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1.1 Alzheimer`s disease 

 
 
In 1901 the german psychiatrist and neuropathologist Alois Alzheimer described a case of a 

middle aged woman called Auguste D. with strange behavioural symptoms and progressive 

loss of cognitive abilities. In 1906, after Auguste D. died, he published his first essay on this 

phenomenon and Auguste D. was the first person diagnosed with Alzheimer's disease (AD)1. 

AD is a chronic progressive neurodegenerative disorder resulting in death after an average of 

8–10 years after diagnosis2. Its clinical manifestation is typified by three groups of symptoms3.  

o Cognitive dysfunction: In this group the symptoms include memory loss, language 

disabilities and executive dysfunction (that means, loss of higher level planning and 

intellectual coordination skills). 

o Non-cognitive symptoms: This group of symptoms comprises psychiatric symptoms 

and behavioural disturbance e.g. depression, hallucinations, delusions and agitation. 

o The third group includes restrictions in performing activities of everyday life (defined 

as "instrumental" for more complex activities such as driving and shopping and 

"basic" for unaided dressing and eating).  

The symptoms of AD progress from minor symptoms of memory loss, mild cognitive 

impairment to very severe dementia. Patients in their final stages of disease suffer from 

complete personality deterioration, incontinence and are dependent on others for basic 

activities of everyday life. Further criteria for AD are summarized in the Diagnostic and 

Statistical Manual of Mental Disorders4, criteria of the National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders 

Association (now known as the Alzheimer's Association)5,6. In spite of that clinical diagnosis 

is still limited to “probable” or “possible” AD. Unequivocal diagnosis of definite AD continues 

to require post-mortem histological analysis of the brain.  

Histopathological hallmarks of AD are neurofibrillary tangles (NFT) and senile plaques. The 

plaques are mainly composed of ~4 kDa peptides, the amyloid β peptides that are derived 

from proteolytic processing of a larger amyloid precursor protein molecule (APP). 

 

Alzheimer’s disease is categorised according to its age of onset and/or mode of inheritance. 

About 1–6% of all AD cases are early onset and are defined as having an age of onset 

before 65. About 60% of early-onset AD is familial, with 13% inherited in an autosomal- 

dominant fashion7,8. This type of Alzheimer’s disease is known as familial Alzheimer’s 

disease (FAD). Patients with FAD may develop symptoms as early as in their 30's or 40's. 

Most cases of Alzheimer’s disease are part of the late onset type, occurring in individuals 

over 65 years of age, and are sporadic, without a family history. 
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The overall lifetime risk of any individual to develop dementia is approximately 10–12% but 

the highest risk factor for AD is advancing age9,10. First-degree relatives of a person with AD 

have a cumulative lifetime risk of developing AD of about 15–30%11,12. Disagreement exists 

as to whether the age of onset of the affected person changes the risk of first-degree 

relatives12,13. The number of additional affected family members probably increases the risk 

for close relatives, but the magnitude of that increase is unclear. 

Sporadic AD is the most common cause of dementia among elderly people and the disease 

is associated with a significantly higher risk of death compared to other types of dementia14. 

Longitudinal studies provide rates of 10–15 per thousand persons per year for all dementias 

and 5–8 for AD. Hence, nearly 50% of new dementia cases each year belong to the 

Alzheimer’s type15,16. After the age of 65, the risk of acquiring the disease approximately 

doubles every five years, rising from 3 to 69 per thousand persons per year15,17. In 2000, 

there will be 4.5 million people in the United States suffering from AD. Only 0.3 million people 

(7%), were between the ages of 65 and 74 years whereas 2.4 million (53%) were between 

the ages of 75 and 84 years, and 1.8 million (40%) were 85 years of age and older18. The 

charging on the health care system of the United State is estimated to be greater than $100 

billion per year, including direct and indirect medical and social service costs19. By 2050, the 

total number of AD patients will increase by almost 3-fold, to 13.2 million and due to the rapid 

growth of the oldest age groups of the US population, the number of people aged 85 years 

and older will more than quadruple to 8.0 million18. The charging on the health care system 

can be imagined. 

1.2 Heritable causes of Alzheimer’s disease 

 
Autosomal dominant gene mutations are potential triggers for AD. Three genes have been 

identified in which mutations result in early onset familial Alzheimer’s disease APP, presenilin 

1 (PS-1), and the PS-2 gene. 

The APP gene maps to chromosome 21q21.1 and mutations in this gene lead to early onset 

disease at an age of between 43 and 62 years20,21. Mutations in the APP gene might result in 

altered metabolism of APP, leading to increased production of the Aβ proteins. 

The PS-1 locus was identified on chromosome 14q24.3 and mutations in this gene are 

thought to cause up to 80% of familial Alzheimer’s disease cases, with onset between 29 to 

62 years of age22. PS-1 acts in the γ-secretase complex. However, the exact function of the 

PS-1 protein is unknown, but it is known to be a transmembrane protein and it is homologous 

to SEL-12 in Caenorhabditis elegans23,24. SEL-12 is known to be involved in cell signaling 

during development and the PS-1 gene knockout mice reveal skeletal deformations, impaired 

neurogenesis, and neuronal cell death, leading to death shortly after birth25,26. Most PS-1 

mutations are gain of function. 
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The PS-2 Gene locus was identified on chromosome 1q31–42,3427. Only two mutations have 

been identified in the PS-2 gene leading to Alzheimer’s disease with an onset between 40 

and 88 years of age21. The PS-1 and PS-2 protein share 67% homology and are proposed to 

have a similar function although they are unable to compensate for each other. 

Mutations in aforementioned genes lead to an increased production of the 42 amino acid 

form of Aβ (Aβ1–42)
28,29,30,31. 

An additional inheritable mutation involved in the pathogenesis of AD occurs in the 

Apolipoprotein E (ApoE) gene. It exists in 3 allelic forms ε2, ε3 and ε4. The ε2 allele is 

associated with the lowest late onset Alzheimer’s disease (LOAD) risk, whereas ε4 allele 

increases the risk of developing LOAD 5- to 15-fold32. ApoE plays a critical role in regulating 

brain Aβ peptide levels in the brain. There is evidence that apoE4 enhances Aβ aggregation 

by increasing the ratio of Aβ1‐42 to Aβ1‐40 and reducing Aβ clearance33,34. 

A chromosomal cause for developing AD is found in person with Down Syndrome (DS). Due 

to the extra copy of the chromosome 21 a lifelong overexpression of the APP gene leads to 

overproduction of Aβ peptides in the brains of DS persons who are trisomic for this 

chromosome. DS persons develop neuropathologic hallmarks of AD after 40 years35,36. 

Nonetheless, AD remains heterogeneous and complex. The disease does not display a  

simple mode of inheritance and several genes are known to influence onset and progress of 

AD. 

 

1.3 Neuritic plaques and Neurofibrillary tangles  
 
The histopathological hallmarks of AD are neuritic plaques and neurofibrillary tangles (NFT), 

these lesions are not distinctive to AD, and are found in other neurodegenerative disorders 

as well.  

Classic neuritic plaques are spherical structures consisting of a central core of fibrous protein 

known as amyloid (Aβ) that is surrounded by degenerating or dystrophic nerve ends 

(neurites). Two types of amyloid-related plaques are recognized in the brains of AD patients:  

o diffuse plaques, which contain poorly defined amyloid but no well-circumscribed 

amyloid core, and  

o ‘‘burnt-out’’ plaques, which consist of an isolated dense amyloid core.  

As mentioned above the amyloid-β contains mainly 40 to 42 amino acid peptides which are 

derived from proteolytic processing of APP, a type 1 integral membrane protein. 

NFT are the other main histopathologic findings in AD. The structure of the NFT was first 

described by Terry in 196337. 1986 the microtubule associated protein tau (referred to as tau) 

was determined as the major protein component of NFTs38. Tau proteins are expressed 

predominantly in the axons of neurons in the CNS and peripheral nervous system and it 
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physiological function is to bind and stabilise microtubules39,40,41. The activity of Tau as a 

phosphoprotein is regulated by the balance of phosphorylation and dephosphorylation 

through different kinases and phosphatases. Key players in this mechanism are GSK3-β as 

the major tau kinase and PP2A as the major tau phosphatase42,43,44,45,46,47. 

In AD brain there is as much normal tau as in agematched control human brain, but, in 

addition, the diseased brain contains 4–8-fold of abnormally hyperphosphorylated tau48,49. In 

this state, tau is the major component of the paired helical filaments in NFT38,50,51. The 

intracellular NFTs cause disruption of normal cytoskeletal architecture with subsequent 

neuronal cell death52.  

Neuritic plaques and neurofibrillary tangles are not distributed evenly across the brain in AD 

but are concentrated in vulnerable neural systems responsible for learning, memory and 

survival e.g. the hippocampus. 

 

1.4 Processing of APP 
 

Amyloid-β precursor protein (APP) is a member of a conserved family of type I membrane 

proteins which in mammals includes also APP like protein 1 (APLP1) and 2 (APLP2). APP 

and APLP2 are ubiquitous with high expression in neurons, while APLP1 is brain-specific. 

APP is an important protein that may play a role in recognition of extracellular signals, cell 

adhesion and apoptosis. In neurons APP is required for synaptogenesis, synapse 

remodeling and neurite outgrowth53,54. There exist three major isoforms of 695, 751, and 770 

amino acids all of which are derived from alternative splicing of a single gene product55 on 

chromosome 21. In neurons, APP695 is the predominantly expressed form and is subject to 

N- and O-glycosylation within its extracellular/luminal domain. APP751 and APP770 are 

expressed mainly in non-neuronal cells of the CNS, especially in glial cells. During 

maturation APP gets N-glycosylated in the endoplasmic reticulum and early Golgi. In N-

glycosylated state APP is not cleaved by secretases56. Further trafficking within the Golgi 

transforms N-glycosylated APP to O-glycosylated APP and reaches the trans-Golgi network 

where it enters the secretory pathway57. Here two possible APP processing pathways might 

occur. 
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Fig. 1-1 Illustration of APP processing by α-, β- and γ-secretases 

Non-amyloidogenic pathway: cleavages of APP by α-secretases produce α-CTFs and APPsα. Further cleavage 
by γ-secretases produce the p3 stubs and AICD’s. Amyloidogenic pathway: processing of APP by β-secretases 
produce β-CTFs and APPsβ. Cleavage of β-CTFs by γ-secretases produce the Aβ1-40/42. Abbreviations: APP, 
Amyloid precursor protein; CTF, C-terminal fragments; AICD, an intracellular C-terminal domain 
 
a) Non- amyloidogenic pathway 

 

In the non-amyloidogenic pathway APP is cleaved by the α‐secretase, within the Aβ domain 

between Lys‐16 and Leu‐17. This is the putative non toxic way of APP processing and 

generates a 83‐amino‐acid C‐terminal APP fragment (C83) and destroys the Aβ sequence. In 

addition, a large soluble N-terminal fragment (sAPPα) is released from the cell surface58. 

After subsequently cleavage in the intramembrane region by the γ-secretase a p3 fragment 

as well as an intracellular C-terminal domain (AICD) is generated59. Additional cleavage by 

caspase-3 between D664 and A665 of AICD produce a 31 aa C-terminal fragment (CTF)60. 

Currently, three members of the ADAM-protein family (a disintegrin and metalloprotease 

domain) are identified as putative α-secretases. ADAM-9, ADAM-10 and ADAM-17 (also 

referred as TACE) are suposed to have α-secretase activity allowing to initiate the non-

amyloidogenic pathway. 

 

b) amyloidogenic pathway 

 
Amyloidogenic processing of APP requires sequential cleavage by β‐ and γ‐secretase. First 

APP is cleaved by β‐secretase, generating a 99‐amino‐acid C‐terminal APP fragment (C99) 

and a large soluble N-terminal fragment (sAPPβ). As candidates for β-secretases BACE-1 

(β-site APP-cleaving enzyme1) was identified. Cleavage by β-secretase at Asp‐1 produces 

the N‐terminus of Aβ peptides. In addition, BACE‐1 may also cleave within the Aβ domain at 
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Glu‐11, an alternative cleavage site61. The Swedish FAD double mutation promotes β-

secretase cleavage at Asp‐1 and hence increases Aβ production62. Further processing of 

C99 by γ‐secretase leads to Aβ-peptide production. γ-secretase is an intramembranous 

multimeric complex63  and its cleavage activity seems to be largely nonselective, occurring in 

at least 3 different sites: Val636, Ala638 and Leu645 of the APP molecule64. The resulting 

products range in length from 38 to 43 residues but the two major species are Aβ1‐40 and 

Aβ1‐42. The latter is considered to be more amyloidogenic because it was shown to be more 

prone to aggregate65. 

Notably Aβ peptides are generated only by the cleavage of APP and not by the cleavage of 

other APP protein family members such as APL-1(amyloid precursor like)  in Caenorhabditis 

elegans, Appl ( β-amyloid protein precursor like) in Drosophila, APP-like protein 1 (APLP1) 

and APLP2  in mammals, which all lack the Aβ domain66,67,68,69,70. The Aβ sequence is the 

least conserved part between the human and mouse APP sequences. Mouse APP is 

processed poorly by β-secretase, resulting in approximately threefold lower amounts of Aβ 

peptide71. Therefore in the present study transgenic mice were used carrying the human APP 

including amino acids exchanges known as the Swedish mutation (APPsw). 

 

1.5 Clearance of Amyloid beta (A β) 
 

Clearance of Aβ peptides is achieved by two different pathways: proteolytic degradation, 

aggregation and receptor-mediated transport from the brain. 

A number of different molecules have been implicated in the process of removal of cerebral 

Aβ by proteolytic degradation. Key players in this mechanism are the enzymes Insulin 

degrading enzyme (IDE) and Neprilysin (NEP) but additionally, recent data suggest an 

involvement of endothelin converting enzyme (ECE) in the process of Aβ clearance.  

IDE, a 110 kDa zinc metallo-endopeptidase, hydrolyzes several regulatory peptides72, 

including insulin, glucagon, atrial natriuretic factor, transforming growth factor α, β-endorphin, 

amylin, Aβ, and the AICD. IDE is localized in the cytosol, while only a small fraction resides 

in the plasma membrane. Recent data support a role for IDE in Aβ degradation. Amongst 

others IDE knockout mice show increased endogenous levels of Aβ and AICD in the 

brain73,74. Chronical overexpression of IDE in APP overexpressing mice diminish the Aβ 

plaque burden by 50 % and reveals a 50% reduction of soluble and insoluble fraction of Aβ1-

40 as well as Aβ1-42. Furthermore, IDE polymorphismus seems to be associated with late 

onset AD75,76. It is remarkable that IDE is only able to degrade Aβ monomers.  

The second mentioned peptidase responsible for the degradation of Aβ is NEP. It is a type II 

membrane protein and is also referred to as neutral endopeptidase or enkephalinase. NEP, 

like IDE, hydrolyzes circulating biologically active peptides including enkephalin, 
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neuropeptide Y and others77. Intracerebral injections of a lentiviral vector expressing human 

NEP in a transgenic mouse model of cerebral amyloidosis resulted in a remarkable 50% 

decrease of cortical amyloid deposits78. NEP is localized in the plasmamembrane and owns 

an extracellularly catalytic site. Therefore NEP is best mounted to be a prime candidate for 

Aβ degradation on extracellular sites. 

 

Cerebral Aβ is exported across the Blood brain barrier (BBB) via a receptor-mediated 

transport. The efflux results via low-density lipoprotein receptor-related protein (LRP)79. A 

transport of Aβ via LRP requires initial binding to the LRP ligands apoE and α2 

Macroglobulin (α2M). In addition it has been shown that Aβ binds directly to LRP and is 

transported across the BBB80,81. In this case, Aβ1-40 is cleared more effectively than the Aβ1-42 . 

For that reason Aβ1-42 may still require prior binding to the LRP ligand apoE and α2M to be 

effectively transported out of the CNS.  

1.6 Secretases 
 

The processing of APP by the different pathways (amyloidogenic and non-amyloidogenic) 

requires cleavage by different secretases. In the initial step, α- and β-secretase compete for 

APP as substrate. These two enzymes cleave at different sites and thereby determine if the 

amyloidogenic pathway or non-amyloidogenic pathway occurs.  

 

α-secretase 

Three members of a disintegrin and metalloprotease domain (ADAM) family have been 

identified to possess α‐secretase activity ADAM-9, ADAM10 and ADAM 17 (also referred to 

as TACE)58. The exact sub‐cellular localization of α‐secretase remains unclear, however 

cleavage sites have been proposed to be the trans‐Golgi network (TGN) and the cell 

surface82,83. In the CNS ADAM-10 and ADAM-17 are most prominent. 

 

β-secretase 

BACE1 (β-site APP-cleaving enzyme1) is essential for initiating Aβ generation and cleaves at 

the APP Asp-1 residue to form the Aβ N-terminus. BACE1 is an aspartic, type 1 membrane 

protease with a single transmembrane domain near its C-terminus and a luminal active site 

that provides an optimal  β-secretase site for APP cleavage61,84,85,86. Its maximal activity 

occurs at pH 4.5 and is thus localized within acidic compartments of the secretory pathway61. 

BACE1 is abundant in human cells and its mRNA levels are highest in the brain. Its maximal 

activity occurs in neurons and to less extend in astrocytes87. Like other pepsin family 

members, BACE1 has two active site motifs and mutation of either causes inactivity84,88. 

Aside from BACE1 there is a homologous molecule BACE2. BACE2 mRNA is expressed at 
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low levels in most human peripheral tissues and at very low or undetectable levels in human 

brain61. 

 

γ-secretase 

γ‐secretase complex is not a single enzyme but requires the interaction of 4 subunits: 

presenilin (PS), anterior pharynx-defective- 1 (APH-1) , nicastrin, and  presenilin enhancer-2 

(PEN-2) which are mostly present in a 1:1:1:1 stoichiometry89. 

PS is a polytopic membrane protein consisting of nine trans-membrane-domains (TMD) and 

pass through an endoproteolytic cleavage that ends in a ~30-kDa N-terminal and ~20-kDa C 

terminal fragment90. This cleavage occurs within the large cytoplasmic loop between TMD6 

and TMD7. PS harbors the catalytical active site which is critically required for the aspartyl 

protease activity of γ-secretase. Apart from the catalytic subunit PS, three other integral 

membrane proteins, NCT, APH-1, and PEN-2, are essential γ-secretase complex 

subunits91,92. NCT is an ~100-kDa type I membrane glycoprotein with a large ectodomain, a 

short cytoplasmic domain and recognizes γ-Secretase substrates93,94. The other two 

components, the ~20-kDa seven- TMD protein APH-1 and the smallest subunit, the ~10-kDa 

hairpin PEN-2 protein, are highly hydrophobic subunits91,92. PEN-2 is required for the 

stabilization of the PS fragments in the complex, whereas the function of APH-1 is currently 

unclear95,96. 

