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Abstract 
 

Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of 

membrane proteins with poorly described functions. Large assemblies of PHB1 and PHB2 

subunits are localized in the inner membrane of mitochondria, but various roles in other 

cellular compartments have also been proposed for both proteins. To determine physiological 

functions of mammalian prohibitins, a conditional mouse model for the analysis of the murine 

Phb2 gene was established, which allows a tissue-restricted and time-controlled Phb2 gene 

deletion. Mouse embryonic fibroblasts (MEFs) isolated from genetically modified Phb2fl/fl 

embryos were generated to define cellular activities of prohibitins. The presented experiments 

restrict the function of prohibitins to mitochondria and identify the processing of the dynamin-

like GTPase OPA1, an essential component of the mitochondrial fusion machinery, as the 

central cellular process controlled by prohibitins. Cre-mediated deletion of Phb2 in MEFs 

leads to the selective loss of long isoforms of OPA1. This results in fragmentation of the 

mitochondrial network accompanied by an aberrant cristae morphogenesis in prohibitin-

deficient cells. Furthermore, loss of PHB2 is characterized by an impaired cellular 

proliferation and resistance towards apoptosis. Expression of a long OPA1 isoform in PHB2-

deficient cells suppresses these defects identifying impaired OPA1 processing as the primary 

cellular defect in the absence of prohibitins. In conclusion, these results assign an essential 

function to prohibitins in the formation of mitochondrial cristae and suggest a coupling of cell 

proliferation to mitochondrial morphogenesis. 
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1 Introduction 
 

1.1 Organization of biological membranes 
 

Cellular membranes represent essential barriers that define the boundary of individual 

cells (Engelman, 2005). Moreover, they compartmentalize organelles within a cell by 

segregating them from the cytosol thus providing permeability barriers that surround aqueous 

interiors and allow for the separation of ion and solute concentrations (Maxfield and Tabas, 

2005). The biological membrane is a liquid-like structure representing a homogenous fluid 

lipid bilayer (Singer and Nicolson, 1972). This traditional view of a biological membrane has 

been extended over the last years to a more complex structure. Thousands of different lipids 

arranged with a multiplicity of membrane proteins give rise to a highly dynamic lipid-protein 

composite. The plasma membrane of eukaryotic cells, like other biological membranes, 

contains more lipid species than required for establishing a lipid bilayer. This diversity of 

lipids in eukaryotic membranes raised the question, whether specific lipids could serve to 

organize biological membranes into discrete domains with different properties (Karnovsky et 

al., 1982; Thompson and Tillack, 1985). Indeed, an asymmetric distribution of phospholipids 

was observed in the plasma membrane of erythrocytes suggesting a lateral heterogeneity of 

lipids and proteins in biological membranes (van Meer et al., 1980). This finding was 

supported by the discovery that glycospingolipids cluster in the Golgi apparatus before being 

sorted to the apical surface of polarized cells (van Meer et al., 1987). Based on these initial 

observations, a spatial organization of membranes into discrete microdomains has been 

proposed, which thereby provides the rationale for the compartmentalization of important 

biological processes including signal transduction pathways, apoptosis, cell adhesion and 

migration, synaptic transmission, organization of the cytoskeleton and membrane fusion 

during both exocytosis and endocytosis (Brown and London, 1998; Harris and Siu, 2002; 

Simons and Toomre, 2000; Tsui-Pierchala et al., 2002). The concept of lateral lipid 

assemblies within the plasma membrane finally lead to the hypothesis of lipid rafts, a 

particular type of microdomain in the plasma membrane (Simons and Ikonen, 1997).  
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1.2 Lipid microdomains 
 

Lipid rafts were hypothesized to be lateral dynamic assemblies of lipids which 

constitute a non-random organization and partitioning of the plasma membrane into 

microdomains (Harder et al., 1998; Simons and Ikonen, 1997). In particular, these 

microdomains are enriched in cholesterol and sphingolipids and thought to provide a platform 

for the concentration of specific proteins and to spatially segregate molecules. Due to 

different biophysical properties of the enriched lipids, microdomains are present in the liquid-

ordered phase separated from the surrounding lipid bilayer (Brown and London, 1998). The 

basic concept of lipid rafts is to facilitate specific protein-protein interactions by the selective 

exclusion or inclusion of proteins (Hancock, 2006). The lipid-based separation and fusion of 

such domains and their associated proteins would therefore provide a dynamic spatial and 

temporal regulation of signalling cascades according to the requirement of the cell (Simons 

and Toomre, 2000).  

This concept was experimentally supported by the isolation of lipid microdomains 

based on their insolubility in cold non-ionic Triton X-100 detergent (Yu et al., 1973). These 

detergent-resistant membranes (DRM) were found to be enriched in both cholesterol and 

glycophosphatidylinositol (GPI)-anchored proteins and showed an altered density on sucrose-

gradients (Brown and Rose, 1992; Varma and Mayor, 1998). On the basis of biophysical 

experiments, the size of lipid rafts was proposed to be in the range of 10 – 200 nm (Pralle et 

al., 2000). Small rafts tend to form larger platforms via protein-protein and protein-lipid 

interactions (Pike, 2006). This suggests that membrane microdomains contribute to the 

integrity of membranes by providing a scaffolding function. The association of the 

cytoskeleton with biological membranes has also been proposed to influence membrane 

organization (Janmey and Lindberg, 2004). In addition to the binding of membrane proximate 

cytoskeletal adaptors to membrane proteins, cytoskeletal proteins also interact with specific 

lipids which is likely to influence the organization of membrane microdomains through both 

protein and lipid anchorage points on the inner leaflet (Babiychuk and Draeger, 2000; 

Holowka et al., 2000; Vereb et al., 2003). These observations shed new light on possible 

regulatory mechanisms controlling the membrane lateral heterogeneity in the execution of 

important cellular functions like signal transduction and membrane trafficking (Simons and 

Toomre, 2000). In this context, rafts have been appreciated to serve as platforms allowing the 

recruitment of signalling molecules to defined patches. Most importantly, signalling by T cell 

receptors (Janes et al., 2000), B cell receptors (Cheng et al., 1999), growth factor receptors 
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(Waugh et al., 1999), interleukins and insulin (Mastick et al., 1995) were proposed to be 

associated with lipid rafts (Bromley et al., 2001; Paratcha and Ibanez, 2002). For individual 

receptors, rafts may form a concentrating platform, activated by ligand binding (Zajchowski 

and Robbins, 2002). It has been argued that the local restriction of signalling pathways in rafts 

would on the one hand allow activated receptors enhanced access to downstream effector 

molecules and, on the other hand, protect these signalling complexes from non-raft molecules 

that otherwise could negatively affect the transduction process (Simons and Toomre, 2000). 

In addition, it has been suggested that receptor clustering might in turn lead to the 

organization of smaller rafts into larger microdomains and hence increase the spatial 

concentration of signalling components (Anderson and Jacobson, 2002; Harris and Siu, 2002; 

Pike, 2003; Simons and Toomre, 2000; Subczynski and Kusumi, 2003). Interestingly, the 

partitioning in microdomains might also have a role in the transduction of signalling via lipids 

themselves or through lipid-modified proteins anchored to the membrane (Varma and Mayor, 

1998). Among those, the GPI-modification of cell adhesion molecules like cadherins, 

NCAM120 and ephrins presumably drives sorting into special microdomains through their 

lipid anchorage (Bruckner et al., 1999; Doyle et al., 1998; Olive et al., 1995). Similarly, the 

Ras signalling cascade seems to be compartmentalized into membrane microdomains by the 

selective palmitoylation of the H-Ras isoform, thereby conferring a partition into lipid rafts 

(Hancock et al., 1990). An accumulation in lipid rafts has also been observed for lipid-

modified Src kinases and G-subunits of heterotrimeric G proteins (Oh and Schnitzer, 2001; 

Resh, 1999). Phosphatidylinositol and its phosphorylated derivatives are associated with a 

wide variety of cellular functions including signalling (Berridge and Irvine, 1989), ion 

channel activation (Suh and Hille, 2005) and membrane trafficking (Simonsen et al., 2001). In 

addition to its role as a second messenger in signal transduction processes (Berridge and 

Irvine, 1984), phosphatidylinositol-4,5-bisphosphate (PIP2) anchors proteins to the plasma 

membrane through pleckstrin homology (PH) domains and therefore potentially contributes to 

the organization of membrane microdomains (DiNitto et al., 2003; Lemmon, 2003). Recent 

evidence suggests that lipid micro-environments also contribute to the spatial segregation of 

components required for membrane docking and fusion at particular sites of the plasma 

membrane (Chamberlain et al., 2001; Ikonen, 2001; Lang et al., 2001). Moreover, PIP2 links 

lipid microdomains to clathrin-mediated endocytosis and synaptic vesicle trafficking (Di 

Paolo et al., 2004; Honing et al., 2005; Wenk and De Camilli, 2004).  

Although membrane lateral homogeneity is accepted as a requirement for the function 

of biological membranes and its incorporation into the lipid raft hypothesis confers specificity 
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to this broad concept, direct evidence for the existence of raft microdomains is still missing 

(Jacobson et al., 2007; Munro, 2003). On the one hand, this might be due to technical 

difficulties to prove the existence of lipid rafts. On the other hand, however, recent 

experiments have raised potential concerns about the lipid raft hypothesis (Munro, 2003). 

Critical points about the raft microdomains are mainly based on the fact that most of the 

evidence for their existence and function relies on indirect methods (Lai, 2003). Critics were 

corroborated further by an asymmetry in the lipid composition of the exo- and endoplasmic 

leaflets of cell membranes and a lack of evidence for the formation of lipid domains in the 

inner leaflet (Munro, 2003). Since the vast majority of findings concerning lipid rafts have 

been obtained for plasma membranes, the notion of lipid rafts as a generalized principle 

present in endoplasmic membranes of cell organelles has to be considered critically 

(Mukherjee and Maxfield, 2004). Notably, an emerging view favours the idea of a protein-

assisted establishment of microdomains in biological membranes. 

 

1.3 SPFH-domain containing proteins 
 

Using stomatin sequences for bioinformatic analyses, a protein family associated with 

lipid microdomains was identified (Tavernarakis et al., 1999) which contains a domain within 

its central region bearing a high similarity to prohibitins, the flotillins/reggie-proteins and the 

bacterial plasma membrane proteins HflK and HflC (Figure 1). The conserved region was 

termed SPFH-domain (after Stomatin, Prohibitin, Flotillin and HflK/C) (Tavernarakis et al., 

1999). The family of SPFH-domain containing proteins is also termed PHB (prohibitin) 

domain family or PID (after Proliferation, Ion and Death) (Morrow and Parton, 2005; 

Nadimpalli et al., 2000). Members of the SPFH protein family share a ~200 amino acid N-

terminal core motif present in eukaryotes as well as archaea and prokaryotes suggesting an 

ancient origin (Rivera-Milla et al., 2006) (Figure 1). Although the alignment of prohibitins 

reveals a sequence similarity of 60% and an identity of 47%, the similarity of both proteins to 

mouse flotillin-2 is only 4 and 7%, respectively. Phylogenetic analyses of SPFH-domains 

from different proteins revealed only ambiguous relationships within this superfamily, 

indicating independent origins for the individual members and convergent evolution of the 

PHB domain (Rivera-Milla et al., 2006) (Figure 2). SPFH family members are integral or 

membrane-associated proteins present in various cellular membranes, including the plasma 

membrane (Lang et al., 1998; Snyers et al., 1999), Golgi (Glebov et al., 2006), endoplasmatic 

reticulum (Browman et al., 2006) and mitochondrial inner membrane (Ikonen et al., 1995) 



Introduction 12

exposing their SPFH-domain to a hydrophilic environment (Tavernarakis et al., 1999). 

Interestingly, various SPFH-domain-containing proteins are enriched in detergent-resistant 

membranes (DRM) suggesting an association with lipid microdomains in diverse membranes 

of cellular compartments (Browman et al., 2007; Langhorst et al., 2005). Subcellular targeting 

of SPFH members to plasma membrane microdomains occurs via different mechanisms. The 

SPFH-domain of stomatin homologues contains sequences driving the localization to the 

plasma membrane and lipid rafts (Salzer and Prohaska, 2001). Dependent on two hydrophobic 

regions within the SPFH-domain, flotillin-1/reggie-2 proteins are targeted to the plasma 

membrane (Liu et al., 2005) (Figure 1).  

Lipid modification is an additional common mechanism for proper targeting of proteins 

to DRMs and lipid microdomains (Melkonian et al., 1999). Palmitoylation of several SPFH 

protein members has been shown to be involved in the sorting to plasma membrane 

microdomains. A cysteine residue (C43) in the SPFH-domain of flotillin-1/reggie-2 is 

modified by palmitoylation and functions together with hydrophobic regions in plasma 

membrane association (Morrow et al., 2002). Mutational exchange of this cysteine residue to 

alanine prevents the association of flotillin-1/reggie-2 with the plasma membrane (Morrow et 

al., 2002). Similarly, palmitoylation of a cysteine residue (C29) in stomatin targets the protein 

to lipid rafts suggesting a crucial role for palmitoylation in subcellular sorting (Snyers et al., 

1999; Wang et al., 1991). Mutations in the SPFH-domain of podocin disrupt the proper 

localization to the plasma membrane and cause retention in the endoplasmic reticulum 

(Roselli et al., 2004). The sorting of endoplasmic reticulum- and mitochondria-localized 

SPFH proteins depends mostly on N-terminal regions. The N-termini of prohibitin-1 (PHB1) 

and prohibitin-2 (PHB2), erlins and stomatin are sufficient to target a heterologous protein to 

mitochondria (Kasashima et al., 2006; Tatsuta et al., 2005), to the endoplasmic reticulum 

(Browman et al., 2006) and to cytoplasmic vesicular structures, respectively (Umlauf et al., 

2004). While a mitochondrial targeting signal is predicted for PHB2 (Kasashima et al., 2006; 

Tatsuta et al., 2005), specific sorting signals have not been identified in other SPFH-domain-

containing proteins (Browman et al., 2007).  

On a structural level, the SPFH-domain functions as a mediator of protein-protein 

interactions in stomatin proteins. The SPFH-domain of MEC-2, the Caenorhabditis elegans 

homologue of human stomatin, mediates interaction with MEC-4 and MEC-10 subunits of the 

degenerin channel in the plasma membrane of touch-sensory neurons (Huang et al., 1995). In 

this scenario, the SPFH-domain generates close proximity between the regulatory N- and C-



Introduction 13

termini of MEC-2 and the degenerin channel subunits (Zhang et al., 2004). Moreover, 

biochemical data suggest a role of the SPFH-domain in self-oligomerization. 

 

 

           
 

 

Figure 1. Domain structure of SPFH-domain containing proteins. 

Schematic representation of the protein domain structure of mammalian prohibitins, erlins, stomatin, 
podocin, flotillins and bacterial HflK/C. Gray boxes indicate transmembrane domains; brown, 
hydrophobic domains; blue, SPFH-domains; green, flotillin domains. Numbers in corresponding 
colours indicate the amino acid residues marking the boundaries of domains. Modified from 
(Browman et al., 2007).  
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In human stomatin, the SPFH-domain is required for the correct positioning of the C-

terminus for self-assembly which is disrupted in C-terminal truncated versions (Snyers et al., 

1998). Genetic studies support the notion that homo-oligomerization of stomatins is required 

for their function (Gu et al., 1996; Tavernarakis and Driscoll, 1997). Recently obtained 

structural data from a archaebacterial stomatin orthologue further strengthen the findings on 

oligomerization (Yokoyama et al., 2008). In stomatin and podocin, the SPFH-domain forms a 

hairpin conformation which mediates the proper localization of N- and C-termini to the 

cytoplasm where interactions with accessory molecules take place (Roselli et al., 2002; 

Snyers et al., 1999). These findings suggest that the SPFH-domain also serves as a structural 

scaffold (Goodman et al., 2002; Zhang et al., 2004). 

 

1.3.1 Stomatins and stomatin-like proteins 
 

Stomatin is the most representative member of SPFH-domain proteins. The 31-kDa 

integral membrane protein belongs to the family of band 7.2b proteins and is widely 

expressed from prokaryotes to eukaryotes (Gallagher and Forget, 1995; Hiebl-Dirschmied et 

al., 1991). Human stomatin is highly expressed in erythrocytes and was originally thought to 

be associated with overhydrated hereditary stomatocytosis (OHSt), a form of haemolytic 

anaemia characterized by increased erythrocyte permeability to monovalent cations (Fricke et 

al., 2003). Erythrocytes isolated from OHSt patients lacked the stomatin protein (Stewart et 

al., 1993). However, further studies disproved an involvement of stomatin in the disease 

(Delaunay et al., 1999; Innes et al., 1999). Notably, stomatin-deficient mice show an 

apparently normal erythrocyte function (Zhu et al., 1999). Stomatin localizes predominantly 

to the plasma membrane and intracellular vesicles of the endocytic pathway (Snyers et al., 

1999). In epithelial cells, stomatin has been shown to concentrate in plasma membrane 

protrusions and late endocytic compartments. At these subcellular localizations, stomatin is 

present in high-order oligomers consisting of 9-12 monomers (Snyers et al., 1998). At the 

plasma membrane, stomatin was detected in clusters in electron microscopy studies, where it 

colocalizes with the actin cytoskeleton (Snyers et al., 1997). These observations led to the 

notion that stomatin oligomers might serve a role in membrane compartmentalization by 

providing a microdomain scaffold (Snyers et al., 1998). Interestingly, stomatin has been found 

in lipid microdomains in numerous cell types (Foster et al., 2003; Garin et al., 2001) and was 

shown to be associated with lipid bodies (Umlauf et al., 2004). Further studies implied a role 

of stomatin in insulin-dependent glucose transport, since stomatin has been shown to interact 
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directly with the glucose transporter GLUT-1, thereby regulating its trafficking and transport 

activity (Zhang et al., 2001; Zhang et al., 1999). The analysis of stomatin-like proteins in 

various organisms suggested a role in ion channel regulation. The C. elegans homologue of 

stomatin, MEC-2, is exclusively expressed in specialized touch receptor neurons responsible 

for mechanosensation. Mutational loss of MEC-2 results in decreased touch sensitivity 

(Gillespie and Walker, 2001). The protein was shown to interact with and regulate the activity 

of members of the mechanosensitive degenerin-epithelial sodium channels (DEG-ENaC) 

(Ernstrom and Chalfie, 2002). The stomatin homologue exists in a multiprotein complex with 

the degenerin-type channel proteins MEC-4 and MEC-10 which is thought to link the MEC 

transduction channel to microtubules (Goodman et al., 2002; Huang et al., 1995). Functional 

conservation of this function is indicated by a recent report demonstrating that the mammalian 

stomatin homologue SLP-3 is also involved in mechanosensation in mice (Wetzel et al., 

2007). In contrast to the ubiquitous expression of stomatin, SLP-3 expression is restricted to 

neuronal tissue. SLP-3-deficient mice exhibit a markedly reduced touch sensitivity due to loss 

of function of a subset of mechanoreceptors in the skin, acid-sensing ion channels (ASICs) 

(Wetzel et al., 2007). In a heterologous system, SLP-3 and stomatin were shown to interact 

with and modulate the activity of different ASICs (Price et al., 2004). These results suggest 

that SLP-3 might mediate touch sensitivity by regulating ASICs in mechanosensory axons in 

the skin similar to the regulation of MEC-4 and MEC-10 by MEC-2 (Wetzel et al., 2007).  

Another specialized SPFH family member and mammalian stomatin homologue is 

podocin (NPHS2), a 42-kDa integral membrane protein which shows 47% identity to human 

stomatin (Figure 1). Podocin is exclusively expressed in podocytes, a subset of highly 

specialized kidney epithelial cells, which are involved in plasma ultrafiltration during primary 

urine formation (Roselli et al., 2002). The protein localizes to the slit diaphragm, a specialized 

intercellular junction in the mammalian kidney (Huber and Benzing, 2005; Roselli et al., 

2002). Podocin was found in high order-oligomers that are constituents of detergent-insoluble 

microdomains in the plasma membrane of podocytes (Huber et al., 2003). In this respect, 

interactions of podocin with other microdomain-associated podocyte proteins, CD2-associated 

protein (CD2AP) and nephrin, have been reported (Schwarz et al., 2001). Podocin has been 

suggested to potentiate nephrin signalling by localizing nephrin to lipid raft domains (Huber 

et al., 2003). Inefficient nephrin signalling via the nephrin/CD2AP/podocin complex is 

thought to contribute to the development of podocyte dysfunction (Huber et al., 2001; Shih et 

al., 1999). Recently, the non-selective cation channel transient receptor potential canonical 6 

(TRPC6) was identified as an additional component of the slit diaphragm protein complex. 
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Podocin was shown to interact with TRPC6 and to enhance its ion channel activity (Huber et 

al., 2006). Thus, podocin might be involved in mechanosensation at the kidney filtration 

barrier by regulating TRPC6 channel activity (Huber et al., 2007). Strikingly, mutations in 

podocin were associated with autosomal recessive steroid-resistant nephritic syndrome, a 

progressive disorder leading to end-stage renal disease (Boute et al., 2000; Fuchshuber et al., 

1995). Interestingly, ion channel regulation by both MEC-2 and podocin is dependent on their 

ability to bind cholesterol (Huber et al., 2006). Thus, the feature of stomatin proteins to form 

large multimeric complexes in cellular membranes connected with their cholesterol binding 

ability could lead to localized changes in the membrane lipid composition and might provide 

the basis for a molecular understanding of their role in ion channel regulation. Ion channels 

might become activated by altered membrane properties caused by locally elevated 

cholesterol levels (Huber et al., 2006). The putative role in ion channel regulation and 

mechanosensation has only been shown for members of the stomatin family, suggesting that 

these functions might be unique to these proteins. However, the involvement of other SPFH-

domain-containing proteins in ion-channel regulation during mechanosensation remains to be 

investigated (Browman et al., 2007). 

