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ABSTRACT 

 
Flowering and its control is a critical developmental transition in angiosperms. The developmental 

timing of flowering has been widely studied in the temperate species Arabidopsis, which was well 

aided by the sequencing of its genome. However, the timing of flowering is not well understood in 

tropical species. Efforts are being made to extend the understanding of the molecular pathways 

controlling flowering from those of Arabidopsis to that of Cassava by taking advantage of genomics 

information from this temperate species. This should be an invaluable tool for understanding and 

exploiting floral timing in a tropical plant. Cassava is a crop that is critically important for food security 

in the tropics and sub-tropical regions of the world. Because, it is an orphan crop of limited research 

interest, almost nothing is known regarding its molecular basis of flowering. Therefore, it remains 

unclear what molecular pathways are implicated in flowering in Cassava and how this can be used to 

improve breeding. 

 

In this thesis, I provide insight to the discovery of photoperiod genes in Cassava and exploit this 

pathway to manipulate floral timing. Several genes of interest were sought for in this tropical plant, 

ranging from clock genes, to photoperiod genes, to the floral integrator, and finally, floral meristem-

identity genes. Several genes were found and characterized. From there, transgenic approaches revealed 

that reproductive timing can be modified in Cassava. 

 

In Chapter 3, I identified and characterized three classes of photoperiod genes. The first gene isolated 

and characterized was MeGI, which revealed sequence similarity and conservation regions when 

compared with Arabidopsis. The comparison with GIGANTEA- related sequences from other species 

revealed by phylogeny that Cassava GI clearly clades with dicots and is more closely related in 

sequence to Castor bean GI. The MeGI expression was measured in Cassava and it was shown to track 

dusk. I found that MeGI peaks in expression at dusk under both long day or short day growth 

conditions. This is consistent with similar studies from other species. Another set of genes I found in 

Cassava was the CO-like genes, which I named MeCOL1, MeCO, and MeCOL2, respectively. The 

predicted protein encoded by MeCOL2 possesses two adjacent zinc-finger motifs, which is specific for 

genes in this family. COL2 was shown by phylogeny as the closest to the three MeCO-related genes. 

The expression of MeCO-like genes in Cassava showed they anticipated dawn.  

They were found to be acutely induced by light at dawn. Under short day growth conditions, they 

peaked two hours before dawn and this peak sharply increased at dawn under long days. This 

expression was decreased over the light period of the day. Thus, MeCOL genes have pre-dawn 

expression. Finally, I studied in genetic detail a Cassava orthologue of Arabidopsis ELF4. MeELF4 

was found to complement elf4 by restoring circadian-rhythm defects of this Arabidopsis mutant. 
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Therefore, I successfully characterized in Cassava the GI, members of the CO-like gene family, and the 

ELF4 orthologue, all of which are candidate genes for photoperiodic regulators. 

 

I bridged the gap between basic and applied research by exploiting the photoperiod- integrator gene 

FLOWERING LOCUS T (FT) as a tool in the manipulation of floral timing in Cassava. To generate this 

tool, I placed the Arabidopsis FT gene under the control of an ethanol-inducible promoter. I showed 

that the construct was functional, as it promoted flowering in a late-flowering genotype of Arabidopsis 

after ethanol application. This technology was then transferred to Cassava. I transformed a shy 

flowering Cassava genotype with Arabidopsis FT under the control of an ethanol-inducible promoter. 

FT expression was found to increase after spraying the Cassava transgenics with ethanol. These plants 

then flowered. This system is hoped to be applied in conventional breeding programs in order to be 

able to induce flowering at will, and thus make desired crosses that will lead to the improvement of the 

genetic basis of the crop.  
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ZUSAMMENFASSUNG 

 
Die Kontrolle des Blühzeitpunktes ist ein kritischer Entwickelungsschritt in Angiospermen. Das 

entwickelungsbiologische Timing des Blühzeitpunktes wurde, auch begünstigt durch die 

Sequenzierung ihres Genoms, weitgehend in Arabidopsis thaliana untersucht, einer Pflanze aus 

gemäßigten Zonen der Erde. Bei tropischen Arten hingegen ist die Kontrolle des Blühzeitpunktes noch 

wenig erforscht. Es wird daher versucht, das Verständnis der molekularen Signalwege, die das Blühen 

kontrollieren, ausgehend von Arabidopsis zu denen von Maniok (engl. Cassava; Manihot esculenta) zu 

erweitern, indem die Genominformationen aus Arabidopsis genutzt werden. Dies sollte ein wertvolles 

Werkzeug sein, um das Blühtiming einer tropischen Pflanze zu verstehen und entsprechend zu nutzen.  

 

Maniok ist eine Nutzpflanze, die für die Ernährungssicherheit in den Tropen und den subtropischen 

Regionen der Welt von entscheidender Bedeutung ist. Da es sich um eine vernachlässigte 

Ertragspflanze von begrenztem Forschungsinteresse handelt, ist fast nichts über die molekularen 

Grundlagen ihres Blühens bekannt. Daher sind die molekularen Signalwege, die eine Rolle beim 

Blühen von Maniok spielen, ebenso unklar wie die Frage, wie diese Signalwege zur züchterischen 

Verbesserung von Maniok genutzt werden könnten.  

 

Im Rahmen dieser Doktorarbeit gewähre ich Einblicke in die Entdeckung von Gene des photoperiode-

abhängigen Blüh-Signalweges in Maniok und nutze Gene dieses Signalweges, um den Blühzeitpunkt 

zu manipulieren. Verschiedene Gene wurden gefunden und näher charakterisiert, darunter Gene der 

circadianen Uhr, des photoperiode-abhängigem Blüh-Signalweges, Blühzeitpunktgene und letztendlich 

Gene, die für die Identität des Blütenmeristems verantwortlich sind.  Davon ausgehend konnte ich über 

transgene Pflanzen zeigen, dass der Blühzeitpunkt in Maniok modifiziert werden kann.  

 

In Kapitel 3 habe ich drei Klassen photoperiodischer Gene identifiziert und analysiert. Das erste 

isolierte und charakterisierte Gen war ein GIGANTEA Ortholog (MeGI), das eine hohe 

Sequenzähnlichkeit im Vergleich zu Arabidopsis zeigte.  Der Vergleich mit GIGANTEA-Orthologen 

aus anderen Arten offenbarte durch Phylogenie, das MeGI eindeutlig dem Stamm der Dicotyledonen 

angehört und am engsten mit GI von Rizinus verwandt ist. Die MeGI Expression wurde in Maniok 

gemessen und es zeigte sich, dass die MeGI Expression sowohl unter Langtag- als auch unter Kurztag-

Wachstumsbedingungen jeweils am Abend am höchsten ist. Dies stimmt mit ähnlichen Studien in 

anderen Organismen überein.  
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Eine andere Gruppe von Genen, die ich in Maniok analysierte, waren die CONSTANS-ähnlichen Gene, 

die ich MeCOL1, MeCO und MeCOL2 nannte. Das vorhergesagte Protein von MeCOL2 besitzt zwei 

benachbarte Zink-Finger Motive, die spezifisch für Gene dieser Familie sind. Phylogenetische  

 

Untersuchungen zeigten, das COL2 den drei  MeCO-verwandten Genen am nächsten steht. Die 

Expression von CO-ähnlichen Genen in Maniok zeigte, dass sie die Morgendämmerung antizipieren. 

(Es wurde festgestellt, dass sie durch Licht bei Tagesanbruch stark induziert werden). Unter 

Kurztagbedingungen erreichte die Expression den Höhepunkt zwei Stunden vor Tagesanfang, während 

das Expressionsmaximum unter Langtagbedingungen genau beim Tagesanfang lag. Diese Expression 

nahm während der Lichtperiode des Tages ab. Dies zeigt, dass MeCOL-Gene eine Expression vor 

Tagesanbruch haben. Schlussendlich studierte ich das Maniok Ortholog von Arabidopsis ELF4 im 

Detail. Es stellte sich heraus, dass MeELF4 die elf4-Mutation in Arabidopsis komplementiert und die 

circadianen Rhythmus-Defekte dieser Mutante beheben kann. 

 

Daher habe ich in Maniok erfolgreich GI, Mitglieder der CO-ähnlichen Genfamilie und das ELF4 

Ortholog charakterisiert, welche allesamt Kandidatengene für photoperiodische Regulatoren sind. 

 

Ich schloss die Lücke zwischen Basis- und angewandter Forschung, indem ich das photoperiodische 

Integratorgen FLOWERING LOCUS T (FT) als Werkzeug für die Manipulation des Blühzeitpunkts in 

Maniok nutzte. Um dieses Werkzeug zu erzeugen, setzte ich das Arabidopsis FT-Gen unter die 

Kontrolle eines Ethanol-induzierbaren Promoters. Ich zeigte die Funktionalität dieses Konstrukts, da es 

das Blühen in einem spät-blühenden Genotyp von Arabidopsis nach Ethanolbehandlung förderte. Diese 

Technologie wurde dann auf Maniok übertragen. Ich transformierte einen spät blühenden Genotyp von 

Maniok mit Arabidopsis FT unter der Kontrolle eines Ethanol-induzierbaren Promotors. Es wurde 

gezeigt, dass sich die FT-Expression nach dem Besprühen der transgenen Maniokpflanzen  mit Ethanol 

erhöhte. Daraufhin begannen diese Pflanzen zu blühen.  

 

Es besteht die Hoffnung, dass dieses System in konventionellen Züchtungsprogrammen Anwendung 

finden wird, um den Beginn des Blühens zu einem gewünschten Zeitpunkt zu induzieren. Dies wird 

erwünschte Kreuzungen ermöglichen und somit dafür sorgen, dass die genetische Basis der 

Nutzpflanze Maniok weiter verbessert wird. 
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CHAPTER 1. INTRODUCTION 
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 2

 
1.0 Introduction 

 

1.1 Introduction to Cassava 

Cassava (Manihot esculenta Crantz) is the fifth most important source of food energy. It is ranked 

below wheat, rice, maize, and sorghum in terms of global calorie consumption. Furthermore, it is 

the most important staple food crop in the sub Saharan Africa (FAO 2001). Cassava is a member 

of the dicotyledonous family Euphorbiaceae (Alves, 2002), whose genus Manihot has been 

reported to have approximately 98 species. Cassava is the only domesticated and agronomically 

important species of this genus (Allem, 2002). It is a famine reserve crop because of its ability and 

capacity to yield well in drought-prone, marginal wastelands, where other crops would fail. It is a 

shrub reaching 1-4 m in height (Figure 1.1). It provides a significant role as an edible source of 

carbohydrate in many tropical countries, as it accumulates and stores starch within large swollen 

secondary root structures. It is commonly known as Cassava in English, yuca in Spanish, tapioca 

and manioc in French, and mandioca in Portuguese. 

 

 

 

1.2 Economic Importance of Cassava 

Cassava is an important staple food in Africa and is the most important source of energy for over 

200 million people in sub-Saharan Africa. There, it is extensively cultivated for human 

consumption (Dahniya, 1994). Processing and cooking serves as the main method to extend shelf-

life of the root, which rapidly deteriorates after harvest. This also improves palatability and lowers 

water content to reduce transportation costs. As food source, the root is cooked, or converted to

roasted or steamed granules, made into flour used in the bakeries, dry cut

 

 into chunks, made into 

fermented pastes, processed into drinks, and processed into many other variations. The leaves can 

also be eaten. They are high in protein, vitamin C, iron, and calcium. The leaves are generally 

 

 

 

 

 

 

 

 

Figure 1.1 Cassava growing in the field and the harvested tuber (A) A 
typ
tub

ical Cassava plant of about 2 months old growing in the field (B) Cassava 
ers and stakes displayed at a farmer’s festival. Pictures adapted from a 

web source. 



 3

cooked for an extended period of time. Cassava leaves are an important vegetable in Congo and in 

Tanzania, but are little used in Uganda and West Africa (Nweke et al., 2002). In Latin America

Brazil is the principal country that makes use of Cassava leaves. These leaves serve as sil

animal feed, whereas in industry, the tuberous roots are processed for the manufacture of starch 

and starch-derived products, alcohol, and high fructose-glucose syrups. The main benefits for

Cassava as a crop plant are its starch content, nutritional value, and post-harvest storage 

characteristics. Collectively, Cassava provides five main roles: (1) famine reserv

, 

age for 

 

e; (2) rural food 

taple; (3) urban food staple; (4) livestock feed and industrial raw material; and (5) earner of 

ber of economic and security uses. Some regions 

s

foreign exchange. Cassava therefore has a num

use Cassava for multiple purposes, whereas others do not (Nweke et al., 2002). 

 

1.3 Origin and distribution of Cassava 

Cassava is widely cultivated throughout the tropics, and is generally grown in environments with 

minimal agronomic modifications. Fertilizer, irrigation, or other inputs are generally not used and 

the crop is subject to a wide variation of environmental factors. Among the most important of 

ese environmental factors are temperature, photoperiod, light intensity, water, relative humidity, th

and soil characteristics (Alves, 2002). Variations are greatest across geographical areas, but can 

also be substantial across time within a given site. 

 

The origin of domestication of Cassava had been disputed for many years. With botanical, geneti

and geographical evidence, its origin is now understood to be from South America. This pointed

to the Amazon region as the center of Cassava domestication (Allem, 1994; Hillocks, 2002). The 

domestication of Cassava was further investigated using a phylogeographic study. In this work, 

the locus of the single-copy nuclear-gene glyceraldehyde 3- phosphate dehydrogenase (G3dph) 

provided

c, 

 

 high levels of non-coding sequence variation in Cassava and its wild relatives, with 28 

aplotypes identified among 212 individuals, which demonstrated that Cassava was domesticated 

e 

h the 

 

anzibar (Jennings, 1976). Cassava was introduced from the western coast of 

entral America by Spanish explorers to Southeast Asia and the Philippines. It was also 

h

from wild Cassava populations along the southern border of the Amazon basin (Olsen and Schaal, 

1999).  

 

According to Rogers and Appan (1973), the Portuguese were the first to import Cassava from th

eastern coast of Brazil to Africa. After the 16th century, the species gradually spread throug

various regions of sub-Saharan Africa. The inhabitants of this region then imported Cassava to

Madagascar and Z

C

introduced to Southern India from the East African coast. Thus, Cassava is now present in all 

tropical regions. 
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The inland spread of Cassava cultivation within Africa was by African traders who were dra

Cassava for its ability to provide security against famine and its drought tolerant properties. The 

importance of Cassava as a staple in the African community has prompted the Consultative Group 

on International Agricultural Research (CGIAR) to inaugurate the International Institute of 

Tropical Agriculture (IITA) with its headquarters in Ibadan, Nigeria in 1972 to oversee the 

development of Cassava in Africa. 

wn to 

Together with the Centro Internacional de Agricultura Tropical 

IAT, its Spanish acronym) in Colombia, IITA has the global mandate for Cassava improvement 

s 

, 

, 

t two weeks. The size of fully expanded leaves increases with the age of the plant. At 

w temperatures, the maximum size is smaller and the product of the largest leaves is delayed. 

There are large varietal and environmental effects on leaf area (Irikura et al., 1979). Drought stress 

Fi

(C

and is responsible for developing the crop in Africa. (Hillocks, 2002). Today, Cassava is spread in 

large areas of Africa, Asia, and South America and grown in over 60 countries most of which are 

developing countries (Figure 1.2). 

 

 

 

 

1.4 Cassava Morphology and Physiology 

Cassava has simple palmate leaves with 3 to 9 lobes. They are responsible for both photosynthesi

and tuberization. The leaves are subtended by a long petiole and arranged spirally around the stem

which is important in setting the leaf for light interception. The lobes are varied in color, shape

size and number. The leaf structure includes epidermal tissues with cuticles; mesophyll, with 

palisade and spongy parenchyma; stomata; and pigments. The coloring of the terminal bud is an 

important feature of cultivars, which can be purple, green, or copper (EMPRABA, 2005). When 

grown at elevated temperatures (> 24oC), the time from appearance to full expansion of a leaf 

takes abou

gure 1.2 The Cassava Distribution Map. The graph shows the widespread of Cassava. The brown 
dots represent Cassava cultivation points that are over 1000 ha. Picture was adopted from the  
graphics department of CIAT. 

lo



 5

(Connor and Cock, 1981) and a limited supply of nutrients (CIAT, 1979) can both greatly reduce 

leaf size.  

 

Cassava employs the C3 carbon-fixation metabolic pathway for carbon fixation in photosynthesis

(Edwards et al., 1990; Angelov et al., 1993; Ueno and Agarie, 1997). The maximum 

photosynthetic rates varies from 13 to 24 μmol CO2 m-2 s-2 under greenhouse or growth chamber 

conditions (Mahon et al., 1977, Edwards et al., 1990) and from 20 to 35 μmol CO2 m-2 s-2 in the 

field (El-Sharkawy and Cock

 

, 1990). Cassava has a high CO2 compensation point, typical of C3 

lants. The optimal temperature for photosynthesis for field grown Cassava is 35oC, but the range 

le 

, and 

t of cloud 

over, competition for light by an intercropped species, or intraplant/ interspecific shading. 

 

wer. 

 

This is 

ue to the need for a long growing season, and also to the difficulty of storing the Cassava 

d yield drop off markedly (Cock and 

osas, 1975; Alves, 2002). The upper limits for temperature adaptation appears to be within the 

p

for optimal photosynthesis is 25 to 45oC (El-Sharkawy and Cock 1990). Thus, Cassava is adapted 

to the tropical environment. 

 

Under long days of 16 hour photoperiod, total plant weight tends to remain the same or decrease, 

and the proportion of root weight to total plant weight (harvest index) generally decreases 

(Bolhuis, 1966; CIAT, 1982). Photoperiod also influences reproductive development, and whi

not directly associated with yield formation, has implications for canopy (e.g. branching habit) as 

well as seed production in a breeding program. A long photoperiod induces flower initiation

consequently branching, in many genotypes (Cunha and Conceição, 1975; Bruijn, 1977; and 

Keating et al., 1982a). Intensity of light received by individual leaves can vary as a resul

c

Intercropping effects can be especially pronounced when Cassava is completely shaded. Cassava

appears to be highly sensitive to reduced light intensity (El-Sharkawy and Cock, 1990). 

 

Cassava grows in the tropics from sea level to about 2,200 m elevation, in areas receiving more 

than 400 mm average annual rainfall. In the subtropics, maximum elevation is somewhat lo

The species is cultivated between 30o North latitude and 30o South latitude. The largest plantation

of this crop are concentrated between the parallels of 20o N and 20o S (EMBRAPA, 2005). 

d

planting material for extended periods of time. Here, it is noted that Cassava is difficult to store 

during an extended cold winter. This weather condition inhibits its storability for planting. 

 

Cassava is sensitive to frost. It has a growing season of up to a year and more, which essentially 

limits its range to the tropics and subtropics. When grown in frost-prone areas, such as winter 

season in the subtropics, it is generally harvested or cut back before winter (Ng and Ng, 2002). 

Minimum mean temperature for growth is about 17oC, where the absolute minimum should not 

fall below 10oC. Below these temperatures, stake sprouting is extremely delayed and may fail 

completely. From this temperature reduction, growth an

R
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range of most tropical environments, but the ideal average annual temperature for its developmen

and production is between 25 and 28 oC (Alves, 2002). 

 

Cassava is highly tolerant to drought. There are regions where farmers grow it in areas that have 

less than 500 mm of rainfall per year. In higher rainfall areas, the crop can withstand sustained dry

periods (Pardales and Esquibel, 1996). The species combines several mechanisms that allow it to 

withstand both short and prolonged water stress periods. The principal response to moderate water 

shortage is a reduction of leaf area. The plant maintains normal root growth or may even increa

it. (Connor et al., 1981; Connor and Cock, 1981). The combination of smaller leaf size and slower 

leaf formation rate, rather than leaf fall-off is important to Cassava’s ability to maintain high root 

yield under stress. The ability of Cassava to regulate its stomata to maintain high midday le

water potentials and prevent water loss is a key mechanism for tolerance to prolonged drought (El-

Sharkawy et al., 1984a; 1984b). Although partial closure of the stomata restricts O2 supply to the 

leaf, it lea

t 

 

se 

af 

ds to a stable leaf water potential during stress. A high percentage of Cassava is 

roduced on soils with low pH (often resulting from high aluminium saturation in highly leached 

ly, 

e 

 from 14.8 to 11.2 hours. Flowering and forking was 

und to occur under photoperiods > 13.5 hours. This result is consistent with similar findings 

 

ve 

e female ones. The flowers lack corolla or calyx, but have a 

p

soils, or in the organic tropical peat soils), and generally low levels of major nutrients (Howeler, 

2002). 

 

Little is known about the physiology and the biochemistry of flowering in Cassava. Some clones 

have never been seen to flower (Alves, 2002). It appears that moderate temperatures 

(approximately 24oC) are suitable for flowering in Cassava (Alves, 2002). Branching correlates to 

the onset of flowering, which is promoted in long days by some cultivars (Alves, 2002). Usual

the apical meristem becomes reproductive when branching occurs, but abortion of flowers is 

common. Keating et al. (1982a), evaluated Cassava at 12 different planting dates at a high latitud

(27oC 37′S), where photoperiods ranged

fo

from Bruijn (1977) and Cunha and Conceição (1975), who suggested flowering in Cassava may 

be promoted by increasing day length. 

 

Cassava’s inflorescence occurs along the juncture between branches, branching is a precondition

for flowering. The flowers are monoecious, producing both male (pistillate) and female 

(staminate) flowers on the same plant, in the same inflorescence. The flowers have a simple 

unisexual form, and display an indefinite structure called a perianth, which is comprised of fi

tepals that can be yellow, red, or purple. The flowers are arranged in chymes; the male flowers are 

smaller and more numerous than th

perianth with five tepals which can be yellow, red or purple, depending on the cultivar. The 

staminate flower is located on the lower part of the branches and the pistillate flower on the upper 

part of the branch (Alves, 2002).  
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The male flower has a delicate pedicel (supporting stalk) and five overlapping tepals, which are 

sometimes colored on their ventral side (Figure 1.3B). On the inside of the male flower, there is a 

disk divided into 10 lobules, in the center of which there are the beginnings of an ovary. Betw

these lobules ten stamens or filam

een 

ents grow, arranged in two series: five internal and five external, 

ith the latter being more developed. On the stamens there are anthers that face the center of the 

e 

ach contain one ovule which matures into carunculate seeds. The female flowers normally open 

ne to 

  

 limiting synchronized flowering (Alves, 2002). However, in rare 

cases of simultaneous maturing of male and female flowers in different racemes of the same plant, 

self-pollination can occur. Manual pollination for breeding purposes involves the female and the 

male floral parts (Figure 1.3C). 

 
Cassava roots are rich in starch. They have various shapes depending on the variety and 

environmental conditions in which the plant develops. They can be cylindrical, conical, fusiform, 

w

flower. The pollen is yellow or orange and the pollen grains range in size from 122-148 μm 

(Ghosh et al., 1988).  

 

The female flower has a less developed pedicel and a perianth divided down to the base, with 

colorful tepals that, numbering five, are always colored on their ventral side (Figure 1.3A). Th

superior ovary has three carpels, each of which houses an individual ovule, with a micropyle 

(opening) facing upward. The central disc, located at the base of the ovary, has five lobes, each of 

which has two lobules. The stigma is wide, crinkly, fleshy, and of varying color. The female 

flower has a ten-lobed basal disk while the ovary is tricarpellary with six ridges. The three locules 

e

between 10-14 days before the males on the same branch. Together, this makes the plant pro

cross-pollination, which might explain the high level of heterozygozity in Cassava (Alves, 2002).

 

Cross-pollination of Cassava plants is often made possible by insects (Alves, 2002). Self-

pollination is somewhat uncommon because of protogyny, by which female flowers open before 

male flowers in the same raceme

 
Figure 1.3 Cassava’s Floral Parts (A) The Cassava female flower (B) The Cassava male
(C) A type of controlled pollination 

 flower 



 cylindrical-conical, or globular; crooked roots, constricted roots, and lateral offshoots are also 

common. The plant has on average, between 5 and 12 roots, whose sizes depend on growing 

conditions.  The root can grow over one meter long. In addition to its tuberous roots, Cassava 

plants have fibrous root network, which is responsible for water and nutrient absorption as well as 

providing stability to the plant. The tissue that constitute the tuberous roots are: the peel, the pulp 

and the central fibres. The peel is made up of the periderm, which is sometimes smooth or 

wrinkled, with varying shades of white, cream, or brown; and the phelloderm, a layer of varying 

colour with cells rich in starch. The phloem is located in the cortex and is characterized by vessels 

that contain latex rich in cyanogenic glycosides. The pulp consists of secondary xylem tissue and 

storage parenchyma cells constituting a fleshy part that is rich in starch. In the center of the center 

cylinder, there are hard xylem and sclerenchyma vessels, which form the central fibre bundles-

thick, white cords of cellulose nature that run longitudinally along the roots (EMPRABA, 2005). 

 

1.5 Genome structure of Cassava 

Cassava has a diploid genome (2n=36). The nucleic acid content of diploid Cassava is 1.67 

picogram per nucleus that is 772 mega base pairs in the haploid genome (Awoleye et al., 1994). 

Some authors have described it as an allotetraploid with basic chromosome number x=9. Jos and 

Nair, (1979) however, conducted studies on the meiotic behavior of several Cassava genotypes 

and observed regular 18 bivalent formation of the chromosomes typical of its diploid (2n=2x=36 

chromosomes). In 1997, a molecular genetic linkage map of the Cassava genome was constructed 

(Fregene et al., 1997). However, not much information is known about individual genes that make 

up the genome. The genomes of more than 180 genomes of organisms have been sequenced, 

ranging from bacteria to plants to animals (Goodner et al., 2001; Dietrich et al., 2004; AGI, 2000, 

Venter et al., 2001; Yu et al., 2002). There are still a lot of on-going genome sequencing projects. 

Cassava falls within the category of organisms whose genome has not been sequenced. 

Sequencing the Cassava genome is important to be able to know and understand how genes in this 

crop plant work together to direct the growth, development and maintenance of the tropical plant.  

 

1.6 Cassava Production 

Production of Cassava in Africa makes up to 54% of the world total, with the other two major 

producing continents being South America and Asia (FAO 2003). This 54%, however, is 

cultivated on an estimated 65% of the total area available to Cassava (FAO 2003). The reason for 

this apparent mismatch is that the yields in Africa, averaging 8.8t/ha, is only 70% of that in South 

America and 61% of that in Asia (Legg and Thresh, 2003). 

 

Cassava production expanded broadly throughout the lowlands tropics in the twentieth century, 

mainly on the less-fertile, poor-quality agricultural lands (Hillocks, 2002). In traditional, low-input 

cropping systems, Cassava is often an end-of-cropping-phase where it is grown and yield well on 
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low fertility soils. Its ability to withstand locust attacks and drought, and its low cost of production 

motivated the farmers to replace other traditional root crops, such as yams (Hillocks, 2002). In 

areas where population growth has caused a reduction of the rotation pattern shifting culture and a 

commensurate decline in soil fertility, Cassava is one of the few crops that can thrive without 

supplied inputs, provided some form of rotation remains. Similarly, in the Southern India and Java 

(both with very high population densities), Cassava is increasingly relegated to low-quality land. 

In one of the most notable agricultural success stories of recent years, the area planted to Cassava 

increased fivefold in Thailand. This development in the 1970s was to meet an export opportunity 

in Europe. However, the production and commercialization of Cassava is limited due to a host of 

abiotic and biotic constraints. 

 

1.7 Constraints of Cassava  

Cassava is plagued by a host of insect pests and diseases, a major production constraint which can 

cause up to 70% to 100% yield loss (Abate et al., 2000). These pests include the Cassava 

hornworm, Cassava mites, thrips, and gall midges. There are also prevalent diseases of the 

Cassava Mosaic and the African Mosaic Virus, both of which are transmitted by the insect vector-

white fly (Bellotti et al., 1999). Other types of diseases of Cassava include brown streak, stem rot, 

anthracnose, bacterial blight, frog skin and the brown leaf spot (Hahn and Keyser, 1985; Thomas 

et al., 1986; Guthrie, 1987; Silvestre, 1989; Alaux and Fauquet, 1990; Hong et al., 1993;  

Swanson and Harrison, 1994; Legg and Thresh, 2003). The combat against pests and diseases of 

Cassava continues to be a major breeding challenge. 

 

Cassava contains high cyanide because it accumulates the cyanogenic glucoside compounds 

linamarin and lotaustralin. Linamarin is synthesized in the leaves and transported to the roots 

(Wheatley and Chuzel, 1993; Siritunga and Sayre, 2003). The hydrolysis of linamarin and 

breakdown of acetone cyanohydrin by hydroxynitrile lyase (HNL) or elevated pH (> 5.0) leads to 

the release of hydrogen cyanide (HCN), which is poisonous (Cooke and Coursey, 1981). The total 

amount of cyanogenic glycoside in Cassava plant is dependent on cultivar, cultural practice, 

environmental conditions, and plant age (McMahon et al., 1995). Processing of Cassava roots 

before consumption will hydrolyze the cyanogenic glycosides by hydroxynitrile lyase to acetone 

and cyanide (White et al., 1998). Improvement of  Cassava varieties with high cyanogenic 

glycoside compounds can be achieved through breeding with elite cultivar with that of a variety 

with low levels of the compound. As well, genetic transformation events has been used to 

successfully reduce the amount of the cyanogenic glycosides in Cassava by antisense 

downregulation of cytochrome P450 genes (CYP79D1/D2) involved in cyanogenic glycoside 

synthesis (Siritunga and Sayre, 2003; White et al., 1998, Siritunga et al., 2004). 
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The Cassava root is high in starch content. Around 80% of Cassava dry root matter is starch, and 

thus it suffers from low protein content (El-Sharkawy, 2004). Less than 2% of the dry weight of 

the root is protein, as compared to 9.1% in potato (Bushway et al., 1980). There is therefore a 

need to increase the protein content in roots of Cassava. Reports of crosses between Cassava and 

Manihot tristis revealed root protein content of more than 8% in F1 hybrids (Bolhuis 1953; Asiedu 

et. al., 1992). Unfortunately the high protein content was lost during back crossing to recover the 

desired characteristics and high root yield of Cassava (Asiedu et. al., 1992). Hence, there is need 

of alternative measures of improving the genetic basis of nutrition of this crop.  

 

Cassava roots undergo rapid post harvest physiological deterioration which causes blue/black 

discoloration of the vascular tissues from the synthesis of simple phenolic compounds as a result 

of wound response (Wheatley and Chuzel, 1993). Cassava has the shortest post-harvest life 

compared to any of the other major root crops (Ghosh et al., 1988). The roots become perishable 

and become inedible within 24 to 72 hours after harvest. This can cause up to 20% post harvest 

loss (Egesi et al., 2007). Cassava post-harvest deterioration prevents exportation of Cassava roots 

and reduces generation of income to farmers. Conventional breeding programs have been 

successful in making significant contributions to reducing post-harvest deterioration of Cassava 

(Cortés et al., 2002). 

 

Plant breeding is an indispensable tool in producing superior yielding Cassava (Hershey and 

Jennings, 1992). For any breeding scheme to be effective, knowledge on the floral biology of 

Cassava should first be considered. Cassava seeds are genetically diverse due to segregation and 

recombination from sexual reproduction (Halsey et al., 2008). Traditional breeding programs in 

Cassava have been successful in introducing improved cultivars (Hershey and Jennings, 1992). 

However, the high degree of heterozygosity in this allotetraploid plant, long growing season, 

irregular flowering, low seed set, and variable germination rates have impeded faster progress via 

classical breeding (González et al., 1998). 

 

Unlike many of the world’s major crop plants, genetic improvement of Cassava through sexual 

crosses has been difficult. Many varieties flower rarely and seed production is often low. Further, 

early flowering is associated with heavy branching, which tends to lead to low harvest index and 

yield (Cock et al., 1979; Cock and El Sharkaway, 1988). Conversely high yielding genotypes 

either do not branch or branch late, and the first branches formed often do not produce fertile 

flowers (Ceballos et al., 2002; Jennings and Iglesias, 2002). This leads to a dilemma for Cassava 

breeders. They must produce shy flowering types, but in order to reduce generation times, and 

produce many progeny through controlled crosses, they require profuse early- flowering types. 

Furthermore, synchronized flowering is essential to perform the cross. In the field, Cassava is 

typically propagated clonally by stem cuttings (Iglesias et al., 1994). This vegetative propagation 
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strategy is ideal for molecular approaches to crop improvement, since an individual clone does not 

experience gene segregation through outcrossing. Cassava plants obtained from seeds produce 

genetically diverse offsprings, and stem cutting propagation produces clones of the same 

genotypic background (Iglesias et al., 1994).  

