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“N either North nor South will overcome their addiction to growth without a collective and
comprehensive detoxification programme. The growth doctrine is like a disease and a

drug. As Rahnema says1, Homo economicus had two strategies for taking over virgin territo-
ries: one operated like HIV, the other like a drug pusher. Growth economics, like HIV, destroys
societies immune systems against social ills. And growth needs a constant supply of new mar-
kets to survive so, like a drug dealer, it deliberately creates needs and dependencies that did not
exist before. The fact that the dealers in the supply chain, mainly transnational corporations,
benefit so much from our addiction will make it difficult to overcome. But our ever-increasing
consumption is not sustainable; sooner or later we will haveto give it up.”

Serge Latouche,
Le Monde Diplomatique (english edition), November 2004

1 Majid Rahnema & Victoria Bawtree,Quand la mis̀ere chasse la pauvreté





English abstract

Dense cold molecular clouds reckoned to be stellar nurseries are the scene of an extreme molec-
ular deuteration. Despite the cosmic D/H ratio of∼10−5, molecular species in prestellar cores
are observed to contain nearly as much deuterium as hydrogen. This astonishing deuterium en-
richment promoted by low temperatures is the work of H+

3 . It is the key species which unlocks
the deuterium from its HD reservoir via reactions like H+

3 + HD ⇋ H2D+ + H2 and drags it
further to other species in successive reactions. For this reason, the H+3 + H2 isotopic system is
outstandingly critical for the astrochemistry of cold environments. However, its understanding
is yet incomplete and insufficient.

This thesis thus focuses on the H+
3 + H2 isotopic system from a theoretical, experimental

and astronomical point of view giving a particular look intothe role of nuclear spins.

As a first step, the stringent nuclear spin selection rules inassociative, dissociative and re-
active collisions are investigated. This purely theoretical study zooms into the details of the
nuclear spin wavefunctions and shows that their permutation symmetry representation is nec-
essary and sufficient, contrary to their angular momentum representation. Additionally, a new
deterministic interpretation of nuclear spins in chemicalreactions is proposed.

Based on these considerations, a complete set of state–to–state rate coefficients for all
H+

3 + H2 isotopic variants is calculated using a microcanonical model leaned on phase space
theory. An experimental study is conducted in parallel witha 22–pole ion trap apparatus in
order to inspect the influences of temperature and H2 ortho–to–para ratio. The good overall
agreement between experimental and theoretical results supports the validity and utility of the
calculated set of rate coefficients. Furthermore, the potentiality of the 22–pole ion trap appara-
tus is explored via the Laser Induced Reaction (LIR) technique applied to our system of interest.
High resolution overtone, combination and fundamental vibrational spectroscopy of H2D+ and
D2H+ is thereby achieved with cw–OPO and diode lasers.

Finally, astronomical implications are inferred on an observational basis through the case of
the prestellar core L183 using simple chemical models whichaccount for theortho, metaand
paracharacters of the H+3 and H2 isotopologues and rely on the rate coefficients derived in this
thesis. Above all, the results show that the non–thermalortho–to–para ratio of H2 is a serious
limiting factor for the enhancement of deuterium fractionations. It is a first–class parameter for
the astrochemistry of very cold interstellar medium.
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Deutsche Kurzzusammenfassung

Dunkle und kalte molekulare Wolken sind die Geburtsstätten neuer Sterne und ein Ort extremer
molekularer Deuterierung. Trotz des kosmischen D/H-Verh¨altnisses von∼10−5 beobachtet man
in prestellaren Kernen Moleküle, die fast soviel Deuterium wie Wasserstoff enthalten. Diese er-
staunliche Anreicherung bei niedrigen Temperaturen ist auf das H+

3 -Ion zurückzuführen. Es ist
ein Schlüsselmolekül, welches Deuterium durch Reaktionen der Form H+3 +HD ⇋ H2D+ +H2

aus seinem HD Reservoir entnimmt und anderen Spezies in aufeinanderfolgenden Reaktionen
weitergibt. Aus diesem Grund ist das H+

3 + H2 Reaktionssystem in all seinen isotopischen Va-
rianten sehr wichtig für die Astrochemie kalter Regionen.Jedoch ist dessen Verständnis noch
unvollständig und unausreichend.

Diese Arbeit widmet sich dem H+3 + H2 isotopischen Reaktionssystem aus theoretischer, ex-
perimenteller und astronomischer Sicht, mit besonderem Schwerpunkt auf der Rolle der Kern-
spins.

Als ein erster Schritt werden die Kernspin-Auswahlregeln in assoziativen, dissoziativen und
reaktiven Kollisionen untersucht. Diese rein theoretische Arbeit studiert die Details der Kern-
spinwellenfunktionen und zeigt, dass die Darstellung durch Permutationssymmetrien ausrei-
chend und notwendig ist, die Drehimpulsdarstellung jedochnicht. Zusätzlich wird eine neue
deterministische Interpretation der Kernspins in chemischen Reaktionen vorgeschlagen.

Auf diesenÜberlegungen basierend werden mit einem mikrokanonischenModell die zu-
standsspezifischen Ratenkoeffizienten aller isotopischenVarianten der Reaktion H+3 + H2 be-
rechnet. Ein paralleles Experiment mit einer 22-Pol Ionenfalle untersucht den Einfluss der Tem-
peratur und des ortho-para Verhältnisses von H2. Die guteÜbereinstimmung zwischen Experi-
ment und den Rechnungen unterstützt die Gültigkeit und N¨utzlichkeit der berechneten Ratenko-
effizienten. Ausserdem wird das Potential der Ionenfalle zusammen mit der Methode der laser-
induzierten Reaktionen (LIR) erkundet, um die hier auftauchenden Fragestellungen zu beant-
worten. Es werden hochauflösende Spektren von Oberton–, Kombinations– und fundamentalen
Schwingungsbanden von H2D+ und D2H+ mit einem cw–OPO und Diodenlasern ausgeführt.

Schliesslich wurde ein astrochemisches Modell auf die Observationen des prestellaren Kerns
L183 angewendet. In diesem Modell, in dem die zustandsspezifischen Ratenkoeffizienten die-
ser Arbeit berücksichtigt wurden, wurde zwischen denortho, metaund para Zuständen der
H+

3 und H2 Isotopomere unterschieden. Die Resultate zeigen zuallererst, dass das nichtthermi-
sche ortho-para-Verhältnis von H2 eine erhebliche Begrenzung für die Deuteriumanreicherung
darstellt und somit ein wichtiger charakteristischer Parameter für kalte Wolken ist.
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Résumé français

Les nuages moléculaires denses, reconnus comme pépinières d’étoiles, sont la scène d’une
deutération moléculaire extrême. Malgré le rapport cosmique D/H de∼10−5, les espèces molé-
culaires qui sont observées dans les noyaux préstellaires contiennent presque autant de deutérium
que d’hydrogène. Cet enrichissement stupéfiant en deutérium promu par les basses températures
(∼10 K) est l’oeuvre de H+3 . C’est l’espèce clé qui libère le deutérium de son réservoir HD, par
le biais de réactions du type H+

3 +HD ⇋ H2D+ +H2, puis le transfert à d’autres espèces lors
de réactions successives. De ce fait le système isotopique H+

3 + H2 est de première importance
pour l’astrochimie des milieux froids. Pourtant sa compréhension est aujourd’hui incomplète et
insuffisante.

Cette thèse focalise donc sur le système isotopique H+
3 + H2 depuis des points de vue

théorique, expérimental et astronomique avec une attention particulière pour le rôle des spins
nucléaires.

En premier lieu, les règles de sélection de spins nucléaires lors de collisions associatives, dis-
sociatives et réactives sont examinées. Cette étude th´eorique zoome sur les fonctions d’onde de
spin nucléaire démontrant ainsi que leur représentation de symétrie de permutation est nécessaire
et suffisante, contrairement à leur représentation de moment angulaire. De plus, une nouvelle
interprétation déterministe des spins nucleaires pour les réactions chimiques est proposée.

Sur la base de ces considérations, un jeu complet de vitesses de réaction d’état-à-état pour
toutes les variantes isotopiques H+

3 + H2 est calculé d’après un modèle microcanonique repo-
sant sur la théorie de l’espace des phases. Parallèlement, une étude expérimentale est conduite
avec un piège à ions à 22 pôles afin d’inspecter les influences de la température et du rapport
ortho/para de H2. Le bon accord entre résultats théoriques et expérimentaux soutient la vali-
dité et l’utilité du jeu de coefficients calculé. Par ailleurs, le potentiel du dispositif expérimental
est étendu avec la technique deReaction Induite par Laserappliquée a notre système d’intérêt,
réalisant ainsi de la spectroscopie vibrationnelle de H2D+ et D2H+ avec des lasers de type diode
ou OPO.

En dernier lieu, les implications astronomiques sont déclinées sur une base observationnelle
du noyau préstellaire L183 en utilisant des modèles chimiques simples qui tiennent compte du
caractèreortho, metaou para des isotopologues de H+3 et H2 et faisant usage des vitesses de
réactions calculées dans cette thèse. Les résultats montrent que le rapportortho/parade H2 étant
loin de l’équilibre thermique, il est un facteur limitant sérieux pour le fractionnement deutéré
de H+

3 . C’est donc un paramètre de premier ordre pour l’astrochimie des milieux froids.
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CHAPTER 1

Introduction

“Progress isn’t made by early risers. Its made by lazy men trying to find easier
ways to do something.”

Robert A. Heinlein, American science-fiction Writer (1907–1988)

According to this quote, astronomy is certainly the biggestprogress in History since as-
tronomers keep exploring remote corners of the universe from the earth, just by sitting in a chair
all nights long, going to bed when the sun rises. This shortcut doesn’t say that, once collected
with telescopes, electromagnetic radiations which emanated from space must be quantitatively
(flux) and qualitatively (spectral) analysed in order to extract informations on their origin and
path. From these astronomical observations spanning from the radio to the X-ray spectral do-
main, one can identify many classes of objects of different scales, ages, structures and physical
conditions. One very efficient tool to investigate objects,in particular in the Milky Way, is to
use gas phase molecular species as proxies by tracing local temperatures, densities, electromag-
netic fields or dynamics with their characteristic spectra.This technique boomed in the late
60’s thanks to the advent of major technical developments inradio astronomy. With this new
possibility to probe pure rotational transitions and cool media, the molecular zoo of space had
been unveiled and the interstellar medium which was considered as chemically sterile during
the first mid-20th was about to become a new topic of great interest.

As of November 2008, most of the 230 detected species1 have been identified beyond doubts
by means of their rotational spectra, essentially in the interstellar medium. The majority are neu-
tral molecules, some common on earth like H2O, NH3, NaCl or CO2 and some more exotic like
OH, CH or NH2 radicals as well as carbon chains like l-C3H2, c-H2C3O, C5 or HC11N which
can be linear or cyclic, saturated or unsaturated. Complex organic molecules such as hydrocar-
bons (CH2CHCH3), alcohols (CH3OH, CH2CHOH), carboxylic acids (CH3COOH), aldehy-
des (CH3CH2CHO), sugars (CH2OHCHO), amides (CH3CONH2) and amines (NH2CH2CN)

1including isotopologues and isotopomers. See http://astrochemistry.net and http://www.astrochymist.org and
references therein.
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Chapter 1. Introduction

are also found suggesting the presence of prebiotic molecules although species larger than 10
nuclei are still rare. About 30 cations like N2H+, HCO+ or HCS+ and recently 5 anions similar
to C6H− and C5N− have also been identified. This hunt for new species is fruitful every year
thanks to combined efforts in characterising their spectrain the laboratories and developing
more powerful and sensitive observation facilities, not toforget the necessary softwares and
databases to handle the enormous quantities of produced data.

Detecting and determining the abundance of molecular species in space is by itself a big
deal but explaining these abundances and their evolution isanother story. This is where astro-
chemistry begins.

1.1 ASTROCHEMISTRY

1.1.1 Chemical networks

The number density of a species depends on the processes which lead to its production and
destruction. In the gas phase, regarding the low densities of the interstellar medium, only binary
processes involving atoms, molecules, ions, electrons andphotons play a significant role. The
main processes which modify the bonds between nuclei and electrons are

• Ion–neutral reaction XY+ + Z −→ X + YZ+

• Neutral–neutral reaction XY + Z −→ X + YZ

• Collisional dissociation XY + Z −→ X + Y + Z

• Charge–transfer reaction X+ + Y −→ X + Y+

• Associative detachment X− + Y −→ XY + e−

• Radiative association X+ + Y −→ XY+ + hν
• Dissociative recombination XY+ + e− −→ X + Y

• Radiative attachement X + e− −→ X− + hν
• Photoionisation X + hν −→ X+ + e−

• Photodissociation XY + hν −→ X + Y

collisional processes being described with rate coefficients in units of cm3s−1 and photo-processes
with rates in s−1.

The load of species are interconnected by a plethora of reactions forming a chemical net-
work. The two largest databases for astrochemistry areUDFA [1] and OSU2 both containing
∼ 4500 gas-phase reactions among∼ 450 species. About half of these databases concern ion–
neutral reactions which are of central importance despite the low abundance of ions because
they are barrierless in most cases hence very efficient. Astrochemical models are usually run by

2available at http://www.udfa.net/ and http://www.physics.ohio-state.edu/ eric/research.html
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plugging these rates into systems of ordinary differentialequations supplied with initial abun-
dances and physical conditions like temperature, density and radiation field in order to obtain
species’ steady–state or time–dependant number densities. One of the models’ Achilles heel is
the uncertainty which lies in the rate coefficients of poorlyunderstood and critical reactions [2]
often due to a lack of experimental measurements.

Generally talking, the faster its production paths and the slower its destruction paths, the
more abundant the species. Conversely, a species will be almost inexistent if its productions
are inefficient and destructions efficient. Nevertheless, species which are non-abundant because
transient can still be important nodes in a chemical network. That said, the abundance of species
depend first of all on the abundance of their building blocks :the nuclei.

1.1.2 Hydrogen, the ubiquitous nucleus

Nuclei are essentially synthesised in three distinct mechanisms, namely the Big Bang, stellar
and explosive nucleosynthesis.

In the Big Bang scenario, the known universe started from a singularity with quasi–infinite
temperature and density and cooled during rapid expansion.In a nutshell, few minutes after
the beginning, the universe had cooled down sufficiently (∼109 K) to freeze out the primordial
quark–gluon plasma into stable protons and neutrons (baryogenesis) which then started to fuse
to form heavier nuclides (nucleogenesis). Some ten minuteslater, the temperature and density of
the universe fell below that which is required for thermonuclear fusion. The brevity of nucleo-
genesis prevented nuclides heavier than beryllium from forming resulting in the approximative
primeval abundances [3]

1H 1
4He 1.10−1

2H 3.10−5

3He 1.10−5

Li + Be < 10−9

Heavier elements3 like C, N and O did not exist until stellar nucleosynthesis began. Stars
arise from the interstellar medium, they are nuclear furnaces (> 107 K) which burn their reser-
voir of 1H and eventually4He generating heavier elements from carbon to iron through acom-
plex chain of nuclear fusion processes. The nucleosynthesis during their evolution as well as the
death of a star strongly depends on its mass. Lower mass starsusually end as red giants blow-
ing a significant fraction of their mass in strong stellar winds relatively rich in heavy elements
created within the star. Higher mass stars tend to explode inintense bursts when their nuclear
fuel runs out. These powerful explosions like supernovae also produce traces of nuclides heav-
ier than iron. In any case, instantly or gradually, stars inseminate the interstellar medium with

3Astronomers call them “metals”.
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Figure 1.1: Most abundant chemical elements in our solar system [4]. Theshaded squares
represent their abundances with respect to1H (the full rectangle). Elements with abundances
< 10−5 are not shown.

elements heavier than helium. This permanent transformation of cosmic material in successive
star factories is known asastration.

Although the relative abundances of elements can vary through the Milky Way, the abun-
dances found in the solar system are well representative. Asmay be seen in figure 1.1, hydrogen
is obviously ubiquitous, including in the astrochemical network.

1.1.3 Trihydrogen cation H+
3

H+
3 was first discovered by Thomson [5] in 1911 using plasma discharges and an early form

of mass spectrometry. In 1961, Martin et al. [6] first suggested that H+
3 may be present in the

interstellar medium given the overwhelming abundance of hydrogen. It took 27 years and the
particular perseverance of Takeshi Oka to confirm this hypothesis. As may be inferred from
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its symmetry4, the rotational spectrum of H+3 is forbidden due to lack of a permanent dipole
moment therefore this species should be detected through vibrational transitions. The first lab-
oratory detection occurred in 1980 and the complete spectrum is by now well characterised [7].
After several unfruitful attempts, H+3 was finally spotted in the Jovian ionosphere in 1989 [8]
and in the interstellar medium in 1996 [9].

In 1973, Herbst and Klemperer [10] as well as Watson [11] suggested that H+3 might be
responsible for the formation of many molecular ions. Indeed, the pivotal role of H+3 in the
gas-phase chemistry of the interstellar medium is unparallelled by any other molecular ion.
It can be summarised briefly in the following way : Cosmic rays5 ionise molecular hydrogen
which yields a trihydrogen cation upon an exothermic reaction with the next colliding molecular
hydrogen

H2 + ζ → H+
2 + e− (1.1)

H+
2 + H2 → H+

3 + H + 1.5 eV (1.2)

The trihydrogen cation is stable upon collisions with molecular hydrogen as well as atomic
hydrogen and helium. However, given the low proton affinity of molecular hydrogen, it will
often transfer a proton to other species

H+
3 + H2 → H+

3 + H2 (1.3)

H+
3 + X → XH+ + H2 + ∆E (1.4)

Most of the ion-neutral chemistry which is triggered by cosmic ray ionisation goes through
the H+

3 cation according to this simple scheme. This justifies why the protonated molecular
hydrogenis sometimes referred to as theuniversal protonator. As will be shown shortly, its
role is even more critical when it comes to deuterium astrochemistry.

1.2 DEUTERIUM ASTROCHEMISTRY

The deuterium abundance relative to hydrogen (see Fig. 1.1)is D/H = 1.5× 10−5 in the
∼100 parsecLocal Bubblesurrounding the solar system but significant variations arefound
throughout the Milky Way [12]. The depletion with respect tothe primeval abundance – theas-
tration factor– reflects the past stellar activity which does not produce deuterium and consumes
it preferentially because of its low fusion temperature (5×106 K).

The proto–solar D/H ratio derived from measurements of Jupiter’s and Saturn’s atmospheres
[13] is comparable to that of the Local Bubble. However, the D/H ratio is not constant through-
out the solar system. For example, the terrestrial D/H ratioderived from the ocean’s water

4The three nuclei form an equilateral triangle held togetherby two delocalised electrons
5Cosmic rays are highly energetic particles (1H+, 4

2He2+, e− or photons) travelling through the interstellar
medium and whose origin is still unclear.
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is 1.6×10−4. A D/H ratio of 3×10−4 has been observed in 3 comets’ water [14], 1.3×10−4 in
Titan’s methane [15] and∼ 6×10−5 in Uranus’ and Neptune’s methane and molecular hydro-
gen [13]. These local D/H ratios are all inferred from the deuterium fractionation of observed
molecular species according to the simple statistical relation

XHnDm

XHn+m
= Cm

n+m

(

D
H

)m

(1.5)

where XHn+m is the fully hydrogenated species, XHnDm its m–times deuterated isotopologue
and Cm

n+m the binomial coefficient.
It is clear that the inhomogeneous enhancement of deuteriumamong solar orbiting objects

can only be the indirect consequence of the D/H mass ratio of 2. Physical processes such as
thermal evaporation, diffusion and gravitational escape can in principle contribute to the seg-
regation of the heavier isotopologues toward these objects, particularly during their formation
epoch [16]. But the prime origin of their deuterium enhancement lies in the chemistry of the
pre– and proto–solar nebula before these objects started toform; that is during early stages of
solar formation when planetary science and cosmochemistrymeets with astrochemistry of star
forming regions.

1.2.1 Cold space and star formation

Star formation occurs in molecular clouds which are the coldest and densest regions of our
galaxy (see Table 1.1). Eventhough they represent a small fractional volume of the Milky Way,
the overall mass they represent is very significant. These extended structures, sometimes called
stellar nurseriesare inhomogeneous presenting clumpy substructures of higher densities and
lower temperatures (nH ≈ 106 cm−3, T ≤ 10 K). Such dense cold and optically thick cores
give birth to stars according to the scenario described in Fig. 1.2 . The reader is also urged to a
thorough review on the early physical and chemical conditions of star forming regions [18].

Table 1.1: Classes of environments in the interstellar medium [17]

Environment
Fractional Scale Temperature Density State of
volume height (pca) (K) (atoms/cm3) hydrogen

Molecular clouds < 1 % 70 10−20 102−106 molecular
Cold neutral medium 1−5 % 100−300 50−100 20−50 neutral atomic
Warm neutral medium 10−20 % 300−400 6000−10000 0.2−0.5 neutral atomic
Warm ionised medium 20−50 % 1000 8000 0.2−0.5 ionised
Hot ionised medium 30−70 % 1000−3000 106−107 10−4−10−2 ionised

apc = parsec, astronomical length unit of approximatively 3×1013 km, 3.26 light years or 2×105AU.
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1.2. Deuterium astrochemistry

Figure 1.2: The birth of a Sun-like star can be described in a series of stages that span more
than 50 million years (after [19, 20]).(a) Star formation begins inside dark interstellar clouds
containing high-density regions(b) which become gravitationally unstable and collapse under
their own weight. (c) The collapsing core forms a protostar and a circumstellar disk rapidly
accreting mass from the surrounding envelope of gas and dust, relieving the build-up of angular
momentum in bipolar outflows.(d) As the dusty envelope dissipates, the object powered by
gravitational energy becomes a T Tauri star visible at optical wavelengths for the first time.
These objects can often be recognised in telescopic images by the presence of a protoplanetary
disk. (e) After a few million years the dusty disk dissipates, leavinga bare pre-main-sequence
star at its centre. In some instances, a remnant disk with debris and planetesimals may continue
to orbit the star. (f) The star continues its gravitational collapse to the point where its core
temperature becomes hot enough for nuclear fusion, and the object becomes a main-sequence
star with an eventual planetary system. (AU = astronomical unit, the average distance between
the Sun and the Earth.)
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Figure 1.3: The dense molecular cloud Barnard 68, a prestellar core probably in its early phase
of collapse. The dust and molecular gas at high concentration absorb practically all the visible
light emitted from background stars. Distance∼ 100–150 pc, diameter∼ 0.2 pc, temperature
∼ 10 K, H2 central density∼ 2×105 cm−3.

Molecular clouds form from the mild temperature neutral medium thanks to the radiative
cooling induced by spontaneous emission of its atomic and molecular material. As suggested
by their appellation, the hydrogen there is essentially in its most stable formi.e. molecular.
The H2 formation by radiative association of atomic hydrogen in binary collisions is extremely
inefficient because of the very low quadrupole spontaneous emission probabilities from the
molecule’s continuum into stable vibrational levels during its short lifetime. H2 formation thus
requires a third body to release the excess energy in order tostabilise, and this role is played by
grains

H + H → H2
∗

9 H2 + hν (≤ 4.48eV) (1.6)

H + H + grain → H2
∗ + grain → H2 + grain∗ (1.7)

Interstellar grains are mainly carbonaceous and siliceoussubmicrometric aggregates, hence the
term interstellardust. Their presence in the interstellar medium has strong implications on ra-
diative transfer and thermal balance as well as on chemistry. Toward low temperatures, gas
phase species freeze onto the grains forming a layer of ice. In extremely dense and cold cores,
depletion of gas phase metallic species can be very important and icy grains can be as large as
few∼ 0.1µm in radius and represent up to 1% of the mass [21]. Chemisorbed or physisorbed

8



1.2. Deuterium astrochemistry

species, especially the light and small hydrogen and deuterium atoms, can diffuse on ice sur-
faces or to a lesser extent into their mantle and find reactantpartners. Since the interaction
timescales of the reactants are dramatically increased as compared to the gas phase, some reac-
tions are far more probable on grains, in particular associative reactions regarding their ternary
character as illustrated in Eq. 1.7 . Interstellar dust thusact as a catalyst by opening new reac-
tion paths, extending the chemical network to larger molecules that otherwise cannot form in
the gas phase. Complex organic molecules which are synthesised on grains eventually desorb
into the gas phase upon exoergic formation, photo–induced desorption or thermal evaporation.
Unfortunately, besides their porous structure and inhomogeneous chemical composition, most
of the grain and ice processes as those put forward are still poorly understood. Grain–ice chem-
istry is probably the greatest weakness of astrochemical models and it is the subject of many
research projects (seee.g.[22–25]).

Nevertheless, it is clear that cold quiescent icy regions are favourable for rich chemistry
in contrast to warmer, ionised, photo–dominated or shockedenvironments where molecular
species are exposed to harsh conditions. More surprisingly, these cold regions are also the
scene of an extraordinarily rich deuterium chemistry.

1.2.2 Extreme deuteration

Equation 1.5 is based on the assumption that hydrogen and deuterium are equiprobably assim-
ilated in molecular species. Singly, doubly and triply deuterated molecules are thus expected to
be fairly, very and extremely rare, respectively. However,about 20 singly, 6 doubly and even 2
triply deuterated species have been observed mostly in prestellar cores and young protostellar
objects with deuterium fractionations as large as

XHnDm

XHn+m
≥ Cm

n+m (0.1)m (1.8)

Comparing Eq. 1.8 to Eq. 1.5 shows that the incorporation of deuterium in molecular species
is favoured by∼ 4 orders of magnitude with respect to hydrogen. It appears very likely that
the deuterium enhancements found in sun–orbiting objects are the inheritage of an extreme
molecular deuteration during early phases of solar formation, but this early deuteration still
needs to be explained.

The D/H mass ratio of 2 reduces the frequencies of the vibrational modes involving a deu-
terium nucleus by a factor of∼

√
2 with respect to their hydrogenated analogs. Therefore,

Zero–Point Vibrational Energies (ZPVE6) for deuterated molecular species are lower than their
hydrogenated isotopologues. Moreover, larger molecular species tend to a larger isotopic ZPVE
differences since a given H or D nucleus is involved in more vibrational modes. We thus have
the isotope exchange reactions

XH +YD ⇋ XD +YH +∆E (1.9)

6The ZPVE consists of half quantum residual energy in each vibrational mode
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where the reactions’ ZPVE differences∆E are usually positive when X is larger than Y. It
is important to note that∆E is (i) substantial when the reaction involves molecular hydrogen
i.e. Y = H and (ii) very important with atomic hydrogeni.e. Y = /0 . Given the Boltzmann
behaviour of the reaction’s equilibrium constant K [26]

K(T) =
[XD][YH]

[XH][YD]
∝ exp

(

∆E
kT

)

(1.10)

it becomes clear that a severe chemical isotopic segregation in favour of the large deuterated
molecular species appears for temperatures lower than the activation energy

kT < ∆E ⇒ [XD]

[XH]
≫ [YD]

[YH]
(1.11)

The question that persits is how do such deuterium enhancements occur. What are the main
routes of the deuterium chemical network ?

1.2.3 H+
3 isotopologues

The starting point is molecular hydrogen with HD/H2 = 3×10−5 where most of the deuterium
of molecular clouds is locked. The H+3 cation is the key species which unlocks this deuterium
reservoir via three isotope exchange reactions.

H+
3 + HD ⇋ H2D+ + H2 + ∆E (1.12)

H2D+ + HD ⇋ D2H+ + H2 + ∆E (1.13)

D2H+ + HD ⇋ D+
3 + H2 + ∆E (1.14)

with ∆E = 232, 187 and 234 K respectively. At temperatures as low as 10 K, the equilibria
are dramatically shifted in the forward directions corresponding to fast exothermic deuteration
reactions with HD and extremely slow endothermic backward reactions with H2. At such tem-
peratures, D+3 can in principle become more abundant than H+

3 . The H+
3 isotopologues are then

destroyed (i) by metallic species in proton (deuteron) transfer reactions (see Eq. 1.4) or (ii) by
electrons in dissociative recombination like

D+
3 + e− → D + D + D (1.15)

→ D2 + D (1.16)

In the former case (i), the H+3 isotopologues pass on directly their deuterium fractionation to
other metallic species and in the latter (ii), they enrich the medium with free deuterons both
according to

[D]

[H]
≈ [XD+]

[XH+]
≈ [H2D+] + 2[D2H+] + 3[D+

3 ]

3[H+
3 ] + 2[H2D+] + [D2H+]

(1.17)
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The atomic deuterium fractionation is spread further on icesurfaces to the complex organic
species via association or isotope exchange reactions [27,28] like

CO
D−→DCO

H−→HDCO
D−→ CD2HO

H−→ CD2HOH+H 9 CH2DOH+D (1.18)

CD2HOH+D→ CD3OH +H+∆E

1.2.4 ortho and para

The H+
3 cation is thus at the origin of a rich deuterium chemical network. However this digest

is somewhat too simple because it should account for the nuclear spins.

Molecular hydrogen is referred asortho or para whether his nuclear spins are symmet-
ric or antisymmetric, respectively, with degeneracies of 3and 1. The same appellations are
given to the H+3 isotopologues with respect to their indistinguishable hydrogen or deuterium
nuclei. According to the molecular symmetry selection rules, the rotational ground states of
p–H2 and o–H2 are J=0 and J=1, respectively, with an energy difference of 170 K. The thermal
ortho–to–para ratio of H2 is 3 at high temperature7 and 9×exp(−170/T) at low temperature
corresponding to quasi–pure p–H2 with less than 1 ppm of o–H2 at 10 K. However, it is unlikely
that such purities are reached in molecular clouds since thecontinuous H2 formation on grains
(see Eq. 1.7) refills the gas phase with an o/p ratio of 3. The dominant relaxation mechanisms
for H2 are proton exchange reactions [29, 30] like

o–H2 + H̃+ −→ p–HH̃ + H+ + 170 K (1.19)

o–H2 + p–H̃2D+ −→ p–HH̃ + o–H̃HD+ + 84 K (1.20)

but their efficiency which depend on the abundance of free protons and the H+3 isotopologues
is not certain and the o/p ratio of H2 is suspected to be non–thermal in dense cores. These
overabundant traces of o–H2 are probably very important since their 170 K internal energy
helps overcoming the endothermicities of reactions 1.12 to1.14 and shifts the equilibrium back
to the purely hydrogenated H+3 . Moreover, the o/p ratio of H2 appears to have an influence on
the o/p ratios of H+3 and H2D+ as illustrated in reaction 1.20.

7H2 with anortho–to–pararatio of 3 is called normal–H2, abbreviated n–H2
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1.3 THIS THESIS

1.3.1 Aim

Regarding that H+3 is a pivotal species in the astrochemical network and that its isotoplogues
are at the origin of extreme deuterium fractionations in dense molecular clouds, the H+3 + H2

isotopic system appears to be of paramount importance for astrochemical models yet it is only
partially understood.

This thesis thus aims at clarifying the connections betweenthe nuclear spins and the deu-
terium fractionation of the H+3 and H2 isotopologues. The problem is tackled from all three
theoretical, experimental and astronomical points of view.

1.3.2 Outline

Chapter 2

We first investigate the role of nuclear spins in associative, dissociative and reactive processes
in thefrozen nuclear spinapproximation. This purely theoretical study zooms into the details of
the nuclear spin wavefunctions considering their angular momentum and permutation symmetry
representations. Pure nuclear spin statistics are dissected among different reaction mechanisms.
The symmetry viewpoint is shown to be robust while the angular momentum viewpoint reveals
weaknesses and even leads to interpretational paradoxes. Anew deterministic Bohmian–like
interpretation of nuclear spins which appears better suited for chemical reactions is also pro-
posed.

Chapter 3

Based on these results, focus is set on the rate coefficients of the H+
3 + H2 isotopic variants at

temperatures of astronomical interest (< 50 K) considering the role of nuclear spins and the
reaction mechanisms at play. A complete set of state–to–state rate coefficients for the whole
H+

3 + H2 isotopic system is calculated using a microcanonical modelbased on the conserva-
tion of isotopes, nuclear spins, energies and rotational angular momenta. Measurements of this
system are carried out in parallel with a 22–pole ion trap apparatus inspecting the influences
of temperature and H2 ortho–to–para ratio. The rate coefficients and steady–state isotopic
fractionations which are obtained support the full-scrambling hypothesis assumed for the cal-
culations at low temperatures and suggest more direct reaction mechanisms toward higher tem-
peratures. The successful comparison between experimental and theoretical results comforts
the validity and utility of the calculated set of rate coefficients.

12
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Chapter 4

The potentiality of the 22–pole ion trap apparatus are carried on further by applying the Laser
Induced Reaction (LIR) technique to our system of interest in prospect for future measurements
of state–specific rate coefficients. H2D+ is probed via the LIR scheme

H2D+ + H2 9 H+
3 + HD

↓ hν ր (1.21)

H2D+∗+ H2

and D2H+ via an analogous scheme. Overtone, combination or simple vibrational spectroscopy
of H2D+ and D2H+ in the wavenumber domain 2900− 3100 and 6100− 7300 cm−1 is
achieved at high resolution using a cw–OPO and diode lasers.Experimental results are com-
pared toab initio predictions [31]. The LIR technique also serves as a diagnostic tool for the
temperature of the ions revealing imperfections of the trap.

Chapter 5

Finally, astronomical implications are explored through the case of L183, a typical prestellar
core with a central density of 2×106 cm−3 and a temperature of 7 K. A steady–state and a time–
dependent simple chemical model for prestellar cores are presented. Their chemical network
account for the nuclear spin symmetries of the H+

3 and H2 isotopologues integrating the rate
coefficients calculated in chapter 3 as well as new dissociative recombination rate coefficients.
Several parameters of the models are constrained by fitting the observed N2H+ deuterium frac-
tionation and o–H2D+ abundance of L183. As a result, the prestellar core is estimated to be
∼1.5–2×105 years old and its H2 ortho–to–para ratio is evaluated at 0.05 in its outer layer
down to 0.004 in its innermost part. This non-thermal o/p ratio of H2 is identified as a dominant
limiting factor for the H+

3 deuterium fractionation.

1.3.3 Prospects

Even though the symmetry viewpoint of nuclear spins is sufficient to describe associative, dis-
sociative and reactive processes, the evidenced failure ofthe angular momentum viewpoint is
unsatisfactory and leaves us with an open question calling for further investigations. The de-
terministic interpretation of nuclear spins proposed herealso deserves deeper considerations
beyond its counter mainstream character. The sparse literature dedicated to the stringent role of
nuclear spins in reactions, an aspect which is often ignored, could be completed following these
leads.

Regarding the more specific H+
3 + H2 isotopic system, the phase space statistical treatment

accomplished in this thesis represents a significant theoretical breakthrough. Nevertheless, on
the condition that the nuclear spins are well considered, scattering calculations on the potential

13
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energy surface would be beneficial. However, the full quantum mechanical level of theory
appears difficult given the large size of the system.

The experimental lag with respect to theory can be recoveredwith state–specific kinetic
studies in the laboratory which are in principle feasible with the state selective Laser Induced
Reaction technique (LIR). The pure rotational LIR of H2D+ and D2H+ recently performed
in Köln [32] expands the possibilities to two–laser schemes e.g.microwave and mid-infrared.
In any case, a proper thermalization inside the ion trap willbe necessary in order to obtain
meaningful and accurate measurements below 20 K where the temperature becomes the most
critical parameter.

The astronomical study conducted in this thesis demonstrates for the first time on an obser-
vational basis that the non–thermalortho–to–para ratio of H2 is a first–class parameter for the
astrochemistry of very cold environments. This brings a newproblematic, namely the quantum
relaxation of o–H2 during early phases of stellar formation. Answers will hardly come from the
sole L183 prestellar core, a survey of the o/p ratio of H2 in a sample of prestellar cores using
the H+

3 isotopologues as tracers is highly desirable. Such survey would greatly benefit from the
next generation of observational facilities – ALMA, Herschel and SOFIA – which will improve
the detection limits of H2D+ and D2H+ and their spatial resolution.
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CHAPTER 2

Nuclear spins in reactive collisions

E. Hugo, S. Schlemmer and P. Jensen

In preparation

T he permutation symmetry algebra reported by Quack [1] and
the angular momentum algebra reported by Oka [2] to derive

nuclear spin selection rules and statistics for reactives collisions
are revisited by working on the wavefunctions using permutation
projectors and Clebsch–Gordan coefficients respectively.Both
methods are merged to access the complete detail of information
and applied to systems up to 5 identical nuclei of spin 1/2, 1 or 3/2.
A detailed study of the D3 system shows that the two algebras are
generally inconsistent and that the permutation symmetry infor-
mations cannot be neglected, contrary to the angular momentum
informations. Finally, we propose a deterministic interpretation
of nuclear spin systems and discuss its physical implications.
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Chapter 2. Nuclear spins in reactive collisions

2.1 INTRODUCTION

The symmetrisation postulate states that the total wavefunction of a system must be symmet-
ric or anti-symmetric upon permutation of two identical bosons or fermions, respectively. It
is a stringent selection rule which endows nuclear spins with a very peculiar role in molecular
physics. Because of the weakness of hyperfine interactions,one can assume the internal wave-
function of a molecule as the product of a nuclear spin wavefunction and a rovibronic–electron
spin wavefunction.

Φtot = Φnspin
(

ΦrotΦvibΦelecΦespin
)

(2.1)

According to the symmetrisation postulate, a symmetrised nuclear spin wavefunction cannot
support all symmetrised rovibronic–electron spin wavefunctions which means that the nuclear
spin permutation symmetry (eq.modification) constrains the accessible sets of rovibronicquan-
tum numbers and energy levels. These nuclear spin symmetries for a molecule are commonly
named with the Greek termsortho, metaandpara.

The weak hyperfine interactions can be translated as thefrozen nuclear spinapproxima-
tion. In this approximation, the magnetic coupling betweennuclear spins and intra– or extra–
molecular magnetic fields are neglectable such that the magnetic moment of each nucleus is
frozen, i.e. its quantised values is strictly conserved and cannot flip toanother value. The nu-
clear spin wavefunction of a given set of nuclei is thereby frozen and its total nuclear spin
permutation symmetry, angular momentum and magnetic moment are conserved (eq. good)
quantum informations or numbers.

It obviously results that whenever sets of nuclei are conserved (e.g.spectroscopy and non-
reactive collisions), conversions between nuclear spin modifications are strictly forbidden [3–6]:

para−NH3 + hν 9 ortho−NH3 (2.2)

para−H2 + para−H2O 9 para−H2 + ortho−H2O (2.3)

Whereas if the sets of nuclei are rearranged (e.g.reactive collisions, radiative associations and
dissociative recombinations), new products are formed with their nuclear spin modifications.
However, some modifications can be strictly forbidden by thefrozen nuclear spinapproxima-
tion.

para−NH+
2 + para−H2 → para−NH+

3 + H (2.4)

9 ortho−NH+
3 + H (2.5)

para−CH+
3 + ortho−H2 → meta−CH+

5 + hν (2.6)

9 ortho−CH+
5 + hν (2.7)

ortho−H3O+ + e− → ortho−H2O + H (2.8)

9 para−H2O + H (2.9)
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2.1. Introduction

As for homonuclear exchange reactions, although they seem non-reactive, they can eventually
lead to the apparent conversion of nuclear spin modifications, but some of them are strictly
forbidden by thefrozen nuclear spinapproximation [7].

para−H2D+ + para− H̃2 → ortho− H̃HD+ + ortho− H̃H (2.10)

→ para− H̃HD+ + para− H̃H (2.11)

9 para− H̃HD+ + ortho− H̃H (2.12)

9 ortho− H̃HD+ + para− H̃H (2.13)

Nuclear spins are strongly coupled to the rovibronics by thesymmetrisation postulate. Nev-
ertheless, due to the frozen nuclear spin approximation, the nuclear spin degree of freedom
is quasi–unperturbed by all other degrees of freedome.g. rotation, vibration, electronic, ki-
netic, radiative,etc. Indeed, it is common to observe species in space whose nuclear spin
modifications are not properly thermalized with their environment. The species can conserve
through time and temperature their initial nuclear spin modifications since the “conventional”
mechanisms that affect a molecule,i.e. radiative transitions and non-reactive collisions, are ex-
tremely ineffective conversion mechanisms. The only mechanisms that effectively affect the
ortho/(meta)/para ratio of a species are its production, destruction and conversion in associa-
tive, dissociative or reactive collisions which all consist in rearrangement of sets of nuclei.

The first work on this subject was established by Quack in 1977[1]. In his contribution, he
reported nuclear spin selection rules using the permutation-inversion group algebra and the way
to insert nuclear spin statistics in statistical scattering theories according to symmetry represen-
tations. More recently, Oka [2] reformulated the selectionrules using the angular momentum
algebra and derived nuclear spin statistics according to angular momentum representations of
the K(spatial) rotation group.

In this contribution, we revisit those two complementary viewpoints by working on the
wavefunctions themselves using the bracket formalism. We shall only focus on the nuclear spin
wavefunction since it can be treated separately from the rovibronic wavefunction in accordance
with thefrozen nuclear spinapproximation. Molecules are thus considered as boxes containing
nuclei which are distinguished by sets regardless of the geometry of the molecule. Such in-
complete description of reactive processes is a prerequisite before merging with the rovibronic
wavefunctions and its energetics also at play. Moreover, wecan focus on systems of identi-
cal nuclei only since the nuclear spin wavefunctions of different kinds of nuclei can be treated
separately given that they are necessarily distinguishable.

The paper is organised as follow. In section 2.2, the angularmomentum viewpoint only is
developed using Clebsch-Gordan coefficients. In section 2.3, the permutation symmetry view-
point only is developed using permutation symmetry projectors. In section 2.4, both methods
are merged in order to access the full detail of information.We then apply these tools to the
3–spin 1 system in section 2.5 to show that the angular momentum and permutation symmetry
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Chapter 2. Nuclear spins in reactive collisions

algebras are inconsistent and that, contrary to the angularmomentum information, the symme-
try information is necessary and should not be neglected. Inaddition, a more controversial yet
interesting deterministic interpretation of the nuclear spin statistics is also proposed in section
2.6. Results of this work are summarised in section 2.7 and outlooks discussed.

2.2 THE ANGULAR MOMENTUM VIEWPOINT

2.2.1 Elementary Spins and the uncoupled basis set

From a physical viewpoint, spins give rise to magnetic moments. The projection of a spin
I along a reference axis in space can adopt quantised magneticmomentsi in the range−I ,
−I + 1, · · · , I −1, I and its state is noted|I , i〉. A spin I thus represents a multiplet of (2I+1)
degenerate states. From a mathematical viewpoint, spins can be described as angular momenta
or vectors represented in the K(spatial) rotation group [8,9]. The representation of a spinI in
this group is conventionally labelledDI and has a dimension of (2I+1).

A deuterium nucleus or an ortho–H2 molecule both have a spin of 1 however the latter is
a composite spin which can be divided in several spins and theformer is an elementary spin
i.e. indivisible. The statistical weight of an elementary spin in the state|I , i〉 is WI ,i = 1 and
the statistical weight of an elementary spinI is WI = 2I +1, its multiplet degeneracy or its rep-
resentation dimension. Note that throughout this chapter,the term “statistical weight” can be
systematically replaced by “number of possible states”.

The combination of n identical nuclei of spin I can be represented in the uncoupled basis set
consisting of(2I +1)n pure states. Individual pure states correspond to a complete knowledge of
the system where all nuclei are distinguished and each magnetic moment known. Indexing the
nuclei and their spins with Latin letters, the states shouldbe noted|Ia, ia, Ib, ib, Ic, ic · · ·〉 but the
spinsI are often dropped down from the ket notation since they are a constant of the problem.
Those pure states fulfil the orthonormality relation

|〈i′a, i′b, i′c . . . |ia, ib, ic . . .〉|2 = δiai′aδibi′b
δici′c . . . (2.14)

and the closure relation verifies

+I

∑
ia=−I

+I

∑
ib=−I

+I

∑
ib=−I

. . . |〈ia, ib, ic . . . |ia, ib, ic . . .〉|2 = (2I +1)n (2.15)

which we contract as

∑
ia,ib,ic...

|〈ia, ib, ic . . . |ia, ib, ic . . .〉|2 = Wtot (2.16)

with Wtot = (2I +1)n the total weight of the system.
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2.2. The angular momentum viewpoint

Figure 2.1: Mapping of the 4–nuclei system.Left map: The 5 classes of partitioning for
4 nuclei. Right map: The nuclei are distinguished and labeleda, b, c, d. The connections
represent an addition of two subsets of nuclei. The 3–nucleisub-system (abc) is emphasised.

