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Abstract

This thesis in the field of condensed matter theory is concerned with various correlated exotic
states in different materials. The topic selection is three-fold, covering aspects of graphene,
heavy fermion compounds and high-temperature superconductors.

In Part I, a symmetrically biased graphene bilayer is considered, which is discussed to host
an exciton condensate. It is shown that in the continuum limit an oddly-quantized vortex
in this condensate binds exactly one zero mode per valley index of the bilayer. Intervalley
mixing occurring in the full lattice model slightly splits the zero modes in energy. This result
is supported by an exact numerical diagonalization of the lattice Hamiltonian for a finite-size
system. Such a vortex binds an irrational fraction of “axial” charge and obeys fractional
exchange statistics.

Part II is concerned with heavy fermion materials and discusses the consequences of a
momentum-dependent hybridization between the conduction band and the localized f elec-
trons, especially in the case where the hybridization function has nodes in momentum space.
Such a situation is motivated by experiments, and is in contrast to the commonly studied local
hybridization. In the low-temperature regime a highly anisotropic Fermi liquid evolves, for
which thermodynamical and optical properties are studied. We find that thermodynamics is
dominated by the heavy quasiparticles present in the antinodal direction in momentum space,
where the hybridization is strong, while transport is dominated by the behavior of light, nodal
quasiparticles. Based on a mean-field approximation, we furthermore study the phase compe-
tition between Kondo screening and ordering phenomena induced by intermoment exchange.
According to our findings, it is greatly influenced by the interplay of symmetries of the order
parameters in momentum space. The results are applicable to CeColns and other related
heavy fermion compounds.

Part IIT discusses the recently observed quantum oscillations in the underdoped regime of
cuprates and advertises a new mechanism that requires only finite segments of a Fermi surface
to exist. Such a situation is indicated by angle resolved photoemission spectroscopy (ARPES)
studies, which exhibit so-called Fermi arcs in the normal state of cuprates. We consider a
BCS-like model in the vortex state with a pairing gap producing such Fermi arcs. By exact
diagonalization of the gauge transformed real-space Hamiltonian it is shown that the density
of states at the Fermi level exhibits an oscillatory behavior.



Zusammenfassung

Die vorliegende Arbeit auf dem Gebiet der Theorie der kondensierten Materie beschéftigt sich
mit diversen korrelierten exotischen Zusténden in verschiedenen Festkorpern. Die Theme-
nauswahl deckt Aspekte dreier Materialientypen ab: Graphene, Schwerfermionenverbindungen
und Hochtemperatursupraleiter.

In Teil I wird Zweischicht-Graphene mit symmetrisch angelegter Gatespannung untersucht,
das als Host fiir ein Exzitonenkondensat diskutiert wird. Es wird gezeigt, dass ein unger-
ade quantisierter Vortex in diesem Kondensat im Kontinuumlimes genau eine Zero Mode pro
Valley-Index bindet. Die Wechselwirkung zwischen den Valleys, die im vollen Gittermodell
existiert, filhrt zu einer leichten Energieaufspaltung der Zero Modes. Dieses Ergebnis wird
gestiitzt durch eine exakte numerische Diagonalisierung des Gitter-Hamilton-Operators fiir
ein endlich grofles System. Ein solcher Vortex bindet einen irrationalen Anteil an “axialer”
Ladung und unterliegt fraktionaler Statistik.

Teil II beschaftigt sich mit Schwerfermionenverbindungen und diskutiert die Konsequenzen
einer impulsabhéngigen Hybridisierung zwischen Leitungsband und lokalisierten f-Elektronen,
insbesondere wenn die Hybridisierungsfunktion Knotenlinien im Impulsraum aufweist. Dieser
Ansatz ist motiviert durch Experimente, und hebt sich ab gegeniiber der gemeinhin unter-
suchten lokalen Hybridisierung. Im Tieftemperaturbereich bildet sich eine stark anisotrope
Fermifliissigkeit aus, fiir die thermodynamische und optische Eigenschaften untersucht wer-
den. Unsere Ergebnisse zeigen, dass die Thermodynamik von schweren Quasiteilchen do-
miniert wird, die sich in den Regionen im Impulsraum ausbilden, wo die Hybridisierung stark
ist. Transporteigenschaften hingegen werden hauptséchlich durch das Verhalten der leichten
Quasiteilchen bestimmt, die in der Nahe der Knotenlinien der Hybridisierung leben. Basierend
auf einer Mean-Field-N&herung wird die Phasenkonkurrenz zwischen Kondoabschirmung und
Ordnungsphénomenen, die sich aus der Wechselwirkung zwischen den lokalen Momenten ent-
wickeln, untersucht. Geméafl der Ergebnisse ist diese stark beeinflusst durch das Zusammenspiel
der Symmetrien der Ordnungsparameter im Impulsraum. Die gewonnenen Erkenntnisse sind
anwendbar auf CeColns und artverwandte Schwerfermionenverbindungen.

In Teil ITI werden die erst vor kurzem beobachteten Quantenoszillationen im unterdotierten
Bereich von Kupraten diskutiert. Es wird ein neuer Mechanismus zur Erzeugung dieser Oszilla-
tionen beworben, der nur endliche Abschnitte einer Fermiflache bendtigt. Solch eine Situation
wird von den Ergebnissen winkelaufgeloster Photoemissionsexperimente (ARPES) gestiitzt,
die sogenannte Fermi Arcs im normalleitenden Zustand der Kuprate zeigen. Es wird ein
BCS-artiges Modell im Vortexzustand untersucht mit einer Paarungsfunktion, die Fermi Arcs
produziert. Mit exakter Diagonalisierung des eichtransformierten Hamilton-Operators im Ort-
sraum wird gezeigt, dass ein solcher Ansatz zu einem oszillatorischem Verhalten der Zustands-
dichte am Ferminiveau fiihrt.
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1 General introduction

“Traditional” condensed matter theory is basically built on two cornerstones, which were
already developed in the 1930s and 1950s: Landau’s Fermi liquid theory and Landau’s theory of
symmetry breaking. Fermi liquid (FL) theory introduces a one-to-one correspondence between
the underlying particles, consisting of interacting fermions, and the emerging single-particle
fermionic excitations.

FL theory may survive even in the presence of strong correlations - a surprising result re-
garding the fact that this concept can be understood as a perturbation theory around the
non-interacting ground state. In certain regimes heavy fermion compounds are described by
this theory exceedingly well exhibiting heavy quasiparticle excitations. However, the occur-
rence of unconventional superconductivity, magnetism and non-Fermi liquid behavior in these
materials go way beyond the FL approach (reviews are e.g. given by Stewart, 2001; Coleman,
2007). Cuprates refuse the description in terms of a FL picture for large parts of the accessible
phase diagram, but rather show highly unusual physics like a Mott insulating state, high-
temperature superconductivity or a pseudogap state, for which a consistent picture could not
be established yet (reviews: Damascelli et al., 2003; Lee et al., 2006). The fractional quantum
Hall effect, on the other hand, reveals new types of quantum liquids with quasiparticles that
have fractional quantum numbers and possibly obey different statistics than the underlying
fermions (review: Stormer et al., 1999).

The mentioned discoveries posed new challenges in the field of condensed matter. While
all these phenomena arise from the existence of strong correlations between the constituent
particles (review: Fulde et al., 2006), the recently isolated material graphene shows that ex-
otic physics can also occur in weakly correlated systems (for a short overview see Geim and
Novoselov, 2007).

This thesis is concerned with various correlated exotic states in different materials. By
exotic, we denote two different types of properties: (i) a FL with unconventional properties,
like a symmetry breaking in the style of unconventional superconductivity, or (ii) systems that
cannot be described from a FL point of view at all, e.g., because of topological excitations
leading to fractionalized quantum numbers or strong correlations like in the underdoped phase
of cuprates. To be more specific, we are dealing with the following topics:

Part I: We present a bilayer graphene system with a symmetrically applied gate voltage and
study the effect of a vortex in the exciton condensate, which is produced by an interlayer
Coulomb interaction.

Part II: We consider a heavy fermion system with a non-local hybridization, study the prop-
erties of the highly anisotropic, unconventional Fermi liquid that evolves at low temperatures,
as well as the phase competition between Kondo screening and ordering phenomena like su-
perconductivity or magnetic ordering.

Part III: We make an attempt to reconcile the recently observed quantum oscillations in the
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underdoped regime in cuprates with the Fermi arcs observed by angle-resolved photoemis-
sion spectroscopy (ARPES) in the normal-conducting pseudogap phase by investigating the
properties of a BCS-like Hamiltonian with a pairing gap producing Fermi arcs.
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2 Introduction

Topological states of matter with emergent anyons as quasiparticle excitations are not only
characterized by exotic physics, but also have potential applications in the field of topological
quantum computation. This explains the quest for easily controllable structures exhibiting
such kind of properties.

This part of the thesis is devoted to the topological properties of a physical system that is
likely to be realized in a laboratory in the near future: It consists of two layers of graphene
separated by a dielectric barrier and subjected to an external electric field. As recently argued,
such bilayer systems possibly develop an exciton condensate up to room temperature. We study
the possibility of zero modes and fractional excitations arising from vortices in the excitonic
order parameter.

In this introductory chapter, we discuss the three underlying aspects of this work. Section
2.1 introduces the material graphene, which due to its lattice structure shows a specific band
structure leading to highly unusual physical properties. Section 2.2 reviews the efforts in sta-
bilizing an excitonic condensate, which was mostly pursued in the framework of semiconductor
physics. Section 2.3 is concerned with general aspects of fractionalization, anyonic statistics
and the importance of zero modes. An outline in Sec. 2.4 concludes this chapter.

2.1 Graphene

The first fabrication of graphene (Novoselov et al., 2004), an atomic monolayer of carbon
atoms arranged in a honeycomb lattice structure, set off an avalanche of experimental and
theoretical investigations. It is a strictly two-dimensional material and was therefore expected
to be thermodynamically unstable (Fradkin, 1986). However, five years ago Novoselov et al.
(2004) were able to isolate graphene on an insulating SiO2 substrate.

Graphene can be regarded as the building material of all graphitic forms in various dimen-
sions, see Fig. 2.1(a). Three-dimensional (3D) graphite, which can be found in every pencil, is
nothing but stacked graphene with interlayer van-der-Waals interactions. Nanotubes (1D) can
be thought of as rolled up graphene, while fullerenes (0D) consists of wrapped up graphene
with introduced pentagons leading to the required curvature.

Graphene is a zero-gap semiconductor and shows very high crystal quality (Novoselov et al.,
2004, 2005; Zhang et al., 2005) with a high mobility of the charge carriers in a large tempera-
ture range (Berger et al., 2006). Its band structure is rather special: the low-energy excitations
are massless chiral Dirac fermions equivalent to quantum electrodynamics (QED) in 2+1 di-
mensions (Castro Neto et al., 2006; Katsnelson et al., 2006; Katsnelson and Novoselov, 2007).
It is therefore a unique example of ‘relativistic’ condensed matter physics.

Reviews on graphene are e.g. given by Geim and Novoselov (2007) focusing on experimental
aspects or Castro Neto et al. (2009) illuminating the theoretical background. In the framework



2 Introduction

Figure 2.1: (a) Different structures consisting of carbon atoms: graphene (top left), graphite (top right),
carbon nanotubes (bottom left) and fullerens (bottom right). (Figure from Castro Neto et al., 2009)
(b) A honeycomb lattice consists of two triangular sublattices A and B. The gray shaded zone is the
unit cell containing an A and B lattice site.

of this introduction, we will familiarize the reader with the calculation of the band structure
based on a tight-binding approximation, show the existence of Dirac fermions, and touch upon
transport properties.

Band structure

The honeycomb lattice present in graphene is depicted in Fig. 2.1(b). It is a hexagonal structure
consisting of two interpenetrating triangular sublattices A and B. Considering a position in
the A-sublattice, the vectors to the nearest neighbors are

(5308 3(0),

where a is the distance between two neighboring A and B sites.

The robustness and flexibility of this material is due to the strong covalent ¢ bonds con-
necting the carbon atoms, originating from the sp? hybridization of the atomic orbitals. The
remaining p, orbitals are perpendicular to the plane and have weak overlap leading to the for-
mation of a half-filled = band. The physics of the 7 electrons can be modeled by a tight-binding
Hamiltonian with nearest-neighbor hopping

H=—tY (clyep;+he) (2.2)
(i)

where (ij) restricts the summation to nearest neighbored sites and c¢,; is the annihilation
operator for an electron at site R; on sublattice . Already 60 years prior to isolation of a
graphene sheet, its band structure was calculated by Wallace (1947) based on a tight-binding
approximation.

10



2.1 Graphene

Figure 2.2: (a) The gray region is the first Brillouin zone. The corners of the hexagon are nodal points
of the dispersion tx. K_ (K. ) is equivalent to the other two corners marked by filled (unfilled) circles.
(b) The two bands Ey (k) = £|tx| show linear dispersion at the nodal points.

With the Fourier transform cq; = 4/ % Dk ekRic . where AV is the total number of sites in
the system and A/2 is the number of unit cells, this Hamiltonian can be rewritten as

N 0tk € Ak
= Yo (1 0)( ) 2.3

Cpk

with the dispersion t, = —t Zu ekr4 Since the model is spin-degenerate, spin indices were
omitted here and their effect will be included in the discussion later on.
The Brillouin zone (BZ) is spanned by the two vectors

bl—%(‘/g), b2—2”<‘/§>, (2.4)

T 3a \ 1 T 3a \ -1

and can be shifted into a hexagonal shape, see Fig. 2.2(a). The two evolving bands, the
eigenvalues of H, Ey (k) = %|tx|, vanish at the corners of the hexagonal BZ and vary linearly
with momentum in the vicinity of these gapless points, see Fig. 2.2(b). Two inequivalent nodal

. . . . . _ 41
points can be distinguished: K4 = (irfa’ 0).

A linear expansion of the bands around K4+ with k = K4 + p leads to

E4(p) =~ vr|p| + O((p/K)?) (2.5)

with K = |K4| and the Fermi velocity vp = 3ta/2, which takes up the role of the speed of
light ¢ in this QED 2+1 theory. The experimental data indicate that vy ~ 10°m/s, which is
orders of magnitude smaller than c. In contrast to a quadratic dispersion, the Fermi velocity
does not depend on energy, but is constant. The system is degenerate with respect to the
valley (+) and spin indices, and therefore SU(4) symmetric.

The massless low-energy excitations are Dirac particles with distinct chirality, which will be
shown explicitly in the following.

11
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Dirac fermions

In the low-energy limit the Schrodinger equation with Hamiltonian (2.3) becomes a Dirac
equation (Slonczewski and Weiss, 1958; Semenoff, 1984; Haldane, 1988) turning the low-energy
excitations into Dirac fermions. In order to prove this claim the k summation in (2.3) is

substituted by Zp n—» Where n denotes the valley index:

H= Y wlw (T )i o). (26)

*
pn== Kep

with the operators \ili{+ (p) = ( EK++F, c;K++p) and \i’}{, (p) = (CLK7+p, CTBK,JFp)' Lineariz-
ing around the nodal points tk 1p ~ vp(£p, + ipy) leads to

H ~op Z [\@1{7 (p)(_pxasc - pyay)\iJK_ (p) + \@I{Jr (p)(p:co':c + pyay)\iJK+ (p)] ) (27)

where 0, and o, denote the Pauli matrices. With p — —iV this can be written as a real-space
integral,

H ~ivp / dxdy [\i/;r(_ (r)(o - V)Uk_(r)+ \TII{+ (r)(—o - V)¥k, (r)} : (2.8)

where 0 = (0,0,). Expressed in first quantization, the Hamiltonian reveals that the two-
component wave function ¢ (r) of a particle near one of the Dirac point K| obeys the two-
dimensional Dirac equation

—ivp (0 - V) i (r) = EYi(r). (2.9)

For ¢)_(r) a similar relation holds. The wave functions ¢4 (r) are connected by time reversal,
which in this context corresponds to the operation (kg,k,) — (—kz, ky): While the origin is
placed in the center of the hexagonal BZ, Fig. 2.2(a), reciprocal space inversion is accomplished
by flipping the sign of the z-component due the symmetry of the problem.

By writing the Hamiltonian (2.7) in terms of the four-component operator

¥i(p) = <@L+(p),¢f}<_(p)> , (2.10)
it can be shown that it commutes with the 5 matrix, which is given by a product of all other
gamma matrices (e.g. in Weyl representation 75 = —iyyy17273 = 03 ® 1). This translates into
conservation of chirality (Gusynin et al., 2007). The 4-spinors

¢4 = (¥4,0), ¢- = (0,9—), (2.11)

which describe the quasiparticle excitations at K., are eigenvectors of v5 with opposite chi-
rality:

V5P+ = +o4, VsO— = —0—. (2.12)

12



2.1 Graphene

For massless particles chirality coincides with helicity, the projection of the momentum oper-
ator on the direction of the spin. However, in 2D, the concept of helicity, well defined in 3D,
looses its physical meaning. Furthermore, the operator o does not describe the real spin of the
electrons, which is omitted in the Hamiltonian, but rather represents a pseudo-spin produced
by the lattice structure. Nevertheless, a pseudo-helicity h = %a‘—g' can be considered, for
which the wave functions ¢4 are eigenfunctions (Gusynin et al., 2007).

For a broken particle-hole symmetry, e.g. produced by a next-nearest neighbor hopping ¢’
in the tight-binding approach, the (pseudo-)helicity is not conserved any more, and therefore
the particles are not chiral.

The existence of Dirac cones in the spectrum substantially influences the transport properties
of graphene. In the following, we provide a short overview about this topic.

Transport properties

Transport in graphene shows highly unusual properties due to the relativistic spectrum in the
vicinity of the Dirac points and the spin and valley degeneracy in the system. We summarize
what happens under the influence of external electric and/or magnetic fields.

Keeping a single layer of graphene at a gate voltage, the Fermi energy is shifted up or down,
which induces electron and hole charge carriers, respectively. The conductivity depends lin-
early on the applied voltage, as indicated by measurements of the electric field effect (Novoselov
et al., 2005). This allows the conclusion that all induced charge carriers are mobile and not
trapped at holes. The mobility stays constant in a temperature range from 10 to 100 K. At
the charge neutrality point, i.e., in the absence of a gate voltage, graphene exhibits a finite
conductivity, whose origin is still under discussion.

The presence of a magnetic field B perpendicular to the graphene layer introduces a new
length scale in the system, the magnetic length ip = /hc/(eB). Together with the already
existing scale, the Fermi velocity vg, there is only one way to construct an energy scale,
given by vr/lp (Castro Neto et al., 2009). The cyclotron frequency w. = v2vg/lp turns out
to be proportional to /B, whereas it is linear in B in the non-relativistic case. Therefore,
the same magnetic field leads to a higher cyclotron energy, which has e.g. the striking effect
that the quantum Hall effect (Novoselov et al., 2005; Zhang et al., 2005) survives up to room
temperatures (Novoselov et al., 2007)!

The relativistic spectrum, as well as valley and spin degeneracies have strong influence on
the quantization itself. For example, in the case of monolayer graphene, the sequence of Hall
plateaus, 0., = —4e?/h(N +1/2), acquires an overall factor of 4 and is shifted by an additional
1/2 in comparison to the integer quantum Hall effect observed in GaAs. The Landau levels in
monolayer graphene are given by Ey y = +w. /N (Gusynin and Sharapov, 2005; Peres et al.,
2006; Herbut, 2007).

Up to now, the discussion was restricted to monolayer graphene. Upon stacking layers of
graphene, interesting new effects develop. In the framework of this thesis we are especially
interested in the possible evolution of an exciton condensate in bilayer graphene. In the next
section we discuss various approaches for stabilizing an exciton condensate.

13



2 Introduction

2.2 Exciton condensates

Generally speaking, an exciton is a bound state of an electron and a hole, well known from
semiconductor physics. In this type of material the electron usually sits in the conduction
band and the hole corresponds to an unfilled state. The exciton is a charge neutral bosonic
particle, which can be created in a semiconductor by shining light at the sample, and decays
when the electron and the hole recombine and a photon is emitted. A weakly coupled gas
of excitons is expected to form a Bose-Einstein condensate (BEC), similar to Helium-4 or
ultracold alkali atoms in vapors (Leggett, 2001; Ketterle, 2002; Cornell and Wieman, 2002),
where the condensation leads to superfluidity and coherent matter waves, respectively.

The physical systems that are considered as candidates for hosting an exciton condensate
are of layered structure. The motion of the excitons is therefore restricted to two dimensions,
and off-diagonal-long-range order is destroyed by phase fluctuations. Two temperatures can
be distinguished in such a system: the Bose-Einstein condensation temperature Tggc and the
Kosterlitz-Thouless temperature Tkt with Tggc < TkT. For increasing temperature the Bose-
Finstein condensate with a macroscopically occupied ground state turns into a quasicondensate
at Tggrc, where only the low energy states are macroscopically occupied. This quasicondensate
is superfluid and dissipationless, vortices with opposite circulation are bound in pairs. At Tk
vortices become unbound leading to a dissipation in the flow. For 2D and infinite system
size Tggrc is zero and becomes finite for finite system size. Since experimentally a distinction
between a BEC and a quasicondensate is not possible, the relevant scale for experiments is
the Kosterlitz-Thouless temperature, below which superfluidity is present.

Exciton condensate in layered semiconductors

A bulk semiconductor is not very useful when it comes to the observation of an exciton conden-
sate (EC): electrons and holes recombine too fast for achieving the required exciton densities
(O’Hara et al., 1999). For stabilization, so-called coupled quantum wells are used - systems
consisting of layered semiconductor structures: Two semiconductor layers are separated by a
thin insulating barrier layer. In experiments three different approaches are basically pursued:

(i) A bilayer system, where an electron-hole plasma is generated by optical pumping. By
applying an electric field the electron and hole within one exciton are spatially separated
creating a condensate of indirect excitons. Each exciton pair is associated with a dipole
moment. The dipolar repulsion between the pairs as well as the spatial separation decreases the
recombination rate. Signatures of the condensate are detected by photoluminescence (Butov
et al., 2002; Snoke et al., 2002; Lai et al., 2004), however a direct probe of the superfluidity is
missing.

(ii) Undoped electron-hole bilayers with an external gate voltage, which induces electrons
in one layer and holes in the other (Sivan et al., 1992; Kane et al., 1994; Joglekar et al.,
2005). As in system (i) the excitons feel dipolar repulsion, and a dipolar superfluid develops
(Balatsky et al., 2004). At high densities, theoretical investigations (Joglekar et al., 2006) hint
at the evolution of a Wigner supersolid, a Bose-Einstein condensate with broken translational
symmetry.

(iii) A biased electron-electron bilayer quantum Hall systems at vp = 1 (Spielman et al.,
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gate ; +V/2

SiO
(—I% f \——.—/ Figure 2.3: Suggested experimental
Ib ayer 5‘1‘ ap]aene setup for producing an exciton conden-
: b f sate in bilayer graphene. The layers
Si02 are embedded in a dielectric, e.g. SiOs,

and subjected to the electric field pro-
oate . g/2 du.ced by a para.llel—plate capacitor.

(Figure from Min et al., 2008).

2000; Eisenstein and MacDonald, 2004; Eisenstein, 2004; Tutuc et al., 2004; Kellogg et al.,
2004). In this case both of the semiconducting layers serve as a well for electrons. However,
in the quantum Hall regime the system can be mapped onto an electron-hole system with
attractive interaction: An external magnetic field leads to Landau levels with a filling factor v
denoting the fraction between the number of electrons in the system and the number of states
in each Landau level. The system is invariant under particle-hole transformation, which can
be performed in only one of the two layers leading to a hole filling factor of 1 — v. The former
empty sites are now seen as occupied by holes with positive charge and the interaction between
holes and electrons in different layers is attractive. The number of electrons and holes in the
system becomes equal for v = 1/2 for each layer, i.e., a total filling factor vp = 1/2+1/2 = 1.
As above the excitons carry a dipole moment, but unlike in system (ii) this is not expected to
lead to a supersolid state. Such a system seems to be the most promising candidate among
semiconductor heterostructures for exciton condensation.

A first experimental hint for excitonic BEC in an electron-electron quantum Hall bilayer
system was given by measurements of the interlayer tunneling rate (Spielman et al., 2000),
which reveal strong interlayer electron-hole correlations. Striking evidence was given by mea-
surements of the counterflow of electrons and holes by independently electrically connecting
to the layers (Tutuc et al., 2004; Kellogg et al., 2004). The small, but measurable dissipation
in the counterflow channel was argued to arise from unbound vortices produced by disorder
in the sample (Eisenstein and MacDonald, 2004). All experimental evidence was achieved in
a temperature regime well below 1 K.

Exciton condensate in bilayer graphene

Recently, interest arose in exciton condensation in graphene bilayers (Min et al., 2008; Zhang
and Joglekar, 2008). A possible experimental setup is depicted in Fig. 2.3: Two layers of
graphene separated by a dielectric are subjected to a perpendicular electric field that induces
electron charge carriers in one layer and holes in the other. The intervening dielectric sup-
presses inter-layer hopping, which would counteract the evolution of an EC (Dillenschneider
and Han, 2008). The value of the Kosterlitz-Thouless transition temperature is sensitive on
the strength of the Coulomb interaction and its possible screening by the carriers in the layer.
Depending on the importance of screening, Tk was estimated to be in the range of room tem-
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perature (Min et al., 2008; Bistritzer et al., 2008) or a few mK (Kharitonov and Efetov, 2008,
2009). Tkt is expected to be reduced by disorder (Kharitonov and Efetov, 2009): Electrons
and holes do not scatter identically at impurities in the two layers, which leads to a breaking
of the electron-hole pair. As argued by Zhang and Joglekar (2008), no Wigner crystallization
occurs in graphene bilayers despite the dipole moments carried by the excitons.

Differences between such a bilayer graphene and a layered semiconductor structure are
various. Since graphene is a gapless semiconductor, higher carrier densities can be achieved.
The fairly good particle-hole symmetry of the band structure favors the evolution of an EC.

In contrast to the phonon-mediated superconductors, with transition temperatures orders
of magnitudes smaller than room temperature, the Coulomb interaction producing the EC
ranges over the full band width instead of a narrow shell around the Fermi surface of the order
of the Debye energy.

Like a superconductor, an exciton condensate can develop vortices, which are possibly related
to zero energy eigenfunctions, so-called zero modes. Their relation to fractionalization is
pointed out in the next section.

2.3 Fractionalization

Fractionalized quantum numbers and fractional statistics arising from nontrivial topological
configurations are not just interesting by themselves as exotic phenomena. Systems with theses
properties might offer a route to fault-tolerant quantum computation (Kitaev, 2003; Nayak
et al., 2008), because the states are topologically protected from local perturbations.

Up to now only two systems are known that host the required non-Abelian anyonic excita-
tions: the fractional quantum Hall state with filling factor v = 5/2 (Moore and Read, 1991)
and the planar spin-polarized p+ip superconductor (Read and Green, 2000). Since both sys-
tems are not easy to produce and control, it is highly desirable to investigate the occurrence
of quasiparticles with fractional statistics in other systems.

In this section, we first discuss the relation between fractional quantum numbers and frac-
tional statistics, and then present examples of systems with fractional excitations, while point-
ing out the importance of zero modes.

Fractional statistics

Exchanging two equivalent particles in a system leads to an additional phase factor exp(if) in
the global wave function. Twice an exchange of the same two particles corresponds to tracking
one particle around the other, called braiding. In a three-dimensional system such a two-fold
exchange leaves the wave function unchanged due to topology, and all particles fall in one of
the two categories: either they are bosons with an exchange phase 6 = 27 or fermions with
f# = 7. In two dimensions the situation is different: 6 is not restricted to 27 and 7, but can
in principle take any value, which however mostly is a faction of 7, leading to a new particle
species dubbed anyon (Wilczek, 1990).

In order to illustrate the relation between the fractional charge of a quasiparticle and the
associated fractional statistics, we consider the example of the fractional quantum Hall effect
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(FQHE) with filling factor v = 1/3, where the low-energy excitations are Abelian anyons. At
v = 1/3 the lowest Landau level is filled to one third and the ration between electrons and
penetrating flux quantums in the system is 1:3. Upon a Chern-Simons transformation, where
two flux quanta are attached to each electron, the ground state can be regarded as being
equivalent to a fully filled lowest Landau level (v = 1) of composite fermions. Quasi-hole
excitations above this ground state are composite objects carrying one flux quantum and a
charge e/3 (Laughlin, 1983). The exchange statistics § = 2wv¢/¢g, where ¢y = h/e is the flux
quantum and ¢ denotes the flux carried by the quasiparticle, is obtained by calculating the
Berry phase on the basis of the underlying Laughlin wave function (Arovas et al., 1984). This
is in agreement with the interpretation that the exchange of two flux-charge composite objects
with flux ¢ and charge ¢ leads to a topological phase (Wilczek, 1990)

0= 27r£7 . (2.13)
0 €
Such a phase can be regarded as a generalization of the Aharonov-Bohm phase (Aharonov and
Bohm, 1959), where the wave function of an electron acquires a phase 2w¢ /¢y when encircling
a magnetic flux ¢. From relation (2.13) it becomes clear how fractional charge in combination
with flux can be connected to fractional statistics. Please note that the existence of fractional
charge itself is not a sufficient condition for the occurrence of fractional statistics.

Anyons, whose braiding simply manifests itself in a phase change, Eq. (2.13), are Abelian.
In this case the ground of a system consisting of several anyonic quasiparticles is unique.
Therefore, the order of braiding operations does not matter for the overall phase change: the
braid group is commutative. For non-Abelian anyons this is not the case. The ground state is
degenerate, and braiding two particles does not necessarily correspond to only a phase change
in the initial wave function. This property is needed for the concept of topological quantum
computation (Nayak et al., 2008).

In the following we point out the role of zero modes for the occurrence of fractional quantum
numbers.

Zero modes and fractionalization

Given that charge is a good quantum number, a single localized zero energy eigenfunction
in a gapped system with a symmetric spectrum binds a charge of 1/2 (Jackiw and Rebbi,
1976; Su et al., 1979; Hou et al., 2007; Seradjeh et al., 2008b). In some cases this can be
illustrated by simple counting arguments regarding the real-space structure of the system,
e.g. (Seradjeh et al., 2008b). The existence of a zero mode itself is not a necessary condition
for the existence of fractionalization. Mid-gap bound states away from zero energy for instance
can bind fractional charge as well (Chamon et al., 2008).

Systems with fractionalization can be divided into those, where time reversal is broken or
conserved. On the basis of two examples we illuminate the relation between zero modes and
fractionalization. We discuss the planar chiral p-wave superconductor, whose half-quantum
vortices bind fermionic zero modes leading to non-Abelian anyonic excitations, and, as a repre-
sentative of systems with conserved time reversal symmetry, present a graphene-like structure
with a Kekulé dimerization pattern.
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Figure 2.4: Illustration of a Kekulé dis-
tortion on a honeycomb lattics. Atoms
linked by double bonds are closer than
those linked by single bonds. (Figure
from Jackiw, 2007).

A spin-polarized p+ip superconductor exhibits vortices with a flux of h/2e. The physics in
the presence of a vortex can be analyzed in terms of a BCS mean-field theory. The solution
of the Bogoliubov-de Gennes (BdG) equations reveals a bound fermionic mid-gap zero-energy
mode (Read and Green, 2000; Gurarie and Radzihovsky, 2007) localized in the vicinity of
the vortex core. Since the considered system is a superconductor and therefore the degrees
of freedom are in the particle-particle channel, this mode corresponds to a self-conjugated
fermion, termed Majorana fermion, for which the creation operator ' fulfills the relation
7T = 7. In a system with several vortices this leads to a ground state degeneracy (Read and
Green, 2000; Ivanov, 2001) and the vortices behave as anyons with non-Abelian statistics. The
fractional statistics, however, in this example is not accompanied by charge fractionalization,
since charge is not conserved in a superconductor.

Examples of systems exhibiting zero modes and fractionalization, while conserving time
reversal symmetry, are for instance lattice models with a specific dimerization pattern (Hou
et al., 2007; Seradjeh et al., 2008b). They can be regarded as a two-dimensional generalization
of the concept of fractionalization in polyacetylene, a dimerized chain, where a domain wall
in the dimerization pattern binds a mid-gap zero-energy excitation and is associated with
fractionalized charge 1/2 (Jackiw and Rebbi, 1976; Su et al., 1979; Goldstone and Wilczek,
1981). The system considered by Hou et al. (2007) is a graphene-like structure: a honeycomb
lattice with spinless, charged fermions with Kekulé distortion (Fig. 2.4), a dimerization pattern
that generates a mass term for the Dirac electrons. A U(1) vortex in this mass, analogously
to an Abrikosov vortex in a superconducting condensate, is associated with a 27 phase twist
around the vortex core. In the presence of such a vortex the low-energy Dirac equations
are equivalent to the BAG equations for a chiral p-wave superconductor with a half-quantum
vortex (Read and Green, 2000). A vortex binds an unpaired zero mode and a charge of te/2.
In contrast to the p-wave superconductor, the zero mode cannot be expressed as a Majorana
fermion. Therefore, the exchange statistics of these vortices is Abelian (Seradjeh et al., 2008b).

So far, in all considered systems, only vortices with odd vorticity bind zero modes.

2.4 QOutline

The possibility of creating zero modes and fractional excitations in the exciton condensate
evolving in a bilayer graphene system with an applied gate voltage is explored. In the low-
energy limit we show that an oddly-quantized vortex in the excitonic order parameter binds
two zero modes - one per valley index. The inter-valley mixing, which is not captured by the
low-energy theory, leads to a slight splitting of these zero modes. Based on an exact numerical
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2.4 Outline

diagonalization of the full lattice Hamiltonian in real space, we study the charge content and
the exchange statistics of these vortices. Although not associated with a total charge, each
vortex binds an irrational fraction of “axial” charge defined as the charge difference between
the layers and obeys fractional exchange statistics. The results presented in the framework of
this thesis have been published in (Seradjeh et al., 2008a).

Section 3 introduces the Hamiltonian modeling the symmetrically biased bilayer system
and studies its instability towards an excitonic condensate at the mean-field level. Section
4 discusses the approximations arising in the low-energy limit and studies the effect of a
vortex in the excitonic order parameter. Section 5 provides numerical and analytical results
showing the splitting of zero modes due to inter-valley mixing beyond the low-energy regime.
It furthermore shows the association of a vortex with axial charge. Section 6 discusses the
theoretical background and numerical results studying the exchange statistics of the vortices.
A summary of the results and an outlook to possible experimental observations in Sec. 7
concludes this part.
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3 Exciton condensate in bilayer graphene

In this chapter we consider a symmetrically biased bilayer graphene system and investigate its
instability towards an excitonic condensate using a mean-field approximation. We derive the
critical value for the Coulomb repulsion and the dependence of the excitonic order parameter
on the values of the Coulomb repulsion and the gate voltage.

The schematic structure of the regarded system is depicted in Fig. 3.1(a) - each of the
graphene layers is kept on an electric potential +£V. The layers are separated by a dielectric
material at a distance much larger than the lattice spacing within the layers. A finite gate
voltage V' > 0 shifts the spectrum up and down, respectively, in the upper and lower layer. At
half filling this leads to a Fermi surface of particles in one layer, and of holes in the other one.
Therefore, a Coulomb interaction between the layers condenses a finite density of particle-hole
bound states. The exciton condensate (EC) possibly exists even up to room temperature (Min
et al., 2008). Only weak dependence on the actual type of stacking is expected (Zhang and
Joglekar, 2008). Therefore, direct stacking will be assumed.

The considered model containing the essential physics is described by the Hamiltonian H =
Hy + Hy + Hy with the in-layer Hamiltonian

H, = —t Z(Cli@CBjﬂ +h.c.) — (—)O‘VZn,,m, (3.1)
(i) vi

where (ij) denotes the summation over nearest-neighbored sites, o = 1, 2 represents the layer
and v = A, B the sublattice index. ¢, is the fermionic annihilation operator for an electron

sitting at position R; on sublattice v and layer o, and ny; o = clT,i, oCria is the corresponding

@ (b)

| layer 2

Energy

Si0, d

| layer 1
-V

Figure 3.1: (a) Structure of bilayer graphene subjected to a gate voltage V' and separated by a dielectric,
e.g. SiOy, at a distance d > a, where a is the intra-layer lattice spacing. (b) Spectrum for bilayer
graphene close to a nodal point in the non-interacting case with zero gate voltage (green dashed line,
doubly degenerate) and in the presence of an exciton condensate (red solid line) with finite gate voltage
V', an exciton gap m = A_ and a nodal shift of w = vm?2 + V2.
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3 Exciton condensate in bilayer graphene

layer 2
Figure 3.2: Schematic illustration of exci- ®®®
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from different layers.

number operator. The interaction term is given by

Hy=U Z M 1Mi2 - (3.2)

Vi

Since spin indices do not influence the behavior of the EC, just a single spin projection is
considered. Inter-layer hopping is exponentially suppressed by the comparably large inter-layer
distance and the intervening dielectric, and is therefore omitted in the Hamiltonian. Electrons
can hop within each layer to nearest neighbored sites. The assumed interaction is short-ranged
and acting between two particles in different layers and on the same planar site, neglecting
a possible long-ranged tail of the Coulomb interaction, which however is only expected to
enhance the formation of the EC.

A mean-field decoupling in the excitonic order parameter A,; = U <ciij2cm’1>, where v repre-
sents the sublattice index, leads to the mean-field Hamiltonian

1 2
Hyp = Hi + Hy = > (B¢l 1000+ hc.) + = VZ A2 (3.3)

173

A phase with a finite value of A,; describes an exciton condensate illustrated in Fig. 3.2.
Under the assumption that A,; only depends on the sublattice index, there are two mean-field
parameters A4 and Ap in the system, which can be combined to Ay = %(AA + Ap). We
can define the spinor field operator ¢; = (¢pi,1, —CAi 1, CBi 2, CAi,Q)T. The Hamiltonian (3.3) is
compactly written as

1
Hyr = N g ¢Lhk¢k + Eop (3.4)
using N as the number of sites per layer, Eg = (N/U)(|AL|? + |A_|?) and
g p yer, +
hx =0 [’711{6 tic+ y2Im b + Vyoys + [A_[e X7 — iypya] Ay [e™ 475 | (3.5)

tk = —t ZrA cnn. e'kr4 is the non-interacting dispersion relation, where r4 denotes the vectors
pointing from an A site to the nearest neighbored B sites, see Eq. (2.1), and v, = iy ® 0y,
Yo = 01 ® 1 and v5 = —iygy17273 = 03 ® 1 are the Dirac matrices in Weyl representation. The
field Ay = |A4|eiX* was decomposed in a polar representation.

The eigenvalues of hy, Eq. (3.5), are given by +Ey, with

Eir = ([til? + V2 + AL +]A P+

_(_1)7-2 Utk‘z (V2 n ’A_;,_’Q) T ReZ(A_Ai)]l/Q) 1/2 7 (36)
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where 7 = 1, 2 is the band index. For half filling the ground state energy of the system reads

. 2N
Egs == |Birl + By with Eo= (1A +|A_2). (3.7)
kT

The energy gap E, in the system is given by the minimal energetical distance between the
ground state and an excited state. Since |Exa| < |Ex1|, we minimize the energy 0| Exs|/0tx = 0,
which leads to the condition

v? — Re?(A_AY)

2 )

ti]? = (3.8)

v

where the shortcut v? = V2 + |A |> was introduced. Eyo evaluated with this condition leads
to an expression for the energy gap

A 2V2 I A_A* 2\ 1/2
E:(’ [*V= + Im( +)> _ (3.9)

V2 +]AL?

