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1. Introduction 

1.1 Morphological innovations 

The origin of morphological and functional novelties is a problem that goes back to the 

early days of evolutionary biology (Darwin 1859). In 1960 Ernst Mayr re-emphasized 

its importance: ‘‘There are fashionable problems and there are neglected problems in 

any field of research. The problem of the emergence of evolutionary novelties has 

undoubtedly been greatly neglected during the past two or three decades, in spite of its 

importance in the theory of evolution.’’ However, the question how morphological 

novelties arise remains an unsolved problem in evolutionary biology (Theissen 2006). 

A promising approach to gain further knowledge on this subject relies on the 

exploration of developmental and genetic mechanisms that are responsible for these 

novel structures. For instance, one mechanism that can lead to novelties is 

heterochrony, i.e. changes in the rate or timing of developmental events (Wake and 

Roth 1989, Raff et al. 1990, Keys et al. 1999, Wang et al. 1999, Frary et al. 2000). 

Another mechanism is heterotopic expression of existing functions (Kanno et al. 2003, 

He and Saedler 2005), which refers to evolutionary change in spatial patterning. These 

two mechanisms typically involve either changes in cis-regulatory elements (Doebley 

and Lukens 1998), or changes in trans-acting transcriptional regulators (Vrebalov et al. 

2002, Yu et al. 2004). 

Changes in gene expression can lead to dramatic morphological changes. One well 

known example is the TEOSINTE BRANCHED1 (TB1) gene from maize, which has 

played a major role during the morphological evolution of the modern crop plant Zea 

mays ssp. mays from its wild ancestor Zea mays ssp. parviglumis. Diversity analyses at 

TB1 loci indicate a partial selective sweep in the TB1-promoter region of Zea mays, 

suggesting selection has acted on a regulatory region during domestication (Wang et 

al. 1999). In addition, many studies on animals support the contribution of alterations 

in the expression of developmental genes in morphological evolution (Carroll et al. 

2001, Abzhanov et al. 2004, Marcellini and Simpson 2006).  
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1.2 Flower morphology 

A key event in the evolution of plants was the emergence of angiosperms, the most 

diverse group of land plants. In general, the floral organs of most higher eudicots are 

arranged in four or sometimes more whorls: the calyx (the outer whorl of sepals, 

usually green organs to shelter the developing inner floral organs), the corolla (the 

whorl of petals, which are mostly specially shaped and colored to attract pollinators), 

the androecium (generally one or more whorls of stamens, the male sexual organs) and 

the gynoecium (one or more carpels, the female sexual organs). Flowers of higher 

eudicots exhibit a high degree of morphological diversity. In many families, 

innovations in flower morphology have occurred. Thus flowering plants are an 

interesting model system to study the molecular mechanisms underlying the origin of 

morphological novelties.  

For example, TCP transcription factors have been shown to play an important role in 

the determination of flower symmetry, particularly concerning the symmetry of second 

whorl organs (Luo et al. 1996, Luo et al. 1999). Changes in these transcription factors 

can affect petal symmetry of the corolla and generate novel morphological structures. 

For instance, in the Scrophulariaceae, zygomorphy is under the control of 

CYCLOIDEA (CYC; Luo et al. 1996) and DICHOTOMA genes (DICH; Luo et al. 

1999). The snapdragon Antirrhinum majus has zygomorphic flowers, but in case one of 

these genes is mutated, semi-radial flowers are generated. The cyc dich double mutant 

features radial (actinomorphic) flowers, where all petals have the same identity similar 

to its close relative Mohavea confertiflora, which possesses more actinomorphic 

flowers and features an altered expression domain of CYC (Hileman et al. 2003).  

 

1.3 MADS-box genes and the molecular basis of flower morphology 

While TCP genes (among other transcription factors) are involved in determining 

floral symmetry, floral meristem and floral organ identity on the other hand are defined 

by combinations of MADS-domain transcription factors (Schwarz-Sommer et al. 1990, 

Sommer et al. 1990, Yanofsky et al. 1990, Theissen et al. 2000). MADS-domain 

proteins operate as homo- or heterodimers (Troebner et al. 1992, Davies et al. 1996b) 

or also in higher-order complexes (Egea-Cortines et al. 1999, Honma and Goto 2001, 

Theissen and Saedler 2001) and modifications in these combinations often result in 
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changes of floral organ identity. To explain the interplay of gene functions the ABC 

model has been proposed (Schwarz-Sommer et al. 1990, Yanofsky et al. 1990, Coen 

and Meyerowitz 1991, Weigel and Meyerowitz 1994). It states that A, B, and C 

functions are each acting in two neighboring whorls of organs, where their individual 

and mixed activities determine the fate of organ primordia: A in whorls one and two, B 

in whorls two and three, and C in whorls three and four. Accordingly, A function alone 

determines the identity of sepals, but A and B functions act together to control petal 

identity, B and C functions together are responsible for the identity of stamens, and the 

C function alone specifies carpel identity. Further, A and C functions act as 

antagonists, and if one is lacking, the other spreads out to take over the whole flower.  

Later this model has been extended to the ABCDE model: Additional MADS-box 

genes have been identified that are required for determination of ovule identity (D-

function; Colombo et al. 1995) and others that are important for the establishment of 

sepal, petal, stamen and carpel identity (E-function; Pelaz et al. 2000). E-function 

genes in Arabidopsis thaliana are the SEPALLATA genes SEPALLATA1 (SEP1) / 

AGAMOUS-LIKE_2 (AGL2), SEPALLATA2 (SEP2) / AGAMOUS-LIKE_4 (AGL4), 

SEPALLATA3 (SEP3) / AGAMOUS-LIKE 9 (AGL9) and SEPALLATA4 (SEP4) / 

AGAMOUS-LIKE 3 (AGL3).  

It has been hypothesized that the arrangement of MADS-domain proteins in oligomeric 

complexes defines which kind of floral organ develops and that changes in 

composition of the protein complex can result in homeotic substitutions (Theißen et al. 

2002). Hence, variation in the arrangement of these protein complexes could offer the 

starting material for the evolution of floral morphological novelties.  

 

1.4 Sepal identity changes 

Changes of floral organ identity can be generated by ectopic expression of 

combinations of A. majus MADS-box genes in transgenic Nicotiana tabaccum plants: 

expression of B-function genes in whorl one of tobacco flowers leads to transformation 

of sepals into petals (Davies et al. 1996a).  

There are also examples in nature showing that heterotopic expression of transcription 

factors might be involved in the evolution of morphological novelties. For instance, 

due to heterotopic expression of B-function genes in the Liliaceae, the perianth is made 
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of two whorls of petalaloid organs (named tepals), instead of one whorl of petals and 

one with sepals (Kanno et al. 2003).  

In several plant species, mutants have been described in which first whorl organs are 

transformed into foliose (leaf-like) structures.  

In the tunicate mutant of Zea mays, in which the kernels are covered by glumes instead 

of being naked, ZMM19, a MADS-box transcription factor, is ectopically expressed 

(He et al. 2004). In wild type maize, this gene is only expressed in leaves, stem and 

husks, while in the tunicate mutant high levels of transcript are also found in male and 

female inflorescences. The mutation underlying this expression change involved gene 

duplication and alterations in the promoter region of ZMM19. The gene belongs to the 

STMADS11-superclade of MADS-box genes (He et al. 2004, He and Saedler 2005). It 

has been suggested that members of this clade induce a higher proliferative potential of 

vegetative tissues (Kim et al. 2002). Ectopic expression of STMADS11-superclade 

members ZMM19, SHORT VEGETATIVE PHASE (SVP), and AGAMOUS-LIKE 24 

(AGL24) in transgenic A. thaliana transforms sepals into leaf-like organs (He et al. 

2004).  

In Solanum lycopersicum (tomato), the gene LeMADS-MC affects sepal development 

and inflorescence determinacy (Vrebalov et al. 2002). Its mutant features enlarged 

sepals. However, in contrast to ZMM19, LeMADS-MC is a member of the SQUAMOSA 

(SQUA)-clade of MADS-box genes (Huijser et al. 1992). Mutations in the APETALA1 

(AP1) gene, which also belongs to the SQUA-clade, lead to the conversion of sepals of 

the first whorl into leaf-like organs (Mandel et al. 1992). Apart from its function in 

determining sepal identity, the A-function gene is also required for normal petal 

development and for specifying floral meristem identity. Together with LEAFY 

(LFY), AP1 represses AGL24 expression in floral meristems of A. thaliana to promote 

floral development (Yu et al. 2004). 

In summary, ectopic expression of members of the STMADS11-superclade of MADS-

box genes leads to enlarged leaf-like sepals, and mutations in the SQUA-clade MADS-

box genes have similar effects. Results from A. thaliana suggest that SQUA-clade 

genes can act as negative regulators of STMADS11-superclade genes (Yu et al. 2004, 

Liu et al. 2007) preventing their expression in floral tissues. Thus the effect observed 

in the lemads-mc mutant may also be a result of ectopic expression of STMADS11-
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superclade genes, highlighting the potential importance of this gene family in the 

evolution of first whirl organ morphology. 

 

1.5 A morphological novelty in Solanaceae 

In several genera of the family Solanaceae morphological changes of sepals in the first 

whorl have occurred. Though the majority of the genera have small sepals, several 

show more elaborate morphologies, like large tubular calyces (e.g. Brugsmansia, 

Nicotiana and Datura) or inflated lantern-like calyces, which encapsulate the entire 

mature fruit (Fig. 1.5.1). In Physalis, this trait has been termed “Chinese lantern“ or 

“Inflated-Calyx-Syndrome“ (ICS; He et al. 2004). So far, species featuring inflated 

calyces were discovered in at least nine of the 96 genera of the family Solanaceae 

(D'Arcy 1991), including Cuatreasia, Exodeconus, Margaranthus, Nicandra, Physalis, 

Physaliastrum, Physochlaina, Przewalskia, and Withania. Initially, phylogenetic 

reconstructions suggested multiple origins for this trait in the Solanaceae (Hu and 

Saedler 2007).  

 

 

 

 

 

 

 

Figure 1.5.1: Calyx development in Physalis floridana (Picture: Britta Grosardt) 

From left to right: buds, flowers, ICS with developing fruit; scale bar = 1 cm 

 

1.6 Molecular mechanisms underlying ICS in Physalis 

The molecular mechanisms underlying ICS formation have been studied mainly in the 

genera Physalis and Withania. He and Saedler (2005) discovered that the recruitment 
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of the MADS-domain transcription factor MPF2 from vegetative into a floral context 

via heterotopic expression enabled the novel morphological trait ICS in Physalis 

floridana.  

MPF2 from P. floridana and STMADS16, its ortholog in Solanum tuberosum (potato), 

are members of the STMADS11-superclade of MADS-box genes (He and Saedler 

2005). While the expression of STMADS16 from S. tuberosum has been reported to be 

solely restricted to vegetative tissues (Garcia-Maroto et al. 2000, He and Saedler 

2005), its ortholog MPF2 is expressed in vegetative as well as in floral tissues of P. 

floridana (He and Saedler 2005). Transgenic Physalis plants, in which MPF2 

expression was knocked down via RNA interference (RNAi), showed dramatically 

reduced ICS formation, small leaves, and were partially male sterile (He and Saedler 

2005, He et al. 2007). The latter indicates that MPF2 function is not only a prerequisite 

for ICS formation, but is also involved in leaf development and male fertility. Further, 

it was discovered that pollination or a signal, such as hormones, released after 

fertilization is required for ICS development. In fact, hormones like gibberellins and 

cytokinins can trigger ICS formation on depistillated or emasculated flower buds, even 

prior to pollination in Physalis (He and Saedler 2007). S. tuberosum does not feature 

ICS. Yet an ICS-like trait could be generated in transgenic S. tuberosum plants by 

ectopic expression of STMADS16 and treatment of the developing flower buds with the 

above-mentioned hormones (He and Saedler 2005). Overexpression of STMADS16 or 

MPF2 in A._thaliana does only lead to an increased sepal size, if it is combined with a 

cytokinin treatment (He and Saedler 2007). According to these studies cytokinin 

facilitates the transport of MPF2 into the nucleus, where it promotes calyx cell 

division, whereas gibberellin mediates cell elongation, which is necessary for 

enlargement of the calyx (He and Saedler 2007).  

In summary, at least two factors play an important role in the generation of ICS:  

1. Expression of MPF2-like genes in sepals  

2. Hormone signals generated by fertilization or the developing fruit 

Further, three MPF2-related functions have been discovered in Physalis: 

1. Leaf development, 2. ICS formation, 3. Male fertility / normal pollen development 

Whether the selective advantage of heterotopic expression in floral organs of Physalis 

was based on the formation of ICS itself and/or on the involvement of MPF2 in male 
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fertility is still under discussion and potential “hitch-hiking” effects need to be further 

investigated. In Przewalskia tangutica the ICS seems to decrease the specific weight of 

the fruits indicating that the trait could facilitate wind dispersal and therefore be of 

adaptive advantage (Knapp 2002). 

 

1.7 Molecular mechanisms underlying ICS in Withania 

Species of the genus Withania, which also belongs to the Physaleae, possess also ICS-

like structures. In contrast, the closely related Tubocapsicum species feature only 

rudimentary calyces. A recent study revealed that two classes of MPF2-like genes, 

termed MPF2-like-A and MPF2-like-B genes, exist in the tetraploid Withania, whereas 

only one class, the MPF2-like-B genes, could be isolated from Tubocapsicum species 

(Khan 2009, Khan et al. 2009). The most prominent structural differences between the 

two classes were a three amino acid deletion in the C-domain and an eight amino acid 

extension at the C-terminal end of the MPF2-like-A proteins. Only overexpression of 

MPF2-like-A in transgenic A. thaliana plants led to elongated sepals. Ectopically 

expressed MPF2-like-B genes did not affect sepal size, indicating that the two proteins 

are functionally divergent. Also their native expression patterns differ: In Withania, the 

MPF2-like-A transcripts were detectable in vegetative and also in floral tissues, where 

they most likely play a role in ICS formation, whereas MPF2-like-B is solely 

expressed in vegetative tissues. By contrast, in Tubocapsicum MPF2-like-B transcripts 

were found in vegetative and floral tissues. It has been assumed that only MPF2-like-A 

proteins can trigger sepal growth, while MPF2-like-B proteins cannot, explaining the 

absence of ICS in Tubocapsicum. Accordingly, also the type of MPF2-like gene 

expressed in sepals seems to play a role in ICS formation.  

 

1.8 Loss and gain of ICS 

As mentioned previously, several genera in the family of Solanaceae contain species 

featuring ICS, whereas others do not. Regardless of the ancestral state, it would be 

interesting to know the changes that are responsible for the loss or gain of this trait. 

Current knowledge indicates that the following changes in the pathway underlying ICS 

formation could be involved in gain or loss events: 
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1. Changes of the spatial or temporal release of hormone signals  

2. Changes in MPF2-like proteins leading to altered functional properties, in particular 

gain / loss of the ability to promote sepal growth 

3. Changes of the spatial and temporal expression pattern of MPF2-like genes in floral 

organs by alterations in cis-regulatory elements or trans-acting factors 

 

1.9 Transcriptional regulation of MPF2-like gene expression 

This study is primarily concerned with the putative role of cis-regulatory elements in 

differential expression of MPF2-like genes in sepals, since this had been suggested by 

previous findings: In contrast to the highly conserved coding sequences of MPF2 and 

STMADS16, the putative promoter regions of these genes share only 42% sequence 

similarity (He and Saedler 2005). The low sequence similarity in the upstream regions 

might account for the divergent expression patterns in P. floridana and S._tuberosum. 

Further, two MEF2- or N10-type CArG-boxes, binding sites for MADS-domain 

transcription factors, are present in the first 1.3 kb upstream region of STMADS16. In 

contrast, the putative promoter region of MPF2 does not contain these motifs. 

Expression of MADS-box genes is often controlled by other MADS-domain proteins 

(Yu, et al. 2004). Hence another MADS-domain protein might act as a negative 

regulator by binding to the CArG-boxes in the STMADS16 promoter and preventing its 

expression in floral tissues of potato. The previously mentioned SQUA-like proteins 

(see chapter 1.4) are candidates for such a trans-regulator in potato.  

Although the differences in the upstream putative promoter region are a prominent 

feature, additional cis-elements controlling expression of MPF2-like genes could be 

also located in introns of the genes. In fact, such intronic elements are known for other 

MADS-box transcription factor genes like PLENA (PLE; Davies et al. 1999) and 

AGAMOUS (AG; Hong et al. 2003). 

 

1.10 MPF2-like gene expression in Physaleae 

In this study, several species from the Physalinae and Iochrominae, two closely related 

Physaleae subtribes (Olmstead et al. 1999, Hu and Saedler 2007), were investigated. 
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The Physalinae include the genera Physalis and Margaranthus, which feature ICS, and 

the genus Witheringia (without Witheringia coccoloboides, according to Hu and 

Saedler 2007), which contains non-ICS species. Most Physalis species are diploid (e.g. 

P. floridana), although some are tetraploid, e.g. Physalis minima and Physalis 

peruviana. The majority of Physalis species are native to Mexico, even though 

Physalis alkekengi probably has its origin in the Old World (Codex Aniciae Julianae 

before 512). 

The Iochrominae clade consists of 34 species and six traditionally accepted genera: 

Acnistus, Dunalia, Eriolarynx, Iochroma, Saracha and Vassobia (Smith and Baum 

2007). Most of the Andean species occur between Columbia and Peru, where the 

shrubs and small trees grow in scrub or cloud forest between 2200 and 2900 m (Smith 

et al. 2008). Their flowers, which are pollinated by hummingbirds, show an immense 

diversity (Smith and Baum 2006) and according to published chromosome counts they 

are probably all diploid (Hunziker 2001 and references therein). The three species used 

in this study (see Fig. 1.10.1) featured only small calyces, although Iochrominae with 

larger inflated calyces do exist (e.g. Iochroma cornifolium). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10.1 : Leaves, buds, flowers and fruits from three Iochrominae species  

a) Dunalia fasciculata, b) Iochroma australe and c) Vassobia breviflora; scale bar = 1cm 

a  

b  c 
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MPF2-like gene expression in calyx tissues has been extensively studied in the 

Physaleae (see Fig. 1.10.2; Hu and Saedler 2007). All tested species from the genera 

Withania and Physalis, which feature ICS, expressed MPF2-like genes in their calyces. 

Further, two of the Iochrominae species, I. australe and D. fasciculata, which do not 

form an ICS, also lack MPF2-like gene expression in sepals. Interestingly, several 

species exhibit MPF2-like gene expression in sepals (Capsicum baccatum, Lycianthes 

biflora, Tubocapsicum anomalum, Witheringia solanacea, V. breviflora), although they 

produce only tiny calyces that do not react to externally applied hormones.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10.2: Phylogeny of the Physaleae (adopted from Hu and Saedler, 2007) 

“A strict consensus MP tree with Capsicum and Lycianthes as outgroups is shown, based on 
concatenation of the 2 chloroplast sequences atpB and matK and cDNA sequences of the 
nuclear MPF1- and MPF2-like genes. (…) Branches leading to species that express the MPF2-
like gene in the calyx are shown in red; bold red indicates species displaying ICS. Bold black 
branches denote species that show no MPF2- like gene expression in the calyx and do not 
develop ICS. The number sign (#) indicates Old World origin; all other species are of New 
World origin. Calyx phenotypes at flower and fruit stages are shown on the right. The vertical 
scale bars = 1 cm.” (Hu and Saedler, 2007) 



INTRODUCTION 

11 

These findings, together with data mentioned in the two previous chapters, show that 

MPF2-like gene expression in sepals is necessary, but obviously in many species not 

sufficient to induce formation of an ICS-like structure. Despite the lack of expression 

in sepals observed in two of the Iochrominae, it has been suggested that heterotopic 

expression of MPF2-like genes seems to be a plesiomorphic character within the 

Physaleae and the Capsiceae and that secondary mutations in the ICS pathway might 

have taken PLACE (Hu and Saedler 2007). 

The variability in MPF2-like gene expression observed in the Iochrominae was very 

interesting for this study, since it provided an example for a putative secondary loss of 

MPF2-like gene expression in the calyx, where the mechanisms underlying heterotopic 

expression can be studied. The nature of these changes, for instance whether alterations 

in cis-regulatory elements play a role, is not known. 

 

1.11 Goals of this thesis 

The major goal of this thesis is therefore to provide insights concerning the role of cis-

regulatory elements in differential transcriptional regulation of MPF2-like MADS-box 

transcription factors in Physaleae. The identification of important regulatory regions 

and further the detection of changes in these, leading to loss or gain of floral 

expression (especially in sepals), would improve current knowledge about the 

mechanisms underlying ICS. For this purpose, upstream and intronic sequences of 

MPF2-like genes were isolated and analyzed in silico. In addition to that, transgenic 

Arabidopsis harboring promoter::GUS fusion constructs were produced to allow 

conclusions regarding functionality.  

An additional investigation was the isolation of cDNAs and Southern blot analysis of 

MPF2-like genes from Physaleae. Assumptions concerning their ability to trigger 

calyx growth, based on present phylogenetic data, will be discussed attempting to give 

possible explanations for the absence of ICS in V. breviflora. 
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2. Materials and Methods  

2.1 Chemicals, antibiotics, kits, enzymes, primers and radioisotopes 

Chemicals 

The chemical products of analytical quality were purchased from the following 

companies: AppliChem (Darmstadt), Biomol GmbH (Hamburg), Bio-Rad (Munich), 

Biozym (Hessisch Oldendorf), Clontech (Heidelberg), Merck (Darmstadt), Promega 

(Mannheim), Roche (Mannheim), Roth (Karlsruhe), Serva (Heidelberg) and Sigma-

Aldrich (Munich).  

