also, splicing can be regulated differently, depending on the different

factors, like:
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• developmental stage of the cell

• tissue or cell-type

• external stimuli, like heat shock, stress conditions or presence of hormones (e.g. in

pregnancy) (Stamm 2002)

Additional signals are necessary, in particular when weak or regulated splice sites are in-

volved. Recent global studies have discovered that the relative enrichment in exonic splicing

enhancers (ESEs) and exonic splicing silencers (ESSs) helps distinguishing between authen-

tic and pseudo exons (Zhang and Chasin 2004; Zhang et al. 2005; Wang et al. 2004).

These auxiliary splicing elements are highly variable in sequence and ubiquitous in con-

stitutive as well as in alternative splicing (Figure 2.2). Motifs that promote splicing

are called enhancers, while those that inhibit splicing are named silencers. Depending

on their location and activity they are categorized as exon splicing enhancers and si-

lencers; and intron splicing enhancers and silencers (ISE and ISS) (Blencowe 2000;

Wang et al. 2006). Similar to transcription factor binding sites, ESE act as cis-regulatory

elements for the trans-binding serine/aginine-rich (SR) proteins. The binding of SR pro-

teins to enhancer motifs facilitates the splice site recognition and stimulates the spliceosome

assembly (Graveley 2000). However, these positive effects can be antagonized by het-

erogeneous nuclear ribonucleoproteins (hnRNPs) that preferentially bind silencer elements

(Pozzoli and Sironi 2005). The same sequence motif can however, depending on its dis-

tance to the splice sites, act as an enhancer or silencer; e.g. if a factor binds too close to the

splice site and therefore sterically prevents the spliceosome assembly (Goren et al. 2006).

As mentioned above, alternative splicing can be controlled in a tissue- or stimulus-specific

manner. This is achieved by changes in concentrations of the splicing factors in different

environments. Since SFs have different potential mRNA targets, a change in the concentra-

tion of one specific SF can influence the splicing of numerous transcripts at the same time.

One example is the neuronal splicing factor Nova-1, which is expressed in the brain and

which regulates the splicing of several mRNAs in a brain-specific manner (Ule et al. 2006;

Ule et al. 2005).

In addition to regulating various different transcripts, several SFs have been shown to con-

trol the splicing of their own pre-mRNAs by autoregulatory loops (Zachar et al. 1987;

Jumaa and Nielsen 1997). Prominent examples are the polypyrimdine tract binding

protein (PTB) and the human tra2-beta SF, which autoregulate their protein concen-

trations by influencing the own splicing (Wollerton et al. 2004; Stoilov et al. 2004).
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In case of high concentrations of SF tra2-beta, it binds to four ESEs present in exon

2 of its own pre-mRNA, leading to an inclusion of this exon. However this exon intro-

duces a premature termination codon (PTC) into the ripe transcript that is afterwards,

due to nonsense-mediated mRNA decay (NMD), not translated into a functional protein

(Stoilov et al. 2004).

Due to NMD, alternative splicing might have introduced a quality control

system, and therefore play an additional important role in gene regulation,

(Lejeune and Maquat 2005) across several kingdoms of life (Kerényi et al. 2008).

Aberrant or deliberately produced mRNA isoforms that harbor PTCs due to e.g. al-

ternative exons encoding an in-frame stop-codon, or alternative exons not being divisible

by three, and therefore causing shifts of the original reading-frame, might be translated

into truncated and possibly harmful proteins. These transcripts are candidate substrates

for NMD and in fact they are degraded rapidly, so that usually little or no protein is

produced (Behm-Ansmant et al. 2007). Computational studies indicate that 35% of the

alternative splice forms carry a PTC, suggesting that coupling alternative splicing and

NMD provides a mechanism for the regulation of the protein level which is independent of

the transcription level (Lewis et al. 2003; Green et al. 2003; Baek and Green 2005).

However, it should be mentioned that first studies with splicing-sensitive micro-arrays and

NMD mutants have so far failed to detect large support for a widespread utilization of

this mechanism. The impact of NMD is therefore still a topic of controversial debates

(Pan et al. 2006).

2.1.4 Strategies for identifying enhancer and silencer

Several computational and/or experimental assays have been developed to identify ESEs

and other splicing regulatory elements. In following, some of the strategies are introduced.

• Computational identification of ESEs and ESSs

Starting from the observation that ESEs compensate for weaker splice sites, a compu-

tational screen (RESCUE) was developed to predict ESEs, by comparing the counts

of all 4,096 hexamers in exonic vs. intronic sequences, and in constitutive exons with

weak vs. exons with strong splice sites (Fairbrother et al. 2002). A total of 238

human RESCUE-ESE hexamers was found that were significantly enriched in exons

with weak splice sites.

Zhang and Chasin have developed a method, similar in spirit to RESCUE, resulting
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in the detection of 2,060 putative ESEs and 1,019 putative ESS octamer motifs. In

order to identify ESEs and ESSs, they compared oligomer frequencies of non-coding

exons against both, pseudo-exons and 5’ untranslated regions (UTRs) of intronless

(one-exon) genes. By considering only non-coding exons, they avoided any potential

bias resulting from protein coding sequences. Clusters of octamers overrepresented

in non-coding exons but rare in both control groups were selected as putative ESEs,

whereas significantly enriched motifs in pseudo-exons and the UTR of intronless genes

were considered as putative ESSs (Zhang and Chasin 2004).

• Functional SELEX (Systematic Evolution of Ligands by Exponential En-

richment)

In order to identify ESE motifs by functional in vivo or in vitro SELEX, Cartegni

and Krainer constructed a minigene2, containing ESE sequences that are required for

the efficient splicing of its pre-mRNA. The natural enhancer was replaced by a ran-

dom sequence from an oligonucleotide library. The resulting pool of minigenes was

then transcribed in vitro, or transfected into cultured cells, to create a pool of pre-

mRNAs. After splicing, the pools of spliced mRNAs were amplified by RT-PCR and

gel-purified. This pool of enhancer-enriched sequences was then used to reconstruct

new minigenes, serving as templates for the new enrichment cycle. The iteration of

this entire procedure yielded a limited number of ”winners” - sequences, that is ESEs

with outcompeting splicing enhancer activities (Cartegni et al. 2003).

The results of this study, integrated into a tool named ESEfinder, are the position

weight matrices of the four well-known SR proteins: ASF/SF2, SC35, SRp40, and

SRp55 (Cartegni et al. 2008).

It needs to be noted that in addition to exonic splicing enhancers and silencers, there are

also studies predicting ISE motifs (e.g. RESCUE-ISE by Yeo and Burge (Yeo et al. 2004)),

as well as motifs associated with brain-specific splicing ((Brudno et al. 2001a)

and (Miriami et al. 2003)). Comparative genomics has also been used very re-

cently to identify splicing cis-regulatory elements((Voelker and Berglund 2007)

and(Goren et al. 2006)).

2A minigene is a compact version of a gene with intact protein function. It consists of a transcriptional
enhancer/promoter, which is required for gene expression; an upstream exon and 5’ splice site; a cloned
genomic fragment from a gene of interest, containing the exon of interest (including up- and downstream
flanking genomic regions); and cis-elements for 3’end formation (Holste and Ohler ).
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2.1.5 Identifying alternative splicing events

EST-based approach for identifying alternative splicing events

Common strategies for alternative splicing detection in a genome-wide manner rely on

expressed sequence tags (ESTs) and complementary DNA (cDNA). ESTs are short (200-

800bp long), unedited, randomly selected single-pass sequence reads derived from cDNA

libraries (Cohen and Emanuel 1994; Nagaraj et al. 2007). They are generated either

from 5’ or 3’ end of a cDNA clone, and often they are shorter than the entire transcript. Due

to the fact that ESTs are generated in only one sequencing step, they are rather error-prone,

especially at the first and the last 40 % of the sequence positions (Nagaraj et al. 2007;

Sorek and Safer 2003). Nevertheless, since 1992 the number of ESTs is increasing,

during the 1990s exponentially, in this decade linearly (Figure 2.3) (Boguski 1995).

Figure 2.3: Growth of GenBank and its expressed sequence tag (EST) division. From an
initially exponential growth of the number of EST sequences to a linear growth nowadays,
the ratio to other GenBank sequences has been constant for at least the last five years.
EST data are most abundant for human and mice (8.1 mio and 4.9 mio). The data for
this graph are collected from various sources (NN c; NN d; NN a; NN b; NN 2008a)

.

Other than for analysis of viability of alternative transcripts, ESTs have been used

for various tasks, such as gene discovery, complement genome annotation, they guide

single nucleotide polymorphism (SNP) characterization and facilitate proteome analysis

(Eyras et al. 2004; Rudd 2003).
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In order to detect alternative splicing events, ESTs and cDNAs are aligned to the genomic

sequence (Figure 2.4). The alignment procedure is called ”spliced-alignment” which is an

extension of the classical pair wise alignment problem addressed in 1970 by Needleman and

Wunsch (Needleman and Wunsch 1970). Similarly to the original alignment problem,

the spliced-alignment algorithms are often based upon dynamic-programming approaches:

Given a contiguous sequence (the genomic DNA), find an alignment of a second, tran-

scribed sequence (the mRNA), whereby the second sequence can be broken into ”pieces”,

e.g. long gaps are allowed as they correspond to spliced out introns (Figure 2.4).

Figure 2.4: EST to genome alignments. Seven ESTs are aligned to genomic sequence of a
gene containing five exons (white boxes). The alternative splicing events inferred from the
spliced alignments in this example are: Alternative 5’ splice site, exon skipping and intron
retention.

In this context, the standard gap opening/extension penalties are not appropriate;

rather, gap penalties should be based on known intron length distributions, and gaps

should preferentially appear at positions which correspond the canonical splice sites

(Holste and Ohler 2008). For solving this task, nowadays a number of tools are avail-

able, such as the largely heuristic but popular sim4 (Florea et al. 1998), and others

(Wu and Watanabe 2005; Kent 2002; Wheelan et al. 2001), which are clearly out-

performed by SPA, a more recent algorithm also including the raw quality scores from the
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EST sequencing reaction (van Nimwegen et al. 2006).

After the construction of spliced-alignments, alternative splicing events are detected by

searching for exons and introns which are differently overlapped by different ESTs. Fig-

ure 2.4 shows diverse alternative splicing events, e.g. the third exon is a cassette exon

as it is included in some ESTs and excluded in others. It should be noted that some

of the recent studies subdivided the skipped exons into further categories. Modrek and

Lee e.g. defined major- and minor-form exons according to their levels of EST inclusion

(Modrek and Lee 2003; Xing and Lee 2006). Exon inclusion level is the fraction of a

gene’s transcripts that includes a specific alternatively spliced exon. In Figure 2.4, the

third exon has an exon inclusion level of 57% (4/7), as 4 out of 7 transcripts include this

exon. Chasin and Xing differentiated 5 classes (in 20% steps) (Zhang and Chasin 2006),

whereas Noboru and de Souza defined a metric for retained introns (high and low RIFs),

considering this time the levels of intron retention (Sakabe and de Souza 2007).

However, dealing with transcript-derived isoforms always involves dealing with incomplete-

ness of the data, and noise issues. Therefore in recent years, a number of approaches have

been developed that aim at the direct ab initio prediction of alternative splicing isoforms,

without additional ESTs or protein information. Two of the methods that solely rely

on comparative sequence information of genomic DNA are e.g. ACEScan, a statistical-

machine learning algorithm developed by Yeo et al. in 2005 (Yeo et al. 2005), and a

hidden Markov model created by Ohler et al. in 2005 (Ohler et al. 2005). In following

we introduce the main ideas of a support vector machine (SVM) approach, for identifi-

cation of alternative splicing events without any conservation information. The method

developed by Raetsch and colleagues has been successfully applied to the prediction of

alternative exons in C.elegans (Rätsch et al. 2005).

SVM approach for identifying alternative splicing events

Support vector machines are a supervised Machine Learning (ML) approach (more about

supervised ML can be found in the next section), aimed to learn a decision function sep-

arating between two classes (e.g. exons) (Markowetz 2008). Given a training set of

n data points of the form χ = {(xi, yi)|xi ∈ <g, xi ∈ {1,−1}}n
i=1, where each xi is a

g-dimensional vector (a list of g numbers), and yi indicates the class to which the point

xi belongs (1 or -1), the goal is to find a margin with maximum possible width, which

separates the positive from negative examples. An example of a linear separation is shown
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in Figure 2.5.

Figure 2.5: SVM: Maximum-margin hyperplane and margins for training with samples
from two classes. Samples on the margin are called the ”support vectors”. Only the
support vectors are considered to calculate the position of the hyperplane. Figure is a
modified version from (Markowetz 2008).

separating
hyperplane

Figure 2.6: Finding a separating function in 2-D might be much more complex than in
3-D, where a linear hyperplane solves easily the problem. Figure is a modified version from
(Markowetz 2008).

The separating hyperplane is thereby defined as:

hyperplane H = {x|〈w, x〉+ b = 0},
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where w is a normal vector, thus perpendicular to the hyperplane, and b determines the

offset of the hyperplane from the origin along the normal vector w. The notation 〈w, x〉 is

a calculation of a scalar product between w and x. Learning consists of selecting a subset

of the training set with positive and negative examples (the ”support vectors”), which

contribute to a separation between the classes. Similarity of data is calculated via the dot

product of two samples, and classification of a test sample is performed, by comparing it

to all support vectors. In general, the classifier does not compare the samples in the input

space; instead, there is a so-called kernel function, which corresponds to a dot product in

a different ”feature” space (often with higher dimension), which allows one to learn an

appropriate separation function: φ : <g1 → <g2, x → φ(x), thereby g1 < g2. An example

for the advantage of a feature space with a higher dimension is shown in Figure 2.6.

Popular kernel-functions, such as implemented in the SVM toolbox provided by Raetsch

and colleagues (Raetsch et al. 2008) are:

linear:K(x, x′) = 〈x, x′〉
polynomial:K(x, x′) = (γ〈x, x′〉+ c0)

d

Gaussian: K(x, x′) = exp(−γ‖x− x′‖2)

A comprehensive introduction into SVM kernels can be found in

(Schölkopf and Smola 2002) and (Cristianini and Shawe-Taylor 2004).

The following chapter is dedicated to a non-EST based approach, which we applied for

identifying and investigating alternative splicing events.
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2.2 Genetic Programming

Since the 1950s, researchers worked on programming strategies that enable computers to

solve a problem by a dynamical learning process instead of a static algorithm. Machine

Learning is a generic term for the research in artificial systems (or computer algorithms),

which improve by ”experience” automatically and independently from a static program

(Nilsson 1996). There are two major categories of learning, supervised and unsuper-

vised. In supervised learning, the system is trained on data for which the correct classifi-

cations/outcomes are already known, such as for experimentally validated splice variants.

This knowledge is provided to the system as part of the input. The system generates an

output that can be a continuous value (in regression problems), or a class label of the input

object (in classification problems). The difference between the generated output and the

correct result is used to measure how well the system approximates the function underlying

the original data. The system makes the necessary adjustments to improve the quality of

its responses (feedback learning). The goal is to generalize from the presented data to

unknown data with preferably high hit rates, i.e. correct classifications. However, in many

problems the correct result is simply not known. For example, it is hard or may even be

impossible to establish the absence of alternative splicing from a given gene. Unsupervised

learning systems are trained without a priori labeling of the training data. Therefore pat-

terns are clustered based on their similarity. A detailed overview on machine learning can

be found in the textbook by Mitchell (Mitchell 1997).

Genetic programming (GP) is a sub-discipline of machine learning which was developed and

popularized at the beginning of the 1990s by Koza (Koza 1992). GP is a method for the

automatic generation of programs. Basic ideas of Genetic Programming are inspired by the

paradigm of Darwinian evolution. New programs are ”bred” from a population of existing

programs and subject to selection, mutation and recombination (Banzhaf et al. 1998).

The following section gives a short summary of some fundamental principles of Genetic

Programming.

2.2.1 Basic Units in GP

An individual in GP is a program. An example of a ’GP individual’ is shown in 2.7. Each

individual in GP is composed of functions and terminals which are the basic units. Both

are referred to as ”nodes” of the system and are required to fulfil the closure and sufficiency
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properties. This means that all functions must accept all kinds of data types and values

as function arguments. The terminal set (leaf nodes) is composed of the inputs to the

GP-System (also called ”features”), constants and zero-argument functions. In Figure 2.7

terminals are: 3, a, b. The function set (inner nodes) processes the values obtained from

their child nodes. Function nodes comprise statements, operators and available functions,

for instance the summation ”+”, and multiplication node ”mul” in Figure 2.7.

Figure 2.7: GP individual with a tree structure

Alternatively, but equivalently, a GP individual may have a linear structure. An example

is shown in Figure 2.8.

Figure 2.8: GP individual with a linear structure

Each of the lines in the linear GP-individual is called ”instruction block”. f[0] in the

example is a temporary computation variable. The number 1.530095 is a constant and

”f” at the end of a constant marks a ”float” value. v[0] is a variable or an array to store

values read from an input data file, for instance from the ”feature matrix”, defined below.

