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Zusammenfassung

Es werden drei verschiedene Zufallsmatrixmodelle untersucht, welche sich aus un-
geordneten physikalischen Systemen mit bosonischen Anregungen ergeben. Das er-
ste Modell entspringt der Betrachtung eines ungeordneten optischen Mediums und
wird mit rein numerischen Methoden behandelt. Es werden zwei verschiedene Re-
alisierungen der Unordnung betrachtet. Das zweite Modell geht vom allgemeinen
bosonischen Hamiltonian aus, der bilinear in den Erzeugungs- und Vernichtungsop-
eratoren ist und Stabilität der Bewegung garantiert. Um die Unordnung zu model-
lieren, wurde eine möglichst einfache Familie von Wahrscheinlichkeitsmaßen gewählt.
Diese erlaubt, alle Korrelationsfunktionen des Modells mit Hilfe bi-orthogonaler
Polynome explizit zu berechnen. Das dritte Modell unterscheidet sich vom letz-
teren nur durch zusätzliche Zeitumkehrinvarianz. Die Anwendung bi-orthogonaler
Polynome ist nun nicht mehr möglich, es wird auf die Supersymmetrie-Methode
zurückgegriffen. Hier kommt die kürzlich von Littelmann, Sommers und Zirnbauer
entwickelte Superbosonisierungs-Identität zum Einsatz, welche zunächst am Beispiel
des bereits in der Literatur bekannten und vollständig gelösten Gauß’schen ortho-
gonalen Ensembles demonstriert wird.
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Abstract

We study three different random matrix models, which arise from disordered physical
systems with bosonic excitations. The first model comes from the consideration
of a disordered optical medium and is treated by means of numerical methods.
Two different kinds of disorder are analyzed. The second one starts from the most
general Hamiltonian which is bilinear in the creation and annihilation operators. To
guarantee stability of the motion a certain condition is imposed. To treat disorder,
we study a simple family of probability measures. This family allows to calculate all
correlation functions by means of bi-orthogonal polynomials. The third model differs
from the latter by additional time reversal symmetry. The method of bi-orthogonal
polynomials cannot be applied, thus the supersymmetry method is used. We apply
the superbosonization identity that was recently developed by Littelmann, Sommers
and Zirnbauer. Its usage is illustrated at the example of the well-known Gaussian
orthogonal ensemble.
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Chapter 1

Introduction

1.1 Random matrix theory

The subject of random matrix theory is the eigenvalue statistics of large matrices of
a certain symmetry class. This question arose the first time in the 1930s. However,
it did not attract much attention at that time.

In the 1950s, intensive studies of random matrices in physics began with the work
of Wigner [Wig51, Wig58]. The physical aim behind these studies was to understand
excitations of heavy nuclei, representing a strongly interacting many-particle system.
The key physical idea can be formulated as follows: In general, it is impossible to
exactly calculate the energy levels of a strongly interacting many-particle system.
Thus one assumes that a few fundamental properties of the system, for instance total
spin and symmetries, adequately characterize the system. The statistical properties
of the eigenvalue distribution are then obtained by means of the assumption that
all further details of the Hamiltonian behave as random variables. This way of
thinking turned out to be very successful, not only in nuclear physics, but also in
many other fields of research. For instance, it can be applied to chaotic quantum
systems, or even to number theory: It is a surprising and fascinating observation
that the correlations of the zeros of the Riemann Zeta function correspond to those
of the eigenvalues of a Hermitean random matrix.

Using the above mentioned assumptions, one is able to construct a random en-
semble of N×N matrices as an idealization of a class of disordered physical systems.
For the choice of the probability measure there are many possibilities. However, it
is often restricted by the symmetry transformations which leave the class of physical
systems invariant. In the limit of large N the statistical properties of the eigenvalues
are in a wide range independent of the details of the chosen probability distribution
of the matrix elements. This can be understood as a generalization of the well-known
central limit theorem.

Historically, the most famous random matrix ensembles are the three Wigner-
Dyson Gaussian ensembles of orthogonal, unitary, and symplectic symmetry: GOE,
GUE, and GSE. In the case of GOE the domain of matrices are the symmetric real
ones, the probability measure is just a Gaussian distribution of each entry. The GUE
consists of Hermitean matrices, the probability measure is again Gaussian. From a
physical point of view, the difference between these two is the additional time re-
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2 1.2. Bosonic excitations of disordered systems

versal symmetry in the GOE. The GSE consists of self-dual Hermitean quaternionic
matrices, the probability measure is Gaussian in all independent degrees of freedom.

What one wishes to calculate are often ensemble averages of functions depending
only on the eigenvalues of the matrices. These functions are called radial. Let M be
the set of allowed matrices X of dimension N×N , dµ(X) its probability distribution,
and F (X) a radial function. Then the task is to calculate the disorder integral

〈F 〉 =

∫

M

F (X)dµ(X)

in the limit of large N , or better, for any N . Usually, one is interested in n-point
correlation functions of eigenvalues ω1, ω2, . . . , ωn given by

Rn(ω1, . . . , ωn) =

〈

n
∏

i=1

δ(ωi1−X)

〉

.

It turns out that the level correlations of heavy nuclei coincide with those of
the GOE. However, it should be always kept in mind that the entire spectra are
not reproduced correctly. Particularly, Wigner’s semicircle law has no counterpart
in nuclear physics. For an introduction in random matrix theory see e.g. [Meh04],
[BFF+81] and references therein.

Of course, there has been much progress in random matrix theory since the work
of Wigner and Dyson. Random matrix ensembles occurred, which do not belong
to the Wigner-Dyson symmetry classes [AZ05]. The relation of random matrix
theory an symmetric spaces has been emphasized [CM04] and symmetric superspaces
occur in the classification of the different models [Zir98b]. As a consequence, it
is recognized that there are not only the historical Wigner-Dyson ensembles, but
exactly ten symmetry classes.

1.2 Bosonic excitations of disordered systems

There are many examples of disordered systems with bosonic excitations. Let us
mention excitations of Bose glasses [FWGF89], electromagnetic modes in an optical
medium, normal modes of a pinned charge density wave [GS77], spin waves in a
magnet, which are called magnons, the vibrational modes of a solid or the oscillations
of the superfluid density of a Bose-Einstein condensate. In the vicinity of the ground
state these systems can be linearized. What is obtained, is a bosonic Hamiltonian,
which is bilinear in the creation and annihilation operators. The general question
we ask is the following: How does generally disorder affect the physics of the system,
especially at low energies?

To answer these questions, one may try to look at the results for problems
with fermionic excitations. Here, the situation is well understood: In the case of
high-energy excitations, the systems exhibit the universal behavior predicted by the
Wigner-Dyson statistics [Dys62]. For low energies, the properties are also well un-
derstood. The canonical anticommutation relations of the fermionic Fock operators
lead to restrictions of the Hamiltonian matrix. A classification of possible symme-
tries has been carried out and can be found in [HHZ05].
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In the case of bosonic systems progress has been much slower. The method
applied to fermionic systems cannot be copied to bosonic problems. The usual
strategy for modelling disorder on the fermionic site is to choose the entries of the
Hamiltonian matrix as independent and identically distributed random variables. If
one tries to add disorder to a bosonic system using this scheme, the system exhibits
instable dynamics rather than stable oscillations in the vicinity of the ground state,
i.e. we have to look for a different strategy.

1.3 Outline

In this thesis, we investigate three different random matrix ensembles arising from
physical models. It is organized as follows: In chapter 2 we establish a model for
a disordered optical medium. We use a discretization of Maxwell’s equation on a
pair of 3-complexes (K,K ′). For two different kinds of disorder, we derive random
matrix ensembles from the model. The average spectrum is calculated by means of
numerical methods, i.e. we use a routine for numerical diagonalization and average
the spectrum of eigenvalues over many randomly chosen systems. As a result, we
find for the second type of disorder an interesting behavior of the density of states
at low frequencies. At approximately one fourth of the maximal frequency of the
spectrum, a peak arises that goes up with increasing disorder.

The approach pursued in chapter 3 is in some sense complementary to 2, since it
is more mathematically oriented. Here, we start from the most general Hamiltonian
which is bilinear in the bosonic creation and annihilation operators of a Fock space
with N different bosons. It is also possible to regard this Hamiltonian as the most
general classical one, which is quadratic in N positions and momenta. The bilinear
structure of this Hamiltonian can be build up using a 2N×2N matrix. At this stage
of abstraction the difference between the classical and the quantum system cannot be
seen anymore. The requirement of stability of the motion leads to a restriction for the
allowed matrices, they must be elements of a positive cone E0 in the symplectic Lie
algebra. To model the disorder, a simple family of probability measures is imposed.
These measures are not of Gaussian type, since the symmetry group of the positive
cone is noncompact, thus we present a different strategy to obtain natural measures.
The question for the statistics of eigenfrequencies of the Hamiltonians averaged over
E0 leads to a random matrix model, which is completely solved. For large N , the
usual bulk scaling limit can be found and we obtain sine-kernel universality for the
correlation functions, as known from the GUE. In addition, there exists an unusual
scaling limit at the hard edge of the spectrum, a rescaling of the energy according
to ω → z

√
N . The results of this chapter have been published in [LSZ06].

Chapter 4 is needed as a preparation for the model considered in chapter 5. Nev-
ertheless, this chapter is useful on its own. We present how Efetov’s supersymmetry
method [Efe83] works at the example of the Gaussian orthogonal ensemble. Instead
of the usually used Hubbard-Stratonovich transformation, we apply the recently de-
veloped superbosonization identity [LSZ08]. In the following, the limit of a large
number of degrees of freedom can be performed. As a result, we obtain Wigner’s
semicircle law and a relatively simple superintegral which generates the correlation
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functions. To solve this superintegral, literature helps: One has just to look for
explicit forms of the GOE correlation functions. Hence, a direct evaluation of the
superintegral is not necessary.

In chapter 5 we consider a random matrix ensemble very similar to that from
chapter 3. As an additional symmetry, we require time reversal invariance, which
leads to a restriction of the positive cone E0. This structure makes the ensemble
much harder to handle than the one of chapter 3. In particular, the Harish-Chandra–
Itzykson–Zuber integral found in chapter 3, has no analog. Thus we concentrate on
the application of the supersymmetry method to obtain results. Again, it turns out
that for large N two convergent scaling limits exist. In the bulk scaling, a complete
solution of the ensemble is possible, i.e. we are able to calculate all correlation
functions in the form of superintegrals. Not surprisingly, these superintegrals are
already known from the results of chapter 4. Since the correlations of the GOE
are well known in a very explicit form, we use this result to give an explicit form
for the correlations of the ensemble. In the microscopic scaling at the hard edge of
the spectrum the situation is much more complicated, here we find a non-analytical
behavior of the density of states. An attempt to apply the methods of chapter 3 to
the model is presented in appendix C.2 . However, for the integral found therein no
strategy to solve it is known.



Chapter 2

Two models of a disordered optical

medium

In this chapter we derive a random matrix model from the question, how the elec-
tromagnetic modes behave in a disordered medium. The optical medium is modeled
by a pair of 3-complexes (K,K ′), i.e. a bipartite lattice, which provides a basis
for discrete versions of Maxwell’s equations. Disorder is obtained by assigning each
vertex a value for the magnetic permeability µ and the electric permittivity ε. In
our model these quantities are isotropic, i.e. we do not use their tensor structure.
After the choice of a certain probability distribution for µ and ε, we compute the
average spectrum of the system by means of numerical diagonalization.

2.1 Classical electrodynamics

Maxwell’s theory of classical electrodynamics is usually summarized in form of the
four Maxwell equations. A comprehensive introduction to this subject is e.g. the
famous textbook by J. D. Jackson [Jac75]. In this book the theory is presented, as
preferred by the majority of authors, in the usual vector calculus. Here we prefer the
formulation in terms of differential forms. It can be found e.g. in [Zir98a, HO03].
In this formulation Maxwell’s equations read

dD = ρ dE = −Ḃ
dH = j + Ḋ dB = 0 . (2.1)

In addition, we need
D = ε ⋆ E and B = µ ⋆ H . (2.2)

As usual, E denotes the electric field, B the magnetic induction, D the electric
displacement, and H the magnetic field. In this formulation of electrodynamics, E
is a (even) 1-form, B is a (even) 2-form, D is an odd 2-form, and H is an odd 1-form.
This classification allows a simple geometric view on these quantities. We imagine a
k-form in a n-dimensional space as an (n− k)-chain. In the case of even differential
forms, the chain carries an outer orientation, in the case of odd forms an inner one.
Figure 2.1 illustrates this picture. This geometric view helps us to construct our
random matrix model, since it is easy to discretize.

5



6 2.2. Discrete electrodynamics

E D

H B

Figure 2.1: The geometric view of the electrodynamic fields as chains. E and B
carry an inner orientation, D and H an outer one.

2.2 Discrete electrodynamics

We consider a dielectric medium with randomly distributed dielectric constant and
magnetic permeability. Our aim is to calculate the modes of the electromagnetic
field and to average over disorder. We start by constructing a discrete version
of Maxwell’s equations (2.1). This can be done on a pair of 3-complexes (K,K ′)
equipped with a Hodge operator ⋆ : Ci(K) → C3−i(K ′). In this scheme, E and B
are represented by 2- resp. 1-chains on K, and D and H by 1- resp 2-chains on K ′.
In our approach we use the fields B and D as the dynamical variables. Due to the
absence of free charges and currents the picture of figure 2.1 can be simplified: now
D is a closed 2-form, and therefore the 1-chains to represent it are always closed
loops. The same holds for B.

In this picture, the dynamics can be obtained as follows. The closed loops allow
us to define a degenerate commutator relation of B and D, denoted by [B,D], as
illustrated by figure 2.2 . The degeneracy occurs due to the gauge invariance of
electrodynamics. A concrete realization of the pair (K,K ′) can be establish by
covering space by a bipartite cubic lattice. Note that the actual geometry of the
lattice does not influence the dynamics in the limit of large N , thus we are free to
choose the most convenient one. The elementary degrees of freedom are now the
closed loops given by the boundaries of the quadratic plaquettes. Thus, if the lattice
has N vertices in each of the two components, we have 6N degrees of freedom. The
lattice is composed of unit cells shown in figure 2.3 . A unit cell consists of three
plaquettes of K and K ′ each. Figure 2.4 shows a part of the lattice consisting of
three unit cells. The coordinates of the unit cells are given by n = (n1, n2, n3),
n + e1, and n + 2e1. To clarify our choice of closed loops and orientations, one loop
of every type is highlighted.
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B

D

Figure 2.2: The geometric definition of the commutator. If the orientations of the
loops match, we define [B,D] = +1, if they do not [B,D] = −1. If the loops do not
intersect, the value is [B,D] = 0.

��
��
��
��

��
��
��
��

e2

e3

e1

B(n)

n

n

D(n)

K ′

K

Figure 2.3: A unit cell of the pair of 3-complexes (K,K ′). It consists of six plaque-
ttes. It is denoted by the coordinates n = (n1, n2, n3).
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��
��
��

e2

e3

e1

n + e1 n + 2e1
n

B3(n)

B1(n + 2e1)

D2(n + e1)

D3(n + 2e1)

n + 2e1n + e1n

B2(n + e1)

K

K ′
D1(n)

Figure 2.4: Realization of the pair of 3-complexes (K,K ′) by a bipartite cubic lattice.
We can read off the nonvanishing commutators of the bold loops by checking the
orientation: [B3(n),D1(n)] = 1 and [B1(n + 2e1),D3(n + 2e1)] = −1 .

2.3 The commutators of B and D

Using the law defined by figure 2.2, we can read off the following relations from
figure 2.4:

[Bi(n),Dj(n)] =
∑

k

ǫijk

[Bi(n),Dj(n− ek)] = −ǫijk ,

or equivalently

[Di(n), Bj(n)] = −
∑

k

ǫijk

[Di(n), Bj(n + ek)] = ǫijk . (2.3)

The vector ek denotes a displacement of one unit in the k-direction in the lattice.
As usual, ǫijk is defined by

ǫijk =

{ +1 if (i, j, k) is a cyclic permutation of (1, 2, 3) ,
−1 if (i, j, k) is an anticyclic permutation of (1, 2, 3) ,
0 else .

To each unit cell we assign a pair of values for the dielectric constant and the
magnetic permeability

(

ε(n), µ(n)
)

.
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2.4 Hamiltonian system

Now it is simple to obtain the equations of motion for our problem. As usual, the
Hamiltonian is given by the total energy, which reads in our case

H =
∑

n

(

1

2µ(n)
B(n)2 +

1

2ε(n)
D(n)2

)

. (2.4)

The sum runs over all vertices of the (K,K ′), B(n) and D(n) contain the three
components of B and D in each vertex. To handle all degrees of freedom in a
compact form, we define the vector

x = (B1(1), B2(1), B3(1), . . . , B1(N), B2(N), B3(N),D1(1), . . . ,D3(N))t ,

wherein the natural numbers are placeholders for the coordinates of the lattice. The
number of vertices of the lattice is given by N = N1 × N2 × N3. The equations of
motion of the Hamiltonian system defined above are given by

ẋ = XH(x) = [x,H] . (2.5)

This equation determines the Hamiltonian vector field XH(x). Since we are looking
for the characteristic frequencies of the electromagnetic field, we have to solve the
equation

ẋ = XH(x) = iωx .

In other words, we want to know the eigenvalues of XH . From the Hamiltonian (2.4)
and the commutator relations we can read off the structure of this matrix. It can
be written in the block form

XH =

(

0 ATε−1

−AtTµ−1 0

)

.

Each of the blocks has dimension 3N × 3N . The matrices T−1
µ and T−1

ε contain the
electric permittivity ε and the magnetic permeability µ. They are given by

Tµ−1 = diag
(

µ−1(1), µ−1(1), µ−1(1), µ−1(2), . . . , µ−1(N)
)

and
Tε−1 = diag

(

ε−1(1), ε−1(1), ε−1(1), ε−1(2), . . . , ε−1(N)
)

.

The structure of the matrix A can be extracted from our lattice and (2.5) by means
of the commutator relations (2.3). Every loop of the complex K is entangled with
four loops of the dual complex K ′ and vice versa. Thus A is sparse and has only
four non-zero entries in every row and every column.

Before we start to calculate the density of states (DOS), let us state the following:
Due to the gauge invariance of electrodynamics, we expect to find a spectrum, which
has one third zero-modes. Hence, our calculations always yield a huge peak of zero-
modes, but we do not show it in the figures. In principle, it is possible to establish
a lattice model which avoids these modes in advance by reducing the number of
independent degrees of freedom. However, this complicates the structure of the
matrix A. The numerical advantage, which is gained by reducing the matrix size, is
compensated by the much more complicated setting of the problem.
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2.5 Analytic solution of the problem without disorder

First, we want to answer the rather simple question, how the DOS can be calculated
in the absence of disorder, i.e. we set ε = µ = 1 in every vertex of the lattice. In
this case, a standard calculation of solid state physics (see e.g. [Czy00]) can be used
to calculate the eigenfrequencies.

We want to solve the equation
(

Ḃ

Ḋ

)

= XH

(

B
D

)

= iω

(

B
D

)

for ω. We introduce the notation xanα for the vector which contains all components
of B and D. The index n = (n0, n1, n2) denotes the vertex in the lattice, B,D the
field, and α ∈ 1, 2, 3 the spatial component. Using this notation the matrix XH
has six indices, XHanα,a′n′α′ . Since the problem is invariant under translations, the
matrix elements only depend on the difference of the lattice sites Rn−Rn′ , therefore

XHaαn,a′α′n′ = XHaα,a′α′(Rn −Rn′) .

In each vertex of the lattice, we make the ansatz

xanα =
√
ca vaαne

−iωt ,

to model the time dependence, where cB = µ0 and cD = ε0. Therefore we obtain
for the coefficients vaαn

iωvaαn =
∑

a′α′n′

Ωaα,a′α′(Rn −R′n)vn′a′α′ ,

where Ωaα,a′α′ = ca√
εµXHaα,a′α′ . For the dependence of the lattice site we make the

ansatz vnaα = waαe
iqRn . Inserting this into the previous equation yields

iωwaα =
∑

n′a′α′

Ωaα,a′α′(Rn −Rn′)e
iq(Rn′−Rn)wa′α′ .

With the Definition Ωaα,a′α′(q) =
∑

n
Ωaα,a′α′(Rn)e

iqRn we get

iωwaα =
∑

aα,a′α′

Ωaα,a′α′(Rn)wa′α′ ,

which has to be solved for all possible values of the wave vector q. The explicit form
of the Fourier transform of the matrix Ω(R) reads

Ω(q) =
1√
εµ
×



















0 0 0 0 1− eiq3 −1 + eiq2

0 0 0 −1 + eiq3 0 1− eiq1
0 0 0 1− eiq2 −1 + eiq1 0
0 1− e−iq3 −1 + e−iq2 0 0 0

−1 + e−iq3 0 1− e−iq1 0 0 0
1− e−iq2 −1 + e−iq1 0 0 0 0



















.
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1 2 30

.5

ρ(ω)

ω√
12

∝ ω2

Figure 2.5: DOS of the clean system. The dashed line shows the asymptotics for
small ω, which is given by ω2/(2π2). Since the DOS is symmetric with respect to
ω = 0 it is reasonable to show only its positive part.

The six eigenvalues of Ω(q) are given by 0 and ± 2√
εµ

√

sin2 q1
2 + sin2 q2

2 + sin2 q3
2 ,

each of them with multiplicity two. As predicted in the previous section, one third
of the eigenvalues is zero. The vector q must be an element of the first Brillouin
zone, i.e. for a lattice with dimensions N1 ×N2 ×N3 we have the condition

qα =
2πlα
Nα

,

with lα ∈ {−Nα2 + 1, . . . , Nα2 }. To calculate the density of states we have to evaluate
the integral

1

8π3

∫

S(ω)

ds

|∇qω(q)|
Calculation of the full integral in a closed analytical expression is impossible. Using
numerical methods of integration leads to the density of states (DOS) shown in

figure 2.5. The spectrum ends at ω =
√

12√
εµ . The two kinks reflect the geometry of

the first Brillouin zone.

It is possible to calculate the behavior near ω = 0 for ω < 0 and ω > 0. Due to

symmetry we consider only the case ω > 0, i.e. ω(q) =
√

sin2 q1
2 + sin2 q2

2 + sin2 q3
2 .

With

|∇qω(q)| = 1

ω

√

sin2 q1 + sin2 q2 + sin2 q3

we linearize the problem in the vicinity of ω = 0. Since the only zero of the square

root
√

sin2 q1
2 + sin2 q2

2 + sin2 q3
2 in the first Brillouin zone is q1 = q2 = q3 = 0 we

simply find

|∇qω(q)| ≈ 1 .
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Now the integral becomes very simple,

1

8π3

∫

S(ω)

ds

|∇qω(q)| ≈
1

8π3

∫

S(ω)
ds =

4π

8π3
ω2 =

1

2π2
ω2 .

The good agreement of the DOS with this expansion in the vicinity of ω = 0 can
be seen in figure 2.5. This quadratic behavior corresponds to that expected from
Debye’s model for the excitations of a lattice.

2.6 Numerical calculation of the eigenmodes

To calculate the eigenvalues of XH we first notice that the matrix can be transformed
into an antisymmetric form:

X̃H :=

(

Tµ−1/2 0

0 Tε−1/2

)

XH

(

Tµ1/2 0

0 Tε1/2

)

=

(

0 Tµ−1/2ATε−1/2

−Tε−1/2AtTµ−1/2 0

)

.

In particular, X̃H can be diagonalized by an orthogonal transformation. To simplify
the numeric problem, we consider the matrix

X̃2
H =

(

−Tµ−1/2ATε−1AtTµ−1/2 0

0 −Tε−1/2AtTµ−1ATε−1/2

)

.

Since the upper and the lower block have the same spectrum of eigenvalues, it is
sufficient to consider only the upper block. Its eigenvalues are simply the eigenvalues
of XH squared. Of course, the multiplicity of the eigenvalues decreases by a factor
two, which optimizes the problem for numeric calculations. Moreover, the block is
symmetric. This allows us to use the routine dsbev of the linear algebra library LA-
PACK. This routine is optimized for the diagonalization of real symmetric matrices
with double numerical accuracy.

2.7 Gaussian disorder

In the clean system the values of µ and ε are equal to 1 . The first model for the
disorder we consider is of Gaussian type. We consider the complex (K,K ′) and
replace the constant values of ε = 1 and µ = 1 by Gaussian distributions with mean
1 and variance τ .

Now the strategy is simple, it is the usual Monte-Carlo integration. For a system
consisting of N vertices we randomly choose a stochastic set of N values of ε and µ
each and construct the matrix X̃H . Then the eigenmodes are calculated by numerical
diagonalization and stored in a list. Then the procedure has to be restarted.

In principle, every eigenvalue produces a δ-peak in the spectrum. To see a curve,
the peaks have to be regularized by a peak with a finite width. The choice of the
value of the width is rather uncritical. However, it should be small enough in order
not to cover up the structure of the curve.
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1 2 3 4 5 60

.5

ρ(ω)

ω√
12

Figure 2.6: Spectrum of the system with Gaussian disorder.

For τ = 0 the system is clean and we obtain the DOS shown in figure 2.5 . For
increasing values of τ , the DOS is shown in figure 2.6 .

