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ZUSAMMENFASSUNG  

 Für die nicht zufällige Verteilung von Trichomen in der Blattepidermis 

von Arabidopsis thaliana ist ein de novo Musterbildungsmechanismus verantwortlich. 

Dabei bestimmt das Zusammenspiel von MYB-, bHLH- und WD40 Proteinen, ob 

eine epidermale Zelle Trichom wird oder nicht. Diese Proteine regulieren die 

Expression der Gene, die für die Initiation von Trichomen erforderlich sind. Zur 

Untersuchung der Trichommusterbildung wurden genetische Analysen von 

Trichominitiationsmutanten in Arabidopsis Blättern, sowie Hefe-Zwei-Hybrid Studien 

mit den Trichommusterbildungsproteinen durchgeführt. Außerdem lieferte der 

Vergleich mit ähnlichen Mechanismen wie der Wurzelhaarmusterbildung mehr 

Einblicke. Bis heute sind biochemische Informationen über die spezifischen, 

intrinsischen Eigenschaften der Trichommusterbildungsproteine und ihre direkten 

Protein-Protein-, sowie Protein-DNA Wechselwirkungen immer noch rar. In dieser 

Arbeit wurde die bakterielle Expression und Reinigung der Proteine GL1, GL3, 

EGL3, TTG1 und TRY, die als die Schlüsselkomponenten des MYB-bHLH-WD40-

Komplexes dienen, das erste Mal erfolgreich ausgeführt. GST-Pull-Down 

Experimente mit den hier aufgereinigten Proteinen zeigen direkte und neue 

Interaktionen zwischen den Komponenten des MYB-bHLH-WD40-Komplexes. Des 

weiteren wurde TTG2, ein vor kurzem entdeckter Regulator der 

Trichomentwicklung, bakteriell erfolgreich exprimiert, gereinigt und für die Analyse 

von in vitro Protein-Interaktionen via GST-Pull-Down und Affinitätsreinigungs-

experimente benutzt. Ebenso wurden spezifische Antikörper gegen GL1, EGL3, 

TTG1, TTG2 und TRY Proteine produziert, gereinigt und für die Detektion des 

jeweiligen Proteins aus Arabidopsis Pflanzenextrakten getestet. Diese gereinigten 

Proteine ebnen den Weg für, biochemische Experimente, die die Untersuchung von 

Protein-Protein- und Protein-DNA-Interaktionen, Proteinbeweglichkeiten und 

posttranslationale Proteinmodifikationen zum Ziel haben, um offene Fragen zum 

Verständnis der Trichommusterbildung zu beantworten.  

 

 



 
Abstract 

 Dartan, B. Inaugural Dissertation v 

ABSTRACT  

In the Arabidopsis leaf epidermis, a de novo patterning mechanism is 

responsible for the non-random distribution of trichomes. Whether an epidermal cell 

becomes a trichome or not, is determined by the interplay of MYB-bHLH-WD40 

proteins. These proteins are regulating the expression of genes required for initiation 

of trichomes. The trichome pattern formation in Arabidopsis leaves has been 

investigated by genetic analyses of trichome initiation mutants and yeast two-hybrid 

interactions among these trichome patterning proteins. Additionally, the comparison 

to similar mechanisms, such as root hair patterning has revealed further insights. 

However, biochemical information about specific intrinsic properties of the trichome 

patterning proteins and their direct protein-protein and DNA-protein interactions is 

still rare. In this study, bacterial expression and purification of the GL1, GL3, EGL3, 

TTG1 and TRY proteins, which serve as the key components of the MYB-bHLH-

WD40 complex, is successfully performed for the first time. GST pull-down 

experiments conducted with these purified proteins reveal direct and novel 

interactions among the members of the MYB-bHLH-WD40 complex. Moreover, 

TTG2, a recently identified regulator of trichome development, is bacterially 

expressed, purified and analysed for its in vitro protein interactions via GST pull-

down and affinity purification experiments. Specific antibodies against GL1, EGL3, 

TTG1, TTG2 and TRY proteins are also produced, purified and tested for detection of 

these proteins from Arabidopsis plant extracts. These pure proteins and antibodies 

pave the way to future biochemical experiments investigating protein-protein as well 

as protein-DNA interactions, protein mobility and posttranslational modifications, 

with the aim to answer open questions for understanding of the trichome patterning. 
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1. INTRODUCTION  

1.1. ARABIDOPSIS TRICHOMES 

In nature, from zebra skin to seashell, peacock to mushroom, patterns can 

be observed in almost all organisms. Pattern is described as “a particular way in 

which something is done, organized or happens” [1]. How pattern formation occurs 

in nature has motivated many scientists including plant biologists to find 

explanations for these mechanisms. Establishment of a proper pattern is probably 

one of the key steps in developmental processes of organisms. 

The need for plant scientists to find a model organism in order to dissect 

plant development was fulfilled by a weed from a mustard family - Arabidopsis 

thaliana. Arabidopsis was chosen to understand the molecular organization of a plant 

due to its convenience for reproduction, growth, the easy accessibility to create 

genetic modifications, and availability of its genome sequence [2]. 

Larkin et al. have performed studies on Arabidopsis leaf epidermis. Their 

observation of hair cells on Arabidopsis leaves, known as trichomes, has shown that 

the initiation of trichomes is much less frequent than expected by a chance event. 

Trichomes are never found as nests; in order to initiate trichome development on leaf 

epidermis, establishment of a minimum distance between two developing trichomes 

is required. The proper establishment of trichome pattern is a non-random event and 

it is not achieved by cell lineage [3]. This implies the presence of a cross-talk between 

the cells accomplishing the pattern.  

Main functions of trichomes are resistance to herbivores; extreme 

temperature fluctuations and UV light [4]. The most revealing studies related to 

trichome research aim to understand how the initiation and development of 

specialized cells from initially equivalent cells is achieved. Factors making trichomes 

ideal models for such studies include accessibility of these cells, the presence of 

several mutants specifically affecting trichome development in the plant and the 

viability of plants lacking trichomes [5]. Therefore, the formation of trichomes is 

widely studied and serves as a basis for the analysis of cellular development of 

Arabidopsis.  

Mature trichome cells of the Arabidopsis leaves are comparatively large, 

polarised cells, which have 3 branches and a large nucleus at their first branching 
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points. The observation of wild-type trichome development as well as trichomes of 

mutant plants has shown that the first step in trichome differentiation is the 

commitment of an epidermal cell which then expands and starts endoreduplication. 

The unicellular trichome cells undergo endoreduplication cycles, which allow for 

more rapid growth and extension [6, 7]. A stalk then arises perpendicularly to the 

leaf plane which then expands and a second branch forms. The expansion continues 

until the third branch has formed and a papillae surface develops at the surface of 

the mature trichome [8]. The development of a trichome from an epidermal cell is 

depicted in Figure 1.  

 

 

Figure 1 Trichome development [9] 

 

1.2. PATTERN FORMATION  IN ORGANISMS (TURING AND 

MEINHARDT & GIERER MODELS) 

The de novo formation of a stable pattern in biological systems was first 

delineated by Turing’s equations which were then modelled by Meinhardt and 

Gierer (Activator-Inhibitor Model) [10, 11]. This mathematical model postulates the 

formation of an activator which enhances the production of itself by an autocatalytic 

loop. The increased activator concentration in one cell accelerates the production of 

inhibitor which moves into the neighbouring cell where it suppresses the activator 

(Lateral Inhibition Mechanism). The observation of different trichome initiation 

mutants suggested that this model could give ideas about how the patterning in 
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trichomes is established [7]. In the case of trichome formation, the activator in the 

selected cell continues to produce more activator molecules that overcome 

equilibrium between the activator and inhibitor concentrations. The statistical 

fluctuations between the selected and neighbouring cells lead to the formation of a 

stable pattern and to the initiation of the trichome cell fate. The comparison of the 

mechanisms for trichome and root hair patterning in Arabidopsis has revealed that 

similar mechanisms are involved in both events [12]. 

1.3. DIFFERENT GENE FAMILIES  IN TRICHOME FORMATION 

Over the recent years, the observation of trichome initiation in different 

mutant plants has shown that some gene mutations cause decrease in trichome 

density and number. On the other hand, mutations in some other genes increase the 

number of trichome forming cells or formation of trichome nests in Arabidopsis. 

Therefore, the genes responsible for the trichome cell fate are divided into two 

categories. The members of the first category are the activators of trichome initiation 

due to the fact that trichome formation is decreased when these genes are mutated. 

The second category is composed of the genes whose mutations cause increase in 

trichome forming cells namely the inhibitors of trichome initiation. Several of these 

genes have been cloned and analysed by genetic analysis.  

1.3.1. ACTIVATORS OF TRICHOME INITIATION 

The mutations of some genes either as single or in combination with other 

mutations result in a decrease of trichome formation. In this sense, these genes are 

referred to as the activators of the trichome cell-fate. These genes include 

TRANSPARENT TESTA GLABRA1 (TTG1) [13], GLABRA1 (GL1) [14, 15], GLABRA3 

(GL3) [16, 17], ENHANCER OF GLABRA3 (EGL3) [18], GLABRA2 (GL2) [19] and 

TRANSPARENT TESTA GLABRA2 (TTG2) [20]. The cloning of these genes has 

revealed that they encode proteins containing tryptophane-aspartic acid (WD40), 

myeloblastosis (MYB), basic Helix-Loop-Helix (bHLH), Homeodomain-Zipper (HD-

Zip) or tryptophane-arginine-lysine-tyrosine (WRKY) domains. 

1.3.1.1. WD40 REPEAT PROTEINS 

One of the first mutant screens of Arabidopsis resulted in the identification 

of ttg1 mutant plants. The ttg1 mutant plants show lack of trichomes on the surfaces 

of leaves and at the stem base, transparent seed coat and absence of seed coat 
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mucilage [13]. The cloning of TTG1 revealed that this locus encodes a WD40 repeat 

protein [21]. WD40 is known to be the protein-binding motif, enabling protein-

protein interactions for several different cellular processes. The structure of WD40 

repeats has been shown to be a beta-propeller [22]. Although TTG1 structure is 

currently unknown, it is likely that the WD40 repeats may mediate protein-protein 

interactions for trichome initiation. 

1.3.1.2. MYB PROTEINS 

The second gene which resulted in glabrous plants (i.e., plants lacking 

trichomes) when mutated was the GL1 gene. gl1 mutant plants show no trichomes on 

leaf surfaces [14, 15, 23, and 24]. The cloning of the GL1 revealed that this locus 

encodes a two repeat (R2R3) MYB protein [23]. 

Two homologous genes for GL1 have been cloned and they have been 

shown to play a role in epidermal patterning. The first gene is called WEREWOLF 

(WER). Its mutation causes increased root hair formation; WER overexpression 

reduces the number of root hair cells produced [25, 26]. Overexpression of the second 

homologous gene -At MYB23- shows phenotypes similar to the GL1 overexpression 

phenotype which is recognized by a decrease in number of trichomes along the 

middle part of the leaf and production of ectopic trichomes on cotyledons and 

hypocotyls [27, 28]. 

In 1982, the first gene containing MYB domain was discovered and named 

c-MYB. It encodes an oncogene from avian retroviruses, causing acute leukaemia 

[29]. Since then, several MYB domains containing proteins have been characterised 

both from animals and plants. MYB domains are recognized by the presence of 

highly basic amino acids and conserved tryptophan residues that form a helix-turn-

helix structure made of 53 amino acids [30, 31]. MYB domains consist of imperfect 

repeats referred to as R1, R2 and R3 repeats. One study reports that R2R3 repeat 

MYB proteins in Arabidopsis genome constitute the largest family of MYB genes in 

plants [32].  

1.3.1.3. BASIC HELIX LOOP HELIX (bHLH) PROTEINS 

Another gene which is involved in trichome initiation is GL3, encoding a 

bHLH protein. An alignment of consensus sequences using the HLH motif 

designates the presence of 133 genes containing bHLH domains in Arabidopsis. These 

proteins have a wide range of functions from plant metabolism to development [33]. 

bHLH proteins are identified by their conserved structural domain, which is 
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composed of two amphipathic α-helices, a loop and a basic region. The basic region 

has been shown to be important for DNA binding whereas the HLH domain is 

needed for homo and/or heterodimerization [34]. gl3 mutant plants, which lack the 

bHLH region of the GL3 protein, have reduced numbers of trichomes; whereas 

overexpression of GL3 results in more trichome formation than observed in wild-

type plants. Yeast two-hybrid and genetic analyses demonstrate that GL3 interacts 

with GL1 and TTG1, and that for the GL1-GL3 complex to completely function, the 

TTG1 protein is required [16]. 

A homologous gene for GL3 is EGL3. It has also been cloned and it has 

been shown that EGL3 functions in epidermal cell fate and differentiation as well as 

other TTG1-dependent pathways. Although the egl3 mutant plants do not have 

differences in their trichome numbers or densities compared to the trichomes on 

wild-type leaves, the double mutants of gl3egl3 have glabrous leaves [18]. The 

comparison of phenotypes of these two bHLH mutants is shown in Figure 2. 

GL3 and EGL3 can interact with R2R3 repeat MYB domain proteins GL1, 

WER and AtMYB23, as well as the R3MYB proteins and TTG1 in yeast two-hybrid 

experiments [16, 17, 18, 28, 35 and 36]. It has been shown that the MYB domain, 

which is the region important for DNA binding, also plays a role in interaction with 

bHLH proteins [37]. 

 

 

Figure 2 Redundancy of bHLH proteins [38] 

 

1.3.1.4. HD-ZIP PROTEINS 

It has been found that the GL2 encodes a HD-Zip protein. Mutant plants 

lacking the GL2 show reduced trichome density, ectopic root hair formation as well 

as aborted trichome formations with the shape of spikes [39, 40]. 

Initially, GL2 was thought to be involved in trichome morphogenesis but 

not in trichome initiation. However, reduced trichome density in gl2 mutant plants, 

the lack of trichomes on the gl2gl3 plants’ leaves and a dose-dependent increase in 



 
Introduction 

 Dartan, B. Inaugural Dissertation 6 

trichome numbers and their frequencies in pGL2::GL2 plants suggests a possible role 

for GL2 protein also in trichome initiation pathway [19, 40].  

The homeodomain (HD) is a 60 amino acid conserved domain encoded by 

the homeobox DNA present in all eukaryotic organisms. The HD forms a DNA-

binding helical structure. The structure and position of the HD has been shown to 

determine the variety of developmental processes in which the HD-containing 

transcription factors function [41]. 

The GL2 protein contains both a highly basic domain that may stipulate 

DNA specific contact and a strongly acidic domain that might mediate 

transcriptional activation complex protein-protein interactions [40].  

1.3.1.5. WRKY PROTEINS 

Although it has not been shown to have a role in trichome initiation, a 

WRKY transcription factor TTG2 has been elucidated to have a similar role like GL2 

in trichome development. Mutant plants lacking the functional TTG2 show similar 

trichome phenotypes like the gl2 mutant plants. It has been suggested that the TTG2, 

together with GL2, acts downstream of trichome initiation and promotes the 

outgrowth of trichomes on the leaf epidermis [20]. The expression patterns of TTG2 

and ttg2 phenotypes indicate an affiliated role for TTG2 with MYB-bHLH-TTG1 

complexes in the regulation of their common target genes [42].   

WRKY domain containing transcription factors are plant specific proteins 

that have the conserved N-terminus domain and Zinc-finger like motif. This domain 

is named after the presence of the WRKYGQK amino acid sequences serving as the 

DNA binding motif. The transcription factors containing this conserved domain have 

been shown to be involved in plant defence as well as metabolic processes and 

trichome development mechanisms [43, 44].  

