
  

Analysis of the Arabidopsis Nudix hydrolase 

NUDT7 as a modulator of plant immunity  

and cell death 

 

 

 

 

 

Inaugural-Dissertation 

zur 

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 
 

 

 

 

vorgelegt von 

Marco Straus 

aus Bürstadt 
 

 

 

 

Köln, März 2009 





  

Die vorliegende Arbeit wurde am Max-Planck-Institut für Züchtungsforschung in 

Köln in der Abteilung für Molekulare Phytopathologie (Direktor: Prof. Dr. P. 

Schulze-Lefert) angefertigt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Berichterstatter: Prof. Dr. Paul Schulze-Lefert 

 Prof. Dr. Ulf-Ingo Flügge  

 Prüfungsvorsitzender: Prof. Dr. Martin Hülskamp 

 Tag der Disputation: 13. Mai 2009 

 

 





Abstract I 

Abstract 
 
Plants are exposed to diverse biotic and abiotic stresses and have evolved 

sophisticated protective mechanisms. A major outstanding question is how plants 

respond effectively to a stress stimulus but limit their reaction to save energy for 

growth and reproduction. EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) 

encodes a nucleo-cytoplasmic regulator of plant basal defence against host-adapted 

virulent pathogens and race-specific resistance to avirulent pathogens mediated by 

TIR (Toll-Interleukin)-type NBS-LRR (Nucleotide Binding Site-Leucine Rich 

Repeats) Resistance (R) proteins. EDS1 also functions in reactive oxygen species 

(ROS)-induced signalling during photo-oxidative stress. R protein activation of EDS1 

signalling typically results in accumulation of the phenolic stress hormone salicylic 

acid (SA), generation of ROS, localized programmed cell death (PCD) (the 

hypersensitive response (HR)) and restriction of pathogen growth. Arabidopsis nudix 

hydrolase NUDT7 was identified as a negative component of the EDS1 defence and 

cell death pathway. Nudt7 null mutants display enhanced basal resistance, elevated 

levels of SA, retarded growth and spontaneous initiation, but not spread, of leaf cell 

death. Genetic epistasis analysis showed that all of the nud7 defects require EDS1. 

The work presented here characterizes further the genetic relationship between 

NUDT7 and EDS1 and molecular functions of NUDT7 in EDS1 stress signalling. 

EDS1 and NUDT7 genes are responsive to multitude of abiotic and biotic stresses. 

Inspection of NUDT7 protein revealed a cytosolic localization in healthy and stress-

induced leaf tissue. While the nudt7 mutation enhances EDS1 transcript accumulation, 

EDS1 acts principally at the level of NUDT7 protein accumulation although a direct 

interaction between EDS1 and NUDT7 was not observed. Others have reported that 

nudt7 constitutive disease resistance is due to increased responsiveness to MAMPs 

(Microbe-Associated Molecular Patterns). In this work it was established using 

multiple MAMP-triggered read-outs that neither nudt7 not eds1 mutants exhibit an 

altered MAMP response. Results are consisten with activities of EDS1 and NUDT7 in 

fine regulation defence and cell death to invasive pathogens. Induction of oxidative 

stress resulted in severe growth retardation, cell death induction and ROS 

accumulation in nudt7 that was EDS1-dependent. Oxidative stress-induced cell death 

in nudt7 was independent of SA while the superoxide-generating NADPH oxidase 

AtRbohD was required for cell death initiation and ROS (H2O2) accumulation. Gene 
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expression microarray analysis revealed that SA likely regulates ROS homeostasis in 

nudt7. Together, these data suggest a central role of the EDS1 pathway in modulating 

chloroplastic ROS signals that promote retardation of growth retardation and cell 

death initiation. 
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Zusammenfassung 
 

Pflanzen sind diversen biotischen und abiotischen Stressen ausgesetzt was zur 

Entwicklung augeklügelter Schutzmechanismen geführt hat. Eine herausragende, 

offene Frage ist wie Pflanzen effektiv auf Stress Stimuli reagieren aber gleichzeitig 

die Reaktion regulieren um Resourcen für Wachstum und Reproduktion zu wahren. 

EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) kodiert einen nucleo-

cytoplasmatischen Regulator basaler Abwehrmechanismen gegen an den Wirt 

angepasste Pathogene und rassen-spezifische Resistenz gegen avirulente Pathogene 

vermittelt durch TIR (Toll-Interleukin) NBS-LRR (Nucleotide Binding Site-Leucine 

Rich Repeats) Resistenz (R) Proteine. EDS1 ist auch an der Übermittlung von 

Sauerstoffradikal (reactive oxygen species (ROS))-induzierten Signalen beteiligt, die 

durch photo-oxidativen Stress generiert werden. R ProteinAktivierung des EDS1 

Signallweges resultiert typischerweise in der Akkumulation des phenolischen 

Stresshormons Salicylsäure (SA), Produktion von ROS, lokalem, programmierten 

Zelltod (PCD) (hypersensitive response (HR)) und Begrenzung der 

Pathogenausbreitung. Die Arabidopsis Nudix Hydrolase NUDT7 wurde als negative 

Komponente des EDS1 Signalweges identifiziert. Nudt7 Null Mutanten zeigen 

erhöhte basale Resistenz, erhöhte SA Konzentrationen, unterdrücktes Wachstum und 

spontane Initiierung von Zelltod der sich aber nicht ausbreitet.  

Genetische Epistasis Experimente haben gezeigt, dass alle nudt7 Defekte EDS1 

benötigen. Die hier vorliegende Studie charakterisiert die genetische Beziehung von 

NUDT7 zu EDS1 and die molekulare Funktion von NUDT7 im EDS1 Signalweg. Die 

EDS1 und NUDT7 Gene reagieren beide auf eine Vielzahl biotischer und abiotischer 

Stresse. Eine genauere Betrachtung des NUDT7 Proteins konnte eine cytosolische 

Lokalisation in gesundem und gestresstem Blattgewebe aufzeigen. Während die nudt7 

Mutation zu erhöhten EDS1 Transkriptlevel führt, beeinflusst EDS1 prinzipiell 

NUDT7 Protein Akumulation obwohl keine direkte Interaktion beider Proteine 

gefunden werden konnte. Andere Studien haben berichtet, dass konstitutive Resistenz 

in nudt7 auf eine erhöhte Empfindlichkeit gegenüber MAMPs (Microbe-Associated 

Molecular Patterns) zurückgeht. Mittels verschiedener MAMP-getriggerter Read-outs 

konnte in dieser Studie gezeigt werden, dass weder nudt7 noch eds1 eine veränderte 

MAMP-Antwort zeigen. Die Resultate stehen in Einklang mit den Aktivitäten von 
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EDS1 und NUDT7 bei der Fein-Regulation von Abwehrmechanismen und 

Zelltodinduktion gegenüber invasiven Pathogenen. Induktion von oxidativem Stress 

resultierte in EDS1-abhängiger Reduktion des Pflanzenwachstums, Initiierung von 

Zelltod und Akkumulation von ROS in nudt7. Oxidativer Stress-induzierter Zelltod in 

nudt7 war unabhängig von SA während die Superoxid-generierende NADPH oxidase 

AtRbohD für Zelltodinitiierung und ROS (H2O2) Akkumulation benötigt wurde. 

Microarray Gen Expressionsanalyse legte nahe, dass SA an der Regulierung der 

Redox Homeostase in nudt7 beteiligt ist. Zusammenfassend legen die hier 

präsentierten Daten eine zentrale Rolle des EDS1 Signallweges in der Modulierung 

chloroplastischer ROS Signale nahe, welche zu Wachstumsstörungen und zur 

Initiierung von Zelltod führt.  
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1. Introduction 
 
The ability to synthesize sugars by photosynthesis renders plants valuable nutrient 

sources for multiple pathogens and pests such as bacteria, fungi, oomycetes and 

insects. In response to constant attempts of pathogenic colonization plants evolved 

robust and effective defence barriers (Dangl and Jones, 2006). Unlike animals that 

possess an innate immune system and an adaptive immune system relying on 

specialized cells and antigen-specific receptors (Janeway et al., 2001), plants have 

evolved an innate immune system by which cells are autonomously capable of 

sensing pathogens and mounting an immune response (Nürnberger et al., 2004). 

Pathogens attacking plants have to overcome constitutive defence barriers such as 

wax cuticles and cell walls before facing a sophisticated multi-layered induced 

defence system that allows plants to detect and combat pathogens in the extracellular 

space (apoplast) as well as intracellularly (Dangl and Jones, 2001). In spite of the 

large number of pathogens disease is exceptional (Hammond-Kosack and Parker, 

2003). However, some pathogens evolved mechanisms to suppress plant immunity 

and cause disease on particular hosts. In crop plants, disease causing pathogens can 

lead to large yield losses with a great economic impact (Fletcher et al., 2006).  

Although research over the past decades has made enormous progress in 

understanding the molecular basis of plant innate immunity important questions are 

still not solved. There is still a big gap in understanding how signals from different 

plant immunity layers are integrated and how downstream signalling events after 

recognition of a pathogen are transduced into an adequate immune response. It is also 

unclear how plants control their immune response machinery so as not to overreact to 

pathogen stress stimuli that would remove energy for growth and reproduction. 

Unravelling the molecular basis of plant innate immunity could help to develop 

strategies of practical disease control measures that confer durable resistance in e.g. 

crop plants. 
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1.1. Plant innate immunity - a multi-layered defence system 
 

1.1.1. Non-host resistance and PAMP-triggered immunity (PTI) 

Non-host resistance describes the disease resistance of an entire plant species to all 

genetic variants of a non-adapted pathogen species and is probably the most common 

form of plant resistance. Preformed physical (wax cuticles, cell walls), chemical 

(toxic secondary metabolites) and enzymatic (anti-microbial enzymes) barriers as well 

as inducible defence responses contribute to non-host resistance although the precise 

mechanisms of defence remain elusive (Heath, 2000). However, pathogen-triggered 

cell wall remodelling and cell polarisation suggest an important role of cell wall 

integrity in non-host resistance and point to a surveillance system that is able to sense 

changes in the cell wall (Kobayashi et al., 1997; McLusky et al., 1999; Schulze-Lefert, 

2004). 

Progress in understanding inducible non-host resistance at the pre-invasive level was 

made by characterising the penetration mutants pen1, pen2 and pen3 that are required 

for resistance in Arabidopsis thaliana (hereafter called Arabidopsis) to non-adapted 

powdery mildew fungi such as Blumeria graminis or Erysiphe pisi. PEN1 encodes a 

plasma membrane-anchored syntaxin with a SNARE (soluble N-ethylmaleimide-

sensitive factor attachment protein receptor) domain (Collins et al., 2003) and was 

shown to form pathogen-induced ternary complex together with SNAP33 (SNARE 

synaptosomal-associated protein 33) and two VAMPs (vesicle-associated membrane 

proteins) VAMP721 and VAMP722 that may mediate vesicle fusion at the site of 

fungal penetration thereby delivering cell wall material or antimicrobial compounds 

(Kwon et al., 2008). The importance of this work is given by the fact that requirement 

and recruitment of this SNARE complex along the site of fungal penetration provides 

evidence for pathogen-induced cellular re-distribution and shows mechanistic 

similarities to the formation of the immunological synapse in vertebrates. PEN2, 

encoding a family 1 glycoside hydrolase (Lipka et al., 2005) and PEN3, a drug 

resistance ATP binding cassette transporter (Stein et al., 2006) act in the same 

pathway and independently of PEN1. It was suggested that PEN2 and PEN3 are 

involved in the cytoplasmic synthesis and transport of antimicrobial metabolites 

across the plasma membrane to the site of fungal penetration (Lipka et al., 2005; Stein 

et al., 2006). Recently, it was shown that PEN2 is involved in the accumulation of 
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indole-glucosinolates that contribute to antifungal defence (Bednarek et al., 2009). So 

far, glucosinolates have mainly been described in defence responses to insects 

(Halkier and Gershenzon, 2006). The work of Bednarek et al. (2009) provides 

evidence of an independent glucosinolate metabolism that mediates antifungal 

defence. 

When pathogens overcome the cell wall and are exposed to the plant cell plasma 

membrane (PM), a striking principle of immunity shared between animals and plants 

is brought to bear: the recognition of “self” and “non-self”. Animals as well as plants 

possess PM-resident pattern recognition receptors (PRRs) that allow them to 

recognize pathogen-associated molecular patterns (PAMPs; hereafter referred to as 

MAMPs (Microbe-Associated Molecular Patterns)) resulting in the induction of an 

immune response, MAMP-triggered immunity (MTI). MAMPs are highly conserved 

molecules that are not produced by the host and are indispensable to the microbe for 

fitness and/or viability (Nürnberger et al., 2004). The currently best understood 

MAMP recognition system is of the N-terminal 22 amino acid epitope from bacterial 

flagellin (flg22) by the Arabidopsis FLAGELLIN SENSING 2 (FLS2) receptor-like 

kinase (RLK) (Felix et al., 1999; Gomez-Gomez and Boller 2000). FLS2 consists of 

an extracellular leucine-rich repeat (LRR) domain and an intracellular 

serine/threonine kinase domain that are both required for the perception of flg22 and 

for subsequent downstream signalling (Gomez-Gomez et al., 2001). Early responses 

after flg22 perception comprise the induction of an early oxidative burst, nitric oxide 

(NO) and ethylene production, callose deposition and production of antimicrobial 

compounds (Felix et al., 1999; Zipfel and Felix, 2005). Furthermore, flg22 activates a 

MAP kinase cascade that consists of MEKK1, MKK4/5 and MPK3/6 and induces 

transcriptional reprogramming mediated by WRKY transcription factors (Asai et al., 

2002; Tao et al., 2003; Navarro et al., 2004).  

For a long time it was not clear whether MAMP perception contributes to plant 

disease resistance since most experiments were performed with purified MAMPs 

under artificial conditions. However, infection studies of fls2 mutants revealed that 

plants lacking this MAMP receptor are more susceptible to the disease-causing 

virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) when 

applied to the leaf surface (Zipfel et al., 2004). 

More recently, a number of other MAMP/PRR pairs have been identified in 

Arabidopsis and other plant species such as the bacterial elongation factor Tu (EF-Tu) 
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that is recognized by the EF-Tu receptor (EFR) in Arabidopsis (Kunze et al., 2004), 

fungal chitin recognized by the chitin oligosaccharide elicitor-binding protein 

(CEBiP) in rice (Kaku et al., 2006), or a heptaglucoside of oomycetes recognized by 

the β-glucan-binding protein in soybean (Fliegmann et al., 2004). 

 

1.1.2. Pathogen effectors and effector-triggered immunity (ETI) 

In order to gain access to plant nutrients, some pathogens are able to overcome MTI 

by expressing and delivering effectors into the plant host cell (Chisholm et al., 2006; 

Jones and Dangl, 2006). Effectors that successfully suppress host defences are termed 

virulence factors (Vir) and the interaction between a virulent pathogen and its 

susceptible host is defined as a compatible interaction (Abramovitch and Martin, 

2004).  The best characterized examples come from gram-negative bacteria that 

utilize a Type III Secretion System (TTSS) to inject between 20 and 100 effectors into 

the host cell that then interfere with components of PTI (Casper-Lindley et al., 2002; 

Alfano and Collmer 2004; Cunnac et al., 2004; Lindeberg et al., 2006). The TTSS 

effector AvrPtoB has recently been shown to target FLS2 for proteasomal degradation 

and to be required for full virulence of the Pst DC3000 strain (Göhre et al., 2008). 

AvrPto, another TTSS effector protein, was shown to suppress callose deposition at 

the cell wall when expressed under an inducible promoter in plants (Hauck et al., 

2003). Fungi and oomycetes are also capable of delivering effectors into plant host 

cells. In contrast to bacteria, fungal and oomycete pathogens do not possess of a TTSS 

but form a specialized infection structure, the haustorium, which also delivers 

effectors (Chisholm et al., 2006; Whisson et al., 2007). 

Pathogenic colonisation of host tissue facilitated by the suppression of PRR-mediated 

immune responses through effector proteins is not absolute. Host plants exert a further 

layer of defence that restricts pathogen growth in compatible interactions. This can be 

defined as post-invasive basal resistance (Glazebrook et al., 1997). The impact of 

basal resistance on plant immunity is illustrated by the identification of numerous 

mutants of Arabidopsis that exhibit enhanced virulent pathogen growth and 

hypersusceptibility compared to genetically-susceptible wild type (wt) plants (Cao et 

al., 1994; Glazebrook et al., 1996; Parker et al., 1996). A key regulator of basal 

resistance is ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). The loss of which 

results in abrogated post-invasive basal defence (see below) (Parker et al., 1996; 

Wiermer et al., 2005). 
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In response to pathogenic effectors RESISTANCE (R) genes evolved in plants that 

encode Resistance (R) proteins recognizing specific effector proteins and inducing the 

effector-triggered immunity (ETI) (Jones and Dangl, 2006). The recognition event 

confers a strong resistance; the pathogen is defined as avirulent and the interaction is 

called incompatible. Recognition of an effector gene product by the corresponding R 

gene product is defined as “gene-for-gene” or “race-specific” resistance and the 

recognized effector as an avirulence (Avr) factor (Flor, 1971). There are five 

structural classes of R proteins of which the predominant class is characterized by a 

central nucleotide binding site (NBS) and a carboxy-terminal leucine-rich repeat 

domain (LRR). NBS-LRR proteins are structurally related to mammalian Nod 

immune receptors (Dangl and Jones, 2001; Belkhadir et al., 2004; Ting and Williams, 

2005). This class that can be further subdivided into two subclasses, one carrying an 

amino-terminal coiled-coil (CC) domain and a second possessing an amino-terminal 

domain related to the intracellular TIR signalling domains of the Drosophila Toll and 

mammalian interleukin (IL)-1 receptor (TIR). In the fully sequenced Arabidopsis 

accession Col-0 there are ~125 NBS-LRR R-genes of which ~60% belong to the TIR-

NBS-LRR class and ~40% to the CC-NBS-LRR class (Dangl and Jones, 2001; Jones 

and Dangl 2006). 

A possible mode of interaction between R and Avr gene product is a direct one where 

the R protein interacts physically with the pathogenic effector resulting in a defence 

response. So far, there are only a few examples of a direct recognition (Jia et al., 

2000; Deslandes et al., 2003; Dodds et al., 2006). In consideration of the small 

number of R genes compared to the extensive arsenal of bacterial, fungal and viral 

effectors, it was postulated that R-proteins likely monitor common host targets 

attacked by effectors. Therefore it was proposed that many R proteins indirectly detect 

effector proteins rather than directly interact with them leading to the “guard 

hypothesis” (Van der Biezen and Jones, 1998; Dangl and Jones, 2001). Several 

interactions confirm to the guard model (Shao et al., 2003; Axtell and Staskawicz, 

2003; Mackey et al., 2002, 2003) of which the best characterized example describes 

the monitoring of Arabidopsis RIN4 (RPM1 INTERACTING PROTEIN). RIN4, a 

plasma-membrane associated protein that is presumably involved in PTI (Kim et al., 

2005; Jones and Dangl, 2006), is hyperphosphorylated by the two Pseudomonas 

syringae effector proteins AvrRpm1 and AvrB when delivered into the plant cell. The 

R protein RPM1 physically interacts with RIN4 and is activated, probably by the 
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changed phosphorylation status of RIN4, thereby triggering an immune response 

(Mackey et al., 2002). In addition, RIN4 is targeted by the P. syringae effector 

AvrRpt2 that proteolytically cleaves RIN4 (Axtell and Staskawicz, 2003; Mackey et 

al., 2003; Coaker et al., 2005). RPM1 is not able to detect the AvrRpt2-mediated 

cleavage of RIN4 and also does not detect AvrRpm1 and AvrB efficiently when 

AvrRpt2 is present (Ritter and Dangl, 1996). However, the CC-NBS-LRR protein 

RPS2 is able to sense AvrRpt2 activity and to trigger the defence response (Axtell and 

Staskawicz, 2003; Mackey et al., 2003). 

It remains unclear how different R proteins trigger downstream responses. A study of 

barley Mildew A 10 (MLA10) revealed interaction of MLA10 with two repressors of 

basal defence, WRKY1 and WRKY2, in the nucleus after recognition of the Blumeria 

graminis fs hordei effector protein AVRA10 resulting in the activation of an immune 

response (Shen et al., 2007). Hence, this study suggests one mechanism by which 

signals from distinct defence pathways might be integrated. Together with other 

studies, this work points to a requirement for a nuclear pool of NBS-LRR proteins to 

activate defences (Deslandes et al., 2003; Burch-Smith et al., 2007; Wirthmüller et al., 

2007). 

Downstream signalling after recognition of Avr proteins tends to require either EDS1 

in the case of TIR-NBS-LRR triggered responses or NON RACE SPECIFIC DISEASE 

RESISTANCE 1 (NDR1) after CC-NBS-LRR defence activation (Aarts et al., 1998). 

Several studies showing contradictory cases as well as cases where R genes do not 

genetically require EDS1 or NDR1 (McDowell et al., 2000; Bittner-Eddy and Beynon, 

2001; Xiao et al., 2001). Induced downstream responses comprise early changes in 

calcium fluxes, a localized burst of reactive oxygen species (ROS), activation of 

protein kinases and production of NO. In addition, incompatible plant-pathogen 

interactions often induce a hypersensitive reaction (HR) that is normally accompanied 

by programmed cell death (PCD) (Dangl and Jones, 2001; Nimchuk et al., 2003).  

It is significant that ETI and basal resistance lead to a transcriptional reprogramming 

of a largely overlapping set of genes that mainly differs in the kinetics and quantity of 

gene expression (Tao et al., 2003; Bartsch et al., 2006). 
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1.2. Reactive oxygen species – a complex network of production, 

scavenging and signalling 
 

Reactive oxygen species (ROS) are continuously generated in plants as byproducts of 

various metabolic pathways in different cellular compartments (Foyer and Harbinson, 

1994). Abiotic and biotic stresses often lead to an enhanced production and a 

concomitant rapid increase of the cellular ROS concentration which is called 

oxidative burst (Apel and Hirt, 2004). ROS are characterized by their generation from 

molecular oxygen (O2), either by energy transfer or electron transfer reactions (Klotz, 

2002), and their high reactivity with other cellular components such as proteins or 

lipids thereby potentially causing irreversible damage (Pitzschke et al., 2006). Energy 

transfer reactions lead to the formation of singlet oxygen (1O2) whereas electron 

transfer from various donors to O2 results in superoxide (O2
•−) that is rapidly 

dismutated into hydrogen peroxide (H2O2). In the presence of transition metal ions 

(e.g. FeII+, FeIII+, CuII+) H2O2 can be further reduced to the highly reactive hydroxyl 

radical (HO•) (Klotz, 2002; Apel and Hirt, 2004). Considering the potential 

cytotoxicity of ROS, plants evolved elaborated ROS scavenging systems consisting of 

non-enzymatic antioxidants and enzymatic scavengers that maintain an equilibrium 

between ROS production and scavenging under physiological conditions (Alscher et 

al., 1997; Noctor and Foyer, 2005). Research over the past years revealed that 

modulation of this equilibrium constitutes a complex signalling network that includes 

the interplay of different ROS, spatial fine-regulation of ROS scavengers and 

retrograde plastid-nucleus signalling (Noctor and Foyer, 2005; Fernandez and Strand, 

2008; Miller et al., 2008). 

 

1.2.1. Generation of ROS 

Under physiological and abiotic stress conditions ROS are produced predominantly in 

the chloroplasts, peroxisomes and mitochondria (Apel and Hirt, 2004). The 

contribution of mitochondrial respiration to ROS generation is low compared to 

chloroplastic photosynthesis and photorespiration (in C3 plants) leading to ROS 

production in the peroxisomes (Purvis, 1997).  

During photosynthesis, photosystem I (PS II) constantly produces 1O2 which 

drastically increases during high light stress (Hideg et al., 2002). After light 
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absorption and excitation of the light harvesting complex II (LHC II) the energy is 

transferred to chlorophyll P680 in the reaction centre of PS II resulting in an electron 

transfer chain with subsequent sequential reduction of pheophytin, the quinones QA 

and QB and the plastoquinone (PQ) pool (Barber, 1998). Once QA, QB and the PQ 

pool are fully reduced, electron transfer is blocked leading to an uncompleted charge 

separation of the oxidized chlorophyll P680 and the reduced pheophytin thereby 

generating a triplet formation of P680 chlorophyll (Van Mieghem et al., 1989; Barber, 

1998; Krieger-Liszkay, 2005). The excitation energy of chlorophyll P680 is then 

dissipated onto O2 leading to the formation of 1O2 (Durrant et al., 1990). Quenching of 
1O2 has been associated with the rapid turnover of the D1 protein, a central element of 

the PS II reaction centre (Aro et al., 1993; Hideg et al., 1994). When 1O2 production 

exceeds D1 turnover, e.g. under high light stress or CO2 deprivation, block of the 

electron chain and photoinhibition are the consequences (Hideg et al., 1998). Thus, 

plants have evolved protection mechanisms to prevent photoinhibition either by 

thermal dissipation of excess excitation energy (EEE) in the antennae of PS II (non-

photochemical quenching) or transfer of excess electrons to additional electron sinks 

(photochemical quenching) (Ort and Baker, 2002). One of these additional electron 

sinks is O2 that is utilized by photosystem I (PS I) and by the ribulose-1,5-

bisphosphat-carboxylase/-oxygenase (RuBisCO) (Wingler et al., 2000; Ort and Baker, 

2002). Under various stress conditions and restricted CO2 availability O2 is reduced to 

O2
•− by the ferredoxin of the PS I and subsequently converted to H2O2 by Cu/Zn 

superoxide dismutase (Mehler reaction) (Mehler, 1951; Asada, 2000). In addition, in 

the presence of transition metals O2
•− and H2O2 are able to form HO•, for which no 

physiological scavengers are yet known (Asada, 1999). HO• has a very short half-life 

(1 – 0,01 µsec) and diffusion distance from its generation site (0,5 µm) making it 

highly reactive. Therefore, it is important for the cell to scavenge O2
•− and H2O2 

rapidly (Asada, 1999; Pitzschke et al., 2006). Furthermore, in leaves of C3 plants O2 

is used as an electron sink by RuBisCO that provides the major route for H2O2 

production during photosynthesis through photorespiration when CO2 availability is 

scarce or temperature is increased. Under these conditions, RuBisCO catalyses a 

competitive reaction in which O2 is favoured over CO2 as a substrate. RuBisCO-

catalyzed oxygenation produces phosphoglycolate that is converted into glycolate and 

translocated from the chloroplast to the peroxisomes where it is oxidized to H2O2 and 

glyoxylate (Ort and Baker, 2002). 
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In response to biotic stress, plants produce ROS as a line of defence to utilize the 

cytotoxicity of ROS against the pathogen, to strengthen the cell walls and to mediate 

downstream signalling for defence gene activation (Bradley et al., 1992; Levine et al., 

1994; Lamb and Dixon, 1997). Upon pathogen attack, ROS are rapidly generated in 

the apoplast and comprise primarily O2
•− and H2O2 (Doke, 1985; Apostol et al., 1989). 

During incompatible plant-pathogen interactions, the elicited oxidative burst occurs in 

a biphasic manner constituting an initial transient phase with low amplitude and a 

second prolonged phase of massive ROS accumulations. The latter has been 

correlated with disease resistance since compatible interactions induce only a transient 

oxidative burst (Lamb and Dixon, 1997). For a long time, the source of ROS 

production was unclear and several enzymes have been implicated in its production 

upon pathogen recognition. Mammalian phagocytes possess a NADPH-oxidase 

complex, the phagocyte oxidase (PHOX), that is activated upon pathogen recognition 

and catalyzes the production of O2
•− using NADPH as donor molecule and O2 as 

acceptor (Babior, 1999). Recent studies identified homologues of the plasma-

membrane localized, O2-reducing catalytic subunit gp91PHOX in several plant species 

such as Oryza sativa, Nicotiana benthamiana and Arabidopsis (Groom et al., 1996; 

Torres et al., 1998; Yoshioka et al., 2003). In Arabidopsis, there are ten such 

respiratory burst oxidase homologue (AtRboh) genes which have been implicated in 

apoplastic ROS production upon different environmental and developmental triggers 

(Torres and Dangl, 2005). With regard to plant defence, AtRbohD appears to provide 

the major source of ROS accumulation after infection with an avirulent pathogen and 

AtRbohF is involved in the regulation of the HR (Torres et al., 2002). Cell-wall bound 

peroxidases (POD) have been proposed as an additional source of ROS (Wojtaszek, 

1997; Bolwell et al., 1998). In the presence of NADH, NADPH or related reductants, 

PODs are able to generate H2O2 in response to pathogen attack (Vera-Estrella et al., 

1992). Finally, it was shown that the horse radish peroxidase can reduce H2O2 to HO• 

in vitro (Chen and Schopfer, 1999), and it was recently suggested that PODs generate 

HO• in the apoplast using H2O2 as a substrate (Kukavica et al., 2009). 

 

1.2.2. ROS scavenging 

Plants use non-enzymatic and enzymatic strategies to scavenge ROS. Non-enzymatic 

antioxidants comprise glutathione (GSH), ascorbate (Asc), tocopherol, flavonoids, 

alkaloids and carotenoids (Apel and Hirt, 2004; Mittler et al., 2004). Among these 
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scavenging molecules GSH and Asc are the major cellular redox buffers. Both 

molecules are oxidized by ROS forming either oxidized glutathione (GSSG) or 

monodehydroascorbate (MDA) and dehydroascorbate (DHA), respectively.  

Enzymatic scavenging incorporates removal of ROS as well as recovery of oxidized 

antioxidants such as GSSG, MDA and DHA. Superoxide dismutase (SOD), 

dismutating O2
•− to H2O2, catalase, converting H2O2 into H2O and ½ O2, and 

alternative oxidases (AOX), minimizing O2
•− production, act only as scavengers and 

are not involved in antioxidant recovery. By contrast, ascorbate peroxidase (APX), 

monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and 

glutathione reductase (GR) form an ascorbate-glutathione cycle to detoxify H2O2. 

This cycle includes consumption and recovery of Asc and GSH thereby using 

NAD(P)H as reducing equivalent. In addition, in the glutathione-peroxidase cycle the 

glutathione peroxidase (GPX) scavenges H2O2 by using GSH that is then recovered 

by GR and NAD(P)H (Apel and Hirt, 2004; Mittler et al., 2004). 

There are multiple isoforms of APX and SOD in plants that exert their function in 

different subcellular compartments. While AOXs are associated with the thylakoid 

and mitochondrial inner membrane, CAT localizes only to peroxisomes and GPX is 

exclusively cytosolic (Mittler et al., 2004). In this context also ferritins should be 

mentioned that do not scavenge ROS but remove transition metals and therefore help 

to prevent the formation of HO• (Ravet et al., 2009). 

 

1.2.3. ROS signalling 

In recent years it became evident that ROS form a complex signalling network 

regulated by the active modulation of ROS production and scavenging that is 

mediated by at least 152 genes, the so-called ROS gene network (Mittler et al., 2004). 

Thus, signalling results from changes of the cellular as well as of the compartmental 

redox homeostasis and could be achieved in different ways: (i) by 

activation/repression of redox sensitive transcription factors, (ii) by antioxidant-

mediated sensing of an altered cellular redox homeostasis and (iii) by activation of 

ROS sensors and subsequent signal transduction (Apel and Hirt, 2004; Noctor and 

Foyer, 2005; Mittler et al., 2004; Miller et al., 2008). Elucidation of the precise 

signalling activity of each ROS faces the problem that different ROS are produced 

simultaneously (Fryer et al., 2002). H2O2 has been postulated as major ROS signal 

since it is stable and less reactive compared to other ROS and, importantly, can cross 
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plant membranes. Several genetic approaches have assessed the impact of different 

ROS on nuclear gene expression by compiling gene expression profiles of mutants 

lacking or over expressing specific ROS scavengers, respectively, and after 

engineered induction of specific ROS (Op den Camp et al., 2003; Gadjev et al., 2006; 

Laloi et al., 2006, 2007). Among a large set of genes induced by 1O2, O2
•− and H2O2 a 

number of genes could be identified that were differentially expressed in response to 

specific ROS pointing to defined signalling roles for each ROS. Intriguingly, 

antagonistic crosstalk between 1O2 and H2O2 signalling has also been proposed (Laloi 

et al., 2007). It is noteworthy that in these approaches ROS production originating in 

chloroplasts resulted in rapid nuclear gene expression changes suggesting operation of 

retrograde plastid-nucleus signalling.  Furthermore, the source of ROS production 

seems to be crucial, since a certain ROS can cause different effects depending on the 

compartment it was derived from (Miller et al., 2007).  

A paradigm for ROS signalling beyond ROS cytotoxicity comes from studies 

investigating the conditional flu (fluorescent) mutant in Arabidopsis (Meskauskiene et 

al., 2001; Op den Camp et al., 2003; Wagner et al., 2004; Danon et al., 2005; Lee et 

al., 2007). Flu mutants generate 1O2 in the chloroplasts in response to a dark/light shift. 

In flu mutant seedlings the induction of 1O2 results in rapid bleaching and mortality 

(Meskauskiene et al., 2001) while mature plants exhibit a strong growth reduction and 

necrotic lesions (Op den Camp et al., 2003). A genetic screen for suppressors of the 

flu mutant identified the EXECUTER 1 (EX 1) and EXECUTER 2 (EX 2) genes. While 

the precise functions of EX1 and EX2 are unknown, they are associated with the 

thylakoid membranes of chloroplasts (Wagner et al., 2004; Lee et al., 2007). The 

ex1/flu mutant over accumulates 1O2 but fully abrogates the flu phenotype and 

partially suppresses 1O2–mediated nuclear gene expression. The ex1/ex2/flu mutant 

fully suppressed 1O2–induced nuclear gene expression but still maintains elevated •O2 

levels (Lee et al., 2007). These studies demonstrated that the phenotypes exhibited by 

the flu mutant are not the result of 1O2 cytotoxic effects but require chloroplast-

nucleus signalling leading to transcriptional output. 

