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Zusammenfassung

Die Identifizierung genomischer Regionen, die von positiver darwinscher Selektion geprägt
wurden, gilt als eines der zentralen Interessen der molekularen Evolutionsbiologie. Wenn
eine Population ein neues Territorium besiedelt oder einer drastischen Umweltveränderung
ausgesetzt ist, bedingt dies naturgemäß eine Schwankung in der Populationsgrösse. Den-
noch beruhen die meisten statistischen Methoden, die adaptive Vorgänge in einer Popu-
lation erfassen sollen, auf der Annahme einer konstanten Populationsgrösse. Erst in den
letzten Jahren wurde Populationsgenetikern bewusst, dass Modelle variabler Populations-
grösse für eine angemessene Interpretation von DNA-Polymorphismen unerlässlich sind.

Im Rahmen der Koaleszenztheorie werden theoretische Resultate für die zweiten
Momente bestimmter Baummaße unter variabler Populationsgröße hergeleitet. Darüber
hinaus werden Formeln für die zweiten Momente diverser DNA-Polymorphismus-Maße
für allgemeine binäre Bäume entwickelt. Diese Resultate stellen das Herzstück der Dis-
sertation dar. Mit Hilfe dieser Ergebnisse erhält man tiefere Einsichten in die Auswirkung
variabler Populationsgrösse und grenzt das Problem der Unterscheidung adaptiver und
demographischer Faktoren besser ein.

Im Folgenden werden verschiedene weit verbreitete statist ische Testmethoden, die
ursprünglich unter der Annahme einer konstanten Populationsgrösse konstruiert wur-
den, verallgemeinert, sodass, wenn die demographische Entwicklung einer Population
ausreichend bekannt ist, einzelne Loci gegen die Nullhypothese neutraler Evolution
unter variabler Populationsgrösse getestet werden können. Dies wird anhand zweier X-
chromosomaler Datensätze einer afrikanischen und einer europäischen Stichprobe von
Drosophila melanogaster demonstriert.

Während das im Vorfeld vorgeschlagene Expansionsmodell für die afrikanische
Stichprobe erfolgreich in die verallgemeinerten Teststatistiken integriert werden kann,
bleibt eine adäquate Analyse für das Bottleneckmodell der europäischen Stichprobe
unerfüllt. Abschließend werden charakteristische Merkmale demographischer Modelle
vorgestellt, anhand welcher die Durchführbarkeit einer aussagekräftigen statistischen
Analyse nachvollzogen werden kann.





Abstract

The identification of genomic regions that have been exposed to positive Darwinian selec-
tion is of major interest in evolutionary biology. Although adaptive processes are generally
associated with populations that experience an environmental change or colonize a new
habitat, statistical tests were commonly constructed on the assumption of constant pop-
ulation size. However, only in recent years did the practical need to account for models
of variable population size become apparent in the attempts of population geneticists to
properly interpret the rising amount of DNA polymorphism data.

Within the framework of coalescent theory, theoretical results regarding the second-
order moments of certain tree size measures are derived under variable population size.
Thereafter, formulas for the second-order moments of diverse DNA polymorphism mea-
sures are developed for general binary trees. These results constitute the centerpiece of this
thesis. Their relevance lies in the possibility to obtain deeper insights into demographic
factors and to better delimit the problem of distinguishing adaptive from demographic
forces.

Several popular and widely applied statistical tests, that rest on the assumption of
constant population size, are generalized, so that, conditional on knowledge of a demo-
graphic scenario, single loci can be tested for traces of selection against the null hypothesis
of neutral evolution under variable population size. This is demonstrated for two datasets
of X-linked loci from an African and an European sample of Drosophila melanogaster.

While a previously suggested expansion model for the African sample can be suc-
cessfully implemented into the generalized test statistics, an adequate analysis for the
bottleneck model of the European sample cannot be accomplished. Consequently, we ex-
tract characteristic features of demographic models in order to distinguish the ones which
are accessible to a meaningful statistical analysis from those which are not.
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Chapter

Introduction

1.1 Theoretical population genetics

Population geneticists are devoted to the analysis of the evolutionary forces that shape
the patterns of genetic variation within species. These forces include mutation, recom-
bination, natural selection, demographic processes and their interactions. Theoretical
population genetics is the mathematical study of these evolutionary patterns and forces.
It is roughly divided into the development of conceptual models and theories (mostly
based on the classical diffusion theory) and the advancements of statistical methods for
data analysis (mostly based on coalescent theory).

Using the mathematical discipline of diffusion theory, classical population genetics
is able to predict the impact of the evolutionary forces on allele or genotype frequencies
at one or more loci of an entire population by looking forward in time. Once results for
the whole population have been obtained, one can make predictions for a sample taken
from the population, which is essential for the application of a chosen mathematical model
to biological data. Initiated by the pioneering work of Fisher (1930b), Wright (1931)
and Haldane (1932), diffusion models were state-of-art for decades, including important
contributions by Malécot (1948), Feller (1951) and Kimura (1964). Sewall Wright
introduced the concept of genetic drift—the random alteration in allele frequency of a
population over time. Kimura (1968, 1983) established the neutral theory of molecular
evolution. He argued that the vast majority of mutations are selectively neutral by having
negligible effects on the reproductive ability of their carriers and that genetic drift is the
primary evolutionary force—a hypothesis strongly opposed by Gillespie (1984, 2000).
Despite the development of some major principles of the neutral theory (Kimura 1983),
the main advantage of the classical diffusion approach, in contrast to the coalescent-based
approach described below, may be seen in the modeling of natural selection, with par-
ticular regard to positive selection. Maynard Smith and Haigh (1974) introduced the
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Chapter 1. Introduction

model of genetic hitchhiking, in which a selectively neutral allele or mutation may quickly
spread through an entire population if it is linked to a beneficial mutation. Consequently,
the increase in frequency of the selectively neutral mutation leads to a drastic reduction in
its variability—a procedure commonly known as a ‘selective sweep’. Reformulating an ap-
proach of Ohta and Kimura (1975), Stephan et al. (1992) obtained analytical results
of the effect of a positive substitution on expected heterozygosity. However, addressing
the same problem via coalescent theory is more cumbersome (Kaplan et al. 1989).

Based on the seminal papers by Kingman (1982a, b), coalescent theory has become
the most popular branch of theoretical population genetics over the past 25 years. In
contrast to the classical diffusion approach, a sample (rather than the entire population)
of genes, or DNA sequences, is traced backwards in time up to the single ancestor of the
entire sample, which is referred to as the most recent common ancestor (MRCA). Figure
1.1 illustrates this ancestral process in form of a bifurcating genealogy. The intuitive
treatment of population genetical questions has propelled coalescent theory to a broader
readership (Hein et al. 2005, Wakeley 2008) due to the simpler acquisition of its basic
principles, when compared to classical population genetics.

Another major advantage of this retrospective view of a sample in coalescent theory
is given by the fact that computer simulations, which are often used to support mathe-
matical approximations of specific models, are more time-efficient and easier to implement
than classical, forward-in-time diffusion approaches.

T8

T7

T6

T5

T4

T3

T2

Abbildung 1:
Figure 1.1 One possible coalescent tree of a sample of size eight. The waiting times until
a pair of genes end up in their common ancestor are denoted by Ti.
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1.1. Theoretical population genetics

Rosenberg and Nordborg (2002) reapplied two substantial arguments regard-
ing the relationship of the sample to a large, unstructured population and the im-
portance of recombination as an evolutionary force. First, as it has been shown by
Saunders et al. (1984), the probability that a sample of size n contains the MRCA of
the entire population is simply (n − 1)/(n + 1). For this reason, even the genealogy for
a small sample is likely to contain the MRCA of the population and encourages a focus
on the sample rather than on the population as a whole. Furthermore, this means that
increasing the sample size has a minor effect. Adding more sequences in Figure 1.1 would
mainly change the lower part of the genealogical tree, whereas the lengths of the deep
branches near the MRCA would be barely affected (cf. Hein et al. 2005). Second, the au-
thors emphasized the importance of recombination for statistical inference. In the absence
of recombination, there is only a single genealogical tree for an entire chromosome, such
that a reliable prediction of its evolutionary history becomes arguable. In the presence of
recombination, unlinked or loosely linked loci can be seen as independent replicates of the
same ancestral process (cf. Figure 1.2). Therefore, variation sampled from a large number
of preferably unlinked loci, which feature genealogies that are conditionally independent
on the population’s demographic history, provide the necessary polymorphism data for
population genetical inferences. In particular, this shall lead to an improvement of the
estimates of a population’s demographic trend.

· · · · · · · · · · · ·

l1 l2 l3

Figure 1.2 Possible coalescent trees for three different loci.
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Chapter 1. Introduction

1.2 Modeling neutral and adaptive mutations

Mutations are the indispensable source of variation to develop an evolutionary under-
standing of how demographic and selective forces have shaped present-day sampled
DNA sequence variation data. Although these sequences reveal several types of ge-
netic variation, such as copy number variations (Redon et al. 2006) or microsatellites
(Tautz 1989), single nucleotide polymorphisms (SNPs) have become the prevalently
analyzed form of polymorphism, especially from a theoretical standpoint. As such,
only mutation models associated with SNPs are investigated throughout this thesis.
The two most prominent assumptions regarding mutations are the infinitely-many-
sites model (Kimura 1969, Watterson 1975) and the infinitely-many-alleles model
(Kimura and Crow 1964). Under the infinitely-many-sites model, each new mutation
arises at a site in an infinitely-long DNA sequence where there has never been a mutation
before. The infinitely-many-alleles model, assuming that each mutation generates a new
allele, differs from the infinitely-many-sites model in the sense that one ignores how
many mutations distinguish alleles and considers only whether alleles are the same or
different. The fundamental accomplishment under the infinitely-many-alleles model is
the discovery of the Ewens sampling formula (Ewens 1972)—the probability distribution
of a configuration of alleles in a sample of genes—under mutation-drift equilibrium.
Karlin and McGregor (1972) were the first to prove the Ewens sampling formula.
Griffiths and Lessard (2005) provided a proof by a direct combinatorial argument
and extended the distribution to populations of varying size.

Watterson (1975) introduced the mutation parameter θ = 4Nµ, where N is the
size of a diploid population—at time of sampling in the coalescent theoretical context and,
in particular, under variable population size—and µ is the mutation rate per sequence
per generation. The number of mutations of rate µ or θ/2, respectively, when time is
measured in units of 2N generations, is typically Poisson-distributed in the sense that
mutations are rare events. An important point in modeling selectively neutral mutations
in the aforementioned manner is that these mutations have no impact on the structure
of the genealogy of a sample. Consequently, the genealogical and mutational process can
be separated; particularly when a population experiences changes in population size (see
Chapter 2).

For the standard neutral model of constant population size, Watterson (1975)
devised the mean and the variance of the number of segregating sites, Sn, which under
the infinitely-many-sites model equals the number of mutations that occur on the
genealogical tree. Later, Tavaré (1984) derived the probability distribution of Sn.
Additionally, properties of other historically important test statistics, namely the average
number of pairwise differences, Πn, and the number of times a mutation can be observed
at specific sites of the sampled sequences, ξi, have been derived within the coalescent
framework. Tajima (1983) calculated the mean and the variance of Πn and Fu (1995)
derived the means and the variances of ξi of selectively neutral alleles within a given
sample under constant population size. Curiously, Fisher (1930a) already hinted at the
result for the mean of ξi in the diffusion setting. The above results have been mostly
obtained without taking recombination into account. The derivation of theoretical results
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1.2. Modeling neutral and adaptive mutations

that incorporates recombination is more complex, even for the standard neutral model,
as can be seen in Kaplan and Hudson (1985), who established an approximation of
the variance of Sn, or Wakeley (1997), who derived the variance of Πn.

The study of temporal variation in population size has generated much interest
since an early article by Wright (1938). Nei et al. (1975) have analyzed the effect
of arbitrary population size changes on the average heterozygosity of a neutral locus.
Maruyama and Fuerst (1984) developed a numerical method for the mean number
and average age of alleles in a population undergoing an instantaneous expansion.
Watterson (1984) derived analytical formulas, including the probability distribution
and moments of the total number of alleles in a sample, for models of one or two sudden
changes in population size. Tajima (1989a) derived the expected number of segregating
sites and the expectation of the average number of pairwise differences for an instan-
taneous population growth model. Slatkin and Hudson (1991) examined a model of
exponential growth before Griffiths and Tavaré (1994) unified arbitrary changes in
population size into a general framework. Moreover, Griffiths and Tavaré (1998)
developed the frequency spectrum of neutral alleles in a population of arbitrary varying
population size.

Besides fluctuation in population size, the study of population structure has
become another population genetical subfield of a long-standing interest ever since
its initiation by Wright’s island model (Wright 1931), where a population is subdi-
vided into discrete subpopulations with limited migration among them. Exemplarily,
Takahata and Nei (1985) derived the variance of Πn in a two-population model
without migration and Wakeley (1996) obtained the concordant result with migration.
Wakeley (2008) provides a comprehensive overview on population structure, which is
not further investigated in this thesis.

Since the different types of natural selection influence the reproductive success
of the population’s individuals, advantageous or deleterious mutations—in contrast
to neutral mutations—have an effect on the genealogical tree. In addition to above
work on positive directional selection, several advancements under the assumption
of constant population size have been made. Wiehe and Stephan (1993) examined
questions concerning the strength and the frequency of selective substitutions in the
face of observable sequence data. Braverman et al. (1995) investigated the effect of
genetic hitchhiking on the site-frequency spectrum by using a computer simulation based
approach. Fay and Wu (2000) pointed out that an excess of high-frequency derived
variants is an unique characteristic of genetic hitchhiking. Gillespie (2000) introduced
the pseudohitchhiking model—a simplification of the typically studied two-locus dynam-
ics to a single locus—and argued that the recurrence of selected substitutions resembles
the stochastic behavior of genetic drift. Whereas the above articles have been built on
the initial suggestion by Kaplan et al. (1989) that the number of individuals carrying
the advantageous allele follows the logistic differential equation, there has been recent
analytical and computational progress by making use of a so-called Yule approximation
(Schweinsberg and Durrett 2005, Etheridge et al. 2006). In contrast to the
idea that adaptive substitutions are introduced by a new beneficial mutation in a
single copy, Hermisson and Pennings (2005) investigated the scenario where adaptive
substitutions are derived from standing genetic variation.
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Chapter 1. Introduction

Ohta (1973) suggested that, “very slight genetic deterioration might play an
important role in molecular evolution”. Selection against deleterious alleles, known as
purifying selection, or background selection (Charlesworth et al. 1993), is thought
to be widespread across the genome (e.g., Ohta 1976). Charlesworth et al. (1993)
have demonstrated that background selection may have a similar effect on linked
neutral polymorphism as directional selection; on the other hand purifying selection
only induces slight changes to the frequency spectrum of linked neutral variants (e.g.,
Przeworski et al. 1999). Some research studies have addressed the joint effects of
genetic hitchhiking and purifying selection on neutral variation under the standard model.
These studies pointed out the reduction of the fixation probability of strongly selected
alleles due to background selection (Barton 1995) and demonstrated that formulas for
background selection and hitchhiking can be combined to predict genetic variation at a
linked neutral locus under constant population size (Kim and Stephan 2000).

Although it is reasonable to assume that adaptive mutations occur during en-
vironmental changes or when a population is colonizing a new habitat, theoretical
studies have rarely considered the joint effect of demographic changes and selection until
quite recently. Williamson et al. (2005) considered for the first time the combined
effects of an instantaneous population size change and selection on the site-frequency
spectrum. Furthermore, Evans et al. (2007) studied the frequency spectrum of sites
that are subject to selection and arbitrary population size changes within the framework
of diffusion theory. However, the combined impact of positive directional selection and
variations in population size on the frequency spectrum of a partially linked neutral locus
remained unexplored so far.

