
Correlated Exotic States:
Fractionalization, Fermi Arcs, Competing

Phases

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln
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Abstract

This thesis in the field of condensed matter theory is concerned with various correlated exotic
states in different materials. The topic selection is three-fold, covering aspects of graphene,
heavy fermion compounds and high-temperature superconductors.

In Part I, a symmetrically biased graphene bilayer is considered, which is discussed to host
an exciton condensate. It is shown that in the continuum limit an oddly-quantized vortex
in this condensate binds exactly one zero mode per valley index of the bilayer. Intervalley
mixing occurring in the full lattice model slightly splits the zero modes in energy. This result
is supported by an exact numerical diagonalization of the lattice Hamiltonian for a finite-size
system. Such a vortex binds an irrational fraction of “axial” charge and obeys fractional
exchange statistics.

Part II is concerned with heavy fermion materials and discusses the consequences of a
momentum-dependent hybridization between the conduction band and the localized f elec-
trons, especially in the case where the hybridization function has nodes in momentum space.
Such a situation is motivated by experiments, and is in contrast to the commonly studied local
hybridization. In the low-temperature regime a highly anisotropic Fermi liquid evolves, for
which thermodynamical and optical properties are studied. We find that thermodynamics is
dominated by the heavy quasiparticles present in the antinodal direction in momentum space,
where the hybridization is strong, while transport is dominated by the behavior of light, nodal
quasiparticles. Based on a mean-field approximation, we furthermore study the phase compe-
tition between Kondo screening and ordering phenomena induced by intermoment exchange.
According to our findings, it is greatly influenced by the interplay of symmetries of the order
parameters in momentum space. The results are applicable to CeCoIn5 and other related
heavy fermion compounds.

Part III discusses the recently observed quantum oscillations in the underdoped regime of
cuprates and advertises a new mechanism that requires only finite segments of a Fermi surface
to exist. Such a situation is indicated by angle resolved photoemission spectroscopy (ARPES)
studies, which exhibit so-called Fermi arcs in the normal state of cuprates. We consider a
BCS-like model in the vortex state with a pairing gap producing such Fermi arcs. By exact
diagonalization of the gauge transformed real-space Hamiltonian it is shown that the density
of states at the Fermi level exhibits an oscillatory behavior.



Zusammenfassung

Die vorliegende Arbeit auf dem Gebiet der Theorie der kondensierten Materie beschäftigt sich
mit diversen korrelierten exotischen Zuständen in verschiedenen Festkörpern. Die Theme-
nauswahl deckt Aspekte dreier Materialientypen ab: Graphene, Schwerfermionenverbindungen
und Hochtemperatursupraleiter.

In Teil I wird Zweischicht-Graphene mit symmetrisch angelegter Gatespannung untersucht,
das als Host für ein Exzitonenkondensat diskutiert wird. Es wird gezeigt, dass ein unger-
ade quantisierter Vortex in diesem Kondensat im Kontinuumlimes genau eine Zero Mode pro
Valley-Index bindet. Die Wechselwirkung zwischen den Valleys, die im vollen Gittermodell
existiert, führt zu einer leichten Energieaufspaltung der Zero Modes. Dieses Ergebnis wird
gestützt durch eine exakte numerische Diagonalisierung des Gitter-Hamilton-Operators für
ein endlich großes System. Ein solcher Vortex bindet einen irrationalen Anteil an “axialer”
Ladung und unterliegt fraktionaler Statistik.

Teil II beschäftigt sich mit Schwerfermionenverbindungen und diskutiert die Konsequenzen
einer impulsabhängigen Hybridisierung zwischen Leitungsband und lokalisierten f -Elektronen,
insbesondere wenn die Hybridisierungsfunktion Knotenlinien im Impulsraum aufweist. Dieser
Ansatz ist motiviert durch Experimente, und hebt sich ab gegenüber der gemeinhin unter-
suchten lokalen Hybridisierung. Im Tieftemperaturbereich bildet sich eine stark anisotrope
Fermiflüssigkeit aus, für die thermodynamische und optische Eigenschaften untersucht wer-
den. Unsere Ergebnisse zeigen, dass die Thermodynamik von schweren Quasiteilchen do-
miniert wird, die sich in den Regionen im Impulsraum ausbilden, wo die Hybridisierung stark
ist. Transporteigenschaften hingegen werden hauptsächlich durch das Verhalten der leichten
Quasiteilchen bestimmt, die in der Nähe der Knotenlinien der Hybridisierung leben. Basierend
auf einer Mean-Field-Näherung wird die Phasenkonkurrenz zwischen Kondoabschirmung und
Ordnungsphänomenen, die sich aus der Wechselwirkung zwischen den lokalen Momenten ent-
wickeln, untersucht. Gemäß der Ergebnisse ist diese stark beeinflusst durch das Zusammenspiel
der Symmetrien der Ordnungsparameter im Impulsraum. Die gewonnenen Erkenntnisse sind
anwendbar auf CeCoIn5 und artverwandte Schwerfermionenverbindungen.

In Teil III werden die erst vor kurzem beobachteten Quantenoszillationen im unterdotierten
Bereich von Kupraten diskutiert. Es wird ein neuer Mechanismus zur Erzeugung dieser Oszilla-
tionen beworben, der nur endliche Abschnitte einer Fermifläche benötigt. Solch eine Situation
wird von den Ergebnissen winkelaufgelöster Photoemissionsexperimente (ARPES) gestützt,
die sogenannte Fermi Arcs im normalleitenden Zustand der Kuprate zeigen. Es wird ein
BCS-artiges Modell im Vortexzustand untersucht mit einer Paarungsfunktion, die Fermi Arcs
produziert. Mit exakter Diagonalisierung des eichtransformierten Hamilton-Operators im Ort-
sraum wird gezeigt, dass ein solcher Ansatz zu einem oszillatorischem Verhalten der Zustands-
dichte am Ferminiveau führt.
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1 General introduction

“Traditional” condensed matter theory is basically built on two cornerstones, which were
already developed in the 1930s and 1950s: Landau’s Fermi liquid theory and Landau’s theory of
symmetry breaking. Fermi liquid (FL) theory introduces a one-to-one correspondence between
the underlying particles, consisting of interacting fermions, and the emerging single-particle
fermionic excitations.

FL theory may survive even in the presence of strong correlations - a surprising result re-
garding the fact that this concept can be understood as a perturbation theory around the
non-interacting ground state. In certain regimes heavy fermion compounds are described by
this theory exceedingly well exhibiting heavy quasiparticle excitations. However, the occur-
rence of unconventional superconductivity, magnetism and non-Fermi liquid behavior in these
materials go way beyond the FL approach (reviews are e.g. given by Stewart, 2001; Coleman,
2007). Cuprates refuse the description in terms of a FL picture for large parts of the accessible
phase diagram, but rather show highly unusual physics like a Mott insulating state, high-
temperature superconductivity or a pseudogap state, for which a consistent picture could not
be established yet (reviews: Damascelli et al., 2003; Lee et al., 2006). The fractional quantum
Hall effect, on the other hand, reveals new types of quantum liquids with quasiparticles that
have fractional quantum numbers and possibly obey different statistics than the underlying
fermions (review: Stormer et al., 1999).

The mentioned discoveries posed new challenges in the field of condensed matter. While
all these phenomena arise from the existence of strong correlations between the constituent
particles (review: Fulde et al., 2006), the recently isolated material graphene shows that ex-
otic physics can also occur in weakly correlated systems (for a short overview see Geim and
Novoselov, 2007).

This thesis is concerned with various correlated exotic states in different materials. By
exotic, we denote two different types of properties: (i) a FL with unconventional properties,
like a symmetry breaking in the style of unconventional superconductivity, or (ii) systems that
cannot be described from a FL point of view at all, e.g., because of topological excitations
leading to fractionalized quantum numbers or strong correlations like in the underdoped phase
of cuprates. To be more specific, we are dealing with the following topics:
Part I: We present a bilayer graphene system with a symmetrically applied gate voltage and
study the effect of a vortex in the exciton condensate, which is produced by an interlayer
Coulomb interaction.
Part II: We consider a heavy fermion system with a non-local hybridization, study the prop-
erties of the highly anisotropic, unconventional Fermi liquid that evolves at low temperatures,
as well as the phase competition between Kondo screening and ordering phenomena like su-
perconductivity or magnetic ordering.
Part III: We make an attempt to reconcile the recently observed quantum oscillations in the
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underdoped regime in cuprates with the Fermi arcs observed by angle-resolved photoemis-
sion spectroscopy (ARPES) in the normal-conducting pseudogap phase by investigating the
properties of a BCS-like Hamiltonian with a pairing gap producing Fermi arcs.
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2 Introduction

Topological states of matter with emergent anyons as quasiparticle excitations are not only
characterized by exotic physics, but also have potential applications in the field of topological
quantum computation. This explains the quest for easily controllable structures exhibiting
such kind of properties.

This part of the thesis is devoted to the topological properties of a physical system that is
likely to be realized in a laboratory in the near future: It consists of two layers of graphene
separated by a dielectric barrier and subjected to an external electric field. As recently argued,
such bilayer systems possibly develop an exciton condensate up to room temperature. We study
the possibility of zero modes and fractional excitations arising from vortices in the excitonic
order parameter.

In this introductory chapter, we discuss the three underlying aspects of this work. Section
2.1 introduces the material graphene, which due to its lattice structure shows a specific band
structure leading to highly unusual physical properties. Section 2.2 reviews the efforts in sta-
bilizing an excitonic condensate, which was mostly pursued in the framework of semiconductor
physics. Section 2.3 is concerned with general aspects of fractionalization, anyonic statistics
and the importance of zero modes. An outline in Sec. 2.4 concludes this chapter.

2.1 Graphene

The first fabrication of graphene (Novoselov et al., 2004), an atomic monolayer of carbon
atoms arranged in a honeycomb lattice structure, set off an avalanche of experimental and
theoretical investigations. It is a strictly two-dimensional material and was therefore expected
to be thermodynamically unstable (Fradkin, 1986). However, five years ago Novoselov et al.
(2004) were able to isolate graphene on an insulating SiO2 substrate.

Graphene can be regarded as the building material of all graphitic forms in various dimen-
sions, see Fig. 2.1(a). Three-dimensional (3D) graphite, which can be found in every pencil, is
nothing but stacked graphene with interlayer van-der-Waals interactions. Nanotubes (1D) can
be thought of as rolled up graphene, while fullerenes (0D) consists of wrapped up graphene
with introduced pentagons leading to the required curvature.

Graphene is a zero-gap semiconductor and shows very high crystal quality (Novoselov et al.,
2004, 2005; Zhang et al., 2005) with a high mobility of the charge carriers in a large tempera-
ture range (Berger et al., 2006). Its band structure is rather special: the low-energy excitations
are massless chiral Dirac fermions equivalent to quantum electrodynamics (QED) in 2+1 di-
mensions (Castro Neto et al., 2006; Katsnelson et al., 2006; Katsnelson and Novoselov, 2007).
It is therefore a unique example of ‘relativistic’ condensed matter physics.

Reviews on graphene are e.g. given by Geim and Novoselov (2007) focusing on experimental
aspects or Castro Neto et al. (2009) illuminating the theoretical background. In the framework

9



2 Introduction

(a) (b)

B

A

Figure 2.1: (a) Different structures consisting of carbon atoms: graphene (top left), graphite (top right),
carbon nanotubes (bottom left) and fullerens (bottom right). (Figure from Castro Neto et al., 2009)
(b) A honeycomb lattice consists of two triangular sublattices A and B. The gray shaded zone is the
unit cell containing an A and B lattice site.

of this introduction, we will familiarize the reader with the calculation of the band structure
based on a tight-binding approximation, show the existence of Dirac fermions, and touch upon
transport properties.

Band structure

The honeycomb lattice present in graphene is depicted in Fig. 2.1(b). It is a hexagonal structure
consisting of two interpenetrating triangular sublattices A and B. Considering a position in
the A-sublattice, the vectors to the nearest neighbors are

rA =
(

0
−a

)
,
a

2

(
−
√

3
1

)
,
a

2

( √
3

1

)
, (2.1)

where a is the distance between two neighboring A and B sites.
The robustness and flexibility of this material is due to the strong covalent σ bonds con-

necting the carbon atoms, originating from the sp2 hybridization of the atomic orbitals. The
remaining pz orbitals are perpendicular to the plane and have weak overlap leading to the for-
mation of a half-filled π band. The physics of the π electrons can be modeled by a tight-binding
Hamiltonian with nearest-neighbor hopping

H = −t
∑

〈ij〉

(
c†AicBj + h.c.

)
, (2.2)

where 〈ij〉 restricts the summation to nearest neighbored sites and cαi is the annihilation
operator for an electron at site Ri on sublattice α. Already 60 years prior to isolation of a
graphene sheet, its band structure was calculated by Wallace (1947) based on a tight-binding
approximation.
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2.1 Graphene
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1

Figure 2.2: (a) The gray region is the first Brillouin zone. The corners of the hexagon are nodal points
of the dispersion tk. K− (K+) is equivalent to the other two corners marked by filled (unfilled) circles.
(b) The two bands E±(k) = ±|tk| show linear dispersion at the nodal points.

With the Fourier transform cαi =
√

2
N
∑

k e
ikRicαk, where N is the total number of sites in

the system and N/2 is the number of unit cells, this Hamiltonian can be rewritten as

H =
∑

k

(c†Ak, c
†
Bk)

(
0 tk
t∗k 0

)(
cAk

cBk

)
, (2.3)

with the dispersion tk = −t∑rA
eikrA . Since the model is spin-degenerate, spin indices were

omitted here and their effect will be included in the discussion later on.
The Brillouin zone (BZ) is spanned by the two vectors

b1 =
2π
3a

( √
3

1

)
, b2 =

2π
3a

( √
3
−1

)
, (2.4)

and can be shifted into a hexagonal shape, see Fig. 2.2(a). The two evolving bands, the
eigenvalues of H, E±(k) = ±|tk|, vanish at the corners of the hexagonal BZ and vary linearly
with momentum in the vicinity of these gapless points, see Fig. 2.2(b). Two inequivalent nodal
points can be distinguished: K± =

(
± 4π

3
√

3a
, 0
)

.
A linear expansion of the bands around K± with k = K± + p leads to

E±(p) ' ±vF |p|+O((p/K)2) (2.5)

with K = |K±| and the Fermi velocity vF = 3ta/2, which takes up the role of the speed of
light c in this QED 2+1 theory. The experimental data indicate that vF ' 106m/s, which is
orders of magnitude smaller than c. In contrast to a quadratic dispersion, the Fermi velocity
does not depend on energy, but is constant. The system is degenerate with respect to the
valley (±) and spin indices, and therefore SU(4) symmetric.

The massless low-energy excitations are Dirac particles with distinct chirality, which will be
shown explicitly in the following.
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2 Introduction

Dirac fermions

In the low-energy limit the Schrödinger equation with Hamiltonian (2.3) becomes a Dirac
equation (Slonczewski and Weiss, 1958; Semenoff, 1984; Haldane, 1988) turning the low-energy
excitations into Dirac fermions. In order to prove this claim the k summation in (2.3) is
substituted by

∑
p,n=±, where n denotes the valley index:

H =
∑

p,n=±
Ψ̂†Kn

(p)
(

0 tKn+p

t∗Kn+p 0

)
Ψ̂Kn

(p) , (2.6)

with the operators Ψ̂†K+
(p) = (c†BK++p, c

†
AK++p) and Ψ̂†K−(p) = (c†AK−+p, c

†
BK−+p). Lineariz-

ing around the nodal points tK±+p ' vF (±px + ipy) leads to

H ' vF
∑

p

[
Ψ̂†K−(p)(−pxσx − pyσy)Ψ̂K−(p) + Ψ̂†K+

(p)(pxσx + pyσy)Ψ̂K+(p)
]
, (2.7)

where σx and σy denote the Pauli matrices. With p→ −i∇ this can be written as a real-space
integral,

H ' ivF
∫
dxdy

[
Ψ̂†K−(r)(σ · ∇)Ψ̂K−(r) + Ψ̂†K+

(r)(−σ · ∇)Ψ̂K+(r)
]
, (2.8)

where σ = (σx, σy). Expressed in first quantization, the Hamiltonian reveals that the two-
component wave function ψ+(r) of a particle near one of the Dirac point K+ obeys the two-
dimensional Dirac equation

−ivF (σ · ∇)ψ+(r) = Eψ+(r) . (2.9)

For ψ−(r) a similar relation holds. The wave functions ψ±(r) are connected by time reversal,
which in this context corresponds to the operation (kx, ky) → (−kx, ky): While the origin is
placed in the center of the hexagonal BZ, Fig. 2.2(a), reciprocal space inversion is accomplished
by flipping the sign of the x-component due the symmetry of the problem.

By writing the Hamiltonian (2.7) in terms of the four-component operator

Ψ̂†(p) =
(

Ψ̂†K+
(p), Ψ̂†K−(p)

)
, (2.10)

it can be shown that it commutes with the γ5 matrix, which is given by a product of all other
gamma matrices (e.g. in Weyl representation γ5 = −iγ0γ1γ2γ3 = σ3 ⊗ 1). This translates into
conservation of chirality (Gusynin et al., 2007). The 4-spinors

φ+ = (ψ+, 0), φ− = (0, ψ−), (2.11)

which describe the quasiparticle excitations at K±, are eigenvectors of γ5 with opposite chi-
rality:

γ5φ+ = +φ+, γ5φ− = −φ− . (2.12)
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2.1 Graphene

For massless particles chirality coincides with helicity, the projection of the momentum oper-
ator on the direction of the spin. However, in 2D, the concept of helicity, well defined in 3D,
looses its physical meaning. Furthermore, the operator σ does not describe the real spin of the
electrons, which is omitted in the Hamiltonian, but rather represents a pseudo-spin produced
by the lattice structure. Nevertheless, a pseudo-helicity h = 1

2σ p
|p| can be considered, for

which the wave functions ψ± are eigenfunctions (Gusynin et al., 2007).
For a broken particle-hole symmetry, e.g. produced by a next-nearest neighbor hopping t′

in the tight-binding approach, the (pseudo-)helicity is not conserved any more, and therefore
the particles are not chiral.

The existence of Dirac cones in the spectrum substantially influences the transport properties
of graphene. In the following, we provide a short overview about this topic.

Transport properties

Transport in graphene shows highly unusual properties due to the relativistic spectrum in the
vicinity of the Dirac points and the spin and valley degeneracy in the system. We summarize
what happens under the influence of external electric and/or magnetic fields.

Keeping a single layer of graphene at a gate voltage, the Fermi energy is shifted up or down,
which induces electron and hole charge carriers, respectively. The conductivity depends lin-
early on the applied voltage, as indicated by measurements of the electric field effect (Novoselov
et al., 2005). This allows the conclusion that all induced charge carriers are mobile and not
trapped at holes. The mobility stays constant in a temperature range from 10 to 100 K. At
the charge neutrality point, i.e., in the absence of a gate voltage, graphene exhibits a finite
conductivity, whose origin is still under discussion.

The presence of a magnetic field B perpendicular to the graphene layer introduces a new
length scale in the system, the magnetic length lB =

√
~c/(eB). Together with the already

existing scale, the Fermi velocity vF , there is only one way to construct an energy scale,
given by vF /lB (Castro Neto et al., 2009). The cyclotron frequency ωc =

√
2vF /lB turns out

to be proportional to
√
B, whereas it is linear in B in the non-relativistic case. Therefore,

the same magnetic field leads to a higher cyclotron energy, which has e.g. the striking effect
that the quantum Hall effect (Novoselov et al., 2005; Zhang et al., 2005) survives up to room
temperatures (Novoselov et al., 2007)!

The relativistic spectrum, as well as valley and spin degeneracies have strong influence on
the quantization itself. For example, in the case of monolayer graphene, the sequence of Hall
plateaus, σxy = −4e2/h(N+1/2), acquires an overall factor of 4 and is shifted by an additional
1/2 in comparison to the integer quantum Hall effect observed in GaAs. The Landau levels in
monolayer graphene are given by E±,N = ±ωc

√
N (Gusynin and Sharapov, 2005; Peres et al.,

2006; Herbut, 2007).

Up to now, the discussion was restricted to monolayer graphene. Upon stacking layers of
graphene, interesting new effects develop. In the framework of this thesis we are especially
interested in the possible evolution of an exciton condensate in bilayer graphene. In the next
section we discuss various approaches for stabilizing an exciton condensate.
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2 Introduction

2.2 Exciton condensates

Generally speaking, an exciton is a bound state of an electron and a hole, well known from
semiconductor physics. In this type of material the electron usually sits in the conduction
band and the hole corresponds to an unfilled state. The exciton is a charge neutral bosonic
particle, which can be created in a semiconductor by shining light at the sample, and decays
when the electron and the hole recombine and a photon is emitted. A weakly coupled gas
of excitons is expected to form a Bose-Einstein condensate (BEC), similar to Helium-4 or
ultracold alkali atoms in vapors (Leggett, 2001; Ketterle, 2002; Cornell and Wieman, 2002),
where the condensation leads to superfluidity and coherent matter waves, respectively.

The physical systems that are considered as candidates for hosting an exciton condensate
are of layered structure. The motion of the excitons is therefore restricted to two dimensions,
and off-diagonal-long-range order is destroyed by phase fluctuations. Two temperatures can
be distinguished in such a system: the Bose-Einstein condensation temperature TBEC and the
Kosterlitz-Thouless temperature TKT with TBEC < TKT. For increasing temperature the Bose-
Einstein condensate with a macroscopically occupied ground state turns into a quasicondensate
at TBEC, where only the low energy states are macroscopically occupied. This quasicondensate
is superfluid and dissipationless, vortices with opposite circulation are bound in pairs. At TKT

vortices become unbound leading to a dissipation in the flow. For 2D and infinite system
size TBEC is zero and becomes finite for finite system size. Since experimentally a distinction
between a BEC and a quasicondensate is not possible, the relevant scale for experiments is
the Kosterlitz-Thouless temperature, below which superfluidity is present.

Exciton condensate in layered semiconductors

A bulk semiconductor is not very useful when it comes to the observation of an exciton conden-
sate (EC): electrons and holes recombine too fast for achieving the required exciton densities
(O’Hara et al., 1999). For stabilization, so-called coupled quantum wells are used - systems
consisting of layered semiconductor structures: Two semiconductor layers are separated by a
thin insulating barrier layer. In experiments three different approaches are basically pursued:

(i) A bilayer system, where an electron-hole plasma is generated by optical pumping. By
applying an electric field the electron and hole within one exciton are spatially separated
creating a condensate of indirect excitons. Each exciton pair is associated with a dipole
moment. The dipolar repulsion between the pairs as well as the spatial separation decreases the
recombination rate. Signatures of the condensate are detected by photoluminescence (Butov
et al., 2002; Snoke et al., 2002; Lai et al., 2004), however a direct probe of the superfluidity is
missing.

(ii) Undoped electron-hole bilayers with an external gate voltage, which induces electrons
in one layer and holes in the other (Sivan et al., 1992; Kane et al., 1994; Joglekar et al.,
2005). As in system (i) the excitons feel dipolar repulsion, and a dipolar superfluid develops
(Balatsky et al., 2004). At high densities, theoretical investigations (Joglekar et al., 2006) hint
at the evolution of a Wigner supersolid, a Bose-Einstein condensate with broken translational
symmetry.

(iii) A biased electron-electron bilayer quantum Hall systems at νT = 1 (Spielman et al.,
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Room-Temperature Superfluidity in Graphene Bilayers?
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Because graphene is an atomically two-dimensional gapless semiconductor with nearly identi-
cal conduction and valence bands, graphene-based bilayers are attractive candidates for high-
temperature exciton condensation. We present estimates which suggest that the Kosterlitz-Thouless
temperatures of these two-dimensional counterflow superfluids can approach room temperature.

PACS numbers: 71.35.-y,73.21.-b,73.22.Gk,71.10.-w

Introduction— Exciton condensates were first
proposed[1, 2] as possible ordered states of solids
more than forty years ago but have proved difficult
to realize experimentally. In recent years progress has
been achieved in semiconductor bilayer systems with
the discovery[3, 4] of equilibrium exciton condensa-
tion below T ∼ 1K in the quantum Hall regime, the
identification[5] of spontaneous coherence effects in cold
optically excited exciton gases, and studies of dynamic
condensation[6] of polaritons in non-resonantly pumped
optical microcavities. An important advantage of bilayer
excitons is the long-range repulsive interaction between
aligned exciton dipole moments which prevents droplet
formation and favors uniform-density condensed states.
In the weak-coupling limit exciton condensation is a
consequence of the Cooper instability[2] of solids with
occupied conduction band states and empty valence
band states inside identical Fermi surfaces. In bilayer
semiconductors conduction band electrons and valence
band holes can be induced[7, 8] by external electric
fields. Because of their unusual collective transport
properties[4, 9, 10, 11] bilayer condensates would have
technological potential if order could be achieved at
sufficiently high temperatures. As we explain in this
Letter, graphene is a particularly attractive candidate
for room temperature bilayer exciton condensation
because it is atomically two-dimensional, because it is a
gapless semiconductor, and because its two-dimensional
massless Dirac band structure implies nearly perfect
particle-hole symmetry and stiff phase order.

We consider a system[12] with two graphene layers em-
bedded in a dielectric media and placed within a parallel-
plate capacitor as illustrated schematically in Fig. 1.
Each layer has Dirac-cone bands centered at two inequiv-
alent points in the graphene Brillouin-zone. In the ab-
sence of an external bias field, the two layers are sepa-
rately neutral and their Fermi energies lie exactly at the
Dirac points. When the capacitor is charged, however,
equilibrium between the layers is maintained by charge
transfer. The Fermi level lies in the graphene conduction
band of one layer (the n-type layer) and in the valence
band of the other layer (the p-type layer). The particle-

FIG. 1: (Color online) left:Schematic illustration of a
graphene bilayer exciton condensate channel in which two
single-layer graphene sheets are separated by a dielectric
(SiO2 in this illustration) barrier. We predict that electron
and hole carriers induced by an external gate will form a high-
temperature exciton condensate. right: The two band model.
We neglect the two remote bands indicated by dashed lines.

hole symmetry of the Dirac equation ensures perfect nest-
ing between the electron Fermi sphere in the n-type layer
and its hole counterpart in the opposite layer, thereby
driving the Cooper instability. The condensed state es-
tablishes spontaneous long-range coherence between the
two graphene layers.

Our main interest here is in providing an esti-
mate of the maximum possible Kosterlitz-Thouless (KT)
temperature TKT of these two-dimensional counterflow
superfluids[4]. Because the remote bands (the occupied
valence band of the n-type layer and the empty con-
duction band of the p-type layer) are of little impor-
tance when TKT is large (as we explain later) they can
be neglected to obtain a two-band model. Our TKT esti-
mate is constructed from mean-field (Hartree-Fock) the-
ory calculations[13] of the temperature dependent phase
stiffness of the ordered state.

Our main result is the normal to superfluid phase
boundary depicted in Fig. 2. The KT temperature is
plotted as a function of the separation between the layers
d and the electric field Eext between the external gates.
We estimate that superfluidity can survive at room tem-
perature under favorable experimental conditions. For
fixed d, TKT increases monotonically with Eext since all
energy scales, the kinetic energies in the conduction and
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Figure 2.3: Suggested experimental
setup for producing an exciton conden-
sate in bilayer graphene. The layers
are embedded in a dielectric, e.g. SiO2,
and subjected to the electric field pro-
duced by a parallel-plate capacitor.
(Figure from Min et al., 2008).

2000; Eisenstein and MacDonald, 2004; Eisenstein, 2004; Tutuc et al., 2004; Kellogg et al.,
2004). In this case both of the semiconducting layers serve as a well for electrons. However,
in the quantum Hall regime the system can be mapped onto an electron-hole system with
attractive interaction: An external magnetic field leads to Landau levels with a filling factor ν
denoting the fraction between the number of electrons in the system and the number of states
in each Landau level. The system is invariant under particle-hole transformation, which can
be performed in only one of the two layers leading to a hole filling factor of 1− ν. The former
empty sites are now seen as occupied by holes with positive charge and the interaction between
holes and electrons in different layers is attractive. The number of electrons and holes in the
system becomes equal for ν = 1/2 for each layer, i.e., a total filling factor νT = 1/2 + 1/2 = 1.
As above the excitons carry a dipole moment, but unlike in system (ii) this is not expected to
lead to a supersolid state. Such a system seems to be the most promising candidate among
semiconductor heterostructures for exciton condensation.

A first experimental hint for excitonic BEC in an electron-electron quantum Hall bilayer
system was given by measurements of the interlayer tunneling rate (Spielman et al., 2000),
which reveal strong interlayer electron-hole correlations. Striking evidence was given by mea-
surements of the counterflow of electrons and holes by independently electrically connecting
to the layers (Tutuc et al., 2004; Kellogg et al., 2004). The small, but measurable dissipation
in the counterflow channel was argued to arise from unbound vortices produced by disorder
in the sample (Eisenstein and MacDonald, 2004). All experimental evidence was achieved in
a temperature regime well below 1 K.

Exciton condensate in bilayer graphene

Recently, interest arose in exciton condensation in graphene bilayers (Min et al., 2008; Zhang
and Joglekar, 2008). A possible experimental setup is depicted in Fig. 2.3: Two layers of
graphene separated by a dielectric are subjected to a perpendicular electric field that induces
electron charge carriers in one layer and holes in the other. The intervening dielectric sup-
presses inter-layer hopping, which would counteract the evolution of an EC (Dillenschneider
and Han, 2008). The value of the Kosterlitz-Thouless transition temperature is sensitive on
the strength of the Coulomb interaction and its possible screening by the carriers in the layer.
Depending on the importance of screening, TKT was estimated to be in the range of room tem-
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2 Introduction

perature (Min et al., 2008; Bistritzer et al., 2008) or a few mK (Kharitonov and Efetov, 2008,
2009). TKT is expected to be reduced by disorder (Kharitonov and Efetov, 2009): Electrons
and holes do not scatter identically at impurities in the two layers, which leads to a breaking
of the electron-hole pair. As argued by Zhang and Joglekar (2008), no Wigner crystallization
occurs in graphene bilayers despite the dipole moments carried by the excitons.

Differences between such a bilayer graphene and a layered semiconductor structure are
various. Since graphene is a gapless semiconductor, higher carrier densities can be achieved.
The fairly good particle-hole symmetry of the band structure favors the evolution of an EC.

In contrast to the phonon-mediated superconductors, with transition temperatures orders
of magnitudes smaller than room temperature, the Coulomb interaction producing the EC
ranges over the full band width instead of a narrow shell around the Fermi surface of the order
of the Debye energy.

Like a superconductor, an exciton condensate can develop vortices, which are possibly related
to zero energy eigenfunctions, so-called zero modes. Their relation to fractionalization is
pointed out in the next section.

2.3 Fractionalization

Fractionalized quantum numbers and fractional statistics arising from nontrivial topological
configurations are not just interesting by themselves as exotic phenomena. Systems with theses
properties might offer a route to fault-tolerant quantum computation (Kitaev, 2003; Nayak
et al., 2008), because the states are topologically protected from local perturbations.

Up to now only two systems are known that host the required non-Abelian anyonic excita-
tions: the fractional quantum Hall state with filling factor ν = 5/2 (Moore and Read, 1991)
and the planar spin-polarized p+ip superconductor (Read and Green, 2000). Since both sys-
tems are not easy to produce and control, it is highly desirable to investigate the occurrence
of quasiparticles with fractional statistics in other systems.

In this section, we first discuss the relation between fractional quantum numbers and frac-
tional statistics, and then present examples of systems with fractional excitations, while point-
ing out the importance of zero modes.

Fractional statistics

Exchanging two equivalent particles in a system leads to an additional phase factor exp(iθ) in
the global wave function. Twice an exchange of the same two particles corresponds to tracking
one particle around the other, called braiding. In a three-dimensional system such a two-fold
exchange leaves the wave function unchanged due to topology, and all particles fall in one of
the two categories: either they are bosons with an exchange phase θ = 2π or fermions with
θ = π. In two dimensions the situation is different: θ is not restricted to 2π and π, but can
in principle take any value, which however mostly is a faction of π, leading to a new particle
species dubbed anyon (Wilczek, 1990).

In order to illustrate the relation between the fractional charge of a quasiparticle and the
associated fractional statistics, we consider the example of the fractional quantum Hall effect
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2.3 Fractionalization

(FQHE) with filling factor ν = 1/3, where the low-energy excitations are Abelian anyons. At
ν = 1/3 the lowest Landau level is filled to one third and the ration between electrons and
penetrating flux quantums in the system is 1:3. Upon a Chern-Simons transformation, where
two flux quanta are attached to each electron, the ground state can be regarded as being
equivalent to a fully filled lowest Landau level (ν = 1) of composite fermions. Quasi-hole
excitations above this ground state are composite objects carrying one flux quantum and a
charge e/3 (Laughlin, 1983). The exchange statistics θ = 2πνφ/φ0, where φ0 = h/e is the flux
quantum and φ denotes the flux carried by the quasiparticle, is obtained by calculating the
Berry phase on the basis of the underlying Laughlin wave function (Arovas et al., 1984). This
is in agreement with the interpretation that the exchange of two flux-charge composite objects
with flux φ and charge q leads to a topological phase (Wilczek, 1990)

θ = 2π
φ

φ0

q

e
. (2.13)

Such a phase can be regarded as a generalization of the Aharonov-Bohm phase (Aharonov and
Bohm, 1959), where the wave function of an electron acquires a phase 2πφ/φ0 when encircling
a magnetic flux φ. From relation (2.13) it becomes clear how fractional charge in combination
with flux can be connected to fractional statistics. Please note that the existence of fractional
charge itself is not a sufficient condition for the occurrence of fractional statistics.

Anyons, whose braiding simply manifests itself in a phase change, Eq. (2.13), are Abelian.
In this case the ground of a system consisting of several anyonic quasiparticles is unique.
Therefore, the order of braiding operations does not matter for the overall phase change: the
braid group is commutative. For non-Abelian anyons this is not the case. The ground state is
degenerate, and braiding two particles does not necessarily correspond to only a phase change
in the initial wave function. This property is needed for the concept of topological quantum
computation (Nayak et al., 2008).

In the following we point out the role of zero modes for the occurrence of fractional quantum
numbers.

Zero modes and fractionalization

Given that charge is a good quantum number, a single localized zero energy eigenfunction
in a gapped system with a symmetric spectrum binds a charge of 1/2 (Jackiw and Rebbi,
1976; Su et al., 1979; Hou et al., 2007; Seradjeh et al., 2008b). In some cases this can be
illustrated by simple counting arguments regarding the real-space structure of the system,
e.g. (Seradjeh et al., 2008b). The existence of a zero mode itself is not a necessary condition
for the existence of fractionalization. Mid-gap bound states away from zero energy for instance
can bind fractional charge as well (Chamon et al., 2008).

Systems with fractionalization can be divided into those, where time reversal is broken or
conserved. On the basis of two examples we illuminate the relation between zero modes and
fractionalization. We discuss the planar chiral p-wave superconductor, whose half-quantum
vortices bind fermionic zero modes leading to non-Abelian anyonic excitations, and, as a repre-
sentative of systems with conserved time reversal symmetry, present a graphene-like structure
with a Kekulé dimerization pattern.
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Figure 2.4: Illustration of a Kekulé dis-
tortion on a honeycomb lattics. Atoms
linked by double bonds are closer than
those linked by single bonds. (Figure
from Jackiw, 2007).

(perfect matching)

Figure 6: Effect of Kekulé distortion: atoms are closer together for double bonds, further
apart for single bonds. The pattern is “perfectly matched”: at each node there are two
single bonds and one double bond.

ϕ is neutral. Additionally, the interaction term is invariant against a simultaneous phase
change of ψ and ϕ:

ψ → eiωγ5 ψ, ϕ→ e2iω ϕ.

This invariance may be promoted to a local gauge invariance, provided the kinetic term is
gauged by the vector potential A, coupling to ψ in a chiral manner. Thus the complete
fermion Hamiltonian becomes [2]

HF = ψ†α · [p− γ5 A] ψ + g ψ† β [ϕRe − i γ5 ϕIm] ψ,

leading to the Dirac equation

h(ϕ,A)ψ = α · (p− γ5 A)ψ + gβ (ϕRe − i γ5 ϕIm)ψ = E ψ.

The Bose fields satisfy the vortex equations.

D · Dϕ = ϕV ′ (ϕ∗ ϕ)

Dϕ ≡ (∇− i 2A) ϕ

1
e2

εij ∂j B = ji
BOSE

B ≡ εij ∂i Aj

jBOSE = 4 Im ϕ∗ Dϕ

7

A spin-polarized p+ip superconductor exhibits vortices with a flux of h/2e. The physics in
the presence of a vortex can be analyzed in terms of a BCS mean-field theory. The solution
of the Bogoliubov-de Gennes (BdG) equations reveals a bound fermionic mid-gap zero-energy
mode (Read and Green, 2000; Gurarie and Radzihovsky, 2007) localized in the vicinity of
the vortex core. Since the considered system is a superconductor and therefore the degrees
of freedom are in the particle-particle channel, this mode corresponds to a self-conjugated
fermion, termed Majorana fermion, for which the creation operator γ† fulfills the relation
γ† = γ. In a system with several vortices this leads to a ground state degeneracy (Read and
Green, 2000; Ivanov, 2001) and the vortices behave as anyons with non-Abelian statistics. The
fractional statistics, however, in this example is not accompanied by charge fractionalization,
since charge is not conserved in a superconductor.

Examples of systems exhibiting zero modes and fractionalization, while conserving time
reversal symmetry, are for instance lattice models with a specific dimerization pattern (Hou
et al., 2007; Seradjeh et al., 2008b). They can be regarded as a two-dimensional generalization
of the concept of fractionalization in polyacetylene, a dimerized chain, where a domain wall
in the dimerization pattern binds a mid-gap zero-energy excitation and is associated with
fractionalized charge 1/2 (Jackiw and Rebbi, 1976; Su et al., 1979; Goldstone and Wilczek,
1981). The system considered by Hou et al. (2007) is a graphene-like structure: a honeycomb
lattice with spinless, charged fermions with Kekulé distortion (Fig. 2.4), a dimerization pattern
that generates a mass term for the Dirac electrons. A U(1) vortex in this mass, analogously
to an Abrikosov vortex in a superconducting condensate, is associated with a 2π phase twist
around the vortex core. In the presence of such a vortex the low-energy Dirac equations
are equivalent to the BdG equations for a chiral p-wave superconductor with a half-quantum
vortex (Read and Green, 2000). A vortex binds an unpaired zero mode and a charge of ±e/2.
In contrast to the p-wave superconductor, the zero mode cannot be expressed as a Majorana
fermion. Therefore, the exchange statistics of these vortices is Abelian (Seradjeh et al., 2008b).

So far, in all considered systems, only vortices with odd vorticity bind zero modes.

2.4 Outline

The possibility of creating zero modes and fractional excitations in the exciton condensate
evolving in a bilayer graphene system with an applied gate voltage is explored. In the low-
energy limit we show that an oddly-quantized vortex in the excitonic order parameter binds
two zero modes - one per valley index. The inter-valley mixing, which is not captured by the
low-energy theory, leads to a slight splitting of these zero modes. Based on an exact numerical
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diagonalization of the full lattice Hamiltonian in real space, we study the charge content and
the exchange statistics of these vortices. Although not associated with a total charge, each
vortex binds an irrational fraction of “axial” charge defined as the charge difference between
the layers and obeys fractional exchange statistics. The results presented in the framework of
this thesis have been published in (Seradjeh et al., 2008a).

Section 3 introduces the Hamiltonian modeling the symmetrically biased bilayer system
and studies its instability towards an excitonic condensate at the mean-field level. Section
4 discusses the approximations arising in the low-energy limit and studies the effect of a
vortex in the excitonic order parameter. Section 5 provides numerical and analytical results
showing the splitting of zero modes due to inter-valley mixing beyond the low-energy regime.
It furthermore shows the association of a vortex with axial charge. Section 6 discusses the
theoretical background and numerical results studying the exchange statistics of the vortices.
A summary of the results and an outlook to possible experimental observations in Sec. 7
concludes this part.
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3 Exciton condensate in bilayer graphene

In this chapter we consider a symmetrically biased bilayer graphene system and investigate its
instability towards an excitonic condensate using a mean-field approximation. We derive the
critical value for the Coulomb repulsion and the dependence of the excitonic order parameter
on the values of the Coulomb repulsion and the gate voltage.

The schematic structure of the regarded system is depicted in Fig. 3.1(a) - each of the
graphene layers is kept on an electric potential ±V . The layers are separated by a dielectric
material at a distance much larger than the lattice spacing within the layers. A finite gate
voltage V > 0 shifts the spectrum up and down, respectively, in the upper and lower layer. At
half filling this leads to a Fermi surface of particles in one layer, and of holes in the other one.
Therefore, a Coulomb interaction between the layers condenses a finite density of particle-hole
bound states. The exciton condensate (EC) possibly exists even up to room temperature (Min
et al., 2008). Only weak dependence on the actual type of stacking is expected (Zhang and
Joglekar, 2008). Therefore, direct stacking will be assumed.

The considered model containing the essential physics is described by the Hamiltonian H =
H1 +H2 +HU with the in-layer Hamiltonian

Hα = −t
∑

〈ij〉
(c†Ai,αcBj,α + h.c.)− (−)αV

∑

νi

nνi,α , (3.1)

where 〈ij〉 denotes the summation over nearest-neighbored sites, α = 1, 2 represents the layer
and ν = A,B the sublattice index. cνi,α is the fermionic annihilation operator for an electron
sitting at position Ri on sublattice ν and layer α, and nνi,α = c†νi,αcνi,α is the corresponding
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Figure 3.1: (a) Structure of bilayer graphene subjected to a gate voltage V and separated by a dielectric,
e.g. SiO2, at a distance d � a, where a is the intra-layer lattice spacing. (b) Spectrum for bilayer
graphene close to a nodal point in the non-interacting case with zero gate voltage (green dashed line,
doubly degenerate) and in the presence of an exciton condensate (red solid line) with finite gate voltage
V , an exciton gap m = ∆− and a nodal shift of w =

√
m2 + V 2.
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3 Exciton condensate in bilayer graphene

Figure 3.2: Schematic illustration of exci-
tons that consist of a hole and an electron
from different layers. layer 1

layer 2

- -

+

-

++

struc.nb 1

number operator. The interaction term is given by

HU = U
∑

νi

nνi,1nνi,2 . (3.2)

Since spin indices do not influence the behavior of the EC, just a single spin projection is
considered. Inter-layer hopping is exponentially suppressed by the comparably large inter-layer
distance and the intervening dielectric, and is therefore omitted in the Hamiltonian. Electrons
can hop within each layer to nearest neighbored sites. The assumed interaction is short-ranged
and acting between two particles in different layers and on the same planar site, neglecting
a possible long-ranged tail of the Coulomb interaction, which however is only expected to
enhance the formation of the EC.

A mean-field decoupling in the excitonic order parameter ∆νi = U
〈
c†νi,2cνi,1

〉
, where ν repre-

sents the sublattice index, leads to the mean-field Hamiltonian

HMF = H1 +H2 −
∑

νi

(
∆νic

†
νi,1cνi,2 + h.c.

)
+

1
U

∑

νi

|∆νi|2. (3.3)

A phase with a finite value of ∆νi describes an exciton condensate illustrated in Fig. 3.2.
Under the assumption that ∆νi only depends on the sublattice index, there are two mean-field
parameters ∆A and ∆B in the system, which can be combined to ∆± = 1

2(∆A ± ∆B). We
can define the spinor field operator ψi = (cBi,1,−cAi,1, cBi,2, cAi,2)T . The Hamiltonian (3.3) is
compactly written as

HMF =
1
N

∑

k

ψ†khkψk + E0 (3.4)

using N as the number of sites per layer, E0 = (N/U)(|∆+|2 + |∆−|2) and

hk = γ0

[
γ1Re tk + γ2Im tk + V γ0γ5 + |∆−|e−iχ−γ5 − iγ1γ2|∆+|eiχ+γ5

]
. (3.5)

tk = −t∑rA∈n.n. e
ikrA is the non-interacting dispersion relation, where rA denotes the vectors

pointing from an A site to the nearest neighbored B sites, see Eq. (2.1), and γµ = iσ2 ⊗ σµ,
γ0 = σ1⊗1 and γ5 = −iγ0γ1γ2γ3 = σ3⊗1 are the Dirac matrices in Weyl representation. The
field ∆± = |∆±|eiχ± was decomposed in a polar representation.

The eigenvalues of hk, Eq. (3.5), are given by ±Ekτ with

Ekτ =
(
|tk|2 + V 2 + |∆+|2 + |∆−|2+

−(−1)τ2
[
|tk|2

(
V 2 + |∆+|2

)
+ Re2(∆−∆∗+)

]1/2)1/2
,

(3.6)
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where τ = 1, 2 is the band index. For half filling the ground state energy of the system reads

EGS = −
∑

kτ

|Ekτ |+ E0 with E0 =
2N
U

(|∆+|2 + |∆−|2). (3.7)

The energy gap Eg in the system is given by the minimal energetical distance between the
ground state and an excited state. Since |Ek2| ≤ |Ek1|, we minimize the energy ∂|Ek2|/∂tk ≡ 0,
which leads to the condition

|tk|2 ≡
v4 − Re2(∆−∆∗+)

v2
, (3.8)

where the shortcut v2 = V 2 + |∆+|2 was introduced. Ek2 evaluated with this condition leads
to an expression for the energy gap

Eg =
( |∆−|2V 2 + Im(∆−∆∗+)2

V 2 + |∆+|2
)1/2

. (3.9)

The maximum value of the gap is realized when Re(∆−−∆∗+) = 0, or equivalently |∆A| = |∆B|.

For the two parameters ∆+ and ∆− two separate gap equations hold with different critical
values Uc±. The gap equations are obtained by minimizing the ground state energy ∂EGS

∂∆±
= 0.

In the limit ∆± → 0 the value of the critical interaction Uc± can be extracted. The explicit
calculation of Uc± presented in the following shows an instability at infinitesimal U towards
an EC with non-zero ∆− and zero ∆+.

While setting ∆− = 0, the gap equation for ∆+

4N = U
∑

kτ

v − (−1)τ |tk|
v|Ekτ |

(3.10)

leads to the critical value

1
Uc+

=
∑

k,|tk|<V

1
NV

. (3.11)

In the vicinity of the nodes, we approximate the non-interacting dispersion as |tk| = (3ta/2)|k|,
which implies a density of states linear in energy for V � t. Within this limit, we can estimate
Uc+ ∼ t2/V � t.

In an analogous calculation for ∆− the gap equation becomes

2N = U
∑

kτ

1
|Ekτ |

. (3.12)

In the limit ∆− → 0 with ∆+ = 0, this reduces to

1
Uc−

=
1

2N

∑

kτ

1
||tk| − (−1)τV | (3.13)
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3 Exciton condensate in bilayer graphene

The right-hand side diverges logarithmically in the vicinity of the nodes for τ = 2. Hence, the
critical value Uc− is equal to zero. At infinitesimal U the system is unstable towards an EC
with non-zero ∆−, but zero ∆+. The resulting spectrum of the system ±Ekτ with

Ekτ =
√

(|tk| − (−1)τV )2 + |∆−|2. (3.14)

is depicted in Fig. 3.1(b).

In a nodal approximation with |tk| ≈ (3ta/2)|k| = vF |k| the dependence of |∆−| on U and
V can be derived. Taking the gap equation (3.12) for ∆− as a starting point, the summation
over k can be transformed into an integral over the first Brillouin zone with volume VBZ =
8π2/(3

√
3a2), which will be cut at an ultraviolet momentum cutoff Λ:

2
N

∑

k

=
∫

BZ

d2k

VBZ
≈ 2π
VBZ

Λ∫

0

dkk (3.15)

The gap equation transforms into

1
U

= π

Λ∫

0

dk

VBZ

1√
(vFk − V )2 + |∆−|2

(3.16)

=
π

VBZv2
F

[√
|∆−|2 + (ΛvF − V )2 −

√
|∆−|2 + V 2+ (3.17)

+ V ln


ΛvF − V +

√
|∆−|2 + (ΛvF − V )2

√
|∆−|2 + V 2 − V




 .

An expansion of the right-hand side for large ΛvF � V, |∆−| leads to

1
U
≈ π

VBZv2
F

(
ΛvF − V −

√
|∆−|2 + V 2 + V ln

(
2vFΛ√

|∆−|2 + V 2 − V

))
. (3.18)

By further assuming that |∆−| � V this simplifies to

1
U
≈ π

VBZv2
F

(
ΛvF − 2V + V ln

(
4vFΛV
|∆−|2

))
, (3.19)

which can be rearranged as

4ΛvFV
|∆−|2

= exp
(
VBZv

2
F

πUV

)
exp

(
−ΛvF − 2V

V

)
≈ exp

(
VBZv

2
F

πUV

)
. (3.20)

Therefore, the dependence of |∆−| on the applied gate voltage V and the inter-layer Coulomb
repulsion U is

|∆−| ≈ 2
√
vFΛV exp

(
−
√

3πt2

UV

)
, (3.21)
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where vFΛ has the unit of energy and is of the order t.