Columns of the data file are labeled v[0], v[1] and so forth. We call the first column feature

1, the second column feature 2 and so on. The terminal set in the example is composed of

f[0], 1.530095f and v[0]. The instructions ”+” and ”-” belong to the functional set. The

line labels (e.g., ”L0”) are not part of the program. They serve only for easier legibility. A

program is executed from top to bottom. At the end, when the program has finished, f[0]

has a certain value. The output of a classifier depends on the final value which is stored
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in f[0]. To make a decision, f[0] is compared to a fixed threshold value. If f[0] exceeds the

threshold value, the final output is one, otherwise it is zero. In our case the output zero

means a classification of a certain exon as ”constitutive”.

2.2.2 Program Structures

Each individual may have a different size, shape and structure. A population of GP

programs can be represented by three basic program structures: tree (Fig. 2.8a), linear

(Fig. 2.8b) and graph structure (not shown). The most commonly used structure is the

tree-based GP. The calculation proceeds after determination of an execution order (i.e.

prefix-/postfix order). Therefore, the input order has an important effect on the results.

In contrast to tree structure, the linear program is simply a series of instructions which is

executed from top to bottom. Implementation and memory management of a linear genome

is usually performed by a register machine: operations manipulate variables (registers) and

constants, and assign the result to a destination register. Single operations can be skipped

by preceding conditional branches. The advantage of a register machine implementation is

that computers contain a CPU that has memory registers operated upon by linear strings

of instructions. Due to the fact that a register machine makes direct use of the basic

architecture of the computer it is the fastest representation of a GP-System.

2.2.3 Genetic Operators

The individuals of the first population usually have low fitness (explained below). To

increase fitness by evolution three principal genetic operators are used to transform the

programs: mutation, crossover and selection.

Mutation

Mutation causes a random change in a program which has been chosen to undergo genetic

operators. In tree structure GP one node is selected randomly for mutation and the subtree

is then replaced by a randomly generated subtree (Fig. 2.9). The mutated individual is

put back into the population.

In linear structure GP, terminals, instructions and instruction blocks can be chosen for

mutation and are then replaced by randomly chosen terminals from the terminal set, in-
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Figure 2.9: Tree-based mutation

structions of the function set or in case of instruction blocks they are replaced by new

randomly generated instruction blocks.

Figure 2.10: Mutation in linear GP

Crossover

Crossover combines genetic information of two programs by swapping a part of the first

program with a part of the second program. In tree GP a random subtree in each parent

is selected and than replaced by the subtree of the other parent (Fig. 2.11).

In linear GP the crossover operator occurs between instruction blocks and can be homolo-

gous or non-homologous. Homologous crossover resembles natural genetic crossover when

homologous alleles are exchanged. In homologous crossover position and length of the in-
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Figure 2.11: Tree-based crossover

struction block of one parent is chosen randomly and swapped with the instruction block

of the other parent, at the same position and with the same length.

Figure 2.12: Homologous crossover in linear GP

In non-homologous crossover positions and lengths of the instruction blocks may vary

between two programs.

Figure 2.13: Non-homologous crossover in linear GP
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Recent studies have shown that non-homologous crossover (Figure 2.13) tends to be disrup-

tive as it not only changes the length of the new programs but it also exchanges dissimilar

parts leading to a ”code bloat” due to an accumulation of nonsense instructions (”introns”)

in the programs. The outcomes from non-homologous crossover are either longer or shorter

programs usually with worse performance (Frank D. Francone and Nordin 1999).

Therefore, homologous crossover is usually preferred over non-homologous crossover in

GP (Figure 2.12).

Reproduction

At the stage of reproduction, one individual is chosen and copied into the population

without modification, resulting in two identical programs in the same population.

2.2.4 Fitness and Selection

In binary classification problems the fitness value of each program can be measured by

the number of correctly classified instances of the learning set. Various methods such as

fitness-proportional selection, ranking selection and tournament selection are employed to

select an individual for application of genetic operators. Tournament selection is a preferred

method due to the fact that it does not require centralized fitness comparisons between all

individuals of a generation; instead a subset of the population is included at random into

a selection competition. The winners are subject to genetic operations while the losers are

removed from the population. This method has the advantage of accelerating the process

of evolution of the program and the possibility of using more than one selection algorithm

in parallel.

2.2.5 Process of evolution

There are two different ways to perform a GP run: a generational approach and a steady-

state approach. In generational GP, an entire new population is generated on the basis

of the old generation in only one cycle. The next cycle (and all following) starts with a

complete replacement of the old generation by the new one. In steady-state GP there are

no generations; instead there is a continuous flow of individuals. A steady-state GP ap-

proach is illustrated in Figure 2.14. Although the specifications may vary in different GP
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algorithms, the fundamental steps are: initialization, evaluation, selection and breeding.

1. Initialization: The first step is initialization of a population of randomly generated pro-

grams which contain individuals that can be assembled with components from the function

and the terminal set. 2. Selection and evaluation: A subset (usually four programs) of the

population is chosen for tournament. The fitness of each competitor is evaluated. Based

on their fitness, they are subdivided into winners (usually two) and losers. The winners

are selected for breeding. 3. Breeding: Genetic operators are applied to the winners of the

tournament, forming the offspring. Losers of the tournament are replaced by the offspring.

Steps 2 and 3 are repeated until a termination criterion is reached. The best individual in

the population is chosen as the output from the algorithm.

Figure 2.14: Discipulus GP-Algorithm
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2.3 Discipulus

For our study we used the GP-System ”Discipulus”, a supervised learning system

(Conrads et al. 2001). It is a system which solves regression- and binary-classification-

problems. Therefore small programs, the classifiers, are created with the technique of GP

which should solve a defined question, for example to decide whether a specific sequence

is spliced alternatively or not. Discipulus generates programs on data that describe a cer-

tain problem. As it is a supervised learning system the input always contains the correct

output. The input data is subdivided into three parts of same size: training, validation

and applied data set. The training set is used to build the classifiers and also for selection

of the best classifiers. The validation set is not used for building the models but only for

selection of best programs based on their fitness on the validation data. For measuring the

performance of a classifier, the applied set is used. This data set contains the unknown

data which was neither used for generation nor for selection of the best programs. There is

also a possibility of working with only two sets (training and validation), similar to other

machine learning systems. However it is recommended to work with all three data sets

since the subdivision into three data sets decreases the ”overfitting” effect. Overfitting

describes the phenomenon of achieving - due to training on false motives - high hit rates

on known data but only suboptimal results on unknown data. As an additional output

Discipulus reports the information of how often each feature was used among the thirty

best programs, in a so-called ”input-impact”-table. This table can be used to reveal the

”best features” for a certain classification problem. To improve the results of a classifica-

tion problem, besides the ”best program mode”, there is also a ”best team mode”. A team

is formed by an uneven number of up to nine programs, where every program has one vote

(for instances 1 for alternative and 0 for constitutive splicing). The majority determines

the outcome. The higher the agreement level of the programs, the higher is the probability

of a correct classification.

2.3.1 Genetic Parameters

The GP runs described in the Results section were performed by using the standard Dis-

cipulus parameters (see supplemental Table 8.1). In addition, we tested whether results

could be improved by varying the genetic parameters. To render the results from these

experiments comparable with each other, for each GP run the ”maximum number of runs”



26 2 Background

was set to 100. We varied mutation rate, crosssover rate and crossover type one at a time.

We found that an increase of the crossover rate resulted in an increase in the runtime,

however without increase in accuracy. Decreasing the mutation rate lead to a decrease of

the hitrate. Lowering the rate of homologous crossover, which implies an increased rate of

disruptive non-homologous crossover, leads to a ”code bloat” due to an accumulation of

nonsense instructions (”introns”) in the programs. This results in longer programs with

worse performance (a more detailed analysis of the different crossover modes can be found

in (Francone et al. 1999)).

2.3.2 Feature-Matrix

The feature matrix is a method of describing properties of an exon to the GP system.

Instead of presenting the GP with sequence information, this information is digested into

various features such as exon length, di- and tri-nucleotide counts etc. It presents relevant

information about an exon or an intron in a numerical format which is used by the GP

system as input. To select features, which were then tested in alternative and constitutive

splicing datasets, we used available results from various alternative splicing systems as

described in (Vukusic 2004). The collected list of 36 features are either of type boolean,

integer or float. Integer features describe a distance in base pairs of a certain motif from

another motif, the length or number of occurrences of a motif. Features of type float

are scores - for instance of splice sites, of the branch point motif and of exonic splicing

enhancers and silencers, and the relative frequency of nucleotides within a certain motif.

The feature matrix for exon and intron classification is given in Table 3.1.



Chapter 3

Prediction of alternative splicing

variants in human

3.1 Introduction

Whether an exon or an intron will be included or excluded in the transcripts of a gene

of a certain cell type is influenced by the information contained in the sequence of the

exon and the flanking intronic region. This includes sequences that indicate exon-intron

boundaries, binding sites for essential splicing factors and binding sites for splicing enhancer

and splicing silencer sequences. Often the sequences are very degenerate, and only bear

little similarity to a consensus sequence. This makes bioinformatic analysis of splicing very

challenging. In addition, it is commonly accepted that no single factor determines whether

or not an exon will be spliced into a transcript. Instead, it is perhaps a combined effect of

various factors including cis-acting sequences and trans-acting splicing factors.

Early approaches for large-scale detection of alternative splicing were based on observed

transcripts. The search for instances of alternative splicing was performed by the align-

ment of expressed sequence tags (ESTs) to the genome and to other ESTs or cDNAs

(Thanaraj et al. 2004). Other studies have relied on specifically generated microarrays

for the detection of alternative splicing (Johnson et al. 2003), (Zheng et al. 2004). How-

ever, since these methods produce only a snapshot of the tissue that is sampled at a certain

time and under certain conditions, many alternative events may still remain undiscovered.

Therefore innovative, non-EST based approaches are required to detect these events and

to complete the knowledge about the transcriptome.

Recent studies have focussed on comparative genomics, since functional parts of the DNA
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tend to be conserved between species (Modrek and Lee 2002; Nurtdinov et al. 2003;

Philipps et al. 2004). Sorek et al. described a non-EST based method which uses charac-

teristic features of alternative exons to distinguish between constitutive and cassette exons

(Sorek et al. 2004). In addition to the length of an exon and avoidance of reading frame

disruption, an important feature employed by these authors was a high sequence conser-

vation of alternative exons and their flanking intronic regions in human-mouse orthologs

(Sorek and Ast 2003). The prediction accuracy could be raised by including additional

features (e.g. different trimer counts and the composition of the splice sites) and by using a

machine learning approach based on Support Vector Machines (SVMs) (Dror et al. 2005).

In 2005 Raetsch and colleagues designed a SVM kernel with position-specific motifs to clas-

sify alternative exons in C.elegans. This approach does not require any information of the

conservation level (Rätsch et al. 2005). Yeo et al. 2005 (Yeo et al. 2005) have devel-

oped a statistical machine-learning algorithm, named ACEScan, that is based on Regular-

ized Least-Squares Classification (RLSC). ACEScan distinguishes exons with evolutionarily

conserved alternative splicing from constitutively spliced or lineage-specific-spliced exons

(Yeo 2004). This approach uses similar features to the ones employed by Sorek et al., for

instance conservation level, splice site scores, exon and intron lengths and oligonucleotide

composition. Ohler et al. 2005 (Ohler et al. 2005) have developed an algorithm that

uses a pair hidden Markov model on orthologous human-mouse introns. This approach is

applied to detect alternative exons that were completely missed in current gene annota-

tions. A method proposed by Hiller et al. 2005 (Hiller et al. 2005) does not depend on

the existence of orthologous sequences. They use information from protein domain fam-

ilies (Pfam) to predict exon skipping and intron retention events. In this study, we have

used Genetic Programming, a machine learning approach, to generate classifiers of cassette

exons and retained introns.

3.2 Materials and Methods

3.2.1 Dataset

Data for this study are derived from the AltSplice collection of human alternative

transcripts which had been inferred from spliced alignments of expressed sequence

tags (ESTs) and cDNA sequences with the human genome (method shown in Fig.

2.4)(Thanaraj et al. 2004). We used version ”Pre-Release 2” of AltSplice and extracted
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9,641 simple cassette exons (SCE), 2,712 simple retained introns (SIR), 27,519 constitutive

full-length exons and 33,316 flanking, but non-redundant, introns. A detailed overview why

this database outperformed the nine other alternative databases tested, and also about the

challenges of extracting the data from AltSplice can be found in (Vukusic 2004). A newly

introduced (Chapter 3.5.1), unified description of the data, can be found in the supple-

mentary section of the thesis (Table 8.6).

SCEs are exons which are either skipped or not, and their flanking exons have no alterna-

tive 3’- or 5’- splice sites. Since we take also intronic signals into account when generating

the feature matrix for exon classification, we selected from the above list of exons only

those internal exons for which both flanking introns were available. This resulted in a list

of 7,323 SCEs and 27,224 constitutive exons together with their flanking introns. Out of

the 2,712 SIR introns only 2,567 could be perfectly matched to the human genome release

hg17. The exon and intron files have a standardized structure. The header is composed

of the Ensembl gene identifier, information on sequence type (exon or intron), the start-

and end-positions within the gene, followed by the sequence. The collected files can be

downloaded from http://justus.genetik.uni-koeln.de:8200/people/ivana/supplement/data.

3.2.2 Feature-Matrix

The Feature-Matrix is shown in Table 3.1:

Feature Description Comment Type

1 exon length in bp integer

2 exon length modulo 3 integer

3 is length divisible by 3? boolean

4-7 number of A, C, G, T nu-

cleotides

integer

8 free energy Uses program RNAfold

(Hofacker and Stadler 2006) to

predict minimum energy secondary struc-

tures in regions 100bp upstream of 3’

splice site.

integer
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9 donor splice site

strength

Extract nucleotide positions -3 to +6 at

5’ splice sites and build a position weight

matrix from the constitutive sequences.

float

10 acceptor splice site

strength

Position weight matrix for positions -14 to

+1 for 3’ splice sites.

float

11 size of AG exclusion

zone (AGEZ)

Size of the region, upstream of the ac-

ceptor, which is void of AG dinucleotides,

ignoring any AGs within the first 12-

mer immediately upstream of the acceptor

(Gooding et al. 2006).

integer

12 branch point candidate

(BP-C) score in AGEZ

Position weight matrix for the consen-

sus human branch point sequence ”YNY-

TRAY” (Kol et al. 2005). The BP-C is

defined by the maximum positive score in

the AGEZ. If in the AGEZ no BP can be

found than this and the following feature

are set to 0

float

13 BP-C position Distance to 3’ splice site in AGEZ integer

14 PPT-C score in AGEZ Poly-pyrimidine tract score. See

Thanaraj and colleagues in 2002

(Clark and Thanaraj 2002). If no

PPT-C can be found than this and the

following two features are set to 0

float

15 PPT-C position Distance to 3’ splice site in AGEZ integer

16 PPT-C length in AGEZ integer

17 BP-C score in 100bp region upstream of 3’ splice site float

18 BP-C position Distance to 3’ splice site in 100bp upstream

region

integer

19 PPT-C score in 100bp region upstream of 3’ splice site float

20 PPT-C position Distance to 3’ splice site in 100bp upstream

region

integer

21 PPT-C length in 100bp region upstream of 3’ splice site integer

22 GC-regions Amount of GC dinucleotides integer
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23 GC-sequences divided

by length

float

24 GGG-sequences amount of GGG trinucleotides

(McCullough and Berget 1997)

integer

25 GGG-sequences divided

by length

float

26 TGGA-sequences amount of TGGA sequences

(Zavolan et al. 2003)

integer

27 TGGA-sequences divided

by length

float

28 TGCATG-sequences measured in upstream in-

trons (Brudno et al. 2001b;

Lim and Sharp 1998;

Minovitsky et al. 2005).

integer

29 TGCATG-sequences

divided by length

float

30 Sum over 5 best exonic

splicing enhancer

features 29-35 are exonic splicing enhancer

described in Blencowe (Blencowe 2000)

integer

31 feature 29 divided by

length

float

32 exonic splicing en-

hancer score

Based on octamers investigated by Zhang

and Chasin (Zhang and Chasin 2004)

float

33 feature 32 divided by

length

float

34 exonic splicing silencer

score

Based on octamers investigated by Zhang

and Chasin (Zhang and Chasin 2004).

float

35 feature 34 divided by

length

float

36 output feature 0 if exon is classified as constitutive, 1 if it

is classified as alternative

boolean

Table 3.1: List of features contained in feature matrix for

exon and intron classification
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3.3 Results and Discussion

3.3.1 Sequence features

Exon length is known to be one distinguishing feature for alternatively and constitutively

spliced exons: alternative exons are usually shorter (Clark and Thanaraj 2002). Figure

3.1 shows the length distributions from our data set of cassette and constitutively spliced

exons.

The average length of simple cassette exons (SCE) is 139bp. This value is 8% smaller

than the average length of constitutively spliced exons (151bp). The maximal length of a

constitutively spliced exon is 7,572bp; in contrast the largest SCE has a length of 3,726bp.

