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Abbreviations

AL antennal lobe(s)

BA benzaldehyde

CA +/- citral

CO citronellal

EU eugenol

GABA γ-amino-butyric acid

GE geraniol

HX 1-hexanol

IA A-current

ICa calcium current

IK,ST slow transient potssium current

IK(V) delayed rectifier current

INa sodium current

IO,Ca Ca2+-dependent outward current

IO α-ionone

KC(s) Kenyon cell(s)

LLP lateral lobe of the protocerebrum

LN local interneuron

MB mushroom body

ME methylsalicylate

MGPN macroglomerular projection neuron

OGB-1 Oregon-Green BAPTA 1

OM odor mixture

PN projection neuron

PTX picrotoxin
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Zusammenfassung

Das olfaktorische System von Insekten diente schon oft als Modell für generelle

sensorische Informationsverarbeitung. Information, die von olfaktorischen Re-

zeptorzellen detektiert wird, wird in mehreren Schritten weiterverarbeitet. In-

nerhalb der Antennalloben wird die olfaktorische Information von lokalen In-

terneuronen prozessiert und via Projektionsneuronen in höhere Gehirn Regio-

nen geleitet. Die höheren Zentren sind bei Insekten die Pilzkörper und die lat-

eralen Loben des Protocerebrums. Die Pilzkörper der Insekten sind Zentren für

multimodale Informationsverarbeitung und essentiell für olfaktorisches Lernen.

Elektrophysiologische Ableitungen der Hauptzellen des Pilzkörpers, der Kenyon

Zellen, zeigten eine ’spärliche’ Wiedergabe der olfaktorischen Signale im Pilz-

körper (’sparse coding’). Es wurde vermutet, dass intrinsische gemeinsam mit

synaptischen Eigenschaften des Kenyon Zellen-Netzwerks die reduzierte An-

zahl an Aktionspotenzialen bewirken und so ein kurzes Intergrationsfenster für

synaptische Eingänge bilden. Somit würden die Kenyon Zellen als Koinzidenz-

detektoren fungieren. Um eine Reihe von spannungs- und Kalzium abhängigen

Einwärts- (ICa, INa) und Auswärtsströmen (IA, IK(V), IK,ST, IO(Ca)) zu analysieren

und damit die genannten speziellen Feuereigenschaften der Kenyon Zellen besser

zu verstehen, wurden jene Zellen in einem adulten, intakten Hirnpräparat der

Schabe Periplaneta americana mit Hilfe der ’whole-cell patch-clamp’ Technik unter-

sucht. Grundsätzlich zeigte sich, dass die Parameter der Ströme ähnlich denen

in anderen Insekten waren. Bestimmte funktionelle Parameter des ICa und des

IO(Ca) hingegen zeichneten sich als besonders aus und könnten so das ’sparse

coding’ unterstützen. ICa hatte im Vergleich zu ICa in anderen Insekten eine

sehr niedrige Aktivierungsschwelle und eine sehr hohe Stromdichte. Zusammen

könnten diese Eigenschaften des ICa die verstärkten und geschärften
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EPSPs, wie sie in vorangegangenen Studien beschrieben wurden, zur Folge haben.

IO(Ca) wies ebenfalls eine sehr hohe Stromdichte auf und eine sehr hohe Ak-

tivierungsschwelle. In Kombination könnten der große ICa und IO(Ca) die starke

Spike-Frequenz Adaptation vermitteln.

Immunohistochemische Studien haben gezeigt, dass die Pilzkörper von

GABAergen Neuronen massiv innerviert werden. Diese GABAergen Neurone

verschalten auf Kenyon Zellen und Projektionsneurone. Die intrinsischen Eigen-

schaften der Kenyon Zellen werden vermutlich auch von tonischem, inhibieren-

den synaptischen Eingang unterstützt. Dies konnte ich mit spezifischen GABA-

Rezeptor Blockern zeigen. Zusätzlich habe ich den Eingang auf die Kenyon Zel-

len, der hauptsächlich von den olfaktorischen Projektionsneuronen stammt, un-

tersucht. Ich konnte zeigen, dass unterschiedliche, räumlich abgesetzte Eingänge

möglicherweise präsynaptisch durch GABA moduliert werden.
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Abstract

The insect olfactory system has already served as a model system to analyze gen-

eral sensory information processing. Olfactory information, which is perceived

by olfactory receptor neurons is processed in multiple steps. Within in the first

olfactory relay, the antennal lobes (AL), olfactory information is processed by lo-

cal interneurons and relayed by projection neurons (PNs) to higher order brain

centers, which are the mushroom bodies and the lateral lobes of the protocere-

brum. The insect mushroom bodies (MBs) are multimodal signal processing cen-

ters and essential for olfactory learning. Electrophysiological recordings from the

MB principle component neurons, the Kenyon cells (KCs), showed a sparse rep-

resentation of olfactory signals in the MBs or rather the KCs. It has been proposed

that the intrinsic and synaptic properties of the KCs circuitry combine to reduce

the firing of action potentials and to generate relatively brief windows for synap-

tic integration in the KCs, thus causing them to operate as coincidence detectors. I

used whole-cell patch-clamp recordings from KCs in the adult, intact brain of the

cockroach Periplaneta americana to analyze a set of voltage- or Ca2+ dependent in-

ward (ICa, INa) and outward currents (IA, IK(V), IK,ST, IO(Ca)) to better understand

the ionic mechanisms that mediate their special firing properties. In general the

currents had properties similar to currents in other insect neurons. Certain func-

tional parameters of ICa and IO(Ca), however, have extreme values suiting them to

assist sparse coding. ICa has a very low activation threshold and a very high cur-

rent density compared to ICa in other insect neurons. Together these parameters

make ICa suitable for boosting and sharpening the EPSPs as reported in previous

studies. IO(Ca) also has a large current density and a high activation threshold. In

combination the large ICa and IO(Ca) are likely to mediate a strong spike frequency

adaptation.
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Immunohistochemical studies have shown that the mushroom bodies are

contacted by GABAergic neurons, which synapse onto KCs and the input neu-

rons the PNS. The intrinsic properties of the KCs are likely to be shaped in part

by their tonic, inhibitory synaptic input, which was revealed by specific GABA

receptor blockers. In addition I analyzed the input to the KCs, which is mainly

provided by olfactory projection neurons. Here I was able to show, that spatially

distinct input is possibly modulated by presynaptic GABAergic inhibition.
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1 Introduction

Olfactory discrimination and recognition is a vital task for all living animals. The

olfactory system of insects and vertebrates share many features that are remark-

ably similar across the phyla (for review see Eisthen, 2002; Hildebrand & Sheperd,

1997). Therefore the insect olfactory system has been studied in great detail as a

model system for general information processing (Laurent & Davidowitz, 1994;

Wang et al., 2004; Galizia et al., 1999; Hansson, 2002; de Bruyne & Baker, 2008).

In general an odorant is bound by odorant binding proteins (OBP), which are lo-

cated in the membrane of olfactory receptor neurons. These cells are housed in

olfactory sensilla, which are located on the insect antennae. The olfactory recep-

tor neurons (ORNs) send their excitatory axons to primary olfactory centers, that

are in insects the antennal lobes. Here the axons segregate into discrete spheri-

cal structures called glomeruli. In insects, all ORNs expressing a particular OBP

converge in one distinct glomerulus (Fishilevich & Vosshall, 2005; Couto et al.,

2005). The numbers of glomeruli range from 50-160 (Drosophila: Laissue et al.,

1999, Manducca: Rospars & Hildebrand, 1992, Periplaneta: Boeckh et al., 1987, Apis:

Flanagan & Mercer, 1989; Galizia et al., 1999). Within the glomeruli the ORNs pro-

vide cholinergic input to either projection neurons (PNs), and local interneurons

(LNs). Most PNs innervate a single glomerulus and convey the information from

that glomerulus to higher order brain centers, but some PNs innervate multiple

glomeruli (Strausfeld et al., 1998; Boeckh & Tolbert, 1993). The functional role of

these cells remains unclear. The second class of cells in the antennal lobe are local

interneurons, which inter-connect the glomeruli. The first class of LNs are local

inhibitory spiking neurons which contain GABA and the second class are non

spiking interneurons which do not contain GABA (Husch et al., 2009).
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1 Introduction

1.1 Olfactory information processing in the AL

One consequence of interglomerular connectivity is that the olfactory information

is distributed over greater ensembles of PNs. Studies in insects have shown that

PNs respond in a broader range of odors than the matching presynaptic ORNs

(Wilson et al., 2004). This broadening of the tuning curves is achieved by local

inhibitory and excitatory circuits provided by the local interneurons (Olsen et al.,

2007; Olsen & Wilson, 2008). Nevertheless the spatial distribution of olfactory

information is not uniform between different component odors. Imaging studies

have shown that the odor-evoked responses lead to spatial maps, where different

odors activate different glomeruli in a fragmented way with overlapping areas

(Galizia et al., 1999; Silbering et al., 2008; Sachse & Galizia, 2002). These areas in-

crease with increasing odor concentrations. In addition to the spatial patterning,

electrophysiological studies showed with higher temporal resolution that there

is also a temporal patterning in the principal neurons. For example one odor

might elicit a temporally complex pattern with phases of strong excitation and

inhibition, whereas another odor might elicit a phasic excitation with no inhibi-

tion (Laurent et al., 1996; Ito et al., 2008). Different principal neurons, which are

simultaneously activated by the same odor, can respond with different temporal

patterns (Wehr & Laurent, 1996; Ito et al., 2008). These temporal patterns seem to

arise mainly from the local circuitry in the antennal lobe (Bazhenov et al., 2005;

Wilson & Laurent, 2005). Studies in honey bees suggested that in addition the

output of the PNs is modulated by the GABAergic neurons (Szyszka et al., 2005).

This possible modulation could have different consequences on the temporal pat-

terning, the spatial patterning and the absolute strength of responses to different

odors.

1.2 Mushroom body

Biochemical, genetic, physiological and behavioral studies have identified the

mushroom bodies (MB) as multimodal information processing centers that also

play a crucial role during learning and memory formation (for reviewes see Davis,

2004; Dubnau et al., 2003, Heisenberg, 2003). Anatomically first described by Du-
11



1 Introduction

AL AN

MB

LLP
CC

OL

A

CC

B1 B2

B3

(Galizia & Szyszka 2008)

Figure 1.1: Schematic overview of the olfactory pathways in insects. (A) Reconstruction of the

neuropils of P. americana. AL: antennal lobe; AN: antennal nerve; CC: central complex; LLP: lateral

lobe of the protocerebrum; MB: mushroom body; OL: optical lobe (kindly provided by S. Schleicher). (B1)

Schematic overview of honey bee olfactory system (adapted from Galizia & Szyszka, 2008). ORN: olfactory

receptor neurons; AL: antennal lobe; PN: projection neurons; MB: mushroom body; KC: Kenyon cell. (B2)

Schematic view of the neural network in the MB calyx (black box in B1). In P. americana 260 PNs synapse

onto∼200 000 KCs (Boeckh et al., 1984). (B3) Schematic view of microcircuits within the MB calyx (black

box in B2). PNs synapse onto KCs and GABAergic neurons, which, in turn, make synapse with KCs and

PNs.

jardin (1850) they are prominent lobed bilateral structures in the protocerebra of

nearly all insects. Most of their structure is formed by a large number of intrinsic

principal neurons, called Kenyon cells (KCs). Their small cell bodies are located

in and around the cup-like structures of the calyces. The calyces contain the main

dendritic input region of the KCs. From here they send their axons along the pe-

dunculus towards the two lobes where they bifurcate and make output synapses

on efferent neurons. The KCs receive mostly olfactory information but visual

input has also been described for some species (for reviews see Fahrbach, 2006;

Heisenberg 1998, Strausfeld et al., 1998). Within the calyces of the mushroom

bodies, the KCs are contacted by several centrifugal neurons that contain multi-

ple kinds of neurotransmitters and neurohormons. Immunohistochemical stud-

ies have shown that both octopamine and dopamine are highly expressed in the

mushroom bodies. Blocking these neuromodulators led to drastic impairment of

memory tasks.

Behavioral experiments combined with ablation, lesioning, cooling, stim-

ulation or genetic intervention have led to the conclusion that the MBs are in-
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1 Introduction

volved in sensory information processing, control of motor behavior, and learn-

ing and memory (for reviewes see Davis, 2004; Dubnau et al., 2003, Heisenberg,

2003). Concepts how sensory information is integrated and represented in the

MBs emerged from electrophysiological studies of olfactory signal processing

(MacLeod & Laurent, 1996; Perez-Orive et al., 2002; Perez-Orive et al., 2004). In the

MBs, olfactory signals are sparsely represented, which is in strong contrast to the

antennal lobes, the first synaptic relay in the insect olfactory system. Sparse cod-

ing, which is defined as representation of information by a relatively small num-

ber of simultaneously active neurons out of a large population, can be achieved

by either the appropriate connectivity in the circuit or the intrinsic firing proper-

ties of the network’s component neurons (Olshausen & Field, 2004), in this case

the KCs. There is evidence for both of these mechanisms in the MBs: immuno-

histochemical, electrophysiological and imaging studies suggest that pre- (of the

projection neurons) and postsynaptic inhibition (of the KCs) might contribute to

sparse coding in the MB (Bazenov et al., 2001; Leitch & Laurent, 1996; Perez-

Orive et al., 2002; Perez-Orive et al., 2004; Szyszka et al., 2005; Wang et al., 2004;

Yasuyama et al., 2002; Murthy et al., 2008). Second there is evidence from elec-

trophysiological recordings and modeling studies that intrinsic firing properties

of KCs support a sparse coding scheme (for review see Laurent, 2002; Wilson &

Mainen, 2006; Kay & Stopfer, 2006). It has been proposed that the intrinsic and

synaptic properties combine to generate relatively brief integration windows in

the KCs, thus causing them to operate as coincidence detectors for synaptic input

from projection neurons (Perez-Orive et al., 2002; Perez-Orive et al., 2002). These

studies make some assumptions and predictions about the underlying ionic con-

ductances. However, except for in vitro studies of pupal honey bee KCs (Schäfer

et al., 1994; Grünewald, 2003; Wüstenberg et al., 2004; Pelz et al., 1999) there are

not many quantitative data about the ionic currents that ultimately determine

the KCs’ intrinsic firing properties. Recent studies of adult cricket KCs showed

modulatory effects of monamines on Ca2+ currents and Na+-activated K+ cur-

rents pointing towards a possible cellular mechanism of learning KCs (Aoki et al.,

2008; Kosakai et al., 2008).
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1 Introduction

1.3 Objectives of this Thesis

The aim of this study was to identify different mechanisms, which contribute to

olfactory coding in the mushroom bodies of P. americana.

• First, I analyzed the intrinsic membrane properties of the Kenyon cells,

which are the principal neurons of the mushroom bodies. This part com-

bined odor evoked responses of Kenyon cells and a detailed analysis of

voltage- and Ca2+-dependent currents.

• Second I investigated the effect of GABAergic postsynaptic inhibition on

the Kenyon cells in consideration of appropriate circuit connectivity.

• Last I examined the GABAergic modulation of spatial and temporal aspects

of the synaptic output boutons of projection neurons KCs.

The combination of the different parameters leads to a better understanding of

mechanisms which mediate olfactory coding in insect mushroom bodies.
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2 Material

2.1 Animals and materials

P. americana were reared in crowded colonies at∼27◦C under a 13:11 h light/dark

photoperiod regimen and reared on a diet of dry rodent food, oatmeal and water.