Presenilin mutations are genetically linked to FAD and increase the production of the 

aggregation-prone and neurotoxic Aβ1-42. 

 

1.7 IGF-1 signaling cascade 
 

1.7.1 Insulin and Insulin-like-growth factor-1 sign aling in Alzheimer’s disease 
 

Recent data have implicated insulin and insulin-like growth factor-1 (IGF-1) signaling (IIS) as 

being involved in the pathogenesis of AD. Current reports suggest that type 2 diabetes 

mellitus (T2DM) is a risk factor for AD, however, the underlying cellular mechanisms for this 

association are still unknown97,98,99,100. It is conceivable that vascular complications of T2DM 

result in neurodegeneration101. Alternatively, neuronal insulin/IGF-1 resistance might 

represent the unifying link between T2DM and AD, characterizing AD as a "brain type 

diabetes"101,102,103,104. In agreement with this hypothesis is the observation that insulin 

receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling is markedly 

disturbed in the central nervous system (CNS) of AD patients105,106,107. Post mortem 

investigations of brains from patients with AD revealed a markedly down regulated 

expression of IR, IGF-1R, and insulin receptor substrate (IRS) proteins102,108 and these 
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changes progress with severity of neurodegeneration. One common feature in neurons from 

AD patients is a downregulation of IRS-2 and IGF-1R102,107. Other groups reported similar 

results in AD brains109. These findings raise the important question whether changes in 

IR/IGF-1R signaling (IIS) are cause, consequence, or maybe even compensatory 

counterregulation of neurodegeneration. 

 

1.7.2 IGF-1 and IGF-1R 
 
IGF-1 is a small molecule of 7500 Da that is found in most tissues. Structurally it is a member 

of a superfamily of related insulin-like hormones that include IGF-1, IGF-2, insulin and relaxin 

in vertebrates and bombyxin, locust insulin-related peptide, and molluscan insulin-like 

peptide in invertebrates109,110,111,112,113. A close relative of IGF-1 is insulin with sharing 

approximately 50% of amino acid homology114. IGF-1 is a major growth factor and is involved 

in proliferation, differentiation, malignant transformation as well as in protection from apotosis. 

Insulin is predominantly responsible for glucose uptake, food intake and cellular 

metabolism115,116,117. The IGF peptides are single chain polypeptides and derive from a 

precursor hormone118,. The final peptide hormone results from processing of the prohormone 

consisting of A, B, C, and D domains119. The gene encoding IGF-1 is highly conserved 

among mammals, birds and amphibians118,120,121,122,123,124 and its expression is influenced by 

hormonal (e.g. growth hormone), nutritional and tissue-specific developmental 

factors125,126,127. The bio-availability of IGFs is regulated by the IGF- binding proteins (IGFBP), 

a family of six members (IGFBP1 – 6) with a high binding affinity for both IGFs. Thus, they 

regulate and maintain the biological activity pool of circulating IGF128. The IGFBP in turn are 

regulated by IGFBP proteases which cleave the binding proteins, generating fragments with 

reduced or no binding affinity for the IGFs129,130. 

 
The IGF-1 receptor is, like the IR, a member of the ligand-activated receptor tyrosine kinases. 

Its gene is mapped on chromosome 15 q25-26 consisting of 21 exons spanning over 100kb 

of genomic DNA. IGF-1 and IR are heterotetrameric trans‐membrane glycoproteins 

consisting of two α‐ and β‐subunits that are covalently linked through disulfide bonds. The α‐ 

subunits reside extracellularly with the ligand-binding site and a transmembrane and the 

cytoplasmatic parts of the receptor are found in the β‐subunits131. Beside the transmembrane 

domain is the catalytic subunit with the juxtramembran tyrosine kinase domain located, which 

link the receptor via the Insulin-receptor-substrates 1-4 (IRS) to the two main downstream 

signaling cascade, the mitogen activated protein kinase (MAPK) and the phosphatidylinositol 

3-kinase (PI3K) cascades132,133,134. IGFs and Insulin bind with low affinity to the non-cognate 

receptor but due to the homology of the IGF-1R and the IR they are able to form hybrid 

receptors (HR) consisting of IR isoforms and IGF-1R135. The HR bind IGF1 with high affinity 
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and insulin with lower affinity, and the relative affinities are dependent on the insulin-receptor 

isoform that is involved (IRa, IRb)136.Their physiological role is unknown but hybrid receptors 

may be involved in switching signaling from insulin to IGF-1 in certain situation. 

 

1.7.3 IGF-1R/IR signaling 

 
The IGF-1R/IR signaling starts with ligand binding to the corresponding α‐subunit of the 

receptor. This leads to a conformational change and activation of the intrinsic receptor 

tyrosine kinase followed by intracellular autophosphorylation137. For this purpose the ATP-

binding site at Lys1003 and the tyrosine kinase domain are required for all functions of the 

IGF-IR. Trans-phosphorylation between the β-subunits involves Tyr1131, 1135 and Tyr1136 in the 

kinase domain and leads to full activation of kinase activity. Phospho-tyrosine residues in 

specific motifs are docking sites for Src homology 2 (SH2) domain-containing signaling 

proteins. This phosphotyrosin recognition motif containing proteins,like the IRS-proteins and 

Shc-proteins, function after being phosphorylated by the receptor tyrosine kinase as adaptor 

molecules linking the receptor to the PI3K- and MAPK-pathway138. IRS, a protein family has 

at least 4 members (IRS‐1 to IRS‐4) which are homologous in structure and function but 

show distinct tissue distribution. IRS‐1 and IRS‐2 are widely expressed and mediate insulin 

and IGF-1 action in most tissues including the brain. IRS‐3 is largely limited to rodent 

adipocytes and IRS‐4 is primarily and discretely expressed in the brain (hypothalamus) as 

well as in kidney and thymus139,140. 

 



Introduction 

 12 

P
P
P

P
P
P

Grb2
SOS

Ras

Raf

p85
p110 PI3 Kinase pathway

PI3,4P
PDK

Akt/PKB

IRS-Proteins
PPP P P

P

MAP Kinase pathway

Gene-
Expression

Protein-
synthesis

Neuronal
survival

Cell
growth

Insulin
receptor

GSK-3ββββFOXO-1

PTEN

Erk-1/2

PI3,4,5P

P
P
P

P
P
P

IGF-1
receptor

P

P
P
P

P
P
P

P
P
P

P
P
P

Grb2
SOS

Ras

Raf

p85
p110 PI3 Kinase pathway

PI3,4P
PDK

Akt/PKB

IRS-Proteins
PPP P P

P

MAP Kinase pathway

Gene-
Expression

Protein-
synthesis

Neuronal
survival

Cell
growth

Insulin
receptor

GSK-3ββββFOXO-1

PTEN

Erk-1/2

PI3,4,5P

P
P
P

P
P
P

P
P
P

P
P
P

IGF-1
receptor

P

 

Fig. 1-2 Illustration of IGF-1R/IR signaling cascad e 

Binding of insulin/IGF‐1 ligand to their receptors induce trans-autophosphorylation of the β‐subunit and activation 
of RTK. Activtion leads to recruitment and subsequent phosphorylation of IRS proteins. Phosphorylation of IRS 
allow for binding of SH-2 domain containing proteins that ends in the activation of MAP‐ or PI3‐kinase signaling 
pathways. Abbreviations: IGF‐1, insulin‐like growth factor 1; IRS, insulin receptor substrate; p85/p110, 
regulatory/catalytic subunit of PI3‐kinase; PI3,4P/PI3,4,5P,phosphatidylinositol‐bi/tri‐phosphate; PDK, 
phosphoinositide‐dependent protein kinase; PKB, protein kinase b; GSK3β ,glycogen synthase kinase3β; Grb2, 
growth factor receptor binding protein2; SOS, son‐of‐sevenless; Ras, G‐protein; c‐Raf, proto‐oncogene; ERK, 
extracellular signal‐regulated kinase. 
 
The PI3-kinase-pathway:  Subsequently phosphorylation of tyrosine residues of IRSs evoke 

binding of p85 the regulatory subunit of PI3K resulting in the activation of the catalytically 

active PI3‐kinase subunit (p110). This leads to the production of phosphatidylinositol‐3,4,5 

‐triphosphate (PIP3) from PIP2 at the plasma membrane, the initial step for activation of 

several downstream targets, such as the phosphoinositide‐dependent protein kinase(PDK)1, 

AKT (also known as protein kinase B; PKB). AKT phosphorylates glycogen synthase kinase 

(GSK)3α/β (at Ser21/9),  which is thereby inhibited,  and the forkhead transcription factor 

FoxO1141,142. This step triggers nuclear exclusion of FoxO1 and reduces the expression of its 

target genes which are involved in oxidative stress protection, apoptosis, metabolism and 

longevity143,144. Notably is that AKT is substrate of mTOR (mammalian target of rapamycin) 

and therefore mediate signals without activation by IIS. TOR is a Ser/Thr kinase highly 

conserved from yeast to mammals existing intracellularly in two distinct complexes145. When 

bound to raptor (regulatory-associated protein of mTOR) and GbL (G protein b subunit-like) 

mTOR regulates protein synthesis, cell growth, proliferation and autophagy in a nutrient- and 
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energy responsive manner. As part of a complex with rictor (rapamycin insensitive 

companion of mTOR) and GbL, mTOR phosphorylates AKT/PKB and regulates different 

proteins downstream of AKT. Studies in yeast, C. elegans, and Drosophila revealed the 

involvement of TOR in the regulation of life span. In a large-scale screen of single-gene-

deletion strains of yeast, mutations in the TOR pathway were associated with an increased 

life span146,147. Thus not only IIS signaling might be responsible for activation of the 

downstream target of AKT and whose above mentioned impact. 

 

MAP-kinase pathway:  The second main pathway that is activated after phosphorylation of 

the receptors is the MAP-kinase pathway. Phosphorylation of Shc at Tyr950 on IRS proteins 

leads to the recruitment of Grb2 that binds son‐of‐sevenless (SOS) which in turn performs 

nucleotide exchange on Ras148. By inducing the exchange of guanosine‐diphosphate (GDP) 

with guanosine triphosphate (GTP), Ras is converted into its active conformation and 

subsequently recruits c‐Raf to the membrane. The increased c‐Raf activity is transduced 

through mitogen‐activated protein kinase kinase (MEK) in order to activate extracellular 

signal‐regulated kinase (ERK). ERK regulates transcription factors and thereby influences 

cell metabolism and proliferation149,150. 

 

1.8 Mouse Models 

 
In the presented thesis the influence of IGF-1R signaling on the pathogenesis of AD based 

on a neuronal specific knockout of the IGF-1R (nIGF-1-/-) in a transgenic model of AD 

(Tg2576) has been analyzed. Therefore, the cre/loxP system under the control of the neuron-

specific synapsin I promoter has been used. 

 

1.8.1 Conditional IGF-1R knock out (The cre/loxP sy stem) 
 
Originally, gene targeting implicated insertion of an exogenous DNA fragment into an exon 

critical for target gene function in mouse embryonic stem (ES) cells. The resulting knockout 

in genes occurs on the basis of homologous recombination151. However, mutant gene 

dysfunction is affected throughout the whole body, often yielding in undesired effects. In 

contrast to this technique, the Cre/loxP system is able to mediate sitespecific DNA 

recombination. Originally described in bacteriophage P1 two components are involved, first a 

34-bp DNA sequence containing two 13-bp inverted repeats and an asymmetric 8-bp spacer 

region referred as loxP (‘‘locus of X-over in P1’’) that targets recombination and second a 

343 amino acid monomeric protein called Cre recombinase that mediates the recombination 

event152. Any DNA sequence flanked by two loxP sites is either be excised (loxP sites in 
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same orientation) or inverted (loxP sites in opposite orientation) in the presence of Cre 

recombinase153. The advantages of this system are: i) loxP target sites are small and easily 

synthesized, ii) no apparent external energy is required154,155 , iii) Cre is a very stable protein 

and any promoter can drive Cre recombinase expression in the tissue or even celltype of 

interest. Initiation of gene targeting in vivo, using the Cre/loxP system, requires two lines of 

mice. One mouse line carries the protein of interest flanked by loxP sites (‘‘floxed’’ gene). 

These mice should be phenotypically normal because the loxP sites are inserted into introns 

where they theoretically do not affect gene function. The other mouse line expresses Cre 

recombinase under the control of a tissue on cell-specific promoters. Cross-breeding of the 

two mouse lines should result in Cre-mediated gene disruption only in those cells in which 

the promoter is active.  

1.8.2 Cre recombinase expression under the control of the synapsin-1 promotor  

 
Synapsin I (also known as brain protein 4.1), is a neuronal phosphoprotein associated with 

the membranes of small synaptic vesicles. The synapsin family is composed of synapsin I 

and synapsin II, which are products of alternative splicing of transcripts from two distinct 

genes156. Two main characteristics distinguish synapsins from most other synaptic vesicle-

associated proteins. Firstly they are rather peripheral than integral membrane proteins and 

secondly they are specific for the nervous system, as there are apparently no homologous 

proteins in non-neuronal tissues. Injection of synapsin I into Xenopus blastomeres 

accelerates the structural and functional development of neuromuscular synapses157,158. In 

embryonic hippocampal neurons of synapsin I-deficient mice outgrowth of predendritic 

neurites and severely retarded axons are observed. Furthermore, synapse formation was 

significantly delayed indicating that synapsin I plays a role in regulation of axono- and 

synaptogenesis159. Privious use of synapsin-1promoter for Cre recombinase expression 

determines its activity in cortical and spinal cord neurons but predominantly in the 

hippocampus160. For that reason synapsin I promoter is a good candidate for controlling the 

cre recombinase to get neuronal specific cre recombinase expression. 

1.8.3 The Alzheimer’s disease model Tg2576 

 
As mentioned above several mutations affecting APP are capable of inducing FAD. APP695SW 

mice express transgenic human APP with the two-point mutation (Lys670
�Asn, Met671

�Leu). 

This mutation was originally described in a Swedish family suffering from FAD and is 

therefore called “Swedish” mutation. These mice show age-dependent memory impairments, 

generally starting in age of 40 weeks of age and several histopathological features, including 

amyloid plaques, neuritic dystrophy, astrogliosis, reactive microgliosis and to lesser extend 

abnormal tau phosphorylation161,162,163. The 695-amino acid isoform the mutant form of 
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human amyloid precursor protein (APP) was inserted into mice using a hamster prion protein 

cosmid vector, in which APPsw replaced the prion protein open reading frame. Expression of 

APP is driven by the hamster prion protein gene promoter. Depending on the genetic 

background, APP-SW (Tg2576) transgenic mice die early. Since nearly all Tg2576 on a pure 

C57BL/6 background die within the first months of age it is impossible to investigate amyloid 

accumulation or IGF-1R signaling in this pure background164. Therefore, Taconic APP-SW 

colony is maintained in a B6/SJL hybrid background. Offsprings of these mice were used in 

this thesis to investigate APPsw induced lethality, amyloid accumulation as well as IGF-1R 

signaling during aging in different brain regions165. 

 

1.9 Aims of this thesis 
 
Recent data show a disturbed Insulin/IGF signaling in patients suffering on AD. To directly 

address the importance of IGF-1R signaling in the pathogenesis of AD, neuron-specific IGF-

1R deleted mice (nIGF-1-/-) were crossed with mice expressing the Swedish mutation of 

human APP695 harbouring the double mutation Lys670
� Asn, Met671

� Leu which was found 

in a Swedish family with early onset AD (APPsw, Tg2576 mice). Survivals as well as 

metabolic and somatic factors of the offspring were measured during an observation period 

of 60 weeks. Biochemical and histophathological analysis of these mice were performed at 

two different time points to investigate the influence of the neuronal IGF-1R signaling in the 

pathogenesis of AD. 