In addition to SLP-1 and SLP-3, another protein of the stomatin family has been 

reported. Stomatin-like protein 2 (SLP-2) was initially discovered in erythrocytes (Wang and 

Morrow, 2000). Interestingly, more recent findings suggest a mitochondrial localization of 

SLP-2. SLP-2 forms a complex in the mitochondrial inner membrane and was shown to 

interact specifically with mitofusin-2 (Hajek et al., 2007), an essential dynamin-like GTPase 

in the outer membrane of mitochondria required for mitochondrial fusion (Santel and Fuller, 

2001). These observations suggest that SLP-2 links the inner to the outer mitochondrial 

membrane and might regulate the activity of mitofusin-2 via a direct protein-protein 

interaction. However, the molecular mechanism of SLP-2 function and its putative 

contribution to inner membrane organization remain elusive and require to be addressed in 

further detail. Another striking observation is the interaction of SLP-2 with prohibitins in the 

mitochondrial inner membrane. RNAi-mediated depletion of SLP-2 affects the steady-state 

level of PHB1 and PHB2 suggesting a role for SLP-2 in the regulation of mitochondrial 

proteolysis (Da Cruz, 2008). 
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1.3.2 Flotillin/reggie proteins 
 

Flotillin/reggie proteins are additional members of the SPFH-domain-containing 

protein family (Tavernarakis et al., 1999) (Figure 1). Reggie-1 and -2 are highly conserved 

proteins which were characterized initially in goldfish and rats as plasma membrane-

associated proteins (Malaga-Trillo et al., 2002). In this context, reggie proteins were identified 

and named due to their upregulation during axonal regeneration of retinal ganglion cells upon 

optical nerve transsection (Lang et al., 1998; Schulte et al., 1997). The independent 

identification of reggie homologues in mouse and fruitfly led to the alternative name flotillin-

1 and -2 (corresponding to reggie-2 and -1, respectively) which were associated with the 

floating lipid fraction isolated from murine lung tissue (Bickel et al., 1997; Galbiati et al., 

1998). Mammalian flotillins are widely expressed in various tissues and cell types (Lang et 

al., 1998; Salzer and Prohaska, 2001; Solomon et al., 2002; Stuermer et al., 2001; Volonte et 

al., 1999). On a cellular level, flotillins are mainly localized at the plasma membrane and are 

considered lipid raft components due to their presence in detergent-resistant membranes 

(DRMs) (Stuermer et al., 2001). In addition, localizations of both flotillin-1 and -2 to 

endosomes, lipid droplets and phagosomes have been reported (Dermine et al., 2001; Gagescu 

et al., 2000; Morrow and Parton, 2005). Flotillin-1, but not flotillin-2, was also found to be 

associated with the trans-Golgi network (TGN) (Gkantiragas et al., 2001). Moreover, a cell-

cycle dependent translocation of flotillin-1 to the nucleus has been observed (Santamaria et 

al., 2005).  

Plasma membrane association of flotillins occurs in the absence of typical 

transmembrane domains suggesting alternative modes of membrane binding. Two conserved 

hydrophobic membrane-associating domains in the N-terminus of flotillins are considered to 

mediate the interaction with the inner leaflet of the plasma membrane (Morrow et al., 2002) 

(Figure 1). Post-translational modifications like palmitoylation and myristoylation of both 

flotillins may assist plasma membrane anchoring and targeting to lipid microdomains (Liu et 

al., 2005; Morrow et al., 2002; Neumann-Giesen et al., 2004). Both flotillin-1 and -2 purified 

from erythrocyte membrane fractions have been shown to form high-order homo-oligomers 

(Salzer and Prohaska, 2001). Moreover, hetero-oligomerization of flotillins into tetramer 

units, which depends on C-terminal coiled-coil domains, has been suggested (Neumann-

Giesen et al., 2004; Solis et al., 2007). Whether hetero-oligomerization of mammalian 

flotillins is connected to a functional interdependence is discussed controversially. In contrast 

to a RNAi-mediated depletion of flotillin-2, which leads to a reduction in flotillin-1 protein 
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levels, the reciprocal experiments do not support this notion (Solis et al., 2007). Confocal and 

electron microscopy analyses revealed the presence of flotillin clusters at the plasma 

membrane, indicative of small, uniform microdomains with a diameter of 100 nm (Kokubo et 

al., 2003; Stuermer et al., 2001). A co-clustering of flotillins with various GPI-anchored cell 

surface proteins (Stuermer et al., 2001), cell adhesion molecules (Stuermer et al., 2004), 

intracellular signalling components (Rajendran et al., 2003; Slaughter et al., 2003) and the 

cytoskeleton (Langhorst et al., 2007) was observed suggesting that flotillins contribute 

structurally to the formation of membrane microdomains (Frick et al., 2007; Stuermer and 

Plattner, 2005). It has been further proposed that flotillin clusters form lipid raft-like 

membrane scaffolds with important roles in cell-cell adhesion and signal transduction 

(Langhorst et al., 2005; Simons and Toomre, 2000; Stuermer et al., 2001). It has recently been 

reported that mammalian flotillins are involved in the regulation of clathrin-independent 

endocytosis, supporting the idea that flotillin scaffolds provide functional dynamic 

microdomains (Frick et al., 2007; Glebov et al., 2006). Interestingly, a role for the secretion of 

signalling components has been demonstrated for Drosophila melanogaster flotillin-2 

indicating a crucial role for intracellular trafficking and the generation of morphogen 

gradients during fruitfly development (Katanaev et al., 2008). A clinical relevance of flotillins 

is unclear, since natural mutations have not been discovered to date. However, increased 

flotillin-1 expression levels have been associated to type II diabetes (James et al., 2001) and 

neuropathological disorders such as Parkinson´s disease (Jacobowitz and Kallarakal, 2004) 

and Alzheimer´s disease (Girardot et al., 2003; Kokubo et al., 2000).  

 

1.3.3 HflK/C proteins 
 

The Escherichia coli HflK and HflC proteins are bacterial members of the SPFH 

protein family (Tavernarakis et al., 1999) (Figure 1). Both are transmembrane proteins 

consisting of approximately 310 amino acids encoded by the hflA (high frequency of 

lysogenization) operon that regulates the lysogenic decision during bacteriophage λ infection 

(Banuett and Herskowitz, 1987; Herskowitz and Hagen, 1980; Kihara et al., 1997). HflK and 

HflC proteins form a high molecular weight complex (HflK/C) which is anchored to the 

bacterial plasma membrane by N-terminal transmembrane segments and exposes C-terminal 

coiled-coil domains to the periplasmic side (Kihara et al., 1997; Kihara and Ito, 1998). 

Furthermore, the C-terminal domains are involved in hetero-oligomerization of the proteins 

(Briere and Dunn, 2006). HflK and HflC subunits exhibit functional interdependence which is 
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reflected by decreased stability of one subunit in the absence of the other (Banuett and 

Herskowitz, 1987). Notably, the hflA locus encodes an additional protein, FtsH, which is 

categorized as an ATP-dependent metalloprotease of the AAA family (ATPases associated 

with a variety of cellular activities) (Noble et al., 1993; Ogura and Wilkinson, 2001). The 

HflK/C complex interacts with and assembles into a larger complex with the membrane 

protease FtsH thereby modulating its proteolytic activity (Kihara et al., 1996; Saikawa et al., 

2004). The FtsH protease itself controls the decision between lysogenic and lytic cycle growth 

during λ-phage infection by modulating the stability of the phage-derived cII protein (Banuett 

and Herskowitz, 1987). Additionally, the FtsH protease is involved in the degradation of a 

membrane protein translocase. In the absence of HflK/C, the non-assembled subunit SecY of 

the SecY-SecE translocase is rapidly degraded suggesting a negative regulation of the 

protease by the HflK/C complex (Kihara et al., 1996).  
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Figure 2. Evolutionary relationship among 31 SPFH-domain containing proteins. 

Unrooted dendrogramm depicting the relationship of 31 representative SPFH-domain containing 
proteins inferred from the Neighbour-Joining method. The consensus tree is based on an amino acid 
sequence alignment. Protein clusters are coloured. Supporting bootstrap values are indicated at node 
positions. Phylogenetic analyses were conducted with MEGA4 software. 
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1.4 Prohibitins 
 

1.4.1 Nomenclature of prohibitins 
 

Prohibitins comprise a highly conserved and ubiquitously expressed protein family in 

eukaryotic cells (Figure 2). In accordance with their remarkable conservation and widespread 

distribution, prohibitins have been functionally associated with various cellular functions 

including cell cycle progression (McClung et al., 1989; Nuell et al., 1991), transcriptional 

regulation (Montano et al., 1999; Sun et al., 2004), cellular signalling (Terashima et al., 

1994), cellular senescence (Coates et al., 1997; Coates et al., 2001; McClung et al., 1992), 

apoptosis (Fusaro et al., 2003; Vander Heiden et al., 2002), and  mitochondrial biogenesis 

(Artal-Sanz et al., 2003; Berger and Yaffe, 1998; Nijtmans et al., 2000; Steglich et al., 1999). 

The family of prohibitin proteins consist of two homologous members, prohibitin-1 (PHB1) 

and prohibitin-2 (PHB2). Alternative names are B cell-receptor associated protein BAP32 and 

BAP37 (PHB1 and PHB2, respectively) (Terashima et al., 1994). PHB2 was also designated 

as prohibitone and REA (repressor of estrogen receptor activity) (Montano et al., 1999).  

Prohibitin was initially discovered as an antiproliferative gene by differential 

hybridization to RNA isolated from regenerating rat liver (McClung et al., 1989). 

Subsequently, prohibitin has been proposed as a negative regulator of the cell cycle based on 

the observation that the microinjection of Phb1 mRNA into mammalian cells blocks cell cycle 

progression (McClung et al., 1989) whereas injection of antisense oligonucleotides directed 

against Phb1 mRNA stimulates cell proliferation (Nuell et al., 1991). Notably, the human 

Phb1 gene was cloned and mapped to a region on chromosome 17 frequently mutated in 

familial breast cancer leading to the proposal that prohibitin could function as a tumour 

suppressor gene (Nuell et al., 1991; Sato et al., 1992; White et al., 1991). However, the 

interpretation of these results has been drawn into doubt, since subsequent studies revealed 

that these observations can be attributed solely to the 3´ untranslated region (3´UTR) of the 

prohibitin mRNA (Jupe et al., 1996; Manjeshwar et al., 2003).  

 

1.4.2 Prohibitin distribution 
 

Prohibitin homologues have been detected in various species from prokaryotic to 

eukaryotic organisms reflecting their widespread distribution and high degree of conservation 
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(Mishra et al., 2006; Nijtmans et al., 2002) (Figure 2). The bacterial proteins HflK and HflC 

are the prokaryotic homologues of prohibitins (Kihara et al., 1996). Two prohibitin members 

are present and extensively characterized in yeast (Berger and Yaffe, 1998). The Drosophila 

melanogaster Cc gene appears to be the PHB1 orthologue in flies and is required for normal 

larvae development (Eveleth and Marsh, 1986). Several prohibitin orthologues have also been 

identified in plants (De Diego et al., 2007; Snedden and Fromm, 1997). In mammals, the 

remarkable degree of sequence conservation is evident by the fact that amino acid sequences 

of rat and mouse prohibitin are identical and differ in only one amino acid from the human 

sequence. Moreover, yeast prohibitin-1 exhibits an identity of 52% to human PHB1 in its 

amino acid sequence. In multicellular organisms like C. elegans (Artal-Sanz et al., 2003) and 

mice (He et al., 2008; Park et al., 2005) prohibitins are also required for embryonic 

development suggesting an important function of these proteins which has been conserved 

throughout evolution.  

 

1.4.3 Protein organization of prohibitins 
 

Prohibitin-1 encodes a protein of 30 kDa, whereas prohibitin-2 gives rise to a 37 kDa 

protein. The PHB domain ranges from amino acids 26-187 in PHB1 and 39-201 in PHB2 

(Rivera-Milla et al., 2006) (Figure 1).  

The N-terminal domains of both PHB1 and PHB2 are involved in targeting the proteins 

to their intracellular localization and mediate membrane association (Berger and Yaffe, 1998). 

Both prohibitins harbour C-terminal coiled coil domains composed of antiparallel α-helices 

which are required for hetero-oligomerization (Tatsuta et al., 2005). Biochemical studies 

suggest complex formation of both PHB1 and PHB2 in various organisms (Coates et al., 

1997; Steglich et al., 1999). Coimmunoprecipitation experiments verified an interaction 

between Phb1p and Phb2p in both yeast (Steglich et al., 1999) and mammalian cells (Coates 

et al., 1997). Moreover, a quantitative interaction of mammalian prohibitins was inferred from 

immunodepletion experiments (Coates et al., 2001). The homologous subunits are 

functionally interdependent in yeast, C. elegans and mammalian cells (Artal-Sanz et al., 2003; 

Berger and Yaffe, 1998; Kasashima et al., 2006). Hence, the genetic deletion of one prohibitin 

subunit results in the destabilization of the other, strongly suggesting that the prohibitin 

complex represents the physiologically active unit. 
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1.4.4 Cellular localization of prohibitins 
 

The subcellular localization of prohibitins is still a matter of debate and controversial 

results have been obtained in mammalian cells. Although a mitochondrial localization of 

prohibitins has been widely accepted, PHB1 and PHB2 have also been identified in the 

nucleus, the cytosol and the plasma membrane in certain mammalian cell lines (Fusaro et al., 

2003; Kasashima et al., 2006; Kurtev et al., 2004). In the nuclear compartment, subunits of 

prohibitins have been suggested to regulate cell cycle and apoptotic processes by interacting 

with retinoblastoma tumour suppressor protein, E2F transcription factors and p53 (Kasashima 

et al., 2006; Nuell et al., 1991; Wang et al., 2002a). It has been further proposed that 

prohibitins repress the transcriptional activity of estrogen receptors by interacting with histone 

deacetylases (Kurtev et al., 2004; Montano et al., 1999). Plasma membrane localized 

prohibitins are thought to modulate epithelial cell adhesion and migration by interacting with 

c-Raf (Rajalingam et al., 2005) or to function as cell-surface receptors (Kolonin et al., 2004; 

Mengwasser et al., 2004; Sharma and Quadri, 2004; Terashima et al., 1994). It should be 

noted, however, that many of these studies did not consider a mitochondrial localization of 

prohibitins or addressed only the function of either PHB1 or PHB2. 

 

1.4.4.1 Complex assembly of prohibitins in mitochondria 
 

The mitochondrial localization of prohibitins has been unambiguously demonstrated in 

the yeast Saccharomyces cerevisiae. In subcellular fractionation experiments, prohibitin 

subunits were found in association with the inner membrane (Berger and Yaffe, 1998). 

Multiple copies of both Phb1p and Phb2p assemble into a high molecular weight complex of 

1.2 MDa in the inner membrane of mitochondria (Steglich et al., 1999). Interestingly, a 

prohibitin complex of similar size has also been detected in the mitochondrial inner 

membrane of C. elegans (Artal-Sanz et al., 2003) and mammalian cells (Nijtmans et al., 

2000). The topology of the yeast prohibitin complex has been investigated by 

submitochondrial localization and protease treatment of mitoplasts (Steglich et al., 1999). 

Sodium carbonate treatment of isolated membrane fractions identified both Phb1p and Phb2p 

as integral components of the mitochondrial inner membrane (Berger and Yaffe, 1998). 

Furthermore, trypsin digestion of mitoplasts generated by osmotic disruption of the 

mitochondrial outer membrane revealed protease sensitivity of prohibitin subunits (Steglich et 

al., 1999). These findings suggests that the prohibitin complex is anchored to the inner 
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membrane via N-terminal transmembrane segments and exposes large C-terminal domains 

into the intermembrane space (IMS) of mitochondria (Steglich et al., 1999). It has been 

suggested that Phb1p and Phb2p are the only components of the complex since 

immunodepletion of one subunit results in the absence of the corresponding partner subunit 

(Coates et al., 2001). This is supported by overexpression studies in yeast demonstrating that 

only the simultaneous overexpression of both Phb1p and Phb2p leads to an increase in the 

PHB complex (Nijtmans et al., 2000). Mitochondrial targeting of prohibitins has been 

analysed by in vitro import studies in yeast (Tatsuta et al., 2005). These results suggest that 

the N-terminal domains of both Phb1p and Phb2p are required for mitochondrial import. 

Sorting of Phb1p to mitochondria is ensured by an unconventional presequence consisting of 

the first 28 amino acids. In contrast, Phb2p possesses a bipartite N-terminal presequence in 

amino acids 1-61 composed of the positively charged N-terminal domain followed by a 

hydrophobic transmembrane segment (Tatsuta et al., 2005). Neither Phb1p nor Phb2p are 

processed during mitochondrial import (Tatsuta et al., 2005). Crosslinking experiments 

revealed an association of newly imported Phb1p with the Tim8/Tim13 complex, a soluble, 

70 kDa complex in the IMS that functions in the biogenesis of inner and outer membrane 

proteins (Curran et al., 2002; Davis et al., 2000; Hoppins and Nargang, 2004; Leuenberger et 

al., 1999; Paschen et al., 2000). The association with the Tim8/Tim13 complex may trap 

newly imported Phb1p in the IMS and facilitate its transfer to the inner membrane. The 

subsequent insertion into the inner membrane depends on the membrane potential and is 

mediated by the Tim23 translocase. In addition, crosslinking revealed that newly imported 

Phb1p assembles with Phb2p subunits into a subcomplex of ~120 kDa suggesting the 

presence of membrane-bound assembly intermediates during prohibitin complex formation 

(Tatsuta et al., 2005) (Figure 3).  

Chemical crosslinking experiments and structural models predicted a ring-like 

assembly of alternating Phb1p and Phb2p subunits (Back et al., 2002). Supported by the 

finding that crosslinks appeared only within different prohibitin subunits (Back et al., 2002), it 

has been proposed that heterodimers composed of Phb1p and Phb2p are the building blocks of 

the prohibitin complex (Figure 3). The native molecular mass of the assembled prohibitin 

complex of ~ 1 MDa allowed the characterization by single particle electron microscopy. 

Large, ring-shaped complexes with an average diameter of ~ 200 Å were detected in images 

acquired from purified yeast prohibitin complexes (Tatsuta et al., 2005). These results indicate 

that prohibitins form large, ring-shaped complexes in the mitochondrial inner membrane 
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which are composed of ~ 16-20 alternating subunits of both Phb1p and Phb2p (Back et al., 

2002; Tatsuta et al., 2005) (Figure 3). 

 

   

 

Figure 3. Complex assembly of prohibitin subunits in mitochondria. 

Schematic representation of prohibitin subunits PHB1 and PHB2, the ring-shaped prohibitin complex 
and its topology in the mitochondrial inner membrane. (A) Dimeric assembly intermediates composed 
of PHB1 and PHB2 constitute the building block of the complex. (B) Circular prohibitin ring complex 
with alternating subunit composition. The average stoichiometry of the complex is speculative. (C) 
The prohibitin complex is anchored to the mitochondrial inner membrane via N-terminal 
transmembrane segments of PHB2. The tightly folded C-terminal coiled-coil domains are exposed to 
the intermembrane space (IMS). IM = inner membrane.  

 

1.4.4.2 Regulatory roles of the mitochondrial prohibitin complex 
 

To determine the physiological role of prohibitins in vivo, PHB1 and PHB2 have been 

extensively characterized using genetic approaches in the yeast Saccharomyces cerevisiae. 

Notably, the genetic ablation of either PHB1 or PHB2 does not result in apparent phenotypes 

(Berger and Yaffe, 1998). Neither single- nor double-mutant phb1-null and phb2-null cells 

exhibit growth defects on various carbon sources indicating respiratory competence in the 

absence of prohibitins. Moreover, mitochondrial morphology and distribution is not affected 

by the loss of prohibitins (Berger and Yaffe, 1998). Interestingly, prohibitins have been linked 

to ageing (Jazwinski, 1996; Kirchman et al., 2003). Several reports demonstrated reduced 

replicative lifespan, but unaffected chronological lifespan of prohibitin-deficient yeast cells 

(Berger and Yaffe, 1998; Coates et al., 1997; Piper and Bringloe, 2002). Furthermore, yeast 

lifespan was dramatically reduced in prohibitin-deficient yeast cells lacking the mitochondrial 

genome (rho0) suggesting additive effects which are deleterious for survival (Berger and 

Yaffe, 1998; Kirchman et al., 2003). Remarkably, these phenotypes were suppressed by 
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genetic ablation of RAS2 in these strains suggesting a cooperative function of prohibitins and 

Ras2p in yeast longevity (Kirchman et al., 2003).  

Deletions of prohibitin genes are lethal in combination with a number of mutations 

indicating strong genetic interactions. For instance, prohibitins genetically interact with 

components required for mitochondrial inheritance in yeast (Berger and Yaffe, 1998). Genetic 

ablation of PHB1 or PHB2 combined with mutations in genes encoding the mitochondrial 

inheritance components Mdm12p, Mdm10p and Mmm1p results in synthetic lethality (Berger 

and Yaffe, 1998). It has been proposed that Mdm12p, Mdm10p and Mmm1p  form a complex 

which links mitochondria to the actin cytoskeleton thereby ensuring mitochondrial movement 

and distribution (Boldogh et al., 1998; Boldogh et al., 2003). More recent findings suggested a 

new role for these components in the biogenesis of mitochondrial outer membrane proteins 

(Meisinger et al., 2007; Meisinger et al., 2004). Additionally, this complex is required for the 

assembly and stability of mitochondrial DNA nucleoids (Hanekamp et al., 2002; Hobbs et al., 

2001), indicating a function as membrane-embedded machinery for simultaneous inheritance 

of mitochondria and mitochondrial DNA (mtDNA) (Boldogh et al., 2003). These genetic 

interactions suggest that prohibitins might function in the regulation of mitochondrial 

morphology and distribution (Berger and Yaffe, 1998). This is consistent with the finding that 

the genetic deletion of prohibitins in cells lacking the mitochondrial genome causes 

mitochondrial fragmentation and disorganization (Berger and Yaffe, 1998). Moreover, 

synthetic lethality of prohibitins has also been observed with mutations in the 

phosphatidylethanolamine biosynthetic pathway, pointing to a role of prohibitins in the 

phospholipid organization of mitochondrial membranes (Birner et al., 2003).  

In addition, the simultaneous loss of the prohibitin complex with another integral 

component of the mitochondrial inner membrane, the m-AAA protease, strongly impairs cell 

growth (Steglich et al., 1999). The m-AAA protease, a conserved ATP-dependent 

metalloprotease belonging to the family of AAA+ proteins (ATPases associated with a variety 

of cellular activities) (Ogura and Wilkinson, 2001), is composed of the homologous subunits 

Yta10p (Afg3p) and Yta12p (Rca1p) and is part of a protein quality control system in 

mitochondria (Arlt et al., 1996; Tatsuta and Langer, 2008). The m-AAA protease forms a high 

molecular mass complex of ~ 850 kDa in the mitochondrial inner membrane exposing 

catalytic subunits into the matrix (Arlt et al., 1996; Leonhard et al., 1996). Notably, the 

biochemical characterization revealed the presence of a high molecular mass supercomplex 

composed of both the prohibitin complex and the m-AAA protease (Steglich et al., 1999). 

This supercomplex eluted in fractions corresponding to a molecular mass of approximately 2 
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MDa in gelfiltration experiments (Steglich et al., 1999). Interestingly, the absence of Phb1p or 

Phb2p in mitochondria causes an accelerated proteolysis of nonassembled inner membrane 

proteins by the m-AAA protease suggesting a negative regulatory effect of prohibitins on the 

m-AAA protease activity (Steglich et al., 1999). A role of the prohibitin complex in the 

degradation of mitochondrial inner membrane proteins by the m-AAA protease is reminiscent 

of findings in prokaryotes. In E. coli, the activity of the homologous AAA protease FtsH was 

found to be negatively regulated by the HflK/C protein complex (Kihara et al., 1996; Kihara 

et al., 1997). These consistent findings suggest an evolutionary conservation of the regulatory 

mechanisms controlling AAA protease activities.  

 

                                          

 

Figure 4. Supercomplex of prohibitins with the ATP-dependent m-AAA protease. 