 

Antibiotics 

All antibiotics were ordered from Duchefa (Haarlem, The Netherlands).  

 

Kits 

The kits were drawn from Macherey-Nagel (Düren), peqlab (Erlangen), Roche 

(Mannheim) and Qiagen (Hilden).  

 

Enzymes 

The enzymes were ordered from New England Biolabs (Schwalmbach), Fermentas (St. 

Leon-Rot), Roche (Mannheim), Takara Bio Inc. (Otsu, Japan), Ampliqon (Hamburg), 

Finnzymes (Espoo, Finland) and Invitrogen (Karlsruhe). All enzymatic reactions were 

performed according to the manufacturer’s instruction manuals.  

 

Primer synthesis 

All primers were synthesized by Invitrogen (Karlsruhe). 

 

Radioisotopes 

The radioisotope [α-32P]-dCTP (110 TBq/mmol) was purchased from Hartmann 

Analytic (Braunschweig). 
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2.2 Buffers, media and solutions  

The buffers, media and solutions used in the experiments were prepared according to 

Sambrook and Russell (2001) unless otherwise noted below. 

 

Partial GUS histochemical buffer   GUS histochemical buffer (10 ml)  
100 mM NaPO4 (pH 7.0)      X-Gluc stock in DMF (50 mg/ml)  120 µl  
0.5 mM K3Fe(CN)6      Partial GUS buffer    8 ml  
0.5 mM K4Fe(CN)6     Methanol       2 ml  
10 mM EDTA       Prepare fresh 
0.1% Triton X-100 (v/v)     
Store at 4 °C, dark 
   
CTAB buffer (for extraction of genomic DNA) 
100 mM Tris pH 8.0,  
1.4 M NaCl 
20 mM EDTA  
2% CTAB (w/v) 
1% PVP (w/v) 

  
YEB Medium 
0.5% Beef extract (w/v)   
0.1% Yeast extract (w/v)   
0.5% Peptone (w/v)     
0.5% Sucrose (w/v)   
Adjust pH 7.5  
Add 1 M MgSO4 (10 ml/l) after autoclaving  
For solid medium add Agar (15 g/l) prior autoclaving 
  
Infiltration Medium (for Arabidopsis transformation) 
1/2 x Murashige & Skoog medium including Gamborg B5 vitamins    
1/2 x Gamborg’s vitamin solution         
5% Sucrose (w/v) 
0.044 µM 6-benzylaminopurine (stock: 1 mg/ml in DMSO) 
0.005% Surfactant SILWET L-77 (v/v) 
 
MS medium (for transient transformation of Solanaceae) 
3% Sucrose (w/v) 
1 x Murashige & Skoog medium including Gamborg B5 vitamins    
0.45% MES (w/v) 
Adjust to pH 5.7  
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2.3 Online tools and scientific software   

Table 2.3.1: Online tools for literature search and sequence analyses 

Tool Application URL Reference 

Primer3 Primer design http://frodo.wi.mit.edu/pr

imer3/input.htm 

(Rozen and 

Skaletsky 2000) 

PlantGDB: 

GeneSeqer 

Exon / intron structure http://www.plantgdb.org/ (Usuka et al. 

2000) 

NCBI 

BLAST 

Sequence information, 

 

http://blast.ncbi.nlm.nih.

gov/ 

(Altschul et al. 

1990) 

PubMed  Literature search http://www.ncbi.nlm.nih.

gov/ 

- 

Credo: 

DIALIGN 

Global alignment tool, 

detection of conserved 

motifs 

http://bioinfo.mpiz-

koeln.mpg.de/credo_test/

credo.htm 

(Morgenstern 

1999) 

DIALIGN 

and Chaos 

Alignments of 

genomic sequences 

http://dialign.gobics.de/  (Brudno et al. 

2004) 

Mulan and 

multiTF 

Local multiple 

sequence alignments, 

transcription factor 

binding sites  

http://mulan.dcode.org/  (Ovcharenko et 

al. 2005) 

PLACE cis-regulatory 

elements database 

http://www.dna.affrc.go.j

p/PLACE/  

(Higo et al. 

1999) 

 

Table 2.3.2: Scientific software for sequence and image analysis 

Software Application Source/Reference 

MacVector 9.0 sequence editing, 

alignment 

Accelrys Inc. (Cambridge, UK) 

AssemblyLIGN sequence editing, 

alignment 

Accelrys Inc.  

Image Quant quantification Molecular Dynamics (Krefeld) 

PAUP4.0b10  phylogenetic 

reconstruction 

(Swofford 2002) 
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2.4 Bacteria and plasmids  

Escherichia coli strains: 

• DH5α (Genotype: fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 

gyrA96 recA1 relA1 endA1 thi-1 hsdR17) 

• DH10ß (Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80dlacZΔM15 ΔlacX74 

endA1 recA1 deoR Δ(ara,leu)7697 araD139 galU galK nupG rpsL λ-) 

 

Agrobacterium tumefaciens strains: 

• GV3101 pMP90 (Marker genes: Rifampicin, Gentamycin) 

• LBA4404 pAL4404 (Marker genes: Rifampicin, Spectinomycin/Streptomycin) 

 

Table 2.4.1 Plasmids used for transformation 

Plasmid Application and resistance Reference/Source 

pGEM-T Easy  Cloning of PCR products 

Ampicillin 

Promega (Mannheim) 

pGPTV-bar Plant transformation vector  

Kanamycin, Basta 

(Becker et al. 1992) 

p27IGUS Plant transformation vector 

Kanamycin, Spectinomycin/Streptomycin 

(Shang et al. 2007) 

 

2.5 Plant materials 

All Solanaceae accessions (see Supplement, Table 8.1.6) were obtained from seed 

banks worldwide and seeds were stored in the seed bank at the Max-Planck-Institute 

for Plant Breeding Research (MPIZ). 

Columbia ecotype (Col-0) plants were used for the generation of transgenic A. thaliana. 

 

2.6 Published sequences 

Published sequences, containing MPF2-like partial and full-length mRNAs or genomic 

loci, were downloaded from NCBI (see Supplement, Tables 8.1.1, 8.1.2 and 8.1.3).  
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2.7 Plant growth conditions 

All Solanaceae plants were grown in greenhouses on soil under long day conditions 

(16 h light, 8 h dark) at 20 to 26 °C by MPIZ gardeners.  

Further, all A. thaliana Col-0 plants were cultivated on soil in greenhouses at 22 °C. 

The wild-type was first kept under standard short day conditions (8 h light, 16 h dark) 

and later transferred to long day greenhouse conditions (16 h light, 8 h dark), while 

transgenic plants were always kept under long day conditions. 

 

2.8 Isolation of genomic DNA from plant tissues 

Genomic DNA for Southern blotting was extracted from frozen leaves with the 

DNeasy Plant Mini Kit (Qiagen).  

Total genomic DNA for all other purposes including ‘genome walking’ was isolated 

using a modified CTAB protocol based on the original method by Doyle and Doyle 

(1987): Young leaves were grounded in liquid nitrogen. Then 1 g plant material was 

incubated in 15 ml of CTAB extraction buffer at 65 °C for 20 min, mixed with 15 ml 

of chloroform and centrifuged at 5000 rpm for 10 min. The upper phase was 

transferred to a new tube and the nucleic acids were precipitated by addition of 30 ml 

isopropanol. After precipitation at -20 °C overnight the nucleic acids were centrifuged 

at 5000 rpm for 30 min. Afterwards the pellet was resolved in 1 ml TE supplemented 

with 20 µg/ml DNase-free RNase (Qiagen) and incubated for 30 min at 37 °C to 

remove RNA contaminations. An equal volume of phenol-chloroform-isoamyl alcohol 

(24:24:1) was added and after centrifugation at 5000 rpm for 5 min the upper phase 

was transferred into a new tube. In the next step 1 Vol of chloroform was added and 

after centrifugation at 5000 rpm for 5 min the aqueous phase was pipetted into a new 

tube. Then the DNA was precipitated with 100 µl 3 M sodium acetate (pH 5.2) and 

700 µl isopropanol. After centrifugation for 1 h at 5000 rpm and 4 °C the supernatant 

was removed and the pellet washed with 70% ethanol twice and finally resolved in TE 

buffer.  
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2.9 Total RNA isolation from plant tissue 

To gain RNA for RT-PCR, samples of young leaves and floral organs at different 

stages were collected separately by using forceps and razorblades, quickly frozen in 

liquid nitrogen, and stored at –80 °C for nucleic acids extraction. Stamens from open 

flowers were harvested into 0.3 M mannitol buffer to collect mature pollen grains, as 

described by Honys and Twell (2003). 

Biomol reagent (Biomol GmbH) was used to isolate ribonucleic acids from young 

leaves for 5’ and 3’RACE. To obtain total RNA for RT-PCR the RNeasy Mini Kit 

(Qiagen) was applied according to the manufacturer’s instructions. DNA 

contaminations were removed by treatment with RNase-free DNase (Roche). 

 

2.10 Isolation of plasmid DNA from bacteria 

Plasmid DNA from E. coli was isolated with the peqGOLD Plasmid Miniprep Kit I 

(peqlab) in case of small (<10 kb), high copy number plasmids and the Miniprep 

Plasmid Purification Kit (Qiagen) was applied for the isolation of large (> 10 kb) 

constructs. 

 

2.11 Purification of PCR products 

All PCR fragments for cloning and sequencing were purified using the NucleoSpin 

Extract II kit (Macherey-Nagel) according to the manufacturer’s instructions. This was 

either done directly or after fractioning the products on 1.2% agarose gels. 

 

2.12 Standard PCR reaction   

All PCR reactions were performed in a T3000 thermocycler (Biometra). For standard 

reactions (e.g. colony PCR) Ampliqon Taq DNA Polymerase (Ampliqon) was the 

enzyme of choice. 

However, for high accuracy PCR reactions either the Expand High-Fidelity PCR 

System (Roche) or the Phusion High-Fidelity DNA Polymerase (Finnzymes) were 

used, while LA Taq DNA Polymerase (Takara) was chosen for amplification of larger 

fragments.  
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All PCR reactions were performed as described for each enzyme in the manufacturers 

instruction manuals. A standard PCR reaction protocol for Ampliqon Taq DNA 

Polymerase and the Roche Expand High-Fidelity PCR System is given: 

 

Standard PCR reaction  

Reagent   Final concentration 

dNTPs    200 µM (of each dNTP) 
Primer 1     200 nM  
Primer 2     200 nM 
10x PCR Puffer     1x  
DNA template   variable 
Distilled H2O     ----  (ad up to 50 µl) 
DNA Polymerase       1-5 units 
-----------------------------------------      
Total volume   50 µl  
  

Annealing Temperature:  55-65 °C  
Elongation Time:    1 min/kb  
Number of cycles:    30-35  
 

2.13 Isolation of cDNAs by 5’ and 3’RACE  

cDNAs were isolated by RACE (rapid amplification of cDNA ends) using the 

5'/3'Race Kit, 2nd generation, for rapid amplification of cDNA ends (Roche). All PCR 

reactions were performed with the Expand High-Fidelity PCR System (Roche). For 

5’RACE either universal primers or (in the case of Capsicum and Physalis species) 

gene-specific primers were used. All primers were located in the highly conserved 

MADS box. The universal primers P1 and P2 were designed based on the MADS-

boxes of MPF2 and STMADS16 and kindly provided by Chaoying He. For 3’RACE 

primers in the 5’UTR and the MADS domain were applied. Further details on primers 

can be found in the supplement (see Table 8.1.7). 

 

2.14 Isolation of upstream sequences by RAGE  

The genomic sequence upstream of the MADS-box (containing the 5’UTR and the 

putative promoter sequence) was isolated by RAGE (rapid amplification of genomic 

DNA ends) according to the Universal Genome Walker kit (Clontech). Genomic DNA 

was completely digested with DraI, EcoRV, ScaI, HpaI, HaeIII, PvuII or StuI (NEB), 
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respectively, and the blunt-ended DNA fragments were ligated to adaptors using T4 

DNA ligase (Roche). The first PCR was carried out using an adaptor primer and a 

gene-specific primer, while the nested PCR was done with a nested adaptor primer and 

a nested gene-specific primer. All PCR reactions were performed with the Expand 

High-Fidelity PCR System (Roche) polymerase. The adaptor primers are described in 

the manual (Clontech), while the gene-specific primers are listed in the supplement 

(see Table 8.1.7). After each genome walking step new specific primers were designed. 

After assembly of the partial upstream sequences with the programs AssemblyLIGN 

(Accelrys Inc.) and MacVector (MacVector), the complete sequence was verified by 

PCR amplification of a fragment spanning the entire sequence. 

 

2.15 Isolation of intronic sequences by long template PCR 

Further, the sequences of first introns were also isolated by PCR using LA Taq DNA 

Polymerase (Takara). Therefore, the region ranging from the 5’ end of the isolated 

upstream sequence to the start of the second exon (I-region) was amplified using gene-

specific primers located in the upstream sequence and in the I-region. Detailed 

information on the primers used for amplification is listed in the supplement section 

(see Table 8.1.7). 

 

2.16 Sequencing  

All DNA sequencing reactions were carried out by ADIS (Automatic DNA Isolation 

and Sequencing), the core facility for DNA-related technology at the Max-Planck-

Institute for Plant Breeding Research, Cologne.  

 

2.17 Southern blot analysis  

Southern blot analysis was performed in cooperation with two group-members. The 

individual contributions were as follows: The DNA templates for radioactive oligo 

labeling were provided by Ramzan Khan. My own contribution included the 

preparation of DNA samples (DNA isolation and digestion) and membranes (blotting 

and stripping) and the hybridization with the probe for MPF2-like-A genes, while the 

hybridization with the probe for MPF2-like-B genes was performed by Chaoying He.  
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Blotting 

Highly pure genomic DNA, isolated with the DNeasy Plant Mini Kit (Qiagen), was 

used for Southern blotting. The DNA samples (8 - 10 µg) from W. coagulans (W002), 

W. somnifera (W006 and W007), T. anomalum (T001), V. breviflora (V001) and 

I._australe (I001) were digested for 16 h at 37 °C in 200 µl volumes with the 

restriction enzymes BamHI, EcoRI and KpnI (New England Biolabs), respectively. 

Afterwards the samples were precipitated by adding 20 µl 3 M sodium acetate and 

200_µl isopropanol. After centrifugation for 45 min at 15 g, pellets were washed with 

70% (v/v) ethanol and dissolved in 50 µl TE pH 8.0. The fragments were separated 

overnight on a 0.7% agarose gel. After depurination of the DNA in 0.25 M HCL and 

denaturation in 0.4 M NaOH the DNA was transferred to a positively charged 

Hybond_N(+) nylon membrane (Amersham) by downward alkaline blotting (Koetsier 

et al. 1993). After 5 h the membrane was neutralized for 1 min in 5x SSPE and 2x 

SSPE, before the DNA was immobilized by UV crosslinking in a UV Stratalinker 2400 

(Stratagene). 

 

Radioactive labeling and hybrization 

Two PCR fragments of approximately 300 bp (containing the C-terminus and 3’UTR 

of W006 MPF2-like-A and MPF2-like-B cDNAs, respectively) were amplified from 

plasmids and provided by Ramzan Khan (for primers see Supplement, Table 8.1.7). 

The fragments were radioactively labeled with [∝-32P]-dCTP by random 

oligonucleotide-primed synthesis: 200 ng DNA template were diluted in 35 µl H20. 

After denaturation at 95 °C for 10 min the mixture was quickly chilled on ice. Then 

5_µl 10x oligo buffer, 3 µl BSA (2 mg/ml, NEB), 2 µl Klenow enzyme (2 u/µl, Roche) 

and 5 µl [∝-32P]-dCTP (110 TBq/mmol) were added. After 2 h the radioactive labeled 

product was purified using the NucleoSpin Extract II kit (Macherey-Nagel). 

Hybridizations were performed as described previously by He et al. (2002) with minor 

modifications. Hybridization buffer was supplemented with denatured and fragmented 

herring sperm DNA before use. After prehybridization for 3 h at 68 °C in hybridization 

buffer, hybridization was done in the same buffer containing the probe for 16 h at 

68_°C. The filters were washed with 2x SSC, 0.1% SDS (68 °C, 20 min), then with 

1xSSC, 0.1% SDS (68 °C, 20 min) and finally with 0.5x SSC, 0.l% SDS (68 °C, 5-

20_min). The filters were exposed to a Storage Phosphor Screen (Molecular 
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Dynamics), and signals were read with a Typhoon 8600 Phosphor Imager 

(Amersham). 

 

Stripping 

Probes were stripped by pouring two times boiling 0.1% SDS on the membrane and 

shaking it until cooling down to room temperature.  

 

2.18 RT-PCR analyses 

Reverse transcription polymerase chain reaction (RT-PCR) was performed to study 

expression patterns of MPF2-like genes in mature pollen of several solanaceous 

species and further vegetative and floral tissues (at different developmental stages) of 

I. australe and V. breviflora. Gene-specific primers for the amplification of MPF2-like 

genes were specifically designed from MPF2-like cDNAs. Primer specificity was 

confirmed by sequencing. The constitutively expressed 18S rRNA was used as a 

control. Shuping Xing provided the 18S rRNA primers (for primer sequences see 

Supplement, Table 8.1.7). First-strand cDNA synthesis was carried out using 

Superscript II (Invitrogen) with 2 µg of total RNA in a 20 µl volume. The following 

PCR conditions were used: MPF2-like: 94 °C for 30 s, 59 °C for 30 s, 72 °C for 30 s, 

35 cycles; 18S rRNA: 94 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min, 15 cycles. The 

reactions were analyzed by agarose gel electrophoresis and documented with a 

Typhoon 8600 Phosphor Imager (Amersham, Sunnyvale, USA). Pictures were 

analyzed with Image Quant (Molecular Dynamics, Sunnyvale, USA). Two technical 

replicates were performed. 

 

2.19 Bioinformatic and phylogenetic analyses 

The phylogenetic reconstructions were done using the methods Maximum Parsimony 

(cDNA and protein sequences) and Maximum likelihood (upstream sequences) from 

the PAUP4.0b10 software package. The settings for the calculation of Maximum 

Parsimony trees can be found in Hu and Saedler (2007), while the following settings 

were used for the calculation of Maximum likelihood trees: Number of trees held at 

each step during stepwise addition = 2, Branch-Swapping algorithm = tree-bisection 

reconnection (TBR), the ML settings correspond to the HKY85 model. 
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The isolated upstream sequences were further analyzed using the programs listed in 

Tables 2.3.1 and 2.3.2. Putative transcription initiation sites were deduced from the 

sequences of the longest cDNA fragments obtained by 5'RACE. This was done with 

the help of the online program Geneseqer. DIALIGN and Mulan were applied to find 

conserved regions in promoter and first intron sequences. Putative cis-regulatory 

elements in the promoters were predicted using PLACE and multiTF. 

 

2.20 MPF2-like promoter::GUS constructs  

For functional analysis of the isolated sequences GUS fusion constructs were made. 

Although the included upstream sequence proportions represented always only the 

putative promoter regions of the genes, the constructs will be termed promoter::GUS 

fusion constructs for simplicity. 

Four different types of promoter::GUS constructs were made (see Fig. 2.20.1): In 

type_1, termed short promoter constructs (pMPF2-like_sh::GUS) only part of the 

isolated upstream sequence is inserted in front of the bacterial β-glucuronidase gene 

(uidA), while in the type 2 constructs, called extended promoter constructs (pMPF2-

like_ex::GUS) almost the entire isolated upstream sequence is included. In type 3, the 

short promoter + first intron constructs (pMPF2-like_sh-I::GUS), and in type 4, the 

extended promoter + first intron constructs (pMPF2-like_ex-I::GUS), the short or the 

extended upstream region plus the MADS-box and the first intron in the coding region 

are inserted before the GUS reporter gene. 

The upstream and intronic sequences were amplified with Phusion High-Fidelity DNA 

Polymerase (Finnzymes) using primers containing artificial restriction sites 

(D._fasciculata, I. australe, V. breviflora, P. alkekengi, W. coccoloboides: HindIII; 

P._lanceifolia: XmaI; W. solanacea: ArvII, which created compatible ends for XbaI 

digested vector). The primers are listed in the supplement section (see Table 8.1.7). 

After digestion the fragments were cloned into the pGPTV-bar vector, which contained 

the uidA gene. All constructs contained the 5' UTR region of the gene. In promoter 

constructs without intron, the ATG codon of the MADS-box was mutated by PCR into 

TTG and the 3’ end of the MADS-box was fused to the reporter gene. For construction 

of GUS fusion constructs containing the promoter, the MADS-box and the first intron, 

the whole region was amplified and subcloned into pGPTV-bar. In these constructs the 
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ATG was not mutated, but the 3’ end of second exon was fused in frame to the reporter 

gene.  