The maximum value of the gap is realized when Re(A_—A% ) = 0, or equivalently [A 4| = |Ap].

For the two parameters A, and A_ two separate gap equations hold with different critical
values U.+. The gap equations are obtained by minimizing the ground state energy %b;cf =
In the limit A4y — 0 the value of the critical interaction U.4+ can be extracted. The explicit
calculation of U.4 presented in the following shows an instability at infinitesimal U towards
an EC with non-zero A_ and zero Aj.

While setting A_ = 0, the gap equation for A

)7 It ]
AN = U§ e 3.10
v|EkT\ (3.10)

leads to the critical value

1 1
o= > T (3.11)

+ k, |tk |<V

In the vicinity of the nodes, we approximate the non-interacting dispersion as |tx| = (3ta/2)|k|,
which implies a density of states linear in energy for V <« t. Within this limit, we can estimate
Uer ~12)V > t.

In an analogous calculation for A_ the gap equation becomes

1
2N:U§ Bl (3.12)

In the limit A_ — 0 with A, = 0, this reduces to

3.13
=N Z o = (=177 (3.13)
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3 Exciton condensate in bilayer graphene

The right-hand side diverges logarithmically in the vicinity of the nodes for 7 = 2. Hence, the
critical value U._ is equal to zero. At infinitesimal U the system is unstable towards an EC
with non-zero A_, but zero Ay. The resulting spectrum of the system +Fj., with

Bier = /(i — (~1)7V)? + A2 (3.14)
is depicted in Fig. 3.1(b).

In a nodal approximation with |tx| ~ (3ta/2)|k| = vr|k| the dependence of |[A_| on U and
V can be derived. Taking the gap equation (3.12) for A_ as a starting point, the summation
over k can be transformed into an integral over the first Brillouin zone with volume Vpz =
872 /(3v/3a?), which will be cut at an ultraviolet momentum cutoff A:

NZ / Vo S /dkk (3.15)

The gap equation transforms into

A

Lon / o 1 (3.16)
) VBZ Jwpk — V)2 4 AP

= LQ I:\/‘A_‘Q—F(AUF—V)Q— VIAZ2+ V24 (3.17)

VBZvF

Avp =V 4+ [JA_]2 + (Avp — V)?
A_]2+ V2~

An expansion of the right-hand side for large Avp > V,|A_| leads to

1 T 2upA
—x—n (A -V —|A_]2+V24+VIn ) 3.18
U VBZ’U% ( F | | ( /’A_’2+V2_V>> ( )

4+ Vin

By further assuming that |[A_| < V this simplifies to

1 T 4qop AV
—~—— | Avp -2V + V1 3.19
7~ g (o= v (). 319
which can be rearranged as
4AvEV VBZU% Avp — 2V VBZU%
= — | = i 3.20
|A_|2 exp ( UV exp % exp UV ( )

Therefore, the dependence of |A_| on the applied gate voltage V' and the inter-layer Coulomb
repulsion U is

2
|A_| ~ 2/vpAV exp ( \67; > , (3.21)
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where vp A has the unit of energy and is of the order t¢.

In this chapter a Hamiltonian was introduced describing the physics of a bilayer graphene
system with intra-layer hopping and inter-layer Coulomb repulsion subjected to an applied
gate voltage. This system is unstable towards an exciton condensate with non-zero A_, i.e., an
infinitesimal U leads to the formation of an EC. An additional next-nearest neighbor hopping
destroying the perfect nesting between the electron and hole Fermi surfaces is likely to render
the critical U finite. In this phase an energy gap develops, whose value is given by A_.
This mean-field parameter depends exponentially on the strength of the Coulomb repulsion.
A phase with A_ # 0 and Ay = 0 was also studied by Min et al. (2008) and Zhang and
Joglekar (2008). The next chapter is concerned with an approximation of the EC phase in the
low-energy limit.
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4 Low-energy theory

In the low-energy limit the physics of the system is dominated by excitations around the
two Dirac points. We formulate a theory in the continuum limit only taking into account
these contributions and discuss the symmetries of the low-energy Hamiltonian (Sec. 4.1). In
the framework of this approximation, we study the effect of a vortex in the excitonic order
parameter (Sec. 4.2): It binds exactly one zero mode per valley index.

4.1 Nodal approximation

In the vicinity of the nodal points Ky = (+47/(3v/3a),0), the approximation tk ip ~
+p, + ipy for the non-interacting dispersion holds, where the Fermi velocity v was set to 1.
In the limit of long wavelengths the mean-field Hamiltonian (3.4) can be linearized around
these nodal points and reduces to two contributions,

Hoodal = / dar (W (0, (0w, (1) + L (0)h_(1)w_(r)), (4.1)

with the spinors ¥4 = (¢p1+, —CA1+, CB2+, cAgi)T. The matrices h4 are related to each other
via

hy =yvsh-v3m = H, (4.2)
with

H =70 (NP2 + 2Py + V075 + [mle” %) . (4.3)
We used the momentum operator p = —iV and the replacement A_ = m = |m|e!X. The mass

m is not necessarily uniform in space. Since hi are connected by a unitary transformation,
Eq. (4.2), the eigenstates of h_ can easily be found by transforming the eigenstates of h4. In
the remainder of this chapter we will focus on the solution of h; and comment at the end how
the doubling of the number of nodes changes the results.

Based on a anticommutation property of the Hamiltonian H, it can be shown that its spectrum
is symmetric around 0. At first, we consider the relation

YoH 2 =H, (4.4)

which can be shown by explicitly plugging in H, Eq. (4.3), and using the properties of the Dirac
matrices {Vu, v} = 21w 14, where 1, is the Minkowski metric ({n,,} = diag(1,-1,—1,-1)
with p,v =0,1,2,3).
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4 Low-energy theory

The antiunitary operator 2 = K~9, where K is the operator for complex conjugation (K'H =
H*K), is its own inverse Q! = Q. By considering Eq. (4.4), we see that Q anticommutes with
H:

OHQ = —H, . (4.5)

Thus, for every eigenstate g of H (H¥p = EVg) an eigenstate QU with the energy —F
exists,

HOQTUE) = —E(QUg), (4.6)

leading to a symmetric spectrum.

In this section, it has been shown how the mean-field Hamiltonian is linearized in the limit
of low energy. General considerations prove the symmetry of the resulting spectrum. The next
section discusses the effect of a vortex in the order parameter m binding a zero mode.

4.2 Zero modes bound by a vortex
In this section we study the effect of a vortex in the EC order parameter
m(r,0) = mo(r)e™? (4.7)

with vorticity n € Z and mo(r) > 0 in the low-energy limit. The radius r and the angle 6
parametrize polar coordinates. It will be shown that such a vortex with odd vorticity n binds
exactly one zero mode per node.

In the formal limit of V' = 0 (with non-zero order parameter m) the Hamiltonian H, Eq. (4.3),
is equivalent to the system discussed in (Hou et al., 2007; Seradjeh et al., 2008b; Jackiw and P4,
2007). In this case, it is shown that an n-fold vortex binds exactly |n| zero modes (Jackiw and
Rossi, 1981). In the regime far from the vortex, the spectrum remains gapped. In the presence
of a non-zero V at least one zero modes survives for an oddly-quantized vortex due to the
symmetric spectrum, compare Eq. (4.6). Since the spectral symmetry for finite V' is generated
by the antiunitary operator as in the case of a chiral p-wave superconductor with half-quantum
vortices, not more than one zero mode is expected to survive (Gurarie and Radzihovsky, 2007).

In order to seek for these solutions with zero energy Hiy = 0, it is important to notice that
the antiunitary operator {2 and H share the same eigenfunctions in the zero energy subspace.
If ¢/1 is a zero mode (H1p; = 0), then 19 = Q1)y is a zero mode as well. In the case of 19 = Ay,
1 is an eigenstate of  with A = +1 because of Q2 = 1. If ¥, and 1) are linearly independent,
one can always choose a combination of these states 1+ = (¢1 £3)/+/2, which is an eigenstate
of

1 1 1
NG E(Q + %)y = $\ﬁ(1 + M1 = Fhy (4.8)

In general, the eigenstates ¢y of Q (Qpy = Ay ) fulfill the relation

Ut = Q= (14 Q) =

Qe 7 6y) = (PN)(e7 7 ). (4.9)
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4.2 Zero modes bound by a vortex

This shows that the eigenstates for A = 1 and —1 are connected by a phase factor. Therefore,
it is sufficient to restrict ourselves to the eigenstate for A = —1, which has the structure
Yo = (¥, —o99*)T. 1 is a two component spinor, which we can write as (f, g)7 with arbitrary
complex functions f and g. Then g reads

¢0 = (fag7lg*a_1f*)T (410)
The following calculation assumes a vortex in the quantum limit,
m(r #0,0) = mee™ (4.11)

with constant my, i.e., the vortex is only phase twist without a radial dependence. The more
general case of a radially symmetric vortex could be treated in a similar way. We write the
linearized Hamiltonian H, Eq. (4.3), in matrix form

~

h A
—( ! A 4.12
H ( At h) ( )
with
s V —T1I_ A moein@ 0
h= < ~, Vv ) and A= < 0 mgein? > (4.13)
using
I = p, +ip, = —ie™" <67« + 13@) : (4.14)
T

Because of oohay = h* and A = A*, the four equations contained in Hg = 0 collapse to two
inequivalent ones:

h — Aoop* =0, (4.15)
which can be explicitly written as

90, +ir 10p) f — moe™ f* —iVg = 0, (4.16a)
e (0, —ir~'0p)g +moe™g" —iVf = 0. (4.16b)

An additional phase factor '’ in the parameter mg can be absorbed in the function f and g
by multiplying them with a factor of ¢#/2. Hence, we can choose 0 < mg € R.
With the one-phase ansatz

f(r,0) = F(r)eiae, g(r,0) = G(r)eiba, (4.17)

n—1

the angular dependence in Eq. (4.16) can be eliminated by a = b — 1 = 5=. Please note that
a two-phase ansatz

f(r,0) = Fi(r)eé™? + Fa(r)e®2? g(r,0) = G1(r)e®? + Go(r)e*?? (4.18)
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4 Low-energy theory

made by Jackiw and Rossi (1981) does not give more solutions for V' # 0,

Even (odd) values of n are connected to (half-)integer values of a and b. Since wave functions
that contain a factor of €?/2 have a branch cut for § = 0 and would therefore not fulfill the
differential equations (4.16), zero modes only occur for odd vorticity n. The resulting set of
equations are

(& + i) G(r) + moG*(r) —iVF(r) = 0, (4.19a)
(ar - %) F(r) — moF*(r) —iVG(r) = 0. (4.19D)

By plugging in G(r) = e ™" G(r) and F(r) = —ie ™" F(r) we get

(ar + ff) G(r)—VF(r) = 0, (4.20a)
(ar - %) F(r)+VG(r) = o (4.20D)

n—1
2r

) F(r):

This set of differential equations reduces to one equation with G (r) = (aT —

b n—1\ ~ ~
p— _— _— prm— . 1
(37« + T) <8’r o > F(r)—VF(r)=0 (4.21)
By identifying this as a Bessel differential equation, we can write the overall result as
G(r)=e ™" L(Vr), F(r)=—ie ™" J,(Vr). (4.22)

where J,(x) and Jp(x) are bound-state Bessel functions of the first kind. For integer values
of a and b, i.e. odd vorticity n, there is only a single solution, which is in agreement with the
general arguments above.

The singularity at » = 0 in the initial definition of m(r,8), Eq. (4.11), is re-regularized in
the solution for the zero mode, Eq. (4.22), due to the behavior of the Bessel functions in the
limit r — 0.

In the limit V' — 0 and a vorticity n = +1, this solution is equivalent to what is reported
by Hou et al. (2007). As already discussed in this reference, the corresponding zero modes
only have support on one sublattice: sublattice A for n = 1 and sublattice B for n = —1. For
In| > 1 the limit V' — 0 is singular, and therefore not continously connected to the results for
V =0 by Hou et al. (2007): While for V' # 0 the number of zero modes is fixed to 1 due to
antiunitarity operator producing the symmetry of the spectrum, an n-fold vortex at V' = 0
is associated with |n| zero modes leading to different numbers of zero modes for V' = 0 and
V — 0 with |n| > 1.

We discovered that an oddly quantized vortex in the order parameter of the EC develops
one zero mode, while taking into account only one valley index and one spin species. While
the spin indices are independent of each other and a vortex theoretically can occur for just
one spin species, the doubling of valley indices in the total system doubles the number of zero
modes. Therefore, an oddly quantized vortex is associated with two zero modes. It is known
that a localized zero mode in a gapped system obeying particle-hole symmetry binds a charge
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4.2 Zero modes bound by a vortex

of +e/2 (Jackiw and Rebbi, 1976; Su et al., 1979; Hou et al., 2007; Seradjeh et al., 2008b).
Hence, the existence of an even number of zero modes should not lead to fractionalization.

However, the mixing between the valleys, which was not considered within the low-energy
theory, leads to a slight splitting of the zero modes, which we will discuss in detail in the
next chapter. Due to the splitting the vortex binds a fractional “axial charge”, which is a
measurable quantity in the experimental setup.
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5 Zero mode splitting

The nodal approximation introduced in the previous chapter is valid in the low-energy limit
and shows that an oddly-quantized vortex binds two zero modes. In this chapter, we present
numerical and analytical evidence for the splitting of zero modes due to inter-valley mixing
in the full system and the association of a vortex with “axial” charge, the charge difference
between the two layers.

Section 5.1 presents numerical results from an exact diagonalization of the real-space Hamil-
tonian of a finite-size system. Section 5.2 discusses general arguments why a vortex binds axial
charge. In Sec. 5.3, an analytic expression for the energy splitting of the zero modes is derived.

5.1 Exact diagonalization

For the mean-field Hamiltonian in real space, Eq. (3.3), exact diagonalization was performed
with the standard LAPACK diagonalization routine up to a lattice size of 51 x 30 sites per
layer. Due to the shape of the honeycomb lattice a system with N, x N, sites has an extension
of @aNm X %aNy in real space.

We consider an n-fold vortex sitting at the position ry (which in the numerics is chosen to
be the center of the finite-size system) modeled by an order parameter

Ay = (—1)”moei"9i with v=1,2 for r;€ A, B (5.1)

in the mean-field Hamiltonian (3.3), where 0; = arg(x; — zy + i(y; — yyv)). The alternating
sublattice-dependent sign ensures that Ay = 0 and |[A_| = mg. The system without vortex
(n = 0) has a spectral gap E,; = mg, compare Eq. (3.9).

The spectrum as a function of the vorticity n is depicted in Fig. 5.1. For n = 1 two near-zero
modes evolve, while for n = 2 the spectrum is gapped. By increasing vorticity, the value of
the gap and the splitting between the zero modes shrink. The splitting is independent of the

04 | | l |
1
02} : ! I
: N ) 1 ]
80 : : : 5
5 . i
5 A
-021}.
Figure 5.1: Spectrum in terms of the vor-
-04 | ticity n for a system with 51 x 30 x 2
1 2 3 4 5 6 lattice sites, mo/t = 0.3, V/t = 0.4 and a
Vorticity n vortex placed in the center of the lattice.
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5 Zero mode splitting
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Figure 5.2: Numerical results from exact diagonalization for a system size of 39 x 22 x 2. Axial density
dp over the gate voltage in units of ¢, V/t, for various values of myq for a system without a vortex (a),
the additional axial charge 6@, in the presence of a vortex (b), and the corresponding density profiles
for V/t = 0.4 and mo/t = 0.3 without (c¢) and with (d) a vortex. The honeycomb lattice sites are
located in the center of the triangles. The electron charge is set to 1.

system size, and therefore not a finite size effect. Apart from the splitting, the results from
the previous section predicting two zero modes for an oddly quantized vortex are confirmed.

For half filling, which will be assumed throughout this chapter, the site-dependent charge
Q(r) = Q1(r) + Q2(r), where 1 and 2 refer to the layer index, is spatially uniform for the
configuration with and without vortex. The charge difference 0Q(r) = Q2(r) — Q1(r), to
which we will refer as “axial charge” as argued in Sec. 5.2, has interesting properties. It
corresponds to the dipole moment between the layers.

First we will focus on the situation without a vortex. The axial density dp = ) dp(r)
with dp(r) = 6Q(r)/N, Fig. 5.2(a), depends linearly on the gate voltage V for V' < my and
turns into a quadratic dependence for V' > myg. In the gapless case (my = 0) the system
consists of two decoupled layers with different chemical potentials controlled by the voltage.
A straightforward calculation subtracting the number of particles in each layer leads to

1 1 (V\?
0plime=0 = 7 PR Ton (t) : (5.2)

[tk|<V
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5.2 Axial flux and axial charge

The corresponding plot of dp for my = 0 in Fig. 5.2(a) has an offset and ripples - both features
are due to finite size effects. The density profile dp(r) for finite mg, Fig. 5.2(c), is uniform in
the center and has axial charge bound to the edges showing different characteristics for zig-zag
(horizontal) and arm-chair (vertical) edges.

The total charge associated with a vortex is given by the electron charge and therefore not
fractionalized. However, a vortex binds additional fractionalized axial charge d@Q, on top of
the background, which is uniform for an infinite system. The bound axial charge as a function
of V for various values of my is shown in Fig. 5.2(b). Varying these two parameters can tune
the sign as well as the value continuously, which is now an irrational fraction of the electron
charge. The density profile Fig. 5.2(d) shows an e~""" dependence and oscillating behavior
like the zero mode wave function, Eq. (4.22).

As already mentioned, the actual type of stacking is expected to have only minor influence
on the development of the exciton condensate (Zhang and Joglekar, 2008). With a spatial
extension much larger than the lattice spacing, we also expect the vortex and its properties to
only depend weakly on the type of stacking.

An antivortex, created by a phase twist e, annihilates a vortex if both are put at the same
spatial position. They carry opposite flux, but, as numerics shows, the same axial charge.

The next section will shed light on the issue predict consequences for the exchange statistics
of vortices.

i0

5.2 Axial flux and axial charge

Based on a gauge transformation, we illustrate that a vortex in the excitonic order parameter
is an object carrying “axial” flux and “axial” charge. This might be counterintuitive at first
sight, since the EC order parameter gets dressed with a phase twist of 2 and therefore a full
flux quantum. However, this phase twist only affects the inter-layer bonds and can be shifted
to the intra-layer hopping upon applying a gauge transformation.

For the particular choice

e T (5.3a)
Cio — Ci2, (53b)
(0 1@t (5.30)
tﬁ-f-) — tij, (5.3d)

the hopping parameters on layer (1) and (2) are transformed separately, and the phase factor
e'% is shifted to the intra-layer bonds in (1), while layer (2) stays unaffected. In this gauge a
full flux quantum is inserted in layer (1), but does not leave through layer (2).

By adding a half flux A coupling to the total charge Q1(r) + Q2(r), which is distributed
homogeneously over all lattice sites, we end up with an axial half flux quantum coupling to
the charge difference 6Q) = Qa(r) — Q1(r), see Fig. 5.3.

Hence, a vortex effectively is an (axial charge, axial flux) composite object, which in addition
carries a regular half-flux quantum. In analogy to the case of a (charge, flux) object (Wilczek,
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5 Zero mode splitting

Figure 5.3: Schematic illustration showing the A
additional insertion of a half flux quantum A H \
A and how it reduces to an axial half flux ‘ A} ‘ = ‘ X ‘

quantum coupling to the charge difference

0Qy

1990), we expect an exchange phase of I' = 27r% 68” , where ¢, = ¢ /2 is the axial flux and 6Q,
is the axial charge bound to a vortex. ¢g = h/e is the flux quantum. The exchange statistics
will be discussed in more detail in Chapter 6, where numerical calculations are presented that
support this conjecture.

In the next section we include inter-valley mixing in the nodal approximation developed in

Sec. 4.1 and derive an analytic expression for the energy splitting between the zero modes.

5.3 Analytic estimate of the zero mode splitting

In order to take into account inter-valley mixing in the framework of a nodal approximation,
the equations have to be generalized to a non-uniform value of the parameter m, which was
originally assumed to be uniform in Sec. 4.1. In this case the inter-layer hopping term in
Hamiltonian (3.3) becomes

1
kq

Mixing between the two valleys happens for k — q ~ +(K; — K_) = +Q. We approximate
m(r) = & >\ e¥"my around these two wave vectors by

1 . ‘
my(r) = ¥ Z EP'mpiq ~ eTmy . (5.5)
P
In the nodal approximation the inter-layer mixing § H becomes

0 Oh(r)
- _ T
0H = /dr\If (r) ( Shi() 0 ) U(r), (5.6)
with
_( my(r) O
dh(r) = < 0 m* (r) ) . (5.7)
The spinor can be written as ¥(r) = (U, ¥ )T where + refers to the valley index. The
total Hamiltonian in the low-energy limit is given by Hyoqa + 0H, where Hy 4.1 is defined by
Eq. (4.1).
The two zero modes 1o+ of H,,qa are associated with the two valleys . According to
Eq. (4.2) they are related by

Yo+ = My3to— = Yo, (5.8)
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5.3 Analytic estimate of the zero mode splitting
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Figure 5.4: Zero mode energy splitting || in units of ¢ over gate voltage V/t. Colors indicate different
values of the EC order parameter mg. The solid lines are a fit obtained by Eq. (5.11) with Q — 77 1Q
and n = 3.0 (for explanation see text), the squares are values found by exact diagonalization of a lattice
with 39 x 22 sites per layer and a vortex sitting in the center.

where 1o = (f,g,ig*, —if*)”, compare Eq. (4.10). Within this two dimensional subspace we
can make the ansatz

0 ¢
o= (25 ) (5.9
The value of € can be found by projecting it out:

e = — (Y40l6h[tp—0) - (5.10)

Plugging in the wave functions for the zero modes and taking into account their proper nor-
malization yields

J d?2re 1QTRe [e‘ia (f2 + 92)]
J a2 (1f> +1g?)

The two zero modes are split by an energy 2¢. For a quantitative comparison to the numerical
values, the internodal wave vector Q is substituted by an effective wave vector n~'Q correcting
the effects of the nodal approximation. In the case with no mixing such a renormalization of
the internodal wave vector is not neccesary, as the calculation is independent of Q. Numerical
and analytical results are shown in Fig. 5.4, using n =~ 3.0 yielding best fits for low to inter-
mediate values of V' and my.

Ezimo

(5.11)

The two zero modes appearing in the presence of an oddly-quantized vortex slightly split in
energy due to an inter-valley mixing, which was not captured by the nodal approximation in
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5 Zero mode splitting

the previous chapter. This was furnished by a numerical simulation of a finite-size system and
an analytical estimate in the low-energy limit. A vortex in the excitonic order parameter is
neutral in the total charge channel, but binds an irrational fraction of “axial” charge and can
be viewed as an (axial flux, axial charge) composite object. The associated fractional exchange
statistics between two vortices is studied in the next chapter.
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6 Fractional statistics

As discussed in Sec. 5.2, a vortex in the exciton condensate is an object composed of an
axial half flux quantum ¢, and an irrationally fractionalized charge §Q,, which furthermore
carries an additional half flux quantum, but no net charge. We expect these objects to have a
statistical angle of I' = 27w¢,0Q),.

In the case of bosons and fermions, the statistical angle I' determining the statistics of the
considered particle is 27 and m, respectively. It is half the geometric phase v that is acquired
by the wave function of a system, when two particles of the same type are tracked around each
other (in real space) and end up in their initial position.

In general the acquired geometric phase v in a wave function is independent of the dynamics
of the system and does therefore not depend on time. It is only determined by topological
properties, i.e, it only depends on the path taken in parameter space. Given an adiabatic
evolution of quantum states (which for practical purposes means that the changing rate of
particles is smaller than the excitation gap of the system) the geometric phase is called Berry
phase.

This chapter is concerned with determining the statistical angle of vortices in the exciton
condensate of a graphene bilayer system. We calculate the Berry phase acquired by the global
wave function after one vortex is tracked around another one. Since the bilayer system is under
the influence of a static electric field and each vortex is associated with a vector potential,
a gauge-invariant formulation of the Berry phase becomes necessary, developed in Sec. 6.1.
Section 6.2 describes a discretized version of the phase expression using a Bargmann invariant.
Numerical results are presented in Sec. 6.3.

6.1 Gauge-invariant Berry phase

While we first focus on the derivation of a general expression for the gauge-invariant geometric
phase after a cyclic evolution of quantum states, which does not require adiabaticity, we
specialize this to an expression for the Berry phase, where the cyclic motion is accompanied
by adiabatic changes in the Hamiltonian.

For the derivation of a gauge-invariant Berry phase, we consider the Hamiltonian H(t) in
the presence of an t-dependent electromagnetic potential (Ag(t), A(t)).

H(t) = h(A(t);t) + Ao(t) (6.1)
defining the Schrodinger equation (h = 1)

10, W(t)) = H(t)[¥(t)) (6.2)
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6 Fractional statistics

We can define a gauge-invariant wave function

t

T(t)) = exp [ i / Ao(s)ds | [w(t), (6.3)

— 00

which fulfills

10T (t)) = h(t)| V(1)) (6.4)
with
ht) = exp | i / Ao(s)ds | h(A): D) exp | —i / Ao(s)ds | . (6.5)

In this section a tilde denotes gauge-invariance. For simplicity, it was assumed that the scalar
potentials at different times commute: [Ag(s1), Ao(s2)] = 0. In the case of non-commuting
potentials, the relations have to be defined with time-ordered exponential integrals, which does
not affect the overall result.

In order to show the gauge-invariance explicitly a gauge transformation by a function A(t)
is considered leading to

Ay — Ao+ OA(2), (6.6a)

() — e MO, (6.6b)

h(A(t):t) — e DORA®R); 1) D (6.6¢)
Upon applying this transformation |¥(t)) and h become

(1) — e M), (6.72)

h(t) — e MR (6.7b)

proofing their gauge-invariance apart from a constant phase A(—oo), which is chosen to be zero.

After a cyclic motion the gauge-invariant wave function |W(t)) acquires a phase a: |¥(T)) =
e“|¥(0)), where T is the encircling time. An expression for the phase o can be derived by
defining

9(t)) = e IO (1)) (6.8)

where the function f(t) is chosen in a way that the condition |¢(T)) = |$(0)) is fulfilled.
Therefore, a = f(T') — f(0). Plugging in the ansatz (6.8) into the Schrodinger equation (6.4)
and mulitplying the equation by (¥| leads to an equation for f(¢):

df

5 = (0liai]é) — (dlh|o) (6.9)
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6.1 Gauge-invariant Berry phase

Hence, the total phase change « consists of two parts

T

a=ry- / dt G h(1)[3(2)) (6.10)
0
where
T
y = / dHG () 3(1)) (6.11)
0

is the geometric part, which is independent of the Hamiltonian and the parametrization of the
closed curve in the projective Hilbert space.

For the derivation of v no adiabatic motion had to be assumed, what leads to the fact that
to this stage the geometric phase ~ is more general than the Berry phase. In the regarded
case the phase is associated with the motion of the states in the Hilbert space, whereas the
Berry phase requires an adiabatic change of the Hamiltonian. In the following the connection
between these two phases is made by assuming that the motion of the states is generated by
an adiabatic change in the Hamiltonian.

We introduce R = R(t), a set of parameters encoding a cyclic motion, and assume that the
Hamiltonian H(t) = H[R(t)] changes adiabatically along this closed curve in the parameter
space. Since we aim to describe a system with a moving vortex that carries flux, but no charge,
the electric field is considered to be static, while the vector potential keeps its time-dependence
leading to

H(t) = h(—iV — A(t)) + Ao . (6.12)
The gauge-invariant wave functions are modeled by the ansatz
|\Ij(t)> _ 6—iEteiA0t€ifA(t)dr‘\I,E> ) (613)

Under the assumption of adiabaticity of the Hamiltonian, the Schrédinger equation (6.4) re-
duces to the stationary eigenequation

T

h(—iV)+A0+/dA(t)dr W) = E|[Up), (6.14)

dt

where we can identify the third term on the left-hand side with the fields induced by the
moving vector potential:

x x

dA(t dR dA
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6 Fractional statistics

An adiabatic change in the Hamiltonian will change the (gauge-invariant) states |¥g). As
soon as the Hamiltonian H returns to its initial form, the wave function [¥g) will also do. So,
we can identify |Ug) = |¢) and write the Berry phase as

y = 74<\PE|1 W) - dR. (6.16)

In the next section a discretized version of this formula based on a Bargmann invariant is
presented.

6.2 Discrete version

For the calculation of the exchange statistics of a vortex in the EC, a system with two vortices
is considered, where one remains static and the other moves on a path enclosing the first one.
The global wave function acquires a geometric phase v = 2I', where I' is the statistical angle.

In the discrete version, where the encircling path is approximated by a n-sided polygon, the
expression for the Berry phase, Eq. (6.16), transforms into (Simon and Mukunda, 1993; Rabei
et al., 1999)

v = —arg ((Wo W1 )(¥1|W2) ... [Yn—1)(¥n-1]|P0)) , (6.17)

corresponding to a generalized n-vertex Bargmann invariant. |¥;) is given by the ground state
of the stationary Schrédinger equation (6.14), where h describes a system with the dynamical
vortex sitting at the i-th position of the polygon. A 27 ambiguity in the phase v can be
excluded by following the evolution of the intermediate phase

Yintermediate (1) = — arg (Vo W1 )(V1|Ws) ... | W) (¥;|¥o)) , (6.18)

with “intermediate (1’L - 1) =7 while |’Yintermediate(i + 1)‘ > |7intermediate(i)|-

Since the vortex is associated with a half flux quantum in the 2Z-direction and its motion is
in-plane (v = dR/dt L %), the induced field § Ay, Eq. (6.15), vanishes: 4 =v - A = 0.

The overlaps between many-body wavefunctions contained in Eq. (6.17) are evaluated via

(Wo| W) = det ({Z@“’)* }) (6.19)

(a)

where ®; 7 is the r-th entry of the eigenvector corresponding to the i-th eigenenergy of the
Hamiltorfian, describing the system with the dynamic vortex sitting at position (a). Appendix
A gives a detailed explanation of how such a many-body state |¥,) is described by the corre-
sponding eigenvectors and how the formula for the overlap is derived.

The next section presents numerical results for the geometric phase v as a function of the
axial charge bound to a vortex calculated by exact diagonalization of a finite-size system.
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6.3 Numerical results

(1) ©) ®

Figure 6.1: Illustration of the configurations (1) and (2).

6.3 Numerical results

In the numerics the real-space Hamiltonian (3.3) for a finite-size system with 2N lattice sites,
which is given by a 2N x 2N matrix, is treated by exact diagonalization implemented by
the LAPACK routine, compare Sec. 5.1. The system contains two vortices, a static and a
dynamical one. In order to subtract possible background phases, the resulting geometrical
phase for the encircling procedure is the difference between the phases calculated for two
configurations, v = v(!) — v with (1) a static vortex sitting at the center of the finite-size
lattice and a dynamical vortex moving around it on a circle with radius R, whereas for (2)
the dynamical vortex follows the same motion as before, while the static vortex is now at a
position outside the loop at a distance 2R from its initial position. These two configurations
are illustrated in Fig. 6.1. The vortices are put to the desired positions by hand. On a formal
level, the Hamiltonian does not create the vortex movement, which does not influence the
validity of the results.

As discussed in Sec. 5.1, a vortex binds irrationally fractionalized axial charge, whose value
depends on the gate voltage V' and the excitonic order parameter mg, compare Fig. 5.2(b). In
order to investigate the dependence of the exchange phase on the axial charge, v is calculated
for various values of the gate voltage tuning §(),. While for the one-vortex system in Sec. 5.1
the definition of §Q), is straightforward, it is less clear for a finite-size system with two vortices,
where the distance R is roughly of the order of the size of the vortex £. In the following, we
consider four different approaches defining the axial charge bound to one vortex in such a
situation; the mentioned colors refer to the plot of the numerical results depicted in Fig. 6.2.

The definitions

N
blue: 50, = %ZanU(r) , (6.20)
r=1
and
1 N
r=1

sum up the axial charge in the two-vortex system in configuration (1) and (2) (see Fig. 6.1),
respectively, and address half of it to being bound by one vortex. This approach ignores the
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Figure 6.2: Geometric phase v acquired by the global wave function after a vortex is encircled by a
second one as a function of axial charge d@Q), bound to one vortex. The color-coded plots refer to
different definitions of §Q,, see Eqs. (6.20) to (6.23). The black line is a guide to the eyes and has a
slope of 2. The system size (N, = 39, N, = 22) corresponds to a size of approximately (35a)? in real
space. The encircling radius is R = 5v/3a, the circle is approximated by a n = 30 polygon. The EC
order parameter is mg = 1. The inset shows the considered values of the gate voltage V tuning the
axial charge.

fact that charge might be bound to either the edge of the finite-size system or in between the
two vortices.

In an attempt to only take into account axial charge that actually contributes to the geo-
metric phase, we define

bown: Q=3 [ 3 (500 —6P0) + 3 P | (6.22)

TeAcenter,l T‘EAdyn

The areas Acenter,1 and Agyn are depicted in Fig. 6.3(a). The former one is centered around
the position of the static vortex inside the loop with a radius of R/2. The latter one moves
accordingly to the position of the dynamical vortex, also covering a disk with radius R /2. The
first term in this definition describes the encircled axial charge with a subtraction of a possible
background axial charge. The second term represents the axial charge bound to the moving
vortex.

A slight variation of the last definition is given by

red: 6Qu = > (0@ -Pm)+ Y ePm] . 62

Te(Accntcr,Q\Adyn) TeAdyn

where Acenter,2 has a radius R, see the illustration in Fig. 6.3(b).
Please note that the values of 6Q, plotted in Fig. 6.2 represent the average with respect to
all positions of the dynamical vortex in the n-sided polygon.
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Figure 6.3: Illustration of the areas occurring in the definitions (6.22) and (6.23).

The data points depicted in Fig. 6.2 deviate from the expected behavior v = 276Q, in a
systematic way producing s-shaped curves. However, we expect these deviations as well as the
deviations between the plots to be due to finite size effects, which are minimized in the following
limits. If the localization & of a vortex tuned by mg, compare Eq. (4.22), is much smaller than
the encircling radius R, no axial charge is bound in between the two vortices. At the same time
we need £ > a, where a is the lattice spacing. For R much smaller than the real-space size of
the system, axial charge associated with the edges can easily be excluded in the calculation.
Furthermore, the distance between two neighboring vertices in the n-sided polygon should be
comparable to &, so that the overlap between the wave functions in Eq. (6.17) is sufficiently
large. However, these requirements cannot fully be implemented by the system sizes we were
able to compute (up to (N, = 50, N, = 31) corresponding to (45a)? in real space).

Figure 6.4 shows the averaged result for the exchange phase I' as a function of the axial
0@, associated with one vortex. The error bar width is estimated by the difference between
minimal and maximal calculated axial charges for each considered gate voltage phase aver-
aged over all V. These results show good agreement with the expected behavior I' = 76Q),
illustrated by a red line in Fig. 6.4.

The theoretical derivation of a gauge-invariant Berry phase for a cyclic adiabatic evolution of
quantum states accompanied by a numerical evaluation furnished the claim that vortices in
the exciton condensate obey an irrationally fractionalized exchange statistics with an exchange
phase I' = 76Q),,. A summary of all essential results and a discussion of possible experimental

0.8
0.6
Foa4 , ,
Figure 6.4: Exchange phase I' as a function of
02 the averaged axial charge 6@, bound to one
vortex using the data shown in Fig. 6.2. The
0 error bars indicate the averaged ambiguity.
0 005 01 015 02 025 The red line represents the expected behavior
5Q, I'=n6Q,.
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6 Fractional statistics

realizations and measurements is presented in the next chapter.
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7 Conclusion

Bilayer graphene separated by an insulating barrier develops an instability towards an exciton
condensate at infinitesimal layer coupling upon applying a symmetrically biased gate voltage.
In the low-energy limit, oddly-quantized vortices in this condensate bind two zero modes, one
per valley index of the bilayer. Their real-space structure shows oscillatory Bessel-function
behavior located in the vicinity of the vortex core. Inter-valley mixing present in the full lattice
model leads to a slight energy splitting of the two zero modes and the vortex is associated
with irrationally fractionalized “axial” charge corresponding to the layer charge difference,
which is an irrational fraction of e, while it is neutral in the total charge channel. Vortices
correspond to (axial charge, axial flux) composite objects with an irrationally fractionalized
exchange statistics depending on the induced axial charge. The bound axial charge and the
associated exchange phase are not protected by symmetry or topology like in the situation
of anyons in the fractional quantum Hall effect, but rather depend continuously on external
parameters like the applied gate voltage or the inter-layer Coulomb interaction.

In contrast to previously studied systems exhibiting zero modes, the system at hand does
not have Dirac points, but rather hole and electron Fermi surfaces in the two layers. These
underlying Fermi surfaces and the inter-layer Coulomb interaction are the two essential in-
gredients for the development of an excitonic instability. In comparison to semiconducting
bilayers hosting an exciton condensate, the linear dispersion substantially influences the low-
energy behavior in such a bilayer graphene system. We therefore do not expect similar physics
for semiconducting coupled quantum wells.

Possible experimental setups and measurements

The bilayer graphene structure with applied voltage is an insulator in the total charge channel
and a superconductor in the axial charge channel. If the layers can be contacted separately,
as it is already possible for semiconductor bilayer structures (Vignale and MacDonald, 1996;
Eisenstein and MacDonald, 2004; Keogh et al., 2005), this property should be observable
experimentally by measuring the counterflowing currents.

The exciton order parameter A couples to the vector potential difference A; — Ao (Balatsky

§N Figure 7.1: Bilayer graphene with applied
gate voltage V' in an inhomogeneous magnetic

field, which is proposed to create vortices in
-V @@%@38@8@3@% the excitonic condensate
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7 Conclusion

et al., 2004), where the indices refer to the two layers. The associated field B; — By is
believed to produce vortices, analogously to Abrikosov vortices in a type-II superconductor,
which are produced by a uniform magnetic field. A possible experimental setup with a strong
perpendicular axial component in the field B = (B — By); > (By + B2), is schematically
shown in Fig. 7.1.

The energy splitting € sets the relevant energy scale in the system: The temperature T as
well as the axial magnetic field 6 B should be much smaller than e. This should not lead to any
relevant restriction, since € is at least one order of magnitude higher than room temperature.
A more severe restriction of T arises from the Kosterlitz-Thouless transition temperature
denoting the onset of the excitonic condensation. Depending on how the Coulomb interaction
is actually screened in such a system, it was estimated to be 10~7ex (of the order of a few
mK) with ez = 0.3 €V in combination with an inter-layer distance d < 0.5 nm (Kharitonov
and Efetov, 2008, 2009), or 0.1lex (of the order of room temperature) with d < 2 nm (Min
et al., 2008; Bistritzer et al., 2008). The applied gate voltage should fulfill V' < t/e, where the
hopping parameter in graphene is given by ¢ = 2.8 eV, ensuring that the spectrum can still be
approximately linearized at low temperatures.