2.2.2 Addition of elementary spins

A pure state is rarely representative of our knowledge of a system of nuclei (e.g.a molecule,
a molecular complex or a colliding system) since we cannot distinguish and measure all its
nuclei. Nevertheless, we can in principle measure the spin and the magnetic moment of the
complete set of nuclei and/or some subsets of nuclei,i.e. the total and/orlocal spins and mag-
netic moments. In order to build nuclear spin wavefunctionswhich represent the system with
specific total and local nuclear spin angular momenta, we build linear combinations of pure
states, so–calledmixedstates, using Clebsch-Gordan coefficients. Since Clebsch-Gordan co-
efficients work on the addition of two angular momenta only, it is necessary to add the local
elementary and/or composite spins two by two, stepwise, until the total spin is formed. As
illustrated in Fig. 2.1 for the 4–nuclei system, there are several ways to add nuclei two by two
in order to obtain the complete set of nuclei. These bottom–up paths or addition schemes are
referred asinduction schemesand they are representative of complex formation and associative
processes. We illustrate the method through the 4–nuclei system.
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Chapter 2. Nuclear spins in reactive collisions

The addition of 4 identical nucleia, b, c andd of spinIa = Ib = Ic = Id can be done according
to two class of induction schemes1 (see Fig. 2.1):

• ((Ia⊗ Ib)⊗ (Ic⊗ Id)) ↑ (Iab⊗ Icd) ↑ Iabcd

• (((Ia⊗ Ib)⊗ Ic)⊗ Id) ↑ ((Iab⊗ Ic)⊗ Id) ↑ (Iabc⊗ Id) ↑ Iabcd

respectively describing complex formations of the type

• (a + b) + (c + d)→ ab + cd→ abcd

•
(

(a + b) + c
)

+ d→
(

ab + c
)

+ d→ abc + d→ abcd

Regarding the latter induction scheme, the nuclear spin wavefunction of the total state
|Iabcd, iabcd〉 induced via local spinsIabc andIab is given by

|Iabcd, iabcd, Iabc, Iab〉= ∑
ia,ib,ic,id

〈Ia, ia, Ib, ib|Iab, iab〉×〈Iab, iab, Ic, ic|Iabc, iabc〉

×〈Iabc, iabc, Id, id|Iabcd, iabcd〉× |ia, ib, ic, id〉 (2.17)

with iab = ia+ ib andiabc = ia+ ib+ ic. The statistical weight of the total spinIabcd induced via
the local spinsIabc andIab is thus

W(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Ic⊗Id)↑(Iabc⊗Id)↑Iabcd
= ∑

iabcd

|〈Iabcd, iabcd, Iabc, Iab|Iabcd, iabcd, Iabc, Iab〉|2

= (2Iabcd+1) (2.18)

By summing the previous induction scheme over all possible local spinsIab, we obtain the
induction scheme describing the complex formations of the type(a + b + c) + d→ abc + d→ abcd:

((Ia⊗ Ib⊗ Ic)⊗ Id) ↑ (Iabc⊗ Id) ↑ Iabcd

=
Ia+Ib

∑
Iab=|Ia−Ib|

(((Ia⊗ Ib)⊗ Ic)⊗ Id) ↑ ((Iab⊗ Ic)⊗ Id) ↑ (Iabc⊗ Id) ↑ Iabcd (2.19)

Correspondingly, the statistical weight of the total spinIabcd induced via the local spinIabc

irrespective of the local spinIab is obtained by summing over all possible local spinsIab:

W(Ia⊗Ib⊗Ic⊗Id)↑(Iabc⊗Id)↑Iabcd
=

Ia+Ib

∑
Iab=|Ia−Ib|

W(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Ic⊗Id)↑(Iabc⊗Id)↑Iabcd

= f(Ia⊗Ib⊗Ic)↑Iabc
× (2Iabcd+1) (2.20)

1The direct product⊗ in the K(spatial) rotation group correspond to the vectorial sum of angular momenta.
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where f(Ia⊗Ib⊗Ic)↑Iabc
is the frequency of the representationDIabc induced by the direct product

DIa⊗DIb⊗DIc.

We can also obtain the weight of the total spinIabcd irrespective of local spinsIabc andIab

by summing further over all possible local spinsIabc :

W(Ia⊗Ib⊗Ic⊗Id)↑Iabcd
=

Iabcd+Id

∑
Iabc=|Iabcd−Id|

W(Ia⊗Ib⊗Ic⊗Id)↑(Iabc⊗Id)↑Iabcd

= f(Ia⊗Ib⊗Ic⊗Id)↑Iabcd
× (2Iabcd+1) (2.21)

This equation can be generalised to any (sub)system ofn nuclei with spinsI by stating that
the statistical weight of a total spinItot irrespective of local spins is given by

W(Itot) = f (Itot)×dim(Itot) (2.22)

with dim(Itot) = 2Itot +1 the dimension of the representionDItot and f (Itot) its frequency in the

complete representation of the system
n
⊗

DI .

2.2.3 Division of spins

Divisions of composite spins into several spins are the reciprocal of the additions and thus repre-
sent complex decay and dissociative processes. As illustrated in Fig. 2.1, a division corresponds
to a top–down path and consists in subducing direct productsof representations from irreducible
representations. A division scheme is therefore referred as asubduction scheme. In terms of
braket notation, it results in inverting the reciprocal induction formula,i.e. exchanging the bras
and kets.

Considering the subduction schemeIabcd↓ (Iabc⊗ Id) ↓ ((Iab⊗ Ic)⊗ Id) ↓ (((Ia⊗ Ib)⊗ Ic)⊗ Id)
of the 4–nuclei system, the statistical weight of a total spin Iabcd subducing 4 elementary spins
Ia, Ib, Ic andId via local spinsIabc andIab is

WIabcd↓(Iabc⊗Id)↓(Iab⊗Ic⊗Id)↓(Ia⊗Ib⊗Ic⊗Id) = ∑
iabcd

|〈Iabcd, iabcd, Iabc, Iab|Iabcd, iabcd, Iabc, Iab〉|2

= W(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Ic⊗Id)↑(Iabc⊗Id)↑Iabcd

= (2Iabcd+1) (2.23)

This equation shows that the weight of a subduction scheme isequal to the weight of its
reciprocal induction scheme as may be generally inferred from the Frobenius reciprocity theo-
rem.
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2.2.4 Reaction statistics

A reactive process is a rearrangement of nuclei. It can be described by (i) the addition of two or
several reactants forming of an intermediate complex whichcan be long– or short–lived, tight
or loose, followed by (ii) the division of this complex into two or several products. Correspond-
ingly, a reactive process can be described by an induction scheme followed by a subduction
scheme.

In the example of the 4–nuclei system, reactions of the type X2 +X2→ X4→ X3 +X can
be decomposed in 4 equivalent transfer reaction mechanisms:

ab + cd → abcd→ abc + d (2.24)

→ abd + c (2.25)

→ acd + b (2.26)

→ bcd + a (2.27)

The transfer of the “c” nucleus (Eq. 2.24) corresponds to theinduction–subduction scheme
(Ia⊗ Ib⊗ Ic⊗ Id) ↑ (Iab⊗ Icd) ↑ Iabcd↓ (Iabc⊗ Id) ↓ (Ia⊗ Ib⊗ Ic⊗ Id). Its statistical weights are
given by

W(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Icd)↑Iabcd↓(Iabc⊗Id)↓(Ia⊗Ib⊗Ic⊗Id)

= ∑
iabcd

|〈Iabcd, iabcd, Iab, Icd|Iabcd, iabcd, Iabc, Iab〉|2 (2.28)

Equivalently, the statistical weights for each reaction mechanism can be determined with the
proper induction–subduction scheme.

In the full–scrambling limit, all nuclei of the complex are completely mixed such that the 4
possible outcomes are equiprobable (Eqs. 2.24 to 2.27). Therefore, the statistical weights for the

full-scrambling reaction X2 +X2→ X4
FS−→ X3 +X correspond to the average of the statistical

weights of the individual reaction mechanisms.
The full–scrambling of the nuclei within the complex can also be interpreted as the lost of

their initial informations,i.e. labels and arrangements, except the total nuclear spin which is
implicitely conserved since it includes all the nuclei. We can thus express the statistical weights
for the full-scrambling by reseting the nuclei labels between the complex formation and decay:

W
(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Icd)↑Iabcd

FS−→Ia′b′c′d′↓(Ia′b′c′⊗Id′)↓(Ia′⊗Ib′⊗Ic′⊗Id′)

= W(Ia⊗Ib⊗Ic⊗Id)↑(Iab⊗Icd)↑Iabcd
×

WIa′b′c′d′↓(Ia′b′c′⊗Id′ )↓(Ia′⊗Ib′⊗Ic′⊗Id′)

WIa′b′c′d′
(2.29)

with Iabcd = Ia′b′c′d′ . With this equation, statistical weights for the full–scrambling collision
scheme is easily derived from the sole induction(subduction) statistical weights. Furthermore,
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the overall statistics for the reaction X2+X2
FS
⇌ X3+X are obtained by summing Eq. 2.29 over

all total nuclear spins.

2.3 THE SYMMETRY VIEWPOINT

2.3.1 Permutation groups and symmetrised states

One can represent a system ofn identical nuclei in a permutation group according to how well
he can distinguish its nuclei. For example, when the nuclei are completely indistinguishable,
any transposition or permutation operation in the completeset of nuclei keeps the system un-
changed thus corresponding to the complete permutation groupSn. If the nuclei are partionned
in k distinguishable subsets ofn1,n2 · · ·nk indistinguishable nuclei with∑k

i=1ni = n, only those
permutations within these subsets keep the system unchanged thereby corresponding to the per-
mutation groupSn1,n2···nk = Sn1⊗Sn2× . . .⊗Snk which is a subgroup ofSn. Ultimately, if all the
nuclei of the system are perfectly distinguished (eq.localised), the system is represented by the

uncoupled basis set or the(S1)
n =

n
⊗

S1 group since no permutation is possible.

In order to represent the system in a permutation group, we build symmetrised wavefunc-
tionsPΓi |ia, ib, ic . . .〉 by applying projectorsPΓi of the symmetry representationsΓi on the pure
states of the uncoupled basis set. The symmetry projectors PΓi of a permutation group are
defined as

PΓi =
1
h∑

R
χΓi [R]×R (2.30)

with h the order of the group,R the permutation operations of the group andχΓi [R] the character
of the representationΓi under the permutationR. Thorough description of permutation groups,
symmetry representations and projectors can also be found in Bunker and Jensen [8; 9] and
character tables for permutation groups containing up to 5 nuclei are given in appendix 2.A as
supplementary material.

The statistical weight of a symmetry representationΓi from a permutation group is given
by its dimensiondim(Γi) and the sum of square of its projector’s elements according to Born’s
rule:

WΓi = dim(Γi)
2× ∑

ia,ib,ic···
∑

ia′ ,ib′ ,ic′ ···
|〈ia′, ib′, ic′ · · · |PΓi |ia, ib, ic · · ·〉|2 (2.31)

As in Eq. 2.22 for the angular momentum representations, thestatistical weight of a symmetry
representationΓi is also given by the algebraic formula:

WΓi = dim(Γi)× f (Γi) (2.32)

with f (Γi) the frequency ofΓi in the complete symmetry representation of the system.
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Chapter 2. Nuclear spins in reactive collisions

2.3.2 Induction statistics

It is possible to represent simultaneously different localsymmetries of a system using symmetry
projectors of different permutation subgroups. As an example, the statistical weight of a 5–
nuclei system with local symmetriesΓabc andΓde inducing a total symmetryΓabcdeaccording
to the induction schemeSa,b,c,d,e ↑ Sabc,de↑ Sabcdeis

WΓa,b,c,d,e↑Γabc,de↑Γabcde
= dim(Γabc,de)

2×dim(Γabcde)
2× (2.33)

∑
ia,ib,ic,id,ie

∑
ia′ ,ib′ ,ic′ ,id′ ,ie′

|〈ia′, ib′, ic′, id′, ie′|PΓabcdePΓabc,de|ia, ib, ic, id, ie〉|2

Equivalently, the notationsΓabc,de corresponds toΓabc⊗Γde and we have

dim(Γabc,de) = dim(Γabc)×dim(Γde) (2.34)

PΓabc,de = PΓabcPΓde (2.35)

2.3.3 Subduction statistics

In the bracket formalism, a subduction scheme is related to its reciprocal induction scheme by
inverting the formula that is to exchange the bras into kets,the kets into bras and the operators
PΓi into dagger operatorsPΓi

†. Since (i) the dagger operator is the Hermitian conjugate ofan
operator which is the transpose conjugate in terms of matrices operators and (ii) the symmetry
projector matrices are real and diagonal symmetric, we havePΓi

† = PΓi . Moreover, the projector
operators are commutative. Therefore, the statistical weight of a 5–nuclei system with a total
symmetryΓabcdesubducing local symmetriesΓabc andΓde according to the subduction scheme
Sabcde↓ Sabc,de↓ Sa,b,c,d,e is

WΓabcde↓Γabc,de↓Γa,b,c,d,e
= dim(Γabc,de)

2×dim(Γabcde)
2

× ∑
ia′ ,ib′ ,ic′ ,id′ ,ie′

∑
ia,ib,ic,id,ie

|〈ia, ib, ic, id, ie|P†
Γabc,de

P†
Γabcde
|ia′, ib′, ic′, id′, ie′〉|2

= dim(Γabc,de)
2×dim(Γabcde)

2

× ∑
ia,ib,ic,id,ie

∑
ia′ ,ib′ ,ic′ ,id′ ,ie′

|〈ia′, ib′, ic′, id′, ie′|PΓabcdePΓabc,de|ia, ib, ic, id, ie〉|2

= WΓa,b,c,d,e↑Γabc,de↑Γabcde (2.36)

As for the angular momentum viewpoint (Eq. 2.23) and accordingly to the Frobenius reci-
procity theorem, the statistical weight of a subduction scheme is equal to the statistical weight
of its reciprocal induction scheme.
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2.3.4 Reaction statistics

Similarly to Sec. 2.2.4, statistical weights for reaction schemes can be obtained by corre-
lating the symmetrised states of the induction scheme (complex formation) with the sym-
metrised states of the subduction scheme (complex decay). In the example of the reaction
X2 + X2→ X4→ X3 + X, the “c” nucleus transfer (Eq. 2.24) correspond to the induction–
subduction schemeSa,b,c,d ↑ Sab,cd ↑ Sabcd↓ Sabc,d ↓ Sa,b,c,d. The statistical weight of local sym-
metriesΓab andΓcd correlated withΓabc via a total symmetryΓabcd is

WΓa,b,c,d↑Γab,de↑Γabcd↓Γabc,d↓Γa,b,c,d

= dim(Γab,cd)
2×dim(Γabcd)

4×dim(Γabc,d)
2

× ∑
ia,ib,ic,id

∑
ia′ ,ib′ ,ic′ ,id′

|〈ia′, ib′, ic′, id′|PΓab,cdPΓabcdPΓabcdPΓabc,d|ia, ib, ic, id〉|2 (2.37)

Following the argumentation of Sec. 2.2.4, the symmetry statistical weights for the full–

scrambling collisions X2+X2→ X4
FS−→ X3 +X is the average of the statistical weights of the

individual reaction mechanisms. The symmetry statisticalweights for the full–scrambling can
also be obtained from the sole induction statistical weights as in Eq. 2.29 by reseting the nuclei
labels between the complex formation and decay:

W
Γa,b,c,d↑Γab,cd↑Γabcd

FS−→Γa′b′c′d′↓Γa′b′c′,d′↓Γa′,b′ ,c′,d′

= WΓa,b,c,d↑Γab,cd↑Γabcd
×

WΓa′b′c′d′↓Γa′b′c′,d′↓Γa′,b′ ,c′,d′

WΓa′b′c′d′
(2.38)

with Γabcd = Γa′b′c′d′ . Further summation over all possible total symmetries yields the overall

symmetry statistics for the X2+X2
FS
⇌ X3+X reaction.

2.4 MERGING BOTH VIEWPOINTS

2.4.1 Induction and subduction statistics

Angular momentum and symmetry informations can be accessedsimultaneously by projecting
the angular momentum wavefunctions on the different representations of the permutation sub-
groups.

Considering the angular momentum and symmetry viewpoints of the induction scheme
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Chapter 2. Nuclear spins in reactive collisions

(

(a + b) + c
)

+ d →
(

ab + c
)

+ d → abc + d → abcd

(

(Ia⊗ Ib)⊗ Ic
)

⊗ Id ↑
(

Iab⊗ Ic
)

⊗ Id ↑ Iabc⊗ Id ↑ Iabcd

(

(Sa⊗Sb)⊗Sc
)

⊗Sd ↑
(

Sab⊗Sc
)

⊗Sd ↑ Sabc⊗Sd ↑ Sabcd

the state with a total spinIabcd, a total magnetic momentiabcd and a total symmetryΓabcd in-
duced via local spinsIabc andIab with local symmetriesΓabc andΓab is

|Iabcd, iabcd,Γabcd, Iabc,Γabc, Iab,Γab〉= PΓabcdPΓabc,dPΓab,c,d|Iabcd, iabcd, Iabc, Iab〉 (2.39)

with iab = ia+ ib andiabc = ia+ ib + ic , and its statistical weight is

W(Ia⊗Ib⊗Ic⊗Id) ↑(Iab⊗Ic⊗Id) ↑(Iabc⊗Id) ↑Iabcd
(Γa⊗Γb⊗Γc⊗Γd)↑(Γab⊗Γc⊗Γd)↑(Γabc⊗Γd)↑Γabcd

(2.40)

= dim(Γabcd)
4×dim(Γabc,d)

4×dim(Γab,c,d)
4

× ∑
iabcd

|〈Iabcd, iabcd,Γabcd, Iabc,Γabc, Iab,Γab|Iabcd, iabcd,Γabcd, Iabc,Γabc, Iab,Γab〉|2

Accordingly to the Frobenius reciprocity principle, the angular momentum–symmetry sta-
tistical weight of a subduction scheme and its reciprocal induction scheme are equal as demon-
strated in Eqs. 2.23 and 2.36 for the angular momentum and thesymmetry viewpoints, respec-
tively.

The total angular momentum–symmetry statistical weights for systems of 3, 4 or 5 particles
of spins 1/2, 1 or 3/2 are given in Table 2.13 and their detailed statistical weights for bimolecular
induction (eq.subduction) schemes are given in Tables 2.14, 2.15 and 2.16.

2.4.2 Reaction statistics

As in sections 2.2.4 and 2.3.4, the statistical weights for induction–subduction schemes are ob-
tained by correlating the induced states (complex formation) with the subduced states (complex
decay).

In the example of the induction–subduction scheme

(a + b) + (c + d) → ab + cd → abcd→ abc+ d → (ab +c) + d →
(

(a + b) +c
)

+ d

representing the “c” nucleus transfer reaction mechanism,the statistical weight of local spinsIab

andIcd with local symmetriesΓab andΓcd correlated with a local spinIabc with local symmetry
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2.5. Analysis of the D3 system

Γabc via a total spinIabcd with a total symmetryΓabcd is

W(Ia⊗Ib⊗Ic⊗Id) ↑(Iab⊗Icd) ↑Iabcd↓(Iabc⊗Id) ↓(Iab⊗Ic⊗Id) ↓(Ia⊗Ib⊗Ic⊗Id)
(Γa⊗Γb⊗Γc⊗Γd)↑(Γab⊗Γcd)↑Γabcd↓(Γabc⊗Γd)↓(Γab⊗Γc⊗Γd)↓(Γa⊗Γb⊗Γc⊗Γd) (2.41)

= dim(Γab,cd)
2×dim(Γabcd)

4×dim(Γabc,d)
2×dim(Γab,c,d)

2

× ∑
iabcd

|〈Iabcd, iabcd,Γabcd, Iabc,Γabc, Iab,Γab|Iabcd, iabcd,Γabcd, Iab,Γab, Icd,Γcd〉|2

Detailed angular momentum–symmetry statistical weights for each reaction mechanism can be
determined with the corresponding induction–subduction scheme as in Eq. 2.41. Repeating sec-
tions 2.2.4 and 2.3.4, the detailed statistical weights forthe full-scrambling reaction can be ob-
tained by averaging the detailed statistical weights of theindividual reaction mechanisms. They
can also be obtained as in Eqs. 2.29 and 2.38 using the induction detailed statistical weights
from Tables 2.14, 2.15 or 2.16.

2.5 ANALYSIS OF THE D3 SYSTEM

For systems of spin 1/2 particles, there is a one-to-one corelation between the angular mo-
mentum and the symmetry representations2 (see Table 2.13). The total spin information thus
implicitely gives the symmetry information and vice-versasuch that, separately or combined,
the angular momentum and symmetry viewpoints yield identical statistics. The system of three
particles of spin 1 is therefore interesting because it is the smallest and simplest system where
the isomorphism between angular momentum and symmetry representations breaks down. Ta-
ble 2.13 shows indeed that for the 3–spin 1 system, a total spin of 1 can be either of A1 or E
symmetry and that the total symmetries A1 and E can have total spins 1 or 3 and 1 or 2, respec-
tively. To study this system, we shall focus on the reaction D2+D→ D3→D2 +D.

2.5.1 Full-scrambling statistics

The statistics for the D2+D→D3 induction scheme can be derived either from the angular mo-
mentum viewpoint (Table 2.2a), the symmetry viewpoint (Table 2.2c) or both simultaneously
(Table 2.2b). Note that Tables 2.2a and 2.2c can also be obtained by rebinning the statistical
weights from Table 2.2b according to angular momentum or symmetry informations.

As in equation 2.29 and 2.38, the full–scrambling statistics can be calculated directly from
these induction statistics considering angular momentum,symmetry informations or both. The

overall statistics of the D2+D
FS
⇌ D2+D reaction,i.e.summed over the total spins and/or sym-

metries of the intermediate complex, are given in tables 2.3a, 2.3b and 2.3c depending on the

2We could not find a mathematical proof of this statement but verified it for systems up to at least 6 particles.
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Chapter 2. Nuclear spins in reactive collisions

Table 2.1: D2 + D ⇌ D3 induction (subduction) statistical weights.

(a) Angular momentum

0(A2) 1(A1,E) 2(E) 3(A1) sum

2(A) ⊗ 1(A) 0 3 5 7 15

1(B) ⊗ 1(A) 1 3 5 0 9

0(A) ⊗ 1(A) 0 3 0 0 3

sum 1 9 10 7 27=33

(b) Angular momentum and symmetry

0 A2 1 A1 1 E 2 E 3 A1 sum

2,A⊗ 1,A 0 4/3 5/3 5 7 15

1,B⊗ 1,A 1 0 3 5 0 9

0,A⊗ 1,A 0 5/3 4/3 0 0 3

sum 1 3 6 10 7 27=33

(c) Symmetry

A1(1,3) A2(0) E(1,2) sum

A(0,2)⊗ A(1) 10 0 8 18

B(1) ⊗ A(1) 0 1 8 9

sum 10 1 16 27=33

viewpoint(s) considered.

The striking result is that contrary to the statistics derived with the symmetry information
only, the statistics derived with the angular momentum information only are inconsistent with
those derived with both angular momentum and symmetry informations. Indeed, rebinning the
statistical weights from table 2.3b with respect to the angular information does not yield table
2.3a while rebinning them with respect to the symmetry information does yield table 2.3c. Such
result can also be observed for systems of 4 nuclei of spin 1 and 3 nuclei of spin 3/2. By extent,
it will be true for any system where the isomorphism between its angular momentum and sym-
metry representations is not true.
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2.5. Analysis of the D3 system

Table 2.2: D2 + D
FS−→D2 + D full–scrambling statistical weights.

(a) Angular momentum

2(A) ⊗ 1(A) 1(B)⊗ 1(A) 0(A) ⊗ 1(A) sum

2(A) ⊗ 1(A) 21/2 7/2 1 15

1(B) ⊗ 1(A) 7/2 9/2 1 9

0(A) ⊗ 1(A) 1 1 1 3

sum 15 9 3 27=33

(b) Angular momentum and symmetry

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 95/9 30/9 10/9 15

1,B⊗ 1,A 30/9 5 6/9 9

0,A⊗ 1,A 10/9 6/9 11/9 3

sum 15 9 3 27=33

(c) Symmetry

A(0,2)⊗ A(1) B(1)⊗ A(1) sum

A(0,2)⊗ A(1) 14 4 18

B(1) ⊗ A(1) 4 5 9

sum 18 9 27=33

We thus observe that the permutation symmetry algebra [1] and the angular momentum
algebra [2] are inconsistent when describing reaction (induction–subduction) schemes. The
angular momentum informations (total and local spins) are good3 quantum numbers to de-
scribe molecules (the complete permutation group), associations (induction schemes) or disso-
ciations (subduction schemes) but they seem to be “bad” quantum numbers to describe reac-
tions (induction–subduction schemes). This result is embarrassing and counter–intuitive as one
would expect it feasible to derive good statistics from the sole angular momentum viewpoint,
yet we must conclude that the angular momentum information is insufficient and that the sym-
metry information is essential. The necessity of the symmetry informations is also motivated
by the symmetrisation postulate (a postulate of quantum mechanics) since the symmetries of

3in its literal sens and the sens of “conserved in time”
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Chapter 2. Nuclear spins in reactive collisions

the reactants’ and products’ nuclear spin wavefunctions are required to tell which rovibronic
wavefunctions and energetics are accessible.

2.5.2 Detailed reaction mechanisms statistics

Once the weakness of the angular momentum viewpoint has beenevidenced, we shall try to
explain it by focusing on finer details. The statistics foundin Table 2.2 are (i) summed over the
total symmetries and/or angular momenta and (ii) correspond to the full–scrambling which is
the average of all reaction mechanisms. We will now derive the detailed angular momentum–
symmetry statistics (i) for a total angular momentum of 1 with E total symmetry and (ii) for
each reaction mechanism. To do that, we can use two methods either starting from the full-
scrambling statistics and ending by the reaction mechanisms statistics or vice–versa.

Decomposition method

This method described by Oka in the frame of the angular momentum algebra [see 2, sec. 3.2]
is shown in Table 2.4 . Thefull-scramblingstatistical weights (Table 2.4a) are first derived
as in Eqs. 2.29 and 2.38 using the induction (subduction) statistical weights from Table 2.2b .
The Identity statistical weights (Table 2.4b) are then inferred from thestrict conservation of
local spins and symmetries. Finally, theTransferstatistical weights (Table 2.4c) are derived
from the full-scramblingand Identity statistical weights since, as illustrated in Table 2.3 , the
full-scrambling consists in 3 equiprobable reaction mechanisms : 1Identity and 2 equivalent
Transfer.

Recomposition method

We directly calculate theIdentityandTransferstatistical weights (Tables 2.5a and 2.5b) as in
Eq. 2.41 and recompose thefull–scramblingstatistical weights (Table 2.5c) according to Table
2.3 .

Table 2.3: Mechanisms for the D2 + D→ D2 + D reaction.

ab + c → abc → ab + c 1/3 Identity
→ ac + b + 1/3 ‘a’–Transfer
→ bc + a + 1/3 ‘b’–Transfer

D2 + D → D3 → D2 + D = Full–scrambling
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Comparison and analysis

Surprisingly, the decomposition method results in negative weights (see Table 2.4c) which have
no physical meaning. Its reasoning thus holds an error whichis revealed by theIdentitystatis-
tical weights from the recomposition method (Table 2.5a) where we see that the local angular
momentum of a D2 with local symmetry A is a 4/9 : 5/9 mixture of spins 0 and 2. Note that this
ratio also appears in the column “1 E” of Table 2.2b . We must conclude that local nuclear spin
angular momenta are not strictly conserved as assumed for the inference of theIdentitystatis-
tical weights in the decomposition method (Table 2.4b) . In other words, local and composite
nuclear spin angular momenta are notgoodquantum numbers.

This observation raises questioning since for an isolatedortho–D2 molecule,i.e.a complete
system with A symmetry, its total nuclear spin angular momentum of 0 or 2 ought to be strictly
conserved. However, considering this same molecule with another distant D atom,i.e.as a sub-
system, its nuclear spin angular momentum turns outlocal hence not strictly conserved. We
evidence a paradox regarding the conservation of nuclear spin angular momenta based on their
total or local properties. This interpretational dilemma is unsatisfactory and needs to be solved.

It it also interesting to note that in Table 2.5 , for all reaction mechanisms, the symmetry
reaction probabilities are independent of the local angular momenta. Comparing with the sta-
tistical weights for a total angular momentum of 2 and the E total symmetry (Table 2.6), we
can also conclude that the symmetry reaction probabilitiesare independent of the total nuclear
spin angular momentum. This confirms the conclusion from section 2.5.1 : Contrarily to the
symmetry informations, the angular momentum informationsare not sufficient nor necessary.

Finally, Table 2.6 can also be derived with the decomposition method since the total nuclear
spin angular momenta correlates with a single total symmetry. The decomposition method thus
works systematically for spin 1/2 systems.
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Table 2.4: D2 + D→ D2 + D statistics withItot = 1 andΓtot = E: Decomposition method.

(a) Full–scrambling

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 25/54 45/54 20/54 5/3

1,B⊗ 1,A 45/54 81/54 36/54 3

0,A⊗ 1,A 20/54 36/54 16/54 4/3

sum 5/3 3 4/3 6

− 1
3

(b) Identity reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 5/3 0 0 5/3

1,B⊗ 1,A 0 3 0 3

0,A⊗ 1,A 0 0 4/3 4/3

sum 5/3 3 4/3 6

= 2
3

(c) Transfer reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A -5/36 45/36 20/36 5/3

1,B⊗ 1,A 45/36 27/36 36/36 3

0,A⊗ 1,A 20/36 36/36 -8/36 4/3

sum 5/3 3 4/3 6
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Table 2.5: D2 + D→ D2 + D statistics withItot = 1 andΓtot = E: Recomposition method.

1
3

(a) Identity reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 25/27 0 20/27 5/3

1,B⊗ 1,A 0 3 0 3

0,A⊗ 1,A 20/27 0 16/27 4/3

sum 5/3 3 4/3 6

+ 2
3

(b) Transfer reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 25/108 45/36 20/108 5/3

1,B⊗ 1,A 45/36 27/36 36/36 3

0,A⊗ 1,A 20/108 36/36 16/108 4/3

sum 5/3 3 4/3 6

=

(c) Full–scrambling

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 25/54 45/54 20/54 5/3

1,B⊗ 1,A 45/54 81/54 36/54 3

0,A⊗ 1,A 20/54 36/54 16/54 4/3

sum 5/3 3 4/3 6
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Table 2.6: D2 + D→ D2 + D statistics withItot = 2 andΓtot = E

(a) Identity reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 5 0 0 5

1,B⊗ 1,A 0 5 0 5

0,A⊗ 1,A 0 0 0 0

sum 5 5 0 10

(b) Transfer reaction mechanism

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 5/4 15/4 0 5

1,B⊗ 1,A 15/4 5/4 0 5

0,A⊗ 1,A 0 0 0 0

sum 5 5 0 10

(c) Full–scrambling

2,A⊗ 1,A 1,B⊗ 1,A 0,A⊗ 1,A sum

2,A⊗ 1,A 5/2 5/2 0 5

1,B⊗ 1,A 5/2 5/2 0 5

0,A⊗ 1,A 0 0 0 0

sum 5 5 0 10
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2.6. Bohmian interpretation of nuclear spins

2.6 BOHMIAN INTERPRETATION OF NUCLEAR SPINS

Note: This section will not be part of the expected publication.

What is the nature of a wavefunction and its mathematical representation ? Is a wavefunc-
tion a true description of reality or is it an observer’s mindconstruction ? How determined is
the state of a system and can a wavefunction faithfully transcribe this state ? Do nuclei en-
tities which are indistinguishable to an observer loose their individualities ? Are they really
delocalised ? Here are few foundational questions which canbe answered firmly according to
dogmata or cautiously according to various schools of thought.

In this section, we question the interpretation of the informations and statistical weights
gathered with the wavefunctions in the previous sections byreconsidering nuclear spin systems
in line with the Bohmian interpretation of quantum mechanics. We propose a formalism to ex-
tract hidden variables of the systems. This incomplete attempt is a constructive challenge to the
commonly accepted Copenhagen interpretation.

In section 2.6.1 , we will remind some differences between the Copenhagen and Bohmian
interpretations of quantum mechanics and project these interpretations to our systems of in-
terest. In section 2.6.2 , a formalism necessary for the Bohmian interpretation of nuclear spin
systems is described. In section 2.6.3 , this formalism is applied to the H3 system in order to de-
rive statistical weights for the Bohmian informations. Physical implications are then discussed
in section 2.6.4 .

2.6.1 Quantum determinacy or indeterminacy

A wavefunction can be interpreted according to the Copenhagen (indeterministic) or the Bohmian
(deterministic) interpretation but before applying thosesemantics to nuclear spin systems, we
shall briefly remind their differences through the Schroedinger’s cat example.

Schroedinger’s cat

A Cat can be in a living or dead state which we write|alive〉 and|dead〉. A living cat is enclosed
in a box and asked to toss a quantum coin4 which triggers a device that release hydrocyanic acid
in the box if the result is head. The probabilities that the cat is alive or dead after the coin event
and before the box is opened are 1/2. The wavefunction assigned to the cat entity is therefore
(

1/
√

2 |alive〉 + 1/
√

2 |dead〉
)

. The 1/
√

2 amplitudes are determined according to Born’s rule
and the signs of the two coefficients are irrelevant in this case because there are no symmetry
implications.

4The original setup consist of a Geiger counter with a little bit of radioactive substance
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The fundamental difference between the Copenhagen and the Bohmian interpretation lies in
the interpretation of the mixing of the pure states. In the Copenhagen interpretation, the mixing
is apparented to the “AND” logic operator or equivalently the intersection “∩” set operator
meaning that the cat (the reality) is undetermined since both states

(

|alive〉 AND |dead〉
)

are coexisting5. Only when the box is opened, the wavefunction collapses to one or the other
state,i.e. the measurement action unfolds a degenerate reality. In theBohmian interpretation,
the mixing is apparented to the “exclusive–OR” logic operator or “exclusive disjunction” set
operator meaning that the cat can be only in one single state at a time, even if the observer
does not know it. Contrary to the Copenhagen interpretation, the Bohmian interpretation is
deterministic nevertheless it can be undetermined from theobserver’s viewpoint which explains
the mixing construction.

multi–spin system

According to the Copenhagen interpretation, we could measure the total symmetry, total spin
and total magnetic moment for all subsets of nuclei of a givensystem in order to fully de-
termine the system (eq. collapse the states). However, according to the frozen nuclear spin
approximation which implies their time conservation, these quantum informations must have
been the same before the measurement action meaning that thesystem was necessarily deter-
mined before the measurement. Therefore, the only fact thatwe can measure those quantum
informations in the future implies that they are determinedat anytime : the system is fully de-
termined irrespective whether a measurement was performedor not. This argument known as
“counterfactual definiteness” invalidates the Copenhageninterpretation since mixed states do
not really exist nor do wavefunction collapse really occur.All the informations of the system
already exist but the observer simply ignores them, which iswhy this interpretation belongs to
the family of “hidden variable theories”.

Taking for instance two molecules HaHb and HcHd far from each other and non-interacting,
the symmetries of all the nuclei sets,e.g.Γad or Γbcd, are already determined.

2.6.2 Formalism of the Bohmian interpretation

The formalism and the method will be illustrated through themost simple example, the 3–spin
1/2 system,e.g.H3. The symmetry and angular momentum representations of thissystem as
those of its subsystems are equivalent so we may only work from the symmetry viewpoint.

5If it were the “OR” logical operator or equivalently the union “∪” set operator, the state of the cat is even more
undetermined since it is

(

|alive〉 OR |dead〉 OR
(

|alive〉 AND |dead〉
) )

.
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Complete representation space

The representation space of theS3 permutation group is{A1,A2,E} and the representation space
of each of the threeS2,1 permutation groups is{A,B} . Based on the previous argumentation, the
symmetry information for all (sub)sets of nuclei is determined. Let this be thecomplete state
of information. The complete states represent the map of permutation groups (see Fig. 2.1)
and belong to the direct product of the representation spaces of all permutation groups. It
implies not only thetotal state of symmetry but also all thelocal statesof symmetry. The
complete state of the 3–Hydrogen system HaHbHc thus belongs to the representation space of
Sabc⊗Sab,c⊗Sac,b⊗Sbc,a which is{A1,A2,E}abc⊗{A,B}ab,c⊗{A,B}ac,b⊗{A,B}bc,a

6. Let
this be thecomplete representation space. The complete symmetry states which form the
basis set of the complete representation space are written(Γabc⊗Γab,c⊗Γac,b⊗Γbc,a) but for
brevity, we will drop the⊗ operators.

It is important to mention that the map of permutation groupsdoes not have a group struc-
ture. Therefore the complete states are not classic group representations. This category of
mathematical object with a higher order structure should betreated in the topos of the finite
permutation groups using category theory. However, this paper aims for physical rather than
mathematical implications so only the necessary tools are developed.

We can organise the complete states in classes where the localisation of the information
is lost. We write those classes as[ΓS3ΓS2ΓS2ΓS2]. For example, the class of partition [EAAB]
written [EA2B] corresponds to(EAAB)⊕ (EABA)⊕ (EBAA).

We also define for each permutation group the undetermined stateu asu =
⋃

i
Γi , the union

set operator∪ being equivalent to the direct sum operator⊕. The undetermined state inS3

and S2 permutation groups areu = A1⊕A2⊕E and u = A⊕B, respectively. Using the
undetermined states of the permutation groups, we can express thepartial statesas sets (direct
sums) of complete states. The direct sum operator being distributive, we have for example:

(EAuB) = (E⊗A⊗u⊗B) (2.42)

= (E⊗A⊗ (A⊕B)⊗B) (2.43)

= (E⊗A⊗A⊗B)⊕ (E⊗A⊗B⊗B) (2.44)

= (EAAB)⊕ (EABB) (2.45)

This partial states considersΓac,b as undetermined corresponding to the induction–subduction
schemeSa,b,c ↑Sab,c ↑Sabc↓Sa,bc↓Sa,b,c which does not considerSac,b. The induction-subduction
schemes employed in previous sections concern the representations in at most two different
paths with their permutation groups, irrespective of the representations in the other permutation

6the subscripts are here to distinguish the permutation subgroups
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Chapter 2. Nuclear spins in reactive collisions

groups. Their corresponding partial states are thus incomplete informations representative of
the Copenhagen interpretation which consider as coexisting and undetermined all the possible
states in some permutation groups. In the Bohmian interpretation, the partial states as unions (or
direct sums) of complete states reflect an observer’s construction due to his lack of knowledge
of the system.

The direct product operator⊗ is equivalent to the intersection set operator in the com-
plete representation space. In the Bohmian interpretation, the direct product reflects the reality.
Working between representations of the same permutation group, the direct product gives:

Γi ⊗ /0 = /0 (2.46)

Γi ⊗ Γi = Γi (2.47)

Γi ⊗ Γ j = /0 (2.48)

Γi ⊗ u = Γi (2.49)

Working between representations of two distinct permutation groups, the direct product gives:

Γi ⊗ /0 = /0 (2.50)

Γi ⊗ Γ j = Γi ⊗ Γ j (2.51)

Γi ⊗ u = Γi ⊗ u (2.52)

From these properties, we can show that complete states are necessarily orthogonal since they
do not share a common space in the complete representation space. For example, we have

(EAAB)⊗ (EABB) = ((E⊗E)⊗ (A⊗A)⊗ (A⊗B)⊗ (B⊗B)) (2.53)

= (E⊗A⊗ /0⊗B) (2.54)

= /0 (2.55)

which translates the fact that a system cannot have the complete symmetries (EAAB) and
(EABB) at the same time since it cannot be both of A and B symmetry in the Sac,b permu-
tation group. However, partial states may be non–orthogonal and overlap. For example, we
have

(uAuB)⊗ (EAuB) = ((u⊗E)⊗ (A⊗A)⊗ (u⊗u)⊗ (B⊗B)) (2.56)

= (E⊗A⊗u⊗B) (2.57)

= (E⊗A⊗ (A⊕B)⊗B) (2.58)

= (EAAB)⊕ (EABB) (2.59)

Causal Bayesian network

Consider now that the complete representation space forms acausal Bayesian network where
the weights and probabilities of its elements are related.

40



2.6. Bohmian interpretation of nuclear spins

We define the conditional weightsW(Y|X) and probabilities (likelihoods)P(Y|X) as

W(Y|X) = W(X∩Y|X) = W(X∩Y) (2.60)

P(Y|X) = P(X∩Y|X) = W(X∩Y)/W(X) (2.61)

X and Y being the observer’s prior and posterior informations, respectively. In this study, they
are symmetry representations of the permutation groups. The unconditional weightsW(X|u)

correspond to the absence of prior condition and we simply write themW(X). The weight
of the no–information information corresponds to the totalweight of the system,i.e. W(u) =
WTOT = (2I +1)n. The unconditional probabilitiesP(X|u) which we simply writeP(X) are thus
P(X) = W(X)/WTOT.

Some important properties of the statistical weights are:

W(Y∪X) = W(X) +W(Y)−W(X∩Y) (2.62)

W(Y∩X) = 0 if X∩Y = /0 (2.63)

W(Y|X) = W(X|Y) (2.64)

Note that “∪” is equivalent to “⊕” and “∩” is equivalent to “⊗” in the complete space. The “| ”
is also equivalent to “⊗” with the extra–characteristic that it delimits the observer’s prior and
posterior informations.

Equation 2.64 states that a conditional weight and its reciprocal are equal. This was in-
terpreted as an equivalence to the Frobenius reciprocity principle in the previous sections (see
Eqs. 2.23 and 2.36) and we see here that this principle also applies to the complete representa-
tion space. It implies that all the weight–tables of this paper are transposable by exchanging the
prior and posterior property of the informations,e.g.switching an induction into its reciprocal
subduction and vice–versa.

2.6.3 Derivation of the Bohmian informations

Unconditional weights of the Copenhagen informations

All the statistical weights of the H3 system derived as in previous sections are given in Ta-
ble 2.7 according to total and local symmetries and reactionmechanisms. They correspond to
Copenhagen informations since the symmetry information insome permutation groups is un-
determined. They can be translated in the Bohmian interpretation as unconditional weights for
partial states. Their transcription into the Bohmian formalism is found in Table 2.8.

Unconditional weights of the Bohmian informations

The aim is now to access the unconditional weights of all the complete states from the uncon-
ditional weights of the partial states using Bayes inference.
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Chapter 2. Nuclear spins in reactive collisions

Table 2.7: H2 + H→ H2 + H statistical weights from the Copenhagen interpretation.

Id Trans FS

S3 S2 A B A B A B

Total 8
A 6 6 0 9/2 3/2 5 1

B 2 0 2 3/2 1/2 1 1

A1 4
A 4 4 0 4 0 4 0

B 0 0 0 0 0 0 0

A2 0
A 0 0 0 0 0 0 0

B 0 0 0 0 0 0 0

E 4
A 2 2 0 1/2 3/2 1 1

B 2 0 2 3/2 1/2 1 1

Regarding theA1 total symmetry, we find:

W(A1AAA) = W(A1AAu)−W(A1AAB) (2.65)

= W(A1AAu)−P(A1AAB|A1uAB)×W(A1uAB) (2.66)

= W(A1AAu) (2.67)

= 4 (2.68)

sinceW(A1uAB) = 0. Furthermore, it is straightforward to derive that all thecomplete states of
the classes [A1A2B] , [A1AB2] and [A1B3] have statistical weights of 0 since the partial states of
the classes [A1ABu] and [A1B2u] have weights of 0.

We thus have the likelihoodP(A1AAA|A1uuu) = W(A1AAA)/W(A1uuu) = 1 meaning that all the
subsets of a totally symmetric set are necessarily symmetric. Equivalently for the 3–deuterium
system, we would deriveP(A2BBB|A2uuu) = 1 meaning that all the subsets of a totally antisym-
metric set are necessarily antisymmetric.

We can then put forward the causality principle to state that: Since a totally symmetric
(A1uuu) set of nuclei necessarily subduces symmetric subsets (uAAA), reciprocally, completely
symmetric subsets (uAAA) must necessarily induce a totally symmetric set (A1uuu). The same
causality stands for antisymmetric representations strictly correlatingA2 with (uBBB). It fol-
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2.6. Bohmian interpretation of nuclear spins

Table 2.8: H3 unconditional weight of the partial states corresponding to Copenhagen informa-
tions.
Class Partial states Weight

[uu3] (uuuu) 8
[uAu2] (uAuu) (uuAu) (uuuA) 6
[uBu2] (uBuu) (uuBu) (uuuB) 2
[uA2u] (uAAu) (uAuA) (uuAA) 9/2
[uB2u] (uBBu) (uBuB) (uuBB) 1/2
[uABu] (uABu) (uBAu) (uAuB) (uBuA) (uuAB) (uuBA) 3/2

[A1u3] (A1uuu) 4
[A1Au2] (A1Auu) (A1uAu) (A1uuA) 4
[A1Bu2] (A1Buu) (A1uBu) (A1uuB) 0
[A1A2u] (A1AAu) (A1AuA) (A1uAA) 4
[A1B2u] (A1BBu) (A1BuB) (A1uBB) 0
[A1ABu] (A1ABu) (A1BAu) (A1AuB) (A1BuA) (A1uAB) (A1uBA) 0

[A2u3] (A2uuu) 0
[A2Au2] (A2Auu) (A2uAu) (A2uuA) 0
[A2Bu2] (A2Buu) (A2uBu) (A2uuB) 0
[A2A2u] (A2AAu) (A2AuA) (A2uAA) 0
[A2B2u] (A2BBu) (A2BuB) (A2uBB) 0
[A2ABu] (A2ABu) (A2BAu) (A2AuB) (A2BuA) (A2uAB) (A2uBA) 0

[Eu3] (Euuu) 4
[EAu2] (EAuu) (EuAu) (EuuA) 2
[EBu2] (EBuu) (EuBu) (EuuB) 2
[EA2u] (EAAu) (EAuA) (EuAA) 1/2
[EB2u] (EBBu) (EBuB) (EuBB) 1/2
[EABu] (EABu) (EBAu) (EAuB) (EBuA) (EuAB) (EuBA) 3/2

lows that the (uAAA) and (uBBB) completely symmetric and antisymmetric subsets cannot cor-
relate with the total symmetry (Euuu). Therefore, the complete states (EAAA) and (EBBB)
cannot exist and we have

W(EAAA) = W(EBBB) = 0 (2.69)

Looking now at the E total symmetry, we have the relations

W(EAuu) = W(EAAA) +W(EAAB) +W(EABA) +W(EABB) = 2 (2.70)

W(EuuB) = W(EBBB) +W(EAAB) +W(EBAB) +W(EABB) = 2 (2.71)

43



Chapter 2. Nuclear spins in reactive collisions

Subtracting Eq. 2.71 from Eq. 2.70 and using Eq. 2.69, we find that

W(EABA) = W(EBAB) (2.72)

By permutation of theS2,1 subgroups is Eqs. 2.70 and 2.71, we can establish that all thecom-
plete states of the classes [EA2B] and [EAB2] have the same weights. Regarding that

W(Euuu) = W(EAAB) +W(EABA) +W(EBAA) +W(EABB) +W(EBAB) +W(EBBA) = 4 (2.73)

we get
W(EAAB) = W(EABA) = W(EBAA) = W(EABB) = W(EBAB) = W(EBBA) = 2/3 (2.74)

and

W[EA2B] = W(EAAB) +W(EABA) +W(EBAA) = 2 (2.75)

W[EAB2] = W(EABB) +W(EBAB) +W(EBBA) = 2 (2.76)

Note that the unconditional weights of the complete states implies that we don’t have any prior
informations on the subsets of nuclei. Since there is no prior localisation in the system, the
unconditional complete informations area posterioridelocalised.