1.3 Testing the neutral mutation hypothesis

The analysis and interpretation of patterns of DNA variation is the “great obsession”
(Gillespie 2004) of molecular population geneticists. It is of particular interest to
determine whether a locus is evolving neutrally or as a target of selection (Hey 1999).
Tajima (1989b) was the first to construct a testable hypothesis of the standard neutral
model, using only polymorphism data from within a population. Arguing that Sn and
Πn are unequally affected by the presence of selection, he combined the two different
estimators of the mutation parameter, θ, based on Sn and Πn, respectively, into a
single test statistic, D, which is to this day commonly used throughout the scientific
community. Subsequently introduced popular test statistics for deviation from neutral
evolution (Fu and Li 1993, Fay and Wu 2000) posit a model of constant population
size as well. Kim and Stephan (2002) proposed a composite-likelihood ratio (CLR) test
to detect local signatures of genetic hitchhiking along a recombining chromosome for
the standard neutral model. This was an improvement over previously proposed tests,
since the null distribution is obtained by taking recombination into account. The main
weakness of all these statistical tests lies in their inability to distinguish the effects of
selection from demographic effects, such as changes in population size. For instance,
Jensen et al. (2005) demonstrated that the CLR test is not robust against certain
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1.3. Testing the neutral mutation hypothesis

demographic scenarios.
However, only in recent years has the practical need of non-equilibrium theories

become evident in the attempts to disentangle selection from demography. In the model
organism Drosophila melanogaster, several studies found evidence for the important
role of demographic changes during the species’ history (e.g., Glinka et al. 2003,
Haddrill et al. 2005). Similarly, in humans (International HapMap Consortium
2005), the population size expansion that occurred after their migration out-of-Africa has
required models that deviate from the standard equilibrium model of constant population
size (e.g., Williamson et al. 2005, Nielsen et al. 2005). Recently, several new methods
and statistical tests were developed to analyze polymorphism data that presumably have
been produced by a complex evolutionary history, during which selective and demographic
forces acted simultaneously. Nielsen et al. (2005) developed a composite likelihood
method, which is an extension of the CLR test proposed by Kim and Stephan (2002),
where the null hypothesis, rather than being fixed a priori, is derived from the pattern of
background variation in the data. Jensen et al. (2005) further proposed a goodness-of-fit
test to accompany the CLR method (Kim and Stephan 2002).

The site-frequency spectrum has attracted a great deal of attention for the simultane-
ous inference of selection and demography. Based on the previously mentioned theoretical
predictions for the site-frequency spectrum, Williamson et al. (2005) developed a maxi-
mum likelihood method and found evidence of population growth and purifying selection
at non-synonymous sites in the human genome. Li and Stephan (2006) devised a maxi-
mum likelihood method, which allows inference of demographic changes and detection of
recent positive selection in populations of varying size. Other popularized methods to
detect traces of selection are centered around the structure and frequency spectrum of
haplotypes (Sabeti et al. 2002) or the analysis of linkage disequilibrium (LD), which is
the non-random association of alleles at two or more loci. Besides demography, other
neutral factors such as population subdivision and their consequent influence on LD may
limit our abilities to detect signatures of selection in the genome. Nevertheless, several
recently published articles showed the usefulness of LD for analyzing selective sweeps.
Kim and Nielsen (2004) have studied the patterns of LD caused by a selective sweep in a
population of constant size. For this purpose, the authors investigated several established
LD statistics by numerical simulations and proposed a new summary statistic, ω, which
comprises the information of the square of the correlation coefficient in an allelic state
(Hill and Robertson 1968), r2, between polymorphic sites. Furthermore, the authors
have incorporated LD into the CLR test (Kim and Stephan 2002). The outcome that
the addition of LD into the composite likelihood only slightly increases the power to
detect selective sweeps was rather surprising. Recently, Jensen et al. (2007) extended
the numerical analysis of the closely related test statistic, ωmax, to non-equilibrium
populations. In promising contrast, the authors demonstrated that for demographic
parameters relevant to non-African populations of D. melanogaster, selected loci are
distinguishable from neutral loci based on ωmax—with reasonable power—and further
suggested that considering LD in conjunction with the site-frequency spectrum forms a
valuable approach. Stephan et al. (2006) analyzed a deterministic three-locus model
with one locus experiencing positive directional selection and two partially linked neutral
loci and provided the surprising result that LD is completely eliminated after a selective
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sweep, when the selected site is located between the neutral sites, suggesting that LD
may indeed be used to pinpoint the target of selection. McVean (2007) studied the
effects of selective sweeps on patterns of LD by considering the relationship between LD
and the structure of the underlying genealogy.

As an alternative to SNP-based methods, there are several approaches (e.g.,
Schlötterer 2002) to make use of microsatellites for the detection of selective sweeps.
Wiehe et al. (2007) constructed a test statistic that considers variability patterns at
multiple loci jointly. The reasoning here is that the traces of selective sweeps may be
distinguished from those of recent population bottlenecks, since only the former have
a local effect, while the latter should have a chromosome-wide effect. However, as a
statistical test that is built on the assumption of constant population size, the usual
range of demographic parameters that causes problems in distinguishing these two
evolutionary forces, leads to a high rate of false-positives. Even more disillusioning, this
test statistic may not be carried over into the non-equilibrium background. Already for
the simplest stepwise mutation model (Kimura and Ohta 1978) it is not clear how
to theoretically separate the mutational from the genealogical process, since alleles are
frequently identical by state without being identical by descent.

1.4 Organization of the thesis

Griffiths and Tavaré (2003) wrote a highly influential article concerning “general co-
alescent trees”, which may be seen as an extension of coalescent trees under variable
population size. In this article, the authors summarize important theoretical results of
the neutral theory, including the means of waiting times under variable population size,
the frequency spectrum of a mutation and its age and the mean of the average number of
nucleotide differences, Πn, under general conditions. The first section of Chapter 2 builds
on Griffiths and Tavaré (1994). Here, we study the standard coalescent approxima-
tion to the Wright-Fisher model for a sample of n genes, without recombination and with
population size varying in time. First, we revisit the calculation of the mean waiting times
and present a promising recursive approach, which relies on conditional probabilities. In
the following, this method is extended to resolve the second-order moments of waiting
times, which must be discriminated into the mean of the squared waiting time, E(T 2

k ),
and the mean of the product of two distinct waiting times, E(Tk′Tk). While the variance
of Sn immediately follows from the solutions of these statistical quantities, it is much
more challenging to derive the variance of Πn, V (Πn), and the covariance of Sn and Πn,
Cov(Sn, Πn), for general coalescent trees. To approach these two mathematical tasks, we
follow the article of Fu (1995), which particularly captures the analogous problems and
provides their solutions, as corollaries of the second-order moments of the size of a muta-
tion, under constant population size. All probabilities in Fu’s work, which are related to
the first- and second-order moments of waiting times, can be adapted to general coalescent
trees. As for the remaining task, we generalize the formulas that join these genealogical
properties with mutations, which are assumed to occur as independent Poisson processes
along the edges of the tree, as in the articles of Griffiths and Tavaré (1998, 2003).
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1.4. Organization of the thesis

After the first and second-order moments of the size of a mutation are derived, it is rou-
tine to derive the formulas for V (Πn) and Cov(Sn, Πn) for general coalescent trees.

In Chapter 3, all revisited (Griffiths and Tavaré 1998, 2003) and newly derived
formulas regarding the first- and second-order moments of the size of a mutation and
their corollaries are summarized into generalized versions of classical test statistics, which
can be applied to test the neutral mutation hypothesis under variable population size
to infer traces of selection. Since these test statistics assume an a priori knowledge of
temporal changes in population size, it can only be applied if the necessary demographic
parameters have been already estimated. Li and Stephan (2006) developed a maximum
likelihood method to infer demographic changes and to detect recent selective sweeps in
populations of varying size. The authors analyzed 262 and 272 X-linked loci from an
African and a European population of D. melanogaster, respectively, and estimated their
demographic histories based on the frequency spectra. First, we adapt the suggested
demographic histories into the summary statistic D’—the generalization of Tajima’s D
(Tajima 1989b) to test the neutral mutation hypothesis under variable population size—
and analyze to what extent this test statistic can be used to infer the traces of selection
on single loci. Innan and Stephan (2000) have addressed the same issue, using coales-
cent simulations in order to distinguish the effects of exponential growth and selection
in Arabidopsis thaliana. In analogy to the standard neutral version of Tajima’s D, the
summary statistics of Fu and Li (1993) are able to be tested against the neutral non-
equilibrium model. Even more pronounced than Tajima’s D, these test statistics measure
an excess of singletons (i.e. site variants that occur once in a sample), which can either re-
sult from exponential growth (Fu 1997), genetic hitchhiking (Kim and Stephan 2002),
purifying selection (Smith and Eyre-Walker 2002) or possibly by sequencing errors
(Achaz 2008) and should therefore be considered with caution. Exemplarily, we gener-
alize one of these test statistics that relates the number of segregating sites, Sn, to the
number of singletons, but, as in the demographic history of the African population of
D. melanogaster, this generalization may incorporate the impact of exponential growth,
but may not distinguish positive from purifying selection or manage certain technological
issues. Thereafter, a generalized version of the H test (Fay and Wu 2000) is constructed
to particularly measure an excess of high-frequency derived variants. Due to the prob-
lematic interpretation of singletons, the chapter closes with a singleton-exclusive version
of Tajima’s D, which is established in analogy to a recently proposed standard neutral
version (Achaz 2008).

It may be anticipated at this point, that the correction of the above mentioned test
statistics for the African demography is well accomplishable, whereas the distributions of
the standardized test statistics incorporating the European demography may be seen as
too unsatisfactory for reliable inference. Interestingly, demographic parameter constella-
tions, which were already critical for the use of test statistics that rely on the standard
neutral model, remain cumbersome to some extent, when these are taken into account.
The classification of delicate demographic scenarios marks the beginning of Chapter 4.
We illustrate that the variance-to-mean ratio of total tree length (Tc), a simple measure
for the distortion of the distribution of Tc and accordingly for Sn, can be applied to
detect intractable population bottlenecks. Furthermore, we show that different models
of population size change typically lead to different frequency spectra. This question is
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Chapter 1. Introduction

particularly important to assess whether it is sufficient to estimate a single one out of
numerously possible demographic parameter constellations. We conclude with an outline
of possible future research questions.
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Chapter

General coalescent trees

Throughout this chapter we investigate statistical measures, which reflect the ancestry of
a sample of n genes, when recombination is absent. Griffiths and Tavaré (1998, 2003)
have established the theoretical framework for general coalescent trees, which are specified
as follows. Let Tn, . . . , T2 be the time periods during which the coalescent tree has n, . . . , 2
lineages, respectively. The general joint distribution of waiting times (Tn, . . . , T2) satisfies
the assumptions that:

(A1) Tn, . . . , T2 are continuous random variables.
(A2) The ancestral tree is binary, and such that when there are k ancestral lines each

pair has probability
(

k

2

)−1
of being the next pair to coalesce.

To model the effects of mutation on general coalescent trees, it is assumed that:

(A3) Conditional on the edge lengths of the tree, mutations occur according to
independent Poisson processes of rate θ/2 along the edges of the tree.

While for the theoretical treatment of general coalescent trees generic time units are
used, one time unit corresponds to 2N generations, where N is the current size of a
diploid population, under variable population size. The compound parameter θ is given
by θ = 4Nµ, where µ is the mutation rate per sequence per generation. Therefore, θ/2 is
the mutation rate per sequence per 2N generations, providing the convenience of the same
time scaling of the mutational and the genealogical process. Furthermore, mutations occur
according to the infinitely-many-sites model, introduced earlier, under which the number
of mutations in the genealogy of a sample of size n equals the number of segregating sites
of these n sequences.

Griffiths and Tavaré (1998, 2003) have derived numerous analytical results for
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Chapter 2. General coalescent trees

general coalescent trees. Most notably, Griffiths and Tavaré (1998, 2003) have derived
the frequency spectrum, which is the probability distribution qn,i of the number of times, i,
a single mutation arising between the present and the time of the most recent common
ancestor, is represented in the sample of size n, as µ → 0. The probability qn,i is given by

qn,i =

(n − i − 1)!(i − 1)!
n−i+1∑

k=2

k(k − 1)
(

n−k

i−1

)
E(Tk)

(n − 1)!
n∑

k=2

kE(Tk)
, 0 < i < n. (2.1)

Equation 2.1, which relates the probabilities qn,i to the expected lengths of coalescent
waiting times Tk, may be used to illustrate the hierarchy within general coalescent trees.
While the mean waiting times of Tk appear symbolically in Equation 2.1, the usage of
Equation 2.2 provides an explicit result of the frequency spectrum under variable popu-
lation size. For the standard neutral model, which represents the simplest special case of
a general coalescent tree, replacing E(Tk) by

(
k

2

)−1
results in

qn,i =
i−1

n−1∑

k=1

k−1

.

2.1 Variable population size

We measure time backwards in units of 2N generations, where N is the size of a diploid
population at time of sampling. Define λN(t) = N(t)/N as the ratio of the population
sizes at time t in the past and the present. Furthermore, let λ(t), which arises as the
limit as N → ∞ to ensure that the population size becomes large in each generation and
is supposed to be strictly positive for all t > 0, be real and piecewise continuous. The
population-size intensity function Λ is defined by

Λ(t) =

∫ t

0

1

λ(u)
du.

We assume that Λ(∞) = ∞, so that a sample of genes has a most recent common ancestor
(MRCA) with probability 1.
The joint density (Griffiths and Tavaré 1994) of (Tn, . . . , T2) is

g(tn, . . . , t2) =

n∏

j=2

(
j

2

)
1

λ(sj)
exp{−

(
j

2

)

(Λ(sj) − Λ(sj+1))},

for 0 ≤ tn, . . . , t2 < ∞, where sn+1 = 0, sn = tn, sj = tj + . . . + tn, j = 2, . . . , n − 1.
Although the waiting times Tn, . . . , T2 are not independent, unlike in the case of con-
stant population size, where g(tn, . . . , t2) = g(tn) . . . g(t2), we will use the joint density
and the law of iterated expectations to derive the first two moments of waiting times.
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2.1. Variable population size

Griffiths and Tavaré (1998) already obtained the means based on previous results
from Griffiths (1980) and Tavaré (1984). To emphasize the dependence of the first-
and second-order moments of waiting times on the sample size n, waiting times and
densities carry an index, n, unless the meaning is clear from the context.

2.1.1 Mean waiting times

First, we prove two lemmas.

Lemma 2.1.

∞∫

0

t

(
j

2

)

λ(t)
exp{−

(
j

2

) t∫

0

1

λ(u)
du}dt =

∞∫

0

exp{−

(
j

2

) t∫

0

1

λ(u)
du}dt.

Proof.

∞∫

0

t

(
j

2

)

λ(t)
e
−(j

2)
tR

0

1
λ(u)

du

dt = −

∞∫

0

t (
d

dt
e
−(j

2)
tR

0

1
λ(u)

du

)dt = (integration by parts)

−( lim
t→∞

t e
−(j

2)
tR

0

1
λ(u)

du

− 0)
︸ ︷︷ ︸

=0

+

∞∫

0

e
−(j

2)
tR

0

1
λ(u)

du

dt.

2

In the last line of the proof, the assumption of Λ(∞) = ∞ is necessary to ensure that the
limit for t → ∞ is zero.

Lemma 2.2.

∞∫

0

∞∫

0

(
n+1

2

)

λ(tn+1)
exp{−

(
n + 1

2

) tn+1∫

0

1

λ(u)
du} exp{−

(
j

2

) tn+1+t∫

tn+1

1

λ(u)
du}dtn+1dt =

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)





∞∫

0

exp{−

(
j

2

) t∫

0

1

λ(u)
du}dt −

∞∫

0

exp{−

(
n + 1

2

) t∫

0

1

λ(u)
du}dt



 .

13



Chapter 2. General coalescent trees

Proof.

∞∫

0

∞∫

0

(
n+1

2

)

λ(tn+1)
e
−(n+1

2 )
tn+1R

0

1
λ(u)

du

e
−(j

2)
tn+1+t
R

tn+1

1
λ(u)

du

dtn+1dt = (substitute tn+1 + t by s)

∞∫

0

s∫

0

(
n+1

2

)

λ(tn+1)
e
−(n+1

2 )
tn+1R

0

1
λ(u)

du

e
−(j

2)
sR

tn+1

1
λ(u)

du

dtn+1ds =

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)

∞∫

0

s∫

0

(
n+1

2

)
−
(

j

2

)

λ(tn+1)
e
−((n+1

2 )−(j

2))
tn+1R

0

1
λ(u)

du

e
−(j

2)
sR

0

1
λ(u)

du

dtn+1ds =

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)

∞∫

0

e
−(j

2)
sR

0

1
λ(u)

du





s∫

0

(
n+1

2

)
−
(

j

2

)

λ(tn+1)
e
−((n+1

2 )−(j

2))
tn+1R

0

1
λ(u)

du

dtn+1



 ds =

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)

∞∫

0

e
−(j

2)
sR

0

1
λ(u)

du





s∫

0

(−
d

dtn+1
e
−((n+1

2 )−(j

2))
tn+1R

0

1
λ(u)

du

)dtn+1



 ds =

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)

∞∫

0

e
−(j

2)
sR

0

1
λ(u)

du

(

1 − e
−((n+1

2 )−(j

2))
sR

0

1
λ(u)

du

)

ds = (rename s by t)

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)





∞∫

0

e
−(j

2)
tR

0

1
λ(u)

du

dt −

∞∫

0

e
−(n+1

2 )
tR

0

1
λ(u)

du

dt



 .

