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1. Introduction 
 
As they left water and conquered dry land, plants evolved a protective interface: the 

cuticle. Cuticle is deposited on the surface of non-woody aerial organs from plants 

and, is both, a barrier and a sensitive surface. It protects plants against abiotic stresses 

such as water loss (Kerstiens, 1996; Riederer and Schreiber, 2001) or UV irradiation 

(Solovchenko and Merzlyak, 2003) and, signals the presence of pathogens (Schweizer 

et al., 1996b). or herbivores (Kerstiens, 1996) to the plants. In the last decades data 

illustrating that cuticle is also essential in plant development, maintenance of organ 

integrity and organ delimitation have accumulated (Lolle et al., 1992; Sieber et al., 

2000).  

 

 
Figure 1.  Diagram representing epidermal cells from aerial organs and their 

outer covering. Cutin and wax are deposited on the surface of the outer 
cell wall (from (Kunst and Samuels, 2003).    

 

Cuticle comprises cutin and wax, both principally composed of fatty acid derivatives. 

It also sometimes contains a non hydrolysable fraction called cutan (Heredia, 

2003).The cutin biopolymer is cross-linked to the outer cell wall of the epidermal 

cells; wax which is tangled on its external face (Figure. 1), enhances waterproof 

properties of the cuticle (Riederer and Schreiber, 2001). The cutin composition has 

been investigated in different species since 1970s. Kolattukudy and co-workers 

conducted pioneer biochemical experiments, and by means of gas-chromatography 
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coupled with mass-spectrometry, determined the composition of cutin polymers 

synthesized by diverse plant species (Espelie et al., 1979; Kolattukudy, 1980). Based 

on their results and on chemical principles, the authors suggested the first model of 

the cutin biosynthetic pathway (Kolattukudy, 1981). 

 

Classically, cutin is mainly composed of aliphatic monomers with 16-18 carbons: C16 

and C18 ω-hydroxy fatty acids, and their mid-chain hydroxy or epoxy derivatives. In 

addition, glycerol and little amount of phenolic compounds are typically found 

(Heredia, 2003). It is thought that cutin monomers are linked together by ester bonds 

occurring between their hydroxy and carboxy groups or by intermediating glycerol 

molecules. Cutan is made of cuticular lipids linked by ether bound and is intermixed 

with cutin (Villena et al., 1999). 

 

The epicuticular waxes which are embedded in the cutin polyester, can be removed by 

immersion of plant organs in an apolar organic solvent (Post-Beittenmiller, 1998). 

The analysis of plant waxes revealed that they mainly consist of very long chain fatty 

acids (VLCFAs) with a chain length ranging from 20 to 34 carbons and of their 

derivatives: aldehydes, alkanes, secondary alcohols, ketones, primary alcohols and 

esters (Kunst and Samuels, 2003). The wax amount depends on the organ, the 

developmental stage and the environmental conditions: for instance, in Arabidopsis of 

the Landsberg erecta ecotype, the wax load deposited on stems is roughly 25 times 

greater than the leaf wax load (Jenks et al., 1995), and plants grown in dry conditions 

deposit more wax (Cameron et al., 2006). Depending on the analysed organ, the wax 

composition may differ: for instance the wax from Arabidopsis leaves only contains 

traces of esters and ketones that are abundant in waxes from stems (Jenks et al., 

1995).   

 

The determination of cuticle composition has constituted quite a challenge and 

allowed in many plant species, including the model plant Arabidopsis thaliana, the 

investigation on its biosynthesis (Croteau and Kolattukudy, 1975; Heredia et al., 

2000; Gormann et al., 2004). As a matter of fact, the presence of a regular layer of 

cutin and wax outside the epidermal cells implicates biosynthesis, exportation of their 

respective monomers, and, in the case of cutin, also implies polymerisation by 



Introduction 

 3

esterification. Biosynthesis, exportation of cuticle materials and setting up of cuticle 

layer have been the focus of many groups for the last decades. 

Recent publications described the cutin composition of the model plant Arabidopsis 

thaliana (Bonaventure et al., 2004; Xiao et al., 2004; Franke et al., 2005), and found 

that it is not typical. In A. thaliana, α,ω-diacids predominate and less mid-chain 

hydroxy and no epoxy compounds can be found (Bonaventure et al., 2004; Xiao et al., 

2004; Franke et al., 2005). Thus, the composition of Arabidopsis cutin is more similar 

to that of suberin, a biopolymer, for instance, synthesised in roots (Franke et al., 

2005), vascular bundles and in response to wounding and pathogen attack (Nawrath, 

2002), than to conventional cutin.  

 
 

1.1. Steps in biosynthesis of cuticular lipids and known mutants 
 
C16 and C18 fatty acids are produced and exported from chloroplasts where the de 

novo biosynthesis of fatty acid takes place (reviewed in (Ohlrogge and Browse, 1995). 

Subsequent elongation leading to the formation of very-long-chain fatty acids 

(VLCFA), which have more than 18 carbons, is performed by a plant specific 

elongation complex, termed elongase (von Wettstein-Knowles, 1982), located in the 

endoplasmic reticulum (E.R.). Each elongation cycle comprising condensation, 

reduction, dehydration and another reduction step, leads to the addition of two 

carbons to the substrate (Fehling and Mukherjee, 1991). VLCFAs produced by 

elongation of C16 and C18 fatty acids may be channelled towards the cutin or the wax 

biosynthesis pathways (Figure. 2). 
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Figure 2. Putative biosynthesis pathways of wax and cutin monomers (adapted 
from (Franke et al., 2005); (Millar et al., 1999)). FAE: fatty acid elongase 
complex. 

 

On one hand, C16 and C18 fatty acids can be oxidised to form cutin precursors. Their 

ω-carbon may first be hydroxylated to form ω-hydroxy fatty acids, and after a second 

oxidation step, α,ω-diacids may be formed (Figure. 2). Else, fatty acids may be 

hydroxylated on their second carbon to produce 2-hydroxy fatty acids. The different 

monomers may also undergo one or more desaturation steps leading to the formation 

of unsaturated precursors. A share of the various precursors undergo mid-chain 

hydroxylation leading to the production of mid-chain hydroxy derivatives; in 

Arabidopsis leaves, these compounds are in minor amounts but more present in stem 

and inflorescence cutin. In other species, where epoxides and mid-chain di-hydroxy 

monomers are abundant, epoxydation and hydrolisation of epoxide groups must be 

taking place (Figure. 2).  

 

On the other hand, VLCFAs released by the elongase complex may enter one of the 

two putative branches of the wax biosynthesis pathway (Kunst and Samuels, 2003). 

One of them, the acyl reduction pathway leads to the production of primary alcohols 

and esters. An acylreductase reduces the VLCFAs into VLC primary alcohols, a part 

of them may subsequently be used as substrates by acyltransferases to synthesise 

esters. The reduction of VLCFAs leads to the formation of VLC aldehyde 

intermediates which are not released by the acylreductase but directly processed into 
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primary alcohols. Aldehydes, finally found in waxes, are the first product of the 

putative decarbonylation pathway; other acylreductases lead to their production and 

their release. Some aldehydes are processed by aldehyde dehydrogenases which 

catalyse the formation of alkanes by cleaving off the aldehyde group of the VLC 

aldehyde and thus releasing carbon monoxide and alkane molecules with an odd 

number of carbons. VLC secondary alcohols and ketones derive from the oxidation of 

alkanes and also have an odd number of carbons.  

 

A key to understand cuticle biosynthesis may reside in mutants with a defective 

cuticle, hereafter referred to as cuticular mutants. A mutation leading to an impaired 

cuticle may be manifested by a change in wax or cutin composition, thus revealing the 

enzymatic function of the disrupted protein (Yephremov and Schreiber, 2005).  

 

Cutin, wax or both can be affected in cuticular mutants. Many Arabidopsis thaliana 

cuticular mutants have now been described and, indeed in some cases, a direct 

correlation between the mutation and the phenotype could be established. For 

instance, the hothead (hth) mutant is characterised by organ fusion in the 

inflorescences (Krolikowski et al., 2003; Kurdyukov et al., 2006a) and appear to 

accumulate less α,ω-diacids and more ω-hydroxy fatty acids that wild-type plants 

(Figure. 2). It follows that HTH is probably able to oxidise ω-hydroxy fatty acids into 

α,ω-diacids and thus is a ω-alcohol dehydrogenase (Figure.2) (Kurdyukov et al., 

2006a). Another example is the (eceriferum4) cer4 mutant in which wax composition 

is altered (Rowland et al., 2006). Waxes of this mutant contain less primary alcohols 

(Figure. 2) and the heterologous expression of CER4 in yeast leads to the 

accumulation of C24 and C26 primary alcohols. CER4 is very likely to encode for an 

alcohol-forming fatty acyl-coenzyme A reductase (FAR) involved in the acyl 

reduction pathway of the wax biosynthesis (Rowland et al., 2006). Some cuticular 

mutants e.g., eceriferum5 (cer5/wbc12) and desperado (dso/wbc11), are affected in 

cutin and wax exportation (Pighin et al., 2004; Bird et al., 2007; Panikashvili et al., 

2007). Cer5/wbc12 deposits less wax on its outer surface and dso/wbc11 less cutin. 

Inclusions containing bundles of lipidic fibrils are present in the cytoplasm of both 

mutants (Pighin et al., 2004; Panikashvili et al., 2007). This suggests that 

CER5/WBC12 and DSO/WBC11 which are membrane transporters of the WBC 

family, are involved in the export of wax and cutin precursors.  
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Yet not only cuticle may be affected by a defect in the production or the export of 

VLCFAs, the composition of other biopolymers such as seed coat, suberin and pollen 

coat may also be modified and so, provide information about enzymatic functions. As 

a matter of fact, all biological entity comprising VLCFAs may potentially bear the 

mark of a biosynthetic, exportation or polymerisation defect, for instance a problem in 

the elongation of VLCFAs may show in the storage lipid composition of the seeds 

which contain VLCFAs with a chain length of 20 and 22 (O'Neill et al., 2003).  

 

In plants, β-ketoacyl-CoA synthase of the FATTY ACID ELONGATION (FAE) 

family catalyse the first step of the elongation process, namely the condensation 

(Kunst et al., 1992). In Arabidopsis, this multigenic family is composed of 21 

members and 11 of them are probably epidermis specific according to microarray data 

(Suh et al., 2005). FAE1 was the first enzyme of this family to be described: the FAE1 

gene is expressed during seed development and, because of its disruption, storage 

lipids with a chain longer than C18 are missing in the fae1 mutant  (Kunst et al., 1992; 

James et al., 1995; Millar and Kunst, 1997; Suh et al., 2005). Among the homologues 

of the FAE1 gene, CUT1/CER6, KCS1 and FDH are expressed in the epidermis 

(Millar et al., 1999; Todd et al., 1999; Yephremov et al., 1999). The suppression of 

the CUT1 gene leads to a high decrease in wax levels and a there is a shift in 

monomer composition towards the C22 and C24 compounds (Millar et al., 1999). 

Thus this enzyme is very likely to catalyse the elongation of C24 fatty acids.       

 

Genes involved in the regulation of cutin and wax biosynthesis rather than directly in 

the biosynthesis and exportation may also trigger a cuticular phenotype. For instance, 

the overexpression of the ERF/AP2 transcription factor WIN1/SHN1 leads to the 

overproduction of wax (Aharoni et al., 2004; Broun et al., 2004) and cutin precursors 

(Kannangara et al., 2007). 

 

Some genes which function do not seem to be associated with the biosynthesis such as 

ALE1 (Tanaka et al., 2001), CRINKLY4 (Becraft et al., 1996) or 

PASTICCINO/PEPINO (Bellec et al., 2002; Haberer et al., 2002) may also trigger a 

cuticular phenotype. For instance, mutations in the L1 specific membrane receptor-

kinase CRINKLY4 lead to a loss of cell fate, often to cell fusion and to cell 
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dedifferentiation and, consequently, to a lack of cuticle both, in maize and 

Arabidopsis (Becraft et al., 1996; Tanaka et al., 2002; Watanabe et al., 2004). 

 

Enzymes involved in cuticle polymerisation are not known, however the heterologous 

expression of a fungal cutinase, secreted in the extracellular space, in Arabidopsis 

thaliana transgenic plants leads to cuticular damage (Sieber et al., 2000), probably 

reminiscent of polymerisation absence. These transgenic plants (cutinase expressing: 

CUTE) and some cuticular mutants have recently been reported more resistant to 

some pathogens than their WT counterpart (Schnurr et al., 2004; Bessire et al., 2007; 

Chassot et al., 2007). Although it had been shown earlier that cutin monomers could 

protect plants against pathogens by activating the production of ethylene and 

induction of defence related genes (Schweizer et al., 1996a; Schweizer et al., 1996b) 

this was quite unexpected, puzzling, as cuticle is usually seen as a barrier, the break-

down of which is expected to lead to a defect rather than to an advantage.   

 

1.2. Cuticular mutants used in this study 

 

This work was performed with Arabidopsis thaliana mutants. 

 

1.2.1. The fiddlehead (fdh) mutant 

 

The fdh mutant was first identified in the progeny of an EMS-mutagenised  

population, and it displays ectopic organ fusions between rosette leaves but more 

frequently affects floral organs and inflorescences (Figure. 3) (Lolle et al., 1992). On 

leaves of fdh mutants, about half of the trichomes are missing; this is probably due to 

a defect in trichome initiation (Yephremov et al., 1999). In this mutant, organ fusion 

within flower involves the four whorls, consequently, petals are usually stunted, 

reaching only 25% of the expected height, and anthers are trapped, the receptive 

stigma remains out of their reach leading to sterility. Fusion between floral buds does 

not prevent further elongation of pedicels and stems, and leads to the distortion of the 

inflorescences (Figure. 3).  Fusion involves only epidermal cells and starts after 

organogenesis when sepals have grown into contact and enclose the floral buds. In the 

fusion zones, supplementary cells may bridge the organs or, if the organs have grown 

in parallel, a junction zone lacking the surface characteristics of both joined organs 
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can be observed. Along the suture zone, the cells do not dedifferentiate but lose their 

organ specific surface features; when two sepals are involved, only a couple of cell 

rows are affected (Lolle et al., 1992). It was proposed that upon physical contact of 

carpels, a messenger, probably water soluble morphogenetic factor(s) is able to 

fortuity move through cuticle travel from one organ to the other, leading in response 

and postgenital fusion (Siegel and Verbeke, 1989). In the fusion zones, in fdh, the 

cuticle layer is still present, no plasmodesmata and no cytoplasmic fusion have been 

observed. Although ectopic organ fusion in this mutant involves “only” cell wall-to-

cell wall “contact” (Lolle et al., 1992), the adhesion between neighbouring organs is 

strong enough to lead to organ tearing during plant growth (Figure. 4) (Yephremov et 

al., 1999). 

 

Fdh leaves and non-reproductive shoot organs support pollen germination, mimicking 

WT pistil, manage to discriminate between pollen grains originating from different 

species. Fdh tissue seems to acquire the possibility to fuse and then to support pollen 

germination sequentially as pollen tends to germinate better on older fdh leaves (Lolle 

and Cheung, 1993). Although the cuticle is present on the surface of fdh aerial organs, 

the sieving properties of fdh tissue are modified: chlorophyll diffuses quicker out of 

fdh leaves than WT leaves; on the surfaces of fdh leaves, a somewhat greater quantity 

of protein could be found (Lolle et al., 1997). 

 

The FDH gene was cloned and found to code for β-ketoacyl-CoA synthase with 

homology to the FAE family (Yephremov et al., 1999; Pruitt et al., 2000). FDH is 

exclusively expressed in the epidermis of young organs (leaves, stem, floral meritems, 

primordial, petals, stamens, stigma, stigmatic papillae, at the margin of ovules and 

around the embryo sac) (Yephremov et al., 1999). Spraying with flufenacet, 

benfuresate and other herbicides of their groups phenocopies the fdh mutant (Lechelt-

Kunze et al., 2003). These herbicides had previously been linked to a block in the 

very long chain fatty acid biosynthesis (Kolattukudy and Brown, 1974; Boerger and 

Matthes, 2002). Not only Arabidopsis responds to these herbicides by organ fusion, 

but monocots develop “fdh like bows” (Lechelt-Kunze et al., 2003). The Anthirrinum 

majus FDH gene was able to complement the Arabidopsis thaliana fdh mutant, and 

spraying with alachlor (which belongs to the same herbicid group as the flufenacet), 

triggers the apparition of fdh like symptoms on new organs of WT A. majus plants 
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(Efremova et al., 2004). Thus the Arabidopsis FDH and Antirrhinum FDH (AFI) may 

be functional equivalents. They share an identical intron-exon pattern, which is unique 

in the FAE family. During carpel fusion, in A. majus and Arabidopsis, the down-

regulation of the FDH gene was observed, probably, to allow cell-cell interactions 

required during this process. On the other hand the up-regulation of the FDH gene 

occurs in dehiscent anthers in A. thaliana. This illustrates the importance of FDH in 

adhesion properties.   

 

fdhbdg

lcrWT

fdhWT

A

B

fdhbdg

lcrWT

fdhWT

fdhbdg

lcrWT

fdhWT

fdhbdg

lcrWT

fdhWT

A

B

 
Figure 3. Lacerata (lcr), bodyguard (bdg) and fiddlehaed (fdh) are cuticular 

mutants, which develop ectopic organ fusions. (A) WT-Col-0, lcr, 
bdg and lcr mutants at the rosette stage; plants were five weeks and a 
half old (grown under short day conditions). (B) WT and fdh 
inflorescences were five weeks old (plants grown under long day 
conditions). Bar: 2 mm. 

 
1.2.2. The lacerata (lcr) mutant  
 
 A mutation in the LACERATA (LCR) gene has harmful consequences on plant 

development: mutant plants have reduced growth, deformed leaves, which support 

pollen germination, show a bushy appearance and a delayed senescence. Trichome 

development is also affected by the lcr mutation, which seems to delay and reduce 

trichome initiation. A major feature of this mutant is the presence of strong ectopic 

organ fusion between rosette leaves, that may lead to organ rupture (Figure. 4). Organ 

fusion in this mutant does not involve cytoplasmic union but allows nutrient diffusion 
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as detached organs survive for some time after tearing (Figure. 4). The LCR gene 

codes for the CYP86A8 enzyme, a member of the CYP86 clan in the large family of 

P450s proteins (Benveniste et al., 2006). In vitro assays and sequence homology are 

supporting the fact that LCR is an ω-fatty acid hydroxylase (Wellesen et al., 2001), 

which catalyses the hydroxylation of cutin fatty monomers at their ω position (Figure. 

2).    

fdhlcr

fdhlcr

fdhlcr

fdhlcr

fdhlcr

fdhlcr

 
Figure 4.  Ectopic organ fusions are strong enough to trigger organ rupture. 

Cuticle permeability is sufficient to allow irrigation and alimentation of 
the fully detached organs which remain green. Bar: overview: 1 cm. 
zoom: 1 mm. Plants were five weeks and half weeks old (grown under 
short day conditions). 

 

 

1.2.3. The bodyguard (bdg) mutant  
 
As I joined the project, the BODYGUARD (BDG) gene had been cloned in our lab and 

the analysis of the bdg mutant had revealed an overall increase in wax and cutin 

monomers. This mutant had been noticed for its smaller size and a bushy appearance 

during a screen of En/Spm transposon-mutagenised Arabidopsis plants. Characterised 

by deformed leaves, which are often joined in a fusion, organ tearing due to organ 

fusion, bdg also displays a trichome phenotype: less mature trichomes can be 

observed on developing leaves because they tend to progressively die. The increase in 

cuticle permeability of this mutant had been illustrated by a pollen germination test. 

Observation of bdg tissue under TEM had revealed the presence of a discontinuous 

cutin covering, inclusion of cutin material in the cell wall, and shown that, in this 

mutant, the ectopic organ fusion do not implicate cytoplasm union either. In situ 
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hybridisation and immunolocalisation assays had shown that the BDG gene is 

epidermis specific and that the BDG protein is localised to the outer cell wall. In silico 

analyses had revealed that the BDG enzyme belongs to the α/β hydrolase-fold super 

family and that it has four closely related homologues. Taken together these results 

suggested that BDG may be involved in the cross-linking of cuticle and cell wall or 

else in the polymerisation of cutin (Kurdyukov et al., 2006b).   

 
 

 
1.2.4. The htm mutant 
 
Using toluidine blue as a staining test for permeability increase of the cuticle, 

Machida and co-workers identified new mutants with a deficient cuticle covering 

(Tanaka et al., 2004). Toluidine blue is a dye binding to anionic groups in the cell wall 

that are not accessible in the presence of a wild-type cuticle. However if cuticle is 

discontinuous, the cell wall constituents are accessible to the dye, which stains tissue 

dark blue. Among the mutants displaying a dark blue coloration, was the htm mutant. 

Machida and co-workers cloned the HTM gene and identified further mutant alleles of 

this gene. All mutants have similar phenotype (H.Tanaka, personal communication), 

namely post-genital organ fusion in flowers.  

 
 

1.3. Candidate genes putatively involved in cuticle biosynthesis 
 
1.3.1. LEAKO, coding for an epoxide hydrolase 
 
Epoxy- and mid-chain hydroxyl fatty acids are present in high amounts in cutin from 

many species, like in Hedera Helix, Clivia miniata, Ficus elastica, for instance 

(Riederer and Schonherr, 1988; Blee and Schuber, 1993; Graca et al., 2002) Fatty acid 

components from cutin are linked together by ester bonds occurring between their 

hydroxy and carboxy groups or involving glycerol (Graca et al., 2002). The cross-

linking of the different monomers gives its structure to the cutin (Benitez et al., 2004). 

When this work started, the cuticle composition of Arabidopsis thaliana was not 

known, we then speculated that in Arabidopsis, mid-chain hydroxy groups could take 

part in the reticulation of the cutin layer, as for instance in Clivia miniata and Ficus 

elastica leaves (Schönherr, 2000). In plants, enzymes able to generate mid-chain 

hydroxy groups are not known whereas in human immune response, the leukotrien-
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A4-hydrolase is able to catalyse the hydrolysis of epoxide rings, forming two mid-

chain alcohol functions (Radmark et al., 1984; Shimizu et al., 1984).  

 

During the human immune response, arachidonic acid, a C20 fatty acid, is first 

released from the plasma membrane of polymorphonuclear leukocytes and then step 

by step converted into leukotrien-A-4 (LTA4) (Radmark et al., 1984; Shimizu et al., 

1984). This  fatty acid derivative is a substrate of a specific soluble lipid hydrolase, 

the leukotrien-A4- hydrolase, which converts LTA4 into leukotrien B-4 (LTB4), a 

chemoattractant molecule (Radmark et al., 1984) (Figure. 5). The latter plays an 

important role in driving the neutrophils during inflammation and hypersensitivity 

reactions.  
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Figure 5. Hydrolysis of epoxide rings in humans and hypothetically in planta. a) the leukotrien-A4 

is activated into leukotrien-B4 by an epoxide hydrolase, the leakotrien-A4-hydrolase (1). 
Leukotrien-B4 molecules can then attract neutrocytes at the inflammation place and guide 
them through the immune response process (2).  b)  Despite the presence of many 
unsaturations, and consequently the altered folding of the leukotrien-A4 substrate, a similar 
process may be catalyzed in planta by a homologous enzyme of the human leukotrien-A4-
hydrolase (3). The di-hydroxy monomers could then be linked by esterification, involving a 
mid-chain hydroxy group and an terminal carboxy group (4). Further polymerisation 
involving the yet free hydro-and carboxy- groups would then lead to cuticle reticulation. 
(Dash lines: potential esterification site). 

 
A BLAST against Genbank returned a clear homologue of the human leukotrien-A4-

hydrolase, the At5g13520 gene (34 % of identity). We nicknamed this unique gene 

LEAKO.    
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1.3.2 ALDHs,  encoding fatty acid aldehyde dehydrogenases   
 

In Arabidopsis cutin, α,ω-diacids are the major compounds (Bonaventure et al., 2004; 

Franke et al., 2005); they could result from the oxidation of ω-oxo fatty acids, a step 

which is likely catalyzed by one of the numerous fatty acid aldehyde dehydrogenases  

ALDHs (Figure. 2). The absence of the aldehyde dehydrogenases involved in this 

pathway may therefore affect proper cutin formation. However the role of ALDHs in 

cutin biosynthesis has not been established.  

 

In humans, disruption of the FALDH gene triggers the Sjörgren-Larsson syndrome 

(Rizzo et al., 2001). The latter, among others, causes mental retardation due to the 

accumulation of long chain alcohols or aldehydes in cells and blood of the patients. 

Normally these compounds are taken in charge by an enzymatic complex which 

includes FADH (Figure.6), catalysing the oxidation of ω-oxo-fatty acids. 
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Figure 6. In humans and other animals, liver plays an important role in detoxication. a) The 

fatty aldehyde dehydrogenase (FADH) contributes to this process by catalyzing the 
formation of carboxylic acids from, for example, very long chain aldehydes. b) In plant 
homologue enzymes from the FADH may take part in the production of very long chain 
fatty acids precursors and components of cutin and wax or of diacids found in cutin. 

 
The sequence of the FADH protein was BLASTed against Genbank, and among the 

retrieved candidates there were ALDH3 (At4g34240), ALDH4 (At1g44170) and 

ALDH5 (At4g36250) respectively showing 42%, 46% and 42% identity to FADH 

(ALDH3A2). 
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1.3.3 HYD4, an homologue of BDG 
 
After the recent publication of the BODYGUARD (BDG) gene (Kurdyukov et al., 

2006b), we decided to investigate on its closely related genes; they might share 

similar functions, localisation and so have similar effects on plant development. They 

may also have preponderant roles in plant development. The En/Spm transposon 

population generated in A. thaliana (Col-0) by Wisman and co-workers (Baumann et 

al., 1998) was screened for insertions in the closely related genes to BDG (A. 

Yephremov, unpublished data). These genes were nicknamed “HYD” as BDG belongs 

to the α/β hydrolase-fold super family. The BDG protein has, a signal peptide, leading 

to the secretion of BDG in the extracellular space, and two domains including a 

hydrolase/acyltransferase domain which may confer cutin polymerase function to 

BDG. The four HYD-homologuous enzymes respectively share an amino acid identity 

of 82%, 64%, 45% and 40% with BDG α/β hydrolase-fold domain (Kurdyukov et al., 

2006b). 
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1000

 
 

Figure 7. Phylogenetic relationships between BDG and the four HYD proteins. Predicted 
protein sequences available from TAIR were used to build this tree (1000 repetitions; 
http://power.nhri.org.tw/power/home.htm). Numbers displayed near by the forks 
indicate the frequency at which the embranchment occurred. 

 

At that time a putative effect on seed germination (low percentage or absence of 

germination) had been observed in mutants carrying an insertion in the HYD4 gene 

(At5g17780), which product shows 45% identity to BDG α/β hydrolase-fold domain; 

however no ectopic organ fusion had been reported. 
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1.4. Aim of the work 
 

The main aim of this work was to understand the molecular functions of cuticular 

genes by investigating the chemical composition of cuticular lipids in the loss-of-

function lcr, fdh and bdg mutants and by characterizing their transcriptomes. This 

included the analysis of biochemical and transcriptome responses, which may be 

critical in maintaining cuticular homeostasis and necessary to ensure survival of 

plants. 

The second aim of the research was to biochemically characterise the cuticular htm 

mutant and to study the expression pattern of the HTM gene and the localisation of the 

HTM protein.  

 

The third aim of the work was to examine the cuticular phenotypes of the novel 

mutants identified in the mutant screen or by reverse genetics.  

 

In this work, two different approaches were taken to gather more information about 

cuticle biosynthesis in Arabidopsis thaliana: by analysing further the effects of the 

lcr, bdg, fdh and htm mutations (forward genetic) and by characterising insertion lines 

in candidate genes putatively involved in cuticle biosynthesis (reverse genetic). 
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2. Material and methods  
 
2.1 Plant lines 
 

Source collection Name of the 
line 

Gene Mutation Nickname 
of the 
line 

Lab   bodyguard 
(bdg) 

At1g64670 Deletion  bdg 

Lab   lacerata (lcr) At2g45970 Truncated 
Transposon 

lcr 

Lab   fiddlehead (fdh) At2g26250 Transposon 
footprint  

fdh 

      
H.Tanaka  htm AtXgXXXXX Substitution 

(xxxx ) 
htm 

      
SALK 
Institute 1 

SALK 
Institute 1 

SALK_069038 At5g17780 
 

T-DNA 
insertion 

hyd4-1 

NASC4 GABI-KAT2 711C08 At5g17780 T-DNA 
insertion 

hyd4-2 

RIKEN3 RIKEN3 52-0951 At5g17780 Ds-
transpson 
insertion 

hyd4-3 

RIKEN3 RIKEN3 12-3258 At5g17780 Ds-
transpson 
insertion 

hyd4-4 

NASC4 JIC5 SM_319056 At5g17780 Spm- 
transposon 
insertion 

hyd4-5 

NASC4 JIC5 SM_319060 At5g17780 Spm- 
transposon 
insertion 

hyd4-6 

      
SALK 
Institute 1 

SALK 
Institute 1 

SALK_117791 At5g13520 T-DNA 
insertion 

leako-1 

NASC4 Singenta SAIL_636_D12 At5g13520 T-DNA 
insertion 

leako-2 

SALK 
Institute1 

SALK 
Institute 1 

SALK_091250 At4g36250 T-DNA 
insertion 

aldh5-1 

 
Table 1.  Plant lines, characteristics and origins. At = Arabidopsis thaliana. 
1 http://signal.salk.edu/ 
2 http://www.gabi-kat.de/db/ (Rosso et al., 2003) 
3 http://www.brc.riken.go.jp/lab/epd/catalog/transposon.html 
4 http://seeds.nottingham.ac.uk/Nasc/action.lasso?-response=/Nasc/information/ordering.lasso 
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2.2 Plant Growth conditions 
 
In order to have a reliable control, for instance for bound lipid analysis, chlorophyll 

extraction or toluidine blue staining, WT and mutant plants were grown side by side. 