The experiments were performed with adult males. All chemicals, unless stated

otherwise, were obtained from Applichem (Darmstadt, Germany) or Sigma-Al-

drich (Taufkirchen, Germany) in a ’pro analysis’ purity grade.

2.2 Intact brain preparation

The intact brain preparation was based on an approach described previously

(Kloppenburg et al., 1999a; Kloppenburg et al., 1999b), in which the entire ol-

factory network is left intact. The animals were anaesthetized by CO2, placed in

a custom build holder and the head with antennae was immobilized with tape

(Tesa ExtraPower Gewebeband, Tesa, Hamburg, Germany). The head capsule

was opened by cutting a window between the two compound eyes and the bases

of the antennae. The brain with antennal nerves and antennae attached was

dissected from the head capsule in ’normal saline’ (see below) and pinned in a

Sylgard-coated (Dow Corning Corp., Midland, Michigan, USA) recording cham-

ber. To gain access to the recording site and facilitate the penetration of pharma-

cological agents into the tissue, I desheathed parts of the MBs using fine forceps.

Some preparations were also enzyme treated with a combination of papain (0.3

mg ml−1, P4762, Sigma) and L-cysteine (1 mg ml−1, 30090, Fluka/Sigma,) dis-

solved in ‘normal’ saline (∼ 3 min, RT). The KCs were visualized with a fixed

stage upright microscope (BX51WI, Olympus, Hamburg, Germany) using a 20x

15



2 Material

water-immersion objective (XLUMPLFL, 20x, 0.95 NA, 2 mm WD, Olympus)

with a 4x magnification changer (U-TAVAC, Olympus) and IR-DIC optics (Dodt

& Zieglgänsberger, 1994).

2.3 Whole-cell recordings

Whole-cell recordings were performed at 24◦C following the methods described

by Hamill et al. (1981). Electrodes with tip resistances between 4-5 MΩ were

fashioned from borosilicate glass (0.86 mm ID, 1.5 mm OD, GB150-8P, Science

Products, Hofheim, Germany) with a temperature controlled pipette puller (PIP5,

HEKA-Elektronik, Lambrecht, Germany). For current clamp recordings the pi-

pettes were filled with ’normal’ intracellular saline solution containing (in mM):

190 K-aspartate, 10 NaCl, 1 CaCl2, 2 MgCl2, 10 HEPES and 10 EGTA adjusted to

pH 7.2 (with KOH), resulting in an osmolarity of ∼ 415 mOsm. During the ex-

periments, if not stated otherwise, the cells were superfused constantly with ‘nor-

mal’ extracellular saline solution containing (in mM): 185 NaCl, 4 KCl, 6 CaCl2,

2 MgCl2, 10 HEPES, 35 D-glucose. The solution was adjusted to pH 7.2 (with

NaOH) and to 430 mOsm (with glucose). Whole-cell voltage- and current-clamp

recordings were made with an EPC9 patch-clamp amplifier (HEKA-Elektronik)

that was controlled by the program Pulse (version 8.63, HEKA-Elektronik) run-

ning under Windows. The electrophysiological data were sampled at intervals

of 100 µs (10 kHz), except the tail current and sodium current measurements

were sampled at 20 kHz. The recordings were low pass filtered at 2 kHz with

a 4-pole Bessel-filter. The offset potential and capacitive currents were compen-

sated using the ‘automatic mode’ of the EPC9 amplifier. Whole-cell capacitance

was determined by using the capacitance compensation (C-slow) of the EPC9.

Cell input resistances were calculated from voltage responses to hyperpolariz-

ing current steps. The calculated liquid junction potential between intracellular

and extracellular solution of 15.4 mV for ’normal’ and of 4.8 mV for ’calcium’

and ’sodium’ extra-/intracellular saline was also compensated (calculated with

Patcher’s-Power-Tools plug-in

from http://www.mpibpc.gwdg.de/abteilungen/140/software/index.html

16



2 Material

for Igor Pro [Wavemetrics, Portland, Oregon]). To remove uncompensated leak-

age and capacitive currents, a p/6 protocol was used (see Armstrong & Bezanilla,

1974). Voltage errors due to series resistance (RS) were minimized using the RS-

compensation of the EPC9. RS was compensated between 30% and 70% with a

time constant (τ) of 200 ms.

2.4 Current isolation

Membrane currents were isolated using a combination of ion substitution, phar-

macological blockers, voltage inactivation and digital current subtraction proto-

cols, based on protocols that have been effective in insect preparations (Heidel &

Pflüger, 2006; Husch et al., 2009; Kloppenburg & Hörner, 1998; Kloppenburg et al.,

1999b; Mercer et al., 1995; Mercer et al., 1996; Schäfer et al., 1994). Sodium currents

were blocked by tetrodotoxin (10−7 M, TTX, T-550, Alomone, Jerusalem, Israel).

Calcium currents were blocked by CdCl2 (5 x 10−4 M). Tetraethyl-ammonium (2

x 10−2 M, TEA, T2265, Sigma-Aldrich) was used to block sustained K+ currents

(IK(V)) and also a Ca2+ activated outward current (IO(Ca)). IO(Ca) was also indi-

rectly eliminated when the Ca2+ currents were blocked by CdCl2. The transient

K+ current (IA) was blocked with 4-aminopyridine (4 x 10−3 M, 4-AP, A78403,

Sigma-Aldrich), or was eliminated by depolarized holding potentials, at which

IA is significantly inactivated. To compensate for changes in osmolarity, the glu-

cose concentration was appropriately reduced. Details of recording solutions and

voltage protocols for each set of experiments are provided in the Results.

To measure steady state activation, incrementing voltage steps were applied

from a constant holding potential (see in Results and figure legends). The voltage

dependencies of voltage dependent K+ currents were determined by converting

the peak currents to peak conductance, G, which were scaled as a fraction of the

calculated maximal conductance. The voltage dependence of activation of ICa

and INa was determined from tail currents. The resulting conductance/voltage

(G/V) or current/voltage (I/V) curves were fit to a 1st order Boltzmann equation

of the form
A

Amax
=

1

(1 + e
−(V−V0.5

s )
17



2 Material

where A is the amplitude of the conductance (or tail current) and s is a slope fac-

tor. V0.5 is the voltage of half-maximal activation (V0.5act). Equilibrium potentials

(for 24◦C) was calculated using the Nernst equation, assuming the intracellular

ion concentration equals the concentration in the pipette solution.

Steady state inactivation of voltage dependent currents was measured from

a constant holding potential and incrementing pre-steps were followed by a con-

stant voltage step, for which the peak currents were measured. The data, scaled

as a fraction of the calculated maximal conductance (K+ currents) or maximal

current (ICamax , INamax), were fitted to a 1st order Boltzmann equation, where V0.5

is the voltage for half maximal inactivation (V0.5inact).

2.5 Data analysis

We used the software Pulse (version 8.63, HEKA-Electronics), Igor Pro 6 (Wave-

metrics, including the Patcher’s PowerTools plug-in), Sigma Stat, and Sigma Plot

(Systat Software GmbH, San Jose, California) for analysis of electrophysiological

data. All calculated values are expressed as mean ± standard deviation. Signif-

icance of differences between mean values was evaluated with paired and un-

paired t-tests. A significance level of 0.05 was accepted for all tests.

2.6 Odor stimulation

We delivered odors using a continuous air flow system. Carbon-filtered, humid-

ified air flowed continuously across the antennae at a rate of 2 l min−1 (’main

airstream’) through a glass tube (10 mm ID) placed perpendicular to and within

20-30 mm of the antennae. Odors were quickly removed with a vacuum fun-

nel (3.5 cm ID) placed 5 cm behind the antennae. 5 ml of the liquid odorants

(pure or diluted in mineral oil [M8410, Sigma]) were filled in 100 ml glass vessels.

During a 500 ms odor stimulus, 22.5 ml of the headspace was injected into the

airstream. To ensure a continuous air flow across the preparation, the air deliver-

ing the odor was redirected from the ‘main airstream’ by a solenoid valve system.

The solenoids were controlled by the D/A-interface of the EPC9 patch-clamp am-
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2 Material

plifier and the Pulse software. The odorants were adjusted with mineral oil to a

final volume of 5 ml. The concentration was adjusted to the odorant with the low-

est vapor pressure (eugenol). Stripes of filter paper were used to facilitate evap-

oration. Final concentrations were as follows: eugenol 100 % (E51791, Aldrich),

a-ionone 72.4 % (I12409, Aldrich), methyl salicylate 14.9 % (M6752,Aldrich), +/-

citral 14.6 % (C83007, Aldrich), citronellal 4.9 % (W230715, Sigma), 1-Hexanol

1.1 %(52830, Fluka), benzaldehyde 1.1 % (418099, Aldrich), pyrrolidine 0.02 %

(83241, Fluka). In addition an odor mixture was used, where the same amounts

of all single component odors were combined. The headspace of pure mineral oil

was used as control stimulus (’blank’). Odor stimuli arrived at least 60 s apart ex-

cept for the imaging experiments where all odors were applied as fast as possible

to reduce recording time.

2.7 Single cell labeling

To label single cells, 1% biocytin (B4261, Sigma) was added to the pipette solution.

After the recordings, the brains were fixed in Roti-Histofix (P0873, Carl Roth,

Karlsruhe, Germany) overnight at 4 ◦C and rinsed in 0.1 M Tris-HCl buffered

solution (3 x 10 min, pH 7.2, TBS). To facilitate the streptavidin penetration, the

brains were treated with a commercially available collagenase/dispase mixture

(1 mg ml-1, 269638, Roche Diagnostics, Mannheim, Germany) and hyaluronidase

(1 mg ml-1, H3506, Sigma-Aldrich) in TBS (20 min, 37 ◦C), rinsed in TBS (3 x 10

min, 4 ◦C) and incubated in TBS containing 1% Triton X-100 (30 min, RT, Serva,

Heidelberg, Germany). Afterwards, the brains were incubated in Alexa Fluor

633 (Alexa 633) conjugated streptavidin (1:600, 1-2 days, 4 ◦C, S21375, Molecu-

lar Probes, Eugene, OR) that was dissolved in TBS containing 10% Normal Goat

Serum (S-1000, Vector Labs, Burlingame, CA). Brains were rinsed in TBS (3 x 10

min, 4◦C), dehydrated, and cleared and mounted in methyl salicylate (M6752,

Sigma-Aldrich).

After taking images of the whole mount preparations, the brains were rinsed

in 100% ethanol for 10 min to remove the methylsalicylate, rehydrated, and rinsed

in TBS (3 x 10 min, RT). The brains were embedded in agarose (4% in TBS, 11380,
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Serva, Heidelberg, Germany) and 100 mm frontohorizontal sections were cut in

TBS with a vibratome (Leica VT1000 S, Heidelberg, Germany). The slices were

rinsed in H2O, dried on coated slides (0.05 % chrome-alum [60151, Fluka/Sigma]

and 0.5% gelatin [4078, Merck, Darmstadt, Germany]), treated with xylene for

10 min and mounted in Permount (SP15B, Fisher Scientific, Fair Lawn, NJ). The

fluorescence images were captured with a confocal microscope (LSM 510, Carl

Zeiss, Göttingen, Germany) equipped with Plan-Neofluar 10x (0.3 NA), Plan-

Apochromat 20x (0.75 NA), and Plan-Apochromat 63x (1.4 NA Oil) objectives.

Streptavidin-Alexa 633 was excited with a He-Ne Laser at 633 nm. Emission of

Alexa 633 was collected through a 650 nm LP filter. Scaling, contrast enhance-

ment and z-projections were performed with ImageJ v1.35d and the WCIF plu-

gin bundle (www.uhnresearch.ca/facilities/wcif/). Single labeled neurons were

reconstructed with a custom module (Evers et al., 2004) implemented in Amira

4.1 (Mercury Computer Systems, San Diego,CA). The final figures were prepared

with Photoshop and Illustrator CS2 (Adobe Systems Incorporated, San Jose, CA).

2.8 Calcium imaging

The imaging setup for fluorimetric measurements consisted of an Imago/Sensi-

Cam CCD camera with a 640 x 480 chip (Till Photonics, Planegg, Germany) and

a polychromator IV (Till Photonics) that was coupled via an optical fibre into an

BXWI fixed stage upright microscope (Olympus, for details see above). The cam-

era and the polychromator were controlled by the software Vision (version 4.0,

Till Photonics) run on a Windows PC. For the analysis of odor-evoked calcium

signals in the boutons of the PNs the boutons were visualized with Alexa Fluor

568 (0.2% in the patch pipette). The boutons were illuminated with 570nm light

from the polychromator, that was reflected onto the cells with a tripleband mir-

ror (62002BS, Chroma). The emitted fluorescence was detected through a triple

band filter (61002m, Chroma). The odor evoked calcium signals were measured

using the Ca2+indicator Oregon-Green-BAPTA-1 (OGB-1). This indicator is a sin-

gle wavelength, high affinity indicator suitable to measure fast Ca2+ signals. All

neurons were filled with OGB-1 (800µM) via the patch pipette and illuminated
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with 490 nm light from the polychromator. The light was reflected onto the cells

with a 505nm mirror (Q5051p, chroma) and the emitted fluorescence was de-

tected through a 515-555 nm band-pass filter (HQ535/40, chroma). Data were

acquired as 80 x 60 frames using 8x8 on-chip binning with 28 - 65 ms exposure

time. Images were sampled in analog to digital units (adu) and stored and an-

alyzed as 12 bit grayscale images. The signals were analyzed off-line using Igor

6.

After establishing the whole-cell configuration the mode was changed to

current clamp. To estimate the input resistance hyperpolarizing and depolarizing

current injections were applied. Afterwards the neurons were held for about 1.5

h at ∼ -100 mV (∼ -300 pA) to enhance dye loading. When the boutons became

visible, up to 11 component odors were puffed for 500 ms onto the ipsilateral an-

tenna. The elicited calcium transients were monitored by images acquired at 490

nm at least 10 Hz for typically 4s. The signals were all analyzed off-line with a dy-

namic background removal procedure, which has already successfully been used

on local interneurons (Pippow, 2008). Ca2+ signals were obtained from regions of

interest (ROI), which were defined on the images obtained from the Alexa 568 flu-

orescence. To remove background from the calcium signals, first the time course

of the signal was fit with a biexponential function omitting the period of Ca2+ in-

flux, which started 1 second after signal onset and decayed back to resting level

2 seconds after signal onset. Second the whole kinetic was divided by the fit, re-

sulting in a relative signal normalized to 1 (∆F/F + 1) with dynamically removed

background.
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The aim of this study was to identify different kinds of cellular mechanisms,

which mediate olfactory coding. This goal was approached in two parts. First I

investigated the mechanisms that determine the special firing properties of KCs.

Therefore I established an intact brain preparation of P. americana, which allowed

long lasting experiments. Voltage and current-clamp recordings were used to

characterize ionic conductances in KCs, their odor specific response profiles, the

effect of GABAergic postsynaptic inhibition on the general electrophysiological

properties and KC morphology. Secondly, I investigated the main input sites of

the KCs, the PN boutons. Odor evoked Ca2+ signals were qualitatively and quan-

titatively compared between individual boutons of single PNs. The response pro-

files before and after blocking of GABAergic inputs were compared.

3.1 Kenyon cell morphology

Current- and voltage-clamp recordings were used to analyze physiological pa-

rameters of Kenyon cells (n = 100) in an intact brain preparation of P. americana.

