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Summary 
 

In the last years, lateral compartmentalization has become a well-recognized topic in plant 

membrane research. Especially the membrane raft hypothesis receives particular attention, 

since it gives a conceivable explanation for the spatial and temporal organization of 

biological membranes. The aim of the work presented here was the investigation of the 

possible involvement of membrane rafts in biotic stress responses. In this study we 

elucidated in a quantitative proteomics approach immediate-early protein dynamics in 

plasma membrane-derived detergent-resistant membranes (DRMs) in response to bacterial 

flagellin. Proton ATPases and receptor-like kinases were the most prominently enriched 

protein classes. Strikingly, the flagellin receptor FLS2 was consistently relocalized to 

DMRs, indicative of its possible recruitment to membrane rafts prior to ligand-induced 

endocytosis. We performed reverse genetics and pharmacological interference to address 

the potential contribution of the identified proteins in flg22-triggered responses and 

thereby identified two novel players of elicitor-dependent oxidative burst control. In a 

second approach we aimed to elucidate the potential role of membrane rafts and/or sterols 

during the cellular compartmentalization process in the context of the Arabidopsis–

powdery mildew interaction. We showed that the SNARE AtPEN1, which focally 

accumulates at fungal entry sites, partially associated with DRMs in a sterol-dependent 

manner. A complementary approach aiming at the genetic interference with membrane raft 

function revealed that a subset of sterol biosynthesis mutants displayed enhanced 

resistance towards the adapted powdery mildew pathogen, Golovinomyces orontii. This 

could be partially correlated with an aberrant focal accumulation of GFP-AtPEN1 

underneath fungal attack sites, suggesting that the proper sterol composition, which might 

affect membrane raft integrity, could be important for the focal accumulation of GFP-

AtPEN1 at attempted fungal entry sites. In sum our data indicate that membrane rafts 

might play a role in the compartmentalization of biological processes at the plasma 

membrane in response to biotic stimuli. 
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Zusammenfassung 
 

Seit einigen Jahren wird auch in Pflanzen verstärkt die Kompartimentierung von 

Membranen in verschiedene Domänen betrachtet. Insbesondere die „membrane raft” 

Hypothese wird viel diskutiert, da sie eine gute Erklärung für die räumliche und zeitliche 

Organisation von biologische Membranen liefert. Im Rahmen dieser Arbeit sollte die 

mögliche Rolle von „membrane rafts“ in biotischen Stressantworten aufgeklärt werden. 

Mittels quantitativer Proteomik haben wir die Proteindynamik in Detergenzien-resistenten-

Membran (DRM)-Präparationen der Plasmamembran als Folge von Behandlung mit 

bakteriellem Flagellin untersucht. Protonen-ATPasen und Rezeptor-ähnliche Kinasen 

waren die am stärksten in DRMs angereicherten Proteinklassen. Auffallend war die 

konsistente Relokalisierung des Flagellin Rezeptors FLS2. Dies deutet die mögliche 

Rekrutierung von FLS2 in „membrane rafts“ vor darauf folgender Endozytose an. Anhand 

reverser Genetik und chemischer Interferenz konnten wir zwei neue Komponenten in dem 

flg22 induzierten respiratorischen Burst identifizieren. 

In einem zweiten Ansatz haben wir zelluläre Kompartimentierungprozesse in der 

Arabidopsis–Mehltau Interaktion untersucht. Wir konnten zeigen, dass das SNARE 

AtPEN1, das unter Angriffsstellen von Mehltausporen akkumuliert, partiell und 

sterolabhängig mit DRMs assoziiert ist. In einem komplementären genetischen Ansatz 

konnten wir Sterolbiosynthesemutanten identifizieren, die erhöhte Resistenz gegenüber 

einem adaptierten Mehltaupilz (Golovinomyces orontii) ausweisen. Der Resistenzphänotyp 

konnte teilweise mit einer veränderten fokalen Akkumulation von GFP-AtPEN1 unter den 

pilzlichen Angriffsstellen korreliert werden. Dies deutet an, dass eine korrekte 

Sterolzusammensetzung die Vorraussetzung für die Funktionalität potentieller „membrane 

rafts“ sein könnte und somit möglicherweise in der fokalen Akkumulation von GFP-

AtPEN1 eine Rolle spielt. Zusammenfassend deuten unsere Daten auf eine Rolle für 

„membrane rafts“ in der pathogeninduzierten Membrankompartimentierung hin. 
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1. Introduction 

 

Since Singer and Nicolson proposed their fluid mosaic model on biological membranes 

(Singer and Nicolson, 1972) our picture of such membranes has considerably evolved. 

Today, it is accepted that membranes are highly organized structures providing the 

necessary heterogeneity to compartmentalize cellular processes (Jacobson et al., 2007). It 

is plausible that compartmentalization and thereby specialization of cellular processes at 

the level of biological membranes is essential for the development of organisms and their 

response to environmental signals. To achieve this membrane specialization, a lateral 

organization of biological membranes is required. However, so far there is no consensus on 

the underlying molecular principles and mechanisms driving lateral heterogeneity (Ikonen, 

2008). The membrane raft hypothesis is a conceivable explanation for the spatial and 

temporal organization of membranes (Simons and Ikonen, 1997). Membrane rafts are 

thought to form distinct domains within the lipid bilayer through the tight interaction of 

sphingolipids and sterols. Proteins are assumed to be specifically included or excluded 

from membrane rafts, thereby providing a mechanism for confined protein-clustering 

(Ikonen, 2008). The membrane raft hypothesis is based on the phase behavior of model 

membranes, in which liquid-ordered (lo) and liquid-disordered (ld) phases can coexist. 

Sterols have the ability to drive the formation of lo-phases; however, the precise 

mechanism of phase separation is unclear (Hancock, 2006). The controversy about the 

membrane raft hypothesis arises from observations of macroscopically visible coexisting 

phases in model membranes but not in resting (non-stimulated) living cells. Yet strong 

evidence has accumulated regarding the existence of very small and highly dynamic lo-

domains in biological membranes (Jacobson et al., 2007). This led to the revised definition 

of membrane rafts as “small (10–200 nm), heterogeneous, highly dynamic, sterol-enriched 

and sphingolipid-enriched domains that compartmentalize cellular processes. Small rafts 

can sometimes be stabilized to form larger platforms through protein–protein and protein–

lipid interactions” (Pike, 2006). To finally help resolve the open questions concerning size, 

composition, stability, mechanism of formation and physical properties of membrane rafts, 

new technologies and concepts will probably be needed (Jacobson et al., 2007; Ikonen, 

2008; van Meer et al., 2008). At the same time, researchers mainly agree that whether 

small membrane rafts preexist or not, large-scale phase separation can occur through either 

clustering of preexisting rafts or the stabilization and coalescence of transient rafts 
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((Kenworthy et al., 2004; van Meer et al., 2008); Figure 1). Examples for such induced 

large-scale clustering in eukaryotic cells are the vertebrate immunological synapse (Gaus 

et al., 2005; Seminario and Bunnell, 2008), projection sites of mating yeast cells (Bagnat 

and Simons, 2002; Proszynski et al., 2006), cell adhesion sites (Gaus et al., 2006) and the 

tips of growing hyphae in Candida albicans (Martin and Konopka, 2004). In addition to 

the membrane raft hypothesis the meshwork hypothesis also explains the 

compartmentalization of plasma membranes (PMs). In this model it is assumed that the 

cortical actin cytoskeleton (so called fences) and transmembrane proteins anchored to it (so 

called pickets) restrict the lateral diffusion of transmembrane proteins (Marguet et al., 

2006). Although the latter model does not account for the compartmentalization of lipids, it 

is conceivable that the lateral mobility of (trans-) membrane proteins is modulated based 

on both lipid-dependent and actin-dependent organization forces (Lenne et al., 2006). 

In plant research, membrane domains and dynamics, cell polarity and the role of lipids and 

sterols therein have gained increasing attention in the last few years. Cell polarization and 

membrane domain formation are indispensable for plants since they rely on cellular and 

subcellular asymmetry during development. Polar growth of the pollen tube and root hairs 

depend on cell polarization as well as transporters that are focally localized in membrane 

domains and that seem to be regulated thereby (Grossmann et al., 2006; Sutter et al., 2006; 

Boutte et al., 2007; Homann et al., 2007; Kost, 2008). Furthermore, plasticity and the 

ability to polarize the whole cell including membrane proteins is needed for the plant cells’ 

response to environmental stimuli, such as pathogen attack (Assaad et al., 2004; Bhat et al., 

2005; Opalski et al., 2005; Kwon et al., 2008a). Since the mechanisms underlying these 

membrane polarizations are still largely unknown it will be interesting to investigate the 

possible involvement of membrane rafts in plant membrane heterogeneity. Membrane raft 

research in plants may help to substantiate key findings obtained using animal systems but 

could also open up new possibilities of critically testing the membrane raft hypothesis by 

employing forward and reverse genetic approaches in a multicellular organism. Here, we 

review the recent findings on membrane domains and cell polarity in plants with a special 

focus on the possible role for membrane rafts in various biological processes. 
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Figure 1. Models for membrane raft dynamics. Models for diffusional mobility of membrane 
rafts (yellow), raft-associated proteins (red), and nonraft proteins (blue). (1) Stable, immobile rafts. 
Hypothetical barriers to membrane raft diffusion are depicted by red lines. (2) Stable, mobile rafts. 
(3) Dynamic partitioning of raft proteins. (4) No rafts. For simplicity, putative barriers to individual 
protein diffusion are not depicted. Copyright 2004 (Kenworthy et al., 2004), published by The 
Rockefeller University Press. 
 

 

1.1 Model Membranes 
 

In contrast to animal membranes where cholesterol is the predominant sterol, plant 

membranes comprise a more complex sterol mixture. The main sterols in Arabidopsis cells 

are sitosterol, stigmasterol and campesterol, while cholesterol contributes only a minor 

proportion. One of the basic prerequisites for the existence of membrane rafts in plant cells 

is the induction of phase separation by phytosterols. The ability of sterols to pack tightly 

with saturated lipids is the key for their domain-forming activity (Xu and London, 2000). 

To date, several groups described the domain-promoting activity of phytosterols in two-

component and three-component lipid mixtures. They have shown that the order of 

enriched domains and their stability depends on the structure of the partitioning sterol (Xu 

et al., 2001; Halling and Slotte, 2004; Wu et al., 2006; Beck et al., 2007; Hac-Wydro et al., 

2007). However, probably owing to differences in experimental systems and their methods, 

no clear ranking of the sterols concerning their domain-forming ability, domain-stabilizing 

activity or the order of the induced domains has been established. Beck and coworkers 

demonstrated that the dynamics of three-component mixtures resembling plant membranes 

are less sensitive to temperature changes than mixtures mimicking animal or fungal 

membranes (Beck et al., 2007). The domain stability over a wider temperature range 

suggests that plants evolved a superior mechanism to cope with changing temperatures, 
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ensuring proper functioning of membrane-associated processes. This feature is possibly 

one of the many adaptations of plants to their sessile lifestyle. 

 

 

1.2 Detergent-resistant membranes 
 

Brown and Rose introduced the concept of membrane rafts being resistant to detergent 

treatment based on the tight interaction of lipids, proteins and cholesterol (Brown and 

Rose, 1992). During treatment the detergent molecules insert preferentially into the ld-

phase. Above a certain detergent concentration the ld-phase solubilizes leaving the lo-phase 

intact. Due to these characteristics and its practicability, detergent-resistant membrane 

(DRM) isolation is probably the method most widely used to study membrane rafts, but 

also most critically discussed (Lichtenberg et al., 2005). Despite all concerns, the 

differential solubilization of membrane proteins likely depends on their different lipid 

environment in the membrane. Thus, the enrichment of a protein in DRMs indicates its 

affinity for presumptive membrane rafts. The most meaningful application of DRM 

extraction is achieved if there is differential DRM association of a protein before and after 

a stimulus, thereby linking it to a biological phenomenon (Lingwood and Simons, 2007). 

As suggested by the ability of phytosterols to induce phase separation, DRMs could also be 

isolated from plant material (reviewed in (Bhat and Panstruga, 2005)). In the past two 

years several groups have enlarged the inventory of DRM-associated plant proteins. Morel 

and coworkers identified 145 proteins in DRMs of tobacco Bright Yellow-2 (BY-2) cells 

and analyzed their physicochemical characteristics (Morel et al., 2006). They showed that 

proteins involved in signaling, response to biotic and abiotic stress, cellular trafficking and 

cell wall metabolism are over-represented in the DRM fraction. This resembles the protein 

composition of DRMs in animal cells (Morel et al., 2006). Similarly, DRMs have been 

isolated from roots of Medicago truncatula and their proteomic and lipid compositions 

extensively analyzed (Lefebvre et al., 2007). Interestingly, several proteins belonging to 

the PM redox system have been found to associate with DRMs (see also below). Recently, 

Laloi and coworkers showed how DRM extraction can be combined with genetic 

approaches (Laloi et al., 2007). The group isolated DRMs from Arabidopsis cell lines fad2 

and Fad3+ hyperaccumulating 18:1 and 18:3 fatty acids, respectively. The amount of 

DRMs recovered from the mutant material was 20% of wild-type levels. This underlines 
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the expected importance of the unsaturation degree of lipid acyl chains in the formation of 

membrane rafts.  

 

 

1.3 Membrane rafts and mechanisms of subcellular protein 

localization 
 

Innate immunity relies on the recognition of pathogen-associated molecular patterns by 

pattern recognition receptors. Arabidopsis FLAGELLIN SENSITIVE2 (FLS2) is a 

receptor-like kinase (RLK) and functions as a pattern recognition receptor that senses 

bacterial flagellin and activates defense signaling. FLS2 exhibits ligand-induced 

endocytosis that is abolished in a mutant form of FLS2 that cannot be phosphorylated at a 

C-terminal threonine residue (Robatzek et al., 2006). Plants expressing this mutant form 

also have disturbed defense signaling, indicating that receptor endocytosis and defense 

signaling are interconnected. The presumed membrane compartmentalization leading to 

receptor endocytosis seems to be required for FLS2 function. Recently, a ligand-induced 

reduction in the membrane mobility of FLS2 was reported (Ali et al., 2007). This finding 

indicates a change of the environment of the FLS2 receptor upon ligand binding. The cause 

for the mobility shift could be due to interaction with other proteins, the confinement to 

less mobile membrane domains, or a combination of both. Indeed, ligand-induced 

interaction of FLS2 with BRASSINOSTEROID-ASSOCIATED KINASE1 (BAK1), 

another RLK, was recently reported (Chinchilla et al., 2007; Heese et al., 2007). It is 

tempting to speculate that the spatial regulation of FLS2, allowing ligand-induced 

interactions with BAK1 and endocytosis of the receptor, is partly due to its differential 

association with membrane rafts. In fact, RLKs are over-represented in DRMs of plants, 

indicating their potential in vivo association with membrane rafts (Shahollari et al., 2004; 

Morel et al., 2006). 

The Chlorella kessleri hexose-proton symporter HEXOSE UPTAKE1 (HUP1) shows a 

spotty distribution in the PM of Chlorella as well as upon heterologous expression in 

Saccharomyces cerevisiae. However, in yeast strains lacking ergosterol (erg6) or 

sphingolipids (lcb1-100), HUP1 is evenly distributed (Grossmann et al., 2006). The 

catalytic activity of HUP1 is decreased in erg6 cells, indicating that localization of HUP1 

to membrane clusters is important for its function. It has been reported that in yeast 

ergosterol or sphingolipid biosynthesis mutants, proteins that normally localized to 
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membrane rafts fail to associate with them (Bagnat and Simons, 2002). Furthermore, these 

mutants are disrupted in membrane polarization at the mating projection (Bagnat and 

Simons, 2002). Likewise, the Arabidopsis mutant ortholog of erg6, smt1orc shows defects 

in cell polarity (Willemsen et al., 2003). In this mutant, the auxin efflux carrier-proteins 

PIN-FORMED1 (PIN1) and PIN3 that are normally polarly localized within cells are 

mislocalized, leading to reduced polar auxin transport (Willemsen et al., 2003). 

The inwardly rectified K+ channel KAT1 is distributed in positionally stable membrane 

domains in the PM of Nicotiana benthamiana and in a distinct radial pattern in turgid 

guard cells in Vicia faba (Sutter et al., 2006; Homann et al., 2007). The radial pattern of 

KAT1 in guard cells could be attributed to KAT1–cell-wall interactions; however, the 

refinement of KAT1 to membrane domains seems to depend on other factors. Sutter and 

coworkers (Sutter et al., 2006) demonstrated that the membrane pattern and the lateral 

mobility of KAT1 are severely altered upon overexpression of a dominant-negative 

fragment (Sp2) of the soluble N-ethylmaleimide-sensitive factor attachment receptor 

(SNARE) protein, SYP121. While KAT1 is usually present in non-mobile domains in the 

PM, it is evenly distributed and becomes mobile when coexpressed with Sp2. These data 

implicate a role for SNAREs in the distribution and behavior of KAT1 at the PM. 

Furthermore, Sutter and coworkers showed that the phytohormone abscisic acid selectively 

triggers KAT1 endocytosis. The exclusion of other proteins from endocytosis requires 

membrane specialization and the focused recruitment of KAT1 (Sutter et al., 2007). 

Whether the regulation of KAT1 is in part achieved through its association with 

presumptive membrane rafts remains unclear, yet the partial localization of KAT1 in 

DRMs provides a hint to it (Sutter et al., 2006). In yeast, the establishment of polar 

distribution of slowly diffusing PM proteins has been proposed to be achieved through 

endocytosis (Valdez-Taubas and Pelham, 2003). Interestingly, the slow diffusion of 

proteins is affected in the yeast erg6 mutant, in which also the clustering of membrane rafts 

seems abolished (Valdez-Taubas and Pelham, 2003; Proszynski et al., 2006). 

The first publication clearly showing the importance of sterols in the establishment of plant 

cell polarity revealed a mislocalization of auxin efflux carriers PIN1 and PIN3 in a sterol-

deficient mutant accompanied by a reduction in polar auxin transport (Willemsen et al., 

2003). Another auxin efflux carrier, PIN2, was already known to colocalize with sterols at 

the PM and endocytic compartments (Grebe et al., 2003). Recently, Men and coworkers 

reported that the polar localization of PIN2 also depends on correct sterol composition 

(Men et al., 2008). The sterol biosynthesis mutant cpi1-1 displays aberrant PIN2 
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localization and a defect in root gravitropsim. The authors elegantly demonstrated that 

compromised endocytosis, rather than altered lateral mobility or inappropriate PM 

targeting, is responsible for defects in PIN2 polarity. Still, the generally slow lateral 

mobility of PIN2 might be important for its polar localization in a scenario where 

endocytosis regulates the polar distribution of slowly diffusing proteins (Valdez-Taubas 

and Pelham, 2003). 

It is striking that PIN2 and HUP1, both present in membrane domains, are mislocalized in 

sterol-deficient mutants that also display compromised endocytosis. Furthermore, KAT1 

localization depends on SNARE-mediated trafficking of endomembrane compartments. 

The correct sterol composition, as well as endocytosis and membrane recycling, thus seem 

to be reoccurring themes in the establishment of plant cell polarity. It would certainly be 

interesting to investigate whether the elicitor-triggered internalization of FLS2 and the 

proper localization of KAT1 also depend on a correct sterol composition. 

 

 

1.4 Membrane rafts in biotic interactions 
 

As mentioned above, it is essential for an organism to react in a spatially and temporally 

regulated manner to both beneficial and hostile microbes in close proximity. A prominent 

example for lateral protein heterogeneity is the focal accumulation of a subset of plant PM 

proteins underneath attempted fungal entry sites. Upon powdery mildew attack, otherwise 

evenly distributed fluorophore-tagged Arabidopsis and barley polypeptides such as the 

PM-resident SNAREs SYP121 and ROR2, the heptahelical defense modulator MLO and 

the cell-death regulator BAX Inhibitor-1 concentrate in stable circular PM domains of 3–

10 µm diameter (Assaad et al., 2004; Bhat et al., 2005; Eichmann et al., 2006). Formation 

of this pathogen-triggered multi-polypeptide cluster coincides with a marked staining by 

the sterol-binding dye filipin, which indicates an accumulation of sterols in these 

membrane areas (Bhat et al., 2005). Cellular polarization, comprising focal rearrangement 

of the cytoskeleton and altered PM organization, is required for the targeted secretion of 

cargo during the immune responses in plant and animal systems (reviewed in (Kwon et al., 

2008b)). In this context, membrane rafts have been reported to be involved in receptor-

mediated activation of many vertebrate immune cell types, including mast cells, B-cells 

and T-cells (Puri and Roche, 2006). Reminiscent of plant SNAREs SYP121 and ROR2 

that cluster at powdery mildew attack sites, exocytic SNAREs also accumulate in T-cells at 
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the contact site with their respective target cells (Das et al., 2004). Individual human 

SNARE proteins were found to be enriched in DRMs (Chamberlain et al., 2001) and in 

cholesterol-dependent clusters that are distinct from typical DRMs (Lang et al., 2001), 

suggesting that SNAREs associate with different types of membrane rafts, possibly in an 

isoform-specific and cell type-specific manner. Ternary SNARE complexes, the 

oligomeric SNARE protein assemblies that ultimately mediate vesicle fusion with target 

membranes, are enriched in DRMs after mast cell stimulation, indicating that membrane 

rafts might be the preferred sites for secretion (Lang et al., 2001; Puri and Roche, 2006). 

This hypothesis is further supported by the finding that cholesterol may promote 

membrane curvature during endocytic vesicle formation by association with oligomeric 

cholesterol binding proteins (Thiele et al., 2000). 

Though the molecular principles driving large-scale protein assemblies in the PM remain 

enigmatic, it has recently been suggested that submicrometer-sized SNARE clusters (50–

60 nm in diameter) originate from self-organization of multiple SNARE molecules, based 

on weak homophilic protein–protein interactions (Sieber et al., 2007). Individual SNARE 

molecules dynamically exchange between clusters and the freely diffusing state. SNARE 

clusters, which are likely functionally important, are probably stabilized by cholesterol 

(Lang, 2007; Sieber et al., 2007). It is also conceivable that large-scale PM domains may 

self-assemble upon a localized stimulus-dependent nucleation event. 

Besides polypeptides that are linked to vesicle trafficking/exocytosis, additional proteins 

implicated in reactions of plants to biotic stimuli have been reported to reside in DRMs. 

For example, cytochrome b561, which also focally accumulates at fungal attack sites (Bhat 

et al., 2005), appears to be an integral part of a PM redox system in the DRMs of 

Medicago truncatula roots (Lefebvre et al., 2007). This complex supposedly establishes 

the redox balance between cytoplasm and apoplast and might be important for the 

generation and/or detoxification of reactive oxygen intermediates in plant–microbe 

interactions (Lefebvre et al., 2007). Consistent with this hypothesis, the PM-localized 

tobacco NADPH oxidase NtRbohD, which is a major source of hydrogen peroxide 

production in pathogen-challenged cells, was found to be recruited to DRMs of BY-2 cells 

upon stimulation with the fungal elicitor cryptogein (Mongrand et al., 2004). An epitope-

tagged variant of the small Rho GTPase NtRac5, a negative regulator of the NADPH 

oxidase, likewise accumulates in the DRMs of tobacco BY-2 cells (Mongrand et al., 2004). 

There is also first evidence for a contribution of membrane rafts to a symbiosis-like plant–

microbe interaction. Shahollari and coworkers reported on two genes (At1g13230 and 
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At5g16590) encoding leucine-rich repeat proteins, both transcriptionally upregulated 

during the interaction of Arabidopsis with the growth-promoting fungus Piriformospora 

indica (Shahollari et al., 2007). Mutant plants defective in At1g13230 (also designated 

PIRIFORMOSPORA INSENSITIVE-2, Pii-2) show no growth response to the fungus and 

no induced transcript accumulation of At5g16590. Interestingly, PII-2 and the gene 

product of At5g16590 are both associated with DRMs, whereas the At5g16590-encoded 

polypeptide is absent from DRMs of pii-2 plants. Additionally, the authors showed that a 

mutant in a putative sphingosine kinase also exhibits impaired response to P. indica. Taken 

together, these data nicely demonstrate how the DRM association of a protein can be 

linked to a biological phenomenon, strengthening the assumption that membrane rafts are 

important for the function of the protein encoded by At5g16590. 