 

Figure 2.20.1: Schematic diagrams of the four types of GUS fusion constructs 

used for transformation of A. thaliana (proportions based on VbrM201_1) 
The putative regulatory regions were inserted into the plant binary vector pGPTV-bar (Becker 

et al. 1992) via the restriction sites HindIII, XbaI or XmaI. The upstream regions (containing 

the putative promoter regions) are indicated by yellow boxes and the exons in the 5’UTR are 

marked as grey boxes. The MADS-box and the start of the I-region are shown as black boxes, 

while the intron between them is represented by an orange arrow. The GUS reporter gene uidA 

is indicated by a blue arrow. The Basta selection cassette, containing the bar gene, is shown in 

green color. The T-DNA borders are represented by red boxes. Arrows indicate direction of 

transcription; R, right T-DNA border; L, left T-DNA border; pAg7, agropine synthase 

polyadenylation signal; Pnos, promoter of the nopaline synthase gene; pAnos, nopaline 

synthase polyadenylation signal 

1) short promoter (0.9 – 1.8 kb) = pMPF2-like_sh::GUS 

2) extended promoter (1.3 to 3.6 kb) = pMPF2-like _ex::GUS 

3) short promoter + MADS-box + first intron = pMPF2-like_sh-I::GUS 

4) extended promoter + MADS-box + first intron = pMPF2-like_ex-I::GUS 

 

 

To keep the Iochrominae expression constructs as similar as possible, the same 

universal primers were used for all three species - except two types of reverse primers 

in the MADS domain. Constructs from different Iochrominae species often differed 

dramatically in size due to sequence differences (e.g. large indels, see Fig. 3.11.1) 

between these species. 

All constructs are listed in Table 2.20.2. 
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Table 2.20.2: promoter::GUS fusion constructs for analysis in A. thaliana* 

Species Gene/Allele** Type Promoter construct Upstream 

(in bp)*** 

Intron 

**** 

I. australe IauM201_2 1 pIauM201_2_sh::GUS 1800 - 

 IauM201_2 2 pIauM201_2_ex::GUS 2833 - 

 IauM201_1 1 pIauM201_1_sh::GUS 1103 - 

 IauM201_1 2 pIauM201_1_ex::GUS 2121 - 

 IauM201_1 3 pIauM201_1_sh-I::GUS 1103 + 

 IauM201_1 4 pIauM201_1_ex-I::GUS 2121 + 

D. fasciculata DfaM201_2 1 pDfaM201_2_sh::GUS 1796 - 

 DfaM201_2 2 pDfaM201_2_ex::GUS 2831 - 

 DfaM201_1 1 pDfaM201_1_sh::GUS 1106 - 

 DfaM201_1 2 pDfaM201_1_ex::GUS 3675 - 

 DfaM201_1 3 pDfaM201_1_sh-I::GUS 1106 + 

 DfaM201_1 4 pDfaM201_1_ex-I::GUS 3675 + 

V. breviflora VbrM201_1 1 pVbrM201_1_sh::GUS 1022 - 

 VbrM201_1 2 pVbrM201_1_ex::GUS 2100 - 

 VbrM201_1 3 pVbrM201_1_sh-I::GUS 1022 + 

 VbrM201_1 4 pVbrM201_1_ex-I::GUS 2100 + 

 VbrM201_2 1 pVbrM201_2_sh::GUS 951 - 

 VbrM201_2 2 pVbrM201_2_ex::GUS 1996 - 

 VbrM201_2 3 pVbrM201_2_sh-I::GUS 951 + 

 VbrM201_2 4 pVbrM201_2_ex-I::GUS 1996 + 

P. alkekengi PalM211_1 1 pPalM211_1_sh::GUS 1124 - 

 PalM211_1 2 pPalM211_1_ex::GUS 2586 - 

 PalM211_1 3 pPalM211_1_sh-I::GUS 1124 + 

 PalM211_1 4 pPalM211_1_ex-I::GUS 2586 + 

W. solanacea WIsoM202_1 2 pWIsoM202_1_ex::GUS 2916 - 

 WIsoM202_1 4 pWIsoM202_1_ex-I::GUS 2916 + 

P. lanceifolia PlaM235_1 2 pPlaM235_1_ex::GUS 2219 - 

 PlaM235_1 3 pPlaM235_1_sh-I::GUS 1079 + 

W. 

coccoloboides 

WIcoM201_1 2 pWIcoM201_1_ex::GUS 1282 - 

* plasmid backbone (all constructs): pGPTV-bar  
** for nomenclature see chapter 3.1 
*** amount of 5’upstream sequence inserted in front of the uidA gene 
**** MADS-box and first intron included (+ = yes, - = no) 
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2.21 Generation of transgenic Arabidopsis thaliana 

Transgenic A. thaliana Col-0 plants were generated using A. tumefaciens strain 

GV3101 and a “Simplified Arabidopsis Transformation Protocol” from Clough and 

Bent (Clough and Bent 1998) with minor modifications. The plants were grown under 

short day conditions for six to eight weeks, before they were transferred to long day 

greenhouses. After two additional weeks, the tip of the emerging bolt was cut off to 

induce the growth of secondary inflorescences. After 10 days the plants were 

transformed by dipping the inflorescences into infiltration medium with agrobacteria 

(harboring the construct of interest). After seed germination, transgenic plants were 

screened by spraying three times with 0.15% Basta  (Bayer CropScience, Monheim). 

Basta is an herbicide, which contains 200 g/L glufosinate-ammonium as an active 

ingredient. 

          

2.22 Agrobacterium infiltration of Solanaceae tissues 

Floral tissues and leaves were infiltrated with A. tumefaciens strain GV3101 harboring 

the p27IGUS vector. The cells were cultured in 10 ml YEB medium with the 

appropriate antibiotics overnight, pelleted and resuspended in MS medium to a 

concentration of OD600 = 1.0. The suspension was supplemented with 100_µM 

acetosyringone and cultured for 4 h. After adding Silwet L-77 (0,001%), 10 ml cultures 

were filled into Falcon tubes. Flowers, lanterns and leaves were injured with tips and 

scalpels, transferred into the A. tumefaciens cultures and agro-infiltrated using a 

vacuum chamber. Then the tissues were cultured on MS medium plates at 25 °C under 

artificial light (16 h photoperiod) for 48 h before examining reporter gene activity. 

 

2.23 Reporter gene assay 

The tissues (Arabidopsis: rosette and cauline leaves, stem, inflorescences and siliques, 

Solanaceae: buds, flowers, lanterns, leaves) were histochemically assayed for GUS 

activity. The samples were incubated for 40 h at 37 °C in GUS histochemical buffer 

containing X-Gluc. Afterwards the buffer was exchanged by 70% (v/v) ethanol to 

remove the chlorophyll and preserve the samples. The GUS-positive plant tissues were 

examined with a binocular and photographed with a digital camera (Leica). GUS-
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stained tissues and plants shown in this thesis represent the typical results of at least 

three independent lines for each construct. Plants carrying a pSVP::GUS construct 

(kindly provided by Chaoying He), which show amongst other tissues strong GUS 

expression in leaves, were used as a positive control. 
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3. Results 

PartI: Structural characterization of MPF2-like genes  

The major goal of this thesis was to elucidate the role of cis-regulatory elements in 

transcriptional regulation of MPF2-like MADS-box transcription factors in Physaleae. 

However, when this project was initiated, only short MPF2-like upstream sequences 

and loci from the quite distantly related solanaceous species S. tuberosum and 

P._floridana were available for structural and functional comparison (He and Saedler 

2005). Therefore MPF2-like genes from Physaleae species and their upstream regions 

and first introns were isolated to enable identification of important regulatory regions 

and further cis-elements in these.  

 

3.1 Allelic variation of MPF2-like genes of several Physaleae  

In addition to MPF2-like upstream and intronic sequences (see Table 3.7.1) the cDNAs 

of MPF2-like genes from the studied species were collected (see Table 3.1.1). This 

was done (i) to ensure that the putative regulatory sequences isolated for promoter 

analysis belong to a transcribed MPF2-like gene, (ii) to predict the putative start of 

transcription and (iii) to possibly gain information about how many and which types of 

MPF2-like genes might be present in these species.  

Published MPF2-like cDNA sequences like MPF2, MPP3, MSM2 and STMADS16 

were downloaded from NCBI, while most others needed to be isolated by 5’/3’RACE 

and RT-PCR. 3’RACE was performed to isolate MPF2-like cDNAs from 

D._fasciculata, W. coccoloboides, W. solanacea, M. solanaceus and P. alkekengi. At 

the same time, Jinyong Hu independently isolated MPF2-like cDNA sequences from 

several Physaleae (Hu and Saedler 2007). Prior to publication he provided several 

MPF2-like cDNAs: the partial coding sequences of C. baccatum, I. australe, P. 

acutifolia, P. crassifolia, P. fuscomaculata, P. lanceifolia, P. minima and P. 

philadelphica and the complete coding sequence of V. breviflora. 5’RACE was 

performed to obtain the 5’UTR and the MADS-box of the MPF2-like genes from the 

above-mentioned species - except for I. australe and P. lanceifolia, as their 5’UTRs 

were provided by Britta Grosardt.  
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In total, 18 MPF2-like cDNAs from 12 Physaleae and one Capsicum species were 

isolated or extended (see Table 3.1.1). Each sequence was found in at least two 

independent clones. In case of uncertainties at a specific nucleotide position ambiguity 

codes were used. All sequences have been submitted to the EMBL database. 

 

Table 3.1.1: Isolated or extended MPF2-like cDNAs  

Species Gene/Allele Accession 

number 

Full-

length 

(bp) 

5’UTR 

(bp) 

CDS 

(bp) 

3’UTR 

(bp) 

Protein 

(aa) 

Physalis 

crassifolia  

PcrM222_1* FN356432 (827) 113 (714) - (>238) 

Physalis 

fuscomaculata  

PfuM230_1* FN356433 (848) 134 (714) - (>238) 

Physalis 

lanceifolia  

PlaM235_1* FN356434 (899) 185 (714) - (>238) 

Physalis 

minima  

PmiM239_1* 

PmiM239_2* 

FN356435 

FN356436 

(901) 

(936) 

187 

222 

(714) 

(714) 

- 

- 

(>238) 

(>238) 

Physalis 

philadelphica  

PphM255_1* FN356437 (873) 137 (736) - (>245) 

Margaranthus 

solanaceus  

MsoM201_1

* 

FN356430 (1053) 170 750 (133) 249 

Witheringia 

solanacea  

WIsoM202_1 

 

FN356442 1275 

 

189 

 

750 336 

 

249 

Physalis 

alkekengi  

PalM211_1  FN356431 1295 247 750 298 249 

Dunalia 

fasciculata 

DfaM201_1 

DfaM201_2 

FN356426 

FN356427 

1223 

1299 

169 

244 

747 

747 

307 

308 

248 

248 

Iochroma 

australe  

IauM201_1 

IauM201_2* 

FN356428 

FN356429 

(912) 

(912) 

137 

137 

747 

747 

(28) 

(28) 

248 

248 

Vassobia 

breviflora  

VbrM201_1 

VbrM201_2 

FN356438 

FN356439 

(986) 

(907) 

162 

160 

747 

747 

(77) 

- 

248 

248 

Witheringia 

coccoloboides  

WIcoM201_1 

WIcoM201_2 

FN356440 

FN356441 

1144 

1144 

202 

202 

747 

747 

195 

195 

248 

248 

Capsicum 

baccatum  

CbaM202_1

* 

FN356425 1297 244 747 306 248 

* = same allele as previously published by Hu and Saedler (2007);  () = incomplete 
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The following nomenclature was used for the isolated MPF2-like genes: (the first - or 

in the case of Witheringia the first two letters - of the genus in capital letters) + (the 

first two letters of the species name in small letters) + (M for MADS-box gene) + (2 

for MPF2-like) + (the last two figures of the cultivar number) + (_) + (number of the 

allele). 

Interestingly, for several species more than one MPF2-like cDNA sequence was found. 

All these isolated sequences contained a highly conserved MADS-box, a short I-

region, a K-box and a C-terminal region. Although the latter was not completely 

isolated from the American Physalis species, it seemed that among the isolated cDNAs 

no pseudogenes were present, since no premature stop codons were found in the first 

714 bp of their coding region. In those cases, where the full-length coding region was 

isolated, the MPF2-like genes encoded predicted polypeptides of 248 amino acids 

(Iochrominae, W. coccoloboides and C. baccatum) or 249 amino acids (Physalinae, not 

including W. coccoloboides). 

In the following paragraphs the results from intraspecific comparisons of the isolated 

MPF2-like cDNA sequences from the studied species are given – also with respect to 

the dataset of MPF2-like sequences published by Hu and Saedler in 2007. This is done 

to give an overview about the intraspecies variation and to summarize the gain of 

sequence data due to this study. 

The previously published partial coding sequences of MPF2-like genes from several 

American Physalis species, now renamed PcrM222_1 (P. crassifolia), PfuM230_1 

(P._fuscomaculata), PlaM235_1 (P. lanceifolia), PmiM239_1 (P. minima), 

PmiM239_2 (P. minima) and PphM255_1 (P. philadelphica) were extended in this 

study by adding the 5’UTR and the complete MADS-box. However, the C-terminal 

end of the coding sequences is still incomplete. Based on full-length Physalinae 

MPF2-like cDNAs a coding region of 750 bp is assumed, hence approximately 36 bp 

are lacking. In contrast to the other Physalis species, in P. minima two different kinds 

of MPF2-like sequences coexist, which is compatible with the tetraploid nature of this 

species. The two sequences, PmiM239_1 and PmiM239_2, showed a homology of 

97% in the first 714 bp of the coding region and the first 238 amino acids of the 

predicted polypeptides were 96% identical.  

Hu and Saedler (2007) published the partial coding sequence of an MPF2-like cDNA 

from M. solanaceus. Now the 5’UTR, the full coding sequence and part of the 3’UTR 
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of this gene, termed MsoM201_1, have been isolated. The full sequence exhibits a 

length of 1053 bp. 

A 1275 bp long full-length cDNA was isolated from W. solanacea (also belonging to 

Physalinae) and termed WIsoM202_1. The nucleotide sequence of this allele (as well 

as the translated protein sequence) and the previously isolated cDNA sequence from 

this species shared 98% sequence identity in the coding region. 

I isolated a 1295 bp long full-length MPF2-like cDNA sequence from P. alkekengi, 

termed PalM211_1, while the previously isolated cDNA (Hu and Saedler 2007) 

comprised only part of the coding sequence and the 3’UTR. So far only this one allele 

has been found for this diploid Old World Physalis species. 

Two full-length cDNA sequences were isolated from D. fasciculata: DfaM201_1 

(1223 bp) and DfaM201_2 (1299 bp). Both alleles shared 98% sequence identity in the 

coding region at the nucleotide level and also at the protein level. Their last 612 bp (or 

203 amino acids) of the coding region were 98% and 99% identical with the previously 

isolated partial cDNA sequence from this species, suggesting that the three cDNAs 

could be different alleles. 

Two cDNA sequences from I. australe (IauM201_1 and IauM201_2) were isolated. 

They were both 912 bp long and contained the 5’UTR, the full coding sequence and 

part of the 3’UTR. As the coding regions of the nucleotide sequences are 99% identical 

and the protein sequences are even 100% identical, the two sequences are most likely 

allelic. The overlapping regions of IauM201_2 and the published partial coding 

sequence of a MPF2-like gene from I. australe (Hu and Saedler 2007) were completely 

identical, indicating that they derive from the same allele. 

Two new cDNA sequences were found in V. australe: VbrM201_1 and VbrM201_2, 

which were 986 bp and 907 bp long and contained the 5’UTR and the full coding 

sequence. Sequence comparisons with the previously published cDNA sequence 

revealed that the coding regions of all three sequences shared 99% sequence identity at 

the nucleotide level and 98% to 99% at the protein level. Hence also these sequences 

might be allelic. However, in the cDNA from Hu and Saedler (2007) a duplication of 

19 amino acids is present in its C-terminus – this was not included in the sequence 

identity calculations. 

From W. coccoloboides two different full-length putative allelic cDNA sequences were 

extracted. WIcoM201_1 and WIcoM201_2 were both 1144 bp in size. The codogenic 

parts of their nucleotide sequences and their protein sequences were 99% identical. 
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The coding region of the previously published cDNA shared 97% sequence identity 

with WIcoM201_1 and 99% with WIcoM201_2 at the nucleotide level and the 

translated protein sequence 98% with both. Further, the published sequence showed a 

duplication of 19 amino acids in the C-domain, which was not included in the 

sequence identity calculations. This still comparatively high sequence conservation 

again hints towards the existence of several different alleles in this species. 

So far only the partial coding sequence and the 3’UTR of a MPF2-like gene from 

C._baccatum were published. In this study the cDNA sequence was extended to gain 

the full coding sequence and the 3’UTR. The complete transcript was 1297 bp long 

and was termed CbaM202_1. 

In summary, only in one of the American Physalis species (P. minima), but in all three 

Iochrominae and both Witheringia, more than one MPF2-like cDNA sequence was 

found so far. However, all these sequences exhibited a high degree of homology 

showing only a few nucleotide differences, which e.g. in the case of V. breviflora does 

not even affect the translated protein sequence. Therefore they were considered to be 

alleles and not treated as different genes. As several of these di- or tetraploid species 

are wild, not inbred plants, a certain amount of heterozygosity can be expected. Other 

explanations would be that the different sequences originated by recent duplications or 

that the mutations occurred during PCR amplification. Since high fidelity enzymes 

were used for amplification PCR-derived mutations are rather unlikely, but possible.  

 

3.2 Sequence comparison of MPF2-like proteins among Physaleae  

In this section the results from interspecies comparisons of MPF2-like cDNA 

sequences are described. An alignment of MPF2-like proteins from Physaleae, 

Capsicum and Solanum is shown in Fig. 3.2.1.  

For further comparison MPF2-like cDNA sequences from one A-gene (WSA206 from 

W. somnifera) and two B-genes (WSB206 from W. somnifera, TAB201 from 

T._anomalum) were kindly provided by Ramzan Khan, while several other Solanaceae 

sequences (He and Saedler 2005, Hu and Saedler 2007) were downloaded from NCBI.  

Multiple sequence comparisons revealed that the predicted polypeptides of all isolated 

MPF2-like sequences exhibit the typical MIKC structure: a MADS domain, followed 

by an intervening (I-) domain, a K-domain and a C-terminal domain (Fig. 3.2.1, 

domain borders after Kim et al. (2002)).  



RESULTS 

32 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: Alignment and sequence comparison of MPF2-like MADS-domain 

proteins from Physaleae, Capsicum and Solanum 
> indicates that the sequence is incomplete at its N-terminal end, while < shows that the 
sequence is incomplete at its C-terminal end. Identities are depicted in a dark shade and 
similarities in lighter grey. Gaps introduced to optimize the alignment are indicated by dashes. 
The MADS, I, K and C domains (borders based on Kim et al. 2002) are marked by red and 
black lines. The 3 amino acid deletion and the 8 amino acid extension in WSA206 are 
indicated by green and blue lines. Accession numbers of sequences from this study can be 
found in Table 3.1.1. Sequences from other sources are indicated by “He“ (He and Saedler 
2005), “Hu” (Hu and Saedler 2007) and “Khan“ (Khan 2009, Khan et al. 2009). The accession 
numbers can be found in supplementary Tables 8.1.1 and 8.1.2. 
 



RESULTS 

33 

In the preceding section (see chapter 3.1) it was already mentioned that the coding 

sequences of the isolated MPF2-like cDNAs differ in length: those from C. baccatum, 

W._coccoloboides and the Iochrominae are 747 bp long (proteins: 248 amino acids), 

while the sequences from the Physalinae (not including W. coccoloboides) possess 1 

amino acid more (Alanine or Proline) in the C-domain (see Fig. 3.2.1, alignment 

position 233) - like MPF2, MPP3 and WSB206. The MPF2-like proteins from different 

subgroups e.g. from the American Physalis or the Iochrominae had each certain 

characteristics in their amino acid sequence. However, when the protein sequences 

from all species are taken into account, it is not possible to clearly correlate differences 

in MPF2-like protein sequences and the abundance of ICS. 

When WSA206, the MPF2-like-A sequence of W. somnifera, is compared to the other 

Physaleae proteins, the two most obvious differences are observed in the C-domain 

(Khan 2009, Khan et al. 2009) – although there were amino acid exchanges in all four 

domains of the protein. WSA206 had a 3 amino acid deletion identical to the one 

featured by STMADS16 and MSM2. In addition to that it had an extension of 8 amino 

acids at its carboxy terminal end. These two structural features, which were signatures 

of the Withania MPF2-like-A proteins, were not observed in any of the other isolated 

Physaleae proteins. 

In the next step the amount of sequence identity between MPF2, WSA206, WSB206 

and complete MPF2-like protein sequences from Physaleae and C. baccatum were 

calculated (see Table 3.2.2). As the multiple sequences found in some species were 

considered allelic, only one sequence from each species was included. Overall it can be 

postulated that MPF2-like proteins in Physaleae are highly conserved: so far the 

sequence identity found ranged from 84% (WSA206 vs. Iochrominae proteins) up to 

97% (MPF2 vs. MsoM201_1). The latter is similar to the degree of sequence identity 

observed in different alleles from one species, fitting to the high relatedness of 

M. solanaceus and the American Physalis. While all Physalinae proteins, as well as 

CbaM202_1, were most similar to MPF2, the Iochrominae and W. coccoloboides 

MPF2-like proteins displayed the highest sequence identity values, when they were 

compared to WSB206. However, these differences in degree of sequence identity were 

very subtle.  
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Table 3.2.2: Pairwise identities of MPF2-like cDNA and protein sequences 

Species Pairwise identities in % (nucleotide / protein) 

  MPF2 WSA206 WSB206 

P. floridana MPF2 100/100 90/86 92/87 

M. solanaceus MsoM201_1 98/97 90/85 92/86 

W. solanacea WIsoM202_1 93/90 91/86 92/87 

P. alkekengi PalM211_1  95/91 90/85 93/90 

D. fasciculata DfaM201_1 92/89 90/84 94/91 

I. australe IauM201_1 92/89 90/84 93/92 

V. breviflora VbrM201_1 91/89 89/84 93/91 

W. somnifera WSA206 90/86 100/100 90/84 

W. somnifera WSB206 92/87 90/84 100/100 

W. coccoloboides WIcoM201_1  92/88 89/84 92/90 

C. baccatum CbaM202_1 92/90 89/83 92/89 

S. tuberosum STMADS16 86/84 84/79 86/83 

Accession numbers of sequences from this study (given in bold) can be found in Table 3.1.1. 
Accession numbers of sequences from other sources (He and Saedler 2005, Hu and Saedler 
2007, Khan 2009, Khan et al. 2009) can be found in supplementary Tables 8.1.1 and 8.1.2. 

