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Kurzzusammenfassung

Gemäß heutigem Kenntnisstand entstehen Sterne bevorzugt in Sternhaufen. Die Akkretions-
scheiben, welche als Nebenprodukt des Sternentstehungsprozesses die jungen Sterne umge-
ben, stellen potentielle Geburtsstätten von Planeten und Planetensystemen dar. Eingebettet in
einen Sternhaufen, unterliegen diese protoplanetaren Scheiben potentiell Wechselwirkungen
mit Sternen. Diese Wechselwirkungen geben Anlass zu einer fundamentalen Frage der Ster-
nentstehung in Sternhaufen: Inwieweit nimmt die Umgebung des Sternhaufens Einfluss auf
die Entwicklung von protoplanetaren Scheiben und die Entstehung von Planeten?

Diese Frage wird in der vorliegenden Arbeit im Hinblick auf den Effekt gravitativer Wech-
selwirkungen von Sternen und deren Scheiben in jungen Sternhaufen behandelt. Die Unter-
suchung erfolgt durch die Kombination numerischer Simulationen isolierter Vorbeiflüge von
Sternen an Stern-Scheibe-Systemen und der Stellardynamik junger Sternhaufen.

Die Untersuchung umfasst drei Schlüsselaspekte. Zum einen wird anhand von Simulatio-
nen eines dynamischen Modells des Sternhaufens im Orionnebel (ONC) gezeigt, dass die Zer-
störung von Scheiben durch gravitative Wechselwirkungen mit massiven Sternen im Zentrum
des Sternhaufens dominiert wird, welche als Gravitationszentren für Sterne geringer Masse
dienen. Die massiven Sterne unterliegen somit wiederholten Wechselwirkungen welche zu
einer kompletten Zerstörung der Scheibe führen können. Der Massenverlust der Scheibe
erfolgt dabei schneller und weitreichender als dies für Sterne mittlerer Masse der Fall ist.

Zweitens wird die Frage untersucht, ob Beobachtungsgrößen existieren, mit deren Hilfe
der durch gravitative Wechselwirkungen entstehende Massenverlust in Scheiben aufgezeigt
werden kann. Die numerischen Simulationen ergeben, dass einige Sterne unerwartet hohe
Geschwindigkeiten und zugleich zerstörte Scheiben als Folge von starken Wechselwirkun-
gen aufweisen. Ein Vergleich mit Beobachtungen des ONC bestätigt das Vorhandensein
solcher Sterne hoher Geschwindigkeit. Es handelt sich um junge Sterne, welche teilweise
keine erhöhte Emission im Infraroten aufweisen. Die Sterne hoher Geschwindigkeit bilden
ein charakteristisches Muster, welches anhand der numerischen Simulationen, die eine Kor-
relation zwischen anfänglicher Lage und Scheibenzerstörung aufzeigen, geklärt wird.

Ferner wird der Einfluss der Eigenschaften eines Sternhaufens auf den durch gravitative
Wechselwirkungen bedingten Scheibenmassenverlust untersucht. Dies erfolgt durch Ska-
lierung der Größe, Dichte und Anzahl der Sterne des dynamischen Ausgangsmodells des
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ONC. Wie erwartet zeigt sich, dass der Scheibenmassenverlust mit der Dichte des Stern-
haufens zunimmt, jedoch von der Größe der Sternenpopulation unberührt bleibt. Allerdings
ist die Auswirkung der gravitativen Wechselwirkungen selbst in vier mal dünneren Stern-
haufen sichtbar. Die Dichte des ONC stellt dabei einen Schwellenwert dar: in dünneren und
weniger massiven Sternhaufen dominieren die massiven Sterne den durch gravitative Wech-
selwirkungen bedingten Scheibenmassenverlust während in dichteren und massiveren Stern-
haufen die Sterne geringer und mittlerer Masse die entscheidende Rolle bei der Reduzierung
der Scheibenmasse spielen.
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Abstract

According to current knowledge, star formation occurs preferentially in clustered environ-
ments. As a byproduct of the star formation process young stars are found to be surrounded
by accretion discs that are potential birth places of planets and planetary systems. Located
in the hosting cluster, these protoplanetary discs are potentially subject to stellar interactions.
These interactions give rise to a fundamental question of clustered star formation: How far
does the cluster environment affect the evolution of protoplanetary discs and the formation of
planets?

The question is addressed in the present investigation in terms of the effect of stellar en-
counters on stars and their disc in young clusters by combining numerical simulations of
isolated star-disc encounters and stellar dynamics of young star clusters.

The investigation is composed of three key aspects. First, simulations of a dynamical
model of the Orion Nebula Cluster (ONC) show that disc destruction is dominated by en-
counters with high-mass stars that act as gravitational foci for the lower mass stars in the
cluster centre. The massive stars are thus subject to repeated encounters which can lead to
a total disc destruction. This happens much more quickly and to a larger degree than for
intermediate-mass stars.

Secondly, the question whether there are any observables that could trace the mechanism
of encounter-induced disc-mass loss, is addressed. From numerical simulations it is found
that some stars show unexpectedly high velocities as an outcome of close interactions, com-
bined with a completely destroyed disc. Observations of the ONC confirm the presence of
these high-velocity stars, which are young low-mass stars that partially lack infrared excess
emission. The high-velocity stars form a characteristic pattern that is explained by the numer-
ical simulations, finding a strong correlation between initial location in the cluster and disc
destruction dynamics.

Third, the influence of the cluster properties on the encounter-induced disc-mass loss is in-
vestigated by scaling the size, density and stellar number of the basic dynamical model of the
ONC. Not unexpectedly, it is found that the disc-mass loss increases with cluster density but
remains rather unaffected by the size of the stellar population revealing that even in clusters
four times sparser than the ONC the effect of encounters is still non-negligible. The density
of the ONC itself marks a threshold: in less dense and less massive clusters it is the massive
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stars that dominate the encounter-induced disc-mass loss whereas in denser and more mas-
sive clusters the low- and intermediate-mass stars play the major role for the removal of disc
mass.



“main” — 2009/3/3 — 16:26 — page v — #7

Contents

1. Introduction 1

2. Young Star Clusters 5

2.1. Cluster Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Cluster Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4. The Initial Mass Function (IMF) . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Numerics 29

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. The Code: NBODY6++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3. Modifications of the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4. Environmental Effect on Discs in the Orion Nebula Cluster (ONC) 55

4.1. Structure and Dynamics of the ONC . . . . . . . . . . . . . . . . . . . . . . 55
4.2. Construction of a Numerical Model of the ONC . . . . . . . . . . . . . . . . 58
4.3. Dynamical Evolution of the Numerical Cluster Model . . . . . . . . . . . . . 63
4.4. Disc-Mass Loss Induced by Star-Disc Encounters . . . . . . . . . . . . . . . 65

5. Dynamical Imprints of Star-Disc Encounters in the ONC 81

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2. Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3. Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4. Confronting Observations and Simulations . . . . . . . . . . . . . . . . . . . 100

6. The ONC Revisited - A Family of Numerical Siblings 103

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2. Construction of the Numerical Models . . . . . . . . . . . . . . . . . . . . . 104
6.3. Dynamical Evolution of the Numerical Cluster Models . . . . . . . . . . . . 107
6.4. Disc-Mass Loss Induced by Star-Disc Encounters . . . . . . . . . . . . . . . 115
6.5. Validity of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130



“main” — 2009/3/3 — 16:26 — page vi — #8

7. Discussion 135

8. Summary 139

Bibliography 141

A. Conic Sections 155

B. Observational Constraints 157

B.1. Observability of tidal tails due to star-disc encounters in the ONC . . . . . . 157
B.2. Estimate of the mean uncertainty of stellar ages . . . . . . . . . . . . . . . . 157

C. Stellar Dynamics 159

C.1. Minimum velocity for unperturbed escape of stars in the ONC . . . . . . . . 159
C.2. Maximum velocity of a star ejected from a bound triple system . . . . . . . . 159

D. Star Cluster Models 161

D.1. Determination of boundaries of mass groups . . . . . . . . . . . . . . . . . . 161



“main” — 2009/3/3 — 16:26 — page 1 — #9

1. Introduction

According to current knowledge, planetary systems form from the accretion discs around
young stars. These young stars are in most cases not formed in isolation but are part of
a cluster (e.g. Lada & Lada, 2003). Stellar number densities in these cluster environments
vary considerably, spanning a range from 10 pc−3 (e.g. η Chamaeleontis) to 106 pc−3 (e.g.
Arches Cluster). It is still an open question as to how far interactions with the surrounding
stars influence planet formation in young clusters - in particular in the dense, massive stellar
aggregates (n & 104 pc−3), where close interactions of stars are much more likely and the
gravitational impact of massive stars is higher. In the last decade many young star clusters
have been surveyed for the properties of the stellar members and their circumstellar discs
(e.g. Haisch et al., 2001; Hillenbrand, 2002; Sicilia-Aguilar et al., 2006; Currie et al., 2008).
The general outcome has been that these discs disperse over time and in dense clusters the
disc frequency seems to be lower in the core (e.g. Balog et al., 2007b). This is attributed to
external violent processes like photoevaporation or encounter-induced disc-mass loss, mainly
caused by the massive stars that are concentrated in the cluster core.

Earlier numerical investigations seemed to indicate that photoevaporation should by far
dominate the external disc destruction (Scally & Clarke, 2001; Adams et al., 2004). The
question of whether encounters play a vital role in the formation process of stars and planets
has been studied far less and is still open (e.g. Adams et al., 2006). Analytical estimates of
dynamical time scales and restrictions of numerical simulations to single-mass models led
to the conclusion that encounters do not play an important role (e.g. Clarke & Pringle, 1993;
Scally & Clarke, 2001) in the general clustered star formation process but only when number
densities approach those observed in globular clusters (Bonnell et al., 2001b). Nevertheless,
Scally & Clarke (2001) found that nearly a third of stars in the central core of the ONC
would suffer an encounter within 100 AU, and thus, for a significant minority of stars in the
Trapezium Cluster star-disc encounters could be of some importance. However, a number
of simplifying assumptions underlie this result that tend to underestimate the effect of stellar
encounters as a disc-destructive mechanism.

Only recently has it been shown by simulations of isolated star-disc encounters (e.g. Pfalzner
et al., 2005b; Moeckel & Bally, 2006, 2007a,b) and combination with numerical models of
the Orion Nebula Cluster (ONC) (Olczak et al., 2006; Pfalzner et al., 2006; Pfalzner, 2006;
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Pfalzner & Olczak, 2007a,b) that stellar encounters do have an effect on the discs surround-
ing stars in a young dense cluster (see also the review by Zinnecker & Yorke, 2007). The
importance of encounters has been previously underestimated because the focus has been
mainly on encounters between solar mass stars (e.g. Clarke & Pringle, 1991; Heller, 1995).
However, discs are most affected when the masses of the stars involved in the encounter are
unequal (Olczak et al., 2006; Moeckel & Bally, 2007a). Moreover, the massive stars in the
centre of a stellar cluster act as gravitational foci for the lower mass stars and are thus subject
to repeated encounters. These accumulated perturbations can lead to a total destruction of a
massive star’s disc (Pfalzner et al., 2006).

Whether these results of the numerical simulations of a dynamical model of the ONC could
be generalised towards other young star clusters has not been investigated so far. This would
be in particular of interest in the light of the existence of much more massive and dense
systems than the ONC. Naturally, one would expect that the effect of star-disc encounters
becomes larger with increasing density and mass of a cluster. Indeed, recent observations of
young star clusters do not only show a trend of decreasing disc fraction with time, as discussed
above, but as well – most probably – a lower disc fraction in dense and massive clusters
(Stolte et al., 2004; Balog et al., 2007b). However, observational biases prevent a decisive
conclusion. First, the high density of these clusters makes the resolution of the individual
stars – in particular in the even denser core – very challenging, as discussed for example by
Schoedel et al. (2008). Second, because massive clusters are not found at distances closer
than 2 kpc, their stellar population can not be sampled completely below one solar mass
with current observational techniques and instruments (Stolte et al., 2006; Kim et al., 2006;
Harayama et al., 2008). According to the canonical mass function of Kroupa (2001), this
means that about 90 % of the cluster population of massive clusters remains undetected. Third,
because massive clusters tend to form more massive stars (e.g. Weidner & Kroupa, 2006), the
effect of photoevaporation comes inevitably into play (e.g. Fatuzzo & Adams, 2008).

The evidence that stellar encounters do have a significant effect on discs in young star clus-
ters is solely due to numerical investigations. Though perturbed discs in individual interacting
star-disc systems have been observed (Beust et al., 2005; Cabrit et al., 2006; Lin et al., 2006),
a systematic investigation of such events in a young star cluster has not been undertaken so
far. This is attributed to the low probability of tracing stellar encounters directly by observa-
tions due to their short duration and due to the fast dissipation of the disc perturbations on a
time scale of 103 yr (cf. Pfalzner, 2003). One could overcome this observational limitation
by tracing an observable that contains the information of an encounter event over a time scale
comparable to the age of a cluster.

In this work the relevance of encounters on the destruction of protoplanetary discs in a
young dense cluster is investigated by combining two different types of numerical simulations.
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First, star-cluster simulations with NBODY6++ (Spurzem, 1999) are performed to model the
stellar dynamics, the results of which are used to investigate the frequency of encounters, the
mass ratio and separation of the stars involved, and the eccentricity of the encounter orbits.
Second, the results of a parameter study of star-disc encounters are involved to determine the
upper limits of the disc-mass loss in encounters of star-disc systems.

Here the ONC is used as a prototype young cluster because it is one of the best-studied
regions in our galaxy, and the only young dense cluster for which velocities of more than
1000 of its members have been determined (Jones & Walker, 1988). In addition, its high
density suggests that stellar encounters might be relevant for the evolution of circumstellar
discs. Throughout this work it is assumed that initially all stars are surrounded by proto-
planetary discs. This is justified by observations that reveal disc fractions of nearly 100 %
in very young star clusters (e.g. Haisch et al., 2000; Lada et al., 2000; Haisch et al., 2001;
Hillenbrand, 2005). The model of the ONC is used as a starting point for the development of
numerical representations of other stellar systems that are used to investigate the dependence
of the encounter-triggered disc-mass loss on the stellar number, stellar density, and size of a
cluster. With these models it is aimed to investigate how stellar systems of different properties
influence the effect of encounters on discs of young stars.

The other focus of this work is the question of whether there is direct observational evi-
dence for encounters among star-disc systems and for disc-mass loss due to encounters in
young clusters. It is difficult to distinguish observationally whether photoevaporation or grav-
itational interaction are responsible for the loss of (outer) discs. The reason is that in both
cases interaction with a massive star is the most destructive process. Thus the observation
of a decreased disc frequency in the cluster core, as mentioned above, does not allow one to
favour either of the two mechanisms. The difficulty of tracing stellar encounters directly by
observations is their short duration. Direct imaging of tidal tails of a disc would seem to be
a good proof but the probability of such an event is very low: the perturbed disc circularises
and tidal tails dissipate on a time scale of 103 yr. Nevertheless, there exist observations of
tidal tails or spiral arms in star-disc systems (e.g. Beust et al., 2005; Cabrit et al., 2006; Lin
et al., 2006), but often it is unclear whether these can be attributed to the passage of an un-
bound perturber or a binary companion or gravitational instabilities caused by a giant planet.
However, an unambiguous imprint of an encounter among stars is the high velocity of a star
which has been expelled in a close gravitational interaction, mostly as a result of a three-body
encounter (see Heggie, 1975). Thus an analysis of the velocity distribution of a cluster is the
key to finding candidates of close encounters between young stars.

The present work is organised the following way. In Chapter 2 the formation and evo-
lution of stars and star clusters and their fundamental properties are presented. Chapter 3
covers the description of the numerical code that has been used for the stellar dynamical
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simulations. Extensions and modifications of the code that have been applied are addressed
as well. Simulations of the numerical model of the ONC and, in combination with results
from the parameter study of star-disc encounters, implications for the disc-mass loss in this
young cluster are discussed in Chapter 4. This is followed, in Chapter 5, by an investigation
of observable imprints of encounters in a young cluster from a combination of observational
data and simulations of the ONC. An extension of the simulations of the dynamical model of
the ONC towards two families of cluster models, scaled by density, size and stellar number,
is presented in Chapter 6. A discussion of the results of the present work and a summary are
given in Chapter 7 and Chapter 8.
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2. Young Star Clusters

The formation of stars in the Galaxy occurs within groups scattered throughout the Galactic
disc, with a strong concentration towards the spiral arms which harbour a large fraction of
the Galactic molecular hydrogen. A large variety of sizes, shapes, densities and luminosities
of stellar birthplaces is observed. These represent evolutionary stages during the formation
of stellar groups from agglomerations of gas and dust to embedded clusters which will form
later eventually open clusters or more likely disperse into unbound associations.

In the first section typical quantities and time scales of star cluster dynamics are presented.
The second section deals with the most important stages of star formation, while in the third
the properties and evolution of the hosting stellar groups will be described in more detail.
Finally, the important concept of the Initial Mass Function (IMF) is discussed.

2.1. Cluster Dynamics

The dynamics of a star cluster are essentially determined by the gravitational interaction
of its stellar population. Treated as particles, the cluster stars are representing – from the
theoretical point of view – a (chaotic) N-body system. Though the motion of each star is
thus unpredictable (on a longer time scale), the dynamics of the entire population can be
well characterised by a set of fundamental physical quantities and time scales as discussed by
Binney & Tremaine (1987).

The virial ratio,

Qvir =
Ekin

|Epot|
=

Rhmσ2

GM
, (2.1)

where Ekin and Epot are the kinetic and potential energy, Rhm the half-mass radius, σ the veloc-
ity dispersion, G the gravitational constant, and M the cluster mass, describes the “thermal”
state of a cluster: the larger the ratio, the larger the kinetic energy of a cluster – the cluster is
termed to become “hotter”, in analogy to (collision-less) gas. Three regimes of the virial ratio
are distinguished: a cold system is characterised by Qvir < 0.5, a hot system has Qvir > 0.5,
while Qvir = 0.5 marks the state of virial equilibrium. This classification is due to the virial
theorem which says that for any N-body system of mutually gravitating particles in a steady
state Epot = −2Ekin. Hence the virial ratio determines the evolution of the cluster volume:
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a cold cluster will tend to contract, a hot cluster will expand with time, until equilibrium is
reached.

The crossing time,

tcr =
2RV

σ
, (2.2)

is the typical time scale for a particle to cross the hosting cluster. It represents the dynamical
time scale of a self-gravitating system over which it adjusts globally to a significant deviation
from an equilibrium state. Here RV is the virial cluster radius, obtained from the potential
energy Epot by RV = GN2m̄2/2|Epot|, where N is the number of particles, m̄ is the mean
particle mass, and σ is the rms velocity dispersion (Binney & Tremaine, 1987). In a state of
approximate equilibrium, σ2 ' GNm̄/2RV , the crossing time can be expressed as

tcr = 2
√

2
(

R3
V

GNm̄

)1/2

. (2.3)

The close encounter distance,

Rcl = 2
Gm̄
σ2 , (2.4)

gives an estimate of the minimum distance between two stars. Thus it is a measure of the
significance of collisions in a self-gravitating system (Aarseth & Lecar, 1975). The term “col-
lision” here always refers to elastic two- or more-body encounters, not to physical collisions,
where two stars collide and merge or disrupt each other. At equilibrium it takes the simple
form

Rcl ' 4
RV

N
. (2.5)

Another relevant time scale is the two-body relaxation time,

tr2b = 0.34
σ3

G2m?ρ0 lnΛ
, (2.6)

where σ is again the velocity dispersion, m? the stellar mass, ρ0 the stellar number density,
and Λ = γN the argument of the Coulomb logarithm with particle number N (Spitzer & Hart,
1971). Formally this factor is obtained by integrating over all impact parameters in two-
body encounters, with a historical value of γ = 0.4. However, from numerical experiments
Giersz & Heggie (1994) determined γ ' 0.11. The given two-body relaxation time is valid
in the approximation of a homogeneous distribution of equal-mass stars with an isotropic
Maxwellian velocity distribution. However, for a real star cluster the two-body relaxation
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time varies by large factors between the central and outer parts. Thus it is useful to define a
half-mass relaxation time,

trh = 0.138
(

Nr3
h

Gm?

)1/2 1
lnΛ

, (2.7)

where rh is the half-mass radius. The relaxation time gives an estimate of the time for the
rms velocity change arising from small angle deflections at the half-mass radius to become
comparable to the initial velocity dispersion. Globally this means that significant dynamical
changes of a self-gravitating system occur on this time scale and lead to a virialised (or
“relaxed”) system.

The importance of encounters for a self-gravitating system to become relaxed can be ex-
pressed by the relation

trh
tcr
' N

22lnΛ
, (2.8)

which gives an estimate of the number of cluster crossings of a particle before significant
deflection. It shows that with increasing particle number encounters become less effective
in changing cluster dynamics as a result of a deeper cluster potential. If the relaxation time
of a self-gravitating system greatly exceeds the time interval of interest, the system can be
approximately treated as collisionless.

To give an example of the numbers: a rich star cluster is characterised by N ' 104, m̄ '
0.5M�, and RV ' rh ' 4pc, which yields tcr = 5 ·106 yr, trh = 3 ·108 yr, Rcl ' 3 ·102 AU, and
trh/tcr ' 102.

The presented relaxation time scale is only valid for equal mass systems. In the realistic
case of a star cluster a mass spectrum has to be introduced. In the simplest approximation of
a mass spectrum by a two-component system, dominated by the low-mass particles, another
relevant time scale is the equipartition time for kinetic energy,

teq =
(v̄2

1 + v̄2
2)

3/2

8(6π)1/2G2ρ01m2 lnN1
, (2.9)

where v̄1 and v̄2 are the mean velocities of the two mass groups and ρ01 is the central density
of the N1 low-mass stars of mass m1. The high-mass particles of mass m2 lose kinetic en-
ergy through encounters with low-mass particles of mass m1 and spiral inwards. Finally the
high-mass particles will form a self-gravitating system in the cluster core and the standard
relaxation time (2.6) becomes relevant again, slowing down the evolution. This process is
known as mass segregation. Combination of (2.9) and (2.7) gives the relation between the
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two time scales,

teq

trh
' m̄

m2
. (2.10)

Hence the presence of a mass spectrum speeds up the early evolution of a self-gravitating
system. Consequently, for rich young open star clusters, which typically have a mass range
0.1-10 M�, (2.7) overestimates the relaxation time by a factor of . 102. A re-estimate of
the importance of close encounters in such a system results in trh ' tcr, inevitably showing
that young rich star clusters are strongly collision dominated systems. It is also evident that
mass segregation of the massive stars occurs before relaxation of the entire cluster becomes
significant. However, one has to emphasise that as yet there is no consistent theory of the
relaxation time for a realistic mass spectrum.

Collisions between single stars modify the stellar distribution function in two ways. One
process is ejection, in which a single close encounter leads one of the stars to acquire a
velocity greater than the local escape velocity ve and to escape from the cluster. The time scale
for this is tej =−Ndt/dN ' 1.1 ·103 ln0.4Ntrh ' 104trh (Henon, 1969). The second process is
evaporation and is caused by the cumulative effect of many weak encounters, which gradually
increase a star’s energy until v ≥ ve. From detailed calculations Gerhard (2000) found a
relation tev ' 300trh for the evaporation time scale.

2.2. Star Formation

The star formation process is linked to the gravitational collapse of a cloud of gas, forming
individual stellar objects of a large range of masses. These stellar objects are involved in
an evolutionary process that is made up of four characteristic stages with the young star
finally entering its main sequence, possibly surrounded by a planetary system that formed
from a disc of circumstellar matter as a byproduct of the stellar evolution. The properties of
the clouds, the isolated stellar evolution process and properties of the young stars’ disc are
described below in detail.

2.2.1. Molecular Clouds

Molecular clouds are the precursors of stellar formation and are observed in a great variety,
as summarised in Table 2.1. However, only the cold and massive complexes like the giant
molecular clouds or the less massive dark clouds, where the main cohesive force is the cloud’s
own gravity, are in favour to produce new stars. These large entities are built up by the
agglomeration of many smaller clumps with individual masses and random relative velocities,
the so-called individual dark clouds. However, the individual dark clouds are as well built up
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by much more compact objects, the so-called dense cores, which are hosts of individual star
formation (e.g. Myers & Benson, 1983).

Within the Milky Way, over 80 percent of the molecular hydrogen resides in giant cloud
complexes which are the places where the supermassive O and B stars are formed. Due to
their intense radiation and stellar winds, the survival time of a giant molecular cloud is typi-
cally some 107 yr. On average, the cloud converts about 3 percent of its mass into stars during
this time. Given the total H II mass in the Galactic disc, it follows that the star formation rate
from giant clouds is about 2M� yr−1.

Cloud Type ntot R T M

[cm−3] [pc] [K] [M�]

Diffuse 500 3 50 50

Giant Molecular Clouds 100 50 15 105

Dark Clouds

Complexes 500 10 10 104

Individual 103 2 10 30

Dense Cores / Bok Globules 104 0.1 10 10

Table 2.1.: Physical properties of molecular clouds.

2.2.2. Stellar Evolution

Dense cores harbour infrared point sources of emission which are the best hint for star forma-
tion occurring in these entities. The process itself is induced by the gravitational collapse of
a core which forms a temporary configuration known as the first core. As its density climbs,
the central lump quickly becomes opaque to its own infrared, cooling radiation. The total
compressed mass is still small at this stage, about 5× 10−2M�, but the radius is large by
stellar standards, roughly 5 AU or 200 R�. With the addition of mass and shrinking of the
radius, the internal temperature soon surpasses 2000K. At this point, the rise in temperature
is damped due to the absorption of most of the energy through the collisional dissociation of
H II forming H I. This evolutionary phase ends as the entire configuration becomes unstable
and collapses because pressure can not oppose compression any more due to the level off in
temperature (e.g. Larson, 1973; Terebey et al., 1984; André et al., 2008).

The evolutionary stage following the collapse of the first core is designated as a protostar.
It is the first dynamically stable configuration. With a radius of several R�, a protostar of
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0.1 M� has a mean internal temperature above 105 K. Objects in this phase are observable
as bright infrared point sources in molecular clouds. As opposed to real stellar bodies the
emitted radiation stems not directly from their surface but from an obscuring dust envelope
still surrounding the central object, which serves as well as a reservoir for massive accretion.
It is therefore conventional to define a protostar as a mass-gaining star whose luminosity
stems mainly from external accretion, known as the main accretion phase. The ignition of
nuclear fusion in terms of deuterium (2H) burning begins when the quasi-static contraction
of the protostellar core pushes the temperature near 106 K (e.g. Shu et al., 1987; Lada, 1987).

Although the main accretion phase of a protostar involves dynamical motion, the protostar
itself is always in a state of hydrostatic equilibrium. With the end of infall, the further evo-
lution of the star, now of fixed mass, is driven almost entirely by radiation from its surface
layers. With this transition the star enters the pre-main-sequence phase and becomes optically
visible. In this stage, for the first time nuclear fusion and self-gravity become the only sources
of energy. The radiation from the stellar surface transports this internal energy directly into
space, not hindered by surrounding dust. The loss in heat causes the star to shrink and re-
leases gravitational binding energy. According to the virial theorem, this energy is equally
partitioned to increase the thermal energy and compensate the loss through radiation. Hence,
the cooling of a star results in a rise of the internal temperature. A pre-main-sequence star
is therefore an object with negative heat capacity. The onset of nuclear fusion is generally
correlated with the formation of a strong stellar wind, usually along the axis of rotation. Thus,
many young stars have a bipolar outflow, a flow of gas out of the poles of the star. A stellar
objects that belongs to one of the former classifications is generally termed Young Stellar
Object, or shortly YSO (e.g. Adams et al., 1987; Andre & Montmerle, 1994).

Further contraction of an YSO finally leads to central temperatures reaching 107 K were
fusion of hydrogen is enabled. As the burning increases, the nuclear energy released can
balance the surface loss through radiation and the object’s radius stabilises. At this point the
star has reached the zero-age main-sequence (ZAMS) and will stay there until a significant
amount of its fuel is destroyed (Iben, 1965).

This scenario is only valid for objects more massive than 0.08M�. Falling under this
limit, contraction for such low masses causes densities high enough for electron pressure
degeneracy which makes the internal temperature fall below the value required for hydrogen
ignition. Such substellar objects are designated as brown dwarfs (see the review by Liebert
& Probst, 1987).

Observationally, two general classes of pre-main-sequence stars are distinguished, T Tauri
and Herbig Ae/Be stars. The former is named for the prototypical object discovered in the
Taurus-Auriga dark cloud complex and represents pre-main-sequence stars with masses lower
than approximately 1-2 M�, the latter contains the more massive objects which are, in terms
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molecular cloud protostar pre-main-sequence star main-sequence star

(T Tauri star) (dwarf star)

∼ 105 yr ∼ 106 yr & 107 yr

Figure 2.1.: The formation process of a solar-type star illustrated by images from NASA/HST.

of spectroscopy, A and B stars with emission lines. Herbig Ae/Be stars are usually observed
only in giant clouds like Orion (Palla, 2005).

There is still some debate about how massive stars form. The reason to consider different
formation scenarios for massive stars is due to the enormous energy output of massive stars.
It is still rather unclear whether the radiation pressure is too large to build up the stellar
mass by isolated accretion onto a core (see the review by Zinnecker & Yorke, 2007). This
scaled-up version of the low-mass star formation is confronted with theories of “competitive
accretion” in a protocluster environment and stellar collisions and mergers in very dense
systems (Bonnell et al., 2001a; McKee & Tan, 2003; Bonnell & Bate, 2005). Evidence in
support of the core model of massive star formation includes the fact that massive starless
cores are observed and the mass function of these cores is similar to the stellar initial mass
function (IMF) (Beuther & Schilke, 2004; Reid & Wilson, 2006). Massive cores tend to have
line widths that are much broader than thermal (Caselli & Myers, 1995), indicating that other
forms of pressure support such as turbulent motions and magnetic fields are important.

2.2.3. Circumstellar Discs

Formation of Protoplanetary Discs

In the stellar evolution from protostars to pre-main-sequence objects accretion of matter plays
a vital role. The general understanding of the accretion process is that due to the rotation of
the parent cloud and the harboured protostar the infall is not spherically symmetric but the
matter forms a disc geometry before it is transported to the stellar surface. The main issue here
is that as the specific angular momentum of a cell of matter is sufficiently large, it inevitably
veers away from the geometrical centre of the cloud during infall while still spinning up due
to angular momentum conservation. Any such element enters a parabolic orbit, misses the
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stellar surface and accumulates in an annulus around the central object. This phase marks the
formation of a protostellar disc (see Saigo et al., 2008).

With progressing time an increasing portion of the collapsing gas misses the star and con-
tributes at first to the growth of the disc radius but not its mass. This is due to the equatorial
symmetry of the accretion process. Any trajectory that misses the star has its counterpart with
a negative velocity component perpendicular to the equatorial plane. Two opposing streams
collide at supersonic speed and cause an accretion shock which deflects this portion of matter
toward the protostar. The transport of matter through these streamlines directly onto the star
works well for low disc surface densities but once the disc grows beyond a critical radius, the
outermost particles can no longer penetrate to the stellar surface. The streamlines miss the
central protostar as a consequence of the disc’s buildup of angular momentum and converge
to form a dense ring, which diminishes the mass transport onto the protostar. Consequently,
the disc mass and density begins to rise which again causes a decreasing infall onto the stellar
surface. Finally, all accreted matter from the cloud contributes to the disc’s mass, which now
climbs nearly linearly with time (e.g. Stahler et al., 1986).

If this process would continue unabated, the mass of the disc would soon exceed that of the
protostar. However, observations show that pre-main-sequence stars always have discs with
relatively low masses, typically a few percent of the stellar mass. To avoid the rapid buildup
of a massive disc, some process stronger than the drag from infall must allow material to
spiral continually onto the protostar. The simplest way to achieve this is by internal torquing.
Considering two neighbouring annuli, the inner annulus could loose angular momentum due
to a torque exerted by the outer one through some kind of friction. The shrinking of the inner
annulus would then be accompanied by a spreading of the disc. This simple model presents
a very effective method for mass and angular momentum transport but a generally accepted
physical source of the internal friction has still not been found (e.g. Larson, 1984).

Once the parent cloud of the protostar has vanished, accretion onto the disc stops and
this marks the subsequent evolution of a protoplanetary disc. In this phase the formation
of planets is thought to occur. The interactions of these young stellar objects in a cluster
environment are in the focus of the present work.

Observational Detection and Geometry

Circumstellar discs can be detected by emission throughout different wavelength regimes.
Magnetic activity associated with the host pre-main-sequence (PMS) stars, plasma produc-
tion from magnetic star-disc-jet interactions, and probably accretion shocks in the disc surface
produce X-rays when two opposing streams of matter collide at supersonic speed (Kastner
et al., 2005). Intense starlight can ionise gas like oxygen or sulphur which have strong emis-
sion lines in the optical (O’Dell et al., 1993). Optically-thick dust heated to some 100 K close
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Figure 2.2.: Multiwavelength mid-IR imaging of the disc of Beta Pictoris. From top to bottom images
from longer to shorter wavelengths are presented. Courtesy Gemini Observatory / AURA.

to the star emits preferentially in the infrared (IR) and with lower temperatures in the outer
parts in the (sub-) millimetre regime. Fig. 2.2 shows how the disc size varies with observing
wavelength. Because the cool outer parts of discs represent the vast majority of their mass
and volume and most of the emission is optically thin, the submillimeter luminosity is a diag-
nostic of the total disc mass (Beckwith et al., 1990). Finally, radio observations can provide
information on the gas mass from continuum measurements or the velocity structure of the
disc from characteristic molecular lines, typically CO or CS (Cabrit et al., 2006).

While the X-ray activity of a PMS star is not yet sufficiently understood to derive prop-
erties of its circumstellar disc (Preibisch et al., 2005), there has been large progress in the
lower frequency bands. The first optical images of a young stellar disc were obtained by the
Hubble Space Telescope (HST) of the star Beta Pictoris in the early 1980s (Smith & Terrile,
1984) and very soon more such systems were detected, giving rise to some spectacular im-
ages of star-disc systems in the Orion Nebula Cluster (McCaughrean & O’Dell, 1996). The
challenge in optical imaging is the need for high resolution in order to distinguish the disc
from the much more luminous stellar component. Thus only close-by star forming regions
can be surveyed for discs by direct imaging. In cases where the two components are not well
separated, the infrared or millimetre regimes are more advantageous because disc emission
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at these wavelengths constitutes a significant fraction of the stellar radiation. This makes
it comfortable to identify stars that are surrounded by discs by their excess in the observed
wavelength band in comparison to pure photospheric stellar emission.