 

2.2.1. Greenhouse conditions 
 

Seeds were sown on soil (Minitray). After synchronization (five days at 4°C), plants 

were grown under short day conditions (8 h day/ 16h night) for four to 11 weeks 

depending on the experiment and then under long day conditions to induce flowering. 

As indicated in the Result part, plants were sometimes directly grown under long day 

conditions after synchronisation. 

 
2.2.2. Growth chamber 
 
As indicated when required, after sowing and synchronisation, plants were sometimes 

grown in growth chamber (8 h day/ 16h night; 20°C/18°C).  

 
2.2.3. In vitro conditions 
 
Seeds were surface-sterilized by applying a 70 % ethanol solution for 10 min and a 10 

% bleach solution for 15 min. After washing them four times with sterile water, seeds 

were kept in the dark, at 4 °C, to synchronize their germination.  

 

After sterilisation and synchronization, seeds were either transferred directly into 500 

ml glass pots containing about 70 mL of solid ½ MS (Duchefa Biochemie) media 

supplemented with sugar (1/2 MS + 3% sucrose; pH 5,8; 0,7% agar; Roth) or on 

round plates (1/2 MS + 3% sucrose; pH 5,8; 0,7% agar; Roth).  

 

After germination on round plates, as their roots were about 1 cm long, seedlings were 

transferred onto vertical plates (1/2 MS + 3% sucrose; pH 5,8; 0,84% agar (Roth)), to 

allow the observation of their roots. With a concentration of 0,84% agar the media 

does not slip at the bottom of the vertical plates.  

 

Plants were grown under long day condition (16h light /8h dark; 21°C). 
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2.3 Bacteria strains 
 
2.3.1. Escherichia coli (E.coli) 
 
- DH10B: F-, mcrAD (mrr-hsdRMS-mcrBC) F80lacZDM15, DlacX74, deoR, recA1, 

endA1, araD139, D (ara, leu) 7607, galU, galK, I min rps1, nupG. 

 

The two following E.coli K12 strains were obtained from Prof. David S. Stephens 

(Emory University; USA) 

- JC200: plsC+, met+, tetS, thr-1 ara-14 ∆(gal-attλ) hisG4 rpsL136 xyl-5 mlt-1 lacY1 

tsx-78 eda-50 rfbD1 thi-1. 

- JC201: derives from the JC200 strain but is plsC.  

 

Due to its mutation in the plsC gene encoding a acyl-glycerol-3-phosphate 

acyltransferase, the JC201 cells are thermosensitive. They grow normally at 28-30°C 

but cannot grow at 42°C (Coleman, 1990). 

 
2.3.2. Agrobacterium tumefaciens (A.tumefaciens) 
 
-GV3101 (Koncz and Schell, 1986): its genomic DNA contains a resistance gene to 

Rifampicin and its helper plasmid (pMP90) encodes a resistance gene to Gentamycin.   

 
 
2.4. Bacteria growth conditions 
 
2.4.1. Media composition 
 
LB (Luria-Bertani Medium): for 1L: 10g of Tripton/Pepton (Roth), 5g of Yeast 

Extract (BactoYeast Extract; Difco), 10g of NaCl (Merck). For plates, add 15g of agar 

per litre of media (Bactoagar; Difco).  

 

YEB: 5g of meat extract (Merck), 1g of yeast extract (BactoYeast Extract; Difco), 5g 

of Tripton/Pepton (Roth), 2ml of MgSO4 1M (Merck), 5g of sucrose (Merck).  For 

plates, add 15g of agar per litre of media (Bactoagar; Difco).  

2.4.2. Media supplementation for LacZ and antibiotic selection 
 
When “blue-white selection” was required, the LB media was supplemented with 

Xgal (5-Bromo-4-chloro-3-indolyl β–D-galactopyranoside; Roth; final concentration: 
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60µg/ml) + IPTG (Isopropyl β-D-1-thiogalactopyranoside; Roth; final concentration: 

7,5µmol/ml).  

 

When required, the media were supplemented with the adapted antibiotics. The end 

concentrations in medium are indicated in the table. 

  

 
 
 
 
 
 
 
 
Table 2. List of antibiotics used in this study and their final concentration in media.  
 
 
2.5 Electro-competent bacteria transformation 
  
E. coli and A. tumefaciens electro- competent cells were prepared as essentially 

described in (Sambrook and Russell, 2001): only the overnight culture was gron at 

18°C and resuspended in 7% DMSO instead of GYT medium. 

 

When needed E.coli electro-competent cells were transformed by applying 1500 kV 

using an Eppendorf Electroporator 2510. For the transormation, of A. tumefaciens 

cells, 1800kV were applied using the same electroporator.  

 

 
2.6 DNA purification methods 
 
2.6.1. Purification of plant DNA 
 
In order to purify plant DNA, we used the DNeasy Plant Mini Kit (QIAGEN). 
  
 
 
2.6.2. Confirmation of insertion lines 
 
Six to ten plants per line were chosen randomly and their genomic DNA was purified. 

Using a T-DNA left border primer and gene specific ones, we respectively amplified 

each DNA. In parallel we amplified WT DNA as control.  

 

Antibiotic E.coli A.tumefaciens 
Ampicillin (DUCHEFA) 100 µg/ml //////////////////// 
Kanamycin (MERCK) 25 µg/ml 25 µg/ml 
Cloramphenicol (SIGMA) 34 µg/ml ///////////////////// 
Carbenicillin (SIGMA) ////////// 50µg/ml 
Gentamycin ( DUCHEFA) ///////// 25µg/ml 
Rifampicin ( DUCHEFA) ///////// 100 µg/ml 
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2.7 RNA purification for line checking 
 

Generally young rosette leaves from five of the previously characterized plants were 

individually harvested and ground. RNA was purified using the RNeasy Plant Mini 

Kit and the RNase-Free DNase Kit from Qiagen. RNA was eluted from filter by 

adding twice 40 µl of RNase-free water onto the membrane and centrifuging. Samples 

were frozen at -20°C. To prepare samples for microarray hybridisation, we also used 

the RNeasy Plant Mini Kit and the RNase-Free DNase Kit from Qiagen but each 

individual sample contained leaf tissue from 15 independent plants (see Microarray 

Analysis). 

 

 
2.8 Evaluation of DNA and RNA concentration and purity 
  
Prior to PCR, the concentration of the DNA templates was estimated by comparing 2 

or 5 µl of each sample to a scale of Lambda DNA (Fermentas). Alternatively a 

NanoDrop Spectrophotometer ND-1000 (Peqlab Biotechnologie GmbH) was used to 

perform the measurements. 

 

Prior to RT-PCR, the concentration of each RNA sample was estimated as follows: 

1µl RNA + 7µl RNase free water+ 2 µl loading buffer were loaded on a 1,5% agarose 

gel, along with a sample of known concentration. A picture of the gel was taken, and 

for a more accurate RNA quantification, the gel was scanned using a Typhoon 8600 

(Amersham Biosciences). 

 
 
 
2.9 Amplification by PCR and RT-PCR 
 
Primers were usually ordered from SIGMA-GENOSYS, except for the cloning of the 

HTM gene in pASK-IBA vectors. The primers, being particularly long, were ordered 

from MWG (Germany). See Appendix A. 

 

After quantification, DNA template was amplified using either a home-made Taq 

polymerase (Pluthero, 1993) or a high fidelity kit (Expand High Fidelity PCR System 

from ROCHE), when the PCR product would be used further for cloning.  



Materials and methods 

 22

After quantification, the target mRNA was retrotranscribed into cDNA from 500 ng of 

total RNA and was then amplified. Both, the retrotranscription reaction and the PCR 

amplification, were done using the One Step RT-PCR Kit from QIAGEN.  

 

PCR and semi-quantitative RT-PCR reactions were performed usually in a volume of 

25µl. A Peltier Thermal Cycler (PTC-225; BioRad) was used to perform the RT 

reactions and the amplifications. 

 
Mix and PCR programmes: see Appendix B 
 
 
2.10 Staining with toluidine blue solution  
 
Toluidine blue is a hydrophilic dye and by consequence does not stick to the cuticle, a 

hydrophobic matrix; but where no cuticle is present; water is free to get in contact 

with the epidermal cell wall, hence the staining.   

 

Mutant and WT plants were grown in greenhouse or on plates. Seeds, siliques, 

inflorescences or leaf material from WT and mutant plants were stained for 2 min 

using a fresh and filtrated solution of toluidine blue (0,05% w/v dist.water) (adapted 

from (Tanaka et al., 2004)). The organs were immersed in the staining solution at 

room temperature without any shaking, and were rinsed with tap water prior to each 

picture session. Pictures of the samples were taken using a Leica WILDM420 

microscope. 

 

2.11 Chlorophyll extraction  
 
Plants were grown in the greenhouse under short day conditions (8 hour light/ 16 

hours dark) for 7-8 weeks. About 500 mg of rosette leaves was harvested from 

approximately 100 plants which were divided in six independent samples. In the case 

of mutants showing leaf fusion, representative samples were composed of fused 

leaves, a plant showing strong fusion, and fully grown leaves. Samples were weighed 

prior to the addition of ethanol (80%). The extraction was conduced at RT (22,5 °C) 

in a rotating water bath (18 rpm). Samples (1 ml) were taken after 10, 20, 40, 60 and 

80 min of extraction. In order to determine the total amount of chlorophyll present, 

samples were finally boiled at 90 °C for 15 min. They were cooled down by burying 

in ice for 20 min before the final sample was taken. Optical densities were measured 
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at 647, 664 and 750 nm using an UVIKON 810/820 photometer (adapted from Lolle 

et al. 1997). The two first ODs are the absorption maxima of the chlorophyll and the 

last one, 750nm, was measured to constitute the baseline. 

 
 
2.12 Siliques observation 
 
Siliques were fixed to microscope slides with double sided sticky tape, opened along 

the replums and seed contents were observed using a Leica MZ FLIII microscope. 

 
 
2.13 Bound lipid, wax and seed coat analyses 
 
2.13.1. Bound lipid analysis  
 
The composition in bound lipid of lcr anf fdh leaves was analysed twice for each 

mutant. Plants were grown for 10-11 weeks into short day conditions prior to tissue 

harvest.  

 
Tissue harvest and extract preparation 
 
Approximately 30 leaves from different developing stages were harvested to 

constitute a sample. In order to increase the sample representativeness, each sample 

included tissue from at least 15 plants (normally from between 15-25 plants). WT 

leaves were then quickly placed in a transparent plastic cover and scanned (Epson 

Perfection 1640SU) to allow the estimation of their area. Leaves were then cut into 

pieces and extracted into 25 ml chloroform: methanol (1:1) for seven days to remove 

soluble lipids. The solvent was changed on daily basis and when finally removed, the 

samples were left to air dry for a couple of days. The leaf residues were weighed on a 

Sartorius M21S balance to measure their dry weight. At least five samples were 

prepared per plant type. 

 
Depolymerisation and derivatisation  
 
These steps were done according to (Franke et al., 2005). 

Approximately 50 mg of dried tissue were depolymerised and transesterified for 2h at 

80°C by adding 6 ml of 1 M MeOH-HCl (Supelco; 3M). The hydrolysis products 

were then recovered using hexane: after 2h of hydrolysis, 6 ml of hexane, 1 ml of a 

saturated NaCl solution and 100 µl of C32 acid standard (20µg of dotriacontan; 
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Fluka) were added. The samples were mixed by inversion and the organic phase 

transferred into a new tube. The samples were then extracted three more times with 4 

ml hexane. The content of the organic phase were then dried under N2-flux, recovered 

in app. 100µl of hexane and transferred in a “glass Eppendorf tube” for the 

derivatisation. To the content of each sample 20 µl of pyridine (Fluka) and 20µl 

BSTFA (N,O-bis-Trimethylsilyltrifluoroacetamide; Macherey-Nagel) were added. 

The samples were strongly vortexed and incubated for 50 min at 70°C. The samples 

were finally transferred into GC vials for chromatography runs.  

 
 
2.13.2. Wax analysis  
 
The composition in wax monomers was analysed once for lcr and fdh mutants. Plants 

were grown for seven weeks under short day conditions prior to tissue harvest.  

 
Tissue harvest and extract preparation 
 
A sample was composed by leaves from different developing stages. Ten rosettes 

leaves from ten different WT plants were harvested to constitute a sample. As the 

mutant leaves are smaller, about 12 leaves were harvested from the mutants. Leaves 

were carefully dipped into 6 ml chloroform for 10s. WT leaves were scanned to allow 

the estimation of their area (see bound lipid analysis). The wax extracts were kept in 

the fridge until the analysis.  

To estimate the dry weight of the leaf material used for wax extraction, the soluble 

lipids of the leaves were removed. As for the preparation of leaf residue for bound 

lipid analysis, leaves were cut into pieces and extracted into 8 ml of chloroform: 

methanol (1:1) for seven days (see above). Afterwards, the leaf residues were weighed 

on a Epson Perfection 1640SU balance. 

 
Derivatisation  
 
This step was done has described in (Franke et al., 2005) 

Twenty µl of C24 internal standard (4 µg of tetracosan; Fluka) were added to each 

wax extracts, the samples were dried under N2-flux and transferred into “glass 

Eppendorf tubes” for the derivatisation (see bound lipid analysis).  
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2.13.3. Lcr and bdg seeds for seed coat analysis 
 
Getting rid of the storage lipids 
 
About 10mg of mature Arabidopsis seeds were ground using an agate mortar and 

pestle deep frozen in liquid nitrogen. Seeds were recovered in app. 5 ml of 

chloroform: methanol (1:1) and put to roll on a horizontal shaker (RM5 V-30 CAT; 

Labortechnik Fröbel GmbH) at 48°C (21 rpm) for 7 days. Solvent was changed on 

daily bases; tubes were centrifuged 2 min at 943 g (2000rpm) to sediment the seed 

particles and allow us to pipetted the solvent away (Heraeus Separatech 

Varifuge3.OR). After the last removal, the samples were left opened for 2-3 days to 

evaporate the solvent. 

 
Depolymerisation and derivatisation  
 
As in the bound lipid analysis, the residues were depolymerised and transesterified by 

acid-catalyzed transmethylation (Franke et al., 2005). 

 

However, instead of 6 ml of 1M MeHCl (Supelco; 3M), only 1 ml was used in this 

case. After 2h at 80°C, the hydrolysis products were also recovered using hexane: 1ml 

of hexane, 1 ml of a saturated NaCl solution and 100 µl of C32 acid standard (20µg of 

dotriacontan; Fluka) were added. The samples were then proceeded as for bound lipid 

analysis. Only the organic contents of the samples were not extracted three additional 

times with 6 ml hexane but with one. 

 
 
2.13.4. htm inflorescences for bound lipid analysis and wax analysis 
 
Plants were ten weeks old (seven week short days and three weeks long days) when 

the tissue was harvested. 

 
Tissue harvest and extract preparation 
 
Five independent samples were prepared for each experiment and per plant type. 
 
- For wax analysis 

About 0,6 g (fresh weigh) of inflorescences were weighed and, using a metal mesh 

from a kitchen sieve (pores =0,75 mm *1 mm), immerged into 5 ml of chloroform for 

approximately 15 s. After removal of the tissue, the beaker and the mesh were rinsed 
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with 1ml of chloroform each, bringing the volume to about 7 ml. The wax extracts 

were pipetted into other glass vials to discard pollen grains. The extracts were stored 

in the fridge until the analysis.  

 

- For bound lipid analysis 

After the wax extraction, tissue was transferred into 15 ml of chloroform: methanol 

(1:1), cut into small pieces to extract soluble compounds. The solvent was changed 

eight times and then the samples were let to dry.  

 
Further preparation (see corresponding protocols for more detail)  
 
- For wax analysis:  

Four µg of C24 (tetracosan; Fluka) were added to each sample as internal standard. 

 

- For bound lipid Analysis:  

Total amount of dried tissue was weighed and approximately 26 mg of tissue (dry 

weigh) were processed further. Compare to the protocol for analysis of bound lipids 

from leaf tissue (see above), volumes from the different solutions added in the next 

steps were divided by two. As internal standard, 10 µg of C32 (dotriacontan; Fluka) 

were added to each sample.  

 
 
2.13.5. Quantitative and Qualitative analysis by Gas-Chromatography (GC) and GC-
Mass Spectrometry (GC-MS) analysis 
 
To quantify their contents, the samples were run on a GC (GC-FID Agilent 

Technologies 6890N or HP_5890) equipped with a flame ionisation detector. To 

identify their components, a sample per plant type was run on a Agilent Technologies 

6890N GC combined with a quadrupole mass-selective detector 5973N (Agilent 

Technologies). The monomers were identified according to their EI-MS spectra 

(70eV, m/z 50-700).  Helium was used as carrier gas (2 ml min-1).   

 

The extracted samples for bound lipid analysis and for seed coat analysis were run 

according to the “SUBERIN” method and the wax extracts were run according to the 

“WACSH” method.  
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The SUBERIN method (Franke et al., 2005) can be broken down into the following 

steps: injection at 50°C into the column (DB-1, 30 m *0,32 mm, 0,1µm (J&W)); after 

2 min at 50°C, the temperature is then modified as follows: 10°C-1 to 150°C, 1 min at 

150°C, 3°C min-1 to 310°C, 30 min at 310°C.  

 

The WACSH method (Kurdyukov et al., 2006b) consists in the following steps: 

injection in a GC capillary (DB-1, 30 m *0,32 mm, 0,1 µm (J&W)) at a column 

temperature of 50°C; after 2 min at 50°C, the temperature is raised stepwise: 40°C 

min-1 to 200°C, 2 min at 200°C, 3 °C min-1 to 310°C, 30 min at 310°C.  

 
 
2.13.6. Reading the runs 
 
The compounds were identified according to their fractioning patterns on the GC-MS 

runs, by comparison with the content of available databases. The compounds were 

quantified according to their peak area compared to the area of the internal standard 

on GC chromatograms. These steps were performed using the HPGC ChemStation 

Rev.A.07.01 [682] programme to read and to integrate the GC chromatograms and the 

Enhanced ChemStation G170AA programme (Version A.03.00) to interpret the GC-

MS runs. Further calculations were done in Microsoft Excel 2003 and statistical 

analysis were done using the Statistica package (6.0; Statsoft).  

 

The area of the scanned leaves was estimated using the Adobe Photoshop (7.0) 

program. Lcr and fdh leaves are often misshaped and fused which prevent us from 

measuring their surface by scanning. To estimate the area of the mutant leaves we 

used the linear regression between the measured WT weight and areas (see Appendix 

C).  

 
 
2.14 Root observations 
 
2.14.1. Growth evaluation 
 
Periodically, during the first week of vertical growth, the position of the root tip was 

checked and marked. The number of secondary roots was evaluated by eye on daily 

basis during this period. The measurements were stopped when some of the roots 

reached the bottom of the plates. Plates were then scanned (Epson Perfection 1640SU) 
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and, using the Scion Image programme (Scioncorp), the length of the marked sections 

were evaluated.  

 

Afterwards, plants were removed from the plates in order to evaluate their growth by 

weighing. To detach them from the agar, plates were opened and tap water was 

poured onto the surface of the plates. The plates were then placed on a shaker moving 

slowly for about 2 h at room temperature. Each plate contained four WT and four 

mutant plants; the four of each kind were pooled – after separation of their roots and 

aerial parts- and allowed to dry (four days at 55°C) in pre-tarred balance trays. Plants 

were weighed using a Sartorius Analytic A120 S balance. 

 
 
2.14.2. Gravitropism experiment  
 
After germination and transfer onto vertical plates seedlings were grown during a day 

in long day lighting (16h light /8h dark; 21°C). The plates were then transferred in the 

dark and grown in the same orientation for two more days. The plates were then 

rotated by 90° and the plants were grown one more day before scanning the plates 

(adapted from (Marchant et al., 1999). 

 
 
2.14.3. Wave experiment  
 
After germination, the seedlings were transferred to 9 cm square plates containing 1,5 

% (w/v) agar. This high agar concentration prevents the roots from penetrating the 

agar and provides a permanent “obstacle-touching stimulus”. After four days of 

vertical growth, the plates were tilted backwards (45 ° from the vertical). After two 

days of growth in this position the plates were brought to a new angle (70° from the 

vertical). Finally the plates were brought back to the vertical and grown further. Plates 

were scanned and marked periodically (adapted from (Okada and Shimura, 1990). 

 
 
2.14.4. Water stress experiment  
 
Seedlings were allowed to germinate on horizontal plates for a week and, when the 

roots were about 1,5 cm long, the seedlings were transferred to vertical plates 

containing various PEG (Av. Mol. Wt. 8000) concentrations, namely 5%, 7,5% and 

10% (w/v) (SIGMA) (adapted from (Eapen et al., 2003). 
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Root growth was monitored as described before. The measurements were stopped 

when the root tips of plants grown in control plates without PEG touched the bottom 

of the plates. 

 

Plants were grown further to observe the effect of PEG on plant development. After 

two weeks in presence of PEG, the plates were scanned to report root extension, plant 

developmental stage, and state. As no measurement of root length or number of 

secondary roots was easy to perform, roots were weighed. 

 
 
2.14.5. Arabidopsis transformation by floral dipping  
 
To a 500 ml A. tumefaciens culture, 25g of sucrose and 100µl of silwet (SILWET L-

77 OSi Specialities INC.) were added. The 2,5L Erlenmeyer were whirled manually in 

order to disperse the Silwet and to dissolve the sugar. Most of the “transformation 

mixture” was poured into a 400-ml beaker, and Arabidopsis plants bearing young 

floral buds were dipped 1 min in the transformation mixture. Plants were then kept 

overnight in a closed bag and in a horizontal position (adapted from (Jakoby et al., 

2006)).  

 
 
2.15 HTM promoter and gene fusions 
 
2.15.1. Promoter constructs 
 
Reporter constructs based on the native promoter were made. First, 2110 bp upstream 

of the ATG from the HTM gene were amplified with the D038-D039 primers. The 

amplification was performed using Expand High Fidelity polymerase (ROCHE) (see 

Appendix B). The PCR fragments were then cloned into the pGEM-T vector 

(Promega) and transformed in Escherichia coli (DH10B). Transformation mix was 

plated on selective medium (LB ampicillin, Xgal, IPTG). DNA from a few white 

clones was extracted (QIAprep Spin Miniprep kits; QIAGEN) and sequenced by the 

ADIS service (MPIZ).  

 

A promoter fragment containing no mutation was selected and cut out from the 

pGem-T vector using HindIII - XbaI enzymes (NEB). The HindIII site was present in 

the template sequence upstream the D039 primer annealing site, whereas the XbaI site 
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was introduced by the D038 primer. After gel extraction (QIAGEN) and cleaning 

using Microcon (Millipore; Microcon YM-100) the fragment was ligated (~ 8µl insert 

+ vector, 1 µl 10x for T4 DNA ligase buffer Fermentas + 0,9 µl ligase (SIGMA; T4 

DNA ligase), 12 °C, overnight)  into binary vectors carrying one of the reporter genes 

(GFP, DsRED or GUS). These binary vectors were prepared in the lab and derive 

from the GPTV-BAR vector (Becker et al., 1992) (see Appendix D for maps). One µl 

of each ligation mix was used to transform E.coli by electroporation. Transformation 

mixes were plated on selective media (LB kanamycin) and a few colonies were 

checked by colony-PCR (see Appendix B).  

A positive clone for each vector type was grown, its plasmid DNA was purified and 

used to transform A. tumefaciens (GVC301). A few microlitres of the transformation 

mix were plated under selective conditions (YEB-kanamycin- gentamycin- 

rifampicin) and, after 2 days of incubation, the colonies were tested by PCR (see 

Appendix B). The transformations in A. tumefaciens were successful and liquid 

cultures grown from those plates were used to transform Arabidopsis thaliana (Col-0) 

by floral dipping (Jakoby et al., 2006); see above).  

 

Seeds from those transformants were harvested and germinated on soil. After 

germination, plants were selected by spraying them three times with a 0,1% BASTA 

solution (AgrEvo; every third day).  

 
Prior to cutting, organs were embedded in 5% low melting agarose (Biozym agarose) 

containing 0,01% SILWET (SILWET L-77 OSi Specialities INC.) (Efremova et al., 

2004). The sections were 100µm or 150µm thick and done using a vibratome series 

1000 (Ted Pella Inc.).     

 
 
2.15.2. Protein constructs 
 
The 5295 bp-long genomic region comprising the HTM gene and promoter was 

amplified using the D039-D040 primer pair and Expand High Fidelity polymerase 

(ROCHE). The D039 primer introduces a BsiWI restriction site and the D040 primer 

introduces a XmaI restriction site. The amplification products were subcloned in 

pGEM-T vector (PROMEGA) in order to generate compatible ends by restriction.  
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The insert was then cut out from the pGEM-T vector using the XmaI-BsiWI enzymes 

(from NEB; two-step digestion: 5U, 2µg DNA digested for 3h30 hours by each 

enzyme) and the destination vectors were opened by XmaI-BsiWI. The genomic 

fragment was then ligated in frame with the GFP, GFP-StreptagII, StreptagII or 

DsRED reporter elements carried by one of the pBct derivatives (see Appendix D). 

These plasmids and were prepared by A.Yephremov. Thus, the reporter elements are 

at the C-terminal of the HTM protein. 

 

Instead of sequencing the app. 6kb-long constructs, we selected 20 positive clones per 

construct type, grew minicultures and performed plasmid extraction (QIAGEN Spin 

Mini-prep kit). Using an aliquot of each of the 20 minipreps, a “plasmid mix” was 

prepared by reporter category and used to transform A. tumefaciens. Colonies were 

checked by PCR and 20 positive clones were picked to inoculate a liquid culture per 

reporter category. These liquid cultures were used to transform Arabidopsis thaliana 

(Col-0) by floral dipping (Jakoby et al., 2006); see above).  

 
 
2.16 Microscopic observations 
 
2.16.1. Light microscopy  
 
Observations were done using either a Leica MZ FLIII or a Leica WILDM420 

stereomicroscope. 

 

WT and bdg roots were observed in natural stage or after staining with a 0,05 % 

toluidine blue to enhance the contrast.  

 
 
2.16.2. Scanning electron microscopy (SEM) 
 
Two and half week olds leaves from WT, bdg and lcr grown under tissue culture 

conditions were collected. Fresh plant material was glued onto a sample holder and 

deep-frozen instantaneously by plunging it into liquid nitrogen slush at -180°C. Under 

vacuum conditions, the sample was then transferred into the cryochamber. Ice crystals 

present on the surface of the sample were sublimated at -89°C before sample coating. 

The frozen tissue was then coated with a thin layer of gold. The examination of the 
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samples was conducted at -175°C using a Zeiss DMS940 scanning electron 

microscope. 

 

Using the same instrument, a petiole from four weeks old WT, bdg and lcr leaves 

from plants grown under tissue culture conditions were observed by scanning electron 

microscopy. The mutant tissue showed deformations (bulges) visible by eye.  

 
 
Rosette leaves from 6-7 week-old plants grown under short day conditions were 

prepared for cryo-SEM; the samples were deep frozen and sputtered with palladium 

with a K1250X cryo-transfer unit from Emitech. Their surface was observed using a 

Zeiss SEM SUPRA 40VP microscope cooled down at -140°C with liquid nitrogen.  

After eight weeks of growth in short days and four weeks of growth in long days, the 

4th or 5th internodes from lcr, bdg and fdh stems were also observed using a Zeiss 

SEM SUPRA 40VP after deep freezing and sputtering with a K1250X cryo-transfer 

unit from Emitech 

 
 
2.16.3. Fluorescence microscopy 
 
To document the expression pattern of the HTM gene, different organs from 

transgenic plants expressing one of the reporter constructs were examined using a 

Zeiss LSM510 Meta confocal microscope or a Leica TCS SP2 AOBS confocal 

microscope. For the Zeiss microscope, an argon laser was used to excite the GFP 

molecules at a wave length of 488 nm and the fluorescent emission was observed 

between 500-530 nm. A HeNe laser was used to excite the DsRED molecules at a 

wave length of 546 nm and the emission of fluorescence was observed between 565-

615 nm. For the Leica microscope, the GFP molecules were excited at 488 nm and 

their fluorescence observed between 493-530 nm and the DsRED proteins were 

excited at 561 nm and their fluorescence was observed between 560-620 nm. Images 

presented here were taken with the Zeiss microscope.  