 

3.3 Gene tree of MPF2-like genes in Physaleae 

To understand the evolutionary relationships between the MPF2-like genes from 

different Physaleae species, phylogenetic reconstructions were conducted in 

cooperation with Thomas Münster.  

Two different datasets were used: (i) the MPF2-like cDNA sequences of Physaleae 

species and (ii) their translated protein sequences. The datasets contained MPF2-like 

sequences from this study and sequences from other studies (He and Saedler 2005, Hu 

and Saedler 2007, Khan 2009, Khan et al. 2009). STMADS16 and MSM2 were used as 

outgroup. As MPF2-like genes from Physaleae are extremely conserved, most of the 

coding region, except a short part of the C-terminal region, was used for the 

phylogenetic reconstructions to have enough informative sites. Therefore all 

sequences, which did not contain the complete MADS-box, I- and K-region, were 

excluded. The ClustalW alignments were done using the Macvector software (Settings: 

alignment speed = slow, open gap penalty = 5.0, extend gap penalty = 1.0, delay 
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divergent = 40%, transitions = weighted) and manually adjusted afterwards. Further, 

the duplications in the C-termini of WIsoM202_2, VbrM201_3 and WicoM201_3 were 

excluded from the analyses. Both alignments can be found in the supplement section 

(see Fig. 8.2.1 and 8.2.2). 

Fig. 3.3.1 shows a Maximum Parsimony tree based on positions 1 to 714 of a cDNA 

alignment of the coding regions of MPF2-like MADS-box genes. In this nucleotide 

alignment (see Supplement, Fig. 8.2.1) the third codon positions have not been masked 

to prevent loosing putative informative sites. The tree topology suggests that the 

MPF2-like genes from Physaleae can be subdivided into five groups: MPF2-like 

Physalinae genes, MPF2-like-A genes, MPF2-like-B genes, MPF2-like 

W._coccoloboides genes and MPF2-like Iochrominae genes. The MPF2-like 

Iochrominae genes were a highly supported subclade, which seems to be located basal 

to the other Physaleae genes. Further, the MPF2-like W. coccoloboides genes were 

clearly separated from the MPF2-like Physalinae, the MPF2-like-A and the MPF2-

like-B genes. Further, high bootstrap values supported a branching that places the 

MPF2-B-genes in a basal position to the sister groups MPF2-like Physalinae genes and 

MPF2-like-A genes. The fact that WSA206 was placed closer to the MPF2-like 

Physalinae genes than WSB206 stands in contrast to the calculated sequence identities 

for the whole coding regions, which suggests that WSB206 has a slightly higher degree 

of homology to the MPF2-like Physalinae genes. Within the Physalinae group, genes 

from the American Physalis species clustered together, while PalM211_1 from the also 

geographically distant Old World Physalis species P. alkekengi clustered together with 

the W._solanacea sequences. With the exception of the positioning of the MPF2-like 

W._coccoloboides genes, the phylogeny of the Physaleae MPF2-like genes matched 

the Physaleae phylogeny proposed by Hu and Saedler (2007).  

Further, the different putative allelic cDNAs from V. breviflora, W. coccoloboides and 

W. solanacea clustered together in each case, supporting the assumption that they are 

alleles or very recent duplications.  
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Figure 3.3.1: Phylogenetic tree of MPF2-like cDNA sequences from Physaleae and 

Capsicum  
Maximum Parsimony tree with STMADS16 (S. tuberosum) and MSM2 (S. macrocarpon) as 
outgroup. Bootstrap values are shown. Accession numbers of sequences from this study can be 
found in Table 3.1.1. Sequences from other sources are indicated by “He“ (He and Saedler 
2005), “Hu” (Hu and Saedler 2007), “Khan“ (Khan 2009, Khan et al. 2009). The accession 
numbers can be found in the supplementary section (see Tables 8.1.1 and 8.1.2). 
 
 
Fig. 3.3.2 shows a Maximum Parsimony tree, which was based on positions 1 to 238 of 

the translated protein alignment depicted in supplementary Fig. 8.2.2. Here, the 

resolution was decreased in comparison to the tree based on MPF2-like nucleotide 

sequences (see Fig. 3.3.1). The Physaleae MPF2-like proteins fell into four subgroups: 

MPF2-like Physalinae and MPF2-like-A proteins, MPF2-like-B proteins, MPF2-like 

W. coccoloboides proteins and MPF2-like Iochrominae proteins. Three of these were 

supported by high bootstrap values: all proteins from the Iochrominae clustered 

MPF2-like B 

MPF2-like Iochrominae 

MPF2-like      
W. coccoloboides 

MPF2-like Physalinae 

outgroup 

MPF2-like A 
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together, as did the MPF2-like-B proteins and also the W. coccoloboides proteins. 

Further, a weakly supported branch contained CbaM202_1 from Capsicum, the MPF2-

like-A protein WSA206 and the Physalinae proteins. Within the latter the MPF2-like 

proteins from the American Physalis species clustered together, as expected.  

Again the tree topology supported the assumption that the different sequences from 

W._solanacea, V. breviflora and W. coccoloboides could be alleles or very recent 

duplications.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.2: Phylogenetic tree of MPF2-like protein sequences from Physaleae 

and Capsicum  
Maximum Parsimony tree with STMADS16 from S. tuberosum and MSM2 from 
S._macrocarpon as outgroup. Bootstrap values are shown. Accession numbers of sequences 
from this study can be found in Table 3.1.1. Sequences from other sources are indicated by 
“He“ (He and Saedler 2005), “Hu” (Hu and Saedler 2007) and “Khan“ (Khan 2009, Khan et al. 
2009). The accession numbers can be found in supplementary Tables 8.1.1 and 8.1.2. 
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3.4 Searching for MPF2-like-A genes in Iochrominae 

As already mentioned in the introduction, two structurally and functionally different 

types of MPF2-like genes were found in Withania by Ramzan Khan, which were then 

termed MPF2-like-A and MPF2-like-B genes. However, in species from the closely 

related genus Tubocapsicum he could detect only MPF2-like-B genes. In the Physaleae 

species studied here also only one type of MPF2-like cDNAs could be isolated, even 

though always several MPF2-like cDNA clones were sequenced. To verify the 

assumption that, while in Withania two types of MPF2-like genes are present, the A-

type is missing in several other Physaleae genera, Southern blotting experiments were 

performed (see Fig. 3.4.1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.1:  Genomic Southern hybridization for detection of MPF2-like-A and 

MPF2-like-B genes 

10 µg genomic DNA of W. coagulans (W002), W. somnifera (W006, W007), T. anomalum 
(T001), I. australe (I001) and V. breviflora (V001) were digested with BamHI (B), EcoRI (E) 
and KpnI (K), separated on a 0,7% agarose gel and blotted to a nylon membrane. The 
hybridization with gene-specific probes, which contained the C-terminal part of WSA206 and 
WSB206, and the washing were done at 68 °C with high stringency. 
 

 

When a gene-specific probe for the W. somnifera MPF2-like-A gene WSA206 was 

used, hybridization signals could be detected for all three Withania accessions tested, 

while no signal was obtained for T. anomalum, I. australe and V. breviflora. These 

results indicate that this gene is absent in the genomes of Tubocapsicum and both 

WSA206                                        WSB206      
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Iochrominae species. By contrast, hybridization with a probe specific for the MPF2-

like-B gene WSB206 led to multiple signals in all examined species. The high number 

of signals in Withania can be explained by the polyploid genomes of these species. 

However, the signals observed in T. anomalum, I. australe and V. breviflora were 

obviously weaker than in Withania, which was very likely due to the heterologous 

probe.  

 

3.5 Database search of MPF2-like genes in tomato 

Information about the genomic location of an MPF2-like gene in tomato 

(S._lycopersicum) and the location of neighboring genes was thought to be helpful for 

this project, since knowledge about the upstream flanking gene might have facilitated 

upstream sequence isolation by PCR, instead of genome walking. Although the size of 

the intergenic region does not necessarily define the size of the promoter, this 

information should still have been interesting and could have been used at least for 

initial decisions about the amount of upstream sequence to isolate for promoter 

analysis in Physaleae. 

To identify the MPF2-like locus from S. lycopersicum, megablast searches (settings: 

database = nucleotide collection, organism = Solanum lycopersicum) were performed 

regularly at the NCBI Blast site using the published full-length STMADS16 mRNA 

(Accession no.: AY643733.1) as query. These searches yielded a putative MPF2-like 

locus in the clone LE_HBa-272I8 (Accession no.: CU468638.8), which was located on 

chromosome 4.  

In order to annotate this locus, I tried to detect putative MPF2-like cDNAs from the 

tomato via megablast search (settings: database = expressed sequence tags (ests), 

organism = Solanum lycopersicum) using the published full-length STMADS16 mRNA 

(AY643733.1) as query. Subsequently the tomato ESTs found were blasted again 

against EST entries from S. tuberosum. Hereby five partial putative MPF2-like 

mRNAs (DB685265.1, AI482813.1, AW929235.1, AI482810.1 and AI773429.1) and 

one putative partial MPF1-like mRNA (DB696642.1) could be identified. A 

hypothetical full-length MPF2-like mRNA sequence from S. lycopersicum was 

inferred from alignments of the MPF2-like tomato ESTs, the genomic tomato MPF2-

like locus and the STMADS16 cDNA. The hypothetical gene was termed SlyM2 (for 

sequence see Supplement, Table 8.1.5). Further, the hypothetical exon-intron structure 
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(see Fig. 3.5.1) was determined in the program geneseqer. Apparently, the exon-intron 

structure is very similar to MPF2 and STMADS16 and also here the first intron in the 

coding region is the largest intron. 

The genomic region around the SlyM2 locus (positions 63991 to 89720 = 10kb 

upstream until 10kb downstream of the coding region) was blasted against the 

S._lycopersicum, Solanum and plant EST databases to find the neighboring genes. All 

searches yielded similar results. At position 80919 (approximately 1119 bp 

downstream of the predicted stop codon of the hypothetical SlyM2 gene) a gene 

belonging to the DUF246 family seemed to be located (start of its ORF). This gene had 

the same orientation as SlyM2. The downstream gene was followed by a putative MscS 

(Small-conductance mechanosensitive channel) family gene. Several ESTs were 

detected at 3.5 kb upstream of the locus, but yielded higher identities to published 

genomic fragments from other tomato chromosomes. However, at position 68118 

(around 5873 bp downstream of the coding region of SlyM2) an oppositely oriented 

DnaJ/Hsp40 (heat shock protein 40) gene might start (start of its ORF). In summary, 

the intergenic region upstream of the SlyM2 locus appears to be much larger (nearly 6 

kb) than the downstream intergenic region (approximately 1 kb).  

 

 

 
Figure 3.5.1: Hypothetical S. lycopersicum MPF2-like gene SlyM2: Position of the 

locus in clone LE_HBa-272I8 (chromosome IV) and predicted exon-intron 

structure 
Exons are depicted as boxes (white boxes: 5’ and 3’UTR, red: MADS-box, blue: I-region, 
green: K-region, pink: C-terminal region). Coding region: 73991-79720; 5’UTR: 73646-
73990; 3’UTR: 79721-79931; Exon 1: 73646-73857 (212 n); Exon 2: 73990-74172 (183 n); 
Exon 3: 76622-76700 (79 n); Exon 4: 77301-77362 (62 n); Exon 5: 77662-77761 (100 n); 
Exon 6: 77847-77888 (42 n); Exon 7:  78200-78241 (42 n); Exon 8: 78391-78524 (134 n); 
Exon 9: 79306-79356 (51 n); Exon 10: 79648-79931 (284 n)   
 

 

Unfortunately this tomato clone was published when the isolation of MPF2-like 

upstream sequences from the different Physaleae had already been completed. Hence 
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information about the upstream gene could not be used for isolation of upstream 

sequences in the plant species of this study. Further, it was decided not to include the 

upstream sequence of SlyM2 in the in silico promoter analysis (see chapter 3.7), since 

only a hypothetical SlyM2 mRNA was available. However, the SlyM2 locus was 

included in the bioinformatics analysis of whole MPF2-like genomic loci due to the 

lack of other MPF2-like loci from species, which show no MPF2-like expression in 

sepals - like S._lycopersicum (verified by Northern Blot experiments - Chaoying He, 

unpublished data).  

 

 

3.6 Mulan analysis of MPF2-like loci revealed conserved regions in 

introns 

Cis-regulatory elements may be located in the 5’ upstream region, in exons (Zheng et 

al. 2001), in introns and in the 3' UTR. Cis-elements have been found in introns of 

many other MADS-box genes (Davies et al. 1999, Hong et al. 2003, Liu et al. 2007). 

As this was also the case for AGL24 (Liu et al. 2007), the putative orthologue of MPF2 

in A._thaliana, it seemed to be likely that introns of MPF2-like genes might also 

contain cis-elements. In an attempt to narrow down the number of putative important 

intronic regulatory regions, the available sequences of MPF2-like loci from Solanaceae 

were analyzed with the program Mulan (Multiple sequence Local Alignment and 

conservation visualization tool) to detect conserved regions in introns. At that time the 

sequences of four MPF2-like loci were available: two from species showing 

expression in sepals (MPF2 and WSA206) and two from species lacking expression in 

sepals (STMADS16 and SlyM2). Overall conserved regions might contain cis-elements 

involved in vegetative expression, while other regions, which are only conserved 

between species with a similar MPF2-like gene expression pattern, could be involved 

in regulating floral expression or expression in sepals. 

The results are displayed in Figure 3.6.1. This graphical output shows regions, which 

are conserved between a base sequences (MPF2 or STMADS16) and another sequence 

based on the “stacked-pairwise approach” (Ovcharenko et al. 2005). The first intron, 

which is also the largest one, contained two overall conserved blocks. Further overall 

conserved blocks in introns 3 and 5 were only identified with STMADS16 as base 



RESULTS 

42 

sequence. Conserved regions correlating with MPF2-like gene expression in sepals 

were also detected: The two genes from Solanum species exhibited conserved regions 

in their introns 1, 7 and 8 and in the 3’UTR, while the Physaleae species shared 

conserved blocks in introns 1, 5 and 8. As the first intron seemed to contain many 

conserved and divergent regions, it was decided to include this intronic region in the 

further analyses. 

 

 
Fig 3.6.1: Conserved and divergent regions in MPF2-like loci  
The conservation profiles between the genomic loci of STMADS16, SlyM2, MPF2 and 
WSA206 are graphically visualized. Apart from the setting “smooth graph”, the default settings 
(ECR (Evolutionarily Conserved Regions) length = at least 100 bases, ECR similarity = at 
least 70%, Bottom cut-off = 50%, ECR present in = 1 species) were used. The lowest line 
indicates 50% and the upper one 100% conservation. The exon-intron structure of MPF2 and 
STMADS16 is shown above the diagrams: exons are indicated as light red boxes with the 
domain abbreviation (M, I, K or C) above, while the intronic regions are numbered from 1 to 8.  
Blue boxes indicate overall conserved regions, while green ones show regions, which are 
conserved between species with a similar MPF2-like gene expression pattern in sepals. For 
accession numbers see Supplement, Table 8.1.3. 
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3.7 Allelic variation in upstream sequences of MPF2-like genes  

For the promoter analysis the upstream sequences of several Physaleae and also of 

C._baccatum were isolated using genome-walking. Further, the published short 

upstream sequences of MPF2 and STMADS16 were extended using the same 

technique. The upstream sequences of P. floridana and P. lanceifolia were provided by 

Britta Grosardt. All isolated upstream sequences are anchored in the highly conserved 

MADS-box. The first nucleotide of the MADS-box (ATG) was defined as position +1. 

Further, the first intron in the coding region, located between the MADS-box and the I-

region, was isolated from P._lanceifolia, P. philadelphica, P. alkekengi, W. solanacea, 

V. breviflora, I. australe and D. fasciculata. The already published first introns from 

P._floridana and S._:tuberosum were also available for further analyses (He and 

Saedler 2005). In total 24 MPF2-like upstream sequences from 17 species were 

collected: 23 were isolated or extended and the upstream sequence from 

S._lycopersicum was detected in the published genomic clone LE_HBa-272I8. 

However, for the subsequent bioinformatic analyses several sequences were excluded 

from the dataset: First, sequences from species with unclear gene expression pattern in 

sepals (P. acutifolia, see supplementary Table 8.1.4) and second, the upstream 

sequences pPphM255_2 (P. philadelphica, see Table 3.7.1) and pSlyM2, as so far no 

matching or only hypothetical cDNAs were available for these sequences. Hence, the 

collected sequence dataset was reduced to 20 MPF2-like upstream sequences (0.9 to 

3.6 kb) from 15 Solanaceae and 10 first intron sequences from nine different species, 

including three, which do not express MPF2-like genes in their calyces: S. tuberosum, 

D. fasciculata and I. australe (Hu and Saedler 2007). The sequences are listed in Table 

3.7.1 (for nomenclature see chapter 3.1). 

Two different MPF2-like upstream sequences were found in the American Physalis 

species P._minima and P. philadelphica, in all three Iochrominae species and in 

W._coccoloboides. These sequences usually differed mainly by several indels, which 

ranged from one to several hundred bp in size, while the rest of the sequence was very 

conserved. In the case of I. australe for example the following homology was found 

after removal of all gaps: IauM201_1 vs. IauM201_2 = 2047 identities in 2108 bp 

aligned length (97%). Further, I tried to amplify both I. australe sequences from 

genomic DNA samples deriving from two different individual plants with different sets 

of primers: One of the plants contained both sequences, while from the other one only 
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one sequence (pIauM201_2) could be amplified (data not shown), suggesting that one 

plant might be heterozygous and one homozygous.  

For now, as the multiple MPF2-like cDNAs found in these six species were considered 

to be alleles of the same gene, their matching upstream sequences were also treated as 

alleles for the reasons mentioned in chapter 3.1. 

 

Table 3.7.1: MPF2-like 5’upstream and intronic sequences from Solanaceae 

No. Species Promoter of 

gene/allele 

Accession 

no.  

Isolated 

upstream 

Complete 

1. intron 

cDNA 

     (bp)  (bp)  

1 P. crassifolia  pPcrM222_1 FN356451 1718 - + 

2 P. fuscomaculata  pPfuM230_1 FN356452 1614 - + 

3 P. lanceifolia  pPlaM235_1 FN356453 2357 2372 + 

4  

5 

P. minima  pPmiM239_1 

pPmiM239_2 

FN356454 

FN356455 

1728 

1702 

- 

- 

+ 

+ 

6 

- 

P. philadelphica   pPphM255_1 

pPphM255_2 

FN356457 

FN356458 

2734 

2273 

2360 

1841 

+ 

- 

7 P. floridana pMPF2 FN356460 2465 (2860) * (+)* 

8 M. solanaceus pMsoM201_1 FN356447 2003 - + 

9 W. solanacea pWIsoM202_1 FN356465 3062 3231 + 

10 P. alkekengi pPalM211_1  FN356450 2603 3854 + 

11 

12 

D. fasciculata pDfaM201_1 

pDfaM201_2 

FN356443 

FN356444 

3675 

2880 

2829 

- 

+ 

+ 

13 

14 

I. australe pIauM201_1 

pIauM201_2 

FN356445 

FN356446 

2187 

2833 

2906 

- 

+ 

+ 

15 

16 

V. breviflora pVbrM201_1 

pVbrM201_2 

FN356461 

FN356462 

2100 

1996 

2463 

2459 

+ 

+ 

17 

18 

W. coccoloboides pWIcoM201_1 

pWIcoM201_2 

FN356463 

FN356464 

1290 

1305 

- 

- 

+ 

+ 

19 C. baccatum pCbaM202_1 FN296152 912 - + 

20 S. tuberosum pSTMADS16 FN356456 2587 (2536) * (+)* 

Published cDNAs and intronic sequences from He and Saedler (2005) are shown in brackets 
and are marked with a “*”, for accession numbers see supplementary Tables 8.1.2 and 8.1.3. 
Species, which do not express MPF2-like genes in their calyx (He and Saedler 2005, Hu and 
Saedler 2007), are marked in red. The amount of upstream sequence isolated is given in bp. A 
“+“ in the cDNA column shows that a matching cDNA is available.  
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3.8 Phylogeny based on MPF2-like upstream sequences  

Evolutionary relationships among genes are usually inferred from their protein 

sequences. However, in the case of MPF2-like genes from Physaleae the protein 

sequences are highly conserved, which prevents a deeper resolution in the American 

Physalis clade. Therefore, a phylogenetic tree based on non-coding upstream 

sequences was calculated in cooperation with Thomas Münster.  