The favourite observation in the near-infrared (NIR) involves the standard broad band fil-
ters J, H, K, and L with central wavelengths at 1.25, 1.65, 2.2, and 3.5 µm. NIR colour-colour
diagrams (e.g. a plot of magJ −magH vs. magH −magK) are then used as a tool for investi-
gating the physical natures of YSOs in young clusters. Objects lying in the infrared excess
region of these diagrams are considered to be sources with candidate circumstellar discs (e.g.
Haisch et al., 2000; Lada et al., 2004; Oliveira et al., 2004). Identification problems can
arise from contamination by extended emission in H II regions, reflection nebulosity, stellar
photospheric emission, and source crowding in high-density regions. Such effects could lead
to artificially high or low disc fractions. Furthermore, the magnitude of the NIR excess from
a disc also depends on the parameters of the star/disc system (e.g., stellar mass/age, disc in-
clination, accretion rate, and inner disc hole size) (Adams et al., 1987; Meyer et al., 1997;
Hillenbrand et al., 1998). Since these effects are the more severe the shorter the wavelength
used for observations, and the magnitude of the infrared excess produced by a circumstellar
disc increases rapidly with wavelength, longer infrared wavelengths are preferable. However,
because the stellar energy distribution of a typical late type star peaks near the L-band wave-
length, L-band observations are far superior to mid-infrared observations (i.e., ≥ 10 µm) to
detect relatively faint low mass stars. Therefore combining NIR JHK observations with L-
band data is a powerful method for investigating the nature of young stellar sources (Haisch
et al., 2000).

Additionally, properties of the inner disc can be derived from radiation driven by accretion.
Accretion onto the host star is usually identified from strong Hα emission. The presence of
an inner disc appears to correlate with the presence or absence of spectroscopic signatures of
active accretion onto the star (Hartigan et al., 1995). However, accretion signatures and IR
excess are not strictly correlated. Currie et al. (2007) find that while accretion may imply IR
excess, IR excess need not imply accretion.

One should be aware that observations of the excess in a certain frequency band only trace
circumstellar dust of the corresponding size and temperature, thus at each frequency band
only a small annular portion of the disc is investigated due to the decreasing temperature with
increasing distance from the central star. Sensitivity to grain size depends on wavelength and
each regime provides information on grains within approximately a range of 0.1-10 times the
wavelength (Meyer et al., 2006). Observations in the NIR bands J, H, K, and L trace disc
material typically at distances . 0.1 AU of the central star (Haisch et al., 2005).

Surveys at far-infrared (> 30 µm) and submillimetre wavelengths trace the coolest dust at
large radii. Often, this emission is optically thin and is therefore a good tracer of the total
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dust mass at radii > 10 AU (Meyer et al., 2006). However, the flux from disc material at this
wavelengths is typically rather low and provides often only upper limits on the disc mass. Our
own solar system cold dust mass would be undetectable in submillimetre surveys. Thus it is
still difficult to assess statistically the properties of cold discs (Meyer et al., 2006). Using the
increased resolution and sensitivity of the SMA interferometer, Andrews & Williams (2007)
observed photoevaporating discs in the ONC and provided the first estimates of their masses,
which turned out to be similar to discs in the comparatively quiescent Taurus region (Williams
et al., 2005). They further determined the distribution of disc masses in Taurus-Auriga over
∼ 3 orders of magnitude and found that the median disc is 0.5 % as massive as the central
star, with a typical mass of 0.005 M� (Andrews & Williams, 2007).

Using the information from multiple wavelengths, YSOs can be characterised by their
spectral energy distributions (SEDs) (Adams et al., 1987; Lada, 1987). Based on the SED,
four main types of YSOs are distinguished: class 0, I, II, III. The class 0/I objects are deeply
embedded and their SEDs peak in the submillimeter or the far infrared indicating that the
source of the emission is cold dust. The class II sources are optically visible stars with
infrared excess emission that is attributed to a disc surrounding the central object. Class III
sources have almost no infrared excess and their photometric properties are very similar to
normal main-sequence stars. Mid-infrared two-colour diagrams can be used to distinguish
between class I, II and III objects (Balog et al., 2007a).

Information about a disc’s geometry can be only inferred either directly from optical im-
ages or indirectly using velocity information in the submillimetre to radio wavelengths from
molecular lines.

Evolution of Protoplanetary Discs

Nearly all stars are thought to be born with circumstellar discs (Hillenbrand et al., 1998).
About 20-30 % of stars aged ∼1 Myr appear to possess circumstellar discs with masses
greater than ∼0.01 M�, comparable to the minimum mass of the presolar nebula (Weiden-
schilling, 1977; Anthony-Twarog, 1982), and the median disc mass is . 0.004 M� (Eisner &
Carpenter, 2003). Recent work based on NIR excess data has shown that these discs dissipate
on time scales of order 3 Myr (Haisch et al., 2001). However, the data also suggests a disper-
sion of inner disc lifetimes from 3-10 Myr (Meyer et al., 2006), as shown in Fig. 2.3. The
same picture is evident from accretion signatures. The typical mass accretion rates onto the
star are∼ 10−8 M� yr−1 for∼ 1 Myr old T Tauri stars (Hartmann et al., 1998). After∼ 5 Myr,
fewer sources show strong Hα emission indicative of accretion, and accretion rates are typ-
ically much lower (∼ 10−9 M� yr−1) than at earlier ages. By ∼ 10 Myr, few sources show
signs of active accretion (Sicilia-Aguilar et al., 2005a). Muzerolle et al. (2000) found that
two members of the 8-10 Myr old TWA – TW Hya and Hen 3-600A – are experiencing ongo-
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Figure 2.3.: Fraction of stars with near-infrared disc emission as a function of the age of the stellar
group from Hernández et al. (2008). Open circles represent the disc frequency for stars
in the T Tauri (TTS) mass range (∼K5 or later), derived using JHKL observations: NGC
2024 and Trapezium (Haisch et al., 2001), and Chamaeleon I (Gómez & Kenyon, 2001).
Solid symbols represent the disc frequency calculated for stars in the TTS mass range using
Spitzer data (see text of Hernández et al. (2008) for references).

ing disc accretion, albeit at rates of a few orders of magnitude lower than 1-Myr-old T Tauri
stars. The same authors derived the accretion rate for the TWA member ECHA J0843.3-7905
which implies a minimum disc mass Ṁt = 0.01 M�, a value comparable to that of younger
PMS stars, though for some other accreting stars in TWA it is 20 times lower.

Currie et al. (2007) state that the population of accreting sources is strongly spectral type
dependent. The existence of accreting pre-main-sequence stars in h and χ Persei implies
that circumstellar gas in some systems, especially those of spectral type G5 or later, can last
longer than 10-15 Myr.

The detection of inner discs and of ongoing disc accretion in objects with ages & 10 Myr
appears to be in conflict with a common disc lifetime of < 6 Myr as derived by Haisch et al.
(2001). The issue is discussed by Lyo et al. (2003) and they argue that the limiting sensitivity
of the NIR studies masks the detection of inner discs in many PMS stars, emphasising that
the disc lifetime derived by Haisch et al. (2001) relies heavily on the distant (d = 1.5 kpc)
cluster NGC 2362 for which the presence of discs in the low-mass (M < 1 M�) population is
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unknown. Low-mass stars are disc rich in the η Cha cluster, with 7/11 low-mass members
showing IR-excess in the L-band. Undoubtedly the inner disc fraction declines with stellar
age, but the study of the TWA and the η Cha cluster suggests that a significant fraction of
PMS stars may retain their inner discs for 10 Myr (Lawson et al., 2004).

Though most disc surveys are focused on the detection of dust, observations of the disc
accretion is essential because gas dominates the mass of primordial discs and is the building
material of giant planets. Classical T Tauri stars with excess emission from the near-IR
through the submillimetre are gas rich discs with some evidence for Keplerian support (Meyer
et al., 2006).

The transition from optically thick to optically thin emission is an important tracer of the
evolution of protoplanetary discs, indicating growth of dust grains which can lead to the
formation of planetesimals. Young stars (with ages < 3 Myr) lacking optically-thick near-
infrared excess emission but possessing optically-thick mid-infrared emission are rare (Skrut-
skie et al., 1990). This suggests that the transition time between optically-thick and thin from
< 0.1 AU to > 3 AU is rapid, � 1 Myr (Wolk & Walter, 1996; Kenyon & Hartmann, 1995;
Simon & Prato, 1995).

The general picture is that primordial accretion discs commonly surround very young stars
(approaching 100 %), and that gas-rich discs around more (less) massive stars are bigger
(smaller), but last shorter (longer). Because of the higher surface density of solids in the disc,
more massive discs surrounding higher mass stars will probably form planetesimals faster
(Meyer et al., 2006).

However, observations of protoplanetary discs at different wavelengths seem to restrict the
time scale for planet formation significantly. This evolution is very complex and not well
understood, thus there exists no consistent model so far which could follow the entire forma-
tion process from the admixture of gas and dust to a complete planetary body. However, two
main physical concepts are competing to explain planet formation: gravitational instabilities
and coagulation. A major reason why gravitational instabilities have not been strongly advo-
cated for T Tauri discs is that disc masses seem to be too low. Disc masses need to be of the
order of 0.1 of the stellar mass for gravitational instabilities to operate (Pringle, 1981), while
typical T Tauri disc mass estimates have been of the order of 0.01 M�, roughly a minimum-
mass solar nebula. A very recent comprehensive survey of the Taurus star-forming region
suggests a median disc mass of 5×10−3 M�(Andrews & Williams, 2005), albeit with a large
scatter. This median mass estimate is an order of magnitude lower than what is required for
gravitational instability, though estimates for a small number of objects are much closer to
the limiting value (Hartmann et al., 2006). Recent studies of Herbig Ae/Be stars, T Tauri
stars, and brown dwarfs suggest that the grains in the surface layers of the discs around these
objects have undergone significant thermal processing and have grown well beyond typical
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sizes in the interstellar medium (Przygodda et al., 2003; van Boekel et al., 2003; Kessler-
Silacci et al., 2005; Apai et al., 2005), suggesting that the initial phases of planet formation
could be under way in these objects and thus favouring the coagulation hypothesis (Shuping
et al., 2006).

Recent work has shown that even optically-thin mid-infrared emission (tracing material
between 0.3-3 AU) is rare around sun-like stars with ages 10-30 Myr (Mamajek et al., 2004;
Weinberger et al., 2004; Silverstone et al., 2006). It appears that circumstellar disc material
between 0.1-1 AU typically drops below detectable levels on time scales comparable to the
cessation of accretion. These levels are probably below what our solar system might have
looked like at comparable ages (3-30 Myr).

It is important to distinguish between surveys for primordial discs, gas and dust rich discs
left over from the star formation process, and debris discs, where the opacity is dominated
by grains released through collisions of larger parent bodies. Often this distinction is based
on whether remnant gas is left in the system. With a gas to dust ratio > 1, dust dynamics are
influenced by their interaction with the gas (Takeuchi & Artymowicz, 2001). In the absence
of gas, one can argue based on the short dust lifetimes that observed dust has been likely
recently generated through collisions in a planetesimal belt (Jura et al., 1998).

Debris discs are found around stars generally older than ∼ 10 Myr, with no signs of gas
accretion, as judged from the absence of emission lines or UV excess (Hillenbrand, 2005). In
the absence of gas drag, a 10 µm dust grain from the primordial, protoplanetary nebula cannot
survive longer than∼ 1 Myr within 10 AU of a star due to a number of clearing processes like
sublimation, radiation pressure, Poynting-Robertson and stellar wind drag (Chen et al., 2005).
Therefore, any main sequence star older than 10 Myr with an infrared excess is a candidate
to have circumstellar material supplied through debris disc processes (Gorlova et al., 2006).
Rieke et al. (2005) demonstrated both the overall decline of debris discs with age (first noted
in Holland et al., 1998; Spangler et al., 2001) and the large scatter of disc properties at any
given age (as previously noted in Decin et al., 2003). By probing excesses to within 25 %
of the photospheric emission, Rieke et al. (2005) found a surprising number of non-excess
stars even at ages as young as 10-20 Myr, implying very rapid clearing of the inner 10-60 AU
region in these systems.

In general, it is observed that the cold dust mass diminishes with time as expected from
models of the collisional evolution of debris belts. However, at any one age there is a wide
dispersion of disc masses. Whether this dispersion represents a range of initial conditions in
disc mass, a range of possible evolutionary paths, or is evidence that many discs pass through
short-lived phases of enhanced dust production is unclear (Meyer et al., 2006).

It is interesting to note that extrapolations of the detection frequency of extra-solar planets
as a function of radius beyond current survey limits suggest a frequency ∼10-20 % of extra-
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solar giant planets with masses > 1MJUP out to 20 AU, consistent with debris disc statistics
for G stars (Meyer et al., 2006). Combining data on A stars, G dwarfs, and M dwarfs, there is
to date no evidence for wildly divergent evolutionary histories for debris discs as a function
of stellar mass averaged over main sequence lifetimes. Moreover, preliminary results from
the Spitzer Space Telescope suggest that debris disc evolution is not a strong function of
multiplicity, and may even be enhanced in close binaries.

The main results can be summarised as follows: 1) Warm circumstellar material inside
of 1 AU dissipates rapidly on time scales comparable to the cessation of accretion; 2) The
gas content of discs much older than 10 Myr is incapable of forming giant planets; 3) While
massive analogues to our asteroid belt lacking outer discs appear to be rare overall (1-3 %),
warm discs (lacking inner hot dust) seem to enjoy a preferred epoch around stars with ages
between 10-300 Myr old; 4) Cold outer discs (analogous to our own Kuiper Belt, but much
more massive) are found around 10-20 % of sun-like stars. Yet in affecting these comparisons,
one must remember that the current observational sensitivity is too low to observe tenuous
debris discs comparable to our own asteroid belt or our Kuiper Belt (Meyer et al., 2006).

The general picture of a protoplanetary disc is that of a thin disc consisting of gas and
dust, with an inner hole and a smoothed outer edge (Mundy et al., 2000). The inner hole
is usually found to increase in size from < 0.1 AU up to several AU in several Myr (e.g.
Hughes et al., 2007). The typical diameter is 200 AU for low- and intermediate-mass stars,
though even discs larger than 104 AU surrounding massive stars have been observed. The
disc mass is usually at most several percent that of the central star (McCaughrean & O’Dell,
1996; Andrews & Williams, 2007).

One should caution that since stars do not form in isolation disc evolution is affected by
the environmental conditions of a star’s hosting entity. In particular, massive stars are usually
found in very massive and dense clusters that can potentially have a significant influence on
the evolution of a massive star’s disc. Moreover, the general picture of the disc of lower mass
stars is obtained from observations of different environments that can vary considerably. The
formation, evolution and properties of young star clusters is thus subject of the next section.

2.3. Cluster Formation

2.3.1. Formation and Evolution

Cluster formation is a fundamental part of star formation. Star clusters make a significant,
perhaps dominant, contribution to the total star formation rate of galaxies (Lada & Lada,
2003; Fall et al., 2005). The formation of stars throughout the Galaxy does not process
randomly but is confined to a spatial and temporal structure. A strong association is found
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between the location of clusters and of dense, massive molecular cloud cores (e.g. Lada et al.,
1991).

As described in the previous section, the birthplaces of stars are hierarchical complexes.
The inner clumping is not only confined to space but occurs as well in time, so that formation
of individual stars in a clump sets in nearly simultaneously. The essence of this process is
the birth of stars in groups with a velocity distribution according to the Maxwell-Boltzmann
distribution (Clarke et al., 2000). Due to the different properties of their precursors, the
molecular clouds, stellar groups show a great variety in densities and stellar composition.
Cluster densities have a spread of ∼102 to a few 106 stars pc−3, the latter value being found
in massive clusters like NGC 3603 or the Arches Cluster. However, the sizes of young clusters
(of ages less than a few 106 years) appear fairly uniform (with a half-mass radius in the range
0.2-0.8 pc) and, notably, are a factor of 5-10 times smaller than the typical sizes of Galactic
open clusters (with ages of a few 107 to 109 years; Phelps & Janes, 1994; Janes et al., 1988).
With velocity dispersions of 1-2 km s−1, smaller and less dense clusters can disperse quickly,
possibly causing an overestimate of “typical” cluster membership numbers and projected
densities (Clarke et al., 2000).

Embedded, dense clusters typically have ages . 2 Myr (Carpenter, 2000). This narrow age
range has led Palla & Stahler (2000) to reanalyse published H-R diagrams for a number of
nearby star-forming regions with a single set of pre-main-sequence models. They argue that
star formation over entire molecular clouds (e.g., Taurus and Chamaeleon I) and individual
clusters (e.g., the Orion Nebula Cluster) started at a low rate & 10 Myr ago and has increased
dramatically within the past 1-3 Myr. In their scenario, molecular clouds remain relatively
dormant for much of their cloud lifetime since individual dense cores are supported against
gravitational collapse by magnetic fields, and the time scale to dissipate the magnetic support
is on the order of ∼10 Myr (see also Palla & Galli, 1997).

This picture of a relatively isolated cluster formation is confronted by the concept of trig-
gered star formation where the location of young stellar objects – and clusters – in the dense
gas swept up by expanding H II regions lends credence to this scenario (Elmegreen & Lada,
1977). Observations of IC 1396 (Patel et al., 1998), the Rosette Molecular Cloud (White
et al., 1997), IC 1805 (Heyer et al., 1996), or Gem OB1 (Carpenter et al., 1995) show clear
examples of this mode of cluster formation. In other cases, however, the locations of young
clusters give no hint of external triggering (e.g. Taurus, NGC 2264). Thus the key question
whether cluster formation is induced or spontaneous remains unanswered at the present time.

Simulations of cluster dynamics are often undertaken in spherical geometry, motivated in
part by the shapes of globular clusters in the Galaxy. It is however well known that some
clusters are significantly flattened, the best studied examples being the globular clusters in
the LMC (Clarke et al., 2000). In the Galaxy, obvious examples of flattened young clusters
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are the ONC, Mon R2, and NGC 2024, where isophotal fitting of the outer regions yields
a projected axis ratio of about 1:2 (Hillenbrand & Hartmann, 1998; Carpenter et al., 1997;
Lada et al., 1991). The relation between ‘initial’ and ‘final’ (i.e. relaxed) morphologies is
set by the principle of adiabatic invariance, and yields the prediction that the initial geometry
is substantially more flattened than that of the relaxed cluster. When applied to the LMC
globulars, initially flattened geometries with a projected axis ratio of 1:5 are required (Clarke
et al., 2000).

Evidence for radial mass segregation has been seen in many open clusters (see Scalo, 1986,
for a review). Besides dynamical origin, Lada et al. (1991) note a second mechanism that
could produce mass segregation in clusters, namely the star-formation process itself. Stars
form in molecular gas. If this gas is centrally concentrated, then more massive stars would
tend to form in the centre of the gas condensation whereas lower mass stars could form
throughout. Evidence that molecular cloud cores are centrally condensed has been presented
in studies of a number of Bok globules (Snell, 1981; Arquilla & Goldsmith, 1985). However,
as discussed by Bonnell et al. (1998), simple Jeans mass arguments do not lead to the expec-
tation that the most massive stars should form in the centre of dense clusters. Since these
regions have high densities, the associated Jeans mass is low, unless the local temperature is
anomalously high. Evolutionary effects, involving accretion and protostellar collisions, are
probably required to build up massive stars in cluster cores.

It is well known that the formation of a bound cluster requires a high fraction (30-50 %) of
gas to be turned into stars before destructive feedback mechanisms from massive stars come
into play (e.g. Lada et al., 1984; Goodwin, 1997). In practice this means a high conversion
efficiency within a few cluster dynamical times. The fate of a particular cluster in response
to gas loss depends on the initial gas fraction, the removal time scale and the stellar velocity
dispersion when the gas is dispersed (Lada et al., 1984; Pinto, 1987; Verschueren & David,
1989; Goodwin, 1997). If the gas comprises a significant fraction of the total mass (& 50%)
and is removed quickly compared to the cluster crossing time, then the dramatic reduction in
the binding energy, without affecting the stellar kinetic energy, results in an unbound cluster.
Alternatively, if the gas is removed over several crossing times, then the cluster can adapt to
the new potential and can survive with a significant fraction of its initial stars (see Goodwin,
1997; Kroupa et al., 2001; Boily & Kroupa, 2003). For example, clusters with gas fractions
as high as 80 % can survive with approximately half of the stars if the gas removal occurs
over 4 or more crossing times (Lada et al., 1984).

The results of unbiased surveys of star forming regions suggest that the fraction of star
formation taking place in clusters varies quite strongly from place to place. Although it is not
clear why this is the case, all of the regions surveyed thus far seem to support a basic picture
in which the majority of star formation at all masses takes place in clusters (Lada, 1992; Lada
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& Lada, 2003). An even higher incidence of clustering appears in the surveys of regions
containing massive stars. The near-infrared surveys of Herbig Ae/Be stars by Hillenbrand
(1995) and Testi et al. (1997, 1998) indicate that clusters are present around those Ae/Be
stars with masses in excess of 3-5 M�, with little evidence of clustering around less massive
objects. All locally-observed massive stars appear to form in star clusters (de Wit et al., 2005),
particularly in rich star clusters (Massi et al., 2006).

One possible correlation in the data is that between stellar density and the mass of the most
massive cluster member (Hillenbrand, 1995; Testi et al., 1998). Since clusters exhibit a rather
small range of projected radii (see Table 1 and Fig. 1 in Testi et al., 1998) this also translates
into a correlation between the number of cluster stars and the mass of the most massive star.
It is at present unclear whether this correlation represents a genuine physical requirement of a
high density or a large number of stars for massive star formation (e.g. Bonnell et al., 1998), or
whether it is merely a consequence of random drawing from a canonical initial mass function
(IMF), which would imply that a given cluster is more likely to contain a massive star if it
has a large stellar population. However, Weidner & Kroupa (2006) find that the mass of the
most massive star in a cluster correlates non-trivially with the cluster mass.

Mini-clusters comprising N members dissolve due to point mass gravitational interactions
on a time scale that is a strong positive function of N (van Albada, 1968; Heggie, 1974). Thus
point mass gravitational effects are the main agent of dissolution for small N-body systems,
where a central binary can interact and eject the majority of stars, whereas gas expulsion may
predominate in larger stellar systems. Therefore, compact small clusters are short-lived even
if gas expulsion is neglected: for example, a cluster of 10 stars in a volume of radius 0.1 pc
dissolves in less than a million years. This fact underlines the difficulty of assessing the level
of sub-clustering at birth in star forming regions, inasmuch as information on the smallest
scales is rapidly erased, sometimes before the cluster becomes optically visible.

In summary, then, a number of physical processes occurring in very compact mini-clusters
can profoundly affect the properties of the stars and their associated discs. It is also becom-
ing increasingly apparent, given the high stellar densities measured in young clusters and
therefore the possible role of encounters, that whether a star forms in a cluster or in isolation
may be important in determining its fundamental properties, such as its mass, binarity or
possession of planets (Clarke et al., 2000).

The effect on star formation in an environment dominated by high mass stars is still an un-
resolved problem of astrophysics (Balog et al., 2007a). Strong stellar winds from high mass
O- and B-type stars can trigger star formation by compressing the interstellar material, which
eventually becomes gravitationally unstable (Elmegreen & Lada, 1977). Also photoevapora-
tion can heat the surface of an interstellar cloud and lead to a radiatively driven implosion,
thus playing a similarly (if not more) important role in triggering star formation in this envi-
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ronment (Adams et al., 2004). On the other hand, the strong extreme ultraviolet (EUV) and
far ultraviolet (FUV) radiation from the same hot stars might so vigorously photoevaporate
the material around the forming stars that it truncates the star formation process (Balog et al.,
2007a).

Furthermore, planetesimal formation by means of gravitational instability may in fact be
enhanced by the photoevaporation of the disc surface layers (Throop & Bally, 2005), leading
to the somewhat paradoxical conclusion that planet formation around low-mass stars may in
fact be more efficient in the harsh environments of high-mass clusters (Shuping et al., 2006).

Recent meteoritic studies suggest that primitive solar system materials were subject to
intense UV irradiation (Lyons & Young, 2005) and that the whole protoplanetary disc may
have been polluted by the ejecta from a nearby supernova explosion (Tachibana & Huss, 2003;
Hester et al., 2004) – both suggesting that our own solar system may have formed in a region
similar to Orion (Shuping et al., 2006).

Similarly, the evolution of debris discs can be influenced by the stellar environment. To
initiate a collisional cascade the velocity dispersion in the disc must be excited to allow colli-
sions to be catastrophic. Models which follow the collisional evolution of planetesimal belts
from the growth phase to the cascade phase show that the transition may occur after the for-
mation of a planet sized object (Kenyon & Bromley, 2002b, 2004) or due to the excitation by
a passing star (Kenyon & Bromley, 2002a).

Balog et al. (2007a) find from observations of NGC 2244, a young, nearby open cluster
containing 7 O and 65 B stars, that in the central region of 0.5 pc radius, containing all
the O stars, the disc ratio is about 27 %. In the remaining region the disc ratio is about
45 %, similar to the overall disc fraction in the cluster of 44 %. They conclude that the
effect of high mass stars on the disc fraction is significant only in their immediate vicinity
(< 0.5 pc). Though the authors attribute the destructive effect on the protoplanetary discs
to photoevaporation by the massive stars, also gravitational interactions could lead to such a
feature, as will be shown later.

Any event which causes a loss of disc mass can act destructive on the process of planet
formation. One such scenario could be strong gravitational perturbations by stellar encounters
during the pre-main-sequence phase. Hence the probability of the formation of planetary
systems is directly affected by the results of the present investigation.

2.3.2. Classification

Young stellar groups build a classification sequence characterised by the mass of their earliest-
type stars. It stretches from the OB associations (O stars, e.g. ONC) through R associations
(B stars, e.g. Mon R2), to T associations such as Taurus-Auriga in the Taurus dark cloud
which contain only low-mass stars.
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T Associations

Cloud complexes of lower mass, classified as dark cloud complexes in Table 2.1, produce
entities designated as T associations. They contain only low-mass stars which are still in the
pre-main-sequence evolutionary stage, already introduced as T Tauri stars. A T associations
is only loosely bound and as its members evolve towards main-sequence objects, even the
weak stellar winds and molecular outflows can remove great portions of the cloud’s material
before it can contract significantly. This stops the inward motion and expansion reduces
the stellar density until the whole population disperses into the field. The ageing pre-main-
sequence stars are mingled observationally with the general field and become hard to identify.
A famous example for an T association is the Taurus-Auriga complex (Strom et al., 1975).

R Associations and Open Clusters

If a complex has a somewhat higher mass and density, also a population of intermediate-mass
stars will be produced. Such R associations show the conspicuous reflection nebulae. That
is, the contraction times of intermediate pre-main-sequence stars are short enough that they
become visible in the optical while molecular gas resides in their proximity. This matter
is illuminated by the intense stellar radiation and eventually scatters the photons back into
the observers direction. Due to their fraction of more massive Herbig Ae/Be members R as-
sociations may form bound entities that last much longer than the contraction phase of the
T Tauri stars inside. Such open clusters consist of ZAMS stars and are completely depleted
of gas. They can exceed ages of several 108 yr until they are destroyed by tidal disruption in
encounters with giant molecular clouds. A prototype of an R Association is Mon R2 (Herbst
& Racine, 1976).

OB Associations and Rich Star Clusters

The cloud fragments that give rise to high-mass stars are still rarely found. One possible
scenario is that high-mass stars arise from the coalescence of previously formed cluster mem-
bers. The clue to this missing link may as well be the fact that new born O and B stars are
removing their dust envelopes on time scales too short to be observed. However, it is signif-
icant that massive stars have the tendency to cluster and are often found in loose collections
of a few dozen members, designated as OB associations (Elmegreen & Lada, 1977). Fur-
thermore, every Galactic OB association thus far observed is closely associated with a giant
molecular cloud while dark cloud complexes do not produce OB associations. Even more
significant, rich clusters with stellar densities exceeding 103 pc−3 only appear around O or B
stars strongly concentrated in the cluster core (Massi et al., 2006). Thus one may conclude
that each such system must result from the contraction of a very massive cloud clump. Here
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self-gravity has the strongest influence and the contraction quickly accelerates. But this cir-
cumstance can lead also, somewhat paradoxically, to expanding OB associations, the large
internal velocities of which can be often observed. The reason is the fast expulsion of the
molecular material in which the stellar group is embedded. Massive winds and intense radi-
ation heats the surrounding material and blows it away, removing in this way a significant
portion of matter and thus reducing the gravitational potential. The survival time of a giant
molecular cloud is typically some 107 yr (Strom et al., 1975).

From this point of view, the possible fate of a group containing massive stars depends on
accurate observations of the stars’ velocity dispersion. In any case, the dispersal of gas from
the parent cloud seems to be the determining process for cluster dynamics (e.g. Kroupa et al.,
2001). One of the most conspicuous nearby site of massive star formation is the complex in
Orion.

2.4. The Initial Mass Function (IMF)

To understand the evolutionary process of star clusters, one has to know the initial condi-
tions when they were formed. Here the initial distribution of stellar masses, the Initial Mass
Function (IMF), is one of the key parameters determining the dynamical evolution and com-
position of a cluster population. It is common to investigate the IMF in five characteristic
mass regimes: brown dwarfs (BDs) (< 0.08M�), very-low-mass stars (0.08 to 0.5 M�), low-
mass stars (0.5 to 1 M�), intermediate-mass stars (1 to 8 M�), and massive stars (m > 8 M�)
(Kroupa, 2002).

The IMF is analytically represented by a mass function ξ (m) that describes the number
of stars dN in a mass interval dm, or equivalently by the corresponding logarithmic mass
function ξL(m),

dN = ξ (m)dm = ξL(m)d log10 m , (2.11)

which leads to the relation
ξL(m) = (m ln10)ξ (m) . (2.12)

The slope of the mass function in a given mass interval is the key parameter that reflects the
relative abundance of stars of the corresponding spectral types. The slope is defined by

α(m)≡− d
d log10 m

(log10 ξ (m)) (2.13)

or
Γ(m)≡ d

d log10 m
(log10 ξL(m)) . (2.14)
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From (2.12), (2.13), and (2.14) one obtains easily the relation

Γ = 1−α . (2.15)

Historically a consistent analysis of the stellar mass distribution began in 1955 at the Aus-
tralian National University, when E. Salpeter published the first estimate of the IMF for stars
in the solar-neighbourhood (Salpeter, 1955). For stars with masses in the range 0.4 to 10 M�,
he found that it can be described by a power-law form with an index α = 2.35. Massey (1998)
demonstrated through spectroscopic classification that Salpeter’s original result extends up to
the most massive stars known to exist with m & 120 M�.

Investigations of the IMF aim at one of the most fundamental questions of star formation,
namely whether the functional form of the IMF is dependent on the local characteristics of
a star-forming environment, or if it is universal, unchanging between different regions (Liu
et al., 2003). Meyer et al. (2000) state that the near-IR study of the Trapezium by Luhman
et al. (2000), as well as studies of NGC 2024, including those by Comeron et al. (1996) and
Meyer (1996), along with studies of other star-forming regions, have shown evidence that the
IMF is universal, unchanging regardless of local environmental conditions. However, Scalo
(1998) cautions that there is strong evidence for IMF variations, and these variations do not
seem to depend systematically on physical variables such as metallicity or stellar density. A
conclusive difference has not been found as well between the IMF in Taurus-Auriga (Kenyon
& Hartmann, 1995; Briceño et al., 2002) and ρ Oph (Luhman & Rieke, 1999) on the one
hand, and the ONC (Hillenbrand & Carpenter, 2000; Palla & Stahler, 1999; Muench et al.,
2000) on the other.

Deriving the IMF from observational data deals with many difficulties and biases. The field
star IMF around m ≈ 1 M� is hopelessly entangled with the galactic star formation history,
which shows a peak around 6-8 Gyr ago. Thus the IMF in the mass range 0.85 to 1.3 M� can
only be estimated from open cluster IMFs (Scalo, 1998). The “cleanest” place for estimating
the IMF is the 1-15 M� range in star clusters. There are cluster-specific uncertainties which
partly compensate for these advantages. Since nearly all findings of radial mass segregation
find higher-mass stars more concentrated than lower-mass stars (see Section 2.3.1), this effect
means that the true IMF may be steeper than the derived IMF, i.e. derived values of Γ must
be considered as upper limits (Scalo, 1998).

Studying the distribution of massive stars is complicated because they have short main-
sequence lifetimes (Massey, 1998) and mass estimates from the luminosity are uncertain by
up to 50 % (Massey et al., 2002), a source of error also not yet taken into account in the
derivations of the IMF (Weidner & Kroupa, 2006). For example, a 85 M� star cannot be
distinguished from a 40 M� star on the basis of its magnitude alone. Furthermore, observa-
tions have shown that most massive stars are in binary and higher-order multiple systems
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(Duchêne et al., 2001; Preibisch et al., 1999). Correcting for the missed companions leads to
systematically steeper slopes (Sagar & Richtler, 1991).

Moreover, it has been shown that the derived IMF is extremely sensitive to different types
of data and analysis methods (Scalo, 1998).

Nevertheless, the distribution of stars in young clusters seems to be fairly well described
by a IMF that is represented by a multiple power-law function (Kroupa et al., 1993; Kroupa,
2001),

ξ (m) = k



(
m
m1

)−α0
, m0 < m≤ m1(

m
m1

)−α1
, m1 < m≤ m2[

∏n≥2
i=2

(
mi

mi−1

)−αi−1
](

m
mn

)−αn
, mn < m≤ mn+1

(2.16)

where k is a normalisation factor and has the value k = 0.877± 0.045 stars pc−3 M�−1 for
scaling to the solar neighbourhood (Weidner & Kroupa, 2006). The slopes derived by Kroupa
(2001) are

α0 = +0.3±0.7 0.01≤ m/M� < 0.08 ,

α1 = +1.3±0.5 0.08≤ m/M� < 0.50 ,

α2 = +2.3±0.3 0.50≤ m/M� < 1.00 ,

α3 = +2.3(+0.4)±0.7 1.00≤ m/M� ,

(2.17)

where the value in brackets for α3 indicates that it may be systematically steeper due to
unresolved massive binary systems by at least this amount. For m < 1 M� unseen companions
are corrected for, thus α0, α1, and α2 are the slopes of the real single star IMF.

Weidner & Kroupa (2006) refer to this form as the standard or canonical stellar IMF
because it fits the luminosity function of Galactic field and cluster stars below 1 M� and
also represents young populations above 1 M� (Kroupa et al., 1993; Kroupa, 2001, 2002).
Because this IMF has been obtained from solar-neighbourhood data for low-mass and very-
low-mass stars and from many clusters and OB associations for massive stars, it is an average
IMF.

It is apparent that ξ (m) becomes considerably flatter below 1.0M� with a broad peak
between 0.08 and 1.0M�. The latter is a fundamental fact that remains unexplained but
one should remark the success of recent numerical studies to reproduce the observed IMF to
some degree by simple hydrodynamical simulations of star-forming regions (Bate & Bonnell,
2005).

There exist two other fundamental questions regarding the IMF. The first is the question
whether there exists a physical upper mass limit of stars. From the theoretical point of view
it is still under debate whether the formation process of stars allows for masses larger than
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100 M� (e.g. Weidner & Kroupa, 2004). Observational studies, that tried to answer this
question by statistical means (e.g. Oey & Clarke, 2005; Figer, 2005; Koen, 2006) or high-
resolution observations of the most massive objects known (e.g. Maíz Apellániz et al., 2007)
provide evidence that stars do not seem to exceed a mass of 150 M� (see also the review of
Zinnecker & Yorke, 2007).