1.3.2. INHIBITORS OF TRICHOME INITIATION 

Mutations in some genes results in formation of more trichomes or 

trichome nests. In addition, the overexpression of these genes shows a decrease in 

number of trichomes or even glabrous leaves in some cases. These genes are 

therefore named as inhibitors of trichome initiation. Surprisingly, all the inhibitor 

genes cloned so far contain only the MYB conserved domain. The difference between 

the activator and inhibitor MYB proteins is that the former are R2R3 repeat MYB 
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proteins, whereas the latter contain only the R3 repeat, lacking the activation domain 

[45, 46, and 47]  

A mutation in the gene coding for the TRIPTYCHON (TRY) protein causes 

initiation of more than one trichome from an initiation site which would normally 

produce only one trichome cell [7]. Nevertheless, a study by Schnittger et al. has 

shown that overexpression of the trichome initiation activators in combination with 

removal of the inhibitor TRY is not sufficient for transformation of all epidermal cells 

into trichomes [48]. This indicates the presence of other inhibitory factors of trichome 

initiation.  

The mutation of the CAPRICE (CPC) gene, which is a homologue of TRY,  

results in reduced number of root hairs and increased trichome density, whereas 

overexpression of this gene leads to increased number of root hairs and absence of 

leaf, stem and sepal trichomes. It has been reported that CPC also encodes a R3 MYB 

domain protein [45, 47].  

The overexpression of the TRY and CPC in a wild-type background leads 

to glabrous leaves whereas the mutation of TRY together with CPC results in 

increased numbers of trichomes and trichome clusters. This shows that TRY and CPC 

are inhibitors of trichome initiation. The analysis of try single and the trycpc double 

mutants and their similar expression patterns suggest that these two inhibitory genes 

are involved in the Lateral Inhibition Mechanism in trichome and root hair 

patterning in Arabidopsis [47]. 

In addition to TRY and CPC, four other R3 MYB genes have been cloned 

from Arabidopsis. The mutant and overexpression phenotypes together with the 

identification of common interaction partners denote that all these six genes are 

functional homologues and they have redundant roles in trichome and root hair 

patterning [35, 49, 50, and 51]. 

These results show that an important protein family for controlling 

trichome and root hair patterning in Arabidopsis is composed of single and double 

repeat MYB proteins. The reason for presence of several redundant MYB proteins is 

still not known. They have been suggested to have overlapping roles in plant 

development as well as functions in different organs [26, 52]. When the functions of 

MYB proteins from other organisms are also considered, it is seen that this conserved 

domain has roles in a vast variety of cell proliferation and differentiation events [53, 

54, 55, 56, and 57]. However, how this difference in roles of these proteins containing 

conserved domains is exactly ensured is still under investigation. One possibility is 
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the different regulation of these proteins [24, 28, and 50]. Another feature of these 

similar proteins could be the differences in their tertiary structures enabling different 

protein and/or DNA interactions. Although much is known about animal MYB 

domain protein properties and their structure, only one MYB protein from plants has 

been crystallized. This is a MYB protein from Antirrhinum, involved in establishment 

of floral symmetry [58, 59]. Nevertheless, none of the structures of MYB proteins 

from Arabidopsis have been currently solved. 

1.4. TRICHOME PATTERNING MECHANISM 

The patterning in Arabidopsis epidermis is achieved by the translation of 

developmental cues into interplay of readout genes to establish the developmental 

cell fate of the plant [7]. Should the Meinhardt & Gierer Model be used to explain the 

mechanism of patterning, the requirements of the model have to be fitting to the 

actual observations in nature. The presence of the same types of genes and similar 

interactions both in the root and the shoot of Arabidopsis puts forward the similar 

mechanisms for trichome initiation and root hair cell patterning [36]. However, there 

are some differences between patterning mechanisms in these organs. The first 

difference is that positional cues specify the formation of root hairs only over the cleft 

between two underlying cortex cells. In the cells that have a single underlying cortex 

cell, activator complex is formed by interaction of R2R3 MYB-bHLH-WD40. This 

launches the transcription of GL2 to trigger the non-root hair cell fate. In this cell, the 

R3 MYB protein concentration is also increased. These small R3 MYB proteins then 

move into the neighbouring cell where they form the inactive complex, which cannot 

produce GL2 to gain the non-root hair fate so they can develop as root hairs [12, 26, 

38, and 60]. 

The first assumption of the Meinhardt & Gierer Model is the autocatalytic 

loop activating the production of activators in the pattern forming cells. This feature 

of the model is still not elucidated for patterning mechanisms.  

The second assumption is the activation of inhibitors by the activators. The 

same expression pattern of GL1, TRY, GL3 and EGL3 in wild-type and different 

mutant backgrounds support the transcriptional activation of the TRY by GL1 and 

GL3 [18, 24, 36, 47, 61, and 62]. The only proof of the direct interaction of activators 

with the proposed target DNAs were shown by Electrophoretic Mobility Shift Assays 

(EMSA) and yeast one-hybrid [63, 64, and 65]. These studies shed light on the 

interaction of MYB proteins with their target DNA sequences important for 
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epidermal patterning. However, EMSA experiments have only been conducted for 

WER and CPC. The ability of other transcription factors described in the patterning 

pathway to bind directly in vitro to other DNA sequences have not been shown yet. 

In addition to the EMSAs, Chromatin Immunoprecipitation (ChIP) experiments have 

also been conducted to show that GL3 and TTG1 can bind to the promoters of GL2, 

CPC, TRY and ETC1. These results are consistent with the activation of inhibitors by 

the activators stated in the Meinhardt & Gierer Model [66]. These assays were 

performed by fusion tags due to the absence of the specific antibodies against 

patterning proteins.   

Another postulate of this model is the Lateral Inhibition which requires 

the cell autonomous behaviour of the activator and mobility of the inhibitor. The 

increased concentration of the activator in one cell causes the increase of this cell’s 

potential to become a trichome cell. On the other hand, this cell starts producing also 

more inhibitor which moves to the neighbouring cell where it inhibits the trichome 

initiation by inhibiting the activator function in this cell [11]. One of the important 

experiments in trichome development has shown the counteraction of GL1 by TRY. 

Trichome formation can be initiated not only from the epidermal but also from the 

subepidermal cell layers and trichomes can be initiated on organs otherwise would 

be devoid of trichomes when GL1 is overexpressed in a try background [61, 67]. The 

second evidence for this postulate came with the comparison of expression and 

protein localization of CPC [46, 68]. Apart from movement of the CPC in root, micro-

projectile bombardment experiments also provide evidence for TRY and CPC 

movement in Arabidopsis cotyledons and leaf epidermal cells. On the other hand, in 

the same assay, GL1 and GL3 were shown to be cell autonomous [62]. Moreover, leaf 

sector experiments show that GL1 acts locally [7]. These data support movement of 

inhibitors which is predicted by the Meinhardt & Gierer Model. However, the actual 

mechanism of movement of these proteins is still not known and only speculated to 

be through plasmodesmata [46, 62, and 68]. Whether this mechanism for movement 

holds true is a hypothesis that still has to be tested by other tools such as 

microinjection.  

The inhibitor, which has moved from the trichome initial to the 

neighbouring cells, presumably prevents the formation of the activator complex as 

well as the production of the inhibitor complex in these cells. Yeast three-hybrid 

experiments have shown that the inhibitor TRY can compete with GL1 for binding to 

GL3, thus forming an inhibitory complex, which prevents the activation of 

downstream genes for trichome formation. This inhibitory complex forms in the 

epidermal cells which have received TRY from their neighbouring trichome initiating 
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cells [17]. The competition of CPC with WER for binding to GL3 and EGL3 has also 

been shown by yeast three-hybrid experiments [69]. Nevertheless, the competition of 

these proteins for binding to GL3 has not been shown by any other assay. It would be 

of great importance to compare the binding affinities of GL1/WER and TRY/CPC to 

GL3. 

Genetic and yeast two-hybrid analyses show that GL3, as well as its 

homologue EGL3, interacts with GL1 and TTG1, and that TTG1 is required for GL1-

GL3/EGL3 complex function [16,18]. Similar interactions are also observed in yeast 

two-hybrid experiments of WER/MYB23 with GL3/EGL3 [37]. The formation of this 

MYB-bHLH-WD complex is possibly realized also in the Arabidopsis leaf epidermis to 

initiate the trichome cell fate. The cell, which perceives the difference between 

activator and inhibitor concentrations, processes this information to go into the 

determined cell fate. The formation of the activator complex in leaf and root 

epidermis is likely to trigger the formation of the trichome and the non-hair cell fate 

by activating the GL2 that is necessary for the determination of the epidermal pattern 

[12, 38, 60, and 69]. However, it is still a question if these interactions are occurring in 

a direct manner or if some intermediates that intervene the interaction of these 

individual proteins are existing.  

In summary; trichome initiation is comparable to root hair cell formation 

in Arabidopsis, as both are mediated by the formation of the activator complex 

composed of R2R3 MYB proteins - bHLH proteins - WD40 protein in the trichome or 

non-root hair initials. The formation of the activator complex initiates the 

transcription of GL2 and the trichome cell fate or the non-root hair cell fate. The 

activator complex also activates other R3 MYB transcription factors which then move 

to the neighbouring cells where they compete with the R2R3 MYB proteins for 

binding to the bHLH proteins and form the inactive complex. As a consequence, 

trichome or non-root hair cell fate cannot be triggered in these cells.  The comparison 

of these two mechanisms is illustrated in Figure 3. 
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Figure 3 Patterning mechanism in Arabidopsis epidermis [38] 

Different organs have similar machinery  

a) Patterning in root epidermis 

b) Patterning in leaf epidermis 

 

1.5. OTHER MECHANISMS INVOLVED IN TRICHOME FORMATION 

Bouyer et al. have recently shown that a substrate-depletion mechanism is 

also playing a role in trichome initiation, in addition to the activator-inhibitor model. 

TTG1 has been shown to be depleted from neighbouring cells to the trichome initials 

in Arabidopsis leaves. The same study also indicates the mobility of TTG1, most 

probably via the plasmodesmata. Due to the lack of depletion of the TTG1-YFP 

protein in gl3 plants, increased expression of GL3 in trichomes and the interactions 

between GL3 and TTG1, GL3 seems to be the factor that traps the TTG1 protein in the 

incipient trichome cells [70]. 

1.6. AIM OF THE PROJECT 

Trichome pattern formation in Arabidopsis has been analysed in the light of 

the Meinhardt & Gierer Model in recent years. However, currently the vast majority 

of reports giving insights about trichome pattern formation in Arabidopsis are based 

on the models depending on genetic, yeast two/three-hybrid analyses and the 

comparison of the molecular data obtained from the root hair patterning system. 

There are still limitations existing as to how observations made in nature could be 
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explained by these models. One of the most important limitations is the absence of 

proteins in hand except WER and CPC. This fact handicaps the performance of 

experiments enlightening how the direct protein-protein, protein-DNA interactions 

are established, how the structural and biochemical properties of similar proteins can 

define their different roles in trichome patterning.  

This project attempts to analyse and characterise the patterning proteins 

biochemically. It aims to express, purify and further characterise the proteins 

involved in Arabidopsis trichome initiation machinery. Purified proteins allow for 

experiments to be carried out that further help to understand the patterning 

mechanism at a biochemical level. Moreover, until now, the lack of antibodies for the 

patterning proteins made it possible to work only with gene fusion tags which may 

not always reflect the real biological situations. Consequently, this study endeavours 

to obtain pure antibodies against patterning proteins. These antibodies may in the 

future be used to conduct experiments in requirement for the native proteins. 

Additionally, it is also this project’s aim to test in vitro the interactions which had 

been genetically shown previously. It is of interest to test the functionality of proteins 

in vitro and also to see whether these interactions are occurring in a direct manner. In 

summary, this work contemplates biochemical data to explain the features of the 

patterning mechanism, which are so far not discovered. 
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2. RESULTS 

The prerequisite to biochemically study a mechanism is to have the 

proteins in hand. Therefore, the proteins which are thought to be involved in 

trichome patterning were tried to be expressed using different expression systems. 

Since it is better to express eukaryotic proteins in eukaryotic systems, initially the 

expression of GL1, GL3, EGL3, TTG1, TRY and CPC proteins in two different 

eukaryotic expression systems were tried. However, it was not possible to express 

these proteins using neither the S.cerevisiae nor the P.pastoris expression systems 

(Data not shown). Another eukaryotic expression system, Arabidopsis suspension 

cultures, was also tried. This also did not yield production of the proteins that were 

intended in this expression system (Data not shown). After these trials, the only 

choice left was to use different bacterial expression systems as an alternative. The 

proteins to be expressed were intended to be used in different purposes. Hence; the 

expression of different proteins either using no tag or with different fusion tags was 

attempted in this study. 

2.1. PREDICTED PI AND MOLECULAR WEIGHTS OF PATTERNING 

PROTEINS 

In order to provide appropriate experimental conditions for proteins, one 

should find a proper buffer in which proteins are soluble, stable and can exert their 

biochemical activities. One of the important features of the buffer chosen is the pH 

value. Therefore, at first the predicted pI values of different proteins from The 

Arabidopsis Information Resource (TAIR) Database were analysed (Table 1). 
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Table 1  pI values and molecular weights of proteins identified in TAIR database [71a]. 

 

Protein Name pI value Molecular Weight (Da) 

GL1 7.18 26339 

GL3 5.93 70538 

EGL3 4.81 66619 

TTG1 4.49 37892 

TRY 9.99 13005 

CPC 10.21 11385 

TTG2 9.39 47141 

 

2.2. CHARACTERISATION OF DIFFERENT PROTEINS IN DIFFERENT 

BUFFER CONDITIONS 

As explained in Introduction, proteins acting in the patterning pathway 

contain different classes of conserved domains. Furthermore, as can be seen in Table 

1, all trichome patterning proteins have different computed pI values, which indicate 

that these proteins might have different behaviours under the same conditions. Since 

a combination of these proteins would be used in this work (such as in in vitro pull-

down assays), it would be important to determine the common preferred buffer 

conditions that a combination of proteins of interest could function properly. 

Therefore, initially a test purification step for all the proteins that were 

used in this study was done as a His- tag fusion via Nickel-Nitrilotriacetic Acid (Ni-

NTA) resin. After purification of each protein individually, the purified proteins 

were dialysed against several different buffers. The behaviours of proteins for 

different buffering reagents were analysed and the optimum buffer to work with was 

determined. After dialysis, the protein samples were first centrifuged and then 

analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

These treatments were applied to His-GL, His-GL3, His-EGL3, His-TTG1 and His-

TRY proteins- the key players of trichome patterning. SDS-PAGE analyses have 

shown that the proteins were precipitating when they were in MES buffer, whereas 

HEPES buffer was shown to destabilize the proteins. When an SDS-PAGE was done 

for HEPES buffered proteins that were left for overnight at 40C, it was observed that 
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proteins started showing smears instead of clear bands. As an example, His-GL1 

protein is shown in different buffers after overnight storage at 40C in Figure 4. On the 

other hand, proteins in buffers of Phosphate, Tris or Carbonate could still be detected 

by Coomassie staining after SDS-PAGE, even after several weeks of storage at 40C. 

This showed that the optimum buffer to work with is a Tris or Phosphate based 

buffer. pH values of the different Tris buffers were tested for pH 7, pH 7.5, pH 8 and 

pH 8.5. The best Tris buffer condition was found to be pH 7.5 and pH 8, due to the 

reason that pH 7 value is very close to the pI value of the GL1 protein. Carbonate 

buffer was not used for the experiments due to its high pH value (pH > 9). The 

buffers that were used for different proteins are explained in the Materials & 

Methods section in detail. 

 

Table 2 Different buffering reagents that were tested and corresponding protein 
behaviour. 

 

Buffering Reagent Protein 

HEPES pH 7.5 Proteins were not stable 

MES pH6.2 Proteins were not soluble 

Phosphate pH 7.4 Proteins were both stable and soluble 

Carbonate pH 9 Proteins were both stable and soluble 

Tris Proteins were both stable and soluble 

 

 

 

Figure 4 SDS-PAGE of the His-GL1 in different buffers. 

 

  HEPES              TRIS                   PBS                 MES       
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2.3. THE STRUCTURAL DIFFERENCES OF THE MYB PROTEINS 

INVOLVED IN TRICHOME PATTERNING 

The MYB proteins involved in trichome patterning exert different 

functions for activation or inhibition of trichome patterning despite containing 

conserved domains [14, 15, 23, 45, 47, and 48]. How this is achieved by these proteins 

containing similar sequences is still not known. One of the reasons could be the 

differences in their tertiary structures. Therefore, it would be of great importance to 

compare the structures of the MYB proteins acting as activators and inhibitors for 

trichome patterning. For this reason GL1 and TRY were chosen as representatives, 

since they have been shown to be the key players in activation and inhibition 

machineries respectively [14, 15, 23, and 48]. 

