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2009



Berichterstatter/in: Prof. Dr. Rainer Schrader

Prof. Dr. Ulrich Trottenberg

Tag der letzten mündlichen Prüfung: 16. 10. 2009



Kurzzusammenfassung

Dynamisches PET (Positronenemissionstomographie) mit verschiedenen Ra-
diotracern wird als bildgebendes Verfahren eingesetzt zur in vivo Bestim-
mung verschiedener biochemischer Parameter im menschlichen Gehirn, wie
z.B. Gesamtstoffwechselrate oder bestimmte Rezeptorkonzentrationen und
Enzymaktivitäten. 11C markiertes Methyl-4-Piperidyl Acetat (MP4A) und
-Propionat (MP4P) werden als Radiotracer zur Aktivitätsbestimmung von
Acetylcholinesterase (AChE) verwendet. Das Enzym dient als Indikator der
Funktionalität des cholinergen Subsystems. Zur kinetischen Analyse dyna-
mischer MP4A PET Messungen ohne Verwendung arterieller Blutdaten wird
ein referenzbasiertes, irreversibles Tracermodell eingesetzt. Die Auswertung
damit kann auf regionaler oder Voxelebene erfolgen, im zweiten Fall führt
sie zu Bildern des die AChE-Aktivität anzeigenden Parameters k3.

Die vorliegende Arbeit enthält eine Implementierung der voxelbasierten
kinetischen Analyse mittels Kurvenanpassung im Sinne gewichteter kleinster
Quadrate (NLS), die schnell genug ist für Standard PCs. Der gesamte Bild-
verarbeitungsprozess einschliesslich Normalisierung und Bewegungskorrek-
tur, der von rekonstruierten PET Scans zu parametrischen k3 Bildern und
regionalen Mittelwerten führt, wurde automatisiert. Dabei kommen neue
Techniken der Bildvorverarbeitung, ohne Verwendung starrer Masken, zum
Einsatz.

Ein Schwerpunkt der Arbeit ist die Fehlerabschätzung von k3 auf Voxel-
und regionaler Ebene. Eine Formel für die voxelweise Standardabweichung
wird hergeleitet. Sie basiert auf den Abweichungsquadraten und wird ge-
gen Simulationsergebnisse validiert. Als größte Fehlerquelle für regionale
Mittelwerte von k3 stellten sich die Referenzkurven heraus. Hier konnten
wesentliche Verbesserungen erzielt werden durch Verwendung adaptiver Pu-
tamenmasken und Erhöhung des Referenzvolumens von 5,4 auf 12,5 bis 16
ml. Außerdem wird eine Methode zur Korrektur der Referenzkurven im Falle
nichtidealer Referenzregionen vorgestellt.

Für das verbesserte Verfahren wurden die Standardabweichungen regio-
naler Mittelwerte von k3 mit Hilfe der PET Scans von 12 Probanden, die
auf Sinogrammebene in je zwei disjunkte Datensätze zerlegt wurden, grob
bestimmt. Danach ergibt sich ein absoluter Fehler von 0.0012 für typische
Cortexregionen und 0,0053 für Hippocampus als Folge des Rauschens der vo-
xelbasierten Aktivitätskurven, während die Referenzkurven für Fehler von
ca. 0,0025 bzw. 0,0050 verantwortlich sind. Systematische Fehler verschiede-
ner Art wurden mit Simulationen untersucht, ihr kombinierter Effekt liegt
bei weniger als 3 Prozent des gemessenen k3.

Das Verfahren wurde als Modul des Softwarepaketes VINCI verfügbar
gemacht und im Rahmen klinischer Studien eingesetzt, zur Untersuchung
der Parkinsonschen Krankheit und der Alzheimer Demenz.
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Abstract

Dynamic PET (Positron Emission Tomography) involving a number of ra-
diotracers is an established technique for in vivo estimation of biochemical
parameters in human brain, such as the overall metabolic rate and certain re-
ceptor concentrations or enzyme activities. 11C labeled methyl-4-piperidyl
acetate (MP4A) and -propionate (MP4P) are established radiotracers for
measuring activity of acetylcholine esterase (AChE), which relates to func-
tionality of the cholinergic system. MP4A kinetic analysis without arterial
blood sampling employs a reference tissue based “irreversible tracer model”.
Implementations can be region or voxel based, in the second case providing
parametric images of k3 which is an indicator of AChE activity.

This work introduces an implementation of voxel based kinetic analysis
using weighted Nonlinear Least Squares fitting (NLS), which is fast enough
for standard PCs. The entire workflow leading from reconstructed PET
scans to parametric images of k3, including normalization and correction
for patient movement, has been automatized. Image preprocessing has been
redefined and fixed masks are no longer required.

A focus of this work is error estimation of k3 at the voxel and regional
level. A formula is derived for voxel based estimation of random error, it
is based on residual weighted squared differences and has been successfully
validated against simulated data. The reference curves turned out to be the
main source of errors in regional mean values of k3. Major improvements
were reached in this area by switching from fixed to adaptive Putamen
masks and raising their volume from 5.4 to 12.5 or 16 ml. Also, a method
for correcting reference curves obtained from nonideal reference tissues is
presented.

For the improved implementation, random error of the mean k3 of a
number of cerebral regions has been assessed based on PET studies of 12
human subjects, by splitting them in two independent data sets at the sino-
gram level. According to this sample, absolute standard errors of 0.0012
in most cortex regions and 0.0053 in Hippocampus are induced by noise of
voxel based activity curves, while errors of approximately 0.0025 and 0.0050
are induced by noise of the reference curves. Different types of systematic
as well as noise-induced bias have been investigated by simulations; their
combined effect on the computed k3 was found below 3 percent.

The implementation is available as a modul of the VINCI software pack-
age and has been used in clinical studies on Parkinson’s Disease and Alzheimer
Dementia.
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Chapter 1

Introduction

1.1 PET

Positron Emission Tomography1 is an imaging technique used in nuclear
medicine. It produces 3-dimensional images of the distribution of a radioac-
tive isotope in the body.

Nuclear imaging started in 1957 with the development of the gamma
camera. It gives two dimensional low resolution images of radiotracer dis-
tribution. The radiotracer (commonly just called tracer) is a molecule
containing a gamma emitting nuclide.

Based on the gamma camera, SPECT2 was developed later as a 3-
dimensional imaging technique. To localize the origin of gamma photons,
collimators are used. They absorb more than 99 percent of the photons,
thus sacrificing sensitivity and still being confined to very low resolutions.

Resolution and scanner sensitivity improved in 1976 with the arrival
of PET. The idea is to use only such isotopes that emit pairs of gamma
photons. More precisely, the photon pairs are the result of an annihilation
event of an electron with its antiparticle, a positron, resulting in two gamma
photons whose energy equals the mass of an electron, 511 keV, and whose
divergence angle is close to 180 degrees. If both photons are detected, it hap-
pens simultaneously and can therefore be attributed to a single annihilation
event on the connecting line of the two detectors (“Line of Response,
LOR”). This obliterates the need for collimators and also provides for bet-
ter resolution. Another decisive advantage is that PET allows to correct for
attenuation3, thus enabling quantitative measurement of specific activity.

The positrons are emitted from the nuclide in a process called β+ decay.
The most frequently used β+ emitting isotopes are listed in Table 1.1.

1This section is based on [16, 24, 25, 42, 43]
2SPECT=Single Photon Emission Computed Tomography
3loss of photons caused by interaction with tissue
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Isotope half life[min] maximum range in H2O [mm]
11C 20.4 4.1
13N 9.96 5.4
15O 2.05 8.2
18F 109.7 2.4

Table 1.1: Isotopes used in PET [43]

1.1.1 PET Scanners and Image Reconstruction

During acquisition of PET images, the patient is placed on a bed inside
a scanner. Its main part is a ring of detectors. They contain crystals
of a translucent scintillating material containing heavy elements, such as
lutetium oxyorthosilicate (LSO). Detection of a gamma photon results in a
flash of visible light which is amplified and recorded by a photomultiplier.
Only “coincidences” are counted: the detection of two photons in different
detectors during a time window of about 10 nanoseconds. Every such event
is associated with a Line of Response (LOR). For each LOR, coincidences are
counted over total scantime, the resulting dataset is called a sinogram. By
the reconstruction software, the sinograms are processed to 3D images
of specific activity (in units of Becquerel per ml).

1.1.2 Applications

PET allows for quantitative measurement of nuclide concentration. The
tracer dose needed is orders of magnitude below pharmacological concen-
trations. Therefore almost every molecule, however toxic, is eligible as a
radiotracer, if only it contains a C,N,O or F atom and can be synthesized
within short time from a nonradioactive precursor. The most frequently used
PET tracer is 2-18F -desoxyglucose, commonly called FDG. Like ordinary
glucose, it is taken up from the blood by every cell. It then undergoes phos-
phorylation as the first step of glycolysis, but cannot be further metabolized
and therefore stays trapped in the cell. FDG has proven useful for a number
of applications including brain scans. For the latter, it is particularly well
suited since brain tissue feeds exclusively on glucose.

Another well-known tracer is 15O labeled water, which is used to obtain
perfusion images (section 9.2) of the brain. Its short half life makes it
suitable for multiple application to a patient, allowing to localize functional
centers in the brain by having the patients perform “tasks” during the scans.

Generally, PET is the method of choice for all types of “molecular imag-
ing”, as it is capable to localize molecules inside the body. Its specificity
in doing so is unmatched by other methods including functional MR. Its
application range grows with every new radiotracer developed.
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1.1.3 Economic Aspects

For all isotopes of Table 1.1 except 18F , half life is too short for transporting
the tracer between production and scanning sites. This implies that 11C,
13N and 15O tracers can only be used by institutes that have their own
production facilities. They include a cyclotron for production of the nuclide
and a team of radiochemists for incorporating it in the tracer molecule. Not
many clinical centers can afford the expense.

The situation is somewhat better for 18F . Given its half life of 110 min-
utes, the tracer must still be used at the day of production, but there remain
a few hours for distribution within larger metropolitan areas. This explains
why fluorine tracers like FDG found clinical application, while carbon trac-
ers like MP4A and others are limited to scientific research at the few places
that have the resources for making them.

1.1.4 Performance Limitations

The amount of radioactivity allowed for medical examinations is obviously
limited. In our own study (section 2.11) the total number of decays taking
place in the patient’s body was about 1012. About 4 percent occur in the
brain (section A.5), and about 3 percent of these lead to coincidences in the
PET scanner. The remaining 97 percent are lost for different reasons:

• a photon gets scattered in the patient’s body

• a photon misses the detectors

• a photon fails to trigger an event in the detector crystal, or

• the event is not recorded during detector dead time

In addition, not every coincidence necessarily corresponds to a decay in its
LOR. It can happen that

• a scattered photon and its partner are both detected, sparking a coin-
cidence event on a “false” LOR

• detection of two unrelated photons occurs within the time window,
leading to a “random coincidence”.

These factors limit the amount of information from which images can be
computed. Another set of limitations affects image resolution more directly:

• The positron is emitted with enough energy to travel a distance across
the tissue prior to annihilation. The annihilation site and the site
of decay can therefore be a few millimeters apart (see the column
“maximum range in H2O” in Table 1.1).
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• As a consequence of the positron’s residual speed upon annihilation,
the divergence angle may differ up to 0.25 degrees from 180o.

• The LORs are at least as thick as the detector crystals,

• some are even thicker since the crystals do not point in their direction
[42]. So the length of the crystals contributes (by projection) to the
width of LOR. The length is a few centimeters, this much is needed
to achieve sufficient sensitivity.

1.1.4.1 Noise

All information gathered by the scanner consists in a number of discrete
events (counted coincidences) with associated time and incomplete spatial
information (events cannot be mapped to points in space, instead we have
the LORs). On today’s most advanced scanners, the whole information fits
in a listmode file of 5 to 30 Gigabytes.

Events arise from radioactive decay, a random process. So they are af-
fected by so-called “shot noise” from the very start. It propagates through
image reconstruction and makes itself noticed in the images. Thus for prin-
cipal reasons, PET can never reach resolutions comparable with magnetic
resonance imaging (MRI) or computed X-ray tomography (CT). Images look
“noisy” to the human eye and hardly reveal more than the crudest anatom-
ical detail (see Figure 10.1, upper row).

1.1.4.2 Partial Volume Effects (PVE)

For all the reasons given in sections 1.1.4 and 1.1.4.1, a point source of ra-
dioactivity maps to a blurred spot on PET images, determined by a “point-
spread function” looking much like a 3-dimensional normal distribution.
Regional mean values of the reconstructed image will thus be corrupted by
signal from the neighborhood, especially if the region in question is small or
longitudinal: for instance, when averaging image intensity over the voxels
of a Hippocampus mask, one may end up with 70% of the signal actually
stemming from the patient’s Hippocampus, and 30% from its surroundings.
The problem is aggravated by any smoothing employed during image pre-
processing. An example from this work: the reference curves Cr are less
affected by PVE (section 1.1.4.2) than regional results because the former
are sampled before the Gauss filtering step.

1.1.4.3 Absolute Quantification

of specific radioactivity in PET is achieved with a relative error in the
range of 5 to 10 percent [24] by correcting the measured signal for attenu-
ation. Attenuation assessment employs an extra “transmission scan” which
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is recorded before tracer injection, using an external source of radiation. For
kinetic analysis (section 1.5) this type of error is irrelevant since it is the
same in every frame (section 1.1.5).

1.1.5 Dynamic PET

is used to study changes in tracer concentration over time. Over a period
of a few half lives after injection, several PET images (called frames) are
shot and reconstructed independently. Needless to say that, as we subdivide
the information, images become even noisier. Thus for every spatial region
or voxel, we have an array of values. Plotting them against time gives a
so called Time Activity Curve4 (TAC), which can be subject to kinetic
analysis.

TACs are only meaningful if all their values refer to the same voxel or re-
gion of the brain. To ensure this, the patient must either remain motionless
during scantime, or the data must later be corrected for patient movement.
Such correction can be applied using external information (if patient move-
ment has been monitored during the scan), or relying on the images alone
(coregistration, section 2.10).

1.2 Alzheimer’s Disease

“Dementia” is the progressive decline in cognitive function beyond what
might be expected from normal aging [44]. Its most common form is Alzheimer’s
Disease (AD). Dementia, and specifically AD, may be among the most costly
diseases for society in developed countries [44]. It has therefore become a
major topic of research.

AD is a neurodegenerative disease. Its onset increases dramatically with
age. This may lead to the notion that its prevalence in the civilized world in
recent decades is a side effect of prolonged life expectancy caused by better
medical services. However, it could be shown that there are substantial
differences between normally aged human brains and brains of subjects with
AD [13].

At the time of this writing, the question of what is the primary cause of
AD is yet undecided. There are a few competing theories, focusing on such
different issues as deposition of amyloid plaques, tau protein abnormalities,
late myelinisation [4]. The oldest theory proposes that AD is caused by
reduced synthesis of the neurotransmitter acetylcholine [44].

4“Activity” here means radioactivity, not to be confounded with enzyme activity as of
section 1.5
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1.3 Cholinergic System and AChE

Acetylcholine (ACh) was the first neurotransmitter to be identified5. “Cholin-
ergic” neurons make and release the transmitter at their axon terminals,
while “cholinoceptive” neurons express ACh receptors on their postsynaptic
membranes.

Cholinergic transmission plays a major role both in the central and pe-
ripheric nervous system of humans. It is established beyond doubt [16] that
ACh concentrations in AD brains are well below ACh concentrations in age-
matched healthy brains. This is explained with degeneration and death of
cholinergic neurons. As a contribution to testing the different theories on
AD, imaging techniques that monitor ACh in the living brain are of great
interest. This is where PET comes in.

There is no PET tracer available for direct measurement of ACh. The
“closest” related target would be the enzyme that makes ACh: Cholin Acetyl
Transferase (ChAT). Yet there is no tracer for this enzyme, either. Another
enzyme required for proper functioning of cholinergic synapses is Acetyl-
choline Esterase (AChE). Its function is to hydrolyze ACh in the synaptic
cleft, setting free the AChE receptors and ending the transmission cycle.
How essential this enzyme is for the synaptic function, is drastically demon-
strated by the deadly chemical warfare agent sarin, it works by blocking
AChE. As an ingredient of the cholinergic synapse, AChE can be used as a
marker for cholinergic innervation of brain regions.

1.4 MP4A

AChE catalyzes hydrolysis of the ester bond between acetic acid and choline.
Substrate analogues of ACh are therefore likely candidates for AChE tracers.
The aim was an “irreversible tracer”, one that stays trapped in the tissue
after interaction with AChE. It must be able to cross the Blood Brain Barrier
in order to reach the synaptic site; it needs an ester bond to be hydrolyzed
by the enzyme, and the products (at least the one with the nuclide) should
be hydrophilic to keep them from diffusing back to the blood stream. In
addition, the tracer must be highly specific for AChE, excluding other causes
for its hydrolysis.
Two tracers were designed to meet this specification:
1-[11C]methyl-4- piperidyl acetate (MP4A) and 1-[11C]methyl-4-piperidyl
propionate (MP4P). Specifity of MP4A is higher (99%). Its rate of hydrol-
ysis by AChE is high, making it suitable for brain regions of low enzyme
activity. For medium and high activity regions, MP4P is better suited as its
hydrolysis rate by AChE is lower, but its specifity for the enzyme is reduced
as well.

5Sections 1.3 and 1.4 are based on [16, 19, 20]
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Figure 1.1: The MP4A tracer and its hydrolysis, leading to N-methylpiperidinol
and acetate. The marked 11C is on the left side. Figure adapted from K. Herholz

1.5 Kinetic Modelling

From dynamic PET data, TACs (section 1.1.5) can be extracted at the
voxel or regional level. They provide information on nuclide accumulation,
storage and washout in different parts of the brain. Kinetic models such
as in Figure 1.2 are used for quantitative analysis. The nuclide is seen as
traveling between a small set of compartments, representing blood, tissue
or different biochemical states. Travelling speed is controlled by kinetic
constants (k1, k2, k3 in the figure). Using the model, the constants can be
estimated from the shape of the TACs. The quantity of interest is somehow

k1r

k1

k2

k3

Target Tissue:

Reference Tissue:

Figure 1.2: Structure of the reference based irreversible tracer model. In the re-
versible model, k3 is matched by a backward arrow with constant k4. The reference
part of the model arises from copying the target tissue part, renaming the constants
k1r, k2r, k3r. They are set to fixed “known” values. Assuming k3r = ∞ leads to
the simplification shown.
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linked to the constants: in the case of MP4A, k3 is proportional to activity
of AChE.

Compartmental models are in use with dynamic PET for various quan-
tifications, such as blood flow, cerebral metabolic rate of glucose or neurore-
ceptor ligand binding. They all require information on tracer delivery via
the blood stream. This so called “Blood Input Function” can be obtained
independently by arterial blood sampling.

Later developments have produced a series of “reference tissue models”
which avoid the need for blood sampling. They rely on comparing two
Time Activity Curves: of the target region whose model parameters are
being measured and the reference region whose parameters are known. For
MP4A, the “reference tissue based irreversible tracer model” of Figure 1.2
is established. The details will be given in Figure 4.3 and chapter 3.

1.6 Voxel based and Region based kinetic Analysis

In MP4A PET studies, regional averages of the kinetic constant k3 are com-
pared between diagnostic subgroups of a patient sample in order to draw
conclusions. A fundamental decision is between voxel- and region based pro-
cedures, where kinetic analysis is applied before or after regional averaging,
respectively. Mathematically, the two operations do not commute, given the
nonlinear nature of the model. When averaging is performed at the level
of TACs, it is likely to produce a non-model-compliant curve, whose kinetic
analysis leads to a biased result. The voxel-based approach is considered
more ambitious in that it avoids this problem. Kinetic analysis takes place
at the voxel level, leading to a so-called parametric image of the quantity
of interest (k3 in our case). Regional results are then obtained by averaging
over the voxels of this image. This approach faces two difficulties: (1) given
the large number of voxels in the brain, only fast methods of kinetic analysis
are applicable, (2) TACs are noisier at the voxel level, creating additional
problems for kinetic analysis.

(2) is often met by inserting a smoothing step, usually Gauss filtering,
before kinetic analysis. While this reduces the level of noise, it partially
sacrifices the advantages of the voxel based approach: (a) resolution is lost
in parametric images, (b) again signal of different voxels gets mixed, albeit
at closer proximity, and (c) it invites Partial Volume Effects (section 1.1.4.2).
This even occurs between neighboring regions, presenting a disadvantage of
the voxel based approach.

1.7 Aims of this Work

The author’s involvement in MP4A kinetic analysis started when a pro-
grammer was needed for implementing the voxel based COLOGNE method
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(chapter 3) as a feature of the VINCI package (section 2.3). He inherited an
algorithm with a set of resources and policies from his predecessor in this
work, G. Zuendorf [46], who had implemented it based on SPM99 [35] and
MATLAB [28] software packages.

1.7.1 Extending the Application Range

The previous method employed a mask (the Zuendorf Mask) to remove
54.1 percent of the brain whose evaluation was considered problematic. The
author was asked to make larger parts of the brain accessible, including
the Hippocampus region whose role in the etiology of AD is of particular
interest.

1.7.2 Redefining Image Preprocessing

Kinetic analysis is just one part of the workflow leading from dynamic PET
scans to parametric images (see section 1.8). Porting the entire workflow
required migrating all SPM99 components into the VINCI framework, which
underwent a platform change at the same time. This had us caught up
in technicalities for quite a while. In addition, the Zuendorf Mask had
been an integral part of the image preprocessing stage. Removing it opened
a Pandora’s box of new questions, requiring definition and validation of
preprocessing techniques and policies.

1.7.3 Making NLS available for Voxel based Analysis

Kinetic constants are determined by fitting a nonlinear model to the mea-
sured data. In mathematical terms, it comes down to multiple rounds of
solving a nonlinear least squares (NLS)-problem. At the time of this work,
there was widespread agreement that NLS is too expensive for voxel based
analysis, the number of voxels per image ranging between hundreds of thou-
sands and millions, depending on the image format. In addition, NLS solvers
face the problem of suboptimal local attractors that might prevent finding
the global optimum. Finally, a suitable starting point, or a method for
generating one, must be found.

In response to these difficulties, a number of alternative algorithms, in-
cluding aforementioned COLOGNE method, have become established (for
more examples, see section 15.1). Since they do not meet the NLS spec-
ification, their behavior for noisy input is more or less undefined. Once
we had discontinued using the Zuendorf Mask, areas of the brain were re-
vealed where COLOGNE showed inconsistent behavior (section 12.1). This
prompted the wish for an independent algorithm that could be used for vali-
dation, preferably one whose properties in the presence of noise have a clear
mathematical definition.
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1.7.4 Refining the Reference based irreversible Tracer Model

This model depends on existence of a brain region with idealistic properties
(setion 3.2.2). Putamen is a small region thought to almost meet these
requirements, Cerebellum is a large region that meets them to a lesser degree.
It seemed therefore desirable to refine the model in such a way as to be able
to handle nonideal reference regions, and use Cerebellum in the place of
Putamen where necessary or useful.

1.7.5 Optimizing Procedures

As it is clear from sections 1.1.4 and 1.1.4.1, kinetic analysis of dynamic PET
data is an uphill battle against the blurring effects of noise. Not only spatial
resolution will suffer, but also precision of k3. It is therefore paramount
to optimize procedures of both the preprocessing stage and kinetic analysis
with respect to noise propagation and stability. This requires the ability to
measure success of ones efforts, i.e. precision of k3.

1.7.6 Assessing Precision of k3

Error estimation is mostly neglected in medical research. Complexity of the
measured systems often leaves no other choice than viewing the method as
a black box and relying on statistics for conclusions. The black box will be
judged by (1) the reputation of components that went into its design and
(2) statistical significance of the output, and how it relates to established
knowledge. But, given the fact that sample sizes are small in MP4A PET
studies, the author found this a bit unsatisfying.

While it remains impossible to factor in all circumstances that might lead
to faulty results (section 1.8), it is within our reach to model the noise of
a PET image and study its propagation through kinetic analysis, aiming at
voxel- and region-based error estimates. A clearcut specification defining the
“correct” result for noisy input, such as NLS, would be extremely helpful,
creating another motivation for wanting an NLS solver.

1.7.7 An Outline

Chapter 2 is a collection of material for reference in later chapters. Chap-
ter 3 presents the established kinetic model for MP4A and MP4P trac-
ers. It then proceeds with the COLOGNE method. New concepts are k3r-
correction and some implementation details. Chapter 4 presents a fast
implementation of a voxel based NLS solver for MP4A kinetic analysis. The
chapter goes on to define a number of concepts that will assist in error
assessment. Chapter 5 deals with questions of starting points, break-off
parameters and convergence properties. In Chapters 6 and 7 both NLS
and COLOGNE methods are validated using synthetic data: noiseless in
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chapter 6 to measure bias in isolation, and with simulated noise in chap-
ter 7. Chapter 8 introduces a voxel based error estimate and validates it
against the simulator. Chapters 9 and 10 cover the image preprocessing
stages of both implementations, presenting the traditional workflow and the
changes applied by the author. Chapters 11 to 14 continue the validation
process, now using real PET data instead of simulations. Unexpected prob-
lems involving the reference curves motivated Chapter 11, while Chapter
12 points out and handles a shortcoming of the model. Chapter 13 shows
some images and regional results. Chapter 14 is devoted to optimizing the
reference masks in response to aforementioned problem, and provides error
estimates at the regional level.

1.8 Some general Remarks on Validation

The process leading to parametric k3 images spans at least 5 steps of data
generation and transformation (see Figure 1.3). Step 6 caters from there to
regional results. At each of the steps there are various possibilities for error:
assumptions, equipment or methods that fail to work out as expected.
By Step 1, we understand all it takes to produce the radioactive signal.
It consists of a rain of gamma photons emanating from the patient’s body,
and its distribution in space and time contains the information we exploit.
Step 2 transforms this pattern to a set of reconstructed images, purportedly
quantifying the distribution of radioactivity in the subject’s head. Step 3
is a sequence of image transformations, resulting in an array of normalized
frames (section 9.1) that are congruent with each other. Step 4 is the
preprocessing stage, it leads to “masked filtered frames” from which voxel
based TACs can be sampled. Step 5 computes a “parametric k3 image”
from the TACs. Step 6 extracts regional mean values, based on an atlas of
brain regions.
“How do we know we are measuring AChE activity” is the key
question. The answer relies on research in various disciplines, this work
being just one contribution. Errors may creep in at any of the stages: Step
1 relies heavily on the radiochemical purity of the tracer. The signal also
depends on the tracer’s biological properties, that have been studied by a
number of researchers [19, 20, 21], leading to four assumptions spelled out in
Chapter 3 and section 3.2.2. If any of these assumptions is not completely
met, it will translate to false conclusions. Step 2 is based on the scanning
equipment and its reconstruction software. Both are extensively complex
and rely on their own sets of assumptions, regarding detector properties,
dead time of electronic components, assessment of attenuation, scatter and
random fraction of the measured signal. We trust the manufacturer for
proper handling of these factors. For Step 3, we rely on other software,
which should be capable to properly align different images of the human
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Figure 1.3: Stages and steps of information processing, leading from the quantity of
interest to regional data tables. Vertical arrows indicate possible validation efforts,
some of which (in black) are part of this work.
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brain with each other (called coregistration), based on no other information
than that of the images. In the context of VINCI, this work has been
provided by [7, 8]. Steps 4 and 5 are the subject of this work. The
validity of Step 6 is a complex issue, since it depends on a “Normalization
Template”, a brain atlas, a normalization algorithm (see again [7, 8]) and the
assumption of constance of human brain anatomy: we expect all subjects to
have their cerebral regions at the same relative location. Unfortunately, this
is not fully the case. Anatomic differences between the patients are probably
the single most significant source of bad regional results. In response to these
difficulties, improvements in normalization procedures as well as templates
and atlases are an ongoing field of research.

Another source of error that we ignore are Partial Volume Effects (section
1.1.4.2) resulting from the limits of scanner resolution. Methods taking
this into account are called Partial Volume Correction (PVC). There
exists theoretical and experimental work on PVC [2], but its application is
demanding and most clinical studies run out of time before they can even
consider it.
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Chapter 2

Preliminaries

This chapter prepares some material for easy reference in later chapters.
Much of it are well known facts in the PET community.

2.1 Decays and Activity

Becquerel [Bq] is a unit of radioactivity, it means decays per second. How
much a Becquerel is in terms of atoms of a nuclide depends on its half life
τ . It is computed by the formula

atoms

Bq
=

τ

1second · ln(2)
(2.1)

For 11C with its half life of 1223 seconds, this makes 1764.4 atoms per
Becquerel.

2.2 Voxels and Volumes

Tomographic images are stored as “volumes”, 3-dimensional arrays of pix-
els called “voxels”, each representing a cuboid sized a few millimeters
across. Each voxel stores an “intensity” value coded in a 2 or 4 bytes
integer or float format. In raw PET images, intensities correspond to units
of specific activity (such as Becquerel per ml). Different file formats are
in use, proprietary ones like ECAT7 which is generated by Siemens tomo-
graphs, and other ones with differing amounts of header information like
DICOM, Nifty, Interfile, Analyze. A ROI (“region of interest”) is a subset
of a volume, sometimes corresponding to an anatomical region of the brain.
Binary masks are images of zeroes and ones, they are often used to identify
ROIs.
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2.3 VINCI and SPM

VINCI (“Volume Imaging in Neurological Research, Co-Registration and
ROIs included”) was designed for the visualization and analysis of volume
data generated by medical tomographical systems with special emphasis on
PET [39, 41, 8]. Its development started at MPIFNF in 1999. It is both
an image viewer capable of handling the above file formats, and an extensi-
ble application framework. Over the years it has accumulated functionality
in many areas of image analysis, including coregistration and normaliza-
tion (section 2.10). Newer versions depend on Trolltech’s Qt library (now
owned by Nokia Inc.) [32], allowing to reap the benefits of multi-platform
development. MP4A kinetic analysis as presented in this work has been
implemented in the C++ language as a VINCI plugin (see section 9). It is
now part of the main distribution and available for the Linux, Solaris 10,
MacOS X and MS Windows platforms.

SPM [35] is another well established software package developed and
maintained by University College London, it is based on MATLAB [28] and
offers similar functionality as VINCI.

2.4 Statistic Formulae

Consider a sample x1, . . . , xN of N values. The following concepts and ab-
breviations are used in this work:

• Mean value: µ = 1
N ·

N∑
i=1

xi

• Variance: σ2 =

N∑
i=1

(xi−µ)2

N

• Sample Variance:
N∑
i=1

(xi − µ)2

N − 1
(2.2)

• Standard deviation: SD = σ =
√
σ2

• Coefficient of Variation, relative error: COV = SD
µ

If all data are scaled with some factor c, then µ and SD will also scale with
c, while σ2 scales with c2 and COV remains unchanged.

If not stated otherwise, the term “variance” refers to σ2 and not to the
sample variance. The latter is an estimator for the variance of a population
whose expectancy is unknown, and from which we have a (small) sample.

P-values are indicators produced by various statistical tests. They give
the probability that a specific feature of a sample could have occurred by
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chance. The feature is called significant if its P-value is less than 0.05, highly
significant if it is less than 0.01.

2.5 Proportional Noise

is often used for modeling the noise of PET images. Suppose we are watching
a quantity of some radioactive nuclide over a timespan where n atoms should
decay. Then the number of atoms that will decay is Poisson distributed
with mean value n. The variance of this distribution happens to be also n.
More generally, we call it Proportional Noise whenever the variance is
proportional to the signal n:

σ2 ∼ n

Hence this type of noise is characterized by SD ∼
√
n and therefore

COV ∼ 1√
n

such that the brighter voxels or areas of an image have less relative error.
The frames of a dynamic PET scan have Proportional Noise before being
scaled towards units of specific activity by the reconstruction software.

2.6 Decay Correction

Chapter 3 presents the mathematical model for transport and degradation
of the MP4A tracer. As a purely physiological model, it does not consider
radioactive decay of the nuclide. Instead, it attempts to describe the behav-
ior of nonradioactive (“cold”) tracer. Yet in practice we need to use “hot”
tracer. The fraction of the initially injected nuclide that still exists at time
t is given by the “Decay Function”:

2−
t
τ (2.3)

where τ is the isotope half life. We assume that the remaining tracer is
distributed in the body just like an equal dose of cold tracer would be dis-
tributed, had we injected it. Hence what the scanner finds at time t can
be upscaled to its cold tracer equivalent by multiplication with 2

t
τ . This

is called Decay Correction, and usually performed by the reconstruction
software. The result is expressed in radioactive units, but remember it refers
to nuclide at scan start time, not to the fraction that still exists at time t.

2.6.1 Implementation in clinical PET Scanners

The most consistent way of doing Decay Correction is to take every count
times 2

t
τ . For instance: if a count is registered after 3 half lifes of the isotope,
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it is worth 8 counts, 7 of which represent atoms that ought to show up in
the same area, but have decayed in the meantime.

However, this approach requires either real-time computations, or record-
ing the time information with every count. For this or other reasons, it has
not been adopted in clinical PET scanner software. Instead, the scanners
operate in “histogram mode” where the counts are simply added up, dis-
carding time information. A global correction is then applied to every frame.
The best correction factor available after such loss of information is

t2 − t1
t2∫
t1

2−
t
τ dt

(2.4)

where t1,t2 are the start and end times of the frame. This is the integral of
the constant function 1, divided by the integral of the decay curve, over the
time interval of the frame. After solving the integral, this Decay Correc-
tion Factor becomes

ln(2) · (t2 − t1)

τ
(

2−
t1
τ − 2−

t2
τ

) (2.5)

It is still close to 8 if t1 and t2 are close to 3 half lifes.
The measured counts are taken times this factor, and then undergo con-

version toward units of specific activity, such as Bq/ml. Since the Becquerels
are counts per second, this final conversion contains division by the frame
length. So the overall factor applied by the reconstruction software is pro-
portional to

1

2−
t1
τ − 2−

t2
τ

(2.6)

This will be called “Combined Correction” in this work, as it accounts for
both decay and the differences in frame length. It converts from measured
counts to concentrations of initially injected nuclide, which is the entity used
by kinetic modelling.

2.7 Decay Weighting

According to the Decay Function (2.3), the proportion 2−
t1
τ − 2−

t2
τ of the

initial dose decays between times t1 and t2. Let

wi := 2−
ti
τ − 2−

ti+1
τ (2.7)

where ti and ti+1 are the start and end times of the ith scan frame. This
sequence is called Decay Weighting in this work. Note that the weights
are inverse to the Combined Correction factor of equation (2.6).
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2.7.1 Decay Proportional Noise

Proportional Noise as of section 2.5 is correct for modelling voxel- or region-
based noise, and has been used for the simulator of chapter 7 and the error
formula of chapter 8. But we also need an assessment for average noise
of whole frames. Hence we make the additional simplification of assuming
levels of specific acticity constant over time. For justification, consider the
plots of section 14.1.13 where a plateau is reached and maintained after a
few minutes.

Again we start by assuming Proportional Noise before Combined Cor-
rection is applied. The average signal of a frame is then proportional to
the number of detected decays, which are in turn proportional to the Decay
Weights of equation (2.7):

“Signal′′ ∼ wi

Then, by equations of section 2.5, we have the proportionalities:

σ2 ∼ wi

SD ∼
√
wi

COV ∼ 1
√
wi

As the following sections show, this type of noise makes it sometimes favor-
able to apply Decay Weighting.

2.7.2 Adding up Frames

Suppose we want to compute a weighted sum image of several frames, and
wish to minimize the relative error in every voxel of that image. For frames
with Proportional Noise it can be proven rigorously (see appendix A.1) that
the best summation method is unweighted.

Reconstructed dynamic PET data arise from frames with Proportional
Noise by applying Combined Correction, which amounts to scaling with 1

wi
(i=1,. . . ,N). Hence the best weighted summation is the one that undoes
Combined Correction, by applying wi (i=1,. . . ,N) as summation weights -
which is the Decay Weighting.

2.7.3 Weighted least Squares

Least Squares Approximations to an N-dimensional target vector minimize
the sum of the components’ squared differences. But if the components are
affected by different levels of noise, it will do no good trying to approximate
them all to the same precision. Instead, one would seek a closer approx-
imation of the components containing the more precise measurements. A
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weighting u is introduced for that purpose, so we are minimizing the penalty

function
N∑
i=1

ui · d2
i , where di is the distance between target and approxima-

tion on the ith component.
It seems reasonable to choose u such that the individual penalties

ui · d2
i

become the same for one standard deviation on each frame. Hence we want
the ui · σ2

i to be equal, which can be achieved by letting

ui :=
1
σ2
i

(2.8)

In the case of Decay Proportional Noise, where we have σ2
i ∼ wi before

Combined Correction and σ2
i ∼ 1

wi
afterwards, this becomes ui ∼ wi. Hence

we recommend to use Decay Weighting for least squares approximations of
PET frames as delivered by the reconstruction software.

2.7.4 Isotropy of Noise

Minimizing Decay Weighted squares is the same as minimizing distances in
a space whose metric is defined by the inner product of equation (4.7). With
Decay Proportional Noise, we have

SD ∼
√
wi

for the signal before Combined Correction, and

SD ∼ 1
√
wi

afterwards. We therefore have standard deviations proportional to the unit
vectors (equation (B.10)) of this metric. This implies equal Gaussian noise
in all directions. Now the N-dimensional cartesian product of normal distri-
butions with µ = 0 and equal σ results in a function that depends only on
the distance from the origin. This is a consequence of the identity

N∏
i=1

exp(−x2
i ) = exp

(
−

N∑
i=1

x2
i

)
(2.9)

where
N∑
i=1

x2
i is the square of the distance. So we have a noise cloud of perfect

spherical symmetry. This motivated the design of k3vari in section B.1.
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2.8 Similarity Measures

are used in this work for comparison of data vectors - huge ones consisting
of the voxels of an image, or small ones consisting of measurements. They
will be called ‘shift’, ‘dist’ and ‘corr’.

‘shift’ is the signed difference between the two mean values of either
dataset. It indicates “bias”, a systematic drift in one direction.

‘dist’ is the Euclidean Distance scaled with 1√
N

:

‘dist′ :=

√√√√ 1
N

N∑
i=1

(xi − yi)2 (2.10)

It can be looked upon as a sort of average distance.
‘corr’ is the correlation coefficient of the cloud of points whose coordi-

nates are the data of sets 1 and 2. It is indifferent to shifting or scaling of
either data set. If applied to images, it compares their “content”, and it will
diminish if either image is disfigured by noise.

Mutual Information is mentioned just for completeness, as it plays no
role in this work. It is a similarity measure used for automatic inter-modality
coregistration (section 2.10), it can compare images even if corresponding
structures follow different patterns of brightness.

2.9 Gauss Filtering

is a smoothing technique often applied to PET images during or after recon-
struction. It will reduce spatial noise of a single frame. This also leads to
lower noise in the fourth dimension, the time, where it is of interest for MP4A
studies: improving the quality of the Time Activity Curves from which k3 is
computed. Every voxel of the filtered image is replaced by a weighted mean
of the original voxels in its neighborhood. This is a linear combination with
positive coefficients, which add up to 1 and together are called the filter
kernel. Gauss Filter kernels are shaped like a 3-dimensional normal distri-
bution. The only free parameter is FWHM, “full width at half maximum”.
The density of the normal distribution centered in 0 with standard deviation
σ is given by

ϕ(x) =
1

σ
√

2π
e−

x2

2σ2 (2.11)

The abscissae of its half maximum are at ±
√

2 · ln(2)σ (not to be con-
founded with its points of inflection which are at ±σ). By definition,
FWHM equals the distance between these abscissae, which is

√
8 · ln(2)σ ≈

2.3548 · σ.
So, for given FWHM, we obtain σ by division through 2.3548. Using

this σ and formula (2.11), we compute the filter kernel: at the kth voxel in
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x direction from the voxel of interest, we plug in kv for x, where v is the
voxel size in x direction. Let the voxel be isotropic and i, j, k denote the
offsets in x,y and z direction: then we have a distance of v ·

√
i2 + j2 + k2.

