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Abbreviations 

:: fused to (in context of gene fusion constructs)
% (v/v) volume percent
% (w/v) weight/volume percent
3’ downstream region (of a gene or sequence)
5’ upstream region (of a gene or sequence)
µ micro
A adenine
aa amino acid
ABA abscisinic acide
ACC 1-aminocyclopropane-1-carboxylic acid
APS ammonium persulfate
ATP adenosine trisphosphate
At, A.th., Arabidopsis thaliana
Arabidopsis Arabidopsis thaliana
Arg arginine
AVG amino-vinyl glycine
avr avirulence
°C degrees Celsius
Ca2+ calcium ions
cfu colony formin units
cDNA                copy DNA
CEBiP               chitin oligosaccharide elicitor-binding protein
Col-0                 Arabidopsis thaliana ecotype Columbia-0
C-terminus carboxy terminus
dH2O de-ionized water
DMSO dimethyl sulfoxide
DNA desoxy ribonucleic acid
dNTPs               desoxyribonucleotides
dpi days post inoculation
DTT dithiothreitol
EDTA                ethylene diamine tetra-acetate
EFR EF-Tu receptor
EMS ethyl methane sulfonate, or methane sulfonic acid ethyl ester
ET ethylene
ETI effector-triggered immunity
flg flagellin
FLS2 flagellin sensing receptor 2
G guanine
h hour
H2O2 hydrogen peroxide
HO. hydroxyl radical
hpi hours post inoculation
HR hypersensitive response
HRP  horse radish peroxidase
JA jasmonic acid
K kilo
kb kilo base
kD kilo Dalton
l liter
LRR leucine-rich repeats
m milli
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M     molar (mol/l)
MAP4     mammalian microtubule-associated protein 4
MAPK         mitogen activated protein kinase
MeOH          methanol
min              minutes
mRNA       messenger RNA
n             nano
NADPH     Nicotinamide adenine dinucleotide phosphate
NASC        Nottingham Arabidopsis Stock Centre
Nb               Nicotiana benthamiana
Nt     Nicotiana tabacum
N-terminus     amino terminus
OD     optical density
Os     Oryza sativa
O2      oxygen
O2

−     superoxide anion
P     probability value
p35S     promoter of Cauliflower mosaic virus promoter 35S
PAGE     polyacrylamide gel electrophoresis
PAMP     pathogen-associated molecular pattern
PCR     polymerase chain reaction
pH     negative logarithm of proton concentration
PRR     Pattern-recognition receptor
Pfu     Pyrococcus furiosus
PM     plasma membrane
PTI     PAMP-triggered immunity
pv.     pathovar
RT-PCR     reverse transcription-polymerase chain reaction
RbohD     Respiratory burst oxidase homologue D
RbohF         Respiratory burst oxidase homologue F
RbohC         Respiratory burst oxidase homologue C
RLK     receptor-like kinase
RLP     receptor-like protein
ROS     reactive oxygen species
RNA     ribonucleic acid
rpm     rounds per minute
RT     room temperature
s     seconds
SA     salicylic acid
SD     standard deviation
SDS     sodium dodecyl sulphate
SEM     standard error of the mean
Taq     Thermophilus aquaticus
TBS     tris buffered saline
TBS-T     TBS with 0,5% Tween-20
TEMED     N,N,N',N'-Tetramethylethylenediamine
u     (enzymatic) unit
V     volt
v     volume
w     weight
WT     wild-type
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Summary

Reactive  oxygen  species  (ROS)  are  important  molecules  that  are  rapidly  generated  in 

response to abiotic and biotic stimuli and which regulate diverse physiological processes such as 

stomatal  aperture  and  cell  death.  Plant  immunity  involves  the  detection  of  pathogen-associated 

molecular patterns (PAMPs) through cognate pattern recognition receptors (PRRs). Perception of 

PAMPs induces an extracellular oxidative burst, which requires the function of the NADPH oxidase 

AtRbohD. However, little is known about the regulation of PAMP-elicited ROS and its role in plant 

PAMP-triggered immunity. We investigated ROS production mediated by the FLS2 receptor kinase 

responsible for the detection of bacterial flagellin (flg22) in Arabidopsis to elucidate components of 

early  flg22  signaling.  Rboh  proteins  are  assumed  to  predominantly  mediate  extracellular  ROS 

production in plants. 

We observed  AtRbohD to be rate  limiting for  flg22-elicited ROS production.  Moreover, 

bacterial  multiplication  monitored  at  early  stages  of  infection  with  a  disarmed  but  pathogenic 

Pseudomonas syringae strain indicated ROS accumulation important for plant immunity. 

A forward genetic screen led to the isolation of  rio1 to  rio5 mutants, all  of which were 

severely reduced in flg22-induced ROS production. Rio1, rio2 and rio3 carry mutations in FLS2 and 

its co-receptor  BAK1, respectively. The responsible gene mutations of  rio4 and  rio5 remain to be 

identified in a subsequent mapping approach.

A candidate gene approach revealed that flg22-stimulated oxidative burst was specifically 

inhibited in ethylene signaling mutants. Impaired ROS production in etr1 and ein2 mutants could be 

partially rescued by chemical interference with ethylene accumulation. Notably, wounding partially 

complemented the ROS reduced phenotype. Furthermore, accumulation of FLS2 but not BAK1 was 

in  part  dependent  on  ethylene  signaling.  Bacterial  multiplication  at  early  time  points  was 

significantly enhanced in ethylene signaling mutants indicating the importance of PAMP-triggered 

ROS production in plant defence responses. 
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Zusammenfassung

Reaktive  Sauerstoff  Spezies  (ROS),  deren  Generierung  durch  abiotische  und  biotische 

Stimuli initiiert wird, sind für die Regulierung diverser physiologische Prozesse wichtige Moleküle, 

wie zum Beispiel der Öffnung von Stomata oder dem Zelltod. Die pflanzliche Immunität basiert auf 

der Erkennung von Pathogen assoziierten molekularen Mustern (PAMPs) durch Muster Erkennungs 

Rezeptoren (PRRs). Die Perzeption von PAMPs elizitiert einen extrazellulären oxidative Burst, der 

die Funktion der NADPH Oxidase AtRbohD erfordert. Bisher ist wenig über die Regulierung PAMP-

induzierten ROS, sowie dessen Rolle in der planzlichen Immunität bekannt. Die Rezeptor Kinase 

FLS2 perzeptiert und bindet bakterielles Flagellin (flg22) und vermittelt dadurch die Produktion von 

ROS. In dieser Arbeit untersuchen wir die FLS2 induzierte ROS Generierung, um Komponenten, die 

diese  Signaltransduktion  vermitteln,  zu  finden.  Die  Produktion  extrazellulären  ROS  wird 

hauptsächlich durch Rboh Oxidasen bewerkstellingt und zeigt die Wichtigkeit dieser Proteine.  

Unsere  Untersuchung  ergab,  dass  AtRbohD  die  limitierende  Oxidase  für  den  flg22-

vermittelen oxidativen Burst ist. Überdies deuten unsere Ergebnisse darauf hin, dass ROS, welche 

durch  AtRbohD  generiert  werden,  entscheidend  zur  pflanzlichen  Immunität  beitragen,  da  die 

bakterielle  Multiplikationsrate  eines  abgeschwächt  pathogenen  Pseudomonas Stammes in  frühen 

Zeitpunkten der Infektion signifikant erhöht ist.   

Mittels einer genetischen Untersuchung konnten wir die Mutanten  rio1 bis  rio5 isolieren, 

die alle eine Reduktion der ROS Produktion aufweisen. Weitere Untersuchungen ergaben, dass rio1, 

rio2 und rio3 Mutationen in entweder FLS2 oder dessen Korezeptor BAK1 tragen. Die Gene, die die 

Mutationen aufweisen, welche für die Phänotypen von  rio4 und  rio5 verantwortlich sind, konnten 

bisher nicht identifiziert werden. Das deutet darauf hin, dass rio4 und rio5 neue Komponenten der 

Signaltransduktion repräsentieren. Weitere genetische Verfahren sind erforderlich, um die Identität 

der betroffenen Gene zu analysieren. 

In einem weiteren genetischen Ansatz mit bisher bekannten Mutanten konnten solche, die 

Ethylen insensitiv sind, als reduziert in der flg22-vermittelten ROS Produktion gefunden werden. 

Die Verminderung der ROS Generierung in etr1 und ein2 Mutanten konnte teilweise durch Ethylen-

Biosynthese  Inhibitoren  aufgehoben  werden.  Interessanterweise  wurde  die  Reduktion  der  ROS 

Generierung  in  verwundeten  Blättern  der  etr1 und  ein2 Mutanten  nicht  beobachtet.  Die 

Akkumulierung von FLS2 aber nicht von BAK1 war anteilig von der Ethylen Signaltransduktion 

abhängig. Die bakterielle Multiplikationsrate in frühen Zeitpunkten der Infektion war in  etr1 und 

ein2 Mutanten erhöht. Das impliziert die Relevanz der PAMP-vermittelter ROS Produktion in der 

pflanzlichen Immunität.
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1 Introduction

1.1 Reactive oxygen species (ROS)

Reactive oxygen species (ROS) are constantly produced and represent versatile molecules 

required for metabolic processes, signal transduction pathways, gene expression and responses to 

abiotic and biotic stress (Apel and Hirt, 2004; Pitzschke, 2006, Torres et al., 2006). Generation of 

ROS  occurs  in  different  intracellular  compartments,  predominantly  chloroplasts  but  also 

peroxisomes  and  mitochondria  (Apel  and  Hirt,  2004).  Partial  reduction  of  relatively  unreactive 

ground state dioxygen gives rise to superoxide anion (O2
-), hydrogen peroxide (H2O2) and hydroxy 

radical (.OH) generation, which herein is collectively referred to as ROS. The intrinsic cytotoxic 

character  of  ROS implies  a  tight  control  to  balance  an equilibrium in  order  to  avoid  oxidative 

damage of proteins, DNA and membrane lipids (Mittler et al., 2004). Enzymatic and non-enzymatic 

detoxification mechanisms thus are up-regulated upon ROS detection and ensure physiological ROS 

steady-state levels (Apel and Hirt, 2004). Abiotic and biotic stresses can perturb the physiological 

equilibrium between ROS production and scavenging leading to a rapid increase of intracellular and 

extracellular  ROS  levels.  Moreover  multicellular  organisms  intentionally  produce  ROS,  which 

indicates the importance of these chemicals. Plants employ a rapid ROS induction to adjust signal 

transduction pathways in order to combat adverse environmental factors (Lamp and Dixon, 1997). A 

fast and transient increase in ROS, also termed “oxidative burst”, represents one of the most rapid 

responses upon abiotic and biotic challenge (Wojtaszek, 1997; Bolwell et al., 1998). 

1.2 ROS generating systems 

Chloroplasts  represent  a  major  source  of  ROS generation.  During  photosynthesis  direct 

photoreduction of O2 leads to formation of ROS (Stitt, 1991). Abiotic stresses, such as high light 

intensities and extreme temperatures result in changes in the redox status of chloroplasts and causes 

elevated intracellular ROS levels. This may induce photooxidative damage if ROS accumulation 

exceeds the capacity of antioxidant systems (Foyer, 1994; Foyer and Noctor, 2005). Besides plastids, 

plants  posses  many potential  sources  to  generate  ROS,  which  can  synergistically  feed  into  one 

particular response mechanism. ROS accumulation following ozone exposure is partly mediated in a 

chloroplast dependent manner, but is also generated by membrane bound components (Joo et al., 

2005).  ROS generating  molecules  include  e.g.  apoplastic  peroxidases,  amine  oxidases  or  oxalat 

oxidases (Bolwell, 1998, Lherminier et al., 2009). However, plasma membrane resident homologs of 
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the  mammalian  phagocyte  NADPH  oxidase  2  (NOX  2),  Rboh  proteins,  are  assumed  to 

predominantly mediate extracellular ROS production in plants (Desikan et al., 1998; Keller et al., 

1998; Torres et al., 1998, Foreman et al., 2003; Kwak et al., 2003; Joo et al., 2005; Gapper and 

Dolan, 2006).  Pharmacological studies have often indicated Rboh oxidases to contribute to ROS 

production, however, only recently their role was genetically confirmed (Torres et al., 2002). 

The mammalian respiratory burst NADPH oxidase represents a multi protein complex. It 

encloses subunits gp91phox (NOX2) and p22phox that coexist in a heterodimer, the cytosolic proteins 

p67phox,  p47phox and p40phox pre-assembled in a heterotrimeric complex,  and a small  GTP-binding 

protein (Rac) (Wojtaszek, 1997; DeCooursey, 2003). ROS production is initiated upon assembling of 

the individual oxidase subunits, and in particular, the Rac protein serves as activator. ROS generation 

requires continuous phosphorylation events and persistent production of NADPH (DeCoursey and 

Ligeti, 2005). Complex disassembling terminates ROS accumulation and is presumptively mediated 

by  changes  in  the  cellular  redox  status  and  subsequent  membrane  depolarization.  Moreover, 

dephosphorylation events and a rapid protein turn over are presumed to have attenuating functions 

(DeCoursey and Ligeti, 2005).  

The Arabidopsis genome encodes 10 Rboh oxidases, of which  AtRbohC/RHD2,  AtRbohD, 

and AtRbohF are best characterized, and were found to be induced upon abiotic and biotic stresses 

(Torres and Dangl, 2005; Sagi and Fluhr, 2006). These oxidases carry 6 predicted transmembrane-

spanning domains containing an N-terminal extension that comprises EF-hand Ca2+ binding motifs 

and potential phosphorylation sites. At the C-terminus, Rboh proteins contain FAD and NADPH 

binding  domains  (Sagi  and  Fluhr,  2006;  Kobayashi  et  al.,  2007).  N-terminal  phosphorylation 

concomitant with Ca2+ binding to its EF-hand motifs  activates  plant oxidases (Ogasawara et al., 

2008). An electron transport chain, using NADPH as a donor and oxygen as an acceptor, generates 

O2
-,  which rapidly converts into H2O2 and  .OH either enzymatically or spontaneously (Lamp and 

Dixon, 1997). In addition, heterotrimeric G-proteins and small G-proteins contribute to activation of 

plant Rboh proteins (Kawasaki et al., 1999; Morel et al., 2004; Joo et al., 2005, Wong et al., 2007). 