 Among plant MYB proteins, the only one with a solved structure is a 

MYB domain protein from Antirrhinum [58]. However, the alignment of protein 

sequences of the Antirrhinum MYB protein together with GL1 or TRY did not yield 

any results that would help conduct homology modelling. When an alignment for 

closest homologue with a known structure in the Protein Databank (PDB) [71b] is 

conducted, the result yields to a MYB protein from chicken, which is still far away. 

Also the database search by Predict Protein Database [71c] did not yield any results 

for GL1 and TRY proteins based on the known structures in the databases of 3D- 

Jigsaw [71d] and Swiss-Model [71e], and PDB. This hindered the Homology 

Modelling or 3D Structure Alignment for GL1 and TRY protein structures. Therefore, 

it would be important to crystallize the GL1 and TRY in order to solve their three-

dimensional structures to enlighten the differences in their activities. In order to do 

this, GL1 and TRY had to be obtained as extremely pure, highly concentrated and 

devoid of any tags, which may interfere with their tertiary structures. This required 

the expression and purification of GL1 and TRY. 

2.3.1. EXPRESSION OF PROTEINS WITHOUT TAG 

The CDS’s of GL1, GL3, TTG1, TRY and CPC proteins – the key players in 

trichome initiation representing one protein from each domain class- were cloned 

into the pET3a vectors. GL1, TRY and CPC proteins were successfully expressed 

using the inducible T7 promoter for high levels of protein expression in bacteria. 

Expression was achieved with a final concentration of 0.5 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) induction for 3 hours. GL3 and TTG1 proteins could 

not be expressed with the usage of this vector. Expressions were analysed by taking 
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an aliquot from cell culture after induction, running these aliquots in SDS-PAGE and 

staining of the gels with Coomassie staining (Figure 5). 

 

 

 

Figure 5 SDS-PAGE of the cell extracts after induction containing the pET3a vector constructs. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the left side 

Arrows indicate the expressed proteins. 

 

2.3.2. PURIFICATION OF GL1 AND TRY EXPRESSED VIA THE pET3a 

VECTOR 

GL1 and TRY proteins which were expressed using the pET3a vector were 

purified via gel filtration chromatography since this vector does not contain any 

sequences for fusion tags. Two rounds of gel filtration chromatography were 

performed in order to get a highly pure protein. During gel filtration, a bigger pore 

sized column for first and a smaller pore sized column for the subsequent 

purification were used. All of the elution fractions containing the protein of interest 

after the first gel filtration chromatography were combined due to the fact that first 

round of purification did not result in a single band of protein in SDS-PAGE (Data 

not shown). After two rounds of gel filtration chromatography, GL1 was still not 

observed as a single band on SDS-PAGE (Figure 6). On the other hand, by the same 

method, TRY protein was nicely obtained in a soluble form although some 

contaminants were present in SDS-PAGE even after the second gel filtration step 

(Figure 7). In order to get rid of these contaminants, cation exchange 

chromatography was performed. After the cation exchange, the TRY protein was 

nicely pure and solubilised. After this step, the concentration of the protein was not 

high enough to proceed to crystallization (Figure 8). Therefore, the elution fractions 

of 44 to 49 were combined and the protein was concentrated by the use of Amicons. 

 M      pET3a      GL1        GL3       TTG1     TRY       CPC 

10 

26 

43 

72 
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However, the concentration of the protein resulted in formation of aggregates, which 

is a major drawback for crystallization of proteins [72]. The aggregation of these 

proteins could not be prevented by changing to other buffers since the initial tests 

already showed that TRY protein is not stable in a HEPES and not soluble in a MES 

buffer. Therefore purification of TRY was pursued by another method. 

 

 

 

Figure 6 SDS-PAGE after 2nd purification of GL1 by gel filtration chromatography. 

B: The sample before loading to the second gel filtration column. 

Numbers correspond to the elution fractions. 

M: Unstained protein molecular weight marker, with corresponding MW values (kDa) shown on the left side 

Arrow indicates the band corresponding to theoretical size of GL1 

 

 

 

Figure 7 SDS-PAGE after 2nd purification of TRY by gel filtration chromatography. 

B: The sample before loading to the second gel filtration column. 

Numbers correspond to the elution fractions. 

Elutions from number 29 to 47 correspond to the peak in the chromatogram which is calculated to be the 
size of 13kDa. Therefore they were combined and concentrated. 

M: Unstained protein molecular weight marker, with corresponding MW values (kDa) shown in the figure. 

Arrow indicates the band corresponding to theoretical size of TRY. 
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Figure 8 SDS-PAGE after cation exchange chromatography of TRY. 

Fractions of 44-49 from the cation exchange chromatography were combined and concentrated  

The numbers correspond to the elution fractions. 

Arrow indicates the band corresponding to theoretical size of TRY 

 

2.3.3. EXPRESSION OF PROTEINS WITH N-TERMINAL MBP- TAG 

As mentioned above, one of the intentions of this study was to crystallize 

the patterning proteins. The observation that these proteins could not be obtained in 

a desired manner when they were expressed by a vector without a fusion tag, paved 

the way for the usage of a cleavable tag fused to the protein of interest. For this 

reason, the pMALC2 vector was chosen for expression purpose since it contains a 

Maltose Binding Protein (MBP) tag, which is also known to solubilise the fusion 

proteins [73, 74]. This vector also has a Factor Xa protease cleavage site between the 

tag and the coding sequence of the desired gene. Therefore, the GL1, GL3, TTG1 and 

TRY were cloned into this vector and the expressions of these gene products were 

tested after IPTG induction. With this vector; GL1, TTG1 and TRY proteins were 

obtained in a soluble manner but GL3 expression was not observed (Figure 9). 
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Figure 9 SDS-PAGE of the cell extracts containing the pMALc2 constructs after induction. 

This vector contains sequences enabling N-terminal MBP- fusion of 42.5 kDa in addition to the size of the 
proteins. Empty vector expresses the MBP- alone. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

Arrows indicate the expressed protein. 

2.3.4. PURIFICATION OF MBP- TAGGED PROTEINS 

The GL1, TTG1 and TRY proteins cloned into the pMALC2 vectors were 

successfully expressed downstream of the MBP- tag, which not only facilitated the 

bacterial expression of the proteins in a soluble manner but also allowed the 

purification via the Amylose resin [75]. These three proteins were then purified via 

Amylose resin successfully (Figure 10). The best purification was achieved for GL1 

and TRY proteins. 

 

 

   

Figure 10 SDS-PAGE showing N-terminal MBP- tagged proteins via Amylose resin. 

a) GL1, b) TTG1, c) TRY. The abbreviations refer to the following 

S: The soluble bacterial cell lysate 

FT: Flow through after incubation of the cell lysate with the Amylose resin 

W: The combined sample from six washes 

E1: First elution fraction, E2: Second elution fraction, E3: Third elution fraction 

E4: Fourth elution fraction, E5: Fifth elution fraction 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for each figure. 

Arrows indicate the MBP- tagged proteins in the cell lysates 

 GL1       GL3      TTG1       TRY      pMALc2        M 

a) Purification of MBP-GL1                   b) Purification of MBP-TTG1                 c) Purification of MBP-TRY 
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After the purification via Amylose resin, elution fractions of 2 to 5 for 

tagged GL1 and TRY proteins were combined and incubated with Factor Xa protease 

to obtain cleavage of the tag. No Factor Xa cleavage site in the protein sequences of 

both GL1 and TRY were predicted to be present. However, no GL1 protein in the 

solution was found even after incubation for 12 hours of Factor Xa protease with the 

purified MBP- tagged GL1 protein (Data not shown). This could be due to the 

internal instability of GL1 protein under these conditions. On the other hand, the 

cleaved TRY after Factor Xa treatment was successfully obtained. 

The cleavage reactions were performed at 150C in order to prevent the 

degradation of the proteins. As a control, same amount and concentration of the 

tagged protein was incubated in the same buffer without any Factor Xa protease at 

150C. During this incubation, the TRY protein broke apart from the tag 

endogenously. However, the protein cleavage was still efficient after 8 hours of 

incubation (Figure 11).  

The purified TRY, which was cleaved by the protease Factor Xa, was 

further polished by gel filtration chromatography. In order to ascertain that the 

protease does not cleave the internal protein and the starting sequences of the TRY 

protein are not altered, TRY protein was sequenced. The samples run on the SDS-

PAGE corresponding to the TRY size were cut and used for protein sequencing. The 

correct cleavage of the protein from the tag was confirmed by protein sequencing 

using Peptide Mass Fingerprinting (Figure 12). The bars indicate the sequence that 

yielded from the protein sequencing blasted to the known TRY sequence from the 

TAIR Database. As one can see from this alignment, the protein sequence starts with 

the starting amino acid of TRY. In other words, no amino acid sequence from the tag 

has remained after the cleavage of the MBP- tag. 
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Figure 11 SDS-PAGE showing the cleavage of MBP-TRY. 

Numbers 0, 2, 4 and 8 on the left side of the figure correspond to 0, 2, 4 and 8 hours of Factor Xa incubation 
of the purified MBP-TRY protein. Numbers 2, 4 and 8 on the right side correspond to 2, 4 and 8 hours of 
incubation of the purified MBP-TRY protein in buffer lacking the protease. 

The upper bands correspond to the fusion protein, the intermediate bands correspond to the cleaved MBP 
tag and the lower bands correspond to the cleaved TRY. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the left side. 

Arrows indicate the theoretical sizes corresponding to the fusion protein, tag and protein. 

 

 

 

Figure 12 Alignment of protein sequence obtained using Peptide Mass Finger printing with the 
known amino acid sequence of the TRY protein. 

Bars represent the protein sequence obtained from protein sequencing of TRY. 

 

2.3.5. PURIFICATION VIA GEL FILTRATION CHROMATOGRAPHY 

After cleavage of the tag by Factor Xa, initially cation exchange 

chromatography was performed to purify the TRY from the uncut fusion proteins 

and the cleaved tag. However, this did not result in pure TRY (data not shown). As 

an alternative, gel filtration chromatography was performed. The fusion of the TRY 

protein to the MBP- tag solubilised the protein. Nevertheless, the TRY protein was 

not obtained in a soluble manner after removal of the tag. TRY protein was always 

found to be eluted in the fractions which correspond to protein aggregates after gel 

filtration chromatography (Figure 13). This gel filtration was performed in a Tris 

buffer. Changing the protein to a Phosphate buffer still gave a similar result with the 

gel filtration (Data not shown). 
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Figure 13 Gel filtration chromatography of cleaved TRY and MBP- tag 

a) Chromatogram showing gel filtration chromatography 

b) SDS-PAGE after gel filtration chromatography 

 Numbers correspond to the elution fractions of 14, 23, 36, 39, 42, 45, 54, 58, 66 and B is the sample loaded 
onto the gel filtration column. 

The upper band in the gel corresponds to the uncleaved MBP-TRY protein. The intermediate band 
corresponds to the cleaved MBP- tag and the lower band corresponds to the cleaved TRY protein. 

 

2.3.6. COEXPRESSION OF TRY WITH GL3 AND ITS PURIFICATION VIA GEL 

FILTRATION CHROMATOGRAPHY  

It has been shown that coexpression of interacting partners of proteins 

may solubilise the individual proteins [76, 77, and 78]. Yeast two-hybrid and 

bimolecular fluorescence complementation (BiFC) analyses have reported that TRY 

protein is able to interact with GL3 protein [17, 62]. Therefore, in order to solubilise 

the TRY protein, MBP-TRY was coexpressed with GL3 protein containing a His- tag 

(Figure14). The proteins were then purified via the Amylose resin as in the case of 

MBP-TRY protein when expressed alone. After purification via the Amylose resin, 

MBP-TRY protein was observed to be eluted with GL3. This confirms that their 

interaction observed can occur also in bacteria. This eluate was then loaded onto gel 

filtration column and they were still found to be eluted together in the first fractions 

of the chromatography step. This observation shows that this interaction is a strong 

binding. However, it also indicates that the aggregation of TRY cannot be prevented 

even if it is together with its interacting partner and perhaps GL3 is also aggregating 

in a similar manner (Figure 15). 
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Figure 14 SDS-PAGE showing coexpression of MBP-TRY and His-GL3 

 0: cells before induction, I: cells after induction with a final concentration of 0.3 mM IPTG. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

 

 

            

Figure 15 Purification of the MBP-TRY and His-GL3 by gel filtration 

a) Chromatogram showing gel purification of GL3-TRY 

b) SDS-PAGE after Gel Filtration Chromatography of the elution fractions 

B: sample loaded onto the column, numbers correspond to the elution fraction numbers 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

 

All of the methods mentioned above did not provide GL1 and TRY in the 

desired manner for crystallization of these proteins. Therefore, other methods for 

expression and purification of these proteins should further be performed to obtain 

soluble and pure GL1 and TRY. 
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2.4. THE DIRECT INTERACTIONS OF PROTEINS FOR TRICHOME 

PATTERNING 

Yeast two-hybrid, genetic, BiFC and Protein complex 

Immunoprecipitation (Co-IP) experiments all denote the interactions among the 

members of the MYB-bHLH-WD40 protein complex in planta [17, 62, and 69]. 

However, the constraints of these experiments are that it is still not known whether 

these interactions occur in a direct manner. For this reason, it was the aim of this 

work to use pure proteins. As a result, the presence of these interactions would be 

confirmed in a direct manner in vitro by using the individual proteins. For the 

analyses of the direct interactions among patterning proteins, glutathione S-

Transferase (GST) pull-down experiments using pure proteins were planned. Yet, the 

lack of antibodies against these proteins revealed that only the tagged proteins could 

be used for detection in these experiments. The CDS’s were cloned into vectors 

containing Strep-, His- or GST- tags for high levels of expression, purification and 

detection of the desired proteins. 

2.4.1. EXPRESSION OF PROTEINS USING A VECTOR CONTAINING C-

TERMINAL HIS- FUSION TAG 

The CDS’s of GL1, GL3, TTG1, TRY and CPC proteins were recombined 

via LR into pGEX2TM-GW vector without the stop codon in the coding sequences. 

This provides the expression of a fusion protein with a C-terminal His- tag after IPTG 

induction. SDS-PAGE and Western blot analysis of the cell extracts after induction 

did not yield any bands corresponding to induction of the proteins (Data not shown). 

Therefore this system was not used for further procedures. 

2.4.2. EXPRESSION OF PROTEINS WITH N-TERMINAL STREP- TAG 

Since the C-terminal His- tagged proteins were not expressed and the 

need for another tag to do the GST pull-down experiments existed, a Strep- tag 

containing pASK3GW vector was used. This is a gateway compatible vector, 

containing a Tetracycline inducible promoter. It also allows the production of 

proteins with an N-terminal Strep- fusion protein. The GL1, GL3, EGL3, TTG1, TTG2 

and TRY coding sequences were recombined into the vector pASK3GW. After 

induction, the expressed proteins except EGL3 and TTG2 could not be differentiated 

from the background proteins in Coomassie stained SDS-PAGEs (Figure 16 a). 
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However, the inductions of GL3, EGL3, TTG1 and TTG2 proteins via this vector were 

observed by doing a Western blot with a Strep- tag antibody (Figure 16). Due to the 

fact that not all of the proteins were successfully expressed, the usage of this system 

for further experiments was abandoned. 

 

 

     

Figure 16 SDS-PAGE analysis of the cell extracts containing the pASK3GW constructs after 
induction. 

a) SDS-PAGE showing the cell extracts after induction with tetracycline 

b) Western blot showing the cell extracts after induction with tetracycline. 

Detection was done by using anti-Strep antibody as 1
0
 antibody. 

This vector contains sequences enabling N-terminal Strep- fusion of 8 amino acids, in addition to the size of 
the proteins 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

Arrows indicate the expressed proteins. 