Both length distributions are qualitatively very similar. However, the SCE length distri-

bution is shifted to smaller values. This difference is statistically significant (two-tailed

t-test, p=0.0001). A much larger difference was observed on the data set of constitutively

spliced and simple retained introns (SIRs) (Fig. 3.1). The average length of introns of

the constitutive data set is 6,367bp, 68% of the introns are longer than 1kb. In contrast,

the average length of retained introns is only 284bp and only 4% are longer than 1kb.

The maximal length of a SIR intron in our data set is 19,141bp; the maximal length of a

constitutively spliced intron is 261,303bp. Figure 3.2 displays differences in the nucleotide

compositions.

Alternatively spliced exons (Fig. 3.2a) show a reduction in the frequency of adenine

and thymine and an increase in the amount of cytosine and guanine. The same trend,

but much more pronounced, holds for alternatively retained introns (Fig. 3.2b). To

determine the presence and amount of putative exonic splicing enhancer (ESE) and si-

lencer (ESS) elements we used the list of ESE- and ESS-octamers from Zhang and Chasin

(Zhang and Chasin 2004) and a modified version of the scanning program described by

Grellscheid and Smith (Gooding et al. 2006).

Fig. 3.3 shows the score distribution of enhancer and silencer motifs in (a) SCE exons vs.

constitutive exons and (b) SIR introns vs. constitutive introns. As expected for exons,

they show a greater amount of ESEs and a clear trend of ESS depletion; no ESSs are found

in 45% of cassette exons and in 37% of the constitutive exons (Fig. 3.3a). The constitutive
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Figure 3.1: Length distributions: (a) Length distribution of cassette and constitutively
spliced exons. (b) Length distribution of retained and constitutively spliced introns. Note
that the length of constitutive introns has an extreme heavy-tailed distribution.

introns show the opposite trend and contain fewer enhancer and more silencer motifs.

The score distributions for retained introns (grey curves in Fig. 3.3b) resemble the score
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Figure 3.2: Nucleotide composition: (a) exons (b) introns

Figure 3.3: Normalized score distribution of exonic enhancer and silencer motifs in (a)
cassette exons (SCE) and (b) retained introns (SIR).
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distributions of exons (grey and black curves in Fig. 3.3a), indicating that SIR introns

appear to harbor ”exon properties”. In contrast to exons, there is a clear distinction

between the splicing silencer score distributions of SIR- and constitutive introns (solid

curves in Fig. 3.3b). More generally we find that sequence composition features show

more pronounced differences between alternative and constitutive splicing in the retained

intron set than in the cassette exon set. A complete list of all 36 features which have been

included in the GP feature matrix is given in Table 3.1.

3.3.2 Prediction accuracies

To perform a five-way cross-validation (see Methods) we divided the data set into five

different parts. Four of them were used as the training set and one was set aside as

”applied set” for testing the classifier. This procedure was repeated five times, each time

setting a different part aside. Table 3.2 shows the average hit rates for the five different

runs achieved on the applied data set.

Table 3.2: Results of GP runs after a 5-Way Cross-Validation in Program and Team Mode

best program mode best team mode
Halt Hconst Halt Hconst

SIR introns 92.1 79.2 92.1 80.1
SCE exons 47.3 70.9 50.4 68.1

Retained introns can be correctly classified by the best programs with an average hit rate

(”Halt”, i.e average sensitivity) of 92.1%. The average hit rate for constitutively spliced

(”Hconst”, i.e. average specificity) introns is 79.2%. Note also that on the intron retention

data set the individually best program (”best program”, see Methods) exceeds the predic-

tion accuracies of the best set of programs (”best team”, see Methods). The prediction

accuracies of the classifiers on the SCE data set are lower compared to the results by Sorek

et al. (Sorek et al. 2004). They reported an average specificity of 99.72% (compared to

70.3%) and could recently raise their average sensitivity from 32.3% (Sorek et al. 2004) to

an average sensitivity of 50% (Dror et al. 2005) by including additional features (e.g. dif-

ferent triplet frequencies and the composition of splice sites) and by using an SVM machine

learning approach. In contrast, the GP system on our SCE data set yielded an average

sensitivity of 47.3% and an average specificty of 70.9%. This discrepancy in performance
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is at least partially explained by the fact that Dror et al. include the conservation level

between human and mouse orthologs as a feature; furthermore, their data set includes

only highly conserved genes and is therefore different from the data set analyzed in this

manuscript.

3.3.3 Best Features

During cross-validation we have collected and analyzed the five input impact Tables (see

Methods) resulting from each GP run. Figures 3.4 and 3.5 show the frequencies of each

feature after summation of the input impact tables.
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Figure 3.4: Feature frequencies on SCE dataset. We grouped features into four classes: (a)
oligomers, (b) diverse numerical and Boolean features (e.g., length, divisibility of length
by 3, see Table 3.1), (c) branch point analysis, and (d) sequence signals, e.g., presence of
exonic splicing enhancers.
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Figure 3.5: Feature frequencies on SIR dataset. (a) oligomers, (b) diverse numerical and
Boolean features (e.g., length, divisibility of length by 3, see Table 3.1), (c) branch point
analysis, and (d) sequence signals, e.g., presence of exonic splicing enhancers.
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A feature-usage frequency value of 5 of a certain feature means that in all 5 GP runs, the

top ranking 30 programs (out of about 100 million programs in each GP run) contained

this feature. The most frequently used features of the SCE data are: number of adenines

(feature usage frequency 5.0), frequency of the tri-nucleotide GGG (feature usage frequency

2.1) and the number of cytosines (frequency 1.5). Although every single run starts with

a new population of randomly generated programs, a similar pattern to the one which

is shown in Figure 3.4 occurred in all runs performed during cross-validation. For the

classification of retained introns, the GP system uses a different class of features (Fig.

3.5). Instead of counting the A’s it uses most frequently the information provided by

silencer motif scores (frequency value: 4.1), followed by number of adenines (frequency

value: 2.1) and enhancer motif scores (frequency value: 0.89). All other features remain

below these frequency values.

3.3.4 Best Programs

Figure 3.6 shows two of the best classifiers on the cassette exon (Fig. 3.6a) and intron

retention data (Fig. 3.6b), after the removal of nonsense instructions (called ”introns” in

GP terminology).

Figure 3.6: Best classifier (a) on cassette exon data and (b) on intron retention data. In
both examples, f[0] contains a float variable to which an algebraic operation is applied in
each line. The output depends on the final value of f[0]. If it exceeds the threshold 0.5 the
output is 1, otherwise 0.

In order to build a classifier of cassette exons, ”v[3]” and ”v[23]” (input vectors 3 and

23), corresponding to features number 4 and 24 (the number of adenines and ”GGG”s) are

required. In the example shown in Figure 3.6 the required features to distinguish retained
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introns are the number of ”GC” dinucleotides divided by intron-length and the scores for

exonic splicing silencers (Feature 34)(Gooding et al. 2006). The programs are read from

top to bottom and the result is compared to the threshold value. If the result is below 0.5

the classifier’s output is ”constitutive”, otherwise it is ”alternative”.

3.3.5 Improving hit rates on a more restrictive data set

In order to more critically evaluate our strategy, we have used the supplementary data set

from Sorek et al. (Sorek et al. 2004) to test our approach. We took their 453 cassette

exons as positive examples (class I) for the training set. As negative examples (class 0)

we took the constitutively spliced exons from the post-processed AltSplice data set (see

Methods) and required that the exon length was divisible by three (resulting in 10,774

exons) such that the data were in this repect compatible with the data set from Sorek

et al. Training of the GP system requires an attribution of weights to class 0 and class

I hits to account for the grossly different sizes of class 0 and class I data sets. As test

data set we considered 309 exons with missing EST support but which were predicted as

alternative by Sorek et al. We then have performed two different experiments. The goal of

the first experiment was to analyze the set of 309 exons under conditions of high specificity.

Parameters of the GP system were therefore adjusted to find constitutively spliced exons

rather than SCEs. This required to increase the weight for class 0 hits. After training,

on average only 50.6% of SCEs were classified correctly, but the correct detection rate of

constitutive exons increased to 87.6% (i.e. higher specificity). Under these conditions,

the top ranking features were ”length of exon” with a feature usage frequency value of

3.0 and ”number of adenines” with a frequency value of 2.2. All other features remained

below a frequency value of 1.0. Applying the classifiers to the set of 309 exons, classified

as alternative by Sorek et al., only 32.5% of them, 18% less than expected, were classified

as alternative by the GP system. In the second experiment parameters were adjusted to

raise the sensitivity, in a trade-off for specificity. After training, average sensitivity was

76.2% and average specificity was 53.5%. The top ranking feature was now ”frequency of

the tetra-nucleotide TGGA” with a frequency value of 3.0. The frequency value of all other

features remained below 1.0. Applying the classifiers to the set of 309 exons, 65.5% of them

were classified as alternative, almost 11% less than expected. As a conclusion of these two

experiments, we note that the classification of the 309 ”new” alternative exons by Sorek

et al. [16] differs from the results of our analysis, where roughly 35% of them are classified
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as constitutive. Taking into account that the GP system on average misses 24% of the

true alternative exons, the question remains whether the 11% of supposedly misclassified

exons are truly alternative exons or not. It will be interesting to investigate the reason for

this discrepancy in more detail once sufficient EST data become available. We observed

for each of the two experiments a similar pattern of feature usage in the different GP runs.

However, as the task changed in the second experiment, the pattern of feature usage also

changed compared to the first experiment. It is interesting to note that GP can be used

for the identification and selection of important features not only for cassette exons and

intron retention splice variants but also for all other splice variants but which have not

been considered in this work.

3.3.6 Testing the robustness of the retained intron dataset, based

on experimentally validated data

Some cases of intron retention may be artefacts and the result of only partially completed

splicing. It is hard to gather experimental evidence for such cases. In order to ensure

that the prediction accuracies presented on the SIR data are not confounded by artefac-

tual effects of the AltSplice dataset, we tested the GP system on 17 conserved introns,

embedded in coding sequence and known to be alternatively retained (Ohler et al. 2005).

For training, we used the AltSplice dataset of 2,456 SIR introns and the same number of

constitutively spliced introns, randomly selected from the dataset of 21,677 constitutive

introns. This step was repeated ten times resulting in ten different training sets. The sep-

aration into two datasets of the same size eliminates the necessity of differential weighting

of the datasets. In 7 of the 10 experiments all 17 retained introns were classified correctly;

only 3 times one intron was misclassified, resulting in a hitrate of 98,2%. The best team

(see Methods) solution performed even better: only one intron was misclassified resulting

in a hitrate of 99.4%. Both results on experimental data are far above the average hitrate

on AltSplice data (92.1%, see Table 3.2), indicating that the system performs well despite

the fuzziness of the data.



Chapter 4

Critical evaluation of alternative

splicing prediction

In the previous chapter, we introduced a GP approach for the prediction of alternative

splicing variants in human. Providing the basic feature matrix, shown in Table 3.1, high

prediction accuracies could be achieved on the SIR dataset, 85%; in contrast the prediction

accuracies on skipped exons remained below 60%. We found that different features were

used for the classification of the two different splicing variants (see Figures 3.4 and 3.5).

Thereby the most frequently used feature for the SIR classification was the silencer score,

which might be explained by the observation that retained introns appeared to harbor

”exon properties” and were clearly distinguishable from constitutive introns, regarding

this feature (Figure 3.3). However, why the feature A was important for classification of

constitutive exons, and also the reason for the big discrepancy in the prediction accuracies

between SIR and SCE, could not be explained.

The following chapter addresses these open questions. We start with an attempt to increase

the prediction accuracies on exon data by investigating and adding new features to the

feature matrix. The focus is initially on A-related-features, therefore we investigate A-

stretches and the nucleotide compositions of ESE found in the different sets of exons.

Although we find that the most prevalent ESEs in exons tend to be especially A-rich in case

of constitutive exons, we are unable to derive a general rule and to increase the prediction

accuracies. Therefore we critically question the hypothesis that sequence composition is

responsible for the good recognition of intron retention events. To eliminate the influent

feature ”length”, we analyze a subset of short constitutive introns and compare them with

retained introns. We compare our results with a state of the art SVM approach. As a
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final consideration, we reveal how a failure to adopt an unified terminology within the

greater splicing community can lead to inconsistencies in data generation, handling and

comparison. We provide a more generalized and objective approach to label the data in

future.

4.1 Additional features for classification of skipped

exons

While the GP-system was able to distinguish between retained- and constitutively spliced

introns with an accuracy of 85%, the prediction accuracies on the skipped exons dataset

remained below 60%. Despite the variety of the features provided to the GP-system, it

remained also unclear why the total amount of ”Adenine” within the exons was always

preferred to classify the exons, over any other feature. The following section summarizes the

most promising attempts to explore further features involved in constitutive and alternative

splicing.

4.1.1 A-stretches

One of the results above was that, in order to classify between skipped and constitutive

exons, the GP-system used the total amount of Adenine. Thereby it did not play any

role how the ”A”s were distributed across the exons. In order to explore the A-feature,

we asked the question if the A-bases are distributed in clusters or rather randomly, and

if there are spatial differences between the A-distributions in constitutive versus skipped

exons, in a way that specific proteins might be able to bind better in one of the two exon

classes.

In order to perform this analysis we transformed every exon sequence into a form containing

only the length of the A-stretches and their distances to one another. e.g. an exon of the

sequence gcaccgtaaccgaaaaa, would be transformed into: A1-d4-A2-d3-A5. ”A”s in this

example mark the lengths of the A-stretches, whereas ”d”s indicate the distances. We

applied this method to the dataset of all skipped- and constitutive exons, as well as to

their shuffled counterparts. The summarized results are shown in Table 4.1. The complete

length and distance tables can be found in the supplement section (Tables 8.2 and 8.3).

In case of SCE, 74% of all ”A”s were ”singletons”, 18% occurred as dinucleotides, and 5%
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Table 4.1: A-stretches

A-Stretches SCE SCE-Shuffled (1Run) Const Const-Shuffled (1Run)
A1 0.7417 0.7365 0.7217 0.7217
A2 0.1811 0.1910 0.1932 0.1977
A3 0.0533 0.0510 0.0579 0.0563
d1 0.3200 0.3142 0.3259 0.3214
d2 0.1928 0.1853 0.2035 0.1926
d3 0.1176 0.1305 0.1185 0.1348
d4 0.0894 0.0953 0.0907 0.0957
d5 0.0734 0.0693 0.0734 0.0690

occurred as A-triplets. The distance between two ”A”s was in 32% of all cases only one

base pair. This value was not elevated compared to that found in randomized sequences.

Comparing the results of SCE with shuffled data as well as with constitutive data, no

significant differences could be observed, suggesting that this feature might not be of

fundamental importance.

4.1.2 Composition of Exonic Splicing Enhancers

We showed that alternative exons do not differ from constitutive exons regarding the

densities of exonic splicing enhancers (Figure 3.3). Here, we addressed the question if

the nucleotide compositions of ESEs within constitutive exons are different compared to

skipped exons, e.g. if the enhancer elements contained within constitutive exons tend to

be A-rich.

For each exon, we extracted and analyzed the nucleotide compositions of the ESEs con-

tained in the exon. This information was used to generate a new feature matrix containing

four features for each nucleotide, as well as a feature matrix containing the trinucleotides

information. Furthermore we were also interested in finding out, if the most frequently

used motifs differ between the two datasets. The complete lists of the 40 most abundant

ESE words can be found in the appendix part of the thesis (Tables 8.5 and 8.4), the top

five words found in the two classes of exons, can however be found in Table 4.2.

It is interesting to note that the top five words within the constitutive dataset are enriched

in ”A”s, whereas skipped exons are rather depleted regarding this feature. The constitutive

dataset consists of ”GAA” repeats, in case of SCE, ”CCT” or ”CT” could be localized in each
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Table 4.2: Top 5 words in ESEs of constitutive and skipped exons

ESE sequence total count cumulative frequency
Constitutive

gaagaaga 785 0.0027
aagaagaa 746 0.0053
agaagaaa 685 0.0076
tgaagaag 662 0.0099
agaagaag 661 0.0122

SCE
cctgcctc 217 0.0025
gcctcctg 207 0.0048
tcctgcct 205 0.0072
aggagctg 201 0.0094
tgctgctg 200 0.0117

octamer. However, the motifs shown in Table 4.2 refer to only ∼1% of all ESEs within

the exons (cumulative frequency in Table 4.2), and are therefore too sparse to describe a

general rule.

When considering the dataset of all octamers, we find that the A-density in constitutive

dataset is significantly enriched, 33.2% vs. 30% in SCE (t-test value: 1.21E-52). However

training the GP-system only on the four nucleotide features did not perform well, here

only 55.9% accuracy could be achieved (sensitivity: 50.36, specificity: 61.46). Thereby

the feature ”A” was used most often by the GP-system (impact factor 1), followed by

”G” (impact factor 0.9) and ”C” and ”T” (0.4 and 0.3). In order to test, weather the

triplets found in Table 4.2 are more useful to classify the two datasets, we generated a

feature matrix containing all words of length 3 (”TTT” was thereby not included, due to

the fact that Discipulus is able to handle only 63 input features and ”TTT” had the smallest

significance level of difference between SCE and constitutive exons). Extending the feature

matrix did not help improving the prediction accuracy, as the slightly better result of 56.2%

(46.30 and 64.83) can be explained by the heuristic nature of GP. The most commonly used

features were A-rich as well: ”CAA” (impact factor 0.6), ”AAG” (0.57) and ”AGA” (0.30). All

other features remained below an imput factor of 0.3. The cumulative frequencies in Table

4.2 and in the appendix part, show that SCE and constitutive exons do not differ regarding

the variance of the contained ESEs. This implies that SCE exons are not covered by a

broader (or lower) range of different motifs; they are rather similar to constitutive exons.
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4.1.3 Do ESE cluster?