The figure shows systems with variance 0.01 up to 0.28 . The effect of the in-
creasing value of τ is a broadening of the support; recall that the hightest eigenvalue
of the clean system is

√
12 . As an additional effect, the edges of the spectrum are

rounded.
From a physical point of view it is clear that the variance must be limited: With

increasing values of τ the probability to obtain negative values for ε or µ becomes
bigger. This should be avoided. One possibility to avoid this problem is to cut the
Gaussian distribution and to use just its positive part. However, for the numerical
calculation, this makes no difference as long as τ does not exceed approximately
0.29 . If τ becomes larger, complex eigenvalues appear, i.e. the system becomes
instable.

One may ask what happens if the variances of µ and ε are set independently.
We find that the qualitative result does not differ from figure 2.6 .

Behavior at ω = 0

Figure 2.7 shows the curves of figure 2.6 under a magnifying glass. It is remarkable
that the curves do not differ from each other, i.e. the disorder of Gaussian type has
no effect on the low-frequency excitations.

Similar results in the literature

The results obtained by modelling the Gaussian disorder are very similar to those
found in [SDG98]. In this article, a cubic lattice of one-dimensional harmonic oscilla-
tors of equal masses is analyzed. The coupling constants between nearest neighbors
are given by a Gaussian distribution. Disregarding the zero modes, we found if the
system is clean that the DOS is exactly the same which has been found in section
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.05
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ρ(ω)
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Figure 2.7: Spectrum of the system with Gaussian disorder near ω = 0 . The dashed
line shows the analytical solution of the clean system, the dotted one the function
ω2/(2π2).

2.5, see figure 2.5 . Switching on the disorder, there is at least a qualitative similarity
left. However, a total equivalence of the models is impossible, since the number of
degrees of freedom differs by a factor 6 but the number of random variables, namely
µ and ε compared with the number coupling constants of the harmonic oscillators,
only by 2/3 .

2.8 Non-Gaussian disorder

Our second, more interesting model of disorder is constructed as follows: We have
two kinds of impurities, the one is modelled by changing the value of ε from 1 to
εpert, the other by setting µ = µpert. We want to choose εpert = ∞ and µpert = 0,
which corresponds to a metallic or a superconducting grain in the optical medium,
respectively. However, these values cause problems in the numerical calculations,
thus we approximate them by εpert = 1010 and µpert = 10−10. Now it remains to fix
the concentration c of impurities. We analyzed systems starting from c = 0 up to
c = 0.5 .

Again, we use Monte-Carlo integration. For a system consisting of N vertices we
choose a stochastic sets of N ·c vertices where we set ε = εpert and another stochastic
set with µ = µpert. The eigenmodes are calculated by numerical diagonalization and
stored in a list.

Of course, the more random matrices are diagonalized, the smoother the average
DOS will be. In our case, we choose a system size up to N1 = N2 = N3 = 16, which
corresponds to a matrix of size of approximately 12200 × 12200. Using such large
matrices, the convergence of the DOS is rather fast, it is sufficient to diagonalize a
few hundred or even less matrices to obtain a smooth DOS.

Results

Figure (2.8) shows the average DOS for a series of values of c. It is clear that for
small values of c the curve resembles the DOS of the clean system shown in figure
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2.5. Let us remark that the total mass of all spectra is normalized to 1, in order to
compare them.

In figure 2.8 a), we see some different effects of the disorder. The first one is a
general shift of the DOS to lower frequencies. The right edge of the DOS moves left
with increasing disorder.

The second one is a softening of the structure of the clean DOS. The corners at
ω ≈ 2 and ω ≈ 3 disappear.

The third effect is the appearance of a peak around ω ≈ 0.9 for almost all values
of c. For higher values of c, this peak is accompanied by two more peaks. Properties
of the peak around ω = 0.9 are shown in figures 2.9a)-d). Using Gnuplot, we fitted a
Gaussian curve hp exp(−(ω−ωp)2/w2

p) with the free parameters position ωp, height
hp, and width ωp in the peak. Gnuplot uses the nonlinear least-square Marquardt-
Levenberg algorithm and produces reliable results. This has been done for many
values of the impurity concentration c, namely c = 0.01, 0.02, . . . , 0.3, 0.32, . . . , 0.5 .
Figure 2.9a) shows that the position is almost constant. The dependence on c is
only weak. Figure 2.9b) shows the relative number of modes which appear at low
frequencies due to the disorder. Up to the value c ≈ 0.35, the number increases
almost linearly. The height, shown in figure 2.9b) also starts linearly for small
values of c.

Thus, we have found an interesting feature of a disordered optical medium using
this special model of disorder. The peak can be interpreted as boson peak, since it
fits into the context in which this notion is used: It is an enhancement of the DOS
for low frequency excitations of a bosonic system.

2.9 Outlook

It would be desirable to have an analytical method to compare the results of this
chapter with. Here, it is promising to search for a kind of mean-field approxima-
tion. The task is to construct an effective optical medium, which has approximately
the same DOS as the disorder-averaged medium under consideration. The great
advantage of such a medium would be its translational invariance. This permits the
application of analytical methods and to calculate the DOS of large systems. This
method is known as coherent potential approximation [Czy00]. In [SDG98] it has
been successfully applied to a lattice of harmonic oscillators with a random nearest
neighbor coupling. However, a direct transfer of this method to the optical medium
is impossible.
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Figure 2.8: The density of states ρ(ω). Figure a) shows spectra with c = 0.01 up to
c = 0.15, figure b) with c = 0.2 up to c = 0.5. The dashed line shows the DOS of
the clean system.
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Figure 2.9: Properties of the peak near ω = 0. On the previous page, diagram
a) shows the position of the peak and b) the relative number of all modes which
appear at low frequencies due to the disorder. In diagram c) the height of the peak
is plotted and in d) the width.



Chapter 3

Bosonic random matrix ensemble

In this chapter we investigate a random matrix model for disordered bosons. The
model can be understood as a system of N coupled harmonic oscillators, or alter-
natively, as the most general Hamiltonian which is bilinear in N different pairs of
bosonic Fock operators. The random matrix in this model is given by the masses and
stiffnesses of the oscillators. In order to define a stable system, this matrix has to
fulfill a certain stability condition, which fixes the domain of our random matrix en-
semble. We will see that it is diffeomorphic to a cone in the real symplectic Lie alge-
bra. To construct a reasonable probability measure, we are guided by simplicity and
symmetry. These principles lead to a model which can be completely solved. That
is, all correlation functions can be calculated by means of bi-orthogonal polynomials
for all N . A comprehensive discussion has been published in [LSZ06]. However,
here we present another approach to the arising Harish-Chandra–Itzykson–Zuber
type integral.

3.1 The quadratic Hamiltonian of a stable motion

Let Q1, . . . , QN be canonical position variables and P1, . . . , PN their conjugated
momenta. We start with a quadratic Hamiltonian of the form

H =
1

2

N
∑

i,j=1

(PiBijPj +QiCijQj + PiAijQj +QiA
t
ijPj) , (3.1)

where A, B, and C are real matrices satisfying the conditions B = Bt and C = Ct.
In addition, we impose

h :=

(

B A
At C

)

> 0 , (3.2)

i.e. all eigenvalues of this matrix should be positive. This condition ensures positivity
of the characteristic frequencies of the system described by (3.1) and therefore a
stable motion.

Now we rewrite the Hamiltonian in the form

H =
1

2
( P Q )X

(

Q
−P

)

19



20 3.1. The quadratic Hamiltonian of a stable motion

with

X =

(

A −B
C −At

)

= hJ and J =

(

0 1N
−1N 0

)

.

To handle these kind of Hamiltonians we use the theory of Lie groups and Lie
algebras [Bak04].

It can be easily seen that X fulfills the defining condition for the Lie algebra
sp(2N,R) of the real symplectic group Sp(2N,R). The latter is defined by

Sp(2N,R) = {g ∈ GL(2N,R)|gtJg = J} ,

and the former is given by

sp(2N,R) = {X ∈ M2N (R)|XtJ + JX = 0} .

Therein, M2N (R) denotes the set of real 2N × 2N matrices. Via a symplectic and
an additional unitary transformation X can be brought to diagonal form

UgXg−1U−1 = idiag(ω1, ω2, . . . , ωN ,−ω1,−ω2, . . . ,−ωN ) =: iΩ (3.3)

with some particular g ∈ Sp(2N,R) and

U :=
1√
2

(

1N i1N
1N −i1N

)

.

The eigenvalues ωi are the characteristic frequencies of the Hamiltonian (3.1). In
order to obtain a concise representation of the set containing all systems with positive
frequencies, we combine the symplectic and the unitary transformation. This leads
to a representation of the real symplectic group as a subgroup of GL(2N,C),

S̃p(2N,R) = {g̃ ∈ GL(2N,C)|g̃ = Σ3g̃
−1†Σ3 = Σ1g̃Σ1} .

To distinguish this representation from the fundamental one, we added a tilde over
the symbols. The matrices Σ1 and Σ3 are given by

Σ1 =

(

0 1N
1N 0

)

and Σ3 =

(

1N 0
0 −1N

)

.

The corresponding Lie algebra reads

s̃p(2N,R) = {X ∈ M2N (C)|X = −Σ3X
†Σ3 = Σ1X̄Σ1} . (3.4)

For the Hamiltonian H the unitary transformation U corresponds to a transforma-
tion to the representation with annihilation and creation operators 1√

2
(Q+ iP ) 7→ â

and 1√
2
(Q − iP ) 7→ â†. The transformed matrix X̃ = UXU−1 is contained in

s̃p(2N,R) and has the form

X̃ =

(

a b
b† −at

)

, (3.5)
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where a† = −a and bt = b. All matrices of this type with positive frequencies ωi are
given by the set

E0 = {X̃ ∈ s̃p(2N,R)|X = iAd(g̃)Ω, g̃ ∈ S̃p(2N,R)/T, ωi > 0} ,

which is a positive cone in s̃p(2N,R). Since the diagonal matrices Ω commute with
elements of the maximal torus T in S̃p(2N,R), the representation of a particular X̃
by iad(g)Ω is not unique. Therefore we restrict g̃ to the quotient of the symplectic
group and its maximal Torus.

To simplify our notation we omit the tilde from now on. The symbols Sp(2N,R),
sp(2N,R), g, X, etc. shall always refer the representations of the Lie group and
its Lie algebra obtained by the unitary transformation (3.3) and (3.4), which is
equivalent to the fundamental representation.

3.2 Probability measure

The definition of a random matrix ensemble requires two important components.
First, one needs to define the domain of the ensemble, which has been done in the
previous section. Second, a reasonable probability measure is required to fix the
distribution of the ensemble.

Now we want to define a probability measure P (X)dX on the set E0, which
shall give the probability to find a system corresponding to the matrix X in the
volume element dX. In the case of GOE, GUE, and GSE the situation is clear. The
Gaussian measures are constructed in such a way that they are invariant under the
action of the whole symmetry group. This suggests to make a similar ansatz for the
desired probability measure,

P (X)dX
?∝ e−TrX2

dX ,

which is invariant under the symmetry group of our ensemble given by the real
symplectic group Sp(2N,R). This causes a problem: since Sp(2N,R) is noncompact
the integral over the domain E0 does not exist.

Thus the best we can do is to postulate invariance under the maximal compact
subgroup of Sp(2N,R), which is given by U(N). In order to enforce normalizability
of the probability measure we use the Lebesgue measure on E0 together with an
exponential factor,

P (X)dX = c exp(iτTrΣ3X/2)dX , (3.6)

with a free parameter τ > 0 and a normalization constant c. The U(N)-invariance
can be seen by writing

g =

(

u 0
0 −ut

)

with a unitary u and substituting X by gXg−1.
The measure (3.6) can be generalized to a whole family of measures. Since

the determinant of X is always positive, we can multiply by an additional factor
Det(X)(l−1)/2 with positive integer l. We get

P (X)dX = c exp(iτTrΣ3X/2)Det(X)(l−1)/2dX . (3.7)
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This measure is still U(N)-invariant.
A more natural motivation to add this factor comes from the following point

of view: Every positive symmetric matrices h, given by (3.2) can be obtained by
adding up a sufficiently large number of rank-one projectors, according to

hij =
M
∑

α=1

viαvjα , i, j = 1, . . . , 2N ,

with a set of real numbers viα. The number of different projectors must be at least
N , we introduced here M := N + l. We now consider the viα as the fundamental
variables, and choose them to be independently and normally distributed with zero
mean and variance τ−1. Pushing forward the probability distribution of the viα to
a probability distribution dµ(h) for h leads to

dµ(h) ∝ e−τTrh/2Det(h)(l−1)/2
∏

i≤j
dhij .

Using X = hJ , we immediately obtain the family of measures given by (3.7). We
see that the parameter l arises in a natural way by the choice of M .

3.3 Disorder average of a radial function

We are interested in the ensemble average of so called radial functions f , which only
depend on the characteristic frequencies ω1, . . . , ωN of the system. Averaging over
all allowed systems leads to the integral
∫

E0

exp (iτTr(Σ3X)/2) Det(X)(l−1)/2f(ω1, . . . , ωN )dX

=

∫

RN+

N
∏

i=1

dωi

∫

Sp(2N,R)/T

exp
(

iτTr(Σ3gΩg
−1)/2

)

Det(iΩ)(l−1)/2jf(ω1, . . . , ωN )dgT .

(3.8)

Therein j denotes the Jacobian of the transformation X = igΩg−1 which will be
calculated in the next paragraph. T ≃ U(1)N is the maximal torus in Sp(2N,R),
the invariant measure on Sp(2N,R)/T is denoted by dgT .

Derivation of the Jacobian

The Jacobian of the transformation X = iad(h)Ω is given by

j =
√

|Det gij,kl|

where gij,kl is the matrix of the metric induced by the Killing form, see e.g. [Kna05].
For a matrix X ∈ sp(2N,R) with entries xij we have

∑

ij,kl
gij,kldx

ij dxkl = Tr(dX)2,

i.e. the metric is flat. In our case we have X = ihΩh−1 and therefore

h−1dXh = idΩ + [h−1dh, iΩ] .
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The term h−1dh can be regarded as an element of the Lie algebra, and therefore it
can be written as a linear combination of eigenvectors of the map ad(iΩ), where iΩ
lies in a suitable chosen Cartan subalgebra,

h−1dh =
∑

α

(h−1dh)α . (3.9)

The sum runs over all roots of the symplectic Lie algebra, which we calculate now.

Roots of sp(2N,R). In our representation of sp(2N,R), which is isomorphic to
the fundamental representation, evaluation of the conditions given by (3.4) leads to
the explicit form

sp(2N,R) =

{(

a b
b† −at

)

∣

∣

∣a, b ∈MN (C), a = −a†, b = bt
}

.

with a = −a† and b = bt. To calculate the roots, it is necessary to complexify the
Lie algebra, which means to replace the underlying field R by C. In the complexified
Lie algebra the condition a = −a† is empty, i.e. a can be any complex matrix. In
addition, b and b† become independent, therefore the complexified Lie algebra reads

sp(2N,R)⊗ C =

{(

a b
c −at

)

∣

∣

∣a, b, c ∈M(N,C), b = bt, c = ct
}

A basis for these matrices is given by

a ∈ span(Eij , i, j = 1 . . . N) , b, c ∈ span((Eij + Eji)/2, i, j = 1 . . . N) ,

where Eij is an N ×N -matrix which has an entry 1 in the i-th row and j-th column
and zeros else. A Cartan subalgebra in our representation is given by

a = {iΩ|Ω = diag(ω1, . . . , ωN ,−ω1, · · · − ωN ), ωi ∈ R} .

It is easy to see that for any X ∈ a the mapping adX is diagonal in the chosen basis:

adX

(

Eij 0
0 −Eji

)

= i(ωi − ωj)
(

Eij 0
0 −Eji

)

,

adX

(

0 (Eij + Eji)/2
0 0

)

= i(ωi + ωj)

(

0 (Eij +Eji)/2
0 0

)

,

adX

(

0 0
(Eij + Eji)/2 0

)

= −i(ωi + ωj)

(

0 0
(Eij + Eji)/2 0

)

.

Hence, the roots are given by

±2iωi , ±i(ωi − ωj) , and ± i(ωi + ωj) .

The indices i and j, i 6= j run from 1 to N . Using relation (3.9) and the special
form (3.3) of Ω we get

Tr(dX)2 = −2
N
∑

i=1

(dωi)
2 + 2

∑

α>0

Tr(g−1dg)α(g−1dg)−α .
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By reading off the coefficients of the metric gij in the new coordinates we arrive at

j = 2N/2
∏

α>0

α2 = 25N/2









N
∏

i=1

ωi

N
∏

i=2
j<i

(ω2
i − ω2

j )









2

.

The prefactor 25N/2 does not influence the calculations, we absorb it into the nor-
malization constant cN,l which will be introduced below.

3.4 Reduction of the disorder integral

In this section we calculate the inner integral of (3.8), which is an integral of the
Harish-Chandra–Itzikson–Zuber type, i.e. it can be evaluated in a closed form.
There exist three different methods to treat it. One can exploit the semiclassical
exactness of the integral, or, in hindsight, introduce coordinates which reduce the
problem to simple Gaussian integration, as presented in [LSZ06]. Here, we show how
a differential equation for the integral can be constructed. In the second step we
solve this equation. This method can be found e.g. in [GW96], where it is applied
to a different class of integrals and superintegrals.

We start with a slight generalization of the original problem,

I(S, T ) =

∫

Sp(2N,R)/T

exp(Tr(TgSg−1)dgT , (3.10)

with S, T ∈ sp(2N,R). Recall that the desired integral in (3.8) reads

I(Ω, iτΣ3/2, ) =

∫

Sp(2N,R)/T

exp
(

iτTr(Σ3gΩg
−1)/2

)

dgT . (3.11)

We will derive this from (3.10) by the replacements T → iτΣ3/2 and S → Ω. As we
will see, this replacement contains a non-trivial limit process.

The matrices S and T are diagonalizable by symplectic matrices. We can write

S = ad(h)Sd = hSdh
−1 and T = ad(g−1)Td = g−1Tdg ,

with g, h ∈ Sp(2N,R) and Sd, Td diagonal, i.e.

Sd = idiag(s1, . . . , sN ,−s1, . . . ,−sN ) and

Td = idiag(t1, . . . , tN ,−t1, . . . ,−tN ) (3.12)

with real si and ti . For S, T ∈ sp(2N,R) we define the function

W (S, T ) = exp (Tr(TS)) .

Due to the chosen representation of the symplectic group the elements of sp(2N,R)
can be written in the form

S =

(

a b
b† −at

)

= hSdh
−1 = ad(h)Sd

T =

(

c d
d† −ct

)

= g−1Tdg = ad(g−1)Td,
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where a, b, c and d are arbitrary complex N by N matrices, g, h ∈ Sp(2N,R)/T .
We obtain for the trace

Tr(TS) = Tr

(

ca+ db† . . .
. . . d†b+ ctat

)

= Tr(ca+ c̄a+ bd† + d̄b†)

= 2Tr(ℜ(ca) + ℜ(bd̄))

= 2
N
∑

i,j=1

(

ℜ(cij)ℜ(aji)−ℑ(cij)ℑ(aji) + ℜ(bij)ℜ(dji) + ℑ(bij)ℑ(dji)
)

= 2
N
∑

i,j=1

(

−ℜ(cij)ℜ(aij)−ℑ(cij)ℑ(aij) + ℜ(bij)ℜ(dij) +ℑ(bij)ℑ(dij)
)

.

For the construction of the differential equation, we need the Laplace operator. In
the used representation it acts by

∆S =
N
∑

i,j=1

(

− ∂2

∂ℜ2(aij)
− ∂2

∂ℑ2(aij)
+

∂2

∂ℜ2(bij)
+

∂2

∂ℑ2(bij)

)

.

It is easy to check that W (S, T ) satisfies the relation

∆SW (S, T ) = ∆S exp[Tr(TS)]

= 2Tr(T 2)W (S, T )

= 2Tr(T 2
d )W (S, T ) ,

i.e. the eigenvalue of the Laplace operator only depends on the eigenvalues of T
arranged in the diagonal matrix Td. Due to the invariance of the integration measure
dgT we obtain the following equation for I(S, Td),

∆SI(S, Td) = ∆S

∫

Sp(2N,R)/T

W (g−1Tdg, S)dgT

= 2Tr(T 2
d )I(S, Td) .

Since this differential equation does not depend on g and h it must be possible to
decompose ∆S according to

∆S = ∆Sd + ∆Sh .

The part ∆Sd is called the radial part and only acts on the eigenvalues of S. By the
independence of the integral of h we immediately read off the relation

∆SdI(S, Td) = ∆SI(S, Td) .

For the radial part of the Laplace operator we have the relation

∆Sd = −
N
∑

n=1

1

j(s1, . . . , sn)

∂

∂sn
j(s1, . . . , sn)

∂

∂sn
,
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where j(s1, . . . , sn) is the Jacobian of the transformation S = hSdh
−1. The minus

sign appears due to the definition (3.12). As we have seen, it is given by the product
over all roots of Sp(2N,R),

j(s1, . . . , sN ) = 25N/2









N
∏

i=1

si

N
∏

j=2
1≤k<j

(s2
j − s2

k)









2

.

For simplicity, we introduce an extra symbol for the square root of the Jacobian and
neglect the constant factor,

js(Sd) ≡ js(s1, . . . , sN ) :=
N
∏

i=1

si

N
∏

j=2
1≤k<j

(s2
j − s2

k) , (3.13)

For the symmetric factor of j we introduce

j+(Sd) ≡ j+(s1, . . . , sN ) :=
N
∏

i=1

si

N
∏

i=2
1≤k<j

(sj + sk) . (3.14)

For the integral we now make the ansatz

I(Sd, Td) =
ψ(Sd, Td)

js(Sd)js(Td)

and apply the radial part of the Laplace operator,

∆SdI(S, T ) = ∆Sd
ψ(Sd, Td)

js(Sd)js(Td)
= − 1

js(Sd)js(Td)

N
∑

i=1

∂2ψ(S, T )

∂s2
i

= − 1

js(Sd)js(Td)

N
∑

i=1

t2iψ(S, T ) . (3.15)

Details of this calculations are given in appendix A.1 . We recall the relations
(Sd)ii = isi and (Td)ii = iti due to which a minus sign appears. The solution of this
differential equation is restricted by symmetries of I(S, T ): obviously I(Sd, Td) =
I(Td, Sd) holds. Since the matrices which permute the eigenvalues of S are contained
in the symplectic group, I(Sd, Td) is total symmetric in the two set of variables
s1, . . . , sN and t1, . . . , tN . By the antisymmetry of js(Sd) we see that ψ has to be
total antisymmetric in the si and tj, which suggests the ansatz

ψ(S, T ) ∝ Det(exp(±2sitj))i,j , (3.16)

where either in all terms the positive or the negative sign must be chosen. To
show that the correct solution contains negative signs, we set Td = αT̃d with a
positive parameter α and investigate how the integral depends on it for any fixed
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T̃d. With the definition A = (−iΣ3T̃d)
1/2hg(−iΣ3Sd)

1/2, where ...1/2 denotes the
positive square root of the diagonal matrix in its argument, we get

∂

∂α
exp(Tr(ST )) =

∂

∂α
exp(Tr(g−1T̃dghSdh

−1)

=
∂

∂α
exp(−αTr(AA†)

= −αTr(AA†) exp(−αTr(AA†) < 0 .

It follows that the value of the integral cannot increase with α. The same must hold
for the solution (3.16) of the differential equation, which proves the claim.

Therefore, we get

I(S, T ) = cN
Det(exp(−2sitj))i,j

js(Sd)js(Td)
,

where cN is a normalization constant which is not determined by the differential
equation.

Now, we want to transfer this result to the original integral (3.11). That means
to substitute ti = τ/2 for all i; the variables si are replaced by the frequencies ωi.
Therefore, the next step consist in performing the limit ti → τ/2. As shown in the
appendix, the limit is given by

lim
ti→τ/2

Det
(

exp(−2tisj)
)

js(t1, . . . , tN )js(s1, . . . , sN )
=

(−1)⌊N/2⌋ exp

(

−τ
N
∑

i=1
si

)

j+(s1, . . . , sN )(τ/2)N(N+1)/2

N−1
∏

m=1

1

m!
. (3.17)

Using this result, the integration over the elliptic domain has been split into the
symplectic group and the integration over the eigenvalues of X. Thus, we arrive for
a reasonable radial test function f(Ω) at

∫

E0

exp(iτTrΣ3X)f(Ω)dX = cN,l

∫

(R+)N

f(Ω) exp

(

−τ
N
∑

i=1
ωi

)

j+(ω1, . . . , ωN )(τ/2)
N(N+1)

2

N−1
∏

m=1

1

m!
j
N
∏

i=1

dωi

= cN,l

∫

(R+)N

dµN,l(ω1, . . . , ωN )f(Ω) ,

where the joint probability density is given by

dµN,l(ω1, . . . , ωN ) = cN,l
∏

1≤i<j≤N
(ωi − ωj)(ω2

i − ω2
j )
N
∏

k=1

ωlke
−τωidωi . (3.18)

3.5 The asymptotic density of states in the bulk

There are many methods to obtain the asymptotic density of states (DOS) in the
bulk. It can be calculated by means of superbosonization [Zir06], which is very
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similar to the calculation in chapter 5, or by using the method of bi-orthogonal
polynomials, or as follows [LSZ06]. This calculation has been done by Martin Zirn-
bauer.