The goal was to characterize and better understand the electrophysiological prop-

erties that mediate the special firing properties observed in these neurons. The

Kenyon cells were identified by the size and position of their somata in the ca-

lyces of the MB. For all neurons (n = 16) that were labeled by dye injection via

the recording pipette the identity was confirmed by the characteristic anatomy

(Fig. 3.1). All stained neurons had a similar axonal branching pattern in the MB

neuropil. The axon ran along the pedunculus towards the lobes, where it bifur-

cated into the vertical and medial lobe. In the calyces, however, their dendritic

branching patterns varied substantially as demonstrated in Figure 3.1A-D. Nev-
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ertheless, the data of the ionic currents was pooled from all recorded KCs, because

there were no significant differences in the cellular properties between KCs and

different types of KCs could not be classified at this point of my analysis.

3.2 Current-clamp

In this part of the study I characterized the current-clamp properties of KCs (n

= 25). The resting potential, measured directly after breaking into the cells, was

-53 mV ± 9 mV and -55 ± 10 mV 5 min after break in. The input resistance

of the KCs was 2.5 ± 1 GΩ and they had a whole-cell capacitance of 2.7 ± 0.8

pF. The neurons showed very little or no spontaneous activity (mean firing rate

< 0.1 Hz), but action potentials could be elicited in all recorded neurons by in-

jecting depolarizing current (Fig. 3.2A). The spike threshold was -47 ± 6 mV.

The APs could be abolished by TTX (data not shown), and accordingly, a TTX-

sensitive, fast inward current was detected in the voltage-clamp recordings (Fig.

3.1B). During sustained depolarizing current injection I observed a strong spike

frequency adaptation (Fig. 3.2A and H; τ = 1.8± 0.3 s). The Kenyon cells received

abundant excitatory and inhibitory synaptic input. In a given neuron, often ei-

ther excitatory or inhibitory input appeared to predominate (Fig. 3.2C and D). In

10 of 25 neurons, odor application induced sub threshold graded depolarization,

up to 10 mV amplitude, which were time locked to the stimulus (Fig. 3.2E and F).

In three of the odor sensitive KCs the odor-induced depolarization gave rise to

action potentials (Fig. 3.2F and G). All odor responsive neurons reacted to more

than one out of the five presented odors (Fig. 3.2G). They did not respond to the

blank stimulus.
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Figure 3.1: Kenyon cells’ morphology. (A-D) Schematic reconstructions of four recorded KCs that were
stained with biocytin via the patch pipette. All somata were located at the frontal rim of the calyces but
were lost during histological processing. The axons of all stained neurons ran along the pedunculus (Pe)
towards the lobes, where they bifurcate into the medial (mL) and vertical (vL) lobes. In the calyces (Ca) their
dendritic branching patterns varied between neurons (for detail see insets). Insets are maximum intensity
projections of confocal images from the framed areas in the reconstructions. Scale: 100 µm; inset: 10 µm.
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Figure 3.2: Current- and voltage-clamp recordings of Kenyon cells without channel blockers ap-
plied. (A) Injection of depolarizing current induced action potentials that showed a strong spike frequency
adaptation. Current was injected for 5 s from -20 to 10 pA in 5 pA increments. (B) Whole-cell recordings of
(mainly) voltage-activated currents in ’normal’ saline. Depolarizing voltage steps from a holding potential
of -100 mV elicited a fast transient inward current followed by transient and more sustained outward cur-
rents. (C,D) Most KCs received abundant, spontaneous synaptic input. In a given neuron either excitatory
(C) or inhibitory (D) input was more obvious. (E,F) Recordings of odor responsive KCs during repetitive
stimulation with 1-Hexanol. (E) Odor induced sub threshold, graded depolarizations (as in ∼ 30 % of the
recorded KCs), which were time locked to the stimulus. (F) Odor induced depolarizations gave rise to action
potentials (as in ∼ 25 % of the odor responsive KCs). (G) Odor induced depolarizations gave rise to action
potentials. This particular neuron responded to all presented odors. (H) Instantaneous spike frequency.
Every gray dot represents a single interspike interval. All cells showed a strong spike frequency adaptation
of τ = 1.8 ± 0.3 sec.

3.3 Voltage-clamp

To investigate the cellular basis for the sparse KC responses to odors the ionic

currents that shape their intrinsic firing properties were studied. To minimize

synaptic input the brains were deantennated for voltage-clamp recordings. De-
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polarizing voltage steps from a holding potential of -60 mV elicited a transient

inward current that was followed by transient and sustained outward currents

(Fig. 3.2B). Both the inward and outward currents represented a combination of

several ionic currents, some of which I isolated and describe here. Individual cur-

rents were isolated using a combination of pharmacological blockade, ion substi-

tution, appropriate holding potential, and current subtraction protocols. Current

profiles that were clearly dominated by a certain current as a result of using these

current isolation protocols, may still have included small residuals of other cur-

rents. Since I recorded from the soma, which has a long thin neurite connecting

it to the rest of the cell, it seems likely that the currents I have measured originate

primarily from the cell body. Ionic currents generated by channels selectively lo-

cated in very distal regions of the neuron may not be detectable by voltage-clamp

of the soma.

3.3.1 Outward currents

To measure voltage and Ca2+ dependent outward currents, the transient inward

sodium currents (INa) were blocked by TTX (10−7 M). To record purely voltage

dependent outward currents, I used Cd2+ (5 x 10−4 M) to abolish Ca2+ currents.

At least 4 outward currents were apparent in all KCs: 1) a 4 AP- sensitive, tran-

sient, fast activating/inactivating K+ current (IA), 2) a 4-AP insensitive more

slowly inactivating component (IK,ST, see Wüstenberg et al., 2004), 3) a sustained,

virtually non inactivating K+ current (IK(V)), and 4) a Ca2+ dependent outward

current (IO(Ca)). The four currents had differential, concentration-dependent sen-

sitivity to standard pharmacological tools such as 4-AP and TEA, and had differ-

ences in their activation and inactivation properties.

Transient K+ current (IA) To isolate the A-type K+ current the cells were bathed

with saline containing (in M) 10−7 TTX, 2 x 10−2 TEA and 5 x 10−4 CdCl2 to

greatly reduce non-IA currents. 4-AP has been shown (Wüstenberg et al., 2004)

to be an effective blocker for the fast transient potassium current in insect neu-

rons (Fig. 3.3). The neurons were held at -60 mV. Two series of 10 mV steps

between -60 and 40 mV were delivered. The first series had a 500 ms pre-step to
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Figure 3.3: Separation of 4-AP sensitive and insensitive current. Bath application of 8 x 10−3M 4-AP
halved after 2 minutes the maximum current. The 4-AP insensitive portion of the current shows still some
inactivation and was dubbed as IK,ST .

-100 mV to maximally deinactivate IA (3.4A). The second series had a pre-step

to -30 mV, where IA is almost entirely inactivated, and evoked residual non-IA-

currents were evoked (Fig. 3.4B).These were digitally subtracted from the first

series, resulting in ‘pure’ IA (Fig. 3.4C). IA started to activate at voltages above

-40 mV. This current was transient and decayed with a single time constant (at

0 mV: τ = 42 ± 5 ms; n = 11) during a maintained depolarization. Once inac-

tivated, the inactivation had to be removed by hyperpolarization prior to new

activation. The peak currents evoked by each voltage pulse (Fig. 3.4E and F)

were used to construct the conductance/voltage (G/V) relation (assuming EK =

-98.5 mV). These curves showed typical voltage dependence for activation of IA,

and were fit to a first order Boltzmann relation (Eq. 1; Fig 3.4G). This fit showed a

half-maximal activation of the peak current (V0.5act) at -13 ± 4 mV (s = 12.1 ± 1.7;

n = 11). The maximal conductance determined from the Boltzmann fits was 8.2 ±
1.4 nS, which was reached around 30 mV. Given a mean whole-cell capacitance of

3.3 ± 1 pF (n = 11), this corresponds to a mean conductance density of 2.6 ± 0.6

nS pF−1 (26 ± 6.2 pS mm−2). The mean peak current at 40 mV was 1.1 ± 0.2 nA

(n = 11; Fig. 3E), corresponding to a mean current density of 360 ± 100 pA pF−1

(3.6 ± 1 pA mm−2; Fig. 3.4F). Steady state inactivation of IA was measured from

a holding potential of -60 mV (Fig. 3.4D). The voltage pre-steps were delivered at

10 mV increments from -100 mV to 20 mV, followed by a test pulse to 40 mV.

Steady state inactivation began at pre-pulse potentials around -80 mV and
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increased with depolarization of the pre-pulse. The G/V relation (Fig. 3.4G) was

constructed from the data in Fig 3.4D. This curve was well fit by a first order

Boltzmann relation (Eq. 1), with a voltage for half maximal inactivation (V0.5inact)

of -56 ± 5 mV (s = 8.6 ± 0.9; n = 11).
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Figure 3.4: Transient Potassium current (IA). (A-D) Example current traces for steady state activation
and inactivation. The holding potential was -60 mV. (A) Current traces for steady state activation elicited
by 300 ms depolarizing steps from -60 mV to 40 mV in 10 mV increments after a 500 ms prepulse to -100
mV. (B) Current traces for steady state activation elicited by the same depolarizing steps as in A, but after
a different prestep (-30 mV). (C) Subtraction of the traces in B from those in A yields IA. (D) Steady state
inactivation. Currents elicited by 300 ms test pulses to 40 mV that were preceded by 500 ms pulses between
-100 and 20 mV in 10 mV increments. (E) I/V relationship for steady state activation of IA. (F) Current
density for steady state activation of IA. Current density was calculated from the ratio of IA and the cells
capacitance. (G) G/V curves for steady state activation (circles) and inactivation (triangles). Conductances
were calculated assuming a potassium equilibrium potential (EK) of -98.5 mV. Values are expressed as a
fraction of the calculated maximal conductance. The curves are fits to first order Boltzmann relations (Eq.
1) with the following parameters: GMax = 8.2 ± 1.4 nS. Steady state activation: V0.5act = -13 ± 4 mV; sact
= 12.1 ± 1.7. Steady state inactivation: V0.5inact = -56 ± 5 mV; sinact = 8.6 ± 0.9; n = 11 (grey: individual
cells; black: mean ± SD).

4-AP insensitive currents

To isolate voltage dependent and 4-AP insensitive outward currents the prepara-

tions were bathed with saline containing (in M) 10−7 TTX, 4 x 10−3 4-AP and 5

x 10−4 CdCl2. The neurons were held at -60 mV and two series of 300 ms volt-
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age steps between -60 and 40 mV in 10 mV increments were delivered. The first

series was preceded by a 500 ms voltage pulse to -100 mV to maximally deinac-

tivate voltage dependent 4-AP resistant currents (Fig. 3.5A). The second series

prepulse potential was -30 mV and evoked a very slowly or non-inactivating out-

ward current, IK(V) (Fig. 3.5B). IK(V) was digitally subtracted from the first series,

which additionally possessed an inactivating current. The difference current (Fig.

3.5C and D), which activates faster than IK(V) and inactivates significantly slower

than IA, was named IK,ST (Wüstenberg et al., 2004).

Slow inactivating K+ current (IK,ST) IK,ST started to activate at membrane po-

tentials more depolarized than -25 mV (Fig. 3.5C,E and F). The G/V relation for

activation had a half-maximal voltage (V0.5act) of -9.3 ± 7.8 mV (s = 10.4 ± 3; n =

11; Fig. 3.5G). The maximal conductance determined by the Boltzmann fits was

5.9± 3.6 nS and was reached around 40 mV. Given a mean whole-cell capacitance

of 3.8 ± 0.7 pF (n = 11), this corresponds to a conductance density of 1.3 ± 0.3 nS

pF−1 (13 ± 3 pS mm−2). The peak current at 40 mV was 760 ± 410 pA (n = 11;

Fig. 3.5E) corresponding to a mean current density of 200 ± 90 pA pF−1 (2 ± 0.9

pA mm−2; Fig. 3.5F). During a maintained depolarizations IK,ST decayed with a

single time constant (at 0 mV: τ = 103 ± 30 ms; n = 7), which was significantly

slower than in IA (P = 0.001, n = 7, unpaired t-test). This inactivation could be

removed by hyperpolarization. Steady state inactivation curves were obtained

by measuring the peak current elicited by a voltage pulse to 40 mV, which was

preceded by 500 ms pulse incrementing in 10 mV steps from -120 to 0 mV (Fig.

3.5D and G). Steady state inactivation began at pre-pulse potentials around -90

mV. The voltage for half-maximal inactivation (V0.5inact) was -50 ± 5 mV (s = 13.2

± 2.3; n = 6; Fig. 3.5G).

Sustained K+ current (IK(V)) IK(V) activated with voltage steps above -30 mV

(Fig. 3.5B, H and I). The current was sustained and showed little or no decay

during a maintained depolarizing voltage step. The G/V relation for activation

showed a typical voltage dependence for IK(V) with a voltage for half-maximal

activation (V0.5act) of 0 ± 4.6 mV (s = 13.2 ± 1.5; Fig. 3.5J). The maximal con-

ductance of 4.8 ± 1.3 nS was reached around 50 mV. Given a mean whole-cell
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Figure 3.5: 4-AP insensitive voltage activated potassium currents (IK,ST and IK(V)). (A-D) Example
current traces for steady state activation and inactivation of IK,ST . The holding potential was -60 mV. (A)
Activation was elicited by 300 ms depolarizing voltage steps from -60 to 70 mV in 10 mV increments
after a 500 ms prepulse to -100 mV. (B) Current traces elicited by the same depolarizing steps as in A,
but after a pre-step to -30 mV. (C) Subtraction of the traces in B from those in A yields IK,ST . (D) Steady
state inactivation. Currents elicited by 300 ms test pulses to 40 mV that were preceded by 500 ms pulses
between -120 and 40 mV in 10 mV increments. (E) I/V relation for steady state activation of IK,ST . (F)
Current density / voltage relationship for steady state activation of IA. Current density was calculated
as in Fig. 3.4.(G) G/V curves for steady state activation and inactivation of IK,ST , calculated as in Fig.
3.4. Mean G/V relation for steady state activation (circles) and inactivation (triangles) of IK,ST were fit to a
Boltzmann relation (Eq. 1) with the following parameter: GK,STMax = 5.9± 3.6 nS. Steady state activation:
V0.5act = -9.3 ± 7.8 mV; sact = 10.43 ± 3; n = 11. Steady state inactivation: V0.5inact = -50 ± 5 mV; sinact
= 13.2 ± 2.3; n = 6. (H) I/V relation for steady state activation of IK(V). (I) Current density for steady
state activation of IK(V). (J) G/V relation for steady state activation of IK(V) with the following parameters:
GK(V)Max

= 4.8 ± 1.3 nS. Steady state activation: V0.5act = 0 ± 4.6 mV; sact = 13.2 ± 1.5; n = 11 (grey:
individual cells; black: mean ± SD).
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capacitance of 3.8 ± 0.7 pF (n = 11), this corresponds to a mean conductance den-

sity of 1.6 ± 0.6 nS pF−1 (16 ± 6 pS mm−2). The mean peak current at 50 mV

was 670 ± 180 pA (n = 11; Fig. 3.5H) corresponding to a current density of 190

± 40 pA pF−1 (1.9 ± 0.4 pA mm−2; Fig. 3.5I). IK(V) showed little or no inacti-

vation even with depolarization lasting 1s or longer and there was no detectable

voltage-dependence of steady state inactivation (data not shown).