 

Siliques and inflorescences from transgenic plants expressing the HTM::DsRED 

protein construct were also observed using a Leica stereo-microscope MZ-FL-III 

equipped with a D546/10 excitation filter and a D600/40 barrier filter. The later 

excludes chlorophyll auto-fluorescence.  
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2.17 Heterologous expression of HTM  
 
2.17.1. Cloning the HTM cDNA in pASK-IBA vectors: Creating a Strep-tagged 
version of the HTM protein  
 
The HTM cDNA was provided by the RIKEN stock centre 

(http://www.brc.riken.go.jp/lab/epd/catalog/cdnaclone.html) and amplified using the 

Expand High Fidelity PCR System (ROCHE) and the suitable primer pairs. The PCR 

products were first subcloned into pGEM-T (Promega) and cut out with BsmBI 

enzyme (NEB; 2 µg of DNA were digested by 5U of BsmBI for 5h). The pASK-IBA 

2C, 3C and 5C vectors were opened using the BsaI restriction enzyme (NEB; 2 µg of 

DNA were digested by 5U of BsaI for 5h30).  

 

The pASK-IBA vectors encode a chloramphenicol resistance gene and allow the 

production of a tagged version of the protein of interest using Anhydrotetracycline 

(AHT) as inducer and not IPTG as classically done (see http://www.iba-go.com/). The 

recombinant protein will be tagged with the StrepTagII peptide in N-terminus (N-

term) or C-terminus (C-term) depending on the plasmid used for its production. 

 

The pASK-IBA_2C allows the tagging of the protein in C-term and the transfer of the 

tagged protein into the periplasm from the host. The pASK-IBA_3C allows as well 

the production of a protein tagged in C-term but not its exportation to the periplasm. 

Finally the pASK-IBA_5C allows the cytoplasmic production of a recombinant 

protein but tagged in its N-term. 

 
After ligation (150 ng vector + 250-300 ng insert in a final volume of 10 µl; o.n. at 

12°C; (SIGMA; T4 DNA ligase)), competent E.coli DH10B cells were transformed 

with 1µl of each ligation mix. The transfomants were selected on LB plates 

supplemented with chloramphenicol and colonies checked by PCR. Over-night 

cultures were grown (37°C and 250 rpm) and their plasmid was extracted using the 

Spin Mini-prep kit from QIAGEN. Two clones per plasmid type were sequenced by 

the ADIS service (MPIZ). A clone bearing no mutation for each plasmid type was 

then used further for protein expression.  
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Induction of protein expression  
 
An over-night culture (37°C, 250 rpm) was inoculated per plasmid type and, next day, 

a 100ml pre-induction culture was inoculated with 2ml of each overnight culture. 

After 2h of growth at 37°C (200 rpm), the pre-induction cultures had reached a 

O.D.600 nm of about 0,6 and were ready for induction (see Manual: Expression and 

purification of proteins using Strep-tag and/or 6x Histidine; http://www.iba-

go.com/download.html).    

Prior to induction, 5 ml were taken of each culture to constitute a negative control and 

grown in parallel of the induced cultures. To induce the protein production 9,5 µl of 

anhydrotetracycline (end concentration in media: 200 ng/ml) were added into each 

pre-induction culture.  

 

As recommended by the manufacturer, we first induced the production of the protein 

for 3h at 30°C, which gave good results. To improve the quantity of soluble protein, 

we then tested three other production conditions: after the addition of AHT, the 

cultures were either grown at 18°C for 3h or o.n., or grown at 30°C, o.n..  

 

To discriminate between the efficiency of the different conditions of induction, an 

aliquot (1ml) of each culture and respective negative controls was taken and 

centrifuged at the end of the induction period. The rest of the cultures were 

centrifuged (15 min at 1600 g in an Avanti J-25I centrifuge; Beckman) and the cell 

pellets were frozen (-20°C).   

 
 
Protein extraction 
 
Soluble and insoluble fractions were analysed by SDS-PAGE. An aliquot of each 

fraction per culture and corresponding negative control was run on a denaturing 10% 

acrylamide gel (acrylamide/ bisacrylamide; 29:1). Two gels loaded with the same 

samples were run in parallel (40 mA) and after migration one was used for 

Commassie staining and the other for western blotting. 

 

Running buffer (Sambrook and Russell, 2001): 

Tris-Glycine-SDS (1X): tris-base 25mM, glycine 250 mM (pH=8,3) and 0,1% SDS 

(w/v).  
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Coomassie staining (Sambrook and Russell, 2001): 

The gel was fixed for 10-15 min in 25% (v/v) isopropanol-10% (v/v) acetic acid, 

stained for 10-15 min in Coomassie solution (0,03% (w/v) R250 Brilliant blue in 10% 

acetic acid) and gradually distained in a 10% (v/v) acetic acid solution.  

 

The protein transfer was performed using an Ammersham Biosciences_TE77PWR 

transfer apparatus and done according to (Sambrook and Russell, 2001). The proteins 

were transferred form the gel onto a nitrocellulose membrane (Amersham HybondTM 

ECLTM; 0,45µm pore size) in approximately 30 min at 45 mA (0,8mA/cm²). The 

proteins were transferred from gels onto membranes under semi-dry conditions. 

 

Transfer buffer (Sambrook and Russell, 2001): Tris-Glycine-SDS (1X): tris-base 48 

mM, glycine 39 mM and 0,037% SDS (w/v), methanol 20%.  

 

Prior to the detection, we checked that the transfer had occurred by Ponceau staining. 

Done according to (Sambrook and Russell, 2001): the membrane was stained with 

0,5% Ponceau red solution (v/v in acetic acid 1%; v/v) for 1min. Excess of staining 

was removed using destilated water. Finally, most of the coloration was removed 

before proceeding with the Strep-tag HRP Detection Kit. 

 

We checked the presence of our protein using the Strep-tag HRP Detection Kit from 

IBA (according to the manufacturer instructions). This kit is based on the detection of 

the strep-tagII tagged protein by a Strep-Tactin complex fused to the horse radish 

peroxydase (HRP). First, the membrane is washed and blocked, second it is incubated 

with the enzyme conjugate (Strep-Tactin HRP fusion). Afterwards, the presence of the 

Strep-Tactin HRP complexes, and thus of the recombinant protein, is revealed using a 

chromogene solution (colorimetric detection). The HRP catalyses the transformation 

of a colourless substrate into a coloured product. The use of this kit saves a lot of time 

as there is only one blocking step of 30 min and only one labelling time of 30 min. 

This kit also makes the detection easier as the colour can be directly read on the 

membrane.  
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From this experiment, we concluded that growing the cultures at 18°C for 3h leads, in 

our case, to the production of more soluble protein. We therefore proceeded further 

with the pellet of these cultures.  

 
 
Protein purification 
 
At the end of the induction period, the cultures were centrifuged and the medium 

removed. Five ml of Buffer W (100mM Tris/HCl pH8, 150 mM NaCl, 1 mM EDTA; 

see Manual: Expression and purification of proteins using Strep-tag and/or 6x 

Histidine; http://www.iba-go.com/download.html) were added to the cell pellets from 

the 100ml and the samples were frozen at -20°C for more app. 1h. The pellets were 

thawed quickly and centrifuged 15 min at 4°C at ~ 1600 g ( 4000 rpm) (Beckman 

Avanti J-25I) in order to sediment cell debris and protein aggregates.  

 

The tagged-HTM protein was purified using a gravity flow Strep-Tactin column of 

1ml bed (Sepharose). The purification (see short protocol for Strep-tagII purification; 

http://www.iba-go.com/download.html) was done at room temperature: five wash 

fractions and six elution fractions were retrieved and the elution of the tagged protein 

was followed by measuring at O.D.280 nm using a NanoDrop Spectrophotometer ND-

1000 (Peqlab Biotechnologie GmbH).  

 

An aliquot of the fractions containing some protein were run on a denaturing 10% 

acrylamide gel (acrylamide/ bisacrylamide; 29:1). After electrophoresis, a Coomassie 

staining and a Western blot were done. Protein bands from the gel stained with the 

Coomassie solution, matching the position of the bands revealed by the HRP 

conjugate on the Western membrane, were sent to the MALDI for confirmation of 

their nature. 

 

Protein sequencing  
 

This work was performed and described by Thomas Colby. 

 

The sample was analyzed by LC-MS-MS/MS using a Q-Tof2 (Micromass/Waters) 

mass spectrometer coupled to a Waters CapLC (with nano-flow splitter) equipped 

with a 75micron x 150mm Atlantis dC18 Nanoease column with a Symmetry C18 
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pre-column in forward-flush configuration. Peptides were eluted with 15-minute 

gradient from 10-50% acetonitrile (0.1% formic acid) which was followed by column 

cleaning and re-equilibration phases. 

Eluted peptides were measured in survey-scan mode with a capillary voltage of 1.6 

kV and a cone voltage of 45V and a m/z collection range of 400-1600 Da and 1 

second frames.  Multiply-charged precursor ions of sufficient intensity were 

fragmented in an argon collision cell under mass-dependent collision energy. 

Daughter-ion spectra were collected over the range 50-1800 Da with 1.9 second 

frames.  

 

Peakfiles from the processed spectra were submitted to MASCOT MS/MS search 

with a peptide mass error tolerance of 0.4 Da and a Fragment mass tolerance of 0.4 

Da.  The Mascot score of 670 on a total of 19 peptides covering 34% of the sequence 

made the identification uniquivocal. 

 

2.17.2. Complementation assay in bacteria 
 
Electro-competent cells of the E.coli JC 200 and JC 201 were transformed with the 

pASK-IBA 3C carrying the HTM cDNA. Positive clones were selected on LB 

chloramphenicol medium (30°C). Some positive clones were replicated twice, and 

half of the plates were placed at permissive (30°C) and restrictive (42°C) 

temperatures.  

 

We also established the bacteria growth curve in liquid media following the OD 

increase (Eppendorf BioPhotometer) at both temperatures and performed the 

complementation test in these conditions too.  

 
 
2.18 Complementation of Arabidopsis fdh mutant by HvFDH  
 
2.18.1. Plant transformation and segregation analysis 
 
The promoter of the Arabidopsis thaliana FDH, from the base -660 till the base –16 

before the ATG, and the cDNA of the barley (Hordeum vulgare) FDH gene have been 

introduced in a binary vector comporting a carbenicilline and a BASTA resistance 

gene (cloning by Jafar Jabbari Sheikh; Klaus Oldach’s group; University of Adelaide, 

Australia).  
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The received plasmid was introduced in A. tumefaciens, some colonies were tested by 

PCR and two positive clones were grown to produce more plasmid. Plasmid DNA 

was prepared using a QIAprep Spin Miniprep Kit, and 0,5 µg were digested by 5 U of 

EcoR1, 2,5 U Sal1, 2,5 U Pvu1 (NEB) for 5h at 37°C separately. We proceeded 

further with a colony containing a plasmid showing the expected restriction pattern.   

 

Plants were grown under long day conditions (16 h day /8 h night). Arabidopsis 

thaliana Col-0 and fdh heterozygous plants (genotyped by tetra-primer ARMS-PCR; 

see below) were transformed by floral dipping (see above; (Jakoby et al., 2006). 

Transformants were bagged individually. 

 

The progeny from 53 transformants (42 heterozygous fdh and 9 WT Columbia plants) 

were sown and sprayed with a 0,1% BASTA solution (see above). Progeny of FDH 

heterozygous and of “HTM reporter” plants were used as negative and positive 

controls respectively.  

  
BASTA resistant plants were examined at the rosette, young flower and silique stages. 

Only then, to avoid any stress to the plants, tissue was harvested for genotyping. 

 

The observations were done visually and under the microscope (Leica WILDM420). 

Pictures were also taken with a digital camera (Nikon E8400).  

 
2.18.2. Genotyping of plants  
 
Genomic DNA was purified according to the 96 DNA protocol (Michaels and 

Amasino, 2001) to genotype plants prior to transformation. Genomic DNA from the 

BASTA resistant plants was purified using a DNeasy Plant Mini Kit from QIAGEN. 

  

For genotyping, plant DNA was amplified by a multiplex PCR allowing the 

distinction between WT, heterozygous and homozygous mutant plants (Figure. 8; 

primer design and PCR optimisation by J. Sheikh (University of Adelaide, Australia) 

based on (Ye et al., 2001): Tannealing=60°C and elongation time=40s.  

 

The results of the PCR and of the visual observations, done on the BASTA resistant 

plants, were compared. We concluded that some plants with a WT appearance had a 
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mutant genotype (see Results). We confirmed this result by sequencing four WT-

looking like plants found mutant by PCR. As a control, the PCR product from a WT 

Columbia, a fdh mutant and that of a survivor, genotypically and phenotypically 

mutant, was also sequenced (ADIS; MPIZ). The D155-AtFDH3 and D156-AtFDHR3 

were used for sequencing. 

 

FDH
fdh

FDHfdh
fdh FDH

358-360 bp
279 bp
170 bp

FDH
fdh

FDHfdh
fdh FDH

FDH
fdh

FDHfdh
fdh FDH
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279 bp
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Figure 8. Distinguishing between FDH and fdh alleles by ARMS-PCR. The primer pair D155- 

D156 amplifies the 358 bp region containing the transposon foot-print; mutant gives a 360 
bp product. Both, D156-D166 and D155-D157 generate allele specific products: the first 
pair amplifies the mutant allele (239 bp) and the second the WT allele (170 bp) respectively. 

 
 
2.19 Microarray analysis 
 
2.19.1. Plant, growth conditions and hybridization to Affymetrix ATH1 chips 
 
Mutants (bdg, lcr, fdh) and WT (Col-0) were grown side by side under short day 

conditions (8 h day/ 16h night; 20°C/18°C). Plants were five weeks and a half when 

tissue was harvested. Four independent samples were prepared per plant type. Each 

sample contains tissue from 15 plants. Young deformed and/or fused leaves (2mm to 

1cm) were chosen to compose the samples. Total RNA was purified using the RNeasy 

Plant Mini Kit (QIAGEN) according to the manufacturer instructions. The RNA 

samples were sent to the Integrated Functional Genomics (IFG) platform of the 

Westfalian-Wilhelms-University (Muenster, Germany; http://ifg-izkf.uni-

muenster.de/Genomik/) for quality checking, concentration optimisation and 

hybridisation on Affymetrix ATH1 arrays. For each plant type, we have three 
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biological replicates and no technical replicates. Two samples per plant type were sent 

first for hybridisation and later, a third sample per genotype was hybridised.  

 
2.19.2. Defining the list of mis-regulated genes in our mutants 
 
Using the Microarray Suite 5.0 programme of the Affymetrix package, samples were 

scaled to an overall fluorescence intensity of 500 to allow their comparison. Each 

mutant dataset was compared to each WT dataset, and thus signal log ratios (slr) were 

calculated (MAS5 statistical algorithm; Statistical algorithms description document, 

technical repport; Affymetrix 2002). The results comprising Affymetrix gene ID, slr, 

detection signal, Absence/Presence (A/P) call, change status and the p-value 

associated to the detection of a intensity change were exported into Microsoft Excel 

(2003). Genes were filtered out if they did match the following criteria:  

-Their signal log ratios should be equal or higher than 1 or equal and lower than -1; 

-Their A/P calls were checked for coherence (i.e. if “a signal” is called PRESENT 

with a detection intensity of 250 in one case, it should not be called ABSENT or 

MISCELLANEOUS with a detection intensity of 249 or lower in the other samples);  

-A gene should at least be called PRESENT twice either in the mutant or in the WT 

samples; 

-If a gene had more than three NC (NON CHANGE) among its nine change statuses, 

the gene was excluded of the list.  

 

As for the confirmation of our microarray results, the list of the candidate genes for 

RT-PCR had been established according to the data obtained on two replicates (see 

Results), we had to slightly decrease the stringency of our selection criteria and also 

include genes which among their nine slr values had one value between -1 and 0 or 0 

and 1. Genes fulfilling this criterion and all the others are among the list of mis-

regulated genes in our mutants.  

 
Programme settings in  

Microarray Suite (5.0)  

 
 
 
 
 
 

Scaling factor 500 
Alpha1 0,05 
Alpha2 0,065 
Tau 0,015 
Gamma 1L 0,0045 
Gamma 1H 0,0045 
Gamma 2L 0,006 
Gamma 2H 0,006 
perturbation 1,1 
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We also performed a Bayesian T-test and calculated False Discovery Rates (FDR), 

based on the p-values calculated in the T-test 

(http://cybert.microarray.ics.uci.edu/;(Allison et al., 2002). The corresponding data 

and the list of previously sorted mis-regulated genes were compiled.  

 

Cybert and PPDE settings 

 

For the estimation of Bayesian Standard Deviation, a sliding window of 101 and a 

confidence value of nine were chosen. The p-log transformed values were used as 

input and three β iterations were done for the PPDE calculation. Low-Value Handling 

was left to zero.  

 

During the procedure, we used the Merge macro from the FiRe package 

(http://www.unifr.ch/plantbio/FiRe/main.html#mozTocId845754; (Garcion and 

Metraux, 2006) to merge tables and the Compare Three Lists macro from the FiRe 

package to draw the Venn Diagrams. 

 

Locus Identifier corresponding to the array elements were retrieved from the TAIR 

database (http://www.arabidopsis.org/index.jsp; Microarray Elements; version of the 

02.05.2007)  

 
 
2.19.3. Confirmation of our microarray results by semi-quantitative RT-PCR 
 
The list of the candidate genes was established according the data obtained on two 

replicates. The profile of accumulation of each gene was established and using a 

number of amplification cycles in the linear phase of accumulation, the change in 

regulation between mutant and WT was checked (primer list and number of 

amplification cycles; (see Appendix A).  

 
 
2.20 Phylogenic analysis 
 
2.20.1. BDG and its family 
 
The predicted sequences from the BDG and the four HYD proteins were used to build 

an un-rooted tree. The calculations were performed on the Phylogenetic WE6 repeater 
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platform (http://power.nhri.org.tw/power/home) using default settings (pair wise 

alignment: “slow and accurate option”; Gonnet matrix) and the Neighbor-joining as a 

clustering method (1000 bootstraps). 

 
2.20.2. Barley FDH, Antirrhinum FDH and the Arabidopsis FAE family 
 
This tree was built using the predicted protein sequences encoded by the 21 elongases 

from the Arabidopsis thaliana FAE family, AFI from Antirrhinum majus, FDH from 

Gossypium hirsutum plus hvFDH from Horderum vulgare (barley). The calculations 

were performed on the Phylogenetic WE6 repeater platform 

(http://power.nhri.org.tw/power/home) as described above. 
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3. Results 
 
3.1. Lacerata, bodyguard and fiddlehead mutants 
 
3.1.1. Cuticle properties of lcr, bdg and fdh mutants are altered 
 
In a screen for mutants with increased cuticle permeability, Machida and co-workers 

described the use of toluidine blue as a dye which stains organs when their cuticle is 

not properly formed (Tanaka et al., 2004). This water-soluble molecule adheres to 

hydrophilic surfaces rich in anionic groups present, for instance, in plant cell wall. In 

presence of a normal cuticle no staining can be observed; however, in presence of a 

defective cuticle, this dye can probably access the underlying cell wall materials, 

leading to tissue staining. We applied this method to leaves of our mutants and 

observed a patchy staining, highlighting the irregular impermeability of their cuticle 

(Figure. 9_A). Leaf coloration did not differ between fused or unfused rosette leaves.  

 

To further illustrate the modification in cuticle permeability of our mutants, we 

performed chlorophyll leaching assay (Lolle et al., 1997). As described by Lolle and 

co-workers, intact rosette leaves were immersed in 80% ethanol, solvent samples were 

taken regularly and their absorption measured at 647 and 664 nm (absorption maxima 

of the chlorophyll). In this experiment, we used leaves from fdh as control; our results 

for this mutant are similar to the data from Pruitt and co-workers (Lolle et al., 1997). 

Rosette leaves from the respective mutants release their chlorophyll content faster 

than WT. Thus, this result (Figure. 9_B) also suggests that the cuticle of these mutants 

is weakened. To study if there is a relation between cuticle permeability and the 

engagement in ectopic organ fusion we prepared two different types of lcr samples. 

The first type only contained leaves that were not joined in a fusion (sample of type 

N), the second contained both, leaves joined in a fusion and leaves not joined in a 

fusion (sample type J+N). The sample of type N looses its chlorophyll pigments 

quicker than the WT control but slower than the sample of type J+N. This last element 

of comparison shows that higher permeability may be linked to fusion.    
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Figure 9. The effect of an impaired cuticle shown by toluidine blue staining and chlorophyll 

leaching. (A) WT and mutant leaves after 2 min immersion in a 0,05% toluidine blue 
solution and destaining in water. WT leaves remain unstained whereas mutant leaves 
display a patchy coloration. (B) Chlorophyll extraction from representative rosette leaves of 
bdg and lcr mutants. Fdh was used as a control, the samples of type N contained only lcr 
leaves not engaged in a fusion and, the sample of type J+N contained leaves joined in a 
fusion and leaves not joined in a fusion. At least six repetitions per plant type were made. 
Average ± standard error (s.e.) are presented here. Plants were seven-eight weeks old (short 
day conditions). 

 
 
3.1.2. Under in vitro culture conditions, lcr and bdg show epidermal deficiencies and 
enhance root growth  
 
When grown under greenhouse conditions, many cuticular mutants show a wide range 

of phenotypes (post-genital organ fusion, leaf deformation,...) and are generally 

smaller than their WT counterparts. An overall increase in cutin monomers per leaf 

area was shown in WT plants grown under water deprivation and in the bdg mutant 

(Faust, 2006; Kurdyukov et al., 2006b). Therefore, one cannot exclude that the open-

air growth conditions, which are suitable to WT growth, are actually deleterious to the 

cuticular mutants, which may not be able to maintain water balance. The progressive 

death of trichomes, which after a while lie flat on the epidermis of bdg leaves,  may be 

for instance one of the effects of the dehydration (Kurdyukov et al., 2006b).  

 

As it is not possible to propagate fdh mutants by selfing (the fdh mutant is sterile) and 

not always easy to distinguish fdh mutants from WT or heterozygous plants at early 

developmental stages, therefore only bdg and lcr were considered for further 

characterisation under in vitro culture conditions. 

 

To this end, plants were grown on hormone-free MS media. Although plants could 

develop under high humidity and were thus free from any dehydration stress, 



Results 

 46

trichomes in bdg still collapse in a progressive way (Figure. 10_C_D_E). Apart from 

trichome degeneration, the presence of tears in the epidermis was observed on the 

surface of young, misshaped or WT-looking leaves of bdg (Figure. 10_F_G_H_I). 

Under in vitro culture conditions, neither bdg nor lcr seedlings showed growth 

retardation; they even thrived better than WT plants (Figure. 11). They, however, still 

displayed leaf deformation (Figure. 10_B), leaf fusion and early appearance of 

axillary apical meristem (Figure. 10_A).  
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Figure 10. Leaf and trichome phenotype of bdg when grown under in vitro culture conditions. (A) 

Three weeks and a half old WT and bdg plants. Bdg leaves are misshaped, showing short 
and thick petioles and deformed limbs (see also B). Early in the vegetative phase, before 
any shoot has grown, a second meristem sometimes forms on bdg (or lcr) plants (arrows). 
(B) Two weeks and a half old representative WT and bdg leaves. (C)(D)(E) Collapsing 
trichomes observed on the adaxial side of bdg leaves. The base of a WT trichome is shown 
in the inset (C). Different phases of trichome death could be observed on the surface of 
bdg leaves. In bdg, trichome bases do not remain bulbous; they progressively loose contact 
with the subsidiary cells. Trichomes often become flat, and collapse. (F) to (I). Ruptures in 
the epidermis were observed on the surface of bdg leaves. As the leaves grow, the tears 
enlarge, and expose larger area of mesophyll (G). Bar: (A)(B) 2 mm; (C) to (I) 100 µm. 
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Figure 11. Plant biomass of lcr and bdg mutants under in vitro culture conditions. After 

germination, plants were grown for a week on vertical plates. Root and aerial organs of the 
plants were dried for three days at 60°C before weighing. Weight means and standard 
deviations presented here are based on 32 WT plants, 16 lcr and 16 bdg plants. 

 
 
When grown under 100% relative humidity, WT and seedlings from both mutants at 

first developed slightly translucent leaves. WT plants seemed to adapt to the 

environment but mutants progressively developed glossy and vitrified leaves. 

Outgrowths tended to develop on the petiole from succulent leaves (Figure. 

12_B_C_D); and, while after approximately four weeks WT plants bolted, most 

mutant plants had degenerated into a callus-like structure (bdg: 30 out of 33; lcr: 

20/27) or kept producing leaves and showed fusion (Figure. 12_A_B). This is 

reminiscent of cutinase-expressing plants (CUTE plants) which show callus-like 

bulges at the tearing points (Sieber et al., 2000). We confirmed this observation and, 

furthermore, found that when grown under slightly more humid greenhouse 

conditions (tray partially covered), regeneration of roots or full plantlets could take 

place on CUTE plants (Figure. 13). Some of the bdg or lcr plants, among the ones 

showing fusion, did bolt and develop reddish shoots. A petiole from a succulent leaf 

of each mutant was observed under SEM. As only one petiole per mutant was 

observed, no conclusion about the degree of epidermal damage can be drawn, yet the 

epidermal defect was obvious in both mutants, the epidermis could even be absent in 

bdg (Figure. 12_E). Although the petioles still had the expected shape, their covering 

was impaired, exposing their mesophyll tissue. We also conducted a toluidine blue 

staining on three-week old plants grown under in vitro growth conditions: petioles, 

fusion zones and abaxial leaf sides were mostly stained (data not shown).  
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ÅFigure 12. Callusing of bdg and lcr mutants under in vitro culture conditions. (A) After four 

weeks of growth under in vitro culture conditions, most WT plants have bolted whereas 
most of the lcr and bdg plants have degenerated. (B)  A representative four weeks old WT, 
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lcr and bdg plant. Most mutants display a callus-like structure in the shoot apex. Two older 
leaves had been removed from the lcr sample before taking images. Older leaves have lost 
most of their pigmentation and younger organs have a succulent appearance. Bulges are 
visible on the surface of the petioles. (C) Transversal cut through a WT, lcr and bdg rosette 
leaf. Mutant organs are thicker. Absence of trichomes and of a clear epidermal 
delimitation. (D) Close up on a WT leaf, a lcr shoot meristem from which young succulent 
leaf-like organs emerge, and of a leaf petiole of bdg. Notice the presence of bulges on the 
surface of mutant organs. (E) SEM pictures showing the surface of a petiole from each 
plant type. Both mutant samples displayed bulges visible by eye. A discontinuous 
epidermal cell layer covers lcr petiole whereas no epidermis is present on the surface of 
bdg sample. Bar: (B) 5 mm (C) to (E) 1 mm. 
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Figure 13.  Features of CUTE plants. Plants were five weeks old. (A) (B) All CUTE plants show 

organ fusion and some of them leaf or petiole tearing (25/63). Notice the presence of white 
bulges at the place of recent organ rupture in (A) and in (C). (B) In 8% of the cases (2/25 
plants displaying callus-like structures), roots, leaves or complete mini plants develop on 
these callus-like structures. Bar: (A) (B) 5 mm (C) to (E) 1 mm. 

 
 
Both, bdg (Kurdyukov et al., 2006b) and lcr (A. Yephremov, unpublished data), genes 

are expressed in roots where no cutin is synthesised. As a first approach to understand 

their importance in root development, we grew plants on vertical plates and found that 

both mutants appear to be as sensitive to gravitropism as the WT control (see 

Methods). We also observed that the perception of obstacles (hard agar surface) by 

the mutant roots does not seem to be altered, as the wavy pattern of their main root 

was not different from the WT pattern (see Methods). With respect to root growth and 

root morphology, no difference could be found in the length of the main roots 

between mutants and WT (Figure. 14_A_B). However the growth of secondary roots 

seemed to be initiated earlier in both mutants which, developed more secondary roots 

than the WT (Figure. 14_A_C). 
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Figure 14. Effects of the bdg and lcr mutations on root growth. (A) Wild type Columbia, bdg and 

lcr plants were grown on vertical plates for a week. The mutants have developed more 
secondary roots. (B) The length of the main root was recorded on daily bases until 6 days 
of growth on vertical plates. The graph shows averages and standard deviations based on 
16 bdg, 15 lcr and 32 WT plants. (C) The number of secondary roots was recorded during 
five days of growth on vertical plates. Averages and standard deviations are shown for 16 
bdg, 15 lcr and 32 WT plants. Bar: (A) 1 cm. 

 

As mutants seemed to be sensitive to water deprivation, some polyethylene glycol 

(PEG) was added to the media (Eapen et al., 2003). PEG binds water molecules, thus 

reducing the water potential of the media, without inducing hypertonic stress. But 

mutants still grew more secondary roots than WT in the presence of various PEG 

concentrations (Figure. 15_A). Therefore, no effect directly imputable to dehydration 

by lack of root expansion could be detected. The mutants still tend to grow better in 

these conditions too (Figure. 15_B) 
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Figure 15. Growth and root development of bdg and lcr on media containing PEG. (A) Graph 

showing the number of secondary roots in WT, bdg and lcr when grown in presence of 
various PEG concentrations. (B) Weight data for roots and aerial organs from WT and 
mutants grown in presence of various PEG concentrations for two weeks. Averages and 
standard deviations are shown, based on at least three plants except for lcr “10% PEG” 
were only data from two plants were included. 