Conditional weights of the localised Bohmian informations

Consider now a HaHb + Hc collision with the prior informationΓab,c = B, that is(uBuu). Us-
ing the unconditional weights we just determined and the definition of the conditional weights
(Eq. 2.60), we find

W(EBuu|uBuu) = W(EBuu) = 2 (2.77)

W(EBAu|uBuu) = W(EBAu) = 3/2 (2.78)

W(EBuA|uBuu) = W(EBuA) = 3/2 (2.79)

W(EBBu|uBuu) = W(EBBu) = 1/2 (2.80)

W(EBuB|uBuu) = W(EBuB) = 1/2 (2.81)

Given the relations

W(EBBA|uBuu) +W(EBBB|uBuu) = W(EBBu|uBuu) = 1/2 (2.82)

W(EBAB|uBuu) +W(EBBB|uBuu) = W(EBuB|uBuu) = 1/2 (2.83)

W(EBAA|uBuu) +W(EBAB|uBuu) = W(EBAu|uBuu) = 3/2 (2.84)

and Eq. 2.69 , we have

W(EBBA|uBuu) = 1/2 (2.85)

W(EBAB|uBuu) = 1/2 (2.86)

W(EBAA|uBuu) = 1 (2.87)
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Table 2.9: Conditional weights of the localised Bohmian informationsfor the 3 spin–1/2 system. The induction weights are
equivalent to the subduction weights since it consists in exchanging the prior and posterior properties of the informations.
Note that the no-information (uuuu) prior information implies that the posterior informations are delocalised.

Sabc A1 E A2

[A3] [A 2B] [AB 2] [B3] Sum

Sab,c Sac,b Sbc,a AAA AAB ABA BAA BBA BAB ABB BBB

u u u 4 2/3 2/3 2/3 2/3 2/3 2/3 0 8

A u u 4 1/2 1/2 0 0 0 1 0 6
B u u 0 0 0 1 1/2 1/2 0 0 2

A A u 4 1/2 0 0 0 0 0 0 9/2
A B u 0 0 1/2 0 0 0 1 0 3/2
B A u 0 0 0 1 0 1/2 0 0 3/2
B B u 0 0 0 0 1/2 0 0 0 1/2

A A A 4 0 0 0 0 0 0 0 4

A A B 0 1/2 0 0 0 0 0 0 1/2
A B A 0 0 1/2 0 0 0 0 0 1/2
B A A 0 0 0 1 0 0 0 0 1

B B A 0 0 0 0 1/2 0 0 0 1/2
B A B 0 0 0 0 0 1/2 0 0 1/2
A B B 0 0 0 0 0 0 1 0 1

B B B 0 0 0 0 0 0 0 0 0

Sum 4
1/2 1/2 1 1/2 1/2 1

0 8=23

2 24
5



Chapter 2. Nuclear spins in reactive collisions

Moreover, the prior condition(uBuu) forces to 0 the conditional weights of the partial states
and complete states withΓab,c = A.

By applying the same method to any prior localised information(s), we obtain all the condi-
tional weights of localised Bohmian informations for the H3 system as given in Table 2.9.

Conditional weights of the delocalised Bohmian informations

It is also possible to extract conditional weights for delocalised prior and posterior informations
using the conditional weights of the localised informations just calculated. For this purpose, we
use the classes as defined in section 2.6.2.

For example, let our only prior information be “there is at least one pair of nuclei with
B symmetry” corresponding to[uBu2] = (uBuu)⊕ (uuBu)⊕ (uuuB). Since the unconditional
weights of those partial states are equal,i.e. W(uBuu) = W(uuBu) = W(uuuB), we find that each
localised partial state is equiprobable:

P(uBuu|[uBu2]) = P(uuBu|[uBu2]) = P(uuuB|[uBu2]) = 1/3 (2.88)

In other terms, the identified (but not localised) pair of nuclei with B symmetry is equaly likely
to be one of the three pairs.

Using the fact that

W(X|Z) = ∑
Y

W(X|Y)×P(Y|Z) (2.89)

we can derive the conditional weight of the class[EA2B] composed of (EAAB), (EABA) and
(EBAA):

W([EA2B]|[uBu2]) = W(EAAB|[uBu2]) +W(EABA|[uBu2]) +W(EBAA|[uBu2])

=
(

W(EAAB|uBuu) +W(EABA|uBuu) +W(EBAA|uBuu)
)

×P(uBuu|[uBu2])

+
(

W(EAAB|uuBu) +W(EABA|uuBu) +W(EBAA|uuBu)

)

×P(uuBu|[uBu2])

+
(

W(EAAB|uuuB) +W(EABA|uuuB) +W(EBAA|uuuB)

)

×P(uuuB|[uBu2])

=
(

0+0+1)×1/3

+
(

0+1/2+0)×1/3

+
(

1/2+0+0)×1/3

= 2/3 (2.90)
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and the conditional weight of the class[EAB2] composed of (EABB), (EBAB) and (EBBA):

W([EAB2]|[uBu2]) = W(EBBA|[uBu2]) +W(EBAB|[uBu2]) +W(EABB|[uBu2])

=
(

W(EBBA|uBuu) +W(EBAB|uBuu) +W(EABB|uBuu)

)

×P(uBuu|[uBu2])

+
(

W(EBBA|uuBu) +W(EBAB|uuBu) +W(EABB|uuBu)

)

×P(uuBu|[uBu2])

+
(

W(EBBA|uuuB) +W(EBAB|uuuB) +W(EABB|uuuB)

)

×P(uuuB|[uBu2])

=
(

1/2+1/2+0)×1/3

+
(

1/2+0+1)×1/3

+
(

0+1/2+1)×1/3

= 4/3 (2.91)

By applying the same method to any prior delocalised information(s), we obtain all the
conditional weights of localised Bohmian informations forthe H3 system as given in Table 2.10.

Table 2.10: Conditional weights of the delocalised Bohmian informations for the 3 spin–1/2
system. The induction weights are equivalent to the subduction weights since it consists in
exchanging the prior and posterior properties of the informations.

S3 A1 E A2 Sum
[S2,1

3] [A 3] [A 2B] [AB 2] [B3]

[u3] 4 2 2 0 8

[Au2] 4 4/3 2/3 0 6

[Bu2] 0 2/3 4/3 0 2

[A2u] 4 2/3 0 0 14/3

[ABu] 0 4/3 4/3 0 8/3

[B2u] 0 0 2/3 0 2/3

[A3] 4 0 0 0 4

[A2B] 0 2 0 0 2

[AB2] 0 0 2 0 2

[B3] 0 0 0 0 0
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2.6.4 Physical implications

Theories with their formalism, objects, classes, semantic, logic, attributes, relations, laws and
so forth represent interpretations of reality and conversely. Two different interpretations can
thus lead to different theoretical predictions. We will dicuss few examples which highlight the
differences between the Copenhagen and the Bohmian interpretations.

3–proton Gedankenexperiment

The protocole of the thought experiment is:

Let a p–H2 molecule collide with an H+ cation in order to obtain an H+3 com-
plex with E total symmetry. Then repeat infinitely the following procedure: Ran-
domly pick one H2 molecule from the H+3 complex and measure the symmetry of
its nuclear spin wavefunction, e.g. by spectroscopic means7. Reassemble the H+3
complex.

What should the A:B ratio of the measured symmetries converge to ?

The Copenhagen interpretation only considers one type of E total symmetry which corre-
lates with A and B local symmetries evenly. As shown in table 2.7, the probabilities that a
randomly picked H2 molecule has A or B symmetry will always be 1/2 and 1/2. Therefore, any
experiment should converge to the A:B ratio of 1:1.

The Bohmain interpretation distinguishes two types of E total symmetries: those from the
complete symmetry class [EA2B] and those from the class [EAB2]. According to table 2.9, with
the B symmetry of the initial H2 molecule as a prior localised information, the probabilities to
form a complexes with a complete symmetry from the class [EA2B] and [EAB2] are 1/2 and
1/2. Once the complex is formed, the localisation of the informations is lost since we cannot
distinguish the two nuclei of the initial H2 molecule. According to table 2.10, the probabilities
to pick randomly an H2 molecule with A or B symmetry are 2/3 and 1/3 for a [EA2B] complex
and 1/3 and 2/3 for a [EAB2] complex. Therefore, half of the experiments will convergeto a
A:B ratio of 2:1 and the other half will converge to 1:2.

Note that if the 3–proton system is renewed after each randompick and symmetry mea-
surement of an H2 molecule,e.g.using molecular beams, the Bohmian interpretation yields
probabilities of 1/2× 2/3+ 1/2× 1/3 = 1/2 for A and B symmetries like the Copenhagen
interpretation. It is thus essential to carry out the experiment with the same 3–protons in order

7which have the advantage to conserve the nuclear spin symmetries
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2.6. Bohmian interpretation of nuclear spins

to expect differences.

The fact that an A or B symmetry is preferentially picked willbias the expected results in
both interpretations. Nevertheless, it will remain that (i) all the experiments will have the same
A:B ratio according to the Copenhagen interpretation while(ii) two different A:B ratios will be
evenly observed for the Bohmian interpretation. Consequently, the complete randomness of the
pick of the H2 molecule is not a critical element of the experiment.

Scattering theories

In statistical scattering theories such as Phase Space Theory (PST), nuclear spin selection rules
can be (i) simply neglected or (ii) considered in accordancewith the Copenhagen interpretation
or (iii) the Bohmian interpretation.

Consider for instance the following collision at low kinetic energy (∼10 K):

o–H2 (J=1) + H+ + 10 K −→ o–H2 (J=1) + H+ + 10 K (2.92)

−→ p–H2 (J=0) + H+ + 180 K (2.93)

The two only energetically accessible channels are the entrance channel and the channel
p–H2(J=0) + H+ that we labelα andβ , respectively. In the high orbital angular momentum
limit, we haveWα = 3Wβ because of the channels’ angular momentum degeneracies (2J+1).

When neglecting the nuclear spins, irrespective of the feasible reaction mechanisms, the
inelastic transition probability is:

P(β |α,Ecol=10K) =
Wβ

Wβ +Wα

= 1/4 (2.94)

In the Copenhagen interpretation (see Table 2.7), a system has only one total symmetry.
The scaterring quantities (probabilities, cross sections, etc) are thus calculated separately for
each total symmetry and then summed according to their respective weights. Assuming full–
scrambling of the H+3 intermediate complex, the inelastic transition probability is:

P(β |α,Ecol=10K) = P(A1|A)×
P∗(B|A1)

×Wβ

P∗(A|A1)
×Wα +P∗(B|A1)

×Wβ

+ P(E|A)×
P∗(B|E)×Wβ

P∗
(A|E)
×Wα +P∗

(B|E)
×Wβ

= 4/6× 0×1
1×3+0×1

+ 2/6× 1/2×1
1/2×3+1/2×1

= 1/12 (2.95)
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The corrected decay probabilitiesP∗ are defined asP∗(Γ2|Γ3)
= P(Γ2|Γ3)/dim(Γ2) [see 10]. Since

the dimensions of the A and B symmetries ofS2,1 are unity, this correction does not affect the
results of a 3–nuclei system.

In the Bohmian interpretation (see Tables 2.9 and 2.10), a system belongs to only one
class of complete symmetry. The scaterring quantities are thus calculated separately for each
class of complete symmetry and then summed according to their respective conditional weights.
Assuming full–scrambling of the H+3 intermediate complex, the inelastic transition probability
is:

P(β |α,Ecol=10K) = P([A1AAA]|uAuu)×
P∗([uBuu]|[A1AAA])×Wβ

P∗
([uAuu]|[A1AAA])

×Wα +P∗
([uBuu]|[A1AAA])

×Wβ

+ P([EA2B]|uAuu)×
P∗
([uBuu]|[EA2B])

×Wβ

P∗
([uAuu]|[EA2B])

×Wα +P∗
([uBuu]|[EA2B])

×Wβ

+ P([EAB2]|uAuu)×
P∗
([uBuu]|[EAB2])

×Wβ

P∗
([uAuu]|[EAB2])

×Wα +P∗
([uBuu]|[EAB2])

×Wβ

= 4/6× 0×1
1×3+0×1

+ 1/6× 1/3×1
2/3×3+1/3×1

+ 1/6× 2/3×1
1/3×3+2/3×1

= 19/210 (2.96)

As illustrated by the Gedenkenexperiment, the Copenhagen and Bohmian interpretations
lead to the different theoretical expectations of 35/420 and 38/420, respectively.

Statistical scattering theories account for nuclear spinsdo it according to the Copenhagen
interpretation only [1, 10–12]. We could not clarify yet howfull–quantum scattering theories
(time–dependant or time–independent) could treat the nuclear spin degree of freedom and its
statistics nor if they could go beyond the frozen nuclear spin approximation. It is also unfortu-
nate that some studies still do not consider at all the nuclear selection rules at risk for important
errors,e.g.a factor of∼3 in the example presented.

Regarding the symmetrisation postulate of quantum mechanics, the full-dimensional sym-
metry information of a colliding system is necessary to tellwhich rovibronic channels are ac-
cessible at each dissociative asymptote. Rejecting8 the superposition of symmetries of any
subset of nuclei or dissociative asymptote, the complete state of symmetry and the Bohmian
interpretation of nuclear spins appear imperative.

8See the counterfactual argumentation in Sec. 2.6.1
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Spectroscopy

New spectroscopic implications would also be expected withthe Bohmian interpretation. For
example, para-H3+ molecules which have a E total nuclear spin symmetry and a total nuclear
spin angular momentum of 1/2 would split in two classes: the [EA2B] and the [EAB2] complete
symmetry classes corresponding to the [1/2,12,0] and the [1/2,1,02] complete angular momen-
tum classes. According to the frozen nuclear spin approximation, the transition from one class
to another would be extremely unlikely although not impossible considering very small inter-
nal nuclear spin interactions. Such interactions should lead to off–diagonal terms in the total
Hamiltonian and extremely–fine splitting, probably finer than the hyperfine splitting.

To reach that point, molecular quantum mechanics ought to bere–interpreted according to
the Bohmian viewpoint by generalising the symmetrisation postulate from the total symmetry to
the complete symmetry,i.e. from the complete nuclear permutation group to the completemap
of nuclear permutation groups (see Fig. 2.1). Moreover, like the nuclear spin degree of freedom,
the rotational, vibrational and electronic degrees of freedom also need to be re-interpreted in the
complete symmetry space.

2.6.5 Conclusion of the Bohmian section

The “counterfactual definiteness” of the nuclear spin symmetries supports the deterministic
Bohmian interpretation and invalidates the indeterministic Copenhagen interpretation.

The statistics of the Bohmian informations are fully consistent (i.e. not contradictory) with
the statistics of the Copenhagen interpretation since the latter are inferred from the former us-
ing the causality principle and Bayesian inference. In fact, the Bohmian informations which
are based on the constraining determinacy property containextra informations which can be
regarded as hidden variables,i.e. informations which are real but unknown to the observer.
Bohmian (complete states) statistics can be summed to recover the Copenhagen (partial states)
statistics. Furthermore, it is possible to infer statistics for delocalised Bohmian informations
from the statistics of the localised Bohmian informations.Great care must be taken with the
concept of prior, posterior, localised, delocalised and undetermined informations from the ob-
server’s viewpoint. These apparently simple concepts can be misleading.
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Chapter 2. Nuclear spins in reactive collisions

The Bohmian interpretation has been applied to the 3–spin 1/2 system and it can be applied
to any system. However, comparing the 3–nuclei and the 4–nuclei systems in Fig. 2.1, it is clear
that the number of permutation groups and subgroups and the complexity of a system increases
dramatically with its number of nuclei. Like the system presently studied, spin 1/2 systems are
the most simple because their complete symmetry and complete angular momentum spaces are
isomorphic. Therefore, regarding the conclusions of Sec. 2.5, it would be interesting to apply
this interpretation to the 3–spin 1 system and the complete symmetry–angular momentum space
[A1,A2,E]abc⊗ [D0,D1,D2,D3]abc⊗ [A,B]ab,c⊗ [D0,D1,D2]ab,c⊗ [A,B]ac,b⊗ [D0,D1,D2]ac,b⊗
[A,B]bc,a⊗ [D0,D1,D2]bc,a .

The 3–proton Gedankenexperiment and the o–H2 + H+ scaterring examples were developed
to illustrate the differences in predictions between the Copenhagen and the Bohmian interpre-
tations of nuclear spins. These two examples are probably the “worst” cases but for most of the
systems, the two interpretations could lead to extremely faint differences probably beyond most
instrumental limits.

2.7 CONCLUSIONS

We described in details nuclear spin wavefunctions according to the angular momentum and/or
symmetry viewpoints. Using these wavefunctions, a method to derive the nuclear spin statistics
rising from the frozen nuclear spin approximation in associative, dissociative or reactive pro-
cesses was developed. This method is in agreement with the permutation symmetry and angular
momentum algebra from Quack [1] and Oka [2], respectively.

A detailed analysis of the D3 system revealed weaknesses in the angular momentum view-
point and supports the necessity of the permutation symmetry viewpoint. The problems and
paradox encountered for the angular momentum viewpoint aremostly intriguing and need an
explanation which lies either in the interpretation itselfor in its mathematical transcription.

Additionally, a new deterministic interpretation of nuclear spins in molecular physics is pro-
posed. This interpretation in the line of the Bohmian schoolof thought seems better suited for
scattering theories than the indeterministic Copenhagen interpretation but its extension to the
field of spectroscopy appears difficult.

Regarding the symmetrisation postulate of quantum mechanics, the nuclear spin degree of
freedom has an essential role in molecular physics and particularly scattering theories, nev-
ertheless, it is clear that its understanding can be improved and its weak dedicated literature
completed.
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Chapter 2. Nuclear spins in reactive collisions

APPENDICES

2.A CHARACTER AND CORRELATION TABLES

S2

class [12] [2]
partition 1 1

A 1 1
B 1 -1

S5

class [15] [213] [221] [312] [32] [41] [5]
partition 1 10 15 20 20 30 24

A1 1 1 1 1 1 1 1
A2 1 -1 1 1 -1 -1 1
G1 4 2 0 1 -1 0 -1
G2 4 -2 0 1 1 0 -1
H1 5 1 1 -1 1 -1 0
H2 5 -1 1 -1 -1 1 0
I 6 0 -2 0 0 0 1

S3

class [13] [21] [3]
partition 1 3 2

A1 1 1 1
A2 1 -1 1
E 2 0 -1

S3⊗S2

S3 class [13] [21] [3] [13] [21] [3]
S2 class [12] [12] [12] [2] [2] [2]

partition 1 3 2 1 3 2

(A1,A) 1 1 1 1 1 1
(A1,B) 1 1 1 -1 -1 -1
(A2,A) 1 -1 1 1 -1 1
(A2,B) 1 -1 1 -1 1 -1
(E,A) 2 0 -1 2 0 -1
(E,B) 2 0 -1 -2 0 1

S4

class [14] [212] [22] [31] [4]
partition 1 6 3 8 6

A1 1 1 1 1 1
A2 1 -1 1 1 -1
E 2 0 2 -1 0
F1 3 1 -1 0 -1
F2 3 -1 -1 0 1

⋄S2⊗•S2

⋄S2 class [12] [2] [12] [2]
•S2 class [12] [12] [2] [2]
partition 1 1 1 1

(⋄A,•A) 1 1 1 1
(⋄A,•B) 1 1 -1 -1
(⋄B,•A) 1 -1 1 -1
(⋄B,•B) 1 -1 -1 1

Table 2.11:Character tables
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2.A. Character and correlation tables

S3 S2⊗S1

A1 (A,A)
A2 (B,A)
E (A,A) + (B,A)

S2⊗S1 S3

(A,A) A1 + E
(B,A) A2 + E

S4 S3⊗S1 S2⊗S2

A1 (A1,A) (A,A)
A2 (A2,A) (B,B)
E (E,A) (A,A) + (B,B)
F1 (A1,A) + (E,A) (A,A) + (A,B) + (B,A)
F2 (A2,A) + (E,A) (A,B) + (B,A) + (B,B)

S2⊗S2 S4

(A,A) A1 + E + F1
(A,B) F1 + F2

(B,A) F1 + F2

(B,B) A2 + E + F2

S3⊗S1 S4

(A1,A) A1 + F1
(A2,A) A2 + F2

(E,A) E + F1 + F2

S5 S4⊗S1 S3⊗S2

A1 (A1,A) (A1,A)
A2 (A2,A) (A2,B)
G1 (A1,A)+(F1,A) (A1,A)+(A1,B)+(E,A)
G2 (A2,A)+(F2,A) (A2,A)+(A2,B)+(E,B)
H1 (E,A)+(F1,A) (A1,A)+(E,A)+(E,B)
H2 (E,A)+(F2,A) (A2,A)+(E,A)+(E,B)
I (F1,A)+(F2,A) (A1,B)+(A2,A)+(E,A)+(E,B)

S4⊗S1 S5

(A1,A) A1 + G1
(A2,A) A2 + G2

(E,A) H1 + H2

(F1,A) G1 + H1
(F2,A) G2 + H2

S3⊗S2 S5

(A1,A) A1 + G1 + H1

(A1,B) G1 + I
(A2,A) G2 + I
(A2,B) A2 + G2 + H2
(E,A) G1 + H1 + H1

(E,B) G2 + H1 + H1

Table 2.12:Correlation tables
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Chapter 2. Nuclear spins in reactive collisions

2.B NUCLEAR SPIN STATISTICS

Table 2.13:Total angular momentum and total symmetry representationsof several systems.
System Total Spin Frequencya Degeneracyb Symmetry Weight

0 1 1 B 1
(D1/2)

2 1 1 3 A 3
D0⊕D1 3A⊕B Σ = 22

1/2 2 2 E 4
(D1/2)

3 3/2 1 4 A1 4
2D1/2⊕D3/2 4A1⊕2E Σ = 23

0 2 1 E 2
(D1/2)

4 1 3 3 F1 9
2 1 5 A1 5

2D0⊕3D1⊕D2 5A1⊕E⊕3F1 Σ = 24

1/2 5 2 H1 10
(D1/2)

5 3/2 4 4 G1 16
5/2 1 6 A1 6

5D1/2⊕4D3/2⊕D5/2 6A1⊕4G1⊕2H1 Σ = 25

0 1 1 A 1
(D1)

2 1 1 3 B 3
2 1 5 A 5

D0⊕D1⊕D2 6A⊕3B Σ = 32

0 1 1 A2 1
(D1)

3 1 1 + 2 3 A1 + E 9
2 2 5 E 10
3 1 7 A1 8

D0⊕3D1⊕2D2⊕D3 10A1⊕A2⊕8E Σ = 33

0 1 + 2 1 A1 + E 3
(D1)

4 1 3 + 3 3 F1 + F2 18
2 1 + 2 + 3 5 A1 + E + F1 30
3 3 7 F1 21
4 1 9 A1 9
3D0⊕6D1⊕6D2⊕3D3⊕D4 15A1⊕6E⊕15F1⊕3F2 Σ = 34

0 6 1 I 6
(D1)

5 1 1 + 4 + 5 + 5 3 A1 + G1 + H1 + H2 45
2 4 + 5 + 6 5 G1 + H1 + I 75
3 1 + 4 + 5 7 A1 + G1 + H1 70
4 4 9 G1 36
5 1 11 A1 11

6D0⊕15D1⊕15D2⊕10D3⊕4D4⊕D5 21A1⊕24G1⊕15H1⊕3H2⊕6I Σ = 35

0 1 1 A 1
(D3/2)

2 1 1 3 B 3
2 1 5 A 5
3 1 7 B 7

D0⊕D1⊕D2⊕D3 10A⊕6B Σ = 42

1/2 2 2 E 4
(D3/2)

3 3/2 1 + 1 + 2 4 A1 + A2 + E 16
5/2 1 + 2 6 A1 + E 18
7/2 2 8 E 16
9/2 1 10 A1 10

2D1/2⊕4D3/2⊕3D5/2⊕2D7/2⊕D9/2 20A1⊕4A2⊕20E Σ = 43

aFrequency of the angular momentum representationeq.Dimensions of the symmetry representations
bDimension of the angular momentum representationeq.Frequency of the symmetry representations56



2.B. Nuclear spin statistics

Table 2.14: Spin 1/2 sytems (e.g.H, 3He, 13C, 15N . . . ). Bimolecular induction (subduction)
statistics with angular momentum and symmetry details.

(D1/2)
2⊗D1/2 ↑↓ (D1/2)

3

1/2(E) 3/2(A1) sum
1(A) 1/2(A) 2 4 6
0(B) 1/2(A) 2 0 2

sum 4 4 8=23

(D1/2)
2⊗ (D1/2)

2 ↑ (D1/2)
4

0(E) 1(F1) 2(A1) sum
1(A) 1(A) 1 3 5 9
1(A) 0(B) 0 3 0 3
0(B) 1(A) 0 3 0 3
0(B) 0(B) 1 0 0 1

sum 2 9 5 16=24

(D1/2)
3⊗D1/2 ↑↓ (D1/2)

4

0(E) 1(F1) 2(A1) sum
3/2(A1) 1/2(A) 0 3 5 8
1/2(E) 1/2(A) 2 6 0 8

sum 2 9 5 16=24

(D1/2)
4⊗D1/2 ↑↓ (D1/2)

5

1/2(H1) 3/2(G1) 5/2(A1) sum
2(A1) 1/2(A) 0 4 6 10
1(F1) 1/2(A) 6 12 0 18
0(E) 1/2(A) 4 0 0 4

sum 10 16 6 32=25

(D1/2)
3⊗ (D1/2)

2 ↑ (D1/2)
5

1/2(H1) 3/2(G1) 5/2(A1) sum
3/2(A1) 1(A) 2 4 6 12
1/2(E) 1(A) 4 8 0 12
3/2(A1) 0(B) 0 4 0 4
1/2(E) 0(B) 4 0 0 4

sum 10 16 6 32=25
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Chapter 2. Nuclear spins in reactive collisions

Table 2.15:Spin 1 systems (e.g.D, 6Li, 14N . . . ). Bimolecular induction (subduction) statistics
with angular momentum and symmetry details.

(D1)
2⊗D1 ↑ (D1)

3

0(A2) 1(A1) 1(E) 2(E) 3(A1) sum
2(A) 1(A) 0 4/3 5/3 5 7 15
1(B) 1(A) 1 0 3 5 0 9
0(A) 1(A) 0 5/3 4/3 0 0 1

sum 1 3 6 10 7 27=33

(D1)
3⊗D1 ↑ (D1)

4

0(A1) 0(E) 1(F1) 1(F2) 2(A1) 2(E) 2(F1) 3(F1) 4(A1) sum
3(A1) 1(A) 0 0 0 0 3/2 0 7/2 7 9 21
2(E) 1(A) 0 0 9/4 15/4 0 15/2 5/2 14 0 30
1(A1) 1(A) 1 0 3 0 7/2 0 3/2 0 0 9
1(E) 1(A) 0 2 15/4 9/4 0 5/2 15/2 0 0 18
0(A2) 1(A) 0 0 0 0 0 0 0 0 3

sum 1 2 9 9 5 10 15 21 9 81=34

(D1)
2⊗ (D1)

2 ↑ (D1)
4

0(A1) 0(E) 1(F1) 1(F2) 2(A1) 2(E) 2(F1) 3(F1) 4(A1) sum
2(A) 2(A) 4/9 5/9 3 0 10/9 35/9 0 7 9 25
2(A) 1(B) 0 0 1/2 5/2 0 0 5 7 0 15
1(B) 2(A) 0 0 1/2 5/2 0 0 5 7 0 15
2(A) 0(A) 0 0 0 0 35/18 5/9 5/2 0 0 5
0(A) 2(A) 0 0 0 0 35/18 5/9 5/2 0 0 5
1(B) 1(B) 0 1 0 3 0 5 0 0 0 9
1(B) 0(A) 0 0 5/2 1/2 0 0 0 0 0 3
0(A) 1(B) 0 0 5/2 1/2 0 0 0 0 0 3
0(A) 0(A) 5/9 4/9 0 0 0 0 0 0 0 1

sum 1 2 9 9 5 10 15 21 9 81=34
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2
.B

.N
u

clear
sp

in
statistics

(D1)
4⊗D1 ↑ (D1)

5

0(I) 1(A1) 1(G1) 1(H1) 1(H2) 2(G1) 2(H1) 2(I) 3(A1) 3(G1) 3(H1) 4(G1) 5(A1) sum
4(A1) 1(A) 0 0 0 0 0 0 0 0 8/5 27/5 0 9 11 27
3(F1) 1(A) 0 0 0 0 0 64/15 7/3 42/5 0 7/3 56/3 27 0 63
2(A1) 1(A) 0 8/5 7/5 0 0 5 0 0 27/5 8/5 0 0 0 15
2(E) 1(A) 0 0 0 1 5 0 10 0 0 0 14 0 0 30
2(F1) 1(A) 0 0 3 6 0 7/3 20/3 6 0 56/3 7/3 0 0 45
1(F1) 1(A) 3 0 6 3 0 42/5 6 3/5 0 0 0 0 0 27
1(F2) 1(A) 3 0 0 0 9 0 0 15 0 0 0 0 0 27
0(A1) 1(A) 0 7/5 8/5 0 0 0 0 0 0 0 0 0 0 3
0(E) 1(A) 0 0 0 5 1 0 0 0 0 0 0 0 0 6

sum 6 3 12 15 15 20 25 30 7 28 35 36 11 243=35

0(I) 1(A1) 1(G1) 1(H1) 1(H2) 2(G1) 2(H1) 2(I) 3(A1) 3(G1) 3(H1) 4(G1) 5(A1) sum
3(A1) 2(A) 0 12/25 28/25 7/5 0 8/3 7/3 0 28/25 7/25 28/5 9 11 35
3(A1) 1(B) 0 0 0 0 0 4/5 0 21/5 0 7 0 9 0 21
3(A1) 0(A) 0 0 0 0 0 0 0 0 21/10 56/15 7/6 0 0 7
2(E) 2(A) 2 0 2 1/2 15/4 2/3 70/12 7/2 0 14/3 28/3 18 0 50
2(E) 1(B) 0 0 0 9/4 15/4 0 5/2 15/2 0 0 14 0 0 30
2(E) 0(A) 0 0 0 0 0 14/3 10/3 2 0 0 0 0 0 10
1(A1) 2(A) 0 28/25 121/75 4/15 0 7/3 8/3 0 189/50 224/75 7/30 0 0 15
1(A1) 1(B) 1 0 3 0 0 21/5 0 4/5 0 0 0 0 0 9
1(A1) 0(A) 0 7/5 4/15 4/3 0 0 0 0 0 0 0 0 0 3
1(E) 2(A) 0 0 2/3 49/12 5/4 14/3 5/6 9/2 0 28/3 14/3 0 0 30
1(E) 1(B) 2 0 0 15/4 9/4 0 15/2 5/2 0 0 0 0 0 18
1(E) 0(A) 0 0 10/3 5/3 1 0 0 0 0 0 0 0 0 6
0(A2) 2(A) 0 0 0 0 0 0 0 5 0 0 0 0 0 5
0(A2) 1(B) 0 0 0 0 3 0 0 0 0 0 0 0 0 3
0(A2) 0(A) 1 0 0 0 0 0 0 0 0 0 0 0 0 1

sum 6 3 12 15 15 20 25 30 7 28 35 36 11 243=35

(D1)
3⊗ (D1)

2 ↑ (D1)
55
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Chapter 2. Nuclear spins in reactive collisions

Table 2.16: 3–Spin 3/2 system (e.g.7Li, 35Cl, 37Cl . . . ). Bimolecular induction (subduction)
statistics with angular momentum and symmetry details.

(D3/2)
2⊗D3/2 ↑ (D3/2)

3

1/2(E) 3/2(A1) 3/2(A2) 3/2(E) 5/2(A1) 5/2(E) 7/2(E) 9/2(A1) sum
3(A) 3/2(A) 0 6/5 0 14/5 14/5 16/5 8 10 28
2(B) 3/2(A) 2 0 10/3 2/3 0 6 8 0 20
1(A) 3/2(A) 2 14/5 0 6/5 16/5 14/5 0 0 12
0(B) 3/2(A) 0 0 2/3 10/3 0 0 0 0 4

sum 4 4 4 8 6 12 8 10 64=43
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CHAPTER 3

The H+
3 + H2 isotopic system at low

temperatures : Microcanonical model and
experimental study

E. Hugo, O. Asvany and S. Schlemmer

Submitted to Journal of Chemical Physics

State–to–state thermal rate coefficients for reactions of all H+
3 + H2 isotopic

variants are derived and compared to new experimental data.The theo-
retical data are also sought for astrochemical modelling ofcold environments
(<50K). The rates are calculated on the basis of a microcanonical approach
using the Langevin model and the conservation laws of mass, energy, angu-
lar momentum and nuclear spin. Full scrambling of all five nuclei during the
collision is assumed for the calculations and alternatively partial dynamical
restrictions are considered. The ergodic principle of the collision is employed
in two limiting cases, neglecting (weak ergodic limit) or accounting for ex-
plicit degeneracies of the reaction mechanisms (strong ergodic limit). The
resulting sets of rate coefficients are shown to be consistent with the detailed
balance and thermodynamical equilibrium constants. Rate coefficients, k(T),
for the deuteration chain of H+3 with HD as well as H2D+/H+

3 equilibrium
ratios have been measured in a variable temperature 22–poleion trap. In
particular, the experimental results indicate a change in reaction mechanism
when going to higher temperatures. The good overall agreement between
experiment and theory encourages the use of the theoreticalpredictions for
astrophysical modelling.
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Chapter 3. The H+3 + H2 isotopic system

3.1 INTRODUCTION

Deuterium in cold environments like dense molecular clouds, prestellar or protostellar objects
is essentially locked in molecular HD. Yet, many species areobserved with deuterium enhance-
ments of several orders of magnitude with respect to the cosmic D/H ratio of 1.5×10−5 [1].
Even triply–deuterated species are observed [2, 3].

Isotopic substitution ,e.g.X–H versus X–D, is promoted by differences in zero–point vi-
brational energies (ZPVE) which can be larger than typical collision energies, E∼ kT, thereby
favoring the incorporation of deuterium atoms in larger andheavier species. H+3 has been iden-
tified to play a dominant role in this interstellar relevant isotopic fractionation. H+3 originates
from cosmic ray ionisation of H2 and a fast exoergic proton transfer reaction with another H2:

H2 + ζ → H+
2 +e− (3.1)

H+
2 +H2 → H+

3 +H (3.2)

It can quickly deuterate in succesive steps via exchange or transfer reactions with HD

H+
3 +HD ⇋ H2D+ +H2 +∆E (3.3)

H2D+ +HD ⇋ D2H+ +H2 +∆E (3.4)

D2H+ +HD ⇋ D+
3 +H2 +∆E (3.5)

with ∆E = 232, 187 and 234 K for reactions 3.3, 3.4 and 3.5, respectively. One of its deuterium
nuclei can then be transfered to “metallic” species via direct reactions such as

D2H+ +X→ X–D+ +HD (3.6)

with X = N2, CO,etc. Else, it recombines with a free electron and enriches the medium with
free deuterons in reactions like

D+
3 +e− → D2+D (3.7)

→ D+D+D (3.8)

This may trigger a deuterium–rich ice chemistry after the free deuteron’s accretion onto icy
grains [4–6]. In this scenario, the H+

3 cation acts as a vector dragging the deuterium from its
reservoir and spreading it further, directly or indirectly, to other species. This pivotal role in the
deuterium chemical network is by now well established.

The growing interest of the astronomical community in deuterium chemistry and its H+3 par-
ents has been stimulated by numerous detections of deuterated H+

3 [7–9] leading to ever more
complex astrochemical models [10–16]. We now understand that high deuterium fractionations
of the H+

3 cations need not only very low temperatures to occur but alsosignificant depletion
of heavy–element–bearing species (CO, N2) onto the grains and sufficiently low electron abun-
dances. The H2 ortho/para (hereafter o/p) ratio which is thought to be not fully thermalised in
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3.1. Introduction

dense molecular clouds [17] has also been identified as a limiting factor to the level of deuter-
ation of H+

3 [10, 18] sincee.g.the 170 K internal energy of o–H2 (J=1) helps to overcome the
endothermicity of reactions 3.3 to 3.5 in the reverse direction.

Regarding theory, the potential energy surface (PES) of theH+
5 system was first character-

ized by Yamaguchi et al. [19] and has now been explored in greater detail also for its isotopic
variants [20, 21]. Much of the theoretical work has been concerned with the bond energies and
structure of this elusive molecule. Recently, the determination of the vibrational spectrum of
H+

5 is also subject to a number of theoretical work [22, 23].
However, quantum scattering calculations for the H+

3 + H2 system calculating reactive or
inelastic cross sections or rate coefficients are missing todate. Nevertheless, Oka and Epp
[24] proposed a simple formulation for the inelastic rate coefficients but their statistical approx-
imation suffers a proper normalisation and neglects nuclear spin constraints. More recently,
state–to–state rate coefficients includingortho–para conversions of the purely hydrogenated
system were derived by Park and Light [25] on the basis of a microcanonical statistical ap-
proach. Essentially, the present theoretical treatment employs the same statistical approach,
where the reaction probability is calculated on the basis ofa capture model for the collision
considering the cumulative reaction probability (CRP). Complex formation and conservation of
the total energy, the total rotational angular momentum as well as total nuclear spin are used to
determine the CRP. In the present study, not only inelastic collisions but in particular isotopic
reactions are considered.

Prior to the derivation of rate coefficients for the H+
3 + H2 collision, Quack [26] had most

imposingly settled the stringent nuclear spin constraintswhich are at play in reactive collisions.
Later, Oka [27] gave an elegant reformulation of those selection rules and Park and Light [28]
carried on those aspects to greater details.

In the laboratory, the rate coefficients for all isotopic reactions were first measured with a
VT–SIFT apparatus in the temperature range 80–300 K [29, 30]using normal–H2 and normal–
D2 i.e. o/p=3 and 2 respectively. Later, Cordonnier et al. [31] employed spectroscopical means
to analyse nuclear spin reactions of the purely hydrogenated system at temperatures of∼ 400 K
relatingortho–paraconversion probabilities with reaction mechanisms. More recently, Gerlich
et al. [18] used a 22–pole ion trap apparatus at 10 K to measurethe rate coefficients for reac-
tions 3.3 to 3.5 in the forward direction and inferred the speed of reaction 3.3 in the backward
direction by equilibrium measurements in n–H2 and p–H2 containing natural impurities of HD.
This experimental study demonstrated the detrimental effect of o-H2 on deuteration for the first
time. Nevertheless, the low value for the forward rate coefficients caused a lot of discussion
and showed the need for temperature-dependent measurements and theoretical predictions in
the low temperature domain. A recent summary of some of the most important HmD+

n colli-
sion systems is given in [32]. The branching ratios for some of these systems pose very critical
tests to current experimental and theoretical work. In addition, a critical discussion of the in-situ
calibration of HD and the o/p ratio of H2 and other experimental considerations is given therein.

The H+
3 + H2 isotopic system represented in Fig. 3.1 consists in 8 reactions when con-

sidering the isotopic exchange between the ionic and neutral collision partner as well as 168
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Chapter 3. The H+3 + H2 isotopic system

Figure 3.1: The H+
3 + H2 isotopic system with nuclear spin details. All reactions within a given

isotopic complex (color shades) are possible (i) if allowedby the feasible reaction mechanisms
and (ii) if not strictly forbidden by nuclear spin selectionrules. The numbers are the channel’s
zero-point energies (∆E/k in Kelvin) relative to their complex’ most exoergic channel. The
reactions are globally favored in the top right direction.

reactions when considering nuclear spin symmetries. Amongthose reactions, 73 are strictly
forbidden assuming nuclear spin conservation (frozen nuclear spin approximation). Despite the
several advances in both theoretical and experimental fields, a complete set of rate coefficients
in order to model the interaction of the H+

3 and H2 isotopologues in interstellar conditions is
still missing and we would like to address this problem here.

The paper is organized as follows. In section 3.2, the microcanonical model to calculate
thermal state–to–state rate coefficients of the H+

3 + H2 isotopic system is given. The incor-
poration of the reaction mechanisms during the complex’s lifetime and the ergodic limits are
described. The results are presented and analysed in section 3.3. In section 3.4, new measure-
ments performed with a 22–pole ion trap apparatus are presented, experimental and theoretical
results being compared. Limitations of the current theoretical as well as experimental approach
are discussed in the section 3.5. Finally, section 3.6 summarizes the work and draws several
conclusions.

3.2 MICROCANONICAL MODEL

The model is based on phase space theory (PST). It describes the collisions at low temperatures
(<50K) of state specific H3+ and H2 isotopologues. The phase space and the conservation
laws are first introduced in section 3.2.1 by settling the nomenclature and presenting the H+

3
and H2 isotopologues. In section 3.2.2, we describe the complex formation with the Langevin
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3.2. Microcanonical model

model and derive statistical weights for nuclear spins and rotational angular momenta from
which we obtain reactants-to-complex state–detailed probabilities. Equivalently, the complex
decay is treated in section 3.2.3 specifying statistical weights for mass, nuclear spin, energy
and rotational angular momentum conservation from which complex-to-products state–detailed
probabilities are derived. State-to-state cross sectionsare obtained in section 3.2.4 by distribut-
ing thecapture cross sectionon the basis of the complex formation and decay state–detailed
probabilities. State-to-state thermal rate coefficients are derived by integrating the state-to-state
cross sections over the Maxwellian collision energy distribution.

3.2.1 Phase space and conservation laws

Micro states and phase space

The reaction process is decomposed in the entrance channel (I N M ), the complex channelC
and the exit channel (I ′N ′M ′). The internal states (microstates) of the reactants, intermediate
complexes and products are expressed in the phase space consisting of mass and energy scalars
as well as rotational angular momentum and nuclear spin vectors. The entrance channel consists
in an ionI , a neutralN and their relative motional channelM . An ion I or a neutralN is
defined by its degree of isotopic substitution determining its massmand zero–point vibrational
energyEv, its nuclear spin symmetries for hydrogen nucleiΓH and deuterium nucleiΓD and
its rotational state described by rotational quantum number(s) – among which the rotational
angular momentumJ – determining its rotational energyEr . The charge of the ion,qi, and the
isotropic polarizability of the neutralαn. The subscriptsi andn are used to define the quantities
of the ion and the neutral, respectively. A relative motionM is described by the collision
energyEcol and the quantum orbital angular momentuml . The reduced mass of two species
is denoted asµ. The exit channel (I ′N ′M ′) and its quantities are defined identically and
referred to with a prime. The intermediate complex channelC is defined by its total massmtot,
total energyEtot, total rotational angular momentumJtot and the total nuclear spin symmetries
for hydrogen nucleiΓH

tot and deuterium nucleiΓD
tot. Table 3.1 summarizes the quantities used in

this paper.
Table 3.2 details the channels for the ions and the neutrals which were considered in the

following calculations. The rotational states of the species correlate with the nuclear spin sym-
metry representations according to the symmetrisation postulate [33]. As first introduced by
Maue [34] for methane, the greek appellationsortho, metaandpara for the different nuclear
spin symmetry representationsΓi (eq. modifications) of an isotopologue are assigned in de-
creasing order of their high–temperature ( T→∞) statistical weightsW∞

(Γi)
which is simply their

high–temperature populations. TheW∞
(Γi)

’s are thus proportional to their total number of rovi-
bronic states Nrve(Γi) and the nuclear spin degeneracy of their rovibronic states g(Γi):

W∞
(Γi)

= g(Γi)×Nrve(Γi) (3.9)
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Chapter 3. The H+3 + H2 isotopic system

Table 3.1: Nomenclature of the quantities considered. See the text fordetailed explanations.