In this chapter a Hamiltonian was introduced describing the physics of a bilayer graphene
system with intra-layer hopping and inter-layer Coulomb repulsion subjected to an applied
gate voltage. This system is unstable towards an exciton condensate with non-zero ∆−, i.e., an
infinitesimal U leads to the formation of an EC. An additional next-nearest neighbor hopping
destroying the perfect nesting between the electron and hole Fermi surfaces is likely to render
the critical U finite. In this phase an energy gap develops, whose value is given by ∆−.
This mean-field parameter depends exponentially on the strength of the Coulomb repulsion.
A phase with ∆− 6= 0 and ∆+ = 0 was also studied by Min et al. (2008) and Zhang and
Joglekar (2008). The next chapter is concerned with an approximation of the EC phase in the
low-energy limit.
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3 Exciton condensate in bilayer graphene
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4 Low-energy theory

In the low-energy limit the physics of the system is dominated by excitations around the
two Dirac points. We formulate a theory in the continuum limit only taking into account
these contributions and discuss the symmetries of the low-energy Hamiltonian (Sec. 4.1). In
the framework of this approximation, we study the effect of a vortex in the excitonic order
parameter (Sec. 4.2): It binds exactly one zero mode per valley index.

4.1 Nodal approximation

In the vicinity of the nodal points K± =
(
±4π/(3

√
3a), 0

)
, the approximation tK±+p ≈

±px + ipy for the non-interacting dispersion holds, where the Fermi velocity vF was set to 1.
In the limit of long wavelengths the mean-field Hamiltonian (3.4) can be linearized around
these nodal points and reduces to two contributions,

Hnodal =
∫
dr
(

Ψ†+(r)h+(r)Ψ+(r) + Ψ†−(r)h−(r)Ψ−(r)
)
, (4.1)

with the spinors Ψ± = (cB1±,−cA1±, cB2±, cA2±)T . The matrices h± are related to each other
via

h+ = γ1γ3h−γ3γ1 ≡ H, (4.2)

with

H = γ0

(
γ1p̂x + γ2p̂y + V γ0γ5 + |m|e−iχγ5

)
. (4.3)

We used the momentum operator p̂ = −i∇ and the replacement ∆− ≡ m = |m|eiχ. The mass
m is not necessarily uniform in space. Since h± are connected by a unitary transformation,
Eq. (4.2), the eigenstates of h− can easily be found by transforming the eigenstates of h+. In
the remainder of this chapter we will focus on the solution of h+ and comment at the end how
the doubling of the number of nodes changes the results.

Based on a anticommutation property of the Hamiltonian H, it can be shown that its spectrum
is symmetric around 0. At first, we consider the relation

γ2H∗γ2 = H , (4.4)

which can be shown by explicitly plugging inH, Eq. (4.3), and using the properties of the Dirac
matrices {γµ, γν} = 2ηµν14, where ηµν is the Minkowski metric ({ηµν} = diag(1,−1,−1,−1)
with µ, ν = 0, 1, 2, 3).
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4 Low-energy theory

The antiunitary operator Ω = Kγ2, where K is the operator for complex conjugation (KH =
H∗K), is its own inverse Ω−1 = Ω. By considering Eq. (4.4), we see that Ω anticommutes with
H:

ΩHΩ = −H, . (4.5)

Thus, for every eigenstate ΨE of H (HΨE = EΨE) an eigenstate ΩΨE with the energy −E
exists,

H(ΩΨE) = −E(ΩΨE) , (4.6)

leading to a symmetric spectrum.
In this section, it has been shown how the mean-field Hamiltonian is linearized in the limit

of low energy. General considerations prove the symmetry of the resulting spectrum. The next
section discusses the effect of a vortex in the order parameter m binding a zero mode.

4.2 Zero modes bound by a vortex

In this section we study the effect of a vortex in the EC order parameter

m(r, θ) = m0(r)einθ , (4.7)

with vorticity n ∈ Z and m0(r) > 0 in the low-energy limit. The radius r and the angle θ
parametrize polar coordinates. It will be shown that such a vortex with odd vorticity n binds
exactly one zero mode per node.

In the formal limit of V = 0 (with non-zero order parameterm) the HamiltonianH, Eq. (4.3),
is equivalent to the system discussed in (Hou et al., 2007; Seradjeh et al., 2008b; Jackiw and Pi,
2007). In this case, it is shown that an n-fold vortex binds exactly |n| zero modes (Jackiw and
Rossi, 1981). In the regime far from the vortex, the spectrum remains gapped. In the presence
of a non-zero V at least one zero modes survives for an oddly-quantized vortex due to the
symmetric spectrum, compare Eq. (4.6). Since the spectral symmetry for finite V is generated
by the antiunitary operator as in the case of a chiral p-wave superconductor with half-quantum
vortices, not more than one zero mode is expected to survive (Gurarie and Radzihovsky, 2007).

In order to seek for these solutions with zero energy Hψ0 = 0, it is important to notice that
the antiunitary operator Ω and H share the same eigenfunctions in the zero energy subspace.
If ψ1 is a zero mode (Hψ1 = 0), then ψ2 = Ωψ1 is a zero mode as well. In the case of ψ2 = λψ1,
ψ1 is an eigenstate of Ω with λ = ±1 because of Ω2 = 1. If ψ1 and ψ2 are linearly independent,
one can always choose a combination of these states ψ± = (ψ1±ψ2)/

√
2, which is an eigenstate

of Ω:

Ωψ± = Ω
1√
2

(1± Ω)ψ1 =
1√
2

(Ω± Ω2)ψ1 = ∓ 1√
2

(1± Ω)ψ1 = ∓ψ± . (4.8)

In general, the eigenstates φλ of Ω (Ωφλ = λφλ) fulfill the relation

Ω(e−
iβ
2 φλ) = (eiβλ)(e−

iβ
2 φλ). (4.9)
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4.2 Zero modes bound by a vortex

This shows that the eigenstates for λ = 1 and −1 are connected by a phase factor. Therefore,
it is sufficient to restrict ourselves to the eigenstate for λ = −1, which has the structure
ψ0 = (ψ,−σ2ψ

∗)T . ψ is a two component spinor, which we can write as (f, g)T with arbitrary
complex functions f and g. Then ψ0 reads

ψ0 = (f, g, ig∗,−if∗)T . (4.10)

The following calculation assumes a vortex in the quantum limit,

m(r 6= 0, θ) = m0e
inθ , (4.11)

with constant m0, i.e., the vortex is only phase twist without a radial dependence. The more
general case of a radially symmetric vortex could be treated in a similar way. We write the
linearized Hamiltonian H, Eq. (4.3), in matrix form

H =
(

ĥ ∆̂
∆̂† −ĥ

)
(4.12)

with

ĥ =
(

V −Π−
−Π+ V

)
and ∆̂ =

(
m0e

inθ 0
0 m0e

inθ

)
(4.13)

using

Π± = px ± ipy = −ie±iθ

(
∂r ±

i
r
∂θ

)
. (4.14)

Because of σ2ĥσ2 = ĥ∗ and ∆̂ = ∆̂∗, the four equations contained in Hψ0 = 0 collapse to two
inequivalent ones:

ĥψ − ∆̂σ2ψ
∗ = 0 , (4.15)

which can be explicitly written as

eiθ(∂r + ir−1∂θ)f −m0e
inθf∗ − iV g = 0, (4.16a)

e−iθ(∂r − ir−1∂θ)g +m0e
inθg∗ − iV f = 0. (4.16b)

An additional phase factor eiβ in the parameter m0 can be absorbed in the function f and g
by multiplying them with a factor of eiβ/2. Hence, we can choose 0 < m0 ∈ R.

With the one-phase ansatz

f(r, θ) = F (r)eiaθ, g(r, θ) = G(r)eibθ, (4.17)

the angular dependence in Eq. (4.16) can be eliminated by a = b− 1 = n−1
2 . Please note that

a two-phase ansatz

f(r, θ) = F1(r)eia1θ + F2(r)eia2θ, g(r, θ) = G1(r)eib1θ +G2(r)eib2θ (4.18)

29



4 Low-energy theory

made by Jackiw and Rossi (1981) does not give more solutions for V 6= 0,
Even (odd) values of n are connected to (half-)integer values of a and b. Since wave functions

that contain a factor of eiθ/2 have a branch cut for θ = 0 and would therefore not fulfill the
differential equations (4.16), zero modes only occur for odd vorticity n. The resulting set of
equations are

(
∂r +

b

r

)
G(r) +m0G

∗(r)− iV F (r) = 0, (4.19a)
(
∂r −

a

r

)
F (r)−m0F

∗(r)− iV G(r) = 0. (4.19b)

By plugging in G(r) = e−m0rG̃(r) and F (r) = −ie−m0rF̃ (r) we get
(
∂r +

b

r

)
G̃(r)− V F̃ (r) = 0, (4.20a)

(
∂r −

a

r

)
F̃ (r) + V G̃(r) = 0. (4.20b)

This set of differential equations reduces to one equation with G̃(r) =
(
∂r − n−1

2r

)
F̃ (r):

(
∂r +

b

r

)(
∂r −

n− 1
2r

)
F̃ (r)− V F̃ (r) = 0 (4.21)

By identifying this as a Bessel differential equation, we can write the overall result as

G(r) = e−m0rJb(V r), F (r) = −ie−m0rJa(V r). (4.22)

where Ja(x) and Jb(x) are bound-state Bessel functions of the first kind. For integer values
of a and b, i.e. odd vorticity n, there is only a single solution, which is in agreement with the
general arguments above.

The singularity at r = 0 in the initial definition of m(r, θ), Eq. (4.11), is re-regularized in
the solution for the zero mode, Eq. (4.22), due to the behavior of the Bessel functions in the
limit r → 0.

In the limit V → 0 and a vorticity n = ±1, this solution is equivalent to what is reported
by Hou et al. (2007). As already discussed in this reference, the corresponding zero modes
only have support on one sublattice: sublattice A for n = 1 and sublattice B for n = −1. For
|n| > 1 the limit V → 0 is singular, and therefore not continously connected to the results for
V = 0 by Hou et al. (2007): While for V 6= 0 the number of zero modes is fixed to 1 due to
antiunitarity operator producing the symmetry of the spectrum, an n-fold vortex at V = 0
is associated with |n| zero modes leading to different numbers of zero modes for V = 0 and
V → 0 with |n| > 1.

We discovered that an oddly quantized vortex in the order parameter of the EC develops
one zero mode, while taking into account only one valley index and one spin species. While
the spin indices are independent of each other and a vortex theoretically can occur for just
one spin species, the doubling of valley indices in the total system doubles the number of zero
modes. Therefore, an oddly quantized vortex is associated with two zero modes. It is known
that a localized zero mode in a gapped system obeying particle-hole symmetry binds a charge
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4.2 Zero modes bound by a vortex

of ±e/2 (Jackiw and Rebbi, 1976; Su et al., 1979; Hou et al., 2007; Seradjeh et al., 2008b).
Hence, the existence of an even number of zero modes should not lead to fractionalization.

However, the mixing between the valleys, which was not considered within the low-energy
theory, leads to a slight splitting of the zero modes, which we will discuss in detail in the
next chapter. Due to the splitting the vortex binds a fractional “axial charge”, which is a
measurable quantity in the experimental setup.
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5 Zero mode splitting

The nodal approximation introduced in the previous chapter is valid in the low-energy limit
and shows that an oddly-quantized vortex binds two zero modes. In this chapter, we present
numerical and analytical evidence for the splitting of zero modes due to inter-valley mixing
in the full system and the association of a vortex with “axial” charge, the charge difference
between the two layers.

Section 5.1 presents numerical results from an exact diagonalization of the real-space Hamil-
tonian of a finite-size system. Section 5.2 discusses general arguments why a vortex binds axial
charge. In Sec. 5.3, an analytic expression for the energy splitting of the zero modes is derived.

5.1 Exact diagonalization

For the mean-field Hamiltonian in real space, Eq. (3.3), exact diagonalization was performed
with the standard LAPACK diagonalization routine up to a lattice size of 51 × 30 sites per
layer. Due to the shape of the honeycomb lattice a system with Nx×Ny sites has an extension
of
√

3
2 aNx × 3

2aNy in real space.
We consider an n-fold vortex sitting at the position rV (which in the numerics is chosen to

be the center of the finite-size system) modeled by an order parameter

∆νi = (−1)νm0e
inθi with ν = 1, 2 for ri ∈ A,B (5.1)

in the mean-field Hamiltonian (3.3), where θi = arg(xi − xV + i(yi − yV )). The alternating
sublattice-dependent sign ensures that ∆+ = 0 and |∆−| = m0. The system without vortex
(n = 0) has a spectral gap Eg = m0, compare Eq. (3.9).

The spectrum as a function of the vorticity n is depicted in Fig. 5.1. For n = 1 two near-zero
modes evolve, while for n = 2 the spectrum is gapped. By increasing vorticity, the value of
the gap and the splitting between the zero modes shrink. The splitting is independent of the

1 2 3 4 5 6
Vorticity n

-0.4
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0

0.2

0.4

y
gre

n
E

ê
t

PlotEVvorticity.nb 1

Figure 5.1: Spectrum in terms of the vor-
ticity n for a system with 51 × 30 × 2
lattice sites, m0/t = 0.3, V/t = 0.4 and a
vortex placed in the center of the lattice.
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Figure 5.2: Numerical results from exact diagonalization for a system size of 39× 22× 2. Axial density
δρ over the gate voltage in units of t, V/t, for various values of m0 for a system without a vortex (a),
the additional axial charge δQv in the presence of a vortex (b), and the corresponding density profiles
for V/t = 0.4 and m0/t = 0.3 without (c) and with (d) a vortex. The honeycomb lattice sites are
located in the center of the triangles. The electron charge is set to 1.

system size, and therefore not a finite size effect. Apart from the splitting, the results from
the previous section predicting two zero modes for an oddly quantized vortex are confirmed.

For half filling, which will be assumed throughout this chapter, the site-dependent charge
Q(r) = Q1(r) + Q2(r), where 1 and 2 refer to the layer index, is spatially uniform for the
configuration with and without vortex. The charge difference δQ(r) = Q2(r) − Q1(r), to
which we will refer as “axial charge” as argued in Sec. 5.2, has interesting properties. It
corresponds to the dipole moment between the layers.

First we will focus on the situation without a vortex. The axial density δρ =
∑

r δρ(r)
with δρ(r) = δQ(r)/N , Fig. 5.2(a), depends linearly on the gate voltage V for V < m0 and
turns into a quadratic dependence for V > m0. In the gapless case (m0 = 0) the system
consists of two decoupled layers with different chemical potentials controlled by the voltage.
A straightforward calculation subtracting the number of particles in each layer leads to

δρ|m0=0 =
1
N

∑

|tk|<V
1 ≈ 1√

3π

(
V

t

)2

. (5.2)
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5.2 Axial flux and axial charge

The corresponding plot of δρ for m0 = 0 in Fig. 5.2(a) has an offset and ripples - both features
are due to finite size effects. The density profile δρ(r) for finite m0, Fig. 5.2(c), is uniform in
the center and has axial charge bound to the edges showing different characteristics for zig-zag
(horizontal) and arm-chair (vertical) edges.

The total charge associated with a vortex is given by the electron charge and therefore not
fractionalized. However, a vortex binds additional fractionalized axial charge δQv on top of
the background, which is uniform for an infinite system. The bound axial charge as a function
of V for various values of m0 is shown in Fig. 5.2(b). Varying these two parameters can tune
the sign as well as the value continuously, which is now an irrational fraction of the electron
charge. The density profile Fig. 5.2(d) shows an e−m0r dependence and oscillating behavior
like the zero mode wave function, Eq. (4.22).

As already mentioned, the actual type of stacking is expected to have only minor influence
on the development of the exciton condensate (Zhang and Joglekar, 2008). With a spatial
extension much larger than the lattice spacing, we also expect the vortex and its properties to
only depend weakly on the type of stacking.

An antivortex, created by a phase twist e−iθ, annihilates a vortex if both are put at the same
spatial position. They carry opposite flux, but, as numerics shows, the same axial charge.

The next section will shed light on the issue predict consequences for the exchange statistics
of vortices.

5.2 Axial flux and axial charge

Based on a gauge transformation, we illustrate that a vortex in the excitonic order parameter
is an object carrying “axial” flux and “axial” charge. This might be counterintuitive at first
sight, since the EC order parameter gets dressed with a phase twist of 2π and therefore a full
flux quantum. However, this phase twist only affects the inter-layer bonds and can be shifted
to the intra-layer hopping upon applying a gauge transformation.

For the particular choice

ci1 → ci1e
−iθi , (5.3a)

ci2 → ci2 , (5.3b)

t
(1)
ij → tije

i(θi−θj) , (5.3c)

t
(2)
ij → tij , (5.3d)

the hopping parameters on layer (1) and (2) are transformed separately, and the phase factor
eiθi is shifted to the intra-layer bonds in (1), while layer (2) stays unaffected. In this gauge a
full flux quantum is inserted in layer (1), but does not leave through layer (2).

By adding a half flux Ā coupling to the total charge Q1(r) + Q2(r), which is distributed
homogeneously over all lattice sites, we end up with an axial half flux quantum coupling to
the charge difference δQ = Q2(r)−Q1(r), see Fig. 5.3.

Hence, a vortex effectively is an (axial charge, axial flux) composite object, which in addition
carries a regular half-flux quantum. In analogy to the case of a (charge, flux) object (Wilczek,
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5 Zero mode splitting

Figure 5.3: Schematic illustration showing the
additional insertion of a half flux quantum
Ā and how it reduces to an axial half flux
quantum coupling to the charge difference
δQv

=̂
Ā

1990), we expect an exchange phase of Γ = 2π φvφ0

δQv
e , where φv = φ0/2 is the axial flux and δQv

is the axial charge bound to a vortex. φ0 = h/e is the flux quantum. The exchange statistics
will be discussed in more detail in Chapter 6, where numerical calculations are presented that
support this conjecture.

In the next section we include inter-valley mixing in the nodal approximation developed in
Sec. 4.1 and derive an analytic expression for the energy splitting between the zero modes.

5.3 Analytic estimate of the zero mode splitting

In order to take into account inter-valley mixing in the framework of a nodal approximation,
the equations have to be generalized to a non-uniform value of the parameter m, which was
originally assumed to be uniform in Sec. 4.1. In this case the inter-layer hopping term in
Hamiltonian (3.3) becomes

δH =
1
N2

∑

kq

mk−q(c†A1kcA2q − c†B1kcB2q). (5.4)

Mixing between the two valleys happens for k − q ≈ ±(K+ −K−) ≡ ±Q. We approximate
m(r) = 1

N

∑
k e

ikrmk around these two wave vectors by

m±(r) =
1
N

∑

p

eiprmp±Q ≈ e∓iQrm0 . (5.5)

In the nodal approximation the inter-layer mixing δH becomes

δH = −
∫

drΨ†(r)
(

0 δh(r)
δh†(r) 0

)
Ψ(r) , (5.6)

with

δh(r) =
(
m+(r) 0

0 m∗−(r)

)
. (5.7)

The spinor can be written as Ψ(r) = (Ψ+,Ψ−)T , where ± refers to the valley index. The
total Hamiltonian in the low-energy limit is given by Hnodal + δH, where Hnodal is defined by
Eq. (4.1).

The two zero modes ψ0± of Hnodal are associated with the two valleys ±. According to
Eq. (4.2) they are related by

ψ0+ = γ1γ3ψ0− ≡ ψ0 , (5.8)
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5.3 Analytic estimate of the zero mode splitting
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Figure 5.4: Zero mode energy splitting |ε| in units of t over gate voltage V/t. Colors indicate different
values of the EC order parameter m0. The solid lines are a fit obtained by Eq. (5.11) with Q→ η−1Q
and η = 3.0 (for explanation see text), the squares are values found by exact diagonalization of a lattice
with 39× 22 sites per layer and a vortex sitting in the center.

where ψ0 = (f, g, ig∗,−if∗)T , compare Eq. (4.10). Within this two dimensional subspace we
can make the ansatz

(δH)E=0 =
(

0 ε
ε∗ 0

)
. (5.9)

The value of ε can be found by projecting it out:

ε = −〈ψ+0|δh|ψ−0〉 . (5.10)

Plugging in the wave functions for the zero modes and taking into account their proper nor-
malization yields

ε = im0

∫
d2re−iQ·rRe

[
e−iθ

(
f2 + g2

)]
∫

d2r (|f |2 + |g|2)
. (5.11)

The two zero modes are split by an energy 2ε. For a quantitative comparison to the numerical
values, the internodal wave vector Q is substituted by an effective wave vector η−1Q correcting
the effects of the nodal approximation. In the case with no mixing such a renormalization of
the internodal wave vector is not neccesary, as the calculation is independent of Q. Numerical
and analytical results are shown in Fig. 5.4, using η ≈ 3.0 yielding best fits for low to inter-
mediate values of V and m0.

The two zero modes appearing in the presence of an oddly-quantized vortex slightly split in
energy due to an inter-valley mixing, which was not captured by the nodal approximation in
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5 Zero mode splitting

the previous chapter. This was furnished by a numerical simulation of a finite-size system and
an analytical estimate in the low-energy limit. A vortex in the excitonic order parameter is
neutral in the total charge channel, but binds an irrational fraction of “axial” charge and can
be viewed as an (axial flux, axial charge) composite object. The associated fractional exchange
statistics between two vortices is studied in the next chapter.
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6 Fractional statistics

As discussed in Sec. 5.2, a vortex in the exciton condensate is an object composed of an
axial half flux quantum φv and an irrationally fractionalized charge δQv, which furthermore
carries an additional half flux quantum, but no net charge. We expect these objects to have a
statistical angle of Γ = 2πφvδQv.

In the case of bosons and fermions, the statistical angle Γ determining the statistics of the
considered particle is 2π and π, respectively. It is half the geometric phase γ that is acquired
by the wave function of a system, when two particles of the same type are tracked around each
other (in real space) and end up in their initial position.

In general the acquired geometric phase γ in a wave function is independent of the dynamics
of the system and does therefore not depend on time. It is only determined by topological
properties, i.e, it only depends on the path taken in parameter space. Given an adiabatic
evolution of quantum states (which for practical purposes means that the changing rate of
particles is smaller than the excitation gap of the system) the geometric phase is called Berry
phase.

This chapter is concerned with determining the statistical angle of vortices in the exciton
condensate of a graphene bilayer system. We calculate the Berry phase acquired by the global
wave function after one vortex is tracked around another one. Since the bilayer system is under
the influence of a static electric field and each vortex is associated with a vector potential,
a gauge-invariant formulation of the Berry phase becomes necessary, developed in Sec. 6.1.
Section 6.2 describes a discretized version of the phase expression using a Bargmann invariant.
Numerical results are presented in Sec. 6.3.

6.1 Gauge-invariant Berry phase

While we first focus on the derivation of a general expression for the gauge-invariant geometric
phase after a cyclic evolution of quantum states, which does not require adiabaticity, we
specialize this to an expression for the Berry phase, where the cyclic motion is accompanied
by adiabatic changes in the Hamiltonian.

For the derivation of a gauge-invariant Berry phase, we consider the Hamiltonian H(t) in
the presence of an t-dependent electromagnetic potential (A0(t),A(t)).

H(t) = h(A(t); t) +A0(t) (6.1)

defining the Schrödinger equation (~ = 1)

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉 (6.2)
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6 Fractional statistics

We can define a gauge-invariant wave function

|Ψ̃(t)〉 = exp


i

t∫

−∞

A0(s)ds


 |Ψ(t)〉 , (6.3)

which fulfills

i∂t|Ψ̃(t)〉 = h̃(t)|Ψ̃(t)〉 , (6.4)

with

h̃(t) = exp


i

t∫

−∞

A0(s)ds


h(A(t); t) exp


−i

t∫

−∞

A0(s)ds


 . (6.5)

In this section a tilde denotes gauge-invariance. For simplicity, it was assumed that the scalar
potentials at different times commute: [A0(s1), A0(s2)] = 0. In the case of non-commuting
potentials, the relations have to be defined with time-ordered exponential integrals, which does
not affect the overall result.

In order to show the gauge-invariance explicitly a gauge transformation by a function Λ(t)
is considered leading to

A0 → A0 + ∂tΛ(t) , (6.6a)

|Ψ(t)〉 → e−iΛ(t)|Ψ(t)〉 , (6.6b)

h(A(t); t) → e−iΛ(t)h(A(t); t)eiΛ(t) , (6.6c)

Upon applying this transformation |Ψ̃(t)〉 and h̃ become

|Ψ̃(t)〉 → e−iΛ(−∞)|Ψ̃(t)〉 , (6.7a)

h̃(t) → e−iΛ(−∞)h̃(t)eiΛ(−∞) , (6.7b)

proofing their gauge-invariance apart from a constant phase Λ(−∞), which is chosen to be zero.

After a cyclic motion the gauge-invariant wave function |Ψ̃(t)〉 acquires a phase α: |Ψ̃(T )〉 =
eiα|Ψ̃(0)〉, where T is the encircling time. An expression for the phase α can be derived by
defining

|φ̃(t)〉 = e−if(t)|Ψ̃(t)〉 , (6.8)

where the function f(t) is chosen in a way that the condition |φ̃(T )〉 = |φ̃(0)〉 is fulfilled.
Therefore, α = f(T )− f(0). Plugging in the ansatz (6.8) into the Schrödinger equation (6.4)
and mulitplying the equation by 〈Ψ̃| leads to an equation for f(t):

df

dt
= 〈φ̃|i∂t|φ̃〉 − 〈φ̃|h̃|φ̃〉 . (6.9)
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6.1 Gauge-invariant Berry phase

Hence, the total phase change α consists of two parts

α = γ −
T∫

0

dt〈φ̃(t)|h̃(t)|φ̃(t)〉 , (6.10)

where

γ =

T∫

0

dt〈φ̃(t)|i∂t|φ̃(t)〉 (6.11)

is the geometric part, which is independent of the Hamiltonian and the parametrization of the
closed curve in the projective Hilbert space.

For the derivation of γ no adiabatic motion had to be assumed, what leads to the fact that
to this stage the geometric phase γ is more general than the Berry phase. In the regarded
case the phase is associated with the motion of the states in the Hilbert space, whereas the
Berry phase requires an adiabatic change of the Hamiltonian. In the following the connection
between these two phases is made by assuming that the motion of the states is generated by
an adiabatic change in the Hamiltonian.

We introduce R = R(t), a set of parameters encoding a cyclic motion, and assume that the
Hamiltonian H(t) ≡ H[R(t)] changes adiabatically along this closed curve in the parameter
space. Since we aim to describe a system with a moving vortex that carries flux, but no charge,
the electric field is considered to be static, while the vector potential keeps its time-dependence
leading to

H(t) = h(−i∇−A(t)) +A0 . (6.12)

The gauge-invariant wave functions are modeled by the ansatz

|Ψ̃(t)〉 = e−iEteiA0tei
R

A(t)dr|ΨE〉 . (6.13)

Under the assumption of adiabaticity of the Hamiltonian, the Schrödinger equation (6.4) re-
duces to the stationary eigenequation


h(−i∇) +A0 +

x∫
dA(t)
dt

dr


 |ΨE〉 = E|ΨE〉 , (6.14)

where we can identify the third term on the left-hand side with the fields induced by the
moving vector potential:

δA0(x) =

x∫
dA(t)
dt

dr =

x∫
dR
dt

dA
dR

dr . (6.15)
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6 Fractional statistics

An adiabatic change in the Hamiltonian will change the (gauge-invariant) states |ΨE〉. As
soon as the Hamiltonian H returns to its initial form, the wave function |ΨE〉 will also do. So,
we can identify |ΨE〉 ≡ |φ̃〉 and write the Berry phase as

γ =
∮
〈ΨE |i

d

dR
|ΨE〉 · dR . (6.16)

In the next section a discretized version of this formula based on a Bargmann invariant is
presented.

6.2 Discrete version

For the calculation of the exchange statistics of a vortex in the EC, a system with two vortices
is considered, where one remains static and the other moves on a path enclosing the first one.
The global wave function acquires a geometric phase γ = 2Γ, where Γ is the statistical angle.

In the discrete version, where the encircling path is approximated by a n-sided polygon, the
expression for the Berry phase, Eq. (6.16), transforms into (Simon and Mukunda, 1993; Rabei
et al., 1999)

γ = − arg (〈Ψ0|Ψ1〉〈Ψ1|Ψ2〉 . . . |Ψn−1〉〈Ψn−1|Ψ0〉) , (6.17)

corresponding to a generalized n-vertex Bargmann invariant. |Ψi〉 is given by the ground state
of the stationary Schrödinger equation (6.14), where h describes a system with the dynamical
vortex sitting at the i-th position of the polygon. A 2π ambiguity in the phase γ can be
excluded by following the evolution of the intermediate phase

γintermediate(i) = − arg (〈Ψ0|Ψ1〉〈Ψ1|Ψ2〉 . . . |Ψi〉〈Ψi|Ψ0〉) , (6.18)

with γintermediate(n− 1) = γ, while |γintermediate(i+ 1)| > |γintermediate(i)|.
Since the vortex is associated with a half flux quantum in the ẑ-direction and its motion is

in-plane (v = dR/dt ⊥ ẑ), the induced field δA0, Eq. (6.15), vanishes: δA0 = v ·A = 0.
The overlaps between many-body wavefunctions contained in Eq. (6.17) are evaluated via

〈Ψ0|Ψ1〉 = det

({
2N∑

r=1

Φ(0)∗
i,r Φ(1)

j,r

})
, (6.19)

where Φ(a)
i,r is the r-th entry of the eigenvector corresponding to the i-th eigenenergy of the

Hamiltonian, describing the system with the dynamic vortex sitting at position (a). Appendix
A gives a detailed explanation of how such a many-body state |Ψa〉 is described by the corre-
sponding eigenvectors and how the formula for the overlap is derived.

The next section presents numerical results for the geometric phase γ as a function of the
axial charge bound to a vortex calculated by exact diagonalization of a finite-size system.
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Figure 6.1: Illustration of the configurations (1) and (2).

6.3 Numerical results

In the numerics the real-space Hamiltonian (3.3) for a finite-size system with 2N lattice sites,
which is given by a 2N × 2N matrix, is treated by exact diagonalization implemented by
the LAPACK routine, compare Sec. 5.1. The system contains two vortices, a static and a
dynamical one. In order to subtract possible background phases, the resulting geometrical
phase for the encircling procedure is the difference between the phases calculated for two
configurations, γ = γ(1) − γ(2) with (1) a static vortex sitting at the center of the finite-size
lattice and a dynamical vortex moving around it on a circle with radius R, whereas for (2)
the dynamical vortex follows the same motion as before, while the static vortex is now at a
position outside the loop at a distance 2R from its initial position. These two configurations
are illustrated in Fig. 6.1. The vortices are put to the desired positions by hand. On a formal
level, the Hamiltonian does not create the vortex movement, which does not influence the
validity of the results.

As discussed in Sec. 5.1, a vortex binds irrationally fractionalized axial charge, whose value
depends on the gate voltage V and the excitonic order parameter m0, compare Fig. 5.2(b). In
order to investigate the dependence of the exchange phase on the axial charge, γ is calculated
for various values of the gate voltage tuning δQv. While for the one-vortex system in Sec. 5.1
the definition of δQv is straightforward, it is less clear for a finite-size system with two vortices,
where the distance R is roughly of the order of the size of the vortex ξ. In the following, we
consider four different approaches defining the axial charge bound to one vortex in such a
situation; the mentioned colors refer to the plot of the numerical results depicted in Fig. 6.2.

The definitions

blue: δQv =
1
2

N∑

r=1

δQ(1)
v (r) , (6.20)

and

green: δQv =
1
2

N∑

r=1

δQ(2)
v (r) , (6.21)

sum up the axial charge in the two-vortex system in configuration (1) and (2) (see Fig. 6.1),
respectively, and address half of it to being bound by one vortex. This approach ignores the
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Figure 6.2: Geometric phase γ acquired by the global wave function after a vortex is encircled by a
second one as a function of axial charge δQv bound to one vortex. The color-coded plots refer to
different definitions of δQv, see Eqs. (6.20) to (6.23). The black line is a guide to the eyes and has a
slope of 2π. The system size (Nx = 39, Ny = 22) corresponds to a size of approximately (35a)2 in real
space. The encircling radius is R = 5

√
3a, the circle is approximated by a n = 30 polygon. The EC

order parameter is m0 = 1. The inset shows the considered values of the gate voltage V tuning the
axial charge.

fact that charge might be bound to either the edge of the finite-size system or in between the
two vortices.

In an attempt to only take into account axial charge that actually contributes to the geo-
metric phase, we define

brown: δQv =
1
2


 ∑

r∈Acenter,1

(
δQ(1)

v (r)− δQ(2)
V (r)

)
+
∑

r∈Adyn

δQ(2)
v (r)


 . (6.22)

The areas Acenter,1 and Adyn are depicted in Fig. 6.3(a). The former one is centered around
the position of the static vortex inside the loop with a radius of R/2. The latter one moves
accordingly to the position of the dynamical vortex, also covering a disk with radius R/2. The
first term in this definition describes the encircled axial charge with a subtraction of a possible
background axial charge. The second term represents the axial charge bound to the moving
vortex.

A slight variation of the last definition is given by

red: δQv =
1
2


 ∑

r∈(Acenter,2\Adyn)

(
δQ(1)

v (r)− δQ(2)
v (r)

)
+
∑

r∈Adyn

δQ
(2)
V (r)


 , (6.23)

where Acenter,2 has a radius R, see the illustration in Fig. 6.3(b).
Please note that the values of δQv plotted in Fig. 6.2 represent the average with respect to

all positions of the dynamical vortex in the n-sided polygon.

44



6.3 Numerical results

!

"center,1

"dyn

HaL

"center,2

"dyn

!

HbL

weg.nb 1

Figure 6.3: Illustration of the areas occurring in the definitions (6.22) and (6.23).

The data points depicted in Fig. 6.2 deviate from the expected behavior γ = 2πδQv in a
systematic way producing s-shaped curves. However, we expect these deviations as well as the
deviations between the plots to be due to finite size effects, which are minimized in the following
limits. If the localization ξ of a vortex tuned by m0, compare Eq. (4.22), is much smaller than
the encircling radius R, no axial charge is bound in between the two vortices. At the same time
we need ξ � a, where a is the lattice spacing. For R much smaller than the real-space size of
the system, axial charge associated with the edges can easily be excluded in the calculation.
Furthermore, the distance between two neighboring vertices in the n-sided polygon should be
comparable to ξ, so that the overlap between the wave functions in Eq. (6.17) is sufficiently
large. However, these requirements cannot fully be implemented by the system sizes we were
able to compute (up to (Nx = 50, Ny = 31) corresponding to (45a)2 in real space).

Figure 6.4 shows the averaged result for the exchange phase Γ as a function of the axial
δQv associated with one vortex. The error bar width is estimated by the difference between
minimal and maximal calculated axial charges for each considered gate voltage phase aver-
aged over all V . These results show good agreement with the expected behavior Γ = πδQv
illustrated by a red line in Fig. 6.4.

The theoretical derivation of a gauge-invariant Berry phase for a cyclic adiabatic evolution of
quantum states accompanied by a numerical evaluation furnished the claim that vortices in
the exciton condensate obey an irrationally fractionalized exchange statistics with an exchange
phase Γ = πδQv. A summary of all essential results and a discussion of possible experimental
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Figure 6.4: Exchange phase Γ as a function of
the averaged axial charge δQv bound to one
vortex using the data shown in Fig. 6.2. The
error bars indicate the averaged ambiguity.
The red line represents the expected behavior
Γ = πδQv.
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6 Fractional statistics

realizations and measurements is presented in the next chapter.
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7 Conclusion

Bilayer graphene separated by an insulating barrier develops an instability towards an exciton
condensate at infinitesimal layer coupling upon applying a symmetrically biased gate voltage.
In the low-energy limit, oddly-quantized vortices in this condensate bind two zero modes, one
per valley index of the bilayer. Their real-space structure shows oscillatory Bessel-function
behavior located in the vicinity of the vortex core. Inter-valley mixing present in the full lattice
model leads to a slight energy splitting of the two zero modes and the vortex is associated
with irrationally fractionalized “axial” charge corresponding to the layer charge difference,
which is an irrational fraction of e, while it is neutral in the total charge channel. Vortices
correspond to (axial charge, axial flux) composite objects with an irrationally fractionalized
exchange statistics depending on the induced axial charge. The bound axial charge and the
associated exchange phase are not protected by symmetry or topology like in the situation
of anyons in the fractional quantum Hall effect, but rather depend continuously on external
parameters like the applied gate voltage or the inter-layer Coulomb interaction.

In contrast to previously studied systems exhibiting zero modes, the system at hand does
not have Dirac points, but rather hole and electron Fermi surfaces in the two layers. These
underlying Fermi surfaces and the inter-layer Coulomb interaction are the two essential in-
gredients for the development of an excitonic instability. In comparison to semiconducting
bilayers hosting an exciton condensate, the linear dispersion substantially influences the low-
energy behavior in such a bilayer graphene system. We therefore do not expect similar physics
for semiconducting coupled quantum wells.

Possible experimental setups and measurements

The bilayer graphene structure with applied voltage is an insulator in the total charge channel
and a superconductor in the axial charge channel. If the layers can be contacted separately,
as it is already possible for semiconductor bilayer structures (Vignale and MacDonald, 1996;
Eisenstein and MacDonald, 2004; Keogh et al., 2005), this property should be observable
experimentally by measuring the counterflowing currents.

The exciton order parameter ∆ couples to the vector potential difference A1−A2 (Balatsky

N
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(a) (b)
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"
2w
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√

m2 + V 2

!"2mFigure 7.1: Bilayer graphene with applied
gate voltage V in an inhomogeneous magnetic
field, which is proposed to create vortices in
the excitonic condensate
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7 Conclusion

et al., 2004), where the indices refer to the two layers. The associated field B1 − B2 is
believed to produce vortices, analogously to Abrikosov vortices in a type-II superconductor,
which are produced by a uniform magnetic field. A possible experimental setup with a strong
perpendicular axial component in the field δB = (B1 −B2)⊥ � (B1 + B2)⊥ is schematically
shown in Fig. 7.1.

The energy splitting ε sets the relevant energy scale in the system: The temperature T as
well as the axial magnetic field δB should be much smaller than ε. This should not lead to any
relevant restriction, since ε is at least one order of magnitude higher than room temperature.
A more severe restriction of T arises from the Kosterlitz-Thouless transition temperature
denoting the onset of the excitonic condensation. Depending on how the Coulomb interaction
is actually screened in such a system, it was estimated to be 10−7εF (of the order of a few
mK) with εF = 0.3 eV in combination with an inter-layer distance d . 0.5 nm (Kharitonov
and Efetov, 2008, 2009), or 0.1εF (of the order of room temperature) with d < 2 nm (Min
et al., 2008; Bistritzer et al., 2008). The applied gate voltage should fulfill V . t/e, where the
hopping parameter in graphene is given by t = 2.8 eV, ensuring that the spectrum can still be
approximately linearized at low temperatures.

The axial charge carried by a vortex might possibly be measured using the Hall effect. In
analogy to type-II superconductors, where the Magnus force leads to a drift of magnetic flux
lines orthogonal to the superconducting current, an axial Hall voltage can be induced in the
considered system, telling how much axial charge is attached to one vortex. The axial current
needed for this setup might be produced by a temperature gradient across the sample or an
in-plane magnetic field.
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A How to calculate an overlap between two
many-body states

For the calculation of the Bargmann invariant, Eq. (6.17), overlaps between several many-body
wave functions have to be taken. In this secion we will first focus on the description of such a
many-body state and then derive a formula for the overlap.

The bilayer system contains 2N lattice sites, has 2N states in the spinless case and is
therefore described by a Hamiltonian H that is represented by a 2N × 2N matrix with the
eigenequation HΦn = εnΦn. It is diagonalized by the transformation T = [Φ1,Φ2, . . . ,Φ2N ].

The ground state containing ν fermions is described by

|Ψ〉 = c̃†1c̃
†
2 . . . c̃

†
ν |vac〉 , (A.1)

and the corresponding antisymmetrized real space wave function reads

Ψ(r1, r2, . . . , rν) =
1√
ν!

det




Φ1,r1 Φ2,r1 . . .
Φ1,r2 Φ2,r2 . . .

...
...

. . .


 =

1√
ν!

det({Φi,rj}) . (A.2)

The particle positions r1, . . . , rν are used as an index here.
The overlap of two many-body states containing ν particles can be calculated as

〈Ψ0|Ψ1〉 =
1
ν!

2N∑

r1,...,rν=1

Ψ∗0(r1, . . . , rν)Ψ1(r1, . . . , rν) (A.3)

=
1
ν!

2N∑

r1,...,rν=1

det({Φ(0)
i,rj
}) det({Φ(1)

i′ ,r′j
}) (A.4)

=
1
ν!

2N∑

r1,...,rν=1

det








ν∑

m=1

Φ(0)∗
i,rm

Φ(1)
j,rm

︸ ︷︷ ︸
=Aij







. (A.5)

For further simplification of the expression the determinant can be explicitly written by sum-
ming over all possible permutations P:

〈Ψ0|Ψ1〉 =
1
ν!

2N∑

r1,...,rν=1

∑

P
εPA1P1A2P2 . . . AνPν (A.6)

=
1
ν!

2N∑

r1,...,rν=1

∑

P
εP

(
ν∑

m1=1

Φ(0)∗
1,rm1

Φ(1)
P1,rm1

)
. . .

(
ν∑

mν=1

Φ(0)∗
ν,rmν

Φ(1)
Pν ,rmν

)
. (A.7)
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The factor εP contains the sign arising from the permutation. The second line is just the
explicit writing of the first one. Only for mi 6= mj the antisymmetrized combination will
not vanish. Since there are ν! possibilities of choosing values for (m1,m1, . . . ,mν) out of
(1, 2, . . . , ν), Eq. (A.7) simplifies to

〈Ψ0|Ψ1〉 =
∑

Π

εΠ

(
2N∑

r1=1

Φ(0)∗
1,r1

Φ(1)
Π1,r1

)
. . .

(
2N∑

rν=1

Φ(0)∗
ν,rνΦ(1)

Πν ,rν

)
(A.8)

= det

({
2N∑

r=1

Φ(0)∗
i,r Φ(1)

j,r

})
. (A.9)
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8 Introduction

Properties in heavy fermion compounds deviate from those of a normal metal and are domi-
nated by the existence of strong correlations. In comparison to a normal metal the values of the
specific heat coefficient and the prefactor of the T 2 contribution in the low-temperature resis-
tivity and susceptibility are significantly enhanced. In the framework of Landau’s Fermi liquid
theory this can be interpreted as originating from strongly renormalized electronic quasiparti-
cles with a 100 to 1000 times heavier mass than an electron. This property was first observed in
1975 in the material CeAl3 (Andres et al., 1975). Strong interactions, which are responsible for
this effect, lead to a large variety of unusual properties and different phases in these materials,
like superconductivity, which was discovered by Steglich et al. (1979) in CeCu2Si2. With this
discovery heavy fermion compounds attracted attention and a series of investigations followed.

On a microscopic level heavy fermion compounds are intermetallic compounds based on
rare earth elements like Ce, or actinides like U. Conduction electrons coexist with localized
electrons from partially filled f -bands.

In the framework of this thesis we are concerned with the influence of a non-local hy-
bridization between conduction and localized electrons and study its consequences for the
band structure and physical observables.

This introductory chapter gives an overview of the physics involved in heavy fermion com-
pounds, which arises from the Kondo effect and magnetic ordering phenomena, and reviews
the experimental situation. The first two sections focus on the theoretical aspects: Section 8.1
explains the single-impurity Kondo effect, Sec. 8.2 introduces its lattice generalization, which
turns out to be the appropriate model for heavy fermion systems. As in most of the literature
we are for now dealing with a local hybridization. More exhaustive overviews of the theory
of heavy fermion compounds are e.g. given by Hewson (1997) or Coleman (2007). Section 8.3
presents the experimental phase diagram. Section 8.4 introduces the heavy-fermion compound
series CeM In5 (M=Rh,Ir,Co) comprised under the name 115-family. These materials show
evidence for a non-local hybridization between localized and conduction electrons, which is
discussed further in Sec. 8.5. An outline in Sec. 8.6 concludes this chapter.

8.1 The Kondo effect: Single-impurity physics

A basic ingredient to the physics of heavy fermion compounds is the Kondo effect, which is
produced by a magnetic impurity in a sea of conduction electrons. An ordinary and well
behaved metal in the low-temperature regime follows the laws of Fermi liquid theory. This
for example means that the specific heat is linear in T , the magnetic susceptibility χ is ap-
proximately temperature-independent, and the resistivity has the shape ρ(T ) = ρ0 + AT 2,
where ρ0 arises from (non-magnetic) impurity scattering and the quadratic contribution is due
to electron-electron scattering processes. In the presence of a magnetic impurity the most
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Review

Resistance minimum and heavy fermions

By Jun Kondo, m.j.a.†)

(Contributed by Jun Kondo, m.j.a.)

Abstract: The phenomenon of the resistance minimum in dilute magnetic alloys is explained
in terms of the s-d interaction which takes account of scattering of the conduction electron off the
magnetic impurities in metals. Some of the intermetallic compounds which involve rare earth
elements or uranium show a very large electronic specific heat and remain non-magnetic even
though they show a Curie-like susceptibility at higher temperatures. These phenomena are also
explained based on the s-d interaction model.

Key words: Resistance minimum; magnetic impuirity; heavy fermion; Kondo effect.

1. Introduction. The electrical resistance
of a metal usually decreases as the temperature is de-
creased. This is because the atomic vibration which
causes the electrical resistance calms down and the
electrons tend to move freely in the metal as the
temperature is decreased (Fig. 1 (a)). Another cause
of the resistance is the impurity atom and the resis-
tance arising from this cause is independent of the
temperature. When these two causes coexist, the re-
sistance looks like Fig. 1 (b). However, when a small
amount of atoms like manganese or iron are put into,
e.g., copper, the resistance first decreases as the tem-
perature is decreased but then tends to increase to-
wards low temperature like liquid helium tempera-
ture (Fig. 1 (c)). The turn-over temperature is typ-
ically 20K and the value of the resistance increases
about 10% by 4 K. In this case the impurity atom
of manganese or iron possesses a spin and is called
magnetic impurity, which behaves like a small mag-
net. This phenomenon (Fig. 1 (c)) is called the resis-
tance minimum, and turned out to occur inevitablly
when noble metals and di-valent metals involve small
amount (less than 1 atomic per cent) of magnetic im-
purities.1) This phenomenon interested many people
and has been discussed by these people from the time
of the first international conference on low tempera-
ture physics. The main concern was the cause of the

This is a translation from the article published in Materia,
vol.44, no.10, page 824–831 (2005).

†) 2–2–29 Kamitakaido, Suginamiku, Tokyo 168–0074,
Japan.

Fig. 1. Temperature dependence of the electrical resistivity
of a metal. a: pure metal, b: metal involving impurities, c:
metal involving magnetic impurities.

resistance minimum but the answer was not easily
obtained. In this article I shall mention a theoretical
explanation of it and touch upon a related subject
of heavy fermion systems.

Before mentioning the main subject I shall men-
tion the difficulties of the problem from theoretical
point of view. The fact in question is that the elec-
trical resistance arising from magnetic impurities in-
creases as the temperature goes down. In general the
cause of the electrical resistance, e.g. atomic vibra-
tion, calms down as the temperature decreases and

Figure 8.1: Schematic plot for the resistivity as a function of temperature in the low-temperature regime
for a clean metal (a), a metal with non-magnetic impurities (b) and a metal in the presence of magnetic
impurities (c). (Figure from Kondo, 2006).

significant change arises in the resistivity, compare Fig. 8.1. A resistivity minimum develops,
which experimentally was already observed in the 1930s in Au (de Haas et al., 1934). The first
theoretical explanation however followed thirty years later by Kondo (1964), who introduced
the (single-impurity) Kondo model

HSIKM =
∑

kσ

εkc
†
kσckσ + JKS · s(r = 0) . (8.1)

c†kσ denotes the creation operator for a conduction electron with momentum k, spin σ and
energy εk. The conduction electron spin density s(r = 0) = 1

2

∑
kk′σσ′ c

†
kσσσσ′ck′σ′ at the im-

purity site is coupled to the impurity spin S via the Kondo coupling JK. The antiferromagnetic
coupling (i.e. JK > 0) leads to interesting physics, which is discussed in the following.

Although this model looks simple and innocent, its solution was a long-standing issue.
Kondo himself calculated up to third order perturbation theory in the Kondo coupling JK.
Within this approach the resistivity has a lnT contribution, which means that it increases while
approaching the zero-temperature limit. Accompanied by a decreasing phonon contribution
this procedure is able to explain a resistivity minimum. However, the logarithmic divergence
at T → 0 is rather unpleasant. An expansion of the perturbational approach by considering
parquet summations of an infinite number of diagrams (Abrikosov, 1965) shifts the divergence
to a finite temperature

TK = De
− 1
N0JK , (8.2)

where D is the bandwidth and N0 the density of states of the conduction band at the Fermi
level. The non-perturbative approach studied by Nagaoka (1965) in terms of a Green’s func-
tions and an equivalent approach by Suhl (1965) using scattering theory are able to produce a
non-singular resistivity at T = TK, but still the physics below the Kondo scale TK cannot be
accessed with these techniques.
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8.1 The Kondo effect: Single-impurity physics

Anderson’s ansatz of poor man’s scaling (Anderson, 1970) was successful in capturing the
correct physics in the weak-coupling regime above TK. By reducing the bandwidth D and
formulating an effective problem, where renormalized parameters carry the effect of the elim-
inated higher-order excitations, he was able to show that the effective Kondo coupling J̃ be-
comes large at TK. This suggests a ground state with a local singlet, but however is not able to
describe the dynamics below TK. For the strong-coupling regime, Nozières (1974) introduced
a spin-dependent scattering picture based on the existence of such a Kondo singlet leading to
a Landau Fermi liquid. The behavior for temperatures T � TK is similar to the physics of a
system with a non-magnetic impurity. Finally, Wilson (1975) gave a full explanation of the
physics of the (one-channel) single impurity Kondo model. He introduced a non-perturbative
scaling approach, the numerical renormalization group.