Second and strongly correlated with the first point, it is not yet clear whether the mass of
the most massive star in a cluster correlates non-trivially with the cluster mass, i.e. the mass
function of a cluster is simply obtained by random sampling from the IMF or a physically
determined process. Recently, Weidner & Kroupa (2006) found evidence that there exists
a well-defined relation between the most massive star in a cluster and the cluster mass and
conclude that the conjecture that a cluster consists of stars randomly picked from an invariant
IMF between 0.01 and 150 M� appears to be wrong. The algorithm that best corresponds to
the observational data is one in which the cluster masses are picked from a mass function of
embedded clusters and then filled with stars by randomly selecting from the canonical IMF,
sorting the stellar masses in ascending order and constraining their sum to be the cluster mass
(“sorted sampling”). Their interpretation of the results is that star clusters appear to form in
an ordered fashion, starting with the lowest-mass stars until feedback by consecutive addi-
tion of more massive stars is able to outweigh the gravitationally induced formation process.
However, one has to stress that large observational uncertainties of stellar masses and cluster
masses and ages do make the correlation between cluster mass and maximum stellar mass
less clear.
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3.1. Introduction

Numerical simulations are a powerful tool to examine the physical processes of complex
systems that can not be solved analytically or when it is too dangerous, time consuming or
simply impossible to carry out a real experiment. Typical applications are simulations of
fluid dynamics, chemical or nuclear reactions, structure of molecules or solids, and evolution
of self-gravitating systems. In the present thesis the focus is on the investigation of self-
gravitating systems, in particular the dynamics of young star clusters.

In any numerical simulation a balance has to be found between two constraints: On the
one hand the realism, i.e. the inclusion of all physical effects, and the maintenance of the
accuracy of calculations; and on the other hand, the efficiency, i.e. the limitations given by
the computational effort. For the specific numerical treatment of star cluster dynamics many
different kinds of approaches have been undertaken to suffice both, the most important of
which are listed in the following:

• codes based on direct force integration, among them

– the family of NBODY-codes NBODY1–NBODY6 (Aarseth, 2003),

– Starlab (McMillan & Hut, 1996),

• statistical models, among them

– Fokker-Planck approximation (Cohn, 1979),

– Monte-Carlo method (Hénon, 1971),

• usage of high-performance parallel computers (Spurzem, 1999), or

• the construction of special hardware devoted to this purpose (Makino et al., 1997).

Since the dynamics of star clusters are dominated by two-body relaxation, the numerical
treatment of such collisional systems (see Chapter 2) requires very high accuracies (with an
energy error per crossing time typically ∆E/E < 10−5). Because the present investigation
concentrates on young stellar systems, i.e. only several crossing times old, numerical errors
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introduced by long integration times (e.g. rounding errors) are negligible. The term “colli-
sional” here always refers to systems, whose evolution is influenced by relaxation through
elastic two- or more-body encounters, not to physical collisions, where two stars collide and
merge or disrupt each other.

Direct N-body methods require the treatment of the classical gravitational “N-body” prob-
lem, that is - the challenge of finding a solution for the orbital motions of N bodies, repre-
sented by point-masses, that are interacting with one another purely by gravitational forces.
This is done by solving numerically a set of N Newtonian equations of motion of the form

r̈i = ai =
Fi

mi
=−

N

∑
j=1
j 6=i

Gm j
ri− r j

|ri− r j|3
=−

N

∑
j=1
j 6=i

Gm j
ri j

r3
i j

, i = 1, ..,N (3.1)

where G is the gravitational constant, mi and m j the masses, ri j = ri− r j the relative coordi-
nate, and ri j = |ri− r j| the modulus of bodies i and j.

The sums have to be evaluated for all N−1 neighbours (index j) of each of the N particles
(index i), thus for a complete calculation of all forces,

N

∑
i=1

i−1

∑
j=1

1 =
N(N−1)

2
= O(N2) (3.2)

operations have to be performed. Hence the computational effort for a direct N-body calcula-
tion rises quadratically with the particle number.

When performing numerical simulations one has to be aware that this method is not straight
forward and suffers from several error contributions, among them (i) the chaotic behaviour
of N-body systems and thus strong dependence on initial conditions, (ii) the discreteness of
integration time steps, and (iii) the operation with finite floating points. Fortunately, there are
possibilities to control these contributions by (i) averaging over a sample of identical systems
with (small) random deviations in their initial conditions, (ii) choosing substantially smaller
time steps than the minimum time scale of the entire system, and (iii) extending floating point
precision by operation on architectures with higher bit counts.

As a consequence of the high accuracy requirements for simulations of cluster dynamics,
the use of high-order time-integration schemes and direct force summations are the tools of
choice to track the stellar trajectories as precisely as possible (c.f. Spurzem, 1999).

For this reason NBODY6++ (Spurzem, 1999) was selected for the present investigation of
star cluster dynamics. It is a direct N-body code which allows high precision calculations
due to its 4th order Hermite integrator. In comparison to NBODY6 (Aarseth, 2003), it has the
additional advantage of a parallelised force summation, allowing for considerable speed up
by using multiple processor machines.
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3.2. The Code: NBODY6++

An extensive description of the code NBODY6 is given by Aarseth (2003). It is also used
as a reference for NBODY6++ in the following which is identical to NBODY6 apart from the
additional parallelisation of the force calculation. NBODY6++ is a state of the art application
for simulations of gravitational systems, as well for few-body systems as massive clusters or
even galaxies, including miscellaneous options and switches which allow to include effects
of primordial binaries, tidal fields, interstellar clouds, stellar evolution and many more. The
general force integration as given by Eq. (3.1) is realised by a 4th order Hermite integrator.
The main motivation for the use of NBODY6++ is its high accuracy in treating two-body in-
teractions which is indispensable when following the trajectory of each star deep into the
potential of its neighbour. The two-body integration is solved by a regularisation scheme
which eliminates the numerical problem of the singular Newtonian force. There are some
more features like individual block-time steps or a neighbour scheme which are described in
the following.

3.2.1. The Hermite Integration Method

The Hermite scheme is a predictor-corrector scheme, which needs the acceleration as well as
the first time derivative of the acceleration for the computation of a particle’s position. It has
proven to be effective in calculations where high accuracy in time integration as well as in
the force integration is of need.

A predictor-corrector scheme is a three-step algorithm which can be used to solve initial
value problems of ordinary differential equations. First, from the positions and their time
derivatives known at time t a Taylor expansion of a certain order is used to generate an es-
timate of the same quantities at time t + ∆t, known as the prediction. The truncation of the
Taylor expansion controls the order of the integration method. Next, the predicted quantities
are used for the evaluation of the acceleration and its derivatives at time t + ∆t. These will
be in general different from the predicted ones. Finally, these differences, the so-called error
signals, are used together with appropriate coefficients, depending on the order of the inte-
gration algorithm, to calculate the positions and their derivatives anew. This step is known as
the correction and is the main ingredient of a predictor-corrector algorithm. It accounts for a
feedback mechanism which damps the instabilities that might be introduced by the predictor
step. This general scheme will be now presented in more detail for the Hermite integration
method.

Each particle is completely specified by its mass m, position r0, and velocity v0, where the
subscript 0 denotes an initial value at time t0. The equation of motion for a particle i is given
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by its momentary acceleration a0,i due to all other particles and its time derivative ȧ0,i as

a0,i = −∑
i6= j

Gm j
r0,i j

r3
0,i j

, (3.3)

ȧ0,i = −∑
i6= j

Gm j

[
v

r3
0,i j

+
3r0,i j(v0,i j · r0,i j)

r5
0,i j

]
, (3.4)

where G is the gravitational constant, r0,i j = r0,i− r0, j the relative coordinate, r0,i j = |r0,i−
r0, j| the modulus, and v0,i j = v0,i − v0, j the relative space velocity to the particle j. In
NBODY6++ a new position and velocity is predicted for the next time step t by a Taylor ex-
pansion for ri(t) and vi(t) up to third order:

rp,i(t) = r0 +v0(t− t0)+a0,i
(t− t0)2

2
+ ȧ0,i

(t− t0)3

6
, (3.5)

vp,i(t) = v0 +a0,i(t− t0)+ ȧ0,i
(t− t0)2

2
. (3.6)

The direct values of rp and vp do not fulfil the requirements for an accurate high-order inte-
grator. Therefore, an improvement is made by the Hermite interpolation which approximates
the higher accelerating terms by an own Taylor series:

ai(t) = a0,i + ȧ0,i(t− t0)+a(2)
0,i

(t− t0)2

2
+a(3)

0,i
(t− t0)3

6
, (3.7)

ȧi(t) = ȧ0,i +a(2)
0,i (t− t0)+a(3)

0,i
(t− t0)2

2
. (3.8)

Here, the values of a0,i and ȧ0,i are already known, but a further derivation of Eq. (3.4) for
the two missing orders on the right hand side turns out to be quite cumbersome. Instead,
one determines the additional acceleration terms from the predicted (“provisional”) rp and
vp; their acceleration and time derivative according to Eq. (3.3) and (3.4) are calculated anew,
calling these new terms ap,i and ȧp,i, respectively. Because these values ought to be generated
by the former high-order terms also (which was avoided), they are put into the left-hand sides
of (3.7) and (3.8). Solving Eq. (3.8) for a(2)

0,i , then substituting it into (3.7) and simplifying
yields the third derivative:

a(3)
0,i = 12

a0,i−ap,i

(t− t0)3 +6
ȧ0,i + ȧp,i

(t− t0)2 . (3.9)

Similarly, substituting (3.9) into (3.7) gives the second derivative:

a(2)
0,i = −6

a0,i−ap,i

(t− t0)2 −2
2ȧ0,i + ȧp,i

t− t0
. (3.10)
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Note, that the desired high-order accelerations are found just from the combination of the
low-order terms for r0 and rp. Although one never derived higher than the first derivative, the
higher orders are easily achieved through (3.3) and (3.4). This is called the Hermite scheme.
The accuracy of the integrator is virtually the same as in the case of an explicit high-order
derivation (Makino & Hut, 1988). Finally, one extends the Taylor series for ri(t) and vi(t),
Eqs. (3.5) and (3.6), by two more orders, and finds the “corrected” position r1,i and velocity
v1,i of the particle i at the computation time t1 as

r1,i(t) = rp,i(t)+a(2)
0,i

(t− t0)4

24
+a(3)

0,i
(t− t0)5

120
, (3.11)

v1,i(t) = vp,i(t)+a(2)
0,i

(t− t0)3

6
+a(3)

0,i
(t− t0)4

24
. (3.12)

The integration cycle for other upcoming steps may now be repeated from the beginning, Eqs.
(3.3) and (3.4). The error in r and v within the two time steps ∆t = t1− t0 is proportional to
∆t4 (Makino, 1991; Makino & Aarseth, 1992).

3.2.2. Hierarchical Time Steps

Stellar systems are characterised by a fair range of densities which gives rise to different
time scales of the orbital parameters. In the classical picture, the two closest bodies, which
require the smallest time-step due to the strong gravitational attraction, would determine the
time-step of force calculation for the entire system. However, for bodies in regions where
the force variation is relatively small, a permanent re-computing of the force terms is time
consuming, so, in order to economise the calculation, these objects shall be allowed to move
a longer distance before a recomputation of the forces becomes necessary. This is the idea
of a vital method used in NBODY6++ for assigning different time-steps, ∆t = t1 − t0, that
are quantised powers of 2, between the force computations, the so-called “block time-step
scheme” (Aarseth, 1963).

First, each particle is assigned its own individual ∆ti. The block-time steps are then synchro-
nised by taking the next-lowest ∆ti that is a quantised power of 2 (Makino, 1991), building
a set {2−i, i = 0, ..., imax}, where imax is the minimum integer that fulfils the relation for the
smallest time step, ∆tmin > 2−imax . This creates a group (block) of several particles which are
due to movement at each time step, as illustrated in Fig. 3.1. In this example, the particle i has
the smallest time step at the beginning, so its phase space coordinates are determined at each
time step. The time step of particle k is twice as large as i’s, and its coordinates are just extrap-
olated (“predicted”) at the time steps marked by odd numbers, while a full force calculation
is due at multiples of the largest ∆ti of all particles, here determined by particle m. The step
width of each particle may be altered after the end of the integration cycle, as demonstrated
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Figure 3.1.: Block time steps exemplary for four particles.

for the particles k and l beyond the label “8”. The time steps have to stay commensurable
with both, each other as well as the total time, such that a hierarchy is guaranteed.

As a first estimate, the rate of change of the acceleration seems to be a reasonable quantity
for the choice of an appropriate time step: ∆ti ∝ |ai|/|ȧi|. But it turns out that for special situ-
ations in a many-body system, it provides some undesired numerical errors, so that nowadays
the following formula is mainly used (Aarseth, 1985):

∆ti =

√√√√η
|a1,i||a(2)

1,i |+ |ȧ1,i|2

|ȧ1,i||a(3)
1,i |+ |a

(2)
1,i |2

, (3.13)

where η is a dimensionless accuracy parameter which controls the error. In most applications
it is taken to be η ≈ 0.02 to 0.04.

In the code, the time-steps are adjusted to their appropriate values fairly quick. Although
successive steps normally change smoothly, it is prudent to restrict the growth by a stability
factor of 1.2 in order to exclude rapid changes in peculiar cases and to guarantee maximum
precision in the force calculation.

3.2.3. The Ahmad-Cohen Scheme

The computation of the full force for each particle in the system makes simulations very
time-consuming for large particle numbers. Therefore, it is desirable to construct a method
to speed up the calculations in NBODY6++ while retaining the collisional approach. One way
to achieve this is to employ a “neighbour scheme”, suggested by Ahmad & Cohen (1973).

The basic idea is to split the force polynomial (3.7) for a given particle i into two parts, an
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irregular and a regular component:

ai = ai,irr +ai,reg. (3.14)

The irregular acceleration ai,irr results from particles in a certain neighbourhood of i. They
give rise to a stronger fluctuating gravitational force, which is determined more frequently
than the regular one of the more distant particles that do not change their relative distance
to i so quickly. The full summation in Eq. (3.3) can be replaced by a sum over the Nnb

nearest particles for ai,irr and a distant contribution from all the other. Whether a particle
is a neighbour or not is determined by its distance; all members inside a specified sphere
(“neighbour sphere”) with radius rs are held in a list, which is modified at the end of each
“regular time-step” when a total force summation is carried out. In addition, approaching
particles within a surrounding shell satisfying r0,i j ·v0,i j < 0 are included. This “buffer zone”
serves to identify fast approaching particles before they penetrate too far inside the neighbour
sphere.

Fig. 3.2 and 3.3 show how the Ahmad-Cohen scheme works for one particle (Makino &
Aarseth, 1992). At the beginning of the force calculation, a list of neighbour objects around
the particle i is created first (filled dots). From this neighbour list the irregular component
ai,irr is calculated, and then the summation is continued to the distant particles obtaining ai,reg.
At the same time the first time derivative is also calculated. From Eqs. (3.7) and (3.8) the
position and velocity of the particle i are predicted. At time t1,irr the ”corrector” is applied
only for ai,irr from the neighbours; the regular component is not corrected, but obtained by
extrapolating ai,reg. At the next step, t2,irr, the same predictor-corrector method proceeds for
the neighbour particles, while the correction of the distant acceleration term is still neglected.
When t1 is reached, the total force is calculated on the basis of the full application of the
Hermite predictor-corrector method. Also, a new neighbour list is constructed using the
positions at time t1. Thus, at certain times only the forces from neighbours (irregular time-
step, tirr), while at other times both the forces from neighbours and distant particles (regular
time-step, treg) are calculated.

For a neighbour list of size Nnb � N, this procedure can lead to a significant gain in ef-
ficiency, provided the respective time scales for ai,irr and ai,reg are well separated (Makino
& Aarseth, 1992). The actual size is controlled by choosing an appropriate radius rs for the
neighbour sphere. Aarseth (1985) determined

Nnb

N/2

(
rhm

rs

)3

≈ nnb

nhm
, (3.15)

where N is the total particle number, rhm and rs are the half-mass radius and the radius of the
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Figure 3.2.: Illustration of the neighbour scheme for particle i (after Aarseth, 1985).
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Figure 3.3.: Regular and irregular time steps (after Makino & Aarseth, 1992).
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neighbour sphere, and nnb and nhm are the particle densities inside the neighbour sphere and
inside the half-mass radius, respectively. The approximation in the equation is due to the fact,
that one-half of the total particle number is not necessarily the half of the total mass, to which
rhm is related.

The implementation of both the neighbour scheme and the hierarchical time-step scheme
makes the overall integration quite complex. The neighbour scheme is a spatial hierarchy,
which avoids a frequent force calculation of the remote particles that provide a smooth poten-
tial with respect to particle i; that potential is superposed by fluctuations caused by close-by
stars that are compensated by the more frequent force determination. The time step scheme,
in contrast, exhibits the temporal behaviour of the intervals for re-calculation of the full force
in order to maintain the exactness of the trajectory; time steps chosen too small slow down
the advancing calculation losing the computer’s efficiency.

3.2.4. KS-Regularisation

The fourth main feature of the NBODY6++code is the treatment of close interactions. In case
that the relative distances R of particles decrease (R→ 0), integration time steps ∆t must be
reduced to impracticable small values and at the same time forces F can become arbitrarily
large (see Eqs. (3.3) and (3.4)), introducing numerical errors due the limited precision of
floating point numbers represented by a processor. It is the numerical integration of bound
systems, i.e. binaries in the simplest case, that is most critical, since the recurring minimum
distances lead to a significant slow-down of the entire integration and to a fast accumulation
of numerical errors that could dominate the cluster evolution early on. An elegant solution to
deal with such close interacting particles is the regularisation, symbolised as the diamond in
Fig. 3.2.

In the case of a binary, the idea is to take both stars out of the main integration cycle, replace
them by their centre of mass and advance the usual integration with this pseudo-particle. For
the resolution of the orbital motion of the two components a different regularised coordinate
system is used. The underlying transformation involves the mapping in the complex plane by
a 4×4 matrix. Thus the transformation from physical spacial coordinates in three dimensions
and time requires a set of four regular spatial coordinates, including one fictitious spatial
coordinate, and a fictitious time (Aarseth, 1985). The 4×4 matrix maps the space and velocity
into a form resembling a harmonic oscillator. The equations of motion become regular then,
removing the singularity with respect to the distance R in the equations of motion. The
method itself goes back to Kustaanheimo & Stiefel (1965), known as KS-regularisation. It
makes an accurate calculation of a perturbed two-body motion possible and reduces force
contributions from distant particles that act only as tidal forces, Fext ∝ R−3. The time-step of
such a KS-regularised pair is independent of the eccentricity, the number of integration steps
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is lower than in the non-regularised case, and numerical stability of even circular motion is
improved.

In the case of strong interactions among more than two bodies, a description in terms
of one dominant two-body motion tends to break down and the application of a single KS-
regularisation would require frequent initialisations of the dominant pair. Thus a new formu-
lation, generally known as multiple regularisation is required, where multiple refers to the
special treatment of at least two separations to remove singularities. By expanding the KS-
regularisation to two coupled KS-regularisation, the isolated and perturbed 3-body problem
can be integrated in a well-behaving manner (Aarseth & Zare, 1974). For higher particle num-
bers, a new concept with improved notation is realised by introducing the dominant two-body
forces along a chain of inter-particle vectors, where the pair-wise attractions are treated by
the KS formalism, thus termed Chain Regularisation. The mathematical method is described
in more detail by Mikkola & Aarseth (1993) and references therein.

3.2.5. Data structure

Special attention is paid to the data structure of the code. The main point here is that all par-
ticles, single particles and pseudo-particles (that represent regularised multiples), are stored
in an array in ordered fashion. Because the number of single particles can decrease due
to escape from the cluster and the number of pseudo-particles changes due to initialisation
or termination of regularised multiples, the data structure must be maintained by a flexible
scheme. Instead of using pointers, the arrays are reordered each time the particle configura-
tion changes. This relabelling scheme involves additional computational effort and program-
ming complexities, but has the advantage of a well-ordered scheme and fast operation on
arrays. The reordering, of computational effort O(N), pays off in particular because it allows
a sequential force summation, thus optimising a process that is O(N2).

The present data structure is composed of domains in a storage array according to the
particle type and hierarchical level of regularisation. Single particles are stored sequentially
in the range 1 to N, where N is the number of single particles. Pseudo-particles resulting
from two-body regularisation of two single particles are arranged behind, in the range N +1
to Ntot = N +Np, where Np is the number of regularised pairs. The components of each such
pseudo-particle, i.e. the two single particles, are always located at the beginning of the single
particle domain. Thus the components of the first KS-pair at position N + 1 are the first two
single particles at position 1 and 2, the components of the second KS-pair at position N +2 are
the next two single particles at position 3 and 4 and so forth. In general, the single particles
at Is,1 = 2Ip − 1 and Is,2 = 2Ip are components of the KS-pair Ip, which itself is located
at N + Ip. Consequently, the domain of single particles is composed of two sub-domains,
the regularised single particles located in the range 1 to 2Np, and the non-regularised single
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particles in the range 2Np +1 to N. If a new KS solution is initialised, particle array locations
at 2Np + 1 and 2Np + 2 are exchanged with those of the regularisation candidates and the
corresponding pseudo-particle is introduced at N +Np +1. Afterwords, the current pair index,
Np, is increased by one. In the reverse case of terminating an existing KS regularisation with
index Iterm

p , all pairs with larger index, Iterm
p < Ip ≤ Ntot, i.e. those that have been initialised

more recently, are moved down by one position and the corresponding pseudo-particle is
removed. Accordingly, its components Iterm

s,1 = 2Iterm
p − 1 and Iterm

s,2 = 2Iterm
p are placed at

2Np− 1 and 2Np, which are liberated by shifting all regularised single particles with index
2Iterm

p < Is ≤ 2Np down by two positions.
Due to the reordering and removal of particles in storage it is convenient to define a unique

label, Ni, for each particle before the integration is started. This label is then used to identify
a particle at any time during integration. Initially all single particles, regularised and non-
regularised, are labelled Ni = i, i = 1, ..,N0, where N0 is the initial single particle number.
The pseudo-particles of KS pairs are labelled NN0+k = N2k−1 +N0, k = 1, ..,Np.

The data structure becomes more complicated if hierarchically regularised particles occur.
Though regularisation is done straight forward by building larger pseudo-particles from lower
level hierarchies, bookkeeping of names and particle attributes requires a clever scheme. This
is realised by the so-called ghost particle in order to maintain relevant quantities of the orig-
inal second KS component. The ghost particle is taken out from integration and placed at
the array position of the original second KS component. The new KS regularisation replaces
the original primary component. The higher order pseudo particle is introduced into a new
list, the merger list, with index Im, which serves to store the unique merger and ghost labels
for later recovery. In case of the lowest order hierarchy, i.e. a binary-single or binary-binary
merger, the pseudo-particle is given a negative label NN0+Np+i = −NN0+k, related to the la-
bel of the first KS component, NN0+k. In order to distinguish between higher levels of a
hierarchy, the convention is to assign a label Ni which is effectively −2N0 smaller than the
previous one. This clear algorithm allows an arbitrary number of hierarchical levels referring
to the same system as it increases in complexity. However, currently NBODY6++ allows only
up to six members to form a hierarchical pseudo-particle.

3.2.6. Parallelisation

The parallelisation of NBODY6 was implemented by Spurzem (1999) using the Message Pass-
ing Interface standard (MPI).

In the version of NBODY6++ used in this work, the parallelisation is restricted to the Her-
mite integration algorithm and related routines (e.g. energy calculation) whereas the regu-
larisation schemes (KS, Chain) are not optimised for the distribution of numerical effort on
multiple processors. Thus any speedup on parallel computers can only be achieved in the di-
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rect force integration while the formation of regularised subsystems reduces the performance
immediately to that of a single processor machine.

The crucial requirement for an efficient parallelisation is a hierarchical time step scheme,
as described in Section 3.2.2. The implementation of the block step scheme provides an even
superior parallel efficiency: at the large time steps always huge groups of particles are due in
time for correction.

The optimal neighbour number for the Ahmed-Cohen neighbour scheme is not well de-
fined for parallelised processes. However, it has been found that adopting a constant neigh-
bour number of the order of 20-50 is sufficient at least up to particle numbers of N = 50000
(Spurzem, 1999). After each regular time step the new neighbour list is communicated along
with the new particle positions to all processors of the parallel machine, thus making it possi-
ble to do the irregular time step in parallel as well.

In the present implementation the parallelisation is done only according to parallel sections
(“do loops”) in the code; there is no domain decomposition (distributing particles on the
processor). Thus at the end of any time steps new results have to be broadcast to all other
processing units. A systolic algorithm is used for that which scales linearly in communication
time with the number of processors, Ncomm ∝ nPE. In this so-called “parallel group execution
algorithm” only subgroups of particles, whose size scales as N2/3, have to be communicated
across the processor network. Thus the overall communication overhead scales as Ncomm ∝
N2/3nPE.

3.3. Modifications of the Code

For the purpose of the present framework – the setup of dynamical cluster models and track-
ing of encounters – the original NBODY6++ code had to be modified and extended by self-
written procedures. The tasks involve

1. the generation of a Maxwellian velocity distribution,

2. the generation of a two-part density distribution,

3. the estimate of a numerically robust cluster centre,

4. the tracking of encounters,

5. the implementation of a spatially and temporally variable external potential,

and will be discussed in the forthcoming sections.
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3.3.1. Maxwellian Velocity Distribution

As discussed in Section 2.3.1, the velocity distribution of young star clusters is well approxi-
mated by a Maxwellian distribution, in agreement with theoretical considerations and obser-
vational data. The requirement for an adequate setup led to the implementation of a random
number generator with Gaussian deviates. The adopted algorithm is described by Press et al.
(1993) and is briefly outlined in the following.

Generalising transformation methods to multiple dimensions, the joint probability distribu-
tion p(y1,y2, ...)dy1dy2... of functions y1,y2, ... of random deviates x1,x2, ... is

p(y1,y2, ...)dy1dy2... = p(x1,x2, ...)
∣∣∣∣∂ (x1,x2, ...)
∂ (y1,y2, ...)

∣∣∣∣dy1dy2... , (3.16)

where p(x1,x2, ...)dx1dx2... is the joint probability distribution of the x’s and |∂ ()/∂ ()| is the
Jacobian determinant of the x’s with respect to the y’s. The Box Muller method involves the
transformation of the Gaussian distribution,

p(y)dy =
1√
2π

e−y2/2dy , (3.17)

using the relations

y1 =
√
−2lnx1 cos2πx2 , (3.18)

y2 =
√
−2lnx1 sin2πx2 , (3.19)

between two uniform deviates in the interval [0,1], x1,x2, and the quantities y1,y2. If one
picks the coordinates υ1 and υ2 of a random point in the unit circle, instead of picking the
uniform deviates x1 and x2 in the unit square, then the sum of the squares, R2 ≡ υ2

1 + υ2
2 is

a uniform deviate, that can be used for x1, while the angle that (υ1,υ2) defines with respect
to the υ1 axis can serve as the random angle 2πx2. The advantage of this scheme is that the
cosine and sine in Eq. (3.18) can be written as υ1/

√
R2 and υ2/

√
R2, obviating the trigono-

metric function calls. The Maxwellian velocity distribution is then generated by picking for
each particle three Gaussian deviates, one for each velocity component.

3.3.2. Two-Part Density Distribution

In simulations of star clusters mainly one of three types of density distribution functions is
used: (i) the Plummer sphere (Plummer, 1911), (ii) the isothermal sphere (e.g. Binney &
Tremaine, 1987), or (iii) the family of King models (King, 1966). The advantage of distribu-
tions (i) and (iii) is that they behave well and provide a good fit to a large variety of (most
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older) clusters. In contrast, (ii) has infinite density at the origin but is a good representation
of the density and velocity distribution of young clusters, the latter being the Maxwellian
distribution (see Section 2.3.1).

However, detailed observations of young clusters show that the distribution varies towards
the core of the cluster, becoming flatter or steeper. To account for this feature, the setup
procedure in NBODY6++ has been extended to generate a two-part density distribution, with
different slopes for the core, ρ ∝ r−α1 , and the outer region, ρ ∝ r−α2 . For simplicity, the
cluster is generated as a uniform sphere and scaled to the desired size in a second step.

The generation of such a distribution is straight forward. First, the probability of a particle
to be in one of the two regions is evaluated. Then a random uniform deviate is picked from
the interval [0,1] which determines the membership. The coordinates of the particle are
assigned uniform deviates x1,x2,x3 in the interval [0,1], and the corresponding radius vector,
r = (x2

1 + x2
2 + x2

3)
α+1

2 , is calculated, where α is either α1 or α2. If the particle is a member
of the outer region, α = α2, then the radius vector must be evaluated against the core radius,
rcore; if r < rcore the algorithm must be repeated. For a member of the core no further decision
making is required.

3.3.3. Cluster Centre

The analysis of data from numerical simulations of star clusters requires – in particular when
compared to observational data – a reference point that is representative of the cluster centre.
The determination of a robust central reference point is an important non-trivial task.

From a theoretical point of view, the centre-of-mass should define the cluster centre. How-
ever, in numerical simulations of star clusters a small fraction of particles is accelerated in
close encounters to velocities largely exceeding the escape velocity of the system. Because
small in number and thus not isotropically distributed, these escapers cause, at large distances
from the cluster, a significant shift of the centre-of-mass towards the outer cluster regions.
Hence the centre-of-mass does not serve as a good central reference point. Another candi-
date for a central reference point would be the (mass or number) density centre of a cluster.
Because observers usually use either the highest brightness concentration or the maximum
projected number density of objects as a reference point, this approach would seem to be
promising when comparing numerical results and observational data.

In the original NBODY6++ code there already exists a routine to calculate the density centre
(core.f). The scheme works as follows: First, a sample of particles is built by cutting out a
spherical volume around the cluster centre that contains at least 20 % of the total population.
For each particle the local mass and number density of the five nearest neighbours is calcu-
lated. The cluster density centre is then built from the sum of the particle positions of the
subsample weighted with the local mass densities. However, using the density centre as the
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central reference point has as well some disadvantages. First, since star clusters are dynami-
cally very active, the local particle densities change very fast with time and thus the estimated
density centre also fluctuates very strong with time. Moreover, the choice of the five nearest
neighbours to calculate the local densities is somewhat arbitrary. Depending on the geome-
try and the density and mass distribution of a cluster the determination of the density centre
might depend significantly on the choice of the number of nearest neighbours.

Because the density centre is the ideal measure of the highest concentration of stars but
varies strongly with time and cluster structure it appears intuitive to use the density centre in
combination with a smoothing algorithm as the central reference point. This approach has
been realised by combining the calculation of the density centre and the centre-of-mass and
is described by the following algorithm:

1. Sort all stars in increasing order of the distance to the cluster density centre.

2. Pick the stars sequentially from the sorted list and build a subsample until

a) the subsample contains at least 10 % of total stellar population and

b) the mass of the subsample is at least 10 times the mass of the most massive star
in the cluster.

3. Calculate the centre-of-mass of the subsample.

The restriction 2b takes into account that a very massive star would dominate dynamically a
too small subsample. It suppresses a strong influence of one star on the density centre. The
centre-of-mass of the subsample serves as the new cluster centre. This algorithm combines
the advantages of both quantities, the density centre and the centre of mass: it keeps the
cluster centre close to the strongest concentration of particles in the cluster but takes a larger
stellar sample into account to smooth the fluctuations with time and cluster structure.

3.3.4. Encounter Tracking

The key aspect of this work is the determination of the encounter-induced disc-mass loss in a
cluster environment. For this purpose two different types of numerical simulations have been
combined. First, as part of previous work, a parameter study of star-disc encounters has been
performed, resulting in a fit formula for the disc-mass loss as a function of the masses and
the separation of two stars (see Section 4.4.2). Using this fit formula, in a second step the
individual disc-mass loss of star cluster members was determined from simulations of star
cluster dynamics, in which the encounter history of all stars was tracked. In the present inves-
tigation the encounter tracking has been widely extended in the form of additional routines in
NBODY6++.
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Numerical method

The first ingredient of the encounter tracking is the determination of the strongest perturber of
each star at a given integration time step, i.e. the body with the maximum gravitational force.
Numerically this algorithm is effective because the neighbour scheme of NBODY6++ (see Sec-
tion 3.2.3) allows to restrict the search of a particle’s potential perturbers to its neighbour list
and thus reduces the number of calculations significantly. However, a marginal slow-down
occurs because the determination of the strongest perturber requires the consequent update
of positions and its derivatives for all members of the neighbour list to the current time step
(see the discussion of time steps in Section 3.2.2). The separate integration of KS-regularised
particles in NBODY6++ (see Section 3.2.4) requires an additional scheme to account for per-
turbations. However, trivially, the two members of a KS-regularised pair are each other’s
strongest perturbers.

This scheme, repeated for each (irregular) integration step in the course of the simulation
(see Section 3.2.3 for the definition of an irregular time step), provides the masses and the
positions and velocities of the perturber and the perturbed star that are used to determine
the orbital parameters and the time period of interaction. This information is required to
determine the disc-mass loss later on (see Section 4.4.2). While the interaction period can
be easily obtained by recording the time step of the beginning and the end of the interaction
with the same perturber, the determination of the periastron is more challenging. Due to the
discreteness of time in numerical simulations the minimum separation of two particles at a
certain time step is usually not the minimum distance of their orbits as shown in Fig. 3.4.
This drawback can be solved by an interpolation of the periastron (and the corresponding
time) from the interaction parameters at some other time steps and is described in detail
further below.

Once the full interaction parameters are determined they are checked for consistency with
the isolated star-disc encounters of the parameter study. This involves two criteria: (i) the
orbit curvature has to be concave with respect to the perturbed star, i.e. the perturbed star must
be located in the focus closest to the orbit (because only this type of orbits has been simulated),
and (ii) the opening angle of the orbit section must amount to at least 10 % of the maximum
opening angle of the corresponding conic section (in terms of eccentricity), because otherwise
the interaction time is too short and the disc-mass loss would be overestimated by the fit
formula. Orbits that fulfil these criteria, termed “regular” in the following, are stored in a list
that forms the backbone for the subsequent determination of the disc-mass loss.
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Figure 3.4.: Illustration of the geometrical parameters of the periastron interpolation scheme. The black
circle marks the position of the perturbed star, the grey circles mark the positions of the
perturber at sequential time steps. Quantities of the two time steps before, t1, and after
the minimum separation, t2, are denoted by the corresponding indices. The upper part of
the figure illustrates a larger portion of the orbit with positions and velocities of the three
time steps before, after and at the minimum separation itself. The lower part represents
an enlarged view and contains all quantities that are used for the interpolation scheme (see
text).
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Periastron interpolation

For the calculation of the disc-mass loss of a star due to the fly-by of a perturber, the de-
termination of the minimum separation – the distance at periastron – is crucial. Due to the
discreteness of time in numerical simulations the minimum separation of two particles at a
certain time step is usually not the minimum distance of their orbits as shown in Fig. 3.4.
As long as the interaction is weak and orbital periods are long the difference between the
numerical minimum separation and the distance at periastron is negligible. However, in case
of strong interactions differences can be quite large - large enough that the estimated relative
disc-mass loss differs by more than a tenth or the orbit may be even classified as non-regular
(with respect to the criteria presented above) and rejected.

Thus it is necessary to interpolate the periastron from the given discrete orbit points. For
the interpolation the encounter parameters at time steps before, t1, and after the minimum
separation, t2, are used. In the following the frame will be always centred on the perturbed
star, so only the orbital motion of the perturber is investigated.

For the interpolation it is assumed that the orbit is (nearly) Keplerian, i.e. there is no signif-
icant perturbation by a third body. This assumption is of course not always valid in the dense
cluster regions, where encounters can occur between small N-body systems. However, since
the derived disc-mass loss is based on simulations of two-body systems, contributions from
higher order perturbations can not be quantified. So the disc-mass loss can be underestimated
in this case.