 

In light of the constraints described above, plant breeding and genetic transformation can be 

essential tools to produce improved Cassava genotypes. This should overcome the array of 

agronomic constraints that currently exists. For effective breeding programs, an understanding and 

manipulation of the timing of flowering in Cassava becomes an indispensable tool. This is notably 

true given that many Cassava varieties flower late, while some have been known never to flower 

(Alves, 2002). Further relevance occurs given the need for synchronization of flowering, because 

different Cassava varieties flower at different times in their breeding cycles. This makes 

conventional breeding difficult. The problem of the long growth cycle makes the evaluation of 

successful breeding programs prolonged, and this delays release of elite crops generated. It 

literally takes a decade to generate a new cultivar by the conventional breeding method (Fregene 

and Ponti-Kaerlas, 2002). Thus, an alternative floral manipulation strategy becomes critical to 

reduce breeding time. 

 

 

1.8 Cassava in vitro Regeneration (Methods of Cassava transformation)  

Transformation provides an alternative for Cassava improvement. However, for successful 

manipulation of the Cassava genome by molecular-genetic transformation, an efficient and 

reproducible regeneration system of Cassava is required. The now established regeneration system 

of Cassava includes the use of the Friable Embryogenic Callus system (FECs) and Somatic 

Embryogenesis (SE) (Roca, 1984). 

 

1.8.1 Friable Embryogenic Callus  

Friable embryogenic callus are organized somatic embryos which are generated from leaf-lobe 

explants. They can be used to regenerate whole plants that are derived from single cells. The 

friable embryogenic callus (FEC) differentiates into thousands of homogeneous sub-millimeter 

sized, pro-embryogenic units per gram of tissue. (Taylor et al., 1996; Taylor et al., 2001). Many 

plants have been successfully regenerated from this embryogenic callus (Raemakers et al., 1996; 

Schöpke et al., 1996; Taylor et al., 2001, González et al., 1998; Zhang and Pounti-Kaerlas, 2000). 

 

1.8.2 Somatic Embryogenesis  

Somatic embryogenesis involves the production of embryo-like structures from young leaf lobes 

and cotyledons (Stamp and Henshaw, 1982, 1986, 1987a, b). These embryos develop further and 

germinate into plantlets through developmental steps that correspond to zygotic embryos. The 
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direct mode of somatic embryogenesis involves the formation of an asexual embryo from a single 

cell or a group of cells on a part of the explant tissue without an intervening callus phase. Plants 

have been successfully regenerated from these tissues (Stamp and Henshaw, 1982, 1986, 1987a, b; 

Stamp, 1987; Szabados et al., 1987; Taylor and Henshaw, 1993; Mathews et al., 1993; Raemakers 

et al., 1993; Konan et al., 1994b).  

 

1.9 History of Genetic Transformation in Cassava 

In 1996, the first stable genetic transformations of Cassava was reported using Agrobacterium 

tumefaciens (Li et al., 1996) and microparticle-mediated delivery of DNA to plants (Schöpke et 

al., 1996). Additional reports of the genetic transformation of Cassava have followed (Sarria et al., 

2000; Zhang et al., 2000a, b). However, only recently have transgenic plants been generated with 

enhanced agronomic traits (Zhang et al., 2003, Ihemere et al., 2006).  

In the last 6 years, there have been several reports of genetically modified Cassava with enhanced 

agronomic traits. In 2003, Siritunga and Sayre reported the introduction of an antisense CYP79D1 

and CYP79D2 construct into Cassava to suppress the expression of the cytochrome P450s that 

catalyse the first dedicated step in cyanogenic glycoside synthesis. Transgenic plants having less 

than 1% of the normal root cyanogens levels were generated. However, these plants were unable 

to grow without supplemental reduced nitrogen (Siritunga and Sayre, 2003). In the same year, 

Zhang et al. reported the misexpression of an artificial storage protein gene (ASP1) in Cassava 

leaves and roots to increase protein content (Zhang et al., 2003). Its altered transgene expression 

had little effect on the overall amino-acid composition of leaf proteins. More recently, Siritunga et 

al. (2004) have reported the overexpression of hydroxynitrile lyase gene in Cassava tuberous 

roots, and this led to accelerated cyanogen removal and food detoxification. In another report, 

Ihemere et al. (2006), produced Cassava with 2.6-fold increase in total tuberous root biomass by 

altering the rate-limiting step in starch biosynthesis, overexpressing the E.coli gene glg C, 

encoding AGPase (Ihemere et al., 2006). From these success stories, there is every reason to be 

hopeful that transgenic Cassava will be part of the solution to break breeding constraints. 

 

1.9.1 Promoters Choice in Plant Biotechnology  

Genetic manipulations in plant biotechnology involve the introduction of one or more transgenes 

which can turn on or off the desired trait in plants. A number of promoters have been used to 

transcribe the genes of interest. Among such promoters are constitutive promoter CaMV35S and 

chemical-inducible systems for gene-regulated expression (Zuo and Chua, 2000). The chemical-

inducible system in plants is based on de-repression, inactivation, and activation of transcription 

of the target gene (Zuo and Chua, 2000). One class of promoters of particular interest is the 

activation of transcription of the target gene which can be directed to “turn on” genes of interest. 

One such inducible promoter system will be described.  
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The ethanol-utilization pathway of the filamentous Aspergillus nidulans is a well characterized 

positive-operon system. It controls the cellular response to ethanol and related alcohol and ketones 

(Felenbok et al., 1988, Felenbok, 1991). The first enzyme in the path of ethanol utilization is 

alcohol dehydrogenase I (Adh-1), which is encoded by the alc gene (Felenbok, 1991). The 

transcription activator protein AlcR binds target sequences within the alcA gene promoter in the 

presence of ethanol, or other alcohols or ketones. These compounds act as inducer of gene 

expression. 

 

1.9.1.1 The AlcA promoter system transferred into plants  

The ethanol system was transferred into plants as a two-component inducible system. This 

requires the alcR gene, which encodes the transcriptional activator protein AlcR, and the alcA 

promoter (Lockington et al., 1987). The alcR gene can be placed under the control of a strong 

constitutive promoter, such as CaMV 35S. Thus, the transcriptional factor for induction is 

continuously present. In the absence of the ethanol inducer, the transcriptional protein AlcR 

cannot bind the specific sequences of the modified alcA promoter, which is linked to a gene of 

interest. In the presence of ethanol, the transcriptional protein AlcR is activated and binds to the 

alcA promoter which drives the expression of the gene of interest to which it is fused (Kulmburg 

et al., 1992). 

 

The AlcR/AlcA system has an advantage over a wide variety of other inducible- promoter systems 

of plants is that: 

1. Ethanol is a simple alcohol, which is inexpensive and readily available, and its toxicity is mild. 

2. Induction of the system can be achieved by low doses of ethanol. 

3. Under normal growth conditions, the levels of the natural inducers (ethanol) and related 

alcohols produced are low, such that they do not induce alcR expression. 

4. Expression can be induced at different stages of development. 

The use of this gene switch has previously been described in tobacco (Nicotiana tabacum),  

Arabidopsis thaliana, potato (Solanum tuberosum), tomato (Lycopersicon esculentum), oil-seed 

rape (Brassica napus), and Poplar (Caddick et al., 1998; Salter et al., 1998; Roslan et al., 2001; 

Sweetman et al., 2002; Garoosi et al., 2005; Filichkin et al., 2006). From the success of the use of 

the ethanol inducible systems in these biological systems, it is hopeful that the AlcR/AlcA will 

work well in Cassava. 

 

 

1.10 Flowering Control Pathways in Arabidopsis 

Flowering and its control is one of the most important developmental aspects of crop plants.  

Control of flowering in Arabidopsis has been extensively studied and several pathways have been 

implicated in the control of flowering. These are photoperiodic, vernalization, gibberellin and 
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autonomous pathways (Blazquez et al., 1998, 2002; Levy et al., 2002; Yanovsky and Kay, 2003; 

Hayama and Coupland, 2004; Searle and Coupland, 2004; Amasino, 2005). The inductive ability 

of the photoperiod pathway to promote flowering in “shy”genotypes is particularly noted (Jaeger 

et al., 2006). 

 

1.10.1 Day length/Photoperiod in Arabidopsis 

Plants in nature perceive light-dark stimulus as a result of the rotation of the earth around its axis 

over a period of 24 hours of the day, which causes day and night as a result from the position of 

the earth’s surface facing towards or away from the sun. This light-dark transition is a potent 

environmental cue that affects angiosperm flowering time (Garner and Allard, 1920 and 1923). 

Arabidopsis is a facultative long day plant responsive to inductive long day photoperiod, which 

causes it to flower. The timing of floral transition is attenuated under short days (Searle and 

Coupland, 2004). 

 

Various Scientists have proposed that the measurement of photoperiod was dependent on an 

endogenous diurnal rhythm. The first published accounts on this was that from the French 

Astronomer, Jean Jacques d’Ortous Marian (1729), who was intruiged by the daily folding of the 

leaves and leaflets of the ‘sensitive’ mimosa plants during the night and their re-opening during 

the day to study whether this biological behavior was as a response to sunlight. Placing the plants 

in constant darkness, he observed the opening and the closing of the leaves persisted as though the 

plants were perceiving/seeing day and night. He concluded the involvement of an internal rhythm 

(de Marian, 1729). This internal rhythm is termed as the circadian clock from the Latin circa, and 

dies, which means "approximately one day." Modern photoperiod research extends from this, and 

it is now understood that flowering time of many plant species is regulated by day length 

(Bünning, 1960 and Searle and Coupland, 2004).  

 

Transition to flowering is one of the most important phases of development. In Arabidopsis, 

flowering is regulated by an integrated network of several genetic pathways which monitor both 

the developmental state of the plants and environmental cues, such as day length, light and 

temperature. The photoperiodic flowering is known to be regulated by GIGANTEA (GI), a 

circadian clock-controlled gene (Fowler et al., 1999). GI is placed between the clock and 

CONSTANS (CO) (Mizoguchi et al., 2005). CO plays a central role in the photoperiodic 

promotion of flowering under long day conditions. It was shown that CO acts between the 

circadian clock and genes controlling meristem identity (Samach et al., 2000; Suárez- López et al., 

2001).The flowering time genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF 

OVEREXPRESSION OF CO1 (SOC1), together with the floral meristem identity gene LEAFY 

(LFY), are three essential regulators integrating floral signals from multiple pathways in 

Arabidopsis (Yu et al., 2002). The interaction among these genes is mediated by AGAMOUS-
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LIKE 24 (AGL24), a putative transcription factor which is activated in the shoot apical meristems 

during the floral transition (Yu et al., 2002).  Together, it is clear that a number of floral inducers 

exists in Arabidopsis. 

 

Interestingly, Kardailsky et al., 1999, reported that FT and SOC1 are among the most potent 

activators of flowering, by causing extreme flowering when overexpressed. FT and SOCI are at 

the point of convergence of several flowering-time pathways and are often therefore described as 

floral integrators (Mouradov et al., 2002; Simpson and Dean, 2002). Corbesier et al., 2007, 

demonstrated a strong correlation between the expression of CO in the light, increased expression 

of the downstream gene FT, and early flowering. This has been coupled also with the evidence 

provided by Corbesier et al., 2007, that FT protein is a major component of florigen and that the 

gain-of-function of FT leads to early flowering and furthermore, its loss of function results in late 

flowering. More recently FT has been shown to be mobile in its floral inductive abilities (Jaeger 

and Wigge, 2007; Giakountis and Coupland, 2008). Taken together, a linear flowering pathway 

has been proposed, and FT is a key factor of the photoperiod pathway that ultimately functions as 

a positive factor in the expression of identity genes.  

 

1.11 Photoperiod Perception In Cassava 

Flowering and photoperiodism in Cassava has not been a major focus of study. At present there is 

no strong research entity which focuses its attention on flowering of tropical species, and the 

applied research agencies that are required to respond to requests for systems to control flowering 

of tropical species have only a limited capacity to respond. Given the similarities in the floral-

inductive pathways of Arabidopsis and rice (Andersen et al., 2004), gene sequences from 

Arabidopsis show promise to manipulate floral timing in Cassava.  

 

1.12 Aim of thesis 

My objectives for conducting this research were to isolate and characterize Cassava photoperiodic 

genes and as a consequence, modify flowering time in Cassava with the Arabidopsis mobile and 

graft transmissible floral promoter, FT. It is hoped that my success will consequently improve 

food security in the sub Saharan community by creating a genetic system that would be useful for 

inducing floral initiation at will for the purpose of conventional breeding. This might open up 

“locked,” but desirable genes in Cassava, and as a consequence, lead to increased food supply and 

income in the rural areas.  
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2.1 Materials  

 

2.1.1 Chemicals 

Laboratory grade chemicals were purchased from Amerscham Biosciences (Freiburg), Merck 

(Darmstadt), Fluka (Neu-Ulm),Sigma-Aldrich (Taufkirchen), Serva (Heidelberg), Duchefa 

(Haarlem, Netherlands), and Roth (Karlsruhe), Invitrogen (Karlsruhe). 

 

2.1.2 Enzymes 

Restriction enzymes were purchased from New Englands Biolabs (Frankfurt a.M) and Fermentas 

(St.Leon-Rot). 

 

Other enzymes: 

Taq DNA polymerase Peqlab (Erlangen) 

Pfu Turbo HotStart DNA polymerase Stratagene (Heidelberg) 

T4 DNA ligase Fermentas (St. Leon-Rot) 

Klenow enzyme Roche (Mannheim) 

DNaseI Roche (Mannheim) 

RNaseH Fermentas (St. Leon-Rot) 

RNase inhibitor (Roche) 

Superscript II Reverse Transcriptase Invitrogen (Karlsruhe) 

BP-clonase (GATEWAY®-Technology) Invitrogen (Karlsruhe) 

LR-clonase (GATEWAY®-Technology) Invitrogen (Karlsruhe) 

                                                                                              

2.1.3. Bacterial Strains 

 

2.1.3.1 Escherichia coli 

DH5α, (Invitrogen,Karslruhe) genotype supE44 lacU169(φ80,lacZ M15) hsdR17 recA1 endA1 

gyrA96thi-1 relA1 

XL 10-Gold (Stratagene) 

DH5 (Invitrogen, Karslruhe) 

DB3.1(Invitrogen, Karslruhe)  RR1 gyrA462 endA (recA-) 

XL10-Gold (Stratagene, Heidelberg) 

 

2.1.3.2 Agrobacterium tumefaciens 

ABI (Davis et al., 2009) 

GV3101 strain with pMP90RK (Koncz and Schell, 1986) 
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2.1.4. Vectors 

pDONR207 Gateway Cloning Donor vector (Invitrogen, Karslruhe) 

pNew-Mik1-antisense GATEWAY-compatible plant expression to express cDNA under the 

control of CaMV35S promoter and an ethanol inducible system (Bekir Ülker, MPIZ). The pNew-

FT vector was obtained from LR reaction 

pJalee4-Destination vector harboring the ELF4 promoter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 The Vector Map of pNewFT used for the transformation of both Arabidopsis and 
Cassava. The AlcR transcription factor under the constitutive promoter is activated in the presence of 
ethanol, binds to the AlcA-Pro, the promoter which drives the expression of the FT cDNA fused to it. 
 

 

 

 

 

 

 18



 

2.1.5. Oligonucleotides 

5’-3’Oligonucleotides were synthesized by Invitrogen (Karlsruhe) and Sigma (Steinheim). 

 

Table 1.1: Primer sequences designed for cloning, genotyping, and gene discovery. 

Gene Primer Name Primer sequence 5’- 3’ 

MeELF4 GWFW-elf4fwprimer GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGA

ACAACAATTCCAATCACAAATC 

 GWRV-elf4rvprimer GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACGA

CCTTCCACTACTGTT ACTGTTGCCG 

AtFT FTGWFW GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGT

CTATAAATATAAGAGACCCTC 

 FTGWRV GGGGACCACTTTGTACAAGAAAGCTGGGTCTAAAGT

CTTCTTCCTCCGCAGCCA 

 FTf1 CCAAGTCCTAGCAACCCTCA 

 FTr1 TACACTGTTTGCCTGCCAAG 

 L33S-FTSBF1 AAGCAGAGTTGTTGGAGACG 

 R508-FTSBR1 AGCCACTCTCCCTCTGACAA 

 L104-FTSBF1 GAGAGGTGACTAATGGCTTGG 

 L17-FTF1 CTATGAAAGCCCACGACCAT 

 R205-FTR1 CCATCGGTGGGAATTCATAG 

AtTUBULIN TUBF ACTCGTTGGGAGGAGGAACT 

 TUBR ACACCAGACATAGAGCAGAAATCAAG 

MeCO CO51 GCGGTTGCAGCAAGAAAGGAGAAAGG 

 CO52 GGAGAAAGGCAAATCTGAGG 

 CO53 GAACTATAAAAAAGCTACACAACCATAG 

 CO54 CAACCATAGACTAGAAATTCT 

 CO31 ATCAAACACAATACTTAGATGTGTATAG 

 CO32 GATGTGTATAGCTCATATAA 

 CO33 CTCCATTTCATCAATGGATGGGGGAGTGG 

 CO34 GGGGGAGTGGTACCTGATTC 

 CO5A GACTGCTCTCTGCTTTCACTCTCAGCTCCC 

 CO5B CTCTCAGCTCCCACTAAAAAAACCATTGCC 

 CO5C CTCCACCACCAAACAAGAAGCCATTATTGTTCTGC 

 CO5D GCCATTATTGTTCTGCCCGTTGCTATTCTTCGC 

 CO3A CCTTTGAAACTATATTTTGATGCAGGACTTAG 
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MeCO 

continued 

CO3B GCAGGACTTAGAATGATGGGACAACGCCA 

 CO3C TGCAGAAGCAGCAAGAAAAGATCAACTGCATC 

 CO3D GCATCATCAATACCATAATTTCCACTTGGGGTTGG 

MeGI GI5 1 GGCTTGTATGCATGCTCTCTCTGTTTTG 

 GI5 2 CTGTTTTGATGCGGTGCAAG 

 GI5 3 TGCCATAGAAGTGAGACAACAGAGAAAC 

 GI5 4 GAAACATAACTCCTGTTTCTC 

 GI3 1 AATTTCTTAACAATGGACAGGCACATTG 

 GI3 2 GCACATTGGATTNNNCTTCAG 

 GI3 3 CTCTATATCAGCTTGCCAATCGATGACATC 

 GI3 4 GATGACATCTACCTTGAATAAC 

MeAP1 AP1 1 GGGCACAGAGAGAAGCTAGAAGCAG 

 AP1 2 AGCAGCACGCGCTGCAACTG 

 AP1 3 AACCTTCTTTGCAAGTTGGTTGTTTTG 

 AP1 4 GGTTGTTTTGCTCCTGCAATG 

MeELF4 EL41 GCCATTAATTACTGCCTGACCTCCCTC 

 EL42 GACCTCCCTCTGCTCCTACGC 

 EL43 TTTATTCATTTGTTTATTCCAAATTGCG 

 EL44 CCAAATTGCGAACAATAACCCCAT 

MeLHY   LH51 GAGAAACTCCTTTCGATGCTCCTTTTTC 

 LH52 GATGCTCCTTTTTCCTTCTTTC 

 LH53 AAAAACTTCTGTGCATGACTCCTGATC 

 LH54 CCTGATCTGCACAGCAGTCTTTG 

 LH31 ACTGGCTTTTCGAGCTCTCTTCTCCAG 

 LH32 CTCTTCTCCAGGGAGATATTG 

 LH33 TTTTTTTAAACAAACACTGCCTTAG 

 LH34 CACTGCCTTAGAAAGAAAAGGATTAT 

MeSOC1 SOC1 ATCAGATTTTCAGTTACTTCTTGC 

 SOC2 CTTCTTGCTTTATCTTTCTTGTTTTGG 

 SOC3 TGCAGGCACCCAAACTTCTTCCCAGTAG 

 SOC4 CCAGTAGTTTCCTTTTTGCAATTTC 

RcFT FT51 TTAGGGATCCTCTTGTTGTTGGGGG 

 FT52 TCTTGTTGTTGGGGGTGTGATAGGA 

 FT53 AGGAGAAGGAGAGTGGAGATGATCA 
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RcFT 

continued 

FT54 GGAGATGATCATTTACCAAAGTATA 

 FT31 TTTAACTAAATCACTTATCATCTAT 

 FT32 ATCATCTATTTGTTGTTAATATATC 

 FT33 CTAAATTAAATAAGACTCAAATTAA 

 FT34 TCAAATTAATAATATTGAATCAAATTATC 

RcCO Co51 AGAGAAGCAGCATCTGCCTTGCACAA 

 Co52 TCTGCCTTGCACAAGAAGGCAGCCGG 

 Co53 ACGAAACTCGTAGTAATCATGTTG 

 Co54 ATCATGTTGAAAGAAGAGAACACTG 

 Co31 GAAGGCTTAGAATGATGGAACAATGC 

 Co32 AATGATGGAACAATGCCATATCCAG 

 Co33 CACAGCTCAGTCCAAGGGACAGGGAGGCA 

 Co34 ACAGGGAGGCAAGGGTTCTAAGATAC 

RcGI  G1F1 ATATTTACCGATGAAATAAACGTGC 

 G1R1 TAAACGTGCATATGGCTCCAGAGC 

 G2F1 TTCATCTCATGGATCGGGGAAG 

 G2F2 GATCGGGGAAGCATCCTCAACTCATGC 

 G3F1 TAACTATTGATGCAACAGCTTTGCTGTG 

 G3F2 CAGCTTTGCTGTGAATATCAATGAG 

 G3R1 AAAGATAAAAAAACAAGGTCCTGTTGCAG 

 G3R2 CTGTTGCAGCATTTGATTCTTATGTTCTTG 

 G4F1 TGTCAAATGGATATAGTACAACCTAATTC 

 G4R1 GATATAAATGGCATTCGTGGTCCATCATATC 
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2.1.6. Media 

 

2.1.6.1. Media for bacteria 

Media for bacteria were prepared as described (Sambrook and Russell, 2001). 

 

Luria Bertani (LB) YEBS Circle Grow-purchased from Qbiogene 

Antibiotics 10 g/L bactotryptone 

5 g/L yeast extract 

5 g/L NaCl 

1% agar 

pH  7.5 

5 g/L beef extract 

5 g/L peptone 

5 g/L sucrose  

1 g/L yeast extract 

0.5 g/L MgSO4 

1% agar 

pH  7.0 

Ampicillin 100 mg/ml  

Carbenicillin 100 mg/ml H2O 

Gentamicin 25 mg/ml H2O Kanamycin 

100 mg/ml H2O 

Phosphinothricin (PPT) 12mg/ml H2O 

Rifampicin 100 mg/ml methanol 

Spectinomycin + Streptomycin 50 mg/l 

each (100 mg/l in total) 

 

 

2.1.6.2. Media for plants 

 

Arabidopsis 

 

MSO - Murashige and Skoog (MS) growth media MS3 

2.2 g/L MS salt, 

0.5g/L MES, 2-(N-Morpholino) Ethane Sulfonic acid 

1.2% phytoagar (Duchefa) 

pH  5.7 adjusted with KOH  

4.4 g/L MS 

0.5 g/L MES 

30 g/L sucrose 

1.5% phytoagar 

pH  5.7 adjusted with KOH  
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Cassava  

All MS salts (Murashige and Skoog, 1962) have same stock concentration, except when otherwise 

stated. 

 

Murashige & Skoog’s medium salts Stocks (Murashige and Skoog, 1962) 

  

MS Stock Solution I (X 50) 

 

MS Stock Solution 2(X 1000) 

8.5 g/L KH2PO4                                

95 g/L KNO3                                     

18.5 g/L MgSO4. 7H2O                     

82.5 g/L NH4NO3                              

 

25 mg/L CoCl2·5H2O                           

25 mg/L CuSO4·5H2O                         

6.2 g/L H3BO3                                     

16.9 g/L MnSO4·H2O                         

250 mg/L NaMoO4·2H2O                    

8.6 g/L ZnSO4·7H2O               

MS Stock Solution 3(X 1000) MS Stock Solution 4 (X 100) 

830 mg/L KI                                      43.9 g/L CaCl2.2H2O                           

MS Stock Solution 5   MS Vitamins ( X 100)                        

7.45 g/L Na2-EDTA                          

5.57 g/L FeSO4·7H2O                        

 

200 mg/L Glycine                                

10 g/L myo-inositol                             

50 mg/L nicotinic acid                         

50 mg/L pyridoxine HCl                     

10 mg/L thiamine HCl 
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Embryo Induction MS2-IBA-BAP (Organogenesis)    

  

MS4-Somatic Embryo 

Cotyledon Transformation 

20ml/L Stock 1         

1ml/L   Stock 2   

1ml/L   Stock 3  

10ml/L Stock4                

5ml/L  Stock 5              

10ml/L Vitamin B5 

250μl/L  Picloram          

2% Sucrose  

1ml/L 2mM CuSO4   

50mg/L Casein 

hydrolysate 

pH  5.6-5.7 

0.2%  Gel rite                 

 

20ml/L Stock 1         

1ml/L   Stock 2   

1ml/L   Stock 3   

10ml/L Stock4                

5ml/L   Stock 5              

MS Vitamins  

100mg/L M-inositol                            

1ml/L Vitamin Stock 1000X     

2% Sucrose                                         

1ml CuSO4     

500μl BAP Stock 2000ppm        

500μl IBA Stock 1000ppm         

pH  5.8                                                 

0.6% Agar 

20ml/L Stock 1         

1ml/L   Stock 2   

1ml/L   Stock 3   

10ml/L Stock4                

5ml/L   Stock 5              

1ml/L   MS Vitamins                     

100mg/L Inositol                          

250μl/L 4mg 2,4-D     

2% Sucrose   

1ml/L 2μM CuSO4       

50mg/L Casein hydrolysate           

pH  5.6-5.7 

 

 

 

 

 

MS2-BAP (Maturation 

Medium) 

MS2-1μM NAA                           

 

MS3-Activated charcoal              

 

MS  Salts             

20ml/L Stock 1                      

1ml/L Stock 2                        

1ml/L Stock 3 

10ml/LStock 4                      

5ml/L Stock 5                        

MS Vitamins  

100mg/L M-inositol              

1ml/L Vitamins without 

inositol  

Sucrose 2%                           

1ml 2μM   CuSO4                 

50μl 0.1mg BAP                   

pH  5.8                                   

0.45%  Agar  

MS Salts              

20ml/L Stock 1                       

1ml/L   Stock 2      

1ml/L   Stock 3    

10ml/L Stock 4        

5ml/L   Stock 5   

MS Vitamins  

100mg/L M-inositol 

1ml/L Vitamins without 

inositol 

2% Sucrose    

 0.465ml α-NAA (naphthalene 

acetic acid) 

 pH  5.6-5.7  

Agar: Gel rite 3:1                

MS   Salts            

20ml/L Stock 1                          

1ml/L Stock 2                                

1ml/L Stock 3                                

10ml/L Stock 4                              

5ml /L Stock 5                               

1ml Vitamin B5                               

100mg/L  myo-inositol                  

3% Sucrose                                    

1.4g/L Glutamine                           

5.0g/L Activated carbon                

200mg/L Casein hydrolysate         

pH  5.6-5.7 

3.0g/L phytagel    
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GRESSHOFF AND DOY (GD) MEDIUM (1972) Basal Salt Mixture 

 

Macro 100 X  Stock 

Solution  in g/L                 

Micro 1000X in mg/l 

 

Vitamins GD 100 X  mg/L  

NH4NO3 100g/l 

KNO3 100g/l 

MgSO4·7H2O 3.49g/l 

KH2PO4 30g/l 

KCl 6.5g/l 

                 

 

300mg/L H3BO3   

1000mg/L MnSO4·H2O   

300mg/L ZnSO4·H2O   

25mg/L Na2MoO4·2H2O   

25mg/L CuSO4·5H2O  

25mg/L CoCl2·6H2O  

800mg/L KI          

400mg/L Glycine    

100mg/L pyridoxine HCl       

10000mg/L  myo-inositol    

1000mg/L thiamine HCl     

100mg/L nicotinic acid    

 

Ca(NO3)2·4H2O  100 X 

24.130g/l 

GD2-50Pi 

10ml/L Macro                                     

10ml/L Ca(NO3)2                      

1ml/L Micro                               

36.7mg/L FeNaEDTA                                          

10ml/L Vit. GD 100X                                      

2% Sucrose                                               

250 μl/L 50μM  Picloram Stock 200mM       

pH  5.7-5.8 

4.5g/L Agar       
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4E- Propagation Medium MS  Salts 17N-Rooting Medium 

20ml/L Stock 1                          

1ml/L Stock 2                                                   

1ml/L Stock 3                                                   

10ml/L Stock 4                                                      

5ml/L  Stock 5                                     

10ml/L Thiamine 1ppm 

Stock 1000ppm                          

100mg/L Myo-inositol 100ppm                                 

2% Sucrose  

40µl BAP 0.04ppm   Stock 1000ppm                      

55.5µl GA3  0.05ppm   Stock 900ppm                      

20µl NAA 0.02ppm    Stock 1000ppm                    

1ml/L CuSO4 2µM      Stock 2mM                           

pH  5.7-5.8 

0.45%  Agar Duchefa 

1/3 MS Salts                           

6.66ml/L Stock 1    

0.33ml/L Stock 2   

0.33ml/L Stock 3    

3.33ml/L Stock 4 

1.66ml/L Stock 5 

2% Sucrose  

10ml/L Thiamine (100ppm)                            

100mg/L Inositol                                             

25.0µl/L NAA (0.01mg)  400ppm                   

10.0µl/L GA3 (0.01mg)  1000ppm                  

25mg/L Plant Product pp 10:52:10           

pH  5.7-5.8 

4.5g/L Agar Duchefa                                       

                                                        
  

 

2.1.7 BUFFERS AND OTHER REAGENTS 

 

DNA EXTRACTION BUFFER  

CTAB  

140mM Sorbitol 

220mM Tris-HCl pH 8.0 

22Mm EDTA pH 8.0 

800mM NaCl 

1%w/v Sarkosyl 

0.8% CTAB pH 8.0, autoclaved 121°C for 20mins 

 

TE 

10mM Tris-HCl 

1mM EDTA pH 8.0 

 

MEDIA FOR GEL ELECTROPHORESIS 

10X TAE 

48.4g/L Tris Base 
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11.42ml of glacial acetic acid 

20ml of 0.5M EDTA, 

Add up to 1000ml with dH2O 

adjust pH to 8.5 with  KOH 

 

25X TBE buffer  

67.23 g/L Tris 

34.31 g/L boric acid 

37.22 g/L EDTA 

pH 8.0 

 

DNA visualization dye 

Ethidium bromide (Stock 10 mg/ml in H2O) 

 

 

SOLUTIONS FOR SOUTHERN BLOT 

 

Depurination solution 

11ml HCl 

989ml of distilled water 

 

Denaturation Buffer 

87.66g/L NaCl 

20g NaOH/L 

 

Neutralization Buffer 

87.66g/L NaCl 

60.5g/L Trizma base 

Adjust pH to 7.5 with concentrated HCl 

 

Nucleic acid transfer buffer (20X SSC) 

88.23g/L Tris-Sodium Citrate 

175.32g/L NaCl 

pH 7-8 

 

100X Denhardt’s Solution 

2.0g/100ml  Bovine Serum Albumin 

2.0g/100ml Ficoll 400 
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2.0g/100ml Polyvinylpyrrolidone 

Stored at -15 oC to -30 oC 

 

10% SDS 

100 g SDS in 900 ml distilled H2O 

 

Hybridization Buffer 

5 x SSC 

5 x Denhardt’s solution 

0.5% w/v SDS 

 

Bleach solution 

33% (v/v) KLORIX® (commercial sodium hypochlorite solution) in 0.02% (v/v) Triton X-100 

 

Firefly D-luciferin 50 mM stock 

1 g firefly D-luciferin(D-[4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazole-carboxylic acid] 

(LABTECH INTERNATIONAL) was dissolved in 71.3 ml 1 M triphosphate buffer  

(Na2HPO4/NaH2PO4) pH 8.0 to give a 50 mM luciferin solution. 1.5 ml aliquots were stored at  

-80°C. The luciferin stock was diluted to a 5 mM luciferin working solution with 0.01% (w/v) 

Triton-X100. 

 

2.2 Methods 

 

2.2.1 Plant Material 

Arabidopsis  

Arabidopsis lines elf4-1 was in Ws-2 ecotype (Doyle et al., 2002) 

FLC/FRI was in the Columbia (Col-0) background (Michaelis and Amasino, 1999) 

CCA1::LUC and CCR2::LUC was in Ws-2 ecotype (Doyle et al., 2002) 

ft-10 was in the Columbia background (Yoo et al., 2005) 

 

Cassava  

All Cassava lines were regenerated in vitro and the wild-type controls were from the Genetic 

Resource Unit, CIAT, Colombia. 
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2.2.2 Molecular Biology Techniques 

 

Cloning 

E. coli cells were transformed by heat shock at 42°C for 30 secs according to the manufacturers’ 

instructions (INVITROGEN). Transformation of Agrobacterium was performed by 

electroporation, according to Wen-Jun and Forde (1989). Briefly, 1 µl of plasmid DNA 

(~100ng/µl) was used to transform 50 µl of cells. Transformation was performed at field strength 

of 12.5 kV/cm, at capacitance of 25 µF and resistance of 400 to 600 ohms for 12msec in a 1mm 

cuvette. Transformed bacteria were selected on YEBS agar plates containing appropriate 

antibiotics. Plates were incubated at 28°C for 24 to 72 hours, at which time colonies were visible. 