The axial charge carried by a vortex might possibly be measured using the Hall effect. In
analogy to type-II superconductors, where the Magnus force leads to a drift of magnetic flux
lines orthogonal to the superconducting current, an axial Hall voltage can be induced in the
considered system, telling how much axial charge is attached to one vortex. The axial current
needed for this setup might be produced by a temperature gradient across the sample or an
in-plane magnetic field.
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A How to calculate an overlap between two

many-body states

For the calculation of the Bargmann invariant, Eq. (6.17), overlaps between several many-body
wave functions have to be taken. In this secion we will first focus on the description of such a

many-body state and then derive a formula for the overlap.

The bilayer system contains 2N lattice sites, has 2N states in the spinless case and is
therefore described by a Hamiltonian H that is represented by a 2N x 2N matrix with the

eigenequation H®,, = €, ®,,. It is diagonalized by the transformation 7' = [®;, P, ..

The ground state containing v fermions is described by
W) =clel ... & |vac)
and the corresponding antisymmetrized real space wave function reads

) By, By ... )
U(ry,re,...,ry) = o det | Prre P2 - | = o det({®ir, }) .
V! : : V!

The particle positions 71,...,r, are used as an index here.
The overlap of two many-body states containing v particles can be calculated as
2N

1 *
(Wo[W1) = — > T, )W (e,

2N
== > det({2l? ) det({a),})

1 b
. J
10,y =1

2N v
1 ()% g (1)
=0 > det [ ¢y @
m=1

1,y =1

=Ay;

.,‘I’QN].

(A1)

(A.2)

(A.3)

(A.4)

(A.5)

For further simplification of the expression the determinant can be explicitly written by sum-

ming over all possible permutations P:

2N
1
(Po[P1) = 5 > Y epAip Aop, .. Avp,

r1,...,7v=1 P

2N ” .
LS e (S, ) (Seten., ) 0

1, Tv=1 P mi1=1 my=1
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A How to calculate an overlap between two many-body states

The factor ep contains the sign arising from the permutation. The second line is just the
explicit writing of the first one. Only for m; # m; the antisymmetrized combination will
not vanish. Since there are v! possibilities of choosing values for (mj,m,...,m,) out of
(1,2,...,v), Eq. (A.7) simplifies to

2N
0* * 1
(Wolwy) = EH<§ o’ Hm)...<§ @V?r;b%j,m) (A8)

ri=1 ry=1

— det <{Z o 0! }) (A.9)
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8 Introduction

Properties in heavy fermion compounds deviate from those of a normal metal and are domi-
nated by the existence of strong correlations. In comparison to a normal metal the values of the
specific heat coefficient and the prefactor of the T2 contribution in the low-temperature resis-
tivity and susceptibility are significantly enhanced. In the framework of Landau’s Fermi liquid
theory this can be interpreted as originating from strongly renormalized electronic quasiparti-
cles with a 100 to 1000 times heavier mass than an electron. This property was first observed in
1975 in the material CeAls (Andres et al., 1975). Strong interactions, which are responsible for
this effect, lead to a large variety of unusual properties and different phases in these materials,
like superconductivity, which was discovered by Steglich et al. (1979) in CeCuaSia. With this
discovery heavy fermion compounds attracted attention and a series of investigations followed.

On a microscopic level heavy fermion compounds are intermetallic compounds based on
rare earth elements like Ce, or actinides like U. Conduction electrons coexist with localized
electrons from partially filled f-bands.

In the framework of this thesis we are concerned with the influence of a non-local hy-
bridization between conduction and localized electrons and study its consequences for the
band structure and physical observables.

This introductory chapter gives an overview of the physics involved in heavy fermion com-
pounds, which arises from the Kondo effect and magnetic ordering phenomena, and reviews
the experimental situation. The first two sections focus on the theoretical aspects: Section 8.1
explains the single-impurity Kondo effect, Sec. 8.2 introduces its lattice generalization, which
turns out to be the appropriate model for heavy fermion systems. As in most of the literature
we are for now dealing with a local hybridization. More exhaustive overviews of the theory
of heavy fermion compounds are e.g. given by Hewson (1997) or Coleman (2007). Section 8.3
presents the experimental phase diagram. Section 8.4 introduces the heavy-fermion compound
series CeMIns (M=Rh,Ir,Co) comprised under the name 115-family. These materials show
evidence for a non-local hybridization between localized and conduction electrons, which is
discussed further in Sec. 8.5. An outline in Sec. 8.6 concludes this chapter.

8.1 The Kondo effect: Single-impurity physics

A basic ingredient to the physics of heavy fermion compounds is the Kondo effect, which is
produced by a magnetic impurity in a sea of conduction electrons. An ordinary and well
behaved metal in the low-temperature regime follows the laws of Fermi liquid theory. This
for example means that the specific heat is linear in 7', the magnetic susceptibility x is ap-
proximately temperature-independent, and the resistivity has the shape p(T) = pg + AT?,
where pg arises from (non-magnetic) impurity scattering and the quadratic contribution is due
to electron-electron scattering processes. In the presence of a magnetic impurity the most
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resistivity

temperature

Figure 8.1: Schematic plot for the resistivity as a function of temperature in the low-temperature regime
for a clean metal (a), a metal with non-magnetic impurities (b) and a metal in the presence of magnetic
impurities (c). (Figure from Kondo, 2006).

significant change arises in the resistivity, compare Fig. 8.1. A resistivity minimum develops,
which experimentally was already observed in the 1930s in Au (de Haas et al., 1934). The first
theoretical explanation however followed thirty years later by Kondo (1964), who introduced
the (single-impurity) Kondo model

Hgikm = Z EkCLUCkJ + JkS-s(r=0). (8.1)
ko

CL , denotes the creation operator for a conduction electron with momentum k, spin o and
energy €x. The conduction electron spin density s(r = 0) = % Y KK'oo’ CL 20 0/ Chr s At the im-
purity site is coupled to the impurity spin S via the Kondo coupling Jk. The antiferromagnetic
coupling (i.e. Jx > 0) leads to interesting physics, which is discussed in the following.

Although this model looks simple and innocent, its solution was a long-standing issue.
Kondo himself calculated up to third order perturbation theory in the Kondo coupling Jk.
Within this approach the resistivity has a InT" contribution, which means that it increases while
approaching the zero-temperature limit. Accompanied by a decreasing phonon contribution
this procedure is able to explain a resistivity minimum. However, the logarithmic divergence
at T' — 0 is rather unpleasant. An expansion of the perturbational approach by considering
parquet summations of an infinite number of diagrams (Abrikosov, 1965) shifts the divergence
to a finite temperature

1
Tk = De Mo’k | (8.2)

where D is the bandwidth and Ny the density of states of the conduction band at the Fermi
level. The non-perturbative approach studied by Nagaoka (1965) in terms of a Green’s func-
tions and an equivalent approach by Suhl (1965) using scattering theory are able to produce a
non-singular resistivity at T' = Tk, but still the physics below the Kondo scale Tk cannot be
accessed with these techniques.
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8.1 The Kondo effect: Single-impurity physics

Anderson’s ansatz of poor man’s scaling (Anderson, 1970) was successful in capturing the
correct physics in the weak-coupling regime above Tx. By reducing the bandwidth D and
formulating an effective problem, where renormalized parameters carry the effect of the elim-
inated higher-order excitations, he was able to show that the effective Kondo coupling J be-
comes large at Tk. This suggests a ground state with a local singlet, but however is not able to
describe the dynamics below Tk. For the strong-coupling regime, Nozieres (1974) introduced
a spin-dependent scattering picture based on the existence of such a Kondo singlet leading to
a Landau Fermi liquid. The behavior for temperatures T' < Tk is similar to the physics of a
system with a non-magnetic impurity. Finally, Wilson (1975) gave a full explanation of the
physics of the (one-channel) single impurity Kondo model. He introduced a non-perturbative
scaling approach, the numerical renormalization group.

In 1961, Anderson (1961) suggested a different model, which later on turned out to be con-
nected to the Kondo model in specific parameter limits, the Kondo limit. In the following we
discuss this Anderson model, apply the Schrieffer-Wolff transformation (Schrieffer and Wolff,
1966), which connects the two models and fix the parameters to the Kondo limit.

The single-impurity Anderson model contains conduction electrons and localized electrons
at a single site that are subjected to an on-site Coulomb repulsion U:

Hsian = ) ekl p + V') (ClT(afo + fickg) +er Y fif,+Ungpmyy . (8.3)
ko ko o

The conduction electrons ¢y, and the localized f,-electrons are hybridized with V' due to their
wavefunction overlap.

The Coulomb repulsion as well as the hybridization lead to strong interactions among the
electrons. For a vanishing hybridization, c- and f-electrons are decoupled and the configu-
ration of f-electrons is simply determined by U and €;. The Hilbert space of the f-level is
spanned by three charge sectors with empty, single and double occupancy. Upon turning on
the hybridization V the f-electrons immerse in the sea of conduction electrons.

In the Kondo limit

er <0, er+U >0, I' < |efl, |ef + U, (8.4)

where T' = 7| V|2 Ny is the effective hybridization and Ny is the conduction electrons density of
states at the Fermi level, the f-level is occupied by one electron. The small, but non-zero V'
produces virtual excitations to the empty and the doubly occupied subspaces. The f-level can
be regarded as a local moment with spin 1/2. The Schrieffer-Wolff transformation, developed
with a perturbative treatment of the hybridization, projects out empty and doubly occupied
subspaces.

In the lowest order in V the resulting effective Hamiltonian contains a spin exchange in-
teraction between the spins of the conduction and local electron with the antiferromagnetic
exchange coupling

1 1
Jx = |V|? — 0. 8.5
k =1Vl (U+€f+|€f|>> (8:5)
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Figure 8.2: Electrical resistivity as a function of temperature in Ce,La;_,Cug for different doping levels
z. All finite doping concentrations lead to a minimum in the resistivity. For x > 0.73 an additional
maximum evolves. (Figure from Kondo, 2006).

As we have seen, the Anderson model in the Kondo limit has a local moment and an antifer-
romagnetic exchange coupling with the conduction sea, just like the Kondo model.

For a sufficiently dilute concentration of magnetic impurities the ground state of the Kondo
model is determined by Kondo singlets. Higher concentrations are accompanied by magnetic
interactions among the impurities, which drastically change the physical properties. The
theoretical approaches are discussed in the next section.

8.2 The Kondo lattice and the existence of multiple energy scales

In analogy to the single-impurity case, lattice generalizations of both the Anderson and the
Kondo model can be formulated, which are connected via a lattice version of the Schrieffer-
Wolff transformation. Within this section we will introduce these two lattice models. We
present the emerging energy scales in this problem and discuss the ground state physics,
which is controlled by the competition between Kondo screening and magnetic ordering.

The generalization of the single-impurity Anderson model to the lattice case is given by the
Anderson lattice model (ALM):

Hary = Z ekcLUckU +V Z (fggcw + h.c.) + ey Z f;fia +U Z NpiNyil - (8.6)
ko 0 i i

The f-electrons as well as the c-electrons sit on lattice sites. For simplicity we here assume that
these two lattices are identical and the hybridization V is local. No direct magnetic exchange
between the f-electrons exists and the f-band is assumed to be non-dispersive.
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8.2 The Kondo lattice and the existence of multiple energy scales

A large value of U and a negative ey leads to a situation of mainly single f-occupancy per
site, and a description of the f-electrons in terms of localized spin-1/2 moments becomes valid.
After a lattice Schrieffer-Wolff transformation the Anderson lattice model transforms into the
Kondo lattice model, which describes a dense configuration of magnetic “impurities” in a sea
of conduction electrons:

Hypm = Z b s+ K Z S; - s(ri). (8.7)
ko i

The local spins S; are coupled antiferromagnetically to the spin densities s of the conduction
electron at the “impurity” sites r;. The Kondo coupling Jk is defined by Eq. (8.5).

As apparent from Fig. 8.2, the physics of the single-impurity result cannot easily be gen-
eralized to the lattice case: The resistivity results for Ce,La;_,Cug qualitatively change for
different doping levels z. For increasing doping x, non-magnetic La ions are gradually sub-
stituted by magnetic Ce ions. Low x represents the single-impurity case, whereas high x
corresponds to the case of a Kondo lattice. In dense Kondo systems an additional maximum
appears due to the existence of a coherent state at low temperatures. Two energy scales can
be identified: the Kondo temperature Tk, a generalization of the single-impurity to the lattice
case, and T, associated with the onset of coherence.

The identification of Tk and T, with the minimum and maximum positions in the resistivity
is not exact, but simply describes the qualitative behavior at these temperatures. Both energy
scales can be defined using thermodynamic properties (Burdin, 2008). At Tk the crossover
happens between an asymptotically free spin for high temperatures and a spin bound in a
singlet pair. This behavior can be quantified by the entropy per site, which becomes In2 in
the presence of a free spin and decreases throughout the crossover regime. Therefore, Tk can
be defined as the temperature where the entropy has a value of e.g. 0.8 xIn 2. Experimentally,
Tk is accessible via specific heat measurements, which are closely related to the entropy. The
coherence scale To, determines all low-temperature properties of the Kondo lattice system,
which obey Fermi liquid behavior. We therefore can define T, via the specific heat coefficient
v as Teon = 1/ (with kg = 1) or e.g fix it to Teon = 1/x(0), where x(0) is the zero-temperature
magnetic susceptibility (Burdin, 2008).

The relation between these two energy scales was widely discussed, starting with Noziéres
(1985). On the level of mean-field arguments Burdin et al. (2000) showed that in the weak-
coupling regime the ratio between Tk and T, only depends on the filling and the shape of
the conduction band. Pruschke et al. (2000) employed the numerical method of dynamical
mean-field theory (DMFT) (Metzner and Vollhardt, 1989; Georges et al., 1996), which is able
to go beyond the mean-field approximation and takes into account local quantum fluctuations:
For less than half filling (n. = 1) the ratio Tk /Tion is either constant or depends on 7.
These results clearly contradict Nozieres (1985), who suggested the scenario of exhaustion,
i.e., an insufficient screening of localized electrons in the presence of low conduction electron
density, and predicted the relation 7o ~ Tf( /D. However, it turned out that the arguments
underlying this exhaustion principle are too simplistic (Nozieres, 2005) and do not capture the
right physics.

In contrast to the single-impurity scenario the ground state of a dense Kondo system is
strongly influenced by the magnetic interaction between two impurity spins. Although not
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8 Introduction

Temperature

JkNo,c
JkNo

Figure 8.3: Schematic illustration of the Doniach phase diagram for dense Kondo systems in dependence
of temperature 1" and Jx Ny, where Jk denotes the Kondo coupling and Ny the conduction electron
density. Two regimes can be distinguished - an antiferromagnetic regime for Tx < Jrxky and a heavy
fermion regime for Tx > Jrkky, seperated by a quantum critical point at JxNg.. (Figure after
Coleman, 2007).

present as a direct magnetic interaction term, the Kondo lattice Hamiltonian (8.7) contains a
magnetic interaction between the impurity spins mediated by the conduction electrons, termed
RKKY interaction (Ruderman and Kittel, 1950; Kasuya, 1956; Yosida, 1957). In the presence
of an impurity spin the conduction electrons become spin-polarized and Friedel oscillations are
induced in the conduction spin density. The RKKY exchange coupling mainly depends on the
Kondo coupling and the distance dependent spin-spin correlation function yg as

cos(2kpr)

JRKKY ~ JRxs(r) = JENy ; (8.8)

k‘FT
where kp is the Fermi wave vector and Ny is the conduction electron density of states at the
Fermi level. In order to estimate its order of magnitude the r-dependence in this expression
is neglected: Jrkky = JE(N()-

By comparing the two energy scales Tk and Jrkky, Doniach (1977) suggested a phase
diagram that illustrates the interplay of antiferromagnetic ordering and Kondo screening, see
Fig. 8.3. Depending on the Kondo coupling and the conduction electron density the Kondo and
the magnetic energy scale change and an antiferromagnetic and a Fermi liquid phase evolve
in different parameter regimes. In the original work, the considered system was assumed to
be one-dimensional and insulating. The predicted ground state second-order phase transition
would actually be smeared out by the strong quantum fluctuations, which are present in one
dimension. However, higher dimensional systems in fact show signatures of a quantum phase
transition, see the review by von Lohneysen et al. (2007).
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8.3 Heavy fermion compounds: experiments
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Figure 8.4: Experimental pressure-temperature phase diagram for Celng containing a non-Fermi liquid
regime (NFL), an antiferromagnetic (AFM), a superconducting (SC) and a Fermi liquid (FL) phase.
(Figure from Flouquet, 2005)

The theoretical concept of a Kondo lattice is realized in heavy fermion materials. In the
next section we present an experimental phase diagram and discuss the emerging phases.

8.3 Heavy fermion compounds: experiments

The physics of heavy fermion compounds is very rich and cannot be pressed into a single phase
diagram. An overview from an experimentalist’s point of view is, e.g., given by Grewe and
Steglich (1991), more recent ones by Stewart (2001) and Flouquet (2005). In the following we
simply consider the example material Celns, which happens to be the “parent compound” of
the 115-family we will discuss in more detail later on. Its pressure-temperature phase diagram,
see Fig. 8.4, illustrates the competition between antiferromagnetic order, Kondo screening
and superconductivity. Apart from the superconducting instability it strongly resembles the
Doniach phase diagram, Fig. 8.3, following from the fact that the application of pressure
directly influences the product of Kondo coupling and density of states, Jx Np.

The physical observables in the Fermi liquid (FL) phase follow the laws of Landau’s Fermi
liquid theory and correspond to those of a Fermi liquid with strongly renormalized parameters.
The properties in this phase imply huge effective quasiparticle masses giving the heavy fermion
compounds their name.

In the presented example the magnetically ordered phase is antiferromagnetic (AFM) with
a (7/2,7/2,7/2) ordering wave vector. However, the exact type of magnetic ordering differs
for different compounds; also ferromagnetic instabilities are observed.

The superconductivity emerging in heavy fermion systems can only to certain extent be
described by BCS theory. The original BCS-theory for conventional superconductors describes
phonon-mediated pairing, whereas the pairing in heavy fermion compounds is expected to be
mediated by magnetic fluctuations. The BCS-like pairs are built from heavy quasiparticles,
which feel a strong on-site Coulomb repulsion. The pairing becomes anisotropic, leading to an
additional symmetry breaking on top of the broken U(1) gauge symmetry, which defines the
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class of unconventional superconductors (Sigrist and Ueda, 1991). In heavy fermion materials
there are indications for a superconducting order parameter that exhibits a d-wave symmetry.
For a broad discussion of the interplay between magnetism and superconductivity in heavy
fermion compounds see Thalmeier and Zwicknagl (2005). Under the influence of a magnetic
field the system exhibits vortices, a property that may arise for unconventional as well as for
conventional superconductors.

In Celng as well as in some other Ce- and U-based heavy fermion compounds the supercon-
ducting instability emerges in the vicinity of a quantum critical point terminating an antifer-
romagnetic second order phase transition line. While in Celng AFM and SC do not coexist, a
coexistence of these two phases seems possible for other compounds like e.g. CePdsSis.

The transition temperatures 7, for this material class are of the order of a few Kelvin and
roughly one order of magnitude lower than in high-temperature superconductors, for which
transition temperatures above 100 K are possible. However, both exhibit anisotropic order
parameters, while their underlying pairing mechanisms are to date not fully understood. Their
similarities make superconductivity in heavy fermion compounds an attractive field of research.

Non-Fermi liquid (NFL) behavior, often found near a magnetically ordered phase is expected
to be closely linked to the underlying magnetic quantum critical point (QCP) (Stewart, 2001,
2006).

The next section is concerned with the CeMIns series of compounds, which besides interest-
ing features in the superconducting phase are excellent candidates to study quantum criticality.
We will discuss their crystal structure and present their phase diagram.

8.4 The 115-family

The term 115-family denotes the series of compounds CeMIns with M=Co,Rh,Ir discovered
only a few years ago (Hegger et al., 2000; Petrovic et al., 2001a,b). These materials attracted a
lot of interest due to the evolution of a superconducting phase with a relatively high transition
temperature compared to other heavy fermion compounds: CeColns has a T, of 2.4 K. Their
crystal structure is of HoCoGaj type, depicted in Fig. 8.5(a). It consists of alternating layers
with Celnz and MIng giving rise to a two-dimensional behavior confirmed by explorations
of the Fermi surfaces (Hall et al., 2001; Settai et al., 2001; Shishido et al., 2002) and local
density approximation band structure calculations (Maehira et al., 2003). This isostructural
alloy series exhibit different ground states at ambient pressure. The doping phase diagram,
see Fig. 8.5(b), shows the competition between superconductivity and magnetism as well as
the coexistence of these two phases. In this context the doping level x tunes the chemical
pressure by incorporating larger or smaller ions, while the charge carrier concentration does
not change.

The application of pressure changes the ground state of these materials, e.g. driving the
ambient-pressure antiferromagnet CeRhlng to superconductivity . This makes them excellent
candidates for studying quantum phase transitions (von Lohneysen et al., 2007). Similarly to
the parent compound Celng the superconductivity occurs in the vicinity of a quantum critical
point. The ambient pressure superconductor CeColny is therefore a material close to quantum
criticality.
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8.5 Motivation: Unconventional hybridization

o O

SC

Figure 8.5: (a) HoCoGas type tetragonal structure realized in CeT'Ins (T'=Rh,Ir,Co). (Figure from
Maehira et al., 2003). (b) Doping-temperature phase diagram for the 115-series at ambient pressure.
(Figure from Pagliuso et al., 2002).

CeColnjy is the most prominent representative of the 115-family. It is a clean type-II super-
conductor with singlet pairing and a d-wave order parameter; its anisotropy is e.g. observed
in thermal conductivity measurements in a rotating magnetic field (Izawa et al., 2001b). The
superconductivity in the presence of an external magnetic field is Pauli-limited, i.e., it is de-
stroyed by parallel spin alignment due to the Zeeman term rather than orbital pair breaking.
For low temperatures and a magnetic field close to H.o speculations arose (Bianchi et al.,
2003) about the existence of a FFLO superconducting state (Fulde and Ferrell, 1964; Larkin
and Ovchinnikov, 1965), where Cooper pairs have a finite momentum and the order param-
eter oscillates in space, leading to a spatially inhomogeneous phase. However, more recent
experiments (Kenzelmann et al., 2008) simply suggest coexistence of magnetism and super-
conductivity in this regime.

Optical conductivity measurements in 115-materials show indications for a non-local hy-
bridization between f- and c-electrons. So far for simplicity reasons such a property was not
accounted for in most theoretical calculations. In the next section we will discuss its exper-
imental evidence and compare it to other HF compounds, where the assumption of a local
hybridization is justified.

8.5 Motivation: Unconventional hybridization

In the Anderson lattice model defined by the Hamiltonian (8.6) f- and c-electrons are coupled
via a hybridization V' produced by their wavefunction overlap. In the low-temperature Fermi
liquid regime a constant hybridization leads to an indirect gap, whose size is related to the
renormalized hybridization taking into account the effect from the on-site f-electron repulsion.
Optical conductivity measurements in certain HF compounds reveal the existence of such a
gap, e.g. for YbFe Sbis, compare Fig. 8.6(a) (Degiorgi, 1999; Dordevic et al., 2001; Degiorgi
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Figure 8.6: (a) Real part of the optical conductivity for the heavy fermion compound YbFe Sbo over
frequency for various temperatures. Below T¢o, = 50K a gap-like feature at approximately 18meV ap-
pears. (Figure from Dordevic et al., 2001). (b) Real part of the optical conductivity for the compounds
of the 115-series as a function of frequency. (Figure from Mena et al., 2005).

et al., 2001). Its size scales with the effective quasiparticle mass, which is closely related to
the coherence temperature (Hancock et al., 2004; Okamura et al., 2007). In contrast, optical
spectroscopy in 115-materials shows a gapless feature (Singley et al., 2002; Mena et al., 2005),
compare Fig. 8.6(b), previously interpreted by a distribution of gap values (Burch et al., 2007).

By regarding the crystal structure of CeMIns, Fig. 8.5(a), the assumption of a non-local
and therefore k-dependent hybridization seems reasonable: f-electrons possibly hybridize with
the c-electrons on adjacent sites. The presence of line nodes in Vi can significantly change
the physics, for example produce the observed gapless feature in the optical conductivity, as
we will show in this work. Such a k-dependence can be seen in the spirit of unconventional
superconductivity, where a Cooper pair carries an internal angular momentum and the pairing
function acquires a k-dependence.

An unconventional, i.e., k-dependent hybridization is accompanied by a strong anisotropy in
momentum space, which will leave some physical properties unchanged while strongly influenc-
ing others. Significant changes are expected in the phase competition with superconductivity
and the character of the favored superconducting phase, since both the Kondo lattice effect
and superconducting pairing compete for the same electrons.

Up to now a momentum-dependent hybridization for heavy fermion system was only con-
sidered a few times starting with Doniach (1987). Ikeda and Miyake (1996) and Moreno and
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8.6 Outline

Coleman (2000) modeled the physics of a Kondo insulator, describing the properties of CeNiSn
and its isostructural compounds. Ghaemi and Senthil (2007) used a similar ansatz as the one
that will be considered in the following. However, Ghaemi et al. discuss different physical
properties. The results presented in the framework of this thesis are published in (Weber and
Vojta, 2008).

8.6 Outline

In this work we are dealing with a momentum dependent hybridization between localized
f and conduction electrons in the framework of the Anderson and Kondo lattice models.
We consider this ansatz in order to model the behavior of heavy fermion compounds with
a non-local hybridization exhibiting momentum-space nodes. Our special focus lies on the
isostructural alloy series CeMIns with M=Ir, Rh, Co.

We analyze the low-temperature properties in the Fermi liquid regime in the framework
of a mean-field approximation. Results are shown for the Fermi surface, the band structure,
thermodynamical properties like the specific heat as well as transport properties like optical
conductivity, electrical and thermal transport. We discuss the behavior of the resistivity in
the high-temperature regime, i.e., above Tk. Furthermore, we are interested in the influence of
the momentum-dependent hybridization on the phase competition between Kondo screening
and magnetically mediated superconductivity, supplemented by a study of the role of magnetic
ordering in the phase diagram.

This work is organized as follows: Chapter 9 introduces the considered model, subjected
to a mean-field approximation in Chapter 10. Thermodynamics as well as transport prop-
erties in the low-temperature Fermi liquid regime are presented in Chapter 11. Chapter 12
discusses resistivity calculations for the high-temperature regime using perturbation theory in
the Kondo coupling. In Chapter 13 we comment on methods for going beyond the considered
mean-field approximation. Chapter 14 studies the phase competition of the Kondo screening
with superconductivity and magnetic ordering and presents phase diagrams from a mean-field
treatment. A summary of the results in Chapter 15 concludes this part.
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The introductory chapter 8 gave a first glance on the Anderson and the Kondo lattice models,
which are used to describe heavy fermion systems. Both are generalizations of the corre-
sponding single-impurity model dealing with a local magnetic ion in a metallic host and are
connected via the Schrieffer-Wolff transformation. In this chapter we generalize these mod-
els to the case of a non-local hybridization. We compare the presented ansatz with the ones
suggested by Ghaemi and Senthil (2007) and Ghaemi et al. (2008).

In order to preserve the full translational invariance of the underlying lattice, on which
c- and f-electrons live, the hybridization function in real space only depends on the relative
position:

Z V(r; — i) (flc;p +hec). (9.1)

Therefore, in k-space the Anderson lattice model with non-local hybridization is given by

Hatnt = (@~ 1)ey ot ) Vel fly i the) ) (e =) fl, fio +U D npirngi - (9.2)
ko ko ko )

As before, cL o ( fli ) creates a conduction (local) electron with momentum k, spin o and energy

ex (ef), and ny o = f;ra i, denotes the number operator for f electrons at site 7. The localized
f-electrons are objected to an on-site Coulomb repulsion. The chemical potential p has been
introduced to fix the total number of electrons in the system, ny + n..

The position-dependent V' (r;—r;), or rather its Fourier transform, the momentum-dependent
hybrization function Vi, serves as a phenomenological input to the theory, not reflecting mi-
croscopic details in the overlap between conduction and localized electrons. The dependence
on the direction k/k can be expanded in spherical harmonics. In contrast to unconventional
superconductivity there are no symmetry restrictions for the parity of the internal angular
momentum. We can split the hybridization function as Vi = V 0y, where [y is chosen to be
normalized as >, |Bk|> = N with A/ being the total number of sites in the system. As we will
see by proceeding in this chapter, thermodynamics as well as most observable quantities only
depend on |Vk2‘

In the Kondo limit fluctuations in the charge degrees of freedom of the localized electrons are
frozen out, and the infinite value of the Coulomb repulsion ensures that each site is occupied
by exactly one f electron (ny = 1). As in the impurity case, this limit is determined by
Eq. (8.4), now with an effective hybridization T' = 7>, |Vi|?6(ex — p). Alternatively, this
limit is imposed by V' — oo, U — oo, and € — —oo, while Vz/ef is kept finite.

The Schrieffer-Wolff transformation (SW'T), originally performed in the single impurity case
(Schrieffer and Wolff, 1966), projects out empty and doubly occupied f levels. It leads to the
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KLM (Hewson, 1997)

HKLM = Z Ekc;rcgcka + Z 2Jkk/6_i(kl_k)RiSi * Sk k!,
ko Kk'i (9.3)

Hy

which is equivalent to the ALM in the Kondo limit. The conduction electron spin is expressed
via Sk = D, 0 CL »00a'Ck/o’ /2, which couples to S; corresponding to the spin of the f-electron
sitting at site ¢. We introduced the shortcut €, = ex — p.

In the presence of a momentum-dependent hybridization the Kondo coupling becomes

Lo,
Utep—pn  —(ef—p)

Je = ViV ( ) = JoSx B (9.4)

with Jy = V2(U+Elf_u + _(E;_u)). Other interaction terms produced by the SWT like an
electron-electron scattering term, which can be absorbed in the chemical potential, or a po-
larization of the conduction electrons by the impurity spins leading to an RKKY interaction
are omitted in this discussion. Please note that the RKKY interaction will explicitly be
re-introduced and discussed in Chapter 14. The SWT eliminates the hybridization term in
favor of a spin-spin interaction between the local and the conduction electrons, which finally
produces the Kondo effect.

A momentum-dependent hybridization in the context of heavy fermion metals has also been
considered by Ghaemi and Senthil (2007). They discuss the exchange term

(

im)

with Spm = > .0 C,Tnao*w/cmax /2. In order to compare their ansatz with ours we rewrite the
Kondo term H; in real space:

Hy =200 Bni_iSi - Smn - (9-6)

imn

The function f,,—; is equal to V(r,, —r;)/V and denotes the Fourier transform of fx depending
on the distance ry, — r;. Spn = >, cingaw/cm,/ /2 is a non-local conduction-electron spin
density.

‘H s is based on the underlying Anderson model, which fixes the exchange symmetry con-
tained in the Kondo coupling. As argued by Coleman and Tsvelik (1998), only in the pres-
ence of correlations in the conduction band an Anderson model can lead to a multi-channel
Kondo model because of conduction electron interactions suppressing charge fluctuations. This
means, we are dealing with a single-channel Kondo model. In contrast, H’; describes a multi-
channel Kondo model: The localized spin at site ¢ separately couples to linear combinations
of conduction electron spin densities at the neighboring sites .+ JimSmm. Each linear
combination represents a screening channel. The number of screening channels is given by the
coordinate number of the lattice. These channels compete with each other. The one leading to
the lowest ground state energy will dominate the low-energy properties of the system (Nozieres
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and Blandin, 1980). Depending on the microscopic properties of the system it is possible that
a higher-angular momentum channel like d-wave is favored. Within a slave-boson mean-field
treatment, discussed for our model in the subsequent chapter, each screening channel corre-
sponds to a different saddle point. Therefore the single- and multi-channel models H; and
‘H j» become equivalent, if H j is dominated by only one channel.

Instead of dealing with a phenomenological ansatz, Ghaemi et al. (2008) considered a full
microscopic treatment of a f! band in a Ce-based heavy fermion metal. Due to the influence
of spin-orbit coupling and crystal field interaction the f!-level splits up (Cox and Zawadowski,
1999). The microscopic model takes into account the low-energy Kramers doublet.

The presence of a non-local wave function overlap between c- and f-electrons is able to produce
a momentum-dependent hybridization, which is taken into account in the considered ALM and
KLM. In the next chapter these models are simplified by a mean-field approximation, which
is able to capture the basic properties in the Fermi liquid phase.
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10 Mean-Field Approximation

The Anderson and the Kondo lattice models, both describing heavy fermion compounds, were
introduced in the previous chapter. For treating the contained interaction terms we apply a
mean-field approximation reducing the problem to a non-interacting two-band Hamiltonian
with renormalized parameters. This description is able to capture the properties in the Fermi
liquid phase.

The mean-field approximation for both models will be discussed separately: For the ALM
slave bosons are introduced, whereas in the KLM the local spins are expressed via a pseudo-
fermion representation and the spin interaction term is decoupled using auxiliary fields. It will
further be shown that the results become equivalent in the Kondo limit.

The development of a mean-field treatment for the Kondo and related models started in
1979 with Lacroix and Cyrot (1979) introducing a Hartree-Fock treatment for the Kondo
lattice model. Read and Newns (1983b) studied the Cogblin-Schrieffer model, a generalization
of the Kondo model with an N-fold spin degeneracy (Cogblin and Schrieffer, 1969). The
impurity spin is represented by fermionic auxiliary particles obeying a number constraint. In
a functional integral formalism the constraint is enforced by a dynamic Bose-like field, which
plays the role of a Lagrange multiplier. By applying a Hubbard-Stratonovich transformation
the Kondo interaction is decoupled in favor of extra Bose fields. In a static approximation those
fields and the Lagrange multiplier are substituted by constants, whose values are determined
by claiming stationarity of the action with respect to these mean-field parameters. In the limit
of large spin degeneracy N the fluctuations around the mean-field solution freeze out and this
approach becomes exact.

With the slave boson method (Coleman, 1984), this approximation scheme was applied to
the degenerate single-impurity Anderson model at infinite U by Read and Newns (1983a).
The infinite Coulomb repulsion prohibits double occupancy of the f-level. This constraint is
implemented by introducing an additional slave boson operator creating an empty f-level. The
total number of f-electrons and slave bosons in the system is therefore always 1. This scheme
can easily be generalized to the U = oo Anderson lattice model, e.g. discussed by Millis and
Lee (1987).

The lattice version of the Cogblin-Schrieffer model, the SU(/N) KLM, was studied by Read
et al. (1984) showing the stability of the nonmagnetic state in the large-N limit.

An overview about these mean-field methods and other techniques tackling this problem is
given by Hewson (1997).

Please note that the models we are dealing with do not have a large spin degeneracy but
have spin-1/2. However, the mean-field solutions derived in this chapter correspond to N = oo
saddle points of certain SU(/NV) Anderson and Kondo lattice models.

Now, we will explain how the slave boson method can be adapted to our ALM with non-local
hybridization.
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10 Mean-Field Approximation

10.1 Anderson lattice model

In the limit of infinite Coulomb repulsion U, doubly occupied states are projected out and the
f-level at each site ¢ is either empty or occupied by an up or a down spin electron. Therefore,
the physical f-electrons can be subsituted by an auxiliary fermion f;, and a slave boson 7;
(Coleman, 1984), via

fio =11 i (10.1)

In order to project out the unphysical states in the enlarged Hilbert space, the additional
constraint

Z -]Firoficr + TJZLTZ' =1 (102)

has to be imposed.
Using the substitution (10.1) the bare f-level term in Eq. (9.2) becomes

Z 6ffiTafi0' - Z efﬁari T;[fia = Z efﬁa'fia + Z Efﬁaﬁar;rri : (103)
i 10 0 e

The second term on the right-hand side of the equality sign contains the number operator of
the auxiliary fermion and the slave boson at site 7, which cannot be finite simultaneously due
to the constraint (10.2). Therefore, this term vanishes.

By taking the static approximation in the corresponding functional integral formalism, the
slave boson condenses ({r;) = r) to a translationally invariant constant in order to preserve the
translational symmetry of the lattice. The hybridization between ¢- and f-band is therefore
rigid and the mean-field Hamiltonian reads

HarmMF = Z fkcLO—CkU + Z ﬁff;rmfka + Z Vkr(ﬁ(acka + C]tgfkcr)
ko ko ko

(10.4)
—A (Z fl];o.fko' +N(r? — 1)) — (Z chckU —Nnc> )
ko

ko

The occupation number constraint (10.2) was implemented using a Lagrange multiplier A, in
which the effect of the chemical potential ;1 on the auxiliary fermions f was absorbed.

The values of the parameters 7, A and p are determined by the minimum of the free energy
of the system leading to the mean-field equations

ZVk<ﬁwckU+h.c.> = 2Nr, (10.5a)
ko
S (Hoh) = N(A—17), (10.5b)
ko
Z<CLngg> = Nnc, (10.5¢)
ko

which are solvable in a self-consistent manner. The occurring expectation values can be ex-
pressed by Green functions of the two-band mean-field Hamitonian (10.4), listed in Appendix
B.1.
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10.2 Kondo lattice model

10.2 Kondo lattice model

For a mean-field treatment of the KLM we first introduce Abrikosov pseudo-fermions fw
(Abrikosov, 1965), with whom the spin S; can be expressed as

l—s =
Si= 32 Fhowo T (10.6)
oo

If we consider the KLLM as being produced from the ALM via the Schrieffer-Wolff transforma-
tion, the Abrikosov fermions can be viewed as the equivalents to the local f-electrons in the
original ALM.

The number of pseudo-fermions per site has to be fixed with an additional constraint:
> fhfa=1. (10.7)
The Kondo term becomes
Hy=—Jo Y. Bm-iBy iflCnoClo Fior- (10.8)

imnoo’

Bilinear terms arising from this substitution are neglected, since they can be absorbed in a
redefinition of the chemical potential y and the Lagrange multiplier A, which is introduced
to fix the particle number constraint for the f-electrons, Eq. (10.7).

With a Hubbard-Stratonovich transformation in the corresponding path integral this four-
operator term H; is decoupled by introducing an auxiliary field b; conjugate to

~Jo > B ifhCns s (10.9)

reflecting the hybridization between the f—electron at site ¢ and the c-band. At the saddle
point the field b; condenses to the homogeneous value b, leading to a Kondo lattice mean-field
Hamiltonian of the form

- b2
HKLMMF = %: EkClT(acka + b%: Ok (C;r(afka + h.c.) + Njo

(10.10)
— Ao (Z ﬁaﬂca B N) —H (Z C;r{acko' B N’flc>
ko ko

The Lagrange parameter Ao, as well replaced by a constant in the static and homogeneous
approximation, fixes the constraint (10.7) on average. The self-consistency equations for the
mean-field parameters b, A\g and p, obtained by minimizing the free energy, are

Y Bl o +he) = —Njo, (10.11a)
ko
Y fote) = N, (10.11b)
ko
Z<CL,CI(U> = Nne. (10.11c)
ko
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10 Mean-Field Approximation

Both presented mean-field approaches for the ALM and the KLM map the original model
onto an effective non-interacting two-band model with self-consistently determined hybridiza-
tion. As temperature grows, the value of the hybridization field b decreases and vanishes at
the Kondo temperature T, implicitly defined by

2 1 B2 x
—_—=— —= tanh ——. 10.12
Jo Nzk: €k an 2T ( 0 )

Above Tk the two bands correspond to the original, decoupled ¢- and f-bands.