 

2.4.3. EXPRESSION OF PROTEINS WITH AN N-TERMINAL HIS- FUSION TAG 

The GL1, GL3, EGL3, TTG1, TTG2, TRY, MYB23, WER, ETC1, ETC2, ETC3 

and CPC were successfully expressed using the pDESTTM17 vector, which contains 

an N-terminal His- fusion tag. In order to obtain proteins in a soluble form, 

expressions under different conditions were tried. Each condition refers to a 

combination of the following parameters: induction duration, induction temperature, 

final IPTG concentration and types of cells. The values for these parameters used in 

these trials are given in Table 3. However, none of the conditions resulted in 

solubilisation of the expressed proteins. Reduction of induction temperature below 

200C resulted in no expression of the proteins. The best protein expression levels for 

all proteins were obtained when a final concentration of 1 mM IPTG at 370C for 3 

hours in BL21DE3RIL (STRATAGENE) were used. Expression of each protein under these 
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conditions were analysed by SDS-PAGE. Western blot analysis was also done using 

anti-His antibody to check the integrity of the fusion tag. SDS-PAGE and Western 

blot analyses are shown in Figure 17.  Therefore, the expression studies were 

proceded under these conditions in the further experiments. 

 

 

Table 3 Parameters used for soluble expression of proteins. 

Soluble expression of each protein used in this study was tested in all possible combinations of the 
different parameter values indicated. 

 

Induction time (hours) 0,5 1 2 3 4 5 6 

Induction temperature (
0
C) 37 30 28 25 20 18 15 

IPTG [mM] 0.1 0.3 0.5 1 

Cell types BL21 Rosetta Gami& 

Rosetta Gami B 

TOP10 BL21de3RIL 

 

 

Due to the reason that C-terminal His- fusion did not yield any protein 

expression, these N-terminal His- tagged insoluble proteins were used for further 

experiments. For the subsequent assays, the inclusion bodies were purified from the 

cytosolic fractions which were then solubilised by dialysis against the buffers needed 

for the GST pull-down experiments. 
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Figure 17 SDS-PAGE (a & b) and Western blot (c & d) analyses of the cell extracts, containing 
the pDESTTM17 constructs after induction. 

This vector contains sequences enabling N-terminal His- fusion of 2.6 kDa in addition to the size of the 
proteins. Empty vector expresses the His- alone 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

Arrows indicate the expressed protein. 

 

2.4.4. PURIFICATION OF HIS- TAGGED PROTEINS 

None of the proteins were expressed when they were in fusion with the C-

terminal His- tag. On the other hand, the use of N-terminal His- tag in pDESTTM17 

vector made it possible to express all the patterning proteins that were tested. 

Therefore, the purification of all the patterning proteins that were expressed together 

with the N-terminal His- fusion tag were accomplished through Ni-NTA resins. 

Proteins purified by this method were then dialysed against the buffer of interest for 

further experiments. Purification for each individual protein was analysed by SDS-

PAGE via Coomassie staining. These results can be seen in Figure 18. 
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Figure 18 SDS-PAGE showing the N-terminal His- tagged protein purifications via the Ni-NTA 
resin. 

The constructs used are pDEST
TM

17 containing: a) GL1 b) TRY c) GL3 d) EGL3 e) TTG1 f) TTG2. 

The abbreviations refer to the following 

IB: inclusion body preparation 

FT: Flow through after incubation of the inclusion body preparations with the Ni-NTA resin 

W1: First washing, W6: Last (sixth) washing 

E2: Second elution fraction, E4: Fourth elution fraction, E6: Sixth elution fraction, E8: Eighth elution fraction, 
E10: Tenth elution fraction 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for each figure. 

Arrows indicate the protein to be purified in the inclusion body preparation.  

a) Purification of His-GL1                                             b) Purification of His-TRY 

M     IB     FT     W1    W6     E2       E4      E6      E8    E10        IB      FT    W1    W6      M    E2      E4        E6       E8     E10 

c) Purification of His-GL3                                  d) Purification of His-EGL3 

      IB      FT    W1   M      W6      E2      E4       E6     E8    E10          IB       FT      M     W1      W6     E2      E4    E6      E8    E10 

e) Purification of His-TTG1                                               f) Purification of His-TTG2 

IB       FT      M      W1   W6      E2      E4     E6      E8    E10        IB      FT    W1  W6    M       E2     E4        E6      E8      E10 
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2.4.5. EXPRESSION OF PROTEINS WITH AN N-TERMINAL GST- FUSION TAG 

 One of the goals of this work was to confirm the protein interactions 

which were shown in previous studies and to analyse if they can occur in a direct 

manner. Therefore, GST pull-down experiments were aimed, where these 

interactions in vitro in a biochemical assay could be proven. To be used in these 

experiments, expression of the patterning proteins as N-terminal GST- fusions were 

done. Use of GST- tag was also advantageous, since GST- tag is known to solubilise 

proteins fused to this tag [79]. By the use of the vector pGEX2TM-GW containing an 

N-terminal GST- fusion tag, GL1, GL3, EGL3, TTG1, TTG2, TRY and CPC proteins 

were successfully expressed in Bl21DE3RIL(STRATAGENE) cells as a soluble GST- fusion. 

The solubilisation of these GST- fusion proteins were achieved via lyses with N-

laurylsarcosine (sarkosyl) as suggested by Frangioni and Neel [79]. Expression of 

each protein under these conditions were analysed by SDS-PAGE. Western blot 

analysis was also done using anti-GST antibody to check the integrity of the fusion 

tag. SDS-PAGE and Western blot analyses are shown in Figure 19. 

 

 

 

 

   

Figure 19 SDS-PAGE and Western blot analyses of the cell extracts after induction containing 
the pGEX2TMGW vector constructs. 

This vector contains sequences enabling N-terminal GST- fusion of 26 kDa in addition to the size of the 
proteins. Empty vector expresses the GST- alone. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

Arrows indicate the expressed protein. 
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2.4.6. PURIFICATION OF GST- TAGGED PROTEINS 

The GST- fusion proteins were successfully purified via the Glutathione 

(GSH) resin after lyses of the cells. The GST- tag enabled the successful solubility of 

the expressed proteins, thus no further solubilisation step was required. Figure 20 

shows the SDS-PAGE analyses after purification of these proteins. 

 

   

 

  

 

Figure 20 SDS-PAGE showing the N-
terminal GST- tagged protein purifications via the 
GSH resin. 

The constructs used are pGEX2TMGW containing 

a) GL1 b) GL3 c) EGL3 d) TTG1 e) TTG2. 

The abbreviations refer to the following 

 S: Soluble bacterial lysate 

FT: Flow through after incubation of the cell lysate 
with the GSH resin 

  W: Combined sample of six washings 

E1: First elution fraction, E2: Second elution fraction, E3: Third elution fraction 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for each figure. 

Arrows indicate the protein to be purified in the cell lysate.  

   a) Purification of GST-GL1                       b) Purification of GST-GL3 

    S          FT            W         E1           E2             E3       M           M           S            FT          W            E1         E2         E3     

c) Purification of GST-EGL3      d) Purification of GST-TTG1 

   M          S             FT          W          E1          E2           E3            S            FT           W            E1        E2          E3         M 

e) Purification of GST-TTG2 
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2.4.7. DIRECT INTERACTIONS AMONG PATTERNING PROTEINS 

In order to reveal if the interactions which were shown by yeast two-

hybrid analyses can also occur in vitro, GST pull-down experiments were attempted. 

For this purpose, initially GST- and MBP- tagged proteins were used since both of 

these proteins could be obtained from soluble fraction of the induced cells. However, 

the control experiment has shown that MBP can interact alone with the GST, which 

would interfere with the pull-down experiments (Data not shown). Thus, GST pull-

downs were conducted with the GST- and His- tagged proteins. Initially, the known 

interactions were tested. The in vitro GST pull-down experiments performed have 

exhibited that GL1-GL3, GL1-EGL3, TRY-GL3 and TRY-EGL3 interactions can also 

occur in vitro with the purified proteins. These interactions were observed by 

detecting the proteins with anti-His antibodies after incubation of these two different 

tagged proteins in GSH resin as shown in Figure 21 a) and b). This result also 

indicates that these interactions are occurring in a direct manner. Apart from the 

known interactions, it has also been observed that GL1 can interact with the TTG1 

and TRY proteins in vitro. Figure 21 a), b) and c) show these novel interactions, which 

have not been reported before in the yeast two-hybrid experiments. The formation of 

the predicted activator complex of GL1-GL3/EGL3-TTG1 has also been shown in 

vitro by this assay, using these three proteins together. The formation of this complex 

is observed by using anti-His antibody which detects the His-GL3/ His-EGL3 and 

His-TTG1 as shown in Figure 21 c). 

During the conduction of these experiments, some problems occurred. The 

first one was the non-specific binding of GL1 and TRY to the corresponding resin. 

However, these non-specific bindings could be prevented by increasing the mild 

detergent Nonidet-P40 and Bovine Serum Albumin (BSA) concentrations in the pull-

down buffer. Another problem was that the interactions observed when His-TRY 

protein was used could never be obtained with GST-TRY. This could be due to the 

size of the GST- tag (26 kDa) being much bigger than the TRY and hindering the 

interaction sites in the TRY structure. 
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Figure 21 Western blotting after GST pull-down experiments. 

a) Western blots of GST pull-downs showing the interactions of GL1 protein with GL3, EGL3 and TTG1 proteins 

b) Western blots of GST pull-downs showing the interactions of TRY proteins with GL3, EGL3 and GL1 proteins 

c) Western blots of GST pull-downs showing the interactions of TTG1, GL3, EGL3 and GL1 proteins. 

In all of the GST pull-down experiments, proteins are immobilized via the GSH surface and Western blots are 
performed by using anti-His antibody as primary antibody. 

 

Another interaction that was intended to be shown by GST pull-down 

experiments was the interaction of TTG1 with TTG2. In this assay, GST-TTG2 protein 

was always shown to interact with Ni-NTA resin. Another problem with the GST-

TTG2 protein was its low expression levels. Therefore His-TTG2 was tried to be 

pulled together with GST-TTG1 via GSH resin. In this combination, His-TTG2 was 

also bound to GSH resin. Changing the Nonidet-P40 and BSA concentrations in this 

case could not prevent the non-specific binding of TTG2 to the matrix in any of the 
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conditions used. However, the signal after the Western blot of His-TTG2 together 

with GST-TTG1 was much stronger compared to the His-TTG2 bound to the resin 

alone. TTG1-TTG2 interaction is shown in Figure 22. This might be a confirmation to 

the yeast two-hybrid experiments, in which TTG1-TTG2 interaction was observed by 

Martina Pesch [personal communication].  

 

 

 

 

Figure 22 Western blot after GST pull-down experiments of TTG1 and TTG2 

In the GST pull-down experiment, proteins are immobilized via the GSH surface and Western blots are 
performed by using anti-His antibody as the primary antibody. 

 

 

2.5. COEXPRESSION AS A TOOL FOR PROTEIN-PROTEIN INTERACTIONS 

During its expression, GST-TTG2 was not obtained in high concentrations 

compared to the other patterning proteins. Moreover, TTG2 was also expressed in 

inclusion bodies when fused into N-terminal His- tag. This protein was shown to 

interact with TTG1 in yeast two-hybrid system [Martina Pesch, personal 

communication].  

In order to increase the stability and solubility of TTG2, it was coexpressed 

with its putative interacting protein TTG1, by using different overexpression vectors 

containing different selection genes. In this method, TTG1 and TTG2 were 

recombined into three different vectors. One of these vectors contained Kanamycin 

resistance (pET28 Frame C), while the other contained Ampicillin resistance (pDEST 

        -                     GST           GST-TTG1        GST-TTG1                         
 His-TTG2         His-TTG2        His-TTG2                 -                                   
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TM17 or pGEX2TMGW). After transformation of these constructs, a single colony 

bearing the two constructs was selected. This colony was grown for coexpression of 

TTG1 and TTG2. SDS-PAGE analysing the inductions of these proteins is shown in 

Figure 23. When the cells containing both His- tagged proteins were lysed, the 

expressed proteins were still found to be in the inclusion bodies. However, the 

coexpressed proteins were soluble when either partner was expressed in fusion with 

GST- tag. Cell lysates of the soluble and inclusion body fractions analysed by SDS-

PAGE are shown in Figure 24. 

 

 

 

 

 

Figure 23 SDS-PAGE of the cell extracts containing two vectors for coexpression of TTG1 and 
TTG2. 

The upper row of the subscription describes the proteins expressed from pET28 Frame C vector, the lower 
row describes the proteins expressed from pDEST

 TM
 17 vector or pGEX2TMGW vector. The fusion tags that 

the protein contains are indicated as N-terminal or C-terminal fusions. 

0 refers to the cell extracts before induction 

I refers to the cell extracts after induction with IPTG. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 

Black arrows correspond to the theoretical sizes of the induced proteins. Red arrows correspond to the TTG1 
and black arrows correspond to the TTG2 proteins. 
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Figure 24 SDS-PAGE of the cell lysates of TTG1 and TTG2 coexpressing cells. 

The upper row of the subscription describes the proteins expressed from pET28 Frame C vector, the lower 
row describes the proteins expressed from pDEST

 TM
 17 vector or pGEX2TMGW vector. The fusion tags that 

the protein contains are indicated as N-terminal or C-terminal fusions. 

S refers to the soluble fraction of the cell lysate 

IB refers to the inclusion body preparation 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown in the figure. 

Black arrows correspond to the theoretical sizes of the induced proteins. Red arrows correspond to the TTG1 
and black arrows correspond to the TTG2 proteins. 

 

 

In order to evaluate the interactions of TTG2 protein with other patterning 

proteins, initially GST pull-down experiments were performed –as explained in 

section 2.4.7. However, TTG2 was non-specifically binding to the corresponding 

resin when it was expressed either as a His- or GST- fusion protein. To show whether 

the TTG2 and TTG1 proteins can be coeluted after affinity purification, a single step 

Ni-NTA or GSH or double step Ni-NTA and GSH purification procedures were 

applied to these proteins. Coexpressed proteins were successively purified via Ni-

NTA and GSH resin or vice versa and it has been shown that after two rounds of 

purification as well as single step purification via the respective tags, TTG1 and 

TTG2 proteins were found to be eluted only in the case of TTG1pET28frameC (N-

terminal His- fusion) and TTG2 pGEX2TMGW (N-terminal GST- & C-terminal His- 

fusion) together. However, GL1 protein, which was not shown to interact with the 

TTG2 protein in yeast two-hybrid experiments [Martina Pesch, personal 

communication], was also eluted together with this protein after two rounds of 

purification. Coeluted proteins after subsequent purifications via GSH and/or Ni-

NTA resins were detected in Western blots by anti-GST and/or anti-His antibodies 

  His-TTG2-His  His-TTG2-His  His-TTG2-His   His-TTG2    His-TTG2    His-TTG2     His-TTG1                        His-TTG1         His-TTG1 

   + His-TTG1     + His-TTG1     + GST-TTG1   + His-TTG1 + His-TTG  + GST-TTG1  + His-TTG2               + His-TTG2      + GST-TTG2-His     

           S                  IB                  S                 S               IB                S                S               M              IB                  S  
130 

72 

55 

43 

34 

26 



 
Results 

 Dartan, B. Inaugural Dissertation 37 

respectively (Figure 25). This implies that this coelution can be an artefact due to the 

overexpression of these proteins in the cells from a single bacterial colony. It is also 

known that transcription factors are sticky and that they show non-specific binding 

to be a big problem for this type of proteins. This could also be the case for GL1 

protein, which non-specifically binds to the resins during purification. On the other 

hand, these could also be novel interactions as in the case of GL1-TTG1 and GL1-TRY 

interactions. 

 

 

 

 

Figure 25 Western blot after purifications of GL1-TTG2 and TTG1-TTG2 coexpressions. 

From left to right; 

First lane corresponds to coelution of GST-GL1 and His-TTG2-His after one round of purification via GSH 
resin. Detection is done by anti-His antibody. 

Second lane corresponds to coelution of GST-TTG2-His and His-TTG1 after one round of purification via Ni-
NTA resin. Detection is done by anti-His antibody. 