2

The following chart illustrates the setup of recursions and the way of inductive reasoning.

E(T2)2

↘
E(T3)3 E(T2)3

↘ ↘
E(T4)4 E(T3)4 E(T2)4

↘ ↘ ↘
· · · · · · · · · · · ·

E(Tk)n

↘
E(Tk)n+1

14



2.1. Variable population size

Now, we start to successively derive E(Tn)n, E(Tn−1)n, . . . and perform these recursions
in particular for small sample sizes. From the joint density above one immediately obtains

E(Tn)n =

∫ ∞

0

tn gn(tn)dtn =

∫ ∞

0

t

(
n

2

)

λ(t)
exp{−

(
n

2

)∫ t

0

1

λ(u)
du}dt

=

∫ ∞

0

exp{−

(
n

2

)∫ t

0

1

λ(u)
du}dt,

by making use of Lemma 2.1. This result forms the initial step of the induction proof and
provides in particular the solutions for E(T2)2 and E(T3)3. To calculate E(T2)3 we use
conditional expectations:

E(T2)3 = E(E(T2|T3)3) =

∫ ∞

0

g3(t3)E(T2|T3 = t3)3dt3

=

∫ ∞

0

(
3
2

)

λ(t3)
exp{−

(
3

2

)∫ t3

0

1

λ(u)
du}
(∫ ∞

0

exp{−

(
2

2

)∫ t3+t

t3

1

λ(u)
du}dt

)

dt3.

Note that the result for E(T2)2 is used on the right-hand side of the above equation. Due
to conditioning on T3 = t3, the integration bounds are shifted by t3. Using Lemma 2.2
we can continue and write

E(T2)3 =

(
3
2

)

(
3
2

)
−
(
2
2

)

( ∫ ∞

0

exp{−

(
2

2

)∫ t

0

1

λ(u)
du}dt−

∫ ∞

0

exp{−

(
3

2

)∫ t

0

1

λ(u)
du}dt

)

.

In the same way, we obtain

E(Tn−1)n =
n∑

j=n−1

(−1)j+n−1αn,j,n−1

∫ ∞

0

exp{−

(
j

2

)∫ t

0

1

λ(u)
du}dt,

where

αn,j,n−1 =

(
n

2

)

(
n

2

)
−
(

n−1
2

) .

Since this result provides us with the solution for E(T3)4, we finally derive E(T2)4 by
conditioning the result for E(T2)3 on the newly introduced waiting time T4.

E(T2)4 = E(E((T2)3|T4)4) =

∫ ∞

0

g4(t4)E((T2)3|T4 = t4)4dt4 = · · ·
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Chapter 2. General coalescent trees

=

(
3
2

)

(
3
2

)
−
(
2
2

)

(
4
2

)

(
4
2

)
−
(
2
2

)

∫ ∞

0

exp{−

(
2

2

)∫ t

0

1

λ(u)
du}dt

−

(
3
2

)

(
3
2

)
−
(
2
2

)

(
4
2

)

(
4
2

)
−
(
3
2

)

∫ ∞

0

exp{−

(
3

2

)∫ t

0

1

λ(u)
du}dt

+

(
3
2

)

(
3
2

)
−
(
2
2

)

(
(
4
2

)

(
4
2

)
−
(
3
2

) −

(
4
2

)

(
4
2

)
−
(
2
2

)

) ∫ ∞

0

exp{−

(
4

2

)∫ t

0

1

λ(u)
du}dt

=
4∑

j=2

(−1)j+2α4,j,2

∫ ∞

0

exp{−

(
j

2

)∫ t

0

1

λ(u)
du}dt.

In analogy,

E(Tn−2)n =
n∑

j=n−2

(−1)j+n−2αn,j,n−2

∫ ∞

0

exp{−

(
j

2

)∫ t

0

1

λ(u)
du}dt,

where

αn,j,n−2 =

(
n−1

2

)

(
n−1

2

)
−
(

n−2
2

)

(
n

2

)

(
n

2

)
−
(

j

2

) , j = n − 1, n − 2,

and αn,n,n−2 = αn,n−1,n−2 − αn,n−2,n−2.

When performing the next recursion step to calculate E(Tn−3)n, one might already
see that

αn,k,k =

n∏

i=k+1

(
i

2

)

(
i

2

)
−
(

k

2

) =
(2k − 1)!n!(n − 1)!

k!(k − 1)!(n − k)!(n + k − 1)!
.

The solutions of αn,k,k, αn,k+1,k, . . . eventually lead to

E(Tk) =
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

t gj(t)dt, 2 ≤ k ≤ n, (2.2)

where

αn,j,k =
(2j − 1)n!(n − 1)!(k + j − 2)!

(j − k)!k!(k − 1)!(n − j)!(n + j − 1)!
,

gj(t) =

(
j

2

)

λ(t)
exp{−

(
j

2

) t∫

0

1

λ(u)
du},

and e.g., g2(t2) is the density of (T2)2. The proof of Equation 2.2 requires the following
combinatorial identity.
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2.1. Variable population size

Lemma 2.3.

n∑

j=k

(−1)j+kαn,j,k = 0.

Proof.

n∑

j=k

(−1)j+kαn,j,k =
n∑

j=k

(−1)j+k(2j − 1)
n!(n − 1)!(k + j − 2)!

k!(k − 1)!(n − j)!(n + j − 1)!(j − k)!

=

(
2k−2
k−2

)

(k − 1)
(
2n−1
n−1

)

n∑

j=k

(−1)j+k(2j − 1)

(
2n − 1

n − j

)(
k + j − 2

j − k

)

(upper negation of last term)

=

(
2k−2
k−2

)

(k − 1)
(
2n−1
n−1

)

n∑

j=k

(−1)j+k(2j − 1)

(
2n − 1

n − j

)

(−1)j−k

(
1 − 2k

j − k

)

=

(
2k−2
k−2

)(
2(n−k)

n−k

)

(k − 1)
(
2n−1
n−1

)

n∑

j=k

((2j − 2k) + (2k − 1))

(
2n−1
n−j

)(
1−2k

j−k

)

(
2(n−k)

n−k

)

=

(
2k−2
k−2

)(
2(n−k)

n−k

)

(k − 1)
(
2n−1
n−1

) ×

(

2

n∑

j=k

(j − k)

(
2n−1
n−j

)(
1−2k

j−k

)

(
2(n−k)

n−k

) + (2k − 1)

n∑

j=k

(
2n−1
n−j

)(
1−2k

j−k

)

(
2(n−k)

n−k

)

)

=

(
2k−2
k−2

)(
2(n−k)

n−k

)

(k − 1)
(
2n−1
n−1

) ×

(

2(n − k)
1 − 2k

2(n − k)

n∑

j=k

(
2n−1
n−j

)(
−2k

j−k−1

)

(
2(n−k)−1

n−k−1

)

︸ ︷︷ ︸

=1

+(2k − 1)
n∑

j=k

(
2n−1
n−j

)(
1−2k

j−k

)

(
2(n−k)

n−k

)

︸ ︷︷ ︸

=1

)

= 0.

2

In the penultimate line of the proof of Lemma 2.3, both sums are equal to one because
of Vandermonde’s convolution. Now we are ready to complete the proof of Equation 2.2.
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Chapter 2. General coalescent trees

Proof of Equation 2.2.

To infer E(Tk)n+1 from the induction assumption given in Equation 2.2, we write

E(Tk)n+1 = E(E(Tk|Tn+1)n+1) =

∞∫

0

gn+1(tn+1)E(Tk|Tn+1 = tn+1)n+1dtn+1

=

∞∫

0

(
n+1

2

)

λ(tn+1)
exp{−

(
n + 1

2

) tn+1∫

0

1

λ(u)
du}E(Tk)

λs

n dtn+1,

where (cf. Figure 2.1)

E(Tk)
λs

n = (induction assumption)

=
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

t

(
j

2

)

λs(u)
exp{−

(
j

2

) t∫

0

1

λs(u)
du}dt

= (Lemma 1)
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

exp{−

(
j

2

) t∫

0

1

λs(u)
du}dt

= (λs(u) = λ(u + tn+1))
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

exp{−

(
j

2

) t∫

0

1

λ(u + tn+1)
du}dt

= (substitute v = u + tn+1)
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

exp{−

(
j

2

) tn+1+t∫

tn+1

1

λ(v)
dv}dt

= (rename v by u)
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

exp{−

(
j

2

) tn+1+t∫

tn+1

1

λ(u)
du}dt.

Therefore,

E(Tk)n+1 =

∞∫

0

(
n+1

2

)

λ(tn+1)
e
−(n+1

2 )
tn+1R

0

1
λ(u)

du

(
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

e
−(j

2)
tn+1+t
R

tn+1

1
λ(u)

du

dt

)

dtn+1

=
n∑

j=k

(−1)j+kαn,j,k

∞∫

0

∞∫

0

(
n+1

2

)

λ(tn+1)
e
−(n+1

2 )
tn+1R

0

1
λ(u)

du

e
−(j

2)
tn+1+t
R

tn+1

1
λ(u)

du

dtn+1dt.
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2.1. Variable population size

0 tn+1 tn+1+t u 0 t u

λ(u)−1
λs(u)−1

...
...

...

⇐⇒

Figure 2.1 Since tn+1 is fixed within E(Tk|Tn+1 = tn+1), we can shift λ−1 by tn+1 to the
left resulting in the function λ−1

s with λs(u)−1 = λ(u+tn+1)
−1. Without loss of generality, we

can use Equation 2.2 with respect to λ−1
s (denoted as E(Tk)λs

n ) as our induction assumption
as well.

By Lemma 2.2, we get

E(Tk)n+1 =
n∑

j=k

(−1)j+k αn,j,k

(
n+1

2

)

(
n+1

2

)
−
(

j

2

)

︸ ︷︷ ︸

=αn+1,j,k

(

∞∫

0

e
−(j

2)
tR

0

1
λ(u)

du

dt −

∞∫

0

e
−(n+1

2 )
tR

0

1
λ(u)

du

dt).

The usage of Lemma 2.3 results in

E(Tk)n+1 =

n∑

j=k

(−1)j+kαn+1,j,k

∞∫

0

e
−(j

2)
tR

0

1
λ(u)

du

dt −

( n+1∑

j=k

(−1)j+kαn+1,j,k

︸ ︷︷ ︸

=0

−(−1)n+1+kαn+1,n+1,k

)
∞∫

0

e
−(n+1

2 )
tR

0

1
λ(u)

du

dt

=

n+1∑

j=k

(−1)j+kαn+1,j,k

∞∫

0

e
−(j

2)
tR

0

1
λ(u)

du

dt.

2

The expected waiting times for specific demographic scenarios can be derived from Equa-
tion 2.2. Population genetical models which consider a finite number of instantaneous
population size changes can be explicitly solved, as seen in the following example of a
population bottleneck (cf. Figure 2.2). Let λ(t) = f for τ ≤ t < τ + τf and λ(t) = 1
otherwise. Then,

E(Tk) =
n∑

j=k

(−1)j+kαn,j,k

1
(

j

2

)(1−(1−f)(exp{−
(

j

2

)

τ}−exp{−
(

j

2

)

(τ+
τf

f
)})), 2 ≤ k ≤ n.
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Figure 2.2 Possible coalescent trees for a 3-phase bottleneck model and sample size n = 3.

In the case of exponential growth, where λ(t) = exp{−βt} and β > 0, the mean waiting
times E(Tk) can be expressed in terms of the exponential integral Ei(.) and are

E(Tk) = −
n∑

j=k

(−1)j+kαn,j,k

1

β
exp{

(
j

2

)

β
}Ei(−

(
j

2

)

β
), 2 ≤ k ≤ n.

Obviously, the assumption of a large population size in each generation is violated at
some time in the past. However, the upper equation yields the same result as if we would
perform a logarithmic time-scale transformation (Griffiths and Tavaré 1998) to the
Kingman coalescent (Kingman 1982b). Models of instantaneous population size change
followed by exponential growth can be expressed in terms of tabulated functions as well.

2.1.2 Mean squared waiting times

The same ideas of using conditional expectations and a proof by induction can be applied
to the second-order moments of waiting times. To derive the mean squared waiting times
E(T 2

k ), we first show the following Lemma.

Lemma 2.4.

∞Z

0

∞Z

0

∞Z

0

t2

`
n+1

2

´

λ(tn+1)

`
j

2

´

λ(tn+1 + t′)

`
k

2

´

λ(tn+1 + t′ + t)
e
−

“

n+1
2

”

tn+1
R

0

1
λ(u)

du

e

−
“

j
2

”

tn+1+t′
R

tn+1

1
λ(u)

du

e

−
“

k
2

”

tn+1+t′+t
R

tn+1+t′

1
λ(u)

du

dtn+1dt′dt =

`
n+1

2
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2

´
−
`

j

2

´

∞Z

0

∞Z

0

t2
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j

2
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`
k

2

´

λ(t′ + t)
e
−

“

j
2

” t′
R

0

1
λ(u)

du

e
−

“

k
2

” t′+t
R

t′

1
λ(u)
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dt′dt −

`
j

2

´

`
n+1

2

´
−
`
j

2

´

∞Z

0

∞Z

0

t2

`
n+1

2

´

λ(t′)

`
k

2

´

λ(t′ + t)
e
−

“

n+1
2

” t′
R

0

1
λ(u)

du

e
−

“

k
2

” t′+t
R

t′

1
λ(u)

du

dt′dt.

20



2.1. Variable population size
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The following chart illustrates the setup of recursions and the way of inductive reasoning.
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To demonstrate how Lemma 2.4 can be successively applied to eventually obtain
Equation 2.3, we derive the special case E(T 2

n−2)n. Induction starts with the following
two equations, which directly result from the joint density of waiting times.
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By making use of Lemma 2.4, we obtain
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In general, it holds that
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and e.g., g3,2(t3, t2) is the joint density of (T3, T2)3.

Proof of Equation 2.3.

We write

E(T 2
k )n+1 = E(E(T 2

k |Tn+1)n+1) =

∞∫

0

gn+1(tn+1)E(T 2
k |Tn+1 = tn+1)n+1dtn+1

=

∞∫

0

(
n+1

2

)

λ(tn+1)
exp{−

(
n + 1

2

) tn+1∫

0

1

λ(u)
du}E(T 2

k )λs

n dtn+1,

where

23



Chapter 2. General coalescent trees

E(T 2
k )λs

n =

nX

j=k+1

(−1)j+k+1

`
k+1
2

´

`
j

2

´ αn,j,k+1

∞Z

0

∞Z

0

t2

`
j

2

´

λ(tn+1 + t′)

`
k

2

´

λ(tn+1 + t′ + t)
×

exp{−
“j

2

”
tn+1+t′Z

tn+1

1

λ(u)
du} exp{−

“k

2

”
tn+1+t′+tZ

tn+1+t′

1

λ(u)
du}dt′dt,

for 2 ≤ k ≤ n − 1, follows from the induction assumption in analogy to the proof of
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Applying Lemma 2.4, we find
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= (Lemma 2.3)
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For all demographic models with a finite number of m intervals, each with a different
constant population size, Equation 2.3 can be explicitly solved by decomposition of
the double integrals according to the

(
m+1

2

)
possible arrangements of coalescent events

for a sample of size 3 over these m time phases. For example, in the case of the
previously mentioned bottleneck model (cf. Fig. 2.2) it is instructive to express the
solution for 3 alleles, and then to replace

(
3
2

)
by
(

j

2

)
and

(
2
2

)
by
(

k

2

)
. In the case of

exponential population growth, one must resort to a numerical evaluation of Equation 2.3.

2.1.3 Mean product of two distinct waiting times

The following equation is the quintessence of the recursive procedure for the derivation
of the mean product of two distinct waiting times.