The mean-field solution breaks a local gauge invariance of the Bose fields (corresponding to
the slave bosons in the ALM and the auxiliary bose field b; in the KLM), which is restored
upon inclusion of fluctuations (Read, 1985). These fluctuations are included by minimally
coupling the f and ¢ particles to a U(1) gauge field, see Chapter 13.

In the Fermi liquid regime the Kondo lattice system exhibits two temperature scales: the
Kondo scale Tk, which marks the onset of local Kondo screening, and the coherence temper-
ature Teon, below which the electrons scatter coherently and the heavy Fermi liquid evolves.

Because non-local effects are weak, the self-energy of the f-electrons has a negligible k-
dependence (0X¢/0k ~ 0) and the Fermi liquid is local. As pointed out in Sec. 8.2, Tyop is
the energy scale determining all Fermi liquid properties and can therefore be defined via the
specific heat coefficient v as

1
Toon = — 10.13
S (10.13)

setting kp = 1. Derived in the framework of a local hybridization, T,,, can approximately
be estimated with this definition from the 7" = 0 mean-field solution as (Burdin et al., 2000;
Burdin, 2008)

b5
D’
where bg = b(T' = 0) and D is the bandwidth of the conduction electron band. The minimal
direct gap between the two effective non-interacting bands is given by 2by, while the indirect
gap is b% /D. The Lagrange multiplier behaves as A\g ~ Tcon. The low-temperature correction
to all parameters is quadratic in T similar to

Tooh = (10.14)

BT)—by T2
bo T2

coh

(10.15)

Within a mean-field treatment of the KLM, Burdin et al. (Burdin et al., 2000; Burdin,
2001) show that the ratio between the two temperature scales Tk and Ti o only depends on
the density of conduction electrons n. and the band structure. We assume this remains valid
in the presence of a non-local hybridization. In the following the filling n. and the shape of
the conduction band are kept fixed and it will not be differentiated between the two scales T
and Teop-

According to the Luttinger theorem the particle density is related to the volume enclosed by
the Fermi surface, which is fulfilled in the considered model, at least in the Fermi liquid regime.
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10.3 Equivalence of Anderson and Kondo mean-field theories

The large Fermi surface contains conduction electrons as well as localized spins (n. + ny with
ng =1 in the Kondo limit).

The next section shows the equivalence of the discussed mean-field theories for the ALM
and the KLM in the Kondo limit.

10.3 Equivalence of Anderson and Kondo mean-field theories

The equivalence of both introduced mean-field theories does not come as a surprise. As already
pointed out, the Abrikosov pseudo-fermions are reminiscent of the f-electrons in the framework
of the ALM considering the connection via the Schrieffer-Wolff transformation. The auxiliary
fermions f in the mean-field treatment of the ALM are introduced in order to describe the
local spin degrees of freedom. Furthermore, both models are mapped onto an effective model,
where all the interactions are contained in a renormalized hybridization between c- and f-
band. In this section we prove this conjecture on a formal level by showing that the mean-field
equations become equivalent in the Kondo limit.

The Kondo limit is imposed in the parameter limit U — oo, V' — oo and € — —o0o, while rV/
and €7 — A are kept finite. In the limit of infinite U the Kondo coupling becomes Jy = V?/|e|.

In this parameter limit the slave boson condensation parameter r vanishes, since the renor-
malized hybridization 7V has to stay finite. Therefore, the average occupation of f electrons
per site becomes unity, and f and f electrons are formally equivalent.

The unrenormalized f-level €f goes to —oo, while the normalized level ey — A stays a finite
fraction of the bandwidth in order to fix the occupation constraint ) f;r f; = 1. Therefore,
the ratio V2/|\| becomes equivalent to Jo = V?/|ef| in the Kondo limit.

By using this knowledge about the behavior of the parameters, we see that the mean-field
equation (10.5a) transforms as

1 V2 = Ji s
rV = W(Z )\ﬁk <_lio'cko + CLgfka')> - _2/8/<§ ﬂk (ﬂacka + C;rm'fko)> =0 (1016)

ko

into the Kondo mean-field equation (10.11a). Both, V" and b describe the effective hybridiza-
tion in these two models.

The equivalence of the other two mean-field equations, (10.5b,c) and (10.11b,c), can be seen
directly. We have therefore shown the formal correspondence of the two mean-field theories in
the Kondo limit.

In conclusion, the developed approximation scheme on the level of mean-field theory leads to
an effective non-interacting two-band model reflecting the low-temperature properties of the
system in the Fermi liquid regime. The next chapter will study these properties while focusing
on the effects arising from the non-local hybridization.
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10 Mean-Field Approximation
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11 Low-temperature properties of the Fermi
liquid state

In the previous chapter we described a mean-field approximation for the Anderson and Kondo
lattice model. A self-consistent solution of the mean-field equations gives an appropriate
description of the low-temperature Fermi liquid state in the absence of inter-moment exchange
and ordering. In this chapter we study thermodynamical as well as transport properties in
this regime.

Since the focus lies on the 115-family, whose layered structure leads to a quasi two-dimensional
behavior, the calculations are carried out for two-dimensional systems. On a square lattice a
nearest-neighbor hopping of conduction electrons leads to the tight-binding dispersion

ex = —2t (cosk, + cosky) . (11.1)

If we assume that f- and c-electrons live on the same lattice sites {r;}, the hybridization,
Vk = V Bk, can be on-site leading to a s-wave configuration or can be composed as a linear
combination of the overlaps between a f-electron and the c-electrons on neighboring sites. In
the following we will consider

1 s-wave
Bk = cosky +cosk, extended s-wave . (11.2)
cosky —cosky dy2_2-wave

Similar hybridization functions have been used by Ghaemi and Senthil (2007).
Band-structure calculations (Maehira et al., 2003) suggest an effective two-dimensional

model for the 115-materials, compare Fig. 11.1, where conduction (In 5p) and localized elec-

trons (Ce 4f) live on two different interpenetrating square lattice. We will also touch upon

|
[
|
|
(F =
Figure 11.1: Lattice configuration for an effec-

. tive model for 115-materials: In 5p (conduction
Ce 4f! ' electrons) and Ce 4f (localized electrons) live
I

- —-|--  on two interpenetrating square lattices. (Figure
from Maehira et al., 2003).
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11 Low-temperature properties of the Fermi liquid state

this more realistic spatial setup and study the hybridization functions that can be constructed
from such a configuration:

ks ky -
B = { 2cos - cos 5 extended S-wave (11.3)

2 sin %I sin %y D,,-wave

In contrast to superconductivity there are no symmetry restrictions forbidding odd parity
hybridization functions. Most results obtained for even parity hybridizations (corresponding
to an even angular momentum ¢) like the fy-functions defined in Egs. (11.2) and (11.3), can be
generalized to systems with odd parity, since most physical observables only depend on |Vi|?
and are only sensitive to the position of nodal lines in the hybridization function. An exception
from this is the case of p; or p, breaking down the discrete rotational lattice symmetry Cy4 to
Cs with strong influence on the transport properties. This specific case will be briefly discussed
in the transport section 11.5.

In the remainder of this chapter we discuss the influence of Gy on the band structure and
the Fermi surface, Sec. 11.1, calculate thermodynamical properties, Sec. 11.2, with a focus
on the specific heat and the definition of the effective mass. Then, we study the effect of an
external magnetic field that couples to the spin degrees of freedom, Sec. 11.3. We show how
the influence of the non-local hybridization becomes significant for the optical conductivity,
Sec. 11.4. Finally we calculate electrical and thermal transport properties in Sec. 11.5 and check
the validity of the Wiedemann-Franz law. Unless otherwise noted the subsequent calculations
are carried out in the framework of the Kondo model.

11.1 Band structure and Fermi surface

The eigenvalues of Eq. (10.4) determine the band structure

1
212k = 5 <—)\0 + e+ \/()\0 + &)? + 45251%) : (11.4)

The hybridization [y vanishes along so-called “nodal” directions implying a band structure
along this direction that consists of the original c-and ]?—bands crossing each other, compare
Fig. 11.2(a). In a direction where the hybridization is finite the two bands are hybridized
leading to two repelling quasiparticle bands z; 9i. Therefore a heavy band at the Fermi surface
evolves (Fig. 11.2(b)). The repulsion is at its maximum along the antinodal direction. Please
note that a vanishing hybridization along certain lines does not mean that some local moments
remain unscreened; in fact the Kondo effect is fully developed in this Fermi liquid regime.

For a d2_,2 hybridization nodal lines lie along the diagonals k; = +k,, antinodal directions
are given by lines with £, = 0 and &k, = 0, respectively. The f-level is assumed to be non-
dispersive, the two bands 21 ok thus do not overlap and below half filling, n. < 1, the upper
band z1k is empty and the Fermi surface is determined by zo = 0.

The momentum distribution function ny = <chk>, also shown in Fig. 11.2 for the corre-
sponding directions, consists of a sharp step along the diagonal, and becomes rounded for
finite hybridization at the “small” Fermi surface, the Fermi surface of the original c-electrons
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11.2 Thermodynamical properties
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Figure 11.2: Band dispersion of the hybridized bands 21 ok, Eq. (11.4) and the corresponding momentum
distribution function ny for a dg2_,» hybridization along (a) the momentum space diagonal and (b)
along a direction enclosing an angle ¢ = 0.1957 with the k, axis. Parameters are chosen as Jy/t = 2.0
and n. = 0.4.

with vanishing hybridization. The jump height at kp corresponds to the quasiparticle weight
Z, discussed in the next section.

For all plots shown in Figs. 11.3, 11.4, 11.5 and 11.6, a set of mean-field parameters obeying
the mean-field equations (10.11) was determined numerically. Each set of parameters used to
generate these plots leads to an identical value of the specific heat coefficient v implying iden-
tical coherence scales Tiop, compare Eq. (10.13). The Fermi surfaces in Fig. 11.3 refer to the
hybridization functions defined in Eq. (11.2). In the case of d,2_,» hybridization (Fig. 11.3(c)
and (d)) the Fermi momentum kp is small in nodal and large in antinodal direction. Due
to the momentum dependence in fx the function kr(¢) can be multivalued, as depicted in
Fig. 11.3(d). This preferably happens at low band fillings n.. For the extended s-wave hy-
bridization the lower band crosses the Fermi surface twice leading to two Fermi sheets.

Fermi surfaces of D, and extended S-wave hybridization defined in Eq. (11.3) are displayed
in Fig. 11.4. Apart from a rotation by 45 degrees the structure of the Dy, and the d,2_,2
Fermi surface are similar.

The next section is concerned with changes in the thermodynamical properties arising from
the strong angular dependence in the band structure.

11.2 Thermodynamical properties

The introduced non-interacting two-band picture with effective parameters containing the
interaction of the original model reflects the low-energy thermodynamic properties of the
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11 Low-temperature properties of the Fermi liquid state
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Figure 11.3: Fermi surfaces for (a) s-wave, (b) extended s-wave, and (c,d) d,2_,2-wave hybridization.
The band filling is n. = 0.3 in panels (a)-(c), whereas n, = 0.1 in panel (d). The Kondo coupling is
chosen such that the specific heat coefficient and therefore the coherence scale T¢,), are identical in all
four cases: (a) Jo/t = 1.0 (\g/t = —0.025, pu/t = —2.47, b/t = 0.281), (b) Jo/t = 0.89 (Ag/t = —0.0067,
u/t=—2.3,b/t =0.281), (c) Jo/t = 0.97 (Ao/t = —0.0061, u/t = —2.46, b/t = 0.173), (d) Jo/t = 1.957
(Mo/t = —0.0385, u/t = —3.698, b/t = 0.466).

Figure 11.4: Fermi surfaces using the hy-

bridization functions (11.3) for interpe- (=m.70) () (=) (1)
netrating ¢ and f square lattices. (a) Ex- (a) (b)
tended S-wave with Jo/t = 0.46 (Ao/t =
—0.001, p/t = —2.34, b/t = 0.138), (b) Dgy-
wave with Jo/t = 1.975 (\g/t = —0.011,
w/t = —2.38, b/t = 0.187). In both cases,
n. = 0.3, and the parameters are chosen
such that T¢.p, is the same as for the data in
Fig. 11.3. (—m,—m) (r,—n)(—m,—m) (m,—m)

system. From the free energy of the system

F= —% Z [ln (1 + e_ﬂzlk> +1In (1 + e_ﬁzm‘)] + N pne —i—Nf}—Z + N o (11.5)

k

and invoking expressions (11.4) of z1y and 29, the specific heat can be calculated as

dzf[Tv b; 12 )‘0] ~ T82F[Ta b7 12 >‘0]

Cv =-T dT? = T2

(11.6)
In this approximation the temperature-dependence of the mean-field parameters, given by
Eq. (10.15), is neglected, since it only produces corrections in Cy of the order T2, which
become subleading in the low-temperature limit in comparison to the linear 7T-contribution.
The calculation of these corrections is presented in Appendix C. We find an explicit expression
for the specific heat

Bzak 2 Bzik
e Zlke

CV _ ﬂQZ 22k

~ (11.7)
1 —+ eﬁz2k (1 + eﬂzlk)
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11.2 Thermodynamical properties

This can further be simplified by a Sommerfeld expansion in the low-temperature regime. We
neglect the influence of upper band zjy, which does not cross the Fermi surface, and rewrite

Cv =5 [ degle) [-nip(e)] (11.8)

where np(e) = 1/(1 + €) denotes the dimensionless Fermi distribution. The function g is
defined by g(€) = €2N(€) with the density of states

N(e) = % S e — ). (11.9)
k

Since at low temperatures the derivative of the Fermi distribution is peaked around the Fermi
level at € = 0, we Taylor-expand the function g(€) around this point. The first non-vanishing
contribution arises from the second order term ¢”(0) = 2Ny (with No = N(0)) leading to
. 272

Cy =11, with v = 7]\70. (11.10)
The value of the Sommerfeld coefficient « as well as the linear T" behavior of Cy result from
the fact that at low temperatures only fermions in the vicinity of the Fermi surface contribute
to thermodynamics.

In the following an appropriate definition of the effective mass in the presence of a strongly
angular-dependent band structure is developed. We first have a look at the case with isotropic
band structure and generalize the result to the anisotropic case. For an isotropic system the
quasiparticle energy is approximated by egp = vp(|k| — kp), where the Fermi velocity vp,
the slope of the dispersion at the Fermi level, is related to the effective mass m* and the
Fermi momentum kp via vp = kp/m*. In d dimensions the density of states is given by
Ny = m*k}i;,_2/Cd, where Cy = 27 and Cg = 27°.

In an anisotropic system the gradient of the dispersion generally depends on the direction;
the density of states at the Fermi level becomes

d—1
Noz/d2 u 1QP , (11.11)

FS

suggesting a suitable re-definition of a direction-dependent(!) effective mass

1 1 QP‘
= - . 11.12
o)k e (11.12)
The density of states at the Fermi level can be written as
d='k m*(k)

Ny = . 11.1

o= i (11-13)
FS

In the presence of a non-vanishing first derivative of the quasiparticle dispersion around the
Fermi level, all higher derivatives only contribute to subleading corrections in thermodynamics.
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11 Low-temperature properties of the Fermi liquid state
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Figure 11.5: The quasiparticle velocity at the Fermi level, |V zok|, in a logarithmic plot vs. momentum-
space angle ¢ for (a) s-wave, (b) extended s-wave, and (c,d) dy2_,2-wave hybridization. Parameters
are as in Fig. 11.3(a)-(d). In all four cases, the averaged effective mass m* (as derived from the specific
heat) is approximately 125 times the bare electron mass.

It therefore makes sense to define the effective mass via the first, and not the second derivative
as done by Ghaemi and Senthil (2007).

In the considered two-band system the quasiparticle dispersion in the presence of less than
half filling is given by ESP = zok. In two dimensions Ny simplifies to

Ny = - TR
0 2w 472 |Vizok| ’
FS

(11.14)

where d Ay, denotes the Fermi surface element and m* is the effective mass which can actually be
extracted from specific heat measurements and correponds to the effective mass in the isotropic
case with the same Sommerfeld coefficient . If the Fermi surface can be parameterized with
k = kp(¢), the occurring integral can be rewritten as an integral over the angle ¢:

47r2/ d¢ + (kp(9))° (11.15)

|vk22k|k k()

Ny =

27

Figure 11.5(a)-(d) depicts the quasiparticle velocity |Vizok| for the different hybridizations
introduced in Eq. (11.2). The parameters and underlying hybridization functions are the same
as for the Fermi surfaces in Fig. 11.3(a) -(d). Every set of parameters leads to the same
specific heat coefficient. Its corresponding effective mass m* is approximately 125 times the
bare electron mass. For the d,2_,2 hybridization the quasiparticle velocity |Vkzok| is maximal
at the diagonal ¢ = 7/4, the nodal line of the hybridization, while the effective mass m* (k) is
minimal at these points and approximately equal to the bare electron mass. Away from the
diagonal the velocity rapidly changes. Both s-wave hybridizations lead to a constant or nearly
constant velocity at all positions on the Fermi surface.

The quasiparticle weight Z is defined as the overlap between the c-electron and the low-
energy quasiparticle whose dispersion crosses the Fermi level. In the framework of our two-band
model it is given by (Ghaemi and Senthil, 2007)

Z() = 1 @) (11.16)
(216 — &)2 + b262 '
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11.3 Influence of a magnetic field
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Figure 11.6: As in Fig. 11.5, but now showing the quasiparticle weight Z in a logarithmic plot vs. angle
0.

Figure 11.6 shows plots of Z versus the angle ¢. The set of parameters and the hybridization
functions correspond to the ones in Figs. 11.3 and 11.5. The d,2_,2 hybridization leads to a
strong angle dependence with a maximum of Z at the nodal line ¢ = /4. The quasiparticle
weight for both s-wave hybridizations is constant. For standard s-wave this is due to V =
const., for extended s-wave because Vi and e coincidentally have the same k dependence.

In the next section we discuss the effect of an additional Zeeman term in the Hamiltonian.
We comment on the changes arising for the Fermi surface and the density of states and compare
the thermodynamic effective mass with the cyclotron mass.

11.3 Influence of a magnetic field

A weak external magnetic field coupling to the spin degrees of freedom is expressed by an
additional Zeeman term in the Hamiltonian

Hz=-B Z (gesi + 9£Si) (11.17)

)

where s; and S; denote the spins at site i carried by ¢- and f-electron, respectively.

For simplicity the Landé factors g. and g; are set to 1. For a constant hybridization and at
zero temperature effects on the band structure and the effective mass have been discussed by
Beach (2005). The presence of a momentum-dependent hybridization does not change their
qualitative behavior.

The Zeeman term leads to a spin-splitting of the Fermi surface. The distance between spin-
up and spin-down Fermi sheets in momentum space is angle-dependent due to the strongly
anisotropic shape of Vi. The effective masses - and likewise the density of states - become
spin-split and field-dependent. The density of states at the Fermi level can be expressed as
(Beach, 2005)

Ny(B)=(14+0B/By)Ny  with o ==%1. (11.18)

The characteristic field strength By is proportional to the Kondo temperature Tx.
Within the discussed mean-field approach the Zeeman term splits the two bands 21 ok into
212k + 0B/2. The mean-field parameters acquire a quadratic B dependence via the changes
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11 Low-temperature properties of the Fermi liquid state

in the mean-field equations. This behavior leads to subleading B? corrections in the density
of states N,(B) and the effective masses.

The cyclotron mass, which can be extracted from magneto-oscillation measurements like the
de Haas-van Alphen effect, is defined as

_ 1 0A(E)

me =g (11.19)

where A(FE) describes the area in momentum space enclosed by the quasiparticle iso-energy
curve at zero magnetic field perpendicular to the field direction. In general a three-dimensional
system has a cyclotron mass that depends on the direction of the applied field. Due to
the two-dimensionality and despite the momentum-space anisotropies the cyclotron mass for
our discussed system becomes equivalent to the (spin-averaged) effective mass related to the
Sommerfeld coefficient apart from second order corrections in B.

An example for a significant change in physical observables arising from the k-dependence
of the hybridization is discussed in the next section: Nodal lines strongly influence the results
for the optical conductivity.

11.4 Optical conductivity

We calculate the optical conductivity on the mean-field level in the framework of linear response
theory. It will be shown that nodal lines in the hybridization crossing the Fermi surface
significantly reduce the size of the optical gap. While the gap for a s-wave hybridization scales
with /TeonD, a dg2_y2-hybridization function implies a scaling with T¢op.

In most heavy fermion compounds the optical conductivity consists of a zero-frequency
Drude peak and a well-separated infrared peak produced by intraband and interband exci-
tations, respectively (Degiorgi, 1999; Dordevic et al., 2001; Degiorgi et al., 2001), compare
e.g. Fig. 8.6(a), which shows optical conductivity measurements in YbFesSbia. The optical
gap exhibits a scaling with the coherence temperature: Agpy ~ +/Teon (Hancock et al., 2004;
Okamura et al., 2007).

The non-interacting two-band mean-field model with a local hybridization serves as a good
theoretical explanation for this behavior. Within this model the minimal direct gap between
the bands is twice the renormalized hybridization b and therefore Agpe ~ /TconD (D is
the conduction electron bandwidth), compare Sec. 10.2. Inelastic scattering is not captured
within the mean-field approach, but as the method of dynamical mean-field theory (DMFT)
(explained and discussed in more detail in Chapter 13.1) for the Anderson lattice model with
large U (Grenzebach et al., 2006) shows, the inelastic processes lead to a smeared out gap even
at zero temperature, which is still distinguishable. The DMFT takes full account of dynamic
local correlations and is able to treat elastic as well as inelastic scattering on the same footing.

Although nicely applicable to a group of heavy fermion systems, the two-band model with a
local hybridization cannot describe the optical conductivity observed in Ce M Ins (M =Ir,Rh,Co),
compare Fig. 8.6(b). Here, no well-defined gaps develop.

The finite frequency part of the optical conductivity o can be expressed in linear response
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11.4 Optical conductivity

40 1
30+
o120 © \‘, Figure 11.7: Theoretical result for the real
part of the optical conductivity o1(w > 0)
0L~ @) under the assumption of (a) s-wave (black
" line), (b) extended s-wave (blue line) and (c)
e dg2_,2-wave (red line) hybridization. Mean-
Od 02 04 06 08 field parameters correspond to the ones in

) Fig. 11.3 (a)-(c).

via the retarded current-current-correlation function Il(iw) as
(i) () — 21160 (o + i8) + 170 .. 11.20
o\ (w) " (w—l-l)-f—lmw i s (11.20)

where the second term denotes the diamagnetic contribution with the average density ng and
mass m of the charge carriers, and

B
1109 (iw) = —/drei‘”(TTj(i)T(T)j(j)(0)). (11.21)
0

The electron charge is set to 1 throughout this chapter. Upon neglecting inter-band excitations
the current operator can be expressed as the time derivative of the polarization operator P

j=1i[H,P], (11.22)
where P contains all charge-carrying particles a; with charge ¢; in the following way

P =) ¢Riaa,. (11.23)
o

On the mean-field level the system consists of non-interacting quasiparticles and in lead-
ing order the current-current correlation function Il(iw) reduces to the bare bubble diagram
containing mean-field propagators and a mean-field current vertex. The approximation has to
account for charge conservation, which is expressed by the corresponding Ward identity.

The physical system with charge-carrying localized f electrons contributing to the Fermi
surface is easier to describe in the framework of the ALM: The auxiliary fermion f carries the
full charge of the physical f electrons while the condensation parameter r ~ (ffc) is charge-
conserving. Since ALM and KLM become equivalent in the Kondo limit we choose to work in
the Anderson picture within this section.

According to the formula for the current operator, Eq. (11.22), the mean-field current op-
erator reads

jmr = i[Hammr, Pur] (11.24)
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11 Low-temperature properties of the Fermi liquid state

Figure 11.8: Schematic illustration of
the origin of the optical gap Agp for
a dg2_,2-wave hybridization. The left ©.m) (”/’”)
panel shows the Fermi surface in one
quarter of the Brillouin zone in the pres-
ence of dg>_,2-wave hybridization. The
right panel depicts a zoom into the re-
gion, where the nodal line crosses the
Fermi surface. The arrow indicates the
distance in k-space leading to the optical ;
gap. 0,0) (0
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where the mean-field polarization operator Py contains the charge-carrying particles ¢; and

fi:

PMF = Z Rl (CZUCiO' + ﬁo’ﬁa) . (1125)
[1ea
Details of the calculation are discussed in Appendix D.1. The result becomes

JMF = Z <Vkekchcka +rV, .V (c;rmfka + flio_cka)> . (11.26)
ko

For a constant hybridization the second term vanishes and the current is exclusively carried
by the conduction electrons. In this case it becomes irrelevant if the pseudo-fermions f carry
charge or not.

A current operator that is first calculated in the framework of the full Hamiltonian and
undergoes a mean-field approximation afterwards has a different contribution arising from
the f-electrons. The corresponding current vertex cannot be combined with the mean-field
propagators in the bare bubble diagram: Vertex corrections become necessary.

The evaluation of the current-current correlation function contained in Eq. (11.20) for jur
leads to an isotropic conductivity with the finite-frequency real part

o1(w > 0) = g 3 Q(ZT_Z?;‘Q)I()QA@(LU — (21% — 221)), (11.27)

where

Ax = (Viex)” (22x — €f) (z1x — €7) + 12 (Vi) ((z1% — 20) + 4% V2) +

9 _ (11.28)
+ 2r*ViiVer Vi (221( + 21k — 26f)

and €; = ¢y — A\. Appendix D.2 provides a detailed description of the calculation.

Plots of the finite-frequency part of oy for different hybridization types introduced in Eq. (11.2)
are displayed in Fig. 11.7. Every plot has a finite optical gap Agp¢. In the case of s-wave and
extended s-wave these gaps are given by 2b and |[\g — u|/Vb? + t2, therefore both are propor-
tional to \/TeonD. For dg2_,2 symmetry the bands z1x and 2ok touch at a point on the nodal
line, which in general does not lie on the Fermi surface. For an illustration, see Fig. 11.8. The
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11.5 Thermal and electrical transport

minimal energy distance of the two band at the Fermi level is given by |Ao| ~ Tcon. In the
vicinity of the gap o1(w) behaves like /w — Agpt, derived in Appendix D.3.

Qualitative results are expected to remain valid even beyond mean-field theory. A momentum-
dependent hybridization with nodal lines crossing the Fermi surface is expected to shift optical
spectral weight from /TeonD to Teon. In experiments this would correspond to a situation with
no visible gap due to a broadened Drude peak, which is in agreement with data for CeMIns,
compare Fig. 8.6(b).

In the next section thermal and electrical conductivity are studied with a focus on the
possible anisotropic effects arising from a momentum-dependent hybridization.

11.5 Thermal and electrical transport

For the observation of anisotropies in momentum space the low-energy d.c. transport quantities
are good candidates. Measurements of thermal conductivity and magnetothermal resistance
were for example able to reveal the k-dependent structure of the superconducting gap in
unconventional superconductors like the high-temperature superconductors YBCO (Yu et al.,
1995; Aubin et al., 1997), the spin-triplet superconductor SraRuQOy4 (Izawa et al., 2001a), and
also in the 115-compounds CeColns (Izawa et al., 2001b) and Celrlns (Shakeripour et al.,
2007, 2009).

As theoretically shown by Moreno and Coleman (2000), thermal transport in a three-di-
mensional Kondo insulator becomes anisotropic in the presence of a momentum-dependent
hybridization.

In this section we study the behavior of electrical and thermal transport in the presence of
elastic scattering processes. The calculation is based on the non-interacting two-band mean-
field description in two dimensions with a momentum-dependent hybridization. We investigate
possible direction-dependencies and check the validity of the Wiedemann-Franz law.

The electrical conductivity is defined by a(ij)(w = 0), which is given by taking the zero-
frequency limit of Eq. (11.20). In a non-interacting system like the one we studied up to
now the lack of scattering processes renders the electrical conductivity infinite. Therefore,
we include elastic impurity scattering, which would only have subleading influence on the
previously studied optical conductivity.

The quasiparticles in the 2z sx-band, described by the operators 7 ok, scatter elastically on
impurities with a scattering rate I'(w). Their Green functions change into

1

z— 219k — S12(2)’

Giak,z) = (11.29)

where ¥ 9(z) is the self-energy of the quasiparticles due to these scattering processes. In
relaxation time approximation the real part of the electrical conductivity becomes

Re(o(w =0) = =3 nﬁ(izk)) 5 (k). (11.30)
ko
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11 Low-temperature properties of the Fermi liquid state

The quasiparticle scattering particle rate I'(¢) is equal to —Im3(e) and the coefficient ‘fggj)(k)
is defined by

ég)(k) = 4uivir2VVk(i)VVk(j) + vﬁVel(j)Vel(f) + 2upvir <VVk(i)Vel(<j) + Veﬁ)vvk(j)) (1131)
= Vv,

The complete derivation is discussed in Appendix E.

Thermal transport is calculated in full analogy to electrical conductivity. Following the argu-
mentation of Moreno and Coleman (1996, 2000) the thermal current operator can be obtained
by using Noether’s theorem relating the continuity of energy flow to the covariance of the
action under coordinate transformations. In analogy to their calculation the thermal current
operator is given by

r = Z (zlk(vkzlk)ﬂk’hk + Z2k(Vk22k)7§k72k) ; (11.32)
ko

reflecting the existence of two bands in the system.
The thermal conductivity tensor £(9) can be expressed by the Kubo formula (Mahan, 1990)

k(13) — ﬁ}}% Z) (iw, — w +i6), (11.33)
using
B
219 (i) = — / dre (T, (ni (0). (11.34)
"0

Apart from k-dependent prefactors the correlation function Z(%) and the current-current cor-
relation function II(¥) are similar in their structure.

In relaxation-time approximation and by neglecting the influence of the upper band 21y the
low-temperature thermal conductivity reads

i 1 i N n(z
Re(W) =~ 75 3 (Vi) (Va1 2. (11.3)
ko

In three-dimensional systems the thermal conductivity can acquire a strong angle depen-
dence produced e.g. by line nodes. Moreno and Coleman (2000) discussed this issue for gap-
anisotropic Kondo insulators. For 2D-systems a d,2_,2-hybridization as well as hybridizations
for higher angular momentum ¢ lead to anisotropic hybridization functions fy that change their
sign upon rotation. However, the conductivity tensor does not have enough degrees of freedom
in order to reflect this kind of anisotropy. Technically speaking only the absolute value of Gy
enters the calculation. Therefore, higher order correlation functions, like e.g. angle-dependent
magnetoresistance, would be needed to detect the anisotropy.
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11.5 Thermal and electrical transport

Only a p,- or p,-wave (¢ = 1) hybridization which explicitly breaks down the Cy rotational
symmetry of the lattice to Cs has an anisotropic conductivity tensor. A lattice configuration
favoring such a p-wave hybridization has to be distorted, which would be detectable in the
entire band structure.

The Wiedemann-Franz law expresses the universal relation between electrical and thermal
conductivity and is given by

K

— =1 11.36
oT ’ ( )

where the Lorentz number L is a constant. The derivation of this relation in the context of
isotropic Fermi liquid theory is discussed in Appendix F. For an anisotropic Fermi liquid the
ratio becomes

N\ 2 7
) n’x(z2k)
re Tk (Vi)

O'iiT_ i 2n’(z).
25 (Vi) s

(11.37)

Like the conductivities themselves this ratio is direction-independent. Due to the k-dependent
Fermi velocity the k summations cannot be transformed into energy integrals. However, the
substitution zox = 2ok /(kpT') shows the temperature-independence of this ratio, analogously
to the isotropic case.

Since the considered approach only takes into account elastic scattering processes, it does
not capture the anisotropic violation of the Wiedemann-Fanz law observed in CeColny at its
field-induced quantum critical point (Tanatar et al., 2007), which has been shown to arise from
inelastic spin scattering processes (Smith and McKenzie, 2008).

In the next chapter we access the temperature-dependent resistivity at temperatures above
Tx with a perturbational approach in the Kondo coupling.
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12 Temperature-dependent resistivity

Within this chapter we study the effect of an unconventional hybridization on the resistivity
at elevated temperatures (T > Tk) in the presence of nodal hybridization lines crossing the
Fermi surface.

The temperature dependence of the resistivity p(7") in heavy-fermion systems exhibits spe-
cific features depicted in Fig. 12.1, which shows measurements for CeAls. The peak position
marks the coherence temperature 1., below which the resistivity drops due to coherent mag-
netic scattering. In this regime the material obeys Fermi liquid behavior (p(T) = po + AT?).
For temperatures higher than 7., the magnetic scattering decreases and phonon scattering
sets in. A minimum evolves (not shown in Fig. 12.1) determining the Kondo temperature Tx.

In the following we set up a perturbational approach in the Kondo coupling in order to
access the behavior of p due to magnetic scattering for 7' > Tk. This calculation is in the
spirit of Kondo’s original perturbational approach for the single-impurity problem (Kondo,
1964). The influence of phonon scattering will be neglected here.

In d spatial dimensions the electrical conductivity can be written as

d—1
Oij ~ / C(l2ﬂ)§vi(k)vj(k)7'k, (12.1)
FS

where v;(k) = deyx/dk; is the quasiparticle velocity and 7 Lis the transport scattering rate.
We neglect vertex corrections and assume that Umklapp processes lead to a similar structure

250 — .- .
! . CeAlg
. \.‘
200 : \\\
_ 1501 )
§ . R Figure 12.1: Resistivity p as a function of tem-
%_ . 11r perature T' measured in the heavy fermion
100 : g Lof . 1 compound CeAls. The position of the max-
§ 09F . imum marks the temperature scale T,y - at
: o8| - lower temperatures the particles scatter co-
sor o7l et | herently. The inset shows the resistivity in the
0 2 ‘; 62 8 10x10° low-temperature regime plotted as a function
0 . T (K . of T? emphasizing the Fermi liquid behavior
0 100 200 300 at low temperatures. (Figure from Degiorgi,
T Kl 1999).
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12 Temperature-dependent resistivity

in the scattering rate as processes for which the momentum is conserved. This can be seen

in analogy to an ordinary metal, whose resistivity behavior is correctly reproduced by Fermi
1

liquid theory, because both kind of processes lead to a T2 behavior. Henceforth, T, can be
approximated by the single particle scattering rate given by
7t = —ImY.(k, ex) (12.2)

where Y. is the self-energy of the conduction electrons.
In Sec. 12.1 we calculate the first orders of the perturbation series for the self-energy, which
lead to an expression for the scattering rate. A discussion of the results follows in Sec. 12.2.

12.1 Perturbation series for the self-energy

In this section we develop a diagrammatic expansion for the KLM, valid for the temperature
regime T' > Tk, where the Kondo coupling term can be treated as a perturbation. We consider
the Kondo lattice Hamiltonian (9.3) and express the spins by Abrikosov pseudo-fermions f
(Abrikosov, 1965):

_ T
HKLM = E €k ko Crot
ko

(12.3)
Uaa Oo0/
+2J0 Y BB Sk—i+p—p',0 (Z i pa> . (ZCLJQ ck,g/).

kk/pp’ oo’

The number of pseudo-fermions per site is subjected to a constraint
Z L= (12.4)

In order to set up a perturbation theory it is desirable to fix this constraint in the style of
Coleman (1984). He considered a single-impurity Hamiltonian with slave particles that have
to fulfill only one constraint, Qg = 1, and was able to show that a diagrammatic expansion
can be developed in the grand-canonical (GC) ensemble, whose result is connected to the
result in the physical subspace obeying Qy = 1. A term AQq is added to the Hamiltonian,
where )\ acts like a chemical potential. In contrast to the stationary approach discussed in
Chapter 10, A is not fixed to its saddle-point value, but stays finite and undetermined in
the diagrammatic calculation, and is sent to infinity afterwards for projecting out unphysical
states. A detailed explanation of this formalism is given in Appendix G. For operators O with
vanishing expectation value in the {Qy = 0} subspace, the expectation value in the canonical
ensemble with Qg = 1, i.e., in the physical subspace, can be obtained via

(O)ge .
(O)c = Ahlgo Qoo >\h—>nc}o " (0) e - (12.5)

Unfortunately, such an approach is only exact for the case of a single-impurity problem. If
we e.g. try to fix the lattice constraint on average and apply the same kind of formalism as
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Figure 12.2: Diagrammatic expansion for the self-energy X, in first (a), second (b) and third order (c).
Dashed lines denote the pseudo-fermion propagators f, while solid lines represent propagators of the
conduction electrons c. Vertices are proportional to the Kondo coupling Jj.

for the impurity case, problems occur, since Y, Q;/N (N being the number of lattice sites in
the system) is not restricted to integer values.

However, as the following diagrammatic expansion will show, at least up to third order,
only single-impurity scattering processes are present. We therefore expect the approach by
Coleman to be valid for our lattice model to good approximation. We consider the Hamiltonian
Hxim + A, Q;. In analogy to relation (12.5), the physical self-energy X (k, z) is obtained
from the grand-canonical self-energy X.(k, z, \) by

Se(k, 2) = lim ek, 2, ). (12.6)

The bare Green functions for f and c electrons are

G ik, k) = iknl_ o and GOk k) = lknl_ek
The vertex arising from the Kondo term connects four propagators: an ingoing and outgoing
c- and f-electron. The vertex has the value %ﬁkﬁk/aw/aaa/. The lowest order diagrams
contributing to the self-energy . are depicted in Fig. 12.2. In first order the diagram consists
of the Hartree contribution, which vanishes in the considered paramagnetic phase. The second
and third order diagram can be identified as contributions without multiple impurity scattering
processes, which serves as a justification for the above claim regarding the applicability of
Coleman’s approach.
Calculating the values for the second order terms leads to

(12.7)

2
2@ (k, ik, \) = <2‘]2>2 NS BB D Gor Y oan | GOK,ik)-
K/ ik’ p,ipn 0.0 !
-G (0 ipn)G ) (k4 p — K, ik + ipy — k)
= %Jg ;ﬁzﬁﬁ/ (np(ew) —np(=A)) ; % G = N (o i TR——
= ng ;ﬁﬁﬂﬁ/ (nr(ew) —nr(=A) (np(N) — ne(ae + A)) lkniek, :
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12 Temperature-dependent resistivity

(12.8)

The third order contribution is

2( )(k ikn, A) = Oﬂg Z Z Zﬂkﬁk/ k"

k’ik], k" ik!! ipn
1
(ik!, — exr) (k) — exr) (iky, + ipy, — ikl — N) (iky, + ipn, — 1K — X)(ipn, — A)
3
=500 D BRBRBin (np(ew) = np(=X) (np(ewr) —np(=X))
k/’k//
. < nr(A) s ta) nr(Atar) )
(ikp — e )(ikn — exr)  (kn — ew)(ew — exr)  (ikn — exr) (e — €xr)
(12.9)

The occurring Matsubara summations are evaluated using residue theorem.
For obtaining the scattering rate we are interested in the imaginary part of the physical
self-energy at an energy w = ex:

ImSe(k, ) = lim ™ (Im(k, ik, — w + i, A)|w:€k> . (12.10)
— 00
The second order contribution

3
Iy (k, ) = SwJ50 D Bed(ew — ew) ~ B, (12.11)
k/

is temperature-independent and its k space structure is proportional to 612(. The third order
contribution

1
Ing?’) (k, Ek) = 37TJ ﬁk Z /Bk/ﬁk” e (nF(Ek//) — 1) (5(61( — 6k/) X ,812{ (1212)
k'K

has the same k-dependence arising from the two external lines, while other from factors are av-
eraged out by the internal momentum summations. Its temperature dependence is determined
by the prefactor

/leﬁQN ﬁ2//
g KK (np(exr) — 1) Oex—ewr) = g — X (np(aw) —1) g B26(ex—ew). (12.13)
K’k €k’ — €k K’ €k — €k” Kk’

The momentum summation over k” can be rewritten as an energy integral:

D

2// 1 -n 6//
Ziﬁ_ (np(ew) — 1) = / dQB%(Q) / de"po(e")%()
€k — €k € €k
k -D
i 1/2 "1(2T) i
%/d9ﬂ2(9) /dE/,po( l/) / +€/ +/d6,p0
€ — ex € — ex
-T T
non-divergent ~In %
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(12.14)

Therefore, the third order diagram has a logarithmic divergence. These results lead to a
scattering rate

Jo. D
ot~ JG B <1 + Boln T> . (12.15)

The implications of such a scattering rate are discussed in the next section.