In 1961, Anderson (1961) suggested a different model, which later on turned out to be con-
nected to the Kondo model in specific parameter limits, the Kondo limit. In the following we
discuss this Anderson model, apply the Schrieffer-Wolff transformation (Schrieffer and Wolff,
1966), which connects the two models and fix the parameters to the Kondo limit.

The single-impurity Anderson model contains conduction electrons and localized electrons
at a single site that are subjected to an on-site Coulomb repulsion U :

HSIAM =
∑

kσ

εkc
†
kσckσ + V

∑

kσ

(
c†kσfσ + f †σckσ

)
+ εf

∑

σ

f †σfσ + Unf↑nf↓ . (8.3)

The conduction electrons ckσ and the localized fσ-electrons are hybridized with V due to their
wavefunction overlap.

The Coulomb repulsion as well as the hybridization lead to strong interactions among the
electrons. For a vanishing hybridization, c- and f -electrons are decoupled and the configu-
ration of f -electrons is simply determined by U and εf . The Hilbert space of the f -level is
spanned by three charge sectors with empty, single and double occupancy. Upon turning on
the hybridization V the f -electrons immerse in the sea of conduction electrons.

In the Kondo limit

εf < 0, εf + U > 0, Γ� |εf |, |εf + U | , (8.4)

where Γ = π|V |2N0 is the effective hybridization and N0 is the conduction electrons density of
states at the Fermi level, the f -level is occupied by one electron. The small, but non-zero V
produces virtual excitations to the empty and the doubly occupied subspaces. The f -level can
be regarded as a local moment with spin 1/2. The Schrieffer-Wolff transformation, developed
with a perturbative treatment of the hybridization, projects out empty and doubly occupied
subspaces.

In the lowest order in V the resulting effective Hamiltonian contains a spin exchange in-
teraction between the spins of the conduction and local electron with the antiferromagnetic
exchange coupling

JK = |V |2
(

1
U + εf

+
1
|εf |

)
> 0 . (8.5)
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Fig. 7. Temperature dependence of the electrical resistivity of CexLa1−xCu6. Resistance minimum is seen for all x > 0 and
a maximum is also seen for x > 0.5.

In this compound Tm is lower than TK for two
reasons. First, the 4f orbital of Ce is singly occupied
and the spin of Ce is 1/2. The spin-spin interaction is
proportional to the square of the spin and so is small.
Second, the 4f orbital is sevenfold degenerate and it
is shown that TK is high for degenerate orbitals. If
two 4f electrons are present, the effect of degeneracy
is weakened and TK will not become high. For this
reason high TK is expected for Ce and Yb. In the
latter case the hole is sevenfold degenerate. In fact
the case of TK higher than Tm is commonly found in
the intermetallic compounds of Ce and Yb.

Another interesting feature of these substances
is the specific heat. As was mentioned in section
5, the specific heat of the magnetic impurity below
TK tends to zero as kBT/TK. If the impurities can
be regarded as isolated even for very high impurity
concentration, then the specific heat should go as
kBT/TK multiplied by the number of the magnetic
impurities. For one mole of the magnetic impurities
this becomes RT/TK (R is the specific gas constant),
which is very large. The molar electronic specific
heat of ordinary metals is of the order of R(kBT/εF),
where εF is the fermi energy of the metal and is usu-
ally about 5 eV or 50000K. On the other hand TK

is several tens degrees Kelvin at most and so RT/TK

is about 1000 times larger than the electronic spe-
cific heat of ordinary metals. Many substances which

show such a large specific heat have been discovered
among Ce compounds. In the case of CeCu6 the coef-
ficient of T of the molar specific heat is 1.5 J/molK2

and very large.
The fermi energy εF of a metal is inversely pro-

portional to the effective mass of the electron in the
metal and if one is going to interprete such a large
specific heat in terms of R(kBT/εF), one can con-
sider that the effective mass of the electron in the
substance is about 1000 times larger than the mass
of the electron. In this sence these substances are
called heavy fermion systems. They are a new sub-
stance and show resistance minimum at high temper-
atures and the atoms like Ce seem to have magntic
moments. But at low temperatures they do not show
any magnetic order and spins of Ce look to have dis-
appeared and they show a very large electronic spe-
cific heat at low temperatures.

7. Conclusion. In this paper we first men-
tioned the theory of the resistance minimum for met-
als involving magnetic impurities. It explained why
the resistivity arising from the magnetic impurity in-
creases as the temperature goes down. In calculating
electrical resistivity quantum mechanically it is nec-
essary to find the matrix element of the transition
for the electron to jump from the initial state to the
final state. If this matrix element depends on the en-
ergy of the electron of the initial state, one obtains a

Figure 8.2: Electrical resistivity as a function of temperature in CexLa1−xCu6 for different doping levels
x. All finite doping concentrations lead to a minimum in the resistivity. For x ≥ 0.73 an additional
maximum evolves. (Figure from Kondo, 2006).

As we have seen, the Anderson model in the Kondo limit has a local moment and an antifer-
romagnetic exchange coupling with the conduction sea, just like the Kondo model.

For a sufficiently dilute concentration of magnetic impurities the ground state of the Kondo
model is determined by Kondo singlets. Higher concentrations are accompanied by magnetic
interactions among the impurities, which drastically change the physical properties. The
theoretical approaches are discussed in the next section.

8.2 The Kondo lattice and the existence of multiple energy scales

In analogy to the single-impurity case, lattice generalizations of both the Anderson and the
Kondo model can be formulated, which are connected via a lattice version of the Schrieffer-
Wolff transformation. Within this section we will introduce these two lattice models. We
present the emerging energy scales in this problem and discuss the ground state physics,
which is controlled by the competition between Kondo screening and magnetic ordering.

The generalization of the single-impurity Anderson model to the lattice case is given by the
Anderson lattice model (ALM):

HALM =
∑

kσ

εkc
†
kσckσ + V

∑

iσ

(
f †iσciσ + h.c.

)
+ εf

∑

iσ

f †iσfiσ + U
∑

i

nf,i↑nf,i↓ . (8.6)

The f -electrons as well as the c-electrons sit on lattice sites. For simplicity we here assume that
these two lattices are identical and the hybridization V is local. No direct magnetic exchange
between the f -electrons exists and the f -band is assumed to be non-dispersive.
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8.2 The Kondo lattice and the existence of multiple energy scales

A large value of U and a negative εf leads to a situation of mainly single f -occupancy per
site, and a description of the f -electrons in terms of localized spin-1/2 moments becomes valid.
After a lattice Schrieffer-Wolff transformation the Anderson lattice model transforms into the
Kondo lattice model, which describes a dense configuration of magnetic “impurities” in a sea
of conduction electrons:

HKLM =
∑

kσ

εkc
†
kσckσ + JK

∑

i

Si · s(ri) . (8.7)

The local spins Si are coupled antiferromagnetically to the spin densities s of the conduction
electron at the “impurity” sites ri. The Kondo coupling JK is defined by Eq. (8.5).

As apparent from Fig. 8.2, the physics of the single-impurity result cannot easily be gen-
eralized to the lattice case: The resistivity results for CexLa1−xCu6 qualitatively change for
different doping levels x. For increasing doping x, non-magnetic La ions are gradually sub-
stituted by magnetic Ce ions. Low x represents the single-impurity case, whereas high x
corresponds to the case of a Kondo lattice. In dense Kondo systems an additional maximum
appears due to the existence of a coherent state at low temperatures. Two energy scales can
be identified: the Kondo temperature TK, a generalization of the single-impurity to the lattice
case, and Tcoh associated with the onset of coherence.

The identification of TK and Tcoh with the minimum and maximum positions in the resistivity
is not exact, but simply describes the qualitative behavior at these temperatures. Both energy
scales can be defined using thermodynamic properties (Burdin, 2008). At TK the crossover
happens between an asymptotically free spin for high temperatures and a spin bound in a
singlet pair. This behavior can be quantified by the entropy per site, which becomes ln 2 in
the presence of a free spin and decreases throughout the crossover regime. Therefore, TK can
be defined as the temperature where the entropy has a value of e.g. 0.8 ∗ ln 2. Experimentally,
TK is accessible via specific heat measurements, which are closely related to the entropy. The
coherence scale Tcoh determines all low-temperature properties of the Kondo lattice system,
which obey Fermi liquid behavior. We therefore can define Tcoh via the specific heat coefficient
γ as Tcoh = 1/γ (with kB = 1) or e.g fix it to Tcoh = 1/χ(0), where χ(0) is the zero-temperature
magnetic susceptibility (Burdin, 2008).

The relation between these two energy scales was widely discussed, starting with Nozières
(1985). On the level of mean-field arguments Burdin et al. (2000) showed that in the weak-
coupling regime the ratio between TK and Tcoh only depends on the filling and the shape of
the conduction band. Pruschke et al. (2000) employed the numerical method of dynamical
mean-field theory (DMFT) (Metzner and Vollhardt, 1989; Georges et al., 1996), which is able
to go beyond the mean-field approximation and takes into account local quantum fluctuations:
For less than half filling (nc = 1) the ratio TK/Tcoh is either constant or depends on nc.
These results clearly contradict Nozières (1985), who suggested the scenario of exhaustion,
i.e., an insufficient screening of localized electrons in the presence of low conduction electron
density, and predicted the relation Tcoh ∼ T 2

K/D. However, it turned out that the arguments
underlying this exhaustion principle are too simplistic (Nozières, 2005) and do not capture the
right physics.

In contrast to the single-impurity scenario the ground state of a dense Kondo system is
strongly influenced by the magnetic interaction between two impurity spins. Although not
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Figure 8.3: Schematic illustration of the Doniach phase diagram for dense Kondo systems in dependence
of temperature T and JKN0, where JK denotes the Kondo coupling and N0 the conduction electron
density. Two regimes can be distinguished - an antiferromagnetic regime for TK � JRKKY and a heavy
fermion regime for TK � JRKKY, seperated by a quantum critical point at JKN0,c. (Figure after
Coleman, 2007).

present as a direct magnetic interaction term, the Kondo lattice Hamiltonian (8.7) contains a
magnetic interaction between the impurity spins mediated by the conduction electrons, termed
RKKY interaction (Ruderman and Kittel, 1950; Kasuya, 1956; Yosida, 1957). In the presence
of an impurity spin the conduction electrons become spin-polarized and Friedel oscillations are
induced in the conduction spin density. The RKKY exchange coupling mainly depends on the
Kondo coupling and the distance dependent spin-spin correlation function χS as

JRKKY ∼ J2
KχS(r) ≈ J2

KN0
cos(2kF r)

kF r
, (8.8)

where kF is the Fermi wave vector and N0 is the conduction electron density of states at the
Fermi level. In order to estimate its order of magnitude the r-dependence in this expression
is neglected: JRKKY ≈ J2

KN0.
By comparing the two energy scales TK and JRKKY, Doniach (1977) suggested a phase

diagram that illustrates the interplay of antiferromagnetic ordering and Kondo screening, see
Fig. 8.3. Depending on the Kondo coupling and the conduction electron density the Kondo and
the magnetic energy scale change and an antiferromagnetic and a Fermi liquid phase evolve
in different parameter regimes. In the original work, the considered system was assumed to
be one-dimensional and insulating. The predicted ground state second-order phase transition
would actually be smeared out by the strong quantum fluctuations, which are present in one
dimension. However, higher dimensional systems in fact show signatures of a quantum phase
transition, see the review by von Löhneysen et al. (2007).
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P (kbar)

T(
K)

Figure 8.4: Experimental pressure-temperature phase diagram for CeIn3 containing a non-Fermi liquid
regime (NFL), an antiferromagnetic (AFM), a superconducting (SC) and a Fermi liquid (FL) phase.
(Figure from Flouquet, 2005)

The theoretical concept of a Kondo lattice is realized in heavy fermion materials. In the
next section we present an experimental phase diagram and discuss the emerging phases.

8.3 Heavy fermion compounds: experiments

The physics of heavy fermion compounds is very rich and cannot be pressed into a single phase
diagram. An overview from an experimentalist’s point of view is, e.g., given by Grewe and
Steglich (1991), more recent ones by Stewart (2001) and Flouquet (2005). In the following we
simply consider the example material CeIn3, which happens to be the “parent compound” of
the 115-family we will discuss in more detail later on. Its pressure-temperature phase diagram,
see Fig. 8.4, illustrates the competition between antiferromagnetic order, Kondo screening
and superconductivity. Apart from the superconducting instability it strongly resembles the
Doniach phase diagram, Fig. 8.3, following from the fact that the application of pressure
directly influences the product of Kondo coupling and density of states, JKN0.

The physical observables in the Fermi liquid (FL) phase follow the laws of Landau’s Fermi
liquid theory and correspond to those of a Fermi liquid with strongly renormalized parameters.
The properties in this phase imply huge effective quasiparticle masses giving the heavy fermion
compounds their name.

In the presented example the magnetically ordered phase is antiferromagnetic (AFM) with
a (π/2, π/2, π/2) ordering wave vector. However, the exact type of magnetic ordering differs
for different compounds; also ferromagnetic instabilities are observed.

The superconductivity emerging in heavy fermion systems can only to certain extent be
described by BCS theory. The original BCS-theory for conventional superconductors describes
phonon-mediated pairing, whereas the pairing in heavy fermion compounds is expected to be
mediated by magnetic fluctuations. The BCS-like pairs are built from heavy quasiparticles,
which feel a strong on-site Coulomb repulsion. The pairing becomes anisotropic, leading to an
additional symmetry breaking on top of the broken U(1) gauge symmetry, which defines the
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class of unconventional superconductors (Sigrist and Ueda, 1991). In heavy fermion materials
there are indications for a superconducting order parameter that exhibits a d-wave symmetry.
For a broad discussion of the interplay between magnetism and superconductivity in heavy
fermion compounds see Thalmeier and Zwicknagl (2005). Under the influence of a magnetic
field the system exhibits vortices, a property that may arise for unconventional as well as for
conventional superconductors.

In CeIn3 as well as in some other Ce- and U-based heavy fermion compounds the supercon-
ducting instability emerges in the vicinity of a quantum critical point terminating an antifer-
romagnetic second order phase transition line. While in CeIn3 AFM and SC do not coexist, a
coexistence of these two phases seems possible for other compounds like e.g. CePd2Si2.

The transition temperatures Tc for this material class are of the order of a few Kelvin and
roughly one order of magnitude lower than in high-temperature superconductors, for which
transition temperatures above 100 K are possible. However, both exhibit anisotropic order
parameters, while their underlying pairing mechanisms are to date not fully understood. Their
similarities make superconductivity in heavy fermion compounds an attractive field of research.

Non-Fermi liquid (NFL) behavior, often found near a magnetically ordered phase is expected
to be closely linked to the underlying magnetic quantum critical point (QCP) (Stewart, 2001,
2006).

The next section is concerned with the CeM In5 series of compounds, which besides interest-
ing features in the superconducting phase are excellent candidates to study quantum criticality.
We will discuss their crystal structure and present their phase diagram.

8.4 The 115-family

The term 115-family denotes the series of compounds CeM In5 with M=Co,Rh,Ir discovered
only a few years ago (Hegger et al., 2000; Petrovic et al., 2001a,b). These materials attracted a
lot of interest due to the evolution of a superconducting phase with a relatively high transition
temperature compared to other heavy fermion compounds: CeCoIn5 has a Tc of 2.4 K. Their
crystal structure is of HoCoGa5 type, depicted in Fig. 8.5(a). It consists of alternating layers
with CeIn3 and M In2 giving rise to a two-dimensional behavior confirmed by explorations
of the Fermi surfaces (Hall et al., 2001; Settai et al., 2001; Shishido et al., 2002) and local
density approximation band structure calculations (Maehira et al., 2003). This isostructural
alloy series exhibit different ground states at ambient pressure. The doping phase diagram,
see Fig. 8.5(b), shows the competition between superconductivity and magnetism as well as
the coexistence of these two phases. In this context the doping level x tunes the chemical
pressure by incorporating larger or smaller ions, while the charge carrier concentration does
not change.

The application of pressure changes the ground state of these materials, e.g. driving the
ambient-pressure antiferromagnet CeRhIn5 to superconductivity . This makes them excellent
candidates for studying quantum phase transitions (von Löhneysen et al., 2007). Similarly to
the parent compound CeIn3 the superconductivity occurs in the vicinity of a quantum critical
point. The ambient pressure superconductor CeCoIn5 is therefore a material close to quantum
criticality.
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8.5 Motivation: Unconventional hybridization

(a) (b)

antiferromagnet, and CeIrIn5 and CeCoIn5 are
superconductors at ambient pressure, studies of
CeRh1!x(Ir,Co)xIn5 allow the interplay between
magnetism and SC to be studied in detail. As Co, Rh,
and Ir are all isovalent, the parameter being tuned is not
effective doping, but rather effective magnetic coupling
or hybridization. For both Ir and Co substitutions, a
comparable and large amount of doping is required to
suppress long-range magnetic order. Further, both Rh–
Ir and Rh–Co alloys show ranges of concentration
ð0:3oxo0:65 and 0:30txt 0:75; respectivelyÞ where
two phase transition are observed by heat capacity
measurements. Additional resistivity and wac measure-
ments allowed us to identify the higher temperature
transition as a magnetic transition and the lower-T
transition as SC, consistent with the systematic evolu-
tion of ground states of the end member compounds (see
Fig. 1).
With respect to their proximity to magnetism, Ce-

based HFS belong to a class in which ordered
magnetism seems to compete with SC and in which
both states have been observed concomitantly only for
small windows of parameter space [6]. The phase
diagram reported here is a counterexample to the above
categorization because significant ranges of coexistence
of these states have been found, and in fact, is more
reminiscent of phase diagrams associated with U-based
HFS [6]. For CeRh1!xIrxIn5 NQR, and neutrons
scattering experiments indicate microscopic coexistence
of magnetism and SC and the absence of gross phase
segregation [7]. Finally, the phase diagram of Fig. 1
presents an interesting asymmetry with respect to the
interaction between magnetism and SC: in the case of
Rh–Ir, Tc increases as the magnetic boundary is
approached, whereas in the Rh–Co case, Tc decreases.
Thus, whether the SC in CeMIn5 requires proximity to
magnetism to exist or is destroyed only by a sufficiently
strong magnetic state remains to be seen.

Turning now to CeCo1!xIrxIn5; two heat capacity
anomalies are observed for 0:30txt0:60: Zero resis-
tivity is achieved at the high-T transition and main-
tained through the low-T transition. Preliminary wac
data reveal the onset of diamagnetism at the upper
transition and no obvious signature at the lower one.
Although powder diffraction patterns and low residual
resistivity suggest otherwise, at this point we cannot rule
out the possibility of sample inhomogeneity (such as a
distribution of doping concentration) as being the origin
of the two transition. The fact the both pure compounds
CeCoIn5 and CeIrIn5 are superconductors might suggest
the presence of two superconducting phase transitions.
Finally, aside from compounds near CeRhIn5; one

can find a quasi-linear increase of Tc as a function of x
for CeRh1!x(Ir,Co)xIn5 (dashed line in Fig. 1). Not
coincidentally, the lattice parameter ratio c=a also
increases in the sequence CeIrIn5-CeRhIn5-CeCoIn5:
Fig. 2 presents Tc versus c=a for Ce(Rh,Ir,Co)In5 for
those compounds in which SC is observed. A linear
dependence that spans more than a factor of five in Tc is
apparent. This surprising positive linear relationship
between Tc and c=a perhaps gives support for recent
calculations for magnetically mediated superconductors
[8]. In these calculations, quasi-2D crystal structures and
nearly commensurate antiferromagnetic correlations are
essential for producing higher Tcs. Thus, the increasing
of c=a in this family of compounds may increase the 2D
character of the relevant spins fluctuations. However,
how relatively small changes in c=a can lead to a rather
dramatic tuning of the ground-state properties of these
materials remains to be clarified (e.g., tuning the f-ligand
hybridization, changing the symmetry of Ce crystal-field
ground state, etc.) A linear fit to data on Fig. 2 yields a
slope DTc=Dc=aE70 K: Optimistically (and naively), a
member of the CeMIn5 family with a c=aE6 would be a
room temperature superconductor.
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Figure 8.5: (a) HoCoGa5 type tetragonal structure realized in CeT In5 (T=Rh,Ir,Co). (Figure from
Maehira et al., 2003). (b) Doping-temperature phase diagram for the 115-series at ambient pressure.
(Figure from Pagliuso et al., 2002).

CeCoIn5 is the most prominent representative of the 115-family. It is a clean type-II super-
conductor with singlet pairing and a d-wave order parameter; its anisotropy is e.g. observed
in thermal conductivity measurements in a rotating magnetic field (Izawa et al., 2001b). The
superconductivity in the presence of an external magnetic field is Pauli-limited, i.e., it is de-
stroyed by parallel spin alignment due to the Zeeman term rather than orbital pair breaking.
For low temperatures and a magnetic field close to Hc2 speculations arose (Bianchi et al.,
2003) about the existence of a FFLO superconducting state (Fulde and Ferrell, 1964; Larkin
and Ovchinnikov, 1965), where Cooper pairs have a finite momentum and the order param-
eter oscillates in space, leading to a spatially inhomogeneous phase. However, more recent
experiments (Kenzelmann et al., 2008) simply suggest coexistence of magnetism and super-
conductivity in this regime.

Optical conductivity measurements in 115-materials show indications for a non-local hy-
bridization between f - and c-electrons. So far for simplicity reasons such a property was not
accounted for in most theoretical calculations. In the next section we will discuss its exper-
imental evidence and compare it to other HF compounds, where the assumption of a local
hybridization is justified.

8.5 Motivation: Unconventional hybridization

In the Anderson lattice model defined by the Hamiltonian (8.6) f - and c-electrons are coupled
via a hybridization V produced by their wavefunction overlap. In the low-temperature Fermi
liquid regime a constant hybridization leads to an indirect gap, whose size is related to the
renormalized hybridization taking into account the effect from the on-site f -electron repulsion.
Optical conductivity measurements in certain HF compounds reveal the existence of such a
gap, e.g. for YbFe4Sb12, compare Fig. 8.6(a) (Degiorgi, 1999; Dordevic et al., 2001; Degiorgi
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error bars. It is also necessary to mention that the method
presented here decreases the error bars when compared with
the one that uses only reflectivity.15

III. DISCUSSION

A. Optical conductivity

The temperature dependence of the optical conductivity
of the Co and Ir compounds at low frequencies follows
closely what has been previously seen in other heavy fer-
mion systems.16,17 Above Tcoh, the optical conductivity at
low frequencies has a Drude-like behavior while below it, a
minimum appears signaling the appearance of a narrower
Drude mode. The origin of this behavior is the development
of the so-called hybridization gap, !, as a result of the hy-
bridization between the conduction electrons and the local-
ized f moments.18 The intraband transitions in the lower
band produce the narrow Drude mode while the interband
transitions between the two resulting bands produce the
bump seen at higher frequencies.18,19 In the Rh compound
these characteristics are less strong but still a decrease in the
optical conductivity can be seen at low frequencies. Since
this compound eventually becomes AF at 3.8 K, this seems
to be the result of the competition between the magnetic
ordering and the coherent state. We will discuss more about
this point below.

When comparing our results for CeCoIn5 with those of a
previous report,20 we notice that both show a minimum in
"1!#" at the same position and a shoulder at 250 cm−1. The

later feature was interpreted as a Holstein band !an absorp-
tion corresponding to the bosons that couple the electrons in
the SC state" inside of the gap which could be attributable to
AF critical fluctuations.11,20 The argument for such assign-
ment is that, in contrast with what has been seen in other
heavy fermion systems,16 there is not a sudden decrease of
the optical conductivity just below the peak due to the tran-
sitions across the hybridization gap. The interband transitions
were related to a strong peak seen at 600 cm−1 which has
less spectral weight in our results. Besides the understand-
able differences between different experimental sets, the ori-
gin of such a large spectral weight could be due to an over-
estimation of the reflectivity in the visible range !which we
measured directly with ellipsometry". To check this supposi-
tion, we have performed KK using our own reflectivity data
and the reflectivity from Ref. 20 above 6000 cm−1. The result
is presented as the gray dotted line in Fig. 3!a". Such a pro-
cedure gives more spectral weight near 600 cm−1. Therefore
the whole structure between #100 and 1000 cm−1 should
correspond to transitions across the hybridization gap. This
assignment is further supported below when we discuss the
properties of $1!#".

B. Dielectric function

The development of the hybridization gap can also be
seen in the real part of the dielectric function at low frequen-
cies !Fig. 4". As the temperature is lowered, $1!#" changes
from purely metallic !monotonically decreasing" to a region
!below #300 cm−1" with a maximum. The insets of Fig. 4
show the detailed temperature dependence of $1!#" at the
frequency where the maxima occur at the lowest tempera-
ture. In those insets it is possible to see the gradual develop-

FIG. 3. !Color online" Real part of the optical conductivity at
several temperatures. The shown error bars correspond to an abso-
lute error of 0.5% in reflectivity !the relative error between different
temperatures is smaller". The lower panel also shows the obtained
"1!#" if the high-frequency reflectivity of Ref. 20 is used in the KK
analysis !gray dotted line".

FIG. 4. !Color online" Real part of the dielectric function in the
infrared. The arrows indicate the zero crossings of $1!#". Insets:
Temperature dependence of $1!#" at selected frequencies.

OPTICAL CONDUCTIVITY OF CeMIn5 !M =Co, Rh, Ir" PHYSICAL REVIEW B 72, 045119 !2005"

045119-3

Figure 8.6: (a) Real part of the optical conductivity for the heavy fermion compound YbFe4Sb12 over
frequency for various temperatures. Below Tcoh ≈ 50K a gap-like feature at approximately 18meV ap-
pears. (Figure from Dordevic et al., 2001). (b) Real part of the optical conductivity for the compounds
of the 115-series as a function of frequency. (Figure from Mena et al., 2005).

et al., 2001). Its size scales with the effective quasiparticle mass, which is closely related to
the coherence temperature (Hancock et al., 2004; Okamura et al., 2007). In contrast, optical
spectroscopy in 115-materials shows a gapless feature (Singley et al., 2002; Mena et al., 2005),
compare Fig. 8.6(b), previously interpreted by a distribution of gap values (Burch et al., 2007).

By regarding the crystal structure of CeM In5, Fig. 8.5(a), the assumption of a non-local
and therefore k-dependent hybridization seems reasonable: f -electrons possibly hybridize with
the c-electrons on adjacent sites. The presence of line nodes in Vk can significantly change
the physics, for example produce the observed gapless feature in the optical conductivity, as
we will show in this work. Such a k-dependence can be seen in the spirit of unconventional
superconductivity, where a Cooper pair carries an internal angular momentum and the pairing
function acquires a k-dependence.

An unconventional, i.e., k-dependent hybridization is accompanied by a strong anisotropy in
momentum space, which will leave some physical properties unchanged while strongly influenc-
ing others. Significant changes are expected in the phase competition with superconductivity
and the character of the favored superconducting phase, since both the Kondo lattice effect
and superconducting pairing compete for the same electrons.

Up to now a momentum-dependent hybridization for heavy fermion system was only con-
sidered a few times starting with Doniach (1987). Ikeda and Miyake (1996) and Moreno and

68



8.6 Outline

Coleman (2000) modeled the physics of a Kondo insulator, describing the properties of CeNiSn
and its isostructural compounds. Ghaemi and Senthil (2007) used a similar ansatz as the one
that will be considered in the following. However, Ghaemi et al. discuss different physical
properties. The results presented in the framework of this thesis are published in (Weber and
Vojta, 2008).

8.6 Outline

In this work we are dealing with a momentum dependent hybridization between localized
f and conduction electrons in the framework of the Anderson and Kondo lattice models.
We consider this ansatz in order to model the behavior of heavy fermion compounds with
a non-local hybridization exhibiting momentum-space nodes. Our special focus lies on the
isostructural alloy series CeM In5 with M=Ir, Rh, Co.

We analyze the low-temperature properties in the Fermi liquid regime in the framework
of a mean-field approximation. Results are shown for the Fermi surface, the band structure,
thermodynamical properties like the specific heat as well as transport properties like optical
conductivity, electrical and thermal transport. We discuss the behavior of the resistivity in
the high-temperature regime, i.e., above TK. Furthermore, we are interested in the influence of
the momentum-dependent hybridization on the phase competition between Kondo screening
and magnetically mediated superconductivity, supplemented by a study of the role of magnetic
ordering in the phase diagram.

This work is organized as follows: Chapter 9 introduces the considered model, subjected
to a mean-field approximation in Chapter 10. Thermodynamics as well as transport prop-
erties in the low-temperature Fermi liquid regime are presented in Chapter 11. Chapter 12
discusses resistivity calculations for the high-temperature regime using perturbation theory in
the Kondo coupling. In Chapter 13 we comment on methods for going beyond the considered
mean-field approximation. Chapter 14 studies the phase competition of the Kondo screening
with superconductivity and magnetic ordering and presents phase diagrams from a mean-field
treatment. A summary of the results in Chapter 15 concludes this part.
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The introductory chapter 8 gave a first glance on the Anderson and the Kondo lattice models,
which are used to describe heavy fermion systems. Both are generalizations of the corre-
sponding single-impurity model dealing with a local magnetic ion in a metallic host and are
connected via the Schrieffer-Wolff transformation. In this chapter we generalize these mod-
els to the case of a non-local hybridization. We compare the presented ansatz with the ones
suggested by Ghaemi and Senthil (2007) and Ghaemi et al. (2008).

In order to preserve the full translational invariance of the underlying lattice, on which
c- and f -electrons live, the hybridization function in real space only depends on the relative
position:

∑

i,j

V (rj − ri)(f
†
iσcjσ + h.c.) . (9.1)

Therefore, in k-space the Anderson lattice model with non-local hybridization is given by

HALM =
∑

kσ

(εk−µ)c†kσckσ+
∑

kσ

Vk(f †kσckσ+h.c.)+
∑

kσ

(εf−µ)f †kσfkσ+U
∑

i

nf,i↑nf,i↓ . (9.2)

As before, c†kσ (f †kσ) creates a conduction (local) electron with momentum k, spin σ and energy
εk (εf ), and nf,iσ = f †iσfiσ denotes the number operator for f electrons at site i. The localized
f -electrons are objected to an on-site Coulomb repulsion. The chemical potential µ has been
introduced to fix the total number of electrons in the system, nf + nc.

The position-dependent V (rj−ri), or rather its Fourier transform, the momentum-dependent
hybrization function Vk, serves as a phenomenological input to the theory, not reflecting mi-
croscopic details in the overlap between conduction and localized electrons. The dependence
on the direction k/k can be expanded in spherical harmonics. In contrast to unconventional
superconductivity there are no symmetry restrictions for the parity of the internal angular
momentum. We can split the hybridization function as Vk = V βk, where βk is chosen to be
normalized as

∑
k |βk|2 = N with N being the total number of sites in the system. As we will

see by proceeding in this chapter, thermodynamics as well as most observable quantities only
depend on

∣∣V 2
k

∣∣.
In the Kondo limit fluctuations in the charge degrees of freedom of the localized electrons are

frozen out, and the infinite value of the Coulomb repulsion ensures that each site is occupied
by exactly one f electron (nf = 1). As in the impurity case, this limit is determined by
Eq. (8.4), now with an effective hybridization Γ = π

∑
k |Vk|2δ(εk − µ). Alternatively, this

limit is imposed by V →∞, U →∞, and εf → −∞, while V 2/εf is kept finite.
The Schrieffer-Wolff transformation (SWT), originally performed in the single impurity case

(Schrieffer and Wolff, 1966), projects out empty and doubly occupied f levels. It leads to the
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KLM (Hewson, 1997)

HKLM =
∑

kσ

ε̄kc
†
kσckσ +

∑

kk′i

2Jkk′e
−i(k′−k)RiSi · sk,k′

︸ ︷︷ ︸
HJ

,
(9.3)

which is equivalent to the ALM in the Kondo limit. The conduction electron spin is expressed
via skk′ =

∑
σσ′ c

†
kσσσσ′ck′σ′/2, which couples to Si corresponding to the spin of the f -electron

sitting at site i. We introduced the shortcut ε̄k = εk − µ.
In the presence of a momentum-dependent hybridization the Kondo coupling becomes

Jkk′ = VkV
∗
k′

(
1

U + εf − µ
+

1
−(εf − µ)

)
= J0βkβ

∗
k′ , (9.4)

with J0 = V 2( 1
U+εf−µ + 1

−(εf−µ)). Other interaction terms produced by the SWT like an
electron-electron scattering term, which can be absorbed in the chemical potential, or a po-
larization of the conduction electrons by the impurity spins leading to an RKKY interaction
are omitted in this discussion. Please note that the RKKY interaction will explicitly be
re-introduced and discussed in Chapter 14. The SWT eliminates the hybridization term in
favor of a spin-spin interaction between the local and the conduction electrons, which finally
produces the Kondo effect.

A momentum-dependent hybridization in the context of heavy fermion metals has also been
considered by Ghaemi and Senthil (2007). They discuss the exchange term

H′J =
∑

〈im〉
JimSi · smm , (9.5)

with smm =
∑

σσ′ c
†
mσσσσ′cmσ′/2. In order to compare their ansatz with ours we rewrite the

Kondo term HJ in real space:

HJ = 2J0

∑

imn

βm−iβ∗n−iSi · smn . (9.6)

The function βm−i is equal to V (rm−ri)/V and denotes the Fourier transform of βk depending
on the distance rm − ri. smn =

∑
σσ′ c

†
mσσσσ′cnσ′/2 is a non-local conduction-electron spin

density.
HJ is based on the underlying Anderson model, which fixes the exchange symmetry con-

tained in the Kondo coupling. As argued by Coleman and Tsvelik (1998), only in the pres-
ence of correlations in the conduction band an Anderson model can lead to a multi-channel
Kondo model because of conduction electron interactions suppressing charge fluctuations. This
means, we are dealing with a single-channel Kondo model. In contrast, H′J describes a multi-
channel Kondo model: The localized spin at site i separately couples to linear combinations
of conduction electron spin densities at the neighboring sites

∑
m=n.n. of i Jimsmm. Each linear

combination represents a screening channel. The number of screening channels is given by the
coordinate number of the lattice. These channels compete with each other. The one leading to
the lowest ground state energy will dominate the low-energy properties of the system (Nozières
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and Blandin, 1980). Depending on the microscopic properties of the system it is possible that
a higher-angular momentum channel like d-wave is favored. Within a slave-boson mean-field
treatment, discussed for our model in the subsequent chapter, each screening channel corre-
sponds to a different saddle point. Therefore the single- and multi-channel models HJ and
HJ ′ become equivalent, if HJ ′ is dominated by only one channel.

Instead of dealing with a phenomenological ansatz, Ghaemi et al. (2008) considered a full
microscopic treatment of a f1 band in a Ce-based heavy fermion metal. Due to the influence
of spin-orbit coupling and crystal field interaction the f1-level splits up (Cox and Zawadowski,
1999). The microscopic model takes into account the low-energy Kramers doublet.

The presence of a non-local wave function overlap between c- and f -electrons is able to produce
a momentum-dependent hybridization, which is taken into account in the considered ALM and
KLM. In the next chapter these models are simplified by a mean-field approximation, which
is able to capture the basic properties in the Fermi liquid phase.
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10 Mean-Field Approximation

The Anderson and the Kondo lattice models, both describing heavy fermion compounds, were
introduced in the previous chapter. For treating the contained interaction terms we apply a
mean-field approximation reducing the problem to a non-interacting two-band Hamiltonian
with renormalized parameters. This description is able to capture the properties in the Fermi
liquid phase.

The mean-field approximation for both models will be discussed separately: For the ALM
slave bosons are introduced, whereas in the KLM the local spins are expressed via a pseudo-
fermion representation and the spin interaction term is decoupled using auxiliary fields. It will
further be shown that the results become equivalent in the Kondo limit.

The development of a mean-field treatment for the Kondo and related models started in
1979 with Lacroix and Cyrot (1979) introducing a Hartree-Fock treatment for the Kondo
lattice model. Read and Newns (1983b) studied the Coqblin-Schrieffer model, a generalization
of the Kondo model with an N -fold spin degeneracy (Coqblin and Schrieffer, 1969). The
impurity spin is represented by fermionic auxiliary particles obeying a number constraint. In
a functional integral formalism the constraint is enforced by a dynamic Bose-like field, which
plays the role of a Lagrange multiplier. By applying a Hubbard-Stratonovich transformation
the Kondo interaction is decoupled in favor of extra Bose fields. In a static approximation those
fields and the Lagrange multiplier are substituted by constants, whose values are determined
by claiming stationarity of the action with respect to these mean-field parameters. In the limit
of large spin degeneracy N the fluctuations around the mean-field solution freeze out and this
approach becomes exact.

With the slave boson method (Coleman, 1984), this approximation scheme was applied to
the degenerate single-impurity Anderson model at infinite U by Read and Newns (1983a).
The infinite Coulomb repulsion prohibits double occupancy of the f -level. This constraint is
implemented by introducing an additional slave boson operator creating an empty f -level. The
total number of f -electrons and slave bosons in the system is therefore always 1. This scheme
can easily be generalized to the U = ∞ Anderson lattice model, e.g. discussed by Millis and
Lee (1987).

The lattice version of the Coqblin-Schrieffer model, the SU(N) KLM, was studied by Read
et al. (1984) showing the stability of the nonmagnetic state in the large-N limit.

An overview about these mean-field methods and other techniques tackling this problem is
given by Hewson (1997).

Please note that the models we are dealing with do not have a large spin degeneracy but
have spin-1/2. However, the mean-field solutions derived in this chapter correspond to N =∞
saddle points of certain SU(N) Anderson and Kondo lattice models.

Now, we will explain how the slave boson method can be adapted to our ALM with non-local
hybridization.
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10 Mean-Field Approximation

10.1 Anderson lattice model

In the limit of infinite Coulomb repulsion U , doubly occupied states are projected out and the
f -level at each site i is either empty or occupied by an up or a down spin electron. Therefore,
the physical f -electrons can be subsituted by an auxiliary fermion f̄iσ and a slave boson ri
(Coleman, 1984), via

fiσ → r†i f̄iσ. (10.1)

In order to project out the unphysical states in the enlarged Hilbert space, the additional
constraint

∑

σ

f̄ †iσf̄iσ + r†i ri = 1 (10.2)

has to be imposed.
Using the substitution (10.1) the bare f -level term in Eq. (9.2) becomes
∑

iσ

εff
†
iσfiσ →

∑

iσ

εf f̄
†
iσri r

†
i f̄iσ =

∑

iσ

εf f̄
†
iσf̄iσ +

∑

iσ

εf f̄
†
iσf̄iσr

†
i ri . (10.3)

The second term on the right-hand side of the equality sign contains the number operator of
the auxiliary fermion and the slave boson at site i, which cannot be finite simultaneously due
to the constraint (10.2). Therefore, this term vanishes.

By taking the static approximation in the corresponding functional integral formalism, the
slave boson condenses (〈ri〉 = r) to a translationally invariant constant in order to preserve the
translational symmetry of the lattice. The hybridization between c- and f̄ -band is therefore
rigid and the mean-field Hamiltonian reads

HALM,MF =
∑

kσ

εkc
†
kσckσ +

∑

kσ

εf f̄
†
kσf̄kσ +

∑

kσ

Vkr(f̄
†
kσckσ + c†kσf̄kσ)

− λ
(∑

kσ

f̄ †kσf̄kσ +N (r2 − 1)

)
− µ

(∑

kσ

c†kσckσ −Nnc
)
.

(10.4)

The occupation number constraint (10.2) was implemented using a Lagrange multiplier λ, in
which the effect of the chemical potential µ on the auxiliary fermions f̄ was absorbed.

The values of the parameters r, λ and µ are determined by the minimum of the free energy
of the system leading to the mean-field equations

∑

kσ

Vk〈f̄ †kσckσ + h.c.〉 = 2Nλr , (10.5a)

∑

kσ

〈f̄ †kσf̄kσ〉 = N (1− r2) , (10.5b)

∑

kσ

〈c†kσckσ〉 = Nnc , (10.5c)

which are solvable in a self-consistent manner. The occurring expectation values can be ex-
pressed by Green functions of the two-band mean-field Hamitonian (10.4), listed in Appendix
B.1.
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10.2 Kondo lattice model

10.2 Kondo lattice model

For a mean-field treatment of the KLM we first introduce Abrikosov pseudo-fermions f̃iσ
(Abrikosov, 1965), with whom the spin Si can be expressed as

Si =
1
2

∑

σσ′
f̃ †iσσσσ′ f̃iσ′ . (10.6)

If we consider the KLM as being produced from the ALM via the Schrieffer-Wolff transforma-
tion, the Abrikosov fermions can be viewed as the equivalents to the local f -electrons in the
original ALM.

The number of pseudo-fermions per site has to be fixed with an additional constraint:
∑

σ

f̃ †iσf̃iσ = 1 . (10.7)

The Kondo term becomes

HJ = −J0

∑

imnσσ′
βm−iβ∗n−if̃

†
iσcnσc

†
mσ′ f̃iσ′ . (10.8)

Bilinear terms arising from this substitution are neglected, since they can be absorbed in a
redefinition of the chemical potential µ and the Lagrange multiplier λ0, which is introduced
to fix the particle number constraint for the f̃ -electrons, Eq. (10.7).

With a Hubbard-Stratonovich transformation in the corresponding path integral this four-
operator term HJ is decoupled by introducing an auxiliary field bi conjugate to

−J0

∑

nσ

β∗n−if̃
†
iσcnσ , (10.9)

reflecting the hybridization between the f̃ -electron at site i and the c-band. At the saddle
point the field bi condenses to the homogeneous value b, leading to a Kondo lattice mean-field
Hamiltonian of the form

HKLM,MF =
∑

kσ

εkc
†
kσckσ + b

∑

kσ

βk

(
c†kσf̃kσ + h.c.

)
+N b2

J0

− λ0

(∑

kσ

f̃ †kσf̃kσ −N
)
− µ

(∑

kσ

c†kσckσ −Nnc
) (10.10)

The Lagrange parameter λ0, as well replaced by a constant in the static and homogeneous
approximation, fixes the constraint (10.7) on average. The self-consistency equations for the
mean-field parameters b, λ0 and µ, obtained by minimizing the free energy, are

∑

kσ

βk〈f̃ †kσckσ + h.c.〉 = −N 2b
J0
, (10.11a)

∑

kσ

〈f̃ †kσf̃kσ〉 = N , (10.11b)

∑

kσ

〈c†kσckσ〉 = Nnc. (10.11c)
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10 Mean-Field Approximation

Both presented mean-field approaches for the ALM and the KLM map the original model
onto an effective non-interacting two-band model with self-consistently determined hybridiza-
tion. As temperature grows, the value of the hybridization field b decreases and vanishes at
the Kondo temperature TK, implicitly defined by

2
J0

=
1
N
∑

k

β2
k

ε̄k
tanh

ε̄k
2TK

. (10.12)

Above TK the two bands correspond to the original, decoupled c- and f -bands.
The mean-field solution breaks a local gauge invariance of the Bose fields (corresponding to

the slave bosons in the ALM and the auxiliary bose field bi in the KLM), which is restored
upon inclusion of fluctuations (Read, 1985). These fluctuations are included by minimally
coupling the f̃ and c particles to a U(1) gauge field, see Chapter 13.

In the Fermi liquid regime the Kondo lattice system exhibits two temperature scales: the
Kondo scale TK, which marks the onset of local Kondo screening, and the coherence temper-
ature Tcoh, below which the electrons scatter coherently and the heavy Fermi liquid evolves.

Because non-local effects are weak, the self-energy of the f -electrons has a negligible k-
dependence (∂Σf/∂k ≈ 0) and the Fermi liquid is local. As pointed out in Sec. 8.2, Tcoh is
the energy scale determining all Fermi liquid properties and can therefore be defined via the
specific heat coefficient γ as

Tcoh =
1
γ
, (10.13)

setting kB = 1. Derived in the framework of a local hybridization, Tcoh can approximately
be estimated with this definition from the T = 0 mean-field solution as (Burdin et al., 2000;
Burdin, 2008)

Tcoh =
b20
D
, (10.14)

where b0 = b(T = 0) and D is the bandwidth of the conduction electron band. The minimal
direct gap between the two effective non-interacting bands is given by 2b0, while the indirect
gap is b20/D. The Lagrange multiplier behaves as λ0 ∼ Tcoh. The low-temperature correction
to all parameters is quadratic in T similar to

b(T )− b0
b0

∼ − T 2

T 2
coh

. (10.15)

Within a mean-field treatment of the KLM, Burdin et al. (Burdin et al., 2000; Burdin,
2001) show that the ratio between the two temperature scales TK and Tcoh only depends on
the density of conduction electrons nc and the band structure. We assume this remains valid
in the presence of a non-local hybridization. In the following the filling nc and the shape of
the conduction band are kept fixed and it will not be differentiated between the two scales TK

and Tcoh.
According to the Luttinger theorem the particle density is related to the volume enclosed by

the Fermi surface, which is fulfilled in the considered model, at least in the Fermi liquid regime.
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10.3 Equivalence of Anderson and Kondo mean-field theories

The large Fermi surface contains conduction electrons as well as localized spins (nc + nf with
nf = 1 in the Kondo limit).

The next section shows the equivalence of the discussed mean-field theories for the ALM
and the KLM in the Kondo limit.

10.3 Equivalence of Anderson and Kondo mean-field theories

The equivalence of both introduced mean-field theories does not come as a surprise. As already
pointed out, the Abrikosov pseudo-fermions are reminiscent of the f -electrons in the framework
of the ALM considering the connection via the Schrieffer-Wolff transformation. The auxiliary
fermions f̄ in the mean-field treatment of the ALM are introduced in order to describe the
local spin degrees of freedom. Furthermore, both models are mapped onto an effective model,
where all the interactions are contained in a renormalized hybridization between c- and f -
band. In this section we prove this conjecture on a formal level by showing that the mean-field
equations become equivalent in the Kondo limit.

The Kondo limit is imposed in the parameter limit U →∞, V →∞ and εf → −∞, while rV
and εf −λ are kept finite. In the limit of infinite U the Kondo coupling becomes J0 = V 2/|εf |.

In this parameter limit the slave boson condensation parameter r vanishes, since the renor-
malized hybridization rV has to stay finite. Therefore, the average occupation of f̄ electrons
per site becomes unity, and f̄ and f̃ electrons are formally equivalent.

The unrenormalized f -level εf goes to −∞, while the normalized level εf − λ stays a finite
fraction of the bandwidth in order to fix the occupation constraint

∑
σ f̄
†
i f̄i = 1. Therefore,

the ratio V 2/|λ| becomes equivalent to J0 = V 2/|εf | in the Kondo limit.
By using this knowledge about the behavior of the parameters, we see that the mean-field

equation (10.5a) transforms as

rV =
1

2N 〈
∑

kσ

V 2βk

λ

(
f̄ †kσckσ + c†kσf̄kσ

)
〉 → − J0

2N 〈
∑

kσ

βk

(
f̃ †kσckσ + c†kσf̃kσ

)
〉 = b (10.16)

into the Kondo mean-field equation (10.11a). Both, rV and b describe the effective hybridiza-
tion in these two models.

The equivalence of the other two mean-field equations, (10.5b,c) and (10.11b,c), can be seen
directly. We have therefore shown the formal correspondence of the two mean-field theories in
the Kondo limit.

In conclusion, the developed approximation scheme on the level of mean-field theory leads to
an effective non-interacting two-band model reflecting the low-temperature properties of the
system in the Fermi liquid regime. The next chapter will study these properties while focusing
on the effects arising from the non-local hybridization.
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10 Mean-Field Approximation
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11 Low-temperature properties of the Fermi
liquid state

In the previous chapter we described a mean-field approximation for the Anderson and Kondo
lattice model. A self-consistent solution of the mean-field equations gives an appropriate
description of the low-temperature Fermi liquid state in the absence of inter-moment exchange
and ordering. In this chapter we study thermodynamical as well as transport properties in
this regime.