The DOS ρ(ω) dω is defined as the probability density for any one of the eigen-
frequencies ωi to have the value of ω , irrespective of what the values of the other
eigenfrequencies are; thus ρ(ω) is the function

ρ(ω) :=

∫ N
∑

i=1

δ(ω − ωi) dµN,l(ω1, . . . , ωN ) , (3.19)

which has the properties ρ(ω) ≥ 0 and

∫ ∞

0
ρ(ω) dω = N . (3.20)

We are now interested in the behavior of the density function ρ(ω) in the limit
of N → ∞. From the expression and experience with similar problems (see e.g.
[Meh04]), we expect that this limit can be obtained by maximizing the functional

F =
1

2

∫ ∞

0

∫ ∞

0
ln
(

(ω − ω′)2(ω + ω′)
)

ρ(ω)ρ(ω′) dω′dω +

∫ ∞

0
ln(ωle−ωτ ) ρ(ω) dω

(3.21)
subject to the constraint (3.20) and the condition ρ(ω) ≥ 0. More precisely, the limit
is expected to exist in the scaled variable x := ωτ/N ; i.e., there should exist a certain
non-negative function ρ∞(E) with

∫

ρ∞(E) dE = 1 such that ρ(ω) is asymptotic to
τρ∞(ωτ/N).

Varying F with respect to ρ(ω) we get

δF

δρ(ω)
= l lnω − ωτ +

∫ ∞

0

(

2 ln |ω − ω′|+ ln(ω + ω′)
)

ρ(ω′) dω′ .

We now insert the asymptotic equality ρ(NE/τ) ≈ τρ∞(E) and pass to the limit
N →∞ in the scaling variable E . Let [0, b] be the region of support of ρ∞ . Then
the condition δF/δρ(ω) = Nλ , where λ is a Lagrange multiplier for the constraint
(3.20), yields the equation

∫ b

0

(

2 ln |E − E′|+ ln(E + E′)
)

ρ∞(E′) dE′ − E = λ (0 < E < b) . (3.22)

It can be shown that our functional F is convex; as a result, the solution ρ∞ of equa-
tion (3.22) exists and is unique when supplemented by the normalization condition

∫ b

0
ρ∞(E) dE = 1 . (3.23)

Now, the task is to construct the solution to the mathematical problem posed
by (3.22) and (3.23). It turns out to be

ρ∞(E) =
1

2π
(E/b)−1/3((1 +

√

1−E2/b2)1/3 − (1−
√

1− E2/b2)1/3) , (3.24)
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Figure 3.1: The asymptotic density of states ρ∞(E) in the bulk.

with 0 < E ≤ b = 3
√

3 . For the details how to get this solution we refer to [LSZ06].

From the solution, the behavior near the lower edge E = 0 is

ρ∞(E) ≃ 1

2π
(2b/E)1/3 (0 < E ≪ b) ,

while close to the upper edge E = b one gets

ρ∞(E) ≃ 1

3π
(1− E2/b2)1/2 (E < b , E → b) .

In the vicinity of the upper and lower edges there exists crossover to a fine-
scale behavior that cannot be found by the present method of maximization of the
functional F . The crossover at the upper edge involves Airy functions on a scale
N1/3, which is small compared to the bulk scale N . At the lower edge, the crossover
occurs on a very fine scale, N−1/2, which is small even in comparison with the bulk
mean level spacing (which is of order N0).

3.6 The asymptotic density of states near z=0

Equation (3.19) shows, how the density of states is defined. In section 3.5, we derived
the asymptotic density of states in the bulk by minimizing the functional F . Here
we want to calculate the exact DOS for all N . Due to the symmetry in the variables
ω1, . . . , ωN of the measure (3.18), our measure can be reduced to integrate out all
variable ωi but one, say ωN . This can be achieved by a direct calculation. We only
need the elementary integral

∫

R+
ωke−ωdω = k! , k ∈ N0 ,

to integrate out a single variable ωi. That is, the integrations to do are rather simple.
The main challenge is to handle the combinatorics for a large number N of variables
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ωi. Since τ can be absorbed to the normalization constant cN,l by a simple rescaling,
we set τ = 1 without loss of generality. Thus with the explanations below we find
for the DOS

ρN,l(ω) =

∫

(R+)N

N
∑

i=1

δ(ω − ωi)dµN,l(ω1, . . . , ωn)

= cN (N − 1)!
N
∑

i,j=1

ω2j+i−2
N (−1)j1+j2Det(Âij)

= cN (N − 1)!ωl−3
N Det













ω2
N

A
...

ω2N
N

ωN · · · ωNN 0













. (3.25)

A is an N by N matrix and given by the entries Aij = (i+ 2j − 3 + l)! , that is

A =













l! (l + 2)! · · · (l + 2N)!
(l + 1)! (l + 3)! · · · (l + 2N + 1)!

...
...

. . .
...

(l +N)! (l +N + 2)! · · · (l + 3N)!













.

By Âij we denote a matrix obtained by eliminating the ith row and the jth column
of A. The second equality in (3.25) is obtained by expansion of the last determinant
with respect to the last row and with respect to the last column. The first one can
be seen by rewriting the measure in terms of Vandermonde determinants:

∏

i<j

(ωi − ωj)(ω2
i − ω2

j )
∏

k

ωlk =

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1
ω1 . . . ωN
...

. . .
...

ωN−1
1 . . . ωN−1

N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 . . . 1
ω2

1 . . . ω2
N

...
. . .

...

ω
2(N−1)
1 . . . ω

2(N−1)
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∏

k

ωlk (3.26)

=Det(ωj−1
i )Det(ω

2(j−1)
i )

∏

k

ωlk

=
∑

τ,σ∈SN
sgn(τ)sgn(σ)ω

τ(1)+2σ(1)−3+l
1 ω

τ(2)+2σ(2)−3+l
2 · · ·ωτ(N)+2σ(N)−3+l

N .

(3.27)

The double sum runs over all elements of the symmetric group SN . Integrating out
the variables ω1, ω2, . . . , ωN−1 replaces their powers by factorials. To understand
the equality we ask for the numerical factor in front of the power xi+2j−3+l. It is
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given by

∑

σ∈SN
σ(N)=i

∑

τ∈SN
τ(N)=j

sgn(στ)
N−1
∏

k=1

(σ(k) + 2τ(k)− 3 + l)!

= (N − 1)!
∑

σ(N)=j

N
∏

k=1,k 6=i
(k + 2σ(k) − 3 + l)!

= (N − 1)!(−1)i+jDetÂij .

By a simple calculation, the normalization constant cN can be determined. We
start with (3.27) and replace the power of every ωi by the factorial of its exponent.
Than, the sum over one of the symmetric groups can be carried out, it just produces
a factor N ! . The remaining sum has the value DetA. This determinant can be
obtained by a Gaussian elimination process, it is given by

DetA =
N−1
∏

k=0

2kk!(2k + l)! .

Due to the condition
∫

dµN,l(ω1, . . . , ωN ) = N

we arrive at cN = 1/DetA. The determinants of the matrices Âij can be calculated
by elementary methods. However, the calculations are very cumbersome. In partic-
ular, the limit of large N is hard to obtain. Thus we just state the result and show
the much more elegant calculation presented in [LSZ06], which has been found by
H.-J. Sommers. As we will see in the next section, in principle, he solved the same
problem, i.e. he calculated the the determinants of the matrices Âij. But, he found
a very nice representation of these determinants as contour integrals, which makes
it much more easier to handle the limit of large N .

In the scaling limit

ρ̃l(z) = lim
N→∞

1√
N
ρN,l(
√
Nz)

the DOS converges to finite values for every z. Explicitly, it reads

ρ̃l(z) =
∞
∑

m=0

(−1)m

Γ
(

m+l+1
2

)

m!)

∞
∑

n=0

(−1)n

(2n+ l)!n!(2n +m+ l + 1)
z2n+m+l (3.28)

Figure 3.2 shows the DOS for l = 0 and l = 1 .

3.7 Complete solution using bi-orthogonal polynomials

The method of bi-orthogonal polynomials completely solves the random matrix
model under consideration, i.e. all correlation functions can be found for all val-
ues of N . In principle, this method is a generalization of the method of orthogonal
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Figure 3.2: The asymptotic density of states ρ̃l(z) for l = 0 (left) and l = 1 (right)

polynomials which can be used to obtain the correlation functions for the Gaus-
sian orthogonal or unitary ensemble (GOE/GUE). We consider again the reduced
probability measure (3.18),

dµN,l(ω1, . . . , ωN ) = cN,l(τ)
∏

i<j

(ωi − ωj)(ω2
i − ω2

j )
N
∏

k=1

e−τωk ωlk dωk , (3.29)

and embark on another approach to handle it.
Again, the first step is to rewrite the measure in terms of Vandermonde deter-

minants. According to (3.26), we obtain

dµN,l(ω1, . . . , ωN ) = cN,l(τ) Det (ωi−1
j ) Det (ω2i−2

j )
N
∏

k=1

e−τωk ωlk dωk . (3.30)

By standard properties of the determinant, Det (ωi−1
j ) changes only by a mul-

tiplicative constant when the monomials ωi−1
j are replaced by any polynomials in

ωj of degree i − 1 . We have two Vandermonde determinants,
∏

i<j(ωi − ωj) and
∏

i<j(ω
2
i − ω2

j ), so we introduce two sets of polynomials, denoting those of the first
set by Pi−1(ωj) and those of the second one by Qi−1(ω2

j ). Our measure then becomes

dµN,l(ω1, . . . , ωN ) = c̃N,lDet
(

Pi−1(ωj)
)

Det
(

Qi−1(ω2
j )
)

N
∏

k=1

e−ωk ωlk dωk . (3.31)

In order for the introduction of the polynomials Pn(ω) and Qn(ω
2) to be useful

we require them to be orthogonal with respect to the integration measure e−ωωl dω :

Im,n ≡
∫ ∞

0
Pm(ω)Qn(ω

2) e−ωωl dω = hn δm,n , (3.32)

where the numbers hn = In,n depend on the choice of normalization for Pn(ω)
and Qn(ω

2). Such polynomials are constructed by a variant of the Gram-Schmidt
algorithm. For details, we refer again to [LSZ06], here we just state the result We
obtain the following expressions for the polynomials:

Pn(ω) = D−1
n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l! . . . (l + 2n− 2)! ω0

(l + 1)! . . . (l + 2n− 1)! ω1

...
. . .

...
...

(l + n)! . . . (l + 3n− 2)! ωn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.33)
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and

Qn(ω
2) = D−1

n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l! (l + 2)! . . . (l + 2n)!
...

...
. . .

...
(l + n− 1)! (l + n+ 1)! . . . (l + 3n− 1)!

ω0 ω2 . . . ω2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.34)

which are easy to verify. These matrices are very similar to those appearing in the
first approach in section 3.6. Using the relation (n + 1)! = n · n! an easy Gauss
elimination process gives the normalization constant as

Dn =

∣

∣

∣

∣

∣

∣

∣

l! . . . (l + 2n)!
...

. . .
...

(l + n)! . . . (l + 3n)!

∣

∣

∣

∣

∣

∣

∣

=
n
∏

k=0

2kk! (l + 2k)! . (3.35)

From this, note the diagonal pairing matrix elements h0 = (l)! and

∫ ∞

0
Pn(ω)Qn(ω

2) e−ωωldω = hn = Dn/Dn−1 = 2nn! (l + 2n)! (n ≥ 1) . (3.36)

n-level correlation functions

The n-level correlation function Rn(ω1, . . . , ωn) in the present context is defined as

Rn(ω1, . . . , ωn) = n!

∫

RN+

∑

i1<i2<...<in

δ(ω1 − ω̃i1) · · · δ(ωn − ω̃in) dµN,l(ω̃1, . . . , ω̃N ) .

(3.37)
A closed-form expression for it can be given from the bi-orthogonal polynomials
Pn′(ω) and Qn′(ω

2) for 0 ≤ n′ ≤ N . The result will take its most succinct form
when expressed in terms of the modified functions

P̃n(ω) := (−2)−nn!−1e−ωPn(ω) , (3.38)

Q̃n(ω) := (−1)n(l + 2n)!−1ωlQn(ω
2) , (3.39)

(the motivation for the sign (−1)n will become clear later), which from (3.32) and
(3.36) obey the orthogonality relations

∫ ∞

0
P̃m(ω) Q̃n(ω) dω = δm,n . (3.40)

The probability measure (3.31) expressed by these functions takes the form

dµN,l(ω1, . . . , ωN ) =
1

N !
Det

(

P̃i−1(ωj)
)

Det
(

Q̃i−1(ωj)
)

∏

k
dωk .

Now, by using the multiplicative property of the determinant, we can also write

dµN,l(ω1, . . . , ωN ) =
1

N !
Det

(

KN (ωi , ωj)
)

i,j=1,...,N

∏

k
dωk , (3.41)
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where the kernel K(ωi , ωj) is defined by

KN (ωi , ωj) =
N−1
∑

n=0

P̃n(ωi) Q̃n(ωj) . (3.42)

From the orthogonality relations (3.40) this kernel has the reproducing property

∫ ∞

0
KN (ωi , ω)KN (ω, ωj) dω = KN (ωi , ωj) , (3.43)

and the trace
∫ ∞

0
KN (ω, ω) dω = N . (3.44)

To proceed further, take notice of the relation

∫ ∞

0

∣

∣

∣

∣

∣

∣

∣

KN (ω1, ω1) . . . KN (ω1, ωn)
...

. . .
...

KN (ωn, ω1) . . . KN (ωn, ωn)

∣

∣

∣

∣

∣

∣

∣

dωn =

(N − n+ 1)

∣

∣

∣

∣

∣

∣

∣

KN (ω1, ω1) . . . KN (ω1, ωn−1)
...

. . .
...

KN (ωn−1, ω1) . . . KN (ωn−1, ωn−1)

∣

∣

∣

∣

∣

∣

∣

,

which is proved by expanding the determinant with respect to the last row or col-
umn and exploiting the properties (3.43) and (3.44). Using it, an inductive pro-
cedure starting from RN (ω1, . . . , ωN ) = Det

(

KN (ωi , ωj)
)

i,j=1,...,N
gives the n-level

correlation functions as

Rn(ω1, . . . , ωn) = Det
(

KN (ωi , ωj)
)

i,j=1,...,n
. (3.45)

Thus the correlations are those of a determinantal process and are completely de-
termined by the kernel KN (ωi , ωj). The remaining discussion therefore focuses on
this kernel, but first we make another preparatory step.

Contour integral representation

We are now going to show that the functions P̃n(ω) and Q̃n(ω) have expressions as
complex contour integrals:

P̃n(ω) =

∮

Sǫ(1)
e−ωu (1− u−2)−n−1ul−2du/πi , (3.46)

Q̃n(ω) =

∮

Sǫ(0)
eωv (1− v−2)nv−l−1dv/2πi . (3.47)

Both integrals are over circles in the complex plane with radius ǫ and counterclock-
wise orientation; the first circle is centered at u = 1 and has radius ǫ < 2 (to avoid
the singularity at u = −1), the second one is centered at v = 0 .

Our proof of these expressions for P̃n(ω) and Q̃n(ω) will be indirect and in two
steps. First, we establish some information on power series. In the case of Q̃n(ω) we
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insert the power series of the exponential function eωv, use the binomial expansion
of (1− v−2)n, and compute a residue to obtain

Q̃n(ω) =
n
∑

k=0

(

n

k

)

(−1)kω2k+l

(2k + l)!
. (3.48)

In the case of P̃n(ω), calculating the residue at u = 1 we have that

P̃n(ω) =
2

n!

dn

dun

(

e−ωuun+l−1

(1 + u−1)n+1

) ∣

∣

∣

∣

∣

u=1

. (3.49)

In both cases, defining Pn(ω) and Qn(ω
2) by the reverse of the relations (3.38,3.39),

we see from (3.48,3.49) that these are polynomials of degree n in ω resp. ω2 and
that the highest-degree term (ωn resp. ω2n) has coefficient one.

Recall now that, given these properties, the polynomials Pn(ω) and Qn(ω
2)

are completely determined by the orthogonality relations (3.32) for m 6= n. Via
(3.38,3.39) the latter are in one-to-one correspondence with the orthogonality rela-
tions (3.40) (still for m 6= n). Therefore, defining

Ĩm,n =

∫ ∞

0
P̃m(ω) Q̃n(ω) dω , (3.50)

the second and final step of our proof is to show that Ĩm,n = 0 for m 6= n.
To that end, we insert the expressions (3.46, 3.47) into (3.50), replacing also

eωv by sinh(ωv) since only the latter contributes to the residue at v = 0 . The ω-
dependence then is e−ωu sinh(ωv) with u ∈ Sǫ(1) and v ∈ Sǫ(0). Taking the radius
ǫ to be very small (ǫ ≪ 1), we have that e−ωu sinh(ωv) decreases rapidly as ω goes
to +∞. Therefore, the integral over ω exists, and we may interchange the order of
integrations. We then do the ω-integral first, using

∫ ∞

0
e−ωu sinh(ωv) dω =

v

u2 − v2
.

The remaining contour integrals for Ĩm,n defined by (3.50) are

Ĩm,n =

∮

Sǫ(1)

u2l−1

(1− u−2)m+1

(

∮

Sǫ(0)

(1− v−2)n dv

vl(v2 − u2)

)

du

2π2
.

To simplify the inner integral over v we use the identity

(

1− v−2

1− u−2

)n

= 1− v2 − u2

v2(1− u2)

n−1
∑

k=0

(

1− v−2

1− u−2

)k

.

Inserting this into the expression for Ĩm,n we see that the terms in the k-sum do
not contribute as the residue at v = 0 vanishes for all of those terms. Doing the
v-integral for the first term on the right-hand side, we get

∮

Sǫ(0)
v−l−1(v2 − u2)−1dv = −2πiu−l−1 .
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The remaining u-integral is

Ĩm,n = (πi)−1
∮

Sǫ(1)
(1− u−2)n−m−1u−3du .

This integrand is holomorphic near u = 1 for m < n , and the integral therefore
vanishes in that case. For m > n we use the invariance of the integration form
under u→ −u to write Ĩm,n as an integral over a sum of two circles:

Ĩm,n =
1

2πi

∮

γ

u2m−2n−1du

(u2 − 1)m−n+1
, γ = Sǫ(1) + Sǫ(−1) .

The integrand in this case is holomorphic near u = 0 . In the punctured plane
C\{1,−1} the chain Sǫ(1)+Sǫ(−1) is homologous to the circle at infinity, where the
integrand vanishes. Therefore the integral again is zero. This proves that Ĩm,n = 0
for m 6= n, which in turn completes our proof that the contour integrals (3.46) and
(3.47) are the same as the functions P̃n(ω), Q̃n(ω) defined from (3.33, 3.34) by (3.38,
3.39). As a final check, note that

Ĩn,n = (πi)−1
∮

Sǫ(1)

du

u(u2 − 1)
= 1 ,

which is how it ought to be in view of (3.40).
Now we harvest a major benefit from the contour integral representations (3.46)

and (3.47): using these, we can carry out the sum in the definition (3.42) of the
kernel KN as a geometric sum. The result is a double contour integral:

KN (ω1, ω2) =

∮

Sǫ(1)

du

∮

Sǫ(0)

dv FN (u, v ;ω1, ω2) , (3.51)

FN (u, v ;ω1, ω2) =
1

2π2
e−ω1u+ω2v u

lv−l+1

u2 − v2





(

1− v−2

1− u−2

)N

− 1



 . (3.52)

This exact expression represents the complete solution of our problem. We will now
use it to determine the large-N asymptotics in the bulk and at the hard edge ω = 0 .

Asymptotics in the bulk

The kernel on the diagonal ω1 = ω2 is the same as the 1-level function, R1(ω) =
KN (ω, ω); see (3.45). We already know from section 3.5 the asymptotics of R1(ω) ≡
ρ(ω) in the bulk: introducing the scaling variable E = ω/N , this is

lim
N→∞

KN (NE,NE) = ρ∞(E) ,

with ρ∞(x) given by (3.24). One can show that the scaling limit of the kernel
KN (ω1, ω2) off the diagonal leads to sine-kernel universality for all level correlation
functions:

lim
N→∞

Rn(NE+ω1, . . . , NE+ωn) = Det

(

sin
(

πρ∞(E)(ωi − ωj)
)

π(ωi − ωj)

)

i,j=1,...,n

, (3.53)
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as is expected for systems in the universality class of the Gaussian Unitary Ensemble.
There are two methods to obtain this result: For the one we refer to [LSZ06], the
main idea is a saddle-point evaluation of (3.51). We skip this calculation here. The
second way uses the ideas of the supersymmetry method. In chapter 4 this method
is illustratedd at the example of the Gaussian orthogonal ensemble, in chapter 5 it
is applied to another random matrix model for disordered bosons.

Asymptotics near ω = 0

At the lower edge (ω = 0) of the spectrum, a new type of behavior is expected to
emerge. This behavior, as we shall see presently, occurs on a scale ω ∼ N−1/2.

To exhibit the scaling limit near ω = 0 , it is best to send the integration variables
u, v to their reciprocals, u→ u−1 and v → v−1. Then du→ −u−2du , dv → −v−2dv ,
and the integration contour for v has its radius inverted and orientation reversed,
Sǫ(0) → −S1/ǫ(0). However, since the integrand is holomorphic in v on C \ {0} we
may return to the original radius ǫ (or any other radius, for that matter). In the case
of u we take the radius ǫ of Sǫ(1) to be very small. Then inversion u → u−1 sends
Sǫ(1) to itself (or, in any case, to the same homology class on C\{1}), with no change
of orientation. Altogether, then, carrying out the transformation (u, v)→ (u−1, v−1)
the integral representation (3.51) continues to hold true if we make the replacement

FN (u, v ;ω1, ω2)→− u−2v−2FN (u−1, v−1;ω1, ω2)

=
1

2π2
e−ω1/u+ω2/v u

−lvl−1

u2 − v2





(

1− v2

1− u2

)N

− 1



 .

Next, as another preparation for taking the limit N → ∞, we deform the u-
contour Sǫ(1) to some axis parallel to the imaginary axis. The deformed contour
crosses the real axis between uF = 0 and u = 1 and is directed from u = +i∞ to
u = −i∞. We also reverse the direction of integration for u and change the overall
sign of the integral.

Then we set ωj = N−1/2zj and rescale u→ N−1/2u and v → N−1/2v accordingly.
Again, in view of the analytic properties of the integrand we can keep the integration
contours fixed while rescaling. Because the u-integral converges at infinity we have
a good limit

lim
N→∞

(1− u2/N)−N = exp(u2) .

In total, we thus obtain the following scaling limit for our kernel KN :

k(z1, z2) := lim
N→∞

N−1/2KN (N−1/2z1, N
−1/2z2)

=
1

2π2

∫

iR+ǫ

du

∮

U1

dv

v
e−z1/u+z2/v (v/u)l

eu
2−v2 − 1

u2 − v2
, (3.54)

where U1 ≡ S1(0) means the unitary numbers, and iR + ǫ is the imaginary axis
translated by ǫ > 0 into the right half of the complex plane.
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Taking the same scaling limit for the functions P̃N (ω) and Q̃N (ω) in (3.46) and
(3.47) one gets

p(z) = lim
N→∞

N−lP̃N (N−1/2y) =
1

πi

∫

iR+ǫ

eu
2−z/u u−ldu , (3.55)

q(z) = lim
N→∞

N l+1/2Q̃N (N−1/2z) =
1

2πi

∮

U1

e−v
2+z/v vl−1dv . (3.56)

Both functions have convergent series expansions:

p(z) =
∞
∑

n=0

(−z)n
n! Γ((l + n+ 1)/2)

, q(z) = zl
∞
∑

n=0

(−z2)n

n! (2n+ l)!
. (3.57)

The expansion for q(z) can be obtained either directly from (3.56), or by taking
the limit N → ∞ in (3.48). In the case of p(z), the earlier formula (3.49) is not
suitable; rather, in order to verify (3.57) for p(z) one expands the integrand of (3.55)
in powers of z , makes use of Reu = ǫ > 0 to write

u−l−n = (l + n− 1)!−1
∫ ∞

0
e−tu tl+n−1 dt .

Then, one does the Gaussian u-integral by completing the square, and finally uses
the duplication formula for the Gamma function.

The expansions (3.57) lead to the asymptotic DOS (3.28) as follows. Clearly, we
have

ρ̃l(z) = k(z, z) .

By setting z1 = z2 = z in (3.54) and the rescaling (u, v) → (uz, vz) and in (3.54)
and (3.55) we obtain the relation

d

dz
(zk(z, z)) = p(z)q(z) .

This suggests

k(z, z) =
1

z

∫ z

0
dz′p(z′)q(z′)

=
∞
∑

m=0

(−1)m

Γ
(

m+l+1
2

)

m!)