Calcium dependent outward Current (IO(Ca)) To record IO(Ca) the preparation

was superfused with saline containing 10−7 M TTX and 4 x 10−3 4-AP. The neu-

rons were held at -60 mV and two series of 200 ms voltage steps were delivered in

10 mV increments between -60 and +90 mV. The second series was recorded with

saline that additionally contained 5 x 10−4 M CdCl2 (Fig. 3.6A and B), which

completely abolished voltage activated Ca2+ currents (Husch et al., 2008). Ac-

cordingly, under Cd2+ the current was drastically reduced (Fig. 3.6B) and the

inverted U-shape in the I/V relation was eliminated (I/V relation not shown).

The difference between the ’untreated’and the ’Cd2+ treated’ current series was

defined as a Ca2+-dependent outward current with a pronounced inverted U-

shaped I/V relation (Fig. 3.6C and D). IO(Ca) consisted of an inactivating and a

non-inactivating component (Fig. 3.6C). IO(Ca) activated with voltage steps more

depolarized than -20 mV (Fig. 3.6D). The maximal peak current of 2.4 ± 1 nA is

reached at 25 ± 11 mV (n = 8; Fig. 5D,E and F) and decreased at higher voltages

as the driving force for Ca2+ declined. Given a mean whole-cell capacitance of

4.3 ± 1.1 pF (n = 8), this corresponds to a mean current density of 600 ± 340 pA

pF−1 (Fig. 3.6E). Assuming that the main charge carrier is K+ this corresponds to

a conductance density of 4.8 ± 2.5 nS pF−1 (48 ± 25 pS mm−2).
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Figure 3.6: Calcium dependent outward current (IO(Ca)). (A-C) Current traces for steady state activa-
tion of IO(Ca). The holding potential was -60 mV. (A) Current traces for steady state activation elicited by
300 ms depolarizing steps from -60 mV to 70 mV in 10 mV increments. (B) Current traces elicited by the
same depolarizing steps as in A, but during the application of a 500 µM Cd2+. (C) Subtraction of the B
traces and A traces yields IO(Ca). (D and E) Voltage dependence of IO(Ca). (D) I/V relationship of IO(Ca).
(E) current density for steady state activation of IO(Ca), calculated as in Fig. 3.4. (F) I/V relation the peak
IO(Ca) as fractions of the maximal IO(Ca). The graph demonstrates that IO(Ca) has a similar activation
threshold in all recorded neurons (grey: individual cells; black: mean ± SD).

3.3.2 Inward currents

To analyze the inward currents in KCs, the outward currents were blocked by

substituting the intracellular K+ with Cs+ and by adding 4 x 10−3 M 4-AP and 2

x 10−2 M TEA to the extracellular solution. The remaining inward current con-

sisted of a transient, fast activating/inactivating component and a more slowly

activating and inactivating component. The fast transient component was a iden-
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tified as voltage activated, TTX sensitive Na+ current, whereas the more slowly

inactivating component represented a voltage activated, Cd2+ sensitive Ca2+ cur-

rent.

Na+ currents To measure INa (Fig. 3.7) the brains were superfused with saline

containing 4 x 10−3 M 4-AP, 2 x 10−2 M TEA and 5 x 10−4 CdCl2 and in the

pipette solution K+ was substituted with Cs+. T he remaining inward current

could be blocked with TTX (10−7 M) and was reversibly eliminated, when the

extracellular Na+ was substituted with choline (Fig.3.7G). The neurons were held

at -80 mV. The I/V relationship of the peak currents was determined by increasing

voltage steps between -80 mV and 40 mV in 5 mV increments (Fig. 3.7A). INa

activates and inactivates very rapidly. Once inactivated, inactivation must be

removed by hyperpolarization prior to a new activation (Fig. 3.7B). INa started to

activate at potentials more positive than -40 mV. The mean peak currents reached

its maximum amplitude (INamax) of -420 ± 130 pA at -6 ± 5 mV (n = 14; Fig. 3.7C)

and decreased during more positive test pulses as Na+ driving force declined

(Fig. 3.7D and E). Given a mean whole-cell capacitance of 3 ± 0.9 pF (n = 14), this

corresponded to a mean current density (INamax C−1
M ) of -140 ± 50 pA pF−1 (1.4 ±

0.5 pA mm−2).

Steady state inactivation of INa was measured from a holding potential of

-60 mV. 500 ms voltage pre-pulses were delivered in 10 mV increments from -95

mV to 20 mV, followed by a 50 ms step to -5 mV. Steady state inactivation started

at pre-pulse potentials around -70 mV and increased with the amplitude of the

depolarization. The voltage for half-maximal inactivation (V0.5inact) was -48 ± 4

mV (sinact = 5.4 ± 0.5; n = 9; Fig. 3.7F).
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Figure 3.7: Transient sodium current (INa). (A and B) Current traces for steady state activation and
inactivation. (A) Steady state activation elicited by 5 ms depolarizing voltage pulses from -80 to 40 mV in
5 mV increments. The holding potential was -80 mV. (B) Steady state inactivation. Currents were elicited
by 5 ms pulses to -5 mV that were preceded by 500 ms pulses between -95 and -20 mV in 5 mV increments.
The holding potential was -60 mV. (C) I/V relation of INa. (D) Current density for steady state activation
of INa, calculated as in Fig. 3.4. (E) I/V relation of peak INa normalized to the maximal current of each
cell. (F) I/V relations for steady state inactivation. Curves are fits to a Boltzmann relation (Eq. 1) with the
following parameters: V0.5inact = -48 ± 4 mV with sinact = 5.4 ± 0.5; n = 7 (grey: individual cells; black:
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The current decreased and increased when the choline chloride was washed out.

Voltage activated Calcium Currents (ICa) To measure ICa (Fig. 3.8) the neu-

rons were superfused with saline containing 10−7 M TTX, 4 x 10−3 M 4-AP, and

2 x 10−2 M TEA. In the pipette solution K+ was replaced with Cs+. If not stated

otherwise, the holding potential was -80 mV. The I/V relationship of the peak cur-
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rents was determined by increasing 50 ms voltage steps between -80 mV and 30

mV in 5 mV increments (Fig. 3.8A). The voltage dependence for activation of ICa

was determined from tail currents, which are independent of the changing driv-

ing force during a series of varying voltage pulses. Tail currents were evoked by

5 ms voltage steps between -80 mV and 50 mV in 10 mV increments (Fig. 3.8B).

The I/V relation of the tail current peaks was fit to a Boltzmann relation (Eq. 1;

Fig. 3.8G). To measure steady state inactivation 500 ms pre-pulses were delivered

in 5 mV increments from -95 mV to -5 mV, followed by a test-pulse to -5 mV, and

the peak currents were determined (Fig. 3.8C). The I/V curves were fit to a Boltz-

mann equation (Eq. 1). During depolarizing voltage steps ICa activated relatively

quickly and decayed during a maintained voltage step (Fig. 3.8A and D). The

activation and inactivation kinetics during a voltage step are voltage dependent

(Fig. 3.8A). ICa started to activate with voltage steps more depolarized than -55

mV (Fig. 3.8A and E). The peak current reached its maximum amplitude (ICamax)

of 350 ± 80 pA at 0.6 ± 4.6 mV (n =16; Fig. 3.8E,F and G) and decreased during

more positive test pulses as the Ca2+ driving force fell (Fig. 3.8E,F and G). The

I/V relation of the tail currents had a mean voltage for half-maximal activation

(V0.5act) of -17.4 ± 3.6 mV (sact = 12.7 ± 3.0; n = 12; Fig. 3.8G). The maximum am-

plitude of the tail currents (ICa,tailmax) determined from Boltzmann fits was 600 ±
160 pA (n = 12), which corresponded to a maximal conductance (GCa,tailmax) of 4.6

± 1.2 nS. Given a mean whole-cell capacitance (CM) of 3.3 ± 0.8 pF (n = 16), this

corresponded to a mean current density (ICa,tailmax C−1
M ) of 190 ± 60 pA pF−1 (1.9

± 0.6 pA mm−2; Fig. 3.8F). Steady state inactivation started at pre-pulse poten-

tials around -70 mV with a voltage for half-maximal inactivation (V0.5inact) of -40

± 5 mV (sinact = 10.8 ± 2.8; n = 12; Fig. 3.8G).

3.4 Effects of GABA blocker

To test whether tonic GABAergic input contributes to the KCs resting poten-

tial, I measured the effects of two different GABA blockers: Picrotoxin (10−4

M, PTX, P1675, Sigma), a GABAA receptor blocker, and CGP54626 (5 x 10−5 M,

BN0597, Biotrend, Cologne, Germany) a GABAB receptor blocker (Fig. 3.9A and
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B). The blockers were bath applied for at least 5 min at concentrations and have

been shown to be effective in other insect olfactory systems (Wilson & Laurent,

2005). All recordings were performed with intact antennae to permit spontaneous

synaptic input.

PTX blocked inhibitory synaptic potentials (Fig. 3.9C), increased the input

resistance by 75 % from 2.5 ± 1.3 GΩ to 4.2 ± 1.7 GΩ (P = 0.01; n = 5; Fig. 3.9A),

and depolarized the membrane potential from -61.2 ± 6.2 mV to -59.1 ± 5.3 mV

(P = 0.005; n = 7; Fig. 3.9B). CGP54626 increased the input resistance by 51 %

from 2.8 ± 1.3 GΩ to 4.1 ± 1.4 GΩ (P = 0.038; n = 5; Fig. 3.9A) depolarized the

membrane potential from -60.7 ± 3.9 mV to -59.6 ± 4.1 mV (P = 0.021; n = 8; Fig.

3.9B). PTX treatment induced no changes in the KC neuron odor responses (Fig.

3.9D1 and D2) but combined application of both blockers induced strong changes

in the odor responses. After a slight depolarization, which was comparable to the

odor response during control and PTX, the KCs depolarized above threshold and

elicited a burst of APs (n = 4; Fig. 3.9D3). The repolarization to resting poten-

tial took approximately 1 min. Combined application of both GABA blockers

induced in one case spontaneous, longlasting depolarizations in the absence of

odor presentations with bursts of APs and the repolarization lasts at least 1 min

before the KC depolarized again (n = 1; Fig. 3.9E). This spontaneous bursting

behavior was never observed during application of either PTX or CGP54626.

3.5 Imaging of odor evoked signals in PN boutons

The main question in this part of the study was, whether PNs act as a simple re-

lay to higher order brain centers such as the mushroom bodies (MBs) or whether

the output is modulated in an odor-specific manner. One candidate for such a

modulator is GABA because the MB calyces, which are the input zones for olfac-

tory information, are woven with GABAergic arborizations. In order to answer

this question, I used patch-clamp recordings with simultaneous Ca2+ imaging of

odor evoked signals. With patch-clamp recordings I was able to monitor the elec-

trical activity of single PNs and hence know the information which was relayed

to the MBs. I expected that the spike trains I observed at the patch pipette were
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resistance. Bath application of 100 µM PTX increased the input resistance increased by 75 ± 45 % from
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38



3 Results

relayed to the boutons unmodified, which are the output regions of the PNs. If

this output was not altered by any modulator, all boutons should have shown the

same response for a single odor, and by comparing different odors the ratios of

the responses should have been the same. In contrast, if modulation did occur

and if it was is driven by GABAergic circuits within the calyces, application of

The GABAA blocker PTX should have abolished the differences between differ-

ent boutons. In the following I define the different parameters which were used

to analyze the odor evoked Ca2+ signals in the boutons.

3.5.1 Analysis methods

The study is based on recordings of 46 PNs, of which I show 3 examples. Due to

the challenging experimental conditions (recording times > 2h; odor-responsive-

ness; drug application; photo-damage, etc.) these examples are three of the rare

cases in which single PNs were simultaneously recorded and the output at the

synapses were monitored.

All neurons were held at hyperpolarized levels (∼ -100 mV) for 1.5 h to

enhance dye loading of Alexa568 and the calcium indicator OGB-1. When the

fluorescent dye OGB-1was easily detectable (usually after 1.5 h) up to 11 odors

were applied on the ipsilateral antenna for 500 ms each (control measurements).

The fluorescence of the boutons was measured with a CCD imaging system. After

the control measurement the whole brain was superfused for at least 10 min with

saline containing 100 µM PTX. The odor application was repeated while the order

of the odors was changed randomly. The fluorescence recordings were analyzed

as shown in Fig. 3.10. The Alexa568 fluorescence image was used to identify

the boutons with regions of interest (white ovals in Fig. 3.10A). The background

fluorescence F0 of the calcium indicator was then taken from 10 frames before

the odor onset (Fig. 3.10B). During a 500 ms current injection the fluorescence

increased (F1; Fig. 3.10C). The background fluorescence was subtracted from the

images taken during the stimulation and divided by the background fluorescence

resulting in relative change in fluorescence (∆F/F0; 3.10D). The response patterns

to odors were analyzed in the same way. Additionally the following parameters

were extracted from the data:
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• Image sequences. For every recording of the fluorescence increase in the

boutons, the ∆F/F0 images were calculated over 600 - 850 ms after odor on-

set (as described above). To reduce noise level 2 - 5 of these single images

were averaged resulting in 6 images. Each image now represented an inter-

val of 100 -150 ms. To enhance the contrast the color codes were set to the

same level during the control and during PTX, respectively. An example

of this data processing is shown in Fig. 3.10E. The image sequences of the

three presented PNs are shown in Figs. 3.12, 3.18, 3.24, respectively.

• Color coded intensities of identified boutons over time. Ca2+-signals from

identified boutons, were obtained from regions of interests (ROIs) defined

on the Alexa 568 image. To remove background from these signals, first

the decay of the signals were fit with a biexponential function omitting the

period of Ca2+ influx. Then the whole kinetics were divided by the fit,

resulting in a relative signal normalized to 1 (∆F/F+1). By application of

this procedure the decay induced by bleaching effects can be dynamically

removed. Therefore the resulting relative fluorescence changes are more

precise than those obtained with a static removed background. The intensi-

ties of each signal were then color coded (see Fig. 3.10F). In this way a false

color coded image was obtained for each odor, where the x-axis represents

time, each row along the y-axis represents the a single bouton and the color

represents intensity. In addition to the fluorescence changes of the boutons,

the associated electrophysiological signal was displayed for each odor.

The color coded intensities of identified boutons over time of the three pre-

sented PNs are shown in Figs. 3.13, 3.19, 3.25, respectively.

• Analog signal of relative fluorescence changes. The relative fluorescence

signals of the color coded intensity plots (see above) were displayed as ana-

log signals. The responses of all boutons to a single odor were superim-

posed. This figure allowed the direct comparison of the extremes in the

odor evoked fluorescence changes (Fig. 3.10G)

The analog signals of relative fluorescence changes of the three presented

PNs are shown in Figs. 3.14, 3.20, 3.26, respectively.
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• Time to peak analysis I. From the analog signals of relative fluorescence

changes (see above), the time to peak was calculated for each bouton and

each odor (Fig. 3.10H). A time to peak plot was obtained for each odor,

where the x-axis represents the time from stimulus onset to the peak of the

signal and the y-axis represents the single boutons. This allows the direct

comparison of the spatio-temporal pattern evoked by an odor.

The time to peak analysis I of the three presented PNs are shown in Figs.

3.15, 3.21, 3.27, respectively.