Since the focus lies on the 115-family, whose layered structure leads to a quasi two-dimensional
behavior, the calculations are carried out for two-dimensional systems. On a square lattice a
nearest-neighbor hopping of conduction electrons leads to the tight-binding dispersion

εk = −2t (cos kx + cos ky) . (11.1)

If we assume that f - and c-electrons live on the same lattice sites {ri}, the hybridization,
Vk = V βk, can be on-site leading to a s-wave configuration or can be composed as a linear
combination of the overlaps between a f -electron and the c-electrons on neighboring sites. In
the following we will consider

βk =





1 s-wave
cos kx + cos ky extended s-wave
cos kx − cos ky dx2−y2-wave

. (11.2)

Similar hybridization functions have been used by Ghaemi and Senthil (2007).
Band-structure calculations (Maehira et al., 2003) suggest an effective two-dimensional

model for the 115-materials, compare Fig. 11.1, where conduction (In 5p) and localized elec-
trons (Ce 4f) live on two different interpenetrating square lattice. We will also touch upon

Fermi surfaces exhibit two-dimensionality, as has explained
in the previous section. When we consider the tight-binding
model on the two-dimensional lattice, it is enough to take 4f
orbitals of Ce and 5p orbitals of In ions. In this sense, the
model which we will construct is called the f–p model.

3.1 f–p model
As easily deduced from Fig. 6, the f–p model Hamilto-

nian H should be written as

H ¼ Hf þ Hp þ Hfp þ HCEF; ð1Þ

where the first and second term indicate the hopping of f
and p electrons, respectively, while the third term denotes
the f–p hybridization. The fourth term includes the effect of
CEF. In the following we will consider each term. Note that
in each term of H, we simply consider the nearest-neighbor
hoppings of f - and p-electrons through ! bond, since our
purpose here is a construction of a minimal tight-binding
model to discuss magnetism and superconductivity by
further adding Coulomb interactions.

First let us discuss the direct hopping process of f -
electrons. Due to the spin–orbit coupling, the energy levels
in Ce3þ ion are split into j ¼ 5=2 sextet and j ¼ 7=2 octet.
Since the magnitude of this splitting is as large as 0.4 eV, it
is enough to consider only the j ¼ 5=2 sextet to evaluate the
effective hopping of f electrons. The sextet in j ¼ 5=2 are
labelled by " ¼ %5=2;%3=2; . . . ; 5=2, with " the z-compo-
nent of j, but due to the time reversal symmetry, those states
are classified into three pairs characterized by up and down
‘‘pseudo’’ spins.

When we define the second-quantized operator ai" for the
"-state at site i, it is convenient to introduce the new
operators fi#! with pseudospin ! as follows:

fia" ¼ ai%5=2; fia# ¼ ai5=2; ð2Þ

for ‘‘a’’ orbitals,

fib" ¼ ai%1=2; fib# ¼ ai1=2; ð3Þ

for ‘‘b’’ orbitals, and

fic" ¼ ai3=2; fic# ¼ ai%3=2; ð4Þ

for ‘‘c’’ orbitals. For the standard time reversal operator
K ¼ %i!yK, where K denotes the operator to take complex
conjugate, we can easily show the relation

Kfi#! ¼ !fi#%!: ð5Þ

Note that this is the same definition for real spin.
Now we express the hopping term for f electrons as

Hf ¼
X

ia##0!

taf##0f
y
i#!fiþa#0! ; ð6Þ

where taf##0 is the hopping amplitude of f electron between #-
and #0-orbitals in Ce3þ ions connected by the vector a with
a ¼ x ¼ ð&1; 0Þ and a ¼ y ¼ ð0;&1Þ. The hopping ampli-
tude can be expressed as

txf##0 ¼
3

56
ðff!Þ

5 %
ffiffiffiffiffi
10

p ffiffiffi
5

p

%
ffiffiffiffiffi
10

p
2 %

ffiffiffi
2

p

ffiffiffi
5

p
%

ffiffiffi
2

p
1

0

BB@

1

CCA; ð7Þ

and

tyf##0 ¼
3

56
ðff!Þ

5
ffiffiffiffiffi
10

p ffiffiffi
5

p

ffiffiffiffiffi
10

p
2

ffiffiffi
2

p

ffiffiffi
5

p ffiffiffi
2

p
1

0

BB@

1

CCA; ð8Þ

where ðff!Þ is the Slater–Koster integral between f orbitals
through ! bond.20) Details for the derivation of hopping
amplitude will be discussed elsewhere.21)

Next let us consider the p-electron hopping. In this case, it
is not necessary to consider the effect of spin–orbit
interaction at In site. Thus, we can consider the hopping of
p-electrons with real spin and orbitals. Furthermore, pz

orbital does not contribute to the hopping process in the x–y
plane. Thus, it is enough to consider the hopping among
m ¼ &1 orbitals (m denotes the z-component of angular
momentum ‘), since pz orbital is expressed only by the m ¼
0 state among spherical harmonics for ‘ ¼ 1.

Note here that it is necessary to redefine spin and orbital
also for p electrons, which should be consistent with those
for f electrons, since we need to consider the f–p mixing
later. When we define the second-quantized operator cim! for
the m-state with real spin !, we can introduce new operators
pi#! as follows:

pia" ¼ %ci1"; pia# ¼ ci%1#; ð9Þ

for ‘‘a’’ orbitals and

pib" ¼ %ci%1"; pib# ¼ ci1#; ð10Þ

for ‘‘b’’ orbitals. Again we can easily show the relation

Kpi#! ¼ !pi#%!: ð11Þ

Note that this definition of pseudo spin is consistent with that
of f electron.

After some algebraic calculations, we can obtain the p-
electron hopping term as

Hp ¼
X

ia##0!

tap##0p
y
i#!piþa#0! ; ð12Þ

Where tap##0 is the hopping amplitude of p-electron between
#- and #0-orbitals in In ions connected by the vector a, given
as

txp##0 ¼
ðpp!Þ
2

1 %1

%1 1

" #
; ð13Þ

Fig. 6. Two-dimensional lattice composed of Ce and In ions. Open and
hatched circles indicate the position of Ce and In ions, respectively.

J. Phys. Soc. Jpn., Vol. 72, No. 4, April, 2003 T. MAEHIRA et al. 859

Figure 11.1: Lattice configuration for an effec-
tive model for 115-materials: In 5p (conduction
electrons) and Ce 4f (localized electrons) live
on two interpenetrating square lattices. (Figure
from Maehira et al., 2003).
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11 Low-temperature properties of the Fermi liquid state

this more realistic spatial setup and study the hybridization functions that can be constructed
from such a configuration:

βk =

{
2 cos kx2 cos ky2 extended S-wave
2 sin kx

2 sin ky
2 Dxy-wave

. (11.3)

In contrast to superconductivity there are no symmetry restrictions forbidding odd parity
hybridization functions. Most results obtained for even parity hybridizations (corresponding
to an even angular momentum `) like the βk-functions defined in Eqs. (11.2) and (11.3), can be
generalized to systems with odd parity, since most physical observables only depend on |Vk|2
and are only sensitive to the position of nodal lines in the hybridization function. An exception
from this is the case of px or py breaking down the discrete rotational lattice symmetry C4 to
C2 with strong influence on the transport properties. This specific case will be briefly discussed
in the transport section 11.5.

In the remainder of this chapter we discuss the influence of βk on the band structure and
the Fermi surface, Sec. 11.1, calculate thermodynamical properties, Sec. 11.2, with a focus
on the specific heat and the definition of the effective mass. Then, we study the effect of an
external magnetic field that couples to the spin degrees of freedom, Sec. 11.3. We show how
the influence of the non-local hybridization becomes significant for the optical conductivity,
Sec. 11.4. Finally we calculate electrical and thermal transport properties in Sec. 11.5 and check
the validity of the Wiedemann-Franz law. Unless otherwise noted the subsequent calculations
are carried out in the framework of the Kondo model.

11.1 Band structure and Fermi surface

The eigenvalues of Eq. (10.4) determine the band structure

z1,2k =
1
2

(
−λ0 + ε̄k ±

√
(λ0 + ε̄k)2 + 4b2β2

k

)
. (11.4)

The hybridization βk vanishes along so-called “nodal” directions implying a band structure
along this direction that consists of the original c-and f̃ -bands crossing each other, compare
Fig. 11.2(a). In a direction where the hybridization is finite the two bands are hybridized
leading to two repelling quasiparticle bands z1,2k. Therefore a heavy band at the Fermi surface
evolves (Fig. 11.2(b)). The repulsion is at its maximum along the antinodal direction. Please
note that a vanishing hybridization along certain lines does not mean that some local moments
remain unscreened; in fact the Kondo effect is fully developed in this Fermi liquid regime.

For a dx2−y2 hybridization nodal lines lie along the diagonals kx = ±ky, antinodal directions
are given by lines with kx = 0 and ky = 0, respectively. The f̃ -level is assumed to be non-
dispersive, the two bands z1,2k thus do not overlap and below half filling, nc < 1, the upper
band z1k is empty and the Fermi surface is determined by z2k = 0.

The momentum distribution function nk = 〈c†kck〉, also shown in Fig. 11.2 for the corre-
sponding directions, consists of a sharp step along the diagonal, and becomes rounded for
finite hybridization at the “small” Fermi surface, the Fermi surface of the original c-electrons

82



11.2 Thermodynamical properties
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Figure 11.2: Band dispersion of the hybridized bands z1,2k, Eq. (11.4) and the corresponding momentum
distribution function nk for a dx2−y2 hybridization along (a) the momentum space diagonal and (b)
along a direction enclosing an angle φ = 0.195π with the kx axis. Parameters are chosen as J0/t = 2.0
and nc = 0.4.

with vanishing hybridization. The jump height at kF corresponds to the quasiparticle weight
Z, discussed in the next section.

For all plots shown in Figs. 11.3, 11.4, 11.5 and 11.6, a set of mean-field parameters obeying
the mean-field equations (10.11) was determined numerically. Each set of parameters used to
generate these plots leads to an identical value of the specific heat coefficient γ implying iden-
tical coherence scales Tcoh, compare Eq. (10.13). The Fermi surfaces in Fig. 11.3 refer to the
hybridization functions defined in Eq. (11.2). In the case of dx2−y2 hybridization (Fig. 11.3(c)
and (d)) the Fermi momentum kF is small in nodal and large in antinodal direction. Due
to the momentum dependence in βk the function kF (φ) can be multivalued, as depicted in
Fig. 11.3(d). This preferably happens at low band fillings nc. For the extended s-wave hy-
bridization the lower band crosses the Fermi surface twice leading to two Fermi sheets.

Fermi surfaces of Dxy and extended S-wave hybridization defined in Eq. (11.3) are displayed
in Fig. 11.4. Apart from a rotation by 45 degrees the structure of the Dxy and the dx2−y2

Fermi surface are similar.
The next section is concerned with changes in the thermodynamical properties arising from

the strong angular dependence in the band structure.

11.2 Thermodynamical properties

The introduced non-interacting two-band picture with effective parameters containing the
interaction of the original model reflects the low-energy thermodynamic properties of the
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11 Low-temperature properties of the Fermi liquid state
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Figure 11.3: Fermi surfaces for (a) s-wave, (b) extended s-wave, and (c,d) dx2−y2 -wave hybridization.
The band filling is nc = 0.3 in panels (a)–(c), whereas nc = 0.1 in panel (d). The Kondo coupling is
chosen such that the specific heat coefficient and therefore the coherence scale Tcoh are identical in all
four cases: (a) J0/t = 1.0 (λ0/t = −0.025, µ/t = −2.47, b/t = 0.281), (b) J0/t = 0.89 (λ0/t = −0.0067,
µ/t = −2.3, b/t = 0.281), (c) J0/t = 0.97 (λ0/t = −0.0061, µ/t = −2.46, b/t = 0.173), (d) J0/t = 1.957
(λ0/t = −0.0385, µ/t = −3.698, b/t = 0.466).

Figure 11.4: Fermi surfaces using the hy-
bridization functions (11.3) for interpe-
netrating c and f square lattices. (a) Ex-
tended S-wave with J0/t = 0.46 (λ0/t =
−0.001, µ/t = −2.34, b/t = 0.138), (b) Dxy-
wave with J0/t = 1.975 (λ0/t = −0.011,
µ/t = −2.38, b/t = 0.187). In both cases,
nc = 0.3, and the parameters are chosen
such that Tcoh is the same as for the data in
Fig. 11.3. H-p,-pL Hp,-pL
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system. From the free energy of the system

F = − 1
β

∑

k

[
ln
(

1 + e−βz1k
)

+ ln
(

1 + e−βz2k
)]

+Nµnc +N b2

J0
+Nλ0 (11.5)

and invoking expressions (11.4) of z1k and z2k, the specific heat can be calculated as

CV = −T d
2F [T, b, µ, λ0]

dT 2
≈ −T ∂

2F [T, b, µ, λ0]
∂T 2

. (11.6)

In this approximation the temperature-dependence of the mean-field parameters, given by
Eq. (10.15), is neglected, since it only produces corrections in CV of the order T 2, which
become subleading in the low-temperature limit in comparison to the linear T -contribution.
The calculation of these corrections is presented in Appendix C. We find an explicit expression
for the specific heat

CV = β2
∑

k

[
z2

2ke
βz2k

(1 + eβz2k)2 +
z2

1ke
βz1k

(1 + eβz1k)2

]
. (11.7)
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11.2 Thermodynamical properties

This can further be simplified by a Sommerfeld expansion in the low-temperature regime. We
neglect the influence of upper band z1k, which does not cross the Fermi surface, and rewrite

CV = β

∞∫

−∞

dεg(ε)
[
−n′F (ε)

]
, (11.8)

where nF (ε) = 1/(1 + eε) denotes the dimensionless Fermi distribution. The function g is
defined by g(ε) = ε2N(ε) with the density of states

N(ε) =
1
N
∑

k

δ(ε− z2k) . (11.9)

Since at low temperatures the derivative of the Fermi distribution is peaked around the Fermi
level at ε = 0, we Taylor-expand the function g(ε) around this point. The first non-vanishing
contribution arises from the second order term g′′(0) = 2N0 (with N0 = N(0)) leading to

CV = γT , with γ =
2π2

3
N0 . (11.10)

The value of the Sommerfeld coefficient γ as well as the linear T behavior of CV result from
the fact that at low temperatures only fermions in the vicinity of the Fermi surface contribute
to thermodynamics.

In the following an appropriate definition of the effective mass in the presence of a strongly
angular-dependent band structure is developed. We first have a look at the case with isotropic
band structure and generalize the result to the anisotropic case. For an isotropic system the
quasiparticle energy is approximated by εQPk = vF (|k| − kF ), where the Fermi velocity vF ,
the slope of the dispersion at the Fermi level, is related to the effective mass m∗ and the
Fermi momentum kF via vF = kF /m

∗. In d dimensions the density of states is given by
N0 = m∗kd−2

F /Cd, where C2 = 2π and C3 = 2π2.
In an anisotropic system the gradient of the dispersion generally depends on the direction;

the density of states at the Fermi level becomes

N0 =
∫

FS

dd−1k

(2π)d
1∣∣∣∇kε
QP
k

∣∣∣
, (11.11)

suggesting a suitable re-definition of a direction-dependent(!) effective mass

1
m∗(k)

=
1
k

∣∣∣∇kε
QP
k

∣∣∣
FS
. (11.12)

The density of states at the Fermi level can be written as

N0 =
∫

FS

dd−1k

(2π)d
m∗(k)
k

. (11.13)

In the presence of a non-vanishing first derivative of the quasiparticle dispersion around the
Fermi level, all higher derivatives only contribute to subleading corrections in thermodynamics.
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11 Low-temperature properties of the Fermi liquid state
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Figure 11.5: The quasiparticle velocity at the Fermi level, |∇kz2k|, in a logarithmic plot vs. momentum-
space angle φ for (a) s-wave, (b) extended s-wave, and (c,d) dx2−y2-wave hybridization. Parameters
are as in Fig. 11.3(a)-(d). In all four cases, the averaged effective mass m∗ (as derived from the specific
heat) is approximately 125 times the bare electron mass.

It therefore makes sense to define the effective mass via the first, and not the second derivative
as done by Ghaemi and Senthil (2007).

In the considered two-band system the quasiparticle dispersion in the presence of less than
half filling is given by εQPk = z2k. In two dimensions N0 simplifies to

N0 =
m∗

2π
=

1
4π2

∫

FS

dAk
|∇kz2k|

, (11.14)

where dAk denotes the Fermi surface element and m∗ is the effective mass which can actually be
extracted from specific heat measurements and correponds to the effective mass in the isotropic
case with the same Sommerfeld coefficient γ. If the Fermi surface can be parameterized with
k = kF (φ), the occurring integral can be rewritten as an integral over the angle φ:

N0 =
m∗

2π
=

1
4π2

∫
dφ

√
(kF (φ))2 + (k′F (φ))2

|∇kz2k|k=kF (φ)
. (11.15)

Figure 11.5(a)-(d) depicts the quasiparticle velocity |∇kz2k| for the different hybridizations
introduced in Eq. (11.2). The parameters and underlying hybridization functions are the same
as for the Fermi surfaces in Fig. 11.3(a) -(d). Every set of parameters leads to the same
specific heat coefficient. Its corresponding effective mass m∗ is approximately 125 times the
bare electron mass. For the dx2−y2 hybridization the quasiparticle velocity |∇kz2k| is maximal
at the diagonal φ = π/4, the nodal line of the hybridization, while the effective mass m∗(k) is
minimal at these points and approximately equal to the bare electron mass. Away from the
diagonal the velocity rapidly changes. Both s-wave hybridizations lead to a constant or nearly
constant velocity at all positions on the Fermi surface.

The quasiparticle weight Z is defined as the overlap between the c-electron and the low-
energy quasiparticle whose dispersion crosses the Fermi level. In the framework of our two-band
model it is given by (Ghaemi and Senthil, 2007)

Z(k) =
(z1k − ε̄k)2

(z1k − ε̄k)2 + b2β2
k

. (11.16)
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11.3 Influence of a magnetic field
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Figure 11.6: As in Fig. 11.5, but now showing the quasiparticle weight Z in a logarithmic plot vs. angle
φ.

Figure 11.6 shows plots of Z versus the angle φ. The set of parameters and the hybridization
functions correspond to the ones in Figs. 11.3 and 11.5. The dx2−y2 hybridization leads to a
strong angle dependence with a maximum of Z at the nodal line φ = π/4. The quasiparticle
weight for both s-wave hybridizations is constant. For standard s-wave this is due to Vk =
const., for extended s-wave because Vk and εk coincidentally have the same k dependence.

In the next section we discuss the effect of an additional Zeeman term in the Hamiltonian.
We comment on the changes arising for the Fermi surface and the density of states and compare
the thermodynamic effective mass with the cyclotron mass.

11.3 Influence of a magnetic field

A weak external magnetic field coupling to the spin degrees of freedom is expressed by an
additional Zeeman term in the Hamiltonian

HZ = −B
∑

i

(gcsi + gfSi) (11.17)

where si and Si denote the spins at site i carried by c- and f -electron, respectively.
For simplicity the Landé factors gc and gf are set to 1. For a constant hybridization and at

zero temperature effects on the band structure and the effective mass have been discussed by
Beach (2005). The presence of a momentum-dependent hybridization does not change their
qualitative behavior.

The Zeeman term leads to a spin-splitting of the Fermi surface. The distance between spin-
up and spin-down Fermi sheets in momentum space is angle-dependent due to the strongly
anisotropic shape of Vk. The effective masses - and likewise the density of states - become
spin-split and field-dependent. The density of states at the Fermi level can be expressed as
(Beach, 2005)

Nσ(B) = (1 + σB/B0)N0 with σ = ±1 . (11.18)

The characteristic field strength B0 is proportional to the Kondo temperature TK.
Within the discussed mean-field approach the Zeeman term splits the two bands z1,2k into

z1,2k + σB/2. The mean-field parameters acquire a quadratic B dependence via the changes
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11 Low-temperature properties of the Fermi liquid state

in the mean-field equations. This behavior leads to subleading B2 corrections in the density
of states Nσ(B) and the effective masses.

The cyclotron mass, which can be extracted from magneto-oscillation measurements like the
de Haas-van Alphen effect, is defined as

mc =
1

2π
∂A(E)
∂E

(11.19)

where A(E) describes the area in momentum space enclosed by the quasiparticle iso-energy
curve at zero magnetic field perpendicular to the field direction. In general a three-dimensional
system has a cyclotron mass that depends on the direction of the applied field. Due to
the two-dimensionality and despite the momentum-space anisotropies the cyclotron mass for
our discussed system becomes equivalent to the (spin-averaged) effective mass related to the
Sommerfeld coefficient apart from second order corrections in B.

An example for a significant change in physical observables arising from the k-dependence
of the hybridization is discussed in the next section: Nodal lines strongly influence the results
for the optical conductivity.

11.4 Optical conductivity

We calculate the optical conductivity on the mean-field level in the framework of linear response
theory. It will be shown that nodal lines in the hybridization crossing the Fermi surface
significantly reduce the size of the optical gap. While the gap for a s-wave hybridization scales
with

√
TcohD, a dx2−y2-hybridization function implies a scaling with Tcoh.

In most heavy fermion compounds the optical conductivity consists of a zero-frequency
Drude peak and a well-separated infrared peak produced by intraband and interband exci-
tations, respectively (Degiorgi, 1999; Dordevic et al., 2001; Degiorgi et al., 2001), compare
e.g. Fig. 8.6(a), which shows optical conductivity measurements in YbFe4Sb12. The optical
gap exhibits a scaling with the coherence temperature: ∆opt ∼

√
Tcoh (Hancock et al., 2004;

Okamura et al., 2007).
The non-interacting two-band mean-field model with a local hybridization serves as a good

theoretical explanation for this behavior. Within this model the minimal direct gap between
the bands is twice the renormalized hybridization b and therefore ∆opt ∼

√
TcohD (D is

the conduction electron bandwidth), compare Sec. 10.2. Inelastic scattering is not captured
within the mean-field approach, but as the method of dynamical mean-field theory (DMFT)
(explained and discussed in more detail in Chapter 13.1) for the Anderson lattice model with
large U (Grenzebach et al., 2006) shows, the inelastic processes lead to a smeared out gap even
at zero temperature, which is still distinguishable. The DMFT takes full account of dynamic
local correlations and is able to treat elastic as well as inelastic scattering on the same footing.

Although nicely applicable to a group of heavy fermion systems, the two-band model with a
local hybridization cannot describe the optical conductivity observed in CeM In5 (M=Ir,Rh,Co),
compare Fig. 8.6(b). Here, no well-defined gaps develop.

The finite frequency part of the optical conductivity σ can be expressed in linear response
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11.4 Optical conductivity
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Figure 11.7: Theoretical result for the real
part of the optical conductivity σ1(ω > 0)
under the assumption of (a) s-wave (black
line), (b) extended s-wave (blue line) and (c)
dx2−y2 -wave (red line) hybridization. Mean-
field parameters correspond to the ones in
Fig. 11.3 (a)-(c).

via the retarded current-current-correlation function Π(iω) as

σ(ij)(ω) =
i
ω

Π(ij)(ω + iδ) + i
n0

mω
δij , (11.20)

where the second term denotes the diamagnetic contribution with the average density n0 and
mass m of the charge carriers, and

Π(ij)(iω) = −
β∫

0

dτeiωτ 〈Tτ j(i)†(τ)j(j)(0)〉. (11.21)

The electron charge is set to 1 throughout this chapter. Upon neglecting inter-band excitations
the current operator can be expressed as the time derivative of the polarization operator P

j = i [H,P] , (11.22)

where P contains all charge-carrying particles ai with charge qi in the following way

P =
∑

iσ

qiRia
†
iai . (11.23)

On the mean-field level the system consists of non-interacting quasiparticles and in lead-
ing order the current-current correlation function Π(iω) reduces to the bare bubble diagram
containing mean-field propagators and a mean-field current vertex. The approximation has to
account for charge conservation, which is expressed by the corresponding Ward identity.

The physical system with charge-carrying localized f electrons contributing to the Fermi
surface is easier to describe in the framework of the ALM: The auxiliary fermion f̄ carries the
full charge of the physical f electrons while the condensation parameter r ∼ 〈f̄ †c〉 is charge-
conserving. Since ALM and KLM become equivalent in the Kondo limit we choose to work in
the Anderson picture within this section.

According to the formula for the current operator, Eq. (11.22), the mean-field current op-
erator reads

jMF = i [HALM,MF,PMF] , (11.24)
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11 Low-temperature properties of the Fermi liquid state

Figure 11.8: Schematic illustration of
the origin of the optical gap ∆opt for
a dx2−y2-wave hybridization. The left
panel shows the Fermi surface in one
quarter of the Brillouin zone in the pres-
ence of dx2−y2 -wave hybridization. The
right panel depicts a zoom into the re-
gion, where the nodal line crosses the
Fermi surface. The arrow indicates the
distance in k-space leading to the optical
gap. H0,0L Hp,0L

H0,pL Hp,pL
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where the mean-field polarization operator PMF contains the charge-carrying particles ci and
f̄i:

PMF =
∑

iσ

Ri

(
c†iσciσ + f̄ †iσf̄iσ

)
. (11.25)

Details of the calculation are discussed in Appendix D.1. The result becomes

jMF =
∑

kσ

(
∇kεkc

†
kσckσ + r∇kVk (c†kσf̄kσ + f̄ †kσckσ)

)
. (11.26)

For a constant hybridization the second term vanishes and the current is exclusively carried
by the conduction electrons. In this case it becomes irrelevant if the pseudo-fermions f̄ carry
charge or not.

A current operator that is first calculated in the framework of the full Hamiltonian and
undergoes a mean-field approximation afterwards has a different contribution arising from
the f̄ -electrons. The corresponding current vertex cannot be combined with the mean-field
propagators in the bare bubble diagram: Vertex corrections become necessary.

The evaluation of the current-current correlation function contained in Eq. (11.20) for jMF

leads to an isotropic conductivity with the finite-frequency real part

σ1(ω > 0) =
π

ω

∑

k

nF (z2k)
2(z1k − z2k)2

Akδ(ω − (z1k − z2k)), (11.27)

where

Ak = (∇kεk)2 (z2k − ε̃f )(z1k − ε̃f ) + r2 (∇kVk)2 ((z1k − z2k) + 4r2V 2
k

)
+

+ 2r2Vk∇εk∇Vk (z2k + z1k − 2ε̃f )
(11.28)

and ε̃f = εf − λ. Appendix D.2 provides a detailed description of the calculation.
Plots of the finite-frequency part of σ1 for different hybridization types introduced in Eq. (11.2)

are displayed in Fig. 11.7. Every plot has a finite optical gap ∆opt. In the case of s-wave and
extended s-wave these gaps are given by 2b and |λ0 − µ|/

√
b2 + t2, therefore both are propor-

tional to
√
TcohD. For dx2−y2 symmetry the bands z1k and z2k touch at a point on the nodal

line, which in general does not lie on the Fermi surface. For an illustration, see Fig. 11.8. The
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11.5 Thermal and electrical transport

minimal energy distance of the two band at the Fermi level is given by |λ0| ∼ Tcoh. In the
vicinity of the gap σ1(ω) behaves like

√
ω −∆opt, derived in Appendix D.3.

Qualitative results are expected to remain valid even beyond mean-field theory. A momentum-
dependent hybridization with nodal lines crossing the Fermi surface is expected to shift optical
spectral weight from

√
TcohD to Tcoh. In experiments this would correspond to a situation with

no visible gap due to a broadened Drude peak, which is in agreement with data for CeM In5,
compare Fig. 8.6(b).

In the next section thermal and electrical conductivity are studied with a focus on the
possible anisotropic effects arising from a momentum-dependent hybridization.

11.5 Thermal and electrical transport

For the observation of anisotropies in momentum space the low-energy d.c. transport quantities
are good candidates. Measurements of thermal conductivity and magnetothermal resistance
were for example able to reveal the k-dependent structure of the superconducting gap in
unconventional superconductors like the high-temperature superconductors YBCO (Yu et al.,
1995; Aubin et al., 1997), the spin-triplet superconductor Sr2RuO4 (Izawa et al., 2001a), and
also in the 115-compounds CeCoIn5 (Izawa et al., 2001b) and CeIrIn5 (Shakeripour et al.,
2007, 2009).

As theoretically shown by Moreno and Coleman (2000), thermal transport in a three-di-
mensional Kondo insulator becomes anisotropic in the presence of a momentum-dependent
hybridization.

In this section we study the behavior of electrical and thermal transport in the presence of
elastic scattering processes. The calculation is based on the non-interacting two-band mean-
field description in two dimensions with a momentum-dependent hybridization. We investigate
possible direction-dependencies and check the validity of the Wiedemann-Franz law.

The electrical conductivity is defined by σ(ij)(ω = 0), which is given by taking the zero-
frequency limit of Eq. (11.20). In a non-interacting system like the one we studied up to
now the lack of scattering processes renders the electrical conductivity infinite. Therefore,
we include elastic impurity scattering, which would only have subleading influence on the
previously studied optical conductivity.

The quasiparticles in the z1,2k-band, described by the operators γ1,2k, scatter elastically on
impurities with a scattering rate Γ(ω). Their Green functions change into

G1,2(k, z) =
1

z − z1,2k − Σ1,2(z)
, (11.29)

where Σ1,2(z) is the self-energy of the quasiparticles due to these scattering processes. In
relaxation time approximation the real part of the electrical conductivity becomes

Re(σ(ij)(ω = 0)) = −
∑

kσ

n′F (z2k)
Γ(z2k)

ξ
(ij)
22 (k). (11.30)
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11 Low-temperature properties of the Fermi liquid state

The quasiparticle scattering particle rate Γ(ε) is equal to −ImΣ2(ε) and the coefficient ξ(ij)
22 (k)

is defined by

ξ
(ij)
22 (k) = 4u2

kv
2
kr

2∇V (i)
k ∇V

(j)
k + v4

k∇ε
(i)
k ∇ε

(j)
k + 2ukv

3
kr
(
∇V (i)

k ∇ε
(j)
k +∇ε(i)k ∇V

(j)
k

)

= ∇z(i)
2k∇z

(j)
2k .

(11.31)

The complete derivation is discussed in Appendix E.

Thermal transport is calculated in full analogy to electrical conductivity. Following the argu-
mentation of Moreno and Coleman (1996, 2000) the thermal current operator can be obtained
by using Noether’s theorem relating the continuity of energy flow to the covariance of the
action under coordinate transformations. In analogy to their calculation the thermal current
operator is given by

jT =
∑

kσ

(
z1k(∇kz1k)γ†1kγ1k + z2k(∇kz2k)γ†2kγ2k

)
, (11.32)

reflecting the existence of two bands in the system.
The thermal conductivity tensor κ(ij) can be expressed by the Kubo formula (Mahan, 1990)

κ(ij) =
1
T 2

lim
ω→0

Z(ij)(iωn → ω + iδ) , (11.33)

using

Z(ij)(iωn) =
i

iωn

β∫

0

dτeiωτ 〈Tτ j(i)†
T (τ)j(j)

T (0)〉. (11.34)

Apart from k-dependent prefactors the correlation function Z(ij) and the current-current cor-
relation function Π(ij) are similar in their structure.

In relaxation-time approximation and by neglecting the influence of the upper band z1k the
low-temperature thermal conductivity reads

Re(κ(ij)) = − 1
T 2

∑

kσ

z2
2k(∇kz

(i)
2k)(∇kz

(j)
2k )

n′F (z2k)
Γ(z2k)

. (11.35)

In three-dimensional systems the thermal conductivity can acquire a strong angle depen-
dence produced e.g. by line nodes. Moreno and Coleman (2000) discussed this issue for gap-
anisotropic Kondo insulators. For 2D-systems a dx2−y2-hybridization as well as hybridizations
for higher angular momentum ` lead to anisotropic hybridization functions βk that change their
sign upon rotation. However, the conductivity tensor does not have enough degrees of freedom
in order to reflect this kind of anisotropy. Technically speaking only the absolute value of βk

enters the calculation. Therefore, higher order correlation functions, like e.g. angle-dependent
magnetoresistance, would be needed to detect the anisotropy.
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11.5 Thermal and electrical transport

Only a px- or py-wave (` = 1) hybridization which explicitly breaks down the C4 rotational
symmetry of the lattice to C2 has an anisotropic conductivity tensor. A lattice configuration
favoring such a p-wave hybridization has to be distorted, which would be detectable in the
entire band structure.

The Wiedemann-Franz law expresses the universal relation between electrical and thermal
conductivity and is given by

κ

σT
= L, (11.36)

where the Lorentz number L is a constant. The derivation of this relation in the context of
isotropic Fermi liquid theory is discussed in Appendix F. For an anisotropic Fermi liquid the
ratio becomes

κii
σiiT

=

∑
k z

2
2k

(
∇kz

(i)
2k

)2 n′F (z2k)

Γ(z2k)

T 2
∑

k

(
∇kz

(i)
2k

)2 n′F (z2k)

Γ(z2k)

. (11.37)

Like the conductivities themselves this ratio is direction-independent. Due to the k-dependent
Fermi velocity the k summations cannot be transformed into energy integrals. However, the
substitution z̃2k = z2k/(kBT ) shows the temperature-independence of this ratio, analogously
to the isotropic case.

Since the considered approach only takes into account elastic scattering processes, it does
not capture the anisotropic violation of the Wiedemann-Fanz law observed in CeCoIn5 at its
field-induced quantum critical point (Tanatar et al., 2007), which has been shown to arise from
inelastic spin scattering processes (Smith and McKenzie, 2008).

In the next chapter we access the temperature-dependent resistivity at temperatures above
TK with a perturbational approach in the Kondo coupling.
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12 Temperature-dependent resistivity

Within this chapter we study the effect of an unconventional hybridization on the resistivity
at elevated temperatures (T > TK) in the presence of nodal hybridization lines crossing the
Fermi surface.

The temperature dependence of the resistivity ρ(T ) in heavy-fermion systems exhibits spe-
cific features depicted in Fig. 12.1, which shows measurements for CeAl3. The peak position
marks the coherence temperature Tcoh, below which the resistivity drops due to coherent mag-
netic scattering. In this regime the material obeys Fermi liquid behavior (ρ(T ) = ρ0 + AT 2).
For temperatures higher than Tcoh the magnetic scattering decreases and phonon scattering
sets in. A minimum evolves (not shown in Fig. 12.1) determining the Kondo temperature TK.

In the following we set up a perturbational approach in the Kondo coupling in order to
access the behavior of ρ due to magnetic scattering for T > TK. This calculation is in the
spirit of Kondo’s original perturbational approach for the single-impurity problem (Kondo,
1964). The influence of phonon scattering will be neglected here.

In d spatial dimensions the electrical conductivity can be written as

σij ∼
∫

FS

dd−1k

(2π)d
vi(k)vj(k)τk , (12.1)

where vi(k) = dεk/dki is the quasiparticle velocity and τ−1
k is the transport scattering rate.

We neglect vertex corrections and assume that Umklapp processes lead to a similar structure

Figure 12.1: Resistivity ρ as a function of tem-
perature T measured in the heavy fermion
compound CeAl3. The position of the max-
imum marks the temperature scale Tcoh - at
lower temperatures the particles scatter co-
herently. The inset shows the resistivity in the
low-temperature regime plotted as a function
of T 2 emphasizing the Fermi liquid behavior
at low temperatures. (Figure from Degiorgi,
1999).
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12 Temperature-dependent resistivity

in the scattering rate as processes for which the momentum is conserved. This can be seen
in analogy to an ordinary metal, whose resistivity behavior is correctly reproduced by Fermi
liquid theory, because both kind of processes lead to a T 2 behavior. Henceforth, τ−1

k can be
approximated by the single particle scattering rate given by

τ−1
k = −ImΣc(k, εk) , (12.2)

where Σc is the self-energy of the conduction electrons.
In Sec. 12.1 we calculate the first orders of the perturbation series for the self-energy, which

lead to an expression for the scattering rate. A discussion of the results follows in Sec. 12.2.

12.1 Perturbation series for the self-energy

In this section we develop a diagrammatic expansion for the KLM, valid for the temperature
regime T > TK, where the Kondo coupling term can be treated as a perturbation. We consider
the Kondo lattice Hamiltonian (9.3) and express the spins by Abrikosov pseudo-fermions f̃
(Abrikosov, 1965):

HKLM =
∑

kσ

εkc
†
kσckσ+

+ 2J0

∑

kk′pp′
βkβk′δk−k′+p−p′,0

(∑

αα′
f̃ †pα

σαα′

2
f̃p′α′

)
·
(∑

σσ′
c†kσ

σσσ′

2
ck′σ′

)
.

(12.3)

The number of pseudo-fermions per site is subjected to a constraint

Qi =
∑

σ

f̃ †iσf̃iσ ≡ 1 . (12.4)

In order to set up a perturbation theory it is desirable to fix this constraint in the style of
Coleman (1984). He considered a single-impurity Hamiltonian with slave particles that have
to fulfill only one constraint, Q0 = 1, and was able to show that a diagrammatic expansion
can be developed in the grand-canonical (GC) ensemble, whose result is connected to the
result in the physical subspace obeying Q0 = 1. A term λQ0 is added to the Hamiltonian,
where λ acts like a chemical potential. In contrast to the stationary approach discussed in
Chapter 10, λ is not fixed to its saddle-point value, but stays finite and undetermined in
the diagrammatic calculation, and is sent to infinity afterwards for projecting out unphysical
states. A detailed explanation of this formalism is given in Appendix G. For operators O with
vanishing expectation value in the {Q0 = 0} subspace, the expectation value in the canonical
ensemble with Q0 = 1, i.e., in the physical subspace, can be obtained via

〈O〉C = lim
λ→∞

〈O〉GC
〈Q0〉GC

= lim
λ→∞

eβλ 〈O〉GC . (12.5)

Unfortunately, such an approach is only exact for the case of a single-impurity problem. If
we e.g. try to fix the lattice constraint on average and apply the same kind of formalism as
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Figure 12.2: Diagrammatic expansion for the self-energy Σc in first (a), second (b) and third order (c).
Dashed lines denote the pseudo-fermion propagators f̃ , while solid lines represent propagators of the
conduction electrons c. Vertices are proportional to the Kondo coupling J0.

for the impurity case, problems occur, since
∑

iQi/N (N being the number of lattice sites in
the system) is not restricted to integer values.

However, as the following diagrammatic expansion will show, at least up to third order,
only single-impurity scattering processes are present. We therefore expect the approach by
Coleman to be valid for our lattice model to good approximation. We consider the Hamiltonian
HKLM + λ

∑
iQi. In analogy to relation (12.5), the physical self-energy Σc(k, z) is obtained

from the grand-canonical self-energy Σc(k, z, λ) by

Σc(k, z) = lim
λ→∞

eβλΣc(k, z, λ). (12.6)

The bare Green functions for f̃ and c electrons are

G(0)ef (ikn,k) =
1

ikn − λ
and G(0)

c (ikn,k) =
1

ikn − εk
. (12.7)

The vertex arising from the Kondo term connects four propagators: an ingoing and outgoing
c- and f̃ -electron. The vertex has the value J0

2 βkβk′σσσ′σαα′ . The lowest order diagrams
contributing to the self-energy Σc are depicted in Fig. 12.2. In first order the diagram consists
of the Hartree contribution, which vanishes in the considered paramagnetic phase. The second
and third order diagram can be identified as contributions without multiple impurity scattering
processes, which serves as a justification for the above claim regarding the applicability of
Coleman’s approach.

Calculating the values for the second order terms leads to

Σ(2)
c (k, ikn, λ) =

(
J0

2β

)2 ∑

k′,ik′n

∑

p,ipn

β2
kβ

2
k′


∑

σ,σ′
σσσ′

∑

α,α′
σαα′




2

G(0)
c (k′, ik′n)·

· G(0)ef (p, ipn)G(0)ef (k + p− k′, ikn + ipn − ik′n)

=
3
2
J2

0

∑

k′
β2
kβ

2
k′ (nF (εk′)− nF (−λ))

1
β

∑

ipn

1
(ipn − λ)(ipn + ikn − εk′ − λ)

=
3
2
J2

0

∑

k′
β2
kβ

2
k′ (nF (εk′)− nF (−λ)) (nF (λ)− nF (εk′ + λ))

1
ikn − εk′

.
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(12.8)

The third order contribution is

Σ(3)
c (k, ikn, λ) =

3
2
J3

0

1
β3

∑

k′,ik′n

∑

k′′,ik′′n

∑

ipn

β2
kβ

2
k′β

2
k′′ ·

· 1
(ik′n − εk′)(ik′′n − εk′′)(ikn + ipn − ik′n − λ)(ikn + ipn − ik′′n − λ)(ipn − λ)

=
3
2
J3

0

∑

k′,k′′
β2
kβ

2
k′β

2
k′′ (nF (εk′)− nF (−λ)) (nF (εk′′)− nF (−λ)) ·

·
(

nF (λ)
(ikn − εk′)(ikn − εk′′)

− nB(λ+ εk′)
(ikn − εk′)(εk′ − εk′′)

+
nF (λ+ εk′′)

(ikn − εk′′)(εk′ − εk′′)

)
.

(12.9)

The occurring Matsubara summations are evaluated using residue theorem.
For obtaining the scattering rate we are interested in the imaginary part of the physical

self-energy at an energy ω = εk:

ImΣc(k, εk) = lim
λ→∞

eβλ (ImΣc(k, ikn → ω + iη, λ)|ω=εk

)
. (12.10)

The second order contribution

ImΣ(2)
c (k, εk) =

3
2
πJ2

0β
2
k

∑

k′
β2
k′δ(εk − εk′) ∼ β2

k, (12.11)

is temperature-independent and its k space structure is proportional to β2
k. The third order

contribution

ImΣ(3)
c (k, εk) = 3πJ3

0β
2
k

∑

k′k′′
β2
k′β

2
k′′

1
εk′ − εk′′

(nF (εk′′)− 1) δ(εk − εk′) ∝ β2
k (12.12)

has the same k-dependence arising from the two external lines, while other from factors are av-
eraged out by the internal momentum summations. Its temperature dependence is determined
by the prefactor
∑

k′k′′

β2
k′β

2
k′′

εk′ − εk′′
(nF (εk′′)− 1) δ(εk−εk′) =

∑

k′′

β2
k′′

εk − εk′′
(nF (εk′′)− 1)

∑

k′
β2
k′δ(εk−εk′) . (12.13)

The momentum summation over k′′ can be rewritten as an energy integral:

∑

k′′

β2
k′′

εk − εk′′
(nF (εk′′)− 1) =

∫
dΩβ2(Ω)

D∫

−D

dε′′ρ0(ε′′)
1− nF (ε′′)
ε′′ − εk

≈
∫
dΩβ2(Ω)




T∫

−T

dε′′ρ0(ε′′)
1/2 + ε′′/(2T )

ε′′ − εk
︸ ︷︷ ︸

non-divergent

+

D∫

T

dε′′
ρ0(ε′′)
ε′′ − εk

︸ ︷︷ ︸
∼ln D

T



.
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(12.14)

Therefore, the third order diagram has a logarithmic divergence. These results lead to a
scattering rate

τ−1
k ∼ J2

0β
2
k

(
1 +

J0

D
ln
D

T

)
. (12.15)

The implications of such a scattering rate are discussed in the next section.

12.2 Discussion

The above calculation was accomplished in the framework of perturbation theory in the Kondo
coupling describing the physics in an elevated temperature regime T > TK and neglecting
phonon scattering. The perturbational approach for calculating the resistivity was, histori-
cally, the method followed by Kondo in his first paper introducing the single-impurity Kondo
model (Kondo, 1964). Apart from k-dependent prefactors we recover the analog result for
the scattering rate τ−1

k as in the original calculation with a logarithmic divergence in τ−1
k at

T = 0.
However, for a hybridization with nodes crossing the Fermi surface these prefactors drasti-

cally change the resulting resistivity: In the vicinity of a node at kn the scattering rate diverges
as τk ∼ (k−kn)−2 implying a vanishing electrical resistivity ρ = 1/σ (where σ is determined by
Eq. (12.1))! This means that Kondo scattering itself is not able to produce a finite resistivity.
Physically speaking the conduction electrons with momenta where the hybridization vanishes
do not scatter off the local spins at all; this process shortcircuits all others.

In a physical system additional scattering mechanisms occur, like electron-electron scatter-
ing, interaction between electrons and phonons or scattering between conduction electrons and
static impurities. These processes are likely to render the resistivity finite and influence the
temperature-dependence ρ(T ) in a basic manner.

In conclusion we find that the electrical current for T > TK is mostly carried by nodal
quasiparticles, i.e. weakly hybridized c and f electrons, whereas the low temperature thermo-
dynamics is controlled by the behavior of antinodal, i.e., heavy quasiparticles.
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13 Beyond static mean-field theory

The mean-field approximation developed in Chapter 10 provides an appropriate description of
the Fermi liquid phase in the regime T � TK. Its great advantage lies in its easy applicability to
the lattice problems and it allows an analytic treatment of most of the calculations. However,
this method has its limitations arising from the lack of fluctuations.

In this chapter we explain how two approaches going beyond the static mean-field level can
be adapted to our model. We discuss the method of dynamical mean-field theory (Sec. 13.1)
and how a non-local hybridization is treated within this approach. We furthermore take a look
on what happens upon including gauge fluctuations on top of the static mean-field approach
(Sec. 13.2).

13.1 Static vs. dynamical mean-field theory: DMFT

The dynamical mean-field theory (DMFT) (Metzner and Vollhardt, 1989; Georges et al., 1996)
is able to go beyond the level of the static mean-field approach by taking into account local
quantum fluctuations. DMFT maps lattice models onto impurity models - the problem reduces
to the degrees of freedom of a single site coupled to an external dynamical, self-consistent
bath. This bath, which can be viewed as a generalized Weiss field, is expressed by an effective
Green function G0 containing the influence of all other sites. The dynamics is carried by this
Green function taking care of local quantum fluctuation. The mapping between lattice and
single-site problem is accomplished by a self-consistency condition, equating the local lattice
Green function with the impurity Green function. The single-site problem can be solved by
different methods. Popular impurity solvers are e.g. a perturbative expansion, the numerical
renormalization group (NRG) (Bulla, 1999), or Quantum Monte Carlo (QMC) (Georges et al.,
1996) with its recently developed continuous time version (Rubtsov et al., 2005). DMFT
becomes exact in the limit of infinite spatial dimensions.

Within DMFT the Anderson lattice model is reduced to an effective single-impurity Ander-
son problem (Jarrell, 1995; Tahvildar-Zadeh et al., 1997; Pruschke et al., 2000; Grenzebach
et al., 2006). DMFT results confirm the heavy-fermion character in the thermodynamic prop-
erties arising from the ALM. It exhibits a band structure that is in agreement with the static
mean-field result: a heavy coherent band crossing the Fermi level and a well-seperated second
band at higher energies. Grenzebach et al. (2006) studied the transport properties in the para-
magnetic phase. The gap in the optical conductivity in the presence of a local hybridization
is smeared out due to quantum fluctuations, but is still distinguishable.

An ALM with a momentum-dependent hybridization has not yet been considered in a nu-
merical implementation of the DMFT. In the following we will (i) present the DMFT self-
consistency equation for a non-local hybridization and (ii) discuss the slave boson method as
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13 Beyond static mean-field theory

an impurity solver for this problem. It will be shown that the results are equivalent to the
ones obtained from the slave boson treatment of the lattice model.

Starting with the full ALM, Eq. (9.2), and integrating out the c-electrons, the DMFT reduces
the original problem to one for a single f -level coupled to a bath with the effective action

Seff = −
β∫

0

dτdτ ′
∑

σ

f †σ(τ)G−1
0 (τ − τ ′)fσ(τ ′) + U

β∫

0

dτnf↑(τ)nf↓(τ) . (13.1)

The bath is represented by the Green function G0 containing all interactions that couple to
the f -electron. With the ansatz

G−1
0 (iωn) = iωn − εf − ∆̃(iωn) , (13.2)

we introduce the effective hybridization function ∆̃(z). The full f -electron Green function

Gf (z) =
(
G−1

0 (z)− Σf (z)
)−1

, (13.3)

contains the self energy Σf resulting from the Coulomb interaction U .
The self-consistency equation for the ALM with a momentum-dependent hybridization term

mapped on a single impurity Anderson model (SIAM) reads

GALM,loc(z) =
∑

k

1

z − εf − Σf (z)− V 2
k

z−ε̄k

=
1

z − εf − ∆̃(z)− Σf (z)
= GSIAM(z).

(13.4)

The effective hybridization function ∆̃(z) is determined by the second equality sign in this
self-consistency equation.

By construction, the self energy Σf (z) and the effective hybridization ∆̃(z) are momentum-
independent within the DMFT approach. This can be cured by a cluster extension of DMFT
(for a review see Maier et al., 2005).

Thermodynamical and one-particle properties are easily extractable from DMFT calcula-
tions. Please note that in principle the calculation of transport properties requires a DMFT
ansatz with c-electrons not being integrated out. However, as apparent from static mean-field
results (Sec. 11.5), the presence of a non-local hybridization leads to transport that explicitly
depends on the momentum-space structure of Vk, which cannot be captured in the standard
DMFT approach.