Reactants Complex Products

Ion Neutral Ion Neutral
Motion Motion

Channel
I N

C
I ′ N ′

M M ′

Mass
mi mn mtot

mi′ mn′

µ µ ′

Energy
Ev

i Ev
n

Etot

Ev
i′ Ev

n′
Er

i Er
n Er

i′ Er
n′

Ecol Ecol′

Rotational Ji Jn Jtot
Ji′ Jn′

ang. mom. l l ′

Nuclear spin ΓH
i ΓH

n ΓH
tot ΓH

i′ ΓH
n′

symmetry ΓD
i ΓD

n ΓD
tot ΓD

i′ ΓD
n′

Polarizability αn αn′

and Charge qi qi′

Since g(Γi) is the frequency of the representation, f(Γi), and Nrve(Γi) is proportional to its
dimension dim(Γi)

g(Γi) = f(Γi) (3.10)
Nrve(Γi)

dim(Γi)
=

Nrve(Γ j)

dim(Γ j)
(3.11)

the high–temperature statistical weight of a nuclear spin symmetry representation is propor-
tional to its frequency and its dimensioni.e. its pure nuclear spin statistical weight

W∞
(Γi)

W∞
(Γ j )

=
f(Γi)×dim(Γi)

f(Γ j)×dim(Γ j)
(3.12)

It is noteworthy that in the literature, the appellations for the nuclear spin modifications are
often misassigned in decreasing order of the rovibronic state’s nuclear spin degeneracy g(Γi)
only, neglecting the nuclear spin representation’s total number of rovibronic states Nrve(Γi).
This results in the exchange ofortho andmetaappelations for D+3 [15, 35, 36] and could lead
to confusions and errors.
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3.2. Microcanonical model

The zero–point vibrational energies [37, 38] in Table 3.2 are expressed relative to D3
+ for

the ions and D2 for the neutrals. Only the vibronic ground states were considered according
to the low temperatures of interest. The rotational energies of H2, HD and D2 were calculated
according to Ramanlal and Tennyson [38]. The rotational energies of H+

3 were taken from
Lindsay and McCall [39], those of H2D+ and D2H+ were taken from Tennyson [40]. For the
D+

3 rotational levels, we used the parameters for the Watson Hamiltonian given by Miller and
Tennyson [41]. All energies were rounded with 0.1 Kelvin accuracy. In order to avoid errors due
to energy truncation for the low–lying states of interest, we systematically included the 9 and 4
lowest levels of each H+3 and H2 isotopologue and modification. The isotropic polarizability of
H2, HD and D2 was taken as 0.79̊A3[42].

Conservation laws

The phase space volume in which a given microstate can evolveis restricted by the conserva-
tion of the total mass, total energy, total rotational angular momentum and the hydrogen and
deuterium total nuclear spin symmetries:

mi +mn = mtot = mi′+mn′ (3.13)

Ev
i +Er

i +Ev
n +Er

n +Ecol = Etot = Ev
i′+Er

i′+Ev
n′ +Er

n′+Ecol′ (3.14)

Ji⊗Jn⊗ l ↑ Jtot ↓ Ji′⊗Jn′⊗ l ′ (3.15)

ΓH
i ⊗ΓH

n ↑ ΓH
tot ↓ ΓH

i′ ⊗ΓH
n′ (3.16)

ΓD
i ⊗ΓD

n ↑ ΓD
tot ↓ ΓD

i′ ⊗ΓD
n′ (3.17)

Equation 3.13 is equivalent to the conservation of the hydrogen and deuterium nuclei. The
⊗ operators in Eq. 3.15 and 3.16, 3.17 are the direct products for the K spatial rotation group
(i.e.vectorial sum of angular momenta) and the nuclear permutation groups, respectively. The↑
and↓ operators correspond to inductions and subductions of the representations in the groups of
concern [26, 28]. The nuclear spins are treated as completely decoupled from the other degrees
of freedom considering the lack of significant magnetic couplings during the collision process
[27, 43]. The nuclear spins are thus assumed to be frozen, resulting in the strict conservation
of the total spin angular momenta, symmetries and magnetic moments. The constraints and
statistics rising from thisfrozen–nuclear spinapproximation have already been discussed in the
literature regarding symmetry [26], angular momentum [27]or both [28]. Regarding the sym-
metrisation postulate, the nuclear spin symmetry representations must be considered contrarily
to their angular momentum representations.

Transition probabilities of the microstates are assumed tofulfill the equiprobability principle
according to the ergodic principle and the full-scramblinghypothesis inferred from the topology
of the H+

5 PES (see Sec. 3.2.5). Throughout this paper, the weights andprobabilities derived
according to those conservation laws will be written with the general formW(β |α) andP(β |α)

with α andβ being the prior and posterior informations.
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Table 3.2: H+
3 and H2 isotopologues: mass, zero–point vibrational energy, nuclear spin symmetries and lowest rotational

levels.

Isotopologue H2D+ D2H+ D3
+

Mass (a.m.u.) 4 5 6

ZPVEa (K) 1245.8 646.2 0

Modificationb ortho (9) para (3) ortho (12) para (6) ortho (16) meta (10) para(1)

H symmetryc 3 A (1) 1B (1) 2 A (1) 2 A (1)

D symmetryc 3 A (1) 3A (1) 6 A (1) 3 B (1) 8E (2) 10A1 (1) 1A2 (1)

Selection
Ka odd Ka even Ka+Kc even Ka+Kc odd K=3n±1

K=0, J even K=0, J odd

rulesd or K=3n or K=3n

86.4 (111) 0.0 (000) 0.0 (000) 50.2 (101) 46.5 (11) 0.0 (00) 62.7 (10)

104.2 (110) 65.8 (101) 70.9 (111) 83.4 (110) 123.2 (22) 187.9 (20) 230.0 (33)

199.8 (212) 189.4 (202) 146.3 (202) 158.6 (212) 171.7 (21) 230.0 (33) 374.7 (30)

Rotational 253.1 (211) 314.6 (221) 196.2 (211) 257.8 (221) 310.6 (32) 622.3 (40) 730.6 (66)

levelse 365.5 (313) 322.1 (220) 262.0 (220) 282.1 (303) 358.7 (31) 730.6 (66) 788.4 (53)

469.3 (312) 361.7 (303) 287.8 (313) 361.6 (312) 366.9 (44) 788.4 (53) 929.1 (50)

580.7 (414) 510.4 (322) 407.7 (322) 426.0 (321) 533.8 (55) 1155.6 (63) 1155.6 (63)

659.5 (331) 541.5 (321) 454.3 (404) 456.4 (414) 559.0 (42) 1163.1 (76) 1163.1 (76)

661.6 (330) 579.6 (404) 542.6 (331) 543.5 (330) 606.5 (41) 1293.5 (60) 1499.0 (99)
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Isotopologue H3+ H2 HD D2

Mass (a.m.u) 3 2 3 4

ZPVEa (K) 1797.7 903.6 491.2 0

Modificationb ortho (4) para (4) ortho (3) para (1) (6) ortho (6) para (3)

H symmetryc 4 A1 (1) 2E (2) 3A (1) 1B (1) 2A (1)

D symmetryc 3 A (1) 6A (1) 3B (1)

Selection K=0, J odd
K=3n±1 J odd J even J even J odd

rulesd or K=3n

125.1 (10) 92.3 (11) 170.4 (1) 0.0 (0) 0.0 (0) 0.0 (0) 85.9 (1)

453.7 (33) 243.6 (22) 1014.5 (3) 509.7 (2) 128.4 (1) 257.6 (2) 513.9 (3)

743.7 (30) 341.5 (21) 2499.6 (5) 1679.9 (4) 384.2 (2) 853.9 (4) 1276.0 (5)

Rotational 947.7 (43) 615.8 (32) 4567.2 (7) 3465.3 (6) 765.7 (3) 1778.1 (6) 2357.9 (7)

levelse 1432.8 (66) 711.8 (31)

1554.5 (53) 722.3 (44)

1829.0 (50) 1048.9 (55)

2269.4 (63) 1105.6 (42)

2282.7 (76) 1199.3 (41)
arelative to the zero–point vibrational energy of D3

+ and D2 [37, 38]
bThe integer in parenthesis represents the high–temperature statistical weight,eq.the pure nuclear spin statistical weight, as defined in Eq. 3.12.
cSymmetry representation in the appropriate permutation group. The first integer is the frequency of the representation, eq. the nuclear spin

degeneracy of the rovibronic states, and the integer in parenthesis is the dimension,eq.the density of rovibronic states.
dRotational selection rules for the vibronic ground states according to the symmetrisation postulate.
eEnergies in Kelvin and quantum numbers in parenthesis:J for H2, HD and D2, JK for H3

+ and D3
+, JKaKc for H2D+ and D2H+.

6
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Chapter 3. The H+3 + H2 isotopic system

3.2.2 Complex formation

Consider a given entrance channel (I N ) representing two H+3 and H2 isotopologues with
specific internal states.

Langevin Model

Let the two reactants be on a trajectory with a collision energy Ecol and an impact parameterb
corresponding to a motional channelM . The reduced mass of the ion-neutral reacting system
is

µ =
mi×mn

mi +mn
(3.18)

Their relative motion may be described by the classical Langevin model. Considering the
charge-induced dipole interaction and the centrifugal energy of the orbital motion, the long–
range effective potential between the reactants in Joules is

Ve f f(r) =−1
2

1
4πε0

q2
i αn

r4 +Ecol

(

b
r

)2

(3.19)

r being the distance between the reactants in meters, q the charge of the ion in Coulombs,
α the isotropic polarizability of the neutral in m3, Ecol the collision energy in Joules and b
the impact parameter in meters. Taking as a capture criterium the condition that the collision
energy overcomes the barrier of the effective potential, (Ecol > Vmax

e f f ), leads to a critical impact
parameterbc given by

bc
2 =

√

q2
i αn

2πε0Ecol
(3.20)

and the Langevin capture cross section

σc(Ecol) = πbc
2 (3.21)

For a given collision energy, it is assumed that a complex with a finite lifetime is formed if
the impact parameter is below this critical value, else no complex is formed. The complex
lifetimes are considered to be much longer than any period ofan internal motion. This is taken
as a justification to use a phase space approach for calculating the reaction probabilities and
subsequently also the cross sections. In contrast, direct transitions [44] which might result from
distant trajectories (b > bc) are neglected as well as radiative association processes.

The classical orbital angular momentumL of the collision is given byL2 = 2µb2Ecol and is
related to the quantum orbital angular momentuml by L2 = l(l +1)h̄2. The maximum classical
orbital angular momentumLmaxand the maximum quantum orbital angular momentumlmax for
the formation of a complex are thus given by

2µbc
2Ecol = Lmax

2 ≡ lmax(lmax+1)h̄2 (3.22)

lmax(lmax+1)≤ Lmax
2

h̄2 ≤ (lmax+1)(lmax+2) (3.23)
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3.2. Microcanonical model

Equation 3.23 discretises the classical picture. It results that the quantum orbital angular mo-
mentuml for a given collision energyEcol can have equiprobable values in the range 0≤ l ≤
lmax, that is

W( l |µ,Ecol) =

{

1 if l ≤ lmax

0 if l > lmax
(3.24)

The charge of the ion and the polarizability of the neutral are not explicited here since they
are the same for all isotoplogues but they are implicitely contained inlmax. This equation cor-
responds to the heavyside transmission function of Park andLight [see 25, Eq. 43] where the
transmission between a complex and reactants with a given orbital angular momentum is con-
strained by the minimum collision energy necessaryi.e. Ecol > Vmax

e f f , while in our case, the
transmission between a complex and reactants with a given collision energy is constrained by
the maximum orbital angular momentum feasible defined with the conditionVmax

e f f < Ecol.

Angular momentum conservation

The vectorial sum of the three rotational angular momentaJi , Jn andl induces a total rotational
angular momentumJtot as decribed by the first part of Eq. 3.15. Its statistical weight, as derived
with angular momentum algebra, is

W(Jtot|Ji ,Jn,l) = (2Jtot +1)
Ji+Jn

∑
Jin=|Ji−Jn|

Jin+l

∑
Jinl=|Jin−l |

δJtotJinl (3.25)

δJtotJinl being the Kronecker delta. Given a collision energy, the statistical weight of a total rota-
tional angular momentum is the sum of the previous weight over all possible motional channels
M , i.e.orbital angular momenta:

W(Jtot|Ji ,Jn,µ,Ecol) =
∞

∑
l=0

W(Jtot|Ji ,Jn,l)×W( l |µ,Ecol)

=
lmax

∑
l=0

W(Jtot|Ji ,Jn,l) (3.26)

lmax being the maximum orbital angular momentum defined in Eq. 3.23.

Nuclear Spin conservation

The hydrogen and deuterium nuclei must be considered separately since they are distinguish-
able. The direct product of the local nuclear spin symmetries Γi andΓn induces a total nuclear
spin symmetryΓtot as decribed by the first part of Eq. 3.16 and 3.17 for hydrogen and deu-
terium nuclei, and their pure nuclear spin statistical weights are given in tables 3.3 and 3.4,
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Chapter 3. The H+3 + H2 isotopic system

Table 3.3: Pure nuclear spin symmetry induction and subduction statistical weights,
W(Γi⊗Γn↑Γtot) = W(Γtot↓Γi⊗Γn), for several hydrogen systems

H + H→ H2

A B total
A A 3 1 4
total 3 1 4=22

H2 + H→ H3

A1 A2 E total
A A 4 0 2 6
B A 0 0 2 2
total 4 0 4 8=23

H3 + H→ H4

A1 A2 E F1 F2 total
A1 A 5 0 0 3 0 8
A2 A 0 0 0 0 0 0
E A 0 0 2 6 0 8
total 5 0 2 9 0 16=24

H2 + H2→ H4

A1 A2 E F1 F2 total
A A 5 0 1 3 0 8
A B 0 0 0 3 0 0
B A 0 0 0 3 0 8
B B 0 0 1 0 0 8
total 5 0 2 9 0 16=24

H3 + H2→ H5

A1 A2 G1 G2 H1 H2 I total
A1 A 6 0 4 0 2 0 0 12
A1 B 0 0 4 0 0 0 0 4
A2 A 0 0 0 0 0 0 0 0
A2 B 0 0 0 0 0 0 0 0
E A 0 0 8 0 4 0 0 12
E B 0 0 0 0 4 0 0 4
total 6 0 16 0 10 0 0 32=25
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3.2. Microcanonical model

Table 3.4: Pure nuclear spin symmetry induction and subduction statistical weights,
W(Γi⊗Γn↑Γtot) = W(Γtot↓Γi⊗Γn), for several deuterium systems

D + D→ D2

A B total
A A 6 3 9
total 6 3 9=32

D2 + D→ D3

A1 A2 E total
A A 10 0 8 18
B A 0 1 8 9
total 10 1 16 27=33

D3 + D→ D4

A1 A2 E F1 F2 total
A1 A 15 0 0 15 0 30
A2 A 0 0 0 0 3 3
E A 0 0 12 30 6 48
total 15 0 12 45 9 81=34

D2 + D2→ D4

A1 A2 E F1 F2 total
A A 15 0 6 15 0 36
A B 0 0 0 15 3 18
B A 0 0 0 15 3 18
B B 0 0 6 0 3 9
total 15 0 12 45 9 81=34

D3 + D2→ D5

A1 A2 G1 G2 H1 H2 I total
A1 A 21 0 24 0 15 0 0 60
A1 B 0 0 24 0 0 0 6 30
A2 A 0 0 0 0 0 0 6 6
A2 B 0 0 0 0 0 3 0 3
E A 0 0 48 0 30 6 12 96
E B 0 0 0 0 30 6 12 48
total 21 0 96 0 75 15 36 243=35
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Chapter 3. The H+3 + H2 isotopic system

respectively. These weights are directly used in the microcanonical model.

W(Γtot|Γi ,Γn) = W(Γi⊗Γn↑Γtot) (3.27)

It is noteworthy that, according to the Frobenius reciprocity principle, the statistical weight of
an induction and its reciprocal subduction are equal.

W(Γi⊗Γn↑Γtot) = W(Γtot↓Γi⊗Γn) (3.28)

In the case of an o–H2D+ + HD→H3D+
2 collision, the hydrogen and deuterium components

are
o–H2 + H → H3

S2 ⊗ S1 ↑ S3

A ⊗ A ↑ ΓH
tot

D + D → D2

S1 ⊗ S1 ↑ S2

A ⊗ A ↑ ΓD
tot

Sn being the permutation group of n identical nuclei. The statistical weights forΓH
tot andΓD

tot are

W(ΓH
tot|ΓH

i =A,ΓH
n =A) =

{

4 for ΓH
tot = A1

2 for ΓH
tot = E

(3.29)

W(ΓD
tot|ΓD

i =A,ΓD
n =A) =

{

6 for ΓD
tot = A

3 for ΓD
tot = B

(3.30)

In the case of a m–D+3 + p–H2→ D3H+
2 collision, the total hydrogen and deuterium sym-

metries are simply the local symmetries of the neutral and ion reactants with statistical weights

W(ΓH
tot=B|ΓH

i = /0,ΓH
n =B) = 1 (3.31)

W(ΓD
tot=A1|ΓD

i =A1,ΓD
n = /0) = 10 (3.32)

Overall Complex formation probability

The total massmtot and total energyEtot of the formed complex are given by the first parts of
Eq. 3.13 and 3.14. For the total rotational angular momentumJtot and the total hydrogen and
deuterium nuclear spin symetriesΓH

tot andΓD
tot, the overall weight of a complex channelC given

a reactant channel (I N ) and a collision energyEcol is

W(C |I ,N ,Ecol) = W(Jtot|Ji ,Jn,µ,Ecol)

×W(ΓH
tot|ΓH

i ,ΓH
n )

×W(ΓD
tot|ΓD

i ,ΓD
n ) (3.33)
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and its overall probability is

P(C |I ,N ,Ecol) =
W(C |I ,N ,Ecol)

∑
C

W(C |I ,N ,Ecol)
(3.34)

3.2.3 Complex decay

Consider a given complex channelC with a total massmtot, total energyEtot, total rotational
angular momentumJtot and total nuclear spin symmetriesΓH

tot andΓD
tot for its hydrogen and

deuterium nuclei.

Mass conservation

The accessible isotopic channels(mi′,mn′) are constrained by the second equality of Eq. 3.13
and the feasible reaction mechanisms. In the most simple approach corresponding to the full–
scrambling hypothesis and the weak ergodic limit (see Sec. 3.2.5 and Table 3.5), the weights
are

W(mi′ ,mn′ |mtot) =

{

1 if mi′+mn′ = mtot

0 else
(3.35)

As an example, a D3H2
+ complex can decay to the following isotopic channels

D3H2
+ −→ H2D+ + D2

−→ D2H+ + HD

−→ D3
+ + H2

According to equation 3.35, all possible isotopic channelsare considered with equal prob-
ability. However, as will be discussed below, different weights may be introduced accounting
for accessible and inaccessible dissociative asymptotes of the different product isotopologues.
Therefore reaction mechanism degeneracies have to be accounted for. The introduction of these
weights is moved to the end of this section in order to proceedwith the overall derivation of the
desired state–to–state rate coefficients.

Nuclear spin conservation

Within a given isotopic channel, the accessible nuclear spin channels are constrained by the
subduction parts of Eq. 3.16 and 3.17 and the feasible reaction mechanisms [28]. According to
the Frobenius reciprocity principle, the statistical weights for the induction and subduction of
a total symmetryΓtot for both hydrogen and deuterium nuclei are equal as stated inEq. 3.28.
However, since the rotational states correlate with the nuclear spin symmetries as pointed out
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Chapter 3. The H+3 + H2 isotopic system

in section 3.2.1, the full-scrambling statistical weight of the products’ local symmetriesΓi′ and
Γn′ emerging from a total symmetryΓtot for both hydrogen and deuterium nuclei are taken as

W(Γi′ ,Γn′ |Γtot) =
W(Γtot↓Γi′⊗Γn′ )

dim(Γi′)×dim(Γn′)
(3.36)

where the numerator is the pure nuclear spin subduction statistical weight given in Tables 3.3
and 3.4 and the denominators are the dimensions of the products’ nuclear spin representations
given in Table 3.2.

In the case of a D4H+ complex withΓD
tot = F2, the accessible and inaccessible isotopic and

nuclear spin channels are

D4H+(ΓD
tot = F2) → o–D2H+ + p–D2

p–D2H+ + o–D2

p–D2H+ + p–D2

9 o–D2H+ + o–D2

→ o–D3
+ + HD

p–D3
+ + HD

9 m–D3
+ + HD

with the deuterium nuclear spin statistical weights ofe.g.the D+
3 + HD isotopic channel

W(E,A|F2) = 3 (3.37)

W(A2,A|F2) = 3 (3.38)

W(A1,A|F2) = 0 (3.39)

Note that Eq. 3.36 ensures that the high–temperature statistics are consistent with the pure
nuclear spin statistics. Indeed, in the high–temperature limit (eq. infinite energy and orbital
angular momentum), all the internal states of an isotopic channel are accessible irrespective of
their energy and rotational angular momentum such that

W∞
(Γi′ ,Γn′ |Γtot)

∝ ∑
I ′∈Γi′

∑
N ′∈Γn′

W(Γi′ ,Γn′ |Γtot) (3.40)

∝ Nrve(Γi′)×Nrve(Γn′)×W(Γi′ ,Γn′ |Γtot)

and given Eq. 3.11, we find

W∞
(Γi′ ,Γn′ |Γtot)

∝ dim(Γi′)×dim(Γn′)×W(Γi′ ,Γn′ |Γtot)

∝ W(Γtot↓Γi′⊗Γn′)
(3.41)

Regarding the previous example, the ratios of the high–temperature statistical weights of the
nuclear spin channels of D+3 + HD are

W∞
(A1|F2)

: W∞
(A2|F2)

: W∞
(E|F2)

= 0 : 3 : 6 (3.42)
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3.2. Microcanonical model

which agrees as expected with the deuterium statistical weights of D+
3 + D emerging from

ΓD
tot = F2 (see Table 3.4).

Energy conservation

Within a given isotopic and nuclear spin channel, the accessible rotational channels are con-
strained by the second equality of Eq. 3.14. A rotational channel with its vibrational and rota-
tional energiesEv

i′, Er
i′, Ev

n′ andEr
n′ may only be accessed if the complex has enough total energy

which we can translate with the energy statistical weight [45]

W(Ev
i′ ,E

r
i′ ,E

v
n′ ,E

r
n′ |Etot) =

{

1 if Ecol′ ≥ 0

0 else
(3.43)

with Ecol′ = Etot −Ev
i′ + Er

i′ + Ev
n′ + Er

n′ the relative kinetic energy of the products’ motional
channel.

Angular Momentum conservation

Moreover, only the motional channelsM ′ whose kinetic energy is superior to the maximum of
the effective potential of the exit channel are accessible.Conversely, the barrier of the effective
potential should be lower than the products’ relative kinetic energy (Vmax

e f f′ < Ecol′). As developed
in Sec. 3.2.2, this condition leads to the statistical weight

W( l ′ |µ ′,Ecol′)
=

{

1 if l ′ ≤ l ′max

0 if l ′ > l ′max
(3.44)

with l ′max defined as in Eq. 3.23.
The rotational angular momentum statistical weight of a product channel (I ′N ′) is ob-

tained by summing over all accessible motional channelsM ′, i.e. orbital angular momental ′:

W(Ji′ ,Jn′ ,µ ′,Ecol′ |Jtot) =
l ′max

∑
l ′=0

W(Ji′ ,Jn′ ,l
′|Jtot) (3.45)

whereW(Ji′ ,Jn′ ,l
′|Jtot) is the statistical weight of an angular momentum channel (Ji′,Jn′,l ′) given a

total rotational angular momentumJtot. This weight describing the subduction part of Eq. 3.15
can be straightforwardly inferred from its reciprocal induction (Eq. 3.25) using the Frobenius
reciprocity principle:

W(Ji′ ,Jn′ ,l
′|Jtot) = W(Jtot|Ji′ ,Jn′ ,l

′) (3.46)
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Chapter 3. The H+3 + H2 isotopic system

Overall decay probability

The overall weight of a product channel (I ′N ′) given a complex channelC is

W(I ′,N ′|C ) = W(mi′ ,mn′ |mtot)

×W(ΓH
i′ ,Γ

H
n′ |Γ

H
tot)

×W(ΓD
i′ ,Γ

D
n′ |Γ

D
tot)

×W(Ev
i′ ,E

r
i′ ,E

v
n′ ,E

r
n′ |Etot)

×W(Ji′ ,Jn′ ,µ ′,Ecol′ |Jtot) (3.47)

and its probability is

P(I ′,N ′|C ) =
W(I ′,N ′|C )

∑
I ′,N ′

W(I ′,N ′|C )
(3.48)

3.2.4 State-to-state cross sections and thermal rate coefficients

The state-to-state cross sections for a given collision energy Ecol are obtained by distributing
the Langevin cross section (Eq. 3.21) among the product channels according to

σI N →I ′N ′(Ecol) = σc(Ecol)×P(I ′,N ′|I ,N ,Ecol) (3.49)

where the state–to–state reaction probabilities are obtained from the reactants-to-complex and
complex-to-products state–detailed probabilities summed over all intermediate complex chan-
nels:

P(I ′,N ′|I ,N ,Ecol) = ∑
C

P(I ′,N ′|C )×P(C |I ,N ,Ecol) (3.50)

Eqs. 3.34 and 3.48 show that the normalisation∑
I ′N ′

P(I ′,N ′|I ,N ,Ecol) = 1 is automatically ful-

filled.

In thermal environments, the motions of the reactants,I andN , in the laboratory frame
exhibit Maxwell-Boltzmann velocity and energy distributions. Based on the properties of the
Gaussian distributions representing the reactants in the laboratory frame, the distributions of the
relative velocityvcol and energyEcol in the center-of-mass frame are also Maxwell-Boltzmann
with the reduced massµ

P(vcol|T) = 4π
( µ

2πkT

)3/2
v2

col e−µv2
col/2kT (3.51)

P(Ecol|T) = 4π
( µ

2πkT

)3/2 2Ecol

µ
e−Ecol/kT (3.52)
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3.2. Microcanonical model

The reaction probabilities have been calculated in the center-of-mass frame. The state-to-state
thermal rate coefficients are obtained from the definitionk =

∫

vcol ·σ(vcol) ·P(vcol) ·dvcol, and
in the energy domain using the substitutionsvcol =

√

2Ecol/µ anddvcol/dEcol = (2µEcol)
−1/2.

As a result the thermal state-to-state rate coefficients,kI N →I ′N ′(T) are given by

kI N →I ′N ′(T)

=
∫ ∞

vcol=0
vcol×σI N →I ′N ′(vcol)×P(vcol|T)×dvcol

=

∫ ∞

Ecol=0

√

2Ecol

µ
×σc(Ecol)×P(I ′,N ′|I ,N ,Ecol)×P(Ecol|T)×

dvcol

dEcol
×dEcol

=

∫ ∞

Ecol=0

√

2Ecol

µ
×π

√

αq2

2πε0Ecol
×P(I ′,N ′|I ,N ,Ecol)×4π

( µ
2πkT

)3/2 2Ecol

µ
e−Ecol/kT

× 1√
2µEcol

×dEcol

= kL×
∫ ∞

Ecol=0
P(I ′,N ′|I ,N ,Ecol)×

2
√

π(kT)3

√

Ecole
−Ecol/kTdEcol

with the Langevin rate coefficient being:

kL =

√

παq2

µε0
(3.53)

The state-to-state thermal rate coefficients are properly normalized since they verify

kI N (T) = ∑
I ′N ′

kI N →I ′N ′(T) = kL (3.54)

Based on the above described procedure, state–to–state rate coefficients have been calcu-
lated for simulating low temperature laboratory experiments as discussed below and for sim-
ulating H+

3 and its isotopologues in interstellar environments [36]. As pointed out above in
subsection 3.2.3, the possible reaction mechanisms as wellas the proper implementation of the
ergodic principle will influence the results. Therefore a set of different approaches are discussed
prior to applications of the microcanonical rate coefficients.

3.2.5 Ergodic principle and reaction mechanisms

Phase Space Theory is based on the equiprobability principle, it is a simple thus convenient the-
ory to describe systems but it is only a good approximation inthe ergodic limit which considers
the microcanonical population as fully relaxed to an equilibrium state in the complexes’ poten-
tial energy surface (PES). As a consequence, a complex channel forgets its history and the decay
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Chapter 3. The H+3 + H2 isotopic system

Figure 3.2: Schematic of the H4D+ PES according to calculations on H+
5 [19–21]. The min-

imum energy configuration consist of an H+
3 triangle entity and an H2 entity, the charge being

localised on the central nucleus. Saddle points for three internal motions are represented as well
as the asymptotes for the two isotopic channels. They differin energy because of zero-point
rotational and vibrational energies.

probabilities are independent of the reactants’ channels.Such collision process can therefore be
described microscopically as a memoryless Markov chain(I N M )→ C → (I ′N ′M ′) and
be decomposed in the complex formation and complex decay as done here. In this statistical ap-
proach, a weight has to be assigned to each isotopic channel.If nothing is known on the number
of possible pathways to link a reactant channel with a product channel, a statistical weight of 1
may be associated to an accessible isotopic channel while a weight of 0 is associated with an
inaccessible isotopic channel. This implementation of theergodic principle is called theweak
ergodic limit. In thestrongergodic limit, the statistical weight of an isotopic channel is given
by its number of accessible dissociative asymptoteseq.the degeneracy of reaction mechanisms
leading to this isotopic channel. The statistical weights introduced in Sec. 3.2.3, and conse-
quently the microcanonical rate coefficients derived abovefor the H+

5 isotopic system will thus
depend on (i) theweakor strongergodic limit considered as well as on (ii) the feasible reaction
mechanisms constrained by the PES.

The H+
5 considered here is a peculiar system because on the sole consideration of its poten-

tial energy surface (PES), any entrance channel can potentially access all 5!/3!2! = 10 disso-
ciative asymptotes. Its configuration of minimum energy on the PES consists of a H3 and a H2

moiety with the charge localised on the central nucleus (seeFig. 3.2). The two relevant internal
motions for nuclear rearrangement are the central nucleus hop with an extremely shallow barrier
and the in–plane rotation of the H3 moiety with a more consequent yet submerged saddle point.
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3.2. Microcanonical model

Figure 3.3: Map of minimum energy arrangements of a H+
5 isotopic complex. A quartet of

arrangements is labelled asab.c/dewith a andb the two outer nuclei of the H3 moiety,c the
central nucleus belonging to the H3 moiety, d and e the two nuclei of the H2 moiety. The
30 quartets of arrangements are interconnected by the H3 moieties’ in–plane rotation (red lines)
and the central nucleus hop (blue lines) internal motions. Each of the 10 dissociative asymptotes
(shades) is connected to three quartets of arrangements. The one identity, three transfer and six
exchange reaction mechanisms are attributed to the dissociative asymptotes assuming (abc+de)
is the entrance channel.

Upon the internal rotation, also shown in Fig. 3.2, the positions of the two outer nuclei of the
H3 moiety or those of the H2 moiety are rearranged. This internal motion cannot promoteany
modification of the H3 and H2 moieties therefore it can be ignored in the current treatment and
the 5!= 120 different minimum energy arrangements are grouped by 2!2! = 4 into 30 quartets.
As depicted in Fig. 3.3, the 30 quartets of arrangements are connected to the 10 dissociative
asymptotes and interconnected by the two relevant internalmotions, forming a map in which
the microcanonical population can evolve. We discuss two limiting cases to which we refer as
(i) full–scramblingand (ii) hop, neglecting possible centrifugal distortion of the PES andthe
fact that isotopic substitution in H+5 breaks the symmetry of the PES [21], potentially favoring
some particular arrangements.
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Chapter 3. The H+3 + H2 isotopic system

Table 3.5: Microcanonical isotopic statistical weights of H2D+ + HD collisions for the full–
scrambling and hop limits as used in section 3.2.3. The accessible dissociative asymptotes
correspond to reaction mechanisms for which the hydrogen and/or deuterium nuclei involved
are specified.

Isotopic channel
Reaction mechanisms

Id Trans Exch Totala

Full–scramling limit

H+
3 + D2 0 0 1 D–H 1 (1)

H2D+ + HD 1 2 H
2 H–H

6 (1)
1 D–D

D2H+ + H2 0 1 D 2 H–D 3 (1)

Total 1 3 6 10

Hop limit

H nucleus locked in the center: probability 2/3

H+
3 + D2 0 0 0 0 (0)

H2D+ + HD 1 1 H 0 2 (1)
D2H+ + H2 0 0 0 0 (0)

Total 1 1 0 2

D nucleus locked in the center: probability 1/3

H+
3 + D2 0 0 0 0 (0)

H2D+ + HD 1 0 0 1 (1)
D2H+ + H2 0 1 D 0 1 (1)

Total 1 1 0 2

aIsotopic statistical weight for the strong ergodic limit. The number in parenthesis corresponds to the weak
ergodic limit which only accounts for the accessibility of the channel.
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3.3. Results

(i) If both internal motions (hop and in–plane rotation) canproceed efficiently with respect
to the dissociation events, the microcanonical populationwill visit all 120 minimum energy
arrangements of the PES corresponding to the full–scrambling limit. Consequently, the complex
can probe equally all 10 dissociative asymptotes, depictedin Fig. 3.3. These asymptotes are
denoted as 1 identity, 3 transfer and 6 exchange reaction mechanisms, when entering as reactants
(abc+de) at the top of Fig. 3.3.

(ii) If the rotation of the H3 moiety is dynamically hindered and only the central nucleus
hop can proceed efficiently during the complex lifetime, thecentral nucleus is locked and the
microcanonical population will be equally distributed in two local wells of the PES correspond-
ing to the entrance arrangement (abc+de) and its arrangement connected by the central nucleus
hop. In this hop limit, the complex can probe only 2 dissociative asymptotes corresponding to
1 identity and 1 transfer but no exchange reaction mechanism.

As an example, the microcanonical isotopic statistical weights introduced in section 3.2.3
are given in Table 3.5 for the H2D+ + HD collision for the two limiting cases of full scram-
bling and hop. In case of full scrambling, e.g. , the product channel H+

3 + D2 is accessible via
one exchange reaction, the H2D+ + HD channel occurs on 6 accessible assymptotes, and the
D2H+ + H2 channel has 3 possibilities. Correspondingly, the statistical weights in thestronger-
godic limit are 1:6:3 (see right side of table) and in theweakergodic limit they are 1:1:1. In the
following sections, thestrongergodic limit is considered if not stated otherwise. Comparison of
the full scrambling and the hop limits to experimental data will give some first semi-quantitative
insight into the role of dynamical restrictions and reaction mechanisms.

3.3 RESULTS

3.3.1 Thermal rate coefficients

The outcome of the calculation is a set of several thousands of state–to–state thermal rate coeffi-
cients, at present in the temperature range 5–50 K. An example is given in Fig. 3.4 illustrating an
Arrhenius plot of the main state–to–state rate coefficientsfor p–H2D+(JKaKc= 000) + o–H2(J=1)
collisions. Elastic, inelastic as well as reactive collisions are accounted for. Collisions access-
ing endoergic states show an Arrhenius behaviour with an activation energy very close to the
endoergicity while reactions to exoergic states are quasi temperature independent. Based on
the observed temperature dependence it is well justified to parameterize the rate coefficient as
k = α ·e−β/T . Such temperature behaviours are also found for the inelastic state-to-state rate
coefficients for thepara andortho ground transitions of H2D+ and D2H+ in collsions with
para andortho H2 given in Table 3.6. These rate coefficients are of particularinterest for the
modelling of astronomical observations.
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Chapter 3. The H+3 + H2 isotopic system

We note that our results agree with the ground state–to–nuclear spin species thermal rate
coefficients of the H+3 + H2 system at 10 K calculated by Park and Light [25] within 3 % of
their given accuracy. These rates are defined according to

kI N →Γi′Γn′ (T) = ∑
I ′∈Γi′

∑
N ′∈Γn′

kI N →I ′N ′(T) (3.55)

Regarding the greater details they accounted for, we conclude that in this temperature range,
spectroscopic accuracy of the energy levels, charge–dipole and charge–quadrupole interactions
[46], tunneling and above–barrier reflections do not affectthe rate coefficients significantly and
can thus be safely neglected.
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Figure 3.4: Main state-to-state thermal rate coefficients for p–H2D+(JKaKc= 000) + o–H2(J=1)
collisions. The product channels are represented with different lines according to their isotopic–
nuclear spin modifications. Rates for endoergic channels show an Arrhenius behaviour while
those for exoergic channels are quasi temperature independant.
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Table 3.6: Inelastic state-to-state rate coefficients for theorthoandparaground transitions of H2D+ and D2H+ in collisions
with para andortho H2 according to strong ergodicity. The rates are given in the form k = α e−β/T . Theα (cm3s−1) and
β (Kelvin) coefficients were fitted in the temperature range 5–15 K. The Einstein coefficients for spontaneous emission Aul

(s−1) [38] and the critical densities nc = Aul/kul (cm−3) of the transitions for p–H2 dominated environments are also given.

Reactants Products ∆Ea Rate coefficient

ion H2 ion H2 αb β

p–H2D+ (000↔ 101) at 1.370 THz

p–000 p–0 p–101 p–0 - 66 1.48(-9) 65.24
p–000 o–1 p–101 o–1 - 66 5.35(-10) 63.43
p–101 p–0 p–000 p–0 + 66 4.91(-10) -0.24
p–101 o–1 p–000 o–1 + 66 1.96(-10) -0.93

A = 4.0397×10−3 nc≈ 8×106

o–H2D+ (111↔ 110) at 372 GHz

o–111 p–0 o–110
p–0 - 18 9.41(-10) 17.68
o–1 - 188 3.20(-10) 186.80

o–111 o–1 o–110
p–0 + 152 4.36(-11) -0.56
o–1 - 18 6.47(-10) 17.66

o–110 p–0 o–111
p–0 + 18 9.36(-10) -0.17
o–1 - 152 3.69(-10) 150.74

o–110 o–1 o–111
p–0 + 188 3.71(-11) -0.03
o–1 + 18 6.43(-10) -0.21

A = 1.2186×10−4 nc≈ 1.3×105

p–D2H+ (101↔ 110) at 692 GHz

p–101 p–0 p–110
p–0 - 33 9.13(-10) 33.07
o–1 - 203 2.89(-10) 198.35

p–101 o–1 p–110
p–0 + 137 6.89(-11) -1.43
o–1 - 33 6.35(-10) 31.69

p–110 p–0 p–101
p–0 + 33 9.07(-10) -0.14
o–1 - 137 5.72(-10) 133.26

p–110 o–1 p–101
p–0 + 203 4.05(-11) -0.81
o–1 + 33 6.70(-10) -0.84

A = 5.0911×10−4 nc≈ 5.6×105

o–D2H+ (000↔ 111) at 1.476 THz

o–000 p–0 o–111
p–0 - 71 1.32(-9) 69.44
o–1 - 241 3.25(-10) 232.39

o–000 o–1 o–111
p–0 + 99 1.21(-10) -1.25
o–1 - 71 9.51(-10) 68.06

o–111 p–0 o–000
p–0 + 71 4.72(-10) -0.24
o–1 - 99 3.84(-10) 98.17

o–111 o–1 o–000
p–0 + 241 1.78(-11) -1.04
o–1 + 71 3.66(-10) -0.73

A = 3.3031×10−3 nc≈ 7×106

aInternal energy difference in Kelvin.
bThe format a(-b) represents a×10−b.
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Chapter 3. The H+3 + H2 isotopic system

3.3.2 Microcanonical and Canonical approach

In order to test the microcanonical model, we compared the calculated set of state–to–state
thermal rate coefficients to thermodynamical equations by the intermediate of a state–detailed
master equation.

State–detailed master equation

Consider an ensemble of H+
3 isotopologues in a given H2 isotopic environment with respective

state populations [I ] and [N ] in cm−3. The fluxes of populations can be described by a set
of differential equations corresponding to a state-detailed chemical master equation. Within the
dilute limit, i.e. the assumption that the ions are much less abundant than the neutrals (∑

I

[I ]≪

∑
N

[N ]), the populations of the H+3 isotopologues evolve on a much shorter timescale than the

neutral environment’s populations hence the populations of the neutrals are almost unaffected
by the ionic ensemble. Consequently, the master equation can be decomposed in (i) an ionic
part assuming a static environment and (ii) a neutral part considering the ionic ensemble in
pseudo–equilibrium with the environment itself.

The master equation describing the fluxes of populations of the ionic ensemble is defined
by

d[I ]

dt
= ∑

I ′
[I ′]RI ′→I − [I ]∑

I ′
RI→I ′ (3.56)

the first and second terms respectively representing the inflow and outflows of the ion stateI
from/to the other ion statesI ′. The elementsRI→I ′ of theRI matrix are conversion rates in
s−1 defined as

RI→I ′ = ∑
N

∑
N ′

[N ] kI N →I ′N ′(T) (3.57)

with [N ] the neutral states’ populations here considered as constant. They correspond to given
isotopic enrichments [HD]/[H2] and [D2]/[H2], o/p ratios of H2 and D2 and a rotational tem-
perature Trot . Only bimolecular processes withN as a collision partner are considered. The
state–to–state thermal rate coefficients are those corresponding to the kinetic temperature of
the neutral environment Tkin. Contrarily to the nuclear spins (o/p ratios), the rotational and
kinetic degrees of freedom are often very well thermalised therefore we considered a single
temperature, T.

The steady–state populations [I ]ssof the H+
3 isotopologues which are solution to the set of

equations d[I ]/dt=0 can be easily obtained through diagonalisation of theRI matrix. Further-
more, the master equation describing the population fluxes of the neutral environment is defined
by

d[N ]

dt
= ∑

N ′
[N ′]RN ′→N − [N ] ∑

N ′
RN →N ′ (3.58)
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with the conversion rates RN →N ′ of theRN matrix defined as

RN →N ′ = ∑
I

∑
I ′

[I ]ss kI N →I ′N ′(T) (3.59)

Thermal equilibrium

Consider the following exothermic reaction with forward and backward rate coefficientskf and
kb

A+B
kf
⇋

kb

C+D+∆E0 (3.60)

The canonical equilibrium constant K at a temperature T given by statistical mechanics
[30, 47, 48] is

K(T) =
kf

kb
=

g′

g

(

µ ′

µ

)
3
2 QC QD

QA QB
exp

(−∆E0

kT

)

(3.61)

whereµ and µ ′ are the reduced masses of A+B and C+D respectively and∆E0 is the zero–
point energy difference. The termsg and g′ were added with respect to prior publications.
These canonical isotopic statistical weights correspond to the degeneracies of the backward and
forward reaction mechanisms. They are a consequence of the statistical weights used in the
microcanonical description. These weights are given in Table 3.7. It is for example obvious
that for the H+

3 + D2 ⇋ D2H+ + H2 reaction theg : g′ ratio is 1:3 in thestrongergodic and full
scrambling limit, because there are three ways to pick a H from three H’s but only one to form
H+

3 + D2.
The Q’s in Eq. 3.61 are the partition functions of the speciesat the temperature T defined by

QA(T) = ∑
i

NAi(T) (3.62)

NAi(T) = gi exp(−Ei/kT) (3.63)

with NAi the population of the ith state of species A,gi its nuclear spin and rotational degeneracy
andEi its energy. It should be reminded that Eq. 3.61 describes thermal equilibrium only, when
all the species are effectively internally and kineticallyBoltzmann distributed. The equilibrium
constants of the 8 isotopic reactions are plotted in Fig. 3.5using the strong ergodicity principle
and the full–scrambling hypothesis. It is noteworthy that every equilibrium constant seems to
converge to unity at infinite temperature. Moreover, on the whole temperature range 5–300 K,
i.e. from the low toward the high temperature limit [48], we observe the strict equalities

K1

K2
=

K3

K4
=

K6

K7
and

K3

K6
=

K5

K8
(3.64)

with K i the equilibrium constant of reactioni (i as in Fig. 3.5). Those unexpected relations
might be explained by symmetric isotopic substitutions yetthey are non–intuitive since they
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Chapter 3. The H+3 + H2 isotopic system

Table 3.7: Canonical isotopic statistical weightsg:g′ of the 8 isotopic reactions for the Full–
Scrambling (FS) and the Hop limits used in Eq. 3.61. In the weak (W) ergodic limit, the
only accessibility of an isotopic channel is accounted for.In the strong (S) ergodic limit, the
dissociative asymptotes are counted.

Reactants ⇋ Products
FS Hop

S W Sa W

H2D+ D2 D+
3 H2 3:1 1:1 3:1 1:1

H+
3 D2 D2H+ H2 1:3 1:1 1:3 1:1

D2H+ HD D+
3 H2 6:1 1:1 0:0 0:0

H+
3 HD H2D+ H2 4:6 1:1 2:3 1:1

H2D+ HD D2H+ H2 6:3 1:1 2:1 1:1
D2H+ D2 D+

3 HD 6:4 1:1 3:2 1:1
H+

3 D2 H2D+ HD 1:6 1:1 0:0 0:0
H2D+ D2 D2H+ HD 3:6 1:1 1:2 1:1

aAveraged values assuming the 3 nuclei of the H+
3 isotopologue can equiprobably lock in the center of the

complex.
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Figure 3.5: Equilibrium constants (Eq.3.61) of the 8 isotopic reactions with the full-scrambling
limit and the strong ergodicity principle.

88



3.3. Results

involve vibrational energies, rotational constants and densities of states as well as nuclear spin
selection rules and degeneracies.