 



 

 

 

 

 

 

 

 

 

 

 

2 Material and methods      
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2.1 Chemicals 
 
Acetic acid     Merck, Darmstadt, Germany 
 
Acrylamide / Bis-acrylamide 30%  Rotiphorese® Gel 30 (37.5/1) 

Carl Roth GmbH + Co. KG, Karlsruhe, Germany 
 
Agarose     Invitrogen Corporation, Carlsbad CA, USA 
 
Aprotinin     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
APS      Ammonium‐persulfate 

AppliChem GmbH, Darmstadt, Germany 
 
AraC Cytosine arabinoside, Sigma‐Aldrich Chemie GmbH, 

Steinheim, Germany   
 
Avertin     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Benzamidine     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
β‐mercaptoethanol    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Bradford reagent    Bio‐Rad Laboratories GmbH; Germany 
 
Bromophenol blue    AppliChem GmbH, Darmstadt, Germany 
 
BSA > 96 %     Bovine serum albumin 

Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Desoxy-Ribonucleotid-Triphosphate Fermentas GmbH, St. Leon-Rot, Germany 
(dNTPs) 
 
DMSO     Dimethyl sulfoxide 

Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
DNase     Roche, Mannheim, Germany 
 
DTT      Dithiothreitol 

AppliChem GmbH, Darmstadt, Germany 
 
EDTA      Ethylenediaminetetraacetic acid 

AppliChem GmbH, Darmstadt, Germany 
 
Ethanol      AppliChem GmbH, Darmstadt, Germany 
 
Ethidium bromide    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Glycerol     Glycerin, AppliChem GmbH, Darmstadt, Germany 
 
Glycine     AppliChem GmbH, Darmstadt, Germany 
 
HEPES    Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
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IGF      Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Isopropanol     AppliChem GmbH, Darmstadt, Germany 
 
Kaiser’s glycerol gelatine Merck, Darmstadt, Germany 
 
KCl potassium chloride, Sigma‐Aldrich Chemie GmbH, 

Steinheim, Germany 
 
Methanol 99%    Carl Roth GmbH + Co. KG, Karlsruhe, Germany 
 
Magnesium chloride Merck, Darmstadt, Germany 
 
NP‐40  Polyglycol ether (Nonidet® P40 Substitute) FLUKA 

Chemika/Biochemika Chemie AG, Buchs, Switzerland 
 
PMSF Phenylmethylsulphonylfluoride Sigma‐Aldrich Chemie 

GmbH, Steinheim, Germany 
 
Potassium hexacyanoferrat II Merck, Darmstadt, Germany 
 
Potassium hexacyanoferrat III Merck, Darmstadt, Germany 
 
Proteinase K     Roche, Mannheim, Germany 
 
SDS      Sodium dodecyl sulfate 

AppliChem GmbH, Darmstadt, Germany 
 
Sodium bicarbonate   Carl Roth GmbH + Co. KG, Karlsruhe, Germany 
 
Sodium chloride    Carl Roth GmbH + Co. KG, Karlsruhe, Germany 
 
Sodium orthovanadate  Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
TEMED     N,N,N',N'‐Tetramethylethylenediamine 

Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Thioflavin S     Sigma‐Aldrich Chemie GmbH, Steinheim, Germany 
 
Tris      AppliChem GmbH, Darmstadt, Germany 
 
TritonX-100     AppliChem GmbH, Darmstadt, Germany 
 
Trypsin Roche, Mannheim, Germany 
 
TWEEN 20®  Polyoxyethylene (20) sorbitan monolaurate, Caesar and 

Lorentz GmbH, Bonn, Germany 
 
X-gal      PEQLAB Biotechnologie GmbH, Erlangen, Germany 
 
Xylol      AppliChem GmbH, Darmstadt, Germany 
 
 
 



Material and methods 

 19 

2.1.1 Buffer and solution 
 
BME Basal medium eagle, Invitrogen Corporation, Carlsbad 

CA, USA 
 
Cell lysis buffer    150 mM NaCl 

50 mM Tris‐HCl (pH 7.4) 
5 mM EDTA 
1 % Nonidet® P40 Substitute 

 
Organ lysis buffer   50 mM HEPES (pH 7.4) 

50 mM NaCl 
1 % Triton X-100  
10 mM EDTA 
0.1 M NaF 
17 µg/ml Aprotinine 
2 mM Benzanidine 
0.1 % SDS 
1 mM Phenylmethylsulfonyl fluoride (PMSF)  
10 mM Na3VO4 

 
HBSS Hanks’ balanced salt solution, Invitrogen Corporation, 

Carlsbad CA, USA 
 
 
SDS‐PAGE running buffer  194 mM Glycine 

25 mM Tris 
0.1 % SDS 

 
4 x SDS sample buffer  250 mM Tris‐HCl (pH 6.8) 

200 mM DTT 
40 % Glycerol 
8 % SDS 
0.01 % Bromophenol blue 

 
Stripping solution   62.5 mM Tris‐HCL pH 6.8 

100 mM β‐mercaptoethanol 
2% SDS 

 
TBS buffer (pH 7.6)    137 mM NaCl 

20 mM Tris 
 
TBS‐T buffer (pH 7.6)   137 mM NaCl 

20 mM Tris 
0.1 % Tween 20® 

 
Western Blot antibody solution 137 mM NaCl 

20 mM Tris  
5 % Western Blocking Reagent (Roche) 

 
 
Western Blot blocking solution 137 mM NaCl 

20 mM Tris   
10 % Western Blocking Reagent (Roche) 
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Western Blot transfer buffer   194 mM Glycin 
25 mM Tris 
20 % Methanol (99%) 
0.05 % SDS 
 

 
– ECL; Amersham ECLTM Western Blotting Detection Reagents, GE Healthcare UK Ltd; 
England 
 
– Fetal bovine serum (FBS); Invitrogen GmbH; Germany  
 
– Pen/Strep; Penicillin Streptomycin (P/S); 10,000 Units/ml Penicillin, 10,000 µg/ml 
Streptomycin; Invitrogen GmbH; Germany 
 
– Phosphate buffered saline 10 fold (pH 7.2); Invitrogen GmbH; Germany 
 
– Protein Standard Ladder; Precision Plus Protein Kaleidoscope Standards; Bio‐Rad 
Laboratories GmbH; Germany 
 
– Trypsin; Roche, Mannheim, Germany 
 
– Western Blocking Reagent; Roche Diagnostics GmbH; Germany 
 

2.1.2 Kits 
 
 
– α‐Secretase Activity Kit  R&D Systems, Inc., USA; Catalog # FP001 
 
– β‐Secretase Activity Kit   R&D Systems, Inc., USA; Catalog # FP002 
 
ELISA Aβ1-40 Invitrogen Corporation, Carlsbad CA, USA Cat# 

KHB3481 

ELISA Aβ1-42 Invitrogen Corporation, Carlsbad CA, USA Cat# 
KHB3441 

 
 

2.1.3 Primary Antibodies 
 
– Actin Antibody; Monoclonal mouse antibody raised against an epitope conserved in human 
actin; MP Biomedicals, USA; Item # 69100; Western Blotting Dilution 1:5000 
 
– ADAM 10 Antibody; Polyclonal rabbit antibody raised against human ADAM10 (H‐300); 
Santa Cruz Biotechnology, Inc., USA; Item # sc‐25578; Western Blotting Dilution 1:1000 
 
– ADAM 17/TACE Antibody; Polyclonal rabbit antibody raised against human ADAM17/ 
TACE; Assay Designs, Inc., USA; Item # 905249; Western Blotting Dilution 1:1000 
 
– AKT Antibody; Polyclonal rabbit antibody raised against endogenous levels of total AKT1, 
AKT2 and AKT3 proteins; Cell Signaling Technology, Inc., USA; Item # 9272; Western 
Blotting Dilution 1:1000. 
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- ApoE Antibody; Polyclonal goat antibody raised against a peptide mapping the C-terminus 
of apoE of mouse origin; Santa Cruz Biotechnology, Inc., USA; Item # sc‐6384; Western 
Blotting Dilution 1:1000 
 
– APP C‐Term (Amyloid Precursor Protein, C‐Term) Antibody; Synthetic peptide developed 
in rabbit raised against the C‐terminal of human APP 695 (amino acids 676‐695); 
Sigma‐Aldrich, USA; Item # A8717; Western Blotting Dilution 1:1000 
 
- α2M Antibody Polyclonal goat antibody raised against epitope mapping near the N-terminus 
of α-2M of human origin Santa Cruz Biotechnology, Inc., USA; Item # sc‐8513; Western 
Blotting Dilution 1:1000 
 
– BACE‐1 (Beta Site APP Cleaving Enzyme 1) Antibody; Polyclonal rabbit antibody raised 
against amino acids 458 to 501 of human BACE; Chemicon (Millipore), USA; Item # AB 5832; 
Western Blotting Dilution 1:1000 
 
– Beta Amyloid Antibody; Polyclonal rabbit antibody raised against several isoforms of 
β‐amyloid peptide (Aβ), such as Aβ1‐40, Aβ1‐42 etc, regardless of phosphorylation state; 
Cell Signaling Technology, Inc., USA; Item # 2454; Western Blotting Dilution 1:1000 
 
– Erk Antibody; Polyclonal rabbit antibody raised against endogenous levels of total p44/42 
MAP kinase (Erk1/Erk2) protein; Cell Signaling Technology, Inc., USA; Item # 9102; Western 
Blotting Dilution 1:1000 
 
- Foxo1 Antibody; Polyclonal rabbit antibody raised against epitope corresponding to amino 
acids 471-598 of FKHR of human origin Santa Cruz Biotechnology, Inc., USA; Item # 
sc‐11350; Western Blotting Dilution 1:1000 
 
– GSK‐3‐β Antibody; Monoclonal rabbit antibody raised against endogenous levels of total 
GSK‐3β protein; Cell Signaling Technology, Inc., USA; Item # 9315; Western Blotting Dilution 
1:1000 
 
– Holo APP Antibody; Polyclonal rabbit antibody raised against endogenous levels of several 
isoforms of both mature and immature amyloid β (A4) precursor protein, including APP695, 
APP770 and APP751; Cell Signaling Technology, Inc., USA; Item # 2452; Western Blotting 
Dilution 1:1000 
 
- IDE Antibody; Polyclonal rabbit; Millipore Corporation  290 Concord Road, Billerica, MA 
01821, USA; Item # AB9210; Western Blotting Dilution 1:1000 
 
– IGF‐1 Receptor β Antibody; Polyclonal rabbit antibody raised against endogenous levels of 
IGF‐IR β. Does not cross‐react with insulin receptor; Cell Signaling Technology, Inc., USA; 
Item # 3027; Western Blotting Dilution 1:1000 
 
– IR‐β Antibody; Polyclonal rabbit antibody raised against a peptide mapping at the 
Cterminus of insulin Rβ (C19) of human origin; Santa Cruz Biotechnology, Inc., USA; Item # 
sc‐711; Western Blotting Dilution 1:1000 
 
– IRS‐1 Antibody; Monoclonal rabbit antibody raised against C‐terminal 14 amino acid 
peptide ([C]YASINFQKQPEDRQ) of rat liver IRS‐1. Rat, mouse and human crossreactivity; 
Upstate Cell Signaling Solutions, USA; Catalog # 06‐248; Western Blotting Dilution 1:1000 
 
– IRS‐2 Antibody; Polyclonal rabbit antibody raised against endogenous levels of total IRS‐2 
protein; Cell Signaling Technology, Inc., USA; Item # 4502; Western Blotting Dilution 1:1000 
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- Nepriliysin Antibody; Polyclonal rabbit; Millipore Corporation  290 Concord Road, Billerica, 
MA 01821, USA; Item # AB5458; Western Blotting Dilution 1:1000 
 
– Phospho‐AKT Antibody; Polyclonal rabbit antibody raised against endogenous levels of 
AKT1 only when phosphorylated at Ser473. Also recognizes AKT2 and AKT3 when 
phosphorylated at the corresponding residues; Cell Signaling Technology, Inc., USA; Item # 
9271; Western Blotting Dilution 1:1000 
 
– Phospho‐p44/42 MAP Kinase (Thr202/Tyr204) Antibody; Polyclonal rabbit antibody raised 
against endogenous levels of p44 and p42 MAP Kinase (Erk1 and Erk2) when 
phosphorylated either individually or dually at Thr202 and Tyr204 of Erk1 (Thr185 and 
Tyr187 of Erk2); Cell Signaling Technology, Inc., USA; Item # 9101; Western Blotting Dilution 
1:1000 
 
– Phospho‐GSK‐3β (Ser9) Antibody; Polyclonal rabbit antibody raised against endogenous 
levels of GSK‐3β only when phosphorylated at serine 9; Cell Signaling Technology, Inc., 
USA; Item # 9336; Western Blotting Dilution 1:1000 
 
– Phospho‐GSK‐3α/β (Ser21)/(Ser9) Antibody; Polyclonal rabbit antibody raised against 
endogenous levels of GSK‐3α/β only when phosphorylated at serine 21 or 9; Cell Signaling 
Technology, Inc., USA; Item # 9327; Western Blotting Dilution 1:1000 
 
- Phospho-Foxo1 (Ser 256) Antibody Polyclonal rabbit Antibody detects endogenous levels 
of Fox01 only when phosphorylated at serine 256 Cell Signaling Technology, Inc., USA; Item 
# 9336; Western Blotting Dilution 1:1000 
 
– Presenelin 1 (C20) Antibody; Polyclonal goat antibody raised against a peptide mapping at 
the C‐terminus of Presenilin 1 of human origin; Santa Cruz Biotechnology, Inc., USA; Item # 
sc‐1244; Western Blotting Dilution 1:1000 
 
- PTEN Polyclonal Rabbit mAb detects endogenous levels of total PTEN protein; Cell 
Signaling Technology, Inc., USA; Item # 138G6; Western Blotting Dilution 1:1000 
 

2.1.4 Secondary Antibodies 
 
– Anti Goat IgG (whole molecule), peroxidase conjugated; Affinity isolated antigen specific 
antibody obtained from rabbit anti‐goat antiserum by immunospecific purification; 
Sigma‐Aldrich, USA; Item # A5420; Western Blotting Dilution 1:1000 
 
– Anti Mouse IgG (Fab specific), peroxidase conjugated; Developed in goat using purified 
mouse IgG Fab fragment as immunogen, the antibody is isolated from goat anti‐mouse IgG 
antiserum by immunospecific purification; Sigma‐Aldrich, USA; Item # A9917; Western 
Blotting Dilution 1:15000 
 
– Anti Rabbit IgG, peroxidase conjugated; Developed in goat using purified rabbit IgG as 
immunogen, the antibody is isolated from goat anti‐rabbit IgG antiserum by immunospecific 
purification; Sigma‐Aldrich, USA; Item # A6154; Western Blotting Dilution 1:1000 
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2.2 Materials 
 
Blotting chamber Trans‐Blot® Semi‐Dry Transfer Cell 
Bio‐Rad Laboratories, USA 
 
Blotting membrane Immun‐BlotTM PVDF Membrane for Protein Blotting 
Bio‐Rad Laboratories, USA 
 
Blotting paper Whatman® Gel Blotting Paper 
Schleicher & Schuell, Germany 
 
Cover‐slips Cover glasses 24 x 50 mm 
VWR International GmbH, Germany 
 
6-well culture dishes poly-L-lysine coated 
Nunc – Thermo Fisher Scientific, Denmark 
 
iCycler Thermocycler 
Bio‐Rad Laboratories, USA 
 
Gewebe-Homogenisator  
VWR International GmbH, Germany 
 
Microplate reader Mithras LB 940 multimode microplate reader 
Berthold Technologies GmbH & Co. KG, Germany 
 
Microscope Fluorescence Microscope Eclipse E800 
Nikon Instech Co., Ltd. Kanagawa, Japan 
 
Microscope slides Microscope slides 76x26 mm 
Menzel GmbH &Co KG, Braunschweig, Germany 
 
Minigel‐Twin Gel Electrophoresis Apparatus, Minigel‐Twin 
Biometra GmbH, Germany 
 
NanoDrop NanoDropTM Spectrophotometer ND 1000 
ThermoFisher Scientific, USA 
 
NMR Analyzer minispec mq7.5 
Burker Optik, Ettlingen, Germany 
 
Photo‐paper Amersham HyperfilmTM ECL 
GE Healthcare UK Ltd, England;  
 
Powerpac Biometra Standard Power Pack P25 
Biometra GmbH, Germany 
 
Thermomixer  
Eppendorf, Hamburg, Germany 
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2.3 Methods 

2.3.1 Isolation of genomic DNA 
 

Mouse tail biopsies were incubated o/n in lysis buffer (100 mM Tris HCl (pH 8.5), 5 mM 

EDTA, 0.2% (w/v) SDS, 0.2M NaCl, 500 mg/ml proteinase K) in a thermomixer at 55°C. DNA 

was then precipitated from solution by adding an equivalent of isopropanol. After 

centrifugation (13.000 rpm, 15 minutes, RT) supernatant were removed. Subsequent to 

adding of 150 µl of 70% ethanol samples were centrifuge a second time (13.000 rpm, 15 

minutes, RT). Afterwards DNA pellet was dried and resuspended in 50 µl double distilled 

water (ddH2O). 

2.3.2 Quantification of Nucleic acid 
 

DNA concentration was measured at 260nm with NanoDrop® ND-100 UV 

Spectrophotometer. 

2.3.3 Polymerase Chain Reaction (PCR) 
 

The PCR method was used to genotype mice for the presence of floxed alleles or transgenic 

expression of APP or synCre with primers listed in Table 2-1 reaction was performed in a 

Thermocycler PCR machine. All amplifications were performed in a total reaction volume of 

50 µl, containing a minimum of 100 ng template DNA, 25 pmol of each primer, 25 µM dNTP 

Mix, 1 x goTaq reaction buffer and 1unit of goTaq DNA polymerase. Standart PCR programs 

started with 4 minutes denaturation at 95°C, follow ed by 30 – 45 cycles consisting of 

denaturation at 95°C for 45 seconds, annealing at o ligonucleotide-specific temperatures for 

30 seconds and elongation at 72°C for 30 seconds an d final elongation step at 72°C for 7 

minutes 

. 

Primer Sequences 5’-3’ T Annealing (°C) Oriantation 
SynCre 5’ ACCTGAAGATGTTCGCGATTATCT 57 sense 

SynCre 3’ ACCGTCAGTACGTGAGATATCTT 57 antisense 

Tg2576 5’ CTGACCACTCGACCAGGTTCTGGG 66 sense 

Tg2576 3’ GTGGATAACCCCTCCCCCAGCCTAGACCA 66 antisense 

IGF-1R 5’ TCCCTCAGGCTTCATCCGCAA 59 sense 

IGF-1R 5’ CTTCAGCTTTGCAGGTGCACG 59 antisense 

Table 2-1 Oligonucleotides used for genotyping  

PCR-amplified DNA fragments were applied to 2% (w/v) agarose gels (1 x TAE, 0.5 µg/ml ethidium bromide) and 
electrophoresed at 150 V.  
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2.3.4 Animals, breeding and genotyping 
 

IGF1Rlox/lox mice were generated as described above and crossed with Synapsin-Cre 

(synCre) mice to achieve neuron-specific deletion. Mice which did not express APPsw or 

synCre served as controls. Animals were housed in a 12-h light/dark cycle (07:00 on/19:00 

off) and were fed a standard rodent diet. Tg2576 mice with transgenic expression of the 

Swedish mutation of APP695 (APPSW were purchased from Taconic Corporate, Hudson, NY, 

USA) in a B6/SJL background. Since the genetic background of Tg2576 mice might influence 

mortality164,166 , we used the APPSW model from taconic in a B6/SJL background and crossed 

these mice back for 3 generations in a C57BL/6 background. Due to this approach similar 

mortality rates of Tg2576 mice were obtained as described in the literature167,168. All animal 

procedures were performed in accordance with the German Laws for Animal Protection and 

were approved by the local animal care committee and the Bezirksregierung Köln. 

2.3.5 Histology and immunostaining 
 
X-gal staining 

 

SynCre mice were crossed with RosaArte1 reporter mice (28). SynCre-LacZ mice were 

anesthetized and transcardially perfused with physiologic saline solution followed by 4% 

paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline (PBS; pH 7.4). Brains were then 

frozen in tissue-freezing medium (Jung Tissue Freezing Medium; Leica Microsystems, 

Wetzlar, Germany) and sectioned on a cryostat. Slides containing sagitally dissected brains 

were fixed 15 minutes with ice cold methanol at -20°C following by 2 x washing in PBS. Then 

the slides were incubated in X-gal staining solution (5 mM potassium hexacyanoferrat II, 

5mM Potassium hexacyanoferrat III, 2 mM MgCl2 and 1 mg/ml X-gal dissolved in DMSO) 

over night at 37°C light protected. Next the slide were washed 3 x with PBS and 1 x in 

distilled H2O. Afterwards the slides were mounted in Kaiser’s glycerol gelatine and stored 

light protected at 4°C.   