• Time to peak analysis II. The times to peak from the time to peak analysis I

were plotted for each bouton, where the x-axis represents the different odor

qualities and the y-axis represents the time to peak (Fig. 3.10I). The result-

ing histograms show the different boutons and their individual latencies to

different odors. This resulted in temporal tuning curves.

The time to peak analysis II of the three presented PNs are shown in Figs.

3.16, 3.22, 3.28, respectively.

• Tuning curves. To quantify intensity differences of bouton responses, tun-

ing curves for each bouton were obtained (Fig. 3.10J). This was done by

measuring the relative fluorescence change from baseline to peak in each

bouton for each odor. These were then normalized to the maximum re-

sponse elicited in that bouton across the number of tested odors. For in-

stance a putative bouton which responded to odor A with a relative fluo-

rescence change (∆F/F) of 5 %, to odor B with 8 % and to odor C with 10 %

would have a tuning curve: C 100 % , B 80 % and A 50 % of max. Tuning

curves allowed an easy comparison of intensities between boutons. The re-

sulting histograms mirror a spatial intensity mosaic.To estimate a compara-

ble value for the assumed inhomogeneity between the boutons I calculated

the mean standard deviation for each odor across the identified boutons.

If odor tuning across the boutons is similar the mean standard deviation

should be low and for great differences between the boutons it should be

large (Fig. 3.10J).

The tuning curves of the three presented PNs are shown in Figs. 3.17, 3.23,

3.29, respectively.
41



3 Results

25

20

15

10

5

∆
F

/F
0
 (

%
)

161 ms 189 ms 217 ms 245 ms 273 ms 301 ms 329 ms

Alexa 568 OGB-1 Background

(F
0
)

Current injection

(F
1
)

∆F/F
0

Odor

 mixture

1

2
3 4

5

6

7

8 9

10

1

2
3 4

5

6

7

8
9

10

2.01.51.00.50.0 2.01.51.00.50.0

OM

Time (s) Time (s)

1

5

10

b
o
u
to

n
s

A B C D

E

F1 control F2 PTX G1 control G2 PTX

12

8

4

0∆
F

/F
0
 (

%
)

2.01.51.00.50.0
Time (s)

20
15
10

5
0

-5

∆
F

/F
0
 (

%
)

2.01.51.00.50.0
Time (s)

OM

0 200 400 600 800 0 200 400 600 800

OM

1

5

10

b
o

u
to

n
s

H1 control H2 PTX

0

200

400

600

800

0

200

400

600

800

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

OM IO CO GE OM IO CO GE

B1 B1

I1 control I2 PTX

0

20

40

60

80

100

120

0

20

40

60

80

100

120

%
 o

f 
m

a
x

B1 B1

GE OM CO IO GE OM CO IO

J1 control J2 PTX

Figure 3.10: Analysis of the odor evoked signals. (A) Image of the boutons filled with Alexa 568 exited
at 570 nm. Picture was collected at the end of the experiments. The white circles depict the selected bou-
tons. (B) OGB-1 background image. Average intensity of 10 frames before stimulation. (C) Fluorescent
image during current injection scaled to the same maximum as in B. (D) Color coded image of the rela-
tive fluorescence increase. (E)Temporal sequence of odor mixture induced fluorescence changes. Response
started 217 ms after the odor onset and decayed over time. (F) Color coded intensities of identified boutons
over time. Example for single odor (odor mixture) each row represents a single bouton. (G) Analog signal
of relative fluorescence changes. Example for single odor (odor mixture). Each line represents the analog
signal of a single bouton. (H) Time to peak analysis I. Example for single Odor (odor mixture). Y axis
represents the boutons and the x-axis represents the time to peak. (I) Time to peak analysis II. Example for
single bouton showing the time to peak of different odors. The x-axis represents the different odors while
the y-axis represents the time to peak. (J)Tuning curves.Example for a single bouton. Scale bar : 10 µm

3.5.2 PN morphology

All presented PNs are uniglomerular PNs. These neurons received input from

a single glomerulus and projected via the iACT to the calyces of the mushroom

bodies and the lateral lobe of the protocerebrum (Fig. 3.11). In the mushroom

bodies each PN branched and ramified within the upper rim of the calyces. The

varicosities at the LLP were never observable during the experiments. Usually,

6-13 boutons in the medial calyx were simultaneously imaged during one exper-

iment. The position of the recording chamber and the focus plane were never

changed during the experiments to allow a comparison between control and PTX

application.
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Figure 3.11: PN morphology. (A) Biocytin staining as standard deviation projection. The PN soma was
located at the tip of the arrowhead, but was lost during processing. The PN has its input side in the
massively stained glomerulus and projects via the iACT to the calyces of the MB and to the lateral lobe of
the protocerebrum. (B) 3D reconstruction of the PN (green) and the different neuropils (light grey).

3.5.3 Example PN1

Image Sequences (Fig. 3.12) Each image of the sequence in Fig. 3.12 represents

an 130 ms interval. All odors elicited an progressive increase from the second

interval. Same onset was observed during PTX application. During control the

fluorescence signals developed differentially depending on the applied odor. The

sharpest response was seen to the odor mixture (OM) and the most delayed to 1-

hexanol (HX). Every other odor evoked an intensity pattern across all boutons

which developed uniquely during the control and more uniformly during PTX.

Geraniol (GE), 1-hexanol and citronellal (CO) evoked the strongest absolute re-

sponse during the control regardless of the order of the presentation. During

PTX all odor evoked response intensities were very similar but benzaldehyde

(BA) induced only a weak response. For the following analysis 13 distinguish-

able boutons were identified by the Alexa568 image.

Color coded intensities of identified boutons over time (Fig. 3.13) In gen-

eral, the temporal patterns of activity in the boutons agree with the spike trains
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recorded from the cell body. However, in a few cases this is not so, pointing to-

wards a possible modulation of individual boutons. One characteristic of PNs

is an elaborate odor response pattern with periods of excitation and inhibition,

which can exceed the odor pulse for seconds. For this PN no inhibition was ob-

served, which might be caused by the slightly hyperpolarized membrane poten-

tial. The response period to odor mixture was very short among all boutons and

did not exceed the odor pulse, except for geraniol and 1-hexanol where the re-

sponses were long lasting and exceeded the odor pulse.

Spike timing appears to be essential for the response in the boutons. While

high frequency spikes as apparent at α-ionone (IO) or in the beginning of 1-

hexanol elicited no high calcium fluorescent increases, lower frequencies as cit-

ronellal or in the end of 1-hexanol elicited higher fluorescence transients. This

phenomenon was even more pronounced after the application of PTX. Here high

frequency spike rates elicited nearly no, as at geraniol, or only small changes in

fluorescence as at 1-hexanol. Generally, the spiking patterns and fluorescence

responses were more similar for the different odors after PTX application. Inter-

estingly, although PTX reduced the spikes elicited to benzaldehyde the relative

fluorescence change was not considerably changed. In contrast the spiking pat-

terns to odor mixture and +/- citral (CA) were altered after PTX application, and

accordingly the fluorescence signal was also considerably changed.

Analog signal of relative fluorescence changes (Fig. 3.14) Every single line rep-

resents a single bouton. During control, the response maxima during odor mix-

ture ranged from 6 % in bouton 6 to 2 % in bouton 2. All other boutons’ response

Figure 3.12 (following page): Image sequence of PN1. Each image of the sequence represents an 130

ms interval (average of 2 single images). In the upper part of the panel the control recordings are displayed

and in the lower part the recordings after PTX treatment. In general the relative fluorescence increases were

doubled after PTX treatment. The temporal patterns during the control developed over the period shown

here in odor dependent manner. After PTX treatment the temporal patterns across the odors were more

common. From the ALexa5 568 image 13 distinguishable boutons were identified and depicted as ovals in

∆F1/F interval. OM - odor mixture; CA - +/- citral; BA - benzaldehyde; CO - citronellal; IO - α-ionone;

GE - geraniol; HX - 1-hexanol. Scale bars 10 µm
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Figure 3.13: Color coded intensities of identified boutons over time of PN1. Ca2+ signals of ROIs
with dynamically removed background. On the left side the control recordings are shown and on the right
side the according recordings after PTX treatment. In general the temporal patterns of activity agree with
the recorded spike trains. During control the response patterns show differences and after application of
PTX the responses were more similar. OM - odor mixture; CA - +/- citral; BA - benzaldehyde; CO -
citronellal; IO - α-ionone; GE - geraniol; HX - 1-hexanol.
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intensities varied uniformly between those two extremes. The responses to +/-

citral of bouton 6 and bouton 8 were considerably larger (∼4.5 %) than all other

boutons’ response intensities (maximal 3 %) to this odor, indicating that some

boutons responded stronger to some odors than other boutons did. During PTX

application, all response intensities were approximately doubled. At the same

time the boutons response intensities varied uniformly between the extremes.

For illustration, the responses to citronellal and 1-hexanol were compared. At cit-

ronellal stimulation the most responsive bouton 6 showed a fluorescence increase

of ∆F/F = 16 % and the least responsive bouton 2 an increase of ∆F/F = 5 %. All

other boutons show increases that varied uniformly between those extremes. For

1-hexanol the distribution of the fluorescence signals was strikingly similar. In

the most responsive bouton 6 the fluorescence increased also about ∆F/F = 15 %

and the least responsive bouton 2 responded also with approximately ∆F/F = 5

%. The other boutons varied, as shown for citronellal, also uniformly between the

two extremes. This uniform distribution of activity after PTX treatment continues

across all odors.

Time to peak analysis I (Fig. 3.15) The boutons were plotted over the time to

peak latencies. During odor mixture stimulation, all boutons showed the same

time to peak value. Also during +/- citral, benzaldehyde and citronellal the la-

tencies of the boutons were mostly uniform. For geraniol and 1-hexanol the la-

tency between different boutons varied a lot. For geraniol bouton 2 and 3 had

the shortest latencies with 343 ms whereas boutons 8, 9 and 13 had their response

maximum 400 ms later at approximately 700 ms after odor onset. During the

PTX application the individual variations in bouton time to peak latencies for

different odors are nearly lost. Thus, all but one bouton had their response maxi-

mum 300 ms after odor onset (for GE). It is obvious that the variations of delayed

responses to geraniol and 1-hexanol converged. The spike train during the 1-

hexanol-response did not change a lot from control to PTX (Fig. 3.13) but the

time to peak value were altered a lot. This shows that individual boutons were

potentially modulated in their time to peak latency by GABAergic inhibition and

that this might be odor specific.
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Figure 3.14: Analog signal of relative fluorescence changes of PN1. The responses of all boutons to
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Time to peak analysis II (Fig. 3.16) The different odors were plotted against

the time to peak values for each bouton. This figure illustrates that there were

differences between the boutons in the absence of PTX. All boutons were fast

responding to odor mixture, +/- citral, benzaldehyde, citronellal, and α-ionone

and delayed to geraniol and 1-hexanol. The absolute times to peak were differ-

ent in most boutons for the different odors. This is most evident for example in

bouton 5 and bouton 7. Both boutons responded similar to odor mixture, +/-

citral, benzaldehyde, citronellal and α-ionone but bouton 5 responded faster to

1-hexanol than to geraniol and bouton 7 responded faster to geraniol than to 1-

hexanol. Only in boutons 5 and 13 did the patterns looked more or less the same.

Furthermore, in bouton 1 all odors induced different latencies and in bouton 2

the time to peak was constant between the different odors. During PTX applica-

tion the temporal tuning curves converged. Only small differences between the

histograms of different boutons were still obvious. These results further supports

the hypothesis that single boutons were individually modulated by GABA.

Tuning curves (Fig. 3.17) For each bouton, the peaks of the odor responses were

expressed as a percentage of the maximum response. For example in bouton 1

geraniol was set to 100 % and in bouton 7 odor mixture was set to 100 % and

accordingly all other odors were scaled to these maxima. The resulting tuning

curves showed great variations among the different boutons. While citronellal

in bouton 1 only led to 60 % increase, citronellal led to the strongest response

in other boutons such as B6 or B8. In contrast odor mixture, which induced an

80 % change in boutons 1, 5 and 11, induced the strongest response in bouton7.

In B8 only slight differences across the odors were apparent. After application of

PTX these differences were nearly lost. The tuning curves of all boutons were of a

similar shape and only slight differences were apparent. To illustrate the variance

within relative peak responses to the different odors, I plotted the distribution of

relative responses of all boutons for each odor (Fig. 3.17 bottom right). For each

odor the standard deviation from the mean response intensity across all boutons

was calculated. The mean standard deviation before and after application of PTX

were than compared and statistically tested. For the control the variability of the
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Figure 3.16: Time to peak analysis II of PN1. The time to peak value plotted for each bouton. The y-axis

represents the time to peak after stimulus onset and the x-axis represents the different odors. On the left

hand side the time to peak values for the control were displayed and on the right hand side the time to peak

values after PTX treatment. The individual curves during control show more differences than those after

PTX treatment. OM - odor mixture; CA - +/- citral; BA - benzaldehyde; CO - citronellal; IO - α-ionone;

GE - geraniol; HX - 1-hexanol.
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boutons to the different odors, expressed as mean standard deviation, was quite

large (10.9 ± 3.2 %), but after application of PTX this variance was significantly

smaller (4.2 ± 0.6 %; P=0.002; unpaired t-test).

These results support the idea that boutons of the same neuron were indi-

vidually modulated to respond individually to different odors. Figs. 3.15 and

3.16 show that the temporal patterns comprise of an odor quality and a bouton

specific component. The intensity analysis in Fig.3.17 shows that the bouton spe-

cific tuning is apparently mediated by GABAergic synapses. Taken together these

results boutons of PN1 form a spatio-temporal intensity mosaic to different odors.

3.5.4 Example PN2

Image sequences (Fig. 3.18) . Each image of the sequence in Fig. 3.18 represents

an interval of 100 ms. The onset of the odor evoked responses were different at

different stimuli during the control. For geraniol, citronellal, eugenol, benzalde-

hyde and α-ionone this neuron the onset was in the third interval. The other odors

elicited responses starting from the second interval. After application of PTX all

odors induced responses staring from the second interval, which corresponds to

the latency of 243 ms. The response intensities varied during the control while

only minor differences were observable during PTX application. For the follow-

ing analysis 6 distinguishable boutons were identified by the Alexa 568 image.

Color coded intensities of identified boutons over time (Fig. 3.19) In gen-

eral, the temporal patterns of activity in the boutons agree with the spike trains

recorded from the cell body. However, in a few cases this is not so pointing to-

wards a possible modulation of individual boutons. One characteristic of PNs

is an elaborate odor response pattern with periods of excitation and inhibition,

which can exceed the odor pulse for seconds. The response periods of the bou-

tons to the odors sometimes exceeded the odorpulse but not for a long period.

For example, during the response of bouton 4 to eugenol. The spike train at the

cell body persisted for about 200 ms, whereas the response in the bouton lasted

for approximately 600 ms. The electrophysiology shows that, a short hyperpolar-
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Figure 3.17: Tuning curves of PN1. For each bouton the peak intensities were expressed as a percentage

of the maximum response. To the left the tuning curves during control and to the right the tuning curves

after PTX treatment were displayed. The box plot illustrates the difference within one odor. During control

the tuning curves were more variable than after PTX application. This was also illustrated by the smaller

boxes during PTX application in the box plot. OM - odor mixture; CA - +/- citral; BA - benzaldehyde; CO

- citronellal; IO - α-ionone; GE - geraniol; HX - 1-hexanol.
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ization after 1.5 seconds was observed in response to methyl salicylate, α-ionone,

geraniol, citronellal, +/- citral and 1-hexanol. After PTX treatment all odors in-

duced a pronounced after-hyperpolarization.

