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SURROGATE CONVOLUTIONAL NEURAL NETWORK MODELS1

FOR STEADY COMPUTATIONAL FLUID DYNAMICS2

SIMULATIONS
⇤3

MATTHIAS EICHINGER† , ALEXANDER HEINLEIN†§‡ , AND AXEL KLAWONN†§4

Abstract. A convolution neural network (CNN)-based approach for the construction of reduced5
order surrogate models for computational fluid dynamics (CFD) simulations is introduced; it is6
inspired by the approach of Guo, Li, and Iori [X. Guo, W. Li, and F. Iorio, Convolutional neural7
networks for steady flow approximation, in Proceedings of the 22nd ACM SIGKDD International8
Conference on Knowledge Discovery and Data Mining, KDD ’16, New York, USA, 2016, ACM, pp.9
481–490]. In particular, the neural networks are trained in order to predict images of the flow field in10
a channel with varying obstacle based on an image of the geometry of the channel. A classical CNN11
with bottleneck structure and a U-Net are compared while varying the input format, the number of12
decoder paths, as well as the loss function used to train the networks. This approach yields very low13
prediction errors, in particular, when using the U-Net architecture. Furthermore, the models are also14
able to generalize to unseen geometries of the same type. A transfer learning approach enables the15
model to be trained to a new type of geometries with very low training cost. Finally, based on this16
transfer learning approach, a sequential learning strategy is introduced, which significantly reduces17
the amount of necessary training data.18

Key words. Convolutional neural networks, computational fluid dynamics, reduced order sur-19
rogate models, U-Net, transfer learning, sequential learning20

1. Introduction. The development of machine learning techniques for the solu-21

tion of di↵erential equations is an important topic in the new, rapidly evolving field22

of scientific machine learning (SciML) [3]. For instance, machine learning techniques23

may be used in order to discretize the di↵erential equations, in order to enhance24

classical numerical models and methods, or as reduced order surrogate models.25

Examples of methods, where neural networks are used as discretizations for partial26

di↵erential equations are the approaches by Lagaris et al. [24], physics-informed neural27

networks (PINNs) by Raissi et al. [31, 32], and the Deep Ritz approach by E and Yu [9].28

In [15], PINNs have recently been applied to a parameter identification problem for29

systems of ordinary di↵erential equations.30

There is also a large number of recent publications on hybrid algorithms which31

use machine learning techniques to enhance classical numerical methods for solving32

di↵erential equations; see, e.g., [17, 34, 18, 4, 19].33

Here, we are interested in constructing surrogate models for computational fluid34

dynamics (CFD) simulations. This is particularly important since CFD simulations35

arise in many application areas, such as civil and mechanical engineering, meteorol-36

ogy, geosciences, or medical science. Accordingly, there is a wide range of settings and37

fluids with varying complexity in their modeling. In most cases, however, the com-38

putational work in order to obtain accurate results is considerably high. Therefore,39

the development of reduced order models, which may reduce the computational cost,40

is of great interest. There is a wide range of classical model order reduction (MOR)41

techniques, such as principal component analysis (PCA) or proper orthogonal decom-42
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2 M. EICHINGER, A. HEINLEIN, AND A. KLAWONN

Fig. 1. Solution of the steady Navier–Stokes equations (2.1) with boundary conditions (2.2)
corresponding to the configuration in Figure 2.

position (POD), Reduced Basis (RB), or simplified physics methods. In this regards,43

we refer to the extensive literature, e.g., [29, 33, 30, 37].44

Here, we are interested in the use of artificial neural networks as reduced order45

surrogate models for CFD simulations. One approach of this category is the hybrid46

algorithm introduced in [8], which uses classical reduced basis solvers as the last47

layer in a neural network, to approximate the solution of parametrized PDEs. Also48

in [11], the authors build a reduced order model for cardiac electrophysiology by49

combining a convolutional auto-encoder and a deep feedforward neural network. In50

contrast to most other approaches, we are interested in geometry-dependent flow51

predictions, where the geometry is used as the input for the neural network and the52

whole flow field is obtained as the output. Our approach is inspired by the work of53

Guo, Li, and Iorio [16] and has already been partly presented in [10]. In particular, we54

employ convolutional neural networks (CNNs) in order to map from an image of the55

geometry to images of the resulting flow field, making use of the strengths of CNNs56

in processing image data. Therefore, we employ the bottleneck CNN from [16] as well57

as the U-Net, which has been introduced in Ronneberger et al. [35] for biomedical58

image segmentation.59

In order to generate synthetic flow data for the training and validation phase, we60

use a software pipeline including the mesh generation tool snappyHexMesh and the61

simpleFoam CFD solver; both are part of OpenFOAM 5.0 [14]. In order to implement62

and train the neural networks, we use Keras 2.2.4 [6] with Tensorflow 1.12 [2] backend.63

This paper is structured as follows. First, in section 2, we introduce the consid-64

ered stationary CFD boundary value problem. Then, we describe our approach of65

constructing a surrogate CNN model and the employed network architectures in sec-66

tion 3 and the data generation process in section 4. In sections 5 and 6, we describe67

the training procedure and implementation and e�ciency of the neural networks, re-68

spectively. Next, we provide results for two types of obstacle geometries in section 769

and discuss a transfer learning approach for extending the model to another type70

of geometries in section 8. Finally, before we conclude the paper in section 10, we71

introduce an iterative sequential learning approach, which enables us to significantly72

reduce the amount of necessary training data in section 9.73

2. Stationary flow problem. As the model problem, we consider the station-74

ary flow of an incompressible Newtonian fluid with kinematic viscosity ⌫ > 0 within75

a computational domain ⌦P . This can be described by the steady Navier–Stokes76
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Fig. 2. The computational domain ⌦P is a channel ⌦ of length 6 and width 3 with a polygonal
obstacle P . We prescribe an inflow velocity at @⌦in, no-slip boundary conditions on @⌦wall, and
do-nothing boundary conditions on @⌦out.