∞
∑

n=0

(−1)n

(2n + l)!n! (2n +m+ l + 1)
z2n+m+l . (3.58)

The integration does not produce any constants independent of z, except for the
case l = 0. That this is correct can be seen by evaluating the integral (3.54) in
z1 = z2 = 0, leading to

k(0, 0) =

{ 2√
π

l = 0

0 l > 0
,

which coincides with the constant terms in (3.58).
It is clear from the discussion of the asymptotics in the bulk in section 3.5 that

the DOS in the present scaling limit behaves as ρ̃l(z) ∝ z−1/3, since the behavior at
x = 0 in the bulk scaling must be recovered for large z in the microscopic scaling.
Indeed, this expectation can be confirmed by using the method of saddle-point
evaluation for the integral (3.54).



Chapter 4

The Gaussian orthogonal ensemble

In this chapter, we pursue two different goals. First, we want to illustrate how the
supersymmetry method and the superbosonization works looking at the relatively
simple example of the well known Gaussian orthogonal ensemble (GOE). In chapter 5
this will serve as a template to solve the more complicated ensemble considered there.
Second, following [Zir98c], we want to obtain representations for the correlation
functions as superintegrals over Riemannian symmetric superspaces, which will help
us to understand similar superintegrals obtained in chapter 5. Although the GOE
has been considered comprehensively in the literature, see e.g. [Meh04],[PM83],
there is no reference wherein the following calculation can be found, thus the present
chapter is interesting on its own.

The GOE is defined on N ×N real symmetric matrices,

SymN (R) := {H ∈ MatN,N (R)|H = Ht} .

The measure on this space is, with a Euclidean measure dH,

dµ(H) = exp(−TrH2/(2v2))dH ,

∫

SymN (R)

dµ(H) = 1 ,

with a positive constant v. It is invariant under orthogonal transformations,

H 7→ gHgt , g ∈ O(N) .

The ensemble average of an appropriate function f(H) is defined as

〈f〉 =

∫

SymN (R)

f(H)dµ(H) . (4.1)

To calculate the n-point correlation function Rn of the ensemble means to evaluate

Rn(ω1, . . . , ωn) = lim
ε→0

〈

n
∏

i=1

I

(−1

π
Tr(H − ωi + iε)−1

)

〉

, (4.2)

where ω1, . . . , ωn are energy variables. To simplify the situation for our purposes we
observe

I
(

Tr(H − ωi + iε)−1
)

= − i
2

(

Tr(H − ωi + iε)−1 + Tr(H − ωi − iε)−1
)

.

39
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Inserting this into (4.2) and expanding the product, we see that 2n terms occur,
which differ by the signs of iε. This seems to cause much work. However, we will see
that in the limit of large N only the number of positive and negative signs affects
the result. Due to symmetry, the order of the signs does not matter. Hence, it is
convenient to fix the number of positive and negative signs nR and nA = n − nR,
respectively, and define

RnA,nR(ω1, . . . , ωn) =

lim
ε→0

〈

nA
∏

i=1

(

i

π
Tr(H − ωi − iε)−1

) n
∏

i=nA+1

(

i

π
Tr(H − ωi + iε)−1

)

〉

. (4.3)

In the following sections we compute this quantity in the limit of large N . We will
show how this can be achieved by applying the superbosonization identity [LSZ08].
If desired, the correlation function Rn can be recovered by adding all contributions,

Rn(ω1, . . . , ωn) =
n
∑

nA=0
nR=n−nA

(

n

nA

)

RnA,nR(ω1, . . . , ωn) .

4.1 The supersymmetry method

The supersymmetry method [Efe83, Efe99] always starts by rewriting the resolvent
of the Hamiltonian (or of the matrices) in terms of determinants. In the next step,
these determinants are written as a superintegral, which allows us to calculate the
disorder average. Then, one can use a Hubbard-Stratonovich transformation or
the recently developed superbosonization formula [LSZ08] to reduce the number of
integration variables to a constant independent of N . The dimension N becomes
a (large) parameter, which can be used to apply the method of steepest descent to
the resulting superintegral.

Generating function.

Due to the formula DetA = exp(Tr logA) for a regular matrix A, it is clear that we
can rewrite the resolvent of H at the energy ω according to

Tr(H − ω)−1 =
d

dβ
Det

(

H − βi
H − αi

) ∣

∣

∣

∣

α=β=ω

, (4.4)

where ω must have a small imaginary part. To obtain the n-point correlation func-
tion we start considering the generating function

ZnA,nR(α1, . . . , αn, β1, . . . , βn) =

〈

n
∏

i=1

Det

(

H − βi
H − αi

)

〉

, (4.5)

where the numbers nA and nR determine how many of the pairs (αi, βi) have negative
or positive imaginary parts in both entries. These signs have already occurred in
eq. (4.3).



Chapter 4. The Gaussian orthogonal ensemble 41

According to eq. (4.4), the correlation function RnA,nR can be calculated by
differentiating ZnA,nR ,

RnA,nR(ω1, . . . , ωn) = lim
ε→0

(−ε
π

)n nA
∏

i=1

∂

∂αi

∣

∣

∣

∣

αi=ωi−iε

n
∏

i=nA+1

∂

∂αi

∣

∣

∣

∣

αi=ωi+iε

× ZnA,nR(α1, . . . , αn, ω1 − iε, . . . , ωnA − iε, ωnA+1 + iε, . . . , ωn + iε) . (4.6)

We see from (4.6) that it is sufficient to perform all calculations using the generating
function (4.5). The differentiations with respect to the energy parameters can be
postponed to the end of our calculations, provided the different limit processes and
integrations can be interchanged without causing problems. Indeed, for all of the
following calculations this is the case.

Rewriting the determinants as Gaussian superintegrals

As already mentioned, the essential structure of the supersymmetry method is to
rewrite the determinants occurring in the resolvent as Gaussian superintegrals. For
that purpose we define the supermatrix

ν = EB ⊗ 12 ⊗
n
∑

i=1

Eiiαi + EF ⊗ 12 ⊗
n
∑

i=1

Eiiβi .

The matrices EB = diag(1, 0) and EF = diag(0, 1) are elementary 2 × 2 superma-
trices, Eij is an n × n matrix which has only one entry 1 in the i-th row and j-th
column.

A direct calculation gives

n
∏

i=1

Det

(

H − βi
H − αi

)

= SDet(14n ⊗H − ν ⊗ 1N ) .

It is clear that the symmetry of H must be taken into account in the auxiliary
Gaussian superintegrals. We need the following matrices: Let u be a N×n-matrix of
independent complex variables and ũ = ū its complex conjugate. As anticommuting
variable we take the independent N ×n-matrices ξ and ξ̃. We put these components
in large matrices,

Ψ =
(

u ũ ξ ξ̃
)

, Ψ̃ =
(

ũ u ξ̃ −ξ
)t

= CΨt , (4.7)

with
C = (EBB ⊗ σ1 + EFF ⊗ iσ2)⊗ 1n .

As usual, σ1 and σ2 are Pauli’s matrices. The appropriate Berezin-measure reads

D(Ψ, Ψ̃) = π−nN
N
∏

i=1

n
∏

j=1

duijdūij
∂

∂ξij

∂

∂ξ̃ij
.

Following [Zir98c], we find

SDet(14n ⊗H − ν ⊗ 1N ) =

∫

D(Ψ, Ψ̃) exp(−iTrHΨΛΨ̃ + iSTrΛνΨ̃Ψ) . (4.8)
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Convergence of this superintegral is enforced by the imaginary part of the entries of
the supermatrix ν. Due to the different signs the matrix Λ must be present in the
exponent. We define

λ̃ = diag(−1nA ,1nR) , λ = 12 ⊗ λ̃ , Λ = EBB ⊗ λ+ EFF ⊗ λ .

Ensemble average

Now, we are able to use (4.8) to carry out the ensemble average in the generat-
ing function (4.5) according to (4.1). This means doing the outer integral of the
expression

〈

n
∏

i=1

Det

(

H − βi
H − αi

)

〉

=

∫

SymN (R)

dµ(H)

∫

D(Ψ, Ψ̃) exp(−iTrHΨΛΨ̃ + iSTrΛνΨ̃Ψ) .

Now, we need to interchange the inner and outer integration. To simplify notation
for the next step, we omit the integration over the auxiliary space and the factor
containing ν.

∫

SymN (R)

dµ(H) exp(−iTrHΨΛΨ̃) =

∫

SymN (R)

dH exp(−iTrHΨΛΨ̃−TrH2/(2v2))

= exp
(

− v2Tr(ΨΛΨ̃)2/2
)

Here the general strategy of the supersymmetry method ends. The ensemble average
has been performed successfully and we are left with integrations over the auxiliary
space. The usual strategy now would be to follow [Zir98c] and to apply a kind of
Hubbard–Stratonovich transformation. However, here we want to use the recently
developed superbosonization identity [LSZ08].

4.2 Application of the superbosonization identity

The identity

Tr(ΨΛΨ̃)2 = STr(ΛΨ̃Ψ)2

helps us to apply the superbosonization formula. By means of (4.7) we can write
down Ψ̃Ψ explicitly,

Ψ̃Ψ =











ũtu ũtũ ũtξ ũtΨ̃

utu utũ utξ utξ̃

ξ̃tu ξ̃tũ ξ̃tξ 0

−ξtu −ξtũ 0 −ξtξ̃











,

which is exactly the form needed to apply the superbosonization formula for orthog-
onal symmetry. In the notation of [LSZ08], we have p = q = n, i.e. the number of
bosonic and fermionic replicas is equal. The number of orbitals is N . Putting things
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together, we find

ZnA,nR(ν) ≡ ZnA,nR(α1, . . . , αn, β1, . . . , βn)

=

〈

n
∏

i=1

Det

(

H − βi
H − αi

)

〉

=

∫

D(Ψ, Ψ̃) exp
(

− STr
(v2

2
(ΛΨ̃Ψ)2 − iνΛΨ̃Ψ

))

=

∫

D0
n×D1

n

DQ exp
(

− STr
(v2

2
(ΛQ)2 − iνΛQ

))

SDetN/2(Q) . (4.9)

In the second step of (4.9) the superbosonization identity is used. The integration
over the 2N bosonic and 2N fermionic variables is replaced by an integration over
the 4n × 4n supermatrix Q, which is its crucial feature. The advantage is clear:
instead of the large number of integration variables we are dealing with a relatively
simple superintegral, whose dimension 4n × 4n is independent of N . This replace-
ment produces the N th power of the superdeterminant. Now, let us consider the
supermatrix Q. In block form, we write

Q =

(

X σ
τ Y

)

.

From [LSZ08] we know how to choose the supermatrix Q, the measure DQ and the
domain of integration D0

n ×D1
n.

The following conditions hold: The supermatrix Q is subject to the symmetry

Q = TQstT−1 , T = EBB ⊗ ts + EFF ⊗ ta , ts = σ1 ⊗ 1n , ta = (−i)σ2 ⊗ 1n .
(4.10)

Therefore, there are only (2n)2 independent Grassmann variables in Q, explicitly
we have σ = tsτ

tt−1
a . For the boson-boson block X, the domain of integration is

D0
n := {X ∈ Mat2n,2n(C)|X = X† > 0,X = tsXt

−1
s } .

The dimension is dimR(D0
n) = 2n2 + n. For the fermi-fermi block Y we have

D1
n := {Y ∈ U(2n)|Y = taY

tt−1
a } .

Its dimension is dimR(D1
n) = 2n2−n. To give eq. (4.9) a meaning, the definition of

the Berezin measure DQ is missing. It can be written as

DQ = dµD0
n
(X)dµD1

n
(Y )

2n
∏

i=1

2n
∏

j=1

∂

∂σij

Detn(X − σY −1τ)Detn(Y − τX−1σ)

(2π)2n2Det1/2(1−X−1σY −1τ)
.

Up to a constant factor, the measures dµD0
n
(X) and dµD1

n
(Y ) are defined by invari-

ance under the transformations

X 7→ gXtsg
tts , g† = tsg

tts , g ∈ GL(n,C) and

Y 7→ gY tag
tt−1
a , g ∈ U(2n) .

To uniquely determine the measures, normalization constants are needed. They can
be fixed by Gaussian integrals, see [LSZ08].
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4.3 Correlation functions in the limit of large N

The last superintegral in (4.9) is still exact, no approximation has been made so far.
Now we are interested in the limit of large N . To this aim it is beneficial to use the
method of steepest descent, N shall serve as a large parameter. Starting at (4.9),
we rescale by Q 7→

√
NQ. The superdeterminant SDet(Q) and the measure DQ are

left unchanged, also the domains of integration D0
n and D1

n. However, the energy
scale must be changed by 1/

√
N . For this purpose, we replace ν according to

ν√
N

= E · 14n +
ω̂

N
,

i.e. we calculate the correlations in the vicinity of the energy
√
N E. The diagonal

matrix ω̂/N is regarded as a small perturbation of lower order in N . We use

ω̂ := EB ⊗ 12 ⊗
∑

i

Eiiα̂i + EF ⊗ 12 ⊗
∑

i

Eiiβ̂i .

Hence,

∫

D0
n×D1

n

DQ exp

(

−STr

[

v2

2
(ΛQ)2 − iνΛQ

]

)

)

SDetN/2(Q) =

∫

D0
n×D1

n

DQ exp
(

NF (Q) + ω̂
)

(4.11)
with

F (Q) =
1

2
STr

(

logQ− v2(QΛ)2 + 2iEΛQ
)

. (4.12)

The contribution ω̂ is of order 1 and does not affect the saddle-point. To start the
saddle-point analysis, we set Q = Q0 + δQ with a small variation δQ and demand
that the term linear in δQ vanishes in the expansion of F (Q0 + δQ). We obtain

Q−1 − 2v2ΛQΛ + 2iEΛ = 0 ,

which is equivalent to

(QΛ)2 − iE

v2
QΛ− 1

2v2
= 0 . (4.13)

Following Berezin [Ber87], eq. (4.13) defines a supermanifold. Our goal is to
factor superintegral (4.11) in an superintegral over this supermanifold and the re-
maining Gaussian superintegral in the limit of large N .

The strategy reads as follows: First, we have to determine the supermanifold
defined by (4.13). We start by setting all Grassmann variables to zero and construct
the manifold emerging from the boson-boson sector. Then, we calculate its ana-
logue in the fermi-fermi sector. In the third step, we put these manifolds together
and obtain the whole saddle-point supermanifold. In the last step, we must deter-
mine the remaining Gaussian superintegral and the resulting superintegral over the
supermanifold.
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The boson-boson block. Setting all Grassmann variables to zero, in the BB-
component the restriction of eq. (4.13) reads

(Xλ)2 − iE

v2
Xλ− 1

2v2
= 0 . (4.14)

We may also restrict F to the BB-block,

FB(X) =
1

2
Tr
(

logX − v2(Xλ)2 + 2iEλX
)

.

First we observe that the domain of integration, D0
n, can be embedded in a larger

space of matrices by discarding the hermiticity and positivity,

D0
n ⊂ D0

C,n = {X ∈Matn,n(C|X = tsX
tts} .

Since FB is holomorphic up to a branch cut, D0
n can be deformed into the larger

space D0
C,n to reach possible saddle-points.

It is clear that the different solution spaces of (4.14) in D0
C,n can be distinguished

by the eigenvalues ofXλ. Thus we search a solution of (4.14) in the diagonal matrices
and construct the whole saddle-point manifold in the BB-sector, MB , using a group
action. Since on the diagonal matrices FB(X) is a sum of functions of the diagonal
elements,

FB(X) =
n
∑

i=1

FB,i(Xii) , FB,i(Xii) = (logXii − v2X2
ii + 2iEλiiXii) ,

we can reduce (4.14) to just one diagonal element of X,

X2
ii − λ̃ii

iE

v2
Xii −

1

2v2
= 0 .

This simple quadratic equation has the solutions

Xii = λ̃ii
iE

2v2
± 1

2v2

√

2v2 − E2 . (4.15)

This equation has solutions with non-zero real part if |E| <
√

2 v. We denote
the solutions for λii = ±1 by s1± and s2± for positive and negative real part,
respectively. Note that for i = 1, 2 the relation si+ = s̄i− holds. Now we need
a criterion telling us which saddle-point contributes. It is clear that D0

n contains
diagonal matrices of the form X = diag(X11, . . . ,Xnn,X11, . . . ,Xnn), Xii ∈ R

≥0.
The original integration domain, R

≥0, of every Xii may be distorted separately into
the complex plane. Therefore, it is possible to consider only one contribution of
FB , say FB,i(Xii) and to answer the question whether it is possible to reach the
saddle-point via an allowed path. Running along such a path, R

(

FB,i(Xii)
)

must
assume its absolute maximum in the saddle-point. Figure 4.3 shows the situation
for λii = +1 and fixed E; it does not change qualitatively for λii = −1 and different
values of E. Due to R

(

FB(s1)
)

= R
(

FB(s2)
)

, both saddle-points s1 and s2 can be
shown in one figure. Hence, it is clear that the only reachable saddle-point in the
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Figure 4.1: Saddle-points s1 and s2 of FB

diagonal matrices reads

X0 = R(s1)12n + I(s1)λ .

To construct the whole saddle-point manifold MB starting from X0, we use the
structure of D0

n. We know from [LSZ08] that a symmetry group GB ≃ GL(n,R)
acts transitively on D0

n by

X 7→ gXttsg
tts , tsg

tts = g† . (4.16)

This symmetry must still be present in the distorted domain of integration, at least
in a local sense.

To handle the situation, we introduce two commuting involutory automorphisms
on the group GB ,

ΦB(g) = ts(g
−1)tt−1

s and ΘB(g) = tsλ(g−1)t(tsλ)−1 . (4.17)

The fixed point set Fix(Φ) of ΦB is the isotropy group of the action (4.16) inX = 12n.
The set Fix(Θ) is also a group and generates MB by

X0 7→ gXt0tsg
tts , (4.18)

as can be checked easily. Since ΦB and ΘB commute, the intersection H = Fix(Φ)∩
Fix(Θ) is the isotropy group of (4.18). Thus we find MB ≃ Fix(ΘB)/H . Hence, our
task is now to determine this space. For this purpose, it is convenient to switch to
the real group GL(2n,R) by the unitary transformation

g 7→ h = pgp† , p =
1√
2

(

1n 1n
i1n −i1n

)

, ptp = ts , pλp
† = λ .

Using this transformation, the condition tsg
tts = g† just turns into h = h̄. The

further conditions become

p†hp = Θ(p†hp) = tsλp
t(h−1)tp̄(tsλ)−1 and

p†hp = Φ(p†hp)tsp
t(h−1)tp̄(ts)

−1 .
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Due to ptsλp
t = λ the and ptsp

t = 12n they simplify to

hλht = λ and hht = 12n ,

i.e. we have Fix(ΘB) ≃ O(2nA, 2nR) and Fix(ΦB) ≃ O(2n), and consequently
Fix(ΘB) ∩ Fix(ΦB) ≃ O(2nA)×O(2nR), which means

MB ≃ O(2nA, 2nR)/O(2nA)×O(2nR) = SO(2nA, 2nR)/S
(

O(2nA)×O(2nR)
)

.

This is a Riemannian symmetric space of noncompact type in class BDI in Cartan’s
list [Hel78], in particular we have dimRMB = 4nAnR. We denote the deformed
domain of integration which contains MB by D̃0

n.

The Fermi-Fermi block. The restriction of F (Q) to the FF-sector reads

FF (Y ) =
1

2
Tr
(

log Y − v2(Y λ)2 + 2iEλY
)

.

The saddle-point equation (4.13) becomes

(Y λ)2 − iE

v2
Y λ− 1

2v2
= 0 . (4.19)

We look for saddle-points in the diagonal matrices which can be reached by distor-
tion of D1

n. However, in principle all saddle-points are reachable by the deformed
integration domain. Thus we need a new criterion to decide which saddle-point is
the most important one. Here supersymmetry helps as follows: It is an elementary
observation that each Gaussian integration around the saddle-point supermanifold
leads to a factor N−1 and N+1 in the case of bosonic and fermionic directions, re-
spectively. Thus we have to minimize the transverse superdimension dB − dF of
the saddle-point supermanifold in order to obtain the leading order in N . Since the
total number of fermionic generators is independent of our analysis (4n2), this is
achieved by maximizing the number of fermionic generators which do not conserve
eq. (4.13). This can be realized by fulfilling the equation Xii − Yjj = 0 for as many
pairs (i, j) as possible. Thus the good choice for Y0 is to take a copy of X0, Y0 = X0.

On D1
n we have a group action,

Y 7→ gY tag
tt−1
a , g ∈ U(2n) , (4.20)

which allows us to construct the saddle-point manifold MF . Again, we introduce
two commuting involutory automorphisms,

ΦF (g) = ta(g
−1)stt−1

a and ΘF (g) = taλ(g−1)st(taλ)−1 . (4.21)

The isotropy group (as a subgroup of U(2n)) of the action (4.20) at Y = 12n is
Fix(ΦF ). The solutions of eq. (4.19) are obtained by Y = gY0tag

tt−1
a , g ∈ Fix(ΘF ).

Since (λta)
2 = −12n, we have Fix(ΘF ) = USp(2n).1 Clearly, the isotropy group

of Y0 in Fix(ΘF ) is the intersection Fix(ΘF ) ∩ Fix(ΦF ), which is isomorphic to

1Some authors use different notations. Here, we mean USp(2n) = Sp(2n) = U(2n) ∩ Sp(2n,C).
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USp(nA)×USp(nR). This can be seen by writing g = exp(C) and switching to the
Lie-Algebra gF = su(2n). The linearized automorphisms (4.21) read

dΦF (C) = −taCtt−1
a and dΘF (C) = −taλCt(taλ)−1 . (4.22)

They define two Cartan decompositions of gF , given by

gF = pΘF + kΘF and gF = pΦF + kΦF ,

with the definitions

pΘF = {F ∈ gF |dΘ(F ) = −F} , kΘF = {F ∈ gF |dΘ(F ) = F} ,
pΦF = {F ∈ gF |dΦ(F ) = −F} , kΦF = {F ∈ gF |dΦ(F ) = F} ,

As usual, the Lie algebra of Fix(ΘF ) ∩ Fix(ΦF ) is obtained by differentiating the
conditions for Fix(ΘF ) and Fix(ΦF ) along a curve exp(tC) in t = 0, which leads to
C ∈ pΦF ∩ kΘF . This is equivalent to

C = −C† = −taCtta = λCλ .

First, we observe that the first two equations enforce an obvious block structure of
C. This can be inserted in the third equation, which then reads

C =

(

a b
b† at

)

, a = a† , b = −bt .

We see that b = λ̃bλ̃ and a = λ̃aλ̃ must hold. Therefore, only the diagonal blocks in
a and b of size nA×nA and nR×nR survive. Since the blocks of different size do not
talk to each other under the Lie bracket, we obtain two independent Lie Algebras
usp(2nA) and usp(2nR). Altogether, we find

MF ≃ USp(n)/USp(nA)×USp(nR) ,

which is a compact Riemannian symmetric space of class CII in Cartan’s list. In
particular, we have dim(MF ) = dim(MB) = 4nAnR.

Full supersymmetric situation. Now we are able to discuss the full super-
symmetric problem. We introduce two commuting involutory automorphisms as a
generalization of (4.17) and (4.21),

Φ(g) = T (g−1)tT−1 and Θ(g) = TΛ(g−1)t(TΛ)−1 , g ∈ GL(2n|2n) . (4.23)

The supermatrix Q is subject to the symmetry (4.10), thus we can generalize the
actions (4.16) and (4.20) to

Q 7→ gQTgstT−1 . (4.24)

The restrictions of the previous paragraphs, namely the reality and unitarity condi-
tion, must be transferred to the part of Grassmann degree zero in the BB-block and
the FF-block of g, which defines a supergroup G in GL(2n|2n).
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Analogously to the previous paragraphs, the saddle-point supermanifold is gen-
erated by those elements of G, which, acting via (4.24) on Q0 = EB⊗X0 +EF ⊗Y0,
fulfill the saddle-point equation (4.13). These elements lie in the fixed point set
Fix(Θ). The isotropy group of (4.24) at Q = c14n is given by Fix(Φ), thus we arrive
at M ≃ Fix(Θ)/Fix(Θ) ∩ Fix(Φ). From the previous paragraphs we already know
its structure in the BB- and FF-sector, hence we have

M ≃ OSp(2n|2n)/OSp(2nA|2nA)×OSp(2nR|2nR) ,

which is a Riemannian symmetric superspace of class BDI|CII [Zir98c].
To complete the method of steepest descent, it remains to discuss the Gaussian

integrations around the saddle-point supermanifold M . To this aim, we observe
that in the limit of large N it is sufficient to know the tangential space at Q0. To
understand its structure, we consider first the tangential space at a point Qp ∝ 14n

in the original supermanifold S. It can be obtained by setting g = exp(tA), A ∈ g

and differentiating the action (4.24) at t = 0,

d

dt

∣

∣

∣

∣

t=0

exp(tA)QpT exp(tAst)T−1 = AQp +QpTA
stT−1 . (4.25)

Of course, if we allow A to lie in the whole Lie algebra g, we obtain more than
the tangential space at Qp. Since the isotropy group of (4.24) at Qp is Fix(Φ), the
restrictions for A are obtained by using the Φ-induced automorphism of g, given by

dΦ(A) =
d

dt

∣

∣

∣

∣

t=0

Φ
(

exp(tA)
)

= −TAstT−1 . (4.26)

This automorphism produces a decomposition of g,

g = pΦ + kΦ , pΦ = {A ∈ g|dΦ(A) = −A} , kΦ = {A ∈ g|dΦ(A) = A} .