 

GATEWAY® constructs 

The 35S promoter fragment of the binary vector pJawohl (KanR, gift from Bekir Ulker, MPIZ) 

was replaced with the ELF4 promoter using ClaI and AscI sites to create pJawohl/ELF4p. 

Subsequent restriction with AscI and SpeI enabled exchange of the promoter-GATEWAY® 

cassettes of pJawohl/ELF4p and pLeela (BastaR, gift from Marc Jakoby, MPIZ), to give pJalee4 

(Kolmos thesis, 2007). 

 

GATEWAY BP reaction: 

attB-PCR product 25 fmol 

GATEWAY‚ BP clonase 1µl 

BP reaction buffer (5X) 1µl 

Destination vector (150 ng/µl) 0.5 μl 

dH2O to 5 µl 

 

LR reaction: 

Entry clone (50 ng/µl) 1.25 µl 

GATEWAY‚ LR clonase 0.5 µl 

LR reaction buffer (5X) 0.5 µl 

Destination vector (50 ng/μl) 0.25 µl 

Reactions were carried out in room temperature between 1 hour to overnight 

incubation. 

 

E.coli Plasmid Isolation 

Qiagen QIAprep Spin Mini preparation Kit was used according to the instruction manual. 
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Plant DNA Manipulation 

Qiagen DNeasy Plant Mini Kit was used according to the instruction manual. 

 

Polymerase Chain Reaction (PCR) 

The basic PCR performed was with Taq polymerase (PeqLab, Erlangen) 

2µl 2.5 mM dNTP mix  

2μl Buffer S (PeqLab) 

4μl Enhancer solution (PeqLab) 

1.6μl 25 mM MgCl2 

0.5μl 10μM forward primer 

0.5μl 10μM reverse primer, 

0.1μl (5U/μl) Taq polymerase 

7.3μl dH2O  for a total reaction volume of 20μl 

 

PCR Thermal profile 

Initial denaturation step of 94°C for 2mins 

Denaturation at 94°C for 15 sec 

Annealing 50-60°C for 30 sec 

Extension 72°C for 30s-2 min 

Final extension time at 72°C for 5-10 min 

 

PCR products were separated on TBE-agarose gels containing ethidium bromide and visualized 

using the BIO-RAD GEL DOC 2000 system (QUANTITY ONE, version 4.6.2 software). The 

denaturation to extension steps were repeated up to 29-39 times. 

 

PCR fragment extraction from Agarose Gels 

Qiagen QIAquick PCR purification kit was used, according to the instruction manual. 

 

DNA sequencing 

Sequencing was performed by the MPIZ DNA core facility (ADIS) on Applied 

Biosystems (Weiterstadt, Germany) ABI Prism 377, 3100 and 3730 sequencers using 

BigDye-terminator chemistry. 

 

RNA Extraction Procedure 

Qiagen RNeasy Kit was used, according to the instruction manual. 
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cDNA synthesis 

2 μg of total RNA was used for cDNA synthesis. Prior to the synthesis, RNA was treated with 

10U/μl DNase I (Roche) with DNase 1 Buffer (MgCl2 included) and incubated at 37°C for 30 

minutes to remove any residual genomic DNA. The reaction was continued as follows: 

1μl 25mM EDTA, 10mins incubation at 65°C  

1μl 0.5μg oligo(dT) 12-18 , 10mins incubation at 65°C 

Incubate at least 1 min on ice 

4 μl of 5 x RT buffer (Invitrogen) 

1 μl of 10 mM dNTP mix 

2 μl of 0.1 M DTT 

0.5 μl of RNase inhibitor 40U/ul (Roche) 

Incubation at 42°C, 2 min 

1 µl of Superscript II RT (200U/μl) (Life Technologies, Rockville, MD) 

Incubation at 42°C, 60 min 

Incubation at 70°C, 15 min 

90µl dH2O was added to the reaction 

 

Reverse transcriptase -PCR (RT-PCR) analysis 

10µl iQ-SYBR Green Supermix (Biorad), 2µl 10µM forward primer, 2µl 10µM reverse primer, 

4µl dH2O and 2µl cDNA.  

All PCR analyses were performed with the iCycler iQ5TM  Multicolor Real-time PCR Detection 

System (Bio-Rad), according to manufacturers instructions. 

 

DNA Manipulation for Southern Blot 

Genomic DNA was isolated from young leaves of greenhouse-grown plants, according to the 

CTAB protocol, with modifications based on Doyle and Doyle 1987. 

 

Three to five grams of leaf tissue was frozen and ground to fine powder, and then 20 ml of CTAB 

buffer was added to the powder at room temperature. The ground tissue was incubated at 65°C for 

20 minutes, with occasional mixing by inverting. This was followed by addition of 10 ml of 

Chloroform. This mixture was shaken for 20 minutes at room temperature. Then the sample was 

centrifuged for 10 minutes at 2,500 g. To the aqueous phase, in a fresh 50 ml tube, 17 ml of 

isopropanol was added. This was mixed and placed on ice 10 minutes and centrifuged 5 minutes. 

The liquid was drained off without drying the pellet. To this, 4 ml of TE was added and the pellet 

were dissolved by gentle shaking. The solution of DNA was precipitated again with 4 ml of 

lithium acetate, this mixture was incubated on ice for 20 minutes. It was centrifuged for 10 

minutes and the supernatant was transferred to a fresh tube. To this solution, 16 ml of 100% 
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ethanol was added, and this mixture was incubated on ice for another 20 minutes. It was then 

centrifuged for 5 mins and the precipitate was collected. The liquid was drained off and 4 ml of 

TE was added to resuspend the pellet in solution. RNase (100 mg/ml) was added to digest any 

remaining contaminant RNA. To remove the protein, first 400 µl of sodium acetate was added and 

this mixture was transferred to a 15 ml tube containing 4.5 ml phenol. The mixture was inverted 

and then centrifuged for 10 minutes. 4.5 ml phenol:chloroform (1:1), was added to the aqueous 

layer, and this was mixed by inverting. The sample was then centrifuged for 10 minutes. To the 

aqueous layer from the preciding centrifugation step, 4.5 ml of chloroform was added. This was 

then mixed and then the sample was centrifuged at 2500 g for 10 minutes. The supernatant was 

transferred to a fresh 50 ml tube and 2 volumes of 100% ethanol was added. This was incubated 

on ice for 20 minutes. The incubated mixture was centrifuged at 2500 g for 15 minutes to collect 

the DNA as the precipitant. The liquid was drained off, the tube was inverted and the pellet was 

collected onto a piece of clean parafilm. The pellet was then carefully placed into a 1.5 ml 

eppendorf tube. This was again centrifuged for 5 minutes at 15,000 g. The residual liquid was 

carefully removed and the pellet dried with vacuum desiccator for about 10 minutes. The pellet 

was resuspended in 200 µl TE. The concentration of the DNA was determined using the Peqlab 

Nanodrop ND-1000UV visible spektralphotometer, according to the manufacturer’s instructions.   

 

Southern-blot analysis of transgenic cassava and its wild-type was carried out according to the 

methods of Sambrook et al. (1989). Genomic DNA (20 µg) was digested with HindIII (20U/µl) 

and 5U/µg was used for the digestion. The samples were separated by 0.8% (w/v) agarose gel, run 

first at 100 volts for 1 hour, and then at 30 volts overnight. This electrophoretic run was in 1 X 

TAE buffer. The gel was depurinated for 10-20 minutes with gentle agitation. This was followed 

by 30 minutes of denaturation, then 30 minutes of neutralization with gentle agitation. The gel was 

blotted to the Hybond-NX membrane (Amersham, GE Healthcare, Buckinghamshire,UK) by 

means of the capillary transfer, according to Southern (1975), with 20 x SSC used as the transfer 

buffer. The transfer was carried out over night at room temperature. The DNA was then 

immobilized to the membrane by crosslinking with Stratalinker UV crosslinker at 180,000 

microjoules/cm2. The membrane was prehybridized in hybridization buffer (Amersham, GE 

Healthcare, Buckinghamshire,UK)  for 1-2 hours at 42°C. 

  

Following prehybridization, a probe was made by PCR amplification of the AtFT gene from the 

plasmid pNewFT (Figure 2.1), with the primers L104 and R508, giving a product size of 405 bp. 

This PCR product was purified with Qiagen PCR kit (Qiagen In, Valencia, CA). The PCR product 

was made up to 45 µl with 1X TE to a concentration of 25 ng. This was boiled at 100°C for 5 

minutes, quickly cooled on ice for 5 min after denaturation. The tube was briefly centrifuged, and 

this denatured DNA was added to the reaction tube (GE Healthcare Amersham Rediprime II 

Random Prime Labelling System). To this 5 µl of [α-32P] dCTP was added and mixed. This was 
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incubated at 37°C for 10 minutes and then the labeled DNA was denatured by heating at 100°C 

for 5 minutes. This was immediately cooled on ice for 5 minutes. The sample was centrifuged to 

collect and carefully added into the hybridization buffer. This hybridization was left for 1-2 days 

at 42°C.  

After hybridization was completed, the membrane was washed twice with 2 X SSC, 0.1% (w/v) 

SDS for 5 minutes at 37°C, a single wash with 1 X SSC, 0.1% (w/v) SDS for 15 minutes at 37°C 

and finally with 0.1X SSC, 0.1% SDS for 2 X 10 minutes at 37°C. The membrane was dried at 

room temperature, wrapped with Saran wrap, placed a film within the cassette in the dark and 

exposed for 1-3 days at -80oC after which the signals were visualized after developing. 

 

ESTs  searches  

BLAST searches (Altschul et al., 1990) were made on both Cassava ESTs database in NCBI and 

that of Castor bean for using the Arabidopsis clock genes, LONG HYPOCOTYL (LHY), EARLY 

FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), the photoperiodic genes, GIGANTEA 

(GI), and CONSTANS (CO), their direct targets, the integrator genes, FLOWERING LOCUS T 

(FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1(SOC1), and FD, the direct target 

of FT, the floral meristem identity genes APETALA 1 (API), AGAMOUS- LIKE 24 (AGL24), 

AGAMOUS and LEAFY (LFY), and the floral repressors, FLC and FRI (Onouchi et al., 2000; 

Borner et al., 2000; Samach et al., 2000; Ratcliffe et al., 2001; Kardailsky et al., 1999; Kobayashi 

et al.,1999; Blazquez et al., 1997; Hepworth et al., 2002; Lee et al., 2000; Abe et al., 2005). The 

sequence information obtained from the ESTs databases were used to design primers with the 

Primer 3 and the Invitrogen Vector NTI AdvanceTM 10 program (http://frodo.wi.mit.edu/). These 

primers were used for PCR against Cassava cDNA and genomic DNA. The sequences obtained 

from sequencing the fragments from the gel purified products of PCR amplification were first 

analyzed by comparing these sequences again with the Arabidopsis TAIR blast using the search 

“TAIR8 Proteins.” When these sequences were retrieved from BLAST searches, they are allocated 

an e-score which indicates the degree of similarity between the subject and the query. If the e-

value is closer to 0, it shows a higher degree of similarity between the two sequences. Nucleotide 

sequences were used for this search against a protein database using a BLASTX search. This 

program translates the nucleotide sequence in all six reading frames and compares the output 

against all the translated sequences in the database. This program maximizes the potential for 

retrieving sequences similar to the gene of interest (Altschul et al., 1997), which is the main 

reason for which amino-acid database were used in this study. These steps were carried out for all 

these genes of interest, except for those genes that were not amplified by PCR or those whose 

sequences with the highest e-value showed no similarity to the corresponding gene of interest 

within the Arabidopsis database. The sequence output used for primer design were from only 

those sequences which were identified and recognized as corresponding or likely orthologous gene 

with those in the Arabidopsis database (TAIR-BLAST) (http://www.arabidopsis.org/blast). 
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Contig  assembly and Phylogenetic analysis 

Candidate sequences were identified using the BASIC LOCAL ALIGNMENT SEARCH TOOL 

(BLAST) (Altschul et al., 1990) in the Cassava ESTs database, Castor bean genome and other 

genome databases (DOE JOINT GENOME INSTITUTE, PHYSCOBASE, TIGR). Contigs were 

assembled from sequenced gene fragments using the program Vector NTI Advance 10TM . A 

consensus sequence was determined.  

The derived protein sequences and partial sequences from public databases, were aligned using the 

multiple alignment tool CLUSTALW2 EMBL-EBI, 

https://www.ebi.ac.uk/Tools/clustalw2/index.html (Larkin et al., 2007), according to the 

Neighbour joining method (Saitou and Nei, 1987). Those, alignments were visualized after 

processing with Java TM 6 Standard edition. Trees were generated from the alignment outputs by 

calculating average distance using % identity.  

 

2.2.3 Plant Procedures 

 

Seed sterilization and germination in Arabidopsis 

Small aliquots of seeds (up to 400 μl) were surface-sterilized. First the seeds were rinsed in 500 μl 

ethanol. After removal of ethanol, the seeds were incubated in 500 μl of bleach solution for 1-3 

minutes. The bleach was removed and the seeds were rinsed with sterile water. The seeds were 

suspended in 0.1% agar water before they were plated on appropriate MS agar medium. The seeds 

were stratified at 4°C in the dark for 2-3 days before transferred to the appropriate growth cabinet. 

 

Flowering time 

Seeds were stratified in agar water in the dark at 4oC for 3-4 days before they were transferred to 

soil. The plants were grown in a long-day (16 h light, 8 h dark) greenhouse. 100-150 μE white 

light intensity and a constant temperature of 22°C. Flowering time was scored as a number of 

rosette leaves at flowering. Five to six plants per genotype were analyzed in each experiment. 

  

Hypocotyl elongation 

Seeds were plated on MS3 and stratified for 3-4 days at 4oC in the dark. Plates were illuminated 

for 3-4 hours before transferred to the appropriate cabinet with a short-day regime (8L:16D, 60 μE 

white light). The hypocotyls were measured after 9 days by imaging the seedlings with a flatbed 

scanner (Microtex artixScan 1100), and then  region measurement feature of METAMORPH 

(MOLECULAR DEVICES CORPORATION, Downingtown, PA) was used to calculate the 

length of the hypocotyls. 
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Cotyledon movement 

Rhythmic growth was measured and calculated as described (Hanano et al., 2008). For this, seeds 

were surface-sterilzed, placed on MS3, and stratified at 4oC in the dark for 3 days. Plates were 

transferred to long day under 12L:12D (100 μE white light) for 5 days before transferred to  

100 mm square plates with 25 compartments (BIBBY STERILIN, UK). The seedlings were 

maintained in the germination medium to avoid damage of the hypocotyl. 1-cm-square agar blocks 

containing single seedlings were transferred to the plate, which was kept in vertical position. A 

few drops of sterile water was added inside the plate and the plates were sealed to avoid moisture 

loss. The plates were  transferred to continuous light (low intensity white light, average 15 μE, 

lighting from the sides) and constant temperature of 22°C at dusk the next day. First leaf 

movements were monitored for 7 days using video cameras. The images were recorded every 30 

minutes using METAMORPH. The rhythms of the cotyledon movements were analyzed in 

METAMORPH. Regions were defined for each leaf and the (x,y) pixel coordinates corresponding 

to the central position of the leaves were measured (Edwards et al., 2005). The data was analyzed 

as described (Edwards et al., 2005 and Hanano et al., 2008). 

 

Generation of transgenic Arabidopsis plants  

Plants were transformed with the Agrobacterium haboring the construct of interest by the floral-

dip method, as described (Davis et al., 2009). 

 

Imaging with a CCD camera 

Seeds were surface-sterilized, sown on MS3-medium, stratified for 2-3 days at 4°C in darkness, 

and transferred to long day conditions (16L:8D). After 7 days, 8 seedlings per genotype were 

transferred to fresh MS3-medium in a 96-well micro-titre plate. All the plants were sprayed with 5 

mM luciferin to inactivate accumulated luciferase and plates sealed before taken to the single-

photon-counting liquid-nitrogen cooled CCD camera. The 5 mM Luciferin used was in excess to 

ensure that the detected activity of the luciferin is proportional to that of the promoter. The plates 

were transferred to the CCD camera for the monitor and measurement of the emitted luminescence 

(Visitron Systems). Each image was for a 15 minutes picture. These images were taken 1 per hour 

for a period of 6 days. The imaging of the plants during exposure and data were analyzed (Gould 

et al., 2006), using the MetaMorph Imaging Series 6.1 software (Universal Imaging Corporation, 

Dawnington, PA, USA).  

 

Cassava Transformation Procedure 

The Friable Embryogenic Callus (FECs) used for Cassava transformation were obtained from 

nodal cuttings from in-vitro plantlets cultured in 4E media at a density of 25 cuttings per 

Erlenmeyer glass flask. The node cuttings were grown for 2-3 months, then the buds were 
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extracted from the explants and cultured for 25-30 days in 5 ml MS4 liquid media -Murashige and 

Skoog (1962) salts and vitamins supplemented with 4 mg/l 2,4-Dinitrophenol for somatic embryo 

induction. The  somatic embryos formed were excised from the rest of the tissue and sub-cultured 

on Gresshoff and Doy basal solid medium in the presence of 4-amino-3,5,6,trichloro-picolinic 

acid (Picloram) for 3 months to induce the formation of FECs from which highly totipotent 

embryogenic suspension cultures were established. The suspension were plated on GD2-50Pi 

+tyrosin (400µM) media and after 30-45 days, developed FECs in the clusters were subcultured 

into fresh GD2-50Pi +tyrosin media for  proliferation (maximum of 9 clusters per dish). The FECs 

are ready for transformation. 

 

The ethanol inducible pNewFT plasmid was introduced into Agrobacterium ABI by 

electroporation and transferred to Cassava FECs by Agrobacterium-mediated-transfer protocol, as 

described by Schöpke et al. 1996, with modifications made at CIAT known to promote 

transformation in several independent transgenic events (CIAT 2002). 

 

Pure FECs used for transformation were obtained from the Cassava variety TMS 60444. Bacterial 

cultures from ABI-pNewFT was grown overnight at 250 rpm in 50 ml bacterial induction medium 

LB containing 19.6 µl of acetosyringone (100 mg/ml) with the selective antibiotics Kanamycin 50 

mg/ml, Chloramphenicol 30 mg/ml, and Carbenicillin 100 mg/ml at 28ºC until the Optical Density 

at O.D 560 was between 0.5-1.0 (Figure 2.2A). Acetosyringone was added as a phenolic inducer 

which helps trigger the activation of the genes in the virulence region of the Ti plasmid of the 

Agrobacterium which are necessary for the initiation of the transfer of the T-region DNA from the 

Ti plasmid to the plant chromosomes (Sheikholeslam & Weeks, 1987). The bacteria were pelleted, 

the supernatant discarded, and resuspended in 10 ml LB media. To this, 9.6µl of acetosyringone 

was again added and 10 µl of the bacterial culture was used to inoculate the FECs by suspending 

the bacterial culture in them (Figure 2.2B). Prior to this stage, the FECs had been re-distributed in 

clusters of 5 mm width of about 20 clusters per dish of solid media GD2-50Pi + Acetosyringone, 

each cluster weighed about 0.082 g. The plates were placed in a vacuum apparatus to remove air 

trapped within the FECs to ensure direct and total contact of the Agrobacterial culture with all the 

FEC units. The co-cultivation of construct containing Agrobacteria and FECs was carried out in 

darkness for 48 hours at 21ºC.  

 

Fifteen FEC-containing plates were inoculated. After co-cultivation, those FECs already showing 

increased infection by bacteria were collected with a sterile spatula, and these were washed 4 

times with GD2-50Pi liquid media supplemented with Cefotaxin (0.5mg/ml), to kill residual 

Agrobacterium and prevent future contamination of the FECs. The washing procedures were 

repeated each day for one week, and then washed for an additional week with 10 mg/L of Finale 

(active ingredient phosphinothricin). After the washing steps were complete, individual cell lines 
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of infected FECs were plated on solid GD2-50Pi selection media for proliferation by 

differentiation of the FECs for 4 weeks after which the medium was changed twice after every 2 

weeks each under the appropriate selection pressure (Figure 2.2C). 

 

The FECs were continued in selection on MS2-1µM NAA (α-Naphthalene Acetic Acid) for more 

than 5 weeks to allow for the induction of the growth and development of somatic embryos. 

Somatic embryo development is however asynchronic, since the time of embryogenesis vary from 

cell to cell (Figure 2.2D). The green somatic embryo from these FEC lines were transferred from 

the maturation medium to MS2-0.5% activated charcoal (Figure 2.3A). FECs undergoing somatic 

embryogenesis were transferred to this media of activated charcoal, to further improve cell growth 

and development by enhancing morphogenesis and decrease toxic metabolites (exudates phenolic 

compounds accumulation and promote adsorption of vitamins and growth regulators). This growth 

step took about one month. Young matured green transgenic lines were transferred to elongation 

media MS2-0.2µM GA3 (Gibberellin) for another period of elongation, which took about 3 and 

more weeks. After elongation, the shoots were transferred to 17N (Figure 2.3B) for the 

development of roots for another 4 weeks and maintained in vitro.  

 

 
 Figure 2.2 Cassava Transformation from Agrobacterium-mediated transfer to somatic 

embryo formation (A) Agrobacterium culture ready for transforming FECs (B) Cassava 
FECs co-cultivated with Agrobacterium haboring the pNewFT construct, after 48 hours in 
the dark (C) Close up, microscopic view of transformed FECs in GD2-50Pi proliferation 
medium (D) Cassava transformed FECs in somatic embryo maturation medium. 
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Figure 2.3 Cassava somatic embryo germination to green house establishment (A) FECs has 
just completed embryogenesis and germinating in activated charcoal (B) Putative  transgenic 
cassava lines differentiating into organ root (C) Cassava putative transgenic lines freshly transferred 
to soil (D) Cassava putative transgenic events well established in the glass house ready for 
molecular analysis.  

 

Greenhouse establishment 

The in vitro maintained putative transgenic Cassava lines were grown up to 4 weeks. 

After this 4 weeks period, when the plantlets had well established roots, they were transferred to 

the green house. Plantlets were carefully removed from test tubes, washed with running tap water 

to eliminate excesses of phytoagar, which could serve as bait for fungal growth, and planted in 

sterile soil. The planted plantlets were covered with transparent water proof bags or inverted with 

stryophyle cups and punctured to maintain humidity (Figure 2.3C). The bags/cups were removed 

after the plantlets were established on soil. Plantlets were carefully watered every other day, or as 

the need arose (Figure 2.3D). These plants were maintained in the glass house with temperature 

ranging from 25-30oC, under long days (16h Light and 8h Dark) green house with light intensity 

ranging from 120-153 µmol s-1 m-2 and under short days (8h Light, and 16h Dark) growth 

chamber with light intensity from 140-190 µmol s-1 m-2 and at 22oC. These plants were used for 

subsequent molecular and physiological analysis. 
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Somatic embryo cotyledon transformation 

Transformation of somatic embryo cotyledons using the Agrobacterium ABI carrying the 

flowering constructs were introduced to cassava cultivars CM3306-4 and Col 2215. About 300 

explants were transformed. None of which survived the aggressive attack of the Agrobacterium 

infection on these explants. Additional efforts were made to introduce the flowering constructs 

into a less aggressive Agrobacterium LBA4404 were futile due to incompatibility between the 

plasmid and LBA4404. This was because LBA4404 is sensitive to Carbenicillin, which was used 

to select for positive transformeants after the plasmid is introduced to the Agrobacterium. 

 

2.3 Software, databases, and other internet resources 

Databases for genomic sequences of Arabidopsis: 

http://www.arabidopsis.org 

http://www.arabidopsis.org/Blast/ 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

 

Database for genomic sequences of Ricinus communis: 

(http://blast.jcvi.org/er-blast/index.cgi?project=rca1) 

 

Database for genomic sequences of Cassava: 

http://www.ncbi.nlm.nih.gov/mapview/static/MVPlantBlast.shtml?3983 

http://www.jgi.doe.gov/sequencing/statusreporter/psr.php?projectid=16112 

 

Primer design: 

Primer 3 (http://frodo.wi.mit.edu/) (Rozen and Skaletsky, 2000). 

 

Vector NTI Advance 10TM 

Invitrogen corporation, 1600 Faraday avenue 

Carlsbad, California. 

 

Cluster Analysis and Tree: 

https://www.ebi.ac.uk/Tools/clustalw2/index.html 
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CHAPTER 3. DISCOVERY, PHYLOGENETIC RELATIONSHIPS, AND 

CHARACTERIZATION OF SEVERAL PHOTOPERIODIC GENES OF 

CASSAVA  
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3.1 Introduction/ In Quest for Photoperiod Cassava Genes 

 

Cassava is a tropical crop plant whose photoperiodic pattern has not been well studied. Daylength 

changes over the seasons in the tropical region are small, varying from 10 to 14 (±2 hours) 

throughout the year. These small differences are probable as to why studies on photoperiodic 

effects on tropical plants are uncommon (Alves, 2002). In limited studies, Cassava was reported to 

initiate floral formation at photoperiods > 13.5 hours (Keating et al., 1982a). Furthermore, Bruijin 

(1977) documented that these plants are sensitive to small differences in daylength, but flower 

initiation occurred under non-inductive conditions after 200 days of planting. As well, Keating et 

al. (1985), showed that growth under a long photoperiod increases leaf area, shoot growth, and 

storage root growth. It is thus critical to study and understand the molecular genetic response of 

Cassava to photoperiod, the genes that are implicated in the photoperiodic pathway of Cassava 

and lastly to define how these photoperiodic genes directly affect flowering time in this tropical 

plant.  

 

To assist gene identification in Cassava, some limited description of the Cassava genome has been 

performed. A linkage map was developed from molecular  markers (Gomez et al., 1996 and 

Fregene et al., 1997). This genetic map has been exploited in the positional cloning of genes (Mba 

et al., 2001, Fregene et al., 2001). The discovery of more genes within the Cassava genome will 

aid in the description of the genetic repertoire of this critically important tropical plant.  

 

It is noted that Castor bean (Ricinus communis) is related to Cassava in that they both belong to 

the family of Euphorbiaceae (Mathews et al., 1993). It is thus expected that Cassava orthologues 

of photoperiod genes will be most similar in sequence to that of this plant. Since the genome of 

Castor bean has been sequenced, much of the sequence information available in its database will 

be used with a similarity approach (Lifschitz et al., 2006; Böhlenius et al., 2006; Turner et al., 

2005; Hayama and Coupland, 2004). Therefore, I exploited the previously existing information 

available in the Cassava ESTs database, alongside with that of the genome of Castor bean to 

isolate several photoperiod genes in Cassava, and compared these Cassava sequences with 

corresponding genes in other species. 

 

Nothing has been reported in Cassava on the physiology, biochemistry, and genetics of the clock 

genes, integrator genes, floral meristem identity genes, and the floral repressor genes. The 

identification, isolation, and function of these genes will present a giant stride towards the capacity 

to study molecular events of photoperiodism in the Cassava community. Such studies will 

contribute greatly to the genetic repertoir of this crop. The sequence information gathered from 

these Cassava genes were studied in detail, as reported in the subsequent sections. 
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Expressed Sequence Tags (ESTs) searches were made from the Cassava database and Castor bean 

genome site for sequences of interest. The sequence information obtained from these ESTs 

databases were used to design genomic-amplification primers in different orientation and they 

were used in PCR to isolate genes from Cassava genomic DNA and cDNA generated from pools 

of samples harvested from different time points of the day. Following the sequencing of the 

amplification fragments, sequence information was retrieved for MeGI, COL, AGL24, ELF4, and 

LHY/CCA1, all of which consequently showed extended identity with the Arabidopsis equivalent 

genes. It is noted that the sequences obtained lacked the complete ORF. The singular exception 

was MeELF4 gene, which has the complete ORF. The characterization of these genes is described 

below. 

 

3.2 Results 

 

3.2.1 Computational Searches for Photoperiodic genes 

Searches were made at both the Cassava ESTs database and at the Castor bean genome site for 

related sequences to the already characterized genes in Arabidopsis that are of interest to 

photoperiodism. These genes were the clock genes LONG HYPOCOTYL (LHY), EARLY 

FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), the photoperiodic output genes 

GIGANTEA (GI), and CONSTANS (CO), their direct targets, the integrator genes FLOWERING 

LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), and  FD, the 

direct target of FT, and finally, the floral-meristem identity genes APETALA 1 (API), AGAMOUS- 

LIKE 24 (AGL24), AGAMOUS, and LEAFY (LFY). Additionally, I searched for the sequences 

related to the floral repressors FLC and FRI (Onouchi et al., 2000; Borner et al., 2000; Samach et 

al., 2000; Ratcliffe et al., 2001; Kardailsky et al., 1999; Kobayashi et al., 1999; Blazquez et al., 

1997; Hepworth et al., 2002; Lee et al., 2000; Abe et al., 2005). In the Cassava ESTs database, 

sequences similar to Arabidopsis ELF4, LHY/CCA1, GI, COL, SOC1, AGL24, and API, were 

identified and additionally from the Castor bean database, FT, GI and COL genes were found. To 

date ELF3, FD, AG, FLC, FRI and LFY were not identified in either databases. Therefore, 

molecular studies were carried out on the discovered genes. 

 

3.3  Identification of the Cassava GIGANTEA gene 

Circadian rhythms are believed to exist among organisms from bacteria to plants to animals, and 

green plants are responsive to photoperiod in part because of the clock (Young and Kay, 2001). 

The degree to which clock genes are conserved in plants is not yet clear, and the way 

photosynthesizing organisms respond to photoperiod varies across species (Garner and Allard, 

1920). The GIGANTEA (GI) gene functions both in the regulation of the clock and alongside with 

CO and FT to induce flowering under long day conditions (Mizoguchi et al., 2005). I suspect that 

the sequence and expression pattern of GI may be conserved in Cassava. 
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The GI sequence was identified in the Cassava ESTs database. The sequence was confirmed to be 

related to Arabidopsis GI by TBLASTX (Altschul et al., 1990) searches in TAIR. Primers were 

designed from the EST sequences to PCR amplify GI from Cassava genomic DNA. The DNA 

amplification fragments were purified and directly sequenced. The sequencing results from the 

different GI fragments in different orientations, which were as a result of different primer 

combinations led to a contig that was assembled. The resulting 1624 bp consensus was analyzed. 

This contig was searched against the Arabidopsis TAIR BLAST 2.2.8 (see methods) with 

BLASTX: NT, this queries with a nucleic-acid search against a protein data set. The program 

search identified the MeGI sequence as sharing high similarity with Arabidopsis GI protein. The 

result showed MeGI protein sequence in relation to Arabidopsis GI protein in the database as 69% 

identical, 78% similar with no gaps. In Figure 3.1 below, the conserved amino-acid sequence 

region between the MeGI and GI proteins were compared. Thus, I have been able to show that 

there is conservation of the encoded GIGANTEA protein from the encoded polypeptide from the 

Cassava protein.  
 
