Strilic, Boris, Yang, Lida, Albarran-Juarez, Julian, Wachsmuth, Laurens, Han, Kang, Mueller, Ulrike C., Pasparakis, Manolis ORCID: 0000-0002-9870-0966 and Offermanns, Stefan ORCID: 0000-0001-8676-6805 (2016). Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature, 536 (7615). S. 215 - 235. LONDON: NATURE PUBLISHING GROUP. ISSN 1476-4687

Full text not available from this repository.

Abstract

Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs(1-3). Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier(4-9). Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration(7-9). However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Strilic, BorisUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Yang, LidaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Albarran-Juarez, JulianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Wachsmuth, LaurensUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Han, KangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mueller, Ulrike C.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Pasparakis, ManolisUNSPECIFIEDorcid.org/0000-0002-9870-0966UNSPECIFIED
Offermanns, StefanUNSPECIFIEDorcid.org/0000-0001-8676-6805UNSPECIFIED
URN: urn:nbn:de:hbz:38-266626
DOI: 10.1038/nature19076
Journal or Publication Title: Nature
Volume: 536
Number: 7615
Page Range: S. 215 - 235
Date: 2016
Publisher: NATURE PUBLISHING GROUP
Place of Publication: LONDON
ISSN: 1476-4687
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Biology > Institute for Genetics
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
AMYLOID PRECURSOR PROTEIN; LUNG METASTASIS; MIGRATION; DR6; INFLAMMATION; ACTIVATION; INSIGHTSMultiple languages
Multidisciplinary SciencesMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/26662

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item