 

 

1.5 Membrane rafts and tip growth 
 

Rho GTPases are signaling proteins with an important role in polarization of eukaryotic 

cells, including directional expansion, asymmetric division and differentiation (Kost, 

2008). They shuttle between an inactive GDP-bound and an active GTP-bound state and 

regulate the above processes through their specific localization and activation. RAC/ROP 

(Rho of plant) GTPases, members of the plant Rho GTPase subfamily, are polarly 

localized at the apical PM of growing root hairs and pollen tubes. Their signaling 

properties are required for proper tip growth and are regulated by the interaction with 

regulatory proteins, membrane lipids and Ca2+ (Kost, 2008). RAC/ROP proteins were 

shown to be equally distributed between DRMs and Triton X-100 soluble membranes, 

however upon activation RAC/ROPs partitioned into DRMs (Sorek et al., 2007). The 

authors of this report further investigated the mechanism driving the activation-dependent 

localization of RAC/ROPs by studying ROP6, a type-I RAC/ROP. In the GDP-bound state 

ROP6 is prenylated and localized to soluble membranes, whereas it is reversibly acylated 

upon activation and then localized to DRMs. A constitutive active mutant form of ROP6 

accumulated exclusively in DRMs, while in a double mutant, in which the acylated 

cysteine is also mutated, the protein is again localized to soluble membranes. Similarly, 

Bloch and coworkers showed that a constitutive active form of RAC10 accumulated in 

DRMs and induced malformation of root hairs and leaf epidermal cells, probably through 

deregulation of endocytosis (Bloch et al., 2005). The partitioning of activated RAC/ROPs 
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into DRMs strongly suggests a role for membrane rafts in the activation-dependent 

regulation of RAC/ROPs and establishment of cell polarity. The membrane raft association 

of proteins of the Ras superfamiliy of small GTPases has been extensively studied in 

animal cells and similar mechanisms have been suggested for their regulation (Abankwa et 

al., 2007). 

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is a signaling lipid that 

coaccumulates with RAC/ROPs at the apex of growing pollen tubes and root hairs (Cole 

and Fowler, 2006). PtdIns(4,5)P2 has been proposed to function as a RAC/ROP effector, 

thereby influencing membrane fusion events. Indeed, PtdIns(4,5)P2 has been appointed a 

role in the regulation of synaptic vesicle endocytosis and exocytosis in animal cells 

(Cremona and De Camilli, 2001). Furthermore, PtdIns(4,5)P2 seems to promote the 

activation of RAC/ROPs (Kost, 2008). In animal cells, PtdIns(4,5)P2 accumulates at sites 

of cell surface motility together with a Rho-type GTPase, where it is thought to localize to 

membrane rafts. PtdIns(4,5)P2 may thereby coordinate membrane dynamics and actin 

organization as well as integrate signaling (Golub and Caroni, 2005). It is therefore 

tempting to speculate that also in plants the localization of PtdIns(4,5)P2 and RAC/ROPs to 

membrane rafts provides a mechanism for temporal and spatial organization of signaling 

and cell polarization. With the help of newly available imaging tools to monitor the 

PtdIns(4,5)P2 localization at the subcellular level in vivo it will be possible to assess the 

PtdIns(4,5)P2 dynamics in response to various stimuli (van Leeuwen et al., 2007). 

Similar to the role of RAC/ROPs in cell polarization through the regulation of actin 

dynamics and membrane trafficking, barley RACB has been implicated in the modulation 

of actin reorganization and cell polarity in the interaction of barley with the powdery 

mildew pathogen (Opalski et al., 2005). Additionally, in resemblance of PM-resident 

SNAREs, MLO and BAX Inhibitor-1 (see above), barley ROP-interactive CRIB 

(Cdc42/Rac-interactive binding) motif-containing protein (RIC) 171 has been found to 

accumulate underneath attempted fungal entry sites (Schultheiss et al., 2008). RICs are 

plant-specific proteins regulating RAC/ROPs by GTP-dependent interactions. 

Accordingly, GTP-bound RACB supposedly attracts RIC171 to the PM, suggesting that 

RACB is present in the GTP-bound state at attempted fungal entry sites. 

The focal accumulation of RAC/ROP proteins during polarized growth and cell 

polarization towards fungal attack sites suggests similar mechanisms involving RAC/ROPs 

for both processes. Possibly the regulation of NADPH oxidase activity, resulting in the 

localized generation of reactive oxygen species and the subsequent establishment of a local 
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Ca2+ gradient (Foreman et al., 2003), provides a mechanistic link between both 

phenomena. Indeed, in both cases also the secretory pathway is polarized towards a distinct 

cellular region (Kost, 2008; Kwon et al., 2008a). It would be interesting to determine 

whether the signaling lipid PtdIns(4,5)P2 also accumulates underneath fungal attack sites. 

 

The aim of this study was to further unravel the importance of lateral membrane 

compartmentalization in response to biotic stresses. On the one hand we applied 

ratiometric proteomics based on 14N/15N-metabolic labeling of Arabidopsis cells to 

elucidate and quantify immediate-early changes at the PM following PAMP perception. 

We focused on induced changes in protein DRM localization, which led to the 

identification of new PAMP signaling components. On the other hand we aimed at the 

elucidation of the involvement of membrane rafts in plant responses towards a fungal 

pathogen (powdery mildew). Precisely, we studied the role of sterols in protein DRM 

localization and in the focal accumulation (FA) of GFP-AtPEN1 underneath fungal attack 

sites. A biochemical and genetic approach in combination indicate that indeed sterols 

might have a role in the establishment of cell polarity, which is supposedly required for the 

correct FA of GFP-AtPEN1 in the Arabidopsis–podery mildew interaction. 
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2. Material and Methods 

 

2.1 Plant material and growth conditions 
Arabidopsis thaliana (Col-0) cell cultures derived from leaves were grown under 

continuous light (80 to 100 m-2s-1) at 24°C in JPL medium with 10 mM potassium nitrate 

as sole nitrogen source (Engelsberger et al., 2006). det3 (de-etiolated3) (Schumacher et al., 

1999), ost2-1D (open stomata2) (Merlot et al., 2007), ammonium transport1 

(SALK_106389 and SALK_026874), nhl3 (ndr1/hin1-like3, SALK_035428 and 

SALK_150318), aca.l (autoinhibited Ca2+-ATPases, SALK_107029), gsl06 (glucan 

synthase-like06, (GABI-Kat 401F09 and 867B07), pmr4-1 (powdery mildew resistant4) 

(Nishimura et al., 2003) and pmr4-1/sid2-1 (salicylic acid induction deficient2, C. 

Consonni, personal communication) as well as the respective wild type plants were grown 

on soil for approximately four weeks at a day/night cycle of 10:14 hrs, with 22°C:20°C 

day/night temperature and a relative humidity of 60%. Arabidopsis thaliana T-DNA 

insertion lines of the SALK (Alonso et al., 2003) and SAIL (Sessions et al., 2002) 

collections were obtained from the Nottingham Arabidopsis stock centre (NASC; 

http://arabidopsis.info/) and GABI Kat (Rosso et al., 2003). Homozygous T-DNA insertion 

mutants were selected by PCR using suitable primer combinations. Arabidopsis sterol 

biosynthesis mutants used in this study are listed in Table 4. Sterol biosynthesis mutants, 

p35S::GFP-PEN1 in pen1-1 (Collins et al., 2003), p35S::GFP-PEN1 in pen1-1/smt2 

443F03, p35S::GFP-PEN1 in pen1-1/dwf5 232E05, p35S::GFP-RLP1b (G. Van den 

Ackerveken, personal communication) and the respective wild type plants were grown on 

soil at a day/night cycle of 10:14 hrs, with 22°C:20°C day/night temperature and a relative 

humidity of 60%. Homozygous double mutants pen1-1/smt2 and pen1-1/dwf5 expressing 

p35S::GPF-PEN1 were PCR-selected from F2 progeny of inter-mutant crosses using the 

respective lines described above as parents. Seedlings of the fer mutant (Escobar-Restrepo 

et al., 2007), SAK116-6 and SAK97-18 (Table 1) were preselected on Murashige and 

Skoog (MS) medium (including the appropriate antibiotic) and transferred to soil or liquid 

medium at approximately 7 days after germination. Arabidopsis thaliana mutant lines and 

overexpressing lines involved in fatty acid desaturation, galactolipid synthesis and 

unknown processes were obtained from the indicated sources (Table 2) and grown on soil 

for at a day/night cycle of 10:14 hrs, with 22°C:20°C day/night temperature and a relative 

humidity of 60%. 



 

  

Table 2. Mutant and transgenic lines used in this study and functional properties of the proteins encoded by their wild type alleles. 

Biological process Gene Mutant allele Function AGI code Line desigantion Status Comment accession Source 

Fatty acid desaturation          

 FAD2 fad2-1 omega-6 fatty acid desaturase activity At3g12120  homozygous EMS mutant Col-0 NASC 

 FAD3 fad3-2 omega-3 fatty acid desaturase activity At2g29980  homozygous EMS mutant Col-0 NASC 

  fad3#  At2g29980  homozygous T-DNA insertion Col-0 NASC 

 FAD4 fad4-1  not cloned  homozygous EMS mutant Col-0 NASC 

 FAD5 fad5-1 oxidoreductase activity At3g15850  homozygous EMS mutant Col-0 NASC 

 FAD6 fad6-1 omega-6 fatty acid desaturase activity At4g30950  homozygous EMS mutant Col-0 NASC 

 FAD7 fad7-1 omega-3 fatty acid desaturase activity At3g11170  homozygous EMS mutant gl1 NASC 

  fad7-2    homozygous EMS mutant Col-0 NASC 

 FAD8  omega-3 fatty acid desaturase activity At5gt05580      

  fad7-1, fad8-1    homozygous EMS mutant Col-0 NASC 

  fad378    homozygous EMS mutant Col-0 NASC 

Galactolipid synthesis          

 DGD1 dgd1-1 galactolipid galactosyltransferase activity At3g11670  homozygous EMS mutant Col-2 (Dörmann et al., 1999) 

  dgd1-2   SALK_113941 homozygous  Col-0 Salk Institute 

  DGD1    homozygous transgene dgd1-1 (Härtel et al., 2001) 

 DGD2 dgd2-1 digalactosyldiacylglycerol synthase At4g00550  homozygous T-DNA insertion WS-0 (Kelly et al., 2003) 

  dgd2-2    homozygous T-DNA insertion Col-0 (Kelly et al., 2003) 

  dgd2-3   GABI_248D03 homozygous  Col-0 Salk Institute 

 MGD1  1,2-diacylglycerol 3-beta-galactosyltransferase At4g31780  homozygous T-DNA insertion Col-0 (Jarvis et al., 2000) 

          

Unkown process          

 RLP1b rlp1b unknown At5g25260 FLAG_381H02 homozygous  Ws-4 INRA 

  RLP1b-GFP    homozygous transgene Col-0 pers. comm.., I. Adamska 

  RLP1a-GFP unknown At5g25250  homozygous transgene Col-0 pers. comm.., I. Adamska

 RLP2 rlp2 unknown At5g64870 SALK_143325C homozygous  Col-0 Salk Institute 
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Table 1. Mutant and transgenic Arabidopsis lines.  

Name Genotype Resistance Ecotype Source 

fer fer/fer;pp2cDs/pp2cDs - Ler (Escobar-

Restrepo et al., 

2007) 

SAK116-6 fer/fer;pp2cDs/pp2cDs;pFER::FER-

GFPkinase dead 

Hygromycin Ler Sharon 

Kessler, 

personal 

communication 

SAK97-18 fer/fer;pp2cDs/pp2cDs;pFER::FER-

GFP 

Hygromiycin Ler (Escobar-

Restrepo et al., 

2007) 

 

2.2 Metabolic labeling of suspension cell cultures 
Full metabolic 14N/15N-labeling of Arabidopsis thaliana (Col-0) suspension cell cultures 

was carried out as described (Engelsberger et al., 2006). Briefly, for the 15N-labeled cell 

cultures the conventional 14N-containing nitrogen source in the medium (K14NO3) was 

replaced with K15NO3 (Sigma-Aldrich) as the only nitrogen source, yielding a fully 15N-

labeled proteome within two weeks of growth in the labeling medium. 

 

2.3 Pathogen infections 
Pathogen infections were carried out as described (Consonni et al., 2006). Briefly, four 

week-old Arabidopsis plants were inoculated with G. orontii spores and quantitative 

analysis of host cell entry was performed at 48 hpi. The macroscopic sporulation 

phenotype was evaluated at 7-15 dpi; photographs of infected plants were taken at 10 dpi. 

For quantitative analysis of the GFP-AtPEN1 FA underneath fungal attack sites two week-

old Arabidopsis seedlings were challenged with Bgh isolate K1 spores. 

Pathogen infections with E. pisi were carried out as already described (Consonni et al., 

2006). Shortly, four week-old Arabidopsis plants were inoculated with E. pisi spores and 

quantitative analysis of host cell entry was performed at 7 dpi 

For visualization of epiphytic fungal structures, specimens were stained with Coomassie 

Brillant Blue. For quantification of host cell entry, the proportion of germinated fungal 

sporelings that developed secondary hyphae was assessed on at least eight leaves (two 

leaves per plant) per experiment and genotype (minimum of 50 germinated sporelings/leaf 

evaluated). Fungal penetration success on each genotype was quantified in at least three 

independent experiments. 
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2.4 Microsome preparation and detergent-resistant membrane 

extraction 
All steps were carried out on ice or at 4°C. Total membranes were isolated from ground 

mature Arabidopsis rosette leaves using extraction buffer (20 mM Hepes pH 7.5, 13% 

(w/v) sucrose, 1 mM EDTA) containing protease inhibitor cocktail (Roche) and 1 mM 

DTT. Total extracts were filtered through two layers of Miracloth (Calbiochem) and 

centrifuged for 20 minutes at 20,000 x g. Microsomes were collected by centrifugation at 

100,000 x g for 45 minutes and resuspended in 2 ml buffer (20 mM Hepes pH 7.5, 13% 

(w/v) sucrose, 1 mM EDTA) and centrifuged onto a 1.8M sucrose cushion for 35 minutes 

at 140,000 x g. The interface was collected and diluted at least five-fold for collection of 

the microsomes by centrifugation at 100,000 x g for 1h. The microsomal pellet was 

resuspended using a dounce glass homogenizer and protein concentration was determined 

(Bradford, 1976). 50 µg total protein was treated with Triton X-100 at a protein-to-

detergent ratio as indicated (final concentration 1%) for 30 minutes at 4°C while 

continuously shaking at approximately 60 rpm. Solubilized microsomal extracts were 

adjusted to a final concentration of 1.8 M sucrose, overlaid with a sucrose step gradient 

(1.4 M, 1.2 M and 0.15 M sucrose, 2 ml, 1ml, and 0.2 ml respectively) and centrifuged at 

240,000 x g for 18 hrs. Sucrose gradient fractions were collected and proteins precipitated 

(see below). 

 

2.5 Protein precipitation and immunoblot analysis 
Protein precipitation was adapted from a previously described protocol (Wessel and 

Flügge, 1984). Two volumes of methanol, 0.5 volumes of chloroform and 1.5 volumes of 

water were added consecutively to the sample and the mixture vortexed thoroughly. 

Samples were centrifuged for 20 minutes at 4000 rpm (no brake). The upper phase was 

removed, without disturbing the interphase and at least 3 volumes of methanol were added. 

Samples were again thoroughly vortexed and centrifuged again for 20 minutes at 4000 

rpm. Pellets were air dried and directly resuspended in sample buffer (125 mM Tris pH 

6.8, 25% (v/v) glycerol, 5% (v/v) SDS, 0.1% (w/v) Bromophenol Blue, 200mM DTT). 

After boiling, samples were separated on polyacylamide gels and immunoblot analysis was 

carried out using either anti-AtPEN1 (Zhang et al., 2007), anti-GFP (Roche) or anti-

AtLCN antiserum. To detect SDS-resistant AtPEN1-containing ternary SNARE complexes 

boiling was omitted before polyacrylamide gel separation. 



MATERIAL AND METHODS 

 16 

2.6 Quantitative high-throughput imaging 
Confocal high-throughput imaging was performed with the Perkin Elmer (Hamburg, 

Germany) Opera™ microscope as previously described (Meyer, 2008). Shortly, excitation 

of the samples was performed at a 488 nm laser line for GFP. The emission spectrum was 

taken from 502 to 577 nm. 

For high-throughput imaging leaves were prepared in 96-well microplates with an optical 

glass bottom. Detached cotyledons of two week-old Arabidopsis plants inoculated with 

Bgh were placed upside up onto a stamp at 24 hpi. Both cotyledons of each plant were 

imaged. In total 60 leaves from 30 plants were imaged per genotype and experiment. Due 

to the natural leaf curvature, not all epidermal cells, the subject of investigation, were in 

the same optical plane. Thus, images of a consecutive series of 31 planes in the z-direction 

(z-stack) with a distance of 1 µm were taken per area, with eight areas per leaf. The 

acquired images were automatically analyzed with a custom-made script of the Acapella™ 

Software concerning the following parameters: (1) Number of FAs, (2) Number of GFP-

PEN1 encased haustoria, (3) Number of FAs per analysable area, (4) Number of FAs per 

cell, (5) Total integrated FA signal per analysable area, (6) Total integrated FA signal per 

analysable area, background subtracted, (7) Average intensity of FA, (8) Average area of 

FA, (9) Total integrated FA signal, over all FAs, (10) Total integrated FA signal, 

background subtracted, over all FAs, (11) Average length of FA, (12) Average half width 

of FA, (13) Average width to length ratio of FA, (14) Average roundness of FA, (15) 

Average contrast of FA compared to the background signal, (16) Average peak intensity of 

FA, (17) Integrated FA signal per analysable area background subtracted per FA, (18) 

Number of epidermal leaf cells, (19) Number Of Stomata. 

 

2.7 Analysis of callose deposition 
To assess flg22-induced callose deposition in rosette leaves, plants were treated and 

stained as described previously (Gomez-Gomez et al., 1999). Briefly, 2 µM flg22 was 

infiltrated in Arabidopsis rosette leaves and leaves were harvested 24 hrs later. Leaf 

samples were cleared with ethanol:acetic acid (1:3 (v/v)), subsequently stained for 24 hrs 

with 0.01% aniline blue in 150 mM KH2PO4 (pH 9.5) and visualized by epifluorescence 

microscopy. 
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2.8 Oxidative burst assay 
Oxidative burst assays were performed as previously described (Felix et al., 1999). Briefly, 

cell culture suspensions were distributed in 1 ml aliquots into culture plates and supplied 

with the peroxidase substrate 5’ aminosalicylic acid (5’ASA, 400 µM). Then flg22 was 

added to the indicated final concentrations. Alternatively, plants were grown in liquid 

culture and the reaction mixture, containing horseradish peroxidase (Fluka), luminol 

(Fluka) and flg22 (100 nM final concentration), was added. Seedlings treated with 

Concanamycin A (ConcA, Sigma-Aldrich) were preincubated with ConcA (1 mM stock in 

dimethylsulfoxide, 5 µM final concentration) for 2 hrs. Control samples were treated with 

the respective amount of dimethylsulfoxide. The leaf-disc-based oxidative burst assay was 

performed as described previously (Felix et al., 1999). Briefly, leaf discs were incubated 

over night in water. Then the reaction mixture, containing horseradish peroxidase (Fluka), 

luminol (Fluka) and flg22 (1 µM final concentration), were added. 

 

2.9 Allocation of functional categories 
Protein functional categories were assigned according to MapMan (Thimm et al., 2004). 

Categorization was adjusted manually for obviously wrongly annotated proteins/genes 

(At1g32050, At1g05570, At2g45820, At3g61260, At4g04720, At2g36910, At4g29900, 

At3g13380, At3g51740, At1g53100, At3g13560, At5g42100, At3g58100, At4g35230, 

At2g47060 and At3g17410). 

 

2.10 Experimental set up for quantitative mass spectrometry 
The experimental design was as outlined in Figure 2. 15N and 14N-labeled parent cell 

culture suspensions were split up for reciprocal sample pairs and either treated with active 

flg22 or inactive flg22∆2 (EZBiolab, USA) at 100 nM final concentration. Samples were 

taken before as well as 5 and 15 minutes after induction. Additionally, cell culture 

suspensions were treated with flg22 or flg22∆2 and compared to untreated cells, also in 

reciprocal pairs. Samples were taken 5 minutes after peptide addition. After harvesting, 

equal amounts (gram fresh weight) of labeled and unlabeled cells were pooled for 

combined protein extraction, DRM preparation and mass spectrometric analysis. 
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2.11 Plasma membrane preparation and detergent-resistant membrane 

extraction 
PM preparation and DRM extraction were performed as described (Kierszniowska et al., 

2008). Total protein extracts were filtered through Miracloth (Calbiochem) and centrifuged 

at 10,000 x g. Subsequently, microsomes were collected from the supernatant by 

centrifugation at 100,000 x g. PM fractions were obtained after two times partitioning in an 

aqueous two-phase system with PEG/Dextran (each 6.4% (w/w)) and 5 mM KCl 

(Marmagne et al., 2004). Finally, PMs were collected from the upper phase by 

centrifugation (120,000 x g) and the protein amount was determined (Bradford, 1976). 

PMs were resuspended in buffer (50 mM Tris-HCl pH 7.5, 3 mM EDTA) and treated with 

Triton X-100 at a protein to detergent ratio of 1:13 (final concentration 1%) for 30 minutes 

on ice while continuously shaking. Solubilized PM extracts were adjusted to a final 

concentration of 1.8 M sucrose, overlaid with a sucrose step gradient (1.6 M, 1.4 M and 

0.15 M sucrose) and centrifuged at 250,000 x g for 18 hrs. An opaque ring (DRM fraction) 

was collected from below the 1.4 M/0.15 M interface, diluted in buffer (25 mM Tris-HCl 

pH 7.5, 150 mM NaCl, 5 mM EDTA) and collected by centrifugation at 200,000 x g. All 

steps were carried out at 4°C. 

DRM pellets were resuspended in 30 µl 8 M urea, 2 M thiourea for in-solution tryptic 

digest. After reduction in 0.5 mM dithiothreitol and alkylation of cysteine groups in 2.5 

mM iodoacetamide, proteins were digested with endoproteinase LysC (Wako Chemical, 

USA) for 3 hrs. Subsequently, the solution was diluted fourfold with 10 mM Tris-HCl (pH 

8) before over night digestion with Trypsin (Promega). Digested peptides were desalted 

over C18 STAGE-tips before mass spectrometric analysis (Rappsilber et al., 2003). 

 

2.12 Mass spectrometry and protein identification 
Tryptic peptide mixtures were analyzed by LC/MS/MS using nanoflow HPLC (Proxeon 

Biosystems, Denmark) and an Orbitrap hybrid mass spectrometer (LTQ-Orbitrap, Thermo 

Electron, USA) as mass analyzer. Peptides were eluted from a 75 µm analytical column 

(Reprosil C18, Dr. Maisch GmbH, Germany) on a linear gradient running from 4 % to 64 

% acetonitrile in 90 minutes and sprayed directly into the LTQ-Orbitrap mass 

spectrometer. Proteins were identified by tandem mass spectrometry (MS/MS) by 

information-dependent acquisition of fragmentation spectra of multiple-charged peptides. 

Up to five data-dependent MS/MS spectra were acquired in the linear ion trap for each 

fourier transform mass spectrometer (FTMS) full scan spectrum acquired at 30.000 full 



MATERIAL AND METHODS 

19  

width at half maximum (FWHM) resolution settings. The overal cycle time was 

approximately one second. Fragment MS/MS spectra from raw files were extracted as 

DTA-files and then merged to peak lists using default settings of DTASuperCharge version 

1.17 (www.msquant.sourcforge.net) with a tolerance for precursor ion detection of 50 ppm. 

Fragmentation spectra were searched against a non-redundant Arabidopsis protein database 

(TAIR8, version 2008-04; 31921 entries; www.arabidopsis.org) using the Mascot 

algorithm (version 2.2.0; Matrix Science, UK, www.matrixscience.com). The database 

contained the full Arabidopsis proteome and commonly observed contaminants (human 

keratin, trypsin, lysyl endopeptidase); thus no taxonomic restrictions were used during 

automated database search. The following search parameters were applied: Trypsin as 

cleaving enzyme, peptide mass tolerance 10 ppm, MS/MS tolerance 0.8 Da, one missed 

cleavage allowed. Carbamidomethylation of cysteine was set as a fixed modification, and 

methionine oxidation was chosen as variable modification. "15N metabolic labeling" was 

chosen as a quantitative method for Mascot database searching, allowing identification of 

labeled and unlabeled peptides within the same database search. Only peptides with a 

length of more than five amino acids were considered.  

In general, peptides were accepted without manual interpretation if they displayed a 

Mascot score greater than 32 (as defined by Mascot probability (p) < 0.01 significance 

threshold). Peptides with a score greater than 24 were manually inspected requiring a series 

of three y or b ions to be accepted. Using the above mentioned criteria for protein 

identification, the rate of false identifications as determined by the "decoy database" 

function implemented in Mascot v. 2.2.0 was 0.74% on a 99% (threshold score 32) 

confidence level and 3.45% at the 95% (threshold score 24) confidence level, indicating 

increased ambiguity in protein identification as has recently been reported (Nelson et al., 

2006). In result tables, peptide assignment to proteins was done according to the Mascot 

default settings, i.e. each redundant peptide was primarily assigned to the highest scoring 

protein.  