 

Thioflavin-S staining 

 

Tg2576 and nIGF-1R-/- mice were anesthetized and transcardially perfused with physiologic 

saline solution followed by 4% paraformaldehyde (PFA) in 0.1 M phosphate-buffered saline 

(PBS; pH 7.4). Brains were then fixed for 48h in 4% PFA solution at 4°C. Afterwards brains 

were paraffin embedded and sectioned. Paraffin slides were sequently incubated in 2 x Xylol 

for 15 minutes and in a decent order 2 x in 100%, 1 x 96%, 1 x 70% ethanol for 1 minute. 

Then the slides were washed for 10 minutes in distilled water. All followed steps were 
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performed light protected. Slides were incubated in 0,1% Thioflavin-S staining solution for 3 

minutes.  Subsequent they were washed 3 x in distilled water followed by a differentiation 

step with 1% acetic acid for 20 minutes. Afterwards slides were washed with normal H2O, 

mounted in  Kaiser’s glycerol gelatine and stored light protected at room temperature. 

2.3.6 Metabolic characterization, glucose, and insu lin tolerance tests 

 
Mice were weighed weekly beginning at weaning in week 4 until performance of glucose and 

insulin tolerance tests in weeks 10 and 11. From week 12 blood glucose and weight was 

measured every 4 weeks.  

For insulin tolerance tests animals were starved overnight (16 h) and injected with 0.75 U/kg 

body weight of human insulin (Novo Nordisk, Copenhagen, Denmark) into the peritoneal 

cavity. Blood glucose values were measured in blood collected from the tail tip immediately 

before and 15, 30, and 60 min after the injection. Blood glucose measurements were 

performed using a blood glucose meter (GlucoMen, A. Menarini diagnostics, Berlin-Chemie, 

Neuss, Germany). Results were expressed as percentage of initial blood glucose 

concentration. 

For glucose tolerance tests mice were starved overnight (16 h). Animals were injected with 2 

g/kg body weight of glucose into the peritoneal cavity. Glucose levels were determined in 

blood collected from the tail tip immediately before and 15, 30, 60, and 120 minutes after the 

injection using a glucose meter. 

2.3.7 Analysis of Body composition 
 

Nuclear magnetic resonance (NMR) was employed to determine whole body composition of 

live animals using the NMR Analyzer minispec mq7.5. Radiofrequency (RF) pulse sequences 

are transmitted into the tissue. In response, RF signals are generated by the hydrogen in the 

tissue, which are detected by the minispec. The amplitude and duration of these signals are 

related to properties of the material. 

2.3.8 Isolation of cerebellar granule cells 
 
Cerebellar granule neurons were isolated from 5 days old mouse litters. All manipulations 

were performed at 4°C unless indicated otherwise. I ndividual cerebella were isolated, the 

meninges were removed using a dissecting microscope and the cerebella were washed 

three times in HHGN (1x HBSS, 2.5 mM Hepes, pH 7.4, 35 mM glucose, 4 mM sodium 

bicarbonate). Cerebella were then incubated in trypsin solution (10 mg/ml of trypsin, 100 

µg/ml DNase, in HHGN, pH 7.0 with 0.1 N NaOH) for 15 min. at room temperature. Cerebella 

were placed on ice, washed three times in HHGN and then triturated ~25 times with 1ml of 

DNAse solution (10 µg/ml of DNase in basal medium eagle (BME)). The cells were allowed 
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to settle for 5 min at room temperature, the supernatant was transferred into fresh tubes and 

the remaining pellet was triturated with an additional 1 ml of DNAse solution for another 25 

times. After settling, the supernatants were combined and the cells were centrifuged for 5 

minutes at 1000 x g. Cell pellets were suspended in BME containing 10% fetal calf bovine, 

100 U of penicillin-streptomycin, 2 mM gluthamine and 25 mM KCl (culture medium), counted 

and plated on poly-D-lysine coated 6-well culture dishes. After 24h 10 µM cytosine 

arabinoside (araC) was added to cultures to inhibit proliferation of non-neuronal cells. Cells 

were cultivated for 10 days. 

2.3.9 Immunoblotting 
 

Brain regions were lysed in buffer (50 mM HEPES (pH 7.4), 50 mM NaCl, 1 % Triton X-100, 

10 mM EDTA, 0.1 M NaF, 17 µg/ml Aprotinine, 2 mM Benzanidine, 0.1 % SDS, 1 mM 

Phenylmethylsulphonyl fluoride (PMSF) and 10 mM Na3VO4) using a dounce hand 

homogenizer. Protein expression was determined from brain region lysates (50-100 µg) 

dissolved in Laemmli buffer and resolved on 10 % or 15 % SDS-PAGE.  

2.3.10 Gel Electrophoresis 
 

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), a technique 

referred to as SDS‐PAGE, is used to separate proteins based on their molecular size. The 

negatively charged, anionic detergent SDS binds to heat denatured, linearized proteins 

within a given sample and applies a negative charge to each protein in proportion to its mass. 

The samples are subsequently transferred to one end of a layered polyacrylamide gel. The 

gel is located between glass plates and mounted into a gel apparatus (Minigel‐Twin). By 

applying an electric current to the gel‐matrix that is submerged in a buffer solution, the 

negatively‐charged proteins migrate throughout the gel in a size depending manner: Short 

proteins will fit more easily through the gel matrix and hence travel longer distances, whereas 

larger ones are hampered in locomotion and will cover shorter distances respectively. The 

SDS‐PAGE gels used were heterogeneous, consisting of a large pore stacking gel and a 

small pore resolving gel. The stacking gel served to gather SDS‐coated proteins. These were 

concentrated to several folds in a thin starting zone, before entering the resolving gel where 

proteins were ultimately separated. Resolving gels were used in concentrations of either 10 

or 15 % acrylamide contingent depending on sizes of the sought after proteins. Gels were 

poured between glass plates which were held apart by spacers. A comb was applied into the 

stacking gel to create a number of gel pockets in which protein samples were pipetted. 
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Reagents Stacking gel (5%) Resolving gel (10%) Resolving gel (15%) 

dd H2O 2.74 ml 6.34 ml 3.5ml 

Acrylamid (30%) 680 µl 4 ml 5.25 ml 

Tris 1,5M pH 8,8  1,5 ml 1.3 ml 

Tris 1 M pH 6,8 500 µl   

SDS (10%) 40 µl 120 µl 105 µl 

APS (10%) 80 µl 160 µl 140 µl 

TEMED 4 µl 12 µl 10.5 µl 

Table 2-2 SDS-PAGE mini gels (2 x)  

 

Polyacrylamide gels must be carefully polymerized by the mixing of the appropriate salts and 

buffers, monomeric units of acrylamide, an initiator of polymerization and a catalyst. 

Ammonium‐persulfate (APS) initiates gel polymerization. N,N,N',N'‐ tetramethylethyl-

enediamine (TEMED) is the catalyst and must be added last just before the gel is poured. 

Sample preparation: After determining the protein concentration of the cell lysates, 

SDS‐PAGE samples were prepared. These consisted of 50 µg of protein and the 

corresponding amount of 4 x SDS sample buffer. Just before being loaded into the gel, 

samples were boiled at 95°C for 5 min. and centrifu ged at 13.000 rpm for 2 min. In order to 

determine relative molecular weight of the proteins of 10 µl of molecular weight marker was 

loaded into the first and the last slot of every gel. Electrophoresis of the stacking gel was 

performed at 100 Volt, resolving gel at 150 Volt. 

2.3.11 Western Blot 
 
Western blot is defined as transferring electrophoretically separated proteins from a gel 

matrix onto a polyvinylidene difluoride (PDVF) or nitrocellulose membrane. In a second step 

the membrane is incubated in a solution containing antibodies to detect a protein of interest. 

In our lab the transfer process was performed by a method referred to as semidry‐blotting. It 

relies upon an electric current to drive SDS‐coated proteins from within the gel onto a PVDF 

membrane while maintaining inter‐spatial protein organization. The use of this technique 

requires a semi‐dry blotting chamber in which the resolving gel and the PVDF membrane are 

sandwiched between sheets of buffersoaked filter paper. This stack is placed between two 

plate electrodes in a horizontal configuration, resembling anode and cathode from top to 

bottom. The plate electrodes are separated only by the stack of filter paper, providing high 

field strength (V/cm) across the gel. 

In detail the procedure was performed as described below: Following gel electrophoresis, the 

gel was removed from in between the glass plates. Using a gel knife, the top stacking parts 
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as well as the bottom margin of the gel were trimmed away. In a clean container 7 sheets of 

Whatman's filter paper (7 cm x 9 cm in size) were soaked in transfer buffer. 4 of these 

pre‐soaked pieces were placed on the cathode plate of the blotting chamber. A piece of 

PVDF membrane (6.5 cm x 8.5 cm in size) was prewetted using 99% methanol for 10 

seconds and placed on top of the four layers of filter paper. Subsequently the trimmed 

resolving gel was placed upon the PVDF membrane and covered by the 3 remaining pieces 

of filter paper. Air bubbles were removed by gently rolling a glass pipette over the stack. 

Finally the blotting chamber was closed by placing the anode plate on the stack. This was 

done carefully without disturbing the stack structure. The transfer was performed using an 

electric current of 200 milli-amperes (mA), transfer time was set to 60 minutes. For target 

proteins of 100 kDa and more in size, transfer time was adjusted to 90 minutes. Prior to 

incubating the PVDF membrane with antibodies for detection of the target proteins, the 

membrane was immersed in a "blocking" solution at room temperature for 60 minutes. The 

solution was composed of tris buffered saline (TBS) with 10 % Western Blocking Reagent. 

The procedure was performed to assure saturation of vacant membrane protein binding sites. 

By preventing non‐specific antibody binding to the membrane, background staining was 

reduced. In the subsequent detection process, the membrane was incubated with antibodies 

using a two step procedure. The primary antibody, raised against a protein of interest, was 

applied over night (12‐16h) at 4° Celsius on a rocker. The antibody soluti on consisted of TBS, 

5 % Western Blocking Reagent and the diluted antibody. Following the next morning the 

membrane was thoroughly washed 5 times for 15 minutes to remove unbound antibodies. 

The washing process was performed at room temperature on a rocker using a solution of 

TBS containing 0.1 % TWEEN 20® (TBS‐T). The secondary antibody was subsequently 

applied for 60 minutes. It was directed at a constant portion of the primary antibody. The 

secondary antibody was conjugated to horseradish peroxidase (HRP) by protein cross‐linking. 

After the 60 minute incubation time, the membrane was washed 5 times for 5 minutes using 

TBS‐T. Using an enhanced chemiluminescence assay target proteins were detected by 

photographic film. 

For final analysis concentrations of each target protein were determined twice utilizing 

discrete PVDF membranes that derived from independent cell‐lysate samples. To assess 

potential error arising from deviations in the employed amount of gross protein we applied 

β‐actin‐specific antibodies to every membrane in order recognize differences in protein 

loading.  
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Enhanced Chemiluminescence Assay 

 
The enhanced chemiluminescence (ECL) assay is a light‐emitting system designed to detect 

membrane bound proteins. It is based upon horseradish peroxidase (HRP) that is conjugated 

to a secondary antibody, and on the ECL substrate luminol. HRP catalyzes the oxidation of 

luminol which then emits light. The light is chemically enhanced and recorded on film for 

further analysis by densitometry. The membrane was soaked in the detection reagent for two 

minutes (Amersham ECL™ Western Blotting Detection Reagent). It was subsequently 

covered by transparent plastic foil and placed in a metal cassette. In the darkroom the 

membrane was exposed to photosensitive film (AmershamTM Hyperfilm ECL) Depending on 

the intensity of the membrane emitted light, film‐exposure times varied between 10 seconds 

and 30 minutes. Following this, the film was developed. 

 
Membrane Stripping 
 
In cases where the PVDF membrane was reprobed to detect a different protein of interest, 

the membrane was "stripped" to clear all previously bound antibodies prior to being 

incubated with antibodies for a second time. In order to do so, the membrane was incubated 

in stripping solution (62.5 mM Tris‐HCl pH 6.8, 2% SDS and 100 mM β‐ mercaptoethanol) for 

20 minutes at 55°Celsius in a water ‐bath. Following this, the membrane was thoroughly 

washed 5 times for 10 minutes using TBS‐T and blocked for 60 minutes using standard 

procedure. Thereafter the membrane was ready to be reprobed with primary antibody. 

2.3.12 Secretase Actvity Assays 

 
In order to detect the enzymatic activity of α‐ and β‐secretase, classes of proteases that are 

associated with the cleavage of APP, we performed a number of secretase activity assays. 

By adding secretase‐specific, reporter conjugated peptides to cell lysates, secretase activity 

is determined using a fluorometric reaction. This reaction is based upon cleavage of the 

reporter conjugated peptides by secretase, resulting in the release of a fluorescence signal. 

The fluorometric reaction is proportional to the level of enzymatic activity in the cell lysate. 

Fresh dissected brain regions were homogenized in cold extraction buffer provided by the kit, 

followed by 45 min incubation on rotator wheel at 4°C. Protein concentrations were 

determined by bradford protein assay. Samples were prepared in triplicates. Each sample 

contained 100 µg of brain lysate protein that was diluted in 50 µl of cold cell extraction buffer 

(provided by the kit), 50 µl of cold reaction buffer (provided by the kit) and 5 µl of prewarmed 

(20°C) substrate. The constituents were sequentiall y pipetted into wells of 96 a well 

micro‐plate. The microplate was covered with foil, tapped gently to mix and incubated in the 

dark at 37°C for 60 min. Samples were analyzed in a  fluorescence micro‐plate reader using a 
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light filter that allowed excitation between 335 and 355 nanometer (nm) wavelength. 

Collection of emitted light was accomplished at 580 nm wavelength (Emission‐Filter f 535; 

Lamp Energy 3500). For data analysis two negative control samples were included; one 

without brain lysate, and one neither containing brain lysate nor substrate. 

 

2.3.13 ELISA β-Amyloid 1-40/42  

 
Amyloid was extracted using 5 M guanidine HCl in 50 mM Tris HCl, pH 8.0. Then ELISAs of 

βA1-40/1-42 were performed following the manufacturers protocol (Cat# KHB3481/ 3441, 

Invitrogen Corporation, Carlsbad, CA, USA) 

 

2.3.14 Statistical analysis 
 
To quantify the changes in optical density we used the software AIDA (Version 4.00.027, 

Raytest, Straubenhardt, Germany). For statistical analysis of the different study groups 

unpaired Student’s t-test was performed. Statistical significance was defined as *p<0.05. For 

Kaplan Meier analysis the XLSTAT-Life software, a Microsoft Excel add-in (www.xlstat.com) 

was used. For comparison of the different study groups Wilcoxon rank tests were performed. 

Statistical significance was defined as minimum *p<0.05. 
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Growing evidence indicates insulin and insulin-like growth factor-1 (IGF-1) signaling (IIS) as 

being involved in the pathogenesis of AD. Insulin receptor (IR) and insulin-like growth factor-

1 receptor (IGF-1R) signaling is markedly disturbed in the central nervous system (CNS) of 

AD patients. Post mortem investigations of brains from patients with AD revealed a markedly 

downregulated expression of IR, IGF-1R and insulin receptor substrate (IRS) proteins in 

neurons from AD patients, and these changes progress with severity of neurodegeneration. 

These findings raise the important question, whether changes in IR/IGF-1R signaling (IIS) 

are cause, consequence, or may be even compensatory counterregulation to 

neurodegeneration. In the present thesis the influence of neuronal IGF-1R signaling in the 

pathophysiology of Alzheimer’s disease was analyzed via neuron-specific IGF-1R deletion in 

an Alzheimer’s disease mouse model. Neuron-specific IGF-1R knockout mice were 

generated using the cre-loxP-system. Mice carrying floxed exon 3 of the IGF-1R gene were 

crossed with mice expressing the Cre recombinase under control of the neuron-specific 

synapsin-1 promoter (synCre). Cre-mediated recombination and subsequent excision of 

exon 3 of the IGF-1 receptor gene results in a frame shift after 213 codons, with an 

appended sequence of 27 amino acids followed by a stop codon in exon 4. Generated nIGF-

1R-/- were further crossed with mice expressing the Swedish mutation of the APP gene 

(Tg2576). Thus, generated nIGF-1R-/-Tg2576 mice were analysed in comparison to wild type, 

Tg2576 and nIGF-1R-/- animals. 

 

synCre / IGF1R lox/+

Synapsin/Cre Tg2576IGF-1Rlox/lox

X

X

Neuron-specific IGF-1-
receptor

knock out/ Tg2576

synCre /Tg2576 / IGF1R lox/lox

IGF-1Rlox/lox

X

Tg2576 / IGF1R lox/+ 

♀

♂

synCre / IGF1R lox/+

Synapsin/Cre Tg2576Tg2576IGF-1Rlox/loxIGF-1Rlox/lox

X

X

Neuron-specific IGF-1-
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knock out/ Tg2576

synCre /Tg2576 / IGF1R lox/lox

IGF-1Rlox/loxIGF-1Rlox/lox

X

Tg2576 / IGF1R lox/+ 

♀
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Fig. 3-1 Illustration of the breeding strategy  

SynCre and IGF-1Rlox/loxmice were crossed to obtain synCre/IGF-1Rlox/+ females. These females were further 
crossed with male offspring of mated Tg2576 and IGF-1Rlox/+mice to receive neuron-specific IGF-1R knockout in 
an AD background (SynCre/Tg2576/IGF-1R-/-).  
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3.1 IGF1R expression in cerebellar granule cells of neu ron-specific IGF-1R 
knockout mice (nIGF-1R -/-) 
 
The synapsins are peripheral membrane proteins specific for the nervous system. The 

promoter activity of synapsin-1 was found in different regions of the CNS among these are 

the hippocampus, the spinal cord and also in the cerebellum169. In a first attempt to 

investigate neuronal deletion efficiency of the IGF-1R knockout, cerebellar granule cells from 

wild type and nIGF-1R-/- were isolated and maintained in cell culture for 10 days. Afterwards 

cells were lysed an western blot analyses was performed.  