The dataset contained 20 MPF2-like upstream sequences (sequences no. 1 to 20, Table 

3.7.1) from 13 Physaleae, one Capsicum and one Solanum species. The latter, the 

upstream sequence of STMADS16 from S. tuberosum, was used as an out-group. 

Multiple alignments of the upstream sequences were calculated by CHAOS and 

DIALIGN (Brudno et al. 2004). Afterwards the alignment was cut to the size of the 

shortest upstream sequence (912 bp from C. baccatum) and further manually adjusted. 

The final alignment can be found in the supplementary Table 8.2.3. 

 

Figure 3.8.1 shows a Maximum Parsimony tree, which was based on partial upstream 

sequences of MPF2-like MADS-box genes. The tree topology suggests that the 

upstream sequences of MPF2-like genes from Physaleae can be subdivided into three 

groups: 1. MPF2-like Physalinae upstream sequences and 2. MPF2-like 

W._coccoloboides upstream sequences and 3. the more basal MPF2-like Iochrominae 

upstream sequences.  

Also in the phylogeny based on upstream non-coding sequences the putative allelic 

sequences found in W. solanacea, V. breviflora and W. coccoloboides clustered 

together in each case, which supported the assumption that they might be alleles. 

 



RESULTS 

46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.1: Phylogenetic tree of MPF2-like upstream sequences from Physaleae  
Maximum Parsimony tree of MPF2-like upstream sequences from Physaleae and Capsicum, 
with the upstream sequence of STMADS16 from S. tuberosum as out-group. Bootstrap values 
are shown. For accession numbers see Table 3.7.1. 

MPF2-like 

Iochrominae 

MPF2-like 

W._coccoloboides 

MPF2-like  

Physalinae 

outgroup 
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3.9 Transcription initiates between – 690 bp and – 300 bp   

The putative transcription initiation sites were inferred from the longest cDNAs 

obtained by 5'RACE (see Table 3.9.1 and Fig. 3.10.1). The published MPF2 and 

STMADS16 sequences (He and Saedler 2005) were taken for comparison. 

Transcription appears to initiate between position – 690 bp and – 300 bp and one or 

two exons were present in the 5’UTR. 

The 5’UTR was included in the promoter analyses, since results from another study 

suggested that this region might also exhibit promoter activity (Khan 2009). 

 

Table 3.9.1: Putative transcription start and 5’UTR 

Species Gene/allele Putative transcription start No. of exons in 

5’UTR 

P. crassifolia  PcrM222_1 - 472 1 

P. fuscomaculata  PfuM230_1 - 384 2 

P. lanceifolia  PlaM235_1 - 473 2 

P. minima  PmiM239_1 

PmiM239_2 

- 475 

- 308 

2 

1 

P. philadelphica   PphM255_1 - 358 2 

P. floridana MPF2 (- 470)* (2)* 

M. solanaceus MsoM201_1 - 300 1 

W. solanacea WIsoM202_1 - 401 2 

P. alkekengi PalM211_1  - 533 2 

D. fasciculata DfaM201_1 

DfaM201_2 

- 456 

- 531 

2 

2 

I. australe IauM201_1 

IauM201_2* 

- 426 

- 425 

2 

2 

V. breviflora VbrM201_1 

VbrM201_2 

- 447 

- 357 

2 

2 

W. coccoloboides WIcoM201_1 

WIcoM201_2 

- 462 

- 462 

2 

2 

C. baccatum CbaM202_1* - 690 2 

S. tuberosum STMADS16 (- 469)* (2)* 

Data inferred from published sequences from He and Saedler (2005) are marked with a “*”, for 
accession numbers see supplementary Tables 8.1.2 and 8.1.3. Species, which do not express 
MPF2-like genes in sepals (He and Saedler 2005, Hu and Saedler 2007), are marked in red. 
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3.10 All MPF2-like upstream sequences contain CArG-motifs 

It has been hypothesized that the absence of strictly defined MEF2- / N10-type CArG-

boxes (CTA(A/T)4TAG; Pollock and Treisman 1991, Shore and Sharrocks 1995) in the 

upstream sequence of MPF2 from P. floridana could be causal for heterotopic 

expression of this gene in floral tissues of this species (He and Saedler 2005). 

Therefore, those ten upstream sequences, for which also the first introns were 

available, were screened manually for CArG-consensus motifs using the computer 

program MacVector. However, published data on plant CArG-motifs came almost 

exclusively from Arabidopsis and Antirrhinum, which are only distantly related to our 

species. Thus very wide definitions of CArG-motifs were used for this initial search, 

since it could not be expected that these motifs showed 100% identity across species 

borders. The chosen CArG-box motifs were:  

1. MEF2- or N10-type (relaxed): C(A/T)8G,  

2. MEF2- or N10-type (strict): CTA(A/T)4TAG (Pollock and Treisman 1991, 

Shore and Sharrocks 1995),  

3. the serum response element (SRE)-type: CC(A/T)6GG (Pollock and Treisman 

1991, Riechmann et al. 1996)  

4. an intermediate CArG motif: C(A/T)7GG (Tang and Perry 2003) 

5. an intermediate CArG motif: CC(A/T)7G (Tang and Perry 2003) 

Not surprisingly, CArG-motifs were found in all screened upstream sequences and first 

introns (see Fig. 3.10.1). Especially “relaxed” N10-type CArG-boxes occurred quite 

frequently. However, the MEF2- or N10-type CArG-motifs, in strict sense, were only 

found in four upstream sequences (pPalM211_1, pVbrM201_1, pDfaM201_1 and 

pSTMADS16) and in none of the first introns. In the upstream sequence of STMADS16 

three of these motifs were detected, while in the other three sequences only one strict 

N10-type CArG-box was found right before the ATG. No obvious correlation between 

the MPF2-like gene expression pattern in sepals and the occurrence of strict N10-type 

CArG-boxes (or any of the other searched CArG-motifs) could be detected in 

Physaleae. Nevertheless, an interesting observation made was the similar CArG-motif 

distribution around the putative transcription initiation sites: the first intron in the 

5’UTR is flanked by one CC(A/T)7G motif upstream and two C(A/T)7GG motifs 

downstream (except for pWIsoM202_1, where the second C(A/T)7GG downstream is 

missing, which is caused by only one nucleotide difference). 



RESULTS 

49 

 

 

 

 
 

 
 

Figure 3.10.1: CArG-motifs 

in MPF2-like upstream and 

intronic sequences 
The partial MPF2-like loci 

(upstream sequence and first 

intron) are indicated by black 

lines. The exons are marked as 

boxes (5’UTR: white, MADS-

box: red, the I-region: dark blue 

or black). The putative start of 

transcription was drawn from the 

longest 5’RACE product and is 

indicated by an arrow.  

The CArG-box motifs are 

depicted as pins:  

1. C(A/T)8G,   

2. CTA(A/T) 4TAG  

3. CC(A/T)6GG  

4. C(A/T)7GG                            

5. CC(A/T)7G 

4.+5. CC(A/T)7GG 

 

 

Species with expression in sepals: 

 

Species without expression in sepals: 
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3.11 Conserved regions and motifs  

The isolated MPF2-like upstream and intronic sequences were analyzed with the 

programs DIALIGN, Mulan and multiTF to identify (i) conserved regions and putative 

cis-regulatory elements in these, which might be involved in the transcriptional 

regulation of vegetative MPF2-like gene expression and further (ii) divergent regions 

and the putative cis-regulatory elements located there, as they might be responsible for 

differences in gene expression in sepals. 

 

DIALIGN and PLACE analysis of upstream sequences  

In the credo DIALIGN analysis output (see Fig. 3.11.1) conserved motifs, which were 

found in two or more upstream sequences, were depicted as colored boxes. Therefore, 

larger conserved regions containing several conserved motifs could be identified 

easily. The original output (see Fig. 3.11.1) and a schematic drawing of the conserved 

regions are shown (see Fig. 3.11.2) 

After analyzing all 20 MPF2-like upstream sequences with DIALIGN, it became clear, 

that when different upstream sequences with a similar absolute length were compared, 

the “informative length” at the motif level was extremely variable. In some of the 

MPF2-like upstream sequences the motifs appeared to be much more compactly 

arranged than in others (e.g. V. breviflora vs. D. fasciculata). Even sequences from the 

same or closely related species often differed dramatically in size due to large indels 

(e.g. pDfaM201_1 and pDfaM201_2 from D. fasciculata). Based on the motifs found 

at the 5’upstream end of putative promoter sequences, it was concluded that the 

sequences, which were isolated from the American Physalis and W. coccoloboides, 

were the “longest” ones (see Fig. 3.11.1: green and light blue circled regions).   
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Figure 3.11.1: Conserved and divergent motifs in MPF2-like upstream sequences  
A credo DIALIGN analysis output (default settings + Phylogenetic footprinting I + motif size 
= 16) is shown. Sequences from species, which show no expression of MPF2-like genes in 
sepals, are written in red. The overall conserved motifs 1, 2, 3 and 4 are surrounded by a dark 
blue dashed line, while motifs only conserved in I. australe and D. fasciculata sequences are 
circled in pink (motifs 5 and 6). Four motifs at the upstream end, which are conserved in 
several species, are marked in green (motifs 12 and 13) and light blue (motifs 14 and 15) for 
better orientation. Another motif-rich region conserved between two Iochrominae sequences 
and pSTMADS16 is marked in red (motifs 9, 10 and 11). Fragments taken for promoter::GUS 
constructs are indicated by vertical dashed black lines. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.2: Conserved motif-rich regions in MPF2-like upstream sequences  
The schematic drawing is based on the DIALIGN analysis output in Fig. 3.11.1. Motif-rich 
regions are depicted as boxes. Sequences from species, which show no expression of MPF2-
like genes in sepals, are written in red. An overall conserved region is marked in dark blue, 
while regions containing motifs only conserved in I. australe and D. fasciculata are depicted as 
dark pink and orange boxes.   
 

 

The credo DIALIGN analysis indicated that an over 300 bp long block (in dark blue, 

see Fig. 3.11.1 and Fig. 3.11.2), which was located between positions – 150 and – 650 

bp upstream of the MADS-box and comprised basically the 5’UTR regions, was 

conserved in all 20 MPF2-like upstream sequences. This block consisted of four 
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motifs, which were conserved in all species (see Fig. 3.11.1). Their consensus 

sequences are shown in Fig. 3.11.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.3: Overall conserved motifs in MPF2-like upstream sequences 
The motifs were identified by credo DIALIGN analysis. The default settings + Phylogenetic 
footprinting = I and minimum motif size = 16 were used. Motif positions in upstream 
sequences of MPF2, VbrM201_1 and IauM201_1 are given: Motif 1: MPF2: -238 to -223, 
VbrM201_1: -254 to -239, IauM201_1: -251 to -236; Motif 2: MPF2: -310 to –276, 
VbrM201_1: -318 to -284, IauM201_1: -314 to -280; Motif 3: MPF2: -391 to –370, 
VbrM201_1: -393 to -372, IauM201_1: -389 to -368; Motif 4: MPF2: -513 to –479, 
VbrM201_1: -497 to -462, IauM201_1: -493 to 458 
 

 

The motifs found were screened in the PLACE database, which contains a large 

collection of published cis-regulatory elements. Usually PLACE searches yield a high 

number of short motifs, which occur in high frequency in genomic sequences. 

Therefore in the entire results part of this thesis always only a selection of the motifs 

found by PLACE is mentioned. These are all motifs found in the + strand, which 

consist of five or more base pairs and are overall conserved.  

The PLACE search indicated that motif 2 featured a binding site ("TAACTG”) for 

AtMYB2, which is an Arabidopsis MYB homolog (Urao et al. 1993).  

 

Several other motif-rich regions, which were conserved in several species, were 

identified (see Fig. 3.11.1). However, the conserved region before the ATG was the 

only one, which was overall conserved in all analyzed sequences, suggesting that this 
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region might be the core promoter, while the elements responsible for “fine-tuning” 

differential gene expression in floral tissues might be located elsewhere.  

When all 20 sequences were included in the analysis, no motifs were found to be 

strictly present or absent in correlation to the presence or absence of MPF2-like gene 

expression in sepals of the source species. However, as the loss or gain of expression 

does not necessarily have to be caused by changes in the same element(s) in all 

Physaleae and Solanaceae, the motif distribution in the different subgroups was 

examined separately.  

 

Physalinae 

All American Physalis species shared very similar MPF2-like upstream sequences, 

reflecting their close relationship. By contrast, pPalM211_1, the upstream sequence 

from the geographically isolated Old World species P. alkekengi, seemed to be very 

different from the other Physalis sequences: only approximately 850 bp upstream of 

the ATG shared similarities with other Physalis sequences. Further upstream than –850 

bp no similarities between pPalM211_1 and any other sequences from our dataset were 

found. This finding suggested that the core promoter of MPF2-like genes in Physalis 

might comprise only this short region. However, the presence of large indels in many 

upstream sequences offered an alternative explanation: that a large insertion could 

have occurred in the upstream sequence of the P. alkekengi. Unfortunately, no motifs, 

which are conserved in all Physalinae, but not present in upstream sequences from D. 

fasciculata and I. australe, were detected.  

 

Iochrominae 

Also the Iochrominae possessed very similar MPF2-like upstream sequences. The 

most prominent differences between the sequences from different Iochrominae were 

several large indels (up to 1.5 kb in size in D. fasciculata), which were mainly 

responsible for the differences in length among the isolated upstream sequences. In the 

sequences from D. fasciculata and I. australe two conserved motifs (motif 5 and 6, see 

Fig. 3.11.1 and Fig. 3.11.4) were detected, which were not present in any other 

sequences analyzed and might be responsible for their loss of gene expression in 

sepals. Further, the sequences from V. breviflora, which shows MPF2-like gene 
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expression in sepals, contained both one motif (motif 7, see Fig. 3.11.1 and Fig. 

3.11.4), which was not present in the other Iochrominae sequences. 

The motifs found were screened in the PLACE database for published cis-regulatory 

elements and two interesting sites were detected: Motif 5 featured e.g. the elements 

“AGAAA”, one of two co-dependent regulatory elements responsible for pollen 

specific activation of the S. lycopersicum gene lat52 (Filichkin et al. 2004). Motif 6 

contained the sequence “GGATA”, the core motif of the transcriptional activator 

MybSt1 (a potato MYB homolog) binding site (Baranowskij et al. 1994).  

Interestingly, the only Solanum sequence, pSTMADS16, possessed in addition to the 

overall conserved block proximal to the MADS-box also two other regions, which 

showed similarity to regions in MPF2-like upstream sequences from Physaleae: around 

–1 kb (motifs 8 to 11, red circle, see Fig. 3.11.1) and  –1.8 kb (motifs 12 and 13, light 

green circle, see Fig. 3.11.1). The motifs found in the region around -1 kb occurred 

only in sequences from species showing no gene expression in sepals: pSTMADS, 

pDfaM201_2 and pIauM201_2. However, these motifs were not present in 

pDfaM201_1 and pIauM201_1, the other alleles from D. fasciculata and I. australe.  

 

 

 

 

 

 

 

 

 

 

Figure 3.11.4: Divergent motifs in MPF2-like upstream sequences from 

Iochrominae 
The motifs were identified by credo DIALIGN analysis. The default settings + Phylogenetic 
footprinting = I and minimum motif size = 16 were used. Motifs 5 and 6 were detected in 
sequences from I. australe and D. fasciculata, while motif 7 only occurred in V. breviflora. 
Motif positions in upstream sequences of VbrM201_1 and IauM201_1 are given: Motif 5: 
IauM201_1: -797 to -759; Motif 6: IauM201_1: -1534 to -1517; Motif 7: VbrM201_1: -1464 to 
-1389 
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Mulan and multiTF analysis of upstream sequences 

Mulan generates local multiple DNA sequence alignments and the multiTF program 

can identify transcription factor binding sites evolutionarily conserved across multiple 

species.  

 

Also the Mulan analysis confirmed that pPalM211_1, the MPF2-like upstream 

sequence from P._alkekengi, showed only sequence similarity to other sequences in 

the dataset until approximately -850 bp upstream of the MADS-box (see Fig. 3.11.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.5: Conserved regions and transcription factor binding sites in MPF2-

like upstream sequences 
The conservation profiles between pMPF2 and pPalM211_1, pDfaM201_1 and pSTMADS16 
are graphically visualized. The default settings (ECR length = at least 100 bases; ECR 
similarity = at least 70%, Bottom cut-off = 50%, ECR present in = 1 species) were used. The 
lowest line indicates 50% and the upper one 100% conservation. A blue box indicates an 
overall conserved region. Small colored boxes indicate the locations of overall conserved 
transcription factor binding motifs, which were identified by the program multiTF. For 
accession numbers see Table 3.7.1. 
 
 

With the help of the program multiTF several sites containing published transcription 

factor binding motifs were detected in this region. Two transcription factor binding 

sites were conserved in all 20 upstream sequences (see Fig. 3.11.5 and Fig.3.11.6): a 

CArG-box, which was referred to be a binding sites for the Arabidopsis MADS-

domain proteins AGAMOUS-LIKE 1 (AGL1) / SHATTERPROOF 1 (SHP1), AGL2, 
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AGL3, AGAMOUS-LIKE 15 (AGL15) and AG and further a binding site for ATHB1 

and ATHB5 transcription factors (see Fig. 3.11.6), which are homeodomain-leucine 

zipper class I (HD-Zip I) proteins. The 9 bp long binding site for ATHB-like 

transcription factors was located within the previously mentioned second CArG-like 

motif (C(A/T)7GG) downstream of the first exon in the 5’UTR (see chapter 3.10, Fig. 

3.10.1).  

The analysis of a subset containing only upstream sequences from Physaleae, yielded 

no additional “Physaleae specific” conserved transcription factor binding sites, since 

the additional motif (AGP1), which was found, was only absent in pCbaM202_1, but 

not in pSTMADS16. 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 3.11.6: Overall conserved transcription factor binding sites  
The graph shows the section of the alignment, where the conserved transcription factor binding 
sites are located. The CArG-core “CCATAA(A/C)A(A/G/_)G” and the core of the ATHB 
binding motif “CAATTATTG” are indicated by black lines. Motif positions in upstream 
sequences of MPF2, VbrM201_1 and IauM201_1 are given: CArG-box: MPF2: -590 to 581, 
VbrM201_1: -573 to -564, IauM201_1: -564 to 556; ATHB1/5: MPF2: -310 to –276, 
VbrM201_1: -332 to 324, IauM201_1: -314 to –280. 
 

 

For the detection of differences in the distribution of transcription factor binding sites, 

which could be correlated with expression differences, the dataset was split into 

different subsets, which were then analyzed with Mulan and multiTF. Conserved 

binding sites found were rechecked manually in a DIALIGN alignment to ensure that 

these sites only occurred exclusively in this subset.   

    AGL1, AGL2, AGL3, AGL15, AG                   ATHB1, ATHB5 
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The binding sites, which were found to be conserved in sequences from species 

exhibiting MPF2-like gene expression in sepals (different subsets: 1. all, 2. Physaleae 

without Capsicum, 3. only Physalinae), were also present in upstream sequences from 

S._tuberosum, D. fasciculata and/or I. australe. The “putative promoter” sequences 

from the latter three species featured six conserved transcription factor binding sites, 

but all of these motifs were also found in sequences from Physaleae species, which 

express MPF2-like genes in their sepals. Therefore it seemed not to be very likely that 

these conserved sites could be relevant for differential MPF2-like gene expression in 

sepals. 

However, the four upstream sequences from D. fasciculata and I. australe contained 

two conserved transcription factor binding sites, which were not detected at these 

positions in other upstream sequences: an AUXIN RESPONSE FACTOR (ARF) 

binding site and a binding site for AGL1, AGL2, AGL3 and AG (see Fig. 3.11.7). In 

the sequences from V. breviflora these binding sites showed only one nucleotide 

difference, in all other sequences they were completely absent.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.7: Divergent transcription factor binding sites in Iochrominae 
The graph shows the section of the alignment, where the transcription factor binding sites, 
which are only conserved in D. fasciculata and I. australe, are located. The CArG-core 
CCAAAT(A/T)TGG and the core of the ARF binding motif are indicated by black lines. The 
sites were found to be conserved in sequences from I. australe and D. fasciculata: ARF: 
IauM201_1: -1374 to -1366; CArG-box: IauM201_1: -1247 to -1238 

ARF         AGL1, AGL2, AGL3, AG, AGL15 
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DIALIGN and PLACE analysis of first intron sequences  

The 10 first intron sequences of MPF2-like genes from nine Physaleae species and 

S._tuberosum were analyzed with DIALIGN. The original graphical visualization, 

containing all conserved motifs found (see Fig. 3.11.8), and a simplified scheme 

indicating conserved regions (see Fig. 3.11.9) are shown on the following pages.  

As expected the sequences from the American Physalis species seemed to be very 

conserved, as well as the sequences from the Iochrominae, while the intronic sequence 

from the distantly related potato showed only few homologous regions to introns from 

Physaleae species. 

The analysis revealed seven overall conserved motifs (see Fig. 3.11.8: motifs 1 to 7, 

circled in dark purple), which were present in all ten intron sequences. Their consensus 

sequences are shown in Fig. 3.11.10. These elements could be involved in the 

transcriptional regulation of vegetative expression of MPF2-like genes. 

Further, the analysis revealed also motifs, whose presence or absence could be 

correlated with the presence and absence of MPF2-like transcripts in sepals of the 

source species. Although no motifs were found, which were only conserved in all 

Physaleae species, which feature expression of MPF2-like genes in sepals, five motifs 

were found to be conserved in the first introns from the Physalinae subset (without 

W._coccoloboides). Hence, these motifs could be responsible for heterotopic MPF2-

like gene expression in this clade (see Fig. 3.11.8: motifs 11 to 15, marked in orange). 