Spike timing seems to be crucial for the intensity of the response. While

high frequency spikes as apparent for α-ionone or methyl salicylate elicited no

high calcium fluorescent increases, lower frequencies as citronellal or geraniol

elicited higher fluorescence transients. This phenomenon was also present after

the application of PTX. Here high frequency spike rates elicited nearly no, as for

α-ionone, or only small changes in fluorescence as for 1-hexanol. After the ap-

plication of PTX the general spiking changed as observed for+/- citral or methyl

salicylate or stayed the same as for α-ionone. Interestingly although the spiking

pattern during PTX for methyl salicylate and odor mixture were alike the odor

evoked calcium signals were considerably different. Another interesting exam-

ple is 1-hexanol, where the spiking pattern did not change greatly when PTX was

added but the responsiveness was considerably lower during PTX.

Analog signals of relative fluorescence changes (Fig. 3.20) Every single line

represents a single bouton. During control the response maxima to geraniol

ranged from ∆F/F = 3.2 % in bouton 4 to ∆F/F = 2.1 % in bouton 5. All other bou-

tons’ response intensities varied uniformly between those two extremes. In con-

trast the responses to eugenol of bouton 4 and bouton 6 were considerably larger

(∆F/F ∼3 %) than the maximal response intensity of boutons 5 (∆F/F ∼ 1%).

During PTX application, all response intensities were approximately doubled.

Simultaneously 5 of the six identified boutons showed comparable response in-

tensities and only the response intensities of bouton 5 were considerably smaller.

Figure 3.18 (following page): Image sequence of PN2. Each image of the sequence represents an 100

ms interval resulting in an image sequence of 600 ms after stimulus onset. In the upper part of the panel

the control recordings were displayed and in the lower part of the panel the recordings after PTX treatment.

In general the relative fluorescence increases were doubled after PTX treatment. By means of the Alexa 568

image 6 distinguishable boutons were identified and depicted as ovals in the ∆F1/F interval. GE - geraniol;

CO - citronellal; HX - 1-hexanol; EU - eugenol; OM - odor mixture; BA - benzaldehyde; CA - +/- citral;

IO - α-ionone; ME - methylsalicylate. Scale bars: 10 µm.
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Figure 3.19: Color coded intensities of identified boutons over time of PN2. Ca2+ signals of ROIs
with dynamically removed background. To the left the recordings during control and to the right the
recordings after PTX treatment were displayed. In general the temporal patterns of activity agree with the
recorded spike trains. GE - geraniol; CO - citronellal; HX - 1-hexanol; EU - eugenol; OM - odor mixture;
BA - benzaldehyde; CA - +/- citral; IO - α-ionone; ME - methylsalicylate.
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For instance, during the response to methyl salicylate the most responsive bouton

4 showed a fluorescence increase of ∆F/F = 7 % and the least responsive bouton 5

an increase of ∆F/F = 4 %. All other boutons show nearly the same amount of flu-

orescence increase. For geraniol the distribution of the fluorescence signals was

strikingly similar. In the most responsive bouton 6 the fluorescence increased also

about ∆F/F = 7 % and the least responsive bouton 5 responded also with approx-

imately ∆F/F = 4 %. This distribution of activity after PTX treatment continues

across all odors.

Time to peak analysis I (Fig. 3.21). The boutons were plotted over the time to

peak latencies. Nearly all odors elicited responses at the same time in the different

boutons. Only during stimulation with odor mixture and +/- citral the latency

between different boutons were somewhat variable. During the PTX application

all boutons responded for either odor with the same time to peak latency. Thus

all boutons had their response maximum 300 ms after odor onset.

Time to peak analysis II (Fig. 3.22). I plotted the different odors against the

time to peak values for each bouton. The figure illustrates that there were almost

no differences between the boutons. Bouton 1, 5 and 6 and bouton 3 and 4 show

the same temporal tuning curve. After application of PTX the temporal tuning

curves were even more stereotype for all boutons showing no differences.

Tuning curves. For each bouton the peak of the odor responses were expressed

as a percentage of the maximum response. The resulting tuning curves showed

great variations among the different boutons. While +/- citral in bouton 1 only

led to 30 % increase and 40 % increase in bouton 5, +/- citral led to a stronger

response in bouton 4 (70 %) and bouton 3 (65 %). In contrast geraniol, which

induced an 70 % change in bouton 2 and 3, induced the strongest response in

bouton 1 and bouton 5. After application of PTX these differences were nearly

lost. The tuning curves of all boutons were of the same shape and only slight

differences were apparent. To illustrate the variance within in the relative peak

responses to the different odors, I plotted the distribution of relative responses of

all boutons for each odor (Fig. 3.23 bottom). For each odor the standard deviation
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Figure 3.20: Analog signals of relative fluorescence changes of PN2. The responses of all boutons to a

single odor were superimposed. The recordings during control were displayed to the left and the recordings

after PTX application were illustrated to the right. GE - geraniol; CO - citronellal; HX - 1-hexanol; EU -

eugenol; OM - odor mixture; BA - benzaldehyde; CA - +/- citral; IO - α-ionone; ME - methylsalicylate.

58



3 Results

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

OM

BA

ME

IO

EU

GE

CO

CA

HX

control PTX

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

1

5

b
o
u
to

n
s

time to peak (ms) time to peak (ms)

Figure 3.21: Time to peak analysis I of PN2. The

time to peak of each bouton after stimulus onset was

calculated for each odor. The time to peak after stim-

ulus onset was plotted on the x-axis and the single

boutons were plotted on the y-axis. Nearly all odors

elicited responses at the same time in the boutons.

After PTX application all odors elicited unitary re-

sponse in the boutons. GE - geraniol; CO - citronellal;

HX - 1-hexanol; EU - eugenol; OM - odor mixture;

BA - benzaldehyde; CA - +/- citral; IO - α-ionone;

ME - methylsalicylate.

0

200

400

0

200

400

0

200

400

0

200

400

0

200

400

0

200

400

control PTX

0

200

400

0

200

400

0

200

400

0

200

400

0

200

400

0

200

400

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

OM BA ME IO EU GE CO CA HX

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

ti
m

e
 t

o
 p

e
a
k

 (
m

s
)

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

ti
m

e
 t

o
 p

e
a
k
 (

m
s
)

B1

B2

B3

B4

B5

B6

B1

B2

B3

B4

B5

B6

Figure 3.22: Time to peak analysis II of PN2 The

time to peak values were plotted for each bouton. The

y-axis represents the time to peak after stimulus onset

and the x-axis represents the different odors. The time

to peak values for the control were displayed on the left

hand side and the time to peak values after PTX treat-

ment were illustrated on the right hand side of this

figure. The individual curves during control show

more differences than those after PTX treatment. GE

- geraniol; CO - citronellal; HX - 1-hexanol; EU -

eugenol; OM - odor mixture; BA - benzaldehyde; CA

- +/- citral; IO - α-ionone; ME - methylsalicylate.
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from the mean response intensity across all boutons was calculated. The mean

standard deviation before and after application of PTX were than compared and

statistically tested. For the control the variability of the boutons to the different

odors, expressed as mean standard deviation, was quite large (13.7 ± 2.4 %),

but after application of PTX this variance was significantly smaller (5.3 ± 3 %;

P=0.002; unpaired t-test).

These results support the idea, that boutons of the same neuron were dif-

ferentially modulated to respond individually to different odors. Although the

temporal analysis revealed no great differences before and after PTX application

the tuning curves give evidence, that GABAergic modulation is also present in

the presented PN2. The lack of temporal modulation is discussed in detail below.

3.5.5 Example PN3

Image sequences (Fig. 3.24). Each image of the sequence represents an 140 ms

interval (average of 5 images). In the last PN I present the responses differed

considerably to the responses shown above. PN3 only responded to 4 out of

11 different odors. The responses were large, as during control fluorescence in-

creased up to ∆F/F 25 %. The different odors evoked an intensity pattern across

the boutons. During citronellal stimulation the second spike train was not re-

garded because after repetitive stimulation with citronellal the second spike train

was not robust during the entire experiment. After PTX application the fluores-

cence transients were not as big as in the control. For the following analysis 10

distinguishable boutons were identified by means of the Alexa 568 image.

Color coded intensities of identified boutons over time (Fig. 3.25). The tem-

poral pattern in this PN is in full agree with the spike trains recorded from the cell

body. Both odor mixture and α-ionone stimulation resulted in 2 spikes followed

by a hyperpolarization. After geraniol stimulation 1.8 seconds after stimulus on-

set an inhibition was observed. citronellal evoked no such hyperpolarization. For

analysis of the maximum intensity I only chose the first Ca2+ influx because the

second spike train was not robust throughout the entire experiment. After the

PTX application this PN only responded with single spikes, which were highly
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Figure 3.23: Tuning curves of PN2. For each bouton the peak intensities were expressed as a percentage of

the maximum response. To the left the tuning curves during control and to the right the tuning curves after

PTX treatment were displayed. The box plot illustrates the difference within one odor. During control the

tuning curves were more variable than after PTX application. This was also illustrated by the smaller boxes

during PTX application in the box plot. GE - geraniol; CO - citronellal; HX - 1-hexanol; EU - eugenol;

OM - odor mixture; BA - benzaldehyde; CA - +/- citral; IO - α-ionone; ME - methylsalicylate.
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Figure 3.24: Image sequences of PN3 Each image of the sequence represents an 140 ms interval (average

of 5 single images). In the upper part of the panel the control recordings were displayed and in the lower

part the recordings after PTX treatment. In general the relative fluorescence increases were halved after

PTX treatment. The delayed response to citronellal was not regarded because this second response was not

always observable when the PN was repetitively stimulated with citronellal. From the ALexa5 568 image

13 distinguishable boutons were identified and depicted as ovals in ∆F1/F interval. GE - geraniol; OM -

odor mixture; CO - citronellal; IO - α-ionone. Scale bars: 10 µm
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Figure 3.25: Color coded intensities of identified boutons over time of PN3. Ca2+ signals of ROIs

with dynamically removed background. To the left the recordings during control and to the right the

recordings after PTX treatment were displayed. In general the temporal patterns of activity agree with the

recorded spike trains. GE - geraniol; OM - odor mixture; CO - citronellal; IO - α-ionone.

reproducible (tested for citronellal over 1h, data not shown). The second spike

train during geraniol was completely lost after PTX application.

Analog signals of relative fluorescence changes (Fig. 3.26). In Fig. 3.26 ab-

solute changes in fluorescence were compared for the different odors I applied.

Every single line represents a single bouton. Absolute changes of fluorescence

were equally distributed among all boutons and during all stimuli over the en-

tire range from 20 % in bouton 10 to 10 % in bouton 4. During PTX application

absolute fluorescent changes were still dispersed equally over the entire range

of all fluorescent signals. Only at geraniol stimulation the fluorescence signals

changed significantly. Additionally Fig. 3.26 shows that the peak fluorescence

changes were proximately halved during PTX compared to control. The relative
63



3 Results

12

8

4

0∆
F
/F
0
 (

%
)

2.01.51.00.50.0
Time (s)

12

8

4

0∆
F
/F
0
 (

%
)

2.01.51.00.50.0

12

8

4

0∆
F
/F
0
 (

%
)

2.01.51.00.50.0

12

8

4

0∆
F
/F
0
 (

%
)

2.01.51.00.50.0

20
15
10

5
0

-5

∆
F
/F
0
 (

%
)

2.01.51.00.50.0
Time (s)

20
15
10

5
0

-5

∆
F
/F
0
 (

%
)

2.01.51.00.50.0

20
15
10

5
0

-5

∆
F
/F
0
 (

%
)

2.01.51.00.50.0

20
15
10

5
0

-5

∆
F
/F
0
 (

%
)

2.01.51.00.50.0

OM

IO

CO

GE

control PTX

B4

B1-3, 5-10

Figure 3.26: Analog signals of relative fluorescence changes of PN3 The responses of all boutons to a

single odor were superimposed. The recordings during control were displayed to the left and the recordings

after PTX application were illustrated to the right. GE - geraniol; OM - odor mixture; CO - citronellal; IO

- α-ionone.

differences within the bouton tuning curves were further emphasized in Fig. 3.29.

Time to peak analysis I (Fig. 3.27). All boutons responded in nearly the same

time frame for the different odors. For odor mixture and α-ionone all boutons had

their response maximum at 245 ms after odor onset. The time to peak differed

among the boutons at maximum 56 ms for citronellal and geraniol. Only for this

two odors 3 boutons responded in different time frames. During PTX application

this uniform timing was even more pronounced.

Time to peak analysis II (Fig. 3.28). I plotted the time to peak values against

the different odors for each bouton. No obvious differences could be observed

neither during control nor after PTX applications. During control boutons 1, 3,

4, and 6 had exactly the time to peak latencies and after PTX treatment boutons

1, 2, 3, 5, 8,9, and 10 showed exactly the same time to peak values. These results
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Figure 3.27: Time to peak analysis I of PN3. The time to peak of each bouton after stimulus onset was

calculated for each odor. The time to peak after stimulus onset was plotted on the x-axis and the single

boutons were plotted on the y-axis. Nearly all odors elicited responses at the same time in the boutons

before and after application of PTX. GE - geraniol; OM - odor mixture; CO - citronellal; IO - α-ionone.

suggest that this particular PN is not modulated in terms of temporal patterns.

Tuning curves (Fig. 3.29) For each bouton the peak of the odor responses were

expressed as a percentage of the maximum response. The resulting tuning curves

showed no great variations among the different boutons. During control all bou-

tons similar tuning curves to the different odors. The maximum deviation from

the maximum during the control was obvious in bouton 10, where citronellal

elicited only 80 % change. After PTX treatment the tuning curves were altered

a bit resulting in reduced responses to odor mixture but this was applied for all

boutons. The box plot showed that the odors were nearly equally represented in
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Figure 3.28: Time to peak analysis II of PN3. The time to peak values were plotted for each bouton. The

y-axis represents the time to peak after stimulus onset and the x-axis represents the different odors. The

time to peak values for the control were displayed on the left hand side and the time to peak values after

PTX treatment were illustrated on the right hand side of this figure. The individual curves during control

and after PTX treatment show no great differences. GE - geraniol; OM - odor mixture; CO - citronellal; IO

- α-ionone.
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the boutons before as well as after application of PTX. For the control the individ-

ual variability was small (4.2 ± 1.9 %) and after application of PTX this variance

was not significantly different (6.1 ± 4.2 %; P=0.446; unpaired t-test).

These results suggest that this particular PN is not modulated in terms of

intensity patterns. Additionally this PN was also not modulated in the temporal

pattern. This result is contradictory to the results from the previously shown PNs

and has to be discussed below.
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Figure 3.29: Tuning curves of PN3. For each bouton the peak intensities were expressed as a percentage of

the maximum response. To the left the tuning curves during control and to the right the tuning curves after

PTX treatment were displayed. The box plot illustrates the difference within one odor. During control the

tuning curves were not variable neither during control nor after PTX application. This was also illustrated

by the similar boxes during control and after PTX application in the box plot. GE - geraniol; OM - odor

mixture; CO - citronellal; IO - α-ionone.
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4 Discussion

The aim of this study was to identify the mechanisms that mediate the olfactory

coding in the mushroom bodies of P. americana. Therefore, the intrinsic properties

the Kenyon cells, elements within the MB circuitry were analyzed in the first part

of this study. In the second part the spatial and temporal characteristics of the

Kenyon cells’ olfactory input were determined.