 

 

Fig. 3-2 Cerebellar granule cells of nIGF-1R -/- mice   

10 days cultured primary cerebellar granule cells. Cells were cultured in basal medium eagle with 10% FCS, 1% 
P/S, 2mM gluthamine, 25nM KCl and 10µM ara-C. Western blot analysis of IGF-1R in lysed cerebellar granule 
cells of wild type and nIGF-1R-/- animals. 100µg of protein were applied for western blot analysis.  
 
 
After isolation and 6 days of selection via cytosine arabinoside (ara-C) a 99% neuronal cell 

population was achieved (Fig. 3-2). Surprisingly, western blot analysis of 10 days old 

wildtype and nIGF-1R-/- cerebellar granule cells revealed no differences of IGF-1R 

expression (Fig 3-2 lower panel). For that reason the pattern of synapsin-1 promoter driven 

Cre recombinase activity was investigated in detail using a lacZ reporter mouse strain. 
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3.2 Pattern of Synapsin-1 promoter driven Cre recombina se activity in the CNS 
 
In order to verify neuron-specific and region-specific Cre recombinase expression in the 

mouse model used in present thesis, X-gal staining was performed in a lac-Z reporter mouse 

strain. Crossing synCre mice with mice carring the lac-Z reporter gene under the control of 

the ubiquitously expressed Rosa 26 promoter that is suppressed by a loxP flanked 

hygromycin resistence gene, which includes a stop cassette, allowed to visualize the pattern 

of the synapsin-1 Cre recombinase activity and, in consequence, detecting the region were 

the IGF-1R deletion should occur. Brains of the reporter mice were dissected and prepared 

for cryo-section and X-gal staining (see material and methods). Afterwards 10-12 µm slices 

were analyzed using light microscopy. 

 

 

A 

 
B 

 
Fig. 3-3 β-Galactosidase staining representing Cre recombinas e activity in synCre lacZ reporter 
mice  

A: 25x magnification of β-Galactosidase staining of synapsin cre activity in cerebellum and parietal cortex. B: 25x 
and 50x magnification of the frontal cortex of synCre lacZ mice. Blue staining indicates the β-galactosidase 
activity mediated by the synapsin-1 cre promoter in the frontal cortex highlighted by black arrows.  
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X-gal staining evokes from cleavage of X-Gal by β-galactosidase yielding galactose and 5-

bromo-4-chloro-3-hydroxyindole. The latter is oxidized into 5,5'-dibromo-4,4'-dichloro-indigo, 

an insoluble blue product and can be detected by light microscopy. As shown in Figure 3-3 A, 

no X-gal staining was found in the cerebellum, parietal cortex, occipital cortex, hypothalamus 

and olfactory bulb, whereas a very low expression was found in the frontal cortex of the 

reporter mice, seen in Figure 3-3 B, highlighted by the black arrows. Cre recombinase 

activity was found predominantly in dentate gyrus (GD) and CA3 region of the hippocampus 

as shown in different magnifications in Figure 3-4. The blue X-gal staining in the CA3 region 

and dentate gyrus of hippocampus is well distinguishable from the circumjacent tissue and 

again highlighted in the lower magnifications by black arrows. 

 

 
Fig. 3-4 β-galactosidase staining representing Cre recombinas e activity in the hippocampal 
formation of synCre lacZ reporter mice   

Upper panels: 25x and 50x magnification of β-Galactosidase staining in hippocampal formation. Lower panels: 
100x magnification of hippocampal formation. Blue staining indicates β-galactosidase activity mediated by 
synapsin-1 promoter in the hippocampus (black arrows). CA-3: cornu ammonis; GD: dentate gyrus 

3.3 IGF-1R expression in the CNS and peripheral tissues  of nIGF-1R -/- mice   
 

The X-gal staining reveals the dentate gyrus, CA3 region of the hippocampus as major 

localisation of Cre recombinase expression of SynCre mice. The piriform cortex, frontal 

cortex and thalamus show Cre recombinase activity to very low extend. In neuron-specific 

IGF-1R knockout mice IGF-1R deletion was confirmed on protein level by western blot 

analysis of different brain regions. In order to exclude significant IGF-1R deletion in 

peripheral tissues western blot analyses from different organs were performed. 
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Fig. 3-5  Western blot analysis of IGF-1R protein e xpression in different brain regions  

Western blot analysis of IGF-1R and actin (loading control) expression in lysates of cerebellum, hippocampus and 
cortex from  60 weeks old wild type and nIGF-1R-/- mice. 100µg of protein were applied on 10% SDS-PAGE gel. 
Examples of 3 independent experiments. 
 
According to the X-gal staining, as seen in Figure 3-4, a visual IGF-1R deletion occurs only in 

the hippocampal region. However, caused by IGF-1R expression in non-neuronal cells and 

remaining IGF-1R expression in the CA1 and CA2 region no complete deletion of IGF-1R 

was detected from brain lysates of total hippocampus. Other regions like the cerebellum or 

the cortex show unaltered expression of the IGF-1R protein. The densitometric quantification 

of the IGF1-1R protein expression in the hippocampus formation seen on the left side of 

Figure 3-6 indicates a diminished IGF-1R expression to 57% compared to the wild type 

control group. On the other hand expression of IGF-1R in the cortex was unchanged (seen 

on the right panel). 

 

 
Fig. 3-6 Densitometric quantification of IGF-1R exp ression in the CNS 

Densitometric analysis of IGF-1R expression in hippocampus and cortex of wild type (black bars) and nIGF-1R-/- 
(black and white striped bars) Data represented mean ± SD (n=8)   
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Western blot analysis of peripheral tissues shown in Figure 3-7 revealed an unaltered IGF-

1R protein expression in heart, lung, kidney, spleen, pancreas, muscle and fat. The IGF-1R 

protein is known to be not expressed in the liver, so no IGF-1R protein signal could be 

detected.  

In order to investigate the influences of the neuron-specific IGF-1R deletion predominantly in 

hippocampus the unaffected cortex were used as an additional internal control.    

 
 
 

Control nIGF1R -/-

Heart Lung Liver

Spleen

Kidney

Pancreas Muscle Fat

Control nIGF1R -/- Control nIGF1R -/- Control nIGF1R -/-

IGF-1R

Actin

IGF-1R

Actin

Control nIGF1R -/- Control nIGF1R -/-Control nIGF1R -/-Control nIGF1R -/-

Control nIGF1R -/-Control nIGF1R -/-

Heart Lung Liver

Spleen

Kidney

Pancreas Muscle Fat

Control nIGF1R -/-Control nIGF1R -/- Control nIGF1R -/-Control nIGF1R -/- Control nIGF1R -/-Control nIGF1R -/-

IGF-1R

Actin

IGF-1R

Actin

Control nIGF1R -/-Control nIGF1R -/- Control nIGF1R -/-Control nIGF1R -/-Control nIGF1R -/-Control nIGF1R -/-Control nIGF1R -/-Control nIGF1R -/-
 

Fig. 3-7  Western blot analysis of IGF-1R protein e xpression in peripheral tissues 

Western blot analysis of IGF-1R and actin (loading control) protein expression in lysates of heart, lung, liver , 
kidney, spleen, pancreas, muscle and fat from wild type and nIGF-1R-/- mice. 100µg of protein were applied on 
10% SDS-PAGE gel. Examples of 3 independent experiments 
 

3.4 IGF-1R signaling in Hippocampus after acute IGF-1 s timulation 
 

To analyse the downstream signals of the IGF-1R hippocampi were stimulated using 10nM 

IGF-1. Brains of 28 weeks old WT and nIGF-1R-/-mice were dissected and divided sagitally. 

The hippocampi were dissected and incubated for 10 minutes at 37°C, 5%CO 2 in basal 

medium eagle with and without 10nM IGF-1. Afterwards Western Blot analyses were 

performed. 

 



Results 

 39 

Hippocampus

pAKT

AKT

IRβ

IGF1R

Actin

10 nM
IGF1 Control nIGF1R-/-

+- +-

Hippocampus

pAKT

AKT

IRβ

IGF1R

Actin

10 nM
IGF1 Control nIGF1R-/-

+- +-
Control nIGF1R-/-

+- +-

 
Fig. 3-8  Western blot analysis of IGF-1R expressio n of Hippocampus and Cortex  

Western blot analysis of IGF-1R, insulin receptor, pospho-AKT (Ser 473), AKT and actin protein expression in 
hippocampus lysates from wild type and nIGF-1R-/- mice. Hippocampi were incubated in Basal medium eagle with 
and without 10nM IGF for 10 minutes at 37°C, 5% CO 2 and lysed. 100µg of proteinlysates of hippocampi were 
applied on 10% SDS-PAGE gel. Examples of 3 independent experiments are shown  
 
In contrast to the IGF-1R, IR protein expression was undistinguishable in hippocampi of 

controls and nIGF-1R-/- mice (Figure 3-8). To simulate a signaling event isolated hippocampi 

were incubated with and without 10nM IGF. Western blot analysis indicates that hippocampal 

IGF-1R deletion leads to a decreased IGF-1 stimulated AKT phosphorylation, suggesting that 

indeed the IGF-1R deletion in nIGF-1R-/- mice reduce downstream signaling. 

 

3.5 Kaplan-Meier analysis 
 
As a result of the Alzheimer’s disease, patients as well as animal models have a reduced 

expectation of life. On the other hand the group of Holzenberger could show that a 

heterozygous IGF1-R deletion in the whole brain leads to an increase of life-span170. To 

analyse the role of nIGF-1R deletion on mortality in the Tg2576 mice Kaplan-Meier analyses 

were established.  
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Fig. 3-9 Kaplan-Meier analysis of WT, Tg2576, nIGF- 1R-/- and nIGF-1R -/-Tg2576 animals  

Kaplan-Meier analysis of of WT (n = 108), Tg2576 (n = 64), nIGF-1R-/- (n = 18) and nIGF-1R-/-Tg2576 (n = 22) 
animals. * Wilcoxon rank test p-value ≤ 0,01 versus Tg2576. 
 
Figure 3-9 presents the Kaplan-Meier-analysis of WT, Tg2576, nIGF-1R-/- and nIGF-1R-/- 

Tg2576 population. Strikingly, nIGF-1R-/- mice were protected against APPsw-induced 

lethality in Tg2576 background. After 60 weeks of observation approximately 20% of WT and 

nIGF-1R-/-Tg2576 animals died so that no significant differences were observed between WT 

and nIGF-1R-/-Tg2576 nor nIGF-1R-/- animals. In contrast to these nearly 60% of the Tg2576 

animals died within 60 weeks, which represents a significant reduced lifespan in comparison 

to all other genotypes (Wilcox-rank: p-value ≤ 0,01). Remarkably 50% of all Tg2576 animals 

died already within the first 28 weeks. To further elucidate differences between genders 

Kaplan-Meier analysis of females and males were done separately (Figure 3-10). In both 

genders IGF-1R deletion protects Tg2576 mice from premature death. The female population 

exhibits a slightly higher survival rate than the male population. 
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Fig. 3-10 Kaplan-Meier analysis of WT, Tg2576, nIGF -1R-/- and nIGF-1R -/-Tg2576 females and 
males 

Left panel: Kaplan-Meier analysis of of WT (n = 48), Tg2576 (n = 35), nIGF-1R-/- (n = 11) and nIGF-1R-/-Tg2576 (n 
= 7) female mice. * Wilcoxon p-value ≤ 0,02 versus Tg2576. Right panel: Kaplan-Meier analysis of of WT (n = 58), 
Tg2576 (n = 29), nIGF-1R-/- (n = 7) and nIGF-1R-/-Tg2576 (n = 15) male mice. * Wilcoxon rank test p-value ≤ 0,03 
versus Tg2576 
 

Concerning the results of Holzenberger group170, showing a lifespan extension in mice which 

are hetereozygotus for IGF-1R in all neurons and glia cells of the CNS, hetereozygotus 

nIGF-1R knockout (nIGF-1R+/-) animals were analysed under the hypothesis that nIGF-1R+/- 

is sufficient to rescue the APPsw -induced lethality. The Kaplan-Meier analysis of Figure 3-11 

indicate that after 60 weeks of observation nIGF-1R+/- heterozygosity does not rescue 

lethality of Tg2576 animals. No difference neither between WT and nIGF-1R+/- nor between 

Tg2576 and nIGF-1R+/-Tg2576 animals was observed.  However, there might be a slight shift 

of the Kaplan-Meier curves, indicating a slight influence of IGF-1R heterozygosity on APPsw 

induced mortality. Even seperat Kaplan-Meier-Analysis of 17 weeks old animals did not 

reveal significant differences between the genotypes. Therefore the further investigations 

were focused on nIGF-1R-/- and nIGF-1R-/-Tg2576 animals respectively. 
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Fig. 3-11 Kaplan-Meier analysis of WT, Tg2576, nIGF-1R+/- and nIGF-1R +/-Tg2576 animals 

Kaplan-Meier analysis of of WT (n = 108), Tg2576 (n = 64), nIGF-1R+/- (n = 21) and nIGF-1R+/-Tg2576 (n = 21) 
animals.  
 

3.6 Metabolic and somatic characterisation  

 
Glucose metabolism and somatic growth might have influence on life-span and survival. 

Furthermore, altered glucose metabolism or body growth possibly have influence on the 

development or progression of AD. Recent studies of Holzenberger group revealed that an 

IGF-1R-/- deletion in all neurons and all glia cells of the CNS leads to microcephalon, severe 

growth retardation, infertility, and abnormal behaviour170. Furthermore it has been described 

that whole body deletion of the different IRS proteins, a downstream target of IGF-1R, leads 

to different pheonotypes. Male mice with a whole body deletion of IRS-2 develop a 

hyperglycemia and type-2 diabetes and died within 40 weeks171. Otherwise IRS-1 deficient 

mice display growth retardation without developing diabetes. Therefore, glucose metabolism 

and somatic growth were monitored from week 4 after birth up to week 60.   
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3.6.1 Glucose homeostasis  
 
In order to assess the influence not only of hippocampal neuron-specific IGF-1R deletion but 

also of APPsw expression on peripheral glucose homeostasis, blood glucose levels of female 

and male mice were monitored separately (Figure 3-12). During the observation, up to 60 

weeks, no significant alteration of blood glucose levels neither in female nor in male mice of 

each group was detected. 
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Fig. 3-12 Blood glucose levels of male and female m ice during 60 weeks of observation  

Average blood glucose levels during observation period in [mg/dl] of WT (black diamond) females (at least n = 36), 
males (at least n = 42); Tg2576 (grey square) females (at least n = 15), males (at least n = 10); nIGF-1R-/- (white 
triangle) females (at least n =4) , males (at least n = 4) and nIGF-1R-/-Tg2576 (white circle), females (at least n 
=4 ), males (at least n = 9). Values are means ± SD 
 

For further evaluation of glucose homeostasis glucose tolerance test were performed at 10 

weeks of age. After administration of 2 g glucose/ kg body weight into the peritoneal cavity 

no significant changes could be detected. All mice of each group displayed a similar increase 

in blood glucose levels as well as a similar clearance after glucose challenge, so that all 

animals returned to normal blood glucose levels after 120 min (see Figure 3-13). 
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Fig. 3-13 Glucose tolerance test of male and female  mice  

Average blood glucose levels in [mg/dl] of 10 weeks old WT (black diamond) females (n = 65), males (n = 69); 
Tg2576 (grey square) females (n = 36), males (n = 26); nIGF-1R-/- (white triangle) females (n = 16), males (n = 11)  
and nIGF-1R-/-Tg2576 (white circle) females (n = 10), males (n = 17). Values are means ± SD 
 

In addition, Insulin sensitivity was determined by insulin tolerance tests at 11-12 weeks of 

age. Animals of each group received 0.75 U/kg body weight of human insulin into the 

peritoneal cavity. As a result of the insulin administration blood glucose levels decreased 

within 60 minutes after administration (cp. Figure 3-14). No significant changes were 

observed.  
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Fig. 3-14 Insulin tolerance test from male and fema le mice  

Average blood glucose levels in [mg/dl] of 11 weeks old WT (black diamond) females (n = 60), males (n = 64); 
Tg2576 (grey square) females (n = 37), males (n = 22); nIGF-1R-/- (white triangle) females (n = 16), males (n = 10)  
and nIGF-1R-/-Tg2576 (white circle) females (n = 9), males (n = 15). Values are means ± SD 
 

The results of the metabolic characterisation lead to the conclusion that neither the IGF-1R 

deletion nor Tg2576 background has an impact on peripheral glucose homeostasis.  
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3.6.2 Somatic characterisation 
 

Kappeler et al. showed that deletion of IGF-1R in all neuron and all glia cells leads to 

microcephalon and severe growth retardation170. Heterozygosity of IGF-1R in neurons and 

glia cells caused reduced adult body size, metabolic alterations and led to delayed mortality 

and a longer mean lifespan. Whole body deletion of the IRS-1 gene causes growth 

retardation as well and like other dwarf mice IRS-1-/- mice show a life-span extension 

compared to their wild type littermates. Hence, body size, brain weight and brain-body ratio 

of adult 60 weeks old mice were measured and compared to their littermates. In addition, 

body weights of each group were monitored during the observation period of 60 weeks. 
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Fig. 3-15 Body length of females and males of the s tudy group  

Average body size of 60 weeks old WT (black bars), females (n = 29), males (n = 31); Tg2576 (grey bars) 
females (n = 6), males (n = 12); nIGF-1R-/- (white striped bars) females (n = 6), males (n = 6) and nIGF-1R-/-

Tg2576 (white bars) females (n = 6), males (n = 4). Values are means ± SD, * unpaired Student’s t-test p-value ≤ 
0,02). 
 