 

1.2.4. ROS and cell death 

Besides 1O2 other ROS have been implicated in the initiation of cell death (Vranova et 

al., 2002; Dat et al., 2003) as part of plant growth and development programmes and 

in response to environmental triggers such as pathogen attack (Van Breusegem and 
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Dat, 2006). After successful pathogen recognition, plants exhibit an HR that 

presumably requires an orchestrated accumulation of different ROS to induce cell 

death whereas a key signalling role has been assigned to apoplast-generated H2O2 

(Dangl and Jones, 2001; Torres et al, 2002; Overmyer et al., 2003). A recent study has 

shown that Arabidopsis RBOH-generated ROS contribute to HR cell death since rboh 

mutants display reduced ROS generation and PCD after infection with avirulent 

bacteria (Torres et al., 2002). Strikingly, elicitation of the HR also requires light 

pointing to an involvement of chloroplastically produced ROS (Goodman and 

Novacky, 1994). 

Studies on the lesion simulating disease resistance 1 (lsd1) mutant revealed important 

insights into cell death regulation. Lsd1 mutants are unable to restrict cell death 

beyond the site of HR (Dietrich et al., 1997) and exogenous generation of O2
•− is 

sufficient to induce so-called run-away cell death (RCD) in lsd1 (Jabs et al., 1996). In 

addition, high light and low CO2 promote lesion formation in lsd1 that can be blocked 

by photosynthetic electron transport inhibitors (Mateo et al., 2004). Surprisingly, ROS 

produced by AtRbohD and AtRbohF negatively regulate RCD in lsd1 while SA 

promotes it (see below) (Aviv et al., 2002; Torres et al., 2005). It was suggested that 

LSD1 negatively regulates cell death by interacting with the basic leucine zipper 

(bZIP) transcription factor AtbZIP10 and retaining it from the nucleus (Kaminaka et 

al., 2006). After perception of an appropriate ROS-derived signal, LSD1 releases 

AtbZIP10 to the nucleus where it activates transcription of HR related genes. 

Furthermore, LSD1 interacts with the LOL1 (LSD-one-like 1) protein that positively 

regulates cell death in an unknown manner (Epple et al., 2003). Therefore, LSD1 

seems to act as a molecular hub mediating oxidative stress responses. 

Besides chloroplasts, mitochondria have also been implicated in ROS production 

resulting in PCD (Maxwell et al., 2002; Tiwari et al., 2002; Yu et al., 2002; Yao et al., 

2004, 2006). Studies on the accelerated cell death 2 (acd2) provided evidence for the 

involvement of a mitochondrial oxidative burst in the HR and suggested the 

requirement of crosstalk between chloroplasts and mitochondria to mediate PCD (Yao 

et al., 2004, 2006). 

Cell death induction not only requires production of ROS, but also coordinated 

suppression of ROS scavenging (Mittler et al., 1999; Delledonne et al., 2001) and the 

interaction with other signalling molecules such as nitric oxide (NO) and the plant 

hormones SA, ethylene and jasmonic acid (JA) (see below) (Delledonne et al., 2001; 
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de Jong et al., 2002; Overmyer et al., 2005; Mur et al., 2006). For example, NO and 

O2
•− can react to produce peroxynitrite (ONOO−) that is able to cause cell death in 

animals (Bonfoco et al., 1995). By contrast, ONOO− seems not to be crucial for cell 

death induction in plants. In fact, formation of ONOO− was suggested to prevent an 

imbalance of NO and H2O2 that otherwise synergistically trigger PCD (Delledonne et 

al., 2001; Zago et al., 2006). 

 

1.3. EDS1 – a regulatory node for immune and oxidative stress 

responses 
 

EDS1 was originally identified in a screen for Arabidopsis mutants that are defective 

in R gene-mediated resistance to isolates of the obligate biotroph oomycete 

Hyaloperonospora parasitica (Parker et al., 1996). Subsequent analysis revealed that 

EDS1 constitutes a central regulatory node in the plant innate immune system and 

plays an important role in oxidative stress signalling (Wiermer et al., 2005). 

 

1.3.1. EDS1 and plant innate immunity 

EDS1 is a mediator of basal resistance, defence responses triggered by TIR-NBS-

LRR immune receptors and is required for early signalling events resulting in the 

induction of an oxidative burst and expression of the HR (Feys et al., 2001; 

Rusterucci et al., 2001). Most EDS1-activated responses require PAD4 

(PHYTOALEXIN DEFICIENT 4), an interaction partner of EDS1 (Feys et al., 2001). 

EDS1/PAD4 triggered defence leads to the accumulation of SA and amplification of 

the defence response around the infection site, including promotion of their own 

expression (Feys et al., 2001). While eds1 mutants show a complete loss of TIR-NBS-

LRR mediated resistance upon infection with avirulent isolates of H. parasitica, pad4 

mutants still retain a delayed HR but fail to restrict pathogen growth (Feys et al., 

2001). Further studies showed that functional redundancy between PAD4 and SAG101 

(SENESCENCE ASSOCIATED GENE 101), a second interactor of EDS1, accounts for 

the partially compromised resistance phenotype of pad4 (Feys et al., 2005). However, 

EDS1 and PAD4 are equally required for basal resistance in response to virulent 

pathogens (Aarts et al., 1998; Feys et al., 2001). After infection with virulent H. 

parasitica or Pst, eds1 and pad4 mutant plants exhibited similarly enhanced levels of 
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pathogen growth compared to the susceptible wt (Feys et al., 2001) indicative of a 

loss of post-invasive basal resistance. 

How EDS1 and its interacting partners exert their function is still unclear. 

Localization and molecular interaction experiments revealed that EDS1 forms 

homodimers in the cytosol while EDS1-PAD4 heteromers localize to the cytosol and 

the nucleus and the EDS1-SAG101 complex is exclusively localized to the nucleus 

(Feys et al., 2005). The three proteins share a lipase-like domain but so far no lipolytic 

activity could be shown and mutations of conserved amino-acid residues in the lipase 

domain of EDS1 or PAD4 do not interfere with their role in disease resistance (S. 

Rietz and J. Parker, unpublished data). 

 

1.3.2. EDS1 and ROS signalling 

Although EDS1 and PAD4 are not required for defence responses triggered by the 

CC-NBS-LRR immune receptor RPM1 both are needed for the generation of a 

ROS/SA-dependent defence signal amplification loop (Rusterucci et al., 2001). 

RPM1-triggered defence induces RCD in the lsd1 mutant that requires EDS1 and 

PAD4 for propagation. This activity is genetically separable from the EDS1/PAD4 

roles in R gene mediated HR and disease resistance (Rusterucci et al., 2001). In 

addition, eds1 and pad4 abrogate RCD in lsd1 caused by photo-oxidative stress due to 

high light conditions that promote EEE (Mateo et al., 2004). The failure of lsd1 to 

acclimate to EEE is associated with reduced catalase activity, stomatal conductance 

and thus sequential decreased CO2 availability, resulting in ROS overload that are all 

dependent on EDS1 and PAD4. Subsequent studies suggested that an over-reduction 

of the PQ pool generates signals that require EDS1-, and partially PAD4-, dependent 

transduction leading to ROS and ethylene accumulation and resulting in RCD in the 

lsd1 mutant (Mühlenbock et al., 2008). 

Notably, EDS1 is also required for signalling events in the conditional flu mutant 

(Ochsenbein et al., 2006). However, the eds1 mutation does not abolish flu initiation 

of cell death but eds1/flu mutant plants recover faster from 1O2-mediated growth 

inhibition and suppress the spread of necrotic lesions. In addition, elevated levels of 

SA and expression of PR1 and PR5 genes in flu also depend on EDS1. 

Together, these data suggest that EDS1 has distinct key regulatory functions in 

mediating disease resistance and oxidative stress responses. 
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1.4. Salicylic Acid 
 

The phytohormone SA is a phenolic beta-hydroxy benzoic acid that plays an 

important role in response to biotic and abiotic stresses in plants. In particular, SA is 

required to mount an adequate defence response after infection with various 

pathogens and it has also been implicated in the elicitation of the HR in certain 

resistance responses. In addition, SA-conjugates as well as the crosstalk with other 

plant hormone signalling pathways such ethylene- and JA-signalling seem to play a 

crucial role in plant defence. 

 

1.4.1. SA synthesis and its role in plant disease resistance 

SA can be synthesised via two different pathways that both utilize chorismate as 

initial substrate. One pathway uses chorismate-derived phenylalanine that is converted 

via different intermediates into SA (Wildermuth, 2006). A second pathway 

synthesises SA in the chloroplasts in a two step reaction mediated by 

ISOCHORISMATE SYNTHASE 1 (ICS1) converting chorismate into isochorismate 

and ISOCHORISMATE PYRUVATE LYSASE (IPL) that catalyzes the conversion 

into SA (Wildermuth et al., 2001; Wildermuth, 2006; Strawn et al., 2007). It was 

shown that this pathway provides the major route for pathogen induced SA 

accumulation in Arabidopsis. Knockouts of the SID2 (SALICYLIC ACID 

INDUCTION DEFICIENT 2) gene encoding ICS1 fail to accumulate SA in response 

to pathogens and exhibit enhanced susceptibility (Nawrath and Metraux, 1999; 

Wildermuth et al., 2001). The importance of SA accumulation upon pathogen 

infection was reinforced by studies with plants expressing the bacterial NahG gene 

whose gene product, a bacterial salicylate hydrolase, hydrolyzes SA to catechol 

thereby fully depleting the SA pool. These plants failed to express PR genes and 

exhibited hypersusceptibility towards virulent and avirulent pathogens (Gaffney et al., 

1993; Delaney et al., 1994; Kachroo et al., 2000). However, negative effects of 

catechol on plant disease resistance have to be taken into account when interpreting 

these results (van Wees and Glazebrook, 2003). Nevertheless, external application of 

SA or synthetic SA analogues such as dichloro-isonicotinic acid (INA) or 

benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) restored resistance 
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and PR gene expression in sid2 mutants and NahG-expressing plants (Nawrath and 

Metraux, 1999). 

SA accumulation upon pathogen challenge can be regulated by EDS1/PAD4 or NDR1 

(Feys et al., 2001; Shapiro and Zhang, 2001) depending on the R gene trigger. In eds1 

and pad4 mutants, SA application induces defence gene expression and is therefore 

positioned downstream of EDS1 and PAD4 (Feys et al., 2001). SA contributes to a 

positive feedback loop in which it stimulates EDS1/PAD4 expression thereby 

potentiating signalling. 

SA-dependent signalling in Arabidopsis is mediated by the redox sensitive 

NONEXPRESSOR OF PR GENES (NPR1) (Cao et al., 1994; Delaney et al., 1995). 

Under conditions of redox equilibrium NPR1 appears to be present as an oligomer in 

the cytosol that is formed through intramolecular disulfide bonds. SA-induced 

changes of cellular redox homeostasis lead to a reduction of the disulfide bonds 

thereby releasing NPR1 monomers to the nucleus and activating the transcription of 

defence genes (Mou et al., 2003; Tada et al., 2008). In addition, NPR1 interacts in the 

nucleus with the TGA1 (TGACG-sequence-specific binding-protein 1) transcription 

factor in a redox-sensitive manner thereby increasing the DNA binding capacity of 

TGA1 (Despres et al., 2003). 

 

1.4.2. SA, ROS and cell death 

Alterations of SA levels can have direct effects on the efficiency of photosynthesis 

and acclimation to EEE thereby also regulating the production of H2O2 (Mateo et al., 

2004, 2006). It was suggested that SA promotes H2O2 accumulation by inhibiting 

ROS scavengers thus forming an amplification loop in which H2O2 promotes SA 

accumulation (Chen et al., 1993; Leon et al., 1995; Klessig et al., 2000). Initially, this 

amplification loop was proposed to drive the HR and establish resistance (Draper, 

1997). Recent studies, however, showed that SA is not necessarily required for HR 

elicitation since NahG plants and sid2 mutants are able to trigger HR (Feys et al., 

2001; Overmyer et al., 2003). Reports about SA-dependent cell death induction are 

contradictory. In several mutants a spontaneous cell death phenotype is correlated 

with enhanced SA accumulation. Cell death in these mutants was abrogated by SA 

depletion and re-initiated by exogenous application of SA or BTH (Lorrain et al., 

2003). By contrast, it has been shown that SA also negatively regulates cell death and 

that elevated SA levels do not result in a spontaneous cell death phenotype, 
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respectively (Rate et al., 1999; Clough et al., 2000; Rate and Greenberg, 2001; 

Devadas and Raina, 2002). ROS and SA can also have antagonistic effects on cell 

death regulation as shown in the lsd1 mutant (Torres et al., 2005): SA and BTH 

application results in the spread of necrotic lesions in lsd1 that is negatively regulated 

by AtrbohD and AtrbohF. 

SA-dependent resistance and cell death induction also depend on the crosstalk of SA 

with ethylene and JA. While SA and ethylene can interact synergistically or 

antagonistically, SA-JA crosstalk is mainly antagonistic (Robert-Seilaniantz et al., 

2007). A recent study showed that EDS1 and PAD4 induce ethylene production that is 

required for cell death induction in lsd1 suggesting an interplay of SA and ethylene 

(Mühlenbock et al., 2008). Furthermore microarray analysis revealed that SA and 

ethylene might function together to induce the same set of defence genes (Schenk et 

al., 2000) while ethylene potentiates SA-dependent PR1 expression (Lawton et al., 

1994). 

There is large body of evidence for negative crosstalk between SA and JA (Kunkel 

and Brooks, 2000). A good example comes from several Pst strains that produce the 

phytotoxin coronatine, a mimic of methyljasmonate which activates defence against 

necrotrophs. By promoting JA-dependent signalling via coronatine delivery, Pst 

utilize an endogenous negative regulation system of SA dependent defence and this 

may tip the balance towards disease.  This was reinforced by the Arabidopsis coi1 

(coronatine insensitive 1) mutant that is more resistant to Pst and this is associated 

with more rapid SA-dependent expression of PR1 (Kloek et al., 2001; Zhao et al., 

2003). 

 

1.5. The nudix hydrolase NUDT7 – a negative regulator of EDS1 
 

NUDT7 has been shown independently in several gene expression microarray 

experiments to be upregulated after infection with avirulent pathogens (Bartsch et al., 

2006; Ge et al., 2007; Adams-Phillips et al., 2008). Nudt7 mutant plants resemble 

constitutive defence mutants and recent studies suggested a role for NUDT7 as a 

negative regulator of EDS1-mediated defence signalling and oxidative stress 

responses (Bartsch et al., 2006; Ge et al., 2007). 
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1.5.1. Nudix hydrolases 

The nudix hydrolase NUDT7 is one of 32 nudix hydrolases present in Arabidopsis 

(McLennan, 2006). Nudix hydrolases are a superfamily of Mg2+-requiring enzymes 

that are widespread among eukaryotes, bacteria, archea and viruses (Bessman et al., 

1996; McLennan, 2006). This class of enzymes mainly consists of pyrophospho-

hydrolases that catalyze the hydrolysis of nucleoside diphosphates linked to other 

moieties X (NDP-X) to yield nucleoside monophosphate (NMP) plus X-P:  

NDP-X + H2O  NMP + X-P + H+ 

The NUDT enzyme substrate range includes intact and oxidatively damaged 

nucleoside triphosphates, dinucleoside polyphosphates, nucleoside-sugars, capped 

RNA and dinucleotide coenzymes (Bessman et al., 1996; Mildvan et al., 2005). These 

substrates are either toxic or have a signalling activity and nudix hydrolases play 

protective, regulatory and signalling roles in metabolism by removing such molecules 

(Mildvan et al., 2005). The centre of catalysis is the so-called Nudix box, a highly 

conserved 23-residue sequence motif, GX5EX7REVXEEXGU (where U is Ile, Leu or 

Val) that is found in all members of the superfamily (McLennan, 2006). 

NUDT7 has in vitro hydrolase activity on ADP-ribose and NADH (Ogawa et al., 

2005; Olejnik et al., 2005; Jambunathan and Mahalingam, 2006) but this could not be 

confirmed in vivo (Ge et al., 2007). The subcellular localization of NUDT7 is 

predicted as cytosolic by software predictions but has not been shown in vivo (Ogawa 

et al., 2005). Crosslinking experiments with glutaraldehyde revealed the ability of 

NUDT7 to form homodimers (Olejnik et al., 2005). 

 

1.5.2. NUDT7 in plant defence and oxidative stress signalling 

Arabidopsis plants lacking NUDT7 are reduced severely in growth, exhibit 

spontaneous leaf cell death that is restricted to single cells, and accumulate elevated 

SA levels (Bartsch et al., 2006). In addition, nudt7 mutants show constitutive 

expression of defence markers such as PR1, PR2 and AIG1 (Jambunathan and 

Mahalingam, 2006; Ge et al., 2007) and are hyper resistant towards a virulent isolate 

of H. parasitica (Bartsch et al., 2006). Other studies suggested a hyper resistance 

phenotype of nudt7 towards virulent and avirulent strains of Pst (Jambunathan and 

Mahalingam, 2006; Ge et al., 2007). NUDT7 was shown to be upregulated in an 

EDS1-dependent manner in a gene expression microarray experiment aimed at the 
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identification of novel components of EDS1-mediated defence signalling (Bartsch et 

al., 2006). Further, genetic analysis revealed that the nudt7 phenotype depends on 

EDS1. Therefore, it was proposed that NUDT7 acts as a negative regulator of EDS1-

triggered defence signalling (Bartsch et al., 2006). Surprisingly, the cell death 

phenotype of nudt7 plants does not depend on SA as was shown for other cell death 

mutants (Brodersen et al., 2005; Torres et al., 2005). By contrast, SA depletion in 

nudt7/sid2 mutants exacerbates spontaneous leaf cell death drastically pointing to an 

SA-independent defence branch triggered by EDS1 (Bartsch et al., 2006). 

Reports on the redox homeostasis of nudt7 mutant plants are contradictory 

demonstrating either enhanced ROS accumulation (Jambunathan and Mahalingam, 

2006) or no ROS accumulation (Ge et al., 2007). However, pharmacological induction 

of oxidative stress results in a strong growth retardation of nudt7 plants suggesting a 

role for NUDT7 in maintaining the cellular redox balance (Ge et al., 2007). 

 
1.6. Aims of the thesis 
 

The importance of EDS1-dependent signalling in plant innate immunity is evident 

from several studies (Parker et al., 1996; Aarts et al., 1998; Feys et al., 2001). Recent 

data also reveal a key regulatory function for EDS1 in mediating oxidative stress 

signalling (Rusterucci et al., 2001; Mateo et al., 2004; Ochsenbein et al., 2006 

Mühlenbock et al., 2008). However, little is known about how the EDS1 pathway 

works and is controlled. Expression of the nudix hydrolase NUDT7 is tightly EDS1-

dependent and NUDT7 is positioned genetically as a negative regulator of EDS1 

resistance signalling (Bartsch et al., 2006). I aimed to characterize NUDT7 activity 

and the relationship of NUDT7 to EDS1 in order to define more closely key processes 

governing plant innate immunity and programmed cell death.  

EDS1-dependent nudt7-1 growth retardation, spontaneous leaf cell death and elevated 

salicylic acid levels suggested that NUDT7 regulation is part of intrinsic EDS1 stress 

pathway. I tested this hypothesis by co-expression studies of EDS1 and NUDT7 and 

analysed NUDT7 transcript and protein levels upon activation of EDS1-dependent and 

EDS1–independent defence responses. EDS1 and NUDT7 transcripts are responsive to 

MAMP treatment (Zipfel et al., 2004; Phillips-Adams et al., 2008). Thus, hyper-

responsiveness of nudt7-1 to MAMPs leading to increased MAMP-triggered 

immunity (MTI) by microbes was postulated to induce the nudt7-1 phenotype. I 
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investigated a potential role for EDS1 and NUDT7 in MTI by multiple assays. EDS1-

mediated ROS signalling causes cell death and growth retardation (Rusterucci et al., 

2001; Mateo et al., 2004; Mühlenbock et al., 2008) and nudt7 mutants are 

hypersusceptible to oxidative stress (Ge et al., 2007). In addition, SA is involved in 

redox regulation (Mateo et al., 2006) and EDS1-dependent programmed cell death 

(PCD) in nudt7 is exacerbated by SA depletion (Bartsch et al., 2006). Therefore, I 

used the nudt7 mutant as a genetic tool to gain deeper insight to i) mechanisms of 

EDS1-mediated oxidative stress signalling ii) the impact of SA on the regulation of 

PCD in EDS1–triggered oxidative stress signalling and iii) the position of NUDT7 in 

this signalling pathway. 
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2. Materials and Methods 
 

2.1. Materials 
 

2.1.1. Plant materials 

Arabidopsis wild-type and mutant lines use in this study are listed in Table 2.1 and 2.2, 

respectively. 

 
Table 2.1 Wild-type Arabidopsis accessions used in this study 

Accession Abbreviation Original source 
Columbia-0 Col-0 J. Dangla 
Landsberg-erecta-0 Ler-0 Nottingham Arabidopsis Stock Center 

a University of North Carolina, Chapel Hill, NC, USA 

b Nottingham, UK 

 
Table 2.1 Mutant and transgenic Arabidopsis lines used in this study 
Mutant allele Accession Mutagen Reference/Source 

eds1-2 
Col-0 
/(Ler-0)a FN Bartsch et al., 2006 

fls2 Col-0 T-DNA  
fmo1-1 Col-0 T-DNA Bartsch et al., 2006 
nud7-1/eds1-2 Col-0 T-DNA/FN Bartsch et al., 2006 
nudt7-1 Col-0 T-DNA Bartsch et al., 2006 
nudt7-1/eds1-2/sid2-1 Col-0 T-DNA/FN/EMS this study 
nudt7-1/fmo1-1 Col-0 T-DNA this study 
nudt7-1/pad4-1 Col-0 T-DNA/EMS this study 
nudt7-1/rbohD Col-0 T-DNA/dSpm this study 
nudt7-1/sid2-1 Col-0 T-DNA/EMS Bartsch et al., 2006 

pad4-1 Col-0 EMS 
Glazebrook et al., 
1997 

rbohD Col-0 dSpm Torres et al., 2002 

sid2-1 Col-0 EMS 
Wildermuth et al., 
2001 

CaMV35S::cNUDT7-
strepII Col-0 

Floral dipping of 
nudt7-1 

M. Bartschb, 
unpublished 

a Ler eds1-2 allele introgressed into Col-0 genetic background, 8th backcrossed generation 

b Centro Nacional de Biotecnología, Dep. of Plant Molecular Genetics, C/ Darwin 3, 28049 Madrid 

 

EMS: ethylmathane sulfonate; FN: fast neutron; dSpm: defectice Suppressor-mutator; 

T-DNA: transfer-DNA 
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2.1.2. Pathogens 

2.1.2.1. Hyaloperonospora parasitica 

Hyaloperonospora parasitica isolate NOCO2 was used for infection studies in this 

work. H. parasitica NOCO2 was derived from isolated conidia from single seedlings 

(Holub et al., 1994). 

 
Table 2.2 H. parasitica isolate NOCO2 and its interaction with Arabidopsis ecotypes 
Arabidopsis ecotype H.parasitica NOCO2 
Col-0 compatible 
Ler-0 incompatible  (RPP5) 

 

2.1.2.2. Pseudomonas syringae pv. tomato  

Pseudomonas syringae pv. tomato strain DC3000 expressing the avirulence 

determinants avrRps4 (Hinsch and Staskawicz, 1996) or avrRpm1 (Grant et al., 1995) 

from the broad host range plasmid pVSP61 (Innes et al., 1993) or DC3000 containing 

empty pVSP61 were used in this study. The P. syringae pv. tomato isolates were 

originally obtained from R. Innes (Indiana University, Bloomington Indiana, USA). In 

addition, P. syringae pv. tomato lacking the effector genes AvrPto/AvrPtoB (Pst 

DC3000 ∆AvrPto/AvrPtoB) was used (Xiao et al., 2007). 

 

2.1.3. Oligonucleotides 

Primers used in this study are listed in Table 2.4. Oligonucleotides were purchased 

from Sigma-Aldrich (Deisenhofen, Germany), Operon (Cologne, Germany) or 

Metabion (Martinsried, Germany). Lyophilised primers were resuspended in 

nuclease-free water to a final concentration of 100 pmol/µl (= 100µM), working 

stocks were diluted to 10pmol/µl (=10µM). 

 
Table 2.3 List of primers used in this study 
Primer Sequence (5'  3') Purpose 

ActF TGCGACAATGGAACTGGAATG Actin2 RT-
PCR 

ActR CTGTCTCGAGTTCCTGCTCG Actin2 RT-
PCR 

105/E2 ACACAAGGGTGATGCGAGACA eds1-2 mutant 
detection 

EDS4 GGCTTGTATTCATCTTCTATCC eds1-2 mutant 
detection 

EDS6 GTGGAAACCAAATTTGACTTAG eds1-2 mutant 
detection 
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MB58 TCAATGGATGGATTGTTCCCC fmo1-1 
genotyping For 

MB59 GGCAACAATTAAACAGTTACTCGCA fmo1-1 
genotyping Rev 

MB111 CCAATAAACAAAGGGCACGGA nudt7-1 
genotyping For 

MB112 CCACTCCTCTCCTGGACAACG nudt7-1 
genotyping Rev 

pad4-1 for GCGATGCATCAGAAGAG pad4-1 
genotyping For 

pad4-1 rev TTAGCCCAAAAGCAAGTATC pad4-1 
genotyping Rev 

MS7 GGATACTGATCATAGGCGTGGCTCCA rbohD 
genotyping For 

MS12 GTCGCCAAAGGAGGCGCCGA rbohD 
genotyping Rev 

MS10 CTTATTTCAGTAAGAGTGTGGGGTTTTGG dSpm detecion 
MS4 GCAGTCCGAAAGACGACCTCGAG sid2-1 mutant 

detection For 
MS5 CTATCGAATGATTCTAGAAGAAGC sid2-1 mutant 

detection Rev 

LBa1 TGGTTCACGTAGTGGGCCATCG LB primer for 
SALK 

EG46 CGAAGACACAGGGCCGTA qRT PCR 
EDS1 For 

EG48 AAGCATGATCCGCACTCG qRT PCR 
EDS1 Rev 

MS35 GCTTCTCTTTCGCATTGGAG qRT PCR 
NUDT7 For 

MS36 GCAGCCTCCACAAGATTAGC qRT PCR 
NUDT7 Rev 

EG68 AGATCCAGGACAAGGAGGTATTC qRT PCR 
Ubiquitin For 

EG69 CGCAGGACCAAGTGAAGAGTAG qRT PCR 
Ubiquitin Rev 

MS29 CTGCGACTCAGGGAATCTTCTAA qRT PCR 
UBC21 For 

MS30 TTGTGCCATTGAATTGAACCC qRT PCR 
UBC21 Rev 

For = forward; Rev = reverse 

 

2.1.4. Enzymes  

2.1.4.1. Restriction endonucleases  

Restriction enzymes were purchased from New England Biolabs (Frankfurt, Germany) 

unless otherwise stated. Enzymes were supplied with 10x reaction buffer.  
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2.1.4.2. Nucleic acid modifying enzymes  

Standard PCR reactions for genotyping were performed using home made Taq DNA 

polymerase. For quantitative real time PCR, a commercial supermix containing iTaq 

DNA polymerase was used. Modifying enzymes and their suppliers are listed below:  

 

Taq DNA polymerase home made  

SuperScript™ II RNase H- Reverse Transcriptase  Invitrogen™ (Karlsruhe, 

Germany) 

iQ SYBR® Green Supermix     Bio-Rad (California, USA) 

 

2.1.5. Chemicals  

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich 

(Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

Invitrogen™ (Karlsruhe, Germany), Serva (Heidelberg, Germany), and Gibco™ 

BRL®
 
(Neu Isenburg, Germany) unless otherwise stated.  

 

2.1.6. Antibiotics  

Kanamycin (Kan)  50mg/ml in H2O  

Rifampicin (Rif)  100mg/ml in DMSO  

Stock solutions (1000x) stored at -20°C. Aqueous solutions were sterile filtrated. 

 

2.1.7. Media  

Media were sterilised by autoclaving at 121°C for 20min. For the addition of 

antibiotics and other heat labile compounds the solution or media were cooled down 

to 50°C. Heat labile compounds were sterilised using filter sterilisation units prior to 

addition. 

 

Arabidopsis thaliana media  
MS (Murashige and Skoog) solid medium (MS plates)  

MS powder including vitamins and MES buffer 4,8g/l  

Sucrose 10g/l  

Plant agar 9g/l  

pH 5.8  
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MS (Murashige and Skoog) liquid medium  

MS powder including vitamins and MES buffer  4,8g/l  

Sucrose       10g/l  

 

For MAMP assays flg22 peptide was added at the indicated concentrations from a 

10mM stock. Plant agar and MS powder including vitamins and MES buffer was 

purchased from Duchefa (Haarlem, The Netherlands). Flg22 was provided by S. 

Robatzeka. 
a Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, 

Germany 

 

Escherichia coli media 

LB (Luria-Bertani) broth 

Tryptone 10,0g/l 

Yeast extract 5,0g/l 

NaCl 5.0 g/l 

pH 7.0 

For LB agar plates 1.5% (w/v) agar was added to the above broth. 

 

Pseudomonas syringae media  

NYG broth  

Peptone 5g/l  

Yeast extract 3g/l  

Glycerol 20ml/l  

pH 7.0  

For NYG agar plates 1,5% (w/v) agar was added to the above broth. 
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2.1.8. Antibodies  

Listed below are primary and secondary antibodies used for immunoblot detection  

 
Table 2.4 Primary antibodies 
Antibody Source Dilution Reference 
α-EDS1 rabbit polyclonal 1:500 TBS-T + 2% milk S. Rietza 
α-NUDT7 rabbit polyclonal 1:500 TBS-T + 5% milk this study 

α-GFP mouse monoclonal 1:2000 TBS-T + 2% milk 
Roche 
(Mannheim, 
Germany) 

α-Histone H3 rabbit polyclonal 1:5000 TBS-T 
Abcam 
(Cambridge, 
UK) 

α-Hsc70 mouse polyclonal 1:5000 TBS-T + 1% BSA 
Stressgen 
(Victoria, 
Canada) 

a Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, 
Germany 
 
Table 2.5 Secondary antibodies 
Antibody Feature Dilution Reference 
goat anti-rabbit IgG-
HRP HRP 1:5000 TBS-T + 5% 

milk 
Santa Cruz (Santa 
Cruz, USA) 

goat anti-mouse IgG-
HRP HRP 1:5000 TBS-T + 1% 

BSA 
Santa Cruz (Santa 
Cruz, USA) 

HRP = horse radish peroxidase 
 
2.1.9. Buffers and solutions  

General buffers and solutions are displayed in the following listing. All buffers and 

solutions were prepared with Milli-Q®
 
water. Buffers and solutions for molecular 

biological experiments were autoclaved and sterilised using filter sterilisation units. 

Buffers and solutions not displayed in this listing are denoted with the corresponding 

methods.  

 
DNA extraction buffer (Quick prep)   Tris 200 mM 

NaCl 250 mM 
EDTA 25 mM 
SDS 0.5% 
pH 7,5 (HCl) 
 

DNA gel loading dye (6x)    Sucrose 4g 
EDTA (0,5 M) 2ml 
Bromphenol blue 25mg 
H2O to 10ml 
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DAB solution     25mg 3,3’-Diaminobenzidine (Sigma) 
      25ml H2O 
      25µl 1N HCl 
      Place the solution in a water-bath at 420C 

for 6-8 hours 
 
Ethidium bromide stock solution   Ethidium bromide 10 mg/ml H2O 

Dilute 1:40000 in agarose solution 
 
Honda buffer      Ficoll 400 5g 

Dextran T40 10g 
Sucrose 27,38g 
Tris 0,606g 
MgCl2 0,407g 
H2O to 200 ml 
pH 7,.4 
Before use add 10mM β 
Mercaptoethanol and protease inhibitor 
cocktail for plant cell 
and tissue extracts (Sigma). 

 
Lactophenol trypan blue    Lactic acid 10ml 

Glycerol 10ml 
H2O 10ml 
Phenol 10g 
Trypan blue 10mg 
Before use dilute 1:1 in ethanol. 

 
PCR reaction buffer (10x)    Tris 100mM 

KCl 500mM 
MgCl2 15mM 
Triton X-100 1 % 
pH 9,0 
Stock solution was sterilised by 
autoclaving and used for homemade Taq 
DNA polymerase. 

 
Ponceau S      Ponceau S working solution was 

Prepared by dilution of ATX Ponceau S 
concentrate (Fluka) 1:5 in H2O. 

 
SDS-PAGE: 

Resolving gel buffer (4x)   Tris 1,5M 
pH 8,.8 (HCl) 

 
Running buffer (10x)    Tris 30,28g 

Glycine 144,13g 
SDS 10g 
H2O to 1000ml 
Do not adjust pH. 
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Sample buffer (2x)    Tris 0,125M 
SDS 4% 
Glycerol 20% (v/v) 
Bromphenol blue 0,02% 
Dithiothreitol (DTT) 0,2M 
pH 6,8 

 
Stacking gel buffer (4x)   Tris 0,5M 

pH 6,8 (HCl) 
 
TAE buffer (50x)     Tris 242g 

EDTA 18,6g 
Glacial acetic acid 57,1ml 
H2O to 1000ml 
pH 8,5 

 
TBS buffer      Tris 10mM 

NaCl 150mM 
pH 7.5 (HCl) 

 
TBST buffer      Tris 10mM 

NaCl 150mM 
Tween20 0,05% 
pH 7.5 (HCl) 

 
TE buffer      Tris 10mM 

EDTA 1mM 
pH 8.0 (HCl) 

 
Western blotting: 

Transfer buffer (10x)    Tris 58,2g 
Glycine 29,3g 
SDS (10%) 12,5ml 
H2O to 1000ml 
pH 9,2 
Before use dilute 80ml 10x buffer with 
720ml H2O and add 200ml methanol. 
 