We want spherical symmetry, where the kernel depends exclusively on the
distance from the voxel of interest. So it should be computed by plugging
the distance into formula (2.11) and replacing the scalar factor by its third
power, since we are in 3 dimensions. Thus, we get for the kernel at voxel
(i,j,k)

1
(σ ·
√

2π)3
· e−

v2·(i2+j2+k2)

2σ2 (2.12)

2.9.1 Decomposition into one dimensional Steps

Note that, as a consequence of the identity

e−v
2i2 · e−v2j2 · e−v2k2

= e−v
2(i2+j2+k2)

this happens to be the same as the product ϕ(iv) · ϕ(jv) · ϕ(kv) with ϕ
taken from equation (2.11). We thus can replace direct application of a 3-
dimensional kernel by breaking down the filtering process into three separate
passes, during which the image is filtered in x, y and z direction. This brings
considerable speedup over a single pass implementation. The speedup factor
is the number of voxels of three 1-dimensional kernels, divided by the number
of voxels of one 3-dimensional kernel. This starts to pay off for large FWHM,
small voxel sizes or high cutoff parameters, and has therefore been used in
the Gauss Filter implementations both of VINCI and SPM.

2.9.2 Scaling

The integral both of the one-dimensional and the 3-dimensional kernel (equa-
tions (2.11) and (2.12)) is exactly 1. The sum of kernel coefficients (which
is a discretized version of this integral) will therefore be close to 1 to begin
with. What difference there is, is compensated for by scaling.

2.9.3 Cutoff

Since we do not want to sample the whole original image for every voxel of
the target image, cutoff is applied at a certain distance from the voxel of
interest. The distance is usually set to a fixed number k of standard devi-
ations. Table 2.1 has been computed by integration of the 3-dimensional
bell function, it shows what percentage of the total integral is under a cubic
domain extending k times σ away from the voxel of interest in each dimen-
sion and direction. Thus, at only twice the computational cost of 95%, we
obtain an almost perfect Gauss Filter and do not have to worry about cutoff
artefacts.
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k percentage covered
2.11405 90.0
2.38774 95.0
2.93416 99.0
3.58783 99.9
4.1494 99.99
4.64913 99.999

Table 2.1: Cutoff yield of cubic Gauss Filter domains

Additional cutoff will take place at the image borders and corners. There
we lack input from nearby voxels, so scaling is needed to avoid darkening in
these places.

In the VINCI implementation, cutoff (using k=4.64913) and scaling are
applied during each of the three 1-dimensional steps. Depending on their
closeness to the border, the one dimensional kernels are used with appropri-
ate scaling factors to have their coefficients add up to 1.

2.9.4 Filtering twice

For the bell curve ϕ of equation (2.11), it is known that the convolution
with itself yields the same type of function. More precisely,

∞∫
−∞

ϕ1(x)ϕ2(t− x)dx = ϕ3(t) (2.13)

and σ2
3 = σ2

1 + σ2
2 where the σi are the σ’s of the ϕi.

When translating this finding to kernels and filtering, then convolu-
tion comes down to filtering twice, applying two kernels sequentially to
one image. Since FWHM=2.3546 · σ, the relation between the σ’s holds
for the FWHM as well. So filtering twice with kernel sizes of FWHM1

and FWHM2 is equivalent to filtering once with a kernel size of FWHM3,
which is the pythagoreian sum of FWHM1 and FWHM2:

FWHM3 =
√
FWHM2

1 + FWHM2
2 (2.14)

By writing equation (2.12) in its decomposed form (see section 2.9.1) and
observing that everything commutes, one can show that this result applies
to 3-dimensional filtering as well.

2.9.5 An Alternative

Instead of evaluating the 3-dimensional bell curve at the center of each voxel
like in formula (2.12), one could also use the integrals of the bell curve over
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the voxel domains as kernel coefficients. In fact this seems to be slightly
more correct. This approach can also be decomposed into 1-dimensional
steps and therefore allows fast implementation.

2.10 Coregistration and Normalization

are techniques for aligning images of the human brain with each other. One
may have images of the same subject but of different modalities (CT or
MR against PET, or PET images with different tracers), then inter-modality
coregistration is needed. Inter-subject coregistration is often used in scien-
tific studies, where a region should appear in the same place for all subjects.
Usually, one of the images is called a “template”, to which the others are
“normalized” in order to make them comparable.

An important difference between same-subject and inter-subject coreg-
istration of brain scans is that, for the former, it suffices to consider transla-
tion and rotation, since the size and shape of the brain is the same. Images
from clinical scanners usually come with valid metric information where dis-
tances, angles and volumes can be measured. But the head location will be
“unknown” and different from image to image, as it depends on how the
patient was positioned in the scanner. In order to realign two images of the
same subject, all possible translations (3 degrees of freedom) and rotations
(3 more) must be considered, this is called Rigid Body Coregistration.

In inter-subject coregistration there may also be differences in head size
and shape. So 3 stretch factors are added to support size adjustment in-
dependently in 3 directions of space. If these directions are fixed to the
coordinate axes, it requires 3 degrees of freedom, and 3 more if an arbitrary
orthonormal system of stretch axes is allowed. We speak of “Affine Nor-
malization” with 9 or 12 degrees of freedom. By 12 degrees of freedom, the
set of affine mappings is exhausted, and anything beyond will be nonlinear.

2.10.1 Automatic Coregistration

Coregistration can be “manually” performed by comparing images in a
viewer with support for affine operations. In many instances this is the
safest method. However, for the human brain with its rich internal struc-
ture, there exist algorithms for automatic coregistration and normalization
that can do as well as any human operator [7, 8]. They determine the set of
transformation parameters that maximizes similarity (section 2.8) between
image 2 and transformed image 1.

Users need to make the right choices: use Rigid Body Coregistration for
intra-subject image alignment, Affine Normalization for inter-subject situ-
ations. Use Mutual Information as a similarity measure for inter-modality
coregistration, while the Correlation Coefficient is good enough for same
modalities. Automatic procedures will not work in combined inter-subject
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inter-modality situations. It may then be possible to get things running
again by using intermediates as bridges, an example is in section 9.2.1.

2.10.2 Image Resampling

Once the optimum transformation has been found, image 1 may be “resam-
pled” to create a version of itself (image 1’) in the coordinate space of image
2. Such resampling can be coupled with a change of the volume format (the
number and size of the voxels in the 3 coordinate directions). The proce-
dure is implemented in VINCI as follows: start with an empty volume in
the format of image 2, and iterate over its voxels. By the chosen transfor-
mation, map every voxel v to its corresponding location in image 1. Mostly,
that location will not be the center of a voxel, hence the intensity value is
computed by “threelinear interpolation” of the intensities of up to 8 voxels.
The resulting mean value is assigned to v.
This method has two implications:

1. Resampling comes with a degree of smoothing and loss of image res-
olution by averaging. So one tries to keep the number of resamplings
low.

2. Image intensities are not corrected for volume effects. That is to say,
the intensity of a region stays the same even if the image changes
in size. Therefore, in the resampled image, the regional readings of
specific activity (Becquerel per ml) are the same as in the original
image, but the total amount of radioactivity is misrepresented.

2.11 Patient Samples

A suspected precursor stage of AD is “mild cognitive impairment” (MCI),
where patients complain of memory deficits while other cognitive functions
are still intact. In 2007, a study involving 12 elderly volunteers diagnosed
with MCI was conducted at MPIFNF, Cologne. Each subject received an
MP4A PET scan and an MRI scan, and underwent a battery of neuropsy-
chological tests. A similar study, involving 12 MCI subjects and 5 normal
controls, was performed at the San Raffaele Hospital in Milan. The studies
underwent comparative analysis under the umbrella of DiMI Workpackage
8.2. DiMI, “Diagnostic Molecular Imaging”, is an EC funded initiative
designed to coordinate research on various diseases involving multimodal
imaging techniques.

In this work, subjects will be referenced by their DiMI identification
codes. We define 4 patient samples for later reference (see below). They
were all scanned using the “traditional” framing of section 6.1.1.1. For
patients of Samples 1 and 2 we used an ECAT HR scanner (CTI/Siemens,
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Knoxville, Tennessee, USA), voxel size: 2.202 × 2.202 × 3.125 mm, volume
size: 128 × 128 × 47 voxels. A GE Advance scanner was used in Milan
for Sample 3 and 4 subjects, voxel size: 2.5 × 2.5 × 4.25 mm, volume size:
128× 128× 35 voxels. Reconstruction protocols for Sample 3 were different
from Samples 1 and 2 in that they inferred more smoothing to the raw PET
data.

• Cologne MCI subjects of 2007 (=Sample 1)
DiMI ID codes:
M01001, M01002, M01003, M01004, M01005, M01007, M01008, M01009,
M01010, M01012, M01013, M01014.

• Cologne subjects of 2002 and 2003 (=Sample 2)
Diagnostic groups and DiMI ID codes:

– AD: M01051, M01053, M01054, M01056, M01057, M01058, M01059,
M01061, M01062, M01063, M01064

– Normal Controls: M01068, M01081

– MCI: M01089, M01090, M01091, M01092

• Milan subjects:
Diagnostic groups and DiMI ID codes:

– MCI: M36002 through M36012 minus M36007 (=Sample 3)

– Normal Controls: M36022 through M36025 (=Sample 4)
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Chapter 3

Kinetic Model and
COLOGNE Method

The MP4A kinetic model used in this work is based on 4 assumptions,
beginning with

Assumption 1 (Ignoring Blood Volume)
The measured 11C signal comes from tissue alone

Assumption 2 (Tracer Irreversibility)
Once the tracer is hydrolyzed, its 11C can no longer cross the Blood Brain
Barrier

Assumption 3 (Tracer Specificity)
The speed of hydrolysis is proportional to AChE enzyme activity

Assumption 1 is a simplification which is partly justified by the fact that
(1) the average “blood volume”1 in brain is only 4 to 5 percent [13] and
(2) specific activity in blood plasma is known to decline rapidly after an
initial burst following injection of the tracer. Therefore, contribution of
signal from the blood to the total signal measured is presumed negligible by
most researchers. We will pick up this issue in sections 12.1 and 15.10.1.
Assumptions 2 and 3 are founded on studies on the properties of MP4A by
Irie et al. [20, 19]. Assumption 2 provides justification for setting k4 to zero,
leading to the irreversible tracer model of Figure 1.2.

3.1 Deriving the Model Functions

A detailed view of the model is shown in Figure 4.3, whose 3 compartments
refer to the following concentrations:

1the inner volume of the capillaries as a fraction of total tissue volume
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1. Authentic tracer in blood plasma (Cpl)

2. Authentic tracer in brain tissue (Cta)

3. Hydrolyzed tracer in brain tissue (Cth)

The kinetic constants k1, k2, k3 give the speed of tracer diffusion from
plasma to tissue, from tissue to plasma, and of tracer hydrolysis in tissue.
They are in units of min−1. For instance, k2=0.1 and k3=0.2 means that
back diffusion occurs at a rate of 10 percent per minute and hydrolysis at
20 percent per minute, both percentages referring to the concentration of
authentic tracer in tissue. Matters are slightly more complicated for k1,
which unlike k2 is not merely a permeability constant, but also depends on
“perfusion” which is the rate of blood delivery to tissue. It is therefore more
correctly expressed in units of ml of plasma

min · ml of tissue . In practical calculations of
this work, k1 never occurs in absolute terms, but in dimensionless ratios of
two such constants.

Total tracer in tissue equals Ct = Cta + Cth, and by Assumption 1, the
signal is proportional to Ct. Hydrolyzed tracer in blood plasma need not
be considered because of Assumptions 1 and 2. Cpl is the (Blood) Input
Function, it is known by direct or indirect measurement. Cta grows only by
tracer crossing the Blood Brain Barrier, at a rate proportional both to Cpl
and k1. Cta decreases by tracer crossing back into the plasma, and tracer
being hydrolyzed. So the rate of decrease is (k2 + k3)Cta. k3Cta is also the
speed at which Cth increases. Because of Assumption 2, there is nothing to
make it decrease.
So we have the following system of differential equations for Cta and Cth:

C ′ta = −(k2 + k3) · Cta + k1Cpl (3.1)

C ′th = k3Cta

The relevant solution is given in equation (3.4). For the sake of completeness,
we include its derivation: let k be a shorthand for k2+k3. The first equation
does not contain Cth and can therefore be solved in isolation. Without the
inhomogeneity k1Cpl, the solution is

yhom(t) = r · e−kt

where r is a constant. To find a single solution of the inhomogenous problem,
we replace r by a function r(t) and try:

yinhom(t) = r(t) · e−kt

with its derivative

y′inhom(t) = (r′(t)− kr(t)) · e−kt
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Substituting this for Cta and C ′ta in equation (3.1) leads to

r′(t) = k1 · Cpl(t) · ekt

and r is an integral function of the right side. Since there is no tracer
expected in the tissue at time 0, we choose r(0)=0 and obtain

r(t) = k1 ·
t∫

0

Cpl(s) · eksds

Cta(t) = r(t)e−kt = k1e
−kt ·

t∫
0

Cpl(s) · eksds (3.2)

Then, by the second line of (3.1)

C ′th = k1k3 · e−kt ·
t∫

0

Cpl(s) · eksds

Cth is an integral function of C ′th with respect to t:

Cth = k1k3

∫
e−kt︸︷︷︸
↑

·
t∫

0

Cpl(s) · eksds︸ ︷︷ ︸
↓

dt

Partial integration as indicated by the arrows leads to

Cth = k1k3 ·

−1
k
· e−kt ·

t∫
0

Cpl(s) · eksds

− k1k3 ·
(∫
−1
k
· e−ktCpl(t) · ektdt

)

where the right brace is an unspecified integral function. At time 0, there
ought to be no hydrolyzed tracer, so we can set the integration limits to 0
and t, obtaining:

Cth(t) = −k1k3

k
· e−kt

t∫
0

Cpl(s)eksds+
k1k3

k

t∫
0

Cpl(s)ds (3.3)

By substituting (3.2) and (3.3) into Ct = Cta + Cth, we have

Ct(t) =
(
k1 −

k1k3

k

)
e−kt ·

t∫
0

Cpl(s)eksds+
k1k3

k

t∫
0

Cpl(s)ds
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where the brace equals k1k2
k because k = k2 + k3.

e−kt can be drawn into the first integral and united with eks. So the final
result is

Ct(t) = k1k2
k ·

t∫
0

Cpl(s)ek(s−t)ds+ k1k3
k ·

t∫
0

Cpl(s)ds (3.4)

3.2 Obtaining the Input Function

Ct depends on the Input Function Cpl and the kinetic constants k1, k2,
k3. Conversely, if Ct and Cpl are known, k1, k2, k3 can be computed by
the methods of this and the following chapter. Cpl, the concentration of
unhydrolyzed tracer in the plasma, is required as a global input to these
procedures.

3.2.1 Blood Sampling

Until recently [15], Cpl was obtained directly by arterial blood sampling.
But the tracer is hydrolyzed in the plasma as well, so it did not suffice
to count radioactivity. The tracer had to be chemically separated from its
degradation products, which was neither convenient nor precise. In addi-
tion, drawing arterial blood during PET acquisition may lead to patient
discomfort and movement.

3.2.2 Reference Regions

For these reasons, new ways for obtaining Cpl were sought, and in [15] a
method based on a reference region was published. Such a region is expected
to satisfy

Assumption 4 (Ideal Reference Region)
There is no backflow of radioactivity from the reference region to the plasma

In the model, this will happen if either k2 is zero or k3 is infinity, where
every tracer molecule is hydrolyzed immediately after crossing the Blood
Brain Barrier. Substituting either of the two in equation (3.4), leads to

Cr(t) = k1rCi(t) (3.5)

where Cr is the Ct of the reference region, k1r is its local k1 and

Ci(t) :=

t∫
0

Cpl(s)ds (3.6)
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is a special integral function of Cpl. Then by measuring Cr, we get to know
Ci up to a constant, and thus we know its derivative Cpl.

For Cerebellum and Putamen, k3 values of 0.65 and 4, respectively, have
been reported in literature (section 13.1). Their k2 is assumed close to
0.1. That makes them suitable, although not ideal, as reference regions.
However, if k2 and k3 of the reference region are known, there is a way to
reconstruct an ideal reference curve from the measured data:

3.2.3 k3r-Correction

Let Cr be the reference curve of an ideal reference region for which equation
(3.5) applies, and Crm a real reference curve measured from Cerebellum or
Putamen. It is connected with Cpl by equation (3.4), written for the kinetic
constants k1r, k2r, k3r and kr=k2r+k3r of the reference region:

Crm(t) =
k1rk2r

kr
·

t∫
0

Cpl(s)ekr(s−t)ds+
k1rk3r

kr
·

t∫
0

Cpl(s)ds (3.7)

The question is, how can Cr be computed from Crm and k2r, k3r. For
abbreviation, let

qr :=
k3r

kr

leading to

1− qr =
k2r

kr

Using qr and Ci, equation (3.7) assumes the following form:

Crm(t) = k1r(1− qr) ·
t∫

0

Cpl(s)︸ ︷︷ ︸
↑

ekr(s−t)︸ ︷︷ ︸
↓

ds+ k1rqr · Ci(t) (3.8)

We expand by partial integration, as the arrows indicate:

Crm(t) = k1r(1−qr)
[
Ci(s)ekr(s−t)

]s=t
s=0
−k1r(1−qr)

t∫
0

Ci(s)krekr(s−t)ds+k1rqrCi(t)

By plugging in s=0, s=t to the first part and observing Ci(0) = 0, this part
becomes k1r(1− qr)Ci(t) and can be united with the last summand to give
k1rCi(t). Hence we have

Crm(t) = k1rCi(t)− k1rkr(1− qr)
t∫

0

Ci(s)ekr(s−t)ds
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Now by definition of qr,
kr(1− qr) = k2r

Using this and commuting the equation sides, we arrive at

k1rCi(t) = Crm(t) + k2r

t∫
0

k1rCi(s) · ekr(s−t)ds

Cr(t) = Crm(t) + k2r

t∫
0

Cr(s) · e(k2r+k3r)(s−t)ds (3.9)

Cr is now seen in two places: on the left hand side, and inside the integral.
This allows the following iterative method to be used. Begin with Cr =
Crm. Plug this into the right side and evaluate the integral, using the true
values of k2r and k3r. Equation (3.9) returns an update for Cr, the second
approximation. The procedure is repeated until convergence is reached. For
computational details, see section 3.4.1.1.

3.3 The COLOGNE Method

Given a Blood Input Function Cpl and a local Time Activity Curve Ct,
k1/k1r, k2 and k3 can be obtained by fitting the right hand side of equation
(3.4) to Ct. Since a least squares fit was deemed too expensive for voxel
based computation with commercial software packages, a number of faster
methods has been published by different authors [5, 29, 36, 30]. One of
them, developed by Herholz and Zuendorf in Cologne, will be called the
COLOGNE method. Our presentation follows [46] with notational modifi-
cations. In analogy to section 3.2.3, define

q :=
k3

k
(3.10)

leading to

1− q =
k2

k
(3.11)

and rewrite equation (3.4) using q and Ci:

Ct(t) = k1(1− q) ·
t∫

0

Cpl(s)ek(s−t)ds+ k1qCi(t) (3.12)

Now consider its quotient with Cr(t)=k1rCi(t):

Ct(t)
Cr(t)

=
k1(1− q)

t∫
0

Cpl(s)ek(s−t)ds

k1rCi(t)
+
k1qCi(t)
k1rCi(t)
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=
k1

k1r
(1− q) ·

t∫
0

Cpl(s)ek(s−t)ds

Ci(t)
+
k1

k1r
q

So we have
Ct(t)
Cr(t)

= A · wk(t) +B (3.13)

where

wk(t) :=

t∫
0

Cpl(s) · ek(s−t)ds

Ci(t)
(3.14)

A :=
k1

k1r
(1− q), B :=

k1

k1r
q (3.15)

The left hand side of equation (3.13) is known from the image data. Given
an estimate for k, wk(t) can be computed, too. First we transform it by
partial integration such as to replace Cpl by Ci:

wk(t) =

t∫
0

Cpl(s) · ek(s−t)ds

Ci(t)

=

[
Ci(s)ek(s−t)

]s=t
s=0

Ci(t)
−

t∫
0

Ci(s) · k · ek(s−t)ds

Ci(t)

The first fraction equals 1 since Ci(0) = 0. Expanding the second fraction
with k1r, we get

wk(t) = 1− k ·

t∫
0

Cr(s) · ek(s−t)ds

Cr(t)
(3.16)

From Cr, which is known as a value table for discrete times, the enumerator
is computed by interpolation and integration in ways we discuss in 3.4.1. So
(3.16) allows to compute a value table for wk. If k was guessed truthfully,
(3.13) ensures it will correlate perfectly with the value table for Ct

Cr
.

Hence, we determine k such that it maximizes the correlation between
the two sides of (3.13). For the optimal k, A and B are then determined by
linear regression. Since by (3.15), k1

k1r
= A + B, we can compute this first

and then q = k1r
k1
B. By (3.10), we have k3 = qk, which gives us k3. Finally,

k2 = k − k3.
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3.4 Implementation Details

3.4.1 Interpolation and Integration

For the COLOGNE method,

t∫
0

Cr(s) · ek(s−t)ds (3.17)

of equation (3.16) must be evaluated. Cr is given as a value table for discrete
times t=t1, t2, . . . , tN . For each ti in the place of t, (3.17) is computed
and used in (3.16) to obtain wk as a value table. To make integration
possible, Cr must be interpolated on the continuum. Linear interpolation
would systematically underestimate the integral, because Cr is concave. We
therefore interpolate by fitting a natural cubic spline through the set of
points

{(ti|Cr(ti)) | i = 1, . . . , N} (3.18)

By definition, that is a C2-continuous 3rd order spline changing formula in
t1, . . . , tN and degenerating to a 1st order polynomial left of t1 and right of
tN . Natural cubic splines are uniquely determined by their input points, so
the result is not implementation dependent.

The integrand of equation (3.17) thus becomes a piecewise 3rd order
exponential polynomial. The integral functions are 3rd order exponential
polynomials themselves, so the integral of each subinterval [ti, ti+1] can be
computed by an explicit formula. This outperforms numeric integration
both in terms of speed and precision.

3.4.1.1 k3r-Correction

For k3r-correction, the right hand side of equation (3.9) must be computed.
This is just the above problem with k2r + k3r in the place of k. Crm comes
as a value table for t1, . . . , tN . So Cr starts as a copy of the table. Then the
integral is evaluated as above, giving another value table, which is added to
Crm to make the 2nd approximation. So the whole iteration is in terms of
N-vectors, and a new cubic spline is computed in every iteration. The cost
is negligible since k3r-correction is performed only once for every PET scan.
It is not part of the voxel based procedure (COLOGNE method or NLS)
that follows.

By equation (3.9), it is clear that the series of vectors should be growing
in every iteration. The total increase (obtained by summation of the com-
ponents) is monitored in every iteration, and break-off is triggered as soon
as that increase fails to be positive. The maximum number of iterations is
set to 100, but that limit was never reached. For numeric validation of the
procedure, see section 6.4.
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3.4.2 Finding the optimal k

As described in section 3.3, wk is computed for different k’s in order to find
the k that maximizes correlation with the left hand side of (3.13). As it is
clear from the previous section, computing wk involves N evaluations of a
3rd order exponential polynomial (the spline fitting need not be repeated
for every k). That makes it fast enough to be called on-the-fly. So we
implement a function computing the correlation coefficient from k. Any
one-dimensional maximizer (such as the golden section method) can then
be used to find the maximum of that function. Computation speeds of more
than 1000 voxels per second could thus be reached, which is enough for the
intended purpose.

If speed does become an issue (as it would be the case if numeric inte-
gration were used in 3.4.1), there is still the option of tabulating wk(ti) for
i=1,. . . ,N and for a range of k’s distributed over a suitable domain. Then
for every voxel, correlation coefficients must be computed between Ct

Cr
and

each tabulated wk. Thus while saving the time for recomputing wk, one
might run into other expenses if the number of tabulated k’s is large. Re-
ducing their number leads to a tradeoff between speed and precision, since
obviously the optimization result is one of the tabulated k’s.

Before deciding to sacrifice precision for speed, there are three possible
remedies to consider.

1. An equidistant distribution of the tabulated k’s is not a good idea. In
the end, we wish to discern k3 = 0.05 clearly from k3 = 0.07, but in
high k3 regions we care little whether it is 0.4 or 0.42. This calls for
using smaller steps in lower areas. This can be achieved, for instance,
by tabulating a geometric sequence of k’s.

2. After finding the optimum tabulated k, an additional interpolation
step can recover much of the sacrificed precision. However noisy the
image data may have been to begin with, the function mapping the k’s
onto their correlations is smooth and analytic. Whereever its second
derivative is not too close to zero, such a function looks — on a micro-
scopic scale — like a parabola. This makes it possible to fit a parabola
through the best tabulated k and its two neighbors, and determine the
abscissa of its apex. This gives a compact formula interpolating the
tabulated k’s and approximating the optimum much closer.

3. The third idea is a bit risky since it relies on the target function having
no more than one interior local maximum. In this case, we need not
scan all tabulated k’s in order to find the best. Instead, we can use
a technique resembling binary search, bringing down the number of
scans substantially. The details of the method can be worked out
easily by anyone who has confidence in the above condition. On real
images, we found it to hold true “almost everywhere”.
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In this work, an implementation based on 200 tabulated k’s and all the
tricks listed above was used. It reached a speed of more than 50,000 voxels
per second while computing k3 to a precision of 3 to 4 digits. Precision was
checked by comparison with the golden section implementation.
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Figure 3.1: Visualizing the mechanism of COLOGNE. The right part shows the
TACs Ct (gray) and Cr (black). The size of the dots corresponds to the weighting.
The red curve wk is computed from Cr and an estimate of k. On the left side,
wk is plotted on the abscissa, Ct/Cr on the ordinate, making a cloud of points.
Changing k affects wk and, hence, the cloud. The optimum k is 0.1749, it maximizes
the correlation at 0.9760 (center). From the parameters of the regression line,
k2=0.1007 and k3=0.0742 are computed. Underestimating k moves wk up, shifting
the dots to the right side, where they end up in a convex shape whose correlation is
0.8225 (bottom). k2 and k3 computed from the corresponding regression line would
be 0.0213 and 0.0100.
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Chapter 4

Nonlinear Least Squares

In this chapter, reference based MP4A kinetic analysis is formulated as
a weighted Nonlinear Least Squares (NLS)-problem. We then describe the
implementation of a fast dedicated solver. As a spinoff, we obtain additional
data which can be used for image analysis and error estimation, this will be
addressed in section 4.7.

4.1 Specification

Recall that the kinetic model, given an input curve Cpl and kinetic constants
k1,k2,k3, defines Ct as spelled out in equation (3.4). In the reference based
approach, Cpl is replaced by a reference curve Cr which can be sampled from
the PET data. Cr is thought to be a scaled integral function of Cpl. Hence
we need to reformulate equation (3.4) to have it depend on Cr instead of
Cpl, this will be equation (4.11). As a result of the change, k1 can no longer
be determined in absolute terms, but as a fraction of k1r, which is the k1 of
the reference region. So we set

q1 :=
k1

k1r
(4.1)

and use q1 consistently instead of k1.
Now we have a function F defined by equation (4.11) mapping triples

(q1 k2 k3) of kinetic constants to RN where N is the number of frames.
Given a measured TAC Ct, the task is to find a triple f’ that minimizes

N∑
i=1

wi · (Ct(ti)−F(f ′)(i))2 (4.2)

which is the sum of weighted squared differences between the measurement
and the theoretic Time Activity Curve of every frame. For reasons given in
section 2.7.3, we use the Decay Weights wi defined in equation (2.7).
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Figure 4.1: An iteration of the Gauss Newton Method

4.2 F and M
Using F of equation (4.11), we define

M := F(R3) (4.3)

It will be called the Set of Model Compliant Curves. A point p=F(p′)
ofM then is the Model Curve of p’. It will be called regular if the partial
derivatives of F in p’ with respect to q1, k2, k3 are linear independent. M
resembles a 3-dimensional manifold embedded in RN , but as we shall see in
section 4.6.2, not all of its points are regular.

Note that both the framing and Cr in its interpolated version are part
of the definition of F and therefore M. Hence we have introduced a notion
of model compliance that depends on all these details.

4.3 Gauss Newton Method

This is a standard NLS solver for overdetermined nonlinear equation sys-
tems. From Newton solvers for general minimization problems, it is distin-
guished by not requiring second derivatives. We explain the method in the
context of its intended application.
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The situation is sketched in Figure 4.1. a is the measured TAC Ct that
we seek to approximate. xn is the nth iteration point, a triple of kinetic
constants. F(xn) is its Model Curve, a point of M. xn+1 is determined
such that it solves the weighted least squares problem for the function G
that parametrizes the tangential space of M about F(xn):

G : R3 → RN (4.4)
x 7→ F(xn) + JxnF · (x− xn)

where JxnF is the Jacobi Matrix of F at xn. So we minimize the weighted
squares of the residual vector G(xn+1) − a where G is a linear mapping1

whose definition depends of xn.

4.3.1 The linear Step

We seek x that yields the best approximation G(x) ≈ a in the weighted
least squares sense. Let ∆x := x−xn denote the shift vector. The Jacobi
matrix JxnF has N rows and 3 columns:

JxnF =


∂f1
∂q1

(xn) ∂f1
∂k2

(xn) ∂f1
∂k3

(xn)
∂f2
∂q1

(xn) ∂f2
∂k2

(xn) ∂f2
∂k3

(xn)
. . .
. . .

∂fN
∂q1

(xn) ∂fN
∂k2

(xn) ∂fN
∂k3

(xn)

 (4.5)

Abbreviating JxnF by J, we have

F(xn) + J(∆x) ≈ a

J(∆x) ≈ a−F(xn)

That makes ∆x the least squares solution of an overdetermined linear equa-
tion system. Let W denote the diagonal matrix whose entries are the
weights. Then, according to linear theory, the shift vector of the least
squares solution is obtained by solving the system of the so called normal
equations:

(JTWJ)∆x = JTW(a−F(xn)) (4.6)

Its matrix JTWJ is guaranteed to be regular as long as all weights are
positive and the columns of J are linear independent, which is the case in
every regular point of M.

1more precisely: affine
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4.3.2 Geometric Interpretation

RN is the space of all TACs that might be measured. Based on the weighting
w1, . . . , wN , we define the inner product:

〈u,v〉 :=
N∑
i=1

uiwivi (4.7)

It induces the norm:

‖u‖ =

√√√√ N∑
i=1

u2
iwi (4.8)

which in turn defines a metric of RN . Minimizing the weighted squares
of G(xn+1) − a comes down to finding the uniquely determined point of
G(R3) which is closest to a in this metric. By construction (equation 4.4),
G(R3) is the tangential space of M in F(xn) and, in the vicinity of F(xn),
its parametrization matches the parametrization of M by F . Therefore,
G(xn+1), which is the closest point of the tangential space, will not be far
away from F(xn+1), which is therefore expected to improve on the previ-
ous iteration point, although this cannot be guaranteed in the nonlinear
situation.
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In Figure 4.2 the Gauss Newton method has finally converged and
found f as the closest point of M to a. The reason why a itself is not
a point of M is that it is disfigured by noise. Assuming correctness of the
model, it may originally have been located at t, from where the noise carried
it to a, from where NLS obtained f as the foot of a perpendicular dropped
ontoM. t and f have preimages t’ and f ’ under F , where t’ are the “true”
kinetic constants, and f ’ is the estimate found by NLS.

One may look upon M as carrying a 3-dimensional coordinate system,
hinted by the (one-dimensional) tickmarks in Figure 4.2. Then f ’ is found by
reading the coordinates at f where the perpendicular hits M. It is obvious
that precision will suffer if f is at a location where the tickmarks are close.
This is the case for TACs like b, which are close to a singular point s ofM.
Such a situation will be identified in section 4.6.2. Quantitative treatment,
leading to an error estimate for k3, is the subject of chapter 8.

4.4 Model Function and Derivatives

Now for the definition of F . According to (3.13), we have

Ct(t) = Cr(t) [Awk(t) +B]

. . . using formula (3.16) for wk . . .

= Cr(t)

A−Ak ·
t∫
0

Cr(s) · ek(s−t)ds

Cr(t)
+B



= Cr(t)(A+B)−Ak
t∫

0

Cr(s) · ek(s−t)ds

where, by (3.15) and (3.10),(3.11)

A+B =
k1

k1r

Ak =
k1

k1r
(1− q)k =

k1k2

k1r

So we have

Ct(t) =
k1

k1r
Cr(t)−

k1k2

k1r

t∫
0

Cr(s) · ek(s−t)ds (4.9)

It is now expressed in terms of Cr instead of Cpl. As a consequence, we have
k1r in the formula and can now replace k1

k1r
with q1 as advertised in equation
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(4.1). The i’th component function fi of F takes three kinetic constants as
arguments and returns Ct at time t=ti:

fi (q1 k2 k3) := q1

Cr(ti)− k2

ti∫
0

Cr(s) · e(k2+k3)(s−ti)ds

 (4.10)

and F is composed of the fi:

F (q1 k2 k3) := (f1 (q1 k2 k3) , . . . , fN (q1 k2 k3)) (4.11)

Next, we need the partial derivatives of the fi with respect to the kinetic
constants, for they make up the Jacobi matrix of F . Looking at equation
(4.10), it is obvious that the derivative with respect to the first argument is
the contents of the square brackets:

∂fi
∂q1

= Cr(ti)− k2

ti∫
0

Cr(s) · e(k2+k3)(s−ti)ds (4.12)

k3 occurs only in the exponent of (4.10), so by partial differentiation under
the integral sign we get a factor (s− ti) inside the integral:

∂fi
∂k3

= −q1k2

ti∫
0

Cr(s) · (s− ti) · e(k2+k3)(s−ti)ds (4.13)

k2 is found in the same position as k3 and also in front of the integral, so by
the product rule we obtain the above plus another copy of the integral:

∂fi
∂k2

= −q1k2

ti∫
0

Cr(s) · (s− ti) · e(k2+k3)(s−ti)ds− q1

ti∫
0

Cr(s) · e(k2+k3)(s−ti)ds

(4.14)

4.5 Implementation and Complexity

4.5.1 F and Derivatives

For abbreviation, let k = k2 + k3. Equations (4.10) to (4.14) contain just
two integral types, namely

comp1(t) :=

t∫
0

Cr(s) · ek(s−t)ds (4.15)
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and

comp2(t) :=

t∫
0

(s− t) · Cr(s) · ek(s−t)ds (4.16)

where t occurs both as an integration limit and as part of the integrand.
But this is easily disentangled. Letting

int1(t) :=

t∫
0

Cr(s) · eksds (4.17)

and

int2(t) :=

t∫
0

s · Cr(s) · eksds (4.18)

we have
comp1(t) = e−kt · int1(t) (4.19)

and

comp2(t) = −t · comp1(t) + e−kt · int2(t)
= e−kt (−t · int1(t) + int2(t))

Cr is a natural cubic spline changing formula in t1,. . . ,tN . Computation of
int1(ti) and int2(ti) therefore comes down to adding up i integrals of third
order and fourth order exponential polynomials, respectively. These are
exponential polynomials themselves: one easily verifies that∫

eksds =
1
k
· eks (4.20)∫

s · eksds =
ks− 1
k2

· eks∫
s2 · eksds =

(ks)2 − 2ks+ 2
k3

· eks∫
s3 · eksds =

(ks)3 − 3(ks)2 + 6ks− 6
k4

· eks∫
s4 · eksds =

(ks)4 − 4(ks)3 + 12(ks)2 − 24ks+ 24
k5

· eks

Computation of the enumerator polynomials by Horner’s scheme takes r
additions and multiplications, where r is the polynomial order. The integral
function ∫

(a4s
4 + a3s

3 + a2s
2 + a1s

1 + a0) · eksds (4.21)
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of a fourth order exponential polynomial will therefore take 4+3+2+1+4=14
additions and multiplications, where one of the enumerators in (4.20) is eval-
uated for each summand of (4.21) and 4 more additions and multiplications
are used to involve the outer coefficients: a4

k5 ,
a3
k4 etc. and add up the terms.

For a third order exponential polynomial the cost is 3+2+1+3=9 additions
and multiplications. Joining the eks factors requires two more multiplica-
tions and one exponentiation. The integral function of a fourth order ex-
ponential polynomial thus comes to (14 16 1) additions / multiplications
/ exponentiations, for third order we have (9 11 1). A definite integral
requires 2 evaluations of the integral function and one subtraction, making
a total cost of (29 32 2) additions / multiplications / exponentiations for
fourth and (19 22 2) for third order.

int1(ti) and int2(ti) are as many sums of definite integrals as Cr is com-
posed of different formulae: for t=ti there are i formulae involved. int2(ti)
therefore costs (29i 32i 2i) and int1(ti) (19i 22i 2i) additions / multiplica-
tions / exponentiations. We need value tables of int1 and int2 for t1, . . . , tN .
Since the entries differ only by their upper integration limit, they can be
computed incrementally. The added cost of both integral tables is then the
same as for only int1(tN ) and int2(tN ), minus the two exponential terms that
are identical in both tables: (48N 54N 2N) additions / multiplications /
exponentiations.

We then compute tables for comp1 and comp2 using formulae (4.19),
and, based on these, the values of F and its partial derivatives by formulae
(4.10), (4.12),(4.13),(4.14), in O(N) time, filling the Jacobi matrix. From
it, we compute the 3x3 matrix JTWJ and the right hand side of equation
(4.6). Each entry of JTWJ is an inner product of type (4.7) of two columns
of J, so JTWJ it is computed in linear time as well. The same applies to
the right hand side of the equation system. Solving it is possible in constant
time. So the cost for an iteration of the Gauss Newton Method is O(N).

In Chapter 5, we shall restrict the number of iterations to a maximum,
giving linear complexity to a single k3 evaluation. To compute a parametric
image, it must be taken times the number of voxels.

4.5.2 Spline Interpolation of Cr

A natural cubic spline interpolating y1, y2,. . . ,yN at abscissae x1, x2,. . . ,xN
can be written in the form

Spline(x) = a0x+ b+
N∑
i=1

ai(x− xi)3 (4.22)

where the underline means that all negative values are replaced with 0.
Then there are N equations to meet the interpolation conditions and 2 ad-
ditional degrees of freedom originating from a0 and b. These are used to
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ensure that the polynomial to the right of xN is of 1st order. The resulting
(N+2)x(N+2) linear equation system was solved by Gaussian elimination.
This was considered to be sufficiently precise since N, the number of frames,
never exceeded 32 on real PET data, and the method was tested on 100
abscissae to ensure the spline satisfied the specification. Speed is not an
issue since we need one cubic spline per image.

4.6 More on F and M

4.6.1 Mathematical Footwork

F : R3 → RN is defined by equation (4.11). Note that the framing times
t1,. . . ,tN and the reference function Cr in its interpolated version, are part
of its definition, and therefore, part of the definition of M = F(R3). Some
trivial observations on its structure are now provided, for reference in later
sections.

Theorem 4.1 F is linear in its first argument q1, and also with respect to
its parameter Cr.

It means that F scales with both and is additive with respect to both. For
proof, consider the component fi (equation 4.10). It certainly is linear with
respect to q1. Now consider ti as fixed, and investigate how fi changes in
response to Cr. The first summand is a linear function mapping Cr on the
real number Cr(ti). For fixed k2, k3, the second summand is another real
valued function of Cr. It is linear because integration is linear. So fi is
linear as it is the sum of two linear functions, and F is linear because all its
components are.

Corollary 1 If p is a point of M, then so are its scalar multiples.

Proof: Since p is on M, it has a preimage p’=(q1,k2,k3) under F . Then
because F is linear in its first argument, for every α ∈ R, (α · q1,k2,k3) is a
preimage to α · p. Hence α · p is on M.

Corollary 2 If Cr is scaled by some factor α > 0, its M will not change.