 

2.13 Quantitative protein analysis 
Ratios between labeled and unlabeled forms of tryptic peptides were calculated in 

MSQuant version 1.4.3 (released 2008-05-03; www.msquant.sourceforge.net). 

Quantitative information was taken from extracted ion chromatograms of labeled and 

unlabeled forms of each identified peptide. Thereby, co-elution of both peptide forms was 

made a requirement and it was manually inspected in MSQuant that the pairs of labeled 
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and unlabeled forms fit with the expected isotope envelope distributions. Peptides that did 

not meet these criteria were omitted from the analysis (Engelsberger et al., 2006).  

Intensity ratios of labeled 15N-form to unlabeled 14N-form of each identified peptide were 

averaged across all peptides belonging to the same protein within one experimental set. For 

each individual peptide, abundance ratios were calculated from the ratio of peak volumes 

for labeled and unlabeled peptide forms. Peptides conserved in multiple members of a 

protein family were identified using the "show sub-sets" option in Mascot, and the 

respective peptides present in multiple proteins were excluded from quantitative analysis if 

the redundant peptides displayed ratios significantly different (p < 0.05; χ2-test) from 

unique peptides of the same protein. Peptides meeting the criteria for sequence 

identification, but for which only 14N-forms or only 15N-forms were identified, were 

manually assigned the ratios 0.01 (14N-form only) or 10 (15N-form only). Since quantitative 

information was extracted from full scan spectra with very low level of noise as obtained 

in the Orbitrap mass analyzer, no minimum threshold was set for quantitation (Venable et 

al., 2007). Protein abundance ratios were converted into log2 values and were normalized 

to the median log2 ratio of all proteins identified in the non-treated sample (time point 0). 

Only those proteins were considered for further analysis, for which intensity ratios were 

obtained in both of the paired reciprocal experimental sets. Ratios of 15N to 14N forms and 

the respective standard deviation as calculated in MSQuant for each identified peptide and 

the number of peptides used for quantitation for each protein are presented in 

Supplementary Table 2. 

Control samples consisting of 1:1 mixtures of labeled and unlabeled cell culture before 

treatment (time point 0) were analyzed to define the technical and inherent biological 

variation underlying the experiment. From this control experiment the ratio-dependent 

standard deviations for specific ratio-bins were calculated as described (Kierszniowska et 

al., 2008). Log2 values of ratios for each protein identified in both reciprocal experiment 

subsets were plotted against each other and the distance to the diagonal (as calculated by d 

= |x – y| / sqrt (2)) was used as a measure for responsiveness (Figure 4, details see 

(Kierszniowska et al., 2008)). In the calculation, x and y are the log2 values of 15N to 14N 

ratios from each of the reciprocal experiments. Statistical significance of differential 

protein abundance was assessed by calculating p-values associated with the observed 

distances to the diagonal compared to the local standard deviation and assuming normal 

distribution. Specifically, for each data point the ratio between the 'distance' and the local 

standard deviation was calculated and the p-value was calculated by a 2-tailed t-
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distribution. Subsequently, a multiple testing correction was applied to the whole data set 

using the false discovery rate method introduced by Benjamini and Hochberg (Benjamini 

and Hochberg, 1995). Reported proteins correspond to a cut-off false discovery rate of 5%. 
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3. Results 

 

3.1 Quantitative proteomics of flagellin-induced plasma membrane 

compartmentalization 
 

3.1.1 The cell culture system is responsive to flg22 treatment 

To validate the responsiveness of the employed Arabidopsis cell culture to flg22 exposure, 

an oxidative burst assay based on optical color indication was performed. Cell cultures 

were treated with various amounts of flg22 in the absence or presence of 5’ASA and 

photographs were taken after 1.5 hrs (Supplementary Figure 1; (Felix et al., 1999)). 5’ASA 

is a non-specific peroxidase substrate, which is enzymatically converted to a soluble end 

product that is brown in color. The occurrence of an flg22 concentration-dependent color 

change, which only took place in samples containing 5’ASA, indicated an flg22-dependent 

production of ROS and therefore responsiveness of the cell culture to flg22 treatment. 

 

3.1.2 Identification and quantification of flg22-triggered alterations in DRM 

composition 

To elucidate dynamic changes in PM compartmentalization and specialization after flg22 

elicitation that are possibly linked to membrane rafts, we performed quantitative mass 

spectrometric analyses on cell culture DRMs in a time-course experiment. We employed 

full 14N/15N metabolic labeling by growing in vitro cultured cells on medium with either 

K14NO3 or K15NO3 as the sole nitrogen source. Since ligand-induced endocytosis of FLS2 

takes place already within 15 to 20 minutes after flg22 elicitation (Robatzek et al., 2006), 

PAMP-induced membrane compartmentalization is also expected to occur within or even 

prior this time frame, whereas changes in protein abundance due to de novo protein 

biosynthesis can be largely excluded at these early time points (Navarro et al., 2004; 

Benschop et al., 2007). Therefore we induced cell cultures with flg22 (100 nM) or control 

treatment and collected samples after 0, 5 and 15 minutes (Figure 2). In the first 

experiment cultures were induced with flg22, and we used the elicitor-inactive flg22 

derivative, flg22∆2, as control treatment (Figure 2A). An additional sample set with the 

identical treatment but reciprocal 14N/15N labeling was included. In experiment 1 more 

prominent changes in relative protein abundance were observed after 5 minutes (Figure 3 
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Figure 2. Schematic representation of the experimental set up. 
Arabidopsis cell cultures were grown in the presence of either a 14N or 15N–containing nitrogen 
source. (A) Parent 14N and 15N cultures were split to allow reciprocal treatment. In one case the 
15N-labeled cell culture was treated with flg22 and the 14N-labeled with flg22∆2; in the reciprocal 
experiment the 14N-labeled cell culture was treated with flg22 and the 15N-labeled with flg22∆2. 
Samples for detergent-resistant membrane extraction and subsequent ratiometric protein 
quantification were taken before treatment (0 minute sample) as well as 5 and 15 minutes after 
peptide addition. (B) Differentially labeled parent cultures were split for reciprocal sample 
treatment. Either 15N-labeled cells were treated with flg22 and compared to untreated 14N-labeled 
cells or 14N-labeled cells were treated with flg22 and compared to 15N-labeled untreated cells. The 
same experimental work flow was conducted comparing flg22∆2 versus no treatment. Dotted lines 
indicate reciprocal sample pairs that were extracted and analyzed together. 
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and Table 3); accordingly we chose the 5 minute time point for a second experiment 

(Figure 2B). In the second experiment, flg22 and flg22∆2 treatment was each compared to 

untreated cells, again using two sets of cell cultures with reciprocal 14N/15N labeling. PM 

fractions were extracted from all cell culture samples by two-phase partitioning and 

subsequently DRMs were isolated by Triton X-100 treatment and sucrose gradient 

centrifugation (see Materials and Methods for experimental details). 

For the analysis of the reciprocal data sets from the first experiment (Figure 2A), the log2 

values of protein ratios from one sample were plotted against log2 values of the same 

protein from the reciprocal sample (Figure 3). Each data point represents a given protein 

that had been quantified in both reciprocal datasets. Statistical significance of differential 

protein abundance was assessed by calculating p-values associated with the observed 

distances from the 45° diagonal compared to the local standard deviation and assuming 

normal distribution (Kierszniowska et al., 2008). The aim of this workflow, adapted from 

Kierszniowska and coworkers, was to efficiently filter out the between sample variation 

and at the same time being able to detect subtle stimulus-induced differences 

(Kierszniowska et al., 2008). The general enrichment of PM proteins in DRMs after flg22 

treatment is depicted by the clear shift of the scatterplot of the 5 minute data set and to 

lesser but also clear extent of the 15 minutes sample set (Figure 3). 

 

3.1.3 Characteristics and functional classification of identified proteins 

Based on the procedure outlined above, 316 unique proteins were identified in total, of 

which 188 were present in reciprocal samples and thus met our criteria for quantitative 

analysis (Supplementary Table 1). Of these, 34% (64 proteins) were significantly enriched 

in DRMs after flg22 treatment in a least one of the experiments (p < 0.05; Table 3). The 

number of proteins identified in reciprocal sample sets varied from 55 to 144. Accordingly, 

the percentage of proteins significantly relocalized to DRMs varied between 16 and 45% 

(Table 3). The averaged “maximal fold change” of the proteins that were found to be 

significantly enriched was ~ 2, indicating higher abundance of these proteins in DRMs 

following PAMP elicitation. In the control samples sets the averaged “maximal fold 

change” of all proteins was ~ 1.2, indicative of unaltered DRM localization. No 

significantly enriched proteins were detected in the sample set induced with the inactive 

derivative flg22∆2, and only 3 out of 129 proteins (2%) were identified as significantly 
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Figure 3. X/Y scatterplots showing log2 values of each reciprocal sample set before, 5 and 15 
minutes after flg22 treatment. 
Log2 values of normalized protein abundance ratios from one sample are plotted against log2 
values of the same protein from the reciprocal sample. (A) All data log2 values acquired in the first 
experiment (see Figure 2A) are plotted. (B) A partial magnification of the core region shown in 
(A). 
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responding at the 0 min time point (Table 3). The very low number of proteins being 

significantly more abundant in the control samples indicates the efficient and successful 

filtering of false positive polypeptides. Interestingly, all except one protein that showed 

significantly altered levels after flg22 treatment were more abundant in DRMs. The single 

protein found to decrease after PAMP exposure is a 60S ribosomal protein (At3g05560), 

which is probably a contaminant of the PM preparation procedure. 

The largest group of signaling proteins which we observed to respond significantly to flg22 

treatment comprises 10 RLKs (Table 3). Strikingly, the flagellin receptor FLS2 is one of 

the two proteins most consistently enriched in DRMs after flg22 elicitation (significantly 

more abundant in all reciprocal data sets). This finding corroborates the assumption that 

FLS2 is recruited to specialized membrane domains upon flg22 binding, thereby possibly 

initiating downstream signaling and/or receptor endocytosis. Next to FLS2, REMORIN 1.3 

most consistently shifted into DRMs after PAMP treatment (significant enrichment in all 

three reciprocal data sets). FERONIA (FER), a RLK identified as a key signaling 

component in female control of pollen tube perception but ubiquitously expressed 

throughout the plant (Escobar-Restrepo et al., 2007) also responded significantly to flg22 

treatment (for fer mutant analysis see additional material). 

 

 

 
 

Figure 4. Classification of proteins exhibiting significant redistribution into detergent-
resistant membranes after flg22 elicitation and proteins not responding to flg22 treatment. 
The functional categories were assigned according to MapMan (Thimm et al., 2004) and manually 
advanced for some proteins as described in Materials and Methods. 
 

The category of proteins that is enriched most prominently in DRMs upon elicitor 

treatment is the category of transporters. We identified four PM H+-ATPases as 
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significantly enriched in DRMs upon flg22 elicitation (Arabidopsis H+-ATPase1 (AHA1), 

AHA2, AHA3 and AHA4). Interestingly, we also found two isoforms of autoinhibited 

Ca2+-ATPases (ACAs) significantly more abundant in DRMs (ACA8 and ACA10). The 

significant shift of PM H+-ATPases and Ca2+-ATPases into DRMs indicates their potential 

role in PAMP-induced defense responses, which is consistent with their proposed 

involvement in medium alkalinization and concomitant ROS production (Blumwald et al., 

1998; Schaller and Oecking, 1999). 

In total we identified 14 Vacuolar H+-ATPase (V-ATPase) subunits in our proteomic 

analysis of which 10 were significantly enriched in DRMs after flg22 treatment. Besides 

their role in acidification of endomembrane compartments, V-ATPases have been shown to 

function in secretory and endocytic trafficking (Schumacher, 2006). Based on the potential 

functional link between endocytosis and membrane rafts (Geldner and Robatzek, 2008; 

Men et al., 2008) and the enrichment of V-ATPase subunits in DRMs (Borner et al., 2005) 

it seems thus plausible that their function in membrane traffic is related to membrane raft 

localization. 

Additionally, we identified other transporters of which a subset has been assigned potential 

functions in plant defense. These include the ammonium transporter AMMONIUM 

TRANSPORT1 as well as the auxin influx and efflux transporter PLASMA-

GLYCOPROTEIN1 (PGP1) and PGP4 (Ninnemann et al., 1994; Benschop et al., 2007; 

Nühse et al., 2007; Titapiwatanakun et al., 2008). Notably, the PMR4 callose synthase was 

also significantly enriched in DRMs after PAMP elicitation. PMR4 is known to catalyze 

biosynthesis of wound- and pathogen-associated callose, which for example is deposited in 

leaf cells following flg22 treatment (Gomez-Gomez et al., 1999; Jacobs et al., 2003). 

NHL3 has an already identified role in the Arabidopsis–Pseudomonas syringae interaction 

and is significantly more abundant in DMRs after flg22 stimulus. NHL3-overexpressing 

plants were shown to be more resistant to Pseudomonas syringae (Varet et al., 2003). 

Of the 188 proteins that fulfilled the criteria for quantification, the majority (73%) possess 

at least one transmembrane (TM) domain (56%), a glycosylphosphatidylinositol-anchor 

(12%) or a lipid modification (5%) predicted by the ARAMEMNON database of 

Arabidopsis membrane proteins (Table 3 and Supplementary Table 1; (Schwacke et al., 

2003)). For 40% of the polypeptides experimental evidence for PM association exists 

(Table 3 and Supplementary Table 1; (Schwacke et al., 2003; Alexandersson et al., 2004; 

Marmagne et al., 2004; Nelson et al., 2006)). Comparison of all proteins found to reside in 

DRMs based on our study to previously published lists of DRM-associated proteins of 
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various plant species revealed a substantial overlap. This applies for example to proteins 

related to cell wall processes, transport, signaling and intracellular trafficking, which are 

generally highly abundant in DRM preparations (Bhat and Panstruga, 2005). 

Interestingly, genes coding for only 12% of the proteins present in reciprocally labeled 

samples exhibit elevated transcript levels after flg22 treatment (Navarro et al., 2004; Zipfel 

et al., 2004). No clear difference between genes of proteins significantly more abundant in 

DRMs (16%) or not (10%) following flg22 treatment was observed. Similarly, only 6% of 

the respective genes were found to be co-expressed with FLS2 according to the ATTED 

database of co-expressed genes (www.atted.jp; (Obayashi et al., 2007)). These comprise 

8% of the significantly responding and 5% of the non-responding proteins.  

We functionally categorized the 188 identified proteins according to MapMan categories 

(Figure 4; (Thimm et al., 2004)). When comparing the functional classification of the 

significantly enriched to the non-enriched groups of proteins, we found the most striking 

difference in the “transport” category (38% responding versus 17% non-responding 

proteins). Furthermore, pronounced differences were observed in “metabolism” and 

“protein modification”, with 8 and 14% decreases in the group of significantly responding 

proteins, respectively. A slight increase in the category “signaling” was observed for the 

protein group enriched in DRMs (by 3%), whereas “cell wall-related” and “intracellular 

trafficking” were somewhat decreased (both by 3%). 

 

3.1.4 Functional analysis of components identified by the proteomic approach 

Based on our proteomic analysis, a considerable number of membrane-associated proteins, 

including the flagellin receptor FLS2, become rapidly enriched in DRMs following flg22 

elicitation. To test whether any of these proteins play an authentic role in flg22-induced 

cellular responses, we performed in planta pharmacological interference experiments and 

employed reverse genetics. We used the generation of an oxidative burst and the formation 

of callose-containing cell wall deposits as well-characterized early and late markers of 

flg22 responsiveness, respectively. Homozygous mutant lines for seven genes of proteins 

significantly enriched in DRMs after flg22 stress were selected (Table 3). Occurrence of an 

oxidative burst was quantitatively assessed in 2-week-old wild type and mutant 



RESULTS 

 30 

 
Figure 5. ost2-1D mutant plants are impaired in responsiveness to flg22 and show 
spontaneous as well as flg22-induced callose deposition. 
(A) Oxdiative burst in response to 100 nM flg22, measured in relative light units (RLU) in wild 
type (Ler) and ost2-1D mutant seedlings. The experiment was repeated four times with similar 
results. Error bars represent standard deviation of ten independent samples measured in a single 
experiment. (B) – (F) Exemplary micrographs showing callose deposition (as revealed by aniline 
blue staining) in rosette leaves of wild type (Ler, B and C) and ost2-1D mutant plants (D to G). B, 
D and G show micrographs of leaves mock-infiltrated with water. C and E show micrographs of 
leaves 24 hrs after flg22 infiltration. F shows a micrograph of an untreated leaf. Note the variation 
in callose deposition in ost2-1D plants that is triggered by mock treatment (D and G). Bar = 200 
µm. 
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seedlings upon application of 100 nM flg22 whereas callose deposition was inspected at 24 

hours post infiltration of 2 µM flg22. While most of the tested mutants retained unaltered 

responsiveness to flg22 exposure, two mutants showed either a reduced oxidative burst 

(det3) with unaltered callose deposition or abnormalities in both responses (ost2-1D) (see 

also additional material). 

ost2-1D is a constitutive active mutant of the PM H+-ATPase AHA1 that is characterized 

by completely abolished stomatal responses following abscisic acid exposure (Merlot et 

al., 2007). In our experiments, ost2-1D showed a significant reduction in the oxidative 

burst and occasionally aberrant callose deposition in mock-treated leaves (Figure 5). The 

latter indicates a generally lowered threshold for stress responses in these plants, which is 

probably attributed to the reported increase in salicylic acid (SA) levels and the 

constitutive expression of defense-related genes in the ost2-1D mutants (Merlot et al., 

2007). However, while mock-treated ost2-1D plants only sporadically showed callose 

deposition, accumulation of this β-D-glucan was always seen upon flg22 treatment (Figure 

5E), suggesting that callose deposition was triggered by flg22 in ost2-1D plants. 

det3 has been isolated based on its deetiolation phenotype. This mutant exhibits reduced 

transcript levels of the single copy gene VHA-C (VACUOLAR ATP SYNTHASE SUBUNIT 

C), which is a core component of all V-ATPase complexes. Consequently, this mutation 

affects the function of all heterooligomeric V-ATPase complexes (Schumacher et al., 

1999). We observed a significantly reduced oxidative burst in det3 mutant plants (Figure 

6A), while flg22-triggered callose deposition was indistinguishable from wild type (data 

not shown). Notably, also treatment of wild type plants with ConcA, a specific inhibitor of 

V-ATPases, resulted in a strongly reduced oxidative burst (Figure 6B) and did not interfere 

with callose deposition (data not shown). This resembles the det3 phenotype and supports a 

genuine role for DET3 in early flg22-induced defense responses. 
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Figure 6. det3 mutant plants and ConcA-treated wild type plants display reduced 
responsiveness to flg22 treatment. 
(A) Oxdiative burst in response to 100 nM flg22, measured in relative light units (RLU) in wild 
type (Col-0) and det3 mutant seedlings. The experiment was repeated four times with similar 
results. Error bars represent standard deviation of 11 independent samples measured in a single 
experiment. (B) Oxidative burst in response to 100 nM flg22 in Col-0 wild type seedlings treated 
with either 5 µM ConcA or with respective amounts of dimethylsulfoxide (drug solvent). The 
experiment was repeated five times with similar results. Error bars represent standard deviation of 
six independent samples measured in a single experiment. 
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FERONIA (FER), a RLK, was originally identified as a key signaling component in 

female control of pollen tube perception (Escobar-Restrepo et al., 2007). According to its 

identified function in synergids, FER is highly expressed there; however, FER is also 

expressed throughout the whole plant, where it might be involved in other processes of 

cell-autonomous signal transduction or cell-cell communication. In our study we identified 

FER as one of the RLKs that was significantly enriched in DRMs after flg22 treatment 

(Table 3). Moreover, FER is coexpressed with FLS2 according to the ATTED 

(www.atted.jp) database of coexpressed genes (Obayashi et al., 2007) and is 

phosphorylated in response to flg22 treatment (indentified in one biological replicate; 

Benschop et al., 2007). Taken together, these findings suggest in addition to its role in 

fertilization a PAMP signaling-related function for the FER gene product. 

To further elucidate the possible involvement of FER in plant defense responses, we 

monitored flg22-triggered callose deposition and employed a set of mutant lines to 

distinguish between effects that can be directly attributed to the mutation in FER and 

indirect effects through the tightly linked Ds element inserted into the neighboring 

PROTEIN PHOSPHATASE 2C (PP2C). The analysis of line SAK97-18 allowed us to rule 

out effects of the Ds element in PP2C, whereas the line SAK116-6 provided information 

about the role of the functional kinase domain of FER (Table 1) Strikingly, leaves of the 

fer mutant displayed tissue collapse at 24 hrs post infiltration (Figure 7E and I). No callose 

deposits were observed in flg22-infiltrated leaves, which is likely due to extensive tissue 

collapse before the onset of callose deposition. All other tested genotypes displayed callose 

deposition that was indistinguishable from wild type. It would certainly be interesting to 

further investigate the hypersensitivity of fer to flg22 by infiltration of different 

concentrations of the flg22 peptide or by examining the effect of other less potent peptide 

variants. Moreover, the collapsed tissue will be examined in more detail by trypan blue 

staining to assess the occurrence of cell death. 
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Figure 7. fer mutants are hypersensitive to flg22 treatment. 
(A) Oxdiative burst in response to 100 nM flg22, measured in relative light units (RLU) in wild 
type seedlings (Ler), fer, SAK116-6 and SAK97-18 lines. The experiment was repeated twice with 
similar results. Error bars represent standard deviation of six independent samples measured in a 
single experiment. (B) – (E) exemplary micrographs showing callose deposition (as revealed by 
aniline blue staining) in rosette leaves of wild type (Ler, B and C) and fer mutant plants (D and E). 
(B and D) show micrographs of leaves mock-infiltrated with water. (C and E) show micrographs of 
leaves 24 hrs after flg22 infiltration. (F) – (I) Exemplary bright field images of rosette leaves of 
wild type (Ler, F and G) and fer mutant plants (H and I). (F and H) show micrographs of leaves 
mock-infiltrated with water. (G and I) show micrographs of leaves 24 hrs after flg22 infiltration. 
Bar = 200 µm. 
 

 

In view of the hypersensitivity of fer to flg22 infiltration it seems possible that FER is a 

negative regulator of PAMP-induced defense responses. Accordingly, an increased 

oxidative burst in response to flg22 would be expected. However, by an oxdative burst 

assay using cut leaf discs no conclusive results could be obtained; the data rather suggest a 

reduced oxidative burst in the fer mutant and no difference in the SAK116-6 and SAK97-

18 lines (data not shown). However, when seedlings were germinated and preselected on 

plate before transfer to liquid culture, an enhanced oxidative burst for fer but not for the 
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other genotypes was observed (Figure 7A). It will be necessary to analyze these on the first 

view contradicting results in more depth. A plausible reason for the seeming discrepancy 

could be that in the seedling-based oxidative burst assay the plants are not wounded prior 

to recording the oxidative burst and thus wound responses do not interfere with the 

measurement. 

Interestingly, the SAK116-6 mutant did only partially complement the growth phenotype 

of the fer mutant (data not shown), while ROS production and callose deposition in 

response to flg22 treatment occurred normally in these plants. Therefore, we assume that 

the kinase domain of FER is not important for its PAMP signaling-related function, 

whereas it is crucial for rescuing the growth phenotype. 

If our findings can be confirmed and further corroborated, it seems plausible that FER 

might in fact represent a coreceptor rather than the primary receptor for a ligand. This 

function could satisfactorily explain the possible involvement of FER in entirely distinct 

biological processes that take place in different organs/tissues. 