 

2.2. Methods 
 
2.2.1. Maintenance and cultivation of Arabidopsis plant material  

Arabidopsis seeds were germinated by sowing directly onto moist compost (Stender 

AG, Schermbeck, Germany) containing insecticide (10mg/l
 
Confidor WG70 (Bayer, 

Germany)) or jiffy-9 pots (Jiffy International AS, Ryomgaard, Denmark) 

supplemented with Wuxal fertilizer (Nitzsch; Kreuztal, Germany). Seeds were cold 

treated by placing sawn pots on a tray with a lid and incubating them in the dark at 
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4°C for three days. Pots were subsequently transferred to a controlled environment 

growth chamber, covered with a propagator lid and maintained under short day 

conditions (10 hour photoperiod, light intensity of approximately 200µEinsteins/m/sec, 

23°C day, 22°C night, and 65% humidity). Propagator lids were removed when seeds 

had germinated. If required for setting seed, plants were transferred to long day 

conditions (16 hour photoperiod) to allow early bolting and setting of seed. To collect 

seed, aerial tissue was enveloped with a paper bag and sealed with tape at its base 

until siliques shattered.  

 

2.2.2. Generation of Arabidopsis F1 
and F2 

progeny  

Fine tweezers and a magnifying-glass were used to emasculate an individual flower. 

To prevent self-pollination, only flowers that had a well-developed stigma but 

immature stamen were used for crossing purpose. Fresh pollen from three to four 

independent donor stamens was dabbed onto each single stigma. Mature siliques 

containing F1 
seed were harvested and allowed to dry. Approximately five F1 

seeds 

per cross were grown as described above and allowed to self pollinate. Produced F2 

seeds were collected and stored for subsequent genotyping. 

 
2.2.3. Arabidopsis seed sterilization 

For in vitro growth of Arabidopsis, seed had to be sterilised. Approximately 50 – 100 

Arabidopsis seeds were put into a mini column in a 2ml closable microcentrifuge tube. 

500µl 70% EtOH and 0,1% Tween20 were added and shaked for 2min. Tubes were 

centrifuged for 10sec and liquid was removed. 500µl 100% EtOH were added to the 

seeds and incubated for 1min. Smaples were centrifuged again for 10sec and EtOH 

was removed. Seeds were dried under sterile hoods for approximately 1 hour before 

sowing. 

 

2.2.4. Inoculation and maintenance of Hyaloperonospora parasitica 

H. parasitica isolates were maintained as mass conidiosporangia cultures on leaves of 

their genetically susceptible Arabidopsis ecotypes over a 7 day cycle (see 2.1.2.1). 

Leaf tissue from infected seedlings was harvested into a 50ml Falcon tube 7 days after 

inoculation. Conidiospores were collected by vigorously vortexing harvested leaf 

material in sterile dH2O for 15sec and after the leaf material was removed by filtering 

through miracloth (Calbiochem) the spore suspension was adjusted to a concentration 
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of 4 x 104 spores/ml dH2O using a Neubauer counting cell chamber. Plants to be 

inoculated had been grown under short day conditions as described (section 2.2.1). H. 

parasitica conidiospores were applied onto 2-week-old seedlings by spraying until 

imminent run-off using an aerosol-spray-gun. Inoculated seedlings were kept under a 

propagator lid to create a high humidity atmosphere and incubated in a growth 

chamber at 18ºC and a 10 hours light period. For long-term storage H. parasitica 

isolate stocks were kept as mass conidiosporangia cultures on plant leaves at –80ºC. 

 

2.2.5. Quantification of H. parasitica sporulation 

To determine sporulation levels, seedlings were harvested 5 - 6 days after inoculation 

in a 50ml Falcon tube and vortexed vigorously in 5 - 10ml water for 15sec. Whilst the 

conidiospores were still in suspension 12µl were removed twice and spores were 

counted under a light microscope using a Neubauer counting cell chamber. For each 

tested Arabidopsis genotype, three jiffy pots containing approximately 30 seedlings 

were infected per experiment and harvested spores from all seedlings of each pot were 

counted twice with sporulation levels expressed as the number of conidiospores per 

gram fresh weight.  

 

2.2.6. DAB staining 

To determine H2O2 accumulations in foliar tissue, leaves were excised and placed in 

15ml Sarstedt tube (Nümbrecht, Germany) and immersed in DAB solution. The 

opened tube was placed in a plastic desiccator and vaccum was applied. After 2min, 

vacuum was released and DAB-infiltrated leaves were placed in a plastic box and kept 

at high humidity in the dark. After 10-12 hours, leaves were transferred into a fixation 

solution (3:1:1 ethanol: lactic acid: glycerol) and incubated for 8 hours. Fixation 

solution was exchanged for chloral hydrate solution (2,5 g/ml H2O) for over night 

incubation. The next day, chloral hydrate solution was removed and leaves were 

stored in 70% glycerol. Samples were mounted onto glass microscope slides in 70% 

glycerol and examined using a light microscope (Axiovert 135 TV, Zeiss, Germany) 

connected to a Nikon DXM1200 Digital Camera. 
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2.2.7. Lactophenol trypan blue staining  

Lactophenol trypan blue staining was used to visualise necrotic plant tissue and P. 

parasitica mycelium (Koch and Slusarenko, 1990a). Leaf material was placed in a 

15ml Sarstedt tube (Nümbrecht, Germany) and immersed in lactophenol trypan blue. 

The tube was placed into a boiling water bath for 2min followed by destaining in 5ml 

chloral hydrate solution (2,5 g/ml H2O) for 2 hours and a second time overnight on an 

orbital shaker. After leaf material was left for several hours in 70% glycerol, samples 

were mounted onto glass microscope slides in 70% glycerol and examined using a 

light microscope (Axiovert 135 TV, Zeiss, Germany) connected to a Nikon 

DXM1200 Digital Camera. 

 

2.2.8. Quantification of cell death  

Untreated and paraquat treated leaves from similar developmental stages were stained 

with lactophenol trypan blue as described under 2.2.7. All samples have been blinded 

to guarantee unbiased analysis. Leaves were examined for dead cells using a light 

microscope (Axiovert 135 TV, Zeiss, Germany) and representative leaf areas were 

marked with square of 1mm2 using  Diskus 4.2 Software (Hilgers, Königswinter, 

Germany). Dead cells were counted within this square. In each experiment, 5 leaves 

per genotype and treatment were used for cell death quantification. 

 

2.2.9. Maintenance of P. syringae pv. tomato cultures  

Pseudomonas syringae pv. tomato strains described in 2.1.2.2 were streaked onto 

selective NYG agar plates containing rifampicin (100µg/ml) and kanamycin 

(50µg/ml) from -80° C DMSO stocks. Streaked plates were incubated at 28°C for 48 

hours before storing at 4°C and refreshed weekly. 

 

2.2.10.  P. syringae pv. tomato inoculations for time course experiments and 

growth assays 

P. syringae cultures of the denoted strains were started from bacteria grown on NYG 

agar plates. One day prior to inoculation, fresh cultures were generated on NYG agar 

plates with Rifampicin (100µg/ml) and Kanamycin (50µg/ml). Freshly grown bacteria 

were resuspended in 10mM MgCl2 and OD600 was determined. For vacuum-

infiltration the concentration of bacteria was adjusted to 1 x 107cfu/ml (OD600 = 
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0,02) in 600ml of 10mM MgCl2 containing 0,002% Silwet L-77 (Lehle seeds, USA). 

Jiffy pots with 3 plants, grown under short day conditions for five weeks, were 

routinely used for time course experiments. The evening before vacuum-infiltration, 

plants were watered and kept under a dH2O-humidified lid. Vacuum infiltration of the 

plants was accomplished by inverting the jiffy pots and carefully submerging all leaf 

material in 600ml of diluted bacterial suspension in a plastic desiccator. Vacuum was 

applied and maintained within the desiccator for 2min before being gradually released. 

Plants were removed from the desiccator and remaining non-infiltrated leaves were 

removed. The excess of bacterial solution was washed off by inverting the pots and 

gently agitating them in water. 

For spray-inoculation the concentration of bacteria was adjusted to 1 x 108cfu/ml 

(OD600 = 0,2) in 100ml of 10mM MgCl2 containing 0,02% Silwet L-77. Single pots 

with 5 plants, grown under short day conditions for five weeks, were routinely used 

for bacterial growth assays. The evening before spray-inoculation, plants were 

watered and kept under a dH2O-humidified lid. Bacteria were applied on leaves by 

spraying until imminent run-off using an aerosol-spray-gun. Day zero samples were 

taken three hour after infiltration by using a cork borer (ø 0.4cm) to excise and 

transfer 3 leaf discs from 3 independent plants to a 2ml centrifuge tube. This was 

repeated with two more batches of 3 leaf discs from 3 independent plants. The discs 

were then incubated in 300µl of sterile 10mM MgCl2 containing 0,02% Silvet at 28°C. 

Subsequently, 100µl of each sample were plated onto NYG agar (Rifampicin 

100µg/ml; Kanamycin 50µg/ml). Day three samples were taken in an identical manner 

to that of d0. For each sample a dilution series ranging between 101 and 10-5 was 

made and 25µl aliquots from each dilution were spotted sequentially onto a single 

NYG agar plate (Rifampicin 100µg/ml, Kanamycin 50µg/ml). All bacteria plates were 

incubated at 28°C for 48 hours before colony numbers were determined. 

 

2.2.11.  Fresh weight analysis of soil-grown plants 

Plants were grown for 4 weeks under conditions described in section 2.2.1. After 4 

weeks, 3 samples of 3 plants each were weighed and the weight of a single plant was 

estimated. Fresh weight analysis after paraquat treatment was performed 37 days after 

germination the same way. 
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2.2.12.  Sterile growth  

Magenta boxes (Sigma-Aldrich Deisenhofen, Germany), were autoclaved. Under 

laminar flow hood 50ml of autoclaved MS solid medium was poured in all Magentas 

and the medium was let to solidify. Upon solidification, sterilized Arabidopsis seeds 

were sown on the medium surface and the Magentas were sealed. For stratification the 

Magentas were kept for two days at 4°C in the dark and then transferred in a short day 

(8 hours light/day) growth chamber. After four weeks Magentas were open and 

samples taken for fresh weight analysis. 

 

2.2.13.  Flg22 growth assay 

Seeds were sterilized as described above and sown on MS plates without antibiotics. 

For stratification plates were incubated for two days at 4°C in the dark. Afterwards 

they were transferred in a growth chamber with standard growth condition (12 h/day 

light). After 7 days, seedlings were transferred in 24 well microtiter plates (Nunc, 

Denmark) containing in each well 500µl of autoclaved MS liquid medium without or 

with flg22 (10nM, 100nM or 1µM). Plates were closed and their lids sealed with 

hypoallergenic non-woven tape (Leukopor, Germany). Plates were then placed on 

shakers in growth chamber with standard growth conditions (12 hours/day light). 

After 7 days, 24 samples of 2 plants each were weighed and the weight of a single 

plant was estimated. 

 

2.2.14.  Oxidative stress analysis 

Methyl viologen (paraquat) (Sigma) was applied as previously described by Get et. al. 

(2007). Plants were grown for three weeks on jiffy-9 pots as described above. After 3 

weeks, paraquat was applied in a concentration of 5µM in dH2O containing 0,02% 

Silwet L-77 onto leaves using a hand spray bottle. Application was performed three 

times in an interval of 4 days. 4 days after the last paraquat application, plant tissue 

was harvested and prepared for particular analysis.  

 

2.2.15.  Biochemical methods 

2.2.15.1. Arabidopsis total protein extraction for immunoblot analysis 

Total protein extracts were prepared from 3- to 5-week-old plant materials. Liquid 

nitrogen frozen samples were homogenized 2 x 15sec to a fine powder using a Mini-
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Bead-Beater-8TM (Biospec Products) and 1,2mm stainless steel beads (Roth) in 2ml 

centrifuge tubes. After the first 15sec of homogenisation samples were transferred 

back to liquid nitrogen and the procedure was repeated. 150µl of 2x SDS-PAGE 

sample buffer was added to 50mg sample on ice. Subsequently, samples were boiled 

for 7 min while shaking at 700rpm in an appropriate heating block. Samples were 

stored at -20°C if not directly loaded onto SDSPAGE gels. 

 

2.2.15.2. Protein purification using StrepII affinity purification 

StrepII affinity protein purification was performed according to the protocol described 

by Witte et al., with modifications described below (Witte et al., 2004). For one 

purification, 2 g of Arabidopsis leaf material was ground in liquid nitrogen and 

thawed in 1ml StrepII extraction buffer listed below. The slurry (about 1,5ml) was 

placed in 2x 2ml micro centrifuge tube and then centrifuged for 10min at 4ºC 

(14000rpm). The supernatant was ultra centrifuged for 15min at 4ºC (100000rpm). 

After centrifugation, supernatants of one sample were combined and transferred to a 

new micro centrifuge tube, sampled, and 300µl slurry of StrepTactin Sepharose (IBA 

GmbH, Göttingen, Germany) was added. The Sepharose matrix is based on Sepharose 

4FF with a bead size of 45–165µm. All samples taken for electrophoresis analysis 

were mixed with a 2 x SDS-loading buffer and heated for 5 min to 90ºC prior to 

loading. Binding was performed by incubation in an end-over-end rotation wheel for 

60min at 4ºC. The slurry was transferred into a micro spin column (BioRad 732-6204, 

Hercules, CA) and the flow-through collected and sampled (Flow through). The resin 

was washed twice with 1ml and four times with 0,5ml StrepII washing buffer. For 

elution, 80µl of Elution buffer representing the void volume of the system were 

carefully applied to the resin but not recovered. Four times 100µl Elution buffer were 

passed through and collected in two pools of 200µl. From each pool, 20µl were 

sampled for SDS-PAGE analysis. The rest of eluates were pooled and concentrated 

using Vivaspin500 (VIVASCIENCE, Hannover, Germany) up to 20µl. The 

concentrated eluates were mixed with a 2 x SDS-loading buffer and heated for 5 min 

to 90ºC prior to SDS-PAGE and immunoblot analysis. 
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Table 2.7: StrepII purification buffers 

StrepII extraction buffer   StrepII washing buffer   StrepII elution buffer 
Tris-HCla 100mM  Tris-HCl  50mM  Tris-HCl  10mM 
EDTA 5mM  EDTA 0,5mM  NaCl 150mM
NaCl 100mM  NaCl 100mM  DTT 2mM 
DTT 10mM  DTT 2mM  Triton 0,05% 
ABESFb 0,5mM     Desthiobiotine 10mM 
Aprotinin 5µg/ml       
Leupeptin 5µg/ml       
AVIDINE 100µg/ml       
Pic 1 : 100       
Triton X-
100 0,50%       

a Tris-HCl: pH8 

b AEBSF: 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride 

c Proteinase Inhibitor cocktail (Sigma p9599) 

 

2.2.15.3. Nuclear fractionation for immunoblot analysis 

Nuclear fractionations were performed according to the protocol described by 

Kinkema et al. (2000), which is based on that described by Xia et al. (1997), with 

minor modifications: 1,5g fresh weight of unchallenged leaf tissues grown under short 

day conditions (as described in 2.2.1) were homogenised in 3ml Honda buffer using a 

pre-cooled mortar and pestle and then filtered through a 62µm (pore size) nylon mesh. 

Triton X-100 (10% working solution) was added to a final concentration of 0,5% and 

the solution was slowly mixed by swirling. The mixture was incubated on ice for 

15min. The extract was then centrifuged at 1500 g for 5min. An aliquot of the nuclei-

depleted fraction was saved and the pellet washed by gentle resuspension in 2.5ml 

Honda buffer containing 0.1% Triton X-100. The sample was centrifuged again at 

1500 g for 5min. The pellet was resuspended in 2.5ml Honda buffer and 620µl ml 

aliquots were transferred to 1.5 ml microcentrifuge tubes. The preparations were 

centrifuged at 100 g for 5 min to pellet starch and cell debris. The supernatants were 

transferred to new microcentrifuge tubes and centrifuged at 2000 g for 5 min to pellet 

the nuclei. Nuclear pellets were resuspended in 200µl 2 x SDS-PAGE sample buffer, 

boiled for 10min, and pooled. The nuclear and nuclei-depleted fractions were run on 

10% and 15% SDS-PAGE gels. α-HSC70 and α- histone H3 antibodies were used as 

cytosolic and nuclear markers, respectively.  
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2.2.15.4. Isolation of microsomal membranes 

To isolate microsomal membranes 0,5g of 4-week-old leaves grown in short day 

conditions (see 2.2.1) were homogenised in liquid nitrogen. The ground tissue was 

thawed under further homogenisation in 1 ml extraction buffer (100mM Tris-HCl pH 

7,5, 12% sucrose, 1 mM EDTA, 5 mM DTT and 1x protease inhibitor cocktail for 

plant cell and tissue extracts (Sigma)). The homogenate was passes through two layers 

of Miracloth (Calbiochem). The filtrate was transferred to a microcentrifuge tube and 

centrifuged at 2000 g and 4°C for 15min in a bench top centrifuge to remove cell 

debris and nuclei. 100µl of the supernatant were kept as a crude extract fraction whilst 

600µl of the supernatant were transferred to an ultracentrifugation tube (Beckmann) 

and centrifuged for 1 hour at 100.000 g and 4°C (Optima™ MAX-E ultracentrifuge, 

Beckmann Coulter, USA). 600µl supernatant were kept as a soluble fraction and the 

pellet was washed with extraction buffer. After washing, the pellet was resuspended 

in 600µl of extraction buffer containing 1% (v/v) Triton X-100 using an ultrasonic 

bath. One volume of 2x SDS-PAGE sample buffer was added to the all fractions and 

samples were boiled for 5min to denature proteins. Samples were stored at -20° C. 

 

2.2.15.5. Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE)  

Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out 

using the Mini-PROREAN®
 
3 system (BioRad) and discontinuous polyacrylamide 

(PAA) gels. Gels were made fresh on the day of use according to the manufacturer 

instructions. Resolving gels were poured between to glass plates and overlaid with 

500µl isopropanol. After gels were polymerised for 30 – 45min the alcohol overlay 

was removed and the gel surface was rinsed with dH2O. Excess water was removed 

with filter paper. A stacking gel was poured onto the top of the resolving gel, a comb 

was inserted and the gel was allowed to polymerise for 30 - 45min. In this study, 10% 

and 15% resolving gels were used, overlaid by 4 % stacking gels. Gels were 0,75 mm 

in thickness.  

If protein samples were not directly extracted in 2x SDS-PAGE sample buffer 

proteins were denatured by adding 1 volume of 2x SDS-PAGE sample buffer to the 

protein sample followed by boiling for 5min.  

After removing the combs under running water, each PAA gel was placed into the 

electrophoresis tank and submerged in 1x running buffer. A pre-stained molecular 

weight marker (Precision plus protein standard dual colour, BioRad) and denatured 
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protein samples were loaded onto the gel and run at 80 - 100V (stacking gel) and 100 

– 150V (resolving gel) until the marker line suggested the samples had resolved 

sufficiently.  

 

2.2.15.6. Immunoblot analysis  

Proteins that had been resolved on acrylamide gels were transferred to Hybond™-

ECL™ nitrocellulose membrane (Amersham Biosciences) after gels were released 

from the glass plates and stacking gels were removed with a scalpel. PAA gels and 

membranes were  

pre-equilibrated in 1x transfer buffers for 10min on a rotary shaker and the blotting 

apparatus (Mini Trans-Blot®
 

Cell, BioRad) was assembled according to the 

manufacturer instructions. Transfer was carried out at 100V for 90-120min. The 

transfer cassette was dismantled and membranes were checked for equal loading by 

staining with Ponceau S for 5min before rinsing in copious volumes of deionised 

water. Ponceau S stained membranes were scanned and thereafter washed for 5min in 

TBS-T before membranes were blocked for 1 hour at room temperature in TBS-T 

containing 5% blotting grade milk powder (Roth). The blocking solution was 

removed and membranes were washed briefly with TBS-T. Incubation with primary 

antibodies was carried out overnight by slowly shaking on a rotary shaker at 4°C in 

the conditions shown in Table 2.5. Next morning the primary antibody solution was 

removed and membranes were washed 3 x 15min with TBS-T at room temperature on 

a rotary shaker. Primary antibody-antigen conjugates were detected using a 

horseradish peroxidase (HRP)-conjugated goat anti-rabbit secondary antibody. 

Membranes were incubated in the secondary antibody solution for 1 hour at room 

temperature by slowly rotating. The antibody solution was removed and membranes 

were washed as described above. After being washed as described above, detection 

immediately followed. Detection was performed by chemiluminescence using the 

SuperSignal®
 
West Pico Chemimuminescent kit or a 3:1 mixture of the SuperSignal®

 

West Pico Chemimuminescent- and SuperSignal® West Femto Maximum 

Sensitivity-kits (Pierce) according to the manufacturer instructions. Luminescence 

was detected by exposing the membrane to photographic film (BioMax light film, 

Kodak).  
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2.2.15.7. In-gel MAP kinase assay 

Seeds were sterilized as described above and sown on MS plates without antibiotics. 

For stratification plates were incubated for two days at 4°C in the dark. Afterwards 

they were transferred in a growth chamber with standard growth condition (12 

hours/day light). After 7 days, seedlings were transferred in 24 well microtiter plates 

(Nunc, Denmark) containing in each well 500µl of autoclaved MS liquid medium and 

grown for 10 more days. After 10 days, MS liquid medium was filled up to 500µl 

again and after 2 hours flg22 was added to a final concentration of 100nM. After 0, 5, 

10 and 30minutes aerial tissue was transferred to 2ml eppendorf microcentrifuge tubes 

and immediately frozen in liquid nitrogen. Liquid nitrogen frozen samples were 

homogenized 2 x 15sec to a fine powder using a Mini-Bead-Beater-8TM (Biospec 

Products) and 1,2mm stainless steel beads (Roth). 100µl protein extraction buffer 

(Buffer E) (buffers listed below) was added per 50mg fresh weight. Samples were 

centrifuged at 14000rpm for 20min at 4°C. Supernatant was transferred to new eppi. 

20% of sample was mixed with an equal volume of 2x SDS-PAGE sample buffer and 

boiled for 8min. Sample was then separated on an SDS-PAGE gel containing myelin 

basic protein (5mg ml-1). SDS-page gels were then washed with several buffers to 

renaturate the separated proteins: 

Buffer F 3x30min at room temperature 

Buffer G 2x30min at 4°C , then over night at 4°C 

Buffer H 1x30min at RT 

After renaturation, gels were incubated with Buffer H containing 2µM ATP and 5µCi 

radioactive γ-32P-ATP for 90min. Gels were washed 6x30min with 1% phosphoric 

acid and rinsed with dH2O. Kinase activity was visualized by Typhoon phosphor 

imager. 
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Table 2.6 In-gel MAP Kinase Buffers 
Buffer contents  Buffer E  Buffer F  Buffer G  Buffer H 
1M Tris-HCl ph 7,5 750µl 7,5ml 7,5ml 2,5ml 
0,5M EGTA 150µl / / 20µl 
0,5M EDTA 150µl / / / 
1M DTT 30µl 150µl 300µl 100µl 
Protease inhibitora 4µl/sample / / / 
1M NaFa 150µl 1,5ml 1,5ml  
1M Na3VO4

a 75µl 30µl 30µl 10µl 
1M β-
glycerophosphatea 750µl / / / 
BSA / 150g / / 
TritonX / 300µl / / 
3M MgCl2 / / / 400µl 

Water 12855µl 
fill up to 
300ml 

fill up to 
300ml 

fill up to 
100ml 

a chemicals derived from Sigma 

 

2.2.15.8. Ethylene Measurements 

Plants were grown 4 weeks as described above. After 4 weeks, samples were taken 

using a cork borer (ø 0,6cm) to excise 24 leaf discs from at least 12 independent 

plants. Leaf discs were floated over night on dH2O before transferring 3x8 leaf discs 

per genotype and treatment into hermetic vials containing either 1ml dH2O or 1ml 

dH2O with 100nM flg22. Vials were sealed with rubber septa and incubated on a 

shaker for 4 hours at room temperature. After 4 hours ethylene production was 

measured by gas chromatography (GC). The analysis was performed on an Agilent 

6890 GC connected to an Agilent 5975N mass selective detector (MSD, Agilent, 

Santa Clara, USA) operating in split mode with a ratio of 10 to 1. 100µl of the gas 

phase were taken from the hermetically closed vial with a gas-tight syringe and 

injected in the GC. Ethylene was separated on an Agilent GS-GasPro column (60m, ø 

0,32mm) at 90°C and 1.4ml/min. The MSD was run in the ”selected ion monitoring” 

(SIM) mode, measuring Ethylene fragment ions of 24,1; 25,1; 26,1 and 27,1 amu. 

Additionally to the fragment masses, the identification of the ethylene peak was based 

on the retention time of an ethylene standard (Fluka, Deisenhofen, Germany) run 

under same conditions and the ratio of ion abundances. To relatively quantify ethylene 

the area sum of all four ion counts was integrated using Chemstation software 

(Agilent). For more precise analysis, integrals of the void volume and the ethylene 

peaks were calculated and their ratio to each other was determined. For each genotype 
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and treatment, average was calculated from three replicates. The obtained value was 

then used to express relative ethylene quantities in the different samples. 

 

2.2.16.  Antibody production and purification 

2.2.16.1. Protein expression in E. coli 

The pGEX-2TM-GST::cNUDT7::his plasmid (M. Bartsch and J. Parker, unpublished) 

was expressed in Escherichia coli strain BL21 (DE3) (pLysS). The E. coli clones were 

cultured in 5ml LB medium overnight at 37ºC. 500ml of new LB medium containing 

appropriate antibiotics were re-inoculated with 2ml of those cultures and incubated at 

37ºC until the bacterial growth reached an OD600 0.9. By adding 0,5mM IPTG 

protein expression was induced. Cultures were grown for 3 more hours at 37ºC. 

Bacterial cells were pelleted by centrifugation at 4000rpm at 4ºC for 20min. The 

pellets were washed 3 times with 30ml H2O. After freezing pellet at –20ºC overnight, 

total protein was extracted by incubation with native lysis buffer (50mM NaH2PO4, 

300mM NaCl, 10mM Imidazol, 10% glycerol, 1mg/ml lysozyme, 10µg/ml DNAse I) 

and subsequent sonication. Pellet was spun down at 14000rpm for 15min at 4°C and 

supernatant was removed. The pellet was then dissolved and incubated over night in 

denaturating lysis buffer (50mM Tris pH8, 8M Urea, 250mM NaCl, 10mM Imidazole, 

10µM β-mercaptoethanol). Pellet was spun down again and supernatant was 

processed with Nickel-NTA affinity resin (Quiagen, Hilden, Germany) according to 

the manufactures instruction to purify NUDT7 protein. Immunization of rabbits was 

performed at BioGenes (Berlin) following their standard methods. 

 

2.2.16.2. Antibody purification 

Purified NUDT7 protein was fractionated on SDS-PAGE and transferred onto a 

PVDF membrane. The blotted proteins were visualized by Ponceau S. A membrane 

region containing a band corresponding to the size of GST::cNUDT7::his was cut, 

sliced into small pieces and collected in 2ml eppendorf tube. After rinsing membrane 

pieces with TBS buffer, membranes were incubated with TBS containing 1% BSA 

and 0.05% Tween20 for 2.5 hours at 4ºC. After removing all buffers from the tube, 

400µl of antiserum with 1600µl of TBS were added into the tube, incubated at 4ºC for 

4 hours. The membrane pieces were washed 4 times with 2ml of TBS for 5 min at 4ºC. 

The bound antibodies were then eluted with 450µl of 0,1M Glycine, 0,5M NaCl, 

0,05% Tween20, pH2,6 (with HCl) for 1,5 min at 4ºC. The elution buffer was 
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collected in a new tube containing 50µl of 1M Tris-HCl pH8,0. Elution was repeated 

and 2 x 500µl of purified antibody were pooled. 

 

2.2.17.  Molecular biological methods 

2.2.17.1. Isolation of genomic DNA from Arabidopsis (Quick prep for PCR)  

One leaf of a plant was put into a 1,5 ml microcentrifuge tube was closed and 400 µl 

of DNA extraction buffer were added. A micropestle was used to grind the tissue in 

the tube until the tissue was well mashed. The solution was centrifuged at maximum 

speed for 5min in a bench top microcentrifuge and 300µl supernatant were transferred 

to a fresh tube. One volume of isopropanol was added to precipitate DNA and 

centrifuged at maximum speed for 5 minutes in a bench top microcentrifuge. The 

supernatant was discarded carefully. The pellet was washed with 70% ethanol and 

dried. Finally the pellet was dissolved in 100µl 10mM Tris-HCl pH 8,0 and 1µl of the 

DNA solution was used for a 20µl PCR reaction mixture. The aliquots were stored at -

20°C. 

 

2.2.17.2. Isolation of total RNA from Arabidopsis  

Total RNA was prepared from 3- to 6-week-old plant materials. Liquid nitrogen 

frozen samples (approximately 100mg) were homogenized 2 x 15sec to a fine powder 

using a Mini-Bead-Beater-8™
 
(Biospec Products) and 1.2mm stainless steel beads 

(Roth) in 2ml centrifuge tubes. After the first 15sec of homogenisation samples were 

transferred back to liquid nitrogen and the procedure was repeated. 1ml of TRI®
 

Reagent (Sigma) was added and samples were homogenised by vortexing for 1min. 

Samples were centrifuged for 10min. at 4° C at 12000 g and supernatants incubated 

for 5min at room temperature to dissociate nucleoprotein complexes. 0,2ml of 

chloroform was added and samples were shaken vigorously for 15sec. After 

incubation for 3min at room temperature samples were centrifuged for 15min at 

12000 g and 4°C. 0,5ml of the upper aqueous, RNA containing phase were transferred 

to a new microcentrifuge tube and RNA was precipitated by adding 0,5 volumes of 

isopropanol and incubation for 10min at room temperature. Subsequently, samples 

were centrifuged for 10min at 12000 g and 4°C. The supernatant was removed and the 

pellet was washed by vortexing in 1ml of 70% ethanol. Samples were again 

centrifuged for 10min at 12000 g and 4°C, pellets were air dried for 10min and 
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dissolved in 20µl H2O. Samples were incubated for 5min at 55°C and then 

immediately stored at -80°C.  

 

2.2.17.3. Reverse transcription-polymerase chain reaction (RT-PCR)  

RT-PCR was carried out in two steps. SuperScript™ II RNase H- Reverse 

Transcriptase (Invitrogen) was used for first strand cDNA synthesis by combining 1 - 

1.5µg template total RNA, 1µl oligo dT18 V (0.5µg/µl, V standing for an variable 

nucleotide), 5µl dNTP mix (each dNTP 2.5mM) in a volume of 13,5µl (deficit made 

up with H2O). The sample was incubated at 65°C for 10min to destroy secondary 

structures before cooling on ice for one minute. Subsequently the reaction was filled 

up to a total volume of 20µl by adding 4µl of 5x reaction buffer (supplied with the 

enzyme), 2µl of 0.1M DTT and 0.5µl reverse transcriptase. The reaction was 

incubated at 42°C for 60min before the enzyme was heat inactivated at 70°C for 

10min. For subsequent normal PCR, 1µl of the above RT-reaction was used as cDNA 

template. 

 

2.2.17.4. Polymerase chain reaction (PCR)  

Standard PCR reactions were performed using home made Taq DNA polymerase. All 

PCRs were carried out using a PTC-225 Peltier thermal cycler (MJ Research). A 

typical PCR reaction mix and thermal profile is shown below. 

 
Table 2.7 PCR reaction mix (20µl total volume) 
Component Volume 
Template DNA 0,1 - 20ng 
10x PCR reaction buffer 2µl 
dNTP mix (2,5 mM each: dATP, dCTP, dGTP, dTTP) 2µl 
Forward primer (10µM) 1µl 
Reverse primer (10µM) 1µl 
Taq DNA polymerase (4U/µl) 0,5µl 
Nuclease free water to 20µl total volume 

 
Table 2.8 Thermal profile 
Stage Temperature (°C) Time period No. of cycle 
Initial denaturation 95 3min 1x 
Denaturation 95 30sec  
Annealing 50-60 30sec 30-40x 
Extension 72 1min per kb  
Final extension 72 3min 1x 
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2.2.17.5. Quantitative real time (qRT) PCR 

qRT PCR reactions were performed using iQ™ SYBR® Green Supermix containing 

100mM KCL, 6mM MgCl2, 40mM Tris-HCl pH 8,4, 0,4mM of each dNTP, SYBR 

Green I and iTaq  DNA polymerase (50 U/ml) (BioRad, Hercules, USA). All qRT 

PCRs were carried out using iQ™5 multicolor real-time PCR detection system 

(BioRad, Hercules, USA). Data were analysed with iQ™5 Optical System Software 

by the comparative ∆∆CT 
method. A typical qRT PCR reaction mix and thermal 

profile is shown below. 

 
Table 2.9 qRT PCR reaction mix 
Component Volume 
Template cDNA 0,1 - 20ng 
Forward primer (10µM) 1µl 
Reverse primer (10µM) 1µl 
iQ™ SYBR® Green Supermix 12,5µl 
Nuclease free water to 25µl total volume 

 
Table 2.10 Thermal profile 
Stage Temperature (°C) Time period No. of cycle 
Initial denaturation 95 3min 1x 
Denaturation 95 30sec  
Annealing 60 30sec 40x 
Extension 72 30sec  

 
2.2.17.6. Agarose gel electrophoresis of DNA  

DNA fragments were separated by agarose gel electrophoresis in gels consisting of 1–

3% (w/v) SeaKem ®
 
LE agarose (Cambrex, USA) in TAE buffer. Agarose was 

dissolved in TAE buffer by heating in a microwave. Molten agarose was cooled to 

50°C before 2,5µl of ethidium bromide solution (10 mg/ml) was added. The agarose 

was pored and allowed to solidify before being placed in TAE in an electrophoresis 

tank. DNA samples were loaded onto an agarose gel after addition of 2µl 6x DNA 

loading buffer to 10µl PCR-reaction. Separated DNA fragments were visualised by 

placing the gel on a 312nm UV transilluminator and photographed. 