Exact circular orbits can not be treated with this method because there is no global mini-
mum of separation over time. However, circular orbits are neither expected due to the pertur-
bation by the cluster stars nor is the applied disc-mass loss calculation valid for low eccentric-
ities. Circular orbits will be thus neglected in the following.

The interpolation scheme is as follows (see also Fig. 3.4): The vectors ~r1 and ~r2 are the
separation vectors at the time step before and after the minimum separation, respectively.
They enclose the angle ϑ , ϑ = �(~r1,~r2), while ϕ1 and ϕ2 are the angles enclosed by the (not
yet determined) separation vector at periastron, ~rp, and either one of the separation vectors,
ϕ1 = �(~rp,~r1) and ϕ2 = �(~rp,~r2). Hence

ϑ = ϕ2−ϕ1 . (3.20)

The given variables underlie some restrictions. Since the separation vectors are estimated
at different times, they usually cannot be identical. Consequently, the angle ϑ cannot be
an integer multiple of 2π , and the angles ϕ1 and ϕ2 have to be non-zero. Furthermore, the
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problem is restricted to one single orbit revolution. In summary,

~r1 6=~r2 ,

ϑ ∈ (0,2π) ,

ϕ1 ∈ (−π,0) ,

ϕ2 ∈ (0,π) .

(3.21)

The first step towards a determination of the periastron is to determine the enclosed angle ϑ .

Determination of ϑ .

The cosine of ϑ can be easily determined from

~r1~r2 = |~r1||~r2|cosϑ ,

yet it requires to determine whether ϑ is in the interval [0,π) or [π,2π). According to Fig. 3.4,
the problem can be solved by including the direction of motion. Via the projection of the
velocity vector at time t1,

~v1~r1 = v1r1 cosψ ,

where v1 = |~v1| and r1 = |~r1|, one can determine the velocity component tangential to ~r1,
called here~v1,t ,

~v1,t =
~r1

r1
v1 cosψ .

The normal component~v1,n,

~v1,n =~v1−~v1,t =~v1−~r1
~v1~r1

r2
1

,

is then used to determine the interval:

~r2~v1,n

> 0 : ϑ ∈ [0,π)

≤ 0 : ϑ ∈ [π,2π)
.

The second step is to determine the unknown ϕ1 (which fixes ϕ2 due to Eq. (3.20)) which
will then be used to obtain~rp.
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Determination of ϕ1.

A Keplerian orbit, which is a conical section, is described at any point by the distance to its
focal point r,

r =
(1+ ε)rp

1+ ε cosϕ
, (3.22)

where ε is the eccentricity of the orbit, rp the distance from the focal point to the periastron,
rp = |~rp|, and ϕ the angle enclosed by the periastron rp and the connecting line to an arbitrary
point on the orbit r.

Because a numerical treatment is limited in accuracy and the orbit of two interacting par-
ticles in a N-body system is (most probably) not strictly Keplerian, one has to account for
different eccentricities at two different times. However, if the eccentricities are too different,
the assumption of a nearly Keplerian orbit is not justified. In the framework of the encounter
tracking this has been considered in the form of two limiting criteria: (i) the eccentricities
must not deviate by more than 0.5, or (ii) the eccentricities must not deviate by more than
10 %. If both criteria are not met the orbit is rejected as “non-regular”. Thus, using relation
(3.22) for the separations at the two time steps before and after the minimum separation, r1

and r2, and allowing for (slightly) different eccentricities, ε1 and ε2, one obtains

r1 =
(1+ ε1)rp

1+ ε1 cosϕ1
, r2 =

(1+ ε2)rp

1+ ε2 cosϕ2
, (3.23)

and hence after elimination of the separation at periastron rp,

r1(1+ ε1 cosϕ1)
1+ ε1

=
r2(1+ ε2 cosϕ2)

1+ ε2

=
(3.20)

r2(1+ ε2 cos(ϑ +ϕ1))
1+ ε2

=
r2(1+ ε2(cosϑ cosϕ1− sinϑ sinϕ1)

1+ ε2
.

(3.24)
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Introducing new variables,

R1 = r1(1+ ε2),

R2 = r2(1+ ε1),

R = R1−R2,

E1 = ε1R1,

E2 = ε2R2,

C = E2 cosϑ −E1,

S = E2 sinϑ ,

(3.25)

where R1,R2 > 0 and E1,E2 ≥ 0, one obtains the compact expression

R = C cosϕ1−S sinϕ1 . (3.26)

The solution of Eq. (3.26) for the angle ϕ1 requires a case differentiation of either C or S,
which will be done here for S:

1. In case of S = 0:

S = 0 ⇔ ϑ = mπ, m ∈ Z ∨ E2 = 0 (3.27)

⇔
~r1 6=~r2

ϑ = π ∨ ε2 = 0 (3.28)

where the last equivalency follows from Eqs. (3.21) and (3.25). Another case differen-
tiation for the two variables is necessary:

a) In case of ε2 = 0:

R = r1− r2(1+ ε1) =
(3.26)

C cosϕ1 =−E1 cosϕ1 =−ε1r1 cosϕ1 .

Before solving, one has to consider that ε1 can be zero.

i. In case of ε1 = 0: R = 0 ⇒ rperi = r1 = r2.
This is the case of a circular orbit which was excluded at the beginning.

ii. In case of ε1 6= 0: ϕ1 = arccos
(

r2(1+ ε1)− r1

r1ε1

)
.

b) In case of ϑ = π: C =−(E1 +E2) ⇒ R =−(E1 +E2)cosϕ1.
Excluding (ε1 = 0 ∧ ε2 = 0), because this case has been already treated,
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E1 +E2 6= 0 and one obtains

ϕ1 = arccos
(
− R

E1 +E2

)
.

2. In case of S 6= 0:
The solution can be obtained directly via quadrature,

cosϕ1 =
RC
E
±
√

R2C2

E2 +
S2−R2

E
, (3.29)

where E = C2 + S2. The sign determines whether ϕ1 is in the interval [0,π/2) or
[π/2,π), i.e. whether the separation vector~r1 lies in the quadrant above or below the
semi-latus rectum according to Fig. 3.4. This can be decided by comparing the angle ψ1

enclosed by the separation and the velocity vector at time t1,~r1 and ~v1, with its value
at the semi-latus rectum, ψslr = arcsin(e2 +1)−1/2 (see Eq. (A.4)). One finds

ϕ1 =


arccos

(
RC
E +

√
R2C2

E2 + S2−R2

E

)
if sin

[
arccos

(
~r1~v1
r1v1

)]
> (e2 +1)−1/2

arccos
(

RC
E −

√
R2C2

E2 + S2−R2

E

)
if sin

[
arccos

(
~r1~v1
r1v1

)]
≤ (e2 +1)−1/2

.

Determination of rp.

The estimated ϕ1 and the corresponding r1 and ε1 then determine the distance at periastron rp

via (3.22):

rp =
r1(1+ ε1 cosϕ1)

1+ ε1
.

The vector~rp can be obtained simply by linear combination,

~rp = a~r1 +b~r2 ,

where

a =
rp(cosϕ1− cosϕ2 cosϑ)

r1(1− cos2 ϑ)
,

b =
rp cosϕ2−ar1 cosϑ

r2
.
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Orbital Time of Encounter

The interpolation of the periastron involves as well an interpolation of the time when the in-
teraction at periastron occurred. This is solved via the derivation of a relation for the time
difference of two points on a Keplerian orbit as presented below. The problem will be formu-
lated in polar coordinates {r,θ}.

Consider a test particle of mass m in free flight in the gravitational field of a body with
mass M. The total system energy is

E =−GMm
r

+
1
2

mv2 =−GMm
|~r | +

1
2

m~̇r 2 , (3.30)

where
~r = (r cosθ ,r sinθ ,0)

is the position vector in polar coordinates.
The solution for the orbital motion requires the first and second derivative of~r,

~̇r = ṙ(cosθ ,sinθ ,0)+ rθ̇(−sinθ ,cosθ ,0) ,

~̈r = (r̈− rθ̇
2)(cosθ ,sinθ ,0)+(2ṙθ̇ + rθ̈)(−sinθ ,cosθ ,0) .

Because the gravitational force is radial there is no change in the angular momentum of the
test particle and the (specific) angular momentum l is constant,

l = r2
θ̇ . (3.31)

This corresponds to Kepler’s 2nd law. Due to the conservation of the angular momentum,

0 = l̇ =
d
dt

(r2
θ̇) = 2rṙθ̇ + r2

θ̈ = r(2ṙθ̇ + rθ̈) ,

the second derivative of~r reduces to

~̈r = (r̈− rθ̇
2)(cosθ ,sinθ ,0) .

Derivation of (3.30) leads to the equation of motion,

Ė =
d
dt

(
−GMm
|~r | +

1
2

m~̇r 2
)

=
GMm

|~r |2
ṙ +m~̇r~̈r =

GMm
r2 ṙ +mṙ(r̈− rθ̇

2) = 0

=⇒ r̈ =−GM
r2 + rθ̇

2 . (3.32)
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Switching to new variables and derivatives,

u :=
1
r

,
d
dt

=
l

r2
d

dθ
,

Eq. (3.32) then takes the following form:

l
r2

d
dθ

(
l

r2
d

dθ

)
=

l2

r3 −
GMm

r2

=⇒ d2u
dθ 2 +u =

GM
l2 (3.33)

The solution of (3.33) is obtained from the general ansatz

u = Acosθ +Bsinθ +
GM
l2 . (3.34)

Two restrictions specify the solution:
The reference for the angle θ is the periastron~rp,

r |θ=0 = rp =⇒ u |θ=0 =
1
rp

.

The radial velocity at periastron is zero,

~r ·~̇r |θ=0 = 0 =⇒ ṙ |θ=0 = 0 =⇒ du
dθ

∣∣∣∣
θ=0

= − ṙ
l

∣∣∣∣
θ=0

= 0 .

Thus Eq. (3.34) reduces to

u =
(

1
rp
− GM

l2

)
cosθ +

GM
l2 ,

and one obtains the conic sections as the general solution of the orbital motion,

r =
rp(1+ ε)

(1+ ε cosθ)
, (3.35)

with the numerical eccentricity

ε :=
l2

GMrp
−1 .

Instead of determining the distance as a function of the orbit angle θ (also called the “true
anomaly”), one might be interested in the time, t0, an object needs to traverse a given orbit
element. The orbit element is referenced to periastron, so θ |t=0 = 0, θ |t=t0 = θ0. The solution
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is found via separation of variables. Combination of (3.31) and (3.35) gives

θ̇ =
l

r2
p(1+ ε)2 (1+ ε cosθ)2

=⇒ dt =
r2

p(1+ ε)2

l
dθ

(1+ ε cosθ)2

=⇒ t0 =
∫

θ0

0
dt =

r2
p(1+ ε)2

l

∫
θ0

0

1
(1+ ε cosθ)2 dθ .

The result of the integration depends on the eccentricity ε ,

t0 =
r2

p(1+ ε)2

l



[
ε sinθ

(ε2−1)(1+ε cosθ) −
1

ε2−1
2√

1−ε2
tan−1 (1−ε) tan θ

2√
1−ε2

]
if ε < 1 ,[

1
2 tan θ

2 + 1
6 tan3 θ

2

]
if ε = 1 ,[

ε sinθ

(ε2−1)(1+ε cosθ) −
1

ε2−1
1√

ε2−1
ln (ε−1) tan θ

2 +
√

ε2−1

(ε−1) tan θ
2−
√

ε2−1

]
if ε > 1 .

(3.36)

The time for a complete orbit (elliptical case) is found by substituting θ = π and doubling,

T = 2π
r2

p

l
(1+ ε)1/2

(1− ε)3/2 .

3.3.5. Time-Variable External Potential

The simulation of a star cluster embedded in an external Plummer potential φ of mass M,
radius r, and characteristic size a (Plummer, 1911),

φ =− GM
(r2 +a2)1/2 , (3.37)

related to the half-mass radius by Rhm ' 1.3a, is supported by NBODY6++. However, the
standard implementation contains only a static potential, whereas simulations of young star
clusters require a time-varying potential that accounts for the mass-loss due to gas expulsion
in the early cluster evolution (see Section 2.3.1). Extending the integration scheme towards
a time-dependent external potential is straightforward and involves a modification of the –
now time-dependent – parameters M = M(t) and r = r(t) at each integration step dt by some
dM(t) and dr(t). Because the applied scheme is not self-consistent, the correction of the total
system energy is strictly required. This has been realised by building the difference of the
potential energy of each particle due to the Plummer potential before and after the evolution
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of the potential at each time step. This difference is then added to the total system energy as
a correction term.
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Orion Nebula Cluster (ONC)

In this section the impact of stellar encounters on the destruction of protoplanetary discs and
dynamics in young star clusters is investigated using a prototype young stellar association:
the Orion Nebula Cluster (ONC).

The specific choice of the ONC as a model case was motivated by the following:

• The ONC is thought to be a typical environment for star-formation, so results from this
work can be applied to the majority of such environments and so to the fate of most
stars;

• it is one of the best-studied regions in the Galaxy which constrains significantly the
modelling parameters;

• its high density suggests that stellar encounters might be relevant for the evolution of
circumstellar discs.

The relevance of encounters on the destruction of protoplanetary discs in the ONC is in-
vestigated by combining two different types of numerical simulation. First, star-cluster sim-
ulations of a stellar dynamical model of the ONC provide information about the frequency
of encounters, the mass ratio and separation of the stars involved, and the eccentricity of the
encounter orbits. Second, the results of a parameter study of star-disc encounters are used to
determine the upper limits of the mass loss of the discs in encounters (Pfalzner et al., 2005b;
Olczak et al., 2006).

After a summary of the observed parameters of the ONC, the construction of a dynamical
model of the ONC is discussed in detail. Fundamental results from numerical simulations of
the dynamical model are presented hereafter, followed by a discussion.

4.1. Structure and Dynamics of the ONC

The ONC is a rich stellar cluster with about 4000 stellar members with masses M & 0.08 M�
in a volume ∼5 pc across. Most of the objects are T Tauri stars, but there is also strong
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Figure 4.1.: Projected density profiles of the ONC from a observational data of McCaughrean et al.
(2002) (blue line) and Hillenbrand (1997) (red line). The black line depicts the r−1 power
law that corresponds to the projected density profile of the isothermal sphere.

evidence for the existence of several protostars (see Section 2.2.2 for a description of stellar
evolutionary stages). The mean stellar mass is m̄ ≈ 0.5 M� and the half-mass radius Rhm ≈
1 pc (Hillenbrand & Hartmann, 1998; Hillenbrand & Carpenter, 2000). Recent studies on
the stellar mass distribution (Hillenbrand & Carpenter, 2000; Luhman et al., 2000; Muench
et al., 2002; Slesnick et al., 2004) reveal no significant deviation from the canonical stellar
IMF given by Eq. (2.17).

The shape of the system is not perfectly spherical, but elongated in the north-south direc-
tion (with an ellipticity of ε ≈ 0.3; Hillenbrand & Hartmann, 1998). The probable reason for
this asymmetry is the gravitational potential of a massive molecular ridge in the background
of the cluster, OMC 1, which is part of the much larger complex of the Orion molecular cloud
(Hillenbrand & Hartmann, 1998). The mean age of the whole cluster has been estimated to be
tONC≈ 1 Myr, although a significant age spread of the individual stars is evident (Hillenbrand,
1997; Palla & Stahler, 2000). Today, star formation is no longer occurring in the cluster itself,
only in the background molecular cloud.

After a short period of intense star formation, the ONC has expelled most of the residual
gas, so that now only a few solar masses of ionised gas are present in the inner∼1 pc (Wilson
et al., 1997). The density and velocity distribution of the ONC resembles an isothermal
sphere (see Fig. 4.1): From the outer edge the number of stars falls linearly with decreasing
radius r down to 0.1 pc; inside this cluster core, the distribution function becomes flatter
(Jones & Walker, 1988; McCaughrean & Stauffer, 1994; Hillenbrand, 1997; Hillenbrand &
Hartmann, 1998; McCaughrean et al., 2002). The central number density ρcore in the inner
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0.053 pc reaches 4.7 ·104 pc−3 (McCaughrean & Stauffer, 1994; McCaughrean et al., 2002)
and makes the ONC the densest nearby (<1 kpc) young stellar cluster. The dense inner part
of the ONC, also known as the Trapezium Cluster (TC), is characterised by RTC . 0.3 pc and
NTC≈ 750, or ρTC≈ 103 pc−3.

In their proper motion study of the ONC, Jones & Walker (1988) found the velocity dis-
persion to be nearly constant at all cluster radii and obtained a one-dimensional velocity
dispersion σ JW

1D = 2.5 km s−1. This translates into a three-dimensional velocity dispersion
of σ JW

3D =
√

3σ JW
1D = 4.3 km s−1. Recently, Fűrész et al. (2008) obtained a somewhat higher

one-dimensional velocity dispersion of σ
F+
1D = 3.1 km s−1 from radial velocity measurements.

However, they caution that their velocity distribution of ONC stars has a peak that is too low
compared to the expected Gaussian distribution with dispersion σ

F+
1D , so the result of Jones &

Walker (1988) will be adopted here.
This velocity dispersion translates into a crossing time of

tcr = 2Rhm/σ ≈ 0.5Myr , (4.1)

and the virial ratio Qvir of the ONC becomes

Qvir =
Rhm

(
σ JW

3D

)2

2GM
≈ 1.5, (4.2)

where M = m̄N≈ 2000 M�. This indicates that the ONC is not only far from virial equilib-
rium, but even seems to be gravitationally unbound (Qvir > 1, see Section 2.1). However, this
statement has to be treated with care because errors in the observational parameters can easily
account for an error of over 50 % in this calculation (Scally et al., 2005). Besides, the esti-
mated total mass of the ONC of 2000 M� is only a lower limit, since a substantial amount of
mass could be present in undetected low-mass binary companions (Kroupa et al., 2001). Fur-
thermore, the contribution of the OMC 1 to the overall gravitational potential is still unknown,
and the elongated shape of the cluster indicates that it is not negligible. Huff & Stahler (2006)
suggest that the molecular cloud that formed the ONC contained about 6000 M�. Hillenbrand
et al. (1998) estimated that the remaining part of it in the cluster background still has a mass
of about 2000 M�. Combining these numbers, it seems that the ONC could be well in virial
equilibrium, even after the expulsion of most of its natal gas. Thus one can probably exclude
the case of a global contraction or expansion of the cluster.

Like many other stellar aggregations, the ONC shows mass segregation, with the most
massive stars being confined to the inner cluster parts. The Trapezium cluster, a subgroup
of about 1000 stars in a volume 0.6 pc across, represents the denser core of the ONC. It
contains four luminous O and B stars at the very centre, designated as the “Trapezium” (e.g.
Hillenbrand & Hartmann, 1998). Its most prominent member, θ 1C Ori, has been classified
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in the past as a very young, variable massive star of ∼50 M� and spectral type O4-6V at
an age of only about 2 · 105 yr (Hillenbrand, 1997; Donati et al., 2002; Simón-Díaz et al.,
2006). After the detection of its binary nature by Weigelt et al. (1999), recently Kraus et al.
(2007) determined the properties of the two components, θ 1C Ori1 (O5.5, M = 34.0 M�,
Teff = 39900 K) and θ 1C Ori2 (O9.5, M = 15.5 M�, Teff = 31900 K), resulting in a system
mass of ∼50 M�. The general binary properties of the ONC population will be addressed in
a subsequent section.

Apart from its high density and young age, the evidence for protoplanetary discs around
many stars in this cluster makes the ONC the ideal candidate for the present investigation.
Whereas the first identification of “peculiar stellar objects” in the ONC dates back to Laques
& Vidal (1979), it took more than a decade to recognise them as circumstellar discs that are
ionised by the intense radiation of the Trapezium stars. O’Dell et al. (1993) designated these
bright objects as “proplyds”, an acronym for protoplanetary discs. At greater distances from
the cluster centre they also detected their dark counterparts: discs in silhouette, which are
visible due to the bright nebular background. Thus far, about 200 bright proplyds and 15
silhouette discs have been revealed in several Hubble Space Telescope (HST) studies of the
ONC (O’Dell et al., 1993; O’Dell & Wong, 1996; Bally et al., 1998, 2000).

In the most recent study on circumstellar discs in the Trapezium Lada et al. (2000) used
the L-band excess as a detection criterion. They analysed 391 stars and found a fraction of
80-85 % to be surrounded by discs. This is in agreement with an earlier investigation of the
larger ONC for which Hillenbrand (1997) gives a disc fraction of 50-90 % (though relying
only on IC−K colors) and justifies the assumption of a 100 % primordial disc fraction.

The disc sizes established so far vary between 50 and 1000 AU, with a typical value of
200 AU for low-mass stars (Vicente & Alves, 2005). The inferred disc masses are only accu-
rate to an order of magnitude, but seem not to exceed a few percent of the central stellar mass,
which classifies them as low-mass discs (Bally et al., 1998; Williams et al., 2005).

4.2. Construction of a Numerical Model of the ONC

The construction of a numerical model of the cluster dynamics involves the finding of the
appropriate initial conditions that reproduce the observational properties of the ONC after a
numerical evolution time similar to the estimated age of the ONC. Here the work of Scally &
Clarke (2001) and Scally et al. (2005) provided vital support.

Due to the young age of the ONC, the chosen initial parameters are probably not too far
from the observed ones, presented in Table 4.1.

The virial ratio Qvir is the most crucial quantity for the dynamics of a cluster. It determines
whether the cluster starts from contraction Qvir < 0.5, equilibrium Qvir = 0.5, or expansion
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N Rinit ρ(r) ξ (m) Qvir

[pc] [pc−3]

4000 2.5 Eq. (4.5) Eq. (2.17) 0.5

Table 4.1.: Initial parameters adopted for the numerical model of the Orion Nebula Cluster (ONC).

Qvir > 0.5. Observational data of the ONC are in good agreement with a virial equilibrium
state. Because Scally et al. (2005) and Olczak et al. (2006) found from numerical modelling
that the best agreement in terms of dynamics is achieved when assuming a stellar system
initially in virial equilibrium, a value of Qvir = 0.5 is adopted for the present investigation.

Besides the initial virial ratio, the amount of gas initially contained in the cluster and later
transformed into stars or expelled by stellar winds and radiation affects cluster dynamics
significantly because it determines the temporal evolution of the virial ratio. As described
in Section 3.3, its contribution is represented in the code by an additional (time-variable)
Plummer potential. A detailed description of the setup is given in Section 5.3. However,
simulations referred to in the present chapter have been performed without considering the
potential of the surrounding Orion Molecular Cloud OMC 1. This accounts for the aim to
investigate the influence of encounters on the disc-mass loss in a realistic but as simple stellar
dynamical system as possible. Introducing additional parameters (four more parameters – the
cloud mass and size and their time derivatives – would be required for the numerical setup of
a cloud potential), that affect cluster dynamics, could probably mask the elementary stellar
dynamical effects on discs, making an interpretation of the results more difficult.

For the initial velocity distribution a Maxwellian distribution was chosen. This corresponds
to the expected distribution of a virialised system as assumed here and is consistent with the
observed distribution (e.g. Jones & Walker, 1988). It is valid as long as the cluster can be ap-
proximated by an isolated system where stellar dynamics dominate (e.g. Binney & Tremaine,
1987). Since the numerical simulation sets in when most of the gas ought to be expelled from
the cluster, the assumption is justified.

The number of initial bodies has to be chosen to at least the observational value, N = 4000,
because of two reasons. Obviously, the observed number of cluster members states a lower
limit on the true population of the ONC due to detection limits of faint stars and binary
companions. The dynamical evolution of a star cluster causes stars to escape its gravitational
potential – the cluster evaporates over time, as described in Section 2.1. In the case of a single
star model, an initial number of stars of N = 4000 is justified since the stellar population is
observationally well sampled down to the brown dwarf limit (M = 0.08 M�), which is the
lowest mass used in the model. Moreover, evaporation of stars during the first 1 Myr was
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found to amount to less than 10 % for a system initially in virial equilibrium as assumed here.
In the case of a primordial binary population, N = 4000 states the initial number of “centre-
of-mass particles”, i.e. the number of single stars and binaries, accounting for undetected
binary companions. This approach is in agreement with Kroupa (2000). The details of the
setup of a primordial binary population are described in Section 5.2.1.

The choice of the initial extension of the cluster model is mostly affected by the initial virial
ratio Qvir. Stellar systems in virial equilibrium do not change significantly in size over a few
dynamical time scales since they are close to a relaxed state (as discussed in Section 2.1).
Consequently, given the dynamical age of the ONC of just 2tcr (see Eq. (4.1)), an initial
cluster radius of Rinit = 2.5pc was chosen.

For the reasons discussed in Section 2.4 and the observational estimates for the ONC, the
chosen (single star) initial mass function is that of Kroupa (2001) with a mass range between
0.08 M� and 50 M�. θ 1C Ori, though a binary system, is treated as a single particle in the
present investigation. This is because its separation, a ≈ 10 AU, is small compared to the
adopted disc radius of 150 AU, causing gravitational perturbations as would arise from a
single particle of the mass of the binary system. The maximum stellar mass is thus chosen
to be equal to the system mass of θ 1C Ori. Considering recent studies on the substellar mass
function in the Trapezium (Slesnick et al., 2004; Hillenbrand & Carpenter, 2000; Muench
et al., 2001), it would be possible to adapt a model IMF extending below the hydrogen-
burning limit. However, since the focus is on the evolution of circumstellar discs of stellar
objects and the contribution of substellar objects in terms of gravitational perturbations is
expected to be minor, while the extension of the IMF would increase the computational effort,
there is no reason to do so. Due to the random nature of the generation process a star with a
mass of 50 M�, which corresponds to the system mass of θ 1C Ori, is rarely produced; more
commonly the generated IMF peaks at 20-30 M�. Thus the numerically generated mass
distribution is artificially modified by assigning the maximum mass of 50 M� to the most
massive particle after the generation process.

Another important parameter for the cluster setup is the initial density distribution. Finding
a good estimate of the initial configuration by means of density is somewhat tricky because
the evolution of the density distribution is not easily predictable, in particular in the dense
cluster part, where dynamics are dominated by the interaction of just a small number of stars.
Moreover, the fact that observational data contain only two-dimensional information of the
stellar distribution poses another challenge for the three dimensional model. However, under
the assumption of spherical symmetry, which is a simplification and not strictly consistent
with the slightly elongated shape of the ONC as described in the previous section, the rela-
tion between a three-dimensional density distribution, ρ(r) ∝ r−α , and its two-dimensional
projection, Σ(r) ∝ r−β , is simply α = β + 1. Because from observations a slope of the pro-
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jected density distribution of -1 is derived nearly over the entire cluster (see Fig. 4.1), to first
order the isothermal sphere, ρ(r) ∝ r−2, represents the density distribution of the ONC. Con-
sidering further the flattening in the core, Σ(r) ∝ r−0.5, 0 < r ≤ 0.2 pc, the current density
distribution can be well represented via

Σ(r) =


Σ(r/r2D

core)
−0.5 arctan

√
(rcluster/r)2−1 if 0 < r ≤ r2D

core

Σ(r/r2D
core)

−1.0 arctan
√

(rcluster/r)2−1 if r2D
core < rcluster

0 if rcluster < r

, (4.3)

ρ(r) =


ρ (r/r3D

core)
−1.5 if 0 < r ≤ r3D

core

ρ (r/r3D
core)

−2.0 if r3D
core < r ≤ rcluster

0 if rcluster < r

, (4.4)

where
rcluster = 2.5pc ,

N = 4000 ,

Σ = 2.6 ·103 starspc−2 ,

r2D
core = 0.10pc ,

ρ = 1.0 ·104 starspc−3 ,

r3D
core = 0.16pc .

Validating the initial setup by means of the best reproduction of the current density distribu-
tion after a simulation time of 1 Myr, the evaluation of numerous initial configurations led to
the following best estimate of the initial (three-dimensional) density distribution:

ρ0(r) =


ρ0 (r/r3D

core, 0)
−2.3 if 0 < r ≤ r3D

core, 0

ρ0 (r/r3D
core, 0)

−2.0 if r3D
core, 0 < r ≤ rcluster, 0

0 if rcluster, 0 < r

, (4.5)

where
rcluster, 0 = 2.5pc ,

N0 = 4000 ,

ρ0 = 3.1 ·103 starspc−3 ,

r3D
core, 0 = 0.20pc .

Fig. 4.2 shows the averaged projected density profile at two different times of a set of 40
simulations of the single star dynamical model compared to observational data of Hillenbrand
(1997) and McCaughrean et al. (2002). The initial density profile (blue line), described by
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Figure 4.2.: Projected density profiles from simulations compared to observational data. The initial
profile (blue line) and the profile at a simulation time of 1 Myr (red line) are shown. The
observational data are from a compilation of McCaughrean et al. (2002) and include also
the values given by Hillenbrand (1997).

Eq. (4.5), evolves in 1 Myr mainly in the inner cluster part, r . log(−0.8)pc≈ 0.16pc, where
the slope flattens roughly from -2.3 to -1.5. In the mid cluster part, up to r ≈ log(0.2)pc ≈
1.6pc, the slope stays nearly constant, while outwards it becomes flatter again due to the
escape of stars from the outer cluster part. It is evident that at 1 Myr, the adopted age of the
ONC, the projected density profile (red line) matches the observational data very well and
thus justifies the numerical model of the ONC used in the present investigation.

Apart from the four most massive stars, representing the Trapezium constellation, posi-
tions are assigned randomly according to the given initial density distribution, Eq. (4.5), as
described in Section 3.3. The special treatment of the central stars accounts for the results of
Bonnell & Davies (1998) on mass segregation in young stellar clusters from numerical simu-
lations. The authors conclude that considering the young age of the Trapezium the massive
stars did not have enough time to sink into the cluster centre due to dynamical mass segre-
gation which occurs in approximately the cluster’s relaxation time, trh ≈ 10 tONC. They state
the most probable scenario for the initial configuration of the stellar positions is one in which
the Trapezium stars are initially mass segregated, placed interior to 0.6Rhm of the Trapezium
cluster or approximately 0.3 pc for a cluster in virial equilibrium. Thus in the present inves-
tigation initially the most massive star, θ 1C Ori, is placed at the cluster centre and the other
three Trapezium stars are placed randomly in a sphere of radius 0.3 pc.

One should be aware that the setup of a stellar system as an isothermal sphere with a cutoff
at a certain radius, as found here to be a satisfying model of the ONC, ultimately leads to a
non-equilibrium state. This is because the system exerts a pressure which has no opposing
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Figure 4.3.: Time evolution of stellar densities in the ONC (blue line), RONC = 2.5pc, the Trapezium
Cluster (green line), RTC = 0.3pc, and the cluster core (red line), Rcore = 0.05pc, respec-
tively. The black error bars mark the corresponding observational estimates.

external force to confine the cluster in its initial volume. Thus, independently of the chosen
virial ratio, the system will expand, typically with a velocity that is on the order of 0.1 of the
cluster velocity dispersion. The lower the virial ratio, the larger the fraction of stars that will
form a bound system, slowing down the outward motion (see Section 2.1).

The initial configuration as described above has been adopted in the present investigation
as the numerical model of the ONC. Numerical simulations were run for 5 Myr, which cor-
responds roughly to the life-time of a 20 M� star. By this time only the most massive star
is expected to have terminated its evolution in a supernova, while the other stars still remain
in the cluster (as long as they have not been expelled due to dynamical interactions). Hence,
though no stellar evolution is included in the simulations and also the effect of a supernova
on the circumstellar discs has not been modelled, it is expected that up to this time the effect
of the stellar evolution process on the results of this investigation is negligible.

4.3. Dynamical Evolution of the Numerical Cluster Model

Here the pure single star model is discussed exemplary in detail. Results for models with ad-
ditional components, a background potential and/or primordial binaries, are presented when-
ever there occur significant differences. Fig. 4.3 illustrates the temporal evolution of the
particle densities in the ONC in three spherical regions of predefined size. The volume radii
correspond to the total cluster extension, RONC = 2.5pc, the size of the inner Trapezium Clus-
ter, RTC = 0.3pc, and the innermost core, Rcore = 0.05pc. The densities in the three volumes
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Figure 4.4.: Time evolution of Lagrangian radii for mass fractions of 1 %, 2 %, 5 %, 10 %, 20 %, 30 %,
50 %, 70 %, and 90 %, from bottom to top, respectively.

decrease over the simulation time of 5 Myr. The discontinuous distribution of the density in
the core at later times is due to a small number of residual particles in that volume. However,
on very short time scales after the simulation start, roughly corresponding to the crossing time
of these subsystems, the density in the two smaller volumes first increases. This slight con-
traction of the inner cluster parts is due to the dynamical non-equilibrium state of the stellar
population, caused by the initial setup of a two-part density profile with a steeper slope in the
inner cluster region. Because the velocities of all stars are sampled from a Maxwellian distri-
bution with a dispersion that accounts for a cluster in virial equilibrium, the initially steeper
density profile and thus larger concentration of mass in the inner region is not balanced by the
too low velocity dispersion of the stars – it is in a subvirial state. Consequently, the subsystem
contracts until it is heated up sufficiently to sustain the pressure from the surrounding stars.

This is evident from a plot of the Lagrangian radii, representing volumes of constant mass
fractions. Fig. 4.4 shows that the initial contraction is most prominent for Lagrangian radii
of mass fractions between 5 % and 20 %, the latter value corresponding roughly to the mass
fraction contained initially in the inner cluster region with the steeper density profile. The
onset of contraction occurs from the inside out: the 5 % Lagrangian radius decreases ab initio
and reaches a minimum at ∼0.02 Myr, while the 20 % Lagrangian radius starts to decrease
at ∼0.04 Myr until a minimum at ∼0.1 Myr. This inside-out evolution is attributed to the
shorter dynamical time scale of a smaller cluster volume and causes both – a faster response
to the non-equilibrium state but as well a faster establishment of equilibrium at smaller radii
– and produces an outward propagating density wave. However, the results of the present
investigation are believed to be insensitive to this initial inner contraction because it is only
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weakly pronounced and does not lead to artificially high densities over a significant period of
time.

The Lagrangian radii of the larger mass fractions in Fig. 4.4 seem to show the formation
of a bound subsystem at ∼2 Myr until the end of the simulation. While a significant fraction
of the mass in the outer cluster region, represented by the 90 % and 70 % Lagrangian radii, is
moving outwards with roughly constant velocity in this period, the expansion of half of the
cluster mass slows down continuously, represented by the increasingly shallow slope of the
50 % Lagrangian radius.

Having discussed the global dynamical evolution of the cluster model, in the next section
the individual stellar interactions will be addressed. The leading problem is the effect of the
mutual perturbations of gravitational interactions in a cluster environment like the ONC on a
star’s circumstellar disc.

4.4. Disc-Mass Loss Induced by Star-Disc Encounters

In this section results of a previous work in the framework of a diploma thesis (Olczak et al.,
2006) and more recent results will be presented. The discussion of the previous results in the
first three sections shall provide a compact overview of the methodology that underlies the
present investigation of the disc-mass loss in star-disc encounters.

4.4.1. Introduction

In previous attempts to estimate the impact of stellar encounters on the disc mass it was found
that only in penetrating encounters can a significant amount of mass be stripped from the
disc (e.g. Clarke & Pringle, 1993; Scally & Clarke, 2001). Thus the influence of the cluster
environment on the evolution of young discs by this mechanism was estimated to be low:
assuming a typical disc size of 200 AU, and considering only encounters with separations of
less than 100 AU, Scally & Clarke (2001) found that just 3-4 % of all discs have the potential
to be destroyed by encounters. However, there are three main assumptions underlying this
estimate which tend to underestimate the gravitational perturbation:

(i) the evaluation of star-disc encounters only between equal mass stars,

(ii) the record of just one single encounter per star,

(iii) the evaluation of the closest instead of the most forceful encounter.