Proof: By Theorem 1, F will also be scaled with α. Let F ′ be that scaled
mapping and M′ its manifold, both arising from αCr. If p is on M, 1

α · p
is also on M by Corollary 1. Its preimage under F is mapped to p by F ′,
hence p is on M′, hence M ⊂ M′. The same argument applied to 1/α
shows that M′ ⊂M.

Theorem 4.2 Cr is a linear function of Cpl
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This is evident by looking at its definition (3.5) and (3.6).

Theorem 4.3 Consider a fixed reference curve Cr and framing schedule,
with F and M defined by these. Consider a Time Activity Curve a and a
real positive scalar c. Then if (q1, k2, k3) is a weighted least squares solution
for a, (c · q1, k2, k3) is a weighted least squares solution for the scaled TAC
ca.

Proof: F (q1, k2, k3) is a closest point of M to a, as measured with ‖.‖
defined by equation (4.8). Observe that the distance

‖F (α · q1 , k2 , k3)− α · a‖

scales with α, as a consequence of Theorem 4.1. Now suppose there was a
better solution (j1 , j2 , j3) to the approximation problem for ca. So there
is

‖F (j1 , j2 , j3 )− c · a‖ < ‖F (c · q1 , k2 , k3 )− c · a‖

Then by scaling both distances with α := 1
c we obtain∥∥∥∥F (j1c , j2 , j3

)
− a
∥∥∥∥ < ‖F (q1 , k2 , k3)− a‖

which is a contradiction to the optimality of (q1 , k2 , k3).

Theorem 4.4 Consider a reference curve Cr, a TAC a, and a weighted
least squares solution (q1, k2, k3) of a against Cr. Then for every constant
α > 0,

(
1
αq1, k2, k3

)
is a weighted least squares solution of a against αCr.

Proof: Consider F as arising from Cr by equation (4.11) and F ′ as arising
from αCr. Let (q1, k2, k3) be a least squares solution for Cr. Then p :=
F (q1, k2, k3) is a closest point to a on M. By Corollary 2, M as arising
from αCr is the same. So p is still a closest point. Since by Theorem 4.1
F ′ = αF , it maps

(
1
α · q1, k2, k3

)
onto p, hence

(
1
α · q1, k2, k3

)
is a least

squares solution.

Theorem 4.5 Scaling of Cpl, Cr or Ct with a factor α > 0 will not change
k2 and k3 of a weighted least squares solution.

Proof: For Ct, this follows from Theorem 4.3. For Cr, it follows from The-
orem 4.4. Scaling of Cpl results in scaling of Cr by Theorem 4.2.
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Figure 4.3: The 3-Compartment Model

4.6.2 Singular Points of M

Consider again the compartment model (Figure 4.3) that led to equation
(3.4). By Assumption 1, Ct is the signal coming from compartments 2 and
3 (authentic and hydrolyzed tracer in tissue). The reference curve arises from
this model by equating k3 with infinity. This implies that every molecule,
once having reached compartment 2, is immediately transferred to compart-
ment 3. As there is no way back, its radioactivity remains trapped in the
tissue.

Now, consider what happens if k2 is zero. Then there is no backflow from
the tissue to the blood. Once having reached compartment 2, radioactivity
is also trapped, although for a different reason. To the PET signal, it makes
no difference, since it doesn’t play a role if an 11C atom decays as part of
an authentic tracer molecule or as part of a metabolite.
Hence the model maps k2=0 to the same curve as k3 =∞. Equation (4.10)
reveals that this curve is a multiple of Cr, with q1 as the scaling factor.
Moreover, if k2=0, k3 has no bearing on the result. Thus, F maps all the
points (q1 0 k3) onto the same point q1Cr, which is a scaled version of the
reference curve Cr. So the reference curve and all its scaled versions are
singular points of M.

Conversely, if the input curve Ct is almost a scaled version of Cr, there
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will be no way of knowing if the similarity is caused by large k3, or by low k2

(with arbitrary k3). As triples with different k3 are mapping to almost the
same curve, reconstruction of the original k3 from that curve gets impossible.

4.6.3 simcr

So we run into trouble when a TAC a approaches a scalar multiple of the
reference curve Cr. We introduce a measure of similarity between the two
curves: by a well-known formula, the cosine of the angle between them is

simcr(a) :=
〈a,Cr〉
‖a‖ · ‖Cr‖

(4.23)

It is also the projection of a, normalized to length 1, onto Cr. If that measure
is 1, then a is a scalar multiple of Cr. Note that this definition depends on
the framing (which comes in via the Decay Weights as they define the inner
poduct (4.7)) and on Cr which must be sampled using a reference mask
before simcr can be computed. Its advantage is that it does not require
computing the kinetic constants first. Hence it is inexpensive, and, unlike
with k3, its computation never fails.
Having simcr close to 1 is an indication that k3 will be hard to compute, so
it increases the likelihood that NLS will fail.

simcr is indifferent to scaling of its argument, a property it shares with
k2 and k3. Its theoretic codomain is the interval [-1,1], but negative values
were never seen in practice. Typical values for TACs Ct of “nice” NLS
performance range between 0.95 and 0.97. A parametric image of simcr is
shown in Figure 13.2.

4.7 Image Modalities

are quantities that can be computed for every voxel to make parametric
images. Examples are the kinetic constants themselves, and simcr as of
section 4.6.3. The modalities to be defined in this section depend on the
Model Curve f of the NLS result, so they require NLS to run first.

4.7.1 noiseabs

is the distance of the measured curve a fromM, as represented by its closest
point f (see Figure 4.2):

noiseabs := ‖a− f‖ (4.24)

The name slightly overstates its significance. On real image data, whatever
offsets a fromM, should mostly by attributable to noise. But it can also be
caused by bias, a collective term for all systematic error allowed to creep in
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at any of the stages of Figure 1.3. An example is presented in section 12.1,
where the kinetic model itself is to blame for the bias.

Even if all was noise, noiseabs would just represent the larger part of it:
the part orthogonal to M. The “true” noise corresponds to the distance
between a and t, rather than between a and f, and the part that escapes
direct measurement is parallel to M. But this is the more interesting part,
as it accounts for the misassessment of k3. It will be the subject of chapter
8 to build a bridge between the two.

noiseabs is the quantity (or rather, its square root) that NLS minimizes.
Hence it is available from an NLS run at almost zero cost. All there needs
to be computed is a single extra evaluation of F , since f = F(f ′) where f ’
is the NLS result.

4.7.2 noiserel

is obtained by dividing noiseabs by the length of the vector f (Figure 4.2).
If noiseabs is the “noise”, then the length of f is the “signal”, the part that
is model-compliant and carries the information about k3. noiserel is the
inverse Signal-to-Noise Ratio (SNR). On parametric images of noiserel,
the noisy spots of an image light up (Figure 12.1). Of course there always
remains the question if it isn’t bias rather than noise.

4.7.3 framedev

Like the previous, this modality also compares the measured TAC a with
its Model Compliant counterpart f (Figure 4.2). But instead of focusing on
distances, it contemplates the ith frame in isolation.

framedevi is defined as the measured intensity in frame i, minus the
intensity in frame i of the Model Curve f of the NLS result. Again f replaces
t, which is unavailable. Recall that t is the original Model Curve and a its
measured, noisy version, so ~ta is the noise vector. If it really was pure noise,
its ith component should average out to zero when compared for many voxels.
If it turns out otherwise, it is a signal for bias. Hence, parametric images of
the framedev modalities are the next thing to check when a region lights up
in the noiserel modality.

In a viewer calibrated to display positive values in red and negative values
in blue, one expects to see a mix of red and blue voxels. On Gauss-filtered
images, it becomes a patchwork of small red and blue areas (Figure 12.1).
As long as there is a balance of red and blue and the areas are not too large
and intense, they are not necessarily indicative of bias.

In section 12.1, the framedev2 modality is used to identify a source of
bias, and provide a mask for the region where that bias occurs.

49



4.7.4 uff

is a shorthand for the “unfiltered feedback” modality. It is a quality
marker designed to validate image preprocessing (i.e., masking and filtering)
that precedes k3 computation, and can only be understood in the context
of chapters 9 or 10. Filtering invites Partial Volume Effects, thus inducing
bias to the final k3 results. To assess this bias, we need something that can
peek through the filtering step.

uff is computed from on an unfiltered TAC u that is sampled from
a voxel of the normalized frames (section 9.2.2) before Gauss filtering, and
the Model Curve f of the NLS result. Note that NLS cannot be invoked for
u itself which is much too noisy. Instead, its input is a, the TAC sampled
after preprocessing. f is compared with u to obtain “feedback”. uff is a
measure of similarity between the two, defined as follows:

uff := 1− ‖u− f‖
‖u‖

(4.25)

If u was noise free and fully explained by the NLS result (q1, k2, k3), ‖u− f‖
would be zero. The enumerator is the length of the “unexplained” part of
u. If, say, 30% are unexplained, the fraction is 0.3 and uff is 0.7. So we can
say “the computed triple explains 70% of u”. For a “nice” voxel of a Sample
1 image, uff =0.7 is a typical value. In Sample 3 and 4 images that were
generated with more smoothing during reconstruction, uff was between 0.8
and 0.9.

Interpretation of the marker is problematic since there are two compli-
cating factors:

1. The marker measures similarity of TACs. They can be similar to each
other even if the kinetic constants aren’t, in particular this happens
near the singular points of M (see section 4.6.2). This provides for
high values of uff whenever simcr is large and NLS finds any plausible
explanation, be it by low k2, high k3 or both.

2. Another issue is its sensitivity to noise. Noisy curves are not matched
by any Model Compliant curve, so they make uff drop. High noiserel
imply low readings of uff. In Table 12.2 uff has been listed alongside
noiserel in order to document this effect. It explains the increase of
uff with the zonal index in Tables 10.7 and 10.5.

Interference patterns were seen on uff images of Sample 1. They are caused
by resampling of images during coregistration/normalization. Resampling
by trilinear voxel interpolation leads to noise reduction on certain voxels but
not on others, forming an interference pattern that is made visible by the
noise sensitivity of uff.
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4.7.5 iter

is the number of iterations of an NLS run. It appears in some tables of
chapters 12 and 13, and gives nice parametric images (Figure 13.2).

4.7.6 Other Modalities

k3diff is k3 computed by COLOGNE minus k3 computed by NLS. k3var
and k3dev are error estimates for k3, they are introduced in chapter 8.
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Chapter 5

Calibrating the Solver

While the focus of the previous chapter was on efficiency of the iteration step,
we are now turning toward convergence properties, adressing such issues as
the choice of starting point and break-off rule, and possible modifications.

5.1 Properties of the Gauss Newton Method

Gauss Newton methods are discussed at length in [9, 10]. They belong to the
larger family of Newton-like methods. The relation to the Newton method
proper is most obvious in the special case where the number of unknowns
matches the dimensionality N of the measured data vector a and hence,
the Jacobi matrix J of equation (4.5) is quadratic. It is then reasonable to
expect an exact, rather than approximative, solution x to the problem

F(x) = a (5.1)

If J is regular and all weights are positive, the Gauss Newton step (4.6) then
simplifies to

J ·∆x = a−F(xn) (5.2)

which happens to be a step of the standard Newton method for solving the
nonlinear equation system (5.1).

In the given situation where N exceeds the number of unknowns, Gauss
Newton can be compared to the standard Newton method of minimizing the
residual squares

R(x) :=
N∑
i=1

wi · (Ct(ti)−F(x)(i))2 (5.3)

It searches for a point that has all first order derivatives of R disappear,
and in doing so, makes use of the second order derivatives of R, requiring
computation of its Hesse Matrix. As with Newton methods in general, we
can expect local quadratic convergence.
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The advantage of Gauss Newton is that it does not require second deriva-
tives. Its relation to the standard Newton method has been explored exten-
sively in [9]. The Gauss Newton iteration matrix JTWJ of equation (4.6)
is related to the Newton iteration matrix G via

G = JTWJ + S (5.4)

where

S =
n∑
i=1

ri ·Hi (5.5)

where ri are the weighted residuals
√
wi · (Ct(ti) − F(x)(i)) and Hi their

respective Hesse matrices. The simplification made by Gauss Newton thus
consists in omitting S from (5.4). Consider, in equation (5.5), S at a min-
imizer x∗ of R. The better the approximation, the smaller are the ri and
hence the error allowed by omitting S. The same can be said if the ri (or
equivalently, F) are almost linear in the vicinity of the minimizer, and hence
the entries of the Hi are small. If R is zero at the minimizer, [9] shows
that Gauss Newton will be of local quadratic convergence. Otherwise, con-
vergence is only linear, and its speed decreases as the residual size or the
nonlinearity of the problem increases, making S larger compared to JTWJ .
Eventually, there will be no convergence at all, not even locally.

5.1.1 Modifications proposed in Literature

[9] goes on to investigate these cases and finds that the Gauss Newton steps
are always in a direction of descent as long as J has full column rank (which
is the case in every regular point of M). The reason why they lead to
divergence is that they are too long. This suggests that the problem of
divergence can be fixed by truncating Gauss Newton steps where necessary
in order to ensure descent. Such modifications are referred to as “damped
Gauss Newton” in [9].

Another idea has been introduced by Marquardt and Levenberg [27].
It modifies the iteration matrix, where necessary, by adding a multiple of
the unit matrix. This causes it to be positive definite and regular even if it
wasn’t so to begin with, and rotates the direction of search toward the steep-
est descent while also cutting down on step length. Marquardt-Levenberg
methods are particularly well suited in general Newton minimization proce-
dures that could otherwise be attracted by saddle points, where the Hesse
matrix has eigenvalues of either sign. In Gauss Newton, the iteration matrix
JTWJ is positive semidefinite by construction, and positive definite in every
regular point of M.
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5.2 Alternatives regarding the Starting Point

The following options were considered at the outset:

1. Start NLS from the result of a neighboring voxel

2. Start NLS from a COLOGNE result computed for the same voxel

3. Use a fixed starting point for all voxels

(1) seems to carry the promise both of speed and safety: as the kinetic
constants of neighboring voxels ought to be similar, we can expect to start
in the attractor range of the global optimum and reach the target in a few
iterations. Its drawback is that it creates inter-voxel dependencies, so we
need to decide on an order in which to process the voxels. Second, we might
just as well get “attracted” by a suboptimal trail and follow that over a
distance of many voxels. Of course, there are endless variations of how the
policies might be refined.

(2) seemed to be the obvious choice since the COLOGNE method is fast
and had already been implemented, so one can only gain by allowing NLS
to improve on its results. However,

(3) was adopted after it had turned out to be feasible, using S1:=(1;0.1;0.1)
as the universal starting point. It benefits from simplicity and providing a
standalone algorithm, which can be validated in isolation and later compared
with COLOGNE.

5.3 Convergence Properties, Break-off Rule, Ac-
ceptance and Failure

In experiments with real PET data (see appendix, A.2) our implementation
appeared to converge at linear speed, reducing the distance to the optimum
by 1

7.28 per iteration on average in cortex, and by 1
4.84 in Hippocampus.

Some other voxels converged more slowly. We therefore devised the following
break-off policy:

1. Break-off is based on the length ‖xn+1 − xn‖ of every iteration step

2. We break off if it falls below a threshold l1.

3. The maximum number of iterations allowed is n1.

4. If (2) has not been triggered after n1 iterations, we apply a larger
threshold l2 to the last step, and, based on it, accept the result or
report failure.
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n1, l1 and l2 were set to 20, 10−7 and 10−4, based on our specific needs and
experiments explained in appendix A.2 and A.2.1. The number of voxels
that fail under this regime ranges between 5 and 15 percent of the brain,
depending on the individual. The loss appears necessary: at least in the
reference regions we cannot expect results for principal reasons, and they
are accompanied by other regions of prohibitively high k3. It therefore seems
realistic not to “force” convergence by any means, rather allow for failure,
which eliminates unreasonable results.

5.4 Step Size Control

has been mentioned in section 5.1.1 as a remedy in situations where unmod-
ified Gauss Newton is divergent. At first, we saw no reason to employ it
since convergence properties appeared satisfactory on real PET data. Later
we discovered cases of divergence with simulated data (appendix A.3). We
then restricted the method to the first octand, in the following way:

A parameter λ is introduced, it was usually set to 0.9. An iteration is
then allowed to run 90% of the way, but no further, towards any of the
3 border planes defined by q1=0, k2=0, k3=0. Any approach beyond this
point must wait for the following iteration, and crossing the border is entirely
impossible. Setting λ to 0 turns the feature off.

We thus picked up the idea of “damped Gauss Newton” (section 5.1.1),
however replacing line-search as proposed in [9] by a much cheaper way
to determine the truncated step size, which is motivated by assuming that
results must be positive1. As aforementioned problematic cases responded
well and adverse effects were not observed, we adopted λ=0.9 as a general
policy.

5.5 Influence of the Starting Point

While S1=(1;0.1;0.1) remains our universal starting point, it needs to be
demonstrated - as a consistency check - that results are not biased by this
choice. In experiments with the data of subject M01014, we also ran the
algorithm from S2:=(0.5;0.1;0.1) and S3=(1;0.05;0.05) and compared k3 re-
sults with those obtained from S1. Comparing S1 and S2, the largest k3

difference seen in all voxels was 0.00047. Voxels requiring less than 20 itera-
tions were much more closely matched owing to the break-off policy, having
mostly differences below 10−6. Runs from S2 took, on average, 0.7 iterations
more to converge than runs from S1.

Comparison between S1 and S3 runs showed that the latter required, on
average, 0.8 iterations more. Differences in k3 results fell below 0.0007 for

1negative q1, k2 or k3 make no sense in the context of the biological model
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all but 291 voxels, where they ranged between 0.0614 and 1.528. In terms of
residual weighted squares (noiseabs modality of section 4.7.1), the S1 result
was better in 237 of these cases and the S3 result in the 54 other cases. Of
the latter, the maximum improvement of weighted squares was 4.6% with a
mean of 1.3%. Thus, S1 led to a suboptimal solution in about 0.025 percent
of all non-failing voxels. However, the S3 result averaged (k2 k3) = (0.0066
0.0140), with k2 being lower than anything expected in brain, so these 54
voxels are a population of extreme outliers.

5.6 Suboptimal Solutions

Apart from the above example, we also hunted for suboptimal NLS solutions
by comparing them with COLOGNE results, using the PET data of subject
M01002. Of 221000 voxels evaluating successfully with both methods, 239
NLS results were found to be suboptimal. They averaged (k2 k3) = (0.0643
0.153) with NLS and (0.547 0.600) with COLOGNE. This time, k2 = 0.547
is higher than anything expected in brain. NLS could be made to find the
COLOGNE result in 174 of the 239 cases by starting it from S4=(1;0.8;0.3),
but this point is even further away from k2=0.1 which is reported for brain
(section 13.1).

5.7 Discussion

Unlike general purpose implementations of the Gauss Newton method, we
are facing additional speed requirements in order to reach satisfactory per-
formance on standard PCs for voxel based evaluation, given a quarter million
of brain voxels in the images that we had, and a possible higher number in
any “high resolution” applications the program might still be used for2. At
the same time, we enjoy the benefit of low dimensionality and a simple and
rather uniform structure of the Model Function F , whose definition depends
on Ct and Cr. This, however, is compromised by noise of these curves, es-
pecially of Ct.

Speed requirements were met by limiting the number of iterations to
20, yielding performance of 5000 voxels per second on a 2.67 GHz single
processor machine. We thus lost 7.55 percent of voxels whose convergence
was too slow for the deadline, but regained 5.73 percent by relaxing the
break-off threshold after iteration 20, at a moderate price paid in terms of
precision.

Depending on the subject, between 5 to 15 percent of all voxels fail to
evaluate completely. Of the voxels that do converge, a fraction of about 1

2although it defies the limitations of PET resolution (section 1.1.4), smaller voxel sizes
are delivered by certain PET scanners, or might be employed in future studies as part of
an effort to improve on atlases or templates.
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per mille was found where S1=(1.;0.1;0.1) was not in the attractor range of
the global optimum. They had competing optima whose k2 was either much
lower or higher than 0.1 which is assumed realistic for most of the brain. A
closer look at the corresponding TACs revealed that some were very noisy
(high noiserel as of section 4.7.2, low overall intensity), others resembled the
reference curve (high simcr as of section 4.6.3).

We conclude that the vast majority of voxels has sufficiently stable con-
vergence properties to render the method applicable from S1 as a starting
point. Others are less suitable for kinetic analysis and mostly cause the
method to fail. A tiny fraction of these converges under the chosen regime,
they exhibit two local optima located far from each other, and it depends
on chance and the starting point which one of these optima is found.
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Chapter 6

Noiseless Validation

Given a triple of kinetic constants k1, k2, k3, we can simulate perfect noiseless
data by plugging them in the model equations. We then expect NLS and
COLOGNE, as a minimum requirement, to be able to retrieve the known
kinetic constants.

As we gradually move the simulation closer to reality, there emerge var-
ious sources of unavoidable bias: interpolation, discretization, failure of As-
sumption 4. Their effect will be quantified in this chapter. It provides ref-
erence data for re-implementers of the method, and a base for the following
chapter, where noise is included in the simulation.

6.1 Generating synthetic Input

Target and reference TACs will be generated from equation (3.4), which
depends on a Blood Input Function Cpl. In real data, the Blood Input
Function is different for every patient. For the simulations, we need to make
a fixed choice for Cpl and the framing schedule.

6.1.1 Framing Schedules

Let N be the number of frames. tk (k=1,. . . ,N) is the end time of frame k
and the beginning of frame k+1, in minutes after tracer injection. t0, the
beginning of the first frame, is always set to 0.

6.1.1.1 Schedules from Literature

The framing schedule used in [14] and throughout this work unless otherwise
indicated, will be called the “traditional” one. It has been used for the
subjects of Samples 1 through 4 (section 2.11). It is listed in Table 6.1
next to two other schedules. The table also shows the Decay Weights of
equation (2.7). Their columns add up to 0.869798, which is the fraction of
total nuclide that decays during the first 60 minutes.
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“Traditional” Iso20 Iso60
end time decay- end time decay- end time decay-

Frame nr. [min] weight [min] weight [min] weight
1 0.5 0.01685 1.31 0.04349 0.43 0.01450
2 1.0 0.01656 2.68 0.04349 0.87 0.01450
3 1.5 0.01628 4.11 0.04349 1.31 0.01450
4 2.0 0.01601 5.62 0.04349 1.76 0.01450
5 2.5 0.01574 7.22 0.04349 2.21 0.01450
6 3.0 0.01547 8.90 0.04349 2.68 0.01450
7 4.0 0.03017 10.68 0.04349 3.15 0.01450
8 5.0 0.02916 12.58 0.04349 3.63 0.01450
9 7.5 0.06871 14.62 0.04349 4.11 0.01450
10 10 0.06312 16.80 0.04349 4.61 0.01450
11 15 0.11123 19.15 0.04349 5.11 0.01450
12 20 0.09385 21.72 0.04349 5.62 0.01450
13 25 0.07919 24.52 0.04349 6.15 0.01450
14 30 0.06682 27.63 0.04349 6.68 0.01450
15 35 0.05638 31.10 0.04349 7.22 0.01450
16 40 0.04757 35.03 0.04349 7.77 0.01450
17 45 0.04014 39.57 0.04349 8.33 0.01450
18 50 0.03387 44.94 0.04349 8.90 0.01450
19 55 0.02857 51.52 0.04349 9.48 0.01450
20 60 0.02411 60 0.04349 10.08 0.01450
... ... ...
58 54.08 0.01450
59 56.89 0.01450
60 60 0.01450

Table 6.1: Framing Schedules

In all schedules, the frames increase in length, compensating for the
loss of radioactivity. The two schemes on the right have 20 and 60 frames,
they are distinguished from “traditional” in that they distribute radioac-
tive decays evenly over the frames. They are interesting since their Decay
Weighting is trivial, and will be introduced in the following section.

6.1.1.2 Iso-Decay Schedules

Given the half-life τ of some isotope, a number N of frames, and the end time
tN of the last frame, we want to compute the (uniquely determined) schedule
with t0=0 that distributes radioactive decays evenly over the frames.

Equate the total amount of radioactivity injected with 1. Then by the
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law of radioactive decay, at time t we will have the amount

2−
t
τ (6.1)

left. At the end of frame N, this will be 2−
tN
τ , and at the “end of frame 0”

(which is the start of frame 1) it will be 1. Consider the function f assigning
to every frame number the radioactivity left at the end of that frame, thus

f(k) := 2−
tk
τ (6.2)

It satisfies f(0)=1 and f(N)=2−
tN
τ . Since the decrease in radioactivity shall

be the same in each timeframe, we need f() to progress along a straight line
connecting these two points. So we have

f(k) =
N − k
N

· 1 +
k

N
· 2−

tN
τ

It is easily seen that this indeed is a linear1 function of k and passes through
the given points. Replacing the left hand side using (6.2), we obtain

2−
tk
τ =

N − k
N

+
k

N
· 2−

tN
τ (6.3)

and solve this for tk:

− tk
τ

= log2

(
N − k
N

+
k

N
· 2−

tN
τ

)

tk = −τ ·
ln
(
N−k
N + k

N · 2
− tN

τ

)
ln 2

(6.4)

By this formula, we compute the frame end times. As required, it returns
t0=0 and tN=tN .

By Iso20, we denote the framing schedule arising from equation (6.4)
with N=20 and tN=60. Iso20 and Iso60 will be used in simulations to have
a comparison with the “traditional” scheme.

6.1.2 Blood Input Functions

Tracer in blood plasma is quickly degraded, by both hydrolysis and uptake
in tissue. The simplest way of modelling this decline is a mono-exponential
function:

Cpl(t) = H · exp(−kp · t) (6.5)

1more precisely: affine

60



where H and kp are new constants. It has the advantage that Ct and Cr of
equations (3.4) and (3.5) can be expressed by explicit formulae. By trivial
calculation, one gets

Ct(t) = − k1 · k2

k · (k − kp)
·H ·e−kt ·

(
1− e(k−kp)t

)
+
k1 · k3

k · kp
·H ·

(
1− e−kpt

)
(6.6)

Cr(t) = H · k1r

kp
·
(

1− e−kpt
)

(6.7)

Likewise, the model gives an explicit formula for wk. Using Cr = k1r · Ci
(3.5) and substituting everything into either (3.14) or (3.16) leads to

wk(t) = 1 −
e−kt − 1 + k

kp−k ·
(
e(k−kp)t − 1

)
1− e−kpt

(6.8)

6.1.2.1 Two Standard Input Functions

It remains to determine H and kp for equation (6.5). In [36], there is a dia-
gram (Fig. 2) showing the time course of unhydrolyzed tracer in the arterial
blood of a single subject. The curve consists of an initial peek smoothing
out to a monoexponential tail (that appears linear on the logarithmic plot).
From that diagram, we extracted the parameters of the monoexponential
part:

H = 0.2
kp = 0.1197

To obtain a more realistic model of Cpl, a biexponential function is better
suited. We therefore created the S3 Input Function, a biexponential fit to
the average of the input curves found in Sample 3. Section 7.1.1 describes
in detail how this function was obtained. Its equation is

Cpl(t) = 0.213669 · exp(−1.096555 · t) + 0.0078699 · exp(−0.127378 · t) (6.9)

Ct and Cr for such biexponential Input Functions can be computed by
adding the terms (6.6) and (6.7) of their monoexponential summands; this
is guaranteed to work by Theorems 4.1 and 4.2.

6.2 Linearity Tests

The following tests helped us through the early stages of implementing
COLOGNE and may be appreciated by re-implementers of the method.
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6.2.1 COLOGNE without Discretization

Consider again equation (3.13):

Ct(t)
Cr(t)

= A · wk(t) +B (6.10)

It asserts that, if wk is computed for the same k = k2 + k3 as Ct and Cr,
then Ct/Cr is a linear function of wk. Ct, Cr and wk can be computed from
equations (6.6) to (6.8) once k1, k2, k3, kp and H have been chosen. Plotting
the left hand side against the right hand side should result in a perfectly
straight line. If the k for wk was chosen larger than k2+k3, it results in a
convex, if smaller, in a concave curve (see also Figure 3.1).

6.2.2 Correlation Test

This is almost the same in disguise, but it makes the peaks visible from
which COLOGNE reads the maximum k. Choosing an arbitrary set of
discrete times and evaluating both sides of equation (6.10) for each time,
gives a cloud of dots from which we compute the correlation coefficient.
While on the left side k must equal k2 + k3, we use arbitrary k for wk on
the right side. We thus have a function mapping k to the correlation. It
should have a peak at k=k2 + k3. As we are dealing with noise-free model
functions, the peak correlation must equal 1.

6.3 Interpolation Bias

The previous tests are only good for catching computation and programming
errors. We now discuss the first real source of bias, interpolation.

wk as required for the COLOGNE method (equation 3.16) and F as
required for NLS (equations 4.10 and 4.11) both depend on integrals of Cr,
hence Cr must be interpolated. Its interpolated version is a linear or cubic
spline, hence it cannot match formulae (6.6) and (6.7) which are used for the
simulations. In the terminology of section 4.2, the latter are not fully “Model
Compliant”. This leads to biased k3 results, and we are now quantifying this
bias.

Value tables for Ct and Cr were generated for a given set of kinetic
constants, from both standard Input Functions (section 6.1.2.1) and the
“traditional” framing. Then they were evaluated by NLS and COLOGNE.
Two interpolation methods were tested: linear, and by natural cubic spline.
Table 6.2 shows relative errors of resulting k3. Comparing columns 2 and
5 to 3 and 6, it is obvious that the cubic spline brings better results in
most cases. This is not surprising since Cr is concave (see section 3.4.1).
But even with linear interpolation, the bias is moderate. Although NLS and
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monoexponential biexponential
COLOGNE NLS COLOGNE NLS

k3 linear spline spline linear spline spline
0.01 1.6 0.06 -0.01 0.3 0.10 -0.01
0.02 1.4 0.02 -0.01 0.3 0.04 -0.02
0.05 1.4 0.02 -0.01 0.3 0.04 -0.02
0.1 1.6 0.01 -0.01 0.4 0.06 0.00
0.2 1.8 0.03 -0.01 0.4 0.18 0.05
0.3 1.9 0.03 0.00 0.4 0.32 0.12
0.4 1.9 0.07 0.00 0.5 0.50 0.21
1.0 1.6 0.22 0.07 1.4 2.28 1.21

Table 6.2: Interpolation Bias for linear and spline interpolation, both algorithms
and both standard Input Functions, in percent of the true k3. k2 was 0.1 in all
simulations.

COLOGNE use the same interpolation, NLS has better results in both parts
of the table.

Generally, Interpolation Bias is negligible compared to other sources of
bias investigated in the following. This remains the case even if k2 is set
to much lower values, which are notoriously problematic in the presence of
noise.

6.4 k3r-induced Bias

Both COLOGNE and NLS assume that the reference region is ideal, so Cr
relates to the Blood Input Function Cpl via equation (3.5). In reality, it is
more like equation (3.4) with k3r and k2r of the reference region plugged in
for k3 and k2. The difference leads to “k3r-induced bias” in the final k3

results. k3r-correction (section 3.2.3) can be used to avoid this type of bias,
provided k3r and k2r are known.

The bias was quantified by the following experiment. For 6 combinations
of k2r and k3r, reference curves were simulated. Each was used with and
without appropriate k3r-correction, bringing the total number to 12. They
were all interpolated by cubic splines. TACs were simulated for k2=0.1 and
different values of k3, and evaluated with NLS against each reference curve.
The S3 Input Function (section 6.1.2.1) has been used for all simulated Cr
and Ct. Table 6.3 shows relative errors of the resulting k3 in percent.

The bias is almost always negative. For Putamen with k3r=4 and k3 <
0.3 it is negligible (column 2). For high k3 it picks up, which is not surprising
as then the TACs start resembling the reference curve, so errors of the latter
have a larger impact. A similar effect (not listed in the table) was observed
for low k2.
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k2r = 0.1 k2r = 0.3
k3 k3r = 4 k3r = 2 k3r = 1 k3r = 4 k3r = 2 k3r = 1

0.01 -0.44 -1.72 -6.19 -1.23 -4.71 -16.01
-0.01 -0.02 -0.05 -0.03 -0.06 -0.13

0.02 -0.33 -1.23 -4.33 -0.90 -3.35 -11.14
-0.02 -0.03 -0.05 -0.04 -0.06 -0.11

0.05 -0.31 -1.15 -3.92 -0.85 -3.13 -10.04
-0.02 -0.03 -0.05 -0.03 -0.06 -0.11

0.1 -0.42 -1.59 -5.20 -1.19 -4.35 -13.35
-0.01 -0.02 -0.04 -0.02 -0.06 -0.13

0.2 -0.78 -2.98 -8.94 -2.32 -8.17 -23.52
+0.04 +0.01 -0.03 +0.0 -0.08 -0.21

0.3 -1.27 -4.69 -13.02 -3.83 -12.96 -36.06
+0.09 +0.05 -0.02 +0.02 -0.12 -0.34

0.4 -1.87 -6.60 -17.07 -5.67 -18.43 -51.22
+0.16 +0.08 -0.01 +0.03 -0.20 -0.51

Table 6.3: k3r-induced Bias. Relative errors of k3 in percent, when TACs are
evaluated against nonideal reference curves, without (upper figure in every block)
and with (lower figure) appropriate k3r-correction.

As columns 3 and 4 are showing, the bias gets larger if k3r is lower. It
approximately triples when k2r is raised from 0.1 to 0.3. Throughout the
table, k3r-correction is working nicely, improving precision by one or two
orders of magnitude. However, knowing the right k2r and k3r is critical. For
instance, consider k2r = 0.1, k3r = 4.0 (as assumed in Putamen, section
13.1) with k2 = 0.1, k3 = 0.2. Without correction, the bias is -0.78%. It
goes down to +0.04% if the right correction is applied. Correction with k3r

below 4, or k2r higher then 0.1, will invert and eventually increase the bias.
It becomes +0.65%, +2.25%, +7.91% if the correction is performed with
k3r= 3, 2, 1 respectively.

The analogous situation for the combination k2r = 0.1, k3r = 2.02 is
shown in Table 6.4. Without correction, we expect -2.98% of bias. There

2this might be more realistic for Putamen reference curves, considering possible PVE
effects
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k3r used for k2r used for correction
correction (none) 0.1 0.2 0.3 0.4

(none) -2.98
4 -2.17 -1.40 -0.66 +0.05
3 -1.57 -0.23 +1.05 +2.28
2 +0.01 +2.81 +5.43 +7.90

1.5 +1.89 +6.37 +10.50 +14.33
1 +5.70 +13.19 +19.75 +25.55

Table 6.4: k3r-induced bias after miscorrection. Cr is simulated for k3r=2 and
k2r=0.1, and then “corrected” using different combinations of k3r and k2r. Showing
relative error of k3 in percent, after evaluating Ct for k2 = 0.1, k3 = 0.2 against the
resulting Cr. Bold print: without correction, with appropriate correction.

are 11 combinations of k2r and k3r that lead to smaller bias. As we are
farther away from the ideal situation, the general level of bias is higher than
in the previous example.

6.5 Discretization Bias

There is a fundamental problem in designing a continuous kinetic model
and expecting dynamic PET data to conform to it. The model assigns
activity to every point in time, but the PET scanner can only measure
activity averaged over time intervals. So it delivers a value table consisting of
weighted integrals over the Model Curves. Therefore, TACs from real PET
data will not exactly match equations (3.4) and (3.5), let alone equation
(4.11). So we collect activities from intervals and map them to time points.
Questions are:

• Which is the smartest way to perform this mapping, and

• how much bias is to be expected?

It seems obvious that the time points should be close to the frame centers.
All above tables were computed with this policy. Mapping time to the
frame ends was found to produce some 20 percent of negative bias with the
“traditional” framing (data unlisted). One might argue that time points
belong a little left of the center, since the Decay Function is declining, so
there is more radioactivity toward the beginning of each frame. We started
experimenting with such an approach, mapping them to the centroids of the
areas under the Decay Function, but reached only slight improvement. This
is not so surprising since there is probably no approach that leads to Model
Compliance in the sense of the definition of F (equation 4.11).
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k2

k3 0.01 0.02 0.05 0.1 0.2 0.5
0.01 -1.7 -1.8 -1.9 -1.9 -1.0 +0.7
0.02 -1.2 -1.3 -1.4 -1.5 -1.0 +0.0
0.05 -1.1 -1.2 -1.3 -1.3 -1.1 -0.4
0.1 -1.4 -1.4 -1.4 -1.4 -1.1 -0.5
0.2 -1.7 -1.7 -1.6 -1.5 -1.2 -0.6
0.3 -1.7 -1.7 -1.6 -1.5 -1.3 -0.7
0.4 -1.8 -1.7 -1.7 -1.5 -1.3 -0.7
1.0 -1.6 -1.5 -1.5 -1.4 -1.3 -1.1

Table 6.5: Discretization Bias of the “traditional” framing. Relative errors of k3

in percent.

6.5.1 Simulating PET Data by Integration

In order to assess the resulting bias, we need realistic TACs. Formulae (6.6)
and (6.7) are based on time points. They need to be modified by

1. performing reverse Decay Correction in order to get “radioactive”
functions, which are proportional to decays per second

2. integrating these functions between the frame borders.

The modified formulae will be used for the following section, and throughout
chapter 7. While they are too lengthy to be presented here, they are still easy
to implement. Given one of the standard curves of section 6.1.2.1 as input,
formulae (6.6) and (6.7) are sums of constant and exponential terms. This
remains the case after reverse Decay Correction, which is a multiplication
with exp(−ln(2) · tτ ). The integrals of the resulting function are still of this
type, so everything can be expressed in closed terms.

6.5.2 Measuring the Bias

TACs were simulated as just described, for an array of k2/k3-combinations,
using the S3 Input Function and the “traditional” framing. Combined Cor-
rection as performed by the reconstruction software (section 2.6.1) was ap-
plied. They were then evaluated by NLS against ideal reference curves,
mapping time to the frame centers.

Table 6.5 has relative errors of k3. We find considerable increase over
the background of Interpolation Bias. There is little variation throughout
the table with the exception of its right upper corner. This type of bias
strongly depends on the framing schedule. With Iso20 and Iso60, it almost
disappeared.
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Chapter 7

Monte Carlo Simulations

In this chapter, we investigate the behavior of both algorithms when faced
with noisy input. We start with a Model Curve and add specific amounts
of noise to every frame to make simulated data. The advantages of this
approach are:

• we know what the right result should be

• by using different sets of random numbers, we obtain samples of k3

and can study their empiric standard deviations.

7.1 The Simulator

Figure 7.1 shows a generalized and simplified view of the simulator workflow,
both for simulating Ct and Cr. We begin by setting the kinetic constants
k1, k2, k3 (or their counterparts k1r, k2r, k3r of the reference region) to
fixed values. Then, from the model equations, the framing and the isotope
half life, we compute the distribution of the decays to the frames (called
“noiseless curves”). Now there is a fork with two branches.

In the main branch, we apply Combined Correction (section 2.6.1) like
the reconstruction software, leading to almost Model Compliant1 curves.
Then every frame receives its own amount of simulated Gaussian noise,
leading to a (target- or reference) TAC that comes close to real image data.
It is then evaluated like the real data, retrieving the kinetic constants that
were provided as input, with both their bias and (by repeating the simulation
often) their empiric SD.

In the Noise Assessment Branch on the right side of the diagram,
we decide how much noise must be simulated for every frame. This depends
on the number of decays taking place during the frame in a fixed volume,
and the associated Poisson distribution. It also depends on how this noise

1Section 6.5 tells why they can’t be fully Model Compliant.
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Figure 7.1: The Simulator Workflow
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propagates through the reconstruction process, and how the images are pre-
processed before sampling the TACs. So this assessment is complicated and
involves a number of assumptions.

This section explains the details of the diagram, and how the simulator
was calibrated to match conditions of the scanner and software setup in
Cologne.

7.1.1 The Blood Input Function

In real PET data, this function will be different from patient to patient, its
shape depending on the dynamics of injecting the tracer, the properties of
the subject’s blood circulation system and his metabolism. Its amplitude
depends on the amount of tracer injected. The amplitude is no matter of
concern, since by Theorem 4.5 it does not influence k3.