 

2.2.18.  Microarray analysis 

2.2.18.1. Sample preparation 

Plants of the Col-0, nudt7-1, nudt7-1/sid2-1, nudt7-1/eds1 and nudt7-1/sid2-1/eds1-2 

genotypes were grown on soil for 4 weeks as described under 2.2.1.. Leaf material 
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was harvested exactly after 28 days of growth. This was performed 3 times to obtain 3 

independent replicates for microarray analysis. To reduce transcriptional variations 

due to intrinsic circadian programs in Arabidopsis, leaf material of all three 

independent replicates was harvested 6 hours after illumination of the growth 

chambers. For each replicate, leaf material from the same developmental stage of 

different plants per genotype was pooled and RNA was extracted according to the 

protocol described under 2.2.16.2. RNA quality and concentration was measured in a 

spectrophotometer according to the manufacturer's instructions (BioPhotometer, 

Eppendorf AG, Hamburg, Germany). The absorption ratio 260/280 of all 15 samples 

was between 1,7 – 1,8 indicating that good quality RNA was isolated (low protein 

contamination). Complementary RNA labelling, hybridisation and data collection 

from the hybridised GeneChip were performed by the Integrated Functional Genomic 

service unit of the Interdisciplinary Center for Clinical Research (IZKF) in Münster 

(Germany), according to the standard manufacturer's protocol (Affymetrix GeneChip 

technical analysis manual). In brief, total RNA was reverse transcribed using 

SuperScript™ II RNase H- Reverse Transcriptase (Invitrogen™) and T7(dT)24 
primer. 

The first strand cDNA was used for double-strand cDNA synthesis. Purified double-

strand cDNA was used to generate biotin-labelled cRNA by in vitro transcription 

reactions. cRNA was fragmented and used for hybridisation to GeneChip Arabidopsis 

ATH1 Genome Array (Affymetrix, Santa Clara, USA). After the washing and staining 

procedure the arrays were scanned in an Agilent GeneArray Scanner (Agilent, Santa 

Clara, USA). 

 
2.2.18.2. Data analysis 

GeneSpring GX software version 10.0 (Agilent, Santa Clara, USA) was used for 

analysis of the raw data. Raw data of all chips were processed from CEL-files and 

summarized using GCRMA algorithm. This procedure included background 

correction and normalization of raw data of each chip to the median of all samples. 

Normalization per gene was also performed to median of all samples. Replicate 

structure of the experiment was then defined by grouping the three independent 

samples per each genotype. Normalized signal intensity values of each gene were 

averaged across the three replicates per genotype. Before filtering data and applying 

statistical analysis, quality of all chips was assessed by quality control measures. 

Efficiency of the labelling reaction and hybridization was controlled by comparing 
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normalized signal intensity values and 3’/5’ hybridization ratios of two housekeeping 

genes (GAPDH and UBQ11) and prokaryotic control samples (BIOB, BIOC, CREX 

and BIODN).  Raw signal intensity values of all entities were then filtered to remove 

low and saturated signal values, respectively. Percentile cut-offs were set at 20 and 

100. All entities were retained in which at least 1 out of 15 samples had values within 

this range.  

Statistical analysis was performed by using ANOVA test. P-value computation was 

done asymptotically and Benjamini Hochberg FDR was chosen as correction method 

for multiple testing correction. Only genes were considered that were differentially 

expressed in all samples compared to each other with a significance of p < 0,05. This 

test listed all genes that were significantly differentially expressed in any of the 

comparisons. Applying a post-hoc Tuckey test evaluated whether differences between 

any two pairs of means are significant. This test revealed that e.g. Gene A is 

significantly different expressed in the comparison Col-0 vs. nudt7-1 but not in a 

comparison nudt7-1 vs. nudt7-1/sid2-1. Lists were generated containing the 

significantly differentially expressed genes for each possible comparison. These lists 

were then subjected to fold change analysis. All genes were considered whose 

expression changed at least two fold. Further analysis was performed as described in 

results section (3.4). 
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3. Results 
 

3.1. Generation of NUDT7 antibody and transgenic lines over 

expressing NUDT7 
 

3.1.1. Generation of antisera recognizing NUDT7 protein 

In order to perform molecular analyses of NUDT7 protein, antisera against 

recombinant NUDT7 protein were generated and α–NUDT7 antibody was purified 

and characterized. The pGEX-2TM-GW Escherichia coli expression vector was used 

to express recombinant NUDT7 protein fused to N-terminal GST and C-terminal 

histidine affinity purification tags (M. Bartsch and J. Parker, unpublished data). 

Purified recombinant GST-NUDT7-his protein was used by the company BioGenes 

(Berlin) to boost two rabbits (rabbit 8556 and rabbit 8557) four times. The resulting 

antiserum from rabbit 8556 was cleaned using recombinant GST-NUDT7-his protein 

immobilized onto a PDVF membrane and specific antibody against GST-NUDT7-his 

was purified. The obtained α–NUDT7 antibody specifically detected NUDT7 protein 

in total protein extracts from Arabidopsis leaves (Figure 3.1A). NUDT7 protein was 

detected at the predicted size of 32 KDa (Kilo Dalton) in total protein extracts from 

wildtype (WT) plants (accession Columbia-0, hereafter Col-0) but not in the nudt7-1 

mutant. NUDT7 antibody purified from rabbit 8556 antiserum was used throughout 

this work. 

 

3.1.2. Complementation analysis of epitope-tagged NUDT7 over expresser 

lines 

In order to characterize further the NUDT7 protein and its potential in vivo function, 

NUDT7 over expresser (OE) lines were generated (Bartsch and Parker, unpublished). 

Arabidopsis nudt7-1 null mutant plants (accession Col-0) were transformed with 

constructs for constitutive expression of an AtNUDT7 StrepII affinity tag fusion 

protein under the CaMV 35S promoter (p35S::NUDT7-StrepII). Three independent, 

homozygous transgenic single insertion lines were selected and were characterized for 

complementation of the nudt7-1 phenotype. The NUDT7 OE lines 4 and 7 

complemented nudt7-1 growth to WT levels while NUDT7 OE line 10 exhibited 

intermediate growth between WT and nudt7-1 (Figure 3.2A and 3.2C). 
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Figure 3.1: Specificity of α-NUDT7 antibody. 

α-NUDT7 antibody specifically recognizes NUDT7 protein. NUDT7 antibody was purified from 

antiserum of immunised rabbit 8556. The antiserum was incubated with recombinant GST-NUDT7-his 

bound to a PVDF-western blotting membrane. Antibody that bound to epitopes of GST-NUDT7-his 

was then eluated and tested against total protein extracts from leaf material in a 1:500 dilution in TBS-

T buffer containing 5% milk. Col-0 infected = Col-0 leaf tissue 24hpi Pst avrRPM1; NUDT7-GST = 

NUDT7 protein affinity tagged with GST and expressed in vitro in E. coli 

 

Western blot analysis revealed that all OE lines expressed NUDT7 protein to much 

higher levels than WT (Figure 3.2C).  

Of the three OE lines, OE4 expressed NUDT7 at the highest level whereas OE line 7 

and OE line 10 had similar levels of NUDT7 protein. To investigate the basal 

resistance of the NUDT7 OE lines, I inoculated plants with virulent H. parasitica 

isolate NOCO2 that is recognized by RPP5 in the Landsberg (Ler-0) background but 

not in Col-0 (Parker et al., 1996). The enhanced basal resistance phenotype of nudt7-1 

plants towards H. parasitica NOCO2 was reverted to WT levels of basal resistance in 

OE4 (Figure 3.2D). NUDT7 OE line 7 and OE10 failed to complement fully since 

both lines exhibited similar levels of enhanced basal resistance as nudt7-1. Based on 

the high protein levels and the failure to fully complement the basal resistance 

phenotype of nudt7-1 plants, I concluded that over expressed NUDT7-StrepII protein 

is only partially functional. 

 



Results  49 

 
 
Figure 3.2: Complementation studies of NUDT7 over expresser lines. 

(A) NUDT7 OE lines vary in complementing nudt7-1 growth phenotype. Pictures are representative for 

4-week-old soil-grown plants. 

(B) Fresh weight analysis of 4-week-old soil-grown plants. Fresh weight of 12 plants per genotype was 

measured and average was calculated. Error bars represent standard deviation (SD). Experiment was 

repeated at least three times with similar results. 

(C) NUDT7 OE accumulate more NUDT7 protein compared to wt. Total protein was extracted from 

leaves of 4-week-old plants and analysed with α-NUDT7 antibody. Ponceau staining served as loading 

control. 

(D) NUDT7 OE lines exhibit different degrees of basal resistance. 3-week old soil-grown plants were 

inoculated with H. parasitica NOCO2 with 4 x 104 spores/ml. Sporulation was analysed 6 days post 

inoculation with a Neubauer counting chamber. Experiment was repeated at least three times with 

similar results. 

 

This is further supported by the fact that NUDT7 OE10 also fails to complement the 

nudt7-1 growth phenotype. It is likely that the strepII affinity tag interfered with 

NUDT7 protein function. Although the strepII tag is small in size (8 amino acids) 

(Witte et al., 2004), it might affect the folding of NUDT7 and therefore also affect 

protein function. However, there were no untagged NUDT7 OE lines generated 

making it difficult to prove this conclusion. During the progress of this work, the 

scientific focus changed wherefore no further NUDT7 fusion proteins were generated 

and analyzed. 
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3.2. Analysis of NUDT7 transcript and protein expression 
 

3.2.1. Co-regulation of EDS1 and NUDT7 in response to stress 

Previous work showed that the phenotype exhibited by the nudt7-1 mutant is fully 

EDS1-dependent and that NUDT7 negatively regulates EDS1-dependent signalling 

(Bartsch et al., 2006). Both genes are constitutively expressed in all tissues in 

Arabidopsis (Wiermer, 2005; Jambunathan and Mahalingam, 2006) and required to 

mediate abiotic and biotic stress responses (Wiermer et al., 2005; Jambunathan and 

Mahalingam, 2006; Ge et al., 2007; Adams-Philipps et al., 2008; Mühlenbock et al., 

2008).  

These data prompted me to investigate whether there is a co-regulation of EDS1 and 

NUDT7 during plant development and in response to stress. Analysis of the 

expression profile of EDS1 and NUDT7 using the ATTED-II co-expression database 

(Obayashi et al., 2008) revealed a high co-expression of both genes after induction of 

several stresses (abiotic, biotic and chemotoxic) whereas the co-expression profile at 

different developmental stages was not tightly linked (Figure 3.3A). Calculating the 

Pearson´s correlation coefficient resulted in a correlation coefficient of 0,66 for the 

co-expression of EDS1 and NUDT7. This result points to a tight linkage of the 

expression of EDS1 and NUDT7 in response to stress. I concluded that EDS1 and 

NUDT7 are both required for various stress responses indicated by their co-expression 

profile. 

These data and work from Bartsch et al. (2006) suggested a close relationship of 

NUDT7 and EDS1 in response to stress. However, both studies could not provide 

evidence whether NUDT7 has a direct or indirect negative regulatory effect on EDS1 

and whether this occurs at the transcriptional or post-translational level. 

In order to investigate if the regulatory effect of NUDT7 on EDS1 is of direct or 

indirect nature, I determined transcript and protein levels of EDS1 in the nudt7-1 

mutant and vice versa in healthy, four-week-old soil-grown plants. The eds1-2 

mutation was generated by fast neutron mutagenesis of Landsberg-0 (Ler-0) seedlings 

(Aarts et al., 1998) and introgressed in the Col-0 background (Bartsch et al., 2006). In 

Col-0 nudt7-1 plants, the NUDT7 gene was disrupted by T-DNA (Transfer-DNA) 

insertion (Bartsch et al., 2006). Both mutants are null mRNA mutants (Aarts et al., 

1998; Bartsch et al., 2006). 
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Figure 3.3: Scatter plot graphs displaying the co-expression of EDS1 and NUDT7 and 

determination of EDS1 and NUDT7 transcript and protein levels. 

(A) Co-expression study of EDS1 and NUDT7 using the Co-expression Viewer tool from the ATTED-

II database (http://atted.jp/). Left panel shows the co-expression of both genes at different 

developmental stages. Right panel displays the expression of EDS1 and NUDT7 after induction of 

various stresses (abiotic, biotic and chemotoxic stress). 

(B) Quantitative real-time PCR to determine transcript levels of NUDT7 and EDS1 in Col-0 wt, nudt7-

1 and eds1-2. Total RNA was extracted from 4-week-old soil-grown plants and ubiquitin was used for 

normalization. Error bars represent standard error (n = 3). Experiment was repeated at least three times 

with similar results. 

(C) Total protein extracts of indicated genotypes of 4-week-old soil-grown plants. Samples were 

probed with NUDT7 and EDS1 antibodies to determine protein levels. Note that NUDT7 Western blot 

is overexposed for Col-0 sample to be able to detect signal in eds1-2 sample. Similar results were 

observed in at least three independent experiments. 
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NUDT7 and EDS1 transcripts were expressed at a similar level in WT (Figure 3.3B). 

In the nudt7-1 mutant, EDS1 transcripts were upregulated. By contrast, NUDT7 

transcript levels were only slightly elevated in eds1-2 compared to Col-0. Elevated 

EDS1 transcript levels in nudt7-1 were reflected by a moderate increase in EDS1 

protein accumulation (Figure 3.3C). NUDT7 showed strongly depleted protein levels 

in the eds1-2 mutant background. This result clearly shows that NUDT7 has a 

negative impact on the expression of EDS1. EDS1 seems to be required for post-

translational accumulation of NUDT7 protein rather than acting on NUDT7 gene 

expression. 

To assess the possibility of a direct interaction of EDS1 and NUDT7, I performed 

immunoprecipitations (IP) using the NUDT7 OE line 4 (see section 3.1.2). Although I 

concluded that over expressed NUDT7-strepII fusion protein was only partially 

functional, this line was considered to express sufficient amounts of functional 

transgenic NUDT7 for co-IP studies since OE line 4 complemented the nudt7-1 

phenotype to WT levels (Figure 3.2).  

The strepII affinity purification is a rapid one step purification (Witte et al., 2004). 

Using this fast purification procedure would increase the likelihood of co-purifying 

transiently bound interactors. Furthermore, this method has been successfully 

established for analysis of proteins derived from leaf tissue (Witte et al., 2004). 

For StrepII affinity purification, I used unchallenged leaf tissue from NUDT7 OE line 

4. In parallel, I processed tissue from Col-0 WT and nudt7-1 plants that served as 

negative controls. The collected fractions were separated by SDS-PAGE and analyzed 

by immunoblotting. Ponceau staining of the western blot membrane revealed a single 

band in the concentrated eluate and the boil-off (BO) from the StrepTactin sepharose 

that corresponds with the predicted size of NUDT7-strepII (Figure 3.4A). This result 

indicated that NUDT7-strepII was successfully purified. A potential interaction of 

NUDT7 and EDS1 was analyzed by probing the different fractions with α-NUDT7 

and α-EDS1 antibody. NUDT7 protein was detected in the input fractions of WT and 

NUDT7 OE line 4 and in the eluate fractions of NUDT7 OE line 4 (Figure 3.4B). By 

contrast, EDS1 was only detectable in the input and in the flow through fractions of 

NUDT7 OE line 4. Therefore, this result suggests that NUDT7 and EDS1 do not 

directly interact with each other. 
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Figure 3.4: StrepII affinity purification from NUDT7 OE line 4 to detect potential interaction 

between NUDT7 and EDS1 

(A) Analysis of StrepII purification by Ponceau staining. The different fractions collected during the 

purification procedure were separated by SDS-PAGE and analyzed by Ponceau staining and on an 

immunoblot using α-NUDT7 and α-EDS1 antibodies. Soluble extracts were prepared using StrepII 

extraction buffer from unchallenged leaf tissue of 4-week-old Col-0, nudt7-1 and NUDT7 OE line 4 

plants (Input). Extracts were incubated with StrepTactin sepharose and unbound fractions were 

collected (flow through (FT)). After washing steps, bound protein was eluted four times with 100µl 

elution buffer. 40µl of the eluate was mixed with 2x SDS-loading buffer (Eluate) and 360µl were 

concentrated using Vivaspin500 (c. Eluate). After elution, SDS-loading buffer was added to 

StrepTactin sepharose and boiled for 5min at 96°C (B.O.). NUDT7-strepII is indicated by red asterisks. 

(B) Immunoblot analysis of StrepII purification. All fractions were analyzed using α-NUDT7 (upper 

Western blot) and α-EDS1 (lower Western blot) antibodies. Western blot analysed with α-NUDT7 

corresponds to Ponceau staining shown in (A). Experiment was repeated two times with similar results. 

 

Final confirmation can be obtained by IPs using α-NUDT7 and α-EDS1 to purify the 

respective protein in WT plants and testing for co-purification of EDS1 and NUDT7, 

respectively. 

Together, these analyses point to an indirect regulation of EDS1 and NUDT7 by 

which EDS1 is promoting either the synthesis or the stabilization of a negative 

regulator of the EDS1 pathway in healthy leaf tissues. 
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3.2.2. NUDT7 transcript and protein are upregulated in response to 

avirulent bacteria 

NUDT7 was identified in a gene expression micro array experiment as being 

upregulated after Pst AvrRPS4 inoculation in an EDS1-dependent manner (Bartsch et 

al., 2006). The same experiment revealed a strong upregulation of NUDT7 after 

inoculation with Pst AvrRPM1 that was largely independent of EDS1. AvrRPS4 is 

recognized by RPS4 in an EDS1-dependent TIR-NBS-LRR Avr protein interaction 

(Wirthmüller et al., 2007). AvrRPM1 that is detected by the CC-NBS-LRR protein 

RPM1 (Mackey et al., 2002) induces resistance independent of EDS1 (Aarts et al., 

1998).  In order to gain more information on the NUDT7 response to pathogen 

infection, I performed time course experiments. Col-0 WT plants were infected either 

with Pst AvrRPS4 or Pst AvrRPM1 and samples were taken at 0, 3, 6, 12 and 24 hour 

(h) time points after infection. Controls were infiltrated with 10mM MgCl2 and 

samples were taken at the indicated time points. 

After infection with Pst AvrRPS4, NUDT7 transcripts were strongly upregulated 9 h 

post inoculation (hpi) (Figure 3.5A). Transcript levels declined again and reached 

similar levels after 24 hpi as at 0 hpi. In consistency with transcript upregulation, 

NUDT7 protein accumulation peaked at 9 hpi and correlated with reduction of 

transcripts at 12 and 24 hpi (Figure 3.5B). MgCl2 infiltration did not cause significant 

increases in NUDT7 transcript or protein levels (Supplemental Figure 1A and 1B). In 

response to Pst AvrRPM1 inoculation, NUDT7 transcripts were strongly induced 3 hpi 

and 6 hpi (Figure 3.5A). At later time points, transcript levels decreased to 0 hpi 

levels. Although NUDT7 protein was also upregulated 3 hpi, NUDT7 protein 

accumulation was not consistent with NUDT7 transcript reduction (Figure 3.5B). I 

found similar levels of NUDT7 protein at 6, 9 and 12 hpi that were reduced at 24 hpi. 

Control samples infiltrated with 10mM MgCl2 showed no induction of NUDT7 

transcript and protein (Supplemental Figure 1A and 1B). 

I also explored whether NUDT7 upregulation coincides with pathogen-induced cell 

death. Coincidence of NUDT7 upregulation and induction of cell death would support 

the suggested role for NUDT7 in cell death regulation.  
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Figure 3.5: Regulation of NUDT7 transcript and protein levels and appearance of cell death in 

response to avirulent P. syringae infection. 

(A) NUDT7 mRNA is upregulated after infection with both, Pst avrRPS4 or Pst avrRPM1. 4-week-old 

plants were vacuum-infiltrated with 5 x 107 colony forming units (cfu) of the respective Pst strain. Leaf 

material was collected at the indicated time points and total RNA was extracted. Transcript levels were 

determined by quantitative real-time PCR using UBC21 (Ubiquitin Conjugating Enzyme 21) as 

reference gene. Error bars represent standard deviation (SD). Infection experiments were repeated three 

times with similar results. The results of one experiment after infection with the respective pathogen 

are shown. 

(B) NUDT7 protein follows upregulation of mRNA after infection with Pst strains. Leaf material was 

harvested after indicated time points and total protein was extracted. NUDT7 protein was analysed on a 

Western blot with α-NUDT7 antibody. Ponceau staining served as loading control. 

(C) Appearance of cell death coincides with NUDT7 mRNA upregulation. 3-5 leaves were taken at 

indicated time points after inoculation and stained with trypan blue to detect plant cell death. Bars = 

200µm. 

 

Plant cell death monitored by trypan blue staining appeared 9 hpi with Pst avrRPS4 

and therefore coincided with NUDT7 upregulation (Figure 3.5C). Initial cell death in 

response to Pst avrRPM1 inoculation was detected 6 hpi which was 3 hours later than 

NUDT7 transcript and protein induction. Induction of plant cell death was not 

detected upon MgCl2 infiltration (Supplemental Figure 1C).  

These data show that NUDT7 expression responds to both, TIR-NBS-LRR and CC-

NBS-LRR triggered plant defence. Furthermore, the results obtained after infection 
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with Pst AvrRPM1 support the data shown in Figure 3.3A and 3.3B suggesting a post-

transcriptional regulation of NUDT7 protein. It will require further analysis whether 

the difference in NUDT7 protein accumulation and cell death induction in response to 

Pst AvrRPS4 and Pst AvrRPM1 can be correlated to the distinct functions of EDS1 

upon AvrRPS4 and AvrRPM1 triggers. 

 

3.2.3. NUDT7 localization is not altered upon pathogen challenge 

The in vivo function of NUDT7 is unknown. Also, the localization of NUDT7 is 

predicted as being cytosolic (Ogawa et al., 2005) but has not been shown in vivo. I 

investigated where NUDT7 protein is localized in vivo and whether its localization 

changes after pathogen infection since the subcellular localization of NUDT7 could 

allow conclusion about its activity. I performed nuclear and microsomal fractionations 

with healthy and Pst avrRPM1 challenged plant material. NUDT7 was present in the 

nuclear-depleted but not in the nuclear fraction independent of pathogen challenge 

(Figure 3.6A). Moreover, NUDT7 protein fractionated in the soluble pool in both, 

healthy and pathogen-infected plants (Figure 3.6B). There was no NUDT7 protein 

detectable in the microsomal fractions. I concluded that NUDT7 is soluble and 

localizes exclusively to the cytosol. 

 

 
 
Figure 3.6: Localization studies of NUDT7 protein in healthy and pathogen-infected leaf tissue. 

(A) NUDT7 protein localizes to the cytosol. Healthy and pathogen-infected plant tissue was separated 

into nuclei and nuclei-depleted fractions. Infections with Pst avrRPM1 were performed as described 

under (2A). T = Total fraction; C = Cytosolic fraction; N = Nuclear fraction. Fractions were probed 

with indicated antibodies. Hsc70 served as cytosolic control and HistoneH3 as nuclear control. 

Experiment was repeated at least three times with the same result. 
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(B) NUDT7 protein is exclusively soluble. Separation of healthy and pathogen-infected leaf tissue of 

indicated genotypes into soluble and microsomal fractions by ultracentrifugation. PEN1-GFP was co-

purified in the same experiment and served as a microsomal marker. T = Total fraction; M = 

Microsomal fraction; S = Soluble fraction. Fractions were analysed by immunoblotting with α-NUDT7 

and α-GFP antibody. Experiment was repeated three times with the same result. 

 

3.3. Impact of defence-related mutants on the nudt7-1 phenotype 
 

3.3.1. EDS1 triggers an SA-antagonized defence pathway 

Arabidopsis nudt7-1 mutant plants exhibit an exacerbated growth retardation and cell 

death phenotype when depleted of salicylic acid (SA) in the nudt7-1/sid2-1 mutant 

(Figure 3.7) (Bartsch et al., 2006). It was unknown whether this SA-antagonized 

phenotype requires EDS1. I tested this hypothesis by crossing the eds1-2 mutation 

into the nudt7-1/sid2-1 mutant background. The enhanced growth retardation caused 

by SA depletion (Figure 3.7A and 3.7B) and exacerbated cell death (Figure 3.7C) of 

nudt7-1/sid2-1 were suppressed in nudt7-1/sid2-1/eds1-2 and restored to Col-0 WT 

levels. Enhanced susceptibility towards virulent H. parasitica NOCO2 was not altered 

in nudt7-1/sid2-1/eds1-2 plants compared to nudt7-1/sid2-1 (Figure 3.7D).  

Thus, EDS1 mediates two distinct signalling events that are both negatively regulated 

by NUDT7. EDS1 induces the accumulation of SA and induces a positive feedback-

loop through which it promotes its own expression leading to further activation of 

defence responses (Feys et al., 2001). In addition, EDS1 triggers a pathway that is 

negatively regulated by SA leading to the initiation of cell death and suppression of 

growth. The results shown in Figure 3.7D provide further evidence for the 

requirement of SA in basal resistance and positioning of SA accumulation 

downstream of EDS1. 
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Figure 3.7: Analysis of the impact of defence mutants on the nudt7-1 phenotype 

(A) The eds1-2 mutation abolishes growth retardation of nudt7-1. Pictures are representative of mutant 

phenotypes of 4-week-old soil-grown plants. Bar = 3cm. 
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(B) Fresh weight (FW) analysis of 4-week-old-soil-grown plants. Error bars represent standard error 

(SE) (n=9). *p < 0,05, ** p < 0,001 (student´s t-test for pairwaise comparison of wt and different 

mutants); °p < 0,01, °°p < 0,0001(student´s t-test for pairwaise comparison of nudt7-1 and different 

mutants). Experiment was repeated at least three times with similar results. 

(C) Spontaneous leaf cell death in the nudt7-1 mutant background depends only on EDS1. Leaves of 4-

week-old plants were stained with trypan blue to detect cell death. Three leaves per genotype were 

stained and the experiment was repeated at least three times with the same results. 

(D) Enhanced basal resistance in nudt7-1 depends on SA and EDS1. 2-week old plants were inoculated 

with H. parasitica NOCO2 with 4x104 spores/ml. Sporulation on plants was analysed five days post 

inoculation with a Neubauer counting chamber. Error bars represent SE (n=3). *p < 0,055 (student´s t-

test for pairwaise comparison of wt and mutants). Experiment was repeated at least three times with 

similar results. 

(E) pad4-1 compromises enhanced basal resistance of nudt7-1. Inoculation was performed as described 

under (D). Error bars represent SE (n=3). *p < 0,05 (student´s t-test for pairwaise comparison of wt and 

mutants). Experiment was repeated at least three times with similar result. 

 

3.3.2. The nudt7-1 phenotype is influenced by other defence mutations 

PAD4 is an interaction partner of EDS1 and required to mount an adequate defence 

response to virulent pathogens (Zhou et al., 1998; Feys et al., 2001). Genetic epistasis 

analysis revealed that PAD4 and EDS1 are required for SA-dependent defence 

signalling (Brodersen et al., 2002). This is reinforced by the fact that pad4 mutants 

fail to accumulate SA after infection with virulent and avirulent Pst that trigger EDS1-

dependent resistance (Feys et al., 2001). The close relationship between EDS1 and 

PAD4 prompted me to investigate whether the pad4 mutation abrogates the nudt7-1 

phenotype as the eds1 mutation does. For this reason I crossed nudt7-1 with pad4-1 to 

generate the nudt7-1/pad4-1 double mutant. Growth analysis revealed that nudt7-

1/pad4-1 plants exhibit intermediate growth between nudt7-1 and WT (Figure 3.7A 

and 3.7B). Enhanced basal resistance of the nudt7-1 mutant was abrogated by the 

pad4-1 mutation (Figure 3.7E). Nudt7-1/pad4-1 plants were more susceptible than 

WT but less susceptible compared to pad4-1. These results suggest that PAD4 affects 

different signalling events leading to the nudt7-1 phenotype. Whether the intermediate 

phenotype of nud7-1/pad4-1 mutant is the direct result of the pad4-1 mutation or an 

indirect consequence of a possible disturbed interaction between EDS1 and PAD4 is 

not clear. Significantly, nudt7-1/pad4-1 plants showed an exacerbated cell death 

phenotype similar to nudt7-1/sid2-1 mutants (Figure 3.7C). Also, SA levels were 

depleted in the nudt7-1/pad4-1 mutant (M. Bartsch and J. Parker, unpublished data). 
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Thus, reduced SA levels in the nudt7-1/pad4-1 mutant likely account for the enhanced 

cell death phenotype. 

FMO1 (Flavin-Dependent Mono-oxygenase) was identified in the same gene 

expression microarray experiment as NUDT7 and was shown to be upregulated in an 

EDS1-dependent manner after inoculation with Pst avrRPS4 and Pst avrRPM1 

(Bartsch et al., 2006). Defects in FMO1 compromise basal resistance, TIR-NBS-LRR 

triggered resistance and systemic acquired resistance (SAR) (Bartsch et al., 2006; 

Koch et al., 2006; Mishina and Zeier, 2006). Further analysis suggested a role for 

FMO1 in an EDS1-regulated but SA-independent pathway that mediates resistance 

and promotes cell death at pathogen infection sites (Bartsch et al. 2006; Mishina and 

Zeier, 2006). By contrast, systemic induction of FMO1 requires SA and is impaired in 

SAR-deficient SA pathway mutants (Mishina and Zeier, 2006). 

I assessed whether the fmo1 mutation alters EDS1-dependent growth, cell death and 

basal resistance phenotype of the nudt7-1 mutant. The nudt7-1/fmo1-1 mutant 

exhibited intermediate growth between nudt7-1 and wt (Figure 3.7A and 3.7B). By 

contrast, the fmo1-1 mutation did not alter nudt7-1 cell death (Figure 3.7C) or basal 

resistance phenotypes (data not shown). I concluded from this that the positive 

regulatory role of FMO1 on EDS1-mediated resistance has only a minor effect on 

signalling events causing the nudt7-1 phenotype. 

The NADPH oxidase AtRbohD was shown to negatively regulate SA-induced cell 

death in the lsd1 mutant (Torres et al., 2005). Cell death in the nudt7-1 mutants seems 

not to be caused but rather negatively regulated by SA. Therefore I tested whether 

AtRbohD affects SA-independent cell death in nudt7-1. I found that the rbohD 

mutation exacerbated nudt7-1 growth retardation (Figure 3.7A and 3.7B) but had no 

effect on the spontaneous leaf cell death phenotype (Figure 3.7C). Thus, AtrbohD is 

not involved in signalling events leading to cell death in the nudt7-1 mutant. 
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3.4. The roles of EDS1 and NUDT7 in basal resistance and 

oxidative stress responses 
 

3.4.1. Nudt7-1 growth retardation is abolished under sterile conditions 

The study from Bartsch et al. (2006) and results presented in here led to the 

conclusion that deregulated EDS1-signalling likely causes the nudt7-1 phenotype. In 

nudt7-1 plants, the EDS1 pathway could then either be constitutively active or require 

an external trigger leading to deregulated defence signalling. I tested whether 

constitutive EDS1-signalling results in nudt7-1 growth retardation by growing plants 

under sterile conditions. Growth of 4-week-old sterile grown nudt7-1 plants was not 

different compared to WT plants (Figure 3.8).  

I concluded that EDS1-dependent growth retardation of nudt7-1 plants required an 

external trigger. This is supported by a recent study showing that under certain growth 

conditions nudt7 plants also exhibit a WT-like growth on soil (Ge et al., 2007). 

 

 
 
Figure 3.8: Col-0 and nudt7-1 plant growth under sterile conditions 

Growth retardation observed for soil-grown nudt7-1 plants is abrogated under sterile conditions. Plants 

were grown for four weeks under sterile conditions on MS-medium. Fresh weight of nine plants per 

genotype was measured and experiment was repeated at least three times with similar results. Error 

bars represent SE (n=9). 

 

3.4.2. Nudt7-1 mutant plants are not hyper-responsive to the MAMP flg22 

Perception of highly-conserved microbial molecules like bacterial flagellin or 

elongation factor Tu (EF-Tu) by pattern recognition receptors leads to the activation 

of a pre-invasive defence mechanism called PAMP (pathogen-associated molecular 
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patterns)-triggered immunity (PTI) (hereafter referred to as MAMP (microbe-

associated molecular pattern)-triggered immunity (MTI)) (Jones and Dangl, 2006). 

Recently, it was reported that NUDT7 transcripts are up-regulated in response to 

flagellin and that mRNA levels of the pathogen inducible genes PR1 

(PATHOGENESIS-RELATED 1) and AIG1 (AVRRPT2-INDUCED GENE 1) 

increased in the nudt7 mutant after treatment with several MAMPs (Ge et al., 2007; 

Adams-Phillips et al., 2008). 

 

 
 
Figure 3.9: Response of nudt7-1 mutants after induction of MAMP-triggered immunity. 
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(A) nudt7-1 mutant plants are not hyper-responsive to flg22. To determine growth inhibition after flg22 

stimulation, seedlings were grown for seven days on MS-plates before transferring into liquid MS 

medium with different concentrations of flg22 or only MS-medium (Mock). After seven days of 

treatment, the fresh weight of the seedlings was measured. Error bars represent SE (n=24). Experiment 

was repeated at least 3 times with similar results.  

(B) In-gel MAP kinase assay to investigate the activation of MPK6 (upper band) and MPK3 (middle 

band) in response to flg22 stimulation. Sterile grown seedlings have been stimulated with 1µM flg22 

and total protein was subsequently extracted after indicated time points. Samples were separated on a 

SDS-PAGE gel containing myelin basic protein as MAPK substrate. After renaturation, an in-gel MAP 

kinase assay was performed and kinase activity was visualized by autoradiography. Experiment was 

repeated twice with similar results. 