Lemma 2.5.
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Proof.
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2

The following chart illustrates the set-up of recursions upon which the proof by induction
for Equation 2.4 rests.

E(T3T2)3
↓ ↘

E(T4T3)4 E(T4T2)4 E(T3T2)4
↓ ↘ ↓ ↘ ↘

E(T5T4)5 E(T5T3)5 E(T4T3)5 E(T5T2)5 E(T4T2)5 E(T3T2)5
↓ ↘ ↓ ↘ ↘ ↓ ↘ ↘ ↘

E(T6T5)6 E(T6T4)6 E(T5T4)6 E(T6T3)6 E(T5T3)6 E(T4T3)6 E(T6T2)6 E(T5T2)6 E(T4T2)6 E(T3T2)6

The repeated application of Lemma 2.5 eventually leads to
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∑
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for 2 ≤ k < k′ ≤ n, where
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Proof of Equation 2.4.

For the initial step (underlined in the chart) of the proof by induction of Equa-
tion 2.4, we have

E(TnTn−1) =
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This follows directly from the joint density of waiting times. As illustrated in the
chart above, the induction step separates into two cases. First, we show how to infer
E(Tn+1Tk)n+1 from the induction assumption E(TnTk)n (downward arrows in the chart).

Let n = k′ > k ≥ 2. Then Equation 2.4 reads
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We write
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(
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has been shown in the proof of Equation 2.2.

Therefore,
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= (Lemma 2.1)
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which completes the proof of the first case.

For the conclusion of E(Tk′Tk)n+1 from the induction assumption E(Tk′Tk)n

(diagonal arrows in the chart), we write
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follows from the induction assumption in analogy to the proof of Equation 2.2. Hence,
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By Lemma 2.5, we have
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Finally, and by applying Lemma 2.3, we find
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0

t′t

`
j

2

´
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`
i

2
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e
−

“

j
2
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R

0

1
λ(u)
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e
−

“

i
2

” t′+t
R

t′

1
λ(u)

du
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2

In analogy to the mean squared waiting times, Equation 2.4 can be explicitly solved for
all demographic models with a finite number of intervals, each with a different constant
population size, whereas one must resort to a numerical evaluation of Equation 2.4 in the
case of exponential population growth.

2.1.4 Mean and variance of two tree size measures

Two commonly used measures of the size of the genealogy are the time to the most recent
common ancestor, TMRCA =

∑n

k=2 Tk, and the sum of all branch lengths in the coalescent
tree, Tc =

∑n

k=2 k Tk, for sample size n. Using the linearity of expectation, we obtain

E(TMRCA) =
n∑

k=2

E(Tk), (2.5)

E(Tc) =

n∑

k=2

k E(Tk). (2.6)
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To evaluate the variance of TMRCA and Tc, we require the variance and covariance of
waiting times, given by

V (Tk) = E(T 2
k ) − E(Tk)

2, (2.7)

Cov(Tk′, Tk) = E(Tk′Tk) − E(Tk′)E(Tk). (2.8)

It follows immediately that

V (TMRCA) =
n∑

k=2

V (Tk) + 2
n−1∑

k=2

n∑

k′=k+1

Cov(Tk′, Tk), (2.9)

V (Tc) =

n∑

k=2

k2V (Tk) + 2

n−1∑

k=2

n∑

k′=k+1

k k′ Cov(Tk′, Tk). (2.10)

2.2 Measures of DNA polymorphism

2.2.1 The number of segregating sites

Let Sn be the number of segregating sites in a sample of size n under the infinitely-many-
sites model. Since mutations occur according to a Poisson process on the edges of the
tree, Sn is a compound Poisson-distributed random variable with mean θ/2 Tc and it
holds (e.g., Hudson 1990, Griffiths and Tavaré 2003) that

E(Sn) =
θ

2
E(Tc), (2.11)

V (Sn) =
θ

2
E(Tc) +

θ2

4
V (Tc). (2.12)

�

�

�

�

�

�

�

�

�

Figure 2.3 Mutations of sizes one, two, and three in a coalescent tree for n = 5.
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2.2. Measures of DNA polymorphism

2.2.2 Mutations of a certain size

Fu (1995) defined the size of a branch as the number of sequences in a sample that
are descendants of that branch (at present time). Furthermore, a mutation is of size i
(1 ≤ i ≤ n − 1) if it occurs on a branch of size i. Let ξi be the number of mutations of
size i in a sample of size n. Fu (1995) derived expectations, variances and covariances of
these random variables for constant population size.

Below, we will follow the article of Fu (1995) and extend those results to this paper,
which are required to derive the analogous solutions for general coalescent trees. The
probabilities in Equations 14 − 21 in Fu (1995), which rely on a Pólya urn model, are
valid in a general coalescent tree since the timing of the urn draws is irrelevant for the
binary coloring scheme. The probability pn,k(i) that a randomly chosen line of waiting
time Tk is of size i in waiting time Tn (Fu 1995, Griffiths and Tavaré 1998) is

pn,k(i) =

(
n−i−1
k−2

)

(
n−1
k−1

) , 1 ≤ i ≤ n − 1. (2.13)

The probability pn,k(i, j) that two randomly chosen lines of waiting time Tk are of size i
and j, respectively, in waiting time Tn (cf. Fu 1995) is

pn,k(i, j) =







(n−i−j−1
k−3 )

(n−1
k−1)

= k−1
n−k+1

pn,k−1(i + j) , i + j < n (⇔ 3 ≤ k ≤ n),

1
n−1

, i + j = n (⇔ k = 2).

(2.14)

Let 2 ≤ k < k′ ≤ n, without loss of generality. The probability pn,k,k′(i, j) that a randomly
chosen line of waiting time Tk and a randomly chosen line of waiting time Tk′ are of size i
and j, respectively, in waiting time Tn is broken down into the two probabilities pa

n,k,k′(i, j)

and pb
n,k,k′(i, j) (Fu 1995). In the course of subsequent case distinctions for these two

probabilities, meaningless combinations of i and j that occur with probability zero are
also noted. The probability pa

n,k,k′(i, j) that the line of waiting time Tk′ is a descendant
of the line of waiting time Tk and that these lines are of size j and i, respectively, is given
by

pa
n,k,k′(i, j) =







min(k′−k+1,i−j+1)∑

t=2

(k′−k

t−1 )
(k′−1

t )
k−1
k′

(i−j−1
t−2 )(n−i−1

k′−t−1)
(n−1

k′−1)
, i > j,

k−1
k′(k′−1)

(n−i−1
k′−2 )

(n−1
k′−1)

, i = j,

0 , otherwise.
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Chapter 2. General coalescent trees

The probability pb
n,k,k′(i, j) that the line of waiting time Tk′ is not a descendant of the line

of waiting time Tk and that these lines are of size j and i, respectively, is given by

pb
n,k,k′(i, j) =







min(k′−2,k′−k+1,i)∑

t=1

(k′−k

t−1 )
(k′−1

t )
(k−1)(k′−t)

tk′

(i−1
t−1)(

n−i−j−1
k′−t−2 )

(n−1
k′−1)

, i + j < n,

1
k′(k′−1)

(n−j−1
k′−2 )

(n−1
k′−1)

, i + j = n, k = 2,

0 , otherwise.

Therefore,

pn,k,k′(i, j) = pa
n,k,k′(i, j) + pb

n,k,k′(i, j).

The probabilities pa
n,k,k′(i, j) for i > j and pb

n,k,k′(i, j) for i + j < n given in the above
equations include the summation over an additional variable t, which is the size of a
randomly chosen line of waiting time Tk in waiting time Tk′, and will be resolved in the
following. For notational convenience, we define

p∗n,k,k′(i, j) =

(
k′ − 1

k − 1

)

pn,k(i) pn−k+1,k′−k+1(j). (2.15)

First, we rewrite the probability pa
n,k,k′(i, j), for i > j, as

pa
n,k,k′(i, j) =

(
n−i−1
k−2

)(
n−k−j

k′−k−1

)

k′
(

n−1
k′−1

)(
k′−1
k−1

)

∑

t≥0

(t + 2)

(
i−j−1

t

)(
n−k−j−(i−j−1)

k′−k−1−t

)

(
n−k−j

k′−k−1

)

=

(
n−i−1
k−2

)(
n−k−j

k′−k−1

)

k′
(

n−1
k′−1

)(
k′−1
k−1

)

∑

t≥0

(t + 2)pt,

where pt are the probabilities of the hypergeometric distribution Hk′−k−1;n−k−j,i−j−1.

Hence, for i > j, we have

pa
n,k,k′(i, j) =







(n−i−1
k−2 )(n−k−j

k′−k−1)
k′(n−1

k′−1)(
k′−1
k−1 )

(

(k′ − k − 1) i−j−1
n−k−j

+ 2
)

, j < n − k,

((
k+1
2

)(
n−1

k

))−1
, j = n − k = n − k′ + 1,

i = j + 1,

0 , otherwise.
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From this equation it is simple to see that

pa
n,k,k′(i, j) =







2∑

u=1

(−1)u k−1

k′(k′−1
k−u)

p∗n,k−u+2,k′(i, j) , i > j,

k−1
k′(k′−1)

pn,k′(i) , i = j,

0 , otherwise.

(2.16)

The probability pb
n,k,k′(i, j), for i + j < n, can be rewritten as

pb
n,k,k′(i, j) =

(
n−i−j

k−2

)(
n−k−j+1

k′−k

)

(n − i − j)k′
(

n−1
k−1

)(
n−k

k′−k

) ×

∑

t≥0

(t2 − (2k′ − 3)t + (k′(k′ − 3) + 2))

(
i−1

t

)(
n−k−j+1−(i−1)

k′−k−t

)

(
n−k−j+1

k′−k

)

=

(
n−i−j

k−2

)(
n−k−j+1

k′−k

)

(n − i − j)k′
(

n−1
k−1

)(
n−k

k′−k

)

∑

t≥0

(t2 − (2k′ − 3)t + (k′(k′ − 3) + 2))pt,

where pt are the probabilities of the hypergeometric distribution Hk′−k;n−k−j+1,i−1.

Therefore, for i + j < n, we obtain

pb
n,k,k′(i, j) =







(n−i−j

k−2 )(n−k−j+1
k′−k )

(n−i−j)k′(n−1
k−1)(

n−k

k′−k)
×

(
(i−1)(k′−k)((i−1)((k′−k)−1)−(k′−k)+(n−k−j+1))

(n−k−j+1)(n−k−j)
−

(2k′ − 3) (k′−k)(i−1)
n−k−j+1

+ (k′(k′ − 3) + 2)
)

, j < n − k,

(k−1)(k−(k−1)(i−1))

(k+1)k(n−1
k )

, j = n − k = n − k′ + 1,

i = 1, 2,

0 , otherwise.
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Then it is straightforward to derive

pb
n,k,k′(i, j) =







k−1

k′(k′−1
k−1 )

2∑

u=1

2∑

v=1

p∗n,k−u+v,k′(i + j, j) , i + j < n,

1
k′(k′−1)

pn,k′(j) , i + j = n, k = 2,

0 , otherwise.

(2.17)

Obviously, also the assembled probability

pn,k,k′(i, j) = pa
n,k,k′(i, j) + pb

n,k,k′(i, j) (2.18)

can be expressed in terms of pn,k′(·) and p∗n,·,k′(·, j).

Let ξkl be the number of mutations which occurred in the lth line of state k and
εkl(i) be an index variable, such that εkl(i) equals one if the lth line of state k is of size i
and zero otherwise. Then (Fu 1995),

ξi =

n∑

k=2

k∑

l=1

εkl(i)ξkl.

Since the moments of ξkl are the prerequisite for the moments of ξi, we begin with the
derivation of the first- and second-order moments of these random variables. For this
purpose, we make repeated use of the assumption that mutations occur according to
independent Poisson processes of rate θ/2 along the edges of the tree, conditional on the
edge lengths of the tree.

(i) We write

E(ξkl) = E(E(ξkl|Tk)) =

∞∫

0

gTk
(tk)E(ξkl|Tk = tk)dtk,

where gTk
denotes the marginal density of the random variable Tk. Since

E(ξkl|Tk = tk) =
∑

j≥0

j
( θ

2
tk)

j

j!
exp{−

θ

2
tk} =

θ

2
tk,

we have

E(ξkl) =
θ

2

∞∫

0

tk gTk
(tk)dtk =

θ

2
E(Tk). (2.19)
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(ii) In analogy,

E(ξ2
kl) = E(E(ξ2

kl|Tk)) =

∞∫

0

gTk
(tk)E(ξ2

kl|Tk = tk)dtk,

where

E(ξ2
kl|Tk = tk) =

∑

j≥0

j2 ( θ
2
tk)

j

j!
exp{−

θ

2
tk} =

θ

2
tk +

θ2

4
t2k.

Therefore,

E(ξ2
kl) =

θ

2

∞∫

0

tk gTk
(tk)dtk +

θ2

4

∞∫

0

t2k gTk
(tk)dtk =

θ

2
E(Tk) +

θ2

4
E(T 2

k ). (2.20)

(iii) We write,

E(ξklξkl′) = E(E(ξklξkl′|Tk)) =

∞∫

0

gTk
(tk)E(ξklξkl′|Tk = tk)dtk,

where

E(ξklξkl′|Tk = tk) = E(ξkl|Tk = tk)E(ξkl′|Tk = tk) =
θ2

4
t2k,

due to the conditional independence of ξkl and ξkl′. Thus,

E(ξklξkl′) =
θ2

4

∞∫

0

t2k gTk
(tk)dtk =

θ2

4
E(T 2

k ). (2.21)

(iv) Finally,

E(ξk′l′ξkl) = E(E(ξk′l′ξkl|Tk′, Tk))

=

∞∫

0

∞∫

0

gTk′ ,Tk
(tk′, tk)E(ξk′l′ξkl|Tk′ = tk′, Tk = tk)dtk′dtk,

where gTk′ ,Tk
denotes the 2-dimensional marginal density of (Tk′, Tk). Since the random

variables ξk′l′ and ξkl are conditionally independent, we have

E(ξk′l′ξkl|Tk′ = tk′, Tk = tk) = E(ξk′l′|Tk′ = tk′)E(ξkl|Tk = tk) =
θ2

4
tk′tk,
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and immediately obtain

E(ξk′l′ξkl) =
θ2

4

∞∫

0

∞∫

0

tk′tk gTk′ ,Tk
(tk′, tk)dtk′dtk =

θ2

4
E(Tk′Tk). (2.22)

Following Equation 22 of Fu (1995), we find

E(ξi) =
n∑

k=2

k∑

l=1

P (εkl(i) = 1)E(ξkl) =
n∑

k=2

k pn,k(i)E(ξkl).

Applying Equation 2.19 results in

E(ξi) =
θ

2

n∑

k=2

k pn,k(i) E(Tk). (2.23)

This formula already appears in Griffiths and Tavaré (1998).
Under variable population size and by applying Equation 2.2 to a demographic

history, which consists of multiple epochs of different but constant population sizes,
Equation 2.23 results in Equation 1 of Marth et al. (2004).

To obtain V (ξi) and Cov(ξi, ξj), we follow Equation 23 in Fu (1995), given by

E(ξiξj) =

n∑

k=2

n∑

k′=2

k∑

l=1

k′
∑

l′=1

P (εkl(i)εk′l′(j) = 1)E(ξk′l′ξkl)

= δ{i=j}

n∑

k=2

kpn,k(i)E(ξ2
kl) +

n∑

k=2

k(k − 1)pn,k(i, j)E(ξklξkl′) +

n−1∑

k=2

n∑

k′=k+1

kk′
(

pn,k,k′(i, j) + pn,k,k′(j, i)
)

E(ξk′l′ξkl),

where δ{i=j} equals one when i = j and zero otherwise. Using Equations 2.13− 2.22, then
by separating cases and after some algebra, one eventually obtains

V (ξi) =
θ

2
σi +

θ2

4
σii, (2.24)

Cov(ξi, ξj) =
θ2

4
σij, (2.25)

where

σi =

n∑

k=2

k pn,k(i) E(Tk),
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and

σii =







σii1 + σii2 − σ2
i , i < n

2
,

σii1 + σii3 − σ2
i , i = n

2
,

σii1 − σ2
i , i > n

2
,

where

σii1 =

n∑

k=2

kpn,k(i)E(T 2
k ) + 2

n−1∑

k=2

n∑

k′=k+1

k(k − 1)

k′ − 1
pn,k′(i)E(Tk′Tk),

σii2 =
n∑

k=2

k(k − 1)2

n − k + 1
pn,k−1(2i)E(T 2

k ) +

2
n−1∑

k=2

n∑

k′=k+1

k(k − 1)
(

k′−1
k−1

)

2∑

u=1

2∑

v=1

p∗n,k−u+v,k′(2i, i)E(Tk′Tk),

σii3 =
2

n − 1
E(T 2

2 ) +
n∑

k′=3

4

k′ − 1
pn,k′(i)E(Tk′T2).