For the simulator, we need a standardized Input Function that is some-
how representative of the real situation. That “S3 Input Function” was
obtained by a biexponential fit to the patients of Sample 3. Its equation

Cpl(t) = 0.213669 · exp(−1.096555 · t) + 0.0078699 · exp(−0.127378 · t)

was obtained by the following procedure. The subjects’ reference curves
were sampled with a 674+2 Putamen Mask (see section 10.3.1). They were
scaled to similar amplitude (by having the sum of their squares equal 1) and
then averaged across the subjects. To the resulting value table, a function

f(t) = H0 −H1 · e−k1·t −H2 · e−k2·t (7.1)

was fitted, by choosing H0, H1, H2, k1 and k2 such as to minimize the
squared differences between the averaged measurements and the values of f.
The S3 Input Function is the derivative of f.

7.1.2 Noiseless Curves

are generated by the integration method of section 6.5.1. They come in units
proportional to counts per timeframe and milliliter. To convert to specific
activity, we apply Combined Correction as in section 2.6.1. In the Noise
Assessment Branch, by contrast, we need true decays2 per milliliter. This
requires suitable scaling.

7.1.3 Scaling toward true Decays

To find that scaling factor, it would help if the decays per milliliter were
known for one region. Suppose, for instance, we knew which fraction of the
injected tracer ultimately decays in the brain. We then could compute from

2not to be confounded with “counts”, which refers to decays detected by the scanner
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the injected dose the overall number of decays that take place in the brain,
and by additional assumptions, might obtain similar information for the
area of interest. But while the brain fraction is easy to obtain (see section
7.1.3.1), the “additional assumptions” tend to be speculative. In fact, they
made us drop the whole-brain based approach.

Instead, we focus on the reference region and try to obtain the fraction of
total injected nuclide that decays in 1 milliliter (ml) of it. This will be called
Putamen Decay Fraction or Cerebellum Decay Fraction. Together
with the injected dose, it allows to calculate the number of decays per ml of
Putamen or Cerebellum in infinite time. To obtain the scaling factor, this
number is divided by its counterpart of the simulated noiseless reference
curve. This is the sum of all frames, plus an estimate extrapolating it to
infinite time.

We thus obtain a scaling factor for the reference curve Cr. This factor is
used again in the simulation of Ct. This is legitimate since the amplitudes of
Cr and Ct are in a fixed relation to each other, as determined by the kinetic
model. That relation must still be the same after scaling.

7.1.3.1 Measuring the Decay Fractions

The Decay Fractions (for Putamen and Cerebellum) are determined by av-
eraging over a number of measurements from real images. The reason why
they are based on 1 ml and not on the whole Putamen or Cerebellum, is
that it allows to use the reference volume as another free parameter in the
simulations.

The total number of decays can be obtained from reconstructed images,
which are in units of Becquerel per milliliter, as follows. Take the intensity
of each frame times its length to obtain decays per ml, add them up over the
frames and add an “infinity frame” to account for all atoms decaying later.
The decays per ml of the infinity frame are computed from the intensity
of the constant tail of the TAC (computed as a suitable mean of the latest
frames) times its Decay Weight by formula (2.7).

Thus from the normalized frames we compute an “Infinity Image”. It
is almost the same as the Decay Weighted sum image and different only by
inclusion of the infinity frame, and by being in units of decays per ml.

The Infinity Image can then be sampled in order to obtain averages,
for certain regions or for the whole brain. Sampling the reference mask
will give the number of decays per ml of the reference region. To obtain
aforementioned Decay Fraction, it is divided by the total number of injected
11C atoms, which is computed from the injected dose by equation (2.1).

For the whole-brain based approach, we need the Decay Fraction for
the whole brain. While this is no longer required in the current version of
the simulator, it is still an interesting figure to have. The Infinity Image is
sampled for the whole brain, giving decays per ml in infinite time. They
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are then taken times the subject’s brain volume, and divided by the total
number of injected 11C atoms.

7.1.3.2 Brain Volume

The brain volume was obtained from the stretch factors (one for each axis)
that were recorded by VINCI during the normalization step. On the nor-
malized image, the voxels are sized 2 times 2 times 2 millimeters, and their
number (under the full brain mask of section 10.1) was 251461, resulting in
a volume of 2011.688 ml. Dividing this by the product of the stretch factors,
gives the brain volume on the native image.

7.1.3.3 Results

By applying the above procedures to the PET data of Sample 1, the following
averages and standard deviations were obtained:

• Brain volume: 1463 ± 141 ml

• Decay Fraction for 1 ml of Putamen: 0.0000672 ± 0.0000269

• Decay Fraction for 1 ml of Cerebellum: 0.0000597 ± 0.0000247

• Decay Fraction for the whole brain: 0.03801 ± 0.01369

Raw data of this computation, and corresponding results of patient samples
from Milan, are in appendix (A.5).

7.1.4 The Tanaka Bridge

Next, we need to assess noise propagation through the reconstruction pro-
cess. Consider a fixed volume V. Since we know the total decays per ml, we
also have them for V. The actual number is Poisson distributed, where the
variance equals the expectation. From this we obtain the variance, SD, and
coefficient of variation (COV) of the original shot noise.

Now the challenge is to transform this to an estimate for the noise in the
reconstructed image. For this purpose, Tanaka et al. [36] built an empiric
bridge, linking the above COV (to be called Count COV) to the COV of
image intensity in the volume V, to be called ROI COV. They reached the
formula

ROI COV = 29.1 · CountCOV + 0.009 (7.2)

for their specific scanner and software setup. It was obtained by measuring
Count COV and ROI COV for 2 cortical ROIs of 16 time frames of 3 healthy
human subjects. That gives a total number of 96 data points, and the above
equation is the regression line through that cloud of points.
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7.1.4.1 Critizising the Tanaka Bridge

The question is if we may use the Tanaka formula as it is, for calibrating
the simulator. For 3 reasons, we decided against it:

1. Error propagation depends on the scanner and the reconstruction soft-
ware, and any filters used therein. The Tanaka formula needs to be
adjusted to every new setup.

2. In the Tanaka paper, the following formula is used to compute ROI
COV of each data point:

ROI COV =
Pixel COV√

N = number of pixels in ROI
(7.3)

where “Pixel COV” is the coefficient of variation of the pixel intensities
in the ROI. The formula is valid for stochastically independent voxels.
Are the voxels of a reconstructed image stochastically independent?
Generally, no, but they might come “close” to being so. The degree to
which they are, depends on the reconstruction method and all steps
of image preprocessing up to the point where TACs are sampled. This
includes normalization and smoothing.

3. It appeared like “CountCOV” in the Tanaka paper refers to true de-
cays, not detected decays, but this was not explicitely stated, and the
name provided for additional confusion. The difference between the
two interpretations is huge, since scanner sensitivity is in the region of
3 percent.

7.1.4.2 Phantom Experiments

In addition to repeating the Tanaka procedure, we decided to assess ROI
COV directly, as the empiric COV of a sample of ROIs. Samples of truly
homogenous ROIs are easiest obtained from phantom data. Note that ho-
mogeneity is a must if equation (7.3) is used, since any variation of intensity
inside a ROI increases the enumerator.

The phantom was a cylinder of 14.2 cm diameter, containing two smaller
cylinders of 4.1 cm diameter each, whose volumes were 162 and 84 ml, leav-
ing 1900 ml for the big cylinder. All cylinders were filled with water and
injected with 11C tracer, to reach initial activities of 12300 Bq/ml in the
large and the smallest cylinder and 56300 Bq/ml in the medium cylinder.
Geometry and activities were intended to represent the closest match at-
tainable, to a human head containing hot Basal Ganglia and less active
cortex regions, although for the latter, 25000 Bq/ml would have been closer
to reality. For measurement of noise, it is important to match everything
to the real situation, as the noise also depends on the scatter fraction and
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the background of random events, which are estimated and subtracted by
the reconstruction software. Acquisition was carried out in 30 frames of 5
minutes.

On the reconstructed images, homogenous regions of the large and medium
cylinder were isolated and dissected into mutually disjoint and roughly
isoperimetric ROIs. To the big cylinder, 3 dissections were applied, where
the ROIs had 100, 1000 and 10000 voxels apiece, sized 2x2x2 mm. The num-
ber of ROIs per dissection was 1527, 152 and 15. The small cylinder was
dissected twice, into 15 ROIs of 674 voxels, which is the size of the standard
Putamen mask (section 10.3.1), and 104 ROIs of 100 voxels.

From the initial activity, the frame times, 11C half life and the ROI
volume, the expected number of decays was computed, and, from it, Count
COV (section 7.1.4). ROI COV was computed twice: first, following Tanaka,
by equation (7.3), second, from the empiric SD of the average intensities of
all ROIs of the dissection. This was performed for each of the 30 frames.
Instead of linear regression, we looked at

ROI COV

CountCOV
(7.4)

of every frame, calling them “Tanaka quotient” and “empiric quotient”
depending if ROI COV was computed by equation (7.3) or not.

7.1.4.3 Results

In the large cylinder, the Tanaka quotients were all close to 32, except
for the early frames, where they were somewhat higher with a maximum
around 36. This was observed on all 3 dissections. The higher readings in
the early frames may be attributable to a loss of scanner sensitivity due
to increased dead times and, possibly, random and scatter effects. On the
medium cylinder all Tanaka quotients were close to 20, again with higher
readings on the early frames.

In most of the frames, the empiric quotients were roughly twice as large
as the Tanaka quotients, 60 for the large and 40 for the small cylinder.
On the 674 voxel dissection, they averaged 30, the ROIs of this dissection
were not isoperimetric but “Putamen shaped”. In the early frames, empiric
quotients were higher, in particular on the 1000 and 10000 voxel dissection
of the large cylinder, where values of up to 300 were seen.

7.1.4.4 Discussion

• As 32 is close to the factor 29.1 of equation (7.2), it confirms the
Tanaka result and assures that “CountCOV” refers to decays rather
than counts.
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• Finding the empiric quotients twice as large as their Tanaka counter-
parts is in accord with our expectation that equation (7.3), as a result
of assuming voxel independence, underestimates ROI COV.

• Much higher empiric quotients were seen in the early frames. Our
explanation is that enumerator and denominator of equation (7.4) are
small in high activity frames. Therefore, any systematic effect that
increases the enumerator weighs in heavily on the result. Such effects
could be poor mixing of the tracer with the water, or local differences
in scanner sensitivity.

• It is not understood why the Tanaka quotients could be so different in
the small and large cylinder. Attenuation effects would explain only
differences of up to 10 percent.

It was decided to trust the empiric quotients of the late frames in the big
cylinder and replace the Tanaka formula with

ROI COV = 60 · CountCOV (7.5)

7.1.4.5 Conclusion

The data are certainly not of the quality that justifies performing linear
regression and including its constant term in the final result. The factor 60
appears more trustworthy since it was seen in all 3 dissections and formed
a long constant tail in the 100 voxel dissection. However, there remains a
speculative element in the interpretation. The Tanaka Bridge therefore is
the weakest component of simulator calibration. At least, the meaning of
“Count COV” could be clarified.

7.1.5 Equivalent Volume

Now the decays per milliliter are known after suitable scaling (section 7.1.3),
and we need to consider a volume V to reach the near end of the Tanaka
Bridge. For the reference curve Cr, V is the volume of the reference mask.
For voxel based TACs Ct, we must take account of the Gauss filtering step,
which is part of image preprocessing and introduces a high level of stochastic
dependence between the voxels. The way how we factor this in is by choice
of V.

Thus for every combination of a voxel volume v and a Gauss Filter width
FWHM, we compute an equivalent volume V, such that the COV of a signal
coming from that volume of an unfiltered image, is the same as the COV of
the signal coming from one voxel of the filtered image.

Consider a voxel of volume v and assume that it is surrounded by a grid
of like voxels. Let n denote the expectancy of counts in each voxel. By the
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Poisson distribution, n is also its variance, therefore,
√
n is its SD and 1√

n

is its COV.
By the same argument, we get a COV of

1√
kn

(7.6)

for a region whose size is k times that of a voxel. Now by Gauss filtering,
the voxel gets assigned a linear combination of the intensities of itself and a
number of neighboring voxels. This gives the expectancy

E =
N∑
i=1

λi · n (7.7)

for its number of counts after filtering, where N is the number of contributing
voxels and the λi are the coefficients of the filter kernel. Since the sum of
such λi should be 1, we end up with E=n.

If the contributions of all voxels are independent random variables3,
their variances add up to the variance of the filtered voxel. The individual
variances are

σ2
i = n · λ2

i

and their sum is

σ2 = n ·
N∑
i=1

λ2
i (7.8)

Taking the square root and dividing by the expectancy E=n, gives

COV =

√√√√√ N∑
i=1

λ2
i

n
(7.9)

for the considered voxel. Now equate this with 1√
kn

which is the COV of

a k-voxels sized region. This gives k = 1
N∑
i=1

λ2
i

. The equivalent volume is k

times the voxel volume v:
V =

v
N∑
i=1

λ2
i

(7.10)

Note that the denominator is smaller than 1, since the squares of the lamb-
das must be less than the lambdas themselves, which add up to 1. Table
7.1 shows the equivalent volume as a function of voxel volume and Gauss
Filter size, computed for the Gauss Filter kernels used in VINCI.

3regarding this assumption see the following section
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Voxel Volume FWHM [mm]
[mm3] 2 5 8 10 12 15

1 27 426 1747 3411 5895 11514
8 16 426 1747 3411 5895 11514
27 28 409 1747 3411 5895 11514
125 125 248 1643 3395 5894 11514
1000 1000 1000 1167 1981 4115 10382

Table 7.1: Equivalent volumes of VINCI Gauss Filter kernels in mm3, depending
on the voxel volume and FWHM

One can see that, for small voxels, the equivalent volume depends almost
entirely on FWHM. Raising the voxel size results in a temporary drop, then
it rises again just in time to stay above the volume of one voxel, as it must
according to equation (7.10).

Finding a drop in response to increasing the voxel volume seems illogical.
It is due to the fact that the definition of the filter kernels themselves is not
quite correct. Table 7.2 was computed for filter kernels designed by the
method of section 2.9.5. It shows more plausible behavior than Table 7.1.

Voxel volume FWHM [mm]
[mm3] 2 5 8 10 12 15

1 32 438 1766 3435 5923 11549
8 36 475 1823 3507 6009 11656
27 43 531 1921 3628 6153 11835
125 127 557 2200 4022 6626 12419
1000 1000 1118 2392 4459 7726 14735

Table 7.2: Equivalent volumes of alternative Gauss Filter kernels

On assuming stochastic Independence

The path to equation (7.10) involves an assumption we refused to accept for
the Tanaka Bridge: stochastic independence of voxels. Dependence can be
induced by the reconstruction process, and by image resampling that occurs
during normalization (section 9.1). Minor degrees of stochastic dependence
have little effect when followed up by substantial Gauss filtering. To model
this situation, we assume another Gauss filtering step had been applied to a
primordial image of truly independent voxels. Then we can apply equation
(2.13) to compute the combined effect of both steps. If the first step had
an FWHM of, say, 3mm, and the second step of 8mm, it would result in
8.54 mm for the combined effect. On PET data from Cologne, smoothing
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during reconstruction is kept to a minimum. We therefore decided to ignore
dependence effects.

7.1.6 Volume Correction

Note that Ct and Cr are sampled from the normalized frames, where the
brain volume equals 2012 ml (see section 7.1.3.2). The average brain volume
of the Cologne MCI subjects is 1463 ml. Every volume measured on the
normalized frames corresponds to a smaller volume of the native images,
the correction factor being 1463

2012 . That factor is therefore applied to the
volume V of the noise assessment branch before computing “Decays in V”.

7.1.7 Applying Gaussian Noise

The Noise Assessment Branch computes COV separately for every frame.
Then the frame intensity is multiplied with a normally distributed random
number of µ = 1 and σ = COV . Such random numbers were generated by
the polar method proposed in Knuth [22].

7.2 Simulation Types and Parameters

7.2.1 Double Random Simulation

This simulation type generates a new pair of Cr and Ct in every iteration.
Scaling of Cr to decays per ml (first box of the Noise Assessment Branch)
is performed so as to match the injected dose times the Putamen Decay
Fraction (sections 7.1.3 and 7.1.3.3). The resulting factor is also used for
Ct. Computation of “COV” and application of noise are then performed
separately for every frame of Cr and Ct. The frames are collected to give a
pair of simulated, noisy TACs which is then subject to kinetic analysis. We
obtain k3 which is affected by both types of noise. From many iterations,
we obtain a sample of k3 on which we do statistics, computing its mean, SD
and COV.

Double Random Simulations are used in this chapter to monitor general
performance of the methods and weightings, and in Chapter 8 to validate
k3var.

7.2.2 Cr Block Simulations

are used to assess error caused by noise of Cr in isolation. Unlike error
caused by noise of Ct, which has a chance to average out across a region,
Cr-inflicted error strikes through to regional results. This is because all
target TACs of an image are evaluated against the same reference TAC Cr.

We simulate this by running N blocks of M iterations apiece, using dif-
ferent Ct but the same Cr in each block. If M is sufficiently large, noise
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effects caused by Ct will average out in every block, while the effects of Cr
persist. They are measured as the standard deviation of the N block based
mean values of k3.

Implementation detail: the first iteration of a block generates Cr, Ct and
the scaling factor of section 7.1.3. In the remaining iterations, there is no
Cr being generated and hence no scaling factor, so we use the factor of the
first iteration.

7.2.3 Fixed Cr Simulation

is used to measure the properties of one Cr sampled from a real image. A
large number of Ct is simulated and evaluated against this Cr, to obtain the
mean value of k3. It should, in principle, match the k3 used to simulate the
Ct, but usually does not,

• because the Ct have been simulated for a standardized input curve
that is not represented by Cr

• because of the noise of Cr.

This simulation type allows to compare reference curves while excluding all
external influences, and has been used extensively in chapter 14 and section
11.1.2. As we are only interested in the mean values, we can skip the details
of noise assessment.

7.2.4 Standard Parameters for all Simulations

In each of the following sections one or two parameters are variable and the
rest is kept as follows:

• Injected dose: 555 MBq

• S3 Input Function (see section 7.1.1)

• Framing: “traditional” (see section 6.1.1.1)

• Noiseless curves: generated by the integration method of section 6.5.1

• Cr: assuming an ideal reference region.

• Ct: Simulated for k2=0.1 and k1=0.7222. The latter is a mean value
obtained from cortex of Sample 1 subjects.

• Putamen Decay Fraction: 0.0000672

• Reference volume: 5.392 ml as of the 674+2-Putamen mask (section
10.3.1).

• FWHM: 8mm, whose equivalent volume is 1.747 ml.
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COLOGNE NLS
k3 unweighted Cr decay Combined unweighted decay Combined
0.01 21.9 15.3 16.6 13.7 14.1 13.2 13.0
0.02 16.7 11.2 12.0 10.2 10.8 9.8 9.7
0.05 17.6 11.8 11.5 9.8 10.8 9.6 9.6
0.1 27.9 16.9 16.3 13.5 15.2 13.4 13.5
0.2 54.8 36.1 38.4 27.0 30.4 26.2 26.8
0.3 65.0 54.9 56.2 47.2 55.9 47.3 46.6
0.4 66.5 62.2 61.2 59.3 76.4 69.5 64.5

Table 7.3: k3 COV [%] for both methods and different weightings. k2=0.1 was
used in all simulations. The lowest reading of every row is in bold print.

• Volume Correction Factor: 0.72725

• Evaluation method: Decay Weighted NLS, no frames skipped.

7.3 Comparing Methods and Weightings

This section compares the NLS and COLOGNE methods and their weighting
strategies with respect to noise propagation into k3. The question of bias
will be addressed in section 7.6.

Sections 2.7.1 and 2.7.3 advocate to use Decay Weighting with NLS.
Similar reasons apply to the COLOGNE method, too. Yet in the study of
2003 [14], the frames were weighted proportional to the reference curve (Cr
Weighting). The rationale may have been this: the first evaluation step
is dividing Ct by Cr. Frames of low Cr have unfavorable noise propagation
properties, in that the noise of Ct gets amplified. So they should be assigned
low weights.

As there seems to be reason for either weighting of the COLOGNE
method, we tried them both, separately and together (applying the product
of both weightings, “Combined Weighting”). As the COLOGNE method
responded positively, Combined Weighting was also tried with NLS, where
it has no theoretical justification. The results are listed in Table 7.3. Every
entry is the coefficient of variation (COV) of 10000 k3 obtained from Double
Random Simulations using the Standard Settings of section 7.2.4. The same
pairs of simulated Cr and Ct were used in every column.

Observations

Among the COLOGNE results, the double weighted strategy outperforms
the competition by a clear margin. It is also obvious that either weighting
is better than none. Comparing Cr with Decay Weighting does not show a
clear tendency.
While NLS appears less sensitive to the choice of weighting than COLOGNE,
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FWHM[mm]
k3 4 6 8 10 12 14
0.01 32.8 18.6 13.2 10.7 9.4 8.7

32.2 17.4 11.5 8.5 6.8 5.7
0.02 25.5 14.1 9.8 7.8 6.7 6.1

25.1 13.5 8.8 6.5 5.1 4.3
0.05 26.4 14.1 9.6 7.4 6.2 5.5

26.1 13.6 8.9 6.4 5.0 4.1
0.1 40.0 20.0 13.4 10.2 8.5 7.5

39.3 19.3 12.4 9.0 7.0 5.7
0.2 76.8 43.0 26.2 19.5 16.1 14.2

76.4 40.9 24.1 16.9 13.0 10.6
0.3 90.9 71.9 47.3 33.5 27.5 23.9

90.7 70.7 43.5 29.1 21.8 17.5
0.4 90.0 85.8 69.5 55.0 42.9 37.0

88.9 86.5 66.6 47.3 33.9 26.8

Table 7.4: k3 COV [%] depending on k3, FWHM and the reference volume which
is 5.392 ml in the upper row of each section and 28 ml in the lower row.

the weighted strategies are clearly superior to no weighting. There is a
narrow and undecided competition between Combined Weighting and pure
Decay Weighting. Comparing the double weighted COLOGNE strategy to
Decay Weighted NLS, we see the latter win by a tight margin for k3 ≤ 0.3
and the former by a large margin for k3 = 0.4.

Tests with similar results were performed for other choices of k2 and
FWHM.

7.4 Varying Input Noise

Three of the simulator parameters of section 7.2.4 are affecting the noise of
Cr and Ct: FWHM (affecting Ct), the reference volume (affecting Cr), and
the injected dose (affecting both).

The effect of FWHM and the reference volume is studied in Table 7.4.
Each entry was computed from 10000 Double Random Simulations, using
Decay Weighted NLS for evaluation. The reference volumes correspond to
the standard Putamen- and Cerebellum masks of section 10.3.1.

The table shows the limits of precision as they apply to a dose 555 MBq
and k2=0.1. As expected, COV decreases as FWHM is raised, reducing the
noise of Ct. For a decent error level, it seems advisable to have at least
FWHM=8mm. Beyond 10mm, further increase brings only moderate gain
in exchange for loss of resolution. The data show rapid deterioration for
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Tracer Dose FWHM[mm]
[MBq] 4 6 8 10 12 14
277.5 92.2 64.5 40.0 29.2 23.5 20.4
555 76.8 43.0 26.2 19.5 16.1 14.2

1110 57.0 27.4 17.8 13.5 11.2 9.9
2220 36.6 18.4 12.3 9.5 7.9 7.0
4440 23.9 12.7 8.6 6.7 5.6 4.9

Table 7.5: k3 COV [%] depending on the tracer dose. k3=0.2, k2=0.1 were used
for all simulations.

high k3, putting the upper limit of what can sensibly evaluated at k3=0.3.
Noise of Cr accounts for the difference between the two entries of every

block. Its impact is small at FWHM=8mm, and increases as FWHM is
raised. This makes sense since as we reduce the noise of Ct, a larger fraction
of the total noise becomes attributable to Cr. However, the real impact of
noise of Cr is not appreciated with this type of simulation. It will be further
investigated in section 7.7 and chapter 11.

The effect of the tracer dose is investigated in Table 7.5, where that
quantity is doubled in every row. 555MBq (15 mCi) serves as point of depar-
ture, this dose was administered to Sample 1 subjects (section 2.11). Cutting
it in half as in the first line, has relevance for the data splitting experiments
of chapter 14. 10000 Double Random Simulations were performed for each
table entry, using the “difficult” combination k2 = 0.1, k3 = 0.2.

Precision is seen to improve roughly proportional to the square root
of the injected dose. This can be exploited to improve spatial resolution:
diagonal comparisons in the table reveal that doubling the dose allows to
switch from FWHM=8mm to 6mm while precision deteriorates just a little.
Cutting the dosage in half requires switching from 8 to 10mm and still expect
some deterioration of results.

7.5 Other Framings

We also ran simulations with different framing schedules. No schedule of 20
frames was found that could convincingly beat “traditional”. Iso20 (section
6.1.1.2) led to slightly inferior results. Improvements could only be made
by increasing the number of frames substantially, but were comparatively
small themselves. With Iso60, the coefficient of variation was 89 percent of
that obtained with the “traditional” framing for k3=0.2, and 80 percent for
k3=0.3.

Interpolation splines start looking ridiculous at 60 frames, since they seek
to include every point despite their apparent noisiness. So there is little to
be gained by varying the framing schedule.
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7.6 Noise-induced Bias

After discussing 3 types of bias that could be studied in noiseless simula-
tions in chapter 6, we now turn to noise-induced bias - arising from neutral
noise of the input data in the course of nonlinear processing. For a num-
ber of k2/k3 combinations we ran 10000 Double Random Simulations using
standard parameters (section 7.2.4). Total bias is the relative error of the
mean k3 in percent of the true k3. It necessarily contains Discretization Bias
(section 6.5) as a result of how we simulated the data. So we subtracted
the discretization component, resulting in noise-induced bias of Table 7.6,
shown in line 3 of every cell.

It can be further subdivided, in bias induced by noise of Ct and noise
of Cr. This is examined in section 15.9, where it turns out that noise of
Ct induces positive bias, noise of Cr induces negative bias. What we see in

k2

k3 0.01 0.02 0.05 0.1 0.2 0.5
0.01 49.0 21.4 13.2 11.3 13.4

−1.8 −1.9 −1.9 −1.0 +0.7
+1.5 −1.1 −0.6 −0.4 −0.2

0.02 66.7 36.3 15.5 9.9 8.3 9.5
−1.2 −1.3 −1.4 −1.5 −1.0 +0.0

+11.7 −0.9 −0.7 −0.3 −0.2 +0.1
0.05 80.9 35.1 15.2 9.6 7.5 7.6

−1.1 −1.2 −1.3 −1.3 −1.1 −0.4
+13.1 +0.5 −0.3 −0.2 −0.1 +0.1

0.1 62.7 22.7 13.4 9.4 8.1
−1.4 −1.4 −1.4 −1.1 −0.5
+7.0 +0.4 0.0 −0.1 +0.1

0.2 53.5 26.2 15.9 11.0
−1.6 −1.5 −1.2 −0.6
+4.9 +1.1 +0.2 0.0

0.3 47.3 25.1 15.2
−1.5 −1.3 −0.7
+2.7 +0.8 +0.1

0.4 37.9 20.2
−1.3 −0.7
+0.9 0.0

Table 7.6: Noise, Discretization Bias and noise-induced bias (from top to bottom
in every cell) in percent of the true k3. Combinations whose failrate exceeded 10
percent are not shown.
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Table 7.6 is the superposition. We observe that

• bias is largest for high k3 and low k2. These combinations also have
the most noise, bordering areas that we’ve excluded from the table
because of more than 10 percent of voxel loss to failselection.

• Noise-induced bias is more than an order of magnitude below the noise
itself. For combinations of practical interest, it is small enough to be
ignored.

7.7 Cr induced Bias

Double Random Simulations as of Table 7.6 fail to capture the effects of
noisy Cr in real images. This is because they allow the influence of Cr to
average out, which is not the case in the real situation.

Table 7.7 shows results of Cr Block Simulations (section 7.2.2). Its
entries are COVs of samples of 100 k3, each resulting from 1000 iterations
with one simulated Cr.

V=5.392 ml V=28 ml
k3 k2=0.05 k2=0.1 k2=0.2 k2=0.1
0.01 11.42 6.95 5.57 3.07
0.02 7.55 4.61 3.65 2.05
0.05 6.47 3.92 2.93 1.76
0.079 7.69 4.55 3.22 2.05
0.1 9.02 5.24 3.58 2.36
0.2 19.35 10.37 6.26 4.52
0.3 29.76 17.24 9.98 7.59

Table 7.7: Cr Block Simulations (k3 COV in %). 0.079 is the average k3 found in
cortex of subjects of Sample 1

7.7.1 Discussion

Cr-induced bias has similar properties as the noise in Table 7.6. It grows
with increasing k3 and decreasing k2. When comparing the volumes of the
standard Putamen and Cerebellum masks (columns 3 and 5), it changes by
a factor of about 2.2. Experiments with other reference volumes (unlisted)
showed that the factor is roughly the square root of the quotient of volumes.

Although the table contains unsigned quantities that behave like noise,
they instantiate themselves as signed bias for every single patient. This is
because there is only one reference curve Cr which pushes k3 of every voxel
in the same direction, upwards or downwards, although with different offsets
that depend on k2 and k3.
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Compared with noise-induced bias of Table 7.6, these figures add an
order of magnitude. This makes Cr-induced bias the most significant source
of error. As chapters 11 and 14 will show, it plays exactly this role in the
real world of MP4A PET.

7.8 Conclusion

Simulations of noisy data are a central feature of this work. They are used
to

• compare performance of NLS and COLOGNE

• optimize their weighting strategies

• study noise propagation of NLS with respect to various parameters

• optimize and evaluate mask generating strategies (chapter 14)

• validate voxel based error estimates destined for use with real PET
data (chapter 8).

Special care has been taken to model synthetic noise as realistically as possi-
ble, adapting its level to every single frame. That noise profile takes account
of decay, frame length and the shape of every simulated TAC.

Beyond modelling the shape of the noise cloud correctly, we also at-
tempted to assess its overall intensity (“absolute calibration”). It relies on a
few parameters built into the simulator: Putamen Decay Fraction, Tanaka
formula, Volume Correction Factor. The weakest link in this chain is the
Tanaka formula (7.5). It depends on both the scanner and the reconstruc-
tion software. We invested a few days to calibrate it for our specific setup,
based on a phantom experiment, but results were less than conclusive. For-
tunately, absolute calibration does not affect the validation of k3var (chapter
8). Of the final results of this work (chapters 15 and 16) only Table 15.5 is
affected.

Comparison between k3dev (chapter 8) found in Sample 1 images and
in simulated data suggests that absolute calibration may be 45 percent low,
but such results may also find their explanation in bias of the real data,
inhomogeneity of Sample 1 or inhomogeneity of considered regions.
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Chapter 8

Voxel based Error Estimates

In the simulator environment, k3 error assessment is easy: run a large sample
of Double Random Simulations and take the empiric variance of computed
k3. If we had a formula estimating that variance based on a single simulated
pair of Ct and Cr, it could be used in the real situation as well. Such
estimates, k3var and k3dev, are introduced in this chapter. They are based
on linearizingM around the Model Curve t representing the “true” kinetic
constants, and modeling the noise cloud in its vicinity (Figure 8.1).

For every voxel, the NLS solver provides the distance ‖a − f‖ = ‖ ~fa‖
of the measured TAC a from the set M of Model Compliant curves. The
reason why there is a distance at all, may be threefold:

1. Failure of Cr to properly represent the Blood Input Function. This
may be due to both noise and systematic effects.

2. Failure of Ct to be Model Compliant. The reasons are systematic
effects like discussed in Chapter 6, or caused by any failure of the
biological model or image preprocessing.

3. Noise of Ct.

Presented estimates k3var and k3dev are based on measuring ‖ ~fa‖ and
explaining it entirely with noise of Ct. They assess variance and standard
error of k3 based on how well the measurements Ct fit around the closest
Model Compliant curve. Since model-compliance is defined in terms of Cr
(section 4.2), they can also be viewed as indicators of compatibiliy between
Cr and Ct, which are supposed to depend on the same Blood Input Function.

There seem to be standardized ways of obtaining error estimates for
nonlinear regression. But the only reference we were able to find is [34] of
1988, where the concept is generalized to allow errors in the independent
variables (which in our context are the framing times). This is not exactly
what we need, instead, we wish to include the weighting. We found it easier
to develop an independent access (appendix, B). We are still on safe ground,
though, since the resulting formula has been validated against the simulator.
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8.1 k3var and k3dev

This section contains a full description of how the estimates are computed.
It consists of some initial steps followed by application of formulae (8.2) and
(8.4). A detailed derivation is given in appendix B.
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Figure 8.1: Propagation of noise to error of k3

Let a denote the measured TAC Ct, f’:=(q1,k2,k3) the triple of kinetic con-
stants found by NLS, and f=F(f’) its Model Curve as in Figure 8.1. The
partial derivatives of F in f’ with respect to q1, k2 k3 form a set of vectors
in RN . It will be linear independent if f is a regular point of M. Apply
the Gram Schmidt orthonormalization procedure to obtain an orthonormal
vector system b1,b2,b3:

v1 :=
∂F
∂q1

(f ′)

b1 :=
v1
‖v1‖

v2 :=
∂F
∂k2

(f ′)−
〈
∂F
∂k2

(f ′), b1

〉
b1

b2 :=
v2
‖v2‖

v3 :=
∂F
∂k3

(f ′)−
〈
∂F
∂k3

(f ′), b2

〉
b2 −

〈
∂F
∂k3

(f ′), b1

〉
b1 (8.1)

b3 :=
v3
‖v3‖
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where 〈..〉 and ‖.‖ are defined by equations (4.7) and (4.8) using w1,. . . ,wN
from equation (2.7) which are the Decay Weights arising from the framing

times. Let si :=
√

Ct(i)
wi

and bj,i the i’th component of vector bj (i=1. . . N;
j=1,2,3). Then

k3var :=
‖ ~fa‖2

‖v3‖2
·

N∑
i=1

s2i · b23,i · w2
i

N∑
i=1

s2i · wi −
3∑
j=1

N∑
i=1

s2i · b2j,i · w2
i

(8.2)

where v3 is taken from (8.1). This formula assumes an anisotropic N-
dimensional normal distribution of the noise cloud and accounts for the
inclination at which M intersects with that cloud. If isotropic noise is as-
sumed instead, it simplifies to

k3vari :=
‖ ~fa‖2

‖v3‖2 · (N − 3)
(8.3)

In either case, k3dev is its square root:

k3dev :=
√
k3var (8.4)

8.2 Validation

For a number of combinations of k2 and k3, 10000 Double Random Sim-
ulations (section 7.2.1) were performed with standard simulator settings
(section 7.2.4). Each pair of Cr and Ct was evaluated with NLS. So we get
a sample of 10000 k3 and 10000 k3var. The empiric SD of the former was
divided by the square root of the mean value of the latter. The quotients
are shown in Table 8.1. As k3var is an estimator of the variance of k3,
they are expected to be close to 1. Entries larger than 1 indicate underes-
timation, smaller than 1 overestimation. The top entry of every cell refers
to the 674+2 Putamen mask and a realistic tracer dose. We then reduced
noise by applying tenfold and hundredfold amounts of tracer in lines 2 and 3.
This was expected to clamp down on nonlinearity effects and demonstrate
correctness of the formula. While this helped in a few cases, it generally
failed in the right part of the table, instead the overestimation got worse.
So we returned to 555 MBq and reduced simulated noise only of the ref-
erence curves, by raising the reference volume to 16 and 64 ml (in italics).
This fixed the problem in all cases.
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k2

k3 0.01 0.02 0.05 0.1 0.2 0.5
0.940 1.013 0.996 0.914 0.863

0.01 1.012 1.015 0.978 0.908 0.851
1.010 1.001 0.977 0.834 0.763

0.958 0.937
0.982 0.980

0.879 0.996 0.992 0.952 0.897 0.851
0.02 1.005 1.006 0.994 0.952 0.892 0.841

1.005 1.004 0.983 0.983 0.827 0.760

0.950 0.933
0.980 0.980

1.001 1.000 0.978 0.945 0.904 0.867
0.05 1.007 1.001 0.981 0.946 0.902 0.860

1.006 0.999 0.973 0.923 0.855 0.794

0.981 0.955 0.944
0.998 0.981 0.985

1.024 0.983 0.958 0.929 0.900
0.1 1.002 0.985 0.960 0.929 0.896

1.001 0.980 0.947 0.900 0.848

0.985 0.968 0.962
0.997 0.986 0.993

0.990 0.981 0.962 0.940
0.2 0.990 0.977 0.961 0.941

0.990 0.973 0.948 0.915
0.988 0.978 0.967

0.3 0.987 0.978 0.965
0.984 0.970 0.950

0.998 0.979
0.4 0.988 0.980

0.983 0.971

Table 8.1: Quotients of empiric SD of k3 from 10000 Double Random Simulations
and their mean k3dev. In every cell, tracer dosage is set to 555, 5550, 55500, 555
and 555 MBq (from top to bottom), and the reference volume to 5.392, 5.392, 5.392,
16 and 64 ml. NLS evaluation yield of all listed entries was above 90%, keeping
selection effects at bay.
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8.3 Averaging of k3dev

Averages of k3dev over voxel populations or patients of a sample, were com-
puted by the formula √√√√ 1

N
·
N∑
i=1

x2
i (8.5)

in most places of this work, including Table 8.1. This is because, unlike
variances, standard deviations are not additive. Exceptions to this rule, for
historic reasons, are all data presented in chapters 5 and 10.

8.4 Discussion

By increasing the tracer dosage 100-fold, we reduced the level of noise to one
tenth. As the estimates are based on linearization of M, they should profit
from noise reduction since it makes M larger in comparison to the noise
cloud, so it comes closer to being linear. However, for high k2, we found some
systematic overestimation which failed to disappear as we reduced the noise.
It disappeared only when reducing selectively noise of Cr by increasing the
reference volume. In the design of k3var, noise of Cr has been ignored. Yet
the estimate is sensitive to it, since Cr is part of the definition of M, so M
becomes a “noisy” set which is harder to approximate, increasing ‖a− f‖2
in the enumerator of formula (8.2). It even leads to overestimation. So k3var
works fine in the situation for which it was designed, where noise of Ct is
the dominant source of error, and turns out a little too large when noise of
Cr is dominant. Overestimation of up to 6 percent was found in situations
of practical interest (k2=0.1 with 555 MBq of tracer), this is good enough
for application to real image data.
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Chapter 9

The traditional Workflow

Voxel based kinetic analysis (section 1.6) is just one step of a complex work-
flow leading from raw PET data to parametric k3 images. This and the
following chapter deal with the surrounding procedures of normalization,
coregistration, sampling the reference curve, masking and filtering. Much
of it is a heritage of G. Zuendorf who implemented the workflow for use in
a study of 2003 [14]. His implementation used components of SPM99 [35]
which is based on MATLAB6 [28]. We replaced it by C++ code running
under VINCI, this will be called the “conservative MP4A tool” since it
largely follows the Zuendorf policies.

A second implementation is the “maskless MP4A tool”, which in-
cludes NLS, k3r-correction, k3var as additional features of kinetic analysis.
Its preprocessing part is based on the Zuendorf procedures, some of which
have been replaced or modified by the author. These changes, and their
validation, are the subject of Chapter 10.