Query: 1505-1296 
KKQGPVAAFDSYVLAAVCALACELQLFPFVSSGSNHSSSNDLGTLAKSVKLNGCNGSSREFQSSFDSAVH  
K QGPVAAFDSYVLAAVCALACE+QL+P +S G N S+S   GT+ K VK+NG   SS+E+ +  DSA+ 
KGQGPVAAFDSYVLAAVCALACEVQLYPMISGGGNFSNSAVAGTITKPVKING---SSKEYGAGIDSAIS 
Subject: 640-706 
 
Query: 1315-1086  
HTHRILAILEALFSLKPSSVGTSWSYSSNEIVAAAMVAAHVSELFRRSKACMHALSVLMRCKWDNEIYTR 
HT RILAILEALFSLKPSSVGT WSYSS+EIVAAAMVAAH+SELFRRSKA  HALS LMRCKWD EI+ R 
HTRRILAILEALFSLKPSSVGTPWSYSSSEIVAAAMVAAHISELFRRSKALTHALSGLMRCKWDKEIHKR 
Subject: 707-776 
 
Query: 1085-876 
ASSLFNLIDIHSKAVASIVTKAEPLEAHLQ-VPVWKDSLVCFDGKRQNKKLSIRCFDSGQSSASQCVEST 
ASSL+NLID+HSK VASIV KAEPLEA+L+  PV KDS+ C + K++N   S  CFD+  +SAS+   + 
ASSLYNLIDVHSKVVASIVDKAEPLEAYLKNTPVQKDSVTCLNWKQENTCASTTCFDTAVTSASRTEMNP 
Subject: 77-846 
 
Query: 875-666 
HSDTTIITERSSCSKEGSGSTLGKDIAAFPLDASDLANFLTMDRHIGFNLGAVVLLRTLLVEKQELCFSV 
  +          S EGSG    K I  F LDASDLANFLT DR  GF  G   LLR++L EK EL FSV 
RGNHKYARH----SDEGSGRPSEKGIKDFLLDASDLANFLTADRLAGFYCGTQKLLRSVLAEKPELSFSV 
Subject: 845-912 
 
Query: 665-456 
VSLLWHKMIAAPETQPSAVSTSAQQGWRQVVDALCNVVSASPTKAATAIVLQAERELQPWIAKDDDQGQK 
VSLLWHK+IAAPE QP+A STSAQQGWRQVVDALCNVVSA+P KAA A+VLQAERELQPWIAKDD++GQK 
VSLLWHKLIAAPEIQPTAESTSAQQGWRQVVDALCNVVSATPAKAAAAVVLQAERELQPWIAKDDEEGQK 
Subject: 913-982 
 
Query: 455-246 
LWRINQRIVRLMVELMRNHDTPESLVILASASDLLLRATDGMLVDGEACTLPQLELLEATARAVQPVLEW 
+W+INQRIV+++VELMRNHD PESLVILASASDLLLRATDGMLVDGEACTLPQLELLEATARA+QPVL W 
MWKINQRIVKVLVELMRNHDRPESLVILASASDLLLRATDGMLVDGEACTLPQLELLEATARAIQPVLAW 
Subject: 983-1052 
 
Query: 245-37 
GESGFAVADGLSNLLKCRLPATIRCLSHPSAHVRALSTSVLRSILHTCSI----KPTANQADINDIRGPS 
G SG AV DGLSNLLKCRLPATIRCLSHPSAHVRALSTSVLR I++  SI     P     + N +  PS 
GPSGLAVVDGLSNLLKCRLPATIRCLSHPSAHVRALSTSVLRDIMNQSSIPIKVTPKLPTTEKNGMNSPS 
Subject: 1053-1122 
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Query: 36-1 
YQLFKVDVIDWQ  
Y+ F    IDW+ 
YRFFNAASIDWK  
Subject: 1123-1134 
 

 

 

 

 

Figure 3.1 Partial Protein-Sequence alignment of Arabidopsis and Cassava GI. The shaded 
purple region shows the regions of conservation between both proteins, the + sign signifies similar 
amino acid and the empty space between protein sequences represents non-similar amino-acid 
sequence. The query signifies the MeGI nucleotide sequence translated into protein and the 
corresponding nucleotide number while the subject represents the GI amino acid sequence in the 
database and the corresponding amino-acid position.    

 

3.3.1 Sequence alignment of encoded GI proteins 

The conservation of amino-acid sequence of the Arabidopsis GI protein to the partially defined 

Cassava GI protein signifies the degree to which the conservation of the protein in species of 

related ancestors are preserved. The conservation and relatedness of the protein could infer that the 

protein may perform similar functions. However, before a general statement can be made about 

the putative function of the MeGI incomplete protein sequence, it is important to investigate the 

function of the GI protein among other species for analytical comparison. 

 

I placed a query of the MeGI protein on the search gene from the NCBI genome database which 

revealed several candidates for GI orthologues. In addition, the genome database for Ricinus 

communis was queried to find its putative GI homologue. Table 3.1 below shows the plant species 

and assessions from where the GI proteins were obtained. A multiple alignment of the derived 

amino-acid predicted from the encoded genes was generated (Figure 3.2). The alignment showed 

highly conserved regions within these GI sequences. By visual inspection of multiple alignment, 

the regions of conservation are boxed, which includes slight differences in the amino-acid 

structure. 

 

Table 3.1 The source of each GI amino-acid sequence, and their corresponding name 

Plant species Amino-acid length Assession number Coined Name 

Arabidopsis thaliana 1172 2199685 AtGI 

Arabidopsis lyrata  1173 ABP96481 AlGI 

Zea mays 1162 ABZ81992 ZmGI 

Triticum aestivum 1155 AAQ11738 TaGI1 

Lolium perenne 1148 ABF83898 LpGI 

Oryza sativa 975 CAB56058 OsGI 

Hordeum vulgare 1155 AAW66945 HvGILprotein 

Populus trichocarpa 1171 EEE94512 PtGILike 

Ricinus communis 1161 29863.m001097 RcGIProtein 

Manihot esculenta 497-partial sequence This thesis MeGI 
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See Legend 
on next page. 
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Figure 3.2 The multiple alignment of GI protein sequences from other species showing conserved 
amino-acid regions. ClustalW2 multiple alignment of GI sequences. Names of plants as described in 
Table 3.1. Amino-acid positions are noted. The boxes are selected regions of conservation. The 
numbers above the aligned proteins are the positions relative to GI from Zea mays. Amino acids in red 
are small and hydrophobic (including aromatic-Y), in blue are acidic, magenta is basic and green are 
the hydroxyl, and basic-glutamine (Q) amino-acids. 

 

 

3.3.2 Phylogenetic relationships of encoded GI protein among plant species and their 

relationships. 

A phylogenetic tree of encoded GI proteins was constructed from the sequence information 

obtained from NCBI (http://www.ncbi.nlm.nih.gov/sites/entrez). The NCBI search revealed 

several candidates for GIGANTEA orthologues in various species. GI orthologues from seven 

species were selected (Appendix 1; Table 3.1). In addition, the genome databases for Populus 

trichocarpa (NCBI) and Ricinus communis were queried to find putative GI orthologues. With the 

aim to define the conserved structural information from the GI primary sequences, a multiple 

alignment of the GI protein sequences was generated. Two subgroups could be identified within 

the alignment, two main clusters of monocotyledonous (monocot) and dicotyledonous (dicot).  In 

this phylogenetic tree, two sub-clades were evident in both the dicot and the monocot groups. The 

MeGI-encoded protein showed high conservation within the dicot group and shares a higher 

degree of conservation with the Castor bean GI protein. 
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Figure 3.3 Phylogenetic tree showing GI relationship within species. This tree 
was generated using the Neighbor joining (NJ) method (Saitou and Nei, 1987). 
Identity of sequences as in Table 3.1. The tree classified the species into distinct 
groups of Dicot comprising of the Arabidopsis thaliana, Ricinus communis, 
Populus trichocarpa and the Monocot comprising of Zea mays, Oryza sativa, 
Triticum aestivum, Hordeum vulgare, Lolium perenne. The branch lengths are 
proportional to the amount of inferred evolutionary change. 
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3.3.3  MeGI expression in Wild type Cassava under LD and SD conditions 

 

The identification of the GI homologue of Cassava provided sequence information to examine its 

transcriptional pattern of expression. I determined the transcript expression in Cassava of MeGI, 

under long day conditions and short day conditions, respectively. Under short days, MeGI 

transcript peaked around dusk (4pm). It reduced in expression in the subsequent dark interval, and 

had an expression minima at around dawn (Figure 3.4). In contrast, under long day conditions, GI 

peaked at 10 pm (Figure 3.5). It is noted that whereas the time GI peaked changed, the peak 

coincided with dusk under both conditions. MeGI expression thus tracked dusk. This is similar to 

that observed in the Arabidopsis GI expression (Fowler et al., 1999).  
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Figure 3.4 Expression of MeGI under SD (8hL, 16hD) conditions. Tissue harvesting started at 
ZT-2 (10 am) and continued every 2 hours for 24 hours. RNA (2µg) was extracted from apices. 
MeGI/TUB expression was measured by quantitative real-time PCR. The y-axis represents 
normalized gene expression between MeGI and TUBULIN. The white box represents the light 
phase and the dark box represents the night phase. Error bars are ±SEM, where n=3 
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Figure 3.5 Expression of MeGI under LD (16hL, 8hD) conditions. Tissue harvesting 
started at ZT-4 (10 am) and continued every 2 hours for 24 hours. RNA (2µg) was extracted 
from apices. MeGI/TUB expression was measured by quantitative real-time PCR. The y-axis 
represents normalized gene expression between MeGI and TUBULIN. The white box 
represents the light phase and the dark box represents the night phase. Error bars are ±SEM, 
where n=3 

 
 

3.4   Identification of CONSTANS-Like Genes in Cassava  

 

The phase transition from vegetative to floral growth is an important process under circadian-

clock control. CONSTANS (CO) plays a central role in the output of  photoperiodic promotion of 

flowering under long day conditions (Suarez-Lopez et al., 2001). I found genomic regions of 

Cassava that contain sequence identity of CO. The CO sequence identified in the Cassava ESTs 

database was confirmed to be related to Arabidopsis COL genes by TBLASTX searches in TAIR. 

Primers were designed based on the sequence identity of the CO gene within the Cassava EST 

database. Amplification fragments by PCR of the Cassava genomic DNA was followed by 

sequencing. The sequencing results from MeCO-like genes were queried against the Arabidopsis 

sequence database. The program revealed series of sequence identities to COL2, CO, and COL1, 

respectively. Primers were designed from these identities and the primers were used to amplify 

cDNA. The cDNA was from plant tissues harvested from wild-type Cassava plant at every 2 hours 

of the day, under both long and short day conditions. These cDNA were pooled and used as DNA 

template in PCR. The results of the sequenced amplification fragments produced three different 

contigs. These contigs were searched against the Arabidopsis TAIR BLAST 2.2.8 (see methods) 

with BLASTX: NT. The results from the highest hits showed sequence identity to COL1, COL2, 

and CO with 49%, 54% and 43% identities, respectively. I annotated these genes as MeCOL1, 

MeCOL2 and MeCO, respectively. The discovery of these MeCO-like genes imply that there is an 
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existence of a form of CO-like expression within the genome of Cassava, the exact and complete 

structure and function is unclear and yet to be resolved.  

 

3.4.1 Phylogenetic relationship of CONSTANS-Like genes from both Arabidopsis and 

Cassava 

A phylogenetic tree was constructed from CO-like sequences from Arabidopsis and the identified 

CO-related sequences from Cassava to determine the relationship of these genes between the two 

species. It showed that the Arabidopsis COL2, COL1, and CO shared greater sequence similarity 

and had the same point of divergence. All Arabidopsis CO, COL1 and COL2 were categorized 

within a single clade (Figure 3.6). The MeCOL1, MeCO, and MeCOL2 diverged at the same point 

as COL3, and this was classified as the outgroup (Figure 3.6). However, whereas MeCOL1, 

MeCOL2, and MeCO had same divergence point, both MeCOL1 and MeCO belonged to the same 

clade and had the same distance to the sister clade with MeCOL2. This defines that MeCOL1 and 

MeCO represent nearly identical genes (Figure 3.6). MeCOL2 could be seen as closely related to 

both COL2 or COL3.  
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Figure 3.6 Phylogenetic tree showing CO-like genes from both Arabidopsis and Cassava. This 
tree was generated using the Neighbor joining (NJ) method (Saitou and Nei, 1987). The identity of 
sequence as in Appendix II. The COL2, COL1 and CO belong to the same clade, and the MeCOL1 
and MeCO were classified into another clade. The MeCOL2 and COL3 are the outgroups. The 
branch lengths are proportional to the amount of inferred evolutionary change.  



 

3.4.2   Sequence alignment of CONSTANS-Like Proteins 

The MeCOL proteins (MeCOL1, MeCOL2 and MeCO) were examined for domain structure. The 

three MeCOL proteins and the Arabidopsis CO, COL1, COL2, and COL3 proteins were aligned 

by cluster analysis. It is known that two regions of the derived CO proteins are well conserved, 

which is an N-terminal region with two putative zinc-fingers and a C-terminal region with the 

presence of CCT (CO, CO-like, TOC) domain. The CCT domain may contain a nuclear 

localization signal and it is found to be common to all CO-family (Griffiths et al., 2003; Suarez-

Lopez et al., 2001). Genes were defined by Lagercrantz and Axelsson (2000) as members of the 

COL family if they contained two adjacent zinc-finger motifs fitting the consensus sequences 

CX2CX16CX2C1. 

 

The resulting alignment showed only MeCOL2 as the closest to share or to possess the two 

adjacent zinc-finger motifs fitting the consensus sequence XCX16CX2C, the first two amino acids 

were missing from my contig, this may be due to sequence deletion or incomplete sequence 

information. The details of these regions are highlighted in Figure 3.7. In the amino-acid 

sequences of the MeCOL1 and MeCO, however, the zinc-finger motifs were found to be absent. 

The MeCOL1 and MeCO’s motif appeared as X6CX2C, and X8CX2C, respectively (Figure 3.7). 

The incomplete ORF information of these conserved zinc-finger motifs in both MeCOL1 and 

MeCO made it difficult to conclude whether these proteins lacked these domains.  

 

The three encoded MeCOL proteins were also examined for the presence of CCT domain. CCT 

domains were detected in all three MeCOLs (Figure 3.7). MeCOL2 had a complete CCT domain, 

but MeCOL1 and MeCO were truncated in my contigs. However, upon the complete sequence 

information of these genes, the zinc finger motifs and the CCT-domain are expected to be present 

and complete, because these regions are conserved across species. Thus, all three MeCOL proteins 

have the same domain architecture as Arabidopsis COL1, COL2, COL3 and CO proteins. 
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Figure 3.7 Sequence alignment of CO-like proteins from Arabidopsis and Cassava. 
ClustalW2 multiple alignment of CO-like sequences. Amino-acid positions are indicated. The 
numbers above the aligned proteins are the positions relative to CO from COL3. The colors of 
the amino acids in red signify the small and hydrophobic (including aromatic-Y) amino acids, 
the amino acids in blue are acidic, those in magenta are basic and green ones are the hydroxyl, 
amine, and basic-glutamine (Q) amino acids. 

 

 

3.4.3 Phylogenetic relationships of CONSTANS-Like proteins among plant species and their 

relationships 

An expanded phylogenetic tree of various CO-like proteins was generated to assess the relations 

of MeCO-like proteins to those of other plants. The tree was constructed based on the alignment of 

four Arabidopsis CO and CO-like proteins and CO-like proteins from other plant species, 

including the characterized Cassava CO-like proteins. The tree showed a high degree of 

conservation between CO-like encoded proteins across all species. It revealed that COL3 protein 

from dicot plant Beta vulgaris is an outgroup, while all other sequences diverged into a major 

clade (Figure 3.8). Two sister clades resulted from this. I classified them as groups 1 and 2 

respectively. The group two comprised of CO-like sequences from monocots, but included the 

Arabidopsis COL3 protein. In group 2, all the dicots clustered together as the second clade but the 

Hordeum vulgare COL-9 protein diverged as an outgroup from this clade of dicots (Figure 3.8). In 

the sub-clade within which MeCO-like proteins were found, sister clades with Populus deltoids 

COL1 and COL2 proteins. This may be due to high degree of conservation among the two 

families of malpighiales. The three MeCO encoded proteins clustered together but MeCOL2 

separately diverged from the MeCO and MeCOL1, this may indicate a functional role for 

MeCOL2 as was seen from its structure. Conclusively, it can be inferred that these CO-like 

proteins from various species are conserved and they shared common ancestors and evolved over 

the years. 
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Figure 3.8 Phylogenetic tree showing CO-like proteins from different species. This tree was 
generated using the Neighbor joining (NJ) method (Saitou and Nei, 1987). The sequence used in 
the generation of the tree are Populus deltoids, Lolium perenne, Physcomitrella patens, Glycine 
max Zea mays, Triticum aestivum, Picea abies, Oryza sativa, Brassica napus, Beta vulgaris, 
Solanum tuberosum, Arabidopsis thaliana, Manihot esculenta, and Hordeum vulgare. The Branch 
lengths are proportional to the amount of inferred evolutionary change. Group 1 and 2 represents 
the two major clades with high sequence similarity. 

 

 55



 

3.4.4 MeCOL expression in wild-type Cassava under LD and SD conditions 

The identification of the CO-like genes in Cassava provided sequence information to examine 

their joint pattern of expression. The transcript expression of the MeCOLs was measured under 

long day conditions and short day conditions, respectively. The primers used for this expression 

study was from the conserved regions between all the three types of MeCOL isolated from the 

previous section. The combined MeCOL transcript peaked at 6 am, under short day conditions 

(Figure 3.9). Here, evidence is provided that the MeCOLs expression preceded the light phase, as 

the transcript level peaked in the dark 2 hours before dawn. This expression reached a trough at 

dawn. In contrast, under long day conditions, the MeCOLs peaked at 6 am. Their expression was 

found to be higher than that expressed under short day conditions. This higher expression under 

long days was found around dawn (Figure 3.10). The MeCOLs were thus predominantly expressed 

in the dark under both subjective conditions of short and long days, respectively. 
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Figure 3.9 Expression of MeCO-like under SD (8hL, 16hD) conditions. Tissue harvesting 
started at ZT-2 (10 am) and continued every 2 hours for 24 hours. RNA (2µg) was extracted 
from apices. MeCO-like/TUB expression was measured by quantitative real-time PCR. The y-
axis represents normalized gene expression between MeCO-like and TUBULIN. The white box 
represents the light phase and the dark box represents the night phase. Error bars are ±SEM, 
where n=3 
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Figure 3.10 Expression of MeCO-like under LD (16hL, 8hD) conditions. Tissue harvesting 
started at ZT-4 (10 am) and continued every 2 hours for 24 hours. RNA (2µg) was extracted 
from apices. MeCO-like/TUB expression was measured by quantitative real-time PCR. The y-
axis represents normalized gene expression between MeCO-like and TUBULIN. The white box 
represents the light phase and the dark box represents the night phase. Error bars are ±SEM, 
where n=3 

 
 

 

3.5   Identification and Characterization of the ELF4 Gene in Cassava  

 

The Arabidopsis EARLY FLOWERING 4 (ELF4) gene has been described to be involved in 

photoperiod perception and circadian regulation. It promotes clock precision and is required for 

sustained rhythms in the absence of daily light/dark cycles (Doyle et al., 2002; McWatters et al., 

2007). The ELF4 gene is predicted to encode 111-amino acid protein having no significant 

homology to the proteins of known function, it belongs to a small but highly conserved 

Arabidopsis gene family (Khanna et al., 2003, Doyle et al.,2002).   

 

These numerous clock role of the ELF4 prompted me to examine the Cassava ESTs for the 

MeELF4 gene homologue. The Cassava ELF4 gene was identified, sequenced, and the open 

reading frame was isolated and cloned into a gateway pJalee4 vector fused to the AtELF4 

promoter. In this section, I describe the transcriptional regulation of the Cassava ortholog of 

Arabidopsis ELF4 by reverse genetics using the loss-of-function mutants elf4-1 harboring the 

CCA1: luciferase (LUC) and CCR2: luciferase markers (Doyle et al., 2002). 
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3.5.1   Sequence alignment of ELF4 protein from other species 

Investigations conducted in the past have reported ELF4 homologues from ice plant, sorghum and 

rice (Khanna et al., 2003; Doyle et al., 2002; Boxall et al., 2005). There also exists EST notations 

from soybean and tomato (Boxall et al., 2005).  

 

 In this sub-section, I report the characterization of Cassava ELF4 sequence. Arabidopsis ELF4 

sequence identified homologous Cassava sequences within the Cassava ESTs by TBLASTX 

searches in TAIR (Altschul et al., 1990). Primers were designed from this EST sequence and 

Cassava genomic DNA was amplified by PCR. The amplification product was sequenced and a 

491 amino-acids sequence contig was formed, 111 of which amino-acid sequence was the ORF 

consensus. To examine the Cassava ELF4 (MeELF4) protein sequence with known ELF4-like 

EST clones from different plant species for conserved structural information from these primary 

sequences, a multiple alignment was generated (Figure 3.11). All amino-acid sequences are most 

similar in the central part of the proteins, suggesting this domain may be important for function. 
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See Legend 
on next page 



 

Figure 3.11 The multiple alignment of ELF4 protein sequences and their conservation. 
ClustalW2 multiple alignment of ELF4 sequences. ELF4 and related sequences were retrieved 
from the thesis of Kolmos, 2007. Amino acid positions are noted. The numbers above the aligned 
proteins are the positions relative to ELF4 Hordeum vulgare. Amino acids in red are small and 
hydrophobic (including aromatic-Y), in blue are acidic, magenta is basic and green are the 
hydroxyl, amine and basic-glutamine (Q) amino acids. 

 

3.5.2  Phylogenetic relationships of ELF4 proteins among plant species and their        

relationships. 

A phylogenetic tree based on the alignment of the ELF4 full-length and partial ORF sequences 

from different species was calculated (Figure 3.12). This revealed that the Physcomitrella 

sequence PpELF4 could be defined as an outgroup. In this refined rooted tree, a sister clade of 

interest is notified in a circle among the numerous sub-clades (Figure 3.12). ELF4, MeELF4, and 

Ptr41 constituted the clade of interest. This alignment showed that there is a high degree of 

conservation between Cassava ELF4 and Arabidopsis ELF4, due to the close clustering. This 

degree of conservation leads to the conclusion that the MeELF4 and Arabidopsis sequences can be 

orthologues. To investigate the hypothesis of conserved function of MeELF4 protein, 

complementation tests were conducted with Arabidopsis elf4 mutants.  
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Figure 3.12 Phylogenetic tree of ELF4 proteins from different species. This tree was generated 
using the Neighbor joining (NJ) method (Saitou and Nei, 1987). Branch lengths are proportional to the 
amount of inferred evolutionary change. The circle identifies MeELF4. Note that it is in the same clade 
as Arabidopsis ELF4. 
 

 

 

 

 



 

3.6.0   Complemetation of elf4-1 mutant with MeELF4  

ELF4 plays a role in the circadian clock of the Arabidopsis plant, as the loss of function results in 

clock arrhythmicity and accelerated flowering and long hypocotyl (Doyle et al., 2002). The 

successful isolation and sequencing of the complete Open Reading Frame of the MeELF4 presents 

an opportunity to investigate its role in the sustainance of normal clock function, and thus be able 

to conclude whether the MeELF4 protein function is conserved. For this, a complementation 

experiment of MeELF4 gene to elf4-1 mutant was performed. The MeELF4 complete ORF was 

cloned into a gateway vector pJalee4, generously provided by Elsebeth Kolmos (Kolmos thesis, 

2007). The MeELF4 gene was fused to Arabidopsis ELF4 promoter and transformed into elf4-1 

mutants haboring the CCA1::LUC and CCR2:: LUC, respectively. These markers are morning and 

evening expressed respectively (Doyle et al., 2002). I obtained 48 independent T1 transgenic 

complementation lines of MeELF4 gene harboring the CCA1 and CCR2::Luciferase markers.  

 

3.6.1 Results from hypocotyl elongation measurement 

The growth rate of the hypocotyl is one of many aspects of the plant physiology exhibiting 

circadian behavior. It has been shown that circadian dysfunction causes aberrant hypocotyl 

elongation patterns in Arabidopsis (Dowson-Day et al., 1999). Therefore, hypocotyl length of the 

T1 transgenic complementation lines of MeELF4 in elf4-1 were measured for complementation of 

the hypocotyl-elongation phenotype. This was the first test to determine whether MeELF4 can 

rescue the elf4-1 mutant. The elf4-1 mutant, MeELF4, and the wild-type Arabidopsis seedlings 

were grown for 10 days under a 8L:16D photoperiod, and the hypocotyls were measured and 

compared. The result showed the elf4-1 mutant had an elongated hypocotyl, whereas the MeELF4 

rescue lines showed hypocotyl length comparable to the wild-type (Figure 3.13). Therefore, the 

phenotype expressed by the MeELF4 complementation lines restored rhythmic hypocotyl growth. 
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Figure 3.13 Hypocotyl-length elongation confirmed complementation of MeELF4. 
Hypocotyl length of 10 days old seedlings of Arabidopsis transformants grown under short day 
8L:16D conditions. elf4 is the mutant line, Ws is the wild-type non-transgenic line in the elf4-1 
background and MeELF4 represents the Cassava ELF4 complementing lines. Data are 
averages of hypocotyl length in mm. Error bars represent ±SEM.   

 
 

3.6.2 Results from leaf movement measurement. 

The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate 

endogenous timing information with environmental signals (Salathia et al., 2006). Plant leaves 

exhibit circadian behavior in response to changes in light signals during the day. In order to 

confirm the clock role of the MeELF4 in the elf4-1 mutant background, genetic complementation 

tests by the leaf movement measurement of the leaves from T1 transgenic lines of the MeELF4, the 

elf4-1 mutant, and the wild-type was observed. The leaf movement measured under constant 

conditions of light after the seedlings were entrained to a 12L:12D photoperiod. The lines were 

then shifted to constant conditions and the leaf positions were measured for 5 days (Figure 3.14). 

The lines with sustained circadian rhythm is expected to be in horizontal position during the day 

and a more vertical position during the night. The mutant line was expected to be in vertical 

position irrespective of the day time. Leaf movement was then measurement from these MeELF4 

complementing lines, the wild-type and the elf4-1 mutant. Figure 3.14 shows the different lines 

expressing different clock phenotypes. The WS wild-type and the elf4::MeELF4 complementation 

lines expressed a circadian rhythm, whereas the elf4 line did not (Figure 3.14). This shows that the 

Cassava ELF4 could complement the leaf movement phenotype of elf4. 
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Figure 3.14. Representative leaf movement data for lines expressing a clock phenotype. 
Leaf movement rhythms were assayed under constant light for approx. 5 days (n = 14–28). 
The y-axis is the arbitary leaf pixal position. The x-axis represents time in hours. 
Representative traces of rhythmic leaf movement of Ws is wild-type, elf4 is the mutant line, 
and elf4::MeELF4 is the complementing MeELF4 line. Note that elf4::MeELF4 was as 
rhythmic as the wild-type. 

 
 

3.6.3 Molecular confirmation by imaging 

In a final complementation test, the ability of MeELF4 to restore rhythms was tested by molecular 

imaging of clock-controlled gene expression. The MeELF4 complementing lines were assayed for 

bioluminescence under diurnal cycles, and under free running conditions, using the CCD imaging 

camera. The experiment included the positive control, ELF4p::ELF4; the negative control, 

ELF4p::no_insert; the elf4-1, parental line, and the Ws, wild-type. The 48 T1 transgenic lines were 

directly compared. The transgenic lines were in respective CCA1 and CCR2::LUC backgrounds. 

Both markers were tested for bioluminescence. 

Under light-dark cycle of 12L:12D regime, the MeELF4 gene fully complemented the elf4-1 loss 

of function phenotype. The MeELF4 gene restored CCA1 expression and the circadian rhythm 

pattern of elf4-1. This complementation pattern was similar to what could be observed for the 

wild-type Ws CCA1 non-transgenic control (Figure 3.15). The elf4-CCA1::LUC was found to be 

arrhythmic (Figure 3.15). The MeELF4 gene complements the elf4-CCR2::LUC  mutant by 

restoring amplitude and rhythmicity of the CCR2 expression. The elf4-CCR2::LUC control 

remained arrhythmic under these conditions, as expected (Figure 3.16).  

Under constant light, the MeELF4 lines sustained circadian rhythm with amplitude similar to that 

of the wild-type, whereas the elf4-1 mutants with either the CCR2 or the CCA1 markers, showed a 

loss of rhythmic expression (Figures 3.15 and 3.16). elf4-ELF4 complementing CCR2::LUC, 

positive control, sustains rhythmic patterns while elf4:- empty CCA1::LUC, negative control, was 

arrhythmic. Thus, it can be concluded that the ELF4 gene cloned from Cassava is the true 

orthologue of Arabidopsis ELF4.   
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Figure 3.15 CCA1::LUC in various ELF4 genotypes. Plants were entrained under 
12L:12D conditions for 2 days and then shifted to constant light (LL) for 3 days. Ws is the 
wildtype, elf4 is the mutant, and MeELF4 is the Cassava complementation in elf4-1 
Arabidopsis background, all expressed by the CCA1::LUC marker. Time is in hours. White 
bars indicate light intervals and dark bars indicate darkness. 

Figure 3.16 CCR2::LUC in various ELF4 genotypes. Plants were entrained under 12L:12D 
conditions for 2 days and then shifted to constant light (LL) for 3 days. Ws is the wildtype, elf4 is 
the mutant, and MeELF4 is the Cassava complementation in elf4-1 Arabidopsis background, all 
expressed by the CCR2::LUC marker. Time is in hours. White bars indicate light intervals and 
dark bars indicate darkness. 



 

In conclusion, in this chapter, I reported the discovery and successful characterization of several 

photoperiod genes in Cassava. Firstly, I showed that MeGI gene is conserved when compared 

across species, and that its expression pattern was similar to that observed in other species. A 

phylogenetic study showed MeGI to be closely related to GI. Next, I found several COL genes and 

showed that these COLs were comparable to CO and CO-like genes. A phylogenetic study showed 

the MeCOLs to be related more to Arabidopsis COL2 and COL3, than its CO counterpart. The 

encoded polypeptides of MeCOLs showed characteristic domain of CO family members with the 

presence of two amino-terminal zinc finger motifs and a CCT domain at the carboxyl terminal. 

This is similar to observations in barley and rice. The transcript study of MeCOLs indicates dawn 

expression pattern. Lastly, I was able to identify in Cassava a clock gene, MeELF4, which 

performs a clock function. I found it to be a true orthologue of ELF4 in Cassava. MeELF4 restored 

circadian rhythm in elf4-1 mutants and sustained rhythmicity under constant conditions. 

Therefore, I have characterized several photoperiod and clock genes in Cassava. 
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CHAPTER 4.  EXPLOITING ARABIDOPSIS FT UNDER THE CONTROL OF 

AN ETHANOL-INDUCIBLE SYSTEM TO PROMOTE FLOWERING IN 

ARABIDOPSIS AND CASSAVA  
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4.1 Introduction  

 

A major developmental transition for many green plants is that to flower. Plants detect seasonal 

conditions in a coordinated manner to maximize reproductive success. Extensive studies on this 

photoperiodic effect have been reported in Arabidopsis, and this provides insight into the 

understanding of the molecular pathways involved floral promotion (Chuck and Hake, 2005; 

Poethig, 2003). Flowering in Cassava is an important agronomic trait whose control is not optimal 

due to Cassava’s recalcitrant flowering nature (Gonzalez et al., 1998). Induction of flowering in 

Cassava through hormone application, or photoperiod manipulation is difficult, cumbersome, and 

sometimes expensive (Gonzalez et al., 1998). Development of a low-cost alternative means of 

controlled and inductive flowering in Cassava would greatly overcome the synchronization 

problems being faced by breeders to thus enhance the genetic improvement of the crop. The 

success of controlled and inductive flowering in Cassava will make the elite genotypes, with 

“locked-up” desirable traits, readily accessible for conventional breeding.  

 

The hypothesis for which this investigation is based is built on the success achieved from the 

overexpression of floral-integrator pathway genes and floral meristem-identity genes, to bye pass 

floral repressors, and thus induce flowering. For example, in trees, it was demonstrated that mis-

expression of floral meristem-identity genes induced flowering. Peña et al., 2001 showed the 

overexpression of LEAFY (LFY) or APETALA 1 induced flowering in transgenic citrus and this 

reduced the generation time from 8-10 years to 3 months. Similarly, the Aspen tree was 

genetically modified with LFY mis-expression and this promoted flowering time (Weigel and 

Nilsson, 1995). This suggests that an array of plants can be manipulated to flower faster. Such a 

technology could be applied to control flowering in tropical species.  

 

More is now known as to the signal cues from the photoperiodic and the vernalization-dependent 

pathways, and how they are integrated transcriptionally, to coordinate the timing of flowering in 

Arabidopsis. One key target gene is of this pathway’s FLOWERING LOCUS T (FT). It acts as a 

mobile and graft-transmissible floral promoter that acts in the photoperiod-dependent pathway 

(Kardailsky et al., 1999). Turck et al. (2008) provided evidence that FT protein is a major 

component of florigen and that gain-of-function of FT leads to early flowering, and that its loss-

of-function causes late flowering (Corbesier et al., 2007; Giakountis and Coupland, 2008). FT 

could act generally to promote flowering.  

 

FT is known to promote flowering in a range of plants. It was recently investigated in cucurbits 

(squash plants) that the presence of a FT-Like protein is highly correlated with the onset of 
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flowering (Lin et al., 2007). FT induced flowering in wheat and barley (Turner et al., 2005), in 

tomato, in tobacco (Lewis and Kernodle, 2009), in rice (Tamaki et al., 2007; Izawa et al., 2002; 

Kojima et al., 2002), and in Arabidopsis (Corbesier et al., 2007). FT appears to be a good 

candidate for manipulation to promote flowering in virtually any plant. 

 

Promoter systems can be used based on the varying needs of misexpression studies. One useful 

inducible system is the AlcR/AlcA system (Felenbok, 1991). The AlcA ethanol-inducible 

promoter has been successfully used in several plants (Caddick et al., 1998; Roslan et al., 2001; 

Filichkin et al., 2006; Garoosi et al., 2005). Advantages of ethanol as a chemical inducer are that it 

is cheap, common, and readily available, and that this chemical is particularly assessible to 

farmers. It is a storable compound that could be used in the field, and only small quantities are 

required to induce gene expression (Roslan et al., 2001). The AlcR/AlcA system function has 

been shown to work in controlled breeding environments (Sweetman et al., 2002). The system 

comprises of the AlcR transcriptional factor and an AlcA promoter.  