The top five words in Table 4.2 overlap, due to the short repeated sequences contained, to

a great extent. In order to investigate, if ESE tend to cluster in general and if there are

differences in skipped vs. constitutive data, we calculated the extent by which each base

within an exon is covered by an ESE octamer. In case the octamers are not overlapping

at all, the coverage value is 1, whereas the maximum value that can be reached is 8. In

this case a stretch of eight octamers (or more) are positioned next to each other, with a

distance of 1 nucleotide. Both SCE and constitutive exons have a coverage of 0 in 70% of

all cases, thus only 30% of the base pairs are covered by an ESE element. Figure 4.1 shows

the distribution of the coverage values from 1 to 8.

Figure 4.1: ”Frequency Spectrum” of ESEs overlaps per nucleotide within SCE and con-
stitutive exons. The two datasets do not show differences.

Both distributions are indistinguishably similar, revealing that this feature cannot be used

to improve the classification accuracy. Nevertheless it is interesting to note that real exons

differ from synthetic ones (introduced in chapter 5) regarding this feature, in so far as real

exons are decreased in coverage value 1 but increased in coverage classes 2-8, indicating

that clustering of ESEs is more likely to be observed than expected by chance (Appendix

Material).
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4.1.4 Exons with intronic properties

We showed that retained introns appear to harbor ”exon properties” (3.3). In order to

explore if cassette exons bear some sequence properties which can also be found in introns,

we compared dinucleotide frequencies of exons with the flanking up- and downstream exons

as well as with up- and downstream introns. Thereby we defined

”exon properties” as: α:= 2·exon
upstream exon+downstream exon

and

”intron properties” as: β:= 2·exon
upstream intron+downstream intron

.

Comparing the α and β values of SCE and constitutive exons did not give a new hint for

a better partition of the two datasets. We therefore tried another approach, considering

only dinucleotides that were separating (in terms of densities) constitutive exons from

introns, and positioning a skipped exon closer to introns than to exons (see Appendix

Figure 8.1, ”AG” dinucleotide). Then we extended the specific dinucleotide and formed

8 different triplets by adding the four possible nucleotides either to the beginning or to

the end. We analyzed the resulting triplets (Appendix Figure 8.2) and extended them

to form 4mers, by proceeding as described before (Appendix Figure 8.3). Finally we

constructed a feature matrix consisting of the features ”length”, ”AG”, ”AT”, ”AGT”, ”GAGT”

and ”AGTG” (measured in exons and flanking introns). With a prediction accuracy of

56.83% (sensitivity: 44.65, specificity: 69.00 ), the results remained below the original

feature matrix, suggesting that SCE exons do not carry intronic properties differently to

constitutive exons.

4.1.5 Transformations from ESE to ESS

Many known diseases are caused by destruction/creation of ESEs and ESSs (Chapter

2.1.2). In order to test the ”robustness” of the system, we investigated the minimum

number of mutations that are required to turn an ESE into ESS (and vice versa) and tested

weather SCE might consist of ESEs which are easier convertible into ESS. Furthermore we

calculated the average distance (number of mismatches between two octamers) between

each octamer within SCE, constitutive, and pseudo exons, to the list of all ESE- and ESS

octamers.

Figure 4.2 shows that the minimum number of mutations to turn an ESE into an ESS

is between 2 and 3. The skipped exons contain ESEs which are similarly transformable
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Figure 4.2: Minimum amount of mutations for ESE to ESS transformations

in comparison to constitutive exons. Appendix Figure 8.4 shows the distribution of the

distances from each octamer to the datasets of all ESE and ESS motifs. For SCE and

constitutive exons the peak is around value 6, which is exactly what one would except by

considering the distance of two octamers by chance:
∑8

k=1 (8
k)·3k

48 =6.

4.1.6 Separating the datasets according to their inclusion levels

So far we classified constitutive vs. skipped exons. However, the separation of the data

into two classes might be outdated as the splicing vocabulary is in change (a discussion

about this issue can be found in the next chapter). As mentioned above (chapter 2.1.4),

other authors subdivide their data into three or five classes (Modrek and Lee 2003;

Xing and Lee 2006; Zhang and Chasin 2006). In order to ensure that the lack of differ-

ences between skipped and constitutive exons in our dataset, is not caused due to focussing

on outdated terms, we subdivided our dataset of exons into seven classes, according to their

inclusion levels. The inclusion levels were calculated with a program provided by E.Eyras

(Plass and Eyras 2006) based on EST and cDNA data from human genome release 18,

March 2006, which we downloaded from the UCSC homepage (NN 2008b). The separation

of the seven inclusion level classes is as follows:
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• Class 1: Always excluded

• Class 2: Included in up to 10% of all transcripts

• Class 3: Included in more than 10% and up to 40% of all transcripts

• Class 4: Included in 40%-60% of all transcripts

• Class 5: Included in 60%-90% of all transcripts

• Class 6: Included in more than 90% of all transcripts

• Class 7: Always included

Furthermore we improved the feature-matrix by including additional exonic splicing en-

hancers and -silencers features. In addition to the octamer ESE- and ESS-sequences pro-

vided by Zhang and Chasin (Zhang et al. 2005)(Features 32 and 34 of the basic Feature-

Matrix) we also analyzed the collection of ESE and ESS hexamer sequences provided by

Fairbrother and Burge (Fairbrother et al. 2002). A description of how the two datasets

were generated and about their differences can be found in chapter 2.1.3. This chapter

also introduces the SELEX method, by which the SR-protein position weight matrices

were built(Liu et al. 1998). We downloaded the four matrices for SRp55, SRp40, SC35

and SF2ASF and generated an own list of SR protein words by considering the threshold

values provided with the matrices. Both, the matrices and their corresponding threshold

values, used for this study, can be found in Appendix Figure 8.5.

For each of the lists of words, we calculated the percentage of the nucleotides within an

exon that were covered by the motifs with respect to their overlap. E.g., an exon of length

100 containing two ESE octamers at positions 1 and 50 has an ESE coverage of 16%,

whereas two octamers at positions 1 and 2 lead to an ESE coverage of 9%. The results are

shown in Figure 4.3. An overview about the percentage of the overlapping words, between

the different sets of motifs, can be found in Chapter 5.3.5.

An intuitive expectation prior to the experiment was that an increasing amount of exonic

splicing enhancers should lead to an increasing inclusion of a certain exon, whereas an

increasing amount of exonic splicing silencers would lead to a depletion of transcripts

containing the exon, thus to lower inclusion levels. In contrast to our expectations, Figure

4.3 does not support this trend, it rather shows no appreciable differences between any of

the classes. From these results, we can conclude two things. The separation of alternatively
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Figure 4.3: Separation of the data according to their inclusion levels. The densities of ESE
and ESS motifs are not changing throughout the groups of different inclusion levels.

spliced exons into seven inclusion level classes does not provide any higher resolution than

if there are only two such classes. Secondly, and more importantly, these results question

the current computational status quo: that the key to alternative splicing prediction can

be attributable to DNA sequence alone.

4.2 Short constitutive introns (short constI)

The results presented above have demonstrated two very important points. SIR introns

are easily and precisely classifiable by GP methods, whereas classification accuracy (60%)

for skipped exons could not be improved, despite incorporation of many new strategies and

approaches. We critically questioned the hypothesis that sequence composition was the key

factor contributing to the huge discrepancy between the prediction accuracies for retained

introns (SIR) (85%) versus cassette exons (SCE) (60%). We found that the length of the

sequences strongly influenced prediction accuracies between the two classes. We showed in

Figure 3.1 that SCE exons are ∼8% shorter than constitutive exons; but that SIR introns
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are shorter than constitutive introns by an order of magnitude. A way to eliminate the

bias on length was to choose a subset from the original dataset of constitutive introns, with

equal average lengths to SIR. We have chosen only introns shorter than 534bp, resulting in

4032 constitutive introns (out of 33316), with similar length distributions to SIR (Result

of TTest: 0.995), shown in Figure 4.4.

Figure 4.4: The length distributions of SIRs and short constitutive introns are similar

We used the classifier produced based upon the original feature matrix (shown in Figure

3.6) to test the short constI data. If the hypothesis was true, that solely sequence compo-

sition was responsible for the accuracy rates on the SIR data, then the short constI should

still be classified as constitutive. We found that ∼90% of all short constI were misclas-

sified as ”alternative”. The classifier built upon all introns was obviously not well suited

to detect short constI, therefore we built a new classifier explicitly designed to distinguish

between SIR and short constI. The prediction accuracy dropped down to ∼64% (sensitiv-

ity:50.77, specificity:76.79) indicating that there is still more sequence signal to be found

in comparison with skipped exons, but not as much as initially expected.
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4.3 Comparing our results with a Support Vector Ma-

chine approach

Raetsch and colleagues designed a SVM kernel to classify alternative exons in C.elegans.

In contrast to any published approach available, their approach did not require any infor-

mation of the conservation level (Rätsch et al. 2005). The resulting SVM-based classifier

achieved a sensitivity of 48.5% at a specificity of 99% in C.elegans. Unfortunately they did

not report how the system performed on human genetic data, therefore the results could

not be compared straightforwardly. In order to find out, if the SVM performs better or

worse than our GP-System, we used an online version of the SVM (Raetsch et al. 2008)

and encompassed our feature matrix to it. Thereby we tested the three different kernels

available: Linear, Polynomial and Gaussian. For each of the kernels different configurations

were tested, in order to find the optimal settings for the SVM regularization parameter C,

and the kernel parameters. Additionally, we used the ”SVM Model Selection” tool, pro-

vided within the SVM package, to find the best combination of SVM hyper-parameters.

The best accuracy results on our data were achieved with the following settings:

• Kernel: Polynomial

• SVM regularization parameter C: 1.0

• The degree of the Polynomial Kernel: 2

In contrast to Discipulus, here we had to separate the datasets into equal sizes. We chose

a random subset of 7323 constitutive exons, out of the total amount of 27224 constitutive

exons. In order to have completely comparable results, we encompassed the newly sepa-

rated datasets also to the GP-system Discipulus. The comparison of the results, shown

in Table 4.3, indicates that the two different Machine Learning approaches are similar in

spirit of motif recognition.

Table 4.3: GP vs. SVM

Method sensitivity specificity (sen+spe)/2
SVM 63.46 53.65 58.55

GP 54.16 64.15 59.16
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4.4 General remarks on the terminology of splicing

Until a few years ago the definitions of constitutive and alternative exons were well defined:

”Constitutive exons are found in every transcript of a gene whereas alternative exons are

absent in at least one transcript that would have been long enough to contain it.” Boue et

al. (Boue et al. 2003). However, with increasing amounts of EST and cDNA data (Figure

2.3), the big picture becomes more blurry. There are ongoing debates about how many of

these predicted splice variants are in fact functional and how many are rather the result of

aberrant splicing (or ’noise’) (Sorek et al. 2004; McGuire et al. 2008). The effect might

be demonstrated in following experiment. In order to critically control if our dataset of

constitutive exons from year 2003 is still considered to be constitutive, we tested the data

with 3 different approaches:

Figure 4.5: Testing the validation status of the AltSplice constitutive exon dataset with
different approaches leads to different results

1. The EST clustering method described in (Plass and Eyras 2006) showed that 86%

of ”constitutive” exons had exclusion levels higher than 10%, confirming only 14% of the

exons as constitutive (Figure 4.5 a).

2. By using the Ensembl Biomart Tool (Birney et al. 2006), 88.5% of our constitutive

exons were confirmed, however 49.5% of the skipped exons were annotated as ”constitu-

tive” (Figure 4.5 b).

3. We performed a spliced alignment with the whole genomic area including the up- and

downstream exons and introns. We used the program ”GenomeThreader” which calculates

spliced alignments and creates quality scores for exon similarity and donor- and acceptor

splice sites. The first approach used only cDNA information without cancerous tissue.
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Seven percent of our constitutive exons could be identified, of this 7%, 93% were confirmed

as ”constitutive” and only 7% were rejected as alternative (Figure 4.5 c).

These results are surprising, revealing that we not only do not have a ”universal dataset”

(Boue et al. 2003) but as things became more complicated, our definition for ”constitu-

tive” was no longer unique. The implications are shown in Table 4.4. Different methods

lead not only to different classifications but also to different properties of ”constitutive”

exons. One example may be the length of skipped exons - which is a known feature -

as skipped exons tend to be significantly shorter compared to constitutively spliced exons

(Clark and Thanaraj 2002; Sorek et al. 2004; Zavolan et al. 2003). This example

Table 4.4: Different properties of the exon data based on different EST/cDNA methods

Year amount const amount SCE avg. length avg. length p-value
exons exons const exons SCE exons t-test

AltSplice 2003 23091 6334 149 138 1.854E-06
Fritz 2006 1520 114 214 216 0.931

Ensembl 2006 23581 5844 145 150 0.052
Eyras 2006 4224 25201 132 149 2.515E-19

suggests that we must handle EST based data with care and that a consensus definition

of the term ”constitutive” is of great necessity.

4.4.1 Improving the terminology of splicing

Several years might be required before a consensus definition of the word, ”constitutive” is

agreed upon by the splicing community. Unfortunately, until such a consensus is acquired,

different groups will be using the same terms ”alternative” and ”constitutive” but will refer

to different things. As a modest proposal to make the data and results more comparable

with one another, the following catalogue of information describing the data would be

useful to find in every publication dealing with splicing.

• Species: Human, mouse, etc.

• Method: EST/cDNA to genome alignments, Microarrays, Predicted

• Source: EST/cDNA, only cDNA, own experimental data



4.5 Conclusions 55

• Conservation: Are the exons conserved between human and mouse (or another

species)?

• Protein coding: Are the exons limited to protein coding only, or are also UTR

exons considered?

• Frame preserving: Are the exons required to be divisible by 3?

• Stop codon: Are in frame stop codons allowed?

• Exon rank in transcript: Are the exons limited to middle exons only, or are also

first and last exons considered?

• EST-tissue: Are ESTs from cancer, cell-lines and tumor tissues allowed?

• Constitutive: How many contradicting transcripts are allowed? 0? 2 ESTs, 1

cDNA? 1%?

• Special issues: E.g. Conservation of the same splice pattern between two species,

etc.

4.5 Conclusions

In the first part of this chapter, we tried to increase the prediction accuracies on SCE

data, by investigating further features, not contained in the original feature matrix. We

started focussing on A-related features, since the GP system preferred the A-feature over

any other feature. Although the prediction accuracy could not be further increased, we

could show that the most abundant exonic splicing enhancers, found in constitutive exons,

are significantly enriched in ”A”s. This is a feature which has not been reported elsewhere

before. Comparing SIRs with short constI decreases the initial accuracy of ∼85% to ∼64%,

suggesting that intron length is more important than sequence composition. We compare

our results on SCE data with a state of the art SVM approach, and find out that the differ-

ence between both methods is small. The GP-system achieves a slightly better prediction

accuracy of 59.16% (vs. 58.55% in SVM), suggesting that the poor prediction accuracies

do not originate from choosing a wrong machine learning method, but they originate due

to similar signals and sequence properties of SCE and constitutive exons. Furthermore we

revealed inconsistencies with data descriptions and handling between different groups, and

provide a more generalized and objective approach to label the data in future.
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Modeling the exons

5.1 Introduction

Generating a dataset of synthetic exons (s.exons)

In order to compare specific properties of real vs. random exons, previous ap-

proaches have generated random exons by shuffling the exonic sequence of real exons

(Plass and Eyras 2006). However, shuffling the sequence destroys the information, e.g.

for splicing factor binding sites, and decreases the densities of cis-regulatory motifs, such as

Exonic Splicing Enhancers (ESE) which are essential for a proper splicing. Thus, shuffling

the sequences does not lead to ”random exons” but it rather results in sequences with a

lack of exonic properties. Here we generate sequences in a way that they resemble real

exons by integrating sequence properties learned from real constitutive exons. The goal

is to learn the rules of nature of how exons are constructed, leading to a generation of a

new dataset of ”synthetic exons” which will hardly be distinguishable from real exons by

any Machine Learning System. In contrast to previous chapters, this time the objective

function of the GP-system is antipodal, implying that good approximation of real exons

result in bad prediction accuracies.

To generate synthetic exons, we integrate our knowledge about real exons:

• The average length of constitutive exons is around 150bp (Figure 3.1)

• Exons have a higher GC-content compared to noncoding DNA (Figure 3.2).

• Exons contain ESE (Figure 3.3)
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• Exons are depleted in ESS (Figure 3.3)

• Exons have almost no consensus sequences (only the last 2 nucleotides), however they

are flanked by introns which have a consensus at the start and end positions (Figure

5.1).