9.1 Normalization

Mean values of k3 for anatomical regions of the brain (such as is Table 13.1)
are the final goal of analysis, but first the regions need to be defined. As of
today, nobody has time for manually outlining them on individual images,
based on anatomical structures visible on MRs of the same patient. An
alternative is using a set of fixed masks. Such a set is called an atlas, and
provided in the form of an image of numeric labels, one for each region of
the brain. To make the use of an atlas possible, the parametric images need
to be in the same coordinate space as the atlas. Transformation into this
space is called “normalization”. It intends to ensure that, for instance, the
“Hippocampus” mask really covers the Hippocampus of the patient. This
is not quite easy since patient anatomies are slightly different, and cannot
always be fully achieved by automatic procedures [6].
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9.2 From Acquisition to Evaluation Space

In both MP4A tools, image preprocessing and kinetic analysis take place
in the coordinate space of the atlas, which will therefore be called Eval-
uation Space. Raw PET images are transformed from their own format
(Acquisition Space) to Evaluation Space. These steps include correction
for patient movement: as people find it hard to stay in exactly the same
place for 60 minutes, there will be spatial differences between the frames
that must be undone in order to get meaningful TACs.

Figure 9.1 presents an overview of the full workflow. Images in Evalua-
tion Space are presented in squarish shapes, images in Acquisition Space in
flat shapes. The acquisition format depends on the scanner and its software.
On most scanners, resolution in z direction (which is the patient’s longitu-
dinal axis) is lower than in x and y direction. So in z direction the number
of layers is reduced and the voxel size increased.

Transformation from Acquistion to Evaluation Space requires a Nor-
malization Template onto which the acquisition frames are normalized.
It is an image in Evaluation Space, congruent with the atlas. Its modality1

should match the PET image we wish to normalize. In our case, that modal-
ity is called “flow” or “perfusion”, it is the volume of blood delivered to 1
ml of tissue per second. Every tracer with a high extraction rate2 produces
a perfusion image in the first few minutes. This is because its initial uptake
is proportional to delivery by the blood. This applies also to MP4A.

9.2.1 Early Frames

The set of acquisition frames is divided in two packages, called “Early
Frames” (together covering the first 10 minutes of scantime) and “Late
Frames”. Both are transformed from Acquisition to Evaluation Space in
a single step. The transformation must be mediated by a so-called Flow
Image for two reasons:

1. Image Modality. Normalization to the template is an inter-subject
step, it therefore requires the same image modality (section 2.10.1).
We are therefore restricted to the time window during which MP4A
images are still perfusion images. This is no longer the case after
the first 10 minutes: for instance, Putamen and Cerebellum are not
very eye-catching on the Early Frames, but end up being the brightest
regions later.

2. Signal strength. Automatic normalization also requires a sufficient
1The modality of a PET image is usually characterized by the tracer, although this

example is slightly different
2the percentage of uptake in the tissue during the first passage through the capillary

system
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Figure 9.1: Image Preprocessing Workflow
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amount of viable image detail, which implies a decent signal-to-noise
ratio. This is not provided by an Early Frame in isolation, since it
covers a short time interval and therefore has poor signal strength.
So we need to add up a few of them to get enough statistics for the
automatic procedure to work.

The Early Frames are added without coregistration, so we rely on the patient
not having moved during the first 10 minutes. Then we run Affine Normal-
ization as implemented in VINCI with 12 degrees of freedom. The resulting
image is discarded, but the 12 parameters are collected. They characterize
the affine function f that aligns the Flow Image with the template, and we
use this function to transform each of the Early Frames in the same way.

9.2.2 Correction for Movement

The Late Frames that cover the remaining 50 minutes, are corrected for
patient movement. They have sufficient signal strength to be matched with
the Flow Image. Since this is intra-subject coregistration, we can use the
more robust “Rigid Body Coregistration” method implemented in VINCI,
with 6 degrees of freedom (section 2.10).

The coregistered frames could, in principle, be mapped to Evaluation
Space by the same function f that was used for the Early Frames. However,
this would require two transformations for every Late Frame: coregistration
followed by application of f. We can save some image quality by concatenat-
ing the two transformation steps into one. From the coregistration param-
eters of every Late Frame, and the normalization parameters of the Flow
Image, we compute the transformation matrix of the combined mapping. So
we need to resample the images only once.

9.3 Image Preprocessing

In order to reduce noise before sampling voxel based TACs, the normalized
frames are smoothed by Gauss filtering. While this improves the quality of
the TACs, it also sacrifices spatial resolution - a tradeoff to be discussed in
detail in the next chapter. In particular, if a region has moderate signal
strength and lies next to the hot Basal Ganglia, its signal is corrupted by
influx from the neighborhood during the Gauss Filter step. For this reason,
we apply protective masking.

9.3.1 The Zuendorf Mask

was generated by G. Zuendorf for use with his MATLAB6 implementation.
It selects the set of voxels that had shown the most robust kinetic results
on a sample of patients. Its size is 115471 voxels, covering 45.9% of the
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normalized brain, mainly cortex regions. It fully removes the Basal Ganglia
and the Cerebellum.

9.3.2 Masking and Border Correction

Thus, the set of “nice” voxels is protected against influx from hot neigh-
borhoods prior to Gauss filtering. The price is an artificial internal border.
Instead of influx from hot neighborhoods, we now have influx from the sur-
rounding zero level, which results in darkening of the filtered images close
to the mask borders. For a given voxel, this will reduce intensity by about
the same factor on all frames. By Theorem 4.5, such scaling is neutral with
respect to k2 and k3, while fully affecting q1.

We therefore correct for the darkening by dividing every voxel through
a reference intensity. That intensity is obtained by subjecting the Zuendorf
Mask - consisting of all ones, surrounded by zeroes - itself to Gauss filtering,
and picking the value of the corresponding voxel.

9.4 Obtaining the Reference Curve

While the voxel based TACs Ct are sampled from the masked filtered frames,
Cr (see section 3.2.2) is obtained from the unfiltered normalized frames,
using a “reference mask”. That mask (or rather, two of them, for Putamen
and Cerebellum) were compiled by G.Zuendorf, presumably by some kind
of intensity thresholding on the average of the sum images of a sample of
patients. They cover 5.392 ml (Putamen) or 117 ml (Cerebellum). As the
intention was to cover just the hottest voxels, the Putamen mask is less than
half as big as the corresponding brain region.

Thus, the same mask is used for all patients, trusting the normalization
and coregistration steps to ensure that it fits on its target.

9.5 Critique

While it is pretty safe to do this for Cerebellum, on the Putamen there is
considerable risk that the region is missed. In addition to being small, it
is also divided in two components (left and right Putamen). Differences in
anatomy may already lead to a mismatch, not to mention failed coregistra-
tion/normalization.

Similar problems were encountered with the Zuendorf Mask. It is de-
signed as a compromise between masking out the problematic regions, and
retaining as much of the brain as possible. But since one mask is used for all
patients, it may fall short on both purposes. While only 45.9% of the brain
are covered, one could often see a hot region shine through at the border,
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resulting in hot spots on the k3 images. We therefore decided to switch to
an implementation with adaptive masking.
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Chapter 10

The maskless Workflow

This chapter deals with the “maskless MP4A tool”, which is the second
implementation in VINCI. Much of the workflow has been restructured.
The objective was to

• use no fixed masks for cortex and reference regions, in order to avoid
the problems laid out in section 9.5

• decrease the amount of brain that was previously masked out

• optimize image preprocessing with respect to precision of k3.

10.1 Image Resources

The resources used with the maskless tool are based on an H2O PET tem-
plate shipped with SPM99 [35]. “Evaluation Space” (section 9.2) is defined
by this template (91×109×91 voxels sized 2×2×2 millimeters) . The atlas
has been downloaded from LONI [26], where it is called “ICBM Template”.
Its format is 181 × 217 × 181 voxels sized 1 × 1 × 1 mm. When PET.img
was compared to this atlas in VINCI, the two images were perfectly con-
gruent. We therefore resliced the atlas to Evaluation Format (section 9.2)
using VINCI’s nearest-neighbor interpolation.

To get rid of all non-brain voxels, we also needed a full brain mask.
This was generated from the file EPI.img of the SPM99 package, which
is in Evaluation Format. It represents a MR modality having the helpful
property that brain is distinctly brighter than the rest of the scull, with the
exception of the eye balls. Thus by intensity thresholding one can obtain
a brain-plus-eyes mask. The threshold was chosen so as to let a certain
fraction of the voxels become part of the mask. After some experimenting,
that fraction was set to 28.1%. In the resulting mask, the eye balls were
isolated connected components, which made it easy to remove them.

One would now expect the atlas to be a subset of the full brain mask.
This was almost the case, except for 1412 atlas voxels extending beyond the
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mask. These were subsequently added. Now the mask had 251461 voxels,
representing a volume of 2011.688 ml.

10.2 Erosion, Dilation, Thresholding

These image processing techniques are relevant in the context of this chapter.
Thresholding is used for generating voxel sets, to be stored as binary
masks. They consist of all voxels whose intensity in a given image is above
or below a scalar value called threshold, or between two thresholds. As
reference we use an image of Overall Intensities, by which we understand
the Decay Weighted sum of all normalized frames (section 2.7.2). Such an
image is shown in the top row of Figure 10.1.

Dilation and erosion are used in their simplest form for growing or
shrinking of voxel sets. Every voxel has between 3 and 6 direct neighbors
in the volume (from which it differs by 1 in one coordinate). A single dilation
cycle grows a given voxel set by adding the direct neighbors of all voxels.
Conversely, a single erosion cycle removes the direct neighbors of all voxels of
the complement set. Applying erosion and dilation cycles in succession does
usually not reproduce the original set, it is easy to see that, for instance,
isolated voxels are thus removed. Applying them in reverse order results in
filling up isolated “holes”.

10.3 Reference Mask

For reasons given in section 9.5, we no longer use the fixed masks of section
9.4. Instead, we start with the Putamen and Cerebellum masks contained in
the aforementioned atlas. They consist of 1557 (23229) voxels or a volume
of 12.456 (185.832) ml. However, they are only used as mask precursors,
from which the mask proper is computed for every patient individually.
Such computation involves parameters named ‘padding’, FWHM2 and
‘regionsize’. Setting ‘padding’ to an integer n causes successive application
of n dilation cycles if n is positive, or n erosion cycles if n is negative, to
the precursor mask.

Thereafter, a number of ‘regionsize’ voxels are selected from the result-
ing set to make the final mask. They are the voxels of maximum Overall
Intensity. In order to keep the resulting set compact, the intensity image
is Gauss-filtered prior to selection. The filter width, FWHM2, was set to 4
millimeters.

10.3.1 Standard Masks

Two standard policies of mask generation were used for this work. The
Putamen 674+2 Mask applies ‘padding’=2 and ‘regionsize’=674. The
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padding makes it possible to obtain a perfect mask even if the precursor
misses the Putamen by up to 4 millimeters. The number 674 stems from
the Zuendorf Mask of section 9.4. Its volume of 5.392 ml is the expected
size of the “hot” portion of Putamen. Whenever it was optically verified,
the Putamen 674+2 masks were found to be compact and fit nicely on the
hottest Putamen voxels of the sum image.

The Cerebellum 3500-2 mask applies ‘padding’=-2 and ‘regionsize’
=3500. The negative padding serves to exclude all voxels lying too close
to some other atlas region, in particular Cerebrospinal Fluid. Restricting
the mask size to a fraction of the Cerebellum is another attempt to evade
Partial Volume Effects and improve quality: it seems safer to select the
hottest voxels, than expecting the literature value of k3=0.65 (section 13.1)
to apply to the whole Cerebellum. These masks were reasonably compact
owing to the Gauss Filter step, but they extended over much of the cerebellar
cortex forming irregular patterns that differed from individual to individual.

10.4 Selecting Voxels

In the previous chapter, the Zuendorf Mask was the answer to all questions
on voxel selection. It covers the 45.9% of the brain that can be expected to
evaluate to reasonable quality with the COLOGNE method. k3 computation
was attempted only on that set, and the number of failures never exceeded
a few hundred voxels. As a consequence, all k3 images had the shape of the
mask, making it easy to compare them across a sample of human subjects.
There are three types of selection to be considered:

• preselection: removing voxels before Gauss filtering

• failselection: loss of voxels due to failure of kinetic analysis

• postselection: removal of untrustworthy voxels after kinetic analysis.

Preselection by the Zuendorf Mask is the only selection applied in the tra-
ditional workflow. Since it occurs before the Gauss filtering step, it affects
the shape of the TACs and thereby affects the k3 results. Failselection will
occur inevitably if preselection is omitted, typically removing some 10% of
all voxels. It creates a different image shape in every patient. Postselection
is an interesting idea as it could benefit from the information gathered in the
meantime, in particular since quality markers like k3dev (Chapter 8) and
uff (section 4.7.4) are now available. It is, however, problematic because it
introduces a new difficulty:

10.4.1 Selection Bias

When the pattern of removed voxels is different for every patient, every
type of selection introduces its own bias. The reason is that almost no type
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of selection (except random selection) will be fully orthogonal to k3. For
instance, failselection preferably eliminates voxels with high k3, since they
are harder to evaluate. The same is true for postselection based on k3dev
thresholding: high k3 leads to high k3dev, so voxels with high k3 are more
likely to be sorted out. This leads to a shift of the average k3, rendering
regional results untrustworthy. The only remedy is to keep selection as low
as possible, and exclude regions from evaluation that have lost a certain
percentage of their voxels.

In the traditional workflow, it had been partly justified to ignore the
problem of Selection Bias: of course the Zuendorf Mask induces such bias
to all regions which are cut by its borders, however as the part under the
mask is identical for all patients, inter-subject comparability is preserved.

10.4.2 Adopted Selection Policy

To ensure reliablity of regional results, we will therefore

1. Avoid pre- and postselection alltogether

2. Keep the yield after failselection as high as it is possible without com-
promising the quality of k3 results

10.4.3 Intensity Zoning

The traditional workflow includes Gauss filtering for reduction of noise, and
protective masking during the filter step in order to avoid contaminating
the cortex with signal from neighboring hot regions. Both measures are
preserved in the maskless MP4A tool.

The Zuendorf Mask is replaced by a sequence of masks. They are com-
puted from the normalized frames, and we introduce a number of parameters
to control their generation and application.

The masks are created by multiple thresholding for Gauss-filtered Overall
Intensity (section 10.2). Thus we start with a Decay Weighted sum image
such as shown in Figure 10.1, top row. Gauss filtering is applied before
thresholding in order to render the masks as compact as possible. Its width
FWHM3 is one of the tuning parameters, it was set to 8 millimeters.

The thresholds form a geometric sequence, whose quotient ‘qzoning’
was set to 0.85. The first threshold is ‘qzoning’ times the intensity of the
brightest voxel; it creates the largest mask, containing all voxels of lower
intensity. The thresholds and their masks are then getting smaller, and we
stop just before a mask covers less than two percent of the brain.

The smallest mask, containing the faintest voxels, is called mask 1.
Masks are numbered consecutively, the largest index is between 10 and 15,
depending on the input. The difference sets of the masks are called zones.
Zone 1 equals mask 1, zone 2 consists of the voxels of mask 2 minus those of
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mask 1, and so on up to the highest zone which is the full brain minus the
highest mask. The zones thus become disjoint sets whose index reflects in-
creasing intensity, defining a subdivision of the brain as illustrated in Figure
10.1, bottom row.

Every voxel v of the brain is located in exactly one zone. During the filter
step, it is isolated in a filter mask containing its zone and all zones of lower
index, corresponding to lower intensities. Using this mask, Gauss filtering
and border correction are applied in the same way as in the traditional
workflow.

We thus have the same protection effect as by the Zuendorf Mask, in
that voxels of higher zones are prevented from influencing v. But unlike in
the conservative MP4A tool, they are not removed. They undergo filtering
provided by their own filter masks, and the results of all voxels are collected
in one image. Or rather, in a sequence of images, called the masked filtered
frames, since every normalized frame undergoes the same procedure.

‘qzoning’ is set to 0.85, so the zones are not very wide. Therefore, each
voxel ends up close to the inner border of its filter mask. That effectively
removes about half its neighborhood. Some voxels end up in a small island or
peninsula, where their isolation leads to loss of signal from the neighborhood,
resulting in a noisy TAC and poor evaluation. So the amount of masking
should be carefully controlled.

A new parameter ‘margin’ is introduced for this purpose. With ‘margin’
set to 0, the masking policy is as described above. ‘margin’=1 adds one zone
to every filter mask. For instance, for voxels of zone 3, the filter mask will
be the union of zones 1 to 4.

Higher values of ‘margin’ add several zones. For most voxels this means,
they are no longer close to the border. This fixes the aforementioned prob-
lems. Only voxels near a steep gradient end up close to the border, in accord
with the idea of shielding them from hot neighborhoods.

Note that the zoning policy provides for the same protection that was
previously achieved via preselection. In addition, it can be tuned by ‘qzon-
ing’ and ‘margin’. Setting ‘margin’ to 0 results in maximum masking, while
setting it to the number of zones results in no masking at all.

‘qzoning’ should be close to 1 in order to provide a sufficiently fine subdi-
vision. The parameter was introduced to keep something in hand to prevent
the formation of artefact “stripes”, reminding of a lawn mower. If that had
occurred, we could have raised ‘qzoning’ in order to get finer granularity.
However, such artefacts were rarely seen with ‘qzoning’=0.85.

The remainder of this chapter is devoted to studying the effect of ‘margin’
and FWHM on the quality of k3 results.
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Figure 10.1: Decay Weighted Sum (above) and zoning image (below) of subject
M01007. From the sum image, the brain was isolated and subdivided in 13 zones,
whose properties are explored in chapters 10 and 12. Zone 1 is in blue, zone 13 in
bright magenta.

10.5 Zonal Results

will be used in the following sections to study the effects of ‘margin’ and
FWHM. They are the mean values of all voxels of a zone. Depending on
the image modality, we can have zonal k3 results, k3dev results, etc.. Voxels
that fail to evaluate are excluded from statistics. The percentage of good
voxels (to be called yield or yield after failselection) is recorded, in order
to keep an eye on the risk of Selection Bias (section 10.4.1).

10.5.1 Privileged Area

To render results more meaningful, we exclude noisy outliers from statistics.
This selection is made using a fixed mask called Privileged Area. It is the
union of all atlas regions promising reasonable results (appendix A.4), in
terms of high yield and low k3dev. It contains 68,37% of the brain, mostly
cortex areas. Roughly, it can be viewed as a superset of the Zuendorf Mask.
Note that it is only used for statistics, not as part of the workflow.
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10.6 Optimizing the Parameters

In the absence of preselection, the amount of masking and filtering is gov-
erned by ‘margin’, ‘qzoning’ and FWHM. For ‘qzoning’, the intensity quo-
tient between the zones, a value of 0.85 is close enough to 1 to provide a
sufficiently fine gradation. It typically resulted in 12 to 14 intensity zones.
‘margin’ controls the influx from intense toward less intense zones. In the
images of subject M01007, there were 13 zones. Setting ‘margin’ to 12 dis-
ables all masking there, such that Gauss filtering is performed on the full
brain.

All computations in this chapter were carried out on the PET data of
subject M01007. Table 10.1 shows some global effects of ‘margin’. In col-

on total on Privileged Area
intersection set on Privil. Intersection Set

‘margin’ yield k3dev uff yield k3dev uff k3

0 89.1% .0290 .5971 97.04 % .0153 .6044 .0785
1 90.6% .0262 .6036 98.16 % .0125 .6100 .0790
2 91.2% .0255 .6012 98.64 % .0118 .6087 .0793
3 91.5% .0252 .5984 98.85 % .0116 .6074 .0794
4 91.5% .0252 .5970 98.96 % .0115 .6069 .0794
12 91.7% .0251 .5964 99.02 % .0115 .6067 .0794

Table 10.1: Global yield and quality markers

umn 2, we see the percentage of brain voxels for which k3 could be computed.
The number of voxels that were successful for all listed values of ‘margin’
was 217908, which is 86.7% of the brain. Columns 3 and 4 show mean values
of two quality markers, taken on this “total intersection set”. In columns 5
to 8, the same statistics is shown for the Privileged Area: the percentage of
voxels where k3 could be computed, followed by mean values on the corre-
sponding intersection set. This “Privileged Intersection Set” was used
for all validations of this chapter. It consists of the voxels of the Privileged
Area that evaluated successfully for ‘margin’=0,1,2,3,4 and 12. These were
166143 voxels, 96.64% of the Privileged Area.

10.6.1 ‘margin’

will be looked at first, while keeping FWHM at 8mm. For k3dev and ’yield’
in Table 10.1, we see steady improvement as the amount of masking is
reduced, most pronounced in the beginning and quickly reaching saturation
as ‘margin’ approaches 12. In the Privileged Area, we see better scores on
all quality markers (columns 5, 6, 7 compared to 2, 3, 4). This comes as no
surprise since the area has been selected for containing “nice” voxels. k3dev
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can be viewed as a measure of how much NLS approves of its input curves.
Apparently, these are getting better as we reduce the amount of masking
and allow further influx from high intensity zones to lower ones. However,
while NLS gets increasingly happy, we do not know if the computed k3

are still representative of the underlying brain voxel. To find out, we use
the “unfiltered feedback” marker of section 4.7.4. Its columns 4 and 7 are
the only ones showing deterioration, after going through an optimum at
‘margin’=1.

k3 itself (column 8) is almost constant. It would therefore be nice to
find out how much difference at all there exists between k3-images obtained
with different values of ‘margin’. To keep outliers out of play, we restrict
this comparison to the Privileged Intersection Set: Image-image correlation

‘margin’ 1 2 3 4 12
0 0.8729 0.8275 0.8229 0.8210 0.8205

0.0204 0.0240 0.0243 0.0244 0.0245

1 · 0.9731 0.9709 0.9692 0.9687
· 0.0095 0.0098 0.0101 0.0102

2 · · 0.9977 0.9969 0.9964
· · 0.0010 0.0012 0.0013

3 · · · 0.9997 0.9994
· · · 0.0009 0.0014

4 · · · · 0.9999
· · · · 0.0007

Table 10.2: Global Similarities of k3-images: ‘corr’ (upper number) and ‘dist’
(lower number)

and Euclidean distance (section 2.8) are listed in Table 10.2. Obviously,
the image that differs most from the rest is computed with ‘margin’=0.
Between ‘margin’ 2,3,4 and 12, there is almost no difference. So we can
limit investigations to ‘margin’=0, 1, and 12.

Column 2 of Table 10.3 gives the distribution of the full brain to the
zones, it adds up to 100%. Column 3 shows the same for the Privileged
Area. The zones of maximum intensity, 11,12 and 13, cover only 0.35% of
it. So they are of little practical interest.

The right part of the table shows zonal mean values of k3dev on the
Privileged Intersection Set, for images computed with ‘margin’ = 0, 1 and
12. By far the lowest readings are seen in zones 7 and 8, followed by zone 6.
Together they cover 61.3% of the brain, and 76.6% of the Privileged Area.

103



zone %of %of k3dev
brain Privil.Area ‘margin’=0 ‘margin’=1 ‘margin’=12

1 3.02 1.15 0.1023 0.0619 0.0351
2 2.54 1.33 0.0628 0.0368 0.0209
3 4.03 2.62 0.0383 0.0247 0.0158
4 6.15 4.85 0.0256 0.0184 0.0132
5 9.23 8.92 0.0201 0.0143 0.0116
6 15.95 18.29 0.0153 0.0112 0.0104
7 25.82 33.19 0.0117 0.0099 0.0098
8 19.51 25.07 0.0100 0.0097 0.0098
9 4.41 3.37 0.0211 0.0235 0.0254
10 2.96 0.86 0.0446 0.0474 0.0494
11 2.78 0.29 0.0601 0.0690 0.0693
12 2.67 0.06 0.1280 0.0894 0.0894
13 0.94 0.00 - - -

Table 10.3: Zonal properties and k3dev

Apparently, these Medium Zones are of best signal quality. It deteriorates
sharply toward the High Intensity Zones 9 to 13, which account for 4.58%
of the Privileged Area. The Low Intensity Zones cover 18.87%. There
too, we see a gradual decline in quality from zone 5 to 1. As the comparison
between the columns shows, there is much to be gained by allowing signal
influx from higher zones. So, the poor quality in zone 1 is most likely a
result of low signal strength, which leads to noisy TACs. The situation is
reversed in zones 9 to 11, where image quality apparently benefits from the
masking.

Next we localize the k3 differences between ‘margin’=0 and 12 by re-
stricting image comparison to the zones: Table 10.4 shows the similarity
measures of section 2.8. In the left part, we find analogies to the previous
table: the superior quality of the Medium Zones, the sharp deterioration
from zone 8 to 9, and steady deterioration from zone 5 down to 1.

Yet there is also a new indentation in zone 9, which shows greater dif-
ferences between the images than zones 8 and 10. There is a conspiciously
high reading (bold print) in the ‘shift’ column of zones 9 and 10. As these
zones are bordering the reference regions, they are the ones that motivated
masking in the first place, and we see the direct effect of it - it prevents a
systematic rise of k3.

In the lowest zones, there is even more shift, caused by a drop of k3

(unlisted) from 0.1135 to 0.0869 in zone 1 and 0.0916 to 0.0723 in zone
2. It can be blamed on low signal strength and noisy TACs, resulting in
unstable and biased evaluation. This interpretation is corroborated by many

104



other data. One example is the low yield after failselection in these zones
(unlisted). For ‘margin’=0, it is 30.4% in zone 1 and 60.9% in zone 2. With
‘margin’=1, it goes up to 44.9% and 80.9%, to reach 75.5% and 95.7% for
‘margin’=12. This is indicative of poor TACs for ‘margin’=0, and getting
better as influx from neighboring zones is allowed. It is easy to picture this
effect when bearing in mind that zones 1 and 2 form a thin layer at the
periphery of the brain, as visible in Figure 10.1. Similar evidence from the
k3dev marker has already been shown in Table 10.3.

It remains to decide which ‘margin’ leads to better k3 results. So we
look at the uff marker (“Unf iltered Feedback”, see section 4.7.4). Its inter-
pretation is delicate. Since it also responds to unspecific noise, it increases
with the zonal index, as discussed in section 4.7.4. So we can use it only for
comparison within a given zone.

In Table 10.5, we find ‘margin’=1 beat ‘margin’=0 in every zone. In-
terestingly, it also dominates over ‘margin’=2 and 12 in zones 1 to 9. This
has already been seen in the global statistics of Table 10.1. In the highest
zones, the differences tend to level out. This is because no filtering at all
takes place in higher zones for higher ‘margin’.

10.6.2 FWHM

FWHM is the size of the Gauss Filter applied during image preprocessing
(section 9.3). Like ‘margin’, it controls how much signal a voxel receives
from its neighborhood. The difference is that Gauss filtering is isotropic in
space, while ‘margin’ deals with signal flow across (and therefore orthogonal
to) zonal borders.

comparing ‘margin’ 0/12 comparing ‘margin’ 1/12
zone ‘corr’ ‘dist’ ‘shift’(0-12) ‘corr’ ‘dist’ ‘shift’(1-12)

1 0.6566 0.0853 0.0265 0.8882 0.0459 0.0094
2 0.5328 0.0721 0.0193 0.8259 0.0321 0.0039
3 0.6059 0.0497 0.0070 0.8602 0.0233 0.0018
4 0.7658 0.0314 0.0015 0.9148 0.0143 0.0000
5 0.7859 0.0234 -0.0006 0.9526 0.0090 -0.0011
6 0.8494 0.0173 -0.0016 0.9767 0.0055 -0.0005
7 0.9008 0.0101 -0.0008 0.9898 0.0030 -0.0002
8 0.9034 0.0127 -0.0010 0.9800 0.0061 -0.0004
9 0.7363 0.0790 -0.0138 0.9557 0.0340 -0.0043
10 0.9543 0.0660 -0.0105 0.9974 0.0183 -0.0047
11 0.9318 0.0656 -0.0008 0.9976 0.0128 -0.0001
12 0.9739 0.0604 -0.0109 1.0000 0.0000 0.0000

Table 10.4: Zonal similarity measures
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zone ‘margin’=0 ‘margin’=1 ‘margin’=2 ‘margin’=12
1 0.2008 0.2027 0.1972 0.1758
2 0.2937 0.2968 0.2888 0.2539
3 0.3680 0.3730 0.3631 0.3337
4 0.4430 0.4528 0.4456 0.4321
5 0.5083 0.5198 0.5150 0.5120
6 0.5726 0.5818 0.5809 0.5806
7 0.6300 0.6346 0.6346 0.6345
8 0.6773 0.6785 0.6785 0.6783
9 0.6811 0.6856 0.6849 0.6841
10 0.6967 0.7146 0.7150 0.7144
11 0.7241 0.7481 0.7486 0.7486
12 0.7567 0.7785 0.7785 0.7785

Table 10.5: Zonal uff

We examine the effect of FWHM on k3dev for ‘margin’=0, 1, 2 and 12
on a subset of the zones. Table 10.6 is subdivided in blocks, and in each
block FWHM is set to 6, 8 and 10 millimeters. As the Gauss Filter step is
meant to reduce noise, we expect k3dev to improve in every block from top
to bottom. This is indeed the case in the Medium and High Intensity Zones.
In the low zones, there are three exceptions for ‘margin’=0 and 1, where
the reading is worse for FWHM=8mm than for 6mm. Allowing radial influx
(by increasing ‘margin’) apparently helps the image quality there, and also
“normalizes” the blocks’ behavior with respect to FWHM.

Table 10.7 shows the same investigation with respect to the uff marker.
While it doesn’t allow comparison between the zones, it is valid for compar-
isons within the same zone. The middle entries of every block have already
been listed in Table 10.5. Unlike with k3dev, we see no increase in quality
from FWHM=6 to 10mm. To the contrary, in many blocks (bold print) the
6mm reading is best. This was not the case in the unlisted zones 9 to 12. In
all zones, the 10mm result was inferior to 8mm. The interpretation is easy.
While more Gauss filtering leads to smoother TACs, with better model com-
pliance and therefore easier to evaluate, at the same time k3 becomes less
representative of the underlying area. There is a tradeoff between spatial
resolution and reduction of noise. FWHM should be chosen as low as the
signal strength permits.

In the Medium Zones where we have excellent signal, we can afford the
highest spatial resolution and go as low as 6mm. In the Low Intensity Zones,
6mm is affordable only by raising ‘margin’, in order to bolster signal strength
by allowing influx from higher zones.
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zone FWHM[mm] ‘margin’=0 ‘margin’=1 ‘margin’=2 ‘margin’=12

6 0.0759 0.0603 0.0532 0.0490
1 8 0.1023 0.0619 0.0465 0.0351

10 0.0798 0.0518 0.0381 0.0227

6 0.0525 0.0440 0.0378 0.0328
2 8 0.0628 0.0368 0.0275 0.0209

10 0.0476 0.0297 0.0212 0.0140

6 0.0171 0.0149 0.0149 0.0149
7 8 0.0117 0.0099 0.0098 0.0098

10 0.0086 0.0072 0.0072 0.0072

6 0.0148 0.0144 0.0145 0.0145
8 8 0.0100 0.0097 0.0098 0.0098

10 0.0073 0.0071 0.0072 0.0072

6 0.0296 0.0324 0.0327 0.0328
9 8 0.0211 0.0235 0.0253 0.0254

10 0.0144 0.0158 0.0171 0.0173

Table 10.6: k3dev depending on ‘margin’ and FWHM

10.7 Conclusion

A new strategy for image preprocessing was developed, guided by ideas of
the traditional workflow: smoothing combined with protective masking. It
involves no voxel preselection and requires no fixed masks.

The procedure is controlled by four tuning parameters, FWHM3, ‘qzon-
ing’, FWHM and ‘margin’. Appropriate values for FWHM3=8mm and
‘qzoning’=0.85 were easily found. For FWHM there is a tradeoff between
noise reduction and spatial resolution. A similar tradeoff exists for ‘margin’
which controls the amount of masking. Severe masking (as with ‘margin’=0)
was found to cause problems in areas of low signal strength, such as the
periphery of the brain, while its effects were beneficial to voxels near hot
regions. ‘margin’=1 is a sensible compromise. It was found to maximize
the uff marker, an indicator of the match between the computed kinetic
constants of a voxel and its TAC before image preprocessing.

With this marker, it was also possible to establish FWHM=8mm as a
feasible Gauss Filter size. In areas of good signal strength it is possible to
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zone FWHM[mm] ‘margin’=0 ‘margin’=1 ‘margin’=2 ‘margin’=12

6 0.1571 0.1762 0.1841 0.1816
1 8 0.2008 0.2027 0.1972 0.1758

10 0.1789 0.1958 0.1912 0.1536

6 0.2443 0.2826 0.2868 0.2743
2 8 0.2937 0.2968 0.2888 0.2539

10 0.2798 0.2913 0.2830 0.2291

6 0.3372 0.3658 0.3641 0.3545
3 8 0.3680 0.3730 0.3631 0.3337

10 0.3592 0.3674 0.3570 0.3076

6 0.4199 0.4524 0.4518 0.4481
4 8 0.4430 0.4528 0.4456 0.4321

10 0.4348 0.4478 0.4391 0.4141

6 0.5009 0.5238 0.5236 0.5230
5 8 0.5083 0.5198 0.5150 0.5120

10 0.5003 0.5146 0.5070 0.5003

6 0.5753 0.5885 0.5885 0.5884
6 8 0.5726 0.5818 0.5809 0.5806

10 0.5644 0.5764 0.5744 0.5737

6 0.6359 0.6397 0.6397 0.6397
7 8 0.6300 0.6346 0.6346 0.6345

10 0.6233 0.6299 0.6298 0.6296

6 0.6817 0.6831 0.6831 0.6831
8 8 0.6773 0.6785 0.6785 0.6783

10 0.6713 0.6731 0.6729 0.6726

Table 10.7: ’uff’ depending on ‘margin’ and FWHM. Bold print is used to highlight
blocks where the 6mm reading is best

go as low as 6mm.
The parameters are good for Sample 1 and 2 images that were acquired

in Cologne. They need reevaluation when the scanner or the protocols are
changed. For instance, PET scans of Samples 3 and 4 (from Milan), when
filtered with FWHM=5mm, led to parametric k3 images that looked like
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Sample 1 images after filtering with FWHM=8mm.
Note that ‘margin’ and ‘qzoning’ are interconnected. Moving ‘qzoning’

closer to 1 may require to raise ‘margin’, too.
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Chapter 11

Reference Curves

Reference curves (section 3.2.2) provide the information on a patient’s Blood
Input Function. They are sampled from the unfiltered normalized frames
using a reference mask. The process of mask generation is explained in
section 10.3, it produces a Putamen or Cerebellum mask of prescribed size
while adapting to anatomical differences of the subject. In analogy to the
Zuendorf approach, we set the mask size to 5.392 ml during the early phase
of this work. A Cerebellum mask of 28 ml was used for comparison. Both
sizes are larger than the equivalent volume (section 7.1.5) of 1.75 ml that
determines the noisiness of voxel based TACs after 8mm Gauss filtering. We
therefore anticipated no problems arising from noisy reference curves. This
changed dramatically when the first regional results of Sample 1 patients
were analyzed.

11.1 Polymorphism of Cr

11.1.1 Comparisons based on Regional Results

Regional k3 results (i.e. mean values of all voxels of a region) of Sam-
ple 1 patients are listed in Table 11.1. They refer to Superior Frontal
Gyrus and Hippocampus, and have been sampled from k3 images obtained
with reference curves from aforementioned Putamen and Cerebellum masks.
Considerable differences between the columns are seen at first glance. When
quantified using the ‘dist’ measure of section 2.8, they amount to 0.0059 for
the gyrus and 0.0157 for Hippocampus.

Column 4 is a pattern of P’s and C’s indicating which reference curve
leads to higher k3. It applies to both parts of the table. So what bias the
reference curves inflict on k3, is reflected in the same way in both regions.
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Sup. frontal Gyrus Hippocampus
patient Putamen Cerebellum Putamen Cerebellum
M01001 0.1030 0.0922 P 0.1287 0.1111
M01002 0.0976 0.0938 P 0.1062 0.0990
M01003 0.0867 0.0927 C 0.1173 0.1326
M01004 0.0885 0.0849 P 0.1349 0.1321
M01005 0.0818 0.0773 P 0.1471 0.1327
M01007 0.0808 0.0749 P 0.1380 0.1228
M01008 0.0826 0.0866 C 0.1221 0.1324
M01009 0.0682 0.0757 C 0.0883 0.1014
M01010 0.0842 0.0881 C 0.1359 0.1651
M01012 0.0814 0.0783 P 0.1307 0.1218
M01013 0.0936 0.0893 P 0.1177 0.1049
M01014 0.0951 0.0873 P 0.1274 0.1044

Table 11.1: Comparing Putamen and Cerebellum reference curves based on mean
values of k3, averaged across two regions of the brain

11.1.2 Comparisons based on Simulations

But the consistency ends when comparing Cr of different patients: for in-
stance, M01013 has higher readings than M01008 in Superior Frontal Cortex,
while in Hippocampus the order is reversed. This is not surprising, since we
expect to find different regional k3 patterns in different subjects.

To render the reference curves comparable, we now exclude any influence
of the target regions and use simulated data instead. 10000 simulated TACs
were generated from the S3 Input Function (section 7.1.1) for k2=k3=0.1 and
evaluated against all 24 reference curves of Table 11.1 (Fixed Cr-Simulation,
see section 7.2.3). The results are samples of 10000 k3, whose mean values
are listed in columns 2 and 3 of Table 11.2, and which now exclusively
reflect properties of the reference curves. Columns 2 and 3 show varia-
tions ranging from 0.886 to 0.1306 for Putamen and from 0.0843 to 0.1250
for Cerebellum, providing evidence that reference curves can indeed show
tendencies to favor high or low k3. The observed variations should reflect dif-
ferent Blood Input Functions of the subjects. If that is true, there ought to
be significant correlations between Putamen and Cerebellum columns. This
is indeed the case, we find ‘corr’=0.8335. But we also find ‘dist’=0.0076
which is quite large for columns that ought to be identical.

The P/C pattern arising from the differences is identical with Table 11.1.
So this pattern does not depend on whether it is obtained from regional
results of a cortex region, of Hippocampus or from simulations1. Hence we

1instead of comparing P/C patterns, one might prefer considering correlations between
the differences of Putamen and Cerebellum columns. Comparing them in all possible ways
gives ‘corr’=0.9022, 0.9672 and 0.8504.
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difference normalized
patient Putamen Cerebellum in % of Put. difference
M01001 0.1010 0.0893 -11.6 P 2.037
M01002 0.0966 0.0921 -4.7 P 0.784
M01003 0.1151 0.1250 +8.6 C -1.724
M01004 0.0886 0.0843 -4.9 P 0.749
M01005 0.1306 0.1204 -8.2 P 1.776
M01007 0.0960 0.0885 -7.8 P 1.306
M01008 0.0941 0.0989 5.1 C -0.836
M01009 0.1058 0.1169 10.5 C -1.933
M01010 0.0965 0.0991 2.7 C -0.453
M01012 0.0986 0.0947 -4.0 P 0.679
M01013 0.0921 0.0876 -4.9 P 0.784
M01014 0.1052 0.0969 -7.9 P 1.445

Table 11.2: Comparing reference curves based on simulations

have evidence that

1. reference curves have inherent tendencies to favor higher or lower k3

results

2. they partly reflect differences in the patient’s Blood Input Functions

3. they also contain an artefact component tied to the reference masks
themselves. It is reproducible across different sets of target curves,
both simulated and measured.

11.2 Conclusion

The artefact component is a serious problem since it puts the validity of
regional results in question. Since there is only one copy of Cr being used
for computation of every parametric k3 image, nothing will compensate for
errors induced by that curve. This is unlike the effects of noise of Ct, which
average out across a region. If noise of Cr leads to elevated or reduced
k3 values, it will do so on all voxels simultaneously, fully affecting regional
results. Investigations into this type of error can only be attempted at
sample level, but even so we are somewhat short of data, having only one pair
of reference curves (from Putamen and Cerebellum) available per patient.

A major effort to obtain more information and use it to control and
assess the effect of the artefact component, will be made in chapter 14.
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Chapter 12

Comparison with COLOGNE

As long as COLOGNE was the only method available, we could do little
more than consistency checks to validate it. The images should stay the
same when modifying certain parameters of the method. One example is
changing the reference region, see the previous chapter. Another is leaving
out single frames from evaluation.