For i > j,

σij =







σij1 + σij2 − σiσj, i + j < n,
σij1 + σij3 − σiσj, i + j = n,
σij1 − σiσj, i + j > n,

where

σij1 =

n−1∑

k=2

n∑

k′=k+1

2∑

u=1

(−1)u k(k − 1)
(

k′−1
k−u

) p∗n,k−u+2,k′(i, j)E(Tk′Tk),

σij2 =

n∑

k=3

k(k − 1)2

n − k + 1
pn,k−1(i + j)E(T 2

k ) +

n−1∑

k=2

n∑

k′=k+1

k(k − 1)
(

k′−1
k−1

)

2∑

u=1

2∑

v=1

(p∗n,k−u+v,k′(i + j, i) + p∗n,k−u+v,k′(i + j, j))E(Tk′Tk),

σij3 =
2

n − 1
E(T 2

2 ) +
n∑

k′=3

2

k′ − 1
(pn,k′(i) + pn,k′(j))E(Tk′T2).

To decide whether a mutation is of size i, knowledge of the ancestral and derived alle-
les is required. Without this knowledge, one can only consider the type of a mutation
(Fu 1995). A mutation is of type i, if it is of size i or n − i. If ηi is the number of mu-
tations of type i, then analogous results for E(ηi), V (ηi) and Cov(ηi, ηj) can be derived
by using ηi = (ξi + ξn−i)(1 + δ{i=n−i})

−1. Since Sn =
∑n−1

i=1 ξi, the covariances Cov(ξi, Sn)
and Cov(ηi, Sn) can be written in terms of the above expressions.
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2.2.3 The average number of pairwise differences

Let Πn be the average number of pairwise differences in the
(

n

2

)
comparisons in a sample

of size n. According to Fu (1995), we write

Πn =
1
(

n

2

)

n−1∑

i=1

i(n − i)ξi,

since the ξi’s are counted in i(n − i) comparisons between the i descendent and n − i
non-descendent sequences of the corresponding branches. The results derived in Chapter
2.2.2 can be used to express moments of Πn in terms of moments of Tk. After some algebra
one eventually obtains

E(Πn) =
θ

2

n∑

k=2

an,kE(Tk), (2.26)

V (Πn) =
θ

2

n∑

k=2

an,kcn,kE(Tk) +
θ2

4

n∑

k=2

a2
n,k(V (Tk) + bn,kE(T 2

k )) +

θ2

2

n−1∑

k=2

n∑

k′=k+1

an,kan,k′(Cov(Tk′, Tk) + bn,k′E(Tk′Tk)), (2.27)

Cov(Sn, Πn) =
θ

2

n∑

k=2

an,kE(Tk) +
θ2

4

n∑

k=2

kan,kV (Tk) +

θ2

4

n−1∑

k=2

n∑

k′=k+1

(kan,k′ + k′an,k)Cov(Tk′, Tk), (2.28)

where

an,k =
2(n + 1)(k − 1)

(n − 1)(k + 1)
,

bn,k =
4(n − k)(n − k − 1)

(n + 1)n(k − 1)(k + 2)(k + 3)
,

cn,k =
4k(n2 + 1) − 2(n + 1)(k − 2)(k − 3)

n(n − 1)(k + 2)(k + 3)
.

Equation 2.26 has been already derived in Griffiths and Tavaré (2003). Under
variable population size Equation 2.26 simplifies to E(Πn) = θE(T2)2.
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Chapter

Testing neutrality under variable

population size

3.1 The estimated demographic history of Drosophila

melanogaster

Li and Stephan (2006) developed a maximum likelihood method to infer demographic
changes and to detect recent selective sweeps in populations of varying size from DNA
polymorphism data. Based on a sample of average size n = 12 that comprises 262 loci
of the X-chromosome from an African population of D. melanogaster and due to an
overall excess of rare derived variants, the authors suggested that an instantaneous pop-
ulation expansion model explains the observed polymorphisms significantly better than
the standard neutral model of constant population size. The homologous sequences of D.

simulans—available for 258 loci—were used as the outgroup to infer the ancestral status of
a polymorphic site and to estimate divergence between D. melanogaster and D. simulans.
Under the expansion model, the authors estimated θ̂A0 = 4NA0µ̄ = 0.0499, where NA0

indicates the current effective population size for the X-chromosome in the African popu-
lation. Since the D. melanogaster lineage split from D. simulans approximately 2.3 million
years ago (Li et al. 1999), the average mutation rate per site per generation was estimated
as µ̄ = 1.45× 10−9, assuming ten generations per year. Then, N̂A0 = 8.603× 106 and the
estimated time of the expansion is 60, 000 years before the present (corresponding to 0.035
in units of 2N̂A0 generations). The population size before the expansion was estimated as
0.2× N̂A0. It is important to note that the above and the subsequent analysis for the Eu-
ropean population assumed that all SNPs evolve neutrally. Since part of the excess of rare
variants may be due to purifying selection, the authors repeated the analysis disregard-
ing the singletons, as suggested by Fu (1997) and Smith and Eyre-Walker (2002).
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(b) Europe

Figure 3.1 The suggested demographic history of the African and European populations
of D. melanogaster studied by Li and Stephan (2006). x-axis: time measured in units of
2NA0 and 2NE0 generations, respectively. y-axis: population size in units of NA0 and NE0.
Ticks below the x-axis indicate expected waiting times E(T12), . . . , E(T2) for the bottleneck
(solid) and constant population size (dashed lines) models. For the African population all
waiting times are heavily and uniformly reduced. The split from D. simulans occurs at 1.34
units in the past. For the European population the genealogy consists of short branches in
the recent past but elongated branches before the split from the African population. Note
that there is only a slight reduction in total tree height.
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3.1. The estimated demographic history of Drosophila melanogaster

In this case the population size before the expansion was estimated as approximately
0.15, whereas the time of expansion in the past is about 56, 000 years and 0.033 in units
of 2N̂A0, respectively.

Furthermore, Li and Stephan (2006) studied a sample (n = 12) from a European
population of D. melanogaster that consists of 272 X-linked loci, from which 23 loci are
non-polymorphic and 6 loci lack the outgroup sequence. To infer the demographic change
in the derived European population, Li and Stephan (2006) used the joint frequency
spectrum (Wakeley and Hey 1997) that additionally takes into account, if mutations
occur exclusively in the African or in the European population, or in both of them.
Furthermore, the authors assumed that the out-of-Africa migration did not affect the
genetic polymorphism in the African population, since the size of the founder popula-
tion is likely to be very small compared to the ancestral African population. Therefore,
the authors estimated the demographic scenario of the European sample conditional on
the estimated demographic scenario of the African sample. The derived estimate for
θ̂E0(= 4NE0µ̄) is 0.0062, with N̂E0 = 1.075 × 106 being the present size of the European
population. The African and European populations diverged approximately 15, 800 years
ago (corresponding to 0.0735 in units of 2N̂E0 generations). Subsequently, the European
population went through a bottleneck during which its size was reduced to 0.002 × N̂E0

and which lasted about 340 years (corresponding to 0.0016 in units of 2N̂E0 genera-
tions). The estimated demographic history of both populations is illustrated in Figure 3.1.

The observed frequency spectrum, the maximum likelihood estimation (MLE) from
Li and Stephan (2006) and the theoretical frequency spectrum for both populations,
obtained by inserting Equation 2.2 into Equation 2.1, are shown in Figure 3.2. The
MLE and the theoretical outcome based on the suggested demographic histories are in
good agreement since both rely on expected branch lengths. To obtain the theoreti-
cal frequency spectrum for the European population joint polymorphisms were ignored,
but, interestingly, this simplification had only a marginal effect, as can be seen in Figure
3.2. The property that the theoretical frequency spectrum is strictly monotonically de-
creasing with the increasing size of a mutation follows directly from Equation 2.1. Since
both populations of Drosophila exhibit an excess of high-frequency derived mutations
(cf. Figure 3.2), there is an indication for the presence of positive selection in the data
(Fay and Wu 2000).

Henceforth, θ = 4N0µ, where µ is the mutation rate per locus of length L base
pairs per generation. Then, the above estimates of θ become θ̂A0 = 23.5 (L̄ = 471) and
θ̂E0 = 3.11 (L̄ = 498). For the African and European datasets the average number of
segregating sites per locus is 17.87 and 6.88, respectively. Hence, θ̂W —the standard neu-
tral version of Equation 3.3 as defined by Watterson (1975)—is 5.92 for the African,
and 2.28 for the European population. In contrast, the estimates based on Equation 3.3,
where E(Tc) is consistent with the suggested demographic histories are 23.6 and 3.07, re-
spectively. These discrepancies reflect the differences in total tree length (cf. Figure 3.1).
While the theoretical and experimental outcomes of the earlier introduced measures of
DNA polymorphism, Sn and Πn, experience only minor changes with respect to the means,
if the different sample sizes of the data are taken into account, the variances of these
statistical quantities are more sensitive in this regard. Consequently, for a comparison
of the theoretical single-locus results and the experimental data (cf. Table 3.1), the
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Figure 3.2 Frequency spectra of the African and European populations: the open and
solid histograms are from Li and Stephan (2006). The hatched histogram shows theoretical
results for the frequency spectrum.

Table 3.1

Africa∗ Europe∗∗

θ̂ V (S12) E(Π12) V (Π12) θ̂ V (S12) E(Π12) V (Π12)

theoretical single-locus results

52.18 5.32 7.83 34.57 2.36 6.09

experimental data

23.40 91.63 4.93 9.06 2.92 31.11 2.20 4.87

∗ subset of 204 loci (n = 12, L̄ = 474).
∗∗ subset of 235 loci (n = 12, L̄ = 498).
Due to varying locus lengths, the experimental outcomes of S12 and Π12 are
rescaled with respect to L̄. Then, θ̂ is estimated from the subsets based on
the suggested demographies, and thereafter used for the theoretical results.
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3.2. Generalization of classical test statistics

subsets of loci with n = 12 are extracted from the datasets of both populations. As shown
in Table 3.1, there is a pronounced difference with respect to the variance of segregating
sites between the theory and the data for the African population. One explanation,
besides the possibility that certain loci are exposed to adaptive forces and therefore
skew the overall pattern of the putative neutral loci, might be that mutation rates
vary across loci. Variations in mutation rate may rather be observable in the African
than in the European population because of the about eight-fold larger population
size. In the following, the generalized versions of several classical test statistics are
analyzed with respect to the estimated demographic scenarios. This is in line with
Williamson et al. (2005), who suggested that it may be more important to find a
demographic scenario, which provides a reasonable fit to the data, than the specifics of
the demographic model itself. This argument will be explored in more depth in Chapter 4.

3.2 Generalization of classical test statistics

3.2.1 Tajima’s D

Tajima’s D (Tajima 1989b) is a widely applied test statistic for the null hypothesis of
neutral evolution under constant population size. In Chapter 2, all necessary ingredients
were collected to formulate a generalized version of D, here called D′, which may be
applied to test the model of neutral evolution under variable population size, conditional
on knowledge of the demographic history. The equality

θ =
E(Πn)

E(T2)2
=

2E(Sn)

E(Tc)

provides the statistical quantity

d′ = fSn
Πn − fΠn

Sn, (3.1)

where fSn
= E(Tc)/2, fΠn

= E(T2)2. The mean of d′ is 0 and the variance of d′ is given
by

V (d′) = f 2
Sn

V (Πn) + f 2
Πn

V (Sn) − 2fSn
fΠn

Cov(Sn, Πn). (3.2)

By making use of Equations 2.12, 2.27 and 2.28 together with the unbiased estimators of
θ and θ2, based on Sn, and given by

θ̂ =
2Sn

E(Tc)
, (3.3)

θ̂2 =
4Sn(Sn − 1)

V (Tc) + E(Tc)2
, (3.4)
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one obtains the test statistic

D′ =
d′

√

V̂ (d′)
, (3.5)

where V̂ (d′) is the estimator of V (d′) with respect to Equations 3.3 and 3.4. Clearly, D′

simplifies to D for λ(t) = 1.
Now, we analyze the distributional properties of D′ for the African demography,

where

D′ =
0.758Π12 − 0.228S12

√

(0.0098 + 0.0021S12)S12

for n = 12. To decide whether an observed value of D′ for a certain locus is below or above
a critical value, one needs the distribution of D′. In contrast to the standard neutral case,
where the distribution of D′ can be approximated by a beta distribution (Tajima 1989b),
a theoretical approximation for the distribution of D′ remains unknown under variable
population size. Although some intra-locus recombination may occur, recombination is
not taken into account. However, the variance of d′ under recombination is smaller than
in Equation 3.2, such that the critical values of D′ obtained without recombination are
probably more conservative.

Table 3.2 Distributional properties of D′ for the African scenario and n = 12.

θ Mean Variance ∗0.05 ∗0.95

1 −0.010 0.99 −1.22 1.67

3 −0.036 0.96 −1.39 1.69

5 −0.050 0.93 −1.39 1.67

8 −0.067 0.90 −1.47 1.64

10 −0.075 0.88 −1.51 1.60

12 −0.078 0.87 −1.51 1.59

20 −0.091 0.83 −1.49 1.53

40 −0.096 0.80 −1.47 1.48

60 −0.10 0.78 −1.47 1.46

Results are obtained from coalescent simulations with 100,000 replicates.
∗ 5%- and 95%- quantile, respectively.
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3.2. Generalization of classical test statistics

While mutations are assumed to occur at a constant rate per locus, the rates
may vary across loci. Therefore, the distribution of D′ is generated for different values
of θ by coalescent simulations (Hudson 2002). The two most extreme values of θ—
approximately 1 and 60—are estimated by Equation 3.3, which provides conservative—
too conservative—values for a possible mutation rate variation range. It may well be that
these two extremes simply reflect the random nature of the underlying genealogical trees.
This is in line with Li and Stephan (2006), who observed that the mutation rate among
loci may not be homogeneous but that a varying mutation rate model overestimates the
outcome of several summary statistics in the data.

Following Tajima (1989b), non-polymorphic iterations are disregarded. Taking the
most extreme 5%- and 95%-quantiles among these distributions provides the critical val-
ues (underlined in Table 3.2). Simulated distributions of D′ for different values of θ and
for n = 12 and n = 40 are shown in Figure 3.3.
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Figure 3.3 Simulated distributions of D′ for the African scenario.
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The average of the observed D′-values in the African sample is −0.27, whereas
the average of the observed D-values is −0.67. D is smaller than D′, since D does not
take the effect of population expansion into account. Since not all loci in the African
dataset have sample size 12, D′ is recalculated for all different sample sizes to obtain
the critical values as described above. Based on the critical values, several loci with
significantly negative D′ (cf. Table 3.3) and one locus with a significantly positive D′

are found. Comparing the candidate loci with the results of the likelihood-ratio test
(LRT) by Li and Stephan (2006), the loci that are marked by an asterisk in Table
3.3 fall into regions for which the null hypothesis of neutral evolution was also rejected
in the LRT. Except for Locus 729, all loci are a subset of the 21 significant loci from
Hutter et al. (2007) based on D under constant population size. This decrease in the
amount of significant loci is mainly due to our choice of the rejection region by considering
a variety of θ−values, whereas the amount of false-positives is rather low (∼ 10%), when
applying D under constant population size. However, the critical values obtained by D ′ are
more appropriate to reject the neutral model, since D′ takes the suggested demographic
history into account.

Now, we analyze the distributional properties of D′ for the European demography,
where

D′ =
2.242Π12 − 0.807S12

√

(0.0485 + 0.0581S12)S12

for n = 12. The distributions of d′/
√

V (d′) and D′ for different values of θ and for sample
sizes 12 and 40 are shown in Figure 3.4.