 
 
Growing bdg and lcr plants under in vitro culture conditions allowed us to confirm the 

characteristic features of these mutants like leaf fusion and enhance branching and 

also, to verify that trichome death in bdg does not depend on environmental 

conditions. The repercussion of both, bdg and lcr mutations, on root development 

seem to indicate that they affect the hormonal equilibrium of the whole plant. Both 

proteins may be, through their effect in cutin synthesis, involved in signalling.  

 
 
3.1.3. The cutin composition of lcr and fdh leaves is altered 
 
After removing the soluble lipids, we analysed the cell wall bound lipid composition 

in lcr and fdh leaves by GC and GC-MS (see Methods). The cell wall bound lipid 

composition of lcr and fdh was analysed twice per mutant. Each experiment series 

included at least five replicates per plant type (see Methods and see Appendix F for 

Summary table). As cuticle composition is influenced by the environment (Faust, 

2006) mutants and WT controls have to be grown in parallel.  

 

First, lcr and WT were sown, two weeks later fdh and WT were put on soil. Then, to 

facilitate the direct comparison between the mutants and to understand how much of 

the changes in bound lipid composition is due to the respective mutations, lcr, fdh and 



Results 

 52

WT control plants were sown in parallel and analysed a second time. The first set of 

analyses is grouped in experiment A; the second analysis referred to as experiment B.  

 
There are two ways to analyse cutin: the first one consists in the isolation of pure 

cutin by enzymatic digestion to separate it from the cell wall (Franke et al., 2005). 

This is quite laborious to do with Arabidopsis leaves which cuticle is about 20 nm 

thick, therefore another method was optimised. This method consists in removing all 

soluble lipids from leaf pieces by extracting them in chloroform-methanol. After a 

week or so, of extraction, only cell wall bound lipids are left (Franke et al., 2005). The 

composition of isolated cutin and cell wall bound lipid residues are similar; monomers 

belonging to the following functional categories were identified by both methods: 

very long chain unsubstituted fatty acids, very long chain alcohols, 2-hydroxy acids, 

ω-hydroxy fatty acids and α,ω-diacids (Franke et al., 2005). However shorter very 

long chain fatty acids (16-18 unsaturated monomers) and 2-hydroxy acids were found 

more abundant in the cell wall bound lipids than in the cutin. We therefore decided to 

sort the monomers identified by cell wall bound lipid analysis into two groups. 

Thereafter, “typical cutin compounds” refers to very long chain unsubstituted fatty 

acids (chain lengths of C22, C24), very long chain alcohols, ω-hydroxy fatty acids, 

and α,ω-diacids; the expression “cutin concomitant compounds” refers to shorter very 

long chain unsubstituted fatty acids and 2-hydroxy acids. 

 

In experiment A and B, both mutants show a global increase in typical cutin 

compounds: 60% and 70% for lcr and 15% and 30% for fdh. The decrease in C16 

α,ω-diacid is, in weight, more than compensated by an increase in C18:2 α,ω-diacid, 

the most abundant cutin monomer (Figure. 16).  
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Cell wall bound lipid analysis Experiment B
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Figure 16. Analysis of cell wall bound lipid from fdh and lcr mutants. Experiment A (A,B) and B. 
(C,D) Mean values and standard deviations are plotted on the graphs. When statistically 
(Mann-Wihtney U test; <0,05) the difference between WT and mutant amounts were found 
not significant, the bars are filled with grey. 2-OH acids: 2-hydroxy fatty acids; ω-OH 
acids: ω-hydroxy fatty acids. 

As a matter of fact the amount of C18:2 α,ω-diacid seems to be highly variable. In 

experiment A, mutants and respective WT controls were sown two weeks apart and 

the amount of C18:2 α,ω-diacid detected in fdh’s WT control (~0,9 µg/cm2) is three 
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times higher than in that of lcr (~0,3 µg/cm2) (Figure. 16; A,B). In experiment B, all 

plants were sown at a time, so there is only one WT control, the amount of C18:2 α,ω-

diacid present in WT bound lipids only reached about 0,1 µg/cm² this time (Figure. 

16; C,D). This represents appreciatively a third or a tenth of what was detected in 

experiment A. The amount of this monomer may be fine tuned according to the 

environmental conditions. In any case, the amount of C18:2 α,ω-diacid detected in the 

mutants is higher than in the WT plants. It is nearly always twice higher in the 

mutants except for fdh in the experiment A (Figure. 16 B); in this case the WT 

accumulated a remarkably high amount of C18:2 α,ω-diacid (~0,9 µg/cm2) and fdh 

only showed about a tenth increase (~1,1µg/cm2). The WT amounts in other 

monomers were quite similar from an experiment to the other.  

 

The differences observed between the WT and the mutants in typical cutin 

compounds were reproducible (Figure. 16); this holds particularly true for the very 

long chain alcohols, the ω-hydroxy fatty acids and the α,ω-diacids. As far as 

unsubstituted VLCFA (22-24 carbons) are concerned, this mostly remains true as well 

except for the variation of C24 acid content in fdh (Figure. 16). We observed a 

significant overaccumulation of most of the monomers (Figure. 16), but no 

modification in the general monomer repartition. The changes in detected shorter 

chain unsubstituted acids and 2-hydroxy acids appear to be more environmentally 

related, as they are not consistent between the two rounds of experiments but are 

similar in both mutants within an experiment (Figure. 16).  

 

Effects of lcr and fdh on the composition of cell wall bound lipids are comparable. 

That was quite unexpected as LCR and FDH have distinct functions (Yephremov et 

al., 1999; Wellesen et al., 2001).  

 
 
3.1.4. Lcr and bdg mutations have little influence on seed coat composition 
 
As BDG and LCR are expressed during ovule development and as we could observe a 

defect in seed covering during seed development by toluidine blue staining (Figure. 

17), we decided to analyse the seed coat composition of both mutants. As seeds are 

protected during their development, we may be able to shade off most of the 
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environmental effects and only observe the effects of the respective mutations. Bdg 

and lcr mutations may also have distinct effects on the composition of this polymer.  

WT bdglcrWT bdglcr

 
 
Figure 17. Toluidine blue staining of lcr and bdg developing seeds. WT, lcr and bdg ripening seeds 

after 2 min of immersion in a 0,05% toluidine blue solution. Whereas WT seeds remain 
unstained, both, bdg and lcr seeds, are stained. Bar: 1mm. 

 
When we became interested in the seed coat composition of our cuticular mutants, no 

extraction method was available. So we developed a new extraction method: we 

started from 10 mg of WT seeds and tested if storage lipids could be efficiently 

removed from intact seeds. Storage lipids are the most abundant lipids in seeds and 

would mask the seed coat monomers. As after a day of extraction, intact seeds had 

only released 1% of their total content of storage lipids, we cracked the seeds, using 

an agate mortar and pestle deep-frozen in liquid nitrogen. We recovered the cracked 

seeds in chloroform: methanol (1:1) (see Methods) and extracted the soluble lipids, 

mostly storage lipids in this case, for seven days changing the solvent four times. The 

amount of extracted storage lipids steeply decreased:  after a day of extraction: about 

95% of storage lipids were present in the solvent. After seven days of extraction and 

four solvent changes, only traces of storage lipids were left (0,17 %; 0,5 µg/mg seed) 

and we could preliminary determine the composition of the WT Columbia seed coat. 

Because the amounts of storage lipid left and that of seed coat monomers were in 

similar ranges, from then on we thus included more solvent changes. In the next 

experiments, instead of filtering to change the solvent we centrifuged to minimise 

particle loss (see Methods). We then applied this method to lcr and bdg seeds.  
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Most of the changes in seed coat composition of the lcr and bdg mutants were found 

to be not statistically different according to the Mann-Wihtney U statistical test 

(p<0,05) (Figure. 18). This may indeed be attributed to the protection offered by the 

silique during seed development. This analysis was done twice per mutant, on two 

independent seed sets. To constitute the samples used the experiment A, seeds from 

20-30 bdg, lcr and WT plants had been respectively pulled together, and four samples 

taken from the respective pools. Each sample from the experiment B was composed 

of seeds from three independent plants. 
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Figure 18. Seed coat analysis from bdg and lcr mutants. Experiment A and B. Averages and 

standard deviations are shown. Each bar represents the average of at least four 
samples per plant type. When statistically (Mann-Withney U test; <0,05) no 
significant difference was found between WT and mutant amounts, the bars are filled 
with grey. 2-OH acids: 2-hydroxy acids; C16* = C16 acid + transferrulic acid; C22Br 
* = branched C22 2-hydroxy acid + C20 2-hydroxy-acid; Two peaks showing the 
fractioning patterns of the C22 and C24 ω-hydroxy-fatty acids were found in both 
WT and mutant spectra (arrows); compounds eluted in first position were named 
C22 and C24 ω-hydroxy-fatty acid “bis”. 
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In experiment A, both mutants tend to accumulate less C24 ω-hydroxy-fatty acid than 

the WT control, and a clear decrease is observed in C24 α,ω-diacid. Bdg seed coat 

also showed a reduction in C18:2 α,ω-diacid (Figure. 18). In experiment B, these 

differences were not observed: levels of C24 ω-hydroxy fatty acid and of C24 α,ω-

diacid in bdg and lcr were similar to that of WT, and this time bdg did not show a 

significant decrease C18:2 α,ω-diacid (Figure. 18). The comparison of both series of 

experiments revealed that the level of C24 ω-hydroxy fatty acid in the mutants was 

similar in both experiments but that of the WT control was much higher in the first 

than in the second series (Figure. 18), dropping from about 22 µg/mg seed to 18 

µg/mg seed.  

 

An overaccumulation of seed coat monomers was observed neither in lcr nor in bdg, 

this may be because of silique protection and weak environment impact or else, 

because both mutations do not really or directly influence the seed coat composition.  

 
 
3.1.5. Lcr and fdh mutations influence wax composition  
 
Bdg accumulates more wax than WT plants (Kurdyukov et al., 2006b) and, in this 

mutant, the wax biosynthesis pathway is upregulated (Kurdyukov et al., 2006b); see 

Microarray). As the microarray data also revealed the up-regulation of genes involved 

in the wax biosynthesis in lcr and fdh (see Microarray), we checked whether this up-

regulation is also accompanied by a greater wax accumulation in these mutants.  

 

Wax load from lcr and fdh leaves were analysed by GC and GC-MS (see Methods; 

(Kurdyukov et al., 2006b). The wax analysis had already been performed on the lcr 

mutant (R. Franke, personal communication), results obtained in both experiments are 

very similar.  

 

In average, wild-type leaves had a wax load of 0,72 ± 0,07 µg/cm², fdh leaves a wax 

load of 2,66 ± 0,25µg/cm², and lcr leaves 1,57 ± 0,25 µg/cm². In average, this 

represents a 3,7 and a 2,2 fold increase in wax per cm² in fdh and in lcr mutants, 

respectively. This is mainly due to a greater accumulation of alkanes in both mutants 

and, in the case of fdh, also due to the massive accumulation of aldehydes (Figure. 

19). 
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ÅFigure 19. Influence of the lcr (A) and fdh (B) mutations on the wax composition in their leaves. 

Mean values of at least five replicates, each containing a leaf from at least ten 
independent plants, and standard deviations are plotted on the graphs. When statistically 
(Mann-Wihtney U test; p <0,05) no significant difference was found between WT and 
mutant, the bars are filled with grey. 

 
Most of the monomers accumulate in both mutants; the most abundant monomers 

namely the alkanes show the strongest increase in lcr (4 fold per cm²). The fdh waxes 

also have a greater amounts of alkanes (5,7 fold), however this is not the only massive 
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accumulation observed in this mutant: a drastic increase in the aldehydes amounts 

(46,3 fold) is observed in this mutant.  

 

Polycyclic alcohols, namely brassinosterol, β-sitosterol, campesterol and cholesterol, 

were also identified in mutant and WT waxes. As the aliphatic monomers, they were 

found to accumulate more in both mutants: globally fdh waxes contains three times 

more polycyclic alcohols per cm² and lcr twice more (data not shown). In relative 

amounts, however there is no much of a difference: when included in the calculations, 

the polycyclic alcohol group represents app. 11% of the wax monomers in the WT, 

about 9 % in fdh and about 11% in lcr (data not shown).   

 
In proportion, unsubstituted acids and primary alcohols are less abundant in both 

mutants and the alkane share of both mutants is greater. In lcr there are proportionally 

less aldehydes than in the WT, and in fdh much more (Figure. 20).  
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Figure 20. Wax composition of WT, lcr (A) and fdh (B) leaves. Amount of each monomer is 

expressed as a percentage of the total amount of aliphatic monomers. When WT and 
mutant amounts were not found statistically (Mann-Wihtney U test; p <0,05), bars are 
filled with grey. 

 

In summary, fdh and lcr mutations affect wax composition, leading to an increase in 

wax load per square centimetre and to disequilibrium between the compound 

categories. The former suggest these mutants may try to overload their epidermal 
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surface with wax, to cope with the deficiency of their outermost coating, and the latter 

suggest that the mutants try to adjust the hydrophobic properties of their waxes.  

 
 
3.1.6. The wax deposition is altered in lcr and fdh mutants 
 
As the wax deposition and crystal shapes have been reported to be influenced by wax 

composition (Jetter and Riederer, 1994; Rashotte and Feldmann, 1998), we examined 

mutant leaves under SEM (Figure. 21). Crystals are usually absent from the surface of 

Arabidopsis leaves; here the wax overproduction in the mutants can be correlated to 

the visible presence of wax on the surface of leaves, particularly in the case of lcr and 

fdh. 

WT bdglcr fdhWT bdglcr fdh

 
 
Figure 21. Scanning electron micrographs of the adaxial side of WT, lcr, bdg and fdh rosette 

leaves. At least four rosette leaves per plant type was observed under SEM. The surface of 
WT leaves is smooth whereas the surface of fdh leaves is covered by “wax flows” from 
which thin plate-like crystals often emerge. Less wax flows are visible in lcr which appears 
to have an irregular wax covering. In the case of bdg only rare wax flows can be found on 
the leaf surface. Plants were seven weeks old (short day conditions). Bar: 5 µm. 

 
On the surface of bdg leaves, crystals are only rarely seen. The uniform wax 

overaccumulation in this mutant (Kurdyukov et al., 2006b) may just lead to an 

increase in thickness of the uniform wax layer present on the leaf surface and not to 

the formation of visible crystal structures. However no conclusion can be drawn about 

crystal shape from the observation of fdh leaves. As wax is more abundantly 

deposited on stems, stem is a privileged tissue for observation of wax crystals; 

assuming that the mutations would affect the wax composition of the stems in the 

same way that they do in leaves, we observed stems under SEM (Figure. 22). The 
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abundance in wax crystals was similar in WT and mutants, yet the three mutants were 

found to deposit more crystals shaped like horizontal plates than ropes or dendrites on 

the surfaces of their stems (Figure. 22). Thus, the increase in aldehyde observed in fdh 

does not seem to be the cause of this change. 
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Figure 22. Scanning electron micrographs of the stem surface of WT, lcr, bdg and fdh stems. Two 

stems (4th or 5th internode) were observed per plant type. WT waxes mostly contain 
dendrites (1), ropes (2) and umbrellas (3) whereas mutant samples mainly display 
horizontal plates (4). Plants were 12 weeks old (first eight weeks short day then four weeks 
long day). Bar: overview: 5 µm and zoom: 1µm. 

 
 
3.1.7. Overaccumulation of wax in bdg corresponds to a genetic up-regulation 
 
That bdg accumulates wax components and particularly more alkanes, led us to check 

whether this was correlated with the up-regulation of the CER1, WAX2 and 

WIN1/SHN1 genes.  

Overexpression of the WIN1/SHN1 (At1g15360) ethylene response factor-type 

transcription factor leads to wax accumulation in Arabidopsis leaves and stem 

(Aharoni et al., 2004; Broun et al., 2004) and modification of cutin composition 

(Kannangara et al., 2007). The overexpression of WIN1/SHN1 also leads to the 

activation of several genes involved in the wax biosynthesis, among them CER1 

(At1g02205) (Broun et al., 2004), coding for a putative aldehyde decarbonylase 

(Aarts et al., 1995) or a protein involved in alkane exportation (Broun et al., 2004). 
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The WAX2 (At5g57800) protein may be involved in wax biosynthesis as the wax2 

mutant deposits less product from the putative decarboxylation pathway (Chen et al., 

2003). The precise function of this protein, showing 32% of identity to CER1, 

remains unknown. 

 

By semi-quantitative RT-PCR, we showed that in the bdg mutant the CER1 transcript 

significantly accumulates to greater amounts, that WIN1/SHN1 mRNA has the 

tendency to be more present and that the level of WAX2 transcript is not modified 

(Kurdyukov et al., 2006b). 

 

We analysed the transcriptom of lcr, bdg and fdh mutants using Affymetrix ATH1 

chips. And, according to our microarray data and the semi quantitative RT-PCR done 

to confirm them, we found that the WAX2 transcript is significantly more present in 

the three mutants and that of CER1 was only slightly more abundant (Figure. 23 and 

Figure. 24).We did not recheck the level of WIN1/SHN1 by RT-PCR as from our 

microarray data set it was clearly not found significantly changed; the expression 

level of this gene was found below the detection level in both WT and mutants. 
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Figure 23. Modification of the expression level of genes implicated in wax biosynthesis in bdg. The 

quantity of each transcript was estimated by semi-quantitative RT-PCR (after optimisation 
of number of cycle; see Methods). In this case the ACTIN2 (At3g18780) and the CER1 
(At1g02205) transcripts were amplified for 24 cycles. Three independent WT and three 
independent bdg samples were used as templates, once in the case of the WAX2 and actin2 
genes, and three times (technical replicates) for the WIN1 and CER1 genes. 
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The fact that the genes involved in wax biosynthesis are highly environmentally and 

physiologically regulated may explain this apparent contradiction, both, the plant age 

(eight VS five weeks and a half), leaf size (0,5-1 cm VS 0,2-1 cm), and the 

environmental conditions (greenhouse VS growth chamber) may all have contributed 

to this discrepancy. However, both results point out that in the bdg mutant transcripts 

from the wax biosynthesis and particularly, the putative decarbonylation pathway, 

accumulate to higher levels. 

 

The increase in wax deposition may be linked to the higher level of transcripts from 

the decarbonylation pathway, achieved by transcript stabilisation or gene 

upregulation, or linked to modification of the catalytic properties of the respective 

enzymes. The latter may be boosted by increase of substrate availability, quicker 

product channelling, or may also undergo secondary modifications. 

 
 
3.1.8. Bdg, lcr and fdh mutations lead to major changes in gene regulation 
 
The results of our biochemical analysis suggest that bdg, lcr and fdh mutants, appear 

to compensate the absence of a completely functional cuticle by, for instance, 

accumulating more cutin and wax monomers. Using microarrays, we analysed the 

transcriptional changes taking place in gene expression in these three mutants, to see 

whether a parallel can be drawn between physical accumulation of cuticle compounds 

and mis-regulation of genes which potentially could contribute to these changes. This 

microarray analysis may also shed light on secondary phenotypes of cuticular mutants 

and pinpoint effects of each mutation.  

 
A method for handling of microarray data  
 
Total RNA from three wild-type Col0 samples and three samples of each mutant (lcr, 

bdg and fdh) were hybridised to ATH1 Affimetrix microchips (see Methods). We first 

sorted out the genes and defined the list of candidates for RT-PCR confirmation 

according to the results obtained for two replicates, sent first. The inclusion of the 

results from the third replicate allowed us to establish a sorting method for our genes 

and to narrow down the list of mis-expressed genes in our mutants (data not shown).  
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Considering the results from the two first replicates, we only included genes showing 

a consistent mis-regulation greater than a 2 fold increase or decrease, in a mutant, in 

the list of putatively mis-regulated genes. However after the incorporation of the 

results from the third replicate, it became clear that this method was too stringent, 

because some genes found mis-regulated by RT-PCR (Figure. 24) had not been 

included in the list of putatively mis-regulated genes (data not shown). We therefore 

decreased the stringency of our criteria by including genes, which once showed a 

change smaller than a 2 fold increase or decrease. Thus, combining our RT-PCR 

results and data sorted with MicroarraySuite, we defined a representative sorting 

method (see Methods) for microarray results. 

 
 
Validation of microarray data  
 
We first checked whether the transcripts from the mutated genes were respectively 

less abundant in the mutants. The level of FDH transcript is consistently lower in the 

fdh mutant (Yephremov et al., 1999), and the FDH gene is found among the 

consistently downregulated genes in our microarray data. 

 

The mRNA from LCR and BDG only showed a tendency to be less abundant, both 

genes are absent from the list of consistently downregulated genes from their 

respective mutant. The presence of the mutations may not significantly influence the 

stability of their respective mRNA. We also observed that a mutation in one of these 

three genes does not affect the expression of the other two.   

 

 

Then we chose 12 genes among the putatively upregulated genes in the three mutants 

for confirmation by RT-PCR. We also included CER1 as it was shown to be up-

regulated in bdg before (Figure. 23; (Kurdyukov et al., 2006b). Two third of the 

candidates are potentially involved in lipid biosynthesis or trafficking, the others 

respectively encode a palmitoyl-protein thioesterase (named PPT1), an extensin 

(XTH8) and two ERF/AP2 transcription factors.  

 



Results 

 69

We first optimised the number of cycles of amplification for each gene on WT total 

RNA, and then performed the semi-quantitative RT-PCR on the RNA samples sent 

for microarray hybridisation (Figure. 24).   
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Figure 24. Confirmation of the microarray data by semi-quantitative RT-PCR. Twelve candidates 
among the most up-regulated genes were chosen for data confirmation by semi-
quantitative RT-PCR. CER1 (At1g02205) was also included as it was previously found to 
be induced in the bdg mutant (Kurdyukov et al., 2006b) ACTIN2 (At3g18780) was 
amplified as control. In this experiment, the ACTIN2 (At3g18780) and the CER1 
(At1g02205) transcripts were amplified for 22 cycles. 

 
The transcript of all the candidate genes was found more present in the mutant 

samples. The mRNA of the CER1 gene, which was not in the list of commonly mis-

regulated genes, was found slightly more abundant in the mutants. In conclusion the 

RT-PCR results match well the microarray data which could then be further analysed.  
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General repartition of the consistently mis-regulated genes 
 
According to applied criteria, more genes were found to be mis-regulated in fdh (333) 

than in lcr (158) or bdg (80). Some of the genes were mis-regulated in all three 

mutants, only in two or in one of them (Figure. 25). The majority of consistently mis-

regulated genes is potentially epidermis specific according to the microarray data 

from Beisson and co-workers who compared the transcriptome of epidermis from 

Arabidopsis stems to that of whole stems (Suh et al., 2005). Relatively few mis-

regulated genes were downregulated:  27 in fdh, 5 in lcr, and 8 in bdg. Only one gene 

from the set of consistently mis-regulated genes was differentially mis-regulated 

between the mutants: At1g01470 was found to be upregulated in lcr and fdh but 

downregulated in bdg. At1g01470 encodes the late embryogenesis abundant protein14 

(LEA14) also known as light stressed-regulated 3 (LSR3). This protein is involved in 

response to wounding and stress by high light intensity (Dunaeva and Adamska, 

2001) and may be epidermis specific according to microaray data (Suh et al., 2005). 

The members of the multigenic family encoding the LEA proteins are usually 

expressed to protect tissues from desiccation damage and are abundantly expressed in 

the embryo at the end of seed development (Blackman et al., 1995; Delseny et al., 

2001). 
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Figure 25. Venn diagrams showing the repartition of mis-regulated genes by the lcr, bdg and fdh 

mutants. In violet, mis-regulated genes; in blue, downregulated genes; in red, upregulated 
genes. 
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The effect of the lcr, fdh and bdg mutations on the expression of closely related genes 
 
As LCR, FDH and BDG belong to multigenic families in Arabidopsis, the 

upregulation of a gene of their same families constitute the most straightforward way 

to compensate the mutations.  

 

The disruption of the LCR, BDG and FDH genes triggers the up-regulation of 

At1g04220, a beta-ketoacyl-CoA synthase from the fatty acid elongase (FAE) family. 

A 12 to 16 fold upregulation is observed in the mutants. This beta-ketoacyl-CoA 

synthase may be epidermis specific (Suh et al., 2005), is active when expressed in 

yeast, and could elongate C16 and C18 endogenous fatty acids to form C22, C24 and 

C26 acids (Trenkamp et al., 2004). The activity of this enzyme was recently described 

in planta, it was named DAISY (R. Franke, personal communication).  

 

In the case of fdh, the expression of two other elongases is altered: CUT1/CER6 

(At1g68530) and At2g28630 were also found up regulated, however to a lesser level 

than DAISY; 2,4 and 3,4 fold respectively. The suppression of CUT1/CER6 gene leads 

to a sharp reduction in both decarboxylation and acyl reduction pathways from the 

wax biosynthesis, giving the plants a waxless appearance (Millar et al., 1999). 

CUT1/CER6 is epidermis-specific and its silencing blocks the production of wax 

compounds with a chain length longer than to 24 carbons (Millar et al., 1999). 

 

The disruption LCR, BDG and FDH genes did not trigger a significant mis-regulation 

of any member of the CYP86 family, to which LCR belongs, except for the LCR gene 

in the lcr mutant. However lcr and fdh mutations trigger the upregulation of the 

CYP94C1 gene (At2g27690) by 15 and 13 fold, respectively. In bdg, the increase in 

transcript level was not found significant; the quantity of CYP94C1 RNA remaining 

below the detection level. This cytochrome P450 enzyme was recently shown to be 

able to catalyse the formation of α,ω-diacids in vitro using C12 to C18 acids as 

substrate (Kandel et al., 2007). According to the data from Beisson and co-workers, 

this gene is probably not epidermis specific (Suh et al., 2005). Lcr and fdh mutations 

may therefore promote its expression in epidermis.  

 
The fdh mutation triggers the upregulation by 2,8 times of HYD2 (At5g41900) which 

is amongst the closest homologues of BDG (Figure. 7) and is likely epidermis specific 
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(Suh et al., 2005). This gene is not on the list of consitently misregulated genes for the 

two other mutants but still shows an upregulation tendency.  

 

As expected the disruption of these three cuticular genes, particularly lcr and fdh, 

triggers the induction of a member of their family.  

 
 
The range of commonly upregulated genes in the three mutants 
 
According to the microarray data obtained on stem peals by Beisson and co-workers, 

most genes from the commonly upregulated category (39/56) are probably epidermis 

specific (Suh et al., 2005)(see Appendix G for list of commonly misregulated 

genes).  

 
Among the 56 commonly upregulated genes from these mutants, there are genes that 

were reported to act in lipids metabolism (14/56), some of them are cuticular genes. 

WAX2/YRE/FLP1 (At5g57800) function is related to wax biosynthesis (Chen et al., 

2003). CER4 (At4g33790) encodes an alcohol-forming fatty acyl-CoA (FAR) 

responsible for the production of primary alcohols during wax biosynthesis (Rowland 

et al., 2006). The transcripts of some homologues of known cuticular genes were 

found in much higher amounts in the mutants: that of the DAISY elongase (see 

above) and of HOTHEAD-LIKE7 (At5g51950; HTL7; (Krolikowski et al., 2003), for 

instance. The latter is homologous to the epidermis specific ACE/HTH gene, which 

encodes for a fatty acid ω-hydroxylase. Cutin from ace/hth mutant contains more ω-

hydroxy-fatty acids and less α,ω-diacids (Kurdyukov et al., 2006a). 

 

In our analysis the At2g04570 gene, coding for a putative lipase of the GDSL family, 

was found up-regulated. This protein may catalyse the formation of alcohols from 

esters and its mRNA was found more present in WIN1-HA plants, over expressing the 

WIN1/SHN1 gene (Kannangara et al., 2007). As observed by Broun and co-workers, 

this GDSL protein shares some similarity with EXL1-3, the member of a group of 

extracellular lipases, involved in the formation of pollen coat (Mayfield et al., 2001).  

Apart from these genes that appear to be involved in cuticular lipid synthesis, five 

genes coding for lipid transfer proteins (LTPs), were induced in the lcr, bdg and fdh 

mutants. Proteins of this large mutltigenic family are likely to be involved in lipid 

transport: in vitro assays show that they are able to bind fatty acids and to transfer 
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phospholipids between membranes (Douliez et al., 2000). The expression of the LTP3 

(At5g59320) and LTP4 (At5g59310) genes is upregulated by abscisic acid (ABA) 

(Arondel et al., 2000), and their product was localised to the cell wall (Kader, 1996). 

Both genes are expressed in flowers; LTP3 is also expressed during seed development 

and LTP4, in siliques. LTP2 (At2g38530) is localised in the plasma membrane and 

may transfer phospholipids to the plasma membrane (Dunkley et al., 2006). The 

application of LTP2 from barley on tobacco leaves protects the later against the 

pathogen Pseudomonas syringae (pv. tabaci 153) (Molina and GarciaOlmedo, 1997). 