 

In the absence of ethanol 

AlcR  

pA35S FTcDNA AlcA 35S AlcR   nos 

EtOH 

pA35S FTcDNA AlcA 35S AlcR   

AlcR  

nos 

AlcR  

In the presence of ethanol 

Figure 4.1 The ethanol inducible system driving the expression of the FT gene. In the absence of 
ethanol, the system is in-active. In the presence of ethanol however, the AlcR transcriptional factor is 
activated which binds to the AlcA promoter. The AlcA promoter now drives the expression of the FT 
gene fused to it. 35S is the constitutive promoter, AlcR is the transcriptional factor, nos is the 
terminator, AlcA is the ethanol-inducible promoter, FT is the FLOWERING LOCUS T gene, pA35S 
is the terminator. Pnos is the promoter of pat (phosphoacetyltransferase) and pAnos is the terminator. 
The arrow under the AlcA denotes no expression in the absence of ethanol, and expression in its 
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It is my hypothesis that the AlcR/AlcA system will be suitable for Cassava because the 

FLOWERING LOCUS T (FT) gene is activated upon application of ethanol to the system. 

 

In this chapter, I generated a pNewFT vector that manipulates the expression of floral-integrator 

gene FT, as a tool to control the timing of flowering. First, I confirmed the function and efficiency 

of this pNewFT construct (which harbors the AlcAFT) in Arabidopsis FLC/FRI late flowering 

genotype. This was a model system for a "shy" flowering genotype under the control of an 

ethanol-inducible system. I then transferred this system to a Cassava shy-flowering genotype 

(Figure 4.1). Here, I generated in Cassava, 12 independent putative transgenic events under the 

control of an ethanol-inducible pNewFT construct. The transgenic events in both Arabidopsis and 

Cassava were confirmed by PCR. The induction of the FT transcript after the application of 

ethanol was monitored by reverse transcriptase PCR, and the corresponding phenotypic change of 

floral induction was observed. I was thus able to show that the FT gene under the control of an 

ethanol-inducible system can cause FT transcript accumulation and that this could promote both 

plants to flower. 

 

4.2 Results 

 

4.2.1 Arabidopsis FLC/FRI experiments 

 

4.2.1.1 Conventional PCR confirmation of FLC/FRI transgenic events 

In the context of my experiment, a flowering-time gene was fused to the AlcA promoter, which 

drives the expression of the flowering-time gene in transgenic plants. Upon induction of the 

system by exogenous ethanol, the transcriptional factor AlcR binds the AlcA promoter, which in 

turn drives the expression of the floral timing gene (Figure 4.1). I investigated the promotive role 

of FT in the FLC/FRI late-flowering genotype of Arabidopsis. The pNewFT construct was 

introduced into this Arabidopsis "shy" flowering genotype, which was genetically active for FLC 

and FRI. The presence of FLC and FRI strongly represses inductive flowering (Michaels and 

Amasino, 1999). In my experiments, the pNewFT FLC/FRI genotype was grown under long day 

conditions on soil, and they were herbicide selected. This eliminated false-positive transformants. 

The resistant lines were transferred to fresh soil. Leaf samples were collected for genomic assays, 

in order to confirm the presence of the FT transgene. For this, PCR primers were designed from 

the coding sequence of the FT gene. In Figure 4.2, one can see the detection of the presence of the 

transgene. In particular, I could find the expected 179 bp product size from the FT coding region 

(Figure 4.2). This fragment size was absent in the empty control, as expected. This empty control 

has the pNew construct backbone, but lacks the FT gene. The 179 bp fragment was also absent in 

the FLC/FRI non-transformed genotype, as expected. In the wild-type genotype, a larger fragment 

was amplified, and this represents the genomic FT locus with introns. The 179 bp fragment was 
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also noted in the plasmid positive control, as expected. Therefore, it was evident that the FT gene 

was incorporated into the Arabidopsis genome in the desired transgenics. 

 
Figure 4.2 Genotyping by PCR of the 5 transgenic lines of Arabidopsis. The transgenic 
lines are numbered FT-1A to FT-5A. The empty signifies the absence of the FT gene, the 
FLC/FRI is the wild-type line, the ft-10 was a T-DNA insertion line which lacks FT gene.  
Col-O is the Arabidopsis Columbia ecotype, the NTC was the water control, and the plasmid 
from which the transgenic lines were transformed. The amplification product size is 179 bp, 
the * is over FT intron amplification in Col-O and Φ are the non-specific amplification 
products.

 
4.2.1.2 Ethanol induction 

To the above herbicide resistant and PCR positive transgenics, ethanol was applied. The ethanol 

spray was found to drive the expression of FT gene (Figure 4.3). Without exogenous ethanol, the 

system was generally not induced. Therefore, I sprayed 1% ethanol solution from the 10th day 

after transplanting to soil. This spraying was continued for three and half days, at 4 different time 

points of the day, which were 9 am, 12 noon, 3 pm, and 6 pm. On the last day, apical tissues were 

harvested at 10 am, for FT expression analysis. The FT transcript level accumulation was 

monitored before and after induction (Figure 4.3). In the transgenic FT1A line, FT transcript level 

was low after 3 days of induction. FT2A, showed a 3 fold FT transcript accumulation after 3 days 

of induction. FT3A showed reduced FT expression after 3 days. FT transcript level in line FT4A 

was reduced in expression after the 3 days of ethanol application. FT5A showed the highest 

transcript accumulation level, and this was at 15 fold levels. The FT expression level in the empty 

control, and FLC/FRI lines were essentially undetectable as expected (Figure 4.3). Thus, FT 

regulation by ethanol induction increased FT transcript in lines FT2A and FT5A, whereas for lines 

FT1A, FT3A, and FT4A, increased FT transcript levels were not seen after induction (Figure 4.3). 

This shows that the system of induction by ethanol can be effective in some transgenic lines. 
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Figure 4.3 FT was found to be expressed in FLC/FRI transgenic FT genotypes after 
spraying with 1%EtOH. FT1A, FT2A, FT3A, FT4A and FT5A were the ethanol induced 
transgenic lines used for the experiment. Empty is the vector without the FT transgene and 
FLC/FRI is the late flowering non-transformed genotype. The y-axis represents the normalized 
FT and TUBULIN expression. x-axis represents the different transgenic and control lines. Error 
bars represent ± SEM.  

  
 

A parallel watering-control experiment was set up with the replicate plants that were the same 

genotypes. The transgenic lines were sprayed with distilled water to examine the requirement of 

ethanol induction on the system. The results from this watering-control experiment (Figure 4.4) 

indicated that lines FT1A, FT2A, FT3A, and FT5A had no induction by water addition. Line 4A 

had high FT levels before water spraying, and this mirrored what was seen in Figure 4.3. The 

controls empty, and FLC/FRI non-transgenic lines showed no detectable FT transcript 

accumulation. Therefore, the results from the watering-control experiments (Figure 4.4) showed 

that water was not capable of inducing the AlcR/AlcA system. This suggested to me that the 

ethanol-inducible system could be tightly controlled in some lines.  
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Figure 4.4: FT is NOT-expressed in FLC/FRI transgenic genotype after spraying with 
distilled water. FT1A, FT2A, FT3A, FT4A and FT5A were the transgenic lines used for the 
experiment. Empty is the vector without the FT transgene and FLC/FRI is the late flowering 
non-transformed genotype. The y-axis represents the normalized FT and TUBULIN 
expression. x-axis represents the different transgenic and control lines. Error bars represents 
± SEM. 

 
 

4.2.1.3 Flowering time measurement  

The 1% ethanol spray was completed after three and half days, and the plants were  

closely monitored to measure the timing of flowering. The plants started to flower as from a few 

days after spraying. Flowering time was measured by documenting the bolting dates for each 

transgenic lines, the control empty FT gene transgenic lines, and non-transgenic FLC/FRI 

genotypes, relative to germination dates (Figure 4.5). This flowering-time data was also compared 

to the data generated from the parallel watering-control experiments. Transgenic lines FT-2A,   

FT-3A, FT-4A, and FT-5A flowered earlier than the FT-empty and FLC/FRI controls. Figure 4.6 

shows phenotypic expression of flowering in lines FT-5A, FT-empty and FLC/FRI 3 weeks after 

ethanol spraying. FT-1A showed a late-flowering phenotype, for reasons that are as of yet unclear 

to me (Figure 4.5). The watering-control plants all flowered later, when compared to the ethanol 

sprayed lines, as expected (Figure 4.5). Hence, the controls FT-empty and FLC/FRI flowered later 

than transgenic lines FT-2A to FT-5A in ethanol induced lines whereas FT-1A flowered later than 

the controls. Overall, ethanol was an effective inducer of some pNewFT lines and the FT gene was 

apparently able to bye-pass the floral repressor FLC/FRI.  
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Figure 4.5 Ethanol application promotes flowering in some pNewFT FLC/FRI 
transgenic lines. FT1A to FT5A are the Arabidopsis FT transgenics. FT-empty is FT absent 
transgenic control and FLC/FRI is the non-transgenic control, all plants were under the 
FLC/FRI background. The y-axis is the flowering time in days measured as days from 
planting to first flower. The x-axis represents the samples. The pink bars are the ethanol 
sprayed lines while the blue are the water sprayed plants. Error bars represents ± SEM. 
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Figure 4.6: FT-5A transgenic line flowering along side with the empty control and 
FLC/FRI non-transgenic genotype 3 weeks after the ethanol induced FT was activated by 
1% ethanol. FT-5A is the transgenic line representative, seen flowering profusely. The empty 
control in the middle has not started flowering and FLC/FRI non-transgenic has just started to 
flower. 

 
 

 

4.2.2.0 Floral promotion from Arabidopsis FLOWERING LOCUS T in shy flowering 

genotype of Cassava  

The success of the ethanol-inducible system in the late flowering Arabidopsis genotype gave me 

the confidence to use the same ethanol-inducible FT construct to induce flowering in shy 

flowering genotype of Cassava. For this, Friable Embryogenic Callus created from the Cassava 

cultivar TMS 60444 was transformed by Agrobacterium-mediated transfer of the T-DNA carrying 

the same pNewFT construct described above. See transformation details from the Materials and 

Methods of this thesis (Section 2.2.1). Fifteen independent transgenic events were regenerated. 

These transgenic plants were generated by a closely examined, time consuming, and laborious 

selection. The transformed FECs were under stringent selection from the herbicide selectable 

marker. The selection period was for 9 months from the friable embryogenic callus stage, through 

to the different plant regeneration phases. Finally, plantlets were generated. Only twelve 

independent transgenic lines survived to the green house for physiological and molecular analysis.   
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4.2.2.1 Genomic PCR analysis of AtFT in Cassava transgenics 

The establishment of the twelve independent events was attained in the green house. Leaf samples 

were collected for molecular analysis of the putative-transformed lines by conventional PCR. This 

was necessary to confirm if these putative transgenic lines carried the transgene from the T-DNA 

insertion, and that there was stable integration of the FT gene within the genome of Cassava. DNA 

was extracted from all twelve independent events, the DNA preparation for a non-transgenic 

Cassava wild-type controls, and Arabidopsis ft-10 mutant, were produced. From this, PCR was 

performed with primers against Arabidopsis FT with these Cassava DNA samples, along-side the 

control of the plasmid DNA of pNewFT, which was the construct from which all the Cassava 

transgenic lines were generated. After PCR, all twelve independent transgenic events showed the 

expected 405 bp amplification fragment. Thus, the FT cDNA was incorporated within their 

genomes. As expected, the wild-type Cassava plant did not generate an amplification fragment 

(Figure 4.7). The ft-10 Arabidopsis mutant, as expected, failed to generate the 405 bp fragment, as 

expected. The plasmid DNA sample generated the expected 405 bp fragment. These results 

demonstrated the presence of the FT transgene in these 12 transgenic Cassava lines. Therefore, the 

regeneration of the Cassava lines from FECs and the incorporation of the FT within the T-DNA 

insertion was a success. 

 
Figure 4.7 Genomic PCR of Arabidopsis FT in Cassava transgenics FT-1 to FT-22 represents 
the 12 Cassava transgenic lines, the NTC is water control used which lacked any DNA template,-ve 
is the negative control from the non-transgenic Cassava line, ft-10 is an FT mutant and +ve control 
is PCR against the plasmid from which the transgenic plants were generated. * shows the non-
specific amplifications in these samples. 
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4.2.2.2 Gene expression of FT transgene in Cassava by RT-PCR analysis 

The Cassava transgenic lines were grown for 3 months and then the induction system was 

activated. The method of induction of the FT transgene was by ethanol watering and spraying, to 

drive the AtFT expression. For this, 50 ml of 2.5% EtOH was soil drenched once in a day at 12 

noon and 2.5% ethanol was sprayed copiously at 12 noon, 3 pm, and at 9 pm for 15 days.  The 

transcript level of FT accumulation was measured in a progressive manner by reverse transcriptase 

PCR (RT-PCR). This was done by analyzing leaf samples from the apical part of all the transgenic 

lines. The samples were harvested on the 3rd, the 7th, and the 15th, day respectively, following the 

commencement of the last daily application of ethanol. The result from the (RT-PCR) data shows 

that there was little to no FT expression detected after the spraying of the 2.5% ethanol on the 3rd 

and 7th day of the start of the induction. However, on the 15th day, the expression level of FT was 

readily detected for most of the Cassava transgenics (Figure 4.8). It is worthy of note that 

transgenic line FT-15 showed low expression, compared to the control lines (Figure 4.8). 

Strangely, FT-13 expression at day 3 was higher than the expression at day 15, and it records the 

highest level of expression at Day 7 after commencement of spraying. The reason for this anomaly 

is unknown (Figure 4.8). 
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Figure 4.8 FT expression in Cassava transgenics 3,7, and 15 days after induction with 
2.5% ethanol. Gene expression of FT transgenic lines 1 to 12 after 3,7 and 15 days of 
ethanol spray, EtOH control was the non-transgenic line sprayed with ethanol, Water control 
was the non-transgenic Cassava plant inducing with water and nrt was cDNA not transcribed 
by reverse transcriptase.  
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4.2.2.3 Observations in the greenhouses 

Flowering is a phenotypic expression of integrated network of endogenous and environmental 

cues. For Cassava to flower in the green house is very uncommon. The conducive flowering 

environment known to Cassava is under field conditions (Byrne , 1984). The independent FT 

transgenic lines under the control of an ethanol-inducible promoter were grown in the glass house 

at two different locations, in two different continents, and under different physiological growth 

conditions. I made phenotypic observation of the Cassava transgenic lines in glass house in Cali, 

Colombia and in a green house in Cologne, Germany. The glass house in Cali was subjected to 

natural day length of essentially a seasonal constant of 12 hours. Cali is essentially at the equator, 

at 4oN latitude and Cologne is at 51oN latitude. I observed that the transgenic lines in the glass 

house in Colombia started flowering mostly at 8 months after planting, some even without ethanol 

application (Figure ). In Cologne, the plants in the green house, which were genetic replicates as 

the transgenic lines in Cali, flowered comparatively earlier. The temperature of the German green-

house and the photoperiod was regulated, with the temperature being between 25-30oC and the 

photoperiod being at 16 hours of light and 8 hours of darkness. It was observed that most of the 

transgenic lines started flowering by the third month under these German green- house conditions 

(Figure 4.12). This is consistent with previous observations that long day photoperiods promote 

flowering in Cassava (Keating et al., 1982a, 1982b). 

 

Ethanol spraying promoted flowering in some Cassava transgenics. Notably, in lines FT-4, FT-21 

and FT-22, floral initiation was observed 2 weeks after the completion of the ethanol spraying 

(Figure 4.11). The floral behavior of these 3 lines is typical of the developmental response 

expected as a result of ethanol-induction of the system. This flowering plants after 2 weeks of 

ethanol spray presents evidence of the efficiency of the system.  
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Figure 4.9 Cassava plants in the glass house in Colombia. (A and B) Displays two 
of the transgenic lines flowering without ethanol induction after 8 months. (C) The 
non-flowering control in the middle of two Cassava flowering transgenics. 
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Figure 4.10 Cassava plants in the green house in Germany. (A) The non-flowering control 
after 3 months in the green house. (B) One transgenic line flowering without ethanol induction 
(C) Close up view of the non-flowering apices of a non-transgenic control. 
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Figure 4.11 Cassava transgenics flowered after induction of the ethanol controlled FT   
transgene system by ethanol. Plants were grown in the green house in Cologne. FT-22, FT-4, 
and FT-21 are the transgenic lines that flowered 2 weeks after 2.5% ethanol was sprayed on them 
to induce the system. The circle represents the floral zones. 

 
4.3 Conclusion 

One dream for breeders would be that flowering could be induced at will in any plant system, 

given the appropriate molecular tools. In a tropical species like Cassava, which is known to be 

recalcitrant to flowering, I showed that flowering time can be manipulated by the ethanol-

inducible system of the pNewFT construction. I showed that the FT transcript accumulated after 

15 days of induction by ethanol. This led to  floral initiation in Cassava. Although the 

physiological processes responsible for flowering in some of the Cassava transgenic lines before 

ethanol induction is not yet clear. This pre-ethanol induction of flowering may be as a result of 

photoperiodic response of FT transgene, or that the ethanol system had leaky expression. Still, in 

some transgenic events, flowering time was initiated by chemical induction. The success of being 

able to induce flowering at will in Cassava by this transgenic approach becomes an invaluable tool 

for the Cassava breeders to be able to synchronize flowering for Cassava improvement. 
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CHAPTER 5. GENERAL CONCLUSIONS AND PERSPECTIVES 
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5.0 Introduction 

 

In this thesis, my primary aim was to characterize photoperiod aspects of flowering in Cassava, a 

tropical plant in which very little is known about these response pathways. I identified several 

photoperiod genes. The knowledge of the characterized photoperiod genes was further used in the 

aim of modifying flowering time in Cassava. This is important owing to its recalcitrant flowering 

nature. Inducible flowering was achieved by genetically modifying Cassava with the floral 

integrator pathway gene FLOWERING LOCUS T (FT), which is known to be implicated in the 

Arabidopsis flowering pathway. A detailed study of the characterization of photoperiod genes and 

the manipulation of flowering time in Cassava is summarized. 

 

5.1 MeGI Summary 

 

In Chapter 3, I provided molecular information on the GIGANTEA homologue in Cassava. I 

isolated a partial MeGI sequence and showed the encoded protein has extensive sequence 

conservation with GI from other plants. A multiple alignment of the GI encoded-protein sequences 

from other species, including that of MeGI, showed a clear separation of the dicots from the 

monocots (Figure 3.3). MeGI claded closely with the GI of Castor bean. I also measured the 

expression level of this photoperiod gene in Cassava and found the transcript level of MeGI to 

peak at 12 and 16 hours after dawn under subjective long day conditions. Under short day 

conditions, it peaked 8 hours and 12 hours after dawn (Figures 3.4 and 3.5). This finding is similar 

to observations in Hordeum vulgare, a long-day monocot plant, where GI was found to peak at 6 h 

and 9 h after dawn under short day conditions and 15 h after dawn under a 16 h long day period 

(Griffiths et al., 2003). Therefore, MeGI sequences are conserved across species and share similar 

expression patterns. 

 

5.1.1 Future perspectives on MeGI 

The first future need in the characterization of the MeGI gene is to complete the amplification and 

sequencing of the 5’end. This could be done either by optimization of a 5’ RACE (Random 

Amplification of cDNA ends) protocol (Roche), which was earlier used and/or to continue to 

amplify the Cassava genome, or to assemble small fragments generated through inverse PCRs. 

Upon completion of the sequencing of the whole GI gene in Cassava, a functional analysis by 

complementation with gi mutants in Arabidopsis should be conducted. Here, I propose that MeGI 

gene is transformed into the gi mutants of Arabidopsis. Experiments would include measurements 

of flowering time, circadian function, and light signaling of all known phenotypes of this mutant 

(Oliverio et al., 2007). This will serve to predict its function and make conclusions on the 

functional properties of the MeGI, if it is indeed a true orthologue of Arabidopsis GI. Studies 
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should be conducted and to examine if MeGI is also a nuclear protein in Cassava, which could 

define the generality of its localization. Collectively, this will start to assign a photoperiodic role 

for the MeGI in Cassava. 

 

5.2 Summary of the COLs 

 

In Chapter 3, I isolated partial sequences of three of the CO-like genes in Cassava. I compared 

their sequences with the corresponding CO genes of Arabidopsis. The results showed gene 

conservation across species (Figure 3.7), conserved domains have been shown in other CO-like 

genes across species (Lagercrantz and Axelsson, 2000; Holefors et al., 2009; Robert et al., 1998; 

Song et al., 1998; Yano et al., 2000; Serrano et al., 2009; Jeong et al., 1999; Zobell et al., 

2005;Chia et.al., 2008 and Liu et al., 2001).  Next, I measured in Cassava the transcript level of 

these CO-like genes, and I was able to show that COL transcript levels peaked at dawn, in 

anticipation of daylight under long day conditions, and under short day conditions, COL 

transcription levels were found to be elevated 2 hours before dawn (Figures 3.9 and 3.10). This 

pattern of expression in Cassava is similar to the related COL transcript levels in Arabidopsis 

(Suárez-López et al., 2001), again showing sequence conservation between both Cassava and 

Arabidopsis. Perhaps there is a conservation of CO-like expression in the timing of flowering 

control. To test for this, it would be worthy to examine the GI-CO-FT relationship in Cassava. 

Here, physiological experiments should be conducted to see if GI expression correlates with the 

expression of any of the COL genes, and whether such COL expression under a light phase can 

induce FT. Cassava FT awaits full characterization for this to be completed. Since in Arabidopsis, 

GI expression activates the transcription of CO mRNA, and when CO transcript is under the light 

phase, this directs the transcription of FT mRNA which triggers flowering (Suárez-López et al., 

2001; Searle and Coupland, 2004; Jaeger and Wigge, 2007), similar processes might be involved 

in the transition to flowering in Cassava. As photoperiod advances can promote flowering in 

Cassava (Keating et al., 1985), this is plausible. 

 

5.2.1 Future perspectives on COL genes 

We understand from the literature that the photoperiodic control of flowering is an important 

adaptive characteristic in plants (Laurie et al., 2004). Studies from the model dicot Arabidopsis 

showed that the AtCO (CONSTANS) is important in the photoperiod pathway (Turck et al., 2008). 

It is not surprising that Cassava COL transcripts were not detectable above background levels 

during the day phase, and this may be consistent with the findings of Suárez- López (2001) that 

CO in Arabidopsis is low during the day. Here, I reported three partial MeCOLs sequences, and I 

recommend that the existing ORFs should be completed and characterized. Notably, it is unclear 

how the effect of the COL expression under short day and long day influences flowering in 

Cassava. It was noticed that there is no detectable transcript of the MeCOL during the light phase 
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of the day (Figure 3.9 and 3.10). It is known in Arabidopsis that transcript accumulation of CO 

during the light influences flowering by upregulating FT expression (Searle and Coupland, 2004). 

Therefore, a detailed study of the function of the Cassava COL gene expression patterns and their 

influence on flowering time in Cassava is recommended. 

 

5.2.2 MeELF4 Summary 

In Chapter 3, I discovered and characterized the complete MeELF4 gene. First, I identified this 

gene, and concluded by phylogeny that MeELF4 is closely related to the Arabidopsis ELF4. I used 

it in complementation tests in Arabidopsis to confirm orthology, and this was conducted with the 

elf4-1 mutant. Here, restoration of the expression patterns of CCA1:LUC and CCR2: LUC markers 

of clock function was found (Figures 3.14 and 3.15). My studies led to the conclusion that 

MeELF4 rescued elf4-1, as rhythmicity in the MeELF4: elf4-1 line was sustained under free run 

(Figures 3.15 and 3.16). Data from assays of hypocotyl-length elongation also showed that 

MeELF4 restored growth to a level comparable to the wild-type, as the MeELF4:elf4-1 lines were 

shorter than the elf4-1 mutant (Figure 3.16). Leaf movement studies also confirmed this 

hypothesis, as leaves of MeELF4:elf4-1 plants showed rhythmic leaf movements under circadian 

cycles, while that of the elf4-1 mutants showed arrhythmicity (Figure 3.14). Thus, I found the 

Cassava orthologue of Arabidopsis ELF4. 

 

Seeds from the T1 generation of MeELF4:elf4-1 were planted under long day conditions to 

observe the flowering-time physiology. These transgenic lines flowered under long-day 

conditions, but there was no difference in flowering-time amongst the MeELF4:elf4-1 lines, the 

positive Ws-2 wild-type controls and the elf4-1 mutant. Further tests under short day conditions 

would reveal further complementation of flowering-time, as the elf4-1 mutant is most 

phenotypically perturbed under such an environment (Doyle et al., 2002). This investigation 

should reveal the ability of MeELF4 to complement the early flowering defect of elf4-1. 

 

5.2.3 Future Perspectives on MeELF4 gene 

ELF4 is implicated in the circadian clock (McWatters et al., 2007; Khanna et al., 2003; Doyle et 

al., 2002; Doyle, 2003). It is recommended that a detailed flowering-time analysis of the MeELF4 

complementation of elf4-1 lines under short day conditions be investigated.  

There is a significant difference in flowering-time in Arabidopsis when grown under long days 

and short-days given that the floral transition occurs earlier when plants are grown in long days 

than when they are grown in short days (Martinez-Zapater, 1994). ELF4 plays a role in the sensing 

of long day and short days (Doyle et al., 2002; McWatters et al., 2007). It is recommended that a 

replicate biological experiments of the elf4-1 mutants with the CCA1:LUC and CCR2: LUC 

markers be repeated to confirm the complementation results described in Chapter 3. It is also 

recommended that the T2 segregating population of the MeELF4 transgenic lines be investigated 
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further. This is necessary for further confirmation of the accuracy and consistency of the 

molecular and genetics findings from the T1 generation using the “luciferase platform.” The leaf 

movements and hypocotyl elongation experiments may be repeated for confirmation of the 

reported results in this thesis. Therefore, more investigation is recommended in the confirmation 

of MeELF4 as a true orthologue of Arabidopsis ELF4.  

 

5.3 Perspective on genes of interest and Cassava flowering model  

 

The expressed sequence tags and genome sequence databases searches used to identify flowering 

related gene sequences from Arabidopsis and Castor bean generated molecular information for 

MeAPI, FT, and SOC1. These molecular sequencing information was not enough to generate 

contigs. Therefore, the expression levels of MeAPI, FT, and SOC1 was not measured in Cassava. 

It is recommended that further efforts be made to discover FT, API and SOC1 genes in Cassava.  

 

I was unable to identify the bZIP transcriptional factor FD (Figure 5.1), which mediates floral 

signal from the integrator genes FT to induce flowering (Wigge et al., 2005). The ELF3 clock 

gene (Zagotta et al., 1996) was also unidentified (Figure 5.1). Therefore, for my interest in direct 

comparison of the physiological genetics of flowering of the model system of Arabidopsis with 

that of Cassava which lacks molecular information on flowering, a comparative flowering model 

for Cassava and Arabidopsis was of yet unclear (Figure 5.1). 

 

Several photoperiod-related genes were detected in Cassava and their characterization could be 

furthered. A gene sequence with identity to the Arabidopsis LHY/CCA1 was detected in Cassava. 

The sequence information was incomplete (data not shown). Similarly, the floral integrator 

pathway gene AGL24 (Yu et al., 2002) was detected. I obtained partial sequence information and 

this led to an incomplete ORF (data not shown). Both MeLHY/CCA1 and MeAGL24 thus are 

potential homologues to the related genes of Arabidopsis (sequence details not shown). A more 

accurate molecular technique for identifying and sequencing the 5’ and the 3’ ends of these genes 

is recommended. Upon the complete sequencing of these genes, a detailed characterization should 

be thoroughly investigated in order to be able to conclude their gene for gene and/or gene by 

function, for example by complementation tests against the lhy mutants of Arabidopsis. The 

mutant lines rescued by the MeLHY/CCA1 and MeAGL24 genes might display phenotype similar 

to that of the wild-type, which is evidence of successful complementation. 

 

5.3.1 Floral repressors  

I was unable to detect any sequences related to the FLC and FRI genes in Cassava. FRI encodes a 

protein of an unknown function (Johanson et al., 2000), and FLC is a MADS box transcriptional 

regulator that quantitatively represses flowering (Michaels and Amasino, 2001). FRI represses 
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flowering only in the presence of FLC activity (Koornneef, 1994). Studies have shown that the 

FLC and are only present in the Brassicaceae family (Roux et al., 2006), which might explain why 

I could not detect them in Cassava. Perhaps the strong floral repression in this tropical plant is 

genetically distinct from FLC repression of temperate Brassicaceae.  

 

 
 

Figure 5.1 A Comparison of the flowering model of Arabidopsis and a comparison to Cassava. 
The model is in comparative parts. Each part is composed of the clock, its output, output targets, and 
identity genes. The yellow and red arrows signify activators of expression, the white arrows, repressors 
and the question mark shows sequence or function uncertainty. The circles signify genes not found in 
Cassava. The genes are annotated in the abbreviations. In the Cassava model, ELF4, GI, COL, 
CCA1/LHY, SOC1 complete and partial sequences have been found, while ELF3, FT, FD, API, AG, 
LHY, FLC, and FRI have not been found. 

 
 

 

5.4 Summary of Arabidopsis Floral induction  

 

In Chapter 4, I was successful in inducing flowering in the FLC/FRI genotype  (Michaels and 

Amasino, 2000) with FT gene under the control of an ethanol-inducible promoter (Caddick et al., 

1998). This Arabidopsis genotype under long day conditions flowered after the inducible system 

was activated by the exogenous application of 1% ethanol solution (Figure 4.7). This ethanol-

inducible system was well regulated in some Arabidopsis. A concurrent watering-control 

experiment with the ethanol-inducible test sample plants showed late-flowering phenotype when 

compared to its ethanol-induced counterparts (Figures 4.3 and 4.4). This showed that water could 

not induce this ethanol system of induction. In conclusion, the ethanol inducible AlcA/AlcR FT 

construct I designed was functional and could bypass the “shy” flowering phenotype of FLC/FRI. 

These pNewFT FLC/FRI Arabidopsis lines could serve as a useful resource to understand the 

competition of FLC and FT on their target gene SOC1. 
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5.4.1 Future perspectives on the Arabidopsis FLC/FRI genotypes 

I recommend that the experiment with the FLC/FRI genotypes be repeated under short day 

conditions. The flowering-time measurement was conducted under a subjective long day 

conditions known to induce flowering. It is important to observe the timing of floral induction 

under non-inductive photoperiods, because the inductive photoperiodic effects on the flowering 

time will be physiologically suppressed.  

To further confirm the biological activity of the ethanol-inducible FT within the pNew construct, 

complementation tests against the ft-10 mutants are proposed. This could be done by transforming 

pNewFT into ft-10 and measure flowering time before and after ethanol application.  ft-10 is a 

mutant line (Yoo et al., 2005), and is a null allele in the Col. background. This will confirm that 

my pNewFT construct can rescue this different late flowering ft-10 mutant and would further 

verify the efficiency of the ethanol promoter inducible system. (Caddick et al., 1998; Roslan et al., 

2001; Filichkin et al., 2006; Garoosi et al., 2005).  

 

5.5 Summary of Cassava Floral induction  

 

In Chapter 4, I generated 12 independent transgenic lines of Cassava transformed with the FT 

gene under the control of the ethanol-inducible AlcA promoter. I showed that FT gene was 

incorporated into the Cassava genome by conventional PCR against genomic DNA and by 

detection of FT transcript expression (Figures 4.8 and 4.9). The gene expression trend of FT 

transcript accumulation after application of 2.5% ethanol solution over a period of 15 days showed 

dramatic FT transcript accumulation (Figure 4.9), except for line FT-13 which showed no stable 

pattern of transcript accumulation after induction (Figure 4.9). Cassava transgenic lines FT-4, FT-

21, and FT-22 had not started flowering at the time the 2.5% ethanol spraying began, but were 

seen to flower 2 weeks after the 15 days of ethanol spraying had ended (Figure 4.9). The timing of 

flowering observed in lines FT-4, FT-21, and FT-22 is typical of what was expected from this 

system of induction, such that floral initiation be “turned on” only after the application of the 

inducer. Lines FT-4, FT-21, and FT-22 are the best of all 12 independent events. Therefore, I was 

able to make a shy flowering Cassava genotype flower after induction by ethanol (Figure 4.12). 

 

5.5.1 Future perspectives on the Cassava transgenic lines 

I was been able to show that Cassava can be induced to make flowers through the use of FT 

transgenic approach. It is worthy of note that in the 20 years history of Cassava study at the 

International Center for Tropical Agriculture (CIAT), flowering in the green-house has never been 

observed (Fregene, personal communication). There, Cassava flowers in tropical environments 

only under field conditions, and then, only when the plants are over 6 months in age. I noticed that 

75% of the 12 transgenic lines tested, flowered by the third month in the green house, and before 
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the ethanol induction was started with 2.5% ethanol solution. Therefore, transgenic FT Cassava 

can flower in the green house in response to photoperiod. 