Since kΦ is the Lie algebra of Fix(Φ), we only need pΦ. It generates the tangential
space at Qp by relation (4.25). Since the deformation of D0

n×D1
n to D̃0

n×D̃1
n does not

deform the tangential space, it is also a good candidate to generate the tangential
space at Q0. However, some rotations by phase factors can occur. Nevertheless, it
is useful to start with

TQ0S = {Q0A+AQ0|A ∈ pΦ} .

Now, we need to know, which of the directions in TQ0S are tangential and which are
normal to M . Note that a notion of orthogonality comes from the quadratic form
B(A1, A2) = STr(A1A2) on g× g, which can be naturally transferred to TQ0S.

Since M is generated by the group Fix(Θ) via (4.24) the automorphism dΘ on
g, given by

dΘ(A) =
d

dt

∣

∣

∣

∣

t=0

Θ
(

exp(tA)
)

= −TΛAst(TΛ)−1 (4.27)

helps us to distinguish normal and tangential directions.
Similar to dΦ, it induces a decomposition of g,

g = pΘ + kΘ , pΘ = {A ∈ g|dΘ(A) = −A} , kΘ = {A ∈ g|dΘ(A) = A} ,
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which is orthogonal with respect to the quadratic form B. Moreover, it induces a
decomposition of TQ0S into a tangential and normal part,

TQ0S = TQ0M + νQ0M with (4.28)

TQ0M = {AQ0 +Q0A|A ∈ pΦ ∩ kΘ} ,
νQ0M = {AQ0 +Q0A|A ∈ pΦ ∩ pΘ} .

Thus νQ0M is a good candidate for the Gaussian integrations. To proceed, we need
the quadratic expansion of F in Q0, which reads

F (Q0 + δQ) = F (Q0)− 1

2
STr

(

(Q−1
0 δQ)2 + v2(δQΛ)2)+O(δQ)3 . (4.29)

It can be easily seen that decomposition (4.28) is orthogonal with respect to the
quadratic form in (4.29), as it should be. Thus the superintegral (4.11) factorizes
in an superintegral over M and Gaussian integrations over νQ0M . However, insert-
ing a tangential vector corresponding to an even generator in g, i.e. δQ ∈ νQ0,0 =
{AQ0 +Q0A|A ∈ (pΦ ∩ pΘ)0}, in the quadratic form of (4.29), we see that an imag-
inary part occurs. That means that the chosen directions are not those of steepest
descent. Fortunately, this can be repaired choosing an orthogonal basis of (pΦ∩pΘ)0

and multiplying each basis vector by a phase factor obtained by inserting the cor-
responding tangential vector in (4.29). Moreover, we do not explicitly need these
factors, since they also occur in the Jacobian of the measure, which compensates
them exactly. Thus we can simply denote the space corrected by the phase factors
by (p̃Φ ∩ p̃Θ)0. Of course in the odd part given by (pΦ∩pΘ)1 no phase factors occur.

To conclude the discussion, we must discuss the measure. The measure DQ in
(4.11) is invariant under Q 7→ hQThstT−1. During our calculations we deformed
the domain of integration and chose new local coordinates in the vicinity of M ,
Q = gQ0Tg

stT−1. The new invariant measure is simply dg, the Berezinian is just 1.
It decomposes into a tangential and a transverse part. For the purpose of Gaussian
integration, it can be realized locally by dA, which is the flat measure on g. On the
saddle-point supermanifold M the measure is just the restriction of dg.

Let us consider the Gaussian superintegral. For every A ∈ pΦ ∩ pΘ we have
AQ0 = Q0A, this symmetry is not influenced by the fact that we rotate the domain
of integration to p̃Φ ∩ p̃Θ by phase factors. Thus the Gaussian superintegral reads

∫

(p̃Φ∩p̃Θ)0

DA exp
(

−2NSTr
(

A2 + v2(Q0A)2)
)

= cn ,

It can be seen by counting the dimension of A ∈ pΦ∩pΘ that the number of fermionic
and bosonic degrees of freedom is equal, namely 4(n2

A + n2
R). Due to the diagonal

structure of Q0 we conclude that this superintegral is independent of N and yields
just a constant cn, which we do not calculate explicitly. Due to the invariance of
the measure DQ under the action (4.24), it is clear that the Gaussian superintegral
is the same for the whole saddle-point supermanifold M . Thus it remains to write
down the superintegral over the latter, no different Gaussian superintegrals occur.
We calculate for Q = gQ0Tg

stT−1 ∈M

F (Q) =
1

2
STr

(

log gQ0Tg
stT−1 − v2(gQ0Tg

stT−1Λ)2 + 2iEΛQ
)

= F (Q0) = 0 .
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Thus the leading contribution to the saddle-point superintegral must come from the
term independent of N in the exponent of (4.11) and we are left with

lim
N→∞

ZnA,nR(
√
NE + ω̂/

√
N) = cn

∫

MB×MF

dg exp(iB(ω̂,Ad(g)Q0Λ)) , (4.30)

This is the central result of this chapter. Before we discuss this result, it is necessary
to calculate the density of states, i.e. R1(E). However, as we will see in the following
section, this result is contained in the previous calculations.

4.4 Density of states

Referring to the previous calculations, it is easy to compute the density of states in
the large N -limit under consideration. We just need to set nR = n = 1 and nA = 0,
and use (4.6) and (4.30). In this case, the superintegral (4.30) is degenerate since M
contains only the point Q0. Nevertheless, we may differentiate the integrand with
respect to α̂:

lim
N→∞

R0,1(
√
NE) ∝ lim

ε→0

∂

∂α̂

∣

∣

∣

∣

α̂=iε

exp(iB(ω̂,Q0)) = iTr0Q0 ,

with Tr0Q0 := STr(EBQ0). In a last step, we must take the imaginary part of R0,1,
which corresponds to the calculation of R0,1−R1,0. We obtain the density of states,

ρ∞(E) ∝
√

2v2 − E2 .

It is also possible to do this calculation without the degenerate superintegral in
(4.30), using (4.6) and (4.9), as follows,

ρN (ω) = I

(

lim
ε→0

∂

∂α

∣

∣

∣

∣

α=ω+iε

Z0,1(ν)

)

= I






lim
ε→0

∫

D0
n×D1

n

DQTr0Q exp
(

− STr
(v2

2
Q2 − i(ω + iε)Q

))

SDetN/2(Q)






.

Now the same computations as in the previous section can be done, however, they
are much simpler since the saddle-point manifold M is zero-dimensional, i.e. it is
only a point. Thus the only thing to do is to evaluate a Gaussian superintegral
at Q = Q0. Since the Gaussian integration just yields a constant, Tr0Q0 is the
important factor. Thus we find again, using (4.15)

ρ∞(E) ∝ Tr0Q0 =
√

2v2 − E2 .

The proportionality constant can be obtained from the Gaussian superintegral, how-
ever, it is easier to restore it from the normalization condition as follows,

1 = c

v
√

2
∫

−v
√

2

dE
√

2v2 − E2 = cπv2 .
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Hence, we have

ρ∞(E) =
1

πv2

√

2v2 − E2 .

This density of states is well known as Wigner’s semi-circle law. Taking into account
that we have rescaled the energy by E = ω/

√
N , for v = 1 this result assumes exactly

the form found in [Meh04].

4.5 Explicit correlation functions of GOE from the lit-

erature

From the literature we already know the result of the superintegral (4.30), if we
insert it into (4.6) with ω1 = ω2 = · · · = ωn = NE and add up all contributions
for different values of nA and nR. For example, in [PM83] or [Meh04] the following
result for the n-point correlation function in the limit of large N can be found,2

lim
N→∞

(Rn(E + α1, . . . , E + αn)) = QDet(KE(αi, αj))ij . (4.31)

The symbol QDet denotes the quaternionic determinant. The kernel KE is defined
by

KE(αi, αj) =





sinπρ∞(E)(αi−αj)
αi−αj D(ρ∞(E)(αi − αj))

J((ρ∞(E)(αi − αj)) sinπρ∞(E)(αi−αj)
αi−αj



 ,

with the notation

D(r) = − 1

π

π
∫

0

dk k sin kr and J(r) = − 1

π

∞
∫

π

dk
sin kr

k
.

For further discussion of this result we refer to the literature, see the references
mentioned above.

2Here we use a slightly different notation due to the energy variables introduced above. Usually,
the kernel K does not depend on the energy E, however, in our context this is convenient.



Chapter 5

Bosonic random matrix ensemble

invariant under time reversal

Again we consider a bosonic system with N degrees of freedom. Similar to the
setting in chapter 3 we start with a quadratic Hamiltonian of the form

H =
1

2

N
∑

i,j=1

(PiBijPj +QiCijQj) , (5.1)

where B = Bt and C = Ct are real and positive N×N matrices. The absence of off-
diagonal terms, which would mix up momenta and positions, ensures the invariance
under time reversal. As usual, we are interested in the spectral correlations in
the thermodynamical limit, i.e. for large N . However, a solution of the model
using techniques like bi-orthogonal polynomials, similar to chapter 3 seems to be
impossible. The attempt leads to problems discussed in appendix C.2. Thus here
we use the supersymmetry method to derive the correlation functions in terms of
superintegrals.

In analogy to the situation in chapter 3 we introduce the matrix X = hJ , with

h =

(

B 0
0 C

)

, h = ht > 0 ;

and J the symplectic unit matrix. The characteristic frequencies of (5.1) are given
by the eigenvalues of iX. The Hamiltonian assumes the form

H =
1

2
( P Q )X

(

Q
−P

)

.

The measure on the space of all allowed Hamiltonians is again

dµl(h) = cle
−τTrh/2Det(l−1)/2(h)dh , (5.2)

with a free parameter l ∈ N and τ > 0. Since τ can be scaled out, we immediately
choose τ = 1 without loss of generality. The normalization constant cl is fixed by
the condition

1 =

∫

h=ht>0

dµl(h) .

53
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Similar to the measure in chapter 3, this measure can be constructed by adding up
a sufficient number of rank-one projectors. We write

Bij =
M
∑

α=1

viαvjα , Cij =
M
∑

α=1

wiαwjα , i, j = 1, 2, . . . , N , (5.3)

with M := N + l. The numbers viα and wiα are independent Gaussian distributed
with zero mean and variance 1. Pushing forward this distribution to a distribution
of h leads immediately to (5.2). The disorder average for any appropriate function
f(h) is defined, as usual, as

〈f〉 =

∫

h=ht>0

f(h)dµl(h) . (5.4)

5.1 Using the supersymmetry method

For this section, we use section 4.1 as a template. However, the situation is more
complicated. The first question is, how the space of matrices h = ht > 0 can be
realized. Since B and C are positive and symmetric, all matrices h can be reached
by setting

h = AtA , A =

(

B̃ 0

0 C̃

)

, B = B̃tB̃ , C = C̃tC̃ .

The matrices B̃ and C̃ are arbitrary real and rectangular of dimension M × N .
The advantage of this choice is the disappearance of the determinantal factor in the
measure (5.2) after transforming the disorder integral. We find, using the measure
dB̃dC̃ proportional to the flat one,

〈f〉 =

∫

h=ht>0

f(h)dµl(h) =

∫

MatM,N (R)×MatM,N (R)

e−
1
2

TrAtAf(AtA)dB̃dC̃ . (5.5)

By an invariance argument one can see that this identity is indeed true. We under-
stand the integrals in (5.5) as functionals which map a function f to a real number
and consider their behavior under the transformation f 7→ f ◦lg ◦rgt . The mappings
lg and rgt are the left and right multiplication with a matrix g and gt, respectively,
g = diag(g1, g2) > 0 , g1, g2 ∈ GL(N,R) and we obtain

∫

h=ht>0

(f ◦ lg ◦ rgt)(h)(h)dµl(h) = Detl+N (g)

∫

h=ht>0

f(h)(h)dµl(h) and

∫

e−
1
2

TrAtA(f ◦ lg ◦ rgt)(AtA)dB̃dC̃ = Detl+N (g)

∫

e−
1
2

TrAtAf(AtA)dB̃dC̃ .

Hence, the transformation behavior of both is the same which tells us that the
functionals are proportional to each other. The constant of proportionality can be
obtained by setting f ≡ 1 and is absorbed into the measure dB̃dC̃.
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We are interested in the averaged n-level correlation functions given by

Rn(ω1, . . . , ωn) := lim
ε→0

〈

n
∏

i=1

1

π
R
(

Tr(X − iωi + ε)−1)
〉

, X = hJ .

We start with a reformulation of the real part of the resolvent in order to use the
right hand side of (5.5) for the calculation of the ensemble average. By means of

Tr(iE − JAtA)−1 =
1

iE

∞
∑

i=0

Tr

(

1

iE
JAtA

)i

= − 2l

iE
+

1

iE

∞
∑

i=0

Tr

(

1

iE
AJAt

)i

= − 2l

iE
+ Tr(iE −AJAt)

we obtain

R
(

Tr(X − iωi + ε)−1) = R

(

− 2l

iωi + ε
+ Tr(X − iωi + ε)−1

)

= R

(

− 2l

iωi + ε

)

+ R

(

i
∂

∂β
Det

(

AJAt − iβ
AJAt − iα

)

∣

∣

∣

∣

α=β=ωi−iε

)

.

The first term corrects the resolvent at the energy ω = 0. It occurred since the
matrix AJAt has 2l eigenvalues 0, which are artefacts of the replacement X →
JAtA → AJAt. Since this term does not affect the resolvent at finite energies,
which we are interested in, we neglect it in the following calculations for the sake of
simplicity. Using the fact that eigenvalues of real antisymmetric matrices occur in
conjugated pairs, the second term can be split into two parts according to

R

(

i
∂

∂β
Det

(

AJAt − iβ
AJAt − iα

)

∣

∣

∣

∣

α=β=ωi−iε

)

=

i
∂

∂β
Det

(

AJAt − iβ
AJAt − iα

)

∣

∣

∣

∣

α=β=ωi−iε
− i ∂

∂β
Det

(

AJAt − iβ
AJAt − iα

)

∣

∣

∣

∣

α=β=ωi+iε

.

Thus in a product of n resolvents 2n terms occur. These terms differ by the sign
of iε, we call the number of positive and negative signs nR and nA, respectively.
Disregarding the bahavior at ωi = 0, we can write for the n-level correlation functions

Rn(ω1, . . . , ωn) =
n
∑

nA=0
nR=n−nA

(

n

nA

)

RnA,nR(ω1, . . . , ωn) , (5.6)

with

RnA,nR(ω1, . . . , ωn) = lim
ε→0

(

iε

π

) nA
∏

i=1

− ∂

∂αi

∣

∣

∣

∣

αi=ωi−iε

n
∏

i=nA+1

∂

∂αi

∣

∣

∣

∣

αi=ωi+iε

× ZnA,nR(α1, . . . , αn, ω1 − iε, . . . , ωnA − iε, ωnA+1 + iε, . . . , ωn + iε) . (5.7)
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The generating function ZnA,nR is given by

ZnA,nR(α1, . . . , αn, β1, . . . , βn) =

〈

n
∏

i=1

Det

(

AJAt − iβi
AJAt − iαi

)〉

. (5.8)

We see from (5.7) that it is sufficient to perform all calculations using the gener-
ating function (5.8). The differentiations with respect to the energy parameters can
be postponed to the end of our calculations, provided the different limit processes
and integrations can be interchanged without causing problems.

Rewriting the generating function as Gaussian superintegral

As before, the fundamental structure of the supersymmetry method is to rewrite
the determinants occurring in the resolvent as Gaussian superintegrals. For that
purpose we define the supermatrix

µ = EB ⊗
n
∑

i=1

Eiiαi + EF ⊗
n
∑

i=1

Eiiβi .

The matrices EB = diag(1, 0) and EF = diag(0, 1) are elementary 2 × 2 superma-
trices, Eij is an n × n matrix which has only one entry 1 in the i-th row and j-th
column.

A direct calculation gives

n
∏

i=1

Det

(

AJAt − iβi
AJAt − iαi

)

= SDet(12n ⊗AJAt − iµ⊗ 1M ) .

The matrix AJAt− iω has a special structure, it is symmetric in the diagonal blocks
and antisymmetric in the off-diagonal ones. This structure must be copied to the
auxiliary Gaussian superintegrals, which can be done as follows. Let v and w be
M × n-matrices of independent complex variables, ṽ = v̄ and w̃ = w̄ its complex
conjugate. As anticommuting variables we take the independent M × n-matrices η,
ξ, η̃, and ξ̃. We put these components in large matrices,

Ψ =

(

v ṽ η η̃

w −w̃ ξ −ξ̃

)

=

(

ψ1

ψ2

)

,

Ψ̃ =

(

ṽ v η̃ −η
w̃ −w ξ̃ ξ

)t

=
(

ψ̃1 ψ̃2

)

= CΨt , (5.9)

C = (EB ⊗ σ1 + EF ⊗ iσ2)⊗ 1n .

The appropriate Berezin measure reads

D(Ψ, Ψ̃) = π−2Mn
M
∏

i=1

n
∏

j=1

dvijdv̄ijdwijdw̄ij
∂

∂ηij

∂

∂η̃ij

∂

∂ξij

∂

∂ξ̃ij
.

Using the definition

ν = EB ⊗ 12 ⊗
n
∑

i=1

Eiiαi + EF ⊗ 12 ⊗
n
∑

i=1

Eiiβi , (5.10)
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we find the relation

SDet(12n⊗AJAt−iµ⊗1M ) =

∫

D(Ψ, Ψ̃) exp(−TrAJAtΨΛΨ̃+iSTrΛνΨ̃Ψ) . (5.11)

As in chapter 4, convergence of this superintegral is enforced by the imaginary part
of the elements of ν. Due to the different signs of them the matrix Λ must be present
in the exponent. We define

λ̃ = diag(−1nA ,1nR) , λ = 12 ⊗ λ̃ , Λ = EB ⊗ λ+ EF ⊗ λ .

Ensemble average

Now, we are able to use (5.11) to carry out the ensemble average in the generating
function (5.8) according to (5.5). This means evaluating the outer integral of

〈

n
∏

i=1

Det

(

AJAt − βi
AJAt − αi

)〉

=

∫

dB̃dC̃e−
1
2

TrA2
∫

D(Ψ, Ψ̃) exp(−1

2
TrAJAtΨΛΨ̃ +

i

2
STrΛνΨ̃Ψ) .

Now, we interchange the inner and the outer integration. To simplify notation for the
next step, we omit the integration over the auxiliary fields and the factor containing
ν,

∫

dB̃dC̃ exp−1

2
Tr
(

B̃2 + C̃2 +AJAtΨΛΨ̃
)

=

∫

dB̃dC̃ exp−1

2
Tr
(

B̃2 + C̃2 + C̃tψ2Λψ̃1B̃ − B̃tψ1Λψ̃2C̃
)

=

∫

dB̃dC̃ exp−1

2
Tr

(

(

B̃t C̃t
)

(

1 ψ1Λψ̃2

−ψ2Λψ̃1 1

)(

B̃

C̃

))

= Det(1 + ψ1Λψ̃2ψ2Λψ̃1)−N/2 .

The integration in the last step is a simple Gaussian integral since (ψ1Λψ̃2)t =
−ψ2Λψ̃1, which makes the quadratic form in the exponent symmetric. Note that
this symmetry occurs due to our suitable choice of ψ1 and ψ2, which is crucial for
the model under consideration.

Thus, we calculated successfully the disorder average. However, this has been
paid with the introduction of the auxiliary space. Now, our task is to integrate out
these auxiliary fields.

5.2 Application of the superbosonization identity

For the following calculation, section 4.2 serves as template.
The identity

Det(1 + ψ1Λψ̃2ψ2Λψ̃1) = exp(Tr log(1 + ψ1Λψ̃2ψ2Λψ̃1))

= exp(STr log(1 + ψ̃1ψ1Λψ̃2ψ2Λ))

= SDet(1 + ψ̃1ψ1Λψ̃2ψ2Λ)
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helps us to apply the superbosonization formula. By means of (5.9) we can write
down ψ̃1ψ1 and ψ̃2ψ2 explicitly,

ψ̃1ψ1 =











ṽtv ṽtṽ ṽtη ṽtη̃
vtv vtṽ vtη vtη̃
η̃tv η̃tṽ η̃tη 0
−ηtv −ηtṽ 0 −ηtη̃











,

ψ̃2ψ2 =











w̃tw −w̃tw̃ w̃tξ −w̃tξ̃
−wtw wtw̃ −wtξ wtξ̃

ξ̃tw −ξ̃tw̃ ξ̃tξ 0

ξtw −ξtw̃ 0 −ξtξ̃











.

The matrix ψ̃1ψ1 has exactly the form needed to apply the superbosonization formula
for orthogonal symmetry, but in ψ̃2ψ2 some signs have to be changed. This can be
achieved by multiplying with Σ3 = EB ⊗ σ3 ⊗ 1n + EF ⊗ σ3 ⊗ 1n from the left and
from the right. Let us state that in the notation of [LSZ08], we have p = q = n, i.e.
the number of bosonic and fermionic replicas is equal, the number of orbitals is N .
Thus, we are ready to apply the superbosonization identity and obtain

ZnA,nR(ν) ≡ ZnA,nR(α1 . . . , αn, β1, . . . , βn)

=

〈 n
∏

i=1

Det

(

AJAt − βi
AJAt − αi

)

〉

=

∫

D(Ψ, Ψ̃) exp

(

STr
1

2
iνΛΨ̃Ψ

)

SDet
(

1 + ψ̃1ψ1(ΛΣ3)Σ3ψ̃2ψ2Σ3(ΛΣ3)
)−N/2

=

∫

DQ1DQ2e
i
2

STr(νΛ(Q1+Q2)) SDetM/2(Q1Q2)

SDetN/2(1 +Q1Σ3ΛQ2Σ3Λ)
. (5.12)

In the second step of the superbosonization identity is used. The integration over
the two times 2N bosonic and two times 2N fermionic variables is reduced to an
integration over two 4n × 4n supermatrices Q1 and Q2, which produces the power
of the superdeterminant. In block form, we write, using i ∈ {1, 2},

Qi =

(

Xi σi
τi Yi

)

.

According to [LSZ08], Qi is subject to the symmetry

Qi = TQst
i T
−1 , T = EB⊗ts+EF ⊗ta , ts = σ1⊗1n , ta = (−i)σ2⊗1n . (5.13)

Therefore, there are only (2n)2 independent Grassmann variables in each Q1 and
Q2, explicitly we have σi = tsτ

t
i t
−1
a . The domain of integration for Xi reads

D0
n := {X ∈ Mat2n,2n(C)|X = X† > 0,X = tsXt

−1
s } . (5.14)

The dimension is dimR(D0
n) = 2n2 + n. For Y we have

D1
n := {Y ∈ U(2n)|Y = taY

tt−1
a } . (5.15)
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Its dimension is dimR(D1
n) = 2n2 − n. It remains to define the measure,

DQi = dµD0
n
(Xi)dµD1

n
(Yi)

2n
∏

i=1

2n
∏

j=1

∂

∂σij

Detn(Xi − σY −1
i τ)Detn(Yi − τX−1σ)

(2π)2n2Det1/2(1−X−1
i σY −1

i τ)
.

(5.16)
Up to a constant factor, the measures dµD0

n
(X) and dµD1

n
(Y ) are defined by invari-

ance under the transformations

X 7→ gXtsg
tts , g† = tsg

tts , g ∈ GL(n,C) and

Y 7→ gY tag
tt−1
a , g ∈ U(2n) . (5.17)

In [LSZ08], the normalization constants are fixed by Gaussian integrals.

5.3 Asymptotic correlation functions in the bulk

In (5.12), we found for the generating function the expression

ZnA,nR(ν) =

∫

DQ1DQ2e
i
2

STr(νΛ(Q1+Q2)) SDetM/2(Q1Q2)

SDetN/2(1 +Q1Σ3ΛQ2Σ3Λ)
, (5.18)

with Σ3 = (EB +EF )⊗ σ3 ⊗ 1. We want to calculate (5.18) in the limit of large N
in the bulk scaling. Therefore, we rescale the energy according to ν = NE+ ω̂ with
fixed E and

ω̂ = EB ⊗ 12 ⊗ diag(α̂1, α̂2, . . . , α̂n) + EF ⊗ 12 ⊗ diag(β̂1, β̂2, . . . , β̂n) .

In order to apply the method of steepest descent, we set

F (Q1, Q2) = NSTr
(

iEΛ(Q1 +Q2) + logQ1 + logQ2

− log(1 +Q1Σ3ΛQ2Σ3Λ)
)

. (5.19)

The integrand of (5.18) can be written in the form

exp

(

1

2
(F (Q1, Q2) + iSTr(ω̂Λ(Q1 +Q2) + (M −N)(logQ1 + logQ2)

)

. (5.20)

The terms not contained in F (Q1, Q2) are of order 1; we will see that the difference
M−N does not affect the result in the limit of large N . The matrix ω̂ can be regarded
as a small perturbation . To start the saddle-point analysis, we set Qi = Q̃i + δQi
for i ∈ {1, 2}. Demanding that the first order terms in δQ1/2 vanish, we obtain the
two equations

iΛE +Q−1
1 − Σ3ΛQ2Σ3Λ(1 +Q1Σ3ΛQ2Σ3Λ)−1 = 0 ,

iΛE +Q−1
2 − Σ3ΛQ1Σ3Λ(1 +Q2Σ3ΛQ1Σ3Λ)−1 = 0 .