The expression of two genes encoding putative LTPs, namely At5g01870 and 

At3g22600, were also strongly enhanced in our mutants. At5g01870 is similar to 

LTP6 and present in endomembrane whereas the putative LTP-protease inhibitor 

At3g22600 maybe attached to the external face of the plasma membrane by a 

glycosylphophatitylinositol (GPI) anchor (Eisenhaber et al., 2003). Arabidopsis 

transgenic plants overexpressing At4g12470, At4g12480 or At4g12490, three 

members of the LTP family, are resistant to Botrytis cinerea (Chassot et al., 2007).  

 
Transcripts from nine genes potentially associated with cell wall maintenance and 

remodelling were also found among the commonly upregulated genes. Four of them 

code for structural elements of the cell wall, namely two hydroxyproline rich proteins 

(At5g09530 and At2g16630) and two glycine rich proteins (At4g21620 and 

At3g20470). The transcript of the GPR5 gene (At3g20470) was also found in greater 

abundance in bdg, lcr and fdh. The glycine rich protein GPR5 may be another 

structural element of the cell wall or the protein may be anchored to the plasma 

membrane (Sachettomartins et al., 1995). The expression of the GPR5 gene is 

restricted to the epidermis of aerial organs and plays a role during the initiation of 

lateral shoots (Sachettomartins et al., 1995). The activity of this gene is precisely 

tuned during ovule-seed development: first expressed in all embryonic cells, it is only 

detected in the protoderm from the torpedo stage on (Magioli et al., 2001). Sachetto-

Martins and co-workers found that the GPR5 gene is expressed at a high level in cells 

undergoing dedifferentiation prior to somatic embryogenesis. Later, the expression of 

GRP5 in the protoderm may be necessary to strengthen the epidermal cell wall thus 

delimitating growth. The XTH18 (At4g30280), XTH19 (At4g30290) and ATEXT4 

(At1g76930) mRNAs were also more present in mutant samples. The corresponding 

proteins are two extensins and one hydroxyproline-rich glycoprotein (HRGPs), which 
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are abundant in the cell wall and contribute to its elasticity by acting on sugar bounds. 

XTH18 and XTH19 are preferentially expressed during root development (Yokoyama 

and Nishitani, 2001; Vissenberg et al., 2005; Osato et al., 2006); XTH19 expression is 

regulated by auxin (Osato et al., 2006) and XTH18 is normally involved in primary 

root elongation. A slight decrease in XTH18 transcript in RNAi transgenic plants leads 

to a small diminution in epidermal cell length (Osato et al., 2006). ATEXT4 transcript 

is preferentially expressed in root development but, to a lower level, also in 

inflorescences. The ATEXT4 is similar to ATEXT1 which is strongly upregulated in 

leaves upon wounding, exogenous application of salicylic acid, methyl jasmonate, 

auxins, brassinosteroids (BR) (Merkouropoulos et al., 1999), and by the pathogen 

Xanthomonas campestris pv. campestris (Merkouropoulos and Shirsat, 2003). 

ATEXT4 is up-regulated neither by dehydration nor by application of ABA but by 

rehydration, application of auxin (AIA) and giberrelic acid (GA) (Yoshiba et al., 

2001). The At3g15720 gene, coding for a glycoside hydrolase attached to the plasma 

membrane by a glycosylphosphatidylinositol (GPI) anchor (Eisenhaber et al., 2003) 

and putatively involved in cell wall remodelling and bacteria defence, was also found 

to be upregulated in lcr, fdh and bdg. At last, the GASA1 (At1g75750) mRNA was 

also more present in the mutants, its expression is modulated by brassinosteroids and 

giberellic acid; GASA1 peptide of unknown function is localised in the cell wall and 

associated with cell expansion and plant development (Herzog et al., 1995). 

 

Genes potentially associated with plant defences, were upregulated in these three 

cuticular mutants, among them, the At1g74000 gene coding for the STRICTOSIDINE 

SYNTHASE 3 (SS3) enzyme and the At2g43510 coding for the extracellular 

ARABIDOPSIS THALIANA TRYPSIN INHIBITOR PROTEIN 1 (ATTL1). SS3, 

present in the cell wall, is involved in the biosynthesis of alkaloids (Fabbri et al., 

2000) which are known to have antibacterial effects (Kutchan, 1995). The At2g43510 

gene codes for ATTL1, a protease inhibitor. Transgenic tobacco plants expressing 

protease inhibitors from Nicotiana alata were resistant to the fungi Botrytis cineara 

(Dunaevskii et al., 2005). This protein is a member of the defensin-like (DEFL) 

family and was found to be upregulated in CUTE plants (Chassot et al., 2007). The 

production of another defensin (At5g33355) and a chitinase (At2g43620) was 

increased, so were that of MLO12 (At2g39200) and ELI3 (At4g37990). The 

transmembane MLO12, seven-transmembrane domain receptor homologue to the 
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barley MILDEW RESISTANCE LOCUS0 (MLO), is expressed in root and 

inflorescences (Chen et al., 2006). ELI3 is involved in the hypersensitive response to 

Pseudomonas syringae (Kiedrowski et al., 1992), and its expression is linked to that 

of the WRKY6 (Robatzek and Somssich, 2002).  

 

Many genes coding for enzymes involved in cellular homeostasis or up-regulated in 

consequence of oxidative stress or drought were up-regulated in our mutants. For 

instance, the production of two aldo/keto reductases (At2g37760; At2g37770) was 

probably enhanced. In general aldo/keto reductases are NADPH-dependent 

oxidoreductases and through their activity contribute to reduction of cellular damage 

done by ROS on cellular components, such as membrane lipids. In humans, it was 

shown that not only these enzymes contribute to the detoxication process by the 

reduction of oxidation products but also by the synthesis of sorbitol (Bagnasco et al., 

1987), which may retain water or be a radical scavenger. In barley, the expression of 

an aldehyde dehydrogenase coincides with onset of desiccation during embryogenesis 

(Bartels et al., 1988). The At1g05680 gene encodes a UDP-glucosyl transferase 

related to the Arabidopsis UGT73C5/DOGT1 (At1g01470), which inactivates ABA 

(Poppenberger et al., 2005), or to the mammalian UDP-glucuronosyl transferases 

(UDPGT) essential in detoxification, by inactivating aldehydes and other toxic 

compounds (Tephly and Burchell, 1990). The transcript of ATSIP-2, a raffinose 

synthase (At3g57520), leading to the production of raffinose family oligosaccharides 

(RFOs), water soluble non reducing sugars, was also expressed at higher levels in the 

mutant tissues. RFOs are used as carbon sources and storage and as antioxidant 

against various abiotic stresses such as drought cold or salt (Taji et al., 2002). ROFs 

accumulate in leaves of resurrection plant Xerophyta viscose challenged by drought 

(Peters et al., 2007). Two transcripts of LATE EMBRYOGENESIS ABUNDANT 

(LEA) proteins accumulate in the three mutants. These highly hydrophilic proteins 

were found to accumulate during seed desiccation (Blackman et al., 1995) and in 

vegetative and reproductive tissues in response to water deficite (Close, 1996; Bray, 

1997).  

 

Other genes maybe more specifically involved in the regulation of the intracellular 

oxydo-reduction potential, for instance, the glutaredoxin encoded by the At4g15700 

gene or the metalothinein MT1C (Zhou and Goldsbrough, 1995). MT1C is a cystein 
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rich protein essential in heavy metal tolerance which may function as an ion or radical 

scavenger, may also be involved in intracellular signalling by zinc channelling, thus 

activating transcription factors with a zinc finger.   

 

In the group of intracellular signalling genes, we observed the induction of the 

MSS1/SPT13 gene (At5g26340) coding for a high affinity hexose transporter 

(Brodersen et al., 2002; Norholm et al., 2006), which expression is associated with 

programmed cell death (Brodersen et al., 2002). MSS1/SPT13 is localised on the 

plasma membrane and normally expressed in the vascular bundles at petals emergence 

(Norholm et al., 2006). Genes from different membrane transporters were found to be 

upregulated (see Appendix H), among them MLO12, a protein G coupled receptor 

(Chen et al., 2006),  and a ABC transporter, normally expressed in roots and involved 

in response to nematodes. The ABC transporters family from Arabidopsis is 

subdivided into four subfamilies among which the WBC (white-brown complex 

homologues). Two WBC transporters, namely WBC12 (CER5) and WBC11 (DSO) 

were recently characterised. The cer5 (eceriferum= waxless) mutant deposits less wax 

on its outer cell wall and its epidermal cell contain intracellular linear inclusions of 

wax, this revealed the essential role in wax exportation played by the ABC transporter 

CER5 (WBC12) (Pighin et al., 2004). A mutation in the DESPERADO (DSO; 

WBC11) gene triggers the accumulation of lamellar inclusions of cuticle material in 

the cytoplasm of epidermal cells, and less wax (3-fold decrease) and less cutin are 

found on their surface (Bird et al., 2007; Panikashvili et al., 2007). In our mutants the 

expression of CER5 and DSO genes was not modified (data not shown).  

 

To ensure the junction between the receptors sitting in the plasma membrane and the 

transcription factors, intracellular messenger are required. Among the induced genes 

in our mutants we found genes coding for a kinase, a delta adaptin essential for 

vesicle trafficking (Lee et al., 2007), and for PPT1 (At5g47330). This gene which was 

also found up-regulated in salt overly sensitive mutants (sos) (Gong et al., 2001) codes 

for a palmitoyl-protein thioesterase which may detach proteins attached to the 

membrane from their palmitoyl anchor.   

 
Apart from these categories, the transcript level of three WRKY and three ERF/AP2 

transcription factors, was also higher in mutants. The WRKY6 (At1g62300) seems to 
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be a positive regulator of plant senescence and involved in pathogen defence by 

activation of PR1 (Robatzek and Somssich, 2002) and ELI3 genes, whereas the 

WRKY48 (At5g49520) may be a negative regulator of plant defence: its 

overexpression leads to the repression pathogen-induced PR genes and to the increase 

of susceptibility to bacterial and fungal pathogens (Denghui et al., 2005). Nothing 

precise is known about the WRK47 (At4g01720). The AP2 domain transcription 

factors belong to the ethylene response factors (ERF): the RAP2.6L (At5g13330) 

seems to be involved in the regulation of many other genes in shoot regeneration (Che 

et al., 2006). Like RAP2.6L, the RAP2.6 (At1g43160) and the At5g61890 genes are 

members of the ERF-B4 sub-family. A high level of mRNA of the RESPONSE TO 

DESICCATION ELEMENT RD26 (At4g27410) accumulated in the three cuticular 

mutants. This transcription factor belongs to the NAC plant specific transcription 

factor family (Yamaguchi-Shinozaki et al., 1992) and is induced in response to 

dehydration, osmotic stress and abscisic acid (Fujita et al., 2004). The transcript from 

BT4 (BTB AND TAZ DOMAIN PROTEIN 4) was also found in higher amounts in 

the mutants. This protein possesses a cAMP-binding domain which allows protein-

protein interactions (BTB) and a zinc finger domain to contact DNA (Du and 

Poovaiah, 2004). As shown in yeast and confirmed by GST pull down, BT4 interacts 

with the proteins from the same family (Du and Poovaiah, 2004). H2O2 and salicylic 

acid trigger a quick up-regulation of the BTs genes (Du and Poovaiah, 2004). 

 

The upregulation of similar genes in response to the bdg, lcr and fdh mutations is in 

accord with the phenotypic similarities between these mutants. 

 

Commonly down-regulated genes 
 
According to our sorting criteria, only one gene is commonly downregulated by the 

three mutants. It encodes the FSD1 (FE SUPEROXIDE DISMUTASE 1) involved in 

the regulation of the redox potential in the cell and is required for copper delivery in 

the chloroplasts (Kliebenstein et al., 1998; Abdel-Ghany et al., 2005).   
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Mis-regulated genes in one or the other mutants 
 
Although the mutants are similar with regard to the presence of organ fusion, cuticle 

deficiency, cell wall bound lipid and wax overaccumulation, they are not identical and 

their responses may differ. The majority of genes included in these categories may 

also be epidermis specific (Suh et al., 2005) and are related by their nature or by their 

functions to genes from the commonly mis-regulated group (data not shown). More 

elements implicated in dehydration or oxidative stresses, defence, such as chitinases, 

intracellular signalling, such as calcium binding EF hand family protein, and receptor 

kinases, transcription factors, such as ERF/AP2 transcription factors, can, for instance, 

be found in theses subcategories.  

 

 

Thus we found that mutations in the BDG, LCR and FDH genes are responsible for 

important modifications of the transcriptome. This may explain that the mutants have 

a pleiotropic phenotypes. 

 
 
3.1.9. Complementation of the Arabidopsis fdh mutant by the barley FDH allele  
 

In collaboration with Klaus Oldach´s lab (University of Adelaide; Australia), we 

checked whether the barley (Hordeum vulgare; hv) allele of the FDH gene is able to 

complement the fdh mutation in Arabidopsis thaliana. Although both plant species are 

only distant relatives, Arabidopsis and barley proteins share 70 % of identity 

(BLAST), and cluster together in the fatty acid elongase phylogenetic tree (Figure. 

26).  
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Figure 26. Phylogenetic relation between barley FDH and Arabidopsis FDH. Predicted sequences 

from the members of the FATTY ACID ELONGASE (FAE) family in Arabidopsis 
thaliana, Antirrhinum majus FDH (AFI) and Gossipium hirsutum (Gh) FDH were 
obtained from GenBank. This unrooted tree was bootstrapped 1000 times and the lengths 
of its branches are proportional to evolutionary distances. Gene names are displayed in the 
figure and the numbers indicated on the tree represent the frequency (%) at which a 
particular embranchment was recovered for 1000 replications. GhFDH: Gossipium 
hirsutum FDH; AmAFI: Antirrhinum majus FDH; AtFDH: Arabidopsis FDH and 
hvFDH: Hordeum vulgare (barley) FDH. 

 
Since fdh homozygotes are sterile, heterozygous plants were transformed with an 

AtFDH::HvFDH cDNA construct (made by Jafar Jabbari; University of Adelaide). 

The direct progeny (T1) of the transformants (T0) was selected using a 0,1 % BASTA 

herbicide solution, examined and genotyped. Among 79 BASTA resistant plants (T1) 

derived from 14 independent transformants, three plants showed leaf deformation or 

fusion at the rosette stage and 14 plants looked like fdh mutants at the young 

inflorescence/silique stages (Figure. 27). All the T1 plants were then genotyped, blind 
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to phenotype data, at the FDH locus using a multiplex PCR (Ye et al., 2001) 

(optimized by Jafar Jabbari; University of Adelaide). 25 of the transgenic plants, 

derived from 11 independent transformations, were found to be fdh/fdh and, among 

them, 23 had a WT appearance at the rosette stage and 11 had a WT appearance at the 

young inflorescence/ silique stage. Unlike fdh, the AtFDH::HvFDH fdh/fdh plants 

produced seeds showing that the barley FDH gene is able to complement the fdh 

mutation in the transgenic Arabidopsis plants.  

 
WT

phenotype
weaker fdh
phenotype

fdh
phenotype

A

B

C

11 plants 14 plants

WT
phenotype

weaker fdh
phenotype

fdh
phenotype

A

B

C

11 plants 14 plants
 

Figure 27. Phenotype of the Arabidopsis fdh plants carrying the barley FDH gene. By ARMS-PCR 
(see Methods), 25 fdh/fdh mutants were identified, out of them, 11 had a WT appearance 
and set seeds, 14 had a fdh-like appearance or a milder phenotype. (A) Main inflorescence. 
(B) Side inflorescence. (C) Whole plant. Bar: (A)(B)(C): 2 mm. 

 
 
3-2. HTM (Atxgxxxxx), a putative acyl-transferase 
 
This part of my PhD was done in collaboration with Dr. Hirokazu Tanaka and Prof. 

Yasunori Machida (from University of Nagoya, Japan) who discribed the htm mutant 

phenotype and cloned the HTM gene (Tanaka et al., 2004) and unpublished data). 

Because the identity of the mutant and the gene cannot be disclosed, we hitherto call it 

HTM (Hirokazu Tanaka’s mutant). The observations and biochemical analyses were 

done on the htm-1 mutant.  
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3-2.1. The htm mutant 
 
Most of the time htm mutants are difficult to distinguish from WT plants at the rosette 

stage but with a low frequency (<10%), htm plants display postgenital organ fusion 

between rosette leaves. Yet, as previously reported in other fusion mutants such as lcr 

(Wellesen et al., 2001) or fdh (Lolle et al., 1992; Yephremov et al., 1999), the 

phenotype of htm is variable and can also lead to organ tearing or, later, premature 

plant death when no shoot can emerge (Figure. 28).  
 

DC

BA

DC

BA

 
 
Figure 28. Effect of the htm mutation on rosette leaves. (A) WT; (B) to (D) htm mutant with a weak 

to strong leaf fusion phenotypes. In some cases, organ tearing is also observed in this 
mutant (C). Plants were seven weeks old (short day conditions). Bar: (A)(B)(D) 5 mm; (C) 
1 mm. 

 

In this new Arabidopsis mutant, ectopic organ fusion mainly takes place between 

floral organs within single floral buds; consequently flowers cannot open properly 

(Figure. 29). Hand dissection of individual htm buds reveals that petals and sepals 

account for most of the fusion phenotype, trapping the stamens, leading to their 

folding and that of the petals (Figure. 30_C). Because of the fusion, the emergence of 

the gynoecium is slowed down but self-pollination is not prevented. The organs 

appear to be of normal length and number. Suture zones are present between sepal 

periphery (Figure. 30_A_B) and, when involved, petal limb.  
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Figure 29. Effect of the htm mutation on flower buds. (A) (C) (E) WT Landsberg erecta 
inflorescences; (B) (D) (F) htm inflorescences. Fusion and bud deformations are visible 
from early stage until advance stages of flowering, when petals and sepals dehisce. Notice 
that petals are not visible. Bar: 5 mm. 
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Figure 30. Electron micrographes of htm floral buds and open flowers. (A) (B) Ectopic fusion 
between adjacent sepals in htm buds. A detail from (A) is shown at higher magnification in 
(B). (C) Due to the physical constraint imposed by the sepal fusion, anthers and petals are 
folded. (D) Even after flower opening, some sepals remain joint. Bar: (A) (C) 500 µm; (B) 
100 µm; (D) 50 µm. 

 

As shown by toluidine blue staining, the petal limb and the sepal edges of this mutant 

are characterised by an increase in cuticle permeability (Figure. 31_E). Although the 

HTM gene is expressed beneath the papillae cells (see HTM expression in aerial 

organs), the mutant stigma have a wild-type appearance. However they are stained 

with toluidine blue at early stages (Figure. 31_D_F). 
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Figure 31. Toluidine blue staining assays. (A) (C) (E) WT inflorescences; (B) (D) (F) htm mutant.  
At the bud stage, the outer sepal surface and the top of the stigma from the mutant can get 
stained with a toluidine blue solution (D). Later on, the sepal margin, petal limb from open 
flowers and filament of mature anthers also retain the staining (F). Bar: (A) (B) 5 mm; (C) 
to (F) 1 mm. 

 

Floral buds and upper cauline leaves from the htm mutants have a shiny appearance, 

reminiscent of other wax mutants such as wax2 (Chen et al., 2003) and cer10 (Zheng 

et al., 2005), although weaker, and display ectopic organ fusion probably linked to a 

modification of their cutin and/or of their wax composition. These lines of evidences 

prompted us to analyse waxes and cell wall bound lipids in htm inflorescences. 

Inflorescences at a developmental stage similar to that of the samples shown in the 

figure 31 (C_D) were used to perform this analysis. When we started, no particular 

method had been described to analyse cutin from inflorescences, and we introduced 

minor modifications (see Methods) into the general bound lipid analysis (Franke et 

al., 2005) and the wax analysis (Kurdyukov et al., 2006b) methods to determine the 

differences between WT control and htm inflorescences. 

 

We analysed by GC and GC-MS the cell wall bound lipid composition of 

inflorescences, established the composition of WT Landsberg erecta lipid polyester 

and compared it to that of our htm mutant (see Methods). We identified monomers 
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falling into six categories: unsubstituted fatty acids, 2-hydroxy fatty acids, ω-hydroxy 

fatty acids, mid-chain-hydroxy fatty acids and mid-chain hydroxy-α,ω-diacids and 

α,ω-diacids (Figure. 32).  
 
The WT and mutant cell wall bound lipid compositions were not found different, but 

slightly less monomers (in average 5 ± 0,2 µg/mg for htm and 6 ± 0,8 µg/mg for WT) 

seem to be deposited on the surface of the mutant inflorescences. As the shorter long 

chain unsubstituted fatty acids and the 2-hydroxy fatty acids may not only come from 

the cutin but also sphingolipids trapped in plant cell wall, we decided to consider them 

separately. The Arabidopsis typical cutin compounds (ω-hydroxy fatty acids, mid-

chain-hydroxy-fatty acid and mid-chain hydroxy-α,ω-diacids and α,ω-diacids), 

represent 70% in WT and 77% in htm of the identified compounds. No difference 

between the absolute amount of typical cutin monomers in the WT and htm samples 

could be found. The decrease observed in the mutant in most of the compounds is 

compensated in weight by an increase in hexadecanoic diacid (C16 α,ω-

diacid).(Figure. 32) According to our results this is the most abundant compound in 

bound lipids from inflorescences. The absolute and relative amounts of mid-chain 

hydroxy components and unsaturated diacids are two times lower in the htm mutant 

(Figure. 32).The strongest decrease was observed in the mid-chain-hydroxy fatty 

acids (4,5 times). There is a two times increase in C16 α,ω-diacids which is not 

reflected by an increase in C16 ω-acid, its precursor. We observed a decrease in C18 

ω-hydroxy acid and in C18:1 and C18:2 α,ω-diacids but no modification of the 

quantity of C18 α,ω-diacid.  
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Figure 32. Bound lipid composition of wild type Landsberg erecta and htm inflorescences. 

Absolute changes (A) and relative changes (B) in bound lipid composition. 2-OH acids: 2-
hydroxy fatty acids; ω-OH acids: ω-hydroxy fatty acids; * Two peaks with the 
fractionating pattern corresponding to that of the C16 acid could be found. As in 
comparison with the WT, a decrease was observed in both cases, peaks areas were added 
during the quantitative analysis. Mean values of five replicates ± standard deviation (SD) 
are plotted on the graph. When according to the Mann-Whitney U test no statistical 
difference (p <0,05) could be found between WT and mutant values, bars are filled with 
grey. 

 

The wax composition of WT Landsberg erecta inflorescences was established by GC 

and GC-MS and compared to that of the htm mutant (see Methods). The wax extracts 
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used in this experiment come from the samples used for cell wall bound lipid analysis. 

Monomers from the following categories were identified: unsubstituted fatty acids, 

primary alcohols, esters, aldehydes, alkanes, secondary alcohols, ketones and sterols 

(Figure. 33). Mutant waxes were with regard to composition very similar to the WT. 

In total and in average, about 7,4 ± 0,5 µg/mg dry weigh and 9 ± 0,8 µg/mg dry weigh 

of wax were retrieved for htm and for the WT control, respectively. This corresponds 

to a global decrease of approximately 20% per mg dry weight in the mutant. No major 

shift between the classes of wax compounds could be observed (Figure. 33). 
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Figure 33. Wax analysis from wild type Landsberg erecta and htm inflorescences. Absolute 
changes (A) and relative changes (B) in wax composition. 1Esters: hexadecanoic acid alkyl 
esters, with chain lengths ranging from C38 to C46 were identified. 2 C27 BR4: C27 
alkane branched at the position 4 (3-Methylhexacosane). 3 C29 BR4: C29 alkane branched 
at the position 4 (4-Methyloctacosane). 4 C29 BR3: C29 alkane branched at the position 3 
(3-Methyloctacosane). 5 C29 keton: 15-nonacosanone. 6 C29 OH mix: mixture of three 
secondary alcohols, with an alcohol group at the position 14, 15 or 16 (14-nonacosanol, 
15-nonacosanol and 16-nonacosanol). 7 Sterols: three distinct sterol compounds could be 
detected but not further identified by comparison with the available libraries. Mean values 
of five replicates ± (SD) are shown. When WT and mutant amounts were not found 
different (Mann-Whitney U test; p <0,05), bars are filled with grey. 

 

Even though no precise enzymatic function was pointed out by these analyses, the htm 

mutation seems to lead to wax deposition insufficiency. The disequilibrium in cutin 

monomers and the general decrease observed in wax amount concur to the phenotype 

of the htm mutant. The modification in cutin composition is very likely to influence its 

structure and the inadequate deposition of the wax layer could result in the shiny 

appearance of the mutant inflorescences.   

 
3-2.2. HTM expression in aerial organs 
 
To study the HTM gene expression pattern, we fused 2,1 kb of its promoter region to 

the GFP and DsRED reporter genes. The fusion constructs were used to perform a 

stable transformation of wild-type Columbia and Landsberg erecta plants. The images 

of transgenic plants presented here are the overlay of the bright field image, auto-

fluorescence (chlorophyll channel) and appropriated fluorescence channel (see 

Methods). 
 

Absent from the vegetative meristem, HTM::GFP is expressed in the epidermis of leaf 

primordia (Figure. 34_A). In older leaves, its expression is only maintained in 

trichomes (Figure. 34_B_C_D_E). HTM::DsRED is expressed in most of the floral 

organs from early stage on: in the epidermis of sepals, petals, anther filaments and 

style (Figure. 34_F_G_H). The gene was also found to be expressed on the surface of 

the receptacle supporting floral buds and open flowers (Figure 34_I). The 

observations made with transgenic plants expressing either HTM::GFP or 

HTM::DsRED promoter constructs are coherent; showing that the HTM promoter is 

epidermis specific. 
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Figure 34. Expression of GFP and DsRED reporter genes under the control of the HTM 

promoter. (A) to (C): GFP was used as reporter gene; the green colour corresponds to the 
GFP signal and the red colour to the auto-fluorescence from chlorophyll. (D) to (I) DsRED 
was used as reporter gene; the orange colour corresponds to the DsRED signal and the 
green colour to the auto-fluorescence from the chlorophyll (A) Transversal cut through a 
vegetative bud; a strong GFP signal can be observed in leaf primordial. (B-E) Transversal 
cuts through young cauline leaves (8 mm and 5 mm long) expressing either the GFP 
(B)(C) or the DsRED reporter gene (D)(E); (F) view on a sepal expressing DsRED; (G)(I) 
transversal cut through organs from floral buds: (G) anther filament. (H) stigma and (I) 
area below the abscission zone from an open flower, just before anthesis, display the 
expression of DsRED. Bar: 100 µm except for (C), (E), (G) and (H) 50 µm. 

 

To confirm the expression pattern of HTM, we produced protein constructs. In this 

case, 2,1 kb of the HTM promoter region and the HTM gene (from ATG to stop codon 

-1) were fused to the GFP, DsRED, GFP-StrepTagII or StrepTagII reporter sequences 

(see Methods). For some reason the GFP protein construct did not give rise to any 

signal. The following observations are based on the HTM-DsRED construct only.   

 

We could detect the presence of the chimeric protein in trichomes and non specialised 

epidermal cells from developing rosette and cauline leaves (Figure. 35_A_B). The 

older the leaves, the less expressing cells.  

 

On the surface of the stems, HTM-DsRED is present in trichomes and often seen in 

stomata, towards the stomatal opening but also in isolated pavement cells, (Figure. 

35_C_D_E). 
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Figure 35. HTM-DsRED fusion construct in transgenic plants: observation in leaves and stems. 
The orange colour corresponds to the DsRED signal and the green colour to the auto-
fluorescence from the chlorophyll. (A) and (B) cauline leaf (3-4 mm long). Not only do 
trichomes from developing leaves display fluorescence but also islets of other epidermal 
cells do. (C)(D)(E) On the stem surface, fluorescence was observed in trichomes (C), the 
inner face of the guard cells (D), and some pavement cells (E). Bar: 50 µm in (A) and (B), 
100µm in (C), and 20µm in (D) and (E). 

 

 

The presence of the HTM-DsRED was detected in the epidermis of sepals, petals and 

anther filaments from floral buds and open flowers (Figure. 36_D_E_F_G). At the 

bud stage the signal from the sepal edges was particularly strong and the production 

of the protein appears uniform along the gynoceum (Figure. 36_D). At later stage of 

development, the fluorescent signal is more restricted to the epidermis from the top 

area of the gynoceum (Figure. 36_D). The HTM-DsRED protein can also be strongly 

detected in the epidermis of pedicels from young floral buds (Figure. 36_J_K), and 

also during seed development (white and green stage) in funiculus and placenta 

(Figure. 36_H_I). The chimeric protein was also found in the protoderm from 

embryos (Figure. 36_L_M).  
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Figure 36. HTM-DsRED fusion construct in floral organs. (A)(B)(C)(D) were taken with a Leica 
MZ-FL-III stereomicroscope. (A)(B) bright field illumination; (C)(D) epifluorecence 
illumination. In absence of the construct (C), auto-fluorescence, probably coming from 
mature pollen, is observed in mature anthers. In presence of the construct (D), fluorescent 
signal is observed on the surface of ovary and style, sepals of young buds. In open flowers, 
fluorescence could also be observed on petals and on stamen filaments. In developing 
siliques (right hand side), fluorescence can be seen at the level of the funiculi. (E) and (F) 
transversal cut through floral buds; the epidermis of sepals, petals and anther filaments 
display DsRED signal (G) style and petals from open flowers displaying the fluorescent 
signal. (H) funiculus and placenta epidermal cells also express the transgene. (J)(K) Most 
of the epidermal cells from short pedicels (2-3 mm) supporting floral buds, and sepals from 
floral buds strongly expressed the HTM-DsRED chimeric protein, however in the later 
case, some cells much more than others (I). (L) and (M) An embryo at the torpedo stage. 
Epidermal cells of axis and cotyledons also displayed a bright fluorescent signal. Bar: (A) 
to (D) 1 mm, (E) 200 µm, (F) to (H) 100 µm, (I) to (K) 20 µm, (L) and (M) 100 µm. 