Termination of ROS production is dependent on Rac-GTPases (Wong et al., 2007). In rice, the active 

state of Rboh oxidases is determined by the interaction with Rac1. Elevated cytoplasmic Ca2+ levels 

that are probably generated through a H2O2- mediated Ca2+ influx, disrupt this interaction, which 

consequently terminates ROS accumulation. 
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1.3 ROS signaling 

The redox state of chloroplasts serves as environmental sensor and integrates abiotic stimuli 

into physiological signaling events. Increased ROS, in particular H2O2, serves as a systemic signal. It 

activates  protective  mechanisms  in  neighbouring  chloroplasts  to  induce  and  control  systemic 

acquired acclimation to changing environments (Karpinski et al., 1999). Within a time frame of 5 

min to 1 h ROS signaling also occurs across cell boarders (Joo et al., 2005). Upon ozone exposure 

the rapid increase in ROS production becomes first visible in guard cells. ROS accumulation then 

spreads to the periphery of nearby epidermal pavement cells, before it fully expands to cytoplasm 

and chloroplasts in epidermis cells surrounding stomata. Chloroplast resident enzymes as well as 

Rboh oxidases are suggested to be responsible for ROS signal propagation (Joo et al., 2005).     

The stomatal complex is build by paired guard cells,  which are morphologically distinct 

from general epidermal cells and are mechanistically separate from surrounding cells (Assmann and 

Wang, 2001; Franks and  Farquhar,  2007).  Guard cells react  to external cues e.g.  photosynthetic 

effective  illumination,  and  respond  to  internal  signals  such  as  hormones  and  adapt  stomata 

conductance accordingly (Lawson, 2009). ROS contributes to stomatal closure in an ABA-dependent 

manner (MacRobbie, 1998; Pei et al., 2000; Schroeder et al., 2001). In particular H2O2 but also nitric 

oxide (NO) are required for ABA-induced stomatal closure (Kwak et al., 2003; Desikan et al., 2002; 

Neill et al., 2003). In addition to a possible synergistic function of ROS and NO, NO is likely to 

interact with H2O2 giving rise to peroxynitrite (ONOO-), another ROS assumed to have a role in 

plant defence responses (Delledonne et al., 2001, Neill et al., 2003). Stomatal closure is also induced 

upon plant perception of bacterial traits (Melotto et al., 2006), however, the underlying molecular 

mechanism yet remains to be elucidated.

Bacteria  and  yeast  sense  elevated  production  of  ROS  and  utilize  ROS  as  signaling 

molecules (D'Autéaux and Toledano, 2007). Likewise in plants, evidence arises that ROS serve as 

signaling molecules. In particular, H2O2 is thought to fulfil this function and to feeds into signaling 

pathways in a cell autonomous and/or non-autonomous manner (Desikan et al., 2001; D'Autéaux and 

Toledano,  2007, Miller  et  al.,  2009).  H2O2 represents a mild oxygen and can interact  with thiol 

residues in proteins (Neil et al., 2003). Modifications of thiols, in turn, might mediate recognition of 

H2O2, implicating certain proteins as potential ROS sensors (Apel and Hirt, 2004, Desikan et al., 

2005). Movement of H2O2 across membranes is presumed to be facilitated by aquaporins (Costet et 

al., 2002, Bienert et al., 2006, 2007).

H2O2 influences responses to abscisic acid (ABA) by activating plasma membrane located 

Ca2+ channels and modifies activity of phosphatases (Pei et al., 2000; Murata et al., 2001; Meinhard 

et al., 2001, 2002). Moreover, H2O2 stimulates mitogen-activated protein kinases (MAPKs; Desikan 

et al., 1999; Grant et al., 2000; Kovtun et al., 2000), increases expression of components involved in 

the phytochrome signaling pathway (Moon et al., 2003), activates serine/threonine kinases (Rentel et 

al.,  2004) and interacts with two-component histidine kinases (Desikan et al.,  2005). Microarray 
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analysis revealed more than 100 genes,  whose transcript levels  were upregulated in response to 

exogenous applied H2O2 (Desikan et al., 1998; Grant et al., 2000, Desikan et al., 2001). Interestingly, 

most genes code for components involved in stress responses or antioxidant mechanisms. 

1.4 ROS-mediated processes        

ROS is an important regulator of plant development (Rodriguez et al., 2002; Sagi et al., 

2004). It contributes to cell wall loosening necessary for organ expansion in root growth, root-hair 

formation and pollen-tube growth (Foreman et al, 2003;  Potocký et al., 2007). However, if organ 

formation  and  cell  growth  ceases,  ROS  contributes  to  processes  that  strengthen  cell  barriers 

conferring robustness e.g. to impede pathogen penetration  (Gapper and Dolan, 2006). This dual role 

requires a spatial and temporal regulation of ROS. 

Programmed  cell  death  (PCD),  initiated  as  part  of  plant  growth  and  developmental 

programmes  but  also  in  response  to  environmental  triggers  such  as  pathogen  attack,  is  often 

associated with a massive accumulation of ROS (Greenberg 1997; Pennell and Lamb, 1997; Van 

Breusegem and Dat, 2006). Relative rates of H2O2,  O2
- and ONOO- are suggested to drive PCD 

(Delledonne et al., 2001; Neill et al., 2006). In plant defence, rapid biphasic apoplastic accumulation 

of  ROS is  associated  with  pathogen-triggered  PCD,  potentially  to  prevent  spread  of  infections 

(Doke, 1985; Apostol et al., 1989; Apel and Hirt, 2004). However, only the second, prolonged peak 

of ROS generation is required for PCD. Function of the first, comparatively weak peak, is often 

stated to be an unspecific event, but less well understood (Lamb and Dixon 1997). Noteworthy, PCD 

requires concomitant downregulation of detoxification mechanisms, extracellular ROS generation 

alone proved not to be sufficient to trigger cell death (Croft et al., 1990, Apel and Hirt, 2004).

ROS detoxification and scavenging is mainly mediated by superoxid dismutase, ascorbate 

peroxidase,  catalase,  glutathione  peroxidase  and  peroxiredoxin,  as  well  as  ascorbic  acid  and 

glutathione, tocopherol, flavonoids, alkaloids and carotenoids (Mittler et al., 2004). ROS scavengers 

are present in almost all subcellular compartments, which is in agreement with differently localized 

sources of ROS generation and H2O2 lipid solubility. Scavenger transporters are central to maintain 

an equilibrium of the cellular redoxpotential (Foyer and Noctor, 2005). 
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1.5 Active plant   immune   responses  

Unlike animals, plants solely rely on innate immunity,  to combat bacterial infection (Hammond-

Kosack  and  Parker,  2003).  Phytopathogens  can  be  separated  into  biotrophs  and  necrotrophs. 

Biotrophs  gain  nutrients  from  living  host  plant  tissue,  whereas  necrotrophic  pathogens  access 

nutrients from dead or dying cells (Glazebrook, 2005). According to the life-style of pathogens plant 

defence responses need to be specifically adjusted to restrict colonization. For instance, PCD will be 

effective to combat biotrophic pathogens but will be less harmful to limit growth of necrotrophs. 

The  plant  innate  immune  system is  composed  of  several  layers.  In  addition  to  passive 

physical  barriers,  the  first  layer  of  active  defence  is  constituted  by plasma membrane  localized 

pattern recognition receptors (PRRs) that enable to distinguish between self  and non-self.  PRRs 

detect  microbes  on  the  basis  of  highly  conserved  constituents,  so  called  pathogen-associated 

molecular patterns (PAMPs) and subsequently initiate PAMP-triggered immunity (PTI; Boller and 

Felix,  2009).  PTI  encloses rapidly induced and transient  defence responses preventing  host  cell 

damage. However, pattern recognition not only refers to the detection of potential pathogens but is 

also assumed to account for perception of symbiotic traits (Zhao and Qi, 2008). In plant-symbiont 

interactions, PTI is attenuated and modified to allow colonization (Zhao and Qi, 2008). 

Pathogenic microorganisms have evolved secretion systems to deliver effector proteins into 

plant cells in order to evade PTI and to successfully colonize plant tissues (Chisholm et al., 2006). 

Effector proteins promote pathogenicity by suppressing PAMP-mediated defences and render plants 

into susceptible hosts. To counteract bacterial effectors plants developed a second layer of plant 

innate immunity. A range of primarily intracellular plant immune receptors, resistance (R)-proteins, 

mediate detection of secreted effector proteins. Recognition thereby occurs in a plant-cultivar and 

strain-specific  manner  and  induces  effector-triggered  immunity  (ETI).  The  largest  group  of  R-

proteins encode nucleotide-binding site leucine-rich repeat (NB-LRR) class of proteins (Dangl and 

Jones, 2001). NB-LRRs can be subdivided in Toll-interleukin (IL)-1 receptors (TIR-NB-LRR) and 

coiled-coil  domain  containing  R-proteins  (CC-NB-LRR).  ETI  includes  hypersensitive  response 

(HR)-type PCD to restrict pathogen access to water and nutrients and to avoid further spread of 

infection (Dangl and Jones, 2001; Glazebrook, 2005;  Chrisholm et al., 2006). Thus, in contrast to 

PTI, ETI causes plant cell damage.  

Plant innate immunity also includes generation of plant stress hormones such as salicylic 

acid (SA), jasmonic acid (JA) and ethylene, which are under negative cross-talk and whose function 

contribute to resistance (Dong, 1998; Kunkel and Brooks, 2002; Glazebrook, 2005). Generation of 

stress  hormones  enables  plants  to  acquire  systemic  resistance  impeding  secondary  infections 

(Durrant  and  Dong,  2004).  SA-mediated  signaling  confers  this  type  of  immunity  mostly  to 

biotrophic  microbes.  Induced  systemic  resistance,  a  responses  to  rhizobacteria,  appears  SA-

independent and is mediated through jasmonate and ethylene responsiveness (Pieterse et al., 1998). 
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1.6 Receptors mediating PAMP-triggered defence responses  

Most  PRRs  are  membrane  resident  and  belong  to  the  group  of  single  transmembrane  receptor 

kinases (RKs) or receptor proteins (Hammond-Kosack and Jones, 1996; Gomez-Gomez and Boller, 

2000; Shiu and Bleeker, 2001; Kunze et al., 2004). RKs build a large subgroup of molecules that 

represent  2.4% of  the  whole  Arabidopsis  protein  coding  genes  (Shiu  and  Blecker,  2003).  RKs 

comprise an N-terminal extracellular  signal sequence,  a transmembrane region and a C-terminal 

kinase domain. Whereas animals exhibit prevalence of receptor tyrosine kinases, in plants almost all 

receptor kinases carry serine/threonine specificity (Becraft, 2002). RKs can be classified due their 

extracellular domains, of which LRRs represent the most frequently found motif (Shiu and Bleeker, 

2001). LRR-RKs contribute to plant growth and development, e.g. CLAVATA 1, which is involved 

in meristem development (Clark et al., 1996), ERECTA contributing to organ shape (Torii et al., 

1996) as well as Brassinosteroid Insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1) that 

mediate perception of the plant hormone brassinosteroid (Li and Chory, 1997). Yet, only few LRR-

RKs have been functionally characterized. In Arabidopsis the Flagellin Sensing 2 (FLS2) and the 

EF-Tu-receptor (EFR) were identified to function as PRR (Zipfel et al., 2004; Zipfel et al., 2006). In 

rice Xa21 likewise act as PRR (Song et al., 1995).

PRRs posses specificity and sensitivity for respective ligand detection and target functional 

important,  and  highly  conserved  microbial  pattern  (Boller  and  He,  2009).  FLS2  detects  and 

physically interacts with flg22, the 22 amino acid elicitor active epitope of bacterial flagellin (Felix 

et al., 1999, Gomez-Gomez and Boller, 2000; Chinchilla et al, 2006). EFR mediates perception of 

elf18, which represents the active epitope of bacterial EF-Tu (Zipfel et al.,  2006). Unlike flg22, 

which is perceived by most plant species, elf18 is only sensed by Brassicaceae (Felix et al., 1999; 

Kunze et al., 2004; Robatzek et al., 2007;  Hann and Rathjen, 2007;  Takai et al., 2008). However, 

recognized  flagellin  epitopes  differ  in  a  plant  species-dependent  manner  (Bauer  et  al.,  2001; 

Chinchilla et al., 2006).

Characteristic  to  PRRs  RKs  is  the  occurrence  of  a  so  called  non-RD motif  within  the 

catalytic loop of the kinase domain, which implies co-receptor requirement (Dardick and Ronald, 

2006). BAK1 comprises an active RD kinase and belongs to a group of five somatic embryogenesis-

related  kinases  (SERKs;  Shiu  and  Bleeker,  2003;  Dardick  and  Roland  2006).  BAK  was  first 

identified as component involved in hormone singnaling.  It  associates with BRI1 and reciprocal 

activation of both proteins induces brassinosteroid signaling (Russinova et al., 2004; Wang et al., 

2008). However, BAK1 also functions in a brassinosteroid independent manner and controls host 

PCD in response to necrothrophic pathogens (Kemmerling et al., 2007). Moreover,  bak1 mutant 

plants show reduced responses to flg22 and elf18 (Chinchilla et al., 2007). Upon flg22 treatment, 

BAK1 rapidly forms an inducible complex with FLS2, required for full  activation of subsequent 

defence responses. However, BAK1 appears to control signaling triggered by several different LRR-
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RKs and presumptively represents  a  general  regulatory adapter  protein  (Chinchilla  et  al.,  2007; 

Kemmerling et al., 2007; Schwessinger and Zipfel, 2008). 