This finding gave rise to a detailed investigation of the encounter-induced disc-mass loss in
an ONC-like cluster environment, where these assumptions have been dropped. Because at
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present it is not possible to perform numerical particle simulations, where the stars including
their surrounding discs are sufficiently resolved to determine the effect of encounters on the
discs quantitatively, the dynamics of the stars and star-disc encounters have been treated in
separate investigations and the results combined to determine the disc destruction rate in the
cluster.

4.4.2. Isolated Star-Disc Encounters

Before investigating the cumulative effect of encounters on stellar discs in a cluster model
of the ONC, first the effect of such an encounter can be investigated by considering it to be
isolated from the rest of the cluster. For this purpose a parameter study of encounters between
stars of different masses according to the cluster mass spectrum was performed (Pfalzner
et al., 2005b; Olczak et al., 2006). This method involves the assumption that preferentially
two-body encounters occur in a cluster environment and that higher order encounters are
negligible (cf. Scally & Clarke, 2001).

In the following, the term “star-disc encounters” refers to encounters in which only one
of the stars is surrounded by a disc, in contrast to disc-disc encounters, which denominate
encounters in which both stars are surrounded by discs. In order to determine the disc de-
struction rate, a number of assumptions have been made:

1. The disc-mass loss is deduced from parameter studies of star-disc encounters.

2. Only two stars are involved in an encounter event, and three- (or even more) body
events are so rare that they can be neglected.

3. The discs are of low mass, i.e. Md� 0.1M?.

4. The discs around the stars do not alter the stellar dynamics in any significant way
(Umbreit, 2001).

5. Viscosity and self-gravitation are negligible for the disc dynamics.

6. The encounters are assumed to be coplanar and prograde.

7. The most forceful encounter is the most destructive one.

8. Repeated encounters cause an equal relative disc-mass loss.

The observational evidence that most discs in the ONC are of low mass Md, i.e. Md �
0.1M?, reduces the complexity of the numerical approach in several ways. Umbreit (2001)
showed that in encounters low-mass discs do not significantly influence the encounter orbit,
so that the results of the cluster simulations are applicable here. The low mass of the disc also
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allows self-gravitation and viscosity to be neglected (Pfalzner, 2004). In addition, the results
are scalable to other star masses. According to studies on inclined and retrograde star-disc
encounters (Heller, 1993; Clarke & Pringle, 1993; Ostriker, 1994; Heller, 1995; Hall et al.,
1996; Pfalzner et al., 2005b), the approximation towards coplanar and prograde encounters
can only be interpreted as an upper limit for the disc-mass loss.

This part of the investigation is mainly based on the earlier work by Pfalzner et al. (2005b),
who performed a parameter study of star-disc encounters where a star of mass M1 = 1 M�
surrounded by a disc is perturbed by the flyby of a second star of mass M2. The disc is
assumed to extend to rd = 100 AU and the surface density to have a r−1-dependence initially.
This study has been extended in terms of mass ratio and separation of the encounter partners
by Olczak et al. (2006) (see their Table 3 for the parameter range) to account for the parameter
range of encounters in the ONC model.

One major result of Olczak et al. (2006) was the finding that the relative disc-mass loss can
be fitted over the entire simulated parameter range to within 3 % by the complex function

∆Md

Md
=
√

M2

M2 +0.5M1
log

[
2.8
(

rp

rd

)0.1
]

exp

{
−
√

M1

M2 +0.5M1

[(
rp

rd

)3/2

−0.5

]}
, (4.6)

where M1 and M2 denote the mass of the perturbed star and the perturber, rp the separation
at the periastron, and rd the size of the disc. Two striking features of the disc-mass loss in
encounters should be noted: First, the maximum mass removed in a single encounter can
exceed 90% of the total disc mass. Thus in the case of a massive perturber the disc may be
disrupted heavily due to only one single encounter. Second, even at distances of several disc
radii massive companions have the potential to remove a significant fraction of the disc mass.
For example, an encounter with a M2 = 5M� star can still lead to more than 10% disc-mass
loss at a distance of three disc radii. Apart from the case of a single penetrating encounter,
a disc may also be destroyed on a longer time scale via a series of distant encounters by a
massive perturber.

As the cluster consists of a wide spectrum of star masses, the simulation results for M1 =
1M� are generalised by scaling the disc radius according to

rd = 150AU
√

M1[M�] (4.7)

which is equivalent to the assumption of a fixed force at the disc boundary for variable central
mass. Scaling the disc size with the star mass seems intuitively right, but observational results
do not give such a clear picture: Although Vicente & Alves (2005) derive a clear correlation
between disc diameters and stellar masses using a sample of proplyds from Luhman et al.
(2000), they see no indication for such a dependence when referring to data from Hillenbrand
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(1997). However, as Vicente & Alves (2005) pointed out, the present Trapezium is probably
not in its primordial state as various disc destruction processes have most likely altered the
disc sizes considerably. Nonetheless the simulation results are also investigated under the
assumption of a fixed disc radius, rd = 150 AU, uncorrelated to the mass of the star.

Eq. (4.6) is for coplanar, prograde encounters. According to studies on inclined and ret-
rograde star-disc encounters (Heller, 1993; Clarke & Pringle, 1993; Ostriker, 1994; Heller,
1995; Hall et al., 1996; Pfalzner et al., 2005b), this approximation can only be interpreted
as an upper limit for the disc-mass loss. However, the degree to which it overestimates the
disc-mass loss should be the same independent of the mass of the star, so that the quantitative
numbers could be reduced, but this should not change the qualitative results presented here.
This will be discussed in more detail in Section 4.4.5.

4.4.3. Disc-Mass Loss in a Cluster Environment

This section contains the main results of the diploma thesis (see Olczak et al., 2006). It
serves as an overview of the effect that encounters have on discs in the light of the less
restrictive assumptions as compared to previous studies and presented in the introduction.
Combining the results of the previous Section 4.4.2 and Section 4.3, the relative disc-mass
loss for each disc was obtained as a function of the simulation time. The parameters of
each stellar encounter were taken from encounter lists generated during the simulation (see
Section 3.3.4 for the numerical realisation). The calculation of the disc-mass loss due to
encounters was performed for 20 single runs and then averaged over all simulations.

According to the fit function (4.6), the relative mass loss of a stellar disc was obtained
from the disc size of the central star (scaled due to the stellar mass by using Eq. (4.7)), the
relative perturber mass, M2/M1, and the relative periastron, rp/rd. The errors of the estimated
relative disc-mass loss due to each encounter i, ∆i = ∆i(rp/rd), were assumed to be ∆i = 0.03
for rp/rd ≥ 1, ∆i = 0.05 for 1 > rp/rd ≥ 0.1 and ∆i = 0.1 if rp/rd < 0.1, according to the
statistical errors of the encounter simulations. The error estimate provides the definition of
an encounter: only perturbing events, for which the fit function Eq. (4.6) predicts a disc-mass
loss of at least 3 % are considered as “encounters”. In other words, an encounter is defined as
an event that definitely causes a disc-mass loss (in the frame of the applied prescription).

Olczak et al. (2006) showed that an improved encounter treatment which overcomes the
three restrictions of Scally & Clarke (2001) (as presented in the introduction) is important
because (i) the majority of the perturbed stars in the model clusters undergo more than one
encounter, (ii) a large fraction of the perturbed stars interact with a much more massive per-
turber, and (iii) the largest perturbation of a disc is caused by the gravitationally most domi-
nating body and not by the closest companion.

The improvement (i) has a large effect and is demonstrated in Fig. 4.5a: roughly half of all
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Figure 4.5.: Encounter statistics of stars. a) The upper panel illustrates the fraction of all perturbed stars
(red line) and the fraction of all repeatedly perturbed stars as a function of time. b) The
lower panel shows the fraction of perturbed stars as a function of time for three different
minimum relative perturber masses: M2/M1 > 10 (blue line), M2/M1 > 2 (green line),
M2/M1 > 1 (red line). For comparison the fraction of all perturbed stars is depicted as well
(black line).

discs that have been perturbed have been done so repeatedly. Thus, a realistic investigation
of stellar encounters in young clusters and their effect on protoplanetary discs cannot be
performed without considering the entire encounter history of each star.

In Fig. 4.5b the effect of (ii) is shown by plotting the fraction of perturbed stars for different
mass ratios of the perturber and the perturbed star, M2/M1. If this quantity is significantly
higher than unity, then even non-penetrating stellar encounters have the potential to remove
the majority of a disc’s mass. It is evident from Fig. 4.5b that roughly half of all perturbed
stars (black line) was subject to an encounter with an at least 2 times more massive perturber
(green line). The fraction of perturbed stars that were involved only in encounters with less
massive stars is small and on the order of∼10 % of all perturbed stars, given by the difference
of the black and red line. Hence the mass function of a stellar population is an important
ingredient for the effect of encounters on circumstellar discs and causes encounters of equal-
mass stars to represent a minority of perturbing events.

The effect of the improvements (i), (ii), and (iii) on the resulting disc-mass loss is pre-
sented in Fig. 4.6. Here the fraction of stars with discs is plotted as function of time for
the entire ONC and its dense central region, the Trapezium Cluster (see Section 4.1). A star
is considered disc-less if the disc mass has been reduced (due to encounters) by more than
90 %. It is evident that the disc-destructive effect of encounters is most prominent in the early
cluster evolution, when densities are high (see Fig. 4.3), causing roughly 20 % of the stars in
the Trapezium Cluster to lose their discs in about 0.1 Myr. With increasing time the fraction
of remaining discs decreases further and reaches nearly an asymptotic value at the end of
the simulation, which implies that star-disc encounters in a dense system like the Trapezium
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Figure 4.6.: Time evolution of the fraction of stars that posses a circumstellar disc, for a region of the
size of the ONC (blue), R = 2.5 pc, and the Trapezium Cluster (red), R = 0.3 pc.

Cluster could even destroy up to ∼25 % of all discs. A comparison of the resulting fraction
of remaining discs in the Trapezium with the observations of Lada et al. (2000) shows that
their derived disc fraction of 80-85 % is in agreement with the numerically obtained fraction.
However, one has to stress that several simplifying assumptions enter into the simulations
(as discussed in Section 4.4.2) and thus a quantitative comparison has to be interpreted with
caution.

Having investigated the disc-mass loss of cluster stars due to encounters in general and
found that massive stars play an important role in this mechanism, it is worth to have a
detailed look on how discs are influenced by encounters in dependence of their host star’s
mass.

4.4.4. Disc-Mass Loss and Stellar Mass

The dynamical model of the ONC adopted for this part of the investigation contains only
single stars without the potential of the background molecular cloud OMC 1. To minimise
statistical variations, 100 simulations of the initial setup with different random number seeds
have been performed. Of the final simulations, 40 fulfilled the criteria of a valid representation
of the ONC and have been used for the analysis presented here.

Applying Eq. (4.6) to the results of the encounter tracking in the cluster simulations, the av-
erage disc-mass loss of stellar mass groups as a function of time is obtained. The mass ranges
of the three groups have been established by requiring equal sized mass bins in logarithmic
space, weighted by the slope of the IMF in the corresponding mass range (analogous to the
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Figure 4.7.: Temporal dependence of the average relative disc-mass loss of three different stellar mass
groups: low-mass stars, 0.08M� ≤ M? < 0.35M� (blue line), intermediate-mass stars,
0.35M� ≤ M? < 3.7M� (green line), and high-mass stars, 3.7M� ≤ M? < 50M� (red
line). The solid lines mark the results for the Trapezium Cluster, the dotted lines those for
the entire ONC.

derivation in Appendix D.1). The weighting is crucial because otherwise the steep slope at
high masses (α =−2.3, see Section 2.4) would reduce the number of stars in the high-mass
range, leading to poor statistics. Looking at the temporal development of the disc mass of low-
mass stars (0.08M� ≤ M? < 0.35M�), intermediate-mass stars (0.35M� ≤ M? < 3.7M�)
and massive stars (3.7M� ≤M? < 50M�) separately, Fig. 4.7 shows that massive stars have
a much higher disc-mass loss than stars of lower mass, which manifests itself very early on
in the cluster development. This is valid for the entire ONC but even more so for the central
Trapezium Cluster.

Taking a snapshot at 2 Myr (the ONC age is estimated to be 1-2 Myr and the age of the
young cluster IC 348 is roughly 2-3 Myr), the red bars in Fig. 4.8 show the average relative
disc-mass loss as a function of the mass of the star for the Trapezium region. At 2 Myr the
disc-mass loss is ∼30 % for intermediate-mass stars whereas for stars with M? = 20M� it is
∼60 % and for higher mass stars close to 100 %. This last value has to be taken with some
care because of the poor mass loss statistics in this case.

Scaling the disc size with the star mass as given by Eq. (4.7) seems intuitively right, but ob-
servational results do not give such a clear picture: Although Vicente & Alves (2005) derive
a clear correlation between disc diameters and stellar masses using a sample of proplyds from
Luhman et al. (2000), they see no indication for such a dependence in the data of Hillenbrand
(1997). However, as Vicente & Alves (2005) pointed out, the present Trapezium is probably
not in its primordial state and various disc destruction processes have most likely altered the
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Figure 4.8.: The average relative disc-mass loss at 2 Myr for the Trapezium Cluster as a function of the
stellar mass. The red bars show the results assuming the disc radius to scale as in Eq. (4.7)
whereas the blue bars indicate the data for a fixed disc radius of 150 AU.

disc sizes considerably.
If one assumes that the disc size does not depend on the stellar mass as in Eq. (4.7) but is

instead 150 AU for all stars, this results in a somewhat smaller relative disc-mass loss for the
massive stars and an increase for the low-mass stars (see blue bars in Fig. 4.8). Nevertheless, it
still holds that the disc-mass loss is considerably larger for massive stars than for intermediate-
mass stars. By contrast, for the low-mass the relative disc-mass loss is now higher than for
intermediate-mass stars, leaving the stars with masses in the range ∼1-10 M� as the ones
with the lowest disc-mass loss in the cluster at 2 Myr. This corresponds to the observational
results of Lada et al. (2006) of the young cluster IC 348.

To illustrate the underlying reason for this difference in relative disc-mass loss, Fig. 4.9
shows the average number of encounters and the average relative disc-mass loss per encounter
as a function of the stellar mass. It can be seen that the number of encounters is nearly
constant for low- and intermediate-mass stars but increases considerably for high-mass stars.
In contrast, the average disc-mass loss per encounter is a few times higher for low- and
intermediate-mass stars, but declines steeply for higher masses.

Consequently, the dynamical background of the disc-mass loss of high-mass stars and
lower mass stars is quite different: the mass loss of lower-mass stars occurs through few
strong encounter events, whereas the disc of high-mass stars is removed via a steady nibbling
by many encounters with stars of lower mass.

Fig. 4.10 shows the average relative disc-mass loss as a function of the distance from
the cluster centre for low-, intermediate- and high-mass stars. The disc-mass loss for massive
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Figure 4.9.: The average number of encounters per star up to 1 Myr in logarithmic mass bins is rep-
resented as blue bars for the Trapezium Cluster. The red bars show the average relative
disc-mass loss per encounter for the case of fixed size discs.
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Figure 4.10.: The average relative disc-mass loss as a function of the radial distance from the cluster
centre for low-mass, 0.08M� ≤M? < 0.35M� (blue line), intermediate-mass, 0.35M� ≤
M? < 3.7M� (green line), and massive stars, 3.7M� ≤M? < 50M� (red line). Here the
disc size was assumed to be scaled with the stellar mass. The vertical black dashed line
marks the radial extension of the Trapezium Cluster.

stars is significantly larger in the inner cluster region but this is no longer obvious for distances
larger than∼0.3 pc. The radial distribution of the mass loss can be explained as follows: First,
the frequency of encounters in the cluster centre is highest due to the peak stellar density, and
second, the larger fraction of high-mass stars in the cluster centre (as a consequence of mass
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Figure 4.11.: Average relative disc-mass loss as a function of the stellar mass assuming constant disc
radius. The blue bars represent stars with low-mass discs, Md� 0.1M?, whereas the red
bars show the results for high-mass discs, Md & 0.1M?, assumed here to surround stars of
M? ≥ 5M�.

segregation) increases the probability for massive stars to be perturbed by other high-mass
stars, resulting in a higher disc-mass loss.

During the last few years a number of massive stars surrounded by high-mass discs (Md >

0.1M?) have been detected (Zhang, 2005, and references therein). The question is how would
the above results change if all massive stars had initially massive discs? As the interaction
dynamics of high-mass discs is much less understood than for low-mass discs, only an esti-
mate can be given here. This will be done by placing an upper limit and assuming a disc to
have the same mass as its massive host star, Md = M?. Numerically this has been realised by
simply assuming that the disc particles are all twice as strongly bound to their host star. This
is obviously a strong simplification of the effect of high-mass discs and more detailed inves-
tigations would be necessary in future. However, Fig. 4.11 shows that although the stronger
binding naturally leads to a smaller disc-mass loss for the massive stars than before, the effect
is only weak. Still the high-mass stars lose a significantly higher proportion of their disc mass
than intermediate-mass stars.

4.4.5. Discussion

In the previous sections it was stated that the results represent an upper limit for the destruc-
tion of discs by encounters in the ONC. In the following the underlying assumptions will be
discussed in more detail and estimates for lower limits of the mass loss given.

The situation described above contains, like previous work, a contradiction – it was as-
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Figure 4.12.: Number of encounters as a function of the eccentricity (logarithmic bins), plotted for three
different groups by means of disc-mass loss per encounter. The blue surface represents
all encounters (see Section 4.4.2 for the definition of an encounter), the green those that
removed at least 50 % of the disc-mass, while the red stands for the most destructive
encounters that caused a disc-mass loss of at least 90 %.

sumed that each star is initially surrounded by a disc while at the same time the disc-mass
loss was attributed to the perturbation of a disc-less star. For consistency the interaction
should be calculated with both stars being surrounded by a disc. However, the reason not to
do so is twofold: (i) encounters where both stars are surrounded by discs are less well inves-
tigated, and (ii) Pfalzner et al. (2005a) showed that the star-disc results can be generalised
to disc-disc encounters as long as there is no mass exchange between the discs. In the case
of a mass exchange, i.e. close encounters between star-disc systems, the discs can be replen-
ished to some extent, which means that the disc-mass loss will be overestimated for the most
perturbing events.

The effect of restricting all encounters to parabolic cases, ε = 1, as done by using Eq. (4.6),
is not as severe for an ONC-like cluster as could be assumed. Formation of persistent binaries
(ε < 1) can be neglected as in this study it happens in less than 0.5 % of all encounters.
However, transient binary systems (cf. Pfalzner & Olczak, 2007b), i.e. formation of bound
states over a small number of orbits, does occur in 1/4 of all encounters. But most of these
configurations are very eccentric, with only 10 % of all encounters having ε < 0.8. The
situation is more complicated for hyperbolic encounters, ε > 1, where the disc-mass loss is
lower due to the shorter interaction time of perturber and star-disc system. However, most
encounters in the cluster simulations are parabolic or only mildly hyperbolic. This is shown
in Fig. 4.12, where the number of encounters as a function of eccentricity is plotted for three
different groups by means of disc-mass loss per encounter. Considering in the following
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Figure 4.13.: Relative disc-mass loss normalised to the strict parabolic case (ε = 1) as a function of
eccentricity for all star-disc simulations that have been performed (see Section 4.4.2
for the adopted parameter space). Blue lines mark simulations of relative perturber
masses M2/M1 < 1, whereas red lines represent encounters with more massive perturbers,
M2/M1 ≥ 1. The median of the curves is represented by the thick solid black line. The ver-
tical black dashed line marks ε = 2, the upper range of the here adopted “pseudo-parabolic”
encounter regime.

encounters with 0.8 ≤ ε ≤ 2.0 as “pseudo-parabolic”, i.e. with a perturbing effect that is
well described by Eq. (4.6), ∼45 % of all encounters (the group with ∆Md/Md ≥ 0.03) are
pseudo-parabolic. In the case of strongly perturbing encounters,∼60 % are pseudo-parabolic
for disc-mass losses larger than 50 %, and even ∼70 % for disc-mass losses above 90 %.

The decision to extend the regime of “parabolic” encounters to ε = 2 is justified by Fig. 4.13.
Here the relative disc-mass loss has been normalised to the strict parabolic case (ε = 1) as
a function of eccentricity for all star-disc simulations that have been performed (see Sec-
tion 4.4.2 for the adopted parameter space). One finds that encounters with ε = 2 in most
cases remove at least 80 % of the relative disc-mass loss that is removed in the strict parabolic
case. Only for smaller relative perturber masses, M2/M1 < 1, the relative disc-mass loss for
ε = 2 can decrease to 60 % of the value at ε = 1. The consequence of assuming only strict
parabolic encounters in the present investigation has thus most probably a minor effect on
the presented results for the low- and intermediate mass stars, that are mostly subject to few
strong encounters causing substantial mass removal. However, in the case of high-mass stars
there might be a significant overestimation, because here mainly the cumulative effect of
many weak encounters (with perturbers of lower mass) acts destructive on the disc.

Another assumption addresses the alignment of discs. It is still an open question whether
discs in clusters are in any way aligned and whether there is a preference for coplanar or
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prograde encounters due to the common formation history of the stars and discs involved. If
the coplanar, prograde encounters considered here are in any way favoured, the strong per-
turbations assumed in the present investigation would be common in an ONC-like cluster.
However, in a cluster that is not highly flattened it seems rather unlikely that the encounter
planes are aligned to a high degree. Therefore one would expect most encounters to be non-
coplanar. However, Pfalzner et al. (2005b) showed that, as long as the inclination is not larger
than 45◦, the mass loss in the encounter is only slightly reduced in comparison to a coplanar
encounter. Thus, if there is any preferred rotational axis in a cluster, as could be expected
due to its rotation, a random distribution of inclinations would be excluded. Otherwise, if the
orientation would be completely random, the disc-mass loss could be significantly overesti-
mated in 3/4 of cases and would account for only about 1/4 of the encounter events in the
cluster.

In this investigation it was assumed that in repeated encounters the relative disc-mass loss
is the same. Though this seems to be in contrast to the prevailing view that an encounter
“hardens” a disc, so that consecutive encounters become less effective in removing disc ma-
terial, Pfalzner (2004) found that for equal mass perturbers the relative disc-mass loss in a
second encounter was the same as in the first. It is important to note that the calculations of
Pfalzner (2004) are ballistic particle simulations, neglecting the effects of viscosity. Some
authors have shown that viscosity can have a large impact on disc evolution (e.g. Clarke &
Pringle, 1993). However, Pfalzner et al. (2005a) have as well investigated the effect of vis-
cosity on different disc parameters and found no significant differences neither in the mass
loss nor in the density distribution.

Inevitably, three simplifications had to be applied which underestimate the disc-mass loss
due to encounters. First, it was assumed that all encounters can be described as two-body pro-
cesses. As would be expected, Umbreit (2005) found from three-body encounter simulations
that the resulting discs are flatter and less massive than after similar two-body encounters
with the same minimum encounter distance. However, since the calculation of the mass loss
was obtained in each case with the gravitationally dominant perturber and the scenario of
two nearly equally perturbing objects is very unlikely, additional contributions from lower-
order perturbers should be minor. Second, the IMF has been generated with a cut-off at
substellar masses (M ≤ 0.08M�), which means that potential low-mass perturbers have not
been included in the simulations. However, this simplification should be as well uncritical
because the disc-mass loss falls below 10% for mass ratios below 0.1, so the contribution
from low-mass perturbers for intermediate to massive stars is negligible as long as they are
not penetrating the disc. Finally, it has not been considered that a considerable proportion of
the stars in the ONC are not single stars but binary systems. This third simplification is much
harder to quantify and most probably has a non-negligible effect. Further studies would be
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needed to see if binary systems would lead to a different disc destruction rate.

4.4.6. Conclusion

The present investigation of the ONC, combining cluster simulations with encounter inves-
tigations, shows that potentially up to 20-25 % of the discs in the Trapezium Cluster could
have been destroyed by encounters. The more sophisticated treatment of the disc-mass loss
expected from repeated stellar encounters with massive perturbers implies that it is plausible
that the 15-20% of discless stars observed in the Trapezium Cluster (Lada et al., 2000) may,
in a large fraction of cases, result from star-disc collisions. This is in contrast to earlier inves-
tigations, and the difference results from a much broader encounter data set for the disc-mass
loss including massive perturbers and the evaluation of the entire encounter history of each
star in the cluster. The central result of this study is that it is probably premature to dismiss
encounters as an important destruction mechanism for discs in clusters.

It is found that the most massive bodies dominate the disc-mass loss, with significant inter-
action even beyond a separation of ten disc radii for a ONC-like entity. This is particularly so
for the Trapezium Cluster, where some dozen massive stars are surrounded by hundreds of
lighter bodies. Consequently, it is the upper end of a cluster’s mass distribution that to a large
degree determines the fate of the circumstellar discs in its vicinity and thus there are in princi-
ple two quantities that are mainly regulating the effect of stellar encounters on the mass-loss
from protoplanetary discs: namely the local stellar density which determines the encounter
probability, and the upper limit of the mass range, which affects the maximum strength of the
perturbing force.

Consequently, it is shown that the relative disc-mass loss for intermediate-mass stars is
less than for massive stars. If one assumes that the disc size scales with the stellar mass,
the relative disc-mass loss is even lower for low-mass stars. However, if the disc size is
independent of the stellar mass then low-mass stars have as well a higher relative disc-mass
loss than intermediate-mass stars in accordance with Lada et al. (2006). In this case stars
with 3M� . M? . 10M� suffer the least disc-mass loss.

The reason for greater disc-mass loss of massive stars is twofold: First, high-mass stars are
found preferentially in the cluster core (due to dynamical mass segregation) where the stellar
density and thus encounter frequency is higher, and second, even in the same cluster region
do the more massive stars suffer greater disc-mass loss than low-mass stars, a result that can
be traced to the larger number of encounters suffered by these more massive stars. The grav-
itational focusing of low-mass stellar orbits by massive stars enhances the encounter rate be-
tween the massive star and other cluster members for any particular periastron separation. So
not only for the ONC investigated here, but generally there should be more intermediate-mass
stars than massive stars surrounded by discs in the inner regions of high-density clusters, pro-
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vided they contain a sufficient number of massive stars. This prediction is vitally supported
by observations of IC 348 (Lada et al., 2006), NGC 2362 (Dahm & Hillenbrand, 2007), or
the massive cluster NGC 6611 (Oliveira et al., 2005), finding a larger fraction of discs around
intermediate-mass stars than around more massive stars.

Interestingly, as the number of massive members in a stellar group seems to be correlated
to its initial density (see Testi et al., 1997; Bonnell et al., 2004) and the IMF appears to be
uniform for all Galactic environments of star-formation (e.g Kroupa et al., 1993; Muench
et al., 2000; Kroupa, 2001), the dependency of the disc-mass loss due to encounters seems to
be mainly reduced to one parameter, namely the density distribution of the considered stellar
system. Whether the density of a stellar system is indeed the decisive parameter in terms of
the effect of star-disc encounters will be addressed in Chapter 6.
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5. Dynamical Imprints of Star-Disc

Encounters in the ONC

5.1. Introduction

The main focus of this chapter is the question of whether there is direct observational evi-
dence for encounters among star-disc systems in young clusters and for disc-mass loss due
to encounters. It is difficult to distinguish observationally whether photoevaporation or grav-
itational interaction are responsible for the loss of (outer) discs. The reason is that in both
cases interaction with a massive star is the most destructive process. Thus the observation
of a decreased disc frequency in the cluster core, as derived in the previous section, does not
allow one to favour either of the two mechanisms. The difficulty of tracing stellar encoun-
ters directly by observations is their short duration. However, an unambiguous imprint of an
encounter among stars is the high velocity of a star which has been expelled in a close grav-
itational interaction, mostly as a result of a three-body encounter (see Heggie, 1975). Thus
an analysis of the velocity distribution of a cluster is the key to finding candidates of close
encounters between young stars.

In Section 5.2 results from a search for candidate stars of close encounters in the publicly
available observational data of the ONC are presented. For this purpose the investigations of
Jones & Walker (1988), Hillenbrand (1997), and Hillenbrand et al. (1998) have been reanal-
ysed for stellar velocities and infrared excess. The basic properties of the ONC used for the
numerical model have been described in Section 4.1. Based on these, theoretical estimates
and observational data related to binary populations and encounters in the ONC are discussed
in Sections 5.2.1 and Section 5.2.2. Afterwards, results from a numerical approach to this
problem are presented (Section 5.3). Observational and numerical results are summarised
and discussed in Section 5.4.

5.2. Observations

The search for candidate stars of close encounters from observational data concentrates on
velocity surveys of Orion. There exists only one large data set of the ONC that provides veloc-
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ity information for several hundred stars, the proper motion survey of Jones & Walker (1988).
Fortunately, the same stars have been analysed by Hillenbrand et al. (1998) for infrared ex-
cess emission as an indicator of circumstellar material. They defined a quantity measuring
the magnitude of the near-infrared excess, ∆(IC−K),

∆(IC−K) = (IC−K)observed−0.5AV − (IC−K)photosphere, (5.1)

where the first term is the observed IC−K colour, the second term the contribution of red-
dening calculated from the extinction values derived from V − IC colours as in Hillenbrand
(1997), and the third term the contribution of the underlying stellar photosphere. This mea-
sure of the near-infrared excess, ∆(IC−K), traces only the innermost (< 0.1 AU) part of the
circumstellar disc. Hence, the absence of such emission is not to be confused with a complete
absence of a protoplanetary disc, yet is dependent on a number of parameters, such as disc
accretion rate, inclination, inner hole, and stellar mass and radius (Hillenbrand et al., 1998).
However, in the following, stars that lack infrared excess emission will be referred to as “dis-
cless”, emphasising that these stars may be well surrounded by circumstellar material but do
not show the typical infrared excess of a young star-disc system.

In addition, Hillenbrand (1997) has investigated stellar properties like mass and age. The
investigation is based on optical photometric and spectroscopic data and covers only about
half of the stellar population of the ONC, while the more embedded stars are not accessible
at this wavelength. However, Hillenbrand (1997) states that the investigated stellar sample
is representative of the entire population of the ONC. Masses and ages were derived from
an HR diagram via comparison with theoretical pre-main-sequence evolutionary tracks. This
method leaves some uncertainty as to the absolute stellar age (∼0.5 dex, see Appendix B.2)
and mass calibrations, with mass deviations of about factors of two and age differences of sev-
eral Myr among different models. Additionally, photometric errors translate into uncertain-
ties of the derived masses, but this is significant only for stars more massive than M≈ 1.5 M�.
However, all these sources of uncertainties are less relevant for the present investigation be-
cause (i) the stars of interest are of low mass as will be shown later, and (ii) the derived
conclusions are based mainly on relative masses and ages.

The data of the three investigations described have been merged and stars for which mea-
surements of proper motion or infrared excess are missing have been excluded, resulting in a
database of 655 stars. In order to achieve the most secure distinction possible between stars
with infrared excess and pure photospheric emission, the criterion of Sicilia-Aguilar et al.
(2005b) has been adopted, excluding all stars that have an infrared excess ∆(IC−K) in the
range 0 < ∆(IC−K) < 0.5. A star is classified as discless if ∆(IC−K)≤ 0, or as a star-disc
system if ∆(IC−K)≥ 0.5. This additional selection criterion reduces the sample of stars that
have been used for this investigation to 405, among them 266 star-disc systems and 139 stars
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Figure 5.1.: Velocity distribution from observational data, adopting a distance of 420 pc to the ONC
(cf. Jeffries, 2007; Menten et al., 2007). See text for details of its construction. The bin
width is 0.7 km s−1. The stars have been divided into two groups according to the disc
signature ∆(IC −K) (see text): red boxes represent stars with IR-excess, blue lines rep-
resent stars with pure photospheric emission. For comparison a Gaussian with dispersion
σ = σ JW

1D = 2.5 km s−1 (Jones & Walker, 1988) is superposed (black solid line). a) Complete
sample of stars in the ONC with available proper motions from Jones & Walker (1988) and
infrared excess from Hillenbrand et al. (1998). b) Like a), but zoomed into the lower part.
c) Like b), but with restricted stellar ages (see text). d) Like b), but with restricted stellar
ages and velocity errors as described in the text.

lacking any excess emission.
Fig. 5.1 shows the velocity distribution of stars with and without discs, adopting a distance

of 420 pc to the ONC (cf. Jeffries, 2007; Menten et al., 2007). The velocity distribution has
been built by binning each component of the proper motion, µx and µy, of each star separately,
not its total two-dimensional motion, or in other words by summing the Gaussian velocity
distribution of each spacial direction, x and y, which again results in a Gaussian. The reason
not to bin the total two-dimensional motion is the improvement of statistics due to the twice
as large data set. For comparison, a Gaussian with a one-dimensional velocity dispersion
σ = σ JW

1D = 2.5 km s−1, as determined for the ONC by Jones & Walker (1988), is superimposed
(dashed line). The distribution shows the expected features: At velocities µx,y . 3σ JW

1D the
shape is approximately Gaussian, though a distinct peak at zero velocity is present. This
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Figure 5.2.: Distribution of age and velocity of the high-velocity stars in the ONC, classified as star-disc
systems (red open circles) and discless stars (blue filled circles). The mean age of the ONC,
t = 1 Myr, and the minimum one-dimensional velocity of the high-velocity sample, 3σ JW

1D ,
are indicated by the horizontal and vertical dashed line, respectively. The uncertainty of
the determined ages of ∼0.5 dex (see Appendix B.2 for the derivation) is indicated by the
vertical error bar. At high velocities the (horizontal) velocity error bars are smaller than the
symbol size.

peak is only prominent for the x-components of the proper motion but is independent of the
applied binning. One may suppose that this is an artifact of the plate reduction technique
used by Jones & Walker (1988). At higher velocities, µx,y & 3σ JW

1D , there is an overabundance
of stars when compared with the theoretically expected Gaussian distribution. In this regime
stars are not bound energetically to the cluster (see Binney & Tremaine, 1987, Eq. 8-3). In
the following these stars will be referred to as “high-velocity stars”.

The number of high-velocity stars, Nhvs,obs = 50, is remarkably high, much higher than the
theoretically expected Nhvs . 15 (for a derivation see Section 5.2.2). In fact, Nhvs,obs should
be even lower than the theoretical Nhvs because only about 1/5 of the ONC stellar population
is covered by the observational data. The reason is most likely a contribution from foreground
stars, which show large proper motions due to projection effects. In order to exclude probable
foreground stars from the sample of ONC stars, the age as a function of the velocity of the
high-velocity stars has been plotted in Fig. 5.2, again for the two groups of discless stars and
star-disc systems. Two opposite trends are visible: The discless stars with ages t > 1 Myr
have a ∼10 times higher maximum velocity than younger ones (∼200 km s−1 compared to
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∼20 km s−1) and a twice as high mean velocity (∼30 km s−1 compared to ∼13 km s−1). This
strong correlation is likely due to a large fraction of foreground objects among the stars
with ages t > 1 Myr, and since this age boundary is consistent with the mean cluster age, it
marks a conservative upper limit to the age of probable cluster members. Conversely, the
star-disc systems are similarly distributed in both age groups, with comparable maximum
and median velocities (∼25 km s−1 and ∼11 km s−1, respectively). However, all stars with
ages t > 1 Myr have been excluded in the further discussion for three reasons: (i) the age of
these stars exceeds the simulated cluster age, so they are dynamically distinct, (ii) at least
some of these stars might not be members of the ONC due to their high age (and velocity),
and (iii) protoplanetary discs with ages t > 1 Myr may be subject to significant evolution due
to internal processes1, so that the effect of encounters could not be quantified.