By using the slave boson method as an impurity solver for the SIAM, the DMFT method
becomes equivalent to the slave boson treatment of the ALM. This can be confirmed by an
explicit calculation. The Coulomb term in the effective action (13.1) is decoupled by slave
bosons (where the physical f -electrons are represented by f̄ -particles and slave bosons r),
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which in combination with the ansatz for the Weiss field G0, Eq. (13.2), leads to

SMF
eff =

∫
dτ
∑

σ

f̄ †σ(τ)(∂τ + εf − λ)f̄σ(τ)+

+
∫
dτdτ ′

∑

σ

f̄ †σ(τ)r2∆̃(τ − τ ′)f̄σ(τ ′)− λ
∫
dτ(r2 − 1)

(13.5)

We think of introducing these slave bosons as operators in the corresponding Hamiltonian and
not as bosonic fields on the level of the path-integral formalism, implying a differing factor of
r2 in the first term of SMF

eff , see the discussion in Sec. 10.1.
The saddle point equations are

λ =
1
β

∑

iωn

Gf̄ (iωn)∆̃(iωn), (13.6a)

r2 = 1− 2
β

∑

iωn

Gf̄ (iωn). (13.6b)

The effective mean-field action SMF
eff allows to extract an expression for the full f -electron

Green function Gf (z) = r2Gf̄ (z) :

Gf (z) =
r2

z − (εf − λ)− r2∆̃(z)
. (13.7)

The high-frequency behavior of this Green function is not given by 1/z, which is due to
the violation of the sum rule for the spectral weight arising from mapping out the Hubbard
satellites in the slave boson approach.

By comparison with Eq. (13.3) we can write down the interaction self energy as

Σf (z) =
(

1− 1
r2

)
(z − εf )− λ

r2
. (13.8)

In combination with the self-consistency condition (13.4), the hybridization function is deter-
mined as

∆̃(z) =
1
r2


z − (εf − λ)− 1

∑
k

(
z − (εf − λ)− r2V 2

k
z−εk

)−1


 . (13.9)

The saddle point equations

λ =
1
β

∑

iωn

∑

k

V 2
k

(iωn − (εf − λ))(iωn − εk)− r2V 2
k

, (13.10a)

r2 = 1− 2
β

∑

iωn

V 2
k

(iωn − εk)(iωn − εk)− r2V 2
k

, (13.10b)

become equivalent to Eq. (10.5), which proves our initial claim.
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13.2 Gauge fluctuations

After the introduction of slave bosons r in the ALM or the auxiliary fields b in the KLM both
models obey a local U(1) gauge invariance expressed by simultaneous phase rotations in r (b)
and f̄ (f̃):

ALM: r → reiθ, f̄ → f̄ eiθ (13.11a)

KLM: b→ beiθ, f̃ → f̃ eiθ (13.11b)

In the stationary approximation r condenses to a static value with 〈r〉 = r and 〈r†〉 = r,
which breaks the local gauge invariance between f̄ and r (for b analogous expressions hold).
In analogy to the superconducting phase the evolving Fermi-liquid phase corresponds to a
Higgs/confining phase due to this local U(1) gauge symmetry breaking.

The mean-field condensation in the framework of the Kondo model not only breaks a local
gauge symmetry but also violates charge conservation: By construction the Abrikosov pseudo-
fermion f̃ is neutral and the auxiliary field b carries one electron charge. After condensation the
contribution bc†f̃ in the mean-field Hamiltonian (10.11) does not preserve charge conservation.

In order to treat small gauge fluctuation on top of the mean-field level the slave boson
operator r and the Lagrange parameter λ can be substituted prior to condensation by (Millis
and Lee, 1987; Hewson, 1997)

r = a+ r0, r† = a† + r0, λ = Λ + Λ0 . (13.12)

The parameters r0 and Λ0 represent the former mean-field values. A perturbation theory for
the bosonic a-operators can be developed. As a result these fluctuations lead to corrections
to the mean-field result of the order of 1/N where N denotes the spin degeneracy. These
corrections are subleading and the Fermi-liquid phase can be considered as stable.

In the context of the Kondo model the consideration of gauge fluctuations restores the charge
conservation: the f̃ electrons minimally couple to the U(1) gauge field Λ and therefore acquire
charge.

Since the breaking of the local gauge invariance is an artifact of the mean-field approximation
and not related to a physical symmetry breaking, the mean-field transition at TK between
phases with finite and zero parameter b is only artificial. It does not survive upon the inclusion
of gauge fluctuations, but corresponds to a crossover in a physical system.
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ordering

The local magnetic moments in heavy fermion compounds feel a more or less strong intersite
exchange coupling, which can arise from different mechanisms like direct exchange, superex-
change (Anderson, 1950) or the RKKY mechanism (Ruderman and Kittel, 1950; Kasuya, 1956;
Yosida, 1957). For the latter one the spin coupling is mediated by spin oscillations of the con-
duction electrons, while in superexchange the magnetic moments interact via an intermediate
ion.

Such an intermoment exchange can produce not only a magnetically ordered state, but also
other interesting phases like metallic spin liquid phases or magnetically mediated superconduc-
tivity. All the arising phases compete for the localized f -electrons, which order magnetically,
form Kondo-singlets with the conduction electrons in the Fermi liquid phase or intermoment-
singlets in the metallic spin liquid phase. Already the Doniach phase diagram, Fig. 8.3, is
able to illustrate the interplay between antiferromagnetism and the evolution of a heavy Fermi
liquid phase depending on the Kondo coupling and the conduction electron density.

In the presence of a strongly k-dependent hybridization and unconventional superconduc-
tivity, where the pairing function also becomes k-dependent, it is conceivable that the phase
competition depends on the interplay of symmetries between hybridization and pairing func-
tion.

Within this chapter we study the phase competition between Kondo screening, unconven-
tional superconductivity and antiferromagnetic ordering on a mean-field level. In Sec. 14.1
we introduce the Kondo-Heisenberg model, which contains all essential effects that will be
discussed here. In Sec. 14.2 we focus on the competition between magnetically mediated
superconductivity and Kondo screening for different k-dependent hybridization and pairing
functions. In Sec. 14.3 we expand this theory by allowing for an additional magnetically
ordered phase and include the presence of a magnetic field.

14.1 Kondo-Heisenberg model

The Anderson and Kondo lattice models, Eqs. (9.2) and (9.3), already contain an intermoment-
exchange mediated by the conduction electrons. At the mean-field level this information is
lost due to the introduction and condensation of slave boson and auxiliary fields r and b. In
order to restore this coupling we introduce an additional term

HH =
∑

ij

J ijH
2

Si · Sj , (14.1)
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which explicitly describes the exchange interaction between two local moments at different
sites i and j. The model HKLM +HH is known as the Kondo-Heisenberg model.

A mean-field treatment of this model is accomplished by combining the mean-field approx-
imation for HKLM developed in Sec. 10.2 with a mean-field decoupling of the Heisenberg
term HH. In general possible decoupling channels are the particle-particle channel (or Cooper
channel) producing superconductivity, the particle-hole channel leading to a RVB-like phase
consisting of gapless spinons without broken symmetry and the magnetic channel accounting
for magnetically ordered phases.

The Kondo-Heisenberg model with local hybridization at the mean-field level was studied
by Senthil et al. (2003, 2004). In these references the focus lies on the existence of a RVB-like
metallic spin liquid phase FL*, which can be stabilized e.g. by geometric frustrations. FL*
consists of conduction electrons forming a small Fermi surface and a spin liquid out of spinons,
which have fractionalized excitations due to spin-charge separation and are coupled by a Z2

or U(1) gauge structure. Beyond mean-field theory a quantum critical point (QCP) between
FL* and FL phase develops, which in contrast to the QCP between antiferromagnetic and FL
phase is not connected to a symmetry breaking but only associated with the breakdown of the
Kondo effect. The mean-field approximation shows the existence of a superconducting phase
in the vicinity of this QCP.

Furthermore, Senthil et al. (2003) study the interplay of this FL* phase with superconduc-
tivity on a two-dimensional triangular lattice, while the mean-field treatment in (Senthil et al.,
2004) accounts for such a FL* phase and a weak antiferromagnetic instability computed for a
cubic lattice structure.

In the remainder of this chapter we investigate the effects of a superconducting and a magnetic
instability in the presence of an unconventional hybridization. At the mean-field level the
Heisenberg term HH has to be simultaneously decoupled in the Cooper and the magnetic
channel, which is accomplished by a splitting

HH,MF = (1− x)HH,SC,MF + xHH,AFM,MF (14.2)

with a balancing factor x.
In Sec. 14.2 we develop the formalism for the mean-field description of a magnetically medi-

ated superconductor with unconventional pairing and study its phase competition with uncon-
ventional Kondo screening, while suppressing a possible magnetic instability by setting x = 0.
This approach is supplemented by Sec. 14.3, where an additional antiferromagnetic ordering
is considered, implemented by a finite value of x.

14.2 Magnetically mediated superconductivity

Superconductivity mediated by magnetic fluctuations instead of lattice vibrations is a widely
accepted scenario for heavy fermion compounds. The mean-field approach is based on a spin
representation in the symplectic symmetry group Sp(N) (Read and Sachdev, 1991; Sachdev
and Read, 1991; Sachdev and Wang, 1991).

In this section we introduce the mean-field formalism (Sec. 14.2.1), present phase diagrams
as a function of Kondo coupling and temperature illustrating the competition between Kondo
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screening and superconductivity related to their symmetry in momentum space (Sec. 14.2.2),
and discuss general analytical aspects of pairing in the presence of an unconventional hy-
bridization (Sec. 14.2.3).

14.2.1 Mean-field formalism

For a decoupling in the Cooper channel it is favorable to express the spin operators in the
Heisenberg term HH by Abrikosov fermions f̃ and approximately rewrite it as

HH = −
∑

ij

J ijH
2

(
f̃i↑f̃j↓ − f̃i↓f̃j↑

)(
f̃ †i↑f̃

†
j↓ − f̃

†
i↓f̃
†
j↑

)
. (14.3)

Expressing a product of spins in terms of singlet pairs corresponds to a Sp(N) spin represen-
tation (Read and Sachdev, 1991; Sachdev and Read, 1991; Sachdev and Wang, 1991). For a
spin 1/2 the corresponding group is SU(2)∼=Sp(1); the differing factor of 2 in the argument
originates in the fact, that Sp(N) describes a group of 2N × 2N matrices, whereas SU(N) is
a group of N ×N matrices.

By introducing the non-local bond field

∆ij = −〈f̃i↑f̃j↓ − f̃i↓f̃j↑〉 , (14.4)

the Hamiltonian can be decoupled to

HH,SC,MF = −
∑

ij

JH,ij

4

[(
2∆ij f̃

†
i↑f̃
†
j↓ + h.c.

)
− |∆ij |2

]
. (14.5)

Under the assumption of time reversal invariance the bond field can be chosen as real and the
relation ∆ij = ∆ji holds.

Due to the representation in Sp(N) this mean-field approximation is controlled by the pa-
rameter N : In the limit of large N the mean-field solution becomes exact and corresponds to
a saddle point of the Sp(N) theory, which explicitly selects the particle-particle channel.

In order to get a consistent large-N limit in the total Hamiltonian HKLM +HH the particle-
particle decoupling in the Heisenberg term should be accompanied by a particle-particle de-
coupling in the Kondo term of HKLM based on Sp(N) instead of SU(N). However, in the
presence of time-reversal invariance and with the condition n ef = 1 the mean-field approxi-
mations arising from particle-particle or particle-hole decoupling in the Kondo term become
equivalent. Therefore, HH,SC,MF can be combined with the HKLM,MF introduced in Sec. 10.2.

Depending on the structure of the bond field ∆ij the translational invariance of the lattice
can be broken leading to so-called valence bond solids. A phase with non-zero ∆ij preserving
the lattice symmetries is described by a spin liquid. Since we are only interested in the latter
scenario, the condition of a translationally invariant ∆ij is imposed by hand.

The spatial structure of ∆ij within the unit cell is intimately connected to the structure
of the Heisenberg coupling JH,ij between the f electrons. For a nearest-neighbor interaction
the unit cell contains two distinguishable bonds - a horizontal and a vertical one. Under the
already mentioned restrictions of conserved translational and time reversal symmetry, only
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two configurations are possible solutions to the mean-field problem: ∆i,i+x̂ = ∆i,i+ŷ = ∆,
which will be denoted as the extended s-wave configuration, and ∆i,i+x̂ = −∆i,i+ŷ = ∆,
where horizontal and vertical bonds acquire different signs. The latter configuration is called
dx2−y2-wave. If the Heisenberg interaction is assumed to only be finite for f electrons on
next-nearest neighbored sites, a mean-field solution with differing signs for diagonal bonds
(∆i,i+(x̂+ŷ)/2 = −∆i,i+(x̂−ŷ)/2 = ∆) becomes possible leading to a dxy pairing function.

In momentum space the mean-field Hamiltonian can be written as

HH,SC,MF =
∑

k

W̃k

(
f̃ †k↑f̃

†
−k↓ + h.c.

)
+ JHN∆2 (14.6)

using the shortcut

W̃k = −JH∆αk, (14.7)

where αk contains the momentum space structure of the mentioned spinon pairings:

αk =





cos kx + cos ky extended s-wave
cos kx − cos ky dx2−y2-wave
2 sin kx sin ky dxy-wave

. (14.8)

The self-consistency equations for the mean-field parameters, Eqs. (10.11), are extended by
∑

k

αk〈f̃ †k↑f̃
†
−k↓ + h.c.〉 = 2N∆ , (14.9)

which is obtained by minimizing the free energy with respect to ∆. The occurring Green
functions are listed in Appendix B.2. The quasiparticle energies, the eigenvalues of the mean-
field Hamiltonian, read

z̄1,2,3,4k = ± 1√
2

(
λ2

0 + ε̄2k + 2b2β2
k + W̃ 2

k +

±
(
−4
(
λ0ε̄k + b2β2

k

)2 − 4ε̄2kW̃
2
k +

(
λ2

0 + ε̄2k + 2b2β2
k + W̃ 2

k

)2
)1/2

)1/2

. (14.10)

In the limit of vanishing ∆ these bands evolve into the quasiparticle bands z1,2k, Eq. (11.4).
The spinon pairing is given by 〈f̃ †k↑f̃

†
−k↓〉 ∝ ∆αk, which can be extracted from the self-

consistency condition, Eq. (14.9). However, the momentum space structure of the conduction
electron pairing also takes into account the momentum-dependent hybridization. Determined
by the corresponding Green function, Eq. (B.5d), it reads 〈c†k↑c

†
−k↓〉 ∝ ∆β2

kαkMk. The function
Mk is smooth and respects the lattice symmetries. The pairing acquires additional zeros in
momentum space arising from the factor β2

k. This will affect the thermodynamical properties
of the system: power-laws, e.g. for the specific heat, are sensitive on additional nodal lines
crossing the Fermi surface. For a two-channel Kondo model such a composite pairing also
arises (Dzero and Coleman, 2008).

In the next section we present phase diagrams based on a numerical solution of the mean-field
equations illustrating the interplay of symmetries between hybridization and pairing function.
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14.2 Magnetically mediated superconductivity

14.2.2 Numerical results: Phase diagrams

In order to focus on the phase competition between Kondo screening and superconductivity
we keep the balancing factor x to zero and solve the mean-field equations (10.11) and (14.9)
in a fully self-consistent manner by numerical iteration.

The resulting phase diagrams as a function of Kondo coupling J0 and temperature T for vari-
ous hybridization and pairing symmetries are depicted in Fig. 14.1. The phases are determined
by the two parameters b and ∆ occurring in the mean-field Hamiltonian HKLM,MF +HH,SC,MF.
Only ∆ is an order parameter in the strict sense, since beyond the mean-field description b is
not associated with symmetry breaking. Four different fully translationally invariant phases
evolve. For both ∆ and b vanishing, the resulting phase is decoupled and therefore trivial.
It develops at sufficiently high temperatures. If JH dominates over J0, we get ∆ 6= 0 and
b = 0: The conduction electrons and the spinons form decoupled liquids, which corresponds
to the already mentioned fractionalized Fermi liquid FL*. Although a phase with non-zero ∆
has off-diagonal order in the sense that the anomalous expectation value 〈f †f †〉 is finite, this
phase is not superconducting, since the spinons do not carry physical charge. For b 6= 0 and
∆ = 0 the resulting phase is the conventional Fermi liquid (FL), whose thermodynamical and
transport properties are extensively studied in Chapter 11. If both parameters ∆ and b are
non-zero, the coexistence of Kondo screening and spinon pairing leads to superconductivity
that is mediated by the magnetic interaction between the f electrons. As the phase diagrams
show, at any non-zero JH and sufficiently low temperature the FL phase is always unstable
towards superconductivity.

Adding fluctuations in the mean-field approach (e.g. by coupling the order parameter to
a gauge field) turns the finite-temperature mean-field phase transition of FL and FL* into
crossovers (Senthil et al., 2003, 2004). Only the boundaries to the superconducting phase
remain real phase transitions, as they are connected to a symmetry breaking.

Each pairing symmetry represents a different saddle solution in the large-N mean-field
theory. The channel with the lowest free energy is the physically relevant state. For each
pairing symmetry we compute the corresponding free energy

F = − 1
β

∑

k,i

ln
(

1 + e−βz̄i
)

+
∑

k

(εk − λ0) +Nµnc +Nλ0 +NJH∆2 +N b2

J0
, (14.11)

see Fig. 14.2. From these results we can conclude, that the extended s-wave hybridization
favors the dx2−y2 superconductivity, while dx2−y2 hybridization prefers dxy superconductivity.

Regarding the shape of the Fermi surface in the Fermi liquid state, Fig. 11.3, we can explain
this behavior in the following way: If both symmetries are of s-wave type, the pairing interac-
tion at the Fermi surface is small, implying a weak superconducting phase. However, a s-wave
hybridization combined with a d-wave pairing produces a much more stable superconductivity.
For dx2−y2 hybridization the Fermi surface is located near the nodal area, where the pairing of
dxy type is strong. Please note that the pairing symmetry with the lowest free energy produces
the most extended superconducting phase.

We supplement this numerical approach by an analytic estimate of the critical supercon-
ducting temperature Tc presented in the next section.

109



14 Competition between Kondo screening and ordering
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Figure 14.1: Phase diagrams as a function of Kondo coupling J0 and temperature T at a band filling
nc = 0.3 for extended s-wave (left) and dx2−y2 -wave hybridization (right) in combination with different
pairing symmetries: (a) dx2−y2-wave, (b) extended s-wave and (c) dxy-wave. Thick (thin) lines refer
to first (second) order phase transitions. The Heisenberg exchange is JH = 0.05 and the hopping
parameter is set to t = 1.
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Figure 14.2: Free energy as a function of the Kondo coupling J0 at T = 10−5 and nc = 0.3 for extended
s-wave (left) and dx2−y2-wave hybridization (right) for (a) dx2−y2-wave, (b) extended s-wave, and (c)
dxy-wave pairing symmetries. The plots correspond to the phase diagrams shown in Fig. 14.1 with the
same parameters, JH = 0.05 and t = 1. The dashed line shows the free energy for the normal state
solution with ∆ = 0.

14.2.3 Analytic estimate: Pairing in the regimes Tc � TK and Tc ∼ TK

In general, we can differentiate between the pairing mechanisms in the two regimes Tc � TK

and Tc ∼ TK. In the former one the superconducting phase can be thought of as being evolved
out of the heavy Fermi liquid, whereas for Tc ∼ TK a strong competition between Kondo
screening and BCS pairing exists. In the regime Tc � TK simply a non-superconducting
FL*-phase evolves.

Within the mean-field approach the value of Tc is determined by the mean-field equation
(14.9) by setting ∆ to zero:

2
JH

=
1
N
∑

k

α2
k

(
z2

1k − ε̄2k
z2

1k − z2
2k

1
z1k

tanh
z1k

2Tc
+ (1↔ 2).

)
(14.12)

For ∆ = 0 the band-structure is given by the two bands z1,2k (Eq. (11.4)) determining the
physics in the Fermi liquid regime. The factor α2

k arises, because gap and pairing function are
equal in our approach.

In the limit Tc � TK several approximations can be made. We neglect the influence of the
upper band z1k, which is located well above the Fermi level, and only take into account contri-
butions from z2k close to the Fermi surface. The k summation is replaced by an integral over
isoenergetic lines

∫
dω
∫
ω=z2k

dAk/|∇z2k|. In analogy to the BCS approximation we substitute

tanh
(
ω

2Tc

)
=





1 for ω ≥ 2Tc
−1 for ω ≤ −2Tc
0 else

. (14.13)

The k-dependence of the occurring factor

κ ≡ ε̄2k − z2
2k

z2
1k − z2

2k

≈ const (14.14)
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14 Competition between Kondo screening and ordering

is assumed to have minor influence and is therefore omitted. The velocity |∇kz2k| and αk are
approximated by their value at the Fermi surface, which is determined by z2k ≡ 0, compare
Figs. 11.3. The dependence of |∇kz2k| and αk on the direction orthogonal to the Fermi surface
is neglected. As a result we get

2
JH

=

Λ∫

2Tc

dω

ω

∫

FS

dAk
2π

κα2
k

|∇kz2k|
, (14.15)

from which we can extract an expression for Tc,

Tc =
Λ
2

exp
(
− 4π
JHκ

∫
dAkα

2
k/|∇z2k|

)
, (14.16)

where Λ is of the order of bandwidth. Tc is especially large, if the pairing is strong in antinodal
regions, which are characterized by flat bands and small velocity |∇z2k|.

In the regime Tc ∼ TK both bands contribute to the integral. In this case the major contri-
bution arises from the flat parts of z1k and z2k in the weakly hybridized regions, illustrating the
strong competion between Kondo and superconducting pairing. In contrast to the previously
discussed regime nodal instead of antinodal quasiparticles are more susceptible to pairing.

At temperatures of the order of the Kondo scale TK inelastic processes occur, especially for
particles in the antinodal regions, limiting the applicability of the mean-field approximation.
Pairing of incoherent particles, which is also discussed in the context of the pseudogap phase in
underdoped cuprates (Emery and Kivelson, 1995; Franz and Millis, 1998), cannot be described
with this mean-field approach.

In conclusion, the numerical and analytical calculations are complementary approaches show-
ing the favoring and disfavoring of certain hybridization and pairing symmetries. While ana-
lytics is able to extract some qualitative arguments, the numerical evaluation is also sensible
on microscopic properties like band structure and band filling.

In the next section we allow for an additional antiferromagnetic phase on the mean-field level
and study the competition among Kondo screening, superconductivity and magnetic ordering,
while tuning the Kondo coupling and an external magnetic field.

14.3 Magnetic ordering

As illustrated by the phase diagram of the heavy fermion compounds CeM In5 (Fig. 8.5(b)) and
predicted by the Doniach argument (see Fig. 8.3), Kondo screening not only competes with
superconducting order, but also with antiferromagnetism. The members of the 115-family ex-
hibit different phenomena regarding the coexistence and the suppression of superconductivity
(SC) and antiferromagnetism (AFM) upon applying a magnetic field or pressure, which we
will briefly review here.

In a finite magnetic field that is oriented orthogonal to the basal plane, CeCoIn5 exhibits a
quantum critical point at the breakdown of superconductivity, although any direct evidence
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14.3 Magnetic ordering

(a)

3B); the signal disappears at the same temperature
at which specific heat measurements show evi-
dence of a second-order phase transition (11). The
neutron data suggest a transition that is second-
order in temperature but first-order in field. The
incommensuration q of the Bragg peak position is
not field-dependent, as can be seen in the inset of
Fig. 3A. The H-T phase diagram (Fig. 1) shows
that magnetic order exists only in the super-
conductingQ phase and not in the normal phase,
which demonstrates that superconductivity is es-
sential for magnetic order. Our results provide
evidence that the ground state in this field and
temperature range in the vicinity ofHc2(0) has a
multicomponent order parameter that directly cou-
ples superconductivity and magnetism. This type
of order is at least partly due to strong antiferro-
magnetic fluctuations, arising from the proximity
to a magnetic quantum critical point in CeCoIn5.

Our experiment shows that the magnetic struc-
ture is a transverse amplitude-modulated incom-
mensurate spin-density wave whose magnetic
moments are orientated along the tetragonalc axis,
modulated with the incommensurate wave-vector
(q, q, 0.5) perpendicular to the magnetic field.
Neighboring Ce3+magnetic moments that are sep-
arated by a unit cell lattice translation along the
c axis are antiparallel (Fig. 1). The amplitude of
the magnetic moment (m) at T = 60 mK and H =
11 T of m = 0.15(5) Bohr magnetons (mB) is con-
siderably smaller than expected for the Ce3+ free
ion, possibly due to the Kondo effect. The direc-
tion of the ordered magnetic moment is consist-
ent with magnetic susceptibility measurements
(1) that identify the c axis as the easy axis, and it
is also consistent with zero-field inelastic neutron
measurements in which strong antiferromagnetic
fluctuations have been observed that are polar-
ized along the c axis (22).

The magnetic structure that satisfies NMR
data (20) was described by an ordering wave-
vectorQ = (q, 0.5, 0.5) with unspecifiedq and the
ordered magnetic moment along the applied field
that was along the [100] direction. Our neutron
measurements of field along the [1–10] direction
reveal a magnetic order for which both the order-
ing wave-vector Q = (q, q, 0.5) and the ordered
moments are perpendicular to the applied magnetic
field, in contrast to the NMR data. This difference
suggests that the direction of the incommensurate
modulation Q depends on the field direction, and
that the order wave vector can be tuned with a
rotation of the magnetic field in the basal plane.
Finally, the absence of magnetic Bragg peaks at
H = 11 T when T > 0.3 K confirms the inter-
pretation of the NMR measurements (20) that the
fluctuations for 0.3K<T<T0 are short-ranged and
possibly only present inside the vortex cores.

The observation that magnetism exists only in
the presence of superconductivity is in stark con-
trast to other materials in which long-range mag-
netic order and superconductivity merely coexist
for a small magnetic field or pressure range
because of their different origins (18, 19). Be-
cause no magnetic order is observed in CeCoIn5

above the upper critical field Hc2, the relation
between magnetic order and superconductivity is
fundamentally different and cannot be seen as a
competition. Instead, it appears that CeCoIn5 in
fields greater than Hc2 gives rise to strong anti-
ferromagnetic fluctuations that condense intomag-
netic order with decreasing magnetic field only
through the opening of an electronic gap and

restructuring of the Fermi surface at the super-
conducting phase boundary. This means that the
second-order magnetic quantum phase transition
is inaccessible because, in its proximity, there is
no energy scale associated with the antiferromag-
netic fluctuations, and the superconducting energy
gap becomes the dominant energy scale and deter-
mines the magnetic ground-state properties.

Fig. 2. The solid circles represent the neutron-scattering intensity atT= 60mK for wave vectors (h, h, 0.5) as a
function of h for different fields as observed in the center channel of the position-sensitive detector (psd), showing
the presence of a magnetic neutron diffraction peak at (1– q, 1 – q, 0.5) with q = 0.44 for (A) H = 10.6 T, (B)
H = 10.8 T, (C) H = 11 T, and (D) H = 11.3 T. The gray circles in (A) and (B) represent the best estimate of the
background, whereas they represent the neutron scattering intensity in (C) atH = 11 T and T = 400 mK and in
(D) at H = 11.4 T and T = 60 mK. The solid red lines are fits of a Gaussian function to the magnetic scattering.

Fig. 1. H-T phase dia-
gram of CeCoIn5 with the
magnetically ordered
phase indicated by the
red shaded area. The blue
and open circles indicate
a first- and second-order
transition measured by
specific heat (11), re-
spectively, separating the
superconducting from the
normal phase. The green
circles indicate a second-
order phase transition in-
side the superconducting
phase (11), and the red
circles indicate the onset
ofmagnetic order asmea-
sured in our experiment,
showing that the mag-
netic order only exists in the Q phase. (Inset) Magnetic structure of CeCoIn5 at T = 60 mK and H =
11 T. The red arrows show the direction of the static magnetic moments located on Ce3+, and the yellow
and blue circles indicate the position of the In and Co ions. The depicted structure does not include a
possible uniform magnetization along the magnetic field direction. The solid red line indicates the
amplitude of the Ce3+ magnetic moment along the c axis, projected on the (h, h, l) plane.
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(b)

SC anomaly at Tc reveals only a strong sensitivity to imper-
fections, for example due to a mismatch between incommen-
surate magnetic ordering !AFI" and SC or due to additional
nodes in the gap function of the SC state caused by the
crossing of the FS with the magnetic Brillouin zone.27 Direct
evidences on the inhomogenous superconducting transition
below pc

! are given by the large discrepancy between Tc de-
tected by resistivity Tc

!,8 ac susceptibility Tc
",11 and the

present specific heat measurements Tc
C with a sequence

Tc
!#Tc

"#Tc
C. Up to 1.5 GPa, the resistivity anomaly at Tc

!

may not be a bulk property; a similar case is reported for
CeIrIn5.3,28 By contrast, the specific heat measurement
clearly shows a sharp and very large superconducting
anomaly at p=2.17 GPa indicating a pure superconducting
ground state, basically gapped. At p=2.07 GPa no extra AF
transition can be detected below Tc. Above pc

!, an eventual
domain of a coexistence of AF and SC will be extremely
narrow in pressure and experimentally very difficult to point
out.

The !p ,T" phase diagram of CeRhIn5 in zero field is sum-
marized in Fig. 2 !data from Ref. 11 have been included".
The low temperature specific heat measurements clearly
show the interplay of AF and SC in the pressure range from
1.6–1.9 GPa. A first order transition seems to emerge at
pc

!=1.95 GPa, where Tc#TN. A linear p extrapolation of
TN to zero temperature indicates that TN may be fully
suppressed near the pressure of the maximum of Tc at
pc#2.4±0.1 GPa and the maxima of some of the effective
masses.12 If Tc#TN, the ground state in zero field seems
purely superconducting with d-wave symmetry10 as in
CeCoIn5.4,5 The opening of a superconducting gap on large
parts of the main FS leads to the suppression of the magnetic
ordering.

Figure 3 shows the specific heat for various fields H $ab at
different pressures below and above pc

!. The !H ,T" phase
diagrams obtained from these data are displayed in Fig. 4. At
1.2 GPa, in the normal AF state, three magnetic transitions
appear for H#3 T. By comparison to p=0 results21 the mag-
netic phase diagram is only weakly p dependent %see Fig.

4!a"&. For p=2.07 GPa the superconducting transition at 0 T
is still rather broad, but above Hc2 another phase transition at
TM appears in the normal state %Fig. 4!b"&. At 2.2 GPa the
transition has a width less than 0.1 K at H=0. For H#4 T,
the additional transition develops on cooling already inside
the superconducting phase and survives entering in the
normal phase. No second transition can be detected below
H#4 T. For H$4 T two well separated anomalies inside
the superconducting state become obvious at 2.41 GPa,
almost as observed in UPt3.29 For higher pressures
!p=2.73 GPa", only a unique superconducting phase
persists.

The assignment of the superconducting anomaly under
magnetic field is unambiguously given by the form of the
Hc2!T" curve, also in comparison to previous resistivity
data.30 There are strong indications that the observed second
anomaly is associated to AF. This transition at TM is almost
H independent, at least for H#4 T, as the antiferromagnetic
transition at p=0 and p=1.2 GPa. The inset of Fig. 2 shows
the p dependence of the crossing temperature corresponding
to Tc!H"'TM!H" for p# pc

!. Its extrapolation to zero is ob-
tained for p#2.6 GPa, slightly higher than pc. That can in-
dicate the enhancement of TN when AF and SC coexist in
this mixed state. In the simplest model, weak coupling in a
clean limit, the p dependence of the effective mass m! of the
quasiparticles can be estimated from the initial slope
Hc2! =dHc2 /dT% !m!"2Tc.32 For p=2.07 GPa we find
Hc2! =20 T/K, near 2.41 GPa Hc2! increases to 33 T/K and
decreases to 25 T/K for 2.73 GPa while Tc is almost
unchanged.33 This, as well as the size of the specific heat
jump at Tc, indicates that m! has its maximum near 2.4 GPa
in agreement with the expected variation of m! at pc for an
antiferromagnetic QCP.35

The new phase presumably with AF and SC appears for
p# pc

! only above some critical field of the order H#4 T.31

FIG. 1. !Color online" Temperature dependence of the ac spe-
cific heat divided by temperature for different pressures. Arrows
indicate the superconducting transition temperatures Tc !↑" and the
Néel temperature TN !↓", respectively. Below pc

!#1.95 GPa the su-
perconducting anomaly is very small. For p slightly above pc

! a nice
superconducting anomaly appears. !Data are normalized to 1 at
4 K."

FIG. 2. !Color online" !p ,T" phase diagram of CeRhIn5 from
specific heat !!, !", susceptibility !", Ref. 11", and resistivity
measurements !&, Ref. 8". Below 1.5 GPa CeRhIn5 orders in an
incommensurable structure AFI, the hatched area indicates an inho-
mogeneous superconducting state, and AFI+SC corresponds to the
region where SC appears in the specific heat experiment in the
magnetically ordered state below TN. A pure superconducting state
SC is realized above pc

!. The vertical line marks a possible first
order transition from AFI+SC to SC. The inset shows the extrapo-
lation of TN to zero in the absence of SC. !"" indicates the tem-
perature where TM!H" crosses Tc!H", and corresponds to TN if SC is
suppressed !see also Fig. 4".
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Figure 14.3: Experimental phase diagrams for CeCoIn5 and CeRhIn5 illustrating the interplay between
superconductivity and antiferromagnetism upon applying a magnetic field or pressure. (a) Magnetic
field-temperature phase diagram for CeCoIn5. Blue dots mark the superconducting critical temperature
Tc and the Q-phase denotes the coexistence region between superconductivity and antiferromagnetism.
(Figure from Kenzelmann et al., 2008). (b) Temperature-pressure phase diagram for CeRhIn5. Super-
conductivity (SC) and antiferromagnetism (AFM) coexist in a specific pressure range. (Figure from
Knebel et al., 2006).

of magnetic ordering is missing (Tanatar et al., 2007). This quantum critical point was spec-
ulated to be produced by an antiferromagnetic instability that is suppressed by the emerging
superconducting order over wide ranges in the phase diagram. For a magnetic field aligned
parallel to the basal plane a region close to the upper critical field Hc2 ≈ 11T develops, show-
ing signatures of a coexistence between superconductivity and magnetic order, see Fig. 14.3(a)
(Young et al., 2007; Kenzelmann et al., 2008).

The ambient-pressure antiferromagnet CeRhIn5 is driven to a superconducting state upon
applying pressure. A coexistence region of SC and AFM develops, see Fig. 14.3(b) (Knebel
et al., 2006; Chen et al., 2006).

In this section we study the interplay of Kondo screening, superconductivity and magnetic
ordering at a mean-field level. The hybridization as well as the superconductivity are assumed
to be unconventional.

Superconductivity in CeCoIn5 is assumed to be Pauli-limited (Bianchi et al., 2002), i.e., the
breakdown of superconductivity in a magnetic field is produced by spin alignment breaking
up the spin-singlets, rather than orbital pair breaking effects due to the Lorentz force ripping
apart the electrons in a Cooper pair with opposite momentum. Therefore, we include the
presence of a magnetic field only by coupling it to the spin degrees of freedom in a Zeeman
term. The influence on the orbital sector, which manifests itself in the appearance of vortices
and an acquired Peierls phase factor upon hopping, would require a real-space description with
an enormous number of lattice sites and is omitted in the following. The mean-field parameters
are assumed to be field-independent.

The Hamiltonian, now including the Zeeman term HZ , reads

H = HKLM +HH +HZ (14.17)
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14 Competition between Kondo screening and ordering

with

HZ = −B
∑

i

(Si + si), (14.18)

where si denotes the spin density operator of a c-electron at site i: si =
∑

σσ′ c
†
iσσσσ′ciσ′/2.

The Landé factors for c-electrons and localized spins are assumed to be equivalent and are set
to 1 here.

The decoupling of the Heisenberg term HH in the magnetic channel accounting for a possible
magnetic instability is presented in Sec. 14.3.1. Section 14.3.2 shows the phase diagrams
obtained from a numerical solution of the mean-field equations. A discussion of the results is
given in Sec. 14.3.3.

14.3.1 Mean-field approximation

In order to consider superconductivity and magnetic ordering in the mean-field approach, we
now assume a finite value of the balancing factor x in the split Hamiltonian (14.2). HH,SC,MF

already studied in Sec. 14.2.1 is given by Eq. (14.6). In the magnetic channel the decoupling
leads to

HH,AFM,MF = JH

∑

〈ij〉

[
Mi ·

(∑

σσ′
f̃ †j,σσσσ′ f̃j,σ′

)
−Mi ·Mj

]
(14.19)

with the on-site magnetization

Mi =

〈
1
2

∑

σσ′
f̃ †i,σσσσ′ f̃i,σ′

〉
, (14.20)

while the spin-spin interaction in the Heisenberg term is assumed to be restricted to nearest-
neighbored sites.

In contrast to the previously discussed decouplings of the Kondo term and the Heisenberg
term in the Cooper channel, which were based on a spin representation in SU(N) and Sp(N)
respectively, this mean-field approximation is not equivalent to a large-N saddle point solution.
It is rather in the spirit of classical mean-field theory introduced by Weiss, which becomes exact
in the limit of infinite coordination number.

The magnetic field is aligned in z-direction, B = Bẑ, orthogonal to the two-dimensional
lattice. The magnetization is modeled by the ansatz

Mi = Mse
iQri x̂+Muẑ , (14.21)

with the staggered part Ms and the uniform part Mu. The antiferromagnetic ordering wave
vector Q = (π, π) leads to alternating signs in a checkerboard pattern and requires a division
of the lattice into two sublattices A and B. The arrangement of A- and B-sites is depicted
in Fig. 14.4(a). ri is the vector connecting a specific corner of the unit cell with the two
contained sites A and B. Due to the doubling of the unit cell the real-space operators ci and
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A B

(a) (b)
(π, π)

(π,−π)(−π,−π)

(−π, π)

Q
rB

Figure 14.4: (a) The lattice is divided into two sublattice A (black points) and B (white points). The
reference point for each unit cell is chosen to be the left corner leading to rA = (0, 0) and rB = (1, 0).
The gray shaded region shows the unit cell. (b) The Brillouin zone corresponding to the enlarged unit
cell (colored in gray) is obtained from the original BZ by backfolding with the vector Q.

f̃i are substituted by cν,r and f̃ν,r, where ν = A,B is the sublattice index and r refers to
position of the unit cell. The Fourier transformed operators

cν,p =

√
N
2

∑

r

e−ip(Rr+rν)cν,r , (14.22)

are defined for p lying within the new, reduced BZ, see Fig. 14.4(b).
The total mean-field Hamiltonian can be compactly written as

HMF =
1
2

∑

p

Ψ†pÂpΨp + Econst , (14.23)

with the constant

Econst = N
(
µ(nc − 1) +

b2

J0
+ (1− x)JH∆2 + 2xJH(M2

s −M2
u)
)
, (14.24)

and the 16-component spinor

ΨT
p =

(
ΦT
c,p,Φ

Tef,p
)
, (14.25)

where

ΦT
c,p =

(
cA,p,↑, cA,p,↓, c

†
A,−p,↑, c

†
A,−p,↓, cB,p,↑, cB,p,↓, c

†
B,−p,↑, c

†
B,−p,↓

)
. (14.26)

ΦTef,p is defined in an analogous way. The matrix Âp is presented in Appendix H, as well as

the steps that are necessary to rewrite the Hamiltonian in terms of the operators cpν and f̃pν .
The mean-field equations for the set of mean-field variables {λ0, µ, b,∆,Ms,Mu} are ob-

tained by varying the free energy with respect to the particular variable:

N =

〈∑

p,σ,ν

f̃ †ν,p,σf̃ν,p,σ

〉
, (14.27a)
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Nnc =

〈∑

p,σ,ν

c†ν,p,σcν,p,σ

〉
, (14.27b)

−N 2b
J0

=

〈∑

p,σ,ν

[
βp + βp+Q

2
c†νpσf̃νpσ +

βp − βp+Q

2
c†νpσf̃ν̄pσ + h.c.

]〉
, (14.27c)

2N∆ =

〈∑

p,ν

[
αp + αp+Q

2
f̃ †ν,p,↑f̃

†
ν,−p,↓ +

αp − αp+Q

2
f̃ †ν,p,↑f̃

†
ν̄,−p,↓ + h.c.

]〉
, (14.27d)

Ms =
1

2N

〈∑

p,σ,

(
f̃ †A,p,σf̃A,p,σ̄ − f̃

†
B,p,σf̃B,p,σ̄

)〉
, (14.27e)

Mu =
1

2N

〈∑

p,σ,ν

σf̃ †ν,p,σf̃ν,p,σ

〉
. (14.27f)

The eigenvalues of the 16 × 16 matrix Âp are not accessible analytically. In the next section
results from a self-consistent numerical solution of the mean-field equations are presented based
on a numerical diagonalization of the Hamiltonian.

14.3.2 Phase diagrams

The phase diagrams are extracted from the fully self-consistent numerical solution of the
mean-field equations (14.27). The required eigenvalues of Âp are determined via exact diago-
nalization for a grid of vectors p in the magnetic Brillouin zone implemented by a LAPACK
routine.

We focus on a specific choice for the hybridization symmetry, namely a dx2−y2-wave hy-
bridization, and combine it with a dxy superconducting pairing, which favors the emergence
of a large superconducting phase, see Sec. 14.2.2. Since the Heisenberg interaction does not
have a k-space structure, the competition between the antiferromagnetic phase with the super-
conducting and Kondo phase is not expected to crucially depend on their k space symmetry.
The parameter x, the balancing factor introduced in the decoupling of the Heisenberg term,
influences the effective Heisenberg interaction in the magnetic channel tuning the ground state
of the system. We therefore consider it as an input parameter to our theory. Numerical results
are shown for x = 0.3, slightly favoring the superconducting instability, and are supplemented
by a discussion on how the results are affected by different values of x.

Within this mean-field approach the phases are distinguished by the values of the parameters
b, ∆ and Ms. For zero staggered magnetization, Ms = 0, the phases are classified as in
Sec. 14.2.1: a heavy Fermi liquid phase FL, a spin Fermi liquid FL*, a superconducting phase
SC and a decoupled phase arise depending on the values of b and ∆. Theoretically, a nonzero
Ms can coexist with all these phases. However, numerically we simply find a phase with Ms 6= 0
and b = ∆ = 0, which is denoted by AFM. An overview of the configuration of parameters in
each phase is given by Table 14.1.

Numerical phase diagrams are depicted in Fig. 14.5: The ground state phase diagram
(Fig. 14.5(a)) as a function of the applied magnetic field B and the Kondo coupling J0 and
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Figure 14.5: Mean-field phase diagram for a dx2−y2-hybridization and a dxy superconducting pairing
in the presence of a Heisenberg term with the parameters JH = 0.05, x = 0.3, nc = 0.3 and t = 1.
(a) Ground state phase diagram in dependence of magnetic field B and Kondo coupling J0. (b,c)
Temperature-field phase diagrams for J0 = 0.5 and J0 = 1.1, respectively, which are marked by a gray
line in (a). Thick (thin) lines refer to first (second) order phase transitions.

two examples for temperature-field phase diagrams (Fig. 14.5(b) and (c)) for different Kondo
couplings leading to FL* and a SC ground state. Please note that the uniform magnetiza-
tion Mu is finite for non-zero field. The system becomes fully polarized (Mu = 1/2) in the
decoupled phase at B > 0 and T = 0.

Upon tuning the balancing factor x the phase diagrams change. Let us focus on the ground
state phase diagram as a function of magnetic field B and Kondo coupling J0. Increasing
the value of x enlarges the AFM phase suppressing the FL* phase. The SC phase shrinks in
favor of the FL phase. The phase diagram for x = 0.5 depicted in Fig. 14.6 already shows a
complete suppression of the FL* phase and a first-order phase transition between AFM and
SC down to B = 0.

14.3.3 Discussion

Depending on the relation of the couplings J0/JH and the balancing factor x between super-
conductivity and magnetic ordering the ground state of the mean-field system can be tuned
modeling an ambient-pressure superconductor like CeCoIn5 and CeIrIn5 or antiferromagnet
like CeRhIn5.
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14 Competition between Kondo screening and ordering

b ∆ Ms

decoupled 0 0 0
FL × 0 0
FL* 0 × 0
SC × × 0

AFM 0 0 ×

Table 14.1: Parameter assignments for the phases occurring in the phase diagrams, Fig. 14.5. A cross
denotes a finite value of the specific parameter.

If we consider e.g. the configuration with JH = 0.05 and x = 0.5 (Fig. 14.6), superconductiv-
ity and antiferromagnetism do not coexist, but are separated by a first order phase transition
in mean-field theory, which is in contrast to the experimental situation in CeRhIn5, where a
coexistence region develops.

Within mean-field theory SC and FL phase are neither separated by an AFM phase, nor a
suppression of the AFM in favor of the SC phase is observable. As expected for a Pauli-limited
superconductor in a magnetic field, whose pair breaking is determined by spin and not orbital
pair breaking effects, the phase transition between SC and FL phase is of first order in the
low-temperature range (Maki, 1966), see Fig. 14.5(c). Therefore, this mean-field approach is
not sufficient to explain the emergence of a quantum critical point at the breakdown of super-
conductivity in CeCoIn5 and support the picture of a suppressed magnetic phase producing
the quantum criticality.

In general, mean-field theory is a good approach to obtain analytical and numerical results in
a non-pertubative regime. This work was able to illustrate the competition between Kondo
screening and superconductivity based on the momentum space structure of the hybridization
and the pairing function. A possible additional instability towards antiferromagnetism can
be captured at the level of mean-field theory. However, concerning the phase competition
between antiferromagnetism and superconductivity, it was shown that the presented mean-
field approximation is too simplistic for describing the physics in the considered 115-materials.

Figure 14.6: Ground state phase diagram as a
function of magnetic field B and Kondo cou-
pling J0 acquired from mean-field theory for
dx2−y2-hybridization and dxy-superconductivity
with x = 0.5, JH = 0.05, nc = 0.3 and t = 1.
Thick (thin) lines refer to first (second) order
phase transitions.
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15 Conclusion

This part was concerned with the aspects arising from a non-local hybridization in a heavy
fermion metal, studied in the framework of a large-N like mean-field approach. The focus
was on two-dimensional systems, however the generalization to three-dimensional systems is
straightforward

The low-temperature properties in the metallic Fermi liquid phase are determined by the
strongly anisotropic band structure. Along the Fermi surface we can distinguish between
regions with vanishing and strong hybridization, which directly influence the character of the
quasiparticles: While quasiparticles in nodal direction are light and of c-character, the ones
in antinodal direction are heavy and more f -like. In general, thermodynamic properties are
dominated by the antinodal quasiparticles, transport is made by light nodal quasiparticles.

For a two-dimensional system, transport properties like thermal and electrical conductivity
do not reflect the anisotropy of the system. The Wiedemann-Franz law is conserved. The
optical conductivity in the Fermi liquid regime is sensitive on nodal lines crossing the Fermi
surface: Spectral weight is shifted to lower frequencies and essentially fills the optical gap.

The momentum-dependence of the hybridization function has strong influence on the phase
competition with unconventional superconductivity. For energies or temperatures well below
the Kondo temperature TK, pairing is dominated by antinodal quasiparticles favoring those
pairing symmetries with large contributions in the antinodal regions. At T ∼ TK nodal
quasiparticles are more susceptible to pairing. However, strong interaction effects and inelastic
processes limit the applicability of mean-field theory.

Depending on the coupling strengths an instability towards an additional antiferromagnetic
phase competes with Kondo screening and superconductivity. Experimentally observed co-
existence regions of antiferromagnetic ordering and superconductivity cannot be recovered at
the level of mean-field theory.

The suggested scenario is likely to be realized in the CeM In5 compound series or other heavy
fermion compounds based on Ce or Yb with a similar gapless signature in the optical con-
ductivity (Burch et al., 2007). For CeIrIn5 microscopic considerations using a local den-
sity approximation in combination with DMFT (LDA+DMFT) support the existence of a
momentum-dependent hybridization (Shim et al., 2007).

Ways to detect an anisotropic hybridization might e.g. be given by angle-resolved photoe-
mission spectroscopy or X-ray absorption (Hansmann et al., 2008). Transport properties in
two-dimensional systems stay isotropic even for an anisotropic hybridization. However, prob-
ing higher-order correlation functions, e.g. by measuring angle-dependent magnetoresistance,
might reveal the system’s anisotropy.
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B Green functions

In this appendix, we list the expressions of Green functions required for the implementation
of the mean-field theory.

B.1 Green functions for the Kondo lattice model

The Kondo-lattice mean-field Hamiltonian (10.10) can be rewritten in a matrix form:

HKLM,MF =
∑

kσ

Ψ†k

(
ε̄k bβk

bβk −λ0

)

︸ ︷︷ ︸
Ĥk

Ψk + const. (B.1)

with Ψk =
(
ckσ, f̃kσ

)T
. In the following, we shall denote retarded Green functions

ĜAB(z) =

∞∫

0

dteizt
(
−iθ(t)〈[Â(t), B̂(0)]+〉

)
(B.2)

as 〈〈Â; B̂〉〉z. Defining the matrix propagator

Ĝ(k, z) = 〈〈Ψ̂†k; Ψ̂k〉〉 =
(
z − Ĥk

)−1
, (B.3)

we obtain by explicit inversion

Ĝ(k, z) =

(
〈〈c†kσ; ckσ〉〉z 〈〈c†kσ; f̃kσ〉〉z
〈〈f̃ †kσ; ckσ〉〉z 〈〈f̃

†
kσ; f̃kσ〉〉z

)

=
1

(z − z1k)(z − z2k)

(
z + λ0 bβk

bβk z − ε̄k

)
.