The biological importance of FLS2 in plant immunity is demonstrated by Arabidopsis fls2 

mutant plants, which are clearly more susceptible than wild-type (WT) when pathogenic bacteria 

were spray inoculated onto leaf surfaces (Zipfel et al., 2004). Moreover, flg22 recognition mediates 

stomatal closure, which attributes FLS2 as a crucial component for pre-invasive immunity (Melotto 

et al.,  2006).  EFR likewise confers resistance to pathogens, which is illustrated by an enhanced 

susceptibility of efr mutant plants, when challenged with  Agrobacterium tumefaciens (Kunze et al., 

2004; Zipfel et al., 2006).

In addition to FLS2 and EFR, molecules exhibiting a different architecture or N-terminal 

organization were identified to  operate as  PRRs. Lysine motif  (LysM) domains are essential  for 

fungal chitin detection (Zhang et al.,  2007). The Arabidopsis LysM-RK CERK1 mediates fungal 

chitin elicitor signaling (Miya et al., 2007). In rice, chitin detection is triggered by the LysM-receptor 

protein (RP) CEBiP (Kaku et al., 2006). Chitin serves as a classical PAMP and its detection triggers 

a  plethora  of  defence  responses  (Felix  et  al.,  1993,  Eckard,  2008).  Tomato  LeEIX2  represents 

another RP, which detects a Trichoderma viride derived ethylene-inducing-xylanase (EIX; Ron and 

Avni, 2004). 

1.7 PAMP mediated defence responses

PAMPs elicit  an array of defence responses, which can be separated by their respective kinetics 

(Felix et al., 1993; Boller and Felix, 2009).  Immediate early events occur within seconds to few 

minutes upon PAMP detection. Theses events include opening of ion channels to allow ion fluxes 

across  the  plasma  membrane  resulting  in  extracellular  medium  alkalinization.  Changes  in  the 

membrane potential are following, probably facilitated by a change in ion distribution and activation 

of Ca2+ channels (Felix et al., 1999). Moreover, a MAP kinase cascade is rapidly stimulated (Felix et 

al.,  1999;  Asai  et  al.,  2002).  In  response  to  flg22,  AtRbohD  is  phosphorylated  and  mediates 

immediate early ROS accumulation (Nühse et al., 2007, Benshop et al., 2007, Zhang et al., 2007). 

Further, NO generation follows PAMP detection (Melotto et al., 2006).

Early defence responses occur until 30 minutes upon PAMP detection and include induction 

of ethylene biosynthesis through activation of 1-amincyclopropane-1-carboxylate (ACC) synthase 

(ACS; Liu et al.,  2004). Transcript levels of almost 1000 genes are induced including the PRRs 

themselves and the BAK1 co-receptor, hence, establishing a positive feedback loop to accelerate or 

sustain PTI (Zipfel et al., 2004). A hallmark of FLS2 is its ligand dependent internalization. Within 

30 minutes upon flg22 treatment FLS2 endocytosis is initiated (Robatzek et al., 2006). 

Late PAMP responses represent callose deposition to strengthen plant cells and to counteract 
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bacterial  entry.  Moreover,  a  dose  dependent  arrest  of  seedling  growth  is  initiated  that  probably 

reflects a physiological switch from growth to a defence program (Boller and Felix, 2009). Induction 

of late responses can last from hours to days upon PAMP stimulation.  

Interestingly,  the  two  different  PAMP  perception  systems  FLS2/flg22  and  EFR/elf18, 

stimulate  an  almost  identical  set  of  defence  responses.  This  indicates  that  common  regulatory 

components mediate PRR elicitor signaling (Zipfel et a., 2004). 

Perception  of  endogenous  elicitors,  so  called  danger  associated  molecular  patterns 

(DAMPs), also contribute to innate immunity. DAMPs can constitute dissolved cell wall fragments, 

e.g. oligogalacturonides, which elicite a range of defence responses (D'Ovidio et al., 2004). DAMPs 

also represent components with a defined intracellular function, which when released outside of cells 

serve as danger signal (Rubartelli and Lotze, 2007), e.g. the release of the Arabidopsis Pep1 peptide 

from its precurser molecule PROPEP1 (Huffaker et al., 2006; Huffaker and Ryan, 2007). Protein 

processing  is  initiated  upon  cell  damage  or  PAMP recognition.  Pep1  initiates  elicitor  signaling 

through its LRR-RK PEPR1 and, moreover, serves as an endogenous amplifier of defence responses. 

It is also conceivable that such danger associated signaling occurs in response to volatile molecules, 

such as ROS.

1.8 Aim of thesis

ROS production represents one of the earliest responses upon pathogen attack and is indicated to 

serve as a major signal in diverse biological processes. Upon flg22 perception FLS2 elicits a rapid 

and transient production of ROS. Monitoring the generation of ROS enables therefore a quantitative 

and  temporal  resolution  of  PAMP-induced  responses  allowing  molecular  characterization  of 

components, which contribute, induce or down-regulate PTI. Although, phosphatases may operate in 

ROS attenuation  (Serrano  et  al.,  2007),  molecular  components  that  link  FLS2 activation  to  the 

various PAMP responses are little understood. To identify molecules important in FLS2 dependent 

ROS production we employed genetic analysis by a forward screen and a candidate approach. These 

approaches enabled characterization of  molecular  components  regulating immediate  early PAMP 

responses, and will further shed light on the biological relevance of the oxidative burst in PTI.
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2 Material and Methods

2.1 Material

2.1.1 Plant Material
Arabidopsis wild-type and mutant lines used in this study are listed below in respective tables.

Table 1. Wild-type   Arabidopsis     accessions used in this study   
Accession                                               Abbreviation                                                         Original source                 
Columbia-0 Col-0 J. Dangla

Landsberg-erecta-0 Ler-0 NASCb

____________________________________________________________________________________ 
a University of North Carolina, Chapel Hill, NC, USA
b Nottingham, UK

Table 2.  Mutant and transgenic   Arabidopsis     lines used in this study   
Mutant allele                                         Accession               description                             Reference/Source              
fls2 Col-0 T-DNA Zipfel et al., 2004
bak1-3 Col-0 T-DNA Chinchilla et al.,2007
pad4-1 Col-0 EMS Glazebrook et al.,1997
rbohD Col-0 dSpm Torres et al., 2002
rbohF Col-0 dSpm Torres et al., 2002
35S::RbohD Col-0 floral dipping Torres et al., 2005
etr1-3 Col-0 EMS Kieber et al., 1993
etr1-1 Col-0 EMS Bleecker et al., 1988
ein2 Col-0 EMS Guzmann,Ecker,1999
ctr1 Col-0 EMS Kieber, et al., 1993
eto1 Col-0 EMS Kieber et al., 1993
ein3 Col-0 EMS Kieber et al., 1993
35S::ERF1 Col-0 vacuum infiltration Solano et al., 1998
sid2-1 Col-0 EMS Wildermuth et al2001
nudt7-1 Col-0 T-DNA Bartsch et al., 2006
dnd1 Col-0 T-DNA Clough et al., 2000
nutd7 Col-0 T-DNA Bartsch et al., 2006
eds1 Col-0 FN Bartsch et al., 2006
nahG Col-0 floral dipping Lawton et al., 1995
npr1-1 Col-0 T-DNA Cao et al., 1997
abi1 Col-0 T-DNA Amstrong et al.1995
abi2 Col-0 T-DNA Koornneef et al., 1985
ost1 Col-0 FGT Mustilli et al., 2002
ost2 Col-0 FGT Mustilli et al., 2002
jar1 Col-0 EMS Staswick et al., 2002
coi1                                                           Col-0                         EMS                                         Feys et al., 1994                 

2.1.2 Pathogens
Pseudomonas syringae pv. tomato (Pto) strain DC3000 ΔAvrPto/ΔAvrPtoB (Rif50, Kan50) lacking 

two effector proteins were used throughout this study (Rosebrock et al., 2007).
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2.1.3 Oligonucleotides
Listed below are oligonucleotides used in this study that were synthesized by Invitrogen (Karlsruhe, 

Germany) or Operon Biotechnologies (Cologne, Germany). Working stocks were diluted to 10 pmol/

μl (=10 μM).

Primers used in this study
Primer                                                      Sequence (5' >     3')                                  _________   
FLS2 CGCGGATCCTTATTCTTGGATCAGCCGCG
RbohD ATGGCTCTCATATTGTTGCC
Actin TGCGACAATGGAACTGGAATG

2.1.4 Chemicals
Laboratory  grade  chemicals  and  reagents  were  purchased  from  Sigma-Aldrich  (Deisenhofen, 

Germany),  Roth  (Karlsruhe,  Germany),  Merck  (Darmstadt,  Germany),  Invitrogen  (Karlsruhe, 

Germany), and Serva (Heidelberg, Germany) unless otherwise stated.

2.1.5 Peptides
Peptides were synthesized by EZBiolab Inc. (Westfield IN, USA) with following sequences and 80 

% purity:

flg22 – QRL STG SRI NSA KDD AAG LQI A

elf18 – AcSKE KFE RTK PHV NVG TIG

2.1.6 Antibiotics
Kanamycin (Kan) 50 mg/ml in dH2O

Rifampicin (Rif) 100 mg/ml in DMSO

Stock solutions (1000x) were stored at -20° C. Aqueous solutions were sterile filtrated.

2.1.7 Media
Media were sterilized by autoclaving at 121° C for 20 min. For the addition of antibiotics and other 

heat labile compounds the solution or media were cooled down to 55° C. Heat labile compounds 

were sterilized using filter sterilization units prior to addition. 
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Pseudomonas syringae media

NYGA

Bactopepton 5.0 g/l

Yeast extract 3.0 g/l

Glycerol 20.0 ml/l

pH 7.0

For NYGA agar plates 1.5 % (w/v) bacto agar (Becton, Dickinson and Company, LePont de Claix, 

France) was added to the above medium.

Arabidopsis thaliana   media  

MS (Murashige and Skoog) medium

MS powder including vitamins 4.4 g/l

Sucrose 10.0 g/l

pH 5.8

For MS plates 0.8 % (w/v) bacto agar (Becton, Dickinson and Company, LePont de Claix, France) 

was added. MS powder including nitch vitamins (MSN) were purchased from Duchefa (Haarlem, 

Netherlands).

2.1.8 Antibodies
Listed below are primary and secondary antibodies used for western blot analysis. 

Primary antibodies                       Source                                 Dilution                             Reference        
α-FLS2  rabbit polyclonal 1:5 000 V. Göhrea

α  -BAK1                                  rabbit polyclonal                                   1:300                                         D. Chinchilla  b         
aMax Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany; 

synthesized by Eurogentec (Seraing, Belgium)
bUniversity Basel, Hebelstr. 1, Basel 4056, Switzerland

Secondary antibodies

Antibody Feature Dilution Source
rabbit anti-rabbit IgG-AP Alkaline phosphatase, 1:30 000 SigmaAldrich,  

conjugated Deisenhofen,  

Germany 
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2.1.9 Buffers and solutions 
Buffers and solutions used in this study are described below each method. If not otherwise stated, 

buffers were prepared in dH2O and aqueous solutions were sterilized by autoclaving at 121°C for 20 

min.

2.2 Methods

2.2.1 Maintenance and cultivation of Arabidopsis
Arabidopsis  genotypes  were  grown  on  soil  or  H2O  moistened  jiffy  pellets  (Jiffy  Products 

International  AS).  For bacterial growth assays plants  were grown for two weeks in a controlled 

environment  growth  chamber  under  short  day  conditions  (10  h  photoperiod,  light  intensity  of 

approximately 200µE/m2s, 21°C during light period and 20°C during darkness, and 60% humidity). 

For classical leaf ROS assay (Felix et al., 1999) plants were additionally grown for two more weeks 

under greenhouse conditions. 

2.2.2 Arabidopsis seed sterilization
Small quantities of  Arabidopsis  seeds were sterilized by ethanol treatment. Seeds were placed in 

columns (from DNA purification Kits, Qiagen, Hilden, Germany) and incubated in 70% ethanol for 

3 min. After centrifugation for 1 min at max. speed, the flow-through was discarded. The seeds were 

washed a second time in 70 % ethanol for 3 min, centrifugated for 1 min and the flow-through 

discarded. Finally, seeds were incubated in absolute ethanol for 1 min, centrifugated for 1 min at 

max. speed, and the flow-through discarded. For drying the column was opened under a hood for ~ 5 

min.  Large  quantities  of  Arabidopsis seeds  were  sterilized  by  chloride  treatment.  Seeds  were 

transferred to Eppendorf tubes or Falcon tubes and placed with open lids in an exsiccator. Then 5 ml 

of fumy 37 % HCl were added to 100 ml 12 % sodiumhypochloride solution (chlorine bleach) in the 

exsiccator so that yellow-greenish vapours were forming and the solution was bubbling heavily. The 

lid of the exsiccator was closed immediately and vacuum was generated to get an air tight seal. The 

seeds were incubated for 3-5 h. 
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2.2.3 Maintenance of Pathogens
Pseudomonas syringae pv. tomato strains were streaked onto selective NYGA agar plates containing 

appropriate antibiotics from -80° C DMSO stocks. Streaked plates were incubated at 28° C for 48 h 

before using the bacteria for spray inoculation.