 



 

  

Table 3. Proteins significantly enriched in detergent-resistant membranes after flg22 treatment. Proteins significantly enriched in DRMs after flg22 treatment in a least 
one of the reciprocal sample sets; significant enrichment is indicated in bold (p < 0.05). Functional category (FC); average fold-regulation (av fold); probability-value (p); 
number of TM domains (TM) predicted by ARAMEMNON (Schwacke et al., 2003); experimental evidence for PM association (PM, (Schwacke et al., 2003; Alexandersson et 
al., 2004; Marmagne et al., 2004; Nelson et al., 2006)); co-expressed with FLS2 (Obayashi et al., 2007), number indicates rank of co-expressed gene according to ATTED; 
transcriptionally upregulated in response to flg22 treatment (flg22 expr, (Navarro et al., 2004; Zipfel et al., 2004)); phosphorylated after flg22 treatment (Pflg22, (Benschop et 
al., 2007; Nühse et al., 2007)); mutants of according genes were analyzed for flg22 responsiveness in this study (RG). enriched (enr.), dephosphorylated (de-p), 
phosphorylation below the significance threshold ((9)), glycosylphosphatidylinositol (GPI). 

  
flg22 vs flg22∆2 flg22 vs untreated 

flg22∆2 vs 

untreated       

  0 minuten 5 minuten 15 minuten 5 minuten 5 minuten       

FC AGI code and annotation av fold p av fold P av fold p av fold p av fold p TM PM ATTED flg22 expr P flg22 RG 

Signalling                

Receptor-like kinase                

 AT5G46330  FLS2 (FLAGELLIN-SENSITIVE 2) — — 1,950 0,048 1,358 0,012 1,501 0,013 — — 1 — 1 9 — 9 

 AT3G17840  RLK902 (receptor-like kinase 902) 0,800 0,131 1,896 0,000 1,680 0,014 — — — — 1 — — — — — 

 AT3G51550  FER (FERONIA) 0,972 0,939 1,811 0,000 1,339 0,201 — — — — 1 enr. 158 — — 9 

 AT3G02880  LRR transmembrane protein kinase, putative 0,893 0,707 1,539 0,014 1,047 0,922 1,292 0,241 1,010 0,721 1 enr. — 9 — — 

 AT5G16590  LRR transmembrane protein kinase, putative 0,969 0,937 1,629 0,001 1,117 0,766 1,203 0,459 — — 1 enr. — — — — 

 AT2G01820  LRR protein kinase, putative 1,401 0,673 1,717 0,000 2,851 0,000 — — 1,154 0,617 1 — — — — — 

 AT4G36180  LRR family protein 1,213 0,494 — — 2,156 0,000 — — — — 1 — — — — — 

 AT1G75640  LRR family protein / protein kinase family protein 0,617 0,012 — — 1,421 0,024 — — — — 1 — — — — — 

 AT3G23750  LRR family protein / protein kinase family protein 0,892 0,673 1,590 0,030 1,266 0,563 — — — — 1 9 — — — — 

 AT3G46290  protein kinase, putative 0,928 0,813 1,628 0,014 1,025 0,973 1,308 0,225 1,260 0,802 1 — 224 — 9 — 

Other kinases                

 AT4G04720  CPK21 (calcium-dependent protein kinase 21) 1,033 0,937 1,918 0,001 1,163 0,593 — — — — 0-1/myr enr. — — — — 

 AT5G24010  protein kinase family protein 0,920 0,754 1,733 0,039 1,517 0,001 1,425 0,181 0,992 0,994 1 — — — — — 

Other signalling proteins                

 AT1G05150  calcium-binding EF hand family protein 0,864 0,600 1,435 0,179 1,067 0,875 1,422 0,013 — — 0 — — — 9 — 

Transport                

Plasma membrane ATPases                

 AT2G18960  AHA1 (H(+)-ATPase 1) 0,909 0,754 1,673 0,000 1,306 0,268 1,456 0,013 1,024 0,692 10 9 — — de-p 9 

 AT4G30190  AHA2 (H(+)-ATPase 2) 0,971 0,930 1,828 0,014 1,224 0,488 1,435 0,013 0,976 0,994 10 enr. — — de-p — 

 AT5G57350  AHA3 (H(+)-ATPase 3) — — 4,652 0,919 2,700 0,009 — — — — 10 enr. — — — — 

 AT3G47950  AHA4 (H(+)-ATPase 4) — — 2,000 0,001 1,109 0,748 0,999 0,947 — — 10 9 — — — — 

Calcium-transporting ATPases                

 AT5G57110  ACA8 (autoinhibited Ca2+ -ATPase 8) 0,986 0,973 1,509 0,008 1,131 0,766 1,437 0,013 1,001 0,994 8-9 enr. — — — — 

 AT4G29900  ACA10 (autoinhibited Ca2+ -ATPase 10) 1,008 0,983 1,556 0,004 1,245 0,255 1,165 0,538 — — 9 9 — 9 9 — 

Vacuolar H(+)-ATPases                

 AT3G28715  VHA-d2 1,174 0,653 1,540 0,043 1,482 0,087 — — — — 0 — — — — — 



 

 

Table 3 continued. 

  

  
flg22 vs flg22∆2 flg22 vs untreated 

flg22∆2 vs 

untreated 
      

  0 minuten 5 minuten 15 minuten 5 minuten 5 minuten       

FC AGI code and annotation av fold p av fold p av fold p av fold p av fold p TM PM ATTED flg22 expr P flg22 RG 

 AT3G28710  VHA-d1 1,098 0,766 — — 1,450 0,089 1,252 0,300 0,964 0,741 0 9 — — — — 

 AT4G39080  VHA-a3 1,068 0,846 1,550 0,053 1,590 0,024 — — 1,042 0,994 6 — — — — — 

 AT1G78900  VHA-A 1,027 0,955 1,580 0,000 1,255 0,363 — — — — 0-1 enr. — — — — 

 AT2G21410  VHA-a2 1,272 0,585 1,394 0,147 1,651 0,025 1,262 0,293 — — 6 — — — — — 

 AT4G11150  VHA-E1 1,008 0,983 1,791 0,014 1,328 0,286 1,305 0,225 0,960 0,862 0 9 — — — — 

 AT1G76030  VHA.B1 0,648 0,225 1,410 0,128 1,659 0,016 — — 0,931 0,594 0 9 — — — — 

 AT3G58730  VHA-D 0,981 0,908 2,048 0,004 1,358 0,012 — — — — 0 9 — — — — 

 AT3G42050  VHA-H — — 1,588 0,001 1,353 0,103 — — — — 0 9 — — — — 

 AT1G12840  VHA-C/DET3 (DE-ETIOLATED 3) — — — — 1,552 0,011 — — — — 0 — — — — 9 

ABC Transporter                

 AT2G36910  PGP1 (P-Glycoprotein 1) — — 1,764 0,041 1,282 0,599 1,227 0,443 2,141 0,710 10 — — — 9 — 

 AT2G47000  PGP4 (P-Glycoprotein 4) 1,023 0,957 1,783 0,001 1,204 0,493 1,311 0,225 — — 12 — — — 9 — 

Other Transporter                 

 AT5G50200  WR3 (WOUND-RESPONSIVE 3); nitrate transporter 1,066 0,859 1,985 0,003 1,290 0,299 1,337 0,217 1,009 0,994 1 — — — — — 

 AT4G13510  AMT1;1 (AMMONIUM TRANSPORT 1) 0,889 0,698 1,849 0,006 1,460 0,227 1,313 0,225 0,918 0,947 12 9 — 9 9 9 

 AT1G11260  STP1 (SUGAR TRANSPORTER 1) 1,026 0,912 1,586 0,025 1,153 0,754 1,427 0,140 1,015 0,459 12 9 32 — — — 

 AT3G19930  STP4 (SUGAR TRANSPORTER 4) 1,144 0,919 1,607 0,020 1,203 0,585 1,312 0,225 1,154 0,738 12 9 — — — — 

 AT4G21120  AAT1 (CATIONIC AMINO ACID TRANSPORTER 1) — — — — 1,134 0,686 1,436 0,013 — — 14 — — — — — 

 AT5G40780  LHT1 (LYSINE HISTIDINE TRANSPORTER 1) — — 2,411 0,004 1,136 0,707 1,492 0,013 — — 11-12 9 — 9 — — 

 AT3G54140  proton-dependent oligopeptide transport (POT) family protein 0,938 0,813 1,867 0,048 1,181 0,632 1,549 0,049 0,810 0,817 11 9 — — — — 

Cell wall-related                

 AT1G03870  FLA9 (FLA9) 1,097 0,997 1,133 0,684 1,610 0,048 — — — — 0-1 enr. — — — — 

 AT4G12420  SKU5 (skewed 5); copper ion binding 0,712 0,303 1,580 0,038 4,621 0,000 1,660 0,902 1,075 0,902 0/GPI enr. — — — — 

 AT1G05570  CALS1/GSL6 (CALLOSE SYNTHASE 1) — — — — 1,498 0,047 — — — — 16 — — — — 9 

Intracellular trafficking                

 AT3G09740  SYP71 (SYNTAXIN OF PLANTS 71) 1,109 0,832 2,203 0,016 1,445 0,686 1,569 0,049 — — 1 9 — — — — 

 AT1G32050  SCAMP4 (secretory carrier-associated membrane protein 4) 0,982 0,947 1,821 0,000 1,213 0,477 1,327 0,225 1,000 0,540 4 9 — — — — 

Metabolism                

 AT4G03550  GSL05/PMR4 (GLUCAN SYNTHASE-LIKE 5) 1,046 0,919 1,832 0,004 1,546 0,041 1,359 0,181 — — 14 9 — — (9) 9 

 AT3G16860  phytochelatin synthetase-related 0,900 0,736 1,590 0,030 1,381 0,156 — — — — 0/GPI — — 9 — — 

 AT3G25290  auxin-responsive family protein 1,179 0,573 1,919 0,007 1,111 0,741 — — — — 5 9 — — — — 

 AT4G12980  auxin-responsive protein, putative 0,967 0,780 1,726 0,014 1,467 0,585 1,195 0,456 — — 5 9 — — — — 

 AT3G07570  membrane protein, putative 1,209 0,481 1,642 0,016 1,486 0,001   — — 5-6 — — — — — 

 AT1G73650  expressed protein 1,387 0,707 2,441 0,107 1,311 0,463 1,604 0,026 — — 4 9 — — — — 

Stress/Redox                

 AT5G06320  NHL3 (NDR1/HIN1-like 3) 0,879 0,661 1,623 0,001 1,388 0,198 1,379 0,175 0,955 0,994 1 9 — 9 — 9 



 

Table 3 continued. 

  

  
flg22 vs flg22∆2 flg22 vs untreated 

flg22∆2 vs 

untreated 
      

  0 minuten 5 minuten 15 minuten 5 minuten 5 minuten       

FC AGI code and annotation av fold p av fold p av fold p av fold p av fold p TM PM ATTED flg22 expr P flg22 RG 

 AT1G30360  ERD4 (EARLY-RESPONSIVE TO DEHYDRATION 4) 0,986 0,919 1,778 0,017 1,290 0,131 1,420 0,013 1,033 0,539 8-9 enr. — — — — 

 AT3G54200  expressed protein; similar to Harpin-induced 1 0,982 0,939 1,835 0,024 1,119 0,787 — — — — 1 9 — 9 — — 

 AT1G19110  inter-alpha-trypsin inhibitor heavy chain-related 1,100 0,769 2,073 0,001 1,572 0,107 1,548 0,027 0,984 0,539 0-1 — — — — — 

Protein modification                

 AT3G05560  60S ribosomal protein L22-2 (RPL22B) 1,120 0,766 — — 0,604 0,000 4,550 0,817 — — 0 — — — — — 

Other                

 AT2G45820  REM1.3 (REMORIN) 1,209 0,519 1,660 0,017 1,738 0,012 1,623 0,048 0,981 0,710 0 enr. — — 9 — 

 AT3G61260  REM1.2 (remorin family protein) 0,834 0,325 1,683 0,012 1,190 0,541 1,427 0,162 1,087 0,817 0 enr. — — — — 

 AT1G11330  S-locus lectin protein kinase family protein — — 2,131 0,030   — — — — 1 — — — — — 

 AT1G72230  plastocyanin-like domain-containing protein — — 1,384 0,303 1,267 0,093 1,105 0,721 1,128 0,568 0/GPI — — — — — 

Unknown                

 AT1G32190  expressed protein 0,904 0,748 1,863 0,001 1,526 0,048 1,415 0,148 1,001 0,568 0-1/myr — — — — — 

 AT3G44150  expressed protein — — 1,825 0,048 1,256 0,432 1,430 0,013 — — 1 — — — — — 

 AT1G17620  expressed protein 1,053 0,919 1,606 0,006 1,219 0,470 1,331 0,225 1,016 0,538 1 9 — — — — 

 AT3G01290  band 7 family protein 1,042 0,919 1,659 0,014 1,342 0,198 1,264 0,293 — — 0-1/myr enr. — 9 — — 

 AT1G69840  band 7 family protein 0,982 0,942 1,950 0,000 1,431 0,325 1,437 0,013 0,927 0,568 0 9 154 9 — — 

 AT5G62740  band 7 family protein 1,511 0,455 1,996 0,009 1,554 0,364 1,448 0,013 — — 0 9 — — — — 
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3.2 Involvement of sterols and membrane rafts in the Arabidopsis-

powdery mildew interaction 
 

3.2.1 AtPEN1 associates with detergent-resistant membranes in a sterol-dependent 

manner 

DRM extraction is a commonly applied method as a first approach to address the potential 

localization of a protein of interest to membrane rafts. The extraction is based on the 

hypothesis that membrane rafts are resistant to treatment with anionic, non-denaturing 

detergents due to the tight interactions between sterols, sphingolipids and proteins in the lo-

phase (Brown and Rose, 1992). To analyze the potential association of AtPEN1 with 

DRMs, microsomes were isolated from rosette leaves of GFP-AtPEN1 overexpressing 

Arabidopsis plants and DRMs extracted at a range of Triton-X 100-to-protein ratios. 

Subsequently, samples were fractionated by sucrose gradient centrifugation and analyzed 

by immunoblot analysis using a polyclonal antiserum directed against AtPEN1 (Figure 

8A). At a Triton-X 100-to-protein ratio of 15, which represents stringent conditions for the 

isolation of DRMs from plant membranes (Mongrand et al., 2004; Borner et al., 2005), still 

a substantial amount of GFP-AtPEN1 was recovered in the low density DRM fractions 

(indicated by black bar). Similar results were obtained upon DRM extraction from Col-0 

wild type plants and immunological detection of native AtPEN1 using the anti-AtPEN1 

polyclonal antiserum (Figure 8B). Reggie-like proteins (RLPs) are presumptive 

homologues of flotillin-1, which commonly serves as a lipid raft marker protein in 

mammalian cells (Babuke and Tikkanen, 2007). When isolating DRMs from AtRLP1b-

GFP overexpressing Arabidopsis plants we observed the association of AtRLP1b-GFP 

with DRMs (Figure 8B). Similarly, we found partitioning into DRMs for AtRLP1a-GFP 

and even more pronounced for AtRLP2 (data not shown). Based on a proteomic approach 

Borner and coworkers previously reported the enrichment of AtRLP1a in DRMs (Borner et 

al., 2005). Taken together, these findings suggest that AtRLPs associate with DRMs across 

kingdoms, indicative of a conserved function in membrane raft-related processes. 

Arabidopsis LIPOCALIN (AtLCN) is a cold-responsive PM protein (Kawamura and 

Uemura, 2003), which did not associate with DRMs under our conditions (Figure 8B). This 

indicates that it is surrounded by a different lipid environment in the membrane than 

AtPEN1 and AtRLPs, suggesting its localization solely in the ld-phase, outside of
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Figure 8. AtPEN1 partially associates with detergent-resistant membranes. 
DRMs were isolated from rosette leaves of GFP-AtPEN1 overexpressing Arabidopsis plants (A) as 
well as Col-0 and RLP1b-GFP overexpressing plants (B) and subsequently fractionated by sucrose 
gradient centrifugation. Proteins of the recovered fractions were precipitated, separated by SDS-
PAGE and transferred to nitrocellulose for immunoblot analysis. (A) DRMs were isolated using a 
range of Triton-X 100-to-protein ratios (as indicated) and immunoblot analysis was performed 
using an antiserum directed against GFP. (B) DRMs were extracted using a Triton-X 100-to-
protein ratio of 15 and immunoblot analysis was performed using antisera against the respective 
protein or peptide-tag as indicated. Arrowheads indicate the expected molecular weight of the 
respective full-size proteins. 
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membrane rafts. To test whether the DRM association of AtPEN1 is dependent on sterols, 

microsomes were preincubated prior to detergent treatment and DRM isolation with 5 or 

10 mM methyl-β-cyclodextrin (MßCD), a compound which selectively extracts sterols 

from membranes (Roche et al., 2008). We observed a clear and MßCD concentration-

dependent reduction in AtPEN1 DRM association (Figure 9), suggesting that the residence 

of AtPEN1 in DRMs requires the presence of sterols. 

 

 

 
 
Figure 9. AtPEN1 association with detergent-resistant membranes is sterol-dependent.  
DRMs were isolated from GFP-AtPEN1 overexpressing Arabidopsis rosette leaves at a Triton-X 
100-to-protein ratio of 15. To analyze the sterol dependence of the GFP-AtPEN1 DRM association, 
microsomal fractions were preincubated with either 5 mM or 10 mM MßCD before Triton-X 100 
treatment and subsequently fractionated by sucrose gradient centrifugation. Proteins of the 
recovered fractions were precipitated, separated by SDS-PAGE and transferred to nitrocellulose 
membrane for immunoblot analysis using an antiserum directed against AtPEN1. The upper (low 
density) half of each gradient was analyzed. 
 

Heterooligomeric ternary SNARE complexes but not monomeric SNARE proteins are the 

functionally active protein complexes that ultimately drive vesicle fusion at target 

membranes (Lipka et al., 2007). These ternary SNARE complexes are SDS-resistant but 

heat sensitive (Hayashi et al., 1994; Kwon et al., 2008a) and thus can be visualized as high 

molecular weight complexes by SDS-PAGE and subsequent immunoblot analysis. To 

analyze the presence of AtPEN1-containing ternary SNARE complexes in DRMs, we 

isolated DRMs from Col-0 Arabidopsis rosette leaves and the fractions recovered after 

sucrose gradient centrifugation were either directly separated by SDS-PAGE (Figure 10, 

right panel) or boiled before loading on the gel (Figure 10, left panel). AtPEN1-containing 

ternary SNARE complexes were clearly detected in the low density fractions of the sucrose 

gradient but were absent or below the detection limit in the low buoyant density fractions 

(Figure 10, right panel). When DRMs were isolated from powdery mildew-challenged 
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plant material (non-adapted powdery mildew pathogen, Blumeria graminis forma specialis 

hordei (Bgh)) we did not observe any difference in DRM association of the monomeric 

AtPEN1 protein or the AtPEN1-containing ternary SNARE complexes (data not shown). 

 

 
 

Figure 10. Detergent-resistant membranes are devoid of AtPEN1-containing ternary SNARE 
complexes. 
DRMs were isolated from Col-0 Arabidopsis rosette leaves applying a Triton-X 100-to-protein 
ratio of 15 and fractionation via sucrose gradient centrifugation. For the analysis of SDS-resistant 
AtPEN1-containing ternary SNARE complexes proteins of the recovered fractions were 
precipitated, directly separated by SDS-PAGE without boiling and transferred to nitrocellulose 
membrane (right panel). SDS resistant AtPEN1-containing ternary SNARE complexes dissociate 
after boiling (left panel). Immunoblot analysis was performed using an antiserum directed against 
AtPEN1. 
 

 

3.2.2 Sterol biosynthesis mutants smt1 and smt2 display enhanced resistance 

towards the adapted powdery mildew pathogen, Golovinomyces orontii 

With the aim to genetically interfere with membrane raft formation and/or function in 

planta we took advantage of the available mutants in genes encoding enzymes of the sterol 

biosynthesis pathway. In plants, mutants in genes encoding enzymes acting in most of the 

biosynthetic steps have been described (Clouse, 2002). Notably, some of the respective 

mutants are gametophytic or embryonic lethal, while others are viable, but often associated 

with developmental defects. All available mutant lines (Table 4, see also additional 

material for further mutant plants investigated) were assessed for their macroscopic and 

microscopic powdery mildew infection phenotype. For the latter, we challenged 4 week-

old plants with the adapted powdery mildew pathogen, G. oronti, and performed 

quantitative analysis of host cell entry at 48 hpi (Figure 11A and B as well as 

Supplementary Figure 2). We identified mutants in two genes (SMT1, SMT2) that each 

showed an altered pathogen phenotype in multiple independent alleles. SMT1 and SMT2 

both encode methyltransferases in the sterol biosynthetic pathway, mutants of which have 

perturbed sterol compositions (Carland et al., 2002; Willemsen et al., 2003; Hase et al., 

2005), probably causing the described cell polarity defects (Fischer et al., 2004). In the 
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context of powdery mildew infection we observed enhanced disease resistance in both 

mutants (reduced host cell entry as compared to Col-0 wild type plants). This phenotype 

was found in two independent smt1 alleles (Figure 11B) and a third allele showed that 

same tendency, while a fourth allele, which carries a T-DNA insertion in the 5’UTR, did 

not display compromised host cell entry (Supplementary Figure 2). The analysis of five 

independent smt2 alleles revealed that four out of five mutants showed a moderately 

reduced fungal entry rate (Figure 11A). smt2 443F03 carries a T-DNA insertion, whereas 

cotelydon vascular pattern (cvp)1-3 as well as cvp1-4 harbor single nucleotide exchanges 

that probably all result in complete null alleles (Carland et al., 2002). Similarly, the single 

nucleotide deletion in frill 1 (frl1) results in aberrant translation and an early stop codon, 

suggesting that also this allele results in a complete null mutant (Hase et al., 2005), while 

cvp1-1 has a single amino acid exchange that probably only causes a partial loss of 

function (Carland et al., 2002). This provides a plausible explanation for the absence of a 

pathogen phenotype in the cvp1-1 mutant (Figure 11A). DWARF (DWF)5 encodes a sterol 

reductase in the sterol biosynthesis pathway close to where it feeds into the brassinosteroid 

synthesis route (Choe et al., 2000). Accordingly, dwf5 mutant plants display a typical 

brassinosteroid-deficient growth phenotype (Choe et al., 2000). The dwf5 127066 mutant 

showed a less pronounced but nevertheless statistically significant reduction of host cell 

penetration (Figure 11B). A second allele (dwf5 232E05) did not display this phenotype, 

which could be due to residual DWF5 enzymatic activity in this line in which the T-DNA 

insertion resides more downstream in the open reading frame. However, the dwf5 232E05 

allele showed the described brassinosteroid-deficient growth phenotype to a similar degree 

as dwf5 127066, indicative of similarly disrupted DWF5 activity in both mutants (Choe et 

al., 2000). This suggests that the observed effect on pathogen entry in dwf5 127066 is not 

related to the dwf5 mutation but possibly caused by a second T-DNA insertion/mutational 

event. Macroscopic infection phenotypes for all mutant lines were evaluated at 7-15 dpi 

and were indistinguishable from wild type plants for most sterol biosynthesis mutants
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(data not shown), except for reduced sporulation on smt1 and smt2 mutant plants (Figure 

11C). 

To assess how strongly membrane composition is disturbed in the sterol biosynthesis 

mutants we examined if DRMs can still be extracted from their membranes and whether 

AtPEN1 yet associated with them. For all tested mutants (smt1orc, smt2 as well as dwf5 

127066) neither a difference in DRM recovery nor in AtPEN1 association with DRMs was 

observed (data not shown). This indicates that, despite of perturbed sterol compositions, 

membrane rafts are largely intact in these mutant membranes. The findings do, however, 

not exclude an impairment of their functionality. 

 
3.2.3 Sterol biosynthesis mutants smt2 and dwf5 display aberrant focal 

accumulation of GFP-AtPEN1 underneath fungal attack sites 

To quantitatively analyze the FA of GFP-AtPEN1 underneath fungal attack sites, the 

Opera™, an automated confocal micro plate imaging reader, and the image analysis 

software Acapella™ were applied. This instrumentation allows the quantitative analysis of 

a large amount of parameters concerning the pathogen-triggered FA of GFP-AtPEN1, 

thereby revealing also subtle alterations that cannot be observed by eye (Meyer, 2008). 

Two week-old wild type as well as dwf5 232E05 and smt2 443F03 mutant plants 

overexpressing GFP-AtPEN1 under the control of the 35S promoter in the pen1-1 genetic 

background were inoculated with Bgh conidiospores and analyzed at 24 hpi. Quantitative 

image analysis concerning 19 parameters revealed a significant increase in the average 

intensity and average area of the GFP-AtPEN1 FA sites in the smt2 443F03 mutant 

background (Figure 12A and B). While the average area remained unaltered in the dwf5 

232E05 mutant, the average area of the GFP-AtPEN1 FAs was significantly reduced 

(Figure 12C and D). For all other parameters smt2 443F03 and dwf5 232E05 mutants 

plants did not differ from wild type (data not shown). Taken together these data suggest 

that a proper membrane sterol composition is decisive for wild type-like accumulation of 

GFP-AtPEN1 at attempted fungal entry sites. 