equations77

(2.1)
�⌫�u+ (u ·r)u+rp = f in ⌦P ,

r · u = 0 in ⌦P ,
78

where u and p are the velocity and pressure variables. We will only consider the case79

where the volume force f is zero.80

As a proof of concept, we will restrict ourselves to geometries of a specific type.81

In particular, we consider two-dimensional channels ⌦P := [0, 6] ⇥ [0, 3] \ P , where82

P ⇢ [0, 6]⇥ [0, 3] is a polygonal star-shaped domain; see Figure 1 for an example with83

corresponding solution. Moreover, we apply the boundary conditions84

(2.2)

u =

✓
3
0

◆
on @⌦in,

@u

@n
� pn = 0 on @⌦out, and

u = 0 on @⌦wall;

85

cf. Figure 2. In particular, we prescribe an inflow velocity on the left boundary of the86

channel and a do-nothing natural boundary condition at the right boundary of the87

channel. At the upper and lower boundaries as well as the boundary of the obstacle88

P we impose no-slip boundary conditions.89

3. Surrogate convolutional neural network. Our main idea is to train a90

convolutional neural network (CNN)91

CNN : Rw⇥h ! R2⇥w⇥h

g 7! u =

✓
ux

uy

◆
92

which maps from an image representation of the geometry g to the corresponding93

velocity field u consisting of an image representations of its x component ux and94

its y component uy. The velocity field is obtained by solving (2.1) with boundary95

conditions (2.2). Here, w is the width of the input image and the output images and96
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h is the corresponding height. Our approach is inspired by the work of Guo, Li, and97

Iorio [16] and has already been presented partly in [10].98

Convolutional neural networks [25] are specialized neural networks for data with99

a tensor product grid-like topology; see also [13, Chapter 9]. Examples for this type100

of data are, e.g., one-dimensional time series or 2D and 3D images. Whereas the101

application of one layer in a dense neural networks can be written as102

y = ↵ (Wx+ b)103104

with input vector x, output vector y, dense weight matrix W , bias vector b, and acti-105

vation function ↵(·), in a CNN, the matrix multiplication with the dense matrix W is106

replaced by a convolutional operation. Moreover, convolutional neural networks typ-107

ically use so-called pooling operations. Both convolution and pooling operations are108

specialized linear operations which only allow for interaction of neighbored neurons,109

in the sense of the underlying grid-structure of the data. This is implemented by lo-110

cal multiplications with a smaller filter F matrix, which is moved point by point over111

the whole data grid. In particular, during the training, the coe�cients of the filter112

matrix F are trained. Then, the application of a convolution or pooling operation113

can also be written as a matrix vector multiplications with a sparse matrix S, which114

can be obtained by assembly of the local filter matrix. Hence, the application of a115

convolutional layer corresponds to116

y = ↵ (Sx+ b) .117118

Convolution and pooling operations may reduce the size of data vector. However, one119

typically uses multiple filters corresponding to the multiplication with multiple sparse120

matrices Si. Hence, we also obtain multiple output vectors (channels)121

yi = ↵ (Six+ b) i = 1, ..., N.122123

This helps to prevent the loss of important features from a radical reduction of the124

dimension; cf., e.g., [13, Chapter 9] and [5, Chapter 5] for more details on convolutional125

neural networks.126

In Figure 3, the di↵erent types of layers of the employed convolutional neural127

network architectures are visualized as boxes with di↵erent width and height to ac-128

count for the dimension of the output image of the corresponding layer as well as129

the length accounting for the number of channels of the output. We consider three130

di↵erent types of convolutional layers:131

Convolution: We apply padding before the convolution, such that the dimension of132

the data is kept the same.133

Down-convolution: We apply striding, i.e., we increase the shift of the local filter134

within the convolution operation, such that the data dimension is reduced. In this135

case, we increase the number of channels.136

Up-convolution: We use a transposed convolution with striding to increase the dimen-137

sion of the data. At the same time, we reduce the number of channels.138

As activation functions, we use the identity (linear) or the Rectified Linear Unit139

(ReLU) [21, 27, 12] function (ReLU). For more details on padding and striding, see140

also [13, Chapter 9] and [5, Chapter 5].141

In contrast to other works, which use dense neural networks to approximate the142

solutions of fixed boundary value problems itself, such as [31, 9], we are here interested143

in constructing a functional relation between images of the geometry and the solution.144
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Fig. 3. Architectures of the two considered convolutional neural networks: classical bottleneck
CNN (top) and U-Net (bottom); cf. section 3 for more details on the graphical representation. Only
one decoder path is depicted; cf. subsection 3.2 and Figure 4. Visualization using [1].