Figure 5.1: Consensus sequences at the 5’ and 3’ splice sites within the dataset of 27519
constitutive exons

• 1 Open Reading Frame (ORF) in exons contains virtually no stop codons

Furthermore we are interested in finding out what kind of cis-regulatory sequences are

well-suited for the separation between real and synthetic exons.

5.2 Methods

Synthetic exons are created using two different approaches: generalized and specific. In the

generalized approach we consider the properties of all exons at once and try to develop a

general rule for the generation of s.exons. However, we find that only one rule for generation

of all exons is not sufficient and we therefore implement a more specific approach, which

takes the different properties of each exon to construct the synthetic counterpart, in a 1:1

ratio. In following we explain the two different approaches in more detail.

5.2.1 Generalized Approach

The main idea is to approximate the properties of real exons by starting with simple models

and increasing their complexity. In order to focus only on sequence compositions of the

data, and to make the results more comparable with each other, we eliminate any influence

caused by the length of the sequences. Therefore every new exon is constructed based upon

the original length of an existing constitutive exon, resulting in 27519 new s.exons with

identical length distributions.
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model 1

”Model 1” s.exons are generated by concatenating the nucleotides A,C,G, and T. Thereby,

every nucleotide has the same probability of 25% for being chosen. The process of con-

catenation stops, when the length of the first real exon in the list of all constitutive exons

is reached. We then proceed with the generation of a second s.exon by taking the length

of the second exon and continuing in the same way as described above, until the list of all

27519 is processed, and 27519 new ”model 1” s.exons are generated.

model 2

In order to generate ”model 2” s.exons, the nucleotide frequencies of real constitutive

exons are measured and saved into a matrix containing the four frequency values: A:

27.4%, C:24.2%, G:25.4%, and T: 23.0%. New s.exons are constructed by concatenating the

nucleotides according to the probabilities contained in the matrix.

model 3

To generate ”model 3” s.exons, we measure dinucleotide frequencies of constitutive exons.

We save the frequencies of all 16 dinucleotides into a matrix, which is then used to determine

the probability of a certain dinucleotide to be concatenated.

model 4

”model 4” is similar to model3, only improved by including the consensus dinucleotide

sequences at the end of exons.

model 5

Similar in spirit to the models before, here we count the frequencies of all 64 trinucleotides

detected in constitutive exons, and generate the s.exons based upon them.

adjusted model 5 Based upon the 27519 sequences generated by model 5, the adjusted

model chooses only sequences which resemble the ESE coverage of real exons. The se-

quences with a lower ESE coverage are rejected, resulting in 14159 synthetic exons. The

ESE distributions are shown in (Appendix Figure 8.9).

model 6

The frequencies of all 4096 hexamers, detected in constitutive exons are used to generate

the synthetic dataset. The consensus sequences are included at the end of exons.

model 7

The disadvantage of previous models is that although the n-mer frequencies are initially

taken from real exons, by concatenating the n-mers, each junction generates n-1 new n-

mers (e.g. aaa and ttt generate the triplets aat and att after concatenation). In some
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cases also stop codons might be generated by combining two n-mers, which do not belong

together. One consequence is e.g. the 25fold higher observation of stop codons within

the s.exons (Figure 5.5). In order to improve the exonic properties, the new model is

constructed based upon triplet-transition-probabilities. For every possible triplet from aaa

to ttt, the probabilities for the flanking 3-mer are measured within the constitutive exon.

The s.exon is generated by starting with a random 3-mer (according to overall starting

3-mer frequencies), and concatenating the next one based upon the probability value in

the triplet-transition-probabilities-matrix.

model 8

To eliminate the high stop codon densities (shown in Figure 5.5), the correct ORF has been

estimated in order not to take the entire set of triplet transition probabilities occurring in

an exon, but only the correct ones which do not introduce a stop codon.

5.2.2 Specific Approach

word length 1-10

Instead of taking the properties of all exons into consideration, real exons serve as templates

for new s.exons. Different models involve different lengths of n-mer words considered,

starting with a word length of 1 and increasing it to 10. The new exons are generated

based upon the frequencies of the specific words within the template exons. Taking a word

length of 1 e.g. resembles shuffling the exon by preserving a similar AGCT content, whereas

taking a word length of 10 preserves greater exonic blocks. The consensus dinucleotide

sequence was added at the last two positions of each s.exon.

reverse exons

Reverse exons were generated by reading the 5’→ 3’ exons in the 3’→ 5’ direction. The

reverse exons have a different feature matrix which is based upon all sixteen possible

dinucleotides.
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5.3 Results

5.3.1 ESE - Densities

As mentioned above, one of the features in real exons is a specific content of ESEs. In

order to estimate how well this feature could be remodeled, we compared the densities of

ESEs (based upon Zhang and Chasin set of octamers (Zhang and Chasin 2004)) between

our new synthetic exons and the constitutive ones. Thereby we measured and plotted the

percentage of the nucleotides which are covered by an ESE motif. In case of real exons

(red bold line in Figure 5.2) in average 29.8% of the exonic sequence is covered by these

regulatory motifs. Whereas only 17.5% of random sequences, with the same GC content

(generated by model 2), contain these ESE motifs. As the complexity of the models

increases, also the distributions of the ESE densities resemble more and more those of

genuine exons (Figure 5.2). This result shows that by chance, even with a proper GC

content, the amount of these motifs is substantially lower for random sequences.

Figure 5.2: ESE-densities: an increased model complexity leads to a higher amount of
ESEs



5.3 Results 61

Figure 5.3: ESE-densities on the specific dataset

In case of the generalized approach, the two models based upon triplet-transition proba-

bilities overlap the ESE density curves of real exons accurately (Figure 5.2 and Appendix

Figure 8.10). This property cannot be resembled within the specific approach which is

based solely on word counts (Figure 5.3).

5.3.2 ESE regulatory networks

Earlier, we investigated the densities of ESEs, and also the abundance of the most fre-

quently appearing ESEs (Chapter 4.4). Here, we asked the question if there is a co-

occurrence between certain ESEs, or if they rather appear independent from one another.

We were also interested in the distances between two different ESEs which co-occur to-

gether. To calculate the co-occurrence values of two ESEs, and their distances, we built a

NxN matrix, where N is the number of total ESEs (=2069). Each ESE was assigned an

unique number between 1 and 2069, as an identifier. For every exon, we identified all f

ESEs contained, and built all
(

f
2

)
possible pairwise combinations between them. For each

two ESEs e1 and e2, we incremented the value in the upper triangle of the matrix at the

position [e1][e2], while the lower triangle of the matrix was used to save the average distance

between e1 and e2 at the position [e2][e1]. The main diagonal of the matrix remained 0,
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since we were only interested into co-occurrences of different ESEs. Finally we compared

the results of real with simulated data. Table 5.2 shows the properties of the top 3 motifs

which co-occur with one another within constitutive exons, m2, m6, m7 s.exons, and SCE

exons. We find that distances for motifs which co-occur together are in 95% of all cases

below 8, implying that these motifs overlap in general (Table 5.2 ”average distance” and

”percentage of overlap”). In case of constitutive exons, 269 out of 27519 exons (0.98%)

contain the same co-occurring ESE motifs, with an average distance of 3 bp, and 96% of

them overlapping. This co-occurrence number is 7 times higher compared to m2 s.exons,

containing only a maximum number of 36 co-occurring motifs, and can partly be explained

by the fact that m2 contain in general less ESE motifs.

It is interesting to note that m7 s.exons and const exons contain similar motif-ids, each

of them containing the hexamer ”gaagaa”. The motif-ids between m2 s.exons and const

exons, do not overlap at all. The same is true between SCE and Const exons, but here also

the motifs are substantially different 5.2, as SCE have as the most abundant motif ”cct”

instead of ”gaa”. Analyzing the top 300 co-occurring motifs within constitutive exons and

comparing them with the top 100 motifs within the SCE data (here we consider less motifs

due to a smaller exon samplesize) reveals that the ”A”-nucleotide, is substantially enriched

between constitutive and SCE exons, but also in comparison to the overall frequency of ”A”

in all Chasin ESEs (here, the frequency of nucleotide ”A” is 29.9% in average, see chapter

5.3.5 for nucleotide compositions in Chasin ESE data). The nucleotide compositions of co-

occurring motifs are in case of constitute exons, A: 46.7%, C: 7.6%, G: 39.0% and T:6.7%;

and in case of SCE exons A: 40.9%, C: 9.6%, G: 41.6% and T:7.9% respectively. This result

indicates that an increased number of ”A”s increases at the same time the probability of

ESE-networks, as well as the probability of classifying a constitutive exon.

On large scale however, the differences shown in Table 5.2 cannot be manifested. Appendix

Figure 8.11 shows the co-occurrence networks of the top 300 motifs within const exons,

s.exons and the top 100 motifs within the SCE data, all bearing similar patterns. The

distance distributions of the top 300 motifs within constitutive exons and m2 s.exons, are

shown in Appendix Figure 8.12, indicating that the high rates of the overlapping between

two ESEs, is expected by chance.
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5.3.3 ESS - Densities

In contrast to ESE-, the ESS-Densities seem not to be constrained as the motif distributions

of real exons overlaps with those of purely random generated sequences, suggesting that

ESS motifs are either most likely not as informative as ESE, or not that well explored

(Figure 5.4). The distributions on specific approach based data are similar and not shown

here.

Figure 5.4: ESS - densities: similar distributions for real and synthetic exons of the gener-
alized approach

5.3.4 STOP-Codon - Densities

In order to measure the stop-codon densities, all three possible open reading frames (ORFs)

were considered and the minimum values of all three were counted. Only 2.3% of all real

exons carry a stop codon, the total amount of counted stop codons is around 1100. This is

substantially different from models m1 to m7, whereas m8 resembles the real data (Figure

5.5).
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Figure 5.5: Stop codon densities on generalized data

5.3.5 SR-Proteins and additional ESE- and ESS datasets

Not to rely on ESE and ESS data of only one group, but to have an as broad view

of cis-regulatory elements as possible, we extended our datasets of cis-regulatory el-

ements. In addition to the ESE and ESS octamer datasets by Zhang and Chasin

(Zhang and Chasin 2004), we analyzed the collection of ESE and ESS hexamer sequences

provided by Fairbrother and Burge (Fairbrother et al. 2002), and also the binding sites

of the SR-proteins (here the lengths of the motifs vary between 6, 7, and 8 nucleotides)

(Liu et al. 1998), described in more detail in Chapter 3.4.6. Figure 5.6 shows the densi-

ties of these motifs among the s.exons of the generalized group, as well as in constitutive

and skipped exons. The ”fingerprint” of m7 and m8 s.exons is similar to real constitutive

exons. Whereas both ESEs datasets show great differences between random and real data,

the SR proteins seem not to have the tendency of being especially enriched in real exons.

Contrariwise, the summation of all SR proteins shows rather a trend of being depleted

in real exons, which is typically true for ESSs (Appendix Figure 8.13). We analyzed the

overlaps between the different classes of motifs, in order to find the cause for the different

profiles between SR and ESEs. Thereby we measured how often shorter cis-regulatory

motifs were contained within the sets of larger ones. Comparing Burge and Chasin ESE

datasets, we find that 186 out of 238 (78.2%) Burge hexamers are included within 753

(36.4%) Chasin octamers. In case of SR binding sites and Chasin ESEs, only 388 out of
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4067 (9.5%) SR motifs are included within 615 out of 2069 (29.7%) Chasin octamers. The

differences are even larger between Burge and SR data, here 124 (52%) Burge hexamers

are included within 265 (6.5%) SR protein binding sites. The nucleotide compositions of

the 3802 SR motifs not overlapping with Burge data is as follows: A: 20.2%, C: 31.2%,

G: 26.9% and T:21.8%. The nucleotide compositions of Burge and Chasin ESEs are: A:

47.8%, C: 14.0%, G: 25.2% and T:13.0%; and A: 29.9%, C: 24.5%, G: 29.7% and T:15.8%

respectively. These results indicate that ESE motifs containing the ”A” nucleotide, are in

general better suited to distinguish real exons from random sequences.

Figure 5.6: Constitutive s.exons: Densities of different SR-proteins and different ESE- and
ESS collections

5.3.6 Creating synthetic SCE-s.exons

In order to test if the results above are reproducible, thus if we can produce another set

of s.exons, which are similar to real exons regarding the important features above, we

considered our dataset of 9641 SCE exons and applied the method for generating s.exos as

explained in this chapter. Subsequently we analyzed the densities of the SR-proteins and

the four different ESE and ESS datasets. The results, shown in Figure 5.7 demonstrate

that the method for creating s.exons works on the SCE dataset as well. Here we observe

similar trends as described in constitutive s.exons, indicating that the SR proteins are
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largely uninformative for whole genome analyzes, due to the fact that distinguishing real

from random exons using this feature is not possible.

Figure 5.7: SCE s.exons: Densities of different SR-proteins and different ESE- and ESS
collections

5.3.7 Generating one open reading frame in each s.exon

Figure 5.5 shows that most of the s.exons contain stop codons. To create s.exons with

at least one ORF, we select the reading frame with the minimum number of stop codons.

In all termination codons in this frame we replace T by A at codon position 1, leading

to a slightly elevated level of ESEs (Appendix Figure 8.14), not affecting the prediction

accuracies .

5.3.8 Prediction accuracies

The features above indicate that the new s.exons resemble real exons. In order to check

the quality of the s.exons, a feature matrix was built and provided to the GP-system

Discipulus. The data was separated into two classes, class 0 for real exons and class 1 for

s.exons. Both, the exons and s.exons were separately shuffled and divided into three parts

of equal lengths. One part of both datasets was used for training-, one part as validation-,

and the last part as applied-dataset. The prediction accuracies shown in Tables 5.3 and 5.4
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are achieved on the data unknown to the GP-system, the applied dataset. Table 5.3 shows

the results on the generalized approach; Table 5.4 shows the specific approach results. For

both approaches, the prediction accuracies drop down as the quality of the model increases.

The more accurate a model of the real data seemed to be; the more difficult it was for the

GP-system to distinguish s.exons from exons. Starting with the very primitive model m1,

81.1% of the data was classified correctly by guessing the s.exons right in 82.6% of all cases

(sensitivity), and predicting real exons 79.6% accurately (specificity). However, random

data looks real and vice versa in almost 19% of all cases. As we considered the exact

same length distributions we can conclude that random data can also have properties of

real exons regarding the features considered. The best models generated with the general

approach were still easily predictable by the GP-system, with an accuracy of almost 70%

(Table 5.3). Thereby the sensitivity was always higher compared to the specificity. The

reason for this observation is explained in the ”best features” section.

A better approximation of real data could be reached with the specific approach (Table

5.4). The prediction accuracies dropped down quickly for the first three models, wordlength

1 - 3, from 75.7% to 62.9%, and it continued to drop down slowly until a plateau of 57-58%

could be reached for wordlength 6-10. These results indicate that a further increase of

the wordlength will not necessarily lead to better results. To ensure that the result of 7%

above a prediction accuracy for tossing a coin (=50%) in wordlength 10 s.exons is caused

by real features rather than by some GP- artifacts, the outputs on training, validation and

applied datasets were shuffled. By shuffling the outputs, features of the two classes are

randomly assigned to either class 0 or class 1, leading into a coin tossing scenario with

an expected prediction accuracy of 50%. The control dataset fits the expectation (Table

5.4). The features responsible for the 7% higher prediction accuracies are shown in next

chapter, Figure 5.9.

It is interesting to note that the prediction accuracy on reverse- vs. real exons was 96.7%.

This implies that the exonic sequence is not only carrying the information for protein

synthesis (in case of protein coding exons), but also every exon carries the information

of a reading direction, which is encoded in simple dinucleotides. A similar result was

also reached on a dataset of 2046 human pseudo exons, whereas in A.thaliana only 90.6%

accuracy was reached. The reasons for this observation are still unclear.
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Table 5.3: Prediction accuracies with the generalized approach

model sensitivity specificity (sen+spe)/2
m1 82.55 79.64 81.09
m2 80.11 74.06 77.08
m3 80.07 72.72 76.40
m4 83.55 69.80 76.68
m5 77.00 67.62 72.31

adjusted m5 82.46 63.19 72.83
m6 79.37 61.87 70.62
m7 82.06 57.15 69.61
m8 79.09 59.95 69.52

Table 5.4: Prediction accuracies with the specific approach

model sensitivity specificity (sen+spe)/2
reverse exons 96.73 96.73 96.73
wordlength 1 78.5 72.89 75.70
wordlength 2 69.17 68.18 68.68
wordlength 3 61.35 64.37 62.86
wordlength 4 56.33 64.31 60.32
wordlength 5 68.81 49.38 59.10
wordlength 6 60.95 55.83 58.39
wordlength 7 58.37 57.24 57.81
wordlength 8 53.92 62.26 58.09
wordlength 9 57.85 57.06 57.46
wordlength 10 53.18 62.35 57.77

control set
(wordlength 10

with shuffled output) 54.09 46.52 50.31

5.3.9 Best features

For each experiment the used features within the best 30 programs (out of several millions

of programs) have been collected and analyzed. The best features used for the discrimi-

nation between real exons and the generalized s.exons; respectively real exons and specific

approach s.exons are shown in Figures 5.8 and 5.9. The best features on the generalized

approach data are nucleotides frequencies. The most often used feature is frequency of
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nucleotide Cytosine, followed by nucleotide frequency of Adenine, Thymine and Guanine.