Third lane corresponds to coelution of GST-TTG2-His and His-TTG1 after one round of purification via GSH 
resin. Detection is done by anti-His antibody. 

Fifth lane corresponds to coelution of GST-TTG2-His and His-TTG1 after subsequent GSH and Ni-NTA 
purifications. Detection is done by anti-GST antibody. 

Sixth lane corresponds to coelution of GST-GL1 and His-TTG2-His after subsequent GSH and Ni-NTA 
purifications. Detection is done by anti-GST antibody. 

Fourth lane is hand-made markings corresponding to the PAGE PageRuler
TM

 Prestained protein ladder. 

 

As already shown in this work as well as in other studies, GL3 and TRY 

are interacting proteins [17, 62]. GL3 and TRY were cloned together into 

pCDFDuetTM-1 and pETDuetTM-1 vectors which were then coexpressed under IPTG 

inducible T7 promoters. Both vectors allow the expression of His- and S- tagged 

protein fusions. pCDFDuetTM-1 vector contains Coexpression of GL3 and TRY, when 

they were expressed from the same vector, is shown by SDS-PAGE in Figure 26 a). 
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TRY was obtained in soluble form when it was expressed together with GL3 protein 

in pETDuetTM-1. However; the growth of bacteria containing the GL3-TRY 

pCDFDuetTM-1 construct was very slow. The expression levels of GL3 and TRY when 

pCDFDuetTM-1 vector was used, was low and insoluble in comparison to the use of 

pETDuetTM-1. The presences of GL3 and TRY in soluble and inclusion body fractions 

of the cell lysate in these experiments are shown by SDS-PAGE in Figure 26 b).  

 

 

            

Figure 26 SDS-PAGE showing the coexpression of GL3 with TRY 

a) Cells grown from a single colony containing GL3 and TRY ligated to pETDuetTM-1 or pCDFDuetTM-1 
vectors before and after induction. 

0 refers to cell extracts before induction; I refers to cell extracts after induction run on SDS-PAGE. 

b) Cell lysates containing GL3 and TRY ligated to pETDuetTM-1 or pCDFDuetTM-1 vectors after lyses. 

S refers to the soluble fraction of cell lysate, IB refers to the inclusion body fraction of cell lysate. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for each figure. 

Arrows correspond to the theoretical sizes of the induced proteins. 

 

In order to see if GL3, TRY and TTG1 proteins can also form a complex in 

bacterial cells, all three genes were aimed to be coexpressed from a single colony. In 

this experiment GL3-TRY pCDFDuetTM-1 construct were used together with TTG1-

pDESTTM17 or TTG1-pGEX2TMGW. This was due to the reason that pCDFDuetTM-1 

vector has streptomycin/spectinomycin resistance marker whereas the latter two 

vectors contain ampicillin resistance marker. The results of this coexpression show 

that, GL3, TTG1 and TRY can be coexpressed when they are expressed in fusion to 

His- and S- tags, whereas the growth of bacterial cells containing His-GL3, S-TRY 

and GST-TTG1 were clearly reduced. Figure 27 a) shows the Coomassie staining of 

SDS-PAGE of the cell extracts bearing these constructs before and after induction. 

Coexpression of TRY protein with its interacting partner GL3 increased the solubility 

of this protein when other vectors were used for coexpression of these two proteins. 
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However, GL3, TTG1 and TRY expression from a single colony together, still yielded 

the production of these three proteins in the inclusion bodies. The comparison of 

soluble and inclusion body fractions of cells overexpressing GL3-TTG1-TRY is 

revealed in Figure 27 b). 
 

 

 

 

           

Figure 27 SDS-PAGE showing coexpression of GL3, TTG1 and TRY proteins. 

a) Cells grown from a single colony containing GL3 and TRY ligated to pCDFDuetTM-1 and TTG1 recombined 
to pDEST

TM
17 or to pGEX2TMGWvectors before and after induction. 

0 refers to cells before induction; I refers to cells after induction run on SDS-PAGE. 

b) Cell lysates containing GL3 and TRY ligated pCDFDuetTM-1 and TTG1 recombined to pDESTTM17 or to 
pGEX2TMGW vectors after lyses. 

S refers to the soluble fraction of cell lysate, IB refers to the inclusion body fraction of cell lysate. 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for each figure. 

Arrows correspond to the theoretical sizes of the induced proteins. 

 

2.6. PRODUCTION OF ANTIBODIES AGAINST TRICHOME PATTERNING 

PROTEINS 

2.6.1. PURIFICATION OF THE SPECIFIC ANTIBODIES 

Until now, presence of none of the antibodies against GL1, GL3, EGL3, 

TTG1, TTG2 and TRY have been reported. Therefore, this work aimed to raise 

antibodies against these key players of trichome patterning. The purified His-GL1, 

His-EGL3, His-TTG1, His-TTG2 and His-TRY were immunised to rabbits for raising 

specific antibodies against these patterning proteins. Total blood serums of the 

animals were obtained and antibodies were purified against these His- tagged 
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proteins as explained in the Materials and Methods chapter. After the purification of 

the antibodies from the total blood serum of the rabbits, the pure antibodies were 

then tested against different tagged versions of the patterning proteins. Western blot 

analyses using the preimmunization serum as primary antibody resulted in detection 

of almost no signal for overexpressed proteins in bacteria. On the other hand, several 

bands were detected when the final total serum was used as primary antibody. The 

Western blot analyses of the different tagged proteins, in which the purified specific 

antibodies were used as primary antibodies, show that the antibody purification 

procedure resulted in pure and specific antibodies for the proteins GL1, TTG1, and 

TRY.  However, several non-specific bands were observed in Western blot analyses 

of EGL3 and TTG2 proteins in the case of anti-EGL3 and anti-TTG2 antibodies 

respectively. Figures 28-34 show the Western blot analyses using these antibodies 

against bacterially expressed proteins containing different fusion tags. In all of the 

cases except MBP-TRY and Strep-EGL3, the use of fusion tag did not interfere with 

the antigen-antibody reactions. The Western blot analyses of the homologous 

proteins for GL1 or TRY revealed that the purification step provided the specific anti-

GL1 and specific anti-TRY antibodies which do not cross-react with the homologues 

of these proteins. 

 

 

 

Figure 28 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. WER and MYB23 were used to detect the specificity of the anti-GL1 
antibody, since they are homologous proteins. Empty cells refer to the cell containing the pDEST

TM
17 vector 

alone after induction. The samples loaded are the cell extracts after induction pelleted from 1 mL of the 
culture and boiled in SDS-Gel Loading Buffer after induction. As can be seen from the last blot, purified anti-
GL1 antibody does not show cross-reaction with the homologous MYB proteins WER and MYB23. 

GL1mut is a single amino acid mutation containing GL1 protein, which was found not to be interacting with 
the GL3 protein in yeast two-hybrid interactions [Martina Pesch, personal communication]. 

GL1 protein containing different fusion tags were used for detection with anti-GL1 antibody to specify the 
interference of the tags with antigen-antibody interaction. Arrows indicate the different tagged GL1 
detected by the anti-GL1 antibody specifically.  
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Figure 29 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction. I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. 

TRYmut is a single amino acid mutation containing TRY protein which was found not to be interacting with 
the GL3 protein in yeast two-hybrid interactions [Martina Pesch, personal communication]. 

TRY protein containing different fusion tags were used for detection with anti-TRY antibody to specify the 
interference of the tags with antigen-antibody interaction. Arrows indicate the different tagged TRY 
detected by the anti-TRY antibody specifically. 

 

 

 

 

Figure 30 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction; I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. TRY homologous R3MYB proteins are used as samples to identify 
the cross-reactions with the anti His-TRY antibody. As can be seen from the last blot, anti-TRY antibody does 
not show cross-reaction with the homologous MYB proteins.  
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Figure 31 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction, I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. Different tagged GL3 proteins were used as samples to identify the 
cross-reactions with the anti-EGL3 antibody. As can be seen in the last blot anti-EGL3 antibody can show 
cross-reaction to its homologous protein GL3. 

Arrows indicate the His- and GST- tagged GL3 cross-reacting with the anti-EGL3 antibody. 

 

 

 

 

Figure 32 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction, I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. Different tagged EGL3 proteins were used as sample to specify the 
interference of the tags with antigen-antibody interaction. T7 promoter when using pDEST

TM
17 vectors 

shows some leakage. As can be seen in the last blot antibody purification was successful to some extent. 
However, further polishing of the anti-EGL3 might be necessary for a better specificity. 

Arrows indicate the His- and GST- tagged EGL3 binding specifically with the anti-EGL3 antibody. 
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Figure 33 Western blots of the antibodies when bacterially expressed proteins were used as 
samples 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction, I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. Different tagged TTG1 proteins were used as sample to specify the 
interference of the tags with antigen-antibody interaction. T7 promoter when using pDEST

TM
17 vectors 

shows some leakage. As can be seen in the last blot antibody purification was successful. 

Arrows indicate the His-, GST-, MBP- and Strep- tagged TTG2 binding specifically with the anti-TTG2 
antibody. 

 

 

 

 

Figure 34 Western blots of the antibodies when bacterially expressed proteins were used as 
samples. 

The samples loaded are the cell extracts before and after induction pelleted from 1 mL of the culture and 
boiled in SDS-Gel Loading Buffer after induction. 

0 refers to the cells before induction, I refers to the cells after induction. 

Detections were done by using preimmunization serum, total blood serum of the immunized animal or the 
purified antibody as primary antibodies. Different tagged TTG2 proteins were used as sample to specify the 
interference of the tags with antigen-antibody interaction. As can be seen in the last blot antibody 
purification was successful to some extent. However, further polishing of the anti-TTG2 is necessary for a 
better specificity. 

Arrows indicate the His-, GST- and Strep- tagged TTG2 binding specifically with the anti-TTG2 antibody.  
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2.6.2. ANALYSES OF PURIFIED ANTIBODIES AGAINST PLANT PROTEINS 

The specific antibodies of GL1, EGL3, TTG1, TTG2 and TRY were raised 

against bacterially expressed proteins. In order to check if proteins from Arabidopsis 

can be detected by these antibodies, one should test them against plants proteins. To 

do these tests, Arabidopsis plants containing HA- tagged fusions of these proteins in 

Ler background expressed via the 35S promoter were used. These plants were 

selected by BASTA resistance and phenotypically for the presence of the constructs. 

The phenotypes observed were; trichomes at the leaf margins for plants bearing the 

35S::GL1:HA, glabrous for plants bearing 35S::TRY:HA, increased trichome numbers 

for plants bearing 35S::GL3:HA and 35S::EGL3:HA , wildtypic phenotypes for  

35S::TTG1:HA and 35S::TTG2. After 14 days of germination, the extracts of these 

whole Arabidopsis plants were prepared. These total plant extracts were then 

analysed by Western blot experiments using the purified antibodies as primary 

antibody. As positive controls, anti-HA antibodies were used to detect the tagged 

proteins in these plant extracts. Usage of the purified antibodies in titers of 1/1000 

and 1/500 did not lead to any signal. On the other hand, the HA- tagged EGL3, TTG1 

and TTG2 proteins could be detected successfully when a dilution of 1/100 of the 

purified antibody was used as the primary antibody. Western blot analyses 

corresponding to these experiments are shown in Figure 35. 
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Figure 35 Protein analyses from plant extracts containing the overexpression construct. 

Plant extracts were prepared from wild-type Ler as well as Arabidopsis containing the 35S::GL1:HA, 
35S::TRY:HA, 35S::GL3:HA, 35S::EGL3:HA, 35S::TTG1:HA, or 35S::TTG2:HA construct and analysed by 
Western blotting to test the functionality of the purified antibodies. In each blot wild-type plants were used 
as a negative control. Anti-HA antibody was used as positive control for each plant extract. 

k) The Coomassie staining of the plant extract to ensure equal loading by comparing the Rubisco band. The 
specific 1

0
antibody used for each immunoblotting is indicated in the upper row of the subscription 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown on the right side. 
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2.7. THE KINETICS OF THE COMPETITION BETWEEN GL1 AND TRY 

FOR BINDING TO GL3 

This work successfully shows that GL1 and TRY can interact in vitro with 

GL3. Current models assume that the formation of the activating complex occurs 

through the competition of MYB proteins GL1 and TRY for binding to the GL3 

protein [17]. In order to calculate the binding coefficients of GL1 and TRY proteins to 

GL3, protein Surface Plasmon Resonance (SPR-Biacore) experiment was designed. 

However, with the conditions used for this experiment, binding of the GL3 protein to 

the surface neither with His- nor with a GST- tag was observed. The buffer used was 

HEPES, which was compatible with the chip surface. Nevertheless, resulting from 

the initial observations that indicate the proteins would not be stable in HEPES 

buffer, a high concentration of salt (300 mM NaCl) was used for Biacore. This could 

prevent the interactions of the proteins with the chip surface by hindering the His- 

sites. On the other hand, GL1 was non-specifically binding to the GSH surface when 

it was used as His- fusion and the GST-GL1 fusion protein was binding to the Ni-

NTA chip surface. Increasing the salt concentration in this case could not prevent the 

non-specific interactions of the protein with the surface. This fact led to the 

conclusion that another coupling method should be used for Biacore experiments. 

2.8. USE OF OTHER BIOCHEMICAL TOOLS TO STUDY PATTERNING 

PROTEIN FUNCTION 

Current models involving the Lateral Inhibition Mechanism suggest that 

the inhibitors are produced in the trichome initiating cells and move from these cells 

to the neighbouring cells. The inhibitors then inhibit the trichome formation of these 

cells [7, 11, 62, and 80]. However, how this movement is achieved is still a question to 

be answered. One of the projects in our workgroup involves the microinjection of 

patterning proteins into tobacco leaves, in order to observe the movement of the 

patterning proteins. Microinjection experiments not only demonstrate the movement 

of the proteins but also can show whether the movement is actively mediated [70]. 

Purified N-terminal His- tagged GL3, TTG1, ETC3 and CPC proteins were labelled 

covalently (Figure 36). These proteins were then used by Rachappa Balkunde and 

Friedrich Kragler in microinjection experiments into tobacco mesophyll cells for 

analysis and comparison of their movements. 
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Figure 36 SDS-PAGE showing the purified proteins after labelling. 

lab. corresponds to labelled protein 

unlab. corresponds to unlabelled protein 

M: PageRuler
TM

 Prestained protein ladder, with corresponding MW values (kDa) shown for both ladders 
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3. DISCUSSION  

Current knowledge indicates that a de novo patterning mechanism 

accounts for the proper establishment of Arabidopsis trichome pattern. This 

mechanism consists of the formation of an activator or inhibitor complex by the 

interaction of MYB-bHLH-WD40 proteins for determination of the trichome or non-

trichome cell fate in Arabidopsis leaves. The reports on trichome initiation mechanism 

are all based on mutant plant analyses, genetics, and yeast two-hybrid interactions or 

its comparison with the root hair patterning system, which involves a similar 

patterning mechanism. However, the amount of biochemical research about trichome 

patterning is very limited. Until now, only the WER and CPC proteins were 

expressed in bacteria and purified [64, 65]; no other patterning protein was purified 

and analysed individually at protein level. Although some biochemical studies 

concerning the trichome patterning proteins were conducted, the data describing the 

specific protein properties and activities, direct interactions among these proteins 

and the functions of the native proteins is still not sufficient to explain trichome 

initiation process at a biochemical basis. Therefore, understanding the complete 

mechanism underlying the trichome patterning requires biochemical evidence in 

addition to the current molecular and genetic data.  