This means that we are dealing with given discretization of the input and output,145

whereas other approaches use the neural network itself as the discretization of the146

PDE. Therefore, in contrast to those approaches, we are able to incorporate a variation147

of the geometry.148

3.1. Network architectures. As surrogate models, we use two di↵erent con-149

volutional neural network architectures.150

Bottleneck CNN [16]. As the first network architecture, we consider the CNN151

from the work [16]; see Figure 3 (top). This CNN has a bottleneck structure such152

that a reduced dimension latent space of dimension 1 024 is learned from the data.153

The first part of the network is an encoder, the second part a corresponding decoder.154

U-Net [35]. The second network architecture is inspired by the U-Net introduced155

by Ronneberger, Fischer, and Brox in [35]; see Figure 3 (bottom). Our network fol-156

lows the basic structure of the U-Net but the convolutional layers are adapted to our157

problem. Similar to the previously described CNN, it is also a convolutional neural158
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Fig. 4. Abstract graphical representation of the network architectures with one (top) or two
(bottom) decoder paths. Visualization using [1].

network with bottleneck structure. However, additional skip connections are intro-159

duced as a regularization which is necessary due to the high number of convolutional160

layers. At the same time, we loose the property that all geometrical information has161

to be compressed into a vector of length 1 024. Originally, the U-Net has been intro-162

duced in the context of biomedical image segmentation, however, as we will observe163

in section 7, it also works very well for the prediction of flow fields.164

3.2. One and two decoder paths. As in the work [16], we will also compare165

using one and two decoder paths in our neural networks. As pointed out in sub-166

section 3.1, both networks have a bottleneck type structure, where the first part167

corresponds to the encoder, which learns the geometrical features of the input image,168

and the second part corresponds to the decoder, which predicts the flow images in x169
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type I

δΩwall
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δΩwall

type III

δΩwall

type IV

δΩwall

height at most 1.5

(50% of the channel)

Fig. 5. Graphical representation of all geometry configurations considered in this paper. In all
cases, a minimum distance of 1.5 to the inlet (left) and outlet (right) is assumed and the maximum
height of the obstacle is 1.5, i.e., 50% of the channel. Type I geometries touch the lower part of the
boundary, type II geometries have a minimum distance of 0.75 to the lower and upper parts of the
boundary, type III geometries touch the upper part of the boundary, and type IV have no restriction
with respect to the vertical position of the obstacle.

and y direction based on the geometrical features from the encoder. Based on this170

structure of the network architecture, we investigate in section 7 the case of training171

two separate decoder paths for the velocities in x and y direction. This clearly in-172

creases the number of parameters of the neural network because the decoder part is173

doubled in size; see Figure 4. On the other hand, this may help to better predict the174

two velocity components.175

The total number of parameters of the bottleneck CNN and the U-Net with one176

or two decoder paths are listed in Table 1.177

4. Generation of training data. In order to build a surrogate machine learn-178

ing model for the high-fidelity CFD simulations, we first have to generate a large set179

of flow data. To ensure validity of the model without imposing additional (physical)180

knowledge, this training data has to su�ciently cover the possible input space, i.e.,181

the space of possible geometries; cf., e.g., [7]. In order to create such an extensive182

database, we have set up an automatized software pipeline, which enables the simu-183

lation of a large amount of di↵erent geometrical configurations, without the need for184

additional user interaction. This pipeline consists of the following steps, which will185

be discussed in the further subsections:186

• Definition of an obstacle geometry; see subsection 4.1187

• Generation of a corresponding hexahedral simulation mesh; see subsection 4.2188

• CFD simulation using the finite volume solver OpenFOAM; see subsection 4.3189

• Data interpolation to a fixed pixel grid; see subsection 4.4190

We will further describe the specific data sets used in our experiments in the191

respective sections 7 to 9.192

4.1. Definition of the geometry. As previously described in section 2, we will193

consider a two-dimensional channel ⌦ := [0, 6] ⇥ [0, 3] and then remove a polygonal194

star-shaped obstacle P , such that the computational domain is ⌦P = ⌦\P . Since the195

channel ⌦ is fixed, the only freedom in the geometry is the definition of the polygonal196

obstacle. This is performed by a random placement of the corners of the polygon197
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C

Fig. 6. Mesh generation using snappyHexMesh: The obstacle geometry is defined in STL format
and placed within the channel. Then, the mesh is generated, such that it is additionally refined near
@⌦wall.

under the following restrictions.198

In general, we assume that the obstacle has a minimum distance of 0.75 from the199

inlet and outlet, i.e., from the left and the right boundary of the channel. Furthermore,200

the vertical extension of the obstacle should not be larger than 1.5, i.e., 50% of the201

height of the channel; cf. Figure 5 (bottom right). We first only consider obstacles202

which touch the lower boundary (type I), obstacles which do not touch any boundary203

and have a minimum distance of 0.75 to the lower and upper boundary (type II), and204

obstacles which touch the upper boundary (type III). Later, in section 9, we will also205

consider type IV geometries, which have no restriction regarding the vertical location;206

see Figure 5.207

In addition to the types I, II, and III, we also categorize the polygonal obstacles208

with respect to the number of edges. In general, we will only consider obstacles with209

less or equal than 20 edges; only in Figure 11, we neglect this constraint and consider210

a circular obstacle.211

Note that we generally do not constrain the angles of the polygons, such that212

we may obtain thin obstacles which can only be poorly resolved by our input image;213

cf. subsection 4.4.214

4.2. Mesh generation. The mesh generation procedure is sketched in Figure 6.215

In particular, we first describe the obstacle geometry, which has been previously gen-216

erated along the description in subsection 4.1, using the STL (Standard Triangle217