Schematic representation of supercomplex assembly of prohibitins (PHB) with the ATP-dependent m-
AAA protease in the mitochondrial inner membrane. See text for details. IMS = intermembrane space, 
IM = inner membrane. 

 

In further investigations, Nijtmans and coworkers proposed a chaperone-function for 

the yeast prohibitin complex. In the absence of prohibitins, mitochondrial translation products 

accumulated to a reduced amount as determined by 35S-methionine pulse-chase labelling in 

isolated mitochondria (Nijtmans et al., 2000). Consistent with this finding, the overexpression 

of prohibitins results in a stabilization of these translation products. This observation was 

accompanied by decreased steady-state levels of the mitochondrially encoded proteins Cox2p 

and Cox3p in two-dimensional gel electrophoresis. Moreover, the authors could demonstrate a 

specific interaction of Cox2p and Cox3p with the prohibitin complex in 

coimmunoprecipitations (Nijtmans et al., 2000). These observations suggest that the 
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prohibitin complex interacts with and stabilizes newly synthesized mitochondrial translation 

products. Based on initial observations obtained from yeast, prohibitins might have a role in 

the regulation of mitochondrial morphology. An abnormal mitochondrial morphology was 

observed in the nematode C. elegans after RNAi-mediated depletion of prohibitins (Artal-

Sanz et al., 2003). Indeed, these findings were corroborated in studies with mammalian cells. 

RNAi-mediated knockdown of either Phb1 or Phb2 in HeLa cells caused fragmentation of the 

mitochondrial network and spontaneous apoptosis (Kasashima et al., 2006). Recently, 

knockdown of Phb1 in epithelial cells has been reported to induce cellular senescence 

associated with mitochondrial dysfunction (Schleicher et al., 2008). Interestingly, the authors 

provide the explanation that PHB1 deficiency causes an increased production of reactive 

oxygen species (ROS) through inhibition of complex I which leads to depolarization of the 

mitochondrial membrane potential and cellular senescence (Schleicher et al., 2008). 

Previously, PHB1 has also been suggested as a component of mitochondrial nucleoids, 

nucleoprotein complexes associated with mitochondrial DNA (mtDNA) (Bogenhagen et al., 

2003). Proteins incorporated in these nucleoid complexes such as mitochondrial transcription 

factor A (TFAM) and mitochondrial single-strand DNA binding (mtSSB) protein regulate 

stability, packaging, replication, transcription and maintenance of mtDNA (Chen and Butow, 

2005). A very recent study reports a role of prohibitin in the organization and maintenance of 

mtDNA (Kasashima et al., 2008). Remarkably, downregulation of PHB1 in HeLa cells affects 

the organization of mitochondrial nucleoids and the steady-state level of TFAM protein. 

These findings suggest that PHB1 maintains organization and copy number of mtDNA by 

regulating TFAM stability (Kasashima et al., 2008).  

 

1.4.4.3 Regulation of gene expression by nuclear localized prohibitins 
 

Despite the general acceptance of a predominant localization of prohibitins to 

mitochondria, several reports claim that either PHB1 or PHB2 also localize to the nuclear 

compartment (Fusaro et al., 2003; Gamble et al., 2004; Kurtev et al., 2004; Wang et al., 

2002a). Nuclear localization of PHB1 was proposed based on colocalization with 

retinoblastoma protein (Rb), p53 and E2F transcription factors in various cell lines (Fusaro et 

al., 2003; Wang et al., 2002aa). The majority of human tumours, including breast and prostate 

cancer, are associated with mutations directly affecting Rb and p53, or components of 

pathways that regulate these proteins. The tumour suppressor protein Rb and its family 
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members have been demonstrated to modulate the G1-S phase transition during the 

mammalian cell cycle (Ewen, 1994). E2F transcription factors (E2F1-5) are the major 

downstream targets of Rb which exerts its growth suppressive effect through E2F inhibition 

(Weinberg, 1995).  In accordance with a putative tumour suppressor function, PHB1 has been 

shown to interact directly with Rb and p53 to induce their antiproliferative and cell cycle-

regulatory activities (Fusaro et al., 2003; Wang et al., 1999a). The association of PHB1 with 

retinoblastoma family members (Rb, p107 and p130) results in the inhibition of cell 

proliferation through repression of E2F transcription factors (Wang et al., 1999a). 

Consistently, a block in cell proliferation was observed after ectopic expression of PHB1 

which inhibited E2F-mediated transcription (Wang et al., 1999b). Remarkably, PHB1 was 

also found to physically interact with E2F and to inhibit transcription from E2F-responsive 

promoters suggesting that prohibitin modulates E2F activity also in a Rb-independent manner 

(Wang et al., 1999b). This is supported by the observation that PHB1 and Rb bind to different 

regions of E2F (Wang et al., 1999b). Moreover, PHB1-mediated repression of E2F does not 

respond to signalling activity which reverses Rb-mediated repression (Wang et al., 1999b). 

Additional studies demonstrated that transcriptional repression by PHB1 involves the 

recruitment of the co-repressor N-CoR and chromatin-remodelling complexes like HDAC1 

and Brg-1/Brm to promoter elements (Wang et al., 2002a; Wang et al., 2002b; Wang et al., 

2004). Interestingly, the opposite effect on PHB1-mediated regulation of transcription was 

observed for p53. Fusaro and colleagues demonstrated a physical interaction of PHB1 and 

p53 required for the stimulation of transcription from p53-responsive promoters (Fusaro et al., 

2003). The role of PHB1 as a putative modulator of gene transcription raised the intriguing 

question whether this function can also be attributed to PHB2, since compelling evidence 

approved the physiological relevance of a mammalian PHB1/2 complex (Coates et al., 2001).  

Interestingly, independent studies revealed that PHB2 also acts as a transcriptional 

regulator in the nucleus (Montano et al., 1999; Sun et al., 2004). PHB2 was identified in a 

yeast two-hybrid screen as a novel regulator of the estrogen receptor (ER) and subsequently 

designated as Repressor of estrogen receptor activity (REA) (Montano et al., 1999). 

Expression studies demonstrated that PHB2 selectively represses transcription from ER-

responsive promoters through direct binding of nuclear ER and recruitment of HDAC1 

(Kurtev et al., 2004). Recent findings also suggest a functional interaction between ER 

signalling and PHB1-mediated repression of E2F (Wang et al., 2004). The repressive function 

in the estrogen signalling cascade has been substantiated for both PHB1 and PHB2 in vivo 

demonstrating the physiological relevance of this regulatory action (He et al., 2008; Mussi et 
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al., 2006; Park et al., 2005). An additional mode of repression was proposed that involves 

competitive binding of PHB2 and the transcriptional co-activator SRC-1 to the ligand-

activated ER (Delage-Mourroux et al., 2000). It has been reported that, besides associating 

with the ER, PHB2 binds to additional members of the nuclear receptor family, like COUP-

TFI and –TFII, suggesting a role as a general co-repressor (Kurtev et al., 2004). In accordance 

with these findings, PHB2 also interacted with the myogenic regulatory factors MyoD and 

MEF, thereby negatively regulating transcription from MyoD- and MEF2-dependent 

promoters, implying a role for PHB2 in myogenic differentiation (Sun et al., 2004).  

Increasing data have emerged that propose a role in transcriptional regulation for both 

PHB1 and PHB2. Remarkably, both proteins act as transcriptional repressors and might 

interact with HDAC1 to execute their function. It remains unclear, however, whether both 

prohibitin proteins act as a complex to mediate transcriptional repression.  

 

1.4.4.4 Functions of plasma membrane-localized prohibitins 
 
 

Prohibitins have also been localized to the plasma membrane in several studies. An 

association of both PHB1 and PHB2 has been identified with the IgM isoform of the B-cell 

receptor (BCR) on the plasma membrane of B lymphocytes (Terashima et al., 1994). In this 

context, PHB1 and PHB2 were designated BAP32 and BAP37 (B-cell receptor associated 

protein), respectively. This association was assumed to influence BCR-mediated signal 

transduction and potentially regulate lymphocyte proliferation and differentiation after 

stimulation of either the IgM or the IgD antigen receptor (Terashima et al., 1994). More 

recent studies provided evidence for a receptor function of prohibitins at the plasma 

membrane (Kolonin et al., 2004; Sharma and Quadri, 2004). Kolonin and co-workers 

identified a peptide by in vivo phage display that was specifically targeted to the white fat 

vasculature in ob/ob mice. Surprisingly, this peptide was found to associate with PHB1 

(Kolonin et al., 2004). The covalent attachment of a proapoptotic peptide to this peptide was 

selectively targeted to the adipose tissue vasculature and led to induction of apoptosis. A 

receptor function for membrane localized PHB1 was inferred by the selective binding of 

bead-coupled peptide to in vitro biotinylated PHB1 (Kolonin et al., 2004). Most recently, a 

receptor role for Phb1 was reinforced by the finding that a capsular polysaccharide (Vi), 

characterized as the virulence antigen of Salmonella typhi, interacts with the prohibitin 

complex on the surface of a human intestinal epithelial cell line (Sharma and Quadri, 2004). 
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In this study, a localization of PHB1 and PHB2 to the plasma membrane of this cell line was 

demonstrated by surface biotinylation of both proteins and immunofluorescence studies. 

Notably, both PHB1 and PHB2 were present in fractions enriched with lipid rafts after 

sucrose gradient centrifugation (Sharma and Quadri, 2004). Furthermore, both prohibitin 

homologues were identified in a novel assay that allows detection of tumour derived antigens 

(Mengwasser et al., 2004). For this purpose human colorectal tumour cells were 

subcutaneously injected into immuno-incompetent mice. Differential immunization identified 

PHB1 and PHB2 as serum-borne tumour antigens which were accessible to surface 

biotinylation and detected in whole cell ELISA assays. Immunofluorescence studies 

supported plasma membrane localization of PHB1 and PHB2 in colorectal cancer cells. These 

results suggested that prohibitins are partially membrane localized in colorectal tumour cells 

and might be released into the serum by secretion or shedding of the components 

(Mengwasser et al., 2004). 

An unexpected role for plasma-membrane localized PHB1 in the activation of the 

Raf/MEK/ERK pathway has recently been demonstrated (Rajalingam et al., 2005). PHB1 

directly interacts with C-Raf and mediates Ras-dependent displacement of 14-3-3 protein 

from C-Raf. PHB1 thereby facilitates plasma membrane localization of C-Raf and enhances 

its activation by promoting PP2A-mediated phosphorylation (Rajalingam et al., 2005). The 

investigators propose that PHB1 might act as plasma membrane scaffold that ensures Ras-Raf 

interaction in vivo (Rajalingam and Rudel, 2005). These observations suggest a function of 

PHB1 in the modulation of epithelial cell adhesion and migration, critical events in the 

development of malignant transformation. 

 

1.5 Mitochondrial fusion 
 
 

The highly dynamic morphology of mitochondria depends on the tissue, on the 

physiological condition of the cell and in particular on the functional status of the organelle 

(Detmer and Chan, 2007; Hoppins et al., 2007; McBride et al., 2006; Okamoto and Shaw, 

2005). This dynamic behaviour is crucial for a number of cellular processes, such as 

apoptosis, the inheritance of mtDNA, defence against oxidative stress and development 

through spermatogenesis (Cereghetti and Scorrano, 2006; Chen and Chan, 2005; Chen and 

Butow, 2005; Hales and Fuller, 1997). Mitochondrial morphology is regulated by opposing 

but balanced fusion and fission events, which maintain the normal mitochondrial network 
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(Okamoto and Shaw, 2005). Loss of fusion results in mitochondrial fragmentation due to 

ongoing fission events. Conversely, loss of fission leads to the formation of elongated and 

highly interconnected mitochondria. The central components of the mitochondrial fusion and 

fission machineries have been identified, but the molecular mechanisms of both processes are 

not completely understood. Most proteins involved are conserved in yeast, flies, mice and 

humans, indicating that the fundamental mechanisms controlling mitochondrial dynamics 

have been maintained during evolution (Okamoto and Shaw, 2005). 

 

                         

 

Figure 5. Fusion components of mammalian mitochondria. 

Schematic representation of mitochondrial fusion in mammalian cells. Two mitochondria tether 
through coiled-coil domains of mitofusins (MFN1/2) that are anchored to the mitochondrial outer 
membrane (OM). L-OPA1 resides in the inner membrane whereas S-OPA1 localizes to the IMS. Both 
OPA1 isoforms participate in the fusion process. IMS = intermembrane space, IM = inner membrane; 
M = matrix. Modified from (Youle and Karbowski, 2005). 

 

 Mitochondrial fusion includes the coordinated fusion of the outer and the inner 

membranes of two organelles (Figure 5). Three proteins are essential for fusion in yeast and 

interact with each other to form a fusion complex: the two dynamin-related GTPases Fzo1p 

(Hales and Fuller, 1997) and Mgm1p (Sesaki et al., 2003; Wong et al., 2000) as well as 

Ugo1p (Sesaki and Jensen, 2001; Sesaki and Jensen, 2004). Fzo1p is integrated into the outer 
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membrane exposing its functional domains to the cytoplasm (Fritz et al., 2001; Hermann et 

al., 1998; Rapaport et al., 1998). Mgm1p, on the other hand, resides in the intermembrane 

space but is present in two forms, both of which are required for fusion (Herlan et al., 2003; 

Sesaki et al., 2003; Wong et al., 2000; Wong et al., 2003): the large (l-) isoform, which is 

integrated into the inner membrane, and the short (s-) isoform, which is peripherally 

associated with inner and/or outer membrane and generated by proteolytic processing of the l-

form, as discussed below. The third protein, Ugo1p, is also embedded into the outer 

membrane and exposes its N-terminal domain to the cytoplasm and the C-terminal domain to 

the intermembrane space (Sesaki and Jensen, 2001). Ugo1p has been shown to bind to both 

Fzo1p and Mgm1p via its N- and C-terminal domains, respectively, thus linking the fusion 

components of the outer and inner membrane and possibly the fusion events of both 

membranes (Sesaki and Jensen, 2004). Outer and inner membrane fusion events are tightly 

coupled in vivo, but could be separated by the reconstitution of fusion in vitro (Meeusen et al., 

2004). Furthermore, these in vitro studies revealed that Fzo1p is required for outer membrane 

fusion, whereas inner membrane fusion depends on Mgm1p (Meeusen et al., 2006; Meeusen 

et al., 2004). For both mitochondrial membranes, trans interactions of either Fzo1p (Griffin 

and Chan, 2006) or Mgm1p (Meeusen et al., 2006) mediate tethering of opposing membranes 

and subsequent fusion.  

 

1.5.1 Mitofusins and Charcot-Marie-Tooth Disease 
 

Components involved in mitochondrial fusion are highly conserved throughout 

evolution. In the mammalian system, mitofusin (MFN) 1 and 2 represent the homologues of 

Fzo1, whereas OPA1 is the homologue of Mgm1p (Alexander et al., 2000; Delettre et al., 

2000; Rojo et al., 2002; Santel and Fuller, 2001). Interestingly, Ugo1p does not have an 

obvious counterpart in mammals. The localisation and topology of mitofusins and OPA1 in 

the outer membrane and intermembrane space, respectively, has been conserved in mammals 

(Griparic et al., 2004; Rojo et al., 2002). Biochemical data indicate that mitofusins can form 

both homo- and hetero-oligomeric complexes all competent for fusion (Chen et al., 2005; 

Chen et al., 2003; Eura et al., 2003). Importantly, mitofusins are required on adjacent 

mitochondria during the fusion process, implying that they form complexes in trans between 

apposing mitochondria (Meeusen et al., 2004). Structural data indicate that a heptad repeat 

region of MFN1 forms an antiparallel coiled coil that mediates tethering of mitochondria in 

trans during the fusion process (Koshiba et al., 2004) (Figure 5). The essential role of 



Introduction 34

mitofusins in mitochondrial fusion has been established through the generation of knockout 

mice and by knockdown experiments using RNA interference (RNAi). The absence of either 

MFN1 or MFN2 causes embryonic lethality in mice (Chen et al., 2003). Isolated mouse 

embryonic fibroblasts (MEF) exhibit greatly reduced levels of mitochondrial fusion leading to 

a highly fragmented mitochondrial population (Chen et al., 2005; Chen et al., 2003). 

Moreover, a dissipation of the membrane potential was observed in a small subset of 

mitochondria in both Mfn1- and Mfn2-deficient cells, resulting in a heterogenous cell 

population (Chen et al., 2005). Residual levels of mitochondrial fusion in single knockout 

cells might therefore prevent major cellular dysfunction, suggesting that homotypic 

interactions of MFNs are capable to maintain residual fusion activity (Chen et al., 2003). In 

contrast, cells devoid of both MFN1 and MFN2 completely lacked mitochondrial fusion and 

showed severe cellular defects, including reduced cell growth, widespread heterogeneity of 

mitochondrial membrane potential and decreased cellular respiration (Chen et al., 2005). The 

close interplay between the two mitofusins is further supported by complementation studies 

which highlight the functional importance of MFN1-MFN2 hetero-oligomeric complexes 

(Detmer and Chan, 2007). Taken together, these findings implicate similar roles for MFN1 

and MFN2 in mitochondrial fusion and suggest a functional redundancy among these 

proteins. However, this conclusion has been challenged by several lines of evidence obtained 

from both in vitro cell culture work as well as genetic data in vivo. Notably, cells containing 

only MFN2 (Mfn1-null) appear to have less fusion activity compared to Mfn2-deficient cells 

(Chen et al., 2003). The analysis of kinetic properties additionally revealed differences in the 

GTPase activity of MFN1 and MFN2 (Ishihara et al., 2004). Furthermore, Mfn1, but not 

Mfn2, genetically interacts with OPA1 in the control of mitochondrial fusion (Cipolat et al., 

2004). Differences were also observed in the analysis of mitofusin-deficient embryos in vivo. 

Mfn2-null embryos die in utero due to defects in the trophoblast giant cells in the placenta 

which is distinguishable from Mfn1-deficient embryos (Chen et al., 2003). These observations 

indicate that the role of mitofusins in mitochondrial fusion might not be completely redundant 

and suggest an additional regulatory role for MFN2. 

Interestingly, mutations in Mfn2 are causative for an autosomal dominant peripheral 

neuropathy, termed Charcot-Marie-Tooth type 2A (CMT2A), which is characterized by 

muscle weakness and sensory loss in the distal limbs (Züchner et al., 2004). The pathological 

symptoms are caused by the loss of motor axons due to neurodegeneration. The disease-

causing mechanism of Mfn2 mutations in CMT2A is unclear. However, it has recently been 

suggested that the disease might be the consequence of reduced axonal movement of 
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mitochondria (Baloh et al., 2007). Remarkably, the conditional ablation of Mfn2 specifically 

in cerebellar purkinje cells leads to altered distribution and reduced movement of neuronal 

mitochondria (Chen et al., 2007). The clinical relevance of mutated Mfn2 is further 

highlighted in a transgenic mouse model expressing a pathogenic Mfn2T105M allele specifically 

in motor neurons (Detmer et al., 2008). Transgenic mice develop clinical signs of CMT2A 

disease including a severe reduction of distal muscles, loss of motor axons and clustering of 

neuronal mitochondria (Detmer et al., 2008). These observations underscore the physiological 

importance of MFN2 in the control of mitochondrial fusion and neuronal survival (Chen and 

Chan, 2006).  

 

1.5.2 OPA1 and dominant optic atrophy 
 
 

Mammalian OPA1 has been originally identified by mutations causative for autosomal 

dominant optic atrophy (ADOA) type I, the most common form of inherited optic neuropathy 

(Alexander et al., 2000; Delettre et al., 2000). A degeneration of retinal ganglion cells leading 

to atrophy of the optic nerve is the underlying defect of this disease (Delettre et al., 2002). 

Thus, optic atrophy is also characterised by an intriguing tissue-specificity, although the 

OPA1 mRNA and protein are widely distributed in mammalian tissues including various 

brain areas (Aijaz et al., 2004; Alexander et al., 2000; Bette et al., 2005; Delettre et al., 2000; 

Misaka et al., 2002; Olichon et al., 2002).  

 OPA1 is a key player in regulating dynamic changes of mitochondrial morphology by 

promoting mitochondrial fusion (Cipolat et al., 2004; Olichon et al., 2003). Accordingly, 

downregulation of OPA1 results in fragmentation of the mitochondrial network owing to 

ongoing fission (Chen et al., 2005; Cipolat et al., 2004; Griparic et al., 2004; Olichon et al., 

2003). In addition, cells depleted of OPA1 show an aberrant cristae structure (Griparic et al., 

2004; Olichon et al., 2003), which is reminiscent of the role of yeast Mgm1p in maintenance 

of cristae morphology (Amutha et al., 2004; Meeusen et al., 2006; Sesaki et al., 2003). Further 

phenotypes that have been linked to loss of OPA1 are reduction of mitochondrial membrane 

potential, defects in mitochondrial respiration, accelerated release of cytochrome c and 

concomitantly increased propensity for apoptosis (Arnoult et al., 2005; Chen et al., 2005; Lee 

et al., 2004; Olichon et al., 2003). Thus, OPA1 seems to have additional functions in 

mitochondria which are independent from mitochondrial fusion. Indeed, evidence has been 

obtained for a direct role of OPA1 in the control of cristae remodelling during apoptosis and 
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release of cytochrome c which is sequestered in the intra-cristae regions (Cipolat et al., 2006; 

Frezza et al., 2006). 

 OPA1 is a dynamin-like GTPase which resides in the mitochondrial intermembrane 

space (Griparic et al., 2004; Olichon et al., 2002; Satoh et al., 2003) and features the 

following domain structure: an N-terminal mitochondrial targeting sequence is followed by 

one transmembrane segment (TM1) and two further hydrophobic stretches (TM2a and 

TM2b). A coiled-coil region (or heptad repeat) is located immediately in front of the GTPase 

domain containing the consensus GTP binding sites. The GTPase domain is followed by a 

middle domain and a C-terminal coiled-coil domain, known as the GTPase effector domain, 

which both are generally involved in oligomerisation and regulation of GTPase activity 

(Praefcke and McMahon, 2004). The mRNAs transcribed from the OPA1 gene are subject to 

extensive alternative splicing, resulting in eight different splice variants (Delettre et al., 2001; 

Satoh et al., 2003). The alternative splicing involves the exons 4, 4b, and 5b which encode 

protein segments of the N-terminal region between the first transmembrane domain and the 

GTPase domain. Therefore, OPA1 splice variants differ in the presence or absence of the two 

additional hydrophobic stretches TM2a and TM2b. In addition, the different splice variants 

are not uniformly expressed in human tissues and appear to have distinct roles in 

mitochondria such as mitochondrial fusion and apoptosis (Delettre et al., 2001; Olichon et al., 

2007). Several protein isoforms of OPA1 can be detected in human cells, e.g. five different 

isoforms are apparently present in HeLa cells (Ishihara et al., 2006; Olichon et al., 2003; 

Olichon et al., 2007), which have been designated L1 and L2 for the two larger isoforms and 

S3, S4, and S5 for the three smaller isoforms (Duvezin-Caubet et al., 2006). The large and 

small OPA1 isoforms differ in their membrane association. Whereas the L-isoforms are 

anchored to the inner membrane, S-isoforms are only peripherally attached to the membrane 

(Duvezin-Caubet et al., 2006). 