(C) Ethylene production in response to flg22 stimulation. Leaf discs of 4-week-old soil-grown plants 

were incubated either with or without 1µM flg22 in hermetic vials for 4 hours. Ethylene production 

was measured subsequently by gas chromatography and displayed by the ratio of the ethylene peak 

area to void volume peak area. Similar results were obtained in three independent experiments. 

(D) EDS1 triggers enhanced basal resistance in nudt7-1 mutant plants. Pst DC3000 or the weakly 

virulent Pst ∆Pto/PtoB was sprayed onto leaves of 4-week-old plants of the indicated genotypes at 1 x 

108 cfu/ml. Bacterial growth (cfu/cm2) was determined 3h (white bars) and 3 days (grey bars) after 

infection. Error bars represent SE (n=3). *p < 0,05 (Student´s t-test for pairwaise comparison of 

wildtype and mutant). Similar result was observed in at least three independent experiments. 

 

This suggests an involvement of NUDT7 in MAMP-triggered pre-invasive resistance. 

However, nudt7 plants exhibit an increased basal resistance that occurs at a post-

invasive level after infection with a virulent isolate of the oomycete H. parasitica that 

will have largely suppressed MTI (Bartsch et al., 2006; Ge et al., 2008; Jambunathan 

and Mahalingam, 2006). While EDS1 is a key regulator of post-invasive defence 

responses (Aarts et al., 1998; Feys et al., 2001) no substantial EDS1 contribution has 

been found in pre-invasive resistance, although it is transcriptionally upregulated after 

flagellin treatment (Zipfel et al., 2004). 

In order to assess whether the enhanced basal resistance of nudt7-1 plants occurs at a 

pre-invasive or a post-invasive level and whether this depends on EDS1, I treated 

plants with flagellin to test for enhanced MTI in nudt7-1. I first investigated whether 

the reduction of growth in nudt7-1 plants is caused by a hyper-responsiveness to 

pathogens or MAMPs to which the plants are exposed when grown on soil. 

Perception of the 22-amino acid peptide flg22 derived from the bacterial elicitor 

flagellin leads to a significant growth retardation of Col-0 plants (Gomez-Gomez et al., 

1999).  To investigate if nudt7-1 plants exhibit an increased growth retardation to 
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flg22 treatment I incubated sterile grown Col-0, nudt7-1 and fls2 (flagellin receptor 

mutant used as negative control) plants with different concentrations of flg22 and 

analyzed their fresh weight. While a clear dose-responsiveness was observed, none of 

the applied flg22 concentrations led to a higher growth retardation of nudt7-1 mutant 

plants compared to Col-0 WT plants (Figure 3.9A). Therefore I concluded that the 

decreased growth of nudt7-1 plants is unlikely to be caused by a hyper-responsiveness 

to MAMPs.  

Although flg22 treatment did not lead to increased growth retardation of nudt7-1 

compared to WT, differences between Col-0 and nudt7-1 in MAMP-triggered 

signalling could be more subtle. Therefore I investigated early events induced by 

flg22 perception. To see if potential changes in the signalling cascade after flg22 

perception also involve EDS1 I included the eds1-2 and nudt7-1/eds1-2 mutant plants 

in these experiments. 

An early event in MAMP signalling after flg22 perception is the rapid activation of a 

MAP kinase cascade including MPK3 and MPK6 (Nühse et al., 2000; Asai et al., 

2002). I tested whether activation of MPK3 and MPK6 was altered in sterile grown 

nudt7-1 and eds1-2 mutant plants after flg22 stimulation. In all genotypes tested, 

except for fls2 that served as negative control, I found similar activation of the MAP 

kinases 3 and 6. Thus, no differences were observed in the activation pattern of Col-0, 

eds1-2 and nudt7-1 mutants, respectively (Figure 3.9B).  

The production of ethylene and the induction of an oxidative burst are two other early 

down-stream responses after flagellin perception (Bauer et al., 2001; Felix et al., 

1999; Gomez-Gomez et al., 1999). I measured the production of ethylene in response 

to flg22 in leaves of 4-week-old soil-grown plants (Figure 3.9C) and the induction of 

an oxidative burst after stimulation of sterile grown seedlings with flg22 (data not 

shown). In all of these assays the nudt7-1 and the eds1-2 mutants responded in the 

same way as Col-0 WT. I concluded that neither EDS1 nor NUDT7 are involved in 

MAMP-triggered signalling after the perception of flg22. 

Although flg22 treatment did not result in altered responses in nudt7-1 plants 

compared to WT, there is still the possibility of primed MTI in nudt7-1 that confers 

enhanced resistance. I tested this hypothesis by two different experiments. First, I 

infected plants with a fully virulent Pst strain to investigate whether nudt7-1 plants are 

more resistant compared to wt. In a second experiment, plants were inoculated with a 

virulent Pst strain that lacks the effectors avrPto and avrPtoB and that suppresses the 



Results  65 

MTI response less than Pst DC3000 (Lin et al., 2005). If nudt7-1 plants exhibit 

primed MTI, bacterial growth of a less virulent Pst strain in wt and nudt7-1 plants 

should be more similar due to the strongly impaired suppression of MTI. In both 

experiments, bacteria were applied to the leaf surface since studies on the fls2 mutant 

revealed that direct infiltration into intercellular space presumably by-passes initial 

steps of bacterial infection that are required to induce MTI (Zipfel et al., 2004).  

I infected 4-week-old soil-grown nudt7-1 and eds1-2 mutant plants by spraying 

virulent P. syringae DC3000 onto the leaves. Bacterial growth was determined after 0 

and 3 days (Figure 3.9D, left panel). Nudt7-1 mutant plants showed significantly less 

bacterial growth compared to Col-0 WT whereas mutant plants in the eds1-2 

background were hyper susceptible. Infection with Pst ∆avrPto/avrPtoB was 

performed as with Pst DC3000 and resulted in reduced bacterial growth in all 

genotypes compared to Pst DC3000 infection (Figure 3.9D, right panel). Growth of 

both strains was approximately one log less in nudt7-1 compared to WT (Figure 3.9D). 

Also, growth of Pst ∆avrPto/avrPtoB in the eds1-2 mutants was still higher than in 

Col-0 WT but less than compared to eds1-2 mutant plants infected with Pst DC3000.  

I concluded that less efficient suppression of MTI by the Pst ∆avrPto/avrPtoB strain 

accounts for the reduced growth in all tested genotypes. Similar differences of 

bacterial growth between WT and nudt7-1 after inoculation with both strains suggest 

that enhanced resistance in nudt7-1 plants does not rely on primed MTI but on 

enhanced post-invasive basal resistance that is EDS1-dependent. 

 

3.4.3. Nudt7-1 plants are rendered hyper susceptible towards oxidative 

stress by EDS1-mediated signals 

Previous reports implicate EDS1 in oxidative stress signalling, most clearly after 

induction of photo-oxidative stress. For example, EDS1 is required to trigger runaway 

cell death and stomatal conductance in lsd1 mutants that fail to acclimate to EEE and 

experience chloroplastic ROS overload (Rusterucci et al., 2001; Mateo et al., 2004). 

Further analysis revealed that EDS1 acts upstream of ROS (H2O2) accumulation and 

regulates signalling events leading to programmed cell death and light acclimation 

(Mühlenbock et al., 2008). Also, it has been shown that EDS1 is upregulated after 

release of singlet oxygen in chloroplasts of the flu mutant in an SA-independent 



66  Results 

  

manner (Ochsenbein et al., 2006). EDS1 promotes the spread of necrotic lesions and 

prevents the recovery of flu mutants from singlet oxygen stress. 

It was reported recently by others that nudt7 plants have normal growth but become 

stunted after induction of oxidative stress by paraquat (Ge et al., 2007). Paraquat 

inhibits ferredoxin reduction in PS I and, by subsequent auto-oxidation into a radical, 

leads to the production of superoxide and H2O2 (Babbs et al., 1989). By contrast, I 

found that soil-grown nudt7-1 plants under normal conditions exhibited stunting 

compared to WT and accumulated high levels of H2O2 without external induction of 

oxidative stress (Figure 3.10). I reasoned that the soil induces oxidative stress causing 

the growth retardation of nudt7-1 mutant plants. Therefore, I grew plants on 

commercial medium (jiffy-7 soil pellets; Jiffy International AS, Denmark). Growing 

nudt7-1 plants on jiffy soil pellets reduced the extent of leaf curling and growth 

stunting (Figure 3.10). In addition, spontaneous leaf cell death was strongly reduced 

and H2O2 accumulation was abrogated.  

 

 
 

Figure 3.10: Phenotypes exhibited by nudt7-1 on different soils 

Nudt7-1 plants were grown on soil and commercial jiffy soil for four and five weeks, respectively. 

Leaves were stained with 3,3-Diaminobenzidine to detect H2O2 accumulations (middle panel) and with 

trypan blue to detect cell death (right panel). White bar (left panel) = 3cm; Black bar (middle and right 

panel) = 200µm. Pictures are representative for observed differences of nudt7-1 plants grown on the 

respective soils. 
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In order to test whether the phenotype observed on soil-grown nudt7-1 plants could be 

induced and whether this requires EDS1-mediated oxidative stress signalling, I 

applied paraquat at a mild dosage of 5µM multiple times over a period of 12 days. 

Application of paraquat led to a severe growth retardation of nudt7-1 plants compared 

to Col-0 WT plants; the observed developmental phenotype was similar to the one 

displayed by soil-grown plants (Figure 3.11A and 3.11B).  

By contrast, eds1-2 and nudt7-1/eds1-2 mutants plants did not show significant 

growth retardation after paraquat treatment (Figure 3.11A and 3.11B). When the 

induction of cell death after paraquat treatment was determined, there was a strong 

induction in the nudt7-1 mutant compared to Col-0 WT that was suppressed in the 

nudt7-1/eds1-2 double mutant (Figure 3.11C). Cell death was quantified by trypan 

blue staining to detect plant cell death in leaves and subsequent counting of dead cells 

per mm2 in representative leaf areas. Detection of H2O2 by DAB (3,3 

Diaminobenzidine) stainings revealed high accumulation of H2O2 in nudt7-1 that were 

abolished in the nudt7-1/eds1-2 double mutant (Figure 3.11D). H2O2 accumulation in 

paraquat-treated nudt7-1 plants are also comparable to the levels exhibited by soil-

grown nudt7-1 plants (Figure 3.10, Figure 3.11D).  

I concluded from these data that the nudt7-1 phenotype observed on soil-grown plants 

seems to be caused by oxidative stress that is induced by de-regulated EDS1-

dependent defence signalling. Moreover, these findings support a role of EDS1 in 

oxidative stress signalling leading to the accumulation of ROS and the induction of 

cell death.  

I tested whether the oxidative stress response is correlated with protein levels of EDS1 

and NUDT7. Steady state levels of EDS1 protein after oxidative stress induction were 

higher in both WT and nudt7-1 compared to steady state levels in untreated plants 

(Figure 3.12A). By contrast, NUDT7 protein levels did not increase in response to 

oxidative stress in WT but in the eds1-2 mutant.  

Together, these data suggest that the nudt7 mutant lowers the threshold for EDS1-

dependent responses to oxidative stress and pathogens. 

I also tested whether oxidative stress induction affects the subcellular localization of 

NUDT7 or leads to changes in the nuclear pool of EDS1 as pathogen infection does 

(A. Garcia and J. Parker, unpublished data). Paraquat application did not lead to an 

obvious change in subcellular localization of NUDT7 and did not result in measurable 
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changes in the nuclear pool of EDS1 (Supplemental Figure 2; A. Garcia and J. Parker, 

unpublished data).  

 

 
 

Figure 3.11: Oxidative stress responses of different nudt7-1 mutants and their dependence on 

EDS1 and SA. 
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(A) Application of paraquat leads to a growth retardation of Col-0 plants that is exacerbated in the 

nudt7-1 mutant background. Plants were grown for three weeks on commercial medium (Jiffy©-soil) 

and then sprayed with 5µM paraquat three times at an interval of 4 days. Representative pictures were 

taken 4 days after the last paraquat application. The experiment was repeated independently at least 

three times with similar results. Bar = 3cm. 

(B) Quantification of plant growth -/+ paraquat. Mean FW and SE values (n=27) were calculated from 

the results of three independent experiments.  p < 0,05 (student´s t-test for pairwaise comparison of 

nontreated and treated plants); *p < 0,05 (student´s t-test for pairwaise comparisons of respective WT 

and mutant). 

(C) Exacerbated cell death in nudt7-1 in response to paraquat requires EDS1 and AtRbohD but not SA. 

Quantification of cell death -/+ paraquat. Dead cells were counted on a representative area in five 

leaves/genotype. Observed cell death was single dead cells as shown in Figure 5C. Mean and SE values 

(n=15) were calculated from the results of three independent experiments. p < 0,005, p < 0,0001 

(Student´s t-test for pairwaise comparison of nontreated and treated plants); *p < 0,02, **p < 0,001 

(Student´s t-test for pairwaise comparisons of respective WT and mutant). 

(D) H2O2 accumulation in nudt7-1 after paraquat treatment depends on EDS1, SA and AtRbohD. After 

treatment as described under (A), 3-5 leaves per genotype were stained with 3,3-Diaminobenzidine 

(DAB) to detect H2O2. Bars = 200µm. Experiment was repeated multiple times with similar results. 

 

3.4.4. SA promotes H2O2 accumulation but has no effect on the induction 

of cell death in response to paraquat application 

Nudt7-1 plants possess high levels of SA (Bartsch et al., 2006) and SA has been 

shown to regulate H2O2 production in the chloroplast (Mateo et al., 2004, 2006). 

Moreover, SA depletion exacerbates EDS1-dependent initiation of cell death and 

growth retardation of nudt7-1 plants, as shown in Figure 3.7. To investigate whether 

SA suppresses EDS1-dependent cell death by modulating chloroplastic ROS, I tested 

the response to external induction of oxidative stress of nudt7-1/sid2-1 and nudt7-

1/sid2-1/eds1-2 mutants. 

Paraquat treatment led to a similar growth reduction of nudt7-1/sid2-1 and nudt7-1 

plants that was abolished in the eds1-2 mutant background. By contrast, sid2-1 mutant 

plants behaved like Col-0 WT (Figure 3.11A and 3.11B). Quantification of cell death 

revealed a similar number of dead cells in healthy nudt7-1 and nudt7-1/sid2-1 plants 

(Figure 3.11C). Paraquat application induced cell death in the nudt7-1/sid2-1 mutant 

to the same extent as in nudt7-1. The number of dead cells in sid2-1 was not 

significantly different compared to Col-0 WT in response to oxidative stress. By 

contrast, cell death was almost completely compromised in the nudt7-1/sid2-1/eds1-2 
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mutant in healthy and paraquat treated plants. Paraquat application did not result in 

H2O2 accumulation in nudt7-1/sid2-1 and nudt7-1/sid2-1/eds1-2 mutants (Figure 

3.11D). Faint H2O2 staining reveal dead cells in nudt7-1/sid2-1. 

 

 
 
Figure 3.12: Western blot analysis of EDS1 and NUDT7 protein with and without paraquat 

treatment. 

(A) EDS1 but not NUDT7 is strongly upregulated in Col-0 after oxidative stress induction. EDS1 and 

NUDT7 protein levels were analysed after treatment described under Figure 3.11A. Protein was 

extracted from aerial tissue of the indicated genotypes. Analysis was performed using anti-EDS1 and 

anti-NUDT7 antibody. Ponceau staining served as loading control. The result was repeated in at least 

three independent experiments. 

(B) Depletion of SA reduces EDS1 and NUDT7 protein levels. Analysis performed as described in (A). 

The same expression pattern was observed in at least three independent experiments. 

(C) The rbohD mutation does alter EDS1 protein levels in nudt7-1. Western blot analysis was 

described in (A). Experiment was repeated at least three times with the same result. 
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Similar EDS1 protein levels were observed in healthy nudt7-1 and nudt7-1/sid2-1 

plants and were strongly increased after paraquat application (Figure 3.12B). EDS1 

protein was upregulated to a higher extent in nudt7-1 compared to nudt7-1/sid2-1 

which is probably due to a missing SA-dependent positive feedback-loop in nudt7-

1/sid2-1 through which promotes EDS1 expression (Feys et al., 2001). Notably, EDS1 

protein was strongly depleted in healthy sid2-1 mutant plants but increased to the 

level found in Col-0 WT after paraquat treatment. The same trend was observed for 

NUDT7 protein in paraquat treated sid2-1 mutants. 

These results show that SA tends to promote accumulation of H2O2. I concluded 

further that residual cell death and initiation of cell death in response to oxidative 

stress in nudt7-1 and nudt7-1/sid2-1 is SA-independent and requires functional EDS1. 

 

3.4.5. Nudt7-1/rbohD displays an eds1-2 like phenotype after paraquat 

treatment 

Beside its role in cell death regulation, the NADPH oxidase AtRbohD plays a central 

in the production of apoplastic ROS in response to avirulent pathogens (Torres et al., 

2002, 2005). During the late response to light stress, steady-state transcript levels of 

the ROS scavengers APX1 and CAT1 declined in the rbohD mutant and the authors 

suggested that AtRbohD is required to maintain their expression by an amplification 

loop (Davletova et al., 2005). I was interested whether AtRbohD affects the H2O2 

accumulation in the nudt7-1 mutant. In addition, I wanted to investigate whether 

AtRbohD has a regulatory impact on chloroplast-derived oxidative stress signals that 

cause cell death. 

Healthy nudt7-1 and nudt7-1/rbohD plants are both reduced in size compared to Col-0 

WT plants whereas increased growth retardation of nudt7-1/rbohD in response to 

paraquat was intermediate between Col-0 and nudt7-1 (Figure 3.11A and 3.11B). 

Untreated rbohD mutants exhibited enhanced growth compared to WT while paraquat 

application led to a significant reduction of plant size. Nudt7-1 and nudt7-1/rbohD 

mutants exhibited similar number of dead cells in healthy leaves. Induction of cell 

death in nudt7-1/rbohD did not exceed Col-0 WT levels after paraquat treatment 

(Figure 3.11C). H2O2 accumulation was not detectable in the rbohD or nudt7/rbohD 

mutants after application of paraquat indicating that H2O2 accumulation in response to 

paraquat is dependent on AtRbohD activity (Figure 3.11D).  
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EDS1 protein levels in untreated rbohD plants were elevated compared to Col-0 WT 

and the same levels of EDS1 protein were seen in nudt7-1 and nudt7-1/rbohD (Figure 

3.12C). After application of paraquat, EDS1 protein levels were increased in all 

samples. NUDT7 protein accumulated to similar levels in Col-0 and rbohD 

irrespective of paraquat treatment.  

The strong increase of EDS1, absence of H2O2 accumulation, and failure to initiate 

exacerbated cell death in response to paraquat in nudt7-1/rbohD suggest that RbohD 

acts downstream of EDS1. However, EDS1-mediated growth retardation is only 

partially suppressed by the rbohD mutation indicating that EDS1 signals via multiple 

different pathways. 

Collectively, I concluded that there are different requirements for EDS1-dependent 

ROS signalling leading to initiation of cell death in nudt7-1 and runaway cell death in 

lsd1, respectively. This is supported by the results showing that cell death initiation in 

nudt7-1 upon oxidative stress trigger is independent of SA and promoted by AtRbohD 

generated ROS. EDS1-dependent runaway cell death in lsd1 was shown to be induced 

by SA and negatively regulated by AtRbohD (Torres et al., 2005). 

 

3.5. A gene expression microarray to identify genes in nudt7-1 and 

nudt7-1/sid2-1 that are regulated in an EDS1-dependent 

manner 
 

Soil-grown nudt7-1 mutants exhibit a phenotype that points to a deregulated defence 

pathway triggered by EDS1 (Figure 5; Bartsch et al., 2006). Signalling events in this 

mutant presumably include rather late responses of EDS1-mediated immunity because 

the defence pathways are constitutively activated. Nonetheless, I considered nudt7-1 

as a good model system to identify further components of EDS1-triggered signalling 

by a gene expression microarray. The fact that SA depletion exacerbates the nudt7-1 

phenotype in an EDS1-dependent manner (Figure 3.7) suggests a novel negative 

regulatory role for SA in EDS1-signalling.  For this reason, adding nudt7-1/sid2-1 to 

this analysis allowed me to investigate the role of SA in EDS1-mediated signalling 

and to gain new insights in its role in modulating ROS signals. With regard to the 

results described above I was particularly interested in genes potentially involved in 

redox homeostasis and cell death.  
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Nudt7-1 and nudt7-1/sid2-1 mutant plants that exhibited a developmental phenotype 

shown in Figure 3.7A were grown on soil. Col-0, nudt7-1/eds1-2 and nudt7-1/sid2-

1/eds1-2 served as controls for this experiment.  

 

Genotypes used for the microarray experiment 
Col-0 
nudt7-1 
nudt7-1/sid2-1 
nudt7-1/eds1-2 
nudt7-1/sid2-1/eds1-2 
 

Table 3.1: List of WT and mutant genotypes that were used 

 for gene expression microarray analysis 

 
Plants of these five genotypes were grown for four weeks in the same growth chamber. 

Leaf material from different plants of the same genotype was then harvested, pooled 

and RNA was extracted. This was repeated twice to obtain three independent 

biological replicates per genotype. After verification of the purity of total RNA, 

samples were sent to the IFG (Center for Integrated Functional Genomic) Münster for 

copy DNA (cDNA) synthesis and hybridization on Affymetrix ATH1 chips. The 

Genespring 10.0 software was used to analyze the datasets including normalization, 

quality control and filtering of all entities (see “Materials and Methods” section 

2.2.18).  

I extracted all genes whose expression changed significantly (p < 0,05) and at least 

two-fold in nudt7-1 compared to Col-0 WT (Figure 3.13 (A)). EDS1-dependency was 

determined by comparing all genes differentially expressed in Col-0 vs. nudt7-1 to 

genes differentially expressed in nudt7-1 vs. nudt7-1/eds1-2. Overlapping genes were 

considered a being regulated in an EDS1-dependent manner in nudt7-1. The same 

analysis was performed for nudt7-1/sid2-1 compared to the respective eds1-2 mutant. 

The effect of SA on the expression of these genes was investigated by checking the 

list of defined EDS1-dependent genes in nudt7-1 against the list of defined EDS1-

dependent genes in nudt7-1/sid2-1 (Figure 3.13 (B)). This comparison resulted in 

three different groups of genes (Supplemental Table 1):  
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Figure 3.13: Identification of EDS1-dependent regulated genes in nud7-1 and nudt7-1/sid2-1 and 

the influence of SA on their expression. 

(A) Comparison of genes that are differentially expressed in nudt7-1 compared to Col-0 and to nud7-

1/eds1-2 (left Venn diagram). Right Venn diagram illustrates the comparison of nudt7-1/sid2-1 to Col-

0 and to nudt7-1/sid2-1/eds1-2, respectively. Intersections show the number of identified EDS1-

dependent genes. Only genes that were significantly (p < 0,05) and at least two-fold differentially 

expressed in each comparison were considered. (B) Both intersections were compared with each other 

to investigate the influence of SA on the expression of the identified EDS1-dependent genes. Red 

section shows differentially expressed genes that are influenced by elevated SA levels (Group 1). 

Violet section shows the number of genes that are differently expressed in an SA-independent manner 

(Group 2). SA depletion affects the expression of genes in the blue section (Group 3). Numbers and 

arrows in brackets indicate the number of up- (↑) and downregulated (↓) genes, respectively. Up- and 

downregulated genes of all three groups were visualized in profile plot graphs (C). Normalized signal 

intensity values for each gene in the respective genotype are displayed. 
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Group 1) genes that are expressed in an EDS1-dependent manner and 

that are induced/repressed by elevated SA levels (90 genes) 

Group 2) genes that are expressed in an EDS1-dependent manner 

independent of SA (182 genes) 

Group 3) genes that are expressed in an EDS1-dependent manner and 

that are induced/repressed by depleted SA levels (365 genes)  

 

The three different groups were visualized in profile plot graphs showing the 

expression of each gene in the respective genotype (Figure 3.13 (C)).  

In addition, Group 2 contained 23 genes that were significantly and at least two-fold 

differently expressed between nudt7-1 and nudt7-1/sid2-1 (Supplemental Table 2). 

Although, differential expression of these genes in both genotypes was EDS1-

dependent, SA had an amplifying or suppressive effect on them. 

 All identified genes were then compared to genes annotated for the terms oxidative 

stress and cell death on TAIR (www.arbidopsis.org). Also, I performed a functional 

categorization using the MIPS functional catalogue database 

(http://mips.gsf.de/projects/funcat) and sought for genes that were categorized for 

terms either associated with redox stress or cell death. The identified genes are 

compiled in Table 3.2 and 3.3.  

In Group 1, two members of the glutaredoxin family are highly upregulated 

suggesting enhanced O2
•− production in nudt7-1. Glutaredoxins are involved in 

recovery of ascorbate that scavenges O2
•− thereby producing H2O2 (Table 3.2). By 

contrast, one gene with similar function in ascorbate recovery, DHAR1, was down-

regulated. Group 2 comprises mainly genes that are either ROS stress markers or that 

have elusive cellular functions. Strikingly, I did not find an upregulation of H2O2 

scavengers in the nudt7-1 mutant but only upregulated genes that are involved in 

production of H2O2. By contrast, several genes recently described as ROS scavengers 

or participating in ROS scavenging were upregulated in Group 3. In particular, the 

peroxidase PRXR5 was strongly upregulated in the SA-depleted nudt7-1/sid2-1 

mutant. The same holds true for two ferritins and the alternative oxidase AOX 1D. I 

concluded that elevated SA levels in nudt7-1 suppress the scavenging of H2O2 

whereas depletion of SA in nudt7-1/sid2-1 results in H2O2 scavenging. This finding 

correlates with the results described above that show reduced H2O2 accumulation in 

nudt7-1/sid2-1 compared to nudt7-1 (Figure 3.11D).  
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The presence and expression of particular ROS scavengers in Group 1 and Group 3 

and absence of ROS scavengers in Group 2 suggests that different ROS predominate 

in nudt7-1 and nudt7-1/sid2-1. I addressed this hypothesis by comparing the gene lists 

with lists of marker genes specifically differentially regulated in response to 1O2, O2
•− 

or H2O2 (Gadjev et al., 2006) (Supplemental Table 3). Marker genes for 1O2 and H2O2 

were similarly present in Groups 1, 2 and 3 (Supplemental Table 3A and 3B). 

Strikingly, I found only two marker genes for O2
•− in Group 1, none in Group 2 and 

30 marker genes were expressed in Group 3 (Supplemental Table 3b). It is important 

to note that the two genes identified in Group 1 were down-regulated and therefore 

showed opposite expression than previously described (Gadjev et al., 2006). Although, 

H2O2 marker genes were not elevated in Group 1 as expected, my data reveal 

increased SA-dependent H2O2 accumulation in nudt7-1. Combining this result with 

the exclusive presence of O2
· – marker genes in Group 3, I propose that SA not only 

promotes the accumulation of H2O2 but also antagonizes O2
•− accumulation. It is not 

clear whether this is mediated by SA directly or indirectly.  
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Probe Set ID AGI Gene Title Gene symbol Description
Fold change 
nudt7-1  vs 

nudt7-1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1/sid2-
1/eds1-2

Fold change 
nudt7-1/sid2-1 vs 

nudt7-1

262832_s_at AT1G14870 /// 
AT1G14880

expressed protein Responsive to oxidative stress (Luhua 
et al., 2008)

22,48

265067_at AT1G03850
glutaredoxin family 
protein

Recovery of ascorbate (Asc) from  
dehydroascorbate (DHA) (Mittler et 
al.,2004)

17,32

261443_at AT1G28480 glutaredoxin family 
protein

AtGRX480

SA-inducible transcription, NPR1 -
dependent (Ndamukong et al.,2007); 
recovery of Asc from DHA (Mittler et al., 
2004)

12,91

251840_at AT3G54960 thioredoxin family 
protein

AtRDI1 Enzyme regulation by reducing di-
sulfide bridges (Mittler et al., 2004)

4,15

261149_s_at AT1G19550 /// 
AT1G19570

putative 
dehydroascorbate 
reductase

AtDHAR1/ 
similar to 
AtDHAR1

Recovery of Asc from DHA (Mittler et 
al.,2004)

-2,57

254385_s_at
AT4G21830 /// 
AT4G21840

methionine sulfoxide 
reductase domain-
containing protein / SeIR 
domain-containing 
protein

Upregulated in response to singlet 
oxygen (AT4G21830) (Danon et 
al.,2006)

70,74 80,04

259410_at AT1G13340 expressed protein Responsive to oxidative stress (Luhua 
et al., 2008)

15,50 22,82

256337_at AT1G72060 expressed protein Responsive to oxidative stress (Luhua 
et al., 2008)

12,24 19,10

255479_at AT4G02380 late embryogenesis 
abundant family protein

AtLEA5/ 
AtSAG21

OE conferred resistance to oxidative 
stress (Mowla et al.,2006)

10,82 21,16

247327_at AT5G64120 putative peroxidase cell wall peroxidase, produces 
superoxide (Rouet et al.,2006)

8,10 8,06

259841_at AT1G52200 expressed protein OE conferred resistance to oxidative 
stress (Luhua et al.,2008)

7,60 9,96

262119_s_at
AT1G02920 /// 
AT1G02930

putative gluthatione-S-
transferase AtGSTF6/7

Stress-inducable; SA- and Ethylene-
responsive expression (Wagner et 
al.,2002; Lieberherr et al.,2003)

7,38 14,15

258941_at AT3G09940
putative 
monodehydroascorbate 
reductase

AtMDAR3
Recovery of Asc from MonoDHA (Mittler 
et al.,2004) 6,91 6,92

266267_at AT2G29460 putative gluthatione-S-
transferase

AtGSTU4 No description available 5,91 32,23 5,68

260225_at AT1G74590 putative gluthatione-S-
transferase

AtGSTU10 No description available 4,82 19,54 4,31

256245_at AT3G12580 putative heat shock 
protein 70

No description available 2,80 3,26

260581_at AT2G47190
MYB transcription factor 
family AtMYB2

Upregulated in repsonse to H2O2 
(Gadjev et al.,2006) 2,16 2,48

265471_at AT2G37130 peroxidase 21 (PER21) 
(P21) (PRXR5)

Upregulated in vtc1  (Colville et al.,2008) 75,43

246099_at AT5G20230
plastocyanin-like domain-
containing protein AtBCB

Induced by Al- and ROS-treatment 
(Richards et al.,1998) 5,08

251109_at AT5G01600 ferritin 1 AtFER1 Required to maintain cellular redox 
homeostasis (Ravet et al.,2008)

3,94

263831_at AT2G40300 ferritin 4 AtFER4 Required to maintain cellular redox 
homeostasis (Ravet et al.,2008)

2,61

251985_at AT3G53220 thioredoxin family 
protein

Enzyme regulation by reducing di-
sulfide bridges (Mittler et al., 2004)

2,43

260706_at AT1G32350 putative alternative 
oxidase

AtAOX1D

Stress induced transcript accumulation; 
Alternative respiration pathway in 
repsonse to stress (Zsigmond et 
al.,2008)

2,28

250633_at AT5G07460
putative peptide 
methionine sulfoxide 
reductase

AtPMSR2
Repairs oxidatively damaged proteins; 
elevated oxidative stress in pmsr2 
(Bechtold et al.,2004)

-2,07

248765_at AT5G47650 MutT/nudix family 
protein

AtNUDT2 OE increases oxidative stress tolerance 
(Ogawa et al.,2008)

-2,21

258419_at AT3G16670 expressed protein Responsive to oxidative stress (Luhua 
et al., 2008)

-2,66

260745_at AT1G78370
putative gluthatione-S-
transferase AtGSTU20 No description available -3,61

Group I genes - EDS1-dependent expressed genes, influenced by elevated SA 

Group II genes - EDS1-dependent but SA-independent expressed genes

Group III genes - EDS1-dependent expressed genes, influenced by depleted SA

  
Table 3.11: EDS1-dependent genes differentially regulated in response to oxidative stress 

Listed genes are annotated as responsive to oxidative stress on TAIR and were categorized to function 

in different oxidative stress responses by MIPS FunCat database, respectively.  

 

When investigating gene lists for genes associated with cell death I found a number of 

cell death inducers/executers and cell death markers in all three groups (Table 3.3). In 

particular, I was interested in the identification of genes that may account for the 
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exacerbation of the cell death phenotype of nudt7-1/sid2-1 compared to nudt7-1. 