Language) format. Then, we use the mesh generator blockMesh to create an under-218

lying hexagonal mesh of the channel ⌦. Then, we cut out the obstacle and create219

a mesh, which is refined near @⌦wall, using the tool snappyHexMesh. Both tools,220

blockMesh and snappyHexMesh, are part of OpenFOAM 5.0 [22, 14] and will not be221

discussed here in detail.222

4.3. OpenFOAM simulations. The CFD simulations of the steady Navier–223

Stokes equations with corresponding boundary conditions as described in section 2224

are performed using the simpleFoam solver in OpenFOAM 5.0 [22, 14]. In particular,225

the Navier–Stokes equations are first discretized using finite volumes [38, 26], and then,226

the resulting discrete nonlinear problem is solved using the SIMPLE (Semi-Implicit227

Method for Pressure Linked Equations) method [28]. In particular, the pressure228

equations are solved using an geometric algebraic multi grid (GAMG) solver and229

the remaining velocity equations are then solved using an symmetric Gauss–Seidel230

iteration. An exemplary solution is depicted in Figure 1. For more details, we refer231

to the OpenFOAM user guide [14].232
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Fig. 7. The structured input and output data for the CNNs is obtained by evaluation in the
centers of the pixels of a 256⇥ 128 pixel grid.

4.4. Data interpolation. As already pointed out in section 3, neural networks233

and, in particular, convolutional neural networks rely on input and output data with234

a fixed structure. Therefore, in order to train a neural network as a surrogate model235

for the previously described CFD simulations (subsection 4.3), the input and output236

data has to be transformed to a fixed structure. In particular, we are using a CNN237

that requires an image structure for the data; cf. section 3. Therefore, we will use238

two di↵erent image representations of the geometry, i.e., a signed distance function239

(SDF) representation and a binary representation; cf. [16, 10]. Both representations240

are 256 ⇥ 128 px images. Furthermore, we will interpolate the flow field onto a pixel241

grid of fixed 256⇥ 128 px size; see also Figure 7.242

Signed distance function (SDF) input. The SDF input includes information about243

the obstacle as well as information about the minimum distance of any given pixel to244

the boundary of the obstacle. In particular, the signed distance function for a given245

pixel p is given as the minimum positive distance of the center of the pixel cp to the246

boundary of the obstacle. However, in case that the center of the pixel lies in the247

interior of the obstacle, it is the negative distance.248

Binary input. The binary input contains a reduced amount of information com-249

pared to the SDF input. In particular, the binary input value in a given pixel p is250

defined as zero if its center cp is located in the interior of the obstacle and one other-251

wise. Hence, it can be obtained from the SDF input by mapping any positive value252

to one and any negative value to zero.253

Output. The output data for a given configuration is obtained from the velocity254

field resulting from the corresponding OpenFOAM simulation; cf. subsection 4.3. In255

particular, each component of the discrete solution u =

✓
ux

uy

◆
is interpolated onto256

a 256 ⇥ 128 pixel image by evaluation in the center cp of each pixel p. Hence, we257

obtain two pixel images representing the velocity field for each configuration.258

Note that, since we do not constrain the angles of the corners of the polygon, it259

is possible that the geometry cannot be resolved accurately by a 256⇥ 128 pixel grid.260

5. Training. In the training phase, we optimize the parameters of the neural261

networks to minimize di↵erent loss functions. In particular, we consider combinations262
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of a mean squared error (MSE) and a mean absolute error (MAE) with the mean263

relative error264

1

|D|
X

P2D

1

|IP |
X

p2IP

kup � ûpk2
kupk2 + 10�4

,(5.1)265

266

where up is the velocity prediction vector in the pixel p and ûp is the reference ve-267

locity in p, i.e., the evaluation of the CFD solution in the center cp of the pixel.268

Furthermore, D is the set of all considered obstacles P and IP is the set of all pixels269

p which are not covered by the respective obstacle; hence, we neglect the error of the270

velocity prediction within the obstacle. We add 10�4 as a regularization term in the271

denominator in case of very small values in the reference velocity, i.e., kupk2 ⇡ 0. In272

particular, we consider combinations with (5.1) because we will later use this as the273

error measure on the validation and test data in order to investigate the performance274

of the surrogate model; cf. (7.1). Note that this error measure alone was not su�cient275

as the loss function to train the neural networks, and a reasonable reduction of the276

loss during the optimization was only possible when adding either the MSE or the277

MAE.278

In total, we consider the four loss functions279

(5.2)

MSE =
1

|D|
X

P2D

1

|IP |
X

p2IP

�
kup � ûpk22

�
,

MSE+ =
1

|D|
X

P2D

1

|IP |
X

p2IP

✓
kup � ûpk22 +

kup � ûpk2
kupk2 + 10�4

◆
,

MAE =
1

|D|
X

P2D

1

|IP |
X

p2IP

(kup � ûpk1) , and

MAE+ =
1

|D|
X

P2D

1

|IP |
X

p2IP

✓
kup � ûpk1 +

kup � ûpk2
kupk2 + 10�4

◆
.