The motif consensus sequences are depicted in Fig. 3.11.11.  

Furthermore, three motifs in a region at the downstream end of the first introns were 

only conserved between I. australe and D. fasciculata (see Fig. 3.11.8, motifs 8 to 10, 

in pink). Therefore these motifs were also considered to be interesting in terms of 

differential gene expression. Their consensus sequences are shown in Fig. 3.11.12. 
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Figure 3.11.8: Conserved and divergent motifs in the first intron of MPF2-like 

genes  
A credo DIALIGN analysis output (default settings + Phylogenetic footprinting I  +  motif size 
= 16) is shown. Sequences from species, which show no expression of MPF2-like genes in 
sepals, are written in red. The overall conserved motifs 1 to 7 are marked in dark blue, while 
motifs only conserved in I. australe and D. fasciculata sequences are circled in pink (motifs 7 
to 9). Motifs conserved in Physalinae are shown in orange (motif 11 to 15). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.9: Conserved motif-rich regions in first introns of MPF2-like genes  
The schematic drawing is based on the DIALIGN analysis output in Fig. 3.11.8. Motif-rich 
regions are depicted as boxes. 
 

 

For the overall conserved motifs 1 to 7 (see Fig. 3.11.10) searches in the PLACE 

database were performed to see whether these motifs contain the consensus sequences 

of known cis-regulatory elements. However, in none of the overall conserved motifs a 

known binding site, which was longer than 4 bp, could be detected. 
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Figure 3.11.10: Overall conserved motifs in first introns of MPF2-like genes 
The motifs were identified by credo DIALIGN analysis. The default settings + Phylogenetic 
footprinting I and minimum motif size = 16 were used. Motif positions in first introns of 
MPF2, VbrM201_1 and IauM201_1 are given: Motif 1: MPF2: 1051 to 1076, VbrM201_1: 
1196 to 1221, IauM201_1: 1211 to1236; Motif 2: MPF2: 1130 to 1162, VbrM201_1: 1308 to 
1340, IauM201_1: 1323 to 1355; Motif 3: MPF2: 1214 to 1242, VbrM201_1: 1385 to 1413, 
IauM201_1: 1400 to 1428; Motif 4: MPF2: 1267 to 1286, VbrM201_1: 1437 to 1456, 
IauM201_1: 1452 to 1471; Motif 5: MPF2: 1729 to 1757, VbrM201_1: 2264 to 2292, 
IauM201_1: 2294 to 2322, Motif 6: MPF2: 1836 to 1852, VbrM201_1: 2353 to 2369, 
IauM201_1: 2377 to 2393, Motif 7: MPF2: 3024 to 3042, VbrM201_1: 2627 to 2645, 
IauM201_1: 3070 to 3088 
 

 

Three motifs (motifs 8 to 10, see Fig. 3.11.11) were found to be specific for introns of 

I._australe and D. fasciculata. The search in the PLACE database yielded the 

following binding sites: motif 8 contained the sequence “TTATCC”, a "sugar-

repressive element (SRE)" (Tatematsu et al. 2005), motif 9 featured the motif 

“CACCTG”, which is a recognition site for the Arabidopsis transcription factor RAV1 

(Kagaya et al. 1999) and motif 10 exhibits a binding site (“TACTATT”) for the 

nuclear factor SP8BF (Ishiguro and Nakamura 1992). 
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Figure 3.11.11: Motifs conserved only in first introns of MPF2-like genes from    

D. fasciculata and I. australe 
Motifs identified by credo DIALIGN analysis. The motifs were identified by credo DIALIGN 
analysis. The default settings + Phylogenetic footprinting I and minimum motif size = 16 were 
used. Motif positions in the first intron of IauM201_1 are given: Motif 1: IauM201_1: 2477 to 
2498; Motif 2: IauM201_1: 2578 to 2611; Motif 3: IauM201_1: 2765 to 2782 
 

 

Also the motifs, which were conserved in the introns from Physalinae species, were 

screened in the PLACE database: Motif 12 contained the consensus “GANTTNC”, 

which is a binding site of the MYB transcription factor LCR1 (Yoshioka et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.12: Motifs conserved in first introns of MPF2-like Physalinae genes 
Motifs identified by credo DIALIGN analysis. The motifs were identified by credo DIALIGN 
analysis. The default settings + Phylogenetic footprinting I and minimum motif size = 16 were 
used. Motif positions in the first intron of MPF2 are given: Motif 11: MPF2: 261 to 290; Motif 
12: MPF2:  890 to 917; Motif 13: MPF2: 1467 to 1506, Motif 14: MPF2: 2285 to 2329; Motif 
15: MPF2: 2385-2407 
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Mulan and multiTF analysis of first intron sequences 

Like the upstream sequences also the MADS-box and first intron sequences of MPF2-

like genes were analyzed with Mulan and multiTF to identify transcription factor 

binding sites evolutionarily conserved across multiple species.  

The Mulan analysis showed that the intron contains several overall conserved regions 

and not surprisingly that the MADS-box is conserved across species. All MADS-boxes 

contained a BZIP910 motif, which is a binding site for a bZIP transcription factor from 

A. majus (Martinez-Garcia et al. 1998). In the intron no overall conserved transcription 

factor binding sites were detected, when the intron from S. tuberosum was included, 

but all Physaleae sequences contained a conserved binding site for the 

INDETERMINATE protein, ID1 (see Fig. 3.11.13). However, in S. tuberosum this 

motif showed only one nucleotide difference. 

 

 

 

 

 

 

 

 

 

Figure 3.11.13: Conserved transcription factor binding sites  
The graph shows the section of the alignment, where the overall conserved transcription factor 
binding site BZIP910 and the ID1 binding site, which is conserved in Physaleae, are located. 
The positions of the motifs are indicated in the alignment by black lines. Motif positions in 
MPF2, VbrM201_1 and IauM201_1 are given: BZIP910: MPF2: 117 to 128, VbrM201_1: 117 
to 128, IauM201_1: 117 to 128; ID1: MPF2: -1217 to 1226, VbrM201_1: 1388 to 1397, 
IauM201_1: 1403 to 1412. 
 
 

No binding sites, which were only conserved in Physalinae or Physaleae species, 

which show heterotopic expression of MPF2-like genes in sepals, but were absent in 

other analyzed species, could be detected. 

 

However, the Mulan analysis of the first introns also gave a very interesting result: the 

intronic sequences from I. australe and D. fasciculata shared an approximately 400 bp 

  BZIP910                                ID1 
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long conserved region, which was completely absent in both intronic sequences from 

V. breviflora and only little homology to sequences from other species was found (see 

Fig. 3.11.14). Therefore this region appeared to be a strong candidate for a regulatory 

regions suppressing MPF2-like gene expression in sepals of I. australe and 

D._fasciculata.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.14: Conserved regions and transcription factor binding sites in the 

MADS-box and the first intron of MPF2-like genes 
The conservation profiles between the first intron from DfaM201_1 and nine other first introns 
from MPF2-like genes are graphically visualized. The default settings (ECR length = at least 
100 bases, ECR similarity = at least 70%, Bottom cut-off = 50%, ECR present in = 1 species) 
were used. The lowest line indicates 50% and the upper one 100% conservation. A blue box 
indicates an overall conserved region. For accession numbers see Tables 3.7.1 and 8.1.3. The 
native gene expression pattern in sepals is indicated by + (= expressed) and – (= not 
expressed). 
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The program multiTF identified several conserved transcription factor binding sites in 

this region. Seven of these were located on the + strand: C1 (ccAACtatcct), MADSB 

(taATATAAATGTATa), CPRF2 (aaCACGT(A/G)t(g/t)), RITA1 (acACGT(g/a)), 

OCSBF1 (CACGT), RAV1 (agCACCTGatac), ID1 (TTTCTCGTTAT) and AGL3 

(ttatCTAAATAAGGgtaa). The sequences of these motifs are shown in Fig. 3.11.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11.15: Divergent transcription factor binding sites in Iochrominae 

The graph shows the section of the alignment, where the transcription factor binding 
sites, which are only conserved in D. fasciculata and I. australe, are located. The 
positions of the motifs are indicated in the alignment by black lines. Motif positions in 
the first intron of IauM201_1 are given: C1, position in IauM201_1: 2465 to 2475; 
MADSB, position in IauM201_1: 2546 to 2560; CPRF2 (including RITA1 and 
OCSBF1), position in IauM201_1: 2567 to 2576; RAV1, position in IauM201_1: 2598 
to 2609; ID1, position in IauM201_1: 2631 to 2641; AGL3, position in IauM201_1: 
2819 to 2836 
 

 

 
 

 

      CPRF2, RITA1,  

C1                         MADSB             OCSBF1  

 

RAV1                    ID1                             AGL3 
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PartII: Functional characterization of MPF2-like genes 

3.12 MPF2-like genes are expressed in pollen of several Solanaceae  

The expression of MPF2-like genes in pollen from different Physaleae and 

S._tuberosum was tested (see Fig. 3.12.1), because in P. floridana MPF2 was 

suspected to play a role in male fertility, since RNAi knockdown plants from this 

species produced only little or no pollen at all, and they were sterile, unless when they 

were pollinated with wt pollen (He and Saedler 2005). Therefore the question arose, 

whether MPF2-like genes from other Physaleae could also play a role in male fertility 

in these species.  

MPF2-like transcripts were visible after 35 PCR cycles in mature pollen of 

P._floridana, as expected, W. solanacea, V. breviflora, I. australe and surprisingly also 

in pollen of S. tuberosum. In mature pollen from P. alkekengi and D. fasciculata this 

was not the case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12.1: Comparison of MPF2-like gene expression in leaf and mature pollen 

MPF2-like gene expression was tested in leaf (L) and mature pollen (P) from different 

Physaleae species and S. tuberosum by RT-PCR. As a control, 18S rRNA was amplified. 
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3.13 Expression of MPF2-like genes in different tissues of 

Iochrominae 

In this study the expression of MPF2-like genes in different floral and vegetative 

tissues of two Iochrominae species was tested (see Fig. 3.13.1), as the knowledge 

about spatial and temporal expression in these plants was limited to whole leaves and 

mixed sepal tissues of different floral stages.   

Hu and Saedler (2007) showed that V. breviflora expresses an MPF2-like gene in 

sepals, while the closely related species I. australe does not. In the RT-PCR data 

presented here, MPF2-like transcripts were visible after 35 cycles, not only in young 

buds and sepals of immature and mature flowers of V. breviflora, but also in petals of 

immature and mature flowers of this species. However, no transcript could be detected 

in stamens and carpels. This was in contrast to previous assumptions based on 

expression patterns in P. floridana and S. tuberosum, where on the one hand MPF2 

was expressed in all four whorls and on the other hand STMADS16 nowhere. Another 

result was that I. australe did not express the MPF2-like gene in most floral tissues, 

but surprisingly in stamens of mature flowers. In addition, both species showed 

expression in various vegetative tissues (leaf margin, leaf center, stem with leaf axils).  
 

 

 

 

Figure 3.13.1: Comparison of MPF2-like gene expression in different tissues  

RT-PCR data were obtained for different tissues and different stages (if = immature 

flower, mf = mature flower). As a control, 18S rRNA was amplified. 
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3.14 MPF2-like upstream sequences drive strong GUS expression in 

pollen  

MPF2-like upstream and intronic sequences had been isolated and analyzed with 

bioinformatics tools in an attempt to predict regions and motifs, which might play a 

role in transcriptional regulation of these genes. Finally the promoter activity of these 

regions was functionally tested by using 5’deletion promoter::GUS and promoter-

intron::GUS fusion constructs in transgenic A. thaliana. The results are summarized in 

Table 3.14.2. 

 

I. australe  

Short MPF2-like upstream sequences from I. australe drove GUS expression in all 

four floral whorls (see Fig. 3.14.1b), while longer upstream sequences seemed to 

abolish expression in petals and in one allele also stigma expression. Nevertheless, the 

allelic variation present in the upstream sequences only led to mild variation in GUS 

staining patterns. Addition of the MADS-box and the first intron further restricted 

floral expression to solely pollen expression and up-regulated GUS expression in 

rosette leaf veins (see Fig. 3.14.1a). The resulting GUS pattern strongly resembled the 

native expression of MPF2-like gene transcripts in I. australe. 

 

D. fasciculata 

MPF2-like upstream sequences from D. fasciculata mainly led to GUS expression in 

sepals and in pollen. The sequence pDfaM201_2 was also able to drive GUS 

expression in petals and carpels. Extended promoters drove expression in fewer whorls 

than the short versions. Expression in floral organs seemed to be repressed in the 

constructs containing the first intron. Besides the lacking leaf expression, the 

promoter-intron::GUS fusion constructs showed the expected pattern. However, plants 

containing the pDfaM201_1_ex-I::GUS construct (type 4) showed no GUS staining in 

any tissues. (Note: In the latter, the second exon was fused in frame to the uidA gene, 

in the same way like in pDfaM201_1_sh-I::GUS, the type 3 constructs, which drove 

GUS expression. This was confirmed by sequencing. However, these results should be 

further confirmed by RT-PCR.) 



RESULTS 

70 

V. breviflora 

Short MPF2-like upstream sequences from V. breviflora drove GUS expression in 

sepals, petals and pollen - and in one allele also in stigmas. Longer upstream sequences 

led to blue staining in sepals and pollen - and dependent on the allele  also in stigmas 

or petals (like the native expression). Addition of the MADS-box and the first intron 

had a dramatic effect on the GUS pattern, changing it to expression in leaf axil buds, 

receptacle, pedicels, silique abscission zone and in some constructs also in sepals. So, 

the GUS expression pattern achieved only with upstream sequences was far more 

similar to the native expression pattern - except for the absent leaf expression. 

 

All 

The short promoter::GUS fusion constructs (type 1) mostly drove strong GUS 

expression in floral organs, regardless of the native expression pattern: all constructs 

showed intense GUS activity in pollen (Fig. 3.14.1c+d). Upstream sequences from all 

three Iochrominae species drove GUS expression in sepals, while those from 

P._alkekengi and W. coccoloboides did not. Further, expression was also found in 

petals, stigmas and leaf margin teeth for several of the short constructs.  

Expression in transgenic plants containing extended promoter::GUS fusion constructs 

(type 2) was again mostly restricted to floral organs: Most constructs drove GUS 

expression in pollen and several also in sepals and stigmas.  

By contrast, GUS activity patterns in transgenic plants seemed to be dramatically 

changed when the MADS-box and the first intron were added between the upstream 

sequence and the uidA gene: In lines containing the short promoter-intron::GUS fusion 

constructs (type 3) blue staining was mainly observed in the receptacle, the silique 

abscission zone and sometimes in pedicels, but only few constructs led to GUS 

expression in other floral organs like sepals, petals, stamens and carpels. On the other 

hand, in lines containing the extended promoter-intron::GUS fusion constructs (type 4) 

expression was predominantly observed in leaf axil buds and silique abscission zones. 

In summary, only few constructs drove leaf expression, although RT-PCR showed that 

MPF2-like genes were expressed in this tissue in the native plants. While many of the 

promoter::GUS fusion constructs (type 1 and 2) showed GUS activity in pollen, sepals 

and stigmas, the constructs containing the first intron (type 3 and 4) showed a 

completely different GUS pattern. Yet, the constructs pIauM201_1_sh-I::GUS, 
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pIauM201_1_ex-I::GUS and pWIsoM202_1_ex::GUS produced GUS patterns that 

were very similar to MPF2-like expression patterns in the native plants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14.1: GUS expression patterns in transgenic A. thaliana containing 

putative regulatory sequences from I. australe 

a) leaf veins (pIauM201_1_sh-I::GUS), scale bar = 2mm 

b) flowers (pIauM201_1_sh::GUS), scale bar = 2mm 

c) anther (pIauM201_2_ex::GUS), scale bar = 100 µm 

d) pollen grains (pIauM201_2_ex::GUS), scale bar = 100 µm 

a b 

c d 
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Table 3.14.2: GUS expression patterns in transgenic A. thaliana containing 

putative regulatory sequences from Physaleae 
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3.15 Optimization of the method for transient expression in floral 

tissues  

To have a more reliable and rapid tool for functional analysis of putative regulatory 

sequences of MPF2-like genes in the future, a protocol for a transient assay was 

established, which should allow testing the constructs in floral tissues of the native 

plants. Different Physaleae and Solanaceae were transiently infected with 

A._tumefaciens strains GV3101 and LBA4404 harboring p27IGUS (Shang et al. 

2007), a vector containing an uidA gene with an intron (IGUS). This vector was 

provided by Yongjin Shang and prevents Agrobacterium-derived GUS expression. The 

protocol of Shang et al. (2007) was optimized for our species and the modified 

protocol (see chapter 2.22), based on infiltration and co-cultivation, allows infection of 

S. tuberosum and P. alkekengi leaves and floral tissues with A. tumefaciens strain 

GV3101. Typical results are shown in Fig. 3.15.1. 
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Figure 3.15.1: Transient GUS expression in leaves and calyx tissue from 

P._alkekengi and S. tuberosum  
P. alkekengi leaf (a) and lantern (b), S. tuberosum leaf (c) and flower (d), 

Scale bars = 2mm 
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4. Discussion 

4.1 MPF2-like genes and the absence of ICS in Iochrominae 

In this study 18 cDNA sequences of MPF2-like genes from 12 different Physaleae and 

one Capsicum species were isolated or extended. In several species more than one 

MPF2-like cDNA was found. However, these sequences always showed a high degree 

of sequence identity (96 to 100% sequence identity at the protein level) in contrast to 

the divergent Withania MPF2-like-A and B genes (84% sequence identity at the 

protein level; Khan 2009, Khan et al. 2009). Since most species in this study were wild 

plants a certain amount of heterozygosity could be expected and thus the different 

sequences found were classified as putative alleles, not as different genes. This 

assumption was also supported by phylogenetic reconstruction (see chapter 3.3). Other 

possible explanations for the observed sequence variation are recent duplication events 

or PCR-derived mutations. In contrast to species from the genus Withania, the 

Iochrominae and Tubocapsicum contained only one class of MPF2-like genes (see 

chapter 3.4). Based on the current sequence data this is probably also the case in the 

Physalinae and W._coccoloboides, but this has still to be confirmed by Southern Blot 

analysis.  

In general, the translated MPF2-like protein sequences from the different Physaleae 

species in this study seemed to be very conserved. However, the MPF2-like protein 

sequences from Physalinae were longer than the ones from Iochrominae, 

W._coccoloboides and C. baccatum. This was due to an insertion of one amino acid in 

the C-terminus. The amino acid sequences of different groups, e.g. from the American 

Physalis species, contained certain characteristics, but no changes could be clearly 

correlated with the presence or absence of ICS in these species. 

Based on phylogenetic reconstructions the MPF2-like cDNAs from Physaleae were 

subdivided into four to five sub-groups: the MPF2-like Iochrominae genes, the MPF2-

like W. coccoloboides genes, the MPF2-like-B genes and a group containing the 

MPF2-like-A and the MPF2-like Physalinae genes. According to their sequence 

identities the MPF2-like Iochrominae genes and the MPF2-like W. coccoloboides 

genes were more similar to MPF2-like-B genes than to MPF2-like-A or MPF2-like 

Physalinae genes. This higher structural homology might reflect more similar 

properties of the proteins. Thus it could be hypothesized that MPF2-like proteins from 
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Iochrominae and W. coccoloboides might not be able to trigger ICS formation, since 

overexpression of MPF2-like-B genes did in contrast to WSA206 and MPF2 not 

promote sepal growth in A. thaliana (He and Saedler 2007, Khan 2009, Khan et al. 

2009). This might explain the absence of this morphological structure in V. breviflora 

and W._coccoloboides, which both lack ICS, despite expression of MPF2-like genes in 

their calyces. Overexpression of MPF2-like genes from Iochrominae species in 

A._thaliana or S. tuberosum might give further clues about the functional properties of 

this subgroup. 

Interestingly, it has been found recently that different groups of MPF2-like genes in 

Physaleae might have experienced different types of selection during their evolution 

(Khan et al. 2009). It appears that the branch leading to the Withania MPF2-like-A 

genes and Physalis MPF2-like genes has experienced positive Darwinian selection 

(highlighted in bold, see Fig. 4.1.1). By contrast, all other branches, including the ones 

leading to MPF2-like-B and the Iochrominae genes, seem to have evolved under 

purifying selection. These findings correlate with the presence of ICS in Physalis and 

Withania and its absence in Iochrominae.  

Accordingly, in the course of the evolution of the ICS the progenitor of the MPF2-

like–A proteins from Withania and the MPF2-like proteins from Physalis seems to 

have experienced positive Darwinian selection before the slit of the two genera. 