The canonical equilibrium constant is also related to the chemical equilibrium (steady–state
populations or number densities) by

K(T) =
[C]ss [D]ss

[A]ss [B]ss
(3.65)

The canonical balance corresponding to Eq. 3.61 and 3.65 canbe transposed to specific
internal states of the species resulting in the detailed balance. Although it also holds for re-
active collisions, this principle is mostly known for non-reactive, inelastic collisionsi.e. with
(A,B)=(C,D), ∆E0=0, µ=µ ′ andg=g′:

Ai +B j

kf
⇋

kb

Ai′+B j ′ (3.66)

K(T) =
kf

kb
=

NAi NB j

NAi′ NB j′
(3.67)

=
[Ai′]ss [B j ′]ss

[Ai]ss [B j ]ss
(3.68)

Comparison and analysis

Steady–state populations of the H+
3 isotopologues were obtained by solving the master equation

for various thermal and non-thermal neutral environments (Eq. 3.56 and 3.57). These popula-
tions are compared to thermal populations derived according to the canonical balance (Eq. 3.61
and 3.65) and the detailed balance (Eq. 3.67 and 3.68). We present here a sample of results.

The purely hydrogenated and deuterated systems were first simulated by employing a pure
thermal H2 or D2 environment at various temperatures. As shown in Fig. 3.6 for the purely
deuterated system, D+3 + D2, the master equation renders thermalised D+

3 steady–state pop-
ulations thereby confirming that the set of state–to–state thermal rate coefficients fulfills the
isotopically non-reactive detailed balance (Eq. 3.67). Note that an isotopically non-reactive
collision can still be reactive in the sense ofhomonuclear exchange.

We also simulated environments at different temperatures with terrestrial and cosmic deu-
terium abundances,i.e.HD/H2 = 3.2×10−4 and 3.2×10−5 respectively, neglecting D2. The o/p
ratio of H2 was set as thermal or fixed between its high temperature limitof 3 down to 10−7. As
an example, the steady–state H2D+/H+

3 isotopic ratio is shown in Fig. 3.7. The H2D+/H+
3 as

well as the D2H+/H2D+ and D+
3 /D2H+ (the latter two not shown in Fig. 3.7) steady–state ratios

in the thermal o/p–H2 environment are all consistent with the canonical equilibrium constants
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Figure 3.6: Populations of the 12 lowest rotational levels of D+
3 . Solid lines are thermal pop-

ulations and crosses are the steady-state populations in a thermal D2 environment derived from
the master equation using the set of state–to–state rate coefficients.

of reactions (4), (5) and (3) in Fig. 3.5 respectively. Moreover, each H+3 isotopologue is well
thermalised internally.

We thereby show that the calculated state–to–state thermalrate coefficients fullfill the canon-
ical and detailed balance within few ‰. These results, whichare observed for the weak and
strong ergodic limits, demonstrate that the microcanonical model is consistent with the canoni-
cal description. While this result is gratifying, simulating experimental results or astrophysical
observations with the state–to–state rate coefficients is posing a more serious test to the micro-
canonical model.

3.4 EXPERIMENTAL SECTION

3.4.1 22–pole ion trap apparatus

To study the H+3 + H2 isotopic system, we extended the measurements described byGerlich
et al. [18] using the same apparatus depicted in Fig. 3.8.

The core of the setup, the temperature variable 22–pole ion trap, has been described in detail
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Figure 3.7: Steady–state H2D+/H+
3 isotopic fractionation in a H2 environment with terrestrial

deuterium abundance (HD/H2 = 3.2×10−4). The solid lines are results of the master equation
using the strong ergodicity principle for various o/p ratios of H2 (no D2 is considered). The
arrow indicates a decreasing o/p ratio of H2. The points are experimental results for o/p–H2 = 3,
7×10−2 and 8×10−3 (see Sec. 3.4.3).

elsewhere [49, 50]. It is enclosed in stainless steel walls which are mounted on a closed cycle
helium refrigerator. The temperature of these walls, monitored by two silicon diodes, can range
from∼300 K down to 13.0±0.5 K.

H+
3 parent ions are produced in a storage ion source by electron bombardment of n-H2 and

pulsed via a first quadrupole mass filter into the 22–pole ion trap. There, the ion cloud is exposed
to a constant density of reactant gas (HD or H2 with natural traces of HD) thermalised to the
surrounding walls. Additionally, pulsed or constant He gascan be admitted to the trap. The
gas number densities were accurately determined with a pressure ion gauge calibrated against
a spinning rotor gauge prior to the measurements, and were kept below 1013 cm−3 in order to
avoid ternary association [51]. After a storage period of 10to 1000 ms, the ions are extracted,
mass selected in the second quadrupole mass filter and counted in a Daly–type ion detector.

The storage cycle is repeated for several trapping times counting the H+
3 , H2D+, D2H+ or

D+
3 products. As illustrated in Fig. 3.9, we obtain the time evolution and steady–state popu-

lations of each isotopologue from which we can fit reaction rate coefficients using a standard
system of differential equations.

Prior to its introduction into the trap, the H2 reactant gas could be flown through a p–H2

91



Chapter 3. The H+3 + H2 isotopic system

Figure 3.8: Schematic of the trapping apparatus. The H+
3 ions are produced in the storage

ion source and pulsed through the quadrupole mass filter 1 into the 22–pole ion trap. This
trap, consisting of 22 electrodes forming a cylindrical structure, is mounted on a closed cycle
helium refrigerator. On entrance, the ions are cooled down to the ambient temperature by a short
intense pulse of He atoms. During the storage period of 10 to 1000 ms, the ions are subject to a
constant density of H2 or HD reactant gas. The result of the interaction is detectedby extracting
the stored ion cloud through the quadrupole mass filter 2 and counting the number of product
ions in the detector.

generator in order to catalyse the conversion ofortho-H2 into para–H2. This converter contains
a para-magnetic compound (Fe2O3 powder) confined in a copper block mounted onto a closed
cycle helium refrigerator. The temperature of the catalystwas measured by a silicon diode
mounted on the copper block and could be tuned in the range 11–50 K in order to vary the
o/p ratio of the outflowing H2 down to 8×10−3. The o/p ratio was calibrated with an accuracy
of 20% in the 22–pole ion trap using the proton abstraction reaction N++H2→NH++H as
described in Ref. [52]. We also monitoredin situ the HD content of natural H2 using a H2O+

beam and the proton (deuteron) abstraction reactions

H2O+ +H2 → H3O+ + H (3.69)

H2O+ +HD → H3O+ + D 0.57 (3.70)

→ H2DO+ + H 0.43 (3.71)

with the given branching ratios determinedin situ using pure HD target gas. In experiments
with unprocessed n–H2, we obtain the product ratio H2DO+/H3O+=1.1×10−4. Assuming that

92



3.4. Experimental section

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140

pr
od

uc
t  

 io
ns

storage time (ms)

H3
+

H2D+

D2H+

D3
+

Figure 3.9: Sequential deuteration of H+3 in HD with a number density of 6.3×1010 cm−3 at
a nominal temperature of 13.5 K. Due to the exothermicity of the reaction chain, a constant
number density of about 6×1012 cm−3 He has been applied to ensure full thermalization of all
reactants. The lines are the solutions of a rate equation system fitted to the experimental data
yielding rates of 1.30×10−9, 1.30×10−9 and 1.05×10−9 cm3s−1 for the deuteration of H+3 ,
H2D+ and D2H+, respectively.

both reactions with H2 and HD proceed with the Langevin rate, that is

kH2O++HD

kH2O++H2

=

√

µH2O++H2

µH2O++HD
= 0.837 (3.72)

we derive a HD fraction of 3.1×10−4 which corresponds to the expected terrestrial deuterium
abundance. However, when starting the converter, the HD content of the processed H2 was
depleted by about one order of magnitude caused apparently by isotopic preferential freezing
on the cold catalyst [53]. After some hours of operation, theterrestrial fraction was approched
again. Therefore, to ensure the terrestrial HD fraction in the outflowing p-H2, the converter
was run one day prior to the experiments. In summary, great care has been taken to accurately
determine the number densities of the neutral reaction partners as has been pointed out by
Gerlich et al. [32].
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3.4.2 Deuteration rates with HD

We measured the deuteration rate coefficients of H+
3 , H2D+ and D2H+ with HD between 13

and 210 K in the presence of Helium buffer gas ([He]≫[HD]). The target gas HD has been
purchased from Cambridge Isotope Laboratories, Inc., who specify the purity of the deuterium
hydride to be 97 %, the rest mainly being H2 and D2. The results are compiled in Fig. 3.10
together with previously published values. Our results arein good agreement with Adams and
Smith [29] and Giles et al. [30] showing systematic temperature dependencies overlapping in
the common temperature range. The low temperature rate coefficients from Gerlich et al. [18]
are systematically lower than ours by a factor of∼ 4. This important difference needs some
special attention later.

All the rate coefficients approach the Langevin value at low temperature. At 300 K, (i)
the deuteration rate coefficient of H+

3 is still very fast, (ii) the deuteration rate coefficient of
H2D+ + HD drops by a factor of 2 to 3 between 10 and 300 K and (iii) the deuteration rate
coefficient of D2H+ + HD drops by one order of magnitude over the same temperaturerange.
Contributions from D2 contaminations (∼ 1.5 %) in HD do not change these findings. These
trends are all consistent with the departure from the full–scrambling to the hop limit toward
high temperatures. Indeed, in the hop limit when one nucleusof the H+

3 isotopologue locks
in the center of the complex, (i) the deuteration of H+

3 can still proceed on every collision, (ii)
the deuteration of H2D+ can only proceed when the deuterium nucleus is locked in the center,
i.e.with an upper limit for the rate coefficient of∼ kL/3 and (iii) the deuteration of D2H+ would
be unfeasible under these circumstances,i.e. the rate coefficient would practically approach
zero. However, direct mechanisms without complex formation may have to be considered at
higher energies. This interpretation of the current observation is in qualitative agreement with
the experimental results from Cordonnier et al. [31] on the H+

3 + H2 system at∼ 400 K also
showing an incomplete scrambling. They derived statistical weights for the transfer:exchange
reaction mechanisms of 2.4:1 which are in between the full scrambling and hop limits with
statistical weights for the identity:transfer:exchange reaction mechanisms of 1:3:6 and 1:1:0
respectively.

The presented experiments yield species–to–species rate coefficients without any informa-
tion on the internal state distributions of the H+

3 isotopologues. In order to compare them
with theory, we overlaid in Fig. 3.10 the calculated state–to–species rate coefficients from the
ground state of HD and the three lowest rotational states of each H+

3 isotopologues’para and
ortho nuclear spin modifications, corresponding to six curves. Both sets of rates according to
the weak and strong ergodic limits are shown in this case. Thedeuteration rate coefficients of
H+

3 and H2D+ are more or less state–independent and they are in very good agreement with
the measured rates irrespective of the ergodic limit used. The same observation holds for the
deuteration rate coefficients of D2H+ based on the weak ergodic limit. However, those based
on the strong ergodic limit are significantly lower than the experimental rates for the high–lying
reactant states. Nevertheless, at low temperatures the thermalisation with the dominant He-
lium buffer gas populates essentially the D2H+ reactants in their lowestparaandorthoground
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Figure 3.10:Deuteration rate coefficients of H+3 , H2D+ and D2H+ with HD. The data points are
experimental values corresponding to Gerlich et al. [18] (circles), Adams and Smith [29] (trian-
gles), Giles et al. [30] (crosses) and this work (squares). The upmost lines show the Langevin
limits. The short lines are the state-to-species rate coefficients from the ground state of HD and
the lowest rotational states of the H+

3 isotopologues’para andortho modifications calculated
with the full–scrambling hypothesis for the weak (green) and strong (red) ergodicity principles.
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Chapter 3. The H+3 + H2 isotopic system

states corresponding to the two uppermost red lines in Fig. 3.10 (indicated by arrows). As a
result, the calculations based on the strong ergodic limit also compare reasonably well with the
experimental results.

3.4.3 Steady-state in H2(HD)

Another critical test for any theoretical determination ofstate–to–state rate coefficients is the
steady–state isotopic fractionation of H+

3 . It is also a crucial parameter for the deuterium astro-
chemistry in cold molecular environments [10, 15, 36] whichcan be derived from astronomical
observations. As a result, it can be considered a benchmark for comparison between theory,
experiment and observation.

The steady–state H2D+/H+
3 ratio has been measured in H2 with terrestrial abundance of HD

for o/p ratios of 8×10−3, 7×10−2 and 3 with the temperature of the 22–pole ion trap ranging
from 13 to 50 K. Results are shown in Fig. 3.7 together with theoretical values from the master
equation based on the strong ergodic limit. Results at the lowest temperatures are in good
agreement with Gerlich et al. [18]. Following their description, our forward rate coefficient
being higher by a factor of∼ 4 together with an even equilibrium constant point at backward
rate coefficients also a factor of∼ 4 higher. Indeed, a value in the range of 2×10−10 cm3s−1

for the backward rate coefficient has also been measured directly by injecting H2D+ ions into
n-H2 target gas.

Our theoretical and experimental results shown in Fig. 3.7 are in reasonable agreement
presenting similar trends. However, significant differences are found for the experiment at an
H2 o/p ratio of 0.8×10−2 in comparison to the theoretical curve for 10−2. The discrepancy
is likely due to an improper thermalisation of the ions to thetrap’s walls. Previous detailed
spectroscopic studies of H2D+ and D2H+ ions showed an ion kinetic temperature of 27 K when
the nominal temperature of the trap’s walls was 17 K. Reasonsfor this discrepancy are discussed
in Refs. [54–56] and improvements to the ion thermalisationat the lowest wall temperatures are
currently explored. Despite these difficulties, the general trend of the H2D+/H+

3 ratio as a
function of temperature and o/p ratio of H2 agree very well but follow up experiments at fully
thermalized conditions will pose a more quantitative test for the current and future theoretical
work.

The agreement with the experimental H2D+/H+
3 ratio is better for the predictions based on

the weak ergodic limit (not shown in Fig. 3.7) as compared to the strong ergodic limit results
presented in Fig. 3.7. The former values are lower by a factorof ∼ 6/4 as can be inferred from
Table 3.7.

3.5 DISCUSSION

Despite the subtle discrepancies between experiment and theory the general trends are well re-
produced. Therefore this work clearly demonstrates the utility of the microcanonical model. In
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fact the agreement between the two supports the assumption of full scrambling in H+
5 at low

temperatures with an increasing influence of dynamical restrictions perhaps to the limit of a
non-ergodic behavior at higher energies and temperatures.In any case, the rate coefficients of
this study might serve as a test to compare any new experiment, astrophysical modelling or to
a more realistic theoretical approach like scattering calculations which should be feasible for
this five, light nuclei system even at a full quantum level when comparing to similar systems
of current research [57]. Regardless of these future developements some other aspects deserve
attention.

Regarding the complexity of state–detailed chemical models, a reduced model neglecting
the rotational states and considering only the nuclear spinmodification of the isotopologues
may be preferred [10, 15, 36]. For this purpose, one can use (i) ground state–to–species rate
coefficients (see Eq. 3.55 and appendix) on the basis that forlow temperatures or for low H2
densities, only the ground state of each isotope–nuclear spin species is significantly populated
or (ii) thermal species–to–species (eq.canonical) rate coefficients by considering each isotope–
nuclear spin species as internally thermalised. Such reduced models can account for the effi-
cient pumping from p–H2D+ to H+

3 via o–H2D+ in collisions with the energetic o–H2 as well
as non-thermalortho–(meta)–para ratios. However, it cannot account for collisional pumping
within the rotational ladder of each isotope–nuclear spin species as it cannot account for radia-
tive cooling. This limitation may result in the overestimation or underestimation of the isotopic
fractionation of H+

3 in astrochemical modeling.

A principle limitation to the use of the microcanonical approach appears for non–thermal
environments. State–to–state or species–to–speciesthermalrate coefficients are based on the
fact that all internal states are kinetically thermalised.Using thermalrate coefficients in a time
dependent or steady–state model thus implies that the kinetic degrees of freedom of all internal
states are thermalised at all times. However, this assumption can be wrong in environments far
from thermal equilibrium since the exchange of energy between the different degrees of free-
dom can lead to kinetic heating (or cooling). As an example, in an environment very far from
equilibrium like H2 at Tkin=Trot=10 K with o/p=3, the H+3 ions would be frequently colliding
with o–H2. Since the rotational and kinetic degrees of freedom completely mix their energies
during the collision process and that o–H2 can relax to p–H2 by exchanging a proton, the H+3
ions would keep absorbing a significant fraction of the 170 K internal energy of o–H2 thereby
exciting their rotational and kinetic degrees of freedom tomean energies much higher than the
initial 10 K. The H+

3 ions would be kinetically heated. Thermal rate coefficientsare thus incor-
rect for such environments.
The master equation based on thermal state-to-state rate coefficients presented in section 3.3.2
works on the internal phase space only and implicitely forces the kinetic degree of freedom to
be thermally distributed. Therefore, it cannot account forkinetic heating just as it violates the
first law of thermodynamics in non–thermal environments. The steady-state and time dependent
populations which follow from it are therefore biased. In order to mend this statistical mechan-
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ical problem, a stochastic method working in the full phase space was proposed [35] but it has
not yet been applied to the H+3 + H2 system. Note that this kinetic heating effect applies to all
species which can exchange a proton with H2, thus also to CH+3 , C2H+

2 and their isotopologues
and particularly the light H+.

3.6 CONCLUSIONS

A microcanonical model used to calculate thermal state-to-state rate coefficients for all H+3 + H2
isotopic variants in the temperature range 5–50 K has been derived. Full–scrambling of the nu-
clei during the intermediate complex lifetime was assumed.In addition, both weak and strong
ergodic limits, respectively neglecting and accounting for the degeneracies of the reaction mech-
anisms, were tested. In both cases, the resulting set of ratecoefficients were successfully com-
pared to the corresponding canonical approach by the intermediate of a state–detailed master
equation. Such microcanonical model can be straightforwardly applied to other scrambling
isotopic systems like CH+3 + H2.

Extended measurements with a 22–pole ion trap were performed studying in particular the
deuteration chain of H+3 with HD at low temperatures. In general, agreement between exper-
iment and microcanoncical model was found. The temperaturedependence of the experiment
also agrees with previous experiments at higher temperatures [29, 30]. However, the deuteration
rate coefficient at the lowest temperature is faster than previously reported by Gerlich et al. [18].
This is a very surprising result as the measurements have been conducted in the same setup but
with a different trap. Recent spectroscopic investigations show that the ion temperature is of
concern. However, similar steady–state H2D+ to H+

3 ratios in the different experiments hint at
similar trap temperatures. Still, it is quite possible thatlower temperatures were reached in the
previous study. But it is questionable whether the rate coefficient will show a drastic drop over
a temperature range of 5-10 K. Therefore more systematic studies under conditions of proper
thermalization are needed. Technical improvements of the current trap setup are underway.

The agreement between our experimental and theoretical results supports the full-scrambling
hypothesis assumed for the calculations. Toward higher temperatures, experimental results sug-
gest partial scrambling in favor of the transfer reaction mechanism. State specific experimental
rate coefficients which could be obtained with spectroscopic tools [54, 55] would serve as a
more stringent test for theory.

State–to–state and state–to–nuclear spin species rate coefficients based on the weak and
strong ergodic limits as well as equilibrium constants and partition functions are available online
as supplementary material. Regarding the underlying physical interpretation, we recommend to
use the rate coefficients based on the strong rather than the weak ergodicity principle although
our current experimental results tend to partially supportthe latter.

State–detailed astrochemical models of the H+
3 isotopologues are now accessible despite

their greater complexity. With the advent of a new generation of telescopes and observation
facilities [58, see Table 3], the detection limits and spatial resolutions of o–H2D+ and p–D2H+
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Figure 3.11: The p–D2H+(101) / o–H2D+(111) steady-state ratio as a function of tem-
perature for pure molecular hydrogen environments with deuterium cosmic abundance
(HD/H2=3.2×10−5) and various o/p-H2 ratios. The arrow indicates a decreasing o/p ratio of
H2. Radiative processes are not considered here.

ground state transitions will be significantly improved andthose of p–H2D+ and o–D2H+ will
become accessible. Since their critical number densities (see Table 3.6) are in the typical range
of prestellar cores and protostellar objects, coupling between radiative and collisional processes
ought to be considered for a good interpretation of the astronomical observations and exact
chemical modelling.

The H+
3 isotopologues are greatly entangled with their H2 environment, namely the HD/H2

ratio, the temperature and the influential H2 ortho–to–para ratio. The latter can be a serious
limiting factor for the H+

3 deuterium fractionation which is a cornerstone of the coolest astro-
chemistry. The H2 o/p ratio thus has to be considered in models of cold environments (∼ 10 K)
where extreme molecular deuteration can occur. For the samereason, the H+3 isotopologues
are likely the ideal tracers for the H2 o/p ratio as illustrated in Fig. 3.11. We hope that the new
tools developed here will shed light on the non–thermal o/p ratio of H2 and its relaxation during
stellar formation [16, 17, 36].
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[16] D. R. Flower, G. Pineau Des Forêts, and C. M. Walmsley, Astron. Astrophys.449, 621
(2006).

[17] J. Le Bourlot, Astron. Astrophys.242, 235 (1991).

[18] D. Gerlich, E. Herbst, and E. Roueff, Planet. Space Sci.50, 1275 (2002).

[19] Y. Yamaguchi, J. F. Gaw, R. B. Remington, and H. F. Schaefer, III, J. Chem. Phys.86,
5072 (1987).

[20] Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys.122, 224307 (2005).

[21] P. H. Acioli, Z. Xie, B. J. Braams, and J. M. Bowman, J. Chem. Phys.128, 104318 (2008).

[22] G. M. e Silva, R. Gargano, W. B. da Silva, L. F. Roncaratti, and P. H. Acioli, Int. J.
Quantum Chem.108, 2318 (2008).

[23] M. Barbatti and M. A. C. Nascimento, J. Chem. Phys.119, 5444 (2003).

[24] T. Oka and E. Epp, Astrophys. J.613, 349 (2004).

[25] K. Park and J. C. Light, J. Chem. Phys.126, 044305 (2007).

[26] M. Quack, Mol. Phys.34, 477 (1977).

[27] T. Oka, J. Mol. Spec.228, 635 (2004).

[28] K. Park and J. C. Light, J. Chem. Phys.127, 224101 (2007).

[29] N. Adams and D. Smith, Astrophys. J.248, 373 (1981).

[30] K. Giles, N. Adams, and D. Smith, J. Phys. Chem.96, 7645 (1992).

[31] M. Cordonnier, D. Uy, R. M. Dickson, K. E. Kerr, Y. Zhang,and T. Oka, J. Chem. Phys.
113, 3181 (2000).

[32] D. Gerlich, F. Windisch, P. Hlavenka, R. Plašil, and J.Glosik, Phil. Trans. Royal Soc.
London. Series A364, 3007 (2006).

[33] A. M. Messiah and O. W. Greenberg, Phys. Rev.136, 248 (1964).

[34] A.-W. Maue, Annalen der Physik422, 555 (1937).

[35] E. Hugo, O. Asvany, J. Harju, and S. Schlemmer, inMolecules in Space and Laboratory
(2007).

[36] L. Pagani, C. Vastel, E. Hugo, V. Kokoouline, C. Greene,A. Bacmann, E. Bayet, C. Cec-
carelli, R. Peng, and S. Schlemmer, Astron. Astrophys. (2008), accepted.

101



Chapter 3. The H+3 + H2 isotopic system

[37] J. Ramanlal, O. L. Polyansky, and J. Tennyson, Astron. Astrophys.406, 383 (2003).

[38] J. Ramanlal and J. Tennyson, Mon. Not. Astron. Soc.354, 161 (2004).

[39] C. M. Lindsay and B. J. McCall, J. Mol. Spec.210, 60 (2001).

[40] J. Tennyson (2005), list of calculated H+
3 , H2D+ and D2H+ transitions, private communi-

cation.

[41] S. Miller and J. Tennyson, J. Mol. Spec.126, 183 (1987).

[42] W. Kołos and L. Wolniewicz, J. Chem. Phys.46, 1426 (1967).

[43] D. Gerlich, J. Chem. Phys.92, 2377 (1990).

[44] W. H. Miller, J. Chem. Phys.52, 543 (1970).

[45] J. Hirschfelder, C. Curtiss, and R. Bird,Molecular theory of gases and liquids(Wiley,
1966), chapter 2.1.

[46] E. I. Dashevskaya, I. Litvin, E. E. Nikitin, and J. Troe,J. Chem. Phys.122, 184311 (2005).

[47] T. Hill, An introduction to statistical thermodynamics(Dover Publications, 1960).

[48] E. Herbst, Astron. Astrophys.111, 76 (1982).

[49] D. Gerlich, inAdv. Chem. Phys.: State-Selected and State-to-State Ion-Molecule Reaction
Dynamics, edited by C.-Y. Ng and A. C. P. Michael Baer (1992), vol. LXXXII, pp. 1–176.

[50] D. Gerlich, Phys. ScriptaT59, 256 (1995).
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3.A. Rate coefficients

APPENDICES

3.A RATE COEFFICIENTS

Table 3.8: Ground state–to–species rate coefficients with nuclear spin modification details
(see Eq. 3.55) according to the full–scrambling hypothesisand the strong ergodicity princi-
ple. The rows are the ground state reactants and the columns are the product species. The rates
are given in the formk = α e−β/T . Theα (cm3s−1) andβ (Kelvin) coefficients were fitted in
the temperature range 5–20 K if the rates were higher than 10−17 cm3.s−1, else up to 50 K. The
α coefficients are given with the format a(-b) representing a×10−b. The F’s refer to reactions
strictly forbidden by nuclear spins.

5 H system
p–H+

3 p–H+
3 o–H+

3 o–H+
3

p–H2 o–H2 p–H2 o–H2

p–H+
3 p–H2

1.89(-9) 8.16(-10)
F

5.88(-10)
0.00 164.9 198.2

p–H+
3 o–H2

2.98(-10) 1.13(-9) 3.46(-10) 8.03(-10)
-0.69 -0.19 -0.69 32.6

o–H+
3 p–H2 F

1.50(-9) 1.84(-9) 8.84(-9)
136.2 -0.26 170.0

o–H+
3 o–H2

1.04(-10) 4.00(-10) 9.67(-11) 1.29(-9)
0.00 -0.19 -0.14 0.07

4 H – 1 D system
p–H+

3 o–H+
3 p–H2D+ p–H2D+ o–H2D+ o–H2D+

HD HD p–H2 o–H2 p–H2 o–H2

p–H+
3 HD

1.55(-10) 5.71(-11) 3.11(-10) 4.93(-10) 6.08(-10) 5.71(-10)
-1.05 32.25 -0.71 0.95 -1.08 25.8

o–H+
3 HD

2.87(-11) 1.62(-10)
F

1.70(-10) 2.22(-10) 1.11(-9)
-0.38 -0.94 -0.44 -0.47 0.35

p–H2D+ p–H2
2.46(-10)

F
1.79(-9)

F F
1.02(-9)

226.5 -0.01 256.1

p–H2D+ o–H2
1.48(-10) 9.32(-9)

F
5.29(-10) 1.26(-9) 6.04(-10)

58.8 94.6 -0.18 0.06 88.8

o–H2D+ p–H2
1.31(-10) 9.49(-11)

F
5.58(-10) 1.79(-9) 6.54(-10)

140.4 178.9 82.7 -0.02 174.0

o–H2D+ o–H2
4.67(-11) 1.64(-10) 8.31(-11) 1.68(-10) 2.19(-10) 1.14(-9)

-0.82 6.31 -0.92 -0.77 -0.72 -0.06
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3 H – 2 D system
p–H+

3 p–H+
3 o–H+

3 o–H+
3 p–H2D+ o–H2D+ p–D2H+ p–D2H+ o–D2H+ o–D2H+

p–D2 o–D2 p–D2 o–D2 HD HD p–H2 o–H2 p–H2 o–H2

p–H+
3 p–D2

2.21(-11)
F F F

3.50(-9) 5.08(-9) 3.02(-10) 4.03(-10)
F F

-0.20 -0.41 -0.08 -0.12 0.62

p–H+
3 o–D2 F

1.73(-11)
F F

3.06(-10) 2.42(-10)
F F

4.81(-10) 5.39(-10)
-0.29 0.59 0.08 -0.42 0.06

o–H+
3 p–D2 F F

3.14(-11)
F F

8.02(-10)
F

7.50(-10)
F F

0.29 0.09 -0.10

o–H+
3 o–D2 F F F

2.38(-11)
F

5.59(-10)
F F F

1.03(-9)
-0.63 2.49 -0.86

p–H2D+ HD
7.83(-12) 9.48(-12)

F F
2.08(-10) 2.84(-10) 4.12(-10) 1.89(-10) 7.32(-10) 1.93(-10)

237.8 146.6 -0.50 88.5 -0.50 33.1 0.30 -0.64

o–H2D+ HD
2.52(-12) 3.88(-12) 6.80(-12) 1.03(-10) 8.64(-11) 4.66(-10) 6.41(-11) 3.02(-10) 1.49(-10) 5.24(-10)

150.1 65.1 181.7 96.8 -0.38 1.38 0.22 -0.60 -0.9 -0.56

p–D2H+ p–H2
2.02(-10)

F F F
3.26(-10) 4.49(-10) 1.73(-9) 7.09(-10)

F F
355.0 137.3 231.4 -0.01 168.8

p–D2H+ o–H2 F F
2.65(-11)

F
7.33(-11) 5.94(-10) 2.84(-10) 1.35(-9)

F F
233.9 1.58 54.6 -0.58 -0.10

o–D2H+ p–H2 F
1.56(-11)

F F
3.48(-10) 4.61(-10)

F F
1.72(-9) 4.16(-10)

325.2 193.6 281.7 -0.05 171.1

o–D2H+ o–H2 F
8.35(-12)

F
1.65(-11) 8.15(-11) 6.82(-10)

F F
4.17(-10) 1.27(-9)

171.1 194.6 15.6 103.4 -0.36 -0.08

1
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2 H – 3 D system
p–H2D+ p–H2D+ o–H2D+ o–H2D+ p–D2H+ o–D2H+ p–D+

3 p–D+
3 m–D+

3 m–D+
3 o–D+

3 o–D+
3

p–D2 o–D2 p–D2 o–D2 HD HD p–H2 o–H2 p–H2 o–H2 p–H2 o–H2

p–H2D+ p–D2
4.42(-11) 4.82(-11)

F F
6.78(-10) 5.41(-10) 1.69(-11)

F F F
1.41(-10)

F
-0.43 -1.01 -0.23 0.85 -0.64 -1.05

p–H2D+ o–D2
2.07(-11) 7.62(-11)

F F
2.57(-10) 7.49(-10)

F F
2.27(-10)

F
1.60(-10)

F
86.3 -0.65 -0.55 0.60 -0.86 0.11

o–H2D+ p–D2 F F
8.14(-11) 3.93(-11) 6.64(-10) 5.39(-10)

F
1.48(-11)

F F F
1.31(-10)

1.48 0.21 0.20 -0.44 -0.62 0.18

o–H2D+ o–D2 F F
3.95(-11) 8.52(-11) 2.74(-10) 8.75(-10)

F F F
1.63(-10)

F
8.01(-11)

88.5 1.73 -0.36 0.53 -1.57 -0.94

p–D2H+ HD
1.54(-11) 1.17(-11) 9.47(-11) 4.68(-11) 6.53(-10) 3.36(-10) 1.45(-11) 4.09(-11)

F F
1.09(-10) 3.70(-10)

145.5 57.0 237.3 146.2 -0.73 1.80 -0.69 -0.71 -0.78 0.52

o–D2H+ HD
7.83(-12) 2.12(-11) 3.59(-11) 7.79(-11) 2.90(-10) 7.54(-10)

F F
1.36(-10) 2.07(-10) 1.10(-10) 2.84(-10)

202.2 107.6 285.1 196.7 48.3 0.04 -0.15 -0.10 -0.27 -0.38

p–D+
3 p–H2

2.21(-10)
F F F

1.77(-9)
F

1.69(-9)
F F F F F

379.2 225.2 0.00

p–D+
3 o–H2 F F

3.00(-10)
F

1.69(-9)
F F

1.59(-9)
F F F F

286.7 52.3 -0.41

m–D+
3 p–H2 F

1.65(-10)
F F F

9.57(-10)
F F

1.69(-9)
F F F

344.9 239.3 0.00

m–D+
3 o–H2 F F F

1.90(-10)
F

1.53(-9)
F F F

1.68(-9)
F F

262.7 65.6 0.00

o–D+
3 p–H2

1.07(-10) 7.85(-11)
F F

9.43(-10) 6.89(-10)
F F F F

1.69(-9)
F

393.9 296.9 237.4 189.7 0.00

o–D+
3 o–H2 F F

1.53(-10) 9.60(-11) 9.06(-10) 7.70(-10)
F F F F F

1.30(-9)
303.8 213.6 66.2 17.0 -1.47

1
0
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1 H – 4 D system
p–D2H+ p–D2H+ o–D2H+ o–D2H+ p–D+

3 m–D+
3 o–D+

3
p–D2 o–D2 p–D2 o–D2 HD HD HD

p–D2H+ p–D2
2.45(-10) 5.16(-11) 4.36(-11) 1.42(-10) 8.94(-11)

F
8.23(-10)

-0.19 0.10 3.11 1.31 -1.00 -0.13

p–D2H+ o–D2
3.74(-11) 1.62(-10) 1.05(-10) 9.12(-11) 7.44(-11) 2.93(-10) 7.59(-10)

85.9 0.29 35.6 3.65 0.11 0.16 -0.52

o–D2H+ p–D2
3.64(-11) 1.92(-10) 9.40(-11) 1.11(-10) 6.87(-11) 2.77(-10) 6.52(-10)

50.0 -0.70 -0.33 -0.50 -0.85 -0.76 0.90

o–D2H+ o–D2
5.75(-11) 7.31(-11) 4.28(-11) 2.24(-10)

F
5.82(-10) 5.81(-10)

137.7 50.3 85.5 -0.85 -0.08 0.40

p–D+
3 HD

2.77(-10) 2.24(-10) 1.50(-10)
F

6.91(-10)
F

7.75(-10)
229.7 144.8 182.0 0.00 0.00

m–D+
3 HD F

1.08(-10) 8.74(-11) 2.65(-10)
F

1.41(-9) 5.97(-10)
206.7 251.3 154.3 -0.25 46.3

o–D+
3 HD

1.40(-10) 1.63(-10) 1.08(-10) 1.20(-10) 9.16(-11) 2.46(-10) 1.17(-9)
247.4 160.5 198.4 105.2 15.5 -0.23 -0.18

5 D system
p–D+

3 p–D+
3 m–D+

3 m–D+
3 o–D+

3 o–D+
3

p–D2 o–D2 p–D2 o–D2 p–D2 o–D2

p–D+
3 p–D2

4.03(-10)
F F F

4.61(-10) 4.75(-10)
-0.24 -0.29 0.54

p–D+
3 o–D2 F

5.56(-10) 4.00(-10)
F

5.34(-10) 6.18(-10)
-0.77 21.7 68.9 -0.77

m–D+
3 p–D2 F

8.37(-11) 4.87(-10) 1.48(-10) 1.11(-10) 6.12(-10)
-0.61 -0.37 -0.49 46.6 0.45

m–D+
3 o–D2 F F

2.14(-10) 1.27(-9) 1.63(-10) 6.66(-10)
84.7 -0.32 130.5 45.8

o–D+
3 p–D2

5.37(-11) 4.49(-11) 4.47(-11) 5.64(-11) 5.76(-10) 5.87(-10)
15.2 -0.23 -0.26 0.72 -0.10 -0.19

o–D+
3 o–D2

2.51(-11) 7.74(-11) 3.21(-10) 2.78(-10) 3.24(-10) 9.70(-10)
99.5 15.3 38.3 -0.47 85.2 -0.39
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CHAPTER 4

Overtone spectroscopy of H2D+ and
D2H+ using laser induced reactions

O. Asvany, E. Hugo, F. M̈uller, F. Kühnemann, S. Schiller, J. Tennyson and
S. Schlemmer

Journal of Chemical Physics127, 154317 (2007)

T he method of laser induced reaction (LIR) is used to obtain
high-resolution IR spectra of H2D+ and D2H+ in collision

with n-H2 at a nominal temperature of 17 K. For this purpose
three cw-laser systems have been coupled to a 22-pole ion trap
apparatus, two commercial diode laser systems in the range 6100-
6600 cm−1 and 6760-7300 cm−1, respectively, and a high power
optical parametric oscillator (OPO) tunable in the range of2600-
3200 cm−1. In total, 27 new overtone and combination transitions
have been detected for H2D+ and D2H+, as well as a weak line in
theν1 vibrational band of H2D+ (220← 101 ) at 3164.118 cm−1.
The line positions are compared to high accuracyab initio cal-
culations, showing small but mode-dependent differences,being
largest for three vibrational quanta in theν2 symmetric bending
of H2D+. Within the experimental accuracy, the relative values of
theab initio predicted EinsteinB coefficients are confirmed.
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4.1 INTRODUCTION

The smallest polyatomic molecule, H+
3 , has since long fascinated chemical theorists, spectro-

scopists and astronomers due to its apparent simplicity andimportance in astrochemical envi-
ronments. This molecule, in which the 3 protons are held together in a triangle by a distributed
cloud of two electrons (three center-two electron bonding), has first been observed spectroscop-
ically in the laboratory by Oka in 1980 [1], and since then a wealth of laboratory studies has
been conducted, including fundamental, overtone, combination and hot bands [2].

For the investigation of cold interstellar clouds, the deuterated versions of H+3 , H2D+ and
D2H+, are of even greater importance, first because they are knownto drive deuteration pro-
cesses in these environments by ion-molecule exchange reactions [3], leading to a wealth of
deuterated species [4]. Even multiply deuterated molecules have been discovered in prestellar
cores (see for example [5–10]), suggesting the importance of D+

3 in such environments [11].
Secondly, the H2D+ and D2H+ ions posses a permanent dipole moment and can thus be de-
tected by their rotational lines. Although the 110 - 111 line of ortho-H2D+ was detected in the
laboratory in 1984 [12–14], it took a longsome search until the H2D+ ion was observed 1999
in the interstellar medium [15], and five years later also thesubmillimeter detection of D2H+

was reported [16]. Since then, the 372 GHz-line of H2D+ has been used routinely to probe the
conditions in cold clouds [17–19], whereas the D2H+ detection is the only one so far.

Owing to their fundamental importance, there is a 25 year history of laboratory infrared
spectroscopy of H2D+ and D2H+. The first few fundamental lines of H2D+ were observed by
Shy et al. [20] who used a Doppler-tuned fast ion beam method but gave no specific rotational
assignments. Assignments were made as part of subsequent, more comprehensive cell discharge
measurements of theν2 andν3 vibrational bands by Foster et al. [21], while theν1 band was
measured by Amano and coworkers [22, 23]. The correspondingresults for the D2H+ molecule
were reported shortly thereafter [24, 25] by those two groups. The first detection of overtone
and combination bands was reported by Fárnı́k et al. [26] who detected the 2ν2, 2ν3 andν2+ν3

bands of H2D+ and D2H+ in a cold supersonic jet. As these light molecules cannot be described
very well by the Born-Oppenheimer-approximation, and alsodue to strong Coriolis coupling
in the D2H+ ion, that study was guided by and compared to high-levelab initio theoretical
predictions.

Computationalab initioprocedures have been developed in recent decades to providehighly
accurate level predictions for few electron systems. For diatomics such as HD+ the com-
putations can reach an accuracy far better than 10−3 cm−1 [27, 28] and experiments using
sympathetically cooled ions have been carried out to test those predictions [29, 30]. For the
electronically simplest triatomic, H+3 and its isotopologues, the predictions reach ’only’ near-
spectroscopic accuracy of better than 0.1 cm−1 [26, 31]. This accuracy is still one order of
magnitude better than can be obtained for a many-electron system such as water [32].

For triatomics the high-accuracyab initiocalculation of molecular vibration-rotation spectra
involves the use of variational nuclear motion calculations [33] and a high accuracy potential
energy surface. For the H+3 system, Cencek et al. [34] calculated a potential energy surface with
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an absolute accuracy of 0.04 cm−1. They also computed an electronic relativistic correctionfor
this surface, although this only has a very minor influence onthe spectrum. Of more significance
are corrections due to failure of the Born-Oppenheimer approximation [35–37]. Polyansky
and Tennyson [38] developed a high-accuracy model based on the ab initio calculations of
Cencek et al., including in particular a refit of their adiabatic correction, and a model of non-
adiabatic effects based on the use of the effective vibrational masses obtained by Moss for
the H+

2 system [39]. The predictive nature of this model has been tested by Fárnı́k et al. [26]
and, more recently, by Hlavenka et al. [40] for H2D+ and D2H+ ions, respectively. Given
their greater sensitivity to corrections to the Born-Oppenheimer approximation [35, 36], the
deuterated isotopologues provide a particularly stringent test of the theory.

For astronomical studies it is important to have accurate line positions as well as reliable
transition intensities. Although such studies are based onexperimental line positions (e.g. [41]),
they have to rely onab initio predictions of the transition strength (e.g. [42]). There is consider-
able indirect evidence that these transition strengths areindeed reliable, but the measurements
by Fárnı́k et al. [26] raised some doubts about this issue. Extensive tests on the theory [43] failed
to identify any significant errors. Therefore, testing the reliability of the linestrength predictions
is one of the objectives of the present study.

This work uses the technique of laser induced reactions (LIR) to obtain high-resolution
overtone spectra of H2D+ and D2H+. In contrast to the direct absorption spectroscopy methods
listed above, the transitions are detected by the action of the laser light on the ion species,
as for example an induced chemical reaction with n-H2 (see below). Several examples of the
feasibility of this approach for H+3 isotopomers have already been published [44–46]. This work
is organized as follows: The spectroscopic aspects of LIR are summarized and an introduction
is given to the low-temperature 22-pole trapping apparatus, as well as the three laser systems
used in this work. In the results section the measured overtone line positions are summarized
for H2D+ and D2H+ and also some new data for theν1 transition of H2D+ are shown. These
experimental results are then compared to the theoreticalab initio predictions, line positions as
well as EinsteinB coefficients. Furthermore, the measured Doppler widths andthe influence
of Coriolis coupling and Fermi resonances are discussed. The present work provides basic
spectroscopic tools to probe the rotational level population of the presented ions, which will be
the topic of a follow-up publication [47].

4.2 EXPERIMENTAL ASPECTS

4.2.1 Laser induced reactions (L IR) of H2D+ and D2H+

L IR belongs to the family of ”action spectroscopy” methods where the influence of the laser
light on the mass-selected ions investigated is monitored by detecting changes induced to the
trapped ion cloud composition. Detection is usually achieved very efficiently using an ion
counter. In the special case of LIR, changes of the rate of an endothermic ion-molecule reaction
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serve to detect the excitation of the parent ionic species. This offers not only the possibility
of doing very high sensitivity spectroscopy on transient ions (a number of only 1000 ions per
trapping period is sufficient), but LIR can also yield, for example, information on state-selected
reaction rate coefficients, inelastic collision rate coefficients, lifetimes of excited states, or the
population of rotational states.

Recent examples of this method include the IR spectroscopy of the highly fluxional CH+
5

molecule [48–50], the laser induced charge transfer in the system N+
2 + Ar [51], and the spec-

troscopy of the infrared active stretching and bending motions [52–54] of C2H+
2 via the ab-

straction reaction C2H+
2 + H2→ C2H+

3 + H. In this latter scheme, the endothermicity of about
50 meV (= 403 cm−1) is overcome by the rovibrational energy of the laser excited molecule.
More recently, also the overtone spectroscopy and the corresponding population and tempera-
ture diagnostic has been demonstrated for H+

3 in reaction with Ar atoms at a nominal tempera-
ture of 50 K [44], and a similar work has been carried out for D2H+ [45].

Here the lowest rotational states of H2D+ and D2H+ are probed by exciting their overtone
and combination transitions and also using theν1 band for H2D+. While the fundamentalν1
band is well studied [22, 23, 31, 55], and the states of H+

3 have been explored up to high levels
of excitation [2], the experimental search for overtone/combination rovibrational transitions of
H2D+ and D2H+ has only recently started [26]. In the following, the basic processes of interest
for the spectroscopic aspects of LIR are summarized with help of Figure 4.1 for H2D+, but are
similar for D2H+. For LIR of H2D+, the exchange reaction

H2D+ +H2
k−→ H+

3 +HD (4.1)

is used. This reaction is endothermic by about 232 K for H2D+ in the lowest rotational state 000
and about 146 K for the the 111 ortho state (see the dashed line in the Figure), and its overall
rate coefficientk has been measured to be small at low temperatures. Adams and Smith [56]
measured a value of 2.9×10−10 cm3s−1 for the reaction with n-H2 at 80 K, and Gerlich et al. [3]
obtained a value of 4.9×10−11 cm3s−1 at a nominal temperature of 10 K. The slowness of this
reaction at low temperatures renders LIR-spectroscopy feasible by first exciting the ion (with
rateR), starting from the ground vibrational level(0,0,0)

H2D+((0,0,0),J′′K′′aK′′c )+ h̄ω1
R−→ H2D+((v′1,v

′
2,v
′
3),J

′K′aK′c) (4.2)

into a particular ro-vibrational level. Here,(v′1,v
′
2,v
′
3) indicate the quanta in the three vibrational

modes of H2D+. Once excited, the H2D+ ion can react much faster with a H2 target molecule
(with rate coefficientk∗ > k),

H2D+((v′1,v
′
2,v
′
3),J

′K′aK′c)+H2
k∗−→ H+

3 +HD , (4.3)

leading to an enhancement in the counts of H+
3 product ions. Thus, by counting these product

ions as a function of the laser wavelength, a LIR-spectrum is obtained. For maximal signal
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counts in the LIR-experiment, the collision rate with the neutral reaction partner H2 should be
similar to the decay rateA of the excited H2D+ ion:

kc · [H2]≥ A . (4.4)

In the above relation, [H2] is the number density of the neutral reaction partner (given in cm−3).
The rate coefficientkc for the collision of H2D+ with H2 can be assumed to be the Langevin
rate coefficientkL, which is calculated to bekc≈ kL=1.80×10−9 cm3s−1 (1.74×10−9 cm3s−1

for D2H+).
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Figure 4.1: L IR-spectroscopy exploits the change in speed of an ion-molecule reaction to detect
the excitation of the ion involved. For the spectroscopy of H2D+ the collision with H2, reac-
tion (4.1), leading tho the ionic product H+

3 is used. This reaction is endothermic by 232 K as
indicated by the dashed line. As only the lowest rotational levels of H2D+ are populated at the
low temperature of the experiment, the reaction is initially slow. Its speed can be substantially
increased by exciting the ion prior to collision with the H2 molecule.
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4.2.2 22-pole ion trap apparatus

The experimental procedure is described using the setup shown in Fig. 4.2. The central part
of this apparatus is a 22-pole ion trap which has been described in detail by Gerlich [57, 58].
The H2D+ parent ions are generated in the storage ion source by ionization of hydrogen gas
containing D2 admixtures of several percent (5-15%). All H+

3 isotopologues are produced by
reactions of the type H+2 + H2→ H+

3 + H and subsequent exchange reactions with the neutral
gas. The ionization energy is kept at about 22 eV to allow for an efficient production of the
parent ions. By trapping the ions in the source, the pressureof the precursor gas mixture can be
kept below 10−5 mbar and the produced cations are cooled to the source temperature of 350 K
by collisions. Low source pressures are essential for this type of experiment because gases
leaking into the trap region would disturb the chemistry there.