(B.4)

The thermal expectation values required for the mean-field equation are obtained by sum-
ming over Matsubara frequencies; this can be done analytically, since the excitation energies,
Eq. (11.4), are known.

B.2 Green functions in the presence of a Heisenberg term

The Hamiltonian containing the additional Heisenberg term, Eq. (14.1), has to be rewritten
in a matrix form in analogy to Appendix B.1. The inversion of (z − Ĥk) provides the needed
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Green functions. We use the shorthand h(k, z) =
∏
i(z − z̄k,i) with z̄k,i given by Eq. (14.10).

〈〈f̃ †k↑; f̃k↑〉〉z =
(z − ε̄k)((z − λ0)(z + ε̄k)− b2γ2

k)
h(k, z)

, (B.5a)

〈〈f̃−k↓; f̃
†
−k↓〉〉z =

(z + ε̄k)((z + λ0)(z − ε̄k)− b2γ2
k)

h(k, z)
, (B.5b)

〈〈f̃ †k↑; f̃
†
−k↓〉〉z = 〈〈f̃−k↓; f̃k↑〉〉z =

W̃k(z2 − ε̄2k)
h(k, z)

, (B.5c)

〈〈c†k↑; c
†
−k↓〉〉z = 〈〈c−k↓; ck↑〉〉z = −W̃kb

2β2
k

h(k, z)
, (B.5d)

〈〈c†k↑; f̃k↑〉〉z = 〈〈f̃ †k↑; ck↑〉〉z =
bβk((z − λ0)(z + ε̄k)− b2β2

k)
h(k, z)

, (B.5e)

〈〈f̃−k↓; c
†
−k↓〉〉z = 〈〈c−k↓; f̃

†
−k↓〉〉z =

−bβk((z + λ0)(z − ε̄k)− b2β2
k)

h(k, z)
, (B.5f)

〈〈c†k↑; ck↑〉〉z =
−b2β2

k(z + λ0) + (z + ε̄k)(z2 − W̃ 2
k − λ2

0)
h(k, z)

, (B.5g)

〈〈c−k↓; c
†
−k↓〉〉z =

−b2β2
k(z − λ0) + (z − ε̄k)(z2 − W̃ 2

k − λ2
0)

h(k, z)
. (B.5h)
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C Specific heat at low T

The specific heat in the framework of the mean-field theory is defined by

CV = −T d
2F [T, b, µ, λ0]

dT 2
, (C.1)

where the free energy F is given by Eq. (11.5). In this appendix we show that the occurring
temperature derivatives can approximately be substituted by partial derivatives in the low-
temperature limit.

The first derivative by T is equivalent to a partial derivative,

CV = −T d

dT

(
dF [T, b, µ, λ0]

dT

)
= −T d

dT

(
∂F [T, b, µ, λ0]

∂T

)
, (C.2)

because the partial derivatives by the mean-field parameters vanish at the saddle point,
e.g. ∂F/∂b ≡ 0. The specific heat can be explicitly written as

CV = −T
[
∂2F
∂T 2

+
∂b

∂T

(
∂

∂b

(
∂F
∂T

))
+
∂µ

∂T

(
∂

∂µ

(
∂F
∂T

))
+
∂λ0

∂T

(
∂

∂λ0

(
∂F
∂T

))]
. (C.3)

In the following we focus on the second term,

∆C(b)
V = −T ∂b

∂T

(
∂

∂b

(
∂F
∂T

))
, (C.4)

which contains corrections in the specific heat arising from the temperature dependence of b.
The third and the fourth term behave in an analogous fashion.

While the temperature derivative of the mean-field parameter is linear in T ,

∂b

∂T
= − 2b0

T 2
coh

T , (C.5)

the expression

∂

∂b

(
∂F
∂T

)
= −

∑

α=1,2

∑

k

n′F (zαk)
∂zαk
∂b

, (C.6)

with the Fermi function nF (x) = (1 + exp(x/T ))−1 is of the order O(1) for T → 0. Therefore,
the correction

∆C(b)
V ∼ T 2 , (C.7)

can be neglected in the low-temperature limit and we can approximate

CV ≈ −T
∂2F [T, b, µ, λ0]

∂T 2
. (C.8)

123



C Specific heat at low T

124



D Optical conductivity

D.1 Current operator

The polarization operator within the ALM mean-field description, given by Eq. (11.25) is
rewritten by using the Fourier transforms of the contained operators according to ai =
1/
√
N∑k e

−ikRiak:

PMF =
1
N

∑

i,σ′,k′,k′′
Rie

i(k′−k′′)Ri

(
c†k′σ′ck′′σ′ + f̄ †k′σ′ f̄k′′σ′

)
. (D.1)

Simplified with the commutation relations
[
c†kσckσ, c

†
k′σ′ck′′σ′

]
= c†kσck′′σδk,k′δσσ

′ − c†k′σckσδk,k′′δσσ′ , (D.2)
[
c†kσf̄kσ, f̄

†
k′σ′ f̄k′′σ′

]
= c†kσf̄k′′σδk,k′δσσ

′ , (D.3)
[
f̄ †kσckσ, f̄

†
k′σ′ f̄k′′σ′

]
= −f̄ †k′σckσδk,k′′δσσ′ , (D.4)

the mean-field current operator becomes

jMF = i
1
N

∑

i,σ,k′,k′′
Rie

i(k′−k′′)Ri

((
εk′ − εk′′

)
c†k′σck′′σ+

+r
(
−Vk′′

(
f̄ †k′σck′′σ + c†k′σf̄k′′σ

)
+ Vk′

(
f̄ †k′σck′′σ + c†k′σf̄k′′σ

)))
.

(D.5)

We substitute the momentum k′′ by p = k′−k′′ and exploit the relation
∑

i Rie
ikRi = N iδ′(k):

jMF =
∑

k′,p,σ

δ′(p)
((
εk′ − εk′−p

)
c†k′σck′−pσ+

+r
(
−Vk′−p

(
f̄ †k′σck′−pσ + c†k′σf̄k′−pσ

)
+ Vk′

(
f̄ †k′σck′−pσ + c†k′σf̄k′−pσ

)))
.

(D.6)

The δ-function derivative is replaced by using a discretized version of the relation
∫ x+a
x−a dtδ

′(t−
x)F (t) = −F ′(x):

∑

p

δ′(p)F (p) = −
∑

p

δp,0∇pF (p). (D.7)

The mean-field current operator becomes

jMF =
∑

k′,p,σ

δp,0

((
−∇pεk′−p

)
c†k′σck′−pσ + r

(
−∇pVk′−p

)(
f̄ †k′σck′−pσ + c†k′σf̄k′−pσ

))

=
∑

kσ

(
∇kεkc

†
kσckσ + r∇kVk (c†kσf̄kσ + f̄ †kσckσ)

)
.

(D.8)
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D.2 Current-current correlation function

Within the mean-field approximation the system consists of non-interacting particles. There-
fore, the current-current correlation function, defined by Eq. (11.21), reduces to the bare bubble
diagram containing mean-field propagators and a current vertex given by jMF, Eq. (11.26).

Four-operator expectation values occurring in Π(iω) are simplified with the Wick theorem,
e.g.

〈
Tτ

(
f̄ †kσckσ

)
(τ)
(
f̄ †k′σ′ck′σ′

)
(0)
〉

= δkk′δσσ′Gf̄ c(k,−τ)Gcf̄ (k, τ) . (D.9)

Π(iωn) can be split into

Π(ij)(iωn) = Π(ij)
0 (iωn) + Π(ij)

mixed(iωn) + Π(ij)
hybr(iωn) (D.10)

with

Π(ij)
0 (iωn) = − 1

β

∑

k,ikn

∇ε(i)k ∇ε
(j)
k Gc(k, ikn + iωn)Gc(k, ikn) , (D.11a)

Π(ij)
mixed(iωn) = − 1

β

∑

k,ikn

r
(
∇ε(i)k ∇V

(j)
k +∇ε(j)k ∇V

(i)
k

)
·

·
[
Gcf̄ (k, ikn + iωn)Gc(k, ikn) + Gc(k, ikn + iωn)Gcf̄ (k, ikn)

]
,

(D.11b)

Π(ij)
hybr(iωn) = − 1

β

∑

k,ikn

r2∇V (i)
k ∇V

(j)
k

[
2Gcf̄ (k, ikn + iωn)Gcf̄ (k, ikn)+

+Gc(k, ikn + iωn)Gf̄ (k, ikn) + Gf̄ (k, ikn + iωn)Gc(k, ikn)
]
.

(D.11c)

The superscript (i) denotes the ith vector component. The Green functions are given in
Appendix B.1 The Matsubara summation over ikn is replaced by a Contour integral, which
can easily be performed with the residue theorem. As we work in the low-temperature regime
we neglect the thermal occupation of the upper band z1k. This is accomplished by setting
nF (z1k) to zero. Averaging over x- and y-direction by Π(iωn) = 1/2

∑
i=x,y Π(ii)(iωn) leads to

Π0(iωn) =
∑

k

(∇εk)2 nF (z2k)
(z2k − ε̃f )(z1k − ε̃f )

2(z1k − z2k)2
F(k, iωn) , (D.12a)

Πmixed(iωn) = 2r2
∑

k

Vk∇εk∇VknF (z2k)
z2k + z1k − 2ε̃f
2(z1k − z2k)2

F(k, iωn) , (D.12b)

Πhybr(iωn) = r2
∑

k

(∇Vk)2 nF (z2k)
(z1k − z2k)2 + 4r2V 2

k

2(z1k − z2k)2
F(k, iωn) , (D.12c)

where the abbreviations ε̃f = εf − λ and F(k, iωn) =
(

1
iωn−(z1k−z2k) − 1

iωn+(z1k−z2k)

)
are used.

The real part of the optical conductivity is

σ1(ω) =
π

ω

∑

k

nF (z2k)
2(z1k − z2k)2

Akδ(ω − (z1k − z2k)) (D.13)
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with

Ak = (∇kεk)2 (z2k − ε̃f )(z1k − ε̃f ) + r2 (∇kVk)2 ((z1k − z2k) + 4r2V 2
k

)
+

+ 2r2Vk∇εk∇Vk (z2k + z1k − 2ε̃f ) .
(D.14)

D.3 Behavior of σ1 in the vicinity of the gap

This section is concerned with an estimate for the behavior of the real part of the optical
conductivity σ1 near the optical gap at ω = −λ0 for a dx2−y2-wave hybridization. It is
dominated by the δ-function in Eq. (D.13),

δ


ω −

√
(λ0 + ε̄k)2 + 4b2β2

k︸ ︷︷ ︸
∆E(kx,ky)


 , (D.15)

while the non-singular matrix elements only have influence on the prefactor without changing
the general behavior.

A change of variables to

k̃x =
1√
2

(kx + ky − 2k0) (D.16a)

k̃y =
1√
2

(−kx + ky) (D.16b)

with k0 determined by ε̄(k0, k0) = 0 is favorable here. For small values of ω + λ0 the function
∆E(k̃x, k̃y) can be approximated in a second-order Taylor expansion in k̃x and k̃y around 0,

∆E(k̃x, k̃y) ≈ −λ0 −
√

8t2 − µ2

2
k̃x +

µ

4
k̃2
x +

λ0µt
2 + b2(µ2 − 16t2)

4λ0t
k̃2
y, (D.17)

which allows to rewrite the δ function as

δ(ω −∆E(k̃x, k̃y)) =
1

|∂ekx∆E(k̃x, k̃y|
δ
(
k̃x − g(k̃y, ω)

)
(D.18)

where g(k̃y, ω) is implicitly determined by ω −∆E(g(k̃y, ω), k̃y) = 0.
We approximate

σ1(ω) ∝ 1
ω

∑

k

nF (z2k)δ(ω − (z1k − z2k)) . (D.19)

The factor nF (z2k) in σ1 restricts the k-summation to the Fermi sea. The integration bound-
aries given by the Fermi surface can as well be approximated by expanding around k̃x, k̃y = 0.
The evaluation of this integral shows that the first non-vanishing contribution to the optical
conductivity for a dx2−y2-wave hybridization is ∼

√
ω + λ0.
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E Electrical conductivity

The electrical conductivity is given as the zero-frequency part of σ(ij)(ω), which is defined by
Eq. (11.20). In order to account for elastic scattering processes among the quasiparticles, the
Green functions (11.29) are used for the calculation of the zero-frequency current-current cor-
relation function. Due to the additional self-energy Σ1,2 the Wick theorem is not applicable in
this situation. We start this calculation with the expression for the current-current correlation
function Π(ij)(iωn) in terms of the Green functions Gc, Gf̄ and Gf̄ c, given by Eqs. (D.10) and
(D.11). These Green functions are related to the quasiparticle Green functions G1,2 via

Gc = u2
kG1 + v2

kG2 , (E.1)
Gf = v2

kG1 + u2
kG2 , (E.2)

Gf̄ c = ukvk(G1 − G2) , (E.3)
Gcf̄ = vkuk(G1 − G2) . (E.4)

The prefactors uk and vk originate in the Bogoliubov transformation

ck = ukγ1k + vkγ2k , (E.5)
f̄k = vkγ1k − ukγ2k , (E.6)

and are defined by

u2
k =

(z2k − ε̃f )2

V 2
k + (z2k − ε̃f )2

, (E.7)

v2
k =

V 2
k

V 2
k + (z2k − εk)2

, (E.8)

uk = − Vk

z1k − εk
vk. (E.9)

The current-current correlation function can be written as

Π(ij)(iωn) = − 1
β

∑

k,ikn

∑

µ,ν=1,2

Gµ(k, ikn + iωn)Gν(k, ikn)ξ(ij)
µν (k) (E.10)

with

ξ
(ij)
11 (k) = 4u2

kv
2
kr

2∇V (i)
k ∇V

(j)
k + u4

k∇ε
(i)
k ∇ε

(j)
k + 2u3

kvkr
(
∇V (i)

k ∇ε
(j)
k +∇ε(i)k ∇V

(j)
k

)
(E.11)

ξ
(ij)
12 (k) =

(
v2
k − u2

k

)2
r2∇V (i)

k ∇V
(j)
k + u2

kv
2
k∇ε

(i)
k ∇ε

(j)
k + (E.12)

+ ukvk(v2
k − u2

k)r
(
∇V (i)

k ∇ε
(j)
k +∇ε(i)k ∇V

(j)
k

)

ξ
(ij)
22 (k) = 4u2

kv
2
kr

2∇V (i)
k ∇V

(j)
k + v4

k∇ε
(i)
k ∇ε

(j)
k − 2ukv

3
kr
(
∇V (i)

k ∇ε
(j)
k +∇ε(i)k ∇V

(j)
k

)
(E.13)
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and ξ
(ij)
21 (k) = ξ

(ij)
12 (k).

We introduce the abbreviation

Aµν(k, iωn) =
1
β

∑

ikn

Gµ(k, ikn)Gν(k, ikn + iωn) (E.14)

and evaluate the contained Matsubara summation by integrating along the branch cut in the
Contour integral. The self-energies Σ1,2 prevent an evaluation with the residue theorem.

Aµν(k, iωn) = −
∞∫

−∞

dε

2πi
nF (ε) {[Gµ(ε+ iη)− Gµ(ε− iη)]Gν(ε+ iωn)+

+Gµ(ε− iωn) [Gν(ε+ iη)− Gν(ε− iη)]} .

(E.15)

Substituting iωn → ω + iη and using the relation

G(ε+ iη)− G(ε− iη) = 2iImGret(ε) (E.16)

leads to

Aµν(k, ω + iη) = −
∞∫

−∞

dε

π

{
nF (ε)ImGret

µ (k, ε)Gret
ν (k, ε+ ω)+

+nF (ε+ ω)Gav
µ (k, ε)ImGret

ν (k, ε+ ω)
}
.

(E.17)

The real part of the electrical conductivity is given by

Re(σ(ij)(ω = 0)) = −
∑

k

γ(ij)
µν (k) lim

ω→0

1
ω

ImAµν(k, ω + iη) , (E.18)

where in the zero-frequency limit we can write

lim
ω→0

1
ω

ImAµν(k, ω + iη) =
1
β

∞∫

−∞

dε

2π
n′F (ε)ImGret

µ (k, ε)ImGret
ν (k, ε), (E.19)

while exploiting the relation ImGav(ε) = −ImGret(ε) and

lim
ω→0

(nF (ε+ ω)− nF (ε))/ω = n′F (ε). (E.20)

In relaxation-time approximation

(
ImGret

µ (k, ε)
)2 → 2πδ(ε− zµk)

Γµ(ε)
, (E.21)

where the quasiparticle scattering rate fulfills the relation Γµ(ε) = −ImΣµ(ε).
The influence of the upper band z1k will now be neglected and therefore the electrical

conductivity tensor becomes

Re(σ(ij)(ω = 0)) = −
∑

kσ

n′F (z2k)
Γ(z2k)

ξ
(ij)
22 (k) , (E.22)

where we set Γ = Γ2.
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F Wiedemann-Franz law in isotropic Fermi
liquid theory

Within this appendix we give a derivation of the Wiedemann-Franz law in the context of
isotropic Fermi liquid theory. For a one-band system with elastic scattering the ratio between
thermal and electrical conductivity becomes

κii
σiiT

=

∑
k

(
εQPk

)2
((
∇kε

QP
k

)(i)
)2

n′F (εQPk )/Γ(εQPk )

T 2
∑

k

((
∇kε

QP
k

)(i)
)2

n′F (εQPk )/Γ(εQPk )
. (F.1)

The isotropic quasi-particle energy εQPk is approximated as

εQPk = vF (|k| − kF ) . (F.2)

The Fermi velocity vF =
∣∣∣∇kε

QP
k

∣∣∣ is a constant and the k-summations occurring in Eq. (F.1)

can be transformed into energy integrals. The density of states for the dispersion εQPk is
constant in two dimensions and we can write

κii
σiiT

=
∫

dεε2n′F (ε)/Γ(ε)
T 2
∫

dεn′F (ε)/Γ(ε)
. (F.3)

In order to show the temperature-independence of this ratio the T -dependence contained in
the Fermi function nF (ε) = (1 + exp(ε/(kBT )))−1 is pulled out of the integral by substituting
E = ε/(kBT ). Under the assumption that the scattering rate Γ can be expressed by its leading
polynomial contribution, the ratio reduces to a constant L

κii
σiiT

=
k2
B

∫
dEE2n′F (E)/Γ(E)∫
dεn′F (E)/Γ(E)

= L. (F.4)

In the limit of constant scattering rate, L can be evaluated as

L0 =
π2

3

(
kB
e

)2

. (F.5)

Please note, that the electron charge e was set to 1 in previous calculations and is now rein-
troduced for consistency reasons.
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G Calculation of observables with constrained
slave particles

Given a HamiltonianH containing a single impurity, whose degrees of freedom are parametrized
by slave particles that have to fulfill the constraint Q = 1, where Q is the slave particle number,
a diagrammatic expansion can be developed in the grand-canonical (GC) ensemble and the
grand-canonical result can be connected to the result in the physical subspace obeying Q = 1
(Coleman, 1984).

The constraint is fixed by a Lagrange parameter λ acting like a chemical potential. The
Hamiltonian can be written as H ′ = H + λQ. Under the condition that the Hamiltonian H
preserves the number of slave particles, the GC partition function can be written as a sum of
canonical partition functions for each subspace:

ZGC = Tr
[
e−β(H+λQ)

]
=
∞∑

Q=0

ZC(Q)e−βλQ. (G.1)

The canonical partition function in the physical subspace with {Q = 1} can be expressed as

ZC(Q = 1) = lim
λ→∞

∂

∂ξ
ZGC , (G.2)

where ξ = exp(−βλ) is the fugacity.
In the GC ensemble the expectation values of the operator Q and the product OQ, where

O is an arbitrary operator, read

〈OQ〉GC =
Tr
[
OQe−β(H+λQ)

]

Tr
[
e−β(H+λQ)

] , 〈Q〉GC =
Tr
[
Qe−β(H+λQ)

]

Tr
[
e−β(H+λQ)

] , (G.3)

which can be combined to

〈OQ〉GC
〈Q〉GC

=
Tr
[
OQe−β(H+λQ)

]

Tr
[
Qe−β(H+λQ)

] . (G.4)

Taking the limit λ → ∞ in the last expression, the numerator and denominator have to be
considered separately. The contribution from the subspace with Q = 0 is zero, while terms of
the order O(e−2βλ) vanish for λ → ∞. Only the terms in {Q = 1}-subspace remain and we
can identify the expectation value of O in the physical subspace as

〈O〉phys =
Tr
[
Oe−βH

]
Q=1

ZC(Q = 1)
(G.5)
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with the described limit

〈O〉phys = lim
λ→∞

〈OQ〉GC
〈Q〉GC

. (G.6)

If 〈O〉GC vanishes in the subspace with Q = 0, this relation can be further simplified to

〈O〉phys =
(

lim
λ→∞

) 〈O〉GC
〈Q〉GC

. (G.7)

The expression in the denominator can be calculated as

〈Q〉GC =

∑∞
Q=0Qe

−βλQ
∑∞

Q=0 e
−βλQ =

(
e−βλ +O(e−2βλ)

)
, (G.8)

leading to

〈O〉phys = lim
λ→∞

eβλ 〈O〉GC . (G.9)
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H Mean-field Hamiltonian with magnetic
ordering

In order to allow for antiferromagnetic ordering with the wave vector Q = (π, π), the con-
sidered unit cell consists of two lattice sites. This doubling of the unit cell is accounted for
by introducing a new set of operators cpν and f̃pν , where ν = A,B is the sublattice in-
dex. In this appendix we present the rewriting of all terms of the mean-field Hamiltonian
HKLM,MF + xHH,AFM,MF + (1 − x)HH,SC,MF + HZ with respect to the new operators. The
resulting Hamiltonian is compactly written in matrix form.

H.1 Rewriting

HH,AFM,MF (Eq. (14.19)) and HZ (Eq. (14.18)) can be expressed in terms of the new operators
in a straightforward way:

HH,AFM,MF = 2JH
∑

r,σ

[
Ms

(
f̃ †A,r,σf̃A,r,σ̄ − f̃

†
B,r,σf̃B,r,σ̄

)
+Mu

∑

ν

σf̃ †ν,r,σf̃ν,r,σ

]
+

+ 2JHN (M2
s −M2

u) (H.1)

= 2JH
∑

p,σ

[
Ms

(
f̃ †A,p,σf̃A,p,σ̄ − f̃

†
B,p,σf̃B,p,σ̄

)
+Mu

∑

ν

σf̃ †ν,p,σf̃ν,p,σ

]
+

+ 2JHN (M2
s −M2

u) (H.2)

and

HZ = −B
2

∑

r,σ,ν

σ
(
c†ν,r,σcν,r,σ + f̃ †ν,r,σf̃ν,r,σ

)
(H.3)

= −B
2

∑

p,σ,ν

σ
(
c†ν,p,σcν,p,σ + f̃ †ν,p,σf̃ν,p,σ

)
. (H.4)

The index ν refers to the sublattice and r to the unit cell; p lies in the reduced Brillouin
zone. For rewriting the other parts of the Hamiltonian, HKLM,MF (Eq. (10.10)) and HH,SC,MF

(Eq. (14.6)), which are given as sums over operators in k space, the operators ck and f̃k have
to be rewritten in terms of cν,p and f̃ν,p. First, a different set of operators is defined,

c̄1,p = cp and c̄2,p = cp+Q, (H.5)
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which evolve from ck by backfolding the original to the reduced BZ with the vector Q. Then
they can be expressed as:

c̄1,p ≡ cp =
1√
N
∑

i

e−ipRici =
1√
N
∑

r

(
e−ip(Rr+rA)cA,r + e−ip(Rr+rB)cB,r

)

=
1√
2

(cA,p + cB,p) , (H.6a)

c̄2,p ≡ cp+Q =
1√
N
∑

i

e−i(p+Q)Rici =
1√
N
∑

r

(
e−i(p+Q)(Rr+rA)cA,r + e−i(p+Q)(Rr+rB)cB,r

)

=
1√
2

(cA,p − cB,p) . (H.6b)

For f̃ analogous expressions hold.
Using the relations (H.5) and (H.6), we can write

HH,SC,MF =
∑

p,ν

[
W̃p + W̃p+Q

2
f̃ †ν,p,↑f̃

†
ν,−p,↓ +

W̃p − W̃p+Q

2
f̃ †ν,p,↑f̃

†
ν̄,−p,↓ + h.c.

]
+

+ JHN∆2 , (H.7)

where W̃p = −JH∆αp contains the symmetry of the superconducting pairing, and

HKLM,MF =
∑

p,σ,ν

{[
ε̄p + ε̄p+Q

2
c†ν,p,σcν,p,σ +

ε̄p − ε̄p+Q

2
c†ν,p,σcν̄,p,σ

]
− λ0f̃

†
ν,p,σf̃ν,p,σ+

+
[
b(βp + βp+Q)

2
c†ν,p,σf̃ν,p,σ +

b(βp − βp+Q)
2

c†ν,p,σf̃ν̄,p,σ + h.c.
]}

+

+ µNnc + λ0N +N b2

J0
. (H.8)

H.2 Matrix form

The complete Hamiltonian containing the parts Eqs. (H.2), (H.4), (H.7) and (H.8) is summa-
rized to

HMF =
1
2

∑

p

Ψ†pÂpΨp + const. (H.9)

with

Âp =
(
ĥ11p ĥ12p

ĥ21p ĥ22p

)
. (H.10)
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H.2 Matrix form

The off-diagonal elements are equal (ĥ12p = ĥ21p). The matrices read:

ĥ11p =




−µ− B
2 0 0 0 ε̄p 0 0 0

0 −µ− B
2 0 0 0 ε̄p 0 0

0 0 µ+ B
2 0 0 0 −ε̄p 0

0 0 0 µ+ B
2 0 0 0 −ε̄p

ε̄p 0 0 0 −µ− B
2 0 0 0

0 ε̄p 0 0 0 −µ− B
2 0 0

0 0 −ε̄p 0 0 0 µ+ B
2 0

0 0 0 −ε̄p 0 0 0 µ+ B
2




, (H.11)

ĥ12p =




v+
p 0 0 0 v−p 0 0 0
0 v+

p 0 0 0 v−p 0 0
0 0 −v+

p 0 0 0 −v−p 0
0 0 0 −v+

p 0 0 0 −v−p
v−p 0 0 0 v+

p 0 0 0
0 v−p 0 0 0 v+

p 0 0
0 0 −v−p 0 0 0 −v+

p 0
0 0 0 −v−p 0 0 0 −v+

p




, (H.12)

with the shorthand v±p = b(βp ± βp+Q)/2, and

ĥ22p =




−λ0 −mu −ms 0 w+
p 0 0 0 w−p

−ms −λ0 +mu −w+
p 0 0 0 −w−p 0

0 −w+
p λ0 +mu ms 0 −w−p 0 0

w+
p 0 ms λ0 −mu w−p 0 0 0
0 0 0 w−p −λ0 −mu ms 0 w+

p

0 0 −w−p 0 ms −λ0 +mu −w+
p 0

0 −w−p 0 0 0 −w+
p λ0 +mu −ms

w−p 0 0 0 w+
p 0 −ms λ0 −mu




,

(H.13)

with w±p = (1− x)(W̃p ± W̃p+Q)/2, ms = 2xJHMs and mu = B
2 − 2xJHMu.
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thesis, Université Joseph Fourier-Grenoble (2001).

Burdin, S. Low energy scales of Kondo lattices: mean-field perspective. In Proceedings of the
NATO Advanced Research Workshop of Hvar, Croatia (2008).

139



Bibliography: Heavy fermion compounds

Burdin, S., A. Georges, and D. R. Grempel. Coherence scale of the Kondo lattice. Phys. Rev.
Lett 85, 1048 (2000).

Chen, G. F., K. Matsubayashi, S. Ban, K. Deguchi, and N. K. Sato. Competitive coexistence of
superconductivity with antiferromagnetism in CeRhIn5. Phys. Rev. Lett. 97, 017 005 (2006).

Coleman, P. New approach to the mixed-valence problem. Phys. Rev. B 29, 3035 (1984).

Coleman, P. Handbook of magnetism and advanced magnetic materials, volume 1, page 95.
Wiley, New York (2007).

Coleman, P. and A. M. Tsvelik. Local moments in an interacting environment. Phys. Rev. B
57, 12 757 (1998).

Coqblin, B. and J. R. Schrieffer. Exchange interaction in alloys with Cerium impurities. Phys.
Rev. 185, 847 (1969).

Cox, D. L. and A. Zawadowski. Exotic Kondo effects in metals: Magnetic ions in a crystalline
electric field and tunneling centers. Taylor and Francis Inc. (1999).

Degiorgi, L. The electrodynamic response of heavy-electron compounds. Rev. Mod. Phys. 71,
687 (1999).
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16 Introduction

The existence of a Fermi surface in cuprate superconductors is a long-standing issue and im-
portant for the understanding of the underlying pairing mechanism. The recent discovery of de
Haas-van Alphen and Shubnikov-de Haas oscillations in underdoped YBCO (Doiron-Leyraud
et al., 2007) was considered as the long awaited proof that a Fermi surface indeed exists.
However, the observed quantum oscillations seem to be in disagreement with measurements
of angle-resolved photoemission spectroscopy (ARPES), which suggests the existence of Fermi
arcs, truncated segments of the Fermi surface.

In this work we make an attempt to establish a coherent picture for the underdoped phase in
cuprates: In contrast to the semiclassical approach suitable for metals we show that quantum
oscillations do not necessarily require closed Fermi surfaces but can be reconciled with Fermi
arcs, when they are terminated by a pairing gap.

This introductory chapter covers three aspects. It gives a short overview over cuprate
superconductors, which were extensively studied in the last twenty years. It discusses the
semiclassical theory explaining quantum oscillations in metals, and reviews the experimental
situation of quantum oscillation in cuprates.

16.1 Cuprate superconductors

In the year 1986, Bednorz and Müller (1986) discovered superconductivity in the material
La2−xBaxCuO4 with a transition temperature of 30 K, which corresponds to an increase of
around 7 K in comparison with the conventional superconductors known at that time. The
properties found in this material are highly non-trivial and the way was paved for a new era
in condensed matter physics.

Besides LaBaCuO, several cuprate materials display high-temperature superconductivity;
the first one with a transition temperature Tc above the boiling point of liquid nitrogen (77
K) was YBa2Cu3O7−x (YBCO) (Wu et al., 1987) with Tc = 93 K, discovered in 1987, only
one year after the breakthrough of Bednorz and Müller. The current record with Tc = 133 K
is held by HgBa2Ca2Cu3O8+x (Schilling et al., 1993).

Compared to conventional superconductors evolving from a metal, the features of cuprate
superconductors are highly unusual and the mechanism producing the superconductivity is to
date not fully understood. They all have in common a layered structure with CuO2 layers
orthogonal to the c-direction, which are believed to contain the carriers involved in the su-
perconductivity. These carriers are sharply localized within these planes leading to a strongly
anisotropic behavior. In comparison to ordinary metals the carrier density is small, which
is accompanied by a large Coulomb repulsion between the carriers. As an effect, the pen-
etration depth λ is significantly enhanced compared to a conventional superconductor. In

149



16 Introduction

(a)

oxides.8 We shall use, as an example, the archetypical
cuprate superconductor La2!xSr2CuO4 (LSCO) and its
parent compound La2CuO4 (see Fig. 1), whose undis-
torted high-temperature tetragonal structure is sketched
in Fig. 11. When the temperature is lowered, several
structural phase transitions occur, characterized by co-
herent rotations of the CuO6 octahedra (see, for ex-
ample, Kimura et al., 2000). To date, the ARPES data
are usually discussed within high-temperature tetragonal
notations, which is the approach we will also follow in

this review (note however that, with much improved
energy and momentum resolution, an important fu-
ture study will be to test the appropriateness of this
description by quantitatively estimating the effects of
local and/or long-range structural distortions on the
electronic structure). The corresponding three-dimen-
sional Brillouin zone, which is most relevant to the study
of the momentum-resolved electronic properties, is also
sketched in Fig. 11. However, as the cuprate high-
temperature superconductors have a quasi-2D electronic
structure with weak dispersion along the z axis, in
the discussion of the ARPES data we shall refer to the
2D projected zones as the ones presented in Fig. 11
for LSCO or in Fig. 12 for other systems. As emphasized
in Fig. 11, the most important structural element is
represented by the CuO2 planes which form single-layer
(as in LSCO) or multilayer blocks separated from
each other by the so-called charge reservoir layers (La/Sr
in Fig. 11). Depending on the number N of CuO2
planes contained within the characteristic blocks (N
is also the number of Cu ions per formula unit),
the cuprates are classified into single-layer compounds
[e.g., LSCO, Bi2Sr2CuO6"! , Nd2!xCexCuO4 , and
(Sr,Ca)2CuO2Cl2], bilayer compounds (e.g.,
Bi2Sr2CaCu2O8"! and YBa2Cu3O7!!), and trilayer
compounds (e.g., Bi2Sr2Ca2Cu3O10"!). This structural
characteristic profoundly affects the superconducting
properties: within each family of cuprates Tc increases
with N , at least for N"3 (Tarascon et al., 1988; Di Sta-
sio et al., 1990). For instance, within the Bi-based cu-
prate high-temperature superconductors, a maximum Tc
of 34, 96, and 110 K is found for N#1, 2, and 3, respec-
tively (Eisaki et al., 2002). By substituting different ele-
ments in the reservoir layers or by varying their oxygen
content (other methods are also possible, depending on
the system) one can dope charge carriers into the CuO2
planes. The latter are believed to be responsible for
high-temperature superconductivity as the Cu-O bands
are the lowest-energy electronic states and therefore di-
rectly determine the macroscopic electronic properties.

8For a more detailed description see Pickett (1989); Mark-
iewicz (1991, 1997); Auerbach (1994); Dagotto (1994); Fulde
(1995); Rao and Raveau (1995); Imada et al. (1998); Orenstein
and Millis (2000); Sachdev (2000); Tokura and Nagaosa (2000).

FIG. 11. Crystal structure, Fermi surface, and low-energy elec-
tronic configuration of La2!xSr2CuO4 (LSCO): Top, crystal
structure, 3D Brillouin zone (body-centered tetragonal) and its
2D projection; diamond, Fermi surface at half filling calculated
with only the nearest-neighbor hopping; gray area, Fermi sur-
face obtained including also the next-nearest-neighbor hop-
ping. Note that M̄ is the midpoint along #-Z and not a true
symmetry point. Bottom, crystal-field splitting and hybridiza-
tion giving rise to the Cu-O bands (Fink et al., 1989), and a
generic LSCO ARPES spectrum (the circle shows the low-
energy scale we shall focus on throughout this review).

FIG. 12. Cu-O2 plaquette, phase at ($,$) of Cu dx2!y2 and O
2p orbitals for bonding, antibonding, and nonbonding hybrid-
ized wave functions for the bare CuO2 plane [i.e., square lat-
tice; see also Fig. 13(a)], and 2D projected Brillouin zones with
conventional notations for different copper oxides (shaded ar-
eas represent the irreducible symmetry units).
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ser Strukturen ist, dass sie langperiodisch moduliert sind
und Fehlordnungen aufweisen. Die Strukturen dieser kom-
pliziert aufgebauten Oxocuprate können als Abfolgen von
Schichten aus MO (bzw. M) und CuO2 betrachtet werden.
Bei Strukturbeschreibungen werden diese Schichten als Aus-
schnitte des NaCl- und Perowskit-Typs bezeichnet. In den
CuO2-Leitungsschichten bewegen sich die Ladungsträger.
Dazwischen liegen Ladungsreservoirs aus MO bzw. M. Das
elektronische Zusammenspiel dieser zwei Schichtarten va-
riiert von System zu System. Die bisher höchsten Über-
gangstemperaturen wurden in den Systemen Bi-Sr-Ca-Cu-O
(Tc ≈ 110 K), Tl-Ba-Ca-Cu-O (Tc ≈ 125 K) und Hg-Ba-Ca-Cu-O
(Tc ≈ 133 K, unter Druck: Tc ≈ 160 K) gefunden.

Hier soll die wichtige Familie Bi2Sr2Can-1CunO4+2n+δ
mit n = 1, 2 und 3 beispielhaft vorgestellt werden. Die Struk-
turen sind aus n benachbarten CuO2-Schichten aufgebaut
(Abbildung 5). Die einfachste Verbindung mit n = 1 enthält
zum NaCl-Typ analoge Schichten aus BiO und zum Perows-
kit-Typ analoge Schichten aus SrO und CuO2 im Verhältnis
2 : 2 : 1. Im Laborjargon werden diese Verbindungen gemäß
der Anzahl benachbarter CuO2-Schichten als 1-, 2- oder 
3-Schichter oder gemäß ihrer Zusammensetzungen als 
(BSCCO-) 2201, 2212 und 2223 bezeichnet.

Wie Tabelle 2 zeigt, nimmt die Übergangstemperatur in
der Reihe von n = 1 – 3 zu. Die Verbindung mit n = 4 konn-
te bisher nicht rein erhalten werden. Zur Reindarstellung
von 2223 hat sich die partielle Substitution von Bi mit Pb,
ausgedrückt durch die allgemeine Schreibweise (Bi,Pb)2-

Sr2Ca2Cu3O10+δ (kurz: (Bi,Pb)-2223), bewährt.

Elektrische und 
magnetische 
Eigenschaften

Materialien werden hinsicht-
lich ihrer elektrischen Leit-
fähigkeitseigenschaften in Isolatoren, Halbleiter und Me-
talle eingeteilt [9] (Abbildung 6). Eine einfache Unter-
scheidung kann anhand von berechneten oder gemessenen
Zustandsdichten getroffen werden. Diese werden durch die
Auftragung von Energien über der Anzahl von Energiezu-
ständen (E über N(E)) präsentiert. Dabei wird zwischen be-
setzten und unbesetzten [10] Zuständen aus Valenz- und
Leitungsbändern unterschieden. Klassische Isolatoren sind
transparente Materialien mit großen Bandlücken zwischen
dem höchsten besetzten und dem tiefsten unbesetzten En-

In der tetragonalen Struk-
tur sind die in der a-b-Ebe-
ne (in 0, 1/2, 0 und 1/2, 0, 0)
eingezeichneten Sauer-
stoffatome nur zur Hälfte
vorhanden.

Abb. 5 Idealisier-
te Elementarzellen
von Bi2Sr2Ca0Cu1O6

(2201),
Bi2Sr2Ca1Cu2O8

(2212),
Bi2Sr2Ca2Cu3O10

(2223) mit zwei
Formeleinheiten
(von links nach
rechts). Cu-Atome
sind rot, O-Atome
blau, Sr-Atome
braun, Bi-Atome
schwarz und Ca-
Atome sind grün
gezeichnet.

A B B .  5  c| 2 2 2 3A B B .  4  b| Y B a 2Cu 3O 7 A B B .  5  a| 2 2 0 1 A B B .  5  b| 2 2 1 2

TA B .  2 | Ü B E RG A N G S T E M PE R AT U R E N  I N  D E R  FA M I L I E  
B i 2S r 2C a n – 1Cu nO 4 + 2 n + δδ m i t  n  =  1 ,  2  u n d  3 .

Bi2Sr2CuO6+δ 1 10
Bi2Sr2CaCu2O8+δ 2 ca. 80
(Bi,Pb)2Sr2Ca2Cu3O10+δ 3 110

Substanz Anzahl Übergangstemperatur 
benachbarter in K

CuO2-Schichten, n

Eine ausführliche
Darstellung des
Bändermodells fin-
det sich z.B. in
Chem. unserer Zeit
2001, 35, 42.

Figure 16.1: Structure of cuprate parent compounds. (a) Crystal structure, Brillouin zone and Fermi
surface in 3D and 2D for M2CuO4, M=La (which are substituted by Sr atoms upon doping), in the
tetragonal phase. For an explanation of the Fermi surface see text. (Figure from Damascelli et al.,
2003) (b) Crystal structure for YBa2Cu3O7 with tetragonal symmetry, Cu (red), O (blue), Ba (black)
and Y (green). (Figure from Schwaigerer et al., 2002)

addition, the superconducting coherence length ξ is low, turning the cuprates into extreme
type-II superconductors.

In the following we will shortly discuss the microscopic structure of cuprates and give an
overview on the overall phase diagram with an explanation of the contained phases and the
attempts to model this behavior.

Microscopic structure

Depending on temperature and doping level the cuprates are classified as tetragonal or or-
thorhombic and close to tetragonal. The crystal structure is basically a distorted perovskite,
but due to the large variety of copper oxide compounds a more detailed discussion is needed.
We will first focus on the structure of the (non-superconducting) parent compound and com-
ment on the different doping mechanisms afterwards.

The unifying aspect among the cuprates is the existence of CuO2 layers. One or more CuO2

layers are directly stacked upon each other (mono-, bi-, trilayer compounds) and separated by
at least a layer of MO where M is e.g. Ba or La. Figure 16.1(a) shows the high-temperature
tetragonal crystal structure for the monolayer compound M2CuO4, which contains the planes
(CuO2)(MO)(MO). The anion O and the cation M in the interleaved planes are in contact
due to large ionic radii, whereas the Cu cation is smaller and surrounded by six O anions.
Upon cooling a structural phase transition towards an orthorhombic structure occurs (see
e.g. Kastner et al., 1998). A different example is shown in Fig. 16.1(b): YBa2Cu3O7 has a
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I. INTRODUCTION

The discovery of superconductivity at 30 K in the
LaBaCuO ceramics by Bednorz and Müller (1986)
opened the era of high-Tc superconductivity, changing
the history of a phenomenon that had before been con-
fined to very low temperatures [until 1986 the maximum
value of Tc was limited to the 23.2 K observed in Nb3Ge
(Gavaler, 1973; Testardi et al., 1974)]. This unexpected
result prompted intense activity in the field of ceramic
oxides and has led to the synthesis of compounds with
increasingly higher Tc , all characterized by a layered
crystal structure with one or more CuO2 planes per unit
cell, and a quasi-two-dimensional (2D) electronic struc-
ture. By 1987, a Tc of approximately 90 K (i.e., higher
than the boiling point of liquid nitrogen at 77 K) was
already observed in YBa2Cu3O7!" (Wu et al., 1987).
The record Tc of 133.5 K (at atmospheric pressure) was
later obtained in the trilayer system HgBa2Ca2Cu3O8"x
(Schilling et al., 1993).

One may wonder whether the impact of the discovery
by Bednorz and Müller (1986) would have been some-
what overlooked if MgB2 , with its recently ascertained
39 K Tc , had already been discovered [Nagamatsu et al.
(2001); for a review see Day (2001)]. However, indepen-
dent of the values of Tc the observation of superconduc-
tivity in the ceramic copper oxides was in itself an unex-
pected and surprising result. In fact, ceramic materials
are typically insulators, and this is also the case for the
undoped copper oxides. However, when doped the latter
can become poor metals in the normal state and high-
temperature superconductors upon reducing the tem-
perature (see in Fig. 1 the phenomenological phase dia-
gram of electron- and hole-doped high-temperature
superconductors, here represented by Nd2!xCexCuO4
and La2!xSrxCuO4 , respectively). In addition, the de-
tailed investigation of their phase diagram revealed that
the macroscopic properties of the copper oxides are pro-
foundly influenced by strong electron-electron correla-
tions (i.e., large Coulomb repulsion U). Naively, this is
not expected to favor the emergence of superconductiv-
ity, for which electrons must be bound together to form
Cooper pairs. Even though the approximate T2 depen-
dence of the resistivity observed in the overdoped me-
tallic regime was taken as evidence for Fermi-liquid be-
havior, the applicability of Fermi-liquid theory (which
describes electronic excitations in terms of an interacting

gas of renormalized quasiparticles; see Sec. II.C) to the
‘‘normal’’ metallic state of high-temperature supercon-
ductors is questionable, because many properties do not
follow canonical Fermi-liquid behavior (Orenstein and
Millis, 2000). This breakdown of Fermi-liquid theory
and of the single-particle picture becomes most dramatic
upon approaching the undoped line of the phase dia-
gram (x#0 in Fig. 1), where one finds the antiferromag-
netic Mott insulator (see Sec. III). On top of this com-
plexity, it has long been recognized that also the
interplay between electronic and lattice degrees of free-
dom as well as the tendencies towards phase separation
are strong in these componds (Sigmund and Müller,
1993; Müller, 2000).

The cuprate high-temperature superconductors have
attracted great interest not only for the obvious applica-
tion potential related to their high Tc , but also for their
scientific significance. This stems from the fact that they
highlight a major intellectual crisis in the quantum
theory of solids, which, in the form of one-electron band
theory, has been very successful in describing good met-
als (like Cu) but has proven inadequate for strongly cor-
related electron systems. In turn, the Bardeen-Cooper-
Schrieffer (BCS) theory (Bardeen et al., 1957; see also
Schrieffer, 1964), which was developed for Fermi-liquid-
like metals and has been so successful in describing con-
ventional superconductors, does not seem to have the
appropriate foundation for the description of high-Tc
superconductivity. In order to address the scope of the
current approach in the quantum theory of solids and
the validity of the proposed alternative models, a de-
tailed comparison with those experiments that probe the
electronic properties and the nature of the elementary
excitations is required.

In this context, angle-resolved photoemission spec-
troscopy (ARPES) plays a major role because it is the
most direct method of studying the electronic structure
of solids (see Sec. II). Its large impact on the develop-
ment of many-body theories stems from the fact that this
technique provides information on the single-particle
Green’s function, which can be calculated starting from a

FIG. 1. Phase diagram of n- and p-type superconductors,
showing superconductivity (SC), antiferromagnetic (AF),
pseudogap, and normal-metal regions.
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Figure 16.2: General temperature-doping phase diagram for cuprates. For a detailed explanation see
text. (Figure from Damascelli et al., 2003)

tetragonal structure and contains CuO2 planes, BaO planes, Y planes and CuO chains.
Doping the parent compound inserts charge carriers into the system, which is an essential

requirement for the formation of superconductivity. Generally speaking, the Cu atoms are the
source for charge carriers. The dopants are mostly inserted into the interleaved layers. One can
(i) substitute the cations by ions with different valency, e.g. Sr2+ for La3+, (ii) remove or (iii)
add oxygen ions. Also a mixture of these procedures is possible. Upon doping, the interleaved
layers stay ionic and serve as a charge reservoir by changing the effective Cu valency. In
YBCO, Fig. 16.1(b), where copper ions not only occur in the CuO2 layers but also in layers
in between in the form of CuO chains, the situation is different. It is doped by changing the
oxygen content in the interleaved layer CuOx, now consisting of CuO chains with O vacancies.
These chains themselves contain free carriers contributing to the supercurrent.

The superconducting transition temperature is not only sensitive to the doping level, but
also to the number of CuO2 layers within one block: Tc increases from monolayer over bilayer
to trilayer compounds within each family (Tarascon et al., 1988; Di Stasio et al., 1990).

In reciprocal space the tetragonal lattice of La2CuO4 translates into a body centered tetrag-
onal structure with a 3D Brillouin zone (BZ) depicted in the upper right panel of Fig. 16.1(a).
The layers are only weakly coupled and the dispersion along the z-axis can be neglected in
almost all situations. The projection of the BZ in two dimensions is depicted in the lower right
panel of Fig. 16.1(a). The dashed diamond denotes the Fermi surface at half filling (without
doping) derived in a tight-binding approximation assuming a nearest neighbor hopping. The
solid line enclosing the gray shaded area represents the Fermi surface upon inclusion of an
additional next-nearest neighbor hopping.

Phase diagram

For all cuprate superconductors the occurring phases can be summarized in a doping-tempera-
ture phase diagram, Fig. 16.2. A dopant concentration x = 0 represents the parent compound.
On the left-hand side of x = 0, the compounds are electron doped, while the right-hand side
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describes hole doping.
Local density approximation (LDA) band structure calculations for the parent compound

(Mattheiss, 1987; Horsch et al., 1989) suggest a partially filled band, implying metallic behav-
ior, which is not consistent with the experimentally observed insulating behavior. Therefore,
the LDA, which is based on an independent-particle picture, is not able to capture the essential
physics. This indicates the importance of electronic correlations and suggests the existence
of a Mott-Hubbard insulator (Mott, 1949, 1956; Hubbard, 1964a,b), produced by an on-site
Coulomb repulsion U , which is much larger than the bandwidth W . A simple model for the
microscopic properties is the (one-band) Hubbard model (Hubbard, 1963)

H = −t
∑

〈ij〉,σ
(c†iσcjσ + h.c.) + U

∑

i

ni↑ni↓ , (16.1)

where c†iσ creates a charge carrier at site i with spin σ and niσ = c†iσciσ is the corresponding
number operator. 〈ij〉 refers to nearest-neighbored site pairs. t is the hopping amplitude and
U the on-site Coulomb repulsion between two charge carriers. This one-band Hubbard model
can be thought of as an effective model for a three-band Hubbard model, which explicitly
considers the Cu(3dx2−y2) and the O(2px) and O(2py) orbitals (see e.g. Emery, 1987). Band
structure calculations show the emergence of three dominant bands, a review is given e.g. by
Dagotto (1994).