280

Furthermore, in subsection 7.2, we will discuss results for weighted variants of the281

MSE and MAE loss functions in order to improve the errors in the vicinity of the282

obstacles.283

In order to optimize the parameters of the CNNs, we apply a stochastic gradient284

descent (SGD) up to a maximum number of 300 epochs; in case of stagnation in285

the reduction of loss for at least 50 epochs, we reduce the learning rate by 20%.286

Moreover, we use a batch size of 64 and an adaptive scaling of the learning rate using287

the Adam (Adaptive moments) [23] algorithm with initial learning rate � = 0.001.288

Furthermore, we observed that the training is improved if, in case of SDF input data,289

Z-normalization and, in case of binary input data, batch normalization is used; cf. [20].290

6. Implementation and e�ciency of the neural networks. Our implemen-291

tation of the neural networks and the training algorithms uses the Keras 2.2.4 [6] with292

Tensorflow 1.12 [2] backend.293

On an AMD Threadripper 2950X (8 ⇥ 3.8 Ghz) CPU with 32GB RAM, the aver-294

age time for a serial computation of one configuration, including the mesh generation295

and the CFD simulation, took in the order of O(10) s. In comparison, the evaluation296

of our neural networks took in the order of O(0.1) s on the same CPU. Using a Nvidia297

GeForce RTX 2080Ti GPU, the evaluation of the neural networks was again acceler-298

ated by a factor of approximately 20. Therefore, we can confirm that our surrogate299

convolutional neural networks are significantly more e�cient in the online phase.300
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Bottleneck CNN U-Net
# decoders 1 2 1 2

parameters ⇡ 47m ⇡ 85m ⇡ 34m ⇡ 53.5m
time/epoch 180 s 245 s 195 s 270 s

Table 1
Training cost for the bottleneck CNN and the U-Net using one or two decoder paths. The times

have been obtained from computations on a Nvidia GeForce RTX 2080Ti GPU; section 6.

However, the training phase of the neural networks is quite expensive, due to301

the very large number of parameters in the neural network. As listed in Table 1,302

one single epoch (for 90 000 configurations of training data and 10 000 configurations303

of validation data) during the training process took approximately 180 s - 270 s on304

the Nvidia GPU depending on the architecture of the network; the training cost on a305

CPU would be significantly higher. This highlights the high cost of the o✏ine training306

phase.307

7. Results on type I and II geometries. As a first step, we only consider308

geometries of type I and II; cf. subsection 4.1 and Figure 5. In particular, using309

our software pipeline described in section 4, we first generate a data set consisting310

of 100 000 geometry configurations, where 50 000 configurations correspond to type311

I obstacles and the remaining 50 000 to type II obstacles. Moreover, we restrict312

ourselves to polygonal obstacles with 3, 4, 5, 6, and 12 edges (10 000 each for type313

I and type II). Each obstacle is randomly generated under the conditions described314

in subsection 4.1. In order to train our neural networks, we perform a random split315

into 90 000 training data and 10 000 validation data.316

As an error measure for our surrogate models, we use the mean relative error (5.1)317

evaluated on the validation data,318

1

|V |
X

P2V

1

|IP |
X

p2IP

kup � ûpk2
kupk2 + 10�4

,(7.1)319

320

where V is the set of all validation data. This error function is not equal to one of the321

loss functions, which are minimized for the 90 000 training data, but is part of two of322

the four considered loss functions (5.2); also compare for the discussion in section 5.323

7.1. Results on the validation data. First, in Table 2, we compare the bot-324

tleneck CNN and the U-Net described in subsection 3.1 using SDF and binary input325

data, one or two decoder paths, and the four di↵erent loss functions (5.2). We list326

the relative errors for type I and type II validation data separately and additionally327

specify the relative error over all validation data. We observe that the U-Net gener-328

ally yields better results compared to the bottleneck CNN. However, the best total329

relative errors obtained for the bottleneck CNN and the U-Net architectures are both330

very good with 3.85% and 2.43%. We observe that the bottleneck CNN benefits331

significantly from the use of the SDF input, which contains additional information332

compared to the binary input, whereas the U-Net is able to also extract this infor-333

mation from the binary input data; hence, the U-Net produces good results for both334

input data types.335

It is not clear whether MSE or MAE is the better choice as the basis for the loss336

function. However, we clearly observe that adding the mean relative error (5.1) to the337

loss always improves the results, for both network architectures. However, as already338
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Bottleneck CNN U-Net
input # dec. loss total type I type II total type I type II

SDF

1

MSE 61.16% 110.46% 11.86% 17.04% 29.42% 4.66%
MSE+ 3.97% 3.31% 4.63% 2.67% 2.11% 3.23%
MAE 25.19% 41.52% 8.86% 9.10% 13.89% 4.32%
MAE+ 4.45% 3.84% 5.05% 2.48% 1.87% 3.10%

2

MSE 49.82% 89.12% 10.51% 13.01% 21.59% 4.42%
MSE+

3.85% 3.05% 4.64% 2.43% 1.78% 3.23%
MAE 45.23% 81.38% 9.08% 5.47% 7.06% 3.89%
MAE+ 4.33% 3.74% 4.91% 2.57% 1.98% 3.17%

Binary

1

MSE 49.78% 88.28% 11.28% 27.15% 49.15% 5.15%
MSE+ 10.12% 11.44% 8.80% 5.49% 6.25% 4.74%
MAE 39.16% 64.77% 13.54% 15.69% 26.36% 5.02%
MAE+ 10.61% 12.34% 8.87% 4.48% 5.05% 3.90%

2

MSE 51.34% 91.20% 11.48% 24.00% 43.14% 4.85%
MSE+ 10.03% 11.37% 8.69% 5.56% 6.79% 4.33%
MAE 37.16% 62.01% 12.32% 21.54% 38.12% 4.96%
MAE+

9.53% 10.91% 8.15% 6.04% 7.88% 4.20%
Table 2

Comparison of the performance of the bottleneck CNN and the U-Net based on the error (7.1):
variation of the input type, the number of decoder paths, and the loss function; cf. (5.2). The best
errors for a given CNN architecture and input type are marked in bold face. Taken fom [10].