 Different OPA1 isoforms are generated by alternative splicing and/or proteolytic 

processing similar to yeast Mgm1p. Evidence for the involvement of proteolysis has recently 

been obtained by the observation that L-isoforms were converted into S-isoforms upon 

dissipation of the mitochondrial membrane potential (Duvezin-Caubet et al., 2006; Ishihara et 

al., 2006). This induced conversion was abolished in the presence of o-phenanthroline 

indicating proteolytic cleavage by metalloproteases. Moreover, this apparent OPA1 

processing was accompanied by mitochondrial fragmentation, thus linking mitochondrial 

dysfunction to changes in mitochondrial morphology (Duvezin-Caubet et al., 2006; Ishihara et 

al., 2006). Large OPA1 isoforms are generated upon mitochondrial import by MPP (Ishihara 
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et al., 2006). However, the protease mediating further OPA1 cleavage has not yet been 

unambiguously identified. Due to the homology of Mgm1p and OPA1, the rhomboid protease 

PARL (presenilin-associated rhomboid-like) (Pellegrini et al., 2001), the mammalian 

homologue of yeast Pcp1p, has been implicated in OPA1 processing. PARL can functionally 

replace yeast Pcp1 and mediate processing of Ccp1p and Mgm1p (McQuibban et al., 2003). 

Furthermore, the analysis of Parl-deficient mice revealed a protective role of PARL against 

mitochondria-dependent apoptosis in a pathway which also depends on OPA1 (Cipolat et al., 

2006). In support of proteolysis by PARL, it was found to interact with OPA1 and to be 

involved in the generation of small amounts of a soluble intermembrane space form of OPA1. 

Deletion of Parl, however, did not significantly impair the pattern of OPA1 isoforms (Cipolat 

et al., 2006). The mammalian m-AAA protease has also been linked to OPA1 processing, 

since overexpression of its subunit paraplegin in HeLa cells led to an increased accumulation 

of S-isoforms (Ishihara et al., 2006). Moreover, processing of human OPA1 by mammalian 

m-AAA proteases has been observed upon reconstitution in yeast (Duvezin-Caubet et al., 

2007). 

 

1.5.3 Regulation of mitochondrial dynamics 
 
 

In yeast, two components of the mitochondrial fusion machinery, Fzo1p and Mgm1p, 

are under proteolytic control. In the case of Fzo1p, the maintenance of mitochondrial 

morphology depends on the tight control of its steady-state concentration, which is regulated 

by degradation of Fzo1p via two independent proteolytic pathways. On the one hand, Fzo1p 

turnover can be induced by cell cycle arrest with the mating factor alpha which leads to 

mitochondrial fragmentation (Neutzner and Youle, 2005). This induced degradation of Fzo1p 

is mediated by the ubiquitin-proteasome system (UPS) (Escobar-Henriques et al., 2006), the 

central proteolytic system in the cytosol of eukaryotic cells (Ciechanover, 2005). On the other 

hand, Fzo1p is degraded in vegetatively growing yeast cells in a constitutive manner which 

depends on the F-box protein Mdm30p (Escobar-Henriques et al., 2006). In the absence of 

Mdm30p, the steady-state concentration of Fzo1p is increased and yeast cells accumulate 

aggregated and fragmented mitochondria (Fritz et al., 2003). F-box proteins often assemble 

into Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes which ensure ubiquitin-

dependent degradation by the 26S proteasome (Petroski and Deshaies, 2005; Willems et al., 

2004). However, Mdm30p-dependent turnover of Fzo1p does not involve SCF complexes or 
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the UPS, but rather proceeds along an alternative proteolytic pathway which remains to be 

identified (Escobar-Henriques et al., 2006). 

 In contrast to Fzo1p, Mgm1p is not subject to complete degradation but is 

proteolytically processed at its N-terminus yielding two isoforms within the mitochondrial 

intermembrane space: the large (l-) and the short (s-) isoform. Both Mgm1p isoforms are 

required for mitochondrial fusion and their balanced formation appears to be crucial for 

mitochondrial morphology (Herlan et al., 2003). According to the alternative topogenesis 

model, the ratio of both isoforms is dictated by the level of matrix ATP (Herlan et al., 2004). 

The Mgm1 protein contains two N-terminal transmembrane segments of which the first one 

serves as a stop-transfer signal during mitochondrial import of the pre-protein. At low ATP 

levels, the subsequent removal of the MTS by MPP and lateral membrane insertion result in l-

Mgm1p, which is anchored to the inner membrane. At high ATP levels, however, Mgm1p can 

be pulled further into the matrix by the ATP-dependent mitochondrial import motor until the 

second hydrophobic segment reaches the inner membrane. Thereby, a second cleavage site 

within this segment gets accessible for the rhomboid protease Pcp1p in the inner membrane. 

Pcp1p-mediated cleavage generates s-Mgm1p (Herlan et al., 2003; McQuibban et al., 2003; 

Sesaki et al., 2003), which is peripherally associated with the inner and/or outer membrane. 

This mechanism may link the bioenergetic state of mitochondria and their morphology. 

Furthermore, it would allow separating damaged, non-functional mitochondria from the intact 

mitochondrial network by preventing fusion due to impaired formation of s-Mgm1p. 
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1.6 Objectives of the thesis 

 

Prohibitins comprise a highly conserved and ubiquitously expressed protein family in 

eukaryotic cells which has been functionally associated with various cellular functions 

including cell cycle progression, transcriptional regulation, cellular signalling, cellular 

senescence, apoptosis, and mitochondrial biogenesis. Essential gene functions for prohibitins 

have been reported in various organisms including mice. However, the function of prohibitins 

on a molecular level remains unclear. 

The objective of this thesis was to determine the physiological role of mammalian 

prohibitins. To provide the basis for a functional investigation of prohibitin gene function in 

vivo, conditional gene targeting of the murine Phb2 gene was intended. This genetic loss-of-

function approach will allow to determine the physiological role of mammalian prohibitins by 

Cre/loxP-mediated Phb2 inactivation in vivo and in vitro. Thus, the isolation of conditional 

mouse embryonic fibroblasts (MEFs) from Phb2fl/fl embryos provides the opportunity to study 

cellular functions of prohibitins. Protein transduction of Phb2fl/fl MEFs with purified, cell 

permeable Cre recombinase will efficiently induce the genetic ablation of Phb2. The 

experimental examination of PHB2-deficient MEFs offers the possibility to define functional 

activities of PHB2 on a cellular level. On the basis of previously reported functions of 

prohibitins in mammals, the functional role of prohibitins in central cellular processes 

including cell proliferation, apoptosis, mitochondrial dynamics and maintenance of oxidative 

phosphorylation will be addressed. Furthermore, functional complementation assays will be 

developed to dissect the role of prohibitins localized to mitochondria compared to potentially 

other cellular localizations. Cre-mediated inactivation of Phb2 in mice will aid to unravel the 

activity of prohibitins during mouse development and to investigate a potential tumour 

suppressor function in vivo. 

The proposed experimental framework will add important information on 

physiological and cellular functions of prohibitins and will help to clarify the molecular role 

of prohibitins in mammals. 
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2 Material and Methods 
 

2.1 Molecular Biology 
 
Standard methods of molecular biology were performed according to established protocols 

(Sambrook and Russell, 2001). Chemicals were purchased either from Sigma or Merck unless 

stated otherwise. Enzymes used in this study were purchased from NEB or Invitrogen. 

 

2.1.1 Cloning procedures 
 

2.1.1.1 Generation of the Phb2 gene targeting vector 
 
 

The targeting vector for the conditional allele of murine Phb2 was generated by 

insertion of a 1.4 kb genomic fragment containing exons 3 and 4 in a XhoI site located 

between two loxP sites of the pRAPIDflirt vector (A. Bruehl and A. Waisman, unpublished). 

An upstream 2.2 kb and a 4.5 kb downstream fragment were used as homology arms and 

inserted into single BamHI and SalI sites of pRAPIDflirt, respectively. Additionally, the 

targeting construct contained a FRT-flanked PGKneoR cassette and the Herpes Simplex Virus 

thymidine kinase gene (HSV-tk) for positive and negative selection, respectively. The final 

construct was linearized by SwaI-digestion prior to transfection. 

 

2.1.1.2 Generation of stable Phb2 expression plasmids 
 

To generate Phb2 expression plasmids, Phb2 was PCR-amplified from C57BL/6 

mouse liver cDNA and subcloned. Mutations were introduced using the QuikChange site-

directed mutagenesis Kit (Stratagene). To obtain Cre-inducible expression plasmids allowing 

the generation of stable cell lines (pCAGs-STOP-IRES-EGFP), we inserted a chicken β-actin 

promoter (CAGs) into the PacI site of pSTOP-IRES-EGFP (Sasaki et al., 2006). The Phb2 

wild type and mutant cDNAs were subcloned in a single AscI site of pCAGs-STOP-IRES-

EGFP. All plasmids were verified by DNA sequencing.  
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Table 1. List of plasmids used in this study. 

Plasmid  Reference 

pRAPIDflirt Bruehl et al. unpublished 

pRAPIDflirt-Phb2flox(neo) this study 

pGEM-T easy-5´probe Phb2 this study 

pGEM-T easy-3´probe Phb2 this study 

pBS-neoR Uyttersprot, unpublished 

pSV40 (Benoist and Chambon, 1980)

pTriEx1-HTNC (Peitz et al., 2002) 

pGEM-T easy-mouse Phb2 AscI this study 

pSTOP-IRES-EGFP (Sasaki et al., 2006) 

pCAGs-STOP-IRES-EGFP Wunderlich, unpublished 

pCAGs-STOP-PHB2-IRES-EGFP this study 

pCAGs-STOP-PHB2AARR-IRES-EGFP this study 

pCAGs-STOP-PHB2RRAA-IRES-EGFP this study 

pCAGs-STOP-PHB2AAAA-IRES-EGFP this study 

pCAGs-STOP-PHB2NRBmut-IRES-EGFP this study 

pCAGs-STOP-PHB2NLSmut-IRES-EGFP this study 

p3xFLAG-CMV14 (Ishihara et al., 2006) 

p3xFLAG-CMV14-rat OPA1 sp1 ∆S1 (Ishihara et al., 2006) 

p3xFLAG-CMV14-rat AIF(1-95)-OPA1 sp7 (230-997) (Ishihara et al., 2006) 

pDsRed2-mito Clontech 

pEYFP-mito Clontech 
 

2.1.2 Competent cells and isolation of plasmid DNA 

 
Competent Escherichia coli XL10Gold cells (Stratagene) were prepared as described 

(Inoue et al., 1990) and used in heat shock transformations of plasmid DNA. DNA ligation 

was performed with T4 DNA Ligase (NEB) according to the manufacturer´s instructions. 

Plasmid DNA was isolated from transformed Escherichia coli DH5α bacteria with an 

alkaline lysis method (Birnboim, 1983) according to previously described protocols (Zhou et 
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al., 1990). Plasmid DNA of a higher purity was obtained with NucleoSpin™ columns 

(Machery & Nagel) following the supplier's instructions. 

 

2.1.3 Isolation of genomic DNA from cells and tissues 

 
Cells were lysed over night at 56°C in lysis buffer (10 mM Tris-HCl, pH 8; 10 mM 

EDTA; 150 mM NaCl; 0.2% (w/v) SDS; 400 µg/ml Proteinase K). Subsequently, DNA was 

precipitated from the solution by the addition of an equal volume of isopropanol. The DNA 

was pelleted by centrifugation, washed in 70% (v/v) EtOH and resuspended in TE-buffer (10 

mM Tris-HCl, pH 8; 1 mM EDTA) supplemented with 50 µg/ml DNase-free RNase. DNA 

isolated from ES cell clones grown in 96-well tissue culture dishes was extracted and 

prepared as described (Pasparakis and Kollias, 1995). 

 

 

Table 2. List of oligonucleotides used in cloning procedures. 

Oligonu-
cleotide Description Sequence 

TL1969 5´-PHB2R11A,R17A 5’-GAACTTGAAGGACTTAGCTGGGGCCCTGCCCG 
CCGGGCCTGCCGGCATGGGCACGGCGCTG-3’ 

TL1970 3´-PHB2R11A,R17A 5’-CAGCGCCGTGCCCATGCCGGCAGGCCCGGCGG 
GCAGGGCCCCAGCTAAGTCCTTCAAGTTC-3’ 

TL1971 5´-PHB2L26A 5’-CCTCGGGGCATGGGCACAGCGCTGAAGCTGGC 
TCTGGGGGCCGGGGCGGTGGCCTAC -3’ 

TL1972 3´-PHB2L26A 5’-GTAGGCCACCGCCCCGGCCCCCAGAGCCAGCT 
TCAGCGCTGTGCCCATGCCCCGAGG-3’ 

TL1973 5´-PHB2R88N,K89Q 5’-CTATGACATTCGGGCCAGACCTAACCAGATCTC 
CTCCCCCACAGGCTC-3’ 

TL1974 3´-PHB2R88N,K89Q 5’-GAGCCTGTGGGGGAGGAGATCTGGTTAGGTCT 
GGCCCGAATGTCATAG-3’ 

TL2455 5’-AscI-Phb2 5’-AAGGCGCGCCGCCACCATGGCCCAGAACTTGA 
AGGA-3’ 

TL2457 3’-AscI-Phb2 5’-AAGGCGCGCCACTCATTTCTTACCCTTAATGA-
3’ 

TL2847 5´-PHB2R48A,R54A 5’-TCACCGTGGAAGGCGGTCATGCCGCCATCTTTT 
TTAATGCCATTGGTGGCGTGC-3’ 

TL2848 3´-PHB2R48A,R54A 5’-CCTGCTGCACGCCACCAATGGCATTAAAAAAG 
ATGGCGGCATGACCGCCTTCC-3’ 
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2.1.4 Polymerase Chain Reaction (PCR) 

 
The polymerase chain reaction (PCR) was used for amplification of DNA fragments in 

vitro (Saiki et al., 1985). For cloning procedures, amplification of DNA fragments from 

genomic DNA or mouse cDNA was performed using the High Fidelity PCR Master Kit 

(Roche) according to the manufacturer´s instructions. Oligonucleotides used for the 

generation of plasmids are listed in Table 2. Reactions were performed in Thermocyclers 

(Biometra). 

PCR reactions for genotyping of DNA isolated from MEFs and mouse tail biopsies 

were performed in a total volume of 50 µl containing 100 ng template DNA, 25 pmol of each 

primer, 250 µM dNTPs, 1.5 mM MgCl2, 1.5 U Taq Polymerase, 10 mM Tris-HCl pH 8.3, 50 

mM KCl. PCR started with an initial denaturation at 94°C for 5 min, followed by 35 repeating 

cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, elongation at 72°C for 1 

min and a final extension step of 5 min at 72°C. Primers used for genotyping are listed in 

Table 3. 

 

Table 3. List of oligonucleotides used for genotyping. 

Oligonu-
cleotide Description Sequence 

TL1815 5´-Cre general 3 5’-TCCAATTTACTGACCGTACAC-3’ 

TL1816 3’-Cre general 7 5’-CATCAGCTACACCAGAGACGGAAATC-3’ 

TL1817 3’-Deleter Cre 5’-CGCATAACCAGTGAAACAGCAT-3’ 

TL1818 5’-Deleter Cre 5’-GAAAGTCGAGTAGGCGTGTACG-3’ 

TL1878 5’-Nestin-promoter 5’-CGCTTCCGCTGGGTCACTGTCG-3’ 

TL1879 3’-Nestin-Cre  5’-TCGTTGCATCGACCGGTAATGCAGGC-3’ 

TL1908 5’-Phb2-exon2 5’-ATCGTATTGGTGGCGTGCAGCA-3’ 

TL1909 3’-Phb2 exon3 5’-CGAGGTCTGGCCCGAATGTCA-3’ 

TL1910 3’-Phb2 exon5 5’-AGGGAGGCTTGGTTTGAGGGGA-3’ 

TL2650 5’-ROSA26 promoter 5’-CAGGGTTTCCTTGATGATGTCA-3’ 

TL2651 3’-NeoR-WSS 5’-CGGACCGCTATCAGGACATA-3’ 

TL2653 3’-Phb2 exon5 5’-GAGCTCTCTTCGGATCAACA-3’  

TL3657 5´-FLPe Deleter 5’-GACAAGCGTTAGTAGGCACAT-3’ 

TL3658 3´-FLPe Deleter 5’-GAGAAGAACGGCATAGTGCGT -3’ 
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2.1.5 RNA isolation and RT-PCR 
 

RNA was isolated from MEFs using the RNeasy mini kit (Qiagen) according to the 

manufacturer´s instructions. cDNA synthesis was performed with the Transcriptor cDNA 

synthesis kit (Roche) following manufacturer´s guidelines. Oligonucleotides used in RT-PCR 

reactions are listed in Table 4. 

 

Table 4. List of oligonucleotides used in RT-PCR reactions. 

Oligonu-
cleotide Description Sequence 

TL1695 5’-Phb1 exon2 5’-CTGGCGTTGGCAGTTGCAGGA-3’ 

TL1697 3’-Phb1 exon5 5’-TGCCGCTCGCTCTGTGAGGT-3’ 

TL1698 5´-Phb2 exon2 5’-GTGCAGCAGGACACGATCCT-3’ 

TL1700 3´-Phb2 exon6 5’-CTCAGCCTGCACAATCTTCT-3’ 

TL1813 5’-β-actin 5’-CAGAAGGAGATTACTGCTCTGGCT-3’ 

TL1814 3’-β-actin 5’-AGGAGCCACCGATCCACACA-3’ 

TL2652 5´-CAGs exon1 5’-GCTCTGACTGACCGCGTTA-3’ 

TL2653 3´-Phb2 exon5 5’-GAGCTCTCTTCGGATCAACA-3’ 

TL2950 5´-EGFP 5’-TCCGCCACAACATCGAGGA-3’ 

TL2951 3´-EGFP 5’-TCCGCCACAACATCGAGGA-3’ 

TL3307 3´-Phb2-UTR 5’-GCGAGGTCTGTAAGCTGGA-3’ 

TL3308 5´-Phb2 exon4 5’-CAAGAGTGTGGTGGCCAAGT-3’ 

TL3434 5´-Gapdh 5’-ACCACAGTCCATGCCATCAC-3’ 

TL3435 3´-Gapdh 5’-TCCACCACCCTGTTGCTGTA-3’ 
 

2.1.6 DNA sequencing 

 
Plasmids or DNA fragments were sequenced with the ABI Big Dye Terminator 

Sequencing Kit (Applied Biosystems) according to established methods (Sanger et al., 1977). 

The fluorescently labelled DNA fragments were analysed with an ABI Prism 3730 DNA 

analyser (Applied Biosystems). 
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2.1.7 Southern Blotting 

 
10 µg of genomic DNA isolated from ES cells, MEFs or mouse tail biopsies were 

digested over night with 100 U of the appropriate restriction enzyme. Subsequently, DNA 

fragments were separated by agarose gel electrophoresis and transferred onto HybondTM-N+ 

(Amersham) nylon membranes by alkaline capillary transfer (Chomczynski and Qasba, 1984). 

Membranes were incubated at 80°C for 2 hours to fix the DNA, equilibrated in 2 x SSC 

(Sambrook et al., 1989) and then prehybridized for 10 hrs in hybridization solution (1 M 

NaCl, 1% (w/v) SDS, 10% (w/v) dextran sulfate, 50 mM Tris-HCl pH 7.5, 500 µg/ml 

sonicated salmon sperm DNA at 65°C. 

The following probes were used: 

Phb2 5' external probe (probe A): A 594 bp fragment, excised with EcoRI from pGEM-T 

easy-Phb2 5´probe.  

Phb2 3' external probe (probe B): A 632 bp fragment, excised with EcoRI from pGEM-T 

easy-Phb2 3´probe. 

neoR internal probe: A fragment of 600 bp, excised as a PstI – BamHI fragment from pBS-

neoR. 

50 ng of probe DNA were radioactively labelled with 2.5 µC [α32P]dCTP (Amersham) 

using the LaddermanTM
 Labelling Kit (Takara) based on the principle of random primed 

oligolabelling (Feinberg and Vogelstein, 1984). Non-incorporated radiolabelled nucleotides 

were removed with MicroSpinTM S-200HR columns (Amersham). Probes were denatured for 

5 min in a boiling waterbath before addition to the hybridization solution. Hybridization was 

performed at 65°C for 10 h in a rotating cylinder (Hybaid). After hybridization, stringency 

washes were initially performed twice in 2 x SSC/0.1% (w/v) SDS followed by washes in 1 x 

SSC/0.1% (w/v) SDS and 0.5 x SSC/0.1% (w/v) SDS at 65°C under gentle agitation for 10 

min. Radioactivity on the membranes was monitored with a Geiger-counter until a detection 

limit of 100 cps was reached. Afterwards, membranes were sealed in a plastic bag and 

exposed to X-ray films (BioMAX MS; Eastman Kodak) at –80°C. Films were developed in 

an automatic developer (Agfa). Alternatively, the filter were exposed at RT to a 

phosphoimager screen (Fuji) and analysed on a Bio-Imaging Analyser (Fuji Bas 1000; Fuji, 

Japan). 
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2.2 Cell Biology 
 

2.2.1 ES cell culture 

 
The conditional Phb2 allele was generated with Bruce4 ES cells (Kontgen et al., 

1993). Culturing and transfection of ES cells was performed as previously described  

(Pasparakis and Kollias, 1995; Torres and Kühn, 1997). ES cells were cultured in ES cell 

medium (Dulbecco´s Modified Eagle´s Medium (DMEM) (Invitrogen), 15% (v/v) fetal 

bovine serum (FBS) (PAA), 1 mM sodium pyruvate, 2 mM L-glutamine, 1 x non essential 

amino acids, 1:1000 diluted LIF supernatant, 0.1 mM β-mercaptoethanol) on a layer of 

mitotically inactivated embryonic feeder (EF) cells to maintain pluripotency. ES and EF cells 

were grown in tissue culture dishes (Falcon, Greiner) and kept at 37°C in a humidified 

atmosphere with 10% CO2. EF cells were maintained in EF medium (DMEM, 10% (v/v) FBS 

(Invitrogen), 1 mM sodium pyruvate, 2 mM L-glutamine), passaged three times and 

mitotically inactivated by mitomycin-C treatment (10 µg/ml for 2 h) prior to seeding with ES 

cells. ES cell colonies were washed once with PBS and incubated with 0.05% (w/v) trypsin, 

0.02% (w/v) EDTA in PBS (PAA) for 5 min at 37°C. The cell suspension was used for 

passaging, transfection or freezing. ES cells were frozen in ES cell medium containing 10% 

(v/v) DMSO at –80°C and transferred into liquid nitrogen for long term storage. For 

transfection, 1 x 107
 ES cells were mixed with 40 µg of DNA in 800 µl transfection buffer (20 

mM HEPES, pH 7; 137 mM NaCl; 5 mM KCl; 0.7 mM Na2HPO4; 6 mM Glucose; 0.1 mM β-

mercaptoethanol) and electroporated at RT (500 mF, 240V). Subsequently, transfected ES 

cells were transferred onto an embryonic feeder layer and after 48 hours selected with G418 

(180 µg/ml, PAA). Selection against HSV-tk containing random integrants was performed 

five days after transfection by supplementing the medium with 2 mM gancyclovir (Cymeven, 

Syntex). At around day 10 after the transfection, double resistant colonies were picked and 

split into EF-containing 96-well tissue culture dishes for expansion. 