 

 

Figure 11. Golovinomyces orontii host cell entry and sporulation is compromised in sterol 
biosynthesis mutant plants.  
(A) and (B) Quantitative analysis of host cell entry was performed at 48 hpi. Results represent 
mean ± s.d. of three to seven independent experiments (for details see supplementary Figure 2). 
Asterisks indicate a significant difference from wild type accessions Col-0 or Ws-0 (** = p < 0.01; 
* = p < 0.05, Student’s t-test). (C) Infection phenotypes of representative wild type (Col-0 and 
Utrecht) and smt1orc and smt2 443F03 mutant plants at 10 dpi. 
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Figure 12. Sterol biosynthesis mutants display aberrant focal accumulation of GFP-AtPEN1 
underneath fungal attack sites.  
Two-week old wild type Arabidopsis plants (Col-0) as well as smt2 443F03 and dwf5 232E05 
mutant plants expressing GFP-AtPEN1 under the control of the 35S promoter in pen1-1 
background were inoculated with Bgh and analyzed at 24 hpi. For data acquisition the Opera™ 
confocal microscope and for image analysis the Acapella™ software were used. (A) – (D) 
Quantitative analyses of the GFP-At PEN1 focal accumulation in smt2 443F03 (A and B) and dwf5 
232E05 (C and D). Average intensity of spots (A and C) and average area of spots (B and D). 
Results represent mean ± s.d. of four and five independent experiments for dwf5 232E05 and smt2 
443F03, respectively. Asterisks indicate a significant difference from control plants (** = p < 0.01, 
* = p < 0.05, Student’s t-test). The mutant plants did not differ from wild type for 17 other 
parameters analyzed with the AcapellaTM image analysis software. 
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3.2.4 A role for digalactosyldiaglycerol in the Golovinomyces orontii-host 

interaction 

Glycoglycreolipids are the predominant lipids in plant chloroplasts, with 

monogalactosyldiaglycerol (MGDG) and digalactosyldiaglycerol (DGDG) being the most 

abundant molecules. It has previously been shown that galactolipid mutants display a 

reduced chlorophyll content and photosynthetic activity as well as an impairment of 

growth (Dörmann et al., 1999; Hölzl and Dörmann, 2007). Under phosphate-limiting 

conditions the accumulation of DGDG in extraplastidial membranes including the PM was 

observed (Hölzl and Dörmann, 2007). It is thought that DGDG might replace 

phospholipids under these conditions. Notably, DGDG also accumulates in the 

perbacteroid membrane of nitrogen-fixing nodules in soybean and Lotus japonicus (Gaude 

et al., 2004). The authors speculate that during nodulation the phosphate requirement is 

enhanced and that therefore DGDG, a non-phosphorus lipid, replaces phospholipids, 

making phosphate available for other essential cellular processes. In our study we observed 

strongly reduced host cell entry of G. orontii on dgd1 mutant plants, which was reversed in 

a respective transgenic complementation line (Figure 13B). dgd2 mutants were also 

significantly affected in two out of three analyzed alleles, however to a smaller degree 

(Figure 13B). While dgd2-1 and dgd2-3 both displayed reduced host cell entry, dgd2-2 did 

not show this phenotype. This can probably be attributed to only partial loss of DGD2 

function in this allele due to the position of the T-DNA insertion in the last exon. The less 

severe phenotype of dgd2 mutant plants likely reflects the subordinate role of DGD2 in 

DGDG biosynthesis (Hölzl and Dörmann, 2007). Consistently, macroscopic evaluation of 

fungal sporulation revealed reduced conidiation of G. orontii on dgd1-1, but not on dgd2-1 

mutants (Figure 14). Quantitative analysis of the YFP-AtPEN1 FA underneath fungal 

attack sites in the dgd2-1 background based on the Opera imaging system was 

indistinguishable from wild type YFP-AtPEN1 FA (data not shown). Interestingly, mgd1 

mutant plants did not show enhanced resistance towards G. orontii and conversely to 

DGDG, MGDG was also not found outside of plastidial membranes (Jouhet et al., 2004; 

Hölzl and Dörmann, 2007). It is tempting to speculate that DGDG might, in parallel to its 

accumulation in peribacteroid membranes, play a role in the establishment of the 

extrahaustorial membrane around fungal feeding structures. However, Fiehn and 

colleagues showed that the dgd1-1 mutant displays a dramatically altered metabolite 

profile compared to wild type plants (Fiehn et al., 2000). 153 out of 326 quantified 

metabolites were significantly changed in the mutant, among them indole-3-acetonitrile 
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and other unidentified indole derivatives, indicating a possible hormonal defect and the 

potential constitutive accumulation of defence-related indolic compounds. These profound 

changes in the dgd1-1 mutant could at least in part account for the observed increased 

resistance through (a) not yet determined secondary effect(s). 

 

3.2.5 REGGIE-LIKE PROTEINs do not play a major role in the powdery mildew 

host cell entry 

RLPs are presumptive homologues of mammalian flotilin-1, which commonly serves as a 

membrane raft marker protein in animal cells (Babuke and Tikkanen, 2007). Even though 

their precise biochemical activity is still unknown they have been proposed to function as 

scaffolding proteins for a subset of membrane rafts (Langhorst et al., 2007). Moreover, 

they have been implicated in raft-mediated endocytosis, phagocytosis as well as in the 

regulation of the cytoskeleton and neurite outgrowth (Babuke and Tikkanen, 2007). In 

plants the function of RLPs remains completely enigmatic; however, RLP1a was found to 

be enriched in DRMs, indicating the conserved association of RLPs with DRMs across 

kingdoms (Borner et al., 2005). In extension of these findings, we could also demonstrate 

the association of RLP1b and RLP2 with DRMs (Figure 8). In the context of RLPs acting 

as scaffolding proteins and therefore assuming a general function in membrane raft 

integrity, we assessed mutants in genes of RLPs and RLP overexpressing plants for their 

powdery mildew infection phenotype. rlp1b displayed a slight but significant reduction in 

host cell entry and a line overexpressing RLP1b-GFP showed increased susceptibility 

(Figure 13C). rlp2 mutant plants and RLP1a-GFP overexpressing lines did not show an 

infection phenotype distinguishable from wild type (Figure 13D). Based on preliminary 

data, no clear trend could be observed upon challenge of rlp1b, rlp2 and RLP1a and 

RLP1b-GFP overexpressing lines with the non-adapted powdery mildew pathogen, 

Erysiphe pisi (Figure 13D). 

 

3.2.6 Degree of fatty acid desaturation does not affect Golovinomyces orontii host 

cell entry 

According to the current model, the tight interaction of sphingolipids and sterols in 

membrane rafts is partly based on straight hydrocarbon chains due to their high saturation 

degree (Simons and Ikonen, 1997). Indeed, Laloi and colleagues showed that the amount 

of DRMs recovered from Arabidopsis cell lines fatty acid desaturation (fad)2 and Fad3+, 

hyperaccumulating 18:1 and 18:3 fatty acids, respectively, was reduced to 20% of wild 
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type levels (Laloi et al., 2007). In the present study we tested a comprehensive set of fad 

mutants for their powdery mildew infection (G. orontii) phenotype and did not observe any 

significant difference to wild type plants with respect to fungal host cell entry (Figure 13A) 

and conidiation (data not shown). This finding suggests that membrane fluidity, which is 

altered in fad2 and Fad3+ mutants (Vaultier et al., 2006), does not affect G. orontii 

pathogenesis. 
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Figure 13. Host cell entry rates of additional mutants and transgenic lines used in this study.  
(A) to (C) Quantitative analysis of G. orontii host cell entry was performed at 48 hpi. (D) 
Quantitative analysis of Erysiphe pisi host cell entry was preformed 7 dpi. Results represent mean 
± s.d. Number of biological replicates is indicated above the bars. Asterisks indicate a significant 
difference from wild-type accessions (** = p < 0.01; * = p < 0.05, Student’s t-test). 
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Figure 14. Sporulation of Golovinomyces orontii is reduced on dgd1-1 mutant plants. 
Infection phenotypes of representative wild type (Col-0 and Ws-0) and dgd1-1 and dgd2-1 mutant 
plants at 10 dpi. 
 

 



 

 

Table 4. Mutant alleles of sterol biosynthesis genes used in this study.  

Biological process Gene Mutant allele Function AGI code Line designation Status Comment Accession Source 

Sterol biosynthesis          

 DWF1/DIM  C-24 reductase At3g19820 SALK_006925 no insert  Col-0 Salk Institute 

     SALK_006932 homozygous  Col-0 Salk Institute 

     GABI_614D03 waiting for seeds  Col-0 GABI-Kat 

 DWF5  A7 sterol reductase At1g50430 SALK_127041 no insert  Col-0 Salk Institute 

     SALK_127058 no insert  Col-0 Salk Institute 

     SALK_127066 homozygous  Col-0 Salk Institute 

     SALK_127074 no insert  Col-0 Salk Institute 

     SAIL_232_E05 homozygous  Col-0 NASC 

     SALK_002937 no insert  Col-0 Salk Institute 

 DWF7/STE1  A7 sterol C-5 desaturase At3g02580 SALK_136258 no insert  Col-0 Salk Institute 

     GABI_446H09 homozygous  Col-0 GABI-Kat 

     SALK_136266 no insert  Col-0 Salk Institute 

 SMT2 smt2 C-28 methyl transferase At1g20330 GABI_443F03 homozygous  Col-0 GABI-Kat 

  frl1    homozygous EMS mutant Col-0 (Hase et al., 2000) 

  cvp-1-1    homozygous EMS mutant Col-0 (Carland et al., 2002)

  cvp1-3    homozygous EMS mutant Col-0 (Carland et al., 2002)

  cvp1-4    homozygous EMS mutant Col-0 (Carland et al., 2002)

 HYDRA1  A8-A7 sterol isomerase At1g20050 GABI_366D06 lethal  Col-0 GABI-Kat 

 FACKEL  C-14 sterolreductase At3g52940  no line available    

 CYP51  C-14 demethylase At1g11680 SALK_067630 lethal  Col-0 Salk Institute 

     SAIL_12_A11 lethal in 5'UTR ~280bp Col-0 NASC 

     GABI_575H03 homozygous in 5'UTR ~350 bp Col-0 GABI-Kat 

     GABI_696D07 homozygous in 5'UTR ~350 bp Col-0 GABI-Kat 

     SAIL_12_F10 lethal in 5'UTR Col-0 NASC 



 

 

 

 

Table 4 continued. 
Sterol biosynthesis CPI1  cycloeucalenol cycloisomerase At5g50375 SALK_053963 in progress in 5'UTR Col-0 Salk Institute 

     SALK_135330 in progress in 5'UTR Col-0 Salk Institute 

 CAS1  cycloartenol synthase At2g07050 SALK_119879 in progress  Col-0 Salk Institute 

     SALK_056272 waiting for seeds  Col-0 Salk Institute 

     SALK_152551 waiting for seeds  Col-0 Salk Institute 

 SMT1 (CPH)  C-24 methyl transferase At5g13710 GABI_059A04 lethal  Col-0 GABI-Kat 

     SALK_098551 no insert  Col-0 Salk Institute 

     SALK_098552 no insert  Col-0 Salk Institute 

     SAIL_772_B06 homozygous in 5'UTR Col-0 NASC 

     GABI_214H04 lethal  Col-0 GABI-Kat 

  smt1-1     homozygous EMS mutant Ws-0 (Diener et al., 2000) 

  smt1-3     homozygous EMS mutant Ws-0 (Diener et al., 2000) 

  smt1 orc    homozygous EMS mutant Utrecht (Willemsen et al., 2003)

 FPS1  farnesyl diphosphate synthase At5g47770 SALK_122668 homozygous  Col-0 Salk Institute 

     SALK_004298 lethal  Col-0 Salk Institute 

     SALK_073576 homozygous  Col-0 Salk Institute 

 SQS1  squalene synthase At4g34640 SAIL_1284_H07 lethal  Col-0 NASC 

     SALK_087515 lethal  Col-0 Salk Institute 

     SALK_077057 homozygous 180 bp 5'UTR Col-0 Salk Institute 

 SQS2  squalene synthase At4g34650 GABI_768A06 homozygous  Col-0 GABI-Kat 

     GABI_651C05 homozygous  Col-0 GABI-Kat 

 FPS2  farnesyl diphosphate synthase At4g17190 SAIL_328_G06 homozygous  Col-0 NASC 

 HMG1  3-hydroxy-3-methylglutaryl coenzyme A At1g76490 SALK_061790 homozygous  Col-0 Salk Institute 

     SALK_125435 homozygous  Col-0 Salk Institute 

      GABI_338D08 waiting for seeds  Col-0 GABI-Kat 

 HMG2  3-hydroxy-3-methylglutaryl coenzyme A At2g17370 SALK_073557 homozygous  Col-0 Salk Institute 

     SALK_094623 homozygous  Col-0 Salk Institute 

      GABI_248D08 in progress  Col-0 GABI-Kat 
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4. Discussion 

 

4.1 Quantitative proteomics of flagellin-induced plasma membrane 

compartmentalization 
 

To reveal PAMP-induced protein dynamics at the PM of Arabidopsis cells we performed a 

quantitative proteomics approach, especially aiming at the elucidation of protein 

relocalization to DRMs after flg22 treatment. By ratiometric quantification we identified 

proteins that were significantly enriched in DRMs in response to flg22. By a subsequent 

reverse genetic approach to investigate an authentic role of these proteins in PAMP-

induced defense responses we identified two novel components in this pathway (see also 

preliminary data for a third component in additional material). 

In total we identified 316 proteins associated with DRMs. When we compared these to the 

inventory of DRM-associated plant proteins previously reported (Bhat and Panstruga, 

2005; Morel et al., 2006) an extensive overlap was observed. This applied in particular to 

the categories of transporters, signaling, intracellular trafficking and cell-wall related 

proteins. 188 proteins were present in reciprocally labeled samples and thus quantification 

based on protein abundance ratios could be pursued for them. 34% of the quantified 

proteins were enriched significantly in at least one of the reciprocal sample sets. 

Importantly, only up to 2% of the proteins responded in a statistically significant manner in 

the control samples, which were either treated with the inactive peptide or untreated. We 

thus conclude that our workflow successfully identified proteins that specifically respond 

to flg22 treatment, unambiguously distinguishing between inherent biological and 

experimental variation and responses to the biological treatment (Kierszniowska et al., 

2008). 

The proteins for which quantification was pursued were classified into MapMan categories 

(Figure 4). While the class of transporters comprised 17% among the non-responding 

proteins, they accounted for 38% of the group of significantly responding proteins. This 

drastic difference supposedly highlights the importance of transport processes across the 

PM in response to PAMPs (Blumwald et al., 1998; Beffagna et al., 2005). The apparently 

large change in the category of protein synthesis reflects the successful exclusion of 

putative contaminants (proteins not associated with membranes) from the significantly 

responding proteins. The assumed contaminants were mainly ribosomal proteins and 
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therefore fell into the class of protein synthesis. Accordingly, for most of the proteins in 

this group neither PM localization nor a TM domain was predicted. One of the main 

characteristics attributed to membrane rafts is their enrichment in signaling components 

and their putative function as signaling platforms (Simons and Toomre, 2000). 

Accordingly, RLKs are also enriched in plant DRMs (e.g., Shahollari et al., 2004; Morel et 

al., 2006) and constitute the largest group of proteins identified in the present study. 

 

4.1.1 PM H+-ATPases and ion transport in PAMP signaling 

The rapid generation of ROS is a characteristic reaction of host cells in response to elicitor  

treatment and pathogen attack (Lamb and Dixon, 1997; Felix et al., 1999). ROS are 

implicated in the induction of the hypersensitive response, the regulation of defense gene 

induction as well as crosslinking of structural proteins and lignin polymers, thereby 

rendering the cell wall less digestible (Felix et al., 1999; Hückelhoven and Kogel, 2003). 

Moreover ROS, such as 1O2, O2⎯ , H2O2 and •OH, have a direct cytotoxic capacity (Miller 

et al., 2008). The current model proposes that upon elicitor treatment H+-ATPase activity is 

downregulated through phosphorylation, inducing membrane depolarization and 

alkalinization of the extracellular medium (Schaller and Oecking, 1999; Nühse et al., 

2007). Concomitantly, calcium influx is triggered, which in turn stimulates a calcium-

dependent and PM-associated NADPH oxidase (AtRBOHD; (Ogasawara et al., 2008)). 

Most likely the same is true for a second NADPH oxidase (AtRBOHF) that also 

contributes to ROS production in response to pathogen attack (Torres et al., 2006). In 

parallel, the increased cytosolic pH leads to a higher production of NADPH, which is used 

as an electron source by NADPH oxidases (Beffagna et al., 2005). Since high calcium 

concentrations are cytotoxic, and also to reset the cellular machinery for the next 

encountered stimulus, cytoplasmic Ca2+ extrusion driven by Ca2+-ATPases is essential. 

Rapid elimination of elevated cytoplasmic Ca2+ levels thus supposedly conditions the 

transient nature of the ROS burst (Beffagna et al., 2005; Lecourieux et al., 2006). Both, 

H+-ATPases and Ca2+-ATPases have long been proposed to play an essential role in 

triggering and terminating the oxidative burst (Blumwald et al., 1998; Felix et al., 1999; 

Schaller and Oecking, 1999; Lecourieux et al., 2006). A large body of evidence, however 

mainly based on biochemical studies including pharmacological interference, indeed 

supports these hypotheses (Beffagna et al., 2005). In the present study we identified four 

PM H+-ATPases to be significantly enriched in DRMs upon flg22 elicitation (AHA1, 

AHA2, AHA3 and AHA4), including the two major H+-ATPases AHA1 and AHA2. 
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Furthermore, two Ca2+-ATPases were found to be significantly enriched in DRMs after 

PAMP stimulus (ACA8 and ACA10). Interestingly, AHA1, AHA2 and ACA10 were also 

shown to be rapidly dephosphorylated and phosphorylated, respectively, in response to 

flg22 treatment (Benschop et al., 2007; Nühse et al., 2007). Additionally, ACA10 transcript 

levels increase in response to flg22 treatment (Zipfel et al., 2004), further supporting its 

genuine involvement in elicitor-induced defense responses. 

By taking a reverse genetic approach we demonstrated the contribution of the PM H+ 

ATPase AHA1 in the production of ROS in response to flg22 (Figure 5A). Mutant plants 

expressing a constitutive active variant of AHA1 (Merlot et al., 2007) showed a 

significantly reduced oxidative burst compared to wild type seedlings. In these mutant 

plants a constant hyperpolarization of the PM leading to acidification of the extracellular 

medium (Merlot et al., 2007) seems to cause a reduced production of ROS, probably 

through a less efficient membrane depolarization and accordingly perturbed ion fluxes in 

response to elicitor treatment. Additionally, this mutant was described to have elevated 

levels of the stress signaling molecule SA and constitutive defense gene induction, leading 

to spontaneous cell death and leaf necrosis (Merlot et al., 2007). Consistently, we observed 

aberrant (spontaneous) callose deposition in ost2-1D, which could be a consequence of the 

elevated SA levels (Consonni et al., 2006). It is unlikely that the high SA levels have a 

direct effect on the flg22-induced oxidative burst, especially since an elevated defense 

status of these plants would rather suggest an elevated oxidative burst response. 

For H+-ATPases it has already been proposed that the activity of these proton pumps is 

regulated at the posttranslational level, likely through events of phosphorylation and 

dephosphorylation (Gaxiola et al., 2007). Our data suggest that the regulation of H+-

ATPases might also involve their recruitment to specialized membrane domains 

(membrane rafts). This is further corroborated by the fact that immunodetection studies 

consistently showed that PM H+-ATPases are present in patches at the PM (Gaxiola et al., 

2007). Interestingly, Lefebvre and coworkers identified a DRM-associated PM redox 

system in Medicago truncatula root cells which could participate in the production or 

degradation of ROS via the regulation of the redox balance between the cytosoplasm and 

apoplast (Lefebvre et al., 2007). Moreover, the tobacco NADPH oxidase NtRBOHD and 

its negative regulator, a small Rho GTPase (NtRac5), were shown to associate with DRMs 

after treatment with a fungal elicitor (Mongrand et al., 2004). Thus, it seems that not only 

H+-ATPases but also other players implicated in the oxidative burst in response to biotic 

stimuli might be associated with membrane rafts and may be regulated thereby. 
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4.1.2 flg22-induced redistribution of FLS2 

Strikingly, the flg22 receptor FLS2 was consistently enriched in DRMs after flg22 

induction in all sample sets, displaying an up to 3-fold enrichment. Benshop and coworkers 

did not observe any change in FLS2 protein abundance in total PMs at 10 minutes after 

addition of flg22 (Benschop et al., 2007). Therefore the significant enrichment of FLS2 in 

DRMs observed in this study reflects its PAMP-induced redistribution within the PM. 

FLS2 represents the first documented example of ligand-induced receptor endocytosis in 

plants (Robatzek et al., 2006). BAK1, a coreceptor rapidly forming a complex with FLS2 

after flg22 elicitation, is necessary for the internalization of FLS2 (Chinchilla et al., 2007; 

Heese et al., 2007). Consistent with an altered membrane environment, ligand-induced 

reduction in lateral mobility of FLS2 was reported (Ali et al., 2007). These observations 

are in accordance with the current model that receptor endocytosis is preceded by 

formation of oligomeric complexes and coalescence of membrane rafts at the receptor site 

(Geldner and Robatzek, 2008). Indeed, in mammals, the epidermal growth factor receptor 

is thought to localize to membrane rafts that also recruit the machinery for receptor 

endocytosis (Puri et al., 2005). The presence of TUBULIN ALPHA-4 CHAIN and 

SECRETORY CARRIER MEMBRANE PROTEIN (SCAMP) 4 in DRMs (both 

constitutively present in all samples in the present study) strengthens the notion that 

endocytosis might be initiated at membrane rafts also in plant cells. SCAMP4 is a 

presumptive homolog of rice SCAMP1, which was recently shown to localize to the PM 

and early endosomes (Lam et al., 2007). Further experimental support for a role of 

membrane rafts in endocytosis stems from Grebe and coworkers who showed by filipin 

labeling that sterols accumulate in ARA6 (early endosome Rab5 GTPase homolog)-GFP-

positive endosomes (Grebe et al., 2003). Moreover, a sterol-deficient mutant 

(cyclopropylsterol isomerase1) was recently found to display aberrant localization of the 

otherwise strictly polarized auxin efflux carrier PIN-FORMED2, which most likely is a 

consequence of disturbed endocytosis (Men et al., 2008). 

 

4.1.3 V-ATPases in PAMP signaling 

Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes comprised of the peripheral 

V1 complex (composed of eight subunits) and the membrane integral V0 subunit complex 

(comprised of five different subunits in Arabidopsis) (Gaxiola et al., 2007). In total we 

identified 14 of these subunits in our proteomic analysis of which 10 underwent 
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relocalization into DRMs after flg22 treatment. The most prominent role for V-ATPases is 

the acidification of endomembrane compartments, but they also act in secretory and 

endocytic trafficking (Dettmer et al., 2006; Marshansky and Futai, 2008). It is well 

accepted that V-ATPases are not only present in vacuolar membranes, but in all types of 

endomembranes (Schumacher, 2006) and PMs (Alexandersson et al., 2004; Marmagne et 

al., 2004; Borner et al., 2005; Jefferies et al., 2008). Dettmer and coworkers showed that 

VHA-A1 localizes to the trans-Golgi network, where endocytic and secretory vesicles are 

found, and that V-ATPases are important for their trafficking (Dettmer et al., 2006). 

Notably, det3, affected in VHA-C, which consequently affects all V-ATPases, exhibits a 

reduced sensitivity to brassinosteroids (Schumacher et al., 1999). 

Here we showed that V-ATPases also play a role in PAMP-triggered defense responses. 

Both, det3 mutants and ConcA-treated wild type seedlings displayed a reduced oxidative 

burst upon flg22 elicitation, while callose deposition was undistinguishable from wild type 

plants. This indicates that FLS2 trafficking may involve the trans-Golgi network-endocytic 

pathway, which might lead to disturbed downstream signaling responses in det3 mutants 

and ConcA-treated plants. Preliminary data showing an unaltered FLS2-GFP signal at the 

PM of ConcA-treated plants (data not shown) likely rules out that reduced levels of FLS2 

at the PM (e.g. due to improper secretion of newly synthesized receptor) caused the 

described oxidative burst phenotype. In contrast, BRASSINOSTEROID INSENSITIVE1 

(BRI1)-GFP was found to accumulate in intracellular compartments after ConcA treatment 

(Dettmer et al., 2006), reflecting its constant cycling between the PM and internal cell 

compartments. In mammals, V-ATPases have an established role in the acidification of 

early endosomes, as well as directly at the PM in the acidification of the extracellular space 

(Marshansky and Futai, 2008). Indeed the recurrent identification of V-ATPases in plant 

PM-derived DRMs might also indicate additional not yet identified functions. 

It is interesting to note that in both mutants, ost2-1D and det3, only the production of ROS 

in response to flg22 treatment was affected, while callose deposition still occurred 

normally. This demonstrates that the oxidative burst, a marker for early defense responses, 

and callose deposition, occurring at later time points after flg22 challenge, can be 

genetically and pharmacologically uncoupled. The identification of ost2-1D and det3 as 

new components in plant immunity also reflects the different subcellular localization of 

FLS2. As outlined above, AHA1 likely functions directly in the establishment of altered 

ion fluxes across the PM, which eventually leads to the activation of NADPH oxidases and 

the occurrence of an oxidative burst. In the case of V-ATPase we propose a function in the 
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flg22-induced membrane trafficking events, either directly related to FLS2 endocytosis or 

downstream of it. 