noted in section 5, the networks could not be trained using just the mean relative339

error (5.1) as the loss function.340

Furthermore, the results are not conclusive about whether a second decoder path341

should be used, or not. In particular, since the number of parameters and hence the342

trainings cost is significantly increased, it seems that the use of a single decoder is the343

more e�cient choice.344

Overall, many di↵erent configurations for the surrogate CNN yield very good345

results. However, we restrict ourselves to one specific network architecture and loss346

function for further experiments. In particular, following our findings, we will always347

consider the U-Net with one decoder path and MAE+ loss.348

Additionally, for this configuration and using SDF input, in Figure 8, we present349

exemplary results comparing the reference CFD solution and the CNN prediction.350

Whereas, in Figure 8, the results are in very good agreement qualitatively as well351

as quantitatively (errors of approximately 2%), larger qualitative und quantitative352

di↵erences can be observed in Figure 9 (errors of approximately 17% and 15%); see353

also [10] for additional results. To avoid these outliers and further reduce the errors354

will be subject of future research.355

7.2. Spatial weighting of the loss function. In many applications, the ve-356

locities near the obstacle walls are of particular interest, e.g., for the computation357

of the wall shear stresses. In order to improve the accuracy of the prediction in the358

vicinity of the obstacles, we investigate weighted variants of the MSE and MAE loss359
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Type I:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Type II:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Fig. 8. Type I & II geometry: comparison of the CFD flow field (left) computed using Open-
FOAM, the CNN prediction (middle), and the pointwise error (right) for x (top) and y (bottom)
component. Both examples yield a low mean relative error (7.1) of approximately 2%.

functions,360

MSE! =
1

|D|
X

P2D

1

|IP |
X

p2IP

W!(p)
�
kup � ûpk22

�
and(7.2)361

MAE! =
1

|D|
X

P2D

1

|IP |
X

p2IP

W!(p) (kup � ûpk1)(7.3)362

363

with the weight function364

(7.4) W!(p) = max
n
1,!e�2 ln(!)kcp�Pk

o
365

and the weight parameter ! > 1. This weight function is chosen to be high at the366

boundary of the obstacle, i.e., W!(p) = ! for kcp � Pk = 0. Then, the function367

decays exponentially and reaches a value of 1 in a distance of 0.5 to the obstacle, i.e.,368

W!(p) = 1 for kcp � Pk � 0.5. Moreover, if ! = 1, W (p) ⌘ 1 and the weighted loss369

functions are equal to the unweighted loss functions.370

In order to investigate the e↵ect of the weight function W (p) on the error in the371
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Type I:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Type II:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Fig. 9. Type I & II geometry: comparison of the CFD flow field (left) computed using Open-
FOAM, the CNN prediction (middle), and the pointwise error (right) for x (top) and y (bottom)
component. Both examples yield higher mean relative errors (7.1) of approximately 17% (type I)
and 15% (type II).

Fig. 10. Visualization of the pixel-wise relative error (7.7) for a type I geometry. Comparison
for the unweighted MAE loss function (5.2) (left) and the weighted MAE loss function (7.3) with
! = 250 (right).

vicinity of the obstacle, we investigate a split of the error function (7.1) into372

1

|V |
X

P2V

1

|IP |
X

p2IP
kcp�IP k0.5

kup � ûpk2
kupk2 + 10�4

,(7.5)373

374

This manuscript is for review purposes only.



SURROGATE CNN MODELS FOR STEADY CFD SIMULATIONS 15

error (7.1) error (7.5) error (7.6)
loss ! total type I type II type I type II type I type II

MSE!

(7.2)

1 17.04% 29.42% 4.66% 28.24% 2.39% 1.19% 2.29%

50 9.41% 13.25% 5.56% 9.95% 1.78% 3.32% 3.79%
100 12.11% 18.32% 5.90% 14.74% 1.76% 3.59% 4.16%
250 10.95% 14.21% 7.68% 8.19% 1.69% 6.04% 6.01%
500 13.94% 17.72% 10.16% 9.89% 2.10% 7.85% 8.07%

MAE!

(7.3)

1 9.11% 13.89% 4.32% 12.96% 2.19% 0.94% 2.14%

50 4.04% 4.55% 3.53% 3.51% 1.28% 1.05% 2.27%
100 3.68% 3.82% 3.54% 2.61% 1.19% 1.22% 2.37%
250 3.63% 3.64% 3.62% 2.33% 1.18% 1.32% 2.45%
500 3.83% 3.88% 3.78% 2.46% 1.19% 1.43% 2.60%

Table 3
Results on validation data for a higher weight of the loss corresponding to errors in the vicinity

of the obstacle using a U-Net with one decoder path and SDF input. The weight parameter ! in
the function (7.4) is varied between 1 and 500, and the global error (7.1) as well as split of the
error into pixels with a maximum distance of 0.5 to the obstacle (error (7.5)) and remaining pixels
(error (7.6)) are listed. The best errors among the di↵erent weight factors are marked in bold face.