2.2.4 Pathogen infection assays and quantification
Bacterial infection assays were performed as described recently (Zipfel et a., 2004).  Pseudomonas 

syringae pv. tomato (Pto) strain DC3000 ∆AvrPto/AvrPtoB (Rosebrock et al., 2007) was grown at 

28°C for  48 h on solid NYGA-media supplemented with Rifampicin (50 µg/ml in DMSO) and 

Kanamycin (50 µg/ml in dH2O) for selection. Two weeks old seedlings were spray inoculated with 

PtoDC3000 ∆AvrPto/∆AvrPtoB bacterial  solution (OD600 = 0.2 equal to  108 cfu/ml in  10 mM 

MgCl2, Silwet L-77 0.01%) and transferred to a growth chamber (10 h photoperiod, 22°C and 65 % 

humidity).  Samples  were  harvested  4  h,  24  h  and  3  days  after  pathogen  treatment.  Therefore, 

seedlings were surface sterilized and ground in 10 mM MgCl2 with a microfuge tube plastic pestle. 

Subsequently, samples were vortexed and serially diluted 1:10 before plated on solid NYGA media 

containing  antibiotics  as  described  above.  Plates  were  incubated  at  28°C  for  48  h  and  colony 

forming units were counted. Per Arabidopsis genotype 8 samples comprising each two seedlings 

were analyzed. Statistical analysis was calculated  transforming data to the logarithms of the count to 

meet  assumptions  of  ANOVA.  Subsequently,  a  pairwise  comparison  (Tukey  corrected)  was 

performed. Statistical significant differences were observed when the p-value was <0.05.

2.2.5 Bioassays to monitor PAMP responses

2.2.5.1 ROS detection in seedlings
Sterile  seeds  of  Arabidopsis  genotypes  were  sown  into  sterile  96-well  microtiter  plates 

(CulturePlates-96, Perkin Elmer), one seed per well, using 100 µl liquid MSN growth media per 

well.  Plants were grown for 14 days under short day condition in a light and climate controlled 

chamber before growth media were exchanged with a 10 nM flg22 containing solution. Upon 1h 

incubation flg22-solution was exhausted and 100 µl water were supplied for a 1 h incubation. ROS 

production was triggered by 100 nM flg22 applied in a mastermix containing 100 µl H2O, 20 µM 

luminol (Fluka) and 1 µg horseradish peroxidase (Sigma-Aldrich). Luminescence was measured by a 

luminometer (Centro LB 960 microplate luminometer, Berthold Technologies). 13 measuring cycles 

per 96-well microtiter plate are performed over a total time of 40 minutes. Per well, H2O2-dependent 

luminescence of luminol (Keppler et al.,1989) was recorded for 2 seconds. 
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2.2.5.2 ROS detection in mature plants
ROS detection in  A. thaliana leaf discs was performed as described recently (Felix et al., 1999). 

Briefly, plant leaves were cut into discs of equal sizes that were water incubated overnight. Slices 

were transferred into microtiter plates (CulturePlate-96 , Perkin Elmer) containing 50 µl H2O. ROS 

production is triggered by 1 µM flg22 applied in a mastermix containing 50 µl H2O, 20 µM luminol 

(Fluka) and 1 µg horseradish peroxidase (Sigma-Aldrich). Luminescence was measured as described 

2.2.5.1.

2.2.5.3 Ethylene measurement
Measuring ethylene biosynthesis was deduced from a protocol previously described by Bauer et al., 

2001. Seven 14 days old  in vitro  grown seedlings were transferred in glass tubes containing 1 ml 

H2O. After addition of 2 µM aqueous flg22-solution vials were rapidly closed with rubber septa and 

placed horizontally on a shaker (100 rpm). Ethylene, accumulating in the air phase, was measured by 

gas chromatography (GC MS) 4 h after flg22 treatment (injection volume: 100 µl). The amount of 

ethylene generated was normalized against the void-volume and relative peak area was integrated.

2.2.5.4.Membrane depolarization
Epidermal peels  of 5 week old plants were incubated in  5 mM KCl over night.  The measuring 

capillary- and electrode were filled with 5 mM KCl and perfusion was started with 5 mM KCl. The 

measuring electrode was injected into leave cells and resting potential were hold stable for at least 2 

min. Following, 5 min perfusion of a 10 nM flg22 solution containing 1 mg/ml BSA, 5 mM KCl 

were started. Membrane depolarization was measured for 20 min. 

2.2.5.5 Arrest of seedling growth
Growth  inhibition  of  seedlings  was  performed  as  described  by  Gomez-Gomez  et  al.,1999. 

Arabidopsis genotypes were grown on MSN plates for 7 days. Seedlings were transferred into 24-

well plates (Grainer bio-one) pre-filled with 500 µl liquid MSN media with the final concentration of 

100 nM and 1 µM flg22, respectively. After 7 days growth restriction was analyzed by determining 

the seedlings fresh wight.
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2.2.5.6 Analysis of Callose deposition
Callose  staining  was  performed  as  previously  described  (Gomez-Gomez  et  al.,  1999).  Callose 

deposition was analyzed in fully expanded leaves of 4- to 6-week-old  A. thaliana  plants. Leaves 

were syringae-infiltrated with H2O, 2 μM flg22 peptide solution and harvested after 20-24 h. The 

leaves were cleared in acetic acid/ethanol 1:3 (v:v) over night, subsequently washed in H2O and 

stained in aniline blue solution o/n. Stained material was mounted in 50 % glycerol and examined 

using  ultraviolet  epifluorescence  with  a  Zeiss  Axiophot2  fluorescence  microscope  (Carl  Zeiss 

MicroImaging GmbH, Jena, Germany). Aniline blue staining solution: 150 mM KH 2PO4, 0.01% (w/

v) aniline blue, pH9.5 (KOH pellets)

2.2.6 Biochemical Molecular biological methods

2.2.6.1 In-gel MAP kinase assay
Seedlings were grown on MSN plates for 7 days before transferred to 24-well plate pre-filled with 

500 µl liquide MSN growth media. After 10 days wells were replenished with 2 ml MSN. After 3 h 

incubation flg22 was added to a final concentration of 100 nM per well and samples were harvested 

5 min, 10 min, and 20 min upon treatment. Seedlings were dried and roots were cut before samples 

were frozen in liquid nitrogen. Frozen leaf tissue was ground in liquid nitrogen and 100 mg were 

solubilized in 100 µl of extraction buffer. After centrifugation at 14000 rpm for 20 min at 4°C, 30 µl 

of supernatant were mixed with 15 µl of loading buffer. Samples were boiled 5 min at 96°C and 

loaded on myelin basic protein (MBP) containing denaturing SDS-polyacrylamid gel. Proteins were 

separated  by SDS-gel.  Protein  gels  were  washed,  re-naturated  and  subsequently  incubated  with 

radioactively labelled 32P-ATP. Several washing steps followed. Radiolabeling was monitored using 

a  phosphor  imager  (Typhoon  8600  Phosphor  imager  und  Image  Eraser,  Molecular  Dynamics, 

Sunnyvale, USA). Image processing was performed with AdobePhotoshop8.0 (Adobe Systems Inc., 

San Jose, CA, USA).

11.25 % Separating Gels (2 mini gels):
Acrylamide: bis- (30 %:0.8 %) 3 ml
1.5 M Tris-HCl (pH 8.8) 2 ml
Water 2.4 ml
MBP (5 mg/ml) 0.4 ml
10 % SDS 0.08 ml
10 % APS 0.08 ml
TEMED 0.008 ml

Stacking gels (2 mini gels):
Acrylamide:bis- (30 %:0.8 %) 1 ml
0.5 M Tris-HCl (pH 6.8) 1 ml
Water 1.94 ml
10 % SDS 0.04 ml
10 % APS 0.17 ml
TEMED 0.005 ml
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Extraction buffer (20 samples):
1 M Tris-HCl (pH 7.5) 150 μl
0.5 M EGTA 30 μl
0.5 M EDTA 30 μl
1 M DTT 6 μl
0.1 M AEBSF (Pefabloc) 6 μl
Protease Inhibitor for plants (SIGMA) 80 μl
1 M NaF 30 μl
1 M Na3VO4 15 μl
1 M ß-glycerophosphate 150 μl
H2O 2503 μl

3000 μl

Loading buffer:
0.5 M Tris-HCl (pH 6.8) 2.5 ml
100 % glycerol 6 ml
10 % SDS 3.2 ml
BPB 1 mg
Water 20 ml

Washing steps (2 mini gels):
Buffers Buffer contents Washing steps   
F 5ml 1M Tris-HCl (pH 7.5) 3 x 30 min, RT , 45 rpm

100µl 1M DTT

20µl 1M Na3VO4

1ml 1M NaF

0.1g BSA

2ml 10 % Triton X 100

@ 200 ml with H2O

G 5ml 1M Tris-HCl (pH 7.5) 2 x 30 min, 4 °C, 45 rpm

200µl 1M DTT over night, 4 °C

20µl 1M Na3VO4

1ml 1M NaF

@ 200 ml with H2O

H 2.5ml HEPES 1 x 30 min, RT, 45 rpm

20µl 0.5M EGTA

400µl 3M MgCl2

100µl DTT

10µl 1M Na3VO4

@ 100 ml with H2O

Radioactivity  20ml buffer H  1 x 90 min, RT, 92 rpm

40µl 100µM ATP

2µl у-32P-ATP (5µCi/µl)

/ 2 mini gels

1 % phosphoric 11.76 ml phosphoric acid (86%) 3 x shortly, RT, 15 ml 45 rpm

acid @ 1 l with H2O 6 x 30 min, RT, 50 ml

H2O 20 min, RT, 50 ml 45 rpm
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2.2.6.2 Total protein extraction and Immunoblot analysis
Arabidopsis genotypes were cultivated, and, flg22/Mock-treatment was performed as described in 

2.2.5.1. Frozen seedlings were ground in liquid nitrogen and 100 mg were mixed with 2x protein 

extraction buffer (100 mM Tris-HCl (pH 6.8), 2 % SDS) and immediately incubated on a thermo-

shaker at 96°C for 10 min. Cell debris were pelleted by centrifugation (13000 rpm, 10 min) and 20 

µl of 5x loading buffer (2.5% bromphenol blue, 20% glycerol, 4% SDS, 10% DTT, 200mM Tris-

HCl pH 6.8) were applied to 80 µl of supernatant. Samples were boiled at 96°C for 5 min before 20 

µl  were  loaded  on  denaturating  7%  SDS-mini  gels.  SDS-Polyacrylamidgelelectrophoresis  was 

performed as described by Laemmli, 1970. Semi-dry blotting of the gels onto a PVDF membrane 

(Imobilon, Milipore) was performed in BIO-RAD Trans-Blot SD Semi-Dry transfer cell. Membrane 

was following blocked with a 5% (w/v) milk TBS-t (140 mM NaCl, 2.5 mM KCl, 25 mM Tris-HCl 

(pH 7.4), 0.05% Tween20) solution for 1 h. Subsequently, primary antibodies, α-FLS2 and α-BAK1, 

respectively, were applied for over night incubation at 4°C. Secondary alkaline phosphatase-coupled 

antibody was applied at least for 1 h. For detection blots were incubated with chemi-luminescence 

detection solution (CDP-Star, Roche Diagnostics GmbH) and light emission was documented on x-

ray films (Hyperfilm, Amersham Pharmacia). For a protein loading control membranes were stained 

with coomassie dye solution (0.25% coomassie brilliant blue, 50% MeOH) for 5 min before imaging 

for documentation.

2.2.6.3 Total RNA extraction and  Reverse-Transcription Polymerase Chain 
Reaction (RT-PCR)
Arabidopsis genotypes were cultivated, and, flg22/Mock-treatment was performed as described in 

2.2.5.1.. 100 mg of frozen seedlings were ground. RNA was extracted with the RNeasy Plant Mini 

Kit (Qiagen, Hilden, Germany) according to manufacturer’s instructions.  All RNA extracts were 

adjusted to the same concentration with RNAse free H2O. RT-PCR was carried out in two steps using 

SuperScript™  II  RNase  H-  Reverse  Transcriptase  (Invitrogen)  for  first  strand  cDNA synthesis. 

Reaction mixture was incubated at 42°C for 50 min before enzyme was heat inactivated at 70°C for 

15 min. For subsequent PCR reaction, 1µl of above RT-reaction was used as cDNA template.