 

4.1.4 Other components enriched in detergent-resistant membranes upon flg22 

treatment with potential roles in pathogen defense 

PGPs are members of the ATP-Binding Cassette protein superfamiliy. PGP1, PGP4 and 

PGP19 are the best-characterized proteins of this class and play a role in the maintenance 

of cellular auxin levels. While PGP1 and PGP19 export auxin from cells, PGP4 functions 

in auxin import (Blakeslee et al., 2007; Titapiwatanakun et al., 2008). In this study we 

observed an flg22-elicited increase of PGP1 and PGP4 in DRM fractions, indicative of a 

role for these auxin transporters in plant immune responses. A link between the repression 

of auxin signaling and basal defense signaling has already been described, suggesting that 

auxin promotes susceptibility to the bacterial speck disease (Navarro et al., 2006; Wang et 

al., 2007). At the posttranslational level PGP4 and PGP1 were shown to be phosphorylated 

in response to PAMP treatment (Benschop et al., 2007; Nühse et al., 2007). 

The PMR4 callose synthase, which is required for wound and papillary callose formation 

(Jacobs et al., 2003; Nishimura et al., 2003), is significantly enriched in DRMs after flg22 

elicitation. PMR4 is also phosphorylated upon flg22 treatment (just below the significance 

threshold, (Nühse et al., 2007)). We also identified another callose synthase, CALLOSE 

SYNTHASE1/GSL6, to be enriched in DRMs. Yet, neither GSL6 nor any other callose 

synthase seems to have a redundant function in flg22-induced callose deposition, since 

pmr4-1 plants are completely devoid of callose deposition after elicitor treatment (Kim et 

al., 2005). We could further rule out a function of PMR4 in the flg22-induced production 

of ROS because pmr4-1 mutant plants exhibited an unaltered ROS burst (data not shown). 

Since pmr4-1 mutants display elevated SA levels (Nishimura et al., 2003), we also tested 

pmr4-1 sid2-1 double mutants for altered ROS production and did not observe any 

differences as compared to wild type or the according single mutants (data not shown). 

This not only rules out a role for PMR4 in the PAMP-induced oxidative burst but also 

excludes a role for SA in the PAMP-triggered ROS production. This is especially 

interesting, in the light of the important role of SA in PAMP-triggered resistance to 

Pseudomonas syringae and the finding that sid2-2 mutant plants are strongly affected in 

PAMP-triggered responses (as revealed by expression profiling; (Tsuda et al., 2008)). 

NHL3 is a pathogen-responsive member of the NDR1/HIN1-like (NON-RACE-SPECIFIC 

DISEASE RESISTANCE1/HAIRPIN-INDUCED-LIKE) gene family. Accumulation of 
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NHL3 transcripts was observed during the interaction with avirulent Pseudomonas 

syringae strains, while no transcript accumulated during interactions with virulent strains 

(Varet et al., 2002). The function of NHL3 in plant defense has further been supported by 

the finding that NHL3-overexpressing plants are more resistant to Pseudomonas syringae 

(Varet et al., 2003). We found that NHL3 is also enriched in DRMs after flg22 treatment. 

However, we did not observe clear differences between nhl3 and wild type plants 

concerning PAMP-induced ROS production and callose deposition (data not shown), 

which could be due to redundancy in this large gene family. Interestingly, NDR1, one of 

the founders of the NDR1/HIN1-like gene family, was shown to interact with RPM1 

INTERACTING PROTEIN4 (RIN4), a negative regulator of plant immunity (Kim et al., 

2005). This interaction is required for the activation of resistance signaling and was 

proposed to control the amount of available free negative regulator in the pant cell (Day et 

al., 2006). 

Next to FLS2, REMORIN 1.3 is the protein most consistently shifted into DRMs after 

PAMP treatment (significant response in all three reciprocal data sets), and also 

REMORIN1.2 was identified in flg22-responsive DRMs. They both belong to the 1b group 

of canonical plant remorins; however their biological roles still remain to be elucidated 

(Raffaele et al., 2007). Providing first leads towards their function, group 11b remorins 

have been observed to be differentially expressed during Arabidopsis-Pseudomonas 

syringae interactions (Raffaele et al., 2007). Interestingly, group 1b remorins seem to 

associate with the PM and moreover have been identified in DRMs before (Mongrand et 

al., 2004). In addition, a group 2 remorin from Lotus japonicus was shown to exhibit 

elevated transcript levels during the interaction with a mycorrhizal fungus (Raffaele et al., 

2007), further supporting a role of remorins in plant-microbe interactions. 

 

In this part of the study we aimed at the elucidation of immediate-early flg22-triggered 

responses at the PM. Therefore we performed a proteomics study revealing the quantitative 

changes in protein abundance in DRMs upon flg22 treatment. We showed that elicitor 

treatment triggered profound changes in the protein composition of DRMs, including a 

significant enrichment of the FLS2 receptor, other RLKs, H+-ATPases and V-ATPases. By 

a reverse genetic approach, we confirmed a role for AHA1 and V-ATPases, two new 

components of PAMP signaling, in plant immunity. Taken together we demonstrated how 

the successful combination of a quantitative proteomics approach and subsequent 

functional analyses can lead to the identification of new players in a biological process. 
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4.2 Involvement of sterols and membrane rafts in the Arabidopsis-

powdery mildew interaction 
 

In this part of the study we investigated the possible involvement of membrane rafts in PM 

compartmentalization events in the context of Arabidopsis–powdery mildew interactions. 

By biochemical characterization we showed that the t-SNARE AtPEN1 partially associated 

with DRMs in a sterol-dependent manner, indicating its possible in vivo localization to 

membrane rafts. Moreover, we revealed increased resistance of a subset of sterol 

biosynthesis mutants towards the adapted powdery mildew pathogen, G. orontii. In case of 

the sterol biosynthesis mutant smt2 we were able to correlate this partial reduction in host 

cell entry with aberrant FA of GFP-AtPEN1 underneath fungal attack sites. This indicates 

a possible contribution of sterols to the GFP-AtPEN1 FA and suggests an involvement of 

this process in determining the outcome of the powdery mildew–plant interaction. 

Events at the plant PM, especially around the site of attempted fungal penetration, play a 

central role in the establishment of fungal infections. Together with the cell wall, the PM is 

amongst the first barriers fungi have to cope with to successfully invade a plant cell and 

colonize the host. In case of powdery mildews, the host PM is the intimate contact site of 

the emerging fungal feeding organ, the haustorium, and the plant cell (O'Connell and 

Panstruga, 2006). Accordingly, the entire plant cell rearranges upon powdery mildew 

attack, including the movement of cytoplasm and organelles towards the attempted 

penetration site and the local deposition of cell wall material (Underwood and Somerville, 

2008). It is thought that this cell polarization is largely achieved through rearrangement of 

the cytoskeleton (Miklis et al., 2007). In previous studies it was shown that PM-resident 

plant proteins playing a crucial role in the interaction with powdery mildews (AtPEN1, 

AtPEN3, HvROR2, HvBAX Inhibitor-1 and HvMLO) focally accumulate at the site of 

attempted fungal penetration (Collins et al., 2003; Assaad et al., 2004; Bhat et al., 2005; 

Consonni et al., 2006; Eichmann et al., 2006; Stein et al., 2006). Furthermore, Kwon and 

coworkers observed focal vesicle trafficking (highlighted by the GFP-labeled v-SNARE 

VAMP722) towards the attack sites (Kwon et al., 2008a). In the same study, vesicle fusion, 

mediated by AtPEN1-containing ternary SNARE complexes, was shown to contribute to 

plant defense at the cell periphery. A recent study uncovered that the FA of plant proteins 

at powdery mildew attack sites possibly is the consequence of local exosomal protein 

delivery into the apoplastic space (Meyer et al., 2008). Consistent with this hypothesis, the 

delayed formation of papillae associated with defects in restriction of powdery mildew 
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entry observed in pen1-1 was also found in VAMP721+/- VAMP722-/- mutant plants 

(Kwon et al., 2008a). This underlines the suggested importance of focal delivery of 

possibly toxic cargo and cell wall building blocks towards fungal attack sites and is 

reminiscent of the secretion of toxic compounds at contact sites (immunological synapses) 

between, for example, natural killer cells and their target cells in humans (Kwon et al., 

2008b). Taken together these data suggest that the focal secretion at fungal attack sites 

might take place through membrane rafts (Kwon et al., 2008b). Notably, the first and most 

prominent example of large-scale phase separation in living cells has been described for 

the immunological synapse by employing Laurdan, a phase-sensitive membrane dye (Gaus 

et al., 2005). Reminiscent of plant SNAREs clustering at powdery mildew attack sites, also 

in T-cells exocytic SNAREs accumulate at the immunological synapse (Das et al., 2004).  

 

4.2.1 Sterol-dependent AtPEN1 partitioning into detergent-resistant membranes 

To biochemically address the potential association of AtPEN1 with membrane rafts we 

isolated DRMs from microsomes of Arabidopsis rosette leaves. DRMs from plant 

membranes are commonly extracted at Triton-X 100-to-protein ratios of 4/6:1 to 15:1 

(Mongrand et al., 2004; Borner et al., 2005). For our study we chose highly stringent 

conditions to probe DRM association, extracting at a Triton-X 100-to-protein ratio of 15:1 

(Figure 8). According to Mongrand and colleagues the maximal enrichment of sterols and 

sphingolipids in DRMs from tobacco PMs was found at this ratio (Mongrand et al., 2004). 

Notably, we recovered a substantial amount of AtPEN1 in DRM fractions under these 

conditions (Figure 8A and B). 

MßCD has recently been shown to selectively extract sterols from plant membranes, 

leaving other lipids and the protein content unaltered (Roche et al., 2008). In this study it 

was reported that the specific extraction of sterols from tobacco PMs induced alterations in 

the lateral membrane organization. The authors observed a decrease in the liquid-phase 

heterogeneity that they attributed to the loss of lo-domains after sterol extraction. 

Additionally, they showed that almost no DRM-associated proteins were extracted from 

MßCD-treated membranes, indicating the successful disruption of membrane rafts by 

MßCD-mediated sterol depletion (Roche et al., 2008). To test whether also the partitioning 

of AtPEN1 into DRM fractions was dependent on sterols, microsomes were preincubated 

with either 5 mM or 10 mM MßCD before Triton-X 100 application. We found that the 

association of AtPEN1 with DRMs was MßCD treatment-dependent (Figure 9). This 

suggests a sterol-dependence of DRM association, indicating the potential residence of 



DISCUSSION 

65  

AtPEN1 in membrane rafts in vivo. Indeed, in animal cells microscopic studies revealed 

that SNAREs concentrate in submicron-sized (50-60 nm in diameter), cholesterol-

dependent self-organizing clusters at which vesicles fuse (Lang, 2007; Sieber et al., 2007). 

Moreover, SNAREs are enriched in DRMs in animal cells (Chamberlain et al., 2001; Puri 

and Roche, 2006). To drive membrane fusion, SNAREs form heterooligomeric SNARE 

protein assemblies, so called ternary SNARE complexes (Hayashi et al., 1994). Puri and 

Roche addressed the question to what extent monomeric SNAREs and ternary SNARE 

complexes associate with DRMs during mast cell exocytosis (Puri and Roche, 2006). They 

found that especially syntaxin 4 in its monomeric form associated with DRMs only to a 

small degree, whereas syntaxin 4 enganged in ternary SNARE complexes completely 

partitioned into DRMs. This finding prompted us to investigate the association of AtPEN1-

containing ternary SNARE complexes with DRMs. Notably, AtPEN1-containing ternary 

SNARE complexes were clearly present in solubilized membrane fractions but either 

absent or below the detection limit in DRM fractions (Figure 10). These findings rather 

argue for AtPEN1-mediated exocytosis taking place outside of membrane rafts. 

In animal cells membrane partitioning of individual SNAREs seems highly specific (Lang 

2007, Lang 2001), thereby providing a potential mechanism for their isoform-specific 

regulation. Especially when considering the membrane localization of SNAREs as a 

regulatory mechanism, it would be interesting to monitor the possible dynamic 

relocalization of monomeric AtPEN1 and AtPEN1-containing ternary SNARE complexes 

after pathogen infection. Since, however, AtPEN1 is part of a cell-autonomous defense 

mechanism and moreover, even when densely inoculated with powdery mildew conidia, 

only few leaf cells are attacked by the fungus, it is unlikely to detect such changes by the 

present experimental setup. Indeed, no difference in AtPEN1 DRM association before and 

after powdery mildew challenge could be observed in whole leaf extracts (data not shown). 

 

4.2.2 Golovinomyces orontii host cell entry is compromised in a subset of sterol 

biosynthesis mutants 

To further support the biochemical analysis we aimed at genetic interference with 

membrane raft formation. Since the sterol biosynthesis pathway in Arabidopsis is 

particularly well characterized (Clouse, 2002) we isolated homozygous mutants of genes 

encoding enzymes in this pathway (Table 4). A high proportion of the homozygous 

mutants were lethal whereas others did not show obvious developmental phenotypes. This 

resembled the already described gametophytic and embryonic defects in certain sterol 
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biosynthesis mutants (Clouse, 2002). However, it also denotes the potential problem that 

homozygous mutant lines that can be isolated as viable plants are not affected strongly and 

thus might only display subtle to intermediate phenotypes. 

A large number of sterol biosynthesis mutant lines were tested for their macroscopic and 

microscopic powdery mildew infection phenotype. While most investigated mutants did 

not show a significant difference from wild type plants (Supplementary Figure 2), mutants 

affected in either of the methyltransferases SMT1 or SMT2 consistently displayed reduced 

powdery mildew host cell penetration (Figure 11A and B). For mutants of either gene also 

reduced sporulation of G. orontii was observed macroscopically (Figure 11C). 

SMT1 is a C-24 methyltransferase and responsible for the first dedicated catalytic step in 

sterol biosynthesis, the conversion of cycloartenol to 24-methylene-cycloartenol. The 

smt1orc mutant is characterized by a mutation in a splice acceptor site resulting in truncated 

SMT1 protein variants. Mutant plants have reduced sterol levels and display defects in cell 

polarity and auxin efflux (Willemsen et al., 2003). smt1-1 carries an AC transposon 

insertion and 222 bp duplication in the second intron probably leading to complete absence 

of SMT1 function (Diener et al., 2000). Both mutant lines showed a highly significant 

reduction in host cell penetration (Figure 11B). Correlating with the less severe cell 

polarity defects in smt2 as compared to smt1, we also observed a less pronounced, however 

statistically significant and repeatable resistance to the adapted powdery mildew pathogen 

in smt2 (Figure 11A). SMT2 acts at a branching point in sterol biosynthesis, directing 24-

methylenelophenol towards sitosterol and away from campesterol and downstream 

brassinosteroids. Unlike sterol biosynthesis mutants defective in enzymes that act upstream 

of smt2 (including smt1), it does not display embryonic defects; however, unlike mutants 

defective in enzymes acting downstream of it, the smt2 phenotype cannot be rescued by 

brassinosteroids (Clouse, 2002). For smt1 and smt2 perturbed alignment of cells into 

vascular cell files has been described, suggesting a similar defect in cell polarity for both 

mutants. This is probably attributed to their similarly reduced amount of the major plant 

sterol, sitosterol, while campesterol and cholesterol levels are elevated in these mutants 

(Fischer et al., 2004). Notably, mutants in the yeast homolog of smt1 (erg6), which are 

devoid of ergosterol, the main yeast sterol, also have various cell polarity abnormalities, 

including the abolishment of membrane raft clustering at mating projection (Valdez-

Taubas and Pelham, 2003; Proszynski et al., 2006). Moreover, a reverse genetic approach 

recently identified another Arabidopsis sterol biosynthesis mutant with aberrant cell 

polarity. The cyclopropylsterol isomerase1-1 mutant displays mislocalization of an auxin 
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efflux carrier protein (PIN-FORMED2) that is polarly localized in wild type cells (Men et 

al., 2008). It is striking, that of the large number of sterol biosynthesis mutants investigated 

in this study only smt1 and smt2, having similarly perturbed sterol profiles, showed a clear 

and reproducible pathogen phenotype. This suggests that sterol-dependent cell polarity 

might be crucial for this plant–microbe interaction. 

Notably, for smt1orc and smt2 mutants we found a tendency towards elevated PR-1 

(PATHOGENESIS RELATED-1) transcript levels compared to wild type plants in 

unchallenged conditions (data not shown). This phenomenon was more pronounced in the 

smt1orc mutant and indicates a lowered threshold for PR-1 induction in these mutants. More 

importantly, elevated PR-1 transcript levels could possibly account for the observed 

pathogen phenotypes. This is reminiscent of cpr (constitutive expressor of PR genes) 

mutants that have constitutively activated defense pathways, leading to constitutive 

systemic resistance (Clarke et al., 2000). The genetic dissection of the cpr-dependent 

defense mechanisms revealed that they are strongly dependent on the defence signaling 

molecule salicylic acid (SA) (Clarke et al., 2000). This stands in contrast to the early 

events in the powdery mildew–Arabidopsis interaction, where defenses at the cell 

periphery that limit host cell entry were shown to occur fully independently of SA 

biosynthesis/signaling (Zimmerli et al., 2004). Concerning smt1 and smt2 we therefore 

conclude that the moderately elevated PR-1 transcript levels, most likely leading to SA 

accumulation and enhanced defense activation, did not affect fungal host cell entry. We 

rather propose that the disturbed sterol profiles are the cause for reduced host cell entry in 

both mutants. However, this is not necessarily true for the reduced fungal sporulation on 

smt1orc and smt2, which can be partially due to elevated PR-1 expression (Van Damme et 

al., 2005). To finally resolve the role of elevated PR-1 transcript levels we crossed smt1 

and smt2 mutants to a mutant deficient in SA biosynthesis (sid2-1). Resulting double 

mutants will be analyzed for their host cell entry rate and sporulation phenotype in the near 

future. 

DWF7, DWF5 and DWF1 are located downstream of SMT2 in the sterol biosynthesis 

pathway. Mutants of the respective genes all have a dwarfed growth phenotype and, like 

brassinosteroid-deficient mutants, can be rescued by exogenous brassinolide treatment 

(Clouse, 2002). As indicated above, mutants in this part of the sterol biosynthesis pathway 

do not display embryonic defects. Only a single allele of the dwf5 mutants among the four 

tested dwf mutants showed a slight but statistically significant reduction of powdery 

mildew host cell entry (Figure 11B and Supplementary Figure 2). Therefore, the observed 



DISCUSSION 

68  

reduced host cell entry cannot be attributed to the developmental phenotypes of the plant, 

its brassinosteroid deficiency or the mutation in DWF5, but must be caused by another 

effect that is specific for the dwf5 127066 allele. A second T-DNA insertion at a distinct 

locus is the most likely explanation for these findings. 

 

4.2.3 Sterol biosynthesis mutants display aberrant focal accmumlation of GFP-

AtPEN1 underneath fungal attack sites 

The quantitative multiparametric analysis of GFP-AtPEN1 FAs at fungal attack sites based 

on the OPERATM imaging system and AcapellaTM image analysis software allows the 

identification of subtle changes that cannot be observed by eye (Meyer, 2008). This setting 

has been proven crucial to capture slight deviations from wild type FA sites in a forward 

genetic screen, since it turned out that mutants with strongly aberrant GFP-AtPEN1 FA 

mostly resulted in juvenile plant lethality (Meyer, 2008). This finding agrees with our 

assumption that only intermediate to weak sterol biosynthesis mutants can be isolated, 

since severe interference results in gametophytic or embryonic lethality. In combination 

with reverse genetics, the quantitative characterization of GFP-AtPEN1 FA provides thus 

the ideal means to assess possible defects in this process in an unbiased and highly 

sensitive manner. 

To quantitatively analyze the GFP-AtPEN1 FA underneath fungal attack sites, smt2 and 

dwf5 232E05 plants were crossed to GFP-AtPEN1 overexpressing Arabidopsis plants in 

the pen1-1 genetic background (smt1 mutant crosses are in progress). Two week-old 

seedlings were challenged with powdery mildew sporelings and analyzed at 24 hpi. The 

statistical analysis of all 19 parameters revealed a highly significant difference of GFP-

AtPEN1 FA in the smt2 background concerning the average FA intensity and average FA 

area (Figure 12A and B). In the dwf5 232E05 background a significant difference was only 

observed for the average FA area (Figure 12C and D). These findings indicate that a 

reduced host cell entry phenotype can be correlated to aberrant FA of GFP-AtPEN1 

underneath fungal attack sites. While smt2 showed a more pronounced pathogen 

phenotype, GFP-AtPEN1 FA is also affected in more parameters than dwf5 232E05 that 

did not exhibited a significantly altered host cell entry rate. Notably, the average area of 

the GFP-AtPEN1 FA was decreased in smt2 while it was increased in dwf5 232E05. Thus, 

alterations in the FA of GFP-AtPEN1 in dwf5 232E05 were not correlated with a 

compromised fungal entry rate, indicating that rather a decrease in average area and 

intensity, as observed for smt2, impacted on the infection phenotype. Taken together the 
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data suggest a proper sterol composition may play a role in the FA of GFP-AtPEN1 at 

attempted fungal entry sites. They indicate that the FA might be important for successful 

establishment of compatibility. Future experiments aiming at the analysis of GFP-AtPEN1 

FAs in smt1orc mutant plants, which displayed a more drastic infection phenotype, promise 

further insight. However, it already now seems plausible that the targeted and spatially 

defined pathogen-triggered secretion of GFP-AtPEN1 and its ternary SNARE complex-

forming partner AtSNAP33 into the paramural space (Meyer et al., 2008) might be 

regulated through selective membrane raft association. Indeed, in animal cell–parasite 

interactions membrane remodeling and accommodation of the parasite within the host cell 

involves the recruitment of membrane rafts to the interaction sites (Underwood and 

Somerville, 2008). 

As an indirect parameter for membrane raft integrity in the sterol biosynthesis mutants we 

extracted DRMs from respective rosette leaves and assessed the association of AtPEN1 

with low buoyant density fractions. AtPEN1 association with DRMs in smt1orc, smt2 as 

well as dwf5 127066 was indistinguishable from wild type extracts (data not shown). From 

these findings we can conclude on the one hand that DRMs can still be extracted from the 

mutant tissues and that on the other hand AtPEN1 association is not noticeably affected by 

a (moderately) altered sterol profile. It seems plausible that in spite of an altered sterol 

composition DRMs can form to the same degree as under wild type conditions, since the 

induction of phase separation has been described for various phytosterols, while no clear 

ranking could be established (Zappel and Panstruga, 2008). However, despite of the fact 

that DRMs can be extracted from the mutant tissues, the in vivo membrane raft function, 

which might be more sensitive to compositional changes, could be perturbed in the sterol 

biosynthesis mutants. At the same time we cannot exclude that DRMs are not linked to 

potential membrane rafts that might play a role in the plant–powdery mildew interaction 

and therefore do not provide an appropriate measure. We must also take into consideration 

that AtPEN1 might not be localized to membrane rafts in vivo and therefore the assessment 

of GFP-AtPEN1 FAs underneath fungal attack sites might not be a proper means to 

elucidate the potential aggregation of membrane rafts at the interactions sites. However, 

the role of sterols in the pathogen-induced and spatially-defined exocytosis can be 

addressed. 

To further unravel the importance of sterols and/or sterol-dependent cell polarization the 

use of conditionally rescued sterol biosynthesis mutants that would otherwise not be viable 

and might therefore display stronger phenotypes promises great help (Babiychuk et al., 
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2008). Combining the analyses of these mutants with new imaging approaches involving 

Laurdan, which has been successfully used to visualized phase separation in animal cells in 

vivo (Gaus et al., 2005), might provide additional new insights. 
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5. General conclusion and perspectives 

 

The ongoing controversy about membrane rafts mainly stems from the fact that numerous 

studies in the animal field use DRM association as the only evidence to attribute membrane 

raft localization to the protein under investigation (Kenworthy, 2008). This practice 

resulted in long lists of proteins and processes that are supposedly linked to membrane 

rafts. Similarly, extensive proteomic studies in plant research have created a large 

inventory of DRM-associated proteins from various plant species (Bhat and Panstruga, 

2005; Morel et al., 2006; Laloi et al., 2007; Lefebvre et al., 2007). Lingwood and Simons 

however underlined the strength of detergent insolubility when it is not used as a criterion 

per se but the differential DRM association of a protein upon physiologically relevant 

stimuli is used as an initial lead towards membrane raft involvement (Lingwood and 

Simons, 2007). In one study presented in this work (chapter 2), we provide to our 

knowledge the first example how also in plant research the differential DRM association of 

plasma membrane proteins can serve as a lead for the identification of new components of 

a biological process (here: flagellin-elicited defense responses). Future studies will aim at 

the elucidation of the molecular mechanisms underlying the function of these newly 

identified components. Thereby new insight into cell-autonomous plant innate immunity 

will be gained. Especially the investigation of the RLK FERONIA promises to broaden our 

knowledge about the involvement of an RLK with an apparently negative regulatory 

function in plant immunity. 

 

To date several studies have demonstrated the importance of sterols in plant cell polarity. 