It was a general trend amongst the transgenic Cassava lines that the FT was induced after ethanol 

addition on the 15th day of spraying (Figure 4.9). One exception was line FT-13, whose expression 

level did not increase progressively. It recorded the highest FT expression level on the 7th day, 

followed by the expression on the 3rd day and the lowest of its expression was on the 15th day in 

which the FT expression was expected to be the highest. This could be due to the leakiness of the 

promoter in this particular transgenic line. It was reported in tobacco that the ethanol-inducible 

promoter system appears to have negligible levels of leaky expression, even though they recorded 

the system was not induced by endogenous alcohol production in response to water stress (Roslan 

et al., 2001). This anomaly in this single line could also be due to the number of copies 

incorporated with the genome.  

In order to verify the incorporation of the FT gene from Arabidopsis within the genome of the 

Cassava transgenic lines, Southern-blot hybridization was conducted. Cassava genomic DNA was 

digested with HindIII. The HindIII is not predicted to have any restriction site within the T-DNA 

region. The PCR product described from the genomic PCR amplification described in Figure 4.8 

was labeled and used as the probe. The result showed many bands per line. However, the banding 

pattern of the hybridization signal were indistinguishable from the wild type (Figure 4.10). This 

may suggest the detection of the presence of homologous FT genes in Cassava (Fig. 5.2).  To 

establish the integrity of the transgenic lines, a detailed examination of the T-DNA insertion is 

proposed as a method to distinguish the wild-type from the putative transgenic lines. The T-DNA 

is 5670 bp and the HindIII cuts once between the selectable marker gene (pat) and AlcA promoter 

border, which generates fragments at the expected size of  2.2 and 3.4 kb, respectively. This was 

also seen to be present in the wild-type, although this may suggest that the FT of Cassava would 

have homologous sequences of the Arabidopsis FT. Therefore, I recommend that the Southern-

blot hybridization experiment be repeated using a probe from the T-DNA derived sequences of 

Left Border or the Right Border of the T-DNA insertion regions of the pNewFT plasmid. This will 

provide more specificity of hybridization due to the absence of these borders in the Cassava wild-

type and confirm if these Cassava lines are transgenic or not.  
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Figure 5.2 Southern blot hybridization on Cassava transgenic lines with FT probe. 50 µg of 
DNA was digested by 125 units of HindIII. DNA was separated by electrophoresis, and a blot was 
made. It was hybridized to FT probe by radiolabelled 32P dCTP. MW is the 1kb ladder, FT-1 to FT-
11 are the transgenic lines representative, -ve control is the wild-type Cassava non-transgenic, and 
the +ve control is the digested plasmid with HindIII. The arrows signify the corresponding 
molecular weight at each level. 

  
 

I recommend that a detailed study of the interactions between the endogenous MeFT and the FT 

from Arabidopsis be conducted. One could investigate the photoperiodic influence on both the 

transgenic and wild-type Cassava plants. This investigation may include, first the isolation and 

then the sequencing of MeFT genes in Cassava. The sequencing results can be used to design 

primers for the MeFT transcript profiling in the wild-type Cassava and in the transgenic lines that 

harbor Arabidopsis FT. In the latter, it will be interesting to see if the induction of Arabidopsis FT 

in the pNewFT transgenic Cassava cause changes in the expression of endogenous Cassava FT 
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genes. Furthermore, the MeFT transcript level could be correlated to MeGI and MeCOL transcript 

levels, respectively, in the photoperiodic pathway to investigate the induction of flowering in 

Cassava. 

 

I recommend the use of lines FT-4, FT-21, and FT-22 for future field trials as they flowered in 

response to the ethanol induction of the transgene. This implies that these lines will not flower 

before they are induced by ethanol, and thus, the breeder can be sure the plants will flower after 2 

weeks of ethanol induction in order to make desired crosses. It would also be useful to attempt 

crosses with these transgenics to test whether the flowers are fertile and can form fruits and viable 

seeds. Collectively, I suggest that ethanol spraying using a mechanical approach under field 

conditions is appropriate for even and homogenous distribution of the ethanol.  

 

In conclusion, there is a need to identify more photoperiod genes in Cassava. Furthermore, the 

incomplete molecular information on the genes I discovered from this study should be completely 

characterized. In this era, more than 180 genomes of organisms have been sequenced, ranging 

from bacteria to plants to animals (Goodner et al., 2001; Dietrich et al., 2004;  AGI, 2000, Venter 

et al., 2001;  Yu et al., 2002), and still on-going genome sequencing projects, of which Cassava is 

one. Since the sequencing of the Cassava genome is aimed at the identification and study of gene 

function, this molecular information generated from this study will contribute to the understanding 

of these genes and complement efforts in understanding the growth, development, and 

maintenance of this tropical plant, as a consequence of understanding the molecular and genetic 

detail of the photoperiodic effect of flowering in Cassava. This could lead to a breakthrough in 

understanding Cassava’s transition from vegetative propagation to reproductive development. 

Finally, the physiological and morphological characterization of the Cassava transgenic lines 

generated from this investigation under field conditions will demonstrate the potential of the 

improvement and its invaluable resource for the breeders. 

 91



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6.  LITERATURE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 92



Abate, T., Huis, A., van Ampofo, J.K.O. (2000) Pest management strategies in traditional 
agriculture, An African perspective. Annual Review of Entomology, 45, 631-659.  

Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., 
Notaguchi, M., Goto, K., Araki, T. (2005) FD, a bZIP protein mediating signals from the floral 
pathway integrator FT at the shoot apex. Science, 309, 1052-1056. 

Alaux, J.P., Fauquet, C. (1990) African Cassava Mosaic Disease: from knowledge to control. 
Yamoussoukro, Ivory Coast 4-8 May 1987, Seminar summary report., 50. 

Allem, A.C. (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genetic Resour. 
Crop Evol., 41, 133-150.  

Allem, A.C. (2002) The origin and taxonomy of cassava. In: Hillocks, R. J., M.J. Thresh and A.C. 
Bellotti (eds.) Cassava: Biology, production and utilisation. CABI International, Oxford, 1-16.  

Alves, A.A.A. (2002) Cassava botany and physiology, In: Hillocks, R. J., M.J. Thresh and A.C. 
Bellotti (eds.) Cassava: Biology, production and utilisation. CABI International, Oxford, 67-89.  

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic Local Alignment 
Search Tool. Journal of Molecular Biology, 215, 403-410. 

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, 
D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Research, 25, 3389-3402. 

Amasino R.M. (2005) Vernalization and flowering, Curr. Opin. Biotech., 16, 154-158.  

Andersen, C. H., Jensen, C.S., Petersen, K.(2004) Similar genetic switch systems might 
integrate the floral inductive pathways in dicots and monocots. Trends in Plant Science, 9, 105-
107. 

Angelov, M.N., Sun, J., Byrd, G.T., Brown, H., Black, C. (1993) Novel characteristics 
ofcassava (Manihot esculenta Crantz), a C3-C4 intermediate photosynthesis species. Photosyn 
Res, 38, 61-72.  

Asiedu, R., Bai, K.V., Terauchi, R., Dixon, A.G.O., Hahn, S.K. (1992) Status of wide crosses 
in Cassava and Yam. In: Thotttapily, G. (ed.) Biotechnology; enhancing research on tropical 
crops in Africa: Proceedings of an international conference held at the International Institute of 
Tropical Agriculture, 26-30 November 1990, IITA, Ibadan, Nigeria.  

Awoleye, F., Van Duren, M., Dolezel, J., Novak, F.J. (1994) Nuclear DNA content and in vitro 
induced somatic polyploidization (Manihot esculenta Crantz) Cassava breeding. Euphytica, 76, 
195-202. 

Bellotti, A.C., Smith, L., Lapointe, S.L. (1999) Recent advances in cassava pest management. 
Annu. Rev. Entomol. 44, 343-370. 

Blazquez, M.A., Soowal, L.N., Lee, I., Weigel, D. (1997) LEAFY expression and flower 
initiation in Arabidopsis. Development, 124, 3835-3844. 

Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R. and Weigel, D. (1998) Gibberellins 
promote   flowering of arabidopsis by activating the LEAFY promoter. Plant Cell, 10, 791-800. 

Blazquez, M.A., Trenor, M., Weigel, D. (2002) Independent control of gibberellin biosynthesis 
and flowering time by the circadian clock in Arabidopsis. Plant Physiol, 130, 1770-1775. 

Böhlenius, H., Huang, T., Charbonnel-Campaa, L., Brunner, A.M., Jansson, S., Strauss, 
S.H., Nilsson, O. (2006) CO/FT Regulatory Module Controls Timing of Flowering and Seasonal 
Growth Cessation in Trees. Science, 412, 1040-1043. 

Bolhuis, G.G. (1966) Influence of length of the illumination period on root formation in cassava 
(Manihot utilissima Pohl). Netherlands Journal of Agricultural Science, 14, 251-254.  

Bolhuis, G.G., (1953) A survey of some attempts to breed Cassava with a high content of proteins 
in the roots. Euphytica, 2, 107-112.  

 93



Borner, R., Kampmann, G., Chandler, J., Gleissner, R., Wisman, E., Apel, K., Melzer, S. 
(2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J, 24, 
591-599. 

Boxall, S.F., Foster, J.M., Bohnert, H.J., Cushman, J.C., Nimmo, H.G., Hartwell, J. (2005) 
Conservation and divergence of circadian clock operation in a stress-inducible crassulacean acid 
metabolism species reveals clock compensation against stress. Plant Physiol., 137, 969-982. 

Bruijn, G.H. (1977) Influence of daylength on the flowering of cassava. Tropical Root Tuber 
Crops Newsletter, 10, 1-3.  

Byrne, D. (1984) Breeding cassava. In: Janick, J. (ed.) Plant Breeding Reviews, 2 , 73-134. 

Bünning, E. (1960) Circadian rhythms and time measurement in photoperiodism. Cold Spring 
Harbor Symp. Quant. Biol. 25:249-256. 

Bushway, A.A., Bushway, A.W., Belyea, P.R., Bushway, R.J. (1980) The proximate 
composition and glycoalkaloid content of three potato meals. American Journal of Potato 
Research, 57, 167-171.  

Caddick, M.X., Greenland, A.J., Jepson, I., Krause, K.P., Qu, N., Riddell, K.V., Salter, 
M.G., Schuch, W., Sonnewald, U., Tomsett, A.B. (1998) An ethanol inducible gene switch for 
plants used to manipulate carbon metabolism. Nat Biotechnol, 16, 177-180. 

Ceballos, H., Fregene, M., Roca, W., Tohme, J. (2002) Cassava: An Ideal crop for 
biotechnology tools. In: Taylor, N.J., F. Ogbe and C.M. Fauquet (eds.) Cassava, An Ancient Crop 
for Modern Times Food, Health, Culture. Proceedings of Fifth International Scientific Meeting of 
the Cassava Biotechnology Network (Abstracts) Danforth Plant Science Center St Louis, 
Missouri, USA.  

Chia, T.Y., Muller, A., Jung, C., Mutasa-Gottgens, E.S. (2008) Sugar beet contains a large 
CONSTANS-LIKE gene family including a CO homologue that is independent of the early-
bolting (B) gene locus. J Exp Bot, 59, 2735-2748. 

Chuck, G., Hake, S. (2005) Regulation of developmental transitions, Current Opinion in Plant 
Biology, 8, 67-70. 

CIAT (1979) Annual Report of the Centro Internacional de Agricultura Tropical, Cali, Colombia.  

CIAT (1982) Annual Report of the Centro Internacional de Agricultura Tropical, Cali, Colombia. 

CIAT (2002) Annual Report Project SB2, Assessing and Utilizing Agrobiodiversity through 
Biotechnology, CIAT, Cali, Colombia, pp 203-207. 

CIAT (2002) Annual Report Project SB2, Assessing and Utilizing Agrobiodiversity through 
Biotechnology, CIAT, Cali, Colombia, pp 212-214. 

Cock, J.H., Franklin, D., Sandoval, D., Juri, P. (1979) The ideal cassava plant for maximum 
yield. Crop Science, 19: 271-279. 

Cock, J.H., El-Sharkawy, M.A. (1988) Physiological characteristics for cassava selection. 
Experimental Agriculture, 24, 443-448.  

Cock, J.H., Rosas, S. (1975) Ecophysiology of Cassava, In: (eds) Symposium on Ecophysiology 
of Tropical Crops. Communications Division of CEPLAC, IIhéus, Bahia, Brazil., 1-14.  

Connor, D.J., Cock, J.H. (1981) Response of Cassava to water shortage. II, Canopy dynamics. 
Field Crops Res., 4, 285–296.  

Connor, D.J., Cock, J.H., Parra, G.E. (1981) Response of Cassava to water shortage. I. Growth 
and yield. Field Crops Research, 4, 181-200.  

Cooke R.D., Coursey, D.G. (1981) Cassava: a major cyanide-containing food crop In: 
Vennesland, B., Conn, E.E. and Knowles, C.J. (eds) Cyanide in Biology. Academic Press, New 
York.  

 94



Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, 
S., Gissot, L., Turnbull, C., Coupland, G. (2007) FT protein movement contributes to long-
distance signaling in floral induction of Arabidopsis. Science, 316, 1030-1033. 

Cortés, D.F., Reilly, K., Okogbenin, E., Beeching, J.R., Iglesias, C., Tohme, J. (2002) 
Mapping wound-response genes involved in post-harvest physiological deterioration (PPD) of 
cassava (Manihot esculenta Crantz). Euphytica, 128, 47–53.  

Cunha, H.M.P., Conceição, A. J. da (1975) Indução ao florescimento da mandioca (Manihot 
esculenta Crantz) –Nota prévia. In: Projecto Mandioca. Universidade Federal de Bahia. Escola 
de Agronomia. Cruz das Almas. Convenio UFBA. 

Dahniya, M.T. (1994) An overview of Cassava in Africa. African Crop Science Journal, 2, 337-
343.  

Davis, A.M., Hall, A., Millar, A.J., Darrah, C., Davis, S.J. (2009) Protocol: Streamlined sub-
protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana. 
Plant Methods, 5, 3. 

De Marian, J.J. (1729) Observation botanique-Historie de l’Academie Royale de Sciences 
(Paris), p35. 

Dietrich, F.S., Voegeli, S., Brachat, S., Lerch, A., Gates, K., Steiner, S., Mohr, C., Pohlmann, 
R., Luedi, P., Choi, S.D., Wing, R.A., Flavier, A., Gaffney, T.D., Phillippsen, P. (2004) The 
Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. 
Science, 304, 304-307. 

Dowson-Day, M.J., Millar, A.J. (1999) Circadian dysfunction causes aberrant hypocotyl 
elongation patterns in Arabidopsis. Plant J., 17, 63-71.  

Doyle, J.J., J.L. Doyle. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf 
tissue. Phytochhem. Bull., 19, 11-15. 

Doyle, M. R., Davis, S. J., Bastow, R. M., McWatters, H. G., Kozma-Bognár, L., Nagy, F., 
Millar, A. J., Amasino, R. M. (2002) The ELF4 gene controls circadian rhythms and flowering 
time in Arabidopsis thaliana. Nature, 419: 74-77. 

Doyle, M.R (2003) The cloning and characterization of EARLY FLOWERING 4: A gene involved 
in circadian regulation and control of flowering time in Arabidopsis thaliana, PhD thesis, 
University of Wisconsin, Madison, U.S.A. 

Edwards G.E., Sheta E., Moore B.D., Dai Z., Fransceschi V.R., Cheng S-H, Lin C-H, Ku 
M.S.B. (1990) Photosynthetic characteristics of cassava (Manihot esculenta) a C3 species with 
chloronchymatous bundle sheath cell. Plant Cell Physiol., 31, 1199-1206. 

Edwards, K.D., Lynn, J.R., Gyula, P., Nagy, F., Millar, A.J. (2005) Natural allelic variation in 
the temperature-compensation mechanisms of the Arabidopsis thaliana circadian clock. Genetics, 
170, 387-400.  

Egesi, C., Cuambe, C., Rosero, A., Sanchez, T., Morante, N.,  Ceballos, H., Fregene, M. 
(2007) Genetic Mapping Of Delayed Post-Harvest Physiological Deterioration In Cassava In 
Backcross Derivatives Of Manihot walkerae . Abstract in PAGXVI San Diego, CA P673.  

El-Sharkawy, M.A., Cock, J.H., Cadena, G.D. (1984a) Stomatal characteristics among cassava 
cultivars and their relation to gas exchange. Experimental Agriculture, 20, 67-76.  

El-Sharkawy, M.A., Cock, J.H., Held, K.A..(1984b).Water use sufficiency of cassava II. 
Differing sensitivity of stomata to air humidity in cassava and other warm-climate species. Crop 
Sci, 24, 503-507.  

El-Sharkawy, M.A. (2004) Cassava biology and physiology, Plant Mol. Biol., 56, 481-501.  

El-Sharkawy, M.A., Cock, J.H. (1990) Photosynthesis of cassava (Manihot esculenta). 
Experimental Agriculture, 26, 325-340.  

EMBRAPA (2005) Cassava: the bread of Brazil = Yuca, el pan de Brasil. Brasilia, DF, 280. 

 95

mailto:c.egesi@cgiar.org
mailto:c.cuambe@cgiar.org
mailto:rosero84@yahoo.com.mx
mailto:t.sanchez@cgiar.org
mailto:n.morante@cgiar.org
mailto:h.ceballos@cgiar.org
mailto:m.fregene@cgiar.org


FAO (2001) FAO production yearbook for 2000, Rome, Italy, FAO.  

FAO (2003) Cassava Production Statistics 2002. http://www.fao.org. 

Felenbok, B. (1991) The ethanol utilization regulon of Aspergillus nidulans, the Alca–Alcr 
system as a tool for the expression of recombinant proteins. J Biotechnol, 17, 11–17.  

Felenbok, B., Sequeval, D., Mathieu, M., Sibley, S., Gwynne, D.I., Davies, R.W. (1988) The 
ethanol regulon in Aspergillus nidulans: characterization and sequence of the positive regulatory 
gene alcR. Gene, 73, 385-396. 

Filichkin, S. A., Meilan, R., Busov, V. B., Ma, C., Brunner, A. M., Strauss, S. H. (2006) 
Alcohol-inducible gene expression in transgenic Populus. Plant Cell Rep, 25, 660–667. 

Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., 
Putterill, J. (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic 
flowering in Arabidopsis and encodes a protein with several possible membrane-spanning 
domains. Embo J, 18, 4679-4688. 

Fregene, M., Angel,F., Gomez,R., Rodriguez,F., Chavarriaga, P., Roca, W., Tohme, J., 
Bonierbale, M. (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor 
Appl Genet, 95, 431-441. 

Fregene, M., Okogbenin, E., Mba, C., Angel, F., Suarez, M.C., Janneth, G., Chavarriaga, P., 
Roca, W., Bonierbale, M., Tohme, J. (2001) Genome mapping in cassava improvement: 
Challenges, achievements and opportunities. Euphytica, 120, 159-165. 

Fregene, M., Ponti-Kaerlas, J. (2002) Cassava Biotechnology. In CAB International Cassava: 
Biology Production and Utilization (eds. R.J. Hillocks, J.M. Thresh and A.C. Belloti).  

Garner, W.W., Allard, H.A. (1920) Effect of the relative length of day and night and other 
factors of the environment on growth and reproduction in plants. J. Agric. Res., 18, 553-606. 

Garner, W.W., Allard, H.A. (1923) Further studies in photoperiodism, the response of the plant 
to the relative length of day and night. J. Agric. Res., 23, 871-920. 

Garoosi, G.A., Salter, M.G., Caddick, M.X., Tomsett, A.B. (2005) Characterization of the 
ethanol- inducible alc gene expression system in tomato. J Exp Bot, 56, 1635-1642. 

Ghosh, S.P., Ramanujam, T., Jos, S., Moorthy, S.N., Nair, R.G. (1988) Tuber Crops. Oxford & 
IBH Publishing Co., New Dehli, 3-146.  

 Giakountis, A., Coupland, G. (2008) Phloem transport of flowering signals. Curr Opin Plant 
Biol, 11, 687-694. 

Gomez, R., Angel, F., Bonierbale, M.W., Rodriguez, F., Tohme, J., Roca, W.M. (1996) 
Inheritance of random amplified polymorphic DNA markers in cassava (Manihot esculenta 
Crantz). Genome, 39, 1039-1043. 

González, A.E., Schöpke, C., Taylor, N.J., Beachy, R.N., Fauquet, C.M. (1998) Regeneration 
of transgenic Cassava plants (Manihot esculenta Crantz) through Agrobacterium-mediated 
transformation of embryogenic suspension cultures. Plant Cell Rep., 17, 827-831.  

Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B.S., 
Cao, Y.W., Askenazi, M., Halling, C., Mullin, L., Houmiel, K., Gordon, J., Vaudin, M., 
Iartchouk, O., Epp, A., Liu, F., Wollam, C., Allinger, M., Doughty, D., Scott, C., Lappas, C., 
Markelz, B., Flanagan, C., Crowell, C., Gurson, J., Lomo, C., Sear, C., Strub, G., Cielo, C. 
and Slater, S. (2001) Genome sequence of the plant pathogen and biotechnology agent 
Agrobacterium tumefaciens C58. Science, 294, 2323-2328. 

Gould, P.D., Locke, J.C., Larue, C., Southern, M.M., Davis, S.J., Hanano, S., Moyle, R., 
Milich, R., Putterill, J., Millar, A.J., Hall, A. (2006) The molecular basis of temperature 
compensation in the Arabidopsis circadian clock. Plant Cell, 18, 1177-1187. 
 
Gresshoff, P.M., Doy, H.M (1972)  Haploid Arabidopsis thaliana callus and plants from anther 
culture. Aust. J. Biol. Sci, 25, 259-264. 

 96



Griffiths, S., Dunford, R.P., Coupland, G., Laurie, D. A. (2003) The Evolution of CONSTANS-
Like Gene Families in Barley, Rice, and Arabidopsis. Plant Physiology, 131, 1855–1867. 

Guthrie, E.J. (1987) African cassava mosaic virus disease and its control. Proceedings of the 
international Seminar of African Cassava Mosaic Virus Diseases and its control. Yamoussoukro, 
Cote D’Ivoire., 1-9.  

Hahn, S.K., Keyser, J. (1985) Cassava: a basic food of Africa. Outlook on Agriculture, 14, 95-
99.  

Halsey, M.E., Olsen, K.M., Taylor, N.J., Chavarriaga-Aguirre, P. (2008) Reproductive 
Biology of Cassava (Manihot esculenta Crantz) and Isolation of Experimental Field Trials. Crop 
Sci, 48, 49-58. 

Hanano, S., Stracke, R., Jakoby, M., Merkle, T., Domagalska, M. A., Weisshaar, B., Davis, 
S. J. (2008) A systematic survey in Arabidopsis thaliana of transcription factors that modulate 
circadian parameters. BMC Genomics, 9:182. 

Hayama R., Coupland, G. (2004) The molecular basis of diversity in the photoperiodic 
flowering responses of Arabidopsis and rice. Plant Physiology, 135, 677–684. 

Hepworth, S.R., Valverde, F., Ravenscroft, D., Mouradov, A., Coupland, G. (2002) 
Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate 
promoter motifs. Embo J, 21:4327-4337.  

Hershey, C.H., Jennings, D.L. (1992) Progress in breeding cassava for adaptation to stress. Plant 
Breeding Abstracts, 62, 823-831.  

Hillocks, R.J. (2002) Cassava in Africa. In: Hillocks, R.J., J.M. Thresh and A.C. Bellotti (eds.) 
Cassava: Biology, Production and Utilization. CABI Publishing Oxon, UK and New York, USA., 
40-54.  

Holefors, A., Opseth, L., Ree Rosnes, A.K., Ripel, L., Snipen, L., Fossdal, C.G., Olsen, J.E. 
(2009) Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased 
transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiol 
Biochem, 47, 105-115. 

Hong, Y. G., Robinson, D. J., Harrison, B. D. (1993) Nucleotide sequence evidence for the 
occurrence of three distinct whitefly transmitted geminiviruses in cassava. Journal of General 
Virology,74, 2437- 2443. 
 
Howeler, R.H. (2002) Cassava Mineral Nutrition and Fertilization. In: Hillocks, R.J., J.M. Thresh 
and A.C. Bellotti (eds.) Cassava: Biology, Production and Utilization. CABI Publishing Oxon, 
UK and New York, USA., 115-130.  

Iglesias, C., Hershey, C., Calle, F., Bolanos, A. (1994) Propagating Cassava (Manihot esculenta) 
by sexual seed. Expl.Agric, 30, 283-290. 

Ihemere, U., Arias-Garzon, D., Lawrence, S., Sayre, R. (2006) Genetic modification of cassava 
for enhanced starch production. Plant Biotechnol J, 4, 453-465. 

Irikura, Y., Cock, J.H., Murria, B.G. (1979) The physiological basis of genotype-temperature 
interactions in cassava. Field Crops Research, 2, 227-239.  

Izawa, T., Oikawa, T., Sugiyama, N., Tanisaka, T., Yano, M., Shimamoto, K. (2002) 
Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering 
of rice. Genes & Development, 16, 2006-2020. 

Jaeger, K.E., Graf, A., Wigge, P.A. (2006) The control of flowering in time and space. J Exp 
Bot, 57, 3415-3418. 

Jaeger, K.E., Wigge, P.A. (2007) FT protein acts as a long-range signal in Arabidopsis. Curr 
Biol, 17, 1050-1054. 

Jennings, D.L. (1976) Cassava, (Manihot esculenta Euphorbiaceae) In: Simmonds N (ed) 
Evolution of Crop Plants. Longman, London, 81-84.  

 97



Jennings, D.L., Iglesias, C. (2002) Breeding for crop improvement. In: Hillocks, R. J., M.J. 
Thresh and A.C. Bellotti (eds.) Cassava: Biology, production and utilisation. CABI International, 
Oxford, 149-166. 

Jeong, D. H., Sung, S. K., An, G. (1999) Molecular cloning and characterization of 
CONSTANS-like cDNA clones of the Fuji apple. J. Plant Biol. 42, 23-31. 

Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R. and Dean, C. (2000) Molecular 
analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. 
Science, 290, 344-347. 

Jos, J.S., Nair, S. G. (1979) Pachytene pairing in relation to pollen fertility in five cultivars of 
Cassava. Cytologia, 44, 813-820. 

Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., 
Chory, J., Harrison, M.J., Weigel, D. (1999) Activation tagging of the floral inducer FT. 
Science, 286, 1962-1965. 

Kaul, S., Koo, H.L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L.J., Feldblyum, T., Nierman, 
W., Benito, M.I., Lin, X.Y., Town, C.D., Venter, J.C., Fraser, C.M., Tabata, S., Nakamura, 
Y., Kaneko, T., Sato, S., Asamizu, E., Kato, T., Kotani, H., Sasamoto, S., Ecker, J.R., 
Theologis, A., Federspiel, N.A., Palm, C.J., Osborne, B.I., Shinn, P., Conway, A.B., 
Vysotskaia, V.S., Dewar, K., Conn, L., Lenz, C.A., Kim, C.J., Hansen, N.F., Liu, S.X., 
Buehler, E., Altafi, H., Sakano, H., Dunn, P., Lam, B., Pham, P.K., Chao, Q., Nguyen, M., 
Yu, G.X., Chen, H.M., Southwick, A., Lee, J.M., Miranda, M., Toriumi, M.J., Davis, R.W., 
Wambutt, R., Murphy, G., Dusterhoft, A., Stiekema, W., Pohl, T., Entian, K.D., Terryn, N., 
Volckaert, G., Salanoubat, M., Choisne, N., Rieger, M., Ansorge, W., Unseld, M., Fartmann, 
B., Valle, G., Artiguenave, F., Weissenbach, J., Quetier, F., Wilson, R.K., de la Bastide, M., 
Sekhon, M., Huang, E., Spiegel, L., Gnoj, L., Pepin, K., Murray, J., Johnson, D., 
Habermann, K., Dedhia, N., Parnell, L., Preston, R., Hillier, L., Chen, E., Marra, M., 
Martienssen, R., McCombie, W.R., Mayer, K., White, O., Bevan, M., Lemcke, K., Creasy, 
T.H., Bielke, C., Haas, B., Haase, D., Maiti, R., Rudd, S., Peterson, J., Schoof, H., Frishman, 
D., Morgenstern, B., Zaccaria, P., Ermolaeva, M., Pertea, M., Quackenbush, J., Volfovsky, 
N., Wu, D.Y., Lowe, T.M., Salzberg, S.L., Mewes, H.W., Rounsley, S., Bush, D., 
Subramaniam, S., Levin, I., Norris, S., Schmidt, R., Acarkan, A., Bancroft, I., Quetier, F., 
Brennicke, A., Eisen, J.A., Bureau, T., Legault, B.A., Le, Q.H., Agrawal, N., Yu, Z., 
Martienssen, R., Copenhaver, G.P., Luo, S., Pikaard, C.S., Preuss, D., Paulsen, I.T., 
Sussman, M., Britt, A.B., Selinger, D.A., Pandey, R., Mount, D.W., Chandler, V.L., 
Jorgensen, R.A., Pikaard, C., Juergens, G., Meyerowitz, E.M., Theologis, A., Dangl, J., 
Jones, J.D.G., Chen, M., Chory, J., Somerville, M.C. (2000) Analysis of the genome sequence 
of the flowering plant Arabidopsis thaliana. Nature, 408, 796-815. 

Keating, B.A., Evenson, J.P., Fukai, S. (1982a) Environmental effects on growth and 
development of Cassava (Manihot esculenta Crantz) I. Crop development. Field Crops Res., 5, 
271-281.  

Keating, B.A., Evenson, J.P., Fukai, S. (1982b) Environmental effects on growth and 
development of cassava (Manihot esculenta Crantz) II. Crop growth rate and biomass yield. Field 
Crop Research, 5, 283-292.  

Keating, B.A., Wilson, G. L., Evenson, J.P. (1985) Effect of Photoperiod on Growth and 
Development of Cassava (Manihot esculenta Crantz). Aust. J. Plant Physiol., 12, 621-630.  

Khanna, R., Kikis, E.A., Quail, P.H. (2003) EARLY FLOWERING 4 functions in phytochrome 
Bregulated seedling de-etiolation. Plant Physiol., 133, 1530-1538. 
 
Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., Araki, T. (1999) A pair of related genes with 
antagonistic roles in mediating flowering signals. Science, 286, 1960-1962. 

Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., Yano, M. (2002) 
Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of 
Hd1 under short-day conditions. Plant Cell Physiol, 43, 1096-1105. 

 98



Kolmos, E. (2007) Genetic analysis of two evening genes in Arabidopsis thaliana circadian clock, 
Ph.D thesis, MPIZ, Cologne, Germany. 

Konan, N.K., Sangwan, R.S., Sangwan-Norreel, B.S. (1994b) Somatic embryogenesis from 
cultured mature cotyledons of cassava (Manihot esculenta Crantz). Plant Cell Tiss. Org. Cult. 37,  
91-102. 
Koncz, C., Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific 
expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. 
Genet., 204, 383-396. 
 
Koornneef, M., Blankestijn-de Vries, H., Hanhart, C., Soppe, W., Peeters, T. (1994) The 
phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not 
effective in the Landsberg erecta wild-type. Plant J, 6, 911–919. 

Kulmburg P., Judewicz, N., Mathieu, M., Lenouvel, F., Sequeval, D., Felenbok, B. (1992) 
Specific binding sites for the activator protein, ALCR, in the alcA promoter of the ethanol regulon 
of Aspergillus nidulans. J Biol Chem., 267, 21146-53. 

Lagercrantz, U., Axelsson, T. (2000) Rapid Evolution of the Family of CONSTANS LIKE 
Genes in Plants Mol. Biol. Evol., 17, 1499–1507.  

Laurie, DA, Griffiths, S., Dunford, R.P., Christodoulou, V., Taylor, S.A., Cockram, J., 
Beales, J., Turner , A. (2004).  Comparative genetic approaches to the study of flowering time in 
temperate cereals. Field Crops Research, 90: 87-99. 

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., 
Valentin, F., Wallace, I.M., Wilm A., Lopez R., Thompson, J.D., Gibson, T.J., Higgins, D.G. 
(2007) ClustalW and ClustalX version 2. Bioinformatics, 23, 2947-2948. 
 

Lee, H., Suh, S.S., Park, E., Cho, E., Ahn, J.H., Kim, S.G., Lee, J.S., Kwon, Y.M., Lee, I. 
(2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in 
Arabidopsis. Genes Dev, 14, 2366-2376. 

Legg, J.P., Thresh, J.M. (2003) Cassava virus diseases in Africa. In: Plant Virology in sub-
Saharan Africa, 517-550. http://www.iita.oorg/info/virology.htm. 

Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., Dean, C. (2002) Multiple roles of 
Arabidopsis VRN1 in vernalization and flowering time control. Science, 297, 243-246. 