12.2 Discussion

The above calculation was accomplished in the framework of perturbation theory in the Kondo
coupling describing the physics in an elevated temperature regime 7" > Tk and neglecting
phonon scattering. The perturbational approach for calculating the resistivity was, histori-
cally, the method followed by Kondo in his first paper introducing the single-impurity Kondo
model (Kondo, 1964). Apart from k-dependent prefactors we recover the analog result for
the scattering rate 7, ! as in the original calculation with a logarithmic divergence in T Lat
T =0.

However, for a hybridization with nodes crossing the Fermi surface these prefactors drasti-
cally change the resulting resistivity: In the vicinity of a node at k,, the scattering rate diverges
as 7k ~ (k—ky) "2 implying a vanishing electrical resistivity p = 1/0 (where o is determined by
Eq. (12.1))! This means that Kondo scattering itself is not able to produce a finite resistivity.
Physically speaking the conduction electrons with momenta where the hybridization vanishes
do not scatter off the local spins at all; this process shortcircuits all others.

In a physical system additional scattering mechanisms occur, like electron-electron scatter-
ing, interaction between electrons and phonons or scattering between conduction electrons and
static impurities. These processes are likely to render the resistivity finite and influence the
temperature-dependence p(T') in a basic manner.

In conclusion we find that the electrical current for T° > Tk is mostly carried by nodal
quasiparticles, i.e. weakly hybridized ¢ and f electrons, whereas the low temperature thermo-
dynamics is controlled by the behavior of antinodal, i.e., heavy quasiparticles.
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13 Beyond static mean-field theory

The mean-field approximation developed in Chapter 10 provides an appropriate description of
the Fermi liquid phase in the regime T' < Tk . Its great advantage lies in its easy applicability to
the lattice problems and it allows an analytic treatment of most of the calculations. However,
this method has its limitations arising from the lack of fluctuations.

In this chapter we explain how two approaches going beyond the static mean-field level can
be adapted to our model. We discuss the method of dynamical mean-field theory (Sec. 13.1)
and how a non-local hybridization is treated within this approach. We furthermore take a look
on what happens upon including gauge fluctuations on top of the static mean-field approach
(Sec. 13.2).

13.1 Static vs. dynamical mean-field theory: DMFT

The dynamical mean-field theory (DMFT) (Metzner and Vollhardt, 1989; Georges et al., 1996)
is able to go beyond the level of the static mean-field approach by taking into account local
quantum fluctuations. DMFT maps lattice models onto impurity models - the problem reduces
to the degrees of freedom of a single site coupled to an external dynamical, self-consistent
bath. This bath, which can be viewed as a generalized Weiss field, is expressed by an effective
Green function Gy containing the influence of all other sites. The dynamics is carried by this
Green function taking care of local quantum fluctuation. The mapping between lattice and
single-site problem is accomplished by a self-consistency condition, equating the local lattice
Green function with the impurity Green function. The single-site problem can be solved by
different methods. Popular impurity solvers are e.g. a perturbative expansion, the numerical
renormalization group (NRG) (Bulla, 1999), or Quantum Monte Carlo (QMC) (Georges et al.,
1996) with its recently developed continuous time version (Rubtsov et al., 2005). DMFT
becomes exact in the limit of infinite spatial dimensions.

Within DMFT the Anderson lattice model is reduced to an effective single-impurity Ander-
son problem (Jarrell, 1995; Tahvildar-Zadeh et al., 1997; Pruschke et al., 2000; Grenzebach
et al., 2006). DMFT results confirm the heavy-fermion character in the thermodynamic prop-
erties arising from the ALM. It exhibits a band structure that is in agreement with the static
mean-field result: a heavy coherent band crossing the Fermi level and a well-seperated second
band at higher energies. Grenzebach et al. (2006) studied the transport properties in the para-
magnetic phase. The gap in the optical conductivity in the presence of a local hybridization
is smeared out due to quantum fluctuations, but is still distinguishable.

An ALM with a momentum-dependent hybridization has not yet been considered in a nu-
merical implementation of the DMFT. In the following we will (i) present the DMFT self-
consistency equation for a non-local hybridization and (ii) discuss the slave boson method as
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13 Beyond static mean-field theory

an impurity solver for this problem. It will be shown that the results are equivalent to the
ones obtained from the slave boson treatment of the lattice model.

Starting with the full ALM, Eq. (9.2), and integrating out the c-electrons, the DMFT reduces
the original problem to one for a single f-level coupled to a bath with the effective action

B 8
St == [ drar’ S 10065 (= )0 + U [ drnpy (g (o). (13.1)
0 7 0

The bath is represented by the Green function Gy containing all interactions that couple to
the f-electron. With the ansatz

Gy (iwn) = iwn — €5 — A(iwn), (13.2)
we introduce the effective hybridization function A(z) The full f-electron Green function

Gr(2) = (Go'(2) - S4(2)) ", (13.3)

contains the self energy X; resulting from the Coulomb interaction U.
The self-consistency equation for the ALM with a momentum-dependent hybridization term
mapped on a single impurity Anderson model (STAM) reads

1

GALM,IOC(Z) = Z V2
k Z_ﬁf_zf(z)—z_i—k
1

B Z—€f — &(2) —X¢(2) = Cstam(2).

(13.4)

The effective hybridization function ﬁ(z) is determined by the second equality sign in this
self-consistency equation.

By construction, the self energy ¥ ¢(z) and the effective hybridization K(z) are momentum-
independent within the DMFT approach. This can be cured by a cluster extension of DMFT
(for a review see Maier et al., 2005).

Thermodynamical and one-particle properties are easily extractable from DMFT calcula-
tions. Please note that in principle the calculation of transport properties requires a DMFT
ansatz with c-electrons not being integrated out. However, as apparent from static mean-field
results (Sec. 11.5), the presence of a non-local hybridization leads to transport that explicitly
depends on the momentum-space structure of Vi, which cannot be captured in the standard
DMFT approach.

By using the slave boson method as an impurity solver for the SIAM, the DMFT method
becomes equivalent to the slave boson treatment of the ALM. This can be confirmed by an
explicit calculation. The Coulomb term in the effective action (13.1) is decoupled by slave
bosons (where the physical f-electrons are represented by f-particles and slave bosons 7),
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which in combination with the ansatz for the Weiss field Gy, Eq. (13.2), leads to

S = [ dr 32 A0+ ¢ = M)+
7 B (13.5)
+ /deT'Z oA =) f () - )\/dT(’I“Q -1)

We think of introducing these slave bosons as operators in the corresponding Hamiltonian and
not as bosonic fields on the level of the path-integral formalism, implying a differing factor of
r2 in the first term of Sé\éF, see the discussion in Sec. 10.1.

The saddle point equations are

A= ;ng(iwn)ﬁ(iwn), (13.64)
2 = 1_;%;@(1%). (13.6b)

The effective mean-field action SM' allows to extract an expression for the full f-electron
Green function Gy(z) = TQQJz(z) :

7“2

Gr(z) = —. 13.7
7(2) z—(ep —A) —r2A(z) ( )

The high-frequency behavior of this Green function is not given by 1/z, which is due to
the violation of the sum rule for the spectral weight arising from mapping out the Hubbard
satellites in the slave boson approach.

By comparison with Eq. (13.3) we can write down the interaction self energy as

S(z) = (1—:2> (z—ef)—%. (13.8)

In combination with the self-consistency condition (13.4), the hybridization function is deter-
mined as

~ 1 1
Alz) =5 [ 2= (=N - v (13.9)
Zk (Z - (Ef - )\) - z—ek>
The saddle point equations
1 V2
A = — k 13.10
ﬂ;? (iwn — (e = N)) (iwp, — ex) — 12V’ ( 2)
2 V2
2 k
- 1_z 13.10b
" 8 %: (iwn, — ex)(iwn — ) — 72V ( )

become equivalent to Eq. (10.5), which proves our initial claim.
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13 Beyond static mean-field theory

13.2 Gauge fluctuations

After the introduction of slave bosons r in the ALM or the auxiliary fields b in the KLM both
models obey a local U(1) gauge invariance expressed by simultaneous phase rotations in r (b)

and f (f):
ALM: r—ré?  f— fel (13.11a)
KLM: b—be?, f— fe (13.11b)

In the stationary approximation r condenses to a static value with (r) = 7 and (rf) = 7,
which breaks the local gauge invariance between f and r (for b analogous expressions hold).
In analogy to the superconducting phase the evolving Fermi-liquid phase corresponds to a
Higgs/confining phase due to this local U(1) gauge symmetry breaking.

The mean-field condensation in the framework of the Kondo model not only breaks a local
gauge symmetry but also violates charge conservation: By construction the Abrikosov pseudo-
fermion fis neutral and the auxiliary field b carries one electron charge. After condensation the
contribution bchin the mean-field Hamiltonian (10.11) does not preserve charge conservation.

In order to treat small gauge fluctuation on top of the mean-field level the slave boson
operator r and the Lagrange parameter A\ can be substituted prior to condensation by (Millis
and Lee, 1987; Hewson, 1997)

r=a-+ro, rt=al + ro, A=A+Ay. (13.12)

The parameters g and Ay represent the former mean-field values. A perturbation theory for
the bosonic a-operators can be developed. As a result these fluctuations lead to corrections
to the mean-field result of the order of 1/N where N denotes the spin degeneracy. These
corrections are subleading and the Fermi-liquid phase can be considered as stable.

In the context of the Kondo model the consideration of gauge fluctuations restores the charge
conservation: the felectrons minimally couple to the U(1) gauge field A and therefore acquire
charge.

Since the breaking of the local gauge invariance is an artifact of the mean-field approximation
and not related to a physical symmetry breaking, the mean-field transition at Tk between
phases with finite and zero parameter b is only artificial. It does not survive upon the inclusion
of gauge fluctuations, but corresponds to a crossover in a physical system.
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14 Competition between Kondo screening and
ordering

The local magnetic moments in heavy fermion compounds feel a more or less strong intersite
exchange coupling, which can arise from different mechanisms like direct exchange, superex-
change (Anderson, 1950) or the RKKY mechanism (Ruderman and Kittel, 1950; Kasuya, 1956;
Yosida, 1957). For the latter one the spin coupling is mediated by spin oscillations of the con-
duction electrons, while in superexchange the magnetic moments interact via an intermediate
ion.

Such an intermoment exchange can produce not only a magnetically ordered state, but also
other interesting phases like metallic spin liquid phases or magnetically mediated superconduc-
tivity. All the arising phases compete for the localized f-electrons, which order magnetically,
form Kondo-singlets with the conduction electrons in the Fermi liquid phase or intermoment-
singlets in the metallic spin liquid phase. Already the Doniach phase diagram, Fig. 8.3, is
able to illustrate the interplay between antiferromagnetism and the evolution of a heavy Fermi
liquid phase depending on the Kondo coupling and the conduction electron density.

In the presence of a strongly k-dependent hybridization and unconventional superconduc-
tivity, where the pairing function also becomes k-dependent, it is conceivable that the phase
competition depends on the interplay of symmetries between hybridization and pairing func-
tion.

Within this chapter we study the phase competition between Kondo screening, unconven-
tional superconductivity and antiferromagnetic ordering on a mean-field level. In Sec. 14.1
we introduce the Kondo-Heisenberg model, which contains all essential effects that will be
discussed here. In Sec. 14.2 we focus on the competition between magnetically mediated
superconductivity and Kondo screening for different k-dependent hybridization and pairing
functions. In Sec. 14.3 we expand this theory by allowing for an additional magnetically
ordered phase and include the presence of a magnetic field.

14.1 Kondo-Heisenberg model
The Anderson and Kondo lattice models, Egs. (9.2) and (9.3), already contain an intermoment-
exchange mediated by the conduction electrons. At the mean-field level this information is

lost due to the introduction and condensation of slave boson and auxiliary fields r and b. In
order to restore this coupling we introduce an additional term

Ji
Hu =) 7HSZ- -8, (14.1)
ij
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14 Competition between Kondo screening and ordering

which explicitly describes the exchange interaction between two local moments at different
sites ¢ and j. The model Hxym + Hu is known as the Kondo-Heisenberg model.

A mean-field treatment of this model is accomplished by combining the mean-field approx-
imation for Hgkpm developed in Sec. 10.2 with a mean-field decoupling of the Heisenberg
term Hp. In general possible decoupling channels are the particle-particle channel (or Cooper
channel) producing superconductivity, the particle-hole channel leading to a RVB-like phase
consisting of gapless spinons without broken symmetry and the magnetic channel accounting
for magnetically ordered phases.

The Kondo-Heisenberg model with local hybridization at the mean-field level was studied
by Senthil et al. (2003, 2004). In these references the focus lies on the existence of a RVB-like
metallic spin liquid phase FL*, which can be stabilized e.g. by geometric frustrations. FL*
consists of conduction electrons forming a small Fermi surface and a spin liquid out of spinons,
which have fractionalized excitations due to spin-charge separation and are coupled by a Zso
or U(1) gauge structure. Beyond mean-field theory a quantum critical point (QCP) between
FL* and FL phase develops, which in contrast to the QCP between antiferromagnetic and FL
phase is not connected to a symmetry breaking but only associated with the breakdown of the
Kondo effect. The mean-field approximation shows the existence of a superconducting phase
in the vicinity of this QCP.

Furthermore, Senthil et al. (2003) study the interplay of this FL* phase with superconduc-
tivity on a two-dimensional triangular lattice, while the mean-field treatment in (Senthil et al.,
2004) accounts for such a FL* phase and a weak antiferromagnetic instability computed for a
cubic lattice structure.

In the remainder of this chapter we investigate the effects of a superconducting and a magnetic
instability in the presence of an unconventional hybridization. At the mean-field level the
Heisenberg term Hy has to be simultaneously decoupled in the Cooper and the magnetic
channel, which is accomplished by a splitting

Huwmr = (1 — 2)Hu scmrF + CHHAFM,MF (14.2)

with a balancing factor z.

In Sec. 14.2 we develop the formalism for the mean-field description of a magnetically medi-
ated superconductor with unconventional pairing and study its phase competition with uncon-
ventional Kondo screening, while suppressing a possible magnetic instability by setting = 0.
This approach is supplemented by Sec. 14.3, where an additional antiferromagnetic ordering
is considered, implemented by a finite value of x.

14.2 Magnetically mediated superconductivity

Superconductivity mediated by magnetic fluctuations instead of lattice vibrations is a widely
accepted scenario for heavy fermion compounds. The mean-field approach is based on a spin
representation in the symplectic symmetry group Sp(/N) (Read and Sachdev, 1991; Sachdev
and Read, 1991; Sachdev and Wang, 1991).

In this section we introduce the mean-field formalism (Sec. 14.2.1), present phase diagrams
as a function of Kondo coupling and temperature illustrating the competition between Kondo
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screening and superconductivity related to their symmetry in momentum space (Sec. 14.2.2),
and discuss general analytical aspects of pairing in the presence of an unconventional hy-
bridization (Sec. 14.2.3).

14.2.1 Mean-field formalism

For a decoupling in the Cooper channel it is favorable to express the spin operators in the
Heisenberg term Hy by Abrikosov fermions f and approximately rewrite it as

J9o L L L
Ha=-> 3 (finjl - fiiij> (ﬁTﬁl - ﬁlﬁT) : (14.3)

v

Expressing a product of spins in terms of singlet pairs corresponds to a Sp(N) spin represen-
tation (Read and Sachdev, 1991; Sachdev and Read, 1991; Sachdev and Wang, 1991). For a
spin 1/2 the corresponding group is SU(2)=Sp(1); the differing factor of 2 in the argument
originates in the fact, that Sp(N) describes a group of 2N x 2N matrices, whereas SU(N) is
a group of N x N matrices.

By introducing the non-local bond field

Aij = _<J?mfj¢ - };J}T% (14.4)

the Hamiltonian can be decoupled to

Hu,scMrF = — Z % [<2AijﬁTﬁl + h.c.) - |Aij|2} . (14.5)
(]

Under the assumption of time reversal invariance the bond field can be chosen as real and the
relation A;; = Aj; holds.

Due to the representation in Sp(/N) this mean-field approximation is controlled by the pa-
rameter N: In the limit of large N the mean-field solution becomes exact and corresponds to
a saddle point of the Sp(IV) theory, which explicitly selects the particle-particle channel.

In order to get a consistent large-/N limit in the total Hamiltonian Hykym + Hy the particle-
particle decoupling in the Heisenberg term should be accompanied by a particle-particle de-
coupling in the Kondo term of Hyxrnm based on Sp(N) instead of SU(N). However, in the
presence of time-reversal invariance and with the condition ny = 1 the mean-field approxi-
mations arising from particle-particle or particle-hole decoupling in the Kondo term become
equivalent. Therefore, Hy sc,mr can be combined with the Hykpm mr introduced in Sec. 10.2.

Depending on the structure of the bond field A;; the translational invariance of the lattice
can be broken leading to so-called valence bond solids. A phase with non-zero A;; preserving
the lattice symmetries is described by a spin liquid. Since we are only interested in the latter
scenario, the condition of a translationally invariant A;; is imposed by hand.

The spatial structure of A;; within the unit cell is intimately connected to the structure
of the Heisenberg coupling Jy;; between the f electrons. For a nearest-neighbor interaction
the unit cell contains two distinguishable bonds - a horizontal and a vertical one. Under the
already mentioned restrictions of conserved translational and time reversal symmetry, only
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14 Competition between Kondo screening and ordering

two configurations are possible solutions to the mean-field problem: A;; i ; = A; ;45 = A,
which will be denoted as the extended s-wave configuration, and A; ;1 = —A; i1y = A,
where horizontal and vertical bonds acquire different signs. The latter configuration is called
dg2_,2-wave. If the Heisenberg interaction is assumed to only be finite for f electrons on
next-nearest neighbored sites, a mean-field solution with differing signs for diagonal bonds
(A it +)/2 = —Diit(a—g)/2 = A) becomes possible leading to a d,;, pairing function.

In momentum space the mean-field Hamiltonian can be written as

Hu,sc,MF = Z Wk (ﬁqﬁkl + h.c.) + JHNA2 (14.6)
k

using the shortcut
Wk = —JHAOzk, (14.7)
where oy contains the momentum space structure of the mentioned spinon pairings:

cosk; + cosk, extended s-wave
i = cosky —cosky dg2_2-wave : (14.8)
2sink;sink,  dgy-wave

The self-consistency equations for the mean-field parameters, Egs. (10.11), are extended by

Sl fi i + hee) =2NA, (14.9)
k

which is obtained by minimizing the free energy with respect to A. The occurring Green
functions are listed in Appendix B.2. The quasiparticle energies, the eigenvalues of the mean-
field Hamiltonian, read

1 —
Flo34k = iﬁ </\3 + & 42262 + W2 +

. 9 1/2 1/2
i<—4(Aoek+b25ﬁ)2—4eiWﬁ+(A3+ei+2b26ﬁ+wﬁ)> ) . (14.10)

In the limit of vanishing A these bands evolve into the quasiparticle bands z; ok, Eq. (11.4).

The spinon pairing is given by <ﬁ<Tﬁk l> o Aay, which can be extracted from the self-
consistency condition, Eq. (14.9). However, the momentum space structure of the conduction
electron pairing also takes into account the momentum-dependent hybridization. Determined
by the corresponding Green function, Eq. (B.5d), it reads <CLTCT_k i> o ABEaxMy. The function
My is smooth and respects the lattice symmetries. The pairing acquires additional zeros in
momentum space arising from the factor ﬂﬁ. This will affect the thermodynamical properties
of the system: power-laws, e.g. for the specific heat, are sensitive on additional nodal lines
crossing the Fermi surface. For a two-channel Kondo model such a composite pairing also
arises (Dzero and Coleman, 2008).

In the next section we present phase diagrams based on a numerical solution of the mean-field
equations illustrating the interplay of symmetries between hybridization and pairing function.
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14.2 Magnetically mediated superconductivity

14.2.2 Numerical results: Phase diagrams

In order to focus on the phase competition between Kondo screening and superconductivity
we keep the balancing factor = to zero and solve the mean-field equations (10.11) and (14.9)
in a fully self-consistent manner by numerical iteration.

The resulting phase diagrams as a function of Kondo coupling Jy and temperature T for vari-
ous hybridization and pairing symmetries are depicted in Fig. 14.1. The phases are determined
by the two parameters b and A occurring in the mean-field Hamiltonian Hgrm,mr +Hu,sc,MF-
Only A is an order parameter in the strict sense, since beyond the mean-field description b is
not associated with symmetry breaking. Four different fully translationally invariant phases
evolve. For both A and b vanishing, the resulting phase is decoupled and therefore trivial.
It develops at sufficiently high temperatures. If Jij dominates over Jy, we get A # 0 and
b = 0: The conduction electrons and the spinons form decoupled liquids, which corresponds
to the already mentioned fractionalized Fermi liquid FL*. Although a phase with non-zero A
has off-diagonal order in the sense that the anomalous expectation value (fffT) is finite, this
phase is not superconducting, since the spinons do not carry physical charge. For b # 0 and
A = 0 the resulting phase is the conventional Fermi liquid (FL), whose thermodynamical and
transport properties are extensively studied in Chapter 11. If both parameters A and b are
non-zero, the coexistence of Kondo screening and spinon pairing leads to superconductivity
that is mediated by the magnetic interaction between the f electrons. As the phase diagrams
show, at any non-zero Jy and sufficiently low temperature the FL phase is always unstable
towards superconductivity.

Adding fluctuations in the mean-field approach (e.g. by coupling the order parameter to
a gauge field) turns the finite-temperature mean-field phase transition of FL and FL* into
crossovers (Senthil et al., 2003, 2004). Only the boundaries to the superconducting phase
remain real phase transitions, as they are connected to a symmetry breaking.

Each pairing symmetry represents a different saddle solution in the large-IN mean-field
theory. The channel with the lowest free energy is the physically relevant state. For each
pairing symmetry we compute the corresponding free energy

1 e b’
F:—BZIn(l—i—e ﬁz)+Z(ek—ko)+Nunc+NAo+NJHA2+NjOv (14.11)
k,i k

see Fig. 14.2. From these results we can conclude, that the extended s-wave hybridization
favors the dg2_,2 superconductivity, while d 2_,» hybridization prefers d,, superconductivity.

Regarding the shape of the Fermi surface in the Fermi liquid state, Fig. 11.3, we can explain
this behavior in the following way: If both symmetries are of s-wave type, the pairing interac-
tion at the Fermi surface is small, implying a weak superconducting phase. However, a s-wave
hybridization combined with a d-wave pairing produces a much more stable superconductivity.
For d,2_,2 hybridization the Fermi surface is located near the nodal area, where the pairing of
dzy type is strong. Please note that the pairing symmetry with the lowest free energy produces
the most extended superconducting phase.

We supplement this numerical approach by an analytic estimate of the critical supercon-
ducting temperature 7T, presented in the next section.
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Figure 14.1: Phase diagrams as a function of Kondo coupling Jy and temperature T at a band filling
ne = 0.3 for extended s-wave (left) and d,2_,2-wave hybridization (right) in combination with different
pairing symmetries: (a) d2_,2-wave, (b) extended s-wave and (c) dg,-wave. Thick (thin) lines refer
to first (second) order phase transitions. The Heisenberg exchange is Jg = 0.05 and the hopping
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Figure 14.2: Free energy as a function of the Kondo coupling Jy at 7' = 10~° and n. = 0.3 for extended
s-wave (left) and dg2_,2-wave hybridization (right) for (a) d,2_,2-wave, (b) extended s-wave, and (c)
d;y-wave pairing symmetries. The plots correspond to the phase diagrams shown in Fig. 14.1 with the
same parameters, Jg = 0.05 and ¢ = 1. The dashed line shows the free energy for the normal state
solution with A = 0.

14.2.3 Analytic estimate: Pairing in the regimes 7, < T and T, ~ Tk

In general, we can differentiate between the pairing mechanisms in the two regimes T, < Tk
and T, ~ Tk. In the former one the superconducting phase can be thought of as being evolved
out of the heavy Fermi liquid, whereas for T, ~ Tk a strong competition between Kondo
screening and BCS pairing exists. In the regime T, > Ty simply a non-superconducting
FL*-phase evolves.

Within the mean-field approach the value of T, is determined by the mean-field equation
(14.9) by setting A to zero:

22 — & 1 21k
J— NZ ( k% anh =+ (1 & 2).> (14.12)
H c

Zlk Z2k Z1k

For A = 0 the band-structure is given by the two bands z; 2k (Eq. (11.4)) determining the
physics in the Fermi liquid regime. The factor ai arises, because gap and pairing function are
equal in our approach.

In the limit T, <« Tk several approximations can be made. We neglect the influence of the
upper band zjy, which is located well above the Fermi level, and only take into account contri-
butions from zg) close to the Fermi surface. The k summation is replaced by an integral over
isoenergetic lines [ dw [ dAy/|V zok|. In analogy to the BCS approximation we substitute

W=2ok

w 1 for w > 2T,
tanh =< —1 forw< =27, . (14.13)
2T,
0 else

The k-dependence of the occurring factor

& — 22
K= H ~ const (14.14)
1k T P2k
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14 Competition between Kondo screening and ordering

is assumed to have minor influence and is therefore omitted. The velocity |Vizox| and ay are
approximated by their value at the Fermi surface, which is determined by zox = 0, compare
Figs. 11.3. The dependence of |Vizok| and ax on the direction orthogonal to the Fermi surface
is neglected. As a result we get

A 2
/dw/d B (14.15)

2 ‘VkZQk‘
2T,

from which we can extract an expression for T,

A 47
T, == - : 14.16
2 exp < JHmfdAkai/Vzng ( )

where A is of the order of bandwidth. T is especially large, if the pairing is strong in antinodal
regions, which are characterized by flat bands and small velocity |V zok|.

In the regime T, ~ Tk both bands contribute to the integral. In this case the major contri-
bution arises from the flat parts of z1) and 29y in the weakly hybridized regions, illustrating the
strong competion between Kondo and superconducting pairing. In contrast to the previously
discussed regime nodal instead of antinodal quasiparticles are more susceptible to pairing.

At temperatures of the order of the Kondo scale Tk inelastic processes occur, especially for
particles in the antinodal regions, limiting the applicability of the mean-field approximation.
Pairing of incoherent particles, which is also discussed in the context of the pseudogap phase in
underdoped cuprates (Emery and Kivelson, 1995; Franz and Millis, 1998), cannot be described
with this mean-field approach.

In conclusion, the numerical and analytical calculations are complementary approaches show-
ing the favoring and disfavoring of certain hybridization and pairing symmetries. While ana-
lytics is able to extract some qualitative arguments, the numerical evaluation is also sensible
on microscopic properties like band structure and band filling.

In the next section we allow for an additional antiferromagnetic phase on the mean-field level
and study the competition among Kondo screening, superconductivity and magnetic ordering,
while tuning the Kondo coupling and an external magnetic field.

14.3 Magnetic ordering

As illustrated by the phase diagram of the heavy fermion compounds CeMIn; (Fig. 8.5(b)) and
predicted by the Doniach argument (see Fig. 8.3), Kondo screening not only competes with
superconducting order, but also with antiferromagnetism. The members of the 115-family ex-
hibit different phenomena regarding the coexistence and the suppression of superconductivity
(SC) and antiferromagnetism (AFM) upon applying a magnetic field or pressure, which we
will briefly review here.

In a finite magnetic field that is oriented orthogonal to the basal plane, CeColns exhibits a
quantum critical point at the breakdown of superconductivity, although any direct evidence
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Figure 14.3: Experimental phase diagrams for CeColn; and CeRhlnj illustrating the interplay between
superconductivity and antiferromagnetism upon applying a magnetic field or pressure. (a) Magnetic
field-temperature phase diagram for CeColns. Blue dots mark the superconducting critical temperature
T. and the Q-phase denotes the coexistence region between superconductivity and antiferromagnetism.
(Figure from Kenzelmann et al., 2008). (b) Temperature-pressure phase diagram for CeRhIns. Super-
conductivity (SC) and antiferromagnetism (AFM) coexist in a specific pressure range. (Figure from
Knebel et al., 2006).

of magnetic ordering is missing (Tanatar et al., 2007). This quantum critical point was spec-
ulated to be produced by an antiferromagnetic instability that is suppressed by the emerging
superconducting order over wide ranges in the phase diagram. For a magnetic field aligned
parallel to the basal plane a region close to the upper critical field Hq.o &~ 11T develops, show-
ing signatures of a coexistence between superconductivity and magnetic order, see Fig. 14.3(a)
(Young et al., 2007; Kenzelmann et al., 2008).

The ambient-pressure antiferromagnet CeRhlIng is driven to a superconducting state upon
applying pressure. A coexistence region of SC and AFM develops, see Fig. 14.3(b) (Knebel
et al., 2006; Chen et al., 2006).

In this section we study the interplay of Kondo screening, superconductivity and magnetic
ordering at a mean-field level. The hybridization as well as the superconductivity are assumed
to be unconventional.

Superconductivity in CeColnjs is assumed to be Pauli-limited (Bianchi et al., 2002), i.e., the
breakdown of superconductivity in a magnetic field is produced by spin alignment breaking
up the spin-singlets, rather than orbital pair breaking effects due to the Lorentz force ripping
apart the electrons in a Cooper pair with opposite momentum. Therefore, we include the
presence of a magnetic field only by coupling it to the spin degrees of freedom in a Zeeman
term. The influence on the orbital sector, which manifests itself in the appearance of vortices
and an acquired Peierls phase factor upon hopping, would require a real-space description with
an enormous number of lattice sites and is omitted in the following. The mean-field parameters
are assumed to be field-independent.

The Hamiltonian, now including the Zeeman term Hz, reads

H=Hkim+Hug+Hz (14.17)
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with

Hz=-BY (Si+s:), (14.18)

where s; denotes the spin density operator of a c-electron at site i: s; = ), cjgaggrcw, /2.
The Landé factors for c-electrons and localized spins are assumed to be equivalent and are set
to 1 here.

The decoupling of the Heisenberg term Hy in the magnetic channel accounting for a possible
magnetic instability is presented in Sec. 14.3.1. Section 14.3.2 shows the phase diagrams
obtained from a numerical solution of the mean-field equations. A discussion of the results is
given in Sec. 14.3.3.

14.3.1 Mean-field approximation

In order to consider superconductivity and magnetic ordering in the mean-field approach, we
now assume a finite value of the balancing factor « in the split Hamiltonian (14.2). Hu sc Mr
already studied in Sec. 14.2.1 is given by Eq. (14.6). In the magnetic channel the decoupling
leads to

Hu,armMF = JH Z [Mz : (Z J?;,gUagfjﬂgj’U/) - M; - Mj] (14.19)

(i) oo’

with the on-site magnetization

1 ~
M, = <2 Z;jj[gaag, 0_> , (14.20)
oo

while the spin-spin interaction in the Heisenberg term is assumed to be restricted to nearest-
neighbored sites.

In contrast to the previously discussed decouplings of the Kondo term and the Heisenberg
term in the Cooper channel, which were based on a spin representation in SU(N) and Sp(V)
respectively, this mean-field approximation is not equivalent to a large-/N saddle point solution.
It is rather in the spirit of classical mean-field theory introduced by Weiss, which becomes exact
in the limit of infinite coordination number.

The magnetic field is aligned in z-direction, B = B2, orthogonal to the two-dimensional
lattice. The magnetization is modeled by the ansatz

M; = M,e'®% + M, 7, (14.21)

with the staggered part M, and the uniform part M,. The antiferromagnetic ordering wave
vector Q = (7, ) leads to alternating signs in a checkerboard pattern and requires a division
of the lattice into two sublattices A and B. The arrangement of A- and B-sites is depicted
in Fig. 14.4(a). r; is the vector connecting a specific corner of the unit cell with the two
contained sites A and B. Due to the doubling of the unit cell the real-space operators ¢; and
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Figure 14.4: (a) The lattice is divided into two sublattice A (black points) and B (white points). The
reference point for each unit cell is chosen to be the left corner leading to r4 = (0,0) and rp = (1,0).
The gray shaded region shows the unit cell. (b) The Brillouin zone corresponding to the enlarged unit
cell (colored in gray) is obtained from the original BZ by backfolding with the vector Q.

ﬁ- are substituted by c,, and f’,;,r, where v = A, B is the sublattice index and r refers to
position of the unit cell. The Fourier transformed operators

trp — //;/ SR, (14.22)
-

are defined for p lying within the new, reduced BZ, see Fig. 14.4(b).
The total mean-field Hamiltonian can be compactly written as

1 A
Hur = 5 ? \IJI)AP\IIP + Econst ’ (14'23)

with the constant

b2
Feonst = N (,u(nc —1)+ T+ (1 —z)JgA? + 2z Jg (M2 — M5)> , (14.24)
0
and the 16-component spinor
T_ (T &T
vp = (0,0 ) (14.25)

where

T _ T T T T
Pop = (CA,p,T’CA,p,wCA,fp,T’CA,fp,wCB,p,T’CB,p,wCB,fp,T’CB,fp,i) : (14.26)

q)? is defined in an analogous way. The matrix Ap is presented in Appendix H, as well as

P

the steps that are necessary to rewrite the Hamiltonian in terms of the operators cp, and fpl,.
The mean-field equations for the set of mean-field variables {\g, u, b, A, My, M,,} are ob-
tained by varying the free energy with respect to the particular variable:

N = <Z ﬁ,p,aﬁ,pﬁa> , (14.27a)

p?a-7l/
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Nn. = <Z cL,p7Ucy,p’g> : (14.27b)

p’a.7l/
2b Pp + Bp+ 7 Pp — Bp+ 7
N2 = < 3 [p;%;pa Fopo + B g b ), (14.27¢)
0 p7o-7y
_ Op + OpiQ 7 Op — OpiQ 3 3
QNA N <Z |:2fy’p7TfV’_p’l + f V’P:T'f—7—P,l + h'C. ? (14'27(:1)
p7'j
1 = ~ = ~
My = o <Z <fA,p,afA,p,a - fB,p,o’fB7p,o')> ; (14.27¢)
p70—7

1 -~ ~
My = 53 <Z of) oo fw> : (14.27f)

p70—7l/

The eigenvalues of the 16 x 16 matrix Ap are not accessible analytically. In the next section
results from a self-consistent numerical solution of the mean-field equations are presented based
on a numerical diagonalization of the Hamiltonian.

14.3.2 Phase diagrams

The phase diagrams are extracted from the fully self-consistent numerical solution of the
mean-field equations (14.27). The required eigenvalues of flp are determined via exact diago-
nalization for a grid of vectors p in the magnetic Brillouin zone implemented by a LAPACK
routine.

We focus on a specific choice for the hybridization symmetry, namely a d,2_,2-wave hy-
bridization, and combine it with a d,, superconducting pairing, which favors the emergence
of a large superconducting phase, see Sec. 14.2.2. Since the Heisenberg interaction does not
have a k-space structure, the competition between the antiferromagnetic phase with the super-
conducting and Kondo phase is not expected to crucially depend on their k space symmetry.
The parameter x, the balancing factor introduced in the decoupling of the Heisenberg term,
influences the effective Heisenberg interaction in the magnetic channel tuning the ground state
of the system. We therefore consider it as an input parameter to our theory. Numerical results
are shown for x = 0.3, slightly favoring the superconducting instability, and are supplemented
by a discussion on how the results are affected by different values of x.

Within this mean-field approach the phases are distinguished by the values of the parameters
b, A and M. For zero staggered magnetization, My = 0, the phases are classified as in
Sec. 14.2.1: a heavy Fermi liquid phase FL, a spin Fermi liquid FL*, a superconducting phase
SC and a decoupled phase arise depending on the values of b and A. Theoretically, a nonzero
M can coexist with all these phases. However, numerically we simply find a phase with Mg # 0
and b = A = 0, which is denoted by AFM. An overview of the configuration of parameters in
each phase is given by Table 14.1.

Numerical phase diagrams are depicted in Fig. 14.5: The ground state phase diagram
(Fig. 14.5(a)) as a function of the applied magnetic field B and the Kondo coupling Jy and
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Figure 14.5: Mean-field phase diagram for a dg2_,2-hybridization and a d., superconducting pairing
in the presence of a Heisenberg term with the parameters Jy = 0.05, = 0.3, n, = 0.3 and t = 1.
(a) Ground state phase diagram in dependence of magnetic field B and Kondo coupling Jy. (b,c)
Temperature-field phase diagrams for Jy = 0.5 and Jy = 1.1, respectively, which are marked by a gray
line in (a). Thick (thin) lines refer to first (second) order phase transitions.

two examples for temperature-field phase diagrams (Fig. 14.5(b) and (c)) for different Kondo
couplings leading to FL* and a SC ground state. Please note that the uniform magnetiza-
tion M, is finite for non-zero field. The system becomes fully polarized (M, = 1/2) in the
decoupled phase at B > 0 and T = 0.

Upon tuning the balancing factor x the phase diagrams change. Let us focus on the ground
state phase diagram as a function of magnetic field B and Kondo coupling Jy. Increasing
the value of = enlarges the AFM phase suppressing the FL* phase. The SC phase shrinks in
favor of the FL phase. The phase diagram for z = 0.5 depicted in Fig. 14.6 already shows a
complete suppression of the FL* phase and a first-order phase transition between AFM and
SC down to B = 0.

14.3.3 Discussion

Depending on the relation of the couplings Jy/Ji and the balancing factor = between super-
conductivity and magnetic ordering the ground state of the mean-field system can be tuned
modeling an ambient-pressure superconductor like CeColns and Celrlns or antiferromagnet
like CeRhlIns.
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[ b [A]M ]
decoupled || 0 | O 0
FL x |0 0
FL* 0| x| 0
SC x| x| 0
AFM 0] 0] x

Table 14.1: Parameter assignments for the phases occurring in the phase diagrams, Fig. 14.5. A cross
denotes a finite value of the specific parameter.