Multiplying these equations by (1 + Q1Σ3ΛQ2Σ3Λ) and (1 + Q2Σ3ΛQ1Σ3Λ) from
the right, respectively, and combining them, we obtain the saddle-point equations

(Q1Λ)3 +Q1Λ = −iE−1 and (5.21a)

Σ3Q2Σ3 = Q1 . (5.21b)
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Let us remark that the situation is symmetric under exchange of Q1 and Q2, as can
be e.g. seen by means of superintegral (5.18). Equations (5.21) merely do not look
symmetric.

For the discussion of eq. (5.21a) the strategy of the discussion of eq. (4.13) can
be copied. However, due to condition (5.21b) things are a bit more complicated.

Boson-Boson block. The saddle-point equations restricted to the BB-block reads

(X1λ)3 +X1λ = −iE−1 and (5.22a)

Σ̃3X2Σ̃3 = X1 . (5.22b)

The construction of the boson-boson saddle-point manifold MB works as follows:
First we embed the original space of integration, D0

n ×D0
n in a larger space of com-

plex matrices D0
C,n × D0

C,n, with D0
C,n = {X ∈ Mat2n,C|X = tsX

tts}. As usual,

since FB is holomorphic, it is possible to deform D0
n × D0

n in this larger space by
dropping the conditions Xi = X†i > 0, (i ∈ {1, 2}) without changing the value of the
integral. We just have to take care that the boundary of the domain does not move
and the deformed domain converges to the original one at infinity. In particular, it
is possible to reach saddle-points outside of D0

n ×D0
n.

1 20

-1

s1

I

R

a)

-1 10

1

s3

I

R

c)

-1-2 0

-1

s2

I

R

b)

saddle-point

singularity

path of constant phase/
integration contour

level curves of R(FB)

inaccessible area with
R(FB,i) > R(FB,i(sj, sj))

Figure 5.1: Saddle-points in the boson-boson block for E = 1 + iε
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Clearly, only (5.22a) is crucial for the structure of MB , (5.22b) just copies its
solution to X2, up to the conjugation by Σ̃3.

To start the discussion of (5.22a) we set X1 ≡ X and observe that its can
be distinguished by the eigenvalues of Xλ. Thus the first steps are to search for
solutions in the space of diagonal matrices and fix the ones which are reachable by
deformations of D0

n. Then, we use a group action on D0
n to generate the whole

solution space and copy it to X2. In the last step the group action serves to find the
remaining directions of steepest descent.

Obviously, (5.22a) has 3n different solutions in the diagonal matrices for real and
positive E, since every element xii fulfills

(±xii)3 ± xii = i/E (5.23)

independently. For each sign, there are three solutions, one with positive real part,
denoted by s1, one with negative real part, s2; the third one, s3, is purely imaginary.
To see, which solution contributes to the integral (5.18), consider, as in chapter 4,
the diagonal matrices X = diag(X11, . . . ,Xnn,X11, . . . ,Xnn) in D0

n and deform the
domain of integration of each entry, R

≥0, in the complex plane. The remaining
2n2 directions which are necessary to cover the whole domain of integration, are
irrelevant for this thought. In any case, there must be a path from 0 to the solution
X0 lying completely in the diagonal matrices. The criterion to choose one is that
the saddle-point given by the pair (X0, Σ̃3X0Σ̃3) must maximize R(FB(X1,X2))
globally. Unfortunately, this is still a high-dimensional problem. However, it can be
reduced to one complex dimension: In the diagonal matrices, FB decomposes into
n contributions, one for each pair ((X1)ii, (X2)ii), i.e.

FB(X1,X2) =
∑

i=1

fB((X1)ii, (X2)ii),

fB(x1, x2) = −2N(±iE(x1 + x2)− log x1 − log x2 + log(1 + x1x2),

the sign depends on the related entry of λ. Hence, the condition to globally maxi-
mize R(FB(X1,X2)) in the saddle-point has been reduced to the maximization of.
R(FB,i((X1)ii, (X2)ii)). Finally, we obtain a one dimensional complex problem if
we fix one variable, say (X2)ii, in the saddle-point sj and observe what happens if
(X2)ii runs from zero to sj. Figure 5.3 shows the situation for a fixed value of z and
a fixed sign in (5.23). However, the pictures do not change qualitatively for different
values of z; changing the sign just leads to complex conjugation. As mentioned in
the description of figure 5.3, the gray parts are inaccessible since the real part of
FB,i exceeds its value in the saddle-point. In the case of s1 it is obviously possible
to distort the integration contour through it, see figure 5.3 a). In the case of s2

and s3 (fig. 5.3 b)-c)) it is impossible to start with the contour in 0, run along
the path of constant phase through the saddle-point and escape to +∞, since there
is a singularity on the imaginary axis: We see from (5.19) that the pair of values
with x1x2 = −1 is singular, i.e. if we deform both contours in the same manner, a
singularity in ±i occurs. In any case, we are not able to deform both contours in
a permitted manner. Furthermore, it is problematic to run to values of x1 and x2
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with negative real part since FB,i must have a branch cut, however, this does not
affect the real part.

Consequently, the only reachable saddle-point in the set of diagonal matrices
by deforming the original domain of integration is the pair (X0,X0), with X0 =
R(s1)λ+ I(s1)1.

The symmetry group of D0
n × D0

n is GB × GB ≃ GL(n,R) × GL(n,R). It acts
transitively on D0

n ×D0
n by

(X1,X2) 7→ (g1X1tsg
t
1, g2X2tsg

t
2) . (5.24)

We call its Lie algebra gB ⊕ gB .
As mentioned before, (5.22b) can be neglected to determine the structure of MB .

Thus, since we found the reachable solution of (5.22a) in the diagonal matrices, we
can handle it exactly like (4.14), and restrict action (5.24) to the first element of the
pair (X1,X2). Thus we know

MB ≃ O(2nA, 2nR)/O(2nA)×O(2nR) = SO(2nA, 2nR)/S
(

O(2nA)×O(2nR)
)

,

which is again is a Riemannian symmetric space of noncompact type in class BDI
in Cartan’s list [Hel78], in particular we have dimRMB = 4nAnR.

For the further discussion, we denote the deformed domain of integration which
contains MB by D̃0

n × D̃0
n.

The Fermi-Fermi block. The restriction of F (Q) to the FF-sector reads

FF (X) =
1

2
Tr
(

log Y − v2(Y λ)2 + 2iEλY
)

.

The saddle-point equation become

(Y1λ)3 + Y1λ = −iE−1 and (5.25a)

Σ̃3Y2Σ̃3 = Y1 . (5.25b)

Searching a saddle-point in the diagonal matrices leads, using the same supersym-
metric argument as in chapter 4 , to (Y0, Y0) = (X0,X0). Again, on D1

n × D1
n we

have a group action,

(Y1, Y2) 7→ (g1Y1tag
t
1t
−1
a , g2Y2tag

t
2t
−1
a ) , g1, g2 ∈ U(2n) , (5.26)

which allows us to construct the saddle-point manifold MF . It consists of pairs of
the form (Y, Σ̃3Y Σ̃3) ∈ D1

Cn ×D1
Cn, D

1
Cn = {Y ∈ Mat2n,2n(C)|Y = taY

tt−1
a }. As in

the BB-sector, only the first saddle-point equation (5.25a) is important. Thus we
pick the first element of the pair and see immediately by means of the construction
in chapter 4

MF ≃ USp(n)/USp(nA)×USp(nR) ,

which is a compact Riemannian symmetric space of class CII in Cartan’s list. In
particular, we have dim(MF ) = dim(MB) = 4nAnR.
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Full supersymmetric situation. Now we are able to discuss the full supersym-
metric problem. Starting with the saddle-point in the diagonal matrices, (Q0, Q0)
with Q0 = EB⊗X0+EF⊗Y0, we can construct the whole saddle-point supermanifold
M . The actions (5.24) and (5.26) generalize to

(Q1, Q2)→ (g1Q1Tg
st
1 , g2Q2Tg

st
2 ) . (5.27)

The restrictions of the previous paragraphs, namely the reality condition g†B = tsg
t
Bts

in the BB-sector and the unitarity condition gF ∈ U(2n) in the FF-sector, must be
transfered to the part of Grassmann degree zero in the BB-block gB and the FF-block
gF of g, which defines a supergroup G×G in GL(2n|2n)×GL(2n|2n).

Analogously to the previous paragraphs, the saddle-point supermanifold is gen-
erated by those elements of G, which, acting via (5.27) restricted to Q1 on Q0, fulfill
the saddle-point equation (5.21a), (5.21b) may be neglected. These elements lie in
the fixed point set Fix(Θ). The isotropy group of the restriction of (5.27) to Q1 at
Q1 = c14n is given by Fix(Φ), thus we arrive at M ≃ Fix(Θ)/Fix(Θ)∩Fix(Φ). From
the previous paragraphs we already know its structure in the BB- and FF-sector,
hence we have

M ≃ OSp(2n|2n)/OSp(2nA|2nA)×OSp(2nR|2nR) ,

which is a Riemannian symmetric superspace of class BDI|CII [Zir98c].
It remains to construct the Gaussian superintegrals around M . The strategy

is very similar to that in chapter 4. We can even use the same definitions and
decompositions of g. Recall the automorphisms (4.26) and (4.27),

dΦ(A) = −TAstT−1 and dΘ(A) = −TΛAst(TΛ)−1 ,

which induce decompositions of g according to

g = pΦ + kΦ , pΦ = {A ∈ g|dΦ(A) = −A} , kΦ = {A ∈ g|dΦ(A) = A} ,
g = pΘ + kΘ , pΘ = {A ∈ g|dΘ(A) = −A} , kΘ = {A ∈ g|dΘ(A) = A} . (5.28)

Since the isotropy supergroup of (5.27) is Fix(Φ) × Fix(Φ), a candidate for the
tangential space at (Q0, Q0) in the original supermanifold,S, is

T(Q0,Q0)S = {(A1Q0 +Q0A1, A2Q0 +Q0A2|A1, A2 ∈ pΦ} .

The notion of orthogonality on T(Q0,Q0)S comes from the quadratic form STr(A1A2+
A3A4) on g⊕g. Thus we can decompose T(Q0,Q0)S. The saddle-point supermanifold
is generated by the supergroup Fix(Θ) by (Q0, Q0) 7→ (gQ0TgT

−1,Σ3gQ0TgT
−1Σ3),

thus we can use the decomposition (5.28) to separate the normal part of T(Q0,Q0)S
from the part tangential to M . We obtain

T(Q0,Q0)S = T(Q0,Q0)M + ν(Q0,Q0)M ,

T(Q0,Q0)M = {(Q0A+AQ0,Σ3(Q0A+AQ0)Σ3|A ∈ pΦ ∩ kΘ} , (5.29a)

ν(Q0,Q0)M = ν‖(Q0,Q0)M + ν⊥(Q0,Q0)M , (5.29b)

ν‖(Q0,Q0)M = {(Q0A+AQ0,−Σ3(Q0A+AQ0)Σ3|A ∈ pΦ ∩ kΘ} , (5.29c)

ν⊥(Q0,Q0)M = {(Q0A1 +A1Q0, Q0A2 +A2Q0|A1, A2 ∈ pΦ ∩ pΘ} . (5.29d)
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Let us remark that the three spaces are all orthogonal to each other. The further
decomposition (5.29b) is useful for the Gaussian integration.

We proceed by expanding F (Q1, Q2) to quadratic order in the point (Q0, Q0),

F (Q0 + δQ1, Q0 + δQ2) = NTr
[

(Q−1
0 δQ1)2 + (Q−1

0 δQ2)2

+ δQ1ΛδQ2Λ(1 +Q2
0)−1

−
(

Q0ΛδQ2Λ(1 +Q2
0)−1)2 −

(

δQ1Q0(1 +Q2
0)−1)2

−Q0ΛδQ2Λ(1 +Q2
0)−1δQ1Q0(1 +Q2

0)−1]+O(δQ3
1/2)

= H(δQ1, δQ2) +O(Q3
1/2) . (5.30)

It is clear that the three parts of T(Q0,Q0)S are orthogonal with respect to the
quadratic form H, thus the superintegral (5.18) factors into three parts. However,
inserting even elements of ν⊥(Q0,Q0)M in the quadratic form H, we obtain an imag-
inary part, hence, similar to the situation in chapter 4, some phase factors occur.
We just rotate the space (pΦ ∩ pΘ)0 by them and obtain the domain of integration
(p̃Φ ∩ p̃Θ)0. For ν‖(Q0,Q0)M no phase factors occur.

To write down the superintegrals, we have to consider the Berezin measure. The
measureDQ1DQ2, in (5.18) is invariant under (Q1, Q2) 7→ (h1Q1Th

st
1 T
−1, h1Q1Th

st
1 T
−1).

For our calculations we deformed the domain of integration and chose new local co-
ordinates in the vicinity of M , given by (Q1, Q2) = (g1Q0Tg

st
1 T
−1, g2Q0Tg

st
2 T
−1).

The new invariant measure is simply dg1dg2, the Berezinian is just 1. On the saddle-
point supermanifold M the measure is just the restriction of dg1dg2. For ν‖(Q0,Q0)M
the local realization is the restricted flat measure on g,dA, and for ν̃⊥(Q0,Q0)M it is
realized by the restricted flat measure on g⊕ g, dA1dA2.

Let us consider the Gaussian superintegral. As already mentioned, it factorizes
into two parts, according to the decomposition (5.29b). The first factor reads

∫

(pΦ∩kΘ)0

dA exp
(

H(AQ0 +Q0A,Σ3(AQ0 +Q0A)Σ3)
)

.

The second one reads
∫

(p̃Φ∩p̃Θ)0⊕(p̃Φ∩p̃Θ)0

dA1dA2 exp
(

H(A1Q0 +Q0A2, A1Q0 +Q0A2)
)

.

It can be seen by counting the dimension of pΦ ∩ kΘ and (pΦ ∩ pΘ)⊕ (pΦ ∩ pΘ) that
the number of bosonic and fermionic degrees of freedom is equal in each of the two
Gaussian superintegrals, namely 8nAnR and 8(n2

A + n2
R), respectively. Due to the

diagonal structure of Q0 we conclude that these superintegrals are independent of
N and just yield constants, which we do not calculate explicitly.

Due to the invariance of the measure DQ1DQ2 under the action (5.27), it is
clear that the Gaussian superintegrals are the same for the whole saddle-point su-
permanifold M , thus it remains only to write down the superintegral over the lat-
ter. By invariance of the supertrace under cyclic permutations we calculate for
(Q1, Q2) = (gQ0Tg

stT−1,Σ3gQ0Tg
stT−1Σ3) ∈M

F (Q1, Q2) = 0 .



Chapter 5. Bosonic RME invariant under time reversal 65

Thus the leading contribution to the saddle-point superintegral must come from the
term independent of N in (5.20) and we obtain the result

lim
N→∞

Zn,N (NE + ω̂) = cn

∫

MB×MF

dg exp(iB(ω̂,Ad(g)Q0Λ)) , (5.31)

with B(A1, A2) = STr(A1A2). We see that this superintegral is the same as obtained
by the calculation in 4. Thus the correlation functions exhibit GOE universality.
By means of the results of chapter 2 one would expect that: The main difference
between GUE and GOE is the additional time reversal invariance. Thus if time
reversal invariance is added to a model that leads to GUE-universality, this should
result in GOE-universality. To obtain a more explicit expression, one has just to
replace the density of states of the GOE in 4.31 by the one of the ensemble considered
here.

5.4 Density of states in the bulk

Now it is easy to read off the density of states (DOS) of the ensemble under con-
sideration. Analogously to the GOE it can be obtained by evaluating the derivative
with respect to α̂1 of (5.31) for (nA, nR) = (1, 0) and (nA, nR) = (0, 1) and adding
up the results. Since the integral is zero-dimensional, this is achieved by searching
the solutions with positive real part of (5.23) for positive and negative sign, corre-
sponding to (nA, nR) = (0, 1) and (nA, nR) = (1, 0). We denote these solutions by
x+ and x−, respectively. We find, setting b = 3

√
3/2,

x± = −(2E)−1/3e∓πi/6



1−
√

1− E2

b2





1/3

+
1

3
(2E)1/3e±πi/6



1−
√

1− E2

b2





−1/3

and hence

ρ(E) = c(x+ + x−) = c

(

E

b

)−1/3









1 +

√

1− E2

b2





−1/3

−


1−
√

1− E2

b2





−1/3





.

(5.32)
The normalization constant c can be determined by demanding

1 =

∫ b

0
ρ(E)dE ,

which leads to c = 1/π.

This density of states is exactly the same calculated in chapter 3. For a discussion
we refer to section 3.5 and figure 3.1.
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5.5 Correlation functions near the lower edge

For the superintegral (5.12) a second convergent scaling limit exists, as can be seen
by the following calculation.

ZnA,nR(ν) ≡ ZnA,nR(α1, . . . , αn, β1, . . . , βn)

=

∫

DQ1DQ2e
− i

2
STr(νΛ(Q1+Q2)) SDetM/2(Q1Q2)

SDetN/2(1 +Q1Σ3ΛQ2Σ3Λ)

=

∫

DQ1DQ2e
− i

2
STr(νΛ(Q1+Q2)) SDetl/2(Q1Q2)

SDetN/2(1 +Q−1
1 Σ3ΛQ−1

2 Σ3Λ)

≈
∫

DQ1DQ2e
− i

2
STr(νΛ(Q1+Q2))SDetl/2(Q1Q2)

× exp

(

−N
2

STrQ−1
1 Σ3ΛQ−1

2 Σ3Λ

)

. (5.33)

In the last equality we assumed N to be large and used the fact

lim
N→∞

(1−X/N)N = exp(X) ,

which is also true if X is a supermatrix. The diagonal matrix ν contains the param-
eters αi and βi, cf. (5.10).

Scaling limit ω̃ = ν
√

N/2 . The last superintegral (5.33) yields a finite result in
the limit of large N if we rescale by

ω̃ = ν
√

N/2 and Qi → Qi

√

N/2 .

In the limit of large N , this leads to the following expression for the scaled generating
function Z̃nA,nR:

Z̃nA,nR(ω̃) =

= lim
N→∞

ZnA,nR(ω̃/
√

N/2)

=

∫

DQ1DQ2e
− i

2
STr(ω̃Λ(Q1+Q2))SDetl/2(Q1Q2)

× exp
(

−STrQ−1
1 Σ3ΛQ−1

2 Σ3Λ
)

.

Starting from this superintegral, we restrict ourselves to the simplest case (nA, nR) =
(0, 1), which is similar to the case (nA, nR) = (1, 0). The much more complicated
case with general (nA, nR) has not been solved within this project and requires
further investigation.

5.6 Density of states at the lower edge

To simplify our notation we set ω̃ = z1EB⊗12 + z2EF ⊗12 = diag(z1, z1, z2, z2) and
Z(z1, z2) := Z̃0,1(ω̃). Equation (5.6) tells us that we have to add the contributions of
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R0,1 and R1,0. This corresponds to adding the contributions of Z0,1 and Z1,0, which
is equivalent to taking two times the imaginary part of Z0,1 due to Z0,1 = −Z̄1,0.
For the limit of the density of states ρ̃l this means

ρ̃l(z) =
2i

π

∂

∂z2
I
(

Z(z1, z2)
)

∣

∣

∣

∣

z1=z2=z

=
2i

π

∂

∂z1
I
(

Z(z1, z2)
)

∣

∣

∣

∣

z1=z2=z

. (5.34)

The second of these relations seems to be trivial, looking at eqs. (5.8) and (5.7).
Nevertheless, we will see that it is a very useful identity.

Now, our task is to calculate the superintegral

Z(z1, z2) =

∫

DQ1DQ2e
− i

2
STr(ω̃(Q1+Q2))SDetl/2(Q1Q2) exp

(

−STrQ−1
1 Σ3Q

−1
2 Σ3

)

.

(5.35)
For each of the supermatrices Q1 and Q2 symmetries, domains of integration, and
the Berezin measure is fixed by the relations (5.13)-(5.17) with n = 1.

Superintegral (5.35) is hard to handle. Usual transformations and parametriza-
tions for the supermatrices Q1 and Q2 do not lead to a useful simplification of it.
Thus we tackled this superintegral by writing a package for Mathematica which is
able to deal with Grassmann variables, see appendix B. Using this package, we can
get rid of all Grassmann variables and obtain the integral

Z(z1, z2) =

∫

∏

i=1,2

DetX
3/2
i Det Y

1/2
i dµ(Xi)dµ(Yi)Ωie

− iz
2

Tr(Q1+Q2)×

× SDetl/2(Q1Q2) exp
(

−STrΣ3Q
−1
1 Σ3Q

−1
2

)

=

∫

∏

i=1,2

DetX
3/2
i Det Y

1/2
i dµ(Xi)dµ(Yi)Fl(X1,X2, Y1, Y2) . (5.36)

Recall that the domain of integration is (D0
1 ×D1

1)× (D0
1 ×D1

1). By evaluating the
definitions (5.14) and (5.15) we find for Xi and Yi the explicit expressions

Xi ∈ D0
1 =

{(

x v
v̄ x

)

∣

∣

∣x > 0, vv̄ < x2

}

,

Yi ∈ D1
1 = {diag(eiϕ, eiϕ)|0 ≤ ϕ < 2π} ,

which are useful to handle the remaining integral. The function Fl is cumbersome
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and given by

Fl(X1,X2, Y1, Y2) =
A
l−3

2

2π4(y1y2)l+1
exp

(

− i
2

Tr(z1(X1 +X2)− z2(Y1 + Y2))

)

× exp

(

2

(y1y2)
− C

A

)

[

4

(y1y2)4
+

4

(y1y2)3

(

C

A
+ 2l + 2

)

+
2

(y1y2)2

(

2C2

A2
+
C(4l − 1)− 2

A
+ 3l2 + 3l + 1

)

+
1

(y1y2)

(

2C2(2l + 1) + 4C

A2
+
C(5l2 − 4l − 3)− 12

A
+ 2l3

)

+
C2l2 + 4C(l − 1) + 4

A2
+
C(l − 2)l2 + 2(l2 − 5l + 3)

A

+
(l − 1)2l2

4

]

. (5.37)

Of course, the correspondig output of Mathematica is much more complicated. But,
recognizing that the important variables are A and C, we were able to express
Fl in the present form. The check that this result is equivalent to the output of
Mathematica is easy and very fast. The variables A and C are defined by

A =
1

4
Tr(σ3X1σ3X1)Tr(σ3X2σ3X2) = DetX1X2

C = Trσ3X1σ3X2 = Det(X1 +X2)−DetX1 −DetX2 .

Furthermore, we used Yi = diag(yi, yi), (i = 1, 2). Let us start to attack the inte-
grations.

Integration in the FF-sector

In the FF-sector, i.e. for Y1 and Y2 the situation is simple. The integrations can be
performed analytically as follows:

For Yi = diag(yi, yi) and a test function f we find

∫

D0
1

DetY
1/2
i dµ(Yi)f(yi) =

∫

U1

dyif(yi) ,

since the measure dµ(Y ) is invariant under the transformation Y 7→ gY ttag
tt−1
a .

This invariance is equivalent to invariance under y 7→ αy, α ≡ Det g ∈ U1, since
we have for any 2 × 2-matrix g the simple formula gtag

tt−1
a = diag(Det g,Det g).

Therefore, the Y -integrations can be performed by calculating the residual:

∫

U1×U1

dy1dy2 exp

(

iz2(y1 + y2) +
2

y1y2

)

1

(y1y2)k
=

−8π2

2k

∞
∑

i=Max(k−1,0)

(−2)iz2i
2

i!2(i− k + 1)!
. (5.38)
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Note that these integrals are real for real z2. The derivative with respect to
z2, which is necessary to obtain ρ̃l(z) from Z(z1, z2), can be easily done. Now we
analyze the remaining integral by means of standard complex analysis.

Integration in the BB-sector

In the BB-sector the situation is more complicated. We have to integrate six real
degrees of freedom, only one of these integrals is trivial.

Extracted from eqs. (5.37) and (5.36), the integrations have the structure

Il,i,j(z1) = I

(∫

dµ(X1,X2) exp

(

−(iz1 + ε)Tr(X1 +X2)− C

A

)

A
l
2
−iCj

)

. (5.39)

Since the y-integrations yield purely real terms and we are interested in the imagi-
nary part of Z(z1, z2), cf. (5.34), here we need the imaginary part.

For each value of l there are six cases for the pair of parameters (i, j): (0, 0),
(1, 0), (2, 0), (1, 1), (2, 1) and (2, 2). In the following, we treat all six cases together.