Table 3.3 List of outlier loci with respect to D ′ in the African sample.

locus 25 122 ∗470 ∗743 ∗295 ∗430 729

D′ -1.60 -1.66 -1.63 -1.70 -1.75 -1.80 2.01

p−value: θ = 10 0.026 0.021 0.019 0.013 0.009 0.006 0.025

θ = 20 0.031 0.025 0.025 0.018 0.014 0.009 0.015

θ = 40 0.032 0.024 0.026 0.018 0.013 0.010 0.012

n 12 12 11 11 12 12 10

Results are obtained from coalescent simulations with 100,000 replicates.
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Figure 3.4 Simulated distributions of d′/
√

V (d′) and D′ for the European scenario.
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In analogy to Tajima (1989b) and Fu and Li (1993), the unbiased estimators of θ
and θ2, with respect to Sn, are used, such that the denominator of D′ depends solely on the
number of segregating sites. Since d′/

√

V (d′) is distributed with mean 0 and variance 1

due to its dependency on θ, the estimators θ̂ and θ̂2 affect the distortion of the distribution
of D′ (cf. Figure 3.4). It should be noted that V (θ̂) and V (θ̂2) are considerably larger
than under constant population size. Furthermore, the distribution of D′ for the European
scenario is shifted even more towards negative values ((D′, V (D′)) is about (−0.2, 0.96)
and (−0.3, 0.95) for θ = 3 and θ = 10, respectively) under this bottleneck model than
under the standard model (cf. Table 1 in Tajima 1989b). While the distribution of D
becomes smoother with increasing sample size (cf. Figure 3 in Tajima 1989b), this is
less the case for the distribution of D′ and the average θ of about 3 (cf. Figure 3.4).
It is interesting to note that, given a demographic scenario such as the European one,
increased sample size may not adequately compensate for the unsatisfactory distributional
properties of D′. In conclusion, the test statistic D′ may not produce reliable results for
the analysis of the European data, and therefore, the following standardized test statistics
are solely explored for the African expansion model.

3.2.2 Fu and Li’s D

Fu and Li (1993) introduced several test statistics that unify the unbiased estimator of
θ, based on the number of singletons, ξ1, with the unbiased estimators of θ, based on
Sn and Πn, respectively. The authors also established test statistics with respect to the
earlier introduced η1, in case an outgroup is unavailable. Here, we exemplarily bring the
statistical test that relates ξ1 to Sn into the non-equilibrium background. First, we set
up the necessary equations, which follow from Equations 2.23, 2.24 and 2.25, respectively.
Let

un,k =
k(k − 1)

n − 1
and vn,k =

(n − k)(n − k − 1)

(n − 1)(n − 2)
.

Then,

E(ξ1) =
θ

2

n
∑

k=2

un,kE(Tk), (3.6)

V (ξ1) =































θ
2

n
∑

k=2

un,kE(Tk) + θ2

4

n
∑

k=2

un,k(un,kV (Tk) + vn,kE(T 2
k )) +

θ2

2

n−1
∑

k=2

n
∑

k′=k+1

un,k(un,k′Cov(Tk′ , Tk) + vn,k′E(Tk′Tk)) , n > 2,

θE(T2) + θ2V (T2), n = 2,

(3.7)

Cov(ξ1, Sn) =
θ

2

n
∑

k=2

un,kE(Tk) +
θ2

4

(

n
∑

k=2

kun,kV (Tk)

+

n−1
∑

k=2

n
∑

k′=k+1

un,k(uk,k′ + k′)Cov(Tk′Tk)
)

. (3.8)
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3.2. Generalization of classical test statistics

The equality

θ =
2E(Sn)

E(Tc)
=

2E(ξ1)
n∑

k=2

un,kE(Tk)

provides the summary statistic

d∗ = fξ1Sn − fSn
ξ1, (3.9)

where fξ1 =
∑n

k=2 un,kE(Tk)/2, fSn
= E(Tc)/2. The mean of d∗ is 0 and the variance of

d∗ is given by

V (d∗) = f 2
ξ1

V (Sn) + f 2
Sn

V (ξ1) − 2fξ1fSn
Cov(ξ1, Sn). (3.10)

By making use of Equations 2.12, 3.7 and 3.8 together with the unbiased estimators of θ
and θ2, as given by Equations 3.3 and 3.4, one obtains the test statistic

D∗ =
d∗

√

V̂ (d∗)
, (3.11)

where V̂ (d∗) is the estimator of V (d∗) with respect to Equations 3.3 and 3.4.
For the African demography (n = 12), we obtain

D∗ =
0.341S12 − 0.758ξ1

√

(0.1297 + 0.0123S12)S12

.

In complete analogy to the analysis of D′, the distribution of D∗ is generated for different
values of θ by coalescent simulations, non-polymorphic iterations are disregarded, and D∗

is recalculated and re-evaluated for all the different sample sizes that occur in the African
data. The distributions of D∗ for different values of θ and for n = 12 and n = 40 are
shown in Figure 3.5. The average D∗ that incorporates the effect of population expansion
is −0.15 in the African dataset, whereas Fu and Li’s D results in an average of −0.77. The
usage of D∗ without considering the expansion in population size results in a false-positive
rate of about 15%. All loci, which are significant with respect to the outermost 5%- and
95%-quantiles (underlined in Table 3.4) are shown in Table 3.5. As before, the p−values
are obtained for various values of θ. When comparing loci, which are significantly negative
with respect to D′ and D∗ (indicated by an asterisk in Table 3.5), we cannot assign a
preference to any of these test statistics. However, as already described in Chapter 1,
singletons have to be considered with caution, since they can result from different types
of directional selection. Therefore, a generalized version of Tajima’s D that disregards
singletons is analyzed below.
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Figure 3.5 Simulated distributions of D∗ for the African scenario.
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3.2. Generalization of classical test statistics

Table 3.4 Distributional properties of D∗ for the African scenario and n = 12.

θ Mean Variance ∗0.05 ∗0.95

1 −0.02 1.00 −1.50 1.23

5 −0.05 0.99 −1.76 1.45

6 −0.05 0.99 −1.77 1.46

8 −0.06 0.98 −1.76 1.57

10 −0.07 0.97 −1.76 1.57

20 −0.09 0.95 −1.70 1.50

40 −0.12 0.92 −1.69 1.46

60 −0.13 0.91 −1.69 1.46

Results are obtained from coalescent simulations with 100,000 replicates.
∗ 5%- and 95%- quantile, respectively.

blah

Table 3.5 List of outlier loci with respect to D∗ in the African sample.

locus 160 163 419 728 323 ∗743 ∗430 ∗470 ∗122 729 10

D∗ −1.80 −1.81 −1.97 −1.97 −2.01 −1.95 −2.18 −2.22 −2.26 1.67 2.14

p−value: θ = 6 0.028 0.028 0.012 0.012 0.012 0.010 0.008 0.002 0.002 0.026 0.002

θ = 10 0.034 0.034 0.019 0.019 0.019 0.020 0.008 0.004 0.004 0.034 0.003

θ = 20 0.037 0.037 0.024 0.024 0.021 0.024 0.012 0.008 0.008 0.031 0.003

θ = 40 0.039 0.036 0.023 0.023 0.019 0.021 0.011 0.009 0.008 0.027 0.003

n 12 12 12 12 12 11 12 11 12 10 12

Results are obtained from coalescent simulations with 100,000 replicates.
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3.2.3 Fay and Wu’s H

An excess of high-frequency derived variants is a unique consequence of positive direc-
tional selection (Fay and Wu 2000). As already explained above on the basis of the
theoretical result for the frequency spectrum, this excess cannot emerge due to varia-
tions in population size. It can be neither explained by background selection, whose two
main consequences are the reduction of the effective size of the population and a skew in
the site-frequency spectrum towards low-frequency derived alleles (e.g., Wakeley 2008).
Fay and Wu (2000) introduced an estimator of θ, defined as

θ̂H =
1
(

n

2

)

n−1∑

i=1

i2ξi.

This estimator is constructed to weight high-frequency derived variants through the multi-
plication by i2 and to be unbiased under the standard neutral model. Since this statistical
quantity is not unbiased under general conditions, it has to be rescaled by

fH =

n∑

k=2

2n − k + 1

(n − 1)(k + 1)
E(Tk), (3.12)

such that θ̂H/fH becomes an unbiased estimator of θ. Note that fH equals one under con-
stant population size. First, we deduce that the rescaled version is an unbiased estimator
of θ for general coalescent trees. It is simple to show that

n−1∑

i=1

i2
(

n−i−1
k−2

)

(
n−1
k−1

) =
n(2n − k + 1)

(k + 1)k
. (3.13)

Applying Equations 2.13 and 2.23, we obtain

E(θ̂H)/fH =
1
(

n

2

)

n−1∑

i=1

i2E(ξi)/fH =
θ

2

n∑

k=2

1
(

n

2

)

( n−1∑

i=1

i2
(

n−i−1
k−2

)

(
n−1
k−1

)

)

kE(Tk)/fH .

Applying Equation 3.13, it follows that E(θ̂H)/fH = θ. The variance of θ̂H can be
evaluated based on

V (θ̂H) =
1
(

n

2

)2V (

n−1∑

i=1

i2ξi)

=
1
(

n

2

)2

( n−1∑

i=1

i4V (ξi) + 2

n−2∑

i=1

n−1∑

j=i+1

i2j2Cov(ξi, ξj)
)

and the results of Chapter 2 for V (ξi) and Cov(ξi, ξj).
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As we have already seen above, E(Πn) = θfΠn
, where fΠn

= E(T2)2 under variable
population size. Joining the two different estimators of θ, based on Πn and θ̂H , we obtain

H ′ = fHΠn − fΠn
θ̂H . (3.14)

Note that, although H ′ simplifies to H under constant population size, we use a
slightly different definition of H ′ compared to the originally proposed version by
Fay and Wu (2000), where we would have to subtract θ̂H/fH from Πn/fΠn

. Since the
ranking of the simulated values is exactly the same under both definitions of H ′, the corre-
sponding p−values for the resulting quantiles are independent from the chosen definition.
For the African scenario (n = 12), we obtain

H ′ = 0.203Π12 − 0.228θ̂H ,

whereas for the European scenario (n = 12), the test statistic is given by

H ′ = 1.152Π12 − 0.807θ̂H .

Simulated distributions for various values of θ and both demographic scenarios are il-
lustrated in Figure 3.6. For both scenarios, and in particular for the European one, we
find outliers in the data, but only if we estimate θ̂ based on Sn for each locus. There
is just one locus (bold in Table 3.6) that appears as an outlier for the whole range of
estimated θ-values (approx. 0.3−10 for the European sample). It might appear adequate
to estimate θ individually for each locus, but for genomic scans it is desirable to construct
statistical tests that are more insensitive to the choice of θ, unlike here for H ′.

Table 3.6 List of outlier loci with respect to H ′ in both samples.

Africa Europe

locus 483 392 276 310 295 346 375 228 221 196 225 319 276 186 903 384 251

H ′
−3.70 −0.83 −1.08 −0.93 −1.41 −4.61 −1.81 −1.29 −5.06 −1.29 −5.90 −2.16 −2.16 −8.29 −8.35 −7.54 −6.44

∗θ̂ 58.08 9.24 11.88 9.24 10.56 3.12 0.89 0.45 3.12 0.45 3.57 0.89 0.89 4.91 3.47 3.12 2.23

∗∗p−value 0.035 0.032 0.027 0.026 0.011 0.045 0.039 0.038 0.038 0.038 0.036 0.032 0.032 0.032 0.019 0.017 0.012

n 12 12 12 12 12 12 12 12 12 12 12 12 12 12 21 12 12

Results are obtained from coalescent simulations with 100,000 replicates.
∗θ̂ estimated per locus based on Sn.
∗∗p−value refers to the per-locus value of θ̂.
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Nevertheless, it is surprising that few loci appear as outliers, even if one takes the
locally estimated θ into account, since the observed and estimated frequency spectra
show a distinct difference in terms of high-frequency derived alleles (cf. Figure 3.2). This
issue is discussed in the following section.
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Figure 3.6 Simulated distributions of H ′ for the African (left panels) and European (right
panels) scenario. Non-integer numbers show the 5%-quantiles.
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3.2. Generalization of classical test statistics

3.2.4 The singleton-exclusive version of Tajima’s D

Recently, Achaz (2008) proposed two modified versions of Tajima’s D for the standard
neutral model that exclude singletons or mutations of type 1. Here, we formulate the
singleton-exclusive version of Tajima’s D for general coalescent trees. Let S−ξ1

n and Π−ξ1
n

be the number of segregating sites and the average number of pairwise differences in a
sample of size n ≥ 3, respectively, where singletons are disregarded. Using Equations
2.11, 2.26 and 3.6, it is simple to obtain

E(S−ξ1
n ) = E(Sn) − E(ξ1) =

θ

2

n∑

k=2

k(n − k)

n − 1
E(Tk), (3.15)

E(Π−ξ1
n ) = E(Πn) −

2

n
E(ξ1) =

θ

2

n∑

k=2

2(n − k)(n + k + 1)(k − 1)

n(n − 1)(k + 1)
E(Tk). (3.16)

The corresponding second-order moments can be written as

V (S−ξ1
n ) = V (

n−1∑

i=2

ξi) =

n−1∑

i=2

V (ξi) + 2

n−2∑

i=2

n−1∑

j=i+1

Cov(ξi, ξj),

V (Π−ξ1
n ) = V (

1
(

n

2

)

n−1∑

i=2

i(n − i)ξ1)

=
1
(

n

2

)2

( n−1∑

i=2

i2(n − i)2V (ξi) + 2
n−2∑

i=2

n−1∑

j=i+1

i(n − i)j(n − j)Cov(ξi, ξj)
)

,

Cov(S−ξ1
n , Π−ξ1

n ) =
1
(

n

2

)

( n−1∑

i=2

i(n − i)V (ξi) +

n−2∑

i=2

n−1∑

j=i+1

(i(n − i) + j(n − j))Cov(ξi, ξj)
)

.

Applying Equations 2.24 and 2.25, these equations can be written in terms of the first- and
second-order moments of waiting times. We only give the solution for V (S−ξ1

n ) in terms
of moments of Tk, since V (Π−ξ1

n ) and Cov(S−ξ1
n , Π−ξ1

n ) cannot be as elegantly represented
as V (Πn) and Cov(Sn, Πn). Let

gn,k =
k(n − k)

n − 1
and hn,k =

(k − 1)(n − k − 1)

(n − 1)(n − 2)
.

Then,

V (S−ξ1
n ) =

θ

2

n∑

k=2

gn,kE(Tk) +
θ2

4

n∑

k=2

gn,k(gn,kV (Tk) + hn,kE(T 2
k )) + (3.17)

θ2

2

n−1∑

k=2

n∑

k′=k+1

gn,k′(gn,kCov(Tk′, Tk) +
k(k − 1)

k′(k′ − 1)
hn,k′E(Tk′Tk)).
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The equality

θ =
E(Π−ξ1

n )
n∑

k=2

(n−k)(n+k+1)(k−1)
n(n−1)(k+1)

E(Tk)
=

2E(S−ξ1
n )

n∑

k=2

gn,kE(Tk)

suggests the statistic

d′
−ξi

= fS∗
n
Π−ξ1

n − fΠ∗
n
S−ξ1

n , (3.18)

where fS∗
n

=
∑n

k=2 gn,kE(Tk)/2, fΠ∗
n

=
∑n

k=2
(n−k)(n+k+1)(k−1)

n(n−1)(k+1)
E(Tk). The mean of d′

−ξi
is

0 and the variance of d′
−ξi

is given by

V (d′
−ξi

) = f 2
S∗

n
V (Π−ξ1

n ) + f 2
Π∗

n
V (S−ξ1

n ) − 2fS∗
n
fΠ∗

n
Cov(S−ξ1

n , Π−ξ1
n ). (3.19)

The singleton-exclusive, unbiased estimators of θ and θ2, based on S−ξ1
n , can be derived

via Equations 3.15 and 3.17. They are

θ̂-ξ1 =
2S−ξ1

n
n∑

k=2

gn,kE(Tk)
, (3.20)

θ̂2
-ξ1 =

4S−ξ1
n (S−ξ1

n − 1)
n∑

k=2

gn,k(gn,k + hn,k)E(T 2
k ) + 2

n−1∑

k=2

n∑

k′=k+1

gn,k′(gn,k + k(k−1)
k′(k′−1)

hn,k′)E(Tk′Tk))

. (3.21)

The simplification of Equation 3.19 in terms of moments of Tk, and replacing θ and θ2 by
Equations 3.20 and 3.21 in the resulting formula, leads to V̂ (d′

−ξi
). Hence, we obtain

D′
−ξ1

=
d′
−ξ1

√

V̂ (d′
−ξ1

)
. (3.22)

Before we apply the test statistic D′
−ξ1

to the African demography, we first note V (Π−ξ1
n )

and Cov(S−ξ1
n , Π−ξ1

n ) for the standard neutral model. Let

h1 =
n−1∑

i=1

1

i
and h2 =

n−1∑

i=1

1

i2
.