First, auxin efflux carriers were shown to mislocalize in sterol biosynthesis mutants (smt1 

and cpi1), accompanied by a reduction in auxin transport and gravitropism defects 

(Willemsen et al., 2003; Fischer et al., 2004; Men et al., 2008). Second, these mutants 

display perturbed arrangement of vascular cell files (smt1 and smt2) (Fischer et al., 2004). 

Men and colleagues revealed that the defective polarity acquisition in cpi1 probably 

originates from aberrant endocytosis in this mutant (Men et al., 2008). In the second study 

presented here (chapter 3) we found first evidence for the role of sterols in 

compatibility/resistance of Arabidopsis towards the powdery mildew pathogen and the FA 

of GFP-AtPEN1 underneath fungal attack sites. Furthermore, we showed that AtPEN1 

associates with DRMs in a sterol-dependent manner. In analogy to the aberrant endocytosis 
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found in cpi1 it will be interesting to also test the sterol biosynthesis mutants used in this 

study for this phenotype. These mutants could be of great value to investigate the so far 

scarcely appreciated role of endocytosis in plant-microbe interactions. To understand in 

more detail the contribution of sterols in the FA of GFP-AtPEN1 the use of mutants that 

display stronger defects, as for example smt1 and cpi1, and conditionally rescued sterol 

biosynthesis mutants (Babiychuk et al., 2008) might yield more conclusive results. The 

analysis of (a) mutant(s) more strongly affected in GFP-AtPEN1 FA (Meyer, 2008) might 

finally allow determining the role of this process in the Arabidopsis-powdery mildew 

interaction.
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7. Supplementary Material 

 
 

Supplementary Figure 1. A plate assay for the oxidative burst indicates flg22 responsiveness of 
Arabidopsis cultured cells. 
Arabidopsis cell cultures were distributed in 1 ml aliquots into culture plates and supplied with the 
peroxidase substrate 5’ aminosalicylic acid (5’ASA; 400 µM) as well as different amounts of flg22 to 
monitor the oxidative burst. As negative controls, cells were treated with 5’ASA or flg22 only or cells 
were left untreated. Cell culture plates were analyzed visually 1.5 hrs after induction. The experiment 
was repeated once with similar results. 



 

  

 

 
Supplementary Table 1. All proteins for which quantitation has been pursued. For all proteins present in both samples of a reciprocal pair quantitation was pursued. Proteins significantly 
enriched in DRMs after flg22 treatment are indicated in bold (p < 0.05). Functional category (FC); distance (D); maximal fold change (max fold); average fold-change (av fold); probability-value 
(p); number of TM domains (TM) predicted by ARAMEMNON (Schwacke et al., 2003); experimental evidence for PM association (PM, (Schwacke et al., 2003; Alexandersson et al., 2004; 
Marmagne et al., 2004; Nelson et al., 2006)); transcriptionally coregulated with FLS2 (Obayashi et al., 2007), number indicates rank of co-expressed gene according to ATTED; transcrptionally 
upregulated in response to flg22 treatment (flg22 expr, (Navarro et al., 2004; Zipfel et al., 2004)); phosphorylated after flg22 treatment (Pflg22, (Benschop et al., 2007; Nühse et al., 2007)); 
mutants of according genes were analyzed for flg22 responsiveness in this study (RG). enriched (enr.), dephosphorylated (de-p), phosphorylation below the significance threshold ((9)). 
  flg22 vs flg22∆2 flg22 vs untreated flg22∆2 vs untreated      

  0 minutes 5 minutes 15 minutes 5 minutes 5 minutes      

FC 

 
AGI code and annotation D 

max 
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fold 
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max 
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av 

fold 
p D 
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fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p TM PM ATTED flg22 expr P flg22 

PROTEINS RESPONDING SIGNIFICANTLY 
Signalling                          
Receptor-like kinase                          

 
AT5G46330  FLS2 

(FLAGELLIN-SENSITI 2) 

— — — — 1,001 3,014 1,950 0,048 0,610 1,521 1,358 0,012 0,822 1,622 1,501 0,013 — — — — 1 — 1 9 — 

 
AT3G17840  RLK902 

(receptor-like kinase 902) 

-0,490 0,949 0,800 0,131 1,294 2,096 1,896 0,000 1,016 2,018 1,680 0,014 — — — — — — — — 1 — — — — 

 
AT3G51550  FER 

(FERONIA) 

-0,061 1,026 0,972 0,939 1,128 2,320 1,811 0,000 0,592 1,416 1,339 0,201 — — — — — — — — 1 enr. 158 — — 

 

AT3G02880  LRR 

transmembrane protein 

kinase, putative 

-0,232 0,927 0,893 0,707 0,685 2,181 1,539 0,014 0,078 1,170 1,047 0,922 0,518 1,370 1,292 0,241 0,020 1,032 1,010 0,721 1 enr. — 9 — 

 

AT5G16590  LRR 

transmembrane protein 

kinase, putative 

-0,064 0,974 0,969 0,937 0,872 2,181 1,629 0,001 0,190 1,324 1,117 0,766 0,350 1,395 1,203 0,459 — — — — 1 enr. — — — 

 
AT2G01820  LRR protein 

kinase, putative 

0,247 2,232 1,401 0,673 1,010 2,225 1,717 0,000 1,774 4,412 2,851 0,000 — — — — 0,036 1,578 1,154 0,617 1 — — — — 

 
AT4G36180  LRR family 

protein 

0,378 1,369 1,213 0,494 — — — — 1,482 2,769 2,156 0,000 — — — — — — — — 1 — — — — 

 

AT1G75640  LRR family 

protein / protein kinase 

family protein 

-0,989 0,660 0,617 0,012 — — — — 0,621 1,849 1,421 0,024 — — — — — — — — 1 — — — — 

 

AT3G23750  LRR family 

protein / protein kinase 

family protein 

-0,257 1,025 0,892 0,673 0,704 2,320 1,590 0,030 0,338 1,722 1,266 0,563 — — — — — — — — 1 9 — — — 

 
AT3G46290  protein 

kinase, putative 

-0,157 0,983 0,928 0,813 0,791 2,320 1,628  0,014 -0,021 1,290 1,025 0,973 0,548 1,327 1,308 0,225 0,443 1,474 1,260 0,802 1 — 224 — 9 



 

Supplementary Table 1 continued. 
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Other kinases                          

 

AT4G04720  CPK21 

(calcium-dependent protein 

kinase 21) 

0,066 1,052 1,033 0,937 1,329 1,962 1,918 0,001 0,307 1,196 1,163 0,593 — — — — — — — — 0-

1/myr 

enr. — — — 

 
AT5G24010  protein kinase 

family protein 

-0,202 1,081 0,920 0,754 0,833 2,594 1,733 0,039 0,850 1,544 1,517 0,001 0,626 1,851 1,425 0,181 -0,029 1,104 0,992 0,994 1 — — — — 

Transport                          
Plasma membrane ATPases                          

 
AT2G18960  AHA1 (H(+)-

ATPase 1) 

-0,202 0,983 0,909 0,754 0,969 2,138 1,673 0,000 0,537 1,416 1,306 0,268 0,766 1,487 1,456 0,013 -0,064 1,090 1,024 0,692 10 9 — — de-p 

 
AT4G30190  AHA2 (H(+)-

ATPase 2) 

-0,071 1,069 0,971 0,930 0,997 2,657 1,828 0,014 0,382 1,436 1,224 0,488 0,735 1,490 1,435 0,013 -0,061 1,076 0,976 0,994 10 enr. — — de-p 

 
AT5G57350  AHA3 (H(+)-

ATPase 3) 

— — — — 0,281 9,161 4,652 0,919 1,361 4,569 2,700 0,009 — — — — — — — — 10 enr. — — — 

 
AT3G47950  AHA4 (H(+)-

ATPase 4) 

— — — — 1,365 2,433 2,000 0,001 0,207 1,183 1,109 0,748 -0,019 1,127 0,999 0,947 — — — — 10 9 — — — 

Calcium-transporting ATPases                          

 

AT5G57110  ACA8 

(autoinhibited Ca2+ -

ATPase 8) 

-0,032 1,035 0,986 0,973 0,673 2,096 1,509 0,008 0,185 1,416 1,131 0,766 0,737 1,508 1,437 0,013 -0,058 1,242 1,001 0,994 8-9 enr. — — — 

 

AT4G29900  ACA10 

(autoinhibited Ca2+ -

ATPase 10) 

0,009 1,093 1,008 0,983 0,748 2,138 1,556 0,004 0,376 1,567 1,245 0,255 0,309 1,226 1,165 0,538 — — — — 9 9 — 9 9 

Vacuolar H(+)-ATPases                          
 AT3G28715  VHA-d2 0,151 1,641 1,174 0,653 0,862 1,751 1,540 0,043 0,769 1,752 1,482 0,087 — — — — — — — — 0 — — — — 

 AT3G28710  VHA-d1 0,187 1,157 1,098 0,766 — — — — 0,758 1,464 1,450 0,089 0,456 1,321 1,252 0,300 -0,079 1,018 0,964 0,741 0 9 — — — 

 AT4G39080  VHA-a3 0,134 1,078 1,068 0,846 0,826 1,944 1,550 0,053 0,939 1,724 1,590 0,024 — — — — 0,082 1,090 1,042 0,994 6 — — — — 

 AT1G78900  VHA-A 0,043 1,130 1,027 0,955 0,836 2,056 1,580 0,000 0,463 1,274 1,255 0,363 — — — — — — — — 0-1 enr. — — — 

 AT2G21410  VHA-a2 0,314 1,780 1,272 0,585 0,666 1,545 1,394 0,147 0,932 2,132 1,651 0,025 0,472 1,321 1,262 0,293 — — — — 6 — — — — 

 AT4G11150  VHA-E1 0,009 1,093 1,008 0,983 0,959 2,594 1,791 0,014 0,498 1,694 1,328 0,286 0,542 1,366 1,305 0,225 -0,085 1,000 0,960 0,862 0 9 — — — 

 AT1G76030  VHA.B1 -1,210 0,987 0,648 0,225 0,691 1,544 1,410 0,128 0,994 1,976 1,659 0,016 — — — — -0,258 0,996 0,931 0,594 0 9 — — — 

 AT3G58730  VHA-D -0,102 1,222 0,981 0,908 1,288 2,861 2,048 0,004 0,610 1,521 1,358 0,012 — — — — — — — — 0 9 — — — 

 AT3G42050  VHA-H — — — — 0,814 2,138 1,588 0,001 0,578 1,616 1,353 0,103 — — — — — — — — 0 9 — — — 

 
AT1G12840  VHA-

C/DET3 

— — — — — — — — 0,894 1,641 1,552 0,011 — — — — — — — — 0 — — — — 
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  flg22 vs flg22∆2 flg22 vs untreated flg22∆2 vs untrea ted      
  0 minutes 5 minutes 15 minutes 5 minutes 5 minutes      

FC 

 
AGI code and annotation D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
P D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p TM PM ATTED flg22 expr P flg22 

Other Transporter                          
ABC Transporter                          

 
AT2G36910  PGP1 (P-

Glycoprotein 1) 

— — — — 0,857 2,657 1,764 0,041 0,340 1,781 1,282 0,599 0,369 1,487 1,227 0,443 0,778 3,623 2,141 0,710 10 — — — 9 

 
AT2G47000  PGP4 (P-

Glycoprotein 4) 

0,041 1,091 1,023 0,957 1,063 2,371 1,783 0,001 0,379 1,213 1,204 0,493 0,553 1,321 1,311 0,225 — — — — 12 — — — 9 

 

AT5G50200  WR3 

(WOUND-RESPONSIVE 

3); nitrate transporter 

0,127 1,117 1,066 0,859 1,248 2,722 1,985 0,003 0,512 1,397 1,290 0,299 0,589 1,419 1,337 0,217 0,018 1,018 1,009 0,994 1 — — —  

 

AT4G13510  AMT1;1 

(AMMONIUM 

TRANSPORT 1) 

-0,240 0,910 0,889 0,698 1,073 2,594 1,849 0,006 0,700 1,843 1,460 0,227 0,542 1,461 1,313 0,225 -0,176 0,951 0,918 0,947 12 9 — 9 9 

 

AT1G11260  STP1 

(SUGAR TRANSPORTER 

1) 

-0,059 1,356 1,026 0,912 0,936 1,694 1,586 0,025 0,226 1,437 1,153 0,754 0,699 1,650 1,427 0,140 -0,170 1,315 1,015 0,459 12 9 32 — — 

 

AT3G19930  STP4 

(SUGAR TRANSPORTER 

4) 

0,062 1,641 1,144 0,919 0,962 1,722 1,607 0,020 0,311 1,504 1,203 0,585 0,538 1,478 1,312 0,225 0,127 1,602 1,154 0,738 12 9 — — — 

 

AT4G21120  AAT1 

(CATIONIC AMINO 

ACID TRANSPORTER 1) 

— — — — — — — — 0,248 1,243 1,134 0,686 0,738 1,449 1,436 0,013 — — — — 14 — — — — 

 

AT5G40780  LHT1 

(LYSINE HISTIDINE 

TRANSPORTER 1) 

— — — — 1,619 3,372 2,411 0,004 0,232 1,324 1,136 0,707 0,778 1,782 1,492 0,013 — — — — 11-12 9 — 9 — 

 

AT3G54140  proton-

dependent oligopeptide 

transport (POT) family 

protein 

-0,158 1,093 0,938 0,813 0,933 2,861 1,867 0,048 0,209 1,591 1,181 0,632 0,892 1,594 1,549 0,049 -0,430 0,833 0,810 0,817 11 9 — — — 

Cell wall-related                          
 AT1G03870  FLA9 (FLA9) 0,001 1,545 1,097 0,997 0,251 1,209 1,133 0,684 0,839 2,174 1,610 0,048 — — — — — — — — 0-1 enr. — — — 

 

AT4G12420  SKU5 

(skewed 5); copper ion 

binding 

-1,124 1,130 0,712 0,303 0,882 1,934 1,580 0,038 2,241 8,137 4,621 0,000 0,121 2,937 1,660 0,902 0,070 1,367 1,075 0,902 0/GPI enr. — — — 

 

AT1G05570  CALS1/GSL6 

(CALLOSE SYNTHASE 

1) 

— — — — — — — — 0,807 1,694 1,498 0,047 — — — — — — — — 16 — — — — 
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  flg22 vs flg22∆2 flg22 vs untreated flg22∆2 vs untrea ted      
  0 minutes 5 minutes 15 minutes 5 minutes 5 minutes      

FC 

 
AGI code and annotation D 

max 

fold 

av 
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av 
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p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 
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p D 

max 

fold 

av 

fold 
p TM PM ATTED flg22 expr P flg22 

Intracellular trafficking                          

 
AT3G09740  SYP71 

(SYNTAXIN  71) 

0,140 1,397 1,109 0,832 0,983 3,697 2,203 0,016 0,445 2,181 1,445 0,686 0,914 1,684 1,569 0,049 — — — — 1 9 — — — 

 

AT1G32050  SCAMP4 

(secre carrier-asso membr 

protein 4) 

-0,049 1,093 0,982 0,947 1,158 2,272 1,821 0,000 0,289 1,591 1,213 0,477 0,576 1,364 1,327 0,225 -0,108 1,020 1,000 0,540 4 9 — — — 

Metabolism                          

 

AT4G03550  

GSL05/PMR4 (GLUCAN 

SYNTHase-LIKE 5) 

0,091 1,078 1,046 0,919 1,074 2,535 1,832 0,004 0,875 1,722 1,546 0,041 0,626 1,366 1,359 0,181 — — — — 14 9 — — (9) 

 
AT3G16860  phytochelatin 

synthetase-related 

-0,217 0,927 0,900 0,736 0,704 2,320 1,590 0,030 0,650 1,499 1,381 0,156 — — — — — — — — 0/GPI — — 9 — 

 
AT3G25290  auxin-

responsive family protein 

0,325 1,307 1,179 0,573 1,134 2,722 1,919 0,007 0,214 1,118 1,111 0,741 — — — — — — — — 5 9 — — — 

 
AT4G12980  auxin-

responsive protein, putative 

-0,177 1,274 0,967 0,780 0,899 2,478 1,726 0,014 0,543 2,138 1,467 0,585 0,359 1,278 1,195 0,456 — — — — 5 9 — — — 

 
AT3G07570  membrane 

protein, putative 

0,386 1,262 1,209 0,481 0,992 1,875 1,642 0,016 0,807 1,521 1,486 0,001 — — — — — — — — 5-6 — — — — 

 
AT1G73650  expressed 

protein 

0,313 2,138 1,387 0,707 1,204 4,086 2,441 0,107 0,432 1,751 1,311 0,463 0,911 1,962 1,604 0,026 — — — — 4 9 — — — 

Stress/Redox                          

 
AT5G06320  NHL3 

(NDR1/HIN1-like 3) 

-0,263 0,897 0,879 0,661 0,859 2,181 1,623 0,001 0,597 1,752 1,388 0,198 0,649 1,487 1,379 0,175 -0,106 1,061 0,955 0,994 1 9 — 9 — 

 

AT1G30360  ERD4 

(EARLY-RESPONSIVE 

TO DEHYDRATION 4) 

-0,085 1,213 0,986 0,919 0,932 2,594 1,778 0,017 0,471 1,567 1,290 0,131 0,713 1,502 1,420 0,013 -0,045 1,090 1,033 0,539 8-9 enr. — — — 

 

AT3G54200  expressed 

protein; similar to Harpin-

induced 1 

-0,060 1,130 0,982 0,939 0,967 2,722 1,835 0,024 0,172 1,378 1,119 0,787 — — — — — — — — 1 9 — 9 — 

 

AT1G19110  inter-alpha-

trypsin inhibitor heavy 

chain-related 

0,183 1,213 1,100 0,769 1,357 2,790 2,073 0,001 0,893 1,843 1,572 0,107 0,828 1,929 1,548 0,027 -0,141 1,010 0,984 0,539 0-1 — — — — 

Protein modification                          

 

AT3G05560  60S 

ribosomal protein L22-2 

(RPL22B) 

0,189 1,342 1,120 0,766 — — — — -1,445 0,955 0,604 0,000 -0,385 9,024 4,550 0,817 — — — — 0 — — — — 
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Other                          

 
AT2G45820  REM1.3 

(REMORIN) 

0,366 1,383 1,209 0,519 0,985 2,017 1,660 0,017 1,047 2,217 1,738 0,012 0,953 1,919 1,623 0,048 -0,107 1,229 0,981 0,710 0 enr. — — 9 

 
AT3G61260  REM1.2 

(remorin family protein) 

-0,484 1,104 0,834 0,325 1,038 1,944 1,683 0,012 0,350 1,276 1,190 0,541 0,667 1,766 1,427 0,162 0,134 1,289 1,087 0,817 0 enr. — — — 

 

AT1G11330  S-locus lectin 

protein kinase family 

protein 

— — — — 1,197 3,276 2,131 0,030 — — — — — — — — — — — — 1 — — — — 

 

AT1G72230  plastocyanin-

like domain-containing 

protein 

— — — — 0,505 1,909 1,384 0,303 0,441 1,521 1,267 0,093 0,173 1,296 1,105 0,721 0,110 1,315 1,128 0,568 0/GPI — — — — 

Unknown                          

 
AT1G32190  expressed 

protein 

-0,207 0,936 0,904 0,748 1,152 2,478 1,863 0,001 0,845 1,722 1,526 0,048 0,685 1,628 1,415 0,148 -0,125 1,139 1,001 0,568 0-

1/myr 

— — — — 

 
AT3G44150  expressed 

protein 

— — — — 0,892 2,790 1,825 0,048 0,426 1,499 1,256 0,432 0,713 1,617 1,430 0,013 — — — — 1 — — — — 

 
AT1G17620  expressed 

protein 

0,094 1,157 1,053 0,919 0,803 2,225 1,606 0,006 0,398 1,307 1,219 0,470 0,562 1,525 1,331 0,225 -0,075 1,032 1,016 0,538 1 9 — — — 

 
AT3G01290  band 7 family 

protein 

0,082 1,091 1,042 0,919 1,010 1,909 1,659 0,014 0,600 1,342 1,342 0,198 0,465 1,408 1,264 0,293 — — — — 0-

1/myr 

enr. — 9 — 

 
AT1G69840  band 7 family 

protein 

-0,056 1,118 0,982 0,942 1,286 2,478 1,950 0,000 0,628 1,875 1,431 0,325 0,736 1,522 1,437 0,013 -0,263 0,941 0,927 0,568 0 9 154 9  

 
AT5G62740  band 7 family 

protein 

0,584 2,225 1,511 0,455 1,197 2,861 1,996 0,009 0,768 2,096 1,554 0,364 0,729 1,684 1,448 0,013 — — — — 0 9 — — — 

                           
PROTEINS NOT  RESPONDING SIGNIFICANTLY 

Signalling                          
Receptor-like kinase                          

 
AT3G13380  BRL3 (BRI1-

LIKE 3) 

0,831 12,51

6 

6,348 0,661 — — — — — — — — — — — — — — — — 1 — — — — 

 

AT3G51740  IMK2 

(INFLORESCENCE 

MERISTEM RECEPTOR-

LIKE KINASE 2) 

-0,308 1,342 0,946 0,593 0,785 3,097 1,897 0,165 0,148 1,499 1,135 0,827 — — — — — — — — 1 — — — — 

 

AT5G58150  LRR 

transmembrane protein 

kinase, putative 

-0,971 1,058 0,711 0,019 — — — — 0,016 1,694 1,147 0,974 — — — — — — — — 1 — — — — 
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fold 

av 
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av 
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av 
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av 
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fold 

av 
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p TM PM ATTED flg22 expr P flg22 

 

AT2G01210  LRR 

transmembrane protein 

kinase, putative 

— — — — 0,273 3194,

8 

1597,

4 

0,973 — — — — 0,089 106,8

2 

53,41

7 

0,974 -1,611 24,81

5 

12,41

2 

0,606 — — — — — 

 

AT1G53730  LRR 

transmembrane protein 

kinase, putative 

— — — — — — — — -0,252 1,039 0,895 0,813 — — — — — — — — 1 — — — — 

 

AT3G28450  LRR 

transmembrane protein 

kinase, putative 

-0,350 0,983 0,853 0,541 — — — — — — — — — — — — — — — — 1 — — 9 — 

 

AT2G26730  LRR 

transmembrane protein 

kinase, putative 

-0,206 1,236 0,949 0,606 — — — — — — — — — — — — — — — — 1 9 — — 9 

 
AT4G35230  protein kinase 

family protein 

— — — — — — — — 0,117 1,093 1,059 0,875 — — — — — — — — 0-

1/myr 

— — — — 

 
AT1G70520  protein kinase 

family protein 

0,324 2,861 1,671 0,787 — — — — — — — — — — — — — — — — 1 — 174 9 — 

 

AT3G17410  

serine/threonine protein 

kinase, putative 

— — — — — — — — -0,114 1,342 1,004 0,942 — — — — — — — — — — — — — 

 

AT2G47060  

serine/threonine protein 

kinase, putative 

-0,044 1,184 0,996 0,955 0,320 1,616 1,231 0,581 0,378 1,909 1,334 0,635 — — — — — — — — 0 — 164 9 — 

 AT2G37050  kinase 0,400 1,236 1,217 0,469 0,350 1,616 1,244 0,541 0,475 1,477 1,278 0,345 0,350 1,239 1,188 0,459 — — — — 1 enr. — — — 

Other kinases                          

 
AT5G67130  phospholipase 

C 

0,036 1,477 1,089 0,937 — — — — 0,208 1,450 1,148 0,787 — — — — — — — — 0/GPI — — — — 

 

AT1G35160  GRF4 

(GENERAL 

REGULATORY FACTOR 

4); protein phosphorylated 

amino acid binding 

-0,539 1,227 0,854 0,267 — — — — — — — — — — — — — — — — 0 — — — — 

 

AT4G23650  CDPK6 

(CALCIUM-DEPENDENT 

PROTEIN KINASE 6) 

0,398 1,262 1,216 0,470 0,419 1,289 1,229 0,441 0,351 1,262 1,190 0,541 — — — — — — — — 0-

1/myr 

enr. — — — 

 

AT5G19450  CDPK19 

(CALCIUM-DEPENDENT 

PROTEIN KINASE 19) 

— — — — — — — — — — — — — — — — — — — — 0-

1/myr 

9 — — — 
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av 
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p D 
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av 
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AT5G24430  calcium-

dependent protein kinase, 

putative / CDPK, putative 

— — — — — — — — 0,256 1,751 1,242 0,698 — — — — — — — — — — — — — 

Other signalling proteins                          

 

AT1G66410  CAM4 

(CALMODULIN 4); 

calcium ion binding 

-0,320 1,614 1,033 0,711 0,718 1,521 1,425 0,110 — — — — — — — — — — — — 0 9 — — — 