2.2.6.4 Isolation of genomic DNA from Arabidopsis
Genomic DNA from Arabidopsis leaf tissue was isolated according to Edward’s isolation protocol 

(Sambrook and Russel, 2001). Edwards buffer: 200 mM Tris/HCl (pH7.5), 250 mM NaCl, 25 mM 

EDTA, 0.5% (w/v) SDS
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2.2.6.5 Polymerase Chain Reaction (PCR)
Standard PCR reactions were performed using Taq DNA polymerase (Amplicon) according to the 

manufacturer’s  instructions.  All  PCR reactions  were  carried  out  using  a  Peltier  Thermal  Cycler 

PTC-225 (GMI Inc.) and reaction mixture typically contained 2µl template DNA (genomic, plasmid) 

in a final volume of 20 µl. PCR program was adjusted to needs of applied primers and template 

DNA used. 
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3 Results

3.1.1 PAMP-triggered ROS production requires   At  RbohD important   
for immunity

ROS production in response to PAMPs is a transient event that is detectable approximately 

three minutes after elicitation, reaches its maximum at 10 - 15 minutes and declines to background 

levels after about 20 - 30 minutes. Monitoring ROS production over time was so far realized by 

excised leaves of adult plants (Felix et al., 1999). Here, we modified this assay to measure flg22-

induced oxidative burst in whole seedlings. Individual seedlings did not uniformly generate ROS, 

therefore, ROS signatures were synchronized by a pre-treatment with a low dose of flg22, subliminal 

to trigger detectable ROS production. Following a recovery period an oxidative burst was provoked 

by addition of above threshold flg22 concentration (Suppl. Fig. 1). This procedure ensured a robust 

ROS performance and distinguished mutant  oxidative burst  signatures from  WT  ROS responses 

(Fig. 1A). While Col-0 WT exhibited a rapid increase of ROS production fls2 mutants did not show 

any significant  elevation of  ROS, and  bak1 mutants  were severely lowered in  ROS production, 

which is in agreement with previous findings (Gomez-Gomez and Boller 2000; Chinchilla et al, 

2007).
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Fig.  1. Flg22-stimulated  oxidative  burst  and  FLS2  accumulation  in  seedlings. A,  B)  Induced  ROS 
production was monitored in seedlings of the indicated genotypes over time. Depicted are average values (n=12); bars represent +/-
SD. Similar results were obtained in multiple independent experiments. RLU, relative light units. C) FLS2 immunoblot analysis. 
Coomassie staining is shown for equal loading.
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AtRbohD and  AtRbohF were reported to regulate plant  defence responses (Torres et  al., 

2002) and a recent report provided evidence that AtRbohD alone is sufficient for the PAMP-triggered 

oxidative burst (Zhang et al., 2007). We tested both loss-of-function NADPH oxidases individually 

and our results confirmed that AtrbohD, but not AtrbohF, mutants are impaired in flg22-elicited ROS 

production (Fig. 1B). Moreover, Arabidopsis seedlings overexpressing AtRbohD accumulated clearly 

higher ROS levels (Fig. 1B; Suppl.Fig. 2). FLS2 steady-state levels remained unaltered in AtrbohD 

and  35S::AtRbohD lines  (Fig.  1C),  which  indicates  AtRbohD  as  the  essential  and  rate-limiting 

component of the flg22-induced oxidative burst. 

Although a hallmark of PAMP responses, the role of early induced ROS accumulation in 

plant  defence  is  still  unclear.  In  addition  to  its  antimicrobial  properties,  ROS  might  serve  as 

signaling molecules promoting defence responses in either a cell autonomous or non-autonomous 

manner.  To  elucidate  the  contribution  of  ROS  production  in  plant  immunity,  we  investigated 

bacterial growth in AtrbohD and 35S::AtRbohD lines. Due to the rapid and transient nature of early 

PAMP responses, we reasoned that differences in pathogen proliferation might only become apparent 

at  early  infection  time  points  and  upon  surface  inoculation  with  a  virulent but  disarmed 

Pseudomonas syringae pv.  tomato DC3000 (PtoDC3000  ΔAvrPto/ΔAvrPtoB) strain. We detected 

slightly but significantly enhanced bacterial proliferation in both AtrbohD loss-of-function mutants 

and 35S::AtRbohD overexpression lines (Fig.2). Enhanced susceptibility was not observed at late 
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Fig. 2. Bacterial multiplication of PtoDC3000 ΔAvrPto/ΔAvrPtoB. Bacterial growth of indicated seedlings at 
4 hours post infection (hpi) and 1 day post infection (dpi). Shown are average values of three independent experiments (n=16); 
bars represent +/-SD. Letters indicate significant differences p < 0,05. 



time points (Suppl. Fig. 3). This provides evidence that PAMP-triggered ROS production by the 

action of AtRbohD contributes to early stages of plant immunity. Since both loss of AtrbohD function 

and AtRbohD overexpression resulted in enhanced susceptibility, efficiency of plant defence seems 

to be affected by generally interfering with PAMP-triggered ROS levels.

3.1.2 Concluding remarks

We observed that ROS production of individual plants is subject to a strong natural variance under 

our experimental conditions, which is reflected by varying amounts of ROS produced upon elicitor 

treatment. Applying  a  low  dose  of  flg22  as  pre-stimulus  led  to  synchronized  ROS  signatures 

probably by slightly inducing molecular components necessary for flg22 signaling (Asai et al., 2002; 

Zipfel et al., 2004).

ROS derived from AtRbohD and AtRbohF appear to contribute to plant immunity as well as 

both ROS sources were reported to synergistically act in stomata function (Torres et al., 2002; Kwak 

et al.,  2003; Zhang et al.,  2007). Despite a functional  overlap of  AtRboh oxidases,  in  particular 

AtRbohD is phosphorylated and activated upon flg22 detection (Nühse et al., 2007; Zhang et al., 

2007). We tested AtrbohD and AtrbohF for their flg22 responses and could confirm AtRbohD to be 

the  responsible  oxidases  for  the  PAMP triggered  oxidative  burst.  Further,  we  monitored  ROS 

generation of  AtRbohD overexpressing lines and observed that flg22-elicitation caused enhanced 

ROS production whereas FLS2 steady-state levels remained unaltered. This suggests  AtRbohD to 

control and regulate the precise amount of ROS generated upon elicitor detection and attributes this 

oxidase to be rate-limiting for the immediate early ROS response. 

The contribution of ROS produced by AtRboh proteins to plant immune responses was little 

understood so far (Torres et al., 2002). Monitoring early time points following surface inoculation of 

virulent  but  disarmed  pathogens,  we  observed  significantly  enhanced  bacterial  growth  rates  in 

AtrbohD mutant plants suggesting that extracellular ROS contributes to early stages of infection. 

Loss  of  ROS  generation  might  impair  signaling  processes  important  for  plant  immunity. 

Surprisingly,  we  observed  likewise  enhanced  bacterial  multiplication  rates  in  overexpressing 

AtRbohD plants indicating that not only a loss of ROS production but also enhance accumulation of 

ROS attenuates immune responses. Apparently, a dosage dependent generation of ROS is essential to 

properly induce signal transduction pathways that in turn antagonize bacterial multiplication. Thus, 

in  loss  of  AtrbohD function  or  35S::AtRbohD overexpressing  lines  the  fine-tuning  of  defence 

responses requiring ROS signaling might be dis-balanced. This hypothesis is supported by pathogen 

induced phenotypes of mutant OXI1, a kinase assumed to contribute to PTI and ETI, and, required 

for activation of signaling MAP kinases MPK3 and MPK6 (Rentel et al., 2004). ROS generated by 

AtRbohD partially drives expression of OXI1. Loss of oxi1 function and OXI1 overexpressing lines 
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both  exhibit  enhanced  susceptibility  upon bacterial  infection  (Petersen  et  al.,  2009).  Given  that 

AtRboh proteins  act  upstream of  OXI1 it  illustrates  the  importance  of  precisely regulated  ROS 

accumulation and indicates ROS as signaling molecule required to activate defence pathways. 

Moreover, driving the AtRbohD oxidase via the CaMV 35S promoter results in 40% increase 

of expressed protein (Torres et al., 2005). Hence, triggering an oxidative burst presumptively causes 

enhanced consumption of cofactors and ions. In addition, NADPH conversion results in cytoplasmic 

pH changes and acidification, which might affect the activity of signaling molecules (Pugin et al., 

1997).  Signal  transduction  pathways  required  to  efficiently  mount  immune  responses  might  be 

disordered  or  altered  in  AtRbohD  overexpressing  plants  highlighting  the  precisely  organized 

signaling machinery that mediates plant immunity.

Supplementary figures
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Suppl. Fig. 1. Synchronization of flg22 stimulated oxidative burst in seedlings. A) Induced ROS production 
without pre-stimulus application monitored over time. B) Induced ROS production with pre-stimulus application monitored over 
time. Depicted are ROS signatures of six individual seedlings; Similar results were obtained in multiple independent experiments. 
RLU, relative light units.
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Suppl. Fig. 2. RbohD mutants and overexpression lines. AtRbohD transcript accumulation was analyzed by RT-
PCR in the indicated genotypes. Actin is shown as a control. Results were obtained in three independent experiments.

Suppl.  Fig.  3. Bacterial  multiplication at  prolonged time post  infection. Bacterial  growth  of  indicated 
seedlings infected with PtoDC3000 ΔAvrPto/ΔAvrPtoB at 1 and 3 day post infection (dpi). Shown are average values of three 
independent experiments (n=16); bars represent +/-SD. Letters indicate significant differences p < 0,05. 
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3.2.1 Identification of mutants reduced in ROS production

To  identify  molecular  components  that  mediate  FLS2  dependent  ROS  production,  we 

conducted a genetic screen for Arabidopsis mutant that display altered ROS signatures in response to 

flg22  treatment.  A gamma  irradiated  population was  screened  for  candidates  with  altered  ROS 

production. Out of 5000 M2 seeds 192 potential mutants were selected exhibiting either reduced or 

impaired  ROS  generation  (Suppl.Fig.4). Re-screening  of  candidates,  however,  revealed  a  high 

variability in ROS production of M3 and M4 seedlings, hence, previous observed ROS phenotypes 

could  not  robustly  be  confirmed.  We  therefore  inspected  a  pre-screened  EMS-mutagenized 

population and adjusted our screening procedure accordingly. 

Out of 20.000 mutagenized M2 seedlings, 600 were initially selected for impaired flg22-

triggered inhibition of anthocyanin accumulation (kindly provided by Y. Saijo). Five out of initially 

14 M2 candidates were confirmed in the M3 and M4 generation to exhibit a reduced flg22-elicited 

oxidative burst and were termed reduced in oxidative burst (rio; Fig. 3). A strong reduction in flg22-

triggered ROS accumulation was observed in rio1. Impaired oxidative burst was observed in rio2 to 

rio5. None of the selected candidates showed any obvious developmental alterations. 
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Fig. 3. Flg22-stimulated oxidative burst in rio mutants. Induced ROS production was monitored in seedling rio 
mutants.  Depicted  are  average  values  (n=12);  bars  represent  +/-SD.  Similar  results  were  obtained  in  multiple  independent 
experiments. RLU, relative light units.
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3.2.2 Flg22-dependent responses in   rio   mutants  

To gain first insights into molecular components altered in  rio mutants additional PAMP-

induced responses were monitored (Table 3; Suppl. Fig. 5). We observed that flg22-elicited ROS 

production  in  mature  leaves  of  rio1 was  impaired,  whereas  rio2-5 showed  reduced  ROS 

accumulation in response to flg22. Upon elf18 application, mature leaves of all rio mutant responded 

with  decreased  ROS  accumulation.  This  indicates  that  rio mutants  were  altered  in  molecular 

components that account for flg22- and elf18-mediated ROS production and were independent from 

developmental  stages.  Because  rio1 did  not  produce any ROS in response to  flg22,  other  early 

PAMP responses  were  analysed  and  revealed  WT-like  membrane  depolarization  and  ethylene 

induction in response to flg22 (Fig. 4A,B). Thus, rio1 appeared to be particularly impaired in early 

PAMP-dependent ROS accumulation.  Monitoring late  flg22-elicited responses revealed that  rio1 

displayed WT-like arrest of seedling growth as well as WT-like callose deposition. Likewise, rio2-5 

responded with callose deposition in a WT-like manner when treated with flg22. Analysing the arrest 

of seedling growth in  rio2 and  rio3,  these mutants displayed reduced sensitivity when 100 nM of 

flg22 were applied and appeared to be non-responsive to 1 µM of flg22.  Rio4 and  rio5 exhibited 

slightly decreased dose dependent fresh weight reduction when treated with 100 nM or 1 µM of 

flg22, respectively.  

Table 3. PAMP triggered responses in rio mutants. 

mutants
“reduced in 

oxidative 
burst”

ROS in 
seedlings

ROS in mature plants arrest of 
seedling 
growth

callose 
deposition 
in mature 

plants
flg22 flg22 elf18 flg22 flg22

rio1 abolished abolished reduced WT WT

rio2 reduced reduced reduced reduced WT

rio3 reduced reduced reduced reduced WT

rio4 reduced reduced reduced slightly reduced WT

rio5 reduced reduced reduced slightly reduced WT

Obvious  molecular  candidates  for  the  rio mutants  represent  FSL2,  BAK1 and  AtRbohD, 

which were therefore sequence analysed.  Rio1,  2 and  3 carried mutations within  FLS2 and  BAK1 

respectively, whereas rio4 and rio5 displayed WT-like sequences for all genes tested. Rio1 exhibits a 

G to A nucleotide exchange in position 280 bp of the FLS2 coding region. This nucleotide exchange 

results in an amino acid change from Gly to Arg within the N-terminal domain of yet unknown 
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function, upstream of the LRR domain and downstream of the signal peptide (Gomez-Gomez and 

Boller, 2000). Subsequent immunoblot analysis revealed WT-like FLS2 accumulation in  rio1 (Fig. 

4C).  Rio1 represents a new mutant  fls2 allele affected in a region that appears to be specifically 

required to mount flg22-mediated ROS production.

BAK1 genomic DNA sequence analysis of rio2 revealed an G to A base change at position 

955 bp that causes a Gly to Arg exchange. This mutation effects a donor sequence of the 4th GT-AG 

type intron in between regions coding for LRR domains. Mutations that alter this conserved donor 

sequence  probably  impair  intron  recognition  that  might  result  in  aberrant  splice  products.  In 

agreement,  immunoblot analysis  displayed no BAK1 protein accumulation in  rio2  mutants (Fig. 

4D ). Sequence analysis of rio3 revealed an G to A base exchange in position 518 bp at the very N-

terminus  of  the  BAK1 coding  sequence.  This  mutation  causes  a  pre-mature  stop-codon  and 

accordingly no BAK1 protein accumulation was detected in immunoblot analysis (Fig. 4D). Thus, 

flg22-triggered responses of rio2 and rio3 were similar reduced than bak1-3 mutants (Chinchilla et 

al., 2007). 

Sequence analysis of  rio4  and rio5 mutants revealed WT-like  FLS2,  BAK1 and  AtRbohD 

sequences. Therefore, rio4 and rio5 likely encode new components of FLS2-activated and AtRbohD-

mediated ROS production.