Also the features ”enhancers” and ”tgga” are used for discrimination. The more complex

models, like m6, m7 and m8 do not rely on the features ”enhancer” and ”tgga” but almost

solely on a,c,g and t.
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Figure 5.8: Feature frequencies on generalized approach data.
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Figure 5.9: Feature frequencies on specific approach data.
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This observation indicates that the former features have been modeled more accurately

within the s.exons than the nucleotide frequencies, which needed to be further investigated.

The distributions of the a, c, g, t densities within the generalized model m7 and the

constitutive dataset are shown in Figure 5.10. Although dealing with almost similar number

of e.g. the letter ”a” in constitutive exons (there are 1132915 ”a”s in the dataset of all

27519 exons) and m7 s.exons (1129736 ”a”s), the distributions are not similar. Real exons

have a higher frequency of cases where single nucleotides seem to be depleted or enriched

compared to s.exons, which shapes the distributions in general broader for each of the four

nucleotides. The greatest differences between real and s.exon data can be observed within

Cytosine and Adenine. A possible reason for this observation could be that building blocks

for exons carrying a low number of a certain nucleotide, tend to cluster with ones with

the same properties. A further observation is shown in Appendix Figures 8.7 and 8.8: the

ratio between different nucleotides. The ratio between Adenine and Cytosine turned out

to be significantly different between s.exons and exons (Result of TTest: 3.3E-236).

Figure 5.10: Distribution of the A, C, G, T nucleotide fractions in generalized data m7
versus const
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5.4 Conclusions

Starting with the construction of generalized synthetic exons, we did not find a ”general

formula” to explain how real exons are built. Although we were able to find a rule to

successfully reconstruct the correct ESE and ESS densities (models m7 and m8 in Figures

5.2 and 5.4), the nucleotide composition in s.exons is more homogenous in comparison with

real exons (Figure 5.10). The differences between the frequencies of single nucleotides are

more pronounced in real exons, especially regarding the ratios of A to C (Figure 8.7). The

GP-system uses this information - the ratios between the four different nucleotides - as the

most important features (particularly in the more complex models m6-m8)(Figure 5.8), to

achieve high prediction accuracies of 70%. The reason for the heterogenous character of

real exons is yet still unclear, a possible explanation could be that special circumstances

might require special types of exons, with more pronounced nucleotide differences in order

to facilitate/prevent binding of specific factors. In this context, it would be interesting to

investigate, whether exons with different splice patterns in different tissues or developmen-

tal stages, might as well have different nucleotide compositions.

Creating a second class of synthetic exons, the specific approach s.exons, solves the prob-

lem of homogenous nucleotide distributions and drops prediction accuracies down, until

a plateau of 57-58% is reached for wordlengths 6-10, indicating that a further increase of

the wordlengths will not necessarily lead to better results (Figure 5.4). Shuffling the exon

pieces of different wordlengths, results however, in an ESE density below the original data

(average ESE density in wordlength 10: 27.5% vs. 29.8% in constitutive exons)(Figure

5.3), and is thus not well suited to generate sequences with exonic properties regarding

the feature ESE densities. Unfortunately, it is not possible to combine the advantages of

both, the specific and the generalized method, e.g. by calculating the triplet transition

probability matrix for every exon (instead for all exons), as this approach would lead in

most cases either to identical exons (in some cases also to truncated exons); due to the

incompleteness of the probability matrix, caused by the short nature ( 150 bp length) of

exons.

In addition to the ESEs densities, we were also able to reconstruct the ESE-networks, of the

most frequently co-occurring words (m7 in Figure 5.2), indicating that our triplet transition

probability approach, implemented in m7 and m8 s.exons is well suited to capture sequence

properties.

We find that the ”A”-feature plays an important role in ESE networks, as it is significantly
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enriched in motifs co-occurring together. Another finding is that the densities of the SR

proteins binding sites, cannot be used as a feature to distinguish real from random ex-

ons, however these motifs are generally depleted in adenines, thus these results indicate

that ESE motifs containing the ”A” nucleotide, are in general better suited to distinguish

real exons from random sequences. A biological explanation for the repeated GAA mo-

tifs detected in ESE-networks of constitutive and m7 s.exons, can be explained by the

Tra2 proteins, which are known to be ESE and which preferentially, bind to GAA-repeats

(Tacke, Tohyama, Ogawa, and Manley 1998).

Our results indicate that the generalized synthetic exons are a promising, however improv-

able approach to capture sequence properties of real exons. A possible improvement of the

generalized s.exons can be realized by destroying the sequence homogeneity detected in m7

s.exons by enriching the amounts of ”A”s or ”C”s proportional to the original distribution

but dependent upon which of the two nucleotides is in excess.



Chapter 6

Alternative splicing and evolution

6.1 Introduction

Comparisons of human and mouse transcript sequences have revealed that the vast ma-

jority (more than 80%) of alternative splicing events have not been conserved during

the ∼80- to 90-million-year interval, separating these species (Modrek and Lee 2003;

Yeo et al. 2005; Nurtdinov et al. 2003; Pan et al. 2005). These results indicate that

purifying selection is not acting on such a large time scale to preserve the same patterns

of alternative splicing. Species-specific alternative splicing events have been predicted to

modify conserved domains in proteins and thus to provide an additional potential source

of complexity and differences between mammals (Pan et al. 2005). More recent studies

consider a smaller timescale of a ∼6-million-year interval, between the human and chim-

panzee split. Despite an overall sequence identity between human and chimpanzee genomic

coding regions of 98%-99%, the authors have reported that 6%-8% of profiled orthologous

exons display pronounced splicing level differences in the corresponding tissues from the

two species (Calarco et al. 2007).

In the first part of this chapter, we consider an even smaller time-scale, the intra-species

timescale within humans, spanning 100,000 years of divergence between the Asian, African

and European populations. We apply two population genetical test statistics, which mea-

sure deviations from the standard neutral model to investigate whether selection, positive

or negative, acts differently in alternatively than in constitutively spliced exons.

In the second part of this chapter, we investigate the origins of intron retention. Here, we

expansion the time-scale from the intra-species population genetical age (∼ 100kyears) to
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the inter-species timescale (∼80- to 90-million-years) by comparing orthologous regions of

human retained introns, with chimp, mouse, rat, cow and zebrafish.

6.2 Analyzing skipped exons with population geneti-

cal measures of selection

6.2.1 Background

Despite the increasing importance of alternative splicing in various fields such as oncology,

developmental biology, and molecular medicine, its role in the context of evolution has not

been explored in detail.

In a key study by Modrek and Lee (Modrek and Lee 2003), it is suggested that alterna-

tive splicing may be used as a playground for evolution incorporating new exons into only a

few transcripts of a gene (”minor-form” transcripts) and at the same time maintaining the

gene’s functionality by the ”major-form” transcripts. Minor-form exons may be free from

functional constraints and negative selection. In this way alternative splicing would allow

an organism to convert low-fitness forms faster to higher fitness forms, after a series of mu-

tations resulting in a new, useful function (Boue et al. 2003). Evidence for relaxation of

selection pressure during the evolution includes e.g. the observation that AS is associated

with an accelerated rate of exon creation and loss (Modrek and Lee 2003), that new exon

originations from Alu-elements are alternatively spliced (Sorek et al. 2002), and that al-

ternatively spliced isoforms have a much higher frequency of premature termination codons

(PTCs) (Xing and Lee 2004; Lewis et al. 2003; Grellscheid and Smith 2006).

Recent studies have focussed on comparative genomics by using orthologous exons in

different genomes - mostly from human and mouse - to explore the rates of synonymous

(nucleotide substitutions not changing the protein) and non-synonymous (substitutions

changing the protein) divergence (Xing and Lee 2006; Plass and Eyras 2006;

Xing and Lee 2005; Ermakova et al. 2006; Cusack and Wolfe 2005;

Chen et al. 2006). The so-called ”Ka/Ks ratio test” (also known as dN/dS ratio test) is

based on the assumption that most genes are subject to purifying selection with stronger

selective constraints for non-synonymous substitutions (Nekrutenko et al. 2002).

Non-synonymous substitutions occur less frequently (Ka<Ks) and the ratio Ka/Ks

has been found to be significantly smaller than 1 for most protein coding regions
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(Makalowski and Boguski 1998). Applying of this method to alternatively and

constitutively spliced exons revealed that conserved alternative exons have higher Ka rates

than average, indicating a relaxation of evolutionary constraints (Xing and Lee 2005;

Ermakova et al. 2006; Chen et al. 2006). However these studies are mainly based on

comparisons of protein coding regions between different species. In this study we focus

on within species analyses of coding and non-coding exons in humans and find that

Tajima’s D is smaller in the skipped compared to the constitutive exon dataset. We

also find a slightly elevated level of genetic diversity in a distance of 1-7 bp next to the

splice boundaries in alternative exons, but at the same time a decreased average number

of SNPs in the flanking regions, supporting the recent finding of increased purifying

selection in exon flanks (Xing et al. 2006). However, the results above are affected by an

ascertainment bias in human genome-wide polymorphism data, and turn out not to be

significant after the correction of the ascertainment bias by using a method proposed by

Nielsen et al.(Clark et al. 2005).

6.2.2 Materials and Methods

The SNP data are from the release 21 of the Hapmap Project, available in September 2006

(Thorisson et al. 2005). The samples we refer to in the following as ”African”, ”Euro-

pean” and ”Asian” are from 90 individuals (30 parent-offspring trios) from the Yoruba in

Ibadan, Nigeria (abbreviation YRI); 90 individuals (30 trios) in Utah, USA, from the Cen-

tre d’Etude du Polymorphisme Humain collection (abbreviation CEU); 45 Han Chinese

in Beijing, China (abbreviation CHB); 44 Japanese in Tokyo, Japan (abbreviation JPT)

(Frazer et al. 2007; Barnes 2006).

Tajima’s test of neutral mutation hypothesis

Tajima’s test is based on the relationship between the number of segregating sites (S) and

the average pairwise diversity (Π)(Tajima 1989). Both quantities depend on mutation rate

(µ) and effective population size (Ne), which can hardly be estimated separately empiri-

cally. The composite parameter θ = 4Neµ can be estimated from both, S and Π. Let the

estimates of θ be θS and θΠ, respectively. The expectation of these estimates is identi-

cal under neutrality (θS = θΠ). The normalization of their difference D= θΠ−θS√
V ar(θΠ−θS)

is

called Tajima’s D and can be used as a statistic to test the hypothesis of neutral evolution.

Directional selection leads to an excess of rare variants, therefore a disproportionally in-

creased value of θS and, as a consequence, a negative D. D>0 suggest an excess of common
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variation, which is consistent with balancing selection or population contraction. D>0 can

also be due to ascertainment bias, i.e. artefactual absence of rare variants.

Linkage Disequilibrium (LD)

Linkage disequilibrium is the non-random association of two alleles from two loci (e.g. A

and B) on the same chromosome. LD measures the difference between the observed allele

frequencies for a two locus allele (PAB) as compared to its expected frequency, which is

the product of the two single allele frequencies (PA*PB). In case LD is around zero, alleles

at the two loci tend to be inherited in a nearly random manner.

6.2.3 Results and Discussion

Tajima’s D and LD Analysis

The average Tajima’s D values for the constitutive and alternative regions of the Hapmap

populations are shown in Table 6.1. It may be surprising that the Tajima’s D values

are contrary to the neutral theory in average not around 0, but consistently higher. The

reason for this observation is not balancing selection but the fact that a great portion of

rare SNP data is simply missing in the Hapmap database because of ascertainment bias.

An extensive analysis and debate on the ascertainment bias in studies of human genome-

wide polymorphism can be found in (Clark et al. 2005). By comparing the alternative

with the constitutive dataset we observe a significant decrease in the Tajima’s D values

within all populations, indicating either traces of population growth or traces of directional

selection in regions with alternative splicing (Table 6.1).

A section of regions with negative Tajima’s D values demonstrates that not only the curve

of the derived population (red) is shifted to the more negative values compared to the

ancestral population (black), but also the curve of the alternative regions is shifted to the

more negative side, encouraging the findings above (Figure 6.1).

SNP density and distribution

Various recent studies have reported that regions flanking a skipped exon are generally

more conserved (Modrek and Lee 2003; Sorek and Ast 2003; Kaufmann et al. 2004;

Philipps et al. 2004), whereas the splice sites themselves are weaker [39]. By analyzing

SNPs from Hapmap we observe a slightly elevated level of genetic diversity very close to
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Table 6.1: Tajima’s D and LD results on the dataset of the regions with constitutively
spliced and skipped exons

constitutive skipped p-value t-test
Tajima’s D

Africa (YRI) 0.552 0.426 <0.01
Asia (CHB+JPT) 0.219 0.113 0.001

Europe (CEU) 0.351 0.213 <0.01
LD

Africa (YRI) 0.799 0.812 0.077
Asia (CHB+JPT) 0.859 0.870 0.101

Europe (CEU) 0.845 0.859 0.062

Figure 6.1: negative Tajima’s D for alternative and constitutive regions in Europe and
Africa

the splice boundaries in alternative exons compared to constitutive exons and at the same

time a decreased average number of SNPs with increasing distance (Fig. 6.2).

It is interesting to note that the upstream regions of a skipped exon bear a smaller number

of SNPs compared to the constitutive exons but also compared to the downstream regions.

This observation might be explained by the fact that alternative exons are in general
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Figure 6.2: SNPs in intronic regions flanking the exons

more tightly regulated than constitutive and the upstream regions contain more conserved

sequence motifs e.g.: motifs for the branch point recognition and miscellaneous exonic

splicing enhancer and silencer.

Figure 6.3: Hapmap: SNP density in protein coding regions

The average SNP density per base pair in protein coding regions is shown in Fig. 6.3

Almost no differences between the constitutive and the SCE data are observable in the

up- and downstream exons; whereas the variability decreases in SCE exons and in their
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flanking introns, compared to the constitutive dataset.

SNPdb: synonymous and non-synonymous SNPs within protein coding exons

The picture above (Figure 6.3) changes when considering the entire dataset of 10mio

SNPs from dbSNP, build 124 (Sherry et al. 2001). The alternative variants, as well as

their flanking exons show here a higher degree of variability, whereas the flanking introns

display less differences (Fig. 6.4). We also downloaded the information about the type of

the SNP, weather it is a synonymous or an amino acid changing non-synonymous SNP.

The result is shown in Fig. 6.5. In general constitutive, as well as their flanking exons

have a smaller number of synonymous SNPs per base pair, compared to exon skipping

events (Fig. 6.5.a.). This effect even increases when taking into account non-synonymous

SNPs. In case of constitutive regions, the SNP rate of non-synonymous SNPs decreases

(compared to synonymous SNPs), whereas it is elevated in skipped exons and exons that

flank them (Fig. 6.5.b.). One explanation for this observation could be that in case of

constitutive exons we see purifying selection acting on the sequences in order to prevent,

a possibly disrupting, amino acid change. The alternative counterpart seems to be under

less evolutionary constraints as it is not included in every transcript. It is important to

note that the other reason for the contrasting results Genome wide evolutionary analyses

has therefore to consider that SNPs from SNPdb do not have a controlled sample size

while HapMap contains only a subset of all human SNPs. As Fig. 6.4 shows these two

aspects lead to quite contrasting results, for instance, of the amount of polymorphisms in

alternatively and constitutively spliced genes.

Species-specific splicing

Pan et al. showed that alternative splicing of conserved exons is frequently species-specific

in human and mouse (Pan et al. 2005). They have estimated that >11% of conserved hu-

man and mouse cassette exons undergo skipping in one species but constitutively splicing

in the other. These species-specific alternative splicing events are predicted to modify con-

served domains in proteins and thus constitute an additional potential source of complexity

and species-specific differences between mammals (Pan et al. 2005). We have downloaded

the data from their supplementary material, which contains three classes of exons. In addi-

tion to species-specific spliced exons, there are also conserved and gene specific alternative

events. Conserved exons are detected as alternative in both species, whereas gene-specific

exons can only be found in one of the two species. By reanalyzing their data we observe
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Figure 6.4: SNPdb: SNP density in protein coding regions

Figure 6.5: SNP types in protein coding regions: a. synonymous SNPs, b. non-synonymous
SNPs

that Tajima’s D values seem to be smaller on species-specific spliced genes. Although the

t-test reveals that this difference is not significant in Europe and Africa (Table 6.2), in Asia

we observe a significant access of directional selection acting upon species-specific spliced

genes.
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Table 6.2: Calculating Tajima’s D on Pan et al. data

Conserved Gene Specific Species Specific p-value t-test
Asia

Ø Tajima’s D 0.351 0.086 -0.014 0.001
Std. Deviation 1.129 1.219 1.172

Europe
Ø Tajima’s D 0.294 0.266 0.159 0.214
Std. Deviation 1.123 1.198 1.188

Africa
Ø Tajima’s D 0.381 0.401 0.318 0.535
Std. Deviation 1.045 1.082 1.053

Adjusting for the ascertainment bias

The HapMap SNP database has been designed to support disease association studies by

determining the common patterns of DNA sequence variation in the human genome, in

DNA samples from populations with ancestry from Africa, Asia and Europe. However,

it was not primarily designed for population genetical purposes. The main focus of the

project was on common alleles instead of rare alleles; therefore the rare ones tend to be

missing. To test at which extent the lack of rare alleles affects the results, we analyzed

the ENCODE regions from HapMap, which contain an approximate tenfold higher density

of SNPs (NN 2005). Unfortunately, none of our exons were included in these regions.