which corresponds to the error in the pixels near the obstacle, and375

1

|V |
X

P2V

1

|IP |
X

p2IP
kcp�IP k>0.5

kup � ûpk2
kupk2 + 10�4

,(7.6)376

377

which corresponds to the remainder of the channel.378

We present our results for varying values of ! in Table 3. As can be observed,379

the errors (7.5) and (7.6) are comparable for type II geometries, whereas the error380

near the obstacle is significantly higher for type I geometries; see Figure 10 (left) for381

an example of a type I obstacle with high relative errors382

kup � ûpk2
kupk2 + 10�4

.(7.7)383
384

in pixels near the obstacle for the unweighted MAE loss function (5.2). Hence, it is385

particularly important to improve the error near the obstacle for type I geometries.386

The results in Table 3 show that, by increasing the weight parameter !, we can387

reduce the error near the obstacle (7.5) while only slightly increasing the error in the388

remainder of the channel (7.6). The error reduction can also be seen in the example389

in Figure 10, where the pixel-wise relative error (7.7) near the obstacle is significantly390

reduced when using the weighted MAE loss function (7.3) with ! = 250. Moreover,391

by choosing an appropriate value for !, we can even improve the global error (7.1)392

averaged over all geometries compared to the unweighted loss functions. This shows393

that the distribution of the error can be controlled in a reasonable way by using a394

weighted loss function.395

In the remainder of this paper, we will focus on using the MAE+ loss function,396

however, it may be helpful in certain applications to also consider a weighted variant397

of this loss function.398

7.3. Generalization to other type I and II geometries. In order to study399

the generalization properties of our U-Net-based surrogate models, we consider ad-400
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# polygon
edges

SDF input Binary input
total type I type II total type I type II

7 2.71% 1.89% 3.53% 4.39% 4.61% 4.16%
8 2.82% 1.98% 3.65% 4.67% 4.89% 4.44%

10 3.21% 2.32% 4.10% 5.23% 5.51% 4.94%
15 4.01% 3.16% 4.86% 7.76% 7.85% 6.66%
20 5.08% 4.22% 5.93% 9.70% 10.43% 8.97%

Table 4
Results for the generalization properties of the U-Net with one decoder path, and MAE+ loss

function. Error (7.1) for polygonal obstacles with higher numbers of edges compared to the training
and validation data: 1 000 polygons (500 type I and 500 type II) for each number of edges; cf. [10].

Type I:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Type II:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Fig. 11. Comparison of the CFD flow field (top) computed using OpenFOAM, the CNN pre-
diction (middle), and the pointwise error (bottom) for x (left) and y (right) component. Results
for a geometry with circular obstacles of type I & II, which have not been part of the training or
validation data. Nonetheless, the mean relative errors (7.1) are only approximately 1% (type I) and
3% (type II).

ditional geometries, which have not been part of the initial data set. In particular,401

we consider polygonal obstacles with 7, 8, 10, 15, and 20 edges using the U-Net with402

one decoder path and MAE+ loss function. Furthermore, we consider both SDF and403

binary input.404
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SDF input Binary input
type III 22 985.89% 4 134.69%

Table 5
Application to type III data of the U-Net with one decoder path, and MAE+ loss function

trained on type I and II data. The mean relative error (7.1) is given.

As can be observed in Table 4, the test results on geometries which were not part405

of the initial data set are very good with a maximum total error of less than 10%.406

Again, the results are better using SDF input. Of course, the flow fields may become407

more complex for higher numbers of edges, and the corresponding network predictions408

become slightly worse.409

In addition to that, we depict the results for two configurations with circular410

obstacles. The first example is of type I and the second example is a type II circular411

obstacle which is inspired by the benchmark problem introduced in [36]; see Figure 11.412

For these examples, we obtain good generalization results with mean relative errors413

of approximately 1% and 3%.414

Finally, in Figure 12, we provide three examples of geometries which are clearly415

outside the validity range of our CNN model: a type III obstacle, two type II obstacles,416

and one large type II obstacle. For all corresponding model predictions, a degenerated417

flow field is visible, and the prediction error clearly deteriorates. In particular, we can418

observe that model prediction would rather fit to the case of a type II obstacle.419

In order to further extend the validity range of our model and to overcome these420

issues, we will now discuss the application of transfer learning techniques. In partic-421

ular, we focus on transfer learning for type III geometries.422

8. Transfer learning for type III geometries. In order to investigate the423

generalization of our model to type III geometries, we generate a total of 5 000 addi-424

tional polygonal obstacles of type III with 3, 4, 5, 6, and 12 edges; cf. subsection 4.1425

and Figure 5 for the description of type III obstacles.426

As can be observed in Table 5, the prediction performance on 2 500 randomly cho-427

sen validation data deteriorates independent of the input type; the errors 22 985.89%428

and 4 134.69% indicate that the neural network was essentially not able to predict the429

flow at all; see also the example in Figure 12. As previously described in section 4,430

this is due to the fact that the training data does not su�ciently cover the possible431

input geometries of type III; see also [7].432

Now, we consider three di↵erent strategies to train type III geometries:433

1. We train our U-Net with random initial parameters only using 2 500 training434

and 2 500 validation data of type III.435

2. We use the trained U-Net from section 7 as the initial guess for training with436

only the 2 500 training and 2 500 validation data of type III.437

3. We use the trained U-Net from section 7 as the initial guess for training on438

a combined data set. In particular, we use the 90 000 training and 10 000439

validation data for type I and II geometries from section 7 and add the 2 500440

training and 2 500 validation data of the type III geometries.441

The results for the three di↵erent learning approaches are listed in Table 6. Using442

the first approach, we are not able to obtain any good results after 100 epochs of443

training on type III geometries; the error is in the order of 100% for both SDF444

and binary input data. Presumably, this is due to the too small amount of training445

data. The second approach yields good results for type III geometries, which can446
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Type III:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