Lewis, R.S., Kernodle, S.P. (2009) A method for accelerated trait conversion in plant breeding. 
Theor Appl Genet., 118, 1499-1508. 

Li, H.Q., Sautter, C., Potrykus I., Puonti-Kaerlas, J. (1996) Genetic transformation of Cassava 
(Manihot esculenta Crantz). Nature Biotechnol., 14, 736-740.  

Lin, M. K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K.I., Miura, E., Xoconostle-
Cázares, B., Gendler, K., Jorgensen, R.A., Phinney, B., Lough, T.J., Lucas, W.J. (2007) 
FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. 
Plant Cell, 19, 1488–1506. 

Lifschitz, E., Eviatar, T., Rozman, A., Shalit, A., Goldshmidt, A., Amsellem, Z., Alvarez, 
J.P., Eshed, Y. (2006) The tomato FT ortholog triggers systemic signals that regulate growth and 
flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U.S.A., 103, 6398-
6403. 

Liu, J., Yu, J., McIntosh, L., Kende, H., Zeevaart, J.A. (2001) Isolation of a CONSTANS 
ortholog from Pharbitis nil and its role in flowering. Plant Physiology, 125, 1821–1830.  

Lockington, R., Scazzocchio, C., Sequeval, D., Mathieu, M., Felenbok, B. (1987) Regulation of 
alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergillus nidulans. Mol 
Microbiol., 1, 275-281.  

 99



Mahon, J.D., Lowe, S.B., Hunt, L.A., Thiagarajah, M. (1977) Envionmental effects on 
photosynthesis and transpiration attached leaves of cassava (Manihot esculenta Crantz). 
Photosynthetica, 11, 121 –130. 

Martinez-Zapater, J.M., Coupland, C., Dean, C., Koornneef, M. (1994) The transition to 
flowering in Arabidopsis. In Arabidopsis. Edited by Somerville, C.R. and Meyerowitz, E.M. pp. 
403-434. Cold Spring Harbor Laboratory Press, New York. 
 
Mathews, H., Schopke, C., Carcamo, R., Chavarriaga, P., Fauquet, C., Beachy, R.N. (1993) 
Improvement of Somatic Embryogenesis and Plant-Recovery in Cassava. Plant Cell Reports, 12, 
328-333. 

Mba, R.E.C., Stephenson, P., Edwards, K., Melzer, S., Nkumbira, J., Gullberg, U., Apel, K., 
Gale, M., Tohme, J., Fregene, M. (2001) Simple sequence repeat (SSR) markers survey of the 
cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of 
cassava. Theoretical and Applied Genetics, 102, 21-31. 

McMahon, J.M., White, W.L.B., Sayre, R.T. (1995) Cyanogenesis in cassava (Manihot 
esculenta Crantz). Journal of Experimental Botany, 46, 731-714. 

McWatters, H. G., Kolmos, E., Hall, A., Doyle, M. R., Amasino, R. A., Gyula, P., Nagy, F., 
Millar, A. J., and Davis, S. J. (2007) ELF4 is required for oscillatory properties of the circadian 
clock. Plant Phys., 144, 391-401. 

Michaels, S.D., Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS 
domain protein that acts as a repressor of flowering. Plant Cell, 11, 949-956. 

Michaels S. D., Amasino R. M. (2000) Memories of winter: vernalization and the competence to 
flower. Plant, cell and environment, 23, 1145-1153. 

Michaels S. D., Amasino R. M. (2001) Loss of FLOWERING LOCUS C activity eliminates the 
late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness 
to vernalization. Plant Cell, 13, 935-941.  

Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., 
Fowler, S., Kamada, H., Putterill, J., Coupland, G. (2005) Distinct roles of GIGANTEA in 
promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell, 17, 2255-2270.  

Mouradov, A., Cremer, F., Coupland, G. (2002) Control of flowering time: interacting 
pathways as a basis for diversity. Plant Cell, 14 Suppl, S111-130. 

Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco 
tissue cultures. Physiol. Plant. 15: 473-497. 

Ng, N.Q., Ng, S.Y.C. (2002) Genetic Resources Conservation, In: Hillocks, R. J., M.J. Thresh and 
A.C. Bellotti (eds.) Cassava: Biology, production and utilisation. CABI International, Oxford, 167.  

Nweke, F.I., Spenser, D.S.C., Lynam, J.K., (2002) The cassava transformation: Africa’s best 
kept secret. Michigan State University Press, Lansing, Michigan, USA, 273. 
 
Oliverio, K.A., Crepy, M., Martin-Tryon, E.L., Milich, R., Harmer, S.L., Putterill, J., 
Yanovsky, M.J., Casal., J.J. (2007) GIGANTEA Regulates Phytochrome A-Mediated 
Photomorphogenesis Independently of Its Role in the Circadian Clock. Plant Physiology, 144, 
495-502.  

Olsen, K.M., Schaal, B.A. (1999) Evidence on the origin of cassava: phylogeography of Manihot 
esculenta. Proc Natl Acad Sci U.S.A, 96, 5586-5591.  

Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K., Coupland, G. (2000) Mutagenesis of plants 
overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time 
genes. Plant Cell, 12, 885-900.  

Pardales, J.R., Esquibel, C.B. (1996) Effect of Drought during the Establishment Period on the 
Root System Development of Cassava. Jpn. J. Crop Sci., 65, 93-97.  

 100



Peña, L., Martín-Trillo, M., Juárez, J., Pina, J.A., Navarro, L., Martínez-Zapater J.M. 
(2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their 
generation time. Nature Biotechnology, 19, 263-267. 

Poethig, R.S. (2003) Phase change and the regulation of developmental timing in plants. Science, 
301, 334-336. 

Raemakers, C.J.J.M., Amati, M., Staritsky, G., Jacobsen, E., Visser, R.G.F. (1993) Cyclic 
somatic embryogenesis in cassava. Ann. Bot., 71, 289-294.  

Raemakers, C.J.J.M., Bessembinder, J., Staritsky, G., Jacobsen, E., Visser, R.G.F. (1993) 
Inducion, germination and shoot development of somatic embryos in cassava. Plant Cell Tiss. 
Org. Cult., 33, 151-156.  

Raemakers, C.J.J.M., Sofiari, E., Taylor, N., Henshaw, G., Jacobsen, E., Visser, R.G.F. 
(1996) Production of transgenic cassava (Manihot esculenta Crantz) plants by particle 
bombardment using luciferase activity as selection marker. Mol. Breeding, 2, 339-349. 

Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., Riechmann, J.L. (2001) Regulation of flowering 
in Arabidopsis by an FLC homologue. Plant Physiol., 126, 122-132.  

Robert, L.S., Robson, F., Sharpe, A., Lydiate, D., Coupland, G. (1998) Conserved structure 
and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol. 
Biol., 37:763–772. 

Roca, W.M. (1984) Cassava. In: Sharp W, Evans D, Ammirato P and Yamada Y (eds.), 
Handbook of plant cell culture. MacMillan, New York, 269-301.  

Rogers, D.J. and Appan, S.G. (1973). Manihot, Manihotoides. Flora Neotrópica. Monograph 
No. 13. Hafner Press, New York, NY, USA, 272. 

Roslan, H.A., Salter, M.G., Wood, C.D., White, M.R., Croft, K.P., Robson, F., Coupland, G., 
Doonan, J., Laufs, P., Tomsett, A.B., Caddick, M.X. (2001) Characterization of the ethanol-
inducible alc gene-expression system in Arabidopsis thaliana. Plant J, 28, 225-235. 

Roux, F., Touzet, P., Cuguen, J., Le Corre, V. (2006) How to be early flowering: an 
evolutionary perspective. Trends Plant Sci, 11, 375-381. 

Rozen, S., Skaletsky, H. (2000) Primer3 on the www for general users and for biologist 
programmers. Methods Mol. Biol., 132, 365-386.  

Saitou, N., Nei, M. (1987) The Neighbor-joining method-a new method for reconstructing 
phylogenetic trees. Mol. Biol. Evol., 4, 406-425. 

Salathia, N., Davis, S.J. Lynn, J.R., Michaels, S.D., Amasino, R.M., Millar, A.J. (2006) 
FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the 
autonomous and vernalization pathways. BMC Plant Biol., 6, 10. 

Sambrook, J., Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual (3rd ed.). Cold 
Spring Harbor Laboratory Press. 

Salter, M.G., Schuch, W., Sonnewald, U., Tomsett, A.B. (1998) An ethanol inducible gene 
switch for plants used to manipulate carbon metabolism. Nat Biotechnol, 16, 177-180. 

Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., 
Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive development of 
Arabidopsis. Science, 288, 1613-1616. 

Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning. A laboratory manual. 
Coldspring Harbor Laboratory Press, 1.53-1.105. 

Sarria, R., Torres, E., Angel, F., Chavarriaga P, Roca W.M. (2000) Transgenic plants of 
cassava (Manihot esculenta) with resistance to Basta obtained by Agrobacterium-mediated 
transformation. Plant Cell Rep., 19, 339-344. 

 101



Schöpke, C., Taylor, N., Carcamo, R., Konan, N.K., Marmey, P., Henshaw, G.G, Beachy, 
R.N, Fauquet, C. (1996) Regeneration of transgenic cassava plants (Manihot esculenta Crantz) 
from microbombarded embryogenic suspension cultures. Nature Biotechnol., 14, 731-735.  

Searle, I., Coupland, G. (2004) Induction of flowering by seasonal changes in photoperiod. 
Embo J, 23, 1217-1222.  

Serrano, G., Herrera-Palau, R., Romero, J.M., Serrano, A., Coupland, G.,Valverde, F. 
(2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr 
Biol, 19, 359-368. 

Sheikholeslam, S.N., Weeks, D.P. (1987) Acetosyringone promotes high-efficiency 
transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol, 8, 
291-298. 
 
Silvestre, P. (1989) Cassava. The Tropical Agriculturist, CTA, 82. 

Simpson, G.G., Dean, C. (2002) Arabidopsis, the Rosetta stone of flowering time? Science, 296, 
285-289. 

Siritunga, D., Arias-Garzon, D., White, W., Sayre, R.T. (2004) Over-expression of 
hydroxynitrile lyase in transgenic cassava roots accelerates cyanogenesis and food detoxification. 
Plant Biotechnology Journal., 2, 37-43.  

Siritunga, D., Sayre, R.T. (2003) Generation of cyanogens-free transgenic cassava. Planta, 217, 
367-373. 

Song, J., Yamamoto, K., Shomura, A., Itadani, H., Zhong, H.S., Yano, M., Sasaki, T. (1998) 
Isolation and mapping of a family of putative zinc-finger protein cDNAs from rice. DNA Res, 5, 
95-101. 

Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel 
electrophoresis. J Mol Biol., 98, 503-517. 

Stamp, J.A. (1987) Somatic embryogenesis in cassava: the anatomy and morphology of the 
regeneration process. Annn. Bot., 59, 451-459.  

Stamp, J.A., Henshaw, G.G. (1982) Somatic embryogenesis in cassava. Zeitschrift fur 
Pflanzenphissiology, 105, 183-187. 

Stamp, J.A., Henshaw, G.G. (1986) Adventitious regeneration in cassava In: Withers, L.A. and 
Alders, P.G. (eds) Plant tissue culture and its agricultural applications. Butterworthss, London, 
149-157.  

Stamp, J.A., Henshaw, G.G. (1987a) Secondary somatic embryogenesis and plant regeneration 
in cassava. Plant Cell Tissue and Organ Culture, 10, 227-233.  

Stamp, J.A., Henshaw, G.G. (1987b) Somatic embryogenesis from clonal leaf tissues of cassava. 
Annn. Bot., 59, 445-450.  

Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G. (2001) 
CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. 
Nature, 410, 1116-1120.  

Swanson, M.M.,  Harrison, B. D. (1994) Properties, relationships and distribution of cassava 
mosaic geminiviruses. Trop Sci, 34, 15-25. 
 
Sweetman J.P., Chu, C., Qu, N., Greenland, A.J., Sonnewald, U., Jepson, I. (2002) Ethanol 
vapor is an efficient inducer of the alc gene expression system in model and crop plant species. 
Plant Physiol, 129, 943–948. 

Szabados, L., Hoyos, R., Roca, W. (1987) In vitro somatic embryogenesis and plant regeneration 
of cassava. Plant Cell Rep, 6, 248-251. 

Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., Shimamoto, K. (2007) Hd3a protein is a mobile 
flowering signal in rice. Science, 316, 1033-1036.  

 102



Taylor, N.J., Henshaw, G.G. (1993). The induction of somatic embryogenesis in fifteen African 
and one South American cassava cultivars. In: WM Roca and AM Thro (eds). Proceedings First 
International Scientific Meeting of the Cassava Biotechnology Network Cartegena Colombia pp 
134-140. 
 
Taylor, N.J., Edwards, M., Kiernan, R.J., Davey, C.D., Blakesley, D., Henshaw, G.G. (1996) 
Development of friable embryogenic callus and embryogenic suspension culture systems in 
cassava (Manihot esculenta Crantz). Nat Biotechnol, 14, 726-730. 

Taylor, N. T., Masona, M. V., Carcamo, R., Ho, T., Schöpke, C., Fauquet, C. M. (2001). 
Production of embryogenic tissue and regeneration of transgenic plants in cassava (Manihot 
esculenta Crantz). Euphytica, 120, 25-34. 
 
Thomas, J. E., Massalski, P. R., Harrison, B. D. (1986) Production of monoclonal antibodies to 
African cassava mosaic virus and differences in their reactivities with other whitefly-transmitted 
geminiviruses. Journal of General virology, 67, 2739 –2748.  

Turck, F., Fornara, F., Coupland, G. (2008) Regulation and identity of florigen: FLOWERING 
LOCUS T moves center stage. Annual Review of Plant Biology, 59, 573-594. 

Turner, A., Beales, J., Faure, S., Dunford, R.P., Laurie, D.A. (2005) The pseudo-response 
regulator Ppd-H1 provides adaptation to photoperiod in barley. Science, 310, 1031-1034. 

Ueno, O., Agarie, S. (1997) The intercellular distribution of glycine decarboxylasre in leaves of 
cassava in relation to the photosynthetic mode and leaf anatomy. Japanese Journal of crop 
Science,  66, 268-278.  

Venter, J.C. (2001) The sequence of the human genome, Science, 292, 1838-1838. 

Wen-Jun, S., Forde, B.G. (1989) Efficient transformation of Agrobacterium spp. by high voltage 
electroporation. Nucleic Acids Res, 17, 8385. 

Weigel, D., Nilsson, O. (1995) A Developmental Switch Sufficient for Flower Initiation in 
Diverse Plants. Nature, 377, 495-500. 

Wheatley, C.C., Chuzel, G. (1993) Cassava: The nature of the tuber and use as a raw material. 
In: Macrae, R., R.K. Robinson and M.J. Sadler (eds.) Encyclopaedia of Food Science, Food 
Technology, and Nutrtion. Academic Press, San Diego, California, 734-743. 

White, W., Arias-Garzon, D., McMahon, J.M., Sayre, R. (1998) Cyanogenesis in cassava: the 
role of hydroxynitrile lyase in root cyanide production. Plant Physiology, 116, 1219-1225. 

Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., Weigel, D. 
(2005) Integration of spatial and temporal information during floral induction in Arabidopsis. 
Science, 309, 1056-1059. 

Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., 
Yamamoto, K., Umehara, Y., Nagamura, Y., Sasaki, T. (2000) Hd1, a major photoperiod 
sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene 
CONSTANS. Plant Cell, 12, 2473-2484. 

Yanovsky, M.J., Kay, S.A. (2003) Living by the calendar: how plants know when to flower. Nat 
Rev Mol Cell Biol., 4,  265-275. 
 
Yoo, S.K., Chung, K.S., Kim, J., Lee, J.H., Hong, S.M., Yoo, S.J., Yoo, S.Y., Lee, J.S., Ahn, 
J.H. (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 
through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiology, 139, 
770–778. 

Young, M.W., Kay, S.A. (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev 
Genet, 2, 702-715. 

Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., 
Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., 

 103



 104

Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, 
Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, 
X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., 
Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., 
He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, 
W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., 
Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, 
W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L. and Yang, H. (2002) A draft sequence 
of the rice genome (Oryza sativa L. ssp. indica). Science, 296, 79-92. 

Yu, H., Xu, Y., Tan, E.L., Prakash, P. (2002) AGAMOUS-LIKE 24, a dosage-dependent 
mediator of the flowering signals, Proc Natl Acad Sci U.S.A, 99, 16336–16341. 

Zagotta, M.T., Shannon, S., Jacobs, C., Meekswagner, D.R. (1992) Early-flowering mutants of 
Arabidopsis thaliana. Austr. J. Plant Physiol., 19, 411-418. 

Zhang, P., Puonti-Kaerlas, J. (2000) PIG-mediated cassava transformation using positive and 
negative selection. Plant Cell Rep., 19, 1041-1048.  

Zhang, P., Potrykus, I., Puonti-Kaerlas, J. (2000a) Efficient production of transgenic cassava 
using negative and positive selection. Transgenic Res., 9, 405-415.  

Zhang P, Legris G, Coulin, P., Puonti-Kaerlas, J. (2000b) Production of stably transformed 
cassava plants via particle bombardment. Plant Cell Rep., 19, 939-945. 

Zhang, P., Bohl-Zenger, S., Puonti-Kaerlas, J, Potrykus, I., Gruissem, W. (2003) Two cassava 
promoters related to vascular expression and storage root formation. Planta, 218, 192–203.  

Zobell, O., Coupland, G., Reiss, B. (2005) The family of CONSTANS-like genes in 
Physcomitrella patens. Plant Biol., 7, 266-275. 

Zuo, J., Chua, N.H. (2000) Chemical-inducible systems for regulated gene expression of plant 
genes. Current opinion in biotechnology, 11, 146-151.  

 

 

 

 

 

 



 
 
 
 

 
 
 
 
 
 
 
 
 
 

APPENDICES 
 
 
 
 
 
 

APPENDIX I GI SEQUENCES................................................................................................ B 

APPENDIX II CO SEQUENCES............................................................................................. F 

APPENDIX III ELF4 SEQUENCE.......................................................................................... J 

ACKNOWLEDGEMENTS  ...................................................................................................... K 

ERKLÄRUNG........................................................................................................................... M 

TAGUNGEN............................................................................................................................... N 

LEBENSLAUF........................................................................................................................... O 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 A



 
Appendix I GI sequences 
 
Consensus sequences from generated from MeGI contig and from other species as 
described in Chapters 2 and 3 
 
MeGI sequence 
NTCTATNTTNNNNCTTGCCAATCGATGACATCTACCTTGAATAACTGATAAGAGGGTCCGC
GAATATCATTTATGTCTGCTTGGTTAGCTGTAGGTTTTATCGAACAGGTATGCAAAATACT
GCGAAGAACTGATGTGCTAAGAGCACGGACATGGGCACTTGGGTGCGAAAGGCATCGGA
TTGTAGCTGGTAGACGACACTTCAAAAGATTCGAGAGGCCATCTGCAACTGCAAATCCAG
ATTCTCCCCACTCTAGCACAGGCTGAACTGCTCTAGCTGTTGCTTCCAGTAACTCCAGCTG
TGGTAAAGTGCAAGCTTCTCCATCCACAAGCATCCCATCTGTGGCCCGTAAAAGTAGGTCA
GACGCACTTGCCAAAATTACCAATGATTCTGGTGTATCATGATTTCTCATCAGTTCTACCA
TTAATCTAACTATTCTCTGGTTGATTCTCCACAGCTTCTGACCCTGGTCGTCATCTTTGGCA
ATCCAAGGTTGCAATTCCCTCTCCGCCTGAAGAACAATTGCTGTAGCTGCTTTTGTGGGCG
ATGCTGATACAACATTGCAAAGTGCATCCACAACCTGTCTCCATCCTTGTTGTGCAGAAGT
GCTTACTGCACTAGGTTGAGTTTCTGGTGCTGCAATCATTTTGTGCCATAGAAGTGAGACA
ACAGAGAAACATAACTCCTGTTTCTCCACAAGCAAGGTTCTTAAAAGAACTACTGCACCC
AAATTGAATCCAATGTGCCTGTCCATTGTTAAGAAATTGGCCAAATCTGAAGCATCTAATG
GGAAAGCTGCAATATCCTTGCCCAAGGTACTTCCTGAACCTTCTTTCGAGCATGATGATCT
CTCAGTTATAATAGTAGTGTCTGAATGAGTGGATTCTACACACTGTGAAGCAGATGACTGA
CCTGAATCAAAGCAGCGAATGCTTAATTTTTTATTTTGCCTTTTGCCATCAAAACACACAA
GGGAATCTTTCCAAACAGGTACTTGCAAGTGTGCCTCTAAAGGCTCAGCTTTTGTAACTAT
GGATGCAACAGCTTTGCTGTGAATATCAATGAGGTTAAATAATGATGAAGCCCTGGTGTA
AATTTCATTATCCCACTTGCACCGCATCAAAACAGACAGAGCATGCATACAAGCCTTTGAC
CGTCGGAATAGTTCAGAAACATGAGCAGCAACCATAGCAGCAGCCACTATCTCATTTGAA
CTGTAACTCCAAGAGGTACCAACAGAAGACGGTTTCAAAGAAAAAAGTGCCTCCAAGATT
GCTAAGATTCTATGAGTATGATGAACAGCAGAATCAAAACTACTTTGGAACTCCCGACTA
GATCCATTGCATCCATTTAATTTCACAGACTTGGCCAAAGTACCTAAATCATTAGAACTTG
AATGATTACTGCCACTTGAAACAAAAGGGAACAATTGAAGCTCACAGGCAAGAGCACATA
CAGCAGCAAGAACATAAGAATCAAATGCTGCAACAGGACCTTGTTTTTTTTATCTNNNNN
NNNNNCNCGGNNTCTTCCNCCGCCCACCANGGCCCTTTCTTCACCGCNNCTTGTCGCANCA
CGGTGCTCTTCCCANTTNNNNNTTTNNNNNNNAAAAANNNNNNNANN 
 
>AtGI 
MASSSSSERWIDGLQFSSLLWPPPRDPQQHKDQVVAYVEYFGQFTSEQFPDDIAELVRHQYPS
TEKRLLDDVLAMFVLHHPEHGHAVILPIISCLIDGSLVYSKEAHPFASFISLVCPSSENDYSEQW
ALACGEILRILTHYNRPIYKTEQQNGDTERNCLRKATTSGSPTSEPKAGSPTQHERKPLRPLSPW
ISDILLAAPLGIRSDYFRWCSGVMGKYAAGELKPPTIASRGSGKHPQLMPSTPRWAVANGAGV
ILSVCDDEVARYETATLTAVAVPALLLPPPTTSLDEHLVAGLPALEPYARLFHRYYAIATPSAT
QRLLLGLLEAPPSWAPDALDAAVQLVELLRAAEDYASGVRLPRNWMHLHFLRAIGIAMSMR
AGVAADAAAALLFRILSQPALLFPPLSQVEGVEIQHAPIGGYSSNYRKQIEVPAAEATIEATAQ
GIASMLCAHGPEVEWRICTIWEAAYGLIPLNSSAVDLPEIIVATPLQPPILSWNLYIPLLKVLEYL
PRGSPSEACLMKIFVATVETILSRTFPPESSRELTRKARSSFTTRSATKNLAMSELRAMVHALFL
ESCAGVELASRLLFVVLTVCVSHEAQSSGSKRPRSEYASTTENIEANQPVSNNQTANRKSRNV
KGQGPVAAFDSYVLAAVCALACEVQLYPMISGGGNFSNSAVAGTITKPVKINGSSKEYGAGID
SAISHTRRILAILEALFSLKPSSVGTPWSYSSSEIVAAAMVAAHISELFRRSKALTHALSGLMRC
KWDKEIHKRASSLYNLIDVHSKVVASIVDKAEPLEAYLKNTPVQKDSVTCLNWKQENTCAST
TCFDTAVTSASRTEMNPRGNHKYARHSDEGSGRPSEKGIKDFLLDASDLANFLTADRLAGFYC
GTQKLLRSVLAEKPELSFSVVSLLWHKLIAAPEIQPTAESTSAQQGWRQVVDALCNVVSATPA
KAAAAVVLQAERELQPWIAKDDEEGQKMWKINQRIVKVLVELMRNHDRPESLVILASASDLL
LRATDGMLVDGEACTLPQLELLEATARAIQPVLAWGPSGLAVVDGLSNLLKCRLPATIRCLSH
PSAHVRALSTSVLRDIMNQSSIPIKVTPKLPTTEKNGMNSPSYRFFNAASIDWKADIQNCLNWE
AHSLLSTTMPTQFLDTAARELGCTISLS 
 
 
 
 

 B



 
>AlGI 
MASSSSSSERWIDGLQFSSLLWPPPRDPQQHKDQVVAYVDYFGQFTSEQFPDDIAELVRHQYP
STEKRLLDDVLAMFVLHHPEHGHAVILPIISCLIDGSLVYSKEAHPFASFISLVCPSSENDYSEQ
WALACGEILRILTHYNRPIYKTEQQNGETERNCFSKATTSGSPTSEPKAVSPTQHERKPLRPLSP
WISDILLAAPLGIRSDYFRWCSGVMGKYAAGELKPPTIASRGSGKHPQLMPSTPRWAVANGA
GVILSVCDDEVARYETATLTAVAVPALLLPPPTTSLDEHLVAGLPALEPYARLFHRYYAIATPS
ATQRLLLGLLEAPPSWAPDALDAAVQLVELLRAAEDYASGVRLPRNWMHLHFLRAIGIAMSM
RAGVAADAAAALLFRILSQPALLFPPLSQVEGVEIQHAPIGGYSSNYRKQIEVPAAEATIEATAQ
GIASMLCAHGPEVEWRICTIWEAAYGLIPLNSSAVDLPEIIVATPLQPPILSWNLYIPLLKVLEYF
PRGSPSEACLMKIFVATVETILSRTFPPESSREHTRKARSSFTTRSATKNLVMAELRAMVHALFL
ESCAGVELASRLLFVVLTVCVSHEAQSSGSKRPRSEYASTTENVEANQPVSDNQTANRKSRNV
KGQGPVAAFDSYVLAAVCALACEVQLYPMISGGGNFSNSAVARTITKPVKINGSSNEYGAGV
DSAINHTRRILAILEALFSLKPSSVGTPWSYSSSEIVAAAMVAAHISELFRRSKALTHALSGLMR
CKWDKEIHKRASSLYNLIDVHSKVVASIVDKAEPLEAYLKNTPVQKDSLTCLNWKQQNTCAS
TTRFDTAVTSASRTEMNPRGNHKYARHSGEGSGRPSEKGIKDFLLDASDLANFLTADRLAGFY
CGTQKLLRSVLAEKPELSFSVVSLLWHKLIDAPEIQPTAESTSAQQGWRQVVDALCNVVSATP
AKAAAAVVLQAERELQPWIAKDDEEGQKMWKINQRIVKVLVELMRNHDRPESLVILASASDL
LLRATDGMLVDGEACTLPQLELLEATARAIQPVLAWGPSGLAVVDGLSNLLKCRLPATVRCL
SHPSAHVRALSISVLRDIMNQSSXPIKVTPKLPTTEKNGMNSPSYRFFNAATIDWKADIQKCLN
WEAHSLLSTTMPTQFLDTAARELGCTISLS 
 
>TaGI1 
MSVSNGKWIDGLQFSSLFWPPPHDVQQKQAQILAYVEYFGQFTSDSEQFPEDVAQLIQSCYPS
KEKRLVDEVLATFVLHHPEHGHAVVHPILSRIIDGTLSYDSHGSPFNSFISLFTQSSEKEYSEQW
ALACGEILRVLTHYNRPIFKVADCNHQIRPGHSKLFCTEKAITLPGNEPEGKPLRPLSPWITDIVL
TAPLGIRSDYFRWCGGVMGKYAAGGELKPPTTAYSRGAGKHPQLMPSTPRWAVANGAGVIL
SVCDEEVARYETANLTAAAVPALLLPPPTTPLDEHLVAGLPPLEPYARLFHRYYAIATPSATQR
LLFGLLEAPPSWAPDALDAAVQLVELLRAAEDYATGMRLPKNWLHLHFLRAIGTAMSMRAGI
AADTAAALLFRILSQPMLLFPPLRHAEGVEVQHEPLGGYVSSYKRQLEVPASETTIDATAQGIA
SLLCAHGPDVEWRICTIWEAAYGLLPLNSSAVDLPEIVVAAPLQPPTLSWSLYLPLLKVFEYLP
RGSPSEACLMRIFVATVEAILRRTFPSETSESSKRPRSQSKNLAVAELRTMIHSLFVESCASMNL
ASRLLFVVLTVCVSHQALPGGSKRPTGSENHSSEEATEDPRLTNGRNRVKKKQGPVGTFDSYV
LAAVCALSCELQLFPILCKSATNSNVKDSIKILKPGKNNGISNELQNSISSAILHTRRILGILEALF
SLKPSSVGTSWNYSSNEIVAAAMVAAHASELFRRSKACLNALSSLKRCKWDAEISTRASSLYH
LIDLHGKTVSSIVNKAEPLEAHLTFTSVKRDDEQHIEENGTSSSGSGNLEKKNGSASHMKNGLS
RPLLKCSEEARRNGNVASTSGKVPATLQAEASDLANFLTMDRNGGYRGSQTLLRSVISEKQEL
SFSVVSLLWHKLIASPETQMSAESTSAHQGWRKVVDALCDVVSASPAKASTAIVLQAEKDLQP
WIARDDEEGQKMWRVNQRIVKLIAELMRNHDSPEALIILASASDLLLRATDGMLVDGEACTLP
QLELLEVTARAIHLIVEWGDPGVAVADGLSNLLKCRLSPTIRCLSHASAHVRALSMSVLRDILN
SGPLGSTKIIQGEQRNGIQSPTYQCAAANTVNWQADVERCIDWEARSRRATGMTLAFLTAAA
NELGCPLPC 
 
>ZmGI 
MSESNVKWIDGLQFTSLYWPPPLDAEQKQAQILAYVEYFGQFTADTDQFPEDIAQLIQSSYPSK
ENRLVGEVLATFVLHHPEHGHAVAHPILSRIIDGTLCYDRHGPPFSSFISLFSHNSEQEYSEQWA
LACGEILRVLTHYNRPIFKVERQHTEAECSSTSDQATSSDSTDKRSNNSPGNESDRKPLRPLTP
WITDILLAAPLGIRSDYFRWCGGVMGKYAAGGELKPPTTACSRGSGKHPQPMPSTPRWAVAN
GAGVILSVCDEEVARYETANLTAAAVPALLLPPPTTPLDEHLVAGLPPLEPYARLFHRYYAIAT
PSATQRLLFGLLEAPPSWAPDTLDAAVQLVELLRAAEDYASGMRLPKNWMHLHFLRAIGTAM
SMRAGIAADTAAALLFRILSQPTLLFPPLRHAEGVEVHHEPLGGYVSSYKKQLEVPASEATIDA
TAQGIASLLCAHGPDVEWRICTIWEAAYGLLPLSSSAVDLPEIVVAAPLQPPTLSWSLYLPLLK
VFEYLPRXSPSEACLMRIFVATVEAILRRTFPSETSEQPRKPRSQSKNLAVAELHTMIHSLFVES
CASMDLASRLLFVVLTVCVSHQALPGGSKRPTGSDNHSHEEATEHSRLTNGRSRCKKRQGPV
ATFDSYVLAAVCALSCELQLFPFITKNGSHSNLKDSMKIIISGKNNGMNNELHNSISSAILHTRRI
LGILEAVFSLKPSSVGTSWSYSSNEIVAAAMVAAHVSELFRRSRPCLNALSALMRCKWDAEIST
RASSLYHLIDLHGKTVSSIVNKAEPLEAHLTLTPVKRDNQHHREESNTSSLDSVKLENKNGSTS
HKKNGFSRPLLKCAEEVLLNGDVASTSGKSIASLQVEASDLANFLTMDRNGGYRGSQTLLRSV
LSEKQELCFSVASLLWQKLIASPEMQMSAESTSAHQGWRKVVDALCDVVSASPTKASAAIVL
QAEKDLQPWIARDDEQGQKMWRVNQRIVKLIAELMRNHDSPEALVILASASDLLLRATDGML

 C



VDGEACTLPQLELLEVTARAVHLIIEWGDSGLSVADGLSNLLKCRLSTTIRCLSHPSAHVRALS
MSVLRDILSNGSVNPNKTIQGEQQRNGIQSPSYRCLAAGIINWQADVERCIEWEAHSRRATGLT
LAFLSAAAKELGCPLPS 
 