4.1 KC membrane properties

I used whole-cell patch-clamp recordings to provide a detailed analysis of ionic

currents present in KCs in an intact, adult brain preparation of P. americana. Kenyon

cells are principle components of the MBs, which are important centers for multi-

modal processing, sensory processing and learning. Electrophysiological record-

ings during olfactory stimulation in Drosophila (Turner et al., 2008), locusts (Perez-

Orive et al., 2002; Perez-Orive et al., 2004) and optical recordings in honey bees

(Szyszka et al., 2005) revealed a sparse representation of olfactory signals in the

MBs. On the single cell level this was reflected in very low spontaneous activity,

high spiking threshold, stimulus selectivity and weak olfactory responses with

very few APs or no APs per stimulus. One major aim of this study was to ana-

lyze the ionic mechanisms that mediate these typical firing properties of KCs.

4.1.1 Odor responses in KCs

One significant finding of this thesis was that KCs of P. americana, which were

generally odor responsive responded to more than one odor. Only in 3 of 25

recordings APs were elicited, but the general odor responsiveness was visible in

all of the three recordings.
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This is contradictory to previous reports from in locusts, flies and honey bees.

Several studies have shown that odor responses in KCs are sparse in terms of APs

evoked and that every KC only responded to a subset of odors. With calcium

imaging of GFP-based calcium sensors (G-CaMP) as used in Drosophila (Wang

et al., 2004) or calcium sensitive dyes as used in Apis (Szyszka et al., 2005) few

APs in number elicited in KCs of P. americana might be overlooked because the

sensors are not sensitive enough to resolve single APs. Anyhow, the results the

present thesis, where many odors elicited responses in the KCs, are in contrast to

those reported from locusts (Perez-Orive et al., 2002; Perez-Orive et al., 2004) and

Drosophila (Turner et al., 2008; Murthy et al., 2008). In both animals, intracellular

recordings of KCs have shown that KCs only respond to one or few odors. The

fact that Periplaneta KCs respond to many odors might be attributed to not per-

fectly matched internal solutions, resulting in depolarized membrane potentials

and hyperexcitability. However, after breaking into the cell no significant de-

polarization of the membrane potential was observed. Additionally, the record-

ings were stable over up to 2 h of recording with no great changes in excitability

and odor responsiveness. Another explanation for this increased responsiveness

could be not perfectly adjusted odor concentrations. Maybe all odors used in

this study induced non specific responses because of their general supersatura-

tion. This would also imply that PNs uniformly respond to the odors presented.

But, as shown in the second part of this study, the evoked responses to different

odors differed substantially in PNs and not every PN responded to every odor

presented (Husch et al., 2009). Thus, it is unlikely that the responses of the KCs

shown in this study are unspecific. For locusts, generalist KCs, which responded

to all presented odors, have also been mentioned, whereas the authors did not

further described these cells in detail (Perez-Orive et al., 2002; Ito et al., 2008).

Whether Periplaneta KCs’ characteristics differ or match the studies cited above

can not be decided at present.

4.1.2 General features of KCs

All recordings in this study were performed in an intact brain preparation, in

which the currents are not altered by the culturing procedure or development.
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Given that the complex arborizations are still intact, perfect voltage control across

the whole neuron cannot be assumed. After blocking all conductances that were

not investigated, the current waveforms usually did not indicate voltage control

problems (e.g. no delay of current onset, no jumps in the voltage dependence)

suggesting that they originated mostly from well voltage-clamped regions. Given

the long, thin primary neurite, I assumed that a major part of the currents origi-

nates from the cell bodies.

Morphological and immunohistochemical studies in various insect species

showed that KCs consist of various subpopulations (Mizunami et al., 1998; Straus-

feld & Li, 1999b; Strausfeld et al., 2003). In this study, KCs were identified by the

size and position of the cell bodies in the calyces. Single cell labeling confirmed

their identity in all cases performed. Given our level of analysis, all stained neu-

rons had a similar axonal branching pattern in the MB’s neuropil: The axon is

situated along the pedunculus towards the lobes, where it bifurcates into the ver-

tical and medial lobe. In the calyces, however, their dendritic branching patterns

varied substantially (Fig. 3.1). Nevertheless, I did not find systematic differences

in the electrophysiological properties that would justify a separation into distinct

functional KC classes and accordingly, pooled the data for the analysis. However,

it is important to emphasize that a further analysis of physiological and morpho-

logical properties of KCs might reveal more sub-types.

By characterizing the intrinsic firing properties and its underlying ionic cur-

rents I found specific functional properties, like the activation threshold and cur-

rent densities of ICa and IO(Ca), that make them well suited to support sparse

representation of sensory signals in the MBs, further supporting the hypotheses

that sparseness is, at least in part, mediated by the KCs’ intrinsic properties. Be-

cause neuronal properties are largely determined by the types of ion channels

expressed and by the rate of channel expression for different channel types, I

consider such a detailed analysis of the biophysical properties an important step

towards a clear understanding how sensory signals are processed on the single

cell and circuit level in these prominent multimodal processing centers of the in-

sect brain.
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I
A

I
K,ST

I
K(V)

I
O(Ca)

I
Na

I
Ca

Activation 

threshold (mV)
-40 -25 -25 -20 -40 -60
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max

 or

I
max 

8.2 ± 1.4

nS 

5.9 ± 3.6

nS

4.8 ± 1.3

nS

2.4 ± 1

nA

420 ± 130 

pA

350 ± 80

pA

V
max

 (mV) 30 40 50 25 ± 11 -6 ± 5 0.6 ± 4.6

V
0.5act

 (mV) -13 ± 4.3 -9.3 ± 7.8 0 ± 4.6 - - -17.4 ± 3.6

s
act 12.1 ± 1.7 10.4 ± 3 13.2 ± 1.5 - - 12.7 ± 3

G
max

 C
M

-1 or

 I
max 

C
M

-1

2.6 ± 0.62

nS pF-1

1.3 ± 0.3

nS pF-1

1.6 ± 0.6

nS pF-1

600 ± 340

pA pF-1

140 ± 50

pA pF-1

 190 ± 60

pA pF-1
(tail)

Inactivation 

threshold (mV)
-80 -90 - - -70 -55

V
0.5inact

 (mV) -56 ± 5 -50 ± 5 - - -48 ± 4 -40 ± 5

s
inact 8.6 ± 0.9 13.2 ± 2.3 - - 5.4 ± 0.5 10.8 ± 2.8

Table 4.1: Electrophysiological parameters of Kenyon cells. The resting potential was -55 ± 10 mV,

the input resistance was 2.5 ± 1 GΩ and the whole-cell capacitance was 2.7 ± 0.8 pF. To calculate the

current densities we used the values for the whole-cell capacitance from measurements with the specific

extra-/intracellular salines.

4.1.3 Voltage activated currents

Although all recorded P. americana KCs could generate Na+ driven APs when

injected with depolarizing current, all cells had little or no spontaneous activity.

During sustained depolarizing current injection all neurons displayed a strong

spike frequency adaptation. Only 30% of the KCs produced graded subthreshold

depolarizations, of which only 25% gave rise to APs. These data, showing a very

low spike probability both spontaneously and during sensory stimulation are in

full agreement with recent studies in Drosophila (Turner et al., 2008) and locusts

(Perez-Orive et al., 2002; Perez-Orive et al., 2004). Based on these previous data

it has been proposed that for sparse coding, intrinsic and synaptic properties of

the KC circuitry combine to generate relatively brief windows for synaptic inte-

gration in the KCs, thus causing them to operate as coincidence detectors that are

only sensitive to their highly synchronized input (Perez-Orive et al., 2002; Perez-

Orive et al., 2004; Assisi et al., 2007). Current clamp recordings, for example,

demonstrated the existence of subthreshold active properties that amplify and
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Figure 4.1: Summary figure. Comparison of own results with those found in literature. Triangles repre-

sent own results while circles represent results from the literature.

sharpen synaptic input (Perez-Orive et al., 2002; Perez-Orive et al., 2004).

I analyzed a set of voltage and/or Ca2+-dependent inward (ICa, INa) and

outward currents (IA, IK(V), IK,ST, IO(Ca)) that significantly contribute to intrinsic

firing properties (see table 4.1). In general, these currents were similar to currents

found in other insect spiking neurons (Achenbach et al., 1997; Benkenstein et al.,

1999; Bickmeyer et al., 1994; Brône et al., 2003; Byerly & Leung, 1988; Grolleau &

Lapied, 2000; Grünewald, 2003; Grünewald et al., 2004; Heidel & Pflüger, 2006;

Hewes, 1999; Husch et al., 2008; Kloppenburg & Hörner, 1998; Kloppenburg et al.,

1999b; Laurent et al., 2002; Lucas & Shimahara, 2002; Pelz et al., 1999; Schäfer

et al., 1994; Wicher & Penzlin, 1997; Wicher, 2001; Worrell & Levine, 2008; Wright

& Zhong, 1995; Wüstenberg et al., 2004, Fig. 4.1) . For example, the voltage oper-

ating range of the transient sodium current observed in P. americana KCs is similar

(Fig. 4.1)to transient Na+ currents observed in locusts DUM neurons (Brône et al.,

2003; Heidel & Pflüger, 2006), in honey bee Kenyon cells (Schäfer et al., 1994),

and in olfactory receptor neurons (Lucas & Shimahara, 2002), Drosophila embry-
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onic neurons (Byerly & Leung, 1988), cricket giant interneurons (Kloppenburg &

Hörner, 1998), and honey bee antennal motoneurons (Kloppenburg et al., 1999b).

As in many other insect neurons, the voltage activated K+ currents found

in KCs included transient (IA, IK,ST) and more sustained components IK(V). IA

activates and inactivates rapidly and is 4-AP sensitive (Fig. 3.3), whereas IK,ST is

4-AP insensitive with slower activation and inactivation kinetics than IA. IK(V) ac-

tivates relatively slowly and does not inactivate significantly during a sustained

voltage step. IA is half-maximally activated at -13 mV (s = 12.1). This is 5 to 20

mV more depolarized than IA in locusts DUM neurons (Heidel & Pflüger, 2006),

locusts lamina neurons (Benkenstein et al., 1999), cockroach DUM neurons (Grol-

leau & Lapied, 1995) but 9 to 21 mV more hyperpolarized than IA in cricket giant

interneurons (Kloppenburg & Hörner, 1998), honey bee antennal motoneurons

(Kloppenburg et al., 1999b) and honey bee KCs (Pelz et al., 1999). The value for

half-maximal inactivation of IA in P. americana KCs (-56 mV; s = 8.6) is close to

that described for KCs of the honey bee (Pelz et al., 1999) and is 3 to 29 mV more

positive than found for IA in locusts DUM neurons (Heidel & Pflüger, 2006), lo-

custs lamina neurons (Benkenstein et al., 1999), cockroach DUM neurons (Grol-

leau & Lapied, 1995) and in honey bee antennal motoneurons (Kloppenburg et al.,

1999b).

In P. americana the voltage dependence for IK,ST was in the same range of

IA (IA : V0.5act = 13; IK,ST: V0.5act = -9.3). This current was previously recorded in

honey bee KCs (Wüstenberg et al., 2004). In the honey bee the voltage dependence

was not investigated in detail, but it was assumed that the parameters are in the

same range as IA. In Drosophila larval mushroom body neurons 4-AP insensitive

potassium currents seemed to have comparable time constants (Wright & Zhong,

1995).

IK(V) in KCs also resembles delayed-rectifier type K+ currents of insect neu-

rons described elsewhere (Benkenstein et al., 1999; Kloppenburg & Hörner, 1998;

Kloppenburg et al., 1999b, Fig. 4.1). It is TEA sensitive, activates more slowly

than IA and IK,ST, and shows little or no voltage inactivation. However, the acti-

vation threshold of -30 mV and the half-maximal voltage for activation (0 mV; s

= 13.1) observed in this study is 11 to 23 mV more negative than values reported
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for the delayed K+ currents described cricket giant interneurons (Kloppenburg &

Hörner, 1998) and honey bee antennal motoneurons (Kloppenburg et al., 1999b)

and 7 to 20 mV more positive than described in locusts lamina cells (Benkenstein

et al., 1999).

The values for the mean conductance densities of the K+-currents (IA : GA

= 2.6 nS pF−1; IK(V) : GK(V) = 1.6 nS pF−1; IK,ST : GK,ST = 1.3 nS pF−1) are in

the same range as reported for K+ currents in locusts lamina cells (Benkenstein

et al., 1999) and locusts DUM neurons (Heidel & Pflüger, 2006). The values for

IA and IK(V) are slightly smaller than described for honey bee Kenyon cells and

projection neurons (Grünewald, 2003), which might be due to the fact that in the

present study two different conductances were isolated. The peak current density

of INa was also in the same range as reported for olfactory receptor cells (Lucas

& Shimahara, 2002) and slightly larger than in locusts DUM neurons (Heidel &

Pflüger, 2006).

A detailed analysis, revealed that certain functional parameters of two cur-

rents, ICa and IO(Ca), are in the range that they might be predestined to signifi-

cantly assist sparse coding.

ICa starts to activate at membrane potentials around -55 mV (Fig. 3.8), which

is a very low activation threshold compared to ICa in many other insect spik-

ing neurons (Benkenstein et al., 1999; Grolleau & Lapied, 1996; Grünewald, 2003;

Hewes, 1999; Husch et al., 2008; Kloppenburg & Hörner, 1998; Schäfer et al., 1994;

Wicher & Penzlin, 1994; Worrell & Levine, 2008; Husch et al., 2009; Byerly & Le-

ung, 1988, Fig. 4.1). A second remarkable feature of ICa is its’ very high current

density, which is 2 to 4 fold higher than in antennal lobe neurons of P. americana

(Husch et al., 2008) and 2 fold larger than Ba2+ currents in DUM neurons (Heidel

& Pflüger, 2006). With these properties - a low activation threshold and a high

current density - ICa is likely to contribute to the highly nonlinear subthreshold

properties that boost and sharpen the subthreshold EPSPs as reported in KCs

(Perez-Orive et al., 2002; Perez-Orive et al., 2004).

IO(Ca) also has an unusually large amplitude. The mean current density

of 600 pA pF−1 is about 3 fold higher than in locusts DUM neurons (Heidel &

Pflüger, 2006) and 2 fold higher than in moth olfactory receptor neurons (Lucas &
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Shimahara, 2002). IO(Ca) starts to activate at much more depolarized membrane

potentials than ICa, indicating its strong voltage-dependence and suggesting that

this outward current is not active at subthreshold membrane potentials. In com-

bination, the large ICa and the large, high-threshold IO(Ca) are likely to support

the typical intrinsic firing properties of the KCs, including the strong spike fre-

quency adaptation during depolarizing current injection and the small number

of APs during olfactory stimulation.

4.1.4 Tonic GABAergic inhibition

In addition to the intrinsic properties, I also analyzed the impact of GABAer-

gic inhibition on the membrane potential. Immunohistochemical studies have

shown that in many insect species the calyces receive massive GABAergic input

by several neurons (Bicker, 1999; Homberg et al., 1987; Yamazaki et al., 1998). In

P.americana three different classes of extrinsic GABAergic neurons arborize in the

mushroom body neuropil (Yamazaki et al., 1998). Two of these innervate the ca-

lyces. The first neuron class also arborizes in the surrounding neuropil of the

vertical lobe and has its cell bodies located at the base of the optical lobes (giant

calycal neurons). The second class originates from the circumesophageal con-

nective and project to the calyces. Additionally the presence of both ionotropic

GABAA and metabotropic GABAB receptors has been demonstrated in the ca-

lyces of Drosophila (Yasuyama et al., 2002; Enell et al., 2007) and Periplaneta (Sattelle

et al., 2000).