Therefore I focused on genes differentially regulated between nudt7-1 and nudt7-

1/sid2-1 in Group 2 and on genes in Group 3. In Group 2, I only found FMO1 to be 

highly upregulated in nudt7-1/sid2-1 compared to nudt7-1. FMO1 was previously 

described as a cell death marker (Olszak et al., 2006). It was reported that FMO1 

transcripts are induced in mutants with deregulated PCD, such as acd11 and lsd1, and 

during senescence. However, it remained unclear whether FMO1 is also involved in 

cell death initiation or execution. In Group 3, two genes were identified that are 

tightly linked to execution of cell death. Bax Inhibitor-1 (BI-1), an inhibitor of PCD, 

and the vacuolar processing enzyme gamma (γ-VPE), a positive regulator of PCD, 

were both upregulated. BI-1 is localized in the membrane of the endoplasmatic 

reticulum (ER) (Watanabe et al., 2006) suggesting that PCD in nudt7-1/sid2-1 results 

from ER stress. In addition, γ-VPE acts in the vacuole and shows caspase activity 

(Hara-Nishimura et al., 2005). The upregulation of both genes indicates that cell death 

in nudt7-1/sid2-1 does not result from the cytotoxic effect of ROS overload but is a 

PCD. 
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Probe Set ID AGI Gene Title Gene symbol Description
Fold change 
nudt7-1  vs 

nudt7-1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1/sid2-
1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1

254093_at AT4G25110 caspase famliy protein  AtMC2

putative prodomain like mammalian 
"initiator" caspases; LSD1 -like zinc 
finger domain (Vercammen et al.,2004; 
Epple et al.,2003)

8,40

260735_at AT1G17610
disease resistance 
protein-related

TIR-NBS gene lacking LRR domain 
(Meyers et al.,2003) 3,13

250435_at AT5G10380 zinc-finger family protein AtRING1
Plasmamembrane localized ubiquitin E3-
ligase; positive regulator of cell death 
(Lin et al.,2008)

12,56 12,41

266292_at AT2G29350 alcohol dehydrogenase 
family protein

AtSAG13 strongly expressed in acd11 (Brodersen 
et al.,2002)

9,60 12,67

254243_at AT4G23210
protein kinase family 
protein AtCRK13

OE induces HR-associated cell death 
and SA-dependent resistance (Acharya 
et al.,2007)

7,61 10,20

252572_at AT3G45290 seven transmembrane 
MLO family protein

AtMLO3 7,27 4,00

256012_at AT1G19250
flavin-containing 
monooxygenase family 
protein

AtFMO1
Positive regulator of EDS1 -dependent 
but SA-independent resistance (Bartsch 
et al.,2006)

5,69 76,12 13,67

247493_at AT5G61900
calcium-dependent, 
phospholipid binding 
family protein

AtBON1

Loss-of-function in combination with 
bon2  or bon3  leads to extensive cell 
death. Suppressed by pad4 or eds1 
(Yang et al.,2006)

4,89 7,37

245038_at AT2G26560 putative patatin AtPLP2

Expression in repsonse to pathogens 
depends on JA or ethylene; potentiates 
cell death but reduces efficiency of HR 
(La Camera et al.,2005)

4,64 23,40

252265_at AT3G49620
2-oxoacid-dependent 
oxidase AtDIN11

Accumulates in the dark and in 
senescing leaves. Strongly upregulated 
in response to various ROS (Fujiki et 
al.,2001; Gadjev et al.,2006)

34,20

248829_at AT5G47130 Bax-inhibitor-1 family AtBI-1 Negative regulator of PCD induced by 
ER stress (Watanabe et al.,2008)

5,30

253358_at AT4G32940
vacuolar processing 
enzyme gamma  γ-VPE

Induces cell death by breakdown of 
vacuole. Exhibits caspase-1 activity 
(Kuroyanagi et al.,2005)

3,80

251895_at AT3G54420 Class IV chitinase AtEP3 Involved in initial events of HR (de A. 
Gerhardt et al.,1997)

2,46

248943_s_at AT5G45440 /// 
AT5G45490

disease resistance 
protein-related

Meyers et al.,2003 -2,12

252983_at AT4G37980 mannitol dehydrogenase AtELI3-1
RPM1-dependent transctipt 
accumulation after pathogen infection 
(Kiedrowski et al.,1992)

-2,16

Group I genes - EDS1-dependent expressed genes, influenced by elevated SA 

Group II genes - EDS1-dependent but SA-independent expressed genes

Group III genes - EDS1-dependent expressed genes, influenced by depleted SA

 
Table 3.12: EDS1-dependent genes associated with cell death signalling 

Listed genes are annotated as cell death-associated on TAIR and were categorized to function in cell 

death signalling by MIPS FunCat database, respectively.  
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4. Discussion 
 

Arabidopsis plants lacking NUDT7 display a phenotype characteristic of mutants with 

a deregulated defence pathway. This phenotype comprises enhanced resistance, 

stunted growth, elevated SA levels and spontaneous leaf cell death (Jambunathan and 

Mahalingam, 2006; Bartsch et al., 2006; Ge et al., 2007). The fact that cell death in 

nudt7 is restricted to single cells and does not spread suggests an effect on regulation 

of the initiation of cell death rather than propagation of cell death. Further analysis 

revealed that the nudt7 phenotype requires EDS1 and it was concluded that NUDT7 is 

involved in the negative regulation of EDS1-mediated defence signalling (Bartsch et 

al., 2006). EDS1 represents a key signalling node in plants, mediating biotic and 

abiotic stress responses (Wiermer et al., 2005). Although the importance of EDS1 

signalling is well described, the underlying regulatory mechanisms are poorly 

understood. Thus, identification of NUDT7 as a negative regulator of the EDS1 

pathway opened the possibility to gain insight into how plants regulate stress 

responses. I performed a closer characterization of NUDT7 in terms of its genetic 

relationship to EDS1 and NUDT7 localization and dynamics in response to pathogens. 

I concluded that EDS1 and NUDT7 are part of a tight stress inducible programme but 

that their proteins do not interact with each other. Investigations into the possible role 

of EDS1 and NUDT7 in MTI revealed that neither is important for pre-invasive 

resistance. Rather, EDS1 and NUDT7 operate at a post-invasive level of plant 

resistance to host-adapted pathogens. NUDT7 was found to limit EDS1-dependent 

ROS signalling causing growth retardation, cell death initiation and H2O2 

accumulation. Oxidative stress-induced growth retardation and initiation of cell death, 

but not H2O2 accumulation, are independent of SA accumulation. Furthermore, EDS1-

dependent ROS signalling requires AtRbohD for cell death initiation and H2O2 

accumulation in nudt7-1. I concluded from these experiments that distinct EDS1 

signalling events are involved i) in cell death initiation in nudt7-1 compared to cell 

death propagation in lsd1 and ii) in cell death initiation and growth retardation in 

response to oxidative stress. Data obtained in this study will be discussed in the 

context of understanding how plants fine-tune stress responses to protect against 

invading pathogens but also conserve energy and tissue viability for growth and 

reproduction. 
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4.1. EDS1 and NUDT7 are part of a plant stress-inducible genetic 

programme 
 

The expression pattern of EDS1 and NUDT7 revealed a tight co-regulation of both 

genes after induction of various stresses (Figure 3.3A) suggesting that they are part of 

a plant stress-inducible genetic programme. This finding is in agreement with 

previous reports showing that NUDT7 and EDS1 are upregulated in response to 

various stresses (Feys et al., 2001; Jambunathan and Mahalingam, 2006; Ge et al., 

2007; Adams-Philipps et al., 2008) and studies describing a requirement for EDS1 in 

abiotic stress responses (Chini et al., 2004; Mateo et al., 2004; Ochsenbein et al., 

2006; Mühlenbock et al., 2008).   

The results presented in Figure 3.3B and 3.3C suggest that EDS1 does not strongly 

affect NUDT7 transcript regulation but promotes NUDT7 protein accumulation. This 

was a rather unexpected finding, since the dependence of the nudt7 phenotype on 

EDS1 and the co-regulation of EDS1 and NUDT7 in responses to various stresses 

pointed to a strong transcriptional relationship. An indirect interaction between EDS1 

and NUDT7 was further supported by the fact that NUDT7 was transcriptionally 

upregulated after Pst avrRPS4 and Pst avrRPM1 infection (Figure 3.5A and 3.5B). 

This finding is consistent with microarray data showing upregulation of NUDT7 after 

inoculation with Pst avrRPS4 and Pst avrRPM1 (Bartsch et al., 2006). Induction of 

NUDT7 was shown to be EDS1- and PAD4-dependent after Pst avrRPS4 but not after 

Pst avrRPM1 infection. 

The dynamics of NUDT7 protein accumulation in response to avirulent pathogens 

may be subjected to further regulations (Figure 3.5B). While NUDT7 transcript and 

protein levels increased and declined similarly in response to Pst avrRPS4 inoculation, 

NUDT7 protein seemed to be stabilized after infection with Pst avrRPM1.  

 

Post-transcriptional regulation of Arabidopsis signalling pathway components has 

been described in ethylene signalling (Guo and Ecker, 2003; Potuschak et al., 2003; 

Gagne et al., 2004). It was shown that the SCFEBF1/2 (SKP1 Cullin F-box EIN3 Binding F-

box1/2) E3 ligase complex constitutively degrades EIN3, a key transcriptional regulator 

of ethylene signalling, thereby suppressing the ethylene response. Ethylene perception 

leads to stabilization of EIN3 and presumably reduces SCFEBF1/2 activity. Similar 



Discussion  83 

observations have been reported for light signalling (Osterlund et al., 2000; Saijo et al., 

2003; Seo et al., 2003). In darkness, the ubiquitin E3 ligase COP1 (Constitutive 

Photomorphogenesis 1) localizes to the nucleus and targets photomorphogenesis-

mediating transcription factors such as HY5 (Long Hypocotyl 5) to degradation. Upon 

exposure to light, COP1 translocates to the cytosol and allows the HY5 pool to build 

up and to induce light signaling. However, these examples describe the post-

transcriptional regulation of positive modulators of ethylene and light signaling, 

respectively. To our knowledge, post-transcriptional stabilization of a negative 

pathway regulator has not been reported in Arabidopsis. Although post-transcriptional 

regulation of negative pathway regulators has been described in auxin and JA 

signaling, repressors of these pathways are degraded upon signal perception (Quint 

and Gray, 2006; Katsir et al., 2008). Auxin signaling is negatively regulated by 

Aux/IAA (Auxin/Indole-3-Acetic Acid) proteins that heterodimerize with ARF 

(Auxin Response Factors) transcription factors thereby suppressing auxin-inducible 

gene expression (Quint and Gray, 2006). Perception of auxin by the SCF component 

TIR1 (Transport Inhibitor Response 1) increases the affinity of TIR1 for Aux/IAA 

proteins resulting in increased ubiquitination and turnover of Aux/IAAs (Dharmasiri 

et al., 2005). The functions of SCFTIR1, Aux/IAA and ARF transcription factors are 

analogues to core components of JA signaling. JA signaling is negatively regulated by 

JAZ proteins that suppress the activity of transcription factors mediating JA responses 

(Katsir et al., 2008). JA signals trigger the SCFCOI1 (Coronatine Insensitive 1) complex that 

targets JAZ proteins for proteasomal degradation thereby liberating transcription 

factors that induce jasmonate-dependent transcriptional changes.  

Thus, induced post-transcriptional accumulation of NUDT7 and other negative 

components of stress and cell death relay may represent an important mechanism for 

balancing the extent of abiotic and biotic stress responses. Testing whether an increase 

of NUDT7 protein in eds1-2 upon paraquat treatment (Figure 3.12A) correlates with 

gene expression changes at the transcriptional level will inform us of the mode of 

NUDT7 regulation. 

A comprehensive study analyzing 24 Arabidopsis nudix hydrolase genes predicted a 

cytosolic localization for 9 members while 15 nudix hydrolases were suggested to 

localize to different subcellular compartments (Ogawa et al., 2005). NUDT7 was 

predicted to be cytosolic. By performing microsomal and nuclear fractionation studies 

I was able to verify the cytosolic localization of NUDT7 (Figure 3.6A and 3.6B; 
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Supplemental Figure 2). In addition, the localization of NUDT7 did not change after 

pathogen challenge or chemical oxidative stress treatment. These results suggest that 

NUDT7 is restricted to the cytosol and suggest that NUDT7 exerts its function in this 

cellular compartment. Attempts to identify an in vivo activity of NUDT7 so far failed 

(Ge et al., 2007). Only two cytosolic Arabidopsis nudix hydrolases have been 

characterized in vivo, NUDT1 (an 8-oxo-GTP pyrophosphohydrolase) and NUDT2 

(an ADP-ribose pyrophosphatase) (Yoshimura et al., 2007; Ogawa et al., 2009). 

Notably, both NUDT1 and NUDT2 are involved in oxidative stress protection. In 

particular, over expression of NUDT2 resulted in depleted ADP-ribose levels and 

increased tolerance to paraquat treatment (Ogawa et al., 2009).  

Oxidative stress conditions lead to increased accumulation of highly reactive ADP-

ribose in mammalian cells and can cause non-enzymatic mono-ADP-ribosylation of 

proteins accompanied by an immediate toxic effect (Deng and Barbieri, 2008; Ying, 

2008). A major enzyme, generating free mono-ADP-ribose from poly-ADP-ribose, is 

PARG (poly (ADP-ribose) glycohydrolase) and in planta studies revealed that 

inhibition of poly-ADP-ribosylation correlated with enhanced stress tolerance and 

reduced stress-induced cell death (De Block et al., 2005). Furthermore, PARG-

derived ADP-ribose was shown in mammalian cells to activate a plasma-membrane 

bound cation channel, TRPM2 (transient receptor potential melastatin 2), leading to 

Ca2+ influxes and cell death (Perraud et al., 2001; Fonfria et al., 2004; Yang et al., 

2006). Notably, TRPM2 possesses a nudix motif that is essential for ADP-ribose 

binding and Ca2+ gating in response to oxidative stress (Perraud et al., 2005). 

Considering that NUDT7 possesses in vitro ADP-ribose pyrophosphatase activity 

(Ogawa et al., 2005) and an Arabidopsis PARG was expressed to high levels in 

healthy nudt7-1 plants (Adams-Phillips et al., 2008), it is conceivable that NUDT7 

modulates cytosolic mono-APD-ribose levels. The decreased oxidative stress 

tolerance of nudt7-1 mutants and the deregulated cell death phenotype described in 

my work (Figure 3.11) are consistent with a physiological ADP-ribose 

pyrophosphatase activity of NUDT7.  
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4.2.  The EDS1 is not important for MAMP-triggered immunity 
 

Transcript levels of NUDT7 and EDS1 increase upon MAMP treatment (Zipfel et al., 

2004; Ge et al., 2007; Phillips-Adams et al., 2008). In addition, nudt7-1 plants are 

hyper resistant to virulent pathogens that presumably induce MTI (Bartsch et al., 

2006; Jambunathan and Mahalingam, 2006; Ge et al., 2007). The increased resistance 

of nudt7-1 was shown to be EDS1-dependent (Bartsch et al., 2006). These data 

prompted me to investigate whether EDS1 and NUDT7 are components of MAMP-

triggered signalling. My results demonstrated that MAMP-induced signalling events 

are not altered in nudt7-1 and eds1-2 compared to WT (Figure 3.9 A-C, data not 

shown). I therefore concluded that neither NUDT7 nor EDS1 are involved in MAMP 

signalling. This is consistent with recent studies (Peck et al., 2001; Zipfel et al., 2004; 

Tsuda et al., 2008) in which flagellin perception led to rapid phosphorylation events 

that were independent of SA and EDS1 (Peck et al., 2001). Moreover, Zipfel et al. 

(2004) showed that pre-treatment of Arabidopsis with flg22 induces resistance to 

spray-inoculated Pst DC3000. Although EDS1 was upregulated upon flg22 treatment, 

eds1 mutants retained flg22-induced resistance. Recently it was reported that MAMP 

perception induced SID2- and partially PAD4-dependent SA accumulation and 

subsequent SA-mediated signalling, which contributed to resistance against virulent 

Pst (Tsuda et al., 2008). Intimate interaction of MAMP-triggered and SA-mediated 

signalling resulted in transcriptional activation of several SA-inducible genes. Thus, 

induction of EDS1 and NUDT7 in response to MAMPs might result from MAMP-

triggered SA signalling. 

Older, soil-grown nudt7-1 plants exhibit constitutive EDS1-mediated signalling. This 

led to the assumption that defence is primed in nudt7-1 and therefore could also 

involve primed MTI. Infection studies with virulent Pst DC3000 and attenuated 

virulent Pst ∆avrPto/avrPtoB strains resulted in similar differences in bacterial 

growth between nudt7-1 and WT (Figure 3.9D). Therefore, I concluded that resistance 

in nudt7-1 is unlikely to be caused by a primed MTI system but rather by enhanced 

post-invasive basal resistance that depends on EDS1. This conclusion is supported by 

data from Lipka et al. (2005) showing that EDS1 was required for post-invasive 

resistance to non-adapted powdery mildew. Entry rates of Erysiphe pisi were not 



86  Discussion 

  

altered in eds1 relative to those of WT whereas epiphytic fungal growth in eds1 

substantially increased once pre-invasive resistance was breached. 

Collectively, these data suggest that MTI operates independently of EDS1 signalling 

and that other components are required to induce the EDS1 pathway causing the 

nudt7-1 phenotype. 

 

4.3. Relationship of EDS1 and NUDT7 to ROS accumulation and 

signalling 
 

The finding that a hyper-responsiveness to environmental elicitors did not account for 

deregulated resistance leading to the nudt7-1 phenotype (Figure 3.9) prompted me to 

seek for other triggers. Many constitutive defence mutants show accumulation of 

H2O2 and O2
•− (Lorrain et al., 2003). Induction of oxidative stress, for example in the 

lsd1 and flu mutants, resulted in lesion formation and retarded growth (Jabs et al, 

1996; Op den Camp et al., 2003). Notably, EDS1 was shown in several studies to be 

required to mediate oxidative stress responses (Rusterucci et al., 2001; Mateo et al., 

2004; Ochsenbein et al., 2006; Mühlenbock et al., 2008). These data suggest that 

growth retardation and spontaneous leaf cell death in nudt7-1 could be caused by 

EDS1-mediated oxidative stress signalling. H2O2 staining indeed revealed high 

accumulation of this ROS in nudt7-1 leaves compared to WT (Figure 3.10). Other 

studies reported contradictory results on ROS accumulation in nudt7 mutants. 

Jambunathan and Mahalingam (2006) reported elevated levels of ROS in nudt7 while 

Ge et al. (2007) argued against increased ROS levels in nudt7 mutants. This might be 

due to different enzyme-based ROS detection protocols. Also, different growth 

conditions of plants are likely to result in different phenotypes. Indeed, growth of 

nudt7-1 plants on commercial medium (jiffy-7 soil) attenuated growth retardation, cell 

death initiation and ROS accumulation in my study (Figure 3.10). It is probable that 

certain additives present in the MPIZ-soil but not in the jiffy soil trigger Arabidopsis 

resistance pathways. 

Paraquat application on jiffy-soil-grown nudt7-1 and nudt7-1/sid2-1 plants resulted in 

severe growth retardation, more frequent initiation, but not spread, of cell death and 

high accumulation of H2O2 in nudt7-1 (Figure 3.11). This phenotype was fully 

dependent on EDS1 and, except H2O2 accumulation, largely independent of SA. 



Discussion  87 

Earlier studies revealing a requirement for EDS1 in promoting ROS signals were 

mainly based on investigations of SA-dependent RCD in lsd1 (Rusterucci et al., 2001; 

Mateo et al., 2004; Mühlenbock et al., 2007, 2008). However, Bartsch et al. (2006) 

suggested that EDS1 is also involved in SA-independent cell death induction, which is 

reinforced by my work. I could demonstrate that cell death in nudt7-1 and nudt7-

1/sid2-1 is SA-independent but EDS1-dependent and can be exacerbated by 

chloroplastic ROS signals. These data imply that there are distinct mechanisms and 

requirements for SA-independent cell death induction compared to SA-dependent 

propagation of cell death. This further implies that EDS1 is able to mediate different 

cell death signals (Figure 4.1). The complexity of such signalling events is 

demonstrated by investigations on the NADPH oxidase AtRbohD. AtRbohD provides 

the major source of ROS upon pathogen challenge and has been implicated in the 

negative regulation of SA-inducible RCD in lsd1 (Torres et al., 2002, 2005). Nudt7-

1/rbohD mutants exhibited similar quantities of cell death as nudt7-1 on both soil 

systems tested indicating that AtRbohD-generated ROS does not influence cell death 

initiation in nudt7-1 (Figure 3.7C and 3.11C). However, paraquat-induced cell death 

in nudt7-1 was largely suppressed in nudt7-1/rbohD (Figure 3.11C), suggesting that 

AtRbohD is required to relay oxidative stress signals leading to exacerbated cell death 

initiation in nudt7-1. This finding is supported by a recent study showing that 

AtRbohD is required to process ROS signals from the chloroplast (Joo et al., 2005). O3 

fumigation induces a chloroplastic oxidative burst in guard cells as well as lesioning 

in adjacent cells. It was suggested that chloroplast-derived ROS signals activate 

AtRbohD and AtRbohF that in turn induce cytoplasmic ROS production in 

neighbouring cells thereby contributing to cell death. The fact that AtRbohD 

contributes to cell death induction (data herein; Torres et al., 2002; Joo et al., 2005) 

but restricts RCD (Torres et al., 2005) reinforces the hypothesis that distinct signalling 

events induce and propagate cell death, respectively (Figure 4.1). 

Elucidation of such signalling events becomes even more complicated by the finding 

that EDS1 protein levels in the nudt7-1/rbohD mutant resembled the levels in nudt7-1 

plants (Figure 3.12C). Also, EDS1 protein levels similarly increased in nudt7-1 and 

nudt7-1/rbohD after paraquat treatment. From my study, it remains unclear whether 

EDS1 acts upstream or downstream of AtRbohD. EDS1 could either activate AtRbohD 

leading to cell death induction or EDS1 could be part of cell death execution as the 

result of AtRbohD activation by chloroplastic ROS. Alternatively, EDS1 and AtRbohD 
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could form a propagative loop, in which EDS1 perceives and potentiates ROS signals 

that are processed by AtRbohD and lead to EDS1-dependent cell death initiation in 

neighbouring cells (Figure 4.1). 

Studies on nudt7-1/rbohD also led to the conclusion that EDS1 mediates distinct 

signalling events causing oxidative stress induced cell death initiation and growth 

retardation. Growth retardation in response to paraquat treatment was fully dependent 

on EDS1 (Figure 3.11B). Nudt7-1/rbohD mutants retained oxidative stress-induced 

growth retardation while EDS1-dependent cell death initiation was suppressed in 

these mutants compared to nudt7-1 (Figure 3.11B and C). 

Although there are reports implicating EDS1 signalling events in 1O2-induced growth 

retardation and lesion formation (Ochsenbein et al., 2006), distinct EDS1 mediated 

responses resulting in these phenotypes have not been distinguished. By contrast, the 

study from Ochsenbein et al. (2006) and my work suggest that EDS1 might integrate 

different ROS signals to affect plant growth. 

 

4.4. SA limits EDS1-dependent cell death initiation 
 
The level of cell death in jiffy-soil-grown nudt7-1 and nudt7-1/sid2-1 plants was 

similar irrespective of oxidative stress treatment (Figure 3.11C) suggesting that cell 

death initiation is mediated by intrinsic EDS1-signalling independent of SA. SA-

independent initiation of cell death has been described for a number of SA 

accumulating constitutive defence mutants. The cpr5 (constitutive expression of PR 

genes 5), hrl1 (hypersensitive response-like 1), cet2 (constitutive expressor of THI1.2 

2) and cet4 mutants all display spontaneous lesioning that is not abolished by SA 

depletion (Bowling et al., 1997; Hilpert et al., 2001; Devadas et al., 2002; Nibbe et al., 

2002). Instead, hormonal crosstalk including SA, JA and ethylene signalling was 

shown to contribute to lesion formation in these mutants (Clarke et al., 2000; Hilpert 

et al., 2001; Devadas et al., 2002; Nibbe et al., 2002). Recently, it was reported that 

EDS1 promotes ethylene-dependent cell death initiation suggesting that EDS1 triggers 

distinct hormone signalling pathways (Mühlenbock et al., 2008). The impact of JA 

and ethylene signalling on cell death initiation of nudt7-1 and nudt7-1/sid2-1 has not 

been investigated yet. Crosses between nudt7-1, nudt7-1/sid2-1 and mutants impaired 

in JA/ethylene signalling will be performed to test whether JA/ethylene signalling 

impairs cell death initiation of nudt7-1 and nudt7-1/sid2-1. 
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Application of two soil systems to grow nudt7-1 and nudt7-1/sid2-1 plants led to 

contradictory results on the regulatory role of SA on cell death initiation in these 

mutants. SA accumulation routed via PAD4 and SID2 antagonizes spontaneous leaf 

cell death in soil-grown nudt7-1 plants (Figure 3.7). By contrast, cell death 

exacerbation in nudt7-1 and nudt7-1/sid2-1 upon oxidative stress induction was SA-

independent (Figure 3.11B). Therefore I hypothesize that paraquat-induced ROS 

signalling overrides a potential dampening regulatory role of SA in EDS1-dependent 

cell death initiation (Figure 4.1). SA is produced in the chloroplasts (Strawn et al., 

2007) and was shown to be essential for acclimation processes in response to high 

light and for regulation of the cellular redox homeostasis to prevent photo-oxidative 

damage (Mateo et al., 2006). Paraquat in turn induces light dependent O2
•− production 

in the PS I in the chloroplast (Babbs et al., 1989). Hence, inducing continuous 

oxidative stress by paraquat treatment might overcome the photo-protective role of 

SA and result in exacerbated cell death in nudt7-1 and nudt7-1/sid2-1.  

Importantly the results presented in Figure 3.11 demonstrate that paraquat-induced 

ROS overload did not trigger cell death and growth retardation in nudt7-1 per se but 

was the result of defined EDS1-mediated signalling. This is consistent with former 

studies suggesting that paraquat and 1O2 triggered cell death result from the activation 

of a genetic programme and is not caused by oxidative physiochemical damage (Chen 

and Dickman, 2004; Lee et al., 2007). 

 

4.5. H2O2 is an important component of paraquat-induced 

initiation of cell death 
 

Several studies described distinct signalling roles for O2
•− and H2O2 (Gadjev et al., 

2006; Laloi et al., 2006, 2007), and both ROS have been implicated in cell death 

induction (Jabs et al., 1996; Torres et al., 2002; Dat et al., 2003). In this work, I 

concluded a major signalling role for H2O2 in cell death initiation based on the results 

obtained with the nudt7-1/rbohD mutant. Several studies suggest a crucial role for 

AtRbohD-generated apoplastic H2O2 as intercellular signal causing intracellular H2O2 

accumulation (Torres et al., 2002; Kwak et al., 2003; Joo et al., 2005), as discussed 

above. Whether AtRbohD is also required for cell death initiation in nudt7-1/sid2-1 

mutants will require further analysis. Similar quantities of dead cells in nudt7-1 and 
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nud7-1/sid2-1 upon oxidative stress induction argue for an involvement of AtRbohD-

generated H2O2 in cell death initiation in nudt7-1/sid2-1. 

Strong H2O2 staining in response to oxidative stress treatment was shown to be SA-

dependent (Figure 3.11D). I concluded that SA tends to promote the accumulation of 

H2O2. This is supported by several studies describing a feed forward loop by which 

SA and H2O2 promote their production and inhibit scavenging, respectively (Chen et 

al., 1993; Leon et al., 1995; Klessig et al., 2000). The relative impact of SA and 

AtRbohD on oxidative stress-induced H2O2 accumulation in nudt7-1 does not become 

clear by my study. Quantification of SA in nudt7-1 and nudt7-1/rbohD upon paraquat 

treatment will be required for further conclusions on this issue.  

Alternatively, O2
•− could also act as signal independently of H2O2. Microarray data 

revealed that in soil-grown nudt7-1/sid2-1 plants up to 30 O2
•− marker genes are 

upregulated that are not affected in nudt7-1 (Supplemental Table 3b). It is remarkable 

that the first five O2
•− marker genes are within the ten most upregulated genes in 

nudt7-1/sid2-1, which indicates enhanced O2
•− stress. Investigations whether these 

genes are similarly upregulated in nudt7-1 and nudt7-1/sid2-1 plants after paraquat 

treatment could help to elucidate if O2
•− serves as signal molecule and is required for 

EDS1-dependent cell death initiation in nudt7-1 and nudt7-1/sid2-1. Such an 

experiment will be supplemented by O2
•− stainings of leaves from paraquat-treated 

plants.  

 

4.6. Transcriptomics reveal altered redox homeostasis and 

constitutive defence signalling in nudt7-1 and nudt7-1/sid2-1  
 
I performed gene expression microarray analysis to identify additional components 

involved in EDS1-mediated signalling. The EDS1-dependent phenotypes of nudt7-1 

and nudt7-1/sid2-1 offered the possibility to seek for genes that are particularly 

involved in oxidative stress signalling and cell death induction. Analysis of the 

performed gene expression microarrays exposed a large number of EDS1-dependent 

genes potentially affecting or involved in SA-mediated responses. I found that SA 

influences the expression of different ROS scavengers and ROS marker genes in 

nudt7-1 and nudt7-1/sid2-1 indicating that SA promotes H2O2 and antagonizes O2
•− 

accumulation (Table 3.2, Supplemental table 3b). This finding is consistent with 

previous studies revealing SA mediated suppression and activation of different ROS 
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scavengers. Transcript levels of SOD, that dismutates O2
•− to H2O2, were shown to 

increase in response to SA (Rajjou et al., 2006) while H2O2 scavengers were found to 

be suppressed (Klessig and Durner, 1996; Chamnongpol et al., 1998). Moreover, gene 

expression profiling of nudt7-1 and nudt7-1/sid2-1 mutants supported the impact of 

SA on cell death initiation as shown in Figures 3.7 and 3.11 and discussed in section 

4.4.  

Comparison with the dataset from Bartsch et al. (2006) revealed a problematic issue 

(Bartsch et al., 2006). The microarray analysis from Bartsch et al. (2006) identified 

EDS1- and PAD4-dependent genes after infection of Arabidopsis with Pst avrRPS4 

and Pst avrRPM1. The expression of a number of genes correlated well between both 

data sets supporting the initial hypothesis that differentially regulated genes in nudt7-1 

and nudt7-1/sid2-1 are expressed in an EDS1-dependent manner. The overlapping 

gene set comprises genes specifically induced by Pst avrRPS4 and Pst avrRPM1 but 

also genes suppressed by eds1 and pad4 in non-treated tissue. By contrast, these genes 

were found to be constitutively expressed in nudt7-1 and nudt7-1/sid2-1 suggesting a 

global induction of defence related genes. This finding implies that constitutive 

expression of such genes in nudt7-1 and nudt7-1/sid2-1 likely causes very indirect 

effects downstream of EDS1-induced transcriptional changes. Therefore, constitutive 

EDS1-signalling made it difficult to discriminate between genes acting in the EDS1 

pathway and genes that are activated as a result of EDS1-triggered responses. This 

complicated the further identification of EDS1 pathway components by analyzing the 

constitutive defence mutants nudt7-1 and nudt7-1/sid2-1. 

Gene expression profiling is in progress to investigate whether genes that are 

differentially regulated in nudt7-1 and nudt7-1/sid2-1 are also affected by JA/ethylene 

signalling pathways (Penninckx et al., 1998; Schenk et al., 2000; Pre et al., 2008). 

Research on this could provide a deeper insight into whether disturbed SA – 

JA/ethylene crosstalk might be involved in growth retardation and cell death initiation 

in nudt7-1 and nudt7-1/sid2-1 (as discussed in section 4.4).  

 

4.7. Positioning NUDT7 in the EDS1 pathway 
 
Bartsch et al. (2006) revealed that the eds1-2 mutation is epistatic to nudt7-1, 

positioning NUDT7 downstream of EDS1 in the signalling pathway. It remained 

elusive whether the antagonistic effect of SA on nudt7-1 growth retardation and cell 
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death initiation was also dependent on EDS1. I was able to confirm that the negative 

effects of SA on the nudt7-1 growth and cell death phenotype are EDS1-dependent by 

analysis of the nudt7-1/sid2-1/eds1-2 triple mutant (Figure 3.7). I concluded that 

EDS1 mediates two distinct signalling events that are both negatively regulated by 

NUDT7 (Figure 4.1). EDS1 induces the accumulation of SA leading to activation of 

defence responses (Feys et al., 2001) and, in addition, triggers a pathway that is 

negatively regulated by SA leading to the initiation of cell death and suppression of 

growth. Positioning NUDT7 downstream of EDS1 as a negative regulator is further 

supported by the fact that EDS1 transcript and protein levels are increased in the 

nudt7-1 mutant (Figure 3.3B and C). Despite the lack of information on the 

transcriptional level, the data showing that EDS1 protein levels are reduced in nudt7-

1/sid2-1 compared to nudt7-1 (Figure 3.12B) suggest that NUDT7 acts upstream of a 

positive feedback loop by which EDS1 promotes its own expression via SA.  
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Figure 4.1: Model of EDS1-mediated signalling events upon oxidative stress induction 
The model incorporates discussed results and hypotheses. Paraquat application activates EDS1-

signalling which is deregulated in the nudt7-1 mutant. Upon activation, EDS1 triggers distinct 

signalling events (  = positive regulation) leading to growth retardation, cell death and ROS 

accumulation. EDS1 signalling could be negatively regulated by NUDT7 at the branch point of distinct 

EDS1-triggered pathways (  = negative regulation). EDS1 signal relay results in SA accumulation 

which is involved in several responses: SA was suggested to modulate photosynthesis ( ) and 

suppress CAT activity thereby potentially acting antagonistically on EDS1 activation by ROS. SA and 

SA-dependent ROS generation might act in adjacent cells to trigger EDS1/PAD4-dependent run away 

cell death (RCD). Programmed cell death (PCD) in nudt7-1 is distinct from RCD and requires 

functional AtRbohD. Signals that activate AtRbohD could be derived from chloroplasts or from EDS1 

(dashed lines). EDS1 could also act downstream of AtRbohD and be involved in cell death execution. 

For further details see text. PM = plasma membrane  
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4.8. Summary and perspectives 
 

I have shown that the nudix hydrolase NUDT7 negatively regulates distinct EDS1-

mediated signalling branches governing growth retardation, SA-independent cell 

death initiation and SA-dependent ROS accumulation. NUDT7 is part of a plant stress 

inducible genetic programme and largely post-transcriptionally regulated by EDS1 in 

an indirect manner. Localization studies showed that NUDT7 is restricted to the 

cytosol suggesting that it exerts its function in this compartment.  

My work supports the view that MTI operates independently of the EDS1 pathway 

and provides evidence that NUDT7 is involved in the negative regulation of EDS1-

mediated post-invasive resistance. Furthermore, the data presented reinforce a role of 

EDS1 in oxidative stress signalling that underlies a negative regulatory effect of 

NUDT7. Exploring the roles of SA and the NADPH oxidase AtRbohD in EDS1-

dependent ROS signalling emphasize the existence of distinct mechanisms of plant 

cell death initiation and cell death propagation. 