>LpGI 
MSVSNGKWIDGLQFSSLFWPPPHDAQQKQAQTLAYVEYFGQFTSDSEQFPEDVAQLIQSYYPS
KEKRLVDEVLATFVLHHPEHGHAVVHPILSRIIDGSLSYDRHGSPFNSFISLFTQTAEKEYSEQW
ALACGEILRVLTHYNRPIFKVAECNDTSDQATTSYSLHDKANSSPENEPERKPLRPLSPWITDIL
LNAPLGIRSDYFRWCGGVMGKYAAGGELKPPTTAYSRGAGKHPQLMPSTPRWAVANGAGVI
LXVCDEEVARYETANLTAAAVPALLLPPPTTPLDEHLVAGLPPLEPYARLFHRYYAIATPSATQ
RLLFGLLEAPPSWAPDALDAAVQLVELLRAAEDYATGMRLPKNWLHLHFLRAIGTAMSMRA
GMAADTAAALLFRILSQPTLLFPPLRHAEGVVQHEPLGGYVSSYKRQLEIPASETTIDATAQGI
ASLLCAHGPDVEWRICTIWEAAYGLLPLNSSAVDLPEIVVAAPLQPPTLSWSLYLPLLKVFEYL
PRGSPSEACLMRIFVATVEAILRRTFPSETEPSKKPRSPSKSLAVAELRTMIHSLFVESCASMNL
ASRLXFVVLTVSXSXQALPGGSKRPTGSENHSSEESTEDSKLTNGRNRCKKKQGPVGTFDSYV
LAAVCALSCELQLFPILCKNVTKTNIKDSIKITMPGKTNGISNELHNSVNSAILHTRRILGILEAL
FSLKPSSVGTSWSYSSNEIVAAAMVAAHVSELFRRSRPCLNALSALKRCKWDAEISTRASSLY
HLIDLHGKTVSSIVNKAEPLEAHLNLTAVKKDDQHHIEESNTSSSDYGNLEKKSKKNGFSRPL
MKCAEQARRNGNVASTSGKATATLQAEASDLANFLTMDRNGGYGGSQTLLRTVMSEKQELC
FSVVSLLWHKLIASPETQMSAESTSAHQGWRKVADALCDVVSASPAKASTAIVLQAEKDLQP
WIARDDEQGQKMWRVNQRIVKLIAELMRNHDSPEALIILASASDLLLRATDGMLVDGEACTL
PQLELLEVTARAIHLIVEWGDPGVAVADGLSNLLKCRLSPTIRCLSHPSAHVRALSMSVLRDIL
NSGPISSTKIIQGEQRNGIQSPSYRCAAASMTNWQADVERCIEWEAHNRQATGMTLAFLTAAA
NELGCPLPC 
 
>OsGI 
RKPLRPLSPWITDILLAAPLGIRSDYFRWCGGVMGKYAAGGELKPPTTAYSRGSGKHPQLMPS
TPRWAVANGAGVILSVCDEEVARYETANLTAAAVPALLLPPPTTPLDEHLVAGLPPLEPYARL
FHRYYAIATPSATQRLLFGLLEAPPSWAPDALDAAVQLVELLRAAEDYDSGMRLPKNWMHL
HFLRAIGTAMSMRAGIAADTSAALLFRILSQPTLLFPPLRHAEGVELHHEPLGGYVSSYKRQLE
VPASEATIDATAQGIASMLCAHGPDVEWRICTIWEAAYGLLPLSSSAVDLPEIVVAAPLQPPTL
SWSLYLPLLKVFEYLPRGSPSEACLMRIFVATVEAILRRTFPSETSEQSRKPRSQSKNLAVAELR
TMIHSLFVESCASMDLASRLLFVVLTVCVSHQALPGGSKRPTGSDNHSSEEVTNDSRLTNGRN
RCKKRQGPVATFDSYVLAAVCALSCELQLFPFISKNGNHSNLKDSIKIVIPGKTTGISNELHNSIS
SAILHTRRILGILEALFSLKPSSVGTSWSYSSNEIVAAAMVAAHVSELFRRSRPCLNALSALKQC
KWDAEISTRASSLYHLIDLHGKTVTSIVNKAEPLEAHLTLTPVKKDEPPIEEKNINSSDGGALEK
KDASRSHRKNGFARPLLKCAEDVILNGDVASTSGKAIASLQVEASDLANFLTMDRNGGYRGS
QTLLRSVLSEKQELCFSVVSLLWQKLIASPEMQMSAESTSAHQGWRKVVDALCDIVSASPTKA
SAAIVLQAEKDLQPWIARDDEQGQKMWRVNQRIVKLIAELMRNHDSPEALVILASASDLLLR
ATDGMLVDGEACTLPQLELLEVTARAVHLIVEWGDSGVSVADGLSNLLKCRLSTTIRCLSHPS
AHVRALSMSVLRDILNSGQINSSKLIQGEHRNGIQSPTYQCLAASIINWQADVERCIEWEAHSR
RATGLTLAFLTAAKELGCPLTC 
 
>HvGILprotein  
MSASNGKWIDGLQFSSLFWPPPHDAQQKQAQILAYVEYFGQFTSDSEQFPEDVAQLIQTCYPS
KEKRLVDEVLATFVLHHPEHGHAVVHPILSRIIDGTLSYDSHGSPFNSFISLFTQSSEKEYSEQW
ALACGEILRVLTHYNRPIFKVADCNNTSDQATTSCSAQEKANYSPGNEPERKPLRPLSPWITDIL
LTAPLGIRSDYFRWCGGVMGKYAAGGELKPPTTAYSRGAGKHPQLMPSTPRWAVANGAGVI
LSVCDEEVARYETANLTAAAVPALLLPPPTTPLDEHLVAGLPPLEPYARLFHRYYAIATPSATQ
RLLFGLLEAPPSWAPDALDAAVQLVELLRAAEDYATGMRLPKNWLHLHFLRAIGTAMSMRA
GIAADTAAALLFRILSQPTLLFPPLRHAEGVEVQHEPLGGYVSSYKRQLEVPASETTIDATAQGI
ASLLCAHGPDVEWRICTIWEAAYGLLPLNSSAVDLPEIVVAAPLQPPTLSWSLYLPLLKVFEYL
PRGSPSEACLMRIFVATVEAILRRTFPSETSESSKRPRSQSKNLAVAELRTMIHSLFVESCASMN
LASRLLFVVLTVCVSHQALPGGSKRPTGSENHSSEEATEDPRLTNGRNKVKKKQGPVGTFDSY
VLAAVCALSCELQLFPILCKSATNSKVKDSIKILKPGKNNGISNELQNSISSAILHTRRILGILEAL
FSLKPSSVGTSWNYSSNEIVAAAMVAAHVSELFRRSRCLNALSSLKRCKWDAEISTRASSLYH
LIDLHGKTVSSIVNKAEPLEAHLTFTSVKRDGQQHIEENSTSSSGNGNLEKKNASASHMKNGFS
RPLLKCSEEARRNGNVASTSGKVPATLQAEASDLANFLTMDRNGGYRGSQTLLSSVISEKQEL
CFSVVSLLWHKLIASPETQMSAESTSAHQGWRKVVDALCDVVSASPAKASTAIVLQAEKDLQ
PWIARDDEEGQKMWRVNQRIVKLIAELMRNHDSPEALIILASASDLLLRATDGMLVDGEACTL
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PQLELLEVTARAIHLIVEWGDPGVAVADGLSNLLKCRLSPTIRCLSHASAHVRALSMSVLRDIL
NSGPLGSSKTIQGEQRNGIQSPNYQCAAANTVNWQADVERCIDWEARSRRATGMTLAFLTAA
ANELGCPLPC 
 
>PtGILike 
MASSSSERWIDGLQFSSLFWPPPQDAQQRKAQITAYVDYFGQCTSEHFPDDISELIRNRYPSKD
KRLFDDVLATFVLHHPEHGHAVVLPIISCIIDGTLVYDRSSPPFASFISLVCPGSENEYSEQWAL
ACGEILRILTHYNRPIYKREQQNNETDRSSSDSHATSSESAEGKSTSMPLVQQERKPFRPLSPWI
TDILLAAPLGIRSDYFRWCSGVMGKYAAGELKPPTTTSSRGSGKHPQLIPSTPRWAVANGAGV
ILSVCDEEVARYETATLTAAAVPALLLPPPTTALDEHLVAGLPALEPYARLFHRYYAIATPSAT
QRLLLGLLEAPPSWAPDALDAAVQLVELLRAAEDYASGIRLPRNWMHLHFLRAIGTAMSMRA
GIAADAAAALLFRILSQPALLFPPLRQVEGVEVQHEPLGGYISCYRKQIEVPAAEATIEATAQGI
ASMLCAHGPEVEWRICTIWEAAYGLIPLSSSAVDLPEIIVATPLQPPLLSWNLYIPLLKVLEYLP
RGSPSEACLMKIFVATVEAILQRTFPPEASREQTRRTRYFSSLGPASKNLAVAELRTMVHSLFLE
SCASVELASRLLFVVLTVCVSHEAHSRGSKRPRGEENDLPEDGTEDSQSTSEMRRNMKSRRM
KKQGPVAAFDSYVLAAVCALACELQIFPFVSRGSNHSTSKHSETVAKPAKLNGAVSEFQTSLN
SAIHHTHRILSILEALFSLKPSTIGTSWSYSSNEIVAAAMVAAHVSELFRRSKACMHALSVLMR
CKWDNEIYTRASSLYNLIDVHSKAVASIVNKAEPLGAHLHAPVWKDSLVCSDGNKQNRSAST
GCFNSGQSSALQSTELVHSETKLKCGRASHSEEGSGSTSGKGIAGLPLDASDLANFLTMHRHIG
FNCSAQVLLRSVLPEKQELCFSVVSLLWQKLIASPETQPSAESTSAQQGWRQVVDALCNVVSA
SPTIAATAVVLQAERELQPWIAKDDDSGQIMWRINQRIVKLIVELMRNHDTPESLVILASASDL
LLRATDGMLVDGEACTLPQLELLEATARAVQPVLQWGESGFAVADGLSNLLKCRLPATIRCL
SHPSAHVRALSTSVLRDIQHTGSIKPASKLTHRNGIHGPSYQYLRSDVINWQADIEKCLTWEAH
SRLATGMPVHHLDTAAKELGCTISI 
 
>RcGIProtein  
MASSERWIDGLQFSSLFWPPPQDAQQRKAQITAYVEYFGQFTSEQFPDDIAEVTASHFFSSNPA
TFVLHHPEHGHAVVLPIISCLIDGTLVYDRSTPPFASFISLVCPSSENEYSEQWALACGEILRVLT
HYNRPIYKKEQQKSETEKSGGGEDAVNGGLADGESSHTPPAQQERKPLRPLSPWITDILLTAPL
GIRSDYFRWCSGVMGKYAGGELKPPTTASSHGSGKHPQLMPSTPRWAVANGAGVILSVCDDE
VARYETATLTAAAVPALLLPPPTTALDEHLVAGLPALEPYARLFHRYYAFATPSATQRLLLGL
LEAPPSWAPDALDAAVQLVELLRAAEDYASGIRLPRNWMHLHFLRAIGIAMSMRAGIAADAA
AALLFRILSQPALLFPPLRQVEGMEVHHEPLGAYSSSYRKQIEVPAAEATIEATAQGIASMLCA
HGPEVEWRICTIWEAAYGLLPLGSSAVDLPEIIVAAPLQPPILSWNLYIPLLKVLEYLPRGSPSEA
CLIKIFVATVEAILQRTFPPESSREQTRKAKYLFGLGSASKNLAVAELRTMVHSLFLKSCASVEL
ASRLLFVVLTVCVSHEAQSNGTKRPRGEENFQPDDGNEDWQLTSEAHSKMKPRKIKKQGPVA
AFDSYVLAAVCALACELQLFPFVSSGNNHSSSNDLDTLAKSMKMNGSIREFQNSIDSAVHHTH
RILAILEALFSLKPSTVGTSWSYSSNEIVAAAMVAAHVSELFRRSKACMHALSVLMRCKWDNE
IYTRASSLYNLIDIHSKAVASIVTKAEPLEAYLHVPVWRDSLVHFDGKKRNRSSSASCFDSGQS
SASQREESAHSDSKIGTERLQSGEGSGSTLGNSIAGFPLDASDLANFLTMDRHIGFNCSAQVFLR
SVLAKKQELCFSVVSLLWHKLISAPETQPSAESTSAQQGWRQVVDALCNVVSATPTKAAAAV
VLQAEKELQPWIAKDDDQGQKMWRINQRIVRLIVELMRNHDTPESLVILASASDLLLRATDG
MLVDGEACTLPQLELLEATARAVQPVLEWGESGFAVADGLSNLLKCRLPATIRCLSHPSAHVR
AVSTSVLRGILYTGSIKRTSNRVDINGIRGPSYQYFNIDVTDWQTDIEKCLTWEAHSRLATGMPI
QFLDTAAKELGCTISI 
 
>MeGI 
KKQGPVAAFDSYVLAAVCALACELQLFPFVSSGSNHSSSNDLGTLAKSVKLNGCNGSSREFQS
SFDSAVHHTHRILAILEALFSLKPSSVGTSWSYSSNEIVAAAMVAAHVSELFRRSKACMHALSV
LMRCKWDNEIYTRASSLFNLIDIHSKAVASIVTKAEPLEAHLQVPVWKDSLVCFDGKRQNKKL
SIRCFDSGQSSASQCVESTHSDTTIITERSSCSKEGSGSTLGKDIAAFPLDASDLANFLTMDRHIG
FNLGAVVLLRTLLVEKQELCFSVVSLLWHKMIAAPETQPSAVSTSAQQGWRQVVDALCNVVS
ASPTKAATAIVLQAERELQPWIAKDDDQGQKLWRINQRIVRLMVELMRNHDTPESLVILASAS
DLLLRATDGMLVDGEACTLPQLELLEATARAVQPVLEWGESGFAVADGLSNLLKCRLPATIR
CLSHPSAHVRALSTSVLRSILHTCSIKPTANQADINDIRGPSYQLFKVDVIDWQ 
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Appendix II  CONSTANS and CO-like sequences   
 
Encoded CO protein sequences described in Chapters 2 and 3 
 
 
>BnCO 
MFKQESNNIGSEENNTGPRACDTCGSTICTVYCHADSAYLCNSCDAQVHSANRVASRHKRVR
VCESCERAPAAFMCEADDVSLCTACDLEVHSANPLARRHQRVPVVPITGNSCSSLATANHTTV
TEPEKRVVLVQEDAKETASWLFPKNSDNHNNNNQNNELLFSDDYLDLADYNSSMDYKFTGQ
YNQPTQHKQDCTVPEKNYGGDRVVPLQLEETRGNLHHKQHNITYGSSGSHYNNNGSINHNAY
NPSMETDFVPEQTAPDKTVSHPKTHKGKIEKLPEPLIQILSPMDREARVLRYREKKKRRKFEKT
IRYASRKAYAERRPRINGRFAKISETEVEDQEYNTMLMYYDTGYGIVPSFYGQK 
 
>BvCOL2 
MGGGLMAAKLCDSCKSATATIFCRADTAYLCISCDAKIHAANKLASRHARVWVCEVCEHAP
ATVTCKADAAHLCATCDRDIHSANPLARRHERVPLTPFYDPLSPPNTTNNNNDDSDSSATAAA
AAKSAAINKLFGDEYYSDADEAEAASWLLPNPNKTDEPKSIDYLFSSSGNDGDDIDPYLDLDF
GAEAKPDPDLSSDGVVPDPDQKGVHHHHLTTLQHPAASMFSLSSYHHHHHHHHVSNNNGHF
DGFENSSAACKPFALSSYHTQPSLSHSVSSSSLDFGVVPDASNITDVASTGFDKQQQMKIIGMD
REARVLRYREKRKNRKFEKTIRYASRKAYAETRPRI 
 
>BvCOL1 
MMKEEVSGSDTNSWARVCDTCRAAPCTVYCRADSAFLCTSCDARIHAANQVASRHERVWVC
EACERAPAAFLCKADAASLCATCDAEIHSANPLARRHQRVPIMPVAGCVYGPQGGRMSEDRF
LTLPEGDDHTTDHEGDEDEAASWLLLNPVKNSNNQNTNGFLTGGGEVDEYLDLLEYNSGAD
NQLCEQYNQQQEFKVPEKNCGGDSVVPVQCREAKDHQIQYQNFLFGMECETKSGYTYNTSIS
QSVSVSSMDVGVVPESAMSDISMSHPRPPKGTIDLFSSPPMQVPTQLSPLDREARVMRYREKK
KNRKFEKTIRYASRKAYAETRPRIKGRFAKRTDVEAEMDQMFTNSLMADSGYGIVPSY 
 
>BvCOL3 
MKLECDYCCKNAAVLYCEADSANLCLLCDRDIHSANSLSLKHIRIPRFGISNPNSEPKSAIDGCP
SASELAPFWGINDLVVPCLGDDEKDAVIQQLVKLSKWDLEGREYSSEIGPGTPSLDAGEGDGS
ELLFQNTNFTSLLMKEGETVSVEDRDFMWDFDADYQPPQEWDGQCGRPFDLDLEESSCASPR
VSGDVCEMQCSNILEGSESRDDGGNQTVDNDIFVTLENCSVPSIGLSSDAEMIKPEAIDGEQNF
QVMEWPYWRKPLGNTDMEQLAENRGKAMLRYKEKKKTRRYDKHIRYESRKARADIRQRVK
GRFVKASDTPDEGSGL 
 
>PaCOL 
MVKEEDCKVPKEAGIVKEFQAWTMPKPCNVCRIASASLYCRADSAYLCSGCDVKVHGANK 
LASRHERVWLCEVCEQAPAAVTCKADAASLCVSCDADIHSANPLARRHDRVPIVPFYECA 
SVAKTFLPPPPPPPTSSLQDSDVVGTLDYEDDDEDDEIYAAEAASWLLPNPKSSAEGAKN 
CDDGGSCFGVDAGPPVNKAAGGYFSVVDLFPDVDPYLDLDYASPLEATGGTDSVVPVQSN 
VSSQDGAVSTPSDCFDTEKATYSYTTTTSLSHSVSSSSLDVGVVPDATLSDMSRPLNRGV 
FELANPGVVNVGIQYVQLDREARVLRYKEKRKNRKFEKTIRYASRKAYAETRPRIKGRFA 
KRVDADVAQMYTSAELSYGLVPSF 
 
>TaHd1L 
MFMNCNFNSNLLEKEAGRTSFPWARPCDGCHAAPSAVYCCADAAYLCASCDTQVHSANRVA
SRHERVRVCETCESAPAVLACHADAAALCTACDAQVHSANPIAQRHQRVPVLPLPAVALPAA
SGFVEAEASVTAHGDKEEGEEVDSWLLRRNSDDNNCANKIDRYFNLVGYNMYYDNITCDPRP
EEQYRMQEQQHVQNRYIEKEGCECVVPPQVVMASEQQESDYGTIGAGQAASVTAMTSTYTA
SISNDISFSSMEVGIVPDNTRPDISNSNILTSSEAMELSGHSLQMPVHFNSMDREARVLRYKEKK
QTRKFQKTIRYATRKAYAEARPRIKGRFAKRSDIEHEEDHMLSPPALQDTSSYNTAPWF 
 
>ZmCO5 
MDTAAELELGLELEQKPAAGYWSVVGARPCDACAAEPARLHCRADGAFLCPGCDARAHGA
GSRHARVWLCEVCEHAPAVVTCRADAAALCAACDADIHSANPLARRHERLPIAPLFGALADA
PQPFPSPALAAAAGAEAPAPTPAQGEAVAEDYGSSEAEAASWLLPEPDNSHEDSAADTFFAES
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DAYLGADLDFARCMDGVKAIGVPVAPPELDIGAGSFCYPEHSMNHILSSSSEVAVVPDAQAAG
LPVVVVVSRGEEREARLMRYREKRKNRRFDKTIRYASRKAYAETRPRIKGRFAKRRSAEGEDE
ALEHEEGACFSPAGSAPAASDGVVPSLC 
 
>ZmCOL6 
MELHKYWGVGGRRCGSCEGAPAAVHCRTCVGGSFLCTTCDARPAHARLGHERVWMCEVCE
LAPAAVTCKADAAVLCAACDSDIHDANPLARRHARVPVAPIGSEAAAAAVEAMLFGTGEAA
ASEADEQHAAAEHAHAHALNLNVEAKDMKLDYLFSELDPYLSVEIPRFQHADSVVPNGAGA
AVELDFTCGIGVKHSSYSSYTATSLAHSGSSSEVGVVPEAFGGSGSGGGSFELDFTRPKPQAYM
PYTGTPQSHSVPSADVEVVPERGDLAAVRPVPLMGESREARLMRYREKRKNRRFEKTIRYASR
KAYAETRPRIKGRFAKRADHDGDADADDAEAEAEAEAAVPMSYVLDFGYGVVPSF 
 
>GmCOL2 
MLEGQATTPTWPRMCDTCRSVPSTVFCRSHTAFLCATCDTRLHVSLTWHERVWVCEACER 
APAAFLCKADAASLCASCDADIHAANPLASRHHRVPILPIAAANNNNNDDDDVADVDDED 
ETASWLLLNPIKSATVPNTNNNNNNNGFLYNGEVDEYLDLVDNCNSCGDNNHFASAAATT 
DHYAQHQHFAGVSQKSYAGDSVVPVQQHQHFQLGLDFDNSKPAFSYNGSVSQSVSVSSMD 
IGVVPESPMRDVSIAHTRPPKGTIDLFSGPPIQVPSHFSPMDREARVLRYREKKKMRKFE 
KTIRYASRKAYAETRPRIKGRFAKRTDVEAEVDQMFSTTLITEVGYGIVPSF 
 
>PpCOL1 
MPKPCDACHVSSAAVFCRADAAYLCVGCDGKVHGANKLASRHERVWMCEVCEVAPAVVTC
KADAASLCVACDTDIHSANPLAQRHERVPVTPLFESASPLRGPDFCVLVSENGCHDLLKGCED
ASVVEAVSWLLPHPKISTNSIIRGSAAADEMGSSPFHDRPFSPKPKKQKVELPADIFSDVDPFLD
LDDATVTGIQPDSLVPVHMPECSEDTDSLAHSMDPSFTKFPLSAKSGYSYGTSTLTQSISCSSLD
AAVVPDSSLSDISTPYLDSQSSQDMSARLPHQTGGPIDTVDREARVLRYKEKRQKRKFEKTIRY
ASRKAYAESRPRIKGRFAKRTDSDMEQFGSVDSSFGVVPSF 
 
>LpHd1L 
MKSNSSSTIYEEAVGQEGSWSRLCDGCCMVPSVVYCHADSAYLCASCDVRIHSANRVASRHE
RVCLSEAHEHAPALLQCRTDAVASCAAYEAQAHYANLLAGMHQCVPVVSHPATAIPTASLLA
EAAVTTTILSCKEEEASWLLLSKNSANHNCSGDNRSSSTYFGEVDEYFDLVGYNSYYDSRMN
NNRAQYVMQEQQHLQPMQKEYAEKEGSECVVPSQFATASKPQQSGYALVGAEQAASMTAG
VSVYTDSVNNSISFSSMEGGIVPDNTVVDLPYSIIPTPAGASSLHSGPPLQMPLHFSSMDREAKV
LRYKEKKKTRTFEKTTRYATRKAYAEARPRIKGRFAKISEAEMEVDQMFSAAALSDSSYSTVP
WFQ 
 
>PdCOL2 
MLKQESSGSGGGDNRARLCDTCRAAACTVYCRADSAYLCAGCDARVHAANRVASRHERVW
VCESCERAPAALLCKADAASLCTACDADIHSANPLARRHQRVPILPISGCLHGSQVGPAAGETE
DRFTTQEGEETISEEEEEEEDEAASWLLLNPVKNSKNQNNNGFLFEGEVDEYLDLVEYNSCTE
NQCSDQYNQQHYCVPPKSYGGDRVVPIQYGEGKDHQQQRQYHNFQLGLEYEPSKAAYSYNG
LISQSVSMSSMDVGVVPESTMSEISISQHRTPKRTIELFSSTAIQMPSQLSPMDREARVLRYREK
KKTRKFEKTIRYASRKAYAETRPRVKGRFAKRKDVEVEDDRTFSSTLMAGTGCGIVPSF 
 
>PdCOL1 
MPRFTSLILSSPLVFFLQVSLILATNAHSLSYIAKDSIIEIGIGREREEVMLKEESGGSGGVVNNW
ARVCDTCRAAACTVYCRADSAYLCAGCDARVHAANRVASRHERVRVCEACERAPAALLCK
ADAASLCTACDADIHSANPLARRHQRVPILPISGYLYGTQVGPAAGETEDQFMTQEGEETIGEE
DEDEAASWLLLNPAKNSNNQNNNGFLFGGEVDEYLDIVEYNSCAENQYSDQYNQQHYSVPP
KSCGGDSVVPIQYGEGKDHQQQQQQQYHNFQLGLEYEPAKAAYSYDGSVSQGVSMSSMDVG
VVPESAMSEISISHQSASRGTIDLFSSPPIQMPSQLSPMEREARVLRYREKKKARKFEKTIRYASR
KAYAETRPRIKGRFAKRTDVDVEVDQMFSSTLMAETAYGIVPSF 
 
>AtCOL2 
MLKEESNESGTWARACDTCRSAACTVYCEADSAYLCTTCDARVHAANRVASRERVRVCQSC
ESAPAAFLCKADAASLCTACDAEIHSANPLARRHQRVPILPLSANSCSMAPSETDADNDEDDR
EVASWLLPNPGKNIGNQNNGFLFGVEYLDLVDYSSSMDNQFEDNQYTHYQRSFGGDGVVPL
QVEESTSHLQQSQQNFQLGINYGFSSGAHYNNNSLKDLNHSASVSSMDISVVPESTASDITVQH
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PRTTKETIDQLSGPPTQVVQLTPMEREARVLRYREKKKTRKFDKTIRYASRKAYAEIRPRIKGR
FAKRIETEAEAEEIFSTSLMSETGYGIVPSF 
 
>AtCOL3 
MASSSRLCDSCKSTAATLFCRADAAFLCGDCDGKIHTANKLASRHERVWLCEVCEQAPAHVT
CKADAAALCVTCDRDIHSANPLSRRHERVPITPFYDAVGPAKSASSSVNFVDEDGGDVTASWL
LAKEGIEITNLFSDLDYPKIEVTSEENSSGNDGVVPVQNKLFLNEDYFNFDLSASKISQQGFNFI
NQTVSTRTIDVPLVPESGGVTAEMTNTETPAVQLSPAEREARVLRYREKRKNRKFEKTIRYAS
RKAYAEMRPRIKGRFAKRTDSRENDGGDVGVYGGFGVVPSF 
 
>AtCO 
MLKQESNDIGSGENNRARPCDTCRSNACTVYCHADSAYLCMSCDAQVHSANRVASRHKRVR
VCESCERAPAAFLCEADDASLCTACDSEVHSANPLARRHQRVPILPISGNSFSSMTTTHHQSEK
TMTDPEKRLVVDQEEGEEGDKDAKEVASWLFPNSDKNNNNQNNGLLFSDEYLNLVDYNSSM
DYKFTGEYSQHQQNCSVPQTSYGGDRVVPLKLEESRGHQCHNQQNFQFNIKYGSSGTHYNDN
GSINHNAYISSMETGVVPESTACVTTASHPRTPKGTVEQQPDPASQMITVTQLSPMDREARVLR
YREKRKTRKFEKTIRYASRKAYAEIRPRVNGRFAKREIEAEEQGFNTMLMYNTGYGIVPSF 
 
>AtCOL1 
MLKVESNWAQACDTCRSAACTVYCRADSAYLCSSCDAQVHAANRLASRHERVRVCQSCERA
PAAFFCKADAASLCTTCDSEIHSANPLARRHQRVPILPISEYSYSSTATNHSCETTVTDPENRLV
LGQEEEDEDEAEAASWLLPNSGKNSGNNNGFSIGDEFLNLVDYSSSDKQFTDQSNQYQLDCN
VPQRSYGEDGVVPLQIEVSKGMYQEQQNFQLSINCGSWGALRSSNGSLSHMVNVSSMDLGVV
PESTTSDATVSNPRSPKAVTDQPPYPPAQMLSPRDREARVLRYREKKKMRKFEKTIRYASRKA
YAEKRPRIKGRFAKKKDVDEEANQAFSTMITFDTGYGIVPSF 
 
>StCOL2 
MLKKEKSGGFDGSSNNWARVCDSCHSATCTVYCRADSAYLCADCDARIHAASLMASRHERV
WVCEACERAPAAFLCKADAASLCASCDADIHSANPLARRHHRVPIMPIPGTLYGPPAVHTVSG
GSMMIGGTTGEGTEDDGFLSLTQDADDTTIDEEDENEAASWLLLNPPVKNNNKNNINNNNNN
QNNNYGMLFGGEVVDEYLDLAEYGGDSQFNDQYSVNQQQQHYSVPQKSYVEDSVVPVQNG
QRKSLILYHQPQQQQQQQQQSHHLNFQLGMEYDNSNTGYGYPASLSHSVSISSMDVSVVPES
ALSETSNSHPRPPKGTIDLFSGPPIQIPPQLTPMDREARVLRYREKKKNRKFEKTIRYASRKAYA
ETRPRIKGRFAKRTDVKAEVDQMFSTQLMTDSSYGIVPSF 
 
>HvCOL9 
XFNDGSIYENFCVDDAGLTFENYEELFGTPHIQTEQLFDDAGIDSYFGMKEMPAADCNEQLKP
MQPECSNAVSADSSLCVPARQAISSISLSFSGFTGEGNAGDHQDCGVSPWLHPGPEGSSASGSR
GSALSRYMEKKKRRKFDKKIRYASRKARADVRKRVKGRFVKAGEAYDYDPLKKKTRKFEKT
IRYASRKAYAETRPRVKGRFAKRKDVEVEDDRTFSSTLMAGTGCGIVPSF 
 
>OsCO 
MELRKYWGVGGRRCGACEASPAAVHCRGCGGVYLCTACDARPGHARAAHERVWVCEVCE
VAPAAVTCKADAAVLCAACDADIHDANPLARRHARVPVAPIGSAAAAAVAAEAMLFGVAAA
GAEAEAVEDKAAAEHHHHQQRQQHGALNLNVEAKDMKLDYLFSDLDPYLNVEFARFPHAD
SVVPNGAGAGAAIELDFTCGLGVGVGGAKQSYSSYTATDLAHSGSSSEVGVVPEAMCGGGG
AIDLDFTRPKPQPYMPYTATPPPSHSVVSAQMSSSVVDVGVVPERAAAMGEGREARLMRYRE
KRKNRRFEKTIRYASRKAYAETRPRIKGRFAKRADHDADDADADADDPAAVPSSYMLDFGY
GVVPSF 
 
>MeCOL1 
HERVWVCEACERAPAAFLCKADAASLCTACDADIHSANPLARRHQRVPILPISGCLYGPQVGP
ATGETTEDMFMTQEGEEGVGEEEEDEAASWLLLNTAKNSNGQNNNGFLFGGGEVDEYLDLV
EYNSNSCGDQNQYSDQNNLQHYSVPHQKSCYGGDSVVPVQCAEAAGKDQLHQQYHNFHLG
LEFESSSKAAYSYNGSISHSVSISSMDVGVVPDSTMTEASISHPRPPKGTIDLFSSPPMPMPSQLS
XXXRXAXXL 
 
>MeCOL2 
TCRAAACSXYCRADSVYLCAGCDARVHAANRVASQHERVWVCEACERAPAAFLCKADAAS
LCTACDADIHSANPLARRHQRVPILPISGSLYGPQAGNPAGETTEDMFMTQEGEEGVGEEEED
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EAASWLLPNPVKNSNGQNYNGFLFGGGDVDEYLDLMEYNSNSCGDQNQYSDQNNLQHYSVP
HQKSCYGGDSVVPNHCAEAARKDQLHHQYHNFHLGLEIDSSSKAAYSYNGSISQSVSISSMDV
GVVPDSTMSEASISHHRPPKGTIDLFSSPPMQMPSQFSPGDREARVLRYREKKKTRKFEKTIRY
ASRKAYAETRPRIRGRFAKRTDVEVEVAQ 
 
>MeCO 
CKADAASLCTACDADIHSAXPIGSAFLCKADAASLCTACDADIHSAXPIPLARRHQRVPILPISG
QEGEEGVGEEEEDEAASWLLLNTAKNSNGQNNNGFLFGGGEVDEYLDLVEYNSNSCGDQNQ
YSDQNNLQHYSVPHQKSCYGGDSVVPVQCAEAAGKDQLHQQYHNFHLGLEFESSSKAAYSY
NGSISHSVSISSMDVGVVPDSTMTEASISHPRPPKGTIDLFSSPPMPMPSQLSPRXXXQGCXXXR
EK 
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Appendix III  ELF4 ORF sequence of Cassava 
 
MNNNSNHKSSRRRHKHTADDDDDEGDPEVWSTFNSTFRQVQSVLDRNRNLIQQVNENHQSRI
PDNMVKNVALIQELNGNISKVVSLYSDLNSNFTTNYQQRNGSGSGNSNSSGRS 
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