Figure 3-15 presents the body length of female and male mice of each group. Female mice 

in a Tg2576 background with and without nIGF-1R deletion have a significanttly decreased 

body length. Tg2576 female mice are approximately 5% smaller than WT or nIGF-1R-/- 

animals. Compared to nIGF-1R-/-Tg2576 animals Tg2576 females are 4% taller. Furthermore 

nIGF-1R-/-Tg2576 females are 8-10% smaller compared to WT or nIGF-1R-/- females. No 

significant changes were detected between WT and nIGF-1R-/- females. In male mice 

significant changes of body length were detected between WT and Tg2576 as well as 

between WT and nIGF-1R-/-Tg2576. Tg2576 males were 5% smaller and nIGF-1R-/-Tg2576 

9% smaller then WT males. In addition nIGF-1R-/- males were 6% taller than nIGF-1R-/-

Tg2576. Like female mice no significant changes were detected between WT and nIGF-1R-/-.   
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Fig. 3-16 Brain weight of females and males of the study group  

Average brain weight of 60 weeks old WT (black bars), females (n = 29), males (n = 31); Tg2576 (grey bars) 
females (n = 6), males (n = 12); nIGF-1R-/- (white striped bars) females (n = 6), males (n = 6) and nIGF-1R-/-

Tg2576 (white bars) females (n = 6), males (n = 4). Values are means ± SD, * unpaired Student’s t-test p-value ≤ 
0,008). 
 

Among mammals including mice, the size of the brain and its components are related to body 

size172. For 230 different species of mice, the brain-body ratio is constant at the same age173. 

At least 50% of brain and body growth is mediated by the insulin-IGF-signaling system174. 

Thus, brain weight of 60 weeks old mice was measured and plotted in Figure 3-16. The 

average brain weight of Tg2576 females was about 7% decreased and the brain weight of 

nIGF-1R-/-Tg2576 females even about 12% compared to wild type mice. Surprisingly, the 

brains weight of nIGF-1R-/- were about 12% decreased compared to WT females as well. 

Furthermore brain weight of males Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 were significant 

decreased compared to WT. In detail average brain weight of Tg2576 males was about 10% 

reduced and brain weight of nIGF-1R-/- about 14% reduced. Strikingly the average brain 

weight of nIGF-1R-/-Tg2576 was about 9%, 13% and even about 21% reduced compared to 

nIGF-1R-/- , Tg2576 and WT respectively. 

The alterations of body size were accompanied by changes in body weight. In the upper 

panel of Figure 3-17 (A-B) body weights of 60 weeks old female and male mice are shown.  

Compared to body length the reductions in body weight are unproportional higher in Tg2576 

and nIGF-1R-/-Tg2576 animals as in wild type and nIGF-1R-/- animals.  For example Tg2576 

female mice displayed a 5% reduced body size but the body weight is even about 19% 

reduced. Similar nIGF-1R-/-Tg2576 females body size was about 8% reduced but the body 

weight about 18%. A similar result was observed by comparing nIGF-1R-/- with Tg2576 and 

nIGF-1R-/-Tg2576 females. According to the results in female similar changes in body weight 

was observed in male mice but the results were more pronounced. Compared with WT 

males the Tg2576 males reveal a 5% body size reduction but a 22% reduced body weight. 

The nIGF-1R-/-Tg2576 male mice exhibit 9% decreased body size and 28% decreased body 

weight. However, no differences were detected between Tg2576 and nIGF-1R-/-Tg2576 
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Fig. 3-17 Body weight of 60 weeks old animals and g rowth curves of the different genotypes  

Upper panel: Average body weight of WT of 60 weeks old (black bars), females (n = 29), males (n = 31); Tg2576 
(grey bars) females (n = 6), males (n = 12); nIGF-1R-/- (white striped bars) females (n = 6), males (n = 6) and 
nIGF-1R-/-Tg2576 (white bars) females (n = 6), males (n = 4). Values are means ± SD, * unpaired Student’s t-test 
p-value ≤ 0,04). Lower panel: Average blood glucose levels during observation period of WT (black diamond) 
females (at least n = 36), males (at least n = 42); Tg2576 (grey square) females (at least n = 15), males (at least n 
= 10); nIGF-1R-/- (white triangle) females (at least n =4) , males (at least n = 4) and nIGF-1R-/-Tg2576 (white 
circle), females (at least n =4 ), males (at least n = 9). Values are means ± SD 
 

Growth curves of the different genotypes starting at the age of 4 weeks up to 60 weeks 

displayed a similar trend as seen in body weight evaluation of 60 weeks old animals (Figure 

3-17 C-D). Significant changes in body weight are according to this no single event but rather 

a result of the different genetic modifications. Additionally this effect seems to be more 

pronounced in male than female mice. 
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Due to the significant changes in body weight, body composition was examined by nuclear 

magnetic resonance analysis (NMR) at the age of 28 and 60 weeks.  

 

Fat content female 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R -/-/ 
Tg2576

[%
]

*
*

Fat content male 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R-/-/ 
Tg2576

[%
]

*
*

A BFat content female 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R -/-/ 
Tg2576

[%
]

*
*

Fat content male 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R-/-/ 
Tg2576

[%
]

*
*

Fat content female 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R -/-/ 
Tg2576

[%
]

*
*

Fat content female 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R -/-/ 
Tg2576

[%
]

*
*

Fat content male 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R-/-/ 
Tg2576

[%
]

*
*

Fat content male 28 weeks

0

10

20

WT Tg2576 nIGF-1R-/- nIGF-1R-/-/ 
Tg2576

[%
]

*
*

A B

 
Fig. 3-18 Fat content at 28 weeks  

Average fat content of 28 weeks old WT (black bars), females (n = 27), males (n = 17); Tg2576 (grey bars) 
females (n = 13), males (n = 4); nIGF-1R-/- (white striped bars) females (n = 9), males (n = 4) and nIGF-1R-/-

Tg2576 (white bars) females (n = 9), males (n = 10). Values are means ± SD, * unpaired Student’s t-test p-value 
≤ 0,01. 
 

Compared to the results of body weight in female mice a significant difference in fat content 

between Tg2576 and nIGF-1R-/- and nIGF-1R-/-Tg2576 animals was noticed. nIGF-1R-/- 

females displayed ~30% more fat as Tg2576 females. In contrast to body weight no fat 

content reduction were observed in nIGF-1R-/-Tg2576 females compared to wild type and 

nIGF-1R-/- females. Thus nIGF-1R-/-Tg2576 females displayed a ~30% higher fat content 

compared to Tg2576 females. In male mice significant changes were only detectable in 

Tg2576 and nIGF-1R-/-Tg2576 animals comparted to WT. In males the fat contents of 

Tg2576 as well as nIGF-1R-/-Tg2576 were about 30% reduced compared to wild type and 

nIGF-1R-/- male mice.  
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Fig. 3-19 Fat content at 60 weeks  

Average fat content of 60 weeks old WT (black bars), females (n = 27), males (n = 36); Tg2576 (grey bars) 
females (n = 15), males (n = 6); nIGF-1R-/- (white striped bars) females (n = 6), males (n = 6) and nIGF-1R-/-

Tg2576 (white bars) females (n = 4), males (n = 8). Values are means ± SD, * unpaired Student’s t-test p-value ≤ 
0,004. 
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During aging an increase in fat proportion is physiological, as seen in the evaluation of 60 

weeks old mice and illustrated in Figure 3-19. This increase in fat content was not observed 

for all genotypes. Tg2576 females and males as well as nIGF-1R-/-Tg2576 males did not 

increase their fat proportion. Tg2576 females exhibited a 60% of fat mass in comparison to 

WT, nIGF-1R-/- and nIGF-1R-/-Tg2576. In male mice this difference was more pronounced. 

Here, the Tg2576 animals as well as nIGF-1R-/-Tg2576 exhibited only 50% of fat mass 

compared to WT animals. 

As shown in Figure 3-20 A only Tg2576 females accumulate less fat during aging compared 

to the other genotypes. More exciting results were observed in 60 weeks old Tg2576 and 

nIGF-1R-/-Tg2576 males (Figure 3.20 B). Tg2576 and nIGF-1R-/-Tg2576 did not increase 

their fat proportion during aging in contrast to wild type or nIGF-1R-/- mice. 

In conclusion the Tg2576 background has an influence on body fat mass during aging which 

is more pronounced in males as in females. Remarkable in Tg2576 females IGF-1R deletion 

rescue the lacking fat accumulation during aging. All together it is rather unlikely that this 

effect influence survival rate of nIGF-1R-/-Tg2576 because the survival benefit is present in 

male and in female. 
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ig. 3-20 Comparison of Fat content of 28 and 60 wee ks old animals  

Average fat content of 28 and 60 weeks old WT (black bars); Tg2576 (grey bars); nIGF-1R-/- (white striped bars) 
and nIGF-1R-/-Tg2576 (white bars) females and male mice. Values are means ± SD. 
 

In order to evaluate whether the observed changes in brain weight and body weight alter the 

proportion of brain tissue in relation to body weight brain-body ratio was gender- and 

genotype-specific calculated and compared. However, not only aging might influence body 

weight, but also diet and different other important factors as well. In the present evaluation 

diet can be excluded because all animals received a normal standard diet. 
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Fig. 3-21 Brain-Body ratio of 60 weeks old mice  

Average brain-body ratio of 60 weeks old WT (black bars), females (n = 29), males (n = 31); Tg2576 (grey bars) 
females (n = 6), males (n = 12); nIGF-1R-/- (white striped bars) females (n = 6), males (n = 6) and nIGF-1R-/-

Tg2576 (white bars) females (n = 6), males (n = 4). Values are means ± SD, * unpaired Student’s t-test p-value ≤ 
0,04). 
 

 

As indicated in Figure 3-21 slight but significant differences were detected between female 

and male WT and Tg2576 mice as well as between Tg2576 and nIGF-1R-/- females. 

However, no changes were observed between Tg2576 and nIGF-1R-/-Tg2576 mice. 

 

The somatic and metabolic characterisation of the study groups revealed no differences 

between Tg2576 and nIGF-1R-/-Tg2576 mice, explaining increased survival of nIGF-1R-/-

Tg2576 animals in comparison to Tg2576 animals. 
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3.7 Biochemical analysis of 28 weeks old animals 
 
Protein expression analysis of nIGF-1R-/- mice results in downregulation of IGF-1R specificly 

in the hippocampus.  Concomitant with the downregulation of IGF-1R a significant higher 

survival of nIGF-1R-/-Tg2576 was observed in comparison to Tg2576 animals. In order to 

investigate the influence of downregulated IIS in an early phase of AD development 

biochemical analyses were performed at the age of 28 weeks. 

3.7.1 Analysis of IGF-1R/IR signaling 
 
First the IIS of 28 weeks old animals was investigated. The expressions of key components 

of the IIS were analysed. 
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Fig. 3-22 Western blot analysis of IGF1-R/IR signal ing of 28 weeks old mice I  

Western blot analysis of IGF-1R, IR, IRS-2 and actin (loading control) protein expression in Hippocampus and 
cortex lysates from 28 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein were 
applied on 10% SDS-PAGE. Examples of 2 independent experiments.  
 

As shown in Figures 3-5 and 3-6 IGF-1R was downregulated in the hippocampus but not in 

the cortex of nIGF-1R-/- and nIGF-1R-/-Tg2576 animals.  

The expression of the IR was not affected but a slight reduction of the downstream target 

protein IRS-2 was observed (cp figure 3-22). Consequentially the further downstream 

proteins were analysed but no changes were observed in AKT and in the steady state level 

of Ser473 phosphorylated AKT. Investigations of the downstream kinase GSK-3β, which might 

be involved in the regulation of secretases, reveals also no changes at the age of 28 weeks. 
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Also no changes were detected in the protein expression of the extracellular signal regulated 

kinase ERK-1/2. Furthermore, ERK-1/2 phosphorylation was slight higher in Tg2576 and 

nIGF-1R-/-Tg2576 compared to WT and nIGF-1R-/- mice.  
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Fig. 3-23 Western blot analysis of IGF1-R/IR signal ing of 28 weeks old mice II  

Western blot analysis of pospho-AKT (Ser473), AKT (loading control), pospho-GSK-3β (Ser9), GSK-3β (loading 
control), pospho-ERK-1/2 (Thr202 / Tyr204), ERK-1/2 (loading control) protein expression in Hippocampus and 
cortex lysates from 28 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein were 
applied on 10% SDS-PAGE. Examples of 2 independent experiments.   
 

3.7.2  Investigation of APP processing 
 

Subsequently APP processing was analysed. APP cleavage is responsible for Aβ peptide 

generation, which in turn is responsible for plaque formation. As seen in Figure 3-23 no 

changes in the expression of the amyloid precursor protein was detected between the 

appropriate genotype. However, the occurrence of the C-terminal cleavage products (CTFs) 

produced by α- and β-secretase cleavage were markedly reduced in nIGF-1R-/-Tg2576. As 

indicated in figure 3-24 (lower panel) the α- and β-CTFs of the nIGF-1R-/-Tg2576 animals 

were about 50% reduced in the hippocampus compared to Tg2576. However, quantification 

of CTFs in the cortex revealed a minor reduction which failed to reach significance.  
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Fig. 3-24 Western blot and densitometric analysis o f APP processing of 28 weeks old mice  

Upper panel: Western blot analysis of APP, actin (loading control), α- and β-C-terminal fragments appearance in 
hippocampus and cortex lysates from 28 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 
100µg of protein were applied on 10% SDS-PAGE or 15% SDS-PAGE respectively. Examples of 2 independent 
experiments. Lower panel: densitometric quantification of α- C-terminal fragments and β-C-terminal fragments 
protein expression from Tg2576 (grey bars) and nIGF-1R-/-Tg2576 (white bars) mice. Values are means ± SD, n = 
4, unpaired Student’s t-test p-value ≤ 0,05. 
 

In this context the small cleavage products were aim of further investigation as indicated in 

Figure 3-25. Despite of all efforts it was not possible to clearly detect the 4-5 kDa Aβ1-40/42 

monomer peptides in western blot analysis. However, 15kDa Aβ1-40/42 peptides 

representing trimeres could be detected as shown in Figure 3-25. Aβ1-40/42 trimeres in the 

hippocampal region of nIGF-1R-/-Tg2576 mice displayed a clear reduction in comparison to 

Tg2576 animals. In the cortex were no noticeable differences. To clarify the Aβ1-40/42 peptides 

content Enzyme Linked Immunosorbent Assays (ELISA) were performed. Figure 3-25 (lower 

panel) displays the results of the ELISA for the Aβ1-40 peptides. A significant reduction of 

~50% in the hippocampus of nIGF-1R-/-Tg2576 compared to Tg2576 mice was observed. No 

differences were detectable in the cortex between Tg2576 and nIGF-1R-/-Tg2576 animals.  
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Fig. 3-25 Western blot and ELISA analysis of Amyloi d-β in 28 weeks old mice  

Upper panel: Western blot analysis of Amyliod-β1-40/42 appearance in hippocampus and cortex lysates from 28 
weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein were applied on 15% SDS-
PAGE. Examples of 2 independent experiments. Lower panel: ELISA analysis of Amyliod-β1-40 in the 
hippocampus and cortex from 28 weeks old Tg2576 (grey bars) and nIGF-1R-/-Tg2576 (white bars) mice. Values 
are means ± SD, n = 4, * unpaired Student’s t-test p-value ≤ 0,05. 
 

The reduced CTFs and Aβ1-40 peptides might caused by changes in expression or activity of 

proteins involved in synthesis or clearances of these products. To further investigate this 

point expression levels of Beta-site APP cleaving enzyme-1 (BACE), Insulin degrading 

enzyme (IDE) and Apolipoprotein E (ApoE) were investigated. The expression level of 

BACE-1 as putative β-secretase was not altered in the brains of 28 weeks old animals. The 

expression of IDE and ApoE were also not changed.   
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Fig. 3-26 Western blot analysis of proteins involve d in APP cleavage and A β clearance  

Western blot analysis of BACE, IDE, ApoE and actin (loading control) protein expression in Hippocampus and 
cortex lysates from 28 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein were 
applied on 10% SDS-PAGE. Examples of 2 independent experiments. 

 

Based on the results of biochemical analysis of 28 weeks old animals a 50% reduced 

expression of APP cleavage products like CTFs and Aβ1-40 were detected without obvious 

change in expression of proteins involved in IIS, Aβ clearance or cleavage of APP.    
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3.8 Biochemical analysis of 60 weeks old animals 
 

In order to investigate the influence of IIS on disease progression of AD and APP metabolism 

in the hippocampus and cortex 60 weeks old animals were analysed. 

3.8.1 Analysis of IGF-1R/IR signaling 
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Fig. 3-27 Western blot analysis of IGF1-R/IR signal ing of 60 weeks old mice  

Western blot analysis of IGF-1R, IR, IRS-1, IRS-2 and actin (loading control) protein expression in Hippocampus 
and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein 
were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
 

Analyses of brain lysates of 60 weeks old animals revealed similar results as in 28 weeks old 

animals. IGF-1R expression was reduced in the nIGF-1R-/- and nIGF-1R-/-Tg2576 animals 

whereas no changes were detected in IR expression. In contrast to 28 weeks old animals no 

changes in IRS-2 protein expression were seen in 60 weeks old animals. Surprisingly, a 

downregulation of IRS-1 protein expression was detected in hippocampus of animals with the 

IGF-1R deletion (nIGF-1R-/- and nIGF-1R-/-Tg2576). No downregulation of IRS-1expression 

was observed in the cortex. To quantify the amount of protein expression densitometric 

analyses were performed. 
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Fig. 3-28 Densitometric quantification of IGF-1R, I RS-1 and IRS-2 protein expression in 60 
weeks old mice  

Densitometric quantification of IGF-1R, IRS-1 and IRS-2 protein expression from 60 weeks old wild type (black 
bars), Tg2576 (grey bars), nIGF-1R-/- ( white striped bars) and nIGF-1R-/-Tg2576 (white bars) mice. Values are 
means ± SD, n = 4, * unpaired Student’s t-test p-value ≤ 0,05. 
 

