Pearson, Ann, Hurley, Sarah J., Walter, Sunita R. Shah, Kusch, Stephanie ORCID: 0000-0002-2708-4975, Lichtin, Samantha and Zhang, Yi Ge ORCID: 0000-0001-7331-1246 (2016). Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments. Geochim. Cosmochim. Acta, 181. S. 18 - 36. OXFORD: PERGAMON-ELSEVIER SCIENCE LTD. ISSN 1872-9533

Full text not available from this repository.

Abstract

Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The delta C-13 values of GDGTs (delta C-13(GDGT)) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of delta C-13(DIC). To date, isotope measurements primarily are made on the C-40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present delta C-13 values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of delta C-13 values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1 sigma precision and accuracy of +/- 0.25%. Using this approach, we confirm that GDGTs, generally around -19%, are isotopically heavy compared to other marine lipids. However, measured delta C-13(GDGT) values are inconsistent with predicted values based on the C-13 content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its delta C-13 values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed delta C-13(GDGT) values. The results suggest caution when interpreting the total inputs of GDGTs to sedimentary records. Biogenic or open-slope sediments, rather than clastic basinal or shallow shelf sediments, are preferred locations for generating minimally-biased GDGT proxy records. (C) 2016 Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Pearson, AnnUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hurley, Sarah J.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Walter, Sunita R. ShahUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kusch, StephanieUNSPECIFIEDorcid.org/0000-0002-2708-4975UNSPECIFIED
Lichtin, SamanthaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zhang, Yi GeUNSPECIFIEDorcid.org/0000-0001-7331-1246UNSPECIFIED
URN: urn:nbn:de:hbz:38-275696
DOI: 10.1016/j.gca.2016.02.034
Journal or Publication Title: Geochim. Cosmochim. Acta
Volume: 181
Page Range: S. 18 - 36
Date: 2016
Publisher: PERGAMON-ELSEVIER SCIENCE LTD
Place of Publication: OXFORD
ISSN: 1872-9533
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
AMMONIA-OXIDIZING ARCHAEON; ISOPRENOID TETRAETHER LIPIDS; COMPOUND-SPECIFIC DELTA-C-14; TERRESTRIAL ORGANIC-MATTER; BASIN SURFACE SEDIMENT; OXYGEN MINIMUM ZONE; ST-LAWRENCE ESTUARY; WATER-COLUMN; PLANKTONIC ARCHAEA; NITROSOSPHAERA-VIENNENSISMultiple languages
Geochemistry & GeophysicsMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/27569

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item