 

According to the focal plane, the protein is detected on the periphery or like a uniform 

film in the epidermal cells; it maybe cytoplasmic, membrane bound or associated with 

the cell wall (Figure. 36_I and Figure. 37_A_B_C_D). To know more about the 
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localisation of the HTM-DsRED protein in the cell, we examined the surface of style 

from young floral buds after immersion in water or a saturated NaCl solution. The salt 

solution (>5M) constitutes a hypertonic medium, and as expected, cells from 

immerged organs expulse water to tend to bring the osmotic equilibrium back; their 

cytoplasm retracts. As the fluorescent signal also appears gathered in the centre of the 

cells, we concluded that the HTM-DsRED chimeric protein is either cytoplasmic or 

associated to the plasma membrane (Figure. 37_E_F_G_H).  

B DCA

FE G H

BB DDCCAA

FFEE GG HH
 

Figure 37.  Hyperosmotic protein localisation assay. HTM-DsRED transgenic plants were used in 
this experiment. (A) to (D) styles were observed after immersion in water; the fluorescent 
signal is evenly distributed in the cell or seems to delimitate it according to the focal 
plane. (E) to (H) the addition of salt triggers the retraction of the fluorescent signal toward 
the centre of the cell. Bar: 20 µm except (A) and (E) 100 µm. 

 
This simple experiment does not allow us to precise further the sublocalisation of the 

HTM-DsRED protein. To do so one could for instance cross transgenic plants 

expressing the HTM-DsRED chimeric protein and plants expressing membrane 

markers linked to GFP. It would also be possible to gain precision using our HTM-

StrepTagII line for immunolocalisation or to detect the protein in cell fractions. 

 
 
3-2.3. Heterologous expression in E.coli 
 
We created three StrepTagII-tagged versions of the HTM protein using of the pASK-

IBA vectors (see Methods). The pASK-IBA2C vector, designed for periplasmic 

expression of heterologous proteins, did not lead to the expression of our protein. The 

protein produced using the pASK-IBA5C, tagged in N-terminus, was not detectable 

using the Strep-Tactin conjugate (see Methods). Even though the protein extracts 

were denaturated and run in denaturing conditions, one may still suppose that the tag 

was not accessible when added at the N-terminal of the protein, or else that it had 
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been removed by the host. Sufficient amount of protein tagged in its C-terminus was 

obtained in the soluble fraction using the pASK-IBA3C vector and purified. The 

nature of the overexpressed protein was confirmed by liquid chromatography- mass 

spectrometry (LC-MS-MS/MS) (performed by Thomas Colby; Mass Spectrometry 

Unit; MPIZ Cologne).  

 
3-2.4. Heterologous complementation assay in E.coli 
 
The E.coli JC201 mutant is deficient in the 1-acyl-sn-glycerol-3-phosphate 

acyltransferase (LPAAT) (Coleman, 1990), enzyme catalysing the conversion of 

lysophosphatidic acid (LPA) into phosphatidic acid (PA) (see Discussion, Figure. 45). 

The latter is an essential membrane component which absence causes major changes 

in membrane fluidity. As a consequence of this mutation, JC201 can not grow at the 

natural temperature (37-42°C), but only at much lower ones (Coleman, 1990).The 

ATS2/LPAT1 lysophosphatidyl acyltransferase enzyme (Bin et al., 2004; Kim and 

Huang, 2004) from Arabidopsis thaliana, has been shown to complement this E.coli 

deficient strain. HTM and ATS2/LPAT1 have a low level of identity, still as the 

comparison of amino acid sequences does not account for all of enzyme specificities, 

we decided to try complementing the JC201 E.coli strain with HTM.  

 

We have introduced the HTM gene in this JC201 mutant and its WT counterpartJC200 

(See Methods). Both strains were grown at permissive and restrictive temperatures, 

30°C and 42°C respectively. Preliminary results obtained on plates and in liquid 

culture seem to point out that HTM does not complement the bacteria mutation. We 

observed strong growth inhibition in our experimental conditions. It seems essential, 

to validate this result by repeating this experiment in presence of a positive control 

such as ATS2/LPAAT1, which has been shown to complement this mutation.  
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3.3 Invetigation on putative cuticular genes 
 
3.3.1. Characterisation of insertion lines in the LEAKO gene encoding a putative 
leukotrien-A4-hydrolase-like protein 
 
In order to check whether the absence of a functional leukotrien-A4-hydrolase-like 

gene has any influence on cuticle formation in Arabidopsis, we studied the LEAKO 

gene (At5g13520). As they became available from the different stocks centres, two T-

DNA insertions in this gene were genotyped, and the T-DNA causing the gene 

disruptions was localised (Figure. 38).  

leako-2
+1

D029 D026

leako-1

100 bp

leako-2
+1

D029 D026

leako-1

100 bp

leako-2
+1
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leako-1 leako-2
+1

D029 D026

leako-1 leako-2
+1

D029D029 D026D026

leako-1

100 bp100 bp

 
Figure 38. Position of the T-DNA insertions in the leako lines (leako-1 = SALK_117791; leako-2 = 

SAIL_636_D12) and of the primers used for RT-PCR. +1 indicates the putative start 
codon; exons are shown in thick black boxes and introns in thicker lines. Arrows indicate 
the orientation of the inserted T-DNA elements. 

 

The presence of the T-DNA in the leako-1 (SALK_117791) line did not impair the 

expression of the gene (Figure. 39) and the leako-2 (SAIL_636_D12) line, lacking the 

expression of the LEAKO gene, did not have any striking phenotype, leaves from this 

mutant were not stained by toluidine blue (data not shown).   
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Figure 39. Insertion point of the T-DNA pBIN-pROK2 in the leako-1 line.  The NTPII gene gives 

kanamycin resistance to the plants carrying the insertion. On the left border of the T-DNA, 
a CaMV 35S promoter (35S) and a terminator T-NOS are present. As the T-NOS 
terminator may be leaky, the 35S promoter present upstream may be able to drive the 
expression of the LEAKO gene. A T-DNA map is available at: 
http://signal.salk.edu/tdna_protocols.html. The beginning of the cDNA was positioned 
according to the information available in the RIKEN database 
(http://www.brc.riken.jp/lab/epd/Eng/). 

 
3.3.2. Aldehyde-dehydrogenases putatively involved in cuticle synthesis 
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Insertions lines of genes encoding three aldehyde-dehydrogenases were received from 

the SALK Institute (ALDH4; At1g44170 and ALDH5-1; At4g36250) or kindly 

supplied by Prof. Hans-Hubert Kirch and Prof. Dorothea Bartels (from University of 

Bonn) (ALDH3; At4g34240). The new Arabidopsis lines were checked for T-DNA 

insertions and inspected for any classical phenotype from cuticular mutant, such as 

organ fusion, trichome death or a weakened cuticle. As no obvious phenotype could 

be found, the different lines were crossed.  

 

Regarding the ALDH5 gene in the homozygous mutant plants, we confirmed the 

presence of the insert, and of the disruption of the gene expression by RT-PCR 

(Figure. 40).  

+1

D069 D068

aldh5-1

100 bp

+1

D069 D068

aldh5-1

100 bp100 bp
 

Figure 40.  Position of the insertion in the aldh5 line and of the primers used for RT-PCR. +1 
indicates the start codon; exons are shown in thick black boxes and introns in thicker 
lines. 

 

However no macroscopic phenotype could be observed during vegetative growth but 

the formation of embryos seems to be partially impaired. We decided to investigate 

further the observation of embryo lethality using a binocular. Indeed, abortion could 

be observed at different stages of embryo development in the siliques of homozygous 

plants (Figure. 41). But not all homozygous plants did actually show this phenotype: 

three plants out of ten did not show any phenotype whereas the siliques from the 

seven other plants contained about 20% of aborted seeds (evaluated on a population of 

800 ripening seeds). Neither the leaves nor the seeds from homozygous plants were 

stained using a 0,05% toluidine blue solution; the cuticle covering of those plants 

appeared normal (Figure. 41).  
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Figure 41.  Aborted seeds were observed in some of the siliques produced by aldh5-1 plants. After 

2 min of immersion in a 0,05% toluidine blue solution, staining was neither observed  on 
the WT (negative control) nor on aldh5-1 ripening seeds. (A) Overview on siliques; (B) 
Close-up on ripening seeds. Bar: (A) 2 mm; (B) 0,5 mm. 

 
3.3.3. HYD4, a putative α/β hydrolase-fold enzyme closely related to BDG 
 
Progeny of the En transposon plants which had shown germination deficiency was 

sawn and examined. Some of the plants tended to have short, dwarfish siliques (poor 

elongation and enlargement; data not shown). Unfortunately, we failed to confirm the 

presence of an insertion in the HYD4 gene from these plants (data not shown). This 

phenotype is therefore most likely due to an insertion elsewhere. We then turned to 

insertion mutants available in the different collections (Material and Methods; Table. 

1).  

 

Insertion lines in the HYD4 gene, as they became available from the different stock 

centres, were genotyped. The different alleles were named hyd4-1 to hyd4-6; the 

correspondence between these names and the stock centres’ IDs are given in Figure. 

42. All the insertion positions were found where indicated in the respective databases 

except for the hyd4-2 insert which appears to be located about 200 bp downstream the 

indicated position (Figure. 42). All insertion lines are homozygous mutant except the 

hyd4-2 population which is segregating. We genotyped 42 plants from the hyd4-2 

accession, 16 of them were found homozygous and had a dwarf appearance (see 

below), 13 were found WT and, of 13 heterozygote. We concluded that the hyd4-2 

mutation is recessive.  
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Figure 42.  Position of the insertion in the different hyd4 alleles and of the primers used for RT-
PCR. +1 indicates the predicted start codon; exons are shown in thick black boxes and 
introns shown in thicker line. The arrows show the orientation of the T-DNA present in the 
respective hyd4 lines. The hyd4-1, hyd4-2, hyd4-3, hyd4-4, hyd4-5, hyd4-6 lines mentioned 
here respectively correspond to the following accessions SALK_069038, 711C08, 52-
0951, 12-3258, SM_319056, SM_319060. The insertion in the hyd4-2 line is depicted 
twice: once in grey, which corresponds to the insertion position indicated in the GABI 
database, once in black, indicating the position of this insertion according to our 
sequencing results. 

 

Finally plants were grown side by side and two samples per plant type were tested by 

RT-PCR. All the inserts, present within the first, second exons or second intron of the 

HYD4 gene, abolish the production of a WT transcript (Figure. 43) in their respective 

lines. However the production of chimeric transcripts is still taking place to a near WT 

level in mutants obtained in the Columbia background. The expression level of the 

HYD4 gene appears to be lower in the Nossen ecotype than in the Columbia ecotype.  
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Figure 43. Expression level of the hyd4 gene in the different hyd4 insertion mutants and 

respective WT controls. The quantity of transcript present in each plant type was checked 
by semi-quantitative RT-PCR (optimised with regard to cycle numbers; see Methods). The 
graph shows the relative amount of HYD4 transcript to the amount of ACTIN2 
(At3g18780) transcript. WT-Nos = WT Nossen and WT-Col = WT Columbia. 

 

Most of the homozygous mutants show no macroscopical phenotype, except the hyd4-

2 homozygous mutant. The application of toluidine blue to leaves from this mutant 

and from WT plants led to no staining (data not shown). This suggests that this mutant 

does not have any cuticular deficiency, however we could observe other disorders: 

plants show a dark green pigmentation, are extremely dwarf (Figure. 44_A_B_C), late 

flowering and sterile. Moreover, the shoot architecture of this mutant is abnormal: the 

main inflorescence often does not tower above the secondary inflorescences, and dies 

(Figure. 44_D_E).  
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Figure 44. Illustration of the macroscopic phenotype of the hyd4-2 mutant. (A) (B) (C) size 

difference between hyd4-2 mutants and WT plants. (A)(B) On the left, WT Columbia 
control, on the right hyd4-2 mutant. The rosettes from this mutant are two third smaller 
(hyd4-2: 3,3 cm ± 0,5 cm; WT: 9,7 cm ± 1 cm; the rosette diameter from 15 homozygous 
mutant and wild-type plants was measured) than that of the WT control. Plants were 11 
weeks old (seven weeks short day and four weeks long day). (D) hyd4-2 plants have a 
peculiar architecture: their secondary shoots tend to extend more than the main 
inflorescence which often dies. (E) While most of the hyd4-2 plants had flowered, some of 
them were still at the rosette stage and had not bolted. Plants were 18 weeks old (seven 
weeks short day and eleven weeks long day). Bar: (C) 1 cm. 
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4. Discussion 
 
4.1 The fdh, lcr and bdg mutants 
 
4.1.1. A role of the cell wall matrix in the permeability to small hydrophilic 
molecules  
 
Fiddlehead (fdh), lacerata (lcr), and bodyguard (bdg) mutants have pleiotropic 

phenotypes (Lolle et al., 1992; Yephremov et al., 1999; Wellesen et al., 2001; 

Kurdyukov et al., 2006b) but their obvious feature is the presence of ectopic organ 

fusions between rosette leaves and, in the case of fdh, between floral organs and 

flowers. Leaves from the fdh mutant have been shown to release their chlorophyll 

content faster than WT by Pruitt and co-workers (Lolle et al., 1997). On the other 

hand, the use of toluidine blue was described as a screening tool to identify new 

cuticular mutants (Tanaka et al., 2004). This prompted us to apply both techniques on 

our mutants to illustrate the permeability modification of their cuticle covering (In the 

chlorophyll leaching assay, fdh was used as control). As shown in Figure. 9, lcr, bdg 

and fdh leaf surface appears uneven after toluidine blue staining and the chlorophyll 

leaching assay showed that tissue of all mutants are more permeable than that of WT 

too. However all mutants did not behave the same way since the extraction curves 

from lcr and bdg are nearly superimposed whereas that of fdh is really distinct, and 

shows a steep increase. From TEM observations, we know that both lcr and bdg have 

a disrupted cuticle, that some portions of the cell wall seem devoid of cuticle and that 

cuticle material appear to be included in the cell wall (C. Nawrath personnal 

communication; (Kurdyukov et al., 2006b), but that fdh, on the other hand, shows a 

regular cuticle layer on the surface of its leaves ((Lolle et al., 1992); C. Nawrath 

personnal communication). Based on the appearance of the cutin layer of the different 

mutants we would have expected the opposite results: slower chlorophyll extraction in 

the case of fdh and quicker for bdg and lcr. It looks that fdh covering, even if regular, 

offers as little protection as bdg and lcr’s (toluidine blue staining) or even less 

(chlorophyll leaching). The cuticle may not be the only element that delays the release 

of pigment from WT leaves. The outer cell wall and the cell wall surrounding 

mesophyll cells may also influence this process.  

 
The fdh and lcr mutations triggers similar changes in the cell wall bound lipid 

composition (Figure. 16), this is, however, not reflected at the cellular level: the 
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cuticle layer in lcr is diconstinuous and partially intermixed with the outer cell wall 

but still covers large cell wall areas (C.Nawrath unpublished data) whereas that of fdh 

has a WT appearance (Lolle et al., 1992). This implies that lcr has an intermediate 

phenotype with regard to cuticle deposition as the cuticle covering of bdg looks more 

discontinuous: short polymers stacks are embedded in the outer cell wall which is 

only partially covered by cuticle (Kurdyukov et al., 2006b). The bdg mutant is 

however characterised by an overall increase in cutin monomer. Thus, the connection 

between alteration in cutin composition, cuticle structure and barrier properties of the 

cuticle is not straightforward. 

 
4.1.2. Lcr and bdg mutations have an impact on epidermis maintenance 
 
When grown under greenhouse conditions, the bdg mutant shows a progressive 

trichome death (Kurdyukov et al., 2006b). We suspected that this may be due to 

dehydration and grew the plants under in vitro culture conditions. However the 

progressive degeneration of the trichomes was also observed under these conditions. 

This ruled out a simple and localised death caused by dehydration and indicates an 

active process. When WT leaves are stained with toluidine blue for a longer period of 

time than two minutes, their trichomes are the first cells to retain the dye (data not 

shown). That trichomes from bdg leaves do not get preferentially or faster stained 

than WT trichomes (Figure. 9) goes well in hand with the fact that in this mutant, 

trichome death is not due to the environmental stress.  

 

We also took the opportunity to further observe bdg and lcr under high humidity 

conditions. The mutants still showed leaf deformations, fusions and the early 

appearance of axillary apical meristems as they usually do under greenhouse 

conditions. The early formation of axillary apical meristems, before any shoot has 

developed, must lead to the bushy phenotype of these mutants (Wellesen et al., 2001; 

Kurdyukov et al., 2006b). 

 

On top of the morphological and developmental defects observed in the greenhouse, 

we saw that under in vitro growth conditions both mutants tend to develop succulent-

like leaves bearing out-growths on their surfaces (Figure. 12). The production of 

succulent-like leaves by the bdg mutant under in vitro culture conditions as also been 

reported in the Phenome database (http://rarge.gsc.riken.jp/phenome/; T. Kuromori). 
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The authors also mentioned the fasciation as a feature from the bdg mutant under 

greenhouse conditions. In our hands, this remained extremely rare, as seldom as in 

wild-type plants.  

 

Young bdg leaves displayed epidermal ruptures, and petioles from older and succulent 

bdg leaves were found to lack the epidermis. This is reminiscent of the phenotype 

from the atml1 pdf2 double mutant (Abe et al., 2003). ARABIDOPSIS THALIANA 

MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) are 

epidermis specific homeobox-leucine zipper transcription factors (Lu et al., 1996; Abe 

et al., 2003). Their functions appear partially redundant (Abe et al., 2003) since single 

mutants do not show phenotype but double mutants are only able to develop until the 

rosette stage under in vitro culture conditions; their leaves have no epidermis. Both 

genes seem to be implicated in the epidermis differentiation and maintenance. In the 

case of lcr, tears were observed on the surface of petioles from succulent leaves, also 

suggesting a defect in the epidermal layer. Bdg and lcr mutants may not be able to 

maintain their epidermal layer thus showing the apparition of callus and lack of 

epidermal covering. This may be explained by a cell to cell adhesion deficiency: cells 

may loose contact resulting in ruptures, unmasking of the mesophyll layers and in the 

formation of cell bulges on the organ surface. The formation of callus at the surface of 

bdg and lcr petioles and leaves under in vitro culture conditions is reminiscent of the 

phenotype of cutinase expressing plants (CUTE plants). CUTE plants ubiquitously 

express a fungal cutinase which is secreted in the extracellular space. They develop 

bulges of mesophyll cells at rupture points (Sieber et al., 2000). We observed the 

formation of mini plants on these callus-like cell bulges (Figure. 13). The mutations in 

the epidermis specific LCR and BDG genes only lead to the formation of callus under 

in vitro culture conditions. Thus compared to our mutants, the CUTE plants seems to 

have an enhance capacity of forming callus-like tissues. This may be due to the 

ubiquitous expression of the cutinase gene. We observed that under greenhouse 

conditions the callus-like structures formed on CUTE plants tend to dry quickly and 

do not develop mini plants if the trays are not partially covered to maintain some 

humidity. Therefore the absence of callus-like structures on our mutants under 

greenhouse condition may also be due to the lower humidity level.   

Bdg and lcr develop more secondary roots (Figure. 14) and produce more biomass 

when grown on ½ MS media or on media supplemented with PEG, this may explain 
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the better growth of both mutants under these conditions. However what actually 

triggers the early appearance of secondary roots is not clear. The mutations may 

mimic what usually takes place in WT plants when grown under dry and hot 

conditions. In WT plants, water evaporation may lead to localised cuticle rupture and 

to the emission of a signal from leaf epidermis to extend the plants root net. In the bdg 

and lcr mutants, where the cuticle is discontinuous, this signal may be sent 

permanently, leading by default, to the formation of more secondary roots.  

 

4.1.3. A defective cuticle triggers a compensatory response at the cuticular level 
 
Analysis of cell wall bound lipids in rosette leaves was performed after the removal of 

soluble lipids. The residues were hydrolysed and prepared for gas-chromatography 

and mass-spectrometry (GC-MS) analysis (Franke et al., 2005; Kurdyukov et al., 

2006b); see methods).   

 
 
Chemical changes do not match proposed enzymatic functions of FDH and LCR 
 
LCR, also known as CYP86A8, belongs to the CYP86 enzymes and has been shown 

to catalyse the ω-hydroxylation of fatty acids, amongst others, of the C16 and C18:1 

acids (Wellesen et al., 2001). As the lcr mutant has a defective cuticle, we were 

expecting a decrease of the C16 and C18:1 ω-hydroxy fatty acids and of their 

respective α,ω-diacids (Figure. 2). A decrease in C16 acid derivatives was indeed 

observed: slightly less in the case of the C16 ω-hydroxy fatty acid and significantly 

less in the case of the C16 α,ω-diacid; but no change or a significant increase could be 

detected in C18 acid derivatives (Figure. 16).   

 

FDH is a homologue of the seed specific FATTY ACID ELONGASE 1 (FAE1) 

(Yephremov et al., 1999; Efremova et al., 2004), which belongs to the β-ketoacyl-

CoA synthase family and is a part of the elongase complex (Kunst et al., 1992). This 

complex catalyses the elongation of C16 and C18 fatty acids by the addition of two 

carbons per elongation cycle. In Arabidopsis, the very long chain fatty acids 

(VLCFA) present in cutin reach a length of 26 carbons (Franke et al., 2005). In the 

case of the fdh mutant, we were therefore expecting a decrease in monomers with 18 

carbons and VLC 2-hydroxy fatty acids, which was not observed. Although cutin 

contains some very long chain fatty acids, it may not be the best ground to attest the 
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elongase function of FDH as most compounds have a chain length of C16 and C18. 

Thus, a significant share of C18 compounds probably comes from the de novo lipid 

biosynthesis.   

 

One cannot rule that other fatty acid elongases or ω-hydroxylases compensate for the 

absence of the original proteins in the respective mutants (see Microarray). The 

regulation of either these homologue enzymes or of their genes may not be as good as 

the one from lcr or fdh, leading to the observed accumulations. 

 

In att1 and ace/hth  cuticular mutants the absence of the enzyme is reflected directly 

by a change in cutin composition: in att1, there is a reduction in ω-hydroxy fatty acids 

and α,ω-diacids that was expected as this gene codes for an ω-hydroxylase of the 

CYP86 family (Xiao et al., 2004). As the ace/hth mutant accumulates less α,ω-diacids 

but more ω-hydroxy-fatty acids, it was proposed that ACE/HTH encodes an ω-

hydroxy-dehydrogenase catalysing the production of diacids from ω-hydroxy fatty 

acids (Kurdyukov et al., 2006a).  

 

The enzymatic function of LCR is supported by in vitro assays and sequence 

homology to the confirmed CYP86A1 ω-hydroxylase (Wellesen et al., 2001) and 

FDH’s by sequence homology to FAE, mutation in which prevents the formation of 

C20 and C22 monomers in seed storage lipids (Lolle et al., 1992) and to CUT1, 

absence of which mainly leads to the accumulation of C24 wax monomers and a 

decrease in longer chain compounds (Millar et al., 1999). The enzymatic function of 

FDH is also supported by the fact that other FAE members, such as FAE1, KCS1, 

KCS2, are inhibited by herbicides (Lechelt-Kunze et al., 2003) known to affect the 

biosynthesis of VLCFAs (Kolattukudy and Brown, 1974; Boerger and Matthes, 2002) 

and to phenocopy the fdh phenotype when applied on WT plants (Lechelt-Kunze et 

al., 2003). However the analysis of cell wall bound lipids did not provide new 

evidence that LCR and FDH are respectively, as ω-hydroxylase and β-ketoacyl-CoA 

synthase, directly involved in cutin biosynthesis.  

 

The changes observed in cell wall bound lipids in these two mutants (and in bdg; 

(Kurdyukov et al., 2006b) can not be explained by the absence of the respective 

enzymes only. The changes are too similar and do not seem to be correlated with the 



Discussion 

 107

putative function of the proteins. Other factors, such as the oxidative stress (see 

Microarray), the perception of cuticle rupture as a signal of drought or infection, may 

concur to these modifications. In other words, the absence of both enzymes, and of 

BDG, may trigger a compensatory response in the respective mutants leading to the 

accumulation of cutin monomers, constituents of their protective layer, the cutin.  

 

The mutations in three cuticular genes, bdg (Kurdyukov et al., 2006b), lcr and fdh, 

paradoxically lead to an accumulation of cutin monomers. It seems that the fdh and lcr 

mutations trigger a weaker compensatory response than bdg, as no massive global 

overaccumulation is observed in these two mutants. Cuticle does not only contain wax 

and cutin but also cutan (Villena et al., 1999), which in WT Arabidopsis plants 

represents only few percentages of the cutin. It remains unknown whether the ratio 

cutan/cutin may not be affected in these three mutants. The absence of BDG may also 

trigger a more efficient boosting of cutin polymerases than that of the two other 

enzymes, probably implicated in the biosynthesis of the cutin monomers.   

 
 
The correlation between cutin appearance and wax overaccumulation is not obvious  
 
The wax loads from leaves of lcr and fdh were analysed by GC and GC-MS 

(Kurdyukov et al., 2006b); see methods) and proved to be, as in bdg (Kurdyukov et 

al., 2006b), higher in both mutants.  

 

As reported in WIN1 transgenic over-expressors (Broun et al., 2004), the increase in 

wax load led to the formation of visible crystals on the surface of fdh and lcr.  

 

As a continuous cuticle layer is present on the surface of fdh aerial tissue (Lolle et al., 

1992; Lolle et al., 1997), we were expecting a milder wax increase than the one 

observed in lcr and bdg; a priori, a regular cuticle layer should be a better protection 

than the patchy cuticle layers present in the two other mutants. Our results suggest 

that defective cutin layer triggers in fdh a compensatory response in wax production in 

the same proportion as the defective cuticle from the other mutants does; the 

scaffolding properties of fdh cuticle being far from being WT, as shown by 

chlorophyll leaching ((Lolle et al., 1997); Figure. 9) and toluidine blue staining. 
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The compensatory response may be because of a higher turnover of the biosynthesis 

or due to the extension of the production period of cuticle monomers, but this remains 

unknown. This compensatory response and the secondary effect of the mutations 

seem to involve a complete reorganisation of metabolic and signalling pathways as 

shown by the analysis of the transcriptome from the lcr, fdh and bdg mutants.  

 
 
4.1.4. Bdg and lcr mutations do not have a strong influence on seed coat composition 
 
Developing seeds are sheltered from environmental stresses such as air dryness, UV 

and oxidation. As we suspected a strong impact of the growth environment on the 

composition of cell wall bound lipid from leaves, we turned to seed coat which may 

display the direct consequences of the mutations only. The staining of bdg and lcr 

developing seeds with toluidine blue illustrated the increased permeability of their 

covering. We therefore analysed the seed coat composition of bdg and lcr mutants. 

Seeds were cracked and soluble lipids from the samples were removed. The seed 

residues were then analysed by GC/GC-MS similarly to leaf residues. On the contrary 

to what was observed at the cutin level, no significant changes in seed coat monomers 

was formed in the respective mutants.  

 
During this PhD work, another group working on lipid bio-polymers published a 

method to perform seed coat analysis (Molina et al., 2006). Compare to their method, 

we started from less seed material, 10 mg instead 500 mg, which can represent an 

advantage with mutants producing low seed set. Instead of pre-cracking the seeds in 

boiling isopropanol, then starting the delipidation with chloroform: methanol, and 

then after regrinding, passing the seed residue through a series of solvents for further 

extraction and finally filtering the samples and drying them under vacuum, we simply 

cracked the seeds to fine powder into a chilled mortar and extracted the seed residues 

for seven days changing the solvent (chloroform: methanol) daily, collecting the pellet 

by centrifugation, before letting the seed residue air dry for two days. This proved 

efficient and should limit the loss of seed material. The monomer composition 

reported for Arabidopsis seeds by M. Pollard and co-workers is similar to ours, 

although they did not mention the 2-hydroxy components (Molina et al., 2006). The 

latter may in this case as well be associated with the cell wall material. 
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It is worth mentioning that, to the difference to what was previously reported (Molina 

et al., 2006), we did not calculate the monomer quantity per mg of residue after 

delipidation but we rooted the monomer quantity on the initial seed weight. The 

proportion between seed coat and the rest of the seed may differ between WT and 

mutant seeds. Mutant seeds may form a heterogeneous population, have smaller seeds 

and more seeds may then be present in 10 mg, thus more seed coat material finally. 

Although the level of precision was sufficient in the case of lcr and bdg mutants, it 

appears more precise to weigh seed residues after delipidation as well.  