3.1. EXPRESSION AND PURIFICATION OF THE PROTEINS AT A GLANCE 

In order to conduct biochemical experiments, the principal requirement is 

the presence of proteins in hand. For this reason, initially several expression and 

purification methods were used to obtain pure proteins for the subsequent 

experiments in this study. Some expression systems attempted in this work did not 

yield production of the proteins at a desired level. Therefore, a systematic approach 

was utilised by means of changing the expression system used at each step. Only 

prokaryotic expression systems yielded the desired levels of the patterning protein 

expression tested in this work. Different tags were used for each protein. Usage of 

various tags helped handling, purification and detection of the proteins in the 

different experiments during this work. An overview of protein expression results in 

different expression systems and the ultimate purification success achieved in this 

study is given in Table 4. 
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Table 4  Proteins and tags used for expression in this study 

+ indicates successful expression of the protein 

- indicates no expression 

NA indicates that expression in this system was not tested 

IB indicates high protein concentration in inclusion bodies 

S indicates high concentrations of soluble proteins 

P indicates successful purification 

 

Protein of 
Interest 

Expression 
with no tag 

Expression 
with C-term 

His- Tag 

Expression 
with N-term 

His- Tag 

Expression 
with N-term 
GST- Tag 

Expression 
with N-term 
MBP- Tag 

Expression 
with N-term 
Strep- Tag 

GL1 
+ 

IB, P 

- + 

IB, P 

+ 

S, P 

+ 

S, P 

- 

GL3 
- - + 

IB, P 

+ 

S, P 

- + 

EGL3 
- - + 

IB, P 

+ 

S, P 

NA + 

TTG1 
- - + 

IB, P 

+ 

S, P 

+ 

S, P 

+ 

TTG2 
NA - + 

IB, P 

+ 

S, P 

NA + 

TRY 
+ 

IB, P 

- + 

IB, P 

+ 

S, P 

+ 

S, P 

- 

CPC 
+ 

IB 

- + 

IB, P 

+ 

S, P 

NA NA 

WER 
NA NA + 

IB, P 

NA NA NA 

AtMYB23 
NA NA + 

IB, P 

NA NA NA 

ETC1 
NA NA + 

IB, P 

NA NA NA 

ETC2 
NA NA + 

IB, P 

NA NA NA 

ETC3 
NA NA + 

IB, P 

NA NA NA 
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3.2. 3D STRUCTURE OF PATTERNING PROTEINS  

To understand the native functions of proteins, solving their 3D structure 

plays a very important role. The cloning of the MYB genes acting as activators and 

inhibitors in trichome patterning pathway revealed that they contain conserved 

domains and the only difference between them is the lack of the transcription 

activation domain in inhibitors [23, 26, 27, 35, 45, 47, 49-51]. It has been found that the 

functional properties of MYB proteins are ensured by regulatory differences as well 

as the specificity at their protein levels [26, 37]. Nevertheless, how these similar 

proteins exert such different functions is still a question to be answered. Before 

working with the patterning proteins, homology modelling of the 3D structures of 

the activator and of the inhibitor -GL1 and TRY respectively, as representatives- was 

attempted. However, the lack of a reference protein structure for these proteins in 

literature made it impossible to model the 3D structures of these proteins. The closest 

MYB protein, the structure of which has been characterised, found from the PDB 

database [71b] is the RAD protein from Antirrhinum [58]. However, structural 

alignment of GL1 and TRY to RAD did not yield any similarities suitable for the 

modelling software.  

When GL1 and TRY sequences are aligned to find another known 

structure in the PDB database, the first output comes out from a chicken MYB 

protein. Although MYB domain structure is crystallised and solved from several 

MYB proteins from the animal systems, homology modelling of GL1 and TRY in the 

Predict Protein Database also did not yield any results for the MYB protein found in 

chicken. Therefore, it would be of great interest to solve the 3D structures of these 

proteins. For this purpose GL1 and TRY proteins were expressed and purified using 

different expression systems. However, neither of the systems used in this work was 

successful enough to go further for crystallisation, due to the aggregation of GL1 and 

TRY. The aggregation of these proteins could be due to misfolding of them in the 

systems that were used, since the proteins were expressed in a prokaryotic system. If 

the aggregation problem is solved in future by using different expression systems 

(e.g., systems containing chaperones for correct folding of the protein [81]) it should 

be possible to solve the 3D structures of these proteins. Tominaga et al. have reported 

that the R3 MYB domain of the WER protein can replace the MYB domain of CPC, 

whereas the WER R3 domain cannot complement for the CPC MYB domain. This 

was explained by the evolution of R3 in WER and CPC protein by gene duplication 

from a single common ancestor. It is suggested that the differences in the functional 

properties of R3 type MYB genes arose from the loss of DNA binding regions of the 
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R2R3 type MYB proteins during the context of evolution [69]. It is also speculated 

that the evolution of these two different types of MYB genes from a common ancestor 

by gene duplications gave rise to new and different functions of these members of 

the same gene family [47]. The comparison of the structures of TRY -the CPC 

homologue- and GL1 -the WER homologue- can give more insights to the 

biochemical properties leading to this genetic drift. The comparisons of the tertiary 

structures of different regions such as amino acids preserved inside the loops or 

exposed to surfaces can better explain the susceptibility of these genes to mutations 

and the evolution of these proteins. 

3.3. DO THE INTERACTIONS OF TRICHOME PATTERNING PROTEINS 

OCCUR IN A DIRECT MANNER?  

The interactions for trichome initiation pathway have been identified at 

genetic levels which were then tested by yeast two-hybrid and BiFC assays until now 

[17, 62, and 69]. In this study, after coexpressing TRY and GL3 in a single colony, gel 

filtration was performed and these two proteins were found to be eluted together in 

the first elution fractions. The coelution of these two proteins indicates the in vitro 

formation of a strong TRY-GL3 complex.  

Additionally, TTG1-GL3 and TRY proteins were also coexpressed in this 

work. This was done by cloning of the GL3 and TRY into a single vector and 

cotransforming this vector with another construct containing the TTG1 gene. 

Coexpression was achieved by the induction of these three proteins from a single 

bacterial colony. However, these three proteins were found to be insoluble when 

they were coexpressed. The GL1 and GL3 proteins were not successfully cloned into 

the same vector; therefore the proposed activator complex proteins could not be 

coexpressed in the same way as TTG1-GL3-TRY. Coexpression of the proteins 

building the proposed activator and inhibitor complexes for trichome patterning and 

subsequent gel filtration might provide a more detailed insight on whether these 

complexes can also form in bacteria. 

The yeast two-hybrid, BiFC and coelution methods, which indicate 

interaction among patterning proteins, all represent an indirect interaction 

mechanism. However, these methods do not show whether these interactions can 

occur in a direct manner or whether intermediates are required for the formation of 

these complexes. The GST pull–down experiments conducted in this work show that 
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GL1-GL3/EGL3 and TRY-GL3/EGL3 interactions occur in a direct manner among 

the individual proteins.  

The complex formation of GL1 protein together with GL3 and TTG1 

proteins has been shown by Co-IP experiments from plants overexpressing the 

tagged GL1, GL3 and TTG1 proteins [82, 83]. However, these results also do not 

show the direct interaction of these three proteins, since other components might also 

be pulled-down together in these experiments. The GST pull-down experiments 

conducted in this work has shown that the direct formation of the GL1-GL3-TTG1 

complex as well as GL1-EGL3-TTG1 complex can also occur in vitro. This indicates 

that the formation of the proposed activator complex for trichome patterning do not 

require any intermediate proteins. In order to analyse the actual components of the 

activator or inhibitor complex in Arabidopsis, one can pull-down the complex, using 

the specific antibodies produced. The pulled-down fractions can then be analysed in 

gel filtration experiments, where the size of the complex can be determined. On the 

other hand, the components of the actual activator or inhibitor complex for trichome 

patterning can also be analysed either by protein sequencing or after Western blot by 

using the specific antibodies. This will yield the actual components of the activator 

complex when GL1-GL3/EGL3-TTG1 specific antibodies and of the inhibitor 

complex when TRY-GL3/EGL3-TTG1 specific antibodies are used. A similar method 

was used to identify the components of the ESCRT complex [84]. 

3.4. NOVEL INTERACTION PARTNERS OF TRICHOME PATTERNING 

One surprising interaction found in the GST pull-down experiments in 

this study was the interaction of GL1 with TRY. This interaction, although not 

reported by a yeast two-hybrid system, was also observed in the BiFC assay. These in 

vitro interactions of GL1-GL3/EGL3, TRY-GL3/EGL3 and GL1-TRY were published 

by Digiuni et al. in 2008 [62]. Digiuni et al. put forward a mathematical model where 

trichome patterning on Arabidopsis leaves is simulated by the formation of the active 

complex triggering the trichome cell fate. The GL1-TRY interaction gives an impulse 

to the concept of trichome patterning via three types of inhibition mechanisms. In the 

single competitive inhibition mechanism, TRY interacts with GL3 and inhibits the 

formation of the active complex for trichome cell fate. The second mechanism is the 

double competitive inhibition mechanism, which comprehends the TRY-GL1 

interaction. In the last scenario, TRY binds to the active complex in an uncompetitive 

inhibition manner.  The combination of the theoretical modelling and the 

experimental set-up comes to the conclusion that the single competitive inhibition 
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mechanism is most relevant for trichome initiation although all three types of 

inhibition mechanisms have the chance to play a role in the trichome system [62]. An 

experiment, where the binding and dissociation coefficients of GL1 and TRY proteins 

to GL3 protein are calculated and compared, can punctuate these inhibition 

scenarios. For this purpose, in this work it was attempted to conduct a SPR (Biacore) 

experiment to calculate the binding coefficients of GL1-GL3 and TRY-GL3 

interactions. However, the sticky behaviour of the GST- and His- tagged GL1 protein 

precluded the differentiation of GL1 binding to chip surface or to the GL3 protein. 

An experimental setup where the non-specific binding of the GL1 protein is 

prevented might indicate a comparison of the GL1-GL3 and TRY-GL3 bindings. 

From time to time, the GL1 protein was showing non-specific interactions in other 

assays as well. This non-specific binding of the GL1 to the resin could be prevented 

by using detergents (Nonidet-P40) and other reagents such as BSA in the GST pull-

down experiment that were conducted in this study. However, these reagents are not 

compatible with the Biacore experiments. For the Biacore experiments performed in 

this study, high salt concentration of 300 mM NaCl was used in order to prevent the 

non-specific binding to the chip surface. Besides preventing the non-specific 

interaction, this high concentration of salt might have also interfered with the 

interactions of GL1 and GL3 which were observed by other tools. Therefore, it will be 

helpful to use other methods for coupling of proteins to the Biacore chip surface, 

such as covalent binding for prevention of non-specific behaviour of proteins. 

The GST pull-down experiments conducted in this study also resulted in 

the interaction of GL1 and TTG1 proteins. Although yeast two-hybrid has not 

yielded this result [Katja Wester, personal communication], it has been shown that 

GL1 gene shows allele specific genetic interaction with TTG1 gene [85]. A recent 

study also reports the interaction of GL1 protein with TTG1 in a Co-IP experiment 

[82].  The WD40 domain has been shown to form a beta-propeller structure which 

needs specific conditions for refolding properly. In this work, the TTG1 protein was 

expressed in a prokaryotic system. This might be a drawback for the proper refolding 

of TTG1. The GL1-TTG1 interaction observed in this work might not really occur 

naturally in Arabidopsis trichomes. On the other hand, the interactions shown in this 

work are in vitro interactions where only purified proteins were used. It may as well 

be the case that GL1 protein specifically binds to other components of the trichome 

activation pathway preferably, with a higher affinity than binding to TTG1. The 

activation of the trichome cell fate may be a result of the higher affinities of 

individual proteins to other proteins for the formation of the active complex. If this is 

the case for GL1 and TTG1 proteins binding to the GL3 protein, one may conclude 
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the following: TTG1 protein may also have the ability to bind to GL1 in single form, 

but in the presence of GL3, the GL1 and TTG1 may each prefer to bind to the GL3 

protein forming the GL1-GL3-TTG1 active complex. Therefore the comparisons of 

binding coefficients rather than interactions of individual proteins might give a better 

explanation for the interaction preferences of the proteins in the trichome patterning 

mechanism. This can also be tested via yeast three-hybrid experiments by comparing 

the competition between TTG1 and other components of the trichome patterning [17, 

62] 

The cloning of the patterning proteins revealed that except TTG1 protein 

all other proteins are transcription factors. GL1, GL3, TRY, WER and CPC proteins 

have been also shown to localise to nucleus in planta observations [17, 64, and 68]. 

The interactions observed in this work such as GL1-TTG1 or GL1-TRY can also occur 

in the cell, whereas the determining factor for the preference of these interactions 

might be the actual subcellular localisation of these interactions. The interaction of 

GL1 with TTG1 was also observed in cytoplasm BiFC assay in Arabidopsis, whereas 

Fluorescence resonance energy transfer (FRET) experiments done in nucleus do not 

result in any interaction between these two proteins [Simona Digiuni, personal 

communication]. Other than the binding affinity preferences of the proteins 

determining the formation of activator or inhibitor complex for trichome initiation, 

the subcellular localisations of the interactions might also be important for initiation 

of trichome cell fate. 

The protein interactions of TTG2 were also biochemically tested in this 

work. This protein was also always found to be non-specifically binding to the resins 

in the GST pull-down experiments. However, the signal detected after Western 

blotting of His-TTG2 pulled-down together with GST-TTG1 was higher than the non-

specific binding of the His-TTG2 protein. This might show that these two proteins 

are able to interact with each other. However, another method should be applied to 

test this interaction. Therefore, His- and GST- tagged TTG2 and TTG1 proteins were 

coexpressed in a single colony and purified via the corresponding tag. The coelution 

of these two proteins  after purification with respect to the corresponding tag also 

shows that TTG2 and TTG1 can interact with each other in bacteria as well as in vitro.  

In a similar manner, TTG2 was also coeluted together with the GL1 when they were 

coexpressed in a single colony. This coelution can actually be an artefact since GL1 

protein was also found to be non-specifically binding to the chip surface in the 

Biacore. Alternatively, this can also be a new interaction which has not been 

observed before, as in the case of GL1-TRY interactions. This is another surprising 

interaction, since GL1 and TTG2 were not shown to interact in yeast two-hybrid 
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analyses [Martina Pesch, personal communication]. To find out whether TTG2-GL1 

interaction is biologically relevant or not, one should test other proteins in this 

system, which are known not to interact with TTG2, as a negative control. One 

possible candidate for such a test is GL3, since yeast two-hybrid experiments do not 

show interaction between these two proteins [Martina Pesch, personal 

communication]. In order to assess the importance of the TTG2 interactions with GL1 

and TTG1, one should first confirm precisely whether these interactions are really 

occurring in planta. 

Howell et al. compare the techniques for in vitro protein-protein 

interactions and assess the parameters for such an interaction. It has been shown that 

usage of several tools for protein interactions can minimise the false positives [86]. 

Therefore, it is of great importance to test the novel interactions observed in this 

study by other techniques.  

3.5. THE ANTIBODIES AGAINST TRICHOME PATTERNING PROTEINS 

Until now, no antibodies against the GL1, GL3, EGL3, TTG1, TTG2 and 

TRY proteins have been reported in literature. The high levels of expressions in 

bacteria and the purification of these proteins achieved in this work allowed the 

production of specific antibodies against these trichome patterning proteins. This 

was achieved by the use of His- tagged GL1, EGL3, TTG1, TTG2 and TRY proteins. 

These pure proteins were used as antigens, so that one antibody specific for one 

conserved domain group of proteins could be obtained. After purification of the 

individual antibodies from the injected rabbit total blood serum, the antibodies were 

found to be specific for the individual bacterially expressed proteins. Although 

homologous proteins contain a high degree of identity in their protein sequences, no 

cross reactions of the anti-GL1 antibody with the GL1 homologous proteins WER and 

MYB23, and of the anti-TRY protein with the TRY homologous proteins CPC, ETC1, 

ETC2 and ETC3 were observed. Anti-GL1 and anti-TRY antibodies were also tested 

against mutated GL1 and TRY proteins that were shown not to interact with GL3 

protein in yeast two-hybrid assays [Martina Pesch, personal communication]. These 

proteins contain single amino acid mutations that possibly prevent the proper 

functioning of the MYB domains. However, this single mutation does not mask the 

binding of the GL1 and TRY epitopes to these proteins. This could be an advantage 

when the aim is to assess antibody dependent assays comparing MYB and bHLH 

protein interactions. On the other hand, anti-EGL3 antibody showed cross reaction 

with the GL3 protein expressed in bacteria. This might be a drawback when it is 
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desired to conduct protein specific experiments for EGL3 protein. Nevertheless, the 

antibody purified for EGL3 protein can still be used to test the bHLH dependent 

experiments. It may be worthy to obtain pure GL3 antibody and to determine if anti-

GL3 antibody can also cross-react with EGL3 proteins. When protein specific 

experiments are planned, one can still purify specific antibodies from the polyclonal 

EGL3 antibodies, specific for a region of the EGL3 protein that is not conserved in the 

GL3 protein. The signal detected in the Western blots when purified anti-TTG2 

antibody is used against bacterially expressed TTG2 proteins revealed that the TTG2 

antibody needs further purification.  