If we consider e.g. the configuration with Jg = 0.05 and = = 0.5 (Fig. 14.6), superconductiv-
ity and antiferromagnetism do not coexist, but are separated by a first order phase transition
in mean-field theory, which is in contrast to the experimental situation in CeRhlns, where a
coexistence region develops.

Within mean-field theory SC and FL phase are neither separated by an AFM phase, nor a
suppression of the AFM in favor of the SC phase is observable. As expected for a Pauli-limited
superconductor in a magnetic field, whose pair breaking is determined by spin and not orbital
pair breaking effects, the phase transition between SC and FL phase is of first order in the
low-temperature range (Maki, 1966), see Fig. 14.5(c). Therefore, this mean-field approach is
not sufficient to explain the emergence of a quantum critical point at the breakdown of super-
conductivity in CeColns and support the picture of a suppressed magnetic phase producing
the quantum criticality.

In general, mean-field theory is a good approach to obtain analytical and numerical results in
a non-pertubative regime. This work was able to illustrate the competition between Kondo
screening and superconductivity based on the momentum space structure of the hybridization
and the pairing function. A possible additional instability towards antiferromagnetism can
be captured at the level of mean-field theory. However, concerning the phase competition
between antiferromagnetism and superconductivity, it was shown that the presented mean-
field approximation is too simplistic for describing the physics in the considered 115-materials.

0.1
decoupled

0.08

0.06
Figure 14.6: Ground state phase diagram as a B
function of magnetic field B and Kondo cou- 0.04 AFM
pling Jy acquired from mean-field theory for
d,2_,2-hybridization and d,,-superconductivity 0.02
with x = 0.5, Jg = 0.05, n, = 0.3 and t = 1. 0
Thick (thin) lines refer to first (second) order 0 02 04 06 08 1 12 14
phase transitions. Jo
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15 Conclusion

This part was concerned with the aspects arising from a non-local hybridization in a heavy
fermion metal, studied in the framework of a large-N like mean-field approach. The focus
was on two-dimensional systems, however the generalization to three-dimensional systems is
straightforward

The low-temperature properties in the metallic Fermi liquid phase are determined by the
strongly anisotropic band structure. Along the Fermi surface we can distinguish between
regions with vanishing and strong hybridization, which directly influence the character of the
quasiparticles: While quasiparticles in nodal direction are light and of c-character, the ones
in antinodal direction are heavy and more f-like. In general, thermodynamic properties are
dominated by the antinodal quasiparticles, transport is made by light nodal quasiparticles.

For a two-dimensional system, transport properties like thermal and electrical conductivity
do not reflect the anisotropy of the system. The Wiedemann-Franz law is conserved. The
optical conductivity in the Fermi liquid regime is sensitive on nodal lines crossing the Fermi
surface: Spectral weight is shifted to lower frequencies and essentially fills the optical gap.

The momentum-dependence of the hybridization function has strong influence on the phase
competition with unconventional superconductivity. For energies or temperatures well below
the Kondo temperature Tk, pairing is dominated by antinodal quasiparticles favoring those
pairing symmetries with large contributions in the antinodal regions. At T ~ Tk nodal
quasiparticles are more susceptible to pairing. However, strong interaction effects and inelastic
processes limit the applicability of mean-field theory.

Depending on the coupling strengths an instability towards an additional antiferromagnetic
phase competes with Kondo screening and superconductivity. Experimentally observed co-
existence regions of antiferromagnetic ordering and superconductivity cannot be recovered at
the level of mean-field theory.

The suggested scenario is likely to be realized in the CeMIns compound series or other heavy
fermion compounds based on Ce or Yb with a similar gapless signature in the optical con-
ductivity (Burch et al., 2007). For CelrIns microscopic considerations using a local den-
sity approximation in combination with DMFT (LDA+DMFT) support the existence of a
momentum-dependent hybridization (Shim et al., 2007).

Ways to detect an anisotropic hybridization might e.g. be given by angle-resolved photoe-
mission spectroscopy or X-ray absorption (Hansmann et al., 2008). Transport properties in
two-dimensional systems stay isotropic even for an anisotropic hybridization. However, prob-
ing higher-order correlation functions, e.g. by measuring angle-dependent magnetoresistance,
might reveal the system’s anisotropy.
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B Green functions

In this appendix, we list the expressions of Green functions required for the implementation
of the mean-field theory.

B.1 Green functions for the Kondo lattice model

The Kondo-lattice mean-field Hamiltonian (10.10) can be rewritten in a matrix form:

€ b
HxivMF = Z \PL <beﬁkk _ii)) WU, + const. (B.1)
ko R ,
Hy

~ \T
with Uy = <ck o Sk 0) . In the following, we shall denote retarded Green functions

as ((A; B)).. Defining the matrix propagator

. R !

Gk,2) = (U 0) = (2= Th) (B.3)
we obtain by explicit inversion

k) = [ kot ) <<cLU;J’:;a>>z>
ale?) <<<ﬁ<o;cko>>z <<Er<a5fkg>>z

_ 1 <Z + X 0Ok >

(z — z1x) (2 — 22k) bOx 2z — €

(B.4)

The thermal expectation values required for the mean-field equation are obtained by sum-
ming over Matsubara frequencies; this can be done analytically, since the excitation energies,
Eq. (11.4), are known.

B.2 Green functions in the presence of a Heisenberg term

The Hamiltonian containing the additional Heisenberg term, Eq. (14.1), has to be rewritten
in a matrix form in analogy to Appendix B.1. The inversion of (z — Hy) provides the needed
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B Green functions

Green functions. We use the shorthand h(k, z) = [[,(z — 2k ;) with Zx; given by Eq. (14.10).

(z = a)((z = M) (2 + &) — b*73)

(Al i) = Ak 2 , (B.5a)
(F s Tra))s = (z+ &) ((z + ]j((i{)?(z)— &) — b*1) | (B.5b)
(L P = (F s ) = % (B.50)
(e e o= = (e s i) = —/Vf(lfﬂ) , (B.54)
ekt )= = Ty ). = G20 00 000, (B30
(Fosgi s = Heosgi Fags = B 00E =5 ) (B.51)
R (8.5

<<C 'CT >> _ —bQﬁE(Z—A())—|—(z_gk)(22_WlE_Ag)
e Ik, 2) .

(B.5h)
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C Specific heat at low T

The specific heat in the framework of the mean-field theory is defined by
dzf[Tv b7 lu’a >‘0]

dT? ’
where the free energy F is given by Eq. (11.5). In this appendix we show that the occurring
temperature derivatives can approximately be substituted by partial derivatives in the low-

temperature limit.
The first derivative by T is equivalent to a partial derivative,

o d (dF[T b o)\ . d (OF|T, b, Ao
Ov=-Tu < dT ) =1ar < aT ’ (©-2)

because the partial derivatives by the mean-field parameters vanish at the saddle point,
e.g. 0F/0b = 0. The specific heat can be explicitly written as

0% F ob [0 [(OF ow (0 (OF 0o 0 oOF
Cv==1 [aw*w(ab (w)) Tar (aﬂ (w)) tor (f»o (w))] - (G3)

In the following we focus on the second term,

0 _ _p0b (0 (OF
Act T2 (8b<6T , (C.4)

which contains corrections in the specific heat arising from the temperature dependence of b.
The third and the fourth term behave in an analogous fashion.
While the temperature derivative of the mean-field parameter is linear in T,

Cy =-T (C.1)

o 2b
ar T2 (C.5)

the expression
) (‘92a
ab< ) - 2 D el T (©6)
a=1,2 k

with the Fermi function ng(x) = (1 +exp(z/T))~! is of the order O(1) for T'— 0. Therefore,
the correction

ACY ~ T2, (C.7)
can be neglected in the low-temperature limit and we can approximate
O?F[T, b, i1, \o]
~-T— .
Cy 572 (C.8)
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D Optical conductivity

D.1 Current operator

The polarization operator within the ALM mean-field description, given by Eq. (11.25) is
rewritten by using the Fourier transforms of the contained operators according to a; =

1/VNY, e kRigy

1 Sl 1! . a3
PMF = jT/' Z Riel(k k )RZ (chIJICkIIJ/ + f—.lilo./fk/lo./) . (Dl)
i,0 k' k"

Simplified with the commutation relations

{CLUCk(ﬂ CL’U’Ck”U'} - CIJ[(O'Ck”O'(skvk/ 600/ - CLO_CkU(Skk//(SO’UI ) (DQ)
|:C;r(afka’ fli’o'/ fk“a’} = C;r(afk”a(skak/(sagl ’ (D3)
|:J?1T<00k07 f_ir{’a’ f_k”a’} = _fi’ockaékvk”(so—o-/ ’ (D4)

the mean-field current operator becomes
. . 1 3 ! _ 1 )
JMF = IN Z Riel(k k )RZ ((Ek’ - 6k//) CL’O'Ck”U_’_
i707k/7k// (D.5)
B s £t {3 A i ToF
+r k! fk’ack”a + ck’Ufk”O' + k’/ fk’ack/’o' + ck’ofk”a .
We substitute the momentum k” by p = k/—k” and exploit the relation Y, R;e’®®i = Nig’(k):
JMF = Z 5/(p) (<€k’ - 6k’7p> CL’aCk’fpo—i_
k/.p,o (DG)
+r ( =V ﬁ c -+-C]L f + Vi ]Fr c —i—c]L f
—-P k’oc“k/’—po ko’ k/—po k k/oc“k/—po k/c/k/'—po :

The §-function derivative is replaced by using a discretized version of the relation f;ﬁja“ dtd' (t —
x)F(t) = —F'(x):

> IP)F(P) == 5poVpF(p). (D.7)
P p
The mean-field current operator becomes

jMF = Z 5p,0 (<_vp6k’—p> C;r(’ack’—po +r (_vka’—p) (ﬁ{’ack’—pa + CI{’Ufk’—ch))
k,,p,O' (D.S)

= Z <vk€kcir<ack0' + Tkak (CLaka + flT{UckO')> :
ko
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D Optical conductivity

D.2 Current-current correlation function

Within the mean-field approximation the system consists of non-interacting particles. There-

fore, the current-current correlation function, defined by Eq. (11.21), reduces to the bare bubble

diagram containing mean-field propagators and a current vertex given by jur, Eq. (11.26).
Four-operator expectation values occurring in II(iw) are simplified with the Wick theorem,

e.g.

(T: (Floto) () (Hrorcinr ) (0)) = Ghaodor G, ~7)G ke, 7). (D.9)
II(iwy,) can be split into

1D i) = 167 (i) + T2 (o) + T2, (ieon) (D.10)
with

17 (1w, ) = -3 Z VeIV G (K, ik, + iwn)Ge(K, ikn) (D.11a)

k,ikn,
Hfﬁ)(ed (iwp) = Z (Vek VV 9 + Vel(()VV( ))
klkn (D.11b)

Gk, iky + iwn)Ge(K, ikn) + Ge(k, ikn + iwn)G (K, ikn)]

1), (iwn) = -3 Z PYVOTVD [2G, 1K, ik + i) G p (K, )+
k,iky, (D.11c¢)

+Ge(k, iky + iwn)G (K, ikn) + Gk, ikn + iwn)Ge(k, ikn)] -

The superscript (i) denotes the ith vector component. The Green functions are given in
Appendix B.1 The Matsubara summation over ik, is replaced by a Contour integral, which
can easily be performed with the residue theorem. As we work in the low-temperature regime
we neglect the thermal occupation of the upper band z1y,. This is accomplished by setting
np(z1k) to zero. Averaging over x- and y-direction by I(iw,) = 1/23._ 1109 (iw,,) leads to

1=,y

(z2x — gf)(Zlk - gf)

Il (iw,) = Ve ) np(z F(k,iwy,), D.12a

ofien) = 3 (Ve (e 2 L ) (D.12a)
— 97

Hmixed (iwn) = 27‘2 Z VkVEkVVkTLF(ZQk) Zzlzzﬂl_kZI—szk)gf f(k, iwn) ) (D'12b)

(Zlk — sz)Z + 4T2Vk2f

II r i n) = 2 2 k,i n
nybr (iwn) =7 zk:(VVk) nr(z2k) o — )’ (k,iwn) (D.12c)
where the abbreviations € = e — A and F(k,iw,) = (iwn—(zik—ZQk) — iwn‘f’(z}k—?&k)) are used.
The real part of the optical conductivity is
T nr(zox)
1) = £ e o o ) w1
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D.3 Behavior of o1 in the vicinity of the gap

with

Ay = (Vieew)? (zox — €7) (21 — €1) + 2 (VW) ((21k — 22) + 477 V32) +

9 _ (D.14)
+ 2r W Vex Vi (2o + 21k — 26f) .

D.3 Behavior of o; in the vicinity of the gap

This section is concerned with an estimate for the behavior of the real part of the optical
conductivity o1 near the optical gap at w = —XAg for a dj2_,2-wave hybridization. It is
dominated by the o-function in Eq. (D.13),

5 lw—/Ootal?+aa | . (D.15)

AFE(kz,ky)

while the non-singular matrix elements only have influence on the prefactor without changing
the general behavior.
A change of variables to

1

by = —= (ks + ky — 2ko) (D.16a)

2

- %

by = —=(—ks + k) (D.16Db)

>

with ko determined by €(ko, ko) = 0 is favorable here. For small values of w + Ag the function
AE(ky, ky) can be approximated in a second-order Taylor expansion in k, and k, around 0,

~ = 2 ~  dopt? + b2 (pu? — 16t2) ~
AE(ky, by) ~ =g — (/882 — R, + Bg2 4 208 2 D.17
( ? y) 0 2 + 4 x + 4)\0t Yy ( )
which allows to rewrite the § function as
5~ AB(Ry ) = ——— 5 (ke — g(Fy.)) (D.18)
|62xAE(kx, ky|

where g(Ey, w) is implicitly determined by w — AE(g(Ey, w),%y) =0.
We approximate

o1 (w) %ZnF(@k)a(w (o1 — 2)) - (D.19)
k

The factor np(z2k) in o1 restricts the k-summation to the Fermi sea. The integration bound-
aries given by the Fermi surface can as well be approximated by expanding around k., k, = 0.
The evaluation of this integral shows that the first non-vanishing contribution to the optical
conductivity for a d;2_,2-wave hybridization is ~ v/w + Ao.
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E Electrical conductivity

The electrical conductivity is given as the zero-frequency part of ol )(w), which is defined by
Eq. (11.20). In order to account for elastic scattering processes among the quasiparticles, the
Green functions (11.29) are used for the calculation of the zero-frequency current-current cor-
relation function. Due to the additional self-energy ¥ o the Wick theorem is not applicable in
this situation. We start this calculation with the expression for the current-current correlation
function 1) (iw,) in terms of the Green functions G., G 7 and Gg,, given by Egs. (D.10) and
(D.11). These Green functions are related to the quasiparticle Green functions G » via

Ge = upGi+vpGo, (E.1)
G = viG1+upGo, (E.2)
Gre = wk(G1 —G2), (E.3)
G = vkuk(G1 — Ga2) . (E.4)
The prefactors ux and vy originate in the Bogoliubov transformation
Ck = UY1K T UkV2k s (E.5)
Sk = w7k — ukyek (E.6)
and are defined by
~ 2
2 (z0x — €7)
up = —, E.7
k Vk2—|-(22k—6f)2 (B-7)
V2
2 k
v = , E.8
8 V2 + (zok — €x)? (E8)
we = —— < (E.9)
Z1k — €k
The current-current correlation function can be written as
1) (iw,,) = -3 DY Gulk, ik + iwn)Gy (K, ikn)E (K) (E.10)

K,ikn p,r=1,2
with
Dm0 = 4wt VROVY 4 uilve) Vel + 2uior (VROVe) + vel v ) B11)

Dk = 2 —ud)’ POV 42 v vel?) 4 (E.12)
+wan(} — ud)r (Vv + v v
00 = 2wt VVOVI 4w Vel - 2uair (Vv + vV (E.13)
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E Electrical conductivity

and & (k) = €[f (k).
We introduce the abbreviation
Ak, iwy) = Z Gu(k,iky) Gy (k, ik, + iwn) (E.14)
1kn
and evaluate the contained Matsubara summation by integrating along the branch cut in the

Contour integral. The self-energies ¥1 o prevent an evaluation with the residue theorem.

Ay (K, iwy,) = — / ;—;nF( ) {[Gu(e+in) — Gule — )] Gu(e +iwn)+ (E.15)

+Gu(e —iwn) [Gy (e +in) — Gu(e —in)]} .
Substituting iw, — w + in and using the relation
G(e+in) — G(e —in) = 2iImG () (E.16)

leads to

Ay (k,w +in) = / e (e MG (k, €) Giet (k, € + w)+

(E.17)
—00
+np(e+w)G (k, €)ImGyt (k, e +w) } .
The real part of the electrical conductivity is given by
1 .
Re(o@ (w = 0)) Zy hn%) ;ImAW(k, w+in), (E.18)
where in the zero-frequency limit we can write
de / ret ret
hn%) —ImAW(k w+in) = ﬁ —nF e)ImG,”" (k, €)ImGy™ (k, €), (E.19)
w—0 W
while exploiting the relation ImGa"(e) = —ImG™"(¢) and
lirr%)(ny(e-l-w) —np(e))/w = np(e). (E.20)
w—
In relaxation-time approximation
270 (€ — z,x)
MG (k, €))® — o) E.21
(G o)) — 2T (E.21)
where the quasiparticle scattering rate fulfills the relation I';,(e) = —Im3,(e€).

The influence of the upper band z1)x will now be neglected and therefore the electrical
conductivity tensor becomes

e(o\) (@ = E— g (Z2k) (i5)
o - . o

where we set I' = I's.

130



F Wiedemann-Franz law in isotropic Fermi
liquid theory
Within this appendix we give a derivation of the Wiedemann-Franz law in the context of

isotropic Fermi liquid theory. For a one-band system with elastic scattering the ratio between
thermal and electrical conductivity becomes

S () ((vkeﬁp)“)f (€27 /T(7)

s
a“T (i) 2 (F.1)
& P P P
5 (7)) )iy
The isotropic quasi-particle energy egp is approximated as
2P = vp(|k| — kr). (F.2)

QP

The Fermi velocity vp = ’Vkek is a constant and the k-summations occurring in Eq. (F.1)

can be transformed into energy integrals. The density of states for the dispersion egp is

constant in two dimensions and we can write

Kii [ dee*n/(€)/T'(e)
oi T T? [den’n(e)/T(e)

(F.3)

In order to show the temperature-independence of this ratio the T-dependence contained in
the Fermi function ng(e) = (1 + exp(e/(kpT))) " is pulled out of the integral by substituting
E =¢€/(kpT). Under the assumption that the scattering rate I' can be expressed by its leading
polynomial contribution, the ratio reduces to a constant L

oil [ denhy(€)/T(E)

=L (F.4)

In the limit of constant scattering rate, L can be evaluated as

b (2 o

Please note, that the electron charge e was set to 1 in previous calculations and is now rein-
troduced for consistency reasons.
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G Calculation of observables with constrained
slave particles

Given a Hamiltonian H containing a single impurity, whose degrees of freedom are parametrized
by slave particles that have to fulfill the constraint () = 1, where @ is the slave particle number,
a diagrammatic expansion can be developed in the grand-canonical (GC) ensemble and the
grand-canonical result can be connected to the result in the physical subspace obeying @ = 1
(Coleman, 1984).

The constraint is fixed by a Lagrange parameter A acting like a chemical potential. The
Hamiltonian can be written as H' = H + AQ. Under the condition that the Hamiltonian H
preserves the number of slave particles, the GC partition function can be written as a sum of
canonical partition functions for each subspace:

Zoe = Tr [e*ﬁ“’“@)} =3 Ze(@)e . (G.1)
Q=0

The canonical partition function in the physical subspace with {@) = 1} can be expressed as

0
Z, =1)= lim —Z 2
c(@=1) = lim g 2¢c (G.2)
where £ = exp(—() is the fugacity.
In the GC ensemble the expectation values of the operator ) and the product OQ, where
O is an arbitrary operator, read

Tr [0Qe PHHQ)] Ty [Qe—A(H+Q)]
<OQ>GC - Tr [e‘ﬁ(H-f—)\Q)] ’ <Q>GC - Tr [e—/@(H+>\Q)] ’ (G-3)
which can be combined to
(0Q)go _ Tr [0Qe U] (G.4)

Qe Tr[Qe AU

Taking the limit A — oo in the last expression, the numerator and denominator have to be
considered separately. The contribution from the subspace with @ = 0 is zero, while terms of
the order O(e~2%*) vanish for A\ — oco. Only the terms in {Q = 1}-subspace remain and we
can identify the expectation value of O in the physical subspace as

r e*ﬁH
ol (G.5)

(O)phys = Zc(@Q=1)
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G Calculation of observables with constrained slave particles

with the described limit

(O)phys = lim %. (G.6)

r—oo (@) ge

If (O)gc vanishes in the subspace with @ = 0, this relation can be further simplified to

(O)phys = ( lim ) O)ac. (@)

A—00

The expression in the denominator can be calculated as

222020 Qeiﬁ)\Q — —
Qe = Dy = (e A4 0(e 2m)> 7 (G.8)
leading to
(O)pigs = Jim ™ (0) g (G.9)
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H Mean-field Hamiltonian with magnetic
ordering

In order to allow for antiferromagnetic ordering with the wave vector Q = (m,7), the con-
sidered unit cell consists of two lattice sites. This doubling of the unit cell is accounted for
by introducing a new set of operators cp, and fp,, where v = A, B is the sublattice in-
dex. In this appendix we present the rewriting of all terms of the mean-field Hamiltonian
Hxrmmr + THE AFPMMF + (1-— ﬁU)HH,SC,MF + Hz with respect to the new operators. The
resulting Hamiltonian is compactly written in matrix form.

H.1 Rewriting

Hu armmr (Eq. (14.19)) and Hz (Eq. (14.18)) can be expressed in terms of the new operators
in a straightforward way:

HH’AFM’MF =2Ju Z M (ﬂ,r,afAm& - fg,r,ofB,r,ci) + M, Z o linafum,a +
o L v
+ 2Jg N (M? — M?) (H.1)
=2Jny Ms<ﬂ Faps = Thpol —)+M > ol potupe| +
:p,0) Ap,c B,p,c’ B,p,c u v,p,0Jv,p,o
pP,o L v
+2JgN (M2 — M?) (H.2)
and
B i a7
HZ = _5 Z g <CV7T,UCV,7“7O' + fl/,?”,o’fl/,’/‘7o') (H3)
r,o,V
B t a7
= _5 Z O- (Clj?pio-cl/?pia- + fl/?pia-fl/il‘_)?o-) : (H'4)
p70—7y

The index v refers to the sublattice and r to the unit cell; p lies in the reduced Brillouin
zone. For rewriting the other parts of the Hamiltonian, Hxrmmr (Eq. (10.10)) and Hu scmr
(Eq. (14.6)), which are given as sums over operators in k space, the operators cx and fk have
to be rewritten in terms of ¢, and f, p. First, a different set of operators is defined,

Clp = Cp and C2,p = Cp+Q; (H.5)
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H Mean-field Hamiltonian with magnetic ordering

which evolve from ¢y by backfolding the original to the reduced BZ with the vector Q. Then
they can be expressed as:

) 1 . - .
“lp = = 57 E e PRic; = E ( PRy e 1p(R’"Jr]'rB)CB,r)
i VN

1
= % (CA,p =+ CB,p) ) (HGa)
1 . .
- Q U p— *1(P+Q)(Rr+rA) *l(p+Q)(Rr+1‘B)
Cop = CprQ = #Z i(p+ c = %Z<e carte CB,r)
N T
1
—  (cam—c ) H.6b
\/i ( A,p B7P) ( )
For f analogous expressions hold.
Using the relations (H.5) and (H.6), we can write
Wo + Worq 7 7 Wo - Worq 7 7
Hu,scMF = Z ffl, pito—p T ff pifo_py The
p?l/
+ JHNAQ , (H?)
where Wp = —JuAap contains the symmetry of the superconducting pairing, and

2

N |:b(ﬁp +2ﬁp+Q)CJIL,p,0'fV,p,U+ b(Bp 25p+Q)

€p + € €p — € ~ ~
_ p p+Q P pP+Q
HkimMF = Z { [ 2 Cl,p,acu,p,o + Ci,p,ocl‘/,p,o - )‘Ofi,p,ofu,p,a+

p?o.7l/

ypafu,pa —|—h.C.:| } +

2
+ uN e + 2N + N%. (HL8)
0
H.2 Matrix form

The complete Hamiltonian containing the parts Eqgs. (H.2), (H.4), (H.7) and (H.8) is summa-
rized to

1 .
Hyr = 3 Zp: \I/LAP\IIP + const. (H.9)
with
P hip i >
A, = L eP . H.10
P ( haip  hazp ( )
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H.2 Matrix form

The off-diagonal elements are equal (ﬁ12p = iLle). The matrices read:

=20 0 0 & 0 0 0
0 =2 0 0 0 €p 0 0
0 0 pw+d 0 0 0 —& 0
" 0 0 0 u+Z 0 0 0 —E
hiip = 2 p H.11
Hp & 0 0 0o —u-L 0 0 0  (HL1D)
0 & 0 0 0 =2 0 0
0 0 —& 0 0 0 u+d 0
0 0 0 —& 0 0 0 u+%
vtk 0 0 0 vy 0O 0 0
0O vy 0 0 0 vz 0 0
0 0 —vf 0 0 0 -vg O
. 0 0 0 —f 0 0 0 -—uv3
= p H.12
zp wp 0 0 0 vt 0 0o 0 | (.12)
0 vz 0 0 0 v 0+ 0
0 0 —v; 0 0 0 —vf 0
0 0 0 —v; 0 0 0 -—vf
with the shorthand vg = b(Bp = Bp+q)/2, and
—Xo — My —my 0 wy 0 0 0 wy
—my —Xo+m.  —wh 0 0 0 —wy, 0
0 —wg Ao + My ms 0 —wy 0 0
]A1 _ w; 0 ms Ao — My, U)E 0 0 0
2p = 0 0 0 wy —Ap — My Mg 0 wg‘
0 0 —wp 0 My —Xo + My —w; 0
0 —wz 0 0 0 —wg Ao+ my,  —mg
wy 0 0 0 w 0 —Mms Ao — My
(H.13)

with wi = (1 — 2)(Wp = Wp1q)/2, ms = 2¢JuM, and my = & — 2z.J5M,,.
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16 Introduction

The existence of a Fermi surface in cuprate superconductors is a long-standing issue and im-
portant for the understanding of the underlying pairing mechanism. The recent discovery of de
Haas-van Alphen and Shubnikov-de Haas oscillations in underdoped YBCO (Doiron-Leyraud
et al., 2007) was considered as the long awaited proof that a Fermi surface indeed exists.
However, the observed quantum oscillations seem to be in disagreement with measurements
of angle-resolved photoemission spectroscopy (ARPES), which suggests the existence of Fermi
arcs, truncated segments of the Fermi surface.

In this work we make an attempt to establish a coherent picture for the underdoped phase in
cuprates: In contrast to the semiclassical approach suitable for metals we show that quantum
oscillations do not necessarily require closed Fermi surfaces but can be reconciled with Fermi
arcs, when they are terminated by a pairing gap.

This introductory chapter covers three aspects. It gives a short overview over cuprate
superconductors, which were extensively studied in the last twenty years. It discusses the
semiclassical theory explaining quantum oscillations in metals, and reviews the experimental
situation of quantum oscillation in cuprates.

16.1 Cuprate superconductors

In the year 1986, Bednorz and Miiller (1986) discovered superconductivity in the material
Las_,Ba,CuO,4 with a transition temperature of 30 K, which corresponds to an increase of
around 7 K in comparison with the conventional superconductors known at that time. The
properties found in this material are highly non-trivial and the way was paved for a new era
in condensed matter physics.

Besides LaBaCuO, several cuprate materials display high-temperature superconductivity;
the first one with a transition temperature 7, above the boiling point of liquid nitrogen (77
K) was YBagCu3O7_, (YBCO) (Wu et al., 1987) with T, = 93 K, discovered in 1987, only
one year after the breakthrough of Bednorz and Miiller. The current record with T, = 133 K
is held by HgBayCagCu3Ogy, (Schilling et al., 1993).

Compared to conventional superconductors evolving from a metal, the features of cuprate
superconductors are highly unusual and the mechanism producing the superconductivity is to
date not fully understood. They all have in common a layered structure with CuOs layers
orthogonal to the c-direction, which are believed to contain the carriers involved in the su-
perconductivity. These carriers are sharply localized within these planes leading to a strongly
anisotropic behavior. In comparison to ordinary metals the carrier density is small, which
is accompanied by a large Coulomb repulsion between the carriers. As an effect, the pen-
etration depth A is significantly enhanced compared to a conventional superconductor. In
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Figure 16.1: Structure of cuprate parent compounds. (a) Crystal structure, Brillouin zone and Fermi
surface in 3D and 2D for M;CuO4, M=La (which are substituted by Sr atoms upon doping), in the
tetragonal phase. For an explanation of the Fermi surface see text. (Figure from Damascelli et al.,
2003) (b) Crystal structure for YBagCuzO7 with tetragonal symmetry, Cu (red), O (blue), Ba (black)
and Y (green). (Figure from Schwaigerer et al., 2002)

addition, the superconducting coherence length ¢ is low, turning the cuprates into extreme
type-II superconductors.

In the following we will shortly discuss the microscopic structure of cuprates and give an
overview on the overall phase diagram with an explanation of the contained phases and the
attempts to model this behavior.

Microscopic structure

Depending on temperature and doping level the cuprates are classified as tetragonal or or-
thorhombic and close to tetragonal. The crystal structure is basically a distorted perovskite,
but due to the large variety of copper oxide compounds a more detailed discussion is needed.
We will first focus on the structure of the (non-superconducting) parent compound and com-
ment on the different doping mechanisms afterwards.

The unifying aspect among the cuprates is the existence of CuOs layers. One or more CuQOs
layers are directly stacked upon each other (mono-, bi-, trilayer compounds) and separated by
at least a layer of MO where M is e.g. Ba or La. Figure 16.1(a) shows the high-temperature
tetragonal crystal structure for the monolayer compound MsCuQOy, which contains the planes
(CuOz2)(MO)(MO). The anion O and the cation M in the interleaved planes are in contact
due to large ionic radii, whereas the Cu cation is smaller and surrounded by six O anions.
Upon cooling a structural phase transition towards an orthorhombic structure occurs (see
e.g. Kastner et al., 1998). A different example is shown in Fig. 16.1(b): YBayCu3O7 has a

150



16.1 Cuprate superconductors

300 Ndz_XCeXCuO b Laz_XSrXCuO A

S “Normal’’
5 200} 1
E
3
g
g 100}
F

0 ay SC ' ~ 2

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Dopant Concentration x

Figure 16.2: General temperature-doping phase diagram for cuprates. For a detailed explanation see
text. (Figure from Damascelli et al., 2003)

tetragonal structure and contains CuQOs planes, BaO planes, Y planes and CuO chains.

Doping the parent compound inserts charge carriers into the system, which is an essential
requirement for the formation of superconductivity. Generally speaking, the Cu atoms are the
source for charge carriers. The dopants are mostly inserted into the interleaved layers. One can
(i) substitute the cations by ions with different valency, e.g. Sr®* for La?*, (ii) remove or (iii)
add oxygen ions. Also a mixture of these procedures is possible. Upon doping, the interleaved
layers stay ionic and serve as a charge reservoir by changing the effective Cu valency. In
YBCO, Fig. 16.1(b), where copper ions not only occur in the CuOs layers but also in layers
in between in the form of CuO chains, the situation is different. It is doped by changing the
oxygen content in the interleaved layer CuQ,, now consisting of CuO chains with O vacancies.
These chains themselves contain free carriers contributing to the supercurrent.

The superconducting transition temperature is not only sensitive to the doping level, but
also to the number of CuOs layers within one block: T, increases from monolayer over bilayer
to trilayer compounds within each family (Tarascon et al., 1988; Di Stasio et al., 1990).

In reciprocal space the tetragonal lattice of LasCuQy translates into a body centered tetrag-
onal structure with a 3D Brillouin zone (BZ) depicted in the upper right panel of Fig. 16.1(a).
The layers are only weakly coupled and the dispersion along the z-axis can be neglected in
almost all situations. The projection of the BZ in two dimensions is depicted in the lower right
panel of Fig. 16.1(a). The dashed diamond denotes the Fermi surface at half filling (without
doping) derived in a tight-binding approximation assuming a nearest neighbor hopping. The
solid line enclosing the gray shaded area represents the Fermi surface upon inclusion of an
additional next-nearest neighbor hopping.

Phase diagram

For all cuprate superconductors the occurring phases can be summarized in a doping-tempera-
ture phase diagram, Fig. 16.2. A dopant concentration x = 0 represents the parent compound.
On the left-hand side of z = 0, the compounds are electron doped, while the right-hand side
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describes hole doping.

Local density approximation (LDA) band structure calculations for the parent compound
(Mattheiss, 1987; Horsch et al., 1989) suggest a partially filled band, implying metallic behav-
ior, which is not consistent with the experimentally observed insulating behavior. Therefore,
the LDA, which is based on an independent-particle picture, is not able to capture the essential
physics. This indicates the importance of electronic correlations and suggests the existence
of a Mott-Hubbard insulator (Mott, 1949, 1956; Hubbard, 1964a,b), produced by an on-site
Coulomb repulsion U, which is much larger than the bandwidth W. A simple model for the
microscopic properties is the (one-band) Hubbard model (Hubbard, 1963)

H=—t Z (czo,cja +hec)+ UzniT”il , (16.1)
(ij),o @
where c}a creates a charge carrier at site ¢ with spin ¢ and n;, = c;faci » is the corresponding

number operator. (ij) refers to nearest-neighbored site pairs. ¢ is the hopping amplitude and
U the on-site Coulomb repulsion between two charge carriers. This one-band Hubbard model
can be thought of as an effective model for a three-band Hubbard model, which explicitly
considers the Cu(3d,2_,2) and the O(2p,) and O(2p,) orbitals (see e.g. Emery, 1987). Band
structure calculations show the emergence of three dominant bands, a review is given e.g. by
Dagotto (1994).

In the limit of U > ¢, the charge carriers c¢;, become localized and the relevant degrees of
freedom are captured in the t-J model, originally derived from the Hubbard model by Spalek
and Oles (1977) and discussed in the context of high-T. by Anderson (1987):
clytse +he) + T Y (S8 - ”fﬂ) . (16.2)

H=—t (c
(ij),0 (i5)

The coupling constant can be expressed as J = 4t2/U and the ¢;, = ¢;o (1 —nj o) are projected
operators, whose construction excludes double occupancy. How to project out the irrelevant
degrees of freedom is e.g. shown by Auerbach (1994).

Besides the Néel ordered state appearing in the low doping regime a variety of other phases
occurs. The compound with a dopant concentration leading to maximal T, is called optimally
doped. Higher and lower concentrations are respectively denoted as over- and underdoped.
The superconducting phase is rather unconventional: In contrast to the conventional phonon-
mediated superconductors with an s-wave pairing, the superconducting order parameter in
cuprates exhibits a strong anisotropy observable by angle resolved photoemission spectroscopy
(ARPES) (Wells et al., 1992; Shen et al., 1993). Its symmetry is d-wave; a review about
unconventional superconductivity and the symmetry classifications is given by Sigrist and
Ueda (1991). As previously mentioned, the cuprate superconductors are strongly type II;
SQUID (superconducting quantum interference device) measurements (Gough et al., 1987)
show that the penetrating flux is quantized in half-flux quanta ¢¢/2 = h/2e, indicating the
existence of pairs in the superconducting phase.

In the hole doped regime of the phase diagram a highly unusual phase appears - the pseu-
dogap phase (Marshall et al., 1996; Loeser et al., 1996; Ding et al., 1996). It is characterized
by a normal-state energy gap, which opens up at specific regions along the underlying Fermi
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16.1 Cuprate superconductors

Figure 16.3: Schematic illustration of the Fermi surface evolution for increasing temperature in the
underdoped regime of hole doped cuprates. Left: Point-like Fermi surface below T, in the d-wave
superconductor. Center: Arc-like Fermi surface in the pseudogap phase. Right: Cylindrical Fermi
surface above the pseudogap temperature T*. (Figure after Norman et al., 1998)

surface. The properties of this gap can be summarized as follows (Shen et al., 1997): (i) It
mainly occurs in the underdoped regime, compare the phase diagram in Fig. 16.2. (ii) The
maximum gap value for pseudo- and superconducting gap at the same doping level are equal.
It does not follow the value estimated from BCS-theory, which scales linearly with 7.. More-
over the pseudogap value increases for decreasing transition temperature 7T, i.e., for decreasing
hole doping. (iii) The pseudogap momentum space structure is also strongly anisotropic: It
vanishes along the diagonal (0,0) — (7, 7) and is maximal for (m,0) — (7, 7).

The pseudogap temperature 1T can be determined by comparing the ARPES spectrum at
the (m,0) — (7, ) Fermi surface crossing to a reference spectrum, e.g. the spectrum of Pt: As
soon as T™ is reached, no shifts in the leading edge between sample and reference spectrum
are visible (Ding et al., 1996).

As indicated by ARPES experiments, the region with zero gap in the pseudogap phase is
extended around the diagonal leading to a Fermi surface shaped like arcs (Norman et al.,
1998), illustrated in Fig. 16.3. The arc length scales as T'/T™, extrapolating to zero in the
T — 0 limit (Kanigel et al., 2006). Above T™ the Fermi surface is cylindrical and below T,
is it given by a nodal point. However, even below T, ARPES spectra show Fermi arc-like
signatures (Shen et al., 2005; Hossain et al., 2008). The pseudogap phase has been interpreted
as a precursor of superconductivity; for 7' 2 T, preformed pairs are believed to exist, which
eventually become phase coherent below T..

The “normal” metal regime in the phase diagram is normal only to some extend. Fermi-
liquid theory works best for extreme overdoping. For a decreasing doping level antiferromag-
netic fluctuations appear and the Fermi-liquid picture becomes less and less applicable. For a
review of the normal state transport properties, see Waldram (1996).

Theories

Until now the rich physics of the cuprates could not be consistently explained with a unique
microscopic theory. Moreover, the Fermi liquid and the BCS theory, two well-established
theories for metals, are applicable only to a certain extent and do not provide an explanation
for the observed phenomenology. For example, electron-phonon interactions, which stabilize
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Figure 16.4: Schematic illustration of Landau levels €, = hw.(n + 1/2), which evolve for sufficiently
large magnetic field B.

the superconductivity in the conventional case, is for itself not able to produce transition
temperatures of the order of 100 K.

New theoretical approaches tackling this problem are e.g. a resonance valence bond state
(Anderson, 1987), stripe phases (Tranquada et al., 1995; Salkola et al., 1996), the physics of
quantum phase transitions (Sachdev, 2000) and fractionalized electrons (Senthil and Fisher,
2001), just to mention some of them. A recent review on the physics arising from a doped
Mott insulator is given by Lee et al. (2006).