2 ⇥ Type II:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Large Type II:

ux CFD ux CNN ux ERR

uy CFD uy CNN uy ERR

Fig. 12. Comparison of the CFD flow field (top) computed using OpenFOAM, the CNN pre-
diction (middle), and the pointwise error (bottom) for x (left) and y (right) component. Results for
three types of geometries which have not been part of the training or validation data: a type III ob-
stacle, two type II obstacles, and one large type II obstacle. The network which was trained on type
I and type II geometries is not able to generalize to these geometries, which are clearly outside the
validity range of the model. Mean relative errors (7.1) of approximately 15777% (type III obstacle),
140% (two type II obstacles), and 67% (large type II obstacle) are obtained.
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type I & II type III
learning
approach

# training
epochs SDF input Binary input SDF input Binary input

1 100 - - 98.02% 111.75%
2 100 208.02% 105.43% 7.18% 11.81%
3 3 3.33% 7.06% 4.94% 11.28%

Table 6
Results of the error (7.1) for di↵erent learning approaches for type III data: training with

random initial guess for type III data (approach 1), using a pre-trained neural network (on type I
and II geometries) as the initial guess in training for type III data (approach 2), and using a pre-
trained neural network (on type I and II geometries) as the initial guess in training for a combined
data set with type I, II, and III data.
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Fig. 13. Mean relative error (7.1) for our sequential learning strategy as described in section 9:
results for type I–III data (left) and for type IV data (right).

be attributed to the good initial guess for the parameters of the neural network.447

However, since no type I or II geometries were part of the training data for the last448

100 epochs, the corresponding prediction accuracy deteriorated. Our third approach449

is able to maintain the good prediction properties with respect to type I and II data450

while providing even better results for type III geometries compared to the second451

approach after only 3 epochs of additional training. This is remarkable since the same452

amount of type III as in the first two approaches has been used.453

9. Sequential learning strategy. Based on the very promising results of the454

third transfer learning approach for type III geometries in section 8, we now propose455

a sequential learning strategy. The main idea is to start with a rather small training456

data set and enlarge it iteratively until a certain threshold for the validation error is457

reached. Therefore, we are able to reduce the amount of necessary data significantly.458

First, we apply a sequential learning strategy for type I-III geometries. In par-459

ticular, we first generate a fixed set of 10 000 validation data of type I, II, and III460

with polygonal obstacles with 3, 4, 5, 6, and 12 edges. We start with 2 000 random461

configurations as training data and random parameters of the neural network. Then,462

we iteratively add 2 000 additional random configurations and train the U-net using463

the third transfer learning strategy from section 8; in particular, we always use the464

neural network from the previous iteration as the initial guess. As can be observed465
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from Figure 13 (left), 18 000 configurations are su�cient to obtain a validation error466

of approximately 4% for SDF input and 22 000 configurations with binary input to467

obtain an error of approximately 6%. Hence, we are able to obtain better results468

compared to sections 7 and 8 using approximately 20% of the data.469

Finally, we apply the same sequential learning strategy to type IV data, i.e., data470

with no restriction of the vertical position. This data set is even more general than471

type I–III. In particular, it includes geometries which are close to the lower and upper472

wall, resulting in relatively high velocities close to these walls. Therefore, we start473

with a larger initial training data set of 10 000 and enlarge it by 5 000 in each iteration.474

We observe that a significantly higher amount of data is necessary to obtain an error475

of approximately 6%, i.e., 45 000 and 55 000 configurations for SDF and binary input,476

respectively; cf. Figure 13 (right). However, this is still only approximately 50% of477

the data used in sections 7 and 8. One further observation is that the errors for SDF478

and binary input do not di↵er as much as for the previous data sets.479

Overall, using our sequential learning strategy, we are able to obtain very good480

prediction results with a relatively low amount of data.481

10. Conclusion. In this paper, we have extensively investigated our approach of482

constructing a surrogate model for high-fidelity CFD simulations using convolutional483

neural networks; see also [16, 10]. In particular, in order to facilitate the prediction of484

flow fields for varying geometries, we employed convolutional neural networks mapping485

from a pixel image of the geometry to pixel images of velocity components in the486

computational domain. In this regard, our approach di↵ers from the majority of the487

existing approaches, where a single neural network is used to discretize the solution488

of one single boundary value problem with a fixed geometry, whereas our approach is489

able to predict flow fields for varying geometries.490

In order to investigate our approach, we have set up a software pipeline, which491

enables the generation of a large set of geometry and flow data. In a comparison of492

two convolutional neural network architectures using one or two decoders, di↵erent493

loss functions, and di↵erent input data, we have found that, in particular, the U-Net494

architecture, which has originally been introduced for biomedical image segmentation,495

is very robust and yields good predictions. Furthermore, we have obtained good gen-496

eralization properties when applying the trained neural network to unseen geometries497

of the same type. Furthermore, we have presented an approach to reduce the error498

near the obstacles by introducing higher weights for the corresponding loss terms.499

In order to transfer the model to new types of geometries, we have investigated an500

e�cient transfer learning approach. Based on this, we have also described a sequen-501

tial learning approach, where we iteratively enlarge the data set until an acceptable502

validation error is obtained. Using this approach, we were able to significantly reduce503

the amount of necessary training data.504

On one exemplary machine, the evaluation of the convolutional neural networks505

is in the order of 100 times faster compared to generating a computational mesh and506

performing a CFD simulation using OpenFOAM.507
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