Of the group of high-velocity stars younger than 1 Myr, the “probable high-velocity clus-
ter members”, about half show disc signatures, the rest does not. The fact that stars with
velocities of several tens of km s−1 are not present in this group is in accordance with dy-
namical estimates: the probability of both the generation and detection of stars with such
high velocities is very low due to the need for a very close approach and short traverse of the
cluster.

The uncertainties in the estimated ages of stars with and without infrared excess emission
do not alter the fact that some of the youngest high-velocity stars lack infrared excess. This is
noteworthy because in the early stages of stellar evolution one would expect accretion rates
to be high and circumstellar material to be close enough to the star that significant excess
emission can be detected. However, because the excess emission measured by ∆(IC−K)
originates close to the stellar surface, it is strongly dependent on the geometry and orientation
of the disc. A more robust and sensitive indicator of circumstellar discs is the K−L colour
(Meyer et al., 1997; Haisch et al., 2000), tracing material out to radii of ∼0.1 AU (Haisch
et al., 2005). The “discless” stars, ∆(IC−K) ≤ 0, have been thus cross-checked for excess
emission at longer wavelengths, ∆(K−L). The results are shown in Table 5.1.

Two of the stars previously determined as “discless” do show a typical emission signature
of warm circumstellar matter. Four high-velocity stars remain that lack infrared excess. It
is not possible to determine whether the pure photospheric colours point to the absence of a
circumstellar disc. This possibility will be discussed later.

The positions and velocity vectors of the selected probable high-velocity cluster members
have been plotted in Fig. 5.3a. Two features are apparent: (i) Most high-velocity stars are
concentrated in the inner tenths of a parsec around the most massive ONC member, θ 1C Ori,

1According to studies of properties and evolution of protoplanetary discs in young clusters (e.g. Hillenbrand, 2005;
Sicilia-Aguilar et al., 2006), it is valid to assume that the protoplanetary discs in the ONC have been only
marginally subject to internal disc processes. As such, it is assumed in the following that the effect of external
processes on discs, i.e. photoevaporation and encounters, have not been masked by internal processes at the
current age of the ONC.
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Figure 5.3.: Positions and velocities of high-velocity star-disc systems (red open circles) and discless
stars (blue filled circles) in the ONC. The frames are centred on the most massive star,
θ 1C Ori, which is marked by a cross. Thin lines indicate the distance (in pc) a star would
have moved in a period of 2 · 104 yr. Thick lines and the opening angle reflect the error of
the magnitude and the direction of the proper motion, respectively. a) Sample of all high-
velocity stars with ages < 1 Myr. b) Restricted sample of high-velocity stars with ages
< 1 Myr: only stars fulfilling the constraints on the velocity errors as discussed in the text
are shown.

and (ii) “outliers” are located more than 1 pc from the cluster centre with some stars moving
in radial directions away from the cluster centre. Although one would expect the former, as
most encounters usually happen in the dense cluster centre, there are two unexpected features:
(i) The region between the cluster centre and outer cluster parts, 0.4 pc . r . 1.0 pc, is devoid
of high-velocity stars, and (ii) the velocity vectors of several stars in the outer cluster parts
do not point away from the cluster centre (as if these stars had an encounter in the less dense
cluster parts). In order to be confident that the encounter candidate stars are indeed high-
velocity stars and not affected by observational uncertainties, the sample of high-velocity
stars is restricted to maximum velocity errors of less than 30 % or below 2.0 km s−1. This
reduces the number of high-velocity stars to a total of only eight, among them just one star
without infrared excess, JW 45. The corresponding position-velocity diagram is shown in
Fig. 5.3b (see also the corresponding velocity distribution in Fig. 5.1d). However, apart
from the concentration of high-velocity stars close to the cluster centre, the same features
as in Fig. 5.3a are apparent. The reason for the different central concentration is the strong
acceleration of stars close to the cluster centre which results in large errors of the derived
proper motions. Consequently the velocity error criterion preferentially excludes stars close
to the cluster centre. The particular features will be addressed in Section 5.3, where the results
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from numerical simulations of the dynamical model of the ONC is presented.
Because binaries can have a strong impact on the evolution of cluster dynamics, the “stan-

dard” cluster model of the ONC, as discussed in Section 4.2, is extended here by the treatment
of binaries. In the next section a summary of the main properties of the ONC binary popula-
tion that determine the model setup is given.

5.2.1. Binaries in the ONC

In the ONC the binary rate for solar-type stars is ∼50 %. From observations alone there is
only a very limited knowledge of the distribution of binary periods, eccentricities or mass
ratios of the ONC. However, combining observational data and numerical simulations, the
initial properties of the primordial binary population in a stellar aggregate have been modelled
by Kroupa (1995b) and Kouwenhoven et al. (2007). These can be applied to some degree to
the ONC.

The investigation of Kroupa (1995b) is based on the properties of the Taurus-Auriga binary
population and constructs the primordial population by inverse dynamical population synthe-
sis (see Kroupa, 1995a) and pre-main-sequence eigenevolution. The resulting distributions
are approximately the log-normal period distribution fP(P) of Duquennoy & Mayor (1991),

fP(P) ∝ exp
[
− (logP−µP)2

2σ2
P

]
, (5.2)

with mean µP≡ logP = 4.8 and standard deviation σP≡σlogP = 2.3, P in days, a thermally
relaxed eccentricity distribution fe(e),

fe(e) = 2e, 0≤ e < 1, (5.3)

and a mass ratio distribution fq(q) obtained by random pairing of stars,

fq(q) ∝ qγq , (5.4)

where q = M2/M1, M1 the primary, M2 the secondary mass, and γq = α , α the slope of the
mass function of the stellar system.

The log-normal period distribution fP(P) results in an approximately log-normal semi-
major axis distribution fa(a), the shape of which is slightly dependent on the distribution
over binary mass M (Kouwenhoven et al., 2007):

loga =
2
3

logP− 1
3

log
(

4π

2GM

)
, σloga =

2
3

σlogP. (5.5)
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Kouwenhoven et al. (2007) have analysed the current binary population of Scorpius OB2,
under the reasonable assumption that it is still close to its primordial state. Accounting for
different observational biases by means of comparison with simulated observations of model
associations, they recovered a somewhat different primordial binary population than Kroupa
(1995b): The semi-major axis distribution of Sco OB2 is most consistent with a flat distribu-
tion in logarithmic space, and is equivalent to

fa(a) ∝ aγa , amin ≤ a≤ amax, (5.6)

with amin≈ 5 R�, amax≈ 5 · 106 R�, and γa =−1, which is also known as Öpiks law (Öpik,
1924). The eccentricity distribution could not be well constrained, but the observations are
consistent with a thermal distribution, given by Eq. (5.3). Unlike Kroupa (1995b), Kouwen-
hoven et al. (2007) find a power law dependence of the mass ratio distribution with γq≈−0.4,
which is much flatter than γq = α (see Section 2.4 and Eq. (2.17)), and favours massive com-
panions for massive stars.

The model of Kouwenhoven et al. (2007) seems more applicable for the present investiga-
tion, as observational studies of the ONC favour a flat distribution of the semi-major axes (e.g.
Padgett et al., 1997; Reipurth et al., 2007). Theoretical considerations based on three-body
encounters give similar results (Valtonen, 1997).

A thermal eccentricity distribution is expected from energy equipartition as a result of
multiple soft encounters (Heggie, 1975) and is also found from observations, though only
for binaries with separations a & 10-50 AU. Very close systems are subject to secularisation
due to tidal effects occurring during stellar evolution (Duquennoy & Mayor, 1991; Mathieu,
1994).

The shape of the observed mass ratio distribution is not well constrained by observations.
However, to a good approximation the mass ratio distribution can be described by a power law
as given by Eq. (5.4) over a wide mass range (e.g. Trimble, 1990; Malkov & Zinnecker, 2001;
Rucinski, 2001; Shatsky & Tokovinin, 2002; Valtonen, 2004). A single mass ratio distribution
for primordial binaries as given by Eq. (5.4) with γq =−0.4 as derived by Kouwenhoven et al.
(2007) is thus favoured for the present investigation.

Binaries have strong effects on the overall cluster dynamics mainly through close interac-
tions with single stars or other multiples. In the following the typical encounters that could
generate high-velocity stars are estimated.

5.2.2. Three-body encounters in the ONC

As is well known, the non-hierarchical motion of three bodies, known as the three-body
problem, has no analytical solution, and the chaotic motion of the members can only be
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investigated numerically in a statistical manner (see Valtonen & Mikkola, 1991). In her study
of triple systems with negative total energy, Anosova (1986) found that about 95 % of three-
body systems decay after a close triple approach of the components. In most cases (∼80 %),
ejection leads to escape, but can also result in the formation of a hierarchical triple system,
with one body in an extended orbit. The lowest mass member has the highest probability of
being ejected, about 80 %.

In the following it is assumed that high-velocity stars are typically generated in triple sys-
tems with negative total energy. This assumption will be justified later in this section. If the
motion has not been significantly perturbed since the encounter, one can draw conclusions
about the underlying encounter parameters from the dynamics of the ejected body. In the case
of the ONC, it is valid to assume that high-velocity stars with velocities υ ≥ 3σ JW

3D ≈ 13 km s−1

are effectively unperturbed before they escape from the cluster (see Appendix C.1). Then the
time to reach the outskirts of the cluster is tesc≈R/υ . 0.2 Myr.

For a crude estimate of the compactness of the three-body system (with negative total
energy) from which a member is ejected with υ ≥ 3σ JW

3D , the scaling of the median escape
speed from Sterzik & Durisen (1995) is evaluated,

〈υesc〉 ≈
1
2

( |E0|
〈mesc〉

)
, (5.7)

where 〈mesc〉 denotes a weighted mean of the escaped particle masses, |E0|∝ M2
tot/R is the

total system energy, and Mtot and R are the total mass and the scale length of the system.
It is assumed that the encounter occurred in the dense Trapezium Cluster where it is most

probable (see Fig. 4 of Pfalzner et al., 2006). Due to mass segregation of the cluster, the
mass of the most massive component of the three-body system is likely to be several times
the mean stellar mass in the ONC; Mtot = 4 M� is thus adopted for the system mass. The
mass of the ejected body is assumed to be half the mean stellar mass, 〈mesc〉= 0.25 M�. With
these assumptions one obtains R . 100 AU for the scale length of the system. However, the
minimum approach which eventually leads to an ejection will be much closer. Since the disc
radius of a low-mass star is about rd ≈ 100 AU, the ejected component can lose more than
90 % of the disc mass (see Table 3 of Olczak et al., 2006).

In the beginning of this section it was assumed that triple systems that generate high-
velocity stars have negative total energy. In Appendix C.2 it is shown that this is a valid
assumption if the ejected high-velocity stars do not exceed velocities of a few tens of km s−1.
In fact, all of the high-velocity stars from numerical simulations and observational data do
not show higher velocities. A detailed analysis of the numerical simulations shows that in
all cases the encounter-generated high-velocity stars are the lowest mass component ejected
from a three-body system with a massive tight binary (Mbin & 20 M�, abin . 50 AU), leaving
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on a nearly parabolic orbit relative to one of the binary components. It is thus justified to
conclude that the triple systems which generated the observed low-mass high-velocity stars
must have been bound as well.

How many such encounters does one expect in the ONC? For simplicity, the three-body
interaction is assumed to result from a single-binary encounter, where the binary has a semi-
major axis a . 100 AU. As a volume relevant for close encounters the Trapezium Cluster is
considered. Referring to Eq. (C.1) the time scale for a three-body encounter at 100 AU is
tenc,100AU≈ 10 Myr. Since the time the star remains in the cluster volume is tesc . 0.2 Myr,
the probability of the detection of a high-velocity star is Phvs≈ tesc/tenc,100AU . 0.02. Know-
ing the number of stars located in the Trapezium Cluster, NTC≈ 750, one expects Nhvs ≈
PhvsNTC . 15 high-velocity stars in the ONC.

In summary, high-velocity stars with velocities υ ≥ 3σ JW
3D (or velocity components υx,y,z ≥

3σ JW
1D ) have most probably experienced exactly one close (. 100 AU), disruptive encounter

in the cluster centre and leave the cluster on a radial trajectory, i.e. with the velocity vector
pointing away from the cluster centre, preserving the dynamical information of the encounter.
About one dozen such stars in the ONC are expected.

In the following the observational data and theoretical estimates will be compared with
numerical simulations of a dynamical model of the ONC.

5.3. Numerical Simulations

The basic dynamical model of the ONC used here has been described in Section 4.2. For the
present investigation additional effects like a varying background potential and a population
of primordial binaries have been included, that will be discussed later on. A set of 20 runs
with different random configurations of positions and velocities from the given distributions
have been performed to establish a statistically robust database. Unless explicitly declared
otherwise the presented results refer to the whole set of runs. The reason to extend the basic
model of the ONC is to compare the velocity distribution to the observational data. Both the
background potential and primordial binaries have a large impact on the resulting velocity
distribution. However, for comparison and analysis of the contribution of the background
potential and primordial binaries, also simulations of a single particle model, a single particle
model with a background potential, and a cluster with a primordial binary population but
without a background potential have been performed.

5.3.1. Construction of the Numerical Model

A background potential increases the cluster virial mass and thus results in a higher velocity
dispersion (cf. Eq. (2.1)). In the simulations the background potential is represented by a
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Plummer sphere,

ρ(r) =
3M

4πa3
1

(1+ r2

a2 )5/2
, (5.8)

with mass M and characteristic length scale a. The Plummer sphere is set up with 6000 M�
(see Section 4.1 for an estimate of the initial gas mass in the ONC) initially and a mass loss
rate Ṁ = 4000 M�Myr−1. Due to the continuous mass loss 2000 M� of gas is left after 1 Myr.
The exact time scale and time dependency of the mass loss is not crucial, as long as the
gas expulsion time scale is of the order of the dynamical time scale of the system, texp≈ tdyn,
which appears to be the case for the ONC (cf. Section 4.1). The length scale is set to a = 0.6 pc
to match the observed velocity dispersion at a simulation time of tsim = 1 Myr.

The effect of primordial binaries is more complicated. The interactions of binaries and
single stars or other binaries have the potential to change the velocity distribution much more
than a single star model. In particular, three body encounters between singles and binaries
usually lead to the expulsion of the lowest mass member from the small N-body system with
a high velocity. This mechanism is especially important for the high-velocity fraction of
particles of interest in this study (see Section 5.2.2).

A series of simulations with the models of Kroupa (1995b) and Kouwenhoven et al. (2007)
has been set up, finding that results do not depend on the choice of one particular model. The
initial binary frequency was chosen to be 75 %. Although the observed binary frequency in
the ONC is ∼50 %, it is necessary to start with a higher binary rate as about one third of the
binaries are destroyed within the first 1 Myr due to dynamical evolution.

In terms of global cluster dynamics, the new model with a background potential and pri-
mordial binaries provides a much better fit to the ONC data than the previous single star
model without background potential. This is illustrated by means of the time-evolution of the
three-dimensional velocity dispersion of both models in Fig. 5.4. In the previous model there
was not enough mass confined in the cluster to reproduce the observed velocity dispersion
of the ONC, σ JW

3D = 4.3 km s−1, at ∼1 Myr. The new model gives a much better result. The
continuous, steep falloff after ∼0.2 Myr is due to the response of the stellar system to the gas
expulsion. In the following, results of numerical simulations based on the new dynamical
model of the ONC will be discussed.

5.3.2. Results of the Numerical Simulations

As demonstrated in Olczak et al. (2006), Pfalzner et al. (2006), and Pfalzner & Olczak
(2007a), stellar encounters in dense clusters can lead to significant transport of mass and
angular momentum in protoplanetary discs. In the present investigation Eq. (1) from Pfalzner
et al. (2006) (which corresponds to Eq. (4.6)) has been used to keep track of the disc-mass
loss of each star due to encounters. The estimate of the accumulated disc-mass loss is an
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Figure 5.4.: Three-dimensional velocity dispersion as a function of time for the previous pure single
star model (dashed line) and the new numerical model of the ONC with time-variable back-
ground potential and primordial binaries (solid line). The dotted horizontal line marks the
three-dimensional velocity dispersion from Jones & Walker (1988), σ JW

3D = 4.3 km s−1, the
vertical dotted line marks the mean age of the ONC, tONC = 1 Myr.

upper limit because the underlying formula is only valid for co-planar, prograde encounters,
which are the most perturbing. A simplified prescription assigns stars into one of two distinct
groups: if the relative disc-mass loss exceeds 90 % of the initial disc mass, stars are marked
as “discless”; otherwise they are termed “star-disc systems”. This approach is justified by
the interplay of three effects: (i) A disc-mass loss of this order lowers the density in the disc
significantly, in particular in the outer parts; the disc size decreases. (ii) The accompany-
ing angular momentum loss enhances accretion of the extant material onto the star (Pfalzner,
2006). This leads temporarily to an increase of the infrared excess but soon fades after a
short intense accretion phase (Pfalzner et al., 2008). (iii) The loose distribution of circumstel-
lar matter lowers the shielding of the disc midplane against photoevaporation. The interplay
of these effects leads to a fast dispersal of the disc material. From the observational point of
view, the corresponding star would show pure photospheric emission on the order of some
103 yr after the encounter.

In Fig. 5.5 the velocity distribution of cluster stars is shown after 1 Myr of evolution. This
is done separately for discless stars and star-disc systems. For comparison with the obser-
vational data presented in Fig. 5.1c, separate velocity distributions of two spacial directions
(here x and y) have been added to mimic the distribution of proper motion data. Unless in
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Figure 5.5.: Velocity distribution of cluster stars from simulations. The construction of the distribution
is described in the text. The bin width is 0.7 km s−1. The stars have been divided into
two groups according to their extant disc mass (see text): red boxes represent star-disc
systems, blue lines represent discless stars. For comparison a Gaussian with dispersion
σ = σ JW

1D = 2.5 km s−1 is superposed (black solid line).

wide systems, primaries and secondaries could not have been resolved by Jones & Walker
(1988) who worked with seeing-limited images. So the presence of binaries in the numerical
simulations requires a special treatment of velocities. Accounting for unequal mass compo-
nents and nebulosity, a minimum separation of 1000 AU (corresponding to∼2.5′′; see Mayne
& Naylor, 2008, and references therein) has been adopted for the visual resolution of a binary
system. For closer systems, only the primary component is taken into account and the centre-
of-mass velocity of the system is assigned. For wider systems, both components are treated
as single stars. This prescription is simple and rough but appropriate to avoid the inclusion of
large velocity components of tight binaries.

The velocity distribution shows common features with Fig. 5.1c, which was obtained from
observational data: the bulk of the stars forms a relaxed system which manifests in the ap-
proximate Gaussian velocity distribution with a characteristic velocity dispersion σ = σ JW

1D .
Moreover, a small fraction of stars exists with much higher velocities υx,y≥ 3σ JW

1D , the previ-
ously described “high-velocity stars”.

The velocity distributions of stars that have lost their disc due to close encounters and
those that have retained their disc differ. The discless population consists of a larger fraction
of high-velocity stars, while the width of the Gaussian part is similar. This feature is in
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Figure 5.6.: Positions and velocities of high-velocity star-disc systems (red open circles) and discless
stars (blue filled circles) from cluster simulations. The frame is centred on the cluster centre.
The lines indicate the distance (in pc) a star would have moved in a period of 2 · 104 yr.

agreement with expectations: High-velocity stars are usually the lowest mass members of
temporary few-body systems which are expelled after a close encounter (see Section 5.2.2).
The close passage and large mass of the perturber results in a significant removal of disc
material (Pfalzner et al., 2006).

In analogy to Fig. 5.3, positions and velocities of high-velocity stars from the numerical
simulations are displayed in Fig. 5.6. Here the great advantage of numerical simulations
becomes apparent: several runs of the same model can improve statistics far enough to pro-
duce prominent features where only weak signatures in observational data are found. The
dynamical model of the ONC reproduces the observed features: As expected, most stars are
concentrated in the inner tenth parsecs around the cluster centre, while several stars are lo-
cated in the outer cluster parts, moving in radial directions from the cluster centre. However,
the same two unexpected features as in the observations are found, namely that (i) the region
between the cluster centre and the outer cluster parts is underpopulated by high-velocity stars,
and (ii) the velocity vectors of a fraction of stars in the outer cluster parts do not point away
from the cluster centre. High-velocity stars that leave the cluster on a track in radial direction
from the cluster centre, i.e. with the velocity vector pointing away from the cluster core with
radius Rin≈ 0.1 pc, will be referred to as “radial escapers”, while high-velocity stars that do
not match this condition will be called “orbital escapers”. In the following the choice of the
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Figure 5.7.: Tracks of two high-velocity stars from simulations. The cross marks the cluster centre. The
solid line marks the trajectory up to 1 Myr, the dotted line represents later times. a) Star
on a wide orbit around the cluster centre, escaping from the cluster after a close passage of
the cluster centre. b) Star escaping after multiple passages of the cluster centre and a final
close encounter.

terminology will be explained.
In contrast to observations it is possible to trace the history of these stars in the simulation;

this gives us the opportunity to investigate the reason for this strange configuration. As will
be seen, (i) is a consequence of (ii), thus that one will be discussed first. In Fig. 5.7 two exem-
plary tracks of stars in the outer cluster parts are displayed, those of an orbital (Fig. 5.7a) and
a radial escaper (Fig. 5.7b). It is evident that the phase spaces of the two stars are completely
different. The radial escaper was originally located close to the cluster centre, experienced
several encounters in multiple passages of the cluster centre and was finally expelled in a
close three body encounter. After the ejection, it is moving on a track in a radial direction
from the cluster centre, i.e. with the velocity vector pointing away from the cluster core. The
orbital escaper stems from the outer cluster parts, passed on a non-closed orbit at a minimum
distance of some tenths of a parsec around the cluster centre (without significant encounters)
and was accelerated sufficiently by the central mass to leave the cluster on a hyperbolic orbit.
Most of the time its velocity vector is not pointing away from the cluster core. This is most
evident at large distances from the cluster centre. Only at the two short periods of cluster
centre passage, i.e. when the radius vector is approximately normal to the velocity vector, the
determination of the direction of motion is eventually not sufficient to discriminate between
a radial and orbital escaper. The fact that the orbital escaper is leaving the cluster although
it was initially energetically (but only weakly) bound to the cluster is due to a varying clus-
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ter potential on a time scale shorter than its revolution around the cluster centre.2 The main
sources of the potential variation are mass segregation and the evaporation of (preferentially
low-mass) cluster stars. Consequently the orbital escaper is accelerated more strongly after
the second passage of the cluster centre and is less decelerated in the outer parts due to the
lower total cluster mass and more extended cluster potential.

The existence of two different classes of tracks explains why the region between the cluster
centre and the outer cluster parts is devoid of high-velocity stars. Radial escapers leave the
cluster on a very short time scale, while orbital escapers reside for much longer in the vicinity
of the cluster centre due to their wide non-closed orbits. Hence the disjoint spacial groupings
of stars after 1 Myr of cluster evolution are the consequence of disjoint sets of initial phase
space volumes.

From the simulations it is found that the distinct dynamics of the two exemplary high-
velocity stars characterise in general the dynamics of radial and orbital escapers: they belong
to dynamically distinct groups. Moreover, the two groups as well can be separated due to their
disc properties: a large fraction of radial escapers is discless, while most orbital escapers are
star-disc systems. This morphological distinction is a consequence of the dynamical bisec-
tion. The morphological bisection translates observationally into a photometrical bisection,
i.e. the stars would be divided into two groups according to the presence of excess emission.
Such a trend, though only weak, is also present in the observational data.

In Fig. 5.3b, the three isolated stars with excess emission are identified as orbital escapers.
The situation is more difficult for the two stars with excess emission immediately below
the cluster centre. As mentioned above, stars close to the cluster centre cannot be uniquely
identified as radial or orbital escapers from the direction of motion alone. Moreover, only two-
dimensional spacial and velocity information is present, so the true distances to the cluster
centre and velocities are not known. If the projected distance and true distance to the cluster
centre differ only slightly for both stars, then the more distant (∼0.25 pc) would be classified
as a probable orbital escaper. The reason is that due to its proximity to the cluster centre and
relatively low velocity this star will be accelerated and deflected by the central cluster mass
and pass on a curved trajectory. When passing the cluster outskirts, its direction of motion
would not point away from the cluster core and thus it would be identified as an orbital
escaper according to the classification scheme. Of course, one cannot exclude the possibility
that this star was ejected in a three-body encounter, although it could not be classified as a
radial escaper due to its predicted trajectory. For the other star a classification as a radial
escaper seems more appropriate. If, on the contrary, the true distance is much larger than the
projected distance for both stars, they would be classified as orbital escapers. However, one
can only speculate about the dynamical origin of the two stars. The special case of the two

2The time scale of the potential variation is related to the crossing time of the cluster, tcr ≈ 0.5 Myr, while the time
scale of revolution is approximately the cluster age, tONC ≈ 1 Myr, which is about twice as large.
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close-by stars with excess emission in the lower left will be discussed below. The only star
without excess emission (JW 45) seems to have been expelled very close (< 0.13 pc) to the
cluster centre and is thus classified as a radial escaper. If thus, conversely to the previous
arguments, the lack of excess emission is interpreted as an indicator of the absence of a disc,
then this star provides evidence for encounter-triggered disc destruction. The signature of
disc material of the other stars is - as far as a classification is possible - in accordance with
the numerical results and thus supports this view.

The two close-by stars at approximately (−1.5pc,−1.0pc) in Fig. 5.3, JW 3 and JW 4,
seem to form a binary. Though their separation of about 104 AU is large, the remarkably
similar proper motions and radial velocity (υJW3

r = 29.1 km s−1, υJW4
r = 31.6 km s−1; Stassun

et al., 1999), age, and infrared excess strongly support the assumption of a physical pair - at
least in the past. If this pair was expelled as a binary from a four-body encounter, than this
must have occurred less than 0.1 Myr ago (accounting for the actual distance from the cluster
centre, the velocity and the deceleration by the interior cluster mass). The difference in proper
motion of the two stars corresponds to a distance of ∼ (4± 2) · 104 AU, in good agreement
with the observed projected separation. Due to the direction of motion, the two stars are
classified as radial escapers. The expulsion of binaries from close four-body encounters in
the simulations, though a rare event (9 events from the 20 runs), usually does not lead to a
significant disc-mass loss of the individual stars. This again is in good agreement with the
observational data. Thus the excess emission of the binary radial escaper does not contradict
the correlation of the dynamical and the photometric classification, which in the case of single
stars shows that in most cases radial escapers are discless and orbital escapers are found
preferentially among star-disc systems.

The general difference of the orbits of discless stars and star-disc systems is represented
in Fig. 5.8. The minimum distance of star-disc systems to the cluster centre, dmin, is clearly
a linear function of the initial specific angular momentum, l0 (relative to the cluster centre).
A linear least squares fit results in a slope α with a small standard error ∆α , α = (0.902 ±
0.044)skm−1 (∆α/α = 0.048). This means that l0 is conserved - a consequence of the wide
orbit around the cluster centre without strong, abrupt perturbations from single stars. On the
contrary, discless stars show a much wider, not clearly correlated distribution of dmin due to
angular momentum exchange in close encounters in the cluster centre. Here the slope β of
the linear best-fit has a large standard error ∆β , β = (0.571± 0.127) s km−1 (∆β/β = 0.222).
Those star-disc systems with lower l0 and dmin populating the discless regime are components
of binaries.

The distinct dynamics are even more evident from Fig. 5.9: here the ratio of the actual
(at 1 Myr) and initial specific angular momentum, lnow/l0, as a function of the initial specific
angular momentum, l0, is shown. Star-disc systems are concentrated nearly symmetrically
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Figure 5.8.: Minimum distance of the high-velocity stars to the cluster centre, dmin, as a function of the
initial specific angular momentum, l0 (relative to the cluster centre). Star-disc systems are
marked by red open, discless stars by blue filled circles. Linear best-fits of both populations,
star-disc systems (red line) and discless stars (blue line), have been included (quantitative
results are discussed in the text).

around lnow/l0 = 1, while for most discless stars lnow/l0 > 1, and even up to several tens. The
increase of angular momentum of the discless stars in relation to the cluster centre can be
explained as follows: Single stars gain a large amount of angular momentum in a close triple
encounter (Valtonen et al., 2005), and leave on straight radial tracks after breakup. Since these
encounters occur preferentially close to the cluster centre, on average the angular momentum
relative to the cluster centre is also highly increased. The raise of lnow/l0 with lower l0 is
given by the fact that close encounters are more probable for stars with lower l0, which in
turn lead to a higher gain in angular momentum.

The additional components in the numerical model of the ONC - a background potential
and primordial binaries - have different effects on the sample of high-velocity stars. By
comparing with results of the simulations without either one or both additional components,
it is found that (i) the inclusion of primordial binaries has the effect of increasing the number
of discless stars (due to a larger number of encounters) and to increase the maximum velocity
of the high-velocity stars (due to a higher probability of closer encounters), (ii) a background
potential reduces the number of discless stars and reduces the maximum velocity of the high-
velocity stars, because the higher velocity dispersion of the stars reduces the probability of
close encounters. The combination of both as in the present model does not cancel out the
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Figure 5.9.: Relative actual angular momentum of the high-velocity stars, lnow/l0, as a function of the
initial specific angular momentum l0 (relative to the cluster centre). Star-disc systems are
marked by open, discless stars by filled circles.

positive effect of the binaries and thus results in a higher number of discless stars and a higher
maximum velocity of the high-velocity stars than would result from a single star model.

5.4. Confronting Observations and Simulations

Combining observational data and numerical simulations, it has been shown that even after
1 Myr of dynamical evolution a cluster of the size and density of the ONC is still dynamically
active. Young stars, preferentially of low-mass, are expelled in close N-body encounters,
losing a large fraction of their circumstellar matter.

The encounters are in most cases interactions with massive stars in the cluster centre. This
finding highlights the significant effect that encounters in (massive) young stellar clusters can
have on the evolution of protoplanetary discs. This is even more evident if one addresses not
only the effect on the mass, but the even stronger effect on the angular momentum of the disc
as shown in previous investigations (Pfalzner, 2006; Pfalzner & Olczak, 2007a).

Using the observational data from Jones & Walker (1988) it is shown (Fig. 5.1c) that in the
ONC there is a small population of stars with proper motions µx,y larger than three times the
one-dimensional velocity dispersion of the cluster, µx,y & 7.5 km s−1.

From numerical simulations it is found that the so-called “high-velocity stars” form two
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dynamically disjoint groups. One group is composed of stars expelled in a close encounter,
moving on radial tracks directly outward from the cluster centre, termed “radial escapers”.
The other contains unperturbed stars running on wide, non-closed orbits around the cluster
centre (on average with lower velocities), termed “orbital escapers”. The dynamical state of
the stars has its origin in their initial phase space location: radial escapers are initially located
close to the cluster centre (r . 0.3 pc) and characterised by a low angular momentum (relative
to the cluster centre). In contrast, orbital escapers were formed in the outer cluster with large
angular momentum relative to the cluster centre.

The different dynamics of the high-velocity stars implies a signature in their circumstellar
characteristics: stars being subject to close encounters are expected to lose their disc material
faster and to a higher degree (Pfalzner et al., 2006). Using the prescription of disc-mass loss
in stellar encounters, indeed a clear correlation from numerical simulations is found: radial
escapers, initially located close to the cluster centre and later expelled in a close encounter,
lose more than 90 % of their disc material in 1 Myr of dynamical evolution, while orbital esca-
pers, initially distant stars, moving on wide orbits around the cluster centre, do not experience
strong perturbations and keep most of their disc material.

The numerical results are compared with infrared observations from Hillenbrand (1997),
Muench et al. (2002), and Lada et al. (2004), tracing the (inner) circumstellar material.
Though strict conclusions are not possible due to the small observational sample and some
stars that cannot be classified according to the described scheme, the same trend is observed:
stars that have been classified as orbital escapers do show near-infrared excess emission, in-
dicative of circumstellar matter, while those classified as radial escapers show pure photo-
spheric colours, lacking evidence of (inner) circumstellar discs.

This view is strongly supported by the work of Tan (2004) on the dynamics of θ 1C Ori.
The most massive star in the ONC, θ 1C Ori, has a proper motion several times greater than
the dispersion of bright ONC stars and much larger than the velocity expected if it were in
equipartition with the other cluster stars (van Altena et al., 1988). Tan (2004) showed that the
direction of θ 1C Ori’s motion is consistent with being exactly opposite to that of a B-type star
embedded in the background molecular cloud, the so-called BN object, and concludes that
it is most probably a runaway star originating from the Trapezium ejected about 4000 years
ago after a close encounter with θ 1C Ori. This supports the idea that stellar encounters may
be likely events in such dense regions as the ONC, or at least in their cores. The evidence
that the most massive stellar object was involved in a close encounter with another massive
star is in best accordance with the work of Moeckel & Bally (2007a) and Pfalzner & Olczak
(2007b).

Considering the dynamical age of the ONC of several crossing times, encounters must
have had much stronger impacts on stellar discs at an early age of the cluster, when densities
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were much higher but massive stars already had formed. Indeed, the simulations confirm this
expectation, giving rise to an era of strong and frequent interactions among star-disc systems
at the onset of massive star formation.

In even denser clusters such as the Arches cluster, high-velocity stars should be even more
frequent than in the ONC. In such systems the current spatial and velocity distribution of
the high-velocity stars should give strong indications of how the cluster developed in former
times.
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Numerical Siblings

6.1. Introduction

The numerical results that have been obtained so far are based on a dynamical model of the
Orion Nebula Cluster (ONC) – one of the observationally most intensively studied young star
cluster. It was demonstrated that in the ONC stellar encounters can have a significant impact
on the evolution of the young stars and their surrounding discs. However, investigating one
model star cluster is not sufficient to draw general conclusions on other such objects. In fact,
from the insights of the previous chapters one could not answer the following questions: How
would things change in a denser cluster? Would a higher density inevitably imply that stellar
encounters play a more important role in the star and planet formation process? And what
would be the situation in more massive clusters? Would the larger number of stars play a
role? What influence would the larger number of massive stars have? And finally: Is there
a threshold in density and/or mass of the cluster where encounters start to play a significant
role?

Due to the complexity of star cluster dynamics a conclusive answer to these questions
demands further numerical investigations. It is thus vital to a deeper understanding of the
present subject to extend the simulations of the ONC presented in the previous chapters and
investigate a reasonable parameter space of cluster parameters. This has been realised by
modelling scaled versions of the standard ONC model – clusters with varying stellar numbers
and densities – that will be presented in this chapter.