The first mass filter is operated in a mode to admit only ions with masses greater than 3 u
(i.e. H2D+, (D+

2 ), D2H+ and D+
3 ) into the 22-pole ion trap. This allows spectroscopy to be

performed on all of the admitted ions simultaneously. D+
2 impurities, with mass 4 u, react very

fast to form H+
3 isotopologues in the hydrogen environment of the trap. Usually the average

number of H2D+ ions injected into the 22-pole trap is about 700. The trap is driven by a RF
power of 17 MHz frequency and aboutV0 = 15 V amplitude. In its field, the ion cloud is
typically stored for 1 s embedded in a cold n-H2 gas environment and exposed to the tunable
IR light. The number density of H2 (commercial grade 6.0) is about 5× 1010 cm−3 to offer
enough collision possibilities with the excited H2D+ within their lifetime. The trap temperature
is kept at its lowest possible value. The closed cycle heliumrefrigerator to which the trap setup
is mounted has a nominal temperature of 10 K at its tip. A temperature of (17±1) K is measured
with a silicon diode sensor at the trap housing on the opposite side of the cold head tip.

After the storage period, the content of the trap is extracted, mass selected in the second
quadrupole mass filter and the ionic reaction product H+

3 is counted in the Daly-type ion detec-
tor. The experiment is run in a shot-by-shot mode, i.e. the laser is tuned to the next frequency
step and the process oftrapping/irradiation/reaction/detectionis repeated again, by which a
spectrum is recorded. The shots can be repeated several times at the same frequency to improve
the S/N ratio.

4.2.3 Laser systems

Two different laser systems have been used for the experiment. The first set of lasers were
Agilent 8164A diode laser controllers with diode laser modules 81642A and 81480A oper-
ating in the frequency range of 6097 - 6622 cm−1 (1510-1640 nm) and 6757 - 7299 cm−1

(1370-1480 nm), respectively. The output power was varyingover the frequency ranges with
a maximum of about 5.5 mW. The diodes could be tuned and computer controlled with a pre-
cision of 0.0001 nm (i.e. about 0.0005 cm−1 = 15 MHz). The intrinsic linewidth of the lasers
is specified to about 100 kHz, but exhibits broadening to several MHz due to frequency jitter.

112



4.2. Experimental Aspects

Figure 4.2: Schematic setup of the trapping apparatus as used for Laser Induced Reactions
(L IR). The ions are generated and collected in thestorage ion source, mass selected in the
quadrupolemass filter 1and then stored in the22-pole ion trap. This trap, consisting of 22
RF-electrodes forming a cylindrical structure (see inset), is mounted on a closed cycle helium
refrigerator. On entrance the ions are cooled down to the ambient cryogenic temperature by a
short intense pulse of cold He atoms. During the storage period of typically one second, the ions
are subject to reactant gas molecules and tunablelaser light (coming from the right through the
axially transparent setup). The result of this interactionis detected by extracting the stored ion
cloud intomass filter 2and counting the number of product ions in thedetector. By repeating
this process while scanning the IR laser, an IR action spectrum of the stored parent ions is
recorded.

The calibration of the diode lasers were first checked with two Burleigh wavemeters of the
type WA-1500. As these calibrations turned out to be insufficient, the Agilent lasers have been
compared to H2O and CO2 absorption lines which are tabulated with a precision better than
0.001 cm−1 in the HITRAN database [59]. In total, the laser line positions measured in this
work are accurate within 0.002 cm−1. The laser light was sent via an optic fiber to the laser
table of the trapping machine, where it was steered via a collimator, a CaF2 lens, a flip mirror
and a differentially pumped vacuum window [60] into the 22-pole ion trap, see Fig. 4.3. No
nitrogen flushing was necessary on the short path of the lasertable, as the water absorptions in
the investigated frequency regions are quite weak.

The second laser system used in the experiments was a opticalparametric oscillator (OPO)
operating in the 3µm region. This OPO is a homemade high-power tunable cw systemin
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Figure 4.3: Setup of optical components on the laser table attached to the trapping machine.
A flip mirror mount allowed to change between the laser light of the commercial Agilent diode
lasers and the homemade OPO system. As the OPO power is quite high (up to 50 mW), several
attenuators (ZnSe windows, a KRS-5 window and a polarizer) have been used to weaken the
laser power to levels below 1 mW. By means of the KRS-5 window the beam is split and the
relative power is measured.

which photons from a pump YAG-laser at aboutωp= 9394 cm−1 (1064 nm) are split in a PPLN
(periodically poled lithium niobate) crystal into signal and idler photons according toωs +
ωi = ωp [61]. The idler beam of the OPO is tunable in the range 2600 - 3200 cm−1 and can
reach a maximum power of 50 mW. For high precision determination of the lines two Burleigh
wavemeters have been used to measure simultaneously the frequencies of the pump and signal
beam, giving an accuracy of about 0.003 cm−1. Where lower accuracy was required only one
wavemeter was used to measure the signal beam, assuming the pump frequency did not vary
appreciably. As shown in Fig. 4.3, a KRS-5 window was used as abeam splitter to send about
13% of the laser power to the 22-pole trapping apparatus and the remaining 87% into a power
meter. The idler beam could be further attenuated to sub-mW power levels by additional beam
inserts.

The OPO has a short-term intrinsic linewidth of some kHz and astability of several MHz
during the trapping time of 1 s [61], which is much smaller than the Doppler widthσD =
70 MHz of the corresponding transitions (see following sections). Problems arose initially due
to mode hops of the OPO system, rendering the spectroscopy difficult. This problem was solved
by the data acquisition software, which rejected any data points when the wavemeters indicated
frequency jumps during trapping time.
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4.3 Ab initio PREDICTIONS

The line positions and corresponding wavefunctions were calculated using the model of Polyan-
sky and Tennyson [38]. Nuclear motion calculations were performed in Jacobi coordinates with
the DVR3D program suite [62] and used basis sets optimized for previous studies [43]. Einstein
A coefficients were calculated using theab initio dipole surfaces of Röhse et al. [37].

Variational nuclear motion calculations only use the rigorous quantum numbers of the sys-
tem, for H2D+ and D2H+ these are the total rotational angular momentumJ, parity p, and
the nuclear spin state (ortho or para). Here approximate vibrational,(v1,v2,v3), and rotational,
(KaKc), quantum numbers were assigned by hand based on a simple analysis of the energy pat-
terns in the two systems. This procedure is not general and can be hard to apply for H2D+ and
D2H+ as they show strong Coriolis effects which leads to strong mixing between vibrational
states. However, the present experiments were performed atvery low temperatures meaning
that only states starting from theJ = 0, 1 and 2 states of the vibrational ground states needed
to be considered. For these low-J states the sparsity of levels means that the assignments could
be made unambiguously. The systematic errors shown by different bands which are discussed
below (section 4.4.2) acts as confirmation that this assignment procedure is indeed correct.

4.4 RESULTS AND DISCUSSION

4.4.1 Detection of H2D+and D2H+ transitions

Second overtone and combination bands

The H2D+ transitions were measured by applying LIR to reaction (4.1), while the laser excited
D2H+ ions were detected by counting the same product ion (H+

3 ) of the similar reaction

D2H+ +H2→ H+
3 +D2 , (4.5)

in which the excited D2H+ ion transfers a proton to the hydrogen molecule. These LIR-schemes
have proven to work well in a previous study in which the fundamental bandsν2 andν3 of
H2D+ and D2H+ have been excited by the powerful free-electron laser FELIX[46]. That
the respective ions are indeed responsible for the increaseof H+

3 counts in their LIR-spectra
has been checked by mass spectrometric means in selected cases. For the line detections the
density of the H2 reactant was about 4× 1010 cm−3, the trapping time was between 1 and
2 s, and the laser power varying from 1.5 to 5.5 mW. The trap waskept at its lowest nominal
temperature of about 17 K. Therefore, only transitions starting from the lowest rotational levels
of H2D+ (see Fig. 4.1) and D2H+ could be expected. The detections were guided by high
accuracyab initio calculations, from which the strongest transitions falling into the wavelength
range of the lasers have been selected for the search. As an example, the strongest transitions
detected for H2D+ ((0,2,1) 111← 000) and one weak transition for D2H+ ((1,1,1) 000← 101)
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Figure 4.4: Two representative combination band transitions measuredwith the Agilent diode
laser, the strongest peak for H2D+ at 6466.532 cm−1 ((0,2,1) 111← 000), and one of the weakest
peaks measured for D2H+ at 6581.112 cm−1 ((1,1,1) 000← 101). The storage times were
1.5 and 2 s, respectively, and the laser power is indicated inthe figures. The constant H+3
background count of several hundred ions per trap filling hasbeen subtracted. The H2D+ peak
shape follows a Doppler profile, yielding a fitted kinetic temperature of (27±2) K.

116



4.4. Results and Discussion

Table 4.1: Second overtone and combination transitions of H2D+ (in cm−1) detected with
the diode laser systems. The overall experimental accuracyis about 0.002 cm−1. Theab initio
transition wavenumbers and EinsteinAul coefficients (in s−1) are taken from a line list [63]
which was calculated according to the procedures describedin [38]. From this list, the lifetimes
of the upper statesτ = 1/Atot were determined. Also, the EinsteinBlu coefficients have been
calculated from theAul according to equation (4.8) and normalized to the strongesttransition at
6466.532 cm−1.

transition this work calc Aul Atot gu/gl Blu

(0,3,0) 000← 101 6241.966 6242.121 7.08 154.7 1/3 0.21
(0,3,0) 111← 110 6270.392 6270.544 2.13 156.9 3/3 0.19
(0,3,0) 110← 111 6303.784 6303.941 3.36 154.5 3/3 0.29
(0,3,0) 101← 000 6330.973 6331.127 1.21 158.7 3/1 0.31

(0,2,1) 000← 111 6340.688 6340.778 9.36 268.1 1/3 0.27
(0,2,1) 101← 110 6369.460 6369.557 6.04 267.4 3/3 0.51
(0,2,1) 110← 101 6433.742 6433.833 4.64 270.3 3/3 0.38
(0,2,1) 202← 111 6459.036 6459.133 2.47 269.8 5/3 0.34
(0,2,1) 111← 000 6466.532 6466.635 4.10 271.6 3/1 1
(0,2,1) 303← 212 6483.576 6483.681 3.86 282.7 7/5 0.44
(0,2,1) 212← 101 6491.349 6491.451 4.49 266.8 5/3 0.60
(0,2,1) 221← 110 6573.837 6573.925 3.64 280.7 5/3 0.47
(0,2,1) 220← 111 6589.412 6589.505 2.49 280.9 5/3 0.32

(1,2,0) 000← 101 6945.877 6945.868 10.25 105.2 1/3 0.22
(1,2,0) 111← 110 6974.252 6974.253 5.54 117.0 3/3 0.36
(1,2,0) 110← 111 7004.803 7004.794 5.10 105.5 3/3 0.33
(1,2,0) 101← 000 7039.362 7039.366 3.72 121.4 3/1 0.70
(1,2,0) 212← 111 7066.839 7066.878 3.60 191.0 5/3 0.37
(1,2,0) 202← 101 7077.529 7077.560 4.05 170.9 5/3 0.42
(1,2,0) 211← 110 7105.518 7105.505 3.38 129.9 5/3 0.35
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Table 4.2: Second overtone and combination transitions of D2H+, for explanations see Ta-
ble 4.1. For comparison, also two transitions measured by cw-CRDS [40, 45] are listed. The
values of the EinsteinAul coefficients given here are about three times smaller than those for
H2D+, making the detection of D2H+ somewhat more difficult. The EinsteinBlu coefficients
are given relative to the transition at 6536.319 cm−1.

transition this work Ref [40] calc Aul Atot gu/gl Blu

(1,2,0) 101← 110 6466.936 6466.916 2.41 160.9 3/3 0.49
(1,2,0) 111← 000 6482.033 6482.011 0.53 149.6 3/1 0.32
(1,2,0) 220← 111 6518.523 6518.511 1.88 151.1 5/3 0.62
(1,0,2) 110← 101 6524.010 6523.987 1.27 165.2 3/3 0.25
(1,2,0) 212← 101 6535.953 6535.950 6535.943 2.28 157.4 5/3 0.75
(1,0,2) 111← 000 6536.319 6536.319 6536.301 1.68 171.1 3/1 1

(1,1,1) 000← 101 6581.112 6581.141 4.35 255.1 1/3 0.28

are shown in Fig. 4.4. To increase the S/N ratio, the scan was repeated 10 times for the strong
H2D+ signal, while averaging over 30 scans was necessary for the D2H+ peak shown. The
background of H+3 ions has been subtracted in both cases. The good S/N ratio formost of the
measured peaks allowed their relative positions to be determined to better than 10−3 cm−1, but
the total accuracy was limited by the calibration of the diode lasers with an accuracy better than
2×10−3 cm−1 (see experimental section). A total of 20 H2D+ and 7 D2H+ lines have been
detected which are summarized in Tables 4.1 and 4.2 togetherwith their assignments. Also
given in the Tables are theab initio computed transition wavenumbers and the EinsteinAul
coefficients (u=upper, l=lower) [63]. The total decay constantsAtot = ∑l Aul of the upper states
have also been calculated from a comprehensive list of such transitions. WhileAul characterizes
the decay of the excited ion back into the specific state whereit came from,Atot gives the overall
decay rate of the upper state. More interesting in the case ofL IR is the effective decay constant
Aeff, specifying the time the excited ion needs to cascade back into the ground vibrational state:

Aul < Aeff < Atot . (4.6)

For the transitions summarized in Tables 4.1 and 4.2, the effective decay constantsAeff of the
corresponding upper states have been calculated by solvinga complete rate equation system
including all relevant rovibrational energy levels. This procedure is similar to that described
by Kreckel et al. [64]. By solving the rate equations, an effective decay constantAeff between
25 and 35 s−1 has been determined for various upper levels of both species. This quantity is
an important parameter in LIR as to guarantee that the excited ions meet a H2 reaction partner
before fluorescing back to the vibrational ground state, seerelation (4.4). For example, a H2
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Table 4.3: Transitions (in cm−1) of the (1,0,0) band of H2D+ detected with the OPO sys-
tem, for further explanations see Table 4.1. The accuracy ofthe OPO-measurements using two
wavemeters is 0.003 cm−1 and thus similar to the accuracy of Amano and coworkers [22, 23].
Theab initio calculated values [63] were published by Ramanlal and Tennyson [31].

transition this work Ref. [22] calc Aul Atot gu/gl Blu

000← 101 2946.805 2946.802 2946.826 53.167 53.4 1/3 0.318
110← 111 3003.279 3003.276 3003.304 27.509 53.4 3/3 0.466
101← 000 3038.182 3038.177 3038.198 20.353 53.9 3/1 1
212← 111 3068.850 3068.845 3068.860 20.088 54.3 5/3 0.532
202← 101 3077.611 3077.626 24.757 54.8 5/3 0.650
211← 110 3094.671 3094.690 19.302 54.6 5/3 0.64
220← 101 3164.118 3164.149 1.5976 53.1 5/3 0.04

number density of at least 4×1010 cm−3 and a collision rate coefficientkc=1.8×10−9 cm3s−1

for H2D+ + H2, yields a collision rate of more than 72 s−1, which is high enough to compete
with the effective rateAeff given above.

For H2D+, the measured transitions fall into three well separated vibrational overtone or
combination bands, each of them containing at least two quanta in theν2 bending mode. It is
interesting to note that the different character of these bands is mirrored in the decay constant
Atot (see the corresponding column in Table 4.1), as well as in thedifference to theab initio
computed transition wavenumbers (section 4.4.2). The sameis true for D2H+. The transition at
6581.112 cm−1, the only one measured for the (1,1,1) band, has an upper level with a remark-
ably short lifetime, and it also exhibits a different offsetto the calculated frequency values (see
Fig. 4.6 lower) than the other D2H+ transitions. The rest of the D2H+ transitions belong to the
(1,2,0) and (1,0,2) bands which are mixed by Fermi resonances (see section 4.4.3). Accordingly,
their lifetimesAtot show similar values.

ν1 vibrational band

In a further series of experiments, the 3µm cw-OPO laser system has been used for the spec-
troscopy of theν1 band of H2D+ and to evaluate the feasibility of probing the low-temperature
rotational population. This band was detected 25 years ago by Amano and Watson [22, 23], and
later partly reassigned by Kozin et al. [55]. Table 4.3 liststhe 5 lines measured with the OPO
laser and compares them to previous experimental and calculated values. The transitions from
low rotational states presented here agree well with the results from Amano and Watson [22],
while the calculated values from Ramanlal and Tennyson [31]seem to be systematically higher
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Figure 4.5: H2D+ transition in theν1 vibrational band (220← 101) at 3164.118 cm−1 as mea-
sured with the OPO system. It was predicted by Ramanlal and Tennyson [31] to be at 3164.149
cm−1. The detection of this weak transition was possible by exploiting the high cw-power of
24 mW at this frequency. The Doppler width of aboutσD=75 MHz confirms the low kinetic
temperatures of the ions.

than the experimental values by about 0.02 cm−1 (see next subsection for a general comparison).

The fundamental bandν1 of H2D+ is much stronger than the overtone and combination
bands by a factor of about 50. This can be estimated by inserting some values ofAul from
Tables 4.1 and 4.2 in relation 4.8. Additionally, the Doppler width of a transition reduces as the
frequency of a transition is lowered (σD ∼ ν0). Therefore, only very low power was needed for
theν1 band and the OPO power was therefore attenuated by several filters (see Fig. 4.3). For
example, with an Einstein coefficientBlu = 1.3×1017 m3/(J·s2) for the 101← 000 transition at
3038.182 cm−1, a laser power ofP=0.1 mW is sufficient to excite the cold ions (27 K) with
a rateR≈ 4.9 s−1. The full power capabilities of the OPO system could be demonstrated by
a hitherto undetected line which was predicted by Ramanlal and Tennyson [31] at the position
3164.149 cm−1 with a very small EinsteinAul coefficient of only 1.598 s−1 (Table 4.3). For
the measurement of this line, all attenuators have been taken out of the beam line (Fig. 4.3)
and a full idler power of about 24 mW at the corresponding laser frequency was directed to
the ion trap. The 220← 101 line measured with the cw-OPO is depicted in Fig. 4.5, and its
line position is determined to be at 3164.118 cm−1. In the Figure, the H+3 signal counts were
background corrected (about 500 background ions) and normalized to the measured laser power.
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4.4. Results and Discussion

The Doppler width of this peak and all other transitions of theν1 band have measured values of
aboutσD=75 MHz. Subtracting the slight broadenings caused by the two wavemeters and the
jitter of the OPO on the timescale of 1 second leads to similarkinetic temperatures of the H2D+

ion as measured with the Agilent diode lasers at higher wavenumbers (see section 4.4.4).

4.4.2 Comparison of experimental to computed line positions

The experimental line positions compiled in Tables 4.1 through 4.3 are compared to the high
accuracyab initio calculations in Figure 4.6 together with other experimental work on funda-
mentals [21, 22, 24, 25] and overtone/combination bands [26] performed over the last 25 years.
The previous experimental work on the fundamentals was carried out in discharge tubes and
therefore the elevated ion temperatures allowed a wealth oflines to be detected, from which
only the transitions from the 4 lowest rotational levels aredepicted in Fig. 4.6 for simplicity.

As can be seen, the deviations between experiment and theoryshow a clear dependence on
the specific vibrational band; a systematic dependence of the deviations on rotational quantum
numbers could not be observed. Heavier molecules violate less the Born-Oppenheimer approx-
imation, and indeed the differences between experiment andcalculations are visibly smaller for
the heavier D2H+ molecule, even though non-Born-Oppenheimer terms are included explicitly
in theab initio predictions. The greatest deviations between calculationand measurements are
seen for the bending modeν2 in H2D+, and with three quanta in this mode the vibrational band
(0,3,0) reaches a maximum deviation of 0.15 cm−1. It has already been observed in cw-CRDS
experiments [40], that theab initio model developed by Polyansky and Tennyson [38] is better
in predicting stretching frequencies (ν1 andν3) than frequencies for theν2 bending motion.
Furthermore, for H2D+ theν2 andν3, and the 2ν2 and 2ν3 states show an approximately equal
and opposite error in theab initio predictions. This is precisely the behavior expected from a
less than complete treatment of Born-Oppenheimer failure [36]. This effect is less marked for
D2H+ for which, in any case, the errors and Born-Oppenheimer correction terms are smaller.

In the (1,2,0) band of H2D+ there are two transitions at 7066.839 cm−1 and 7077.529 cm−1

which fall outside the band group in Fig. 4.6. These two transitions also show a higherAtot in
Table 4.1. The reason for this differing behavior is most probably that these levels are subject
to Coriolis coupling (see next section) with rotational sublevels of the band (0,0,3) (which is
not measured in this work). The magnitude of the C-axis Coriolis coupling is proportional to
the quantum numberKc [26]. The strong deviation only for these two transitions thus relies on
upper levels withKc = 2 and apparently on near-accidental degeneracies.

4.4.3 Coriolis coupling and Fermi resonances

The spectroscopic assignments of the fundamentalν2 andν3 vibrations of H2D+ and D2H+

were already hampered by the fact that these modes are coupled by the Coriolis interaction
[21, 25]. Both H2D+ and D2H+ belong to the C2v symmetry group and the bending modeν2
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Figure 4.6: Comparison of experimentally determined fundamental, overtone and combination
transitions of H2D+ and D2H+ to high accuracyab initio calculations [31, 38]. The measured
transitions comprise the fundamentals [21, 22, 24, 25], some first (Fárnı́k et al. [26]) and some
second overtone and combination transitions (this work). Experimental accuracies are marked
by error bars. Although deviations from the Born-Oppenheimer approximation are explicitely
included in theab initio predictions, the deviations for H2D+ are visibly greater than for D2H+.
For H2D+, the deviations depend on the specific vibrational band(v1,v2,v3) and are greatest
when there are 3 quanta in the bending modeν2.
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4.4. Results and Discussion

and the antisymmetric stretchν3 (with symmetries A1 and B2, respectively) can couple by a
rotational motion with symmetry B2, which is in fact the rotation about the out-of-plane C-
axis. Fárnı́k et al. [26] also observed strong Coriolis coupling between the combination band
(0,1,1) (symmetry B2) and overtone (0,0,2) (symmetry A1) for both molecules. For D2H+, the
small difference in band origins (∆ν0 ≈ 18 cm−1) leads to large shifts and in fact inverts the
zeroth-order asymmetric top level structure in several instances.

Similar resonance effects can be expected for the second overtone and combination bands of
H2D+ and D2H+ which are only qualitatively discussed here. From the detected H2D+ bands,
(0,2,1) (symmetry B2) can couple to the other two bands (0,3,0) and (1,2,0) (both A1) by C-axis
Coriolis coupling, although the difference in band originssuggests that only (0,3,0) and (0,2,1)
are substantially perturbed. These two bands are∆ν0 ≈ 113 cm−1 apart, see the vertical arrow
in Fig. 4.7 (upper), and therefore the level shifts have a relatively small magnitude, preserving
the asymmetric top energy pattern.

For D2H+, both the (1,2,0) and (1,0,2) bands are close in energy (∆ν0≈ 67 cm−1) and have
symmetry A1. Thus they are mixed by Fermi resonances, and therefore the vibrational assign-
ments given in Table 4.2 have to be taken as an approximation.Based on this approximative
band assignment, the degree of perturbation is more pronounced than for H2D+, see Fig. 4.7
(lower). From the simple symmetry arguments, there is also Coriolis coupling between (1,1,1)
and the other two bands, although of small magnitude.

4.4.4 Kinetic temperature of ions

The stable and reliable operation of the commercial diode lasers permitted to measure spectro-
scopically several properties of the trapped ions, as for example their kinetic temperature. As
indicated before, the measured Doppler temperature of the ions is higher than the nominal tem-
perature of the trap. It is of special interest to determine the main influence on this discrepancy,
as also discussed by Mikosch et al. [44]. In particular, the influence of hot gases leaking from
the ion source, of the laser power and of the RF field have been tested. Applying the relation

σD =

√

kBT
mc2 ν0 , (4.7)

the kinetic temperatureT of the ions has been calculated using the ion massm and the fitted
Doppler widthσD. Under normal operating conditions, the ion temperature for H2D+ has been
measured to be (27±2) K (corresponding toσD ≈ 150 MHz), using the trapping parameters
V0=15 V andf =17 MHz (see section 4.2.2), and moderate laser power of 2 mW (see Fig. 4.4).
For D2H+, the measured Dopper temperature was determined to be lowerby a few K. Allowing
an excess of hot gas (300 K) from the source region to leak to the ion trap did not have a
measurable impact on the ion temperature. This is probably due to the fact that the hot gases
entering the ion trap are readily thermalized. Likewise, a pronounced heating of the ions by
the laser could not be detected. A laser power in excess of 2 mWonly pretended a heating
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Figure 4.7: The lowest rotational levels of H2D+ (upper) and D2H+ (lower) for the bands of
interest. The level positions are taken from theab initio linelist [63] which was obtained using
the methodology described in [31, 38]. For D2H+, the 7 levels actually probed by spectroscopy
(see Table 4.2) are drawn thicker. Due to the difference in band origin of 113 cm−1 for H2D+

(vertical arrow), the (0,2,1) and (0,3,0) bands are only coupled by a small Coriolis effect, thus
preserving the asymmetric top energy level patterns. For D2H+, the band origin difference for
(1,0,2) and (1,2,0) is quite small (67 cm−1), leading to strong mixing by Fermi resonances.
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4.4. Results and Discussion

effect by saturating the peak maximum and thereby apparently broadening the measured peak,
giving it a non-Doppler profile. For this reason, special care was used to employ low laser
power when determining the Doppler temperature. The most noticeable effect on the kinetic ion
temperature was caused by the amplitude of the RF voltage. Itwas easy to heat the ions by using
RF voltage amplitudes beyondV0=50 V. As an amplitude increase should not lead to higher ion
temperatures in an ideal multipole trap, this effect can only be explained by imperfections (patch
fields) or by a direct heating of the trap by the RF power. Still, it was difficult to obtain kinetic
ion temperatures substantially below the above mentioned 27 K, even when approaching the
lowest possible RF amplitudes of aboutV0=10V. Thus, there is a discrepancy of about 10 K to
the nominal trap temperature of 17 K.

Numerical 3D simulations of a single ion moving in the 22-pole trap were performed to
attempt resolving this discrepancy. These computations take into account the combined effects
of the elastic collisions with the He buffer gas, the perfectRF multipole field, as well as the
electrostatic field of the endelectrodes [65]. Space chargeeffects were neglected due to the low
number of stored ions. Similar calculations for other typesof multipole traps have been pre-
sented by Gerlich [58]. As pointed out in that work, the RF field of a multipole trap conserves
the energy of the ion after reflection from the effective RF walls, and it is only by including
buffer gas collisions that heating effects occur. These heating effects depend on the trap geom-
etry and multipolarity, the RF frequency, and also on the ion-neutral mass ratio. Preliminary
results of our simulations thus show that a temperature increase of about 2 K can be explained
by collisions of the H2D+ ions with the He buffer in the RF field, and a further 2 K increase
can be expected when the influence of the electrostatic field of the endelectrodes (shown in the
inset in Fig. 4.2) is included into the simulations. This relatively small heating effect is due to
the favorable ion-neutral mass ratio, in contrast to an unfavorable case as for example H+

3 +
Ar, where a pronounced heating effect has been observed [44]. In summary, only about half
of the temperature discrepancy of 10 K can be explained by theoperation of a perfect ion trap,
while the remaining temperature increase is probably caused by trap imperfections or potential
distortion [44, 58], but also the kinetic energy release in exothermic exchange reactions with
o-H2 (or traces of HD or D2) could play a role.

4.4.5 Measurement of relative Einstein Blu coefficients

Tables 4.1 through 4.3 list theab initio calculated coefficientsAul for spontaneous emission for
all transitions. In laser probe experiments like LIR, the quantity of interest is the coefficient for
laser absorption, the EinsteinBlu coefficient, which can be obtained using

Blu =
gu

gl

c3Aul

8πhν3 (4.8)

wheregu and gl are the rotational degeneraciesg = (2J + 1) of the upper and lower states.
These calculatedBlu coefficients are also included in the tables, and for simplicity they have
been normalized to the respective strongest transitions for H2D+ and D2H+.
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Table 4.4: Calculated and measured relative EinsteinBlu coefficients for several groups of
transitions starting from the same rotational levels in H2D+ or D2H+.

transition line position / cm−1 laser power / mW measBlu calcBlu

H2D+

(0,3,0) 101← 000 6330.973 4.0 0.32±0.02 0.31
(0,2,1) 111← 000 6466.532 1.8 1 1

(0,3,0) 110← 111 6303.784 5.0 0.29 0.29
(0,2,1) 000← 111 6340.688 5.3 0.27±0.03 0.27
(0,2,1) 202← 111 6459.036 4.1 0.35±0.04 0.34

D2H+

(1,2,0) 111← 000 6482.033 3.8 0.33±0.02 0.32
(1,0,2) 111← 000 6536.319 1.6 1 1

If one wants to measure the rotational level population of a molecular species, it is impor-
tant to know how reliable the predictions for the (relative)Blu coefficients are. The simple fact
that allab initio predicted lines have been found in this search, gave us the confidence that the
calculatedBlu coefficients are relatively correct within, say, a factor of2. To get a more quanti-
tative picture, relativeBlu coefficients have been measured using transitions in H2D+ and D2H+

starting from the same rotational level. Special care has been taken in these measurements not
to saturate the signals by applying too much laser power, thereby probably skewing the ratios.
Table 4.4 gives an overview of the measurements where groupsof relatively strong transitions
have been selected to compare the measured relative coefficientBlu to the calculated ones. With
the stable and computer-controlled diode lasers, these measurements could be done in an au-
tomated fashion: The laser was tuned iteratively to the maximum of the respective peaks, and
the background-corrected counts divided by the laser poweryielded the relative strength of the
transition. If necessary, the slight difference in Dopplerwidths for distant peaks was accounted
for (because it is the area, and not the maximum of the peak which matters).

As seen in Table 4.4, the applied experimental method is ableto measure the relativeBlu
coefficients within 10% of error, as determined from severalautomated runs. The agreement
between experiment and calculations is surprisingly good,and the different strength of the three
transitions starting at the 111 rotational level in H2D+ is also well reproduced. A similar good
agreement within overtone/combination bands of D2H+ has been reported by Fárnı́k et al. (see
their Fig. 7b), although statistically significant discrepancies have been found comparing the
fundamental bandν1 to overtone/combination bands in H2D+ and D2H+ [26]. Anyway, as
the determination of rotational populations requires theBlu coefficients to be relatively correct
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within the applied band, the good agreement in Table 4.4 not only gives a solid basis for the de-
termination of rotational populations [47], but also suggests that the overall reaction probability
of the excited H2D+ or D2H+ ions with H2 does not depend on the type of combination band or
rotational state. This is astonishing, as it is known that different fundamental vibrational modes
can have different reaction probabilities, as is for example the case for C2H+

2 + H2 [52, 53].
One reason of this mode-independence is probably the fact that the excited states considered
lie well above the reaction endothermicity of 170 cm−1, and that the highly excited ions have
several different possibilities to react in collisions with H2 while decaying.

4.5 CONCLUSIONS AND FURTHER EXPERIMENTS

The initial motivation for this research is to understand the role of the nuclear spin in low-
temperature ion-molecule collisions, and thereby explainthe rotational populations of ions at
cryogenic temperatures and its dependence on the o/p-ratioof the H2 collision partner. Such
information is crucial to fully understand the processes inlow-temperature interstellar clouds,
in particular deuteration processes.

The present work describes the spectroscopic tools needed to reach this final goal. Apply-
ing the method of laser induced reaction (LIR), several laser sources have been used to excite
rovibrational transitions of H2D+ and D2H+ when embedded in cold n-H2 gas. Of the hitherto
used laser systems (free-electron laser FELIX [46, 66], OPO, Agilent commercial diode laser),
the diode lasers are ideal to probe the level populations andto explore rate coefficients of the
collision systems, due to their easy computer controlled operation and stability.

An excellent agreement between experiment andab initiocalculations has been observed for
the line positions and (relative) EinsteinB coefficients. Especially the latter fact is of paramount
importance not only for the astronomical community, but also when reliable rotational popu-
lations have to be determined in laser probe experiments. Such experiments, accompanied by
microcanonical simulations, are currently performed at the I. Physikalisches Institut in Köln,
using n-H2 and p-H2 as low-temperature collision partners.
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CHAPTER 5

Chemical modeling of L183 (=L134N) :an
estimate of the ortho/para H2 ratio
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Context. The high degree of deuteration observed in some prestellar cores depends on the
ortho-to-para H2 ratio through the H+3 fractionation.Aims. We want to constrain the or-

tho/para H2 ratio across the L183 prestellar core. This is mandatory to correctly describe the
deuteration amplification phenomenon in depleted cores such as L183 and to relate the total (or-
tho+para) H2D+ abundance to the sole ortho–H2D+ column density measurement.Methods.
To constrain this ortho/para H2 ratio and derive its profile, we make use of the N2D+/N2H+ ratio
and of the ortho–H2D+observations performed across the prestellar core. We use two simple
chemical models limited to an almost totally depleted core description. New dissociative re-
combination and trihydrogen cation–dihydrogen reaction rates (including all isotopologues) are
presented in this paper and included in our models.Results. We estimate the H2D+ ortho/para
ratio in the L183 cloud, and constrain the H2 ortho/para ratio : we show that it is varying across
the prestellar core by at least an order of magnitude being still very high (≈ 0.1) in most of
the cloud. Our time-dependent model indicates that the prestellar core is presumably older than
1.5–2× 105 years but that it may not be much older. We also show that it hasreached its present
density only recently and that its contraction from a uniform density cloud can be constrained.
Conclusions. A proper understanding of deuteration chemistry cannot be attained without
taking into account the whole ortho/para family of molecular hydrogen and trihydrogen cation
isotopologues as their relations are of utmost importance in the global scheme. Tracing the
ortho/para H2 ratio should also give useful constrains on the dynamical evolution of prestellar
cores.
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5.1 INTRODUCTION

Studies of the earliest stages of star formation have been booming in the last ten years with
the advent of new receivers acquiring better spatial and spectral resolution. Prestellar cores are
dense and cold cores where gravitational collapse has not yet occured. In the densest regions of
the core (where nH2 is larger than a few 104 cm−3) most heavy molecules containing Carbon,
Nitrogen and Oxygen seem to deplete onto the dust grains and only light ions remain in the gas
phase. There has been extensive observational evidence of CO and CS depletion in the center of
prestellar cores [e.g. 1–5] which seems to be typical of the majority of dense cores. Nitrogen–
bearing species like CN, NH3 and N2H+ appear to subsist longer before freezing-out onto the
dust grains [6–8].
In conditions under which heavy species are depleted, H+ and H+

3 (and its deuterated counter-
parts) are the most abundant ions subsisting in the gas phase. H2D+ has been widely detected
and mapped in protostars and prestellar cores [9–11] through its ortho fundamental line, with
abundances large enough to be explained by the CO depletion theory/observations. Although
difficult to observe from Earth, the D2H+ molecule has been detected with its para line in the
source IRAS 16293E [12] with an abundance similar to the ortho–H2D+molecule as suggested
by Phillips and Vastel [13].
Consequently many theoretical studies germinated which included all the deuterated forms of
the H+

3 ion [e.g. 14, 15]. However all nuclear spin states (ortho, meta, para, corresponding to
the spin state of the protons or deuterons) must be taken intoaccount in order to compare with
the observational sets. Moreover the thermicity of the forward/backward reactions strongly de-
pends on the symmetric state of the species. Though the influence of the ortho/para H2 ratio on
the chemistry of H2D+ [16] has been described several years before the first detection of the
ion [17], it is only recently that this particular, spin-state dependent chemistry has been studied
in detail [18, 19].

The motivation for our study is sparked by the many deuterated observations performed in
the L183 prestellar core (PSC) and the main aim of this paper is to study the ortho/para H2 ratio
from some of these deuterated species observations. To thiseffect, we constrain two chemical
models including all the symmetric states of H2, D2, H+

3 and its deuterated counterparts with
observations of ortho–H2D+, combined with previous N2H+ and N2D+ observations. These
models have been set up using recent dissociative recombination rates computed for H+3 and
its isotopologues as well as all non negligible reaction rates between H2 and H+

3 and their
isotopologues (both presented for the first time in this paper).
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5.2 OBSERVATIONS

5.2.1 Deuterated H+
3

We first observed the ortho–H2D+ (and para–D2H+) with the Caltech Submillimeter Observa-
tory (CSO) monopixel receiver and subsequently took advantage of the newly installed Hetero-
dyne ARray Program, 16 channel 350 GHz band (”B-band”) (HARP-B) camera on the James
Clerk Maxwell Telescope (JCMT) to fully map its emission.

CSO observations

The H2D+ and D2H+ observations were carried out at the CSO, between August 2004 and April
2005, under good weather conditions (225 GHz zenith opacityalways less than 0.06). Scans
were taken, using the chopping secondary with a throw of 3′, using the reference position:
α2000 = 15h 54m 08s.50 andδ2000 = −02◦ 52′ 48′′.

The 345 GHz (respectively 650 GHz) sidecab receiver with a 50MHz acousto-optical
spectrometer backend was used for all observations with an average velocity resolution of
0.04 km s−1 (respectively 0.02 km s−1). At the observed frequencies of 372.421385(10) GHz
for the H2D+ (110-111) and 691.660483(20) for the D2H+ (110-101) lines [21], the CSO 10.4
meters antenna has a HPBW of about 20′′ and 11′′ respectively. We performed a cut in dec-
lination across the main dust peak in L183 between (30′′,-70′′) and (30′′,100′′) for H2D+ and
concentrated on the reference position for D2H+. The system temperature was typically 1000
to 2000 K for H2D+ and 2500 to 3500 K for D2H+.

The beam efficiency at 372 GHz (respectively 692 GHz) was measured on Saturn and Jupiter
and found to be∼ 60% (respectively∼ 40%) for point sources. Pointing was monitored every
1 hour and half and found to be better than 3′′. If the emission is extended compared to the
beam size of CSO, as appears to be the case for H2D+ then the efficiency is about 70% at 372
GHz and 60 % at 692 GHz. The data reduction was performed usingthe CLASS program of the
GAG software developed at IRAM and the Observatoire de Grenoble and the LTE data analysis
with CASSIS developed at CESR (http://www.cassis.cesr.fr).

JCMT observations

The JCMT observations were obtained during semester 07A in service mode, using the HARP-
B 16 pixel camera (one pixel, located in a corner, was unavailable). A third of the observations
was obtained in Jiggle–chop1 mode and two thirds in Position switch (PSw) mode. The Jiggle–
chop mode appeared to be no faster, the displacement of the telescope in PSw mode seeming
minor compared to other overheads, and because the Jiggle–chop mode works in the Nyquist
regime each pixel receives much less integration time than in PSw mode. As adjacent pixels

1http://www.jach.hawaii.edu/software/jcmtot/hetobsmodes.html
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Chapter 5. Chemical modeling of L183

Figure 5.1: CSO map of the o–H2D+ (110-111) line. The position is indicated in arcsec-
onds for each spectrum and the (0,0) position corresponds toα2000 = 15h 54m 08s.50,
δ2000 = −02◦ 52′ 48′′. The Y-axis represents the antenna temperature.
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Table 5.1: Line parameters from the JCMT and CSO observations. The positions are offsets to
the dust peak emission atα2000 = 15h 54m 08s.50,δ2000 = −02◦ 52′ 48′′. For non–detected
lines we give the 3σ upper limit. For JCMT and p–D2H+ at CSO, we give both the Monte-Carlo
(MC) and the LTE column density estimates.

JCMT

Position rms δv ∆v T∗a N(o–H2D+)a,b
MC N(o–H2D+)b

LTE taub
LTE

(′′) (K) km s−1 km s−1 K cm−2 cm−2

(-45,0) 0.08 0.049 0.3 0.11 3.6 1012 2.9 1012 0.11
(-30,0) 0.08 0.049 0.26 0.28 8.1 1012 8.1 1012 0.31
(-15,0) 0.09 0.049 0.51 0.41 2.0 1013 1.3 1013 0.49
(0,0) 0.09 0.049 0.41 0.57 2.3 1013 2.0 1013 0.77
(15,0) 0.08 0.049 0.47 0.46 2.0 1013 1.5 1013 0.57
(30,0) 0.08 0.049 0.39 0.21 8.1 1012 5.7 1012 0.22
(45,0) 0.08 0.049 0.50 0.13 3.6 1012 3.4 1012 0.13
(60,0) 0.08 0.049 <0.06 <1.8 1012 <1.6 1012 < 0.06

CSO

Position rms δv ∆v T∗a N(o–H2D+)b
LTE taub

LTE
(′′) (K) km s−1 km s−1 K cm−2

(0,130) 0.08 0.077 < 0.1 < 3.0 1012 < 0.1
(0,110) 0.08 0.039 0.50 0.25 8.0 1012 0.28
(0,90) 0.08 0.039 0.43 0.36 1.0 1013 0.42
(0,70) 0.08 0.039 0.40 0.39 1.1 1013 0.47
(0,50) 0.10 0.039 0.36 0.64 2.0 1013 0.95
(0,30) 0.08 0.039 0.50 0.48 1.8 1013 0.63
(0,0) 0.10 0.039 0.41 0.66 2.4 1013 1.00

(0,-20) 0.06 0.039 0.56 0.33 1.2 1013 0.38
(0,-40) 0.10 0.039 0.48 0.30 9.5 1012 0.34

Position rms δv ∆v T∗a N(p–D2H+)c
MC N(p–D2H+)c

LTE tauc
LTE

(′′) (K) km s−1 km s−1 K cm−2 cm−2

(0,0) 0.07 0.042 < 0.07 <2.4 1013 < 1.5 1013 < 0.48

a Column densities have been computed after averaging spectra at symmetrical distance from center.

b Column densities and opacities have been computed with a beam coupling correction of 70% for both JCMT
and CSO.

c Upper limit column density and opacity have been computed with a beam coupling correction of 60% at
CSO.
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Figure 5.2: JCMT map of the o–H2D+ (110-111) line. The dust peak position [20] is indicated
by a cross and corresponds toα2000 = 15h 54m 08s.50,δ2000 = −02◦ 52′ 48′′. Contour levels
are 0.1, 0.2 and 0.3 K km s−1.

had the same off spectrum subtracted, spatial average did not give much improvement and we
subsequently changed to Position switch mode because deep integration on weak signal appears
more important than Nyquist sampling for this work. In PSw mode, we made 2×2 pointings to
fill the gaps in the camera, achieving thus a full beam sampling. Two such sets were performed
to cover the main dust peak and its northern extension (Fig 5.2) with one pixel row overlap
between the two.

Most of the observations were run in band 1 weather (τ225GHz < 0.05) while a few were
done in band 2 weather leading to rapid degradation of the system temperature. The source
was observed only above 40 to 45◦elevation and band 1 weather system temperature was in the
range 500-1000 K depending on the pixels and on the elevation. To observe both H2D+ and
N2H+ (J:4–3)(at 372.672509 GHz), we tuned the receiver half way between the two lines and
used a frequency resolution of 61 kHz so that the backend could cover both lines at once.

Data pre-reduction was done with Starlink software (KAPPA,SMURF and STLCONVERT
packages) and subsequently translated to CLASS format for final reduction.
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5.2.2 CO depletion and dust content

All other observations used in this paper have been obtainedand published previously. The dust
content of L183, both in emission and in absorption has been described in Pagani et al. [20; 22].
The source size is half a degree and contains a long filament extending on∼6′from north to
south. Two peaks are clearly visible, one just south of the middle of the filament (which we call
the main peak) with an opacity of∼150 AV and a second one, 3′north of the first one (the north
peak) with an estimated opacity of∼70 AV . These peaks have the characteristics of prestellar
cores. Most of the filament has an opacity above 40 AV.