Afterwards purifying selection obviously took over, conserving the proteins and 

thereby also the newly gained morphological structure ICS. Currently several 

hypotheses about the adaptive value of the lantern are discussed, concerning the kind 

of selection pressure that might have led to the emergence or maintenance of ICS. One 

possible explanation is that the lantern produces an improved microclimate around the 

developing berry, which provides a higher humidity in dry habitats. This hypothesis is 

in accordance with the habitat preferences of the studied species: It has been noted that 

Iochroma species not showing ICS occur in scrub or cloud forest between 2200 and 

2900 m in the Andes and that their flowering peaks during the rainy season (Smith et 

al. 2008). Further, Tubocapsicum, which as well lacks ICS, has been also found in 

relatively humid environments like evergreen wood and along streams in Asia (Merril 

1923, Hunziker 2001). By contrast, Withania species, which enclose their berries, such 

as W. somnifera and W. coagulans favor dryer habitats (Hepper 1991). Also several 

Physalis species seem to prefer warm sunny habitats e.g. P. peruviana “needs full sun 
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… very little [rain] when the fruits are maturing” (Morton 1987), though the old world 

species P._alkekengi can even endure frost in winter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.1: Darwinian Selection of MPF2-like proteins in Physaleae  

(adopted from Khan et al. 2009) 
“Numbers above the major branches of the unrooted ML tree are averages of non-synonymous 
and synonymous changes, while ω = dN/dS values are given below the branches. Numbers 
highlighted in bold indicate the branch under positive Darwinian selection. Bootstrap and 
posterior probability values of MP, ML and Bayesian inference for all of the major branches 
were above 85%.” (Khan et al. 2009) 
 

 

4.2 Phylogenetic relationships among MPF2-like genes  

The topologies of the phylogenetic trees based on coding and non-coding regions of 

MPF2-like genes did largely agree, accordingly no hints for promoter swapping events 

in the Physaleae were found (see chapter 3.3 and 3.8). Phylogenetic reconstructions 

using upstream and protein sequences only helped to define different subclades of 
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MPF2-like genes, while the phylogenetic tree of MPF2-like cDNAs suggested that the 

group containing the Iochrominae genes is basal to those from the Withaninae and 

Physalinae.  

The main phylogenetic groups and their arrangement were in agreement with previous 

reports on phylogenetic relationships in Physaleae (Olmstead et al. 1999, Whitson and 

Manos 2005, Smith and Baum 2006, Hu and Saedler 2007). The observation that all 

American Physalis and M. solanaceus formed a subgroup within the Physalinae and 

that this subgroup did not include P. alkekengi reflects the geographical separation of 

this Old World species. In the phylogeny presented in this study (see Fig. 3.8.1), which 

was based on upstream sequences of the MPF2-like genes, P. alkekengi separates 

W._solanacea from the American Physalis as proposed by Olmstead et al. (1999) and 

Whitson and Manos (2005). By contrast, Hu and Saedler (2007) proposed an opposite 

arrangement.  

The two Witheringia sequences did not cluster together in all three phylogenies based 

on MPF2-like sequences, even though both species have been grouped in the same 

genus (Sousa-Pena 2001). This finding is in agreement with the study of Hu and 

Saedler (2007), who suggested that the W. coccoloboides and W. solanaceae should 

not be classified in the same genus, based on phylogenetic reconstructions using 

MPF2-like protein sequences and three additional markers. Studies involving more 

Witheringia species could help to clarify the phylogeny within this genus and elucidate 

its position within the Physaleae. 

In summary, this study showed that also non-coding sequences can be used to infer 

phylogenetic relationships - at least for the classification of major groups.  

 

4.3 MPF2-like genes and male fertility 

The expression study on different floral tissues of I. australe and V. breviflora revealed 

MPF2-like gene expression in buds, sepals, petals, and mature pollen of V. breviflora. 

By contrast, I. australe did only show expression in stamens of mature flowers (see 

Fig. 3.13.1). These findings are in accordance with previous reports (Hu and Saedler 

2007), but suggest also that the spatial MPF2-gene expression patterns are more 

variable in floral organs of Physaleae than previously expected, based on observations 

in P._floridana and S. tuberosum (He and Saedler 2005). This variation could indicate 
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that the presence of MPF2-like genes in certain floral tissues of the Iochrominae has no 

useful (or even negative) effects, and was therefore lost during evolution. 

Since MPF2 seems to be important for pollen production and thus for male fertility in 

P. floridana (He and Saedler 2005), MPF2-like gene expression in mature pollen of 

other Physaleae was studied. Surprisingly, MPF2-like gene expression could be shown 

in pollen of several Physaleae and surprisingly also in pollen of S. tuberosum. The fact 

that in this study MPF2-like gene expression was detected in pollen of V._breviflora 

and S. tuberosum, but previously not in stamen of these species (He and Saedler 2005, 

this study) can be explained easily, since pollen comprises only a small fraction of the 

mass of an entire stamen. The observation that in mature pollen of P._alkekengi and 

D._fasciculata no MPF2-like genes seemed to be expressed could indicate that (i) the 

gene is not expressed, (ii) that expression was below the threshold of detection or (iii) 

that gene expression is more relevant during earlier stages of pollen maturation. 

However, in A. thaliana AGL24, the putative ortholog of MPF2, is only expressed 

during later stages of floral development in pollen and at the adaxial surface of the 

gynoecium (Yu et al. 2004).  

Nevertheless, as MPF2 seems to play an important role in male fertility in P. floridana 

(He and Saedler 2005), this could be also the case in other Physaleae and even in 

S._tuberosum. This is supported by the finding that all tested promotor::GUS 

constructs containing upstream sequences of MPF2-like genes from Physaleae were 

able to drive GUS expression in pollen of A. thaliana (see Fig. 3.14.2). Hence, if 

expression of MPF2-like genes in pollen is essential for male fertility in Physaleae, this 

trait should have been favored by selection during evolution. Expression in other floral 

organs could have arisen as a by-product of expression in pollen and could have been 

maintained due to “hitch-hiking” effects. Even the inflated calyx syndrome might have 

initially originated as a by-product of the selected increased male fertility, even though 

it might have become advantageous in other aspects later on, e.g. preventing 

desiccation of fruits in dry habitats. Further research is needed to better understand the 

role of MPF2-like genes in male fertility in Physaleae and other Solanaceae, e.g. by 

generating transgenic MPF2-like RNAi knockdown lines in other Physaleae species 

and in S. tuberosum. 
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4.4 Intragenic regions of MPF2-like genes 

The genomic loci of MPF2-like genes were analyzed with the program Mulan in two 

Solanum species and two Physaleae species to detect conserved and divergent regions 

in their introns. The two Solanum species did not show MPF2-like gene expression in 

sepals (STMADS16 from S. tuberosum and SlyM2 from S. lycopersicum), while the 

Physaleae species expressed the gene in sepals (WSA206 from W. somnifera and MPF2 

from P. floridana). The calculated conservation profiles revealed conserved as well as 

divergent regions in introns and the 3’UTR. The latter was only conserved between the 

two Solanum species. 

The observation that the introns 1, 3 and 5 contained several overall conserved regions 

suggests that key cis-regulatory elements could be located there. Such cis-elements 

might be involved e.g. in the regulation of vegetative expression of MPF2-like genes.   

In addition, the introns 1, 5, 7, 8, and the 3’UTR contained regions that were only 

conserved among species with a similar MPF2-like gene expression pattern in sepals. 

These regions might contain cis-regulatory elements responsible for differential 

expression of MPF2-like gene in sepals.  

In conclusion, these results support the hypothesis that also intronic regions and the 

3’UTR could play a role in transcriptional regulation of MPF2-like genes in Physaleae 

and other Solanaceae. This is further supported by the fact that intronic cis-regulatory 

elements have been described for several other MADS-box transcription factor genes, 

e.g. PLE (Davies et al. 1999), AG (Hong et al. 2003) and AGL24 (Liu et al. 2007).  

In Physaleae, the first intron might be the most promising candidate, as it was the 

largest intron and contained several conserved and divergent regions. The GUS 

expression patterns elicited by promoter::GUS and promoter-intron::GUS fusion 

constructs (see Table 3.14.2) showed that the intragenic region containing the MADS-

box and the first intron had a strong regulatory effect, and thus suggest that the intron 

does contain key cis-regulatory elements. This will be discussed in more detail in 

chapter 4.7. However, the observation that many extended promoter-intron::GUS 

fusion constructs did not lead to the expected native-like expression patterns in 

transgenic A._thaliana also raised the question whether some cis-regulatory elements 

were missing in the tested constructs. Such elements could be located in other introns: 

For instance, Liu et al. (2007) showed that in A. thaliana AP1 binds to a CArG-box in 

the third intron of AGL24, which is the putative ortholog of STMADS16 (Garcia-
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Maroto et al. 2000), to repress its expression in young floral meristems. However, this 

CArG motif could not be detected in the third intron of STMADS16 (data not shown). 

The divergence between native MPF2-like gene expression and observed GUS patterns 

can also be caused by the heterologous system A._thaliana. Future studies to 

discriminate between these two explanations might involve constructs in which an 

entire MPF2-like locus is fused to the uidA gene, or transient tests in the native 

species. 

 

4.5 CArG-motifs and heterotopic expression 

Upstream sequences and the first introns of MPF2-like genes from Physaleae and 

S._tuberosum were screened for MEF2- or N10-type CArG-boxes and other published 

CArG-motifs, since it had been hypothesized that the absence of N10-type CArG-

boxes in the upstream sequence of MPF2 from P. floridana could be causal for 

heterotopic expression of MPF2 in sepals of this species (He and Saedler 2005). Three 

strictly defined MEF2- or N10-type CArG-boxes were found in 2.5 kb upstream 

sequence of STMADS16 from S. tuberosum, yet none or only one motif of this type 

was found in MPF2-like upstream sequences from Physaleae. In this study no 

correlation between the presence and absence of these motifs (or other CArG motifs) 

and the occurrence of MPF2-like gene expression in sepals of Physaleae species was 

found. Thus the absence of expression in sepals in two of the Iochrominae species does 

not seem to be caused by MEF2- or N10-type CArG-boxes in its promoter region. 

However, regulatory changes underlying the absence of expression in sepals might not 

be the same in the two Iochrominae and S. tuberosum, which does not belong to the 

Physaleae. This hypothesis is based on the assumption that expression in sepals is 

probably a plesiomorphic trait in Physaleae and its absence in two of the Iochrominae 

may be caused by a secondary loss (Hu and Saedler 2007). Thus, it can so far not be 

excluded that the strict MEF2- or N10-type CArG-boxes in the upstream sequence of 

STMADS16 are causal for the absence of MPF2-like gene expression in sepals of 

S._tuberosum.  
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4.6 Conserved cis-regulatory elements in upstream regions  

GUS expression patterns 

The proximal part of the upstream region of MPF2-like genes could drive GUS 

expression in pollen and also often in sepals, petals and stigmas of transgenic 

A._thaliana plants (see type 1 constructs, Table 3.14.2). Longer promoters led to 

similar GUS expression patterns in floral organs, although expression in petals was 

abolished in some cases (see type 2 constructs, Table 3.14.2). These findings suggest 

that the proximal part of the upstream region probably contains motifs that can up-

regulate MPF2-like gene expression in pollen and other floral organs, while the more 

distal region might contain some negative regulatory elements repressing expression in 

certain floral organs. However, the included upstream regions were often not sufficient 

to create GUS patterns that mimic the native expression patterns. This could indicate 

that important regulatory regions are located outside of these regions or that the 

heterologous system A._thaliana is not suitable for functional analysis of MPF2-like 

promoter sequences.  Functional promoter analyses using transient expression in the 

native species could therefore help to answer this question. 

 

GUS expression patterns vs. overall conserved motifs in the upstream regions 

The in silico promoter analysis revealed that only an approximately 350 bp long region 

flanking the inferred transcription initiation sites was conserved in all analyzed 

upstream sequences of MPF2-like genes. This region contained six motifs, which were 

conserved in all Physaleae and S. tuberosum (see Fig. 3.11.3, Fig. 3.11.6 and Fig. 

4.8.1). These motifs included a binding site for the MADS-domain proteins AG, 

AGL1, AGL2, AGL3 and AGL15, a binding site for the HD-Zip I proteins ATHB1 

and ATHB5 and a binding site for the MYB transcription factor ATMYB2. Hence 

MPF2-like genes might be under the control of MADS, HD-Zip I and MYB 

transcription factors in Solanaceae. Described functions of these transcription factors 

are the following: MADS-domain transcription factors are known to define floral 

meristem and floral organ identity (Schwarz-Sommer et al. 1990, Sommer et al. 1990, 

Yanofsky et al. 1990, Theissen et al. 2000), e.g. AG specifies floral meristem, carpel 

and stamen identity, while the SEPALLATA proteins AGL2 and AGL3 are required 

for the specification of floral organ identity and for floral meristem determinacy (Pelaz 

et al. 2000, Honma and Goto 2001, Pelaz et al. 2001a, Pelaz et al. 2001b, Ditta et al. 
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2004). AGL15 may play a role during post-germinative development. Hence, the 

observed GUS expression in floral tissues of transgenic Arabidopsis could be caused 

by a MADS-domain protein binding to the conserved CArG-box and up-regulating 

expression in floral tissues. The MYB transcription factor ATMYB2 is known to 

regulate the expression of salt- and dehydration-responsive genes in A._thaliana (Urao 

et al. 1993, Abe et al. 2003), so maybe these stresses can influence MPF2-like gene 

expression. ATHB5 is a positive regulator of ABA-responsiveness (Johannesson et al. 

2003) and ATHB1 is involved in leaf development (Aoyama et al. 1995). Also MPF2-

like genes are expressed in leaves (He and Saedler 2005, Hu and Saedler 2007) and 

play a role in leaf development (He and Saedler 2005). Therefore an ATHB1-like 

protein could bind to the ATHB binding site in the promoter and up-regulate their 

expression in leaves. Unfortunately, this was not supported by GUS expression 

patterns in transgenic A. thaliana, as most promoters did not drive GUS expression in 

leaves.  

Bioinformatic analyses suggested that the core promoter might comprise only the 

conserved region flanking the transcription start. However this was not supported by 

the GUS expression patterns in A. thaliana, because native expression was not 

recapitulated, e.g. leaf expression was mostly absent. 

 

4.7 Conserved cis-regulatory elements in intragenic regions    

GUS expression patterns 

GUS expression patterns in transgenic plants seemed to be dramatically changed when 

the MADS-box and the first intron were added between the upstream sequence and the 

uidA gene (see type 3 and 4 constructs, Table 3.14.2). This finding suggests that key 

cis-regulatory elements might be located in this intragenic region. 

 

GUS expression patterns vs. conserved motifs in the MADS-box and the first intron 

The programs DIALIGN and multiTF helped to identify nine overall conserved motifs: 

In the MADS-box a binding site for bZIP910, a basic leucine zipper (bZIP) 

transcription factor, was detected and the intron contained eight overall conserved 

motifs, including a binding site for INDETERMINATE1 (ID1). These findings 

suggested that expression of MPF2-like genes in Solanaceae might be controlled by 

bZIP and ID1-like transcription factors. bZIP910 is expressed in flowers of A. majus, 
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but its function remains still speculative (Martinez-Garcia et al. 1998). The ID1 gene 

encodes a zinc finger protein, which is expressed in immature leaves and controls the 

transition to flowering in maize (Colasanti et al. 1998, Colasanti et al. 2006). Whether 

these transcription factors can bind to the detected putative cis-regulatory elements and 

do control expression of MPF2-like genes in planta has still to be confirmed, but they 

are candidates for putative trans-regulators of MPF2-like genes in Solanaceae. 

 

4.8 Loss of MPF2-like gene expression in I. australe and D. fasciculata 

One of the major goals of this thesis was to elucidate the role of cis-regulatory 

elements in differential transcriptional regulation of MPF2-like MADS-box 

transcription factors in Physaleae. The Iochrominae species V. breviflora and 

I._australe, which differ in expression of MPF2-like genes in sepals, seemed to be a 

suitable system, where the changes underlying a secondary loss of MPF2-like gene 

expression in sepals could be studied. 

 

GUS expression patterns 

In transgenic A. thaliana plants short promoter::GUS fusion constructs (type 1) 

containing MPF2-like upstream sequences from V. breviflora as well as from 

I._australe could drive expression in all four floral whorls. Also the extended 

promoter::GUS fusion constructs (type 2) from both species led to GUS expression in 

sepals and pollen, but some alleles abolished GUS expression in petals and carpels. 

Addition of the MADS-box and the first intron of I. australe further restricted floral 

expression to solely pollen expression and also up-regulated GUS expression in rosette 

leaf veins. The resulting GUS pattern strongly resembled the native MPF2-like gene 

expression in I. australe. Unfortunately, the addition of the MADS-box and the first 

intron of V. breviflora produced paradoxical GUS expression patterns, although some 

of these constructs still drove GUS expression in sepals. 

These results suggest that the proximal upstream regions contain elements up-

regulating floral expression in all floral whorls and that in some alleles the distal 

upstream regions contain elements, which can down-regulate expression in petals and 

carpels. Further, the intragenic region (MADS-box and first intron) of IauM201_1 

from I. australe probably has a strong regulatory effect and can down-regulate floral 

expression in sepals and up-regulate expression in rosette leaf veins. This effect was 



DISCUSSION 

85 

probably caused by the intron and not by the MADS-box of IauM201_1, since the 

latter region is highly conserved between different Iochrominae species. Therefore the 

first intron of IauM201_1 might contain cis-elements, which can repress expression in 

sepals and which are responsible for the loss of MPF2-like gene expression in this 

species.  

 

GUS expression patterns vs. divergent motifs 

The bioinformatic analyses revealed several motifs, which were either only conserved 

in upstream sequences of MPF2-like genes from V. breviflora or in upstream 

sequences of MPF2-like genes from I. australe and D. fasciculata (see Fig. 4.8.1). 

However, as upstream sequences from all Iochrominae generated similar GUS 

expression patterns in floral organs of transgenic A. thaliana, these motifs did not seem 

to be involved in differential MPF2-like gene expression in sepals of Iochrominae. 

Further, the first introns of MPF2-like genes from I. australe and D. fasciculata 

contained eight conserved motifs, which were all absent in V. breviflora and other 

Physaleae. Since the first intron of an MPF2-like gene from I. australe was shown to 

repress GUS expression in sepals (and to up-regulate leaf expression) in transgenic 

A._thaliana, these motifs were hot candidates for cis-regulatory elements underlying 

the absence of MPF2-like gene expression in I. australe and D. fasciculata. Among the 

conserved motifs were: a binding site for the MADS-domain protein MADSB, a 

Sinapis homologue of AGAMOUS-LIKE 8 (AGL8) / FRUITFULL (FUL) (Menzel et 

al. 1996); a binding site for the MADS-domain transcription factor AGL3; a binding 

site for the common plant regulatory factor 2 (CPRF2), a light-regulated bZIP-

transcription factor from parsley (Petroselinum crispum L.); a binding site for ID1 and 

a binding site for RAV1, an AP2/B3 domain transcription factor. Maybe one of these 

transcription factors can bind to the first introns of MPF2-like genes in I. australe and 

D. fasciculata and can thereby repress their expression in sepals. 
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4.9 Outlook 

In this study key cis-regulatory regions of MPF2-like MADS-box genes have been 

identified. A detailed overview about overall conserved and divergent motifs in these 

regions was given. These predictions were based on a considerable large sequence 

dataset of wild and cultivated Solanaceae, which should allow drawing general 

conclusions for the tribe Physaleae and maybe even for other Solanaceae. The next 

step should be the functional analysis of the identified motifs (i) to confirm, which of 

the detected motifs are functional cis-elements, (ii) to elucidate their individual 

functions and (iii) to identify those motifs, which underlie differential transcriptional 

regulation of MPF2-like gene expression. This could be done using the optimized 

protocol for transient expression in floral tissues of Solanaceae (see chapter 3.15) and 

promoter::IGUS and promoter-intron::IGUS fusion constructs, in which individual 

motifs are mutated. Finally, this should further improve knowledge on the role of cis-

regulatory elements in transcriptional regulation of MPF2-like genes. 
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5. Abstract 

Species with large inflated lantern-like calyces occur in several genera of the family 

Solanaceae. In Physalis, this morphological novelty has been termed “Chinese lantern“ 

or “Inflated-Calyx-Syndrome“ (ICS). It has been shown that in Physalis floridana the 

MADS-box transcription factor MPF2 is expressed in floral organs, while expression 

of its ortholog STMADS16 from Solanum tuberosum is solely restricted to vegetative 

tissues. Expression of MPF2 in floral organs is not only important for formation of the 

ICS, but also plays a role in male fertility in P._floridana. However, whether the 

recruitment of this transcription factor into a new context was achieved by changes in 

cis-regulatory elements or trans-acting factors is not known. Expression of MPF2-like 

genes in sepals seems to be a plesiomorphic trait in the Physaleae, but in several 

Iochrominae like Iochroma australe and Dunalia fasciculata secondary losses 

occurred. This was apparently not the case in its close relative Vassobia breviflora. 

This project was initiated to provide insights concerning the role of cis-regulatory 

elements in differential transcriptional regulation of MPF2-like MADS-box 

transcription factors in Physaleae with an emphasis on the Iochrominae. MPF2-like 

genes and their upstream and first intron sequences were isolated from several species. 

Bioinformatic analyses indicated that a short region upstream of the MADS-domain 

and regions in the first intron were conserved in all studied species and contained 

several known transcription factor binding sites. Further, I. australe and D. fasciculata 

shared additional conserved motifs, which were absent in other Physaleae. Functional 

analysis using promoter::GUS and promoter-intron::GUS fusion constructs in 

transgenic A. thaliana suggested that the conserved region upstream of the MADS-box 

might contain cis-elements, which can up-regulate floral expression of MPF2-like 

genes, while the first intron of I. australe can repress expression in sepals. Thus cis-

elements in this region might be responsible for the loss of expression in this species. 

A more detailed expression study revealed that the spatial patterning of floral 

expression of MPF2-like genes is much more variable in Iochrominae than expected. 