As indicated in Figure 3-28 an approximately 50% downregulation of IGF-1R was detected in 

the hippocampus only. As observed in the WB analysis a 60% reduction of IRS-1 protein 

expression was detected in the hippocampi of nIGF-1R-/- and nIGF-1R-/-Tg2576 animals. No 

significant changes were quantified in WT and Tg2576 mice as well as in corteces of all 

animals. IRS-2 expression levels were reduced by 20-30% in Tg2576, nIGF-1R-/- and nIGF-

1R-/- mice in comparison to wild type mice. These results could be shown in hippocampus as 

well as in cortex but failed to reach significant. Thus direct correlation between nIGF-1R-/- 

and downregulation of IRS-1 was observed. Furthermore the protein kinase ERK-1/2 was 

analysed. 
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Fig. 3-29 Western blot analysis of ERK-1/2  

Western blot analysis of IGF-1R, phospho-ERK-1/2 (Thr202 / Tyr204), ERK-1/2 and actin (loading control) protein 
expression in Hippocampus and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-

Tg2576 mice. 100µg of protein were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
 

Like the results of the 28 weeks old animals no apparent difference was detected in ERK-1/2 

expression and phosphorylation. As in 28 weeks old annimals no alteration of the 

phosphorylated and unphosphorylated AKT proteins were found. Protein expression of the 

phosphatase PTEN was unchanged. PTEN might regulate the phosphorylation of GSK-3 

(Ser9) in an AKT independent manner.  
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Fig. 3-30 Western blot analysis of AKT and PTEN of 60 weeks old mice  

Western blot analysis of IGF-1R, phospho-AKT (Ser473), AKT, PTEN and actin (loading control) protein 
expression in Hippocampus and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-

Tg2576 mice. 100µg of protein were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
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Subsequently GSK-3β was analysed. Although GSK-3β protein expression was not altered in 

the hippocampus, downregulation of the phosphorylated form of GSK-3β as well as GSK-3α 

were observed.  
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Fig. 3-31 Western blot analysis of GSK-3  

Western blot analysis of IGF-1R, phospho-GSK-3α/β (Ser21/9), GSK-3β (loading control) protein expression in 
Hippocampus and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 
100µg of protein were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
 

Furthermore the expression and phosphorylation of the transcription factor Foxo1 was 

investigated. Downregulation of Foxo1 orthologs in Caenorhabditis elegans leads to lifespan 

extension and thus might be a candidate for survival rescue of nIGF-1R-/-Tg2576 animals. 

However, WB analysis of Foxo1 and phosphorylated Foxo1 could not reveal any changes in 

the hippocampus and cortex of the investigated animals. 
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Fig. 3-32 Western blot analysis of Foxo1  

Western blot analysis of IGF-1R, phospho-Foxo1 (Ser256), Foxo1 and actin (loading control) protein expression in 
Hippocampus and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 
100µg of protein were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
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3.8.2 Investigation of the APP processing 
 

The results of the 28 weeks old mice revealed a 50% reduction of CTFs and Aβ1-40 peptides. 

Consequently WB analyses of enzymes involved in APP processing of 60 weeks old mice 

were performed as well. As presented in Figure 3-33 and similarly to the results of the 

analysis at 28 weeks no changes were detected in expression of amyloid precursor protein 

(Holo-APP) of the appropriate genotype. The occurrence of CTFs in the hippocampus of 

nIGF-1R-/-Tg2576 animals compared to Tg2576 mice were decreased as well. No differences 

were detected in the cortex of Tg2576 and nIGF-1R-/-Tg2576 mice.  
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Fig. 3-33 Western blot analysis of C-teminal fragme nts (CTFs)  

Western blot analysis of IGF-1R, Holo-APP, α- and β-C-terminal fragments protein expression in Hippocampus 
and cortex lysates from 60 weeks wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein 
were applied on 10% SDS-PAGE or 15% SDS-PAGE (CTFs). Examples of 2 independent experiments. 
 

To quantify Aβ1-40/42 peptides concentration ELISAs were performed. Similar to the results of 

28 weeks old animals a downregulation of Aβ1-40 peptides in nIGF-1R-/-Tg2576 animals to 

approximately 50% was detected compared to Tg2576, while no differences was detected in 

the cortex. Moreover 50% decreases of Aβ1-42 peptide in hippocampi of nIGF-1R-/-Tg2576 

mice were detected in comparison with Tg2576 mice. In the cortex no changes were 

detected. 
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Fig. 3-34 Quantification of A β1-40/42 in 60 weeks old Tg2576 and nIGF-1R -/-Tg2576 

ELISA analysis of Aβ1-40 and Aβ1-42 in hippocampus and cortex from 60 weeks old Tg2576 (grey bars) and nIGF-
1R-/-Tg2576 (white bars) mice. Values are means ± SD, n = 6, * unpaired Student’s t-test p-value ≤ 0,05. 
 

To visualize the amyloid plaque deposition thioflavin-S staining was performed. Thioflavin 

binds beta sheets, such as those in amyloid oligomers and undergoes a shift of its excitation 

spectrum resulting in a fluorescence signal. As seen in Figure 3-35  the plaque burden in 

nIGF-1R-/-Tg2576 (upper panels) animals was lower compared to Tg2576 animals (lower 

panels). In addition it seems to be that plaque size in Tg2576 was larger than in nIGF-1R-/-

Tg2576.     



Results 

 62 

 

Fig. 3-35 Histochemical staining of Amyloid plaques  I 

Thioflavin-S immunohistochemical staining of dissected brains of 60 weeks old Tg2576 and nIGF-1R-/-Tg2576. 
White arrows indicate Aβ plaque deposition composed of beta sheets. 40x magnification; green: FITC= Thioflavin-
S stained beta sheets 
 

Higher magnification of thioflavin-S stained brain sections reveals different plaque 

morphology in Tg2576 and nIGF-1R-/-Tg2576 animals. Plaques of Tg2576 animals appeared 

to be larger and more diffuser whereas plaques of nIGF-1R-/-Tg2576 are smaller and denser 

(cp. Figure 3-35).  

 

Fig. 3-36 Histochemical stainings of Amyloid plaque s II 

Monochrome picture of thioflavin-S immunohistochemical staining of cortex of 60 weeks old Tg2576 and nIGF-1R-

/-Tg2576. White arrows indicate Aβ plaque deposition composed of beta sheets. 100x magnification; green: FITC= 
Thioflavin stained beta sheets. 
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The previous results of APP processing revealed reduced CTFs and Aβ protein level in 

himppocampi of nIGF-1R-/-Tg2576 animals compared to Tg2576. Furthermore plaque burden 

were reduced in nIGF-1R-/-Tg2576 animals. Thus nIGF-1R-/- might have an influence on Aβ 

production or clearance. Consequently proteins responsible for clearance like IDE, ApoE, 

Neprylisin and α2 macroglobulin (α2M) were analysed. Figure 3-37 reveals no changes in 

the protein expression of these proteins. Consequently the proteins involved in the 

production of Aβ were examined. 
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 Fig. 3-37 Western blot analysis of proteins involve d in clearance of A β  

Western blot analysis of IGF-1R, IDE, ApoE, Neprilysin, α2macroglubolin (α2M) and actin (loading control) protein 
expression in Hippocampus and cortex lysates from 60 weeks old wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-

Tg2576 mice. 100µg of protein were applied on 10% SDS-PAGE. Examples of 2 independent experiments. 
 

 

Cleavage of APP by α- or β-secretases directly leads to production of α- or β-CTFs. As 

indicated in Figure 3-37 no changes were observed in the expression of the putative α-

seretase ADAM-10 or ADAM-17 (TACE) respectively. Similarly no changes were seen for the 

β-secretase BACE-1. No changes in protein expression of presenilin -1 were detected as 

well.   
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Fig. 3-38 Western blot analysis of α-, β- and γ-secretases in hippocampus and cortex of 60 
weeks old mice  

Western blot analysis of IGF-1R, BACE-1, ADAM-10 (active form 60kDa), ADAM-17 (TACE) (active form 85kDa), 
presenilin-1 and actin (loading control) protein expression in Hippocampus and cortex lysates from 60 weeks old 
wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 mice. 100µg of protein were applied on 10% SDS-PAGE. 
Examples of 2 independent experiments. 
 

As demonstrated for the proteins responsible for clearance no changes were seen in the 

protein expression of the different secretases, which are involved in the production of CTFs 

and Aβ by processing APP. Thus, neither the amount of proteins involved in clearance nor 

the amount of Aβ producing enzymes could offer an explanation for the diminished CTFs and 

Aβ peptides. For that reason α- and β- secretase activity assays were peformed. Due to the 

overexpression of APPsw in Tg2576 abundant APPsw compete with the labelled substrates of 

the performed secretase activity assays,therefore no reliable results from lysates of Tg2576 

and nIGF-1R-/-Tg2576 were expected. Therefore, WT and nIGF-1R-/- mice were further 

analysed. 
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Fig. 3-39 α-secretase activity assay  

α-secretase activity measurement in hippocampus and cortex lysates of 60 weeks old wild type (black bars) and 
nIGF-1R-/- (black and white striped bars) Data represented mean ± SD (n ≥ 4). unpaired Student’s t-test p-value ≤ 
0,05. 
 

The activity of α-secretase in hippocampi of WT and nIGF-1R-/- animals expose a 

significantly reduced activity of 40% in nIGF-1R-/- mice compared to WT. In the cortex no 

significant changes were detected. 
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Fig. 3-40 β-secretase activity assay  

β-secretase activity measurement in hippocampus and cortex lysates of 60 weeks old wild type (black bars) and 
nIGF-1R-/- (black and white striped bars) Data represented mean ± SD (n ≥ 4). unpaired Student’s t-test p-value ≤ 
0,05. 
 

BACE-1 activity assays reveal similar results as the α-secretase assay but less peonounced. 

A 23% reduction of BACE-1 activity was detected in nIGF-1R-/- in the hippocampus. 

Measurement in the cortex did not show any differences between the genotypes. 
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Summarizing the results of neuron-specific IGF-1R deletion in Tg2576  background revealed 

several novel findings.  

i) IGF-1R deletion predominantly in the hippocampus reverses APPsw induced 

mortality; 

ii) IGF-1R deletion reduces Aβ accumulation and amyloid plaque burden; 

iii) IGF1R mediated signals influence APP processing due to regulation of α- and β-

secretases activity.   
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AD is a chronic progressive neurodegenerative disorder leading to loss of cognitive abilities 

resulting in death after an average of 8–10 years after diagnosis175. Growing evidence has 

implicated insulin and insulin-like growth factor-1 signaling as being involved in the 

pathogenesis of AD. Recent reports suggest that type 2 diabetes mellitus (T2DM) is a risk 

factor for AD. However, the underlying cellular mechanisms for this association are still 

unknown176,177,178,179. Insulin receptor and insulin-like growth factor-1 receptor signaling is 

markedly disturbed in the central nervous system (CNS) of AD patients107,180,181. Post mortem 

investigations of brains from patients with AD revealed a markedly down regulated 

expression of IR, IGF-1R, and insulin receptor substrate (IRS) proteins102,182 and these 

changes progress with severity of neurodegeneration. One common feature in neurons from 

AD patients is a downregulation of IRS proteins and IGF-1R102,107. To elucidate the 

importance of IGF-1R signaling in the pathogenesis of AD, neuron-specific IGF-1R deleted 

mice (nIGF-1-/-) were crossed with mice expressing the Swedish mutation of human APP695 

containing the double mutation Lys670 � Asn, Met671 � Leu which was found in a Swedish 

family with early-onset AD (APPsw, Tg2576 mice). Survival, biochemical and 

histophathological analysis of the offsprings during an observation period of 60 weeks 

revealed several novel insights into the interaction of neuronal IGF-1 resistance and the 

pathophysiology of AD.  

 

4.1 Tg2576 mouse model and neuron-specific IGF1-R delet ion  
 

Alzheimer's disease (AD) is pathologically characterized by senile plaques, largely composed 

of extracellular deposits of Aβ peptides that arise from proteolytic cleavage of APP, and 

neurofibrillary tangles (NFTs), composed of intracellular filamentous aggregates of 

hyperphosphorylated tau protein. Mouse APP is less amyloidogenic and therefore it is 

inpossible to analyse the development and progression of AD with its associated hallmarks, 

Aβ plaques and NFTs, in non transgenic mice. The Tg2576 mouse model overexpresses the 

695-amino acid isoform of human amyloid precursor protein additionally harbouring a double 

mutation Lys670 �Asn, Met671
� Leu. This leads to fivefold increase in Aβ1-40 and a 14-fold 

increase in Aβ1-42 accompanied by age dependent behavioral deficits183. However, these 

mice lack to develop NFTs184. As a result the Tg2576, a well established AD model, was 

used to analysing the impact of APPsw and its cleavage products on development and 

progression of AD. In contrast, it is less applicable to investigate tau hyperphosphorylation 

that ends in NFTs. Therefore analysis of tau and the occurrence of NFTs were not 

investigated in the present study.  
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To investigate IGF-1 resistance in that particular AD mouse model Cre recombinase 

expressing mice driven by the synapsin-1 promoter (synCre) were crossed with mice 

carrying floxed exon-3 of the IGF-1R to generate neuron-specific IGF-1R knockout mice. To 

avoid a described germline deletion which has been described in male synCre mice only 

female synCre mice were used for breeding185. It was described that synpsin-1 is expressed 

in neurons of the CNS among others in cerebellum169. Therefore cerebellular granular cells 

from wild type and nIGF-1R-/- mice were generated and cultured. Unfortunately no 

downregulation of the IGF-1R was detected. Consequently the synCre mice were crossed 

with lacZ reporter mice. β-galactosidase stainings of synCre x lacZ reporter mice reveal Cre 

recombinase activity mainly in the hippocampal formation, and in the frontal cortex to very 

low extension. Western blot analyses of generated nIGF-1R-/- mice confirmed these data on 

protein level. Peripheral tissues showed no IGF-1R deletion. Therefore not only a neuron-

specific but also a region specific IGF-1 resistance was further analysed.  

 

4.2 Metabolic characterisation 

 
Until now little is known about the role of IGF-1R/IR signaling (IIS) in the CNS. However, 

whole body knockout of IRS-2, a downstream target of IGF-1R, results in hyperglycemia in 

male mice and results in a type 2 diabetes phenotype186. Furthermore, up to 80% of pure 

C57BL/6 mice develop spontaneous hyperglycemia in the first 6 month of age possibly 

influencing longevity187,188. Therefore the influence of disturbed IIS in the CNS on glucose 

metabolism was investigated using GTT, ITT and long term monitoring of random fed 

glucose levels. No changes were detected on blood glucose levels during the observation 

period. Accordingly, insulin sensitivity and glucose tolerance displayed no alteration in the 

performed ITT and GTT. Thus an influence of IGF-1R deletion in nIGF-1R-/- mice on glucose 

metabolism is excluded. Previous studies in APP overexpressing mice have shown that 

lethality of these mouse models is influenced by the genetic background166. Since nearly all 

Tg2576 mice on a pure C57BL/6 background die within the first months of age it is 

impossible to investigate amyloid accumulation or IGF-1R signaling in this pure 

background166. The hybrid background, used in this thesis, made it possible to investigate 

APPsw induced lethality, amyloid accumulation as well as IGF-1R signaling during aging in 

different brain regions without development of spontaneous hyperglycemia. 
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4.3 Somatic characterisation 
 
In order to analyse the influences of somatic growth on survival of the study group 

characterisations of somatic development was performed. Body size of Tg2576 and nIGF-

1R-/-Tg2576 was reduced by 5-10% compared to body size of WT and nIGF-1R-/-. Since 

there no changes in body size and body growth between Tg2576 and nIGF-1R-/-Tg2576 

altered somatic growth is excluded as possible cause for the survival benefit of nIGF-1R-/-

Tg2576. The reduced body size goes along with a reduced body weight in Tg2576 and nIGF-

1R-/-Tg2576. In agreement, reduced body weight of Tg2576 mice has been described in the 

work of Toyama et al. and has been observed the APP23 mouse model as well189,190. Body 

composition analysis of 28 and 60 weeks old mice confirm the results of body weight 

revealing 30-50% decreased fat content in Tg2576 mice. During aging an increasing fat 

proportion is normal and observed in wild type, nIGF-1R-/- and female nIGF-1R-/-Tg2576 

animals. Surprisingly this development was not detected in male Tg2576 and nIGF-1R-/-

Tg2576 mice. In comparison to the evaluation at 28 weeks the fat content of female Tg2576 

was hardly altered and even reduced in male Tg2576 as well as in nIGF-1R-/-Tg2576 animals. 

Since food intake measurements were not performed it is not excluded that Tg2576 mice eat 

less during aging in the present study. However, previous investigation showed no difference 

in food intake but an increased activity in 17 months old Tg2576 mice191. The APP23 mouse 

model displayed no reduced food intake but rather a slight increased food intake compared 

to wild type animals190. Since more than 60% of all Tg2576 animals died within 60 weeks and 

thus only the population with reduced phenotype survives, it could be speculated that the 

reduced body fat content due to an increased metabolism mimics caloric restriction leading 

to increased survival. Caloric restriction attenuates β-amyloid neuropathology in Tg2576 

mice and is known to increase survival in different species192,193,194,195.  

Deletion of IGF-1R in neuron and glia cells has a tremendous effect. Mice lacking total brain 

IGF-1R develop a microcephalon, severe growth retardation, infertility, and abnormal 

behaviour170.  

Interestingly, brains of 60 weeks old Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 weighed less 

as wild type brains. However, calculated brain-body ratios revealed only minor changes. At 

the end only significant differences were seen by comparison female and male wild type and 

Tg2576. These changes are mainly due to the relatively high differences in body weight of 

WT and Tg2576 animals.  

As a result of the metabolic and somatic characterisation Tg2576 and nIGF-1R-/-Tg2576 mice 

display no significant differences in growth, glucose metabolism and brain-body ratio. Thus, 

the survival benefit of nIGF-1R-/-Tg2576 mice due to metabolic or somatic alteration is 

excluded. 
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4.4 Survival and aging 
 
The here presented survival data of wild type, Tg2576, nIGF-1R-/- and nIGF-1R-/-Tg2576 

mice demonstrate that unexpectedly,  neuron-specific IGF-1 resistance in the CNS in the 

absence of metabolic disorders prevents mortality as the most dramatic endpoint of 

experimental AD, in Tg2576 mice. Furthermore, heterozygosity for IGF-1R is not sufficient to 

rescue the APPsw induced premature death in the current study. In fact, the present 

observation that neuron and even hippocampus IGF-1 resistance protects from AD-

associated mortality argues for an evolutionary conserved life-extending mechanism from C. 

elegans to mice. In C. elegans neuronal DAF-2, an insulin/insulin-like growth factor receptor 

homolog gene, controls longevity196. In Drosophila a null mutation in CHICO, the homolog of 

the vertebrate IRS gene family, leads to an increase of median lifespan in heterozygous flies 

up to 31 % and in homozygous flies up to 48 %. The survival benefit was accompanied by 

decreased body size197. A partial loss-of-function mutation of the Drosophila insulin receptor 

(dIR) also increases lifespan up to 85 % but leads to dwarfism as well198. To elucidate the 

components of the insulin/IGF-1 receptor signaling pathway in Drosophila which are involved 

in regulation of longevity and aging various studies were performed. Overexpression of 

dFOXO as downstream target of IR/IGF-1R signaling increased median lifespan of female 

flies by up to 50 % whereas males were unaffected199. 