The construction of the scaled models will be discussed in the next section, followed by an
investigation of their dynamics. Afterwards results from the combination of the star cluster
simulations and the star-disc encounters will be presented and compared to the outcome of
the simulations of the ONC model cluster. A discussion of the results and a conclusion mark
the last section of this chapter.
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6.2. Construction of the Numerical Models

The cluster models are based on the same setup procedure as the standard ONC model de-
scribed in Section 4.2. However, one construction step has been modified, that is, the gen-
eration of the high-mass end of the mass function. In the case of the ONC the upper mass
limit was chosen to be 50 M� because this value corresponds to the mass of the most massive
stellar system in the ONC, treated as a single particle in the simulation due to its compactness.
However, adopting the same limit for the scaled models would seem to be an inappropriate
constraint because stars with larger masses are expected to be formed in particular in more
massive clusters, as discussed in Section 2.4. Thus in the framework of this numerical inves-
tigation the upper mass limit has been set to the current accepted fundamental upper mass
limit, mmax = 150M� (cf. Section 2.4). Due to the adopted shape of the mass function (see
Eq. (2.17)) the most massive stars are generated in the most populated clusters.

One might wonder why the upper mass limit was not chosen according to the prescription
of Weidner & Kroupa (2006), who showed that there exists a well-defined relation between
the most massive star in a cluster and the cluster mass, consistent with their “sorted sampling”
algorithm (see Section 2.4). The main reason not to do so was the aim to cover the largest
parameter space possible, avoiding biased results due to selection effects. Moreover, the
applied method allows for the highest flexibility: because each cluster has been simulated
repeatedly with a different random sampling of masses, positions and velocities, there is the
freedom to chose a subset of simulations that are in agreement with the results of Weidner
& Kroupa (2006) (or any other specific model) and to investigate the effect of the adopted
prescription for the generation of the maximum stellar mass in a cluster.

However, in Table 6.1 it is shown that – at least in a statistical sense – the exact prescrip-
tion for the generation of the maximum stellar mass in a cluster is not as important as it might
seem. In the last three columns the median of the maximum stellar mass in each simulation,
mmed

max, is compared to the mean maximum stellar mass for sorted sampling, msort
max, and obser-

vational data, mobs
max, both estimated from Fig. 7 of Weidner & Kroupa (2006). It is evident

that the values obtained by random sampling are only slightly larger than those from sorted
sampling.

In total, nine cluster models have been set up according to the above discussion. One
model is identical to the standard ONC model with the exception of the adopted higher stellar
upper mass limit. Eight cluster models have been set up as scaled representations of ONC-
like clusters. They form two parametric groups, the “density-scaled” and the “size-scaled”
group, both containing four clusters with stellar numbers of 1000, 2000, 8000, and 16000,
respectively.

It has to be noted that these “artificial” stellar systems are not just theoretical models but
have as well counterparts in the observational catalogues of star clusters: the young star clus-
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ter NGC 2024 (e.g. Haisch et al., 2000; Bik et al., 2003; Liu et al., 2003) is well represented
by the 1000 particle model, whereas the 16000 particle model has its counterpart in the mas-
sive cluster NGC 3603 (e.g. de Pree et al., 1999; Stolte et al., 2004, 2006).

Density-scaled cluster models

Four cluster models have been simulated with the same initial size as the ONC (R = 2.5 pc,
see Section 4.1). Due to the adopted number density distribution, roughly represented by
ρ(r) = ρ0 r−2 (but see Section 4.2 for the detailed numerical model of the ONC), the density
of the cluster models scales as the stellar number in comparison to the ONC model,

N =
∫ R

0
ρ(r)r2 dr dΩ ∝ ρ0 R , (6.1)

though for an exact treatment one would have to consider the steeper density profile of the
core, ρcore(r) = ρcore,0 r−2.3,

Ncore =
∫ Rcore

0
ρcore(r)r2 dr dΩ ∝ ρcore,0 R0.7

core . (6.2)

However, since the core population is not dominant in terms of number, the four clusters are
characterised in good approximation by densities that are 1/4, 1/2, 2, and 4 times the density
of the ONC (at any radius), respectively (see Table 6.1). These models are used to study
the importance of the density for the effect of star-disc encounters in a cluster environment.
However, because the varying cluster densities are a result of the varying size of the initial
stellar population, besides the density it is also the number of stars that might potentially
influence the results. Thus another set of cluster models is required to study the pure effect
of the size of the stellar population.

Size-scaled cluster models

For this purpose four more cluster models have been simulated with the same initial density
as the ONC (see Section 4.1 for details). In analogy to the previous models and due to the
relation (6.1), the initial size of the clusters scales as the stellar number and was set up with
1/4, 1/2, 2, and 4 times the initial size of the ONC, respectively. These models are used to
study the influence on the effect of star-disc encounters by the size of the stellar population
of a cluster and to quantify the effect of the cluster density by combining the results with the
density-scaled models.

One might wonder why the influence of the cluster density was not investigated by simply
setting up more compact or extended versions of the ONC cluster model without modifying
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the particle number (i.e. the cluster mass). The reason for this more extensive approach
is twofold. First, in the present investigation one has to deal with three cluster parameters,
namely the mass, size and dynamical time scale, of which each two are independent and
determine the remaining one. An investigation of the influence of one quantity, in the present
case the cluster density, thus requires two numerical studies, each with different two free and
one fixed parameter. Second, observations show that while the radii of young star clusters are
quite similar (∼ 0.5− 5 pc), their masses vary by about 5 orders of magnitude (e.g. Kroupa,
2005). In other words this means that cluster densities scale roughly with their mass, not their
extension, and thus justifies the approach discussed.

As in the case of the numerical model of the ONC, of each cluster model a set of simu-
lations has been performed with varying random configurations of positions, velocities, and
masses, according to the given distributions (see Section 4.2 for details), to lower the effect
of statistical uncertainties. For the clusters with 1000, 2000, 4000, 8000, and 16000 particles,
a number of 200, 100, 100, 50, and 20 simulations seemed appropriate to provide sufficiently
robust results.

Once more, a difference in the treatment of the cluster simulations has to be stressed. The
simulations of the standard ONC model were post-processed by a validation scheme which
ruled out clusters that did not match the observed projected density distribution or in which
the most massive member escaped during the first Myr. This validation scheme has been
dropped for the scaled models presented here because of two reasons. First, the scaled mod-
els are artificial configurations that can not be compared to observational data. Second, at
least for the clusters more massive than the ONC, interactions between massive stars are
more common, leading to a more frequent expulsion of massive members. Restricting the in-
vestigation only to those clusters that did not lose their most massive member prior to 1 Myr
would thus impose an unjustified restriction.

The initial parameters of the cluster models, for each model averaged over all configura-
tions, are presented in Table 6.1. Here the number density in the Trapezium Cluster is taken
as a reference value for all simulations. As expected, the density scales with the number of
stars for the density-scaled models, while it is rather constant for the size-scaled models. The
velocity dispersion, that satisfies the relation

σ =

√
2GM

R
∝
√

N
R

, (6.3)

shows the expected scaling of
√

N for the density scaled models, and is again roughly constant
for the size-scaled models, as expected from N ∝ R (Eq. (6.1)) and the above relation. The
reason for the slight increase of the velocity dispersion with decreasing stellar number for the
size-scaled models is the steeper density profile in the cluster core, which becomes more dom-
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inant in terms of stellar number with decreasing cluster size. Combining Ncore ∝ R0.7 from
Eq. (6.2) and the above relation gives roughly σcore ∝ N−0.3 and thus explains the correlation.

In the next section analytical estimates for and numerical results of the cluster simulations
will be presented in terms of cluster dynamics characterising the two families of models.

6.3. Dynamical Evolution of the Numerical Cluster Models

Before the numerical results will be presented, it is instructive first to estimate analytically
the dynamical effects that can be expected in the two families of models. The basic quantities
that play here a major role are the virial ratio, Qvir, and the density distribution, ρ(r).

The virial ratio has the interesting property to describe the global motion of the cluster vol-
ume: a hot cluster will expand, a cold cluster will contract, until virial equilibrium is reached
(Eq. (2.1)). Clusters that are characterised by the same virial ratio do show – roughly – the
same global inward or outward motion on comparable time scales, independent of their mass,
size or velocity dispersion. This fact might appear counterintuitive, but it follows directly
from the definition of the virial ratio: for a given virial ratio Qvir the velocity dispersion σ of
a cluster is determined by its potential V = GM/R, i.e. its mass and size; however, the cluster
potential sets as well the magnitude of the deceleration of a particle. In other words: any par-
ticle that has travelled the same relative distance outwards (in terms of fraction of the cluster
radius) has lost the same fraction of its kinetic energy. How does this affect the evolution of
the density of the family of cluster models?

In the present case all clusters start from virial equilibrium and are thus expected to show
(qualitatively) roughly the same temporal evolution of the density. However, because of the
slight variation of the velocity dispersion of the size-scaled clusters, as discussed above, the
dynamical time scale of the smaller cluster populations is smaller, leading to a faster evolution.
Thus, the two models with 1000 and 2000 particles are expected to expand faster and to show
a larger decrease of density with time.

The virial ratio of the clusters is expected to increase with time due to the escape of stars,
preferentially from the outer cluster regions. The density-scaled cluster models are expected
to show approximately the same distribution as a function of time because the fraction of
escapers is not expected to differ significantly. Assuming that the number of stars, ∆Nesc(R),
that escape from a shell of width ∆R at a radius R is proportional to the number of stars in
that shell, ∆N(R), one finds from Eq. (6.1):

∆Nesc(R) ∝ ∆N(R) ∝ ρ0 ∆R ∝ N ∆R . (6.4)

Hence the fraction of escapers, ∆Nesc/N is constant in this case. In contrast, due to the
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constant density ρ0 of the size-scaled clusters,

∆Nesc(R) ∝ ∆N(R) ∝ ρ0 ∆R ∝ ∆R . (6.5)

and thus the fraction of escapers, ∆Nesc/N ∝ 1/N, decreases with the particle number. Hence
the larger the population of the size scaled clusters, the less will the virial ratio increase with
time. It is important to note that this “expansion” of the cluster population due to the escape
of stars shall not be confused with the global cluster expansion that is set by the virial ratio.
The former is driven by a small fraction of stars that reach a velocity that exceeds the cluster
escape speed and become unbound from the cluster. In contrast, the latter reflects the bulk
motion of the (mostly) bound cluster population, determined by a statistical quantity, the
velocity dispersion, not the velocities of individual stars. In particular, the finding that the
global expansion is independent of the stellar number of a cluster still holds.

In the next section the results from the numerical integration of the family of cluster models
will be presented and compared to the derived analytical predictions.

6.3.1. Density-Scaled Cluster Models

In Fig. 6.1 and 6.2 the evolution of the density and the projected density distribution of the
five density-scaled models is shown. The shape of the distributions is in all cases very sim-
ilar. The discontinuities in the distribution of the core density in Fig. 6.1 are caused by the
fluctuation of a small number of residual particles due to the dynamical evolution of the clus-
ter. However, some differences, in particular between the two models with lowest and highest
particle numbers, are evident. In the case of the volume densities in Fig. 6.1 the density of the
larger volume, which corresponds to the initial size of the ONC, remains constant after about
2 Myr for the 16000 particle model, and after roughly 3 Myr for the 8000 particle model. This
evolution marks the formation of a (at least temporary) bound subsystem of the entire cluster,
as will be shown later. However, at earlier times, in particular until the assumed age of the
ONC, tONC = 1 Myr, all the cluster models evolve very homogeneously, as expected form
the analytical estimates. This is clearly shown in Fig. 6.2 by plotting the projected density
distributions at initial time (blue lines) and after 1 Myr (red lines). The evolved distributions
have nearly identical shapes and are separated by vertical intervals of 0.3 in log-space, which
corresponds to the difference of the initial densities by a factor 2. Only in the innermost
cluster regions slight deviations between the evolved distributions are apparent. These are
attributed to the poorer random sampling of the initial particle distribution due to the very
steep density profile, ρ(r) ∝ r−2.3, as is evident from the larger scatter among the blue lines.
However, after 1 Myr these deviations are smoothed out to a large degree.

As mentioned above, the cluster models show differences in the dynamical evolution at
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Figure 6.1.: Time evolution of stellar densities of all density-scaled cluster models in a volume of
R = 2.5pc (“ONC”, blue line), and Rcore = 0.05pc (“core”, red line), respectively. From
bottom to top in each colour regime the cluster model with 1000, 2000, 4000, 8000, and
16000 particles is marked by a short-dashed, long-dashed, solid, dotted, and dot-dashed
line, respectively. The black error bars mark the corresponding observational estimates of
the ONC for comparison. This figure corresponds to Fig. 4.3, but does not contain the
density of the volume representing the Trapezium Cluster to avoid confusion.

simulation times beyond ∼2 Myr, which is attributed to the formation of a larger bound frac-
tion of the stellar population with increasing initial particle number. Exemplary this is shown
for the two most extreme models with 1000 and 16000 particles in Fig. 6.3, respectively. The
Lagrangian radii of the cluster with 1000 particles increase steadily over the whole simula-
tion time, indicating the smooth expansion of the cluster. Only at very early times,∼ 0.1 Myr,
a slight decrease of the 10 % and 20 % Lagrangian radii is apparent. As discussed in Sec-
tion 4.3, this feature marks a moderate contraction of the inner cluster region due to the
initially steeper slope of the density distribution. In contrast, in the cluster with 16000 par-
ticles expansion stops at roughly 2 Myr, illustrated by the flattened slopes of the Lagrangian
radii of mass fractions up to 50 %. While the 90 % Lagrangian radius increases steadily, trac-
ing the fraction of escaping particles, the 70 % Lagrangian radius even starts to decrease after
a maximum of 3 pc, which means that at this distance more stars begin to fall back into the
cluster than do escape. Hence, after 3 Myr of evolution, a bound system with 70 % of the
initial cluster mass and a radius of about 3-4 pc has formed.

Consequently, the virial ratio and velocity dispersion of the two cluster models in Fig. 6.4
show a different evolution. The steady expanding motion of the cluster with 1000 particles
translates into a linear increase of the virial ratio with time, which exceeds the value for a
bound system (Qvir ≤ 1) after 4 Myr. The low-amplitude periodic oscillations are the signa-
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Figure 6.3.: Time evolution of Lagrangian radii exemplary for the density-scaled cluster model with
a) 1000 and b) 16000 particles. The plotted Lagrangian radii correspond to mass fractions
of 1 % (red), 2 % (green), 5 % (blue), 10 % (pink), 20 % (magenta), 30 % (black), 50 %
(brown), 70 % (orange), and 90 % (yellow), from bottom to top, respectively. This figure
corresponds to Fig. 4.4 of the numerical model of the ONC.
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tures of the motion of wide massive binaries, typically with a semi-major axis on the order of
104 AU and a mass of 102 M�. The very moderate decrease of the velocity dispersion shows
as well that the cluster remains kinematically too hot to form a substantially bound subsystem.
In contrast, the virial ratio of the 16000 particle cluster is significantly below the value of an
unbound system (Qvir > 1) during the whole simulation time and comes even close to the
value of virial equilibrium (Qvir = 0.5) at times exceeding ∼2.5 Myr. The large amplitudes,
in particular prominent at times∼2 Myr, are caused by stars that are expelled from the cluster
with very high velocities. The fact that escaping stars do transport a large fraction of kinetic
energy outwards, cooling effectively the cluster, is apparent in the substantial decrease of the
velocity dispersion by more than 20 %. The roughly constant value of the velocity dispersion
from 2 Myr on shows again that a bound stellar (sub-)system has formed that is approximately
in dynamical equilibrium. However, one should note that at times earlier than 2 Myr, both
cluster models show a very similar evolution of the virial ratio. This is in agreement with the
analytical estimates and the previous finding that during this period all four density-scaled
cluster models are dynamically equivalent to the standard cluster model of the ONC.

In summary, due to the nearly exact qualitative and scaled quantitative evolution of the
density scaled cluster models, it is justified to ascribe differences of the effects of star-disc
encounters on the stellar population mainly to one parameter, namely the initial density of the
cluster models. Nevertheless, as mentioned above, the influence of the particle number has
to be considered, too. This aspect will be addressed subsequently.
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Figure 6.5.: Time evolution of stellar densities of all size-scaled cluster models in a volume of R = 2.5pc
(“ONC”, blue line), R = 0.3pc (“Trapezium Cluster”, green line), and Rcore = 0.05pc
(“core”, red line), respectively. From bottom to top in each colour regime the cluster model
with 1000, 2000, 4000, 8000, and 16000 particles is marked by a short-dashed, long-dashed,
solid, dotted, and dot-dashed line, respectively. The black error bars mark the correspond-
ing observational estimates of the ONC for comparison. This figure corresponds to Fig. 4.3.

6.3.2. Size-Scaled Cluster Models

The size-scaled cluster models show a different dynamical evolution compared to the density-
scaled models discussed above and roughly in agreement with the analytical results.

Initially, the size-scaled clusters have roughly the same densities at corresponding cluster
radii (that are smaller than the initial size of the smallest cluster with 1000 particles, r <

0.625pc). The initially lower densities of the two cluster models with 1000 and 2000 particles
at a radius of 2.5 pc correspond to their lower initial size of 1/4 and 1/2 the size of the ONC.

The temporal evolution of the densities in Fig. 6.5 demonstrates that the clusters evolve on
slightly different time scales, where the density declines faster for the less populated clusters.
However, the densities of the models with 2000 particles and more differ not much, and are
consistent with a coeval decline, as expected from the previous analytical estimates. The
increase of the densities at 2.5 pc for the 8000 and 16000 particle model is due to an initial
contraction, in accordance with the discussion in the previous Section 6.3.1, but stronger
pronounced than for the density-scaled models. The different slopes reflect the different
dynamical time scales of the stellar systems.

The evolution of the other cluster parameters is as well in good agreement with the analyt-
ical estimates, as shown in Fig. 6.6. The virial ratio in the upper panel is clearly a function
of the particle number, increasing strongly for smaller populations, qualitatively according to
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Figure 6.6.: a) Virial ratio (blue), and b) velocity dispersion (red) as a function of time for the five
size-scaled cluster models. In each colour regime the cluster model with 1000, 2000, 4000,
8000, and 16000 particles is marked by a short-dashed, long-dashed, solid, dotted, and
dot-dashed line, respectively.

Eq. (6.4). However, the correlation is not described by such a simple function of the particle
number as Eq. (6.4). But that would also not be expected to be the case because the assumed
analytical model of the particle escape is very rough, and the effect of such an event on the
virial ratio depends on the detailed properties of the individual escaper and would thus re-
quire much more effort for a correct treatment which is far beyond the scope of the analytical
estimate.

That a much larger fraction of escapers is found in the cluster models with smaller popula-
tions is demonstrated in the bottom panel of Fig. 6.6: the decline of the velocity dispersion
with time is the steepest for the 1000 particle model (dotted line) and becomes very low for
the 16000 particle model (dot-dashed line). The different times at which the velocity disper-
sion reaches its maximum (due to maximum contraction, as discussed in Section 4.3) agrees
well with the crossing-time of each cluster model (see Table 6.1), as expected for a N-body
system that adopts dynamically to a quasi-equilibrium state.

However, the main point of the investigation of the dynamics of the size-scaled cluster
models is that the evolution of the cluster densities does not – to first order – depend on
the number of particles, probably with the exception of the 1000 particle model, that shows
moderate deviations. The five size-scaled models are thus well suited to investigate the effect
of the number of cluster stars on star-disc encounters and the corresponding induced disc-
mass loss. Having demonstrated as well the validity of the density-scaled models for an
investigation of the dependence of the disc-mass loss on cluster density, both aspects will be
faced in the next section.
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6.4. Disc-Mass Loss Induced by Star-Disc Encounters

According to the previous section, analytical estimates will be presented prior to the numer-
ical results. The treatment will concentrate on the encounter rates in the different cluster
models, helping to obtain a first guess of the influence of the cluster environment on the
encounter-induced disc-mass loss. A prescription of the disc-mass loss itself will not be
included in the analytical part to keep the basic results as simple and clear as possible.

The treatment of encounters involves one important time scale, the collision time tcoll, ex-
pressed by Eq. (C.1). Here the inverse of the collision time will be introduced as the encounter
rate, fenc = t−1

coll. Dropping the constants in Eq. (C.1) because only the relative quantities are
of interest when comparing scaled models, and introducing the escape velocity v? from the
stellar surface,

v? =
√

2Gm?

r?
, (6.6)

the encounter rate can be written as

fenc ∝ ρσ

(
1+

v2
?

4σ2

)
, (6.7)

where G denotes the gravitational constant, m? and r? the stellar mass and radius, and ρ and σ

the density and velocity dispersion of the star cluster. In the following, the stellar radius r?

will be replaced by the “typical interaction radius” renc, that means the radius at which the
star is subject to a significant (but still frequent) perturbation that potentially can remove
some fraction of the disc-mass. Eq. (6.7) will be evaluated for three different stellar masses,
representing stellar mass groups of low-, intermediate- and high-mass stars. Appropriate
typical interaction radii are taken from Table 3 of Olczak et al. (2006). The set of masses m?,
radii renc and resulting “encounter escape speeds” venc is shown in Table 6.2.

Because the 4000 particle model represents the standard ONC model, which has been
intensively studied, the calculations will be normalised to this model. All quantities related
to the 4000 particle model will be thus denoted by a “0” as subscript. Adopting the initial
velocity dispersion of the 4000 particle model, σ0 ≈ 2.3km s−1 ≈ 0.5AU/yr, using

4σ
2 = 4σ

2
0

(
σ

σ0

)2

≈
(

σ

σ0

)2 AU
a

and the numbers given in Table 6.2, Eq. (6.7) can be simplified to

fenc ∝ ρσ

[
1+ γ

(
σ0

σ

)2
]

. (6.8)
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mass groups m? renc venc γenc

[M�] [AU] [AU/yr]

low mass 0.1 102−103 ∼ 0.3−0.1 10−2

intermediate mass 1−10 102−5 ·102 ∼ 3−0.5 1

high mass 100 102 ∼ 10 102

Table 6.2.: Typical parameters adopted for the calculation of the encounter rate of cluster stars. The
first column denotes the three mass groups, the second column contains the adopted mass
ranges, m?, while in the third typical interaction radii, renc, are listed for each mass group. In
the last two columns the resulting “encounter escape speeds”, venc, and the “gravitational fo-
cusing parameter”, γenc, are noted. The gravitational focusing parameter, an approximation
parameter, is defined here as the power of ten best representing v2

enc.

An even more compact representation is possible when one considers the scaling properties
of the two families of models: as can be derived from Eq. (6.1) and (6.3), the scaling relations
for the density scaled models are ρ ∝ N and σ ∝

√
N, while ρ = const and σ = const is found

for the size-scaled models. Using these relations and normalising the encounter rate to the
4000 particle model, f norm

enc = fenc/ fenc,0, one obtains

f norm
enc =


(

ρ

ρ0

)3/2
[

1+γenc

(
ρ

ρ0

)−1

1+γenc

]
density-scaled models ,

1 size-scaled models .

(6.9)

The derived relation for the normalised encounter rate predicts very different scaling re-
lations for the two families of cluster models. Density scaled-models are expected to show
large variations of the number of encounters, even with a superlinear dependency on the den-
sity for low-mass stars, i.e. when γenc� 1. In contrast, the encounter rate for the size-scaled
models is expected to vary only for the different mass groups, but not among different mod-
els. For a better overview of the scaling in terms of numbers, Table 6.3 lists approximated
relative encounter rates f norm

enc , normalised to the low-mass group of the 4000 particle model.
Table 6.3 demonstrates that the gravitational focusing parameter plays an important role for
the massive stars. The encounter rates increase dramatically by roughly two orders of mag-
nitude from the low- and intermediate-mass stars to the high-mass stars. This finding agrees
well with the number of encounters of the ONC model presented in Fig. 4.9.

In summary, what one would expect from the numerical simulations of the density-scaled
models is a steep increase of the number of encounters with cluster density with a power of
3/2 in case of the low-mass stars and a considerably shallower dependency with a power of 1/2
for the high-mass stars. However, due to the roughly two orders of magnitude larger number
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family of models density-scaled size-
scaled

particle number 1000 2000 4000 8000 16000 all

low mass 1/8 1/3 1 3 8 1

intermediate mass 5/8 1 2 4 10 2

high mass 50 70 100 140 200 100

Table 6.3.: Approximate relative encounters rates f norm
enc from Eq. (6.9) of the five density-scaled and

size-scaled models, normalized to the low-mass group of the 4000 particle model.

of encounters of massive stars than of low-mass stars in the 4000 particle model, still about
one order of magnitude more encounters are expected for the massive stars in case of the
16000 particle model. In contrast, the size-scaled models should produce very similar results
in terms of number of encounters, independent of the specific particle model. Analogous to
the density-scaled models, the number of encounters of high-mass stars are expected to be
about two orders of magnitude higher than for low- and intermediate-mass stars. One should
caution that the discussed expectations do only base on statistical mean values of the cluster
parameters and do not account for variations of density, velocity dispersion or virial ratio with,
for example, stellar mass. Moreover, the parameter ranges of the three mass groups of low-,
intermediate- and high-mass stars are rough estimates that are based on the most frequent
encounter types, neglecting the very close (and strongly perturbing) encounters. This latter
simplification does inevitably rule out the same scaling relation of the disc-mass loss with
cluster density or stellar number as was obtained here analytically for the encounter rates.
However, a comparison with the numerical results will show in how far the scaling relations
are modified by means of disc-mass loss.

Before the effect of star-disc encounters on the disc-mass loss in the density-scaled cluster
models will be investigated in detail, it is important to address the effect of one important
parameter that has been modified compared to the standard ONC model: the stellar upper
mass limit. It has been already discussed in the previous section that the exact generating
algorithm of the mass limit probably is not very important. In Fig. 6.7 the average relative
disc-mass loss as a function of the stellar mass is compared for the standard ONC model with
a stellar upper mass limit of 50 M� (blue boxes), as used in the previous chapter, and the same
model with an upper mass limit of 150 M� (red boxes). For masses below 50 M� the two
distributions are qualitatively in good agreement, though it is evident that the average disc-
mass loss in case of the lower mass limit is ∼5 % larger in each mass bin up to ∼2 M�. This
result is in contrast to the expected larger disc-mass loss for a higher stellar mass limit simply
due to the fact that a more massive star i) acts as a stronger gravitational focus, ii) induces
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Figure 6.7.: Average relative disc-mass loss at 1 Myr for the Trapezium Cluster as a function of the
stellar mass for a fixed disc radius of 150 AU. The standard ONC model with a stellar
upper mass limit of 50 M� (blue bars) is compared to a simulation of the same model with
an upper mass limit of 150 M� (red bars).

larger perturbations, and iii) perturbs discs out to larger distances, as shown in Section 4.4.
However, a detailed investigation of this apparent contradiction showed that the differences

of the two distributions in Fig. 6.7 can not be explained by the difference of the adopted
upper mass limit. For various subsets of the 100 simulations of the 4000 particle model with
different ranges of the maximum stellar mass very similar distributions have been found, with
much lower differences than that between the 4000 particle model and the standard ONC
model. The intermediate and high-mass parts of the two distributions in Fig. 6.7 show no
significant deviations. In the intermediate range of ∼2-10 M� both distributions agree very
well; for more massive stars up to 50 M� the average disc-mass loss of the 50 M�-limit model
is significantly higher. This is expected because stars with masses in the range 10−50M� can
act as additional strong gravitational foci in the presence of a most massive cluster member
of 50 M�, while their effect is largely reduced if a 150 M� star is gravitationally dominating.
The most massive stars in the range 80− 150M� show, as expected, the largest average
relative disc-mass loss. That it is somewhat lower than that of the most massive star of the
50 M�-limit model is in agreement with the stronger gravitational attraction of their disc,
leading on average to a reduced disc-mass loss per encounter. However, since the highest
mass bin is only populated by 9 stars, any further conclusions about the average relative
disc-mass loss of the most massive stars would be highly speculative.
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6.4.1. Density-Scaled Cluster Models

In this section one fundamental question of the encounter-induced disc-mass loss is addressed:
How does the density of the cluster environment influence the effect that star-disc encounters
have on circumstellar discs?

Perhaps the best rough estimate of the role of the cluster density would be a comparison of
the fraction of completely destroyed discs in each cluster model, as introduced in Section 4.3.
The distributions in Fig. 6.8 show the average fraction of stars that are surrounded by disc
material and correspond from top to bottom to clusters with increasing density. Compared to
Fig. 4.6, the error bars have been removed and the curves have been smoothed with Bezier
curves to provide a clearer view. It is evident that for both, the entire ONC region and the
more compact region of the Trapezium Cluster, the fraction of destroyed discs increases sig-
nificantly with increasing cluster density. In particular, the effect becomes much stronger
for the clusters with 2 and 4 times the density of the ONC (dotted and dot-dashed line). In
the case of the 16000 particle model (dot-dashed line), even up to 60 % of the stars in the
Trapezium Cluster could have lost their discs after 1 Myr of dynamical evolution. But it is
also interesting to note that even in a cluster 4 times less dense than the ONC (short-dashed
line), still 10-15 % of the stars could lose their surrounding discs due to gravitational interac-
tions with cluster members. However, one has to treat these numbers with care due to the –
partially – significant uncertainties that go into the calculations, as discussed in Section 4.4.5.
Nonetheless, what is more of importance here – and relies only on the relative quantities –
is the fact that the distributions in Fig. 6.8 are not equidistant but do show larger differences
with increasing particle number. The analytical estimate of the encounter rate, Eq. (6.9), pro-
vides an explanation for this trend. Because the encounter rate of low-mass stars scales as
ρ3/2, while that of high-mass stars scales as ρ1/2, encounters of low-mass stars are expected
to become more dominant with increasing cluster density than encounters of high-mass stars,
qualitatively in agreement with the trend in Fig. 6.8. Since this trend becomes prominent
for the two cluster models with higher densities than the ONC, it seems that the density of
the ONC represents a critical value that marks the onset of a much more destructive effect
of star-disc encounters in clusters of higher density. This finding has to be investigated in
greater detail.

In order to determine the dominant mode of the star-disc interactions, i.e. if there is a
preferred mass range of stars that become disproportionately high involved in perturbing en-
counters with increasing cluster density, in Fig. 6.9 the average relative disc-mass loss as a
function of time for three different stellar mass groups has been plotted. The ranges of the
mass groups have been determined individually, in dependence of the size of the stellar pop-
ulation, for the models with 1000, 2000, 4000, 8000, and 16000 particles. The method is de-
scribed in detail in Appendix D.1. Results for three cluster models, with 1000 (short-dashed
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Figure 6.8.: Time evolution of the fraction of stars that posses a circumstellar disc, for a region of the
size of the ONC (blue) and the Trapezium Cluster (red). The curves have been smoothed
by Bezier curves to avoid intersecting lines. From top to bottom in each colour regime
the cluster model with 1000, 2000, 4000, 8000, and 16000 particles is marked by a short-
dashed, long-dashed, solid, dotted, and dot-dashed line, respectively.

line), 4000 (solid line), and 16000 (dot-dashed line) particles are illustrated for comparison.
It seems that, in terms of disc-mass loss, high-mass stars are not strongly affected by the den-
sity of a cluster environment. In particular, the average disc-mass loss of the high-mass stars
is not much different in the simulations with 1000, 4000, and 16000 particles. The situation is
quite different for the lower mass stars: here the average disc-mass loss of both mass groups
increases strongly with cluster density. This is in particular the case for the 16000 particle
model, which shows nearly twice as large values as the 4000 particle model. The fact that
the highly increased disc-mass loss of the lower mass stars has no corresponding higher disc-
mass loss of the high-mass stars is an important finding. One possible explanation would be
that the increasing perturbations of the lower mass stars are the outcome of encounters pref-
erentially between low- and intermediate-mass stars – due to closer encounters or a higher
frequency of encounters.

Indeed, as is demonstrated by Fig. 6.10 and 6.11, the interaction of low- and intermediate-
mass stars between each other becomes more dominant with increasing cluster density. The
former shows the number of encounters as a function of stellar mass for the density-scaled
models. Besides the fact that, as expected, the total number of encounters rises with clus-
ter density, the outstanding feature is the increasing dominance of encounters of low- and
intermediate-mass stars. The two upper panels in Fig. 6.10 demonstrate that this is the case
for all types of encounters – weak, medium and strongly perturbing. In contrast, the number
of encounters of the high-mass stars in the densest cluster model is much less increased com-
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Figure 6.9.: Temporal dependence of the average relative disc-mass loss of three different stellar mass
groups (see Appendix D.1 for the width of the mass intervals): low-mass stars (blue line),
intermediate-mass stars (green line), and high-mass stars (red line). From bottom to top in
each colour regime the cluster model with 1000, 4000, and 16000 particles is marked by a
short-dashed, solid, and dot-dashed line, respectively.

pared to the lower density clusters, as shown in the bottom panel. Fig. 6.11 illustrates that the
increasing number of encounters of low- and intermediate-mass stars occurs predominantly
between stars of similar mass. Here the number of encounters is plotted as a function of the
relative perturber mass, i.e. the mass ratio of perturber and perturbed star. The upper range
of the relative perturber mass is given by the ratio of the upper and the lower stellar mass
limit, µmax = 150M�/0.08M� = 1875. The lower range is determined by the lowest relative
perturber mass that can cause an encounter, i.e. a minimum relative disc-mass loss of 0.03
(see Section 4.4.2), which is typically µmin . 0.1. While in the low-density cluster models
the number of weak, intermediate and strong encounters is roughly equally distributed over
the entire range of relative perturber masses, a prominent peak at µ ≈ 1 marks the distri-
bution of all encounters for the high-density cluster models. The transition between these
two shapes is marked by the 4000 particle cluster model. Consequently, the group of high-
mass stars becomes less important for the encounter-induced disc-mass loss of the low- and
intermediate-mass stars in clusters with higher densities than the ONC.

This finding can be compared again with the analytical estimate of the encounter rate.
For low densities, corresponding to low particle numbers in the present models, one would
expect from Eq. (6.9) that the high-mass stars dominate the encounter rate, favouring a scaling
f norm
enc ∝ ρ1/2. This expectation is in good agreement with the results from the numerical

simulations presented in Fig. 6.12, which show that the encounter rates of the cluster models
with 1000, 2000, and 4000 particles are scaling roughly as N1/2, and is attributed to the
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Figure 6.10.: Number of encounters as a function of stellar mass (logarithmic bins). The top and middle
panel depict the number of encounters for three different groups by means of disc-mass
loss per encounter for the cluster model with a) 1000 particles and b) 16000 particles,
respectively (blue: all encounters (see Section 4.4.2 for the definition of an encounter),
green: at least 50 % disc-mass loss, red: at least 90 % disc-mass loss). The bottom panel
c) shows all encounters for each of the five density-scaled cluster models.
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Figure 6.11.: Number of encounters as a function of the relative perturber mass (logarithmic bins). The
top and middle panel depict the number of encounters for three different groups by means
of disc-mass loss per encounter for the cluster model with a) 1000 particles and b) 16000
particles, respectively (blue: all encounters (see Section 4.4.2 for the definition of an
encounter), green: at least 50 % disc-mass loss, red: at least 90 % disc-mass loss). The
bottom panel c) shows all encounters for each of the five density-scaled cluster models.
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Figure 6.12.: Normalised encounter rate f norm
enc of the five density-scaled cluster models in comparison

with the analytical estimate given by Eq. (6.9). The black squares represent all stars in
the Trapezium Cluster region (R = 0.3pc), the other symbols stand for predefined mass
groups: high-mass, m ≥ 10M� (blue triangles), intermediate-mass, 10M� ≥ m ≥ 1M�
(green circles), and low-mass stars, m≤ 1M� (red downward triangles). The dashed lines
depict the analytical estimate of the encounter rate for high-mass (blue line) and low-mass
stars (red line). The ranges of the mass groups have been chosen here different from those
in previous figures to account for the mass regimes of the encounter rate presented in
Table 6.2.

fact that the lower mass stars interact preferentially with massive stars. For higher particle
numbers the distribution becomes more complex. Here the high-mass stars show a trend
of decreasing encounter rate with particle number. This feature accounts for the decreasing
importance of the high-mass stars as gravitational foci (for the lower mass stars) and is a
consequence of the decreasing ratio of the mass of the most massive star and the cluster
mass. Accordingly, the distribution of the encounter rate of the low-mass stars tends towards
the analytical limit of N3/2 for low-mass stars, representing the more frequent interaction of
low-mass stars with each other.