We compared the percentage of monomorphic SNPs in ENCODE vs. other HapMap re-

gions and found that in ENCODE regions there is in average an increase of 13% of this

type of rare alleles in all three populations. In the case of the well analyzed FOXP2 gene

[9], HapMap reports only 9 SNPs instead of the experimentally validated 47 SNPs. The

Tajima’s D values are higher for the HapMap SNPs, by taking into consideration all pop-

ulations; HapMap yields a Tajima’s D value of -1 vs. -2.2. In order to correct for the

ascertainment bias we used the method developed by Nielsen et al. (Clark et al. 2005),

which predicts the properties of missing SNPs, based on a Maximum Likelihood (ML)

method. By using this method on the HapMap data, we approximate the real value above

and achieve after correction a Tajima’s value of -1.79. This method was also applied to

the data in Table 6.1 resulting in a loss of the signal, due to similar results for conserved

and specific exons (Tajima’s D: -1.20).
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6.2.4 Conclusions

Initially, we found that Tajima’s D was significantly smaller in the skipped compared to

the constitutive exon dataset in all three populations, indicating an elevated level of di-

rectional selection in alternatively spliced genes. Linkage Disequilibrium was higher in

derived populations and in alternatively spliced genes in all populations. We also found a

slightly elevated level of genetic diversity next to the splice boundaries in alternative ex-

ons but at the same time a decreased average number of single nucleotide polymorphisms

(SNPs), providing evidence for increased purifying selection. However, after correction

of the ascertainment bias, the differences within constitutively and alternatively spliced

genes, detected with Tajima’s D in the experiments above, disappeared completely. In-

stead showing significant differences, the Tajima’s D values were undistinguishable similar

between constitutive and alternative genes in all populations, as well as in the case of

species-specific splicing. Additional problems were the incomplete SNP databases, leading

to contradicting results. Based on these results, we conclude that the evolutionary role of

alternative splicing remains, at least for the moment speculative.

6.3 On the origins of intron retention

6.3.1 Background

Since the discovery in 1978 that eukaryotes have in contrast to prokaryotes, a split

gene structure containing exons and introns (Gilbert 1978), there have been heated de-

bates about the origins of spliceosomal introns, which continues today. The two main

schools of thought are the introns-early and the introns-late theories. According to the

introns-early theory, introns were already present in the progenote, the common ances-

tor of eukaryotes and prokaryotes, and were lost in the course of evolution in prokary-

otes by selection towards compact genomes and short generation times (Gilbert 1978;

Artamonova and Gelfand 2007; Doolittle 1978). This theory is based on the obser-

vations that in many cases exons coincide with protein domains, either functional or struc-

tural, which may represent early, primitive genes. A central prediction of this theory is that

the early introns were mediators that facilitated the early assembly of proteins by accelerat-

ing the rate of exon-shuffling (Palmer and Logsdon 1991). The introns-late-theory pro-

poses an insertion of introns into eukaryotic genomes after the split with prokaryotes. Thus,
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exon-shuffling played no role in the assembly of early genes (Palmer and Logsdon 1991).

This theory is supported by numerous examples of recent intron gain and also by the fact

that some unicellular eukaryotes have no or very few introns. However, recent studies

that are based on large-scale genome comparisons reveal that the extremes of both theo-

ries are mistaken, as there clearly exists both ancient exons and recently inserted introns

(Artamonova and Gelfand 2007). We are interested in characterizing the evolutionary

role of intron retention in human, where an intron can either be spliced out or stay retained

in the mature mRNA, and e.g. thereby change the protein product. It has been reported

that 17% of all alternative splicing variants are of this type in humans (Stamm et al. 2006).

In order to investigate whether the retained introns are in most cases introns that are

changing their properties to become new exons, we analyzed 1468 human SIR introns from

the AltSplice database and compared them with orthologous regions in other species. We

found that most cases of intron retention in human are not conserved beyond the primate

lineage. Our data suggest that this observation is not solely the result of lower EST and

cDNA coverage in other species, but it is rather a consistent trend of exon gain in pri-

mates, supporting the introns-early theory. However, we also find that EST data are a

strong limiting factor and that the entries in EST databases are not always reliable (e.g.

wrong labeled Chimp data), therefore the data is in general to sparse to allow derivation

of rules, yet.

6.3.2 Results

Splicing in orthologous regions of other species

In order to have a reliable and more up-to-date dataset, we filtered 1468 cases where the

introns were flanked by an up- and downstream-exon as annotated in Ensembl (04/2007).

We started with 1468 cases of ”SIR” and searched for orthologous regions in chimp, mouse,

rat, cow and zebrafish, by using the LiftOver tool from the UCSC webpage (Kent 2002).

1028 cases were discarded from further analysis, as they were not conserved in all species

(however, only 238 cases were discarded, when not considering the zebrafish). We calcu-

lated the Intron Retention Levels in all species based on current EST and cDNA data,

downloaded from the UCSC webpage (Kent 2002). It is important to note, that although

the EST data downloaded from UCSC was labeled as ”Chimp”, we found out that it did

not originate solely from ”Chimp”, but rather from ”Human” instead. The reasons for the

mis-labeling are yet unclear, thus they affect our results, as ”primate specific” findings,
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might only be ”human specific”.

Further 32 cases, where at least one species was not covered by EST/cDNA at all, were

discarded as well. The most prevalent picture of the data was alternative splicing in human

and chimp but constitutive in all other species (198 out of a total of 408 conserved cases),

indicating an excess of this type of splicing in the ”primate lineage”. In order to depict this

finding we calculated a ”splicing parsimony tree” for the species, based on the alignments

of the alternative splicing events (Fig. 6.6). Thereby, for each of the 408 conserved intronic

regions, we assigned a ”1” in case of a SIR event and a ”0” in case of constitutive splicing,

for each species. E.g., ”110000” was the most frequently observed pattern (198/408 cases),

indicating SIR splicing in human and chimp, and constitutive splicing in mouse, rat, cow

and zebrafish. The resulting ”splicing parsimony tree”, shown in Fig. 6.6, does not depict

the correct evolutionary distances; however it indicates rather an excess of SIR type of

splicing in the ”primate lineage”. Another explanation for the big distance between the

”primates” and the other species, might as well be the different EST/cDNA coverage levels

within the different species. To eliminate the factor ”EST-coverage”, the following section

compares only ESTs with a ”good” coverage in other species.

Figure 6.6: Analysed intron retention events are restricted to primate specific lineages

ESTs with ”good” coverage in other species

In order to test if the elevated level of intron retention events in human and chimp may

be caused only by a better EST coverage in these two species, we analyzed the proportion

of ”comparable EST coverage”, defined as follows: the other species should bear no more

than 10% less ESTs/or more ESTs relative to human. Results are shown in Table 6.3.

”New” events are defined as follows: intron retention is observable in human but not in

the other compared species. ”Loss” is the opposite case. An increase of retained intron

events in human could be detected, although the EST coverage was on average larger for
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Table 6.3: Events with comparable EST coverage between human and another species

Average
ESTs in

cases with
Cases with comparable
comparable EST no IR in

EST coverage coverage ”New” ”Loss” both IR in both
HS vs. Chimp 1312 247 vs. 252 31 5 267 1009

in % 2.4% 0.4% 20.4% 76.9%
HS vs. Mouse 243 75 vs. 95 139 7 42 55

in % 57.2% 2.9% 17.3% 22.6%
HS vs. Rat 11 15 vs. 69 8 0 3 1

in % 66.7% 0% 25.0% 8.3%
HS vs. Cow 65 24 vs. 41 42 2 14 7

in % 64.6% 3.1% 21.5% 10.8%
HS vs. Zebrafish 13 30 vs. 82 10 0 3 0

in % 76.9% 0% 23.1% 0%

the other species (Tab. 6.3). However, the number of comparable cases (e.g. 243 in mouse,

and 11 in rat) is too small, to derive general conclusions that intron retention is new in

humans.

22 most recent SIR events

When analyzing the acceptor splice sites, greater splice site strength and also a pattern of

consecutive T-s can be observed in constitutive introns. The interesting point in Figure 6.7

is the pattern at the 3’ splice site of the 22 human specific retained introns, which appears

to be more divergent from the consensus.

In order to investigate the reason for the disrupted motif above (Fig. 6.7), we aligned the

last 14 intronic nucleotides, upstream of a 3’splice site in human to the mouse genome and

observed that in 25 of 61 mutations a Thymine in mouse (Tm) is exchanged by a Cytosine

in human (Ch), resulting in a weaker 3’ splice site strength. Out of all possible mutation

varieties, the ChTm pattern is observed in more than 40% of all cases (Appendix Figure

8.16).

Extending the view to more general cases, with ”good” EST coverage in mouse

To ensure that the findings above are not solely based on the very low number of human
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Figure 6.7: Sequence logos for donor- and acceptor splice sites

specific cases (22 introns), we extended the dataset. A number of 139 intron retention

events in human were constitutive in mouse and had ”good” EST coverage. We also

included chimp for comparison. The analysis of these events reveals a T→C exchange in

the primate lineage (Appendix Figure 8.17).

Comparison between human constitutive introns and mouse alternative introns

To take care that the T→C exchange between human and mouse is not based upon different

GC-contents between the two species, we performed the following inverse test: we compared

297 constitutive human introns with ”good” EST coverage against alternatively spliced,

(retained introns) orthologous introns in mouse and found the opposite of the previously

obtained pattern, indicating that a lack of T might be connected to an alternative way of

intron splicing (Appendix Figure 8.18).

Estimating the evolutionary age of retained introns

Similar in spirit to the idea by Zhang and Chasin (Zhang and Chasin 2006), of separating

exons according to their evolutionary ages, here we compared the dataset of short ConstI

(introduced in Chapter 3.5) with the SIR dataset. Short constIs were thereby well suited

for this task, as they have the similar length distributions as SIR and are therefore not

too long to be not conserved in different species. We investigated whether their orthologs

could be found in the chimpanzee, dog, mouse, rat, chicken, zebrafish, and fugu genomes.

We reasoned that a human intron whose ortholog is present in a given organism must

have been ”born” before the divergence between humans and that organism. In case the



90 6 Alternative splicing and evolution

ortholog was absent, there might be two possible explanations: either the intron was born

after the divergence between humans and that organism, or it was lost in that particular

organism. However, if it was also absent in all other more divergent organisms, then

the latter was unlikely. Based on this rationale, we divided our datasets of introns into

five groups according to their divergence from other vertebrates. Most introns (3659 out

of 5796) are common to humans, fugu, and zebrafish and so represent the most ancient

group, whereas the youngest group of introns contains only 20 members conserved only

between human and chimp. Figure 6.8 shows a tendency of new introns more likely to be

alternative, however the sparseness of the data impedes calling this a general rule.

Figure 6.8: Age of SIR

Exon lengths in course of evolution

The insertion of retained intron sequence combines two exons, including the intronic part

between them, into a bigger exon. In case intron retention was as an alternative path

to exonization a frequent event, as a possible result the average size of exons would be

effected and increasing over the time. We separated the list of all exons according to

their evolutionary ages, as described in the previous section, and analyzed the length
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distributions of all exons. The results show a trend of exons lengths getting rather smaller

in course of evolution, indicating that even in the case of retained introns becoming new

exons, the effects are too sparse to influence the general trend of exons getting smaller

(Figure 6.9).

Figure 6.9: exonlengths during course of evolution

6.3.3 Conclusions

We observed an increased amount of new SIR events in humans, as well as a bigger fraction

of new introns being of SIR type. However, we were not able to draw general conclusions,

that retained introns are on their way of becoming new exons, as we did not find the

majority of the introns supporting this thesis; simply because the amount of comparable

cases is yet to small. Also we found a contradicting trend to our hypothesis, since exons

show in general the trend of getting shorter, instead of longer.

EST data is the limiting factor in splice event discovery. It should be noted that there are

only four species having more than 1.5 million ESTs in dbEST. Many model organisms can

have a surprisingly low number of ESTs, for example Chimp has less than 50,000 ESTs
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(September 2008). Thus, it is likely that many splice events in these organisms remain to

be detected.

We would like to emphasize that data analysis can only be as good as the raw data are.

Wrong inferences are foreseeable, if data are wrongly annotated as for instance ”Chimp

ESTs” which in fact are derived from human.



Chapter 7

Summary and Outlook

The motivation behind this project was to decipher how the splicing information is encoded

within the human genomic sequence, and how this information is used to specify whether

an exon or intron has the potential to be spliced alternatively or not. The concept thereby

was not to rely on data inaccessible to the organism, such as sequence conservation levels

to other species, but to only use the intrinsic sequence information of the human genome.

By using the GP-System Discipulus, we attempted to simulate the decision process (al-

ternative or not) of the spliceosome, by collecting important splicing signals/information,

and condensing them (in form of a feature matrix) into the GP-System. Discipulus is

designed to detect the most important features for binary classification problems, and to

combine them with one another in order to find the best partition rules. We started with a

very simple model for alternative splicing prediction, containing only nucleotide informa-

tion within exons, and later extended the feature matrix by including information present

within up- and downstream exons and introns. We analyzed 27,519 constitutively spliced

and 9,641 cassette exons (SCE) together with their neighboring introns; in addition we

analyzed 33,316 constitutively spliced introns and 2,712 retained introns (SIR). We find

that our tool for classifying yields highly accurate predictions on the SIR data, with a

sensitivity of 92.1% and a specificity of 79.2%. Prediction accuracies on the SCE data are

lower: 47.3% (sensitivity) and 70.9% (specificity), indicating that alternative splicing of

introns can be better captured by sequence properties than that of exons.

The most frequently used feature for classification of SIRs was the silencer score, which can

be explained by our discovery that retained introns appeared to harbor ”exon properties”

and were clearly distinguishable from constitutive introns, regarding this feature cf. (Figure

3.3).
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To address the low prediction accuracy of correctly classifying SCEs, we incorporated

information in addition to canonical splicing signals (such as information about the splice

site strength, the branch point, the polypyrimidine tract and secondary structure features).

In the interest of thoroughness, we tested various other approaches such as: A-stretches,

ESE composition, ESE transformation, etc., as well as evolutionary features (Chapter 6);

we even reversed the sequences and investigated the reversed sequence (data not shown).

However, despite all of the above approaches taken, none could increase the prediction

accuracy of correctly classifying SCEs to a level of more than 60%. In the case of SCE, the

GP-System preferred the A-feature over any other feature, which at the time, was an unan-

swered question. Further investigation revealed that ”feature A” is especially enriched in

the most abundant exonic splicing enhancers, found in constitutive exons (Chapter 3.4.2),

as well as in ESE networks of constitutive exons (Chapter 5.3.2). Moreover, we detected

a certain repetitive motif, GAA in constitutive exons that was absent from SCEs in the

most abundant exonic splicing enhancers and ESE networks. These GAA repeats are char-

acteristic of many enhancer elements, e.g., they are known binding sites for Tra2 proteins

(Tacke, Tohyama, Ogawa, and Manley 1998). However, when looking at individual exons,

the signal is also found in many SCE exons and therefore it is impossible to predict the

alternative splicing variant.

Training solely with the ”A”-feature, the prediction accuracy already reached a prediction

level of 58.2%, which is only ∼1% below the GP run containing the complete feature

matrix with 35 features. Excluding this feature caused a drop in the prediction accuracy

of ∼1%. We found that, in order to achieve the same results as with 35 features, it is

sufficient to use only the five features with the highest impact values (Figure 3.4): A, C,

GGG, and the splice sites. This result also implies that the features themselves are not

connected to each other, e.g. counter-intuitively, in constitutive exons, weak splice sites

are not compensated by a higher level of ESEs (at least this pattern was not seen on a

large scale in this analysis).

As seen in Figure 3.4 there is no optimal combination of features that can be used by the

GP-system to solve the alternative splicing classification problem, in contrast to classifi-

cation of reverse exons (Figure 8.6),where a combination of features resulted in prediction

accuracies of > 96%.

It should be mentioned that with our original feature matrix (of 35 features) and the

GP-System we used, we could solve the easier task of classifying exons versus introns,
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with a high fidelity rate of 95.58% (sens.: 96.05, spec.: 95.10). This result supports our

hypothesis that the DNA sequence, although containing the information on its orientation

and whether a part of it is exonic or intronic, does not contain the complete information

required for alternative splicing. Based on our finding for SCE, we suggest that only 20%

(on scala between 50%(coin-toss) and 100%(always correct), we reach a prediction accuracy

of 60%) of the entire information for alternative splicing is encoded at the sequence level.