In the limit of U � t, the charge carriers ciσ become localized and the relevant degrees of
freedom are captured in the t-J model, originally derived from the Hubbard model by Spa lek
and Oleś (1977) and discussed in the context of high-Tc by Anderson (1987):

H = −t
∑

〈ij〉,σ
(c̄†iσ c̄jσ + h.c.) + J

∑

〈ij〉

(
Si · Sj −

ninj
4

)
. (16.2)

The coupling constant can be expressed as J = 4t2/U and the c̄iσ = ciσ(1−ni,−σ) are projected
operators, whose construction excludes double occupancy. How to project out the irrelevant
degrees of freedom is e.g. shown by Auerbach (1994).

Besides the Néel ordered state appearing in the low doping regime a variety of other phases
occurs. The compound with a dopant concentration leading to maximal Tc is called optimally
doped. Higher and lower concentrations are respectively denoted as over- and underdoped.
The superconducting phase is rather unconventional: In contrast to the conventional phonon-
mediated superconductors with an s-wave pairing, the superconducting order parameter in
cuprates exhibits a strong anisotropy observable by angle resolved photoemission spectroscopy
(ARPES) (Wells et al., 1992; Shen et al., 1993). Its symmetry is d-wave; a review about
unconventional superconductivity and the symmetry classifications is given by Sigrist and
Ueda (1991). As previously mentioned, the cuprate superconductors are strongly type II;
SQUID (superconducting quantum interference device) measurements (Gough et al., 1987)
show that the penetrating flux is quantized in half-flux quanta φ0/2 = h/2e, indicating the
existence of pairs in the superconducting phase.

In the hole doped regime of the phase diagram a highly unusual phase appears - the pseu-
dogap phase (Marshall et al., 1996; Loeser et al., 1996; Ding et al., 1996). It is characterized
by a normal-state energy gap, which opens up at specific regions along the underlying Fermi
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FIG. 1. Data obtained on single crystals of Bi2212 grown
by the traveling solvent floating zone method. Doping was
achieved by adjusting the oxygen partial pressure during an-
nealing with samples labeled by their onset Tc’s. Measure-
ments were carried out at the Synchrotron Radiation Cen-
ter, Wisconsin, using a high resolution 4-m normal incidence
monochromator with 22eV photons and an energy resolution
of 20 meV (FWHM). The spectra in (a)-(c) are taken at three
k points in the Brillouin zone, shown in (d), for an 85K under-
doped Bi2212 sample at various temperatures (solid curves).
(The Y quadrant was studied to minimize effects due to the
superlattice [12]). Our notation is Γ = (0, 0), M̄ = (π, 0),
and Y = (π, π), in units of 1/a, where a is the Cu-Cu dis-
tance, and ΓM̄ is along the CuO bond direction. The dotted
curves are reference spectra from polycrystalline Pt (in elec-
trical contact with the sample) used to determine the chemical
potential (zero binding energy). Note the closing of the spec-
tral gap at different T for different k. This feature is also
apparent in the plot (e) of the midpoint of the leading edge
of the spectra as a function of T .
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FIG. 2. Schematic illustration of the temperature evolu-
tion of the Fermi surface in underdoped cuprates. The d-wave
node below Tc (left panel) becomes a gapless arc above Tc

(middle panel) which expands with increasing T to form the
full Fermi surface at T ∗ (right panel).

3

Figure 16.3: Schematic illustration of the Fermi surface evolution for increasing temperature in the
underdoped regime of hole doped cuprates. Left: Point-like Fermi surface below Tc in the d-wave
superconductor. Center: Arc-like Fermi surface in the pseudogap phase. Right: Cylindrical Fermi
surface above the pseudogap temperature T ∗. (Figure after Norman et al., 1998)

surface. The properties of this gap can be summarized as follows (Shen et al., 1997): (i) It
mainly occurs in the underdoped regime, compare the phase diagram in Fig. 16.2. (ii) The
maximum gap value for pseudo- and superconducting gap at the same doping level are equal.
It does not follow the value estimated from BCS-theory, which scales linearly with Tc. More-
over the pseudogap value increases for decreasing transition temperature Tc, i.e., for decreasing
hole doping. (iii) The pseudogap momentum space structure is also strongly anisotropic: It
vanishes along the diagonal (0, 0)→ (π, π) and is maximal for (π, 0)→ (π, π).

The pseudogap temperature T ∗ can be determined by comparing the ARPES spectrum at
the (π, 0)− (π, π) Fermi surface crossing to a reference spectrum, e.g. the spectrum of Pt: As
soon as T ∗ is reached, no shifts in the leading edge between sample and reference spectrum
are visible (Ding et al., 1996).

As indicated by ARPES experiments, the region with zero gap in the pseudogap phase is
extended around the diagonal leading to a Fermi surface shaped like arcs (Norman et al.,
1998), illustrated in Fig. 16.3. The arc length scales as T/T ∗, extrapolating to zero in the
T → 0 limit (Kanigel et al., 2006). Above T ∗ the Fermi surface is cylindrical and below Tc
is it given by a nodal point. However, even below Tc ARPES spectra show Fermi arc-like
signatures (Shen et al., 2005; Hossain et al., 2008). The pseudogap phase has been interpreted
as a precursor of superconductivity; for T & Tc preformed pairs are believed to exist, which
eventually become phase coherent below Tc.

The “normal” metal regime in the phase diagram is normal only to some extend. Fermi-
liquid theory works best for extreme overdoping. For a decreasing doping level antiferromag-
netic fluctuations appear and the Fermi-liquid picture becomes less and less applicable. For a
review of the normal state transport properties, see Waldram (1996).

Theories

Until now the rich physics of the cuprates could not be consistently explained with a unique
microscopic theory. Moreover, the Fermi liquid and the BCS theory, two well-established
theories for metals, are applicable only to a certain extent and do not provide an explanation
for the observed phenomenology. For example, electron-phonon interactions, which stabilize
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Figure 16.4: Schematic illustration of Landau levels εn = ~ωc(n + 1/2), which evolve for sufficiently
large magnetic field B.

the superconductivity in the conventional case, is for itself not able to produce transition
temperatures of the order of 100 K.

New theoretical approaches tackling this problem are e.g. a resonance valence bond state
(Anderson, 1987), stripe phases (Tranquada et al., 1995; Salkola et al., 1996), the physics of
quantum phase transitions (Sachdev, 2000) and fractionalized electrons (Senthil and Fisher,
2001), just to mention some of them. A recent review on the physics arising from a doped
Mott insulator is given by Lee et al. (2006).

Before discussing quantum oscillations in cuprates, we recall the properties and the underlying
theory for quantum oscillations in metals in the next section.

16.2 Quantum oscillations in metals

Discovered in the year 1930 in bismuth by de Haas and van Alphen (1930), oscillations in
the magnetic susceptibility as a function of inverse magnetic field are nowadays a popular
tool for investigating Fermi surfaces. They result from oscillations in the density of states at
the Fermi level, which also lead to other quantum oscillation phenomena like Shubnikov - de
Haas oscillations in the conductivity, oscillations in the magnetostriction or nearly all other
observable quantities.

In the limit of free electrons the equally distributed states in reciprocal space condense on
Landau levels under the influence of a magnetic field. The evolving energy levels are given by

εn = ~ωc
(
n+

1
2

)
, with ωc =

eB

m
, (16.3)

the so-called cyclotron frequency. Notice the spacing between εn depends on the magnetic
field strength B. For a given electron density ρ, the Fermi level εF lies at εn or between εn
and εn+1, see Fig. 16.4. By changing B with ρ fixed, Landau levels pass by the Fermi level,
implying an oscillatory behavior in the density of states at the Fermi level as a function of
inverse magnetic field.
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16.2 Quantum oscillations in metals

In a metal, where electrons are not free, but their motions are determined by the band
structure with a dispersion given by εk, this fully quantum-mechanical picture has to be
substituted by a semiclassical one, developed by Onsager (1952) and Lifshitz and Kosevich
(1955). The semiclassical equations of motion are combined with an artificially imposed Bohr-
Sommerfeld quantization condition.

In a magnetic field the Lagrangian for a particle with mass m and charge e reads

L =
1
2
mv2 − evA , (16.4)

with the vector potential A, the canonical momentum

p =
∂L
∂v

= mv − eA (16.5)

and the kinetic momentum

mv ≡ ~k. (16.6)

The semiclassical equations of motion

~k̇ = − e
~
∇kεk ×B , (16.7a)

ṙ =
1
~
∇kεk (16.7b)

lead to closed orbits in real and momentum space described by

r(t)− r0 =
(

~
eB

)
(k(t)− k0)× ẑ (16.8)

where (r0,k0) are initial coordinate and momentum and the magnetic field is aligned along
the z-axis (B = Bẑ). These orbits encircle an area Areal and Amom, respectively, and are
connected via

Areal =
(

~
eB

)2

Amom . (16.9)

The Bohr-Sommerfeld quantization condition is imposed by hand:
∮

p · dr = (n+ γ)2π~ . (16.10)

In a straightforward calculation its left-hand side can be rewritten by the semiclassical equa-
tions of motion (16.7) and can be expressed by the area Areal as

eB

c
Areal = (n+ γ)2π~, (16.11)

leading to

Amom = (n+ γ)∆A with ∆A =
2πe
~
B . (16.12)

155



16 Introduction

The areas Areal and Amom only take discretized values. An index n is omitted in the following.
In the non-interacting case the density of states (DOS) at the Fermi level is given by

D(εF ) =
∑

n

δ(εF − εn) =
∑

n

δ

(
εF − ~ωc

(
n+

1
2

))
. (16.13)

Whenever the condition n+ 1
2 ≡ εF /(~ωc) is fulfilled, the DOS has a peak; it is zero elsewhere.

Therefore, it oscillates as a function of εF /~ωc = εFm
~e

1
B , implying 1/B oscillations. For an

arbitrary dispersion εk the behavior of the DOS is analogous. From Eq. (16.12) the oscillatory
argument is extracted as

Amom(εF )
∆A =

F

B
with F =

~Amom(εF )
2πe

, (16.14)

where Amom(εF ) decribes the momentum space area encircled by an electron at the Fermi
energy.

In the free electron picture the dispersion becomes εk = ~2/(2m)k2 and Amom can be
identified as the area covered by a Landau ring, where the area between two adjacent rings is
given by

∆A =
2πeB

~
, (16.15)

which is in agreement to Eq. (16.12). In the limit of free electrons the quantum mechanical
result is recovered from the semiclassical one.

This semiclassical analysis has shown the well-established relation between a closed Fermi
surface and the emergence of quantum oscillations in physical observables based on the Fermi-
liquid behavior of the sample.

In the next section we discuss the recently observed quantum oscillations in cuprate super-
conductors and point out which puzzles arise for the underdoped regime.

16.3 Quantum oscillations in cuprate superconductors - an
experimental survey

Not until 2007 quantum oscillations were observed in cuprate superconductors (Doiron-Leyraud
et al., 2007; Yelland et al., 2008; Bangura et al., 2008; Jaudet et al., 2008; Sebastian et al.,
2008; Vignolle et al., 2008). The bottleneck to this discovery was given by the fabrication of
high quality single crystals and the difficulty of producing high magnetic fields of the order
of 50 T. Although initially claimed as the proof for a closed Fermi surface, the interpretation
of these data is not as simple as in the case of metals. In the following we discuss the re-
sults for the over- and underdoped regime, while pointing out which results do not match the
semiclassical Onsager approach.

In the regime of elevated temperature and zero magnetic field ARPES measurements suggest
Fermi surfaces that are depicted in Fig. 16.5: In the overdoped sample with an effective hole
doping of p = 0.28, a closed hole Fermi surface centered around (π, π) exists, whereas in the
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4

FIG. 4: Phase diagram of YBCO by ARPES. Schematic
temperature-doping phase diagram of YBCO adapted from
Ref. 1. The hole doping p per planar copper (p = 0 for the
1/2-filled Mott insulator with 1 hole per Cu atom), and the
corresponding oxygen content (7−δ), are indicated on bottom
and top horizontal axes respectively [25]. The ARPES FS for
under- and overdoped YBCO is also shown; the momentum-
distribution maps have been 2-fold and 4-fold symmetrized for
p=0.11 and 0.28, respectively. Similar to the data in Fig. 2,
the doping levels were determined for p=0.11 from the area
of FSCh, and for p=0.28 from the area of FSB and FSAB .

derived band folding arising from the ortho-II oxygen-
ordering of the chains [7, 8], which is possibly consistent
with the loss of three-dimensional coherence evidenced by
the suppression of bilayer band splitting upon underdop-
ing. Recent measurements of the Hall resistance in high
magnetic field have noted a sign change with decreasing
temperature [5], suggesting that the quantum oscillations
seen on top of a negative Hall coefficient might come from
small electron pockets, rather than the hole pockets orig-
inally proposed [1]. However, there is no sign of such
electron pockets in our ARPES data from underdoped
YBCOK2, nor are there signs of additional zone-folding
due to the kinds of density wave instabilities that might
give rise to such a Fermi surface reconstruction [4, 5, 11].

If any pocket had to be postulated on the basis of the
present ARPES data, the most obvious possibility would
be that the Fermi arcs are in fact hole-like nodal Fermi
pockets, as obtained for light doping of the antiferromag-
netic parent compound in self-consistent Born calcula-
tions [29] and already speculated from the study of other
underdoped cuprates [21, 22, 23]. The lack of a finite
ARPES intensity on the outer side of the pockets would
be consistent with the strong drop in the quasiparticle co-
herence Zk expected beyond the antiferromagnetic zone

boundary [9, 30]. To estimate an area for these ostensi-
ble nodal pockets, we can fold the detected arc profile,
either with respect to the antiferromagnetic zone bound-
ary or the end points of the arc itself, obtaining values
of either 2.6% or 1.3%, relative to the full Brillouin zone
area ABZ = 4π2/ab. These numbers compare relatively
well with the pocket area 1.9% suggested on the basis of
quantum oscillation experiments on bulk YBCO6.5 [1, 6].
However, these are hole, not electron pockets.

At present, this seems to be a crucial disagreement be-
tween the interpretations of a single-particle spectroscopy
and bulk transport measurements on underdoped YBCO.
The interpretation of the Hall resistance is likely to be
complicated, since it necessarily invokes multiple bands
with different scattering and can also be influenced by
strong correlations, the presence of localized magnetic
moments, and also the vortex liquid. It should also be
noted that these transport measurements are made in
high magnetic field whereas the ARPES data are ac-
quired in zero field. Nevertheless, there appears to be a
discrepancy which must be resolved, especially since the
YBCO ARPES data presented here are consistent with
the large body of single particle spectroscopy information
obtained on other cuprates [21, 22, 23].

Whatever the solution to the puzzle outlined above,
it should be emphasized that the present approach,
based on the in-situ alkaline metal evaporation on freshly
cleaved surfaces, opens the door to this type of ma-
nipulation of other cuprates and complex oxides, not
only to control the self-doping of polar surfaces but also
to reach doping levels otherwise precluded in the bulk.
For instance, one could try to underdope the surface of
Tl2Ba2CuO6+δ, which grows naturally overdoped [20], or
even to obtain an electron-doped superconductor starting
from the insulating parent compounds.

METHODS

Sample preparation. YBa2Cu3O6+x single crystals
were grown in non-reactive BaZrO3 crucibles using a
self-flux technique. The CuOx chain oxygen content
was set to x = 0.51 by annealing in a flowing O2:N2

mixture and homogenized by further annealing in a
sealed quartz ampoule, together with ceramic at the
same oxygen content. After mounting for the cleave
required in an ARPES measurement, the samples were
cooled from 100 ◦C to room temperature over several
days to establish the ortho-II superstructure ordering of
the CuOx chain layer [32]. The particular sample used
in the present study was twinned, as confirmed by x-ray
diffraction after the ARPES measurements.

ARPES experiments. ARPES measurements [31]
were carried out on the Electronic Structure Factory
endstation at Beamline 7.01 of the Advanced Light

Figure 16.5: Schematic phase diagram for YBa2Cu3O7−δ as a function of temperature and hole doping p
with marks at the doping levels p = 0.11 and p = 0.28, which are in the underdoped and the overdoped
regime, respectively. The insets show the corresponding ARPES spectral intensities over one Brillouin
zone measured at 20 K. (Figure from Hossain et al., 2008)

underdoped case with p = 0.11, the Fermi surface develops into disconnected arcs located in
the vicinity of the diagonals, reflecting the properties of the pseudogap phase. Please note
that the study of the surface of YBCO is hampered by its polarity, which induces self-doping.
Therefore, the surface doping significantly deviates from the bulk doping, and was suggested to
be controlled by the deposition of potassium atoms on the cleavage plane (Hossain et al., 2008).
The ARPES spectra shown in Fig. 16.5 are taken from YBa2Cu3O6.5 without K-deposition,
which has an effective surface hole doping of p = 0.28, and the same material with a heavy
deposition of potassium atoms leading to an effective hole doping of p = 0.11.

De Haas - van Alphen oscillation data (Vignolle et al., 2008) for the overdoped material
Tl2Ba2CuO6+δ (Tl2201) reveal an excellent agreement between the oscillation frequency and
the size of the Fermi surface predicted by ARPES. This result does not come as a surprise
regarding the fact that Fermi liquid properties dominate in the overdoped regime and the
oscillations were seen in the field-induced normal state.

The underdoped case is more subtle and cannot be reconciled with the ARPES results in
a simple way. Two different underdoped YBCO compounds were studied - YBa2Cu3O6.51

with a hole doping of p = 0.1 and YBa2Cu4O8 with p = 0.14. Upon careful investigation,
Sebastian et al. (2008) extracted two different frequencies for YBa2Cu3O6.51 with p = 0.1, see
Fig. 16.6: a dominant one at Fα = 500± 20T, which is in agreement with the observations of
Doiron-Leyraud et al. (2007) and Jaudet et al. (2008), and Fβ = 1650± 40T with significantly
smaller amplitude.

The dominant frequencies in the over- and underdoped case approximately differ by a factor
of 30; while in the overdoped case the size of the ARPES Fermi surface fits the result for the
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Figure 16.6: de Haas - van Alphen oscillations in YBa2Cu3O6.51. (a) Fourier transform of the oscillation
signal revealing peaks at two different frequencies Fα = 500 ± 20T and Fβ = 1650 ± 40T. The inset
shows the temperature-doping phase diagram of YBCO. (b) Data for de Haas - van Alphen oscillations
at various temperatures with subtracted background. (c) de Haas - van Alphen oscillations after
subtraction of the Fα contribution. For details of the fitting and subtracting procedure see Sebastian
et al. (2008). (Figure from Sebastian et al., 2008)

observed frequency via the Onsager-Lifshitz formula, the situation for underdoping is less clear,
because ARPES does not show a closed Fermi surface, but indicates disconnected Fermi arcs!
The attempt was made explaining the oscillatory behavior in the underdoped regime by the
existence of broken translational symmetry (Millis and Norman, 2007; Chakravarty and Kee,
2008; Chen et al., 2008) leading to a complicated band structure and multiple Fermi pockets.
It was argued that Fermi pockets cannot be seen by ARPES e.g. because of coherence factors
suppressing the photoemission intensity at the pocket’s back side. A different line of argument
is based on the fact that ARPES measurements are conducted in zero magnetic field and high
temperature, while the oscillations are seen at low temperature in a high magnetic: Possibly,
these two regimes exhibit two different Fermi surfaces.

A generalization of the Lifshitz-Kosevich formalism to the mixed state of type-II supercon-
ductors based on a perturbative treatment of the scattering at the vortex centers, developed
by Maki (1991) and Stephen (1992), connects the oscillation frequency to the Fermi surface
in the temperature induced normal state. While this theory is applicable to e.g. the organic
superconductor κ-(BEDT-TTF)2Cu(NCS)2 (Wosnitza et al., 2000; Sasaki et al., 2003), the
underlying constraints are not fulfilled in cuprate superconductors: For cuprates the condition
∆2 <

√
µωc, where ∆ is the gap size, µ the Fermi energy and ωc the cyclotron frequency,

does not hold, since the gap size is more than one order of magnitude larger than ωc and this
pertubative analysis cannot be applied.
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16.4 Outline

16.4 Outline

In this study a completely different approach is taken for resolving the question of how to
combine the Fermi arc picture suggested by ARPES measurements with the recently observed
quantum oscillations in cuprate superconductors at high magnetic field.

We start off with the basic assumption that Fermi arcs exist in the regime where quantum
oscillations are observed. We consider a real-space version of a BCS-like Hamiltonian with a
pairing gap leading to truncated Fermi surface segments. The influence of an applied magnetic
field manifests itself in the hopping amplitude carrying the usual Peierls factor and in the
superconducting order parameter, which takes into account the existence of an Abrikosov
vortex lattice. By a fully quantum mechanical treatment of the model, we show that the
density of states at the Fermi level exhibits an oscillatory behavior. The results presented in the
framework of this thesis are contained in (Pereg-Barnea et al.). In this reference an additional
semiclassical analysis is presented, whose results we will compare to the ones obtained from
our numerical treatment of the quantum-mechanical approach.

The remainder of this part is organized as follows: In Chapter 17 we introduce an ansatz for
a modified gap function leading to Fermi arcs, discuss its consequences for the density of states
in zero magnetic field, and compare it to the behavior of an ordinary d-wave gap function. The
considered quantum mechanical lattice model in magnetic field is presented in Chapter 18. By
applying a Franz-Tešanović transformation (Franz and Tešanović, 2000), a bipartite singular
gauge transformation, the Hamiltonian becomes explicitly translationally invariant. Therefore,
a description of the problem in terms of Bloch equations can be established. Finally, in Chapter
19 we provide numerical results for the spectrum and the density of states, a detailed frequency
analysis, and a discussion. Chapter 20 concludes this part with a summary of the results.
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17 Fermi arcs produced by a pairing gap

In this chapter we introduce a phenomenological approach that is able to produce truncated
segments of the Fermi surface terminated by a pairing gap. Therefore, a BCS-like model is
considered with a modified d-wave gap function that is adiabatically connected to the standard
d-wave gap observed in cuprates at T = 0. We study the Fermi arcs evolving from this ansatz,
discuss justifications for this approach and its connection to a BCS theory with a standard
d-wave gap function, and compare the density of states for both modified and standard d-wave
gap functions.

In general, a BCS-Hamiltonian is given by

H =
∑

k,σ

(εk − εF )c†kσckσ +
∑

k

(
∆kc

†
k↑c
†
−k↓ + h.c.

)
. (17.1)

ckσ is a fermionic operator that creates an electron with momentum k and energy εk. The
electron dispersion is set in reference to the Fermi level εF . In a tight-binding approximation,
where only the nearest-neighbor hopping amplitude t is included, the dispersion becomes
εk = −2t(cos kx + cos ky). For simplicity, a next-nearest neighbor hopping is omitted in
the following. The gap function ∆k is introduced in BCS theory as 〈ck↑c−k↓〉. The well-
established gap function for the ground state of a cuprate superconductor, ∆k = ∆0χk with
χk = 1

2(cos kx − cos ky), is of dx2−y2 symmetry. It exhibits nodal lines along the diagonals
kx = ±ky.

The Hamiltonian (17.1) can be diagonalized via a canonical (Bogoliubov) transformation,
yielding the quasiparticle excitation energies

Ek =
√

(εk − εF )2 + ∆2
k . (17.2)

ARPES measurements in the underdoped regime of YBCO and other high-temperature
copper-based superconductors suggest the existence of Fermi arcs. Not only the pseudogap
phase, but also the superconducting phase at elevated temperatures shows such arc signatures
(Shen et al., 2005; Hossain et al., 2008); these two phases seem to be intimately connected. It
has been argued that Fermi arcs evolve from thermal destruction of the phase coherence in the
superconducting state (Franz and Millis, 1998; Berg and Altman, 2007). Several properties of
the pseudogap phase look like remnants of the superconducting order: Under the influence of a
magnetic field it exhibits vortices (Corson et al., 1999; Xu et al., 2000; Wang et al., 2005) and
ARPES measurements reveal a Bogoliubov type dispersion above Tc (Kanigel et al., 2008).

In order to establish a description of the Fermi arcs on a mean-field level we introduce the
modified d-wave gap function

∆̃k = ∆0
χk

e(ν2−χ2
k)/τ2 + 1

, (17.3)
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Figure 17.1: Structure of the modified d-wave gap. (a) In the green regions of the BZ the gap is
non-zero, while it is exponentially suppressed elsewhere. The sign changes corresponds to those of an
ordinary d-wave gap function. The blue lines represent the truncated segments of the Fermi surface
with an underlying nearest neighbor hopping and εF = −1.1t. The length of these so-called Fermi arcs
is determined by ν = 0.6. (b) Amplitude of the modified d-wave gap ∆̃k in units of ∆0 along the line
connecting the points (0, π) and (π, 0) in the BZ for τ = 0.1 and different values of ν.

which is adiabatically connected to and constructed from the ordinary dx2−y2-wave gap func-
tion with an additional factor in the style of the Fermi distribution function leading to an
exponential suppression of the pairing gap in specific regions in the vicinity of the nodal lines
of χk. The behavior of ∆̃k is illustrated in Fig. 17.1(a) showing regions in the Brillouin zone
(BZ) with a normal d-wave gap (green) and with exponential suppression (white). The two
introduced parameters τ and ν control the sharpness of the step and the extension of the
region with exponentially suppressed gap, respectively. The parameter ν is connected to the
length of the considered Fermi arc: In the limit of ν → 0 and τ → 0, the arc shrinks to a
point and the modified d-wave gap transforms smoothly into the ordinary d-wave gap ∆k. For
ν → 1 and τ → 0 the gap vanishes and the result is a a normal metal with a closed Fermi
surface. In Fig. 17.1(b), the absolute value of ∆̃k is plotted along the line ky = π − kx for
different values of ν. If ν ∈ (0, 1) and τ → 0, the range of the real space correlations is infinite
due to the existence of a sharp step in k space.

The BCS-Hamiltonian with the modified gap function still describes a superconducting
system - however, the superfluid density is significantly lower than in the ordinary d-wave case
due to large ungapped regions along the Fermi surface. A microscopic Hamiltonian with an
interaction favoring this kind of pairing is not known, but a suitable type of electron-electron
interaction might certainly lead to the gap function (17.3). On the level of mean-field models,
the existence of a pairing gap truncating the Fermi surface is the only way to produce genuine
Fermi arcs; all kinds of particle-hole instabilities, e.g. those accompanied by a symmetry
breaking, simply lead to closed Fermi surfaces, terminated by the boundaries of the BZ.

For a finite value of τ , the modified gap function is exponentially suppressed, but finite.
The gap only becomes exactly zero along the diagonals. Strictly speaking, the corresponding
Fermi surface consists of four nodal points and not of arcs. In ARPES such a distinction is
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Figure 17.2: Tunneling density of states for ordinary d-wave pairing with coherence peaks at ±ε1.
Parameters are set to ∆0/t = 1 and εF /t = −1.1, and the energy is given in units of t.

not visible, however for the validity of the Luttinger theorem it is of great importance.

Density of states: Ordinary vs. modified d-wave gap

The superconducting tunneling density of states (DOS) is defined by

DT (ε) =
1
N
∑

k

(
|uk|2δ(ε− Ek) + |vk|2δ(ε+ Ek)

)
(17.4)

where δ(x) is the delta function and the prefactors arise from the Bogoliubov transformation

|uk|2 =
1
2

(
1 +

εk − εF
Ek

)
and |vk|2 =

1
2

(
1− εk − εF

Ek

)
. (17.5)

Please note that the tunneling DOS defined here does not refer to what would be measured in a
scanning tunneling spectroscopy (STM) experiment, but rather denotes an energy-dependent,
spatially averaged DOS. It is related to the normal DOS via:

D(ε) =
1
N
∑

k

δ(ε− Ek) = DT (ε) +DT (−ε). (17.6)

In the following we will review the structure of the tunneling DOS for the ordinary d-
wave case (Zhou and Schulz, 1992) and compare it to the results for the modified d-wave
gap function. The data for the plots shown within this section are obtained numerically by
replacing δ(x) in the definition of DT , Eq. (17.4), by a Lorentzian with small width.

Away from half filling (εF 6= 0) the ordinary d-wave tunneling DOS, see Fig. 17.2, shows
features, which can be ascribed to the behavior of Ek in k space: (i) The nodal lines of ∆k

lead to isolated zeros in the excitation energy Ek at (±k0,±k0) with cos k0 = −εF /4t, which
manifest themselves in a linear behavior of DT (ε) at low energy. (ii) The two saddle points of
Ek give rise to logarithmic van Hove singularities at the energies ±ε1 and ±ε2. For 4t|εF | ≥ ∆2

0

the saddle points sit at k1 = (0, k−) and k2 = (π, π − k+) with cos k± = ∆2
0±tεF−16t2

∆2
0+16t2

implying
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Figure 17.3: Tunneling density of states as a function of energy in units of t with ∆0/t = 1, ν = 0.6
and εF /t = −1.1.

ε1 = ∆0(4t+εF )√
16t2+∆2

0

and ε2 = ∆0(4t−εF )√
16t2+∆2

0

. In the case of 4t|εF | < ∆2
0 the second saddle point changes

to k2 = (0, π), leading to an energy ε2 =
√
ε2F + ∆2

0. The van Hove singularities at ±ε1 are
intrinsically due to the superconducting order and are therefore called coherence peaks. The
ones at ±ε2 have their origin in the two-dimensional tight-binding band structure. Adding a
third dimension renders all singularities finite.

In the case of a modified d-wave gap a numerical evaluation of Eq. (17.4) substituting the
δ-function by a Lorentzian (δ(x)→ s/(π(s2 +x2) with s� τ) shows that the van Hove singu-
larity features survive and the coherence peaks are located at approximately the same position
as for an ordinary d-wave function (compare Fig. 17.3). The low-energy behavior changes
significantly depending on the value of the parameter τ . For every τ > 0 a little dip evolves
with DT (ε→ 0) = 0, which cannot fully be reflected by the numerics underlying Fig. 17.3 due
to the finite width of the Lorentzian. As the value of τ grows, the dip becomes larger and the
low-energy feature transforms into the one for ordinary d-wave originating from the fact that
a large τ smears out the step between large- and zero gap region. For subsequent numerical
evaluations τ is fixed to 0.1.

In this chapter we discussed a way to produce truncated segments of the Fermi surface ter-
minated by a superconducting pairing gap in a two-parameter phenomenological ansatz for a
modified d-wave gap function. In order to investigate the properties of a BCS-like model ex-
hibiting such a gap function in a magnetic field, the next chapter presents a method for treating
a strongly type-II superconductor in the vortex state with an arbitrary pairing function.
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18 Lattice model in a magnetic field

This chapter deals with the fully quantum mechanical treatment of a strongly type-II super-
conductor in the mixed state with an arbitrary pairing function. The special focus lies on the
previously introduced pairing gap leading to Fermi arcs. Section 18.1 introduces the BCS-like
real-space model on a lattice, which undergoes a Franz-Tešanović (FT) gauge transformation
in Sec. 18.2. The presence of a periodic vortex arrangement in the system allows us to rewrite
the gauge-transformed Hamilton operator: Section 18.3 presents explicit calculations of ex-
pressions contained in the Hamiltonian. Finally, the discrete translational invariance of the
considered system, which is explicitly restored by the FT gauge transformation, is exploited
by formulating Bloch equations in Sec. 18.4.

18.1 Model

For a fully quantum mechanical treatment, we consider the real-space model

H = −
∑

〈mn〉
teiθmnc†mσcnσ +

∑

mn

(
∆(rm, rn)c†m↑c

†
n↓ + h.c.

)
, (18.1)

where the electrons cmσ sit on a two-dimensional square lattice and hop between nearest-
neighbored sites. In the strong type-II superconductor limit the penetration depth λ is much
larger than the intervortex distance. The electrons feel the influence of the external field upon
hopping, which manifests itself in the Peierls factor eiθmn with

θmn =
2π
φ0

rn∫

rm

A(r) · dl . (18.2)

Here, A is the vector potential associated with the external magnetic field and φ0 = h/e is
the flux quantum. The superconducting pairing function depends on the positions of both
involved electrons and can be split into

∆(rm, rn) = eiϕ(rm,rn)∆rel(rm − rn), (18.3)

where the phase ϕ(rm, rn) contains the information about the vortex configuration and the
“amplitude” ∆rel(rm − rn) reflects the real-space pairing type, which only depends on the
relative coordinate r = rm − rn.

The well-known cases of s-, d- and p-wave pairing constructed from on-site and nearest-
neighbor interaction, respectively, can be expressed by real-space functions ∆s

rel(r) = δ(r)/4
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18 Lattice model in a magnetic field

and ∆d,p
rel (r) =

∑
δ fd,p(δ)δ(r− δ), where δ denotes the vector to nearest neighbored sites and

the functions fd,p are given by

fd(δ) =
{

1 for δ = ±x̂
−1 for δ = ±ŷ and fp(δ) =

{
∓i for δ = ±x̂
±1 for δ = ±ŷ . (18.4)

The modified d-wave pairing is not related to a simple real-space structure, but is defined by
its k space behavior. In real space we can write ∆mod−d

rel (r) =
∑

k e
ikr∆̃(k), where ∆̃k is given

by Eq. (17.3).
The phase ϕ(rm, rn) can approximately expressed by the on-site phase φ(r) as

ϕ(rm, rn) =
1
2

(φ(rm) + φ(rn)) , (18.5)

see Appendix I. The phase φ(r) contains the information about the positions {ri} of the
vortices via

∇×∇φ(r) = 2πẑ
∑

i

δ(r− ri) , (18.6)

which translates into a 2π phase winding around the vortex cores. The singularities appearing
on the right-hand side act as magnetic half-fluxes at the center of the vortex core. Their
polarity is opposite to the applied magnetic field B, which is described by the conventional
London equation for intermediate field values Hc1 < B � Hc2, for which the vortex spacings
are large:

B− λ2∇2B =
1
2
φ0ẑ

∑

i

δ(r− ri), (18.7)

with the London penetration depth λ. This equation connects B to the number of vortices in
the system.

The magnetic field seen by the electrons is the external magnetic field B. It is constant in
space and therefore does not vanish in average (〈B〉 6= 0, where the brackets denote the spatial
average). As a consequence, the corresponding vector potential A by construction cannot be
periodic in space.

Given a periodic arrangement of vortices the physical system itself is translationally invariant
with the magnetic unit cell determined by the shape of the vortex lattice.

The magnetic response related to the appearance of the Abrikosov vortices compensates the
effect of the applied magnetic field in average due the flux quantization in a high-temperature
superconductor. A specific type of gauge transformation, which is discussed in the next section,
is able to restore this explicit translational symmetry of the Hamiltonian. Exploiting the
translational invariance leads to great advantages in the numerical implementation of the
problem.

18.2 Gauge transformation

In this section we introduce a special bipartite gauge transformation that removes the non-
trivial off-diagonal phase in the Hamiltonian arising from the phase windings around the vortex
cores, while restoring the discrete translational invariance in the Hamiltonian.
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18.2 Gauge transformation

In terms of a Bogoliubov-de Gennes Hamiltonian, Eq. (18.1) becomes

H =

(
ĥ ∆̂

∆̂∗ −ĥ∗

)
(18.8)

with

ĥ = −t
∑

δ

eiθ(r,r+δ)ŝδ − εF and ∆̂ =
∑

r0

∆rel(r0)eiφ(r)/2ŝr0e
iφ(r)/2, (18.9)

where ŝr0 is the shifting operator (ŝr0u(r) = u(r+r0)). The wave function is a two-component
spinor in Nambu space, ΨT (r) = (u(r), v(r)), satisfying the Bogoliubov-de Gennes equation

Hψ = εψ. (18.10)

When solving for eigenstates of H in the vortex phase, two main difficulties arise: the
non-trivial order parameter phase winding around the vortex cores and the missing explicit
translational invariance of the Hamiltonian. As we will see, both problems can be cured at
once by applying a specific gauge transformation.

In general, an off-diagonal phase is removed by a gauge transformation U with

H → U−1HU, U =
(
eiφ(r)/2 0

0 e−iφ(r)/2

)
, (18.11)

leading to a phase
∫ r+δ
r

(
∇φ− e

~cA
)
·dl in the diagonal part. Then, quasi-particles and quasi-

holes see an effective magnetic field, which consists both of the applied field and the opposing
half-flux spikes:

Beff = B− φ0

2
ẑ
∑

i

δ(r− ri) . (18.12)

It can be expressed via the superfluid velocity

vs(r) =
~

2m
∇φ(r)− e

m
A, (18.13)

as Beff = −m/e∇× vs. By rewriting vs as

vs(r) =
π~
m

∫
d2k

(2π)2

ik× ẑ
λ−2 + k2

∑

i

eik(r−ri), (18.14)

compare Appendix J.1.1, we can easily see that the spatial average of the effective field 〈Beff〉 ∼
〈∇ × vs〉 vanishes, since 〈eikr〉 = 0.

Basically, this would be the desired result: The off-diagonal phase is removed and the spatial
average of the effective magnetic field vanishes, paving the road for a translationally invariant
formulation. However, the order parameter phase is not a pure gauge field, which can be seen
by the non-vanishing right-hand side of Eq. (18.6). It winds around the vortex core by 2π
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18 Lattice model in a magnetic field

and therefore takes values in the interval φ(r) ∈ [0, 2π]. Thus, the factor 1/2 in the exponent
of the diagonal elements of U causes complications - the gauge transformation is not single-
valued! In principle this could be compensated by introducing branch cuts in the quasiparticle
wave function. A more elegant solution to this problem is given by the Franz-Tešanović gauge
transformation (Franz and Tešanović, 2000), a bipartite singular gauge transformation:

H → U−1HU, U =
(
eiφA(r) 0

0 e−iφB(r)

)
(18.15)

with

φA(r) + φB(r) = φ(r) . (18.16)

Since no factor of 1/2 occurs in the off-diagonal phase of U , the tranformation is rendered
single-valued. The set of vortices contained in φ(r) is divided into two subsets A and B with
vortices at {rAi } and {rBi } obeying the relation

∇×∇φµ(r) = 2πẑ
∑

i

δ(r− rµi ), µ = A,B. (18.17)

Therefore, quasi-electrons and quasi-holes in the transformed system see different vortices,
namely those contained in φA(r) and φB(r), respectively. The gauge-transformed Hamiltonian
becomes

HN =

(
−t∑δ e

iνAδ (r)ŝδ − εF
∑

r0
∆rel(r0)e−iδφ(r)/2ŝr0e

iδφ(r)/2

∑
r0

∆∗rel(r0)e−iδφ(r)/2ŝr0e
iδφ(r)/2 t

∑
δ e
−iνBδ (r)ŝδ + εF

)
(18.18)

using δφ(r) = φA(r)− φB(r) and

νµδ =

r+δ∫

r

(
∇φµ −

e

~
A
)
· dl ≡ m

~

r+δ∫

r

vµs · dl (18.19)

for µ = A,B. The second equality defines vµs , the counterpart of the superfluid velocity
vs, which acts as an effective vector potential. Therefore, quasi-electrons and -holes move in
different effective magnetic fields

Bµ
eff = −m

e
(∇× vµs ) = B− φ0ẑ

∑

i

δ(r− rµi ) . (18.20)

Analogous to vs an expression involving the vortex positions can be derived for vµs :

vµs =
2π~
m

∫
d2k

(2π)2

ik× ẑ
λ−2 + k2

∑

i

eik(r−rµi ) (18.21)

Details of this calculation are discussed in Appendix J.1.2. As for Beff, the spatial average
〈Bµ

eff〉 ∼ 〈∇ × vµs 〉 vanishes due to 〈eikr〉 = 0. Therefore, the number of A and B vortices in
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Figure 18.1: (a) Arrangement of A and B vortices on top of the lattice, on which the electrons live
(gray grid). The green colored region denotes the magnetic unit cell. In this example the magnetic unit
cell contains (Nsx = 4)× (Nsy = 4) lattice sites, implying a magnetic field strength of B = φ0/(16δ2).
(b) First magnetic BZ for the square vortex lattice in (a). (Figure based on Vafek et al., 2001)

the system is equal and for a periodic arrangement of vortices their distribution can be chosen
in a way that the magnetic unit cell contains one of each vortex type.

The off-diagonal phase in the gauge-transformed Hamiltonian HN can be summarized as

Ar0(r) =
1
2

(δφ(r + r0)− δφ(r)) =
1
2

r+r0∫

r

(∇φA −∇φB) · dl . (18.22)

In the following we consider the setup depicted in Fig. 18.1(a). In the absence of pinning effects
the vortices are arranged in a periodic fashion. For simplicity we assume a square vortex lattice
instead of the triangular lattice indicated by experimental and theoretical results. However,
this should not affect the validity of the results. The electrons hop on an underlying square
lattice with bond length δ. For the FT gauge transformation all vortices {ri} are divided
into two subgroups {rAi } and {rBi } containing the same number of vortices. We consider A
and B vortices to be distributed in a checkerboard pattern. Vortex and electron lattice are
commensurate in the way that the magnetic unit cell contains one vortex of each type. The
magnetic unit cell comprises Ns = NsxNsy lattice sites, where Nsi denotes the number of sites
in ith direction. Via the London equation (18.7) the size of the magnetic unit cell and the
strength of the external magnetic field B are connected as B = φ0/(NsxNxyδ

2).
This periodic arrangement of vortices significantly simplifies the expressions for the off-

diagonal and the hopping phase, which will be discussed in the next section.

18.3 Off-diagonal and hopping phase

In the gauge transformed Hamiltonian HN , Eq. (18.18), two different phases occur: the off-
diagonal phase Ar0(r), defined by Eq. (18.22), and the hopping phase in the diagonal block νµδ ,
Eq. (18.19). For both phases explicit expressions in terms of summations over the reciprocal
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18 Lattice model in a magnetic field

Figure 18.2: Magnetic 4 × 4 unit cell contain-
ing one vortex of each type. The derived expres-
sion for the off-diagonal phase Ar0(r) between the
points r and r + r0 depends on the number of vor-
tices nV in the trapezoid spanned by the points r
and r + r0 and their projection to the x-axis (blue
colored region) The point of origin is given by the
lower left corner of the magnetic unit cell. In this
example nV = 1.
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lattice vectors of the vortex lattice, G, can be derived exploiting the London equation for
intermediate field values, Eq. (18.7), and the periodic structure. While the description of
the reciprocal space is presented in Appendix J.2 and the detailed derivation of the phase
expressions are explained in Appendix J.3 and J.4, we will now give a summary of the results.

The hopping phase is given by

νµδ (r) =
2π
Nsδ2

∑

G

1
λ−2 +G2

e−iGr̄µeiGr

[
−Gy
Gx

(
1− eiGxδx

)
+
Gx
Gy

(
1− eiGyδy

)]
, (18.23)

where λ is the London penetration depth and r̄µ is the offset of the position of vortex µ to the
lower left corner of the magnetic unit cell. As a cross-check for the derived expression of the
hopping phase, the magnetic flux through each plaquette is calculated in Appendix J.5.

The off-diagonal phase Ar0(r), Eq. (18.22), requires some preliminary considerations. The
closed line integral over∇φA−∇φB is not zero, but depends on the number of encircled vortices
due to the non-vanishing curl of∇φµ, Eq. (18.17). The occurring line integral is therefore path-
dependent. Although not known in detail, the underlying microscopic interaction stabilizing
the considered arbitrary pairing is assumed to be distance-dependent, which represents the
simplest case. Under this assumption, the integral in Eq. (18.22) has to be evaluated along
the path that directly connects the points r and r + r0. If we consider vortices slightly shifted
from the center of a plaquette by an irrational fraction of the lattice spacing δ, this prevents
vortex cores sitting on the straight connection line between two lattice sites, rendering all
occurring line integrals well-defined. The off-diagonal phase becomes

Ar0(r) =
π

Nsδ2

∑

G

e−iGr̄B − e−iGr̄A

G2

[
Gy
Gx

(
1− eiGxx0

)
eiGxx+

−Gx
Gy

(
eiGr − eiG(r+r0) + eiGxx0 + eiGx(x+x0)

)]
+ nV π ,

(18.24)

where nV denotes the number of vortices in the trapezoid spanned by the points r, r + r0 and
their projection to the x-axis, (x, 0)T and (x+ x0, 0)T . An illustration is given in Fig. 18.2.

The gauge-transformed Hamiltonian HN reflects the discrete translational invariance of the
system. This can be exploited by formulating Bloch equations, which will be discussed in the
next section.
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18.4 Bloch equations

18.4 Bloch equations

The advantage of the FT gauge transformation is two-fold: It restores explicitly the discrete
translational invariance with the vortex lattice in the gauge-transformed Hamiltonian HN
while conserving single-valuedness.

The translational symmetry HN (r) = HN (r + R), where {R} denote the vectors pointing
to the magnetic unit cells, simply requires the phases νµδ (r) and Ar0(r) to be invariant under
r→ r + R. For both νµδ (r) and Ar0(r), this can be seen from the derived expressions (18.23)
and (18.24), because for reciprocal lattice vectors G the relation eiGr = eiG(r+R) holds.

For the FT-gauge transformed real-space Hamiltonian HN the Bogoliubov-de Gennes equa-
tion reads

HNΨn(r) = εnΨn(r), (18.25)

where Ψn(r) is a two-component spinor. Due to the discrete translational invariance the
eigenfunctions can be modeled as Bloch waves

Ψn,k = eikrΦn,k(r), Φn,k = (Un,k(r), Vn,k(r))T , (18.26)

where Φn,k(r) is periodic with the magnetic unit cell. With this ansatz, the eigenvalue problem
becomes a Schrödinger-like equation in k-space, also denoted as Bloch equations

HkΦn,k(r) = εnkΦn,k(r), (18.27)

with Hk = e−ikrHNeikr. Notice that the transformation between HN and Hk is not unitary
due to the periodic boundary conditions at the edge of the magnetic unit cell. The gauge
transformed Hamiltonian in k space is given by

Hk(r) =

(
−t∑δ e

iνAδ (r)eikδ ŝδ − εF
∑

r0
∆(r0)eiAr0 (r)eikr0 ŝr0∑

r0
∆∗(r0)eiAr0 (r)eikr0 ŝr0 t

∑
δ e
−iνBδ (r)eikδ ŝδ + εF

)
(18.28)

Under the assumption that every magnetic unit cell contains two vortices, the strength of the
applied magnetic field and the size of the magnetic unit cell are connected to each other via
the London equation. The size of the magnetic BZ follows from the shape of the magnetic
unit cell. Equation (18.28) describes an eigenvalue problem for every k vector in the magnetic
BZ; Hk becomes a (2Ns × 2Ns)-matrix, with Ns being the number of sites in the magnetic
unit cell.

In the following the off-diagonal matrix entry between site i and j with rij = rj−ri is denoted
by hoff-diag

ij,k . For a system with only one unit cell, hoff-diag
ij,k simply consists of ∆(rij)e

iArij (ri)eikrij .
With more than one unit cell and a pairing term ∆(rij) that is not restricted to short-ranged
interactions, a summation over all unit cells has to be introduced:

hoff-diag
ij,k =

∑

R

∆(rij + R)eiArij+R(ri)eikrij+R . (18.29)

As derived in Appendix J.6, Ar0+R(r) can be split into

Ar0+R(r) = Ar0(r) + qr+r0 ·R + (n̄V − nV )π . (18.30)
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18 Lattice model in a magnetic field

Figure 18.3: Four magnetic 4 × 4 unit
cells, each containing one vortex of
each type. The trapezoid spanned by
the points r, r + r0 + R and their
projection to the x-axis (x, 0) and (x +
x0 +Rx, 0) is shaded in gray and covers
n̄V = 5 vortices.
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using

qr+r0 =
π

2

(
1/Nsx

−sign(x+ x0 − xA)sign(x+ x0 − xB)/Nsy

)
, (18.31)

where xµ is the x-component of r̄µ. n̄V denotes the number of vortices in the trapezoid spanned
by the points r, r + r0 + R and their projection to the x-axis (x, 0) and (x+ x0 +Rx, 0). This
is illustrated in Fig. 18.3. Equation (18.29) simplifies to

hoff-diag
ij,k = eiArij (ri)(−1)n̄V −nV

∑

R

∆(rij + R)eiqrj ·Reikrij+R (18.32)

= eiArij (ri)(−1)n̄V −nV
∑

R

1
NuNsδ2

∑

k′
∆(k′)ei(k+k′)(rij+R)eiqrjR (18.33)

= eiArij (ri)(−1)n̄V −nV
1

Nsδ2

∑

G

∑

k′
∆(k′)ei(k+k′)rijδk+k′+qrj ,G

(18.34)

= eiArij (ri)(−1)n̄V −nV
1

Nsδ2

∑

G

∆(G− k− qrj )e
i(G−qrj )rij , (18.35)

where Nu denotes the number of magnetic unit cells in the system.

In this chapter a quantum-mechanical description was developed, modeling a strongly type-II
superconductor in the mixed state in the presence of an arbitrary superconducting pairing.
Applying a Franz-Tešanović gauge transformation, a bipartite singular gauge transformation,
leads to a Hamiltonian reflecting the discrete translational invariance of the system in the
presence of an Abrikosov vortex lattice. Within this framework eigenstates are Bloch states,
which significantly simplify the problem.

In the next chapter, we discuss the numerical implementation of this model with a pairing
gap leading to Fermi arcs and present numerical results for the spectrum and the density of
states.
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19 Numerical results

This chapter presents numerical results for the spectrum and the density of states for the model
introduced in the previous section, a strongly type-II superconductor in the mixed state, in
combination with a pairing function that produces Fermi arcs. The Schrödinger equation in
k space, Eq. (18.27), that takes advantage of the periodicity of the vortex lattice, is solved
numerically by diagonalizing the Hamiltonian for a grid of k vectors in the magnetic BZ.