Then,

V (Π−ξ1
n ) = θ

( n + 1

3(n − 1)
−

4

n2

)

+

θ2 2(n(n(n(n − 1) − 107) + 246) + 72n(n − 2)h2 − 36(n − 4)h1 − 144)

9n2(n − 1)(n − 2)
,
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and

Cov(S−ξ1
n , Π−ξ1

n ) = θ
n − 2

n
+ θ2 (n − 1)(n(n − 12) + 4) + 8n(n − 2)h2 − 4(n − 6)h1

2n(n − 1)(n − 2)
.

These two equations contradict the corresponding formulas in Achaz (2008). The rea-
son is that the derivation of the singleton- and type-1-exclusive versions of Tajima’s D
in Achaz (2008) relied on the erroneous equation for Cov(ξ1, Πn) in Fu and Li (1993).
Curiously, the correct version of Cov(ξ1, Πn) can be derived on the basis of Equation 12
in Fu (1995), and is given by

Cov(ξ1, Πn) = θ
2

n
+ θ2

( 6

n
−

4(nh2 − h1)

n(n − 1)

)

.

The elimination of singletons in the African dataset results in five non-polymorphic
loci (cf. Table 3.7). It is probably not surprising that many of these loci deviate signif-
icantly (p < 0.05) from the expansion model with respect to the test statistics D ′ and
particularly D∗.

To apply D′
−ξ1

to the African demography, we adapt the demographic parameters of
Li and Stephan (2006) that had been estimated by disregarding singletons. Then, the
estimated time of the expansion is 0.033 (in units of 2N̂A0) in the past, and the population
size before the expansion is about 0.15 of the actual size. To compare the outcome of the
theoretical result for these parameters with the African data, we require the frequency
spectrum without singletons. The probability q∗n,i of the number of times, i, a single mu-
tation arising between the present and the time of the most recent common ancestor, is
represented in the sample of size n > 3, as µ → 0, is given by

q∗n,i =

(n − i − 1)!(i − 1)!
n−i+1∑

k=2

k(k − 1)
(

n−k

i−1

)
E(Tk)

(n − 2)!
n∑

k=2

k(n − k)E(Tk)
, 1 < i < n. (3.23)

This result is obtained by a trivial modification in the elegant derivation of Equation 2.1
by Griffiths and Tavaré (2003). Although the theoretical frequency spectrum for the
above parameters appears to not fit the African sample (cf. Figure 3.7) as well as before
(cf. Figure 3.2), the method of Li and Stephan (2006) provides a reliable parameter
estimate—at least for the case that only a single population size change is assumed.
However, the instantaneous expansion model matched the observation significantly better
than the standard neutral model (Li and Stephan 2006), although with less power. The
decrease in power is due to the smaller amount of polymorphisms in the African dataset
when singletons are disregarded. With the suggested African demography the analysis of
D′

−ξ1
is accomplished in complete analogy to the above-mentioned statistical tests.
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Table 3.7 List of non-polymorphic loci when singletons are disregarded.

locus 122 470 419 728 745

D′
X X

D∗ X X X X

X: p < 0.05

For the estimated parameters and n = 12, we obtain

D′
−ξ1

=
0.323Π−ξ1

12 − 0.132S−ξ1
12

√

(0.00071 + 0.00044S−ξ1
12 )S−ξ1

12

. (3.24)

Simulated distributions of D′
−ξ1

for different values of θ and, as before, for n = 12 and
n = 40 are illustrated in Figure 3.8. The D′

−ξ1
−values of the African loci are overall very

similar, regardless of the choice of the expansion or the standard neutral model. The
average D′

−ξ1
among loci is −0.33 for the expansion model and −0.36 for the standard

neutral model. Although the standard neutral model has been rejected in favor of the ex-
pansion model by Li and Stephan (2006), we may conclude that adapting the standard
neutral model into the test statistic D′

−ξ1
results only in a minor difference. This issue

will be discussed below.
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Figure 3.7 Comparison of the African data with the theoretical frequency spectra of the
expansion and the standard neutral model.
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Figure 3.8 Simulated distributions of D′
−ξ1

for the African scenario.
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Table 3.8 Distributional properties of D′
−ξ1

for the African scenario and n = 12.

θ Mean Variance ∗0.05 ∗0.95

3 −0.027 1.02 −1.42 1.39

5 −0.041 1.02 −1.47 1.39

10 −0.052 1.01 −1.65 1.45

20 −0.078 0.98 −1.71 1.43

30 −0.086 0.96 −1.74 1.42

50 −0.094 0.93 −1.74 1.38

70 −0.101 0.92 −1.74 1.36

100 −0.103 0.91 −1.74 1.35

Results are obtained from coalescent simulations with 100,000 replicates.
∗ 5%- and 95%- quantile, respectively.

Table 3.9 List of outlier loci with respect to D ′
−ξ1

in the African sample.

locus D′
−ξ1

p−value ∗D′ n

θ = 10 θ = 20 θ = 40 θ = 80

329 −2.40 0.044 0.038 0.031 0.027 −1.30 10

743 −1.97 0.050 0.048 0.045 0.045 −1.64 11

447 −1.82 0.049 0.047 0.045 0.044 −1.43 12

25 −1.88 0.048 0.044 0.041 0.041 −1.54 12

392 −1.88 0.048 0.044 0.041 0.041 −1.15 12

26 −1.90 0.045 0.042 0.040 0.040 −1.40 12

276 −1.91 0.045 0.041 0.040 0.040 −0.97 12

430 −1.99 0.043 0.038 0.036 0.035 −1.74 12

725 −1.99 0.043 0.038 0.036 0.035 −1.06 12

310 −2.44 0.014 0.017 0.017 0.016 −1.40 12

295 −3.15 0.0017 0.0025 0.0023 0.0016 −1.70 12

451 1.51 0.043 0.039 0.034 0.030 0.38 12

472 1.53 0.036 0.035 0.032 0.027 −0.35 12

Results are obtained from coalescent simulations with 100,000 replicates.
∗D′ regarding the singleton-exclusive demographic estimates.
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3.2. Generalization of classical test statistics

As before for D′ and D∗, non-polymorphic iterations are disregarded, and the out-
ermost 5%- and 95%-quantiles among simulation results based on different values of θ
(cf. Table 3.8) are used for the selection of outliers (cf. Table 3.9). The range of pos-
sible θ-values has been estimated by Equation 3.20 and the two outermost values are
approximately 3 and 100, respectively. In contrast to D′, we obtain an increased amount
of candidate loci. This may be surprising at first sight, since one would rather expect
a decrease of significant loci due to the exclusion of singletons. One might hypothesize
that this is due to the slight change in the demographic estimates. However, when adapt-
ing these estimates to D′ and the full dataset, there are only a few loci (bold in Table
3.9) that would be significant with respect to D′. The explanation for this outcome is
fairly simple. As already pointed out by Achaz (2008), the singleton-exclusive version
of Tajima’s D outperforms the original version with respect to high-frequency derived
alleles, and this holds alike for the generalized version. The problem of D′ to detect an
excess of high-frequency derived alleles in the presence of low-frequency derived poly-
morphisms is considerably reduced by the removal of singletons. As a simple example,
imagine a sample of size 12 that contains two mutations, one of size 1 and one of size
11. Then, D′ = −1.16 and D′

−ξ1
= −2.30 under the same demographic scenario that

had been estimated by disregarding singletons (Li and Stephan 2006). As illustrated in
Table 3.9, even a change of the algebraic sign is possible and exemplifies an alteration
in the ranking of D′

−ξ1
−values, compared to D′−values (cf. Figure 3.9). Furthermore,

Table 3.9 demonstrates that the p−values are fairly insensitive to different values of θ, in
contrast to what was seen before for H ′. A singleton-exclusive, preferably standardized
version of H ′ is expected to perform better for the detection of high-frequency derived
variants. However, this will be analyzed in more detail elsewhere.
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Figure 3.9 The two plots are obtained from coalescent simulations with 200 iterations
under the estimated demographic scenario, when singletons are disregarded. x-axis: D ′-
values sorted by their rank. y-axis: D ′

−ξ1
-values with respect to the outcome for D ′.
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Table 3.10

expansion model standard model

θ̂−ξ1 V (S−ξ1
12 ) E(Π−ξ1

12 ) V (Π−ξ1
12 ) θ̂−ξ1 V (S−ξ1

12 ) E(Π−ξ1
12 ) V (Π−ξ1

12 )

theoretical single-locus results

36.51 3.94 7.36 38.58 3.98 7.83

experimental data

29.87 43.62 3.72 6.96 4.78 43.62 3.72 6.96

∗ subset of 202 loci (n = 12, L̄ = 475), where the outgroup is available.
Due to varying locus lengths, the experimental outcomes of S12 and Π12 are
rescaled with respect to L̄. θ̂−ξ1 is estimated on the subset of 202 loci for both
models, and thereafter used for the theoretical results.

As already mentioned above, the difference between the expansion model and the
standard neutral model is smaller when singletons are excluded than when considering
the entire amount of polymorphisms in the African sample. This might not be surprising,
since an excess of singletons is the most pronounced feature of an expanding population.
However, both models explain the experimental data fairly well in terms of Sn and Πn

(cf. Table 3.10). In particular, there is a much smaller discrepancy in the variance of Sn,
compared to the outcome for the entire set of polymorphism data (cf. Table 3.1). One
may now be tempted to replace the expansion model by the standard neutral model,
since the summary statistics for both models are in good agreement with the data;
but see Figure 3.11. Furthermore, one might argue that the incorporation of purifying
selection into the standard neutral model would lead to an increase in the amount of
doubletons as well, such that the resulting nearly neutral model of constant population
size may not be rejected in favor of the expansion model anymore. However, in terms of
the detection of outliers based on D′

−ξ1
it makes a marginal difference on which model we

would rely on (cf. Figure 3.10). Since the estimated θ̂−ξ1 of the standard neutral model
is reduced by a factor of approximately 6.26 (cf. Table 3.10), the p−values generated
under this model remain virtually the same (cf. Table 3.11).

It is encouraging that with help of the test statistic D′
−ξ1

, one can retrieve an excess
of high-frequency derived alleles, that cannot clearly be detected by D′, since singletons
conceal their signature.
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Figure 3.10 Comparison of the simulated distributions of D ′
−ξ1

for the expansion model,
where θ = 40 for both sample sizes, and the standard neutral model, where θ = 6.4 and
θ = 7.3 for n = 12 and n = 40, respectively. The differences in the θ-values for both
scenarios refer to the differences in total tree length.

Table 3.11 Examples of outlier loci with respect to D−ξ1 for the standard neutral model.

locus D−ξ1 p−value n

θ = 1.6 θ = 3.2 θ = 6.4 θ = 12.8

430 −2.02 0.043 0.039 0.037 0.036 12

725 −2.02 0.043 0.039 0.037 0.036 12

310 −2.46 0.017 0.020 0.019 0.017 12

295 −3.16 0.0023 0.0030 0.0028 0.0019 12

Results are obtained from coalescent simulations with 100,000 replicates.
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Figure 3.11 Comparison of both models with the 202 loci of the African data with n = 12
and available outgroup. The estimates θ̂−ξ1 (cf. Table 3.10) are used for the plots of the
theoretical results under both models. The variance of ξi decreases with i, except for i = n/2
when n is even, as here.

We finally want to emphasize some caveats. It is important to not over-interpret
the good fit of the theoretical results for Sn and Πn of both models to the genome-wide
assembled data (cf. Table 3.10). Both, Sn and Πn, summarize the absolute site-frequencies
ξi. In terms of the means of ξi, the expansion and the standard neutral model fit as well
to the data (for 2 ≤ i ≤ 11) as the frequency spectrum. In contrast, the variances of ξi for
both models show a strong deviation from the observed data (cf. Figure 3.11). Since the
theoretical outcomes of V (Πn) and V (Sn) are in good agreement with the observation,
and the theoretical results for V (ξi) overestimate the observed data, Cov(ξi, ξj) in the
African data is larger than in the according theoretical results. Besides disregarding
intra-locus recombination in the theoretical framework, this might simply reflect that
there is a relatively small distance between a certain amount of loci in the African data,
such that their polymorphism patterns are more strongly correlated than when these loci
could be seen as independent. In conclusion, it is hard to assess to which degree the
outcome in Figure 3.11 reflects issues in the quality of the demographic estimates for the
real demographic history of the African sample.
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Discussion

Changes in population size during evolutionary history can obscure the traces left by
natural selection on DNA polymorphism. Methods to identify potential target sites of
selective substitutions in a genome, which rely on the spatial distribution of polymorphic
sites, may be severely misled if demographic properties are ignored. In particular, the
identification of adaptive substitutions can be difficult because colonization of a new
habitat or environmental changes and adaptation to them often occur simultaneously. It
is therefore essential that the possible joint effect of demographic and adaptive factors is
adequately considered in models and statistical methods for data analysis.

Jensen et al. (2005) demonstrated that the composite-likelihood-ratio (CLR) test
proposed by Kim and Stephan (2002), which compares the alternative hypotheses of
genetic hitchhiking and neutral evolution under constant population size, loses power and
suffers from false-positives for certain demographic parameters. It is of interest to compare
the performance of the CLR test and the variance-to-mean ratio for different parameter
constellations of a bottleneck model (cf. Figure 4.1). Obviously, the variance-to-mean
ratio of total tree length, V (Tc)/E(Tc), a measure for the dispersion of the probability
distribution of Tc, serves as an indicator of “critical” bottleneck scenarios, i.e. those
which lead to a high false-positive rate in the detection of selective sweeps, if no means for
correction of demographic biases are taken. However, we have to be careful with the inter-
pretation of this result with regard to two properties. First, the variance-to-mean-ratio has
to be considered with respect to the standard neutral model, where e.g., V (Tc) ≈ E(Tc)
for n = 15 (cf. Figure 4.1). For fixed parameters of a given demographic model, the
variance-to-mean ratio decreases with increasing n, such that a numerical value of
V (Tc)/E(Tc) becomes less meaningful without the reference value of the standard
neutral model. Second, the variance-to-mean ratio is directly applicable as a detection
criterion for delicate demographic histories, if and only if the population size at time of
sampling was not exceeded over certain time spans in the past, as for instance in the
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estimated European demography. Considering a simple model of population decline,
where the population size is always constant but experienced an instantaneous drop
to its present size at some point in the past, always induces an increase in V (Tc) and
V (Tc)/E(Tc) compared to the standard neutral model. In contrast, any expansion model
leads to a reduction in V (Tc) and V (Tc)/E(Tc) compared to the model of constant
population size. For the African demography, we obtain about a six-fold reduction
of V (Tc)/E(Tc) compared to the standard neutral model. A population bottleneck,
which is a mixture of these two scenarios, causes a reduction in V (Tc) with respect
to the standard neutral model, as long the population size at time of sampling was
never exceeded in the past. The variance-to-mean ratio of Tc can be greater than or
less than for the model of constant population size and it reflects the severity of the
bottleneck. Before we explain the relationship between V (Tc)/E(Tc) and the propor-
tion of false-positives in the CLR test in more detail, we shall first describe how the
variance-to-mean ratio is still applicable, when the population size in the past is larger
than the present population size. Therefore, we consider two cases of the above decline
model: (i) the population experienced a 50-fold decrease in size at time 0.1 in the past;
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Figure 4.1 Comparison of the variance-to-mean ratio of total tree length and the pro-
portion of false-positives in the CLR test (redrawn from Figure 1 in Jensen et al. 2005) for
various parameters of the following bottleneck model. At time τf in the past a population
of previously constant size N is reduced to size f × N and then increases exponentially
until reaching size N at time of sampling. The incorporation of exponential growth in this
model requires a numerical evaluation of Equations 2.3 and 2.4 to obtain the theoretical
graph for V (Tc)/E(Tc). The sample size is 15 in both cases and θ = 75 in the simulated
graph of Jensen et al. (2005). The scaled recombination rate 4Nr equals 0 and 1000 in the
theoretical and simulated graph, respectively.
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(ii) the population experienced a 100-fold decrease in size at time 1.5 in the past. Let
n = 12 in both cases and time be measured in units of two times the present population
size. The results for V (Tc)/E(Tc) are then about (i) 60 and (ii) 288. Now, we apply
a simple time rescaling argument. Since we do not consider mutations at the moment,
we can as well scale the time to decline and both population sizes with respect to
the anterior population size instead of the present population size. Then the present
population size is (i) 1/50 and (ii) 1/100 and the time to decline is (i) 0.002 and (ii)
0.015. To calculate V (Tc)/E(Tc) for the rescaled versions, we consider the bottleneck
model from Chapter 2 (cf. Figure 2.2) that consists of three phases and is defined as
λ(t) = f for τ ≤ t < τ + τf and λ(t) = 1 otherwise. Note that throughout this chapter
a population bottleneck always refers to this definition, except for the comparison of
the proportion of false-positives in the CLR test and the variance-to-mean ratio of Tc

as illustrated in Figure 4.1. For τ = 0, we obtain (i) V (Tc)/E(Tc) ≈ 1.21 and (ii)
V (Tc)/E(Tc) ≈ 2.88 by applying the corresponding formulas from Chapter 2. As we will
see below, these results are completely in line with the feasibility to incorporate these
two decline models into the test statistic D′. In conclusion, by scaling time with respect
to the largest instead of the present population size, the variance-to-mean ratio of total
tree length can also be used as an indicator of the statistical tractability of a population
that experiences a decline in its size. To reconsider the relationship of V (Tc)/E(Tc) and
the false-positive-rate of the CLR-test, we just note that population bottlenecks with the
largest values of V (Tc)/E(Tc) introduce a skew in the frequency spectrum of segregating
sites towards singletons and intermediate- to high-frequency derived variants, as well.
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Figure 4.2 Variance-to-mean ratio of total tree lengths and means of D ′ for a population
bottleneck. Fixed parameters are n = 15, τ = 0.02 and θ = 10.
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These deviations from the standard neutral model are detected by the CLR-test, such
that one obtains an appropriate proportion of false-positives, when genetic hitchhiking is
considered as the alternative hypothesis. Taking recombination into account may cause
a considerable reduction of V (Tc), whereas E(Tc) remains unaffected (Hudson 1990).
Therefore, the variance-to-mean ratio of Tc may be noticeably reduced, but still be elevated
for critical bottlenecks with respect to the standard neutral model.