Whole body IGF-1R deficiency in mice results in 50 % smaller body size and these mice die 

after a few days due to severe developmental defects200. In contrast, whole body IR 

deficiency leads to normal birth size, but the animals die within the first hours after birth due 

to severe hyperglycemia and ketoacidosis201. Deductive, mice with deleted IR/IGF-1R 

signaling in whole body have a short lifespan. In contrast, heterozygous deficiency of the 

IGF-1R increases lifespan of female mice by up to 26 % without any effect in male animals202. 

Obviously, the organism is not capable of living completely without IRs or IGF-1Rs but partial 

deficiency seems to be beneficial for extending lifespan. Investigations of the downstream 

targets of IR/IGF-1R namely the IRS proteins displayed conflicting results. Selman et al. 

showed in 2008 that IRS-1 deficient mice have an 18 % increased lifespan, contrarily IRS-2 

deficient mice were short-lived. Moreover, inconsistent effects were described in mice 

heterozygous for either IRS-1 or IRS-2203.  Whereas one study reported an unchanged 

lifespan other investigators found an increased lifespan in IRS-2 heterozygous mice203. 

Heterozygoty IGF-1R and CNS restricted IRS-2-deficiency is lifespan extending in mice170,204. 

Taken together the available data suggest that the IR/IGF-1R signaling pathway is important 

for survival conserved in different species.  Furthermore, the results of the present thesis 

suggesting that IIS also controls neurodegenerative disease associated lethality in rodents.  
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4.5 Biochemical analysis of the IGF-1R/IR signaling and  APP metabolism 
 
As described above IGF-1R deficiency in the hippocampus protects from AD associated 

premature death. Although no changes in protein expression involved in IIS as well as in Aβ 

production or clearance at the age of 28 weeks was found. IGF-1R signaling resistance was 

accompanied by 50% reduced Aβ-accumulation in nIGF-1R-/-Tg2576 compared to Tg2576 

mice. At the age of 60 weeks Aβ-levels were still markedly reduced.  β-Amyloid consists of 

small peptides with N- and C-terminal heterogeneity i.e. Aβ1-40 and Aβ1-42, which are 

proteolytically released from APP via sequential cleavage by the β- and γ-secretases. Initial 

β-secretase cleavage generates a soluble fragment from the N-terminus of APP, while the C-

terminal fragment (β-CTF) stays membrane bound. α-secretase cleavage leads to a 

membrane-bound C-terminal fragment (α-CTF)205. Interestingly, in nIGF-1R-/-Tg2576 mice α- 

and β-CTF appear at significantly lower levels. Two possible reasons might explain the 

reduced Aβ-levels and CTFs in the hippocampus of nIGF-1R-/-Tg2576 mice. On the one 

hand reduced Aβ and CTFs might be a result of decreased processing, or on the other hand 

a result of enhanced degradation. 

Transgenic expression of IDE or neprilysin, major clearance factors of Aβ, in the CNS 

reduces brain Aβ levels and prevents amyloid plaque formation and premature death in APP 

transgenic mice206. Concerning insulin/IGF-1 resistance it has been shown that IDE 

expression as an "amyloid degrading" enzyme is stimulated by the IR/IGF-1R cascade207. 

However, we could not detect any changes in IDE expression in our mouse models. 

Investigation of further clearance factors like neprilysin or apoE as well as α-2 macroglobulin 

revealed no distinguishable differences between the genotypes. Accordingly to these results 

it is unlikely that enhanced degradation causes the reduced Aβ-levels in nIGF-1R-/-Tg2576 

mice. 

Chemokine receptor-2 (Ccr2) deficiency accelerates early disease progression by markedly 

impaired microglial activation. In Tg2576 mice deficient for Ccr2, accumulation of Aβ 

occurred earlier and these mice died significantly sooner compared to Tg2576208.  In 

SHSY5Y cells as well as in primary cultured neurons chronic treatment with IGF-1 causes a 

switch from TrkA to p75NTR expression as seen in aging brains209. This switch might 

increase β-secretase activity indirectly by activation of neuronal sphingomyelinase which is 

responsible for the active liberation of the second messenger ceramide, which stabilize the β-

secretase BACE-1 at least in SHSY5Y cells210,211. This process has been proposed to be 

responsible for IGF-1’s effect on Aβ generation. However, BACE-1 expression was not 

altered at the age of 28 nor at the age of 60 weeks in these models, whereas the BACE-1 

activity was significantly reduced in hippocampus of nIGF-1R-/-at the age of 60 weeks. In 

contrast, it was not possible to detect an expression switch from TrkA to p75NTR by western 

blot analysis from brain lysates of nIGF-1R-/- or nIGF-1R-/-Tg2576 compared to wild type and 



Discussion 

 73 

Tg2576 mice. Interestingly, reduced activity was also found for the α-secretase in the 

hippocampus of nIGF-1R-/- while the expression of ADAM-17 and ADAM-10 remains 

unchanged within the study group. The activity of the γ-secretase presenilin was not 

analysed. Hence, an influence of γ-secretase activity on Aβ-levels in nIGF-1R-/-Tg2576 

animals can not be excluded, although the protein expression of presenilin-1 did not show 

any differences. At least four independent reports linked β-amyloid accumulation to survival 

of APP overexpressing mice208,212,213,214,215. The here presented data suggest that the 

reduced levels of β-CTFs and, consequently of Aβ in the hippocampus of nIGF-1R-/-Tg2576 

mice due to a reduced processing is caused by a decreased β-secretase activity. Thus, the 

reduced amount of Aβ might be responsible for the decreased mortality in the IGF-1 resistant 

AD mouse model. In addition to the reduced Aβ, a diminished plaque burden as well as 

changes in plaque morphology were detected in nIGF-1R-/-Tg2576 mice. It seems as if 

reduced IGF-1R signaling not only decelerate the processing but also modifies the Aβ plaque 

morphology that possibly result in a survival benefit. 

Similar results have been described in C. elegans. Impaired insulin/IGF-1-like signaling in C. 

elegans reduces Aβ-proteotoxicity by a Foxo-dependent as well as a Foxo-independent 

mechanism216. However, no changes were observed in the expression of Foxo1 as well as in 

most key players of IIS like AKT and ERK-1/2. This was true not only for the 

unphosphorylated but also for the phosphorylated forms. Likewise, a change in protein 

expression of IRS-2 one of the first downstream targets of IGF-1R signaling could not be 

shown. Surprisingly and in contrast to IRS-2 a tremendous downregulation of IRS-1 was 

detected in the hippocampus of nIGF-1R-/- and nIGF-1R-/-Tg2576 mice at the age of 60 

weeks suggesting a distinctive role of IIS in regulating IRS protein expression during aging. 

Mice lacking IRS-1 show profound growth retardation and insulin resistance217. In contrast, 

mice lacking IRS-2 have mild growth defects but develop diabetes owing to a combination of 

insulin resistance and pancreatic β-cell dysfunction218. A tissue-specific role of IRS-1 and 

IRS-2 in IGF-1/insulin signaling has been shown in mice with mutations in IRS-1, and IRS-

2219. Experiments performed with a β-cell line derived from IRS1–/– mice revealed that insulin 

stimulation fails to elevate cytosolic Ca2+ in these IRS-1–deficient cells. In contrast insulin 

evokes release of intracellular cell stores of Ca2+ in wild-type transformed β-cells220. 

Overexpression of IRS-1 increases cytosolic Ca2+ levels due to inhibition of uptake by the 

endoplasmic reticulum221. Therefore downregulation of IRS-1 in nIGF-1R-/- and nIGF-1R-/-

Tg2576 might lead to a disturbed Ca2+ homeostasis and might influences the activity of the 

secretases. Glycosylation is an important step of APP processing and changes in the 

cytosolic homeostasis might lead to a modified glycosylation of APP and in consequence to 

altered processing. To evaluate the role of ISS in APP processing further experiments are 

necessary. Embryonic fibroblasts and 3T3 cell lines derived from IRS-1-deficient embryos 
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exhibit no IGF-1-stimulated IRS-1 phosphorylation or IRS-1-associated phosphatidylinositol 

3-kinase (PI-3 kinase) activity but unaltered activation of the mitogen-activated protein 

kinases ERK-1/2222. Whereas the steady state of phosphorylated ERK-1/2 in Tg2576 and 

nIGF-1R-/-Tg2576 animals was not altered, markedly diminished phosphorylation of GSK-

3α/β, a downstream target of PI-3 kinase, was detected in the hippocampus of nIGF-1R-/- and 

nIGF-1R-/-Tg2576. On the other hand GSK-3 is a kinase supposed to be involved in the 

regulation of the secretases223,224. Reduced phosphorylation (Ser21/9) of GSK-3α/β (the 

inaktive form of GSK-3) should result in more GSK-3 activity. The results of nIGF-1R-/- and 

nIGF-1R-/-Tg2576 animals might suggest that increased GSK-3 activity regulates the 

processing of APP by slowing down activity of the secretases. In contrast to our observation 

results an inhibition of GSK-3α/β by lithium to a decreased Aβ production in CHOAPPsw
 cells224. 

It has to be noted that the downregulation of phospho-GSK-3β (Ser9) was not observed at an 

age of 28 weeks despite reduction of CTFs and Aβ. To elucidate the mechanism of Aβ 

accumulation further studies need to be performed. 

 

The present survival studies and biochemical investigation reveal the importance of IGF-1R 

signaling for premature death caused by APPsw overexpression.  Downregulation of IGF-1R 

in the hippocampus counter the premature death in Tg2576 mice. In addition Aβ- and CTF-

levels are reduced as consequences of a decelerated α- and β-secretase activity in response 

to IGF-1R signaling resistance.  

Taken together the present thesis reveal several novel findings i) neuronal IGF-1R deficiency 

protects against APPsw-induced lethality, ii) deletion of IGF-1R mediated signals reduces Aβ 

accumulation in mice via decelerated β-secretase activity . 

Thus, downregulation of IGF-1R observed in neurons of patients suffering from Alzheimer’s 

disease is most likely a compensatory phenomenon to decrease amyloid burden and prolong 

survival.  

4.6 Perspectives and experimental approach 
 

The rescue of premature death in Tg2576 mice observed in nIGF-1R-/-Tg2576 animals is 

most likely a result of the decreased Aβ-accumulation caused by the decelerated secretase 

activity. At the moment little is known about the exact mechanism. In current work only a 

correlation between modified IGF-1R signaling cascade and reduced activity of the 

secretases is discribed. To get more information about the underlying mechanism 

neuroblastoma cells with chronically alter IGF-1R signaling can be used. Since in SHSY5Y 

cells IGF-1R signaling is mainly mediated via IRS-2, the cells could be modify in a way that 

one cellline will be overexpressing IRS-2, one will express a siRNA knocking down IRS-2 

and one will be stably transfected with mutated siRNA as control. In these cell lines α-,β- and 
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γ-secretase activity can further be investigated. Furthermore, the role of IGF-1R mediated 

signals for APP trafficking can be analysed using the above mentioned cell lines, transfected 

with a tagged APP as well. In addition different kinase inhibitors of the IGF-1R downstream 

signaling cascade might be used to address the specific signaling pathways involved in APP 

processing and secretase regulation. 

These experiments will reveal the molecular mechanism underlying the effect of IGF-1R 

signaling on APP processing and clearance.  
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Post mortem investigations of brains from patients with AD revealed a markedly down 

regulated expression IGF-1R, and insulin receptor substrate (IRS) proteins, and these 

changes progress with severity of neurodegeneration. A common feature in neurons from AD 

patients is a downregulation of IGF-1R. To investigate the role of neuronal IGF-1R signaling 

in AD neuron-specific IGF-1R (nIGF-1R-/-) deficient mice were generated. These mice were 

crossed with mice expressing the Swedish mutation of human APP695 harbouring the 

double mutation Lys670
� Asn, Met671

� Leu which was found in a Swedish family with early-

onset AD (APPsw, Tg2576 mice). nIGF-1R-/- mice were generated using the cre-loxP-system 

under the control of the neuron-specific synapsin-1 promoter and crossed them into the 

Tg2576 background. The offsprings of these mice (WT, Tg2576, nIGF-1R-/-, nIGF-1R-/-

Tg2576) were analysed at two different time points. Kaplan-Meier analysis, amyloid 

accumulation as well as metabolic and somatic factors of the offspring were investigated 

during an observation period of 60 weeks. Western blot analysis of isolated hippocampi 

displayed a 40% reduced IGF-1R expression in nIGF-1R-/- and nIGF-1R-/-Tg2576 compared 

to WT and Tg2576 animals, whereas other brain regions e.g. cortex or cerebellum did not 

show significant IGF-1R deletion. Thus, conditional IGF-1R deletion using Cre recombinase 

expression under the control of the synapsin-1 promoter leads to a hippocampus-specific 

downregulation of IGF-1R. Further analysis of Cre recombinase expression in a lacZ reporter 

mouse strain revealed a Cre recombinase activity driven by the synapsin-1 promoter in the 

dentus gyrus and the CA3 region of the hippocampus. Kaplan-Meier-analysis revealed a 

60% mortality of Tg2576 mice after 60 weeks of observation. In contrast nIGF-1R-/-Tg2576 

were protected against premature mortality of Tg2576 mice (p≤0.02; Tg2576 vs. nIGF-1R-/-

Tg2576). Isolated hippocampi of 28 and 60 weeks old nIGF-1R-/-Tg2576 animals showed a 

50% reduced Aβ1-40 and Aβ1-42 accumulation compared to Tg2576. Additionally, APP α- and 

β-C-terminal fragments were reduced in hippocampi of nIGF-1R-/-Tg2576 compared Tg2576 

mice due to a modification of α- and β-secretases activity. In addition Aβ plaque burden was 

reduced in Tg2576 animals with neuronal IGF-1R deletion. 

Taken together the results of the present thesis demonstrate that decreased neuronal IGF-

1R signaling predominantly in the hippocampus protects against APPsw induced mortality.  

Moreover IGF-1R mediated signals influence APP processing due to a modification of α- and 

β-secretases leading to reduced Aβ accumulation and amyloid plaque burden. Thus, 

downregulation of IGF-1R observed in neurons of patients suffering from Alzheimer’s 

disease is most likely a compensatory phenomenon to decrease amyloid accumulation and 

prolong survival.  
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Post mortem Untersuchungen an Gehirnen von Alzheimer Patienten zeigten eine drastische 

Reduktion der IGF-1 Rezeptor (IGF-1R) und Insulin Rezeptor Substrat (IRS) Expression. 

Diese Veränderungen schritten mit dem Grad der Neurodegeneration fort. Um die Rolle der 

neuronalen IGF-1R Signaltransduktion in der Alzheimer Erkrankung zu untersuchen, wurden 

Neuronen-spezifische IGF-1R defiziente (nIGF-1R-/-) Mäuse generiert. Diese Mäuse wurden 

mit Mäusen verpaart, die eine doppelte APP Mutation (Lys670
� Asn, Met671

� Leu ) 

exprimieren. Diese Mutationen wurden erstmals bei einer schwedischen Familie beschrieben, 

welche an der early onset Alzheimer Erkrankung litt (APPsw, Tg2576 Mäuse). nIGF-1R-/- 

Mäuse wurden mit Hilfe des cre-loxP-Systems erzeugt, unter zur Hilfenahme eines 

Neuronen-spezifischen Synapsin-1 Promotors, der die Expression der Cre recombinase 

steuert. Anschließend wurden diese Mäuse mit Tg2576 Mäuse gekreuzt. Die Nachkommen 

dieser Mäuse (WT, Tg2576, nIGF-1R-/-, nIGF-1R-/-Tg2576) wurden an zwei verschiedenen 

Zeitpunkten untersucht. Kaplan-Meier Analysen, Amyloid Akkumulation sowie metabolische 

und somatische Faktoren wurden im Verlauf von 60 Wochen untersucht. Western Blot 

Analysen von isolierten Hippocampi zeigten eine 40% Abnahme der IGF-1R Expression in 

nIGF-1R-/- und Tg2576/nIGF-1R-/- im Vergleich zu Wildtypen und Tg2576 Tieren. Andere 

Gehirnregionen, wie z.B. der Cortex oder das Cerebellum, zeigten keine signifikante IGF-1R 

Deletion. Somit führt die konditionale IGF-1R Deletion mittels Cre recombinase Expression 

unter der Kontrolle des Synapsin-1 Promoters zu einer Hippocampus-spezifischen Abnahme 

des IGF-1R. Die weitere Untersuchung der Cre recombinase Expression in einer lacZ 

Reporter Mauslinie zeigte, dass die durch die Synapsin-1 gesteuerte Cre recombinase 

Expression vor allem im Gyrus Dentatus und der CA3 zu finden ist. Kaplan-Meier Analysen 

zeigten nach 60 Wochen eine 60% Mortalität der Tg2576 Mäuse. Im Gegensatz dazu waren 

nIGF-1R-/-Tg2576 Mäuse vor der frühzeitigen Mortalität der Tg2576 geschützt (p≤0.02; 

Tg2576 vs. nIGF-1R-/-Tg2576). Isolierte Hippocampi von 28 bzw. 60 Wochen alten Tieren 

zeigten eine 50% Abnahme der Aβ1-40 und Aβ1-42 Akkumulation im Vergleich zu Tg2576 

Mäusen. Zusätzlich waren die α- und β-C-terminalen Fragmente des APP im Hippocampus 

der nIGF-1R-/-Tg2576 Mäuse aufgrund gesenkter α- und β-Secretase Aktivität reduziert. Des 

Weiteren war eine Abnahme der Aβ Plaque Belastung in Tg2576 Tieren mit IGF-1R Deletion 

zu sehen. Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass eine Abnahme der 

neuronalen IGF-1R Signaltransduktion vorwiegend im Hippocampus gegen die APPsw 

induzierte Mortalität schützt. Des Weiteren beeinflussen IGF-1R vermittelte Signale das APP 

Processing durch eine Abnahme der α- und β-Secretase Aktivität, was zur Reduktion der Aβ 

Akkumulation und der Amyloid Plaque Belastung führt. Daher scheint die Abnahme der IGF-

1R Expression in Gehirnen von Alzheimer Patienten ein kompensatorisches Phänomen zu 

sein, um die Amyloid Akkumulation zu verringern und das Leben zu verlängern. 
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