The numerical diagonalization was accomplished by LAPACK and ARPACK routines. LA-
PACK (Linear Algebra PACKage) (Anderson et al., 1999) comprises various routines for linear
algebra including eigenvalue problems, for which the full spectrum and the complete set of
eigenvectors is provided. In contrast, ARPACK (ARnoldi PACKage) (Lehoucq et al., 1998) is
exclusively designed to solve large-scale eigenvalue problems. It uses the implicitly restarted
Arnoldi method and provides a set of low-lying eigenvalues. This allows to deal with larger
matrices and takes up significantly less run time. The performance was further improved by
Fast Fourier Transformation (FFT) implemented by the FFTPACK routine: The calculation
of (i) the hopping and off-diagonal phases νµδ and Ar0(r), which can be written as sums over
reciprocal lattice vectors, and (ii) the Fourier transform occurring in the off-diagonal matrix
elements, Eq. (18.35), were realized with a FFT.

In the following we first consider both ordinary and modified d-wave pairing functions and
compare their results for the spectrum and the density of states. It will become clear that the
behavior of the DOS in the proximity of the Fermi surface is crucially different - the modified
d-wave pairing leads to an oscillatory behavior of the DOS in the vicinity of the Fermi level!
We provide a detailed frequency analysis in terms of the given parameters and compare the
results to experimental data. Furthermore, we show the local density of states (LDOS) at
the Fermi level, data, which corresponds to what would be seen in a Scanning Tunneling
Microscopy (STM) measurement. A short summary concludes this chapter.

19.1 Spectrum and DOS

The magnetic unit cell has the size (Nsxδ)×(Nsyδ) and contains one A and one B vortex. The
vortices are arranged in a square lattice as shown in Fig. 18.1(a). The size of the magnetic
unit cell determines the strength of the magnetic field via the London equation (18.7) as
B = φ0/(NsxNsyδ

2), where φ0 = h/e = 4.137 × 105TÅ2 denotes the magnetic flux quantum.
For a lattice spacing δ = 4Å, which is the appropriate value for YBa2Cu3O7, a 16×16 unit cell
corresponds to a field strength of about 101 T. The experimentally relevant regime between
40 and 65 T is modeled by unit cell sizes between 24δ × 24δ and 20δ × 20δ. The London
penetration depth λ is chosen to be 5000δ in numerics, which is much larger than the width
of the unit cell.
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Figure 19.1: Spectrum along a specific walk in the magnetic BZ, illustrated in Fig. 18.1(b), for an
ordinary d-wave pairing with ∆0 = t and εF = −1.1t in the presence of an external magnetic field. The
magnetic unit cell size is 16δ × 16δ, which corresponds to approximately 101 T.
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Figure 19.2: Low-energy spectrum for ordinary d-wave pairing: Zoom into the low-energy part of
Fig. 19.1.
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Figure 19.3: Tunneling density of states for ordinary d-wave pairing in the presence of a magnetic field
of roughly 101 T (black), which corresponds to a 16δ× 16δ magnetic unit cell, and without magnetic
field (red). Parameters correspond to the ones in Fig. 19.1.
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Figure 19.4: Spectrum along a walk in the magnetic BZ, shown in Fig. 18.1(b) for a modified d-wave
pairing with the parameters τ = 0.1, ν = 0.6, ∆0 = t and εF = −1.1t. The magnetic unit cell has a
size of 16δ × 16δ.
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Figure 19.5: Zoom into the low energy spectrum for modified d-wave pairing, parameters are the same
as in Fig. 19.4.
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Figure 19.6: Tunneling DOS for a modified d-wave pairing in the presence of a magnetic field (black)
and without magnetic field (red). Parameters are the same as in Fig. 19.4.
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Figure 19.7: Zoom into the low energy part of the density of states for (a) ordinary (compare Fig. 19.3)
and (c) modified d-wave pairing (compare Fig. 19.6) with (black) and without (red) magnetic field.
The two panels on the right-hand side show the corresponding power spectrum |D̃(s)|2 for ordinary (b)
and modified (d) pairing.

Unless otherwise noted numerical data are shown for a 16×16 unit cell. For magnetic fields
in the experimental regime results are qualitatively the same. We consider a system of finite
size with (Nux = 80) × (Nuy = 80) unit cells, which determines the number of states in the
magnetic unit cell and therefore the resolution of the DOS.

Ordinary d-wave superconductivity in the mixed state was already discussed by Vafek et al.
(2001). In this reference, only the low-energy part of the spectrum is shown. We, however,
compute the full spectrum, Figs. 19.1 and 19.2, and the complete tunneling DOS, Fig. 19.3.
The spectrum is symmetric with respect to ε = 0, and it is sufficient to show only the positive
energy range. The asymmetry in the tunneling DOS DT , produced by the broken particle-
hole symmetry (εF = −1.1t), arises from the Bogoliubov prefactors |uk|2 and |vk|2, which are
related to the eigenvectors of the Hamiltonian (18.28). The spectrum of a modified d-wave
pairing with the pairing function defined by Eq. (17.3) is plotted in Figs. 19.4 and 19.5, the
corresponding tunneling DOS is shown in Fig. 19.6. In all cases the spectrum is plotted for a
specific walk in the magnetic BZ, shown in Fig. 18.1(b).

At energies much larger than ∆0, the off-diagonal matrix elements become irrelevant and a
regular level structure evolves, similar to Landau levels. In the limit ∆0 � t, the Landau level
frequency observed at higher energies ε is expected to correspond to the frequency that would
be obtained from the semiclassical analysis discussed in Sec. 16.2.

Zooming into the low-energy part of the DOS around the Fermi level reveals the crucial
difference between ordinary and modified d-wave pairing: As we can see in the two left panels in
Fig. 19.7, the former one shows an irregular structure, whereas for the latter one an oscillatory
behavior is observed. This behavior will be quantitatively studied in the next section.
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Figure 19.8: DOS as a function of εF at the Fermi level for ν = 0.6, τ = 0.1 and a 16δ × 16δ unit cell.

19.2 Frequency analysis

The observed oscillatory behavior around the Fermi level for the modified d-wave pairing,
Fig. 19.7(c), implies oscillations in most of the physical observables. Before analyzing the
frequency behavior quantitatively, we first note, that in the absence of superconductivity the
following relation holds:

DεF (ε) =
1
N
∑

k

δ(ε− (εk − εF )) = D0(ε+ εF ) , (19.1)

where DεF (ε) denotes the density of states at energy ε and Fermi level εF . It implies the fact
that oscillations (i) in the DOS D(ε) for a fixed value of εF and (ii) in the DOS as a function
of εF , DεF (ε = 0), at the Fermi level are equivalent. In the presence of superconductivity this
relation is no longer valid and we have to differentiate between these two functions. A plot of
DεF (ε = 0) is depicted in Fig. 19.8, showing clear deviations from DεF=−1.1t(ε), Fig. 19.7(c),
while the set of parameters stays the same.

The qualitative observation of oscillatory behavior in the DOS for modified d-wave pairing
can now be furnished by considering the power spectrum. Details for its calculation are dis-
cussed in Appendix K. The power spectrum (Fig. 19.7(d)) for the DOS depicted in Fig. 19.7(c)
reveals peaks at the dominating frequency and its higher harmonics. By contrast, the power
spectrum for ordinary d-wave pairing, Fig. 19.7(b), does not show a distinct peak, but rather
has contributions from many different frequencies.

In the following we systematically study how the dominating frequency depends on the arc
length ν, the magnetic field B and the gap parameter ∆0, while comparing to the results of
the semiclassical analysis presented in (Pereg-Barnea et al.), whose basic ideas are sketched in
Appendix L. In the semiclassical approach, a frequency

Fε =
θa
π~ωc

(19.2)

is found for energy oscillations in the DOS and a frequency

F = ∆0
(π/2− θa)mc

π~e
(19.3)
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Figure 19.9: Dominating frequency s̄ as a function of ν for oscillations in DεF =const(ε) (black squares)
and in DεF (ε = 0) (gray squares) around εF = 0 (panel a) and εF = −1.3t (panel b). The error bars
denote the full width at half maximum of the corresponding peak in the power spectrum. The used
parameters are ∆0/t = 1 and τ = 0.1. The size of the magnetic unit cell is 16∗16, implying a magnetic
field of B = 101T. The red plot represents the semiclassical result, Eq. (19.2), with mc = 3me, where
me is the bare electron mass. The blue, brown and purple colored horizontal lines represent frequencies
extracted in specific limits; for a detailed explanation see text.

for oscillations in the DOS as a function of inverse magnetic field, where mc is the cyclotron
mass, ωc = eB/mc the cyclotron frequency and e the electron charge. The parameter θa
describes the angular size of the arc and is directly associated to the arc length ν by a function
θa(ν), which is approximately linear for small to intermediate values of ν.

An overview, how the first harmonic, denoted in the following by s̄, depends on the arc
length ν is given in Fig. 19.9: Oscillations both as a function of εF and ε are studied. In
addition to these results further frequencies are shown for comparison:

brown: By considering the underlying Fermi surface in the absence of pairing and at zero
magnetic field, a semiclassical frequency can be extracted following the Onsager relation,
Eq. (16.14). A Taylor expansion of the Fermi surface volume Amom(εF ) in εF up to first
order leads to Amom(εF ) ≈ A0 + A1(εF − εF0), where εF0 = 0 and −1.3t, respectively.
The semiclassical frequency is given by ~A1/e.

purple: This frequency is extracted from the DOS D(ε) in the limit ε � ∆0. In this regime
the DOS shows the signatures of Landau level quantization, compare e.g. Fig. 19.6.

blue: While using the developed framework of the FT gauge transformation and setting ∆0

to zero, this frequency can be extracted from the oscillations in D(ε) around the Fermi
level.

A few remarks are in order:
(i) While approaching the limit of ordinary d-wave for ν → 0 the oscillatory behavior breaks
down and no frequency can be extracted from the data. The oscillations in D(ε) saturate to
a constant in this limit.
(ii) All frequencies shown in Fig. 19.9 vary with εF , which is related to the doping level.
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Figure 19.10: (a) Dominating frequency as a function of the arc length ν for different values of the
gap parameter ∆0 for oscillations in DεF =−1.3t(ε) around the Fermi level ε = 0. (B = 101T, τ = 0.1)
(b) Dominating frequency scaled the inverse magnetic field, s̄B, as a function of ν for oscillations in
DεF =−1.3t(ε) (∆0/t = 1, τ = 0.1).
Please note that the black squares in both plots represent the same data as the ones shown in
Fig. 19.9(b).

Experimentally, this is the case as well: YBa2Cu3O6.51 (p = 0.1) exhibits lower frequencies
than YBa2Cu4O8 (p = 0.14).
(iii) The semiclassical frequency (brown line) extracted from the Onsager formula (16.14)
matches the frequency obtained from the quantum-mechanical formalism in the limit ∆0 → 0
(blue line).
(iv) The two limits ν → 1 and ∆0 → 0 are equivalent. Thus the black squares converge to the
blue line for ν → 1.
(v) For εF = −1.3t the frequency behavior in DεF (0) (gray squares) resembles the one in
DεF=const.(ε) (black squares). At half filling the s̄(ν) functions have a different structure.

The semiclassical frequency Fε, Eq. (19.2), translates into

s̄(ν) = 2πFε =
2mcθa(ν)
eB~

(19.4)

and is represented by a red line in Fig. 19.9. It shows good agreement with the oscillations
as a function of ν for both considered values of εF . Its saturation to a constant value for
high ν in Fig. 19.9(b) results from the structure of the function θa(ν): For εF = −1.3t and
ν & 0.65, a gapped region is still present in the system, however it does not have contact with
the underlying Fermi surface, leading to θa = π/2.

In contrast to the semiclassical result Fε, the frequencies extracted from the lattice model
exhibit a gap dependence, depicted in Fig. 19.10(a), which saturates in the limit of large ∆0.
This is consistent with the fact that the semiclassical analysis requires the condition ε � ∆0

and therefore only holds in the limit of large ∆0. Furthermore, we observe a linear scaling of
the frequencies with inverse magnetic field, compare Fig. 19.10(b), which is in agreement with
the B-dependence of Fε.

In experiments the oscillations are observed as a function of inverse magnetic field, which leads
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19 Numerical results

to complications within our theoretical setup: Varying the magnetic field is accomplished by
changing the size of the magnetic unit cell. It appears that the DOS value at the Fermi
level, D(0), is sensitive to the vortex position. Due to this commensurability effect it is only
reasonable to compare configurations, where the vortices sit at the same position within a
plaquette, which is only the case for magnetic unit cells, where Ns,i is an integer multiple of
4. In the range between 40 and 100 T only three data points can be studied, which clearly
does not allow a direct observation of 1/B oscillations. This commensurability effect is not of
experimental relevance, since disorder effects lead to vortex pinning, which destroys the vortex
lattice and a vortex liquid evolves.

For a normal metal as well as for an ordinary d-wave superconductor it is valid to draw
conclusions from energy-oscillations to magnetic field-oscillations. A scaling analysis for a
metal tells us that for fixed filling three energy scales exist in this problem: the Fermi level
εF , the temperature T and the magnetic field B. Therefore the DOS is a function of the
dimensionless ratios between these energy scales D(εF /B,B/T ), which reduces to D(εF /B)
for fixed temperature. Oscillations in εF can directly be mapped onto oscillations in 1/B.

In a d-wave superconductor the situation is different, but another type of scaling can be
found, developed by Simon and Lee (1997) and discussed in the context of quantum oscillations
by Melikyan and Vafek (2008). This Simon-Lee scaling is based on the existence of Dirac cones,
which are present in the spectrum of a d-wave superconductor at the nodal points.

None of these two cases can directly be applied to the considered case of a Fermi arc metal.
However, the semiclassical approach, which is furnished by our numerical results for the lattice
model, is able to predict the oscillation frequency as a function of inverse magnetic field. In
order to give an estimate for this frequency, we plug in experimentally achieved values for ∆0

and mc: For ∆0 = 80meV (Hossain et al., 2008), mc = 3me (Bangura et al., 2008), where me

is the bare electron mass, and θa = π/4, the resulting frequency F = 518T lies int the range
of the experimentally observed frequency 500± 20T (Sebastian et al., 2008). Please note that
the value used for the cyclotron frequency is a result from a fit to the Onsager-Lifshitz picture
and, since the Fermi surface cannot be measured in the relevant regime, the value for θa is also
dressed with uncertainty. Nevertheless, this first estimate shows that the semiclassical result
is able to produce frequencies in the experimental range.

19.3 Spatially resolved DOS

Experiments for scanning tunneling microscopy (STM) were conducted for several high-tempe-
rature superconductors in the presence and absence of a magnetic field (a review is given by
Fischer et al. (2007)) and are able to produce a map of the local density of states (LDOS)
at the Fermi level, which reveals the positions of impurities and vortices. The differential
tunneling conductance dI/dV as a function of the applied voltage V between the STM tip and
the sample at a specific point r of the sample, where I(V ) is the tunneling current, corresponds
to the LDOS at r.

The local tunneling DOS is defined by

DT (r, ε) =
1
N
∑

k

(
|uk(r)|2δ(ε− Ek) + |vk(r)|2δ(ε+ Ek)

)
, (19.5)
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Figure 19.11: (a) Density plot of the local tunneling density of states at the Fermi level DT (r, ε = 0)
for a 20 × 20 unit cell with εF = −1.1t, ν = 0.6, τ = 0.1 and ∆0 = t. Lattice sites are located in the
center of the squares. The vortices are sitting close to the center of a plaquette, slightly shifted by an
irrational fraction of the lattice spacing and are accompanied by an enhanced DOS (bright regions). (b)
Local DOS tunneling spectra as a function of energy. The various spectra are taken along a line across
a vortex, compare to the corresponding sites shown in (a), and have an offset of 0.0016 for clarity. The
averaged local tunneling DOS at zero magnetic field (black curve) is shown for comparison.
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where |uk(r)|2 and |vk(r)|2 can be extracted from the eigenvectors of the Bogoliubov-de
Gennes Hamiltonian (18.28). Our numerical results enable us to plot a LDOS map, com-
pare Fig. 19.11(a). The resolution is restricted to the number of lattice sites per magnetic
unit cell. Furthermore, we show the corresponding local tunneling DOS spectra, Fig. 19.11(b),
along a line across a vortex core. In experiment this would correspond to differential tunneling
conductance spectra. The positions of the two vortices in the magnetic unit cell are clearly
distinguishable - the LDOS near the vortex core is enhanced (lighter color). The slight as-
symmetry is due to a small constant shift of the vortices along the x-direction by an irrational
fraction of the lattice spacing, see discussion above.

Maggio-Aprile et al. (1995) were the first to observe vortices with STM in a high-temperature
superconductor. In the vortex core region they recognized a vanishing of the coherence peaks,
which shows the suppression of the superconducting order parameter in the vicinity of a vortex.
Since the amplitude ∆0 of the superconducting order parameter is not acquired from a self-
consistent calculation, but set to a fixed value for all sites, its suppression in the vicinity of a
vortex core is not describes by the theoretical setup. Furthermore, the magnetic field strength
of 64 T, determined by the 20× 20 magnetic unit cell, is more than a factor of 10 higher than
in the experiment conducted by Maggio-Aprile et al. The peak features in Fig. 19.11(b) are
washed out by the wiggles resulting from the magnetic field.

19.4 Summary

The numerical results for the spectrum and the density of states were obtained from diagonal-
izing the gauge transformed Bogoliubov-de Gennes Hamiltonian in k space, Eq. (18.28). For
the modified d-wave pairing the density of states exhibits oscillatory behavior in the vicinity of
the Fermi level, while such a property is not seen for ordinary d-wave pairing. The extracted
frequencies depend on the arc length ν and the gap parameter ∆0, and scale with inverse mag-
netic field. Commensurability effects prevent a direct observation of oscillations as a function
of the inverse magnetic field. The agreement with the semiclassical analysis by (Pereg-Barnea
et al.) is shown, which is able to recover the experimental results.

184



20 Conclusion

This part of the thesis was concerned with quantum oscillations in the underdoped regime
of cuprate superconductors. While semiclassical arguments for normal metals lead to the
well-established paradigm that quantum oscillations are connected to the existence of a closed
Fermi surface, this study shows that also truncated segments of a Fermi surface can imply
oscillatory behavior.

The considered theoretical setup describes a type-II superconductor in a magnetic field
leading to an Abrikosov vortex lattice and a pairing gap that produces Fermi arcs. The shape
of the pairing gap is based on a phenomenological ansatz reflecting the properties observed
in ARPES measurements. Numerical diagonalization of the gauge-transformed Hamiltonian
in k space reveals oscillations in the density of states with a frequency that depends on the
length of the arc and the size of the maximum gap. The frequencies scale linearly with the
inverse magnetic field. The oscillatory behavior breaks down when the Fermi arcs shrink to
nodal points, which correspond to an ordinary d-wave pairing.

The used method only allows for the observation of oscillations as a function of energy,
while for the comparison with experimental date their relation to oscillations as a function
of inverse magnetic field becomes necessary. The acquired results are in good agreement
with the semiclassical analysis by (Pereg-Barnea et al.), which significantly deviates from the
conventional Onsager-Lifshitz picture: The occurring frequency is not associated with an area
in momentum space, but with the periodic appearance of Andreev bound states. Semiclassics
is able to extract a frequency for magnetic field oscillations that recovers the experimental
result for the dominating frequency Fα. At this stage there is no prediction for a second,
higher frequency with lower amplitude. In order to confirm the semiclassical approach in
a fully quantum-mechanical treatment, further investigation is needed, e.g. by considering a
vortex liquid, for which the density of states can be found by a transfer matrix method (Lee
and Fisher, 1981).

Altogether, the suggested model provides a possible scenario synthesizing the Fermi arc
picture arising from ARPES measurements with the observation of quantum oscillations in
the underdoped regime of cuprates. The direct observation of Fermi arcs at low temperature
and high magnetic field would be able to confirm this picture.
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I Bond phase

In this appendix we discuss how the bond phase ϕ(rm, rn) is expressed in terms of on-site phases
in the case of longer-ranged Cooper pairs. This simplifies the formulation of a Bogoliubov-de
Gennes Hamiltoninan.

In BCS theory the order parameter ∆mn = Dmne
iϕm,n (with ϕm,n ≡ ϕ(rm, rn) for simplic-

ity) is determined as the self-consistent solution of the gap equation. For a nearest-neighbor
interaction producing the superconducting instability, the phase ϕm,n is naturally defined on
a bond of nearest neighbored sites (m,n). If the Cooper pair is located far away from a vortex
core, ϕm,n can be expressed by the phases φm and φn, which are associated to the sites m and
n. For the choice of averaging over all neighboring sites

eiφm =
1
4

∑

σ

eiϕm,m+σ (I.1)

the replacement

eiϕm,n → ei(φm+φn)/2 (I.2)

is correct in first order lattice derivatives of φ (Vafek et al., 2001).
Considering an arbitrary pairing that is not restricted to nearest neighbored sites, the cor-

responding underlying interaction is longer-ranged. In the simplest case this interaction is
distance-dependent and the phase ϕm,n lives on the straight line connecting the points m and
n. It can be expressed as the sum of phases over neighboring bonds, i.e.,

ϕm,n = ϕm,`1 + ϕ`1,`2 + . . .+ ϕ`N ,n , (I.3)

where the sites `α and `α+1 (α = 0, . . . , N + 1 with `0 = m and `N+1 = n) are nearest
neighbors. The Cooper pairs might not be localized in comparison to the vortex core, but
rather be extended in space. Nevertheless we assume that Eq. (I.2) can be generalized to
arbitrary links m,n as

ϕm,n =
1
2

(φm + φn) . (I.4)

187



I Bond phase

188



J Superfluid velocity and phase factors

J.1 Superfluid velocity

The superfluid velocity serves as a vector potential for the effective magnetic field seen by
quasi-particles and quasi-holes after a gauge transformation was applied. The specific shape
depends on the considered form of the gauge transformation.

J.1.1 Standard gauge transformation

This section provides a detailed derivation of an expression for the superfluid velcocity vs in
terms of the vortex positions {ri} by using the definition of vs, Eq. (18.13), and the London
equation (18.7), compare (Tinkham, 1975).

The London equation has an explicit solution in Fourier space for the magnetic field

Bk =
1
2
φ0ẑ

∑
i e
−ikri

1 + λ2k2
(J.1)

with B(r) = (2π)−2
∞∫∫
−∞

d2keikrBk. By using Eq. (18.6) and the relation B(r) = ∇ × A the

curl of vs reads

∇× vs(r) =
π~
m

∑

i

δ(r− ri)−
e

m
B , (J.2)

which becomes

ik× vsk =
π~
m
ẑ
∑

i

e−ikri − e

m
Bk (J.3)

upon Fourier transforming. Since the relation ik× (ik×vsk) = k2vsk holds, taking the vector
product with ik on both sides of the equation projects out the result for vsk. Plugging in
Eq. (J.1) and Fourier transforming into real space provides the desired result

vs(r) =
π~
m

∫
d2k

(2π)2

ik× ẑ
λ−2 + k2

∑

i

eik(r−ri) . (J.4)

J.1.2 Franz-Tešanović gauge transformation

Similar to the case of a standard gauge transformation discussed in the previous subsection,
the superfluid velocity for a FT-tranformed system

vµs =
~
m
∇φµ −

e

m
A (J.5)
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can be rewritten as a k-space integral. In the intermediate regime of the vortex state the
Fourier transformed solution of the London equation (J.1) is known, and therefore the Fourier
transform of

∇× vµs (r) =
2π~
m

(
ẑ
∑

i

δ(r− rµi )− B
φ0

)
, (J.6)

is given by

ik× vµsk =
2π~
m

(
ẑ
∑

i

e−ikrµi − Bk

φ0

)
. (J.7)

As above, we build the vector product with ik on both sides of the equation and use Eq. (J.1),
which leads to

vAs =
2π~
m

∞∫∫

−∞

d2k

(2π)2

ik× ẑ
k2

(
Ak −

1
2

Ak + Bk

1 + λ2k2

)
eikr, (J.8)

where we introduced the shortcuts Ak =
∑

i e
−ikrAi and Bk =

∑
i e
−ikrBi . In the limit of

λ2k2 ∼ λ2/d2 � 1 (d being the intervortex distance), which is satisfied in the considered
regime, the brackets can be approximated by Ak(λ−2 + k2)−1. Since a similar relation holds
for vBs , these results can be combined to

vµs =
2π~
m

∫
d2k

(2π)2

ik× ẑ
λ−2 + k2

∑

i

eik(r−rµi ) . (J.9)

J.2 Vortex lattice and the Fourier space

This section is concerned with the description of the Fourier space and the simplifications for
the Fourier transform in the presence of a periodic vortex arrangement depicted in Fig. 18.1(a).

In the absence of vortices the unit cell contains one site of the underlying lattice and covers
the area δ2, where δ is the lattice spacing. In k space the corresponding first Brillouin zone
(BZ) covers the area (0, 2π/δ)× (0, 2π/δ). In the presence of vortices the new, magnetic unit
cell comprises Ns = NsxNsy lattice sites, where Nsi denotes the number of sites in ith direction.
We introduce a set of vectors {R} pointing to each magnetic unit cell in the system. The total
system is composed of Nu = NuxNuy magnetic unit cells.

The first magnetic BZ is (0, 2π/(Nsxδ))× (0, 2π/(Nsyδ)). The k states therein are given by

ki = 2π
mi

NuiNsi
, (J.10)

with mi ∈ [0 , Nui), mi ∈ Z. The reciprocal vectors of the vortex lattice, G, fulfilling eiGR = 1
are

Gi = 2π
ni
Nsi

. (J.11)
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For ni∈[0, Nsi), ni ∈ Z the vectors G lie within the original first BZ.
A Fourier transform for a non-periodic system is accomplished by

f(r) =

∞∫∫

−∞

d2k

(2π)2
eikrf(k). (J.12)

If the function f(r) only has non-zero values at the lattice sites ri, this expression can be
reduced to

f(r) =
1

NuNsδ2

∑

k

eikrf(k), (J.13)

where k runs over all states in the original first BZ. By further assuming that f(r) is periodic
with the magnetic unit cell, i.e., f(ri + R) = f(ri), we can write

f(r) =
1

Nsδ2

∑

G

eiGrf(G), (J.14)

with the reciprocal lattice vectors G restricted to the original first BZ.
The following relation will be very useful:

∞∫∫

−∞

d2k

(2π)2

∑

i

e−ikrµi f(k) =
1

Nsδ2

∑

G

e−iGr̄µf(G), (J.15)

where r̄µ is the offset of the vortex position to a specific corner of the unit cell. Since f(k)
is an arbitrary function, the number of G vectors contributing to this sum is infinite, but for
practical purposes the summation goes up to a cutoff with |Gx| < Gmax and |Gy| < Gmax.

J.3 The hopping phase

The FT-transformed Hamiltonian HN exhibits a hopping phase νµδ in the diagonal block. It is
equivalent to a line integral over the superfluid velocity vµs , Eq. (18.21), for which an explicit
expression was found via the London equation for intermediate field values, Eq. (18.7). Thus,
we can write

νµδ (r) = 2π

∞∫∫

−∞

d2k

(2π)2

1
λ−2 + k2

∑

i

e−ikrµi

r+δ∫

r

eikr

(
iky
−ikx

)
· dl

︸ ︷︷ ︸
≡Γδ(k,r)

, (J.16)

where the line integral Γδ can be easily evaluated as

Γδ(k, r) = eikr

[
−ky
kx

(
1− eikxδx

)
+
kx
ky

(
1− eikyδy

)]
. (J.17)
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The singularity in the integrand, occuring in the limit kx → 0 while ky 6= 0 and vice versa, is
removable due to limkx→0

1−eikxδ
kx

= −iδ. A periodic vortex arrangement implies the relation
(J.15), which simplifies the result for νµδ (r) to

νµδ (r) =
2π
Nsδ2

∑

G

1
λ−2 +G2

e−iGr̄µΓδ(G, r). (J.18)

J.4 The off-diagonal phase

The off-diagonal phase in the FT-gauge transformed Hamiltonian HN is given by

Ar0(r) =
1
2

r+r0∫

r

(∇φA −∇φB) dl . (J.19)

Following the considerations discussed in Sec. 18.3, we evaluate the line integral along the path
straightly connecting the points r and r + r0.

An explicit expression for ∇φµ can be derived, in analogy to the calculation for vµs presented
in Appendix J.1.2. Fourier transforming Eq. (18.17), taking the vector product with ik and
Fourier transforming the result backwards leads to

∇φµ(r) = 2π

∞∫∫

−∞

ik× ẑ
k2

∑

i

eik(r−rµi ) =
2π
Nsδ2

∑

G

iG× ẑ
G2

eiG(r−r̄µ) , (J.20)

while exploiting the vortex periodicity in the second equality sign. With this result Ar0(r)
becomes

Ar0(r) =
π

Nsδ2

∑

G

e−iGr̄A − e−iGr̄B

G2

r+r0∫

r

eiGr (iG× ẑ) · dl . (J.21)

For pairing between nearest neighbored sites like for the p- and d-wave cases studied in
Ref. (Vafek et al., 2001), this becomes

Aδ(r) =
π

Nsδ2

∑

G

e−iGr̄A − e−iGr̄B

G2
Γδ(G, r). (J.22)

In the case of arbitrary pairing the line integral will be evaluated as follows. In order to
optimize the numerical effort we decide on an approach that is based on the fact, that the
value of a closed integral over (∇φA − ∇φB)/2 is an integer multiple of π depending on the
number of encircled vortices. We define a function

Ξ(r0) = Ãr0(0) , (J.23)
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where Ãr0(r) is given by Eq. (J.21) with a line integral along a path connecting the three
points r = (x, y)T , (x+ x0, y)T and r + r0 = (x+ x0, y + y0)T . Its evaluation yields

Ãr0(r) =
π

Nsδ2

∑

G

e−iGr̄B − e−iGr̄A

G2
eiGr

[
Gy
Gx

(
1− eiGxx0

)
− Gx
Gy

(
1− eiGyy0

)
eiGxx0

]

︸ ︷︷ ︸
≡I(G,r)

. (J.24)

In the limit of Gx and Gy to zero the integrand I(G, r) becomes

lim
Gx→0

I(G, r) = −ix0e
iGyy e

−iGyyB − e−iGyyA

Gy
, (J.25a)

lim
Gy→0

I(G, r) = iy0e
iGx(x+x0) e

−iGxxB − e−iGxxA

Gx
. (J.25b)

The correct off-diagonal phase is given by

Ar0(r) = Ξ(r + r0)− Ξ(r) + nV π , (J.26)

where nV is the number of vortices in the trapezoid spanned by the points r, r + r0 and their
projection to the x-axis (x, 0)T and (x+ x0, 0)T , illustrated in Fig. 18.2.

J.5 The magnetic flux through each plaquette

The finite value of the hopping phase νµδ is due to the magnetic flux Φµ seen by quasi-particles
and quasi-holes, respectively, composed of a uniform part associated with the applied magnetic
field and the vortex flux. The total flux per plaquette is given by

Φµ =
m

~

∮

C

vµs · dl , (J.27)

which can be evaluated by using the definition of the superfluid velocity vµs = (~/m)∇φµ −
(e/m)A, implicitly defined by Eq. (18.19):

Φµ = 2π
∫∫ (

ẑ
∑

i

δ(r− rµi )−B/φ0

)
dF = 2π(nµ − δ2B/φ0) . (J.28)

Here, Stokes’ theorem was used and the integral runs over the area enclosed by the path C.
nµ denotes the number of vortices of type µ sitting inside the plaquette and δ is the lattice
spacing.

In order to confirm the validity of the derived expression for the hopping phases νµδ , Eq. (18.23),
the flux through each plaquette can be calculated by summing over the values of νµδ at the
bonds of the plaquette. We consider a specific plaquette, whose lower left corner is given by
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r0:

Φµ =
m

~

∮

C

vµs = νµδbx(r0) + νµδby(r0 + δx̂) + νµ−δbx(r0 + δx̂+ δŷ) + νµ−δby(r0 + δŷ) (J.29)

= − 2π
Nsδ2

∑

G

1
λ−2 +G2

G2

GxGy
eiG(r0−r̄µ)

(
1− eiδGx − eiδGy + eiδGx+iδGy

)
.

(J.30)

In the intermediate regime the penetration depth λ is finite and large. The integrand becomes
0 for G→ 0 and is nearly not influenced by λ for all other G. Therefore, we assume that λ−2

can be set to zero for all finite values of G. We rewrite Φµ as the sum Φµ
V + Φµ

BG, where

Φµ
V = − 2π

Nsδ2

∑

G

1
GxGy

eiG(r0−r̄µ)
(

1− eiδGx − eiδGy + eiδGx+iδGy
)

(J.31)

= π (sign(x0 − xµ)− sign(x0 − xµ + δ)) (sign(y0 − yµ)− sign(y0 − yµ + δ)) (J.32)

and

Φµ
BG = − 2π

Ns
= −2π

Bδ2

φ0
. (J.33)

In the last equation we used B = φ0/(Nsδ
2). The magnetic background field carries one

magnetic flux quantum per magnetic unit cell with the area Nsδ
2, manifesting itself in the fact

that the spatial average of Bµ
eff vanishes. Φµ

BG represents the (G = 0)-value of the integrand
in Φµ

V and therefore corresponds to the non-localized background flux, whereas Φµ
V describes

the vortex flux.
We have seen that the magnetic flux per plaquette calculated by using the derived expression

for the hopping phase νµδ is consistent with the expected result, providing a cross-check for
the calculation in Appendix J.3.

J.6 The inter-unit cell off-diagonal phase Ar0+R(r)

The phase Ar0+R(r) occurring in Eq. (18.29) can be expressed via the function Ξ, introduced
in Eq. (J.23) as

Ar0+R(r) = Ξ(r + r0 + R)− Ξ(r) + n̄V π , (J.34)

where n̄V denotes the number of vortices in the polygon bounded by the connection line
between the points r and r + r0, the x-axis and the connection lines between the points r and
r + r0 and their projection onto the x-axis. This is illustrated in Fig. 18.3. We can further
rewrite this phase as

Ar0+R(r) = Ξ(r + r0)− Ξ(r) + ∆Ξ(r + r0 + R, r + r0) + n̄V π , (J.35)

while

∆Ξ(r + r0 + R, r + r0) = Ξ(r + r0 + R)− Ξ(r + r0). (J.36)
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The function ∆Ξ is determined by using the result for Ãr0(r), Eq. (J.24). Due to the relations
eiGR = 1 and limGi→0

((
1− eiGiRi

)
/Gi

)
= −iRi, ∆Ξ reduces to

∆Ξ(r + r0 + R, r + r0) =
π

Nsδ2


∑

Gx 6=0

e−iGxx̄B − e−iGxx̄A

Gx
eiGx(x+x0)iRy+

+
∑

Gy 6=0

e−iGy ȳB − e−iGy ȳA

Gy
(−iRx)


 . (J.37)

The Fourier summation can be carried out analytically in the continuum limit, which leads to
the relation

1
Nsx

∑

Gx

eiGxx

Gx
=

i
2

sign(x) . (J.38)

The expression for ∆Ξ depends on r, r0 and the vortex core positions r̄A and r̄B. Without
loss of generality we assume

x̄A < x̄B and ȳA < ȳB. (J.39)

Therefore, we get

∆Ξ(r + r0 + R, r + r0) = −π
2
Ry
Nsy

sign(x+ x0 − x̄A)sign(x+ x0 − x̄B) +
π

2
Rx
Nsx

. (J.40)

This result can be written in a compact way as

∆Ξ(r + r0 + R, r + r0) ≡ qr+r0 ·R , (J.41)

and

qr+r0 =
π

2

(
1/Nsx

−sign(x+ x0 − x̄A)sign(x+ x0 − x̄B)/Nsy

)
. (J.42)

The total phase can be summarized as

Ar0+R(r) = Ar0(r) + qr+r0 ·R + (n̄V − nV )π . (J.43)

195



J Superfluid velocity and phase factors

196



K Power spectrum

For studying the oscillatory behavior and extracting the dominating frequency from the density
of states the power spectrum, the absolute squared of the Fourier transform, is studied. In this
appendix we introduce the definition for the Fourier transform given a discrete set of data.

Since the numerical results of the DOS are available for a discrete set of energies εi for
i = 1, ...N with ε1 = εmin and εN = εmax, we consider the discrete Fourier transform

D̃(s) =
1
N

N∑

i=1

D(εi)e−isεi∆ε, (K.1)

where the εi are equally spaced with distance ∆ε. The power spectrum is given by |D̃(s)|2.
Fourier transforming data with a hard cutoff leads to oscillations, which is avoided by an

additional Gauss factor smoothening the boundaries:

f(εi) =
1√
2πσ

e−
(εi−ε̄)2

2σ2 . (K.2)

It is centered around ε̄ and the width is related to the variance σ2. If σ is much smaller than
the width of the data (εmax−εmin), the Gauss factor serves as a window function located e.g. in
the high or low energy range.

The discrete Fourier transform for DεF (ε = 0), the DOS at the Fermi level as a function of
εF , is

D̄(s) =
1
NF

NF∑

i=1

DεF,i(0)e−isεF,i∆εF , (K.3)

where the εF -values form a discrete set in the range [εF,1, εF,NF ], spaced at intervals of ∆εF .
Please note that s denotes an angular frequency carrying an additional factor of 2π in

contrast to the frequencies Fε and F in Eqs. (19.2) and (19.3).
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L Semiclassical analysis

In this appendix we shortly sketch the idea behind the semiclassical analysis of the quantum
oscillations in a Fermi arc metal presented in (Pereg-Barnea et al.) and summarize the results
for the frequency behavior.

The presence of a superconducting gap in a Fermi arc metal requires a re-consideration of
the equations of motion, Eq. (16.7). While for a normal metal, electron wave packets move
according to these equations, charge is not a good quantum number in the gapped region
and it is therefore necessary to construct a semiclassical wave packet with Bogoliubov-de
Gennes (BdG) quasiparticles, so-called bogolons. Their wave function Ψk = (uk, vk)T is an
eigenfunction of the BdG Hamiltonian

Hk =

(
εk ∆̃k

∆̃k −εk

)
. (L.1)

While Eq. (16.7a) still holds, because the charge e and the velocity ∇εk have opposite sign for
particles and holes that cancel each other, the second equation has to be substituted by

ṙ =
(
|uk|2 − |vk|2

) 1
~
∇kεk . (L.2)

Particles and holes move in opposite directions, and this equation describes the net center of
mass motion of the bogolon wave packet.

In the semiclassical approach the influence of a magnetic field is translated into a periodic
time dependence, H(t + T ) = H(t) with the period T = 2π/ωc. In the gapless case, H(t) =
const. However, a finite gap leads to a time-dependence in the gap parameter, ∆(t) = ∆k(t),
where k(t) satisfies Eq. (16.7a), and therefore the new periodicity condition becomes

H(t+ T ) = H(t) ≡ Hk(t) . (L.3)

The energy ε = εk is still a constant of motion.
The time-dependent Schrödinger equation,

i~Ψ̇ = H(t)Ψ , (L.4)

is solved by using the Floquet theorem (Stöckmann, 1999) for Hamiltonians that are periodic
in time, which is analogous to the Bloch theorem for space-periodic Hamiltonians. According
to this theorem the eigenfunctions are given by Ψ(t) = e−iEt/~fE(t) with fE(t + T ) = fE(t),
where fE(t) is the eigenstate of the Floquet operator

F = T exp


− i

~

T∫

0

H(t)dt


 , (L.5)
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with the time-ordering operator T .
We skip the details for the calculation of the eigenfunctions Ψ, the eigenvalues E and the

associated density of states and refer the interested reader to (Pereg-Barnea et al.). The
calculation is performed under the assumption of τ = 0, refering to a sharp step in the gap
function, and a field-independent gap structure. ε� ∆0 reveals an oscillatory behavior in the
density of states as a function of energy with the frequency

Fε =
θa
π~ωc

, (L.6)

and as a function of inverse magnetic field with the frequency

F = ∆0
θgmc

π~e
. (L.7)

θa and θg are the angular sizes of the arc and the gapped region with θg = π/2− θa. mc is the
cyclotron mass and e the electron charge.

For an illustration of the underlying physics, we now have a closer look at oscillations in
the DOS as a function of inverse magnetic field. While tuning 1/B, maxima and minima
periodically appear in the DOS when the condition ∆0θg/~ωc = (p + 1/2)π (for maximum)
and ∆0θg/~ωc = pπ (for minimum) holds with p ∈ Z. The states that are present at such a
minimum or maximum are rather different. Their real-space trajectories as well as the shape
of the wave function (u, v) significantly deviate, which is shown in Fig. L.1. Panel (a) and
(b) illustrate the states contributing to a peak in the DOS: On the arc, |u|2 − |v|2 vanishes
implying that the state (u, v) ∼ (1,±i) is a perfect mixture of particles and holes and resembles
an Andreev bound state (Andreev, 1964; Adagideli et al., 1999). The velocity on the arc is
zero, compare Eq. (L.2), leading to a small enclosed real-space area. In the gapped region,
the pseudospin, that describes the particle-hole mixing, precesses. In contrast, for values of
the magnetic field where the DOS is in a minimum (see panel (c) and (d)) the states consist
of either particles or holes on the arc (|u|2 − |v|2 = ±1). The large velocity leads to a large
enclosed real space area.

In summary, the oscillatory behavior in the density of states as a function of inverse magnetic
field is determined by the match between the time needed to traverse the gapped region
(= θg/ωc) and for a pseudospin precession: When the pseudospin precesses for exactly an
integer and a half cycle during the motion over the gapped region, compare Fig. L.1(b), the
state on the arc is of Andreev-type.

In the limit of ∆0 → 0 or θg → 0, which both describe the metallic limit, the recovery of
the standard Onsager result is subtle and requires the consideration of the action quantiza-
tion. In the presented semiclassical approach no quantization condition was imposed by hand.
Nevertheless, a calculation of the action,

S ∼ 1
B
Amom

∣∣∣∣cos
(

∆0θg
~ωc

)∣∣∣∣ , (L.8)

whereAmom denotes the encircled momentum-space area, shows that it becomes zero for a peak
in the DOS (where ∆0θg/~ωc = (p+ 1/2)π with p ∈ Z), prooving the existence of a quantized

200



4

respectively, of the Floquet operator

F = T exp

[
−i

!

∫ T

0

H(t)dt

]
, (8)

and T represents the time-ordering operator. If we re-
gard the two-component structure of Ψ(t) as a pseu-
dospin, then the Floquet states precess about a time de-
pendent axis εẑ +∆(t)x̂.

The quantity Ẽ has dimensions of energy and is closely
related to the quasiparticle energy of the original time-
independent problem. Since the Floquet equation yields
e−iẼT/! and T = 2π/ωc it is clear that Ẽ is defined only
modulo !ωc. This is analogous to momentum being de-
fined only modulo reciprocal lattice vectors in the Bloch
theory. Henceforth we refer to Ẽ as ‘quasi-energy’.

In order to obtain analytic results we simplify our
model further. We assume a free-electron dispersion
εk = !2k2/2m − εF and that the FAM gap is piecewise
constant and dependent only on the momentum direc-
tion. We take ∆̃k equal to zero on the arcs and ±∆0

elsewhere as illustrated in Fig. 1d. The details of the cal-
culation of the Floquet quasi-energy are provided in the
Methods.

The quasi-energy as a function of both the band energy
ε and the magnetic field is shown in Fig. 2a. It contains
most of the physics of this model. Fig. 2b shows a cut
along the ε direction for constant B. The quasiparti-
cle energy dispersion is obtained by a simple ‘unwinding’
procedure, described in the supplementary material. En-
ergy bands separated by small gaps result, in close anal-
ogy to the Bloch energy bands. The density of states in
Fig. 2c displays clear periodic structure with frequency
that can be estimated from Eq. (16) as

Fε =
θa

π!ωc
. (9)

This is in agreement with the exact numerical results
which are discussed in the next section.

The experimentally observed oscillations reflect the
low-energy behavior of the FAM as a function of field B.
Near the Fermi energy, ε→ 0, the quasi-energy coincides
with the quasiparticle energy, E = Ẽ, and no unwinding
is necessary. In Fig. 2d we present the quasi-energy for
a few different values of ε close to the Fermi energy as a
function of 1/B. In certain magnetic fields the density of
lines is high and this translates to the sharp peaks in the
DOS shown in Fig. 2e. From Eq. (16) we may deduce
that a peak in the Fermi energy DOS occurs whenever
cos(∆0θg/!ωc) = 0, leading to oscillation frequency

F = ∆0
θgcmc

π!e
. (10)

Using ∆0 = 80meV, θg = π/3 (Ref. 34) and a cyclotron
mass mc = 2me (Ref. 2) we estimate F = 460T, very
close to the dominant experimental frequency 530-540T
in YBCO (Ref. 2). Some intuitive understanding of the

ba

c d

FIG. 3: Semiclassical trajectories. Left column: Sam-
ple real-space trajectories. Right column: the quasi-particle
group velocity relative to vF , |u|2− |v|2, as a function of time
along the trajectory. When ε " ∆0 the bogolon pseudospin
lies in the y−z plane. Its projection on the z axis is |u|2−|v|2.
The states contributing to high DOS [panels (a) and (b) with
!ωc = ∆0θg/(4 + 1

2
)π] have their pseudospin pointing in the

y-direction on the arc and are precessing in the y − z plane
in the gapped region. This means that on the arc the state
is a perfect mixture of a particle and a hole, resembling a
familiar Andreev bound state. The associated real-space tra-
jectory encloses a particularly small area, since on the arc,
the group velocity vanishes, |u|2 − |v|2 = 0. On the other
hand, the states near the DOS minimum [panels (c) and (d),
!ωc = ∆0θg/4π], point in the z pseudo-spin direction and are
thus either particles or holes. Their motion is dominated by
the arc region, and the real-space trajectory encloses a large
area.

origin of the DOS oscillations can be gained by examin-
ing a typical low-energy Floquet state fE(t) and its as-
sociated real-space trajectory. This is illustrated in Fig.
3. The states contributing to high DOS are reminiscent
of the Andreev bound states18 found on extended impu-
rities and on sample edges in d-wave superconductors19.
The periodicity in inverse magnetic field in this model is a
consequence of the periodic appearance of these Andreev-
type states on the Fermi arcs at low energies.

III. LATTICE MODEL

In order to exemplify the validity of our semiclassi-
cal analysis we now consider a fully quantum-mechanical
lattice model of the Fermi-arc metal and confirm the ex-
istence of quantum oscillations by exact numerical calcu-

Figure L.1: Real-space trajectories (left column) and |u|2 − |v|2 as a function of time t for one period
(right column). (a) and (b): For a state that is present when the DOS has a peak (~ωc = ∆0θg/(4 +
1/2)π). (c) and (d): For a state that is present when the DOS is low (~ωc = ∆0θg/4π).
Please note that due to the particle-hole symmetry of the model a state with u↔ v also represents an
eigenfunction.
lB denotes the magnetic length and kF is the Fermi wave vector. (Figure from Pereg-Barnea et al.)

action for the periodically appearing Andreev-type states. For ∆0 → 0 or θg → 0, i.e., for
a normal metal, the action becomes S ∼ Amom/B, like in the Onsager approach, compare
Eq. (16.10). In this limit, the frequency F goes to zero, and the physics is dominated by an
additional frequency arising from the quantization of S, which corresponds to the Onsager
frequency and dominates as soon as the gap closes.

In the limit of an ordinary d-wave superconductor, i.e., θa → 0, the oscillation amplitude,
which is controlled by a prefactor θa/~ωc, is suppressed and oscillations break down.

Scaling arguments, like the one that holds for a normal metal or the Simon-Lee scaling for a
d-wave superconductor, cannot be established in the considered system. Therefore, no simple
way is known to relate the frequencies F and Fε, and e.g. explain their different dependence
on the gap parameter ∆0 and the angular sizes θa and θg. Unlike in the case of a normal metal
described in Sec. 16.2, the oscillation frequency is not associated with an area in momentum
space, but rather results from the periodic appearance of Andreev-type states.
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tional superconductors. Phys. Rev. B 63, 134 509 (2001).

Vignolle, B., A. Carrington, R. A. Cooper, M. M. J. French, A. P. Mackenzie, C. Jaudet,
D. Vignolles, C. Proust, and N. E. Hussey. Quantum oscillations in an overdoped high-Tc
superconductor. Nature 455, 952 (2008).

Waldram, J. R. Superconductivity of metals and cuprates. Institute of Physics Publishing,
Bristol and Philadelphia (1996).

Wang, Y., L. Li, M. J. Naughton, G. D. Gu, S. Uchida, and N. P. Ong. Field-enhanced
diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8 superconductor in an
intense magnetic field. Phys. Rev. Lett. 95, 247 002 (2005).

Wells, B. O., Z. X. Shen, D. S. Dessau, W. E. Spicer, D. B. Mitzi, L. Lombardo, A. Kapitulnik,
and A. J. Arko. Evidence for k-dependent, in-plane anisotropy of the superconducting gap
in Bi2Sr2CaCu2O8+δ. Phys. Rev. B 46, 11 830 (1992).
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dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht wor-
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