 

2.2.2 MEF cell culture 

 
Primary mouse embryonic fibroblasts (MEFs) were isolated from E13.5 embryos 

derived from intercrosses of time-mated pregnant Phb2fl/+ mice. Immortalization of early 

passage primary MEFs was achieved by SV40 transformation (Todaro and Green, 1965). 
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MEFs were cultured in DMEM (Invitrogen) supplemented with 10% (v/v) FBS (Invitrogen), 

100 U/ml penicillin (PAA), 100 µg/ml streptomycin (PAA), 100 µM non-essential amino 

acids (PAA), 2 mM L-glutamine (PAA) and 1 mM sodium pyruvate (PAA). MEFs were 

cultured at 37°C in an atmosphere of 5% CO2 and 90% humidity. 

For the generation of stable cell lines, 1x107 SV40-transformed Phb2fl/fl MEFs were 

transfected via electroporation with 40 µg of the pCAGs-STOP-IRES-EGFP plasmid 

containing different murine Phb2 cDNAs. 24 hrs after transfection cells were selected with 

300 µg/ml G418 (PAA) for 9 days. Single G418-resistant MEF clones were isolated and 

expanded for further analysis. Stable expression of the transgenes was examined by 

immunoblotting. 

 

2.2.3 Cre protein transduction in vitro 

 
Recombinant His-TAT-NLS-Cre (HTNC) fusion protein was expressed and purified 

as previously described (Peitz et al., 2002). Cre-recombinase was diluted in DMEM/PBS to a 

final concentration of 3-5 µM, sterile-filtered and applied to MEFs grown in cell culture 

dishes. Cells were incubated for 20 hrs, washed with PBS and supplemented with growth 

medium. The efficiency of recombination was assessed by Phb2-allele-specific PCR or 

Southern Blotting. 

 

2.2.4 Assessment of cell proliferation 

 
1x106 MEFs were transduced with Cre-recombinase and collected by trypsinization 

after 60 hrs. 1x104 cells were seeded per well onto 96-well tissue culture plates and labelled 

for 12 hrs (1 µCi 3H-thymidine/well). MEFs were harvested and spotted onto glass fiber 

filters. Incorporated 3H-thymidine was determined with a microplate scintillation β-counter. 

To determine cell growth of PHB2-deficient and control MEFs, 5x104 cells were 

plated on 60 mm dishes and transduced with Cre-recombinase. Triplicates of cell samples 

were counted per time point. 
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2.2.5 Cell death analysis 

 
For TUNEL staining, 1x105 MEFs were grown on glass coverslips in 6-well plates, 

treated with Cre-recombinase when indicated and cultured for 72 hrs. Cells were fixed in 4% 

(w/v) p-formaldehyde for 10 min, washed in PBS and TUNEL staining was performed using 

the DeadEndTM Fluorometric TUNEL system (Promega) according to the manufacturer´s 

instructions. 

 

2.2.6 Flow cytometry 

 
Mitochondrial membrane potential was measured by fluorescence-activated cell 

sorting after staining MEFs of the indicated genotypes with JC-1 or TMRM dyes (Molecular 

Probes) as recommended by the manufacturer.  

To determine cell proliferation by flow cytometry, 5x105 MEFs transduced with Cre-

recombinase were labelled with 0,5 µM carboxyfluorescein diacetate succinimidyl ester 

(CFSE) (Asquith et al., 2006) and subjected to FACS analysis. 

Samples were analysed on a FACSCalibur equipped with CellQuest software (Becton 

Dickinson). 

 

2.2.7 Fluorescence microscopy 

 
Mitochondrial morphology was examined by transfection of pDsRed2-mito or 

pEYFP-mito (Clontech) using GeneJuice transfection reagent (Merck Biosciences). 2x105 

MEFs were plated on coverslips and transfected twice with the indicated plasmids. 

Mitochondrial morphology was analysed using the DeltaVision microscope system equipped 

with Softworx software (Applied Precision). 25 stacks were acquired and subjected to 

deconvolution. Images were processed further using CorelDRAW™ 11 Graphics Suite 

software (Corel Corporation). 
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2.2.8 Transmission electron microscopy 

 
2x105 MEFs were plated on glass coverslips (thickness 0.2 mm), transfected, Cre-

transduced and flat embedded for transmission electron microscopy as follows. After 72 hrs 

cells were fixed in 0.1 M HEPES/KOH pH 7.2, 4 mM CaCl2, 2.5% (v/v) glutaraldehyde for 4 

hrs at RT. After three rinses with 0.1 M HEPES/KOH pH 7.2, 4 mM CaCl2, cells were 

postfixed in 1% (v/v) osmium tetroxide for 45 min at 4°C, rinsed three times in distilled water 

and incubated in 1% (w/v) uranyl acetate for 1 hr at 4°C. Dehydration of the samples in a 

graduated ethanol series, infiltration with Epon and flat embedding was performed according 

to standard procedures. Ultrathin sections (40–70 nm) were cut and mounted on pioloform-

coated copper grids (Plano, Wetzlar, Germany). Sections were stained with lead citrate and 

uranyl acetate and viewed with a Zeiss CEM 902 transmission electron microscope (Carl 

Zeiss, Oberkochen, Germany) at 80 kV. Micrographs were taken using EMS EM film (Maco, 

Stapelfeld, Germany). Three-dimensional reconstructions were prepared from scanned films 

using IMOD software, version 3.5.5 (Kremer et al., 1996).  

 

2.2.9 Isolation of mitochondria from MEFs 

 
Mitochondria of MEFs were isolated by differential centrifugation of fibroblast 

homogenates. After trypsinization cells were washed in PBS and resuspended in 5 ml isotonic 

homogenisation buffer (250 mM sucrose, 5 mM Tris-HCl pH 7.5, 0.1 mM PMSF). The cell 

suspension was homogenised by 35 strokes in a Dounce glass-homogeniser. Nuclei and 

unbroken cells were removed by centrifugation for 10 min at 1,200 g and 4°C. The 

supernatant was centrifuged for 20 min at 16,000 g and 4°C to collect the mitochondria. 

Subsequently, the mitochondrial pellet was washed and resuspended with homogenisation 

buffer supplemented with 1 mM EDTA (pH 8.0). Finally, the protein concentration of the 

suspension was determined using the Bradford assay according to manufacturer’s instruction 

(Bio-Rad). Mitochondria were diluted, frozen as 100 µg aliquots in liquid nitrogen and stored 

at -80°C. 
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2.3 Biochemistry 
 

2.3.1 Preparation of protein extracts 

 
MEFs were harvested from tissue culture plates either by trypsinization or by cell 

scraping and lysed in protein cell lysis buffer (10 mM Tris-Cl pH 7.4, 10 mM EDTA, 50 mM 

NaCl, 50 mM NaF, 1% (v/v) Triton X-100 supplemented with 20 µg/ml aprotinin, 2 mM 

sodium-orthovanadate, 1 mM PMSF and Complete Mini Protease inhibitor cocktail mix 

(Roche)) for 2 hrs at 1500 rpm in a Vibrax shaker. Protein concentrations were determined 

with a standard Bradford protein assay (BioRad).  

 

2.3.2 Immunoblotting 

 
50-200 µg of total protein were separated with 10-16% (w/v) SDS-PAGE (Laemmli, 

1970) and transferred to nitrocellulose (Schleicher & Schuell) or PVDF membranes 

(Immobilon, Millipore). After protein transfer membranes were incubated for 30 min at RT in 

blocking solution [5% (w/v) milk powder in TBS buffer (10 mM Tris/HCl pH 7.4, 150 mM 

NaCl)]. This was followed by immunodecoration for 60-120 min with a specific antiserum 

(Table 5) diluted in 5% (w/v) milk powder in TBS buffer. Membranes were washed three 

times for 10 min with TBS supplemented with 0.05% (v/v) Triton X-100. To recognise bound 

antibodies, horseradish peroxidase-conjugated antibodies specific for immunoglobulins G of 

rabbit or mouse were employed in a dilution of 1:10,000 in 5% (w/v) milk powder in TBS. 

Membranes were incubated for 60 min and subsequently washed twice for 10 min with TBS. 

The bound peroxidase was detected after incubating the membranes with 2 ml of a 1:1 

mixture of chemiluminescence reagents [solution 1: 10 ml 1 M Tris-HCl pH 8.5, 1 ml luminol 

(44 µg/ml in DMSO), 440 µl p-coumaric acid (15 mg/ml in DMSO), 88.56 ml H2O; solution 

2: 10 ml 1M Tris-HCl pH 8.5, 60 µl 30% (w/v) hydrogen peroxide, 89.94 ml H20]. 

Subsequently, the membranes were exposed to light-sensitive X-ray films (Super RX, Fuji). 
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Table 5. Antibodies used in this study. 

Antibody Antigen Dilution Reference 

α- BAP37 Recombinant C-terminus of 
human PHB2 1:500 BioLegend 

α-prohibitin Purified recombinant rat prohibitin 1:500 NeoMarkers 

α-PHB1  
peptide corresponding to amino 
acids 208-222 of mouse PHB1 
(KAAIISAEGDSKAAE) 

1:1000 this study 

α-β-actin Synthetic N-terminal peptide of β-
actin (DDDIAALVIDNGSGK) 1:5000 Sigma, clone AC15 

α-Bax N-terminal peptide of human Bax 1:1000 Santa Cruz 

α-Bcl2 N-terminal peptide of human Bcl2 1:200 Santa Cruz 

α-Hax1 amino acids 10-148 of human 
HAX-1 1:500 BD Biosciences 

α-p53 Recombinant human p53 protein 1:200 Santa Cruz 

α-phospho-p53 
Synthetic phospho-peptide 
surrounding amino acid Ser 15 of 
human p53 

1:1000 Genetex 

α-GFP Purified recombinant GFP protein 1:1000 Abcam 

α-OPA1 
amino acids 708-830 of human 
OPA1 1:500 BD Biosciences 

α-FLAG M2 
synthetic FLAG-peptide 
DYKDDDDK 1:1000 Sigma  

α-C I, 39 kDa 
Purified 39 kDa subunit of human 
Complex I 1:1000 Molecular Probes 

α-C II, 70 kDa 
Purified 70 kDa subunit of human 
Complex II 1:1000 Molecular Probes 

α-C III, Su IIa 
Purified Core IIa subunit of human 
Complex III 1:1000 Molecular Probes 

α-C V, Su α Purified α subunit of bovine 
Complex V (F1 complex) 1:1000 Molecular Probes 

α-HSP60 Recombinant human HSP60 1:1000 Stressgen 

α-TIM23 amino acids 5-126 of rat TIM23 1:1000 BD Biosciences 

α-Aconitase 
peptide corresponding to amino 
acids 767-780 of human Aconitase 1:1000 Ngo & Davies, 

unpublished 
α- 
porin/VDAC 

N-terminal peptide of human porin 1:1000 Calbiochem 

 

2.3.3 Blue native polyacrylamide gel electrophoresis (BN-PAGE) 

 
 BN-PAGE is a method to analyse native protein complexes of mitochondrial 

membranes (Reisinger and Eichacker, 2006; Schägger, 2001). It is based on the usage of an 
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anionic dye (Coomassie blue G-250), which is added after the solubilisation of mitochondria 

and binds to the surface of proteins. Thereby, a negative net charge is introduced into the 

protein complexes allowing an electrophoretic separation. A high resolution according to the 

mass of the protein complexes is achieved by the decreasing pore size of an acrylamide-

gradient gel. The gradient gels used in this study were composed of a separation gel with a 

linear gradient of 3-13% polyacrylamide [3-13% (w/v) acrylamide, 0.09-0.4% (w/v) 

bisacrylamide, 0-20% (w/v) glycerol, 0.5 M ε-amino-n-caproic acid, 25 mM imidazole-HCl 

pH 7.0, 0.1% (w/v) APS, 0.1% (v/v) TEMED] and a stacking gel [3% (w/v) acrylamide, 

0.09% (w/v) bisacrylamide, 0.5 M ε-amino-n-caproic acid, 25 mM imidazole-HCl pH 7.0, 

0.1% (w/v) APS, 0.1% (v/v) TEMED]. Mitochondrial proteins (150 µg) isolated from yeast or 

human primary fibroblasts were solubilised by shaking (15 min; 1,400 rpm; 4°C) at a 

concentration of 5 mg/ml in 1% (w/v) digitonin, 30 mM Tris-HCl pH 7.4, 4 mM Mg-acetate, 

5 mM ε-amino-n-caproic acid, 50 mM NaCl, 1 mM ATP. After a clarifying spin for 30 min at 

125,000 g and 4°C, mitochondrial extracts were supplemented with 2 µl 50% (w/v) glycerol 

and 1 µl sample buffer [5% (w/v) Coomassie blue G-250 in 0.5 M ε-amino-n-caproic acid] 

and loaded onto the polyacrylamide-gradient gel. The electrophoretic separation was carried 

out in Mini-Protean-3-gel chambers (Bio-Rad) at 4°C [deep blue cathode buffer B: 50 mM 

Tricine, 7.5 mM imidazole, 0.02% (w/v) Coomassie blue G-250; anode buffer: 25 mM 

imidazole-HCl pH 7.0] using a constant voltage of 50 V and a current of 15 mA for ~30 min, 

followed by 300 V and 15 mA for ~30 min. Subsequently, the deep blue cathode buffer B was 

exchanged for a cathode buffer of identical composition but lacking Coomassie blue G-250 

and the separation was continued at 300 V and 15 mA. Finally, the proteins were transferred 

from the gradient gel onto a PVDF membrane for 2 h at 200 mA. Thyroglobulin (669 kDa) 

and apoferritin (443 kDa) were used for calibration. 

 

 

2.3.4 Respiratory chain function 

 
Oxygen consumption studies of viable cells and spectrophotometric evaluation of 

respiratory chain and TCA cycle enzyme activities in frozen homogenates were performed as 

previously described (Rustin et al., 1994). 
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2.4 Mouse analysis 
 

2.4.1 Animal Care 

 
Care of all animal was within institutional animal care committee guidelines. All 

animal procedures were conducted in compliance with protocols and approved by local 

government authorities (Bezirksregierung Köln, Cologne, Germany) and were in accordance 

with NIH guidelines. Mice were housed in groups of 3 to 5 at 22–24°C using a 12 h light/dark 

cycle. 

 

2.4.2 Mouse handling and breeding 

 
General handling and breeding of mice was performed according to Hogan (Hogan et 

al., 1987) and Silver (Silver, 1995). 

 

2.4.3 Mice 

 
C57BL/6 and CB20 mouse strains were obtained from Charles River or Jackson 

Laboratories. Deleter-Cre (Schwenk et al., 1995), FLPe deleter mice (Rodriguez et al., 2000) 

and Nestin-Cre (Tronche et al., 1999) were maintained in the pathogen-free animal facility of 

the Institute for Genetics at the University of Cologne.  
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3 Results 
 

3.1 Conditional gene targeting of the murine Phb2 gene 

To investigate the function of PHB2 in vivo, conditional gene targeting of murine 

Phb2 using Cre-loxP-mediated recombination was employed. The murine Phb2 gene is 

located on chromosome 6 and composed of nine exons (Figure 6). We constructed a gene 

replacement vector that introduced a gene cassette consisting of the neomycin resistance gene 

(Neo) and a flanking loxP site upstream of exon 3 and a loxP site downstream of exon 4 into 

the endogenous Phb2 gene (Figure 6). Deletion of the loxP-flanked exons 3 and 4 upon Cre-

mediated recombination causes a frameshift mutation resulting in a stop of translation at 

amino acid 73 of PHB2.  

 

 
 

Figure 6. Conditional gene targeting of the murine Phb2 locus. 

Schematic representation of the wild type Phb2 locus (WT), the targeting vector (TV), the targeted 
Phb2fl(neo)/+ locus after homologous recombination (FN), the conditional Phb2fl/fl locus after Flpe-
mediated recombination (F) and the knockout locus upon Cre-mediated recombination (∆). Positive 
and negative selection markers (NeoR and TK), exons (black bars), FRT and loxP sites (black ovals 
and black triangles, respectively), external probes (black boxes, A and B), locations of PCR primers 
(black arrows, P1-3), and relevant HindIII restriction sites (H) are indicated. 
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3.1.1 Homologous recombination of the targeting construct in murine ES 
cells 

 
Bruce4 ES cells (Kontgen and Stewart, 1993) were electroporated with the SwaI-

linearized targeting vector and selected with G418 and ganciclovir as previously described 

(Kuhn and Torres, 2002). 576 clones were isolated and analysed by Southern Blotting using 

external probes located upstream and downstream of the Phb2 gene locus (Figure 6). Probe A 

was used to determine 5´integration of correctly targeted clones after HindIII digestion, 

resulting in a recombinant band of 7.8 kb besides the 13.8 kb wild type band (Figure 7). To 

determine co-integration of the 3´loxP site, DNA isolated from ES cell clones was HindIII-

digested resulting in a recombinant band of 5.4 kb band which was detected after Southern 

Blotting with probe B (Figure 7A). Three homologous recombinant ES cell clones were 

identified. Single integration of the targeting construct in ES cells was verified with Southern 

Blotting using an internal probe (Figure 7B). Cre-transduction of ES cells harbouring the 

targeted Phb2fl(neo)/+ allele demonstrated the conversion of the loxP-flanked into the deleted 

allele in vitro (Figure 7C). 

 

 

 
 

Figure 7. Homologous recombination of the targeting construct in murine ES cells. 

(A) Southern blot analysis of wild type and ES cell clones harbouring the targeted Phb2fl(neo)/+ allele 
after homologous recombination. Genomic DNA isolated from wild type (WT) and Phb2fl(neo)/+ ES 
cells (targeted) was digested with HindIII, hybridized with an external 5´ probe (Probe A)  and an 
external 3´ probe (Probe B), and analysed by autoradiography.  
(B) Southern blot analysis as described in (A). Blots were hybridized with the internal neoR-probe.  
(C) Southern Blot analysis of genomic DNA isolated from targeted ES cells transduced with 
increasing concentrations (1.0, 2.0 µM) of purified Cre recombinase. Blots were hybridized with the 5´ 
external probe and analysed by autoradiography. The different alleles are indicated. 
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3.1.2 Germline transmission of the targeted Phb2 allele 

 
An ES cell clone harbouring the targeted Phb2fl(neo)/+ allele was injected into CB20 

blastocysts using standard procedures (Stewart, 1993). Several high-grade chimeras were 

obtained after implantation of injected blastocysts into foster mice. Male chimeras were 

backcrossed to C57BL/6 female mice and the resulting offspring was analysed for the 

presence of the targeted Phb2fl(neo)/+ allele. Germline transmission was confirmed by Southern 

blot analysis (Figure 8). 

 

 
 

Figure 8. Germline transmission of the targeted Phb2 allele in mice. 

Southern blot analysis of germline transmitted offspring harbouring the targeted Phb2fl(neo)/+ locus. 
Genomic DNA isolated from ES cells and tail biopsies were digested with HindIII, hybridized with an 
external 5´ probe and analysed by autoradiography. 
 
 
 

3.1.3 Embryonic lethality of PHB2-deficient mice 

 
Mice carrying the targeted Phb2fl(neo)/+ allele were crossed to FLPe-deleter mice 

(Rodriguez et al., 2000) to remove the FRT-flanked neomycin resistance gene upon 

FLP/FRT-mediated recombination (Figure 6). Heterozygous Phb2+/- animals were generated 

upon breeding of Phb2fl/+ mice with a Cre transgenic mouse strain allowing universal 

expression of Cre-recombinase in all tissues (Schwenk et al., 1995). Intercrossings of Phb2+/- 

mice revealed neither viable Phb2-/- offspring nor were homozygous mutant embryos 

identified before embryonic day 8.5 (Table 6). These findings are in agreement with 

observations using a conventional knockout strategy (Park et al., 2005) and suggest an 

essential function of PHB2 in early embryonic development.  

 

 

 

 



Results 57

Table 6. Genomic deletion of Phb2 in mice causes embryonic lethality. 

Embryonic lethality of PHB2-deficient mice. Analysis of progeny derived from intercrossings of 
Phb2+/- mice. Embryos from the indicated stages or newborn mice were genotyped by PCR using 
Phb2 allele-specific primers. Expected numbers reflect the mendelian ratio. E, embryonic day. 
 

 
 

3.1.4 Embryonic lethality of brain-specific PHB2-deficient mice 

 
Conditional gene targeting is a valuable tool to investigate gene functions in a tissue-

specific manner (Rajewsky et al., 1996). We reasoned that the generation of a mouse line 

carrying a tissue-specific deletion of Phb2 in the brain might bypass embryonic lethality. To 

achieve this Phb2fl/+ mice were crossed to a Nestin-Cre line which express the Cre-

recombinase specifically in the brain during embryonic development (Tronche et al., 1999). 

The analysis of progeny by genotyping revealed the absence of viable offsprings (Table 7) 

suggesting that Phb2 is required for brain development during embryogenesis. 

 

Table 7. Brain-specific deletion of Phb2 in mice causes embryonic lethality. 

Brain-specific inactivation of murine Phb2 causes embryonic lethality. Analysis of progeny derived 
from breedings of Nestin-Cre/Phb2fl/+ males to Phb2fl/fl females. Newborn animals were genotyped by 
PCR for Phb2 and the Nestin-Cre transgene. Expected numbers reflect the mendelian ratio. Nes-Cre 
refers to Nestin-Cre. 
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3.2 Generation of in vitro systems for Phb2 ablation 

3.2.1 Mouse embryonic fibroblasts 

To define functional consequences of a deletion of Phb2 on a cellular level, mouse 

embryonic fibroblasts (MEFs) were isolated from homozygous Phb2fl/fl and control embryos 

(Phb2fl/+  and Phb2+/+). To delete the Phb2 gene upon Cre-mediated recombination in vitro, 

protein transduction of a recombinant Cre-recombinase was applied into cultured MEFs (Peitz 

et al., 2002). Thereby, the conditional loxP-flanked Phb2 allele is converted into the deleted 

allele after Cre protein transduction (Figure 9A) leading to efficient deletion of Phb2 in vitro 

(Figure 9B, C).  

 

 
 

Figure 9. Establishment of Cre/loxP-mediated gene deletion in vitro. 