A parametrization of the matrices X1 and X2 is given by

Xi = xi

(

1 uie
iϕi

uie
−iϕi 1

)

,

with xi ∈ R
+, ϕi ∈ [0, 2π), and ui ∈ [0, 1]. Now we want to reduce the Integral (5.39)

as far as possible. First one observes that one of the six remaining integrations is
trivial. Defining ϕ = ϕ1 − ϕ2 we obtain by means of the above parametrization
A = DetX1X2 = (x1x2)2(1−u2

1)(1−u2
2) and C = Trσ3X1σ3X2 = 2(1−u1u2 cosϕ),

i.e. the integrand only depends on the difference ϕ1−ϕ2. Hence, we are confronted
with five non-trivial integrations. For two of them there exist analytical tools, but
for the remaining three we will need numerical integration.

Meĳer’s G-function. We therefore wish to evaluate integrals of the following
type:

lim
ε→0

∞
∫

0

dx1

∞
∫

0

dx2

1
∫

0

du1

1
∫

0

du2

2π
∫

0

dϕe
−(iz+ε)(x1+x2)− 2(1−u1u2 cosϕ)

x1x2(1−u2
1

)(1−u2
2

)×

(2(1 − u1u2 cosϕ))j

((1− u2
1)(1− u2

2))(3−l)/2+i
(x1x2)nu1u2 , (5.40)

with n = l − 1− 2i+ j. The crucial steps to perform the limit ε→ 0 are contained
in the following integrations with a positive constant v. The first integration is
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standard, the following steps can be found in [Erd53] and [GR65],

∫

(R+)2

dx1dx2(x1x2)ne
−(iz+ε)(x1+x2)− v

x1x2 =

= 2

(

v

iz + ε

)
n+1

2
∫

R+

dx e−x(iz+ε)Kn+1



2

√

v(iz + ε)

x



x
n−1

2

=
vn

iz + ε

∫

R+

dx e−x(iz+ε)G2 0
0 2

(

v(iz + ε)

x

∣

∣

∣1,−n
)

=
vn

iz + ε

∫

R+

dx e−x(iz+ε)G0 2
2 0

(

x

v(iz + ε)

∣

∣

∣n+ 1, 0

)

=
vn

(iz + ε)2
G0 3

3 0

(

1

v2(iz + ε)2

∣

∣

∣0, 0, n + 1

)

=
vn

(iz + ε)2
G3 0

0 3

(

v2(iz + ε)2
∣

∣

∣1, 1,−n
)

. (5.41)

Meĳer’s G-function G3 0
0 3

(

v2(iz + ε)2
∣

∣

∣1, 1,−n
)

is meromorphic with a singularity in

0 and has a branch cut on the negative real axis. In particular, it can be evaluated –
despite the branch cut – on the negative real axis, i.e. for ε = 0. For the remaining
three integrations which are not shown here (but still present), no analytical method
exists. Thus, we continue by means of numerical methods. Hence, we need a fast
method to calculate values of Meĳer’s G-function up to a prescribed accuracy. The
function can be written as a sum of residuals, which are increasing powers of the
argument. This leads to rapidly converging series for small arguments: From the
definition of the G-function we find

G3 0
0 3(x|1, 1,−n) =

∫

iR+max(n,−1)+ε

dsΓ2(1 + s)Γ(−n+ s)x−s

= 2πi
∞
∑

i=max(n,−1)

ress=−iΓ
2(1 + s)Γ(−n+ s)x−s . (5.42)

The explicit expressions for the residuals are rather complicated, but it is no problem
to calculate them using e.g. Mathematica. For large arguments we use the differential
equation of the G-function [Erd53], which reads in our case

[

x+

(

x
d

dx
− 1

)2 (

x
d

dx
+ n

)

]

G3 0
0 3(x|1, 1,−n) = 0 . (5.43)

Also from [Erd53] we know the G-function vanishes exponentially for large argu-
ments, which fixes the correct solution of (5.43) in the three-dimensional space of
solutions. As an ansatz, we assume that an asymptotic expansion of the form

G3 0
0 3(x|1, 1,−n) ≈ e−3x1/3

jmax
∑

j=n−1

fjx
−j/3 (5.44)
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exists. Then we use the differential equation to fix the coefficients fi, which leads
to the recurrence relation

fj(−j+n−1)+fj−1
1

9
(4−15n−3(j−1)(2n−j−2))+fj−2

1

27
(j+1)2(3n−j+2) = 0 .

In particular, we see from this recurrence that from a certain limit imax on the co-
efficients fj will increase at least as j! . That means, we only have an asymptotic
expansion which diverges for any given x if j becomes too large. Nevertheless, if x
is large enough, we obtain (numerically) arbitrarily good values from this approxi-
mation. Moreover, this method is much faster (orders of magnitude, in particular
for large x!) than the built-in algorithms in Mathematica or Maple, which evaluate
the G-function. It is also much faster than the evaluation of the integral (5.42).
Therefore, to evaluate the remaining three integrations, we use the following ap-
proximation of the G-function:

G3 0
0 3(x|1, 1,−n) ≈

{ 2πi
jmax
∑

j=max(n,−1)
ress=−jΓ2(1 + s)Γ(−n+ s)x−s if x < x0

e−3x1/3
imax
∑

i=n−1
fix
−i/3 if x ≥ x0 .

This approximation can be driven to arbitrary accuracy. One just has to increase
the values of jmax, x0, and imax. In our numerically calculations, we worked with
a relative accuracy of 10−7, according to values around jmax = 13, x0 ≈ 25, and
imax = 13. However, the value of x0 should be tuned separately for each value of n.
Using the above techniques and (5.41), we are able to evaluate integrals of the type
(5.40), which reduce to

∫

du1du2dϕG
3 0
0 3

(

z2v1

v2

∣

∣

∣1, 1,−n
)

v
−l/2−1/2+i−j
2 vl−1−2i+2j

1 u1u2 (5.45)

with

n = l− 1− 2i+ j , v2 = (1−u2
1)(1−u2

2) , and v1 = 2(1−u1u2 cosϕ) . (5.46)

To obtain all terms in (5.37), for each l the six cases (i, j) = (0, 0), (1, 0), (2, 0),
(1, 1), (2, 1), and (2, 2) must be evaluated. The result can be seen in figure 5.2 for
different values of l .

Asymptotic expansion for large z

In section 5.4 we calculated the asymptotic density of states in the bulk scaling
limit. We know from chapter 3 that ρ(E) given by (5.32) behaves as E−1/3 for small
E. Clearly, the asymptotic behavior in z = 0 in the scaling used there must be
recovered in the asymptotics of the microscopic scaling for large z. Therefore, we
have

ρ̃l(z) ∝ z−1/3

for large z, independent of l, which is illustrated by figure 5.2.
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5 100
0

.5

ρ̃l(z)

z

l = 1

l = 2

l = 3

l = 4

∝ z−1/3

Figure 5.2: The asymptotic density of states ρ̃l(z)

Asymptotic expansion in z = 0

The expansion in z = 0 is more problematic, the behavior there is non-analytic. The
fact that we need the imaginary part of integral (5.39) causes problems. Indeed, for
big enough values of l an expansion in powers of z up to a certain order is possible,
but unfortunately the terms obtained by this procedure are real. The lowest order
in the expansion producing an imaginary part diverges. Nevertheless, we are able
to calculate the leading terms of the DOS for all odd values of the parameter l, we
obtain ρ̃l(z) = (a + b ln z)zl + O(ln z zl+1) , a, b ∈ R. We suspect that this formula
is also true for even l, however, we are not able to proof it. The calculation for odd
l is rather complicated: Since v = v1/v2 is the only variable which appears in the
argument of Meĳer’s G-function, we choose v as new variable and transform integral
(5.45) to an one-dimensional integral,

∫

du1du2dϕG
3 0
0 3

(

z2v1

v2

∣

∣

∣1, 1,−n
)

v
−l/2−1/2+i−j
2 vl−1−2i+2j

1 u1u2

=

∫ ∞

2
G3 0

0 3

(

z2v
∣

∣

∣1, 1,−n
)

volk(v)vn+jdv . (5.47)

Of course the volumefunction volk(c) depends on the exponents of v1 and v2, we
define k = l/2− 3/2− i+ j . For the definition of volk(c), see (C.3) in the appendix.
Since the imaginary part of the G-function, which we are interested in, is 0 at z2c = 0
and decays exponentially for large arguments, it is reasonable to assume that only
large values of v contribute in the limit of small z. This assumption turns out to
be true for odd l, for even l it fails. Therefore, we need an expansion for vol(v) in
v = ∞. Using the estimates in section C.1, we only need to evaluate the relatively
simple integral

π
∫

0

dϕ

u0
∫

0

du
u(1 − u cosϕ)k+1

1− u2
, u0 = 1−

√

1− cosϕ

2v
.
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This can be done using the integrals (C.6)-(C.7). The result is

volk(v) =
ak ln v − bk

vk+2
+O(ln v/vk+3)

with

ak = 4k−1/2√πΓ((2k + 3)/2)/Γ(k + 2) and

bk = 2k−1√π
(

2k+2Γ((2k + 3)/2)

Γ(k + 2)

2k+2
∑

i=1

(−1)i

i

+

[(k+1)/2]
∑

i=0

2i+1
∑

j=1

(

2i+ 1

j

)(

k + 1

2i

)

Γ((2i+ 1)/2)

jΓ((2i + 2)/2)
(−1)j(2− 2j)

)

.

Using (5.42) we can explicitly do the v-integration in (5.47), calculate the residuals
and obtain approximations for our integrals of the form (5.39).

I

(∫

dµ(X1,X2) exp

(

− (z + ε)Tr(X1 +X2)− C

A

)

A
l
2
−iCj

)

=

∞
∫

2

I
(

G3 0
0 3(vz2)

)

volk(v)vn+jdv .

However, inserting the results in (5.37) and (5.36) we see that the leading order in
z vanishes. Therefore we also need the second order, which can be obtained rather
simply. In equation (5.8) we defined ZnA,nR . Since the scaling limit does not change
things, we must have, I(Z(z, z)) ≡ 0, since this comes from the average over 1.
Moreover, we find

[

I(∂z1Z(z1, z2)) + I(∂z2Z(z1, z2))
]

∣

∣

∣

∣

z1=z2=z

= π(ρ̃l(z) − ρ̃l(z)) ≡ 0 .

This property allows us to calculate the desired second order for the integrals (5.39),
the final result now is

ρ̃l(z) =
2(l−3)/2l!!π

l!2





(l−1)/2
∑

i=0

1

2i+ 1
− 3

2
γ − ln z



 zl +O(zl+2) . (5.48)

For details of the calculation, see appendix C.1. For l = 1 and l = 3 we obtain

ρ̃1(z) =
π

4
(2− 3γ − 2 ln z)z +O(ln z z3) (5.49a)

ρ̃3(z) =
π

72
(8− 9γ − 6 ln z)z3 +O(ln z z5) . (5.49b)

Unfortunately, analytical continuation of (5.48) to even l using derivatives of the
Γ-function leads to wrong results. However, if we assume the same form of the
expansion, it is possible to calculate the coefficients by means of numerical methods,
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Figure 5.3: The asymptotic DOS in z = 0. The dashed line shows the first-order
expansion, the smooth line is the exact curve.

e.g. a least square fit. Using this method in the vicinity of z = 0 for the curves of
ρ̃2(z) and ρ̃4(z), see figure 5.2, we obtain

ρ̃2(z) =
(

(0.290 ± 0.003) − (0.886 ± 0.001) ln z
)

z2 , (5.49c)

ρ̃4(z) =
(

(0.032 ± 0.001) − (0.049 ± 0.001) ln z
)

z4 . (5.49d)

The numerical values of the coefficients of the logarithmic terms are very close to
the values obtains by analytical continuation of (5.48), namely we use

−2(l−3)/2l!!π

l!2
= − π

2Γ(l + 1)Γ((l + 1)/2)
.

This leads to − π
2Γ(2+1)Γ((2+1)/2) ≈ −0.0862 and − π

2Γ(4+1)Γ((4+1)/2) ≈ −0.04923 for

the coefficients of the logarithm in (5.49c), and (5.49d). This is an indicator for the
correctness of our assumption. A plot of (5.49a-d) together with a part of the curves
of figure 5.2 is shown in figure 5.3. For a better understanding, we show an extra
picture for each value of l.
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5.7 Numerical confirmation of the result

It is also possible to obtain the asymptotic density of states by Monte-Carlo integra-
tion, see e.g. [PFTV88]. In analogy to chapter 2, we programmed a routine which
generates random matrices subject to the given symmetry. The correct distribution
can be realized by the fact that every matrix can be written in terms of a sum of
projectors, which underlie a Gaussian distribution each, see (5.3). Let us mention
that –as expected– the result for large matrices is in a wide range independent of
the nature of the probability distribution of the original variables viα and wiα. For
example, instead of a Gaussian distribution one can take a rectangular distribution
with zero mean and variance 1, which is very easy to generate by means of numerics.

After the diagonalization of a large number of matrices, a smooth curve can be
obtained by smearing out every eigenvalue by a finite width. This can be achieved,
e.g., by replacing every peak by a Gaussian curve of area 1 and adding up all values.
However, if one increases the number of random matrices, the actual form of the
curve does not affect the result, only the width does. The choice of the width is
governed by two different aspects: On the one hand, the width must be broad enough
to obtain a smooth result. On the other hand, it must be smaller than the size of
the smallest structures we want to see.

Using such a routine, it is very easy to obtain the DOS of the bulk scaling limit,
which has been calculated in section 5.4. The curve converges very rapidly, and it is
sufficient to choose N = 100. Within the limits of numerical accuracy, we obtained
a result which cannot be distinguished from the exact one.

Reproducing the results of section 5.6 is much more difficult. The main obstacle
is the following: Without any rescaling, a N ×N -random matrix of our model has a
spectrum with a largest eigenvalue proportional to N , i.e. the density of eigenvalues
is independent of the matrix size. However, we want to expand the spectrum by a
factor

√
N . Thus in a given interval the number of eigenvalues of a matrix decreases

by 1/
√
N . That is, the larger N is the more matrices have to be diagonalized to

obtain a smooth curve. Furthermore, in this rescaling the convergence is much slower
with respect to N , which forces us to make N much larger than in the bulk scaling
limit. For fig. 5.4 we chose N = 500 and averaged over the spectra of approximately
150, 000 matrices each. For the smearing, we used a Gaussian curve of width 0.05,
which is much smaller than the width of the maximum. For a comparison, we show
again the results of section. 5.6 in the figures.
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Figure 5.4: The smooth lines show the asymptotic density of states ρ̃l(z), obtained
by Monte Carlo integration for l = 1, 2, 3, and 4. For comparison, the exact results
are given by the dashed lines.



Chapter 6

Conclusion

In chapter 2 we used numerical methods to calculate the density of states (DOS) of
an optical medium. In our model of discrete electrodynamics we were able to derive
it for a clean system by means of analytical methods. In the case of a Gaussian prob-
ability distribution for the magnetic permeability µ and the dielectric permittivity ε
we used numerical methods to calculate the DOS. We found that the disorder does
not influence at low energies. It just softens the edges of the DOS and increases the
highest energy levels. In the case of non-Gaussian disorder, we also used numerics
and found evidence for the existence of the boson peak in an optical medium.

In chapter 3 we introduced a random matrix model for a system with bosonic ex-
citations. We were able to compute the joint probability density of the characteristic
frequencies of the system, which is equivalent to a reduction of the integrations to
an integral over those. Rewriting the joint probability density by means of Vander-
monde determinants enabled us to apply the method of bi-orthogonal polynomials.
This lead to explicit expressions for all correlation functions. Near the hard edge
of the spectrum a new scaling limit was found. The energy had to be rescaled by
the factor

√
N . Of course, also the usual bulk scaling limit exists, here the model

exhibits sine-kernel universality, i.e. the correlation functions are those of the GUE.

The model of chapter 5 differs from that of chapter 3 by additional time reversal
invariance. In appendix C we tried to copy the strategy of chapter 3 and found that
for the calculation of the joint probability density of the characteristic frequencies it
is necessary to solve an integral, which is not of the Harish-Chandra–Itzykson–Zuber
type. To our knowledge, there is no method available to solve it. Thus we applied
the supersymmetry method, which is more powerful. In particular, we applied the
superbosonization identity, which lead to a formulation of the correlation functions
in terms of superintegrals. Of course, the additional time reversal symmetry did
not change the existing scaling limits of the model considered in chapter 3. Near
the hard edge of the spectrum evaluation of the superintegrals turned out to be
very laborious. We solved it for the simplest case, which is the density of states.
We calculated the leading order of its asymptotic expansion in z = 0 and found a
logarithmic singularity.

Evaluation of the superintegrals in the bulk scaling limit was the main motivation
to consider the GOE in 4. There, we also used the supersymmetry method and
obtained exactly the same superintegrals. Since more explicit expressions for the
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correlation function of the GOE can be found in literature, we immediately obtained
the solution for these. This result is not surprising: Since in chapter 3 in the bulk
scaling GUE-universality was found and the GOE differs from GUE by additional
time reversal symmetry, we expected to recover the GOE correlation functions.

The second motivation of chapter 4 was to illustrate the supersymmetry method
by a relatively simple example. The methods and strategies applied there were also
used in chapter 5, however, in a more complicated manner.



Appendix A

Calculations to chapter 3

This part of the appendix contains calculations which are needed to understand the
steps performed in chapter 3. We explicitly apply the radial part of the Laplace
operator to the function at hand. In the second part, we compute a limit, which is
needed to obtain the desired integral (3.11) from (3.10).

A.1 Radial part of the Laplace operator

Applied to the function ψ(Sd, Td)/js(Sd) the radial part of the Laplace operator acts
according to

−∆Sd
ψ(Sd, Td)

js(Sd)
=

N
∑

i=1

2

j2
s

∂

∂si
j2
s

∂

∂si

ψ(x, y)

js

=
2

j2
s

N
∑

i=1

∂

∂si

(

js
∂ψ

∂si
− ψ∂js

∂si

)

=
2

js

N
∑

i=1

(

∂2ψ

∂s2
i

− ψ

js

∂2js
∂s2
i

)

=
2

js

N
∑

i=1

∂2ψ

∂s2
i

. (A.1)

The second term in the sum before the last equality sign vanishes:

N
∑

i=1

∂2js(Sd)

∂s2
i

=
N
∑

i=1

∂

∂si





1

si

∑

j 6=i

2si
s2
i − s2

j





=
N
∑

i=1

js











1

si

∑

j 6=i

2si
s2
i − s2

j





2

− 1

s2
i

+
∑

j 6=i

(

2

s2
i − s2

j

− 4

(s2
i − s2

j)
2

)







= js









6
N
∑

j 6=i

1

s2
i − s2

j

+ 8
∑

i,j,k
i6=j 6=k 6=i

s2
i

(s2
i − s2

j)(s
2
i − s2

k)









. (A.2)
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80 A.2. The limit ti → τ/2

Since every term in the last line occurs two times with different signs, this sum
vanishes. The second sum vanishes due to its symmetry:

∑

i,j,k
i6=j 6=k 6=i

s2
i

(s2
i − s2

j)(s
2
i − s2

j)

=
1

3

∑

i,j,k
i6=j 6=k 6=i

(

s2
i

(s2
i − s2

j)(s
2
i − s2

k)
+

s2
j

(s2
j − s2

k)(s
2
j − s2

i )
+

s2
k

(s2
k − s2

i )(s
2
k − s2

j)

)

=
1

3

∑

i,j,k
i6=j 6=k 6=i

s2
i (s

2
k − s2

j) + s2
j(s

2
i − s2

k) + s2
k(s

2
j − s2

i )

(s2
i − s2

j)(s
2
j − s2

k)(s
2
k − s2

i )

= 0 .

A.2 The limit ti → τ/2

In eq. (3.17) we claimed that the following limit holds:

lim
ti→(τ/2)

Det
(

exp(−2tisj)
)

js(t1, . . . , tN )js(s1, . . . , sN )
=

(−1)⌊N/2⌋ exp

(

−τ
N
∑

i=1
si

)

j+(s1, . . . , sN )(τ/2)N(N+1)/2

N−1
∏

m=1

1

m!
.

This can be shown by induction. For N = 1 the claim is obviously correct. The step
N − 1 → N is a bit tedious. To simplify the notation, we introduce the following
convention: The hat, for example in j+(s1, ., ŝj , ., sN ), always denotes that sj in the
argument is skipped. Of course, the number of variables in the argument of the
occurring functions increases with each step of the induction. However, since the
meaning of the functions is clear in their context, we do not introduce a new symbol
to distinguish functions with a different number of arguments. In addition to the
definitions of js and j+, which are given by (3.13) and (3.14), respectively, we need
the Vandermonde determinant

∆(s1, . . . , sN ) :=
N
∏

i<j

(si − sj) .

The induction step reads as follows:

lim
ti→τ/2

Det
(

exp(−2tisj)
)

js(t1, . . . , tN )js(s1, . . . , sN )

(i)
= lim
ti→τ/2

N
∑

j=1

(−1)j+N
Det(exp(−2sitk))i6=j,k 6=N

js(s1, ., ŝj , ., sN )js(t1, . . . , tN−1)

(−1)N−j exp(−2sjtN )

sj
∏

i6=j
(s2
j − s2

i )tN
∏

i6=N
(t2N − t2i )
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(ii)
= lim
tN→τ/2

N
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. (A.3)

In step (i) the determinant is expanded with respect to the last column. For (ii)
the induction hypothesis for N − 1 is used, in step (iii) we set tN = τ/2 + d. In the
last step, (v), the limit is performed by using the relations

(d(τ + d))N−1
(

τ

2
+ d

)

=
τ

2
(τ)N−1dN−1 +O(dN )

and

N
∑
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(−1)N+j∆(s1, ., ŝj , ., sN )e−2sjd = Det


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
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1 . . . 1
s1 . . . sN
...

. . .
...

sN−2
1 . . . sN−2

N

e−2s1d . . . e−2sNd

















=
(−2d)N−1∆(s1, . . . , sN )

(N − 1)!
+O(dN ). (A.4)

Here we use that in the determinant rows can be added to each other without
changing its value. Therefore in the power series of the exponential function all terms
up to dN−2 can be eliminated. In the highest order a Vandermonde-Determinant is
obtained. If N is even, a sign appears.





Appendix B

Using Mathematica with Grassmann

variables

In section 5.6 we were confronted with the problem to calculate the superintegral
(5.35). Since other techniques to solve this problem failed, an elementary package
was written, which enables the computer algebra system Mathematica to deal with
Grassmann variables.

The basic idea is simple: If the Grassmann algebra has n different generators
ξ1, ξ2, . . . , ξn its dimension is 2n. That suggests a representation of the generators or
its product by a binary number with n digits. If the product of generators contains
ξi, the n − i + 1-th digit is set to 1, if not, it is zero. Of course, we must take into
account the order of the generators in the product. Thus we have to fix a standard
order, which is no problem. In our convention a product ξi1ξi2 · · · ξij is in standard
order, if and only if i1 > i2 > · · · > ij . Thus we choose a basis of the 2n-dimensional
Grassmann algebra as

{1, ξ1, ξ2, ξ2ξ1, . . . , ξnξn−1 · · · ξ1} .

As easy to check, the above conventions are chosen in such a way that the position
of a basis vector in the basis, indicated by an integer 0, 1, . . . , n−1 gives the involved
generators, if regarded as a binary number.

If two basis vectors, η1 and η2, are multiplied, the desired computational routine
must do several things: First, it has to be checked if the result is simply zero. This
can be achieved by usage of the build-in function BitAnd of Mathematica. Just feed
in it the numbers of the two basis vectors, if the result is not zero, the multiplication
is trivial and nothing remains to do. If the result is zero, the multiplication is non-
trivial and the (binary) index of the resulting vector in the basis is simply the sum
of the indices of η1 and η2. Furthermore, the routine must produce the correct sign.
The elementary code to be fed in Mathematica may look as follows:

(∗ Grassman − m u l t i p l i c a t i o n ∗)
Clear [GMMult ] ;
GMMult [ xi_ , eta_ ] := Module [

(∗ I n i t i a l i z a t i o n o f the necessary v a r i a b l e s ∗)
{

r e s u l t = 0 ,
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check = 0 ,
tab l e1 = 0 ,
s i gn = 1

} ,
(∗ Check , i f the r e s u l t i s s imply 0 ∗)
check = 1 − BitAnd [ x i [ [ 2 ] ] , e ta [ [ 2 ] ] ] ;
(∗ I f the r e s u l t i s not 0 , s t a r t i t s c a l c u l a t i o n ∗)
I f [ check == 1 ,

I f [And[ x i [ [ 2 ] ] > 0 , e ta [ [ 2 ] ] > 0 ] ,
tab l e1 = Table [

I f [
BitAnd [ eta [ [ 2 ] ] , 2 ^ s ] > 0 ,
Table [

I f [ BitAnd [ x i [ [ 2 ] ] , 2 ^ k ] > 0 , −1, 1 ] ,
{k , 0 , s−1}

] ,
List [ 1 ]

] ,
{s , 1 , Floor [ Log [ 2 , e ta [ [ 2 ] ] ] ] }

] ;
(∗ Now the s i gn o f the r e s u l t must be f i x e d ∗)
s i gn = Product [

Product [
t ab l e1 [ [ s ] ] [ [ k ] ] ,
{k , 1 , Length [ t ab l e1 [ [ s ] ] ] }

] ,
{s , 1 , Length [ t ab l e1 ] }

]
]

] ;
(∗ Output o f the r e s u l t as a l i s t wi th two e n t r i e s .