Despite our capability to rescale several standard neutral estimates of θ (cf. Chapter
3) for any given model of population size change, for certain demographic scenarios it is
difficult, or even impossible, to filter out the effects on the statistics imposed by the
demography. As we have seen in the analysis of the suggested European demography in
Chapter 3, the distributional properties of the generalized test statistic D′ appeared as
too unsatisfactory for a reliable inference. To appreciate this effect quantitatively one
may exemplarily compare V (Tc)/E(Tc) with the mean of D′ (cf. Figure 4.2). Not only
can the mean of D′ become heavily biased for problematic parameter constellations, but
also the distribution of D′ can become bimodal or even ragged (cf. Figure 4.3), which
makes a meaningful definition of the rejection region difficult. Note that the inversion
of the argument concerning the bias of D′ does not hold. As illustrated in Figure 4.3,
a demographic scenario that induces a small amount of observable polymorphism may
conceal the shape of the genealogies with respect to the moments of D′.

The example of such a severe population bottleneck may be seen as appropriate to
briefly comment upon the idea that traces of selective sweeps may be distinguished from
those of recent population bottlenecks, since only the former have a local effect, while
the latter should have a chromosome-wide effect (cf. Chapter 1 or similarly phrased in
many population genetical publications). In the case of a severe population bottleneck,
independent or loosely linked loci can be roughly separated into two classes. They can
either find their MRCA during the phase of reduced population size or their ancestry may
pass the point of decline such that their MRCA arises much further back in time. This
means that loci of reduced variability and loci with a normal or even relatively high level
of variability are scattered over the genome, such that, depending on their chromosomal

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

Figure 4.3 The distribution of D′ for a population bottleneck. The parameters are
n = 15, τ = 0.02, τf = 0.002, f = 0.001 and θ = 1. Note that D ′ ≈ −0.2 and V (D′) ≈ 1.
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location, even v-shaped valleys of variability measures, as for instance Πn, may appear
and mimic the pattern that we would usually expect under a selective sweep. In conclu-
sion, a severe population bottleneck has a genome-wide, but non-homogeneous, effect.

It is discouraging that bottleneck scenarios which already caused problems for tests
of neutral evolution under constant population size, remain cumbersome when tested un-
der a more general model of variable population size. However, the impact of varying
population size on the observable pattern of genetic variability can be examined in many
biologically relevant instances. If a population has experienced an expansion in its size,
one identifies less outliers and reduces the false-positives compared to the commonly ap-
plied model of constant population size. In cases of population decline, and if previously
estimated demographic parameters allow an accompanying application of the generalized
test statistics introduced in Chapter 3, one obtains a larger number of candidate loci
than if one would assume the standard neutral model. This is due to the fact that the
standard version of Tajima’s D tends to be negative for an expansion model, whereas the
same test statistic becomes positive for population decline. Consequently, if Tajima’s D
is applied to data originating from an expanding population, too many outliers are found;
e.g., λ(t) = exp{−50t} leads to a false-positive rate of over 60% for a sample of size 20.
This exemplified scenario can be corrected for. In contrast, the application of Tajima’s
D to data from a population that experienced a decline will result in an underestimation
of candidate loci.

Throughout Chapter 3 we have considered the demographic history of both
Drosophila samples as given and subjected it to several generalized test statistics. In
this context it is reasonable to raise the following questions. Can we tell from the shape
of the frequency spectrum and without explicit knowledge of the demographic scenario,
whether a certain statistical analysis is feasible or not? Is it sufficient to estimate a de-
mographic scenario that provides a reasonable fit to the data or do different demographic
estimates, that offer a similar goodness-of-fit, influence the test statistic D′ in a different
manner? The last question is posed with reference to the generalized version of Tajima’s
D, since its standard neutral version is the most commonly used of all the test statistics
that have been generalized in Chapter 3. To address these questions, we distinguish three
demographic models: (i) instantaneous population expansion; (ii) instantaneous popula-
tion decline; and (iii) population bottleneck. On the basis of Figure 4.4, the characteristics
of the frequency spectrum of an expansion and a recent decline model shall be considered.
As already seen in Chapter 3, population expansion, as for instance in the African sce-
nario, mainly results in an excess of singletons, whereas all the other site-frequencies are
underrepresented compared to the standard neutral model. Moving the time of expan-
sion towards the past may result in an overrepresentation of doubletons as well, but all
the other site-frequencies remain beneath the standard neutral counterparts. However,
this can be seen as an indication that a statistical analysis for a sample taken from a
population that experienced an expansion in its size is in principle always warranted. It
is worth mentioning that in cases of strong exponential growth, which lead to polymor-
phism patterns largely consisting of singletons and where nearly all values of Tajima’s D
are false-positives, increasing the sample size is instrumental for the applicability of D ′.
As for the second question, we can use the implementation of the theoretical results of
Chapter 2 in Mathematica (Wolfram 1999), version 6.0, to immediately obtain another
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(d) recent instantaneous decline
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(f) past instantaneous decline
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Figure 4.4 A sample of size 12 is traced backwards in time, N denotes the population size at time
of sampling and f = 1 refers to the standard neutral model. The panels on the left constitute the
frequency spectra, the panels on the right show simulated cumulative distributions of D′. (a)–(f): at
point τ in the past the population size changes to f ×N . (g)–(h): at point τ in the past N reduces
to f × N for the time span of τf , and reconverts instantaneously to N at time τ + τf . The various
θ-values for the different demographic parameters refer to the estimates obtained by Equation 3.3,
when an average of about 15 segregating sites is observed in the sample.

72



4 Discussion

instantaneous expansion model, as shown in (a), that fits well to the model proposed
by Li and Stephan (2006). The parameters have been chosen to be distinctly different
in terms of time of expansion and ancestral population size. Although the alternative
parameters do not pretend to be historically correct, we encounter some difficulties in
inferring the real demographic history of a population based on the frequency spectrum.
Even if more population size changes are taken into account, various parameter constel-
lations result in nearly indistinguishable frequency spectra. However, as demonstrated
in (b), the distribution of D′ for these two models provides essentially the same result.
This suggests, on the one hand, that the original expansion model is robust to a different
choice of parameters when the frequency spectra are similar enough. On the other hand,
this example emphasizes that the frequency spectrum gives a more detailed picture than
the D′-statistic, since the distributions of D′ are fairly identical for these two expansion
models, whereas the corresponding frequency spectra are more diverse. Both expansion
models are similar in terms of first- and second-order moments of Πn, Sn and the absolute
site-frequencies, ξi, as well. This raises another question, which is closely related to the
limited feasibility in obtaining the real population’s demographic history based on the
frequency spectrum.

How can one reliably infer the present population size? Both expansion models are
similar with respect to all measures of DNA polymorphism and we could have chosen
another parameter configuration, where the instantaneous expansion occurs further back
in time from a relatively larger population size. As shown in Figure 4.4, both expansion
models result in different estimates of θ, when we assume a sample with an average num-
ber of 15 segregating sites and apply Equation 3.3 to obtain θ̂. Since the average mutation
rate per site per generation is the same for both models, we obtain about a five-fold dif-
ference for the present population size. To identify outliers based on the generalized test
statistics of Chapter 3, it is irrelevant on which model we rely on. We solely emphasize
that one should regard numerical estimates of present population sizes (cf. Chapter 3)
with care as well as numerical estimates of a population’s demographic history.

As pointed out in (c), recent population decline affects the frequency spectrum in
the manner that a decay of singletons is observable, whereas the other site-frequencies
are overrepresented compared to the standard neutral model. Furthermore, the strength
of reduction has a rather small effect on the frequency spectrum and the distributions
of D′ are virtually the same for these two parameter constellations, as shown in (d). As
long as the decline occurs recently, it is a “harmless” demographic event. The crucial dif-
ference to an expanding population is that the severity of this demographic model arises
when we shift the time of decline into the past. As illustrated in (e), if an instantaneous
decline from a distinctly larger population size occurs at point 1.5 in the past, the site-
frequencies tend to be almost uniformly distributed and the distribution of D′ becomes
meaningless for defining a proper rejection region, as shown in (f). Population decline can
be denoted as an awkward demographic scenario, when it occurs approximately between
0.5 and 4.5 in the past and if the population drops from a noticeably higher population
size. The shape of the frequency spectrum can immediately tell that a statistical analysis
aided by D′ based on such a demographic scenario is not possible. This example of a
severe population decline is of particular interest to reconsider the relativity of the terms
recent and past, when time is scaled in units of two times the present population size.
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Since the population does not recover from its decline in (e), the point of decline appears
as relatively “old” compared to a bottleneck model that also includes the expansion to
a large population size, as demonstrated in (g). Furthermore, the study of an instanta-
neous expansion and an instantaneous decline model reveals that population decline is the
more “harmful” component, when both scenarios are merged into the bottleneck model,
whereas the expansion to a higher population size rather conceals the profound effect of
a bottleneck when considering the frequency spectrum. This effect is exemplified in (g)
on the basis of a recent and a past bottleneck scenario. In both cases the duration of the
bottleneck and the size of reduction equal the parameters in (e) in units of generations.
Both parameter constellations lead to an excess of singletons. Consequently, for the re-
cent bottleneck model the overrepresentation of intermediate- to high-frequency derived
alleles is less pronounced with respect to the standard neutral model than compared with
(e). As shown in (h), we cannot draw any conclusion on the resulting distribution of D′.
When the bottleneck is shifted further into the past, its frequency spectrum resembles
the frequency spectrum of a pure expansion model and the resulting distribution of D′

becomes applicable again. Shifting the bottleneck further back into the past eventually
transforms this model into a standard neutral one.

In conclusion, if a reliable amount of sequenced loci is available such that the ob-
servation is anticipated not to deviate too much from the theoretical expectation, one
can already foresee the potential of an in-depth analysis for a given dataset from certain
tendencies in the frequency spectrum. However, a sample of a relatively small number
of loci from an organism that went through a recent bottleneck, as illustrated in Figure
4.4, need not reflect the theoretical expectation, as can be seen in Figure 3.2. Whereas
the observed frequency spectrum of the African D. melanogaster sample appears entirely
smooth, there are stronger fluctuations within the observed European frequency spectrum.
In other words, although the recent bottleneck model in Figure 4.4 is similar to some ex-
tent to an expansion model in terms of the theoretical frequency spectrum, the observed
frequency spectra under both models would appear distinct. We observed that for a given
demographic model, i.e. the instantaneous expansion model, that there is a negligible role
regarding which parameters we rely on with respect to D′, as long as the frequency spec-
trum provides an appropriate fit to the data. Furthermore, the extension of such a simple
demographic model to a model containing multiple changes in population size would not
be reasonable regarding a subsequent statistical analysis, if the more complex model does
not noticeably improve the fit to the data. If the frequency spectra of a simple and a
complex demographic model are virtually identical, test statistics, which are essentially
constructed as summary statistics of the site-frequencies, cannot lead to diverse results.
By contrast, if a simple model of population size change does not produce an adequate fit
to the data, the necessity of incorporating additional demographic parameters becomes
apparent; otherwise, a bias is introduced when testing an inappropriately estimated neu-
tral model under variable population size. Interestingly, disregarding the singletons in
the African data resulted in a poorer fit of the corresponding frequency spectrum for the
revised demographic estimates (Li and Stephan 2006) than when taking all the site-
frequencies into account. Ideally, demographic estimates would neither be affected nor
experience a change in their fit to the observation, when parts of the frequency spectrum
are disregarded. This suggests that demographic estimates can be further improved by the
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joint consideration of certain subclasses of derived alleles. Obviously, such an approach
demands much more data, distinctly larger sample sizes and computationally exhaustive
extensions of previous maximum-likelihood methods. Since the outgroup of D. simulans

is used to identify the derived and ancestral variants of a polymorphic site, the possibility
remains that misoriented sites introduced a bias (Baudry and Depaulis 2003). Then
again, this effect is mainly observed for sample sizes considerably larger than in both D.

melanogaster samples (Baudry and Depaulis 2003). To avoid this potential problem,
the folded frequency spectrum that summarizes mutations of size i and n − i can be ap-
plied. However, such an approach appears less promising due to the possible pooling of
positively and negatively selected loci into the same class.

When we briefly reconsider the results of Chapter 3 and regard the suggested de-
mographic estimates as sufficient, the number of candidate loci and the corresponding
p−values might be seen as too unconvincing to support a major role for strong positive
selection in the African sample, with respect to the large number of investigated loci and
resultant multiple testing problems. This lack of support may not be surprising due to the
conservative approach taken throughout Chapter 3, where we neglected recombination in
the simulations for determining the rejection regions of the various test statistics, resulting
in a loss of power (cf. Wall 1999). By incorporating the locally estimated recombination
rates into the simulations, two loci withstand a conservative Bonferroni-correction with
respect to D′ and D′

−ξ1
, respectively. Furthermore, Beisswanger and Stephan (2008)

found evidence for a selective sweep in the region around the polyhomeotic locus, which
consists of two tandemly duplicated genes in the African sample.

The in-depth theoretical treatment of neutral non-equilibrium models in this thesis
entails future research. The inference of selection as the alternative hypothesis of neutral
non-equilibrium models may not be possible with reasonable power, when the underlying
demographic estimates are obtained by regarding all loci as putatively neutral. This may
lead to a considerable overestimation of the demographic impact and selective influences
may be accordingly underestimated. To disentangle the effects of positive and negative
selection from fluctuations in population size, we first have to develop a deeper under-
standing of how these models interact with each other. As already mentioned in Chapter 1,
Williamson et al. (2005) were the first to consider the joint effects of an instantaneous
population size change and selection on the frequency spectrum. This work is of particular
interest to approach the question of how demography can be separated from weak positive
and negative selection. This task appears accomplishable since all loci are equally likely to
be subjected to weak selection. In a theoretically more rigorous study, Evans et al. (2007)
have investigated the simultaneous effect of selection and arbitrary changes in population
size on the frequency spectrum of derived alleles at independent loci. The development of
the non-equilibrium theory for the frequency spectrum of neutral segregating sites, which
are partially linked to a beneficial mutation, remains unexplored and represents one of
the major prospective goals of modern-day population genetics.
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