12.1 The skip2 Problem

There should be no substantial changes as a result of excluding frames.
Every frame contributes a point to the value table of the TACs Ct. The
identity of a TAC should not depend on one or two values. Consequently,
q1, k2, k3 computed from Ct should not be much affected.

Using the COLOGNE method for evaluation, we ran image-image com-
parisons after removing frames. At first, there were no significant breeches
in consistency. But once the Zuendorf Mask had been removed, an area of
the brain was revealed that behaved inconsistently. It contained the out-
ward border of the Occipital Cortex in the median plane, an area known for
its concentration of venous blood vessels [13].

If evaluation was carried out using all frames (“skip0 policy”), k3

turned out significantly higher than if a skip2 policy (excluding frames
1 and 2) was adopted. The effect was clearly visible when comparing im-
ages.

From the beginning we suspected that blood volume effects were to
blame. The kinetic model is based on the simplification of ignoring what
11C signal is emitted directly from the blood (see Chapter 3, Assumption
1). Since radioactivity declines rapidly in the plasma after injection of the
tracer, there should be little error inflicted by ignoring the blood signal in
all but the very first frames.

But now we are faced with two conflicting k3 readings from one region.
So we must decide in favor of one or the other result and evaluation policy.
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It might be helpful to have a “second opinion” available. In fact, it is this
problem that made us want to implement NLS in the first place.

12.1.1 Quantifying the Problem

As mentioned previously, the phenomenon was first observed when compar-
ing two images, computed with skip0 and skip2 policies. Later it was seen
again on single images, of the noiserel modality (section 4.7.2). They had
elevated intensity in the same region (Figure 12.1, top row). As explained
in sections 4.7.2 and 4.7.3, this either points to noise or bias, and a decision
may be reached by checking the framedev modalities. While other framedev

Figure 12.1: Parametric images of noiserel (above) and framedev2 (below). Bright
regions in the upper image are indicative of noise or bias, while deep red in the lower
image is specific for the skip2 problem.

images showed no unusual signs, on framedev2 images the suspicious regions
appeared in bright red. So the intensity of frame 2 was elevated compared
to the Model Curve of the computed triple of constants.

In the biological context this finding makes a lot of sense. Frame 2
corresponds to the interval of 30 to 60 seconds after tracer injection. During
this period, the injected bolus passes through the venous system for the first
time, leading to a significant signal from the blood. It adds to the signal
from the tissue, and the resulting TAC is no longer Model Compliant.

We created a mask from the 10690 (5%) voxels that had the highest
framedev2 readings. On this region, we subtracted the skip2 k3 values
from the skip0 values. The result averaged 0.044 if the COLOGNE method
was used, and 0.015 if NLS was used. There were only 8 and 0, resp.,
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voxels where the difference was negative. When restricting the mask to
6276 voxels, by selecting for low k3dev in order to remove outliers, there
was still an average difference of 0.01953 (COLOGNE) and 0.00894 (NLS).

These results were obtained from a single PET scan, but they are rep-
resentative of the rest. They show that there is a region of significant bias,
and that the COLOGNE method is more vulnerable to the problem than
NLS.

12.1.2 Deciding between the Policies

Another way to look at the data is by comparing whole images. We prese-
lected for voxels that evaluated successfully on all 4 setups (skip 0/2 com-
bined with COLOGNE/NLS). There was still a large number of noisy out-
liers, so we intersected with the Privileged Area of section 10.5.1, retaining
the 66.88 percent of the brain that can be expected to evaluate robustly. On
that set, pairs of images were compared using the ‘corr’ and ‘dist’ measures
of section 2.8. The results are shown in Figure 12.2. Observations:

corr = 0.9218
dist = 0.0127

corr =
 0.9374

dist
 = 0.0103

corr = 0.8546

dist = 0.0171

corr = 0.9857
dist = 0.0049

dist = 0.0107

corr = 0.9328

COLOGNE
    skip2

COLOGNE
    skip0

 NLS
skip0

 NLS
skip2

Figure 12.2: Similarity measures between k3 images obtained with different poli-
cies, restricted to the Privileged Area

1. Comparing skip 0/2 COLOGNE images, we find low correlation and
high differences. This can be looked upon as a restatement of the
problem.

2. The same comparison on NLS images finds better scores on both mea-
sures. Apparently, NLS is more robust with respect to the problem,
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as was already found in the previous section.

3. When computed with skip0, COLOGNE and NLS images show a poor
match. It improves dramatically when both are computed with skip2.

4. If NLS with skip0 was to act as a referee between the COLOGNE
images, it would favor the skip2 version.

12.1.3 Discussion

The most striking observation is to see the problem disappear if the first two
frames are excluded from evaluation. This corroborates what has already
been stated, namely, that it is caused by frame 2. This in turn supports the
theory that we are looking at a blood volume effect, causing the TACs of
certain voxels to be noncompliant with the kinetic model. So we are looking
at bias rather than noise.

The second observation is that NLS gets derailed by this bias to a lesser
degree than the COLOGNE method. The reasons will be discussed in section
13.4.

Together, these findings make NLS appear more trustworthy than the
COLOGNE method, and the skip2 results more trustworthy than the skip0
results. This is supported by observation 4.

Presented data are taken from the PET scan of subject M01007. Such
results are only obtained after sufficient preselection for voxels of good qual-
ity. If the selection was performed by k3dev thresholding, they were even
more conclusive than with selection for membership in the Privileged Area.
Without any selection, results were affected by noisy outliers, making them
less conclusive, inconclusive or sometimes even contradicting the results pre-
sented here.

A skip2 policy has also been followed by G.Zuendorf in the study of
2002/2003 [14]. Back then, the first two frames were already perceived as a
source of problems [45].

12.2 More Zonal Results

In chapter 10 we showed zonal statistics with image preprocessing in mind,
leading to the policy of ‘margin’=1 coupled with FWHM=8 which has been
followed in the rest of this work. Now we present more zonal data aiming at
validation of kinetic analysis. Again the subject is M01007 and statistics is
restricted to the Privileged Area of section 10.5.1 in order to exclude noisy
outliers. The zones are the same as in section 10.6.1, and q1, k2, k3 have
been computed with NLS using a skip0 policy.
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Number of Voxels: Intensity
Total Privil. Privil. of dec. w.

zone Brain Area Inters. Sum simcr q1 k2 k3

1 7600 1975 543 6476 .9523 .1884 .1339 .0963
2 6384 2290 1319 5262 .9552 .2521 .1132 .0763
3 10133 4507 3710 6576 .9600 .3096 .1046 .0702
4 15453 8330 7689 7941 .9651 .3704 .0912 .0673
5 23205 15333 14929 9832 .9671 .4645 .0927 .0692
6 40111 31443 31054 12073 .9677 .5814 .0976 .0729
7 64918 57068 56811 14266 .9691 .6896 .1011 .0775
8 49054 43109 42866 16354 .9708 .7893 .1045 .0827
9 11098 5793 5488 18582 .9812 .8048 .1031 .1169
10 7454 1487 1274 21951 .9933 .8089 .1145 .1757
11 6982 496 405 26128 .9970 .8584 .0691 .1854
12 6713 96 55 30911 .9987 .8842 .0158 .0963
13 2356 0 0

Table 12.1: Zonal mean values of the kinetic constants and simcr

12.2.1 Kinetic Constants and simcr

Column 2 of Table 12.1 shows again the distribution of the brain to the
zones (The same data in percent is given in Table 10.3). Columns 3 and 4 list
how many of these are in the Privileged Area and the Privileged Intersection
Set of section 10.6. The right part of the table refers to only this subset.

Columns 7 to 9 show the zonal mean values of the kinetic constants. q1
increases steadily with the zone numeration. This is parallel to the increase
of intensity of the Decay Weighted sum (column 5), which is the quantity
defining the zones. Since q1 scales proportional to the Overall Intensity
by Theorem 4.3, its behavior is in line with the expectations. Zone 12
overlaps with the reference regions. As this zone is approached, we see
simcr climb towards 1, indicating increasing similarity of the TACs with
Cr. We also observe an increase of k3, which is known to have its maximum
in the reference regions. k2 stays close to 0.1 through most of the zones.

12.2.2 Limitations of NLS

Zones 11 and 12 show interesting outliers both of k2 and k3. Although k3

is known to be high in the reference regions, the table shows a drop in zone
12, accompanied by a dramatic decrease of k2. Considering simcr which is
almost 1, the phenomenon can be explained with closeness of the TACs to
the singularity of M (section 4.6.2): when TACs are similar to Cr, there is
no way to tell if it is due to low k2 or to high k3. Apparently NLS with its
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zone yield[%] Intensity noiseabs noiserel iter k3dev uff
1 27.5 6476 1028 0.2174 12.8 0.0955 0.2027
2 57.6 5262 1094 0.1782 12.1 0.0511 0.2968
3 82.3 6576 1049 0.1389 11.4 0.0306 0.3730
4 92.3 7941 997 0.1075 10.2 0.0219 0.4528
5 97.4 9832 961 0.0836 9.1 0.0186 0.5198
6 98.8 12073 899 0.0636 7.8 0.0152 0.5818
7 99.5 14266 886 0.0530 7.1 0.0121 0.6346
8 99.4 16354 887 0.0463 6.8 0.0151 0.6785
9 94.7 18582 964 0.0445 8.1 0.0471 0.6856
10 85.7 21951 996 0.0391 9.7 0.1092 0.7146
11 81.7 26128 940 0.0311 10.8 0.1465 0.7481
12 57.3 30911 874 0.0244 11.9 0.3462 0.7785

Table 12.2: Markers relating to the quality of kinetic analysis

current setup favors the local optimum which has k2 an order of magnitude
below the expected value of 0.1.

NLS was far less sensitive to the problem when we tried to reproduce
it in the simulator (data unlisted). So the phenomenon might also be due
to biased input data. For an overview of three types of bias that could be
identified in real images, see section 15.10.

Table 12.2 shows the zonal behavior of different quality markers. k3dev
goes up at both ends of the zonal scale, indicating results of poor precision.
This is accompanied by loss of voxels during kinetic analysis (column 2). An
additional witness to the difficulty of k3 computation is the iter column, it
shows the average number of iterations needed by NLS to process a voxel1.

In the upper zones, the phenomenon can be explained by high simcr as in
the previous paragraph. In the lower zones we need a different explanation.
The noiseabs marker has little overall variation. Therefore, noiserel comes
out roughly inversely proportional to the Overall Intensity (column 3). Since
noiserel is the inverse Signal-to-Noise Ratio (section 4.7.2), we have poor
SNR resulting from poor signal strength in the lowest zones, explaining
poor performance of kinetic analysis.

12.2.3 Comparing Results of NLS and COLOGNE

By k3diff we denote the voxel based difference between k3 computed by
COLOGNE and NLS, in this order. k3diff is its absolute value. In Ta-
ble 12.3, both are averaged across the zones. k3diff columns show that
COLOGNE is biased toward slightly higher results. k3diff columns re-

1the maximum number allowed is 20, see Chapter 5
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skip0 skip2
zone k3diff k3diff k3diff k3diff

1 .0111 .0171 .0005 .0073
2 .0070 .0109 .0015 .0038
3 .0040 .0066 .0011 .0024
4 .0022 .0043 .0009 .0018
5 .0013 .0033 .0005 .0012
6 .0004 .0025 .0004 .0009
7 .0003 .0024 .0004 .0008
8 .0005 .0025 .0005 .0008
9 .0022 .0071 .0017 .0025
10 .0020 .0100 .0024 .0040
11 .0034 .0136 .0051 .0068
12 -.0108 .0147 .0014 .0094

Table 12.3: Comparing k3 of COLOGNE and NLS

flect the average voxel based differences between k3 computed with either
method. Much of it averages out across the zones, as can be seen by com-
parison with k3diff. Further observations:

• By far the lowest differences are seen in the Medium Zones. k3diff de-
teriorates on both ends of the zonal scale, just as we have observed for
k3dev, iter and yield in Table 12.2.

• absolute differences go down when switching to a skip2 policy, which
is quite in line with the results of Figure 12.2.

• In the lowest zones, COLOGNE is strongly biased toward higher k3,
this almost completely disappears when switching from skip0 to skip2
policies. So the blood volume effect identified in section 12.1.3 empha-
sizes the low intensity zones.

Model curves of COLOGNE results showed residual squares about 1 per-
cent above their NLS counterparts, which supposedly represent the possible
minimum (data unlisted). So COLOGNE is remarkably successful as a min-
imizer of Decay Weighted squares. Such performance was only reached when
running COLOGNE with Combined Weighting (section 7.3), while pure Cr-
or Decay Weighting performed much worse. Further improvement, down to
almost 1 permille of excessive squares, was observed after switching to the
skip2 policy.
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Chapter 13

Regional Results

Dissecting the brain into intensity zones as in the previous chapters is just
a technical measure. The real interest will be on anatomic regions. This
chapter presents an overview of typical results, allowing to localize some
phenomena observed in the zonal statistics of chapter 12.

The main distinction in brain tissue is between “White Matter”, consist-
ing mainly of axons, and “Gray Matter”, which also contains the neural cell
bodies. In our atlas (section 10.1) White Matter, although it is spread across
the whole brain, is treated as a single region. Of Gray Matter, the main dis-
tinction is between Neocortex and phylogenetically older areas. Neocortex
happens to mostly coincide with the “Medium Zones” of chapters 10 and
12, which produce the most reliable k3 results. It is subdivided in Frontal,
Parietal, Temporal and Occipital Cortex. Two large regions defying this
classification are Cingulate and Insular Cortex. Of the older brain areas,
Cerebellum is the largest distinct entity, and much of the rest, including
Putamen, is subsumed under the term “Basal Ganglia”.

13.1 Kinetic Constants in Literature

In [17, 31], k3 = 0.07min−1 is reported for Parietal Cortex. According to
[33] and based on Human post-mortem data, AChE activity in Caudate1 and
Putamen is 53-62 times that in Parietal Cortex - leading to an estimated
k3 between 3.7 and 4.3 min−1. According to other post-mortem studies
[1, 3], AChE activity in Cortex/Thalamus/Cerebellum/Striatum2 relates as
1/3/8/38. With cortical k3 = 0.08 as found in this work, this gives k3=3 in
Putamen and 0.65 in Cerebellum.

According to [17, 31] little variation of k2 is expected in gray matter
structures, the values ranging from 0.08 to 0.14 min−1. This finding is
linked by the authors to high diffusibility of MP4A across the Blood Brain

1a small region located close to Putamen
2a larger region containing the Putamen
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Name Voxels Yield q1 k2 k3 k3dev
[%]

White Matter 54494 95.76 .6622 .0817 .0728 .0384

Frontal Cortex:
Superior Frontal Gyrus 14384 99.52 .7941 .1064 .0856 .0162
Middle Frontal Gyrus 7411 98.86 .8310 .1092 .0798 .0181
Inferior Frontal Gyrus 6014 98.06 .7976 .1083 .0839 .0198
Orbito Lateral Gyrus 2237 99.79 .8349 .0992 .0782 .0127
Orbito Medial Gyrus 2828 98.86 .8153 .0902 .0861 .0219
Precentral Gyrus 6525 99.39 .8326 .1121 .0968 .0179
Gyrus Rectus 1469 99.34 .8460 .0880 .0867 .0198

total Frontal 40868 99.13 .8130 .1059 .0858 .0178

Parietal Cortex:
Superior Parietal Gyrus 4961 99.69 .7971 .1001 .0714 .0122
Supramarginal Gyrus 5751 99.75 .8244 .0983 .0730 .0120
Inferior Parietal Lobule 3798 99.70 .8113 .0995 .0655 .0104
Postcentral Gyrus 7315 99.31 .7937 .1088 .0871 .0162

total Parietal 21825 99.53 .8057 .1024 .0760 .0133

Temporal Cortex:
Superior Temporal Gyrus 8516 99.20 .8023 .0987 .0812 .0179
Middle Temporal Gyrus 6540 99.26 .7688 .0880 .0712 .0145
Inferior Temporal Gyrus 4349 99.22 .7215 .0841 .0689 .0159
Fusiform Gyrus 4428 99.20 .7685 .0768 .0866 .0262

total Temporal 23833 99.22 .7721 .0890 .0772 .0186

Occipital Cortex:
Superior Occipital Gyrus 2042 99.30 .7792 .1124 .0667 .0148
Middle Occipital Gyrus 2261 99.04 .7757 .1052 .0654 .0124
Inferior Occipital Gyrus 3163 99.10 .7997 .1112 .0671 .0154
Lingual Gyrus 3927 99.65 .9366 .1104 .0743 .0142
Cuneus 2378 99.64 .9660 .1199 .0641 .0091
Precuneus 3976 99.89 .9414 .1081 .0656 .0090

total Occipital 17747 99.49 .8789 .1109 .0677 .0127

Other:
Insular Cortex 2505 99.01 .8406 .0908 .1044 .0245
Cingulate Gyrus 6315 99.19 .8534 .0957 .0846 .0183
Hippocampus 2520 97.13 .7561 .0895 .1112 .0406
Amygdala 591 88.10 .6668 .0994 .1558 .0905
Brain Stem 1317 69.48 .6889 .1078 .1721 .1710

total cortex 113093 99.29 .8162 .1016 .0796 .0167

Table 13.1: Regional results: kinetic constants and k3dev. Computed using NLS
with skip2 policy and a 16 ml Putamen reference mask, FWHM=8mm and ‘mar-
gin’=1

Barrier and the associated correlation of k1 and k2 with cerebral blood flow
[15]. They go on to claim that because blood flow is similar in Caudate,
Putamen and cortex, Putamen k2 values are expected in the same range,
i.e. around 0.1 min−1.

Based on evidence of his own and of [19], Koeppe claims that the k1/k2

relation for MP4A and MP4P is rather uniform across the brain [23]. If that
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is true, we should expect little variation of k1 as well.

13.2 Kinetic Constants and k3dev

k3 in the Basal Ganglia is high and therefore notoriously hard to evaluate;
one important exception is Hippocampus. Much of the rest consists of small
nuclei which are hardly resolved in dynamic PET studies, given the fact that
we need to use an 8mm Gauss Filter. So we leave them out of consideration
in this chapter, and include Amygdala and Brainstem just for demonstration.

Table 13.1 contains regional results averaged over the subjects of Sam-
ple 1. Columns 3 and 4 give every region’s number of voxels and which
percentage of them survived failselection. The remaining columns refer to
this subset.

Quite uniform behavior is seen in cortex regions: with failrates typically
below 1 percent, k3 is low and k2 averages around 0.1. k3dev is as low as
in the “Medium Zones” of the previous chapters. As we move toward the
older brain, k3dev quickly deteriorates while k3 rises, k2 stays put and q1
declines a little. The succession Hippocampus, Amygdala, Brainstem shows
this development. The lowest q1 is seen in White Matter. On images such as
Figure 13.1, top row, q1 was found to be as low as 0.3 in Corpus Callosum.
Such values are not seen in the table because it doesn’t subdivide the White
Matter area.

Among cortical regions, Fusiform Gyrus and Insular Cortex have the low-
est precision (k3dev=0.0262) and Cuneus, Precuneus the highest (0.0090).
Interestingly, this is reflected by the k2/k3 relation which is lowest in the
former and highest in the latter regions. Since high k2 and low k3 both
facilitate k3 computation (Table 7.3), this nicely explains the phenomenon.

13.3 Other regional Results

Table 13.2 has additional modalities of Sample 1 data. Its columns 2
and 3 show signed and unsigned differences of k3 computed by COLOGNE
and NLS. While column 3 gives an impression of the absolute voxel based
differences, in column 2 they are allowed to average out, leading to regional
differences. Even so, COLOGNE is biased toward higher values of k3, an
effect which is almost negligible in Neocortex but becomes more pronounced
in hotter areas such as Hippocampus and Amygdala.

Columns 4 and 5 show regional mean values of iter, which is the number
of iterations it took NLS to converge, and simcr, an indicator of similarity
to the reference curve. Parametric images of both are in Figure 13.2. By
definition, the reference regions are the hottest on the simcr image. On the
iter image, we find parallels to the k3dev image of Figure 13.1. High values
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Figure 13.1: Parametric images of q1, k2, k3 and k3dev (from top to
bottom) using a “rainbow” color scheme that maps increasing intensities to
blue<green<yellow<red. Black areas refer to voxels whose evaluation failed.

indicate poor convergence properties, which are either due to high simcr
like in the reference regions, or poor signal strength like at the periphery of
the brain and in the ventricles.
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Name k3diff k3diff iter simcr
White Matter .0007 .0018 8.99 .9718
Superior Frontal Gyrus .0008 .0014 8.22 .9722
Middle Frontal Gyrus .0005 .0012 7.83 .9690
Inferior Frontal Gyrus .0006 .0013 8.13 .9714
Orbito Lateral Gyrus .0003 .0010 7.79 .9712
Orbito Medial Gyrus .0003 .0014 8.28 .9770
Precentral Gyrus .0007 .0014 7.97 .9765
Gyrus Rectus .0003 .0012 8.24 .9785
total Frontal .0006 .0013 8.08 .9727
Superior Parietal Gyrus .0005 .0010 7.72 .9657
Supramarginal Gyrus .0003 .0008 7.48 .9681
Inferior Parietal Lobule .0002 .0007 7.39 .9619
Postcentral Gyrus .0006 .0013 7.97 .9730
total Parietal .0004 .0010 7.68 .9681
Superior Temporal Gyrus .0007 .0013 7.98 .9709
Middle Temporal Gyrus .0003 .0010 7.93 .9695
Inferior Temporal Gyrus .0002 .0010 8.43 .9682
Fusiform Gyrus .0007 .0018 9.13 .9803
total Temporal .0005 .0012 8.26 .9718
Superior Occipital Gyrus .0005 .0009 7.64 .9559
Middle Occipital Gyrus .0001 .0007 7.54 .9576
Inferior Occipital Gyrus .0005 .0010 8.05 .9526
Lingual Gyrus .0007 .0011 7.74 .9594
Cuneus .0003 .0006 7.10 .9490
Precuneus .0003 .0007 7.34 .9574
total Occipital .0004 .0009 7.58 .9557
Insular Cortex .0007 .0019 8.62 .9833
Cingulate Gyrus .0005 .0013 8.22 .9746
Hippocampus .0020 .0034 9.81 .9826
Amygdala .0090 .0114 12.39 .9854
Brain Stem .0093 .0139 13.19 .9925
total cortex .0005 .0012 7.98 .9693

Table 13.2: More columns of Table 13.1, computed with identical settings

13.4 The skip2 Problem revisited

Columns 4 and 5 of Table 13.3 have been computed using all frames (“skip0
policy”). They were obtained from the PET data of subject M01007. For the
lower section of the table, we’ve selected the top scoring regions of skip0-2,
which is the difference of k3 computed with skip0 and skip2 policies. Their
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Figure 13.2: Parametric images of iter (top row) and simcr (bottom row)

scores are in column 2 for NLS and column 3 for COLOGNE. In the upper
section, we have 3 “normal” regions for comparison.

Name skip0-2 skip0-2 framedev2 k3diff
(NLS) (COLOGNE) (NLS) (skip0)

Superior Frontal .0017 .0022 551 .0011
Middle Frontal -.0005 -.0018 -333 -.0011
Inferior Frontal .0009 .0023 287 .0018
Orbito Medial .0019 .0047 625 .0032

Superior Temporal .0030 .0066 1127 .0041
Inferior Occipital .0035 .0046 1758 .0015

Insular .0032 .0076 1318 .0052
Cingulate .0036 .0080 1276 .0052

Hippocampus .0051 .0112 1207 .0084
Amygdala .0210 .0903 3196 .0724
Brainstem .0238 .0377 1898 .0019

Table 13.3: Regional skip2 effects

Column 3 dominates over column 2, showing once again that COLOGNE
is more affected by the problem than NLS. While having been selected for
their skip0-2 differences, the regions of the lower section also contain the
7 highest framedev2 readings of the 26 regions3 of Table 13.1, and the 5

3data of other regions not listed
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Figure 13.3: Response of COLOGNE to outlying early frames, with skip0 and
skip2 policies. The dots correspond to the frames, their sizes to the weighting
(VINCI MP4A plugin, screenshots of the COLOGNE testbed).

highest resulting k3diff. Bias caused by blood volume effects is therefore a
major reason for COLOGNE overestimating k3.

Why would COLOGNE be more sensitive toward this kind of bias? Re-
call that it finds the k that maximizes the correlation of a plot of Ct

Cr
against

wk. It then goes on to compute k3 from the parameters of the regression line
through that cloud of points. Figure 13.3 illustrates how the regression
line changes when two frames are removed. The cloud has been plotted (for
its respective optimal k) with and without the two dots on the right side,
which correspond to frames 1 and 2. The larger dot is frame 2. It pulls the
regression line upwards, resulting in k3=0.0747. Remove the two dots, and
the slope declines, leading to k3=0.0621. This example, taken from a voxel
of the Occipital Cortex of M01007, is a moderate case, since frame 1 (the
smaller dot) partially neutralizes the influence of frame 2. More extreme
behavior was seen in cases where frame 1 pulled in the same direction. So
we find that

• although frame 1 and 2 are suppressed by the weighting, they have
an overproportional influence on the regression line, because of their
peripheral position. In high k3 areas their leverage is even greater,
since the remaining points are huddled together in a cluster on the left
side.

• Cr- and Decay Weighting both reduce the influence of frames 1 and
2: the frames are short so their Decay Weights are low, and Cr is low
during the first minute. So the weightings have a beneficial influence,
both with respect to this problem and in general.

So at the heart of COLOGNE being vulnerable to blood volume effects, we
find the properties of correlation coefficient and of linear regression: both
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are notorious for their sensitivity to outliers. So it is a natural idea to look
for a method with more “democratic” behavior toward the frames, and this
is what turned our attention to NLS.
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Chapter 14

Region based Error
Estimates

k3 is computed from pairs of TACs: Cr of the reference region, Ct of the
target region. Noise of either part of this input may translate to random
error or - via nonlinearity effects - bias of regional k3 results. In this and
the following chapter we assess separately all four of these contributions,
based on data from PET images. In addition, we search for an optimal
mask generating strategy to minimize error caused by Cr.

14.1 Error induced by Cr

Cr is obtained by sampling the unfiltered normalized frames using a reference
mask, which is computed by the adaptive strategy of section 10.3. In chapter
11, we found evidence that regional k3 results depend heavily on whether
Putamen or Cerebellum is used as reference tissue. Since both are considered
valid reference areas, we have no way of deciding which one leads to the
“right” results. The situation is unsatisfying and warrants a detailed and
systematic investigation.

Methods

14.1.1 Patients and Prerequisites

Investigations in this chapter are based on two samples of patients: Sam-
ple 1 consists of 12 volunteers diagnosed with MCI who were scanned at
MPIFNF in 2007, Sample 2 contains 17 patients of different diagnostic
groups, 2 normal controls, 4 diagnosed with MCI and 11 with AD. All had
been scanned at MPIFNF in 2002 or 2003 using the “traditional” framing.

Reference masks were characterized by a precursor mask, a number of
voxels (sized 2 × 2 × 2 mm) and the ‘padding’ parameter of section 10.3.
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Precursor masks for Putamen and Cerebellum were taken from the atlas of
section 10.1 and had 1557 and 23229 voxels, respectively. Unilateral precur-
sors were obtained by splitting the above in their left and right hemispheral
parts. As usual, “Putamen 674+2” is the mask obtained from the Putamen
precursor, setting the number of voxels to 674 (5.392 ml) and ‘padding’ to
2. We examined the following bilateral or full masks:

1. Putamen 674+2 (5.392 ml)

2. Putamen 1557+3 (12.456 ml)

3. Putamen 2000+3 (16 ml)

4. Putamen 4000+4 (32 ml)

5. Putamen 8000+5 (64 ml)

6. Cerebellum 4000-2 (32 ml)

7. Cerebellum 8000-2 (64 ml)

After the padding step, they had grown or shrunk to 3941, 5528, 5528, 7410,
9608, 12919 and 12919 voxels, respectively, from which the final selection
was made. We also used left and right unilateral masks, obtained from
aforementioned left and right precursors, using half the indicated number of
voxels and identical padding. By construction, left and right masks did not
overlap, ensuring stochastic independence of left and right reference curves.

For comparing vectors of results, we use the similarity measures ‘corr’,
‘dist’ and ‘shift’ of section 2.8.

14.1.2 k3-Digests

In chapter 11, we found that the reference curves Cr were to blame for
considerable differences of the computed k3. It could be shown that they
have a tendency to favor higher or lower k3, by pushing all voxel based
results into the same direction.

Encouraged by the results of Table 11.2, we selected k3-Digests as a
means of quantifying this up- or downshifting tendency. The k3-Digest of a
reference curve Cr is the mean of a large sample of k3 values, which are the
results of kinetic analysis of 10000 simulated TACs against the given Cr.

The rationale for adopting this approach is to achieve independence of
the patient’s target tissue. Cr is the only measured input, so the k3-Digest
is a property of Cr. One may ask if it should not be based on a single
simulated TAC instead of a large sample. But we wish to include noise in the
simulations, and a single TAC cannot properly represent all manifestations
of noise.
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Of course the digest depends on all parameters used both in the sim-
ulations (such as k1,k2,k3, FWHM, the Blood Input Function) and kinetic
analysis. We keep these parameters fixed to the values of section 7.2.4, ex-
cept that we use a skip2 policy. The other exception is k3, which is set
to 0.0790 and 0.1231 in order to create two flavors: Cortex Digests and
Hippocampus Digests.

The digest of a reference curve Cr reflects its tendency to produce higher
or lower k3 results. When viewed across a sample of patients, it shows
considerable variation, as visible in the columns of Tables 11.2 or 14.3. Such
variability is expected: recall that we evaluate Ct arising from the S3 Input
Function of section 7.1.1 which remains constant, against Cr arising from
Blood Input Functions that are different for every patient. These differences
account for most of the variability seen in the digests.

But this is not the type of variability we are looking for. The real inter-
est is in comparing reference curves of the same patient, but obtained with
different techniques. As they should represent the same Blood Input Func-
tion, we expect no difference of their digests to begin with. Any differences
observed will be effects of noise or bias of Cr.

14.1.3 “Second Opinion” Statistics

There are three places in this chapter where we have data samples of size
2, belonging to N different populations. The aim is to estimate SD of Ct-
induced or Cr-induced random error, of k3 results of a “typical” patient.
Suppose, for a moment, we had two independent PET scans of one patient.
This would give two independent reference curves and allow to study the
difference between their digests. It relates to the dispersion of a fictive,
large population of possible measurements that could be obtained from this
patient, in the following way: looking upon two k3-digests x and y as a
sample of size n=2, picked from this population, and µ = x+y

2 its mean
value, we compute the sample variance by formula (2.2):

(x− µ)2 + (y − µ)2

2− 1
=

(1
2(x− y))2 + (1

2(y − x))2

1
=

1
2

(x− y)2 (14.1)

It is an estimator of the population variance. Another patient represents
a different population (his Blood Input Functions are different even if pro-
cedures remain unchanged). Now consider a patient sample of size N. If
a patient is picked from this sample at equal probability and the variance
of his k3-digest is taken, then the expectancy of this random experiment is
estimated by the mean of the N estimators of equation (14.1):

1
2N
·
N∑
i=1

(xi − yi)2 (14.2)
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It predicts the variance of k3-digests of a typical patient of the sample,
and is more reliable than a quantity based on only 2 measurements. The
corresponding standard deviation happens to be a scalar multiple of the
similarity measure ‘dist’ of section 2.8:

SD ≈ 1√
2
· ‘dist′ =

√√√√ 1
2N
·
N∑
i=1

(xi − yi)2 (14.3)

We therefore list ‘dist’ in the results section of this chapter, and later apply
the factor 1√

2
to convert to standard deviations.

14.1.4 abba-Splits

In reality, we do not have two acquisitions per patient. The next best option
is to split one PET scan in two, which should be roughly equivalent and
stochastically independent. The split can be done at the sinogram level,
which is the stage before image reconstruction. Sinogram files can be viewed
as huge histograms of coincidence events, containing the number of counts
for each LOR (section 1.1) of the scanner in a given time interval.

Sinograms can be computed from listmode data if available. The list-
mode format contains an entry with a time stamp for every recorded coin-
cidence. Given such data, one can distribute the information to two sets
of sinograms, counting events that happend during even or odd seconds,
respectively. Some scanners offer the option of “gating”, where an external
periodic trigger directs the events toward one or the other set of sinograms.

Unfortunately, the scanner we used had no support for listmode or gat-
ing. The next best option is to record as many timeframes as possible into
separate sinograms, and recompose them, in different ways, to larger units
before reconstruction. We recorded 136 initial sinograms (to be called sub-
sinograms) and assembled the final framing of Table 14.1. Within each
frame, data were splitted by assigning each sub-sinogram to one of 2 se-
ries, called a and b, as shown in Figure 14.1. The splitup pattern was
‘abba’ when there were 4 sub-sinograms, ‘ababbaba’ when there were 8.
By adding up just the a-sinograms of every frame, we assembled a full PET
acquistion (called abba-a) at sinogram level, consisting of all concidences
counted during an a-subinterval. Likewise, we obtained an abba-b sinogram
file. Both were scaled with a factor 2 to compensate for halved amounts of
radioactivity. Third, an abba-t file (t=“total”) was obtained by adding up
all sub-sinograms of every frame.

The files were reconstructed independently to make abba-a, b and t
dynamic PET image series. The timing information supplied to the recon-
struction software was that of Table 14.1 in all cases, so as to ensure identical
Decay Correction. a- and b- sinograms can be viewed as representative sub-
sets of all coincidences counted during every frame.
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Frame Start Time Duration Number of
nr. [s] [s] Sub-Sinograms
1 0 20 4
2 20 20 4
3 40 20 4
4 60 20 4
5 80 20 4
6 100 20 4
7 120 20 4
8 140 40 8
9 180 40 4
10 220 40 4
11 260 40 4
12 300 60 4
13 360 120 8
14 480 120 8
15 600 120 4
16 720 240 8
17 960 240 8
18 1200 400 8
19 1600 400 8
20 2000 400 8
21 2400 400 8
22 2800 400 8
23 3200 400 8

Table 14.1: The abba-t Framing and its composition of initially recorded sinograms

Note that we kept the distribution schemes ‘abba’ and ‘ababbaba’ sym-
metric in order to avoid a temporal offset between the series, such as result-
ing from an alternating pattern ‘abab. . . ’. This makes it possible to evaluate
(as in section 14.2) TACs from abba-a or b-images against reference curves
sampled from abba-t images without inviting major bias. Some residual bias
is still expected arising from the convexity of the Decay Function, leading
to slightly reduced signal in the “inner” sinograms of the b-series, but this
effect was considered negligible.

The sub-sinograms could also be grouped to make the “traditional”
scheme of 20 frames (section 6.1.1). The corresponding images have been
used in most of this work. However with the abba-framing, we had to break
this tradition in order to achieve divisibility by 4, of the number of sub-
sinograms per frame, and make the symmetric splitup patterns possible.
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Figure 14.1: Scheme illustrating how the sinogram frames of abba-a, b and -t series
arise by summation of subsets of the sub-sinograms. Each sub-sinogram covers 5
seconds of scantime.

14.1.5 L,R-Splits

Since abba-splits were available only for Sample 1 where we had used ap-
propriate acquisition protocols, another method was employed for splitting
radioactivity of existing images. If Putamen is supposed to be an ideal ref-
erence region, the same is obviously assumed for a patient’s left and right
Putamen. We therefore expect valid reference curves from unilateral Puta-
men masks as well, whose volume is half of the corresponding full mask,
and whose ‘padding’ is identical. Like in the abba-splits the amount of con-
tributing counts is cut in half, leading to more noise. Applicability is limited
to investigations on Cr, since we cannot generalize the assumption of lateral
symmetry to the target tissues.

14.1.6 Consistency Check: abba-t versus “Traditional”

abba-t and “traditional” image series both arise from full amounts of ra-
dioactivity, but are assembled via different framing schemes. Comparing
them provides another “second opinion” effect, however stochastically de-
pendent. For each patient of Sample 1 and reference curves obtained from
either image, we took the Hippocampus Digest, and compared them (as
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full left right full left right full left right
voxels: 674 337 337 2000 1000 1000 4000 2000 2000
‘corr’ .9485 .9466 .9658 .9972 .9747 .9955 .9985 .9916 .9972
‘dist’ .0039 .0037 .0049 .0011 .0022 .0017 .0010 .0017 .0014
‘shift’ .0005 .0011 .0014 -.0005 .0000 -.0007 -.0003 .0000 -.0004

Table 14.2: Comparing abba-t and “traditional” results for Sample 1 and Putamen
masks of different sizes

vectors across Sample 1) using the similarity measures of section 2.8. The
results, for different types of full and unilateral Putamen masks, are given
in Table 14.2. We found a good match in every case, much closer than
in the data shown later. Having seen Table 14.2, we decided to base all
L,R-investigations on only one image series, the “traditional” one.

14.1.7 Properties of the Digest

14.1.7.1 Random Numbers

Dependency on the random numbers used in the simulations turned out
to be low, affecting k3-digests only in their fourth digit. Still we chose to
eliminate this factor completely, by using the same set of 10000 TACs for all
Hippocampus Digests and another fixed set of 10000 curves for all Cortex
Digests.

14.1.7.2 Reproduction of k3

Given the difference in Input Functions used for Ct and Cr, we cannot expect
the digest to exactly reproduce k3=0.1231 or 0.0790 which are used for the
simulations. On the subject level, differences are huge for reasons given
in section 14.1.2. On the sample level we found an average Hippocampus
Digest of 0.1252 in Sample 1 and 0.1117 in Sample 2, for Cr obtained with
674+2 Putamen masks. Average Cortex Digests were 0.807 in Sample 1 and
0.750 in Sample 2. Note that

• even at sample level, differences can be expected as a result of different
protocols followed by the teams who acquired the data (how fast is the
tracer being injected, what is the total fluid volume)

• any bias we expect to measure for different types of masks is of course
contained in the above figures.

Since we are interested in differences between digests rather than in their
absolute values, we saw no reason to modify the Input Function and im-
prove the match with Sample 2. It seemed more important to use the same
measuring technique for reference curves of all samples and types of masks.
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14.1.7.3 Translation to Regional Results

The digests have been adopted in order to exclude influence of the patients’
target tissue. Yet on the sample level, their relation to regional results will
be studied once, to obtain calibration factors for translating one situation
to the other. We based this calibration on the series of reference curves that
had the highest L,R-differences, obtained from unilateral 337+2 Putamen
masks.

Hippocampus Digests Hippocampus regional
Mean Values

Subject left right left-right left right left-right
M01001 0.1186 0.1460 -0.0274 0.0984 0.1262 -0.0278
M01002 0.1173 0.1422 -0.0249 0.0961 0.1197 -0.0236
M01003 0.1197 0.1490 -0.0293 0.0960 0.1253 -0.0293
M01004 0.1283 0.1009 0.0274 0.1427 0.1017 0.0410
M01005 0.1433 0.1591 -0.0158 0.1157 0.1257 -0.0100
M01007 0.1002 0.1309 -0.0307 0.0959 0.1364 -0.0405
M01008 0.1323 0.1078 0.0245 0.1343 0.1015 0.0328
M01009 0.1255 0.1152 0.0103 0.0836 0.0754 0.0082
M01010 0.1206 0.1073 0.0133 0.1103 0.0942 0.0161
M01012 0.1168 0.1207 -0.0039 0.1174 0.1244 -0.0070
M01013 0.1124 0.1144 -0.0020 0.1000 0.1034 -0.0034
M01014 0.1341 0.1315 0.0026 0.1152 0.1135 0.0017

Table 14.3: Relation of Hippocampus Digests to regional Results (for Sample 1
and unilateral 337 voxel Putamen masks)

In columns 2 and 3, Table 14.3 shows Hippocampus Digests of reference
curves from left and right masks, for all subjects of Sample 1. Columns 5
and 6 contain mean k3 results of the Hippocampus region, sampled from
parametric images that had been computed using these reference curves.
Between corresponding columns we find low correlations and high distances:
‘corr’=0.4945 and ‘dist’=0.0200 between columns 2 and 5, ‘corr’=0.6941
and ‘dist’=0.0201 between columns 3 and 6. This is expected, since unlike
columns 2 and 3, columns 5 and 6 involve every patient’s Hippocampus
tissue. So the Hippocampus pathology pattern across the patient sample
weighs in and breaks the correlation. This changes when differences are
considered as in columns 4 and 7. They mainly reflect properties of Cr,
although modulated by the target tissue in column 7. We find ‘corr’=0.9825
and ‘dist’=0.0058 between columns 4 and 7.