The f i r s t one i s s imply the product o f the c o e f f i c i e n t s
o f the input l i s t s , m u l t i p l i e d by a s i gn ∗)

List [ I f [
check == 1 , ( x i [ [ 1 ] ] ∗ eta [ [ 1 ] ] ) ∗ check ∗ s ign , 0
] ,
I f [
check == 1 , x i [ [ 2 ] ] + eta [ [ 2 ] ] , 0
]

]
] ;

This routine has two arguments, xi and eta, which are lists of length two. The
second element of both must be an integer, which denotes the basis vector in the
Grassmann algebra, and the first one serves as coefficient. It may be any complex
number or algebraic expression understood by Mathematica. The output is again a
list with two entries with the same meaning as in the input.

However, an element of the Grassmann algebra may be a linear combination of
all basis vectors. Thus we represent it by a list of length of at most 2 × 2n + 1, as
explained in the context of the following code.

(∗ Grassmann−m u l t i p l i c a t i o n o f a r b i t r a r y
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e lements o f the Grassmann a l g e b r a ∗)
GLMult [ xi_ , eta_ ] := Module [

(∗ I n i t i a l i z a t i o n o f the necessary v a r i a b l e s ∗)
{

tab l e1 = 0 ,
tab l e2 = 0 ,
r e s u l t = {} ,
n = Length [ x i ]−1 ,
m = Length [ e ta ]−1

} ,
(∗ Build a t a b l e o f the maximal p o s s i b l e l e n g t h f o r the

i n t e r n a l r e p r e s e n t a t i on o f the r e s u l t ∗)
tab l e1 = Table [

I f [Mod[ i ,2 ]==1 ,0 , i /2−1] ,{ i , 1 , 2∗ ( x i [ [ n ] ]+ eta [ [m] ]+2)}
] ;
(∗ Pairwise m u l t i p l i c a t i o n o f a l l e n t r i e s o f the input l i s t s .

These are n∗m/4 m u l t i p l i c a t i o n s . Write the r e s u l t in the
c o r r e c t p l ace in t a b l e 1 . ∗)

Do[
Do[

{ tab l e2=GMMult [
{ x i [ [ 2 i −1 ] ] , x i [ [ 2 i ] ] } , { eta [ [ 2 j −1 ] ] , e ta [ [ 2 j ] ] }
] ,

t ab l e1 [ [ 2 ∗ tab l e2 [ [ 2 ] ]+1 ] ]+= tab l e2 [ [ 1 ] ]
{ j ,m/2}

] ,
{ i , n/2}

] ;
(∗ S im p l i f y the r e s u l t ∗)
Do[ {

I f [
t ab l e1 [ [ 2 i −1]]==0 ,0 ,
I f [

r e s u l t == {} ,
r e s u l t = { tab l e1 [ [ 2 i −1 ] ] , t ab l e1 [ [ 2 i ] ] } ,
r e s u l t = Append [

Append [ r e s u l t , t ab l e1 [ [ 2 i − 1 ] ] ] , t ab l e1 [ [ 2 i ] ]
]

] ,
I f [

r e s u l t == {} ,
r e s u l t = { tab l e1 [ [ 2 i −1 ] ] , t ab l e1 [ [ 2 i ] ] } ,
r e s u l t = Append [

Append [ r e s u l t , t ab l e1 [ [ 2 i − 1 ] ] ] , t ab l e1 [ [ 2 i ] ]
]

]
]

{ i , Length [ t ab l e1 ]/2}
] ;
Append [ r e s u l t , "G" ]

] ;
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GLMult [A1_,A2_,A3_] := GLMult [ A1 , GLMult [ A2 , A3 ] ]

In this routine, the input variable xi and eta are lists, too. If xi is a linear combination
of j basis vectors of the Grassmann algebra, it is a list of length 2j + 1. In the slots
with even indices it contains the integers denoting the basis vectors, in the slots
with odd indices the coefficient of belonging to the following basis vector. The last
slot with index 2j + 1 is just a tag to distinguish the lists used for the Grassmann
algebra from ordinary lists, it must contain the character “G”. The output is also
a list of this type. The last line of the code generalizes the multiplication to three
factors.

Now it is straightforward to define the usual operations like the inverse of a
Grassmann expression or the sum of two expressions. It is also possible to define
supermatrices and all desired operations with them, like the superdeterminant, the
matrixproduct, the exponential of a supermatrix or whatever is needed. It is con-
venient that some built-in functions of Mathematica can be applied to lists without
further definitions. For instance, the very important command “Simplify” just sim-
plifies the algebraic expressions in the list. Of course, the integers indicating the
basis vectors are left unchanged.

However, note that the effort to carry out such operations grows exponentially
with the number n of involved Grassmann variables. In chapter 5 we dealt with 8
generators, hence the dimension of the Grassmann algebra is 256. Using the fact
that a reasonable expression contains only odd or only even linear combinations,
reduces the effective dimension by the factor two. Nevertheless, Mathematica needs
to run several minutes to produce the result 5.37.



Appendix C

Calculations and remarks to chapter 5

C.1 Calculation of the expansion in z = 0

This section contains calculations which are needed to obtain the expansion of the
density of states ρ̃l(z) in section 5.6 . We want to calculate the small-z-limit of the
integral

1
∫

0

du1

1
∫

0

du2

π
∫

0

dϕf(z2v)vn+j
1 vk−n−j2 u1u2

=

1
∫

0

du1

1
∫

0

du2

π
∫

0

dϕf(z2v)(1− u2
1)k(1− u2

2)kvn+ju1u2

=

∞
∫

2

dvf(z2v)volk(v)vn+j , (C.1)

for an appropriate function f . For our purpose, f is the imaginary part of Meĳer’s
G-function, whose asymptotic series expansion is known in z2v = 0 and z2v = ∞.
The variable v is defined by

v =
v1

v2
=

2(1− u1u2 cosϕ)

(1− u2
1)(1− u2

2)
, (C.2)

see also (5.46). Since f(0) = 0, we start with the reasonable assumption that for
small z the main contribution of the integral C.1 comes from the large values of v.
Thus our task is to find a useful representation for the factor volk(v) for large v.

First, we use the symmetry in u1 and u2 and integrate only over u1 > u2. Then,
we choose u1, ϕ and v as new coordinates and need to compute

volk(v) = 2

π
∫

0

dϕ

ũ0
∫

0

du1ju1u2(1− u2
1)k(1− u2

2)k , (C.3)

with the Jacobian j = ∂u2/∂v. The old coordinate u2 is now considered as a function
of u1, v, and ϕ. The value ũ0 is determined by the condition

v =
2(1− ũ2

0 cosϕ)

(1− ũ2
0)2

,

87
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we obtain the expansion

ũ0 = 1− cosϕ

2v
−
√

cos2 ϕ

4v2
+

1− cosϕ

2v
= 1−

√

1− cosϕ

2v
+O(1/v) . (C.4)

The minimal value of u2 is given by u2 = ũ0, we set u2 = 1 − ε, which implies
ε < 1/

√
2v. In the first order approximation we find

ε =
1− u1 cosϕ

v(1− u2
1)− u1 cosϕ

.

Using a computer-algebra system, it can be seen that the main contribution to (C.3)
is given by

π
∫

0

dϕ

u0
∫

0

du1
u1(1− u1 cosϕ)k+1

1− u2
1

, u0 = 1−
√

(1− cosϕ)/2v . (C.5)

This can also be seen doing a tedious calculations by hand, see next section. This
integral can be evaluated by expanding the (k+1)th power and applying the following
identities, they can be found by means of [GR65].

u0
∫

0

un1du1

1− u2
1

= −1

4
ln(1− cosϕ) +

1

4
ln 2v +

(−1)n ln 2

2

+
1

2

n
∑

j=1

(

n

j

)

1

j

[

(−1)j + (−1)n−j(2i − 1)
]

+O(ln v/v) (C.6)

π
∫

0

dϕ(1 − cosϕ)k+1 ln(1− cosϕ) = 2k+2√π Γ((2k + 3)/2)

Γ(k + 2)

(

2k+2
∑

i=1

(−1)i+1

i
− ln 2

2

)

π
∫

0

dϕ(1 − cosϕ)k+1 = 2k+1√π Γ((2k + 3)/2)

Γ(k + 2)
.

If k is even, we have
π
∫

0

dϕ cosk ϕ =
√
π

Γ((k + 1)/2)

Γ((k + 2)/2)
. (C.7)

Putting these integrals together, we find

volk(v) =
ak ln c− bk

vk+2
+O

(

ln v

vk+3

)

,

which is the desired expansion of volk(v) for large v. The coefficient ak and bk are
given by

ak = 4k−1/2√πΓ((2k + 3)/2)/Γ(k + 2) and

bk = 2k−1√π
(

2k+2Γ((2k + 3)/2)

Γ(k + 2)

2k+2
∑

i=1

(−1)i

i

+

[(k+1)/2]
∑

i=0

2i+1
∑

j=1

(

2i+ 1

j

)(

k + 1

2i

)

Γ[(2i + 1)/2

jΓ((2i + 2)/2)
(−1)j(2− 2j)

)

. (C.8)
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Now we are able to calculate the hightest order of the integrals (5.39).

Il,i,j(z) = I

(∫

dµ(X1,X2) exp

(

−(z + ε)Tr(X1 +X2)− C

A

)

A
l
2
−iCj

)

=

∞
∫

2

I
(

G3 0
0 3

(

z2v
∣

∣

∣11,−n
))

vn+jvolk(v)dv

=

∫

iR+max(n,−1)+ε

ds

∞
∫

2

dv I(Γ2(1 + s)Γ(−n+ s)(vz2)−s)vn+jvolk(v) .

(C.9)

We defined n = l−1−2i+j and k = l/2−3/2− i+j. For odd l ≥ 1 the integral can
be evaluated in the leading order of z, for even l the exponent n+j is not an integer,
due to which problems occur. We use the approximation for volk(v) to perform the
v-integration and then the calculus of residuals. We find

Il,0,0(z) = πΓ

(

m+ 1

2

)

[

3

(

γ −
(m−1)/2
∑

i=1

1

i

)

a(m−3)/2

+(2 ln z − 1)b(l−1)/2

]

1

zl+1
+O

(

ln z

zl−1

)

.

The integrals with j = 1, 2 can be obtained by differentiating with respect to z, ex-
plicitly we have Il,i,j = Il+2i,0,j and Il,1,j+1 = −1/2z−2l−2j+1 ∂

∂zz
2l+2jIl,0,j . Inserting

all these integrals in Z(z1, z2), given by (5.36) we obtain, using computer algebra,
the stated result for the leading term in ρ̃l(z).

Main contribution of the integral

We want to compute the main contribution of integral (C.3) by hand. Inserting
u2 = 1 − ε in (C.2) and expanding in ε yields ε = 1−a cosϕ

v(1−u2
1)−u1 cosϕ

+ O(1/v2) and,

using j = ∂u2/∂v,

u0
∫

0

du1

π
∫

0

dϕju1u2(1− u2
1)k(1− u2

2)k =

u0
∫

0

du1

π
∫

0

dϕ
(1− u2

1)k+1(1− u1 cosϕ)k+1(v(1 − u2
1)− 1)u1

(v(1 − u2
1)− u1 cosϕ)k+3

. (C.10)

To proceed, we expand the integrand in large v,

v−k−2 (1− u2
1)k+1(1− u1 cosϕ)k+1(v(1− u2

1)− 1)u1

(v(1 − u2
1)− u1 cosϕ)k+3

=

[

u1(1− u1 cosϕ)k+1

1− u2
1

− u1(1− u1 cosϕ)k+1

v(1− u2
1)2

] ∞
∑

i=0

(

i+ k + 2

i

)

(

u1 cosϕ

v(1 − u2
1)

)i

.

(C.11)
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Now we prove that only the (i = 0)-term in the sum combined with the first term
in the squared brackets contributes in the leading order in v. Consider

∣

∣

∣

∣

∣

∣

π
∫

0

dϕ

u0
∫

0

du1
uj1 cosϕi(1− u1 cosϕ)k+1

(1− u2
1)i+1

∣

∣

∣

∣

∣

∣

<

π
∫

0

dϕ

u0
∫

0

du1

(1− u1)i+1
. (C.12)

For our purposes it is sufficient to replace the numerator (C.12) by 1 and ignore
the factor (1 + u1)i+1 in the denominator, which surely increases the absolute value
of the integral. We split the u1-integration into to parts, 0 < u1 < 1 − v−s and
1− v−s < u1 < u0, 0 < s < 1/2 . The first part does not cause any problems. Since
0 < u1 < 1 for i > 0 we have

π
∫

0

dϕ

1−v−s
∫

0

du1

(1− u1)i+1
<
πvsi

i
.

To understand the rest of the u1-integration, we split the ϕ-integration according to
0 < ϕ < v−s and v−s < ϕ < π. For the first part we have u0 < 1 − 1/v if v is large
enough. This leads to

v−s
∫

0

dϕ

u0
∫

1−v−s
du1

1

(1− u1)i+1
<
vi−s

i
.

For the second part we have, using cosϕ = 1−ϕ2/2+O(ϕ2) and u0 < 1−v−s−1/2/2,

π
∫

v−s

dϕ

u0
∫

1−v−s
du1

1

(1− u1)i+1
<
πvi(s+1/2)

i
.

Using these estimates we see, taking into account 0 < s < 1/2 as well as the
factors v−i and v−i−1, respectively, that all contributions except for the first term
in the squared bracket of (C.11) combined with the (i = 0)-part, vanish at least as
v−δ for some positive δ. It still remains to show that for the (i = 0)-contribution
u0 = 1−

√

(1− cosϕ)/(2v) is a good choice for the upper boundary of the integral
(C.10). To do so, we set u′0 = 1 −

√

(1− cosϕ)/(2v) − cosϕ/v, which is the next
order of the expansion (C.4), and show that the term cosϕ/v does not contribute
in the leading order.

π
∫

0

dϕ

u′0
∫

0

du1

1− u1
=

π
∫

0

dϕ ln(1− u0)

=

π
∫

0

dϕ ln

(

sin(ϕ/2)√
2v

)

+

π
∫

0

dϕ ln

(

1 +
cosϕ

sin(ϕ/2)
√

2v

)

The first integral equals π ln 2v and comes from the integration up to u0, the second
integral is comes from the integration between u0 and u′0. We want to show that
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the second contribution can be omitted. To see that it vanishes if v diverges, we
consider three cases, (i) 0 < ϕ < v−s, (ii) v−s < ϕ < π/2, and (iii) π/2 < ϕ < π.
For (i) we use cosϕ/ sinϕ/2 = 2/t +O(t),

∣

∣

∣

∣

∣

∣

∣

v−s
∫

0

dϕ ln

(

1 +
cosϕ

sin(ϕ/2)
√

2v

)

∣

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

∣

v−s
∫

0

dϕ ln

(

1 +
2

ϕ
√

2v

)

∣

∣

∣

∣

∣

∣

∣

=
2√
v

ln

(

1 +
1

2
v1/2−s

)

+ v−s ln(1 + 2v−1/2+s)

=

√
2(1/2− s) ln v√

v
+O(1/

√
v) .

For (ii), we find

∣

∣

∣

∣

∣

∣

∣

π/2
∫

v−s

dϕ ln

(

1 +
cosϕ

sin(ϕ/2)
√

2v

)

∣

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

∣

π/2
∫

v−s

dϕ ln(1 +
√

2vs−1/2)

∣

∣

∣

∣

∣

∣

∣

=
π√
2
vs−1/2 +O(v2s−1) .

Part (iii) yields

∣

∣

∣

∣

∣

∣

∣

π
∫

π/2

dϕ ln

(

1 +
cosϕ

sin(ϕ/2)
√

2v

)

∣

∣

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∣

∣

π
∫

π/2

dϕ ln

(

1− 1

2
√
v

)

∣

∣

∣

∣

∣

∣

∣

=
π

4
√
v

+O(1/v) .

Thus all three parts vanish if v becomes large.

C.2 Attempt of complete solution

As stated in chapter 1, the strategy applied to the random matrix ensemble consid-
ered in chapter 3 does not work in the case of additional time reversal invariance. In
particular, the reduction of the integrations to an integral over the eigenfrequencies
of the system cannot be achieved by an integral of Harish-Chandra–Itzykson–Zuber
type. Here we show which integral has to be solved in order to reduce the integration.

Recall that we consider Hamiltonians of the form

H =
1

2

N
∑

i,j=1

(PiBijPj +QiCijQj) =
(

P Q
)

(

B 0
0 C

)(

P

Q

)

with B = Bt > 0, C = Ct > 0. We want to transform H into the standard form

H =
1

2

N
∑

i=1

(p2
i + ω2

i q
2
i ) ,
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where ωi are the positive characteristic frequencies of the system. To find the linear
canonical transformation, we first transform B into its standard form, the identity
matrix in N dimensions. The existence of the standard form is guaranteed by
Sylvester’s theorem. Thus we can write B′ = gtBg = 1N , which corresponds to the
transformation

Ψ1 : R
2N → R

2N

(

p

q

)

7→
(

p′

q′

)

=

(

g−1 0
0 gt

)(

p

q

)

,

with g ∈ GL(N,R). The block structure of the transformation arises due to the
requirement that is must be a canonical transformation. Since Ψ1 is linear, this is
ensured by

(

g−1 0
0 gt

)

∈ Sp(N,R) = {X ∈ GL(N,R)|XtJX = J} ,

which is easy to see:
(

(g−1)t 0
0 g

)

J

(

g−1 0
0 gt

)

=

(

(g−1)t 0
0 g

)(

0 −1

1 0

)(

g−1 0
0 gt

)

=

(

0 −1

1 0

)

This transformation leads to C ′ = g−1C(gt)−1. To obtain a diagonal form of C we
now apply another canonical transformation,

Ψ2 : R
2N → R

2N

(

p′

q′

)

7→
(

P′

Q′

)

=

(

h−1 0
0 h−1

)(

p′

q′

)

. (C.13)

Since C ′ is symmetric h is orthogonal. We obtain B′′ = B′ = 1N and C ′′ ≡ Ω2 =
h−1g−1C(g−1)th , with Ω = diag(ω1, . . . , ω2), ωN ≥ ωN−1 ≥ · · · ≥ ω1 > 0. The
ordering is necessary since the permutation matrices are orthogonal.

Conversely, the Hamiltonian can be written as

H =
1

2

(

p q
)

(

(g−1)tg−1 0
0 ghΩ2(gh)t

)(

q

p

)

.

In order to obtain a bĳection between the spaces of all possible Hamiltonians and
the spaces which contain the matrices g, h and ω2 we must factor out the subgroups
which leave (C.14) invariant. If we denote the space of positive diagonal ordered
N × N matrices by t+ and the space of real symmetric and positive matrices by
S+, we obtain a bĳection by choosing g as a member of the equivalence classes of
GL(N,R)/O(N) and h as an element of the classes in O(N)/T . T ∼= Z2

N is the
maximal subgroup in O(N) which commutes with all matrices Ω2. The bĳection
reads

Φ : GL(N,R)/T × t+ → S+ × S+

(gT,Ω) 7→ (gΩ2gt, (ggt)−1) . (C.14)
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Probability measure

The probability measure was discussed in chapter 5, we have

P (h)dh = c e−
1
2

Tr(B+C)
N
∏

i≤j=1

dBijdCij . (C.15)

with

h =

(

B 0
0 C

)

and a normalization constant c.

Integral

We want to calculate the expectation of some function F (h), which only depends on
the characteristic frequencies Ω,

∫

S+×S+

F (Ω)P (h)dh = c

∫

t+







∫

GL(N,R)

e−
1
2

Tr(gΩ2gt+(ggt)−1)j(g,Ω)dg






F (Ω)dΩ .

(C.16)

The measure is the flat one on GL(N,R), we have dg =
N
∏

i,j=1
dgij .

The system in one dimension

The one-dimensional case is easy to solve. The general Hamiltonian is given by
H = 1

2(bp + cq) , b, c ∈ R+. We use the transformation b = x2 and c = ω2/x2 to
calculate the integral,

∫

S+×S+

F (Ω)P (X)dX = c

∞
∫

0

dωF (ω)

∞
∫

0

dx e
− 1

2

(

x2+ω
2

x2

)

j(x, ω)

= c

∞
∫

0

dωF (ω)

∞
∫

0

dx e
− 1

2

(

x2+ω
2

x2

)

4ω

x

= 4c

∞
∫

0

dωF (ω)ωK0(ω) .

The Jacobian is simply given by j(x, ω) = 4ω/x, K0 is a modified Bessel function
(also called MacDonald function). The constant c can be calculated by integration
with F (ω) ≡ 1, one obtains c = 1/4.

The benefit from this calculation is the insight that the density of states is not
analytic in ω = 0, the expansion of K0 reads

K0(ω) = ln 2− γ − lnω +O(ω2 lnω) .
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This is a hint that we must not expect to find analytic behavior near ω = 0 for any
N or in the limit of large N . Rather we suppose to find an expansion similar to that
of K0. Indeed, this is verified by the calculations in chapter 5 and in the previous
section of this appendix.

Integration in N dimensions

It is possible to explicitly calculate the Jacobian in (C.16). It is given by

j(g,Ω) =

∣

∣

∣

∣

∣

∣

4N

Det(g)N

∏

i<j

(ω2
i − ω2

j )
N
∏

k=1

ωk

∣

∣

∣

∣

∣

∣

.

To calculate the Jacobian we understand the spaces of interest as subsets of the
R
N2+N , GL(n,R)×Ω ⊂ R

N2+N and S+×S+ ⊂ R
N2+N . For the first space we choose

the basis consisting of all pairs (Eij ,0), i, j = 1 . . . N and (0, Ekk), k = 1 . . . N . For
the space S+ × S+ the basis is already fixed by the choice of the measure (C.15),
it consists of the vectors (Eij + Eji,0), (0, (Eij + Eji)), j = 1 . . . N , i < j, (Eii,0),
and (0, Eii), i = 1 . . . N . The Jacobian is the determinant of the differential of the
mapping Φ, given by (C.14).

dΦ(g,Ω)(A,B) =
d

dt

∣

∣

∣

t=0
Φ(g + tA,Ω + tB)

=
d

dt

∣

∣

∣

t=0
((g + tA)(Ω + tB)2(g + tA)t, ((g + tA)−1)t(g + tA)−1)

= (g
(

g−1AΩ2 + (g−1AΩ2)t + 2ΩB
)

gt,−(g−1)t(A+At)g−1)

= (Ψ̃g ◦ Φ̃ ◦ (lg−1 × Id))(A,B) (C.17)

In the last step, the differential has been decomposed into three linear mappings,
Ψ̃g,Φ̃, and lg−1 × Id. They are defined by

Ψ̃g : S × S → S × S
(X,Y ) 7→ (gXgt, (g−1)tY g−1) ,

Φ̃ : gl(N,R)× R
N → S × S

(A,B) 7→
(

AΩ2 + (AΩ2)t + 2ΩB,−(At +A)
)

,

and

lg−1 × Id : gl(N,R)× R
N → gl(N,R)×R

N

(A,B) 7→ (g−1A,B) .

The determinant of the left multiplication is given by

Det(lg−1 × Id) =
1

Det(g)N
,

the determinant of Ψ̃ is simply

DetΨg = Det(lg)Det(rgt)Det(l(g−1)tDet(rg−1) = 1 ,
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since it can be decomposed in right and left multiplications which act on one of the
subspaces S of S×S. To calculate the determinant of Φ̃ we consider its matrix rep-
resentation with respect to the basises of R

N2+N chosen above. Since the spaces are
linear we identify the tangential space in each point with the space itself. Applying
Φ̃ to a vector of the basis yields

Φ̃(Eji,0) =
(

ω2
i (Eij + Eji),−(Eij + Eji)

)

and
Φ̃(0, Eii) =

(

ωiEii,0
)

.

Thus the matrix of Φ̃ assumes a simple block form. This induces a decomposition
of both spaces in N(N + 1)/2 two-dimensional subspaces. N(N − 1)/2 of these
subspaces are given by the pairs

(

span((Eij ,0), (Eji,0)), span((
1

2
(Eij + Eji),0), (0,

1

2
(Eij + Eji))

)

. (C.18)

The remaining N subspaces are spanned by the diagonal basis matrices, they are
given by the pairs

(

span((Eii,0), (0, Eii)), span((Eii, Eii), (Eii,0))
)

. (C.19)

On each of the pairs (C.18) the restricted mapping Φ̃ is well-defined and has the
matrix

(

ω2
i ω2

j

−1 −1

)

,

on each of the pairs (C.18) it assumes the form

2

(

ω2
i ωi
−1 0

)

.

Now it is easy to read off the determinant of Φ̃, it is the product of the determinants
of these two by two matrices:

DetΦ̃ = 4N
∏

i<j

(ω2
i − ω2

j )
N
∏

k=1

ωk .

Thus we arrive at the Jacobian

j(g,Ω) =

∣

∣

∣

∣

∣

∣

22N

DetgN

∏

i<j

(ω2
i − ω2

j )
N
∏

k=1

ωk

∣

∣

∣

∣

∣

∣

.

At this point, our attempt to solve the model in analogy to that in chapter 3 ends.
Up to now, for the remaining integral in (C.16) no solution is known.
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