(A) Schematic illustration of Cre-mediated recombination of the loxP-flanked Phb2 allele. Black 
triangles indicate loxP sites. The black arrowhead indicates Cre protein transduction into MEFs. 
(B) PCR analysis of DNA isolated from MEFs using Phb2 allele-specific primers. Amplified DNA 
fragments for the WT, floxed (flox), and knockout (∆) alleles are shown. 
(C) Southern Blot analysis of DNA isolated from MEFs of the indicated genotype transduced with 
increasing concentrations (0.5, 1.0, 2.0, 3.0, 4.0 µM) of recombinant Cre recombinase. Genomic DNA 
isolated from MEFs was HindIII-digested, hybridized with the 5´ external probe and analysed by 
autoradiography. Conditional (flox) and the knockout (∆) alleles are indicated. 
 
 

To demonstrate the efficiency of the Phb2 loss-of-function approach, MEFs after Cre 

protein transduction were examined for protein and transcript levels of endogenous 

prohibitins. Western blot analysis confirmed the absence of PHB2 in Phb2-/- cells (Figure 

10A). Notably, depletion of PHB2 was accompanied by the loss of its assembly partner PHB1 
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(Figure 10A). RT-PCR experiments demonstrated that transcription of Phb1 proceeds 

irrespective of the presence of Phb2 in the cells (Figure 10B). Thus, similar to other 

organisms (Artal-Sanz et al., 2003; Berger and Yaffe, 1998), murine PHB1 and PHB2 are 

functionally interdependent, defining the assembled prohibitin complex as the functionally 

active unit. 

 
 

 
 

 

Figure 10. Functional interdependence of mammalian prohibitin subunits. 

(A) Immunoblot analysis of total protein lysates. MEFs, transduced with Cre-recombinase when 
indicated, were lysed and analysed by immunoblotting using PHB1- and PHB2-specific antibodies. A 
crossreacting band was used as a loading control. 
(B) RT-PCR analysis of Phb1 and Phb2 transcripts in Phb2-deficient and control MEFs. Transcripts 
of β-actin were used as control. 
 

3.2.2 Complementation of PHB2 deficiency in vitro 
 

To determine whether phenotypes associated with a genetic Phb2 ablation can be 

solely attributed to the loss of PHB2, a cellular complementation system was developed. 

Stable Phb2fl/fl cell lines were established which harbour the Phb2 cDNA downstream of a 

transcriptional stop-cassette with flanking loxP sites (Figure 11A). Expression of Phb2 

transgenes was induced by Cre transduction of these cells which results concomitantly in the 

deletion of genomic Phb2. Additionally, expression of the transgene was monitored by an 

IRES-EGFP reporter cassette which allowed ECMV-IRES-mediated expression of eGFP 

(Figure 11A). PCR analysis confirmed both Cre-mediated recombination of the endogenous 

Phb2 allele and excision of the transcriptional STOP-cassette allowing expression of the Phb2 

transgene (Figure 11B). Immunoblotting of cell lysates from Cre-transduced stable 

Phb2fl/fl::Phb2 MEFs revealed expression of the Phb2 transgene in the absence of endogenous 

PHB2 (Figure 11C). Notably, also the assembly partner PHB1 accumulated in cells 
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expressing the Phb2 transgene in the absence of endogenous PHB2 supporting the notion that 

both proteins are functionally interdependent. Moreover, both PHB1 and PHB2 accumulated 

at similar levels as in Phb2fl/fl cells demonstrating the validity of the approach (Figure 11C). 

 

 
 

Figure 11. Stable Phb2 expression system for complementation analysis. 

(A) Cre-induced expression of Phb2 in Phb2-deficient MEFs. Phb2fl/fl MEFs were stably transfected 
with the CAGs-NeoR-STOP-IRES-EGFP construct harbouring the Phb2 cDNA (Phb2fl/fl::Phb2). Cre-
mediated recombination results in the inactivation of the endogenous, floxed Phb2 allele and, 
simultaneously, in the removal of the loxP-flanked transcriptional STOP-cassette allowing expression 
of the Phb2 transgene under control of the CAGs promoter. IRES-EGFP expression was used as a 
reporter. 
(B) PCR analysis of DNA isolated from stable Phb2fl/fl MEFs transfected with the indicated constructs 
using allele-specific primers for the endogenous Phb2 allele (Phb2) and the Phb2 transgene (Phb2*). 
Amplified DNA fragments for both loxP-flanked (flox) and deleted (∆) alleles are indicated. 
(C) Immunoblot analysis of total cell lysates. Stable transfected Phb2fl/fl MEFs of the indicated 
genotype were transduced with Cre-recombinase when indicated, lysed and analysed by 
immunoblotting using PHB1- and PHB2-specific antibodies. β-actin was used as a loading control. 
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3.3 Functional analysis of prohibitin-deficient MEFs 

3.3.1 Loss of prohibitins does not lead to spontaneous apoptosis 
 

Mammalian prohibitin proteins have previously been linked to apoptotic processes. 

Independent studies from several laboratories suggested an anti-apoptotic function of 

prohibitins (Fusaro et al., 2003; Fusaro et al., 2002; Kasashima et al., 2006; Vander Heiden et 

al., 2002). Recently, the RNAi-mediated depletion of PHB2 in HeLa cells was shown to 

induce apoptotic cell death (Kasashima et al., 2006). To investigate whether the deletion of 

Phb2 in MEFs also leads to spontaneous apoptosis, Phb2fl/fl  and control cells were transduced 

with purified Cre recombinase and apoptosis was assessed with fluorescent TUNEL staining. 

MEFs treated with recombinant DNaseI prior to TUNEL staining were used as a positive 

control. Notably, neither prohibitin-deficient nor Cre-transduced control MEFs exhibited 

TUNEL-positive nuclei. Thus, PHB2 depletion in MEFs does not result in spontaneous 

apoptosis (Figure 12).  

 

 
 

Figure 12. Absence of prohibitins in MEFs does not cause spontaneous apoptosis.  

TUNEL staining of Phb2fl/fl MEFs treated with Cre-recombinase when indicated. DNaseI treated 
MEFs were analysed in parallel for control. Scale bar 10 µm. 
 
 

To investigate whether the depletion of PHB2 in Phb2-/- cells leads to a differential 

expression of pro- and antiapoptotic proteins, cell lysates of Cre-transduced Phb2fl/fl and 

control MEFs were subjected to immunoblotting against several proteins involved in the 

regulation of programmed cell death. Bax and Bcl2 as well as the anti-apoptotic protein Hax1 

accumulated at similar levels in wild type and PHB2-deficient cells. Additionally, protein 
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levels of p53 and the extent of phosphorylated p53 in Phb2-/- cells were indistinguishable 

from controls (Figure 13). Furthermore, immunoblotting of cell lysates for activated caspase-3 

and cytochrome c immunofluorescence did not provide any evidence for spontaneous 

apoptosis (Sascha Dargazanli, personal communication). These results further substantiate 

that the loss of prohibitins in MEFs does not lead to spontaneous apoptosis. 

 

 
 

Figure 13. Phb2 deletion does not affect steady state levels of pro- and anti-apoptotic proteins. 

Immunoblot analysis of MEF lysates using the indicated antibodies. β-actin-specific antibodies were 
used as a loading control. p-p53, phosphorylated p53. 
 
 

3.3.2 Cell proliferation arrest of prohibitin-deficient MEFs 
 

PHB1 was originally identified through its ability to induce growth arrest in human 

fibroblasts suggesting a potential tumour suppressor protein function (Jupe et al., 1996; Nuell 

et al., 1991). Additionally, its homologue PHB2 was found to regulate transcription in 

response to estrogen receptor activation (Delage-Mourroux et al., 2000; Montano et al., 1999).  

To assess the role of prohibitins in the control of cell growth, the effect of Phb2 

deletion on cell proliferation was examined by 3H-thymidine incorporation in Phb2fl/+ and 

Phb2fl/fl fibroblasts transduced with Cre-recombinase. Whereas Cre-transduction did not affect 

DNA labelling in wild type or heterozygous Phb2fl/+ cells, incorporation of 3H-thymidine was 

strongly impaired in cells lacking PHB2 (Figure 14A). In addition, cell growth of Phb2-/- and 

control cells was investigated by determining the total cell number of cultured MEFs over 
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time. Consistently, cell growth was impaired in Phb2fl/fl cells after Cre-transduction (Phb2-/-) 

(Figure 14B) . Notably, expression of PHB2 in Phb2-/- cells restored cell proliferation ( 

Figure 14A) as well as cell growth (Figure 14B), demonstrating that these effects can 

be solely attributed to the loss of PHB2.  

 
 

 
 

Figure 14. Defective cell proliferation in prohibitin-deficient MEFs. 

(A) Incorporation of 3H-thymidine in MEFs after Cre-transduction. Data represent mean ± standard 
deviations of three independent experiments. *** ρ<0.001  
(B) Growth curves of PHB2-deficient and control MEFs. 5x104 cells were plated on 60 mm dishes and 
Cre-transduced when indicated. Triplicates of cell samples were counted. ** ρ< 0.01, *** ρ< 0.001. 
(C) Flow cytometric analysis of CFSE-labelled MEFs. Cells were stained with CFSE and analysed by 
FACS. A lower number of Phb2fl/fl and Phb2fl/+ cells was examined. 
 
 
 

These results were further substantiated by in vivo cell labelling using the fluorescent 

dye carboxyfluorescein diacetate succinimidyl ester (CFSE). When cells divide after CFSE 

uptake, CFSE is apportioned equally between daughter cells, resulting in decreased 

fluorescence (Asquith et al., 2006). Consistent with 3H-thymidine labelling and cell growth 
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analysis, CFSE fluorescence remained high in Phb2-/- fibroblasts but not in Phb2+/- cells 

(Figure 14C). In summary, these results indicate that deletion of murine Phb2 blocks cell 

proliferation independently of p53 and without inducing spontaneous apoptosis. 

 

3.3.3 Cell proliferation depends on mitochondrially targeted PHB2 

 
Given the pleiotropic functions that have been suggested for prohibitins in different 

cellular compartments, it was examined whether cellular defects of Phb2-/- cells are caused by 

the loss of PHB2 within mitochondria. To functionally investigate mitochondrial targeting, 

conserved arginine residues in the N-terminal mitochondrial targeting sequence of PHB2 

(Kasashima et al., 2006) (Figure 15A) were replaced with alanines. To analyse mitochondrial 

targeting in vivo, PHB2 variants were transiently expressed as EGFP fusion proteins in 

Phb2fl/fl cells. This analysis revealed mitochondrial localization of PHB2AARR-EGFP and 

PHB2RRAA-EGFP, while PHB2AAAA-EGFP accumulated in the cytosol indicating defective 

mitochondrial targeting of this variant (Sascha Dargazanli, personal communication).  

To examine the activity of the PHB2 variants, we established stable Phb2fl/fl cell lines 

allowing the expression of PHB2AARR, PHB2RRAA and PHB2AAAA transgenes upon Cre-

mediated recombination (Figure 15A; see Figure 11). Cell proliferation of PHB2-deficient 

MEFs was restored by transgenic expression of PHB2AARR or PHB2RRAA (Figure 15B) which 

accumulated at similar levels as PHB2 in Phb2fl/fl cells (Figure 15C). In contrast, expression of 

the cytosolic variant PHB2AAAA did not support cell proliferation (Figure 15B). Although the 

PHB2AAAA transgene was expressed (Figure 15D), neither mitochondrial PHB1 nor cytosolic 

PHB2AAAA accumulated stably in these cells indicating degradation of both proteins (Figure 

15C). These results reveal a striking correlation between mitochondrial targeting and the 

maintenance of cell proliferation pointing to a crucial role of PHB2 within mitochondria. 
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Figure 15. Cell proliferation depends on mitochondrial targeting of PHB2. 

(A) Schematic representation of PHB2 variants mutated in the mitochondrial targeting signal. Highly 
conserved arginine residues in the N-terminus of PHB2 were replaced by alanine at positions 11, 17, 
48, and 54 of PHB2. The full-length PHB2 protein comprises 299 amino acids. MTS = mitochondrial 
targeting signal; CC = coiled-coil. 
(B) Proliferation of stable cell lines expressing PHB2 variants monitored by 3H-thymidine 
incorporation. Stable cell lines expressing PHB2 mutants and IRES-EGFP were established as 
described above. Data represent ± standard deviation of three independent experiments. *** ρ< 0.001. 
(C) Immunoblot analysis of MEF cell lines expressing PHB2 or mutant variants thereof. Cell extracts 
were analysed by SDS-PAGE and immunoblotting using PHB1- and PHB2-specific antibodies. The 
α-subunit of the F1-particle of complex V (Suα) was used as a loading control. 
(D) RT-PCR analysis of Phb1 and Phb2 transcripts in various MEF cell lines. Phb2 transcripts derived 
from the genomic locus (Phb2) and the transgene (Phb2*) were amplified using allele-specific primer 
pairs. Transcripts of Gapdh were used as control. 
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3.3.4 Mutations in predicted nuclear localization signals and receptor 
boxes of PHB2 do not interfere with cell proliferation 

 
To further investigate whether the impaired cell proliferation of Phb2-/- cells was 

caused by non-mitochondrially localized PHB2, a mutational analysis of predicted nuclear 

motifs in PHB2 was performed. Namely, a putative nuclear-localization signal and a nuclear 

receptor box motif were identified and characterized previously (Delage-Mourroux et al., 

2000; Montano et al., 1999) (Figure 16A). 

 

 
 

Figure 16. PHB2 variants mutated in putative nuclear localization motifs maintain cell 
proliferation. 

(A) Schematic representation of murine PHB2 wild type and mutant variants. Mutated amino acid 
residues in a predicted nuclear localisation signal (NLS) and a nuclear receptor box motif (NRB) are 
shown in bold.  
(B) Proliferation of stable cell lines expressing PHB2 variants upon Cre-mediated recombination 
monitored by 3H-thymidine incorporation. PHB2 mutants are described in (A). Data represent ± 
standard deviation of three independent experiments. *** p<0.001 
(C) Immunoblot analysis of cell lines expressing PHB2 mutants. Cell lysates were analysed by SDS-
PAGE and immunoblotting using PHB1- and PHB2-specific antibodies. β-actin was used as a loading 
control. 
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To examine the activity of these PHB2 variants, a complementation approach was 

carried out. Stable Phb2fl/fl cell lines were established allowing the expression of PHB2NLSmut 

and PHB2NRBmut transgenes upon Cre-mediated recombination (Figure 16A; see Figure 11A). 

Cell proliferation of PHB2-deficient MEFs was restored by transgenic expression of both 

PHB2NLSmut and PHB2NRBmut transgenes (Figure 16B) which accumulated at levels 

comparable to the wild type protein in Phb2fl/fl cells (Figure 16C). These results exclude a role 

of these motifs in the regulation of cell proliferation by PHB2 and further strengthen the link 

between the mitochondrial localization of PHB2 and maintenance of cell proliferation. 

 

 

3.3.5 Mitochondrial fragmentation in prohibitin-deficient MEFs 
 

To examine the morphology of PHB2-deficient mitochondria, we expressed 

mitochondria-targeted red fluorescent protein in Phb2+/+, Phb2fl/+, Phb2fl/fl, and in Phb2fl/fl 

MEFs complemented with Phb2. Ablation of Phb2 by Cre-transduction had severe effects on 

mitochondrial morphology and led to fragmentation of mitochondria in >90% of Phb2-/- cells 

(Figure 17A, B). Fragmented mitochondria were not observed in Phb2+/+ or Phb2fl/+ cells 

excluding deleterious effects of Cre-recombinase on mitochondrial morphology (Figure 17A, 

B). Cre-mediated expression of Phb2 in Phb2-/- cells restored the tubular morphology of 

mitochondria (Figure 17A, B) indicating that tubulation of mitochondria depends on PHB2. 
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Figure 17. Loss of prohibitins lead to mitochondrial fragmentation. 

(A) Fragmentation of mitochondria in prohibitin-deficient MEFs. Cell lines were transfected with 
mito-DsRed, treated with Cre-recombinase when indicated and analysed after 72 hrs by fluorescence 
microscopy. Scale bar 10 µm. 
(B) Quantification of mitochondrial morphology in control (Phb2fl/fl::Phb2) and prohibitin-deficient 
MEFs. Cells containing tubular (white bars) or fragmented mitochondria (black bars) were classified. 
>200 cells were scored per experiment. 
 

3.3.6 Defective cristae morphogenesis in PHB2-deficient mitochondria 

 
The ultrastructure of mitochondria in Cre-transduced Phb2fl/+, Phb2fl/fl and 

Phb2fl/fl::Phb2 MEFs was examined by electron microscopy (Figure 18A, B). The presence of 

loxP-flanked Phb2 or the deletion of Phb2 in heterozygous Phb2fl/+ cells did not affect the 

ultrastructure of mitochondria (Figure 18A, a-b). However, a large fraction of mitochondria in 

Phb2-/- cells harboured defective cristae (Figure 18A, d-g). Lamellar cristae were either 
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almost completely lost or balloon-like, vesicular structures were detected within mitochondria 

(Figure 18C, d-g). This effect was largely reversed upon expression of PHB2 in Phb2-/- cells 

(Figure 18A, c, B). 

 

 
 

Figure 18. Aberrant cristae morphogenesis in the absence of prohibitins. 

(A) Defective mitochondrial ultrastructure in Phb2-/- cells. Representative transmission electron 
micrographs of mitochondria in the following cell lines are shown: (a) Phb2fl/fl , (b) Phb2fl/+ +Cre, (c) 
Phb2fl/fl::Phb2 +Cre, (d-g) Phb2fl/fl +Cre. Scale bar 500 nm. 
(B) Quantification of cristae morphology in Phb2fl/fl, Phb2fl/fl::Phb2, and Phb2fl/fl MEFs transduced 
with Cre-recombinase when indicated. ~50% of cells with disorganized cristae morphology contain 
vesicular cristae structures. ~100 sections of individual cells were scored per experiment. 
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To obtain high-resolution images of the three-dimensional organization of 

mitochondria, we analysed serial ultrathin sections of Phb2fl/fl and Phb2-/- cells by 

transmission electron microscopy (Figure 19A, B). Three-dimensional models generated from 

these images revealed the presence of regular lamellar cristae in Phb2fl/fl cells (Figure 19A). In 

contrast, morphologically distinct vesicular structures were observed to accumulate within 

mitochondria of PHB2-deficient cells (Figure 19B). Taken together, the ultrastructural 

analysis indicates that prohibitins are required for the formation of lamellar mitochondrial 

cristae. 

 

 
 

Figure 19. Vesicular-shaped cristae in prohibitin-deficient mitochondria. 

Three dimensional reconstructions from 25 serial TEM sections (40 - 70 nm thickness) of Phb2fl/fl cells 
(A) transduced with Cre-recombinase (B). Scale bar 500 nm. 
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3.4 Prohibitins control OPA1 cleavage in mammalian 

mitochondria 

3.4.1 Impaired OPA1 processing in prohibitin-deficient MEFs 

 
The dynamin-like GTPase OPA1 is required for both the maintenance of normal 

cristae in the inner membrane and cristae remodelling during mitochondria-mediated 

apoptosis (Frezza et al., 2006; Griparic et al., 2004; Olichon et al., 2003). It is therefore 

conceivable that deletion of Phb2 affects OPA1 function. Expression of eight OPA1 splice 

variants and proteolytic processing leads to the formation of at least five different isoforms of 

OPA1, two long forms designated L1 and L2, which can be proteolytically converted to three 

short forms, designated S3-S5 (Duvezin-Caubet et al., 2007; Griparic et al., 2007; Ishihara et 

al., 2006; Olichon et al., 2007; Song et al., 2007). Immunoblotting of Phb2-/- and Phb2-/-

::Phb2 cells with OPA1-specific antibodies revealed drastic alterations in the pattern of OPA1 

isoforms accumulating in the absence of PHB2 (Figure 20). While the long forms L1 and L2 

and the short form S4 were absent or hardly detectable, S3 and, more pronounced, S5 

accumulated in cells lacking PHB2 (Figure 20). These alterations were reversed in Phb2-/- 

cells complemented by PHB2 (Figure 20). 

 

 

 
 

Figure 20. Selective loss of long OPA1 isoforms in prohibitin-deficient MEFs. 

Immunoblot analysis of Phb2fl/fl and Phb2fl/fl::Phb2 cells transduced with Cre-recombinase. Cell 
lysates (50 µg total protein) were analysed by SDS-PAGE and immunoblotting using OPA1-, PHB1-, 
PHB2- and, for control, β-actin-specific antibodies. 
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3.4.2 Maintenance of respiratory activities in PHB2-deficient 
mitochondria 

 
Mitochondrial dysfunction and the dissipation of the membrane potential across the 

inner membrane can induce OPA1 processing and mitochondrial fragmentation (Baricault et 

al., 2007; Duvezin-Caubet et al., 2006; Guillery et al., 2007; Ishihara et al., 2006) and may 

cause the accumulation of S-OPA1 in the absence of PHB2.  

To determine whether prohibitin deficiency causes defects in mitochondrial oxidative 

phosphorylation (OXPHOS), a comprehensive analysis of the function and assembly of the 

respiratory chain was performed. Prohibitin-deficient and, as control, heterozygous Phb2+/- 

cells were generated by Cre-mediated deletion of Phb2 in Phb2fl/fl and in Phb2fl/+ MEFs, 

respectively (Figure 21A). First, the mitochondrial membrane potential was assessed in 

PHB2-deficient and control cells by JC-1 staining and fluorescence-activated cell sorting 

(Figure 21B). JC-1 is a cationic dye that indicates mitochondrial polarization by shifting its 

fluorescence emission from green (~525 nm) to red (~590 nm) due the potential-dependent 

formation of red fluorescent J-aggregates (Reers et al., 1995). Comparable intensities of red 

fluorescence were detected in both Cre-transduced Phb2fl/fl and control MEFs. Dissipation of 

the electrochemical potential with the proton ionophore carbonyl cyanide m-

chlorophenylhydrazone (CCCP) was used for control. This result indicated that the membrane 

potential was maintained in PHB2-deficient cells (Figure 21B).  

To investigate the oxidative phosphorylation system on a functional level, cellular 

oxygen consumption and enzymatic activities of respiratory chain complexes in the inner 

membrane were determined in cells lacking prohibitins. Neither respiration driven by various 

substrates nor OXPHOS and TCA cycle enzyme activities were grossly affected in Phb2-/- 

cells (Figure 21C, D) which is consistent with the maintenance of a mitochondrial membrane 

potential. Thus, the accelerated processing of OPA1 in PHB2-deficient cells is not caused by 

an impaired membrane potential or respiratory activity. 
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Figure 21. Maintenance of mitochondrial membrane potential and respiratory activities in 
prohibitin-deficient cells. 