Before discussing quantum oscillations in cuprates, we recall the properties and the underlying
theory for quantum oscillations in metals in the next section.

16.2 Quantum oscillations in metals

Discovered in the year 1930 in bismuth by de Haas and van Alphen (1930), oscillations in
the magnetic susceptibility as a function of inverse magnetic field are nowadays a popular
tool for investigating Fermi surfaces. They result from oscillations in the density of states at
the Fermi level, which also lead to other quantum oscillation phenomena like Shubnikov - de
Haas oscillations in the conductivity, oscillations in the magnetostriction or nearly all other
observable quantities.

In the limit of free electrons the equally distributed states in reciprocal space condense on
Landau levels under the influence of a magnetic field. The evolving energy levels are given by

1 B
€n = hw, <n + ) ,  with w.= e—, (16.3)
2 m

the so-called cyclotron frequency. Notice the spacing between €, depends on the magnetic
field strength B. For a given electron density p, the Fermi level er lies at ¢, or between ¢,
and €,41, see Fig. 16.4. By changing B with p fixed, Landau levels pass by the Fermi level,
implying an oscillatory behavior in the density of states at the Fermi level as a function of
inverse magnetic field.
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16.2 Quantum oscillations in metals

In a metal, where electrons are not free, but their motions are determined by the band
structure with a dispersion given by €y, this fully quantum-mechanical picture has to be
substituted by a semiclassical one, developed by Onsager (1952) and Lifshitz and Kosevich
(1955). The semiclassical equations of motion are combined with an artificially imposed Bohr-
Sommerfeld quantization condition.

In a magnetic field the Lagrangian for a particle with mass m and charge e reads

1
L= Emv2 —evA, (16.4)
with the vector potential A, the canonical momentum
oL

and the kinetic momentum
mv = hk. (16.6)

The semiclassical equations of motion

Ik = —%Vkek x B, (16.72)
.1
r= %Vkek (16.7b)
lead to closed orbits in real and momentum space described by

r(t) — ro = <(j}3> (k(t) — ko) x 2 (16.8)

where (rg, ko) are initial coordinate and momentum and the magnetic field is aligned along
the z-axis (B = BZ). These orbits encircle an area A™* and A™°™, respectively, and are
connected via

Areal _ i ? Amom (16 9)
~ \eB ’ ’

The Bohr-Sommerfeld quantization condition is imposed by hand:

%p ~dr = (n+~)27h. (16.10)

In a straightforward calculation its left-hand side can be rewritten by the semiclassical equa-
tions of motion (16.7) and can be expressed by the area A™¥ as

B
€8 greal — (n 4 4)2rh, (16.11)
c
leading to
. 2me
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16 Introduction

The areas A™ and A™°™ only take discretized values. An index n is omitted in the following.
In the non-interacting case the density of states (DOS) at the Fermi level is given by

D(eF):;cS(eF—en) :;(S(EF—}%JC <n+;>> . (16.13)

Whenever the condition n+ 1 = ep/(hw,) is fulfilled, the DOS has a peak; it is zero elsewhere.
Therefore, it oscillates as a function of ep/hw. = elgem%, implying 1/B oscillations. For an
arbitrary dispersion €y the behavior of the DOS is analogous. From Eq. (16.12) the oscillatory

argument is extracted as

mom mom

AP (ep) _F RA™™ (ep) 7 (16.14)
AA B 2me

where A™°™(ep) decribes the momentum space area encircled by an electron at the Fermi
energy.

In the free electron picture the dispersion becomes e = h?/(2m)k? and A™°™ can be
identified as the area covered by a Landau ring, where the area between two adjacent rings is
given by

2meB

AA =
A P

(16.15)

which is in agreement to Eq. (16.12). In the limit of free electrons the quantum mechanical
result is recovered from the semiclassical one.

This semiclassical analysis has shown the well-established relation between a closed Fermi
surface and the emergence of quantum oscillations in physical observables based on the Fermi-
liquid behavior of the sample.

In the next section we discuss the recently observed quantum oscillations in cuprate super-
conductors and point out which puzzles arise for the underdoped regime.

16.3 Quantum oscillations in cuprate superconductors - an
experimental survey

Not until 2007 quantum oscillations were observed in cuprate superconductors (Doiron-Leyraud
et al., 2007; Yelland et al., 2008; Bangura et al., 2008; Jaudet et al., 2008; Sebastian et al.,
2008; Vignolle et al., 2008). The bottleneck to this discovery was given by the fabrication of
high quality single crystals and the difficulty of producing high magnetic fields of the order
of 50 T. Although initially claimed as the proof for a closed Fermi surface, the interpretation
of these data is not as simple as in the case of metals. In the following we discuss the re-
sults for the over- and underdoped regime, while pointing out which results do not match the
semiclassical Onsager approach.

In the regime of elevated temperature and zero magnetic field ARPES measurements suggest
Fermi surfaces that are depicted in Fig. 16.5: In the overdoped sample with an effective hole
doping of p = 0.28, a closed hole Fermi surface centered around (7, ) exists, whereas in the
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Figure 16.5: Schematic phase diagram for YBasCu3O7_; as a function of temperature and hole doping p
with marks at the doping levels p = 0.11 and p = 0.28, which are in the underdoped and the overdoped
regime, respectively. The insets show the corresponding ARPES spectral intensities over one Brillouin
zone measured at 20 K. (Figure from Hossain et al., 2008)

underdoped case with p = 0.11, the Fermi surface develops into disconnected arcs located in
the vicinity of the diagonals, reflecting the properties of the pseudogap phase. Please note
that the study of the surface of YBCO is hampered by its polarity, which induces self-doping.
Therefore, the surface doping significantly deviates from the bulk doping, and was suggested to
be controlled by the deposition of potassium atoms on the cleavage plane (Hossain et al., 2008).
The ARPES spectra shown in Fig. 16.5 are taken from YBasCu3Og5 without K-deposition,
which has an effective surface hole doping of p = 0.28, and the same material with a heavy
deposition of potassium atoms leading to an effective hole doping of p = 0.11.

De Haas - van Alphen oscillation data (Vignolle et al., 2008) for the overdoped material
TlaBasCuOgys (T12201) reveal an excellent agreement between the oscillation frequency and
the size of the Fermi surface predicted by ARPES. This result does not come as a surprise
regarding the fact that Fermi liquid properties dominate in the overdoped regime and the
oscillations were seen in the field-induced normal state.

The underdoped case is more subtle and cannot be reconciled with the ARPES results in
a simple way. Two different underdoped YBCO compounds were studied - YBasCusOg.51
with a hole doping of p = 0.1 and YBayCuyOg with p = 0.14. Upon careful investigation,
Sebastian et al. (2008) extracted two different frequencies for YBagCuzOg 51 with p = 0.1, see
Fig. 16.6: a dominant one at F, = 500 4+ 20T, which is in agreement with the observations of
Doiron-Leyraud et al. (2007) and Jaudet et al. (2008), and F3 = 1650 £ 40T with significantly
smaller amplitude.

The dominant frequencies in the over- and underdoped case approximately differ by a factor
of 30; while in the overdoped case the size of the ARPES Fermi surface fits the result for the
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Figure 16.6: de Haas - van Alphen oscillations in YBagCusOg 51. (a) Fourier transform of the oscillation
signal revealing peaks at two different frequencies F,, = 500 & 20T and Fj3 = 1650 = 40T. The inset
shows the temperature-doping phase diagram of YBCO. (b) Data for de Haas - van Alphen oscillations
at various temperatures with subtracted background. (c) de Haas - van Alphen oscillations after
subtraction of the F,, contribution. For details of the fitting and subtracting procedure see Sebastian
et al. (2008). (Figure from Sebastian et al., 2008)

observed frequency via the Onsager-Lifshitz formula, the situation for underdoping is less clear,
because ARPES does not show a closed Fermi surface, but indicates disconnected Fermi arcs!
The attempt was made explaining the oscillatory behavior in the underdoped regime by the
existence of broken translational symmetry (Millis and Norman, 2007; Chakravarty and Kee,
2008; Chen et al., 2008) leading to a complicated band structure and multiple Fermi pockets.
It was argued that Fermi pockets cannot be seen by ARPES e.g. because of coherence factors
suppressing the photoemission intensity at the pocket’s back side. A different line of argument
is based on the fact that ARPES measurements are conducted in zero magnetic field and high
temperature, while the oscillations are seen at low temperature in a high magnetic: Possibly,
these two regimes exhibit two different Fermi surfaces.

A generalization of the Lifshitz-Kosevich formalism to the mixed state of type-1I supercon-
ductors based on a perturbative treatment of the scattering at the vortex centers, developed
by Maki (1991) and Stephen (1992), connects the oscillation frequency to the Fermi surface
in the temperature induced normal state. While this theory is applicable to e.g. the organic
superconductor k-(BEDT-TTF)oCu(NCS)y (Wosnitza et al., 2000; Sasaki et al., 2003), the
underlying constraints are not fulfilled in cuprate superconductors: For cuprates the condition
A? < Vwe, where A is the gap size, p the Fermi energy and w. the cyclotron frequency,
does not hold, since the gap size is more than one order of magnitude larger than w. and this
pertubative analysis cannot be applied.
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16.4 Outline

In this study a completely different approach is taken for resolving the question of how to
combine the Fermi arc picture suggested by ARPES measurements with the recently observed
quantum oscillations in cuprate superconductors at high magnetic field.

We start off with the basic assumption that Fermi arcs exist in the regime where quantum
oscillations are observed. We consider a real-space version of a BCS-like Hamiltonian with a
pairing gap leading to truncated Fermi surface segments. The influence of an applied magnetic
field manifests itself in the hopping amplitude carrying the usual Peierls factor and in the
superconducting order parameter, which takes into account the existence of an Abrikosov
vortex lattice. By a fully quantum mechanical treatment of the model, we show that the
density of states at the Fermi level exhibits an oscillatory behavior. The results presented in the
framework of this thesis are contained in (Pereg-Barnea et al.). In this reference an additional
semiclassical analysis is presented, whose results we will compare to the ones obtained from
our numerical treatment of the quantum-mechanical approach.

The remainder of this part is organized as follows: In Chapter 17 we introduce an ansatz for
a modified gap function leading to Fermi arcs, discuss its consequences for the density of states
in zero magnetic field, and compare it to the behavior of an ordinary d-wave gap function. The
considered quantum mechanical lattice model in magnetic field is presented in Chapter 18. By
applying a Franz-Tesanovié¢ transformation (Franz and TeSanovié, 2000), a bipartite singular
gauge transformation, the Hamiltonian becomes explicitly translationally invariant. Therefore,
a description of the problem in terms of Bloch equations can be established. Finally, in Chapter
19 we provide numerical results for the spectrum and the density of states, a detailed frequency
analysis, and a discussion. Chapter 20 concludes this part with a summary of the results.
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17 Fermi arcs produced by a pairing gap

In this chapter we introduce a phenomenological approach that is able to produce truncated
segments of the Fermi surface terminated by a pairing gap. Therefore, a BCS-like model is
considered with a modified d-wave gap function that is adiabatically connected to the standard
d-wave gap observed in cuprates at T' = 0. We study the Fermi arcs evolving from this ansatz,
discuss justifications for this approach and its connection to a BCS theory with a standard
d-wave gap function, and compare the density of states for both modified and standard d-wave
gap functions.
In general, a BCS-Hamiltonian is given by

H = Z(ek - EF)CLJCkO, + Z <AkclJr<TcT_kl + h.C.> . (17.1)
k,o k

(ko 1s a fermionic operator that creates an electron with momentum k and energy €x. The
electron dispersion is set in reference to the Fermi level ex. In a tight-binding approximation,
where only the nearest-neighbor hopping amplitude ¢ is included, the dispersion becomes
ex = —2t(cosk, + cosky). For simplicity, a next-nearest neighbor hopping is omitted in
the following. The gap function Ay is introduced in BCS theory as (ckjc—k|). The well-
established gap function for the ground state of a cuprate superconductor, Ay = Agxx with
Xk = %(cos ki — cosky), is of d,2_,2 symmetry. It exhibits nodal lines along the diagonals
ke = k.

The Hamiltonian (17.1) can be diagonalized via a canonical (Bogoliubov) transformation,
yielding the quasiparticle excitation energies

By = \/(ek —er)?+ AL (17.2)

ARPES measurements in the underdoped regime of YBCO and other high-temperature
copper-based superconductors suggest the existence of Fermi arcs. Not only the pseudogap
phase, but also the superconducting phase at elevated temperatures shows such arc signatures
(Shen et al., 2005; Hossain et al., 2008); these two phases seem to be intimately connected. It
has been argued that Fermi arcs evolve from thermal destruction of the phase coherence in the
superconducting state (Franz and Millis, 1998; Berg and Altman, 2007). Several properties of
the pseudogap phase look like remnants of the superconducting order: Under the influence of a
magnetic field it exhibits vortices (Corson et al., 1999; Xu et al., 2000; Wang et al., 2005) and
ARPES measurements reveal a Bogoliubov type dispersion above T, (Kanigel et al., 2008).

In order to establish a description of the Fermi arcs on a mean-field level we introduce the
modified d-wave gap function

~ Xk
Ak - A0 e(V2_X12c)/72 + 1 ) (17'3)
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Figure 17.1: Structure of the modified d-wave gap. (a) In the green regions of the BZ the gap is
non-zero, while it is exponentially suppressed elsewhere. The sign changes corresponds to those of an
ordinary d-wave gap function. The blue lines represent the truncated segments of the Fermi surface
with an underlying nearest neighbor hopping and er = —1.1¢. The length of these so-called Fermi arcs
is determined by v = 0.6. (b) Amplitude of the modified d-wave gap Ak in units of Ay along the line
connecting the points (0,7) and (7,0) in the BZ for 7 = 0.1 and different values of v.

which is adiabatically connected to and constructed from the ordinary d,2_,2-wave gap func-
tion with an additional factor in the style of the Fermi distribution function leading to an
exponential suppression of the pairing gap in specific regions in the vicinity of the nodal lines
of xk. The behavior of Ak is illustrated in Fig. 17.1(a) showing regions in the Brillouin zone
(BZ) with a normal d-wave gap (green) and with exponential suppression (white). The two
introduced parameters 7 and v control the sharpness of the step and the extension of the
region with exponentially suppressed gap, respectively. The parameter v is connected to the
length of the considered Fermi arc: In the limit of v — 0 and 7 — 0, the arc shrinks to a
point and the modified d-wave gap transforms smoothly into the ordinary d-wave gap Ay. For
v — 1 and 7 — 0 the gap vanishes and the result is a a normal metal with a closed Fermi
surface. In Fig. 17.1(b), the absolute value of Ay is plotted along the line k, = m — k; for
different values of v. If v € (0,1) and 7 — 0, the range of the real space correlations is infinite
due to the existence of a sharp step in k space.

The BCS-Hamiltonian with the modified gap function still describes a superconducting
system - however, the superfluid density is significantly lower than in the ordinary d-wave case
due to large ungapped regions along the Fermi surface. A microscopic Hamiltonian with an
interaction favoring this kind of pairing is not known, but a suitable type of electron-electron
interaction might certainly lead to the gap function (17.3). On the level of mean-field models,
the existence of a pairing gap truncating the Fermi surface is the only way to produce genuine
Fermi arcs; all kinds of particle-hole instabilities, e.g. those accompanied by a symmetry
breaking, simply lead to closed Fermi surfaces, terminated by the boundaries of the BZ.

For a finite value of 7, the modified gap function is exponentially suppressed, but finite.
The gap only becomes exactly zero along the diagonals. Strictly speaking, the corresponding
Fermi surface consists of four nodal points and not of arcs. In ARPES such a distinction is
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Figure 17.2: Tunneling density of states for ordinary d-wave pairing with coherence peaks at =e;.
Parameters are set to Ag/t =1 and ep/t = —1.1, and the energy is given in units of ¢.

not visible, however for the validity of the Luttinger theorem it is of great importance.

Density of states: Ordinary vs. modified d-wave gap

The superconducting tunneling density of states (DOS) is defined by
1
Dr(e) = NZ (Jux|*0(e — Ex) + |vi|*5 (e + Ex)) (17.4)
Kk

where §(z) is the delta function and the prefactors arise from the Bogoliubov transformation

1 €k — € 1 €k — €
2t k F 2 _ = . k F
luk|® = 5 <1 + B ) and |vk| 5 (1 B > . (17.5)

Please note that the tunneling DOS defined here does not refer to what would be measured in a
scanning tunneling spectroscopy (STM) experiment, but rather denotes an energy-dependent,
spatially averaged DOS. It is related to the normal DOS via:

D(e) = % S8 — Fi) = Drle) + Dr(—e). (17.6)
k

In the following we will review the structure of the tunneling DOS for the ordinary d-
wave case (Zhou and Schulz, 1992) and compare it to the results for the modified d-wave
gap function. The data for the plots shown within this section are obtained numerically by
replacing 6(x) in the definition of D, Eq. (17.4), by a Lorentzian with small width.

Away from half filling (e # 0) the ordinary d-wave tunneling DOS, see Fig. 17.2, shows
features, which can be ascribed to the behavior of Ex in k space: (i) The nodal lines of Ay
lead to isolated zeros in the excitation energy Ey at (fko, tko) with cos ky = —ep/4t, which
manifest themselves in a linear behavior of Dp(e) at low energy. (ii) The two saddle points of
Ex give rise to logarithmic van Hove singularities at the energies +¢; and +ey. For 4t|ep| > A(Q)

2 1p42
the saddle points sit at k; = (0,k_) and ke = (7,7 — k) with cosky = % implying
0
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Figure 17.3: Tunneling density of states as a function of energy in units of ¢t with A/t = 1, v = 0.6
and ep/t = —1.1.

Ao (4t+ep) _ Ao(4t—ep) 2 .
1621 A7 and ey = oA In the case of 4t|ep| < A§ the second saddle point changes

€1 =

to ko = (0,7), leading to an energy e; = \/e% + AZ. The van Hove singularities at +e; are
intrinsically due to the superconducting order and are therefore called coherence peaks. The
ones at £ez have their origin in the two-dimensional tight-binding band structure. Adding a
third dimension renders all singularities finite.

In the case of a modified d-wave gap a numerical evaluation of Eq. (17.4) substituting the
S-function by a Lorentzian (§(z) — s/(w(s? + 2%) with s < 7) shows that the van Hove singu-
larity features survive and the coherence peaks are located at approximately the same position
as for an ordinary d-wave function (compare Fig. 17.3). The low-energy behavior changes
significantly depending on the value of the parameter 7. For every 7 > 0 a little dip evolves
with Dr(e — 0) = 0, which cannot fully be reflected by the numerics underlying Fig. 17.3 due
to the finite width of the Lorentzian. As the value of 7 grows, the dip becomes larger and the
low-energy feature transforms into the one for ordinary d-wave originating from the fact that
a large 7 smears out the step between large- and zero gap region. For subsequent numerical
evaluations 7 is fixed to 0.1.

In this chapter we discussed a way to produce truncated segments of the Fermi surface ter-
minated by a superconducting pairing gap in a two-parameter phenomenological ansatz for a
modified d-wave gap function. In order to investigate the properties of a BCS-like model ex-
hibiting such a gap function in a magnetic field, the next chapter presents a method for treating
a strongly type-II superconductor in the vortex state with an arbitrary pairing function.
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18 Lattice model in a magnetic field

This chapter deals with the fully quantum mechanical treatment of a strongly type-II super-
conductor in the mixed state with an arbitrary pairing function. The special focus lies on the
previously introduced pairing gap leading to Fermi arcs. Section 18.1 introduces the BCS-like
real-space model on a lattice, which undergoes a Franz-Tesanovi¢ (FT) gauge transformation
in Sec. 18.2. The presence of a periodic vortex arrangement in the system allows us to rewrite
the gauge-transformed Hamilton operator: Section 18.3 presents explicit calculations of ex-
pressions contained in the Hamiltonian. Finally, the discrete translational invariance of the
considered system, which is explicitly restored by the FT gauge transformation, is exploited
by formulating Bloch equations in Sec. 18.4.

18.1 Model

For a fully quantum mechanical treatment, we consider the real-space model

B Y tdd e+ 3 (A(rm, ra)ch el + h.c.) , (18.1)
(mn) mn

where the electrons c¢,,, sit on a two-dimensional square lattice and hop between nearest-
neighbored sites. In the strong type-II superconductor limit the penetration depth A is much
larger than the intervortex distance. The electrons feel the influence of the external field upon
hopping, which manifests itself in the Peierls factor el with

B — Z/A(r) dl. (18.2)

Here, A is the vector potential associated with the external magnetic field and ¢g = h/e is
the flux quantum. The superconducting pairing function depends on the positions of both
involved electrons and can be split into

A(I‘m, rn) = eicp(rmmn)Arel(rm - rn)a (18.3)

where the phase ¢(ry,,r,) contains the information about the vortex configuration and the
“amplitude” Aye(r,, — ry,) reflects the real-space pairing type, which only depends on the
relative coordinate t = r,, — rj,.

The well-known cases of s-, d- and p-wave pairing constructed from on-site and nearest-

neighbor interaction, respectively, can be expressed by real-space functions A?  (t) = d(r)/4
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and A%P(x) =Y 5 fap(0)0(r — &), where & denotes the vector to nearest neighbored sites and

rel
the functions fg, are given by

{ 1 ford==+2 {:Fi for 6 = +7

Ta@) =\ 21 foro=4g and  fo0) =3 14 for o=ty (18.4)

The modified d-wave pairing is not related to a simple real-space structure, but is defined by
its k space behavior. In real space we can write AT~ %(v) = 37, e**A(k), where Ay is given
by Eq. (17.3).

The phase ¢(ry,,r,) can approximately expressed by the on-site phase ¢(r) as

P(rm,rn) = %(Gﬁ(rm) + é(rn)) , (18.5)

see Appendix I. The phase ¢(r) contains the information about the positions {r;} of the
vortices via

V x Vé(r) =212 ) d(r—r1y), (18.6)

which translates into a 27 phase winding around the vortex cores. The singularities appearing
on the right-hand side act as magnetic half-fluxes at the center of the vortex core. Their
polarity is opposite to the applied magnetic field B, which is described by the conventional
London equation for intermediate field values H.y < B < Hs, for which the vortex spacings
are large:

B - \2V?B — %qbozz 5(r—ry), (18.7)

with the London penetration depth A. This equation connects B to the number of vortices in
the system.

The magnetic field seen by the electrons is the external magnetic field B. It is constant in
space and therefore does not vanish in average ((B) # 0, where the brackets denote the spatial
average). As a consequence, the corresponding vector potential A by construction cannot be
periodic in space.

Given a periodic arrangement of vortices the physical system itself is translationally invariant
with the magnetic unit cell determined by the shape of the vortex lattice.

The magnetic response related to the appearance of the Abrikosov vortices compensates the
effect of the applied magnetic field in average due the flux quantization in a high-temperature
superconductor. A specific type of gauge transformation, which is discussed in the next section,
is able to restore this explicit translational symmetry of the Hamiltonian. Exploiting the
translational invariance leads to great advantages in the numerical implementation of the
problem.

18.2 Gauge transformation

In this section we introduce a special bipartite gauge transformation that removes the non-
trivial off-diagonal phase in the Hamiltonian arising from the phase windings around the vortex
cores, while restoring the discrete translational invariance in the Hamiltonian.
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18.2 Gauge transformation

In terms of a Bogoliubov-de Gennes Hamiltonian, Eq. (18.1) becomes

A
H=1] ~ ~ 18.8
(58] o
with
h = —tz eie(r’”‘s)é\g —€F and Z Arel(ro)e sr ei¢(r)/2, (18.9)
6

where Sy, is the shifting operator (Sy,u(r) = u(r+rg)). The wave function is a two-component
spinor in Nambu space, U7 (r) = (u(r), v(r)), satisfying the Bogoliubov-de Gennes equation

Hyp = €. (18.10)

When solving for eigenstates of H in the vortex phase, two main difficulties arise: the
non-trivial order parameter phase winding around the vortex cores and the missing explicit
translational invariance of the Hamiltonian. As we will see, both problems can be cured at
once by applying a specific gauge transformation.

In general, an off-diagonal phase is removed by a gauge transformation U with

H — U 'HU e 0 18.11
- ) = 0 e—id()/2 | (18.11)

leading to a phase frr+5 (qu - = ) -dl in the diagonal part. Then, quasi-particles and quasi-
holes see an effective magnetic field, which consists both of the applied field and the opposing
half-flux spikes:

Beg =B — @zz S(r—ry). (18.12)

It can be expressed via the superfluid velocity

vy(r) = %ng(r) - %A, (18.13)
as Beg = —m/eV x vs. By rewriting vy as
2
ik
o) = T [ Ak k< Z Z ik(r—.), (18.14)

@r)ZA2+ k2

compare Appendix J.1.1, we can easily see that the spatial average of the effective field (Beg) ~
(V x v) vanishes, since (e¥*) = 0.

Basically, this would be the desired result: The off-diagonal phase is removed and the spatial
average of the effective magnetic field vanishes, paving the road for a translationally invariant
formulation. However, the order parameter phase is not a pure gauge field, which can be seen
by the non-vanishing right-hand side of Eq. (18.6). It winds around the vortex core by 27
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18 Lattice model in a magnetic field

and therefore takes values in the interval ¢(r) € [0,27]. Thus, the factor 1/2 in the exponent
of the diagonal elements of U causes complications - the gauge transformation is not single-
valued! In principle this could be compensated by introducing branch cuts in the quasiparticle
wave function. A more elegant solution to this problem is given by the Franz-TeSanovi¢ gauge
transformation (Franz and Tesanovié, 2000), a bipartite singular gauge transformation:

H — U YHU, U= < 0 i (F) > (18.15)

with
¢a(r) + ¢p(r) = é(r). (18.16)

Since no factor of 1/2 occurs in the off-diagonal phase of U, the tranformation is rendered
single-valued. The set of vortices contained in ¢(r) is divided into two subsets A and B with
vortices at {r{'} and {r?} obeying the relation

V x Vo,(r —27r226 r—r! w=A,B. (18.17)

Therefore, quasi-electrons and quasi-holes in the transformed system see different vortices,
namely those contained in ¢4(r) and ¢ (r), respectively. The gauge-transformed Hamiltonian
becomes

¢ Za eivs' (r 85 —€f > Apa(rp)e ‘5¢(r)/2§ 615¢(r)/2
H " 18.18
" ( 2 rg Bta(ro)e T100(0)/25, €100 ()/2 ty e % 5 )55 + e ( )
using d¢(r) = ¢a(r) — ¢p(r) and

r+6 r+4

p_ _fA). a2 ™ "
Vi = / (V% hA) d=" /vs dl (18.19)

r

for u = A,B. The second equality defines v%, the counterpart of the superfluid velocity
vs, which acts as an effective vector potential. Therefore, quasi-electrons and -holes move in
different effective magnetic fields

By = —%(V xvi)=B—¢oZ» d(r—rt). (18.20)

Analogous to v, an expression involving the vortex positions can be derived for vi:

2rh d’k ik xz Z ik(r—r”

| e (18.21)

o
VS—

Details of this calculation are discussed in Appendix J.1.2. As for Beg, the spatial average
(B!3) ~ (V x v&) vanishes due to (e!*") = 0. Therefore, the number of A and B vortices in
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18.3 Off-diagonal and hopping phase

(a) o o o () M
: W
) I 4% X

Figure 18.1: (a) Arrangement of A and B vortices on top of the lattice, on which the electrons live
(gray grid). The green colored region denotes the magnetic unit cell. In this example the magnetic unit
cell contains (N, = 4) x (N, = 4) lattice sites, implying a magnetic field strength of B = ¢/(1652).
(b) First magnetic BZ for the square vortex lattice in (a). (Figure based on Vafek et al., 2001)

the system is equal and for a periodic arrangement of vortices their distribution can be chosen
in a way that the magnetic unit cell contains one of each vortex type.
The off-diagonal phase in the gauge-transformed Hamiltonian Hy can be summarized as

r+ro

Ant) = 5 (G0l +x0) = 50()) = 5 [ (Vo Vou) . (18.22)

In the following we consider the setup depicted in Fig. 18.1(a). In the absence of pinning effects
the vortices are arranged in a periodic fashion. For simplicity we assume a square vortex lattice
instead of the triangular lattice indicated by experimental and theoretical results. However,
this should not affect the validity of the results. The electrons hop on an underlying square
lattice with bond length §. For the FT gauge transformation all vortices {r;} are divided
into two subgroups {r:'} and {r?} containing the same number of vortices. We consider A
and B vortices to be distributed in a checkerboard pattern. Vortex and electron lattice are
commensurate in the way that the magnetic unit cell contains one vortex of each type. The
magnetic unit cell comprises Ny = N, Ny, lattice sites, where Ng; denotes the number of sites
in ¢th direction. Via the London equation (18.7) the size of the magnetic unit cell and the
strength of the external magnetic field B are connected as B = ¢g/(NsyNyyd?).

This periodic arrangement of vortices significantly simplifies the expressions for the off-
diagonal and the hopping phase, which will be discussed in the next section.

18.3 Off-diagonal and hopping phase
In the gauge transformed Hamiltonian Hy, Eq. (18.18), two different phases occur: the off-

diagonal phase Ay, (r), defined by Eq. (18.22), and the hopping phase in the diagonal block v/,
Eq. (18.19). For both phases explicit expressions in terms of summations over the reciprocal
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18 Lattice model in a magnetic field

Figure 18.2: Magnetic 4 x 4 unit cell contain-

ing one vortex of each type. The derived expres-
sion for the off-diagonal phase A, (r) between the
points r and r + rg depends on the number of vor-
tices ny in the trapezoid spanned by the points r
and r + rg and their projection to the x-axis (blue
colored region) The point of origin is given by the
lower left corner of the magnetic unit cell. In this
example ny = 1.

lattice vectors of the vortex lattice, G, can be derived exploiting the London equation for

intermediate field values, Eq. (18.7), and the periodic structure. While the description of

the reciprocal space is presented in Appendix J.2 and the detailed derivation of the phase

expressions are explained in Appendix J.3 and J.4, we will now give a summary of the results.
The hopping phase is given by

27 1 R G ~ G -
iz —iGr* iGr | _ Yy _ L iGye z _ LiGyé
vs(r) = N2 a ek e { a. <1 e ) + G, (1 ey y)] , (18.23)

where ) is the London penetration depth and r, is the offset of the position of vortex i to the
lower left corner of the magnetic unit cell. As a cross-check for the derived expression of the
hopping phase, the magnetic flux through each plaquette is calculated in Appendix J.5.

The off-diagonal phase Ay, (r), Eq. (18.22), requires some preliminary considerations. The
closed line integral over V¢ 4 —V ¢ p is not zero, but depends on the number of encircled vortices
due to the non-vanishing curl of V¢*, Eq. (18.17). The occurring line integral is therefore path-
dependent. Although not known in detail, the underlying microscopic interaction stabilizing
the considered arbitrary pairing is assumed to be distance-dependent, which represents the
simplest case. Under this assumption, the integral in Eq. (18.22) has to be evaluated along
the path that directly connects the points r and r + rg. If we consider vortices slightly shifted
from the center of a plaquette by an irrational fraction of the lattice spacing d, this prevents
vortex cores sitting on the straight connection line between two lattice sites, rendering all
occurring line integrals well-defined. The off-diagonal phase becomes

—iGrP —iGr4
T e —e G ; ;
Apy(r) = N.52 Z G2 [Gy (1 —¢ GMO) oty
S G x
Gy

_Gi <€iGr o eiG(r—i—ro) + eiGzro + eiGz(x+xo)):| +ny,
Yy

(18.24)

where ny denotes the number of vortices in the trapezoid spanned by the points r, r + ry and
their projection to the x-axis, (x,0)” and (x + z9,0)”. An illustration is given in Fig. 18.2.

The gauge-transformed Hamiltonian Hy reflects the discrete translational invariance of the

system. This can be exploited by formulating Bloch equations, which will be discussed in the
next section.
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18.4 Bloch equations

18.4 Bloch equations

The advantage of the FT gauge transformation is two-fold: It restores explicitly the discrete
translational invariance with the vortex lattice in the gauge-transformed Hamiltonian Hy
while conserving single-valuedness.

The translational symmetry Hy(r) = Hn(r + R), where {R} denote the vectors pointing
to the magnetic unit cells, simply requires the phases 4 (r) and Ay, (r) to be invariant under
r — r+ R. For both v§(r) and Ay, (r), this can be seen from the derived expressions (18.23)
and (18.24), because for reciprocal lattice vectors G the relation e!G* = ¢!Gr+R) Lolds.

For the FT-gauge transformed real-space Hamiltonian H  the Bogoliubov-de Gennes equa-
tion reads

HyUn(r) = 6,0,,(r), (18.25)

where U, (r) is a two-component spinor. Due to the discrete translational invariance the
eigenfunctions can be modeled as Bloch waves

Uy = X0, (v), P, = (Unx(r), V()T (18.26)

where @, k(r) is periodic with the magnetic unit cell. With this ansatz, the eigenvalue problem
becomes a Schrédinger-like equation in k-space, also denoted as Bloch equations

Hkq)n,k(r) = 6nk(I)n,k(r)a (1827)

with Hyx = e ¥"H ye'XT. Notice that the transformation between Hy and Hy is not unitary
due to the periodic boundary conditions at the edge of the magnetic unit cell. The gauge
transformed Hamiltonian in k space is given by

. A . ~ . . ~
—ty s€s (r)eikdge _ cp > ro A(rg)ero () gikro Sro )

. . . . 18.28
Zro A*(ro)elAro(r)elkro’S\rO t Z(S e—lr/f(r)elkéé\‘s +ep ( )

Hi(r) = (
Under the assumption that every magnetic unit cell contains two vortices, the strength of the
applied magnetic field and the size of the magnetic unit cell are connected to each other via
the London equation. The size of the magnetic BZ follows from the shape of the magnetic
unit cell. Equation (18.28) describes an eigenvalue problem for every k vector in the magnetic
BZ; Hy becomes a (2Ng x 2Ng)-matrix, with Ny being the number of sites in the magnetic
unit cell.

In the following the off-diagonal matrix entry between site ¢ and j with r;; = r;—r; is denoted
by h?fi(diag . For a system with only one unit cell, h?fi{diag simply consists of A(rij)eiA‘”ij (ra) gikrs;
With more than one unit cell and a pairing term A(r;;) that is not restricted to short-ranged
interactions, a summation over all unit cells has to be introduced:

R = N A(ry; + R)e otk R (18.29)
R

As derived in Appendix J.6, Ay +r(r) can be split into

Al‘o-‘rR(r) = Aro (I‘) + Qr4rp - R+ (ﬁV - nV)T‘- . (18'30)
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18 Lattice model in a magnetic field

Figure 18.3: Four magnetic 4 x 4 unit
cells, each containing one vortex of
each type. The trapezoid spanned by
the points r, r + rog + R and their
projection to the x-axis (z,0) and (x +
xo + Ry, 0) is shaded in gray and covers
ny = 5 vortices.

using

oo 1/Ngy
Artro = 5 ( —sign(z + zo — z4)sign(z + xo — xB) /Ny ) ’ (18.31)

where z,, is the x-component of r#. 7y, denotes the number of vortices in the trapezoid spanned
by the points r, r + rg + R and their projection to the x-axis (z,0) and (x + z¢ + Ry, 0). This
is illustrated in Fig. 18.3. Equation (18.29) simplifies to

h?fi{diag = rij (ri)(—l)ﬁ‘/_n" Z A(ry; + R)c'i Rikrij+R (18.32)
R
= iy (ri) () —my > N, 11\7 52 D A(K)e O Eg HR) cldr R (18.33)
R u S k,
iAy. . (r; nv—n 1 i Nris
= Mt (i) (1) VW ;gA(k/)e(kﬂt) 10k 4K/ +qr ;G (18.34)
. . _ 1 (G Vpes
= e )T g S TA(G k- g e (G (18.35)
e

where N, denotes the number of magnetic unit cells in the system.

In this chapter a quantum-mechanical description was developed, modeling a strongly type-II
superconductor in the mixed state in the presence of an arbitrary superconducting pairing.
Applying a Franz-Tesanovi¢ gauge transformation, a bipartite singular gauge transformation,
leads to a Hamiltonian reflecting the discrete translational invariance of the system in the
presence of an Abrikosov vortex lattice. Within this framework eigenstates are Bloch states,
which significantly simplify the problem.

In the next chapter, we discuss the numerical implementation of this model with a pairing
gap leading to Fermi arcs and present numerical results for the spectrum and the density of
states.
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19 Numerical results

This chapter presents numerical results for the spectrum and the density of states for the model
introduced in the previous section, a strongly type-II superconductor in the mixed state, in
combination with a pairing function that produces Fermi arcs. The Schrédinger equation in
k space, Eq. (18.27), that takes advantage of the periodicity of the vortex lattice, is solved
numerically by diagonalizing the Hamiltonian for a grid of k vectors in the magnetic BZ.

The numerical diagonalization was accomplished by LAPACK and ARPACK routines. LA-
PACK (Linear Algebra PACKage) (Anderson et al., 1999) comprises various routines for linear
algebra including eigenvalue problems, for which the full spectrum and the complete set of
eigenvectors is provided. In contrast, ARPACK (ARnoldi PACKage) (Lehoucq et al., 1998) is
exclusively designed to solve large-scale eigenvalue problems. It uses the implicitly restarted
Arnoldi method and provides a set of low-lying eigenvalues. This allows to deal with larger
matrices and takes up significantly less run time. The performance was further improved by
Fast Fourier Transformation (FFT) implemented by the FFTPACK routine: The calculation
of (i) the hopping and off-diagonal phases 1§ and Ay, (r), which can be written as sums over
reciprocal lattice vectors, and (ii) the Fourier transform occurring in the off-diagonal matrix
elements, Eq. (18.35), were realized with a FFT.

In the following we first consider both ordinary and modified d-wave pairing functions and
compare their results for the spectrum and the density of states. It will become clear that the
behavior of the DOS in the proximity of the Fermi surface is crucially different - the modified
d-wave pairing leads to an oscillatory behavior of the DOS in the vicinity of the Fermi level!
We provide a detailed frequency analysis in terms of the given parameters and compare the
results to experimental data. Furthermore, we show the local density of states (LDOS) at
the Fermi level, data, which corresponds to what would be seen in a Scanning Tunneling
Microscopy (STM) measurement. A short summary concludes this chapter.

19.1 Spectrum and DOS

The magnetic unit cell has the size (Ns;0) % (N5, ) and contains one A and one B vortex. The
vortices are arranged in a square lattice as shown in Fig. 18.1(a). The size of the magnetic
unit cell determines the strength of the magnetic field via the London equation (18.7) as
B = gi)o/(NstsyéQ), where ¢9 = h/e = 4.137 x 10°TA? denotes the magnetic flux quantum.
For a lattice spacing § = 4A, which is the appropriate value for YBagCuzO7, a 16 x 16 unit cell
corresponds to a field strength of about 101 T. The experimentally relevant regime between
40 and 65 T is modeled by unit cell sizes between 249 x 246 and 206 x 206. The London
penetration depth A is chosen to be 50000 in numerics, which is much larger than the width
of the unit cell.
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19 Numerical results

Energy [7]

r 0 M X 0 w L

Figure 19.1: Spectrum along a specific walk in the magnetic BZ, illustrated in Fig. 18.1(b), for an
ordinary d-wave pairing with Ay =t and ep = —1.1¢ in the presence of an external magnetic field. The

magnetic unit cell size is 166 x 165, which corresponds to approximately 101 T.