Detection of MPF2-like gene expression in mature pollen of several Physaleae species 

suggests a more common role of these genes in male fertility. Together with further 

results this gave rise to the hypothesis that initially expression in pollen, improving 

male fertility, might have been the advantageous and therefore selected trait, while the 
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widespread MPF2-like gene expression in sepals of non-ICS species might have been 

the result of “hitch-hiking” effects.  
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6. Zusammenfassung 

Viele Genera der Familie der Nachtschattengewächse (Solanaceae) beherbergen Arten, 

deren stark vergrößerte Kelchblätter eine laternenartige Hüllstruktur ausbilden. Diese 

morphologische Neuheit wird bei Physalis „Chinesische Laterne“ oder auch „Inflated-

Calyx-Syndrome“ (ICS) genannt. In Physalis floridana wurde gezeigt, dass der 

MADS-Box Transkriptionsfaktor MPF2 in floralen Organen exprimiert wird, während 

die Expression des orthologen Gens STMADS16 in Solanum tuberosum auf vegetative 

Gewebe beschränkt ist. Die Expression von MPF2 in der Blüte spielt nicht nur bei der 

Laternenbildung eine Rolle, sondern scheint auch ein wichtiger Bestandteil des 

männlichen Fertilitätsprogramms von P. floridana zu sein. Es ist bisher nicht bekannt, 

ob die Rekrutierung dieses Transkriptionsfaktors und seine Integration in einen neuen 

Kontext durch Änderungen in cis- oder trans-regulatorischen Elementen erfolgten. Im 

Tribus Physaleae scheint es sich bei der Expression von MPF2-ähnlichen Genen in 

Sepalen um ein plesiomorphes Merkmal zu handeln, welches in einigen Iochrominae-

Arten wie Iochroma australe und Dunalia fasciculata wahrscheinlich durch sekundäre 

Veränderungen wieder verloren wurde. Dies war offensichtlich in der nahverwandten 

Art Vassobia breviflora nicht der Fall. 

Das vorgestellte Projekt wurde initiiert, um zu erforschen, welche Rolle cis-Elemente 

bei der Regulierung der Transkription von MPF2-ähnlichen MADS-Box 

Transkriptionsfaktoren im Tribus Physaleae und insbesondere im Untertribus 

Iochrominae spielen. MPF2-ähnliche Gene, ihre stromaufwärts gelegenen putativen 

cis-regulatorischen Bereiche sowie das erste Intron in der codierenden Sequenz wurden 

isoliert und mit verschiedenen bioinformatischen Programmen analysiert. Die 

Ergebnisse zeigten, dass eine kurze Region vor der MADS-Box und weitere Regionen 

im ersten Intron in allen untersuchten Arten konserviert waren. Diese Regionen 

enthielten einige bekannte Bindemotive für Transkriptionsfaktoren. Des Weiteren 

wurden in I. australe and D. fasciculata konservierte Motive gefunden, die in allen 

anderen untersuchten Physaleae-Arten fehlten. Die funktionelle Analyse mittels 

Promoter::GUS und Promoter-Intron::GUS Fusions-Konstrukten in transgenen 

Arabidopsis thaliana-Pflanzen deutete darauf hin, dass die hochkonservierte Region 

vor der MADS-Box cis-Elemente zu enthalten scheint, welche die Expression des 

Gens in floralen Organen hochregulieren können, während das erste Intron von 
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I._australe scheinbar die Expression des Gens in Sepalen unterdrücken kann. cis-

regulatorische Elemente in diesem Bereich könnten dafür verantwortlich sein. 

Eine detailliertere Expressionsstudie zeigte, dass die räumliche Ausbreitung der 

floralen Genexpression in Iochrominae-Arten sehr viel variabler zu sein scheint, als 

zuvor angenommen wurde. Die Entdeckung von Expression MPF2-ähnlicher Gene in 

Pollen mehrerer Physaleae-Arten deutete an, dass diese Gene generell eine sehr 

wichtige Rolle im männlichen Fertilitätsprogramm von Physaleae-Arten spielen 

könnten. Dieses und weitere Ergebnisse führten zu der Hypothese, dass eventuell 

primär die Genexpression in Pollen, welche die männliche Fertilität verbesserte, das 

vorteilhafte und deswegen selektierte Merkmal darstellte, während die auch in ICS-

losen Arten recht verbreitete Genexpression in Sepalen ein Ergebnis sogenannter 

„hitch-hiking“-Effekte sein könnte.  
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8. Supplement 

8.1 Supplementary tables  

 

Table 8.1.1: Genbank accession numbers of downloaded MPF2-like ESTs and 

mRNA sequences containing partial coding sequences 

Cultivar Species EST/mRNA, partial cds  

Cap002 Capsicum baccatum L.  EF395183 (CbaM201_1) 

Du001 Dunalia fasciculata (Miers) Sleumer EF395185 (DfaM201_3)              

I001 Iochroma australe Griseb.  EF395186 (IauM201_2) 

M001 Margaranthus solanaceus Schltdl.  EF395189 (MsoM201_1) 

P001 Physalis acutifolia (Miers) Sandwith  EU292995 (PacM201_3) 

P011 Physalis alkekengi L. var. alkekengi  EF395198 (PalM211_1) 

P022 Physalis crassifolia Benth.  EF395221 (PcrM222_1) 

P030 Physalis fuscomaculata Dunal  EF395208 (PfuM230_1) 

P035 Physalis lanceifolia Nees  EF395213 (PlaM235_1) 

P039 Physalis minima L.  EF395211 (PmiM239_1) 

EF395212 (PmiM239_2) 

P055 Physalis philadelphica   EF395215 (PphM255_1) 

TA496 Solanum lycopersicum  AI482810 

AI482813 

AW929235 

Micro-Tom Solanum lycopersicum DB685265 

R11-12 Solanum lycopersicum AI773429 
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Table 8.1.2: Genbank accession numbers of downloaded MPF2-like mRNAs 

containing complete cds 

Cultivar Species mRNA, complete cds 

P105 Physalis peruviana  AY643731 (MPP3) 

AY643732 (MPP4) 

P106 Physalis floridana /Physalis pubescens AY643734 (MPF2) 

S032 Solanum tuberosum  AY643733 (STMADS16) 

T001  Tubocapsicum anomalum (Franch. & Sav.) 

Makino 

FM956485 (TAB201) 

V001 Vassobia breviflora (Sendtn.) A.T.Hunz  EF395177 (VbrM201_1) 

W006 Withania somnifera (L.) Dunal  FM956486 (WSA206) 

FM956487 (WSB206) 

Wi001 Witheringia coccoloboides (Dammer) 

A.T.Hunz  

EF395175 (WIcoM201_3) 

Wi002 Witheringia solanacea L’Her.  EF395174 (WIsoM202_3) 

- Solanum macrocarpon AY643730 (MSM2) 

 

 

Table 8.1.3: Genbank accession numbers of downloaded MPF2-like genomic 

sequences  

Cultivar Species Genomic sequences 

Heinz 1706 Solanum lycopersicon Clone containing locus 

CU468638 (SlyM2) 

P106 Physalis floridana/pubescens Locus + 5’upstream  

AY643735 (MPF2) 

S032 Solanum tuberosum  Locus + 5’upstream  

AY643736 (STMADS16) 

T001  Tubocapsicum anomalum (Franch. & Sav.) 

Makino 

Locus  

FM956484 (TAB201) 

W006 Withania somnifera (L.) Dunal  Locus  

FM956482 (WSA206) 

Locus  

FM956483 (WSB206) 
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Table 8.1.4: Genbank accession numbers of MPF2-like sequences from 

P._acutifolia  

Cultivar Species Type  Sequences 

P001 Physalis 

acutifolia 

mRNA, containing 

complete cds 

FN356424 (PacM201_1) 

 

  5’ upstream sequence FN356448  (pPacM201_1) 

FN356449  (pPacM201_2) 

The sequences were isolated in this study, but not used for further analysis, since the MPF2-

like gene expression pattern in sepals of P. acutifolia is still unclear. 

 

Table 8.1.5: SlyM2 - hypothetical MPF2-like mRNA from S. lycopersicum 

(cultivar: Heinz 1706) 

AACAACAAGTGAATAGTACTTATTCCATCTCCAAAATTAGGTCTTACATATTTCT

ATACTCAATTATTGGCCCATTTTTGTATAGGTTTTCTAACTAGATCTAAAGTTTTC

CTCTTTTATTAGGGTTTCTTACAATTTCTTACTATTTATATCTTTTGTGAGATTTCT

TAGAAAGTTTGAGGAAAGATAATTATCTTCTTCGACCTGTTAAGGATGGCAAGG

GAAAAGATAAAAATAAAAAAGATAGATAATATAACAGCAAGACAAGTAACATT

TTCAAAGAGGAGAAGAGGGCTTTTTAAGAAAGCTGAAGAGCTTTCTGTTCTTTGT

GATGCTGATGTTGCTCTTATCATTTTTTCTGCTACTGGAAAGCTATTTGATTTTGC

TAGCACCAGCATGAAGGATATTCTTGGAAAGTATAAGTTGCAATCAGCTAGCCTT

GAGAAAGTTGACCAACCTTCCCTTGATTTACAGCTAGAGAATAGCCTCAACATG

AGATTAAGCAAGCAGGTAGCTGATAAAACTCGTGAGCTCAGGCAGATGAGAGGT

GAGGAACTTGAAGGATTGAGTTTAGAAGAATTACAACAAATTGAGAAAAGACTT

GAAGCTGGTTTCAACCGTGTGCTTGAGATTAAGGGTAAACGAATTATGGATGAA

ATTACCAACCTCCAAAGAAAGGGTGCTGAGCTGATGGAAGAAAACAAACAATTG

AAACACAAAATGGAAATTATGAAAAAAGGGAAATTGCCTTTAGTGACTGACATG

GTGATGGAAGAGGGCCAATCATCTGAGTCTATAATTACAACTAATAATCCTGATC

AAGATGATTCATCAAATGCATCTTTGAAGTTAGGTGGTACTACTGCAGTTGAAGA

TGATTGCTCAATTACATCTTTAAAGTTAGGGCTACCATTCAGCTAACAAACTCAA

AGGAGGAAGCTTTTGTTGAAGATTGTACTAATAATAATTTTTGGATGATAACAAT

CAGTGGCATATATATATATATTTGCCTTCTTTTGGAAAAAATATTACATTGGAAT

ATAATTGTCACTGCTTAATTCTACTATGTATTATATGTATGTATGTGGACAACTTG

ACAAAGGGCATAATGCAGATTGATTAACCATCTCATTTTAGGTCTCGTGTGTGGG

CTTCAATTTCTATAATATAGTATATGTATTTACGTGAA 

5’UTR in blue, coding region in red, 3’UTR in black, start + stop codons underlined 
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Table 8.1.6: List of taxa (adapted from Hu and Saedler 2007)   

Cultivar Species Acc. No. Native * Source ** 

Cap002 Capsicum baccatum L.  904750135  PE, wild   BGN 

Du001 Dunalia fasciculata (Miers) 

Sleumer 

904750145  BO, wild  BGN  

I001 Iochroma australe Griseb.  814750022  AR, wild  BGN 

M001 Margaranthus solanaceus Schltdl.  904750101  MX, wild  BGN 

P001 Physalis acutifolia (Miers) 

Sandwith  

974750059  US, wild BGN 

P011 Physalis alkekengi L. var. 

alkekengi  

914750015  AT, wild  BGN 

P022 Physalis crassifolia Benth.  974750142  US, wild  BGN  

P030 Physalis fuscomaculata Dunal  904750141  not wild  BGN 

P035 Physalis lanceifolia Nees  944750048  not wild  BGN 

P039 Physalis minima L.  884750095  not wild  BGN 

P055 Physalis philadelphica   PI1 97691 

97GI  

MX, wild  PGRU 

P105 Physalis peruviana  P105 not wild  MPIZSB 

P106 Physalis floridana  P106 not wild  MPIZSB 

S032 Solanum tuberosum  P40  wild  MPIZSB 

T001  Tubocapsicum anomalum 

(Franch. & Sav.) Makino 

904750027  CN , wild  BGN  

V001 Vassobia breviflora (Sendtn.) 

A.T.Hunz  

804750001  not wild  BGN 

W002 Withania coagulans (Stocks) 

Dunal  

914750053  not wild  BGN  

W006 Withania somnifera (L.) Dunal  894750106  CY, wild  BGN  

W007 Withania somnifera (L.) Dunal  904750143  not wild  BGN  

Wi001 Witheringia coccoloboides 

(Dammer) A.T.Hunz  

814750081  CO, wild  BGN 

Wi002 Witheringia solanacea L’Her.  814750082  PA, wild  BGN  

* Native = abbreviation name of the country, where the accession was collected (wild = wild 
origin): AR, Argentina; AT, Austria; BO, Bolivia; CO, Colombia; CN, China; CY, Cyprus; 
MX, Mexico; PA, Panama; PE, Peru; US, USA.  
** Source = seed banks providing the seeds: BGN, Botanical & Experimental Garden of 
Radboud University, Nijmegen, Netherlands; MPIZSB, seed bank of the Max-Planck-Institute 
for Plant Breeding Research; PGRU, Plant Genetic Resources Unit, USDA-ARS.  
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Table 8.1.7: Oligonucleotide primers (-F: forward primer, -R: reverse primer) 

Name Sequence 5’->3’ Remarks 

Primers for RAGE (MPF2-like upstream sequences) 

P1-R GAGCAACATCAGCATCAAAAGAACAGAAAG 1. PCR, 

universal, 

P2-R CCTCTTCTCCTCTTTGAAAATGTCACTTGTC Nested, 

universal 

   

Primers for 5’RACE (MPF2-like cDNAs) 

P1-R GAGCAACATCAGCATCAAAAGAACAGAAAG universal 

P2-R CCTCTTCTCCTCTTTGAAAATGTCACTTGTC universal 

PhR1-R CWGABTGCAAMTTATATTTTCCAAGG Physalis 

PhR2-R KGAYATYHTTCATGCTGGAGCTA Physalis 

PhR3-R TGCTGGAGCTAGMRAAWTCAAAGAG Physalis 

22R1-R GACTGCAACTTATATTTTTCAATGAT P022 

C2R3-R AGCAAATTCAAAAAGCTTTCCAGTA Cap002 

C2R2-R AAGGATATCATTCATGCTGGAGCTA Cap002 

C2R1-R CTCATGGCTAGATGTCTGCAACTTA Cap002 

   

Primers for 3’RACE (MPF2-like cDNAs) 

3R01-F GTGAACAGTGCTGATTCCATCTCC Du001, Wi002 

3R02-F ATGGCAAGAGAGAAGATCAAGATAAGGAAG P011 

3R03-F ATGGCAAGAGAGAAGATCAAGATAAAGAAG Du001 

3R04-F ATGGCAAGAGAGAAGATAAAGATAAAGAAG Wi001, Wi002 

16F2-F ACAGCAAGRCARGTRACATTTTCAAAG Wi001, P011 

16F3-F GTTCTYTGTGATGCTGATGTTGCTCTYAT universal 

   

Primers for MPF2-like upstream sequence and intron amplification 

P2-R CCTCTTCTCCTCTTTGAAAATGTCACTTGTC MADS, 

universal 

Vfw1-F ATATTTCATGCCTGGAAATGATGACAAAAG Iochrominae 

Vrv1-R GTTGGTCAACTTTYTCAAAGCTAGCTGAMT I-region, 

Iochrominae 

P11F-F AGAGGAAGAAGAGGGAACTTACCACAAATG P011 

P11R-R CAACTTTCTCAAGGTTAGCTGACTGCAACT I-region, P011 
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Wi16-F CAAAGCAACAGTAGTGCATTAACAA Wi001 

Wi2F-F GAAAAATGGCCAAAAATAGCAAACATAAGG Wi002 

Wi2R-R ATCTTTCTCAAGGTTAGCTGAGTGCAACTT I-region, 

Wi002 

p35f-F CCTTTAAGTTTGGTATTTACACGAGA Physalis, 

M001 

M107-F TTTCGTTCCATTTTCACTAATTTTCTCACA Physalis, 

M001 

35f2-F TTAGCCTCCAATGCATTAAATATTTGTCCT P035 

106r-R AGCAGACTGCAACTTATATTTTCCAAGGAT I-region, 

Physalis 

   

Primers for RT-PCR (Expression analysis) 

M-F CTCAACRTGAGATTAMGCAAGCA MPF2-like; 

universal 

M-R AGASTCAGATGATTGRCCTTCTT MPF2-like; 

universal 

18S-F TGCAGTTAAAAAGCTCGTAGTTG 18S rRNA; 

universal 

18S-R ACATCTAAGGGCATCACAGAC 18S rRNA; 

universal 

   

Primers for Iochrominae promoter constructs (HindIII) 

VfwC-F TTTTAAGCTTATATTTCATGCCTGGAAATGATGACA Type 2+4 

Iochrominae 

DIVK-F ATGATCGAAGCTTTCATTTTCTTAATTTTCA Type 1+3 

Iochrominae 

Vr1C-R TCTTAAGCTTGATCTTCTCTCTTGCCAATCTAAAAA Type 1+2; 

VbrM201_1/2, 

DfaM201_1 

VrMC-R TCTTAAGCTTGATCTTCTCTCTTGCCAATCTTA Type 1+2; 

IauM201_1/2, 

DfaM201_2 

VrIN-R TTTAAGCTTGTCAACTTTTTCAAAGCTAGCTGACTG Type 3+4; 

Iochrominae 
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Primers for P. alkekengi promoter constructs (HindIII) 

P11F-F ATAAAGCTTAGAGGAAGAAGAGGGAACTTACCACAA Type 2+4 

P11K-F ACAAAGCTTTAAAGAAGGCATGTCCCATAA Type 1+3 

P11R-R TCTTAAGCTTGATCTTCTCTCTTGCCAACCTAAAAA Type 1+2 

P11I-R AAAAAGCTTCAACTTTCTCAAGGTTAGCTGACTG Type 3+4 

   

Primers for W. solanacea promoter constructs (AvrII⇒XbaI) 

W2FA-F GAACCTAGGCCAAAAATAGCAAACATAAGG Type 2+4 

W2TA-R TATCCTAGGCTTCTCTCTTGCCAAATTGATCC Type 2 

W2IA-R TCTTTCTCCTAGGTAGCTGAGTGCAACTT Type 4 

   

Primers for W. coccoloboides promoter constructs (HindIII) 

kfw2-F GCTTCAAAGCTTCAGTAGTGCATTAACAACCA Type 1/2 

KMAD-R TCTTCTCTCAAGCTTTATTGATCCCCCTTT Type 1/2 

   

Primers for P. lanceifolia promoter constructs (XmaI) 

35FC-F ATTCACCCGGGATTTTAGCCTCCAATG Type 2 

35FK-F TGAAATAAAAATAGACCCGGGAGTGGTTAAT Type 3 

35RM-R TCTTCTCCCGGGCCAATCTATACAAAA Type 2 

35RI-R AACTTATATTTTCCCGGGATATCCTTCAT Type 3 

   

Primers for MPF2-like-A gene (WSA206) probe for Southern blotting 

K122-F GCCCTTAACTAACAGACATGGTGATG  

K123-R GTCTCCATCCAAAAGTTATTAGTACAATC  

   

Primers for MPF2-like-B gene (WSB206) probe for Southern blotting 

K124-F CCTTAGTAATAGACATGGATTGCATGGTG  

K125-R CTTCAACAAAGCTTCCTTCATTGAGTTAG  
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8.2 Supplementary figures 

 

Figure 8.2.1: Alignment of MPF2-like cDNA sequences 
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Figure 8.2.2: Alignment of MPF2-like protein sequences 
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Figure 8.2.3: Alignment of upstream sequences of MPF2-like genes 
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8.3 Abbreviations 

 

%   percent  

°C   degree Celsius  

3'   three prime end of a DNA fragment  

35S   35S promotor from the Cauliflower Mosaic virus  

5'   five prime end of a DNA fragment  

Acc.  Accession 

AGL  AGAMOUS-LIKE 

BLAST  Basic Local Alignment Search Tool  

bp   base pair  

CArG   C A/T-rich G motif  

cDNA   complementary DNA  

cds  coding sequence 

CTAB  hexadecyl-trimethyl-ammonium bromide  

Col   Arabidopsis thaliana Columbia accession  

DMF  dimethylformamide  

DMSO  dimethylsulfoxide  

DNA   desoxyribonucleic acid  

dNTP  deoxyribonucleotide triphosphate 

ECR  Evolutionarily Conserved Region(s)  

EDTA        ethylenediaminetetraacetic acid  

et al.   et alii/aliae (Latin: “and others“) 

Fig.   Figure  

GUS   ß-Glucuronidase  

h  hour 

kb   kilobase  

µ micro (10-6) 

m milli (10-3) 

M molar (mol/m3) 

MADS  acronym for the four founder proteins MCM1 (S. cerevisiae), 

AGAMOUS (A. thaliana), DEFICIENS (A. majus) and SRF (H. 

sapiens)  

MES  2-(N-morpholino) ethanesulfonic acid 
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min  minute 

MS  Murashige & Skoog 

ORF   open reading frame  

PCR   polymerase chain reaction  

RACE   rapid amplification of cDNA ends  

RAGE  rapid amplification of genomic DNA ends 

RT  room temperature (20 to 23.5 °C with an average of 21 °C) 

rpm   rounds  per minute  

RT-PCR  reverse transcriptase PCR  

SRE   serum response element  

UTR   untranslated region  

Vol  volume 

wt   wild type  
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