(A) Monitoring Phb2 deletion in vitro by immunoblot and PCR analysis. MEFs used for oxygraphic 
and spectrophotometric analysis of respiratory activities were analysed by immunoblotting (upper 
panel) and PCR (lower panel). β-actin was used as a loading control.  
(B) Maintenance of mitochondrial membrane potential in PHB2-deficient MEFs. Cell lines indicated 
were stained with the fluorescent dye JC-1 and analysed by flow cytometry at 590 nm. Unstained cells 
and cells after dissipation of the membrane potential with CCCP were used as controls. 
(C) Oxygen consumption in permeabilized control (n=5; white bars) and Phb2-/- MEFs (n=3; black 
bars) after Cre-mediated inactivation of Phb2 under conditions of substrate-driven respiration. Error 
bars represent ± standard deviations. 
(D) Relative activities of respiratory chain and TCA cycle enzymes in control (n=5, white bars) and 
Phb2-/- MEFs (n=4, black bars) after Cre-mediated inactivation of Phb2. CII, succinate quinone 
dichlorophenol indophenol reductase; CII+CIII, succinate cytochrome c reductase; CIII, 
decylubiquinol cytochrome c reductase; CIV, cytochrome c oxidase; CS, citrate synthase; IDH, 
isocitrate dehydrogenase. Error bars represent ± standard deviation. 
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An enhanced OPA1 processing was previously associated with a decrease in 

mitochondrial ATP levels (Baricault et al., 2007). To directly address whether accelerated 

OPA1 processing in prohibitin-deficient MEFs was caused by ATP depletion, the cellular 

ATP content of Cre-transduced Phb2fl/fl cells was examined. Comparable levels of cellular 

ATP were detected in Phb2-/- compared to control cells (Figure 22). These results support the 

findings of a functional respiratory chain and suggest that accelerated OPA1 processing is not 

caused by a decreased amount of cellular ATP. However, the content of mitochondrial ATP 

could not be assessed using this method.   

 
 

 
 

Figure 22. Maintenance of cellular ATP levels in prohibitin-deficient cells. 

ATP content of PHB2-deficient and control MEFs. Cells were Cre-transduced when indicated and 
total ATP was determined using a bioluminescent ATP assay. Data represent mean ± standard 
deviation of three independent experiments. 
 
 

To extend the analysis on the mitochondrial OXPHOS, the steady-state level of 

proteins involved in oxidative phosphorylation and the assembly status of respiratory chain 

components were examined. These experiments were performed to additionally investigate a 

proposed function of prohibitins in the assembly of the respiratory chain (Nijtmans et al., 

2000). Mitochondria isolated from Cre-transduced Phb2fl/fl and control cells were analysed by 

SDS-PAGE and immunoblotting using antibodies against subunits of OXPHOS complexes I, 

II, III and V (Figure 23A). The steady-state level of neither respiratory chain subunits nor the 

matrix proteins HSP60 and Aconitase were affected in the absence of PHB2. Additionally, 

TIM23 and VDAC immunoblotting was performed to control the steady-state level of 

functionally unrelated proteins in the mitochondrial inner and outer membrane, respectively 

(Figure 23A).  
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To assess the assembly status of OXPHOS complexes, mitochondria isolated from 

Cre-transduced Phb2fl/fl and control cells were solubilized either in Triton X-100 or digitonin  

and subjected to blue-native gel electrophoresis (BN-PAGE) (Figure 23B,C) (Reisinger and 

Eichacker, 2006; Schägger, 2001). Coomassie-staining revealed an equal abundance of 

complexes I, III, IV and V in control and Phb2-/- mitochondria (Figure 23B). Moreover, the 

assembly of respiratory chain supercomplexes was not affected in mitochondria lacking 

prohibitins (Figure 23B). Taken together, the results indicate that prohibitins are not involved 

in function and assembly of OXPHOS complexes in mitochondria. 

 

 
 
 
Figure 23. Correct assembly of respiratory chain complexes in prohibitin-deficient 
mitochondria. 

(A) Steady-state levels of respiratory chain complex subunits are unaffected in the absence of 
prohibitins. Immunoblot analyses of mitochondria isolated from prohibitin-deficient MEFs. 
Mitochondria were isolated from Phb2fl/fl and Phb2fl/fl::Phb2 cell lines, which were subjected to Cre-
transduction when indicated. Extracts (50 µg mitochondrial protein) were analysed by immunoblotting 
using the indicated antibodies. 
(B) Presence of native respiratory chain complexes in prohibitin-deficient mitochondria. Blue-native 
gel analyses of mitochondria isolated from prohibitin-deficient and control MEFs. Mitochondria were 
solubilised in Triton X-100 and subjected to BN-PAGE (100 µg mitochondrial protein). Gels were 
stained with Coomassie Brilliant Blue. Thyroglobulin (669 kDa), apoferritin (443 kDa), ADH (240 
kDa) and BSA (66 kDa) were used for calibration. 
(C) Presence of native respiratory chain supercomplexes in prohibitin-deficient mitochondria. Blue-
native gel analyses of mitochondria isolated from prohibitin-deficient and control MEFs. Mitochondria 
were solubilised in digitonin and subjected to BN-PAGE (100 µg mitochondrial protein). Gels were 
stained with Commassie Brilliant Blue. Calibration was used as in (B). 
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3.4.3 Expression of a long OPA1 isoform restores mitochondrial 
morphology in prohibitin-deficient MEFs 

 
The selective loss of L-OPA1 in PHB2-deficient cells may explain both the 

accumulation of fragmented mitochondria and the disturbed cristae morphogenesis. To 

functionally complement for the loss of L-OPA1, a FLAG-tagged isoform of OPA1 that 

cannot be cleaved due to a deletion of amino acid residues flanking the processing site (L-

OPA1∆) (Ishihara et al., 2006) was transiently expressed in Phb2fl/fl cells. In parallel, 

expression of a FLAG-tagged hybrid protein composed of the short form of OPA1 (amino 

acids 230-997) fused to the mitochondrial targeting sequence of AIF (amino acids 1-95) (S-

OPA1) was facilitated in Phb2fl/fl cells (Figure 24A). Phb2 was deleted by Cre-transduction 

and the expression of the OPA1 variants was monitored by immunoblot analysis (Figure 

24B). A long isoform of OPA1 was detected in cells upon transfection of L-OPA1∆ which 

was absent in mock- or empty vector-transfected PHB2-deficient control cells (Figure 24B).  

 

 
 

Figure 24. Transient expression of L- and S-OPA1 variants in prohibitin-deficient MEFs. 

(A) Schematic representation of OPA1 isoforms used for transient expression in MEFs. The domain 
structure of a long OPA1 isoform lacking the putative m-AAA protease cleavage site (L-OPA1∆, upper 
panel) and a short OPA1 isoform (S-OPA1, lower panel) are depicted. L-OPA1∆ is based  on rat splice 
variant 1, the S-OPA1 isoform contains amino acids 230-997 of rat splice variant 7 fused to amino 
acids 1-95 of rat AIF (Ishihara et al., 2006). The amino acid positions are indicated. The arrow 
indicates the putative m-AAA protease cleavage site. Both variants are FLAG-tagged. MTS, 
mitochondrial targeting sequence; TM, transmembrane domain; CC, coiled-coil domain; GTPase, 
GTPase domain; Middle, middle domain; GED, GTPase effector domain. 
(B) Immunoblot analysis of Phb2fl/fl MEFs transfected with plasmids and transduced with Cre-
recombinase as indicated. Endogenous OPA1 isoforms and transfected FLAG-tagged OPA1 variants 
were detected with OPA1- and FLAG-specific antibodies, respectively. The red arrow indicates the 
presence of the L-OPA1∆ in PHB2-depleted MEFs after transfection. β-actin was used as a loading 
control. 
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After co-expression of mitochondria-targeted red fluorescent protein with L- and S-

OPA1 in Phb2-/- cells, the morphology of mitochondria was assessed by fluorescence 

microscopy. While ~90% of PHB2-deficient cells contained fragmented mitochondria, 

expression of L-OPA1∆ restored tubular mitochondria in ~50% of the cells (Figure 25A, B). 

Expression of S-OPA1, on the other hand, did not significantly affect the morphology of 

mitochondria (Figure 25A, B). These results suggest that the loss of L-OPA1 causes 

mitochondrial morphogenesis defects in the absence of prohibitins.  

 
 

 
 
 
Figure 25. Expression of L-OPA1∆ restores mitochondrial morphology in Phb2-/- cells. 

(A) Restoration of tubular mitochondria in prohibitin-deficient MEFs upon expression of L-OPA1∆. 
Phb2fl/fl cells complemented with PHB2, when indicated, were transfected with mito-DsRed and the 
indicated plasmids, treated with Cre-recombinase and analysed after 72 hrs by fluorescence 
microscopy. Scale bar 10 µm. 
(B) Quantification of mitochondrial morphology in prohibitin-deficient MEFs transfected with mito-
DsRed and OPA1 variants. Cells containing tubular (black bars) or fragmented mitochondria (white 
bars) were classified. >200 cells were scored in three independent experiments. ** ρ<0.01. Error bars 
indicate ± standard deviations. 
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3.4.4 L-OPA1∆ expression restores cristae morphogenesis in Phb2-/- cells 

 

To examine whether the absence of long OPA1 isoforms causes the aberrant cristae 

morphogenesis of PHB2-deficient mitochondria, the ultrastructure of mitochondria was 

examined by electron microscopy of Phb2-/- cells which expressed PHB2, S-OPA1, or L-

OPA1∆. Expression of PHB2 restored normal cristae morphology in >90% of Phb2-/- cells 

(Figure 26A, B). Strikingly, mitochondrial cristae were also maintained in ~55% of Phb2-/- 

cells expressing L-OPA1∆ (Figure 26A, B). In contrast, aberrant mitochondria lacking cristae 

and containing vesiculated inner membrane structures accumulated in Phb2-/- MEFs 

regardless of the presence of S-OPA1 in these cells (Figure 26A, B). These findings suggest 

that L-OPA1∆ is sufficient to maintain tubular mitochondria and normal cristae in the absence 

of PHB2. It should be noted that expression of L-OPA1∆ appears to substitute for the loss of 

both L1- and L2-isoforms indicating functional redundancy. Taken together, the aberrant 

cristae morphogenesis in PHB2-deficient mitochondria is solely caused by the absence of 

long OPA1 isoforms. 

 

 
 
Figure 26. Restoration of cristae morphogenesis upon expression of L-OPA1∆ in Phb2-/- cells. 

(A) Restoration of cristae morphology in Phb2-/- cells upon expression of L-OPA1∆. MEFs were 
transfected with the indicated plasmids and mitochondrial morphology was assessed by transmission 
electron microscopy. Scale bar 500 nm. 
(B) Quantification of deficiencies in cristae morphology in Phb2-/- cells upon expression of S- and L-
OPA1∆. ~100 sections of individual cells were scored per experiment. *** ρ<0.001. Error bars 
indicate standard deviations. 
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3.4.5 Partial restoration of cell proliferation of Phb2-/- cells upon 
expression of L-OPA1∆ 

 

The complementation analysis identifies the control of OPA1 cleavage as the central 

function of prohibitins within mitochondria. As cell proliferation depends on mitochondria-

targeted PHB2, it is conceivable that the proliferation defect of PHB2-deficient cells is a 

direct consequence of the impaired processing of OPA1 within mitochondria as well. To 

assess a complementary role of L-OPA1 in the absence of prohibitins, 3H-thymidine DNA 

labelling experiments in Phb2-/- cells transiently expressing S-OPA1 and L-OPA1∆ were 

performed (Figure 27). While the presence of S-OPA1 did not improve proliferation of 

Phb2−/− cells, we observed a partial but statistically significant restoration of cell proliferation 

upon expression of L-OPA1∆ (Figure 27). These results indicate that the absence of L-OPA1 

and defects in mitochondrial morphology deteriorate the proliferation of PHB2-deficient cells. 

 

 
 

Figure 27. Expression of L-OPA1∆ promotes cell proliferation of Phb2-/- cells. 

Cell proliferation of prohibitin-deficient MEFs was monitored after transfection of S- and L-OPA1∆ by 
determining the incorporation of 3H-thymidine into DNA. Data represent mean ± standard deviation of 
four independent experiments. * ρ<0.05; ** ρ< 0.01. 
 

 

In conclusion, these results restrict the function of prohibitins to mitochondria and 

identify the processing of the dynamin-like GTPase OPA1 as the central cellular process 

controlled by prohibitins. Thus, impaired OPA1 processing is conducive to the cellular 

defects observed in the absence of prohibitins.  
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4 Discussion 
 

The remarkable evolutionary conservation and abundant expression of prohibitin genes 

throughout development as well as under physiological conditions in the adult organism are 

strong arguments for the essentiality of their gene function. Over the last two decades, a 

tremendous amount of research has focussed on these genes and established a role for 

prohibitins in a large number of cellular and developmental processes. It is therefore 

surprising that, despite the extensive scientific analyses conducted in a variety of organisms, 

the exact molecular role of prohibitins remains unresolved.  

In this study, conditional gene targeting of the murine Phb2 gene was employed to 

define cellular activities of mammalian prohibitins in mouse embryonic fibroblasts (MEFs), 

revealing novel roles for mammalian prohibitins in the processing of the dynamin-like 

GTPase OPA1 in the mitochondrial inner membrane (Merkwirth et al., 2008). PHB2 ensures 

cell proliferation, acts anti-apoptotic, and maintains normal cristae morphology. As PHB1 and 

PHB2 are functionally interdependent, cellular defects observed in Phb2-/- cells can be 

attributed to the loss of the assembled prohibitin complex. Complementation assays restrict its 

function to mitochondria and identify the processing of the dynamin-like GTPase OPA1 in the 

inner membrane as the central cellular process controlled by prohibitins. 

 

4.1 Mitochondria-localized prohibitins are indispensable for cell 

proliferation 

 

Cellular functions of PHB2 were examined in mouse embryonic fibroblasts isolated 

from conditional Phb2fl/fl embryos transduced with a cell-permeable, recombinant Cre 

recombinase (Peitz et al., 2002). The efficiency of this approach is reflected in the selective 

loss of both Phb2 transcript and immunodetectable PHB2 protein, demonstrating specificity 

of the Phb2 loss-of-function. In contrast to gene knockdown approaches based on RNA 

interference (RNAi), this methods involves irreversible recombination of genomic DNA 

(Sauer and Henderson, 1988). Moreover, non-specificity and off-target effects observed in 

RNAi experiments can be excluded (Svoboda, 2007). Furthermore, the conditional cell 

culture system allowed functional complementation analyses by the selective, Cre-mediated 

expression of Phb2 transgenes concomitant with a Cre-mediated ablation of endogenous 
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Phb2. Strikingly, functional interdependence of prohibitin subunits has been demonstrated 

with this system suggesting that the complex composed of assembled PHB1 and PHB2 

subunits functions as the physiologically active unit. This finding is consistent with previous 

observations in yeast (Berger and Yaffe, 1998) and mammalian cells (Coates et al., 2001; 

Kasashima et al., 2006) and allows the conclusion that cellular defects observed in PHB2-

deficient MEFs can be attributed to the loss of the assembled prohibitin complex.  

Intriguingly, our studies demonstrate that the prohibitin complex is essential for 

cellular proliferation which is in contrast to previous reports claiming an anti-proliferative 

function (McClung et al., 1989; Nuell et al., 1991). The proposed function of PHB1 in the 

inhibition of cell cycle progression was initially based on Phb1 mRNA injection experiments. 

However, this effect was later attributed to its 3´UTR (Jupe et al., 1996; Manjeshwar et al., 

2003). On the other hand, interactions of PHB1 with Rb, E2F and p53 were identified in 

overexpression studies (Fusaro et al., 2003; Wang et al., 2002a; Wang et al., 1999a). These 

findings lead to a proposed tumour suppressor function and supported a role for prohibitins in 

cell cycle control and transcriptional regulation. Interestingly, however, prohibitin-deficient 

MEFs generated in this study neither reveal a specific block in cell cycle progression, nor an 

impaired phosphorylation of Rb and p53 proteins. These observations indicate that the 

impaired cell proliferation of prohibitin-deficient MEFs occurs independently of Rb- or p53-

mediated cell cycle regulation. Thus, a proposed tumour-suppressor function of PHB1 appears 

unlikely considering the presented results.  

Due to reported interactions with essential cell cycle regulators, a nuclear localization 

of prohibitins has been proposed. Nevertheless, the complementation experiments used in this 

study did not reveal evidence for functional nuclear-localized PHB2. Restoration of cell 

proliferation in prohibitin-deficient MEFs, which express PHB2 variants carrying mutations 

in a putative nuclear localization signal (NLS), as well as in a nuclear receptor box (NRB) 

occurred to a similar extent as in the wild type variant. Thus, a function of PHB2 in the 

nucleus seems unlikely. Rather, our results restrict the function of prohibitins to mitochondria. 

Stable expression of mitochondrial targeting mutants in prohibitin-deficient MEFs reveal a 

striking correlation between mitochondrial targeting and the maintenance of cell proliferation. 

Importantly, the proliferation of Phb2-/- cells is only restored upon expression of 

mitochondrially targeted PHB2, assigning a crucial role for cell proliferation to mitochondria-

localized prohibitins. Remarkably, the expression of L-OPA1 did not only restore 

mitochondrial morphogenesis in Phb2-/- cells and their resistance towards apoptosis, but also 
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promoted the proliferation of prohibitin-deficient MEFs. These findings directly link growth 

deficiencies of Phb2-/- cells to defects in mitochondrial morphogenesis. 

This raises the intriguing question: how do mitochondria affect the proliferative 

capacity of a cell? It is well established that functional mitochondria are required for all cell 

processes due to common energetic requirements (Saraste, 1999). Growth and cell cycle 

progression depend on intracellular energy supplies and calcium signalling (Duchen, 2000). In 

this context, mitochondria are the central organelles of both processes since they provide ATP 

through oxidative phosphorylation and regulate calcium influx via membrane-potential 

dependent calcium buffering (Gilabert and Parekh, 2000; Hoth et al., 1997). Mitochondrial 

signalling cascades have therefore been implicated in the control of cell proliferation (Rustin, 

2002). Indeed, a recent report considered that mitochondrial dysfunction caused by mutations 

in the Krebs cycle enzyme fumarate hydratase could lead to aberrant cell proliferation 

(Tomlinson et al., 2002). Additional findings put emphasis on mitochondria as a relevant 

signalling platform for cell-cycle progression. Mainly, conditions of low energy caused by an 

impaired oxidative phosphorylation (OXPHOS) have been associated with defective cell 

cycle progression (Mandal et al., 2005). Mechanistically, activation of the AMPK pathway 

triggered by ATP depletion has been implicated in the inhibition of cell proliferation. In this 

scenario, activated AMPK promotes phosphorylation of p53 which subsequently leads to the 

loss of cyclin E and cell-cycle arrest at the G1 to S phase transition (Jones et al., 2005). These 

data defined a novel low-energy cell-cycle checkpoint that monitors the metabolic activity of 

mitochondria before committing to another round of cell division. However, in the absence of 

prohibitins cellular ATP levels and respiration were not grossly affected. Thus, the relevant 

trigger for AMPK activation is not given in prohibitin-deficient MEFs indicating that 

mitochondria control cell proliferation independent of their function in cellular energy 

metabolism. Rather, the presented data suggest a novel mode of proliferation controlled by the 

modulation of mitochondrial morphogenesis which is underscored by the partial restoration of 

cell proliferation by OPA1 expression in Phb2-/- cells. Nevertheless, it is tempting to assume 

that control of cell proliferation by organelle morphogenesis depends on specific signalling 

pathways involving mitochondria-to-nucleus communication (Figure 28). In this context, 

reactive oxygen species (ROS) and calcium ions have been implicated in the modulation of 

cellular signalling routes (Balaban et al., 2005; Clapham, 2007). Thus, the experimental 

identification of signalling mediators controlling this path of communication is a great 

importance. A very recent report is potentially relevant for OPA1-mediated mitochondrial 

morphogenesis and ROS signalling in vivo. Notably, an accumulation of ROS has been 
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observed in D. melanogaster harbouring a tissue-specific disruption of OPA1 in the eye. 

Interestingly, antioxidant treatment as well as overexpression of superoxide dismutase 

reversed ROS accumulation, suggesting a role for ROS in OPA1-deficiency and in the 

pathogenesis of optic atrophy (Yarosh et al., 2008).  Further studies are required to provide 

more conclusive insights into this mechanism.  

 

4.2 Prohibitins are required for mitochondrial cristae 

morphogenesis 

 

Cristae are the main region of respiratory chain activity in the inner membrane of 

mitochondria (Gilkerson et al., 2003; Vogel et al., 2006). Disturbances of mitochondrial 

cristae morphology have been described for a number of inner membrane proteins involved in 

oxidative phosphorylation. Lack of non-essential subunits within the ATP synthase in yeast 

leads to the loss of cristae concomitant with the appearance of ring structures of the inner 

membrane within mitochondria (Arselin et al., 2004; Bornhovd et al., 2006; Goyon et al., 

2008; Paumard et al., 2002). Similarly, loss of the inner membrane-anchored protein mitofilin 

leads to concentric sheets of inner membrane ring structures (John et al., 2005). Consistent 

with the localization of respiratory chain complexes to cristae, it is not surprising that 

aberrations in cristae morphology are accompanied by alterations in metabolism. The 

molecular details governing the contribution of the mentioned proteins to the inner membrane 

architecture are unknown, but these findings illustrate the fact that cristae do not form 

spontaneously and are created by active, regulated processes.  

As demonstrated in this study, prohibitins are central to the regulation of 

mitochondrial cristae formation by affecting OPA1 (Figure 28). The fragmented mitochondria 

harbouring highly disorganized and swollen cristae in prohibitin-deficient cells strikingly 

resemble mitochondria that were observed upon downregulation of OPA1 (Griparic et al., 

2004; Olichon et al., 2003). In fact, RNAi-mediated depletion of OPA1 in mammalian cells 

causes mitochondrial fragmentation and ultrastructural changes of mitochondrial cristae 

(Griparic et al., 2004; Olichon et al., 2003). The yeast orthologue of OPA1, Mgm1p, has been 

shown to mediate fusion of the inner membrane suggesting that this activity might be 

conserved for OPA1 (Meeusen et al., 2006). Although direct evidence for a specific inner 

membrane fusion activity of OPA1 is missing, several indications support this idea. The 

overexpression of OPA1 promotes mitochondrial fusion which depends genetically on the 
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outer membrane mitofusin-1 (MFN1) suggesting a coupling of inner and outer membrane 

fusion (Cipolat et al., 2004). In contrast, other reports indicated that outer and inner 

membrane fusion might be separate events (Malka et al., 2005; Meeusen and Nunnari, 2005). 

Recent evidence for a role of OPA1 in mitochondrial fusion was obtained through the 

dissection of specific OPA1 isoforms by complementation assays in OPA1-deficient cells 

(Song et al., 2007). Both, long (L) and short (S) isoforms of OPA1 are required for 

mitochondrial fusion in this model system which is consistent with previous observations. 

Long and short isoforms of Mgm1p are generated by proteolytic processing and both required 

for fusion activity (Herlan et al., 2003; Sesaki et al., 2003). Experiments in prohibitin-

deficient mitochondria ascribe cristae morphogenesis defects to the selective loss of L-OPA1 

isoforms and are therefore consistent with recent findings demonstrating the requirement of 

both L- and S-OPA1 for mitochondrial fusion (Song et al., 2007).  