174



19.1 Spectrum and DOS
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Figure 19.2: Low-energy spectrum for ordinary d-wave pairing: Zoom into the low-energy part of
Fig. 19.1.

Dy

-5 -4 -3 -2 -1 0
Energy €[]

0 \ AP . "."M“‘fﬂw'ﬂ”‘l‘lx‘w.‘l|.h|Nl|\'MHIJ Il”w't”.l”h 11
0 1 2 3 4 5
Energy € [7]

Figure 19.3: Tunneling density of states for ordinary d-wave pairing in the presence of a magnetic field
of roughly 101 T (black), which corresponds to a 16§ x 16§ magnetic unit cell, and without magnetic
field (red). Parameters correspond to the ones in Fig. 19.1.
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19 Numerical results

\
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Figure 19.4: Spectrum along a walk in the magnetic BZ, shown in Fig. 18.1(b) for a modified d-wave

pairing with the parameters 7 = 0.1, v = 0.6, Ay

size of 160 x 164.

t and ep = —1.1t. The magnetic unit cell has a
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19.1 Spectrum and DOS
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Figure 19.5: Zoom into the low energy spectrum for modified d-wave pairing, parameters are the same
as in Fig. 19.4.

Dy

0 L L L L L L L | " ! 1 . L L L
-5 -4 -3 -2 -1 0
Energy € [7]

i I 11111
o Wt O A A
0 1 2 3 4 5
Energy € [1]

Figure 19.6: Tunneling DOS for a modified d-wave pairing in the presence of a magnetic field (black)
and without magnetic field (red). Parameters are the same as in Fig. 19.4.
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19 Numerical results
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Figure 19.7: Zoom into the low energy part of the density of states for (a) ordinary (compare Fig. 19.3)
and (c) modified d-wave pairing (compare Fig. 19.6) with (black) and without (red) magnetic field.

The two panels on the right-hand side show the corresponding power spectrum |ﬁ(s)|2 for ordinary (b)
and modified (d) pairing.

Unless otherwise noted numerical data are shown for a 16 x 16 unit cell. For magnetic fields
in the experimental regime results are qualitatively the same. We consider a system of finite
size with (Nyz = 80) X (Nyy = 80) unit cells, which determines the number of states in the
magnetic unit cell and therefore the resolution of the DOS.

Ordinary d-wave superconductivity in the mixed state was already discussed by Vafek et al.
(2001). In this reference, only the low-energy part of the spectrum is shown. We, however,
compute the full spectrum, Figs. 19.1 and 19.2, and the complete tunneling DOS, Fig. 19.3.
The spectrum is symmetric with respect to € = 0, and it is sufficient to show only the positive
energy range. The asymmetry in the tunneling DOS Dz, produced by the broken particle-
hole symmetry (ep = —1.1t), arises from the Bogoliubov prefactors |uy|? and |vy|?, which are
related to the eigenvectors of the Hamiltonian (18.28). The spectrum of a modified d-wave
pairing with the pairing function defined by Eq. (17.3) is plotted in Figs. 19.4 and 19.5, the
corresponding tunneling DOS is shown in Fig. 19.6. In all cases the spectrum is plotted for a
specific walk in the magnetic BZ, shown in Fig. 18.1(b).

At energies much larger than Ay, the off-diagonal matrix elements become irrelevant and a
regular level structure evolves, similar to Landau levels. In the limit Ay < ¢, the Landau level
frequency observed at higher energies € is expected to correspond to the frequency that would
be obtained from the semiclassical analysis discussed in Sec. 16.2.

Zooming into the low-energy part of the DOS around the Fermi level reveals the crucial
difference between ordinary and modified d-wave pairing: As we can see in the two left panels in
Fig. 19.7, the former one shows an irregular structure, whereas for the latter one an oscillatory
behavior is observed. This behavior will be quantitatively studied in the next section.
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Figure 19.8: DOS as a function of €z at the Fermi level for v = 0.6, 7 = 0.1 and a 16§ x 169 unit cell.

19.2 Frequency analysis

The observed oscillatory behavior around the Fermi level for the modified d-wave pairing,
Fig. 19.7(c), implies oscillations in most of the physical observables. Before analyzing the
frequency behavior quantitatively, we first note, that in the absence of superconductivity the
following relation holds:

Doy () = % S 6(e — (e — er)) = Dole + er). (19.1)
k

where D, (€) denotes the density of states at energy e and Fermi level ep. It implies the fact
that oscillations (i) in the DOS D(e) for a fixed value of ep and (ii) in the DOS as a function
of ep, D¢, (e =0), at the Fermi level are equivalent. In the presence of superconductivity this
relation is no longer valid and we have to differentiate between these two functions. A plot of
D, (e = 0) is depicted in Fig. 19.8, showing clear deviations from D..—_11+(€), Fig. 19.7(c),
while the set of parameters stays the same.

The qualitative observation of oscillatory behavior in the DOS for modified d-wave pairing
can now be furnished by considering the power spectrum. Details for its calculation are dis-
cussed in Appendix K. The power spectrum (Fig. 19.7(d)) for the DOS depicted in Fig. 19.7(c)
reveals peaks at the dominating frequency and its higher harmonics. By contrast, the power
spectrum for ordinary d-wave pairing, Fig. 19.7(b), does not show a distinct peak, but rather
has contributions from many different frequencies.

In the following we systematically study how the dominating frequency depends on the arc
length v, the magnetic field B and the gap parameter A, while comparing to the results of
the semiclassical analysis presented in (Pereg-Barnea et al.), whose basic ideas are sketched in
Appendix L. In the semiclassical approach, a frequency

Oa
F = 19.2
Thw, ( )
is found for energy oscillations in the DOS and a frequency
2— 9(1 c
F = A /2= ba)me (19.3)

whe
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Figure 19.9: Dominating frequency 5 as a function of v for oscillations in De,—const(€) (black squares)
and in D., (e = 0) (gray squares) around er = 0 (panel a) and ey = —1.3t (panel b). The error bars
denote the full width at half maximum of the corresponding peak in the power spectrum. The used
parameters are Ao/t = 1 and 7 = 0.1. The size of the magnetic unit cell is 16 * 16, implying a magnetic
field of B = 101T. The red plot represents the semiclassical result, Eq. (19.2), with m. = 3m,, where
m, is the bare electron mass. The blue, brown and purple colored horizontal lines represent frequencies
extracted in specific limits; for a detailed explanation see text.

for oscillations in the DOS as a function of inverse magnetic field, where m, is the cyclotron
mass, w. = eB/m, the cyclotron frequency and e the electron charge. The parameter 6,
describes the angular size of the arc and is directly associated to the arc length v by a function
0,(v), which is approximately linear for small to intermediate values of v.

An overview, how the first harmonic, denoted in the following by 5, depends on the arc
length v is given in Fig. 19.9: Oscillations both as a function of er and € are studied. In
addition to these results further frequencies are shown for comparison:

brown: By considering the underlying Fermi surface in the absence of pairing and at zero
magnetic field, a semiclassical frequency can be extracted following the Onsager relation,
Eq. (16.14). A Taylor expansion of the Fermi surface volume A™°™(ep) in €p up to first
order leads to A™°™(ep) ~ Ag + A1(er — €rp), where epg = 0 and —1.3t, respectively.
The semiclassical frequency is given by hA;/e.

purple: This frequency is extracted from the DOS D(e) in the limit € > Ag. In this regime
the DOS shows the signatures of Landau level quantization, compare e.g. Fig. 19.6.

blue: While using the developed framework of the FT gauge transformation and setting Ag
to zero, this frequency can be extracted from the oscillations in D(e) around the Fermi
level.

A few remarks are in order:
(i) While approaching the limit of ordinary d-wave for v — 0 the oscillatory behavior breaks
down and no frequency can be extracted from the data. The oscillations in D(e) saturate to
a constant in this limit.
(ii) All frequencies shown in Fig. 19.9 vary with ep, which is related to the doping level.
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Figure 19.10: (a) Dominating frequency as a function of the arc length v for different values of the
gap parameter A for oscillations in D,—_1 3¢(€) around the Fermi level e = 0. (B = 101T, 7 = 0.1)
(b) Dominating frequency scaled the inverse magnetic field, B, as a function of v for oscillations in
D€F=—1.3t(€) (Ao/t = 1, T = 01)

Please note that the black squares in both plots represent the same data as the ones shown in
Fig. 19.9(b).

Experimentally, this is the case as well: YBasCu3Ogs51 (p = 0.1) exhibits lower frequencies

than YBasCuyOg (p == 0.14).

(iii) The semiclassical frequency (brown line) extracted from the Onsager formula (16.14)

matches the frequency obtained from the quantum-mechanical formalism in the limit Ag — 0

(blue line).

(iv) The two limits v — 1 and Ag — 0 are equivalent. Thus the black squares converge to the

blue line for v — 1.

(v) For ep = —1.3t the frequency behavior in D, (0) (gray squares) resembles the one in

D¢ —const.(€) (black squares). At half filling the 5(v) functions have a different structure.
The semiclassical frequency F,, Eq. (19.2), translates into

2m0,(v)

5(v) = 27 F, =
5(v) T T

(19.4)
and is represented by a red line in Fig. 19.9. It shows good agreement with the oscillations
as a function of v for both considered values of €. Its saturation to a constant value for
high v in Fig. 19.9(b) results from the structure of the function 6,(v): For ep = —1.3t and
v 2 0.65, a gapped region is still present in the system, however it does not have contact with
the underlying Fermi surface, leading to 6, = 7 /2.

In contrast to the semiclassical result F¢, the frequencies extracted from the lattice model
exhibit a gap dependence, depicted in Fig. 19.10(a), which saturates in the limit of large Ay.
This is consistent with the fact that the semiclassical analysis requires the condition € < Ag
and therefore only holds in the limit of large Ag. Furthermore, we observe a linear scaling of
the frequencies with inverse magnetic field, compare Fig. 19.10(b), which is in agreement with
the B-dependence of F.

In experiments the oscillations are observed as a function of inverse magnetic field, which leads
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19 Numerical results

to complications within our theoretical setup: Varying the magnetic field is accomplished by
changing the size of the magnetic unit cell. It appears that the DOS value at the Fermi
level, D(0), is sensitive to the vortex position. Due to this commensurability effect it is only
reasonable to compare configurations, where the vortices sit at the same position within a
plaquette, which is only the case for magnetic unit cells, where N ; is an integer multiple of
4. In the range between 40 and 100 T only three data points can be studied, which clearly
does not allow a direct observation of 1/B oscillations. This commensurability effect is not of
experimental relevance, since disorder effects lead to vortex pinning, which destroys the vortex
lattice and a vortex liquid evolves.

For a normal metal as well as for an ordinary d-wave superconductor it is valid to draw
conclusions from energy-oscillations to magnetic field-oscillations. A scaling analysis for a
metal tells us that for fixed filling three energy scales exist in this problem: the Fermi level
er, the temperature 7" and the magnetic field B. Therefore the DOS is a function of the
dimensionless ratios between these energy scales D(ep/B, B/T), which reduces to D(ep/B)
for fixed temperature. Oscillations in €x can directly be mapped onto oscillations in 1/B.

In a d-wave superconductor the situation is different, but another type of scaling can be
found, developed by Simon and Lee (1997) and discussed in the context of quantum oscillations
by Melikyan and Vafek (2008). This Simon-Lee scaling is based on the existence of Dirac cones,
which are present in the spectrum of a d-wave superconductor at the nodal points.

None of these two cases can directly be applied to the considered case of a Fermi arc metal.
However, the semiclassical approach, which is furnished by our numerical results for the lattice
model, is able to predict the oscillation frequency as a function of inverse magnetic field. In
order to give an estimate for this frequency, we plug in experimentally achieved values for Ag
and m.: For Ay = 80meV (Hossain et al., 2008), m. = 3m. (Bangura et al., 2008), where m,
is the bare electron mass, and 6, = 7/4, the resulting frequency F' = 518T lies int the range
of the experimentally observed frequency 500 £ 20T (Sebastian et al., 2008). Please note that
the value used for the cyclotron frequency is a result from a fit to the Onsager-Lifshitz picture
and, since the Fermi surface cannot be measured in the relevant regime, the value for 6, is also
dressed with uncertainty. Nevertheless, this first estimate shows that the semiclassical result
is able to produce frequencies in the experimental range.

19.3 Spatially resolved DOS

Experiments for scanning tunneling microscopy (STM) were conducted for several high-tempe-
rature superconductors in the presence and absence of a magnetic field (a review is given by
Fischer et al. (2007)) and are able to produce a map of the local density of states (LDOS)
at the Fermi level, which reveals the positions of impurities and vortices. The differential
tunneling conductance dI/dV as a function of the applied voltage V' between the STM tip and
the sample at a specific point r of the sample, where I(V') is the tunneling current, corresponds
to the LDOS at r.
The local tunneling DOS is defined by

1

Dr(r,e) = 1 > (lu(®)*6(e — Bi) + [ (0)]*8(e + Ei)) . (19.5)
k
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Figure 19.11: (a) Density plot of the local tunneling density of states at the Fermi level Dy (r,e = 0)
for a 20 x 20 unit cell with ep = —1.1¢, v = 0.6, 7 = 0.1 and Ay = ¢. Lattice sites are located in the
center of the squares. The vortices are sitting close to the center of a plaquette, slightly shifted by an
irrational fraction of the lattice spacing and are accompanied by an enhanced DOS (bright regions). (b)
Local DOS tunneling spectra as a function of energy. The various spectra are taken along a line across
a vortex, compare to the corresponding sites shown in (a), and have an offset of 0.0016 for clarity. The
averaged local tunneling DOS at zero magnetic field (black curve) is shown for comparison.
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19 Numerical results

where |ux(r)|? and |vg(r)|? can be extracted from the eigenvectors of the Bogoliubov-de
Gennes Hamiltonian (18.28). Our numerical results enable us to plot a LDOS map, com-
pare Fig. 19.11(a). The resolution is restricted to the number of lattice sites per magnetic
unit cell. Furthermore, we show the corresponding local tunneling DOS spectra, Fig. 19.11(b),
along a line across a vortex core. In experiment this would correspond to differential tunneling
conductance spectra. The positions of the two vortices in the magnetic unit cell are clearly
distinguishable - the LDOS near the vortex core is enhanced (lighter color). The slight as-
symmetry is due to a small constant shift of the vortices along the x-direction by an irrational
fraction of the lattice spacing, see discussion above.

Maggio-Aprile et al. (1995) were the first to observe vortices with STM in a high-temperature
superconductor. In the vortex core region they recognized a vanishing of the coherence peaks,
which shows the suppression of the superconducting order parameter in the vicinity of a vortex.
Since the amplitude Ag of the superconducting order parameter is not acquired from a self-
consistent calculation, but set to a fixed value for all sites, its suppression in the vicinity of a
vortex core is not describes by the theoretical setup. Furthermore, the magnetic field strength
of 64 T, determined by the 20 x 20 magnetic unit cell, is more than a factor of 10 higher than
in the experiment conducted by Maggio-Aprile et al. The peak features in Fig. 19.11(b) are
washed out by the wiggles resulting from the magnetic field.

19.4 Summary

The numerical results for the spectrum and the density of states were obtained from diagonal-
izing the gauge transformed Bogoliubov-de Gennes Hamiltonian in k space, Eq. (18.28). For
the modified d-wave pairing the density of states exhibits oscillatory behavior in the vicinity of
the Fermi level, while such a property is not seen for ordinary d-wave pairing. The extracted
frequencies depend on the arc length v and the gap parameter Ag, and scale with inverse mag-
netic field. Commensurability effects prevent a direct observation of oscillations as a function
of the inverse magnetic field. The agreement with the semiclassical analysis by (Pereg-Barnea
et al.) is shown, which is able to recover the experimental results.
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This part of the thesis was concerned with quantum oscillations in the underdoped regime
of cuprate superconductors. While semiclassical arguments for normal metals lead to the
well-established paradigm that quantum oscillations are connected to the existence of a closed
Fermi surface, this study shows that also truncated segments of a Fermi surface can imply
oscillatory behavior.

The considered theoretical setup describes a type-II superconductor in a magnetic field
leading to an Abrikosov vortex lattice and a pairing gap that produces Fermi arcs. The shape
of the pairing gap is based on a phenomenological ansatz reflecting the properties observed
in ARPES measurements. Numerical diagonalization of the gauge-transformed Hamiltonian
in k space reveals oscillations in the density of states with a frequency that depends on the
length of the arc and the size of the maximum gap. The frequencies scale linearly with the
inverse magnetic field. The oscillatory behavior breaks down when the Fermi arcs shrink to
nodal points, which correspond to an ordinary d-wave pairing.

The used method only allows for the observation of oscillations as a function of energy,
while for the comparison with experimental date their relation to oscillations as a function
of inverse magnetic field becomes necessary. The acquired results are in good agreement
with the semiclassical analysis by (Pereg-Barnea et al.), which significantly deviates from the
conventional Onsager-Lifshitz picture: The occurring frequency is not associated with an area
in momentum space, but with the periodic appearance of Andreev bound states. Semiclassics
is able to extract a frequency for magnetic field oscillations that recovers the experimental
result for the dominating frequency F,. At this stage there is no prediction for a second,
higher frequency with lower amplitude. In order to confirm the semiclassical approach in
a fully quantum-mechanical treatment, further investigation is needed, e.g. by considering a
vortex liquid, for which the density of states can be found by a transfer matrix method (Lee
and Fisher, 1981).

Altogether, the suggested model provides a possible scenario synthesizing the Fermi arc
picture arising from ARPES measurements with the observation of quantum oscillations in
the underdoped regime of cuprates. The direct observation of Fermi arcs at low temperature
and high magnetic field would be able to confirm this picture.
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| Bond phase

In this appendix we discuss how the bond phase ¢(r,, ry,) is expressed in terms of on-site phases
in the case of longer-ranged Cooper pairs. This simplifies the formulation of a Bogoliubov-de
Gennes Hamiltoninan.

In BCS theory the order parameter A, = Dype¥mn (with Omn = @(rm,Ty) for simplic-
ity) is determined as the self-consistent solution of the gap equation. For a nearest-neighbor
interaction producing the superconducting instability, the phase ¢,y is naturally defined on
a bond of nearest neighbored sites (m, n). If the Cooper pair is located far away from a vortex
core, Y, can be expressed by the phases ¢, and ¢,, which are associated to the sites m and
n. For the choice of averaging over all neighboring sites

. 1 .
eld)m — Z Z 6150m,m+0' (Il)
g

the replacement

omn _, oilGmtén)/2 (1.2)

is correct in first order lattice derivatives of ¢ (Vafek et al., 2001).

Considering an arbitrary pairing that is not restricted to nearest neighbored sites, the cor-
responding underlying interaction is longer-ranged. In the simplest case this interaction is
distance-dependent and the phase ¢,, , lives on the straight line connecting the points m and
n. It can be expressed as the sum of phases over neighboring bonds, i.e.,

Pmn = Pm, b + Py o + ...+ Ply,n s (13)

where the sites ¢, and o471 (o = 0,...,N + 1 with {5 = m and ¢xy;1 = n) are nearest
neighbors. The Cooper pairs might not be localized in comparison to the vortex core, but
rather be extended in space. Nevertheless we assume that Eq. (I.2) can be generalized to
arbitrary links m,n as

1
Pmn = §(¢m + ¢n) . (1'4)
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J Superfluid velocity and phase factors

J.1 Superfluid velocity

The superfluid velocity serves as a vector potential for the effective magnetic field seen by
quasi-particles and quasi-holes after a gauge transformation was applied. The specific shape
depends on the considered form of the gauge transformation.

J.1.1 Standard gauge transformation

This section provides a detailed derivation of an expression for the superfluid velcocity vy in
terms of the vortex positions {r;} by using the definition of v, Eq. (18.13), and the London
equation (18.7), compare (Tinkham, 1975).

The London equation has an explicit solution in Fourier space for the magnetic field

/\Z e —ikr;

- J.1
d)O T+ A2 (J.1)

with B(r) = (27) 72 [[ d®ke**By. By using Eq. (18.6) and the relation B(r) = V x A the

curl of v reads

V X vg(r —Wh26r—rl B, (J.2)

which becomes

ik X vy = 7AZ —ikr; _ 3 (1.3)

upon Fourier transforming. Since the relation ik x (ik x v, ) = kv holds, taking the vector
product with ik on both sides of the equation projects out the result for vg.. Plugging in
Eq. (J.1) and Fourier transforming into real space provides the desired result

mh A’k ik xZ ik(r—r
vy(r) = e Z i) (J.4)

J.1.2 Franz-TeSanovi¢ gauge transformation

Similar to the case of a standard gauge transformation discussed in the previous subsection,
the superfluid velocity for a FT-tranformed system

h e
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can be rewritten as a k-space integral. In the intermediate regime of the vortex state the
Fourier transformed solution of the London equation (J.1) is known, and therefore the Fourier
transform of

V x vA(r 2”h< Zar—r ¢BO> (J.6)

is given by

2 —ikr# By
. I o ikr; . .
ik x vl = - (z EZ e , ) (J.7)

As above, we build the vector product with ik on both sides of the equation and use Eq. (J.1),
which leads to

2mh A’k 1k><z 12 + B :
A k k ikr
// )2 (Qlk 21+ )\2k2> € (7.8)

where we introduced the shortcuts A, = >, e~k and By = > e=%r7 In the limit of
Mk? ~ A2/d* > 1 (d being the intervortex distance), which is satisfied in the considered
regime the brackets can be approximated by Ayx(A~2 4+ k2)~!. Since a similar relation holds
for vB, these results can be combined to

_ 2mh ik x 2 Gk
Ves o (27T2A 2+k2z (J9)

J.2 Vortex lattice and the Fourier space

This section is concerned with the description of the Fourier space and the simplifications for
the Fourier transform in the presence of a periodic vortex arrangement depicted in Fig. 18.1(a).

In the absence of vortices the unit cell contains one site of the underlying lattice and covers
the area 82, where § is the lattice spacing. In k space the corresponding first Brillouin zone
(BZ) covers the area (0,27/9) x (0,27/9). In the presence of vortices the new, magnetic unit
cell comprises Ny, = Ny, N, lattice sites, where Ng; denotes the number of sites in ¢th direction.
We introduce a set of vectors {R} pointing to each magnetic unit cell in the system. The total
system is composed of N, = Ny;N,, magnetic unit cells.

The first magnetic BZ is (0,27/(Ny6)) % (0,27 /(Ngyd)). The k states therein are given by

m;

ki = 2w , J.10

' Nustz ( )

with m; € [0, Ny;), m; € Z. The reciprocal vectors of the vortex lattice, G, fulfilling GR — 1
are

Gi = 212 (J.11)

st
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For n;€[0, Ng;), n; € Z the vectors G lie within the original first BZ.
A Fourier transform for a non-periodic system is accomplished by

r)= // (;ZW];Q e £ (k). (J.12)

If the function f(r) only has non-zero values at the lattice sites r;, this expression can be
reduced to

f(r) = N le 5 Zk: e f(k), (J.13)

where k runs over all states in the original first BZ. By further assuming that f(r) is periodic
with the magnetic unit cell, i.e., f(r; + R) = f(r;), we can write

= N152 > e f(G), (J.14)
TG

with the reciprocal lattice vectors G restricted to the original first BZ.
The following relation will be very useful:

// d’k ZZ ikl f (1 522 TG ¢ (J.15)

where # is the offset of the vortex position to a specific corner of the unit cell. Since f(k)
is an arbitrary function, the number of G vectors contributing to this sum is infinite, but for
practical purposes the summation goes up to a cutoff with |G,| < Gmax and |Gy| < Gmax-

J.3 The hopping phase

The FT-transformed Hamiltonian Hy exhibits a hopping phase I/g in the diagonal block. It is
equivalent to a line integral over the superfluid velocity v, Eq. (18.21), for which an explicit
expression was found via the London equation for intermediate field values, Eq. (18.7). Thus,
we can write

r+6

d?k 1 ik e [ iky
=2n // 2W2A2+k22 /e (ikx>-dl, (1.16)

=I5 (k,r)

where the line integral I's can be easily evaluated as
ke | Ky ikz0 ke iky
Is(k,r)=e ——(1—6 II)—i——(l—e yy) . (J.17)
ks ky
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The singularity in the integrand, occuring in the limit &, — 0 while k, # 0 and vice versa, is

: _eikad . - . .
removable due to limy, g z = —id. A periodic vortex arrangement implies the relation

(J.15), which simplifies the result for 5 (r) to

yn
Vs

(r) = N52 Z = 2+G2 e G D5(G, ). (J.18)

J.4 The off-diagonal phase

The off-diagonal phase in the FT-gauge transformed Hamiltonian Hy is given by

r+ro

/ (Véa — Vop)dl. (J.19)

r

1
Aro (I‘) = 5

Following the considerations discussed in Sec. 18.3, we evaluate the line integral along the path
straightly connecting the points r and r + rg.

An explicit expression for V¢, can be derived, in analogy to the calculation for v4 presented
in Appendix J.1.2. Fourier transforming Eq. (18.17), taking the vector product with ik and
Fourier transforming the result backwards leads to

Vu(r —%r//lk”Z‘k” = ZIGX“ (e, (7.20)

while exploiting the vortex periodicity in the second equality sign. With this result Ay,(r)
becomes
- o—iGFA _ —iGEB Fro <
Ary(r) = = > = / e'CT (iIG x 2) - dl. (J.21)
S

r

For pairing between nearest neighbored sites like for the p- and d-wave cases studied in
Ref. (Vafek et al., 2001), this becomes

—iGr? _ —iGrP
- Nwo% 4 G?

I's(G,r). (J.22)

In the case of arbitrary pairing the line integral will be evaluated as follows. In order to
optimize the numerical effort we decide on an approach that is based on the fact, that the
value of a closed integral over (Vo4 — Vép)/2 is an integer multiple of 7 depending on the
number of encircled vortices. We define a function

E(rg) = Ay, (0), (J.23)
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where /Tro(r) is given by Eq. (J.21) with a line integral along a path connecting the three
points r = (z,y)7, (x + x0,y)” and r +ro = (x + x0,y + o)’ . Its evaluation yields

—iGrB _ efinA G,

T 7T € ar |G iGex i iGex
ArO(r):NsézzG: ez G G—z(l—eG 0)——y(1—enyO)eG o1 . (J.24)

=I(G,r)

In the limit of G, and G, to zero the integrand I(G,r) becomes

GliIEOI(G, r) = —izge'“vy e : (J.25a)
. —iszB _ —iGzIA
Jim 1(G.x) = iyoeiCala+an) € Gxe (J.25b)
The correct off-diagonal phase is given by
Ay (r) =E(r+1r9) — E(r) + nym, (J.26)

where ny is the number of vortices in the trapezoid spanned by the points r, r + rg and their
projection to the x-axis (x,0)” and (x + zg,0)7, illustrated in Fig. 18.2.

J.5 The magnetic flux through each plaquette

The finite value of the hopping phase 1/3‘ is due to the magnetic flux ®# seen by quasi-particles
and quasi-holes, respectively, composed of a uniform part associated with the applied magnetic
field and the vortex flux. The total flux per plaquette is given by

- % fvé; ~dl, (J.27)
C

which can be evaluated by using the definition of the superfluid velocity v = (h/m)V¢t —
(e/m)A, implicitly defined by Eq. (18.19):

P =21 // (22 S(r—rt) — B/¢0> dF = 27(n, — 0°B/¢o) . (J.28)

Here, Stokes’ theorem was used and the integral runs over the area enclosed by the path C.
n, denotes the number of vortices of type p sitting inside the plaquette and § is the lattice
spacing.

In order to confirm the validity of the derived expression for the hopping phases v/§, Eq. (18.23),
the flux through each plaquette can be calculated by summing over the values of I/g at the
bonds of the plaquette. We consider a specific plaquette, whose lower left corner is given by
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Irop:

z

M = % %vg = v (ro) + Vg%(ro +0Z) + V¥ o (ro 4+ 0T + 0Y) + uﬁég(ro + 47) (J.29)
C

_ 2 1 G2 LiG(ro-—t) (1 _ i0Ge _ J0Gy eiéGeriéGy)
N2 22 X2 + G2 G, G,y '

(J.30)
In the intermediate regime the penetration depth A is finite and large. The integrand becomes

0 for G — 0 and is nearly not influenced by X for all other G. Therefore, we assume that A\~2
can be set to zero for all finite values of G. We rewrite ®# as the sum ®; + P, where

2T 1 ; - . . . .
B iG(rg—1#) _ Li0Gy _ 16GYy 10G+i10Gy
%=y Dexen (1 e e9Cy | ¢ ) (1.31)
= 7 (sign(xo — ) — sign(zg — x, + 0)) (sign(yo — yu) — sign(yo — yu +9)) (J.32)
and
27 Bs?

In the last equation we used B = ¢g/(Ns6?). The magnetic background field carries one
magnetic flux quantum per magnetic unit cell with the area Ny82, manifesting itself in the fact
that the spatial average of BSH vanishes. (I)g(; represents the (G = 0)-value of the integrand
in @% and therefore corresponds to the non-localized background flux, whereas @% describes
the vortex flux.

We have seen that the magnetic flux per plaquette calculated by using the derived expression
for the hopping phase l/g is consistent with the expected result, providing a cross-check for
the calculation in Appendix J.3.

J.6 The inter-unit cell off-diagonal phase A, gr(r)

The phase Ay +r(r) occurring in Eq. (18.29) can be expressed via the function Z, introduced
in Eq. (J.23) as

Arg+r(r) =E(r+r9o+R) — E(r) + nym, (J.34)

where ny denotes the number of vortices in the polygon bounded by the connection line
between the points r and r + rg, the x-axis and the connection lines between the points r and
r 4+ ro and their projection onto the x-axis. This is illustrated in Fig. 18.3. We can further
rewrite this phase as

Arg+r(r) =E(r+19) —E(r) + AE(r +ro + R,r +19) + Ny, (J.35)
while

AZE(r+ro+R,r+r9) =Z(r+ro+R) - E(r +rp). (J.36)
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J.6 The inter-unit cell off-diagonal phase Ay, R (r)

The function AZ is determined by using the result for Ero(r), Eq. (J.24). Due to the relations
lGR — 1 and limg, o ((1 — eiGiRi) /Gl) = —iR;, A= reduces to

e*iszB _ e*iszA

G

AZE(r+ro+R,r+1p) = T Z eiG’“’(”CJ“”‘O)iRyjL

e~ iGyUB _ o—iGyya

Gy

(—iR.)| . (1.37)

The Fourier summation can be carried out analytically in the continuum limit, which leads to
the relation

1 etix

1.
N 2 G, = 581gn(x). (J.38)

The expression for A= depends on r, ry and the vortex core positions ¥4 and rg. Without
loss of generality we assume

Ta < ITp and ya < YB. (J.39)

Therefore, we get

R R
AZ(r+ro+R,r+1r9) = _I sign(z + xo — Ta)sign(z + o — Tp) + Tl (J.40)
2 Ny 2 Ngz
This result can be written in a compact way as
AZ(r+ro+R,r+1r9) =qrsr, - R, (J.41)

and

oo 1/Ngy
Artro = 5 < —sign(z + xo — Za)sign(z + xo — Zp) /Ny ) ’ (7.42)

The total phase can be summarized as

Arg4r(r) = Apy (r) + Qrgry - R+ (y —ny) 7. (J.43)
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K Power spectrum

For studying the oscillatory behavior and extracting the dominating frequency from the density
of states the power spectrum, the absolute squared of the Fourier transform, is studied. In this
appendix we introduce the definition for the Fourier transform given a discrete set of data.

Since the numerical results of the DOS are available for a discrete set of energies ¢; for
i =1,...N with €] = €yin and €y = €pax, we consider the discrete Fourier transform

N

> D(ei)e ™ A, (K.1)

=1

1
D(s)=—
()=~
where the ¢; are equally spaced with distance Ae. The power spectrum is given by |]_~)(s)|2

Fourier transforming data with a hard cutoff leads to oscillations, which is avoided by an
additional Gauss factor smoothening the boundaries:

1 (=)
(& 202 . (K2)

€)=
fe) 2ro
It is centered around € and the width is related to the variance 2. If ¢ is much smaller than
the width of the data (€max —€min), the Gauss factor serves as a window function located e.g. in
the high or low energy range.
The discrete Fourier transform for D, (e = 0), the DOS at the Fermi level as a function of
€r, is

Np

_ 1 .

D(s) = 3= D Dera(0)e 5 Aepr, (K.3)
=1

where the ep-values form a discrete set in the range [ef 1, €F v, ], spaced at intervals of Aep.
Please note that s denotes an angular frequency carrying an additional factor of 27 in
contrast to the frequencies F and F' in Egs. (19.2) and (19.3).

197



K Power spectrum

198



L Semiclassical analysis

In this appendix we shortly sketch the idea behind the semiclassical analysis of the quantum
oscillations in a Fermi arc metal presented in (Pereg-Barnea et al.) and summarize the results
for the frequency behavior.

The presence of a superconducting gap in a Fermi arc metal requires a re-consideration of
the equations of motion, Eq. (16.7). While for a normal metal, electron wave packets move
according to these equations, charge is not a good quantum number in the gapped region
and it is therefore necessary to construct a semiclassical wave packet with Bogoliubov-de
Gennes (BdG) quasiparticles, so-called bogolons. Their wave function ¥y = (uy,vi)? is an
eigenfunction of the BAG Hamiltonian

€k Ak
Hy, = ~ . L.1
) ( JAVE €k ) ( )

While Eq. (16.7a) still holds, because the charge e and the velocity Vey have opposite sign for
particles and holes that cancel each other, the second equation has to be substituted by

. 1
r = (|uk|2 - |’Uk|2) ﬁvkek . (L.Q)

Particles and holes move in opposite directions, and this equation describes the net center of
mass motion of the bogolon wave packet.

In the semiclassical approach the influence of a magnetic field is translated into a periodic
time dependence, H(t + 1) = H(t) with the period 7' = 27 /w.. In the gapless case, H(t) =
const. However, a finite gap leads to a time-dependence in the gap parameter, A(t) = Ay,
where k(t) satisfies Eq. (16.7a), and therefore the new periodicity condition becomes

The energy € = ¢ is still a constant of motion.
The time-dependent Schrodinger equation,

ih = H(t)¥, (L.4)

is solved by using the Floquet theorem (Stéckmann, 1999) for Hamiltonians that are periodic
in time, which is analogous to the Bloch theorem for space-periodic Hamiltonians. According
to this theorem the eigenfunctions are given by W(t) = e P/ (1) with fr(t +T) = fg(t),
where fp(t) is the eigenstate of the Floquet operator

T
F = Texp —;/H(t)dt : (L.5)
0
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with the time-ordering operator 7.

We skip the details for the calculation of the eigenfunctions W, the eigenvalues F and the
associated density of states and refer the interested reader to (Pereg-Barnea et al.). The
calculation is performed under the assumption of 7 = 0, refering to a sharp step in the gap
function, and a field-independent gap structure. ¢ < Ag reveals an oscillatory behavior in the
density of states as a function of energy with the frequency

Oa

F. = , L.6
Thw, (L.6)
and as a function of inverse magnetic field with the frequency
f0,m
F = A, 29 ¢ L.7
0" (L.7)

6, and 6, are the angular sizes of the arc and the gapped region with 6, = 7/2 —0,. m, is the
cyclotron mass and e the electron charge.

For an illustration of the underlying physics, we now have a closer look at oscillations in
the DOS as a function of inverse magnetic field. While tuning 1/B, maxima and minima
periodically appear in the DOS when the condition A¢fy/hw. = (p + 1/2)m (for maximum)
and Agbly/hwe = pr (for minimum) holds with p € Z. The states that are present at such a
minimum or maximum are rather different. Their real-space trajectories as well as the shape
of the wave function (u,v) significantly deviate, which is shown in Fig. L.1. Panel (a) and
(b) illustrate the states contributing to a peak in the DOS: On the arc, |u|? — |v|? vanishes
implying that the state (u,v) ~ (1, £i) is a perfect mixture of particles and holes and resembles
an Andreev bound state (Andreev, 1964; Adagideli et al., 1999). The velocity on the arc is
zero, compare Eq. (L.2), leading to a small enclosed real-space area. In the gapped region,
the pseudospin, that describes the particle-hole mixing, precesses. In contrast, for values of
the magnetic field where the DOS is in a minimum (see panel (¢) and (d)) the states consist
of either particles or holes on the arc (Ju|?> — |[v|?> = £1). The large velocity leads to a large
enclosed real space area.

In summary, the oscillatory behavior in the density of states as a function of inverse magnetic
field is determined by the match between the time needed to traverse the gapped region
(= 04/wc) and for a pseudospin precession: When the pseudospin precesses for exactly an
integer and a half cycle during the motion over the gapped region, compare Fig. L.1(b), the
state on the arc is of Andreev-type.

In the limit of Ag — 0 or 6, — 0, which both describe the metallic limit, the recovery of
the standard Onsager result is subtle and requires the consideration of the action quantiza-
tion. In the presented semiclassical approach no quantization condition was imposed by hand.
Nevertheless, a calculation of the action,

Ao,
— L.
( of )‘ , (L.8)

where A™°™ denotes the encircled momentum-space area, shows that it becomes zero for a peak
in the DOS (where Agfy/hw. = (p+1/2)m with p € Z), prooving the existence of a quantized
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Figure L.1: Real-space trajectories (left column) and |u|> — |v|? as a function of time ¢ for one period
(right column). (a) and (b): For a state that is present when the DOS has a peak (Aw. = A¢fy/(4 +
1/2)7). (c) and (d): For a state that is present when the DOS is low (fuw, = Agb,/4T).

Please note that due to the particle-hole symmetry of the model a state with u < v also represents an
eigenfunction.

Ip denotes the magnetic length and kp is the Fermi wave vector. (Figure from Pereg-Barnea et al.)

action for the periodically appearing Andreev-type states. For Ag — 0 or §, — 0, i.e., for
a normal metal, the action becomes & ~ A™°™ /B, like in the Onsager approach, compare
Eq. (16.10). In this limit, the frequency F' goes to zero, and the physics is dominated by an
additional frequency arising from the quantization of S, which corresponds to the Onsager
frequency and dominates as soon as the gap closes.

In the limit of an ordinary d-wave superconductor, i.e., 8, — 0, the oscillation amplitude,
which is controlled by a prefactor 6, /hw,, is suppressed and oscillations break down.

Scaling arguments, like the one that holds for a normal metal or the Simon-Lee scaling for a
d-wave superconductor, cannot be established in the considered system. Therefore, no simple
way is known to relate the frequencies F' and F,, and e.g. explain their different dependence
on the gap parameter Ag and the angular sizes 6, and 6,. Unlike in the case of a normal metal
described in Sec. 16.2, the oscillation frequency is not associated with an area in momentum
space, but rather results from the periodic appearance of Andreev-type states.
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