Two large scale C18O and C17O maps obtained with the Kitt Peak 12-m telescope fail to
trace the dense filament [5]. It is now well-established thatthis is due to depletion of CO onto
grains. Surprisingly, the opacity at which the depletion begins (∼20 AV) is twice higher than
what is usually observed in other clouds [e.g. 2, 23, 24] though it still appears at a density (∼3
× 104 cm−3) which is a typical depletion density threshold [5]. Possibly, the low density enve-
lope, where depletion has not yet occurred, is very extendedin this cloud (which is confirmed
by its large influence on the C18O (J:2–1) line intensity [25]. Finally, the depletion factor in
volume for CO has been estimated to be 43 on average [5] on the line of sight of the main dust
peak and is probably much higher in the inner part of this corewhere density is above 1× 105

cm−3.

5.2.3 N2H+ and N2D+

N2H+ and N2D+ have been mapped at both low [Kitt Peak 12-m, 5] and high (IRAM30-
m) resolutions. From the high resolution data, a strip crossing the main dust peak has been
extracted and published [7]. In that paper, we performed a detailed analysis of the N2H+ and
N2D+ emission with the help of a Monte-Carlo model treating exactly the hyperfine structure
and line overlap of these species. We derived several physical properties, namely : a maximum
density of 2× 106 cm−3, with a radial dependence proportional to r−1 up to 4000 AU and
proportional to r−2 beyond, a kinetic temperature of 7 (± 1) K, a slight depletion of N2H+ in
the inner 3000 AU of the core and a deuterium fractionation which is non-measurable at 104

AU (< 0.03) and reaches∼0.7 (± 0.15) in the center. As far as we know this is the highest
fractionation reported yet for a singly deuterated species. This may however not be exceptional
when compared to the detection of triply deuterated species, like ND3 [26, 27] and CD3OH [28]
or to the fact that most reported fractionations are line-of-sight averages and not derived from
detailed profiles.
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Table 5.2: Source parameters : distance from the core center, H2 density, N2H+ abundance
and N2D+/N2H+ratio. The position is measured away from the PSC center along the R.A. axis
[from 7].

Position H2 density N2H+ abundance N2D+/N2H+

(AU) (arcsec) (cm−3)

0 0 2.09 106 2.40E-11 0.69± 0.15
1310 12 9.23 105 8.50E-11 0.42± 0.05
2620 24 5.33 105 1.10E-10 0.25± 0.02
3930 36 3.22 105 1.53E-10 0.16± 0.03
5240 48 1.86 105 1.27E-10 0.06± 0.02
6550 60 7.08 104 1.00E-10 ≤ 0.03

5.3 ANALYSIS

We present 3 models in this paper : a Monte-Carlo model to compute H2D+ and D2H+ line
intensities, a chemical steady-state model and a chemical time-dependent model.

Compared to previous works, we benefit here from two new sets of coefficients and a large
set of observations in a PSC. The H+

3 + H2 (+isotopologues) set of rate coefficients are extracted
from the PhD work of E. Hugo in advance of publication and the H+

3 (and deuterated counter-
parts) recombination rates have been computed for this workby V. Kokoouline and C. Greene
and are presented in Appendix 5.B. Rate coefficients, as computed by E. Hugo, describe all
possible interactions between trihydrogen cation and dihydrogen isotopologues, including re-
active and non-reactive, elastic and inelastic collisional rates, while recombination coefficients
describe the dissociative recombination (DR) rates of trihydrogen cation isotopologues. Both
works take into account all the ortho, para and (D+

3 ) meta states.

5.3.1 Line emission

We have analysed the line emission of both ortho–H2D+ and para–D2H+ using a two-level
Monte-Carlo code [adapted from 29] with our new collisionalcoefficients. Because the tem-
perature of the PSC is around 7 K for both the gas [7] and the dust [20, 22], the possibility
to populate the next rotational level, JKK ′′ = 212 at 114 K and 75 K above ground level for
ortho–H2D+ and para–D2H+ respectively, is so low that it can be safely ignored. With the new
coefficients, the critical densities are 1.1× 105 and 4.9× 105 cm−3 respectively and thus the
lines are close to thermal equilibrium in the inner core. In the case of ortho–H2D+, the differ-
ence between LTE (∼2.0± 0.25× 1013 cm−2) and Monte-Carlo (∼2.3± 0.25× 1013 cm−2)
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Figure 5.3: o–H2D+ (110-111) spectra across the main dust peak. East and west sides are folded
together and fitted with a Monte-Carlo model. Density and temperature profiles are taken from
Pagani et al. [7]. Spacing between spectra is 15′′.

column density estimates is typically 10–15% in the direction of the dust peak.
The para–D2H+ line has not been detected [see 11] and the 3σ upper limit corresponds to

a total column density of∼2.4× 1013 cm−2 using the Monte-Carlo code. The LTE estimate
yields∼1.5× 1013 cm−2.

5.3.2 Deuteration

H+
3 ions are formed at a rate 0.96ζ by cosmic ray ionization of H2 [15, rapidly followed by

a reaction with another H2 to form H+
3 ] and destroyed in reactions with neutral species and

in dissociative recombination with free electrons, negatively charged grains and possibly neg-
atively charged polycyclic aromatic hydrocarbons (PAHs−). In prestellar cores, the primary
reservoirs of hydrogen and deuterium are H2 and HD, respectively, with HD/H2 = 2(D/H)cosmic

∼ 3.2× 10−5 [30]. The proton exchanging reaction of H+
3 with H2 partly regulates the H2

ortho–to–para ratio but has no effect on the H+
3 abundance. Concurrently, the reaction with HD

forms H2D+ and this primary fractionation is then followed by the subsequent fractionations
and produces D2H+ and D+

3 [13, 14]:

H+
3 + HD ←→ H2D+ + H2 + 232K (5.1)

H2D+ + HD ←→ D2H+ + H2 + 187K (5.2)

D2H+ + HD ←→ D+
3 + H2 + 234K (5.3)

The backward reactions are endothermic with an energy barrier of about 200 K (when con-
sidering only the ground level for each species) and were thought to be negligible at the low tem-

peratures found in prestellar cores (≤ 20 K) in which case the abundance ratios
[HnD+

3−n]

[Hn+1D+
2−n]n=0,1,2

would be greatly enhanced. However, such enhancement can belimited by various processes
(see Fig. 5.4) :
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Figure 5.4: Main reactions involved in the H+3 chemical network. When CO and N2 are de-
pleted, the reactions with bold arrows are dominant.

• dissociative recombination of H+3 (and its deuterated counterparts) with free electrons or
negatively charged grains (and PAHs− ?).

• reactions with ”proton-friendly” molecules such as CO andN2 which destroy the trihy-
drogen cations to produce HCO+ and N2H+

• ortho–H2 which can react with the deuterated trihydrogen cation and remove the Deu-
terium (see below)

In this modeling, we introduce the backward reactions to equations (1), (2), and (3) as we
distinguish between ortho, meta and para states of the different species. When these reactions
are completely neglected, the deuteration fractionation is considerably enhanced and observa-
tions towards pre-stellar cores cannot be reproduced [14].Indeed, the importance of considering
ortho and para states of various H/D carriers in the chemistry of trihydrogen cation and isotopo-
logues was first discussed by Pagani et al. [16] and subsequently expanded in a series of papers
by Flower and coworkers [15, 18, 19, 31, hereafter collectively referred to as FPdFW].Not
only is this important to compare the chemical model predictions on the abundance of H2D+

to the sole observations of the ortho–H2D+ species but also because some important reactions
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are much faster with ortho–H2 than with para–H2 hence not anymore neglectable. Indeed, the
170K internal energy of the lowest ortho–H2 level (J=1) is large with respect to the tempera-
tures of concern and can significantly enhance the Boltzmannfactor of endothermic reactions.
In some cases, reactions which are endothermic with para–H2 can turn out to be exothermic
with ortho–H2 i.e. fast and temperature independent.In fact, the ortho–to–para ratio of H2 is
found to be a crucial parameter for the whole deuterium chemistry.

The key reactions involving ortho–H2 are essentially with meta–D+3 , para–D2H+ and ortho–
H2D+ as well as para–H2D+(see rates in Appendix A) because the internal energy of the ortho–
H2 alone is not enough to overcome the endothermicity of reactions 1 to 3. Thus only those
species which have also an internal energy high enough (so that the sum of the two inter-
nal energies is higher than the endothermicity of reactions1 to 3) can react with ortho–H2
at the Langevin rate in cold gas. Thus, the three reactions involving ortho–H2 with meta–D+

3 ,
para–D2H+ and ortho–H2D+ present exothermic or thermoneutral channels to rehydrogenate
the cations forming respectively ortho–D2H+, para–H2D+ and ortho/para–H+3 while the reac-
tion between ortho–H2 and para–H2D+ can efficiently convert the latter to ortho–H2D+. The
ortho–H2 molecule thus opens a path to climb the 4 step energy ladder back from para–D2H+ to
H+

3 via para–H2D+ and ortho–H2D+ which can be very efficient in presence of large ortho–H2
fractions. However, this efficient ladder scheme does not include D+

3 because the conversion of
ortho–D2H+ to para–D2H+ is strictly forbidden in collisions with H2 and very inefficient in col-
lisons with HD. Nevertheless, these reactions can be a strong limit to the isotopic fractionation
of H+

3 hence of other species. Any chemical model which includes Deuterium chemistry must
distinguish between ortho and para states of dihydrogen andtrihydrogen cation isotopologues
and include reactions between the different spin states following Pagani et al. [16], Flower et al.
[19; 31] and the present work.

5.3.3 CO and N2 chemistry

The CO and N2 abundances are critical parameters in the deuteration of the H+
3 ion. CO is

expected to freeze-out onto the grain mantles at large densities (a few 104 cm−3) and low tem-
peratures (≤ 20 K) [e.g. 1, 3, 5, 32, 33]. With an N2 binding energy similar to the CO binding
energy [34, 35], these two molecules are expected to behave similarly. However, observations
towards prestellar cores prove that N2H+ (produced from N2) remains in the gas phase at larger
densities than CO. This can be explained by the fact that N2H+ is mainly destroyed by CO
[5, 36, 37], so that the CO freeze-out implies a drop in the destruction rate of N2H+. This
would partially balance the lower formation rate due to the N2 freeze-out. Consequently, N2H+

is observed to survive in the gas phase at higher densities (∼106 cm−3). In the case of L183,
we have shown that N2H+ partially survives but suffers from depletion at densitiesstarting at
∼5× 105 cm−3 to reach a factor 6+13

−3 at the core centre (∼2× 106 cm−3). Because of grow-
ing Deuterium fractionation, N2D+ abundance still increases towards the PSC center until the
N2 depletion becomes predominant over the Deuterium enhancement, and in turn, the N2D+
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abundance slightly decreases in the inner most part of the core [7].
The N2D+ and N2H+ ions can be produced via the following routes:

H+
3 + N2 → N2H+ + H2 (5.4)

H2D+ + N2 → N2D+ + H2 (1/3) (5.5)

→ N2H+ + HD (2/3) (5.6)

D2H+ + N2 → N2D+ + HD (2/3) (5.7)

→ N2H+ + D2 (1/3) (5.8)

D+
3 + N2 → N2D+ + D2 (5.9)

We assumed that all the H+3 isotopologues react at the Langevin rate kN2 with N2 (which is
inversely proportional to the square root of the reduced mass of the colliding system, hence to
the mass of the H3+ isotopologue) and that deuterium and hydrogen nuclei are equiprobably
transferred. Consequently, H+

3 , H2D+, D2H+ and D+
3 respectively produce a N2D+:N2H+ ratio

of 0:3, 1:2, 2:1 and 3:0. The measured ratio of 0.7± 0.15 in the center of L183 thus implies
significant fractions of D2H+ and D+

3 . It has been shown [15] that in the case of complete
depletion of heavy species (C, N, O...), D+

3 would be the dominant trihydrogen cation isotopo-
logue which would imply that N2D+ be more abundant than N2H+. This is not the case here ;
nevertheless the N2H+ deuterium fractionation is a good constraint to the abundance of the four
trihydrogen cation isotopologues in our chemical model.

At steady state (d[N2H+]/dt=0 and d[N2D+]/dt=0), reaction 5.4 and its isotopic variants
(5.5 to 5.9) being the main path to produce N2D+ and N2H+, we obtain :

[N2D+]

[N2H+]
=

[H2D+]+2 [D2H+]+3 [D+
3 ]

3 [H+
3 ]+2 [H2D+]+ [D2H+]

(5.10)

This ratio has been measured in the cut throughout the L183 main PSC. We describe in the
following how our method can provide an estimate of the ortho/para H2D+ratio using this vari-
able and subsequently, of the ortho/para H2 ratio itself as well as some indication of the cosmic
ionization rate and mean grain size.

5.3.4 Grain distribution

Recombination of ions with electrons on negatively chargedgrain surfaces is an important pro-
cess since it can be much faster than in the gas phase, especially in the case of H+ [38]. The
negatively charged grain surface area is therefore a crucial parameter [we can safely ignore pos-
itively and multiply negatively charged grains, advocatedto be very rare in cold environments,
38]. The grain size distribution in prestellar cores is unknown since it mostly depends on grain
condensation and also on ice condensation [e.g. 10]. We are thus treating the grain radius agr as
a parameter of the model, assuming all the grains to have the same size and the dust to gas mass
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ratio to be 0.01. Different values could be advocated [for example, in places where depletion
is important, the ices increase the dust mass by up to 25%, 15]but the net result is to change
slightly the average grain size which is not well-constrained in the PSCs in any case.

The focusing effect of the Coulomb attraction between charged particles and oppositely
charged grains has been included using the Draine and Sutin [38] formalism:

J̃(Z =−1) =

(

1+
1
τ

)

(

1+

√

2
2+ τ

)

(5.11)

whereτ is the reduced temperature (τ = agrkT/e2, e being the electron charge, k the Boltzman
constant). Therefore the recombination rate of the H+ ion on a negatively charged grain can be
expressed as:

kgr =

√

8kT
πmH

πa2
gr

(

S× J̃(Z =−1)
)

(5.12)

where agr is the grain radius,mH is the hydrogen mass and S is the sticking coefficient (S≤ 1).
The latter represents the probability that a colliding species will stick onto the grain surface. For
ions, Draine and Sutin [38] concluded that the sticking coefficient should be unity. The same
computation can be made to estimate the recombination rate of other ions, H+3 , H2D+, D2H+,
D+

3 ,· · · by a simple correction on the atomic mass of the ions (respectively kgr/
√

3, kgr/
√

4,
kgr/
√

5, kgr/
√

6, · · · ). In the case of collisions between charged particles and neutral grains, the
attraction due to the polarization of the grain by the charged particle can be expressed through:

J̃(Z = 0) = 1+

√

π
2τ

(5.13)

Therefore the sticking rate of electrons on neutral grains can be expressed as:

ke =

√

8kT
πme

πa2
gr

(

S× J̃(Z = 0)
)

(5.14)

whereme is the electron mass and S is the sticking coefficient. S is about unity [39] for a
planar surface but curvature of the grain surface will tend to reduce this parameter. However we
will use in the following a factor of about unity as this parameter did not seem to have a large
influence on the results in our runs.
The grain abundance [gr] can be expressed using:

[gr] =
mH2fd/g
4π
3 a3

grδ
(5.15)

whereδ is the mean grain density (assumed to be 3 g cm−3, fd/g is the dust–to–gas mass ratio,
andmH2 is the mass of molecular hydrogen. Another important parameter in our model is the
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abundance of the negatively charged grains ([gr] = [gr0] + [gr−]). At steady-state, assuming
partial depletion of CO and N2 and total depletion of all the other heavy species :

d[gr−]

dt
= [gr0][e−]ke− [gr−][H+]kgr

− [gr−][H+
3 ]kgr3− [gr−][H2D+]kgr4

− [gr−][D+
3 ]kgr6− [gr−][D2H+]kgr5

− [gr−][N2H+]kN2H+− [gr−][HCO+]kHCO+

− [gr−][N2D+]kN2D+− [gr−][DCO+]kDCO+ = 0 (5.16)

We have neglected here HD+, D+
2 , He+, etc.

5.3.5 Steady-state chemical model

The code we describe in the following is used to calculate thesteady-state abundances of the
chemical species found in the different layers of the L183 prestellar core as listed in Table 5.3.

In the steady-state approximation the abundance species are interlinked via their production
rates and their destruction rates (production=destruction).
Since H+

3 is produced at a rate 0.96ζ , the H+ abundance can be expressed as (including only
the main reactions) :

[H+] =
0.04ζ

nH2

(

[e−]krec + [gr−]kgr
) (5.17)

The main production path of H+3 is via cosmic ray ionization of H2 and proceeds in two
steps :

ζ + o–H2 → o–H+
2 + e− (5.18)

ζ + p–H2 → p–H+
2 + e− (5.19)

and H+
2 rapidly reacts with another H2 to form H+

3 but the branching ratios between different
combinations of spin states are non-trivial [40] :
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p–H+
2 + p–H2 → p–H+

3 + H (5.20)

p–H+
2 + o–H2 → p–H+

3 + H (2/3) (5.21)

→ o–H+
3 + H (1/3)

o–H+
2 + p–H2 → p–H+

3 + H (2/3) (5.22)

→ o–H+
3 + H (1/3)

o–H+
2 + o–H2 → p–H+

3 + H (1/3) (5.23)

→ o–H+
3 + H (2/3)

These are different from those advocated by FPdFW who took branching ratios of 1/2 for both
species. The ortho–H+3 formation rate from cosmic ray ionization kcr–o is therefore the sum of
several terms :

kcr–o = 0.96
(

1/3 [p–H2][o–H+
2 ] + 1/3 [o–H2][p–H+

2 ] + 2/3 [o–H2][o–H+
2 ]
)

(5.24)

The production rate for ortho–H+3 can be expressed as (including only the main reactions. The
rates are listed in Table 5.3) :

ζkcr–o + nH2

(

[o–H2][o–H2D+]k 1oood + [p–H+
3 ][o–H2](k0poop+k0pooo)

+ [HD][p–H+
3 ]k1pdod

)

(5.25)

which represent respectively the formation from cosmic rayionization, backward destruction
of ortho–H2D+with ortho–H2, spin conversion of para–H+3 with ortho–H2 and finally, spin
conversion of para–H+3 with HD.

The destruction rate for ortho–H+3 can be expressed as (including only the main reactions) :

nH2 [o–H+
3 ]
(

[e−]o–krec1 + [o–H2](k0oopp+k0oopo)

+ [HD](k1odpd+k1odpo+k1odop+k1odoo)

+ [CO]kco + [N2]kN2 + [gr−]kgr1

)

(5.26)

which respectively represents its destruction by dissociative recombination with electrons, spin
conversion with ortho-H2, spin conversion and deuteration with HD, proton transfertreactions
with CO and N2 and finally, dissociative recombination on grains.
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Similarly, the para–H+3 formation from cosmic ray ionization can be expressed as :

kcr–p = 0.96
(

[p–H2][p–H+
2 ] + 2/3 [p–H2][o–H+

2 ] +

2/3 [o–H2][p–H+
2 ] + 1/3[o–H2][o–H+

2 ]
)

(5.27)

The production rate for para–H+3 is :

ζkcr–p + nH2

(

[HD][o–H+
3 ]k1odpd + [o–H+

3 ][o–H2](k0oopp+k0oopo)

+ [o–H2][o–H2D+]k 1oopd + [o–H2][p–H2D+]k 1popd

)

(5.28)

and the destruction rate is :

nH2 [p–H+
3 ]
(

[e−]p–krec1 + [o–H2](k0poop+k0pooo)

+ [HD](k1pdod+k1pdpo+k1pdop+k1pdoo)

+ [CO]kco + [N2]kN2 + [gr−]kgr1

)

(5.29)

The N2 abundance has been solved numerically to obtain the observed N2H+ abundance.
Electronic abundance is adjusted to reach equilibrium.

In our steady-state model, the H2 ortho/para ratio, the average grain radius and the cosmic
ionization rateζ are the varying input parameters. Within each layer of the PSC model (Table
5.3), these parameters are adjusted to match the following :

• the H2 density

• the N2D+/N2H+ ratio at 7K

• the observed ortho–H2D+ column density

• the upper limit on the p–D2H+ column density

Though the full range of grain sizes and ortho–to–para H2 ratios have been explored for each
H2 density, we have not allowed solutions in which, for example, the grain size would oscillate
from one layer to the next. We have searched solutions for these two parameters all through
the layers which are either constant or we have allowed grainsize to increase and ortho–to–
para H2 ratio to decrease with the H2 density. In any case,ζ was kept constant throughout the
layers. We neglected detailed reactions with D2 as Flower et al. [18] have shown that its role is
negligible in general and we have kept the HD abundance constant which is generally a good
approximation.
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5.3.6 Time-dependent chemistry

In a second step, we have constructed a pseudo time-dependent model based on NAHOON, a
chemical model, a version of which has been made publicly available by V. Wakelam2. We have
modified this model in two ways : 1) we have replaced electron (resp. ion) reactions with neutral
(resp. charged) grains as provided in the Ohio State University (OSU) reaction file (delivered
with NAHOON) by the set of equations described above (Sect. 5.3.4 and 5.3.5), which we have
directly included in the program, to take into account Coulomb focusing ; 2) we have included
the formation of HD and D2 on grain surface and we have introduced the spin state of H2 and
D2 taking the usual assumption that they are formed with the statistical ortho/para spin state
ratio of 3 and 2 respectively. We have used the formation rateprovided in Nahoon (5× 10−17

cm3 s−1) for the formation of molecular hydrogen. Because grains are covered by ice in the
environments here concerned, we consider that the only interaction between the atoms and the
surface is physisorption. In this case, the formation ratesof HD and D2 (in cm3 s−1) is twice
lower for HD and 105 times lower for D2 with respect to H2 formation [as dicussed in 41]. In
environments where grains are not covered by icy mantles, onthe other hand, one would have to
consider chemisorption which strongly changes the efficiencies of the formation of HD and D2
[42]. Finally, we have reduced the set of species and reactions to our needs, limiting ourselves to
the most important reactions (see below) but differentiating all ortho and para (plus meta–D+

3 )
species as independent species and including all the detailed rates between trihydrogen cation
and dihydrogen isotopologues as computed by E. Hugo (see Sect. 5.3.7) including spin state
conversions. We have however included more reactions than in the steady-state model, taking
into account reactions with D2, H+

2 , He+, etc. and allowing the ortho/para H2 ratio and the HD
abundance to vary.

The main path to convert ortho–H2 into para–H2 is via the reaction

o–H2 + H+→ p–H2 + H+ (5.30)

which proceeds seven orders of magnitude faster at 7 K than the reverse reaction.

5.3.7 Rate coefficients

Many groups have made available gas-phase rate coefficients. The University of Manchester
Institute of Science and Technology (UMIST) Database for Astrochemistry contains informa-
tion on 4500 reactions of which 35% have been measured experimentally, some at temperatures
down to 20 K [43]. The OSU group provides approximately the same database but focuses
more on low temperature chemistry. We accordingly use in ourmodeling some of the reactions
in the latter (with the most recent version OSU2007), considering the low temperatures found
in L183. Apart from the rates calculated by E. Hugo, V. Kokoouline and C. Greene that are

2http://www.obs.u-bordeaux1.fr/radio/VWakelam/Valentine%20 Wakelam/Downloads.html
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presented below, all reaction rates involving Deuterium have been taken from FPdFW (except
recombination on grains for which we have used different sticking probabilities). We have given
up the odd branching ratio of N2H+ dissociative recombination reported by Geppert et al. [44]
to consider a single possibility, namely the liberation of the dinitrogen [45].

H+
3 + H2 isotopologues reaction rates

Phase space theory (PST) was used to derive thermal state-to-state rate coefficients for the whole
H+

3 + H2→H+
3 + H2 system and isotopic variants in the temperature range 5–50K. This statisti-

cal method accounts for such quantities as mass, energy, rotational angular momentum, nuclear
spin symmetry and their respective conservation laws. The ergodic hypothesis which is a req-
uisite for PST as well as the full-scrambling hypothesis areassumed according to the topology
of the PES [46, 47]. Reactants (products) trajectories are treated with the classical Langevin
model. The resulting set of state-to-state rate coefficients deviates from the detailed balance
principle by few percents at worst and is well consistent with thermodynamical equilibrium
constants. Details will be given in a forthcoming publication (Hugo et al., in prep.)

In the present astrochemical model, nuclear spin states of the different molecules are treated
as distinct species but their rotational states are not considered individually. We thus made the
assumption that only the rotational ground states of each nuclear spin species were populated
and used the ground state-to-species thermal rate coefficients obtained by summing ground
state-to-state thermal rate coefficients over the product channels.

H+
3 isotopologues dissociative recombination rates

The dissociative recombination (DR) rate of H+
3 has a long story behind it due to the high

difficulty to measure it experimentally. Since the early measurements e.g. by Adams et al. [48],
numerous attempts have been carried out and summarized in two papers [49, 50]. In parallel,
theoretical work has also been developed with the latest achievement published by Fonseca dos
Santos et al. [50]. Extending upon that work, we present here, in Table 5.4, the H+3 updated
DR rate [50] along with newly calculated H2D+, D2H+, and D+

3 DR rates (see appendix B for
more details). These calculations do not predict the branching ratio of the DR products. We
have thus adopted the branching ratios published elsewhere[51–54] which we have applied to
the calculated rates. The resulting DR rates at 7 K are listedin Table 5.3. Several remarkltyable
effects at low temperature are visible (see Figs 5.10a, 5.10b, 5.10c, 5.10d) :

• the strong departure of ortho–H+
3 DR rate from that of para–H+3 . The difference is a factor

of 10 at 10 K.

• D2H+ shows a large DR rate drop, by a factor of 10 at 10 K for both ortho and para
species compared to the extrapolated value used by FPdFW.
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• On the contrary, a large increase of the D+
3 DR rate is predicted to occur but mostly at

temperatures where deuteration is low and therefore the consequence on D+3 abundance
is limited.

5.4 RESULTS AND DISCUSSION

5.4.1 H2D+ linewidth

In order to fit the observed ortho–H2D+ line profiles, we run the Monte-Carlo model using the
”best model” velocity, density and temperature profiles derived from the N2H+ and N2D+ data
analyzed in Pagani et al. [7]. However, the linewidth for thetwo stronger spectra (offsets (0,0)
and (15′′,0), Fig. 5.3) is too wide to be reproduced with the same micro–turbulent width which
we have used for N2H+(∆vturb(FWHM)≈ 0.14 km s−1). Indeed, the central spectrum linewidth
measured by fitting a gaussian, yields 0.45 (±0.03) km s−1. The thermal contribution being

∆vtherm(FWHM) = 2.336×
√

kT
m

= 0.28 km s−1 (5.31)

at 7 K,k being the Boltzmann constant andm the mass of H2D+, the∆vturb(FWHM) contribu-
tion is 0.35 km s−1, 2.5 times larger than for N2H+. If we impose a turbulent velocity similar
to the one modeled for N2H+, then the temperature needed to obtain such a wide line wouldbe
16K which is completely ruled out by N2H+ observations [7]. Infall motion limited to the inner
core could have explained the H2D+ width if only the central H2D+ spectrum had been wide
combined with a large depletion of N2H+. In fact it is not possible because the H2D+ spectrum
at (15′′,0) has the largest width (0.49±0.03 km s−1) in a region where N2H+ is hardly depleted.
This remains therefore a pending problem.

5.4.2 N2H+ deuteration

Requested conditions

We next discuss here the main parameters that control the N2H+ deuteration using the steady-
state chemical model.

The models have been run for a temperature of 7 K which prevails in all the layers where
N2D+ has been detected in the PSC cut presented in Pagani et al. [7]. We have also run the
models for the corresponding density, N2H+ abundance and N2D+/N2H+ ratio of each layer
(the parameters are listed in Table 5.3).

As discussed above, the abundance of ortho–H2 is the main controlling factor of the trihy-
drogen cation isotopologue abundances and therefore of theN2D+/N2H+ ratio [and similarly of
the DCO+/HCO+ ratio, see e.g. 55]. We have therefore explored the range of possible solutions
for the ortho/para H2 ratio in the two extreme layers of our core profile (n(H2) = 7× 104 cm−3
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Figure 5.5: N2D+/N2H+ ratio as a function of ortho/para H2 ratio for all possible electronic
abundances and total CO depletion (steady-state chemical model). The lower row corresponds
to the densest part of the PSC (n(H2) = 2× 106 cm−3) and the two horizontal dashed lines the
measured range of N2D+/N2H+ ratio while the upper row corresponds to the external part of
the PSC (n(H2) = 7× 104 cm−3) with the dashed line representing the N2D+/N2H+ ratio upper
limit. The three columns represent differentζ values as indicated above (ζ0 = 1× 10−17 s−1) .
The large arrow indicates the direction of increasing electronic abundance.

Figure 5.6: Same as Fig. 5.5 but with a CO/H2 abundance of 10−5 in the outer layer (n(H2) =
7× 104 cm−3) and 10−6 in the inner layer (n(H2) = 2× 106cm−3).
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and 2× 106cm−3) for which we have a N2D+/N2H+ ratio of<0.03 and 0.7± 0.15 respectively
(Fig. 5.5). We have done this for three cosmic ray ionizationrates (10−17, 10−16, and 10−15

s−1) covering the values generally discussed in the literature[e.g. 55] and for all possible elec-
tronic abundances (or average grain size as they are linked via the abundance of H+ which is
mostly controlled by the grain surface area). In this first run, we have simulated total depletion
by adjusting CO and N2 abundance3 to 10−8. We have also indicated the range of N2D+/N2H+

ratio measured in both layers. The average grain radius has been varied from 0.01µm to 5
µm and electronic abundance from 10−11 to 10−6 which are largely covering usually accepted
values. We can see that N2D+/N2H+ ratios above 100 are possible in dense gas though they re-
quire very low electronic abundances and therefore very small grains which are probably absent
from these dense and cold regions due to grain coagulation [see e.g. 56].

In the lower density outer layer where no N2D+ has been detected, ortho/para H2 ratio must
be high enough, i.e. above∼0.01, to prevent any deuteration to occur whatever the cosmic ray
ionization rate. On the contrary, the dense, strongly deuterated layer has solutions only below a
maximum ortho/para H2 ratio of 0.01 (or lower for highζ rates). Thus the ortho/para H2 ratio
across the PSC clearly must vary from above 0.01 to below 0.01. In the case of low cosmic
ray ionization rate (10−17 s−1), though the ortho/para H2 ratio of 0.01 seems to be a common
solution for both layers, it must be noticed that it requiresa large electronic abundance (and large
grains) in the outer layer and a low electronic abundance (and small grains) in the inner dense
part. This is clearly improbable. Temperature being low enough in all the layers, warm layers
(above 20 K) cannot be invoked instead of a high ortho/para H2 ratio to limit the deuteration in
the outer parts of the PSC. CO total depletion is however questionable and we also used in the
model a CO depletion factor of 10 (abundance of 10−5) in the outer layer and a CO depletion
factor of 100 (abundance of 10−6) in the inner layer (Fig. 5.6). This only limits the maximum
N2D+/N2H+ ratio which decreases by one order of magnitude. Indeed, thedestruction of H+3
by CO dominates over recombination with electrons when their abundance is very low and
conversely. However, the conditions to reach the observed N2D+/N2H+ ratio remain unchanged
and thereforeonly a variable ortho/para H2 ratio can be invoked. Such a variable ortho/para
H2 ratio cannot be investigated with a steady-state model because in all layers, the ortho–H2
abundance would eventually decrease to values about 10−3–10−4 as discussed by FPdFW.

The ortho/para H2 variation

We discuss here the possibilities to make the ortho/para H2 ratio vary across a single PSC.
It is commonly accepted that H2 is formed on grain surfaces with an ortho/para ratio of 3

because of spin statistics and the exothermicity of the reaction H + H→ H2. Subsequently, the
ortho–H2 is converted into para–H2 following equation 5.30 and to a lesser extent with reactions
involving H+

3 and its isotopologues. As already discussed by FPdFW, this conversion is slow
and has probably not reached steady state in clouds with agesbetween 105 and 106 years.

3Here, we look for general solutions of the N2D+/N2H+ ratio as a function of several parameters, we thus do
not try to fit the N2 abundance to get the observed N2H+ abundance

153



Chapter 5. Chemical modeling of L183

We have therefore run the modified Nahoon model to search for acoincidental solution for
all layers which would get the necessary ortho/para H2 gradient across the PSC to both explain
the observed N2D+/N2H+ ratio and ortho–H2D+ abundance profiles. In this model, we have
no direct measurement of the CO abundance but for the credibility of the model, we have set
CO abundance to 10−5 in the outer layer and increased the depletion to reach a factor of 100
(i.e. a CO abundance of 10−6) in the core. The results are presented in Figs. 5.7 & 5.8. We
have searched for a solution where each modeled layer meets the two observational constraints
(N2D+/N2H+ ratio and ortho–H2D+ abundance) at the same time, but it must be noticed that
these solutions are not coincidental in between the different layers. We varied the average grain
radius and the cosmic ray ionization rate,ζ . We could find solutions for grains of average radius
0.025 to 0.3µm . No solution has been found for grains above 0.3µm. Figs. 5.7 & 5.8 show the
case for which the grain average radius is 0.1µm andζ = 2× 10−17 s−1. In this case, the time
range inside which all layers meet the requested conditionsis 0.6 to 1.7× 105 years. Figure 5.8
shows how the ortho/para H2 ratio evolves for 3 selected layers. We have marked the appropriate
time which is the solution for each of these layers as established from Fig. 5.7. In that figure, we
can see that the o/p H2 ratio is below 0.01 for the dense layers and still above 0.01 for the outer
layer for which no H2D+ has been detected, as expected from the steady-state model.We can
also see that the full o/p H2 relaxation has not yet occurred even for the densest part of the cloud.
Smaller grains have a larger interacting surface and therefore lower the abundance of H+ ions
which preferentially recombine on negatively charged grains (or PAHs−), consequently slowing
down the dominant ortho–H2 relaxation reaction (eq. 5.30). Though smaller grains alsoimply a
lower electronic density, therefore favouring a higher deuteration of N2H+ as shown in Fig. 5.5,
the slower disappearance of ortho–H2 is the dominant process here and finally, smaller grains
slow down the deuteration process. For grains of average radius 0.025µm, the range of ages
matching the range of N2H+/N2D+ observed ratios is 2.7–3.8× 105 years, while for grains of
average radius 0.3µm, the time range is only 3.8–7.2× 104 years. Finally, Fig. 5.8 suggests
that D2 should become a sizeable fraction of available deuterium a short while after present
state (typically 2–3× 105 years) and that HD should drop a little, correspondingly.

5.4.3 Age of the core and collapse

Though it is normal that dense layers evolve faster than lessdense ones, at least to account for
a differential ortho/para H2 ratio, they are evolving too fast in our model. The densest layers
would have reached their present status 2 to 3 times faster than the outer, less dense layers.
This could be possible only if the denser layers had reached their steady-state equilibrium. This
is not the case here where the densest layer would reach its steady-state equilibrium after 2
× 105 years only and this would imply a N2D+/N2H+ ratio of 6, almost an order of magnitude
larger than observed. The most probable reason for this timediscrepancy is that the core has
undergone a contraction and therefore all layers were not sodense in the past. While the outer
layers have little evolved in density (the most external onehas probably started at 0.5–1× 104
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Figure 5.7: Time-dependent variation of the N2D+/N2H+ ratio for the 6 layers defined in
Table 5.3. For each colour, the density of the layer is given.In the insert, the ortho–H2D+

abundance is represented with the same color code, zoomed onthe epoch of interest. Horizontal
dot lines represent the observed N2D+/N2H+ ratio range for each layer and the observed ortho–
H2D+abundance as derived from the Monte-Carlo model applied to the JCMT observations.
The part of the chemical solution which fits in both these limits and the common time limits
is set in bold. Vertical arrows indicate upper limits for theN2D+/N2H+ ratio. Vertical dashed
lines are placed at 0.63 and 1.7× 105 years to delimitate the period when all layers reach their
observed N2D+ enrichment. This case has been computed for an average grainradius of 0.1
µm andζ = 2× 10−17 s−1.

cm−3 to reach 7× 104 cm−3 today), the inner ones have undergone a much larger density
increase. As constant density through the core would give nochemical differentiation while a
time-frozen density profile as measured here gives too much differentiation, the solution is in
between the two. Starting from a uniform gas, the chemical differential evolution of the core
should therefore help us to constrain the duration of the contraction and the type of contraction.
Of course the model should also include the evolution of depletion which also plays a role in
the process acceleration.

As the core must have started to contract from a lower densityregion, typically 104 cm−3,
it is clear that all layers have accelerated their chemical evolution while their density has been
increasing. Therefore, the layer with the longest time to reach the observed N2D+/N2H+ ratio
is giving a lower limit to the age of the cloud. Depending on the exact average size of the
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Figure 5.8: Time-dependent variation of the ortho– and para–H2 and other related species for
3 of the 6 layers defined in Table 5.3 (layers 1, 3 and 6) . Vertical lines are placed at the times
corresponding to the observed N2D+/N2H+ ratio in Fig. 5.7 for the same 3 densities. This case
has been computed for an average grain radius of 0.1µm andζ = 2× 10−17 s−1.

grains, this lower limit is 1.5–2× 105 years here. In fact it is even larger because before the
cloud underwent contraction, depletion had not yet occuredand therefore, species like atomic
sulfur, S, must have been present in quantities large enoughto transfer notable quantities of
electric charges from H+ to S+ (H+ + S→ H + S+) and PAHs must have also been abundant
enough to help destroy H+ ions [57]. All these phenomena contribute to the diminutionof the
H+abundance, therefore slowing down the ortho–H2 relaxation process. Indeed, Flower et al.
[31] show that the relaxation process in some cases takes 3× 107 years, typically 50 times
slower than in the case presented here (and 15 times slower for similar conditions of grain size
and cosmic ray ionization rate but without depletion in their case).

5.4.4 Para–D2H+

It must be noted that at 7 K, the strongest possible line intensity (LTE case) for the ground
transition of para–D2H+ is below 0.3 K because of the Rayleigh-Jeans correction at 691 GHz
which becomes very important. Moreover the thermalizationof the line is difficult to obtain
in this source beyond the radius of 3000 A.U. because the PSC density drops below the para–
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D2H+critical density (ncrit = 4.9× 105 cm−3) beyond and a slight drop of the excitation tem-
perature turns into exponential decrease of the brightnesstemperature. For Tex = 6 K, Tbright ≤
0.13 K. Therefore searches for para–D2H+ must reach very low noise level to have a chance of
detection. From the models we present here, we predict an integrated line intensity of 11 mK
km/s (34 mK peak) with the Monte-Carlo model, and an upper limit of 16 mK km/s (48 mK
peak) in the case of LTE. This is a factor of 3 to 4 below the upper limit we have obtained from
the observations.

5.4.5 The chemical profile

Finally, we obtain a detailed profile of the PSC which we present in Fig. 5.9. It represents
the solution for the model which we presented in Figs. 5.7 & 5.8 taking for each layer the
values at their respective best-fit time. The large variation of the ortho–H2 species across the
core (factor 15) makes D+3 change by an even larger amount (2 orders of magnitude) but itdoes
not become the most abundant trihydrogen cation isotopologue in the core center at this stage
because the ortho-H2 abundance is not yet low enough. In the present case, for a density of 2
× 106 cm−3, the inversion between H+3 and D+

3 occurs when the abundance of ortho-H2 drops
below 3× 10−3.

The ortho/para H2 ratio in the outer layer is 0.04 (as expected from Fig. 5.6 which indicates
a lower limit of 0.01). As discussed above, the ortho/para H2 ratio evolution speed is linked
to density and grain size, both of which are lower outside thePSC, in its embedding parental
cloud. We can thus expect this ratio to be at least 0.05 and probably above 0.1 in the envelope
of the cloud.

N2 is an input parameter in our model because we have not included all the Nitrogen chem-
istry. As reactions with H+3 isotopologues are the main path to destroy this molecule [31], we
do not make a large error in determining its abundance directly from the N2H+ abundance itself
and obtain a N2 profile which is probably closer to the reality than if we had let the whole N-
chemistry freely establish its abundance because of too many unknowns. The abundance profile
thus starts at 1.5× 10−7 with respect to H2 in the low density layer to diminish to 3× 10−8

in the densest layer. The undepleted N2 abundance after attainment of the steady state is∼3
× 10−5 [31] but this is reached only after≈ 5× 106 years. As depletion of N2 in the outer layer
is possibly still small, we can conclude that N2 has not yet reached its steady state abundance
which puts an upper limit to the age of the cloud of about 1× 105 years following the estimate
of Flower et al. [31]. However, this depends very much upon several factors, like for example
the C:O elemental abundance ratio. Consequently this information is only indicative.

Though our model does not deal with the nitrogen chemistry, it seems to indicate that low
abundances of N2 are sufficient to explain the observed N2H+ abundance. Therefore, the much
debated contradiction between the presence of N2H+ in depleted cores while N2 should deplete
like CO does not seem to be a real problem. Low CO and electronic abundances, limiting the
destruction rate of N2H+, seem to be sufficient to compensate for the N2 depletion itself to
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Figure 5.9: PSC profile for the different species. The n(H2), N2H+ abundance, and
N2D+/N2H+ ratio profiles are input data. The four trihydrogen cation isotopologue profiles
are also grouped together to visualize their relative totalabundances and H+ is compared to
both e− (upper right box) and to H+3 (2nd upper left box). The profile has been computed for
the case presented in Fig. 5.7, i.e.ζ = 2× 10−17 s−1, agr = 0.1 µm. In the two upper boxes,
the green curve refers to the green axis on the right. In the top left box, the arrow indicates the
N2D+/N2H+ ratio upper limit for that layer.
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a large extent. In the inner core, N2 and N2H+ (+ N2D+) follow a similar decreasing trend,
suggesting that N2 depletion eventually forces N2H+ decrease.

Though ortho–H2D+ is 83 K above the para ground state, it is more abundant all over
the core profile by almost an order of magnitude while the thermal equilibrium ratio would
be ortho/para H2D+ ≈ 2 × 10−5 at 7 K. This demonstrates the efficiency of the ortho–H2 to
convert para–H2D+ into ortho–H2D+and therefore limits the total abundance of H2D+, as the
backward channel to H+3 remains open even at 7 K. This ortho/para population inversion does
not occur for D2H+ as the needed species to perform this inversion is no more ortho–H2 but
the much rarer ortho–D2. Therefore, the para–D2H+ remains the least abundant of the two spin
state species which, combined with the fact that its ground transition is higher in frequency than
the one of ortho–H2D+, makes its detection extremely difficult.

5.5 CONCLUSIONS

We have presented a pair of simple chemical models restricted to H-carriers, He plus CO and
N2 to account for the observed HCO+, DCO+ (not discussed in this paper), N2H+, and N2D+

ions. We have benefited from new computed reactions rates forboth the H+
3 + H2 isotopologue

combinations and for H+3 isotopologue dissociative recombination rates which takeexplicitly
into account the nuclear states individually.

With the steady-state model we have shown that the ortho/para ratio of H2 must vary from
above 0.01 in the outer parts of the L183 PSC to less than 0.01 in the inner parts to explain the
variation of deuteration across the core. Checking with a time-dependent model the reality of
the ortho/para H2 variation, we have also found that if the present PSC densityprofile is static,
then the inner layer would have reached its present status 2 to 3 times faster than the outer layers.
Because the present status is not in steady-state, the layers should evolve at a similar rate and
therefore the density must have been lower in the past. The most probable explanation is that
the core has probably evolved from a uniform density cloud tothe present centrally condensed
PSC. The time-dependent model also suggests that the ortho/para H2 ratio is changing by one
order of magnitude from∼5% at a density of 7× 104 cm−3 down to a few× 10−3 in the inner
dense core. This has two important consequences :

• it is most probable that most of the cloud, outside the densest regions (i.e. the two PSC
and the ridge in between) have an ortho/para H2 ratio also above 5%, and possibly 10%
contrarily to what is usually assumed in models.

• In principle, it should be possible to fit the PSC profile withthis chemical model com-
bined to a dynamical model including depletion, to set an ageto this PSC and possibly
discriminate between several types of collapse but it is beyond the scope of this paper.

We have already some indications that the age of the PSC is somewhat above 1.5–2× 105

years though the N2 abundance suggests a relatively short time (105 years, except if depletion
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is compensating for its formation) when we compare our adjusted abundance to the formation
rate of N2 given by Flower et al. [31]. The low abundance of N2 needed to explain the observed
N2H+ abundance indicates that its depletion is not a real problem, though, obviously, N2H+

would be much more abundant if N2 was not depleting but CO still was.
Finally, we stress the importance to consider ortho/meta/para chemistry when dealing with

the deuteration of the interstellar medium. The importanceof the ortho–H2 on the amount of
deuteration and the observations limited to the sole ortho–H2D+ make this inclusion compul-
sory. Moreover, a complete state-to-state chemical model should be developed to take into
account rotational pumping, leading to a larger destruction rate of deuterated trihydrogen cation
and possibly explaining the observed linewidth of ortho–H2D+.