Considering the extensive morphogenesis defect of mitochondrial cristae observed in 

prohibitin-deficient mitochondria, the maintenance of respiratory activity and mitochondrial 

membrane potential is quite astonishing. In contrast to Opa1-/- cells which lack all OPA1 

isoforms and exhibit compromised respiration, only individual OPA1 isoforms are absent in 

prohibitin-deficient cells. One could envision that the accumulation of S-OPA1 isoforms in 

the absence of prohibitins might protect the ultrastructurally altered mitochondria from 

respiratory dysfunction by a yet unknown mechanism. Alternatively, the maintenance of 

oxidative phosphorylation in prohibitin-deficient mitochondria could be due to compensatory 

effects of enhanced mitochondrial metabolism or increased expression of nuclear-encoded 

mitochondrial proteins. However, experimental support is currently scarce and requires more 

in vitro and in vivo experiments.  

 

4.3 Prohibitins control OPA1 cleavage in the mitochondrial inner 

membrane 

 

OPA1 cleavage correlates with the energy status of mitochondria and is induced upon 

apoptosis (Duvezin-Caubet et al., 2006; Baricoult et al. 2007). However, deletion of Phb2 did 

not affect the mitochondrial membrane potential or respiratory activity, nor do PHB2-

deficient cells undergo apoptosis in the absence of stimuli, indicating that OPA1 cleavage is 

under direct control by prohibitins. As deficiencies of Phb2-/- cells can be rescued by L-

OPA1, a role for prohibitins in the biogenesis or folding of OPA1 appears unlikely. Rather, 
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the loss of L-OPA1 and accumulation of S-OPA1 isoforms in Phb2-/- cells indicates that L-

OPA1 isoforms are destabilized and processing is facilitated in the absence of PHB2. This is 

reminiscent of findings in yeast where deletion of prohibitin genes results in an accelerated 

proteolysis of non-assembled inner membrane proteins by the m-AAA protease (Steglich et 

al., 1999). Large assemblies of prohibitins and m-AAA proteases are present in the 

mitochondrial inner membrane (Steglich et al., 1999). Moreover, reconstitution experiments 

in yeast revealed that various mammalian m-AAA protease isoenzymes are able to cleave 

OPA1 (Duvezin-Caubet et al., 2007). Notably, several peptidases appear to regulate OPA1 

cleavage at different sites (Cipolat et al., 2006; Duvezin-Caubet et al., 2007; Griparic et al., 

2007; Ishihara et al., 2006; Song et al., 2007). In contrast to other OPA1 isoforms, S4 appears 

to be generated by the i-AAA protease Yme1L (Griparic et al., 2007; Song et al., 2007). It 

accumulates at decreased levels absent in Phb2-/- cells suggesting that prohibitins regulate the 

cleavage of OPA1 by various peptidases.  

 

4.4 Anti-apoptotic function of prohibitins 

 

Depletion of prohibitins in MEFs resulted in impaired cell proliferation without 

causing spontaneous cell death. A participation of prohibitins in programmed cell death has 

previously been investigated in several studies. An anti-apoptotic activity of PHB1 has been 

demonstrated upon growth factor withdrawal in mammalian cells (Vander Heiden et al., 

2002). In addition, the overexpression of PHB1 was shown to protect against camptothecin-

induced apoptosis (Fusaro et al., 2002). In contrast to the presented results in this study, 

however, the cell death-inhibitory function of PHB1 was assigned to a putative interaction 

with p53 (Fusaro et al., 2003). More recently, it was shown that HeLa cells undergo 

spontaneous, caspase-dependent apoptosis upon downregulation of PHB2, an effect that was 

attributed to the loss of the anti-apoptotic mitochondrial protein Hax1 (Kasashima et al., 

2006). Strikingly, the investigation of prohibitin-deficient cells in this study did not provide 

any evidence for spontaneous apoptosis. Moreover, the anti-apoptotic protein Hax1 

accumulated at similar levels in wild type and PHB2-deficient cells suggesting a different 

pathway of apoptosis induction in prohibitin-deficient cells.  

The results presented in this study assigned the increased susceptibility of Phb2-/- cells 

towards apoptosis to the absence of long OPA1 isoforms. To facilitate cytochrome c release 

from the intermembrane space, mitochondrial cristae are restructured at early stages of 
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apoptosis (Scorrano et al., 2002), a process controlled by OPA1 (Frezza et al., 2006). A 

current model suggests that a complex containing L- and S-OPA1 controls mitochondrial 

cristae junctions and prevents the redistribution of cytochrome c from the cristal lumen to the 

peripheral intermembrane space (Frezza et al., 2006) (Figure 28). Accordingly, the loss of L-

OPA1 in Phb2-/- cells might facilitate cytochrome c release from intracristal compartments. 

However, alternative models are also conceivable. A recent tomographic analysis of 

mitochondrial transformation during apoptosis suggests that cristae remodelling is not 

required for efficient cytochrome c release (Sun et al., 2007). Energized mitochondria 

containing vesicular intramitochondrial structures have been observed in HeLa cells shortly 

after induction of apoptosis and cytochrome c release (Sun et al., 2007). This is highly 

reminiscent of Phb2-/- cells which are fully energized and not apoptotic but more susceptible 

towards apoptotic stimuli. It therefore appears that preexisting ultrastructural mitochondrial 

alterations in Phb2-/- cells cause the facilitated progression of the apoptotic programme after 

stimulation, which is required to trigger cytochrome c release. Consistently, expression of L-

OPA1 substitutes for the absence of prohibitins and protects prohibitin-deficient cells against 

apoptosis, demonstrating that PHB2 exerts its anti-apoptotic function via OPA1. It remains to 

be established, however, how an altered cristae morphology due to loss of L-OPA1 triggers an 

increased sensitivity of mitochondria to outer membrane permeabilization. Notably, we did 

not observe an anti-apoptotic effect of S-OPA1 that has been described previously (Cipolat et 

al., 2006). This apparent discrepancy could be explained by the absence of L-OPA1 in Phb2-/- 

cells used in this study, while S-OPA1 was overexpressed in wild type fibroblasts in previous 

experiments (Cipolat et al., 2006). It therefore appears likely that S-OPA1 exerts its anti-

apoptotic effect only in complex with L-OPA1.  

 

4.5 Prohibitins are essential for embryonic development 

 

Manipulation of the mouse genome using homologous recombination in embryonic 

stem cells has been recognised as an extraordinary valuable technique for the analysis of 

mammalian gene function (Mak, 2007). However, conventional gene targeting results in the 

loss of gene function in all cells during pre- and postnatal development. Importantly, previous 

studies demonstrated that a conventional inactivation of prohibitin genes in multicellular 

organisms like mouse and C. elegans results in embryonic lethality indicating essential 

functions during organismal development (Artal-Sanz et al., 2003; Park et al., 2005). To 
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circumvent embryonic lethality in mice, the Phb2 gene was inactivated using a conditional 

gene targeting strategy (Rajewsky et al., 1996). For this purpose, loxP sites flanking exons 3 

and 4 were introduced into the endogenous Phb2 gene. Viability of homozygous conditional 

Phb2fl/fl mice demonstrates that the inserted loxP sites do not interfere with regular splicing 

and expression of the Phb2 transcript. Genetic deletion of Phb2 in vivo was achieved by 

crossing conditional Phb2fl/fl mice to Deleter-Cre mice ubiquitously expressing the Cre-

recombinase in the mouse including the germline (Schwenk et al., 1995). Intercrossings of 

heterozygous Phb2+/- mice revealed the absence of viable homozygous knockout animals. 

Moreover, neither Phb2-deficient embryos were identified before embryonic day (E) 8.5 of 

development indicating embryonic lethality at an early stage of development. These findings 

are consistent with previous observations using conventional gene targeting strategies for 

either PHB2 (Park et al., 2005) or PHB1 (He et al., 2008). To determine a specific role of 

PHB2 in tissue development, conditional Phb2fl/fl mice were crossed to Nestin-Cre mice 

expressing the Cre-recombinase specifically in the brain (Tronche et al., 1999). Similarly, 

viable mutant offsprings were not detected suggesting an essential role for PHB2 in the 

developing central nervous system. It should be noted, that the early timepoint of lethality in 

PHB2-deficient embryos prevented a careful investigation of the underlying reason.  

Similar to the role of PHB2 in early embryonic development, mutational loss of 

mitochondrial morphology components has been described to cause embryonic lethal 

phenotypes. Mice lacking either MFN1 or MFN2, large GTPases in the mitochondrial outer 

membrane essential for fusion, die in midgestation around E10.5 (Chen et al., 2003). The 

independent generation of two OPA1-deficient mouse models revealed a need for OPA1 in 

embryonic development, although differences in the timepoint of lethality have been reported 

(Alavi et al., 2007; Davies et al., 2007). Notably, genetic disruption of the Drosophila 

homologue of OPA1 also causes embryonic lethality (Yarosh et al., 2008). These genetic data 

suggest an essential requirement of mitochondrial fusion for embryonic development. In 

accordance with this, impaired mitochondrial dynamics might be a causative factor for the 

embryonic lethality of Phb2-deficient mice. However, other reasons are not mutually 

exclusive. Defective cell proliferation and loss of anti-apoptotic activity in the absence of 

PHB2, as evidenced in prohibitin-deficient MEFs, might account for early embryonic death in 

vivo. Consistent with this, cell proliferation is essential for embryogenesis demonstrated by a 

large number of studies using genetically modified mice (Ciemerych and Sicinski, 2005). 

Furthermore, a requirement in early embryogenesis has been demonstrated for several cell 

death regulators (Ranger et al., 2001). Mice deficient in cytochrome c (Li et al., 2000), 
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apoptosis-inducing factor (AIF) (Joza et al., 2001) or the Bcl2 family member MCL1 

(Rinkenberger et al., 2000) exhibit similar stages of lethality during embryonic development. 

Although the physiological role of prohibitins in cell proliferation and apoptosis in vivo has 

not yet been adequately addressed yet, it is tempting to speculate that the combined 

impairment of these essential processes might contribute to the early developmental defects in 

PHB2-deficient mice. Clearly, further experiments are required to dissect the role of 

prohibitins in cell proliferation, apoptotic resistance and mitochondrial dynamics in vivo.  

A supercomplex of prohibitins and the m-AAA protease has been demonstrated in 

both yeast (Steglich et al., 1999) and mammalian mitochondria (M. Metodiev & T. Langer, 

unpublished observation) suggesting functional conservation of this interaction. Notably, the 

phenotype of prohibitin-deficient mice is in marked contrast to mice lacking paraplegin or 

AFG3L2, subunits of the mammalian m-AAA protease. Whereas paraplegin-deficient mice 

are viable and survive to adulthood, mutagenesis of Afg3l2 results in postnatal lethality at day 

P16 (Ferreirinha et al., 2004; Maltecca et al., 2008). These findings indicate different 

physiological requirements for prohibitins and m-AAA proteases in vivo. Moreover, 

prohibitins appear to play more decisive roles in mammalian mitochondria besides a putative 

regulation of the m-AAA protease. 

 

4.6 Prohibitins may serve as scaffolds in the organization of the 

mitochondrial inner membrane 

 
Maintenance of inner membrane topology is an essential requirement for the energy 

status and the dynamic nature of mitochondria. The large surface area of the protein-rich inner 

membrane requires an intimate organization into numerous cristae (Mannella, 2006). Recent 

evidence suggest that mitochondrial inner membrane remodelling contributes to various 

processes, ranging from respiration to calcium homeostasis and cytochrome c release during 

apoptosis (Heath-Engel and Shore, 2006). Considering the versatility and importance of these 

processes for cellular survival, a tight regulation of mitochondrial membrane dynamics is 

highly conceivable. 

Prohibitins regulate mitochondrial dynamics and apoptotic resistance by controlling 

OPA1 stability. How do prohibitins affect the processing of OPA1 within mitochondria? 
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It is proposed here that prohibitins serve as scaffolds in the inner membrane and define 

the spatial organization of components, which control the stability and processing of OPA1 

and coordinate membrane fusion. Ring-like prohibitin complexes may sequester OPA1 and 

recruit m-AAA proteases to membrane domains involved in the fusion process. In a 

hypothetical scenario, the prohibitin complex might provide the structural basis for the 

temporal assembly of a “mitochondrial fusion complex” allowing the interaction of OPA1 in 

the inner membrane with mitofusins in the outer membrane. Interestingly, both genetic and 

biochemical interactions of the fusion components OPA1 and MFN1 support this idea 

(Cipolat et al., 2004; Guillery et al., 2007). Considering the sequence similarity of prohibitins 

to lipid raft associated proteins (Langhorst et al., 2005; Morrow and Parton, 2005; 

Tavernarakis et al., 1999), prohibitins may also promote the lateral segregation of membrane 

lipids resulting in the formation of lipid microdomains. Surrounding membrane lipids are 

likely to affect the vectorial membrane dislocation of OPA1 or the proteolytic activity of m-

AAA proteases. Moreover, increasing evidence points to an important role of lipids and lipid 

microdomains in various cellular fusion events (Altmann and Westermann, 2005; Boukh-

Viner et al., 2005; Choi et al., 2006; Fratti et al., 2004) and apoptotic processes (Choi et al., 

2007). Interestingly, recent observations suggest an impact of the mitochondria-specific 

phospholipid cardiolipin on membrane organization and dynamics (Kim et al., 2004). 

Cardiolipin interacts with several mitochondrial proteins including cytochrome c and provides 

its association with the inner membrane (Tuominen et al., 2002). Moreover, cardiolipin has 

been implicated in the higher order organization of respiratory chain complexes (Robinson, 

1993; Zhang et al., 2002) and is required for tBid recruitment during mitochondrial apoptosis 

(Gonzalvez et al., 2005; Lutter et al., 2000). Strikingly, a defective mitochondrial cristae 

morphogenesis has been observed in cardiolipin-deficient human cells suggesting that inner 

membrane remodelling might be a cardiolipin-mediated process (Choi et al., 2007). 

Interestingly, cardiolipin-deficient cells display an increased sensitivity towards apoptotic 

stimuli but retain respiratory chain activity, a striking similarity to prohibitin-deficient cells 

(Choi et al., 2007; Merkwirth et al., 2008). Furthermore, in vitro studies demonstrated that 

cardiolipin and other lipids contribute to the insertion and oligomerization of the outer 

membrane proteins Bid and Bax (Kuwana et al., 2002; Lucken-Ardjomande et al., 2008). 

These and other observations suggest an active redistribution of cardiolipin from the inner 

membrane to specific locations in the outer membrane of mitochondria. In this context, 

prohibitins could serve as local platforms for the accumulation of “lipid hot spots” in the inner 

membrane that contribute to the active distribution of lipids.  
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The presented work shed new light on the regulation of inner membrane topology and 

provides a technical framework for further experiments to unravel the molecular basis of 

mitochondrial membrane morphogenesis. The identification of prohibitins as regulators of 

mitochondrial cristae morphology now paves the way for a detailed understanding of the role 

of spatial membrane organization for the morphogenesis and function of mitochondria. 

 

 
 

Figure 28. Model for the proposed functions of prohibitins within mitochondria. 

The mitochondrial prohibitin complex determines cristae morphology and protects against apoptosis 
by the stabilization of L-OPA1. According to a current model, complexes of L- and S-OPA1 control 
mitochondrial cristae junctions and prevent the redistribution of cytochrome c from the cristal lumen 
to the peripheral intermembrane space (Frezza et al., 2006). Prohibitins might also regulate 
mitochondrial fusion by protecting L-OPA1 isoforms which, together with mitofusins, are required for 
mitochondrial membrane fusion. Cristae morphogenesis might also control cell proliferation by a yet 
unknown signalling pathway (red arrow). PHB = prohibitin; MFNs = mitofusins; Cyt c = Cytochrome 
c; OM = outer membrane; IMS = intermembrane space; IM = inner membrane; M = matrix.    
 

4.7 Perspectives 

 
The presented data support previous findings on the essential role of prohibitins for 

mouse development. Furthermore, the study provides a mechanistic explanation for the 

function of prohibitins in mitochondrial morphogenesis, apoptotic resistance and cell 

proliferation. Future experiments will focus on putative signalling events which are involved 

in the control of cell proliferation by organelle morphogenesis. Another interesting aspect to 
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investigate is the maintenance of respiratory activities in prohibitin-deficient MEFs. More 

detailed work will address a possible role of S-OPA1 isoforms in the regulation of oxidative 

phosphorylation. 

Additional studies will concentrate on the analysis of prohibitin deficiency in vivo. With 

the help of tissue-specific PHB2 mutant mice, functional consequences of a PHB2 depletion 

on cell proliferation and apoptosis will be investigated in vivo. Inducible inactivation of 

prohibitins in adult mice will further support this experimental strategy. Several essential 

components controlling mitochondrial fusion are mutated in neurodegenerative disorders. 

With regard to the genetic link between prohibitins and OPA1 uncovered in this study, it is 

required to determine the activity of prohibitins in neurons. The neuron-specific ablation of 

prohibitins will be useful to elucidate a role of prohibitins in the pathogenesis of 

neurodegeneration 
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5 Summary 
 

Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of 

membrane proteins implicated in a large variety of cellular processes. Large assemblies of 

PHB1 and PHB2 subunits are localized in the inner membrane of mitochondria, but various 

roles in other cellular compartments have also been proposed for both proteins. However, the 

function of prohibitins on the molecular level remains unclear.  

To investigate the physiological role of mammalian prohibitins, a mouse strain for the 

conditional, Cre/loxP-mediated inactivation of Phb2 was generated. Ubiquitous and brain-

restricted deletion of Phb2 in vivo caused embryonic lethality indicating an essential role of 

Phb2 in mammalian development. To determine cellular functions of PHB2, a cell culture 

system was established allowing to define functional consequences of a Phb2 deletion. Mouse 

embryonic fibroblasts (MEFs) isolated from Phb2fl/fl embryos were transduced with cell-

permeable Cre-recombinase to inactivate Phb2. Functional interdependence of prohibitin 

subunits was observed in MEFs after PHB2 depletion, illustrating the physiological relevance 

of the assembled prohibitin complex. The absence of prohibitins in MEFs leads to impaired 

cell proliferation and increased sensitivity towards apoptotic stimuli. This is accompanied by 

fragmentation of the mitochondrial network and defective morphogenesis of mitochondrial 

cristae. Complementation experiments attribute these defects to the loss of mitochondria-

localized prohibitins indicating an essential requirement of the mitochondrial prohibitin 

complex in these processes. Loss of prohibitins affects the proteolytic cleavage of OPA1, a 

dynamin-like GTPase in the inner membrane essential for mitochondrial fusion, leading to the 

selective loss of long isoforms of OPA1. The specific expression of a long OPA1 isoform in 

prohibitin-deficient MEFs restores cristae morphogenesis, apoptotic resistance and partially 

cell proliferation, identifying impaired OPA1 processing as the primary cause for the cellular 

defects in the absence of prohibitins.  

These results identify a novel roles for mitochondrial prohibitins in cell proliferation 

and cristae formation by the proteolytic modulation of OPA1, suggesting a molecular 

interplay between cell growth and organelle morphogenesis. 
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6 Zusammenfassung 
 

Prohibitine bilden eine hochkonservierte und ubiquitär exprimierte Familie von 

Membranproteinen, die mit einer Vielzahl zellulärer Prozesse in Verbindung gebracht 

wurden. PHB1- und PHB2-Untereinheiten bilden große Komplexe in der inneren Membran 

von Mitochondrien, allerdings wurden zusätzliche Funktionen für beide Proteine auch in 

anderen Zellkompartimenten vorgeschlagen. Die zugrunde liegenden Funktionsmechanismen 

beider Proteine auf molekularer Ebene sind jedoch unbekannt. Die Erstellung eines 

konditionalen Mausstammes für die Cre/loxP-vermittelte Inaktivierung des Phb2-Gens 

ermöglicht die Untersuchung der physiologischer Funktionen von Prohibitinen in Säugern. 

Die Inaktivierung des Phb2-Gens führte, sowohl im gesamten Organismus als auch 

gewebespezifisch im Gehirn der Maus, zu embryonaler Lethalität. Diese Befunde deuten auf 

eine entscheidende Rolle für Phb2 in der embryonalen Entwicklung der Maus hin. Um 

zelluläre Funktionen von PHB2 zu bestimmen, wurde ein Zellkultursystem entwickelt, 

welches die Identifizierung funktioneller Konsequenzen einer PHB2-Defizienz ermöglicht. 

Embryonale Mausfibroblasten wurden aus Phb2fl/fl Embryonen isoliert und mit zellgängiger 

Cre-Rekombinase transduziert, um das Phb2-Gens zu inaktivieren. Der simultane Verlust von 

PHB1 und PHB2 in Cre-behandelten Phb2fl/fl-Zellen legte eine funktionelle Abhängigkeit 

beider Untereinheiten nahe, welche auf die entscheidende physiologische Bedeutung des 

Prohibitin-Komplexes hindeutet. Die Abwesenheit des Prohibitin-Komplexes in 

Mausfibroblasten führte zur Beeinträchtigung des Zellwachstums und zu einer erhöhten 

Anfälligkeit gegenüber Apoptose-auslösenden Stimuli. Des Weiteren wurde eine 

Fragmentierung des mitochondrialen Netzwerkes sowie die fehlerhafte Ausbildung von 

Cristaestrukturen beobachtet. Komplementationsstudien führten diese Effekte auf die 

mitochondriale Lokalisierung von Prohibitinen zurück. Prohibitin-Defizienz beeinträchtigte 

zusätzlich die Prozessierung von OPA1, einer dynamin-verwandten Fusions-GTPase in der 

mitochondrialen Innenmembran, welches zum Verlust von langen Isoformen führte. Die 

gezielte Expression einer langen OPA1-Isoform in PHB2-defizienten Zellen konnte sowohl 

die mitochondriale Innenmembranstruktur und Apoptoseresistenz als auch den 

Zellwachstumsdefekt wiederherstellen. Die Ergebnisse dieser Untersuchungen identifizierten 

eine neue Funktion von Prohibitinen in der Regulation von Zellwachstum und 

Cristaeformation und lassen daher eine molekulare Verbindung zwischen Zellproliferation 

and mitochondrialer Formgebung schliessen. 
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Abstract: 

 

Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of 

membrane proteins with poorly described functions. Large assemblies of PHB1 and PHB2 

subunits are localized in the inner membrane of mitochondria, but various roles in other 

cellular compartments have also been proposed for both proteins. Here, we used conditional 

gene targeting of murine Phb2 to define cellular activities of prohibitins. Our experiments 

restrict the function of prohibitins to mitochondria and identify the processing of the dynamin-

like GTPase OPA1, an essential component of the mitochondrial fusion machinery, as the 

central cellular process controlled by prohibitins. Deletion of Phb2 leads to the selective loss 

of long isoforms of OPA1. This results in an aberrant cristae morphogenesis and an impaired 

cellular proliferation and resistance towards apoptosis. Expression of a long OPA1 isoform in 

PHB2-deficient cells suppresses these defects identifying impaired OPA1 processing as the 

primary cellular defect in the absence of prohibitins. Our results therefore assign an essential 

function for the formation of mitochondrial cristae to prohibitins and suggest a coupling of 

cell proliferation to mitochondrial morphogenesis. 
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