37

Fig. 4.  Early flg22-triggered responses and immunoblot analysis in  rio mutants.  A) flg22-mediated 
membrane depolarization in rio1. Depicted are average values (n=3);  bars represent +/-SD. B) flg22-triggered ethylene induction 
in mature rio1 mutant leaves. Depicted are average values (n=3):  bars represent +/-SD. C) FLS2 immunoblot analysis. Coomassie 
staining is shown for equal loading. D) BAK1 immunoblot analysis. Coomassie staining is shown for equal loading.
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3.2.3 Concluding remarks

A population consisting of pooled mutagenized M2 seedlings were screened and candidates 

impaired in ROS production were selected. However, a high variability in ROS generation impeded 

robust  confirmation  of  previous  observed  phenotypes,  probably  causes  by a  limited  number  of 

technical replicates. Using a population of mutagenized M2 plant lines, allowing an enlarged number 

of  replicates,  we  could  robustly  identify  candidates  that  exhibit  altered  ROS  production.  This 

indicates our method to be suitable to investigate ROS signatures. 

Three of the identified mutants correspond to established pathway components.  Obvious 

molecular  candidates  represent  FLS2,  BAK1 and  AtRbohD.  Distinct  mutations in  FLS2 result  in 

flg22-insensitivity and illustrate requirement of the FLS2 receptor for ROS production. The mutant 

alleles fls2-17 and fls2-24 are affected in flg22 elicitor binding, hence accumulation of flg22-elicited 

ROS is impaired (Gomez-Gomez et al., 2001). The fls2 null allele similarly reflects the requirement 

of  FLS2  for  activating  the  flg22  response  pathway  (Chinchilla  et  al.,2006).  The  functional 

importance of BAK1 for stimulating PAMP-triggered responses is shown by loss of  bak1 function 

alleles.  Bak1-3 and  bak1-4 T-insertion lines are clearly impaired in early and late PAMP response 

signaling (Chinchilla et al.,  2006). Both  bak1-3 and  bak1-4 alleles remain partial flg22 sensitive 

possibly  resulting  from  functional  redundancy  with  other  SERK  family  members  (Shiu  and 

Bleecker, 2003; Chinchilla et al., 2007). In addition, complex formation of FLS2 and BAK1 proved 

to  be essential  for  full  activation of  flg22-triggered defence responses (Chinchilla  et  al.,  2007). 

AtRbohD is essential for flg22-triggered ROS production exhibiting requirement of this oxidase for 

the FLS2 signaling pathway (Zhang et al., 2007).

Inspected  population  was  pre-screened  for  flg22-mediated  inhibition  of  anthocyanin, 

representing  a  late  flg22  response  before  we  screened  for  mutants  exhibiting  aberrant  ROS 

generation. This might have increased the likelihood to identify FLS2 and BAK1 alleles and probably 

decreased the possibility to identify novel molecules involved in early defence responses. Sequence 

analysis revealed  rio1,  rio2 and  rio3 to be mutated in  FLS2 or  BAK1,  respectively. None of the 

selected mutants exhibits defects in the AtRbohD sequence, assuming this screening approach not to 

be saturated or suggesting that due to the pre-screening procedure the possibility to identify early 

components, such as  AtRbohD, were reduced. However, identification of  rio4 and  rio5, probably 

representing  yet  unknown  components  involved  in  flg22-elicited  ROS  signaling,  disprove  this 

assumption.  Moreover,  redundant  action  of  several  molecules  contributing  to  the  ROS pathway 

might have masked the identification of novel signaling components. 

38



Supplementary figures
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Suppl. Fig. 4. Flg22-stimulated oxidative burst in M2 mutant candidates. Induced ROS production was 
monitored in seedlings  of a gamma irradiated population. 192 candidates were identified. Signatures were grouped into typeA 
(reduced  ROS production)  and typeB (impaired ROS production).  Depicted  are  average  values;  bars  represent  +/-SD.  RLU, 
relative light units.
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Suppl. Fig. 5. Late flg22-triggered responses in  rio mutants.  A) Flg22-induced seedling growth arrest of the 
indicated genotypes was measured in the absence or presence of 100 nM or 1 µM flg22. Bars represent +/-SD. Similar results were 
obtained in three independent experiments. B) Callose deposition in rio mutants upon flg22 treatment. Similar result were obtained 
in two independent experiments.

0

20

40

60

80

100

120

140

160

180

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

Col-0 fls2 rio1 rio2 rio3 rio4 rio5

%
 s

ee
d

lin
g

s 
g

ro
w

th

rio1 rio2 rio3 rio4 rio5fls2Col-0

A

Col-0 fls2

rio3rio2rio1

rio4 rio5

B

%
 s

ee
dl

in
g

gr
ow

th

0

20

40

60

80

100

120

140

160

180

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

Col-0 fls2 rio1 rio2 rio3 rio4 rio5

%
 s

ee
d

lin
g

s 
g

ro
w

th

rio1 rio2 rio3 rio4 rio5fls2Col-0

0

20

40

60

80

100

120

140

160

180

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

Col-0 fls2 rio1 rio2 rio3 rio4 rio5

%
 s

ee
d

lin
g

s 
g

ro
w

th

0

20

40

60

80

100

120

140

160

180

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

m
o

ck

10
0n

M

1µ
M

Col-0 fls2 rio1 rio2 rio3 rio4 rio5

%
 s

ee
d

lin
g

s 
g

ro
w

th

rio1 rio2 rio3 rio4 rio5fls2Col-0

A

Col-0 fls2

rio3rio2rio1

rio4 rio5

B

%
 s

ee
dl

in
g

gr
ow

th



3.3.1 ROS production in response to flg22 is diminished in ethylene 
insensitive mutants

Although flg22-induced resistance to bacterial infection appeared independent of individual 

hormone signaling pathways known to play key roles in plant defence (Zipfel et al, 2004), recent 

studies support a role for salicylic acid (SA) in PAMP-triggered immunity (Wang et al., 2009). To 

address  the  possible  involvement  of  hormone,  redox  and  kinase  signaling  pathways  regulating 

individual PAMP responses, and, to dissect the oxidative burst, we monitored flg22-induced ROS 

production in a collection of known mutants (Suppl. Tab. 1). Most mutants tested were still able to 

mount an WT-like oxidative burst. However, slight changes in ROS signatures were observed in 

nahG plants and mutant ABA signaling components. Rcd1, a ROS-responsive lesion-mimic mutant 

and stress-induced ethylene biosynthesis regulating component (Overmayer et al., 2000) displayed 

reduced flg22-elicited ROS production. Further, a cyclic nucleotide-gated ion channel appears to 

contribute to flg22-triggered ROS generation, since dnd1 mutant seedlings, known to be impaired in 

mounting HR, displayed reduced oxidative burst (Clough et  al.,  2000).  Most  severely,  ethylene-

insensitive mutants displayed a pronounced decrease in flg22-triggered ROS levels (Fig. 5A). 

A strong allele of the ethylene receptor mutant, etr1-1, was almost non-responsive, whereas 

a  partial  insensitive  allele,  etr1-3,  was  strongly  reduced  in  flg22-elicited  oxidative  burst. 

Additionally,  flg22-mediated  ROS  production  was  nearly  abolished  in  the  ethylene-insensitive 

mutant ein2-1. Ethylene is a known component of plant immunity, and also accumulates upon flg22 

treatment  (Gomez-Gomez  et  al.,  1999).  Its  perception  is  mediated  by  a  family  of  membrane 
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Fig. 5. Flg22/FLS2 function in ethylene-insensitive mutants.  A) Induced ROS production was  monitored in 
ethylene signaling mutants over time. Depicted are average values (n=12); bars represent +/-SD. Similar results were obtained in 
multiple independent experiments. RLU, relative light units. B) Flg22-induced MPK6 and MPK3 activation was determined by in 
gel MAP-kinase assays at the indicated time points and seedling genotypes. 
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receptors  including ETR1,  and  leads  to  inactivation  of  the  negative regulator  CTR1,  a  Raf-like 

kinase  (Wang  et  al.,  2002).  The  downstream  component  EIN2  subsequently  activates  the 

transcription  factor  EIN3  driving  transcriptional  changes  of  ethylene  responsive  genes.  Flg22-

induced  ROS  production  in  loss-of-function  mutants  of  CTR1,  EIN3 and  ETO1,  an  ethylene 

biosynthesis regulatory protein, appeared undistinguishable from WT (Suppl. Tab. 1). These findings 

suggest that ethylene signaling is required for PAMP-induced ROS production. By contrast, flg22 

activation of signaling MAP kinases MPK3 and MPK6 remained unaltered in etr1-1 and ein2-1 (Fig. 

5B). The oxidative burst and MAP kinase activation represent early FLS2-mediated responses (Felix 

and Boller, 2009), and recently flg22-triggered callose deposition, a late PAMP response, was shown 

to depend on EIN2 function (Clay et al, 2009). When tested for flg22-elicited seedling growth arrest, 

however,  etr1-1,  etr1-3 and  ein2-1 mutants displayed almost a WT-like dose-dependent response, 

indicative of distinct molecular mechanisms regulating individual flg22 responses (Suppl. Fig. 6). 
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Fig. 6. Bacterial multiplication of PtoDC3000  ∆AvrPto/∆AvrPtoB.  Seedlings impaired in ethylene signaling 
were infected and growth was monitored at 4 hours post infection (hpi) and 1 day post infection (dpi). Shown are average values of 
three independent experiments (n=16); bars represent +/-SD. Letters indicate significant differences p < 0,05. 



Ethylene  performs  diverse  functions  in  plant-microbe  interactions.  It  is  known  to  play 

crucial  roles  for  plant  immunity towards necrotrophic fungi (Chagué et  al.,  2006).  However,  its 

contribution to bacterial infections remains unclear. Depending on infection conditions, unaltered, 

reduced or enhanced bacterial numbers were reported (Bent et al., 1992; Pieterse et al., 1998). We 

spray-infected  our  set  of  ethylene-insensitive mutants  and observed  that  etr1-1 mutants  allowed 

significantly elevated bacterial multiplication compared to WT plants, which was less evident in 

ein2-1 mutants (Fig. 6). This is in agreement with the recently reported increased susceptibility of 

ein2-1 mutants (Clay et al, 2009). However, bacterial growth rates at later time points were similar 

between  WT and  ethylene-insensitive  mutants  (Suppl.  Fig.  7).  This  suggests  that  ethylene  may 

contribute to pre-invasive immunity through regulation of PAMP-triggered ROS production.

3.3.2 Ethylene and ethylene signaling controlling FLS2 

Reduced generation of ROS in response to flg22 might be a result of low FLS2 or BAK1 abundance. 

We detected strongly reduced FLS2 steady-state levels in the ein2-1 and etr1-1 alleles, respectively 

(Fig.  7A),  which  could  explain  the  compromised  flg22-induced  oxidative  burst.  Reduced  FLS2 

levels, however, were still sufficient to mediate flg22 activation of MAP kinases. Furthermore, the 

partial  ethylene-insensitive  allele,  etr1-3,  accumulated  FLS2  at  WT-like  levels,  suggesting  that 

additional regulatory mechanisms underlie flg22-triggered ROS production. No differences in BAK1 
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Fig. 7. FLS2 accumulation in ethylene-insensitive mutants.  A) FLS2/BAK1 immunoblot analysis. Coomassie 
staining is shown for equal loading. B) RT-PCR analysis of FLS2 and AtRbohD expression in mock and flg22 treated Col-0, fls2, 
etr1-1 and ein2-1 seedlings. Actin is shown as control. Results were obtained in two independent experiments.
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abundance were observed in all three mutant alleles when compared to Col-0 WT seedlings (Fig. 

7A). Differences in FLS2 protein levels between mutants appeared to correlate with differences in 

FLS2 transcript accumulation (Fig. 7B). Likewise, induced FLS2 transcript accumulation upon flg22 

treatment appeared lower in ethylene- insensitive mutants when compared to Col-0 WT.  AtRbohD 

transcript levels remained mostly unaltered in etr1-1 and ein2-1, while flg22 induction of AtRbohD 

expression was reduced in ein2-1 mutants. This indicates that the expression of FLS2 (and to a lesser 

extent AtRbohD) is under the control of ethylene signaling, leading to a reduction of FLS2 steady-

state levels in the absence of ethylene signaling.

It is known that ethylene signaling mutants exhibit enhanced endogenous ethylene levels 

compared to WT plants (Kende et al., 1993; Suppl. Fig. 8) We reasoned that these elevated ethylene 

levels might impair the PAMP-triggered oxidative burst. To test this hypothesis, we treated ethylene-

insensitive mutants with AVG (aminovinyl glycine), a common ethylene synthesis inhibitor, which 

decreased  ethylene  levels  (Fig.  8A;  Suppl.Fig.  8).  AVG  pre-treated  etr1-1 and  ein2-1  mutant 

seedlings displayed a significant increase in flg22-stimulated ROS production compared to untreated 

mutant seedlings. However, a WT-like oxidative burst was not restored, which suggests that elevated 

ethylene levels in etr1-1 and ein2-1 are only partially contributing to compromised flg22-triggered 

ROS production.  In  addition,  AVG pre-treatment  did  not  cause  an increase  in  FLS2 abundance 

(Suppl. Fig. 9), suggesting that the observed defect in flg22-triggered ROS production in ethylene 

signaling mutants is largely independent from high steady-state ethylene levels. 

Defence  gene  expression  and  thus  plant  immune  responses,  are  regulated  by hormonal 

cross-talk between SA, ethylene and JA (Hammond-Kosack and Parker, 2003; Spoel et al., 2003). 

Ethylene action appears to be negative regulated by SA, and, in respect to ROS generation, SA were 

reported to down-regulate ROS detoxifying enzymes like ascorbate peroxidase and catalase (Klessig 

et al., 2000). SA pre-treated etr1-1 and ein2-1 seedlings showed a slight enhancement of the flg22-

triggered oxidative burst (Fig. 8B), which suggests a role for SA in early PAMP-triggered defence 

responses through interaction with ethylene signaling pathways.   
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Ethylene  is  an important  regulator  of  plant  development  and growth (Ecker,  1995).  We 

therefore  investigated  flg22-triggered  ROS production  in  fully  expanded  leaves  of  adult  plants. 