As the data sets are well correlated, we can compare their amplitudes
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by computing the quotients √
N∑
i=1

xi2√
N∑
i=1

yi2

where xi, yi are the entries of columns 7 and 4 and N is the sample size.
Likewise, we proceed for Sample 2 and repeat the same procedures for the
Cortex Digests. We thus obtained the factors of Table 14.4.

Average
cortex Hippocampus

Sample 1 1.1541 1.1800
Sample 2 1.0893 1.3221

Table 14.4: Calibration factors used for computing regional random error and bias
from k3-digests

14.1.8 Upscaling to full Amounts of Radioactivity

Reference curves used in L,R- or a,b-comparisons arise from halved amounts
of radioactivity. We therefore need a way to extrapolate to the full amount.
To investigate the response of k3 digests to varying amounts of tracer, we
conducted the following study based on Cr Block Simulations (section 7.2.2).
100 reference curves were simulated and their Hippocampus Digests com-
puted1. Then we took their SD. Thus we proceed for 12 combinations of
reference volume and tracer dosage, leading to Table 14.5. Since we expect

Reference Bolus[MBq]
volume [ml] 277.5 555 1110

5.392 .012017 .008483 .005981
16 .007405 .005191 .003650
32 .005623 .003921 .002752
64 .004454 .003090 .002164

Table 14.5: k3 standard deviations of Cr Block Simulations

them to be inversely proportional to the square root of counts involved in
the data, we take all table entries times the square root of volume times bo-
lus leading to Table 14.6. There we find almost constant rows, indicating
that the response to bolus changes is as predicted. We therefore feel justified
in using 1√

2
as a conversion fator for extrapolating from 277.5 to 555 MBq.

1in this study, the digests were based on only 1000 simulated TACs
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Reference Bolus[MBq]
volume [ml] 277.5 555 1110

5.392 0.4648 0.4641 0.4627
16 0.4943 0.4892 0.4864
32 0.5299 0.5226 0.5186
64 0.5935 0.5823 0.5766

Table 14.6: establishing a conversion rule (see text)

The columns are not constant, which is explained by the fact that increasing
the reference volume reduces noise of Cr, but not of Ct. Recomputing the
tables for Cortex Digests revealed similar behavior, although on a level of
error reduced by a factor of 2.14.

A similar study (unlisted) was conducted to justify use of 1√
2

as a con-
version factor in section 14.2.

Results

14.1.9 Symmetric Comparisons

Left/right comparisons (L,R-comparisons) of unilateral masks of 7 types,
5 Putamen and 2 Cerebellum, were performed. We list the raw data for
only one example: Putamen masks of 337 voxels or 2.696 ml, in columns
2 and 3 of Table 14.3. Small masks like these exhibit so much noise that
the columns are almost uncorrelated (‘corr’=0.1045) and separated by an
average distance of ‘dist’=0.0206. Their mean values (left minus right) are
separated by ‘shift’=-0.0047. ‘dist’ is the main result, we use it in chapter
15 to compute error estimates.

Such studies were conducted 4 times, using different series of images or
changing between Hippocampus- and Cortex Digests. Results are collected
in Table 14.7. Two further studies involved a,b-comparisons, where we
used full masks and compared Cr sampled from abba-a images with Cr
sampled from abba-b images. These results are in Table 14.8. Although
being mainly interested in ‘dist’, we also list ‘corr’ and ‘shift’ (see section
2.8): ‘corr’ is another indicator of similarity; ‘shift’ is expected close to
zero since there should be no bias in symmetric situations. We leave the
discussion for chapter 15.

14.1.10 Cross Comparisons

between different types of full masks are shown in Table 14.10. Its up-
per triangle is based on Cortex Digests, its lower triangle on Hippocampus
Digests. Here ‘shift’ is the main result, it serves to measure relative bias.
Similar data for Sample 2 are listed in appendix A.6.
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Putamen Cerebellum
2.696 6.232 8 16 32 16 32

ml ml ml ml ml ml ml
Sample 1 .1045 .4503 .6508 .9415 .9491 .8960 .8850
“traditional” .0206 .0128 .0105 .0063 .0078 .0068 .0068
Hippo Digests -.0047 -.0026 -.0015 -.0019 .0013 .0008 -.0001

Sample 1 -.0111 - .7062 .9545 - - -
abba-t .0201 - .0104 .0063 - - -
Hippo Digests -.0043 - -.0021 -.0024 - - -

Sample 2 .6991 .8635 .8761 .8756 .7843 .8444 .9181
“traditional” .0100 .0070 .0061 .0058 .0107 .0065 .0052
Hippo Digests .0002 .0014 .0006 .0009 .0042 .0004 .0014

Sample 1 .1601 .4671 .6742 .9387 .9602 .8924 .9097
“traditional” .0092 .0057 .0047 .0030 .0027 .0033 .0031
Cortex Digests -.0009 -.0004 -.0002 -.0011 .0003 .0000 -.0002

Table 14.7: L,R-comparison studies. Every block contains ‘corr’, ‘dist’ and ‘shift’
from top to bottom. Subtraction order for ‘shift’ is L-R. The main results (bold
print) have been used to compute the corresponding rows of Table 15.1.

14.1.11 Trying to prove Asymmetry in Putamen

In Table 14.7 we find large L,R-differences between the small Putamen masks
of Sample 1, exceeding the corresponding a,b differences of Table 14.8. They
correspond to the raw data shown in columns 2 and 3 of Table 14.3. Since
we had reason to believe they might be caused by more than random effects,
we designed the following test. Column 4 of Table 14.3, containing the L,R-
differences of 2.696ml unilateral Putamen masks, was recomputed twice: for
abba-a and abba-b images. If the discrepancies are caused by asymmetries
in the patient’s Putamen, it should lead to correlation between the two data
sets. We found ‘corr’=0.4749, the corresponding P-value in a sample of 12
is 0.059 (one-tailed Spearman test). So we end up close to the border of
significance. The effect was not observed for larger Putamen masks (8ml),
where the correlation dropped to 0.1534.

14.1.12 Comparing full Masks by other Criteria

Some more obvious properties should also be monitored before deciding
which mask is best. “Intensity” was computed at the patient level by av-
eraging over the “Late Frames” (corresponding to the time interval 10-60
minutes p.i.) of a reference curve. Results were then averaged over the
patients of Sample 1. The maximum score of 37253 Bq/ml belonged to the
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Putamen Cerebellum
5.392 12.456 16 32 32 64

ml ml ml ml ml ml
Sample 1 .4550 .8169 .8499 .9400 .9528 .9428
Hippocampus .0129 .0078 .0070 .0058 .0046 .0047
Digests -.0060 -.0041 -.0029 -.0022 -.0012 -.0016

Sample 1 .5259 .7705 .8086 .9372 .9709 .9635
Cortex .0062 .0044 .0040 .0029 .0019 .0020
Digests -.0032 -.0024 -.0019 -.0016 -.0008 -.0008

Table 14.8: a,b-comparison studies of full masks. The blocks contain ‘corr’, ‘dist’
and ‘shift’ from top to bottom. Subtraction order of ‘shift’ is a-b. The main results
(bold print) have been used to compute the corresponding rows of Table 15.1.

smallest Putamen mask. The rest are shown as fractions of it in column 2
of Table 14.9. For columns 3 to 6, k3 and k3dev were averaged over total
cortex and over Hippocampus, then over Sample 1. k3 columns should con-
firm the bias that has been read from the digests, and so they do (except for
the largest Putamen mask where the bias is lower than in the simulations).
k3dev and the voxel yield (section 10.5) are listed as quality markers. We
leave the discussion for chapter 15.

14.1.13 Visualization

Reference curves of 6 different types were averaged over the 12 subjects
of Sample 1 to generate plots with error bars. To render the error bars
meaningful, the curves had to be normalized to compensate for their different
intensities. Individual curves were scaled such as to have the mean value of
frames 11 to 20 equal 1. Then the curves were averaged across the sample
and had their point-wise standard deviations computed by formula (2.2).
Frames 11 to 20 thus ended up with smaller errors than frames 1 to 10, so

Type of Inten- k3 (regional) k3dev (regional) yield
Mask sity Hippo Cortex Hippo Cortex [%]
Put 5.392 ml 1.0000 .1107 .0795 .0401 .0170 89.22
Put 12.456 ml .9142 .1118 .0800 .0400 .0168 89.00
Put 16 ml .8744 .1112 .0796 .0406 .0167 88.72
Put 32 ml .7419 .1113 .0786 .0554 .0189 86.04
Put 64 ml .5941 .1144 .0783 .1920 .0270 81.27
Cbl 32 ml .8686 .1095 .0788 .0453 .0184 87.12
Cbl 64 ml .8107 .1077 .0780 .0465 .0175 86.96

Table 14.9: Some other properties of mask types, averaged over Sample 1
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Putamen Cerebellum
5.392 16 32 64 32 64

ml ml ml ml ml ml
Putamen - .9023 .8900 .8508 .7129 .7671
5.392 ml - .0023 .0034 .0052 .0046 .0041

- -.0001 .0009 .0009 .0006 .0014

Putamen .8881 - .9628 .9432 .8302 .8348
16 ml .0052 - .0027 .0045 .0036 .0035

.0007 - .0009 .0015 .0006 .0015

Putamen .8842 .9610 - .9900 .8931 .8916
32 ml .0075 .0054 - .0021 .0031 .0032

.0017 .0010 - .0006 -.0003 .0006

Putamen .8488 .9396 .9935 - .8992 .8916
64 ml .0178 .0160 .0116 - .0041 .0044

.0097 .0090 .0080 - -.0009 .0000

Cerebellum .6544 .7906 .8737 .8911 - .9869
32 ml .0103 .0082 .0076 .0163 - .0015

-.0006 -.0012 -.0023 -.0103 - .0009

Cerebellum .6986 .7786 .8605 .8732 .9849 -
64 ml .0091 .0081 .0086 .0183 .0031 -

-.0023 -.0029 -.0040 -.0120 -.0017 -

Table 14.10: Cross comparisons of full masks for Sample 1. The blocks contain
‘corr’, ‘dist’ and ‘shift’ from top to bottom. Subtraction order for ‘shift’: left
minus upper caption. Upper triangle: data based on Cortex Digests, lower: on
Hippocampus Digests.

the latter are better comparable and the differences of the first 10 minutes
become visible. Even so, 16 and 32 ml Putamen curves look almost identical.
In Diagram 14.2 they are shown together to make it obvious that 32 ml starts
with higher values and Cerebellum curves are in between.

14.1.14 Washout from the Reference Region

A superficial look at the plots of section 14.1.13 is enough to find that
Assumption 4 (“ideal reference region”, section 3.2.2) does not hold: there is
obviously some loss of radioactivity from the reference region toward the end
of scantime. For 16 ml Putamen we quantified the effect as follows. For each
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Figure 14.2: Comparing reference curves of 4 types. The two Cerebellum curves
are almost indistuingishable.
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sample frames 17 to 20 cases where P-value of
size in percent of frames 17 to 20 two tailed

Patients N frames 13 to 16 are larger test
Sample 1 12 98.78 0 0.000
Sample 2 17 99.69 5 0.143
Samples 3 and 4 15 - 2 0.007

Table 14.11: Studying washout of radioactivity in the reference regions

subject, the average of frames 17 to 20 was expressed as percentage of the
average of frames 13 to 16. Of the percentages, the average was computed
across the patient sample, leading to figures in column 3 of Table 14.11.
Finding them below 100 % confirms the visual impression. Column 4 reports
how many patients of each sample were exceptions to this rule, and column
5 gives the significance of a two tailed binomial test of the column 4 data to
prove inferiority of frames 17 to 20. In Sample 1, this is highly significant,
in Sample 2 it isn’t, but the union of Samples 3 and 4 (that were scanned in
Milan) provides again significant evidence for washout of radioactivity from
Putamen.

To exclude k3r-induced deformation as a possible cause, Sample 1 and
2 reference curves were k3r-corrected using k2r=0.1 with k3r=0.5, and the
table recomputed for resulting reference curves. Percentages increased very
slightly to 98.83 and 99.74 percent, and in Sample 2 there appeared one
additional count in column 4. Thus, even extreme k3r-correction has little
effect on frames as late as 13 to 20, and does not reverse the phenomenon.

14.2 Error induced by Ct

In order to isolate the contribution of Ct to random error of k3, we evaluated
TACs from abba-a and -b images against the same reference curve, which was
obtained from the corresponding abba-t image. Two parametric k3-images
were thus computed for each patient of Sample 1. Using a mask for every
cerebral region, a pair of regional mean values was obtained. The pairs were
processed across the sample as in section 14.1, using formula (14.3). Results
were extrapolated to full amounts of radioactivity by division through

√
2

(see section 14.1.8). We obtained a list (column 4 of Table 14.12) of
rough estimates of the standard error of regional mean values of k3. A
typical reading in cortex is 0.0012. Considerable variation of the estimates
is seen, presumably caused by the regions’ specific sizes, shapes and kinetic
constants (columns 2 and 3). Obviously, regional k3 are affected by smaller
errors than their voxel based counterparts, the relation is shown in column
5. Mean values of k3dev (unlisted) that were used to compute these ratios,
had been obtained by averaging k3var across all voxels of abba-a and -b
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images of all patients, then taking the square root.

Voxels k3 k3 =% of
Region SD k3dev
White Matter 54494 .0746 .0008 2.35
Frontal Cortex:
Superior Frontal Gyrus 14384 .0870 .0006 3.74
Middle Frontal Gyrus 7411 .0808 .0011 7.09
Inferior Frontal Gyrus 6014 .0845 .0014 7.60
Orbito Lateral Gyrus 2237 .0795 .0013 9.78
Orbito Medial Gyrus 2828 .0879 .0016 7.07
Precentral Gyrus 6525 .0984 .0015 8.08
Gyrus Rectus 1469 .0887 .0019 9.96
total: 40868 .0871 .0006 3.20
Parietal Cortex:
Superior Parietal Gyrus 4961 .0725 .0009 6.97
Supramarginal Gyrus 5751 .0740 .0008 6.60
Inferior Parietal Lobule 3798 .0660 .0009 8.96
Postcentral Gyrus 7315 .0886 .0012 7.28
total: 21825 .0771 .0005 4.02
Temporal Cortex:
Superior Temporal Gyrus 8516 .0828 .0009 5.16
Middle Temporal Gyrus 6540 .0726 .0015 9.77
Inferior Temporal Gyrus 4349 .0706 .0015 9.29
Fusiform Gyrus 4428 .0901 .0013 4.48
total: 23833 .0791 .0007 3.41
Occipital Cortex:
Superior Occipital Gyrus 2042 .0675 .0018 13.39
Middle Occipital Gyrus 2261 .0663 .0011 8.42
Inferior Occipital Gyrus 3163 .0684 .0011 7.42
Lingual Gyrus 3927 .0765 .0015 10.12
Cuneus 2378 .0650 .0009 5.94
Precuneus 3976 .0666 .0014 15.11
total: 17747 .0689 .0006 4.45
Other:
Insular Cortex 2505 .1068 .0042 15.42
Cingulate Gyrus 6315 .0864 .0011 6.12
Hippocampus 2520 .1140 .0053 12.54
Amygdala 591 .1609 .0244 28.56
Brain Stem 1317 .1773 .0123 8.52
total cortex: 113093 .0810 .0004 2.14

Table 14.12: k3 random error induced by noise of Ct, and its relation to regional
k3dev
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Chapter 15

Discussion

15.1 NLS in Relation to other Methods

• In 1984, Blomqvist [5] discovered a linear relation between Ct, Cr and
their time integrals:

Ct(t) = p1 · Cr(t) + p2 ·
t∫

0

Cr(s)ds+ p3 ·
t∫

0

Ct(s)ds

where:
q1 = p1, k2 = −p3 −

p2

p1
, k3 =

p2

p1

The coefficients p1, p2 and p3 can therefore be determined by solving a
Linear Least Squares problem. Computationally, it requires evaluating
the integrals, filling a matrix and a vector with inner products and
solving a 3×3 linear equation system, followed by trivial computation
of q1, k2, k3 from p1, p2, p3. The solution obtained from noisy input
is not the NLS solution (the three vectors on the right hand side span
a linear space which is not M). Drawbacks are that

– there is no support for weighting

– the integral of Ct must be computed for every voxel, ruling out
time consuming interpolation methods.

With trapezoidal integration, this is Nagatsuka’s RLS-method [29],
which is faster than the presented NLS implementation.

• An earlier method by the same authors [36] is called Shape Analy-
sis: it relies on the fact that TACs become stationary at the end of
scantime, and assumes that all tracer is hydrolyzed at this point, while
at scanstart all tracer is unhydrolyzed. There is exactly one choice of
k3 that will explain the final amount of hydrolyzed tracer in accord
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with observed TAC. The method neither requires blood sampling nor
a reference region, but it was later given up by the authors for lack of
precision, in favor of RLS.

• General Basis Function Approach (BFA) is an attempt to reach the
NLS result on a different path: model functions are tabulated once for
a finite set of kinetic parameters. Then for every voxel, we select from
this set of basis functions the function of best similarity (in terms
of least squares) with the measurements, and determine remaining
parameters by linear procedures.

For every voxel, all basis functions must be scanned, hence their num-
ber determines the complexity of the method. So we have a tradeoff
between speed (requiring that the number is not too high) and pre-
cision (requiring it not to be too low). Application of BFA to MP4A
analysis would require a two-dimensional set of basis functions, using
a grid of k2/k3 combinations. The tradeoff is then a major problem.

• MAP is proposed in [11]. It is a Bayesian method reducing the esti-
mation error in high k3 regions by investing prior knowledge of q1 or
k2 which are assumed constant over large areas of the brain.

15.2 NLS in recent Literature

• The paper bearing most similarity to this work is [29] of 2001, where
RLS is propagated as a fast alternative, and NLS is used for validation.
Unlike reference based NLS as presented here, their implementation
relies on arterial blood sampling and Cr is replaced with a multiexpo-
nential fit.

• In a 2008 review [18] by Ikoma, Watabe et al., NLS is considered for
the reversible tracer model with arterial Input Function, saying:

The advantage of NLS ... is that every parameter K1 to k4
1 can be

estimated, and that it is free from the biases and assumptions that
arise in linearization and simplification. The disadvantage is that
COV is large, especially in voxel-by-voxel estimation, and that the
fitting procedure is computationally very expensive. Therefore,
the method is useful for ROI analysis, in which parameters are
estimated in a mean TAC within a ROI, but it is not practical for
parametric mapping with voxel based estimation.

• Both voxel and region based weighted NLS have apparently been used
in [11] in 2008, for comparison with the MAP algorithm presented by
the authors, but no information is included on the NLS algorithm and
its performance.

1K1 is q1 in this work, and k4 is 0 in the irreversible tracer model
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15.3 Reference Curves

Considerable impact of the reference curves on regional k3 results was found
(chapter 11), creating an extra need for validation. There is only one in-
stance of Cr used for every parametric k3 image, and it shifts all voxels in
the same direction, i.e. toward higher or lower k3 values, thus impacting all
regional results. We used a simulation technique called k3-digest (section
14.1.2) to quantify the up- or downshifting tendency of reference curves, and
applied data splitting techniques to obtain two stochastically independent
results from every patient. The data were either splitted at sinogram level
to produce two equivalent image series (a,b comparisons, sections 14.1.4 and
14.1.9) or we used reference curves sampled from unilateral left and right
masks (L,R-comparisons). Evaluation of such pairs of data across patient
samples led to estimates of Cr-induced bias and random error for every type
of mask.

15.4 Random Error induced by Noise of Cr

In order to assess this type of error, three studies were conducted on two
samples of patients (section 14.1.1):

• a,b-comparisons in Sample 1

• L,R-comparisons in Sample 1

• L,R-comparisons in Sample 2

leading to the data of Table 15.1. It estimates regional k3 standard error
inflicted on Hippocampus (upper line in every row) and a typical cortex
region (lower line). The values were computed from ‘dist’ entries of Tables
14.7 and 14.8, which were taken times f/2, where f is a factor from Table
14.4 and 1

2 = 1√
2
· 1√

2
where the first factor is from equation (14.3) and the

second factor converts from half to full tracer dosage (section 14.1.8).
Throughout the table, Cr-induced error in Hippocampus is at least twice

as high as in cortex. Both quantities are almost cut in half when the mask
size is raised from 5.4 to 16 ml. In Sample 1, further improvement is seen
when switching to 32 ml. Sample 2 reaches the bottom already at 16 ml and
there is only 60% of reduction between 5.4 and 16 ml. Sample 1 begins with
a higher L,R-reading of 0.0121 compared to 0.0076 in its a,b-study, while
Sample 2 is in better agreement with the latter.

The difference between a,b- and L,R-comparisons is that the former
cleanly isolates the effect of noise, while the latter is also sensitive to bias
caused by patient (or scanner) asymmetries. The discrepancy in L,R- and
a,b- studies of Sample 1 suggests there might be L,R-differences caused by
more than just random effects.
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Putamen Cerebellum
5.392 ml 12.456 ml 16 ml 32 ml 32 ml 64 ml

Sample 1 .0076 .0046 .0041 .0034 .0027 .0028
a,b-comparison .0036 .0025 .0023 .0017 .0011 .0012
Sample 1 .0121 .0075 .0062 .0037 .0040 .0040
L,R-comparison .0053 .0033 .0027 .0017 .0019 .0018
Sample 2 .0066 .0047 .0040 .0039 .0043 .0034
L,R-comparison - - - - - -

Table 15.1: Cr-induced k3 standard error in Hippocampus (upper lines) and aver-
age cortex (lower lines, not evaluated in Sample 2) for 3 studies and different types
of masks

We therefore combined a,b- and L,R-comparisons in such a way as to
prove the presence of nonrandom L,R-differences (section 14.1.11). The sta-
tistical test returned a P-value of 0.059, just short of proving the conjecture
on a 5% level of significance. The phenomenon goes away when the mask
size is increased, it is therefore an attribute of the very brightest Putamen
voxels (5.392 ml = 43% of the Putamen volume). Such asymmetry effects
were not seen in Cerebellum. Apart from the pecularities of Sample 1, it is
clear that small Putamen masks lead to noisy reference curves and should
therefore be given up in favor of larger masks.

15.5 Bias induced by Noise of Cr

Since there is no absolute standard available, we chose the 674+2 Putamen
mask as a reference point and considered differences with it at sample level.
Entries of Table 15.2 were computed by taking ‘shift’ values of Table 14.10
times a translation factor of Table 14.4. Even at sample level the data are
largely disfigured by noise, but they consistently show negative bias in Cere-
bellum. Consistent behavior of Hippocampus Digests of Samples 1 and 2
is also seen for the large Putamen masks: positive bias, huge at 64 ml but
already visible at 32 ml. Statistical significance could only be demonstrated

Putamen Cerebellum
12.456 ml 16 ml 32 ml 64 ml 32 ml 64 ml

Sample 1 Hippo .0014 .0008 .0020 .0115 -.0007 -.0027
Cortex .0005 .0001 -.0010 -.0010 -.0007 -.0017

Sample 2 Hippo .0013 .0019 .0038 .0145 -.0042 -.0048
Cortex .0004 .0006 .0005 .0020 -.0020 -.0016

Table 15.2: Estimates of k3 bias caused by different types of masks, against 5.392
ml Putamen as reference point
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Putamen Cerebellum
5.4ml 12.5ml 16ml 32ml 64ml 32ml 64ml

Reference: 5.4ml Putamen
Sample mean - 0.0010 0.0011 0.0024 0.0105 -0.0021 -0.0031
SD of sample mean - .00069 .00075 .00105 .00221 .00172 .00169
Sample mean / SD - 1.5080 1.5316 2.2779 4.7412 -1.2125 -1.8019
P-value - 0.132 0.126 0.023 0.000 0.225 0.072

Reference: 16ml Putamen
Sample mean / SD -1.5316 -0.3395 - 1.6536 4.6375 -2.0868 -2.5753
P-value 0.126 0.734 - 0.098 0.000 0.037 0.010

Table 15.3: Statistical analysis of bias, based on Hippocampus Digests and the
union of Samples 1 and 2

by either considering Sample 2 in isolation or lumping the samples together.
The latter was done for Hippocampus Digests (Table 15.3). Translation
factors were not applied for this analysis. At patient level, we took the dif-
ferences of each mask with 5.392 ml Putamen, computed their mean and
sample-SD and divided the latter by

√
N where N=29 is the sample size,

thus estimating SD of the sample mean. The mean itself was then expressed
in multiples of this quantity, and a two-tailed test, assuming Normal Dis-
tribution, applied. Significant positive bias could thus be confirmed for 32
ml and 64 ml Putamen. Negative bias of Cerebellum was not significant,
but became so when moving the reference point to 16 ml Putamen (thus
reducing noise). So k3 of 32 ml and 64 ml Cerebellum masks is significantly
lower than of 16 ml Putamen.

15.6 Deciding which Mask is best

5.4 ml Putamen masks as used in the past have prohibitively high levels
of noise, as visible from Table 15.1. This improves when enlarging them
to 12.5 or 16 ml, which is about the size of the Putamen region. Any
enlargement beyond this point allows for more signal from the surroundings
of Putamen, which is an undefined mix of cerebrospinal fluid and different
tissue types and therefore unsuitable as reference, although we found further
noise reduction in Sample 1 for the 32 ml mask.

The highest in vitro measurements of AChE, corresponding to k3r=3 or
4, have been reported for Putamen, suggesting it might be better suited
as reference tissue than Cerebellum with only k3r=0.65 (section 13.1). In
line with these reports, we found the highest intensities in reference curves
sampled from small and medium Putamen masks (column 2 of Table 14.9).
But high intensities may as well be caused by high k1, so we looked at
k3dev and the voxel yield (Table 14.9) for confirmation, and found Putamen
masks of 5.4 to 16 ml ahead as well, while the 32 ml mask deteriorated
and 64 ml had the worst scores in all 3 criteria. We also found 5.4 to 16 ml
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Putamen masks slightly ahead of Cerebellum in all 3 disciplines, so we reach
an unequivocal decision in favor of 12.5 or 16 ml Putamen masks. Having
said this, we should nevertheless spend some time discussing the evidence.

k3dev as an Indicator of Bias

k3dev is computed from pairs of Ct and Cr, and indicates how well these data
fit together. If they are not arising from the same Blood Input Function,
k3dev will increase. Unlike Tables 15.1 to 15.3, k3dev considers informa-
tion of the target region and is therefore a valuable independent source of
information.

As pointed out in chapter 8, it increases in response to noise and bias
both of Ct and Cr. Ct cannot explain the differences in Table 14.9 since the
same set of TACs has been used for all table entries. So we are left with
noise or bias of Cr. Concerning noise, it ought to be lower for larger masks.
But we find the lowest k3dev readings for the small Putamen masks, so they
must be the ones that are least affected by bias.

Considering Voxel Yield

Decrease in yield suggests NLS has difficulty finding a local minimum from
its start point (1;0.1;0.1), hence the “landscape” of the target function, which
is defined by Cr and Ct in combination, is abnormal. This may be due to
the same set of reasons as increased k3dev. It is interesting to see it respond
synchronously with the other markers in Table 14.9.

Considering Cr Plots of section 14.1.13

Of the parameters shown in Table 14.9, “intensity” is not visible in the plots,
and, according to Theorem 4.5, has no impact on k3. Observed differences
of k3 should therefore correspond to visible differences in the shape of Cr.
This is obviously the case for the 64 ml Putamen curve. Comparing its
plot with, say, 16 ml Putamen, suggests that the two relate to different
Blood Input Functions, and given all other evidence, we conclude that 64
ml Putamen is the faulty version. Looking at the plots, 32 ml Putamen is
slightly leaning its way, while the remaining masks, including Cerebellum,
have largely congruent plots. They provide no visible explanation for the
negative bias of Cerebellum compared to 16 ml Putamen. This shows how
sensitive k3 is to subtle changes in the reference curves.

15.7 k3r-Correction

According to section 6.4 and Table 6.3, low k3r of the reference region trans-
lates to negative bias of k3. Hence it may well explain the negative bias seen
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k2r=0.1 k2r=0.3
k3r=4 k3r=2 k3r=1 k3r=1

Average cortex 0.32 1.53 5.72 15.11
Hippocampus 0.50 2.42 8.98 23.96

Table 15.4: Percental increase of regional mean values of k3 in response to applying
k3r-correction using different combinations of k2r and k3r (computed from the PET
scan of subject M01014)

in comparing 64ml Cerebellum with 16ml Putamen of Table 15.2, which is
somewhere between 0.0030 and 0.0060 in Hippocampus, corresponding to
2.5 to 5 percent of k3. Table 15.4 suggests that

• Putamen reference curves infer about 0.5 percent of negative bias if
k3r=4 is assumed. Note that this ignores possible contamination of Cr
by Partial Volume Effects which might lead to much lower k3r.

• this puts Cerebellum at anything between 3 and 6 percent of negative
bias, so it would take k3r-correction using k2r=0.1 and k3r somewhere
between 1 and 2, to compensate for it.

k3r-correction using k2r=0.1 and k3r=1.5 therefore seems appropriate with
64 ml Cerebellum masks.

15.8 Random Error induced by Noise of Ct

On the voxel level, this type of error can be estimated by k3dev (column 7
of Table 13.1), we found a cortical average of 0.0167. Unlike error induced
by Cr, it has a chance to average out across every region. If the voxels
were stochastically independent, the reduction factor should be the inverse
square root of their number. But as a result of smoothing during the Gauss
Filter step, they are dependent, so the reduction factor is larger than that.
It depends on the size and shape of every region: the larger it is and the
more distributed across the brain, the smaller the dependence between its
voxels and hence, the reduction factor.

Regional Ct-induced errors were determined for Table 14.12 using data
splitting techniques. In most cortex regions they were as low as 0.0012,
while 0.0053 was found in Hippocampus. Corresponding reduction factors
were computed by division through regional means of k3dev. They ranged
between 2.35 percent of the White Matter region which is large and widely
distributed, and 28.5 percent in Amygdala which is small.

It is interesting to see what happens when FWHM is raised from 8 to
10 millimeters (data unlisted). Reduction factors increased, owing to more
stochastic dependence. The increase fully consumed what precision was
gained at the voxel level, so there was no improvement in regional results.
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This corroborates our finding in section 10.6.2 that using FWHM of 10mm
is inferior to using 8mm.

15.9 Bias induced by Noise of Ct

Unlike random error of the previous section, bias will be equal on the re-
gional and the voxel level and is easiest quantified by simulations, where
the true k3 is known. It was observed that noise of Ct induces positive
bias, noise of Cr negative bias. Table 15.5 shows simulation results for
recommended evaluation policies (reference volume=16ml, NLS skipping 2
frames) assuming k2=0.1: with FWHM=8mm and for k3 ≤ 0.2, bias stays
below 2.05 percent. Considering possible miscalibration of the simulator
(section 7.8), we should raise this limit to 3 percent. With FWHM = 6 mm,
the bias roughly doubles, with 10 mm, it is cut in half. If k2=0.05 is as-
sumed instead of 0.1, it triples (data unlisted). In real PET data, we have a

k3

0.08 0.12 0.2
Ct-induced Bias [%]:

FWHM=6mm 0.77 1.57 3.66
FWHM=8mm 0.31 0.65 2.05

FWHM=10mm 0.16 0.32 1.05
Discretization Bias [%]:

-1.38 -1.45 -1.54
Cr-induced Bias [%]:

V=5.392 ml -0.60 -0.77 -1.09
V=16 ml -0.20 -0.25 -0.36
V=64 ml -0.04 -0.06 -0.08

Table 15.5: Bias of 3 different types, quantified by Double Random Simulations.
For simulating Ct-induced bias in isolation, the reference volume V was set to 128
ml. For simulating Cr-induced bias, FWHM was set to 50 mm. 33,333 iterations
per entry were performed. Discretization Bias was simulated from noiseless TACs
as in section 6.5.1, and subtracted from the other simulation results in order to
isolate every type of bias. It could be empirically shown (data unlisted) that Ct-
and Cr-induced bias are roughly additive.

mix of Ct-induced bias which is positive with Cr-induced and Discretization
Bias which are negative. The three types are additive and therefore partly
cancel out. The table shows that discretization- and Cr-induced bias are
less dependent on k3 than Ct-induced bias. The same applies to k2 (data
unlisted).
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15.10 Limitations of the Model

We found significant evidence for a slight washout of radioactivity from
Putamen toward the end on scantime (section 14.1.14), contradicting As-
sumption 4 (“ideal reference region”, section 3.2.2). The same has been
reported by A. Varrone [37] for 120 minute scans of monkeys. The standard
model of Figure 1.2 is therefore inadequate, even in its refined version: we
found a new type of systematic bias that can not be undone by k3r-correction
(section 14.1.14) and is therefore not k3r-induced.

Another occasion where we encountered non-model-compliant TACs has
been discussed in section 12.1ff., it is caused by blood volume effects.

15.10.1 Refining the Model?

Whenever a source of bias is identified, there is the option of including it in
the model, and fit the refined model to the data. We discuss the implications
of this idea in each of the three cases:

• Nuclide washout. The idea of irreversible nuclide accumulation in
Putamen is not realistic to begin with. Every carbon atom that goes in
will eventually find its way out, after sufficient metabolization, unless
Putamen was to act as a final deposit, which is not very likely. All we
can hope for is that washout be delayed until after the end of scantime.

But as we have seen this is not the case. To model the washout, we
could use an existing reversible tracer model, adding k4 and k4r arrows
to Figure 1.2. But what if the product of hydrolysis can diffuse back
to the plasma without further metabolization? Or else, there might
be a mix of such back diffusion with a number of different biochem-
ical pathways? We are looking at an effect whose mechanism is not
understood, hence we do not know how to model it.

• Blood Volume Effects. Considering them would require including
a blood term into model equations (3.1). The signal is no longer pro-
portional to Ct, but to (1−α) ·Ct+α · (Cpl+Cph), where α is a factor
denoting the local “blood volume” (i.e. percentage of tissue that is
filled with blood), and Cph is the concentration of hydrolyzed tracer
in blood. The latter has hitherto not been considered. Ignoring it is
not advisable since tracer hydrolysis in blood happens fast, so a con-
siderable percentage of the blood signal comes from hydrolyzed tracer.
The model would thus require a second input function which is not
available from the PET data. It could be obtained by investing a fixed
blood hydrolysis curve compiled from arterial blood sampling data. α
would induce a fourth degree of freedom to the model. To make mat-
ters worse, much of the blood volume is venous blood whose authentic
tracer concentration is not Cpl, but also depends on tracer extraction
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minus backflow during passage through tissue, where the backflow de-
pends on how much tracer the tissue contains. Distinguishing arterial
and venous blood would lead to five degrees of freedom. With every
degree of freedom added, the model becomes more sensitive to noise.
It therefore appears more prudent to embrace a skip2 policy than to
refine the model.

• k3r-induced bias. Its compensation is the only refinement that was
undertaken (section 15.7). It is easy to apply (section 3.2.3) and does
not introduce new degrees of freedom. But it requires knowledge of
k2r and k3r of the reference region, which can only be estimated. The
further they are away from the “ideal” values 0 and ∞, the larger is
the error resulting from miscorrection (Table 6.4), we are therefore
well advised to use k3r-correction as little as possible.
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Chapter 16

Conclusions

16.1 VINCI Implementations

• The Herholz-Zuendorf method of MP4A analysis (“COLOGNE method”)
has been re-implemented in C++ as a VINCI-plugin, automatizing a
complex workflow involving image normalization, coregistrations, im-
age preprocessing and kinetic analysis that used to require VINCI,
SPM99/MATLAB and human intervention.

• As a second implementation, we provided the “maskless MP4A tool”,
containing an independent algorithm for kinetic analysis and various
other policy changes by the author, see sections 16.2 through 16.6.

16.2 Voxel based NLS

We made weighted Nonliner Least Squares fitting (NLS) available as a
method for voxel based kinetic analysis (chapters 4 and 5). Its implemen-
tation as part of VINCI 3.x is powered by a built-in Gauss Newton solver.
Correctness of the procedure has been established empirically using simu-
lated data with varying levels of noise. It turned out that a single starting
point at (1;0.1;0.1) could be used in all cases. The number of iterations
can be kept below 20 owing to fast convergence of the method and low
dimensionality of the problem (section 5.3, Table 12.2).

Filling the Jacobi matrix is the time-critical step. We took advantage of
spline interpolation of the reference curve. Hence F and its partial deriva-
tives are integrals of piecewise 4th order exponential polynomials that can
be solved analytically. This could be organized in such a way as to have
linear complexity in the number of frames. We reached computation speeds
of up to 5000 voxels per second on a 2.67 GHz single processor machine.
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16.3 Voxel based Error Estimates

We developed an estimate k3var1 of the variance of k3, based on linearizing
the model in the vicinity of the NLS solution and considering its distance
from the measurements. It can be computed rapidly from pairs of Ct and Cr,
taking advantage of the partial derivatives that are available as by-products
of the Gauss Newton procedure.

k3var has been shown to predict the variance of simulated noisy data
correctly for a wide range of simulator settings. So it provides a vehicle
transferring error estimation from the simulator environment to real PET
images. It has been used in this function in other parts of this work, to assist
in optimizing image preprocessing (chapter 10) and reference masks (sections
14.1.12 and 15.6). It may also lend a hand in regional error estimation
(section 16.7.2).

16.4 k3r-Correction

is a novel technique for reconstructing ideal from measured reference curves
(section 3.2.3). It requires that k2r and k3r of the reference region be known.
Upon validation with noiseless synthetic data (section 6.4) it reduced bias
by one to two orders of magnitude.

An implementation for real image data has been provided as an optional
feature of the maskless MP4A tool. We do not recommend it with Putamen
masks whose k3r-induced bias is expected below 1 percent, but it should be
used with the 64 ml Cerebellum mask in order to compensate for its negative
bias (section 15.7).

16.5 Application Range

We discontinued the previous policy of voxel preselection using the Zuendorf
Mask. It restricted kinetic analysis to 45.9% of the brain, excluding such
regions of interest as Hippocampus and cutting through cortex areas as well.
Evaluation is now attempted for every voxel of the brain, resulting in 85%
to 95% of yield, depending on the patient. More than 99% are reached in
most cortex regions, and between 94% and 99% in Hippocampus.

16.5.1 Image Preprocessing

The previous policy of Gauss filtering while protecting low intensity regions
from hot neighborhoods has been preserved. The Zuendorf Mask used to
play a crucial role in these procedures, this has now been taken over by
a sequence of 10 to 15 adaptive masks obtained by intensity thresholding

1and its square root, k3dev
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of the PET data (section 10.4.3). The inner border of the Zuendorf Mask
used to be a source of artefacts. This problem has been addressed by keeping
voxels at a distance from the border of their respective filter masks whereever
possible (section 10.7).

16.5.2 Reference Mask Generation

The previous policy of using a fixed Putamen mask of 674 voxels has been
replaced by an adaptive strategy of mask generation from a precursor mask,
based on erosion or dilation and intensity thresholding (section 10.3). Masks
can be generated for Putamen or Cerebellum at any given size, and they
will compensate for differences in patient anatomy or coregistration errors.

16.6 Optimizing Procedures with Respect to Noise
and Bias

• Framing: the “traditional” schedule of 20 frames (section 6.1.1) has
proved to be a favorable choice. In simulations, its stability with
respect to noise was found to be equivalent or superior to every other
20-frame schedule. Minor improvements of stability could only be
made by raising the number of frames substantially. But this was not
tried with real images where it seems counter-indicated since it might
compromise image reconstruction by diluting the signal too much.