The above results show that in star clusters with higher densities than the ONC massive
stars lose their outstanding role as encounter partners of lower mass stars. Combined with
the previous finding that the density of the ONC represents as well a critical value by means
of a much more destructive effect of star-disc encounters in clusters of higher density, the
higher disc destruction rate in these clusters is largely attributed to encounters of low- and
intermediate mass stars with partners of similar mass.

The effect on the disc-mass loss as a function of stellar mass is demonstrated in Fig. 6.13.
For low- and intermediate-mass stars, the increase of the average relative disc-mass loss
shows the same trend as for the encounter rates: the increase is moderate for the cluster
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Figure 6.13.: Smoothed average relative disc-mass loss at 1 Myr for the Trapezium Cluster as a func-
tion of the stellar mass for a fixed disc radius of 150 AU. The distributions of the five
density-scaled cluster models have been smoothed by Bezier curves and are represented
by different colours (see legend). The red dashed line represents an average over simu-
lations of the 1000 particle model in which the maximum stellar mass was in the range
20-36 M�.

models with 1000 to 4000 particles (red, green, and magenta line), and becomes much larger
for the two most massive cluster models (blue and black line). The situation for the high-mass
stars appears to be less evident. This is because the sampling of the high-mass stars is very
poor for low particle numbers. The very broad and low peak at the high-mass regime of the
1000 particle model is just an effect of the average over simulations with different maximum
masses of the sampled stellar populations. However, if one builds a restricted sample in terms
of maximum stellar mass, as has been done here exemplary for a mass range of 20–36 M�
(dashed red line), it becomes apparent that the disc-mass loss in the high mass regime is qual-
itatively not much different than for the higher density clusters. In all five cluster models the
most massive star loses (nearly) its complete disc mass.

In summary, the variation of the disc-mass loss due to encounters for cluster environments
of different densities shows two important features: i) low- and intermediate-mass stars lose
a larger fraction of their disc material with increasing cluster density, and ii) the discs of
the most massive stars are (nearly) completely destroyed, independent of the density of the
cluster environment. The important finding for i) is that the correlation is not linear, but shows
a much larger increase for the two model clusters with the largest densities (and populations),
implying that there exists a critical density that marks the onset of a much more destructive
effect of star-disc encounters. This critical density seems to be close to the density of the
ONC.
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Figure 6.14.: Time evolution of the fraction of stars that posses a circumstellar disc, for a region of
the size of the ONC (blue, R = 2.5pc) and the Trapezium Cluster (red, R = 0.3pc). The
curves have been smoothed by Bezier curves to avoid intersecting lines. Here the disc size
was assumed to be fixed. From top to bottom in each colour regime the cluster model with
1000, 2000, 4000, 8000, and 16000 particles is marked by a short-dashed, long-dashed,
solid, dotted, and dot-dashed line, respectively.

In the next section it will be examined whether the results of the size-scaled cluster models
are as well in agreement with the theoretical estimates and which effect the number of stars
in a cluster does have on star-disc encounters.

6.4.2. Size-Scaled Cluster Models

In accordance with the previous section, the first quantity to discuss and compare with the
distributions of the density-scaled models is the fraction of stars that are surrounded by discs,
depicted in Fig. 6.14. It is evident that, in the case of the Trapezium Cluster, the fractions of all
five size-scaled cluster models are in very good agreement. The somewhat larger deviation of
the 16000 particle model is most probably due to the low statistics: while the stellar number
in the Trapezium Cluster is roughly the same for all size-scaled cluster models, only 20
simulations have been performed with 16000 particles, compared to 200 realisations of the
1000 particle model (see also Section 6.2).

The significant difference of the fraction of stars with discs in the entire ONC region among
the size-scaled models is due to the initial setup. Both, the 1000 and the 2000 particle model
are initially smaller in extension than the adopted ONC radius of 2.5 pc and thus lack a large
population of stars in the outer cluster region. Stars in these much less dense regions lose
on average a much lower fraction of their disc mass, increasing the fraction of star-disc sys-
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Figure 6.15.: Temporal dependence of the average relative disc-mass loss of three different stellar mass
groups (see Appendix D.1 for the width of the mass intervals) in the Trapezium Cluster:
low-mass stars (blue line), intermediate-mass stars (green line), and high-mass stars (red
line). In each colour regime the cluster model with 1000, 2000, 4000, 8000, and 16000
particles is marked by a short-dashed, long-dashed, solid, dotted, and dot-dashed line,
respectively. Here the disc size was assumed to be scaled with the stellar mass.

tems in a cluster. At later simulations times, also differences among the other cluster models
become apparent. This evolutionary effect is caused by the initial contraction of the stel-
lar system, which is the more pronounced the higher the particle number, as discussed for
Fig. 6.5.

The evolution of the five size-scaled cluster models in terms of disc-mass loss is very
similar for the three mass regimes of low-, intermediate- and high-mass stars, demonstrated
by Fig. 6.15 for the Trapezium Cluster. Until ∼2 Myr the distributions of the average relative
disc-mass loss are virtually the same. At later times there seems to be a slight trend of a lower
average disc-mass loss of the low- and intermediate-mass stars for higher particle numbers.
This could be understood as a consequence of the more pronounced contraction with higher
particle number, inducing a transport of unperturbed stars from the outer cluster regions into
the central region. However, since the differences between the distributions are on the order
of the uncertainties of the average disc-mass loss, in particular for the low sampled 16000
particle model, the relevance of the feature should be regarded with caution.

Similar to the temporal distribution, the spacial distribution of the average relative disc-
mass loss, presented in Fig. 6.16, shows a common shape among the five size-scaled models
for all three groups of low-, intermediate- and high-mass stars. The only exception marks
the 10-15 % higher disc-mass loss of the high-mass stars in the outer region of the 1000
particle model. This feature is explained by the faster expansion of the initially more compact
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Figure 6.16.: The average relative disc-mass loss as a function of the radial distance from the cluster
centre of three different stellar mass groups (see Appendix D.1 for the width of the mass
intervals): low- (blue line), intermediate- (green line), and high-mass stars (red line). In
each colour regime the cluster model with 1000, 2000, 4000, 8000, and 16000 particles
is marked by a short-dashed, long-dashed, solid, dotted, and dot-dashed line, respectively.
Here the disc size was assumed to be scaled with the stellar mass. The vertical black
dashed line marks the radial extension of the Trapezium Cluster.

configuration compared to the other cluster models. Consequently, the high-mass stars leave
the central cluster region earlier and more frequently in the 1000 particle model. In the
disc-mass loss distributions of the high-mass group of the individual simulations this effect
manifest as more prominent and more frequent single peaks in the outer cluster region. The
average of 200 representations shown here tends to smear out the individual features over the
entire radial interval and causes an elevated, smooth distribution.

The presented results for the disc-mass loss show that the size-scaled models are equivalent
in their environmental effect on protoplanetary discs. Though this seems to be in agreement
with the analytical estimate of the encounter rate, given by Eq. (6.9), there is one good rea-
son disfavouring such a relation. As was shown in Fig. 6.5, the dynamical evolution of the
cluster models is slightly different and the density of the 1000 and 2000 particle models de-
creases faster than for the more massive clusters, even up to a factor of 2 in case of the 1000
particle model. Thus one would expect a lower encounter rate in these smaller systems and,
consequently, on average a lower disc-mass loss. However, this is obviously not the case, but
can be explained by Fig. 6.17. In the case of low- and intermediate mass stars the presented
encounter rates, normalised to the 4000 particle model, are in good agreement with the an-
alytical estimate, which predicts a constant distribution as a function of particle number for
the size-scaled models. In contrast, the normalised encounter rate of the high-mass stars de-
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Figure 6.17.: Normalised encounter rate f norm
enc of the five size-scaled cluster models in comparison with

the analytical estimate given by Eq. (6.9). The black squares represent all stars in the
Trapezium Cluster region (R = 0.3pc), while the other geometrical symbols stand for
predefined mass groups: high-mass stars, m ≥ 10M� (blue triangles), intermediate-mass
stars, 10M� ≥ m ≥ 1M� (green circles), and low-mass stars, m ≤ 1M� (red downward
triangles). The dashed black line depicts the analytical estimate of the encounter rate for
all stellar masses. The ranges of the mass groups have been chosen here different from
those in previous figures to account for the mass regimes of the encounter rate presented
in Table 6.2.

creases with increasing particle number. This trend shows that the high-mass stars, similarly
to the finding for the density scaled models, become less important as gravitational foci for
the low-mass stars in clusters with larger stellar populations. Hence, in terms of encounter
statistics, the lower density of the 1000 and 2000 particle models is compensated by the more
frequent interactions of the high-mass stars.

That the discussion of the encounter rates is as well representative of the corresponding
disc-mass loss is demonstrated in Fig. 6.18. For masses below 1 M� the size-scaled models
show nearly identical results, while higher stellar masses do suffer a larger disc-mass loss in
clusters with smaller populations.

Keeping in mind that the prescription used in the present investigation to determine the
encounter-induced disc-mass loss is expected to overestimate this effect in a number of cases
(see Section 4.4.5 for a discussion), it is important to estimate the validity of the findings.
This is part of the next section.
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Figure 6.18.: Smoothed average relative disc-mass loss at 1 Myr for the Trapezium Cluster as a func-
tion of the stellar mass for a fixed disc radius of 150 AU. The distributions of the five
size-scaled cluster models have been smoothed by Bezier curves and are represented by
different colours (see legend).

6.5. Validity of the Results

To validate the results obtained so far, in the following the encounters will be analysed in
terms of their properties – in particular those encounters, that seem to become dominant
for cluster densities above the critical density. As shown in the previous sections, these are
encounters of low- and intermediate mass stars that occur preferentially between stars of
equal mass.

In Fig. 6.19 the number of encounters as a function of eccentricity and in dependence of
the disc-mass loss per encounter is presented for the two cluster models with 1000 and 16000
particles. In the low-density cluster model by far the most encounters are pseudo-parabolic
(i.e. 57 % of all encounters have 0.8 ≤ ε ≤ 2.0, as defined in Section 4.4.5), whereas the
situation is much different for the model with the highest density. While the distributions
for all three minimum disc-mass loss fractions peak at the parabolic case, the contribution
from hyperbolic encounters is much higher and increases significantly towards encounters
with a lower relative disc-mass loss, leading to a broader and marginally lower second peak
at ε ≈ 30. Consequently, the type of encounter that has growing importance in the disc
destruction process with increasing cluster density is a strongly hyperbolic. This fact might
be a critical one because, as was discussed in Section 4.4.5, in hyperbolic encounters the
disc-mass loss can be much lower than in parabolic encounters.

To estimate the bias that is introduced by treating all encounters in the calculations of the
disc-mass loss as parabolic, the relative disc-mass loss as a function of eccentricity must
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Figure 6.19.: Number of encounters as a function of the eccentricity (logarithmic bins), plotted for three
different groups by means of disc-mass loss per encounter. The blue surface represents
all encounters (see Section 4.4.2 for the definition of an encounter), the green those that
removed at least 50 % of the disc-mass, while the red stands for the most destructive en-
counters that caused a disc-mass loss of at least 90 %. The two plots show the distributions
for the density-scaled cluster models with a) 1000 particles and b) 16000 particles.
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Figure 6.20.: Relative disc-mass loss normalised to the strict parabolic case (ε = 1) as a function of
eccentricity for all star-disc simulations that have been performed (see Section 4.4.2 for
the adopted parameter space). The black line marks the median of all simulations, the
blue line is the fit function from Eq. (6.10).

be determined. Fig. 6.20 shows the median distribution of the relative disc-mass loss as a
function of eccentricity, normalised to the parabolic case, for all star-disc simulations that
have been performed (see Fig. 4.13 for comparison). The blue curve in the figure depicts the
fit function that has been determined for this median distribution,

∆̂m(e) = exp[0.12(e−1)]{0.83−0.015(e−1)+0.17exp[0.1(e−1)]} (6.10)
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Figure 6.21.: Number of encounters as a function of eccentricity (logarithmic bins), corrected for effects
of eccentricity by using Eq. (6.10). Three different groups by means of disc-mass loss per
encounter are plotted. The blue surface represents all encounters (see Section 4.4.2 for the
definition of an encounter), the green those that removed at least 50 % of the disc-mass,
while the red stands for the most destructive encounters that caused a disc-mass loss of
at least 90 %. The plot shows the distribution for the density-scaled cluster model with
16000 particles.

and shows that it is a good representation.
Using this fit function, the previous results have been reevaluated. Fig. 6.21 shows again

the distribution of the number of encounters against eccentricity for the density-scaled 16000
particle model. Compared to Fig. 6.19b, the number of hyperbolic encounters with eccen-
tricities e & 5 is significantly reduced and the extreme cases with e & 100 are completely
removed. However, one has to stress that the fit function represents a median distribution,
inevitably still overestimating the effect of weak encounters and suppressing the strong en-
counters too much. Thus the significant reduction of heavily perturbing eccentric encounters,
represented by the green and red surfaces, is most probably overestimated.

Nevertheless, the encounters that are characterised by the largest eccentricities and are
thus most affected by the implementation of the fit function are the weakly perturbing events.
As has been shown previously (see Section 6.4.1), these events are most numerous in the
density-scaled 16000 particle model and result preferentially from interactions of low- and
intermediate mass stars with equal-mass perturbers. Hence one would expect that the differ-
ences of the derived disc-mass loss of the less massive stars among the density-scaled models
should be reduced if eccentricities are considered explicitly. In fact, Fig. 6.22 demonstrates
that, in comparison to Fig. 6.13, the previous differences of up to 45 % for the lowest mass
stars are reduced to at most 15 %. Continuously reduced, the differences are apparent up to
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Figure 6.22.: Smoothed average relative disc-mass loss, not restricted to parabolic encounters, at 1 Myr
for the Trapezium Cluster as a function of the stellar mass for a fixed disc radius of 150 AU.
The calculation was extended by the implementation of a fit function of the form (6.10).
The distributions of the five density-scaled cluster models have been smoothed by Bezier
curves and are represented by different colours (see legend).
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Figure 6.23.: Time evolution of the fraction of stars that posses a circumstellar disc, not restricted to
parabolic encounters, for a region of the size of the ONC (blue, R = 2.5pc) and the Trapez-
ium Cluster (red, R = 0.3pc). The curves have been smoothed by Bezier curves to avoid
intersecting lines. Here the disc size was assumed to be fixed. From top to bottom in
each colour regime the cluster model with 1000, 2000, 4000, 8000, and 16000 particles is
marked by a short-dashed, long-dashed, solid, dotted, and dot-dashed line, respectively.
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masses of ∼5 M�. The disc-mass loss of the most massive stars remains unaffected by the
reevaluation.

Because the low-mass stars in a cluster are dominant in number (as long as the mass func-
tion is close to the canonical IMF (2.17)), their reduced disc-mass loss affects the fraction of
disc-less stars significantly, as shown in Fig. 6.23. Clearly, the outstanding role of the dense
8000 and 16000 particle models as environments of huge disc destruction, as presented in
Fig. 6.8, has to be revised, though it is still considerably larger compared to the ONC model
and the sparser clusters. However, one has to consider that this result most probably under-
estimates the real destructive effect of hyperbolic encounters. This is because, as mentioned
above, the applied fit function reduces the disc-mass loss from strong perturbations too much,
reducing the potential number of events that can directly remove nearly the complete disc
material.
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7. Discussion

The present work has shown – under the discussed constraints – that the common environ-
ment of star formation can act hostile on the discs of its young stellar population. Here the
massive stars have been found to play a decisive role, even more so in the less massive clus-
ters. With the finding that disc-destructive encounters leave imprints in the velocity distribu-
tion of a star cluster, combining observational data of the velocity distribution and signatures
of circumstellar discs presents a future prospect for the observational investigation of the
encounter-induced disc-mass loss in different cluster environments. Interrelating the obser-
vations with results from numerical simulations, we will come close to answer the question
where and when planets find the most promising conditions to form. So far, the presented
results imply that intermediate mass stars like our sun in clusters of Orion-type or smaller are
most favoured by the planet formation process.

All these effects have been obtained solely by investigating the effect of star-disc encoun-
ters. But how would results change if other mechanisms would have been included. In fact,
the environmental influences can be manifold: in addition to gravitational interactions with
passing stars, winds and radiation from massive stars, or high-velocity shocks from super-
novae can have a perturbing effect on a young star’s disc or planetary system (e.g. Johnstone
et al., 1998; Bonnell et al., 2001b; Ouellette et al., 2007). Because in the present work young
star clusters with ages up to 5 Myr are in the focus, only very massive stars could evolve fast
enough to end up in a supernova in this short period. Thus more of concern as an external
impact on circumstellar discs in the present framework are the two former mechanisms. Nat-
urally, the question arises: on which spatial and temporal scales do these mechanisms act and
how far do they interfere with each other?

This question has been only recently addressed by various authors (e.g. Scally & Clarke,
2001; Adams et al., 2004; Moeckel & Bally, 2006). Early simulations have found that the role
of encounters is of minor importance and favoured photoevaporation (e.g. Scally & Clarke,
2001). However, more recent investigations show that both mechanisms can play a significant
role (Olczak et al., 2006; Adams et al., 2006; Pfalzner et al., 2006; Fatuzzo & Adams, 2008).
Whether the two mechanisms might act on different scales is an unsolved problem. Though
from numerical simulations it seems that disc destruction due to photoevaporation can occur
very fast (Scally & Clarke, 2001; Gorti & Hollenbach, 2008), even on time scales < 105 yr,



“main” — 2009/3/3 — 16:26 — page 136 — #144

136 7. Discussion

observations of evaporating discs in young clusters of ages ∼1 Myr suggest that discs can
survive much longer even in strong radiation fields (Bally et al., 1998). The time scales
of the destructive effect of encounters depends to a large degree on the radial distance to the
cluster centre: in the central region individual discs can be destroyed on time scales as short as
104 yr, yet due to the statistical nature of this process, even beyond an age of 1 Myr encounter-
induced disc destruction has not seized. In both cases, the presence of massive stars seems to
play an important role (Pfalzner et al., 2006; Adams et al., 2006). One main difference might
be the amount to which a disc may be affected. While it seems that photoevaporation works
mainly on the outer parts of discs, but cannot easily destroy the inner discs (Richling & Yorke,
1998; Störzer & Hollenbach, 1999; Balog et al., 2008), stellar encounters can potentially
remove all the material from a circumstellar disc in the entire cluster region, though this
effect is most pronounced for the most massive stars in the cluster centre (e.g. Olczak et al.,
2006; Pfalzner et al., 2006; Moeckel & Bally, 2006).

Hence, it remains unclear whether the effect of star-disc encounters is the main influence
that a cluster can exert on its star-disc population for the present investigation of very young
stellar systems. However, the comparison of the presented results with observational data has
to be taken with care because the applied determination of the encounter-induced disc-mass
loss deals with several assumptions. One of these assumptions has been the treatment of all
encounters as parabolic flybys. That this simplification does most probably overestimate the
disc-destructive effect of encounters has been shown in the investigation of the scaled cluster
models in the last chapter (see Section 6.5). Other aspects that have not been included in
the simulations, like the relative alignment of discs in an encounter or the effect of repeated
encounters, might further reduce the derived disc-mass loss, as has been discussed in Sec-
tion 4.4.4. However, there are other aspects that imply an opposite trend, among them the
fact that all interactions have been assumed to be two-body processes and the treatment of
star clusters composed of single stars only.

In the light of these assumptions, how could one improve the method? The effect of hy-
perbolic encounters could be estimated better by extending the fit function for the disc-mass
loss to three parameters, modelling it explicitly as a function of eccentricity. However, this
approach has proven to be very difficult and is still under way. As an alternative, tabulated re-
sults of the parameter study of star-disc encounters could be used for interpolation. This will
be one improvement towards an upcoming investigation. The effect of repeated encounters is
already under investigation in the research group and shows indeed a trend towards a – mod-
erately – lower relative disc-mass loss in each additional event. Also, cluster simulations with
primordial binary systems are being set up and will show the effect of binary companions on
protoplanetary discs in the near future. The treatment of the relative alignment of discs is a
very challenging because it involves the extension of the parameter study of star-disc encoun-
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ters by two additional parameters. Even more so, the estimate of the disc-mass loss from
N-body encounters with three or more stars involved would require an enormous extension
of the parameter space that practically rules out an approach by numerical simulations.

One major step to overcome these difficulties would be the direct simulation of a cluster
composed of star-disc systems. However, for a satisfying resolution of the disc-mass loss
a circumstellar disc has to be modelled with several thousand particles (cf. Pfalzner, 2003).
The integration of a cluster of such systems would require the exact treatment on the order
of 106 particles over several million years and at the same time a time resolution on the
order of days. By current standards this is far beyond the scope of a numerical treatment.
Nevertheless, first approaches towards hybrid N-body and tree codes might be capable of
managing this challenge in the next years.
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8. Summary

The present work addresses the question of how far the common star forming environment –
star clusters of few to many thousand stars – does affect the evolution of its young star-disc
systems. This question is a key aspect of modern astrophysics because it poses constrains on
the probability of planet formation which is a fundamental scientific issue.

It was found that encounters of star-disc systems in a young star cluster present an impor-
tant mechanism that affects young stars and their discs in various modes. Of these, three key
results are found:

1. From simulations of a dynamical model of the Orion Nebula Cluster (ONC), based
on my previous diploma work, it was shown that disc destruction is dominated by
encounters with high-mass stars. These massive cluster members act as gravitational
foci for the lower mass stars and are thus subject to repeated encounters in the centre
of a stellar cluster. These accumulated perturbations can lead to a total destruction
of massive stars’ discs and disperse them much more quickly and to a larger degree
than for intermediate-mass stars. The consistency with recent observations of IC 348
(Lada et al., 2006), NGC 2362 (Dahm & Hillenbrand, 2007), and the massive cluster
NGC 6611 (Oliveira et al., 2005) suggests that this might be a general trend in young
massive stellar clusters.

2. The dynamical influence on the hosts of discs, the young stars themselves, has been
investigated. It was found from numerical simulations that stars devoid of disc ma-
terial show unexpectedly high velocities as an outcome of close interactions early on
in the cluster development. This feature marks a key observable that could trace the
encounter-induced disc-mass loss. Comparison with observations of the ONC con-
firmed the presence of these so-called “high-velocity stars”, identified as young low-
mass stars that partially lack infrared excess emission. The locations of the high-
velocity stars form a characteristic pattern that is explained by the numerical simula-
tions, finding a strong correlation between location and disc destruction. Moreover, it
was found that the spatial distribution of the high-velocity stars reflects the initial struc-
ture and dynamics of the ONC. Eventually, this approach could be generalised to study
the evolution of other young dense star clusters, like the Arches cluster, back in time.
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3. The influence of different cluster environments on the encounter-induced disc-mass
loss has been investigated by scaling the size, density and stellar number of the basic
dynamical model of the ONC. It has been found that the disc-mass loss increases with
cluster density but remains rather unaffected by the size of the stellar population. How-
ever, even in clusters four times sparser than the ONC the effect of encounters is still
apparent. The density of the ONC itself marks a threshold: in less dense and less mas-
sive clusters it is the massive stars that dominate the encounter-induced disc-mass loss
whereas in denser and more massive clusters the low- and intermediate-mass stars play
the major role for the removal of disc mass. This finding allows for the extrapolation
towards more extreme stellar systems. In case of the Arches cluster one could expect
stellar encounters to destroy the discs of most of the low- and high-mass stars in several
hundred thousand years.
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A. Conic Sections

A conic section is the curve obtained by intersecting a circular conical surface, or cone, with
a plane. There are three types of conic sections known as ellipse, parabola and hyperbola,
with eccentricities of 0≤ e < 1, e = 1, and e > 1, respectively. In the two-body problem they
correspond to orbits of systems with total energy E < 0, E = 0, and E > 0.

In the following the calculations will be taken out in a frame which is centred on one body,
while the other is moving on a orbit of one of the given type.

To determine the angle ψslr enclosed by the separation and the velocity vector at semi-latus
rectum,~rslr and~vslr, the conservation of the specific angular momentum~l has to be considered.

At periastron,

l = |~l|= rpvp =
√

GM(1+ e)rp ,

where the subscript p denotes the periastron, while at semi-latus rectum,

l = |~l|= rslrvslr sinψslr .

The norm of the separation and velocity vector, r = |~r| and v = |~v|, of the orbiting body at any
point is given by

r =
a(1− e2)

1+ ecosϕ
, v2 = GM

(
2
r
− 1

a

)
, a =

rp

1− e
if 0≤ e < 1 , (A.1)

r =
2rp

1+ ecosϕ
, v2 =

2GM
r

if e = 1 , (A.2)

r =
a(e2−1)

1+ ecosϕ
, v2 = GM

(
2
r

+
1
a

)
, a =

rp

e−1
if e > 1 . (A.3)

At semi-latus rectum ϕ = π/2, leading to one single expression valid for all three conic
section types,

sinψslr =
1√

e2 +1
. (A.4)
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B. Observational Constraints

B.1. Observability of tidal tails due to star-disc encounters

in the ONC

The relevant physical quantity that determines the prominence of tidal tails due to an en-
counter is the change of angular momentum in the disc. According to Pfalzner & Olczak
(2007a), it is valid to assume that a fractional angular momentum loss (AML) of at least 10 %
is required to form observationally detectable tidal tails (see also Fig. 9 and 10 of Pfalzner &
Olczak, 2007a).

For an estimate of the rate of encounters in the ONC in which the AML is at least 10 %
one might consider an encounter of a star with mass m = 0.5 M�, which corresponds to the
mean stellar mass in the ONC (see §4.1). A star of that mass is thought to be surrounded by a
protoplanetary disc of typical size rd = 100 AU. To be on the safe side, the estimate should in-
volve the upper limit of the encounter rate and the assumption that the encounter partner is the
highest mass star of the ONC, M = 50 M�. Referring to Table 1 of Pfalzner & Olczak (2007a),
the specified minimum AML requires an encounter at a relative periastron rp/rd≈ 10, or a
periastron rp≈ 1000 AU. Moreover, the encounter is assumed to have occurred in the Trapez-
ium Cluster (TC), the dense central part of the ONC, where it is most probable (see Fig. 4 of
Pfalzner et al., 2006). The number of stars, the density and the velocity dispersion of the TC
are NTC≈ 750, ρTC≈ 103 pc−3, and σ JW

1D = 2.5 km s−1 (see Section 4.1).
The time scale for encounters of the assumed type is given by Eq. (C.1); substituting

n = ρTC, σ = σ JW
1D , r? = rp, and m? = M, one arrives at tenc≈ 2 · 105 yr. With a dissipation

time scale of the tidal tails of tdiss . 1000 yr, the probability of a detection is roughly Pobs .
tdiss/tenc ≈ 5 · 10−3. With the number of stars in the TC, NTC, one expects at most Nobs .
PobsNTC ≈ 4 stars to be accompanied by tidal tails that could be observed at the current time.

B.2. Estimate of the mean uncertainty of stellar ages

Since individual errors of the derived stellar ages are not provided by Hillenbrand (1997), one
has to estimate the mean error from the quoted observational and theoretical uncertainties and
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the constructed HR diagram. The uncertainties of the derived luminosities, log(L?/L�) . 0.2,
translate into an age uncertainty of∼0.2-0.4 dex for stars with masses 1.0-0.1 M�. Uncertain-
ties of the derived effective temperatures, logTeff . 0.02, translate into an age uncertainty
of typically ∼0.3 dex, but can be as large as ∼1 dex for stars with mass . 0.1 M�. Fur-
ther uncertainties of the derived ages are introduced due to differences between different
pre-main-sequence evolutionary tracks, which can be as large as 0.6 dex. Assuming a typ-
ical uncertainty of 0.3 dex due to uncertainties from luminosity, effective temperature and
evolutionary tracks a mean uncertainty of stellar ages of ∼0.5 dex is estimated.
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C. Stellar Dynamics

C.1. Minimum velocity for unperturbed escape of stars in

the ONC

High-velocity stars that have been generated due to a close triple encounter in the cluster
centre are expected to leave the cluster without significant perturbation. This is due to the
fact that (a) the fractional change of the velocity υ of a high-velocity star is less than 10 %
unless the impact parameter is not lower than 100 AU (Binney & Tremaine, 1987, Eq. 4-8),
and (b) only a small fraction of stars experiences more than one encounter closer than 100 AU
in one crossing time of the ONC (Scally & Clarke, 2001; Olczak et al., 2006). Alternatively,
one can evaluate the collision time scale of the escaper and a binary with semi-major axis
a≈ 100 AU in the ONC (Binney & Tremaine, 1987, Eq. 8-123),

tcoll =
[

16
√

πnσr2
?

(
1+

Gm?

2σ2r?

)]−1

≈ 10Myr, (C.1)

where the gravitational focusing of a 10 M� binary in the dense Trapezium Cluster has been
considered in order to obtain a robust lower limit on tcoll, using r? = a, n = ρTC≈ 103 pc−3

and σ = σ JW
3D =

√
3σ JW

1D = 4.3 km s−1 (see Section 4.1). Since the collision time scale is much
longer than the time to reach the cluster outskirts, tcoll & 10Myr� 0.2Myr & tesc, it is valid
to assume that stars with velocities υ ≥ 3σ JW

3D are effectively unperturbed before they escape
from the cluster.

C.2. Maximum velocity of a star ejected from a bound triple

system

The maximum velocity of a star that has been ejected from a bound triple system is obtained
from the analysis of a triple system after the ejection event forming a configuration of a binary
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and an escaping body (cf. Valtonen et al., 2005). The total energy of the system is then

E0 =
1
2

mṙ2
s −G

mBms

rs
+

1
2

Mṙ2−G
mamb

r
, (C.2)

where rs is the separation of the third body relative to the barycentre of the binary, r the
separation of the binary components, ms, ma and mb the masses of the escaper and the binary
components, mB = ma +mb the binary mass, and M = mamb/mB and m = mBms/(mB +ms)
the reduced masses.

The observational detection of the escaper will usually occur when the distance to the
binary components greatly exceeds the size of the binary system, rs � r. Thus one can
neglect the second term in Eq. (C.2). Moreover, in most cases the ejected body will be the
lowest mass component of the triple system, ms � mB (see Section 5.2.2), hence Eq. (C.2)
reduces to

E0 =
1
2

msṙ2
s +

1
2

Mṙ2−G
mamb

r
=

1
2

msṙ2
s −G

mamb

2a
, (C.3)

where the last term denotes the total binary energy in the general case of an elliptical orbit
with semi-major axis a.

Using the same parameters for the triple system as in Section 5.2.2 and assuming a nearly
equal-mass binary, ms = 0.25 M�, 2a = 100 AU, mamb≈ 4 M�, one finds from Eq. (C.3) the
maximum velocity of the escaper from a triple system with negative total energy, υs = ṙs .
18km s−1. In fact, the simulations show that the binary that generates a high-velocity star
never is less massive then 10 M� and usually exceeds 20 M�, and the mass ratio is never
below 1/6 and usually about 1/3. Using these parameters, one finds υs . 30-80 km s−1.



“main” — 2009/3/3 — 16:26 — page 161 — #169

D. Star Cluster Models

D.1. Determination of boundaries of mass groups

Boundaries of mass groups of low-, intermediate- and high-mass stars have been determined
individually for different sizes of stellar populations on the basis of the canonical IMF (Kroupa,
2001, but see also Section 2.4). The derivation involves the requirement for the three mass
ranges to be equidistant in logarithmic space, weighted by the slope of the IMF (of each mass
range). The weighting accounts for the steepness of the slope in the high-mass regime which
would otherwise cause a very sparsely populated group of high-mass stars.

In the case of a lower mass cutoff at m0 = 0.08M�, and an upper mass limit m3, the IMF
is characterised by just two different slopes, α1 = 1.3 in the range m0 ≤ m < 0.50M�, and
α2 = 2.3 in the range 0.50M� ≤ m ≤ m3. Because the break in the slope of the IMF at
the critical mass mbr

c = 0.5M� does not necessarily coincide with one of the boundaries of
the mass ranges, the cases m1 < mbr

c and m1 ≥ mbr
c have to be differentiated. Though from

the theoretical point of view the same differentiation would be required for the higher mass
boundary m2, this is not relevant for the stellar systems in the focus of the present work. The
four mass ranges, mk, k = 0, ..,3, and the two slopes, αk, k = 1,2, are then interrelated as
follows:

(m1 ≥ mbr
c )∧ (m2 ≥ mbr

c ) : (logm1− logmbr
c )α−1

2 +(logmbr
c − logm0)α−1

1

≡ (logm2− logm1)α−1
2

≡ (logm3− logm2)α−1
2 ,

(m1 < mbr
c )∧ (m2 ≥ mbr

c ) : (logm1− logm0)α−1
1

≡ (logm2− logmbr
c )α−1

2 +(logmbr
c − logm1)α−1

1

≡ (logm3− logm2)α−1
2 .

(D.1)
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1000 2000 4000 8000 16000

m0[M�] 8.00 ·10−2 8.00 ·10−2 8.00 ·10−2 8.00 ·10−2 8.00 ·10−2

m1[M�] 3.30 ·10−1 3.54 ·10−1 3.82 ·10−1 3.95 ·10−1 4.15 ·10−1

m2[M�] 2.94 3.78 4.95 5.58 6.61

m3[M�] 1.47 ·102 1.47 ·102 1.48 ·102 1.48 ·102 1.50 ·102

Table D.1.: Boundaries of the three mass groups of low-, intermediate-, and high-mass stars of the
density-scaled and size-scaled models with 1000, 2000, 4000, 8000, and 16000 particles.

Solving these equations, and substituting α12 ≡ α1α
−1
2 , α21 ≡ α2α

−1
1 , one obtains

m1 ≥ mbr
c :

logm1 = 1
3

[
logm3 +2(1−α21) logmbr

c +2α21 logm0
]

logm2 = 1
3

[
2logm3 +(1−α21) logmbr

c +α21 logm0
] ,

m1 < mbr
c :

logm1 = 1
3

[
α12 logm3 +(1−α12) logmbr

c +2logm0
]

logm2 = 1
3

[
2logm3 +(1−α21) logmbr

c +α21 logm0
] ,

(D.2)

under the restriction m2 ≥ mbr
c . The choice of the appropriate solution is determined by the

upper mass limit m3. For this purpose the “critical maximum mass” mmax
c ,

mmax
c = log−1 [(1+2α12) logmbr

c −2α12 logm0] , (D.3)

is estimated from Eq. (D.2) and m1 ≡ mbr
c . Consequently, the following relations hold:

m3 < mmax
c =⇒ m1 ≥ mbr

c ,

m3 ≥ mmax
c =⇒ m1 < mbr

c .
(D.4)

With the given values of the parameters m0, α1, and α2 one finds

mmax
c ≈ 3.97M� .

The derived mass boundaries, mk, k = 0, ..,3, for each cluster of the families of models are
presented in Table D.1.
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