In the case of retained introns, we could show that by comparing SIRs with short constI

decreased the initial accuracy of ∼85% to a level of only ∼64%, suggesting that in this

case, 30% of the alternative splicing information is harbored in the sequence. To ensure

that the findings above are not the result of an outdated or untrustworthy dataset of exons

and introns, in Chapter 3.4.6., we separated the datasets based upon their inclusion levels,

into seven different partitions. We investigated each of the seven partition using a large

amount of various ESE and ESS signals, without observing any difference between any of

the inclusion level classes. This similarity between the classes lends even further support

to our hypothesis that there is insufficient information encoded solely within the RNA

sequence to dictate alternative splicing. In addition to sequence, the presence or absence

of proteins (possibly tissue specific, developmental stage specific, etc.,) actually recognizing

and binding theses sequences constitutes the other half of the information content.

Clearly, there are many improvements that can be made in order to increase the efficacy of

alternative splice form classification and prediction. One such improvement lies within the

precise delineation of core splicing motifs e.g. only a few dozen branch point sites have been

reliably defined of mammalian sequences. As of yet, a reliable sequence model to predict

such branch point sites is still lacking(Wang and Burge 2008). Furthermore, although we

are aware of ESE densities, we can not be certain that there is a direct correlation of

increased densities and increased splicing trans-factor binding.

Taken together all of our results imply that alternative splicing might be largely governed

by trans-acting processes which currently pose a great experimental and computational

challenge. Furthermore the question remains if there is a general rule that can encapsulate

the phenomenon of alternative splicing or if one must appeal to laborious gene-by-gene

approach to understand its underlying mechanism. In other words, can we compile a

universal splicing code that interweaves the actions of cis and trans acting elements, along

with the rules that operate during specific developmental stages or in particular cell types.

Developing such a code, if possible, is a distinct challenge for the future.

In the last chapter we investigated the question whether alternative splicing may be con-
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nected to adaptive evolutionary processes in a species or population. Unfortunately, the

currently available population genetical tools were not sensitive enough to identify traces of

positive or balancing selection on the scale of a few 100bp. Moreover, the current amount

of EST data is another limiting factor in splice event discovery, as currently there are only

four species having more than 1.5 million ESTs in dbEST. Additional problems are the in-

complete SNP databases and SNP ascertainment bias. The evolutionary role of alternative

splicing remains, at least for the moment, speculative. Taking into account the growing

amounts of data available in future, we are optimistic that it will be interesting to repeat

the experiments introduced in Chapter 6 in only a few years.
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bout, J. Wallenburg, P. L’Archevêque, G. Bellemare, K. Saeki, H. Wang,



REFERENCES 101

D. An, H. Fu, Q. Li, Z. Wang, R. Wang, A. Holden, L. Brooks, J. McEwen,
M. Guyer, V. Wang, J. Peterson, M. Shi, J. Spiegel, L. Sung, L. Zacharia,
F. Collins, K. Kennedy, R. Jamieson, and J. Stewart, 2007, Oct)A second
generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

Gao, K., A. Masuda, T. Matsuura, and K. Ohno, 2008, Apr)Human branch point
consensus sequence is yUnAy. Nucleic Acids Res. 36: 2257–2267.

Gilbert, W., 1978, Feb)Why genes in pieces? Nature 271: 501.

Gooding, C., F. Clark, M. Wollerton, S. Grellscheid, H. Groom, and
C. Smith, 2006 A class of human exons with predicted distant branch points revealed
by analysis of AG dinucleotide exclusion zones. Genome Biol. 7: R1.

Goren, A., O. Ram, M. Amit, H. Keren, G. Lev-Maor, I. Vig, T. Pupko,
and G. Ast, 2006, Jun)Comparative analysis identifies exonic splicing regulatory
sequences–The complex definition of enhancers and silencers. Mol. Cell 22: 769–781.

Graveley, B., 2000 Sorting out the complexity of SR protein functions. RNA 6: 1197–
1211.

Green, R., B. Lewis, R. Hillman, M. Blanchette, L. Lareau, A. Garnett,
D. Rio, and S. Brenner, 2003 Widespread predicted nonsense-mediated mRNA
decay of alternatively-spliced transcripts of human normal and disease genes. Bioinfor-
matics 19 Suppl 1: i118–121.

Grellscheid, S. and C. Smith, 2006, Mar)An apparent pseudo-exon acts both as an
alternative exon that leads to nonsense-mediated decay and as a zero-length exon. Mol.
Cell. Biol. 26: 2237–2246.

Hiller, M., K. Huse, M. Platzer, and R. Backofen, 2005 Non-EST based prediction
of exon skipping and intron retention events using Pfam information. Nucleic Acids
Res. 33: 5611–5621.

Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Back-
ofen, and M. Platzer, 2004, Dec)Widespread occurrence of alternative splicing at
NAGNAG acceptors contributes to proteome plasticity. Nat. Genet. 36: 1255–1257.

Hiller, M., K. Szafranski, R. Backofen, and M. Platzer, 2006, Nov)Alternative
splicing at NAGNAG acceptors: simply noise or noise and more? PLoS Genet. 2: e207;
author reply e208.

Hofacker, I. and P. Stadler, 2006, May)Memory efficient folding algorithms for cir-
cular RNA secondary structures. Bioinformatics 22: 1172–1176.

Holste, D. and U. Ohler. T.

Holste, D. and U. Ohler, 2008, Jan)Strategies for identifying RNA splicing regulatory
motifs and predicting alternative splicing events. PLoS Comput. Biol. 4: e21.

Jiang, H., R. Teng, Q. Wang, X. Zhang, H. Wang, Z. Wang, J. Cao, and L. Teng,
2008 Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal
cancers and their matched normal colorectal tissues. J. Steroid Biochem. Mol. Biol.



102 REFERENCES

Johnson, J., J. Castle, P. Garrett-Engele, Z. Kan, P. Loerch, C. Armour,
R. Santos, E. Schadt, R. Stoughton, and D. Shoemaker, 2003, Dec)Genome-
wide survey of human alternative pre-mRNA splicing with exon junction microarrays.
Science 302: 2141–2144.

Jumaa, H. and P. Nielsen, 1997, Aug)The splicing factor SRp20 modifies splicing of its
own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16: 5077–5085.

Jurica, M., 2008, Jun)Detailed close-ups and the big picture of spliceosomes. Curr. Opin.
Struct. Biol. 18: 315–320.

Jurica, M. and M. Moore, 2003, Jul)Pre-mRNA splicing: awash in a sea of proteins.
Mol. Cell 12: 5–14.

Kalnina, Z., P. Zayakin, K. Silina, and A. Lin, 2005, Apr)Alterations of pre-mRNA
splicing in cancer. Genes Chromosomes Cancer 42: 342–357.

Kaufmann, D., O. Kenner, P. Nurnberg, W. Vogel, and B. Bartelt, 2004,
Feb)In NF1, CFTR, PER3, CARS and SYT7, alternatively included exons show higher
conservation of surrounding intron sequences than constitutive exons. Eur. J. Hum.
Genet. 12: 139–149.

Kent, W., 2002, Apr)BLAT–the BLAST-like alignment tool. Genome Res. 12: 656–664.
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Chapter 8

Appendix to chapters 2-6

8.1 Appendix to Chapter 2

The GP-runs are performed with the standard settings of the Discipulus version 3.0.

ADVANCED OPTIONS VALUE

Generations Without Improvement 300
Use Adaptive Termination Enabled
Number of depth level 4
Width 50
Maximum Number of Runs 100
Stepping Disabled

FITNESS CALCULATION VALUE

Error Measurement Square
Positive/Negative Threshold 0.5
Use Predictor Hit Rate Disabled
Weight for Rate of Positive Hits 1
Weight for Rate of Negative Hits 1
Threshold 1
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INSTRUCTIONS VALUE

Instruction Set Addition, Arithmetic, Com-
parison, Condition (FC-
MOVB, FCMOVNB), Data
transfer, Division (all FDIV),
Multiplication, Subtraction,
Trigonometric

Maximum number of FPU registers 2
Ratio Constants / Inputs (%) 50

SEARCH OPERATORS VALUE

Block mutation rate 30
Instruction mutation rate 30
Instruction data mutation rate 40
Homologous crossover 95

PROGRAM SIZE & CONSTANTS VALUE

Initial program size 80
Max program size 512
Randomize constants amount 53
Minimum value -1
Maximum value 1

MISCELLANEOUS VALUE

Random Number Generator Seed System time
Parsimony Pressure Disabled

GENETIC PROGRAMMING VALUE

Population size 500
Mutation frequency % 95
Crossover frequency % 50
Enable Demes Enabled
Number of demes 10
Crossover between demes % 0
Migration rate % 1
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DYNAMIC SUBSET SELECTION VALUE

Enabled Enabled
Target subset size % 50
Selection by age % 50
Selection by difficult % 50
Stochastic selection % 0
Frequency (in generations equivalent) 1

RANDOMIZE VALUE

Randomize Population Size, Maximum Program Size, Num-
ber of FPU Registers Used, Subset Size, Percent
of Subset Selection by Difficult, Mutation Rate,
Crossover Rate, Homologous Crossover Rate, Mi-
gration Between Demes Rate

Random Seed System time

Table 8.1: ”Discipulus”-Parameters

8.2 Appendix to Chapter 4

8.2.1 A-stretches

Table 8.2: A-stretches

length A-Stretches SCE SCE-Shuffled (1Run) Const Const-Shuffled(1Run)
1 0.7417 0.7365 0.7217 0.7217
2 0.1811 0.1910 0.1932 0.1977
3 0.0533 0.0510 0.0579 0.0563
4 0.0169 0.0148 0.0191 0.0168
5 0.0054 0.0047 0.0060 0.0052
6 0.0013 0.0013 0.0017 0.0016
7 0.0002 0.0004 0.0002 0.0005
8 0.0000 0.0001 0.0001 0.0002
9 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000
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Table 8.3: distances A-stretches

distance A-Stretches SCE SCE-Shuffled (1Run) Const Const-Shuffled(1Run)
d1 0.3200 0.3142 0.3259 0.3214
d2 0.1928 0.1853 0.2035 0.1926
d3 0.1176 0.1305 0.1185 0.1348
d4 0.0894 0.0953 0.0907 0.0957
d5 0.0734 0.0693 0.0734 0.0690
d6 0.0486 0.0511 0.0461 0.0497
d7 0.0369 0.0377 0.0353 0.0360
d8 0.0310 0.0282 0.0291 0.0263
d9 0.0197 0.0209 0.0182 0.0188
d10 0.0152 0.0160 0.0142 0.0140
d11 0.0139 0.0123 0.0121 0.0104
d12 0.0097 0.0091 0.0074 0.0077
d13 0.0068 0.0068 0.0056 0.0056
d14 0.0055 0.0053 0.0052 0.0044
d15 0.0037 0.0039 0.0031 0.0033
d16 0.0032 0.0032 0.0025 0.0024
d17 0.0031 0.0024 0.0023 0.0019
d18 0.0019 0.0020 0.0014 0.0014
d19 0.0015 0.0016 0.0012 0.0011
d20 0.0015 0.0012 0.0011 0.0008
d21 0.0009 0.0010 0.0007 0.0006
d22 0.0008 0.0006 0.0006 0.0006
d23 0.0007 0.0006 0.0005 0.0004
d24 0.0005 0.0004 0.0003 0.0003
d25 0.0004 0.0004 0.0003 0.0002
d26 0.0003 0.0003 0.0003 0.0002
d27 0.0003 0.0003 0.0002 0.0001
d28 0.0003 0.0002 0.0002 0.0001
d29 0.0002 0.0002 0.0001 0.0001
d30 0.0001 0.0001 0.0001 0.0001
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8.2.2 Composition of Exonic Splicing Enhancers

ESE sequence frequency cumulative frequency
cctgcctc 0.0025 0.0025
gcctcctg 0.0024 0.0048
tcctgcct 0.0023 0.0072
aggagctg 0.0023 0.0094
tgctgctg 0.0023 0.0117
gaggagga 0.0023 0.0140
ggagctgg 0.0022 0.0162
aggaggag 0.0022 0.0184
gaggaaga 0.0020 0.0205
tggagaag 0.0019 0.0224
agaagaaa 0.0019 0.0244
aagaagaa 0.0019 0.0263
agctggag 0.0019 0.0282
ggaggagg 0.0019 0.0302
cctggagg 0.0019 0.0321
ctggagga 0.0019 0.0340
tggaggag 0.0019 0.0358
gaagagga 0.0019 0.0377
agaagctg 0.0019 0.0396
gaagaaga 0.0018 0.0414
agaagaag 0.0018 0.0431
ggaggaag 0.0017 0.0449
gatgaaga 0.0017 0.0466
tgaagaag 0.0017 0.0483
gaagaaaa 0.0017 0.0500
aggaagag 0.0017 0.0517
gcagctgg 0.0016 0.0533
tcctggag 0.0016 0.0550
agcagctg 0.0016 0.0566
tgaagaaa 0.0016 0.0582
atgaagaa 0.0016 0.0598
gctggaga 0.0015 0.0613
aaagaaga 0.0015 0.0629
acctggag 0.0015 0.0644
ccctggag 0.0015 0.0659

Table 8.4: Top 35 words in ESEs of skipped exons
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ESE sequence frequency cumulative frequency
gaagaaga 0.002698809 0.002698809
aagaagaa 0.002564728 0.005263538
agaagaaa 0.002355012 0.00761855
tgaagaag 0.002275939 0.009894489
agaagaag 0.002272501 0.012166989
gaggagga 0.002176237 0.014343227
aggaggag 0.002165923 0.01650915
ctggagga 0.00212123 0.01863038
agctggag 0.002117792 0.020748172
gaagaaaa 0.002114354 0.022862526
tggagaag 0.002093726 0.024956252
tggaggag 0.00206966 0.027025912
tgctgctg 0.002062784 0.029088696
ctggagaa 0.002028405 0.031117101
gatgaaga 0.002021529 0.033138629
aggagctg 0.002014653 0.035153282
tgaagaaa 0.001945893 0.037099175
atgaagaa 0.001921827 0.039021003
gaagatga 0.001897762 0.040918764
agcagctg 0.001894324 0.042813088
ctgaagaa 0.001877134 0.044690221
aggagaag 0.001863382 0.046553603
ggagctgg 0.001825564 0.048379167
gaggaaga 0.001822126 0.050201293
agaagctg 0.001808374 0.052009668
ggaggagg 0.00179806 0.053807728
gaagagga 0.00179806 0.055605788
aaagaaga 0.00179806 0.057403848
ggagaaga 0.001773994 0.059177843
cctggaga 0.001701797 0.06087964
cagaagaa 0.001701797 0.062581437
agaagatg 0.001684607 0.064266044
agaaggag 0.001653665 0.06591971
gctggaga 0.001636476 0.067556185
cctggagg 0.001626162 0.069182347

Table 8.5: Top 35 words in ESEs of constitutive exons
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8.2.3 Exons with intronic properties

Figure 8.1: Exons with intronic properties: Dinucleotides

Figure 8.2: Exons with intronic properties: Triplets

8.2.4 Transformations from ESE to ESS
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Figure 8.3: Exons with intronic properties: 4-mers

Figure 8.4: Transformation: Distances to the ESE and ESS words
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8.2.5 Separating the datasets according to their inclusion levels

The four SR protein matrices and their corresponding threshold values, used to generate
the lists of SR protein words, are shown in figure .

Figure 8.5: SR matrices and their threshold values (Cartegni et al. 2008)

8.2.6 Improving the terminology of splicing

Feature usage for classifying exons vs. reverse exons in human, plants and worm.
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Table 8.6: Unified description of splicing data

Species: Human
Method: AltSplice: EST/cDNA to genome alignments
Source: EST/cDNA

Conservation: No conservation limitation
Protein coding: No protein coding limitation

Frame preserving: No frame preserving limitation
Stop codon: Yes

Exon rank in transcript: Middle exons
EST-tissue: All ESTs

Constitutive: 2 ESTs
Special issues: No special issues

Figure 8.6: Feature usage for classifying exons vs. reverse exons in human, plants and
worm.
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8.3 Appendix to Chapter 5

Figure 8.7: Ratios between different nucleotides within exons

8.4 Appendix to Chapter 6
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Figure 8.8: Distributions of ratios between different nucleotides within exons
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Figure 8.9: ESE densities after adjustment of model 5: A close overlap of the two density
curves could be reached

Figure 8.10: ESE densities on cleaned constitutive data versus m8 s.exons
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Figure 8.11: ESE-networks: the co-occurrence patterns on each two ESE motifs are similar
between the top 300 words in exons, s.exons and the top 100 words on SCE data
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Figure 8.12: The normalized distances of the ESE networks are similar between constitutive
exons and randomly shuffled m2 s.exons
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Figure 8.13: Constitutive s.exons: Densities of different SR-proteins and different ESE-
and ESS collections

Figure 8.14: Constitutive s.exons: Densities of different SR-proteins and different ESE-
and ESS collections on s.exons with removed stop-codons
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Figure 8.15: SCE s.exons: Densities of different SR-proteins and different ESE- and ESS
collections

Figure 8.16: 61 mutations at acceptor splice sites between human and mouse
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Figure 8.17: Mutations at acceptor splice sites between human, chimp and mouse

Figure 8.18: Mutations at acceptor splice sites of 297 constitutive introns vs. alternative
in mouse
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