 

The finding that NUDT7 transcripts are responsive to numerous abiotic and biotic 

stresses suggests a broader role for NUDT7 in regulation of plant stress responses. 

Identification of the in vivo substrate of NUDT7 and elucidating how NUDT7 is 

regulated at the transcriptional and post-transcriptional levels could help to evaluate 

how abiotic and biotic stress pathways are controlled.  

A major challenge for future studies will be to dissect how distinct ROS signals are 

integrated in the EDS1 pathway and transduced to cell death initiation and cell death 

propagation, respectively. Research on this theme could provide deeper insight into 

the poorly understood mechanisms of cell death control and its intersection with other 

stress and hormone response systems in plants. The fact that EDS1 triggers SA-

independent cell death prompts the question whether EDS1-dependent signalling 

engages other hormone pathways. Further analysis might help to understand 

mechanisms by which plants fine tune oxidative stress responses and defence 

signalling.  
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Supplemental data 
 
Supplemental Figure 1: Control samples infiltrated with MgCl2. 

(A) 4-week-old plants were vacuum-infiltrated with 10mM MgCl2. Leaf material was collected at the 

indicated time points and total RNA was extracted. Transcript levels were determined by quantitative 

real-time PCR using UBC21 (Ubiquitin Conjugating Enzyme 21) as reference gene. Error bars 

represent standard deviation (SD). Controls shown here correspond to the infection assays shown in 

Figure 3.4. 

(B) Leaf material was harvested after indicated time points and total protein was extracted. NUDT7 

protein was analysed on a Western blot with α-NUDT7 antibody. Ponceau staining served as loading 

control. 

(C) 3-5 leaves were taken at indicated time points after inoculation and stained with trypan blue to 

detect plant cell death. Bars = 200µm. 
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Supplemental Figure 2: Microsomal fractionation of NUDT7 protein in healthy and paraquat 

treated plant tissue.  

NUDT7 protein is exclusively soluble. Separation of healthy and paraquat-treated leaf tissue of 

indicated genotypes into soluble and microsomal fractions by ultracentrifugation. EDS1 and PEN1 

antibodies served as soluble and microsomal markers, respectively. Paraquat application was 

performed as described in Figure 3.11A. 

 

 
 
Supplemental Table 1: Gene lists of identified EDS1-dependent genes in nudt7-1 and nudt7-
1/sid2-1 
 
GROUP I genes - EDS1-dependent expressed genes, influenced by elevated SA    
     

Probe Set ID AGI Gene Title Gene Symbol 
Fold change 
nudt7-1 vs 

nudt7-1/eds1-2 
254975_at AT4G10500 oxidoreductase, 2OG-Fe(II) oxygenase family protein   155,59166 
249890_at AT5G22570 WRKY family transcription factor   67,463425 
263539_at AT2G24850 aminotransferase, putative   57,18438 
265161_at AT1G30900 vacuolar sorting receptor, putative AtELP6 27,282278 

256431_s_at 

AT3G11010 
/// 
AT5G27060 disease resistance family protein / LRR family protein   25,237722 

262832_s_at 

AT1G14870 
/// 
AT1G14880 expressed protein   22,483507 

253181_at AT4G35180 amino acid transporter family protein   19,147831 
264434_at AT1G10340 ankyrin repeat family protein   17,949308 
265067_at AT1G03850 glutaredoxin family protein   17,323801 
249754_at AT5G24530 oxidoreductase, 2OG-Fe(II) oxygenase family protein   16,99686 
247293_at AT5G64510 expressed protein   15,537856 
261443_at AT1G28480 glutaredoxin family protein   12,913411 

254741_s_at 

AT4G13900 
/// 
AT4G13920 pseudogene, similar to NL0D   12,168281 

248970_at AT5G45380 sodium:solute symporter family protein   11,899199 
257623_at AT3G26210 cytochrome P450 71B23, putative (CYP71B23)   10,188665 
266782_at AT2G29120 glutamate receptor family protein (GLR2.7)   9,826454 
255406_at AT4G03450 ankyrin repeat family protein   9,809719 
251673_at AT3G57240 beta-1,3-glucanase (BG3)   9,098922 
252098_at AT3G51330 aspartyl protease family protein   8,543597 
254093_at AT4G25110 latex-abundant family protein (AMC2) / caspase family protein   8,402632 
252681_at AT3G44350 no apical meristem (NAM) family protein   8,370337 
259757_at AT1G77510 protein disulfide isomerase, putative   8,298975 
259065_at AT3G07520 glutamate receptor family protein (GLR1.4)   8,235689 
256596_at AT3G28540 AAA-type ATPase family protein   8,226389 

257763_s_at 

AT3G23110 
/// 
AT3G23120 disease resistance family protein   8,013622 

257139_at AT3G28890 leucine-rich repeat family protein   7,4748297 
260904_at AT1G02450 NPR1/NIM1-interacting protein 1 (NIMIN-1) NIMIN-1 7,472151 
260068_at AT1G73805 calmodulin-binding protein   7,3701954 
252068_at AT3G51440 strictosidine synthase family protein   7,1232033 

260046_at 

AT1G73800 
/// 
AT1G73805 calmodulin-binding protein   7,0983357 

254229_at 

AT4G23610 
/// 
AT4G23620 expressed protein   7,084939 

257466_at AT1G62840 expressed protein   7,0068216 
253046_at AT4G37370 cytochrome P450, putative   6,5963297 
250302_at AT5G11920 glycosyl hydrolase family 32 protein   6,4958987 
267385_at AT2G44380 DC1 domain-containing protein   6,2432256 
257690_at AT3G12830 auxin-responsive family protein   6,068427 
248327_at AT5G52750 heavy-metal-associated domain-containing protein   5,7639055 
249743_at AT5G24540 glycosyl hydrolase family 1 protein   5,5688396 
256169_at AT1G51800 leucine-rich repeat protein kinase, putative   5,275979 
261692_at AT1G08450 calreticulin 3 (CRT3) CRT3 5,1273503 
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246098_at AT5G20400 oxidoreductase, 2OG-Fe(II) oxygenase family protein   5,119735 
265993_at AT2G24160 pseudogene, leucine rich repeat protein family   5,019295 
255912_at AT1G66960 lupeol synthase, putative / 2,3-oxidosqualene-triterpenoid cyclase, putative   4,9423046 
254253_at AT4G23320 protein kinase family protein   4,203093 
251840_at AT3G54960 thioredoxin family protein   4,1537275 
259534_at AT1G12290 disease resistance protein (CC-NBS-LRR class), putative   4,0247893 
259489_at AT1G15790 expressed protein   3,9911973 
257473_at AT1G33840 hypothetical protein   3,9187005 
249581_at AT5G37600 glutamine synthetase, putative   3,8499017 
250764_at AT5G05960 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   3,8053424 
250604_at AT5G07830 glycosyl hydrolase family 79 N-terminal domain-containing protein   3,7557356 
257745_at AT3G29240 expressed protein   3,7557232 
251970_at AT3G53150 UDP-glucoronosyl/UDP-glucosyl transferase family protein   3,708766 

249552_s_at 

AT5G38240 
/// 
AT5G38250 serine/threonine protein kinase, putative   3,6265843 

258984_at AT3G08970 DNAJ heat shock N-terminal domain-containing protein   3,5714397 
262902_x_at AT1G59930 hypothetical protein   3,5106525 

264223_s_at 

AT1G67520 
/// 
AT3G16030 lectin protein kinase family protein   3,413283 

265132_at AT1G23830 expressed protein   3,372987 
256252_at AT3G11340 UDP-glucoronosyl/UDP-glucosyl transferase family protein   3,3227258 
254245_at AT4G23240 protein kinase family protein   3,209699 
248263_at AT5G53370 pectinesterase family protein   3,1861053 
257101_at AT3G25020 disease resistance family protein   3,1832132 
260735_at AT1G17610 disease resistance protein-related   3,1261053 
267496_at AT2G30550 lipase class 3 family protein   3,1038127 
246524_at AT5G15860 expressed protein   3,0927036 
247448_at AT5G62770 expressed protein   3,0046136 
256962_at AT3G13560 glycosyl hydrolase family 17 protein   2,9818132 
255627_at AT4G00955 expressed protein   2,9582276 

250818_at AT5G04930 
phospholipid-transporting ATPase 1 / aminophospholipid flippase 1 / magnesium-
ATPase 1 (ALA1) ALA1 2,95518 

255564_s_at 

AT4G01750 
/// 
AT4G01770 expressed protein   2,8421776 

250689_at AT5G06610 expressed protein   2,838345 
255319_at AT4G04220 disease resistance family protein   2,6457455 
260148_at AT1G52800 oxidoreductase, 2OG-Fe(II) oxygenase family protein   2,417006 
245611_at AT4G14390 ankyrin repeat family protein   2,3640976 
247618_at AT5G60280 lectin protein kinase family protein   2,257037 

256308_s_at 

AT1G30410 
/// 
AT1G30420 ATP-binding cassette transport protein, putative   2,2280595 

245375_at AT4G17660 protein kinase, putative   2,1300125 
252383_at AT3G47780 ABC transporter family protein   2,1251478 
249397_at AT5G40230 nodulin-related   2,0112782 
263431_at AT2G22170 lipid-associated family protein   -2,3679373 
262312_at AT1G70830 Bet v I allergen family protein   -2,465771 

262661_s_at 

AT1G14230 
/// 
AT1G14250 nucleoside phosphatase family protein / GDA1/CD39 family protein   -2,52905 

265277_at AT2G28410 expressed protein   -2,5332708 

261149_s_at 

AT1G19550 
/// 
AT1G19570 dehydroascorbate reductase, putative   -2,5683665 

249732_at AT5G24420 glucosamine/galactosamine-6-phosphate isomerase-related   -3,3847506 
250565_at AT5G08000 glycosyl hydrolase family protein 17   -3,4175005 
254232_at AT4G23600 coronatine-responsive tyrosine aminotransferase / tyrosine transaminase   -3,5543911 

246573_at 

AT1G31680 
/// 
AT1G31690 copper amine oxidase family protein   -4,4254813 

259878_at AT1G76790 O-methyltransferase family 2 protein   -4,606544 
252345_at AT3G48640 expressed protein   -12,412946 

 
GROUP II genes - EDS1-dependent but SA-independent expressed genes    
      

Probe Set ID AGI Gene Title Gene 
Symbol 

Fold change 
nudt7-1 vs 

nudt7-1/eds1-
2 

Fold change 
nudt7-1/sid2-
1 vs nudt7-

1/sid2-
1/eds1-2 

251625_at AT3G57260 glycosyl hydrolase family 17 protein   918,25 1038,21 
252549_at AT3G45860 receptor-like protein kinase, putative   522,31 360,72 
252170_at AT3G50480 broad-spectrum mildew resistance RPW8 family protein   373,41 429,46 
266070_at AT2G18660 expansin family protein (EXPR3)   230,75 679,69 

254265_s_at 
AT4G23140 /// 
AT4G23160 receptor-like protein kinase 5 (RLK5)   143,10 131,46 

249417_at 
AT5G39670 /// 
AT5G39680 calcium-binding EF hand family protein   117,14 213,65 

254387_at AT4G21850 
methionine sulfoxide reductase domain-containing protein / SeIR domain-
containing protein   77,87 90,35 

267546_at AT2G32680 disease resistance family protein   76,45 80,02 

254385_s_at 
AT4G21830 /// 
AT4G21840 

methionine sulfoxide reductase domain-containing protein / SeIR domain-
containing protein   70,74 80,04 

256933_at AT3G22600 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   62,02 95,76 
264635_at AT1G65500 expressed protein   56,46 60,34 
254271_at AT4G23150 protein kinase family protein   54,04 25,81 
248322_at AT5G52760 heavy-metal-associated domain-containing protein   44,70 301,11 
259550_at AT1G35230 arabinogalactan-protein (AGP5) AGP5 43,77 38,13 
246405_at AT1G57630 disease resistance protein (TIR class), putative   40,42 80,22 
258203_at AT3G13950 expressed protein   38,90 55,62 
250445_at AT5G10760 aspartyl protease family protein   36,23 93,29 
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259385_at AT1G13470 expressed protein   35,95 37,70 
266017_at AT2G18690 expressed protein   33,10 57,11 
255341_at AT4G04500 protein kinase family protein   31,80 46,38 

252921_at AT4G39030 
enhanced disease susceptibility 5 (EDS5) / salicylic acid induction 
deficient 1 (SID1) 

EDS5/SID
1 31,49 45,94 

255941_at AT1G20350 mitochondrial import inner membrane translocase subunit Tim17, putative   30,06 18,06 

247314_at AT5G64000 
3'(2'),5'-bisphosphate nucleotidase, putative / inositol polyphosphate 1-
phosphatase, putative   29,95 25,19 

255630_at AT4G00700 C2 domain-containing protein   27,97 23,19 
248932_at AT5G46050 proton-dependent oligopeptide transport (POT) family protein   27,70 29,15 
246302_at AT3G51860 cation exchanger, putative (CAX3)   27,24 40,02 
252908_at AT4G39670 expressed protein   25,88 48,03 
259507_at AT1G43910 AAA-type ATPase family protein   25,86 45,92 
257100_at AT3G25010 disease resistance family protein   25,83 17,56 
260116_at AT1G33960 avirulence-responsive protein / avirulence induced gene (AIG1)   24,26 51,37 
252136_at AT3G50770 calmodulin-related protein, putative   23,27 120,30 
250286_at AT5G13320 auxin-responsive GH3 family protein   23,10 46,39 
252417_at AT3G47480 calcium-binding EF hand family protein   22,41 66,75 
257061_at AT3G18250 expressed protein   21,00 49,61 

265597_at 
AT2G20142 /// 
AT2G20145 Toll-Interleukin-Resistance (TIR) domain-containing protein   20,70 27,75 

254101_at AT4G25000 alpha-amylase, putative / 1,4-alpha-D-glucan glucanohydrolase, putative   20,47 38,63 
258277_at AT3G26830 cytochrome P450 71B15, putative (CYP71B15)   18,25 51,69 
252131_at AT3G50930 AAA-type ATPase family protein   18,19 23,50 
249896_at AT5G22530 expressed protein   17,34 22,37 
260919_at AT1G21525 expressed protein   16,77 65,05 
255340_at AT4G04490 protein kinase family protein   16,38 15,32 

246927_s_at 
AT5G25250 /// 
AT5G25260 expressed protein   16,31 38,40 

259410_at AT1G13340 expressed protein   15,50 22,82 
262177_at AT1G74710 isochorismate synthase 1 (ICS1) / isochorismate mutase ICS1 13,58 35,65 

262930_at AT1G65690 
harpin-induced protein-related / HIN1-related / harpin-responsive protein-
related   13,16 14,46 

264648_at AT1G09080 luminal binding protein 3 (BiP-3) (BP3) BiP-3/BP3 13,01 8,50 
250435_at AT5G10380 zinc finger (C3HC4-type RING finger) family protein   12,56 12,41 
256337_at AT1G72060 expressed protein   12,24 19,10 
249889_at AT5G22540 expressed protein   11,57 7,69 
267300_at AT2G30140 UDP-glucoronosyl/UDP-glucosyl transferase family protein   11,41 5,84 

253776_at AT4G28390 
ADP, ATP carrier protein, mitochondrial, putative / ADP/ATP 
translocase, putative / adenine nucleotide translocator, putative   11,30 13,24 

255479_at AT4G02380 late embryogenesis abundant 3 family protein / LEA3 family protein   10,82 21,16 
263536_at AT2G25000 WRKY family transcription factor   10,57 8,58 
247071_at AT5G66640 LIM domain-containing protein-related   10,53 7,44 
254252_at AT4G23310 receptor-like protein kinase, putative   10,41 7,44 
252060_at AT3G52430 phytoalexin-deficient 4 protein (PAD4) pad4 10,22 19,14 
248551_at AT5G50200 expressed protein   10,16 13,79 
265723_at AT2G32140 disease resistance protein (TIR class), putative   10,08 18,07 
248321_at AT5G52740 heavy-metal-associated domain-containing protein   9,93 19,73 
266292_at AT2G29350 tropinone reductase, putative / tropine dehydrogenase, putative   9,60 12,67 

261450_s_at 
AT1G21110 /// 
AT1G21120 O-methyltransferase, putative   9,40 19,57 

253268_s_at 
AT4G34131 /// 
AT4G34135 UDP-glucoronosyl/UDP-glucosyl transferase family protein   8,98 8,75 

250994_at AT5G02490 heat shock cognate 70 kDa protein 2 (HSC70-2) (HSP70-2)   8,96 11,33 
254660_at AT4G18250 receptor serine/threonine kinase, putative   8,85 9,05 
249867_at AT5G23020 2-isopropylmalate synthase 2 (IMS2) IMS2 8,58 3,32 
265853_at AT2G42360 zinc finger (C3HC4-type RING finger) family protein   8,42 7,52 
261934_at AT1G22400 UDP-glucoronosyl/UDP-glucosyl transferase family protein   8,32 18,93 
258362_at AT3G14280 expressed protein   8,23 7,08 
260005_at AT1G67920 expressed protein   8,22 9,65 
255596_at AT4G01720 WRKY family transcription factor   8,16 8,50 
247327_at AT5G64120 peroxidase, putative   8,10 8,06 
260551_at AT2G43510 trypsin inhibitor, putative   7,73 16,19 
259502_at AT1G15670 kelch repeat-containing F-box family protein   7,70 10,17 
254243_at AT4G23210 protein kinase family protein   7,61 10,20 
259841_at AT1G52200 expressed protein   7,60 9,96 
247594_at AT5G60800 heavy-metal-associated domain-containing protein   7,45 8,20 

262119_s_at 
AT1G02920 /// 
AT1G02930 glutathione S-transferase, putative   7,38 14,15 

252572_at AT3G45290 seven transmembrane MLO family protein / MLO-like protein 3 (MLO3)   7,27 4,00 
251054_at AT5G01540 lectin protein kinase, putative   7,24 5,75 
251884_at AT3G54150 embryo-abundant protein-related   7,21 14,30 
247740_at AT5G58940 protein kinase family protein   7,21 3,36 
249481_at AT5G38900 DSBA oxidoreductase family protein   7,18 12,32 
265658_at AT2G13810 aminotransferase class I and II family protein   7,14 18,08 
264590_at AT2G17710 expressed protein   7,07 10,99 
246368_at AT1G51890 leucine-rich repeat protein kinase, putative   7,05 4,18 
260015_at AT1G67980 caffeoyl-CoA 3-O-methyltransferase, putative   7,01 29,34 
264400_at AT1G61800 glucose-6-phosphate/phosphate translocator, putative   6,91 13,83 
258941_at AT3G09940 monodehydroascorbate reductase, putative   6,91 6,92 
256366_at AT1G66880 serine/threonine protein kinase family protein   6,82 10,53 
257185_at AT3G13100 ABC transporter family protein   6,77 6,10 
256940_at AT3G30720 expressed protein   6,74 7,75 
260648_at AT1G08050 zinc finger (C3HC4-type RING finger) family protein   6,60 4,13 
256877_at AT3G26470 expressed protein   6,44 31,40 
259852_at AT1G72280 endoplasmic reticulum oxidoreductin 1 (ERO1) family protein   6,43 4,41 
262542_at AT1G34180 no apical meristem (NAM) family protein   6,36 5,82 
249346_at AT5G40780 lysine and histidine specific transporter, putative   6,35 8,59 
248083_at AT5G55420     6,24 11,86 
248298_at AT5G53110 expressed protein   6,19 4,76 
255259_at AT4G05020 NADH dehydrogenase-related   6,06 3,18 
254247_at AT4G23260 protein kinase family protein   6,04 6,02 
261005_at AT1G26420 FAD-binding domain-containing protein   6,02 8,98 
251422_at AT3G60540 sec61beta family protein   5,97 6,64 
266267_at AT2G29460 glutathione S-transferase, putative   5,91 32,23 
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249188_at AT5G42830 transferase family protein   5,86 4,82 
261021_at AT1G26380 FAD-binding domain-containing protein   5,83 20,96 
256874_at AT3G26320 cytochrome P450 71B36, putative (CYP71B36)   5,73 7,39 
256012_at AT1G19250 flavin-containing monooxygenase family protein / FMO family protein   5,69 76,12 
265189_at AT1G23840 expressed protein   5,66 5,20 

261986_s_at 
AT1G33720 /// 
AT1G33730 cytochrome P450, putative   5,64 8,02 

260179_at AT1G70690 kinase-related   5,64 4,59 
259033_at AT3G09410 pectinacetylesterase family protein   5,45 12,03 
263401_at AT2G04070 MATE efflux family protein   5,43 3,19 
260239_at AT1G74360 leucine-rich repeat transmembrane protein kinase, putative   5,40 4,47 
267483_at AT2G02810 UDP-galactose/UDP-glucose transporter   5,38 6,33 
261449_at AT1G21120 O-methyltransferase, putative   5,31 5,92 
246260_at AT1G31820 amino acid permease family protein   5,29 9,60 
251400_at AT3G60420 expressed protein   5,27 9,93 
249096_at AT5G43910 pfkB-type carbohydrate kinase family protein   5,19 6,70 

259937_s_at 
AT1G71330 /// 
AT3G13080 ABC transporter family protein   5,00 4,00 

254833_s_at 
AT4G12280 /// 
AT4G12290 copper amine oxidase family protein   4,97 7,24 

247493_at AT5G61900 copine BONZAI1 (BON1) BON1 4,89 7,37 
260225_at AT1G74590 glutathione S-transferase, putative   4,82 19,54 
252421_at AT3G47540 chitinase, putative   4,78 5,45 
255243_at AT4G05590 expressed protein   4,66 4,14 
245038_at AT2G26560 patatin, putative   4,64 23,40 
257591_at AT3G24900 disease resistance family protein / LRR family protein   4,63 2,91 
262085_at AT1G56060 expressed protein   4,60 8,14 
266167_at AT2G38860 proteaseI (pfpI)-like protein (YLS5)   4,57 9,66 
267567_at AT2G30770 cytochrome P450 71A13, putative (CYP71A13)   4,43 5,13 
259559_at AT1G21240 wall-associated kinase, putative WAK3 4,39 6,15 

258259_s_at 
AT3G26820 /// 
AT3G26840 esterase/lipase/thioesterase family protein   4,34 7,20 

266474_at AT2G31110 expressed protein   4,30 3,52 
252977_at AT4G38560 expressed protein   4,23 5,06 
251790_at AT3G55470 C2 domain-containing protein   4,21 9,84 
251769_at AT3G55950 protein kinase family protein   4,13 5,41 
249377_at AT5G40690 expressed protein   4,10 5,10 
256576_at AT3G28210 zinc finger (AN1-like) family protein   3,82 2,98 
256969_at AT3G21080 ABC transporter-related   3,74 6,07 
251633_at AT3G57460 expressed protein   3,69 4,27 
256883_at AT3G26440 expressed protein   3,67 5,11 
248333_at AT5G52390 photoassimilate-responsive protein, putative   3,64 38,91 
254409_at AT4G21400 protein kinase family protein   3,55 5,33 
254573_at AT4G19420 pectinacetylesterase family protein   3,50 5,88 
254178_at AT4G23880 expressed protein   3,50 3,16 
246842_at AT5G26731 expressed protein   3,49 4,27 
245788_at AT1G32120 expressed protein   3,34 3,03 

256451_s_at 
AT1G75170 /// 
AT5G04780 

SEC14 cytosolic factor family protein / phosphoglyceride transfer family 
protein   3,21 4,62 

256989_at AT3G28580 AAA-type ATPase family protein   3,20 4,46 
255430_at AT4G03320 chloroplast protein import component-related   3,07 5,03 
254735_at AT4G13810 disease resistance family protein / LRR family protein   3,03 2,89 
256245_at AT3G12580 heat shock protein 70, putative / HSP70, putative   2,80 3,26 
261216_at AT1G33030 O-methyltransferase family 2 protein   2,79 11,64 
248060_at AT5G55560 protein kinase family protein   2,75 3,67 
252309_at AT3G49340 cysteine proteinase, putative   2,64 26,66 
261476_at AT1G14480 ankyrin repeat family protein   2,62 2,99 
252827_at AT4G39950 cytochrome P450 79B2, putative (CYP79B2)   2,53 3,98 
254723_at AT4G13510 ammonium transporter 1, member 1 (AMT1.1) AMT1.1 2,51 3,15 
264574_at AT1G05300 metal transporter, putative (ZIP5)   2,46 3,12 
249494_at AT5G39050 transferase family protein   2,43 2,95 
249988_at AT5G18310 expressed protein   2,42 2,99 
257939_at AT3G19930 sugar transport protein (STP4) STP4 2,34 2,16 
254524_at AT4G20000 VQ motif-containing protein   2,25 3,53 

256376_s_at 
AT1G66690 /// 
AT1G66700 S-adenosyl-L-methionine:carboxyl methyltransferase family protein   2,24 6,95 

248916_at AT5G45840 leucine-rich repeat transmembrane protein kinase, putative   2,22 7,14 
249770_at AT5G24110 WRKY family transcription factor   2,20 2,12 
260581_at AT2G47190 myb family transcription factor (MYB2)   2,16 2,48 
262703_at AT1G16510 auxin-responsive family protein   2,00 2,91 
254791_at AT4G12910 serine carboxypeptidase S10 family protein   -2,27 -2,52 
256441_at AT3G10940 protein phosphatase-related   -2,34 -3,15 
253331_at AT4G33490 nucellin protein, putative   -2,38 -4,30 
262891_at AT1G79460 ent-kaurene synthase / ent-kaurene synthetase B (KS) (GA2) GA2 -2,42 -5,61 
245657_at AT1G56720 protein kinase family protein   -2,67 -2,96 
251856_at AT3G54720 glutamate carboxypeptidase, putative  (AMP1)   -2,89 -3,04 
253254_at AT4G34650 farnesyl-diphosphate farnesyltransferase 2 / squalene synthase 2 (SQS2) SQS2 -2,89 -4,03 
261826_at AT1G11580 pectin methylesterase, putative   -3,15 -3,65 
264987_at AT1G27030 expressed protein   -3,20 -4,63 
258901_at AT3G05640 protein phosphatase 2C, putative / PP2C, putative   -3,82 -5,18 
263574_at AT2G16990 expressed protein   -4,19 -6,76 
263497_at AT2G42540 cold-responsive protein / cold-regulated protein (cor15a) cor15a -4,42 -5,57 
257254_at AT3G21950 S-adenosyl-L-methionine:carboxyl methyltransferase family protein   -4,53 -4,79 
261428_at AT1G18870 isochorismate synthase, putative / isochorismate mutase, putative   -4,71 -5,87 
264741_at AT1G62290 aspartyl protease family protein   -5,57 -7,28 
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GROUP III genes - EDS1-dependent expressed genes, influenced by depleted SA   
     

Probe Set ID AGI Gene Title Gene Symbol 

Fold change 
nudt7-1sid2-1] vs 

nudt7-1/sid2-
1/eds1-2 

257365_x_at AT2G26020 plant defensin-fusion protein, putative (PDF1.2b)   113,63386 
263979_at AT2G42840 protodermal factor 1 (PDF1)   93,09208 
265471_at AT2G37130 peroxidase 21 (PER21) (P21) (PRXR5) (ATP2a) 75,42882 
249052_at AT5G44420 plant defensin protein, putative (PDF1.2a)   62,223446 
267459_at AT2G33850 expressed protein   61,612915 
258675_at AT3G08770 lipid transfer protein 6 (LTP6) LTP6 52,615093 
259009_at AT3G09260 glycosyl hydrolase family 1 protein   50,05208 
245393_at AT4G16260 glycosyl hydrolase family 17 protein   49,800003 
253753_at AT4G29030 glycine-rich protein   47,666348 
263783_at AT2G46400 WRKY family transcription factor   44,11368 
258100_at AT3G23550 MATE efflux family protein   35,806293 
258059_at AT3G29035 no apical meristem (NAM) family protein   34,41309 
252265_at AT3G49620 2-oxoacid-dependent oxidase, putative (DIN11) DIN11 34,204533 
259925_at AT1G75040 pathogenesis-related protein 5 (PR-5) PR-5 27,620285 
261459_at AT1G21100 O-methyltransferase, putative   23,763609 
254327_at AT4G22490 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   22,966476 
260881_at AT1G21550 calcium-binding protein, putative   21,67051 
245688_at AT1G28290 pollen Ole e 1 allergen and extensin family protein   20,462524 
249813_at AT5G23940 transferase family protein   19,963556 
245317_at AT4G15610 integral membrane family protein   19,362165 
245193_at AT1G67810 Fe-S metabolism associated domain-containing protein   19,35344 
248807_at AT5G47500 pectinesterase family protein   19,304106 
263565_at AT2G15390 xyloglucan fucosyltransferase, putative (FUT4) FUT4 16,961695 
258791_at AT3G04720 hevein-like protein (HEL) HEL 15,132321 
252993_at AT4G38540 monooxygenase, putative (MO2) MO2 14,954497 
259850_at AT1G72240 expressed protein   14,923575 
246687_at AT5G33370 GDSL-motif lipase/hydrolase family protein   14,591388 
247573_at AT5G61160 transferase family protein   13,904214 
254805_at AT4G12480 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   13,797929 
266223_at AT2G28790 osmotin-like protein, putative   13,629877 
260783_at AT1G06160 ethylene-responsive factor, putative   13,6108675 
264514_at AT1G09500 cinnamyl-alcohol dehydrogenase family / CAD family   13,404583 
249197_at AT5G42380 calmodulin-related protein, putative   13,093036 
258589_at AT3G04290 GDSL-motif lipase/hydrolase family protein   13,0818405 
245401_at AT4G17670 senescence-associated protein-related   12,651897 
250575_at AT5G08240 expressed protein   12,485031 
260560_at AT2G43590 chitinase, putative   11,88118 

259382_s_at 
AT3G16420 /// 
AT3G16430 jacalin lectin family protein   11,650177 

258682_at AT3G08720 serine/threonine protein kinase (PK19)   11,014786 
245976_at AT5G13080 WRKY family transcription factor   10,692817 
266415_at AT2G38530 nonspecific lipid transfer protein 2 (LTP2) LTP2 10,096741 
245739_at AT1G44110 cyclin, putative   9,871839 
258376_at AT3G17680 expressed protein   9,768558 

259391_s_at 
AT1G06350 /// 
AT1G06360 fatty acid desaturase family protein   9,52829 

267565_at AT2G30750 cytochrome P450 71A12, putative (CYP71A12)   8,940427 
260297_at AT1G80280 hydrolase, alpha/beta fold family protein   8,874629 
259655_at AT1G55210 disease resistance response protein-related/ dirigent protein-related   8,758764 
256125_at AT1G18250 thaumatin, putative   8,741172 
260948_at AT1G06100 fatty acid desaturase family protein   8,687121 
258480_at AT3G02640 expressed protein   8,537933 
262040_at AT1G80080 leucine-rich repeat family protein   8,353576 

263153_s_at 
AT1G54000 /// 
AT1G54010 myrosinase-associated protein, putative   8,319827 

246214_at AT4G36990 heat shock factor protein 4 (HSF4) / heat shock transcription factor 4 (HSTF4)   8,226794 

264524_at AT1G10070 
branched-chain amino acid aminotransferase 2 / branched-chain amino acid 
transaminase 2 (BCAT2) BCAT2 7,975753 

247266_at AT5G64570 glycosyl hydrolase family 3 protein   7,7230954 
264261_at AT1G09240 nicotianamine synthase, putative   7,6933303 
246920_at AT5G25090 plastocyanin-like domain-containing protein   7,503981 
249942_at AT5G22300 nitrilase 4 (NIT4) NIT4 7,231743 
254818_at AT4G12470 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   7,213024 
261927_at AT1G22500 zinc finger (C3HC4-type RING finger) family protein   7,212768 

251176_at AT3G63380 
calcium-transporting ATPase, plasma membrane-type, putative / Ca(2+)-ATPase, 
putative (ACA12) ACA12 7,153207 

257203_at AT3G23730 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative   7,117325 

245349_at AT4G16690 esterase/lipase/thioesterase family protein   7,1047072 
248912_at AT5G45670 GDSL-motif lipase/hydrolase family protein   7,0539327 
266655_at AT2G25880 serine/threonine protein kinase, putative   6,813193 
258395_at AT3G15500 no apical meristem (NAM) family protein (NAC3)   6,5670695 
258895_at AT3G05600 epoxide hydrolase, putative   6,5499644 
261394_at AT1G79680 wall-associated kinase, putative   6,4141207 
264377_at AT2G25060 plastocyanin-like domain-containing protein   6,3888874 

255433_at AT4G03210 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative   6,34995 

263475_at AT2G31945 expressed protein   6,3483076 
260592_at AT1G55850 cellulose synthase family protein   6,3039527 
248100_at AT5G55180 glycosyl hydrolase family 17 protein   6,1964536 

249659_s_at 
AT5G36710 /// 
AT5G36800 expressed protein   6,187364 

246505_at AT5G16250 expressed protein   6,087555 
259327_at AT3G16460 jacalin lectin family protein   6,0272646 
245181_at AT5G12420 expressed protein   5,915852 
248963_at AT5G45700 NLI interacting factor (NIF) family protein   5,865953 
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247882_at AT5G57785 expressed protein   5,8200994 
257134_at AT3G12870 expressed protein   5,7820983 
264746_at AT1G62300 WRKY family transcription factor   5,6205516 
255460_at AT4G02800 expressed protein   5,5989056 
262229_at AT1G68620 expressed protein   5,593891 
256243_at AT3G12500 basic endochitinase   5,5636654 
262840_at AT1G14900 high-mobility-group protein / HMG-I/Y protein   5,510773 
265572_at AT2G28210 carbonic anhydrase family protein   5,424906 
248829_at AT5G47130 Bax inhibitor-1 family / BI-1 family   5,3021135 
257005_at AT3G14190 expressed protein   5,245827 
253754_at AT4G29020 glycine-rich protein   5,240828 
264802_at AT1G08560 syntaxin-related protein KNOLLE (KN) / syntaxin 111 (SYP111)   5,2048078 
264901_at AT1G23090 sulfate transporter, putative   5,163023 
257636_at AT3G26200 cytochrome P450 71B22, putative (CYP71B22)   5,140558 
246099_at AT5G20230 plastocyanin-like domain-containing protein   5,0799804 
245343_at AT4G15830 expressed protein   5,035937 
245885_at AT5G09440 phosphate-responsive protein, putative   5,0250545 
256832_at AT3G22880 meiotic recombination protein, putative   5,0216208 