It was of great importance to test the functionality of these purified 

antibodies against bacterially expressed proteins in reaction with plant proteins. 

Therefore, the purified antibodies were tested against plant specific proteins by 

Western blotting. The interaction of the antibodies produced against bacterially 

expressed antigens and the plant proteins revealed that these antibodies can 

successfully be used for plant protein specific experiments. Although anti-EGL3 

antibody was shown to cross-react with bacterial GL3 protein, no signal was detected 

when plant GL3 protein was used with this antibody. The Western blots using the 

purified antibodies revealed that this work provided specific and pure antibodies 

against GL1, EGL3, TTG1, TTG2 and TRY proteins, which can successfully detect 

these proteins in Arabidopsis. These antibodies can be used in further experiments.   

The absence of the specific antibodies for patterning proteins made it 

possible to work only with tagged proteins until now. Although the usage of tagged 

proteins should always be checked with rescue experiments, this situation may 

sometimes not reflect the real biochemical properties of the plant proteins. The 

tagged proteins for trichome patterning include the YFP- tags used for detection of 

the protein localisation and ChIP experiments [17, 64, 66, and 68] as well as the HA- 

tag [87]. 

The antibodies produced and purified in this work can be used for testing 

the protein-protein interactions as well as the protein-DNA interactions in the future, 

by techniques such as Far-Westerns, Co-IP and ChIP tools. They can also be utilised 

in studying the protein expression by immunofluorescence in order to visualise the 

subcellular distribution and the localisation of these patterning proteins without the 

need for a fusion tag. 
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3.6. MOVEMENT OF THE PATTERNING PROTEINS 

In order to understand the trichome patterning mechanism, Meinhardt & 

Gierer model and the context of Lateral Inhibition have been widely used. One of the 

requirements for the Lateral Inhibition Mechanism to act in a system is the mobility 

differences between the activators and inhibitors [11, 38, and 80]. This suggests that 

one of the specific functional property differences of GL1 and TRY should be due to 

the differences in their mobility capabilities. As shown by particle bombardment 

experiments, TRY and CPC can move in Arabidopsis leaves, whereas GL1 cannot [62]. 

The comparison of the structures of activator and inhibitor proteins might provide 

information needed to study the mobility of these proteins. Moreover, this 

comparison might also lead the way for the discovery of some other intrinsic protein 

properties, which would reveal the unknown features of patterning mechanism. 

Although the TRY and CPC proteins are thought to move via 

plasmodesmata, it is still not known how they are targeted to plasmodesmata or how 

the movement is achieved [62, 68]. The movement protein P30 from Tobacco mosaic 

virus, the movement of which is achieved via the plasmodesmata, was shown to 

require phosphorylation by a protein kinase [88].The tool PROSEARCH (Search 

Prosite Database for Patterns in a Protein Sequence) found at the San Diego 

Supercomputer Center (SDSC) Biology Workbench database [71f] also predicts the 

presence of protein kinase phosphorylation sites in both GL1 and TRY proteins. The 

purified GL1 and TRY proteins can be treated, as in the case of P30, to check whether 

they can also be phosphorylated in a similar manner. It may be of great value to test 

whether the movement of these proteins can be regulated by the similar 

phosphorylation/dephosphorylation mechanisms.  

Microinjection has become a very important tool for observation of in vivo 

protein movement behaviour [70]. His- tagged GL3, CPC and ETC3 proteins purified 

in this study were covalently labelled with small dyes. These pure proteins could 

then be injected into plant cells and the behaviours could be observed under a 

microscope. It has been found that His- tag does not interfere with movement of 

patterning proteins [Friedrich Kragler, personal communication]. Kurata et al. have 

shown that the proper cell to cell transport of the CPC protein depends on its specific 

conformation [68]. The proteins that were used for microinjection experiments were 

obtained from inclusion bodies. The correct refolding of the proteins after inclusion 

body preparations is known to be a limiting step for biochemical analysis of proteins. 

The subsequent dialysis of the proteins in this work could successfully provide the 
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conformation which is required for movement in tobacco mesophyll cells, since this 

purification method did not interfere with the microinjection of these proteins 

[Friedrich Kragler and Rachappa Balkunde, personal communication] This work has 

provided the pure proteins of the trichome patterning which can be used for the 

comparison of the different movement of the different proteins. 

3.7. THE INTERACTION OF PATTERNING PROTEINS WITH DNA IN 

VITRO 

Until now, only WER and CPC proteins have been expressed in bacteria, 

purified and tested for their direct interaction with DNA [64, 65]. The cloning of the 

genes involved in trichome patterning has revealed that GL1, GL3/EGL3, TTG2 and 

TRY contain DNA binding domains [16, 18, 23, 42 and 47]. ChIP experiments using 

HA- and YFP- tagged proteins pointed out to the interaction of GL3 and TTG1 to 

target promoter sequences [66, 82, and 87]. However, the direct interaction of the 

target DNA sequences with individual proteins has not been shown yet, the only 

exception being WER. 

Ongoing work includes the analysis of the promoter regions of trichome 

patterning proteins [Martina Pesch, personal communication]. This work is being 

done in order to check whether the putative transcription factors of trichome 

initiation pathway really have the ability to bind to the promoter sequences. The 

purified His- tagged and GST- tagged proteins of trichome patterning are prepared 

as described in this study. These pure proteins from this study have made it possible 

to perform EMSA [Martina Pesch, personal communication]. 

3.8. USAGE OF PROTEINS IN OTHER BIOCHEMICAL TESTS 

It has been shown that phosphorylation plays an important role for 

movement of proteins through the plasmodesmata [88, 89, and 90]. Studies on animal 

MYB proteins also present the necessity of phosphorylation for proper functioning of 

these proteins [53]. The software PROSEARCH [71f] predicts phosphorylation sites at 

the similar position in both GL1 and TRY proteins. It would be of great interest to 

test whether GL1 and TRY proteins can be phosphorylated. This could be done by 

incubation of the pure proteins by plant extracts. As well as phosphorylation, other 

modifications such as ubiquitination or sumoylation can also play important roles for 
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regulation of the patterning proteins. The purified proteins in this work may be used 

for such in vitro modification assays in future.  

Another important property of the patterning proteins for regulation of 

trichome cell fate could be the turnover rates of the activator and inhibitor proteins. 

The Western blot analyses using the protein specific antibodies purified in this work 

have shown that GL1 and TRY proteins could not be detected at the developmental 

stage when EGL3, TTG1 and TTG2 proteins were still detectable. This could be due 

to a degradation mechanism for controlling the tight regulations of activator and 

inhibitor MYB proteins. One candidate for such degradation mechanism is KAKTUS 

(KAK) gene -a putative E3 ligase- which might play a role in degradation of GL1 by 

the 26S proteosome [91]. The purified proteins in this work can also be used for in 

vitro degradation analysis and their degradation behaviours can be compared with 

each other. In such an experiment, purified proteins can be treated with wild-type 

and kak plant extracts to search for the KAK in degradation of specific proteins. On 

the other hand, different proteins can be treated with plant extract to compare their 

degradation rates with each other. This in vitro degradation assay was performed 

with His-GL1 and GST-GL1 obtained in this work and different degradation of GL1 

was observed by different plant extracts [Jennifer Werner, personal communication]. 

Although, such an experiment may not exactly reflect the stability of the proteins in 

Arabidopsis leaves, it may give a respective value for activator and inhibitor stability 

comparisons. This may also be of great importance for the activation of trichome fate 

in trichome initials, provided that the activator complex or the components of the 

activator complex is more stable in these epidermal cells than in other epidermal 

cells.  

3.9. SUMMARY AND OUTLOOK 

This study presents a systematic approach to get a hold of the biochemical 

proof for trichome patterning mechanism in Arabidopsis, which, until now, has only 

been proposed by evidence from genetic investigations, yeast two-hybrid studies and 

comparison to similar patterning machineries. With this study, the patterning 

proteins were expressed in bacteria and purified successfully for the first time, by the 

usage of different tags. These expressed proteins were used for further experiments 

such as GST pull-downs to test the direct interactions among trichome patterning 

proteins. The production of the patterning proteins paves the way for these proteins 

to be used in other biochemical assays, which may be required in order to have more 

insight into trichome patterning pathway. Some examples to such assays are EMSA, 
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ChIP, microinjection and/or modification studies. Moreover, the antibodies 

produced in this work may be used in future for purposes where usage of specific 

fusion tags might interfere with the functionality of the proteins. Figure 37 illustrates 

a summary of the experimental procedures for future use of these pure proteins in 

order to enlighten the unknown processes determining the cell fate behaviour of the 

trichomes. 

 

 
 

Figure 37 Possible future uses of the proteins purified in this work  
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4. MATERIALS AND METHODS 

4.1. MATERIALS 

4.1.1. ANTIBIOTICS AND CHEMICALS 

In this study all the antibiotics, chemicals and reagents were attained from 

the companies Roth (Karlsruhe), Sigma (Deisenhofen), GE Healthcare, Qiagen 

(Dusseldorf), New England Biolabs (Frankfurt/Main), BioRad, Duchefa. 

4.1.2. ENZYMES 

All restriction enzymes were obtained from MBI-Fermentas (St. Leon-Rot). 

Gateway cloning enzymes were acquired from Invitrogen (Karlsruhe), Factor Xa was 

purchased from New England Biolabs (Frankfurt/Main) 

4.1.3. PRIMERS  

Primers were produced by Invitrogen (Karlsruhe). Oligonucleotides used 

in this work are as follows; 

Forward for pET3a for GL1 with NdeI restriction site: 

GGAATTCCATATGAGAATAAGGAGAAGAGA 

Reverse for pET3a for GL1 with BamHI restriction site including the stop codon:  

CGGGATCC CTAAAGGCAGTACTCAACAT 

Forward for pET3a for GL3 with NdeI restriction site: 

GGAATTCCAT ATGGCTACCGGACAAAACAG 

Reverse for pET3a for GL3 with stop codon BamHI restriction site: 

CGGGATCC TCAACAGATCCATGCAACCC 

Forward for pET3a for TTG1 with NdeI restriction site: 

GGAATTCCAT ATGGATAATTCAGCTCCAGA 
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Reverse for pET3a for TTG1 from 660 to silently mutate BamHI restriction site at 

587: 

GATCCTAACGGAACCATCAG 

Forward from 581 for pET3a for TTG1 to silently mutate BamHI restriction site at 

587:  

CTGATGGTTCCGTTAGGATC 

Reverse for pET3a for TTG1 with BamHI restriction site from the end with stop 

codon: 

CGGGATCC TCAAACTCTAAGGAGCTGCA 

Forward for pET3a for TRY with NdeI restriction site: 

GGAATTCCAT ATGGATAACACTGACCGTCG 

Reverse for pET3a for TRY with BamHI restriction site including the stop codon: 

CGGGATCC CTAGGAAGGATAGATAGAAA 

Forward for pET3a for CPC with NdeI restriction site: 

GGAATTCCAT ATGTTTCGTTCAGACAAGGC 

Reverse for pET3a for CPC from 200 to silently mutate BamHI restriction site at 

189: 

CGTCCCGGAATCCTTCCGGC 

Forward for pET3a for CPC from 181 to silently mutate BamHI restriction site at 

189: 

GCCGGAAGGATTCCGGGACG 

Reverse for pET3a for CPC from the end for BamHI restriction site including the 

stop codon: 

CGGGATCC TCATTTCCTAAAAAAGTCTC 

Forward for pMALC2 for GL1 with XmnI restriction site: 

GGAAGGATTTCAATGAGAATAAGGAGAAGAGAT 
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Reverse for pMALC2 for GL1 with PstI restriction site including the stop codon: 

GGGCTGCAGCTAAAGGCAGTACTCAACATCACC 

Forward for pMALC2 for GL3 with EcoRI restriction site: 

TCAGAATTCATGGCTACCGGACAAAACAGA 

Reverse for pMALC2 for GL3 with PstI restriction site including the stop codon: 

GGGCTGCAGTCAACAGATCCATGCAACCCT  

Forward for pMALC2 for TTG1 with XmnI restriction site: 

GGAAGGATTTCAATGGATAATTCAGCTCCAGAT 

Reverse for pMALC2 for TTG1 with PstI restriction site including the stop codon: 

GGGCTGCAGTCAAACTCTAAGGAGCTGCAT 

Forward for pMALC2 for TRY with XmnI restriction site: 

GGAAGGATTTCAATGGATAACACTGACCGTCGTCGC 

Reverse for pMALC2 for TRY with PstI restriction site including the stop codon: 

GGGCTGCAGCTAGGAAGGATAGATAGAAAAGCG 

Forward for pMALC2 for CPC with XmnI restriction site: 

GGAAGGATTTCAATGTTTCGTTCAGACAAGGCG 

Reverse for pMALC2 for CPC with PstI restriction site including the stop codon: 

GGGCTGCAGTCATTTCCTAAAAAAGTCTCTTCG 

Forward for GL3 for pETDuetTM-1MCS(Multiple Cloning Site)1: 

GGGGAATTCGATGGCTACCGGACAAAACAGA 

Reverse for GL3 for pETDuetTM-1MCS1: 

GAGCTCTCAACAGATCCATGCAACCCT 

Forward for GL3 for pETDuetTM-1MCS2: 

GGGCATATGGCTACCGGACAAAACAGAACA 
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Reverse for GL3 for pETDuetTM-1MCS2: 

GGGGACGTCACAGATCCATGCAACCCTTTG 

Forward for TRY for pETDuetTM-1MCS1: 

GGGGAATTCGATGGATAACACTGACCGTCGTCGC 

Reverse for TRY for pETDuetTM-1MCS1: 

GGGGAGCTCCTAGGAAGGATAGATAGAAAAGCG 

Forward for TRY for pETDuetTM-1MCS2: 

GGGCATATGGATAACACTGACCGTCGTCGC 

Reverse for TRY for pETDuetTM-1MCS2: 

GGGGACGTCGGAAGGATAGATAGAAAAGCG 

4.1.4. VECTORS 

The following expression vectors were used in this study for bacterial 

expression. 

pET3a    from New England Biolabs  

pDESTTM17   from Invitrogen 

pGEX2TM-GW  This vector was kindly received from  Imre Sommsich              

and  Bekir Ülker 

pASK3GW   This vector was kindly obtained from  Marc Jakoby 

pCDFDuetTM-1, pETDuetTM-1 from Novagen (Darmstadt) 

pETFrame C   This vector was kindly obtained from  Joachim Uhrig 

4.1.5. BACTERIAL STRAINS 

E.coli bacterial strains DH5α and TOP10(INVITROGEN)  were used for 

clonings. Expressions were tried in E.coli strains Rosetta-gamiTM, Rosetta-

gamiTMB(NOVAGENE), TOP10, BL21,  and BL21DE3RIL(STRATAGENE). The best expression 

levels were obtained in BL21-CodonPlus(DE3)-RIL(STRATAGENE) strains therefore these 

strains were used for further expressions. 
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BL21-CodonPlus(DE3)-RIL straina: E. coli B F– ompT hsdS(rB– mB–) dcm+ 

Tetr gal  (DE3) endA Hte [argU ileY leuW Camr] 