 
 
4.1.5. A poor cuticular insulation triggers a compensatory response at the 
transcriptional level 
 
Using ATH1 Affymetrix arrays comprising probes for about 22500 Arabidopsis 

genes, we analysed the transcriptome of lcr, bdg and fdh mutants. This gave us the 

opportunity to have an overall view on the transcriptional changes occurring in these 

three mutants.  

 

We found out that about one fifth of the commonly mis-regulated genes in lcr, fdh and 

bdg mutants are genes involved in lipid biosynthesis or trafficking. Genes related to 

cell wall maintenance or biosynthesis of cell wall component, represent another major 

subgroup among the commonly upregulated genes and also account for a fifth of 

them. 

  
Cuticle homeostasis 
 
Data presented in this manuscript show that a good number (14/56) of commonly 

induced genes in the three cuticular mutants are involved in cuticle homeostasis. They 

encode enzymes involved in fatty acid elongation such as CER4 (Rowland et al., 

2006) or DAISY (Trenkamp et al., 2004), fatty acid ω-oxydation CYP94C1 (Kandel 

et al., 2007), HTL7 (Krolikowski et al., 2003) or putative lipid trafficking protein, 

such as LTP2 (Dunkley et al., 2006) or LTP3 (Arondel et al., 2000). Some of the 

induced genes are known cuticular genes (WAX2 (Chen et al., 2003), CER4 

(Rowland et al., 2006)) or their homologues (CYP94C1 (Kandel et al., 2007), HTL7 

(Krolikowski et al., 2003), WBC1 (Sanchez-Fernandez et al., 2001). The 

overexpresion of these genes may represent an attempt of the mutants to repair their 

cuticles by accelerating the biosynthesis, the intracellular lipid flow and the secretion 
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of monomers. A direct correlation between drought, wax accumulation and the up-

regulation of three LTP genes was recently shown in tree tobacco (Nicotiana glauca 

L. Graham) (Cameron et al., 2006). Although not very closely related to CER5 

(WBC12) and DSO (WBC11) (see Appendix H), WBC1 may also contribute to the 

overaccumulation of cuticle material on the epidermal surface of lcr, bdg and fdh 

mutants. The wbc 11 (dso) and wbc 12 (cer5) mutants deposit less cuticle and less 

wax on their outer cell wall (Pighin et al., 2004; Bird et al., 2007; Panikashvili et al., 

2007). It was also shown that the overexpression of some cuticular genes leads to the 

overaccumulation of cutin (Li et al., 2007a) or wax monomers (Aharoni et al., 2004; 

Broun et al., 2004). 

 
 
In the fdh and lcr mutants, we observed the upregulation of the gene coding for the 

CYP94C1 which was recently shown to produce α,ω-diacids from C16 and C18 acids 

in vitro (Kandel et al., 2007). This P450 is very likely to catalyse the same reaction in 

vivo and thus, may contribute to adjust the amount of α,ω-diacids in these mutants. 

 

This suggests that plants are capable of perceiving the quality of their cuticle and to 

specifically activate a set of genes, which are very likely implicated in its reparation. 

We named them “cuticle repair genes”.  

 
Upregulation of cell wall genes may account for elements of the mutant phenotype 
 
Cell wall and cuticle are tightly linked as the former supports the latter. The structure 

and the compostion of the cell wall are also very likely to influence the build up of 

cuticle material. However, virtually nothing is known about the junctions between cell 

wall and cuticle. In bdg, the cell wall has a stretchy appearance (Kurdyukov et al., 

2006b).  

 

Nine genes coding for structural proteins (hydroxyproline and glycin rich proteins) of 

the cell wall or for enzymes (extensins and hydroxyproline-rich glycoproteins 

(HRGPs)) associated with its maintenance were found upregulated in the three 

mutants, suggesting that the mutants may try to reinforce their cell wall by 

incorporating more structural protein. The modification in cell wall plasticity in the 

mutants probably accounts for the loss of contact between epidermal cells and the 

presence of out-growth on the surface of bdg and lcr mutants grown under in vitro 
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culture conditions. Gnom/emb30 mutants are among others characterised by a weaker 

cell adhesion (Shevell et al., 1994), which may be due to an altered exportation of 

pectin in the extracellular space (Shevell et al., 2000). Pectin network is essential for 

cell wall structure as it supports the deposition of cellulose and as it is the major 

component of the middle lamella that is shared by adjacent cells. The probable 

changes in cell wall composition and structure may also explain the irregularity of the 

leaf surface from the lcr mutant (Yephremov and Schreiber, 2005). The up-regulation 

of the GPR5 gene associated with shoot initiation and also with somatic embryo 

formation (Herzog et al., 1995; Magioli et al., 2001) may especially contribute to the 

formation of callus-like tissues in the epidermis of the mutants, and to the increased 

number of lateral shoots observed in the mutants.  

 
 
Intracellular signalling in reponse to stress in cuticular mutants  
 
Bdg, lcr and fdh mutants tend to repair their defective cuticle but do not manage to 

restore a WT protective layer and undergo stress.  

 

Gene coding for different elements of intracellular signalling, such as membrane 

receptors, kinases and transcription factors were found up regulated in these mutants. 

The accumulation of signal molecules related to stress, such as H2O2, aldehydes and 

other ROS were implicitly stated by the upregulation of genes implicated in 

detoxification for instance, glutaredoxins and aldo/keto reductases. The putative 

overaccumulation of ROS, detoxication enzymes and ion scavengers went with an 

increase in ROS responsive elements such as the transcription factor BT4 and the 

metalothionein MTIC.   

 

The upregulation of the RD26, BT4, LTP3 and LTP4 genes which are among others 

ABA responsive, the induction of an ethylene-forming enzyme and of three ERF/AP2 

transcription factors may indicate that the ethylene and ABA signalling pathways are 

activated in these three cuticular mutants.   

 

The accumulation of LEA proteins and ROFs normally found in tissue undergoing 

dehydration (Delseny et al., 2001; Peters et al., 2007) and the wax accumulation 

observed in the lcr, bdg and fdh mutants strongly support the hypothesis that these 
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mutants suffer from dehydration. It was for instance shown in tobacco tree (Nicotiana 

glauca L. Graham) that the exposure to dry condition enhance wax deposition 

(Cameron et al., 2006).  

 

The RD26 transcription factor from the NAC family was found up regulated in 

response to drought and in transgenic plants overexpressing RD26 ABA and stress 

induced genes were also found induced (Fujita et al., 2004). We found that ERF/AP2 

transcription factors namely RAP2.6 and RAP2.6L are induced in our plants. The 

latter are distantly related to WIN/SHN1 and RAP2.4 (the closest homologue to 

WXP1; (Alonso et al., 2003; Zhang et al., 2005); see Appendix I). The 

overexpression of WIN1/SHN1 (Aharoni, Dixit et al. 2004) and WXP1 (Zhang et al., 

2005) promote wax accumulation and enhance drought tolerance, it could be of the 

same for RAP2.6 and RAP2.6L. 

 
 
All these line of evidences concur to tell that as a consequence of the lcr, bdg and fdh 

mutations intracellular signalling takes place, and that these three cuticular mutants 

very probably suffer from desiccation and, this shows through at the transcription 

level.  

 

Activation of defence responses 
 
Cuticular damage has been recently shown to give resistance against Botrytis cinerea 

(B. cinerea) to Arabidopsis transgenic plants expressing a fungal cutinase (CUTE 

plants; (Sieber et al., 2000; Bessire et al., 2007; Chassot et al., 2007). Bdg has been 

shown to have a resistance level comparable to that of the CUTE plants (Chassot et 

al., 2007), and lcr appeared to be more resistant than Columbia WT plants but not as 

resistant as bdg and CUTE plants (Bessire et al., 2007). To explain this, it was 

proposed that fungitoxic compounds permeate cuticle more easily in the CUTE, bdg 

and lcr plants leading to their resistance to B. cinerea (Bessire et al., 2007; Chassot et 

al., 2007). However it appears that other mechanisms may be involved. For instance, 

the perception of free (unbound) cutin monomers could differ in mutants and WT and 

may also enhance the production of fungitoxic compounds. It was shown that the 

exogenous application of C18 fatty acid derivatives on barley leaves confer some 
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resistance against the powdery mildew fungus Erysiphe graminis (Schweizer et al., 

1996b). 

 

Also, overexpression of cutinase triggers significant transcriptome changes (Chassot 

et al., 2007). Using Affymetrix microarrays, candidate genes were defined and 

overexpressed in WT Arabidopsis thaliana plants. The overexpression of respectively 

three LTPs and three peroxidases protected the WT transgenic plants against B. 

cinerea. The overexrpesion of two protease inhibitors respectively did not seem a very 

efficient protection. The three overexpressed LTPs are homologue to the LTP genes 

found to be induced in our mutants. Two genes from their short RT-PCR candidate 

list were also found up-regulated in our mutants, namely LTP2 (At2g38530) and 

GRP5 (At3g20470).  

 

In the list of commonly upregulated genes by lcr, bdg and fdh, genes putatively 

implicated in plant defence such as SS3, ELI-3, ATT1 were found up-regulated. They 

may contribute to synthesis of alkaloids, aromatic aldehydes or trypsin inhibitor and 

thus contribute to the resistant phenotype observed in lcr and bdg against B. cinerea 

(Bessire et al., 2007; Chassot et al., 2007). Five LTPs were found to be upregulated in 

the three mutants. They are homologues of the LTPs, which overexpression gave 

resistance to the transgenic plants against B. cinerea (Chassot et al., 2007). Thus, they 

may also provide resistance to the mutants. 

 

To have a better overview, it would be advantageous to be able to compare our 

datasets to the growing number of microarray data released by other groups. This 

meta-analysis would, for instance, allow the direct comparison of the effect of a 

mutation to the effects of other mutations or different treatments (application of 

elicitors, hormones, etc…). and may help further to establish a link between cuticular 

formation and signalling or regulatory pathways. Such a statistical package for meta-

analysis of microarray data is currently developed in our lab by A.Yephremov 

(personnal communication).   
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4.1.6. FDH function may be conserved throughout plant evolution  
 
We could show that the barley (Hordeum vulgare) allele of the FDH gene is able to 

complement the fdh mutation in Arabidopsis. On one hand this was rather expected as 

the Hordeum vulgare gene clusters quite close of Arabidopsis thaliana and 

Antirrhinum majus FDH (Figure. 26). This later has been shown to complement the 

Arabidopsis mutant (Efremova et al., 2004). This was, on the other hand, quite 

unexpected as Hordeum vulgare and Arabidopsis thaliana are distantly related 

species; monocotyledons and dycotyledons split more than 200 million years ago 

(Wolfe et al., 1989). It follows that FDH function appears to be conserved throughout 

the evolution. This result is also supported by the fact that application of herbicides 

leading to the fdh phenotype in Arabidopsis and Anthirrhinum also lead to the 

apparission of organ fusion in millet and corn (Lechelt-Kunze et al., 2003). We 

observed more WT-like homozygous mutants bearing the hvFDH construct at the 

rosette stage than at the flowering stage. More FDH protein may be required during 

flower development than during leaf onset, this may explain the absence of 

complementation in the flowers even though it was achieved at the leaf stage. It may 

also be that floral expression of the FDH gene is fine tuned, tuning which could not be 

fully carried out in our case.  

 

That barley FDH is able to complement the Arabidopsis fdh mutant also implies that 

if FDH is involved in cutin biosynthesis, they should perform the same reaction i.e., 

the products of the FDH enzyme should be present in both species. The cutin of 

barley leaves contains secondary alcohols with a chain length ranging from C16 to 

C22, free fatty acids with a chain length of 16 to 22 carbons, ω-hydroxy-acids, and 

diol and epoxide derivatives with 18 carbons (Espelie et al., 1979). So barley and 

Arabidopsis cutins do not have that much in common. However as both species 

contain C20 and C22 fatty acids and C18 ω-hydroxy-acids, one could suggest that 

FDH is involved in the elongation steps leading to their production.   
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4.2 The htm mutant  
 
4.2.1. Expression pattern of HTM 
 
 
Making use of transgenic plants expressing promoter or protein reporter constructs 

enabled us to determine that both, the HTM promoter and the HTM protein, are 

epidermis specific and preferentially expressed in young organs, particurlarly, during 

floral development. This was quite expected because htm shows a cuticular phenotype 

and that until now all cuticular genes have been found epidermis specific. The 

promoter activity was detected in leaf primordia, trichomes of mature leaves, in 

petals, sepals and just below the papillae cells of floral buds and flowers. The HTM 

protein was detected in epidermal cells of developing leaves, stems and floral organs. 

The HTM protein is still present in trichomes, in some pavement cells from leaves and 

stems epidermis long after the HTM transcript has disappeared, thus it seems to be 

quite stable. DsRED fusion may, however, be responsible for the stabilisation of the 

HTM protein. 

 

Our expression results are in a good agreement with the data presented by 

Genevestigator (Zimmermann et al., 2004), which suggests that HTM is expressed in 

aerial organs, strongly in flowers. Our results also do not contradict the microarray 

data obtained on epidermal peals from Arabidopsis stem (Suh et al., 2005).  The 

authors reported a ratio close to two and a ratio below two, which might indicate that 

the gene is epidermis specific. That the ratio epidermal signal/ general signal is only 

about two in this experiment is probably due to the low amount of HTM transcript 

present in stem epidermis.   

 

HTM is expressed in each of the floral whorls, from early developmental stage on and 

also during seed development. This gene seems to be particularly important for 

separation of sepals and petals as its absence leads to organ fusion between these two 

whorls and to an increased permeability of their cuticle. We found that HTM 

expression is stronger at the edges of sepals, where, in the htm mutant, toluidine blue 

dye stains tissue preferentially. Mature organs of the perianth of htm mutant were 

easily stained with toluidine blue, whereas mature stigma, style and developing 

siliques remain unstained. The htm mutation may not have the same effect on all 

organs, as the native HTM enzyme may not have the same importance everywhere. 
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Due to the presence of HTM putative homologues, it may as well not have been the 

right stage to illustrate their permeability defect, notice that at earlier stages of 

development the apex of htm styles gets stained. Leaf fusion are less frequent than 

sepal-petal fusion in the htm mutant, this may be because petals and sepals grow in 

closer proximity than rosette leaves and also because HTM protein may not have a 

preponderant role throughout the development of all aerial organs. The expression of 

the HTM gene is not maintained in developing leaves, whereas it is detected in mature 

petals and sepals.   

 

The application of a hypertonic salt solution on stigma from transgenic plants 

expressing the HTM-DsRED construct triggers the retraction of the plasma membrane 

and at the same time of the chimeric HTM-DsRED protein. The application of the salt 

solution may also affect the localisation of the protein, as more intense spots of 

fluorescence were observed in the cytoplasm after the application of the salt solution.  

 
 
4.2.3. Is HTM directly implicated in the cuticle biosynthesis? 
 
Our cell wall bound lipid and wax analyses revealed that the cuticle covering of the 

htm mutant is generally composed of less fatty acid derivatives. This may account for 

the increase of epidermal permeability, finally leading to an increase in adherability of 

the floral organs from the htm mutant. As a consequence of their reduction in cuticle 

and wax covering, the bloomless-22 (bm-22) and glossy1 (gl1) mutants have increased 

cuticle permeability (Jenks et al., 1994; Sturaro et al., 2005) and the wxp1 mutant, 

which deposits more wax, a reduced cuticle permeability (Zhang et al., 2005). As 

illustrated by the bdg and the gpat4/gpat8 mutants, amounts of monomers is not all, 

deposition and reticulation of the cuticle layer are essential to the establishment of 

cuticle impermeability (Li et al., 2007b). Bdg accumulates more cutin and wax but 

shows greater cuticle permeability due to a discontinuous cuticle (Kurdyukov et al., 

2006b). The gpat4/gpat8 double mutant which has a normal wax load but a reduced 

amounts of cutin monomers leading to a drastic reduction of its cuticle permeability. 

 

In the htm mutant, no major shift between the classes of wax compounds can be 

observed, however our cell wall bound lipid analysis revealed that in the htm mutant, 

there is a deficit in mid-chain hydroxy fatty acids, a two-fold increase in C16 α,ω-
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diacids and that, the quantity of C18:1 and C18:2 are divided by two. This difference 

in monomer composition may be directly linked to the enzymatic function of HTM, 

which shows homology to acyl-transferases. 

 

Almost nothing is known about the assembly of the cutin polymer, which for instance 

may result of the incorporation of individual monomers or of short polymers in the 

on-growing polyester. However C16 and C18 acids, products of the de novo lipid 

biosynthesis, have to be elongated, oxidised, exported and linked to the on-growing 

cutin polymer. HTM could be involved in the delivery of fatty acids to the 

extracellular space by linking acyl chains to acyl carriers. To be esported or processed 

fatty acids need a carrier, this may be CoA, glycerol or something else for instance 

phenolic compounds. HTM may precisely transfer free or acyl-CoA derivatives of 

C18 ω-hydroxy acid, C16 di-hydroxy acid, C16 hydroxy α,ω-diacid, C18:1 and C18:2 

α,ω-diacids to acyl carriers, such as glycerol derivatives. In absence of HTM, less of 

these compounds are incorporated, so maybe less is delivered to the cutin 

polymerisation site. Formely it could also be that, in the absence of HTM, more acyl 

carrier may be free to export C16 α,ω-diacid which is then more available to 

extracellular synthases, which take care of cutin polymerisation. Cutin monomers may 

not be exported one by one but already as short polyesters, therefore HTM could also 

be involved in the attachment of these monomers to short polymers prior to their 

eportation. 

 

 As the HTM protein may be localised in the plasma membrane (PM) it may have an 

extracellular role consisting of activating these compounds to facilitate their transport 

across the PM and incorporation in the on-growing cutin. As a direct consequence of 

the absence of HTM, one would then expect the incorporation of other compound 

such as C16 diacids and less of its substrate.    

 

The results of our wax and cell wall bound lipid analyses also suggest that HTM is 

involved in fatty acid elongation. Less C18 acid derivatives are present among the 

cutin monomers and more C16 acid derivatives can be found. The general decrease in 

wax monomers (20%) may be due to lower amount of C18 acid which has to be 

elongated further to yield wax compounds.  
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Htm mutation does not trigger a global increase in wax or cutin constituents. There 

may be no compensatory response or else one that bring the cuticle composition 

nearly back to normal takes place, and manages to counterbalance pretty well the 

effect of the htm mutation with regards to the global quantity of monomers.  

 
4.2.4. Is HTM an acyltransferase?   
 
As HTM putatively belongs to the acyltransferases, we have expressed HTM in E.coli 

and isolated the protein for in vitro assays. One could for instance, incubate HTM 

with various substrates (Luo et al., 2007), or check whether the HTM protein binds to 

different kinds of lipids immobilized on membranes. Another approach to learn more 

about the HTM function would be to examine the E.coli cells by TLC coupled with 

GC-MS to see whetehr any modifications in the lipid composition are triggered by the 

introduction of the HTM protein in E. coli (Coleman, 1990).  

 

HTM is expressed in flowers and although Arabidopsis thaliana flowers are odourless 

to us and white, the presence of acyltranferases able to use aromatic compounds as 

substrate in flowers is not original (Dudareva et al., 2000). HTM may take part in the 

biosynthesis of phenolic derivatives especially abundant in flowers.     

 

Cutin and suberin are polymers of aliphatic monomers cross-linked by glycerol 

molecules (Moire et al., 1999; Graca et al., 2002). Thus cutin and suberin biosynthesis 

imply the formation of glycerolipids which may be first synthesised within the cell, or 

else glycerol and fatty acids derivatives may be sequentially incorporated in the on-

growing polyester. Glycerol-phosphate and CoA esters of fatty acids are precursors of 

the biosynthetic pathway of glycerophospholipids (Kennedy pathway) which 

produces, among others, triacylglycerol (TAG), essential form of energy storage, and 

phospholipids acting as intracellular messengers, such as phosphatidylinositol (PI) or 

phosphatydilserine (PS). The two first steps of this pathway respectively involve the 

transfer of a fatty acid CoA ester first to glycerol-3-phosphate (G3P) and then to 

lysophosphatidic acid (LPA) to form phosphatidic acid (PA) (Figure. 45). PA is then 

used by the branches of the pathway to yield storage lipids or membrane 

phospholipids such as PI, PS. The first step leading to the formation of LPA from G3P 

is catalysed by a glycerol-3-phophate acyl transferase (GPAT) and the second step, 
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turning LPA into PA is catalysed by a lysophosphatidic acid acyltransferase 

(LPAAT).  

 

Recently, Arabidopsis enzymes able to catalyse both reactions have been identified. 

GPAT5 belongs to a small multigenic family of acyltransfereases and has an acyl-

CoA: glycerol-3-phosphate acyltransferase activity (Beisson et al., 2007). Knock-out 

mutants in this enzyme accumulate less aliphatic monomers in their suberin and seed 

coat, which is consistent with the expression pattern of the GPAT5 gene, 

preponderantly expressed in root and seed coat of developing seeds. Two more 

members of the GPAT family, namely GPAT4 and GPAT8, were recently shown to 

be essential in cutin biosynthesis and epidermis specific (Li et al., 2007b).The 

gpat4/gpat8 double mutant has a reduced cutin amount. The ATS2/LPAT1 enzyme 

could complement the E.coli mutant JC201 deficient in lysophosphatidic acid 

acyltransferase (LPAT) (Coleman, 1990; Bin et al., 2004; Kim and Huang, 2004). 

ATS2/LPAT1 localised in the plastids (Bin et al., 2004) and expressed in most organs 

(Kim and Huang, 2004). The loss of the ATS2 function is embryo lethal.  
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Figure 45. Putative pathway showing biosyntheis of glycerolipid precursors cutin, suberin and 

seed coat. Acyltransfer reactions are catalysed by GPAT and LPAAT however the 
function of HTM rremains unknown. G3P: glycerol-3-phosphate; LPA: lysophosphatidic 
acid; PA: phosphatidic acid; faCoA: fatty acyl-CoA; GPAT: glycerol-3-phophate acyl 
transferase; LPAAT: lysophosphatidic acid acyltransferase. 

 



Discussion 

 120

The fact that the gpat4/gpat8 double mutant has a cutin phenotype like htm, and that 

HTM is an homologue of ATS2/LPAT1, let us suppose that the HTM enzyme may 

function as a lysophosphatidic acid acyltransferase (LPAAT). Among the LPAT1 

homologues there is LPAT2 which is essential during ovule development; its absence 

is female gametophytic lethal (Kim et al., 2005). According to the results on gpat 

mutants, LPA is used as precursor to synthesised cutin, suberin and seed coat, PA may 

also be used. However, as the amounts of storage lipids and membrane phospholipids 

are not modified in gpat5 mutant (Beisson et al., 2007) and gpat4/gpat8 double 

mutant (Li et al., 2007b) there may be distinct pools of G3P and CoA esters of fatty 

acid within the cell. Alternatively, only a pool of G3P and CoA esters only may be 

available but the channelling of precursors for cutin biosynthesis has no influence on 

branches of Kennedy biosynthesis pathway leading to the production of storage and 

membrane phospholipids.  

Thus HTM could be an acyltransferase but its exact biochemical function remains to 

be elucidated and it is not likely to be equivalent to that of LPAT or GPAT.  

 
 
4.3 Investigation on candidate genes 
 
4.3.1. The function of the LEAKO gene remains unknown 
 
 
The leukotrien A-4-hydrolase is bifunctional in both human and yeast (Kull et al., 

1999; Kull et al., 2001) and belongs to the metalloenzymes (Medina et al., 1988). One 

of its functions, of unknown physiological importance, is a peptidase activity; its 

second function is the ability to catalyse the formation of LTB4 in human (Soberman 

et al., 1988) or DHETE in yeast (Kull et al., 1999) starting from LTA4. In 

mammalians, various epoxide hydrolases are involved in detoxication processes 

(Wixtrom, 1985) turning oxylipins, epoxides of C20 (arachidonic) and C18 double 

unsaturated (linoleic) fatty-acids into their corresponding di-hydroxy compounds. In 

some plant species, the opening of epoxide rings leads to the production of cutin 

precursors (Croteau and Kolattukudy, 1975; Pinot et al., 1992; Blee and Schuber, 

1993) or antifungal substances (Hamberg, 1999). 

 

Recent work on maize has shown that epoxides present in plant cuticles are important 

for cuticle intergrity and that the prevention of their formation was accompanied by 
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drastic changes in the cuticle structure and properties (Lequeu et al., 2003): the altered 

cuticle is thinner and offers a poor protection against fungi and pesticides. Thus, Blée 

and co-workers showed that global inhibition of C18 fatty acids epoxidation greatly 

affects the cuticle formation, for instance, in maize (the percentage of C18 compounds 

is approximately equal to the percentage of C16 compounds) and in barley (the 

percentage of C18 compounds is approximately six times higher than the percentage 

of C16 compounds) (Lequeu et al., 2003). They showed that the structure of the 

cuticle of soybean or pea, species rich in C16 fatty acids, is not affected by the 

inhibition of the peroxygenase activity.  

 

As the Arabidopsis cuticle contains both C16/C18 fatty acid (the percentage of C18 

compounds is approximately three times higher than the percentage of C16 

compounds; (Franke et al., 2005)), we originally hypothesised that the absence of 

epoxide hydrolase activity perhaps executed by the homologous enzyme of the 

leukotrien-A4-hydrolase in Arabidopsis- may affect the properties of Arabidopsis 

cuticle in a similar way. During this PhD work, Schreiber and co-workers, and Pollard 

and co-workers described the composition of Arabidopsis cutin as a mixture of 

mostly, α,ω-diacids, mid-chain hydroxylated fatty acids and ω-hydroxy acids 

(Bonaventure et al., 2004; Franke et al., 2005). In addition Schreiber and co-workers, 

reported the presence of 2-hydroxy fatty acids (Franke et al., 2005).  

 

As we found out that mid-chain di-oxygenated fatty acids are only present as traces in 

the Arabidopsis cuticle, that LEAKO may be involved in the biosynthesis of cutin 

precursors is unlikely. As shown in Lycopersicum esculentum or Hedera helix, 

another player seem actually to allow most of the fatty acids cross-linking using their 

carboxy groups: glycerol (Graca et al., 2002).  

 

The function of the LEAKO gene remains for now unknown. Genevestigator suggests 

that this gene is mainly expressed in roots, and the microarray data obtained on 

epidermis peals from stems indicate that this gene may not be epidermis specific 

(Zimmermann et al., 2004; Suh et al., 2005). However as, according to 

Genevestigator, the level of expression of the LEAKO gene in the stem is quite low, 

no reliable conclusion about its epidermis specificity can thus be drawn. If this gene is 

indeed involved in the biosynthesis of cutin-like polyester, it has therefore a higher 
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probability to be involved in suberin production. One should observe the roots of the 

leako-2 mutant to see whether any visible phenotype occurs as a consequence of 

LEAKO’s  absence.  

 

The LEAKO enzyme may have evolved on the peptidase side and only retain a 

function linked to this activity. We could challenge leako mutants with different 

stresses or pathogens to gain insight in the function of this unique gene.  

 
 
4.3.2. The putative impact of ALDH5 needs further confirmation. 
 
We suspected that mutants impaired in one or the other aldehyde dehydrogenases may 

have a modified cuticle composition and show a cuticle phenotype. A decrease in α,ω-

diacids could for instance lead to a lower reticulation of the cutin polymer, and finally 

to a weakened cuticle layer. The ALDH5 gene is, according to the microarray data 

obtained on Arabidopsis stem, most likely to be epidermis specific (Suh et al., 2005). 

Genevestigator (https://www.genevestigator.ethz.ch/at/) suggests that ALDH5 is 

expressed ubiquitously, particularly strongly in aerial organs. Thus this gene may be a 

good cuticular candidate. In our hands, however the aldh5-1 homozygous mutant only 

showed a defect in fertility but none in seed coat or cutin permeability. We observed 

that embryo death takes place at different stages of development, therefore the 

ALDH5 gene maybe sporophytic lethal. ALDH5 is member of a multigenic family 

(Kirch et al., 2004) and may functionally be replaced in the aldh5-1 plants which thus 

do not show any phenotype during most developmental phases. Thus to investigate 

the potential impact of the absence of some aldehyde dehydrogenase on the cuticle 

biosynthesis of Arabidopsis, one should indeed investigate multiple aldh mutants.  

 

Classically the production of α,ω-diacids is presented as a two-step process, starting 

from a fatty acid which is first oxidised on its ω-carbon by a ω-hydroxylase and, 

which then is taken in charge by an ω-aldehyde dehydrogenase, leading from the 

aldehyde to the α,ω-diacid (Kurdyukov et al., 2006a). An alternative could reside in 

ω-hydroxylase from the CYP94 group; F. Pinot and co-workers (Le Bouquin et al., 

2001; Kandel et al., 2007) showed that the CYP94A5 enzyme is able to catalyse 

efficiently the two oxidation steps turning 18-hydroxy-9,10-epoxystearic acid into its 

corresponding α,ω-diacid.  
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Drought, high salinity, temperature alterations, wounding, pathogen attack or a high 

level of UV radiations are known to trigger the formation of reactive oxygen species 

(ROS) in plant tissues. During the degradation of these highly toxic compounds, other 

reactive compounds, such as aldehydes, are formed (Dhindsa et al., 1981; Chia et al., 

1984). It has been highlighted that in various species such as rice (Nakazono et al., 

2000) Tortula vulgaris (Chen et al., 2002) or Arabidopsis thaliana (Kirch et al., 2001) 

genes encoding ALDHs were upregulated in stressed plants. On the other hand, it was 

shown that Arabidopsis plants over-expressing the ALDH3 gene were more resistant 

to stress (Sunkar et al., 2003). As already mentioned, a way to dispose of the 

aldehydes is to turn them into carboxylic acids. We observed embryo lethality in some 

aldh5-1 homozygous mutants; it may be due to the absence of an efficient recycling 

circuit for the naturally occurring ROS. After showing by transgenic 

complementation, that the aldh5-1 mutation is the cause of the observed embryo 

lethality, one could for instance try to quantify the presence of ROS in WT and 

mutant.   