263948_at AT2G35980 
harpin-induced family protein (YLS9) / HIN1 family protein / harpin-responsive 
family protein   4,972025 

253340_s_at 
AT4G33260 /// 
AT4G33270 WD-40 repeat family protein FZR 4,9477406 

250054_at AT5G17860 cation exchanger, putative (CAX7)   4,9462395 
247819_at AT5G58350 protein kinase family protein   4,836051 
247429_at AT5G62620 galactosyltransferase family protein   4,8341956 
266613_at AT2G14900 gibberellin-regulated family protein   4,80476 
260840_at AT1G29050 expressed protein   4,7627673 
257206_at AT3G16530 legume lectin family protein   4,7529316 
251847_at AT3G54640 tryptophan synthase, alpha subunit (TSA1) TSA1 4,7093797 
258813_at AT3G04060 no apical meristem (NAM) family protein   4,682705 
250891_at AT5G04530 beta-ketoacyl-CoA synthase family protein   4,6549635 
253636_at AT4G30500 expressed protein   4,6416616 
254384_at AT4G21870 26.5 kDa class P-related heat shock protein (HSP26.5-P) hsp26.5-P 4,6358023 
264160_at AT1G65450 transferase family protein   4,588639 
251304_at AT3G61990 O-methyltransferase family 3 protein   4,552665 
257950_at AT3G21780 UDP-glucoronosyl/UDP-glucosyl transferase family protein   4,5489597 
260391_at AT1G74020 strictosidine synthase family protein   4,5457845 
266988_at AT2G39310 jacalin lectin family protein   4,4917445 
262819_at AT1G11600 cytochrome P450, putative   4,4649425 
264319_at AT1G04110 subtilase family protein   4,4648404 
263807_at AT2G04400 indole-3-glycerol phosphate synthase (IGPS) IGPS 4,447728 
262543_at AT1G34245 expressed protein   4,3635163 
261366_at AT1G53100 glycosyltransferase family 14 protein / core-2/I-branching enzyme family protein   4,333326 
249060_at AT5G44560 SNF7 family protein   4,2466583 
257191_at AT3G13175 expressed protein   4,1785545 
264467_at AT1G10140 expressed protein   4,1760783 
264645_at AT1G08940 phosphoglycerate/bisphosphoglycerate mutase family protein   4,1260204 
246565_at AT5G15530 biotin carboxyl carrier protein 2 (BCCP2) BCCP2 4,1026106 
245523_at AT4G15910 drought-responsive protein / drought-induced protein (Di21)   4,0974784 
260077_at AT1G73620 thaumatin-like protein, putative / pathogenesis-related protein, putative   4,087135 
263963_at AT2G36080 DNA-binding protein, putative   4,085769 
258201_at AT3G13910 expressed protein   4,0403013 
251065_at AT5G01870 lipid transfer protein, putative   4,0344515 
251109_at AT5G01600 ferritin 1 (FER1) FER1 3,9440389 
265053_at AT1G52000 jacalin lectin family protein   3,938255 

266401_s_at 
AT2G38620 /// 
AT3G54180 cell divsion control protein, putative   3,9005573 

264007_at AT2G21140 hydroxyproline-rich glycoprotein family protein   3,8951776 
245662_at AT1G28190 expressed protein   3,8863041 
246184_at AT5G20950 glycosyl hydrolase family 3 protein   3,8574057 
267349_at AT2G40010 60S acidic ribosomal protein P0 (RPP0A)   3,82283 
253285_at AT4G34250 fatty acid elongase, putative FAE1 3,8186395 
255732_at AT1G25450 very-long-chain fatty acid condensing enzyme, putative   3,8112886 

259730_at AT1G77660 
MORN (Membrane Occupation and Recognition Nexus) repeat-containing protein 
/phosphatidylinositol-4-phosphate 5-kinase-related   3,8096619 

253358_at AT4G32940 vacuolar processing enzyme gamma / gamma-VPE   3,8034008 
256981_at AT3G13380 leucine-rich repeat family protein / protein kinase family protein   3,744521 
258859_at AT3G02120 hydroxyproline-rich glycoprotein family protein   3,7051547 
262109_at AT1G02730 cellulose synthase family protein   3,6751685 
265117_at AT1G62500 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein   3,6592908 
257318_at AT2G07777 expressed protein   3,626681 
257264_at AT3G22060 receptor protein kinase-related   3,6034315 
258487_at AT3G02550 LOB domain protein 41 / lateral organ boundaries domain protein 41 (LBD41) LBD41 3,6004925 

254190_at 
AT4G23885 /// 
AT4G23890 expressed protein   3,559391 

261859_at AT1G50490 ubiquitin-conjugating enzyme 20 (UBC20) UBC20 3,5556233 
253403_at AT4G32830 protein kinase, putative   3,547329 
250738_at AT5G05730 anthranilate synthase, alpha subunit, component I-1 (ASA1) ASA1 3,5162916 
250437_at AT5G10430 arabinogalactan-protein (AGP4) AGP4 3,506925 
253480_at AT4G31840 plastocyanin-like domain-containing protein   3,5041928 

247945_at 
AT5G57140 /// 
AT5G57150 calcineurin-like phosphoesterase family protein   3,4681735 

266581_at AT2G46140 late embryogenesis abundant protein, putative / LEA protein, putative   3,456012 
254333_at AT4G22753 sterol desaturase family protein   3,38973 
251982_at AT3G53190 pectate lyase family protein   3,3690946 
246831_at AT5G26340 hexose transporter, putative   3,3312767 
248320_at AT5G52720 heavy-metal-associated domain-containing protein   3,3147497 
260472_at AT1G10990 expressed protein   3,3134885 
251282_at AT3G61630 AP2 domain-containing transcription factor, putative   3,3120866 
262366_at AT1G72890 disease resistance protein (TIR-NBS class), putative   3,2793896 
249775_at AT5G24160 squalene monooxygenase 1,2 / squalene epoxidase 1,2 (SQP1,2) SQP1,2 3,2468727 
265028_at AT1G24530 transducin family protein / WD-40 repeat family protein   3,216285 
249187_at AT5G43060 cysteine proteinase, putative / thiol protease, putative   3,1417103 
249125_at AT5G43450 2-oxoglutarate-dependent dioxygenase, putative   3,1343665 
259735_at AT1G64405 expressed protein   3,1300576 
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249408_at AT5G40330 myb family transcription factor   3,0985484 
252050_at AT3G52550 hypothetical protein   3,086277 
258217_at AT3G18000 phosphoethanolamine N-methyltransferase 1 / PEAMT 1 (NMT1) PEAMT1 3,0359042 
250661_at AT5G07030 aspartyl protease family protein   3,0114396 
259618_at AT1G48000 myb family transcription factor   3,0030928 
248230_at AT5G53830 VQ motif-containing protein   2,9863322 

263404_s_at 
AT2G04090 /// 
AT2G04100 MATE efflux family protein   2,9506738 

266996_at AT2G34490 cytochrome P450 family protein   2,933073 
267618_at AT2G26760 cyclin, putative   2,9270887 
258067_at AT3G25980 mitotic spindle checkpoint protein, putative (MAD2)   2,9077404 
259235_at AT3G11600 expressed protein   2,894835 

262939_s_at 
AT1G16300 /// 
AT1G79530 

glyceraldehyde 3-phosphate dehydrogenase, cytosolic, putative / NAD-dependent 
glyceraldehyde-3-phosphate dehydrogenase, putative   2,8880095 

253163_at AT4G35750 Rho-GTPase-activating protein-related   2,873761 
246247_at AT4G36640 SEC14 cytosolic factor family protein / phosphoglyceride transfer family protein   2,8714268 
253357_at AT4G33400 dem protein-related / defective embryo and meristems protein-related   2,8536534 
258218_at AT3G18000 phosphoethanolamine N-methyltransferase 1 / PEAMT 1 (NMT1) PEAMT1 2,8394563 
263496_at AT2G42570 expressed protein   2,836137 
260546_at AT2G43520 trypsin inhibitor, putative   2,812299 
267402_at AT2G26180 calmodulin-binding family protein   2,8075106 
260897_at AT1G29330 ER lumen protein retaining receptor (ERD2) / HDEL receptor ERD2 2,7851985 
258962_at AT3G10570 cytochrome P450, putative   2,7811532 
258107_at AT3G23560 MATE efflux family protein   2,7676818 

260166_at AT1G79840 
homeobox-leucine zipper protein 10 (HB-10) / HD-ZIP transcription factor 10 / 
homeobox protein (GLABRA2) GLABRA2 2,75716 

247835_at AT5G57910 expressed protein   2,749133 
264588_at AT2G17730 zinc finger (C3HC4-type RING finger) family protein   2,7475617 
251284_at AT3G61840 expressed protein   2,7343078 
246133_at AT5G20960 aldehyde oxidase 1 (AAO1) AO1 2,7332864 
251846_at AT3G54560 histone H2A.F/Z   2,71942 
264894_at AT1G23040 hydroxyproline-rich glycoprotein family protein   2,714337 
248118_at AT5G55050 GDSL-motif lipase/hydrolase family protein   2,7005618 
266352_at AT2G01610 invertase/pectin methylesterase inhibitor family protein   2,6966934 
260565_at AT2G43800 formin homology 2 domain-containing protein / FH2 domain-containing protein   2,6896958 
259429_at AT1G01600 cytochrome P450, putative   2,6880546 
253162_at AT4G35630 phosphoserine aminotransferase, chloroplast (PSAT) PSAT 2,6715658 
262870_at AT1G64710 alcohol dehydrogenase, putative ADH 2,671544 
251643_at AT3G57550 guanylate kinase 2 (GK-2)   2,659305 
249258_at AT5G41650 lactoylglutathione lyase family protein / glyoxalase I family protein   2,6573257 
262667_at AT1G62810 copper amine oxidase, putative   2,6540356 
260635_at AT1G62420 expressed protein   2,6509051 
251750_at AT3G55710 UDP-glucoronosyl/UDP-glucosyl transferase family protein   2,6480224 
264763_at AT1G61450 expressed protein   2,6135952 
263831_at AT2G40300 ferritin, putative   2,6095965 
250983_at AT5G02780 In2-1 protein, putative In2-1 2,584124 
260060_at AT1G73680 pathogen-responsive alpha-dioxygenase, putative   2,5831368 
258803_at AT3G04670 WRKY family transcription factor   2,5639384 

260531_at AT2G47240 
long-chain-fatty-acid--CoA ligase family protein / long-chain acyl-CoA synthetase 
family protein   2,563174 

257830_at AT3G26690 MutT/nudix family protein   2,5562613 
249839_at AT5G23405 high mobility group (HMG1/2) family protein   2,5251014 
258385_at AT3G15510 no apical meristem (NAM) family protein (NAC2)   2,5207992 
257193_at AT3G13160 pentatricopeptide (PPR) repeat-containing protein   2,5180027 
265116_at AT1G62480 vacuolar calcium-binding protein-related   2,489088 
255543_at AT4G01870 tolB protein-related   2,4877338 
246103_at AT5G28640 SSXT protein-related / glycine-rich protein   2,487157 
247864_s_at AT1G24807  anthranilate synthase beta subunit, putative ASB 2,478941 
258815_at AT3G04000 short-chain dehydrogenase/reductase (SDR) family protein   2,464861 
251895_at AT3G54420 class IV chitinase (CHIV)   2,4605227 
249184_at AT5G43020 leucine-rich repeat transmembrane protein kinase, putative   2,4486358 
252133_at AT3G50900 expressed protein   2,4418738 
257024_at AT3G19100 calcium-dependent protein kinase, putative / CDPK, putative   2,4400597 
256666_at AT3G20670 histone H2A, putative   2,4302366 
251985_at AT3G53220 thioredoxin family protein   2,426719 
264960_at AT1G76930 proline-rich extensin-like family protein   2,406742 
258707_at AT3G09480 histone H2B, putative   2,3990126 
257540_at AT3G21520 expressed protein   2,3893268 
259749_at AT1G71100 ribose 5-phosphate isomerase-related   2,3703492 
255410_at AT4G03100 rac GTPase activating protein, putative   2,3489819 
248896_at AT5G46350 WRKY family transcription factor   2,3480818 
267555_at AT2G32765 small ubiquitin-like modifier 5 (SUMO)   2,3319046 
259381_s_at AT3G16390  jacalin lectin family protein   2,3304365 
258160_at AT3G17820 glutamine synthetase (GS1)   2,3168323 
250109_at AT5G15230 gibberellin-regulated protein 4 (GASA4) / gibberellin-responsive protein 4   2,3050961 
261785_at AT1G08230 amino acid transporter family protein   2,3043194 
258377_at AT3G17690 cyclic nucleotide-binding transporter 2 / CNBT2 (CNGC19)   2,3032193 
249794_at AT5G23530 expressed protein   2,2911701 
260706_at AT1G32350 alternative oxidase, putative   2,2836225 
257334_at       2,279476 
246004_at AT5G20630 germin-like protein (GER3) GER3 2,2601826 
257805_at AT3G18830 mannitol transporter, putative   2,236081 
254764_at AT4G13250 short-chain dehydrogenase/reductase (SDR) family protein   2,2247248 
247182_at AT5G65410 zinc finger homeobox family protein / ZF-HD homeobox family protein   2,2115746 
258075_at AT3G25900 homocysteine S-methyltransferase 1 (HMT-1) HMT-1 2,207048 
250433_at AT5G10400 histone H3   2,177905 
254130_at AT4G24540 MADS-box family protein   2,1709397 
251811_at AT3G54990 AP2 domain-containing transcription factor, putative   2,1569903 
257879_at AT3G17160 expressed protein   2,1462677 
263264_at AT2G38810 histone H2A, putative   2,140431 
255942_at AT1G22360 UDP-glucoronosyl/UDP-glucosyl transferase family protein   2,1388001 
264517_at AT1G10120 basic helix-loop-helix (bHLH) family protein   2,1253316 
259384_at AT3G16450 jacalin lectin family protein   2,114268 
258530_at AT3G06840 expressed protein   2,1132095 
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259061_at AT3G07410 Ras-related GTP-binding family protein   2,100448 
248510_at AT5G50315 Mutator-like transposase family   2,093163 
262605_at AT1G15170 MATE efflux family protein   2,084784 
260784_at AT1G06180 myb family transcription factor   2,0759072 
254233_at AT4G23800 high mobility group (HMG1/2) family protein   2,0337257 
250228_at AT5G13840 WD-40 repeat family protein   2,0267239 
262758_at AT1G10780 F-box family protein   2,0222194 
245576_at AT4G14770 tesmin/TSO1-like CXC domain-containing protein   2,0136702 
253073_at AT4G37410 cytochrome P450, putative   2,0021665 
245893_at AT5G09270 expressed protein   2,0021086 
250248_at AT5G13740 sugar transporter family protein   -2,0067787 
261256_at AT1G05760 jacalin lectin family protein (RTM1) RTM1 -2,015062 
250633_at AT5G07460 peptide methionine sulfoxide reductase, putative   -2,0725427 
250366_at AT5G11420 expressed protein   -2,0767264 

265715_s_at 
AT1G13860 /// 
AT2G03480 dehydration-responsive protein-related   -2,07991 

267060_at AT2G32580 expressed protein   -2,0888693 
252001_at AT3G52750 chloroplast division protein, putative   -2,0894818 
247552_at AT5G60920 phytochelatin synthetase, putative / COBRA cell expansion protein COB, putative   -2,1074908 
255645_at AT4G00880 auxin-responsive family protein   -2,1137571 
257008_at AT3G14210 myrosinase-associated protein, putative   -2,1171293 

248943_s_at 
AT5G45440 /// 
AT5G45490 disease resistance protein-related   -2,1224864 

263985_at AT2G42750 DNAJ heat shock N-terminal domain-containing protein   -2,1343207 
265824_at AT2G35650 glycosyl transferase family 2 protein   -2,1409037 

258977_s_at 
AT3G02020 /// 
AT5G14060 aspartate kinase, lysine-sensitive, putative   -2,1460583 

246036_at AT5G08370 
alpha-galactosidase, putative / melibiase, putative / alpha-D-galactoside 
galactohydrolase, putative   -2,1462035 

252983_at AT4G37980 mannitol dehydrogenase, putative (ELI3-1) ELI3-1 -2,1636715 
260441_at AT1G68260 thioesterase family protein   -2,1704702 
261925_at AT1G22540 proton-dependent oligopeptide transport (POT) family protein   -2,1736834 
259188_at AT3G01510 5'-AMP-activated protein kinase beta-1 subunit-related   -2,1796958 
258015_at AT3G19340 expressed protein   -2,1884162 
245463_at AT4G17030 expansin-related   -2,2031116 
248765_at AT5G47650 MutT/nudix family protein   -2,2101562 
259180_at AT3G01680 expressed protein   -2,2131503 

255626_at AT4G00780 
meprin and TRAF homology domain-containing protein / MATH domain-
containing protein   -2,2229424 

246487_at AT5G16030 expressed protein   -2,2497022 
260012_at AT1G67865 expressed protein   -2,254838 
251230_at AT3G62750 glycosyl hydrolase family 1 protein   -2,26521 
245307_at AT4G16770 oxidoreductase, 2OG-Fe(II) oxygenase family protein   -2,2717423 
248042_at AT5G55960 expressed protein   -2,2849827 
247747_at AT5G59000 zinc finger (C3HC4-type RING finger) family protein   -2,3146422 
261279_at AT1G05850 chitinase-like protein 1 (CTL1)   -2,3325932 
263709_at AT1G09310 expressed protein   -2,3564086 
262216_at AT1G74780 nodulin family protein   -2,3937113 
246281_at AT4G36940 nicotinate phosphoribosyltransferase family protein / NAPRTase family protein   -2,4045968 
257772_at AT3G23080 expressed protein   -2,4067125 
267367_at AT2G44210 expressed protein   -2,4255192 
254250_at AT4G23290 protein kinase family protein   -2,43337 
254563_at AT4G19120 early-responsive to dehydration stress protein (ERD3) ERD3 -2,4615073 
255933_at AT1G12750 rhomboid family protein   -2,4712815 
245348_at AT4G17770 glycosyl transferase family 20 protein / trehalose-phosphatase family protein   -2,4759212 
254687_at AT4G13770 cytochrome P450 family protein   -2,5091588 
249688_at AT5G36160 aminotransferase-related   -2,5391333 

247162_at AT5G65730 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative   -2,564124 

261221_at AT1G19960 expressed protein   -2,57957 
260007_at AT1G67870 glycine-rich protein   -2,585389 

254716_at AT4G13560 
late embryogenesis abundant domain-containing protein / LEA domain-containing 
protein   -2,6142042 

256255_at AT3G11280 myb family transcription factor   -2,6151307 
258419_at AT3G16670 expressed protein   -2,664353 
248353_at AT5G52320 cytochrome P450, putative   -2,6912122 
267569_at AT2G30790 photosystem II oxygen-evolving complex 23, putative OEC23 -2,698875 
247077_at AT5G66420 expressed protein   -2,757152 
260112_at AT1G63310 expressed protein   -2,7583406 
251181_at AT3G62820 invertase/pectin methylesterase inhibitor family protein   -2,7790976 
267170_at AT2G37585 glycosyltransferase family 14 protein / core-2/I-branching enzyme family protein   -2,788725 
266460_at AT2G47930 hydroxyproline-rich glycoprotein family protein   -2,7990606 
251360_at AT3G61210 embryo-abundant protein-related   -2,8648355 
262412_at AT1G34760 14-3-3 protein GF14 omicron (GRF11) GF14omicron -2,8910055 
266899_at AT2G34620 mitochondrial transcription termination factor-related / mTERF-related   -2,8940377 
266439_s_at AT2G43200 dehydration-responsive family protein   -2,9336007 
263174_at AT1G54040 kelch repeat-containing protein   -2,9744637 
250337_at AT5G11790 Ndr family protein   -3,0156941 
257093_at AT3G20570 plastocyanin-like domain-containing protein   -3,0373013 
245743_at AT1G51080 expressed protein   -3,0565338 
252858_at AT4G39770 trehalose-6-phosphate phosphatase, putative   -3,0832305 
250753_at AT5G05860 UDP-glucoronosyl/UDP-glucosyl transferase family protein   -3,1128771 
262700_at AT1G76020 expressed protein   -3,1220748 
257044_at AT3G19720 dynamin family protein   -3,2271602 
249093_at AT5G43880 expressed protein   -3,2491417 
263495_at AT2G42530 cold-responsive protein / cold-regulated protein (cor15b) cor15b -3,2664113 
267538_at AT2G41870 remorin family protein   -3,302061 

252863_at AT4G39800 
inositol-3-phosphate synthase isozyme 1 / myo-inositol-1-phosphate synthase 1 / 
MI-1-P synthase 1 / IPS 1   -3,343508 

259962_at AT1G53690 DNA-directed RNA polymerases I, II, and III 7 kDa subunit, putative   -3,3945053 

256461_s_at 
AT1G36280 /// 
AT4G18440 adenylosuccinate lyase, putative / adenylosuccinase, putative   -3,4212835 

253650_at AT4G30020 subtilase family protein   -3,4773629 
262921_at AT1G79430 myb family transcription factor-related   -3,5636942 
257398_at AT2G01990 expressed protein   -3,5708144 
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260745_at AT1G78370 glutathione S-transferase, putative   -3,6100233 
251402_at AT3G60290 oxidoreductase, 2OG-Fe(II) oxygenase family protein   -3,618224 
265828_at AT2G14520 CBS domain-containing protein   -3,6421518 
245088_at AT2G39850 subtilase family protein   -3,6491795 
257650_at AT3G16800 protein phosphatase 2C, putative / PP2C, putative   -3,7871447 
265884_at AT2G42320 nucleolar protein gar2-related   -3,8955603 
254662_at AT4G18270 glycosyl transferase family 4 protein   -4,0610685 

267644_s_at 
AT2G32870 /// 
AT2G32880 

meprin and TRAF homology domain-containing protein / MATH domain-
containing protein   -4,2324915 

261309_at AT1G48600 phosphoethanolamine N-methyltransferase 2, putative (NMT2) NMT2 -4,296231 
247794_at AT5G58670 phosphoinositide-specific phospholipase C (PLC1)   -4,4009566 

253040_at AT4G37800 
xyloglucan:xyloglucosyl transferase, putative / xyloglucan endotransglycosylase, 
putative / endo-xyloglucan transferase, putative   -4,622757 

262232_at AT1G68600 expressed protein   -4,8016524 
261016_at AT1G26560 glycosyl hydrolase family 1 protein   -4,9005904 
250598_at AT5G07690 myb family transcription factor (MYB29)   -5,5248113 
252184_at AT3G50660 steroid 22-alpha-hydroxylase (CYP90B1) (DWF4) DWF4 -5,668479 
249059_at AT5G44530 subtilase family protein   -5,7320657 
248270_at AT5G53450 protein kinase family protein   -6,0523086 
254371_at AT4G21760 glycosyl hydrolase family 1 protein   -6,37771 
265405_at AT2G16750 protein kinase family protein   -6,4638696 
258719_at AT3G09540 pectate lyase family protein   -6,5114403 
261684_at AT1G47400 expressed protein   -16,97436 
264511_at AT1G09350 galactinol synthase, putative   -34,790356 

 
 
 
Supplemental Table 2: EDS1-dependent genes differentially expressed between nudt7-1 and 
nudt7-1/sid2-1 in group 2 
 

Probe Set ID AGI Gene Title Gene 
Symbol

Fold change nudt7-1  vs 
nudt7-1/eds1-2

Fold change nudt7-1/sid2-1  vs 
nudt7-1/sid2-1/eds1-2

Fold change nudt7-
1/sid2-1  vs nudt7-1

256012_at AT1G19250
flavin-containing monooxygenase family protein 
/ FMO family protein 5,69 76,12 13,667996

248333_at AT5G52390 photoassimilate-responsive protein, putative 3,64 38,91 10,705441
252309_at AT3G49340 cysteine proteinase, putative 2,64 26,66 10,415017
266267_at AT2G29460 glutathione S-transferase, putative 5,91 32,23 5,6796646
260015_at AT1G67980 caffeoyl-CoA 3-O-methyltransferase, putative 7,01 29,34 5,0240355
252136_at AT3G50770 calmodulin-related protein, putative 23,27 120,30 4,969678
256877_at AT3G26470 expressed protein 6,44 31,40 4,9199743
260225_at AT1G74590 glutathione S-transferase, putative 4,82 19,54 4,3093534
261216_at AT1G33030 O-methyltransferase family 2 protein 2,79 11,64 4,2873034
261021_at AT1G26380 FAD-binding domain-containing protein 5,83 20,96 3,6490214

256376_s_at AT1G66690 /// AT1G66700
S-adenosyl-L-methionine:carboxyl 
methyltransferase family protein 2,24 6,95 3,3157592

261934_at AT1G22400
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 8,32 18,93 2,9244804

248916_at AT5G45840
leucine-rich repeat transmembrane protein 
kinase, putative 2,22 7,14 2,8002245

258277_at AT3G26830 cytochrome P450 71B15, putative (CYP71B15) 18,25 51,69 2,7619095
259033_at AT3G09410 pectinacetylesterase family protein 5,45 12,03 2,7062626
265658_at AT2G13810 aminotransferase class I and II family protein 7,14 18,08 2,5560515

264400_at AT1G61800
glucose-6-phosphate/phosphate translocator, 
putative 6,91 13,83 2,4102075

248321_at AT5G52740
heavy-metal-associated domain-containing 
protein 9,93 19,73 2,2125266

254573_at AT4G19420 pectinacetylesterase family protein 3,50 5,88 2,1285849

246405_at AT1G57630 disease resistance protein (TIR class), putative 40,42 80,22 2,0027707

262891_at AT1G79460
ent-kaurene synthase / ent-kaurene synthetase 
B (KS) (GA2) GA2 -2,42 -5,61 -2,1278927

259385_at AT1G13470 expressed protein 35,95 37,70 -2,161606
254265_s_at AT4G23140 /// AT4G23160 receptor-like protein kinase 5 (RLK5) 143,10 131,46 -2,723742  
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Supplemental Table 3a: Expression of transcripts described to be specifically responsive to 

singlet oxygen (Gadjev et al., 2006) Green: transcript expression follows similar trend as previously 

described; red: transcript expression is opposite trend as previously described (Gadjev et al., 2006). 

 

Probe Set ID AGI Gene Title
Fold change 
nudt7-1  vs 

nudt7-1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1/sid2-
1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1

257139_at AT3G28890 leucine-rich repeat family protein 7,4748297
267385_at AT2G44380 DC1 domain-containing protein 6,2432256
259878_at AT1G76790 O-methyltransferase family 2 protein -4,606544

255941_at AT1G20350 mitochondrial import inner membrane translocase subunit Tim17, putative 30,06 18,06
247071_at AT5G66640 LIM domain-containing protein-related 10,53 7,44
262703_at AT1G16510 auxin-responsive family protein 2,00 2,91
258901_at AT3G05640 protein phosphatase 2C, putative / PP2C, putative -3,82 -5,18

245885_at AT5G09440 phosphate-responsive protein, putative 5,0250545
247429_at AT5G62620 galactosyltransferase family protein 4,8341956
250891_at AT5G04530 beta-ketoacyl-CoA synthase family protein 4,6549635
248230_at AT5G53830 VQ motif-containing protein 2,9863322
253162_at AT4G35630 phosphoserine aminotransferase, chloroplast (PSAT) 2,6715658

259381_s_at
AT3G16390 /// AT3G16400 /// 
AT3G16410 jacalin lectin family protein 2,3304365

248353_at AT5G52320 cytochrome P450, putative -2,6912122

Group I genes - EDS1-dependent expressed genes, influenced by elevated SA 

Group II genes - EDS1-dependent but SA-independent expressed genes

Group III genes - EDS1-dependent expressed genes, influenced by depleted SA

 
 
 
Supplemental Table 3b: Expression of transcripts described to be specifically responsive to 

superoxide (Gadjev et al., 2006) 

Green: transcript expression follows similar trend as previously described; red: transcript expression is 

opposite trend as previously described (Gadjev et al., 2006). 

 
Probe Set ID AGI Gene Title

Fold change 
nudt7-1  vs 

nudt7-1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1/sid2-
1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1

254232_at AT4G23600 coronatine-responsive tyrosine aminotransferase / tyrosine transaminase -3,5543911
246573_at AT1G31680 /// AT1G31690 copper amine oxidase family protein -4,4254813

263979_at AT2G42840 protodermal factor 1 (PDF1) 93,09208
267459_at AT2G33850 expressed protein 61,612915
258675_at AT3G08770 lipid transfer protein 6 (LTP6) 52,615093
259009_at AT3G09260 glycosyl hydrolase family 1 protein 50,05208
253753_at AT4G29030 glycine-rich protein 47,666348
261459_at AT1G21100 O-methyltransferase, putative 23,763609
254327_at AT4G22490 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 22,966476
245688_at AT1G28290 pollen Ole e 1 allergen and extensin family protein 20,462524
246687_at AT5G33370 GDSL-motif lipase/hydrolase family protein 14,591388
266223_at AT2G28790 osmotin-like protein, putative 13,629877
259382_s_at AT3G16420 /// AT3G16430 jacalin lectin family protein 11,650177
266415_at AT2G38530 nonspecific lipid transfer protein 2 (LTP2) 10,096741
258376_at AT3G17680 expressed protein 9,768558
256125_at AT1G18250 thaumatin, putative 8,741172
260948_at AT1G06100 fatty acid desaturase family protein 8,687121
258480_at AT3G02640 expressed protein 8,537933
258895_at AT3G05600 epoxide hydrolase, putative 6,5499644
259327_at AT3G16460 jacalin lectin family protein 6,0272646
247882_at AT5G57785 expressed protein 5,8200994
255460_at AT4G02800 expressed protein 5,5989056
262840_at AT1G14900 high-mobility-group protein / HMG-I/Y protein 5,510773
266988_at AT2G39310 jacalin lectin family protein 4,4917445
245523_at AT4G15910 drought-responsive protein / drought-induced protein (Di21) 4,0974784
264007_at AT2G21140 hydroxyproline-rich glycoprotein family protein 3,8951776
265117_at AT1G62500 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein 3,6592908
250661_at AT5G07030 aspartyl protease family protein 3,0114396
257193_at AT3G13160 pentatricopeptide (PPR) repeat-containing protein 2,5180027
264960_at AT1G76930 proline-rich extensin-like family protein 2,406742
254233_at AT4G23800 high mobility group (HMG1/2) family protein 2,0337257
253073_at AT4G37410 cytochrome P450, putative 2,0021665

Group I genes - EDS1-dependent expressed genes, influenced by elevated SA 

Group III genes - EDS1-dependent expressed genes, influenced by depleted SA
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Supplemental Table 3c: Expression of transcripts described to be specifically responsive to 

hydrogen peroxide (Gadjev et al., 2006) 

Green: transcript expression follows similar trend as previously described; red: transcript expression is 

opposite trend as previously described (Gadjev et al., 2006). 
 
Probe Set ID AGI Gene Title

Fold change 
nudt7-1  vs 

nudt7-1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1/sid2-
1/eds1-2

Fold change 
nudt7-1/sid2-1  vs 

nudt7-1

254975_at AT4G10500 oxidoreductase, 2OG-Fe(II) oxygenase family protein 155,59166
248970_at AT5G45380 sodium:solute symporter family protein 11,899199
266782_at AT2G29120 glutamate receptor family protein (GLR2.7) 9,826454
257763_s_at AT3G23110 /// AT3G23120 disease resistance family protein 8,013622
265993_at AT2G24160 pseudogene, leucine rich repeat protein family 5,019295
265132_at AT1G23830 expressed protein 3,372987

267546_at AT2G32680 disease resistance family protein 76,45 80,02
248333_at AT5G52390 photoassimilate-responsive protein, putative 3,64 38,91 10,705441
259385_at AT1G13470 expressed protein 35,95 37,70
254271_at AT4G23150 protein kinase family protein 54,04 25,81
248083_at AT5G55420 Protease inhibitor/seed storage/LTP family protein [pseudogene] 6,24 11,86
264590_at AT2G17710 expressed protein 7,07 10,99
256940_at AT3G30720 expressed protein 6,74 7,75
256969_at AT3G21080 ABC transporter-related 3,74 6,07
256883_at AT3G26440 expressed protein 3,67 5,11
260581_at AT2G47190 myb family transcription factor (MYB2) 2,16 2,48
263574_at AT2G16990 expressed protein -4,19 -6,76

257950_at AT3G21780 UDP-glucoronosyl/UDP-glucosyl transferase family protein 4,5489597
258803_at AT3G04670 WRKY family transcription factor 2,5639384
258707_at AT3G09480 histone H2B, putative 2,3990126
250433_at AT5G10400 histone H3 2,177905
253073_at AT4G37410 cytochrome P450, putative 2,0021665
254250_at AT4G23290 protein kinase family protein -2,43337
254716_at AT4G13560 late embryogenesis abundant domain-containing protein / LEA domain-containing protein -2,6142042
254371_at AT4G21760 glycosyl hydrolase family 1 protein -6,37771

Group III genes - EDS1-dependent expressed genes, influenced by depleted SA

Group I genes - EDS1-dependent expressed genes, influenced by elevated SA 

Group II genes - EDS1-dependent but SA-independent expressed genes
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