 
AT4G17530  RAB1C; GTP 

binding 

0,141 1,227 1,082 0,832 0,318 1,544 1,214 0,581 0,312 1,307 1,173 0,586 0,469 1,413 1,267 0,293 -0,237 0,900 0,890 0,947 0/gerg

er 

9 — — — 

 

AT5G20010  RAN-1 (Ras-

related GTP-binding 

nuclear protein 1); GTP 

binding 

0,185 1,183 1,098 0,766 — — — — — — — — — — — — — — — — 0 — — — — 

 

AT5G59150  RABA2d 

(Rab GTPase homolog 

A2d) 

— — — — — — — — 0,047 1,437 1,083 0,973 — — — — — — — — 0/pren — — — — 

 
AT1G28340  LRR family 

protein 

— — — — — — — — 0,039 1,078 1,021 0,944 — — — — — — — — 1 — — — — 

Transport                          
Plasma membrane ATPases                          

 
AT5G62670  AHA11 

(H(+)-ATPase 11) 

0,018 1,258 1,034 0,973 — — — — 0,492 1,641 1,314 0,211 0,537 1,540 1,320 0,225 0,193 1,208 1,104 0,994 10 enr. — — — 

Calcium-transporting ATPases                          

 
AT1G13210 autoinhibited 

Ca2+ -ATPase II 

0,380 1,944 1,345 0,573 — — — — 1,074 2,423 1,803 0,310 — — — — — — — — 8 — 98 9 — 

Vacuolar H(+)-ATPases                          
 AT2G28520  VHA-a1 — — — — — — — — -0,610 0,803 0,744 0,396 — — — — — — — — 6 — — — — 

 AT1G19910  AVA-C2 — — — — 0,665 1,944 1,465 0,147 0,387 1,249 1,210 0,481 — — — — — — — — 3 — — — — 

 AT3G01390  VHA-G1 — — — — — — — — — — — — — — — — — — — — 0 9 — — — 

 

AT1G15690  AVP1 

(vacuolar-type H+-pumping 

pyrophosphatase 1) 

-0,086 1,069 0,964 0,919 0,467 2,017 1,401 0,358 — — — — 0,200 1,121 1,103 0,692 — — — — 12 9 — — — 

ABC Transporter                          

 
AT2G39480  PGP6 (P-

Glycoprotein 6) 

-0,450 0,877 0,805 0,387 — — — — — — — — — — — — — — — — 11 — — — — 

 
AT3G62150  PGP21 (P-

Glycoprotein 21) 

— — — — — — — — 0,121 1,065 1,061 0,867 — — — — — — — — 10-11 — 23 — — 
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AT1G15210  PDR7 

(PLEIOTROPIC DRUG 

RESISTANCE 7) 

0,077 1,274 1,060 0,922 — — — — — — — — — — — — — — — — 14 — — — 9 

Other Transporter                          

 

AT1G61250  SC3 

(SECRETORY CARRIER 

3) 

— — — — — — — — 0,257 1,694 1,227 0,652 — — — — — — — — 4 9 — — — 

 

AT2G38290  ATAMT2 

(AMMONIUM 

TRANSPORTER 2) 

— — — — — — — — 0,326 1,360 1,186 0,573 — — — — — — — — 8-9 9 41 9  

 

AT5G43350  ATPT1 

(PHOSPHATE 

TRANSPORTER 1) 

0,009 1,227 1,024 0,983 — — — — 0,374 1,521 1,235 0,167 — — — — — — — — 11-12 9 — — — 

 
AT5G64410  ATOPT4 

(oligopeptide transporter 4) 

0,464 1,378 1,261 0,363 — — — — 0,326 1,360 1,186 0,573 — — — — — — — — 14-15 — 20 — — 

 

AT4G35100  PIP3 

(PLASMA MEMBRANE 

INTRINSIC PROTEIN 3) 

-0,021 1,396 1,049 0,966 — — — — — — — — 0,449 1,301 1,247 0,300 — — — — 6 enr. — — — 

 

AT4G05120  FUR1 (FUDR 

RESISTANT 1); nucleoside 

transporter 

-0,045 1,477 1,063 0,933 0,582 2,371 1,559 0,107 0,287 1,436 1,179 0,628 0,335 1,471 1,207 0,485 — — — — 11 — — — — 

 

AT2G38940  ATPT2 

(PHOSPHATE 

TRANSPORTER 2) 

-0,177 1,227 0,956 0,780 0,748 2,657 1,720 0,089 0,535 1,667 1,340 0,198 0,520 1,366 1,292 0,241 — — — — 12 9 — — — 

 

AT1G65730  YSL7 

(YELLOW STRIPE LIKE 

7); oligopeptide transporter 

— — — — — — — — 0,737 1,821 1,476 0,100 — — — — — — — — 14 — — — — 

 

AT5G15090  voltage-

dependent anion-selective 

channel protein, putative 

0,054 1,236 1,044 0,942 0,242 1,289 1,136 0,698 0,422 1,369 1,237 0,435 0,101 1,140 1,054 0,817 — — — — 0 9 — — — 

 
AT3G54700  phosphate 

transporter, putative 

-0,055 1,436 1,048 0,919 — — — — -0,131 1,667 1,097 0,829 0,539 1,471 1,312 0,225 0,144 1,195 1,079 0,817 8 — — — — 

 

AT2G27810  

xanthine/uracil permease 

family protein 

0,087 1,052 1,044 0,919 0,504 1,521 1,299 0,303 -0,319 1,170 0,898 0,830 — — — — — — — — 10 — — — — 
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AT3G47960  proton-

dependent oligopeptide 

transport (POT) family 

protein 

0,028 1,290 1,043 0,973 — — — — — — — — — — — — — — — — 12 — — 9 — 

 

AT1G60030  

xanthine/uracil permease 

family protein 

— — — — — — — — 0,125 1,397 1,103 0,864 — — — — — — — — 12 — — — — 

Cell wall-related                          
 AT2G04780  FLA7 -0,027 1,091 0,992 0,973 -0,015 1,130 1,001 0,976 0,679 1,450 1,396 0,136 0,112 1,376 1,093 0,738 — — — — 0/GPI enr. — — — 

 AT2G45470  FLA8 0,344 1,628 1,244 0,550 — — — — 0,624 1,780 1,408 0,176 — — — — — — — — 0/GPI enr. — — — 

 AT4G12730  FLA2 -0,026 1,276 1,020 0,973 0,156 1,081 1,079 0,813 0,649 1,710 1,408 0,156 -0,146 1,193 0,960 0,738 0,131 1,424 1,111 0,947 1 9 — — — 

 AT5G55730  FLA1 0,078 1,209 1,051 0,922 0,232 1,324 1,136 0,707 0,574 1,436 1,329 0,221 0,023 1,358 1,055 0,947 0,052 1,367 1,068 0,994 0/GPI — — — — 

 AT5G44130  FLA13 0,157 2,146 1,345 0,827 -0,248 0,955 0,888 0,686 0,483 2,203 1,466 0,632 0,017 1,226 1,028 0,947 0,204 1,883 1,266 0,994 0/GPI enr. — — — 

 

AT5G48450  SKS3 (SKU5 

Similar 3); copper ion 

binding 

-0,045 1,262 1,010 0,955 0,618 1,567 1,368 0,179 0,423 1,477 1,251 0,435 0,077 1,187 1,048 0,862 0,087 1,289 1,067 0,994 0 — — — — 

 

AT5G49720  KOR1 

(KORRIGAN); hydrolyzing 

O-glycosyl compounds 

0,065 1,360 1,072 0,937 0,850 2,936 1,860 0,095 0,227 1,544 1,176 0,541 0,485 1,326 1,269 0,281 — — — — 1 9 — — — 

 
AT1G75680  glycosyl 

hydrolase family 9 protein 

-0,335 0,877 0,849 0,565 0,289 1,641 1,225 0,626 -0,433 1,039 0,834 0,758 — — — — — — — — 0-1 enr. — — — 

 

AT2G17120  

peptidoglycan-binding 

LysM domain-containing 

protein 

-0,134 1,156 0,957 0,846 0,351 1,342 1,197 0,541 — — — — 0,089 1,449 1,101 0,817 0,087 1,631 1,186 0,622 0/GPI — — 9 — 

 

AT1G65610  endo-1,4-

beta-glucanase, putative / 

cellulase, putative 

— — — — — — — — 0,378 1,591 1,251 0,299 — — — — — — — — 1 — — — — 

Intracellular trafficking                          

 
AT5G09810  ACT7 

(ACTIN 7) 

0,196 1,369 1,127 0,758 — — — — 0,716 1,464 1,421 0,110 — — — — — — — — 0 — — — — 

 
AT3G12110  ACT11 

(ACTIN 11) 

— — — — — — — — — — — — -0,394 0,869 0,825 0,247 — — — —  — — — — 

 
AT1G04820  TUA4 

(tubulin alpha-4 chain) 

0,142 1,156 1,075 0,832 0,263 1,342 1,153 0,661 0,446 1,324 1,247 0,393 0,099 1,245 1,065 0,817 -0,019 1,125 1,047 0,456 0 9 — — — 
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AT5G11150  VAMP713 

(vesicle-associated 

membrane protein 713) 

— — — — — — — — 0,483 1,356 1,270 0,331 0,258 1,200 1,137 0,594 — — — — 1 — — — — 

 
AT5G08080  SYP132 

(syntaxin 132); t-SNARE 

— — — — — — — — 0,514 1,316 1,287 0,299 — — — — — — — — 1 enr. — — — 

 
AT5G46860  VAM3 

(syntaxin 22); t-SNARE 

— — — — — — — —     — — — — — — — — 1 — — — — 

 
AT3G08530  clathrin heavy 

chain, putative 

— — — — — — — — 0,697 2,272 1,572 0,532 — — — — — — — — 0 9 — — — 

Metabolism                          

 

AT3G07160  ATGSL10 

(GLUCAN SYNTHASE-

LIKE 10) 

0,560 1,342 1,316 0,237 — — — — — — — — — — — — — — — — 14 9 — — — 

 

AT5G13000  ATGSL12 

(GLUCAN SYNTHASE-

LIKE 12) 

— — — — — — — — 0,177 1,118 1,091 0,780 — — — — — — — — 11 — — — — 

 

AT4G26690  MRH5/SHV3 

(morphogenesis of root hair 

5); glycerophosphodiester 

phosphodiesterase/ kinase 

0,281 1,710 1,240 0,633 0,121 1,065 1,061 0,867 0,326 1,614 1,234 0,636 — — — — — — — — 1 — — 9 — 

 

AT5G54500  FQR1 

(FLAVODOXIN-LIKE 

QUINONE REDUCTASE 

1) 

0,297 1,198 1,158 0,608 — — — — 0,325 1,324 1,181 0,573 — — — — — — — — 0-1 enr. — — — 

 
AT1G66480  PMI2 (plastid 

movement impaired 2) 

— — — — 0,392 1,227 1,212 0,477 0,652 1,600 1,392 0,156 — — — — — — — — 0 — — — 9 

 
AT4G20830  FAD-binding 

domain-containing protein 

-0,052 1,143 0,987 0,944 0,623 1,751 1,401 0,176 0,704 1,545 1,418 0,120 0,249 1,358 1,149 0,606 0,136 1,411 1,110 0,994 0 — — 9 — 

 

AT3G07390  AIR12 

(Auxin-Induced in Root 

cultures 12); extracellular 

matrix structural constituent 

0,075 1,183 1,046 0,924 0,326 1,360 1,186 0,573 0,525 1,396 1,297 0,286 0,122 1,226 1,072 0,802 0,165 1,242 1,094 0,738 0/GPI — — — — 
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ATCG00680  encodes for 

CP47, subunit of the 

photosystem II reaction 

center 

— — — — — — — — — — — — — — — — 0,201 6,532 3,359 0,994 — — — — — 

 
AT1G64760  glycosyl 

hydrolase family 17 protein 

-0,408 1,316 0,913 0,550 0,187 1,209 1,101 0,766 0,340 1,491 1,214 0,470 — — — — — — — — 0/GPI — — — — 

 
AT3G13560  glycosyl 

hydrolase family 17 protein 

-0,048 1,586 1,094 0,942 0,237 1,948 1,298 0,718 0,417 2,018 1,382 0,673 — — — — — — — — 0/GPI — — — — 

 
AT5G42100  glycosyl 

hydrolase family 17 protein 

-0,020 1,093 0,995 0,973 0,273 1,290 1,152 0,646 -0,157 1,130 0,945 0,813 — — — — — — — — 0/GPI — — — — 

 
AT3G58100  glycosyl 

hydrolase family 17 protein 

0,080 1,905 1,236 0,919 0,529 1,360 1,298 0,280 0,697 1,891 1,469 0,124 — — — — — — — — 0/GPI — — — — 

 
AT5G56590  glycosyl 

hydrolase family 17 protein 

-0,199 1,697 1,091 0,813 — — — — 0,699 1,697 1,433 0,123 — — — — — — — — 0/GPI — — — — 

 
AT4G31140  glycosyl 

hydrolase family 17 protein 

-0,055 1,052 0,977 0,942 0,191 1,307 1,115 0,766 0,666 1,450 1,387 0,147 — — — — — — — — 0/GPI — — — — 

 
AT5G58090  glycosyl 

hydrolase family 17 protein 

-1,879 0,611 0,435 0,088 0,018 1,342 1,050 0,973 0,252 1,276 1,140 0,466 0,183 1,302 1,111 0,710 — — — — 0/GPI enr. — — — 

 

AT5G55480  

glycerophosphoryl diester 

phosphodiesterase family 

protein 

-0,104 1,143 0,966 0,905 0,235 1,243 1,128 0,707 0,340 1,249 1,183 0,559 0,167 1,628 1,176 0,710 — — — — 0/GPI — — — — 

 
AT4G36750  quinone 

reductase family protein 

0,213 1,586 1,182 0,741 0,208 1,243 1,115 0,748 0,386 1,262 1,209 0,481 0,391 1,443 1,230 0,404 0,044 1,229 1,039 0,994 0-1 enr. — — — 

 
AT4G27270  quinone 

reductase family protein 

— — — — — — — — — — — — 0,453 1,296 1,249 0,300 — — — — 0-1 yes — — — 

 

AT2G04350  long-chain-

fatty-acid--CoA ligase 

family protein 

-0,185 1,081 0,926 0,766 — — — — 0,886 1,909 1,579 0,155 — — — — — — — — 1 — — — — 

 

AT1G13440  GAPC-2; 

glyceraldehyde-3-phosphate 

dehydrogenase 

0,293 1,437 1,182 0,619 — — — — 0,582 1,477 1,338 0,211 0,231 1,296 1,132 0,622 0,124 1,492 1,167 0,485 0 9 — — — 

Stress/Redox                          

 

AT3G09440  heat shock 

cognate 70 kDa protein 3 

(HSC70-3) 

-0,436 1,078 0,841 0,300 — — — — 0,596 1,697 1,377 0,198 — — — — — — — — 0 — — — — 
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AT4G38670  pathogenesis-

related thaumatin family 

protein 

— — — — — — — — 0,115 1,213 1,068 0,877 — — — — — — — — 0 — — — — 

 

AT3G52470  harpin-

induced family protein / 

HIN1 family protein 

-0,188 1,356 0,984 0,713 0,610 1,518 1,358 0,188 0,028 1,356 1,057 0,973 0,593 1,700 1,376 0,217 0,058 1,468 1,094 0,817 1 — — — — 

 
AT5G42980  TRX3 

(thioredoxin H-type 3) 

— — — — — — — — — — — — -0,619 1,537 0,946 0,568 — — — —  — — — — 

 

AT4G20260  DREPP 

plasma membrane 

polypeptide family protein 

0,144 1,532 1,142 0,830 0,086 1,117 1,045 0,919 0,596 1,641 1,367 0,198 0,153 1,193 1,083 0,741 0,033 1,392 1,067 0,974 0 enr. — — — 

 
AT3G44110  J3 (DnaJ 

homologue 3) 

0,284 1,236 1,152 0,632 — — — — — — — — 0,296 1,389 1,175 0,540 0,191 1,160 1,100 0,798 0 — — — — 

Protein modification                          

 

AT1G53100  

acetylglucosaminyltransfera

se 

— — — — — — — — 0,456 1,948 1,375 0,571 — — — — — — — — 1-2 — — — — 

 
AT2G05920  subtilase 

family protein 

— — — — 0,020 1,249 1,033 0,973 — — — — — — — — -0,142 0,994 0,983 0,622 0 — — — — 

 
AT3G02740  aspartyl 

protease family protein 

-0,036 1,213 1,005 0,967 — — — — — — — — — — — — — — — — 0/GPI — — — — 

 

AT3G49870  ARLA1C 

(ADP-ribosylation factor-

like A1C); GTP binding 

— — — — — — — — — — — — — — — — — — — — 0 9 — — — 

 
AT1G10630  ADP-

ribosylation factor, putative 

— — — — 0,640 1,499 1,374 0,165 — — — — — — — — — — — — 0-

1/myr 

9 — — — 

 

AT1G33120  60S 

ribosomal protein L9 

(RPL90B) 

0,198 1,184 1,105 0,758 — — — — — — — — — — — — — — — — 0 — — — — 

 

AT2G16360  40S 

ribosomal protein S25 

(RPS25A) 

0,198 1,456 1,145 0,580 — — — — — — — — — — — — — — — — 0 — — — — 

 

AT3G04840  40S 

ribosomal protein S3A 

(RPS3aA) 

— — — — — — — — — — — — — — — — — — — — 0 — — — — 
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AT1G23410  40S 

ribosomal protein S27A 

(RPS27aA) 

-0,069 1,342 1,019 0,933 — — — — 0,220 1,781 1,239 0,758 — — — — — — — — 0 — — — — 

 

AT1G27400  60S 

ribosomal protein L17 

(RPL17A) 

— — — — — — — — 0,542 1,980 1,420 0,517 — — — — — — — — 0 — — — — 

 

AT1G22780  PFL 

(POINTED FIRST 

LEAVES); structural 

constituent of ribosome 

— — — — — — — — 0,299 1,324 1,169 0,606 — — — — — — — — 0 — — — — 

 

AT3G53020  STV1 

(SHORT VALVE1); 

structural constituent of 

ribosome 

0,336 1,290 1,184 0,563 — — — — — — — — — — — — — — — — 0 — — — — 

 

AT1G02780  EMB2386 

(EMBRYO DEFECTIVE 

2386); structural constituent 

of ribosome 

0,092 1,170 1,053 0,919 0,517 1,436 1,296 0,296 -0,025 1,058 0,990 0,973 — — — — 0,030 1,195 1,076 0,443 0 — — — — 

 

AT4G20360  

RABE1b/Rab8D (Rab 

GTPase homolog E1b); 

translation elongation factor 

— — — — — — — — — — — — — — — — — — — — 0 — — — — 

 

AT5G02500  HSC70-1 

(heat shock cognate 70 kDa 

protein 1); ATP binding 

-0,023 1,065 0,992 0,973 0,748 1,477 1,443 0,093 0,067 1,130 1,038 0,919 0,241 1,340 1,143 0,617 — — — — 0 — — — — 

 

AT1G71220  UDP-

glucose:glycoprotein 

glucosyltransferase 

-0,508 1,616 0,996 0,176 1,151 5,373 2,974 0,254 0,516 2,423 1,554 0,698 0,643 1,618 1,389 0,175 — — — — 0-1 — — — — 

 
AT1G07920  elongation 

factor 1-alpha / EF-1-alpha 

0,660 1,863 1,444 0,152 — — — — 0,578 2,232 1,511 0,466 0,300 1,277 1,164 0,539 -0,197 1,255 0,993 0,459 0 — — — — 

RNA/DNA                          

 

AT1G22530  SEC14 

cytosolic factor family 

protein / phosphoglyceride 

transfer family protein 

0,064 1,586 1,129 0,918 — — — — — — — — — — — — — — — — 0 enr. — — — 

 
AT1G58220  myb family 

transcription factor 

— — — — — — — — — — — — -1,485 22,84 11,42 0,568 — — — — 0 — — — — 
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AT1G72320  APUM23 

(ARABIDOPSIS PUMILIO 

23); RNA binding 

— — — — — — — — — — — — — — — — — — — — 0 9 — — — 

 

AT5G48800  phototropic-

responsive NPH3 family 

protein 

-0,090 0,987 0,957 0,919 — — — — — — — — — — — — — — — — 0-1 — — — 9 

Other                          

 

AT2G44790  UCC2 

(UCLACYANIN 2); copper 

ion binding 

— — — — — — — — — — — — 0,127 1,106 1,065 0,798 — — — — 0/GPI — — 9 — 

 

AT5G51480  SKS2 (SKU5 

SIMILAR 2); copper ion 

binding 

-0,157 1,104 0,940 0,813 0,439 1,499 1,262 0,404 0,623 1,464 1,361 0,176 0,235 1,340 1,140 0,622 0,258 1,584 1,198 0,994 0/GPI — — — — 

 

AT4G25240  SKS1 (SKU5 

SIMILAR 1); copper ion 

binding 

-0,131 0,949 0,938 0,851 0,351 1,641 1,250 0,541 0,496 1,360 1,278 0,313 0,300 1,395 1,178 0,539 -0,054 1,160 0,989 0,994 0/GPI — — — — 

 AT4G16120  ATSEB1 — — — — 0,411 2,225 1,449 0,211 0,624 1,360 1,358 0,176 — — — — — — — — 0 — — — — 

 

AT5G15350  plastocyanin-

like domain-containing 

protein 

-0,230 0,910 0,893 0,708 0,513 1,843 1,370 0,299 0,411 1,324 1,227 0,455 — — — — -0,100 1,360 1,014 0,994 0 enr. — — — 

 

AT4G31840  plastocyanin-

like domain-containing 

protein 

0,154 1,559 1,153 0,815 0,005 1,156 1,013 0,983 0,405 1,437 1,236 0,465 0,184 1,096 1,095 0,710 -0,016 1,392 1,050 0,994 0/GPI — — — — 

Unknown                          

 
AT2G41800  expressed 

protein 

0,692 3,170 1,896 0,044 0,608 1,808 1,406 0,190 0,664 2,347 1,582 0,303 0,269 1,862 1,280 0,568 -0,329 1,295 0,927 0,710 0 — — — — 

 
AT1G54920  expressed 

protein 

— — — — — — — — — — — — — — — — — — — — 0 — — — — 

 

AT2G01080  harpin-

induced family protein / 

HIN1 family protein 

— — — — — — — — — — — — — — — — — — — — 1 — — 9 — 

 

AT4G24290  similar to 

NSL1 (NECROTIC 

SPOTTED LESIONS 1) 

— — — — — — — — 0,396 1,047 0,847 0,470 — — — — — — — — 1-2 — — — — 

 
AT4G15630  integral 

membrane family protein 

— — — — — — — — 0,314 1,766 1,268 0,748 — — — — — — — — — — — — — 



 

 

Supplementary Table 1 continued. 

  

  flg22 vs flg22∆2 flg22 vs untreated flg22∆2 vs untrea ted      
  0 minutes 5 minutes 15 minutes 5 minutes 5 minutes      

FC 

 
AGI code and annotation D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p D 

max 

fold 

av 

fold 
p TM PM ATTED flg22 expr P flg22 

 
AT5G40640  expressed 

protein 

— — — — 0,748 1,909 1,450 0,093 — — — — — — — — — — — — 5 — — — 9 

 
AT1G18180  expressed 

protein 

-0,083 1,397 1,028 0,919 0,499 2,722 1,660 0,325 — — — — — — — — — — — — 6 9 — — — 

 
AT1G29980  expressed 

protein 

-0,075 1,081 0,970 0,924 0,514 2,181 1,470 0,088 — — — — — — — — — — — — 1 — — — — 

 
AT1G45688  expressed 

protein 

— — — — 0,937 3,097 1,953 0,088 -0,025 1,170 1,002 0,973 — — — — — — — — 1 — — — — 



SUPPLEMENTARY MATERIAL 
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Supplementary Table 2. On CD only. 
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101  

Supplementary Figure 2. Golovinomyces orontii infection phenotypes of Arabidopsis wild type 
and all sterol biosynthesis mutant lines used in this study. 
Quantitative analysis of host cell entry was performed at 48 hpi. Results represent mean ± s.d. The 
number of biological replicates is indicated above the bars. Asterisks indicate a significant 
difference from wild-type accessions (** = p < 0.01; * = p < 0.05, Student’s t-test). 
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8. Author’s contributions 

 

Chapter 1 is an introduction to the topic of microdomains and membrane rafts in plant 

membranes, the main focus of my PhD thesis. This introduction has been published as a 

review in Current Opinion in Plant Biology (Zappel and Panstruga, 2008). The manuscript 

was written by Ralph Panstruga and Nana F. Zappel to different parts and edited together: 

 
Chapter Author 

1.1 Nana F. Zappel 
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Sharon A. Kessler generation of transgenic lines SAK116-6 and SAK97-18  
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Work presented in chapter 3.2 was carried out the MPI for Plant Breeding Research 

(Cologne). 
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Nana F. Zappel experiment design 
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