 
 
4.3.3. Is the hyd4-2 insertion responsible for the phenotype of the hyd4-2 mutant? 
 
We recently started the investigation on the HYD4 gene, which is closely related to 

BDG and might have a similar role in plant development. Apart from the hyd4-2 

homozygous mutants none of the other homozygous mutants showed a macroscopic 

phenotype. The phenotype of the hyd4-2 mutant is reminiscent of giberrelin mutants 

such as gai (Wilson et al., 1992), shi (Fridborg et al., 1999) and of brassinosteroid 

mutants such as dwarf4 (Azpiroz et al., 1998), which are dark green and dwarf. Yet 

since only one accession, hyd4-2, out of six insertion lines shows this phenotype, this 

may imply that the mutation in the HYD4 gene is actually not responsible for the 

phenotype of the hyd4-2 homozygous mutants. However the dark green and dwarf 

phenotype and the mutant genotype seem to be closely linked: all plants showing a 

dark green and dwarf phenotype were found to be homozygous mutants (16/16) and 

none of the other plants were. No other ORF is present at this position, but an 

insertion in a neighbouring gene may be responsible for the phenotype. It may also be 

that this gene does not have the same importance in the Columbia and Nossen 

ecotypes, which could already justify the WT appearance of the hyd4-5 and hyd4-6 

mutants.  
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To finally prove that the insertion in the hyd4-2 population is responsible for the 

phenotype of the hyd4-2 mutants, one could genotype more plants to gain information 

on the physical distance between the HYD4 gene and the hyd4-2 mutation. However 

our result, based on 42 plants, indicates a tight link between the mutation and the 

HYD4 gene. Thus one should try to rescue the phenotype of these plants by transgenic 

complementation, introducing a WT copy of the gene.  

Our working hypothesis was that HYD4 may also be involved in cuticle biosynthesis; 

we however did not observe any change in cuticle permeability using toluidine blue. 

According to the microarray data from epidermis peals of Arabidopsis (Suh et al., 

2005), this gene has a weak level of expression in the stem and could be epidermis 

specific, the function of this gene may therefore be linked to the cuticle. According to 

Genvestigator, this gene is expressed in most plant organs but stronger in pollen and 

stamens which may contribute to the sterility from the hyd4-2 plants (Zimmermann et 

al., 2004). 

 

If the mutant phenotype is confirmed, this would possibly mean that the HYD4 

enzyme could either be involved in the biosynthesis of a hormone or in the signalling 

pathway involving this hormone. BDG, to which HYD4 is closely related, seems to be 

involved in cuticle biosynthesis but shows similarities to fungal cutinase and is 

localized in the outer-most epidermal cell-wall (Kurdyukov et al., 2006b). Therefore 

if HYD4 shares its extracellular localization, one could suppose that HYD4 possibly 

releases signalling molecules from the cell wall and doing so, would be likely to 

trigger the intracellular signalling cascade leading to cell elongation and plant growth.  
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5. Summary 
 

Biochemical and genetic responses 
in cuticular mutants 

 

 
The cuticle layer is essential for maintaining organ integrity and protecting plants 
against biotic and abiotic stresses present in their natural environment. Arabidopsis 
thaliana mutants with a defective cuticle layer may help to precisely determine which 
genes are actually taking part in the formation of the cuticle. The functions of some 
cuticular genes seem to be conserved between monocots and dicots as we could 
complement the Arabidopsis fiddlehead (fdh) mutant with the barley allele of the 
FDH gene. In addition to a defective cuticle, fdh, bodyguard (bdg), lacerata (lcr) and 
the novel htm Arabidopsis mutant show ectopic organ fusions and other 
developmental phenotypes.  
 
As the isolation of pure cutin from cuticular mutants is not doable, we analysed the 
cell wall bound lipid composition from leaves of the fdh and lcr mutants. As a 
consequence of fdh and lcr mutations, a significant increase in cutin monomer amount 
takes place. Even though FDH and LCR enzymes have very different functions, 
similar alterations in cell wall bound lipid composition were observed in their 
mutants. As it was observed in bdg earlier, we could also show that both fdh and lcr 
accumulated more wax. Even though each of these three mutants has its own 
particularities that, mutations in three genes coding for so different enzymes trigger 
similar phenotypical alterations was quite unexpected. This brought us to study the 
compensatory response to cuticular damage and to compare the transcriptome of 
mutants using microarrays. This analysis supports the idea that plants are able to 
compensate for cuticle defects specifically altering gene expression. 
 
We characterised the expression pattern of the recently cloned HTM gene using 
promoter and protein fusion reporter constructs. We found that the HTM gene is 
epidermis specific, and is particularly strongly expressed in petals and sepals. This 
goes well in hand with the phenotype of the htm mutant which is characterised by 
postgenital organ fusion within floral buds. The bound lipid analysis revealed that 
whereas htm deposits similar quantity of monomers on its outer cell wall, there is a 
shift in monomer proportions. The wax composition of this mutant was not found 
different from that of the wild type but a global decrease of 20% was observed. Thus 
it is more likely that HTM is indirectly involved in wax and cutin biosynthesis.  
 
We also characterised insertion lines in genes putatively involved in cutin 
biosynthesis, respectively encoding an aldehyde dehydrogenase, an epoxide 
hydrolase-like enzyme, and a member of the α/β hydrolase-fold super family.  
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6. Zusammenfassung 
 
Biochemische und genetische Folgen von kutikulären 

Defekten in Arabidopsis thaliana 
 
 
Die Kutikula ist essentiell, um Organintegrität zu bewahren, und sie schützt Pflanzen 
vor biotischem und abiotischem Streß von außen. Arabidopsis thaliana Mutanten mit 
einer defekten Kutikula könnten genutzt werden, um Gene zu identifizieren, die an 
der Biosynthese der Kutikula beteiligt sind. Die Funktionen einiger Kutikulagene 
scheinen in monokotyledonen und dikotylendonen Pflanzen konserviert zu sein, da 
die Arabidopsis fiddlehead (fdh) Mutante mit dem FDH Gen von Gerste 
komplementiert werden konnte. Außer einer defekten Kutikula, zeigen fdh, 
bodyguard (bdg), lacerata (lcr) und die hier neue htm Arabidopsis Mutante 
ektopische Organfusionen und weitere Entwicklungsphänotypen.    
 
Da eine Isolierung des reinen Kutins aus Arabidopsis nicht möglich ist, wurden 
zellwandgebundene Lipide von Blättern von fdh und lcr analysiert. Mutationen in 
LCR und FDH führen zu signifikanten Erhöhungen des Anteils an Kutinmonomeren. 
Obwohl FDH und LCR sehr unterschiedliche Funktionen besitzen, wurden ähnliche 
Änderungen der zellwandgebundene Lipide nachgewiesen. Ähnlich wie es in bdg 
vorher beschrieben war, wurde auch eine Wachsakkumulation in fdh und lcr 
festgestellt. Unerwartet war die gleichartige Änderung der Kutinmonomere in den drei 
Mutanten, da die drei Enzyme sehr unterschiedlich sind. Um 
Kompensierungsmechanismen von Pflanzen mit defektem Kutin genauer zu 
verstehen, wurde das Transkriptom der Mutanten und des Wildtyps mit Hilfe von 
Microarrays verglichen. Die Analyse bestätigte die Vermutung, daß diese drei 
Mutanten eine spezifische Modifizierung der Gen-Expression aufweisen.  
 
Das kürzlich klonierte HTM wurde durch das Expressionsmuster mit Hilfe von 
Promoter- und Protein-Reporterkonstrukten charakterisiert. Es wurde rausgefunden, 
daß HTM epidermisspezifisch ist, und daß es besonders stark in Blütenblättern und in 
Kelchblättern exprimiert wird. Das Expressionsmuster paßt gut zu dem beobachteten 
Phänotyp von htm, da die Mutante postgenitale Organfusionen in der Blüte aufweist. 
Die Analyse der zellwandgebundenen Lipide zeigte, daß die htm Mutante ähnliche 
Mengen an Kutin-Monomeren auf ihrer Zellwand ablagert wie der Wildtyp, aber daß 
es eine Verschiebung im Anteil der unterschiedlichen Monomere gibt. Die Ergebnisse 
der Wachsanalyse von htm war dervom Wildtyp sehr ähnlich, abgesehen von einer  
allgemeinen Abnahme von 20%. Deshalb ist es wahrscheinlich, daß HTM auf 
indirektem Wege in der Kutin- und Wachs- Biosynthese involviert ist. 
    
Wir haben auch insertione Linien in Genen, die wahrscheinlich in der 
Kutinbiosynthese involviert sind, charakterisiert. Die kodieren jeweils für eine 
Aldehyd-Dehydrogenase, ein Epoxid-Hydrolase ähnliches Enzym und für einen 
Angehörigen der α/β-Hydrolase-Familie. 
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7.1 Appendix  A. List of primers used in this study 
 
Line genotyping 
 
insertion 
line 

gene 
name allele primer name primer sequence (5'-->3') 

shyd4 HYD4 WT D111 CCG AGA AAA TTC GGG ACA GCG 
ATT CA  

      D117 AAA GAA TCT AAT TGG TAT GGC TT 
  HYD4 mutant D117  AAA GAA TCT AAT TGG TAT GGC TT  

      
D032 
(SALK_b1) GCG TGG ACC GCT TGC TGC AAC T  

ghyd4 HYD4 WT D118  ACT CTG TTC AAG AGC CGT CCG 
AGA A 

      D119 ATT GTG CAT ACT ATG CCA TGC 
AGA GTG 

  HYD4 mutant D118  ACT CTG TTC AAG AGC CGT CCG 
AGA A 

      
Y076 
(GABI_left) 

GGG AAT GGC GAA ATC AAG GCA 
TCG 

nos1/nos2 HYD4 WT D111  CCG AGA AAA TTC GGG ACA GCG 
ATT CA  

      D117 AAA GAA TCT AAT TGG TAT GGC TT 
  HYD4 mutant D117  AAA GAA TCT AAT TGG TAT GGC TT 
      D147 CCG GAT CGT ATC GGT TTT CG 
jic2/jic3 HYD4 WT D111  CCG AGA AAA TTC GGG ACA GCG 

ATT CA 
      D119 ATT GTG CAT ACT ATG CCA TGC 

AGA GTG 

  HYD4 mutant D111  CCG AGA AAA TTC GGG ACA GCG 
ATT CA 

      
D164 
(JIC_Spm32)

TAC GAA TAA GAG CGT CCA TTT 
TAG AGT GA 

leakosalk LEAKO WT LTA-2 ACG GTT TCA ACT TTA TGCACT AAA 
TG 

      5_13520 AGT AAG TCA AAT CTC TCC CAC 
TCG 

  LEAKO mutant D032- GCG TGG ACC GCT TGC TGC AAC T 

      5_13520  AGT AAG TCA AAT CTC TCC CAC 
TCG 

leakosail LEAKO WT D096  TGT ACT TGG AGC TGT ACT TGC TGA 

      D099 
TAC AAG CAC CAG CAA GAG AGG 
TTA TAA TG 

  LEAKO mutant D098  TTC ATA ACC AAT CTC GAA TAC AC 

      D099  
TAC AAG CAC CAG CAA GAG AGG 
TTA TAA TG 

aldh5 ALDH5 WT ALDH5_3 AAT TGT CTT GGC AAG GAA GGC AG 

      N021496 
TGT CAC CGA TAC ATA TAC TTC ATA 
T 

  ALDH5 mutant D032 GCG TGG ACC GCT TGC TGC AAC T 

      N021496  
TGT CAC CGA TAC ATA TAC TTC ATA 
T 

: 
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Appendix  A (continued)  
 
RT-PCR 

gene locus ID 
primer 
name primer sequence (5'-->3') 

number 
of  

cycles  
HYD4 

At5g17780 D148 
CCT TCA TCG GTA GAA GGA TCG 
GTC T 34 

  
  D149 

ATC AGC ACC AGT AAT GAT ATC 
AAC T   

  
  D118 

ACT CTG TTC AAG AGC CGT CCG 
AGA A 34 

  
  D119 

ATT GTG CAT ACT ATG CCA TGC 
AGA GTG   

  
  D111 

CCG AGA AAA TTC GGG ACA GCG 
ATT CA 34 

  
  D117 

AAA GAA TCT AAT TGG TAT GGC 
TT   

LEAKO At5g13520 D026  
ATT CTG CCA GTC TGT ACC GCT 
TGT CCA AG 36 

  
  D029 

CAG ATG ATG TAT ATT CTC AGG 
TCC CAT AT   

ALDH5 At4g36250 D068 
GTT CCA TGG AGG GTA TCG AGC 
TTC A 26 

    D069 
ATT GAT ATG TTG AAG CCT ACG 
ATA   

LTP At5g01870 D169 
GTG TTA CCA CTA TGC CTG CTT 
CTT GCT 30 

    D170 
CAC TAA ACT CCG GTT ACA TTA 
GAC GA   

LTP2 At2g38530 D171 
GGA GTG ATG AAG TTG GCA TGC 
ATG 26 

    D172 
ATT GAA AAG AGT ACA GCC ATT 
CG   

LTP3 At5g59320 D173 
GCA GGT AGC TTG GCT CCA TGT 
GCA AC 24 

    D174 
TAT TTT ATT CTA GTA CTT CTG 
GTA A   

LTP4 At5g59310 D175 
GTG GCA CAG TGG CAA GTA GCT 
TGA G 24 

    D176 
GAT AGC CGT CTT ATT TTA CGT 
ATA CG   

CER1 At1g02205 D027 
CAG GAA CGG AGA GGT GTA TAT 
CCA CAA CCA T 22 

    D028 
CTA TCA ATG CTG GTG TGG TAT 
GAT AGA TAC   

CER4 At4g33790 D179 
ACT CAC GTG CTT CCT CTG TGA 
TCT TG 24 

    D180 
GTC GTC CCA ATC GAG AAC CTT 
TGG AT   
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Appendix  A (continued)  
 

gene locus ID 
primer 
name primer sequence (5'-->3') 

number  
of  

cycles  

WAX2 At5g57800 D021 
AAG CAT CCT GAC CTT AGA GTT 
CGT GTG GTT CAT 24 

    D022 
TAA GAC CAT ACT TCA TGG CTG 
CTT CCC ACA   

WIN1/SHN1*  At1g15360 D017 
GTC GCT GAG ATT CGT CAT CCT 
CTC TTG A 36 

    D018 
TGC AAA GCA ACC TTT TCT TCC 
TCA TCC A   

DAISY* At1g04220 D177 
TCT CTT CGC CGC TCT TCT TAT 
CTT 26 

    D178 
AGC GGT CGG AGG AGC GGT 
TAG   

palmitoyl  At5g47330 D185 
AAG GTT TGA AGC GGT CTG GTG 
TTG C 28 

    D186 
TCC CTT GAT TAG CTC ATC TGC 
TAA C   

carbo At4g30280 D187 
AAC AAT ACA TTT GAG ATA TCA 
ATA CA 36 

    D195 
TAC ACA AAC ACC GCA TAC ATA 
TGA G   

At2g37770 D183 
CAC GGA TAA AGA AAG GTT 
CTG TTG GAA 28 

aldo/keto- 
reductase   D184 

TAG TGT CTC ATG AAC AAG GAA 
GGA A   

At1g43160 D189 
TGA TTA CCG GTT CAG CTG TGA 
CTA A 38 

ERF/AP2 
 member   D190 

CAA AGC GTT GAC AAT ATG TTA 
GTT A   

At5g13330 D191 
ACC AGA CCA AGA TCA ACC 
AAG A 38 

ERF/AP2 calli*   D192 
TTA TTC TCT TGG GTA GTT ATA 
A   

ACE7 At5g51950 D193 
ATG CAG ACA AGC CGT ACT ACT 
AGT 30 

    D194 
ATA CTC TTT AAG TTA ATC ATA 
CAT T   

Actine2* At3g18780 D019 
AGA GAT TCA GAT GCC CAG 
AAG TCT TGT TCC 22* 

    D020 
AAC GAT TCC TGG ACC TGC CTC 
ATC ATA CTC   

 
The sequences of WIN1/SHN1 and ACTIN2 primers are from (Broun et al., 2004). 
The sequences of ERF/AP2 primers are from (Che et al., 2006). 
Sequences of DAISY primers, R. Franke personal communication.     
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Appendix  A (continued) 
 
Primers for ARMS PCR: 
 
 

Primer name Primer sequence 5’-3’ 
D155-AtFDHF3 GAGCAAGATCTGCTCTCTACCGAGATC 
D157-AtFDHR2 TCTGCTTAAACTCCCAACCTCAGGACT 
D156-AtFDHR3 CAATAAGATAAACAGAGCGAGGACGAGAC 
D166-AtFDHFm3 CGGTTCTTGTGCTGGTTTTTAGTGAG 

Designed by Jaffar Jabbari Sheick. 
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7.2 Appendix  B. PRC mixes and programmes 
 
Amplification mixes corresponding to the different types of PCR.  
   
Standard PCR mix (gDNA)                                  Standard PCR mix (colony PCR) 
 
component Volume (µl) Xxxxxxx   component Volume (µl) 
DNA 3   DNA 2* 
Buffer 10X 2,5   Buffer 10X 2,5 
dNTPs 10mM 0,5   dNTPs 10mM 0,5 
Primer A 10mM 1   Primer A 10mM 1,5 
Primer B 10mM 1   Primer B 10mM 1,5 
Dist. Water 16,5   Dist. Water 16,5 
Isa Taq 0,5   Isa Taq 0,5 
 
*Template for colony PCR was prepared as follows: a bit of the colony was 
resuspended in 100µl of distilled water. Then, the suspension was boiled for 3 min at 
100°C and centrifuged at 10000 rpm or higher for 3 min (RT). The crude DNA 
extracts were kept on ice until further use.  
 
Standard PCR mix (high fidelity PCR)                Standard semi-quantitative RT-PCR 
mix 
 

 
ARMS PCR mix  

 
 
 
 
 
 
 
 
 

 
 
 

component Volume 
(µl) 

xxxxxxx   component Volume (µl) 

DNA 2   RNA (500 ng) 1-6 
Buffer 10X 2,5   5X QIAGEN One-

Step  
buffer 

5 

dNTPs 10mM 2,5   dNTPs 10mM 1 
Primer A 10mM 1,875   Primer A 10mM 1,5 
Primer B 10mM 1,875   Primer B 10mM 1,5 
Dist. Water 15,25   RNase free water Variable (14-

9) 
High fidelity 
enz 

0,375   Enzyme mix 1 

component Volume (µl) xx    
DNA 3    
Buffer 10X 2,5    
dNTPs 10mM 0,5    
Primer D155 and D156 10mM 1    
Primer D157 and D166 10mM 3    
Dist. Water 8,5    
High fidelity enz 0, 5    
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Appendix  B (continued) 
 
Amplification programmes corresponding to the different types of PCR. 
 

gDNA       colony PCR 
 
 94 °C 2 min xxxxxxxxxxx   94 °C 2 min 
Step 
2 

94°C 1 min   Step 
2 

94 °C 1 min 

 58°C 45 s    58°C 45 s 
 72°C variable    72°C variable 
 Go to 2nd 

step 
variable    Go to 2nd 

step 
variable 

 72°C 15 min    72°C 15 min 
 15°C For ever    15°C For ever
 
 
 
            High fidelity PCR          semi-quantitative RT-PCR 
  
 94°C 2 min xxxxxxxxx   50°C 30 min 
Step2 94°C 30s    95 °C 15 min 
 56-58°C 1min   Step 

3 
94°C 1 min 

 68°C variable    58°C 45 s 
 Go to the 2nd 

step 
variable    72°C variable 

Step5 94°C 30s    Go to 3rd 
step 

variable 

 60-64°C 1min    72°C 15 min 
 68°C variable    15°C For 

ever 
 Go to the 5th step variable      
 68°C 5 min      
 15°C For 

ever 
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7.3 Appendix  C. Bound lipid analysis: weight-area conversion 
 
To estimate the area of the mutant leaves we used a linear regression between the 

measured WT weights and areas of their WT counterpart.  

 

experiment samples 
totatl leaf area 
(cm2) 

total dry weigh 
(mg) 

bound lipid 
analysis WT total 138,36 142,8 
fdh_2004 WT total 130,79 150,2 
  WT total 167,02 185,9 
  WT total 135,07 160,8 
  WT total 122,62 140,9 
bound lipid 
analysis WT total 127,96 146 
lcr_2004 WT total 204,42 148,5 
  WT total 160,43 106,9 
  WT total 162,02 105,8 
  WT total 183,63 127,7 
  WT total 168,24 111,8 
bound lipid 
analysis WT total 170,96 107,2 
Lcr_fdh_2007 WT total 133,41 72,8 
  WT total 152,42 82,5 
  WT total 146,24 79,4 
  WT total 180,94 91 
  WT total 169,97 89,5 
  WT total 168,75 87,8 
 WT total 184,28 97,2 
wax analysis WT total 34,73 13,7 
lcr_fdh_2007 WT total 32,26 13,5 
  WT total 38,66 15,6 
  WT total 34,78 14,4 
  WT total 32,47 12,3 
  WT total 35,45 12,7 
  WT total 41,35 15,5 

 
Table 3. Measured weight and scanned areas for the WT controls used in the different 
biochemical analyses.  
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Appendix_C  (continued) 
 
As the weigh of tissue used for the experiments is usually not the total amount but far 

lower, we decided to divide the total cm² and mg WT values, both measured, by a 

fixed number bringing their values into the domain of weight from used tissue.  

 
Figure 46. Estimating the area of mutant leaves. Using both, the scanned area and the weight values 
from the WT samples a linear regression was drawn. This equation was then shifted into a lower 
“mass/area region” corresponding to that of the amount of used tissue.   
 
 

experiment equation  
data used to build 
 the equation 

fdh_2004  
(bound lipid analysis) 

y = 0,9837x + 
7,1628 WT total/2,75 

lcr_2004  
(bound lipid analysis) y = 1,0028x - 28,73 WT total/2 
lcrfdh_2007  
(bound lipid analysis) 

y = 0,3891x + 
13,609 WT total/1,625 

lcr_fdh_2007  
(wax analysis) 

y = 0,3188x + 
2,5834 //////////////////////// 

 
Table 4. Linear regression and ratio for each analysis. The equations are linear regressions, 
calculated in Microsoft Excel (2003). Equations are based on weigh expressed in mg. y= mg; x=cm².  
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7.4 Appendix  D. Map of the vectors used to build promoter fusion 
constructs. 
 

 
 
The HTM promoter was cloned using the HindIII- XbaI restriction enzymes in the 

place of the FAE promoter in front of GUS and GFP genes carried by similar vectors.   
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7.5 Appendix  E. Map of the vectors used to build protein fusion constructs.  
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7.6 Appendix  F. Cell Wall Bound Lipid Analyses of lcr and fdh mutants 
Summary table 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S.D.= short day; typical cutin monomers = very long chain unsubstituted fatty acids 
(chain lengths of C22, C24), very long chain alcohols, ω-hydroxy fatty acids, α,ω-
diacids; cutin concomitant monomers = shorter long chain unsubstituted fatty acids 
and 2-hydroxy fatty acids. 



 

 139

7.7  Appendix  G. List of commonly mis-regulated genes in the three cuticular 
mutants 
 
The average fold change displayed in this table is equal to the average of nine 
mutant/WT ratios per mutant. If the mis regulted gene is likely to be epidermis 
specific according to the data obtained on stem epidermis peals by Beisson and co-
workers, the line is filled in blue (Suh et al., 2005). The RT-PCR candidate genes are 
in bold. 
 

average fold change
Locus code short descripition lcr bdg fdh 

At5g53710 UNKNOWN 3,7 4,6 5,0
At1g05340 UNKNOWN 17,1 11,6 15,0
At3g14060 UNKNOWN 9,5 10,0 10,8
At5g33355 defensin 6,4 4,9 3,8
At3g16430 jacalin/lectin 6,6 4,2 14,5
At4g37990 ELI3-2 11,3 10,5 10,5
At2g39200 MLO12 8,2 4,5 10,1
At2g43620 chitinase 12,3 6,1 14,7
At2g43510 ATTI1 2,6 3,2 5,4
At1g74000 SS3 6,1 5,2 6,3
At5g59310 LTP4 44,4 42,5 53,5
At5g59320 LTP3 39,4 34,9 49,9
At2g38530 LTP2 23,6 21,3 28,1
At5g01870 LTP put. similar to LTP6 15,8 20,5 15,4
At3g22600 LTP put. plasma membrane 13,4 17,1 20,5
At2g16630 proline rich 4,3 4,4 4,9
At5g47330 PPT1 20,8 18,1 20,1
At2g04570 GDSL lipase 1,9 1,7 3,2
At1g04220 DAISY 12,6 16,2 14,7
At5g57800 WAX2 2,6 2,7 2,8
At4g33790 CER4 2,6 3,9 3,1
At5g51950 HTL7 10,2 8,2 10,6
At2g37760 aldo/keto reducase 4,0 6,0 5,9
At2g37770 aldo/keto reducase 11,0 12,5 12,3
At1g48760 DELTA-ADAPTIN 2,4 2,5 2,9
At5g09530 hydroxyproline-rich 28,1 43,6 44,7
At3g20470 GRP5- glycine-rich 7,6 11,2 14,3
At4g21620 glycine-rich 3,5 4,4 4,8
At4g30290 AtXTH19 15,4 16,5 16,8
At4g30280 XTH18 19,5 8,7 12,9
At1g76930 ATEXT4 16,3 18,9 26,4
At3g15720 glycosyl hydrolase family 28 19,6 18,7 16,9
At1g75750 GASA1 9,6 8,3 10,0
At1g02850 glycosyl hydrolase family 1 5,3 4,8 7,4
At5g26340 MSS1/ STP13 8,1 4,8 17,8
At3g57520 ATSIP2 4,9 2,0 9,1  
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Appendix  G (continued)  
 

average fold change
Locus code short descripition lcr bdg fdh 

At1g05680 UDP-glucoronosyl/UDP-glucosyl transferase 11,3 12,3 6,9
At4g21680 POT; membranar peptid transporter 15,5 11,5 9,6
At4g34950 ABC; small molecules transporter 4,8 4,0 4,1
At2g39350 ABC transporter 9,2 7,2 11,4
At1g07610 MT1C 13,9 10,3 6,1
At2g25450  Ehtylen production 6,7 6,8 4,5
At4g15700 glutaredoxin 4,8 2,6 3,2
At1g30720 electron transporter 15,5 10,4 20,6
At1g52690 LEA 28,1 19,0 18,6
At3g02480 ABA_LEA 27,9 22,6 23,9
At1g01470 LEA 14 -2,7 -4,6 -2,3
At5g11410 kinase 13,4 13,0 9,9
At5g24080 kinase 3,9 4,7 3,7
At5g67480 BT4 6,9 6,5 5,2
At1g62300 WRKY6 5,2 4,1 8,3
At5g49520 WRKY48 4,8 3,4 5,0
At4g01720 WRKY47 1,6 1,7 4,9
At4g27410 RD26 6,5 3,3 4,0
At5g13330 RAP2.6L 5,2 5,6 4,4
At1g43160 RAP2.6 46,7 31,4 36,9
At5g61890 AP2_TF 3,4 4,3 4,8
At4g25100 FSD1 4,9 -12,3 20,2  
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7.8 Appendix  H. The ABC transporter family in Arabidopsis. 
 
 
 

WBC1

CER5
DSO

WBC1

CER5
DSO

 
The two cuticular genes cluster together whereas WBC1, which is upregulated in lcr, 
bdg and fdh mutants, belongs to another subgroup of the WBC family. WBC1 shares 
30% identity with CER5 and 31% identity with DSO; CER5 and DSO share 52% 
identity (Panikashvili et al., 2007).  Figure adapted from (Sanchez-Fernandez et al., 
2001). 
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7.10 Appendix  I. The AP2/ERFEB family in Arabidopsis. 
 
 
 

RAP2.6L
RAP2.6

WIN1/SHN1

SHN3
SHN2

AtRAP2.4

RAP2.6L
RAP2.6

WIN1/SHN1

SHN3
SHN2

AtRAP2.4

 
 
 
RAP2.6L and RAP2.6 which were found to be upregulated in our mutants are only 
distantly related to the WIN1/SHN1 clade and AtRAP2.4 (closest homologue to 
WXP1; from Medicago truncatula) transcription factors. Adapted from (Alonso et al., 
2003). 
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