4.1.6. BUFFERS AND REAGENTS 

CaCl2 Solution:  60 mM CaCl2 

     10 mM PIPES pH7 

     15% glycerol 

Tris-Lysis Buffer: 100 mM NaCl 

    50 mM Tris-HCl pH 7.5 

    2 mM EDTA 

    1% Triton X-100 

STE Buffer:  10 mM Tris-HCl pH8 

    150 mM NaCl 

    1 mM EDTA 

PBS Buffer:  137 mM NaCl 

    2.7 mM KCl 

    10 mM Na2HPO4 

    2 mM KH2PO4 

PBST Buffer:  137 mM NaCl 

    2.7 mM KCl 

    10 mM Na2HPO4 

    2 mM KH2PO4 

    0.1% tween-20 

TBS Buffer:  10 mM Tris-HCl pH7.5 

    150 mM NaCl 
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TBST:   10 mM Tris-HCl pH7.5 

    150 mM NaCl 

    0.1% Tween-20 

Column Buffer:  20 mM Tris-HCl pH 7.4 

    200 mM NaCl 

    1 mM EDTA 

GST Binding Buffer: 50 mM Tris-HCl pH 7.9 

    1 mM EDTA 

    150 mM NaCl                          

1x SDS Gel Loading Buffer: 50 mM Tris-HCl pH 6.8 

    2%SDS 

    0.1% bromophenol blue 

    10% glycerol 

    100 mM β- mercaptoethanol  

Tris-glycine Electrophoresis Buffer: 25 mM Tris 

    250 mM glycine pH8.3 

    0.1% SDS 

Western blotting Cathode Buffer: 1X Arbeitslosung Roti-Blot 2K 

    20% methanol 

Western blotting Anode Buffer: 1X Arbeitslosung Roti-Blot 2A 

    5% methanol 

Coomassie Staining Solution: 0.25 g Coomassie brilliant blue R-250 

    50 mL methanol 

    40 mL H2O 

    10 mL glacial acetic acid 
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Destaining Solution: 50 mL methanol 

    40 mL H2O 

    10 mL glacial acetic acid 

Ponceau Staining Solution: 0.5 g Ponceau 

    1 mL glacial acetic acid 

    H2O up to 100 mL 

    IPTG Stock Solution: 1 M IPTG 

4.2. METHODS 

4.2.1. PREPARATION OF DIFFERENT BACTERIAL EXPRESSION VECTORS 

FOR DIFFERENT PATTERNING PROTEINS 

GL1-pENTRTM1A, WER-pENTRTM1A, and all pDESTTM17 constructs used 

in this study were kindly obtained from Martina Pesch. GL3-pDONRTM201, TTG1-

pDONRTM201, MYB23-pDONRTM201, TRY-pDONRTM201, CPC-pENTRTM1A 

constructs were kindly obtained from Ullrich Herrmann, EGL3-pDONRTM201 

construct was kindly obtained from Ilona Zimmermann, TTG2-pDONRTM201 

construct was kindly obtained from Bekir Ülker. 

GL1, GL3, EGL3, TTG1, and TRY coding sequences containing the stop 

codons were recombined into pGEX2TMGW and pASK3GW vectors by LR 

recombination reaction. TTG2 coding sequence with stop codon was recombined into 

pASK3GW vector and without stop codon was recombined into pGEX2TMGW 

vector. For cloning into pET3a, pCDFDuetTM-1, pETDuetTM-1 and pMALC2 

expression vectors, the following primers were used for PCR reactions which were 

then ligated into the desired vectors by conventional cloning methods instructed by 

Sambrook and Russell [92]. PhusionTM Polymerase from Finnzymes or HiFi Taq 

Polymerase from Fermentas was used for PCR amplification reactions and reactions 

were performed according to supplier’s protocols. TTG1pETFrameC and 

TTG2pETFrameC constructs were also kindly provided by Martina Pesch.  
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4.2.2. PREPARATION OF COMPETENT BACTERIA 

A single colony of E.coli was inoculated into 50 mL LB medium and was 

grown o/n at 37oC with 250 rpm shaking. 2ml of the overnight culture was 

inoculated into 200 ml LB medium in a sterile 1L flask and was grown at 37oC 

shaking at 250 rpm to an OD of 0.375. The culture was aliquoted into four; 50 ml-

prechilled, sterile polypropylene tubes and the tubes were left on ice 5 to 10 min. The 

cells were then centrifuged 7 minutes at 1600xg (3000 rpm) at 40oC. Supernatant was 

removed and each pellet was resuspended in 10 ml ice-cold CaCl2 solution. Cells 

were again centrifuged 5 minutes at 1100xg (2500 rpm) at 4oC. The supernatant was 

discarded and each pellet was resuspended in 10 ml ice cold CaCl2 solutions which 

were then kept on ice for 30 minutes. The cells were again centrifuged for 5 minutes 

at 110xg at 4oC. The supernatant was discarded and each pellet was resuspended in 2 

ml ice-cold CaCl2 solution. The cells were then dispensed into prechilled, sterile 

polypropylene tubes and frozen immediately in liquid nitrogen. The cells were 

stored at -80oC 

4.2.3. PREPARATION OF PLASMID DNA 

DNA from E.coli was prepared by the Plasmid Miniprep Kit I from 

PEQLAB (Erlangen) according to the instruction manual of the manufacturer. 

4.2.4. SEQUENCING OF THE DNA 

Constructs prepared were sequenced by an ABI 310 Prism automated 

sequencer (Perkin-Elmer Applied Biosystems, Foster City, CA) according to the 

manufacturer’s instructions. Big-Dye kit 3.1 (Perkin Elmer Applied Biosystems, 

Foster City, CA) was used for sequencing reactions.  

4.2.5. EXPRESSION OF PROTEINS VIA IPTG INDUCIBLE T7 AND SP6 

PROMOTER SYSTEMS 

The bacterial cells containing the IPTG inducible constructs were grown 

until an OD 600 of 0.5-0.8 and then the cultures were induced by a final concentration 

of 0.5mM IPTG for His- tagged, 0.1mM IPTG for GST- tagged and 0.3mM for MBP- 

tagged proteins. The induced cells were then grown further for 3 hours and cells 

were harvested by centrifugation at 7000xg for 7 minutes at 4oC.  



 
Materials and Methods 

 Dartan, B. Inaugural Dissertation 69 

4.2.6. LYSES OF INDUCED CELLS 

The pellets from 50 mL of induced cells containing the His- tagged 

expression constructs were resuspended in 1 mL Tris-Lysis Buffer containing 200µg 

Lysozyme and incubated at room temperature for 70 minutes. The solution was then 

sonicated for 10 seconds 5 times and centrifuged for 5 minutes in bench top 

microfuge at 13200 rpm. The supernatant was kept and run on gel to check if the 

proteins are in this soluble fraction.  The pellets were resuspended in 500 µL of Tris-

Lysis Buffer and sonicated and centrifuged as described above for first washing. 

Washing was repeated once more and the pellet was resuspended in 250µL of 

100mM NaHCO3 2% SDS solution by sonication and centrifuged for 5 minutes in 

bench top microfuge at 13200 rpm. The supernatant contains the solubilised inclusion 

bodies and proteins in the inclusion body prep were analysed by an SDS- 

polyacrylamide gel. 

The cells containing the GST- fusion proteins were lysed as explained by 

Frangioni and Neel [79]. 

The lysis of the cells containing MBP- tagged fusion proteins was done as 

explained in supplier’s protocols. 

4.2.7. PURIFICATION VIA Ni-NTA RESIN 

250 µL of inclusion body prep of His- tagged proteins were incubated with 

500 µL of Ni-NTA resin in a column for 1 hour. The column was then washed for 6 

times the column volume with PBS buffer. The elutions were done with PBS 

containing 150 µL 20 mM of EDTA of ten fractions.  

4.2.8. PURIFICATION VIA GSH RESIN 

The bacterial lysate from 100mL culture was incubated with 1mL of GSH 

resin for 1 hour at 4oC on a rotating platform. The resin was then washed 4 times 

with 10 times the resin volume of PBS buffer. The elutions were done with 50 mM 

Tris-HCl pH 8 containing 10 mM of reduced glutathione by incubating the resins 

with the elution buffer for 15 minutes at 4oC on a rotating platform.  The elution step 

was repeated twice more to get a final of three elution fractions. Each elution was 

done with 1mL of elution buffer. 
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4.2.9. PURIFICATION VIA AMYLOSE RESIN 

The bacterial lysate from 250 mL culture was incubated with 1mL of 

Amylose resin for overnight at 4oC in a column. The column was washed 10 times 

with twice the resin volume of column buffer. The elution was done with column 

buffer containing a final concentration of 10 mM Maltose in five elutions of each 150 

µL elution buffer. 

4.2.10. CLEAVAGE OF MBP- TAG FROM TRY PROTEIN 

After purification through Amylose resin, MBP- tag was cleaved by Factor 

Xa by incubating at 4oC rotating for eight hours. For 50 µg of fusion protein 1 µg of 

protease was used. After cleavage, TRY protein was sequenced by peptide mass 

finger printing to check the integrity and correct cleavage of the protein.  

4.2.11. MEASURING THE PROTEIN CONCENTRATIONS 

Protein concentrations were measured by using the Bradford Reagent 

from Biorad as explained in the user manual for the reagent. 

4.2.12. GST PULL-DOWN 

The purified His- and GST- tagged proteins were dialysed against GST 

binding buffer. Equal amounts of GST- tagged proteins were mixed with His- tagged 

proteins and incubated half an hour at 40C on a rotating platform. For each 10 

microgram of tagged proteins 50 mL of GSH resin was then added into the mixture 

and the proteins resin mixture was further incubated for 2 hours at 40C on a rotating 

platform. The resins were then washed with 2 mL of binding buffer 5 times and 

proteins were eluted by Glutathione Elution buffer or PBS containing 20 mM EDTA. 

The elution fractions were then analysed by Western blot using anti-His antibody as 

primary antibody. 

4.2.13. SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS OF PROTEINS 

The SDS-polyacrylamide Gels were performed according to instructions in 

Sambrook and Russell [92]. 
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4.2.14. IMMUNOBLOTTING OF PROTEINS 

After running them on SDS-PAGE, the proteins were transferred to PVDF 

membranes by a semi-dry blotting apparatus. The membranes were then blocked by 

PBST containing 5% milk powder. After the blots were blocked for at least 1 hour, 

they were incubated with PBST milk powder containing the primary antibody of 

specific dilutions (1/1000 anti-His antibody, 1/10000 anti-GST antibody, 1/1000 anti-

Strep antibody). Then blots were washed 3 times with PBST for 15 minutes and they 

were incubated with PBST milk powder containing the secondary antibody. After 

incubation with secondary antibody for one hour, the blots were washed three times 

for 15 minutes with PBST and detection was done. Due to the reason that the 

secondary antibodies were coupled to HRP, detection was done by using the HRP 

substrate and subsequent chemiluminescence was detected. 

4.2.15. PREPARATION OF ANTIBODIES 

200 microgram of N-terminal His- tagged GL1, EGL3, TTG1, TTG2 and 

TRY proteins were injected into 2 different rabbits.  After the second boost on the 30th 

day, the blood serum was tested against the purified protein samples which were at 

the same purification quality level as the injected antigens.  Total blood serum from 

the rabbits which were infused with GL1, EGL3, TTG1 and TRY antigens were 

collected on the 61st immunisation day. TTG2 antigen was further immunised to the 

rabbits and after duration of 85 days of immunisation the total blood serum was 

collected from these animals. The immunisation and serum collections were done by 

the Pineda-Antikorper Service. 

4.2.16. PURIFICATION OF ANTIBODIES 

The polyclonal antibodies were raised against GL1, EGL3, TTG1, TTG2 

and TRY proteins were purified for specific detection of the individual proteins. In 

order to do this, purified His- tagged proteins which were used for immunisation 

were run on gel and blotted against PVDF membranes. Proteins on the membrane 

were checked by Ponceau Staining, the protein band corresponding to the purified 

protein, was then cut from the rest of the membrane and staining solution was 

washed away with TBS. The membrane was blocked with1% BSA in TBS containing 

0.05% Tween-20 for 2.5 hours at 4oC.  Total blood serum after immunisation was 

diluted 1 to 5 ratios with TBS buffer and membrane was incubated with this solution 

for 4 hours at 4oC on a rotating platform. The membrane was then washed with TBS 
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and antibodies bound to the membrane were eluted with antibody elution buffer by 

incubation at 4oC for 1.5 minutes. Washing of the membrane and elution of the 

antibody was repeated once more and immediately after elution 1MTris-HCl pH8.0 

was added to the eluted antibody. Then 1/100 dilution of 5% Naazide containing 

10mg BSA were added to the antibody solution for long-term storage.  Immunoblots 

were performed on bacterial cell extracts before and after induction with incubation 

of preimmune serum, whole blood serum after immunisation and purified 

antibodies of individual proteins as primary antibodies.  

4.2.17. TEST OF ANTIBODIES AGAINST PLANT PROTEINS 

Plants containing the HA-tagged plants expressed under 35S promoter 

were grown on soil for 14 days after sawing. BASTA was sprayed once a week 

following germination. Wildtype plants of L.erecta were used as negative control. 

Seeds for plants containing the HA-GL1, HA-GL3, HA-EGL3, HA-TTG1, HA-TTG2, 

HA-TRY were kindly provided by Martina Pesch. The plants were selected by 

phenotypic analysis and BASTA selection to ensure the presence of the 

overexpression constructs. Plants were collected and frozen in liquid nitrogen. The 

frozen plants were then grinded and 1:1 volume ratio of SDS-gel Loading Buffer: 

plant extract volume was then added and samples were boiled at 950C for 10 

minutes. Samples were then analyses after Western blotting by using the purified 

antibodies as well as anti-HA antibodies as positive control. The antibody titer for 

anti-HA antibody was 1:2000. The antibody titers for the purified specific antibodies 

were determined to be 1:100. 

4.2.18. GEL FILTRATION CHROMATOGRAPHY  

The Gel Filtration Chromatography Assays of GL1 and TRY expressed in 

pET3a vector were performed at Institute of Bioorganic Chemistry, Poznan, 

Poland.The Gel Filtration Chromatography Assays of TRY expressed in pMALc2 

vector were performed at Institute for Biochemistry University of Cologne, Cologne, 

Germany. Superdex 200 16/60pg was used for this assay 

4.2.19. SURFACE PLASMON RESONANCE SPECTROSCOPY 

Biacore experiments were performed at Institute for Biochemistry I, Center 

for Molecular Medicine, University of Cologne, Cologne Germany 
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4.2.20. PEPTIDE MASS FINGERPRINTING 

 PMF was performed by Bioanalytical Laboratory, Zentrum für Molekulare 

Medizin Köln Zentrale Bioanalytik (ZBA), Cologne Germany 

4.2.21. COEXPRESSION OF PROTEINS 

The constructs containing the CDS of proteins that are desired to be 

coexpressed are transformed into a bacteria and a single colony is selected by growth 

on media containing the combination of antibiotics for the vectors used for 

transformation. The presence of the constructs in a single colony was tested by 

colony PCR using the gene specific primers for each construct. After growth of single 

colony bearing the desired constructs overnight in LB medium containing the proper 

antibiotics, this preculture was inoculated into LB plus antibiotic and cells were 

further grown until an OD600 of 0.6 to 1. The culture was then induced with a final 

IPTG concentration of 0.5mM for 3 hours at 370C shaking at 220 rpm. The cells were 

then harvested by centrifugation for 7 minutes at 7000x g at 40C. The inductions were 

then analysed by SDS-PAGE for which 1mL of cells were pelleted and dissolved in 

100 µL of SDS gel loading buffer. 

4.2.22. AFFINITY PURIFICATION OF COEXPRESSED PROTEINS 

Coexpressed His-GL3 and MBP-TRY were purified via Amylose resin. 

Same conditions were applied during this purification as in the case of MBP-TRY 

alone. Cells coexpressed GST-GL1 and His-TTG2-His, GST-TTG2-His and His-TTG1, 

were lysed after induction and incubated with GSH or Ni-NTA resins for single step 

affinity purification. In addition, double step affinity purification was performed 

where the cell lysates were first incubated with GSH resin and the elution fractions of 

these first purifications were incubated with Ni-NTA resin subsequently. The 

analyses of the purified proteins after affinity purification steps were done by 

Western blotting in which, anti-GST or anti-His antibodies were used for detection of 

the corresponding protein. 

  

 Photos were edited with GIMP, the GNU Image Manipulation Program, 

version 2.4.6. 
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