Detecting para–D2H+ would be highly desirable to help constrain the models, but the high
frequency and limited transparency of the atmosphere make it a difficult tool to use. Though ob-
servable from the ground, because of its weakness in cold dark clouds, which are the only places
where it should be found, direct para–D2H+ observations should be made on a large number of
Galactic lines of sight using the HIFI receiver on board the Heschel Space Observatory.
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lam for fruitful discussions and an anonymous referee for her/his careful reading. Part of this
work was supported by the National Science Foundation (NSF)grant AST 05-40882 to the
CSO. The authors are grateful to the CSO and JCMT staffs for their support at the telescopes.
We would like to thank Samantha Santos for the help provided in numerical calculations of
thermal DR rate coefficients. This work has been supported bythe NSF under Grants No. PHY-
0427460 and PHY-0427376, by an allocation of NERSC and NCSA (project # PHY-040022)
supercomputing resources. This work has benefited from research funding from the European
Community’s Sixth Framework Programme under RadioNet contract R113CT 2003 5158187

REFERENCES

[1] P. Caselli, C. M. Walmsley, M. Tafalla, L. Dore, and P. C. Myers, Astrophys. J. Lett.523,
L165 (1999).

[2] E. A. Bergin, J. Alves, T. Huard, and C. J. Lada, Astrophys. J. Lett.570, L101 (2002).

[3] A. Bacmann, B. Lefloch, C. Ceccarelli, A. Castets, J. Steinacker, and L. Loinard,
Astron. Astrophys.389, L6 (2002).

[4] M. Tafalla, P. C. Myers, P. Caselli, and C. M. Walmsley, Astron. Astrophys.416, 191
(2004).

160



REFERENCES

[5] L. Pagani, J.-R. Pardo, A. J. Apponi, A. Bacmann, and S. Cabrit, Astron. Astrophys.429,
181 (2005).

[6] M. Tafalla, J. Santiago-Garcı́a, P. C. Myers, P. Caselli, C. M. Walmsley, and A. Crapsi,
Astron. Astrophys.455, 577 (2006).

[7] L. Pagani, A. Bacmann, S. Cabrit, and C. Vastel, Astron. Astrophys.467, 179 (2007).

[8] P. Hily-Blant, M. Walmsley, G. Pineau Des Forêts, and D.Flower, Astron. Astrophys.
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APPENDICES

5.A REACTION RATE TABLE

Table 5.3: Reaction rates used in the Nahoon modified chemical model. The rate coefficients
are given for 7K. Reaction rates less than 10−15 cm−3s−1 are not taken into account in our
models. Reference (1) corresponds to Gerlich [58], references (2), (3), and (4) correspond to
E. Hugo, OSU 07, and this paper respectively. For OSU 07, branching ratios involving spin
states have been infered from quantum mechanical rules. Forreactions involving grains, a grain
radius of 0.1µm and a sticking coefficient of 1 have been considered. (5) Datz et al. [52] (6)
Datz et al. [51], (7) Zhaunerchyk et al. [54], (8) Larsson et al. [59], (9) Molek et al. [45].

Reaction
Rate

Ref.
label cm3 s−1

H+ + o–H2 → H+ + p–H2 2.2 10−10 (1)
p–H+

3 + o–H2 → p–H+
3 + p–H2 3.3 10−10 (2)

→ o–H+
3 + p–H2 k0poop 3.9 10−10 (2)

→ o–H+
3 + o–H2 k0pooo 7.8 10−12 (2)

o–H+
3 + o–H2 → p–H+

3 + p–H2 k0oopp 1.0 10−10 (2)
→ p–H+

3 + o–H2 k0oopo 4.1 10−10 (2)

164



5.A. Reaction rate table

Reaction
Rate

Ref.
label cm3 s−1

→ o–H+
3 + p–H2 k0ooop 1.0 10−10 (2)

p–H+
3 + HD → o–H+

3 + HD k1pdod 8.2 10−13 (2)
→ p–H2D+ + p–H2 k1pdpp 3.2 10−10 (2)
→ p–H2D+ + o–H2 k1pdpo 4.3 10−10 (2)
→ o–H2D+ + p–H2 k1pdop 6.8 10−10 (2)
→ o–H2D+ + o–H2 k1pdoo 1.6 10−11 (2)

o–H+
3 + HD → p–H2D+ + o–H2 k1odpo 1.7 10−10 (2)

→ p–H+
3 + HD k1odpd 4.35 10−11 (2)

→ o–H2D+ + p–H2 k1odop 2.3 10−10 (2)
→ o–H2D+ + o–H2 k1odoo 1.0 10−9 (2)

p–H2D+ + o–H2 → o–H2D+ + p–H2 1.3 10−9 (2)
→ p–H+

3 + HD k 1popd 3.9 10−14 (2)
→ o–H2D+ + o–H2 2.0 10−15 (2)

o–H2D+ + o–H2 → p–H+
3 + HD k 1oopd 7.7 10−11 (2)

→ o–H+
3 + HD k 1oood 8.3 10−11 (2)

→ p–H2D+ + p–H2 9.2 10−11 (2)
→ p–H2D+ + o–H2 1.8 10−10 (2)
→ o–H2D+ + p–H2 2.35 10−10 (2)

o–H2D+ + p–H2 → p–H2D+ + o–H2 4.2 10−15 (2)
o–H2D+ + HD → p–H+

3 + o–D2 1.2 10−15 (2)
→ p–H2D+ + HD 5.4 10−11 (2)
→ p–D2H+ + p–H2 7.3 10−11 (2)
→ p–D2H+ + o–H2 3.8 10−10 (2)
→ o–D2H+ + p–H2 1.8 10−10 (2)
→ o–D2H+ + o–H2 6.8 10−10 (2)

p–H2D+ + HD → p–D2H+ + p–H2 4.8 10−10 (2)
→ p–D2H+ + o–H2 2.1 10−12 (2)
→ o–D2H+ + p–H2 7.5 10−10 (2)
→ o–D2H+ + o–H2 2.3 10−10 (2)

p–D2H+ + o–H2 → p–H2D+ + HD 3.1 10−11 (2)
→ p–D2H+ + p–H2 3.3 10−10 (2)
→ o–H2D+ + HD 1.2 10−13 (2)

o–D2H+ + o–H2 → p–H2D+ + HD 3.8 10−12 (2)
→ o–D2H+ + p–H2 4.45 10−10 (2)

p–D2H+ + HD → p–H2D+ + o–D2 2.8 10−15 (2)
→ o–D2H+ + HD 9.1 10−11 (2)
→ p–D+

3 + p–H2 3.3 10−11 (2)
→ p–D+

3 + o–H2 9.75 10−11 (2)
→ m-D+

3 + p–H2 2.6 10−10 (2)
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Reaction
Rate

Ref.
label cm3 s−1

→ m-D+
3 + o–H2 7.8 10−10 (2)

o–D2H+ + HD → m-D+
3 + p–H2 1.6 10−10 (2)

→ m-D+
3 + o–H2 4.5 10−10 (2)

→ o–D+
3 + p–H2 1.9 10−10 (2)

→ o–D+
3 + o–H2 4.7 10−10 (2)

→ p–D2H+ + HD 9.9 10−14 (2)
m-D+

3 + o–H2 → o–D2H+ + HD 1.3 10−11 (2)
→ p–D2H+ + HD 1.9 10−14 (2)

o–D+
3 + o–H2 → o–D2H+ + HD 4.4 10−14 (2)

p–D+
3 + o–H2 → p–D2H+ + HD 2.6 10−13 (2)

p–D+
3 + HD → m-D+

3 + HD 7.75 10−10 (2)
m-D+

3 + HD → o–D+
3 + HD 2.5 10−10 (2)

→ p–D+
3 + HD 9.5 10−12 (2)

o–D+
3 + HD → m-D+

3 + HD 8.45 10−13 (2)
o–H+

3 + o–D2 → o–H2D+ + HD 2.1 10−10 (2)
→ o–D2H+ + o–H2 1.3 10−9 (2)

o–H+
3 + p–D2 → o–H2D+ + HD 5.0 10−10 (2)

→ p–D2H+ + o–H2 9.7 10−10 (2)
p–H+

3 + o–D2 → p–H2D+ + HD 1.6 10−10 (2)
→ o–H2D+ + HD 1.4 10−10 (2)
→ o–D2H+ + p–H2 5.95 10−10 (2)
→ o–D2H+ + o–H2 6.2 10−10 (2)

p–H+
3 + p–D2 → p–H2D+ + HD 2.55 10−10 (2)

→ o–H2D+ + HD 3.45 10−10 (2)
→ p–D2H+ + p–H2 4.0 10−10 (2)
→ p–D2H+ + o–H2 4.9 10−10 (2)

o–H2D+ + o–D2 → p–D2H+ + HD 1.7 10−10 (2)
→ o–D2H+ + HD 3.9 10−10 (2)
→ m-D+

3 + o–H2 3.2 10−10 (2)
→ o–D+

3 + o–H2 5.3 10−10 (2)
o–H2D+ + p–D2 → o–H2D+ + o–D2 4.8 10−11 (2)

→ p–D2H+ + HD 4.1 10−10 (2)
→ o–D2H+ + HD 3.6 10−10 (2)
→ p–D+

3 + o–H2 6.1 10−11 (2)
→ m-D+

3 + o–H2 5.05 10−10 (2)
p–H2D+ + o–D2 → p–D2H+ + HD 1.2 10−10 (2)

→ o–D2H+ + HD 2.7 10−10 (2)
→ m-D+

3 + p–H2 4.3 10−10 (2)
→ o–D+

3 + p–H2 5.8 10−10 (2)
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Reaction
Rate

Ref.
label cm3 s−1

p–H2D+ + p–D2 → p–H2D+ + o–D2 6.55 10−11 (2)
→ p–D2H+ + HD 4.1 10−10 (2)
→ o–D2H+ + HD 2.8 10−10 (2)
→ p–D+

3 + p–H2 6.9 10−11 (2)
→ m-D+

3 + p–H2 5.8 10−10 (2)
o–D2H+ + o–D2 → p–D2H+ + o–D2 3.85 10−14 (2)

→ m-D+
3 + HD 5.7 10−10 (2)

→ o–D+
3 + HD 6.4 10−10 (2)

o–D2H+ + p–D2 → p–D2H+ + p–D2 2.1 10−14 (2)
→ p–D2H+ + o–D2 1.6 10−10 (2)
→ o–D2H+ + o–D2 8.8 10−11 (2)
→ p–D+

3 + HD 8.4 10−11 (2)
→ m-D+

3 + HD 6.4 10−10 (2)
→ o–D+

3 + HD 3.5 10−10 (2)
p–D2H+ + o–D2 → o–D2H+ + p–D2 5.0 10−13 (2)

→ o–D2H+ + o–D2 3.7 10−11 (2)
→ p–D+

3 + HD 7.7 10−11 (2)
→ m-D+

3 + HD 8.6 10−10 (2)
→ o–D+

3 + HD 3.05 10−10 (2)
p–D2H+ + p–D2 → p–D2H+ + o–D2 3.7 10−11 (2)

→ o–D2H+ + p–D2 2.0 10−11 (2)
→ o–D2H+ + o–D2 8.5 10−11 (2)
→ p–D+

3 + HD 1.15 10−10 (2)
→ m-D+

3 + HD 9.5 10−10 (2)
m-D+

3 + o–D2 → p–D+
3 + o–D2 8.6 10−12 (2)

→ m-D+
3 + p–D2 1.7 10−15 (2)

→ o–D+
3 + p–D2 1.2 10−12 (2)

→ o–D+
3 + o–D2 3.0 10−10 (2)

m-D+
3 + p–D2 → p–D+

3 + p–D2 5.9 10−12 (2)
→ p–D+

3 + o–D2 4.7 10−11 (2)
→ m-D+

3 + o–D2 6.1 10−10 (2)
→ o–D+

3 + p–D2 4.7 10−11 (2)
→ o–D+

3 + o–D2 5.1 10−11 (2)
o–D+

3 + o–D2 → m-D+
3 + o–D2 1.0 10−12 (2)

→ o–D+
3 + p–D2 1.15 10−15 (2)

o–D+
3 + p–D2 → p–D+

3 + o–D2 9.2 10−11 (2)
→ m-D+

3 + p–D2 1.6 10−13 (2)
→ m-D+

3 + o–D2 5.7 10−10 (2)
→ o–D+

3 + o–D2 1.6 10−10 (2)
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Reaction
Rate

Ref.
label cm3 s−1

p–D+
3 + o–D2 → m-D+

3 + p–D2 2.8 10−14 (2)
→ m-D+

3 + o–D2 7.0 10−10 (2)
→ o–D+

3 + p–D2 1.7 10−11 (2)
p–D+

3 + p–D2 → m-D+
3 + p–D2 4.8 10−10 (2)

→ m-D+
3 + o–D2 4.4 10−10 (2)

The primes for kCO and kN2 indicate that the rates have been corrected
for the higher reduced mass of the system with respect to H+

3

o–H+
3 + CO → HCO+ + o–H2 kCO 1.6 10−9 (3)

p–H+
3 + CO → HCO+ + p–H2 1/2 kCO 8.1 10−10 (3)

→ HCO+ + o–H2 1/2 kCO 8.1 10−10 (3)
o–H2D+ + CO → HCO+ + HD 2/3 k′CO 9.4 10−10 (3)

→ DCO+ + o–H2 1/3 k′CO 4.7 10−10 (3)
p–H2D+ + CO → HCO+ + HD 2/3 k′CO 9.4 10−10 (3)

→ DCO+ + p–H2 1/3 k′CO 4.7 10−10 (3)
o–D2H+ + CO → HCO+ + o–D2 1/3 k′′CO 4.3 10−10 (3)

→ DCO+ + HD 2/3 k′′CO 8.6 10−10 (3)
p–D2H+ + CO → HCO+ + p–D2 1/3k′′CO 4.3 10−10 (3)

→ DCO+ + HD 2/3 k′′CO 8.6 10−10 (3)
o–D+

3 + CO → DCO+ + o–D2 k′′′CO 1.2 10−9 (3)
m-D+

3 + CO → DCO+ + o–D2 1/2 k′′′CO 6.0 10−10 (3)
→ DCO+ + p–D2 1/2 k′′′CO 6.0 10−10 (3)

p–D+
3 + CO → DCO+ + p–D2 k′′′CO 1.2 10−9 (3)

p–H+
3 + N2 → N2H+ + o-H2 1/2 kN2 8.5 10−10 (3)

→ N2H+ + p-H2 1/2 kN2 8.5 10−10 (3)
o–H+

3 + N2 → N2H+ + o-H2 kN2 1.7 10−9 (3)
o–H2D+ + N2 → N2H+ + HD 2/3 k′N2

1.0 10−9 (3)
→ N2D+ + o-H2 1/3 k′N2

5.0 10−10 (3)
p–H2D+ + N2 → N2H+ + HD 2/3 k′N2

1.0 10−9 (3)
→ N2D+ + p-H2 1/3 k′N2

5.0 10−10 (3)
o–D2H+ + N2 → N2H+ + p–D2 1/3 k′′N2

4.5 10−10 (3)
→ N2D+ + HD 2/3 k′′N2

9.1 10−10 (3)
p–D2H+ + N2 → N2H+ + p–D2 1/3 k′′N2

4.5 10−10 (3)
→ N2D+ + HD 2/3 k′′N2

9.1 10−10 (3)
o–D+

3 + N2 → N2D+ + o–D2 k′′′N2
1.3 10−9 (3)

m-D+
3 + N2 → N2D+ + o–D2 1/2 k′′′N2

6.3 10−10 (3)
→ N2D+ + p–D2 1/2 k′′′N2

6.3 10−10 (3)
p–D+

3 + N2 → N2D+ + p–D2 k′′′N2
1.3 10−9 (3)

H+ + e− → H krec 4.9 10−11 (3)
o–H+

3 + e− → H + H + H 3/4 o–krec1 3.6 10−8 (4,5)
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Reaction
Rate

Ref.
label cm3 s−1

→ o–H2 + H 1/4 o–krec1 1.2 10−8 (4,5)
p–H3

+ + e− → H + H + H 3/4 p–krec1 5.6 10−7 (4,5)
→ p–H2 + H 1/8 p–krec1 9.4 10−8 (4,5)
→ o–H2 + H 1/8 p–krec1 9.4 10−8 (4,5)

o–H2D+ + e− → H + H + D 3/4 o–krec2 2.6 10−7 (4,6)
→ o–H2 + D ∼0.07 o–krec2 2.5 10−8 (4,6)
→ HD + D ∼0.18 o–krec2 6.25 10−8 (4,6)

p–H2D+ + e− → H + H + D 3/4 p–krec2 1.8 10−7 (4,6)
→ p–H2 + D ∼0.07 p–krec2 1.7 10−8 (4,6)
→ HD + D ∼0.18 p–krec2 4.3 10−8 (4,6)

o–D2H+ + e− → H + D + D ∼0.77 o–krec3 4.3 10−8 (4,7)
→ HD + D ∼0.13 o–krec3 7.3 10−9 (4,7)
→ o–D2 + H ∼0.10 o–krec3 5.6 10−9 (4,7)

p–D2H+ + e− → H + D + D ∼0.77 p–krec3 4.6 10−8 (4,7)
→ HD + D ∼0.13 p–krec3 7.8 10−9 (4,7)
→ p–D2 + H ∼0.10 p–krec3 6.0 10−9 (4,7)

o–D3
+ + e− → D + D + D 3/4 o–krec4 1.8 10−7 (4,8)

→ o–D2 + D 1/4 o–krec4 6.1 10−8 (4,8)
p–D3

+ + e− → D + D + D 3/4 p–krec4 1.5 10−7 (4,8)
→ p–D2 + D 1/4 p–krec4 5.0 10−8 (4,8)

m–D3
+ + e− → D + D + D 3/4 m–krec4 3.6 10−7 (4,8)

→ o–D2 + D 1/8 m–krec4 6.0 10−8 (4,8)
→ p–D2 + D 1/8 m–krec4 6.0 10−8 (4,8)

N2H+ + e− → H + N2 kN2H+ 6.8 10−7 (9)
N2D+ + e− → D + N2 kN2D+ 6.8 10−7 (9)
HCO+ + e− → H + CO kHCO+ 3.2 10−6 (2)
DCO+ + e− → D + CO kDCO+ 3.2 10−6 (2)
gr0 + e− → gr− ke 3.7 10−3 (4)
H+ + gr− → H + gr0 kgr 6.0 10−4 (4)
HD+ + gr− → H + D + gr0 2/3 kgr1 2.3 10−4 (4)

→ HD + gr0 1/3 kgr1 1.2 10−4 (4)
o–D+

2 + gr− → D + D + gr0 2/3 kgr2 2.0 10−4 (4)
→ o–D2 + gr0 1/3 kgr2 1.0 10−4 (4)

p–D+
2 + gr− → D + D + gr0 2/3 kgr2 2.0 10−4 (4)

→ p–D2 + gr0 1/3 kgr2 1.0 10−4 (4)
He+ + gr− → He + gr0 3.0 10−4 (4)
p–H+

3 + gr− → p-H2 + H + gr0 1/6 kgr3 5.8 10−5 (4)
→ o-H2 + H + gr0 1/6 kgr3 5.810−5 (4)
→ 3H + gr0 + 2/3 kgr3 2.3 10−4 (4)
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Reaction
Rate

Ref.
label cm3 s−1

o–H+
3 + gr− → o-H2 + H + gr0 1/3 kgr3 1.2 10−4 (4)

→ 3H + gr0 + 2/3 kgr3 2.3 10−4 (4)
p–H2D+ + gr− → p-H2 + D + gr0 1/6 kgr4 5.0 10−5 (4)

→ HD + H + gr0 1/3 kgr4 1.0 10−4 (4)
→ 2H + D + gr0 1/2 kgr4 1.5 10−4 (4)

o–H2D+ + gr− → 2H + D + gr0 1/2 kgr4 1.5 10−4 (4)
→ o-H2 + D + gr0 1/6 kgr4 5.0 10−5 (4)
→ HD + H + gr0 1/3 kgr4 1.0 10−4 (4)

o–D2H+ + gr− → 2D + H + gr0 1/2 kgr5 1.3 10−4 (4)
→ o–D2 + H + gr0 1/6 kgr5 4.4 10−5 (4)
→ HD + D + gr0 1/3 kgr5 8.9 10−5 (4)

p–D2H+ + gr− → p–D2 + H + gr0 1/6 kgr5 4.4 10−5 (4)
→ HD + D + gr0 1/3 kgr5 8.9 10−5 (4)
→ 2D + H + gr0 1/2 kgr5 1.3 10−4 (4)

o–D+
3 + gr− → 3D + gr0 2/3 kgr6 1.6 10−4 (4)

→ o–D2 + D + gr0 1/3 kgr6 8.1 10−5 (4)
m–D+

3 + gr− → 3D + gr0 2/3 kgr6 1.2 10−4 (4)
→ o–D2 + D + gr0 1/6 kgr6 4.1 10−5 (4)
→ p–D2 + D + gr0 1/6 kgr6 4.1 10−5 (4)

p–D+
3 + gr− → 3D + gr0 2/3 kgr6 1.6 10−4 (4)

→ p–D2 + D + gr0 1/3 kgr6 8.1 10−5 (4)
HCO+ + gr− → H + CO + gr0 kHCO+ 1.1 10−4 (4)
DCO+ + gr− → D + CO + gr0 kDCO+ 1.1 10−4 (4)
N2H+ + gr− → H + N2 + gr0 kN2H+ 1.1 10−4 (4)
N2D+ + gr− → D + N2 + gr0 kN2D+ 1.1 10−4 (4)

5.B DR RATE COEFFICIENTS OF THEH+
3 ISOTOPOLOGUES

The dissociative recombination (DR) rate coefficients for ortho– and para–H+3 have been re-
cently published by Fonseca dos Santos et al. [50]. Here, we present the results obtained for the
all four H+

3 isotopologues. The DR rate coefficients for different species of the nuclear spin are
calculated using the approach described in a series of papers devoted to DR theory for triatomic
molecular ions. See Fonseca dos Santos et al. [50], Kokoouline and Greene [60; 61] for H+3
and D+

3 calculations and Kokoouline and Greene [62; 63] for H2D+ and D2H+. The scope of
this paper does not allow to review the theoretical approachin detail. We only list its main
ingredients.

The theoretical approach is fully quantum mechanical and incorporates no adjustable pa-
rameters. It relies onab initio calculations of potential surfaces for the ground electronic state
of the H+

3 ion and several excited states of the neutral molecule H3, performed by Mistrı́k et al.
[64].
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The total wave function of the system is constructed by an appropriate symmetrization of
products of vibrational, rotational, electronic, and nuclear spin factors. Therefore, rovibronic
and nuclear spin degrees of freedom are explicitly taken into account.

The electronic Born-Oppenheimer potentials for the four H+
3 (and H3) isotopologues have

theC3v symmetry group. TheC3v symmetry group has a two–dimensional irreducible represen-
tationE. The ion has a closed electronic shell. The lowest electronic state of the outer electron
in H3 has thep-wave character. Thep-wave state of the electron also belongs to theE repre-
sentation. Due to the Jahn-Teller theorem [65], this leads to a strong non-adiabatic coupling
between theE-degenerate vibrational modes of the ion and thep-wave states of the incident
electron. The coupling is responsible for the fast DR rate [66] in H+

3 . In the present model,
only thep-wave electronic states are included because other partialwaves have a much smaller
effect on the DR probability : thes-wave states don’t have theE-type character and, therefore,
are only weakly coupled to the dissociative electronic states of H3; d-wave electronic states
are coupled to theE-vibrational modes, but the coupling is rather small because thed-wave of
the incident electron does not penetrate sufficiently closeto the ionic core owing to thed-wave
centrifugal potential barrier.

All three internal vibrational coordinates are taken into account. Vibrational dynamics of
the ionic core are described using the hyper-spherical coordinates, which represent the three
vibrational degrees of freedom by a hyperradius and two hyperangles. The hyperradius is treated
as a dissociation coordinate that represents uniformly thetwo possible DR channels, three-body
(such as H+H+H) and two-body (such as H2+H). Although the initial vibrational state of the
ion is the ground state, after recombination with the electron, other vibrational states of the
ionic target molecule can be populated. Therefore, in general, many vibrational states have to
be included in the treatment. In particular, the states of the vibrational continuum have to be
included, because only such states can lead to the dissociation of the neutral molecule. The
vibrational states of the continuum are obtained using a complex absorbing potential placed at
a large hyperradius to absorb the flux of the outgoing dissociative wave.

Since the rovibrational symmetry isD3h for H+
3 and D+

3 andC2v for H2D+ and D2H+, the
rovibrational functions are classified according to the irreducible representations of the corre-
sponding symmetry groups, i.e.A′1, A′′1, A′2, A′′2, E′, andE′′ for D3h andA1, A2, B1, andB2 for
C2v. We use the rigid rotor approximation, i.e. the vibrationaland rotational parts of the total
wave function are calculated independently by diagonalizing the corresponding Hamiltonians.
In our approach, the rotational wave functions must be obtained separately for the ions and for
the neutral molecules. They are constructed in a different way for theD3h andC2v cases. The
rotational eigenstates and eigenenergies of theD3h molecules are symmetric top wave functions
[see, for example 67]. They can be obtained analytically if the rotational constants are known.
The rotational constants are obtained numerically from vibrational wave functions, i.e. they are
calculated separately for each vibrational level of the target molecule. The rotational functions
for the C2v ions are obtained numerically by diagonalizing the asymmetric top Hamiltonian
[63, 67].

Once the rovibrational wave functions are calculated, we construct the electron-ion scatter-
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ing matrix (S-matrix). TheS-matrix is calculated in the framework of quantum defect theory
(QDT) [see, for example, 61, 63, 68] using the quantum defectparameters obtained from theab
initio calculation [64]. The constructed scattering matrix accounts for the Jahn-Teller effect and
diagonal with respect to the different irreducible representationsΓ and the total angular momen-
tumN of the neutral molecule. Thus, the actual calculations are made separately for eachΓ and
N. Elements of the matrix describe the scattering amplitudesfor the change of the rovibrational
state of the ion after a collision with the electron. However, theS-matrix is not unitary due to
the presence of the dissociative vibrational channels (i.e. continuum vibrational states of the
ion, discussed above), which are not explicitly listed in the computedS-matrix. The ”defect”
from unitarity of each column of thisS-matrix is associated with the dissociation probability
of the neutral molecule formed during the scattering process. The dissociation probability per
collision is then used to calculate the DR cross-sections and rate coefficients.

The nuclear spin states are characterized by one of theA1, A2, or E irreducible representa-
tions of the symmetry groupS3 for D3h molecules and by theA or B irreducible representations
of the symmetry groupS2 for C2v molecules. The irreducible representationΓns of a particular
nuclear spin state determines its statistical weight and isrelated to the total nuclear spin~I of the
state. Here,~I is the vector sum of spins~i of identical nuclei.

For H+
3 , theΓns = A1 states (A′2 andA′′2 rovibrational states) correspond toI = 3/2 (ortho);

theΓns = E states (E′ andE′′ rovibrational states) correspond toI = 1/2 (para). The statistical
ortho:para weights are 2 : 1.For H2D+, the Γns = A states (B1 andB2 rovibrational states)
correspond toI = 1 (ortho); theΓns = B states (A1 andA2 rovibrational states) correspond to
I = 0 (para). The statistical ortho:para weights are 3 : 1.For D2H+, theΓns = A states (A1 and
A2 rovibrational states) correspond toI = 0,2 (ortho); theΓns= B states (B1 andB2 rovibrational
states) correspond toI = 1 (para). The statistical ortho:para weights are 2 : 1. Finally, for D+

3 ,
theΓns = A1 states (A′1 andA′′1 rovibrational states) correspond toI = 1,3 (ortho); theΓns = A2

states (A′2 andA′′2 rovibrational states) correspond toI = 0 (para); theΓns= E states (E′ andE′′

rovibrational states) correspond toI = 1,2 (meta). The statistical ortho:para:meta weights are
10 : 1 : 8.

Figures (5.10a), (5.10b), (5.10c), and (5.10d) summarize the obtained DR thermal rate coef-
ficients calculated separately for each nuclear spin species of the four H+

3 isotopologues and the
numerical values are listed in Table 5.4. For comparison, the figures show also the analytical
dependences used in previous models of prestellar core chemistry (FPdFW). As one can see, the
rates for different nuclear spin species are similar to eachother (for a given isotopologue) at high
temperatures. However, for lower temperatures, the rates for different ortho/para/meta-nuclear
spin species significantly differ from each other. The difference in behavior at small tempera-
tures is explained by different energies of Rydberg resonances present in DR cross-sections at
low electron energies. The actual energies of such resonances are important for the thermal av-
erage at temperatures below or similar to the energy difference between ground rotational levels
of different nuclear spin species. At higher temperatures,the exact energy of the resonances is
not important. The averaged rate is determined by the density and the widths of the resonances,
which are similar for all nuclear spin species over a large range of collision energies.
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Figure 5.10: Theoretical DR rate coefficients as a function of temperature for the ortho, para
(and meta) nuclear spin species of (a) H+

3 (b) H2D+ (c) D2H+ (d) D+
3 . The figures also show the

species-averaged rate coefficient. For comparison, we showthe analytical dependence for the
coefficient used in earlier models of prestellar cores by FPdFW. The rate coefficients obtained
for H+

3 in the TSR storage ring by Kreckel et al. [69] are also shown infigure (a).
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Table 5.4: Dissociative recombination rates of H+
3 , H2D+, D2H+, and D+

3 for each individual nuclear spin state species.

Temperature para–H+3 ortho–H+
3 para–H2D+ ortho–H2D+ ortho–D2H+ para–D2H+ ortho–D+

3 meta–D+
3 para–D+

3
K cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1

1.28 1.81e-06 8.21e-08 6.63e-07 8.74e-07 2.18e-07 9.59e-08 6.33e-07 2.38e-06 2.61e-07
1.41 1.71e-06 7.86e-08 6.23e-07 8.46e-07 2.02e-07 9.36e-08 5.90e-07 2.22e-06 2.47e-07
1.56 1.61e-06 7.52e-08 5.85e-07 8.17e-07 1.87e-07 9.16e-08 5.49e-07 2.06e-06 2.34e-07
1.72 1.52e-06 7.20e-08 5.48e-07 7.87e-07 1.72e-07 8.98e-08 5.10e-07 1.90e-06 2.22e-07
1.90 1.44e-06 6.90e-08 5.14e-07 7.56e-07 1.58e-07 8.82e-08 4.73e-07 1.75e-06 2.10e-07
2.10 1.36e-06 6.61e-08 4.81e-07 7.25e-07 1.45e-07 8.65e-08 4.39e-07 1.61e-06 1.98e-07
2.32 1.29e-06 6.34e-08 4.51e-07 6.93e-07 1.32e-07 8.47e-08 4.08e-07 1.48e-06 1.88e-07
2.56 1.22e-06 6.08e-08 4.23e-07 6.60e-07 1.21e-07 8.28e-08 3.79e-07 1.35e-06 1.79e-07
2.83 1.16e-06 5.84e-08 3.97e-07 6.27e-07 1.11e-07 8.08e-08 3.52e-07 1.23e-06 1.72e-07
3.12 1.11e-06 5.62e-08 3.73e-07 5.94e-07 1.02e-07 7.87e-08 3.29e-07 1.12e-06 1.66e-07
3.45 1.06e-06 5.42e-08 3.51e-07 5.60e-07 9.35e-08 7.64e-08 3.08e-07 1.01e-06 1.62e-07
3.81 1.01e-06 5.23e-08 3.31e-07 5.28e-07 8.62e-08 7.41e-08 2.90e-07 9.18e-07 1.61e-07
4.20 9.63e-07 5.08e-08 3.13e-07 4.95e-07 7.98e-08 7.17e-08 2.74e-07 8.30e-07 1.63e-07
4.64 9.19e-07 4.94e-08 2.96e-07 4.63e-07 7.41e-08 6.94e-08 2.62e-07 7.49e-07 1.66e-07
5.13 8.77e-07 4.83e-08 2.81e-07 4.33e-07 6.90e-08 6.70e-08 2.52e-07 6.75e-07 1.73e-07
5.66 8.36e-07 4.76e-08 2.67e-07 4.04e-07 6.45e-08 6.47e-08 2.46e-07 6.07e-07 1.80e-07
6.25 7.95e-07 4.71e-08 2.54e-07 3.76e-07 6.04e-08 6.24e-08 2.43e-07 5.46e-07 1.90e-07
6.90 7.55e-07 4.69e-08 2.42e-07 3.51e-07 5.69e-08 6.02e-08 2.45e-07 4.92e-07 1.99e-07
7.62 7.14e-07 4.71e-08 2.31e-07 3.28e-07 5.37e-08 5.81e-08 2.50e-07 4.42e-07 2.09e-07
8.41 6.74e-07 4.75e-08 2.22e-07 3.08e-07 5.08e-08 5.61e-08 2.59e-07 3.98e-07 2.18e-07
9.29 6.35e-07 4.81e-08 2.14e-07 2.91e-07 4.82e-08 5.43e-08 2.72e-07 3.59e-07 2.27e-07

10.25 5.96e-07 4.88e-08 2.09e-07 2.77e-07 4.59e-08 5.28e-08 2.87e-07 3.25e-07 2.34e-07
11.32 5.58e-07 4.96e-08 2.07e-07 2.65e-07 4.38e-08 5.15e-08 3.04e-07 2.95e-07 2.39e-07
12.50 5.21e-07 5.05e-08 2.09e-07 2.56e-07 4.19e-08 5.06e-08 3.22e-07 2.69e-07 2.44e-07
13.80 4.86e-07 5.12e-08 2.14e-07 2.49e-07 4.02e-08 5.01e-08 3.39e-07 2.48e-07 2.46e-07
15.24 4.53e-07 5.18e-08 2.24e-07 2.44e-07 3.87e-08 5.01e-08 3.55e-07 2.30e-07 2.48e-07
16.82 4.21e-07 5.22e-08 2.36e-07 2.41e-07 3.74e-08 5.05e-08 3.68e-07 2.16e-07 2.49e-07
18.57 3.92e-07 5.25e-08 2.52e-07 2.40e-07 3.65e-08 5.15e-08 3.79e-07 2.06e-07 2.48e-07
20.51 3.65e-07 5.26e-08 2.68e-07 2.39e-07 3.58e-08 5.30e-08 3.85e-07 1.98e-07 2.46e-07
22.64 3.40e-07 5.26e-08 2.85e-07 2.39e-07 3.56e-08 5.49e-08 3.87e-07 1.92e-07 2.43e-07
25.00 3.17e-07 5.26e-08 3.01e-07 2.39e-07 3.58e-08 5.73e-08 3.85e-07 1.89e-07 2.40e-07
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Temperature para–H+3 ortho–H+
3 para–H2D+ ortho–H2D+ ortho–D2H+ para–D2H+ ortho–D+

3 meta–D+
3 para–D+

3
K cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1

27.60 2.96e-07 5.27e-08 3.14e-07 2.38e-07 3.64e-08 5.98e-08 3.79e-07 1.86e-07 2.35e-07
30.48 2.77e-07 5.29e-08 3.24e-07 2.38e-07 3.75e-08 6.26e-08 3.68e-07 1.83e-07 2.28e-07
33.65 2.59e-07 5.32e-08 3.31e-07 2.37e-07 3.92e-08 6.53e-08 3.53e-07 1.81e-07 2.21e-07
37.15 2.44e-07 5.38e-08 3.33e-07 2.35e-07 4.14e-08 6.78e-08 3.34e-07 1.78e-07 2.12e-07
41.02 2.29e-07 5.46e-08 3.32e-07 2.32e-07 4.42e-08 7.01e-08 3.11e-07 1.75e-07 2.02e-07
45.29 2.16e-07 5.57e-08 3.28e-07 2.29e-07 4.76e-08 7.21e-08 2.85e-07 1.71e-07 1.91e-07
50.01 2.04e-07 5.68e-08 3.22e-07 2.24e-07 5.15e-08 7.36e-08 2.57e-07 1.66e-07 1.79e-07
55.21 1.92e-07 5.81e-08 3.13e-07 2.20e-07 5.59e-08 7.48e-08 2.29e-07 1.60e-07 1.67e-07
60.96 1.81e-07 5.95e-08 3.03e-07 2.14e-07 6.06e-08 7.56e-08 2.01e-07 1.54e-07 1.54e-07
67.31 1.71e-07 6.08e-08 2.91e-07 2.08e-07 6.54e-08 7.61e-08 1.76e-07 1.47e-07 1.42e-07
74.31 1.61e-07 6.21e-08 2.79e-07 2.02e-07 7.01e-08 7.63e-08 1.54e-07 1.40e-07 1.30e-07
82.05 1.51e-07 6.33e-08 2.67e-07 1.95e-07 7.44e-08 7.63e-08 1.34e-07 1.33e-07 1.19e-07
90.59 1.41e-07 6.43e-08 2.54e-07 1.88e-07 7.82e-08 7.61e-08 1.18e-07 1.25e-07 1.09e-07

100.02 1.31e-07 6.52e-08 2.41e-07 1.81e-07 8.12e-08 7.56e-08 1.05e-07 1.18e-07 1.00e-07
110.43 1.22e-07 6.58e-08 2.29e-07 1.73e-07 8.33e-08 7.50e-08 9.35e-08 1.10e-07 9.21e-08
121.93 1.13e-07 6.61e-08 2.17e-07 1.65e-07 8.45e-08 7.42e-08 8.42e-08 1.03e-07 8.50e-08
134.62 1.05e-07 6.61e-08 2.05e-07 1.57e-07 8.46e-08 7.31e-08 7.65e-08 9.58e-08 7.87e-08
148.64 9.70e-08 6.58e-08 1.93e-07 1.48e-07 8.40e-08 7.19e-08 7.00e-08 8.91e-08 7.31e-08
164.11 8.99e-08 6.50e-08 1.82e-07 1.40e-07 8.25e-08 7.04e-08 6.44e-08 8.27e-08 6.80e-08
181.20 8.35e-08 6.38e-08 1.71e-07 1.32e-07 8.05e-08 6.86e-08 5.94e-08 7.67e-08 6.34e-08
200.06 7.76e-08 6.23e-08 1.60e-07 1.23e-07 7.80e-08 6.67e-08 5.50e-08 7.09e-08 5.90e-08
220.89 7.23e-08 6.04e-08 1.50e-07 1.15e-07 7.51e-08 6.46e-08 5.11e-08 6.54e-08 5.49e-08
243.88 6.73e-08 5.83e-08 1.40e-07 1.08e-07 7.21e-08 6.23e-08 4.73e-08 6.02e-08 5.10e-08
269.27 6.28e-08 5.59e-08 1.31e-07 1.00e-07 6.90e-08 5.99e-08 4.38e-08 5.53e-08 4.73e-08
297.31 5.87e-08 5.34e-08 1.22e-07 9.34e-08 6.58e-08 5.74e-08 4.04e-08 5.07e-08 4.37e-08
328.26 5.48e-08 5.08e-08 1.14e-07 8.68e-08 6.27e-08 5.49e-08 3.73e-08 4.64e-08 4.03e-08
362.43 5.13e-08 4.81e-08 1.06e-07 8.07e-08 5.97e-08 5.24e-08 3.43e-08 4.23e-08 3.71e-08
400.16 4.80e-08 4.54e-08 9.85e-08 7.51e-08 5.67e-08 4.99e-08 3.15e-08 3.86e-08 3.41e-08
441.82 4.49e-08 4.27e-08 9.17e-08 6.99e-08 5.38e-08 4.74e-08 2.88e-08 3.51e-08 3.12e-08
487.81 4.21e-08 4.01e-08 8.53e-08 6.50e-08 5.11e-08 4.51e-08 2.63e-08 3.18e-08 2.85e-08
538.60 3.95e-08 3.76e-08 7.94e-08 6.06e-08 4.85e-08 4.27e-08 2.40e-08 2.88e-08 2.60e-08
594.67 3.70e-08 3.52e-08 7.40e-08 5.65e-08 4.59e-08 4.05e-08 2.19e-08 2.61e-08 2.36e-08
656.58 3.47e-08 3.29e-08 6.88e-08 5.27e-08 4.35e-08 3.83e-08 1.99e-08 2.35e-08 2.14e-08
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Temperature para–H+3 ortho–H+
3 para–H2D+ ortho–H2D+ ortho–D2H+ para–D2H+ ortho–D+

3 meta–D+
3 para–D+

3
K cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1 cm3 s−1

724.93 3.26e-08 3.08e-08 6.41e-08 4.91e-08 4.11e-08 3.62e-08 1.80e-08 2.12e-08 1.94e-08
800.40 3.05e-08 2.87e-08 5.96e-08 4.58e-08 3.88e-08 3.41e-08 1.63e-08 1.91e-08 1.76e-08
883.72 2.86e-08 2.68e-08 5.55e-08 4.27e-08 3.66e-08 3.20e-08 1.47e-08 1.72e-08 1.59e-08
975.72 2.68e-08 2.50e-08 5.15e-08 3.98e-08 3.43e-08 3.01e-08 1.33e-08 1.55e-08 1.43e-08

1077.30 2.51e-08 2.33e-08 4.78e-08 3.70e-08 3.22e-08 2.81e-08 1.20e-08 1.39e-08 1.29e-08
1189.45 2.35e-08 2.17e-08 4.43e-08 3.44e-08 3.00e-08 2.62e-08 1.08e-08 1.25e-08 1.16e-08
1313.28 2.20e-08 2.02e-08 4.09e-08 3.19e-08 2.80e-08 2.43e-08 9.70e-09 1.12e-08 1.04e-08
1450.00 2.05e-08 1.87e-08 3.77e-08 2.95e-08 2.59e-08 2.25e-08 8.70e-09 1.00e-08 9.33e-09
1600.95 1.90e-08 1.73e-08 3.47e-08 2.72e-08 2.40e-08 2.08e-08 7.80e-09 8.95e-09 8.36e-09
1767.62 1.76e-08 1.60e-08 3.18e-08 2.50e-08 2.21e-08 1.91e-08 6.97e-09 7.99e-09 7.47e-09
1951.64 1.63e-08 1.47e-08 2.91e-08 2.29e-08 2.02e-08 1.75e-08 6.23e-09 7.12e-09 6.67e-09
2154.81 1.50e-08 1.35e-08 2.66e-08 2.09e-08 1.85e-08 1.60e-08 5.55e-09 6.34e-09 5.94e-09
2379.14 1.38e-08 1.24e-08 2.42e-08 1.91e-08 1.69e-08 1.45e-08 4.94e-09 5.64e-09 5.29e-09
2626.82 1.26e-08 1.13e-08 2.19e-08 1.73e-08 1.53e-08 1.32e-08 4.39e-09 5.00e-09 4.70e-09
2900.28 1.15e-08 1.03e-08 1.98e-08 1.57e-08 1.38e-08 1.19e-08 3.90e-09 4.44e-09 4.17e-09
3202.22 1.04e-08 9.36e-09 1.79e-08 1.42e-08 1.25e-08 1.07e-08 3.46e-09 3.93e-09 3.70e-09
3535.58 9.48e-09 8.47e-09 1.61e-08 1.28e-08 1.12e-08 9.65e-09 3.06e-09 3.48e-09 3.27e-09
3903.65 8.57e-09 7.66e-09 1.45e-08 1.15e-08 1.01e-08 8.66e-09 2.71e-09 3.08e-09 2.90e-09
4310.04 7.75e-09 6.91e-09 1.30e-08 1.03e-08 9.04e-09 7.76e-09 2.40e-09 2.72e-09 2.57e-09
4758.74 6.99e-09 6.23e-09 1.16e-08 9.26e-09 8.10e-09 6.95e-09 2.13e-09 2.41e-09 2.27e-09
5254.15 6.31e-09 5.61e-09 1.04e-08 8.31e-09 7.26e-09 6.23e-09 1.89e-09 2.14e-09 2.02e-09
5801.13 5.70e-09 5.06e-09 9.39e-09 7.47e-09 6.51e-09 5.58e-09 1.68e-09 1.90e-09 1.79e-09
6405.05 5.15e-09 4.58e-09 8.45e-09 6.73e-09 5.85e-09 5.02e-09 1.50e-09 1.69e-09 1.60e-09
7071.85 4.67e-09 4.14e-09 7.63e-09 6.08e-09 5.27e-09 4.52e-09 1.34e-09 1.51e-09 1.43e-09
7808.06 4.24e-09 3.77e-09 6.91e-09 5.50e-09 4.77e-09 4.08e-09 1.20e-09 1.36e-09 1.29e-09
8620.92 3.87e-09 3.43e-09 6.28e-09 5.01e-09 4.33e-09 3.71e-09 1.09e-09 1.23e-09 1.16e-09
9518.40 3.55e-09 3.14e-09 5.73e-09 4.57e-09 3.95e-09 3.38e-09 9.86e-10 1.11e-09 1.05e-09

10509.31 3.26e-09 2.89e-09 5.26e-09 4.20e-09 3.61e-09 3.09e-09 8.99e-10 1.01e-09 9.60e-10
11603.38 3.01e-09 2.67e-09 4.85e-09 3.87e-09 3.33e-09 2.85e-09 8.25e-10 9.29e-10 8.80e-10
12811.35 2.80e-09 2.48e-09 4.50e-09 3.58e-09 3.08e-09 2.63e-09 7.61e-10 8.56e-10 8.12e-10
14145.07 2.61e-09 2.31e-09 4.19e-09 3.34e-09 2.86e-09 2.45e-09 7.05e-10 7.94e-10 7.53e-10
15617.64 2.45e-09 2.16e-09 3.92e-09 3.12e-09 2.67e-09 2.29e-09 6.58e-10 7.40e-10 7.01e-10
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stständig angefertigt, die benutzten Quellen und Hilfsmittel
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