Remarkably, in this assay etr1-1,  etr1-3 and ein2-1 mutants produced WT-like levels of ROS (Fig.

9A, Suppl. Fig. 10). To exclude developmental differences we also monitored ROS production of 

seedling leaf discs. Likewise, all tested mutants displayed WT-like ROS levels upon flg22 treatment. 

FLS2 protein was present at almost similar levels in wounded etr1-1,  ein2-1 and Col-0 WT plants 

(Fig.9B).  This  suggests  that  wounding acts  to  reverse  the compromised flg22-induced oxidative 

burst in ethylene signaling mutants, and hints that regulation of PAMP-triggered defence responses 

maybe stimulus dependent.
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Fig. 8. Chemical interference of ethylene levels. A) AVG pre-treated etr1-1 and ein2-1 seedlings, respectively, were 
monitored for flg22-induced ROS production over time. B) SA pre-treated etr1-1 and ein2-1 seedlings, respectively, were monitored 
for flg22-induced ROS production over time. Each experiment included a mock treated mutant seedling control. Shown are average 
values (n=12); bars represent +/-SD. RLU, relative light units. 
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3.3.3 Concluding remarks

We tested a set of mutants with established roles in defence signaling for flg22-mediated 

ROS production. Besides slight changes in mutants affected in ABA signaling and nahG plants, most 

mutants tested displayed WT-like ROS production. This might partially be caused by a functional 

redundancy of molecular components and/or synergistic effects of several pathways that feed into 

the same cellular mechanism (Davis and Zhang, 1991; Alonso et al., 1999; Ghassemian et al., 2000). 

Analysis of double, triple or quadruble mutants will  be required to circumvent this issue and to 

unmask further molecular players. 

We  identified  ethylene  signaling  mutants  to  be  affected  in  PAMP-triggered  ROS 

accumulation. Strong mutant alleles, etr1-1 and ein2-1, appear to be almost entirely impaired, while 

weak etr1-3 mutant alleles exhibit reduced ROS accumulation. This suggests an important role for 

ethylene signaling in ROS production. We detected reduced FLS2 accumulation in etr1-1 and ein2-1 

mutants indicative of a positive regulatory effect of ethylene signaling. Since we likewise observed 

lower flg22-induced FLS2 transcript accumulation, we assume that ethylene-mediated transcriptional 

events control  FLS2 accumulation. However, the ethylene pathway appears to be required, but not 

sufficient  to  regulate  FLS2  gene  expression.  Etr1-1 and  ein2-1 accumulate  only  low  FLS2 

transcripts. Further, WT-like steady-state FLS2 proteins levels in etr1-3 mutants do not result in WT-

like ROS production, indicating that impaired ethylene signaling affects the flg22-triggered ROS 

response. Together, we assume yet unknown signaling events to additionally contribute to flg22-
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Fig. 9. Flg22-induced oxidative burst in leaf discs. A) Mature leaves of the indicated genotypes were excised into 
discs of approximately equal sizes and monitored for flg22-mediated ROS production. Depicted are average values (n=12); bars 
represent +/-SD. RLU, relative light units. B) FLS2 immunoblot analysis. Coomassie staining is shown for equal loading.
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elicited ROS production.

Our analysis revealed that the  etr1-1 and  ein2-1 mutants are more susceptible to bacterial 

infection  when  compared  to  WT.  FLS2  is  required  for  pre-invasive  immunity,  however,  the 

underlying signal transduction pathway is little understood (Zipfel et al., 2004, Melotto et al., 2006). 

FLS2 steady-state protein accumulation is strongly reduced, and, ROS production is impaired in 

etr1-1 and ein2-1 mutants, supposedly causing enhanced susceptibility due to reduced activation of 

defence signaling. 

Noteworthy, monitoring flg22-triggered oxidative burst in excised leaf material of whole 

seedlings,  revealed  substantial  differences  for  the  outcome  of  ethylene  signaling  mutants.  ROS 

accumulation  and  FLS2  steady-state  protein  levels  were  almost  reconstituted  in  response  to 

wounding. Wound signaling is mediated by MAP kinase activation including MPK6 and involves 

ethylene (Schweighofer et al., 2007). Ethylene signaling is required for flg22-triggered dissociation 

of  MPK6 and  the  ethylene  response  factor  ERF104  (Nühse  et  al.,  2000;  Bethke  et  al.,  2009). 

Overexpression  of  ERF104 rendered  seedlings  to  enhanced  flg22-elicited  growth  arrest.  It  is 

therefore likely that wounding primes ethylene insensitive mutants competent to flg22-induced ROS 

production by at least partly utilizing the same signaling components. This implies that methods 

used to monitor PAMP-triggered ROS production have to be considered carefully.  
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Supplementary files

Suppl.  Tab.1: Overview  of  mutants  with  known  roles  in  plant  defence  tested  for  flg22-ROS 
production.”Y” WT-like ROS generation, “Y (+)” slightly enhanced ROS production, “Y (-)” slightly reduced ROS production, 
“N” no ROS production.

Mutant ROS Mutant ROS 

AtrbohD N abi1 Y

AtrbohF Y abi2 Y

AtRbohD/F N ost1 Y (-)

dnd1 Y (-) ost2 Y (-)

rcd1 Y (-) jar1 Y

mpk3 Y coi1 Y

mpk6 Y gai Y

pmr4 Y etr1-3 Y (-)

pen3-3 Y (+) etr1-1 N

pen3-4 Y (+) ein2 N

nutd7 Y ctr1 Y

eds1 Y eto1 Y

sid2 Y eto2 Y

nahG Y (+) ein3 Y

npr1-1 Y (+) 35S::ERF1 Y (-)
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Suppl.  Fig.  6.  Flg22-induced growth arrest  in  seedlings  of  ethylene-insensitive  mutants. Seedling 
growth of the indicated genotypes was measured in the absence or presence of 100 nM or 1 µM flg22. Bars represent +/-SD. 
Similar results were obtained in three independent experiments. 
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Suppl. Fig. 7. Bacterial multiplication at later times post infection.  Bacterial growth in indicated seedlings 
infected with PtoDC3000 ∆AvrPto/∆AvrPtoB at 1 and 3 day post infection (dpi). Shown are average values of three independent 
experiments (n=16); bars represent +/-SD. Letters indicate significant differences p < 0,05. 

Suppl. Fig. 8. Steady-state and diminished accumulation of ethylene. Ethylene levels of mock and AVG 
treated Col-0, etr1-1, etr1-3, ein2-1 seedlings were determined by GC-MS. Depicted are average values of relative integrated areas 
obtained in at least three independent experiments; bars represent +/-SD. 
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Suppl. Fig. 9. FLS2 accumulation in ethylene-insensitive mutants. FLS2 immunoblot analysis of the indicated 
genotypes and treatments.  Coomassie staining is shown as loading control.  Results were obtained in at least three independent 
experiments.
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Suppl. Fig. 10. Flg22-induced oxidative burst in leaf discs. Seedlings leaves of the indicated genotypes were 
excised into discs of approximately equal sizes and monitored for flg22-mediated ROS production. Depicted are average values 
(n=12); bars represent +/-SD. RLU, relative light units. 
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4 Discussion

FLS2  activation  results  in  a  plethora  of  immune  responses that  include  ROS  production  and 

accelerated induction of ethylene biosynthesis (Boller and Felix 2009). However, the  contribution of 

a pathogen-induced oxidative burst to PAMP-triggered immunity was not established. Likewise, it 

was  unclear  whether  individual  PAMP-triggered  responses  interact  with  each  other.  This  study 

provides more insight into molecular components that underlie PTI.

4.1 PAMP-triggered oxidative burst contributes to plant immunity

We confirm AtRbohD as the responsible NADPH oxidase and rate-limiting component for 

flg22-elicited  ROS  production.  Together  with  AtRbohF,  AtRbohD  mediates  generation  of  ROS 

required for ABA regulated stomatal closure, and control the HR-type cell death during effector-

triggered  immunity  (Torres  et  al.,  2002;  Kwak  et  al.,  2003;  Torres  et  al.,  2005).  Importantly, 

AtRbohD  appears  sufficient  to  produce  ROS  upon  application  of  extracellular  reactive  oxygen 

intermediates,  which are known to trigger plant cell  death (Torres et al.,  2005; Wrzaczek et al., 

2009). Our data show that  AtRbohD-mediated ROS production appears to be important for plant 

immunity, supposedly at early stages of the infection process. 

Stomatal  closure  in  response  to  ABA requires  elevated  cytosolic  calcium concentration 

mediated by H2O2 activated calcium channels in Arabidopsis guard cells (Pei et al., 2000; Köhler et 

al., 2003).  AtrbohD/F double mutants are impaired in stomatal conductance (Kwak et al., 2003), 

ABA induced  ROS  production  is  abolished  and  activation  of plasma  membrane  resident  Ca2+- 

channels is diminished. However, exogenous application of H2O2 rescues this phenotype.  PAMP-

triggered responses are in particular relevant at the level of pre-invasive immunity (Melotto et al., 

2006).  Perception of PAMPs triggers stomatal closure and thereby prevents the entry of pathogens 

into plant tissues. ABA signaling as well as the guard cell specific OST1 kinase are mediators of 

PAMP-induced  stomatal  conductance.  It  is  therefore  likely  that  AtRbohD  functions  in  ROS-

dependent flg22-induced stomatal  closure,  which is  supported by a slight  reduction of oxidative 

burst in ost1 and ost2 mutants when challenged with flg22 (Suppl. Tab. 1). 

Genechip  analysis  revealed  that  AtRbohD  and  AtRbohF  are  expressed  in  guard  cells. 

Moreover,  their  transcripts  are  up-regulated  in  response to  ABA, pathogen- and  fungal  elicitors 

indicative of a role in plant immunity (Desikan et al., 1998; Yoshioka et al., 2001; Simon-Plas et al., 

2002; Kwak et al., 2003). At early stages of infection loss of  AtrbohD function allowed elevated 

growth of bacteria. Pathogen mediated early ROS generation might thus play a role in pre-invasive 

immunity  probably  through  operating  in  stomatal  conductance.  Moreover,  same  phenotype  was 
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observed for overexpression of  AtRbohD and suggests that a general imbalance in induced ROS 

production perturbs the tight regulation and timing of PAMP responses.  It  is worth to note  that 

function of COI1, previously identified as crucial component of PAMP-triggered stomatal closure 

(Melotto et al.,  2006), or ABI1 and ABI2, key regulators of stomatal closure upon abiotic stress 

(Assmann et al., 2001), appeared dispensable for flg22-induced oxidative burst, indicating distinct 

genetic requirements for flg22 responses. 

4.2 Molecular components of PAMP-triggered ROS

To date,  only few molecular  components,  which  constitute  the  flg22-triggered  response 

pathway were functionally characterized. FLS2 physically interacts with flg22 and its stimulation 

upon ligand binding elicits a plethora of immune responses (Chinchilla et al., 2006). Full activation 

of these defense responses is dependent on ligand dependent interaction with the co-receptor BAK1 

(Chinchilla  et  al.,  2007).  Rapid  induction  of  MPK3  and  MPK6  induces  defense  signaling  and 

stimulates  AtRbohD and the  ACS6,  the  rate  limiting  enzyme  of  ethylene  biosynthesis  (Liu  and 

Zhang, 2004; Asai et al., 2002; Zhang et al., 2007).

Here, we identified rio1 representing a novel fls2 mutant allele. This variant caries a point 

mutation, which causes an amino acids exchange from Gly to Asp in position 72 aa at the very N-

terminal region of yet unknown function (Gomez-Gomez et al.,2000). Importantly, accumulation of 

FLS2G72R was not altered. However, this mutant variant partially confers flg22 insensitivity. Flg22-

triggered ROS production is impaired, whereas other early or late flg22-triggered responses occur in 

a WT-like manner. A Gly to Arg exchange probably results in a conformational change of FLS2, 

which in turn might hamper association with other proteins or with the ligand flg22 itself.  As a 

consequence, the amount of activated FLS2 protein could be reduced. Decreased threshold levels of 

stimulated FLS2 might not be sufficient to trigger ROS production, but might meet requirements for 

mediating other responses. In addition, insertion of charged amino acids could likewise create other 

molecular interactions that probably compromise or alter established signaling pathways (Boyd and 

Beckwith, 1998). Several PAMPs trigger an almost identical set of responses, indicative of certain 

molecular components, which might be used in common (Nürnberger and Kemmerling, 2006; Boller 

and Felix, 2009). Interestingly, elf18-elicited ROS production appears reduced in FLS2G72R, which 

implies that association with shared molecular components might be hampered in this mutant  fls2 

allele. 

We identified  rio2 and  rio3 carrying base pair  changes in  BAK1.  Neither  rio2 nor  rio3 

express BAK1 protein as a result of either aberrant splicing or an introduction of a premature stop-

codon, respectively. Like  bak1-3 and  bak1-4,  rio2 and  rio3 are reduced in early and late PAMP-

triggered responses. BAK1 was demonstrated to be involved in EF-Tu elicited signaling and was 

52



suggested to represent an adapter or co-regulator of various receptors (Chinchilla et al., 2007). In 

accordance, rio2 and rio3 proved to be reduced in elf18-triggered ROS generation. Moreover, BAK1 

appeared not to be required for callose deposition explaining observed WT-like deposits in rio2 and 

rio3 mutants (Clay et al., 2009).  Both, rio4 and rio5 mutants were only affected in PAMP-triggered 

ROS production and yet we could not attribute established pathway components responsible for this 

phenotype. Hence, we propose that responsible genes encode novel components of the important for 

immediate early oxidative burst. 