I found that application of picrotoxin, a blocker of the ionotropic GABAA

receptor led to an increase in the input resistance and the resting potential, which

suggests that the KCs receive tonic inhibition by which the sparseness might be

strengthened. Blocking the metabotropic GABAB receptors also resulted in an

increase of the input resistance and the resting potential. In this context it is in-

teresting that the ionotropic GABA receptors of honey bee KCs are modulated by

intracellular Ca2+ (Grünewald & Wersing, 2008). The influx of Ca2+ during an ac-

tion potential, for example, might increase the inhibition mediated by ionotropic

GABA receptor which could prevent the neuron from further firing. These re-

sults support not only the idea of feedforward inhibition (Perez-Orive et al., 2002;
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Perez-Orive et al., 2004) but also that constant inhibition suppresses spontaneous

activity and therefore sharpens odor responses in the mushroom body.

However, combined application of both GABA blockers resulted in dras-

tic changes of the odor responses and in one case, spontaneous rhythms were

evoked. These responses have never been observed before, neither during sin-

gle application of both blockers nor during control conditions. For locusts, it has

been reported that in addition to fast oscillatory input to the KCs, PN exhibited

inhibitory patterns on a much slower time scale and these patterns were not sensi-

tive to PTX (MacLeod & Laurent, 1996; MacLeod et al., 1998). At this point of anal-

ysis I can not unequivocally determine the origin of the slow patterns observed

in KCs when all inhibitory input is blocked. Recent studies in Drosophila showed

that both ORNs and PNs are modulated through both GABAA and GABAB re-

ceptors (Olsen et al., 2007; Olsen & Wilson, 2008). To test whether the observed

responses are induced by local circuits in the calyces, or by rhythmic input from

PNs, highly localized application of both blockers and/or simultaneous record-

ings of PNs and KCs have to be applied.

4.2 Imaging of PN output

In the second part of this thesis I analyzed the spatial and temporal aspects of

odor evoked synaptic output patterns at the PN boutons. I was able to show that

the output sites of olfactory projection neurons are modulated by GABA consid-

ering both spatial and temporal aspects. I used whole-cell current-clamp record-

ings combined with calcium imaging to analyze the actual output of single PN

boutons on the KCs. A recent study in honey bees showed presynaptic olfac-

tory information processing in the MBs and suggested that this in mediated by

GABAergic microcircuits (Szyszka et al., 2005). One major goal of this study was

to show that output sites of the same PN are differentially modulated in spatial

and temporal aspects by GABAergic inhibition.
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4.2.1 Spatial intensity mosaic

PNs are the relay for transmission of the olfactory information from the antennal

lobes to the mushroom bodies. In recent studies it has been shown that a spa-

tial map of odor evoked activity in the antennal lobes exists and that this map

occurs to be preserved among animals (Galizia et al., 1999; Wang et al., 2003).

Genetically labeled PNs in Drosophila allowed the comparison of spike trains

among different individuals (Wilson et al., 2004). Additionally, morphological

studies in Drosophila showed that the glomerular map is highly preserved in the

lateral lobes and also in MB calyces (Marin et al., 2002; Wong et al., 2002). In

the lateral lobes a stereotype map for axonal branching was found and also in

the calyces, zones for different PN classes were clearly distinguishable (Tanaka

et al., 2004; Jefferis et al., 2007). Imaging experiments suggested that this morpho-

logical stereotypy is not only present at the innervation patterns but also at the

functional response patterns of KCs. Wang et al. (2004) were able to show that

spatial distributed groups of KCs responded to different odor qualities. But the

electrophysiological responses of genetically labeled KCs shows no significant

stereotype (Murthy et al., 2008). Based on this results a number of factors have

been suggested that may account for the absence of KCs stereotypies (Cachero

& Jefferis, 2008), among them the amount of GABAergic inhibitory input. It

is known for several insect species that in addition to the map formed by the

PNs the calyces receive massive input from other neurons among them GABAer-

gic neurons (Yasuyama et al., 2002; Ganeshina & Menzel, 2001; Strausfeld & Li,

1999a; Bicker, 1999; Homberg et al., 1987; Yamazaki et al., 1998). Together with

the KCs these neurons form microglomeruli in the calyces of fly and honey bees

(Yasuyama et al., 2002; Ganeshina & Menzel, 2001). Immunohistochemical stud-

ies have shown that the GABAergic neurons in the calyces of Drosophila make

synapses onto either PNs and KCs (Yasuyama et al., 2002). The olfactory in-

formation which is already processed by the antennal lobe neurons is thus not

mandatory transmitted unmodified to the KCs, but might also be modulated by

the different neurons within the circuitry in the calyces. If PNs only transmit

the information from the antennal lobes to the mushroom bodies all recorded re-

sponses in individual boutons should be similar. This was only true in case of
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the third example. In this particular PN all boutons responded with similar pat-

terns. These boutons showed equal tuning to the different odors, whereas the

recorded electrophysiological response of the PN differed to the recordings from

other PNs. Usually, PNs respond with longer, complex periods of excitation and

inhibition. This response pattern was present in the first and second example of

the PNs shown here. This complex response pattern is formed by local inhibitory

and excitatory circuits within the antennal lobes (Shang et al., 2007; Olsen & Wil-

son, 2008; Olsen & Wilson, 2008; Wilson & Laurent, 2005).

It has been reported that calcium concentrations correlate well with total

spiking activity (Galizia & Kimmerle, 2004; Root et al., 2007; Silbering et al., 2008;

Svoboda et al., 1997), but this correlation is not perfect. When comparing the re-

sponse to odor mixture and α-ionone in PN1 (Fig 3.13) or to odor mixture and

1-hexanol in PN2 (Fig 3.19) it is obvious that the spiking patterns were similar

whereas the fluorescence increases at the output sites are considerably different.

This points to the conclusion that high frequency spike trains not inevitable re-

sult in large transients at the output site. Accordingly, fluorescence increase is

not sufficient to determine the spike rate. In contrast precisely timed action po-

tentials elicited stronger responses at the output site. Comparing benzaldehyde

before and after application of PTX (Fig. 3.19) in PN2 shows that the fluorescence

level increased, even though the spike rate decreased. These results suggest that

precise timing of single spikes is sufficient to produce exact output. Lower fre-

quency spike train may produce better summation of presynaptic calcium than

high frequency spike rates.

Recent studies in honey bee assumed already presynaptic inhibition of PN

output (Szyszka et al., 2005). In this study the authors show with calcium imag-

ing of PN dendrites in the AL, the PN boutons and the KC soma that odor driven

activity is sharpened during the processing steps. In the present study the trans-

mitted information of the glomerulus to the output site of single neurons was

investigated. With the combination of electrophysiological recordings and cal-

cium imaging it was possible to investigate the direct output of particular neu-

rons. This allows direct comparison of bouton signals. Application of PTX might

alter the spiking pattern by modulating the whole circuit within the AL, whereas
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the transmission to the boutons should not be affected. This means, any changes

in the bouton specific tuning must arise from circuits within the calyces. I have

shown two examples where tuning to different odors in distinct boutons was

unambiguously different in the control and significantly more similar after PTX

treatment (Figs. 3.17 and 3.23). Possible mechanisms are GABAergic feedback

neurons, which have been suggested from neuroanatomical works on honey bees,

flies and locusts (Ganeshina & Menzel, 2001; Yasuyama et al., 2002; Leitch & Lau-

rent, 1996). These neurons are supposed to form microcircuits with PNs and KCs

and hence sharpen olfactory input to the KCs. For the locusts this GABAergic

input is thought to mediate the sparse coding by inhibiting the KCs and not PNs

but electronmicroscopic studies in Drosophila have shown that PN boutons also

receive input from GABAergic synapses (Yasuyama et al., 2002). In the cockroach

the calyces also receive GABAergic input by several neurons but in contrast to

the recurrent neuron reported in locusts and honeybee (Leitch & Laurent, 1996;

Ganeshina & Menzel, 2001), these neurons provide no direct recurrent input from

the lobes to the calyces (Yamazaki et al., 1998; Strausfeld & Li, 1999b). Straus-

feld and Li (1999) mentioned the overlap of dendrites beside the vertical lobes

and terminals of medial lobes efferent. Together these neurons might form a re-

current feedback loop from the mushroom body lobes to the calyces. Whether

the microcircuits, as reported for honey bee and Drosophila, are also apparent

in cockroaches is still unknown, but conceivable. From this point of analysis

it is not clear whether the observed modulation arises from the microcircuitry

which forms reciprocal synapses between the PNs and GABAergic neurons, or

whether the feedback loop is activated by means of KCs, medial lobe efferent

and GABAergic recurrent neurons.

4.2.2 Temporal mosaic

In addition the spatial intensity map which has been discussed above, the tem-

poral pattern of the odor evoked signals in the boutons has been analyzed. This

temporal pattern is determined by the spiking pattern that was measured at the

cell body and arises from circuitry dynamics in the AL. This pattern, defined

as latency to the maximum response, appears to be modulated in the different
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boutons, as shown in Fig. 3.15, where latencies differed several hundreds of mil-

liseconds. Furthermore, I was able to show that an elaborate spike pattern also

results in complex response patterns at the output site. Slight differences of ∼100

ms in the latencies to the peak fluorescence change may be explained by different

distances to the recording site. For larger differences of hundreds of milliseconds

(Fig. 3.15) delay between different boutons another mechanism has to be sug-

gested. In locusts, it has been shown that highly synchronized input to KCs is

essential to produce any response to an odor (Laurent, 2002; Stopfer et al., 2003).

In addition, each KC receives input from about 50 % of about 800 PNs and that

this synapses are very weak (Jortner et al., 2007). Assuming that KCs in cock-

roaches also receive information from many PN boutons, this would lead to the

following conclusion: different PN boutons which all synapse on the same KC

have to be synchronous, whereas different boutons of the same PN that synapse

onto distinct KCs, should respond in different ways. This could be confirmed in

PN1 (Fig. 3.15). Different boutons of the same PN had their individual maximum

at different points of time. This variability was completely lost after application of

PTX and all boutons responded approximately simultaneous to different odors.

This is in coherence with previous results from locusts. Here, single KCs tend

to produce more spikes to different odors after inhibition was blocked by PTX

(Perez-Orive et al., 2004), which means that more PN boutons must be active at

the same time.

Currently, the lack of temporal modulation in PN2 and PN3 is not unequiv-

ocally assignable. The lack of temporal fine tuning in PN2 might be caused by a

relative low sample frequency of 10 Hz. High frequencies as shown from the elec-

trophysiological recordings thus might have been overlooked. Therefore, high

sample frequencies are desirable, which can be achieved by laser scanning mi-

croscopy or two-photon laser scanning microscopy. This would help to analyze

whether single action potentials produce the same amount of output at different

boutons. In PN3 the lack of temporal tuning to different odors might be a cell

specific issue. This particular PN only responded to 4 out of 11 odors, which is

a considerably lower response probability than reported for other PNs (Perez-

Orive et al., 2002). Additionally, the electrophysiological response was less com-
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plex as shown for the other two PNs and as expected from firing responses of

typical PNs (Husch et al., 2009).

4.2.3 Methodical aspects

To analyze the spatial and temporal properties of odor driven activity in the MB

I measured calcium transients in the bouton of selectively stained PNs.

Throughout this study relatively high concentrations (800 µM) of high affin-

ity Ca2+ indicator were loaded into the cells. The concentration at the recording

site could not be determined and effects of the indicator on the signal were not

analyzed. The changes in indicator concentrations might also have effects on the

signal. Thus, the experiments were performed as fast as possible. Accordingly

no evident changes in background fluorescence were observed throughout the

experiments. It has been shown that changes in calcium fluorescence are mainly

evoked by voltage- and/or transmitter activated Ca2+ channels. These are lo-

cated both pre- and postsynaptic. Methodically it can not be distinguished where

the signal is generated. In Drosophila it has been shown that few input sites to the

boutons are opposed to many output sites to the KCs. Thus, in the present study

it is more likely that the measured transients originate from presynaptic activity

rather than from the postsynapse.

One disadvantage of the CCD camera set up is the low penetration into the

tissue. Only the upper 100 µm are accessible for the CCD camera. Fortunately, all

recorded PNs were of type 2 as described by Strausfeld & Li (1999b) and there-

fore all boutons were localized in the upper rim of the calyces. I assume that

the recorded transients represent those in other parts of the MB. Only the medial

calyx was accessible for imaging because the lateral calyx was slightly displaced

due to the bent optical lobe. However, there is no study which reports any dif-

ferences between the two calyces. All anatomical studies have shown that both

medial and lateral calyx receive the identical input and the Kenyon cell organiza-

tion is indistinguishable (Weiss, 1974; Strausfeld et al., 1998).
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4.3 Conclusions

In this study I was able to show that the synaptic circuit within the mushroom

bodies of the cockroach P. americana and the intrinsic membrane properties of the

KCs combine to generate the responses in KCs, which have been reported here

and for other insects. Olfactory information which is transmitted by olfactory

projection neurons to the higher order brain centers is further processed at the

presynaptic site. This processing might be a form of olfactory learning, which is

known to take place in the mushroom bodies. The tuning of different boutons to-

wards distinct odors in terms of intensity and temporal precision would enhance

the response probability of the following KC. Within the KCs tonic inhibition pre-

vents KCs from spontaneous activity and might be released when the matching

odor is presented. In combination with the large ICa this possible mechanism

would boost EPSPs resulting in APs. Once APs are elicited and Ca2+ flows into

the cell, the large conductance of IO(Ca) is activated. This conductance terminates

activity. This silencing mechanism might be supported by an upmodulation of

the GABAergic inhibition by intracellular Ca2+.

4.4 Outlook

This study gives first insight into cellular mechanisms, which mediate olfactory

coding within the mushroom bodies. However, this study gives rise to a number

of questions, which will have to be addressed in more detail in future experi-

ments.

• GABA antagonists need to be applied more precisely to confine the affected

network. This should provide more information about the origin of slow

temporal patterns, which were observed in the KCs during simultaneous

application of both GABA antagonists.

• Odor evoked responses to different odor concentrations should be investi-

gated in KCs. Different KCs may respond in different ways to different odor

concentrations.
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• Imaging experiments should be performed with high temporal and spatial

resolution to further manifest the findings in this study. Additionally, the

sample size should be increased in terms of odor presentation to ensure the

reproducibility of spatio-temporal patterns.

• Electronmicroscopic analysis of single boutons in Periplaneta would be highly

desirable to confirm the presence of microcircuits as shown in Drosophila

and Apis.
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Ohne Hilfe wäre diese Arbeit nicht zu Stande gekommen. Ich danke insbeson-

dere:

Prof. Dr. Peter Kloppenburg für die die besondere Unterstützung und Ermöglichung
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chen und Kalzium Problemen, ganz besonderen Dank für die Hilfe bei der

Auswertung der Imaging Daten. Moritz Paehler danke ich für die Hilfe bei

TILL, Hard- und Software Problemchen, auch wenn die Klickgeschwindigkeit

manchmal einfach zu hoch für mich war. Sabine Schleicher danke ich ganz
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