• Placement of time points: the former policy of mapping them to the
frame ends has been given up in favor of the frame centers. In simu-
lations, bias could thus be reduced from 20% to 1%.

• Frame Weighting: we compared different weighting strategies in sim-
ulations regarding stability with respect to noise. For the COLOGNE
method, Cr- proportional weighting that had been used by the Zuen-
dorf implementation could be improved by combining it with Decay
Weighting (section 2.7). The combined strategy was clearly superior in
simulations. COLOGNE thus performed on the same level as the com-
peting NLS method. For the latter, we recommend Decay Weighting
for the sake of simplicity. Equivalent performance was reached with
the combined strategy.

• Gauss Filter width ’FWHM’: 10mm that were used in the past could
be replaced by 8mm without compromising quality of regional results.
This improves resolution of k3 parametric images and reduces bias
induced by Partial Volume Effects.

• Skipping frames: we recommend to exclude the frames of the first
minute from kinetic analysis in order to avoid bias induced by blood
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volume effects. It could be demonstrated by comparison of COLOGNE
and NLS that this policy considerably stabilizes results.

• Reference mask volume: we found that 5.4 ml masks as used in the
past allow for too much noise in the reference curves (see the follow-
ing section). We showed that volumes of 12.5 to 16 ml are a much
better choice, and Cerebellum masks of 32 or 64 ml combined with
appropriate k3r-correction are a viable alternative.

16.7 Regional Error Estimates

Quantification of regional error is nontrivial since the Gauss Filter step in-
duces stochastic dependence between voxels. So we have no translation
formula between voxel based and region based error. Instead, investigations
had to be based on patient samples and data splitting techniques at the sino-
gram level (chapter 14). For Cr-induced errors, we also applied left/right
comparisons and a hybrid technique combining simulations with measured
data (section 14.1.2).

16.7.1 Error induced by Cr

We discovered a major source of error that had previously been ignored:
noise of the reference curves. We were alerted to the problem by finding
large differences in regional k3 results depending if Putamen or Cerebellum
had been used as reference (chapter 11). This came as an uneasy late surprise
during the final stage of this work, so the author was given extra time to
eliminate as much of this problem as possible and provide an assessment for
the rest.

Random Error

Using data splitting techniques and left/right comparisons, it could be shown
that 5.4 ml Putamen masks are to blame for most of the problem, inducing k3

standard errors of up to 0.0121 in regional results of Hippocampus and up to
0.0053 in typical cortex regions (Table 15.1). Corresponding errors obtained
with 32 ml Cerebellum masks are 0.0040 and 0.0019. Improvement could
also be reached by enlarging Putamen masks to about the size of Putamen
(16 ml), leading to standard errors of about 0.0050 and 0.00252. Even so,
Cr-induced error remains the major single source of uncertainty.

While the above is based on image data of two patient samples, we found
random errors of similar size in Cr Block Simulations (data unlisted).

2obtained by averaging a,b- and L,R-results of Table 15.1
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Bias

The contribution of noise of Cr to bias of k3, as measured in simulations, is
low (see section 16.7.2). Larger systematic deviations were observed when
comparing Cr from PET image data sampled with different masks. While
quantification is difficult, it could be shown based on a sample of 29 patients
that, compared to 16 ml Putamen masks, 32ml and 64ml Cerebellum masks
lead to negative bias (see Table 15.3). The difference is roughly 0.0030 to
0.0060 k3-units in Hippocampus and 0.0020 in cortex (by comparing columns
of Table 15.2). The bias can be undone by appropriate k3r-correction (sec-
tions 16.4 and 15.7).

Placing a zero point on the bias scale remains voluntary since the true
in-vivo k3 values are unknown. But we found indications based on k3dev
(see section 15.6) that 16 ml Putamen gives a slightly better representation
of the patient’s Blood Input Function than Cerebellum with or without k3r-
correction.

16.7.2 Error induced by Noise of Ct

Random Error

This is different from Cr-induced error in that it averages out across a region.
Depending on the patient, voxel based error levels range between 0.0100 and
0.0210 in average cortex, 0.0290 and 0.0620 in Hippocampus3. For every re-
gion of the brain, there is a reduction factor indicating how voxel based errors
translate to regional errors. It depends on size and shape of the region and
FWHM used during image preprocessing. Rough estimates of these factors
were obtained from a sample of 12 patients using data splitting techniques
(column 5 of Table 14.12). They might be useful for obtaining regional
error estimates for individual patients when multiplied with their regional
k3dev mean values, but it would take more data and work to corroborate
this claim.

The Ct-induced contribution to regional k3 random error was 0.0012 on
average in cortex regions and 0.0053 in Hippocampus (Table 14.12). In
cortex, this is clearly below the Cr-induced contribution, in Hippocampus
it is comparable. Error levels in “hotter” areas are much higher. Regional
errors could not be reduced by raising FWHM from 8 to 10 mm.

Bias

was isolated in Double Random Simulations and found to be always pos-
itive (section 15.9). It depends on k2 and k3 and stays below 3 percent
for combinations of practical interest (section 15.9). In real situations, it

3data from Sample 1
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partly cancels out with Cr-induced and Discretization Bias which are nega-
tive and of similar size. Total bias may therefore come out with either sign,
depending on k2, k3, FWHM and the reference volume.

16.8 Resolving an Inconsistency of COLOGNE

COLOGNE showed conflicting results in parts of the brain depending if 2
leading frames were excluded from evaluation (skip2 policy) or not. We
implemented NLS in order to decide which result was correct. As expected,
NLS showed better stability, and it led to a clear decision in favor of the
skip2 result. It could be shown that the problem was caused by blood
volume effects, i.e. signal emanating directly from the blood during the
first tracer passage through the brain (section 12.1 ff.). Since the model
does not account for signal from the blood, we are faced with non-model
compliant TACs and ensuing bias - unlike any other type of bias discussed
above. Refining the model is impractical (section 15.10.1), the skip2 policy
appears more sensible. It is interesting that this policy was already followed
by G. Zuendorf, and that his brain mask excludes the problematic regions.
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Appendix A

Supplements

A.1 Optimal Summation

Theorem A.1 Given N independent random variables X1,. . . ,XN with pos-
itive expectancies a1,. . . ,aN and having their variances proportional to these
expectancies, we seek nonnegative factors m1,. . . ,mN that will minimize the

relative error of the linear combination S :=
N∑
i=1

mi ·Xi. Contention: the mi

must equal the same constant, whose value does not matter.

Proof:
Let k be the constant of proportionality, so the variances are kai,. . . ,kaN .
Then mi·Xi is of variance m2

i kai for i=1,. . . ,N, and because of independence,

σ2(S) =
N∑
i=1

m2
i kai is the variance of S. So the quantity we wish to minimize

is given by the function

F (m1, . . . ,mN ) =

√
N∑
i=1

m2
i kai

N∑
i=1

miai

=
√
k ·

√
N∑
i=1

m2
i ai

N∑
i=1

miai

Its partial derivative with respect to mj is

∂F

∂mj
=
√
k

 mjaj
∑
miai√∑

m2
i ai
− aj

√∑
m2
i ai

(
∑
miai)

2


We want the global minimum on the domain mi ≥ 0, i = 1, . . . , N with at
least one mi greater than 0 (otherwise F is undefined). There is no local
minimum anywhere on the borders: letting mj=0 in the above formula
results in a negative value, so every border point has smaller values in its
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vicinity. So we check the interior. Equating the partial derivative with zero
brings

aj

√∑
m2
i ai =

mjaj
∑
miai√∑

m2
i ai∑

m2
i ai = mj

∑
miai

N∑
i=1

(mj −mi)miai = 0

In a local minimum, this will hold for j=1,. . . ,N. Let us assume the equation
holds at some fixed point and let mj be its maximum component, making the
brace nonnegative in all summands. Since both the mi and ai are positive,
the expression can be zero only if all braces vanish, which implies mj = mi

for all i, hence the mi are equal.
By inspection it is clear that F is a homogenous function, meaning that

its value doesn’t change if all arguments are scaled by the same factor. Hence
the value of the mi has no bearing on the outcome.
Existence:
due to the homogeneity of F, every value taken on our domain is also taken
at some point of its intersection with the sphere

∑
m2
i = 1, which is a

compact set. Since F is continuous, it takes a global minimum on that set.
Because of homogeneity, that minimum is also global on our domain.
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A.2 Investigations on Convergence

On subject M01014, k3 images were computed using different break-off
thresholds l1=l2 ranging from 10−4 to 10−8 in a geometric sequence. Results
are in Table A.1. Column 2 has the number of failing voxels. Up to 10−7,

Break-off voxels failing Iterations, averaged over region:
threshold to converge cortex Hippocampus
l1=l2 = absolute % of brain iter increment iter increment√

10 · 10−4 19677 7.82 4.16 4.93
10−4 19788 7.87 4.71 0.55 5.64 0.71√

10 · 10−5 19864 7.90 5.29 0.58 6.37 0.73
10−5 19931 7.93 5.87 0.58 7.08 0.71√

10 · 10−6 19998 7.95 6.45 0.58 7.84 0.76
10−6 20066 7.98 7.03 0.58 8.57 0.73√

10 · 10−7 20238 8.05 7.63 0.60 9.32 0.75
10−7 20955 8.33 8.21 0.58 10.07 0.75√

10 · 10−8 39988 15.90 8.94 0.73 10.94 0.87
10−8 175230 69.68 9.76 0.82 11.59 0.65

Table A.1: Failrate and convergence speed in response to break-off threshold.
From subject M01014, using skip2 policy and an upper limit of 200 iterations

there is little change, followed by rapid increase towards 10−8 which is prob-
ably due to the limitations of single precision float arithmetics1. The average
number of iterations of the (non failing) voxels of cortex and Hippocampus
was taken. It rises steadily in response to sharpening the break-off criterion.
The increase (columns 5 and 7) can be looked upon as additional iterations
needed to reduce step sizes in the late convergence phase. It appears almost
constant, indicating linear convergence. For an order of magnitude, r=1.16
and r=1.46 iterations2 are needed for cortex and Hippocampus, respectively.
One iteration then corresponds to an error reduction factor of 1

101/r which
is 1

7.28 in cortex and 1
4.84 in Hippocampus. There were also voxels of much

slower convergence, requiring up to 200 iterations as shown in Table A.2.
Using a limit of n1=200 iterations and l1=l2=10−7 as break-off thresholds,
the voxels were classified by iteration number (i.e. number of iterations
needed to meet the break-off criterion). Column 2 has the percentage of
voxels in each class, cumulated percentages are in column 3. They show
that there are 7.55 percent of voxels requiring more than 20 iterations. Col-
umn 4 (noiserel of section 4.7.2) shows that noisiness of TACs increases

1step sizes were calculated using single precision floats, while the iterations themselves
were performed in double precision arithmetic

22 times 0.58 or 0.73 as seen in the table
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with iteration number. These are voxels of high k2 and k3, as is visible from
columns 5 and 6, leading to high error levels (column 7). simcr, q1 and the
overall voxel intensity (section 10.2) were checked for similar correlations
(data unlisted), but none were found.

Iteration percentage of Class averages of:
number converging (cumulated)

voxels noiserel k2 k3 k3dev
3 0.04 0.04 0.0465 0.1074 0.0924 0.0103
4 1.77 1.81 0.0511 0.1020 0.0870 0.0107
5 8.72 10.53 0.0533 0.0965 0.0828 0.0111
6 15.13 25.66 0.0566 0.0932 0.0807 0.0122
7 16.08 41.74 0.0603 0.0922 0.0815 0.0141
8 13.26 55.00 0.0649 0.0929 0.0861 0.0182
9 9.42 64.42 0.0705 0.0965 0.0965 0.0262
10 6.90 71.32 0.0739 0.1013 0.1103 0.0371
11 5.09 76.41 0.0780 0.1156 0.1242 0.0443
12 3.84 80.25 0.0811 0.1231 0.1375 0.0594
13 2.88 83.13 0.0838 0.1347 0.1539 0.0684
14 2.25 85.38 0.0887 0.1655 0.1696 0.0789
15 1.79 87.17 0.0901 0.1712 0.1805 0.0867
16 1.45 88.62 0.0950 0.2006 0.1951 0.0996
17 1.19 89.81 0.0946 0.2340 0.2154 0.1116
18 1.02 90.83 0.0953 0.2498 0.2311 0.1398
19 0.87 91.70 0.0977 0.2822 0.2418 0.1346
20 0.75 92.45 0.0955 0.2908 0.2639 0.1483

21-30 4.06 96.51 0.1013 0.3603 0.2869 0.1680
31-50 2.29 98.80 0.1073 0.4803 0.3371 0.2152
51-200 1.19 99.99 0.1088 0.4547 0.3381 0.2304

Table A.2: Voxel properties by iteration classes. From PET data of subject
M01014, skip0 policy. 19387 voxels (7.7% of the brain) failed to converge.

A.2.1 Choosing n1, l1, l2

The objective is to speed up the procedure while maintaining voxel yield
and precision at reasonable levels. n1=20 was chosen with speedup in mind.
According to Table A.2, it results in a voxel loss of 7.55 percent. By intro-
ducing l2=10−4 to facilitate break-off after n1=20 iterations, that rate could
be reduced to 1.82 percent. It remains to investigate if precision is not com-
promised too much by this measure. Of the 5.73 percent voxels regained, we
compared their k3 values under the new and the previous regime (which had
n1=200, l2=l1=10−7), and found maximum differences of 0.00038, which was
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considered tolerable.

A.3 On the Benefits of Step Size Control

The unmodified Gauss Newton method was found to fail unnecessarily on
certain sets of synthetic data. In particular, when running on TACs simu-
lated for k1=k1r=1, k2=0.04 and k3=0.01, NLS had a failrate of some 90%,
while COLOGNE returned good results. The phenomenon became even
more pronounced as the amount of simulated noise was reduced. It turned
out that the iteration path first proceeds through negative territory (with
at least one constant below 0), then bounces back and forth and misses the
attractor.

The problem can of course be fixed by providing S5=(1;0.04;0.01) as a
supplementary starting point, to be used whenever a run from S1 has failed.
One could thus install a whole sequence of starting points if needed. Every
one of them would act as an additional chance for accepting a voxel, at a
price paid in terms of computation time.

Since negative intermediates have been found at the heart of the problem,
prohibiting them is another obvious idea. It led to the lambda strategy
presented in section 5.4, keeping the iteration path well inside the octand
where q1, k2, k3 are positive. But unlike supplementary starting points which
are guaranteed to raise the evaluation yield, there is no such guarantee
for the lambda strategy. It is entirely possible that the octand borders
become competing attractors, inviting failure or bad results in cases where
unmodified Gauss Newton had been successful.

For the purpose of validation, we enabled our implementation to process
multiple parameter sets, each containing λ, n1, l1, l2 and a starting point.
If a run with one strategy failed, it would load the following parameter set
and try again. This made it possible to compare the λ-strategies with those
based on additional starting points. It turned out that setting λ to 0.9
obliterated the need for the latter. More exactly: few multiple runs would
fail with a λ=0.9 strategy from S1=(1;0.1;0.1), and then go on to succeed
with a different starting point. Also, no cases were seen where λ=0.9 failed
and then λ=0 succeeded from the same starting point. Thus, λ=0.9 was
found to increase evaluation yield just like additional starting points, but at
no extra cost.
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A.4 Privileged Area

The regions included in the “Privileged Area” of section 10.5.1, are defined
by the atlas of section 10.1. Table A.3 shows their names and sizes (in
percent of the full brain mask) and names:

Volume
fraction

Name of brain
White Matter 21.67 %
Paraventricular Nucleus 0.38 %
Supramarginal Gyrus 2.29 %
Superior Frontal Gyrus 5.72 %
Precentral Gyrus 2.59 %
Cingulate Gyrus 2.51 %
Middle Frontal Gyrus 2.95 %
Superior Temporal 3.39 %
Inferior Frontal Gyrus 2.39 %
Inferior Occipital Gyrus 1.26 %
Cuneus 0.95 %
Lateral Fronto-Orbital Gyrus 0.89 %
Insular Cortex 1.00 %
Superior Parietal Gyrus 1.97 %
Pre-Cuneus 1.58 %
Middle Temporal Gyrus 2.60 %
Lingual Gyrus 1.56 %
Postcentral 2.91 %
Middle Fronto-Orbital Gyrus 1.12 %
Gyrus Rectus 0.58 %
Hippocampus 1.00 %
Superior Occipital Gyrus 0.81 %
Fusiform Gyrus 1.76 %
Entorhinal Area 0.16 %
Middle Occipital Gyrus 0.90 %
Inferior Parietal Lobule 1.51 %
Inferior Temporal 1.73 %
other 0.19 %

Table A.3: Composition of “Privileged Area”

168



A.5 Decay Fractions

The results of section 7.1.3.3 were computed from columns 2 to 5 of Table
A.4:

Brain Decay Fractions:
Subject Volume whole Putamen Cerebellum
Code [ml] Brain (1ml) (1ml)

M01001 1394.25 0.03560 0.00599 0.00597
M01002 1470.89 0.03887 0.00693 0.00549
M01003 1682.11 0.03798 0.00564 0.00517
M01004 1737.61 0.04301 0.00701 0.00635
M01005 1553.1 0.01689 0.00289 0.00256
M01007 1482.63 0.06692 0.01210 0.01175
M01008 1214.54 0.04701 0.00963 0.00789
M01009 1473.75 0.02324 0.00390 0.00354
M01010 1498.1 0.01697 0.00269 0.00234
M01012 1347.5 0.05117 0.00957 0.00794
M01013 1313.2 0.03630 0.00757 0.00609
M01014 1392.7 0.04211 0.00676 0.00658

Table A.4: Individual Decay Fractions of Sample 1

From Samples 3 and 4 that were scanned in Milan, the following results were
computed:
Brain Volume: 1389 ± 121 ml
Putamen Decay Fraction: 0.0000728 ± 0.0000204
Cerebellum Decay Fraction: 0.0000680 ± 0.0000164
Whole Brain Decay Fraction: 0.03928 ± 0.00708
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A.6 Sample 2 Cross Comparisons

Of Sample 2, Cortex Digests were not computed. Table A.5 contains cross
comparisons of Hippocampus Digests.

Putamen Cerebellum
5.392 16 32 64 32 64

ml ml ml ml ml ml
Putamen - .9724 .9462 .7879 .7549 .7170
5.392 ml - .0031 .0047 .0140 .0086 .0097

- -.0015 -.0029 -.0110 .0032 .0036

Putamen .9724 - .9740 .8029 .7650 .7123
16 ml .0031 - .0031 .0127 .0092 .0105

.0015 - -.0014 -.0095 .0046 .0051

Putamen .9462 .9740 - .8944 .7764 .7397
32 ml .0047 .0031 - .0104 .0095 .0107

.0029 .0014 - -.0081 .0060 .0065

Putamen .7879 .8029 .8944 - .7060 .6907
64 ml .0140 .0127 .0104 - .0173 .0180

.0110 .0095 .0081 - .0141 .0146

Cerebellum .7549 .7650 .7764 .7060 - .9877
32 ml .0086 .0092 .0095 .0173 - .0022

-.0032 -.0046 -.0060 -.0141 - .0005

Cerebellum .7170 .7123 .7397 .6907 .9877 -
64 ml .0097 .0105 .0107 .0180 .0022 -

-.0036 -.0051 -.0065 -.0146 -.0005 -

Table A.5: Cross comparisons of Hippocampus Digests of full masks of Sample 2.
The blocks contain ‘corr’, ‘dist’ and ‘shift’ from top to bottom. Subtraction order
for ‘shift’: left minus upper caption.
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Appendix B

Derivation of k3var

B.1 The Idea
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Figure B.1: Propagation of noise to error of k3

Consider the setM of Model Compliant curves (section 4.2 and Figure 4.2),
embedded in RN where N is the number of frames. A magnified view of the
situation is Figure B.1. Consider the triple t’ of “true” kinetic constants,
and its Model Curve t=F(t’). The estimate is based on linearization in t,
replacingM with its own tangential space and F with a linear parametriza-
tion of that space.

The measured, noisy, TAC is a. x= ~ta is the noise vector. f is the foot
of a perpendicular dropped from a onto M. Its preimage f ’ under F is the
NLS result: f’=(q1,k2,k3). It is different from the true set of constants t’,
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the difference reflecting the mismatch between f and t. Within M, there is
one vector pointing in direction of the steepest ascent of k3. It will be called
the k3-gradient. For its length, we assign the speed at which k3 changes
when moving in that direction.

The projection of ~ta on the k3-gradient accounts for the error of k3. Its
projection orthogonal toM, which is ~fa, can be measured, since f (or rather
its preimage f’) is found by NLS. If we knew the average relation between
the two projections, we could compute the first from the second and thus
obtain the desired result. That relation can be obtained by modelling the
noise cloud, i.e. the distribution of ~ta.

Its distribution density is normal in each coordinate. If its standard
deviation were the same in all coordinates (isotropic noise), this would
make a noise cloud of perfect spherical symmetry as explained in section
2.7.4. So we start with this special case and generalize it in the following
section.

Owing to spherical symmetry, the squared projections of ~ta distribute
evenly onto the vectors of any given orthonormal base of RN . Consider an
orthonormal base containing the normalized k3-gradient, and N-3 vectors
spanning the orthocomplement ofM. Then the k3-gradient gets 1/N of the
squared projections, and the orthocomplement gets (N-3)/N. So the squared
projection on the k3-gradient is, on average, 1/(N-3) of ‖~fa‖2:

p2 =
‖~fa‖2

N − 3
(B.1)

where p is the length of the projection. Let ∆k3 be the computed minus he
true k3, we have ∆k3 = p · ‖k3 gradient‖. Taking both sides of (B.1) times
‖k3 gradient‖2 gives

k3vari = (∆k3)2 =
‖k3 gradient‖2 · ‖~fa‖2

N − 3
(B.2)

The average of a large number of (∆k3)2 happens to be the variance of the
k3

1, so k3vari is an estimator of the variance.

B.2 The Details

Next we specify how the k3-gradient is computed, and what can be done
to model the noise cloud in a more realistic way. For both ends, we need
to construct an orthonormal base b1, b2,. . . ,bN of RN such that {b1, b2, b3}
spanM, with b3 pointing in the directon of the k3-gradient. We assume that
t=F(t’) is a regular point ofM, meaning that the partial derivatives of F in
t’ are linear independent. This allows constructing the base from the partial

1Since ∆k3 averages out to zero by the way we designed the noise.
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derivatives by a procedure known as Gram Schmidt orthonormalization. It
begins with

v1 :=
∂F
∂q1

(t′)

b1 :=
v1
‖v1‖

v2 :=
∂F
∂k2

(t′)−
〈
∂F
∂k2

(t′), b1

〉
b1

b2 :=
v2
‖v2‖

v3 :=
∂F
∂k3

(t′)−
〈
∂F
∂k3

(t′), b2

〉
b2 −

〈
∂F
∂k3

(t′), b1

〉
b1 (B.3)

b3 :=
v3
‖v3‖

b4,. . . ,bN can be arbitrarily chosen so as to fill up {b1, b2, b3} to an orthonor-
mal base of RN .

B.2.1 Computing the k3-gradient

Consider y=t’=(q1,k2,k3), so F(y)=t. If its k3 is modified, F(y) moves in
the direction of

∂F
∂k3

(t′) (B.4)

at speed
∥∥∥ ∂F∂k3 (t′)

∥∥∥. Inverting the situation by moving F(y) in that direction,
results in k3 changing by

1∥∥∥ ∂F∂k3 (t′)
∥∥∥ (B.5)

per unit of movement.
Now the k3-gradient is orthogonal to the plane of constant k3 within M,
that plane is spanned by ∂F

∂k2
(t′) and ∂F

∂q1
(t′), and therefore also by b1 and

b2. Hence the direction of the k3-gradient is obtained by subtracting from
∂F
∂k3

(t′) its components in b1 and b2 direction. So it happens to be v3 of equa-
tion (B.3). By construction, v3(t′) is shorter than ∂F

∂k3
(t′). The subtracted

components lie in a plane where k3 is constant, so t+v3(t′) and t+ ∂F
∂k3

(t′)
have the same k3. Therefore, in the direction of v3, k3 changes faster than
in the direction of the partial derivative, by a factor of∥∥∥ ∂F∂k3 (t′)

∥∥∥
‖v3(t′)‖

(B.6)
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Take this factor times (B.5) to get the speed of k3 change in the direction
of v3, the result is 1

‖v3‖ . Hence the k3-gradient is given by

k3 gradient =
1
‖v3‖

· b3 (B.7)

.

B.2.2 Modeling anisotropic Noise

1
N−3 of equation (B.2) is a conversion factor translating from the mean
squared noise component orthogonal toM to the mean squared noise com-
ponent in direction of the k3-gradient. In the isotropic situation it could be
assumed constant. Now it needs to be replaced with a function ogconvert(t’),
which accounts for

• the shape of the noise cloud at t=F(t′)

• the inclination ofM as it intersects with that cloud (see Figure B.1 ).

Equation (B.2) thus becomes in the anisotropic case

k3var =
‖~fa‖2

‖v3‖2
· ogconvert(t′) (B.8)

where we substituted 1
‖v3‖ for ‖k3 gradient‖ because of equation (B.7).

Now what is the real shape of the noise cloud? Every frame is affected
independently by Gaussian noise. If all frames had the same amount of
noise, the distribution would be spherical. If the amount is not equal, we
get an ellipsoid whose main axes are the coordinate axes. (A skew ellipsoid
would imply dependency between the frames, which can be safely ruled out.)

Let si be the standard deviation of the noise of frame i. Together, the
frames define a noise vector x = (x1,. . . ,xn). For i=1 to N, xi is normally
distributed with mean 0 and standard deviation si. We have to compute the
mean squared projections of x on the orthocomplement of M, to be called
msportho, and on the k3-gradient, mspgrad. Then

ogconvert =
mspgrad
msportho

(B.9)

and we are done.
We use the metric of RN defined by the inner product (4.7). The unit

vectors with respect to this metric are

ei = (0, . . . , 0,
1
√
wi
, 0, . . . , 0) (B.10)

where wi are the Decay Weights (2.7). After conversion to units of this
metric, the components xi of x have therefore standard deviations si

√
wi.
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M cuts skewly through that cloud of noise. We use the orthonormal base
{b1, b2, . . . , bN} defined at the beginning, whose b1, b2, b3 are spanning M,
b4, . . . , bN are spanning its orthocomplement and b3 points in the direction of
the k3-gradient. Let, for j=1,. . . ,N, mspj denote the mean squared length of
the projection of x onto bj . It happens to be also the variance of the signed
length of that projection, this will facilitate its computation. Consider one
component xi of the noise vector. It points in direction ei. The projection
of ei on bj is of length 0 ≤ | 〈ei, bj〉 | ≤ 1. As xi is projected onto bj , its
length gets multiplied with that factor. The projection remains Gaussian
and its standard deviation is si ·

√
wi · | 〈ei, bj〉 |. The variance is obtained

by squaring:
variance = s2i · wi · 〈ei, bj〉

2 (B.11)

Let bj,i denote the ith component of bj . Then the inner product can be
computed from (4.7) and (B.10):

〈ei, bj〉 =
√
wi · bj,i

Plugging this into the variance (B.11) and summing up over all components
of x=(x1, . . . , xN ) gives the desired result:

mspj =
N∑
i=1

s2i · b2j,i · w2
i (B.12)

Here summation is allowed because we are adding independent random vari-
ables: the projections of the components of x, which are associated with the
scanframes, onto bj . Because of independence, the sum of variances is the
variance of the sum. Besides, the distribution is still normal.

mspgrad = msp3

is a special case. msportho is obtained by summation:

msportho =
N∑
j=4

mspj =
N∑
j=4

N∑
i=1

s2i · b2j,i · w2
i (B.13)

Here, summation is justified by an argument involving the Fourier Decom-
position (see B.4).

Now, using equation (B.13) to compute msportho would require providing b4
to bN for every voxel, which is an unreasonable effort. It is better to exploit
the relation

N∑
j=4

N∑
i=1

s2i · b2j,i · w2
i︸ ︷︷ ︸

=msportho

=
N∑
j=1

N∑
i=1

s2i · b2j,i · w2
i︸ ︷︷ ︸

=:mslx

−
3∑
j=1

N∑
i=1

s2i · b2j,i · w2
i︸ ︷︷ ︸

=:mspM

(B.14)
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where mspM is cheaper to compute, and mslx is the mean squared length
of the noise vector x:

mslx =
N∑
j=1

N∑
i=1

s2i · b2j,i · w2
i (B.15)

As the special choice of the orthonormal basis bi has not been used in the
path to equation (B.15), we can replace it by any orthonormal base. In
particular, the result stays the same if the ej are used instead of the bj :

mslx =
N∑
j=1

N∑
i=1

s2i · e2j,i · w2
i

But since ej,i vanishes for i 6= j the double sum collapses to a single one:

mslx =
N∑
j=1

s2j · e2j,j · w2
j =

N∑
j=1

s2j · wj (B.16)

since ej,j = 1√
wj

. Using this and equation (B.14), (B.9) becomes

ogconvert =
mspgrad

mslx −mspM
=

N∑
i=1

s2i · b23,i · w2
i

N∑
i=1

s2i · wi −
3∑
j=1

N∑
i=1

s2i · b2j,i · w2
i

(B.17)

B.2.3 The Shape of the Noise Cloud

It remains to estimate the standard deviations si of the noise vector compo-
nents. When assuming Decay Proportional Noise (see section 2.7.1) for the
frames, it translates to isotropic noise as is demonstrated in section 2.7.4. So
in this case we could spare the effort of section B.2.2 and use the simplified
versions (B.2) and (8.3) of the formula.

Using the anisotropic version of the formula, the estimate can be adapted
to every voxel by factoring in its TAC Ct, assuming Proportional Noise
(section 2.5) for the raw signal. Ct(i) are the intensities on the reconstructed
frames, after the reconstruction software has applied Combined Correction
(section 2.6.1), which is division by the wi (section 2.7). So the raw signal
was proportional to wi ·Ct(i), and its SD proportional to

√
wi · Ct(i). That

leads to SD ∼
√

Ct(i)
wi

after Combined Correction. So we use

si :=

√
Ct(i)
wi

(B.18)

for computation of ogconvert. It is safe to ignore the constant of proportion-
ality since formula (B.17) is indifferent to scaling of the si.
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B.2.4 Application to real and Simulator Data

In its version (B.8) the estimate depends on the triple t’ of true kinetic
constants which is unknown in the real situation. Hence we must replace all
its occurrences by the closest available approximation f’. This also affects
computation of b1, b2, b3 and v3 and leads to the final version (8.2), which
we use both for simulations and real PET data.

B.3 Limitations

Which simplifications in the design of k3var might lead to bad error esti-
mates?

1. Linearization. M has been replaced by its tangential space in t. So
its nonlinear nature might cause errors especially in areas of strong
curvature, notably close to the reference curve and its scalar multiples
which are singular points ofM. If we reduce the amount of simulated
noise, it downsizes the geometry of the noise cloud, making everything
smaller compared to M. On a magnified view, M comes closer to
being linear. This should improve precision of k3var.

2. Replacing t’ by f ’. This induces error arising from the difference
netween f and t. Like the previous, this type of error should go away
when we simulate less noise, since it brings f and t closer together.

3. Ignoring noise of Cr. While the Ct correspond to points on M, Cr
is part of the very definition of F and M. Its noise will therefore
produce a “noisy” version of M which is harder to approximate by
simulated Ct. By this mechanism, k3var should be sensitive to noise
of Cr. But the extent of this effect is unknown since we made no effort
to quantify it. It should respond selectively to increasing the reference
volume, which reduces the noise of Cr.

B.4 Adding up Mean Squared Projections

Given an orthonormal base b1,. . . ,bN relative to some inner product 〈·|·〉,
every vector x can be written in its “Fourier Decomposition” form:

x =
N∑
j=1

〈x|bj〉bj

Now consider a subset of the bj , for simplicity, b1, . . . , bk. Then the partial
sum

xp :=
k∑
j=1

〈x|bj〉bj
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is the projection of x on the subspace S spanned by b1,. . . ,bk. Its squared
length can hence be computed:

〈xp|xp〉 =
k∑
j=1

〈x|bj〉2

and the summands 〈x|bj〉2 happen to be the squared lengths of the projec-
tions of x on the bi. Hence these squared lengths add up to the squared
projection on S. Now apply this equation to a large number of vectors
x1, . . . , xM :

M∑
i=1

〈xip|xip〉 =
M∑
i=1

k∑
j=1

〈xi|bj〉2

Then exchanging the order of summation on the right side and dividing by
M leads to

1
M

M∑
i=1

〈xip|xip〉 =
k∑
j=1

1
M

M∑
i=1

〈xi|bj〉2

So the mean squared projections to the one dimensional subspaces add up
to the mean squared projection on S, this has been used to obtain equation
(B.13).
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Glossary

This contains terms and symbols of global use. Whatever is not here may
be defined in the chapter where you found it.

a measured TAC Ct, section B.1, Figures 4.2 and 8.1
abba-a (-b, -t) section 14.1.4
a,b-comparison sections 14.1.4, 14.1.9
AChE Acetylcholine Esterase, section 1.3
acquisition section 1.1.1
Acquisition Space section 9.2
activity section 2.1
activity (of AChE) section 1.5
AD Alzheimer’s Disease, section 1.2
Affine Normalization section 2.10
Assumption (1,. . . ,3) chapter 3
Assumption 4 section 3.2.2
atlas sections 9.1, 10.1
attenuation section 1.1
Becquerel section 2.1
Blood Input Function Cpl, section 3.1
Bq Becquerel, section 2.1
Cbl Cerebellum
Cerebellum 3500-2 section 10.3.1
Cerebellum Decay Fraction section 7.1.3
Ci section 3.2.2, formula (3.6)
coincidence section 1.1.1
COLOGNE sections 1.7, 3.3 ff.
Combined Correction section 2.6.1
Combined Weighting section 7.3
coregister section 2.10
‘corr’ section 2.8
Cortex Digest section 14.1.2
COV Coefficient of Variation, section 2.4
Cpl Blood Input Function, section 3.1
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Cr reference curve, section 3.2.2, formula (3.5)
Cr Block Simulation section 7.2.2
Cr Weighting section 7.3
Ct section 3.1
CT Computed (X-ray-) Tomography
Decay Correction section 2.6
Decay Fraction section 7.1.3
Decay Function section 2.6
Decay Proportional Noise section 2.7.1
Decay Weighting section 2.7
Dilation section 10.2
DiMI Diagnostic Molecular Imaging, section 2.11
Discretization Bias section 6.5
‘dist’ section 2.8, formula (2.10)
Double Random Simulation section 7.2.1
dynamic PET section 1.1.5
Early Frames section 9.2.1
ECAT7 section 2.2
empiric quotient section 7.1.4.2
equivalent volume section 7.1.5
Erosion section 10.2
Evaluation Format image format of Evaluation Space, section 9.2
Evaluation Space section 9.2
F section 4.1, formula (4.11)
f F(f ′), foot of perpendicular, Figures 4.2, 8.1
f’ triple found by NLS, section 4.1, Figures 4.2, 8.1
failrate 100% minus yield of section 10.5
failselection section 10.4
FDG section 1.1.2
filter kernel section 2.9
filter mask section 10.4.3
Fixed Cr Simulation section 7.2.3
flow perfusion, section 9.2
Flow Image section 9.2.1
frame section 1.1.5
framedev section 4.7.3
framing (-schedule) section 6.1.1
full brain mask section 10.1
full mask section 14.1.5
FWHM width of Gauss Filter, section 2.9
FWHM2 section 10.3
FWHM3 section 10.4.3
Gauss Filter section 2.9
High Intensity Zones section 10.6.1
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Hippo Hippocampus
Hippocampus Digest section 14.1.2
ideal reference region satisfies Assumption 4 of section 3.2.2
Infinity Image section 7.1.3.1
Input Function Cpl, section 3.1
intensity section 2.2
Intensity, Overall section 10.2
Interfile section 2.2
Interpolation Bias section 6.3
Iso framings section 6.1.1.2
isotropic noise sections 2.7.4, B.1
iter section 4.7.5
k k2+k3, sections 3.1, 4.5.1
k1,k2,k3 sections 1.5 and 3.1, Figure 1.2
k1r,k2r,k3r k1,k2,k3 of the reference region
k3-digest section 14.1.2
k3-gradient section B.1
k3dev section 8.1
k3diff section 4.7.6
k3r-correction section 3.2.3
k3r-induced bias section 6.4
k3var section 8.1
kr k2r+k3r

l1, l2 section 5.3
λ section 5.4
Late Frames section 9.2.1
Line of Response section 1.1
LOR Line of Response, section 1.1
Low Intensity Zones section 10.6.1
L,R-comparison sections 14.1.5, 14.1.9
M section 4.2
‘margin’ section 10.4.3
mask section 2.2
masked filtered frame section 10.4.3
MBq Megabecquerel, section 2.1
MCI Mild Cognitive Impairment, section 2.11
mCi milliCurie
Medium Zones section 10.6.1
modality (of PET) section 2.10
modality (of parametric im-
age)

section 4.7

Model Compliant belonging to M, section 4.2
Model Curve section 4.2
Model Function F , formula (4.11)
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MP4A section 1.4
MP4P section 1.4
MPIFNF Max Planck Institute for Neurological Research,

Cologne
MR Magnetic Resonance image
MRI Magnetic Resonance Imaging
Mutual Information section 2.8
n1 section 5.3
NLS Nonlinear Least Squares, chapter 4
noiseabs section 4.7.1
Noise-induced bias section 7.6
noiserel section 4.7.2
normalize section 2.10
Normalization Template section 9.2
ogconvert section B.2.2
Overall Intensity section 10.2
‘padding’ section 10.3
Partial Volume Effects section 1.1.4.2
perfusion section 9.2
PET section 1.1
p.i. post injection (of tracer)
postselection section 10.4
preselection section 10.4
Privileged Area section 10.5.1
Privileged Intersection Set section 10.6
Proportional Noise section 2.5
Put Putamen
Putamen 674+2 section 10.3.1
Putamen Decay Fraction section 7.1.3
P-value section 2.4
PVE Partial Volume Effects, section 1.1.4.2
q1 k1/k1r, section 4.1
‘qzoning’ section 10.4.3
reconstruction section 1.1.1
reference curve Cr, section 9.4, chapters 11 and 14
reference mask section 9.4
reference region sections 3.2.2, 9.4
‘regionsize’ section 10.3
regular point of M section 4.2
Rigid Body Coregistration section 2.10
ROI region of interest, section 2.2
S1 universal starting point, section 5.2
S2,. . . ,S5 starting points used in chapter 5 and A.3
S3 Input Function sections 6.1.2.1, 7.1.1

188



Sample (1,. . . ,4) section 2.11
sample variance formula (2.2)
scantime period during which coincidences are counted
SD Standard Deviation, section 2.4
Selection Bias section 10.4.1
‘shift’ section 2.8
shot noise section 1.1.4.1
simcr section 4.6.3
sinogram section 1.1.1
skip0 policy section 12.1
skip2 policy section 12.1
SNR Signal-to-Noise Ratio, section 4.7.2
SPM section 2.3
t F(t′), section B.1, Figures 4.2, 8.1
t’ “true” kinetic constants, Figures 4.2, 8.1
τ isotope half life, section 2.1
TAC (Time Activity Curve) section 1.1.5
Tanaka Bridge section 7.1.4
Tanaka quotient section 7.1.4.2
template sections 2.10, 10.1
Theorem (4.1,. . . ,4.5) section 4.6.1
Threshold(ing) section 10.2
Time Activity Curve (TAC) section 1.1.5
tracer section 1.1
“traditional” framing section 6.1.1.1
uff Unfiltered Feedback modality, section 4.7.4
VINCI section 2.3
volume section 2.2
Volume Correction Factor section 7.1.6
voxel section 2.2
wk formulae (3.14), (3.16)
yield section 10.5
zone section 10.4.3
Zuendorf Mask sections 1.7.1, 9.3.1 ff.
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