Noteworthy, our analysis implies that individual PAMP responses can be uncoupled from 

each other. This is best illustrated in rio1, particularly diminished in early ROS production. Rio2 to 

rio5 are impaired in flg22-elicited ROS accumulation and arrest of seedling growth but mediate WT-

like callose deposition. Previously, FLS2 variants carrying amino acid changes in the cytoplasmic 

domain were impaired in flg22-elicited ROS generation but only partially reduced in late PAMP 

responses (Robatzek et al., 2006). Thus, it is possible to generate FLS2 receptor variants, which are 

affected in some but not all PAMP responses.

4.3 Components of ethylene signaling regulate ROS production

We identified the mutants etr1-1, etr1-3 and ein2-1 to be diminished in flg22-triggered ROS, 

whereas  ctr1 and  ein3 mutant seedlings mounted WT-like ROS production. It is important to note 

that  etr1-1 and ein2-1 represent dominant and ethylene-insensitive mutant alleles, which is not the 

case for the loss of function ctr1 and ein3 mutants (Kieber et al., 1993; McCourt 1999). Ethylene-

insensitive mutants are known to accumulate elevated levels of endogenous ethylene (Kende et al., 

1993). Chemical interference to reduce the ethylene steady-state levels could only partially recover 

the flg22-induced oxidative burst. Strong ethylene-insensitive alleles accumulate much less FLS2 

protein levels, hence FLS2 expression in unstimulated plants depends at least partially on the amount 

of endogenous ethylene. Reduced FLS2 protein threshold levels seem not to be sufficient to trigger 

ROS production.

ETR1 and EIN2 represent positive regulators of FLS2 expression, probably, through downstream 

transcriptional events. Database analysis (ATTEB, http://atted.jp/) revealed that the FLS2 receptor is 

co-expressed  with  components  mediating  ethylene  responses  e.g.  ERS1,  CTR1  and  ERF2. 

Additionally,  AtRbohD is co-expressed with ACS6, ERF1 and ERF2. In turn, the ETR1 receptor 

appears to be co-regulated with BAK1. These data uncover a transcriptional network connecting the 

flg22 receptor complex with components of the ethylene response pathway and the ROS generating 

enzyme. 

Despite  WT-like  FLS2  accumulation,  the  weak  etr1-3 mutant  allele  exhibited  clearly 

reduced flg22-triggered ROS production, suggesting additional regulatory components in between 
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ethylene signaling and oxidative burst. Moreover, reduced FLS2 levels in etr1-1 and ein2-1 mutants 

were still sufficient to mediate WT-like flg22 activation of MAP kinases. Individual flg22 responses 

might thus depend on different FLS2 threshold levels, but sensitivities of different response assays 

need  to  be  considered.  Thus,  ethylene  itself  is  required  but  not  sufficient  for  WT-like  ROS 

production. Ethylene activates plasma membrane Ca2+ channels (Zhao et al., 2007), and elevated 

cytosolic Ca2+ concentration serve as negative feedback mechanism for OsRboh-generated oxidative 

burst (Wong et al., 2007). Further, H+-ATPases are activated by ethylene (Vreeburg et al., 2005), 

which recently were noted to regulate stomatal closure in plant immunity (Liu et al., 2009). It is 

therefore possible that ethylene regulates ion fluxes and thereby ROS-mediated responses.

The ethylene-insensitive mutants were unable to accumulate callose deposits in response to 

flg22,  however,  other  tested  hormone  signaling  mutants  reacted  like  WT  (Clay  et  al.,  2009). 

Interestingly, ethylene sensing appears to be required for flg22-induced ROS production and callose 

deposition but not for flg22-triggered MAP kinase activation, and induced resistance (Zipfel et al., 

2004).  Also,  flg22-elicited seedling growth arrest  was less  pronounced in  ein2-1 mutants  in  the 

presence of poly (ADP-ribose) polymerase inhibition (Adams-Phillips et al., 2008). It is therefore 

evident  that  there  are  different  genetic  requirements  for  individual  PAMP responses.  However, 

genetic redundancy masking the importance of other than ethylene signalling pathways cannot be 

excluded.

The  ETR1  receptor,  which  is  expressed  in  guard  cells,  is  discussed  to  be  a  point  of 

convergence for ethylene and ROS signaling (Desikan et al., 2005, 2006). A role for EIN2 in ROS 

singaling was demonstrated in ozone-dependent accumulation of ROS (Overmyer et al., 2000). We 

therefore  observed  bacterial  infections  at  the  level  of  pre-invasive  immunity,  and  revealed 

significantly  enhanced  bacterial  growth  rates  in  etr1-1 and  ein2-1 mutants  compared  to  WT. 

Increased susceptibility of ethylene-insensitive mutants was similarly reported when bacteria were 

surface inoculated (Pieterse et al., 1998; Clay et al.,  2009). Both, ethylene signaling and PAMP-

triggered ROS production contribute to early plant immunity, probably via flg22-dependent ROS-

mediated stomatal closure. This, additionally, indicates ROS as a signaling molecule important for 

plant immunity. 
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4.4 Final remarks and perspectives

Our study provides evidence for a yet  unknown interaction between flg22-induced ROS 

production  and  ethylene  signaling.  Ethylene  is  a  hormone  that  itself  inducibly  accumulates  in 

response to flg22. Obtained results further proposes that ethylene signaling controls the transient 

oxidative burst. Conjunction between ethylene induction and ROS accumulation underlies abiotic 

and biotic stress responses. The role of ethylene in pathogen-induced PCD has been evaluated in 

ethylene insensitive (never-ripe) tomatoes (Lund et al.,  1999). Following infection these mutants 

were greatly reduced in PCD. Ethylene plays a critical role in H2O2 release during PCD and operates 

as  a  potentiator  of  ROS production  (de  Jong  et  al.,  2002).  Abiotic  elicitors  such  as  ozone  up-

regulates ethylene biosynthesis. If ethylene production or perception is blocked, the incidence of 

lesions is reduced, which suggested that both ROS and ethylene are involved in the induction of HR-

type PCD upon ozone exposure (Overmeyer et al., 2000). We observed that a reciprocal interaction 

of  flg22-induced  ethylene  production,  and  ROS generation  and  signaling  also  underlies  PAMP-

triggered responses. Interaction of ROS and ethylene might play a role in the proper timing and 

amplification of elicitor-mediated defence signaling possibly to fine tune plant innate immunity.

To date, the role of early and transient ROS production in plant immune responses is little 

understood.  Our  results  provide  evidence  that  the  flg22-triggered  oxidative  burst  contributes  to 

stomatal conductance. Several pathogen-derived components, such as elf18 and lipopolysaccharide, 

cryptogein, oligogalacturonide and chitin rapidly induce a transient increase in ROS accumulation 

(Bottin et al., 1994; Pugin et al., 1997; Gommez et al., 1999; Meyer et al., 2001; Aziz et al., 2004; 

Kunze  et  al.,  2004;  Kaku et  al.,  2006),  which  suggests  additional  roles  for  ROS accumulation. 

Conceivably, similar to DAMPs (Ryan 2003/2005, Huffaker et al.,2006; Rubartelli et al., 2007), an 

oxidative burst could define a chemical danger signal initiating additional pathways for sustained 

defences. However, due to its short half-life time of 1 ms and a relative travelling distance of 1 µm 

(Möller et al., 2007) there is ongoing discussion about its in vivo signaling capacity. A recent study 

indicated that ROS produced by AtRbohD can mediate rapid cell-to-cell communication over long 

distances  (Miller  et  al.,  2009).  Rapid  systemic  signaling  is  accompanied  by  extracellular  ROS 

generation and is induced by wounding, heat, cold, high-intensity light, and salinity stresses (Miller 

et al., 2009). Hence, accumulation of ROS could provide systemic redox changes to enable DAMP 

signaling (Rubatelli et al., 2007). Concomitant initiation of PAMP - and DAMP  signaling is most 

likely required for sustained immune responses.

In mammals, the significance of ROS production is illustrated in host defence. Dysfunction 

of  NOX2  results  in  enhanced  susceptibility  to  bacteria  and  fungi  and  causes  life-threatening 

infections  (Bedard  et  al.,2007;  Sumimoto,  2008).  Plants  likewise  utilize  Rboh  proteins  to 

intentionally produce ROS. In an incompatible plant-pathogen interaction rapid biphasic apoplastic 

accumulation of ROS is associated with PCD (Doke, 1983; Apostol et al., 1989, Baker et al., 1995; 

Lamb  and  Dixon  1997;  Apel  and  Hirt,  2004).  Moreover,  plant  Rboh  proteins  regulate  plant 
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development. If Rboh expression is reduced chlorophyll content decreases and plants display altered 

morphology reminiscent of phenotypes caused through defects in hormone pathways (Foreman et 

al., 2003; Sagi et al., 2004). In agreement, ABA, auxin and ACC, the direct precursor of ethylene, 

were  identified  to  positively regulate  Rboh accumulation  (Sagi  et  al.,  2004).  Rboh proteins  are 

expressed  in  stomata,  epidermal  and mesophyll  cells  possibly to  enable  an ubiquitinously ROS 

singaling network (Desikan et al., 1998; Keller et a., 2001; Kwak et al., 2003, Joo et al., 2005, Miller 

et al., 2009). In contrast to animals, ROS generation by Rboh oxidases is not only an inducible, but 

also a constitutive active process (Sagi et al., 2004; Sagi and Fluhr, 2006). Signaling through ROS 

importantly contributes to stomatal closure, cell elongation and responses to pathogens (Neill et al., 

2002; Torres et al., 2002; Kwak et al., 2003; Foreman et al., 2003). However, molecular mechanisms 

linking ROS to these physiological responses are less well understood. 

H2O2-modulated gene expression in Arabidopsis and tobacco revealed two component signal 

transduction pathways to be up-regulated by exogenous application of ROS (Desikan et al., 2001; 

Vandenabeele et  al.,  2003).  In  yeast,  two-component signaling systems operate  as ROS sensors, 

likewise in plants, ETR1 functions as ROS sensor (Desikan et al., 2005). In particular, the Cys-Tyr65 

mutation in the  etr1-1 mutants were identified to confer H2O2 insensitivity resulting in impaired 

stomatal conductance. Besides ethylene pathway components the cytokinin receptor family likewise 

represents  two-component  histidin  kinases.  Two  signaling  components  (AHK1  and  CRE1) 

complement the yeast synthetic lethal of n-end rule 1 (sln1) redox-sensor and have been implicated 

in osmosensing (Verslues and Zhu, 2005, Phan Tran et al., 2007). Moreover, the hybrid kinase AHK5 

was recently indicated to play a role in flg22-induced regulation of H2O2 production and stomatal 

closure  (Desikan  et  al.,  2008).  Other  kinases  that  could  serve  as  H2O2 signaling  mediators  are 

cysteine rich repeat-RLKs (CRKs), which are implicated to act as extracellular redox-sensors, and 

contribute to plant immunity (Chen, 2001, Chen et al,. 2003, 2004). In addition, the cysteine rich 

kinase  13  (CRK13)  is  specifically  activated  in  response  to  flg22,  suggesting  a  role  in  PAMP-

triggered immunity (Acharya et al., 2007). 

H2O2 signaling  could also  be propagated  through MAP kinase cascades,  although,  ROS 

dependent activation of MAPKs is controversially discussed. When tobacco cells are elicited with 

cryptogein, or parsley cells are treated with Pep13, MAP kinase activation appears to be independent 

of ROS accumulation (Garcia-Brugger et al., 2006). Alternatively, H2O2 activates OXI1 and ANP1, 

which are both required for full stimulation of MPK3 and MPK6 ( Kovtun et al., 2000; Rentel et al., 

2004). Moreover, flg22-elicited ROS accumulation is suggested to occur downstream of MAP kinase 

activation  (Zhang  et  al.,  2007),  in  contrast,  elf18-mediated  ROS  accumulation  seem  to  be 

independent of MPK3 and MPK6 activity (Sajio et al.,  2009). Together, ROS appears not to be 

necessary to induce MAPKs, but appears to be able to stimulate these molecular components. ROS 

might thus contribute to a positive MAPK activation feedback loop. In agreement, a recent study 

reported that Rboh proteins and MAP kinases facilitate positive feedback regulation that contributes 

to ABA signalling (Lin et al., 2009).
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AtRbohD is phosphorylated in response to flg22-treatment and is required for flg22-elicited 

ROS accumulation (Benschop et al.,  2007; Nühse et al.,  2007; Zhang et al.,  2007). Hence, it  is 

conceivable that ROS production in response to flg22 is mediated by direct interaction with FLS2. 

Moreover, plasma membrane resident gp91phox (NOX2) actively assembles in endosomal vesicles 

following  stimulation  (Brown  et  al.,  2003;  Simonsen  and  Stenmark,  2001).  Supporting  the 

occurrence of a similar mechanism in plants, salt stress causes intracellular distribution of Rboh-

mediated  ROS  production  sites  enclosed  by  endosomal  membranes  (Leshem  et  al.,  2007).  In 

agreement, wortmannin inhibits ABA-induced production of ROS in Arabidopsis guard cells (Park et 

al., 2003). Flg22-treatment mediates ROS production and stimulates FLS2 endocytosis (Robatzek et 

al.,  2006),  and  thus  AtRbohD  localization  and  identification  of  interacting  proteins  would  be 

informative. In addition, gene expression profiles of untreated and elicited  AtrbohD mutant plants 

will be necessary to better uncouple flg22 responses from ROS signaling. Finally, identification of 

the responsible genes for the mutants rio4 and rio5 as well as the search for more rio mutants will 

provide a better understanding of ROS signaling in PAMP-triggered plant immunity.
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